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1. Introductry Comments 

This manuscript summarizes 40 or more lectures on gamma ray pene¬ 

tration theory presented in the summers of 1962, 1963, and 1965 at the 

Summer Institute on Fundamental Radiation Shielding Problems as Applied 

to Nuclear Defense Planning, held at Kansas State University. 

a) Fallout radiation shielding. At present radiation shielding, as 

an engineering and research specialty, has four major subdivisions: 

reactor shielding, 

space shielding, 

accelerator shielding, and 

weapons shielding. 

Each shielding area has its own flavor and its own peculiar problems. But 

the extent to which the mathematical methods and experimental techniques 

are shared among them is noteworthy; and the emergence of a shielding 

specialty under the more general heading of "nuclear engineering" is a 

direct result. 

Our attention is here directed to shielding against the gamma rays from 

radioactive fallout, which is only part of "weapons shielding." But the 

mathematical methods are largely applicable to problems of shielding against 

gamma rays and neutrons given off initially in a nuclear explosion. Further, 
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the carry-over into problems of shielding against the radiations of reactors 

accelerators, and outer space is substantial. 

In the study of weapons shielding problems, a very serious question 

has always been the extent to which we can avoid problems of classified 

information. Three devices have made this possible in fallout radiation 

studies: First, by concentrating on general methods rather than specific 

devices, we avoid weapons design information. The feasibility of this 

traces to the dominant influence of the delayed gamma radiation produced 

by mixed fission products, which radiation is relatively independent of the 

design of nuclear weapons. Second, we study schematized problems primarily, 

in which the source and shield configurations have been standardized. We 

do not, for example, concern ourselves with the weapons phenomenology, the 

mechanics of the transportation of debris, or with the time sequence which 

precedes the positioning of a radiation source. In the third place, we 

try to avoid questions of absolute intensity by discussing shielding in 

relative terms, that is, relative to a standard "unshielded detector." 

Other questions than these are not ignored, but limitation of our atten 

tion in this way still leaves a vast area for work in which problems of 

classified data are minor. 

I should probably state at the outset two or three of the assumptions 

fundamental to most existing studies of shielding against fallout gamma 

rays. We assume that horizontal variations in the amount of fallout are 

negligible. Further, surfaces are assumed to receive an amount of fallout 
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proportional to the horizontal projection 

of their area. Thus, the two roofs in 

the sketch of Fig. 1-1.1, having quite 

different exposed areas but the same area 

in horizontal projection, would receive 

the same total amount of fallout. 

We assume that fallout is not sus¬ 

pended in trees and shrubs. There is 

some experimental and a little theoreti¬ 

cal information supporting this assumption when exposed surfaces are dry. 

I know of no information on this subject should the surfaces be wet. 

Regarding the standard "unshielded detector" in terms of which we 
2V 

measure protection, we use the exposure measured by a detector three feet 

from an infinite source plane in an infinite, homogeneous medium of air 

at standard temperature and pressure. Such a standard turns out to be a 

fairly good approximation to the exposure measured at waist level above 
36 / 

the ground in a large open field supporting a similar radiation source. 

b) Gamma Ray Penetration Theory. Part of the following material 

has to do directly with gamma ray penetration and part deals with related 

numerical methods. The latter is intended to relieve the penetration 

theory of digressions into mathematical topics. I am assuming an audience 

which is, say, mid-physics graduate school level of sophistication in mathe¬ 

matics. Some of this supplementary material will be unfamiliar and not 

easily referenced. I have included a summary of lecture material on Monte 

Fig. 1-1.1. Structures oc¬ 
cupying equal area horizontally, 

26 / 
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Carlo methods given at the Summer Institute by Dr. Martin J. Berger. It 

is a brief, but comparatively complete, introduction to the subject. 

The theory of gamma ray penetration as presented here is patterned 

after the monograph Penetration and Diffusion of X Rays, by Fano, Spencer 

15/ 
and Berger. That publication contains many things not directly pertinent 

to questions of radiation protection so that a shortened discussion, 

directed to radiation shielding but covering much of the same ground, 

may be very useful. Some of the material to be presented is in Ref. 15 

only by implication, and we present here the only detailed exposition 

of which I am aware. 

A second general reference for these lectures is the NBS Monograph 

36/ 
on Structure Shielding against Fallout Radiation from Nuclear Weapons. 

This is not a presentation of theory, but a summary application of 

theoretical data to elementary shielding configurations. The penetration 

theory given here includes methods used to calculate the data of that 

publication. 

Other texts giving the general theory of radiation penetration are, 
48/ 44/ 49/ 

for example, Goldstein, Weinberg and Wigner, and DavisonT” 



A. INGREDIENTS OF GAMMA RAY TRANSPORT THEORY 

2. Radiation Sources” 

Gamma rays from radioactive fallout, the so-called "fallout gamma 

rays," originate in two ways: Fission fragments remain radioactive; 

these ordinarily produce the dominant part of fallout radiation. Alter¬ 

nately, fallout gamma rays may be produced by nuclei from the bomb or 

nearby ground which have captured neutrons. We plan to say little about 

the latter case of neutron induced activities: Experimentation indicates 

56 
that three isotopes tend to be of greatest importance. Mn gives a sig- 

24 
nificant contribution within a few hours of detonation. Na may be sig¬ 

nificant during the period from half a day to one or two days after deto- 

239 
nation. Np , perhaps the most important though of relatively low spec¬ 

tral energy, is apt to be significant several days following detonation. 

The fission fragments from a 

nuclear explosion are distributed 

according to a well-known type of 

yield curve: The abscissa on this 

sketch gives atomic number, which 

measures the nuclear charge, and 

the vertical axis gives relative 

numbers of fragments with a giv- 

See, e.g.. Ref. 44 for a general discussion of the fission process. 

N(Z) 

Z(NUCLEAR CHARGE) 

Fig. 1-2.1. Qualitative sketch 
of a fission yield curve. 
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en charge. The two humps include many different nuclear types. Each 

type of fission-fragment nucleus undergoes a sequence of disintegrations, 

producing a series of daughter products. Many chains of radioactive nuclei 

result, which build up and die off with time according to characteristic 

decay constants. 

As a result of decay processes for the many nuclear chains, each 

starting from a fragment of uranium or plutonium nucleus, there exist 

at any time t_ a number of atoms of nuclear charge Z. We will use N^(Z,t) 

to indicate this distribution of nuclear types.* It would be proportional 

to the number of atoms undergoing fission, and £ N.(Z,0) would be the 
• jL 
1 

yield curve of the fission process. 

Each nuclear type has a characteristic probability per unit time 

for emitting photons of discrete energies E., which will be designated 

p^(Z,E_.). If we then refer to the photon spectrum emitted by the mate¬ 

rial at time t_ as S(E,t), a formal expression for this spectrum may be 

written, namely 

S(E,t) l N.(Z,t) p.(Z,E.) 6(E-E . ) 
7 A 1 i : : • O 

(1-2.1) 

where 6(E-E^) is the Dirac function and indicates the concentration of 

photons at the discrete set of energies E.. 

*Each value of the nuclear charge would include nuclei of different 
masses and different energy states, i.e.,many nuclear types, each desig¬ 
nated by a value of i. 
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Although this formal representation of the spectrum is easily writ¬ 

ten down, no one has ever, to my knowledge, calculated it in this form. 

There are literally thousands of lines in the spectrum, and to reduce 

the representation to manageable size, integrals are calculated over 

finite energy regions, i. e.. 

jEk+l 

E, 
S(E,t) dE = l N.(Z,t) p.(Z,E.) , 

z.i.j 1 1 D 

E,< E . < E, , 
k = -i k+1 . 

(1-2.2) 

Anne Nelms and John Cooper, of NBS, did one of the early calculations 

32/ 
of this type for the project which later produced NBS Monograph #42. 

They used data for N.(Z,t) from calculations of R. C. Bolles and N. E. 

_&/ 
Ballou, together with data for p.(Z,E.) from a compilation by Carl 

31/ 1 1 
Miller. 

An independent calculation using the same two reference sources has 

10/ 
been made by P. J. Dolan, and a more recent calculation of the same type 

4/ 
• • ■ ■1 ■■ 

has been made by R. Bjornerstedt. This last calculation was based on 

more recent calculations of N^(Z,t) and data for p^(Z,E_.) by the same 

group in Sweden, and is probably the best available source of information 

about the spectrum of gamma rays from fission products. 

A number of differences between these theoretical spectra should be 

noted other than the data used in their calculations. Nelms and Cooper 

used a set of energy "boxes,” i. e., E^ values, which are approximately 

equal in size in the variable log E, rather than E. This reduced the 

I-T 



number of spectral source energies for later penetration calculations 

to about 24. Both Dolan and Bjornerstedt used values equally spaced 

in E; Dolan used a particularly fine mesh, with well over 100 energy 

boxes. 

One of the problems in determining spectra for fallout gamma rays 

is "fractionation." Heavier fallout particles reach the ground relatively 

nearer the burst point, and this has some effect on the distribution of 

fission products present in the debris at different locations relative 

to the burst point. Further, some fission product materials do not appear 

in the debris in the concentration expected. This is becayse some of the 

daughter atoms in some of the decay chains are either gaseous or very vola 

tile. The calculations of Nelms and Cooper, as well as those of Dolan, 

removed some components which were expected or known to be affected in 

this way. The calculations of Bjornerstedt ignored this effect completely 

It should be noted that attempts to take fractionation into account repre¬ 

sent at best a sort of "shot in the dark." The phenomenon is very compli¬ 

cated, space dependent, and only crudley known. 

C. S. Cook has compared experimental fallout spectra with the cal- 

jJ 
culated spectra of Dolan and the spectra of Nelms and Cooper. He con¬ 

cludes that after corrections to take into account Neptunium present in 

the fallout, the theoretical and experimental spectra have shapes which 

are generally similar, but that specific differences are too large to be 

accounted for by known sources of error. He feels that the state of af¬ 

fairs reflects inadequate knowledge about fractionation. 

We might express the results of comparisons between different theo- 
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Fig. 1-2.2. Comparison of theoretical spectra for gamma rays from fission products 

at different times after fission. Nelms and Cooper take some account of fractiona¬ 

tion. The arrows indicate the positions of Cs-137 and Co-60. The sum of the 

ordinates for each case adds to unity, so that the ordinates indicate fractions 

of the total energy. 
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retical spectra in much the same way. Shapes and trends are generally 

similar, but specific differences are larger than one likes. To some 

extent,these differences are traceable to different assumptions about 

fractionation. In Fig. 1-2.2 a comparison is made between a spectrum 

from Nelms and Cooper, and a spectrum from Bjornerstedt which has been 

chosen to roughly correspond. This will illustrate both similarities 

and differences which one encounters in these spectra. Note that the 

1-hour curves show heavy contributions from a little below 0.5 Mev 

all the way up to 3.0 Mev. There is a gap above 1.0 Mev which appears 

in both. The 1-day curves both show heavy contributions below 1.0 Mev, 

so that both calculations indicate a decrease in photon energy during 

the first day. At ten days, both calculations show the strong peak a 

little above 1.5 Mev. 

Fortunately, it has been shown that both penetration and scatter- 

_36/ 
ing properties are rather insensitive to spectral shape. 

To conclude this initial discussion, we should say something 

about the radiation source function as it will enter into our discus¬ 

sions of the transport equation. First, we might note that for calcu¬ 

lations we generally assume that a spectrum such as that of Equation 

(1-2.2) corresponds to a set of monoenergetic sources located at repre¬ 

sentative energies E, in the energy "boxes." Thus, we write our spec¬ 

trum in the form 



Units of S(E,t) might be number of photons/Mev*sec. 

Complete specification of a source function requires that the 

angular distribution of photon emission and the space distribution 

of the source be given also. This means that a source function will 

in general be written 

S(E;04<f>;x,y ,z;t) , (1-2.4) 

3 
with units such as number of photons/Mev*sec>steradian*cm . It will 

correspond to the emission spectrum per unit s.lid angle along the 

direction with polar coordinates (0,4>), and per unit volume at the 

point with cartesian coordinates (x,y,z). Note that the source spec¬ 

trum S(E,t) is given by the integral over all space and all directions 

of emission of the function S(E; 0 44> ;x,y ,z ;t) . 
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3. Interactions 

a) Total Interaction Probabilities. As radiation from a source moves 

away through the surrounding material, the nature of the penetration 

process is determined by the interactions which occur, and we next wish 

to discuss these interactions. 

Interactions are chance events. When a gamma ray photon moves 

through a material, there will be probabilities p^,p2,..., that inter¬ 

actions of different types 1,2,..., may occur, per unit path length 

traveled. These probabilities are not correlated, and therefore they 

may be added to obtain the total probability per unit path length that 

an interaction of some type occurs. The total probability per unit path 

length for occurrence of some kind of interaction is usually designated 

by y. It depends on the material through which the photons travel and 

on the energy of the photons. We indicate this by writing y(E,Z) , 

where Z is used in the generic sense to indicate any type of material, 

even mixtures. 

Gamma rays travel in straight 

lines between interactions. Fig. 

1-3.1 is a sketch representing a 

gamma ray originating at 0_ and 

undergoing an interaction after 

traveling a distance xq. 

Let p(x) be the probability 

that a gamma ray will have no inter- Fig. 1-3.1 

action for a distance x along its trajectory. If we divide this dis- 
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tance into two segments, x = x + , we note that p(x) must be 

of the form 

P(x) = pU^ p(x2), 

since no interaction for a distance x , means no interaction for x , 

followed by no interaction for The probabilities pCx^) and 

p(x2) are uncorrelated and must have the functional form of p(x). 

This simple product relationship implies that p(x) must be of 

the form 

( \ “Bx p(x) = e , 

since the exponential is the functional form possessing this property. 

To determine B , we examine the case of a very small path length , Ax. 

Since 1 - p(x) represents the probability for an interaction, and 

1 - p(Ax) = 1 - e ~ BAx» 

we find that B is probability per unit path length for occurrence of 

an interaction. We identify B with p and write 

p(x) = e 
_-px (1-3.1) 

The related quantity, probability that an interaction occurs between x 
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and x + Ax , is clearly 

p(x) [1 - p(Ax)] = pAx e . (1-3.2) 

We now consider a source which produces a large number, N , of 

photons of identical energy. The number N escaping an interaction for 

a path length at least as long as x should be 

N = N p(x) = N e~UX . (1-3.3) 
o o 

If these photons form a narrow beam traveling away from the source, any 

interaction will in principle remove the photon from the beam. We thus 

expect exponential attenuation of such narrow beams. 

The coefficient p is usually referred to as the "linear attenuation co¬ 

efficient." Its reciprocal, the average distance traveled before an inter¬ 

action, is the familiar "mean free path," which will be here designated by 

£. In the table below, values of l for 1 Mev photons are listed; this ener- 

gy being typical for components of the gamma rays from fission fragments: 

Table 1-3.1. Typical Values for Mean Free Path 

Material l (ft.) a (ibs/ft^) 

Concrete 0.22 32.3 
Wood 0.89 30.4 

Air 430.0 32.3 
Lead 0.04 29.9 

The English units are used; note that the metric units, g/cm , would 

• » 

"For extensive tabulations,see Refs, 9, 19, 
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give values only about half as large as those of the third column. In 

any case*the conclusions to be drawn do not depend on precise values. 

There are several interesting things which can be said on the basis 

of this table. Most important from the point of view of protection are 

comments about room and building dimensions. Typical dimensions for 

rooms might range from 15 ft. to 50 ft. In any case, the mean free path 

in air is in order of magnitude larger than this. On the other hand, the 

mean free path in concrete and wood is at least an order of magnitude 

smaller. Because of these facts, two approximations become very attrac¬ 

tive and useful. If air has such a large mean free path, what will hap¬ 

pen inside buildings? The gamma rays emerging from one wall will go un¬ 

impeded across to another wall, in nearly all cases. We can therefore 

perform realistic calculations for structures which omit any effects of 

air. While the presence of air can be very important, this will not 

usually be so inside structures. 

On the other hand, concrete and wood have mean free paths that are 

so short—less than a foot—that it is possible to do realistic calcula¬ 

tions of the penetration through walls by assuming that gamma rays do 

not move laterally inside the walls. They can be considered to re- 

emerge either at the point of entry or at the opposite point on the other 

side of the wall. This also means that we need not be much concerned 

about corner and edge effects, which will involve only that small frac¬ 

tion of all the entering gamma rays which penetrate within a few inches 

of the edge or corner. 

The last column of this table also exhibits an interesting feature. 
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The mean free path is inversely proportional to the density of the ma¬ 

terial; but we often scale out the density, as has been done here. -The 

values then turn out to be closely comparable. The difference for-wood, 

as compared with concrete and air, is due to the hydrogen in the wood: 

the values depend on the ratio of atomic mass (expressed by A ) to the 

number of atomic electrons (expressed by Z ). The value of this ratio 

averaged over the constituent elements of wood is about 6% smaller than 

for concrete or air because of the hydrogen content. The fact that Pb 

has nearly the same value as the other materials is due to the combina¬ 

tion of effects: the A/Z ratio is substantially larger for lead than 

for concrete, and this would tend to increase the mean free path. Coun¬ 

teracting this is a substantial probability, per unit path length in Pb, 

for photoelectric interactions, an additional contribution that is lack¬ 

ing for the materials with lower Z . This lowers the value relative to 

the other materials. The two effects nearly compensate one another. 

The fact that lead is so expensive, while being so nearly comparable 

to more common materials, rules out the possibility of using lead as a 

standard construction material for shelters. Note, however, that lead 

has a strong differential effect against low energy gamma rays and may 

be particularly useful under special circumstances as a shield against 

gamma rays which have lost much of their original photon energy. 

b) Differential Interaction Probabilities.'* Many different types of 

interactions contribute to the attenuation coefficient; but of all the 

different kinds of interaction which are possible, three are dominant. 

s'c 
For a general treatment see Ref. 20 , and for a summary discussion 

see Ref. lb. 
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These three combine additively, as mentioned, and are photoelectric ab- 

tron-electron pairs (y^) * For our PurPose» all other interaction 

types are small enough to be neglected, so that we may write 

(1-3.4) 

For a chart of the different possible interaction types, you can refer 

to Ref. 15, p. 663, 

A few comments will be made about each of the most important types 

of interaction, but before doing so, we note that photon energy and pho¬ 

ton wave length are essentially reciprocals of each other. The photon 

wave length, which will be designated by X , can be written 

2 
(1-3.5) X = me 

E 
» 

2 
where me is the rest energy of an electron. When this definition is 

made, the wave length is said to be in Compton units. 

Recall also the relationship between interaction probability per 

unit path length and interaction cross section. In general, for a given 

element of atomic number A , 

N 
A po cm 

-1 
y = A o cm /g , (1-3.6) or 

A 

where N is Avogadro's number, p is the density, and o is the 
A 
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cross section. The combination N^/A gives atoms per gram. A suitable 

linear combination of terms of this type will give y for mixtures and 

compounds. 

In a photoelectric interaction, the gamma ray disappears and its 

energy is given to an atom. The total probability of such an interaction 

can be considered the sum of the separate probabilities that the interac¬ 

tion occur with the different atomic electrons. Since we are not here 

interested in a detailed expression of great accuracy, it will be ade¬ 

quate to focus attention on an approximate form (a ) for the two K- 
I\ 

shell electrons only. Evaluation by Born approximation gives the fol- 

20/ 
lowing result: 

o 
K °Th ^ x3-5 

137 4 * (1-3.7) 

where the constant is called the Thomson cross section, and is 

given by 

a 
Th 

9 2 2 
8tt (eVmc ) 
3 

In the expression for y, the combination of constants N^o,^ occurs. 

It is useful to remember that 

NA°Th 
.4 cm /mole (1-3.8) 



almost precisely. The higher shell electrons make a contribution also, 

so that the total photoelectric cross section per atom is somewhat larger 

than o , but the trends with Z and with X are not changed. 
i\ 

Note that with increasing energy this cross section becomes small 

rapidly, since X decreases as the energy increases. The fact that a 
K 

5 
is proportional to Z means that at any given energy this cross section 

is much more important at large than small values of Z. in smali-Z 

materials the pnctoeleotric cross section is therefore important only at low 

energies, as has already been noted. In materials with lower Z than 

Fe, interactions of this type are important only below, say .1 Mev, while 

for materials with smaller Z values than 13 (Al), such interactions are 

important only below about .05 Mev. For Pb (Z = 82), photoelectric inter¬ 

actions are important at all energies up to, and somewhat above, 1 Mev. 

Turning to Compton scattering interactions, in which gamma rays give 

only part of their energy to electrons, we first write the differential 

cross section per electron, namely* 

doKN = if? °Th (A'/X)2 [A/X' + X'/X - 2(X - X') + (X' - X)2] 

x 6(cos® - 1 + X - X')dfldX . (1-3.9) 

Here, X' and X are gamma-ray wavelenghts before and after scatter, 

respectively, and dft is a differential solid angle encompassing the 

*At this point our discussion is oversimplified in that known correc¬ 
tions to the simple expression given here are ignored. Such corrections 
have not as yet appeared to be important in the penetration process, per¬ 
haps because of some tendency for the omission to compensate for relatively 

unimportant interaction types also omitted. 
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deflection angle 0 between photon trajectories before and after the 

interaction. The Dirac delta function expresses the Compton relation¬ 

ship between wave length change and deflection angle, namely 

1 - cos® = X - X' (1-3.10) 

We might observe from this that a scattering interaction with a 

deflection of 90° will increase the wave length by one Compton unit, 

while an interaction with a deflection through 180° will increase the 

wave length by two Compton units. Correspondingly, gamma rays which 

have had such interactions retain photon energies below approximately 

.5 Mev and .25 Mev, respectively. 

The total cross section for Compton scattering can be calculated 

from Equation (1-3.9) by integration over all deflection angles and over 

all possible scattered wave lengths. The integration over deflection 

angles removes the Dirac delta function and gives the familiar form referred 

to as the differential Klein-Nishina cross section. The wave length inte¬ 

gration is also elementary, and the resulting expression is called the 

integral Klein-Nishina cross section. The relevant comments about this 

total cross section can be made from a simple form valid at high energies 

and small wave lengths, namely 

°KN ‘ !Z °Th A’lc«¥i > X<<1' (I-3‘11) 

Here the subscript KN refers to Klein-Nishina and should not be confused 
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with the subscript K, referring to K-shell electrons. The factor Z in 

the expression is introduced because all (Z) electrons of the atom are 

assumed to contribute like terms. 

The total cross section for Compton scattering changes much more 

slowly with wave length (or energy) than the o . This statement is 

true also at lower energies, where the expression given is not applicable. 

It is also apparent that changes more slowly with Z than does o^. 

At high energies, then, the photoelectric cross section tends to 

become very small, and the Compton scattering cross section becomes domi¬ 

nant. Likewise, at a fixed energy, if Z is decreased, the relative impor¬ 

tance of photoelectric interactions decreases. 

The cross section for producing electron-positron pairs is often 

important, though this is not so much the case for our problems. This 

interaction does not occur at photon energies below about 1 Mev. At 

higher energies it increases; but in small-Z materials it tends to remain 

small up to energies greater than those of fallout gamma rays. Because 

the gamma ray photon disappears as a result of such interactions, the 

effect on penetration is very similar to that produced by photoelectric 

interactions. For this reason, one often tends to distinguish between 

"scattering'1 and "absorbing" interactions, with the latter including pair 

,t4 
production as well as photoelectric effects.'* 

Before leaving the subject, some further comments about possible 

oversimplifications may be useful. In addition to a simplified form 

for the scattering cross section, the phenomenon of polarization has 

been altogether neglected. Gamma ray photons become polarized as a re- 

”These comments ignore the .51 Mev gamma rays due to annihilation of 
electron-positron pairs. This radiation can be important in backseattering 
phenomena^ and leads to slight underestimates of penetration. 
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suit of scattering interactions just as light, scattering from small dust 

particles in the atmosphere,becomes polarized. As a consequence of polari¬ 

zation, gamma-ray photons tend to maintain directions along the plane of 

their first substantial scattering interaction. This tendency has a small 

effect on penetration, and also some effect on backscattering from a wall. 

It may show up in comparisons between theoretical and experimental albedos. 

Because for the most part the effect is confined to gamma rays of low ener¬ 

gy, we can safely omit all consideration of it in problems of penetration. 

A simple, but indicative, integral over the differential scattering 

cross section is the following: 

j\ ' +2 

A ’ +1 
j\ ’ +2 

A1 

/ 
4ir 

/ 
4tt 

(1-3.12) 

According to the integration limits, the numerator is proportional to the 

average energy of gamma rays scattered through angles larger than 90°, 

while the denominator is proportional to the average energy of gamma rays 

scattered through any angle, in a single interaction. The ratio is a rough 

measure of the size of the "energy albedo," the fraction of energy which 

backscatters from a wall.* For 1 Mev photons, the ratio is approximately .2. 

The smallness of this ratio is much more important than might appear 

*We refer to the fraction backscattered for energy, photon number, or 
dose, as various albedos: energy albedo, number albedo, or dose albedo. 
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at first. This simple calculation indicates that the ’’energy albedo" 

is expected to be small, about an order of magnitude less than the 

incident energy. This, in turn, means that in buildings, the radiation 

penetrating through a wall directly to the detector, without backscatter- 

ing from other walls, is much the largest contribution to the dose, much 

larger than contributions backscattered from one or more walls. It 

should thus prove reasonably accurate to perform calculations that treat 

the backscattering as a small correction to the contribution coming 

directly through each wall. Moreover, one can proceed with some confi¬ 

dence to perform wall-by-wall analysis of structure shielding. 
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4. Radiation Flux 

a) Definitions♦ One basic problem is to provide an adequate and useful 

description of a radiation field. We might conceive of a radiation field 

more or less as in the following sketch, in which the arrows represent 

gamma-ray photons traveling in all directions through different regions 

of space. 

Fig. 1-4.1 

As indicated by the small circle, a probe is introduced to sample the 

field. This probe is small so that the characteristics of the radiation 

are uniform over the region of space which the probe is to occupy, and 

also so that the presence of the probe doesn't modify the radiation field 

appreciably. In shape, the probe is spherical, so that it presents the 

same shape and apparent size regardless of the direction from which it is 

approached. Ideally the probe is capable of registering the characteristics 

of each photon which passes through it. Photons not passing through the 

probe are not recorded. Thus, from the total set of photons, a subset is 

selected which passes through the probe, and which we might indicate by the 

following sketch. 

Fig. 1-4.2 
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Note that each photon in the sketch is traveling on a collision course with 

some part of the probe—its center, its edge, or some other part. 

The photons which strike the probe are characterized by energy, direc¬ 

tion, and the time they strike. The probe itself is characterized by its 

cross-sectional area, which we call a , and its location, which we desig¬ 

nate by a set of Cartesian coordinates, x , y , z . To classify photons 

by direction, we choose an arbitrary polar axis extending out from the cen¬ 

ter of the probe, and an arbitrary azimuthal reference half-plane, as in 

Fig. 1-4.3. Radial lines 

from the center of the 

probe can be identified 

by an obliquity angle 6 

relative to the reference 

axis, and an azimuthal ang¬ 

le 4> between reference 

half-plane, and the half¬ 

plane from the polar axis 

containing the radial line. Fig* 1-4.3 

Each photon trajectory passing through some part of the probe is 

then identified by the angles 6,<j> of the radial line starting at the 

center of the probe and lying parallel to the photon trajectory. To 

render 6 and <J> unique, we must specify that we vrill either choose 

consistently the radial line back along the path of approach, or the 

radial line parallel to the direction of motion of the photon. Both 

are used; in Figure 1-4.3 the first possibility is indicated. 
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With a classification system for direction, and some mechanism for 

identifying photon energy, we simply count the number of photons passing 

through the detector with energies between E and E + dE , with direc¬ 

tions in a differential solid angle dft in which the direction 0,<J> 

lies, in the time interval between t and t + dt . This number will be 

proportional to dE, dft, and dt , and will be indicated by 

ZV(E;6,4>;x,y,z;t)dE dft dt . 

Finally, we note that the number of photons passing through the probe 

will increase or decrease as the size of the probe is increased or decreased. 

For small probes there will be a proportionality between N and the size 

of "target” presented by the probe, as measured by its cross-sectional 

area a . The fundamental quantity which we call the flux, or number flux, 

and designate by N , is the ratio 

N(E ;<£ ,0 ;x ,y ,z ;t) = ^ N . 
a 

It clearly has the units 

Number of Photons_ 
Energy•Steradian*Area•Second 

If one integrates N over energy and direction, the result is commonly 

called the "total flux," or "total number flux." To avoid some resulting 

confusion, N and its integral over energy or direction, but not both. 
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are commonly referred to as the "differential" flux or number flux. 

To prepare the way for future discussions, we consider also the 

case of a probe which is not spherical, but shaped like a small flat 

plate of area a , oriented so that the plane of the detector is perpen¬ 

dicular to a unit vector k , as in Figure 1-4.4. In this case the tar¬ 

get presented by the probe 

clearly depends on the di¬ 

rection of approach. Fur¬ 

ther, it is advantageous 

to choose k as the ref¬ 

erence polar axis in clas¬ 

sifying photon directions. Fig. 1-4.4 

The number of photons passing through this detector will be indicated by 

W'(E;6,<J>;x,y,z;t)dEdftdt . 

Since the target size is proportional to |cos0| , we find that 

= |cos0|^W = | cos© | N(E ;0 ,<p ;x ,y ,z;t) . 

The quantity |cos0|N is often referred to as the current, as distin¬ 

guished from the flux, N .* 

* A quantity often calculated is cos0N , i. e.f>with cos0 per¬ 
mitted to be negative as well as positive, and on occasion this has been 
called the current. If this quantity should be referred to later in 
this manuscript, it will be called the "signed current." 
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The current depends on the direction of k . Normally one .speaks 

about current in connection with some flat surface, and with the detec¬ 

tor plane oriented parallel to the surface. The direction of k is 

then normal to the surface. One may distinguish between the current 

into, and the current out from, the surface, each referring only to those 

values of 6 which correspond to photons going "into," or "out from," 

the surface. 

b) Detector Response to Radiation from a Wall. Next let us consider 

a flat wall or wall section and a nearby detector measuring radiation 

which emerges from the wall and passes through the detector. Our pur¬ 

pose is to express the detector response in terms of radiation flux at 

the wall surface and also radiation current through the wall surface. 

The comparison is both interesting and useful. 

In Figure 1-4.5, the detector position is measured in a rectangular 

coordinate system and found to be (x,y,z). A small surface element of 

the wall surface S is located at (x',y',z') , and its size is dA . 

In our sketch, this surface element 

is drawn with exaggerated size; it 

is to be thought of as very small. 

The (spherical) detector has cross- 

sectional area a . 
>dA, 

Two reference systems are natu¬ 

ral to this configuration: the po¬ 

lar axis for classification of pho- 
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ton directions at_ the detector points towards and perpendicular to the 

wall; and photon directions are measured by radial lines opposite the 

direction of photon movement and therefore pointing from detector to wall. 

On the other hand, at_ the surface a polar reference axis points perpen¬ 

dicular to, and away from, the wall, and photon directions are measured 

by lines drawn from dA in the direction of photon movement. 

At the detector, an azimuthal reference half-plane is selected; and 

at the surface S , the azimuthal reference half-plane is chosen parallel 

to, and extending in the opposite direction from, the one for the detector. 

All this is displayed in Figure 1-4.5. 

We call the flux at the surface element N(E;G' ^'jx* ,y1 ,z’ ) . 

As indicated it is a function of photon energy, direction, and the posi¬ 

tion of dA . Specific reference to the time has been omitted, as it is 

irrelevant for our present purpose. We first write down an expression 

for the number of photons passing through dA , with energies E lying 

in dE , and directions 0 * ,4> * lying in a solid angle element dft' . 

Since dA behaves like a flat detector, th# quantity we wish is given by 

cosG’NCE;©' ,4)' ;x' ,y' ,z’ )dEdftdA« 

Next we determine the number of photons passing through both dA and 

the detector. This must be the following integral over directions inter¬ 

cepting some part of the detector: 

j dA*cosG'N(E;0' j^x’ ,y' ,z* )dEdA„ 
ft 
detector 
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While this is the number passing through the detector, it is not the flux 

passing through the detector. We must divide by the cross-sectional area 

a of the detector to obtain flux: 

dN = — / dft'cose’NCEie' ;x’ ,y' ,z' )dEdA . 

a fl 
detector 

This flux is called dN because it is proportional to dE and dA . If 

we omit the factor dE , and integrate over the complete wall surface S , 

we obtain the flux N at the detector position from all parts of S , 
u 

N (E) = - / dA / dn'cose'NCEje',<j>’;x',y',z’K 
S a s 

detector 

If o is very small, the argument is essentially a constant 
detector 

for the integration over directions, since © *, 4*1 can then change only 

slightly. Noting that 

^ a 
£2 — —? 
detector r^ 

and that 

( G' ’4)1 Surface reference system = (6 ,4>)detector reference system 

we write 
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N (E;x,y,z) = — JdAil 
S aS 

detector 
cos0 'N(E;0' ,4>' ;x,y,z) 

(1-4.1) 

Finally, observing that the solid angle subtended by dA at the detector 

is 

dAcos6 
» r 

we write 

In this final expression, the angular distribution may or may not 

vary from p»int to point on S . If the flux at S is independent of 

position, the detector flux is given simply by an integral over the emer¬ 

gent angular distribution. But if the flux at S depends on position, 

the integrand must be evaluated at the point x',y’,z’ intercepted by 

the 6,4> radial line from the detector. Nearly all shielding calculations 

thus far have used the assumption that emergent angular distributions are 

position independent. 

Comparison of Equation (1-4.1) with Equation (1-4.2) makes it clear 

that we can adopt a point of view which looks from the surface S out¬ 

wards, utilizing a polar axis pointing away from the surface and identi¬ 

fying photon directions with photon movement. It is then natural to 
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identify the flux at the detector with a surface integral over emer¬ 

gent current. Alternately, we can adopt a point of view which looks 

from the detector towards the surface, utilizing a polar axis pointed 

towards the surface and identifying 0,<f> with the reverse of the di¬ 

rection of photon movement. It is then natural to describe the flux 

at the detector in terms of an integral over emergent flux at S . 

The two points of view are completely equivalent. Discussions of 

structure shielding mostly utilize the latter point of view. 
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5 Derivation of the Transport Equation 

There are many different derivations of the transport equation. 

The one to be presented here is detailed, rather pedestrian, and not 

highly intuitive; in fact, it has been chosen largely for these charac¬ 

teristics. The quantity basic to this derivation is not the number 

flux but the number density, a related quantity; and we begin by estab¬ 

lishing this relationship. 

We first consider a radiation field, and a small spherical volume, 

rather like the spherical probe of Figure 1-4.1, within this field. The 

magnitude of the cross“sectional area of the small sphere can again be 

designated a , and the magnitude of the enclosed volume by V . If the 

sphere contains the point x,y,z, the number of photons having energies 

within dE at E and directions within dft at 0,4> , which are incident 

on the surface of this sphere in the time interval dt , is 

aN(E;0 ,4>;x,y ,z;t)dEdfidt 

If these photons remain inside the sphere for an average time interval 

which we designate <t> , the number of photons of this type in the 

spherical volume will be 

/t+<t>dt’aN(E;0 ,4>;x,y ,z;t ’ )dEdfi * a<t>N(E; 0 ;x ,y ,z ;t )dEdft . 

t 

We divide this number by the volume of the sphere to obtain the number 

per unit volume, or density, of photons of this type at x,y,z at time t 
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The density function we wish to use will be designated n(E;0 ,4> ;x ,y ,z;t) , 

and is given by 

n(E;0,<f>;x,y,z;t)dEdQ = ^<t>N(E; 0 ,<J> ;x ,y ,z ;t )dEdft . 

But V is simply a, multiplied by the average chord length across the 

sphere; therefore, V/a<t> is the ratio of average distance to average 

time for traversal of the sphere, which must equal the photon velocity, c . 

Thus we have, 

n(E;0 ,4>;x,y,z;t) = E ;0 T <f> ;x ,y ,z;t) . (1-5.1) 

For neutrons and other particles, c must be replaced by the particle 

speed, v , which will in general depend on E . With this modification, 

the entire derivation applies equally well to any type of particle; and 

we therefore use v(E) rather than c in the following discussion, 

while referring to "particles," a generic term including photons. 

In a small time interval 6t , particles traveling with velocity 

v(E) will wove a distance v6t . If this path length is very short, 

the particles may or may not have some kind of interaction in v6t . 

Multiple interactions during 6t will have vanishing probability. We 

assume that interactions occur instantaneously, so that occurrence 

or non-occurrenceof an interaction is definite in any finite time interval. 

The probability for some kind of interaction is yv6t , where y 

is the total interaction probability per unit path length as defined in 
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section 3, a quantity we also refer to as the attenuation coefficient in 

the case of gamma rays. The probability of no interaction is (1 - yv6t) . 

Some interactions cause particles to change direction and energy. We take 

note of the probability for particles of energy E' and direction 6',$' 

to scatter in v(E’)6t in such a way as to transfer to E lying within 

dE and 0,<£ lying within dft . This will be written 

k(E' ,6' ,<*>’ ;E,0,<f>)dEdftv(E’ )6t . 

To derive the transport equation we consider the number of particles 

in a volume element dV at x,y,z , with energies in dE at E and di¬ 

rections in dft at 0,<f> , at a time t + 6t . This number can be written 

n(E;0,4> ;x,y ,z;t )dEdftdV ; 

and we can estimate it in terms of the particle density at the slightly 

earlier time t . There are three main contributions: a) particles of 

the indicated energy and direction which move without interaction during 

6t , so as to be in dV at the indicated time; b) particles undergoing 

an interaction in 6t which gives them the indicated energy and direc¬ 

tions, and whose dog-leg path puts them in dV at the indicated time; 

and c) particles "born" during 6t with the indicated energy and di¬ 

rection and moving into dV at the indicated time. The first contri¬ 

bution will be called the "convection" term; the second will be referred 

to as the "scatter" term; and the third will be called the "source" term. 

We discuss each in turn. 
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a) The Convection Term. At time t these particles occupy a vol¬ 

ume of the same size as dV , located at x - v fit, y - v fit, z - v 'fit , 
x y z 

where v ,v ,v are the velocity components parallel to the three Car- 
x y z 

tesian axes. The number of such particles, multiplied by the probability 

of no interaction, gives the size of the contribution: 

(1 - yvfit)n(E;0 ,<j> ;x - v fit,y 
X 

- v 6t,z - v fit;t)dEdftdV. 
y z 

b) The Scatter Term. This is somewhat complicated. Particles 

start with energy E' and direction 0 * , 4> * and scatter to energy E and 

direction 0,<j> within the small interval fit . Thus, they have paths 

The time interval fit is divided into a part £fit before the scatter 

and the remainder (1 - i)6t after scatter, where 0 £ <_ 1 . Con- 

sider those particles whose scattering from E,,0,,<j>' to E,0,4> occurs 

within the sub-interval between £fit and (£ + 6£)fit . At time t 

these particles are in a volume of the same size and shape as dV , but 

located at the point with coordinates 

x - v (E*)£6t 
x 

y - v (E' Kfit 

z - v (E* )£fit 
z 

- V (E)(i - 
x 

- vy(E)(l - 

- v (E)(l - 
z 

£)6t » which 

5)fit , which 

£)6t } which 

we abbreviate 

we abbreviate 

we abbreviate 

x^E'.E), 

yc(E\E) , 

z (E',E). 
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The number of particles is 

d£{v(E' )6tk(E' ,0' ,<*>' ;E,0,4>)dEdft} 

x {dE’dfi,dVn(E';e,,^';x^(E',E),y^(Ef,E),z (E\E);t + £6t)} 

The scatter term which we require is simply the sum over all values of 

£,E',0',<fr' of such contributions, i. e., 

J^dS /°°dE' / dfl' k(E' ,0' ,<p’ ;E,0,(j>) 
0 E 4it 

x v(E* )n(E';0' ,4)’ ;x^(E*,E) ,y^(E' ,E),z^(E* ,E) ;t + £6t)dEdfldV6t . 

c) The Source Term. We assume the existence of a particle source 

S , which generates the following number of particles per unit volume 

per unit time, with energies in dE at E , and with directions in dft 

at 0, <f> : 

S(E;0,<J>;x,y,z;t)dEdft . 

We face the same situation here as in the case of the scatter term. 

The source emits particles all during the time interval 6t . The par¬ 

ticles which end in dV at t + 6t can be classified according to sub¬ 

interval. In particular, those emitted between £6t and (£ + d£)6t 

originated in a volume similar to dV and located at 

x - v (E)(l - £)6t , which we abbreviate x (E) , 
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* y - Vy(E)(l - £)6t , which we abbreviate y^(E) 

z - v (E)(l - £)6t , which we abbreviate zr(E) . 
z K 

The number generated by the source during d£ <5t , and located in dV 

at t + 6t , is 

d^6t{s(E;6,4i;x^(E) ,y^(E) ,z^(E) ;t + £6t)dEdftdv} , 

and the total scatter term is therefore 

.1 
/ d£S(E;0,<f>;x (E),y (E),z (E);t + £6t)dEdftdV5t . 
0 4 t, ^ 

d) The Equation. Combining all the terms together into an equa¬ 

tion, we obtain quite a long expression. To maintain some clarity, we 

will not re-write the scatter and source terms in the following ex¬ 

pression, but merely indicate their presence: 

n(E;0 ,<J>;x,y ,z;t + 6t)dEdftdV = 

(1 - yv6t )n(E;0 ,<}>;x - v 6t,y - v 6t,z - v 6t;t)dEdftdV 
x y z 

+ Scatter term + Source term . (1-5.2) 

To turn this expression into a differential equation, we expand the con¬ 

vection term and the term on the left side of the equation in powers of 

6t , these being the only terms not containing 6t as a factor: 
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n(E;6,4>;x,y,z;t + fit) = n(E; 6 ,<f> ;x,y ,z ;t) + fit— + 0(fit2) , 

n(E;0 ,<}> ;x - fitv ,y - fitv ,z - fitv ;t) = n(E ;0 ,<*> ;x ,y ,z ;t) 
y 

3n 
z 

3n 
- fitf^v - fit^v - fit-J^v + 0(5t") . 

3x x 3y y 3z z 

Inserting the expansions into our equation, we obtain 

{f^fit + (|^v + -^v + v )6t + yvnfit + 0( fit2) }dEdfidV 
l3t 3x x 3y y 3z z 1 

= / dc/°°dE'/ dfi'kvnCE';©' ,<f>';x (E* ,E),y (E' ,E),z (E1 ,E);t +$fit)dEdftdVfit 
0 E 4tt K K K 

+ J1d£S(E;0,<f>;x (E),y (E),z (E);t + £6t)dEdftdV6t . 
0 K K K 

If we now divide all terms in the equation by fit , and take the limit 

as fit-K) , we find that in both scatter and source terms, x ,y ,z ->x,y,z , 

so that 

r 3n 3n 3n 3n 
^3t + 3xVx 3yVy + 3zVz 

+ yvnJdEdftdV 

= /1dC/°°dE*/ dft'kv(E’ )n(E* ;0* ,4>* ;x,y,z;t)dEdftdV 
0 E 4tt 

+ /■*‘d£S(E;0,<J>;x,y,z;t)dEdfidV . 
0 

(1-5.3) 

In this limit both integrands are seen to be independent of £ . We can 

therefore easily perform the £ integrations. If this is done, and if 

we remove the differential factors,we obtain 

3n 3n 3n 3n 
3t + SjT^x Sy'V 3zVz 

+ yvn S(E;0,4>;x,y,z;t) 

+ /°°dE'/ dfi'k(E’ ,0' ,<t>' ;E,0,<j>)v(E' )n(E’ ;0' ,4>* ;x,y,z;t) 
E 4n 

(1-5.4) 
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Next, we note that v /v, v /v, and v /v are the cosines of a 
x y z 

unit vector which points in the direction of motion of the particles. 

We designate this vector u> . Recalling the relation vn = N between 

density function and flux, we can rewrite Equation (1-5.4) in the sim¬ 

pler form 

1 3n -* 
+ w*VN + uN(E;6,<j>;x,y,z;t) = S(E;6 ,<J>;x,y,z;t) 

+ / dE' / dft'k(E',0';E,6,$)N(E';6',$*;x,y,z;t) . (1-5.5) 
E 4tt 

The first term in this equation has little significance for shielding 

calculations because radiation sources change little over photon life¬ 

times. We therefore assume that N is effectively time-independent. 

The first term then vanishes, and we arrive at the form of the trans¬ 

port equation on which our attention will be focused in further dis¬ 

cussions, namely5'* 

w VN + pN(E;6,<t>;x,y,z ) = S(E ;0 , $ ;x ,y ,z ) 

+ /°°dE’ / dfi,k(E',6',<j)';E,0,4>)N(E’;6',4>';x,y,z ) . (1-5.6) 
3 4tt 

The source function in Eq. (1-5.6) might be a delayed fission-product 

gamma-ray source function, such as was discussed in section 2. Alternately, 

it might be a Co-60 source, a Cs-137 source, or something else. 

The coefficient y(E) was discussed in section 3. The function 

k(E',0',4>';E,0,<j>) is written here in somewhat more general form than necessary 

Wa assume it to be proportional to the Klein-Nishina function, Eq. (1-3.9). 

5,{We omit t henceforth and ma^ or i.tay not indicate explicitly in later 
discussions that N and S are sec 



There is no point in rewriting the expression here, but it should be 

noted that 

k(E' ,0 ’ ,<J>' ;E, 0 ,<f>) = k(E',E,cos©) 

where 

cos® = COS0COS0' + sin0sin0 ’ cos( <J> — <f>' ) (1-5.7) 

That is to say, the function k depends on initial and final directions 

only through the cosine of the deflection angle @ . The origin and 

interpretation of Equation (1-5.7) can be found in any treatise on spherical 

trigonometry. 



6* Linearity, Superposition Properties, and 
Boundary Conditions 

The first thing we note about Equation (1-5.6), and also the more 

general time-dependent form of the transport equation, is the fact that 

it is a linear equation. We designate the combination of integral and 

differential operators by L : 

LN = {w«VN + pN - J°°dE'/ dft'k(E' ,E,cos0)N(E* ,6f ,<f>' ,x,y,z)} . 
E 4tt 

Equation (1-5.6) then simply reads 

LN = S . (1-6.1) 

Because of linearity, the superposition principle holds for solutions of 

the transport equation. That is, if N^,i = 1,2,..., are solutions of 

the equation 

LN = S. , 
l 

where the S^, i = 1,2,..., are different source functions, then the 

equation 

LN = J a.S. , 
V l l 
l 

a. constant 
l 

* 

has the solution N = )a.N. . The finite or infinite sums referred to 
b l l 
l 
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here may be replaced by integrals over any parameter or combination of 

parameters independent of the variables on which N and S depend. 

It is extremely convenient to represent complex spectra and source 

configurations in terms of superpositions of very elementary source 

types. The most useful elementary source types for this purpose will 

be discussed in section 12. 

In principle an equation of this type can have solutions corres¬ 

ponding to the homogeneous equation (sourceless, S = 0 ), as well as 

solutions corresponding to a given source S . Therefore, the solutions 

corresponding to a given source S are not necessarily unique, since 

solutions to the homogeneous equation may be added to any solution for 

a given source S to produce a different solution for the same source. 

In these problems as in problems of other linear systems, boundary con¬ 

ditions are necessary to remove this possible ambiguity and insure that 

a particular solution to the transport equation corresponds to a given 

physical situation. The boundary conditions also take care of the re¬ 

lated problem of insuring that there are no sources of radiation in the 

configuration other than the sources we choose to insert. 

Three cases commonly arise, of which only the first will be much 

referred to beyond a few comments here. In this first case the medium 

is infinite and contains a source which is confined to a given region 

within the medium. A simple example would be a source located at a 

point, or in a small volume somewhere in the medium. For this type of 

problem the boundary conditions are very simple: as one considers 

points farther and farther from the source region, the flux must decrease 
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in a regular way towards the limit zero. 

lim N = 0 , 
p-Xo 

where r represents distance from the source region. The photons all 

eventually interact, lose their energy, and disappear. If this limit 

differs from zero, it means that photons are somehow being fed into the 

problem from infinity. 

A second common case involves a finite medium with an internal 

source. A simple example of this might be a sphere of material con¬ 

taining a distributed radioactive source, suspended in vacuum. Here 

again the boundary condition is simple: there must be no photons in¬ 

cident on the sphere from outside. That is to say, the flux N at the 

boundary must be zero for all photon directions corresponding to inci¬ 

dence on the surface. (The magnitude of N at the boundary, for di¬ 

rections corresponding to exit from the sphere, will not, in general, 

be zero.) 

This case can be modified by placing a source of photons outside 

the sphere. It is clear that this would make the following change in 

the boundary conditions: the value of N at the boundary, correspond¬ 

ing to directions of entrance into the sphere must just be that pro¬ 

duced by the (known) exterior source. 

There is a third case which occurs, that of two adjacent, but 

different media, as indicated in the sketch of Figure 1-6.1. The flux 
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in the first medium is indicated 

by , while the flux in the 

second medium is indicated by 

. The boundary condition 

at the interface is fairly ob¬ 

vious. Assuming no concentra¬ 

tion of source at the interface. Figure 1-6.1 

the limiting value of the flux , as the interface is approached from 

the left, must equal the limiting value of the flux , as the interface 

is approached from the right. Calculations for the two regions must in 

principle be done jointly, because this boundary condition links together 

the transport equations for the two regions. 

If there is a concentration of source at an interface between two 

different media or regions, the boundary conditions change again, so that 

the two limits just mentioned need not agree, and the flux will in general 

be discontinuous. But the discontinuity in the flux must then be pre¬ 

cisely that produced by the (known) source at the interface. 
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B. ELEMENTARY THEOREMS ABOUT THE TRANSPORT EQUATION 

7. Fano's Theorem 

11/ 

There are several elementary theorems associated with the trans¬ 

port equation which are easy to prove. The first is due to Fano, though 

it had often been assumed to hold before his formal proof was published:"” 

Theorem 1: In an infinite medium in which the material is every¬ 

where the same except for variations in density, if there is a source of 

radiation which is everywhere proportional to the local density in strength, 

but otherwise everywhere the same in spectrum and angular distribution, the 

radiation flux, spectrum, and angular distribution in no way depend on 

position. 

The configuration of interest is one in which a medium extends to 

infinity in all directions, but contains blobs of different densities. 

Figure 1-7.1 suggests high density 

blobs in a low-density medium. We 

are trying to suggest by this sketch 

that such configurations can be very 

complicated indeed. 

If the medium is everywhere the 

same, except for changes of the den¬ 

sity, p , then —\i and ^k(E',E,coso;x,y,z) are independent of position. 
P P 

and a source S proportional to the local density has the property that 

S/p is also independent of position. 

To prove the theorem, we first write down the transport equation. 



u)«VN + y(E;x,y,z)N / dE’/ dft’k(E’ ,E,cos0 ;x,y ,z)N(E' ;0 ' ,<J>' ;x,y ,z) 
E 4tt 

+ S(E;0 ,<f> ;x,y ,z) . (1-7.1) 

Next, we divide each term in this equation by the local density, evaluated 

at the same point, (x,y,z) , appearing throughout the equation: 

— u>»VN + i^(E;x,y ,z)N = / dE’/ dfi’^k(E' ,E,cos0;x,y ,z)N(E' ;0 ' ,4)’ ;x,y ,z) • Awn 

4tt 

+ - S(E;0,4»;x,y,z) . (1-7.2) 

Finally, we assume that the solution of this equation is of the form 

N = N(E;0,4>) , (1-7.3) 

with no dependence on position whatever. If we make this assumption, the 

space derivatives of N vanish, so that VN = 0 , and the equation which 

results is 

{- wfN = /°°dE’/ dfl*{- k}N(E' ;0* ,4>' ) + {- S} . (1-7.4) 
P E 4tt P P 

In this equation, if the bracketed terms are not disassociated, there ap¬ 

pears no factor of any kind which contains a space variable. This confirms 

our assumption about N , and further gives a simpler equation from which 

N can be determined, an equation identical with that corresponding to a 

uniformly distributed source in an infinite, homogeneous medium. The 

theorem is thereby established. 
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The generality of this theorem is great, because no expression for 

the source has been assumed, and no description of the configuration 

has been required. 

. 



8. A Corollary to Fano’s Theorem 

There is a corollary to this theorem which probably deserves a 

formal statement also, because it is so frequently referred to infor¬ 

mally. It involves a number of integral quantities very useful in the 

theory of radiation dosimetry. Among these are the so-called "kerma," 

the "exposure," and the "absorbed dose" in a medium. All are defined 

and described in the 1962 edition of Handbook 84, Radiation Quantities 

21/ 
and Units, published by the National Bureau of Standards. All the 

quantities relate to the degradation of the energy represented by the 

gamma-ray flux. The various types of gamma-ray interactions not only 

have the effect of destroying photons or lowering their photon energy ; 

they also result in the production of fast electrons (and X-rays). 

The fast electrons produced as a result of gamma ray interactions 

represent the source for an electron penetration problem which has 

close similarities to the gamma-ray penetration problem which is our 

main concern. Electrons thus produced interact with atoms in various 

ways and distribute energy among many electrons of lower kinetic energy, 

as well as in the formation of ions, and in atomic excitations. The 

kinetic energy of fast electrons is thus eventually changed into the en¬ 

ergy of excited atoms, ions, chemical changes, optieal radiation, and heat, 

a) Definitions 

The kerma is described as the sum of the initial kinetic energies 

of all the charged particles liberated by indirectly ionizing particles 

in a volume element of the specified material divided by the mass of the 

matter within the volume element. That is to say, the kerma refers 

to the energy transferred from the gamma ray flux to the kinetic 
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energy of free electrons. A formal expression for this quantity, and 

the other quantities also, can be written down with the aid of a few 

definitions. Suppose that 

1) K(E' ,T;u)' *uj;x ,y ,z)dTdft is the probability, per unit path 

length, that a photon of energy E’ and direction coT produces an 

electron with kinetic energy T in dT , and direction u> in the solid 

angle differential dft > 

2) K^ (E* ,T,o)' *io)dTdfl is the same type of probability per unit 

path length for gamma rays in air under standard conditions • 

3) K(T,A,x,y,z) is the average energy transferred Ly fast elec- 
e 

trons of kinetic energy T , to slow electrons of kinetic energy less 

than A , per unit path length travelled by the fast electrons* 

4) Ne(T;6,4>;x,y,z)dTdft is the flux of electrons with kinetic 

energy T in dT , and direction (6,4>) in dfl , at the position 

(x,y,z) » 

5) Se(T;0,4>;x,y,z)dTd£2 is the number of electrons with kinetic ener¬ 

gies T in dT, direction (0,4-) in dQ , generated per unit volume per 

second by the atomic interactions of gamma rays, and 

6 ) S (T;0,4> ;x,y ,z)dTdft is the same quantity, but correspon- 
0 5 cl H"' 

ding to fast electrons produced in air by gamma ray interactions. 

If we designate the gamma ray flux by N(E;0,<f>;x,y,z) , as for¬ 

merly, the two electron source functions are seen to be 

Se(T;0,<t>;x,y,z)dTdft /°°dE •/ dfl ’ N(E' ;0 ’ ,4>’ ;x,y ,z)K(E’ ,T,wf • w;x ,y ,z )dTd^ 
T 4ir 3 

(electrons/cm /sec) , (1-8.1) 



and 

S . (T;6,4);x,y,z)dTdfi = / dE ’/ dft’N(E * ;0 * ,<f>1 ;x,y ,z)K . (E * ,T,u>’ •u>)dTdft 
* T 4ir air 

(electrons/cm ?sec) . (1-8.2) 

The energy D transferred to slow electrons of kinetic energy less 

than A may be formally written 

D(A;x,y,z) = / dT/ dftN (T;0,<fr,x,y,z) — K (T,A;x,y,z) 
A 4ir P e 

(1-8.3) 

+ / dTT/ dft i S (T;0,4»;x,y,z) (Mev/g -sec) . 
0 4tt P 

The kerma rate can be formally described by the expression 

kerma rate = / dT/ dftT — S (T;0,<J>;x,y,z) 
0 4tr P e 

(Mev/g?sec) (1-8.4) 

The exposure, formerly referred to as the "exposure dose," is 

the energy transferred from the gamma ray flux, in air, to the kinetic 

it 

energy of fast electrons per unit mass of air. A formal expression for 

the exposure rate is 

exposure rate = / dT| dftT — S . (T;0,4>;x,y,z) , 
0 4tt pa e,air 

(Mev/g-sec) , (1-8.5) 

where p is the density of air. 
cl 

Finally, the absorbed dose is the energy imparted by ionizing radi¬ 

ation to the matter in a volume element divided by the mass 

of the matter in the volume element. For our purpose, the 

The official definition refers to charge rather than energy released 
in matter. The proportionality is discussed in b). 
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volume and surface area of the element will be designated V_ and A, re¬ 

spectively; and the point (x,y,z) is within the volume element.* An 

expression for the absorbed dose rate (designated ADR) in the volume 

element is 

ADR = My1/ dEE/ dfl{/dV* S(E ;6,4> ;x‘ ,y' ,z’ ) 
0 4tt V 

- /"dA ' »oj[N(E ;0 ,<j> ;x’ ,y ’ ,zf) + 
A 

»y’ »2’ d-8.6) 

where the mass of the volume element is and the gamma, 

ray source is S . This expression is the difference between 

energy injected into the volume element and energy leaving the volume 

element. The volume integral represents energy input by the (y-ray) source. 

The surface integral is negative because of the convention that dA’ points 

away from the volume element; the contribution must be positive if w, 

the direction of travel of the radiation, points toward the volume element. 

Energy can enter or leave in the form of photons or electrons. 

Equation (1-8.6) is not very suitable for calculational purposes. A 

useful approximation which can be highly accurate is provided by the 

function D of (1-8.3): 

D(Aq ;x,y ,z) £ ADR. (1-8.7) 

The energy Aq is a cut-off below which it is possible to assume no 

*By choosing the volume element small (but not vanishing) it is pos¬ 
sible to refer without ambiguity to the udose absorbed at the point x,y,z." 
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further transport of energy by either electrons or gamma rays. Either 

of two concepts can lead to specification of a value for this parameter: 

1) Ay can be related to the energy required for an electron, say to 

travel across the mean diameter of the volume element. Electrons with ki¬ 

netic energies substantially below this value will mostly dissipate their 

total energy within the volume and hence they can be assumed to dissipate 

their energy at the point where they are formed, and 

2) Ay can be assigned a value such that the associated distances of 

travel of photons and electrons are small compared with the distances 

required for significant changes in photon and electron fluxes at the 

energy Ay. Two types of spatial variations should be considered separately: 

the variations which occur in the radiation spectra before pseudo¬ 

equilibrium* is established; and the variations of the total intensity of 

the beam with distance of penetration. If pseudo-equilibrium holds below 

Ay, and if the total flux is effectively constant over distances the size 

of electron ranges and photon mean free paths at Ay, then radiation at 

lower energies can be assumed to dissipate energy at the point of generation. 

Use of D(A0;x,y,z) to estimate the absorbed dose bypasses 

the self-contradiction inherent in the phrase "dose absorbed at the 

point x,y,z." 

b) The Corollary 

With these formal statements to indicate more precisely the content 

of the terms, we can state the corollary to Fano's theorem: 

Theorem 2; In an infinite medium in which the material is everywhere 

*See section 21. 



the same except for variations of density, if there is a source of radiation 

which is everywhere proportional to the local density in strength, but 

otherwise everywhere the same in spectrum and angular distribution, the 

kerma, the exposure, and the absorbed dose are everywhere the same and equal 

to the values which would exist without the density variations. 

The argument is a direct application of Fano’s theorem. Under the 

conditions assumed, the flux of gamma rays N is space independent, accord¬ 

ing to Fano’s theorem. This means that the position dependence of Se 

will be determined by the position dependence of K(E’,T;w’•w;x,y,z) . 

But if only density changes occur, this function will be strictly propor¬ 

tional to the local density. This means that SQ is proportional to the 

local density. The integrand of Equation (1-8.4) is then position inde¬ 

pendent, as is the kerma rate and its time integral, the kerma. 

The fact that S0 is proportional to the local density means that 

the electron penetration problem for which this is the source satisfies 

the conditions of Fano’s theorem. All the electron interactions which 

appear in the electron transport equation are proportional to the local 

density.* Thus, Fano’s theorem applies to the electron flux, Ng , which 

must be position independent. On the other hand the factor Kg(T,A;x,y,z) 

in the integrand of Equation (-1-8.3) is determined by the interaction 

probabilities, and must be proportional to the local density. As a result 

of the factor (1/p) , the integral quantity D(A;x,y,z) must, in fact, 

be position independent. But then the approximate absorbed dose rate, 

^Strictly speaking, this is not quite correct. Small corrections to 
the electron stopping powers, which depend in a complicated way on density, 
are known to exist. 

1-55 



D(AQ;x,y,z), must be position independent. 

To show that the absorbed dose rate as given by Equation (1-8.6) is 

position independent, we observe that since both N and N are 

position independent,the surface integral must vanish regardless of the 

choice of volume element. Since S is proportional to the local density, 

the volume integral must be proportional to My , and the right side of 

(1-8.6) is Mev/g/sec produced by the source, which was assumed to be 

independent of position. Because energy is conserved while being degraded, 

the total energy transferred to electrons which achieve kinetic energies 

less than Aq must equal the energy produced by the source. Therefore, 

when Fano’s theorem holds, (1-8.7) is exact and is independent of A^ . 

Finally, we note that Se a^r , as given by Equation (1-8.2), is 

position independent. Therefore, the exposure rate as given by Equation 

(1-8.5) is position independent. 

To complete the discussion, a few more comments should be made: 

If the medium is infinite, so that no leakage through boundaries is possible, 

energy produced by the gamma ray source is equal to the kerma, which must 

be equal to the absorbed dose, due to energy conservation. 

Further, the expressions for kerma, exposure, and absorbed dose which 

we have used are neither in the most commonly used units used for these 

quantities, nor are they in the simplest possible form. A unit for 

absorbed dose is the rad, which corresponds to 100 ergs/g.* 

Equation (1-8.3) can be multiplied by a conversion factor, 

*There appears to be a movement towards elimination of the rad, 
which is not officially approved as a unit for kerma. 
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•2 
(10 g-rad/erg)*(§ ergs/Mev) , to make this change. The common unit for 

the exposure is the roentgen. To obtain exposure rate in roentgens per 

second, Equation (1-8.5) should be multiplied by the factor 

e ( coulombs/ion)_ , 

-7 
2.58x10 (coulombs/g»roentgen)xW(Mev/ion pair) 

where e is the electronic charge, and W , an average energy expended 

by fast electrons per ion pair formed, is about 32,5 electron volts in air. 

c) Expressions for the Kerma and Exposure 

To illustrate a simpler form for the kerma and the exposure, consider 

the integral 

00 00 

kerma rate = j dT/ dilj dE’/ dft'N(E' ;0* ,$* ;x,y ,z) — TK(Ef ,T;u>' #u>;x,y,z) . 
0 4tt T 4tt P 

(1-8.7) 

The two solid angle integrals can be performed to give 

Kq(E',T;x,y,z) = / dftK(E',T,u*#w;x,y,z) , 
4tt 

and 

N0(E';x,y,z) = / dfl,N(E’;0',4)';x,y,z) , 
4tt 

1-57 



where the subscript indicates the 

integral over all angles. The two 

energy integrals which remain can 

be interchanged by noting that 

the region of integration corresponds 

to the shaded portion of the sketch Figure 1-8.1 

in Figure 1-8.1 . The resulting expression may be written in the 

form 

kerma rate = ^°°dE1E'N^E' ;x,y,z)i 'dTTK^E' ,T;x,y,z)} . (1-8.8) 

The quantity in curly brackets, which depends only on the interaction 

probabilities of the material, is called the mass energy transfer coef- 

ficient. In Reference 15 , this quantity was indicated by y . Tabu- 

_3/ 
lations have been made of this quantity by Rosemary Berger and others. 

The same reduction can be performed on the expression for exposure, 

which takes the form 

exposure rate = / dE'E'N0(E' ;x,y,z)y^(E' ) , 

where 

(1-8.9) 

y,(E') = -- ±rr /E'dTTK . (E\T) . (1-8.10) 
d p . E' ' 0,air 

air 0 * 

Tabulations of y , the mass energy transfer coefficient for air, are 

d _3_/ 
also to be found in Mrs. Berger's tables. 

1-58 



9. Application to Cavity Ionization Chambers 

Fano's theorem and corollary have applications to the 

theory of cavity ionization chambers; and we therefore digress in order 

to present the fundamental concept of those detectors. 

Cavity ionization chambers consist 

of a hollow container filled with gas. 

Different selections of wall material 

and gas give rise to the three cases 

indicated in Figure 1-9.1 . The walls 

of the container are metal, and form 

one electrode of a condenser. The 

other electrode is a thin wire extend¬ 

ing into the cavity and insulated 

from the walls. 

c) 

Figure 1-9.1 

Fast electrons produced by gam¬ 

ma-ray interactions in the cavity 

walls sweep across the cavity and 

dissipate energy in the form of 

(a) atomic transitions and (b) ion pairs. The quantity actually 

measured by the detector is charge, that is, the number of ion pairs 

formed in the cavity. It is an experimental fact, which is far from 

obvious, that regardless of the kinetic energy of the fast electrons, 

the ratio of the total energy dissipated by the fast electrons to the 

energy which goes into the formation of ion pairs is a constant for any 

one medium: 
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(Energy) 
ion pairs 

(Energy). . + (Energy) . 
ion pairs atomic trans. 

= Constant (1-9.1) 

Because of this there exists a proportionality between total energy per 

gram dissipated and charge measured, a proportionality expressed by the 

4* 

constant W , energy dissipated per ion pair formed. 

Cavity chambers, such as those sketched in Figure 1-9.1 , should 

be thin enough so that the incident gamma-ray flux passes through without 

appreciable change, either in spectrum or flux strength. If this criterion 

is met, the gamma-ray flux throughout the detector is essentially position 

independent, and fast electrons will everywhere be produced in proportion 

to local density. 

In addition, such a chamber should have walls thick enough so that 

the most energetic electrons produced by the gamma ray interactions are 

unable to penetrate completely through. This requirement puts the gas, 

as it were, in an infinite medium as far as electron penetration is con¬ 

cerned . 

If these two conditions can be satisfied simultaneously, Fano’s 

theorem and corollary apply. One can then say that energy absorbed per 

gram of gas in chambers a) and b) of Figure 1-9.1 is representative 

of the energy absorbed per gram of wall material. One can further say 

that the ionization measured in chamber b) is proportional both to 

energy absorbed and kerma, and that the ionization measured in chamber a) 

is proportional to the exposure. Chamber a) does not measure kerma or 

absorbed dose in the medium Z . 

*Note that the value of W depends on the medium. 
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The second case, b) , is simple, but often difficult to realize. 

Case c) illustrates one type of mixed situation which is fairly easy 

to realize but not simple. This case calls for a substantial additional 

theory, because Fano's theorem does not apply. Such a theory exists; 

its importance is due to the fact that in practice the cavity walls and 

37 / 
the cavity gas are hardly ever equivalent at all energies. 
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10. Theorem on Plane Density Variations 

Next we consider configurations in which the medium has density 

variations, but with the density a constant on parallel planes. The 

best-known problem of this type is the ground-air interface, with the 

ground considered to be equivalent to compressed air of the same den¬ 

sity. Other configurations of this type have importance also. 

The restriction to density variations would allow us to apply 

Fano’s theorem if the radiation source were everywhere proportional 

to the local density. We do not make this assumption, but instead, 

we make the assumption that the radiation source is constant on planes 

parallel to the planes of constant density. The theorem is as follows: 

Theorem 3: In an infinite medium in which the material is every¬ 

where the same except for plane density variations, if there is a source 

of radiation which is likewise constant along planes of constant density, 

the radiation flux equals that in a corresponding problem with constant 

density (|T) . The radiation source strength, spectrum, and angular 

distribution, per unit mass of material, must be the same in the two 

cases at distances z,z from the two reference planes, with 

^Zp(z")dz" = p" z , 

and the comparison between fluxes must likewise be made at distances 

corresponding in this way. 

We are contrasting two cases, one in which the density has every¬ 

where the value p” , and the other with a variable density function 

1-62 



of the type p(z) . The argument is like that used in the proof of 

Fano’s theorem. The parts of the gradient term involving derivatives 

with respect to x and y are zero, and the transport equations for 

the two cases may be written 

+ —S(E;0,<J>;z) 

;z) + i=-S(E;6 ,4> ;z) 

(1-10.1) 

* 

* 

where cos0 is the photon obliquity relative to the z-axis. We have di¬ 

vided all terms in both equations by the density, because we expect to use 

the position independence of the functions (E,z) and •^^yk(E' ,E,cosO;z) . 

Next, we define new variable^ t(z) and t(z) , 

t(z) = /Zdz'p(z') , 
0 

t(z) = JZdzTp = p z . (1-10.2) 
0 

In terms of these mass thickness variables, the two transport equations 

may be re-written as follows: 

COS0^ t (—)N(E;0,<j>;t) = /“dE’/ dfi’ik(E' ,E,cos©;t)N(E' ;0• ,<f>’ ;t) +is(E;0,*;t) , 
oT p L 1, P P 

E 4tt 
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cos81E + <_y.)N(E;e,4.;7) = J"dE'J d!l'irk<E' ,E,cos«;t)N(E' ;6' ,♦ - ;t) + i-S(E;6,*;T) , 

n E 4tt 9t 

(1-10.3) 

where the functional dependence of N and S on z in the first equation 

is obtained by replacing z by its equivalent function of t , and like¬ 

wise for the second equation. 

It is clear that the two equations are precisely the same, except 

possibly for the source term, since ~ and ^ in the first equation are 

not only independent of position, but numerically equal to and — , 

respectively. If, therefore, the source terms are such that 

S(E;0 ) w-S(E;0,4>;t ) , (1-10.4) 

the two equations will be identical in all respects, except that t appears 

equation wherever 7 appears in the other. Further, if the media in one 

in the two cases extend to infinity in the sense that 

lim |t| 
z |-*» 

lim |t| 
z I-*® 

— 00 
(1-10.5) 

the boundary conditions will be the same in the two cases. It is there¬ 

fore clear that 

N(E;0 ,<t>;t ) = N(E;0,4>;t) . 
(1-10.6) 

This completes the proof. 
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To illustrate this theorem, we compare two problems in which the 

source is confined to a plane and uniform over the plane, but has the 

same strength in both cases. In one problem the density, p(z) , varies; 

in the other the density, p , is constant. The source is located at 

z = 0 in the first problem and at z = 0 in the second. We define 

z 

t(z) = / dz'p(z') 

0 

z 
T (z) = / dz'p - pz 

0 

(1-10.7) 

Using the Dirac delta function to represent a concentrated source, 

we write expressions for the (equal strength) sources: 

S(E;0,<f>;t ) = S(E;0,4>)6[z(t )] 

S(E;0,4>;t ) = S(E;e,4>)6[z(t)] (1-10.8) 

But since 

d x = J 6( x)d t 

T 

we write 

6(t) = 6(z) — = 6(z) -—r , 
dr P(z) 

6(t) = 6(z) “ (1-10.9) 
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so that 

S(E;0,<*>;t) = S(E ;0 ,4> )P6(x ) , 

S(E;0,4>;7) = S(E;0,4>)7<5(7) , 

and the condition (1-10.4) is obviously satisfied. 

It follows from the arguments used here that it is possible to con¬ 

struct equivalent configurations in which plane layers of different 

materials occur. The two conditions necessary for equivalence are (1-10.9) 

and the requirement that for z,z such that 

t (z) = 7(7) , 

the same material ocGurs in the configurations being compared. If these 

conditions are satisfied, the density functions p(z), p(z) can be 

arbitrary. 
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1.1 . The Scaling Theorem 

The last theorem is as well-known as the others, and so intuitively 

obvious that we include it with some hesitation. In it we compare two 

configurations, calling them "A" and "B". 

When two points, one in A and the other in B , differ in that 

the coordinates of the point in B are those of the point in A 

multiplied by a basic scaling parameter £ , we say that the points are 

’’corresponding points". The two configurations are then comparable in 

the following sense: 

a) All interfaces in A occur also in B at corresponding points., 

b) The material at corresponding points in A and B is always the 

same except that the density of this material in B is greater (or less) 

by a factor ^ , and 

c) The radiation sources in the two problems are identical in 

spectrum, angular distribution, and spatial distribution, but the source 

2 
in B is greater (or less) by a factor E, in each corresponding volume 

element. If A and B have these relationships, we will refer to them 

(here) as "similar" configurations. The scaling theorem can then be 

stated as follows: 

Theorem 4. The radiation flux is identically the same at corresponding 

points in two or more similar configurations. 

The proof can be obtained by comparing transport equations, as in 

the preceding theorem. The following relations have been stated or 

implied as holding at corresponding points: 



XB = 5XA ’ yB = 5yA > ZB = 5ZA > 

UA u . XA 
^B " C ’ kB ' 5 ’ 

SBdXBdyBdzB = 5 SAdXAdyAdzA 
(1-11.1) 

It is also clear that 

(la7 + i 
B 

3y 
B 

‘3z 
B 

l,t 3 
+ kr— ) = 7(1 

£ 9x, + 3 
9Yi 

+ k- 
3z 

(1-11.2) 

Transport equations for the two configurations are as follows: 

rVA + U.N = fdE'J dfi'k (E')E,cos«;xA,yA>zA)NA<E';6')V;xA>yA>zA) 
E 4 it 

+ Sa(E;0,4>; xA>yA>zA) 

oj*VBNfi + PgNg = / dE ’/ dfi 'kgCE' ,E,cos© ;xg ,yB ,zfi )Ng(E' ; 6 ’ , 4>' ;xg ,yB ,Zg) 
E 4tt 

+ SB(E;6,4>;xB,yB,zB) . (1-11.3) 

But the second equation can be written in the form 

T'Vb + |dANB = /”dE’/ dn'ikA(E',E,cos®;xA,yA,zA)NB(E';e',4.';xB,yB,zB) 
E 4tt 

(1-11.4) 
+ CSA(E;6>*;xA’yA>ZA) 
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The boundary conditions at corresponding points must be the same, and it 

is clear that 

NB(E;0,4>;xB,yB,zB) = NA(E;0,4>;xA,yA,zA) . '(1-11.5) 

This is the basis for the experimental work with scale models which has 

been informative and useful. 
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c. TRANSFORMATIONS OF THE TRANSPORT EQUATION 

12 Applications of Superposition 

In this and the next few sections, we discuss forms of the transport 

equation which lend themselves to analysis more easily than, for example. 

Equation (1-5.6). Here we examine some of the elementary source types 

which are useful because they can be used in various linear combinations 

to represent more complicated sources of interest. 

Recall that the linearity of the transport equation has as a conse¬ 

quence that a representation of a source function S as 

S = Ta.S. (1-12.1) 
h i i 
i 

implies that the solution of the transport equation, N , has the form 

N = Ta.N. , (1-12.2) 
L. l l * 
l 

where the are solutions corresponding to the . This holds also 

when the source is an integral over some parameter E, , rather than a sum. 

Thus 

S = /d£f(5)s(£) (1-12.3) 

implies that 

N = Jd£f(£)N(£) , 
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where f(£) is arbitrary and N(£) is the solution corresponding to the 

source S(£) . We will consider what this means for each of the variables 

of the source function in turn. 

a) Energy. Considering first the energy dependence, S = S(E) , 

and not bothering to write in the other variables, we observe that 

S(E) = /°°dE0S(E0)6(E - EQ) , (1-12.5) 

where 6(E - EQ) is the Dirac delta function. This demonstrates the 

superposition possibilities of the delta-function source. Such sources 

can be combined to give any polychromatic source of interest. 

This is about the only type of elementary energy dependence used 

for superpositions. In principle, sources which are harmonic in the 

energy variable, as well as exponential and power functions and many 

other possibilities, could be used; but so far none but the delta function 

has proven convenient for this purpose. 

b) Direction. There are two common choices of elementary angular 

functions. First we consider monodirectional sources, which have the 

mathematical form 

6(cos0 - cos6q)6(4> - <j>Q) = 6(w - wQ) . (1-12.6) 

Here we have indicated a shorthand notation often used in Reference 15 

which we will use to shorten some of the mathematical expressions. Super¬ 

position possibilities of monodirectional sources are demonstrated by the 
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expression 

S(6,<t>) = / dftQS( 0Q, 4>0 )6(cos0 - cos0o)6(<J> -4>Q) , 
4 71 

(1-12.7) 

where S(0Q,4>Q) is arbitrary. 

The other useful type of elementary function is the harmonic source, 

with an angular dependence of the form* 

,m v“‘ /'o a. \ / . .mr2£+l (£-m)! -.2 .m, im<}> 

Yi ■ (-1} nsiyr3 Vcos6)e (1-12.8) 

where P^(cos0) is the associated Legendre polynomial. 

Nm 
F?(x) = 

m 
(. 2.2 rd i Ji+m, 2 . .x 

> 13^) (x - 1) , 
1 2SH! 

piT(x) ■ (-1)m TTSmTT p>> • (1-12.9) 

Possibilities for using these functions for superpositions result from 

the fact that arbitrary functions S(0, <J>) can be represented in the 

series form 

00 £ 

r r mm, s(e,<t») = l l s y <©,+) , 
£.=0m=-2. 

(1-12.10) 

See Ref. 30, pages 159 ff and 197. 
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a special case of Equation (1-12.1), since the S™ 

0 and <f> . 

are independent of 

c) Space. In regards to the space variables, several choices of 

elementary functions have been made. Perhaps the most obvious choice is 

again the delta-function source, here representing a source concentrated 

at a point in space, 

6(x - xQ)6(y - yQ)6(z - zQ) = 6(r - rQ), (1-12.11) 

where the right side again introduces a shorthand notation. Usefulness 

of superpositions of this type is demonstrated by the integral 

S(x,y,z) = f f f dx0dy0dzQS(x0,y0,z0)6(x - xQ)6(y - yQ)6(z - zQ) , 
All space 

(1-12.12) 

where S(x0,y0,zQ) is any function of the space variables. 

A second type of function which should be mentioned is the exponen- 

tial function e H '•O The possibility of representing general func¬ 

tions of the space variables in this way is clear from the expression 

6(x - xQ )6(y - yQ)6(z - zQ) = Y V°*} - iLr^ eiqx(x-x0)}{—JV1 -H/y-yn) 
^ ^ ^ —CO 

rl r“ iq (z-z„)i 
W dq e Hz 0 } 

27T' *Z 
—00 

* r/ / / dq dq dq e^S^O )+V^z* )] 
(2u)3A11 \ space X y Z 



where 
■+ -► 

q = iqx + jq^ + kqz , di^ = dq^dq^dq^ . If the product of delta 

functions in the integrand of Equation (1-12.12) is replaced by the Fourier 

integral on the right of Equation (1-12.13), we obtain 

S(x,y,z) = /dT0S(x0,y0,z0)~i-3/dTqeiq‘(r r0) , 
( 2tt ) 

( 2tt ) 
■/dTqeiq,r/dT0S(x0’y0’Z0)e"lq*r° » q 

= S(?) = -L_/dx eiq*r5(5) , 

(2*r q 
(1-12.14) 

where 5(q ,q ,q ) is the Fourier transform of S . The Fourier integral, 
x y z 

Equation (1-12.14), demonstrates the superposition possibilities of this 

type of function. 

From our point of view, the most important elementary function for 

use in representing space distributions is the function 

6(q- r - s) (1-12.15) 

which represents a source uniformly distributed on a plane in space. Its 

generality is not obvious, but can be demonstrated by a simple extension 

of Equation (1-12.14). We write 

elq r = / dse1S16[l(q*r - s)] 
-*■ 

(1-12.16) 
.00 q q 

and insert the expression on the right into Equation (1-12.14), replacing 
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the exponential function. The resulting expression, 

S(x,y,z) = ——— / dt / dse^S LS(q)6[l(q*r - s)] , (1-12.17) 
(2tt) All q q q 

shows the manner in which arbitrary functions of the spatial variables can 

be represented as superpositions of the functions (1-12.15). 

->■ •> 

The planes q*r = s are oriented in many different directions. This 

is not particularly a drawback, because it is possible to identify any of 

these planes as the reference plane z = 0 . for purposes of solution of 

the transport equation and transform it, with the corresponding solution, 

as needed for Equation (1-12.17). That is to say, we can obtain solutions 

N(z) to transport equations with source functions proportional to 6(z) . 

In accordance with Equation (1-12.17) , the flux N(x,y,z) for problems 

with source functions S(x,y,z) is given by 

^ • 

N(x,y,z) = -^/dt / dse1S15(q)N[l(q*r - s)] 

(2*)J q-» q q 

= —l-=/dT /“dtel(q’r'qt)S(q)N(t) 

(2ir) q-~ 

= --JdT elq‘rS(q)'Kq) , (1-12.18) 
(2n i q 

where $(q) is the Fourier transform of N(z) . Note that the direction 

normal to the source plane is here identified with the direction q/q , 

and that $ may depend on q through use of q/q as reference axis for 

the photon direction of motion. 



d) Combinations. The various elementary functions mentioned so far 

can be combined in a great many ways. We do not have occasion to refer to 

them all, and so must omit some that are very important. Three source 

types will be the subject of much of our later discussion: first we should 

mention a monoenergetic, isotropic source which is concentrated at point 

in space, the so-called point isotropic (PTI) source, 

PTI 1 
S A(E;6,<j>;x,y,z) = ^(E - EQ)6(x)6(y)6(z) 

= -2^e “ Eq)6(r) , r = /x2 + yz + zz . 
16tt r 

(1-12.19) 

A source of this type producing one photon/Mewsteradian cm , or this 

strength per second, will be called a unit source, since integration 

over energy, direction, and space gives unity. 

Closely related to the point isotropic source is the so-called 

plane isotropic source (PLI), which we here consider to be monoenergetic 

as well, 

pit l 
S (E;0,<f>;x,y,z) = -±<5(E - E_)6(z) . (1-12.20) 

HIT U 

The strength of a unit source of this type is, for example, one photon/ 

2 
Mev»steradian produced per cm area of the source plane, per cm thickness 

of the source plane. (We consider the source plane to be of vanishing 

thickness, and the product of source strength times source thickness to be 
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2 
finite, i. e., one/Mevrsteradian* cm .) Again the time variable can either 

be included or omitted, since time variations play no part in the transport 

equation. 

Finally, the plane oblique source (PLO) should be mentioned, and 

again we consider the case of greatest interest to be monoenergetic: 

SPL°(E;6,4>;x,y,z) = ~6(E “ Eq)$(z)6(cos6 ~ coseQ) . (1-12.21) 

In the case of the plane oblique source, we assume that there is no azimuth 

dependence, in contrast to the monodirectional source of Equation (1-12.6). 

Sometimes the source which we here describe as "oblique" is called a 

"conical" source. 

A special case of the plane oblique source is the plane normal source 

(PLN), for which coseQ = 1 , 

DIM 1 

S (E;0,<f>;x,y,z) = 7-—6(E - E_ )6(z)6(cos6 - 1) . (1-12.22) 
2 7T U 

Units for the plane oblique source are the same as for the plane 

isotropic source. 

e) Relationships. In conclusion, we call attention to the most 

useful relationships between types of sources just specified, 

namely 

PLI r°° r°° PTI 
S = / dx/ dyS 
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(1-12.23) 



as can be seen from Equation (1-12.11), and 

_PLI 1 rl „ 
S = — J dcos0 S 

1 -1 

PLO 
(1-12.24) 

as can be seen from Equation (1-12.21). These are the basis for relation¬ 

ships between flux distributions to be discussed later. 
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l 3. The Fourier Transformation 

a) Plane Source in an Infinite Homogeneous Medium. The Fourier 

■transform of the transport equation is a useful point of departure for 

a number of general studies, particularly of the radiation flux at great 

distances from the source. Only the case of an infinite homogeneous 

medium will be considered, and the simplicity and generality of the case 

of a radiation source uniformly distributed along a plane encourages us 

to concentrate attention on this case. The transport equation then has 

the form 

We multiply each term of this equation by e iqZ , and integrate over 

all z . Thus treated, the second term gives 

/OOdze"iqZw(E)N(E,0,4>»z)= y(E)$(E,6,*,-iq) , (1-13.2) 

where 

<KE,e,$»-iq)= l°°dze iqZN(E,9 , $,z) . (1-13.3) 

The convection term requires integration by parts: 
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We have applied here the boundary condition lim N(E, 0,(};,z) = 0 . The 

I z I ”K3° 
scattering term transforms as follows: 

/“dze“lqZ/°°dE’/ dfi’k(E' ,E,cos®)N(E',0'<j>'»z) 
E 4tt 

/"dE'/ dft'kCE' ,E,cos®)<KE'10'^'riq). 
E 4tt 

(1-13.5) 

Lastly, the source term becomes 

/”dze"lqZS(L^^)5(z) = S(E,0,4> . (1-13.6) 

Putting all terms together, our transformed equation has the form 

(y + iqcos6 )4>(E,64>jiq)“ f°°dE' / dfi'k(E’ ,E,cos®)<KE'e V.-iq) + S(E,6,<f))> 
E 4tt 

(1-13.7) 

Or, writing p = -iq , we may prefer the form 

(y - pcos0 )$>(E,084>£>)= / dE’/ dn'k(E',E,cos®)<J>(E,6'9(f),,p) + S(E,0>({>). 
E 4tt 

(1-13.8) 

Note that Equation (1-13.7) could alternately have been obtained by 

choosing an appropriate exponential spatial distribution for the source, 

S(E,0 ,4>)elqZ, 

and then assuming that the spatial distribution of the radiation flux must 
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follow the same distribution. 

It is quite important to observe that in terms of p , Equation (1-13.3) 

is 

*(E,0^tP>= f”dzepZN(E,0,4>;z) . (1-13.9) 

For real and positive values of p,,the exponential function in the integrand 

is very large for z positive and large. Indeed, the main contributions to 

this integrand come from such a z region. We therefore associate real, 

positive p values with large positive z values. 
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b) Integral Form of the Transport Equation. 

While on the subject, we use Equation (1-13.7) to write the transport 

equation in integral form. If we divide by the factor multiplying $ on 

the left side of the equation, and observe that 

-i- = /dse‘s(u+iqcos0) > 

y+iqcos0 0 

we see that this equation may be written 

$(E, 0,-iq) = /°°dse-S ^+1C^COSe ^j/^dE’/ dfi’k(E' ,E,cos®)$(E’ ,6 ',-iq) + S(E,6)}. 
0 E 4tt 

(1-13.10) 

Taking the inverse Fourier transformation, we obtain 

N(E,e,z) = —/°°dqe+lqZ$(E, 0,-iq) 
2tt -p° 

= /°°dse-yS {/°°dE'/ dft'k(E',E,cos®)N(E',0',z-scos6) + S(E,0)6(z-scos0) }. 
0 E 4tt 

(1-13.11) 

If we carry out the integral over the source term, we obtain the more 

familiar form'* 

N(E,0,z) = /“dse"yS/00dE’/ dn,k(E»,E,cos®)N(E’,0’,z-scos0) 
0 E 4ir 

-y z/cos0 
+ S(E,0) h(z/cosG) .(1-13.12) 

|COS0 | 

*Note that h(x) = X " . 
1 0 , x < 0 
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In conclusion, one may observe that if Equation (1-13.10) is used in 

connection with (1-12.18), analogous expressions for other source con¬ 

figurations can be obtained. 

1-84 



14. The Legendre Expansion 

To discuss the Legendre expansion of the transport equation, 

it is essential to know some of the elementary properties of Legendre 

functions. For this purpose any standard treatise should be adequate; 

but since we only use a few fundamental expressions, it would not be 

amiss to list these prior to their application. We will make use of 

the Y™ functions defined by Equation (1-12.8), which have the prop- 

erties listed below. Note that is the complex conjugate of Y™ . 

ORTHOGONALITY: 

/ dsrfj,(e,*) y>,$) = 
4tt 

EXPANSION OF FUNCTIONS: 

oo £ 

F(e.*> = I l f}1/2f»,<!>) . 
£=0 m=-£ 

4tt 1 £ £ 

where 

1/2 

F” = (2l?rt l ^(°.*)F<e.*) 
4tt 

ADDITION FORMULA: 

,m, 

(1-14.1) 

(1-14.2) 

(1-14.3) 

(1-14.4) 

where cos® = cosG'cos© + sin0 ' sin0cos(c|>—4> ’ ) . Combination of Equations 
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(1-14.2) and (1-14.4) gives the 

FOLDING RULE: 

/ 
4 IT 

dnY^(e,<f>)F(®) = F£Y^(9',d') (1-14.5) 

where 

h -/mif d<(«)F(®) . 
4 IT 

(1-14.6) 

Lastly we record the 

RECURSION FORMULA 

2 2 1/2 
flVn/0 i \ r(£+l) -m i „m r 

cosOY&(e,<j)) - 1(2ji+i)(2£+3)} Y£+l * 

o2 2 £ -m 

(2£+l) (2£-l) 

1/2 
•} Ym 

£-1 * 

(1-14.7) 

With these expressions it is a simple matter to apply the Legendre 

expansion to the transport equation, as given in Equation (1-13.1) 

/ dfi{ 
4tt 

n 1/2 4tt i ran, 
} Yfn(e,4))jcose— + yN - JdE'f dfi’kN - S6(z)} . 

2£+l‘ 9z 
E 4tt 

(1-14.8) 

According to (1-14.3), the second and fourth terms of this integral 

are yN1^ and S™6(z), respectively. Applying (1-14.7) to the first 

term we see that it has the form 

f 47T j172^ U-H)2-m2 ^1/2^2Z+3 ]1/29NI+1 , £ Jl2-m2 
V 2£+3 (2£+l)(2£+3)' 4tt 9z (2£+l)(2£-l)J L 4tt J 9z 

2£+l 

r., Tm ~. Tm 

X r ZTTT2 2 3Nl+l /„ 2 2 3n£-li 
TT K(«.+1) -m -JT + A "m ~JT~> 

*This is not a commonly used name. 
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to the third term, we Applying the folding rule (1-14.5) 

make the following calculation, after changing the order of integrations: 

“ 4_ 1/2 
/dE'i^Tr} I dfi'N(E' .O'.r.z)/ dST?"(e )k(E ’ ,E ,cosO) 
E 4tt 4tt 

“ 4tt 1/2 
= / dQ'N(E',e>,*',z)k (E',E)Y^(8',*') 

E 4tt 

= /dE’k (E!,E)Np(E*, z) (1-14.9) 

Putting all these results together, we obtain the transformed equation. 

, v2 2 8N™ . Z2 2 aw™ 
/(£+l) -m £+1 /£ -m £- 

2£+l 3z 2i+l 3z ^(E)^(E,z) 

= /dE’k^E* ,E)N£(Ef ,z) + S£(E)6(z) . 
E 

(1-14.10) 

This is essentially a recursion system linking together coefficients 

with adjacent values, in sets of three. The remarkable feature of 

this expression is the fact that no corresponding linkage exists between 

different m values. This azimuthal index is the same for all terms, 

so that a complete separation of the azimuthal variable has been 

accomplished. 

For future reference, we list expressions for k (E’,E) and for 

Ihe S£(E) expressions pertaining to the three major source types 

previously mentioned. Referring to Equation(I—3.9) and Equation (1-14.6), 

we see that k£(E',E) involves the integral 



/mil dntw 2? «coS@-X+X-X-) 
4tt 

/ dftP (cos@)—^ 6(cos0-l+X-X') 
x 2tt 

4tt 

= P£(l-X+X?) , (1-14.11) 

and thus has the value 

k£(E’,E) = (NAaThZ^A) |(XVX)2[X/X’+X'/X-2(X-X’)+(X-X’)2]Pil(l-X+X’V 

(1-14.12) 

2 2 
where X = me /E and X’ = me /E’ . 

Referring to Equations (1-12.19), (1-12.20), and (1-12.21) we 

see that 

sPLI(e) = /St I da$9) 35 4(VE) ’ 
4tt 

= 6(E.-E) —— / dSiY®(e)Y°(6) , 
0 /2UT Mtt 1 0 

= «(E -E)« (I-l-.l?) 

Further, 

s»LV) = /jnr ! ,7 {(E - E0)<5(cos£) - cosV > 
4tt 

= /Sr*>o)6(E - V • 

= P£(cos60)6(E - EQ) , (1-14.14) 
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and, as a special case, 

S^N(E) = 6(E - Eq) , 

since P (1) = 1 . 

(1-14.15) 
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15. The Moment Transformation 

a) Transformation of the Transport Equation.. 

Many calculations of flux distributions utilize spatial moments, and 

we therefore next derive the recursion relation for these integral 

quantities. The most direct way of doing this is the multiplication of 

each term in Equation (1-13.1) by a power of z, say zV, v>0, and in¬ 

tegration of the resulting terms. For later reference we will generalize 

to powers of (az) rather than z, with a an arbitrary parameter. 

The second term of Equation (1-13.1) then gives 

/ dz(az)Vp(E)N(E,6,<{>,z) = y (E )tf(E,0 ,<j), v) , (1-15.1) 
—OO 

where 

N( E,0,<}),v) = / dz(az)VN(E,0,<f>,z) . (1-15.2) 

The convection term, with integration by parts, gives 

/ dz(az)Vcos0 —- = (az)Vcos0N(E,O,<j),z)] -av/ dz(az)V ^cosONtE, 0,4),z) 

-°° 3z — 00 —OO 

= -avcosO/V(E,0,4>,v-l) (1-15.3) 

The scattering and source terms turn out to be 

/°°dz(az )V/°°dE' / dft’ k(E' ,E,cos®) N(E •, 0 ' , 4>', z )=/°°dE' / dfi'k(E' ,E,cos@)/l/(ET , 0 '*f> \v) 

-«> E 4tt E 4tt 

arid 

/ dz(az)VS(E,0,<f))6(z) = S(E,e,4»)5 . 
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Here the factor 6 . is the Kronecker delta, which vanishes for v i 0 
vO 

and is unity for v = 0 . 

Combining all terms, we have the equation 

-avcos0fl/(E,0,4>,v-l) + p(E)#(E,0,<J>,v) = / dE’/ dfi'k(E’ ,E,cos©)/V(E’ ,0 ' ,<j>1 ,v) 

E 4tt 

+ S(E,0,<J>)6 , (1-15.4) 

which is a recursion system joining moments which differ in v values by 

unity. The chain of moments can be calculated providing any single moment 

is known. Determination of the moment v = 0 turns out to be feasible 

because the first term of Equation (1-15.4) then does not appear, while 

the last term, a known function, is present. This means that values of 

iV(E,0,4>,v), for which v is a positive integer, can in principle be de¬ 

termined chainwise. 

If we restrict our attention to positive integer values of v , 

we find that Equation (1-15.4) can be derived from Equation (1-13.8). 

To accomplish this we write <KE,0,4>,p) as a power series in p , 

and anticipate the result by identifying the expansion coefficients as 

N(E,0,4>,i) : 

0° . . 

$(E,0,4>»P) = l N(E,0,<f>,i)-£L ‘ (1-15.5) 

i=0 a1!! 

Collecting all terms which multiply p™ , and equating to zero, we 

obtain Equation (1-15.4), thus confirming Equation (1-15.5). This 

result also follows by expansion of Equation (1-13.3) in powers of 

p = -iq . 
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b) The Combined Moment-Legendre Transformat iont 

The moment transformation can be applied to Equation (1-14.10), 

with almost no modification of the preceding argument. Writing n in 

place of v to indicate that we restrict our attention to (positive) 

integer values, we obtain the equation 

-an{ 
/ (£+1)2-m2 

2SL + 1 
n-1,£+1 

(E) + 
/o2 2 /£ -m .Tm 

2£+l 

>r_i>)Ui(E)} + m(e)n^(e) 

/dE'k^(E’ ,E)N^(E’ ) + S™(E)6 
E 

nO 
(1-15.6) 

This is a particularly simple recursive system. Note that when 

\ £-|ml l - ImI, the second term vanishes. 

Figure 1-15.1 shows the relation¬ 

ship of the coefficients in 

Equation (1-15.6), if m has a 

fixed value. The top row in the 

diagram, with n = 0 , is particu¬ 

larly simple in that the factor n 

removes the linkage terms of the 

equation. 

n\ 0 

0 

1 

2 

3 N™ 
n-1 ,£-l 

N™ . 
n-1, 

4 

5 

6 

Fig. 1-15.1. Linkage system for the 

Moment-Legen4re Transformation. 
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16. The Relationship between Point Isotropic and Plane Isotropic Sources 

We are now in a position to discuss the flux generated by a plane 

isotropic source, as a superposition of flux distributions for point 

isotropic sources. As stated in section 12, it is possible also to con¬ 

sider the point isotropic source as a superposition of plane sources; but 

this turns out to be more complicated and less useful, and we concentrate 

primarily on the former. 

a) Plane Isotropic as a Superposition of Point Isotropic Sources. 

The basic rule of combination must be the same as the superposition 

rule for the sources. Equation (1-12.23). But the flux distributions 

PTI PLI 
N and N depend also on photon direction; and this introduces an 

additional complication. If we indicate the photon direction by the unit 

vector a) , and use as polar axis for the plane source a unit vector k 

perpendicular to the source plane, the flux depends on the angle 0 be¬ 

tween the two vectors and can be written as a Legendre series, as in 

Equation (1-14.10), which we repeat here: 

(1-16.1) 

£ = 0 

where cos 6 = wk . 

In the case of the point isotropic source there is no reference 

direction fixed in the configuration which makes a suitable polar axis 

for photon directions. Accordingly, the reference polar axis is commonly 

taken to be the radial line from source to photon position, as sketched 
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in Figure 1-16.1. This means 

that while the photon directions 

are not dependent on position, 

the reference system for the 

direction coordinates is. 

position dependent. The flux in 
Fig. 1-16,1 

the PTI source configuration can be written as a Legendre series very 

similar to Equation (1-16.1), namely 

polar axis 

NPTI(E,6m,r) = l /1EI NPTI(E,r)Y° (6J , 

z=o 
(1-16.2) 

where cose = w»u , with u = r/r. 
r 

Now, the.three vectors oo, k, and u define a spherical triangJe, 

as shown in Figure 1-16.2. (Recall 

that r • k = z). An azimuthal angle, 
c 

n , has been identified. The law of 

cosines holds for this spherical 

triangle, and Equation (1-14,5) 

can be applied to functions of 

6 and 0 . 
r 

The basic relation between the fluxes must be 

NPLI(E,0,z) = / dx/°°dyN^li(E,0 ,r) , 
PTI 

— 00 —00 

(1-16.3) 

because of Equation (1-12.23). 
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Of far more interest is the expression relating coefficients of the 

corresponding Legendre series. This can be obtained by multiplying both 

sides of Equation (1-16.3) by /^2^T ^ ’ ^ntegrating» and using the 

relation shown in Equation (1-14.5): 

n£LI(E,z) = r^!“<iy/~ J dQY° (6)NPTI(E,e r) , 
—oo —oo 

= /"dx/”dyN(,PTI(E,r)/^r Y° (cos^z/r) (1-16.4) 
.oo .oo 

Finally, changing to plane polar coordinates (p,4>) for the remaining 

integrations and noting from Fig. 1-16.3 

2 2 2 
that r = z + p implies 

dxdy = pdpd4> = rdrd<f>, (1-16.5) 

we simplify Equation (1-16.4) to the 

form 

iPLIi 
l 

PTI 
I I 
l 

(1-16.6) 
Calculation of moments of this expression gives the simple result 

PTI 
(E) = /“dz zn2jt/"rdrPJl(|)N(,PTI(E,r) 

A -00 I z I 
(1-16.6') 

= / dr rn[4irr2N(?PTI(E,r)]/1d(z/r )(z/r)nP0 (z/r) = NnPTI(E)C^0 , 
'n£ 

where the C . are numbers further described in section 22. 
nl 

b) Point Isotropic as a Superposition of Plane Isotropic Sources. 

For reference purposes we derive a general expression for the point 

isotropic source in terms of plane isotropic sources. To this end 

we note from Equations (1-12.13) and (1-12.16) that the point source can 

be written as the following superposition of plane sources: 
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1 
6(x - xQ)6(y - y0)6(x - zQ) 

( 2 71 ) 
3 J q 

(1-16.7) 

where q = qk . From the special case xQ = y^ = zQ = 0 , we obtain 

6(x)5(y)6(z) = 5(r) = —— /dx eiq 1 

(2tt ) 
3 q 

•q“dte-ltq6(t) (1-16.8) 

We therefore write 

PTI 1 
N (E,6 ,r) = — 

( 2 XT ) 

/dx e1^'r/0°dte”ltqNPLI(E,e,t) . (1-16.9) 
4 n —J 

As indicated in the integrand of Equation (1-16.7), we consider the 

vector (tk) , which is parallel to q , and which has magnitude equal to 

the distance t from the plane 6(t) , to be perpendicular to this plane. 

Accordingly, the polar axis with respect to which 0 is measured is 

parallel to q , so that cos0 = rk . 

Equation (1-16.9) can be transformed into an equation analogous to 

Equation (1-16.6) relating corresponding Legendre polynomial coefficients. 

We multiply Equation (1-16.9) by (0 ) , note by Figure 1-16.2 
v /L Kt i _L )6 IT* 

that q*r = qrLcosG^cosG + sinG^sinGcosn] > and apply the transformation of 

Equation (1-14.5) : 

Kh/siXT (er)elq'rf I>e'itqNPLI(E,6,t) 
.. PTI, , _ 1 

"l ( ,r ‘ (2ji)3 2<L+1 ' ~r 

7773 C4? A,£+l/2(<ir)^ (O)]/>iitcJNPLI(E,0,t 
v 2tt ) 
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1 
00 oo 

qr £+1/2 

x fdttqY^ (6)NPLI(E,G,t) 

(1-16.10) 

We have used here a well-known integral representation for the Bessel 

.% 
0% 

function. 

This expression can be put in a variety of alternate forms, which we 

shall not use, and therefore have no reason to investigate here. 

* See, for example, p. 50, Bessel Functions, G. N. Watson, 

(MacMillan, 1948 edition.) 
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17. The Transport Equation in Dimensionless Variables._ 

From some points of view, the natural energy variable to use in 

gamma ray calcuations is the photon wavelength in Compton units, which 

we have been designating A . This suggests that other variables may be 

made dimensionless by introduction of appropriate scale factors, and that 

there may result a p^rticularly general but simple form for this equation. 

The change from photon energy to photon wavelength is easily 

accomplished by multiplying each term in Equation (1-13.1) by dE/dA and 

defining 

N(A,0,z) =-N(E,0,t)dE/dA, 

k(A',A,cos®) =-k(E*,E,cos®)(dE/dA) , 

S(A,0) =-S(E,0)dE/dA . (1-17.1) 

The resulting equation is 

ij A 
cos0-— + y(A )N(A,0,z) = /dA ’/ dS2' k( A ' , A ,cos©)N( A ' , 0 ’ ,z) + S(A,0)6(z) . 

3z 0 4 k 

(1-17.2) 

A further step now turns out to be advantageous, that of changing the 

dependent variable from flux per unit wave length, N , to a new variable 

I(A , 0,z ) = AN(A,0,z) . (1-17.3) 

It is very easily seen from Equation (1-17.1) that 

I = -EN(E,0,z) * v°g- ^ = EN(E,0,z) , (1-17.4) 
d log A 
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so that the variable I , interpreted as a function of photon energy is 

essentially an "energy flux." But the primary advantage to the use of this 

quantity is a resultant "smoothing" of the kernel in the scattering inte¬ 

gral. If we multiply Equation (1-17.2) by X , the equation takes the form 

cos6 ~ + p(A)I(Xf0,z). = /dX'/ k(X ’ ,X ,cos@)I(X ’,0',z) + XS(X,0)6(z) . 
uZ , A 

0 4tt 

(1-17.5) 

The additional factor in the integrand is quite effective in countering 

some of the variations of the scattering function, as will be seen. 

Next, to de-dimensionalize the space variable, we divide each term in 

the transport equation by a constant. 

a Vihfo (1-17.6) 

where p is the density, and we still use to refer to the Thomson 

cross section. Recalling again that 6(z) = a<5(az) , the equation becomes 

cos 0'r~7~~\' + [HiAl.] i( X , 0 ,z) = /dX’/ dtt,ffr4(X,,X,cose)}lU',0,,z) 
8(az) a n i, X' a 

U 471 

+ XS(X ,0 )6(az) . (Ir-17.7) 

Finally, we re-define the variables of this equation as follows 

z = az , 

7 = y/a , 

K(X’,X,cos®) = •—— k(X*,X,cos®) = K (X’,X)—- 6(cos@-l+X-X') , 
X ■a 0 2tt 
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with" 

K0(A*,A) = I X~{ p- + Y~ - 2(X - A') + (A - A')2}h[2 - (A-A')J . 

( 1-17 .8) 

We use the same letters as before to designate distance and total 

attenuation coefficient. Observe that yz = yz , so that distance in 

mean free paths is unchanged. 

Finally, we divide all terms by the number of photons generated 

2 
per cm of the source plane and absorb the factor into I and S . In 

the resulting equation, 

cos 0 + y (A )I( A ,0 ,z ) = / dft?/ dft' K( A ’ , A, cos 0) I ( A * ,6' ,z) + AS(A,0)6(z) , 
3Z 0 4 it 

(1-17.9) 

all quantities are then dimensionless. 

'Note that n(x) = x ' 0 . 
0, x < 0 
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18. The Small Angle Approximation and the Fourier-Bessel Transformation.., 

Studies of the gamma«ray flux very far away from the radiation source 

make use of the fact that those gamma rays which manage to penetrate great 

distances must have had trajectories oriented away from the source through¬ 

out most of their travel. A correlation is expected between direction and 

depth of penetration: the deeper the penetration, the more important are 

these photon directions. 

More specifically, suppose we consider the case of radiation origi¬ 

nating on the plane z = 0 . The relevant transport equation is either 

Equation (1-13.1) or the dimensionless Equation (1-17.9). It will be a 

little simpler to use the latter, and for our purpose the spatial Fourier 

transformation is useful. The transformed version of Equation (1-17.9) is 

X 
(u-pcosG)$(Xi,0,ip) = /dX’/ dfi' K(X ’ , X ,cos® )$(X ' , 0 ,p) + XS(X,0) , 

0 4tt 

(1-18.1) 

where we use $ to represent the Fourier transform of I(X,G,z) (as 

well as N(E,0,z) ) since no confusion is expected to result. 

As discussed at the end of section 13^ positive p_ values in 

Equation (1-18.1) can be associated with positive z_ values. At positive 

z, "directly away from the source" means the direction 0=0, cos0 = 1. 

The expected importance of angles 0=0 makes it reasonable to use a 

simplified treatment which is accurate for small 0_ , even if the flux for 

large values of 0 is distorted in this treatment. 

Such a treatment is the so-called "small-angle approximation," in 
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which the trigonometric functions are approximated by 

„ e 
cose * i —- , 

sin0 5 0 (1-18.2) 

and therefore 

cos® = COS0COS0' + sin0sin0 ' cos ((}) -<K) 

[1 - - ~~2—^ + 00'cos($ - <J>') 

(1-18.3) 

If 0,<{> are taken to be polar coordinates in a plane, with values of _6 

permitted on the range 0 <_ 0 < 00 , Equation (1-18.3) can be written in 

the attractive form 

1 / 2 
cos® = 1-1 (0 -0f ) , (1-18.4) 

where 0 and 0' are position vectors of points in this plane with co¬ 

ordinates (0,4>) and ( 0*,4>f ) , respectively. 

To carry the discussion further, we use the expression for the 

scattering function and specialize to the plane isotropic, monoenergetic 

source, as given in Equation (1-17.8) and Equation (1-12.19). In small 

angle approximation these have the form 

«X',X,8) . KQ(X',X) JL S[i<e - 6')2 - (X - X')] 

(1-18.5) 
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* 
PLI l 

XS (X,e) = ~ X6(E - E )dE/dX 
M-7T 0 

57 V(x * V > (1-18.5) 

so that the transport equation for this case in small angle approximation is 

C(y-p) + pV ]*(x,e,p) = /xdx'/”6'de'/2,,d*’Kn(x',x) ± 6[±<e-e')2- (x-x>)] 
0 0 0 

0 2 it w2 

X ■KX'.B'.p) + ^ 6(X-X0) . 
(1-18.6) 

0 ,2 
where dft' = -dcos0'd<t> * -dd-y )d4>f , and the integral covers the whole 

01 plane. 

The Legendre .expansion is not suitable for the direction variables 

of this approximate equation. If we wish to transform the direction 

variables in a natural way we. multiply the terms of the equation by 

i(0 a + 0 a ) i(0*a) 
xx y v 

e = e (1-18.7) 

where a and a are two constants, and integrate over the whole 0 
x y 

plane to obtain an equation for the function 

°° °° i(0 o + 0 o ) 
$(X,o,p) = / d0 / d0 e XX yy $(X,0,p) (1-18.8) 

X V 
—00 —00 J 

00 2tt i0«a 
= / 0d0/ d$e C>(X,0,p) . (1-18.9) 

0 0 

By writing the arguments in each expression, we should be able to avoid 

confusion which might arise by using the symbol once again. 

1-103 



This is the.Fourier-Bessel transformation, the appropriateness of the 

name being apparent in the following form: 

0(A,a,p) = / 0dO3>(A,0,p)/ d^e^0003^ 
0 0 

CO 

= 2tt/ 0d0$(A ,0 ,p''JQ(0a) . (1-18.10) 
0 

Each term in Equation (1-18.6) requires a special discussion. In the 

first term we must use the differential equation satisfied by JQ(0a) to 

evaluate the integral: 

OO 2 00 
27i/ 0d6 [p-^-]Jo(0a)<D(A,0,p) = 2tt/ 0d0 f [-£ ^ a |^]Jn(o0)$(A ,0,p) , 

0 0 
2 a 8a 8a 0 

= °<»j0(oe)*(x.e,p) , 
0 

pl8 8 , . 
(1-18.11) 

In the final term we can use the two-dimensional form of Equation (1-12.13) 

Thus 

“ i0 o “ i0 a An A 9 
X Xf dO e y y{-^- 6(X-Xn)} = f-^- 6(X-X.)l(2ir)/6(o )6(a ) , 

1 y 1 4tt 0 1 14tt 0 j x y 
/ d0 e 
J x 

h~ MX-X0)}2«6(%-) (1-18.12) 

“1 rr 
* Note that 6(c^)6(a^) and (2tt) are equivalent expressions 
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The scattering term can be most easily transformed by use of a prop¬ 

erty of the Fourier-Bessel transformation analogous to Equation (1-14.5). 

If F(6) is an arbitrary function. 

/ dej de el(e‘o)F(|e-o'|) = / d(Ox-e' )/ d(e -o 
_OC _OO *' An J 

)e 
i(6'*o) 

-4 —4 

i (o—eT) 
f(|e-er I) 

• • 4- 

Writing t = 0 - 0* , this becomes 

/ d0 / d0 el(6*o)F( |e-*f' 
J y 1 

oo oo ,-4 -4 v -4 -4 

/ dt / dt el(6'’0) + i(t-o)F(t) 
J xJ y 

ei®',°/”tdt/2’Td*eitocos'l'F(t) 
0 0 

-► -* 
i 0 * • n 

e F(o) , (1-18.13) 

where, following the convention of Equation (1-18.10), F(o) is the trans¬ 

form of F(t). 

Applying this relation to the scattering integral, we obtain 

0° oo . ->->• X °° 
f de f de e1 6*° | dX’/ d0 ’ / d0’ K (X ’ ,X )^~ 6[^(0-0 ’ )2-(X-X ’ )]<KX » ,0 * ,p) 
J XJ V i J XJ y 0 7 9ir 9 

—m J Q —00 —OO J -00 —00 
2tt 2 

oo oo oo oo 

= / dX’K0(X\X)/ d B'J d0 ’ $(x’,0,,p){/ dej d0 el(6*a)~6[y(04‘')2-(X-X’]} , 
— 00 —oo —OO —00 

X oo oo # -4 -4 OO z 

/ dX’K (X 1 ,X ){/ d01 / d0’ 4>(Xf ,0’ ,p)elG *°}(/ tdt JQ( to )6[^- -(X-X • ) ]} , 
o -oo x~co y o 

= / dX’K (X* ,X)$(X* ,a,p)J0Cc/2(X-X*')] . (1-18.14) 
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Combining the different terms, now, we can write the complete 

equation. 

[(y-p)- p — JL 
2 o 3o 

3 
dO 

A 

]<S>(A,a,p) = / dA ' K (A ' ,A )<*>( A 

0 
,o ,p)Jq[o/2(A-A') ] 

+ 5V(wo)<(V (1-18.15) 

This equation offers an interesting contrast to the corresponding equation 

in which the more accurate Legendre equation is used and no small angle 

approximation is involved. The two equations can be made to correspond, 

term by term, with the discrete variable (£ + y) playing the role in the 

more exact equation which o plays in Equation (1-18.15). 
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D. PARTIAL SOLUTIONS TO THE TRANSPORT EQUATION 

19. Discussion of General Methods 

Solutions to the transport equation have always leaned heavily on 

methods for obtaining limited amounts of specialized information. 

One such method is the orders of scattering calculation, which will 

be discussed in the next section. In principle this type of calcu¬ 

lation is perfectly general, and the information generated is exact. 

In practice the method is most useful in producing accurate information 

about radiation which has not been scattered, or which has been scattered 

only once or twice. Such information about the low orders of scattering 

is very useful: multiple scattering tends to smooth out irregularities 

in flux distributions. The irregular or discontinuous features of the 

flux distributions are contributed by components with low orders of 

scattering. Thus we learn the irregular features of the flux distributions 

by such orders-of-scattering analysis. 

Other general methods permit the study of very deep penetrations. 

Some of these methods are likewise general and could yield information 

about the flux of radiation at any depth; but the power of this type of 

analysis is most felt in connection with the study of approximate equations 

which are correct only in the deep penetration limit. Information produced 

in such studies has several applications: occasionally the deep penetration 

studies represent the answer to a specific problem. Knowledge of the 

deep penetration trends has been used as a test of Monte Carlo methods, 
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and as a source of functional approximations in moments methods. Finally, 

the contrast between low orders of scattering results and deep penetration 

results gives a great deal of physical information about the penetration 

process, which involves transition between the two cases. 

A third method which yields exact, but limited information's the 

numerical calculation of spatial moments. In principle the method can 

be used to calculate any number of moments with arbitrary accuracy. In 

practice it is not feasible to determine more than, say, six to twelve 

moments of a flux distribution. Of these moments, only those that describe 

the integral over all space have an independent physical interpretation 

of sufficient interest to warrant special study. 

The three types of partial information just mentioned complement one 

another very well. We obtain some of our best knowledge about flux 

distributions when we combine them. Methods for doing this are discussed 

in Part E of this manuscript. 
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20. Orders-of-Scattering Calculations 

a) Discussion. A formal solution to the transport equation by 

orders of scattering can be obtained in a simple and straightforward 

manner. We write Eq. (1-13.1) in the form 

cosei-i.* yN = TN + S(F.,e,$)«(z), (1-20.1) 
3 Z 

where the integral operator T is given bv 

TN(E , 

E 

dQ'k(Ef 
« 

47T 

,E,cos»)N(F.' 6' <t>’ »z) (1-20.2) 

Next, we write the flux as the sum of terms corresponding to different 

orders of scattering. 

N(E,0,<J>,z) = l N(l)(E,e,<j>,z) (1-20.3) 
i=0 

so that Eq. (1-20.1) becomes 

c° (i) • 00 

l {cose^-+yN(l)} = l TN 1 ♦S(E,6,,j>)« (z) . (1-20.4) 
i=0 i=0 

We relate the individual terms on left and right sides of (T-20.4) by the 

following simple rule: 

(o) 
cose^t— ♦ yN(o) = S(E,0,$)S(z), 

dZ 

(1-20.5) 

cose 
3N (i) 

3z 
+ yN^1 ^ = TN(l-1\ i>l. 

These differential equations can now be solved recursively for all values 

of i. 
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Actually, however, we do not need to make a new effort to solve 

Kqs. (1-20.5). The same result is reached by applying iteration to 

Eq. (1-13.12), the integral form of the transport equation, or to its 

Fourier transform, Eq. (1-13.10). The result is 

m(°) n- ^ -yz/cose. , . . r 1,x>0 
iNT = S(E,e,4>)e M h(z/cos6) / h(x) = { ’ - 

f COS 01 * * 
(1-20.6) 

N i(i) - 
( * 1 ^ 

dse"v’STNU“1J(E»,6»,<},»,z-scose) , i>l. 

We have already mentioned that the low orders of scattering contribute 

the sharp features to the penetration curves. This is evident in (1-20.6). 

If all photons travel initially with obliquities 6<tt/2, that is towards 

increasing z, will be discontinuous at z = 0 for arbitrary E,0,<|>. This 

discontinuity will persist through both angle and energy integrations and 

will characterize the spatial distribution of the dose due to unscattered 

photons. Further, because the total radiation beam is made up of the sum 

of the different orders of scattering, a discontinuity in the unscattered 

component will be introduced, unchanged in magnitude or position, into the 

total beam. 

Since each order of scattering is obtained from the next lower by 

integration, the sharp features tend to be washed out step by step in the 

higher order components. Thus, a discontinuity in the implies a slope 

discontinuity in the N^, and a corresponding discontinuity in the second 

(2) 
spatial derivative of the N , etc. 

Because low orders of scattering are often amenable to analysis, at 

least insofar as the discontinuous feature is concerned, we often wish to 

introduce these low orders of scattering—or their discontinuous features— 
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analytically into a distribution. This is apt to lead to a requirement for 

the moments of the for small i_. Equations satisfied by these quantities 

can be obtained by applying moment and Legendre expansions to Eqs. (1-20.5) 

If we disregard the <p dependence and define 

N^(E) = 
nil ^ 1 

r00 

dz (cxz) 
n 

\) 

4tt 

21+1 
dQY°(cosG)N(l)(E,e,z), 

4tt 

(1-20.7) 

the moment equations are (see (1-15.4), (1-14.18), and (1-14.20)) 

pN^ (E) 
nil v J 

UN« (E) 

VE>S„o + flTl ( ml • 
n-1,2,+ 1 n-l,il-l 

(o) 

(1-20.8) 

dE'k (E',E)N^‘1)(n’) + (E) * W(l) (E)} 
n-l,il+l n-l,£-l 

b) Special cases. Eq. (1-20.6) gives the unscattered component for 

plane sources in general. But to obtain even one more component analytically 

it is necessary to specialize, for example, to a monoenergetic and monodirectional 

source. If in (1-20.6) we write 

S(E,0,4>) = 6(E-E ) 5(cos0-cos0 ) 6(<f>) , (1-20.8) 

straightforward calculation yields 

N U) . 
f oo ,oo 

-ps dse 

E 4ir 

dE’ dn'k(E’ ,E,cos@ ) 5(E’-Eo) {(cose'-cosGo) 6(4>')e 

-y(E') (z-scos«ycosef 
, ,z-scos0, 
ht-cbTe^-) 

cose1 

=k[E ,E,cos® ]i-— 
1 o* * oJ cosO 

n 

ds exp{-y(E)s-y(Eo) (z-scosO)/coseQ} h(Z~^^5-) , 
o 

where cos® = cos8 cos0 + sinG sinGcosd). Tliis leads to 
o o o 
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-V 
N(1) * k[E0,E,cos»jMCos9^MoC-o-s-e-(e cos6o -e 

-yz/cos0 
), for z,cos0q,cos0>O, 

-y z/cos0 
o o 

- k[no»E»COStJyCOS0 -y COS 0 
, for z,cos0 >0 and cos0<O, 
* * o 

o o 

-yz/cos0 

= k[Eo»n»cos<lJycos0 -y cos0 
, for cosB >0 and z,cos0<O, 
* o 

o o 
(1-20.9) 

The unscattered flux due to a plane isotropic source is an immediate 

consequence of Eq. (1-20.6) if we take S(E,0,<|>) = S(E)/4tt. We then have 

= i_ SfFle 
PLI 4tt J 

-y(E)z/COSO 
1 

COS 0 
h(z/cos0). (1-20.10) 

It is instructive to calculate the unscattered flux from a point isotropic 

source by superposition of plane sources. If we refer back to (1-12.18) and 

recall that for a point source, Sfq) = 1 , we obtain using (1-20.10) 

N (o) 
PTI 

r iq*r 
dx e 

J q 

T S(E) 4 ft 

y + iq*u> » 

where q»a) in the denominator renlaces q(cos 0), because of the identification 

of the normal to the source plane with the direction of q. Recalling that 

. r°° -s(y+iq*u)) 
—-- = dse 

-*■ 
y+iq*w o 

we rewrite tliis expression as follows: 
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N .(°) - A 
PTI 47 

= 77 S<E> 

00 -pS 

else 
(2tt) 

diq e 
iq* (r-su>) 

00 2 -ps ^ 
s dse_ S(r-sw). 

The Dirac delta function has the consequence that s<d = r, v;hich in turn 

means that s = |r| = r, so that the s-dependent factor may be removed from 

the integrand, and 

N 
(o) _ 1 
PTI 47S(E)- 

-wr r2 - - 
s ds5(r-su>) 

2 
r o 

The remaining integral identifies the photon direction oj with |—|. Since 

this integral factor must clearly give 

r°° 

s ds6(r-soj) = 1, 

o 

1 -> r 
we may replace it with ^ 6(w -1), where to = <»)• —,, which also integrates 

r 

to unity and identifies the photon direction with the outward radial direction 

from the source. In conclusion. 

Nm ■ s(E4r «(V^4~2e 
47rr 

-pr 
(1-20.11) 

An expression for can be obtained by a similar, though more 

involved calculation; but it is much easier to calculate this quantity by 

other methods. 
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A 

21. Analysis of Deep Penetration Trends'* 

The study of the deep penetration of gamma rays can proceed by use 

of approximations not valid at moderate penetrations. Hence,calculations 

of this type are difficult to generalize and yield partial, though 

extremely valuable, information. 

There are common misconceptions about deeply penetrating radiations. 

On the one hand many people assume that the spectrum undergoes a progressive 

softening as the high energy radiations are degraded by scattering inter¬ 

actions. This fails to take account of the opposite tendency for the low- 

energy spectral components to be removed because they are less penetrating 

than the radiations which retain their high energy. 

There is often another assumption that the spectrum achieves an equi¬ 

librium shape at some depth and does not change thereafter. This is more 

nearly the case than the concept of progressive softening, but it fails 

to take account of spectral regions near the most penetrating photon energy 

which are not in equilibrium. It is true that some energy regions come to 

relative equilibrium quickly, the faster the less penetrating the spectral 

region. Thereafter these regions retain a characteristic spectral shape, 

but the region as a whole may not be in equilibrium with other, much more 

penetrating spectral components. 

Near the most penetrating component there will exist at any penetration 

a non-equilibrium region. With increasing penetration this region narrows, 

and spectral variations across it increase. 

All of these tendencies are illustrated in Refs. 16 and 35 

Calculations for a plane isotropic source can make use of the small 

angle approximation and, correspondingly, the Fourier-Bessel transform of 

*For a recent summary discussion, see Ref. 13 . 
of this type is apparently due to Wick (Ref. 45 ). 
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the transport equation, (1-18.15), 

r p 1 3 3 , . 'v 
[“‘P 2 7To° 37]t(A*°*P) = dX1K0(X’,A)J0(a|/2(A-A'))$(A*,o, p) 

(1-21.1) 

♦ yA 5(A-A^)6(a2/2). 
Z 0 0 

a) Reduction to a Partial Differential Equation. 

For an illustrative calculation, we will consider only the case in 

which the most penetrating photons are those produced by a (monoenergetic) 

source at X^, and the attenuation coefficient, y(X), increases linearly 

near X : 
o 

v(X) = U + (X-X )y . (1-21.2) 
0 0 0 

IVe assume at the outset that deep penetration implies a limitation to 

small-energy-loss scattering interactions, and will in any case confine 

our attention to wavelengths near Xq, where the transition to spectral 

equilibrium is expected to occur. Both aspects of the problem suggest 

the approximation 

K (X',X) : K (X,X) = C. (1-21.3) 

A more detailed study would show that this "approximation" does not 

disturb the limiting trends, and in this sense it is a simplification 

rather than an approximation. 

Equation (1-21*1) now takes the form 
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[uoU-Ao) + (u0-p) - £ 3-f-a°fcl'!,(X*a,P) = C.f dA'Jo(o/2(A-A'))*(A',a,p) 

X 
(1-21.4) 

♦ ix 6(A-A J6(o2/2). 
i. u u 

A Laplace transformation will reduce this to a recognizable partial 

differential equation. To accomplish this, each term is multiplied by 

exp[-n(X-Xq)/(uQ-p] and an integration is performed over (X-X^). To 

conserve symbols, we write 

<Kn,a,p) = dX<KX,a,p)exp[-n(X-Xo)/(po-p)] (1-21.5) 

Then we find that 

X 
dX (X-X )$exp[-n(X-X )/(u -p)]= -r—^(n,a,p)(u -p), 

o o o d n o 

dX5 (X-Xo)exp[-n(X-XQ)/(uo-p)] = 1. 

Our last calculation, that of 

r°° f\ 

dX dX,<D(Xt ,a,p)Jo(af2(X-X,))exp[-n(X-Xo)/(uo-p)], 

X X 
0 0 

can be simplified by reference to 

Fig. 1-21-1, where the shaded area 

denotes the region of integration. 

Changing the order of the integrals, 

we find that this double integral 

becomes 
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r°° 

(1-21.6) 
oo 

dX dx*{ } = dX' dX{ } 

X X 
o o o 

.00 

,r(**-*<)) 
dX’{0(X*,o,p)e P } d(X-X’){.J (o/2(X-X’))e 

(X-X') 

VP 
}• 

The two integrations can be performed independently. Consulting a table 

of Laplace transforms to evaluate the integral over J , we obtain for the 
o 

complete expression 

(VP) o2 
Hn.o.P)—--exp[-^(uo-p]. 

Putting all results together, we write the transformed equation as 

follows: 

[-(vp)iolr+ (vp) -Hf7a^1Hn’a'r,) = c(-7r)tc 

C‘ 

* ixo6 (o2/2) 

(1-21.7) 

This equation is equivalent to (1-21.4). 

b) Separation of Variables. 

before proceeding to analyze the equation, we take advantage of a 

natural scaling property by replacing with the variable s_, 

(1-21.8) 

Since 

3 . .. f 3 9s 3Uf n 
^(n.a.p) = (_ + — _)4,(n,s,p). 

we can rewrite the equation in terms of s in simpler form, 

1-117 
240- 816 0-67—9 



1- <VP>V^-!nfs> + ("o-PJ ris 

u -p -s /2 Po-p ^ 2 
C(-£—)*e + (~—)^06(sZ/2). (1-21.9) 

Deep penetrations correspond to p near pQ. We therefore replace 

the factor p by pq in the last tern: on the left of (1-21.9). Then, 

removing from all terms the factor (yQ-p)/n, we group the terms as 

follows: 

r • 3 1 a. T » S ^ 

[‘uo n~ + + 

o 1 3 
-s2/2 

o2 3s -T T TT s TT “ Ce 2 s 3 s 3 s 

j^06(s2/2). (1-21.10) 

Separation of the variables s and n is clearly evident in this r>arti al 

differential equation; and the second set of terms identifies an appro 

priate type of expansion, in terms of eigenfunctions of the equation 

s d yo 1 d d ~S 
[wo7 ds 2 s 3s S ¥ ' Ce ]* = -<P0<K (1-21.11) 

We therefore represent $ as the sum 

<Kn,s,p) = l an(n,pHn(s), 
n=0 

(1-21.12) 

and insert this representation into Eq. (1-21.10), to obtain the equation 

L['VV+ o-KnP0]an(n.p)*n(S) =^o6(s2/2) 
n=0 

(1-21.13) 
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is adjoint to 
4- 4. 

We next multiply this equation by si^ (s), where ^ 

tfm 

^j.(s)» and integrate over the range s > 0.** Assuming the 

normalized so that 

.00 

sds^ (S)* (s) = 6, , 
k v J rnv J kn 

o 

we obtain 

n = TVk» 

where 

dk = ^k^* dk = ^k 

tq. (1-21.14) is an elementary differential equation 

solved by standard methods. An integrating factor is 

-1+Kk -n/*o 
I e 

so that 

dr . k 

d^“V 

-n/y 
0 i 1 . , a, = rr A d. 

*1 2 o k 

-1+K, -n/y 
n 

o 

and, correspondingly, 

. A d|r»j , -(n'-n)/y -k, 
1 ok dn* o-n ^ k 

a, = -e (-,) 
n n k 2 . 

yo n 

^(s) to be 

(1-21.14) 

(1-21.15) 

, which can be 

(1-21.16) 

*See, for example, section 38. 
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e) Inversion of the Transforms 

Finally we wish to use this solution to calculate the total flux, 

integrated over all angles. Referring to Eq. (1-18.9), we see that the 

integral over all angles corresponds to n = 0, which, by Eq. (1-21.8) 

corresponds to s = 0. Sy Eqs. (1-21.12) and (1-21,16) we must therefore 

evaluate the inverse transforms of 

$(n,o,P) = l an(n,p)*n(o). (1-21.17) 
n=o 

that is. 

I0(*,z) = -L- fdpe P -r- fd(-3—)e 
2rri j K 2ni J 

n (A “A ) / (y “P) 00 

l Vn'n.P)- 
o - n=o 

(1-21.18) 

The inversion integrals can be most easily evaluated by utilizing a 

new variable in place of n’, 

U . n’-n fo'p) 

n 
(1-21.19) 

in terms of which we may write 

. A r°° 

da = d d — V Pu e n n n n 2(y -p) 

-un/(y0-p) 
UP o 

‘1+,— * 

n 
-1 

so that if we write x = —— , 
u -p M o 1 

2rr l e*P {Ct^QtJ^* (n.o.P) 
o r Mo 1 

(1-21.20) 

” ,t x 
= l a d -yr-s 1- 

n=o " n 20*7?) 2m J 

tCX“X0) 
dT e 

—T U . -1+K 

du e {1 + } n 
1 y -nJ 

o 
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The double integral on the right of this last equation is recognizable 

as a Laplace transformation followed directly by its inverse. Evaluation 

of the double integrals is therefore immediately accomplished: we merely 

replace them by the integrand, with u = A-Aq. 

We are then left with the expression 

I0(*,z) 2tti 

-pz 00 , A . 

dpe l Jndn*T aT^pT 11 

• — I 
V (A-A ) n 

ov O 1 

n=o y -p 
o 1 

, K -1 
A 00 , , -pz , . n 

Cn-P> = l d+d ^ 
2 L n n 2tti 

n=o 
dpe 

(b0-P) n 

(1-21.21) 

This type of integral can be performed analytically; it yields confluent 

hypergeometric functions. But our purpose is well served if instead we 

perform a simple approximate calculation. Tf (A-A^) is sufficiently large 

we may write 

(y-p) : (y-yQ)> (1-21.22) 

and remove the numerator of the integrand from the integral. Then the 

calculation gives a particularly simple result: 

A w 
I (A,z) : ~ Y dTd (y-yj n e 

oK * J 2 L n n o 
n=o 

< -1 -y z , 
o 1 

2 it i 
(Vp)z *Kn 

dpe (vQ-p) 

A 00 d d -y z k -1 
0 r n n Of,- > i n 

- l - e [(y-yjzl 
n=o[k -1] ! 

1 n 1 

o' 
(1-21.23) 

The eigenvalues, «n, decrease with increasing n. This means that the 

terms in the sum have widely differing values for large zthe largest being 

the first (n = 0) term. Neglecting the others by comparison, we see that 
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(1-21.24) I 
o 

(A,z) 
A d^d 

0 0 0 r / \ 1 

7“ [< -1]! 
L o J 

k -1 -y z 
o o 

e 

(Plane Isotropic Source). 

d) Comparison with the Plane Normal Source Case and Further Discussion, 

Before commenting on this result, which applies to plane isotropic 

sources, we will identify the changes which make the analysis apply to 

plane normal sources. For this source type, the source term in Eqs. (1-21.4), 

1 2 
and (1-21.7) should be changed by omission of the factor — 6 (o ,/2). The 

source term in Eq. (1-21.9) should be simply A , and in F.qs. (1-21.10) and 

(1-21.13) it should be Aon/(uo-p). In Eq. (1-21,14) the factor should 

be replaced by 2d^Aj,n/(y -p), where 

-00 

Ak - 
sds 

<(s) 

^(O) 

(1-21.25) 

-j* f 
In Eq. (1-21.16^ the factor d^ should be replaced by 2d^A^/(yQ-p), and the 

factor should be removed from the integrand. In Eqs. (1-21.20) and 

"f* "t* 3 

(1-21.21), the factor d should be replaced by 2d^An , and the integrand 

should have the exponent k^. Skipping to the final result, instead of 

(1-21.24^ we arrive at the expression 

i0cm) 
d+d A . 

o o o S -V 
Xo ITTrsT [Cp-U03z] e (1-21.26) 

v o' 

(Plane Normal Source). 

Note that the spectrum given by (1-21.26) is essentially that of 

Eq. (1-21.24), while the spatial trend is increased by a factor of z. 

1-122 



Both observations are more general than the assumptions basic to the 

preceding calculations. We expect the spectral region which has attained 

relative equilibrium to be independent of details of the source shape, 

and we expect the plane normal source quite generally to have the same 

trend as the point isotropic source without the inverse square factor, 

b ut since the plane isotropic source is obtained from the point isotropic 

source by integration, as shown in Eq. (1-16.6), 

I 
PLI 
o 

(A,z) 
1 
2 

2jPTI 
o 

z 

U,r)}, (1-21.27) 

we expect that the plane isotropic source will always give a trend which 

differs by one power of the penetration variable from that of both the 

plane normal source and the point isotropic source without the inverse 

square factor. 

The exponent kq in Eq. (1-21.26) can be calculated by standard 

eigenvalue techniques. It turns out to be of the order of unity for low-Z 

materials and photon energies near 1 Mev. 

Eqs. (1-21.24) and (1-21.26) do not describe the spectrum in the 

non-equilibrium region, which undergoes a sharp transition to values 

expressive of a different spatial trend at A =A • The more accurate 

solution which uses confluent hypergeometric functions is able, in 

principle, to describe the non-equilibrium region; but the calculations 

involve other terms in the sum of Eq. (1-21.21). 

This same type of analysis is applicable for the case jjo<0, and 

analogous studies have been made for the cases in which y(A) is constant 

12/ 
or has a minimum value for some A>A 

o 
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22. Calculation of Spatial Moments of Legendre Coefficients 

a) Formal Development: PLI Monoenergetic Source, 

At this point the calculation of spatial moments of Legendre co- 

efficients is an exercise of the analytical machinery developed in many of 

the preceding sections. Considering first the PLI monoenergetic source of 

Equation (1-12.20), we write the equation in dimensionless variables. 

Equation (1-17.9 )^ using Equation (1-17.1): 

at X 
cosG— + y(A)I(A,G,z) = fdX’f d^,K(A',A ,cos@)I(X’,G1,z) 

8z 0 4tt . 

+ M47 «(E-E0)«(£)} §£ . ‘ .(1-22.1) 

Recall that y and z are simply attenuation coefficient and distance in 

dE 
dimensionless units, and note that we may write 6(A-AQ) for 6(E-E^)^- . 

To this equation we next apply moment and Legendre transformations. 

If the "coefficient-moment" is defined in accordance with Equations (1-14.3) 

and (1-15.2) to be 

~ 1/2 
Ir(,U) = / / d!2Y°(e)I(A,e,z) , (1-22.2) 

-00 4 IT 

where y^ = y(AQ), the equations satisfied by the I 1 s can ^)e immediately 

written down from Equation (1-15.6), using a = yp and m = 0: 

S(x)int(x) = /’dx'qU'.Dqpx') 
xo 

M r-L(l+l)I , .+JtI 3 
0??+i n-1,£+1 n-1,£-l 

+ W(*-*0)6n06£0 * 
(1-22.3) 
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where 

K£(\',A) = k0(x’,x)p£(1~x+x,) (1-22.4) 

and K (A’,A) is given by Equation (1-17.8) . 

We are primarily interested in the numerical solution of this set of 

equations; but they are not yet in suitable form because the last term is 

singular. The difficulty is essentially confined to the unscattered com¬ 

ponent of the photon flux, and can be removed by replacing Equation (1-22.3) 

with the corresponding equation which describes only the scattered photons. 

We write 

(1-22.5) 

where the superscripts refer, respectively, to scattered photons and 

photons that have as yet been scattered zero times. We insert this ex¬ 

pression in the preceding equation to obtain an equation which is equiva¬ 

lent to the two equations below (see Equation (1-20.8)): 

] 

(1-22.6) 

0 

(1-22.7) 
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The equations for the unscattered component are easily solved. We 

note that 1^?^ has the form 
n£ 

^ = V(X-X0> ^CnZ > 

u0 

(1-22.8) 

where the n are constants obeying the linkage equations 

£+1 i 
C = (1-6 - C +_C 

nO'L 2£+l Vn-1,H1 ' 2£+l ~n-l,£-l^ + <5nG6£0 * 
(1-22.9) 

The nature of these numbers is apparent if we refer to the analytic form 

of the unscattered flux from a plane isotropic source, as given by 

Equation (1-20.6): 

(o) 
-y z/cos0 

1 e ° 
I (A>0>z) = An6(X Aq) y—fl h(z/cos0) . (1-22.10) 

If we apply moment and Legendre expansions to this distribution we 

obtain a very simple result: 

1/2 

l(M = (dif ! <^Y°(e) / cl5(y0i)ni(o)(A,6,z) 
HIT 

00 -x/cos0 

= A,.6(A-A^) -—— / dWF (cosG)f dx xDe_ n(x/cos0) 
O'.0' - , J ~""£ 

U ~ 4 it 4 7T 
0 

cosG 

= A 6 (A —A ) j dcosOP (cos0)(cos0)‘1 ; 
U U k 

vo 0 

1 

and from this it is clear that n! C „ is the moment-Legendre transformation 
n£ 

Note that h(x) = q’x < 0 * 
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of the distribution jcosOj J‘exp[-x/cos6]h(x/cos6) , with C given by 

C„£ = { dUU\<u) (1-22.11) 

Note that these numbers are identical with the numbers of Equation 

(1-16.6'). Table 1-22.1 lists a set of these numbers. 

\ i 

0 1 2 3 4 5 6 

0 1 
1 1/3 

2 1/3 2/15 

3 1/5 6/105 

4. 1/5 4/35 8/315 

5 1/7 4/63 8/693 

6 1/7 2/21 8/231 16/3003 

7 1/9 2/33 8/429 

8 1/9 8/99 16/429 64/6435 

9 1/11 8/143 16/715 

10 1/11 18/143 48/1287 

11 1/13 6/117 

12 1/13 4/65 

13 1/15 

14 1/15 

15 Table 1-22.1. Some C . values. 
16 1/17 nil 

17 

18 1/19 

7 

16/6435 

With these results we are in a position to evaluate the final (source) 

term in Equation (1-22.7), which gives 

/ dX'K (X ' ,X )X 6(XT XQ) _ C = X0K^(Xq,X) _ . 

Ao M0 

(1-22.12) 

0 

At this point we are ready to discuss the numerical analysis; but 
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rather than proceed next in this direction we repeat the foregoing analysis 

for FLane "mon-Obliquity" sources. 

b) Formal Development: PLQ Monoenergetic Sources 

For this source type we must replace the final term in Equation 

(1-22.1) with the expression 

A.6(A-A )6(z) ~ 6(cos&-cosCv ) , 
0 u 2tt 0 

where G^ is the obliquity angle of the source, and we assume no azimuth 

«• 
dependence. If the coefficient-moments are defined as in Equation (1-22.2), 

the final term in Equation (1-22.3) must be replaced by 

V^VToV^V 5 

and Equation (I-22.G) is replaced by 

p (A ) I 
(o) 

nZ <Sn0')y0 2i?r1(4+1 >£2.1+1+ 
£1^°^ ] 

n-l,£-lJ 

+ A 6(A-A )6 .P0(cosen) . (1-22.13) 
0 0 nO Z 0 

It follows from the recursion formula 

cos0QP (cosGQ ) 
1 

2£+l 
[ (Ji+l)P^+1(cosG0) + £P^_1(cosG0)] 

This source type is 

or oblique. 

sometimes loosely referred to as mono-directional 
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that the solution to Equation (1-22.13) is 

(1-22.14) 

Correspondingly, the source term for Equation (1-22.7) is given by 

One can perhaps more easily obtain this result from the analytic expression 

for the source space-angle distribution. 

c) Numerical Solution of the Equation for Iqq(X). 

The methods for numerical solution of all these equations are well 

illustrated by application to the special case n = £ = 0 , which has a 

typical form. Note that this equation is the same for all the source 

types just considered: 

(X) = / dX’K0(X',X)lQ*)(A'> + X0K0(X0,X)/iIc| . 

X0 

(1-22.16) 

The final term in this equation is a smooth, non-singular, well-behaved, 

finite function for XQ < A <XQ + 2 . At X = XQ t 2 this function drops 

abruptly to zero, and it remains zero for all values X > X^ + 2 . 

Applying numerical integration concepts, such as outlined in Part G, 

we assume that the integral in Equation (1-22.16) can be approximately 

evaluated as a sum with the use of appropriate integration weights. We 

establish a set of values X^, X^, .... at which the function 1qq(X) 
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is to be evaluated, choosing equal spacings for convenience. To the 

accuracy of the basic integration formula, as applied here, we may replace 

Equation (1-22.6) by 

u(A )Inn}(A ) 
n 00 n 

n 

= l 
i=0 

w. K (A . , A )I^}(X.) 
1 0 1 n 00 l xoK( W^o (1-22.17) 

where the w^ are appropriate integration weights, perhaps those developed 

in section 35c. Solving for I^(A ) we obtain 
00 n 

I(s)(A ) 
i00 Un' = tf<xn> - wnK0(VXn H'1! J 

1 = 0 
*oK<W/»0} 

(1-22.18) 

The result here is determined, providing ^oo^i^ -*-s ^nown f°r 0 <_ i < n 

This will be true if the solution progresses always from n to n + 1 

and if I^Q^) can be determined. But for A = XQ , the scattering 

integral is precisely zero, so that 

) = X ioo ucr A0 - 
vw 
cw(q)f 

(1-22.19) 

Two problems may present themselves in such a calculation. First, 

it is possible that due to the chain nature of the solution small errors 

may build up, so that the calculation proves basically unstable. All ex¬ 

perience gained thus far indicates that for gamma-ray and neutron calcu¬ 

lations, this does not happen. 

Second, the discontinuity in the function KQ(X0,X) at X = XQ + 2 

will be reflected in the function 1Q^(X) in the form of a corresponding 
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discontinuity at the same wavelength. But then the integrand of Equation 

(1-22.16) is discontinuous at this wavelength and we must proceed with 

caution. Strictly speaking, the integration should be performed in two 

pieces, by writing 

/ dX'K0(X',X)I^f.)(X') 
00 

0 

V2 

/ 
X-2 

+ / 

V2 

(1-22.20) 

(s) . 
and by assigning 1^ appropriate left and right limits in the two inte¬ 

grals. This has usually been done, but in the calculations which produced 

the data of Ref. 36 , a sufficiently fine mesh was used to encourage 

neglect of this problem. This turned out to be feasible not only because 

of the fine mesh but also because the problem arises only at such low 

photon energies that the error is innocuous. 

The network of Equations (1-22.7) can be solved numerically, in proper 

sequence, each equation in turn being evaluated by exactly the same inte¬ 

gration procedure which is applied to the appropriate (known) source 

function and K (X’,X) . Each has the same problem of a discontinuity 
X/ 

at XQ + 2 . 

d) A Conservation Rule for the Iqq(X). 

In section 8 we noted that the energy produced by the gamma ray source 

must equal the kerma for the medium. This gives a useful relation between 

source and solution of the n = Z = 0 equation of (1-22.3). 

The kerma is given by integrating IQ(J(X) multiplied by the mass energy 

transfer coefficient, u , as tabulated, for example, in Ref. 3 . On 

the other hand, the energy produced by the source can be obtained by 
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integration over the source function. We therefore have the equation'4 

+ I^)(A)j = / °d»n6tt-*n) , 

0 
'00 

0 
(1-22.21) 

or, evaluating the integrals over the deLta functions. 

(A)ud(L) = L0L1 - 
VJD(E0) 

] . 

0 

(1-22.22) 

here yD = , so that (yD/y0) = (yD/yQ) ♦ This relation provides an 

extremely useful check on the consistency of the functions used in these 

calculations, and also on the accuracy of the calculation itself. 

No analogous rule for other coefficient-moments is known. Because 

the argument applies to more general source types, it is in principle 

possible to make extensions of this rule, providing that functions analo¬ 

gous to y are defined for Z > 0 . Such extensions have not been 
D 

made and are probably not very useful. 

e) An Elementary FORTRAN Routine for Evaluating Coefficient-Moments 

For its pedagogical value, we give an extremely simple routine for 

solving integral equations of the type Equation (1-22.7). In spite of the 

additional complexity introduced by two integration regions which join at 

the discontinuity, we have included this feature in the code. The utility 

subroutines called must be those of section 36, or equivalent to them. The 

subroutine M0MENT only performs solutions for a single X value. It must 

be operated cyclically by a control routine. The subroutine ELISTS reads 

’••Note that I^q represents an integral over z, hence the use of y^. 
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the basic cross section data and interpolates to set up tables for use in 

the calculation. The subroutine INPUTS reads the data which establishes a 

pattern of coefficient-moments to be calculated, and determines linkage co¬ 

efficients and C values. The control routine is relatively complicated 

because it must cycle M0MENT properly and do routine operations connected 

with this. 

Returning to M0MENT: this subroutine is essentially a transcription 

of the numerical procedure outlined in c) of this section. The first part 

of the code, to the second order beyond 20, is concerned with proper in¬ 

dexing of the integration in view of the use of two integration regions 

if the discontinuity is within the integration range. The second part of 

the code, to order 45, tabulates the Klein-Nishina cross section multiplied 

by the integration weights, for the X value being calculated. This tabu¬ 

lation is utilized for all coeff icier.t-moments which have the same value 

of n . The subroutine assumes that a table of Legendre polynomials 

P„(l-X +A.) is available. 
I n 1 

The final part of the code, which begins with order 45, effects 

solutions for all & values which are to be calculated for the moment n . 

C.'. »% 
O tfk <» 4% 4* 

SUBR0UTINE M0MENT(XLAM,XMU,ALPH,ND,LAM,LS,CNL,LN0,PL,S0L) 
DIMENSI0N XLAM(500),XMU(500),W(500),XK(500),PL(12,300), 

1 S0L(2,10,500),LS(10,3),CNL(10,3) 

XLAM is the list of wavelength values (assumed equally spaced) 
for which a solution may be attempted. LAM is the index of 
the wavelength value for which the calculation is to proceed. 
XMU is a list of attenuation coefficient values, one for each 
XLAM value. ALPH is the distance scale factor assumed, usually 
XLAM(l). 
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We assume that XLAM has two identical entries at the discontinuity, 
the second corresponding to the limit approached from larger X. 
ND is the index of the second value. 

Array interpretations: LS(I,1) is the £ value for which solu¬ 

tions are sought; LS(I,2) is an index identifying I ; 
n-1, £-1 

and LS(I,3) is the corresponding index for 1^ ^ £+1* CNL(I,1) 

is the appropriate value for the I’th £ value. CNL(I,2) 

is the linkage coefficient multiplying I (usually 

£/(2£+l)). Likewise CNL(I,3) is the linkage coefficient multiply¬ 

ing I ^ £+]_ (usually £+!/( 2 £+1)). 

XK is the list of kernel values appropriate to LAM. multiplied by 
appropriate integration weights. PL(L,j) is the Legendre polynomial 
P (l-A.+A,); and we assume that this array has been computed. 

L—1 ^ -L 

S0L(1,IP,J) is the solution list for the IP’th £ value, for the 
N-1*st moment. S0L(2,I,J) is the solution list for the I'th £ 
value, calculated for the N'th moment. 

NDP=ND-1 

This generates the index of the first discontinuity wavelength. 
Our first task is to see if the integration overlaps the discon¬ 
tinuity or lies completely to larger or smaller wavelengths. 

IF(LAM-NDP) 10,10,5 
5 IF( LAM-2S*NDP) 15,20,20 

10 NB=1 
N01=LAM 
N02=O 
G0 T0 25 

Here N01 is the number of XLAM values in the integration, and MB is 
the first index of the XLAM list involved in the integration. The 
total calculation falls on the small wavelength side of the dis¬ 
continuity. 

15 NB=LAM-NDP 
N01=ND-NB 
N02=NB 
G0 T0 25 

NB and ND give initial XLAM indices for the two integrations; and 
M01 and N02 are the (respective) numbers of wavelengths for these 
two integrations. 
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20 NB=LAM-NDP+1 

N01=NDP 

N02=O 

Here the whole calculation is on the large wavelength side of the 

discontinuity, and only one integration region is necessary. 

2b CALL ItfATE(1,N01,XLAM(NB),W) 

IF(N02) 30,30,40 

40 CALL IWATE(1,N02,XLAM(ND),W(N01+1)) 

It should be clear in these last three orders that if there are 

two integration regions, the weights adjoin in the list. Note 

that if LAM=ND, only one weight, namely zero, will be calculated 

by order 40. 

30 D0 35 I=NB,LAM 

D£L=XLAM(LAM)-XLAM(I) 

RAT-XLA M(I)/XLAM(LA M) 

IP=I-N3+1 

35 XK(I) =.375*RAT*(RAT+1./RAT-2.*DEL+ DEL**2)*W(IP) 

This completes preparation of the XK list. 

45 D0 60 1=1,LN0 

This begins the main calculation loop, over different i values. 

Next we must prepare indices for the main calculation. The next 

three orders give simple names to several indices. The fourth 

order clears the SUM cell for cumulation. 

L=LS(1,1) 

LHI=LS(I,3) 

LL0=LS(1,2) 

SUM=0. 

The next four orders, which are probably unnecessary, keep LHI 

and LL0 in the normal range (i.e. >0.) Either index vanishes 

or goes negati\e only if the corresponding linkage term is miss¬ 

ing, in which case the value assigned to the index is immaterial. 

IF(LHI) 41,41,42 

41 LHI=1 

42 IF(LL0) 43,43,44 

43 LL0=1 

44 LAMP=LAM-1 

IF(LAMP) 52,52,46 

Now we are ready for the integration loop, which includes 

contributions up to LAMP rather than LAM. One of the problems 
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in this loop is to calculate the correct PL index, taking into 

account the double XLAM value at the discontinuity. 

46 D0 50 J=NB,LAMP 

JP=LAM-J +1 

IF(N02) 47,50,47 

47 IF(J-ND) 48, 50, 50 

48 JP=JP-1 

50 SUM=SUM+XK(J)*PL(L+1,JP)*S0L( 2,1,J) 

Note that the PL values are stored so that PL(L,1) corresponds to 

zero wavelength increment, i.e. to zero angular deflection. Next 

we must add both linkage terms. A factor n_ , which might have 

been included, has been omitted, with the result that the moments 

being calculated are reduced by n!. 

52 SUM=SUM+ALPH*(CNL(1,3)*S0L(1,LHI,LAM)+CNL(1,2)*S0L(1,LL0,LAM)) 

If LAM<NDP, a source term must be added. If LAM=1 we must take 

account of the fact that since W(1)=0, XK(1)=0, hence a special 

calculation. 

IF(LAM-NDP' 53.53,57 

53 IF(LAM-»1) 54,54,55 

54 SUM=SUM+.75*XLAM(1)*CNL(1,1)/XMU(1) 

G0 T0 57 
55 SUM=SUM+XK(i)*XLAM(l)*PL(L+l,LAM)*CNL(I,1)/W(1)/XMU(l) 

Order 55 is the main integration order. We complete the 

calculation by solving for the new coefficient-moment value. 

Note that XK(LAM) vanishes if LAM=1 or if LAMtND. 

57 S0L(2,I,LAM)=SUM/(XMU(LAM)-XK(LAM)) 

60 C0NTINUE 

RETURN 

END 

The first part of ELISTS is concerned with establishing the basic 

list of energies at which solution is to be effected. Beginning two orders 

before order 3, cross section data of two kinds is read and then interpolated 

at the energy values of the calculation. (Note that CX refers to the 

attenuation coefficients, while CEX refers to the energy absorption data 

for calculating dose.) Following this the Legendre polynomials are tabu¬ 

lated, and further indexing takes place. 
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oLuR0UTINd LLISiS(INDEX ,AjjPK#XjjnM, OXuR, OLXLi'l, Pa) 

DIMLN3I0N INDLX( 6) ,LCX( 50) ,CX( 50 ) ,LCLX( 50) ,CLX( 50 ),XLAM( 500 ) , 

1 CXLM(500),CLXLM(500),PL(12,300) 

INDEX contains NLAMP, the no, of wavelengths; 

NOP, tne no, or wavelengths in an interval of 2; 

XCX, the no. of tabulated cx values (cx means 

cross section); 

NCEX, the no. of tabulated energy cx values; 

NN0, the number of N values; 

LMAX, the maximum L value; 

in this order, ALPH is the assumed reciprocal mean free path. 

XLAM is the list of wavelength values, doubled at the discon¬ 

tinuity. CXLM is the corresponding cx list; and CbXLM is the 

corresponding energy cx list. 

PRINT 100 

100 FORMAT(1H0) 

This spacing order skips two lines. 

PRINT 101 

101 F0RMAT(6H INDLX) 

Under this heading, INDEX values are listed. 

RdrtD 1,(INDEX(I),1=1,6) 

PRINT1,(INDEX(I),1=1,6) 

1 format(i2ib) 

Input aata is printed immediately after being read to give 

a permanent record, and to assure that it was properly read. 

PRINT 100 

PRINT 102 

102 F0RMAT(27H ALPH XLAM(l) XSCALu) 

RLAD 2,ALPH,XLAM(1),XSCALE 

PRINT2 ,ALPii,XLAM( 1) ,XSCALE 
2 F0RMAT(8F9.4) 

XSCALE is a conversion coefficient which changes the attenuation 

coefficient data to dimensionless units. We assume that ALPH 

has already been scaled in this manner. 

Our first joo is to set up explicitly some coefficients needed for 

the energy lists. 

NDP=INDEX(2) 

FN=NDP-1 
DLL=2./FN 
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ND=NDP+1 

NLAMP=INDEX(1) 

NCX=INDEX(3) 
MCEX=INDEX(4) 

LMAX=INDEX(6) 

Next we must read in the basic cross section tables. Recall 

that ECX and ECEX are energy lists for the CX ana CEX tables, 

respectively. 

PRINT 100 

PRINT 103 

103 F0RMAT(19H CROSS SECTION DATA) 

READ 2,(ECX(I),I=1,NCX) 

PRINT2,(ECX(I),I=1,NCX) 

PRINT 100 

READ 2,(CX(I) ,I = 1,NCX) 

PRINT2,(CX(I),I=1,NCX) 

PRINT 100 

READ 2,(ECEX(I),1=1,NCEX) 

PRINT2,(ECEX(I),I=1,NCEX) 

PRINT 100 

READ 2,(CEX(I),I=1,NCEX) 

PRINT2,(CEX(I),I=1,NC£X) 
PRINT 100 

Interpolations are to be performed in logarithms. Therefore we 

next replace tables and scale factor oy the logs of the numbers. 

XSCALE=L0GF(XSCALE) 

D0 200 I=1,NCX 

ECX(I)=L0GF(ECX(I)) 
200 CX(I)=L0GF(CX(I))-XSCALE 

D0 210 I=1,N£EX 

ECEX(I) = L0GF(ECE X(I)) 

210 CEX(I)=L0GF(CEX(I)) 

We are now ready for the main loop, which establishes the energy 

and cross-section lists, the latter by interpolation. It is 

also advantageous to construct the PL array at this time. 

D0 10 I=1,NLAMP 

FI = I 

DELP=DEL!*( FI-1. ) 

XLAM(I)=XLAM(1)+DELP 

E=L0GF(.511/XLAM(I)) 

CALL INTRP(NCX,ECX,CX,3,E,CXLM(I)) 

CXLM(I)=EXPF(CXLM(I)) 

CALL INTRP(NCEX,ECEX,CEX,3,E,CEXLM(I)) 

CEXLM(I)=EXPF(CEXLM(I))/(XLAM(I)**2) 
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— 2 
This last order weights the energy cross sections with X , 
in anticipation of the integration to obtain dose. (Recall 
that dE=dA/A2 in me2 units.) 

Next we cycle the calculation of Legendre polynomials. 

IF(I-NDP) 8,8,10 
8 PL(1,I)=1. 

X=l.-DEL? 

PL(2,I)=X 
D0 9 J=3,LMAX 
FJ=J -1 

9 PL(J,I)=(2.^1./FJ)*X*PL(J-1,I)-(1.-1./FJ)*PL(J-2,I) 
10 C0NTINUE 

Finally, we must correct the energy list to provide two 

identical values at the discontinuity. This is accomplished 
by moving values to an index increased by unity, beginning 
with the values at NLAMP. 

IF(NLAMP-NDP) 30,30,15 

15 NLAM=NLAMP+1 

D0 20 I=NDP,NLAMP 

IP=NLAMP-I+NDP 
XLAM(IP+1)=XLAM(IP) 

CXLM(IP+1)=CXLM(IP) 
20 CEXLM(IP+1)=CEXLM(IP) 
30 PRINT 104 

104 F0RMAT(20H CR0SS SECTI0N TABLE) 

PRINT 4,(XLAM(I),CXLM(I),CEXLM(I),1=1,NLAM) 
4 F0RMAT(f8.3,2F9.4) 

After recording the tabular cross section data, we record the 
Legendre polynomial data. 

PRINT 100 
PRINT 105 

105 F0RMAT(20H LEGENDRE P0LYN0MIAL) 

D0 130 J=1,NDP 

130 PRINT 5,XLAM(J),(PL(I,J),I=1,LMAX) 

5 F0RMAT(F8.3,12F9.5) 
PRINT 100 

RETURN 
END 

The next subroutine, INPUTS, was designed to control in an elementary 

way any combination of linkages which could possibly be of interest, by 

means of a card deck specifying order and linkage pattern for the calcu¬ 

lation. Despite an appearance of clum-siness, the procedure works well 

in practice 
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SUBROUTINE INPUTB(LZR0,MZR0,NNL,N,L,LINKH,LINKL,CH,CL,CN L,K) 

DIMENSION N(60),L(60),LINKH(60),LINKL(60),CH(60),CL(60),CNL(60) 

This subroutine reads data identifying the pattern of integral 

equations to be solved, and prepares lists of linkage indices 

and multiplicative coefficients required for the calculation. 

The arguments have the following interpretations: 

LZR0 is the harmonic coefficient £q of the source angular 

distribution; it is strictly for identification purposes; 

MZR0 is the azimuthal coefficient iiiq (or m) of the source 

angular distribution; 

NNL is the total number of n,£ combinations to be calculated 

N is a list of n values, in order of solution; 

L is a list of £ values, in order of solution; 

LINKH is the index of the (£+1) linkage term, in the N 

and L lists; 

LINKL is the corresponding index of the (£-1) linkage term; 

CH is [(£+l)2-m2]1/2/(2£+l) ; CL is [£2-m2]1/2/(2£+l) ; 

CNL ia C ^ , the coefficients which weight the single¬ 

scattering source term. (Note that these depend on 

£q , which is zero for isotropic sources. 

PRINT 200 

200 F0RMAT (1H0) 

PRINT 210 

210 F0RMAT (30H NL0 LZR0 MZR0 NNL K) 

READ 5,NL0,LZR0,MZR0,NNL,K 

PRINTS,NL0,LZR0,MZR0,NNL,K 

b F0RMAT (1216) 

Having read in the control indices, we next read the pattern 

of coefficients defining the problem, 

PRINT 200 

IF(NNL) 21,21,8 

8 PRINT 220 

220 F0RMAT(24H N L LINKH LINKL) 

READ 5,(N(I),L(I),LINKH(I),LINKL(I),1=1,NNL) 

PRINT5,(N(I),L(I),LINKH(I),LINKL(I),1=1,NNL) 
PRINT 200 

PRINT 230 

230 F0RMAT(12H CNL FOR N =0) 

READ 19,(CNL(I),1=1,NL0) 

P RIN T19 , (C N L (I ) , I=1, N L 0 ) 

19 FORMAT (1P4E15.7) 

The IP in this last format moves the decimal point one Place 

to the right. We assume that N, L, etc. are ordered so that 
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dll JL values for a given n value are read before anything 

pertaining to the next £ value is read. NL0 is the no. of ^q’s. 

PRINT 200 

D0 103 1=1,NL0 

CH(I ) = 0. 

103 CL(I)=0. 

The last three orders complete the subroutine’s function for 

the n=0 coefficients. We next go into the main loop, which 

determines CH, CL, and CNL lists for the remaining coefficients. 

FM=MZR0 
IF(NNL-NL0) 21,21,105 

105 NL0P=NL0+1 

D0 18 I=NL0P,NNL 

JH=LINKH(I) 

JL=LINKL(I) 

A=L(I) 

S=(A+1.)**2-FM**2 
T=A * * 2 - FMS* *’* 2 

B=0. 

Note the limited range of I values. S and T are (£+l)^-m2 

and J^_m2 , respectively. B is for cumulation purposes. 

IF(JH) 11,11,12 

11 CH(I)=0. 

G0 T0 13 

If a linkage term is missing, the corresponding CH value is 

set equal to zero. One knows that this is the case because 

LINKH and LINKL values are put equal to zero to indicate miss¬ 

ing terms. 

12 CH(I)=SQRTF(S)/(2.*A+1.) 

B=CH(I)*CNL(JH) 

13 IF(JL) 14,14,16 
14 CL(I)=0, 

G0 T0 18 

16 CL(I)=SQRTF(T)/(2.*A+1.) 

B=B+CL(I)*CNL(JL) 

18 CNL(I)=B 

The five orders beginning just prior to 11, and the five orders 

beginning with 13, correspond and take care of upper and lower linkage 

cases in the same way. These 11 orders constitute the main calcu¬ 

lation, and generate all three coefficient lists. We are now 

done; but it is useful to print out the lists. 
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PRINT 240 

240 F0RMAT (24H I CH CL CNL) 

D0 250 I 1,NNL 
250 PRINT 20,1,CH(I),CL(I),CNL(I) 

20 F0RMAT (16,1P3E15.7) 

PRINT 200 

21 RETURN 

The C0NTR0L routine calls the subroutines, and to do this 

quite a bit of indexing must be included. The main indexing 

problem occurs because INPUTB produces a master list of coefficient- 

moments which is in the correct order of solution, but not broken 

into groups associated with different moments. On the other hand, 

M0MENT requires this subdivision, and it is accordingly provided 

in the C0NTR0L routine, as the first half of the main loop, 

A separate 0UTPUT subroutine did not appear advantageous; 

so that all the output orders are in C0NTR0L. The last part of 

the main loop prints all the spectral data and calculates dose 

integrals. Printing of the dose integrals concludes the routine. 
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CONTROL 

DIMENSION INDEX(7),XLAM(500),CXLM(500),CEXLM(500),PL( 12,300), 

1 N( 60) ,L( 60). ,LINKH( 60) ,LINKL( 60),CH(60),CL(60),CNLP(60),LS(10,3), 
2 CNL(10,3),XK^ 500;, S0L(2,10,500),WT(500),T0T(20, 10),LN(20),ILS(20) 

Most of the lists and arrays are described in one of the 

subroutines. Note that we use CNLP rather than CNL in 

connection with INPUTB because CNL is being used with M0MENT, 

WT is a master list of integration weights for final calcu¬ 

lation of the dose integrals, T0T is the array of dose 

integrals. LN is a list of the number of L values associated 

with each value of the moment number N (or NX). 

CALL ELISTS(INDEX,ALPH,XLAM,CXLM,CEXLM,PL) 

CALL INPUTB(LZR0,MZR0,NNL,N,L,LINKH,LINKL,CH,CL,CNLP,K) 

These two orders set up all the energy lists, as well as the 

linkage lists. Both subroutines contain the necessary read 

and print orders. (The index K has been used when several 

calculations were cycled, as an indicator of the remaining 

number of calculations to be done. It is irrelevant here.) 

We first set up explicit indices and establish the basic list 

of integration weights (i.e, WT). 

NLAM=INDEX(1)+l 

ND=INDEX(2)+l 

NN0=INDEX(5) 

NDP=INDEX(2) 

CALL IWATE(1,NDP,XLAM(1),WT) 

IX=NLAM-NDP 

CALL IWATE(1,IX,XLAM(ND),WT(ND)) 

D0 5 I=1,NLAM 

5 CEXLM(1)=CEXLM(I)*WT(I) 

The last two orders establish the list of multipliers for all 

the dose integrals. Next we begin our main loop. 

D0 30 NX=1,NN0 

Recall that NX identifies a moment, and that NN0 is the number 

of moments to be calculated. The first thing we must do in this 

loop is construct the LS and CNL arrays for moment number NX, 

J=0 
D0 10 I=1,NWL 

IF(N(I)+l-NX) 10,7,10 

7 J=Jtl 

ILS(NX)=I 

This last order records the largest I value for each NX. 
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LS(J,1)=L(I) 

LS(J,2)=LINKL(I) 

LS(J,3)=LINKH(I) 

CNL(J,1)=CNLP(I) 

CNL(J,2)=CL(I) 

CNL( J , 3)=CH( I) 

10 CONTINUE 

This completes the CNL array. But the LS(J,2) and LS(J,3) values 

are not at this point correct because they are indices in the 

full list of NN0 equations, rather than indices for the list 

of l values for the (n-l)'st moment, as called for in MOMENT. 

We must now make this change and at the same time identify the 

number of l values for the n'th moment. 

IF(NX-2) 14,14,11 

11 D0 12 1=1,J 
LS(I,2) = LS(1,2)-ILS(NX"2) 

12 LS(1,3)=LS(I,3)-ILS(NX-2) 

14 LN(NX)=J 

When NX is one,these LS values will be zero. When NX is two, 

the LS values don't need to be modified. Thereafter, all LS 

indices must be shifted, as indicated, to correspond to entries 

in the l list for the (n-l)'st moment, which are indexed 

from one to LN(NX-l). Order 14 records the count of the DO 

loop ending at order 10. 

The next three orders solve the NX equations for all X values. 

D0 15 1=1,NLAM 

CALL M0MLNT(XLAM,CXLM,ALPH,ND,I,LS,CNL,J,PL,S0L) 

15 CONTINUE 

PRINT 200 

200 F0RMATQHO) 

This order is to skip two lines. We first will record the re¬ 

sults and then determine the dose integrals and store them. 

PRINT 210 

210 F0RMAT(5H N, L) 

NXX=NX-1 

PRINT 1,NXX,(LS(K,1),K=1,J) 

1 FORMAT (1216) 

PRINT 200 

PRINT 220 

220 F0RMAT(23H XLAM, ENERGY MOMENTS) 

D0 230 I=1,NLAM 

230 PRINT 2,XLAM(I),(S0L(2,K,I),K=1,J) 

2 F0RMAT(F7.3,1P7E15.7) 

PRINT 200 
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This completes the printing of the results for each wavelength. 

Next the integrals are performed and recorded. 

D0 20 K=1,J 

T0T(NX,K)=O. 

D0 20 I=1,NLAM 

T0T(NX,K)=T0T(NX,K)tCEXLM(I)*30L(2,K,I) 

20 S0L(l,K,I)=S0L(2,K,I) 

30 CONTINUE 

The first order in the outer D0 loop ending at order 20 clears 

the cells for cumulation. The inner D0 loop is the integration. 

The final statement of the inner loop prepares the inhomogeneous 

terms for the next n value, calculations for which begin 

following end of the main loop at order 30. 

Lastly, having finished all calculations, we must record the 

dose moments. 

PRINT 240 

240 F0RMAT(13H D0SE M0MENTS) 

D0 250 NX=1,NN0 

NXX=NX-1 

J=LN(NX) 

250 PRINT 3,NXX,(T0T(NX,K),K=1,J) 

3 F0RMAT(I7,1P7E15.7) 

There is an implicit assumption in the use of this last format 

that no more than 7 values of l will occur for any n. If 

this number is exceeded, the format must be changed. 

CALL ENDJ0B 

END 
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E. CALCULATION OF FLUX DISTRIBUTIONS FOR ELEMENTARY SOURCES 

15. 38/ 
23. Space Distributions for Isotropic Sources 

a) Coefficient-Moments of the Exposure. The methods of the preceding 

section suffice to give coefficient-moments for the different spectral 

components, that is to say the I ^(A) . Having determined these basic 

quantities, we must face the problems of distribution construction. 

For the fallout radiation, it has been possible thus far to ignore spectral 

details and confine attention to the exposure integral 

D(0,z) = H 
0 0 

dEyd(E)I [A(E),0,z] (1-23.1) 

and its coefficient-moments. Further, the machine calculations for 

Ref. 36 were so organized that flux distributions were constructed only 

for monoenergetic sources. Distributions for the fallout spectra were 

calculated by superposition of many monoenergetic source results. 

In this section we limit our attention to monoenergetic sources, and 

to the coefficient-moments of the exposure 

OO 

D = / dz(y z)n / dfiP (cose)D(e,z) . (1-23.2) 
n U , x, 

-00 4tt 

Table 1-23.1 gives machine-calculated values for Csl37 in H^O , that is for 

A 
4% 

Aq = 0.770 . Spectral data was determined in the calculation, but has not 

been utilized. In any case the procedure which we use for the integral is 

applicable for the different spectral components, though for the latter an 

efficient and accurate calculation would probably require exact calculation 
--x- 

All tables in this part of the manuscript give numbers to more digits 
than the accuracy of the data appears to require. This is partly because of 
the requirements of internal consistency in calculations based on the data. 

In general ,space distributions calculated from such data are not accurate 

to better than a few percent nor angular distributions to better than^10%. 
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of the once-scattered component. 

b) PTI Space Distributions. The coefficient-moments of Table 1-23.1 

describe a plane source. They can be transformed to moments for a point 

isotropic source by applying the general relationship of Equation (1-16.6’). 

Dividing the values of Table 1-23.1 by the corresponding C values of 
n Sj 

Table 1-22.1, we obtain the data for the PTI source in Table 1-23.2.’' 

Table 1-23.2. Coefficient-moments for a Csl37 point isotropic source. 

-4 D „ (pTI) n! nic 

0 12 3 4 

0 1.00847 

1 1.13610 

2 3.05392 1.17553 

3 2.25809 1.14855 

4 6.09611 1.91174 1.09998 

5 3.73921 1.65220 

6 10.11320 2.81436 1.45924 

7 5.58020 2.23908 

8 15.11195 3.88525 1.86297 

9 7.78382 2.91038 

10 5.12536 2.31186 

11 3.66636 

The most direct way to obtain space distributions is by means of ex- 

SL 
pansions in the U^(r) polynomial systems described in Ref. 15 and in 

sections 40 and 41. The expansion coefficients are simple binomial combinations of 

the numbers in Table 1-23.2 (see Equation (1-41.2): 

(-PC?) 
D 

U+2j)! 
m = ±<n-A) (1-23.3) 

Evaluation of many of these coefficients yields the values of Table 1-23.3. 

Note that the inverse square factor is removed from the PTI distri¬ 
butions, as can be seen in Equation (1-16.6'). 
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z 

Table 1-23.3. Coefficients A „ 
nil 

of the U (rj series, 
n 

n 0 1 2 3 4 

0 

1 
2 
3 

4 

1.00847 

-2.04545 

.99674 

.02184 

.02860 

1.13610 

-1.12199 

.35913 

-.00074 

.00192 

1.17553 

-.73621 

.16641 

-.00186 

-.00091 

1.14855 

-.50365 

.08323 

-.00119 

-.00093 

1.09998 

-.35926 

.04447 

-.00069 

The convergence is highly gratifying, though its meaning in terms of the 

accuracy of the solution is not obvious. 

A 

To obtain space distributions, we now sum the series 

-p r (n-£ )/2 

D„(r) = Une l A U.(uQr) . 
j=0 3 3 

0 
(1-23.4) 

(The "hat" on indicates approximation.) A few results of these calcu¬ 

lations are in Table 1-23.4. They were obtained using Table 1-40.2 supple¬ 

mented by calculations with Table 1-40.3. 

Table 1-23.4. Values of y ^"e ^ D (r) , for y r = 0,1. 
U X/ V./ 

V 
or \ 

0 1 2 3 4 

0 .3742 .3744 .3806 .3815 .3919 

1 .5025 .2904 .2061 .1533 .1150 (scattered radia 

tion only) 

The results of the second row, pertaining to scattered radiation only, were 

**btrictj_j speaking, to make this comparable with bquatiuw (1-23.1), we 
should use y\ an father than 

be pressions. But this appear? to be the 

sional quantities, making use of the fact that U0»t = yQr 

y0 and r in this and following ex¬ 

place to change back to dimen- 
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calculated from the (approximate) expression 

u-Vd^U) = I a [i/(D - uJ(o')3 . 
3=0 

(1-23.4’ ) 

The terms here subtracted correspond to exponential penetration and de¬ 

scribe the unscattered photons, which comprise the only component at r = 0. 

These calculations are not very accurate; note that not all the information 

of Table 1-23.1 has been used. Nevertheless it is gratifying that for 

r = 0, the results for different £ values are so nearly the same, and 

so nearly equal to the exact value, .38187, corresponding to unscattered 

photons only. 

An alternate approach to these calculations, which has actually been 

the one used in the computer programs, proceeds by evaluation of the NL_. 

matrix coefficients described in section 41, for different sizes of co¬ 

efficient lists. The step from spatial moments to coefficients a., for 

* 
the power series representation 

-v 
Vr) = V l au(wor)1 (1-23.5) 

is then simply a series of matrix multiplications, one for each value of 

£ . 

Note that the inverse square factor is removed from the PTI distri¬ 

butions, as can be seen in Equation (1-16.6'). This expression must 
accordingly be divided by 4-rrr2 , whereupon the units become essentially 

(volume )"1. Note that in Equation (1-23.1) an energy factor was removed. 
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Thus, if we apply the data of Table 1-41.1 to the moments in Table 1-23.2, 

we obtain the following power series coefficients: 

Table 1-23.6. Coefficients a.. for the 
i£ series of Equation *1-23.5) 

X l 

6 1 2 3 4 

0 . 3b6 . 372 .380 .387 .394 

1 .38 6 .248 .184 .140 .109 

2 .130 .04 5 .020 .010 .005 

3 -.000 .000 .000 .000 .000 

1-23 .1 illustrates trends of these coefficients. 

c) PLI Space Distributions 

The advantage in using Equat ion (1-23.3) as an analytical represen- 

tation of the distribution lies partly in the ease with which conversion 

to the plane isotropic case can be made. If we insert such an expression 

into the general transformation. Equation (1-16.6), it is immediately 

clear that functions 

(z,R) = / 
R 
ar i _r 
—r P„(— )e 

, r £ r 
(1-23.6) 

are required for calculation of plane isotropic data. The upper limit is 

here made finite so that these functions may be directly applicable to disc 

or ring shaped isotropic sources. It corresponds to the outer radius of a 

disc-shaped section of the source plane. 
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I 

Fig. 1-23.1. Illustrating the exponential trend of the a^ coefficients 
for scattered photons at y z = .01. (Paint isotropic 
Csl37 source.) u 
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The Q^s can be obtained by direct numerical integration; but the 

number of different index values of interest is great enough to encourage 

the use of methods which take maximum advantage of recursion relations. 

Such recursion relations are easy to derive: since the Legendre poly¬ 

nomials obey the simple relation 

U+i)P (z/r) + ZP (z/r) = (2£+l) — P (z/r) , 
£+1 £,-1 r £ 

we find, by inserting this into the integral of Equation (1-23.6), the 

result 

(2Ul)zQ.,(z,R) = U+DQi+1;,+1 + »Qi+1 • 0-23.7) 

This is the most important relationship we need. 

A second recursion relation, special to the case £ = 0 , can be 

obtained by integration by parts. Thus 

Q iO 
i-1 -rnR 

-r e JI + 

R 

(i-1)/ dr 

I z I 

i-2 -r 
r e 

pi-1 -R 
R e (1-23.8) 

If three of these expressions, for (i+1), i» and (i-1) , are combined, the 

remainder terms can be eliminated to give the following 4-term recursion: 

Qi + i 0 - (|z|+R+i)Qi0 + [R j z j + (R+ j z 
)(i-1)jQi-i,o - R4 (i-2)Q._2)0 = 0 

(1-23.8') 
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Finally, we note that 

Qoq(z,R) = E1(|z|) - EX(R) , 

Q10(Z’R) = e’|z| • e"R > 

Q2q(z,R) = (|z|+l)e'lZl - (R+l)e_R . (1-23.9) 

These special cases give us the start we need. 

The application of the recursion formulae is clarified by reference to 

Figure 1-23.2. The special 

cases Q00, Q10, and Q2Q can be 

calculated directly. The 

recursion for £ = 0 can 

then be used to obtain first 

Q.0 for i = 3,4t... and 
lO * * 

% 

then for i = -1,-2,.... 

Following this, the general 

recursion can be used to 

work out values for higher £ . 

but the diagonal structure of 

this recursion implies that the 

£ 

0123456789 

smallest required i value 

increases by unity each time 

that £ increases by unity, so that if, for example, i = -5 were the 

Fig. 1-23.2. Q. linkages. 
1 )L 
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smallest index for Z - 0 , then terms in the diagram below the jagged 

diagonal would be accessible to recursive calculation. 

The space distributions require only terms with i >_ 0 . Thus, we 

determine a triangle of values which are not directly useful in the calcu¬ 

lation of distributions; but the number of entries in the triangle is apt 

to be comparable with the number of entries directly required. 

Our experience is that the accuracy of the Q.^'s does not decrease 

with multiple use of the recursion relations as described. 

Dr. J. A. Diaz has written a machine program which applies the re¬ 

cursion system to the calculation of Q^’s f°r arbitrary penetration. 

Table 1-23.6 gives illustrative results which he obtained for yQz = .01 

mean free paths, quite a small value. One feature of this table is 

Table 1-23.6. Q.. values for ynz = .01. 
i£ 0 

0 1 2 3 4 

0 
1 
2 
3 

4 

4.0379 .94967 -1.2835 -.60355 .75496 

.99005 .040379 - .48078 -.048312 .35002 

.99995 .009005 - .49937 -.014613 .37368 

2.0000 .099995 - .99988 -.014989 .74963 

6.0000 .02 -2.9999 -.029998 2.2496 

worth a comment: For odd Z the values are very much smaller than for 

even Z , due to proportionality of these terms to y^z . The formal 

expression for the PLI space distributions, written in terms of the 

When this expression is multiplied by the source strength (photons/ 

area), the units become those of (volume)-!. 

1-156 



(1-23.10) Vz) = I vu l aaQii(uoz’m)' 
1 

where the a^ coefficients are the same quantities which appear in 

Equation (1-23.3). Illustrative values for D (z) can be obtained by 
X/ 

combining numbers from Tables 1-23.5 and 1-23.G. This produces values 

given in Table 1-25.1, from which the contribution of the unscattered 

discussion of the D 's and their 
£ 

is given in section 25. 

component has been removed. Further 

application to angular distributions 
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24. Angular Distributions for Point Isotropic Sources 

Assuming that calculations of spatial distributions of the various 

Legendre coefficients have been made, it is possible to determine angular 

distributions. We will restrict our attention in this section to the case 

of point isotropic sources, and focus on angular distributions of the ex- 

posure. 

One apparently obvious way to construct angular distributions is 

simply by summing the Legendre series, 

OO 

D(0 r) = [ D (r)P (cose ) , (1-24.1) 

where 0^ is the angle between photon direction and the radial line from 

source to photon. 

In practice, however, perhaps half a dozen values of l are available, 

and in order to obtain suitable convergence, one might need, say, 20 or 

more terms. Therefore, the angular distributions one calculates by carry¬ 

ing out these sums are not accurate enough. The reason for the large 

number of terms is simple: the angular distribution for all values of 

r_ has a strong peak at cos0^ = 1 . Such an irregular feature always 

requires many terms of accurate description. 

There is an additional difficulty which should be kept in mind: the 

Legendre coefficients have been determined by moment calculations; but 

** 

The angular distributions of the different spectral components will 

be quite different from angular distributions of an integral over the 

spectrum; the procedures we discuss are not expected to be very useful 

in the differential case. 
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such calculations are only of an accuracy of, say, a few percent. There 

is a possibility that in the second construction errors of the first 

construction may be further multiplied. 

Putting the accuracy problem aside, let us focus attention on the 

problem of convergence, using the data of Table I 23.5. The top row of 

values are easily interpreted. The angular distribution of the flux at 

the source is completely dominated by unscattered photons, all of which 

travel directly away from the source. Accordingly, the values of the top 

row must describe a delta-function and must, if calculated accurately, 

have values precisely equal to .3818699. The angular distribution can 

be written analytically in the form 

^0 
D(0 ,0) = .3818699 — 6(cos0 -1) . (1-24.2) 

r 2tt r 

This angular distribution, attenuated exponentially, describes unscattered 

photons at all penetrations. 

The main problem therefore can be restricted to the scattered 

photons, for which the coefficients of the second row of Table 1-23.4 are 

typical. These coefficients appear to form a succession in which the ratios 

of successive values are nearly constant. To see this more clearly, refer 

to Figure 1-24.1, in which they are plotted on logarithmic paper. As can 

be seen there, the higher coefficients do indeed appear to lie more and 

more nearly on a straight line. This suggests a way in which we may be 

able to extrapolate to higher £ values. But for this purpose we would 

like to have analytic information about the function whose series is of 

In the discussion which follows, a feature of the singly scattered 

component is neglected, namely a singularity of the type 0 at 0=0. 

In future calculations for shielding purposes an increase in accuracy can 

obtained by exact calculation of this component. 
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W = 1J 

Fig. 1-24.1. D coefficients at yor = scattered flux only. 

(Point isotropic Csl37 source). 
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the type 

f(x) = l (£+1/2)e bV(x) . 
£ =0 

Tha nature of this function can be readily ascertained. If we start 

with the usual generating function for the Legendre polynomials. 

1 

/l- 2xot+a ^ 

and replace a by e b 

the expression 

oo 

= I «‘p.(x) , 
£ = 0 

, we obtain trom differentiation with respect to b 

r 
L 

b/2 . 
e sinh d 

2(cosh i>x)] 
3/2 

= l U+l/2)e b£P (x) . 

£=0 
(1-24.3) 

It is clear that when ]b is small the series on the right converges slowly, 

while at the same time the factor (cosh b - x) in the denominator on the 

left becomes small for x_ near unity. Thus, the function has a peak at 

x = 1, as we said must be the case for our angular distribution. 

There are many ways in which this function can be used to obtain an 

approximate angular distribution. The procedure which was used to obtain 

data for Ref. 36 was of the following type: the angular distribution is 

represented formally by 

o Pnr’/' b/2 • v i 4 
—e ° D( 6 ,r) = A —-S1-‘ -b- - + f (£+1/2 )c.P. (cosO ) . (1-24.4) 

y0 r C2(coshb-cose )]*2£=o 1 4 
r 

The main term is the first; the final sum represents a correction. We 
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write this expression in the equivalent and suggestive form 

2tt 

yo 

yor - 
e U D(0 ,r) = l (£+l/2){Ae b£+c }P (cosG ) 

1=0 
i 

+ £ (£+l/2)Ae b^Pp(cos0 ) . 
£=5 r 

(1-24.5) 

Of the 7 undetermined constants in this expression, two may be specified 

arbitrarily if we only use the 5 coefficients of Table 1-23.4. We 

therefore equate the c^ and c^ coefficients to zero. But then the follow¬ 

ing equations must hold: 

0"K 

Ae = .2061, 

-4b 
Ae = .1150. (1-24.6) 

These guarantee that the approximation has correct values for the P^ and 

P^ coefficients. In Figure 1-24.1 this means that the main term will have 

coefficients on a straight line -through these two points (i.e. on the 

dashed line.) The choice of P^ and P^ coefficients was made because they 

s’: 
are far enough out on the sequence to give a reasonably good extrapolation. 

Solution of Equation (1-24.6) is elementary and gives the values A = .3694, 

b = .2917. Using these numerical values, the other coefficients can be 

obtained from the equations 

c 
Jt 

Values obtained using Table 1-23.4 are 

In the machine calculations, the coefficients of P^ and P^ were 
used, and the correction sum extended to P^. 
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.133 
0 “ > 

c = .0145 , 

c = -.0007 . 
O 

The final expression for the (scattered flux).angular distribution is 

2tt 1 ** o?275 
— e D(0 ,y r=l) = -!- . + .0666 + .O218cos0 - .0024P (cos0 ) . 

W0 r ° [ 1.0428-COS0 ]3/2 r 3 r 
r 

Figure 1-24.2 shows this angular distribution. The arrow at cos0^ =1 is 

intended to represent unscattered photons; its length means nothing here. 

The correction terms are negligible in the region of the peak, but 

they tend to be important at cos0^ = -1 , and at neighboring angles which 

correspond to backscattering. The angular distributions published in 

Ref. 36 tend to have a "hook" at cos0^ = -1 , which is certainly spurious. 

Another type of construction may not give greater accuracy, but it 

could provide some estimate of the errors involved in this type of calcu¬ 

lations, and it is certainly possible to obtain more realistic results for 

backscattering angles. Perhaps the most obvious alternate method would 

utilize a representation of D coefficients by a sum of exponentials, and 

the angular distribution by a sum of terms of the type of Equation (1-24.3). 

This construction must be repeated for each penetration distance. 

Promising alternatives are discussed in the next section. 
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Fig. 1-24.2. Angular distribution of scattered photons at 

U0r = for a point isotropic Csl37 source 
in H20. 
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25. Angular Distributions forPlane Isotropic Sources'* 

As in the case of the point isotropic source, it is desirable to treat 

unscattered and scattered radiation in different ways. Referring to 

Table 1-23.5 and Equation (1-23.10), we note that the strength of the un¬ 

scattered component is given by a^ values, which are ideally all equal 

to .3818699 as noted in the preceding section. The form of the unscattered 

radiation is known (see Equation (1-20.10)), and we therefore deduce that 

:(o), . V0 .3818699 

D (z) = ' I'cos'e'l 

-u z/cos0 

e h(z/cos0) , (1-25.1) 

where h(z/cosG) is the unit function. 

Next we calculate the Legendre coefficients for the scattered photons 

by evaluating the sum of Equation (1-23.10), with the omission of the 

i = 0 term. For illustrative purposes, we combine data from Tables 

1-23.5 and 1-23.6 to obtain the following list. 

Table 1-25.1. Legendre coefficients for the angular distribution 

of scattered photons, at .01 mean free paths, from 

a plane isotropic Csl37 source in water. 

£ 
D 
(s) 

£ 

0 
1 

2 
3 

4 

.510 

.0104 

-.0985 

-.0069 

.04 

Note that the odd coefficients have abnormally low values. The convergence 

can best be gauged by the sequence of even £ values. 

To evaluate directly an angular distribution9we can simply evaluate 

;’*For an early calculation see Ref. 11, and for experiments on actual 

fallout fields see Ref. 131 . 
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the Legendre sum. 

D(s)(0,z) = — ^(£+1/2)d[s)(z)P^,(cos0) , (1-25.2) 

using this data. The resulting distribution will have a peak at or very 

near cosG = 0 . It will have a tendency to oscillate which will be most 

marked for cosQ near tl , where the distribution has its lowest values. 

This tendency to oscillate reflects the lack of convergence illustrated in 

Table 1-25.1, and is spurious. When the scattered and unscattered com¬ 

ponents are combined, the irregularities of the scattered components are 

masked for positive cos0 values, by the much larger contributions of un¬ 

scattered photons. The irregularities appear in full strength only for 

backscattered (negative cos0) values. 

Calculations of this type, but using terms through £ = 7, were made 

for the data of Ref. 36 . They are not entirely satisfactory, the more so 

because it should be possible to smooth out the spurious irregularities by 

suitable extrapolation of coefficient sequences. One method for doing this 

is suggested by the regularities of Table 1-23.5. We have already observed 

that the top row of coefficients are all equal in principle, and it is 

clear that the next two rows are roughly exponential. This is exhibited 

in Figure 1-23.1. 

These simple trends suggest the possible use of functions in the plane 

isotropic case analogous to Equation (1-24.3). This is certainly feasible; 

but the pertinent functions are analytically representable as folding 

integrals which must be evaluated numerically. Once committed to numerical 

evaluation, however, alternative procedures must be examined. We propose 
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evaluation of angular distributions by the following process: 

1) extrapolation of the a^ values to large Z by use of methods 

analogous to those of section 24, applied separately for different values 

of i_ ; 

2) evaluation of Q^'s by recursion for large Z values; 

3) evaluation of 
(s) 

(z) for perhaps 20 to 30 Z values, using 

Equation (1-23.10); and 

4) calculation of the angular distribution by means of Equation 

( It;25.2), but with 20 to 30 terms in the sum rather than perhaps half a 

dozen. 

It is possible to apply these same ideas to the A coefficients 

instead of the a^ , since they also have basically exponential trends 

with increasing Z . The values do not change, as do the a^ , 

when more moments are used for a better approximation. A version of 

this procedure, using A coefficients, is being programmed for im- 
IIa/ 

provement of angular distributions for various isotropic source config- 

urations. 
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26. Space Distributions for Plane Monodirectional Sources" 

We will not be concerned with azimuthal variations of the flux in this 

section, but will assume that the source generates photons at fixed 

obliquity and equally for all azimuths. The use of "monodirectional" in 

the heading is therefore only justified by the fact that procedures illus¬ 

trated by the special case can be applied generally to distributions pro¬ 

duced by truly monodirectional sources. 

Many of the features of these plane source distributions can be ex¬ 

hibited by reference to the unscattered and once-scattered components. We 

specialize the function S(E,0,<£>) in Equation (1-20.6) to the form 

S(E,6,6) = — 6(cos0-cos6 )6(E-E ) . (1-26.1) 
ZTT 0 U 

The unscattered component is then 

I(o)(A,0,z) = 
0 

_1_ 

2tt 
6(cos0-cos0q)6(X—X q) 

COS0 

-u z/cos0 

e U Uh(z) (1-26.2) 

0 

where h is the unit function, and the barred quantities are dimensionless 

as given in section 17. We will not bother to rewrite the once-scattered 

component, since the spatial trends are those given by Equation (1-20.9). 

Now, for all initial angles 0Q , the unscattered component vanishes 

for negative z and has a discontinuity at the source plane. This feature 

persists through integrations over spectral energy and angular variables; 

it therefore characterizes D^°^(0,z) and D^°\z) . 

Examination of Equation (1-20.9) shows that there is a slope 

*For an early calculation see Ref, 15, 
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discontinuity at the source plane, for all spectral energies and all 6 
0 

and 0 values. Further, for cos0 > 0 , the flux is proportional to z 

for small, positive z_ values; while for cos0 < 0 , the flux has differ¬ 

ent exponential trends on the two sides of the source plane. We expect the 

existence of a slope discontinuity to persist through different integrations 

over angle and energy. Likewise, the characteristics peculiar to forward- 

penetrating (cos0 > 0) and backward-penetrating (cos0 < 0) components 

will be features of integrals over those components. 

Putting all this together with reference to the space distribution 

of the Legendre harmonics of 

the exposure angular distri¬ 

bution, we expect the features 

sketched in Figure 1-26.1. 

Since the i = 0 coefficient 

is the integral over all angles, 

these comments apply to this 

most important case. Further, 

the arguments apply not only 

to the azimuth-independent 

case but also to the expansion 

coefficients Dn of the true 
Urn 

monodirectional source. 

It is clear from Equations 

(1-20.6) that the size of the 

discontinuity increases as 

Fig. 1-26.1. Spatial trends for Legendre 

coefficients for plane 

monodirectional sources. 
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cosQq decreases. At the same time, the strength of the negative z com¬ 

ponents increases relative to components at positive z . Finally, the 

intensity of all spectral components tends to be more concentrated near the 

source plane. All of these tendencies are exhibited in the data of 

Ref. 36 . 

The spatial moments, which are integrals over both negative and 

positive z_ , describe a complete distribution, say D^(z) . The even 

moments have precisely the value of moments of a distribution D^+\|z|) , 

obtained by adding the backscattering to the forward scattering. Similarly, 

the odd moments can be considered as describing a distribution ^(|z|) 

obtained by subtracting the backscattered flux from the forward scattered 

flux at the same value of |z | . Both even and odd component distributions 

are sketched in Figure 1-26.2. 

The dashed line indicates the 

original distribution. 

In nearly all methods used to 

construct the PLM space distributions, 

calculations of even and odd component 

distributions are undertaken sepa¬ 

rately, each using every other avail- 

one obtains D(z) , for both positive 

and negative penetrations, by super¬ 

position: 
Fig. 1-26.2. Even.(D + ) and odd 

(DV ) components of 

space distribution.. 
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(1-26.3) 

VZ) = I tD{+)dzD + d][')(|z|)] , z > 0 ; 

D^(z) = i-[D^+^(|z|) - )(|z|)] , z < 0 . 

The construction of even and odd component distributions can be 

0 

effected with the polynomial systems. The data of Ref. 16 was 

calculated in this way, or rather, in a manner equivalent to this. The 

difficulty with this construction procedure can be understood by making 

reference to Figure 1-26.2. The distributions D^(z) obey an exponential 

trend for positive z_ which is quite different from that for negative z ; 

the latter is far more rapidly decreasing than the former except for cos60 

£ 
very small (grazing incidence). Consequently, an expansion in poly¬ 

nomials which represents the positive case well with a few terms will 

require many terms to represent the negative 2^ case. The superpositions 

and ^ will therefore generally consist of a slowly converging 

series of small terms added to a rapidly converging series of large terms. 

It was for this reason that the data of Ref. 16 was not given near 

the source plane, for the plane normal source configuration. The conver¬ 

gence was not adequate for the description of the backscattered part of 

the distribution, which appears as a "pip" or "well", as the case may be, 

for small z_ . 

The construction procedures which have proved most useful have been 

generally referred to as "function-fitting" methods, and are discussed 

in sections 42 and 43. In particular, the data of Refs. 36,39,40,41 has been 

obtained by assuming the forms 
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(1-26.4) 

D 
<+>, , ? “i -yoz/si 
0 (z) = uo .i, sTe 

1 = 1 

*<->, . ? “i 'V/Bi 
Do (z) = “o 1 — e 

i=l 6. 

For both distribution types, BQ is assigned the value cos0Q and B^ 

has been used as an adjustable parameter normally given a value near .7 . 

The remaining six parameters in the expression for have been 

determined using six moment equations, as outlined in section 43. 

One can see from Figure 1-26.2 that ^ has a value for z = 0 

equal to the discontinuity at the source plane. Since this discontinuity 

is a feature of the unscattered component, its size is exactly known. One 

can incorporate the discontinuity correctly by determining the distribution 

(-) 
D 

0 
from five moment equations, plus the requirement 

Uo D^)(0) = I^=D 
1=1 6 • 

(o) yd(E0) 

00 
W 

(1-26.5) 

The procedure for solving the resulting system of equations for the 

and B^ values is again just that outlined in section 43. 

To illustrate all this, we give data again for the case of Csl37. 

Two sets of moments are listed in Table 1-26.1, corresponding to two values 

of cos 6q . The parameter values giving even and odd component distributions 

for both cases are listed in Table 1-26.2. 
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Table 1-26.1. Coefficient-moments for plane monodirectional 

Csl37 sources in H20. (p = .3854). 

n 

D 
(o) 

00 
0 
1 

2 
3 

4 

5 

6 
7 

8 
9 

10 

Dn0(PLS) 

COS0Q = 1 cosOq = .5 

0.3818699 0.7637399 (Discontinuity) 

1.0084677 

1.4586109 

2.2024530 

2.8817104 

3.7939434 

4.7044572 

5.7992881 

6.9359811 

8.2236733 

9.5807485 

11.068103 

1.0084677 

0.72930548 

0.86991361 

0.69998723 

0.81884550 

0.70423041 

0.78364308 

0.69913194 

0.74242435 

0.67626414 

0.69288998 

Table 1-26.2- Distribution parameters for two plane slant Csl37 

sources in h^O. 

Even 

“i/6i 

Odd 

Cos0 = 1.0 
-_- o 

a./8. 
i i 

8. 
i 

-60.045188 

-00.54834221 

17.175787 

43.967109 

-.23270104 

-2.0783500 

2.0853296 

1.3830670 

1. 
0.74161984 

0.93287377 

1.0334424 

-15.083005 

20.741507 

-18.509065 

13.232433 

Cos0Q = 0.5 

0.5 

0.74161984 

0.65103604 

0.94611402 

4.4320127 

-1.3361580 

-3.4916661 

1.1595514 

1. 
0.74161984 

0.72843107 

1.0630951 

0.5 
0.74161984 

0.44897421 

0.95612440 
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Note that for cos0Q = 1 , exponential coefficients slightly larger 

than unity appear, corresponding more or less to the presence of a build¬ 

up factor. 

It is also quite interesting that for cos0Q =0.5 , one of the ex¬ 

ponential coefficients approaches unity, corresponding to spectral com¬ 

ponents which scatter without much loss of energy into a direction more 

or less perpendicular to the source plane. 

There is some cause for concern that the terms which obviously dominate 

at large penetrations are somewhat different in even and odd distributions, 

and so cannot be expected to cancel completely. This is not very important, 

however, since the distance at which this would become noticeable in the 

back-penetration is such that the radiation flux would be almost negligible. 

In general, the values of the multiplicative parameters are very un¬ 

stable in the sense that they may vary greatly without changing the dis¬ 

tribution very much. This is because the trend of the distribution depends 

on the combination of terms rather than any single term, except for great 

penetrations. 

It is instructive to see the coefficients of the U° polynomial 

expansion. Table 1-26.3 gives results for , as calculated from 

Table 1-26.1. The coefficients for cos0Q = 1 exhibit the expected 

feature of large, rapidly converging coefficients for the first few 

terms, followed by a much more slowly converging sequence of small 

terms. 
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Table 1-26.3. 
* (+) 

Coefficients for the series DQ 

for PLS Csl37 sources in H^O. 

yoe 
-yoz 

J AioU°(uoZ), 
1 = 0 

i Ai0>cos60 = 1 
A.-,cos0. = .5 

lO 0 

0 1.00847 1.00847 
1 -1.19398 .13855 
2 0.39751 .08749 
3 -0.01635 .07162 
4 -0.01116 .04974 
5 -0.00698 .03016 

coefficients for cosGq = 0.5 converge rather slowly 

regular manner, following the first large coefficient. Note that the 
-yQz/.5 

unscattered flux for this case has the exponential trend e , 

quite different from the exponential assumed for Table 1-26.3. Accord¬ 

ingly, the terms of the series corresponding to Table 1-26.3 undergo 

strong cancellations. It would probably be more accurate to use a more 

rapidly decreasing exponential, and this merely underscores the fact that 

the effective exponential behavior is difficult to specify. 

1-175 





F. ELEMENTARY MONTE CARLO CALCULATIONS 

27. Schematized Problems and Particle Trajectories 

In a Monte Carlo calculation for a radiation problem, one essentially 

carries out an experiment with pencil or paper, or with an electronic com¬ 

puter, by simulating the actual physical process. The name "Monte Carlo" 

arises from the use of random numbers in such a theoretical experiment to 

determine a sequence of chance events. 

Such a theoretical experiment has a number of advantages and dis¬ 

advantages in comparison with an actual experiment. The chief advantage 

is that all variables are under control; one is not bothered with the 

problem of background counts or uncertain detector response. The schem¬ 

atized situation can be mads as realistic cs one desires. On the other 

hand, in comparison with an actual experiment one is working with sources 

of very low strength. Even with the most modern computers, Monte Carlo 

"experiments" use 10,000, or in an extreme case up to 100,000 particles. 

But tfris is extremely small when compared with the number of gamma rays 

which are emitted from a radiation source in a typical experiment. The 

main problem with Monte Carlo methods is the inevitable statistical 

error due to a low "counting rate." 

The first phase of a Monte Carlo calculation is the determination of 

a schematized problem. While a Monte Carlo simulation can incorporate 

any amount of detail, an extremely realistic mock-up can be costly. So 

as a matter of practice, a compromise schematization may be established, 

a ... 
This and the following 5 sections are revisions of material 

originally presented by Dr. Martin J. Berger, of the National Bureau of 
Standards, in four lectures given July 16 and 17, 1962. 
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and this may serve as the basis for solution of a large number of problems 

in a single Monte Carlo calculation. Great care must accordingly be exer¬ 

cised in setting up this calculation. 

Certain features of these calculations are of a fairly universal 

character. For example the procedures for utilizing cross sections and 

the method of random sampling can be applied to any problem of interest. 

v 

We wish to discuss these things in connection with the concept of a Monte 

Carlo case history. Nearly every aspect of the following discussion 

applies equally to neutrons and gamma rays, though our attention is 

focused on the latter. 

Consider the path of a photon as it penetrates through some medium. 

Because many scatterings will occur, such a path is expected to zig-zag 

more or less as in Figure 1-27.1. In this sketch the photon starts at B, 

and a given direction. It has a free 

flight until there is an interaction. 

While the interaction can be either 

a scattering or an absorption, we 

assume that it is a scattering. The 

photon accordingly loses some energy 

and changes direction. This loss 

of energy with change of direction 

is a statistical process; that is, 

there is a probability distribution for different energy losses and changes 

of direction. After this first scattering the particle has another free 

Fig. 1-27.1. Trajectory of 
a photon 
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flight and makes another interaction, and so on. 

Let us consider how to describe the state of the photon at any point 

along its path. One needs coordinates x,y,z to describe the position, 

coordinates 6,4) to describe the direction of motion, and an energy 

variable E. The state of the particle, which we shall refer to as a , 

might accordingly be written 

a = (x,y,z ,E,0,4>) , 

so that it depends on a total of six variables. An alternative repre- 

sentation of the photon direction utilizes a unit vector u , 

u = (sin6cos<f> ,sin0sin<f>,cos0) , 

whose components are direction cosines. 

A photon "trajectory" can be described by a sequence of states, 

a0,a^,a2 » etc., up to some , where is the initial state at 

emission by the source, is the state immediately after the first 

interaction, and so on to an , the final state before absorption or 

disappearance from the space or energy region of interest. 

As already indicated, cu is a statistical quantity whose distri¬ 

bution depends only on the immediately preceding state, cu ^ . That 

is, there exists a probability distribution of cu conditional on 

a. , alone: 
l-l 

^(ail°ti-l) • 

This probability distribution, ip , is given by the local cross section 
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for the particular radiation considered. To generate a chain of states 

which would correspond to a trajectory like that of Figure 1-50.1, one 

would first pick an aQ corresponding to initial conditions. Then one 

would pick an from the distribution ^(0^1^) , then a2 from 

^a2’ai^ ’ an<^ S° °n’ eac^ c^°ice being made by random sampling except 

possibly the choice of aQ . The "case-history" of a photon can be ex¬ 

pressed by the following array: 

0 

^0 

Z0 

E0 

0 

0 

*1 * 

J1 • 
e. 

n 

n 

n 

n 

n 

<f> n 

We obtain such an array one column at a time. 

The first question, then, is: given the coordinates of cu , how 

i+l,jri+l*zi+l ? 
can one determine the position of the next collision, x^+^,y 

If we represent the path length traveled by the photon after the i'th 

interaction as s_ , then according to Equation (1-3.2) the probability 

“"US 
for an interaction between £ and s_ + As is just e yAs , where 

y is an attenuation coefficient. A procedure must therefore be established 

for picking s from this probability distribution. Once a value has 

been assigned to s , the coordinates of the next interaction are given by 

x. , = x. + s(sin6 .cos4>.) , 
l+l i ii 

yi+1 = yi + s(sin6isin4>i) , 

zi+1 = + s(cos0^ ) • (1-27.1) 
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Note that the particle retains the values 0^ and acquired as a 

result of the i'th interaction until after the (i+l)’st interaction. -Once 

the position of the (i+l)'st interaction is known, one must decide 

whether the case history should be terminated or not. This depends on 

the type of interaction next occurring. Ordinarily, y refers to the 

total attenuation coefficient, that is the sum of attenuation coefficients 

f \ , , . . / X Then u /y is the prob- 
for scattering (yg) and absorption (ya). s 

ability that the history is continuea, and correspondingly y /y is the 
cl 

probability that the interaction is an absorption, either photoelectric 

or pair production, in either case terminating the history. 

Assuming a continuation of the case-history, we next wish to determine 

the new energy, E^+^ , from the Klein-Nishina cross section for scattering 

of gamma rays. Details of this calculation will be given a little later. 

For the moment we limit ourselves to the observation that because of the 

Compton relationship, (1-3.10), the deflection angles (together with E^) 

determine E^+1. Conversely, together with the energy change de¬ 

termines ® , the deflection angle. 

In Figure 1-27.2, 0 refers to 

the point of interaction, and 00’ is 

an extension of the line of motion 

along which the photon approached 

0. Then ® is the obliquity angle 

of the new path relative to 00*. In 

addition to ® , there is an azimuthal 

0" 

Fig. I-2n.2. Deflection of a 
particle. 

"Compare with Equation (1-3.4). The coefficient ys is there called 

y^ , and the coefficient ya is the sum yP + yPP * 
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deflection angle, $ . This angle is randomly distributed between -it 

and tt t expressing the fact that 00" is equally likely to appear at 
•% 

any angle of rotation about 00*. 

Now, suppose that the direction of 00' is described by the polar 

coordinates 0.,4>., and that both ® and $ have been determined for 
l l 

the next interaction. We wish to determine coordinates the new direction. 

0. , • This requires spherical trigonometry, because the two photon 

directions together with the reference ^ 

polar axis define a spherical triangle 

as shown in Figure 1-27.3. Here P 

is the location of the interaction; 

k is a unit vector in the dir¬ 

ection of the reference polar axis; 

and u^ and are photon 

directions before and after the 

interaction. If we surround P 

with a sphere of unit radius, rays 
Fig. 1-27.3. Spherical trigonometry 

extending from P parallel to of a particle deflectic 

k, u,-, and cut the unit sphere at three points as shown, forming 

the triangle with side lengths at 0^, 0^+^, an^ ® » and interior angles 

$ and <p . ., - <p • • 
l+l l 

Using the Law of Cosines for spherical triangles, we see that 

cos0. , = cos0.cos© + sin0.sin©cos$ . 
l+l i l 

(1-27.2) 

* 
This would not be true if polarization effects were included. 
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Since all angles on the right side are presumed known, the calculation of 

cos6^+^ can proceed and the Pythagorean theorem correspondingly gives 

sin6^+^ . Next, the Law of Sines yields the relation 

sin(*)>i+1 - 40 = sin0i+1sin<}/siii$ , (1-27.3) 

Again, the calculation can proceed because all quantities on the right 

are known. Applying the Law of Cosines once again we can write 

cosO = cos0. cos0. . + sin0.sin0. -Cos(<{>. , - <f>. ) , (1-27.4) 
l i+l i i+l i+I i ’ 

from which cos(<|k+^ - <Jk) can be calculated. Lastly the values of 

sin<f>^+^ and cos<}k+^ can be deduced from trigonometric formulae: 

sin<}>. = sin(<f>. - - <J>.)cos4>. + cos(4>. , - 4».)sin4». 
i+l i+l i i i+l i i 

cos4>. . = cos (4*. ., - <J>.)cos4>. - sin(4>. . - 4>. )sin<^>. . (1-27.5) 
i+l i+l i i i+l l l 

An alternative procedure can be constructed using direction cosines ; 

but it turns out to involve the same number of multiplications. The 

series of calculations just described, repeated over and over, takes much 

of the time required for the Monte Carlo calculation. It would be highly 

desirable to find a shorter procedure, but none seems to exist. 

This completes a sketch of the procedure by which one constructs 

theoretical trajectories, except for the sampling procedures which are 
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discussed in the next section. In conclusion we might just indicate how 

this type of calculation could determine the radiation crossing a boundary. 

If the boundary permitted radiation to escape completely from the con¬ 

figuration, we could simply generate a large number of trajectories as if 

no boundaries existed and then count the trajectories which penetrate 

the first time to a position beyond the boundary. 
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28. Techniques for Random Sampling" 

In the preceding section we have taken for granted the possibility of 

random sampling from various probability distributions. We next discuss 

some of the concepts and better known random sampling techniques. 

a) Random and Pseudo-Random Numbers 
------ - - - - • 

Suppose a quantity x_ is distributed according to f(x), and an 

x_ value selected at random from the distribution is desired. The most 

straightforward approach would be preparation of a population of x_'s, 

containing different x values with appropriate frequencies, followed 

by a random selection. This is obviously a cumbersome procedure, since 

it means preparing a different population for each distribution. A much 

simpler approach which is ordinarily used instead is that of sampling 

from a single, canonical distribution, 

f(x) = 1, for O^x^l . (1-28.1) 

An x_ value for another distribution then requires an appropriate trans¬ 

formation . 

Numbers randomly selected from the probability distribution of 

Equation (1-28.1) are what we refer to as "random numbers." And it is 

difficult to discuss random numbers more precisely than this. They may 

have any value between zero and unity with equal likelihood; and further¬ 

more, in a sequence of such numbers there should be no correlations 

whatsoever. Since all types of correlation are possible, this is not a 

simple matter. The strongest requirement of this type might be that of 

no correlation between successive numbers; but we could also focus on 

*For a general discussion see Ref. 24 , Chapter 8. 

I-I85 



correlations between each number and the tenth number beyond, or on the 

correlation between successive increases and decreases. 

Furthermore, consider a very long random digit sequence. Ey mere 

chance the value 0.5 might occur. In fact, there is a finite probability 

for 0.5 to occur 100 times in a row. But use of 100 0.5 values in a 

row could be a very questionable thing to do. The point here is that even 

a long sequence of random numbers could be locally very nonrandom. This 

is a difficult subject conceptually, though the practical problems may 

not be very serious. 

When such numbers are needed, it is possible to refer to extensive 

tables; but even though such tables are available, such a procedure 

would require valuable memory space in the computer. It is ordinarily 

preferable to generate the numbers as they are needed. A variety of 

deterministic rules have been derived for producing numbers which behave 

as if they were random and which are referred to as ’'pseudo-random" 

numbers. In spite of the contradiction involved in deriving "random" 

numbers deterministically, these procedures work well in practice. 

One deterministic procedure has become so popular that it is now 

27 / 

almost the only one widely used. A sequence y^ of pseudo-random numbers 

is defined by 

yn+i = (*yn + y)(mod p.) . (1-28.2) 

The meaning of this is as follows: (XyR + p) is calculated and then 

divided by g_. The remainder after division is taken to be y^+^. 

1-186 



In the next step, yn+^ is used in the same way to calculate Yn+2* 

This recursion yields a chain of numbers •••> for each given yQ. 

It turns out that this type of sequence usually has a very long cycle; 

that is, it takes a very long sequence for repetition of the numbers to 

occur. Furthermore, if the remainder with respect to £ is always used, 

none of the numbers is larger than p_, so that when divided by they 

all lie between zero and unity. On the basis of empirical tests, these 

numbers appear to be reasonably uncorrelated. 

For this type of sequence the correlation coefficient of two success- 

8 / 
ive numbers, say y^ and Yn+]_» can shown to be 

p(vW = 
1 - 6(y/p )(l-y/p ) 

X 
(1-28.3) 

From this one can see that if X is a very large number, the correlation 

coefficient between successive Yn's is very small. In practice, X is 

usually taken to be nearly as large an integer as a given machine can use. 

To illustrate this, consider a specific sequence. 

n+1 
= 5^y (mod 2^) 

J n 
(1-28.4) 

where is 13. Here the X value is so large that the correlation 

35 
coefficient is obviously very small. The value p = 2 is chosen be¬ 

cause this is the largest number expressible on an IBM 7090. One can 

33 
show that the sequence has 2 numbers, and that it will either be a 

35 
permutation of the sequence 1, 5, 9, ...., 2 - 1, or else a permu- 

35 
tation of the sequence 3, 7, 11, 2 +1, depending on the 
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starting value yQ. If yQ gives a remainder 1 when divided by 4 , 

there occurs a permutation of the first sequence, and if y^ has a re¬ 

mainder of 3 after division by 4 , there occurs a permutation of the 

second sequence. Tests with up to 100,000 numbers of this type satisfy 

tests of randomness reasonably well. 

For the preceding sequences, y = 0 . It is sometimes advantageous 

to compute with y t 0 . For example, if the determination of random 

numbers takes a large proportion of the time required for a given calcu¬ 

lation, one might wish to choose a particularly fast procedure. Multi- 

a U 

plication by (2 +1) is inherently faster than multiplication by 5 

because multiplication by a power of 2 in a binary computer represents a 

shift of the numbers in the machine by that many binary places, and usually 

shifting plus addition takes less time than multiplication. Furthermore, 

the shorter the shift (i.e.^the smaller the a ) the quicker the calcu¬ 

lation. One pays here for speed with.shorter cycle lengths and larger 

correlations. But in principle the size of the correlations can be con¬ 

trolled by proper choice of y . 
I 

Following this type of procedure, Rotenberg found it possible to cut 

the time required to generate a random number in half, when using an 

... 34/ 
IBM 704." 

b) Sampling from Cumulative Probability Distributions, 

Assuming for the moment the possibility of generating suitable pseudo¬ 

random numbers, the next problem is the determination of procedures by 

which one can determine x^ from an arbitrary probability distribution, 

f(x). One method for accomplishing this makes use of a change of variables 

* 
Ri.tenberg's procedure has been criticized by Greenberger, Refs, 17, 18. 
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from x to t_ , as follows : 

x t 

/ dx'f(x') = t = / dt'l. (1-28.5) 
_oo 0 

Clearly the probability that x lies between and x^ > x equals 

the probability that t lies between t^(x-l ) and t2(x2> , where t is 

considered a random variable governed by a probability distribution g(t) , 

with 

g(t) = 1 , 0 < t < 1 . (1-28.6) 

But g(t) =1 is the canonical distribution which is sampled by selection 

of a random number, p . We therefore sample x_ according to f(x) by 

defining t = p , inserting this value of t_ in Equation (1-28.5), and 

solving the resulting equation for x_ . While this procedure is quite 

generally applicable, the determination of x_(t) requires calculation of 

the inverse of a function which may be very complicated. This can be 

difficult at times. 

As an example, let us consider the problem of sampling the proba¬ 

bility distribution of photon path lengths, 

f(s) “ e ^Syds, 0 <_ s < °° . (1-28.7) 

To simplify matters, we express the path length in units of mean free 

path, so that y = 1 . The cumulative probability distribution may then 

be written 
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00 

t (1-28.8) J ds ’ e 

s 

Inverting, and writing t = P , we obtain 

s = -log p . (1-28.9) 

Here the inversion is comparatively simple, but even so one must calculate 

a logarithm for each s value, and this is a rather time-consuming machine 

operation. 

One way to speed the evaluation of Equation (1-28.9) might be to make 

a large table of s_ values for numbers p1> p2> up to p^ , covering the 

range from zero to unity densely. For example, these numbers might be 

separated by intervals of, say, 1/1000, so that 1000 values of s would 

be stored in the computer. To determine an s_ , a pseudo-random number 

would be generated, and by round-off (if necessary) would be converted 

to one of the 1000 indices, say . The corresponding value of -logp^ 

would then be obtained by table look-up with this index. 

Thus table look-up, an extremely fast machine operation, would replace 

the much slower computation of a logarithm. This obviously requires a 

computer with a large memory. But it should be remembered that if the 

computer memory is not large enough to permit full use of this procedure, 

there is still the possibility of combining table look-up and direct com¬ 

putation with interpolation, which is intermediate in speed. 

ILL.7 
c) Sampling by Rejection Techniques ^ 

An alternative technique of great generality is called the ''rejection” 

technique. It applies when the distribution is confined to a finite range. 
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To illustrate it let us assume, for simplicity, that x has values between 

zero and unity, while f(x) has values 

between zero and L , as sketched in 

Figure 1-28.1. 

The first step is the picking 

of a random number, ; this 

identifies an abscissa value. An¬ 

other random number, then 

gives the ordinate value, P^L. 

Thirdly, an examination is made 

to determine whether the point 

(p ,P 2un<^er the curve. If 

it is, p^ = x is the value selected; but if this point is above the curve 

the process is started again. The probability p(x^) for success is 

f(x,)/L , 
pUp = / 1 dp2 = if(x1) . (1-28.10) 

With this technique the sampling is guaranteed to be from the correct 

distribution, f(x) , if the numbers used are random. Points (p^jp^L) 

will be randomly located in a square with demensions L*l, as shown in 

Figure 1-28.1. Since acceptance only occurs if the point is under the 

curve, the probability of acceptance is 

1 1 
7- / dxf (x) . 
L 0 

But if f(x) is a probability distribution, we can assume that it is 

Fig. 1-28.1. An illustration of 

rejection sampling 
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normalized to unity; this means that the area of acceptance is unity, and 

the efficiency of the procedure is 1/L . When L is large, as would be 

the case for a peaked function f(x) , the rejection technique is in¬ 

efficient -- it is necessary to pick many pairs of random numbers to ob¬ 

tain a selection. 

A useful application of this technique occurs in the calculation of 

neutron deflections due to elastic scattering, in the center-of-mass 

system. The cross section data and therefore the probability distribution 

for a deflection through an angle 6 , is usually given in the form of a 

Legendre polynomial series, 

p(0) = l a.P.(cos0) . (1-28.11) 
l * 

For an isotropic distribution, this polynomial would reduce to a constant, 

and often the anisotropic distributions vary only by small amounts, looking 

perhaps like the sketch of 

Figure 1-28.2. Since it is 

quite common to find cases in 

which the maximum value is not 

very great, the number of 

pairs which must be examined 

per selection is reasonably 

small. Some figures on this 

which may be typical are given in Table 1-28.1. 

Unpublished data due to M. J. Berger. 

Fig. 1-28.2. Slightly anisotropic 

angular distribution. 
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Table 1-28.1. Elastic Scattering of Neutrons from Oxygen 

Energy (Mev) 

14 

9 

3 

0.3 

Average Number of 

Random Number Pairs Tried 

6.8 
4.3 

2.3 

1.03 

At 14 Mev the distribution is quite anisotropic; but from .3 Mev down it 

is so nearly isotropic that the first pair of numbers tried will almost 

always result in a selection. 

d) Special Sampling Methods: Sine, Cosine of a Random Angle. 

There are many devices for sampling from specific distributions; a 

23 / 
particularly useful compilation has been given by Kahn. One amusing 

example is the problem of sampling from the distribution 

f (x) = nx11"1 . (1-28.12) 

Sampling from the cumulative distribution requires the time-consuming 

calculation of the n’th root of the random number and if n_ is moderately 

large, the efficiency of the rejection technique is low. Better and 

simpler than either is the following procedure: Pick n_ random numbers 

p , p^, up to . The largest of these is distributed according to 

Equation (1-28.12). Since this requires determination of n_ random 

numbers-, while the rejection technique would require 2n (i.e. renumber 

pairs), the superiority is evident. 

A very useful technique, which appears to be due to Von Neumann, can 

be used to determine the sine and/or cosine of a random angle. Suppose 
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one wishes to select a < value from a distribution uniform between 

0 and 2tt , but the sine and cosine of the angle tc are tne quantities of 

interest. Consider first a 

circular quadrant with unit 

radius, and a point chosen 

randomly in this area 

(Figure 1-28.3). The point 

will determine an angle, 

which we refer to as a . 

Note that determination of the 

point requires two random numbers, 

one for the x_ coordinate and 

the second for the coordinate. 

x 
cosa = - , 

/ 2 2 
/x +y 

sina = -^— . (1-28.13) 

pi 2 
/x +y 

If the random numbers are both positive, the point will lie in the first 

quadrant. The condition 

x2 + y2 < 1 (1-28.14) 

must be satisfied because the points must lie in a circular area if a is 

to be random. 

An unpleasant feature of Equation (1-28.13) is the necessity for 

Fig. 1-28.3, Random sampling of 

angles. 

Then 
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calculating a square root, which is time-consuming. To avoid this one can 

instead calculate the sine and cosine of the double angle. 

sin2a = 2 

x +y 

cos2a 

2 

2 
x +y 

2 

2 * 

(1-28.15) 

o o 
If a is distributed uniformly between 0 and 90 , 2a is distributed 

o o 
uniformly between 0 and 180 , and the square root calculation has 

been eliminated. 

o o 
One more change is necessary to cover the full range 0 to 360 . 

Up to this point, both x_ and y_ have been chosen between zero and unity, 

so that sin(2a) is always positive. To make it negative with equal 

probability, we replace y = with 

y = 1 - 2p2 . (1-28.16) 

Defined in this way, y_ will be randomly selected between -1 and 1 , if 

is random, and correspondingly, sin(2a) will be positive or negative 

with equal likelihood, and we select these values for sin k and cos k , 

This is a fast procedure. Since the random points lie within a circle 

of area tt/4 , the efficiency is high, nearly .8. Only about one pair of 

random numbers in five must be thrown away. 

Often with big computers there is no advantage in the use of clever 

procedures. Fast as the preceding method is, it is not nearly as fast as 

table look-up, which might perhaps be accomplished as follows: first. 
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cos k and sin tc would be pre-tabulated at intervals of, say, one degree, 

o o 
beginning with 0.5 and extending up to, say, 179.5 if angles up to tt/2 

were desired. Let us call these lists C0S(N) and SIN(N), where N runs from 

1 to 180. A random number between zero and one is now selected and multi¬ 

plied by 180. The result, ordinarily a floating point number, is then 

"fixed." By this we mean calculation of the integer just below — in 

FORTRAN notation this means the operation 

N = XFIX(180.*R ) , (1-28.17) 

where R is the random number. Since the value of N as determined in this 

way can be any value between 0 and 179 with equal probability, the final 

step would be two table look-ups to determine cos k and sin k , 

cos < = C0S(N+1) , 

sin k = SIN(N+1) . (1-28.18) 

Each pair of values for sin k,cos k thus requires only a single multi- 

% 

plication, and the fixing of a floating-point number to provide the index. 

It is therefore a very fast procedure and very simple; but it requires space 

for the tabular storage. 

e) Distributions in Combination: The Klein-Nishina Function 
-—— ■- _ — - . - ------- _ • 

When two or more events are mutually exclusive, the probability that 

one of these events will occur is the sum of the probabilities of the 

different event types. Thus, if the probability that the next interaction 

will be photoelectric absorption, Compton scattering, or pair production 
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are written P^, ^KN* an<^ ^pp ’ t*ie tota^ Probability P that the next 

interaction will be one of these is 

P = P + ? + P , (1-28.19) 
ph KN pp 

and if these are the only interactions, P = 1. 

So far we simply repeat the discussion of section 3. But suppose we 

recall that the total probability for a scattering interaction is the inte¬ 

gral over all the different types of scatterings which can occur. That is 

to say, 

A’+2 

PKN = dX PkN(X',X) ’ (1-28.20) 
A 

where is a probability distribution. Then, having sampled to 
KM 

determine that the next interaction is a scattering, we must sample again 

PKN 
from r— to determine the type of scattering — i.e. the wavelength change. 

1 KN 

The foregoing example makes clear a type of procedure which can be 

followed when a probability distribution f(x) is written as the sum of 

two or more component distributions. If we write fQ(x) = 0 » 

f (x) = f1(x) + f2(x) + f3(x) , o < x a , say, (1-28.21) 

where f (x), f (x), and f„(x) are properly normalized so that they can be 
12 3 x 

considered probability distributions, then writing J dxf.(x) = F. we may 
0 1 1 

sample from f(x) by selecting a random number, P , and when 

F^ ^ p < F^ , sampling f^(x)/F^ . 

When a given event occurs only if two or more component events occur- 
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together, the probability is the product of the probabilities for component 

events. In the preceding paragraph we use this idea implicitly, because we 

may write 

f2(x) = F2Cf2(x)/F2] ; (1-28.22) 

we sample f2(x) by first sampling F2 and then upon success sampling 

[f2(x)/F2] , a probability distribution with unit total probability. 

Quite generally, if 

f(x) = g(x)h(x) (1-28.23) 

where g and h are both probability distributions, then we can sample 

f(x) by demanding a successful sampling of both g(x) and h(x). 

Figure 1-28.4 illustrates a 

simple rejection technique which 

utilizes this idea. If we select 

random,numbers p2, and 

= x, then x is selected 

only if p5 < g(p^) and 

p3 < h^i^* 

Fig. 1-28.4. Sampling 

f(x) = g(x )h(x). 

Cumulative distribution methods can be applied to the same problem, 

x 

Writing G(x) = J dx,g(x') , we have 

0 

x 

J f(x1)dx' 
0 

x G 

/ dx'g(x')h(x*) = / dG'hCx’tG')] . 
0 0 

(1-28.24) 

At this point it is clear that we can sample by selecting a random number. 
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P, writing P = / dG'h[x'(G' )] 

0 

x 
solving for G, writing G = / dx'g(x’) , 

0 

and finally solving for x . 

The foregoing procedure is far too clumsy to be very useful except in 

special circumstances in which at least one of the inversions is easily 

performed. Much more flexible is a combination of rejection and cumulative 

distribution sampling in which one selects , then determines G^ by 

inversion of 

(1-28.25) 

and finally samples 

f(x)dx = h[x(G)]dG (1-28.26 ) 

by testing to see if a second random number, » satisfies p^ <_ h[x(G^)] 

These techniques are nicely illustrated by a method for sampling the 

23 / 
Klein-Nishina distribution devised by Kahn. He writes the Klein-Nishina 

distribution as follows: 

2 

k(A\A)dA = 4^- Ct-+ rr - 2(A-A 1 ) + (A-A')2]dA 
8 x2 LA A 

| [- + r + (1-A 'r+A ' )2 - l]dA, r = fr , 
8 2 r A 

r 

3 9A’+2 rA't2 (A ^ 1 1 
Iqi uo vo 16 (A’+2 ) l9A'+2 v 2 /L ''r ^2 

8A ’ ,A ’+2xr . , . .2 lnl dA 
+ oTTIo' "X r+1) + r]* V ' 9A’+2 2r2 
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The wavelength X• describes the photon before scatter, and is constant 

during the sampling. The Klein-Nishina distribution is thus in the form 

k(X ' ,A )dA = Const, g1(X)h1(X) + ^21— g^A )h2(X ) }d(p-) (1-28.27) 

where 

X'+2 8X ' 
9X'+2 + 9X’+2 

1+2/X' 

1 d(^r) g1(^') = l , 

1+2/X' 
/ d(~) g2(X • ) = 1 . (1-28.28) 

If we rescale the wavelength variable appropriately, and assume that 

the total interaction probability is normalized to unity, we arrive at 

Kahn's procedure, given in detail in Figure 1-28.5, below: 

Fig, 1-28.5. Flow diagram for Kahn's sampling procedure for the Klein-Nishina 

distribution. (X , X , correspond to X',X.) 
n n+1 
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* Note that h^ = 0 and = 1, for r = 1. With increasing r , h^ 

rises, achieving a maximum value of unity when r = 2, and then falling 

again. On the other hand, h^ falls with increasing r and then may 

rise again but without the possibility of exceeding 1. Neither h nor 

h^ is normalized to unit total probability. 

It can be shown that the average number of random number triplets 

required for success of this procedure is about 3 at 10 Mev and falls to 

a little above 1.5 below 1 Mev. 
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29. Importance Sampling and Other Special Procedures 

a) Splitting, Exponential Transformation, and Other Proceduresv 

Thus far, all procedures have been more or less analogous to natural 

processes. It is possible to distort the sampling processes to advantage 

in many problems. Von Neumann’s splitting technique is one of the simplest 

examples of this. 

Suppose one wishes to calculate the penetration of gamma rays to 

great depths in a material. Since the gamma ray flux is known to decrease 

with a dominant exponential trend, the number of case histories would 

decrease similarly with increasing depth of penetration. This means that 

at 10 mean free paths, say, since e ^ ^ 20,000, one can anticipate the 

need for % 10^ case histories if no modification in sampling procedures 

is made. 

According to the splitting procedure, the material would be divided 

into layers. Then, each time a photon makes the transition to a deeper 

layer, it would be "split" into two or more photons, each assigned a weight 

that correctly reflects its physical importance. If the splitting generates 

n photons, each "descendant" is assigned the weight 1/n, and each is 

followed individually. This provides a mechanism by which the photon popu¬ 

lation can increase exponentially to offset the natural exponential decline. 

This procedure has been used successfully in slab penetration problems 

and can in principle be applied to more complicated configurations. For 

slab problems it is fairly clear that the splitting should just about off¬ 

set the degradation, so that the flux stays more or less constant. For 

more complicated configurations it is more difficult to determine when to 
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have many descendants and when to have few. Unfortunately, a wrong guess 

at this point can produce extremely misleading and wrong results. One of 

the advantages in the study of slab and infinite medium problems is the 

existence of alternative procedures which can be used to check the choice of 

bias procedure. 

Consider a problem of penetration through ducts. Here one might wish 

to bias in favor of particles which are scattered approximately by a right 

angle since these have the best possibility for a long path down another 

leg of the duct. But since one has little analytical knowledge of the 

penetration process, it would be somewhat difficult to introduce a suitable 

bias a priori. It might be as efficient to begin with an unbiased calcu- 
I 

lation and analyze the results in detail to see what is important. It 

might turn out that a photon which penetrates too far into the wall of the 

duct should be terminated, while a photon which makes a collision very 

close to the surface of the duct wall has an excellent chance of emerging. 

One might then decide to "split" a photon of the latter type. But this is 

all very loose; in fact one does not know how to introduce appropriate 

biasing techniques for duct penetration problems. 

The fundamental difficulty with these modifications is that at the 

same time certain possible types of events are being enhanced, others are 

being discriminated against. Therefore it is necessary to be quite certain 

that the favored events include all the important cases. If, for example, 

one discriminates against events that turn out to contribute 25% of the 

scores, one expects the answer to be in error by as much as 25%, no matter 

how accurately the remaining 75% may be calculated. 
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A method which has been the subject of much study is called the ex¬ 

ponential transformation. If in the transport equation. 

cos0 ■?— + yN = /kN , 
o Z 

(1-29.1) 

we let 

N = Fe 
-cz 

(1-29.2) 

where c is a constant and F is a function defined by this equation, we 

obtain an equation for F, instead of N: 

nr r 
cosQ r— + (y-c cos0)F = /kF . (1-29.3) 

In this equation the attenuation coefficient, y, has been replaced by 

(y-c cos0). Now, suppose that c_ is positive and close in value to y. 

Then, for particles with directions away from the source plane (0 small), 

the attenuation will be small, while for particles which penetrate back 

towards the source plane the value of cos0 will be negative and the effec¬ 

tive attenuation coefficient will be large. 

This is a procedure which strongly favors long path lengths directly 

away from the source plane, while discriminating against photons which 

scatter back. From another point of view, instead of computing the quantity 

CZ 
I, one computes Ie . Thus the problem has been changed. 

An alternative way of writing Equation (1-29.3) is 

+ yF = /kF + c cos0F . (1-29.4) 

Some more recent papers on this are Refs. 6 and 50. 
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Here the new term is considered a type of photon source which is propor- 

5* 

tional to the flux. This idea, due to Chilton, leads to an exponential 

approach which can also be viewed as a splitting procedure of special 

elegance and it turns out to be extremely successful in elementary con¬ 

figurations. 

The nature of biased sampling is such that a bias for a specific re¬ 

sult may be wrong for other, related questions. Thus, a bias which gives 

satisfactory results for very deep penetrations must give special weight 

to photons which have undergone a number of small-energy-loss collisions. 

But such a bias will usually have been applied on the basis of photon 

position — not photon spectral energy. It may well lead to atypical 

spectral results at the same depth, and it may be quite unsuitable for 

use at moderate depths. One of the advantages which Chilton's method has 

is appropriateness for simultaneous calculations at a range 

of penetrations. 

Note that a type of bias based on position (splitting) is not the sole 

possibility. The exponential transformation favors certain directions. 

It is also possible to modify the cross sections, or to favor certain 

energy loss sequences. In all cases, the method is investigated by com¬ 

parison with independent and better understood calculations, usually in a 

particularly simple configuration. The practical theory of the choice of 

bias methods doesn't really exist, although in general one knows that it 

f 
involves the study of functions adjoint to the flux, 

b) Survival Weights 

It is not necessary to terminate a case history by determining that 

‘‘’Reference 6. To make the source term positive, Chilton adds a 
term cF to both sides; he also takes c to be the smallest value of y 

in the integration range. 

tSee section 38c. 
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an absorption interaction has occurred. Instead one can proceed as if 

every interaction were a scattering, but with each interaction changing an 

assigned "survival weight" appropriately. For example, the survival 

weight of a particle would be unity before occurrence of the first inter¬ 

action. After the first interaction, the survival weight would be de¬ 

creased by the factor y /u, which is simply the probability of surviving 

the first interaction. A similar decrease would occur with each inter¬ 

action, so that the survival weight w after n collisions would be 
n — 

w 
n 

n . ) 
TT(—_—) 
'=!l 

(1-29.5) 

where A , A^, ... are the successive wavelengths of the photon. 

If this procedure is followed, it is necessary to specify a method 

for terminating case histories. One might, for example, terminate any 

case history when the survival weight decreases below a limiting value. 

Note that in the final score, each case history must be counted in pro¬ 

portion to i’fs survival weight, so that this is a logical criterion to 

apply. 

This type of calculation is apt to involve long case histories. On 

the other hand, it is almost the only method which permits the study of 

low energy spectra in high Z materials, where it is highly improbable for 

a photon to scatter to low energies. 

c) Correlated Sampling. 

Correlated sampling involves two closely analogous Monte Carlo calcu¬ 

lations, with an examination of the difference between them. Quite often 

it is possible to analyze a problem in such a way that the desired 
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information appears as a difference. For example, the study of boundary 

effects is basically the comparison of an infinite medium problem with a 

similar semi-infinite medium problem, as illustrated in Figure 1-29.1. 

Infinite Medium 

Fig. 1-29.1. Example of comparative configurations suitable 
for correlated sampling. 

Both have the plane source and the point detector, but in the semi-infinite 

medium case radiation can escape. 

The difference between the two cases is not very great; the photons 

which escape would in some cases have made an additional contribution. One 

can therefore gain accuracy by studying the difference between calculations 

for the two cases. This requires use of exactly the same random numbers 

for corresponding events in the two problems. In the case above, angles, 

energies, and positions of corresponding case histories would be identical 

up to the escape of one of the photons across the boundary. 

Another case in which correlated sampling is useful is a problem 

in which one investigates the effect of a change in cross sections. It 

occurs in certain neutron penetration studies, where the interaction 
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cross sections are not accurately known. Here again one applies in two 

calculations, with slightly differing cross section, the same random 

numbers for calculating deflections, path lengths, and particle energies. 

In an example by Berger, neutron elastic scattering by oxygen was 

assumed in one calculation to have a realistic cross section, as accurate 

as known, while in the comparison calculation the scattering was assumed 

to be isotropic. The quantity of interest was the albedo, or rather 

the difference between corresponding albedos. It turned out that corre¬ 

lated sampling reduced the sample size required for a given accuracy by 

a factor of 4. 
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30. Estimation of Error . 

Suppose that p(x) is a probability function, normalized so that its 

integral is unity. The "expected value" of a second function of x , say 

u(x) , over the distribution p(x) is defined and denoted by* 

<u(x)> 
p(x) 

/dxu(x)p(x) , 
R 

(1-30.1) 

where R is the range of the variable x_ , and the subscript on the left 

is usually omitted unless there is danger of confusion. If u(x) is a 

simple function such as x, x , ... the simpler forms x, x , ... will 

often be used instead of the bracket notation. 

The expectation value is a linear operator, so that 

<clul(x) t c2u2(x)> = c1<u1(x)> + C2<u2(x)> . (1-30.2) 

By the "variance" Vx and "standard deviation" ax of the variable x 

we mean 

a = \/v~ ; (1-30.2) 
x 

and by the "relative standard deviation" we mean 

*The independent variable may be discrete, perhaps an index i . We 
would then have, for example 

<ui> = IuiPi • 
l 
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(1-30.3) 
x 

x 

2 —2 _x_- x 

X2 

With these definitions in mind, let us consider a simple albedo prob¬ 

lem which will illustrate most of the concepts of error estimation. Photons 

are injected into a semi-infinite medium; and we wish to study the emergent 

radiation. To perform this study we first simply record whether or not 

any given photon emerges again across the interface. If we are simply 

counting photons to evaluate the "number albedo" we assign a weight x = 1 

to emergent photons, and a weight x = 0 to non-emergent photons. Our 

probability distribution can be written in terms of Dirac delta functions, 

p(x) = (1-A)6(x) + A6(x-1) , (1-30.4) 

where A_ is the number albedo, that is the probability for emergence. 

Note that A. will have a precise value; but that in ignorance of this 

value we attempt to measure it by random sampling procedures, 

a) Expressions Involving the Variance . 

The variance of our probability distribution can be written down 

directly. Since 

x = (l-A)-O + A* 1 = A , 

x2 = (1-A)*0 + A*1 = A , (1-30.5) 

the variance is 

Vx = A - A2 = A(l-A) . (1-30.6) 

In our calculation, we inject n photons into the medium and weight 
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the photons x„ , x~, ... x , where each of the x. is zero or unity 
1 2 n i 

according to whether or not the i'th photon emerges or not. Our first 

task is then to measure the albedo, which we accomplish by averaging. This 

is because the expected value of the average is A: 

, n n 
<1 l x.> = <x.> = ± l 

ni=l 1 ni=l 1 ni=l 
A = — nA = A 

n 
(1-30.7) 

It is extremely important to distinguish between the calculated average 

and its expected value: the former is simply an estimate of the latter 

and is not equal to it. 

The main problem of error estimation has to do. with determination of 

the difference which may exist between the albedo estimate (i.e. the calcu¬ 

lated average over in case histories) and the albedo (i.e. the expected 

value of the average). The expected value of this difference is obviously 

zero; and we must therefore use some different measurement. Our choice 

is the calculated variance, which we write with a "hat” to indicate 

approximation: 

(1-30.8) 

The expected value of this quantity is 
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= x2 - 
n n 

{nx2 + < l xi>< I x.>} 
i=l i=l 3 

= x - 
2 1 r_ .2 {nx^ + (nx)(n-l)x} 

n-1 , 2 -2. 
— (X - X ) 

n-1 

n 
V . (1-30.9) 

Tlius, the calculated variance is a measure of the true variance. Moreover, 

the true variance can be used to estimate the "squared error," 

since the expectation value of this quantity ib 

n _ n n n 
<(i \ x. - x) > = <—7- \ \ x.x. - 2x - J x. + X2> 

n.44, 1 n • , . , 1 1 n. , 1 
i=l i=l i=1 J i=l 

n n n n 

< l xi + I xi Ixi>> 
1=1 1=1 j=i 

— 1 v 
2x r ) <xn- > + 

n> 1 
i=l 

3? 

' n 1(2 + 77 ' ^ xi>< l xj> ' 
n i=l j = l 3 

j/i 

-7 _ 
+ —7 (nx)[(n-l)x] - x2 

n 

n n 
72 

= i(x2- x2) = - V 
n x (1-30.10) 
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The square root of this quantity divided by x is dimensionless and is 

easier to interpret: 

(1-30.11) 

Further, Equation (1-30.9) establishes our calculated variance as a measure 

of the true variance, and therefore our calculated standard deviation as a 

measure of a . Thus*, 
X 

(1-30.12) 

Note that in the albedo problem the right hand side of Equation (1-30.11) 

is 

1 »4(1-A) _ _i Ji-li 

^ A ’ JZV A 

which is approximated by the right side of Equation (1-30.12). 

The closeness with which the calculated averages approximate the ex¬ 

pectation value for moderate-sized n values depends on the distribution 

function, as can be seen clearly in this example: The smaller the A 

value, the larger the relative standard deviation. Further, the larger the 

relative standard deviation, the farther from its true value the denominator 

*Note that an improvement would result if we were to replace Vx here 
by _JL_ 0 , because of Equation (1-30.9). 

n-1 x 
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in (1-30.11) may be and the poorer our knowledge of what the relative 

standard deviation actually is. Further, we have not taken into account 

A 

the statistical fluctuations in Vx, which can only be gauged if one 

estimates higher moments such as x4 .* 

The discussion of the preceding paragraph applies generally to the 

use of the variance or derived quantities to estimate the error of a cal¬ 

culated average. 

b) Other Averages: The Energy Albedo 

The arguments of the preceding paragraphs are only slightly more 

complicated when applied to the problem of determining the fraction of the 

injected energy which emerges again, the "energy albedo." The appropriate 

probability distribution must express first the probability of emergence 

and then the probability, predicated on emergence, that the photon has 

energy between E and E + dE. That is to say, the probability distri¬ 

bution is the product of p(x) as given by Equation (1-30.4) and another 

function, say e(E), such that 

00 

/ dEe(E) = 1 . (1-30.13) 
0 

The function e(E) is essentially the spectrum of emergent photons. If we 

make the designation 

00 

<u(E)> = / dEu(E)e(E) , 
0 

*For these and other reasons the relative standard deviations in 
Monte Carlo calculations must be interpreted with great care. It can 
happen that the statistical distribution is so skew that it must be much 
more carefully investigated before one knows the meaning of a calculated 
a value. 
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with use also of the simpler form En for <En> , we find that 

1 00 

<xE> = J dx/ dE(xE)p(x)e(E) = AE 
0 0 

<(xE)2> = AE2 

VxE = AE2 “ • (1-30.14) 

The relative standard deviation can be written 

xE . 

<xE> 

1-A 1 .E2 .. 

— +a 11 
(1-30.15) 

This consists of two parts. One term, (1-A)/A , is due to the fluctuation 

of the number of reflected particles as can be seen from Equation (1-30.6). 

The term added to this arises from the fluctuations in the energy of the 

. o* 

reflected particles; if they all came out with the same energy, E' 

■-O 

would be equal to E , and the second term would vanish. 

It turns out that the relative standard deviation is usually about 

twice the value due to number fluctuations alone. Thus,a calculation of 

average energy rather than average number is apt to have about twice the 

error associated with it; and this is often very useful information. This 

statement holds for' transmission calculations as well as albedo calculations. 

Note that expressions (1-30.7) through (1-30.12) apply to the calcu¬ 

lation of energy averages and variances, if one generalizes the probability 

distribution and also understands that the quantity x_ must be re¬ 

interpreted as xE . 
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c) Correlated Sampling. 

Let us consider two albedo problems with slightly different cross 

sections. We wish to examine the difference between them by correlated 

sampling. Accordingly, a "case history" now consists of injection of a 

photon in each problem, with use of the same random numbers for the 

sampling of corresponding distributions in the two problems. If we 

assign a weight x = 1 to an emergent photon in the first problem, and 

x* = 1 to an emergent photon in the second problem, with weights x = 0 

and x' = 0 to non-emergent photons in both problems, the probability 

distribution can be written 

p(x,x*) = A1^6(x-l)6(x'-l) + A106(x-l)6(x’) + Aq^6(x)6(x’-1) + Aqq6(x)6(x’) 

(1-30.16) 

where the four coefficients are probabilities of emergence of 2, 1, and 0 

photons, and their sum is unity. 

It is not difficult to show that 

(1-30.17) 

where 

<xx’> - <xxx’> 
(1-30.18) 

is the correlation coefficient, a parameter with the following properties: 

If p(x,x') factors, so that the probability distributions for x and x’ 



are independent, then p , = 0 . If p(x,x') vanishes unless x = x’ , 
XX 

•% 

it is quite clear that p , = 1. 
XX 

According to Equation (1-30*17), the variance ^ of the differ 

ence between results for the two problems can be made very small if the 

correlation coefficient approaches unity. In one of Dr. Berger’s calcu¬ 

lations of neutron albedo differences due to anistropy in the scattering 

angular distiibution, correlation coefficients p = .66 for the number 

albedo and p = .77 for the energy albedo were obtained. The effective 

sample size was increased by about factors of three and four, respectively 

by the use of correlated sampling, in this case. 

Negative correlations, -1 <_ p , 
= 1 =*> x’ =0 and x = 0 => x' =1 . 

< 0, are also possible, here if 
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31. WALLSTREET: General Description* 

a) The Scheinatization . 

WALLSTREET applies to an idealization of regularly-shaped buildings 

bounding two opposite sides of an otherwise infinite fallout field, as 

shown in Figure 1-31.1. The fallout field is a plane isotropic source of 

fallout 

i ft ft * Vi ftrft & lAiiy* * -Jt it ft ft ft ft 
-A 

1 T 
CD 

B 

00 into and out of the paper 

°9 '' 

/ 

i / 
/ 

- 

detector 

\ zones 

Fig. 1-31.1. The walls and fallout-covered street of WALLSTREET. 

gamma radiation. We wish to know the dose received by a detector behind 

one wall. Note that the problem could equally well be done with only 

one wall; but insertion of the second wall gives the advantage of symmetry. 

Note also that the problem is essentially two-dimensional; the ^ and 

coordinates are indicated in Figure 1-31.1, while walls and street extend 

to infinity in the £ direction, without change. 

The fallout field extends in ^ from -A to +A. The materials of walls 

*Dr. Berber's program was written in the middle of June, 1962, at the 
time of a crisis in the stock market. 
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and street are alike, presumably concrete, though other materials could 

be used. Between the walls and above the street is another material, air. 

The distance A is large enough so that air scattering can be significant. 

If A is chosen large enough so that the walls do not interact significantly, 

the problem reduces to the one-wall case. On the other hand, if A is small 

air scattering will not be important but scattering back and forth between 

the walls will be significant. 

One more .simplifying assumption is made in the schematization, namely 

that beyond the walls there is no air. If a gamma ray penetrates through 

a wall it cannot return. In practice,backscattering is possible of course. 

But there is an advantage in having an "absorbing plane" in the problem in 

that the case histories will be terminated when this plane is crossed, thus 

shortening the computation. The calculation for the schematized problem 

will slightly underestimate the dose which would be measured if back- 

scattering were taken into account. 

We indicate the thickness of the wall by B, and plan to perform calcu¬ 

lations simultaneously for various wall thicknesses. The exterior surface 

of the wall is divided into zones according to height, and the number of 

such zones is specified arbitrarily. Provision is made also for zones 

which lie below the street level. 

Our calculation is to determine the average dose in a given height 

zone, for a given wall thickness. The WALLSTREET program which accomplishes 

this consists of a control routine and four "outer" subroutines INPUT, 

PRELIM, HIST0R, and 0UTPUT. These call a number of "inner" subroutines, 

which in turn depend on two "utility" subroutines, RANDA and INTRP. RANDA 
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is a pseudo-random number generator, written in machine language, and INTRP 

is a general interpolation routine; and both are described in detail in 

section 36. 

Generally speaking, machine programs are apt to be constructed from 

the inside out. Therefore, in the remainder of this section we comment on 

the code as a whole. In section 32 we describe the routines in detail, 

starting with the inner subroutines and working towards the control routine 

in more or less of a programmer's sequence. 

b) Outline 

Figure 1-31.2 below gives a block diagram of WALLSTREET, with the 

different types of routines distinguished according to row. INPUT reads 

in the data; and PRELIM sets up the tables to be used in the calculation. 

"Control" 

"Outer" 

"Inner" 

"Utility" 

Fig. 1-31.2. Diagram of WALLSTREET. 
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The heart of the program is the HIST0R routine, with its five inner 

subroutines. START sets up the initial conditions for each history. That 

is, it generates the initial position, initial direction, and initial 

energy of each gamma ray case history. STEP determines how far the photon 

will travel to the next collision; and this has complications due to the 

presence of two materials — air and concrete. STEP makes use of CR0SS, 

which determines whether or not a boundary is crossed. 

After this is a subroutine called SC0RE, If the photon penetrates 

beyond the walls, one must determine what contribution has been made to 

the detector response at a location outside the wall. After a SC0RE the 

photon is lost and the case history is terminated. 

If there is no SC0RE, the program proceeds with a scattering routine 

called SCATT, which gives a new energy due to scattering, according to the 

Klein-Nishina cross section. This is followed by TURN, which gives new 

angular coordinates to the photon. 

From TURN the program goes back to STEP and the sequence is repeated. 

When a case history is terminated, because of a SC0RE or because the wave¬ 

length exceeds the maximum permitted, a new START is made. 

When a run is complete the cumulated scores are stored on tape. When 

the desired set of runs has been completed, the 0UTPUT is generated and 

the calculation comes to an end. 

c) Symbols in Common Storage.. 

There are two ways of linking routines and subroutines together in 

the more recent versions of the F0RTRAN language. One way is by means of 

subroutine arguments; this has been used in section 22. By using the 
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address of a number, or the first number of a list, in a subroutine 

argument, you indicate where the variable to be used by the subroutine is 

located in the main program. This method has the advantage that sub¬ 

routines can then be used without change in many programs. But it has 

the disadvantage that in complicated programs, with many arguments, it is 

tedious to write the arguments all down whenever a subroutine is called. 

In extreme cases a subroutine can depend on dozens of arguments. Even in 

WALLSTREET there are many variables. Furthermore, every time the computer 

makes use of a subroutine, some computation must be performed to identify 

the numbers in the main routine which are to be used in the subroutine; 

and this takes some computer time. 

The other procedure makes use of C0MM0N storage statements. Variables 

identified in C0MM0N statements are given absolute locations in the computer 

memory. If one then puts the same C0MM0N and DIMENSI0N statements in front 

of each subroutine, then for all the routines the variables will be located 

in the same portion of the memory space of the computer. If you then refer 

to the variable A, it makes no difference whether the instruction is in a 

subroutine or in the main program. So there is no further need to identify 

the numbers and lists by means of arguments. This saves a lot of writing 

and machine time; but it has an important disadvantage which should be kept 

in mind. The subroutine loses generality when C0MM0N statements are used, 

because they are then tied to a particular program. If the subroutines are 

needed for a second program, they must be given a second C0MM0N statement 

and reassembled. Further, one must do careful bookkeeping on the names of 

variables in all subroutines for any given program, lest a given name be 
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used inconsistently by accident 

In general, if subroutines have few arguments, it is apt to turn out 

that explicit use of subroutine arguments is advantageous; while if sub¬ 

routines have many arguments, C0MM0N statements have a great advantage. 

It is possible to put some variables in C0MM0N and others in arguments and 

to some extent gain the advantages of both systems; but in this program we 

use C0MM0N statements almost exclusively. 

We conclude this section with a list of all the WALLSTREET variables 

in C0MM0N storage, as a useful reference for the programs of section 32. 

Table 1-31.1. Definition of Symbols Listed in C0MM0N Storage. 

A the half-width of the street. 

AT detailed table of total attenuation coefficient data. 

ATB input table of total attenuation coefficient data from which the 
longer table AT is generated. 

ATN0RM normalization constant to choose the units of the attenuation 
coefficient data. In the list ATB, units cm^ per gram are used; 
we want AT in units of inverse feet. The conversion constant is 
.0367 for air and 71.6 for concrete. 

B wall thickness, in arbitrary units. 

CCH cos$, where $ is the azimuthal deflection angle in a scattering. 

CDPH cos( <f>n+i“^n >, where <J>n and <J> , are azimuthal coordinates indicat 
ing tne direction of motion before and after the n'th scattering. 

CIMAX number of histories to be done (in floating form). 

COM cos®, where @ is the polar deflection angle in a scattering. 

CPH cos<J>, where <J> is an azimuthal variable of the photon direction of 
motion. 

CPHN new value of CPH, after a scattering. 
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CTH 

CTHN 

DN0RM 

DOS 

DOSB 

EB 

EFS 

EMAX 

EMIN 

FL 

FLSQ 

FR 

FRSQ 

FS 

FSCUM 

H 

I 

I MAX 

IN RAN 

IRA 

IRB 

IRC 

COS0, where 6 is the obliquity angle of the photon direction of 
motion. 

new value of CTH. 

normalization constant to make the results for dose come out in 
desired units. 

product of spectral energy E times energy absorption coefficient 
for air, at that energy. The units are determined by DN0RM. 

energy absorption coefficient table, for air, read into program 
as input data. 

basic list of energies for which all cross section data are read 
in. 

energy list for which the fission spectrum is read in. 

largest photon energy in problem. 

smallest energy to which photons are followed by random sampling. 

output, listing of dose received by detector at various heights 
immediately behind the left wall for various thicknesses of the 
left wall. 

sum over squares of individual contributions to FL. 

output, same as FL except that it is for the right wall, 

sum over squares of individual contributions FR. 

fission source spectrum. 

cumulative fission source spectrum, prepared in PRELIM from the 
data read into FS. 

list of wall heights. 

index labeling I*th history. 

number of histories to be done (in integer form), 

initial random number. 

random number (octal), generated by the multiplier 5^. 

random number (octal), generated by the multiplier 5^. 

random number (octal), generated by the multiplier 5^. 



IREP number of histories to be done before a comment appears on the 
on-line printer. 

JAT index for picking an attenuation coefficient from table. 

JAZ index for picking the cosine and sine of an angle distributed 
uniformly between 0 and 360 degrees. 

JB index labeling the thinnest wall (right or left) still to be 
crossed. 

JBMAX maximum number of wall thicknesses considered. 

JGO indicator variable used to aid in computing the index JAT. 

KMAX largest number of detector heights considered in the problem 
(minus one). 

KHAX1 KMAX + 1. 

MAT total number of energies for which cross section data is to be read 
into the program. 

MZ parameter which indicates direction of travel of photon upon 
leaving source. Value 0; into ground, value 1: into air. 

NC index which has value unity if air-concrete interface has been 
crossed during step, is zero otherwise. 

NLTAB index to instruct subroutine QL0G whether or not to compute 
a table of logarithms. Value 1: subroutine computes table. 
Value 2: subroutine has already computed table and does not 
need to repeat this operation. 

NMAT index labeling the medium; l=air, 2=concrete. 

NRUN number of computer run. 
T- 

NSPEC number of energies in the fission source list. If NSPEC=0, the 
program does not read in a fission spectrum but instead assumes 
that the source is monoenergetic with the source energy equal to 
EMAX. 

P survival weight factor. 

RA random number in floating form corresponding to IRA. 

RB random number in floating form corresponding to IRB. 
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RC random number in floating form corresponding to IRC. 

SCH sin<I>, see CCH. 

SDPH sin( <f>n+2. - <J> ) * see CDPH. 

SIGL standard deviation of results for dose received by detector 
behind the left wall. 

SIGR standard deviation of results for dose received by detector 
behind the right wall. 

SOM sin©, see COM. 

SPH sin<J>, see CPH. 

SPHN new value of SPH. 

STH sin 6, see CTH. 

STHN new value of STH. 

SURV probability that given an interaction for a photon of a certain 
energy, the interaction will be a Compton scattering. 

SURVB same as SURV except that this is the list read into the machine 
to be used in generating the more detailed list SURV. 

UY direction cosine sin0sin<j>. 

UYA absolute value of UY. 

UYL comparison constant for UYA. No UYA values smaller than UYL are 
accepted. 

UZ direction cosine, cos6. 

W photon wavelength. 

WALDEN normalization factor to convert wall thickness to units needed 
to do calculation. 

WB list of wavelengths at which cross sections are tabluated (detailed 
list manufactured by program). 

WMAX wavelength corresponding to EMIN. 

WMIN wavelength corresponding to EMAX. 

1-226 



Y the y-coordinate of the photon. 

YC the y-coordinate of the photon upon crossing an air-concrete 
interface. 

YD auxiliary variable. 

YDN auxiliary variable. 

YN the y-coordinate of the photon after a scattering. 

Z the z-coordinate of the photon. 

ZC the z-coordinate of the photon upon crossing an air-concrete 
interface. 

ZN the z-coordinate of the photon after scattering. 

ZSC height of photon above the ground (or below) when it emerges from 
an exterior boundary of the wall. 
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32. WALLSTREET: Computer Routines 

In all subroutines the C0MM0N and DIMENSION statements are indicated, 

but not given. The control routine includes these statements explicitly, 

a) SCATT and TURN 

SCATT selects a new wavelength by sampling the Klein-Nishina distribution 

The first part of it appears complicated; but it follows the flow chart 

given in Figure 1-28.5 faithfully, step by step. Note that W, the wave¬ 

length, is called AR in the flow chart; but when W0LD is equated to 

A^, W becomes A^^. 

ft ft ft ft ft 

SUBR0UTINE SCATT 
DIMENSI0N 
C0MM0N 

The DIMENSI0N and C0MM0N statements just indicated are those of 
the control routine; and the SUBR0UTINE statement has no arguments. 

10 CALL RANDA(IRA,RA) 

Recall that IRA is a random number in octal integer form, while 
RA is the normalized floating point version of IRA. We first 
test RA against (l+2/An)/(9+2/An). 

T=2./W 

IF(RA-(l.+T)/(9.+T)) 20,20,30 

If p-l is smaller, we take the left branch, calculate 
R=l+P2(2/A^) and test P3. 

20 CALL RANDA(IRA,RA) 
R=1.+RA*T 
CALL RANDA(IRA,RA) 
IF(RA-4.*(R-l.)/R**2)) 40,40,10 

If pj_ is larger, we take the right branch, calculate 
R=(l+2/An)/(l+p2(2/An)),and test p3. 
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CALL RANDA(IRA,RA) 
R=(1.+T)/(1.+RA*T) 
CALL RANDA(IRA,RA) 
IF(RA-.5*((W-R*W+1.)**2+l./R)) 40,40,10 

If the P3 comparison is successful, we compute as well as 
the sine and cosine of the deflection angle. 

40 W0LD=W 
W=R*W0LD 
C0M=1.-W+W0LD 
S0M=SQRTF(1.-C0M**2) 

Lastly, the survival weight is modified by a factor y^/y, 
determined by the wavelength W, as expressed by the pre-calculated 
index JAT. 

P=P*SURV(JAT,NMAT) 
RETURN 
END 

C * it it it it 

The subroutine TURN calculates new direction coordinates, by using 

the deflection data (C0M,S0M) of SCATT, and by sampling azimuthal trigo¬ 

nometric functions randomly, 

using table look-up. Figure 1-32.1 

identifies the angular 

variables. The formulae 

are given in any treatise 

on spherical trigonometry, 

and will not be repeated 

here. The only point worth 

special comment is the case 

Reference 
in which either 0n or 0R+1 

is very nearly zero. Then the Rig* 1-32.1. Spherical triangle for TURN, 

product sin0nsin0n+^, which is a denominator, is very small, and one could 
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have trouble. But it should be noted that if is small, n is nearly 

random, while if 0 . is small the value of n is essentially irrelevant. 

C ft * ft ft ft ft 

SUBROUTINE TURN 
DIMENSION 
C0MM0N 

The DIMENSION and C0MM0N statements just indicated are those of 
the control routine; and the SUBROUTINE statement has no arguments. 

CALL RANDA(IRA,RA) 
JAZ=XFIXF(360,*RA) 

JAZ is a random integer measure of <*> between zero to 360 , as 
discussed in section 28d. We next use table look-up on the 
azimuthal cosine table (CCH) to generate the new obliquity cosine 
and sine. 

CTHN=CTH*C0M+STH*S0M*CCH(JAZ+1) 
STHN=SQRTF(1.-CTHN**2) 
DEN 0 M= STH*S THN 

We now test DEN0M to see if it is so small that special measures 
should be taken to avoid possible cancellation peculiarities. 

IF(ABSF(DEN0M)-O.000001) 10,10,20 
10 CDPH=-CCH(JAZ+1) 

SDPH=SCH(JAZ+1) 
G0 T0 30 

Recall that CDPH=cosn? SDPH=sinn in Fig. 1-32.1. These orders 
take care of the case of very small DEN0M. The minus sign is 
obtained in the limiting case of vanishing 0n. While it appears 
to be unnecessary, one should remember that JAT has been used 
previously to calculate 0n+j_. 

20 CDPH=(C0M-CTH*CTHN)/DEN0M 
S DPH=S 0M*SCH(JAZ+1)/STHN 

We now calculate CPHN=cos<J>n+1 and SPHN=sin<f>n+1. 

30 CPHN= CPU * CDPH-S PH *S DP H 
SPHN=SPH*CDPH+CPH*SDPH 

Next, the new values of direction coordinates are inserted in 
the address recognized by the rest of WALLSTREET. 
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CTH=CTHN 
STH=STHN 
CPH=CPHN 
SPH=SPHN 

Finally, z and y direction cosines are identified. 

UZ=CTH 
UY=3TH*SPH 
RETURN 
END 

C sV :'c * * * 

b) STEP and CR0SS . 

CR0SS is a subroutine applied in conjunction with STEP to determine 

whether or not a boundary has been crossed. It is easier to interpret 

CR0SS if STEP has first been discussed. 

The object of STEP is to determine the position of the next interaction. 

To accomplish this it is necessary first to determine the path length from 

the n’th interaction to the (n+l)st, then to determine whether or not a 

boundary has been crossed, and finally to locate the (n+l)st interaction, 

if need be, beyond the interface. 

Determination of the path length is complicated by the fact that the 

table of cross sections is really 4 tables, with different mesh sizes, 

corresponding to different regions of the photon wavelength (W): 

*1<W<.5, .5<W<L.7, 1.7<W<10., and W>10. The index which is used in this 

table look-up is JAT. 

If the path crosses a boundary from air to concrete, or vice versa, 

the position of the next interaction must be determined by special methods. 

In CR0SS the point of crossing is located, and in STEP the photon path is 

continued by sampling again, as if the point of crossing were an interaction, 

with use of the cross sections for the new material to determine actual dis¬ 

tance in the material beyond the interface. 
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In determining whether an interface has been crossed, the important 

thing is to examine the various possibilities in_ the right order. The 

reason for this is the possibility of crossing two interfaces, in which 

case the first crossed should be the first examined. This is discussed 

in detail at appropriate points in the program. 

SUBROUTINE STEP 
DIMENSION 
COMMON 

The DIMENSION and COMMON statements just indicated are those of 
the control routine; and the SUBROUTINE statement has no arguments 

10 G0 TO (20,50,80,110),JG0 

This first order takes advantage of the JG0 value from the pre¬ 
ceding occasion on which the subroutine was used. If W was then, 
say 6.3, corresponding to JG0=3, the search for the new cross 
section value is started at order number 80; one does not bother 
to examine parts of the table appropriate to smaller W values. 

20 IFCW-.5) 30,30,40 
30 JAT=XFIXF(1000.*(W-.1))+l 

GO T0 120 

Note that the first part of the table consists of 401 entries, 
the first three corresponding to W=.1Q0Q, .1010, .1020. The 
mesh size is thus .0010. Order number 30 generates the index 
of the desired cross-section value. 

40 JG0=2 
50 IF(W-l.7) 60,60,70 
60 JAT=XFIXF(200.*(W-.5))+402 

G0 T0 120 

The second part of the table consists of 241 entries, the first 
three (i.e. entries 402, 403, and 404) corresponding to W=.500, 
.505, .510. 

70 JG0=3 
80 IF(W-10.) 90,90,100 
90 JAT=XFIXF( 50.*(W-l.7))+642 

G0 T0 120 

The third part of the table consists of 416 entries, the first 
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three (i.e., entries 642, 643, and 644) corresponding to 
W=l.7, 1.72, 1.74. 

100 JG0=4 
110 JAT=XFIXF(10.*(W-10.))+1057 

The fourth, part of the table consists of an undetermined number 
of entries; but the first three (i.e., entries 1057, 1058, and 
1059) correspond to W=10.0, 10.1, 10.2. If the final wavelength 
were 30, there would be 301 entries in this final portion. 

Next we determine the path length in mean free paths, by sampling. 

120 CALL RANDA(IRA,RA) 
CALL QL0G(RA,RAL,NLTAB) 

The random number RA generates a path length of -RAL mean free 
paths. This must be translated into distance, according to the 
(pre-specified) medium of the last interaction, indicated by 
the existing value of NMAT. 

NMAT=NMAT 

This strange order occurs because of a peculiarity of FORTRAN II 
which has been corrected in FORTRAN IV, and which may be corrected 
in future FORTRAN II compilers. It turns out that variables which 
are to be used as indices are not necessarily transmitted from one 
program to another by the C0MM0N statement. The dummy arithmetic 
statement guarantees such transmission of information; it is 
placed after all possible modifications by other routines.* 

S=-RAL/AT(JAT,NMAT) 
YN=Y+S*UY 
ZN=Z+S*UZ 

The last two orders generate projections parallel to y and z axes. 
Now comes the problem of determining whether boundaries have been 
crossed. Recall that NC=0 if no crossing, while NC=1 if crossing, 
and that the argument of CR0SS identifies the boundary. 

NC=0 
IF(UY) 160,140,130 

We first test the sign of the y-component of the path (see 

*Note that the SAP, FAP, or MAP program gives a clear indication of 
what actually occurs. The whole problem can be sidestepped in FORTRAN II 
by putting all variables which are used as indices into argument lists 
rather than C0MM0N statements. 

1-233 



Fig. 1-31.1) This tells whether the photon travels to the left 
or to the right. 

130 CALL CR0SSC-A) 
IF(NC) 140,140,120 

If the photon travels to the right, we must sample boundaries 
beginning at the left, i.e. y=-A. In this and the following 
tests, NC=1 means that the boundary has been crossed, and the 
position coordinates Y and Z have been recalculated by CR0SS 
to give the point of crossing. 

140 CALL CR0SS(0.0) 
IF(NC) 150,150,120 

Here we test the z=0 boundary, photon traveling to the right. 
If by accident the photon goes neither right nor left, this is 
the first test. 

150 CALL CR0SS(A) 
IF(NC) 190,190,120 

Photon still traveling, to the right, y=A boundary being tested. 
Note that should the test be positive (NC=1), all remaining tests 
are skipped. This completes tests for photons traveling to the 
right. 

160 CALL CR0SS(A) 
IF(NC) 170,170,120 

Photon travels left, y=A boundary, i.e. the boundary farthest 
right. 

170 CALL CR0SS(0.) 
IF(NC) 180,180,120 

180 CALL CR0SS(-A) 
IF(NC) 190,190,120 

After failure of all the tests, or after the last crossing has 
been determined, we exit from STEP. 

190 RETURN 
END 

A A A A ,t. 
« « « #§ W SC 

CR0SS is not a particularly clever program; it is a straightforward 

treatment of the different cases that can arise, with no special difficulties 

to be encountered. 
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SUBR0UTINE CR0SS(C) 
DIMENSION 
C0MM0N 

The DIMENSION and C0MM0N statements just indicated are those of 
the control routine; the subroutine argument is the identifying 
coordinate of the boundary to be tested for crossing. 

IF(C) 60,10,60 

The z=0 boundary (i.e. C=0) is first taken care of in this 
program. Order number 60 corresponds both to y=+A ana y=-A. 

10 IF(Z) 20,140,30 

If the Z value for the preceding interaction is zero, then it 
will not be because of random sampling, but because of a crossing 
detected in a previous application of CR0SS. But in that case 
the material has already been changed; hence the transfer to 
140 rather than 110. 

20 IF(ZN) 140,40,40 
30 IF(ZN) 40,40,140 

If the old Z is positive, and if tne new (ZN) value is also 
positive, the z=0 boundary isn't crossed. Likewise, Z<0 and 
ZN<0 means no z=0 crossing. 

40 YC=Y-Z*UY/UZ 
IF(ABSF(YC)-A) 50,140,140 

YC is the new Y value assuming a crossing. But YC must lie 
between -A and +A. If so, we record the necessary items and 
exit from the subroutine. If not, no crossing has occurred. 

50 Y=YC 
Z=0. 
NC=1 
G0 T0 110 

Now we are ready to treat the y=+A and y=-A interfaces in a 
similar way. The next two orders create parameters analogous 
to C and Z in the first two orders of the routine. 

60 YD=Y-C 
YDN=YN-C 

The next three orders are analogous to orders 10, 20, and 30. 

IF(YD) 70,140,80 
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70 IF(YDN) 140,90,90 

80 IF(YDN) 90,90,140 

If YD and YDN are both positive or both negative, no crossing. 

If YD=0, it will be because it was set equal to zero in a 

previous CR0SS application. If YD and YDN have opposite signs, 

a crossing of the interface plane has occurred, but perhaps 

not the interface. 

90 ZC=Z-YD*UZ/UY 

IF(ZC) 140,140,100 

ZC must be positive; it is the z value of the interface crossing. 

100 Y=C 

Z=ZC 

NC=1 

Having recorded coordinates and crossing, only the change of 

material is left to be done. 

110 IF(NMAT-l) 120,120,130 

120 NMAT=2 

RETURN 

130 NMAT=1 

140 RETURN 

END 

c) START and SC0RE 

The remaining routines called by HIST0R are START, which gives each 

case history its initial conditions, and SC0RE, which applies when a case his¬ 

tory has penetrated a wall. 

Photons are started at points equally distributed between -A and +A. 

Use is made in the START routine of a parameter HZ, which is unity if the 

photon initially travels up into the air and zero if the photon initially 

travels downward into the concrete. Since HZ is pre-specified, it is 

possible to perform calculations separately for the two types of starting 

conditions, and choose different sample sizes. It is advantageous to per¬ 

form most calculations for upward-traveling photons, since they contribute 
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perhaps 80% or more of the dose beyond the wall. This is the only type 

of importance sampling in WALLSTREET. 

SUBR0UTINE START 

DIMENSI0N 

C0MM0N 

The DIMENSI0N and C0MM0N statements just indicated are those of 

the control routine; and the SUBR0UTINE statement has no arguments. 

CALL RANDC(IRC,RC) 

IRB=IRC 

CALL RANDC( IRC,R.C) 

IRA=IRC 

We here use RANDC to generate initial random numbers IRB and IRA 

for the case history being started. This approach makes corre¬ 

lated Monte Carlo calculations easy to do. 

IF(NSPEC) 40,40,10 

NSPEC=0 means that a monoenergetic source is being used. NSPEC>0 

means that NSPEC is the number of energy boxes in the spectrum. 

10 CALL RANDB(IRB,RB) 

£>0 20 NS=1,NSPEC 

IF(RB-FSCUM(NS)) 30,20,20 

20 C0NTINUE 

Recall that FSCUM is a cumulation over the probabilities that 

the photon represent different energy boxes. These four orders 

generate NS, the index of the energy box sleected by RB. The 

next (arithmetic) statement guarantees that the index has a 

proper address.* 

30 N=NS 

CALL RANDB(IRB,RB) 

We are going to sample an energy within the energy box randomly. 

This random number is to be used for that purpose. 

IF(N-NSPEC) 32,34,34 

32 W=.510976/(EFS(N)+RB*(EFS(N+1)-EFS(N))) 

*For more comments about this (possibly unnecessary) order see the 

footnote in the CR0SS writeup. 
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G0 T0 50 
34 W=.510976/(EFS(N)+RB*(EMAX-EFS(N))) 

G0 T0 50 

The list of NSPLC EFS values doesn’t include EMAX. 

40 W=WMIN 

For the monoenergetic case. The next 5 orders establish the initial 
obliquity angle 6 relative to the vertical axis. 

50 CALL RANDA(IRA,RA) 
CTH=RA 
STH=SQRTF(1.-C TH**2) 

Note that for an isotropic source, different values of the 
obliquity cosine are equally probable. Next we determine 
whether the photon starts up or down, and fix the material 

index accordingly. 

IF(MZ) 60,60,70 
60 CTH=-CTH 

NMAT=2 
G0 T0 80 

70 NMAT=1 

Next we sample the azimuthal angle randomly, using table look-up. 
Recall that the 2nd order generates an integer between 0 and 89. 
Photons are started only towards the right wall. This permits an 
investigation of the relative contributions due to photons which 
start towards a wall and those which initially travel away from 
the wall and must scatter to strike the wall. 

80* CALL RANDA(IRA,RA) 
JAZ=XFIXF(90.*RA) 
CPH=CCH(JAZ+1) 
SPH=SCH(JAZ+1) 

The next three orders position the photon with equal likelihood 
in y between -A and +A, and at z=0. 

CALL RANDA(IRA,RA) 
Y=A*(1.-2.*RA) 
Z=0. 

Lastly, we identify direction cosines (UZ,UY), survival probability 
(P), initial SC0RL wall index (JB) and energy table index (JG0). 
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UZ=CTH 
UY=STH*SPH 
P=l. 
JB=1 
JG0=1 
RETURN 
END 

.% A 
<t 4% 4\ 4% 4% 

In the SC0RE routine we permit scoring through either left or right 

walls. The photon must be classified into an appropriate height interval. 

Energy classification is already taken care of by the index JAT; but it is 

necessary to weight according to some kind of dose. 

The old question of flux vs current must now be faced. If we simply 

count photons which cross the wall, we calculate the current through the 

wall. To calculate the flux as seen by an isotropic detector, it is 

necessary to introduce a cosine factor. This has unpleasant features, 

because the obliquity cosine divides the current. Since this factor can 

become arbitrarily small, fluctuations in the dose are increased relative 

to fluctuations in the current. To control these fluctuations to some 

extent, the cosine is not permitted to become smaller than an arbitrary 

limiting value. 

The program calculates results for several wall thinknesses simul¬ 

taneously. Since a photon is never permitted to SC0RE more than once at 

a given wall thickness, an index (JB) is necessary to keep track of the 

of the next wall thickness at which the photon can SC0RE. 

SUBR0UTINE SC0RE 
DIMENSI0N 
C0MM0N 

The DIMENSION and C0MM0N statements just indicated are those of 
the control routine; and the SUBROUTINE statement has no arguments. 
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IF(UY) 30,30,10 

This tells whether the direction is right (UY>0) or left. 

10 IF(YN-B(JB)) 100,100,20 
20 ZSC=Z+(B(JB)-Y)*UZ/UY 

G0 T0 50 

If the new y value (YN) exceeds the next wall thickness (B(JB)) 
we calculate the height (ZSC) of the point of crossing, by use 
of direction cosines and the old height (Z). This applies to 
the right wall; we next perform the same calculation for the 
left wall. 

30 IF(YiM+B(JB)) 40,100,100 
40 ZSC=Z-(B(JB)+Y)*UZ/UY 

Note that failure to cross means exit from the routine after 
identifying Y,Z values (transfer to order 100). Next we must 
locate the correct height bin (KS). 

50 D0 60 KS=1,KMAX 
IF(ZSC-H(KS)) 70,60,60 

60 CONTINUE 
70 K=KS 

Order number 70, possibly unnecessary, guarantees that KS has 
a proper address. (See the footnote in the CR0SS writeup.) We 
next take into account survival weight, dose weight, and the 
cosine to determine flux contribution. 

75 UYA=ABSF( UY ) 
IF(UYA-UYL) 76,76,78 

76 D0SE=DOS ( J AT ) *P / U Y L 
PRINT 77,D0SE,UY,K,JB 

77 F0RMAT(1P2E13.5,216) 
G0 T0 79 

If the cosine magnitude is below the limit, the various parameters 
are recorded for observation. The initial symbols in the F0RMAT, 
IP, move the decimal point of the E format numbers 1 Place 
to the right,* 

78 D0SE=D0S(JAT)*P/UYA 

*This decimal shift will affect numbers in E and F formats to the 
right as far as, say, a OP or other comparable decimal shift indication. 

1-21+0 



The usual case is not recorded. Next we add in this contribution 

and its square. 

79 IF(UY) 90,90,80 
80 FR(K,JB)=FR(K,JB)+D0SE 

FRSQ(K,J3)=FRSQ(K,JB)+D0SE**2 
JB=JB+1 
IF(JB-JBMAX) 10,10,110 

If JB is not larger than JBMAX, the photon may cross another 
wall interface. Hence the transfer to order number 10. The 
next orders repeat for the left wall. Recall that by starting 
photons only towards the right wall, the two results are 
different. 

90 FL(K,JB)=FL(K,JB)+D0SE 
FLSQ(K,JB)=FLSQ(K,JB)+D0SE**2 
JB=JB+1 
IF(JB-JBMAX) 30,30,110 

Lastly, we equate Y and Z to tne new values YN and ZN, when 
the photon fails to cross the next wall thickness tried. 

100 Y=YN 
Z=ZN 

110 RETURN 
END 

d) HIST0R and PRELIM 

HIST0R is the central routine of WALLSTREET. It initiates and carries 

along a photon until it has either penetrated through the thickest wall, or 

has exceeded the maximum wavelength (WMAX). Thus, HIST0R is used once for 

each case history. 

MB »*« »% 
4% #k <k 4* 4t 

SUBR0UTINE HIST0R 
DIMENSI0N 
C0MM0N 

.The DIMENSI0N and C0MH0N statements just indicated are those of 
the control routine; the SU5R0UTINE statement has no arguments. 

CALL START 
10 CALL STEP 

CALL SC0RE 
IF(JB-JBMAX) 20,20,40 
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The photon starting point plays the role of the position of 

the preceding interaction. 

20 CALL SCATT 

If the photon has not penetrated through the thickest wall, 

it scatters again. 

IF(W-WMAX) 30,30,40 
30 CALL TURN 

G0 T0 10 

If the photon has not exceeded the maximum wavelength, it is 
continued further. If the photon has either penetrated the' 
thickest wall or exceeded the maximum wavelength, an exit 
from tne subroutine occurs. 

40 RETURN 
END 

A A A A 

PRELIM is a much longer subroutine, which establishes all the tables 

to be used in the computation; it also does a number of routine scaling 

computations which save work in the preparation of the data for INPUT. 

The bulk of the computations in PRELIM are concerned with the sine 

and cosine tables (CCH,SCH), the list of energies at which the cross 

sections are tabluated (WB), the cross-section tables (EB, D0SB, ATB, 

SURVB), the wall thicknesses (B), and the cumulative probability function 

for the spectrum (FSCUM). 

A A A A A •% 
A O 4% 4% 4» 4 6 

SUBR0UTINE PRELIM 
DIMENSION 
C0MM0N 

The DIMENSI0N and C0MM0N statements just indicated are those of 
the control routine; the SUBROUTINE statement has no arguments. 
The first 6 orders generate parameters to be used in the calcu¬ 
lation, all of which are in the C0MM0N list. 

KMAX1=KMAX+1 
CIMAX=IMAX 
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IRC=INRAN 
NLTAB=1 
WMIN=.510976/EMAX 
WMAX=.510976/EMIN 

Next we generate the table of sines and cosines. 

CH=-.5 
D0 10 N=1,360 
CH=CH+1. 
CCH(N)=C0SDF(CH) 

10 SCH(N)=SINDF(CH) 

C0SDF is the cosine of the angle CH in degrees. We now set 
up the energy list for the cross sections. Recall that this 
is four lists with different mesh sizes. 

WB(l)=.l 
D0 20 N=2,401 

20 WB(N)=WB(N-l)t.001 
D0 30 N=402,641 

30 WB(N)=WB(N-1)+.005 

The first 400 energies begin at .1 and are spaced .001 apart 
in wavelength. The next 240 wavelengths begin at .5 and are 
spaced .005 apart. The third part of the list begins at 1.7 
and has spacing .02. The last part begins at 10. and has 
spacing .1. 

D0 40 N=642,1056 
40 WB(N)=WB(N-1)+.02 

D0 50 N=1057,1256 
50 WB(N)=WB(N-l)+.l 

The cross section tables which were read into the machine must 
now be interpolated for the energies of the WB list. This 
interpolation is accomplished on a logarithmic basis — the 
log of the cross section is interpolated against the log of 
the energy — with tabulation of the anti-log (exponential) 
of the interpolated value. This type of interpolation is used 
because the cross sections are relatively smooth on a log-log 
plot. 

D0 60 N=1,MAT 
EB(M)= L0GF(EB(M)) 
D0SEB(M)=L0GF(D0SB(M)) 
D0 60 M=l,2 

ATB(M,K) = L0GF(ATB(M,K)) 
60 SURVB(M,K)=L0GF(SURVB(M,K)) 

These orders replace the input data by logarithms of the 
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numbers. Recall that EB is the energy, not the wavelength. 
We next calculate the logarithms of energies of "mid-point” 
wavelengths E=-log[jf< 510976] , and carry out both 
interpolations and anti-log calculations. 

D0 70 N=1,1256 
E=.021714-L0GF(WB(N)+WB(N+l)) 
CALL INTRP(MAT,EB,D0SB,3,E,D0S(N)) 
D0S(N)=DN0RM*EXPF(D0S(N)+L) 

The addition of E in the exponent provides an energy factor 
which changes the energy absorption coefficient to an appro¬ 
priate dose weight. DN0RM is simply a factor to make units 
correct. 

D0 70 K=l,2 
CALL INTRP(MAT,EB,ATB(1,K),3,L,AT(N,K)) 
CALL INTRP(MAT,EB,SURVB(MAT,K),3,L,SURV(N,K)) 
A'T (N , K)=A TN 0 RM (K) *L X P F (AT (N, K)) 
SURV(N,K)=LXPF(SURV(N,K)) 

70 C0NTINUL 

Next, we must clear all cells in which dose will be cumulated. 

D0 80 K=1,KMAX1 
D0 80 J=1,JBMAX 
FR(K,J)=0. 
FRSQ(K,J)=0. 
FL(K,J)=0. 

80 FLSQ(K,J)=0. 

The arbitrary wall heights are now to be renormalized. 

D0 90 J=l,JBMAX 
90 B(J)=A+B(J)/WALDEN 

Lastly, the cumulative probability distribution for source 
energy is generated from the spectrum. 

FSCUM(1)=FS(1) 
D0 100 NS=2 ,NSPEC 

100 FSCUM(NS)=FSCUM(NS-1)+FS(NS) 
D0 110 NS=1,NSPEC 

110 FS CUM (NS )=FS CUM ( NS ) / FS CUM ( NSPL C ) 
RETURN 
END 
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e) The WALLSTREET Control Routine and Subroutines INPUT and 0UTPUT . 

The only unusual feature of the WALLSTREET control routine is what 

might be called a "pacifier" for computer operators. Monte Carlo calcu¬ 

lations tend to be fairly long. If half an hour or more goes by and 

nothing appears to be happening on the computer, the operator is apt to 

become worried that something is wrong with the program. Sometimes they 

get so worried and tense that they stop the calculation and start some¬ 

one else’s program, thus wasting all the time and money up to that point. 

The control routine therefore prints out every now and then the number of 

case histories completed and the total number to be done. 

C :’c it it it it 

c WALLSTREET 

DIMENSI0N AT(1256,2),STB(40,2),ATN0RM(2),B(10),CCH(360),D0S( 1256), 

1 D0SB(40),EB(40),EFS(50),FL(100,10),FLSQ(100,10),FR(100,10), 

2 FRSQ(100,10),FS(50),FSCUM(50),H(99),SCH(360),SIGL(100,10), 

3 SIGR(100,10)£URV(1256,2),SURVB(40,2),WB(1256) 

C0MM0N A, AT, ATB, ATN0RM, B, CCH , CDPH , Cl MAX, C0M, CPH , CPHN , CTH , CTliN , 

1 DN 0RM,D0S,D0SB,EB,EFS,EMAX,EMIN,FL,FLSQ,FR,FRSQ,FS,FSCUM,H,1, 

2 IMAX,INRAN,IRA,IRB,IRC,IREP,JAT,JAZ,JB,JBMAX,JG0,KMAX,KMAX1,MAT, 

3 MZ,NC,NLTAB,NMAT,NRUN,NSPEC,P,RA,RB,RC,SCH,SDPH,SIGL,SIGR,S0M, 

4 SPri,SPHN,STH,STHN,SURV,SURVB,UY,UYA,UYL,UZ,W,WALDEN,WB,WMAX, 

5 WMIN,Y,YC,YD,YDN,YN,Z,ZC,ZN,ZSC 

These DIMENSI0N and C0MM0N statements are to be used with 

the subroutines, except for utility subroutines. 

CALL INPUT 

CALL PRELIM 

WRITE 0UTPUT TAPE 81,10 

10 F0RMAT(41H HIST0RIES TO BE D0NE D0NE) 

This is the heading for the "operator pacifier". The order 

utilizes the online printer at the NBS installation.* This 

will probably not be true at other installations. 

ITALLY=0 

PRINT 15 

15 F0RMAT(24H SMALL DIRECTI0N C0SINES) 

This is the heading for SC0RE cases in which the cosine in the 

denominator is unusally small. Oddly, this PRINT order is 

-35- 
In the BELL system, the statements READ, PRINT, and PUNCH refer 

to offline input and output. 
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offline, so that it does not become confused with the "pacifier". 

Next comes the main loop of the program. 

D0 40 1=1,IMAX 

CALL HIST0R 

ITALLY=ITALLY+1 

I If (I TALLY-1 REP) 40,20,20 

20 WRITE 0UTPUT TAPE 81,30,IMAX,I 

30 F0RMAT(112,120) 

Order 20 prints out the number of case histories to be calculated 

and the number done so far, i.e, it is the "pacifier". 

ITALLY=0 

40 C0NTINUE 

ITALLY is the counter for each batch. I is the counter for the 

whole calculation. 

CALL 0UTPUT 

CALL ENDJ0B 

END 
; i: it it it it it 

The INPUT subroutine is straightforward, and requires very little com¬ 

ment. It is included here mainly for completeness; most programmers have 

their own favored INPUT formats. In this program there is evident the 

habit of printing out immediately the data which the machine has just read, 

using the same F0RMAT statement. This gives a record which is useful when 

and if the question arises about the data used for a given calculation, 

as well as a record which establishes whether or not the machine received 

and interpreted the data properly. 

.4 •’« .4 .4 .4 .4 
«» «» rft «i 

SUBR0UTINE INPUT 

DIMENSI0N 

C0MM0N 

The DIMENSI0N and C0MM0N statements are those of the WALLSTREET 

control routine; the SUBROUTINE statement has no arguments. 

PRINT 10 

10 F0RMAT(1HO) 
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This order is used throughout as a spacer, since it results in 

a two-line gap on the page. It is used here at the beginning to 

separate output from tabulations of run parameters, which usually 

precede the output. 

READ 20 

PRINT 20 

PUNCH 20 

20 F0RMAT(72H 

1 ) 
PRINT 10 

This is an arbitrary title card which is read, recorded, and 

eventually repunched at the beginning, hence at the beginning 

of output cards. 

PRINT 30 

30 F0RMAT(71H NRUN IMAX IREP NSPEC MAT MZ KMAX JBMAX 

1 INRAN UYL) 

READ 40,NRUN,IMAX,IREP,NSPEC,MAT,MZ,KMAX,JBMAX,INRAN,UYL 

PRINT 40,NRUN,IMAX,IREP,NSPEC,MAT,MZ,KMAX,JBMAX,INRAN,UYL 

40 F0RMAT(816,014,F9.5) 

PRINT 10 

These are the control indices. Note that INRAN is the (octal) 

starting random number. 

PRINT 50 

50 F0RMAT(51H EMAX EMIN ATN0RM(1) ATN0RM(2) DN0RM) 

READ 60,EMAX,EMIN,ATN0RM(1),ATN0RM(2),DN0RM 

PRINT 60,EMAX,EMIN,ATN0RM(1),ATN0RM(2),DN0RM 

60 F0RMAT(2F6.3,1P3E13.5) 

PRINT 10 

These are control parameters. Note the use of IP to shift the 

decimal one place to the right. 

IF(NSPEC) 100,100,70 

Recall that NSPEC=0 means a inonoenergetic source. 

70 PRINT 80 

80 F0RMAT(33H FISSI0N SPECTRUM AND ENERGY LIST) 

READ 90,(FS(NS),NS=1,NSPEC) 

PRINT 90,(FS(NS),NS=1,NSPEC) 

90 F0RMAT(8F9.5) 

PRINT 10 

READ 90,(EFS(NS),NS-i,NSPEC) 
PRINT 90,(EFS(NS),NS=1,NSPEC) 
PRINT 10 
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G0 T0 120 

100 PRINT 110 

110 F0RMAT(21H M0N0ENERGETIC S0URCE) 

PRINT 10 

The cross section data is read next, 

120 PRINT 130 

130 F0RMAT(19H CR0SS SECTI0N DATA) 

READ 90,(EB(M),M=1,MAT) 

PRINT 90,(EB(M),M=1,MAT) 

PRINT 10 

READ 90 ,(D0SB(M),M=1,MAT) 

PRINT 90,(D0SB(M),M=1,MAT) 

PRINT 10 

D0 140 K=l,2 

READ 90,(SURVB(M,K),M=1,MAT) 

PRINT 90,(SURVB(M,K),M=1,MAT) 

PRINT 10 

READ 9 0, (ATB( M, K), M= 1,MAT) 

PRINT 90,(ATB(M,K),M=1,MAT) 

140 PRINT 10 

Finally, we read in wall parameters, thicknesses, and heights. 

PRINT 150 

150 F0RMAT(28H FIELD SIZE,A WALL DENSITY) 

READ 160,A,WALDEN 

PRINT 160,A,WALDEN 

160 F0RMAT(F9,2,F20,3) 

PRINT 10 

PRINT 170 

170 F0RMAT(17H WALL THICKNESSES) 

READ 90,(B(J),J=1,JBMAX) 

PRINT 90,(B(J),J=1,JBMAX) 

PRINT 10 

PRINT 180 

180 F0RMAT(8H HEIGHTS) 

READ 90,(H(K),K=1,KMAX) 

PRINT 90,(H(K),K=1,KMAX) 

PRINT 10 

RETURN 

END 

The 0UTPUT subroutine is likewise uncomplicated. It is in two parts 

through order number 50 the information is directly punched and printed. 
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After that comes a longer section of the code in which some attempt to 

normalize the data is made and formats for easy scanning are constructed. 

The normalization is accomplished simply by dividing the results by the 

number of case histories initiated. This is essentially meaningless, be¬ 

cause it does not take account of the street width (2A) or the wall 

height intervals. 

* A 
, 4% 4\ «» 4\ 4% 4% 4% 

SUBROUTINE OUTPUT 

DIMENSION 

COMMON 

The DIMENSION and C0MM0N statements are those of the WALLSTREET 

control routine; the SUBROUTINE statement has no arguments. 

PRINT 10 

10 FORMAT(1H0) 

As in the INPUT subroutine, PRINT 10 is a spacing order. 

PRINT 20 

20 F0RMAT(12H CARD OUTPUT) 

PRINT 10 

PRINT 30 

30 F0RMAT(56H NRUN I MAX MZ NSPEC EMAX EMIN INRAN 

1) 
PRINT 40,NRUN,IMAX,MZ,NSPEC,EMAX,EMIN,INRAN 

PUNCH 40,NRUN,IMAX,MZ,NSPEC,EMAX,EMIN,INRAN 

40 F0RMAT(4I6,2F9.5,014) 

PRINT 10 

PRINT 50 , (( FR(K, J ) ,FRSQ(K ,J),K=1,KMAX1),J=1,JBMAX) 

PUNCH 50,((FR(K,J),FRSQ(K,J),K=1,KMAX1),J=1,JBMAX) 

PRINT 10 

PRINT 50,((FL(K,J),FLSQ(K,J),K=1,KMAX1),J=1,JBMAX) 

PUNCH 50,((FL(K,J),FLSQ(K,J),K=1,KMAX1),J=1,JBMAX) 

50 F0RMAT(1P6E12.5) 

This completes the main output. Notice that the IP is again 

used to shift the decimal point to the right. Next we intro¬ 

duce the number of case histories as a preliminary normalization, 

and calculate standard deviations and variances. 

D0 60 K=1,KMAX1 

D0 60 J=l,JBMAX 

FR(K,J)=FR(K,J)/CIMAX 
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FRSQ(K,J) = FRSQ(K,J)/ClMAX 
SIGR(K,J)=SQRTF((FRSQ(K,J)-FR(K,J)**2)/CIMAX) 

FL(K,J)=FL(K,J)/CIMAX 

FLSQ(K,J)=FLSQ(K,J)/CIMAX 

60 SIGL(K,J)=SQRTF((FLSQ(K,J)-FL(K,J)**2)/ClMAX) 

The output is now to be arranged to take account of the possibility 

that there may be too many wall thicknesses to put side by side 

across the page. Provision is made to print out the first 5, 

and if there are more, to print other sets of results below. 

IF(JBMAX-5) 70,70,80 

70 JST0P=JBMAX 

G0 T0 90 

80 JST0P=5 

90 JSTART=1 

JCHECK=5 

100 PRINT 110 

110 F0RMAT(1H1) 

This is another spacing order. 

C 

PRINT 120,(B(J),J=JSTART,JST0P) 

120 F0RMAT(10H J B= F15.5,9F20.5) 

D0 140 K=1,KMAX1 

PRINT 130,H(K),(FR(K,J),SIGR(K,J),J=JSTART,JST0P) 

130 F0RMAT(F10.5.1P10E10.2) 

140 C0NTINUE 

PRINT 10 

D0 150 K=1,KMAX1 

150 PRINT 130,H(K),(FL(K,J),SIGL(K,J),J=JSTART,JST0P) 

If(JCHECK-JST0P) 160,160,190 

160 IF(JBMAX-JST0P) 190,190,170 

170 JSTART=JSTART+5 

J CHE CK= J CHE CK+ 5 

JST0P=JST0P+5 

IF(JB MAX-JST 0P) 180,100,100 

180 JST0P=JBMAX 

G0 T0 100 

190 RETURN 

END 
•’« A A A A A 
« 4% 4* <» 
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G. APPENDIX ON NUMERICAL METHODS 

33. Approximation of Functions by Points 

The numerical methods given in these sections are quite familiar; 

and many treatises exist in which they are elaborated far beyond anything 

which will be attempted here. We include this material because it was 

presented in the lectures as basic reference material for the discussions 

of that part of the manuscript beginning with section 22. Even though 

the material is quite familiar, our approach is not always the usual one. 

Many types of calculations involve a function f(x), whose analytic 

form, even if known, is so complicated that we wish to replace it with 

a simpler function for analytic or numerical manipulations. Suppose, 

therefore, that by perseverance 

we manage to determine several 

values f^, f^, and f^ of this 

function at points x^, x^, and 

x^. We illustrate with three 1 z 3 

Fig. 1-33.1. A function, with three 

points only, because the gener- points determined. 

alization to a larger or smaller number of points will be obvious. 

Fig. 1-33.1 is a sketch of the situation. 

The simplest function of our acquaintance is a combination of the 

first few powers. Because of its simplicity we choose this form of 

representation—other forms could serve as well—and write 

f(x) = a + bx + cx2, (1-33.1) 

where f(x) will be made to resemble f(x) to the extent that both functions 

pass through the three points (x^f^, (x2,f2), and (x3,f ). Three con- 

stants are inserted in the expression for f(x) to correspond to the conditions 

imposed by requiring the curve to pass through these three points. 
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The conditions are easily written down: 

£ , 2 
f = a + bx. + cx 

1 1 1 5 

= a + bx^ + cx^, (1-33.2) 

_ , 2 
= a T bx^ + cx^. 

Since both the x.'s and the f.'s are known, these represent three 
i i 

simultaneous, linear equations for the constants a, b, and c. 

We solve these equations by a somewhat indirect procedure. In the 

first step, we lump the equation for f(x) with the three conditions 

to make a total of four equations, rewriting each to place all terms on 

the left side: 

-£(x) + a + bx + 
2 

cx 0, 

-fl 
+ a + 

bxi 
+ 

2 

CX1 = 
o, 

CM
 

M-t 1 + a + bx2 + 
2 

CX2 = 
0, 

-f3 
+ a + 

bx3 
+ 

2 

CX3 = 
0. 

We put this set of equations into matrix form, 

A 2s] / N / N 
f (x) 1 X X -1 0 

f. 1 xi 
2 

a 0 
1 1 1 

f 1 x„ 
2 

x^ b 0 
2 2 2 

2 
f, 1 x x-3 c 0 

k3 
3 

k / v / 

Next, we introduce an apparent complication, 

column matrices into 4x4 matrices. The simplest 

fill nearly all the new spaces with zeros, while 

diagonal. The column matrix then becomes 

(1-33.3) 

by expanding the 

way to do this is to 

putting l's down the 
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-10 0 0 

a 1 0 0 

b 0 1 0 

I c 0 0 1 
^ / 

where the values on the diagonal ensure that the determinant of this 

matrix is not zero. If this square matrix is inserted in place of the 

left column matrix, the ordinary rules of matrix multiplication tell us 

the square matrix which is an appropriate replacement for the right 

column matrix; and our modified equation has the form 

2s 

f(x) 1 X 
> 

X 

s' 
-1 0 0 

s 
0 

s' 

0 1 X 

fl 
1 

X1 
2 

X1 
a 1 0 0 0 1 

X1 

l-
h 

N
> 1 

X2 
2 

X2 
b 0 1 0 0 1 

X2 

1 
X3 

2 
X3 

J 

c 
V 

0 0 1 
y 

0 1 
X3 

x 

x 

x 

1 

2 

2 

2 

(1.33.4) 

This expanded form contains no information other than that of the set 

of four simultaneous equations with which we began. The extra spaces 

have been so filled that all the extra equations are identities. 

There is a theorem, given in any standard treatise on determinants 

and matrices, which states that for such an equation involving square 

matrices, a corresponding equation will hold if each matrix is replaced 

by its determinant. That is to say, 

£ ( X ) 1 X 
2 

X -1 0 0 0 0 1 X 
2 

X 

£1 
1 

X1 

2 
X1 

a 1 0 0 0 1 
X1 

2 
X1 

f 2 
1 

X2 
2 

X2 
b 0 1 0 0 1 

X2 
2 

X2 

f3 
1 

X3 

2 

X3 
c 0 0 1 0 1 

X3 

2 
X3 

(1-33.5) 
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But the determinant on the right is obviously zero, because the.first 

column is filled with zeros. On the other hand, the second determinant 

on the left has the value -1, not zero. Therefore, because one of the 

factors on the left must be zero, we find that 

f (x) 

fi 

1 X 

1 X 

1 X 

1 X 

X 

2 

1 

2 

‘2 

2 
3 X3 

1 X1 

2 X2 

- 0 (1-33.6) 

We could have written this result much earlier, because it follows from 

the first matrix equation. This somewhat more long-winded procedure has 

been used so that we can refer to it in later, less obvious applications. 

Note that if in the top row x is assigned any of the three values x^, x^» 

or x^, the top row of values will coincide with one of the other rows, 

making the whole determinant zero and satisfying the equation. 

This determinant equation is useful in the discussion of standard 

numerical techniques. Suppose we expand the determinant by minors of 

the top row: 

1 
X1 

2 
X1 fi X1 

2 
X1 

1 
2 

X1 
1 

X1 
A 

f (x)* 1 
X2 

2 
X2 

-1 * 
: 2 X2 

2 
X2 

+x* 
f 2 

1 
2 

X2 
2 

-x • 
f 2 

1 
X2 

1 
X3 

2 
X3 i£3 X3 

2 
X3 f3 

1 
2 

X3 f3 
1 

X3 

If we divide this equation by the factor multiplying f(x), we have 

Cramer's rule for the three constants a, b, and c. But the main thing 

to observe is the linearity of the equation in terms of the elements 

of the top row. From this it is quite clear that if a linear operation T 

is applied to the terms of this equation, the result can be put in the form 
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0 
(1-33.7) 

T* f(x) T • 1 T • x T • x 

fi 
1 

X1 
2 

X1 

CM
 

1 CM
 

X
 

2 

X2 

f 3 
1 

x3 

2 

X3 

In the following sections we apply this rule to obtain "weights" for several 

numerical operations. 
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34. Interpolation 

The three operations of interpolation, differentiation, and integration 

are closely related and can be discussed together. 

Let us consider Eq. (1-33.6), which is equivalent to Eq. (1-33.7) with 

T a simple multiplication by unity. We expand the determinant by the ele- 

A 

ments in the first column to get an equation in which f(x) and the f^ are 

factors. Designating the minor of f(x) by D, and the minors of the f^ by nu(x), 

the expansion gives 

A 

f(x)D - f^m^ + f^m2 - f^m^ = 0. 

Dividing by D, and defining functions w^(x) by 

wi(x) = (-l)1+1m.(x)/D, 

we write this equation in the simple form 

f(x) = l fiwi(x) 
i = l 

(1-34.1) 

The w^(x) are called "weights," and in this case they are interpolation 

weights. If we specify a particular value of x_» we can evaluate w^(x). The 

sum then gives a value for f, which approximates the value for f at this £. 

Tnis is precisely the interpolation procedure. Note that the weights do not 

depend on the f^ values. But they do depend on x^, x^t and x^. 

Before leaving the subject, we will point out some additional features 

of the interpolation weights. It is clear from Eq. (1-34.1) that w^(x^) = 0, 

i ^ j, and that w^(x^) = 1. From this it is possible to infer the analytic 

*0f the many general treatments. Ref. 46 has been most useful here. 
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form of the weights without evaluating the determinants. Eq. (1-34.1) can be 

explicitly written 

f (x) 

(x - x )(x - x ) (x - x )(x -x ) (x -x )(x -x ) 
---f*+ 7-f,-—& t--=^f . (1-34.2) 
(xx-x2) (x1-x3) (x2-x3)(x2 - x2J ^ (x3-x1)(x3-x2) 3 

This expression is widely known as the "Lagrange interpolation" formula. 

If we consider the special case f^ = f = f^, we immediately see that 

the weights have the general property 

3 

l w.(x) = 1, (1-34.3) 
i = l 1 

from which it follows that, for example, 

2 
w (x) = 1 - 5> (x). (1-34.4) 

3 i=l 1 

Lastly, we call attention to a well known procedure and terminology for 

simplifying the solution of the determinant equation (1-33.6).“ Suppose, in 

this determinant, each row is subtracted from the row above. Then 

f(x) 1 X X2 f(x) - fj 0 X-Xj x^-x^ 

-r 1 2 
fl 1 X1 X1 II fi - f2 0 xrx2 xrx2 

f2 1 x2 X2 

, 

f2 * f3 0 x2'x3 X2'X3 

f3 1 X3 X3 

- , 2 

f3 1 X3 X3 

Next, we divide each member of the top three rows by the third element on the 

same row, to obtain 

'{See, for example. Ref. 46. 
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* 
f(x) - fj 

~x - x“ 
0 1 x + 

0 1 Xj ♦ x2 

= 0. 

At this point we introduce the notation 

£(x) 

x 
[x,xi]; 

- f. . 
l + l 

x. - x. . 
i l+l 

= [x.,X. -1 
L 1 * 1 + 11 • 

(1-34.5) 

Because of the form of the second column, the determinant can be reduced 

to 

[x.Xj] 1 X + Xj 

[xrx2] 1 x1 * x2 

[x2,x3] 1 x2 ♦ x3 

0. 

Next, we again subtract each row from the row above and divide by the elements 

of the third row so obtained: 

[x,xx] - [x1,x2] 

X - x' 

tx!.x2] - [x2,x3] 

X - X. 

0 1 

[X2'X3] 

0 1 

1 X2 + X3 

= 0, 
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We again collapse the determinant by the expansion which utilizes the second 

column. Extending the notation as follows. 

[x,xx] - [xx,x2] 

X - x„ 
[x,X j,x^] , 

[Wd ' txi+i*W 
x. - X. _ 
i i+2 

= [x.,x. , ,x. _] , 
1 i* i+l* i+2J* 

(1-34.6) 

we write 

[x,x1,x2] 1 

[x1(x2,x3] 1 

0, 

which is simply 

[x,xx,x2] = »X2,X3^ * (1-34.7) 

The quantities defined by the ratios of (1-34.5) and 1-34.6) are referred 

to as divided differences. They exemplify only the first and second order 

terms of a sequence. The definitions can obviously be extended to the third, 

[xi,xi+l,xi+2»xi+3]> and higher. 

Recalling (1-34.6), we see that Eq. (1-34.7) can be written in the 

form 

[x,Xl] - [x1#x2] 

X - X, 
= Ix1,x2,x3], 

or. 

[xtxx] = [x1,x2] + [x1,x2,x3](x - x2). 
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Inserting the expression for [x,Xj] and rearranging in a similar way, we 

obtain the simple expression called Newton's formula, 

f(x) = fj_ + [x1,x2](x - xp + [x1,x2,x3](x - xp(x - x2). (1-34.8) 

There is a useful degree of freedom in Newton's formula which should 

be appreciated. Suppose one has a function f(x) tabulated at x_ values which 

increase monotonically. 

x f(x) 

Application of Newton's formula proceeds in a routine way, from the top down. 

But suppose that without changing any of the numerical values, we re-label 

the points as follows: 

Application of Newton's formula proceeds as before, but from the bottom up. 

All terms are different from the corresponding terms in the preceding calcula¬ 

tion. 
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Finally, suppose that we once more re-label the values of our list, as 

follows: 

Now the calculation proceeds from the middle outward in both directions 

alternately. A similar alternate progression is given by 

x f(x) 

These last two arrangements give interpolation formulae to which the name 

of Gauss has been attached. 

We illustrate the use of divided differences by interpolating a value 

of f(x) at x = .74, where f(x) is the polynomial 

f(x) = 1 - 2x + 3x2 - 4x4. (1-34.9) 

Choosing the arrangement due to Gauss, we construct the following table: 

240-816 0-67—18 
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Table 1-34.1. Data for sample interpolation. 

i X. 
1 

f. 
1 [xi-2’xi-l’xi] 

[x. _,x. _,x. 
L i-3* i-2* 1 

1 .7 .1096 

2 .8 -.3184 -4.28 

3 .6 .3616 -3.40 - 8.8 

4 .9 -.9944 -4.52 -11.2 -12 

Newton's formula (1-34.8) then gives 

#(.74) = .1096+(-4.28)(.74-.7)+(-8.8)(.74-.7)(.74-.8) 

+(-12)(.74-.7)(.74-.8)(.74-.6) 

= .1096 - .1712 + .02112 + .004032 

= -.03645. 

This is to be compared with the correct value, f(.74) = -.03666. 

Note that the successive terms decrease, and that, by taking enough 

terms, the interpolation can be made arbitrarily accurate. But this feature 

is dependent on (a) the precision of the known values of f(x), and (b) the 

well-behaved nature of f(x). 

If all the known points f^ are used to obtain an interpolated value, the 

result is independent of the arrangement. 

We might close this discussion by observing that the asymmetry of the 

Gauss arrangement proved bothersome, with the result that new formulae were 

devised in which a mean was calculated for the results from the two alterna¬ 

tive sequences. Formulae of this type are attributed to Stirling. Still 

other analogous formulae exist and are attributed to various people; many 

of these apply to the special case of equidistant values of x^. 
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46 / 
35. Roots of Equations, Differentiation and Integration Weights 

a) Roots of equations. The numerical illustration at the close of the 

preceding section was chosen because the function (1-34.9) has a root for x 

between .7 and .8. Calculation of such a root is a standard algebraic pro¬ 

blem, but it is not widely appreciated that such a calculation is essentially 

an interpolation. 

Note the symmetry of the numerical data which we utilize. We refer to 

one (the list) as the list of abscissas, and the other (the f list) as 

the list of ordinates. But we could as easily have interchanged the two, so 

that the resulting function is the inverse of (1-34.9). If this is done, it 

is immediately obvious that the value for x at which f = 0 can be estimated 

it 
by a straightforward interpolation procedure. 

We illustrate this point by a calculation similar to that of the last 

section, again utilizing the Gauss arrangement: 

Table 1-35.1. Data for a sample root calculation. 

i f. 
1 

x. 
1 [fi 3»fi 2,fi-i»fi^ 

1 .1096 .7 

2 -.3184 .8 -.23365 

3 .3616 .6 -.29412 -.23997 

4 -.9944 .9 -.22124 -.10781 -.11971 

Application of Newton's formula gives 

If the f. list is not monotonic, the procedure can be applied to 
monotonic subsections. 
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= .7 + (-.23365)(0-.1096) + (-.23997)(0-.1096)(0+.3184) 

+ (-.11971)(0-.1096)(0+.3184)(0-.3616) 

= .7 + .02561 + .00837 - .00151 

= .7325, 

which is to be compared with the value .7307, obtained in a more detailed 

calculation. 

Note that once again the successive terms in Newton's formula converge. 

Considering the wide separation between points used, both the convergence 

obtained and the accuracy of the final result are gratifying. 

b) Numerical Differentiation. It turns out that for a discussion of 

numerical differentiation, it is more convenient to use Newton's formula than 

the determinant equation (1-33.7). If we differentiate Newton's formula, 

the result is 

df 

dx 
[x1,x2] + [x1,x2,x3]{(x—x2) + (x-x1)} 

+ [x1,x2,x3,x4] { (x-x2) (x-x3) + (x-x1)-^-(x-x2(x-x3) } 

+ [x1,x2,x3,x4,x5H(x-x2) (x-x3) (x-x4) + (x-x1)^(x-x2) (x-x3) (x-x4) 

I .... 

Evaluation of this expression at x^ has the effect of making the last term 

zero in each of the curly brackets, since they all are proportional to (x-x^). 

The terms remaining have a very simple form, namely 

A 

df 
dx 

[x1,x2] +, [x1, 

+ 

x2,x3](xx—x2) + [x1,x2,x3>x4](x1~x2)(x1~x3) 

X2,X3,X4’X5^Xl-X2^Xl_X3^Xl"X4^ +- 
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This is more general than it seems, because the designation of points is 

arbitrary here as in the case of interpolation. 

Numerical differentiation by such formulae is not an entirely reliable 

procedure, even when the f^ are accurately known. As a general rule, it is 
A 

safer to interpolate on a table of values of f'(x) than to use a formula such 

as (1-35.1). 

c) Numerical integration. If T_ (1-33.7) is the integral operator 
•A 

dx, and if the x. are assigned the values 
-A X 

xx = A, 

x2 = 0, 

x3 = A> 

evaluation of (1-33.7) gives 

r A „ 3 
dxf(x) = l f w , (1-35.1) 

J-A i=l 

where w^ = w^ = -j, and w^ = This rule dates back to Kepler, and has gone 

by many names, among them "Kepler's barrel rule". 

Extension of this rule to weights for an even number of equal intervals, 

bounded by an odd number of points, is straightforward. One applies the 

barrel rule many times and adds the weights which apply to the same point, as 

indicated in the diagram of Fig. 1-35.1. 

Fig. 1-35.1. Multiple application of the barrel rule. 

A/3 4A/3 A/3 A/3 4A/3 A/3 

A/3 4A/3 A/3 

A A 

<
3 

<
3 

<
 

<
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The resulting set of weights, 

(A/3, 4A/3, 2A/3, 4A/3, 2A/3, 4A/3, A/3) 

is most commonly called Simpson's rule. 

Simpson's rule has proved extremely useful in machine calculations, 

because it is both accurate and simple. Often in complicated calculations it 

is better to use such a simple method in preference to a more sophisticated 

procedure because of the advantage of stability. 

Most of the gamma ray moment computations have used Simpson's rule. But 

in the evaluation of the scattering integral the number of points may be 

either even or odd. Simpson's rule, as usually presented, only applies to 

half the integrals; for the others it is necessary to make a modification. To 

preserve both the symmetry of the sequence of weights and the accuracy of 

Simpson's rule, the following device has been adopted: When the number of 

points is four or greater, and even, the middle four points are approximated 

by a cubic, which is then integrated over the middle interval only. The 

resulting weights can be ascertained from a four-point version of Eq. (1-33.7) 

by the assignments 

T = 
rA/2 

dx 

-A/2 

= 3A/2, 

X3 = "x2 = A^2* 

The weights which are obtained by this calculation turn out to be 

(-A/24, 13A/24, 13A/24, -A/24). 
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Our final set of modified weights is obtained by applying Simpson's rule 

symmetrically from both left and right. When the number of integration points 

is divisible by four, the correction weights are subtracted as shown in the 

diagram of Fig. 1-35.2 below. 

Fig. 1-35.2. Modified Simpson rule, number of points divisible by four. 

A/3 4A/3 A/3 

A/3 4A/3 A/3 

A/24 -13A/24 -13A/24 A/24 

1 A I A I A 

Simpson's rule 

Modification 

When the number of integration points is even, but is not divisible by four, 

the same procedure applies, but in this case the correction weights are 

added instead of subtracted, as shown in Fig. 1-35.3. 

Fig. 1-35.3. Modified Simpson rule, number of points not divisible by four. 

A/3 4A/3 A/3 A/3 4A/3 A/3 

-A/24 13A/24 13A/24 -A/24 

1 1 
A A 1 A 1 

<
 

<
 

Simpson's rule 

Modification 

For desk calculations, alternative modifications of Simpson's rule exist 

which are more easily remembered. But for machine calculations, this leads 

to a fast, reliable subroutine for numerical integration. 
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36. Utility Subroutines . 

As part of the bummer Institute, the participants constructed a number 

of elementary machine programs. One of these programs was a determinant 

evaluator, based on the method of pivotal condensation. Another program, 

written by Mr. V. Cain, was an interpolation routine. Still other programs 

required numerical integration; and a subroutine was made available for 

calculating integration weights. 

The WALLSTREET program uses two utility subroutines in addition. One 

of these is a very quick, but not highly accurate, subroutine for logarithm 

computation. The other is a fast and extremely versatile random number 

generator. This last subroutine is the only one of the five which is not 

in F0RTRAN; it is in machine language. 

In this section we present these subroutines, each accompanied by a 

discussion of the intent of the various orders. 

a) Interpolation. The subroutine INTRP, written by Mr. Cain, can utilize 

an arbitrary number of points. It features the Gauss arrangement in which 

additional points are on alternate sides of the point of interpolation. If 

the interpolation is near one end of the table, after the endpoint has been 

used additional points are no longer on alternate sides but are all on the 

side of the point of interpolation away from the endpoint. 

Approximation is by polynomials of degree appropriate to the number of 

points used. A check is made early to ensure that the interpolation calls 

for no more points than are available. 

c * * * * it it it it 

SUBR0UTINE INTRP(IMAX,X,F,MPTS,VAR,S0M> 
DIMENSION X(50)SF(50),XN(7),FN(7) 

We assume at this point that all input numbers and lists are defined. 
IMAX is the length of the list on which interpolation is being made. 
X(I) is the abscissa list for interpolation and F(I) is the ordinate 
list. NPTS is the number of points in the list used for interpolation; 
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thus NPTS = 3 would refer to a 3-point interpolation. VAR is the 

entry value into the X list at which an interpolated F value is 

desired. S0M is the desired F value. According to the dimension 

statement lists up to 50 entries can be used, with up to 7 point 

interpolation. 

894 IF (IMAX-1) 294,304,314 

294 S0M=O. 

G0 T0 324 

304 S0M=F(1) 

G0 T0 324 

These introductory orders take care of lists containing either one 

entry or zero entries, i.e. eccentrically short. A list with zero 

entries gives a zero interpolated value, while a list with one 

entry gives an interpolated value equal to the sole entry. Note 

that order number 324 concludes subroutine control. 
314 NPT=NPTS 

IF (NPTS - IMAX) 234,214,214 

214 NPT =IMAX 

If the interpolation list is shorter than the number of interpolation 

points intended, the latter is reduced to correspond exactly to the 

number of points available. 

234 X0=A3SF(VAR-X(i)) 

The important thing here is the necessity for starting X0 with a 

value as large as VAR-X(l) in magnitude. The next little loop se¬ 

lects the value of X(I) nearest to VAR. When |VAR-X(I)] starts to 

increase, we transfer out of the loop with IP and X0 referring to 

the smallest difference. 

IP=1 

D0 84 I=2,IMAX 

A=A5SF(VAR-X(I)) 

IF (A-X0) 74,64,64 

74 IP=I 

X0=A 

84 CONTINUE 

64 IF(ABSF(X(IP)-X(IP+1))-ABSF(VAR-X(IP+1))>54,554,254 

We must find out whether VAR is between X(IP) and X(IP+1) or between 

X(IP-l) and X(IP). 

554 S0M=F(IP) 

G0 T0 324 

If VAR=X(IP) we are done. 

54 IN=-1 

G0 T0 354 
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254 IN=1 
354 D0 164 1 = 1,NPT 

The integer IN oscillates between +1 and -1. This loop is to order 
tne points used for interpolation in the XN and FN lists. The Gauss 
ordering is used, with points taken alternately on each side of the 
entry, and increasingly far from the interpolation point. In the 
original version of the subroutine, convergence was examined and in¬ 
terpolation occurred with prespecified accuracy. In this version, 
the Gauss ordering is irrelevant because all points are used. 

XN(I) = X(IP) 
FN(I)= F(IP) 
IF(IN) 94,94,104 

94 IQ=IP-I 
G0 T0 134 

104 IQ=IP+I 

This set of orders is designed to yield a new value for IP, which is 
the index of the next pair of values to be put into the XN and FN 
lists for use in the interpolation. A positive IN increases IP by I, 
while a negative I decreases IP by I, in the normal case. Note that 
IP will normally be equated to IQ. 

114 IF (IMAX-IQ) 124,134,134 
124 IP=IP-1 

G0 T0 164 
134 IF (IQ) 144,144,154 
144 IP=IP+1 

G0 T0 164 
154 IP=IQ 

IN=-IN 
164 C0NTINUE 

In abnormal cases, when the interpolation is performed near the end 
of the list, the index values normally determined may be unacceptable. 
Hence orders 114 and 124 decrease IP by unity if IMAX would other¬ 
wise be exceeded, while 134, 144 increase IP by unity if IP-I would 
otherwise be zero or negative. Once the end of the list has been 
reached, all further IP values must be taken in the other direction. 
Note that 164 is the C0NTINUE statement which ends the loop, so that 
the sign of IN is unchanged after one end of the list has been en¬ 
countered. Normally, 164 would be reached through 154. 

S0M=FN(1) 
FACT=1. 

S0M is the cell in which the answer is to be cumulated. FACT is to 
be a product of (VAR-X(I)) factors multiplying the divided differences 

D0 184 J=2,NPT 
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D0 174 I=J,NPT 
IQ=I-J+1 

174 FN(IQ ) = (FN(IQ+1)-FN(IQ))/(XN(I)-XN(IQ)) 

This loop calculates the next set of divided differences and stores 
them in FN(1), FN(2), etc. Thus FN(1) always contains the divided 
difference next to contribute to S0M. 

FACT=FACT*(VAR-XN(J-l)) 
184 S0M=S0M+FN(1)*FACT 
324 RETURN 

END 

b) Integration (IWATE). The subroutine which we give here constructs 

a list of integration weights for two cases, equally spaced points and points 

whose logarithms are equally spaced. In the latter case, the points are 

obtained from one another by successive multiplications by a fixed factor. 

The procedure is that of Simpson’s rule, modified as discussed in the 

preceding section when the number of points is even. When integration weights 

for only two points 

while for one point 

The subroutine 
t 

an integer value is 

are to be calculated, the trapezoidal rule is applied, 

integration the weight is made equal to zero, 

assumes that the computer rounds off numbers downward when 

assigned to a floating point number. 

C /. A A A A A A 
«» 4* 4% 4% 4V 4\ 4fc 

SUBR0UTINE IWATE(IWT,NWT,WTAB,WATES) 
DIMENSI0N WTAB(300),WATES(300) 

WTAB is here the abscissa list for which integration weights are 
to be determined, while WATES is the list of integration weights 
to be determined. Both lists have NWT entries, where NWT may be 
any number up to 300, If IWT=1, the entries in the WTAB list are 
equally spaced, while if IWT=2, the entries in the WTAB list are 
in constant ratio with one another. 

819 WTA=NWT 

This order constructs a floating point version of NWT. 

IF(NWT-2) 19,39,39 
19 WATES(1)=0. 

G0 T0 289 
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These orders take care of the case in which the list consists of 
a single value only. Order number 259 concludes control by this 
subroutine. 

39 IF (IWT-2) 59,79,79 
59 WTDEL= (WTAB (1) -WTAB(NWT)) / (WTA-1.) 

C0 T0 99 

The first order determines whether the list progression is linear or 
geometric. The second calculates the interval between points of the 
list for the linear case. (One could also difference successive 
values.) 

79 WTDEL=L0GF(WTAB(1)/WTAB(NWT))/(WTA-1.) 
99 IF(WTDEL) 119,990,990 

119 WTDEL=-WTDEL 

The first order calculates the logarithm of the factor between points 
if the interval changes geometrically. The last two orders make the 
interval size positive in all cases. This may or may not be 
advantageous; it has the effect of producing a list of weights which 
is always positive. 

990 IF (NWT-2) 259,1190,139 
1190 WATES(1) =.5 *WTDE L 

WATES(2)=WATES(1) 
G0 T0 199 

This takes care of the case in which only two points are involved 
in the integration, which then is performed by the trapezoidal rule. 
The distinction between linear and geometric progression is made 
following order 199. 

139 NWTA=(WTA/2. +.1) 

NWTB=(WTA/2.-.l) 
NWTC=(WTA/4.+.1) 
NWTD=(WTA/4.-.1) 

These four orders generate parameters to be used in determining 
whether the number of weights is odd, divisible by 4, or even. WTA 
is numerically equal to NWT; and recall that we assume the integer 
obtained in these calculations to be always less than or equal to 
the floating point number. Then if NWT is divisible by 2, NWTA will 
be larger than NWTB by unity. Likewise, if NWT is divisible by 4, 
NWTC will be larger than NWTD by unity. 

WATES(l)=WTDEL/3. 
WTO WATES (1) 
WATES(NWT)=WATES(1) 
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Dtf 159 1=1,NWTB 
WATES (I+1) =WTDE L+V.'TC 
1NDX=NIVT-1 
WATES(INDX)=WTDEL+WTC 

159 WTC=-WTC 

This group of orders assigns the bulk of the weights their 1,4,2,4,... 
structure. Notice the symmetry between WATES(I+1) and WATES(N'WT-I). 
NU’TB will be either the middle value or the lower of two middle values. 
In the latter case, the middle interval has not been properly treated, 
and the middle weights need a correction. The middle two weights are 
then either 2. *WTDEL/3., when the number of points is not divisible by 
4, or 4.*WTDEL/3., when NWT is divisible by 4. 

WTD=l./24. 
IF (NWTC-NWTD) 1790,1790,1590 

1590 WTD=-WTD 

The first order establishes the divisor for the middle interval 
correction, and the other two orders determine the sign of the 
correction. 

1790 IF (NWTA-NWTB) 199,199,179 
179 WATES (NWTB) =VvrATES (NWTB) -WTD*WTDEL 

WATES (NWTB+1) =NATES (NWTB+1) +5 . *WTD*WTDEL 
WATES (NWTB+3) =WATES (NWTB) 
WATES(NWTB+2)=WATES(NWTB+1) 

Note that when Nl/TC=NWTD and NWTA=NNTB no correction is required. 
‘When the former is true but not the latter, the middle joints are 
corrected by (a/24,-13A/24+A/3,-13A/24+A/3, A/24). ’‘.Tien neither 
is true, the correction changes sign. 

199 IF (IWT-2) 259,219,219 
219 D0 239 1=1,NWT 
2 39 WATES(1)=WATES(I)*WTAB(I) 

These orders multiply the weights by the abscissa values, for the 
case in which the points are geometrically spaced. 

259 RETURN 

C******** 

Perhaps more frequently the integral, rather than the weights, is desired. 

The calculation of weights has two advantages here: In the evaluation of 

Volterra integral equations numerically, the final integration weight enters 

the expressions explicitly. Further, in the linked system of moment equations 

it is frequently desirable to perform many similar integrals with identical sets 

of weights. 

1-273 



c) Determinant Evaluation (PET), Participants in the Summer Institute 

were asked to construct a program for evaluation of a determinant, as an 

exercise in machine programming. The subroutine given here is typical 

of those which were devised by the participants. 

The method used is pivotal condensation, using as a pivot element 

the corner with maximum indices. 

CMS •% »V 
4% 4% 4% 4% <« 4% 

SUBR0UTINE DET(N,A,PR0D) 
DIMENSI0N A(14,14) 
K=N 
IF(N) 135,135,2 

N is the number of rows and columns in the determinant. 
PR0D is the value of the determinant. The first order 
preserves the value of N, which can then record the reduced 
size of the determinant. We then guard against an accidental 
case in which N=0, 

2 PR0D=1. 
4 IF(A(N,N)) 60,140,60 

The pivot element must not be zero. The following double 
loop is the main calculation, which reduces the order of 
the determinant by one, using pivotal condensation. 

60 D0 100 1=1,N 
IF(A(I,N)) 70,100,70 

70 PR0D=PR0D*A(I,N) 
D0 90 J=1,N 

90 A(I,J)=A(I,J)/A(I,N)-A(N,J)/A(N,N) 
100 C0NTINUE 

N=N-1 
IF(N-l) 125,150,4 

Exit from the subroutine occurs when N=l, ordinarily. 
The next D0 loop interchanges rows when the pivot element 
is zero. 
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140 D0 130 1=1,N 
IF(A(I ,N ) ) 145,130,145 

145 PR0D=PR0D*(-1«)**(N-I) 
D0 148 J=1,N 
B=A(N,J) 
A(N ,J )=A( I, J ) 

148 A(I,J)=B 
G0 T0 60 

130 C0NTINUE 

If all elements in the last column are zero, the value 
of the determinant is zero. 

135 PR0D=O. 
G0 T0 125 

150 PR0D= PR0D*A(1,1) 
125 N=K 

RETURN 
END 

d) RANDA, RANDB, RANDC, RANDD- 

This simple, fast pseudo-random number generator has been used by 

Dr. M. J. Berger in many Monte Carlo programs. Several entries are provided 

to permit correlated sampling applications, and different multipliers are 

used for the four different calling identifications. 

The most common procedure for use of this routine entails the gener¬ 

ation of random numbers by RANDC, say, which initiate random number sequences ob¬ 

tained by calling RANDB or RANDA. Thus, RANDC may provide the first random number in 
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the sequence required for a given case history. Then, for a new case history, 

RANDC would provide a new initial random number. 

Current information on the speed of this routine indicates that on the 

IBM 7094, it will produce approximately a million pseudo-random numbers per 

minute. 

FAP 

The FAP and END statements are subroutine assembly orders, 

appropriate to FORTRAN II. 

REM CALL RANDA(IR,R), CALL RANDB(IR,R), CALL RANDC(IR,R) CALL RANDD(IR,R) 

This is a comment card, which doesn't do anything. 

ENTRY RANDA 

ENTRY RANDB 

ENTRY RANDC 
ENTRY RANDD 

These orders apply to both FAP and MAP systems, and identify the 
first order of the subroutine. 

RANDA CLA MULT 
TRA *+6 

Pick up the number in the cell MULT and transfer to the 6’th 
order beyond this TRA. 

RANDB CLA MULT+1 
TRA *+4 

Pick up the number in the cell just beyond MULT, and transfer 
to the 4th order beyond this TRA. 

RANDC CLA MULT+2 
TRA *+ 2 

RANDD CLA MULT+3 
ST0 TEMP 

All these sets of orders have the purpose of putting the 
appropriate multiplier in TEMP. 

LDQ* 1,4 

This locates the value of the octal integer IR, and loads it 

into the MQ register. (Indirect addressing is used, as indicated 
by the asterisk.) 

1-276 



MPY TEMP 
STQ* 1,4 

Stores the product of IR and TEMP back in IR. The product is 
still in AC and MQ registers. 

PXD 

This places zero in the sign bit and 35 accumulater bits, thus 
destroying the 35 most significant bits of the product. 

LLS 27 

The remaining 36 bits in the MQ register are shifted left 27 
places into the accumulater, so that they occupy positions 
9-35 of the mantissa of a floating point number. 

ADD *+4 

Puts the octal number 200 in the characteristic (the exponent) 
of the floating point number; note that exponents are plus or 
minus relative to this number. (The Binary bits in positions 
1-8 are now 01000000.) 

FAD *+3 

Note that this number is actually the floating point zero. This 
operation "normalizes" the number being constructed, introducing 
a one in bit position 9. 

ST 0* 2,4 
TRA 3,4 

These orders are correct for FAP. The MAP equivalents would be 
STQ* 4,4 and TRA 1,4. The floating point number just constructed 
is stored in the cell reserved for R, which lies just beyond 
the IR cell. The transfer order is to the appropriate location 
to send control back to the calling program. 

MULT 
OCT 200000000000 
OCT 343277244615 
OCT 011060471625 
OCT 000272207335 
OCT 000007346545 

15 13 11 9 
The last four numbers are 5 ,5 ,5 , and 5 , which are the 
multipliers for RANDA, RANDB, RANDC, and RANDD respectively. 
The next order reserves one cell for temporary storage. 

TEMP BSS 1 
END 
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e) "Quick" Logarithms (QL0G). 

This subroutine is a _Quick LQGarithm calculater, for determination of 

path lengths in Monte Carlo penetration calculations. It uses table look-up. 

Because accuracy is sacrificed for speed, this subroutine is not generally 

applicable to calculation of logarithms. 

A table of logarithms is generated for arguments from 0.2 to 0.6. If 

the argument desired, presumably a random number p between zero and unity, 

falls between 0.2 and 0.6, the table look-up is straightforward. If the 

argument is greater than 0.6 the subroutine calculates 

log(.6p) - log.6. 

If the argument is less than 0.2, and a factor 3 is sufficient to give 

K| 
0.2 < 3 p < ,6, the subroutine calculates 

log(3Np). - Nlog3. 

Over much of the range of arguments, the accuracy is a few tenths of a per¬ 

cent. The accuracy is better than this for very small p because N(log3) 

is quite accurate; and the accuracy is very poor for p ^ 1 . Because this 

region of poor accuracy is associated with very small path lengths, it is 

of small concern usually. In any case, it would be simple to improve the 

accuracy of the whole routine by adding a linear interpolation; but this 

doesn’t appear to be warranted for WALLSTREET. 

C s’* s'* sV it it it 

SUBR0UTINE QL0G(X,XL,NLTAB) 
DIMENSI0N XBL(400) 

Our first concern is with the generation of the basic table. 
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This will occur when NLTAB=1. When NLTAB=2, the tabulation will 
be skipped, as is shown in the first order. 

G0 T0 (10,30),NLTAB 
10 XB=.1995 

D0 20 1=1,400 
XB=XB+.001 

20 XBL(I)=L0GF(XB) 

Having generated the table, we change NLTAB to 2, so that the 
additional calls upon QL0G will skip the preceding. 

NTAB=2 
30 XB=X 

IFCXB-.6) 50,40,40 

If XB (i.e.X) is greater than 0.6, we reduce the value by multi¬ 
plying by 0.6, and prepare to add XL=-log .6=.51083. 

40 XB=XB*.6 

XL=.51083 
G0 T0 80 

If XB < .6, we start XL at zero and then cycle to see how many 
factors of 3 are required to raise XB beyond .2. Note that 
1.09861=log3. 

50 XL=0. 
60 IF(XB-.2) 70,70,80 
70 XB=XB*3. 

XL=XL-1.09861 
G0 T0 60 

When XB is large enough, the table look-up is performed and 
the result modified by XL. The first order generates the 
index for the table look-up. 

80 I=XFIXF(1000,*XB) 
XL=XL+X3L(1-199) 

Note that the smallest value of 1000.*XB is 200, but that the 
index of the logarithm of .2005 is 1; hence subtraction of 199. 

RETURN 
END 
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H. APPENDIX ON APPROXIMATIONS AND BIORTHOGONAL FUNCTIONS 

37. Polynomial Approximation using Moments of a Function 

In section 33 we discussed the approximation of a function from a set 

of numerical values. Here we discuss the analogous problem of approximation 

of a function from a different set of numerical parameters, the moments, by 

which we will mean integrals of a function f(z) of the form 

fn = | dz znf(z), (1-37.1) 

R 

where R refers to the range of integration, which may be finite, semi-infinite, 

or infinite. Our discussion features moments, as just defined, but it is 

applicable to cases in which other types of numerical parameters are known. 

Suppose that we do not know f(z), but that we have values for a finite 
A 

number of the f . Our problem is to obtain an approximation f(z) which has 

the same moments, and which agrees with f(z) in all known characteristic 

features. 

Our first step in obtaining an approximation is that of identifying a suit¬ 

able "weight function", w(z), whose moments will be designated 

» 

w = dz znw(z). (1-37.2) 
n 

R 

The characteristics of a good weight function should be the subject of more 

study than has taken place to date. Our point of view here is that a good 

weight function is a simple (uncomplicated) function which, on multiplication 

by a polynomial of low degree, can agree with f(x) in regards to a) singular 

features, such as discontinuities, b) trends such as the behavior of f(z) for 

large |z| or for z near the limits of R, and c) maxima and minima. 
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We assume that f(z) can be approximated by a function f(z) of the form 

f(z) = (a + bz + cz^)w(z). (1-37.3) 

Three terms are employed here for the same reason as in section 33 : The 

equations can be quickly written, while the generalization to more or fewer 

terms is apparent. 

If we multiply all terms of Eq. (1-37.3) by zn and integrate over R, we 
A 

obtain equations connecting the moments of f(z) with the moments of the weight 
A 

function. We require that f(z) agree with f(z) in that three moments of both 

functions are identically the same, and so obtain the set of equations 

f = aw + bw ., + cw , n = nn, n„, n„. (1-37.4) 
n n n+1 n+Z 1 2 3 

While we are at liberty to choose any three such equations to use in determining 

the constants a_, b_, and c_, we would usually select the first three, n = 0, 

1, 2. Rearranging, and adding Eq. (1-37.3), we obtain the set of equations 

~ 2 
-f(z) + aw(z) + bzw(z) + cz w(z) = 0 

-fg + aWg + bw^ + cw^ = 0 

-f^ + aw^ + bw^ + cw^ = 0 

-f_ + aw_ + bw0 + cw. = 0 
2 2 3 4 

which are identical in form to the equation (1-37.3). Clearly, 

to Eqs. (1-37.4) are given by 

f(z) w(z) zw(z) 2 < ^ z w(z) 

fo W0 W1 W2 

fl W1 w2 W3 

f2 u2 U3 W4 

(1-37.4) 

the solution 

(1-37.3) 
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Expansion by minors of the top row will yield an equation for f(z) in terms 

of w(z) multiplied by a quadratic polynomial in z^ which is the representation 

we seek. 

The calculation just described is closely similar to the earlier calcu¬ 

lation in which a function was approximated by use of a simple form which 

agreed at three points. As a matter of fact, we have actually approximated 

a moment "curve" at three points and then made a type of inverse "Mellin" 
A 

transformation to obtain f(z) frc'm the approximate moment "curve". 

The approximation just obtained is a best approximation in a least 

square error sense. To demonstrate this, we consider the following integral: 

E dzw(z) 

R 

[f(z)/w(z) - (aQ + a^z + a2z )] 

2 2 
+ I Ta.a. w. . 
i-0 j-01 3 1+J 

r 
dz 

i 

R 

f2(z) 
w(z) 

2 
f. 
l 

(1-37.6) 

where the constants are yet to be specified. If we minimize E with respect 

to variations in all three constants we obtain the equations 

3E 
3a 

-2f + 2 
n 

2 

I 
i=0 

a-W* i l+n 
= 0, n =0, 1, 2 (1-37.7) 

If we write out these equations, and add to them the equation 

~ 2 
f (z) = (aQ + a±z + z )w(z) , (1-37.8) 

we obtain equations for the numerical coefficients which are precisely the same 

as Eqs. (1-37.4). 
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38. Generalized Approximations and Biorthogonal Functions 

a) Generalized Approximations . 

Before going into specific problems of distribution construction using 

moments, we will generalize the discussion of the preceding section; and in 

the process we hope to mention a few things not generally realized, particu¬ 

larly about biorthogonal functions. 

Let us first introduce a standard terminology for the following integral 

over the range R of two functions of the real variable z_: 

(u,v) dz u(z) v(z). 

R 

(1-38.1) 

The quantity (u,v) is referred to as the "inner product" of the two functions 

u(z) and v(z).* The functions u and v are said to be "orthogonal" if 

(u,v) = 0. (1-38.2) 

Properties of the inner product are 

(u,v + v2) = (u,vx) + (u,v ), 

(U1 + u ,v) = (u ,v) + (u ,v), 

(u,cv) = (cu,v) = c(u,v) . (1-38.3) 

Next, suppose that the function F(z) is not known, but that we have 

values for a few integrals, (u^,F), (u2>F), etc. Further, we know enough 

about F(z) to determine that it should be representable with fair accuracy 

by a sum of terms, 

*No’te that all the functions which we will consider are real, so that 

v = v, and, in liquation (1-38.3), c = c. 
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(1-38.4) F(z) = a0v0(z) + a1v1(z) + a2v2(z). 

Clearly, 

A 

(u ,F) = a (u ,v ) + a (u ,v ) + a (u ,v ). (1-38.5) 
n U n U 1 n 1 znz 

A 

If we require that the approximate funtion, F(z), be such that 

A 

(un,F) = (u^F), n = 0,1,2, (1-38.6) 

we obtain three conditions, which, together with Eq. (1-38.4) form the system 

A 

-F(Z) + a0v0 + a1v1 + a^., = 0, 

-(uq,F) + aQ(uQ,vQ) + a1(uQ,v1) + a2(uQ,v2) = 0, 

-(ul5F) + aQ(u1,v0) + a1(u1,v1) + a^u^v^ = 0, 

-(u2,F) + aQ(u2,Vq) + a1(u2,v1) + a2(u2,v2) = 0. (1-38.7) 

This system has a solution which by now should be transparent, because of 

the special cases, (1-38.3) and (1-38.5), already considered: 

A 

F vo vi v2 

(uo>F) (u0,v0) 
(u0,vl) S'V 

(u-^F) 
(vV 

(u-^v.^ 
(ul’v2) 

(u2,F) 
(vV (u2’vl) (U2>V2) 

(1-38.8) 

b) Biorthogonal Functions “ 

Up to this point we have been considering both the u^’s and the v^'s to 

be completely arbitrary; and the preceding result holds regardless of our choice 

•‘General references on biorthogonal functions are scarce, as is the 

literature. Perhaps the most complete is Ref. 162t 
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of function types. But from this point on, we will regard both sets of these 

functions as elementary in the sense of a series of powers, z1, and will refer 

to them as "base functions''. 

We now wish to consider two sets of functions, p^(z), q^(z), n=l,2,..., 

with the property of biorthogonality, namely. 

(qi»Pj) =0, i + j. (1-38.9) 

We will shortly consider very general methods for developing sets of functions 

with this property. At present, we assume that these functions are finite linear 

combinations of our base functions, so that there exist constants p . ,q . 
* rni’mi 

such that n 

q = y q .u., 
n . „ ni i* 

i=0 

n 

p = y p .v. 

n ni i 
i=0 

(1-38.10) 

Note that these linear representations imply the existence of the inverse 

relationships, that is, the existence of constants un£»vnj: such that 

n 

u = I u .q. , 
n ,Ln mni 

i=0 

n 

v = y v .p., 
n i-0 ni 1 

(1-38.11) 

These can be obtained, for example, by simultaneous solution of the first n_ 

equations from each set in (1-38.10), with the u^'s and v^'s as unknowns. 

Next, consider two indices, m and n, with m<n_. The values of the two 

inner products, (q ,v ) and (u ,p ), are very useful to know and easily calculated 
n m m rn J J 

m m 

(q„ »v ) n m 
(q , y V .p.) 

n mr l = I 
i=0 

v . (q ,p.) = 0, 
mi m ri 

(1-38.12) 
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(1-38.12*) (U ,p) 
m n 

m 

i=0 

m 

= ( i u ,q.,p ) = y 
mi^i V .L 

i=0 

u .(q. ,p ) =0 
mi ni *n 

In each case the result follows because i_5m<n. This property can be used to 

construct biorthogonal sets of functions. For example, the first set of 

equations in (1-38.12) represents a set of n_ conditions on the function q^, 

which has (n+1) constants. These conditions determine all ratios of these 

constants to one another. Only a normalization constant is not fixed. 

The two biorthogonal sets will be referred to as "bi-ortho-normal" if, 

in addition to (1-38.9), we have 

(qn,pn) = 1. (1-38.13) 

Since two normalization constants are to be determined, one each for p and 
- n 

q^, this last condition does not establish both. Thus, if (1-38.13) holds, 

so also does 

= 1 • 
(1-38.14) 

To close this discussion, let us refer back to (1-38.8) while recalling 

that this expression was written without restrictions on the nature of the 

functions. We may therefore apply it to the biorthogonal functions, as follows 

A 

F 
P0 P1 P2 

A 

F 
P0 P1 P2 

<vF) (q0.P0) (Vpi> (q0>F) (qo,po) 0 0 

(qrF) (vV (qi>Pl) (q1.p2) (qrF) o (qx0 

(q2,F> (q2.P0) (q2.P1) (q2.p2) (q2,F) o o (q2,P2) 

(1-38.15) 

Evaluation of the determinant equation gives the simple result. 
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(1-38.16) F(z> = l 
2 <q.,F) 

i=0 1 
p.(z) . 

This is equivalent to the more complicated expression which would be obtained 

if (1-38.8) were evaluated using the base functions u. and v for the p and 
i i n 

A 

q . One can start with either expression for F(z) and obtain the other by 

substitution using (1-38.10) or (1-38.11). 

c) Adjoint Operators: Application to Deep Penetration Equations. 

If, for arbitrary functions f and g whose inner product exists one can 

f 
find two operators, 0 and 0 which have the property 

(g,0f) = (0fg,f) , (1-38.17) 

we say that the operators 0,0 are adjoint. The eigenvalues of 0 are the 

complex conjugates of the eigenvalues of 0, and if the eigenvalues of 0 

are real, they are equal to the eigenvalues of 0 . The eigenfunctions 

of 0*^ and 0 which correspond to the same eigenvalue (or eigenvalues which 

are complex conjugates) are said to be adjoint eigenfunctions. 

These definitions have an elementary illustration using finite sets 

of biorthogonal functions. If we write 

N 

0f = l = fN > 
i=0 1 

t N 
0 g = l (g»p.)q. , (1-38.18) 

i=0 1 1 

it is quite clear that 0 and 0+ satisfy the condition (1-38.17). The 

eigenfunctions of 0 are clearly the p^; the eigenfunctions of 0^ are the 
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q^; and the eigenvalues of both operators are 

In section 21 there is an illustration of this concept. Here the 

operator is 

0 = — s— - Ce~S /2} (1-38. 

2 ds 2 s ds ds 

Since the inner product is here the integral 

oo 

(g,0f) - / sds g 0f , 

0 

we obtain the adjoint operator by integration by parts. It turns out to be 

s 

2 s ds ds 
(1-38.20) 

In this case it is a simple matter to modify the differential oper¬ 

ator (1-38.19) to obtain a related "self-adjoint" operator with the same 

eigenvalues and closely related eigenfunctions. Calculations are then 

somewhat easier and more efficient than is the case with the two oper- 

ators (1-38.19) and (1-38.20). 
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39. Construction of Biorthogonal Functions 

There are many ways to generate biorthogonal functions. The best-known 

process, that due to Schmidt, will be given last here, simply because it is 

most available in the literature. The most practical process, when it works, 

is by recursion; and one could view the Schmidt process as a general example 

of this. Simple recursion formulae exist only for particularly elementary 

systems; and we wish here to stress the more general procedures. Hence there 

will be no discussion of specialized recursion formulae, 

a) General Formula. 

It is possible to write down general expressions for functions with the 

biorthogonality property. Consider, for example. 

P2(z) = c 

Clearly, for i = 1,2 

(ui,p2) = c 

Vz) vx(z) v2(z) 

(u0’v0) (u0'vl) (u0,v2) 

O
 

>
 r
H

 

3
 (u1,v1) (ux,v2) 

may write 

(vV (ui*vp (u±,v2) 

(vV (vV (Vv2) 

(ul’V0) (u1,v1) (u1,v2) 

(1-39.1) 

= 0, (1-39.2) 

since two rows of the determinant are identical. Since the function p2(z) 

a linear combination of v^, v^, and v^, it must be proportional to the corre¬ 

sponding member of the biorthogonal set p discussed in the preceding section. 
n 

The normalization constant can be calculated directly, if the function q2(z) 

has already been determined. We have 

*An informative reference on biorthogonal functions which includes this 

is Ref. 146. 
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0
 

>
 *
 C
M

 
a* (q2,vx) (q2,v2) 0 0 

(VV 

(q2»p2) = 1 = c 
(vV (Vvi) (U0’V2) 

= c c 
0

 N#
 < 

O
 (u0,vl> (vV 

(vV 
(u ,v ) (Ui,v2) (ul’V0) (ul'v1) (ul>v2) 

so that 

c = ---7TT- , (1-39.3) 
(q2,v2)DU; 

where we adopt the notation 

D (i) 

(u0>V0) (u0’Vl) 

(U1,V0) 

(u0’vi) 

(ul,vi) 

(VV <VV (u.,v.) 
11 

(1-39.4) 

Since an analogous expression for q2(z) must hold, 

we have 

u0(z) 
ux(z) u2(z) 

q2(z) = d 
(uo>vo) (vV (VV 

(u0lVl) 
(ul,vl) (U2’V 

‘VV 
(u-L,v2) (u2,v ) 

2»v2) = d 
(“O’V (ul’v0) (u2’V0) 

<u0’vl) 
(U-^V^ 

(u2>vl) 

= d D 
(2) 

(1-39.5) 

(1-39.6) 

by reason of two exchanges of rows which put the top row at the bottom. 
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Our final result is 

they play an important role in many calculations of this type, as well in 

the general theory of determinants. 

This calculation enables us to write an expression for p^ or for any 

value of _n. We might observe that if n_ is odd, a minus sign must be added 

to the right side of (1-39.3). But the exchange of rows in (1-39.6) adds 

another minus sign, cancelling the first and leaving Eq. (1-39.7) unchanged. 

b) Biorthogonal Functions by Differencing . 

The next procedure which we discuss has implications which we can only 

begin to explore. 

Consider two approximations to F(z). The first will be designated F^(z) 

and will be such that 

(u ,F ) = (u ,F), n = 0,1. 
n 1 n 

(1-39.8) 

Likewise, the second will be designated F2(z), and will be determined by the 

two conditions (1-39.8), plus the added condition that (u^^2)=(u^,F). It 

is clear then that the function 

P 2 (z) = F2(z) - F1(z) (1-39.9) 

has the property 

(^ >P o) = 0, n = 0,1. 
n Z 

(1-39.10) 

Similarly, we may construct approximations and to an arbitrary function 

G(z), in such a way that (G.. ,v ) vanishes for n = 1,2, while (G_,v ) vanishes 
In Z n 
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for n = 1,2,3. The difference function, Q2 = is similarly orthogonal 

to Vq and v^. 

Clearly, and have orthogonality properties identical with the 

biorthogonal functions p2»q2 Previ°usly discussed. Further, one can proceed 

by this method to construct P and Q for arbitrary values of n. The two 

sets of functions so obtained are biorthogonal. 
A A 

In the case in which the approximate functions F^,G^ are linear combina¬ 

tions of the v^’s and u^’s, this method provides a more general expression 
A /\ 

than (1-39.1). Expressions for F^ and F^ are given by 

and 

Fx(z) Vz) V-L(z) 

(u0,F) 
(U0’V0) (uo’V = F^D 

(ul9F) 
(U1’V0) 

(Ui»vi) 

F2 v0(z) 
vx(z) v2(z) 

<VF> (u0>v0) (uo>vi) (u0’V2) 

(u^F) 
(ul>v0) 

(u-L,v1) (u-L,v2) 

(u2,F) (VV (u2,v1) (u2,v2) 

,(D 

From these it is clear that 

0 vq(z) v1(z) 

P2(Z) D(l) 

(u0-F) (VV <U0’V1) 

(ux, F) (u-j^jVq) (u1,v1) 

1 

D 
(2) 

0 
vo(z) 

V-L(z) 

(u0,p) 
(uo>vo) (uo’vi> - o. 

(u^F) 
(vV 

(Ui,vi) 

0 
vo vi 

)d<2V 
<VF) (u0’v0) 

(U-j^jF) (ul>v0) (VVP 

(u2>F) 
<U2’V0) 

(u2,vJL) 

0 v0(z) V-L(z) v2(z) 

(u0>F) 
S’V (U0>V1) (u0>vP 

(u-j^jF) (VV (u1,v1) (u-L,v2) 

(u2,F) 
(U2’V0) (u2,vi) (u2,V2} 

v. 

=0. 

(1-39.11) 
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Correspondingly, we have 

Q2(Z) d(1) D 
(2) 

0 uq(z) u1(z) u2(z) 

(C,v0) (u0>v0) (urv0) (u2,v0) 

(G,v1) (u0>v1) (u1,v1) (u2,v1) 

(G,v2) (uq,v2) (u1,v2) (u2,v2) 

(1-39.12) 

It is a nice exercise to work out the normalization constant, CD = 

0 uq (z) ^(z) 

(C,v0) (u0,v0) (Ul,v0) 

(G,v1) (Ug.v^ (u1,v1) 

1/(Q2,P2). Clearly 

0 0 0 (Q2»v2) 
A 

W2,P2) - (Q2.F2) - (<5 
D ^ 

(un,F) (U0>V (u0»v2) 

(Uj.F) (Ul-V 
(Uj.Vj) (^1*v2) 

(U2*V (Uj.Vj) (u2,v2) 

(u0,P) (uo»v0^ (UQ,Vl) 

(Qo»vo) 

- „(2) 
(Uj.F) (ul,v0) (u1,v1) 

(u2,F) (u2»v0) (“2*vd 

The value of (Q0,v?) can be determined similarly: 

W2-V2) = ^T) 

0 (u0»v2^ (u1»v2) 0 (u0.v2) (u1>v2) (u2, ■ v2) 

0
 

>
 * 

ro
 

V_✓ (UQ»V0) (“i*V (G"V (u0,v0) tvV (U2J «V 

(G.Vj) (uo,vi} 
(u1,v1) (G.vp (U0'V1) 

(u1,v1) (u2 -V 

(G,v2) (“o'V (u1,v2) 
(u2 >V 
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In the second determinant on tiie right of thi s expression, we 

first row from the fourth row , and thus obtain the value -(G, 

determinant. Multiplying and dividing by we obtain 

0 (Vv2) (ux,v2) 

Da)( (G, V (vv (ui>V * (G,v2)D(1)( 

(G, V (vV (ui>vi) 

(G, V (uo*V (ul*V 
= 

D^1) 
(G, VP (vv Cu1,v1) 

(G, V (vV (Uj,v2) 

• 

(2) 

Combining the expression for CQ2»P2^ w^t^1 t^ie exPressi°n for CQ2>v2* we 

obtain 

W2'P2) = d(1)d(2) 

(G,vo) (u0,v0) (Uj.Vq) 

(G.vp (uQ,v1) (u1,v1) 

(G,v2) (uq,v2) (ui»v2) 

(uq,F) (u0>v0) (u0»vp 

(ux,F) (u1,vQ) (u1,v1) 

(u2,F) (u2,vq) (u2,v1) 
(1-39.13) 

The remarkable feature about this whole development is the fact that the 

functionsF and G are quite arbitrary; therefore, so must the inner oroducts 

involving these functions be arbitrary. Accordingly, we can take (G,v^) and 

(u^,F) to be zero for i = 0 , 1, and unity for i = 2. The expressions for 

p2 , then reduce to (1-39.1) and (1-39.5), while (Q2,p2) = D^)p^. 

c) The Schmidt Method. 

This method uses the previously constructed members of a set of biorthogonal 

functions to simplify the determination of p^ and q^. Thus, the functions p2 

and q2 can be written 
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P0(z) px(z) v2(z) PQU) Px(z) v2(z) 

P2(z) = c* 
(Vpo)(qo,p l^W 

= C' 1 0 (q0.v2) 

(t^Pq) (qx »p pCvV 
0 1 

t^l*v25 

1 
c'{v7(z)- l (q.,v )p.(z)}. 

i=0 

(T-39.14) 

and 

qQ(z) qx(z) u2(z) q0(z) qx(z) u2(z) 

q2(z) = a* (q0.p0) (q^Po) (u2,p0) = d' 1 0 (u2,p0) 

1 

= d'{u2(z)- l (u2,p.)q.(z)}^ 
i=0 

C qQ,p!)(q1,p1)(u2,px) 0 1 (u2,Pj) 
(1-39.15) 

These expressions give p2 and q?, which must now be normalized to assist 

the calculation of higher functions in the sequence. Calculation of the normal¬ 

ization constant proceeds very much as before. From (1-39.14) it is clear that 

1 = (q2,P2') = c'(q2,V2')* (1-39.16) 

Then, from (1-39.15) we obtain 

1 

(q2,v2) = d'{(u2,v2) - ^ (u2,pi)(qi,v2) } . 

Inserting into (1-39.16), we obtain 

c'd' = -±- 

(U2'V2) -J0Cu2>PiHW ' 

(1-39.17) 
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I. APPENDIX ON THE POLYNOMIALS 
n 

40. Calculation of the Functions 

We will make no attempt here to demonstrate most of the general 

properties of the polynomials, but will rather approach them from the 

point of view of the preceding sections. For more complete information, 

see Ref. 15, section 17. 

For our base functions we choose (for some constant i) 

ui(r) 

Z+2i 
r 

(£+2i)! I 
v.(r) 

1 

and the inner products are given by 

(1-40.1) 

-°o —X 

dre 
« 

o 

r&+2i+j 

(&+2i)I 

(Ji+2i+j) ! 

(£+2i)! . 
(1-40.2) 

Construction of the two (biorthogonal) sets of functions can be by many 

of the methods of the preceding section. But for directness and simplicity 

we choose the firSt method and carry through illustrative calculations of 

U£ju) and UU for l = 0, n = 2: 
nl n * 

1 r r 

0! 1! o f 
4mt » 

0! 0! oT 

2! 3! 4! 

2! 2! 2! 

= C2(6-10r + 2r2). 

and 

1-297 



<(r) = d_7 

1 
2! 4! 

0! 2! 4! 
0! 2! 4! 

1! 3! 5! 
0! 2! 4! 

2 4 

^2^”^ 2T + ^ TT* * 

Tiie normalization constant is given by 

1 

C2d2 
= O^V2) = 

21 
0! 

2j_ 
2! 

0! 

21 
2! 

0! 1! 2! 
0! 0! 0! 

2! 3! 4! 
TT 2! TT 

4! 5! 6! 
4! TT 4! 

= 2 • 16 = 32 

Any of tiie polynomials can be determined in this manner, which, though 

clumsy, is extremely direct. 

For rapid and easy computation, the following recursion relation is 
15/ 

most useful: 

U* = TT-ml (2n+l + £) - x + x-rlf U£(x). 
n+1 2(n+l) 1 dxJ nK ' 

(1-40.3) 

Of greater importance than tiiis are recursion relations derivable from 

it that hold between coefficients u ^ in the expression 

n 
U (r) = l u\ r1. 

" i=0 nl 
(1-40.4) 

Inserting (1-40.4) into (1-40.3), we obtain 
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n+1 . n 1 . . 
v £ 1 r 1 £ r , . . 1 1+1 . l: 
XVl.i r = X 2[^TT Uni 1 (2n+l + £)r -r * ir f. 
1=0 * 1=0 

When like powers of are separately equated to zero in this expression 

we obtain 

£ - 2n+£+i+l £ 1 £ 

Un+l,i 2 (n+1) Uni 2(n + l) Un,i-1, 
(I-40. S') 

with the special cases 

£ _2n+£+l £ 

Un+1,0 " 2(n + l) Un0, 

£ 1 
u 

u 

n+1,n+1 

^ = 1 
00 * 

‘ 2(n+l) 

i = n = 0. 

£ 
u 
n,n. 

i n+1, (1-40.6) 

The value for n = i = 0 does not follow from the recursion system, but 

is consistent with the normalization of the U (r) polynomials adopted in 
nv ' 

Ref. j.5, section 17. 

The structure of the linkage between different coefficients u . can 
m 

be exhibited with the help of Pig. 1-40,1. 

The arrows indicate that knowledge of the 

two preceding coefficients is sufficient 

to determine u , Evaluation of the 
n + 1 ,i 

coefficients therefore proceeds down and 

to the right. But it is clear from Eqs. 

(1-40.6) that both the first column and 

the diagonal can be determined by 

i -+ 
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application of the special cases of the recursion formula. One can 

therefore evaluate each column in turn, proceeding from left to right. 

Note that calculations for each £ value are independent of the other 

£ values. No cross linkage exists. 

Eqs. (1-40.5) and (1-40.6) greatly simplify both the calculation 

and tabulation of the polynomials. Lists of the low degree polynomials 

and their adjoints are given in Table 1-40.1 for easy reference. Table 

1-40.2 gives brief corresponding tabulation due to Mr. R, E. Faw, whose 

machine program was based on Eqs. (1-40.5) and (1-40.6), 

£ 
Table 1-40.3 gives numerical values for the coefficients u . , 

ni 

as calculated from the recursion system of Equations (1-40.5) and 

(1-40.6). In effect, this table extends Table 1-40.1 to higher 

values of £ . 
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Table 1-40.1 
Si 

Expressions for some of the low degree and polynomials. 

uo+ 
= 1 

«o°- i 

of = 1 
2 

X 
2! i(l - x) 

= 1 
2 

- 2 2- 
2! 

4 
X 

+ 4T 
i(3 - 5x + x2) 

< = 1 
2 

3 2! 

4 6 
+3--— 

4! 6! »s- *5 (15 
- 33x + 12x2 - x3) 

ot 
U4 

= 1 
2 

- 4 *- 
2! 

4 6 
+ 6^_ _ 4 *- 

4! 6! 

8 

+ 17 
3~- (105 - 279x + 141x2 - 

U 

u 

u 

u 

u 

It 

0 

It 

1 

It 

2 

It 

3 

it 

= 1 

- 1 - 
x 

3! 

1 

1 

1 

- 2 

- 3 

- 4 

x 

3T 
2 

x 

Jl 
2 

x 

3f 

4 
x 

5! 

t 3 rr 

+ 6 

5! 

4 
x 

5~r 

x_ 

7! 

6 8 
„ x x 
4 7! + 9! 

U0 = 

= 

«*■ 

“5- 

u1 = 

1 

\ (2 - x) 

I (8 - 7x + X2) 

-4 (48 - 57x + 15x2 - x3) 
48 

1 (384 - 561x + 207x2 - 26x3 + x4) 
384 
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Table 1-40.2. Values for some of the U* polynomials. 

r u>, U°(r) U°(r) 
U3(r) 

U°(r) 

.0 1.0 .5 .375 .31250 .27343 
1.0 1.0 .0 -.125 -.14583 -.14062 
2.0 1.0 -.5 -.375 -.22916 -.12760 
3.0 1.0 -1.0 -.375 -.06249 .06250 
4.0 1.0 -1.5 -.125 .22916 .24218 

5.0 1.0 -2.0 .375 .52083 .28645 
6.0 1.0 -2.5 1.125 .68750 .13281 
7.0 1.0 -3.0 2.125 .60416 -.21874 
8.0 1.0 -3.5 3.375 .14583 -.70572 
9.0 1.0 -4.0 4.875 -.81249 -1.20312 

10.0 1.0 -4.5 6.625 -2.39583 -1.52343 
11.0 1.0 -5.0 8.625 -4.72916 -1.41666 
12.0 1.0 -5.5 10.875 -7.93749 -.57031 
13.0 1.0 -6.0 13.375 -12.14582 1.39061 
14.0 1.0 -6.5 16.125 -17.47915 4.90363 
15.0 1.0 -7.0 19.125 -24.06248 10.46873 

r 
uo(r) 

uhr) U^(r) U^(r) uj(r) 

.0 2.o 1.0 1.6 1.0 1.0 

1.0 1.0 .5 .25 .10416 .01302 

2.0 1.0 .0 -.25 -.29166 -.26562 

3.0 1.0 -.5 -.5 -.31249 -.14843 

4.0 1.0 -1.0 -.5 -.08333 .11458 

5.0 1.0 -1.5 -.25 .27083 .33594 

6.0 1.0 -2.0 .25 .62500 .39063 

7.0 1.0 -2.5 1.0 .85416 .21615 

8.0 1.0 -3.0 2.0 .83333 -.18749 

9.0 1.0 -3.5 3.25 .43750 -.75780 

10.0 1.0 -4.0 4.75 -.45833 -1.36978 

11.0 1.0 -4.5 6.50 -1.97916 -1.83592 
12.0 1.0 -5.0 8.50 -4.24999 -1.90624 

13.0 1.0 -5.5 10.75 -7.39582 -1.26821 
14.0 1.0 -6.0 13.25 -11.54165 .45315 

15.0 1.0 -6.5 16.0 -16.81248 3.69533 

r 
u0(r) 

U?(r) U^(r) U§(r) U^(r) 

.0 1.0 1.5 1.875 2.1875 2.46093 

1.0 1.0 1.0 .875 .72916 .58854 

2.0 1.0 .5 .125 -.10416 -.23177 

3.0 1.0 .0 -.375 -.43749 -.37499 

4.0 1.0 -.5 -.625 -.39583 -.15364 

5.0 1.0 -1.0 -.625 -.10416 .18229 

6.0 1.0 -1.5 -.375 .31250 .44531 

7.0 1.0 -2.0 .125 .72916 .51C42 

8.0 1.0 -2.5 .875 1.02083 .31511 

9.0 1.0 -3.0 1.875 1.0625 -.14061 

10.0 1.0 -3.5 3.125 .72917 -.79426 

11.0 1.0 -4.0 4.625 -.10416 -1.52082 

12.0 1.0 -4.5 6.375 -1.56249 -2.13279 

13.0 1.0 -5.0 8.375 -3.77082 -2.38018 

14.0 1.0 -5.5 10.625 -6.85415 -1.95051 

15.0 1.0 -6.0 13.125 -10.93748 -.46874 
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r 
°0(r> 

u^(r) U^r) U^(r) 

.0 1.0 2.0 3.0 4.0 5.0 
1.0 1.0 1.5 1.75 1.85416 1.86718 
2.0 1.0 1.0 .75 .45833 .19270 
3.0 1.0 .5 .0 -.31249 -.46093 
4.0 1.0 .0 -.5 -.58333 -.46874 
5.0 1.0 -.5 -.75 -.47916 -.14322 
6.0 1.0 -1.0 -.75 -.12499 .26562 
7.0 1.0 -1.5 -.50 .35416 .57031 
8.0 1.0 -2.0 .0 .83333 .64583 
9.0 1.0 -2.5 .75 1.18750 .42969 

10.0 1.0 -3.0 1.75 1.29167 -.07812 
11.0 1.0 -3.5 3.0 1.02083 -.81509 
12.0 1.0 -4.0 4.5 .250 -1.65624 
13.0 1.0 -4.5 6.25 -1.14582 -2.41406 
14.0 1.0 -5.0 8.25 -3.29165 -2.83854 
15.0 1.0 -5.5 10.50 -6.31248 -2.61719 

r 
u0(r) U^(r) u!|(r) U3(r> U^(r) 

.0 1.0 2.5 4.375 6.56250 9.02343 
1.0 1.0 2.0 2.875 3.60416 4.19270 
2.0 1.0 1.5 1.625 1.52083 1.28906 
3.0 1.0 1.0 .625 .18750 -.18749 
4.0 1.0 .5 -.125 -.52083 -.67447 
5.0 1.0 .0 -.625 -.72916 -.54687 
6.0 1.0 -.5 -.875 -.56249 -.11718 
7.0 1.0 -1.0 -.875 -.14583 .36458 

88.0 1.0 -1.5 -.625 .39583 .71094 

9.0 1.0 -2.0 -.125 .93750 .79688 
10.0 1.0 -2.5 .625 1.35417 .55991 
11.0 1.0 -3.0 1.625 1.52083 .00002 
12.0 1.0 -3.5 2.875 1.31250 -.82029 
13.0 1.0 -4.0 4.375 .60417 -1.77601 

14.0 1.0 -4.5 6.125 -.72915 -2.67967 
15.0 1.0 -5.0 8.125 -2.81248 -3.28123 

r u^(r) U*(r) U*(r) U3<r> U^(r) 

.0 1.0 3.0 6.0 10.0 15.0 

1.0 1.0 2.5 4.25 6.10416 7.97135 

2.0 1.0 2.0 2.75 3.20833 3.40104 

3.0 1.0 1.5 1.50 1.18750 .72655 

4.0 1.0 1.0 .5 -.08333 -.55208 

5.0 1.0 .5 -.25 -.72916 -.87240 

6.0 1.0 .0 -.75 -.87499 -.60938 

7.0 1.0 -.5 -1.0 -.64583 -.07554 

8.0 1.0 -1.0 -1.0 -.16666 .47914 

9..0 1.0 -1.5 -.75 .43750 .86715 

10.0 1.0 -2.0 -.25 1.04167 .96350 

11.0 1.0 -2.5 .50 1.52083 .70568 

12.0 1.0 -3.0 1.5 1.750 .09369 

13.0 1.0 -3.5 2.75 1.60417 -.80996 

14.0 1.0 -4.0 4.25 .95834 -1.88030 

15.0 1.0 -4.5 6.0 -.31248 -2.92980 
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H Z r Z i 
Table 1-40.3. Coefficients u . for the polynomials U (r) = ) u .r . 

ni n .L n ni 
i=0 

• 
1 Z = 0 

0 1 2 3 4 

1 

.500000 -.5000 

.375 -.625 .125 

.3125 -.6875 .250 -.0208333 

.273437 -.726563 .367188 -.0572916 .0026041 

. rH
 

II 

0 1 2 3 4 

1 

1 -.50000 

1 -.875 .125 

1 -1.1875 .3125 -.0208333 

1 -1.460938 .539063 -.067708 .0026041 

• 

C
M

 

II 

1 
0 1 2 3 4 

1 

1.5 -.5 

1.875 -1.125 .125 

2.1875 -1.8125 .375 -.0208333 
2.46094 -2.53906 .74219 -.078125 .0026041 

Z - 3 
1 

0 1 2 3 4 

1 

2 -.5 

3 -1.375 .125 

4 -2.5625 .4375 -.0208333 

5 -4.02344 .97656 -.088542 .0026041 

Z = 4 

.* 
0 1 2 3 4 

1 

2.5 -.5 

4.375 -1.625 .125 

6.5625 -3.4375 .5 -.0208333 

0 
1 
2 
3 

4 

0 

1 

2 
3 

4 

0 

1 

2 
3 

4 

0 

1 

2 
3 

4 

n 

0 

1 
2 
3 
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41. Approximation of Distributions 

We approximate a distribution D (r) for which we have moments 
Xy 

D ^ t n = l,1+2,1+4,..., by the finite sum »• • • > 

-r N 

l (uf.Dpu^r) D.(r) = e 
i=0 

(1-41.1) 

where 

iy =. I 
m 

, m - y(n-£) 
3 £+2j,ft 

U+2 j )! 

(1-41.2) 

As has been mentioned before, all the point isotropic gamma ray dose 

distributions have basically exponential trends; and if the sources are 

monoenergetic the exponential trends are known. If r measures distance 

from the source in units of the mean free path of the source gamma rays, 

the convergence of the terms in the sum on the right of (1-41.1) will 

normally be rapid and the representation accurate. 

Strictly speaking we should at this point investigate problems of 

ultimate convergence for N indefinitely large, and the problem of 

completeness of the two biorthogonal sets. But we will bypass these 

questions. In fact the two sets are complete; and the practical conver¬ 

gence is ordinarily adequate for our purpose. 

For machine calculations the representation in terms of polynomials 

is less useful that the representation in terms of powers. The power series 

representation can be obtained formally from the equation 
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-r -r ? "r 
Vr> e re 

L. 
r e 

£! (£f])! (*-+2) ! 
£! £! £! 

£+2 

^(£+2) ! 
(£+2)! (£+3)! (£+4) ! 
(£+2) ! (£+2) ! (1*2)l 

£+4 

((£+4) ! 
(£+4) ! (£+5)! (£+6) ! 
(£+4) ! (£+4)"! (1+4) ! 

(1-41.3) 

Although this determinant equation is advantageous for showing what is 

involved in the power series representation, it turns out that by far the 

most efficient calculation of this type relies on the U-polynomial expan¬ 

sion as an intermediate step. Using the results of tne last section, let 

us write (1-41.3) as a sum of powers: 

-r N n . 
D (r) = e Y Y (U ,D„)u .r . 

£v J n • Ln n * V ni 
n=0 i=0 

(1-41.4) 

To obtain expressions for the coefficients of the powers, we must invert 

the order of this double sum. 

Noting that the terms of the double 

sum correspond in Fig. 1-41.1 to the 

points of intersection on and above 

the diagonal, we see that the inner 

sum (over i) runs parallel to the 

abscissa from zero to the diagonal. 

The outer sum (over n) is over rows 

Fig. 1-41.1 

up to row N. If the order of the sums is inverted, the inner sum (over n) 

must correspond to points of the i'th row from the diagonal to N, while the 

outer sum (over i) must be over columns up to the N'th. That is to say. 
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(1-41.5) 
-r N 

ryr) = 

i=0 n=i 

, ,,5-t r* . H 
(U ,0 )u . 

n i ni 

so that the coefficients of the r 
i 

» which we designate a are given by 

N 

I (u'l+,DJ ^ n * V 

l 
u 
ni. 

(1-41.6) 

To put this in terms of the moments, we insert the expression 

(1-41.2) for the inner products. Again the order of summations can 

be inverted using a sketch much like Fig. 1-41.1, with the result 

N n 

li ■ l Uni I ^ 
n=i j=0 J J 5 

m N 
V n , J r i r i, j <i, 

i“0 ^+23/ n^n V ni, mm lJ, J>i. 
J ” min 

(1-41.7) 

But this is simply the matrix multiplication 

/ N 
Moo Moi • • • • mon a£0 

mio Mn • • • • min 

• • • 

• • • 

ai+2j,t 
• 

• 

3ill 
• 

• 

M M * M 
NO NI • • * • NN 

• 

vD£+2N,4 a£N 
^ J 

where the matrix elements are given by 

M. 
ij 

N 

I l 
u . 
ni. j<i » 

= (-)■ 

N 

l 

n=j 
(") u . j>i ni, J- 

(1-41.8) 

(1-41.9) 
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Therefore, we have the possibility of calculating the coefficients a 

£ 
in three stages: (1) First, the coefficients u ^ are calculated using the 

recursion system described in the preceding section; (2) then the matrix 

elements fh . appropriate to the number of moments to be used in the calcu¬ 

lation are determined; and (3) finally the matrix multiplication (T-41.8) 

is performed. 

This calculation can be viewed either as a device for inverting a 

special type of matrix or as a device for evaluating a special type of 

determinant. 

Table 1-41.1 lists matrix coefficients M.. for several values of l 

and for N = 4. These were computed by a simple machine program written by 

Mr. J. R. Fagan, based on the recursion system for the u ^ and the equations 

(1-41.9). 
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Table 1-41.1 Matrix coefficients M^_. for a 4-term power series approximation 

0 

1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

0 

1 
2 
3 

0 
1 
2 
3 

to D^(r), based on the moments •W •3 = °’2’3 • 

0 
l = 0 

2.1875 -2.1875 1.3125 -.3125 
-1.8125 3.8125 -2.6875 .6875 

.375 -1. .875 -.2500 
-.0208333 .0625 -.0625 .0208333 

• l = 1 

0 1 2 3 

4. -6. 4. -1. 
-2.5625 5.8125 -4.4375 1.1875 

.4375 -1.1875 1.0625 -.3125 
-.0208333 .0625 -.0625 .0208333 

Z = 2 
j 

0 1 2 3 

6.5625 -11.8125 8.4375 -2.1875 
-3.4375 8.1875 -6.5625 1.8125 

.5 -1.375 1.25 -.375 
-.0208333 .0625 -.0625 .0208333 

l = 3 
j 

0 1 2 3 

10. -20. 15. -4. 

-4.4375 10.9375 -9.0625 2.5625 

.5625 -1.5625 1.4375 -.4375 

-.0208333 .0625 -.0625 .0208333 

Jl = 4 

0 1 2 3 

14.4375 -30.9375 24.0625 -6.5625 

-5.5625 14.0625 -11.9375 3.4375 

.625 -1.75 1.625 -.5 

-.0208333 .0625 -.0625 .0208333 
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J. APPliiMDIX ON FUNCTION FITTING 

A 

42. Discussion of Function Fitting Procedures" 

For many configurations and radiation source types, one knows that 

the penetration is basically exponential, but it is not clear what the 

exponential coefficient is. Therefore, one does not know what weight 

function to use with a polynomial expansion. In this circumstance it 

might be natural to make exploratory calculations with several different 

weight functions to see if a pattern begins to emerge; but this is not 

very satisfactory. The fundamental problem is that with polynomial 

expansions it is necessary to incorporate in the weight function an 

approximation which differs from the distribution in such a way that the 

ratio between the two can be accurately characterized by a low-order 

polynomial. When the nature of the distribution is not known in many 

details, an arbitrary weight function guess is apt to be in error in such 

a way that the correction requires a high-order polynomial, i.e. many terms 

in the expansion. 

This situation holds for plane monodirectional slant source distributions, 

for instance, and for nearly all peaked angular distributions. The approach 

which has been most useful in such cases begins with a "weight function" 

which contains an internal parametert and which has three characteristics: 

the form expresses known information about the desired distribution; the 

value of the internal parameter determines the width of the function; and 

the functions are simple enough to be well-behaved in superposition. 

To illustrate, we consider a distribution I(z) which is essentially 

exponential for z>0, but for which it is impossible to identify a particular 

exponential coefficient known to be dominant at large penetrations. This is 

*In addition to Ref. 15, section 18, see Refs. 25, 40. 
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the case for plane slant gamma ray sources, and it may occur for other 

source types if the source spectrum is not monochromatic. Because of the 

exponential nature of the distribution we write 

i(z) : i(z) i (1-42.1) 

Values of the parameters ou,3^ must then be determined so that this 

approximation has the spatial moments which are known to characterize the 

unknown distribution. 

In this way, the spatial moments can be used to specify "effective" 

exponential trends for the problem; and the troublesome problem of unusual 

peaking near z = 0 can be approximated satisfactorily at the same time. 

a). Gauss Integration Point of View « 

Before proceeding to outline the calculation of the parameters in greater 

detail, we consider more general aspects of this type of approximation. Thus, 

suppose that the unknown distribution I(z) can be represented as follows: 

I(z) 

z/x 

f(x). (1-42.2) 

where f(x) is to be determined. If we multiply this equation by z11 and 

integrate over z, we obtain, by changing the order of integrations. 

f°° 

dzznI(z) 

o 

r°° 
i n dzz e 

z/x 

f(x) 

O 0 

f°° 
dx xnf(x) 

f00 
dCz/xHfo" 

-z/x 
e 

o 0 
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This is recognizable as a very simple relationship between moments of the 

three functions of Eq. (1-42.2), 

I = n!f . 
n n 

(1-42..3) 

Thus, it is possible to determine moments of f(x) without actually knowing 

the function I(z). 

in principle, therefore, we can construct the function f(x) from its 

moments rather than the function I(z), providing this function exists. 

The distribution I(z) can then be determined by quadrature. The advantage 

to this approach is not difficult to appreciate. Integrations always tend 

to wash out irregularities in the integrand. Therefore, if an approximate 

calculation of f(x) is imperfect, and yields a function with irregularities, 

the resulting approximation to I(z) may be quite accurate notwithstanding. 

This aspect of the representation (1-42.2) leads to another idea. 

Suppose we were to make what is in one sense the most extreme annroximation 

to f(x) consistent with its moments, could we deDend entirely on the integral 

to give us a smooth approximation to I (z)? That is to say, suppose we 

approximate f(x) by a sum of Dirac delta functions, 

f(x) = £ a^6(x-3^). (1-42.4) 
i 

The parameters in this approximation can be determined in principle so 

that moments f of this expression agree with f^ values determined using 

(1-42.3); and in a real sense this is the least smooth type of approximation 

which can be made to f(x) in this manner. The corresponding I(z) can be 

obtained by inserting this f(x) into Eq. (1-42.2), 
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(z) = l CLi 
dx 

-z/x 

(x'Bi) = l 17 

-z/8. 

X 8x 
(1-42.5) 

That is to say, the resulting approximation is iust that of Hr?. (1-42.1), 

and can, in fact, be very accurate. 

The thought that smoother approximations to f(x) might be intrinsically 

better has led to investigations of related approximations, but it is not 

clear that the smoothness of f(x) determines the accuracy of the approxi¬ 

mation. 

An extremely well-known and useful integration procedure, called Gaussian 

integration, consists of the approximate evaluation of an integral in 

terms of a set of values of the integrand, as for example, 

» 

dx w(x)F(x) = l w.F(x.) , (1-42.6) 
• 1 1. 

R 

42 / 

where w(x) is a weight function for the integration. The weights w^ deoend 

on this weight function but are not the values w(x^). The problem of Gaussian 

integration is the determination of the values x. and the corresponding 

constants w\ so that the approximation is particularly accurate. It turns 

out that the x^ chosen are the zeros of one of the set of polynomials 

orthogonal with respect to w(x). It can be easily shown that this choice 

is equivalent to the construction of an approximate function of the type 

w(x) = l wi<S(x-xi), 
i 

(1-42.7) 

in such a way than a set of moments dx x w(x) are equal in value to the 
Jr 
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corresponding dx x w(x). Insertion of w(x) in the nlace of w(x) in the 
R 

n 

integral of (1-42.6) gives the approximation. 

A comparison of Hqs. (1-42.6) and (1-42.7) with Ros. (T-42.2) through 

(1-42.5) makes it clear that ’’function fitting" approximations such as 

(1-42.1) are essentially a Gaussian integration of an integral 

representation for I(z). Interestingly, the unknown function f(x) plays the 

role of weight function in the calculation. 

b) Calculation of the coefficients. 

We illustrate the calculation of the ou,B^ in Eq. (1-42.1) by consider¬ 

ation of the case of a 2-term approximation in which moments 1^, n = 0,1,2,3 

are used. As in the case of earlier illustrative calculations, the general¬ 

ization to higher approximations will be quite clear. 

The procedure which we use is not the simplest, but lends itself 

readily to a variety of related arguments and extensions. 

If we calculate moments of f(x), as given by Rq. (1-42.4), and recall 

I 
that f = f = —r- , for n = 0,1,2,3, we see that our problem is that of 

n n n: 

solving the equations 

al^l + a2^2 = *n * n = 
(1-42.8) 

We divide these four equations into 2 sets of 3 each, as follows: 

“1 
+ 

a2 

ii *+
> 

o
 V ai8i ♦a2B 

2 
al6l 

+ 
a262 ' fl* “i6i + “28 

2 2 
■ V 

„3 
+a96 

“l8l 
+ 

a232 °161 3 

These two sets of equations can be summarized in matrix form very easily. 
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using 

2'' S s 

al a2 
1 

Bi fo 
f f 

1 2 

a, 6, 1 60 f. 1 
4-1 ( 
4h 

11 2 2 2 2 1 2 3 
N S 

s 
v. s 

Finally, we expand this matrix equation into an equation 

matrices, by the use of identities, to obtain 

\ S' 2X 
X 

2s! 
1 0 0 0 F(x) 1 X F(x) 1 X X 

0 
al a2 ^ 

0 1 h Bi 0 
fo h f2 

0 
al3l a2S2 ° 

0 1 
B2 8? 

- 0 
fl f2 

f3 

0 
! 

a ij 1 
V f2 f3 

1 
V f2 f3 f4 

s 

involving 4x4 

(1-42.9) 

where the function F(x) is arbitrary, and for our immediate nurpose a 

knowledge of f^ turns out to be unnecessary. Notice that all elements of 

the top and bottom rows must be identical in the last two matrices, but are 

otherwise arbitrary, ive are stressing here the similarity with, for example, 

Eq. (1-37.5). 

Now, we consider tiie determinant equation corresponding to (1-42.9). 

The middle determinant will vanish if F(x) = 0, when x takes on either of 

the values 6 or 39. Since the right determinant must vanish under the same 

circumstances, we find using expansion by minors of the first column that 

the polynomial 

F(x) = 4rr 
(1-42.10) 
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must vanish for the two values 8 and B7. Note that the constant D 
1 z 

i.e. the minor of F(x) in (1-42.9), then factors out and thus lias no 

n(2) 

influence on the result. 

The polynomial F(x) is the 3rd in the series of polynomials which 

are orthogonal with respect to the weight function f(x), as can be seen 

by comparison with bq. (1-39.1). Thus, we confirm the earlier comments to 

the effect that this procedure is essentially a Gaussian integration. 

Determination of the two constants 0. and 0 makes it possible to 
i. z 

evaluate the corresponding constants and a7 by solution of any two of 

the four equations (1-42.8). Nut it is interesting to obtain a neat 

expression for these, even if it is not particularly useful. To this end 

we modify the matrix equation (1-42.9) and write 

10 0 0 

0 a a. 0 

0 a^0j a209 0 

0 0 0 1 

F(x) 1 x x‘ 

l/o1 1 8X 

0 
1 B2 B2 

h f2 f3° 

F(x) 1 x x 

f f f 
0 1 2 

31 £1 f2 f3 

f, n 
2 3 

(1-42.11) 

If we now assign x the value 0^, and F(0p the value l/a^, the determinant 

of the middle matrix vanishes, as must the determinant of the right matrix, 

so that we obtain the equation 

1/oij 1 3i Sx 

f0 fl f2 

f f f 
1 2 3 

6I f2 f3 ° 

= 0 (1-42.12) 
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which gives l./dj, since all other entries are known. If a^,Bj are replaced 

by a9,B„, we obtain an equation for l/a9. Finally, we mignt observe that 
Cm 

if in (1-42.11) we write x = 39, and F(B9) = 0, we obtain the pretty result 

that 

0 1 e2 62 

1 f0 fl f2 

61 fl f2 f3 

*1 f2 f3 ° 

= 0 

c) Function Fitting and Biorthogonal Systems « 

A>. 

We might designate the approximation iust discussed as I (z), signifying 

that the moments 0 through 3 arc correctly reproduced by the approximation. 

It is tiien clear that the function 

I (z) 
n 

(1-42.13) 

has the property that its moments through the (n-l)’st are zero. Accordingly, 

this function can be''ton side red tiie n'th in one set of a biorthogonal series. 

The adjoint set, {q^(z)} consists of polynomials. We may then write 
/ 

* n 
I (z) = l p.(z). (1-42.13) 

n i=oPl 

From this it is clear that the theory of biorthogonal functions can be 

applied to study function fitting approximations. 

a 
We have not indicated at this point how one might obtain I^(z), n even, 

and we do not intend to pursue this line of thought further here, though it 

leads to some useful results. 
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43. Calculation of Spatial Distributions for Plane 
Monodirectional Sources 

We give here some details of the calculation of results reported in 

Ivcf.36 for plane monodirectional sources. 

Tiie distribution desired will be designated I(z) as in the preceding 

section; and we wish to determine an approximate distribution of the form 

(1-42.1). For accuracy we wish the I(z) to reproduce 6 moments correctly; 

tiie nature of the configuration requires that these moments be, for example, 

IQ, In, .... , The reasons for use of these moments are more fully 

discussed in section 26. 

Strictly speaking, we would expect these 6 moments to determine the 

parameters for 3 terms in tiie sum (1-42.1). But we know from previous 

experience that solution of the relevant determinant equation requires a 

precision in the values for I~ great enough to make it largely a matter of 
zn 

chance whether the values for g , g , g are all real or not. If tiiese 
1 Z o 

parameters are complex, the accuracy of the approximation is expected to 

be somewhat less, and tiie nature of tiie calculation is substantially changed. 

Accordingly, we adopt a somewhat less sensitive procedure, and write 

1(2) I 
a, 

i = l 3i 
(1-43.1) 

with the intention of determining the eight parameters , 3^, i = 1,..4, 

A 

so that six moments of I(z) arc correctly given. We can assign values to 

two of the parameters in (1-43.1), and the parameters we choose to fix are 

and g7. The first is given a value corresponding to the exponential 

trend of the unscattered gamma rays produced by the source, as discussed 

in section 26; and the second is given a value usually near .7. 
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lhe equations which determine the remaining coefficients are 

al 
+ °2 + 

a3 
+ 

a4 = V 

al3l 
+ ,,2 

a2t>2 
+ r2 

U3e3 
• 

+ a S2. = 
4 4 
• 

V2! 
• 

(1-43.2) 

’,10 
*1*1 

+ ' i° 
a232 

+ ’ ,10 
“3B3 

+ * ,10 
a .8. = 4 4 

• 

l10/10!. 

We can simplify these relations by multiplying each equation by 3^ and 

subtracting from the following equation. When this is done, the first 

term cancels, and we are left with the five equations 

l2(a2’8l)62 

,„2 *2,„8 

,2 „2. 

,„2 *2.„8 

“4C64-6l) 

0 iL 
= JT 

,2 2, 2 h 
°4(B4-B1)B4 

• 

4! 
• 

• 

,7 „2,„8 Ii’n 
a4 *-34~31 ^ 3 4 ~ 10! 

- I 

I 

0 

_2 
? ! » 

H 

8! • 

Because 80 is also known, we can go through this procedure once more, 

to obtain the six equations 

, 2 2, , 2 „2, 2i , 2 2^, 2 2^ 2i *2i+4 *2i+2 2, 
a3 33~31 33~32 33 + a4t64"3l') (e4"32')64 " ((2i+4) ! (21+2)“!31 ^ 

- ( 
*2i+2 *2i 2 2 ef) b;, i = o,i,2,3. (2i+2)! (2i) ! 1' M2 

Finally, we define new constants as follows: 

a! = a3(823-3^C823^), 

«4 7 «4Ce4“Bl)Ce4-e2)- 

I 
f. = 

2i+4 

(2i+4) ! 
bi + 2 2 2 Wi_ 52 
(2i+2)(61 S23 (2i)!3281* 

(1-43.3) 

1-320 



and thus reduce the system to four equations in the standard form of 

(1-43.8), 

a^B^1 + a4B^ = f , i = 0,1,2,3. (T-43.4) 

Solution of these equations by evaluation of the roots of the polynomial 

equation 

9 4 
1 8“ 8 

* * * 

gives first the constants B^ and 8^. Next, and can be calculated 

from two of Eqs. (1-43.4). Then, a and a. can be determined from Eqs, 
»/ i 

(1-43.3) , and finally and a^ can be calculated from the first two 

Eqs. (1-43.2) 

Since 8^ and B^ are obtained as the roots of a nuadratic equation, 

it may happen that they turn out to be complex. The terms of the repre¬ 

sentation (1-43.1) then have the form of exponentials multiplied by sines 

and cosines, so that they give damped oscillatory trends. These can be 

quite accurate; but they have usually be ruled out as unrealistic over 

large regions. Instead of accepting such solutions, they have been re¬ 

jected in favor of new calculations with a change in the value of the 

prespecified parameter. 

It is possible for a set of parameters a. ,8- to occur which are real, 

but which give a distribution I(z) which is nonsense physically because 

of the occurrence of features for which there is no physical reason. 
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Such features arc mostly frequently "bumps" or unreasonably large values 

of 6^ or 3^. This possibility has the effect of making it difficult to 

apply function fitting mechanically. Distributions obtained by this 

method require examination in regard to their acceptability on the basis 

of known trends and characteristics. 

In general, the function fitting method has a go or no-go character, 

hither the distributions obtained in this way are quite accurate, or the 

calculation fails in one of the obvious ways iust noted. 
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Foreword 

This portion of the proceedings of the Kansas State University 
1962-1963 Summer Institute on Radiation Shielding has been titled 
"Engineering Analysis and Design, Basis and Methods" as an attempt 
at a brief descriptive title. Actually, it is much more than 
engineering analysis and design, though the end objective of this 
effort is that the reader understand and be able to apply the 
latest practical methods of fallout radiation shielding analysis 
and design. 

For a thorough understanding of these engineering methods the 
designer or analyzer must understand the basis of the method. This 
is especially true of the person who wishes to teach this engineer¬ 
ing to others. Since these summer institutes were established to 
develop the capabilities of university faculty members in the 
relatively new science of radiation shielding, a great deal more 
emphasis has been given to the "fundamentals" than to the "practical" 
engineering. 

This section of the institute has three distinct parts: (1) 
description of the methods and the data which have been generated 
as a result of research on the penetration of fallout radiation; 
(2) the technical assumptions underlying the conversion of this 
basic data into engineering methods; and (3) description of these 
engineering methods. 

During the 1962 institute, all three parts were covered during 
the four-week period by a series of lectures given by the author. 
During the 1963 institute GDR LeDoux was unavailable for the entire 
institute. Part (1) was covered by Dr. R. E. Faw, Kansas State 
University; part (2) was given by C. Eisenhauer, National Bureau of 
Standards; and part (3) by CDR LeDoux. Since Charles Eisenhauer 
was mainly responsible for the actual development of the basic 
engineering method now in use, the institute was fortunate indeed 
in obtaining his services. His work in this has been published as 
NBS report 7810, dated February 1963. 

This final report is then a synthesis of the 1962 proceedings, 
the lecture notes of Dr. Faw and Charles Eisenhauer during the 1963 
institute, and the since published reports which bear directly on 
the subject matter of the institute. The valuable editorial comments 

and suggestions of Paul I. Richards of Technical Operations Inc., 
Burlington, Massachusetts are also acknowledged. 
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I - INTRODUCTION 

A. Purpose 

This document, being a commentary on other documents, is 
not entirely self-contained* It is to be used in conjunction 
with detailed information in one or more of the following 
references: 

1. "Structure Shielding Against Fallout Radiation 
from Nuclear Weapons", by L. V. Spencer, National Bureau 
of Standards Monograph 42, U.S. Gov't Printing Office, 
June 1962. 

2. "Design and Review of Structures for Protection 
from Fallout Gamma Radiation", Department of Defense, 
Office of Civil Defense, OCD PM 100-1, 1964. 

3. ''Equivalent Building Method of Fallout Radiation 
Shielding Analysis and Design", TR 20(Vol 2), Sept 1963, 
Department of Defense, Office of Civil Defense. 

The purpose of the present commentary is to introduce such 
information to readers whose professional experience has not 
prepared them for either the specialized technical discussions 
or the abbreviated summaries in these references. In partic¬ 
ular, we attempt to bridge the gap between the training of 
civil engineer or architect and the sometimes complex 
techniques that are often required when calculating the 
protection factors of practical buildings which are used as 
shelters against fallout radiation. 

Because radiation shielding is an inherently complicated 
subject, those who use its results should understand the under¬ 
lying physical phenomena at least in a qualitative way. Such an 
understanding can forestall hasty application of standardized 
charts to special situations; it will allow the professional to be 
selective in his calculations and to judge the practical reli¬ 
ability of an answer that has been obtained "by the book." In 
short, the professional estimator should develop a "feel" for 
radiation shielding, and this document attempts to provide such 
an understanding. 

B. Organization. 

The ensuing discussion will start with a review of important 
qualitative features of fallout radiation - what it is and how it 
acts. The discussion then examines how a complex practical sit¬ 
uation can be broken down into simpler partial problems that can be 
analyzed individually and later reassembled to provide practical 
answers. 
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The discussion then turns to information in the references 
already cited. The basic, highly accurate information in the 
first 53 pages of Spencer's monograph (Ref 1) is reviewed 
first. With a few exceptions> it is this information upon 
which all calculations of fallout shielding are .ultimately 
based. 

Next we explain the manner in which this basic information 
was adapted to practical calculations in the Engineering Manual 
(Ref 2). This is the step where the accurate but limited basic 
information is subjected to a number of engineering approxi¬ 
mations, which, while justified in most practical cases, must 
be appreciated if the best use is to be made of the charts that 
result. 

Finally, a shorter method of estimating protection factors 
(Ref 3) is also reviewed. 

II - BASIC CONCEPTS 

A. What is Fallout? 

Fallout is essentially radioactive dust from a nuclear 
explosion. The highly dangerous type, which requires shelter 
for human survival, occurs when a bomb has been exploded close 
to the surface of the earth. The dust itself comes from dirt, 
sand, and other debris that is swept aloft into the nuclear 
"fireball" by the same winds that form the famous mushroom 
cloud. 

The dust acquires its dangerous radioactivity while it is in 
this cloud. At that time, vaporized radioactive materials from 
the bomb itself condense on the dirt particles. When the updrafts 
from the explosion finally die down, the dust particles, with 
their radioactive burden, are then carried horizontally by 
prevailing winds as they settle back toward the earth. 

In this way, much of the long-lived radioactivity generated 
by the nuclear explosion may be carried a hundred miles or more 
from the site of the explosion and deposited several hours 
later in areas that are otherwise unaffected. Fallout shielding is 
designed to protect human beings from this one danger, the radio¬ 
activity of the contaminated dust. 

Fallout shielding is easily confused with blast shielding, 
because both must be massively constructed. Indeed the two types 
of shielding can often be combined advantageously. The distinction 
between the two types lies merely in the fact that blast shielding 
must possess strength as well as mass, whereas mass by itself 
suffices for fallout protection. 
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B. What is Fallout Radiation? 

Fallout dust gives off several types of radiation, but as 
long as the dust is not ingested, only one type, called "gamma 
rays," is highly dangerous. These gamma rays are similar to 
X-rays: they can penetrate large thicknesses of matter, and 
when they finally do interact with matter, they damage the 
tiny volume in which the interaction occurs. In most materials, 
such damage is invisible at moderate dosage, but biological 
systems are quite sensitive to internal damage, and dosages that 
produce no visible effect in ordinary matter can easily be fatal 
to an animal or person. Again like X-Rays, gamma rays are in¬ 
visible and cannot be detected by any human senses, at least, 
not sufficiently to serve as a practical warning of danger. 

Both the penetrating power of a gamma ray and the damage it 
may do depend on its energy. Indeed, the only intrinsic dis¬ 
tinction between a gamma ray and an X-ray is the energy of the 
individual "rays," technically called "quanta" or "photons." 
The energy, in fact, is nearly proportional to the damage that 
the photon can do, although there are discrepancies at the 
lower energies. For rough, qualitative estimates of the danger 
of fallout radiation, and of the effectiveness of fallout 
shielding, it suffices to consider the energy flux, the 
"gamma illumination," at various points inside the shelter. 

A fallout shelter, then, requires massive walls to stop 
the highly penetrating gamma rays before they reach the interior 
of the structure. It might appear that such a shelter should have 
no openings, but this is seldom practical, and indeed, it is not 
even necessary, although simple open windows are best avoided. 
To see the governing principles behind these remarks, we must 
consider some additional properties of gamma rays. 

C. How Radiation Travels. 

Gamma rays are like X-Rays in their penetrating power, but 
they resemble ordinary light rays more in their ability to be 
scattered and "reflected." All these reradiations travel in 
straight lines for the most part, and for all three types, a 
straight-line flight may be terminated by an absorption, a 
complete disappearance of the ray (accompanied by release of its 
energy in some other form). 

Both light and gamma rays, however, can be scattered by matter, 
and thereby can be deflected into new straight-line paths, perhaps 
many times over. Gamma radiation shares the penetrating power of 

X-rays, however, its scattering mechanism, unlike that for 
light, is extremely simple. In effect, a gamma ray "sees" only 
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the individual electrons in matter, and it can be deflected 
only by bouncing off one of the atomic electrons, usually deep 
in the interior of even a "solid" block of dense material, like 
steel or concrete. 

We might summarize these explanations by saying that gamma 
rays travel like light rays but to gamma rays, all materials are 
translucent; none are opaque, and none are fully transparent. 
Like most succinct statements, this must not be taken too 
literally, for it seems to suggest a limitation on attainable 
shielding factors. Whereas in principle no finite limit exists. 

To develop qualifications such as this, we need one final property 
of gamma ray behavior. Namely when a gamma ray is scattered, it 
loses energy. (The "lost" energy, of course, is transferred to the 
electron that caused the scattering, and indeed, the major damage 
from gamma rays is performed by proxy, through the recoiling 
electrons.) This energy loss can be surprisingly great if the angle 
of scattering is large. For example, no matter how energetic the 
incoming gamma may be, the outgoing, scattered ray can contain no 
more than 0.51 Mev (million electron volts), if the scattering angle 

is 90°j and no more than 0.26 Mev if the scattering is directly 
backwards. 

These descriptions do not exhaust all possible behaviors of 
gamma rays, but they cover the main features of importance to fall¬ 
out shielding: gamma rays have high degrees of penetration through 
all materials and straight-line paths of travel that are altered 
every now and then by a sudden change of direction, with an attendant 
loss of energy that is greatest when the change of direction is 
greatest. 

It must be emphasized that, penetrating as they are, gamma rays 
scatter in air as well as in other materials. To be sure, air has 
fewer electrons per unit volume than denser matter, and the straight- 
line portions of a gamma ray path in air are correspondingly longer 
than in dense matter. But, except for this difference in scale- 
factor, the processes are identical. For fallout shielding, the 
implication of this is that not all dangerous gamma rays need to 
travel straight from the radioactive dust to a shelter. In many 
situations, they may travel upward and be scattered by the 
atmosphere into paths that can take them through a weak point in 
a shelter. 
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D. The Mechanisms of Shielding 

Before considering the usual massive shield we should 
mention one point that is sometimes overlooked. Clearly, 
one protection against fallout is to remove oneself to a 
sufficient distance from it. Even small distances can be 
helpful under some circumstanes : despite air scattering and 
the possible presence of contaminated dust on nearby roofs, 
the upper stories of a high-rise building may offer some 
protection merely because they are not close to dust that 
has fallen to street level. While such protection may 
often be inadequate by itself, yet under suitable cir¬ 
cumstances, it may offer a valuable supplement to the 
more common massive shielding, and it should be examined 
carefully where circumstances suggest it. 

Massive shielding, the only other form of protection, 
operates by interposing a blanket of electrons between the 
radioactive dust and the protected area. If sufficient 
numbers of electron are present, they will scatter the 
gamma rays and degrade their energy a sufficient number of 
times to render them relatively harmless (or allow them, 
finally, to be absorbed like X-Rays). Of course, this is a 
random process; a very few gamma rays will always penetrate 
the entire shield without scattering at all, and a somewhat 
greater number will manage to penetrate the electron blanket 
with only a few minor scatterings. But if the shield is 
made thick enough, the vast majority of incident gamma rays 
will be stopped or turned aside or rendered harmless in one 
way or another. 

We have spoken both of mass and of electrons in the 
shield, and it may not be clear that these are nearly 
equivalent. From our discussion of gamma ray behavior, it 
is evident that electron-density is the only important property 
of fallout shielding, but electron density is closely correlated 
with mass density, because the atomic mass. A, of almost every 
chemical element is roughly equal to twice the total number 
of electrons, Z, in the atom (A = 2Z). The most important 
exception is the rather common element hydrogen (A = Z), which, 
accounts for only a small proportion of the mass density of 
common materials. For example, water (H2O) has a mass density 

of 62.4 lb/ft^? while its "effective density" is 69.2 lb/ft^ 
if we express its true electron density on a scale appropriate 
to the relation, A = 2Z. Thus, the "effective" density of a 
shield against fallout radiation is very closely correlated 
with its mass density. This rule of thumb is extremely useful 
in searching for the weak points of a shelter, although corrected 

effective densities should be used for actual numerical calculation. 
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We mentioned earlier that openings in a shelter are 
allowable when they are properly designed. Of course, even 
a simple open window does not make a shelter entirely useless, 
but a window is far less desirable than another type of open¬ 
ing, the "maze." 3y this, we mean a duct or passageway with 
massive walls and a meandering path that will force the 
radiation to make several sharp turns in order to enter the 
shelter. Since gamma rays can execute a turn only by being 
fortuitously scattered at the right moment, and because they 
lose energy in the process, such a "maze" opening can offer 
considerable shielding without obstructing air flow at all. 

In summary, the prime means of shielding is by massive 
protective walls (although sufficient distance from major 
areas of contamination is a valuable secondary factor, when 
available). Complete closure is not necessary, however. If 
open pathways contain several bends, they may be almost as 
effective as an unbroken wall. We shall discuss precise 
forms of these statements in later sections. 

E. Finding a Likely Shelter. 

Before turning to quantitative treatments, we discuss a 
few qualitative approaches to estimating the value of a 
proposed shelter. These considerations are helpful in search¬ 
ing for likely-looking spots in existing buildings and for 
judging what sorts of additional construction or remodeling 
would probably be most valuable and offer the greatest 
improvement at least cost. 

Thus, we are speaking about the first, exploratory 
approaches to a shielding problem. These rough rules must be 
supplemented by careful calculations before any firm con¬ 
clusions can be reached, but they are helpful in deciding what 
structures and locations would be most likely to repay more 
careful examination. 

First, it is helpful to visualize what the radiation would 
look like if we could see all the individual gamma rays. Out¬ 
doors, in an open field uniformly contaminated with fallout, 
the first impression would be one of rays traveling in every 
conceivable direction, criss-crossing each other in all manners 
imaginable; the rays literally travel "every which way." Upon 
closer study, one would note that, at any point (less than 
about 100 ft above the ground), only some 10% of the energy 
flux is traveling generally downward. The total intensity of 
the flux falls off slowly with increasing height: at some 60 
to 70 feet above the surface, the total illumination drops 
to about half its value at the surface. At this same height, 
one also notes a change from predominantly horizontal or 
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slightly upward rays to more predominantly vertical 
travel as the height increases. 

The general picture of the gamma flux that will strike 
a shelter, then, is roughly similar to the illumination 
that would be observed in a tank of somewhat milky water, 
lighted from below by a bright, ground-glass screen. The 
shelter problem is analogous to constructing a darkened 
volume over a thin opaque floor-slab inside the tank, but 
using only translucent materials for the walls and roof. 

When searching for potential shelter, then, one should 
first look for massive walls, preferably below grade where 
the surrounding earth will offer additional mass. If there 
are other buildings nearby, they may offer some additional 
attenuation. The next best location is perhaps on the 
higher floors of high-rise building, not closely surrounded 
by nearby roof areas that could hold fallout dust. The top 
floor, however, would usually be too close to the fallout on 
the roof of the same building. 

It should be kept in mind that several heavy partitions 
can act like a single wall with roughly the same total mass 
per unit area. Thus the central area of a building that has 
heavy partitions may offer almost as much protection as a 
basement with massive walls. Thin partitions, however, seldom 
offer any significant additional protection. 

Second only to massive walls in importance is a massive 
roof and, if the shelter is above grade, a massive floor. 
Again, the effective mass of several floors above or below 
the central location may be added to obtain an effective 
"roof" or floor thickness. The roof thickness is usually 
more important than the floor thickness, because even a 
sloping roof can collect fallout particles, and the gamma 
radiation from such a deposit on the roof can readily 
penetrate to the shelter unless the effective roof thickness 
is large. While even a single story building without a basement 
can offer some protection if the walls are reasonably thick, it 
will usually be inadequate unless the roof is also massive. 

Windows, of course, are never desirable, but they may be 
unavoidable. If they do not allow a direct view of the 
surrounding flat areas where fallout may come to rest, they 
are less serious than if they do. If any case, the remaining 
portions of the wall will screen off much of the incoming 
radiation. As a rough rule of thumb, the effective mass 
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thickness of a wall with windows is about equal to its 
total mass divided by its total area, including window 
areas. This rule can be misleading in special cases, but 
it can give a rough indication of whether a given structure 
is worth further study. 

Generally speaking, the structure should be examined 
for path-ways where gamma radiation can enter the proposed 
shelter without encountering very much mass and without 
having to turn very many corners. Thus, stair wells and 
elevator shafts may sometimes drastically reduce the 
effectiveness of an otherwise massive building. Again, 
windows set high under a massive overhanging roof can allow 
direct radiation from the surrounding ground to strike the 
ceiling and be scattered down into the interior of a shelter. 
As a final example, a building with a below-grade basement 
may be less effective than it first seems to be, because of 
a thin basement ceiling and just enough mass in the first- 
floor walls to scatter gamma rays down into the basement. 

While more could be said about particular situations, 
these general principles are usually sufficient for initial 
judgements concerning the possible value of a given site. 
Rather than entering into further detail in a qualitative 
assessment, it is usually more profitable to make specific 
calculations. In the preliminary stages of such calculations, 
it is usually most profitable to concentrate at first on 
contributions from what appear to be the weakest features of 
the proposed shelter. If these results do not eliminate it, 
then a complete calculation would be indicated. 

Ill - DETECTORS AND DETECTOR RESPONSE 

A. Introduction . 

"The analysis of structures for their protection against 
ionizing radiation represents a new field of engineering which 
has many similarities to illuminating engineering. Estimating 
radiation levels at different locations in a complex structure 
is comparable to the problem of determining the illumination 
levels in a similar structure on a cloudy day, but with all 
partitions and walls having varying degrees of transparency or 
translucense rather than being opaque. The complexity of the 
problems is such that, despite intensive research, significant 
gaps in our knowledge still remain." 

This introductory statement by Dr. L. V. Spencer in NBS 
Monograph 42 (the basic treatise on fallout radiation shielding). 
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briefly describes the problem of analyzing structures as 
shields against fallout radiation. He says, in effect, that 
our knowledge is still far from complete, and thus any 
engineering technology based on this present knowledge must 
also be non-exact and approximate. Yet this is nothing new 
to engineers who candidly admit that their safety factors 
are in reality "factors of ignorance." Despite these gaps 
in our knowledge, the science or art of radiation shielding 
as applied to fallout sources is accurate enough for practical 
applications. Although it is possible to launch immediately 
into the present day methods of engineering analysis, a 
complete understanding of the state of the art would not be 
gained. In this report, the basic work of Dr. Spencer will 
be described in detail; next, the assumptions underlying 
the conversion of the basic data into an engineering method 
will be explored; and finally, the various popular engineering 
methods in use today will be explained and demonstrated. 

We are concerned here only with fallout radiation fields. 
The engineering problems commences with the basic assumption 
that fallout will be distributed uniformly over all horizontal 
surfaces. We could, at this point, treat in detail what fall¬ 
out is, how it is formed, its various characteristics in space 
and time. Since this has already been done in numerous other 
publications, we will omit a discussion of this subject here 
and refer the unitiated reader to the best reference on this 
subject, namely "The Effect of Nuclear Weapons-1962" available 
from the Government Printing Office, Washington, D. C. The 
pertinent chapters are I, II, VIII, and IX. 

The following assumptions will hold throughout this text 
unless specifically retracted for a particular example or 
discussion: 

(1) Fallout is uniformily distributed over all horizontal 
surfaces. 

(2) The 1.12 Hr energy spectrum is assumed to be time 
invariant. 

(3) Only gamma radiation is considered. 

-1 2 
(4) Fallout decays according to the t approximation. 

(5) Radiation is emitted from individual fallout 
particles isotropically. 
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None of these assumptions are so restrictive that they 
make any subsequent development only academic. We would not 
expect dry sand particles to stick to vertical surfaces in 
such quantities that they would materially affect the total 
contribution. The 1.12 hour spectrum is the most energetic 
early spectrum for fission products and subsequent spectra 
would tend to be less penetrating. Any actual differences 
within the first 10 days in energy spectrum and thus in 
penetration characteristics are so minor as to have no 
practical significance. Even the lightest of construction 
material screens out all but gamma radiation and thus only 
gamma radiation need be considered. The t-^*^ "law" has been 
verified to be an extremely good approximation for fission 
product decay for times from roughly 1 hour to several months. 
Since it is only used to determine total dose over a period 
of shelter stay time, its use does not affect the shielding 
properties of a structure but only the total estimated dose 
to be expected under assumed fallout conditions. The final 
assumption is the only logical one to make since individual 
fallout particles range from 50 to 300 microns in size and 
their orientation on the ground must be a strictly random 
process. Thus any possible anisotropic properties which any 
particle may have would be cancelled out by other particles 
and the radiation field would be a plane, isotropic field. 

Before we can proceed further with a discussion of radiation 
shielding, we must describe the device or instrument we will use 
to measure the quantity of radiation energy at various points 
of interest. The next section then, will describe radiation 
"detectors." 

B. Detectors. 

In structural engineering, a designer considers each 
component such as columns, beams, floor slabs, etc., separately. 
He designs this component to resist the loads and forces which 
are assumed will act upon it. The structural engineer does 
not have a simple device with which he can readily measure 
the true worth of the final product. The final test is the 
integrity and durability of the structure under load. In 
some dramatic cases (such as the Tacoma Narrows Bridge) the 
structure may fail after long use due to some error in design. 

In radiation shielding, on the other hand, the design 
engineer has a measuring device which he can use to check the 
total effectiveness of his design under "load" conditions. 
In design work it is an entirely theoretical device but an 
extremely useful one. In experimental work, it is an actual, 
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though imperfect, instrument. These devices are called radiation 
detectors. In theory we can use an isotropic detector to 
measure radiation which comes from all directions to tell us 
the total "resporse" at any particular location. For certain 
applications;we make use of directional detectors to measure 
radiation coming only from certain specified directions or 
from certain limited sources. This is possible in practice 
although much more difficult. 

No improvement can be made on the description of the type 
of detector which is considered hereafter than that of Dr. Spencer's 
in NBS-42, "Every detector is characterized by its 'response 
function' which is the 'efficiency' of gamma rays of photon 
energy E, incident on the detector from various directions, in 
producing the measured effect. It is frequently advantageous 
to have an 'isotropic' detector, i.e.,one equally efficient 
regardless of the direction of incidence of the photons. 

The most commonly used radiation detector consists of 
an enclosed air space containing a pair of oppositely charged 
electrodes. When exposed to radiation, the gamma rays interact 
with the material surrounding the air space, producing high- 
velocity recoil electrons, some of which traverse the cavity 
and ionize the air within. A measurable electron current is 
produced as the ions travel to the electrodes and deposit 
their charge. It is this current, divided by the' volume of 
the air space, which constitutes the response of the instrument. 

These so-called 'cavity ionization chambers' are usually 
constructed in such a way that their response is nearly 
isotropic. But the current per crn^ measured by the instruments 
is not proportional to the total energy incident upon the 
detector. Instead it is nearly proportional to the energy 
deposited per gram of detector material, as a result of gamma 
ray interactions occurring within the detector. When such 
detectors have cavity walls of a material similar to air in 
its reaction to irradiation, the response can be measured in 
roentgens and referred to as 'dose', or more precisely as the 
'exposure dose.' (i.e.,the energy deposited in air)." 

The use of the term "detector response" hereafter will 
always imply an isotropic detector of the air-equivalent type 
whose response in roentgens is called "exposure dose." 

C. Standard Dose. 

In order to measure or test the effectiveness of a 
particular shield design, we compare the detector response of 
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the protected location to a "standard." The standard dose is 
the response of our isotropic detector when it is placed 3 feet 
above a smooth, infinite plane which has been uniformly 
contaminated with fallout. The density of fallout particles 
on this smooth plane must be exactly the same as the density 
distribution surrounding the shielded position. In most cases, 
the detector position within the shielded space is also 
located 3 feet above some reference plane, usually the floor of 
the detector. This need not be the case however. The distance 
of 3 feet was chosen for the standard since this is roughly 
the distance to the vital organs of an adult standing erect. 

The effectiveness of a protected location is described by 
either a "reduction factor" or a "protection factor." These 
are abbreviated as Rf and Pf respectively. If we allow the 
standard dose to be Do and the dose within a protected location 
to be D, then 

Ef = D/Dq 

and Pf = Dq/D 

Thus a reduction factor is always a number less than 1, and a 
protection factor is always a number greater than 1. 

Note that the concepts of reduction factor or protection 
factor and standard dose are completely independent of the 
fallout intensity, time after burst, location relative to 
ground zero and so forth. The standard is always measured 
relative to local conditions and can be thought of as normalized 
to unity. This procedure enables us to compare the shielding 
effectiveness of structures located at different points. 
A protection factor of 100 means that this particular building 
will reduce the amount of radiation received by a factor of 
100 over what one would receive if exposed to an infinite, 
smooth plane of fallout contamination with the same particle 
density. Note that the Pf and Rf are not really ratios of 
inside to outside doses. Most real locations in open areas 
offer better protection than the smooth, infinite, idealized 
plane. It is possible for two buildings with the same Pf to 
provide different degrees of protection. Thus one building 
may be safe and the other unsafe depending on the radiation 
field outside, though the reduction factor for dose is the same. 

This is an appropriate place to briefly discuss the 
"philosophy" of Pf numbers. A normal frame house will provide 
a Pf of about 2. An inner office of a large building perhaps 
a Pf of 10. A completely buried basement may provide a Pf 
of 500 or more. Obviously the higher the Pf the better, since 
any amount of radiation is harmful to a certain extent. A 
1 roentgen dose has been likened to receiving 2-k chest X-rays 
without benefit of seeing any pictures. A 100 r dose will 
not affect most healthy adults enough so that they would know 
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they had been irradiated. All will get sick and some will 

die with a dose of 250 r. At 450-500 r about 50$ will die and 
a 600-700 r acute dose will kill up to 100$ of those exposed. 
These figures apply to a large group of healthy, young adults. 

What Pf do we need to insure that no one will die? That 
no one will be sick? These cannot be answered with exactness 
since there are so many variables involved, but statistical 
studies of fallout conditions from expected raids are used to 
determine minimum criteria. A Pf of 100 provides sufficient 
protection to insure that few people will become sick and none 
will die even in the most intense fallout fields. This is the 
minimum 0CD Pf for new construction. In many areas a Pf of 40 
will be sufficient for no deaths and few sick. This Pf 40 is 
allowed by 0CD in those areas where the risk is less and where 
there are not sufficient Pf 100 shelters. 

D. Coordinate System. 

In order to orient a detector relative to radiation sources, 
some coordinate system must be selected. Figure 1 illustrates 
the coordinate system which will be used. This is a coordinate 
system oriented from the detector viewpoint. The polar coordinates 
0 and 0 are measured relative to an arbitrary polar axis through 
the center of the detector and a reference half-plane terminating 
along the polar axis. Both 9 and 0 are determined from a line 
pointing in the opposite direction to photon travel. This line 
also originates at the detector center. 

The coordinate system chosen above orients our thinking 
in terms of radiation sources. A detector inside a closed box 
structure "sees" radiation as it emerges from the walls and 
roof. For all practical purposes, these surfaces are in effect 
secondary sources. The primary sources (the fallout particles) 
are not observed by the detector, and are not then of direct 
importance to the detector. The coordinate system chosen also 
allows us to focus our attention on individual surfaces which 
is necessary if we wish to break down the problem into simple 
components. The detector response will be compared to the 
response of the same detector at the standard location. 

E. Detector Description . 

We will choose a detector in the form of a spherical probe, 
all parts of which are exposed to the same radiation flux. The 
probe is small enough that it does not appreciably disturb the 
flux. The response of this detector will be isotropic except 
in certain cases where a directionally dependent detector will 
be used. A directionally dependent detector allows us to limit 
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the response to a single surface source. The detector will he 
constructed of air-equivalent material whose response is measured 
in roentgens (exposure dose). For our purposes, "dose” can he 
considered as a measure of the energy transferred hy fast 
electrons in the air-volume of detector space. 

F. Detector Response . 

Consider a small differential area dA on a unit sphere 
(the detector sphere). See Figure 2. Using the coordinates 
© and 0, the differential area is sin©»d©*d0. This is also 
the differential solid angle. Sin©*d© is also the differential 
of cos©, i.e., d(cos©). 

At this point we begin to introduce the mathematical 
notation used hy Dr. Spencer in KBS Monograph k-2. The integral 
equations for the various functions derived hy Dr. Spencer will 
he presented even though we will not attempt to solve any of 
these equations. Their solution actually requires electronic 
computers. The solutions of these equations are presented in 
the forms of graphs and charts. They are used because they are 
the best shorthand notation available to present complex 
mathematical concepts of radiation source distributions and the 
dependent harrier and geometry functions. A casual inspection 
of the various functions used hy Dr. Spencer seems to indicate 
that they are all almost the same. A careful study of the 
limits of integration and the various parts within the integrand 
will he profitable for the reader if he wishes to extract the 
maximum benefit from NBS-42. There is a wealth of basic informa¬ 
tion in this document which has wider application than the field 
of fallout radiation. 

The detector response will consist of all contributions 
from all ©,0. This detector response function will be labeled 
D(©,0). This functional notation is used extensively in this 
paper and in other shielding documents. The notation D(©,0) 
means that detector response D, for dose, is a function of 
the angles © and 0, and is read "Dee of theta, phee." The 
detector response function depends not only on the detector 
physical construction but on the radiation source as well. 

Thus the function D(©,0),sin©*d©*d0 is the response of the 
detector to photons passing through the probe between © and 
© + d©, and 0 and 0 + d0. The total response over all directions 
would then be: 
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D0 ,0) can also be called the dose angular (or directional) 
distribution. This quantity, dose angular distribution, sums 
up the contribution of the radiation flux by integrating over 
energy of the photons present weighted by the proper energy 
transfer coefficient. 

The concept of dose angular distribution is very important 
and should be thoroughly understood. In order to measure the 
effectiveness of a shield we must not only know how much radia+ion 
penetrates the barrier, but the directional distribution of the 
radiation which emerges from the shield. A real detector does 
this automatically since it will "count" only those photons 
which interact within the detector cavity. Mathematically,our 
detector is only a point in space and we must know the distribution 
of radiation so that we can "count" the photons which would 
interact with our ideal detector if we had one at the point in 
question. 

Suppose that we had a special detector which would only 
accept radiation ccming in a very narrow beam the diameter of 
an ordinary pencil. This is called a collimated detector or 
a directional detector. If we then had seme source of radiation 
and we wished to measure the dose angular distribution of 
radiation from that source at some point in space, we could 
use this pencil detector. By rotating this detector through 
planes and angles of interest and plotting the results, we 
would be able to graph the dose angular distribution at that 
point. 

To 'illustrate an angular distribution encountered in 
every day life, let us suppose that we had a point source 
of light suspended in space. We will use the eye as the 
detector and graph the directional distribution of light 
photons which we see. With nothing between the source of light 
and our eye, we would see only a bright point of light. This 
would graph as a single straight line whose length represented 
the intensity of the light received. The line would be on the 
axis joining the source and the eye (detector). Now let us 
place a thin piece of frosted glass between the light and our 
eye. We would still be able to see the point of light, but 
the intensity would be less. In addition, we would see a less 
intense fringe of light surrounding the center point frcm 
light which has been scattered in the glass. This would 
graph as a sharp peak along the axis of our graph, but there 
would now be points on either side of less length. Finally ,.if 
we placed a heavy piece of frosted glass between the light and 
our eye, the point of light would no longer be visible and the 
light would be diffused over a much greater area. Such a 
distribution would plot something like an ellipse with the major 
axis pointed along the line between the eye and the light. 
Such "rose" diagrams will be used later to describe the angular 
distributions of concern in fallout radiation sources. 
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We will return now to our main discussion. There will be 
some cases where we will be interested in thinking of directional 
detectors similar to the pencil detector mentioned above. 
These can be constructed from an isotropic detector by placing 
a shield around the detector in those directions from which 
we wish to exclude response. Figure 3 is such a detector. 
This can be indicated by the integral: 

0=1 d(cosip) 

\~cos$max 

Note that we have used the differential cosine notation. 
This can also be written using a limiting response function: 

-1 -2ir 

0=/d(cos^)/ d0D($0)<3(cos^max), 

-i 

where % = \,@=$m\ 

= 0, ^>^max. 

The use of such a function as g(@) makes the equation either 
general or specific at our discretion and is more flexible than 
the change of integration limits. 

For discussion purposes these equations are easy to write 
but in practice we will need to know specific information about 
the detector response function D(@,0). The directional distri¬ 
bution and energy spectrum will depend on the source of radiation. 
We would expect considerable difference between a roof source 
and a wall source even though both were produced by essentially 
the same primary source field. Reverting again to the viewpoint 
of the detector, let us define a limiting response function gs 
which defines the radiation surface of interest. The "s" 
stands for surface. This function will depend only on direction 
and not on energy. The dose angular distribution function 
D(©,0) will include any dependence on energy. The surface 
limiting response function gs will be equal to one when radiation 
can intercept both the detector and the surface; otherwise gs 
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will be zero. Using such a limiting response function will 
also make the detector response dependent on the surface being 
considered and we will label this detector response Ds. 

This is equation l6.2 from NBS Monograph 42. If the response 
is independent of 0, the equation reduces to 16.3: 

1 

%Kcos0)d{9)^{0) 

-\ ,2ir 

where: 

J0 

Equations (4) and (5) are starting points in the devel9pment 
of the various functions in HBS-42. 

IV - BASIC THEORY FOR STRUCTURE SHIELDING ANALYSIS 

A. Introduction , 

1. At this point the reader should have an understanding 
of the following terms: detector, standard dose, reduction 
factor, protection factor, and dose angular distribution. 
With these in mind and before we discuss the various functions 
used by Dr. Spencer, it would be instructive to discuss 
radiation shielding in a qualitative sense. 

The radiation of primary interest in fallout radiation 
shielding in the so-called "gamma radiation," Gamma rays 
belong to the high energy, short wavelength portion of the 
electromagnetic spectrum. They are in the family of X-rays, 
radio-waves, and light. They therefore have many characteristics 
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common to these more familiar members of the electromagnetic 
family. They travel in straight lines at the maximum speed 
allo^ble in the universe, namely the speed of light, 
3xlOx cm/sec. They interact with matter and are absorbed or 
scattered during this interaction. Because of their extremely 
short wavelength and high energy they can penetrate matter 
quite easily and conversely and are rather difficult to stop. 
Gamma rays interact mainly with electrons. Quantum mechanics and 
extensive experimental evidence tells us that all matter has 
both a wave-like and a particle-like nature. Thus gamma rays are 
identifiable as "packets1' of energy called photons. These 
individual photons then interact with individual electrons 
and in a scattering event, the collision is particle-like. 
The electron recoils with sane of the photon’s energy, and the 
photon careens off in a new direction with less energy than it 
had initially. 

In any real radiation process, there are billions of 
photons and billions of electrons involved. Consequently, 
statistical laws can be employed to predict the results of 
these interactions. Thus#if we had a parallel beam of photons 
striking a given thickness of known material, we could predict 
what fraction of the incident photons would emerge which did 
not undergo any interaction. Linear absorption'coefficients,/* , 
have been tabulated for various materials for ranges of photon 
energies. This coefficient times a thickness of material, dt, 
is the probability that a photon will have some sort of inter¬ 
action while it traverses this small thickness, dt. If the 
slab is not too thick, we would expect that this probability 
would be constant for the entire thickness, t. In mathematical 
terms, if we let N be the number of photons striking one side 
of a slab, a differential thickness dt wide, then the loss of 
photons by interactions within dt would be: 

dN 
Tt '= 

The minus sign is necessary since there is a net loss of 
photons during the process. For the total thickness of the 
slab, this integrates out to: 

N=N0e'ut- 
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The exponential nature of radiation attenuation in matter 
is the important result. Regardless of the source geometry 
this exponential behavior will be evident. One of the con¬ 
clusions of such behavior is that some photons will penetrate 
a shield no matter how thick it is. The purpose of shielding 
is to reduce the fraction penetrating a shield to a limit that 
is tolerable. 

Referring now to Figure there are five contributing 
surface sources, the roof and the four walls. The sum of 
all responses to these sources could be noted as follows: 

D=Dt+D2+ D3+D4+D5, 
or 

s 

(8) 

D-SDi. 
i=t (9) 

Observe for a moment one of the contributing walls, Figure 5» 
Using this sketch, we can define more exactly what we mean by 
"reduction factor" and "protection factor." We are primarily 
interested in detector position A. Consider first though, 
detector positions, B and C. Detector C would measure radiation 
entering the wall (neglecting any reflected radiation) and B 
would measure any radiation leaving the wall (neglecting any 
radiation scattered back from the other walls or roof). The 
ratio of these two detector responses would measure the "barrier" 
effect of the wall. We will lable this barrier factor B^* It 
is essentially dependent only on the mass thickness of the wall. 
There is no geometry effect here. As previously discussed, 
we would find that the ratio of dose at B (D-g) to the dose at 
C (D ) would have an exponential behavior as the wall mass 
thickness was varied, or: 

Db^ K Dc eut 
» 

where t is the thickness of the wall. 
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WALL BARRIER WITH DETECTORS AT 
POSITIONS A, B, AND C 

Figure II-5 
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If we now moved to detector position A we would expect 
a further decrease in response and would find that this decrease 
was roughly proportional to l/d^, where d is the distance from 
A to B. This is a geometry effect, or a "limited" source effect. 
The size of the contributing wall now becomes important. 

The ratio of D /Dg is the geometry factor which we will 
label G-j_. The dose at A would then be the product of B^_ times 

times the dose measured at C. However we wish to always 
refer our dose measurements to what we have called the "standard" 
dose and not to a dose like Dq which will depend on the local 
conditions. The standard dose is the dose measured 3 feet above 
a plane infinite radiation source. We label this standard dose 
Dq. The barrier factor will be modified slightly to include the 
ratio of the dose at C to this standard dose, and we will 
relabel the barrier factor to Bp’; 

BJsDc/Do*Bk (11) 

The product then of Bp' times Gj_ is called a reduction 
factor. This reduction factor is essentially a normalized 
partial dose. The protection factor is the inverse of the 
reduction factor. 

Thus we can say that the barrier factor is the attenuation 
which would occur if the source were of a simple type and the 
medium everywhere uniform in density. The geometry factor 
accounts for all other features of the actual situation. 

2. The barrier factor depends on the following variables: 

a. Weight per unit area of the barrier, 

b. Type of barrier material, 

c. Gamma ray spectrum, and 

d. Directional distribution of radiation striking 
barrier. 

NBS Monograph b2 and the Engineering Manual assume the 1.12 
hour prompt fission spectrum. Although the spectrum does change 
with time, the 1.12 hour spectrum is the hardest (most energetic) 
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early spectrum when shielding is most important. Using it tends 
to he conservative. The directional distributions vary widely 
depending on the particular harrier orientation with respect 
to source. The various distributions will he discussed at 
greater length later. 

The weight per unit area and type of material will he 
discussed together. Almost all common construction materials 
have low atomic numbers so that attenuation is due primarily 
to scattering interactions. Thus the attenuation in a harrier 
is due almost entirely to how many electrons are in the path of 
the photon. This is the product of the number of electrons 
per unit volume times the thickness of the harrier. To measure 
the effectiveness of a harrier, a parameter is used called the 
"effective mass thickness" and is identified by "X." Thus: 

X = 2[-J-Va, (12) 

where z/A = atomic charge/atomic mass number. 

The ratio of z/A is close to 0*5 for most material, hence the 
factor of 2 to yield tabular values close to 1. Table I lists 
the ratio 2(z/a) for various materials. 

Table I. Values of 

Material 2(Z/A) 

Water 1.11 
Wood 1.06 

Air 1.0 
Brick 1.0 
Concrete 1.0 
Soil 1.0 

Steel 0.931 
Lead* 0.791 

2(Z/A) and 

, density in pcf 

62 .4 
34.0 (average) 
0.076 

115 
144 
100 (average, depends 

on water content) 
480 
710 

*Lead is included strictly for comparison. It should 
be remembered that the data from NBS-42 does not apply to 
lead because it absorbs rather than scatters the 
radiation. 
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The units of X are pounds per square foot(psf), "but X is not 
density x thickness. This is only true for materials where the 
ratio 2(z/a) is exactly equal to unity. A foot of water, for 
instance, has an effective mass thickness of 69.2 psf but a 
density x thickness value of 62.4. Layers of materials can be 
added together to obtain the proper total mass thickness;: 

X = Xi*tX2+. - -+Xn (13) 

and 

X - ^ X. (14) 

3. The geometry factor also depends on certain variables. 
They are: 

a. Solid Angle Fractio. n It is clear that the detector 
response will depend on the "apparent" size of the 
wall as seen from the detector. Since "apparent 
size" is conveniently measured in terms of solid 
angle or solid angle fraction, we say that the 
detector response will depend upon the solid angle 
fraction, w , subtended at the detector by the 
radiation source. 

To visualize the concept of solid angle, place a 
detector at the center of sphere of unit radius. 
To measure the solid angle subtended at the 
detector from a source area, draw radii from the 
corners of the surface to the center of the detector. 
The area determined by the intersection of these 
radii on the unit sphere is defined as the solid 
angle. The area is measured in steradians. There 
are 4 it steradians on the unit sphere. In shielding, 
it is more convenient to use a hemisphere instead 
of the sphere, and the resulting solid angle is 
called "solid angle fraction." 

b. Barrier Thickness. The thickness of the wall (x) 
will have an effect upon the detector response over 
and above the attenuation which we describe by a 
barrier factor. This is because the directional 
distribution of radiation emerging from the wall 
affects the detector response but is in turn 
affected by the wall thickness. In most cases 
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and up to a limit, thicker walls tend to produce 

directional distributions more and more concentrated 

along the perpendicular to the wall surface. 

c. Wall Shape and Detector Position. The dependence on 

detector position is easy to demonstrate in the 

blockhouse illustration by the fact that one can 

find detector positions at the ceiling and floor in 

which the wall subtends the same solid angle fraction, 

but in which the detector response is expected to 

differ considerably. Shape effects can also be 

easily demonstrated; a detector 10 ft. out from the 

center of the wall will have one response if the 

wall is long and narrow and another if the wall is 

square, though subtending the same solid angle 

fraction. 

d. Type of Source; The type of primary source, as in 

the case of barrier factors, varies widely enough so 

that we identify each with a special symbol. 

e. Type of Wall Material. We treat, for the present only 

the case of materials of atomic number 30 or below. 

This range includes the most important materials 

commonly employed in construction. As indicated 

previously, these low Z materials have a certain 

equivalence which we utilize. 

The geometry factor is then a function of both 

X and w . In functional notation, the geometry 

factor is represented as: 

6i=G(X,u>)> (is) 

G(X1to)=2G(X,u)j)> (i6) 
and 

In summary then, since D = Dc£l-Bl,> the dose 

to a detector within a structure can be described 

by the following composite functional equation: 
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B. Basic Functions . 

1* Up to this point, we have discussed shielding in a 
qualitative sense and have defined the various words which make 
up the language of shielding. We will now turn our attention to 
the "Basic" data upon which the shielding methodology has Been 
Built. This Basic data and Basic functions are from EBS 
Monograph 42 and the reasons for studying this aspect of the 
subject are Best described By again quoting Dr. Spencer. 

"First we give a description of the 'Basic' data used to 
obtain the functions for applications, so that an appreciation of 
the limitations of the graphs of Barrier and geometry factors is 
possible and also so that one can get an idea how additional 
information might Be obtained. 

Not all the factors which one might desire can Be easily 
obtained theoretically, or even experimentally. In applications, 
the graphs of the various factors will no doubt Be used in cases 
Beyond their range of applicability. This makes it especially 
important to give a clear statement of their origin and 
interpretation. Because this type of Background information 
is least ambiguous when stated mathematically, no attempt is 
made to avoid mathematical terminology. 

To produce varied types of Basic data, digital computers 
have proved essential. They are used to generate solutions of 
the integral equations describing the transport, diffusion, and 
energy loss of gamma radiation. These 'transport equations' 
have Been solved By 'moment methods' and By 'Monte Carlo 
methods.' The former yield solutions for a source in a medium 
without Boundaries, while the latter permit calculations of 
Boundary effects. 

All tables and graphs presented here (NBS Monograph 42) 
have Been obtained from four types of basic data: (l) plane 
isotropic source case; (2) point isotropic source case; (3) 
plane oblique source case; and (4) albedo results." 

2. Plane Isotropic Source Case. The plane isotropic source 
case consists of infinite plane source of fallout radiation 
embedded in an infinite homogeneous medium. The distance from 
the plane source to the detector is d, (ft of air), or X, which 

is the effective mass thickness, psl. A conversion factor 
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■between these two quantities is d = 13.3 X. The radiation fran 
a plane infinite source of radiation produces a dose angular 
distribution which Spencer identifies as ^ (d,cos9). The scale 
of this function is fixed so that an isotropic detector will 
register the standard dose, D0> 3 ft above the source plane. 
At d ft the differential dose would then be equal to 
D0& (d,cos9)*sin0’d9 due to gamma rays striking the detector 
between 9 and 0 + d9. This implies that: 

d(fos@) ^(3ft,cos#) = 

For heights other than 3 ft, the total dose D, would be: 

(zo) 

Dividing both sides of the equation by D0 we would obtain 
the reduction factor for this situation. Since the detector 
is also embedded in the infinite medium, there is no geometry 
factor (or G=1.0), hence the result is a barrier factor alone. 
Dr. Spencer identifies this barrier factor by L(a> or L(X) 
depending on the argument used for the barrier material. L(a) 
is then: 

Figure 6 is a plot of the dose angular distribution function, 
£(d,cos9), for an infinite plane source of fallout radiation. 

This is Figure 26.1 from KBS Monograph 42. The characteristics 
of this set of curves will be discussed after the following 
derivation. 
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Figure 6, Dose angular distributions (d,cos9) for an idealized plane 
fallout source at different heights in air (d) above the 
source. (H2O, 1.12 hr fission) NBS-42 Figure 26.1 
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It is interesting and instructive to derive an expression for 
the dose rate or total dose from, an infinite plane isotropic 
source of radiation and then to ccmpare the result vith 
Dr. Spencer’s L(d) function. 

Figure 7 illustrates an isotropic detector located a distance 
d from an infinite plane source of radiation. The medium is 
infinite and hcmogeneous. Consider a differential ring source 
a distance R from the detector. The various essential geometry 
parameters are shown on Figure 7« The detector response frcm 
this ring source is: 

one of the point sources in the plane. B is the build-up 
factor which is a function of the mean-free path distance HR) 
between source and detector, and is also a function of photon 
energy, E. The build-up factor accounts for scattered radiation 
which reaches the detector. Integrating over the infinite plane, 
the total dose rate would be: 

Converting this to polar coordinates, the following expression 
results: 
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DETECTOR 

DIFFERENTIAL ISOTROPIC SOURCE AREA IN AN 

INFINITE HOMOGENEOUS MEDIUM 

Figure 11-7 



In order that we may compare this function with Spencer's 
L(a) function, we must finally convert the integral part to a 
function of cos©. 

s B c^/coi>$ ~ 
2 COS ip 

d (cos#). (25) 

The expression in "brackets is roughly equivalent to £(d,cos©). 
The difference is mainly in B since the build-up factor is based 
on total scattered radiation whereas a differential build-up is 
needed for angles of interest. However for distances where B is 
small, the two expressions yield surprisingly similar results. 

Let us compute a simple example to compare the two expressions. 
We will normalize both expressions at the value of cos© = 1.0, 
by replacing the SB/2 quantity by K. Thus: 

Ke-ud/cos^ 

cos 0 
^(d, cos#).. 

Example: For d=66' and cos© = .2, what is (d,cos©)? 

11-3*4 



From Figure 6, £(d,cos©), for 2,(66’, o.2) = .65. Fallout 
radiation has an average energy of about 1.25 Mev. The linear 
attenuation coefficient, y , for E=1.25 Mev, is 7*38 x 10"5 cm"*1, 
and K=0.23 for d=66'. 66' converted to cm is 2010 cm. Using 
these values, and cos© = .2 we obtain: 

Ke “d/cos# 
(.23) re-68) 

C-2) (26 cj) 

= 645 vs .651 

To obtain a better understanding of the meaning of "dose 
angular distribution," refer again to Figure 6. The top curve 
is the dose angular distribution for d=3»3 ft. Greater depths 
are the curves below the top one. For the direction pointing 
directly down (or up) from the detector to the infinite source 
plane, cos© = I.U., For the direction parallel to the source 
plane, cos© = 0, and for the direction pointed directly away 
from the source plane, cos© = -1.0. 

To pictorially illustrate the meaning of dose angular 
distribution, Figure 8 has been plotted for the case of d=3*3 ft* 
Figure 9 is the distribution for d=330 ft. For small d distances, 
the dose angular distribution is peaked in a direction toward 
the horizon whereas for large d, the distribution is peaked in 
a vertical direction. This simply means that radiation tends 
to be collimated in a direction perpendicular to a source plane 
as the distance from the source increases. This change in 
angular distribution with height has an important effect on the 
wall barrier factor and this effect will be discussed in more 
detail in the section dealing with engineering applications. 

3. Point Isotropic Source Case. Next the point isotropic 
source case will be discussed. This is a source of radiation 
concentrated in a very small volume. The source emits radiation 
equally (isotropically) in all directions. At a distance d from 
this point source, the dose angular distribution is denoted by 
the following function: 

D(0,0)pt -p(d,'cos(9). 
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DOSE ANGULAR DISTRIBUTION, £(d,COS ©), FROM 
AN INFINITE, ISOTROPIC, PLANE SOURCE 

WHERE da3 FEET 

Figure II-8 
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DOSE ANGULAR DISTRIBUTION, J((d,COS 6), FROM 
AN INFINITE, ISOTROPIC, PLANE SOURCE 

WHERE ds 330 FEET 

Figure II-9 
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The angle 9 is measured from the axis between the detector and 
the source. Figure 10 is a schematic plot of the dose angular 
distribution at a detector distance from a point source in an 
infinite homogeneous medium. Note that the radiation is peaked 
toward the source. 

In order that our source data is consistent, we must normalize 
this point source function relative to the plane isotropic case 
which is used to compute our standard dose, Dq. This will be 
done by integrating over an infinite field of point sources and 
setting the result equal to the infinite field case. 

This is done by assuming a small area A (See Figure ll), 
a distance r from the detector. The ratio of A/r^ is small 
compared to one. The dose angular distribution from this small 
area A would be the dose angular distribution from a point 
source multiplied by A/4tt r , i.e. , 

= p(d,co$0) 

The area of the ring source of radiation isp dp dQ. The 
detector response then from this small ring source of radiation 
would be: 

To obtain the total response over the entire infinite plane, we 
must integrate this expression over p, 9, and 0. 

A -21T 

Da =7 d(cos^)/ d0p(d,cos 

-1 o 

oO 
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SOURCE 

COS0=0 COS 0=0 

COS 0 =-l 

DOSE ANGULAR DISTRIBUTION, p(d, COS0), FROM 
A POINT ISOTROPIC SOURCE 

Figure 11-10 
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INTEGRATION of point sources 

OVER INFINITE PLANE 

Figure ii_h 
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To obtain dose, the detector response must be multiplied by the 
standard dose D : 

o 

D— D0 ' D/\ t 

Physically, the infinite plane of point sources must be identical 
to the infinite plane source. We know that D0=lj when d or r=3 ft. 
Therefore, equation 30 must equal 1 when r=3 ft: 

27T oO 

d(cos 0)/ d0p(r, cos^)/-^ 

This reduces to: 

oO 

/z/ 2LI&(cos0) p(r,co$0) 

3ft. -1 

= 1. 

If we let 
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we finally have: 

/4/-^rP(r)= i, (35) 

3 

or in general terms: 

y4 pm-loo. <s6> 
X 

where 

L(V)=/ d (coscos0) (37) 

The charts from NBS-42 most useful in practical application 
for fallout radiation problems are attached at 'the end of this 
section. In order that we may verify the above normalization, 
an example problem will be worked using both the L(X) and P(x) 
charts. 
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Example: What is the detector response (or reduction factor) from 
an infinite plane isotropic source when there is 300 psf 
of mass between the detector and source plane? 

Frcm Figure 19, L(x); L(300) = I.85 x 10"^ 

From the normalizing process, equation 36 tells us that: 

OO 

x 
Turning to Figure 30, P(x), we can see that at X=300, the 
curve is a straight line on log paper, therefore, we can 
approximate the P(x) function by the following: 

?(%)'* Ke"rnX- (38) 

Using two points, the two constant^ K and can be determined. 
They are: K= .655> and m=.Ol86. Therefore: 

L(X) = ’/2/4>L^55)e-.0l8bV. 

K' 

For X=300 

L(x) = i (.655) Ex(5.58) 

= 1.91 x 10”^ compared to I.85 x 10”^ , 

This verifies the normalizing process. 
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4. Plane Oblique Source Case. Though radiation from a plane 
source goes in all directions, it is often advantageous to break 
it up and consider at one time only those rays which initially go 
at an obliquity 90 relative to the plane source. In Dr. Spencer's 
Monograph, this particular type of partial source is designated 
s(X,cos9). 

must also be normalized. The normalizing 
used, is: 

(0,COS@0) - 1, (3?) 

detector response to the unscattered component. 

Figure 12 gives the above function for different values of 
cosGq. This curve is for the 1.12 hour fission spectrum of 
fallout radiation. The general features of this curve can be 
interpreted as follows: for cos90=l, the photons initially are 
going directly away from the source plane. On the average, 
such photons will penetrate deeply before interacting. Thus 
attenuation vs. mass thickness (x) is small relative to angles 
which are oblique to the plane. For cos9 near zero, the photons 
are initially traveling nearly parallel to the source plane, 
hence penetration away from the plane is small. Figure 13 is 
the same function plotted for negative values of 90 and are a 
measure then of backscattered penetration. 

5. Albedo. The gainrna ray albedo (backscattered) function is 
shown, on Figure l4. The albedo is a ratio of gamma dose rate 
striking a surface at an angle 90 to the dose rate which is 
reflected from that surface. The following equation is the albedo 
function: 

This function 
function which is 

COS & 

where is the 

11-44 



100 200 300 400 

X,psf 

500 600 

Figure 12. Gamma ray attenuation curves for monodirectional gamma rays 
from a plane source for incident obliquities 0O 90° relative 
to the normal to the source plane. (H2O, 1.12 hr fission. 

NBS-42 Figure 26.4) 
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140 

X,psf 

Figure 13. Gamma ray attenuation curves for monodirectional gamma rays 
from a plane source, for incident obliquities 0O 90° relative 
to the normal to the source plane. (H20, 1.12 hr fission, 
NBS-42 Figure 26.5) 

H- 46 



Figure 14. Dose albedo for monodirectional gamma rays incident on con¬ 
crete, as a function of the cosine of the incident obliquity. 

(1.12 hr fission. NBS-42 Figure 26.8) 
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These "basic source functions'will now be used to develop 
the various barrier and geometry.factors needed for practical 
applications. 

C. Barrier and Geometry Functions 

1. Introduction. The three main source types (plane isotropic, 
point isotropic, and plane oblique) have been discussed. To see 
what sorts of useful quantities we can construct from these 
source types consider Figure‘15. This is a schematized building 
of three stories: one basement and two upper floors. 

" % 

Detector position A receives radiation from roof, walls, and 
floor. Detector B receives radiation through two floor layers 
and through the walls. Detector C receives ground source radiation 
which has been reflected from .air or walls and subsequently has 
penetrated the basement ceiling. Detector C would also receive 
radiation from the roof source. 

In order that we may predict the response of these three 
detectors we need information about radiation frcm (l) a finite 
portion of an infinite plane source (for roof contribution); 
(2) radiation which scatters from air or walls into the detectors; 
and (3) radiation which penetrates vertical barrier (or wall) 
and reaches the detectors. 

In each of these cases there is a barrier interposed between 
the detector and the source of radiation. In addition there is 
distance between the detector and the source. Dr. Spencer in 
NBS-42 has used the source.types to derive and catalogue various 
functions into "barrier functions" and "geometry functions." We 
will now discuss the various barrier and geometry functions 
which are generated by the three basic angular distributions. 

2. Barrier and Geometry Equations. 

The general detector response from an arbitrary source of 
radiation was represented by the following expression: 
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SCHEMATIZED BUILDING 

Figure II-15 



Both harrier and geometry functions are developed by the use of 
integrals of the above type using appropriate angular distributions 
for D(9,0). The geometry functions are derived by developing 
an expression for total response and then dividing by the appropri¬ 
ate barrier function. The functions derived from the infinite 
plane isotropic source case will be discussed first. 

3. Infinite Plane Isotropic Functions. Figure l6a illustrates 
the angular distribution, the barrier functions, and the geometry 
functions that have been generated from the infinite plane 
isotropic source case. 

The first barrier function that depends on the plane 
isotropic source case is obtained by integration of this angular 
distribution over all solid angle. Since the angle 0 is measured 
in a plane parallel to the source plane, this barrier function 
would be independent of 0 and would be a function of only the 
angle 9 and the distance from the detector to the source plane. 
Integration of i ,(^-^cosQ) over all 9 produces the barrier function 
identified by L(d) or L(x) . 

L(V)=/ d(co$$) -llX'Cosfl)' (37) 

-1 

We have already noted that the standard dose measured three feet 
above the infinite plane is identified as D0. This means 
that for our calculational schemes the integration of L(d) when 
d=3ft must equal unity. This is the basis of normalization used 
for other source types as well. 

The second useful barrier function is obtained by the 
integration of the plane isotropic source over angles from cos9 = 
0 to cos9 = -1, identified as the function S(d) or S(x). 
It can be seen from Figure l6a that the detector receives or 
accepts only radiation which is scattered and therefore this 
function is called the "skyshine" function : 
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Geometry functions, as noted earlier, really refer to what 
might be called limited source or limited field of view functions. 
The function L(x) is the detector response frcm an infinite 
plane source of radiation when the detector is a distance 'X' 
measured in pounds per square foot from the source plane. If . 
we wish to measure the response frcm a circular portion of this 
infinite plane, when the detector is located on a line through 
the center of the circle and perpendicular to the source plane, 
we would measure the response from the infinite plane first. 
From this value we would subtract out the response from the 
source plane outside of the circle of interest. 

If L(X) is the response frcm the total infinite plane, then 
L(Xsec©) would be the response from that portion of the infinite 
plane beyond the circle of interest. The solid angle fraction, go , 

which defines the circle frcm the detector point of view is 
1—cos©• Therefore L(Xsec©) can also be represented by L(x/l- u); 
The total response frcm the limited circular area would then 
be L(X) - L(x/l- w ). Since we have defined the total response 
of the detector as the product of barrier factor times geometry 
factor (Bp-*G]_), we can bbtain the geometry factor by dividing 
by the barrier factor appropriate to this case, i.e.^ L(X). 
The geometry function which describes the response of a 
detector frcm a limited circular area *s identified as LC(X, w ) 
and is: 

Similar procedures are used for all geometry functions, i.e. , 
the total response is obtained for a limited source or field 
of view and then the proper barrier factor is factored out. 

The second useful function based on the plane infinite 
source case is a detector shielded through certain specified 
angles. Figure l6a shows the detector shielded through certain 
angles so that radiation ccmes through the solid angle from 
9=0 to ©rnpy. The following geometry function, identified as 
La describes this geometry factor: 
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In certain instances we are interested in shyshine which 

reaches the detector only through a limited cone of oblique 
angles pointed away from the source plane. This is noted by 
the following function: 

~i+u> 

W) d(cos Q)l(d,CosQ). 

4. Plane Oblique Source. Next, consider the plane oblique 
partial source distribution (Figure l6b). There is onlv one 
barrier function termed "barrier to skyshine" that can be derived 
from the oblique source distribution. This is the case where 
photons leave the source plane at a certain angle ©0 moving 
away from the detector and are then reflected back toward the 
detector and through a barrier distance X before reaching the 
detector. This is described by the following: 

Note: when X = 0, S’(x) = 1. 

The geometry function which is related to this oblique case 
is the case where the angles of the initial radiation from the 
source plane are limited to certain prescribed directions. 
This situation is described by the following function: 

Lb(X,<o) = -[50 / 

1-u) 
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This function ,1/^,is normalized by letting Lb(X,2) = 1. 
The normalizing constant insures that the integral of the function 
Lb over all angles equals 1. The "all angles" feature means 
that we must use w =2 to insure that both hemispheres are 
included. The derivation of the constant will be discussed 
later after the point source functions have been discussed. 

5. Plane Source and Oblique Source. The derivation of 
wall barrier factor combines the infinite plane source and the 
oblique source distributions. The infinite plane isotropic source 
distribution is employed to define the angular distribution. The oblique 
data is used to properly weight the attenuation of photons for 
the different angles of incidence on the vertical wall. In 
deriving wall barrier factors the detector axis is oriented 
parallel to the source plane. This is done to maintain the 
axis perpendicular to the barrier. The shift in axis now makes 
the infinite plane angular source distribution a function 
of the angle 0 as well as 9. The function l (d,cos©) now becomes 

£, (d, sin9cos0), when we rotate the axis 90°. The reader can 
easily verify this by applying the usual analytical geometry 
methods in shifting an axis in spherical coordinates. 

The infinite plane source function £(d,sin©cos0) is 
used to describe the source field. The aistance d is the distance 
above the source plare. This angular source distribution is 
then weighted for each angular component by the oblique 
barrier function cos9"s(X,cos9). The distance X is now the* 
horizontal thickness of the wall, psf. To obtain the total 
response over the hemisphere of interest, i.e.,over all 0 and 
9, we use the wall barrier factor W(X,d): 

The first geometry function which derives in turn from 
this wall barrier factor is a circular wall area which is 
obtained by limiting the angle 9 to 9MX. A geometry factor 
is theoretically independent of wall thickness, which means that 
X = 0. When X = 0, cos9*s(X,cos9)=l. The barrier factor W(X,d) 
for X=0 is factored out and we obtain the wall geometry factor 

Wa(d.> w): 
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The second useful geometry function called "Vertical 
Aperture" that we can derive from the vertical wall orientation 
is obtained by limiting the detector response to directions 
above the detector plane. This is very similar to the previous 
function W_ except that it is normalized to the total skyshine 
factor S(d). Since 0 is limited to the angles from 0 = 0 to 0 = 
it /2, we divide the skyshine by \ and thus the factor 2 enters 

the equation. Also the limits of integration on the angle 0 
are those above the horizontal plane. 

% 
^ / d^(d,$in0cos^ 

Figure l6c applies to the above functions. 

6. Point Isotropic Source. Finally the barrier and geometry 
functions associated with the point isotropic source distribution 
are considered. The first function, P(a) or P(x) is the response 
of an isotropic detector at a distance d (or X) from a point 
isotropic source. The integration is over all solid angle, 
where 0=0 along the axis from the source to detector. See 
Figure l6d. 
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In certain cases only scattered radiation from the point 
source is desired. This can he described by the equation 
below where P's'(d,cos©) includes only scattered radiation: 

The associated geometry functions which go with these 
barrier functions are those which limit the detector response 
to a specified cone of obliquities: 

Pcd) d(cos(p)p(d, cosQ) 

Finally,to complete the picture, we measure the response 
through a limited cone whose axis has been rotated 90 to the 
previous orientation. This is similar to the wall case. Note 
that only scattered radiation can reach such a detector. 

Again note that the total response from the barrier factor 
for scattered radiation has been used and divided by 2 since 
we are only concerned with \ of the radiation. Also note that 
the angular distribution from the point source notation has 
changed to account for the rotation of axis. 

7. Normalizing Constant for L~b. We can now go back 
and evaluate the normalizing factor which was used for the 
geometry factor L^. This constant was derived from setting 

I*b(X,2) = 1. 
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The 1/^ function is 

1 

LbOCw)*-^ /d(cos®«(X,co«&). 

1-a) 

Transposing L(x) and setting L^(X,2) = 1, we now have 

L(x)=f /d(C0s6?) $(X.cos. 

Note that the limits of integration in equation (5^-) have 
been changed to include integration over all solid angle, i.e. , 
o) =2. 

From the point source normalization process, we had 

cfx' O/ -X 
~y- P(X ) = L(X) 

X 

Since both are equal to L(x), they are equal to each other, 
or 
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For monoenergetic sources and for the unscattered component, 

Pl”,(X);P(o)e"1‘/X and 

to) „ ^ -1 ~^X/£o$^ 
S (X; cos^j - (cos(7) e 

Inserting these results into equation (55) and remembering 
that the unscattered component is completely dominant when 
X-* 0, the equation reduces to 

P(o) /dxf -yux(_ p f iicgs£y£^ x/cc$ & (<&) 
2 J X1 ~ J cos tf 

x -1 
Since the integrands are identical, o=4-P(o). Equation 

(55) holds for all X and for scattered as well as unscattered 
radiation, since both integrals represent the plane isotropic 
dose rigorously. Extension of the argument to include poly¬ 
chromatic sources is therefore straightforward. 

Figure ±7 is a summation of the relation between the angular 
source distributions, the barrier functions, and the geometry 
functions, and the corresponding graphs in the Spencer Monograph. 
The function for total detector response for a limited cone 
Pa(X, oj ) is not shown but is defined by the following simple 
relation: 
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SUMMARY: BARRIER AND GEOMETRY FUNCTIONS 

DOSE ANGULAR DISTRIBUTION BARRIER FUNCTION GEOMETRY FUNCTION 

D(G,0) B=yd(cos9)D(Q,0) c Jd(cos9)D(9.Gfl g 
yd(cos9)D(9,0') 

Infinite Plane Isotropic Integration over all Finite plane 

>J(d,cos9) 26.1 
plane 

L(d) or L(X) 28.2 

Skyshine 

Lo(X,*J) 28.9 

Limited Detector Response 

S(d) 28.3 La(X,6>) 28.10 

Limited Skyshine 

S (d,GJ) 28.15 
a 

Oblique 

s(X,cos9) 26.4 
26.5 

Barrier to Skyshine 

S«(X) 28.4 

Limited Source Obliquities 

L (X,a>) 28.11 
b 

Infinite Plane Weighted Wall Barrier Limited Wall. X = 0 
by Oblique Directions 

£(d,sin9cos0) and 

s(X,cos9) 

W(X,d) 28.7 W (d,<*$ 28.12 
8. 

Vertical Aoerture-Skvshine 

wb(d,^ 28.14 

Point Isotropic Integration over all Limited Detector 

p(d,cos9) 26.3 

9.0 
P(d) or P(X) 28.5 

Scattering Only 

P^s^(d) 28.6 

P (d,«J) 
a 

Limited Scatter 

P ^(d,«) 28.16 
a 

Limited Scatter. Rotated Axis 

Pb^(d,0>) 28.17 

Note: P (X,tf) = fp^ (X) + P^(X)*P ^ (X,w)] /P(x) 
3- ^ 

Figure 17 
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8. Monograph 42 Charts. Some of the charts from KBS 
Monograph 42 are included here for convenience. Only those 
dealing with the fallout radiation spectrum have been included. 
Experimentalists will find that the charts for Cobalt-60 and 
Cesium-137 are very useful. Spencer has combined the barrier 
and geometry functions for the limited overhead source cases, 
such as L(X)Le(X, (0 ) since they are used quite frequently. 
The charts have been grouped somewhat differently than in the 
Monograph for convenience in use. The following table lists 
the figure number, the identifying symbol, KBS figure number, 
and a brief description of the function. 

TABLE I Barrier and Geometry Charts from KBS Monograph 42 

Fig # Symbol KBS-42 # 

18 L(a) 28.2a 

19 L(X) 28.2b 

20 L(x)Le(X, to ) 28.18 

21 L(X)LS(X, to ) 28.19 

22 L(X)Lb(X, (o ) 28.20 

23 w(x,a) 28.7 
2k wa(a, „) 28.12 

25 w„(a, u ) 28.14 

26 S'(X) 28.4 

27 S(d) 28.3 

28 S»(d, to ) 28.15 

29 P(d) 28.5a 

30 P(X) 28.5b 

31 p|s)(a, to ) 28.16 

32 P-b(l^ U) ) 28.17 

33 p(°)(x),p(s )(x) 28.6 

Description 

Barrier factor for plane source, 
mass in ft of air. 
Barrier factor for plane source, 
mass in psf. 
Reduction factor for plane source, 
limited area (smeared barrier). 
Reduction factor for plane source, 
limited detector (mass concen¬ 
trated at source). 
Reduction factor for plane source, 
limited obliquities (mass concen¬ 
trated at detector). 
Wall barrier factor. 
Geometry factor for limited 
circular wall area. 
Geometry factor for vertical 
opening subject to skyshine only. 
Barrier to reflected radiation, 
barrier to skyshine. 
Response to skyshine as a function 
of height in ft above plane. 
Limited skyshine, axis vertical. 
Barrier factor for point source, 
mass in ft of air. 
Barrier factor for point source, 
mass in psf. 
Geometry factor for scattered 
radiation from point source, 
limited detector, axis toward 
source. 
Geometry factor for scattered 
radiation from point source, 
limited detector, axis at 90° 
from source. 
Scattered and unscattered com¬ 
ponents of P(x). 
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d, ft. 

Figure 18. Plane source of fallout radiation: the .(isotropic) detector 
response ratio D/D0 as a function of height d in air above 
the source plane. (H^O, 1.12 hr fission. NBS-42 Figure 28.2a) 
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X, psf 

Figure 19. Plane source of fallout radiation: the (isotropic) detector 
response ratio D/DQ as a function of effective mass thick¬ 
ness separating the detector and the source plane. (H2O, 
1.12 hr fission. NBS-42 Figure 28.2b) 

E-65 



Figure 20. Contours of constant L(X)LC(X, 
NBS-42 Figure 28.18) 

(H2O, 1,12 hr fission 
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Figure 21. Contours of constant L(X)La(X, (t) ). 
NBS-42 Figure 28.19) 

(H2O, 1.12 hr fission 
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Figure 22. Contours of constant L(X)L^(X, OJ). 

NBS-42 Figure 28.20) 

(H2O, 1.12 hr fission 
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Figure 23. Detector response ratio for effective mass thickness X 

separating the detector from a plane fallout source. 

(H2O, 1.12 hr fission - NBS-42 Figure 28.7). 
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Figure 24. Geometry 

incident 

parallel 

1.12 hr 

factor describing detector response to radiation 

in a limited cone of directions about an axis 

to the primary source plane, at height d, (H20, 

fission - NBS-42 Figure 28.12). 
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Figure 25. Geometry factor describing detector response toskyshine 

radiation incident in a limited cone of directions about 

as axis parallel to the primary source plane. (H2O, 1.12 

fission - NBS-42 Figure 28.14). 

r-71 



Figure 26. Attenuation curve for radiation backscattered from a plane 
source isotropic over one hemisphere only, corresponding 
to skyshine radiation incident on the ground. (H2O, 1.12 
hr fission - NBS-42 Figure 28.4). 
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Figure 27. The detector response ratio D/D0 due to skyshine, as a 
function of height above a plane source of fallout radi¬ 
ation. (H2O, 1.12 hr fission: NBS-42 Figure 28.3). 
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Figure 28. Geometry factor describing detector response to skyshine 

radiation incident in a limited cone of directions about 

an axis perpendicular to the primary plane, at height d 

above the ground. (H2O, 1.12 hr fission: NBS-42 

Figure 28.15). 

E-74 



d,ft. 

Figure 29. Point source of fallout radiation: P(d) as a function of 
distance d in air between detector and source. (H2O, 1.12 

hr fission: NBS-42 Figure 28.5a). 
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0 100 200 300 400 500 

X,psf 

Figure 30. Point source of fallout radiation: (P(X) as a function of 

effective mass thickness between ■source and detector. 
O^O, 1.12 hr fission: NBS Figure 28.5b). 
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Figure 31. Geometry factor describing detector response to scattered 

gamma rays from a point source of radiation, striking the 

detector in a limited cone of directions about the line 

from source to detector. (H2O, 1.12 hr fission: NBS-42 

Figure 28.16). 
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Figure 32. Geometry factor describing detector response to fallout 

gamma rays from a point source, striking the detector in 

a limited cone of directions about an axis perpendicular 

to the line from source to detector. (H2O, 1.12 hr 

fission: NBS-42 Figure 28.17). 

■ 
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Figure 33. Unscattered and scattered components of P(X), 

hr fission: NBS-42 Figure 28.6). 

(H20, 1.12 
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V - DEVELOPMENT OF THE ENGINEERING METHOD FOR STRUCTURE SHIELDING 

A. Introduction. 

Now we turn to the assumptions and approximations which 
have teen made to use the data available in NBS-42 as a basis 
for an engineering method. C. Eisenhauer (National Bureau of 
Standards) and Neal FitzSimons (Office of Civil Defense) are the 
two primary authors to whom the credit for this task belongs. 
Since the 1962 institute, Eisenhauer has published NBS report 
7810 (Feb ’63) "An Engineering Method for Calculating Protection 
Afforded by Structures Against Fallout Radiation." This report 
covers essentially the same ground as this part (v) of the 
proceedings; i.en the development of the engineering method 
from NBS-^2. However, there are some differences in interpre¬ 
tation and presentation which makes a study of both worthwhile. 

B. Schematization . 

A review of the geometry factors developed in the Spencer 
Monograph will show that all of them are based on some sort of 
circular field of view. As a first approximation to most 
actual buildings then,-Eisenhauer assumed a circular pillbox 
type of structure as his standard analytical model. Figure 3^ 
is a sketch of such a building which has horizontal layers or 
floors with windows in these layers. Later on, comparisons will 
be made of the error introduced by using such a building for 
square or rectangular structures. Although factors are 
introduced to ccmpensate for the actual shape of a building, 
this circular structure remains the basis for all charts and 
computations. The final justification for using such a simple 
schematized building depends on the results it predicts for 
more complicated structures. 

The radiation field associated with shielding calculations is 
shown in Figure 35* This indicates that we have radiation on 
the roof contributing to the detector response, radiation on the 
ground which penetrates the walls, and radiation which scatters 
from the air. Roughly 75$ of the direct radiation which 
penetrates the walls comes from approximately 100 ft of the 
structure. The major part of the air scattered contribution 
comes from approximately 500 ft (or roughly one mean free path). 

C. Solid Angle Fraction. 

Since most buildings are not of the pillbox type, but are 
rectangular in shape, what is the best method of relating the 
pillbox data to rectangular structures? The first method which 
comes to mind is equating the rectangular area to the circular 
area; in other words making equal areas contribute equally. 
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SCHEMATIZED PILLBOX 

BUILDING 

Figure II—3U 
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This is normally a poor procedure when applied to gamma raysr 
since this weights the areas which are far from the detector 
too heavily. This can he shown by comparing the expression for 
an arbitrary area and the response of a detector to a uniform 
distribution of point isotropic sources within that area. The 
expression for the area of an arbitrary shape is: 

27T 

o h$) 
Compare this result with the response of a detector to this 
same area, assuming a uniform distribution of point sources 
within the area : 

The function g(cos©,0) is the angular distribution of radiation 
at the detector. Referring now to the above equation for the 
area, if the angular distribution of radiation at the detector 
varied as secJ0, then the responses from a rectangle and a circle 
of the same area would be equal. But the angular distribution 
of radiation at a detector is more nearly isotropic and usually 
never exceeds the first power of sec©. 

A better scheme is to equate surfaces on the basis of the 
solid angle subtended at the detector by the surface. If a 
rectangular area and a circular area subtend the same solid 
angle, and if the radiation is isotropic, then the rectangle 
and circle would give the same detector response. The solid 
angle used here, as in the Spencer Monograph, is actually the 
total solid angle ft divided by 2 t and is termed the solid angle 
fraction ( w). 

Refer back to Figure 6. This is the dose angular distribution 
for an infinite plane fallout source (Figure 26.1 KBS-42). Radiation 
at the detector from a plane isotropic source actually varies 
from a sec © distribution which peaks from the horizon, to a 
cot © distribution which peaks from the source plane itself. 
Most distributions will vary between these two extremes but will 
tend to be more nearly isotropic than anything else. This is the 
basis of justification for the use of the solid angle fraction 
concept. 
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The solid angle fraction is easy to calculate, for both 
circular and rectangular shapes. Solid angle fraction for a 
circle is: 

(so) 

The solid angle fraction for a rectangle is: 

See Section X for derivation. 

Roof Contribution Approximations . 

Figure 36 illustrates a roof contaminated with radiation 
in a schematized building with several floors, and a detector 
below the first floor. Spencer has calculated three cases 
relevant to roof radiations: l) a circular source with a 
uniform barrier between the source and detector; 2) a circular 
source with the barrier concentrated at the source, and 3) 
a circular source with a barrier concentrated at the detector. 
None of these cases fit the real situation exactly, but the 
"smeared barrier" of case 1 is the one which was chosen for the 
Engineering Manual. This best describes the situation shown 
in the sketch; i.e., several floors between the source and the 
detector. It should be noted, however, that the other two 
cases have application in other practical situations. Case 2, 
for instance, with the barrier concentrated at the source, would 
apply to a massive roof, and a detector at some distance with 
only very light floors intervening. The third case would apply 
to the opposite extreme, with intervening floors of very light 
material and the detector located in a basement with a very 
massive basement ceiling. 

In order to determine the relative error in using the 
smeared barrier concept for the Engineer Manual, Eisenhauer 
has made a calculation which is shown in Table I. The 
calculations were made for several mass thicknesses, (X = 0, 
X = 50 and X = 100 psf) and for several solid angle fraction 
(w = .05, .1 and .5). Comparing the three types of configura¬ 
tions we see that the uniformly distributed barrier is not 
conservative when X is small; it tends to be conservative for 
X = 50 and X = 100. The difference between the three cases 
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Figure 11-36 
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Table I 

u - x=o x=50 X=100 
.05 .1 A .05 TT~ .5 .05 .1 .5 

Uniformly 
distributed 
barrier 

0
 

0
 • .019 .0058 .011 .058 .0026 .0048 .017 

Barrier at 
source .013 .027 .16 .005 .010 .045 .0018 .0036 .0125 

Barrier at 
detector .011 .022 .15 .0055 .0105 .050 .0022 .0040 .015 

n = 0.2 
D = sec© 

n = 0.2 
D = cot© 

n 1.0 
D - sec© 

D = 1.0 
D = cot© 

Circle 

Table II 

Circle + 
2 Sectors 

.669 .824 

•859 .934 

.0928 .1038 

All .329 

Circle + 
4 Sectors 

• 791 

• 939 

.1016 

.3^0 

From work of C. Eisenhauer, KBS 78IO, February 28, 1963. 
For see equation (6l). 
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can be as much as hO^. We would expect practical applications 
to be closer to the smeared barrier case. Any error, then, 
would be much less than the 40°f> maximum. 

The approximation of a rectangular source area by a circular 
disk also introduces error. The approximation is equivalent to: 

1 

R indicates integration over the domain of the rectangle. The 
value of cosine ©0 on the right side of the equation is determined 
from the condition that the solid angle fraction subtended by 
the two surfaces be equal. 

The error involved in treating rectangles as circles of 
equal solid angle depends then on the form of D(cos ©) which 
is the angular distribution of radiation reaching the detector. 
Again if the distribution is isotropic, that is D(cos ©) = 1, then 
the two schemes are equivalent. Eisenhauer has examined two 
extreme distributions of D(cos ©); distribution proportional to 
sec ©, (that is radiation from the horizon), and one proportional 
to cot ©, (radiation from the vertical) . He then examines 
these cases for a rectangle with a large eccentricity, (a length 
to width ratio equal to 5)> with two subcategories: The detector 
close to the surface and the detector relatively far from the 
surface. Sec © is the horizon peaked distribution and cot © 
is the zenith peaked distribution. To obtain more accurate 
estimates as a basis for comparison, the rectangles are approximated 
by circular sectors as shown in Figure 37 . In the approximation 
we are evaluating, the rectangle is replaced by one circle; for 
a first refinement, by one circle and two circular segments, and 
in the most accurate estimate, by one circle and four circular 
segments. 

Table II indicates the results of these comparisons. The 
values in the final column should be close to the correct values. 
The errors then, in approximating a 5-tol rectangle by a single 
circular disk are at most 2%. This is an acceptable error since 
such large eccentricities would be the exception. When the detector 
is further out, the relative error is greatest for the peaked 
distribution, (cot ©). Most practical cases, however, will have 
more nearly isotropic distributions and less extreme eccentricity 

ratios. 
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REPLACEMENT OF RECTANGLE BY 

CIRCULAR SECTIONS 

Figure 11-37 
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The angular distribution assumed for the roof case is that 
for the plane isotropic case, that is *(d, Cos ©), shown on 
Figure 6. For small d, this source is peaked toward the horizon. 
For large d, the distribution of radiation is peaked from the 
source plane. The integration of this source for various depths 
is given by Spencer in the curves L(x) or L(d), Figures 18 and 19. 

E. Ground Sources , 

Next the radiation which comes to the detector from the 
ground will be discussed. This is a much more complex procedure 
than the roof case. There is a vertical wall perpendicular to 
the source plane and we must choose an axis either relative to 
the source plane or relative to the wall. Spencer has rotated 
his axis for this case 90 so that his polar axis is perpendicular 
to the wall. The Engineer Manual keeps the axis perpendicular to 
the source plane. 

1. Thin Wall Case . 

First,the thin wall case (X=b) will be considered. This 
is shown in Figure 38. To isolate the part of the radiation that 
comes through the wall, we may think of a detector located 
between an infinitely thick ceiling and an infinitely thick floor. 
By infinite, we mean a thickness great enough so that any contribution 
through these areas is negligible. The detector plane is the 
horizontal plane which passes through the center of the detector. 
The upward normal is associated with the angle © which is 
labeled ©u or © upper. The downward normal is associated with the 
angle ©£ or © lower. Solid angle fractions associated with 
these angles are similarly labeled. 

The detector will receive radiation from below the detector 
plane and from above the detector plane. Eisenhauer has developed 
what he calls "directional responses" which are the detector 
geometry responses. The contribution from below the detector 
plane will be primarily the direct radiation since the thin 
wall case will not involve any wall scattering. The direct radiation 
from the source plane will far exceed any air scatter from below 
the detector plane and therefore air-scattered radiation from 
below the detector plane is neglected. Consider now the contri¬ 
bution to the detector from above the detector plane. This must 
be all air-scattered radiation. Again there is no wall; therefore, 
the response of the detector will be due to air—scattered radiation. 

The direct detector response, G^, is the integration from 0 
to cos © , of the infinite plane distribution, (Figure 6). Thus, 
Gd equals: 
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Note that G^ depends on detector height, H, and the lower solid 
angle fraction. 

Consider now the air scattered radiation. This will consist 
of radiation which is reflected into the detector from the air. 
Also, it will have a component of radiation reflected from the 
ceiling. These two components are called "skyshine" and 
"ceiling-shine" respectively. The skyshine contribution can be 
noted by a symbol Ga and is as follows: 

This can also be shown to be related to Spencer’s function as: 

<J«(iA)- S(d)[l-&«>.,)]. 

The skyshine and ceiling-shine function is: 

C?a(4)=0J J-$a(3T,u)) 1+0.5 

Term in 2nd brackets is the ceiling-shine factor. The Engineering 
Manual assumes that this function, G , is invariant with height. 

CXi 
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Since the 1963 summer institute, same work has been done on 
the ceiling-shine problem. Although this is not usually an 
important source of contribution, it is an interesting problem 
and one of the "loose" ends which needs to be tied up. Under 
the section "Miscellaneous Topics" I have included an estimate 
which I made to provide a more logical solution to the ceiling- 
shine contribution. Kansas State University has both a 
theoretical and experimental program in progress and Technical 
Operations Report TO-B-63-25 by Jack Batter was on this problem. 

2. Thick Wall Structures 

Now consider the opposite extreme of a very thick-walled 
structure. Here the direct radiation and the air-scattered 
radiation are assumed to be negligible ccmpared with the radiation 
which scatters in the wall itself. Some assumption must be made 
about the angular distribution and the absolute magnitude of this 
radiation since neither has been calculated precisely. The 
Engineering Manual assumes that the angular distribution above 
the detector plane is the same as air-scattered radiation at 
a structure with zero wall thickness. This is equivalent to 
assuming that the thick wall produces the same effect as 
an equal mass of air. Excluding direct radiation and air- 
scattered radiation, all radiation reaching the detector 
through thick walls would have been scattered at least once, and 
would have approximately the same angular distribution which is 
observed from air-scattered radiation. The ultimate justification 
for this assumption is based on the fact that this distribution is 
peaked toward the horizon and this is the type of distribution 
which is needed. There is as yet no information available on 
the actual distribution. The response function to scattered 
radiation is divided into two parts: above and below the detector 
plane. The manual assumes that the angular distribution of 
radiation above and below the detector plane is the same. This 
assumes that any asymmetry which actually exists as the radiation 
strikes the wall is washed out by the multiple scatterings 
which takes place in the wall. With equal solid angles, then, 
both above and below the detector plane, we would expect the 
response to be the same. Integrating over the entire detector, 
we would expect to get a response function equal to one. However, 
the integration of the scattered radiation from the infinite plane 
source at 3 ft is equal to approximately 0.1. We wish to normalize 
our response function from either above or below the detector 
plane to 0.5; that is, they both contribute equally and must, 
therefore, both contribute l/2 of the response function. Therefore, 
the following response function, Gs, has been used to obtain the 
curve for wall scattered radiation: 
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We now have a geometry factor for scattered radiation. In order 
to compute ’’dose" then from scattered radiation, a harrier factor 
for vertical walls is also needed. The only barrier factor which 
we have is the Spencer Monograph function W(x), Figure 23, and 
this is for a wall which is infinite in extent and therefore, 
gets contributions from l/2 an infinite plane source. What is 
needed is some factor which relates this geometry to actual four- 
wall geometry. Let us compare, then, the response from two 
infinitely high buildings with two walls and one with four walls. 

The distribution of radiation emerging from these thick 
walls must be estimated. Radiation will tend to be collimated 
as it passes through thick walls and will emerge perpendicular to 
the wall. Eisenhauer assumed the following distribution of 
radiation: 

p (/)<]/- Ac(68) 
This distribution will now be used to derive a "shape- 

factor" to compensate the wall barrier factor when used in four 
wall geometry. The Engineering Manual identifies this shape- 
factor by the letter E. (A tribute to its author, Eisenhauer.) 

The function W(x) is based on two semi-infinite parallel 
walls with a detector between the walls. The shape-factor for 
this case is defined as unity. Using the assumed distribution 
(cos 0), the integral which describes the shape-factor for 
this case is: 

E = WcOS^<i/. (®) 

The 4 results from k symmetrical quadrants. The A is a 
normalizing constant to be determined. 

Integrating: 

l-Ak. 
But for the two-wall case, 

E - I- 
Therefore, 

A =i- 

(70) 
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Figure 39 illustrates the geometry for the four-walled 
shape factor. Since the geometry here varies for eachwall 
considered, we must sum over the four walls, thus: 

The 8 results from 8 separate 0-j_ which must he considered. 
Summing over 360° we get: 

But (Eccentricity Ratio), and A therefore: 

For long-narrow building where e=0, E = 1. For a square 
building where e = 1, E =/"£. For a circular building, a simple 
integration shows that E = t /2. 

Most buildings have neither thin walls nor extremely thick 
walls, but walls of intermediate thickness. We must therefore 
have a method of calculating the response of the detector to 
contributions from walls of intermediate thickness. 

The Engineering Manual assumes that the intermediate case 
can be handled by averaging the extreme cases with a weighting 
factor, Sw(x)which is a function of wall thickness. Our geometry 
factor then would be as follows: 
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SHAPE FACTOR PARAMETERS 

FOR FOUR — WALLED BUILDING 

f 

Figure 11-39 
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G (X,#)): Sw (X) G THICK + (l-Sw) (JTHIN , (76) 

where 

0 THICK = (n)>) + Gs((4t<)J E. (77) 

Gtmin - [Qd (u)j) + Ga/(^)] . (78) 

The weighting factor represents the fraction of radiation 
reaching the detector which has been scattered at least once 
in the wall. It should vary somewhat withw but this is also 
ignored. Sw is determined from data on the perpendicular 
incidence of Cobalt 60 radiation. If the buildup factor for 
perpendicular incidence is B(X) then Sw would be: 

SwWzJ§xr- w 
This can also be computed by using the point isotropic source 
case Figure 33> S^X) would be: 

(K/\ P^CX) 
Sw ^z P(S,(X)+P‘M(X)~ 

The direct geometry factor should also be multiplied by a 
shape factor but no attempt has been made to derive an 
expression for it. This factor would be unity for a circular 
structure and approximately unity for a square structure. The 
factor would decrease as does the eccentricity factor for scattered 
radiation for more elongated buildings whose floors subtend the 
same solid angle. It was not calculated because it was thought 
that it would only be important in areas with low protection 
factors since the direct geometry factor is important only for 
thin walls. There are same situations where this is not true 
however. For example, in buildings with very thick walls, small 
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apertures may be the dominant contribution in an otherwise 

well-protected location. The shape-factor for direct radiation 

should probably be included in those cases. This again is one 

of those areas that would be nice to have a factor for. The 

fact that it probably is not important for practical buildings 

is the reason that no effort has been expanded on it. It 

would be an interesting problem for an enterprising student. 

In the next section, the schematization developed by 

Eisenhauer will be applied to the development of an engineering 

method for shielding analysis. 

\ 
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VI - ENGINEERING MANUAL METHOD (DETAILED PROCEDURE) 

A. Introduction. 

The charts and data in the Spencer Monograph can not be 

readily adapted for practical application. This is the reason 

that Eisenhouer and FitzSimons converted this information into a 

more useable form. The result of this transformation has been 

identified as the Engineering Manual (OCD PM-100-1)*. Since 

October 1961, the Engineering Manual, in draft form, has been 

the basis of postgraduate-type courses for architects and 

engineers in fallout shelter analysis. As of this writing, the 

final draft version of the Engineering Manual is being reviewed 

prior to official issuance by the Office of Civil Defense. The 

explanation which follows is an abbreviated version of PM-100-1 

taken from lecture notes used to teach the Engineering Manual 

method. For a more detailed discussion of this method and for 

more example problems, the reader is advised to obtain a copy 

of OCD PM-100-1 when it is available. 

B. Engineering Manual Charts. 

In the last section, we have described how the Spencer data 

was converted into engineering-type charts. Before discussing 

the methodology which is based on these charts, it would be well 

to summarize what these charts are and how they are related to 

the Spencer data and notation. Figure 40 has been provided to 

briefly correlate this information. In the first column is 

listed the Engineering Manual chart number and the corresponding 

Engineering Manual notation. The second column lists the source 

of this chart in the Spencer Monograph and the Spencer notation. 

The third column is a sketch depicting the physical representation 

of each chart, if such a representation is possible. The 

Engineering Manual charts are located immediately following this 

discussion. 

Chart 1. Four barrier factors are plotted on Chart 1, as follows: 

(Xi) - Barrier factor 

contribution. 

for 

Bi ' (X i ) - Barrier factor 

contribution. 

for 

Bf 
(Xf) - Barrier factor 

floor below. 

for 

So ’ (X0- )- Barrier factor 

ceiling above. 

for 

interior partitions for ground 

interior partitions from roof 

ground contribution through the 

ground contribution through 

This chart includes 

of these barrier factors 

a representative sketch of where each 

is applied. 

^Design and Review of Structures for Protection From Fallout 
Gamma Radiation, OCD PM-100-1, Dec 1963. 
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Figure 40. BASIS OF ENGINEER MANUAL CHARTS 
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Chart 2. 

Be(Xe?H) - Barrier factor for exterior wall for ground 

contribution. This barrier factor includes all 

the height effect and for H=3' is the same as 

BiCXi). 

Chart 3. 

co (e,n) - Solid angle fraction contours. 

Chart 4. 

C (X , co )- Reduction factor for roof contribution. This is a o o 
combined barrier and geometry factor function. 

Chart 5. 

Gg(co ),Ga( w) - Directional response functions for wall scattered 

and air-scattered responses for ground contribution. 

Chart 6. 

,H) - Directional response function for direct radiation. 

Chart 7. 

SW(X^) - Fraction of Emergent Radiation Scattered in Wall 

Barrier. 

Chart 8. 

E(e) - Shape factor for wall scattered radiation. 

Chart 9. 

cos)- Barrier reduction factor for wall scattered radiation ws e7 
for limited planes of contamination. 

Chart 10. 

Reduction factors for passageways and shafts for vertical and 

horizontal orientations. 
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C• Engineering Manual Functional Equations. 

1. Introduction* The Engineering Manual method is based on a 
series of Afunctional" equations. These equations are merely a 
convenient method of indicating which curves and charts are used 
for various specific situations, and what mathematical operations 
are used to combine the values obtained from the charts. 
Functional equations are familiar to all of us though the name 
may not be. For instance, the equation y=f(x) is a functional 
equation which tells us that y depends on some function of x. 
Since we cannot write explicit functions for the quantities 
involved, the functional notation is a convenient method of 
providing instructions to the operator. 

The end result of each functional equation will be a 
reduction factor, i.e.,a comparison of dose in a protected 
location to the standard dose. Since all reduction factors 
are ratios whose denominator is the same, they can be added to 
obtain the total reduction factor for the position in question. 
This makes it possible to break our problem into manageable components, 
such as roof contribution, wall contribution, entranceway 
contribution, window contribution, etc. All these contributions 
are then added to produce the final reduction factor or Rf. The 
reciprocal of this Rf is then the protection factor, P^. 

This can be put down in equation form as: 

Rf-Co+Cj. (6l) 

Figure 41 is a sketch indicating in a simple manner the 
possible combinations of roof contribution and ground contributions 
which must be accounted for in various typical situations. The 
building on the left indicates the detector position. The sketches 
on the right indicate the various components into which this 
building is divided for the computation of the reduction factor. 
The third case. III, illustrates a building of the most general 
type. The roof contribution has several floors between detector 
and roof. The ground contribution has three components; (i) 
the floor of the detector, (2) the floor above the detector 
floor, and (3) the floor below the detector floor. With this 
figure in mind, we will develop functional equations for each of 
the various components needed for a full solution. 

2. Solid Angle Fraction. Since solid angle fraction is used 
in every computation as a measure of the geometry effect, an example 
problem of computing u will be demonstrated. See example VI - 1. 
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Example VI-1 - SOLID ANGLf FRACTION 

Given: 

Find: 

x 

Solution: 

Discussion: 

The detector is centrally located three feet above the 

first floor of a slab-on-grade structure with horizontal 

dimensions equal to 180' by 451 (Figure). 

1. Oi2 is a function of e, n 

2. e = W = 45 = . 25 

L 180 

n = 2A = _6_= .033 

L 180 

3. Enter Chart 3 and read 

a>2 (e' n) = ("25/ .033) = .915 

For computation of e when W is unequal to L, as in the case 

above, W is always the lesser dimension, e.g., e equals 
or is less than 1. 
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3. Roof Contribution. Now let us consider the contribution 
frcm the roof of a building. Figure 42 illustrates the various 
parameters which may be involved. Let us consider first a simple 
building which has no interior partitions. Here the solid angle 
fraction which describes the geometry of the roof is labeled, ojQ. 
The thickness of the roof above the detector is X0. XQ consists 
of the summation of all the roof mass thickness immediately 
above the detector up to the contaminated roof. The w 0 is the 
solid angle fraction subtended by the contaminated plane. CQ 
then is a function of the solid angle fraction, u>‘ , and the roof 
thickness XG. Without interior partitions, this contribution is 
noted as follows: 

Co- Co (tt)o; Xo) • 

Chart 4 of the Engineering Manual actually is a combined barrier 
and geometry chart. Enter Chart 4 with the total overhead mass 
thickness XQ and the solid angle fraction subtended, w *and 
obtain directly the roof contribution. See example VI - 2. 

Now let us analyze the roof contribution from a building 
with interior partitions. Referring back again to Figure 42 we 
can see that the contribution from the roof is made up of two 
parts; the contribution from the core area which is described 
by ojq and the contribution frcm the peripheral area which is 
described by w Q . The contribution from the core area is 
calculated exactly as we have previously done for a roof without 
interior partitions. The peripheral contribution is computed 
in two parts. First we calculate roof contribution as a function 

i.e. the entire roof area. We then subtract out the core 
area contribution. The difference (which is the peripheral roof 
contribution) is then multiplied by the barrier factor of the 
interior partition, Bi'(Xi) . This operation can be indicated 

b! (x,). (<») 

The first term is the core contribution. The second term is the 
peripheral roof contribution. Similar techniques of differencing 
contributions can be used for more complicated problems. Example 
VI - 5 is a core type problem which employs equation 83 for the 
roof contribution. 

by the following equation: 

Cor Co (u>o,Xo)+[Co (u)o; X 0) - Co (ub; Xo) 
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Example VI-2 ROOF CONTRIBUTION 

Given: 

XXX 

Find: 

Solution: 

A detector is located centrally 3' above the floor 

of a slab-on-grade structure with horizontal 

dimensions of: 

W = 42' L = 175‘; and height = 10' 

Both roof and ground are contaminated. 

O verhead mass thickness (XQ) - 100 psf. 

Roof contribution 

1. Compute 0)0 (e, n) 

a. e - W - _42_= • 24; n - 2Z - 2 [10-3] - .08 

L 175 L 175 

b. Ct)0(e, n) - 6t)0(. 24, .08) = .80 Chart 3 

2. CQ (XQ/C0o) = CQ (100, .80) = .02 Answer Chart 4 

1-117 



4. Ground Contribution 

v 

a. Ground Contribution Through Adjacent Walls. Let 
us now analyze the ground contribution through the walls of 
the detector floor. Figure 43 illustrates the geometry 
involved with a building with interior partitions. The 
exterior walls are noted by Xg; interior walls by X^. 
The upper solid angle fraction is w^ and the lower solid 
angle fraction is w The height of the detector from 
the contaminated plane is the distance H. 

The ground contribution through any particular floor 
is a summation of radiation which goes from the contaminated 
plane directly to the detector, plus radiation scattered in 
air, and radiation scattered in the walls. 

The wall-scattered radiation geometry factor is a sum 
of Gs for the upper and lower solid angle fractions. For 
convenience, all upper solid angle fractions will be labeled 
with odd numbers, 1, 3> 5.> etc., and all lower solid angle 
fractions with even numbers 2, 4, 6, etc. To account 
for that portion which is wall-scattered, the Gs responses 
must be multiplied by the fraction which is scattered, Sw. 
This wall-scattered component must be further modified by 
the Shape Factor, E, since the geometry will be different 
from the basic one of two parallel, infinitely long walls. 
The Shape Factor is really a correction for using a barrier 
factor which is based on two parallel walls instead of 
four-wall geometry. The functional equation for wall- 
scattered radiation is: 

JGsM + Qs (tt>4)] Sw(\e)E(e). ^ 

For convenience when we combine functional equations, the 
term in brackets will be shortened to: 

S Gs= [Gs(u),) + Gs (u>i)] . ^ 

G„ is obtained fran Chart 5« 
S 
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Figure 43. GROUND CONTRIBUTION (DETECTOR FLOOR) 

- NO WINDOWS 

co 2 

GROUND CONTRIBUTION (DETECTOR FLOOR) 

-NO WINDOWS ’ 
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The air-scattered radiation is a function of the upper 
solid fraction only. Enter Chart 5 with w-, and obtain 
the value of Ga. This must he multiplied by the fraction 
which is not wall-scattered, or 0-0. 

Finally ,the direct radiation is a function of the lower 
solid angle fraction only. Chart 6 is used to obtain 
the value of G^. Since this is also non-wall-scattered 
radiation, the fraction applies to this contribution 
also. Combining the air-scattered and direct radiation, 
we get the following equation for non-wall-scattered 
component: 

(u)j) + Qd C^w)] [i~s*v]. M 

Again for economy in notation, we use the following 
expression for the term in brackets: 

2 Cjcla = [Qa (u)t) + Qd (oh,H)j. (s7) 
i 

The geometry factor for ground contribution for the 
floor of the detector is: • 

G<,= £gs-SwE + IGdati-Sw], (88) 
^ 1 1 

To obtain the total ground contribution, which is a 
reduction factor, we must multiply by the proper barrier 
factors. These are the barrier factor for the exterior 
walls, and the barrier factor for the interior walls. The 
barrier factor for the exterior wall includes the effect of 
detector height. These barrier factors are obtained from 
Chart 2 and Chart 1, respectively. The final expression 
for ground contribution for the floor of the detector is: 

Cg:Bw (Xe,M) Bw(Xi) Q9 • (89) 

Example VI-3 illustrates the use of equation (89). 
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Example VI-3 - ONE STORY BUILDING ABOVE GRADE 

Find Pf at center of building 

(jj W L z e n ‘ CO Gs Ga Gd 

CJl 40 80 9' .5 .225 .70 

0
0

 
CNI • .069 

(a) 2 40 
80 ' 

3' .5 .075 .895 .12 - .42 

Be(Xe=100 psf, H=6») = 0.082 

Sw(Xe=100 psf) = 0.74 

E (e=.5) = 1.34 

ROOF CONTRIBUTION 

Co = CoCgoUjXo) = Co(.70j60) = 0.055 

GROUND ‘CONTRIBUTION 

Cg = {(Gd(6u2,Hd) + Ga(k>if) CL ' Sw(XeD 
+ (Gs(^2) + Gs(0JL3) (Sw(Xe)E(e^ Be(Xe,H) 

Cg = -jj742 + .069) Q - .74) 

+ (712 + .28) (.74X1.34)} (0.082) 

Cg = 0.043 

Rf = Co + Cg = 0.055 + 0.043 = 0.098 

Pf = _L_ = _±_ = 10.2 
Rf 0.098 
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b. Detector Floor-With Windows. Consider the same 
case as above but now with windows in the exterior walls. 
Assume that the lower window sill is at the height of the 
detector. The extent of the windows in the vertical direction 
can be described by a solid angle fraction, w . The 
horizontal extent of the windows can be des<. cfbed by a 
perimeter ratio, P , which is the ratio of total window 
widths divided by total wall perimeter. To differentiate 
between solid wall component and window component, we will 
use the subscript *a’ to refer to the contribution through 
the aperture area. A prime will be used when contribution 
includes the effect of windows. The ground contribution 
then for the detector floor with windows would be: 

Cg1 r Cg-Ca+Cd . (do) 

In words, this equation means: the ground contribution 
through the floor of the detector with windows (C') equals 
the contribution &s if the wall was all solid (CgJ (equation 89) 
minus the contribution through the window area assuming 
solid wall conditions (Ca) plus the contribution through 
window area with Xe=0 (Ca). 

The equation for Ca and are: 

Ca ; Bw(Xe,W) Bw(Vi)[Gs(wa) SwE+Ga(*raXl-S»i|P«.(s>i) 

Cq'= Bw(o/H)Bw(Xi)Ga(wa) Pa . (92) 
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Note that Ca is concerned only with scattered radiation 
since we have assumed that the window sill is at detector 
height. This is usually the normal case. Thus no direct 
radiation can reach the detector through the window solid 
angle fraction, a)a. The exterior wall harrier factor for 
both Ca and Ca MUST include a height effect. Each of these 
two quantities are also multiplied by the perimeter ratio 
of windows, Pa. 

Although the analysis assumed the detector at sill 
height, the method of differencing could be used for the 
detector either above or below window sill. If the sill 
height is above detector height, we difference Gs and Ga 
responses. If the detector is above sill height, we 
difference Gs and G^ for that portion below the detector 
plane. 

c. Ground Contribution from Floor Above Detector. 
Consider next the contribution to the detector from walls 
of the floor above the detector. With usual floor and wall 
thicknesses, this contribution will be on the order of 
5$ or less of that from the detector floor. For this reason, 
only the floor immediately above the detector is considered. 

Figure 45 illustrates the solid angle fractions involved, 
u) is the solid angle fraction subtended by the detector 

at the ceiling of the floor above the detector. to is the 
solid angle fraction subtended by the ceiling itself, which 
we have already discussed previously. Note in this 
particular case that we are concerned only with radiation 
above the detector plane. There will be no direct contribu¬ 
tion frcm the floor above the detector. The equation for 
this contribution is: 

Cgu = B[AGsu&vE + AQa(tSvv)J, (93) 

B=Bw(Xe,W) Bo (Xo) Bw(Xi). ^ 

AGsu=Qs(a)p-Qg(w)1), (**) 
and 

AQd = Ga ” Ga (^i) * 
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Figure 45. CEILING AND FLOOR CONTRIBUTIONS 

CEILING AND FLOOR CONTRIBUTIONS 
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Note in "both the Gg and the Ga functions that we are now- 
taking a difference of response functions similar to the 
roof core problem. Again we multiply "by the scattered 
fraction and the shape factor for the wall-scattered 
radiation. The harrier factor B for this contribution 
consists of three components; exterior wall, floor 
barrier, and interior walls (if any). See equation 94• 
The height factor, H, is still detector height. 

d. Floor Above Detector - With Windows. Consider the 
case where the upper stories have windows. This contribution 
is noted by the following equation: 

Cqu - Ccju (I - Ap) + Cau (i -Ap). (97) 

Since the contribution from floors other than the 
detector floor are small, a smearing technique is used for 
the window case. CgU is the solid wall case, equation 93* 
Caa is based on the assumption that there is 100$ glass 
in the floor above. Each contribution is then modified by 
the actual percentage of windows, i.e. Ap or (l-A'p). Ap 
is the ratio of total window area to total wall area. 

The functional equations are: 

Cciu=Bw(0;H) Bo(Xo) Bw(Xi)AGa. 

A Ga is taken from equation 96* See example VI-4. 

e. Ground Contribution From Floor Below Detector. Next 
consider the contribution to the detector from the walls 
of the floor below the detector. Figure 45 illustrates 
the various factors involved here. Note that we now have 
no Ga response since only contributions below the detector 
plane are being considered. Only Gs and G^ are contributing. 

The ground contribution from the floor below, Cg-^ is: 
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EXAMPLE VI-A MULTISTORY BUILDING WITH APERTURES 

8th Floor 

7th Floor 

6th Floor 

Problem: 

Determine the protection 
factor for the detector 
positioned as shown on the 
7th floor of the multistory 
building. Consider contri¬ 
butions through walls of 6th, 
7th and 8th floors only. 

SECTION 

I 104 

-o 5>- 

PLAN 

t,_ Brick Xe=80#/sq. f t. 
Glass Xe=0 

Typical Wall Plan 

Typical wall detail in plan 
repeats continuously around 
full perimeter of building 
brick and glass run continu¬ 
ously vertically for full 
height of building. 
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OJ W L Z e n Cu Gd Gs Ga 

44 104 17 0.423 .327 .54 -- .36 - “ 

^1 44 104 7 0.423 .135 .78 .23 .057 

(a) ^ 44 104 3 0.423 .058 .91 .05 .10 

44 104 13 0.423 .25 .63 .40 .32 

Be(80,63) = 0.06 Be(0.63 = .45 

Sw(80) = 0.69 (1-Sw) = .31 

E (.423) = 1.31 

Assume Co is negligible 

a) FLOOR OF DETECTOR: 

Equation 89 Cg = .0199 
for Xe = 80 

for Xe = 0 Cg = .0483 

for each 10' of wall 4' is solid, 6' is wall 

Cg' = (0199)(.4) + (.0483)(.6) 

Cg' = .0370 
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b) FLOOR ABOVE DETECTOR: 

Bo'(60) = .044 

Equation 93 
Xe = 80 Cgu = .00036 

Xe = 0 Cgu = .000495 

Cgu' = (.00036)(.4) + (.000495)(.6) 

Cgu' = .00044 

c) FLOOR BELOW DETECTOR: 

Bf(Xf) = .06 

Equation 99 
Xe = 80 Cgb = .00101 

Xe = 0 Cgb = .00945 

Cgb' = (.00101)(.4) + (.00945) (. 6) 

Cgb' = .00607 

Cg = Cg' + Cgu' + Cgb' 

= .037 + .0004 + .0061 = .043 (rounded off) 
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Cgb-B[AGsbSVE+AGd(iSw)], C^9) 

where 

B= Bw(Xc/H) {X+) Bw(Xi). (IOO) 

AGsb-Gs (11)4)-Qs (u)2). (101) 

AGd- Gd(u>4,H)-Gd(n)2,H). (102) 

Note again that we are differencing response functions 
for both Gs and Ga* G^ is still a function of detector 
height. The barrier factors are the barrier factor for 
external walls (with height factor), the barrier factor 
for internal walls, and a barrier factor for the floor 
below the detector. This last barrier factor B.f(Xp) is the 
"roof” barrier factor from Chart 1. It is obvious 
that the orientation of radiation from the ground through 
this barrier is identical with radiation from the roof 
which makes the use of this barrier factor logical. The 
contribution from the floor below the detector will be on 
the order of 10$ of the detector floor contribution. 

f. Floor Below-With Windows. The window case for the 
floor below is handled in the same manner as the floor above 
the detector. The only difference is that we now have Ga 
instead of Ga. The functional equations are: 

Cgb - Cgb (l-Ap) + Cab*Ap, 

Cqb = Bw (0,H) Bo (Xf) Bw (Xi) AGd 

(103) 

(104) 
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5. Methods of Analysis 

a. Fictitious Buildings. The above functional 
equations can be used to calculate the protection factor 
for various types of practical buildings. However, we have 
always assumed that the detector was in the center of the 
building. In many actual cases, the rooms which will be 
used for shelters will be off center or in one corner of 
the building. To compute the detector response then 
from a detector which is off center, we make use of the 
fictitious building concept. In order to examine the 
fictitious building concept, let us compute the contribution 
from sector number one of the building shown in Figure 46. 
All we do is construct a building such that the detector 
is in the center of this building, as shown. 

We compute the contribution from segment number one 
of this building in a normal fashion, but since only one- 
fourth of the building is actually in existance the contri¬ 
bution will be one-fourth of the total that we initially 
compute. In like fashion we compute contributions from the 
other three sectors by constructing fictitious buildings. 
Finally, we add up all these separate contributions. This 
method can also be used where we have parallel partitions 
in the building by assuming a fictitious building which 
has uniform conditions in any particular direction. We 
then compute the contribution through the walls or wall 
of the building which is actually in existence by the use 
of a perimeter ratio, that is the length of the wall 
contributing to the total fictitious building, and then we 
circle the detector until we have gone around 360 
degrees computing the various fictitious buildings which 
contribute to the detector. 

b. Azimuth Sectors. Another method of computing partial 
contributions to detectors is by use of azimuth sectors. 
Here we divide the building up with radial lines from the 
detector as center through uniform sections of the building 
again. Figure 47 illustrates this technique. In this case 
we merely take a ratio of the angle contributing to 360 
degrees and then sum up all the angular sectors to give us 
our total detector response. This technique is particularly 
useful in analyzing contributions from narrow corridors or 
from windows which are not uniformly spaced around the building. 

See example VI-5. 

c. Non-Smooth Finite Plane. We have assumed up to this 
point that the building is situated in an infinite plane 
of contamination which is smooth. In actual practice this 
seldom exists. There may also be other buildings in the 
area which will tend to produce shields for the building in 

question. 
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Example VI-5 ONE STORY BUILDING, PARTITIONS 

FIND Pf AT THE CENTER OF THE BUILDING 

LO 
ND 

, 35' 
, 10‘| 35' 

LO 
o 

r~ 

- -E 3- 

80' 

o 

Xr = 60 PSF 

Xe = 80 PSF 

Xi = 50 PSF 

SECTION 

PLAN 

Cl) W L Z e n CO Gs Go Gd 

0)1 80 140 7 .57 .10 .87 . 145 .039 - 

O) 2 10 10 7 1.0 1.4 .22 

CO 3 80 140 3 .57 .04 .945 .069 - .275 

Be(Xe=80, H =3') = .15 

Bj(Xp50, H =3') = .3 

Sw(Xe=80) = .69 

E(e = .57) = 1.36 

Bj (X; = 50) = .2 

ROOF CONTRIBUTION 

C0 = Co (0)3, X0) + [C0 (C0]f X0) -Co (W3/X0)] B'i (Xj) 

C0 (.22, 60 ) + fCQ (.87, 60 )-C0 (.22, 60)].2 

= .022 + [.057 - .022] .2 = .029 
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GROUND CONTRIBUTION 

Cg = j [Gd(co2, Hd) + Ga(0li)] H-Sw (Xe)] + [GS(W2) + GS(W!)] Sw(Xe)E(e)[ Be(Xe/ 5') BjCXj, H) 

= j [.275 + .039] [1-.69] + [.069 +, 145] '(.69)(. 1.36 )j (. 15X.3) 

= .0134 

Rf = C0 +Cg = .029 + .013 = .042 

Pf = J_ = J_ = 24 -4-ANSWER 
Rf . 042 
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We take account of the roughness of the ground or non- 
uniformity of the ground by a roughness factor. This is 
merely a fictitious height which we add to the actual height 
of the detector. The table below gives various fictitious 
heights which are used for various conditions. We merely 
use these fictitious heights and calculate as before but 
assume the height of the detector is at the fictitious height 

plus 3 feet. 

FICTITIOUS HEIGHTS FOR VARIOUS 
GROUND ROUGHNESS CONDITIONS 

Description 

Smooth Plane 
Paved Areas 
Lawns 
Graveled Areas 
Ordinary Plowed Field 
Deeply Plowed Field 

Fictitious Height* (Feet) 

- 0 
0 - 5 
5-10 

10 - 20 
20 - 40 
ko - 6o 

*To add to actual detector height for use with wall-barrier 
curves, Chart 2. 

d. Limited Strips. In many cases the building which 
we are analyzing will be protected or screened by other 
buildings. This sets up a limited contaminated strip of 
radiation sources instead of the "standard” semi-infinite 
plane. Such buildings are also called "mutual shields." 
Limited strip information is also required when areas 
are decontaminated thus reducing the concentration of 
radiation sources. 

The method of handling limited strips of radiation is 
different for each of the three response functions. For 
the direct radiation, a differencing method is used. The 
upper and lower solid angle fractions are determined by the 
geometry of the situation. Figure 48 illustrates the 
parameters involved. The lower solid angle fraction, oo _, is 
the same as before. A line drawn from the detector to the 
base of the mutual shield determines the second solid angle 
fraction needed, and is labeled on Figure 48. The 
direct radiation component is: 

Cg (D):B[G<i(u*i,H)-Gd (Ol«,H)][i-Sw]. (los) 
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Figure 48. MUTUAL SHIELDING 
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If the detector is located at a height where intercepts 
the mutual shield, the direct contribution for the floor 
of the detector will he zero. A similar technique of 
differencing is used for the floor below the detector. 
Again, if intercepts the mutual shield, the direct 
radiation contribution will be zero. 

The air-scattered component includes not only skyshine 
but also all other reflected radiation. This includes 
ceiling shine and radiation reflected from the adjacent 
building. Reflected radiation is normally a small fraction 
(10$) of the total ground contribution. Computing each of 
these components separately woulji be quite tedious and 
would not materially affect the final result. To insure 
that reflected radiation is not neglected, the full component 
of Ga is assumed to be present regardless of the position 
or height of the mutual shield. The non-wall-scattered 
reflected component would then be: 

Cq (A) -B Ga (uif)(l-Svv). 6oe) 

The wall-scattered component is handled by using the 
same sum of Gs for upper and lower solid angle fractions 
but now the barrier factor for the exterior wall is modified 
to account for change in angular distribution. Chart 9 
has been provided so that values of this barrier factor 
may be obtained. The barrier factor is a function of a 
solid angle fraction, m , which is obtained by the following 
process: 

For the floor of the detector, the Z distance used to 
compute n for oo is taken as the detector height. The 
rectangle used to compute e is equal to twice the strip 
width, W , and the length of the building plus 2WC. Figure 49 
illustrates this geometry. After is computed, Chart 9 
is entered with cj amd Xe and the barrier factor B( us) 
is determined. The contribution then from wall-scattered 
radiation is: 

Cg (S) =B(u)g;Ke) SGs Swt. (107) 



Figure 49. SOLID ANGLE FRACTION FOR LIMITED FIELD 
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The total contribution from the sector with a mutual 

shield would then be: 

C9 - [Ccj (D) + Cg (A) + Cg ($)J Az. (108) 

where Az is the azimuth sector which defines the limits of 

the mutual shield. See example VI-6. 

This same technique can be used when decontamination 

has taken place. A strip around a building which has been 

partially or totally cleared of radiation sources is handled 

in a similar fashion as that for limited strip. In this 

case, the limited strip contribution is computed, multiplied 

by the decontamination factor (the percentage of fallout 

remaining), and then this quantity is subtracted from the 

infinite plane case. 

The contribution from the floors above and below the 

detector plane are computed in a fashion similar to the 

infinite field case, i.e. by a differencing technique. The 

wall barrier factor for wall-scattered radiation depends 

now on a mutual shield solid angle fraction whose Z distance 

is measured to the mid-height of the floor above and below 

the detector floor. 

6 o Summary , 

A review of the functional equations and charts used 

in the Engineering Manual method shows that there are some 50 

to 60 operations required to effect a solution. For practical 

engineering applications the method leaves much to be desired. 

In view of the fact that fallout shielding is not an exact 

science (see Section VIII), but is in fact based on a series 

of assumptions yet to be fully measured or justified, the 

question always arises as to the justification of teaching 

or learning this method. The major justification is the fact 

that it provides a logical sequence of steps in accounting for 

the major contributions from a fallout source field. Once an 

engineer fully understands the strengths and weaknesses inherent 

in shielding analysis, he can use simpler and more direct methods 

of computing the protection factors of buildings. Such a method 

is presented in the next section. It is called "The Equivalent 

Building Method of Fallout Shielding Analysis." It was developed 

by Commander LeDoux to more fully meet the needs of the designer. 
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Example VI-6 - MUTUAL SHIELDING 

Xe = 60 

X0 -100 
Xf = 40 

40' 40 

ELEVATIONS 
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1. Shielding Parameters 

0) w L Z e n CJ Gs Ga Gd 

W1 
40 50 7 .8 

00 
C

M
 . .73 .27 067 

(H=23 

LJ2 40 50 3 .8 .12 

00 
00 • .14 — .19 

40 50 13 .8 .52 .52 .37 — .61 

2a)s3 40 90 25 .445 .55 .38 -1_9 _ — 

2 Ws2 40 90 15 .445 .33 .54 - •2-1. — 

From sketch we can see that there will be no direct contribution 

(Gd) to the third floor on shielded side and a negligible direct contri¬ 

bution from second floor® Computation of 0)6 is not necessary. 

Sw(60) = .62 Bws(.19,60) = .009 

E (. 80) = 1.4 Bws(.27,60) = .020 

Be(60,23' • 

II 
/—

N
 

A = 287/360 = .80 
Z / 

Bf(40) = .11 o
 

CM
 • 

II CM
 

C<J 
<

 

2. Computations 

a) Open-Field Azimuth (AZ^) 

Equation 89: (Detector Floor) 

Cg = (.14) (7.41)(1.4)(.62) + (.257)(.38) 

= .063 

Equation 99: (Floor below detector) 

Cgb = (.14)(.11) (7.23)(1.4)(.62) + (.42)(.38) 

= .0056 

Cg(TOT) = .069 
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b) Shielded Azimuth (2) 

Detector Floor 

Equation 105 

Direct 

Cg(D) = (.14) Q)] (.38) - 

= 0 

Equation 106 (air scattered) 

Cg(A) = (.14)(.067)(.38) 

= .0035 

Equation 107 (Wall scattered) 

Cg(S) = (.009) (T.41)(1.4)(.62^ 
= .0032 

Floor Below Detector (only wall scatter contril 

Cg(S) = (.020)(.11) (T.23)(1.4)(.62^ 

= .0004 

Cg(TOT) = .0035 + .0032 + .0004 

= .0071 

c) Apply Azimuth Fractions 

Cg = (.069)(.8) + (.0071)(.2) 

Cg = .056 

d) Roof Contribution 

Co = C0( 1 Xo) = Co(.73,100) 
= .020 

e) Rf = .020 + .056 
= .076 Pf = 13 Ans 
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Vol. Ill 

VII EQUIVALENT BUILDING METHOD 

This section consists of a reprint of the September 1963 

printing of 0CD-TR-20 (Vol 2) - Shelter Design and Analysis, 

Equivalent Building Method, and Revision #1 dated April 1964. 

Revision #1 replaces Section V - Computing the Equivalent Overhead 

Mass Thickness. 

The Equivalent Building Method was developed primarily as a 

preliminary design aid and as such complements the more exact 

Detailed Procedure discussed in the previous section. A simpli¬ 

fied version of the Equivalent Building Method called the Protection 

Factor Estimator - TM-64-1, May 1964, has been published in pocket 

edition size. TM-64-1 can be obtained from the Office of Civil 

Defense. 
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SHELTER DESIGN AND ANALYSIS 

Volume 2 -Equivalent Building Method of Fallout Radiation 
Shielding Analysis and Design 

Supersedes Shelter Design and Analysis, Volume 2, 

dated February 1963 

DEPARTMENT OF DEFENSE • OFFICE OF CIVIL DEFENSE 

SEPTEMBER 1963 



FOREWORD 

This publication is a simplified approach to fallout radiation shielding 
analysis and design. It has been distributed by the Architectural and 
Engineering Development Division, Technical Operations Directorate, 
Office of Civil Defense in the interest of providing to the engineering and 
architectural professions new technical data and methods which are more 
easily manipulated in the preliminary design stages. 

This report is based on the Engineering Manual (OCD PM 100-1) 
and should provide results within a few percent of this approved method 
of analysis and design. The Equivalent Building Method presented here 
is designed to provide a :rapid method of analysis of structures, a means 
of investigating the effect of the various shielding parameters and a pro¬ 
cedure for the economic design of shelter shielding. 

This report does not explain the basic physics of structure shielding 
against fallout radiation. Readers who are not familiar with the basic 
aspects of fallout radiation and fallout radiation shielding are advised to 
consult the OCD Engineering Manual,1 NBS Monograph 42,2 and the 
Effects of Nuclear Weapons.3 This report will be of most value to those 
engineers and architects who have completed the OCD sponsored courses 
in Fallout Shelter Analysis or their equivalent. 

Note: These superior figures refer to numbered references on page 13. 
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ABSTRACT 

The Equivalent Building Method of Fallout Shielding Analysis and 

Design is a simplified approach to fallout shielding based on replacing a 

complicated actual situation by a simple, single-story, solid wall “equiva¬ 

lent” building of the same floor area. This is done by computing “equiva¬ 

lent” roof and wall mass thicknesses to replace the actual mass thicknesses 

and other shielding parameters. These equivalent mass thicknesses are 

used with a protection factor chart from which the proper protection factor 

is directly obtained. Two basic functional equations are used: 

Xo'=Xo(A,z,Xi) for Equivalent Roof, 
Xw' = Xe'(Xe,Ap)+Xi±AXw for Equivalent Wall. 

Although the method is simple and quick, it is based on the OCD 

Engineering Manual and NBS Monograph 42 and solutions obtained with 

it will yield comparable results. In addition, the Equivalent Building 

Method offers a rapid means of obtaining the most economic shield for 

a required protection factor. 
IV 
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SYMBOLS 

Note: Wherever possible the Symbols used in the Equivalent Building Method are the same as those used in the 

Engineering Manual. 

Xe —Exterior Wall 
Xf —Floor 
Xi —Interior Wall 
Xo —Total Overhead 
Xr —Roof 

Mass Thickness Symbols, psj (pounds per square joot) 

Xw —Total Wall 
Xop—Equivalent Peripheral Roof 
Xe' —Equivalent Exterior Wall 
Xo' —Equivalent Total Roof 
Xw'—Equivalent Total Wall 

Mass Thickness Correction Factors, psj 

AXo(Xi) —Interior Partition to Overhead 
AXw —Total Wall 
aXw(A,H)—Height 
AXw(Ms) —Mutual Shield 

AXw(Xf) —Floor Barrier 
AXw(Ex) —Exposed Basement Wall 
AXw(FC) —Floor Above hnd Below Detector 

Floor 

Area Symbols 

A —Total Area of Building 
Ab —Equivalent Basement 
Ac —Core 
Ar —Roof 

Aw—Wall 
A' —Adjusted Total Building 
Ac'—Adjusted Core 

Protection Factors 

Pf —Protection Factor for Detector Location Pfb—For Contribution From Floor Below 
Pfo—For Contribution From Detector Floor Only 

Only 
Pfu—For Contribution From Floor Above 

Only 

Miscellaneous 

Ap —Percentage of Apertures in Wall EBM —Equivalent Building Method 
Co —Contribution from Overhead (Roof) Ex —Exposed Basement Wall Fraction 

Cg —Contribution from Ground FC —Floor Above and Below Contribution 
Cr —Cost of Roof ($/pound) Factor 
Cw —Cost of Wall ($/pound) H —Height of Detector Above Ground 
Bo —Barrier Factor for Roof Barrier psf —Pounds per square foot 
Bo' —Barrier Factor for Floor Barrier Rf —Reduction Factor (Reciprocal of Pf) 
Bw —Barrier Factor for Wall z —Distance of Detector from Roof 
EM —Engineering Manual Contamination 

vui 
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SHELTER DESIGN AND ANALYSIS 

VOLUME 2 -EQUIVALENT BUILDING METHOD OF FALLOUT RADIATION 
SHIELDING ANALYSIS AND DESIGN 

I. Introduction and Background 

During the late summer and fall of 1961, a 

number of fallout shielding courses were given 

throughout the United States to architects and 

engineers in support of the National Shelter 

Survey Program. The main text used and method 

taught at all the participating, schools was the 

“Engineering Manual,” and its method.1 This 

publication was issued in draft form and the final 

edition is scheduled for printing in 1963. The 

Engineering Manual is based on the work of Dr. 

L. V. Spencer, NBS Monograph 42 2 which was 

issued in June 1962. 

The Engineering Manual offers a complete 

method of analyzing fallout shielding problems, 

even for the most complex situations. The 

method is based on a series of functional equations 

which can be used for almost any conceivable 

shielding problem. It is a significant contribution 

to the engineering literature. 

Solving for the protection factor at one detector 

location by the Engineering Manual method may 

take a number of pages of tedious calculations. 

The method requires numerous numerical calcula¬ 

tions and the probability of a calculational error 

is therefore quite high. Furthermore, the solu¬ 

tion of the protection factor for one building 

or for one location within a building, does not 

readily lend itself to a change of parameters for 

comparison purposes. 

For these reasons, the author (CDR J. C. LeDoux), 

and a colleague (LCDR R. C. Vance, CEC, USN) 

began to investigate various other approaches to 

the fallout shielding problem. The objective was 

to provide a means of analyzing shielding problems 

which would give engineers and architects a better 

“feel” for the interplay of the various parameters 

involved and still provide answers comparable to 

those provided by the Engineering Manual. At 

first only a few simple protection factor charts 

Note: Superior figures refer to numbered references on page 13. 

were developed and used. These were inspired 

by the Canadian A&E Guide.4 

The protection factor chart provided a quick 

means of analyzing the interaction of wall and roof 

thicknesses for a simple, single-story, solid wall 

structure, for a given floor area. These simple 

charts are the cornerstone of the Equivalent Build¬ 

ing Method. The relative simplicity of the Equiv¬ 

alent Building Method rests on the fact that large 

changes in magnitude of building area produce 

only small changes in the protection factor. The 

difference in protection factor for a building with 

an area of 100 sq ft and one with an area of 100,000 

sq ft is, in most cases, less than a factor or two. 

For the simple, solid wall single-story structure, 

then, only a few protection factor charts are 

needed to obtain the same answer as the Engineer¬ 

ing Manual for the same type of simple structure. 

Without further refinements, these protection 

factor charts are useful and instructive. With a 

little engineering judgment, they can be used to 

provide quickly maximum and minimum values 

of protection factors for structures with com¬ 

plicated geometry. Further investigation re¬ 

vealed that the other parameters, such as height, 

windows, mutual shielding, etc., also produced 

regular and slow variations to the protection 

factor. Instead of modifying the barrier factor 

or geometry factor directly, it is possible to sub¬ 

stitute an “equivalent” wall or roof mass thickness 

which will yield the same answer. 

II. Basis of the Equivalent Building Method 

The Equivalent Building Method is based on 

the assumption that any complex shielding situa¬ 

tion can be reduced to an equivalent simple, solid- 

wall, single-story structure problem. An analogy 

for engineers is the beam curves from the AISC 

Steel Handbook, where moment and span are 

used to find the correct beam to carry the load. 
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No computation of section modulus, moment of 

inertia, etc., is needed since the beam curves are 

based on these parameters. Similarly, the Equiva¬ 

lent Building Method is based on thousands of 

shielding problems worked by the Engineering 

Manual or Spencer Monograph. The solutions 

of these problems have been translated into various 

charts and tables from which equivalent wall and 

roof mass thicknesses can be selected. 

The Equivalent Building Method is based on 

the Protection Factor (Pf) chart. The wall mass 

thickness is plotted along the abscissa; the protec¬ 

tion factor along the ordinate; there are a series 

of overhead mass thickness curves from 0 psf to 

300 psf (every 4" of concrete). The overhead 

curves are bounded by an envelope based on an 

infinite roof mass thickness curve. This infinite 

roof curve is actually the ground contribution 

line since only ground contribution is included. 

There are four aboveground charts for areas of 

100, 1,000, 10,000, and 100,000, sq ft (figs. 1-4). 

There are five basement charts for areas of 100, 

1,000, 4,000, 10,000, and 100,000 sq ft (figs. 5-9). 

The 4,000 sq ft chart is needed for the basement 

case since this area is a maximum point for ground 

contribution. 

For aboveground, the basic structure assumed 

for these charts is a single-story, solid wall, 

square building. The wall height is 13 ft with the 

detector 3 ft above the floor. The sill height of 

any windows is assumed to be at detector height, 

3 ft. Figure II—1 is a sketch of this equivalent 

building. 

For the basement case, the basic structure is a 

2-story, solid wall, square building with the lower 

story completely below grade. The story height 

assumed here was 10 feet with the detector 7 feet 

below grade. The floor above the detector was 

assumed to have zero mass thickness. A correc¬ 

tion must be made for this added barrier. This 

was done so that the correction would always be 

positive. Section 1V-7 describes this correction. 

Figure II—1 is a sketch of the belowground equiva¬ 
lent building. 

The assumption of a square building will not 

cause much error since an eccentricity ratio of 5 to 

1 will cause only a reduction in shape factor of 

about 20%. The shape factor applies only to wall- 

scattered radiation, and thus the total error will 

be less than 20%. Furthermore, using a square 

building is conservative when applied to an eccen¬ 
tric building. 

Figure II - 1. 

EQUIVALENT BUILDINGS 

ABOVEGROUND AND BASEMENT 

If the actual structure happens to be of the 

simple type assumed in the construction of the pro¬ 

tection factor charts, the solution is immediately 

available. Most buildings are not very simple. 

There may be windows; the detector may not be at 

the standard height of 3 ft; the distance to the roof 

may be other than the standard distance; adjacent 

buildings may provide mutual shielding, and so 

forth. Each of these variations from the simple 

geometry can be handled by modifying either the 

roof mass thickness, the wall mass thickness, or 

both so that a “substitute” building can be de¬ 

rived that will have the same protection factor as 

the actual building. The two structures are thus 

“equivalent” in the degree of protection provided. 

In addition to the basic protection factor charts 

(four above-ground, five basement), there are eight 

auxiliary charts and three tables which are used to 

determine the equivalent mass thicknesses of roof 

and wall. Each of these charts and tables have 

been derived empirically since they were developed 

by solving shielding problems using the Engineer¬ 

ing Manual. Once the true protection factor was 

known, the previously developed protection factor 

charts were used to determine the equivalent roof 

III-2 



or wall mass thickness which would yield the same 

value. Thus, points on the auxiliary charts or 

tables were determined. 

III. Equivalent Building Method Functional 
Equations 

A functional equation describes in symbols what 

parameters are involved in determining a partic¬ 

ular quantity. Thus, when we write y=f(x), we 

mean that y depends on some function of x. It is 

often possible to write an explicit equation for x. 

In some cases, only the curve representing x may 

be available. In The Equivalent Building Method 

and in the Engineering Manual, the functional 

equation is used to indicate the dependent param¬ 

eters and tables or curves are provided to deter¬ 

mine the desired value of the function. 

There are two basic functional equations for the 

Equivalent Building Method, one for the roof and 

one for the wall. 

1. Equivalent Overhead Mass Thickness. 

The equivalent overhead mass thickness, Xo', 

depends on the actual overhead mass thickness, 

Xo, the area of the contributing roof, A, and the 

distance from the detector to the roof, z. In 

certain problems, Xo' also depends on the addi¬ 

tional barrier effect of interior partitions. 

In functional equation form, this relationship is 

written: 

Xo'=Xo(A, z, Xi)_(1). 

Figures 16 and 17 are used to determine Xo' as 

explained in Section V. 

2. Equivalent Wall Mass Thickness, 

The equivalent wall mass thickness depends on 

the exterior wall mass thickness, the window area, 

the interior wall mass thickness, the height of the 

detector, any mutual shielding, contributions from 

the floor above and below the detector floor, and 

the percentage of wall exposed for semiburied 

cases. The functional equation is: 

Xw'=Xe'(Xe, Ap)+Xi±AXw_(2). 

The A symbol stands for an additional quantity 

of mass thickness added or subtracted to the wall 

mass thickness. For the floor of the detector, 

AXw has the following components: 

a. Floor of detector 

AXw(A, H)—Correction for height of detector 

above contaminated plane (fig. 12). 

AXw(Ms) —Correction for mutual shielding 

(fig. 13). 

AXw(Ex) —Correction for exposed basement 
walls (fig. 15). 

b. Floor above or below detector floor 

AXw(A, H)—Correction for height (fig. 12). 

AXw(Ms) —Correction for mutual shield (fig. 

13). 

AXw(FC) —Correction for floor above or floor 

below detector floor (tables II 

and III). 

AXw(Xf) -—Correction for barrier effect of 

floors (fig. 14). 

IV. Explanation of Wall Factors 

1. Effect of Apertures—Xe'(Xe,Ap), 

The first term of equation 2 adjusts the exterior 

wall mass thickness, Xe, for the effect of windows. 

Figures lOa-lOd are used to obtain the equivalent 

exterior wall mass thickness, Xe', for aboveground 

locations. Figures lla-lle are used to obtain the 

equivalent exterior wall mass thickness for the 

basement case. The wall considered for the base¬ 

ment case is the exposed first story wall and not 

the buried wall. These charts plot Xe along the 

abscissa and Xe' along the ordinate. There are a 

series of aperture percentage (Ap) curves on each 

chart. Enter with Xe, go vertically to the proper 

Ap curve and read out Xe'. The aperture per¬ 

centage is the ratio of window area to total wall 

areaXIOO. The detector is assumed to be at 

sill height. 

The aperture curves give a pictorial view of the 

effect of windows on wall mass thickness. The 

curves flatten out when the amount of radiation 

streaming in the windows is the predominant 

effect. Adding more weight to exterior walls at 

this point will not produce any added shielding. 

These curves can be used in design problems to 

determine the best exterior wall weight (from a 

shielding viewpoint). If the slope of the curves is 

at or near 45°, every pound of wall produces an 

effective pound for shielding. As the slope de¬ 

creases, adding weight to the walls does not pro¬ 

duce the same weight in shielding. 

For detectors above sill height, an approximate 

solution is to assume Xe = 0 for the entire wall 

where windows are present. Protection factors 

from the window area and from solid wall are 

weighted in accordance with the fraction of each. 

2. Interior Partitions—Xi, 

In this method the interior wall mass thickness, 

Xi, is added to Xe'. This is equivalent to using a 
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barrier factor which is a function of the sum of the 
exterior and interior wall mass thicknesses, or Bw 
(Xe' + Xi). The Engineering Manual uses Bw 
(Xe)Bw(Xi); i.e., the product of barrier factors. 
Recent experimental work 5 indicates that the prod¬ 
uct method predicts too low. The sum method 
will always yield a higher contribution than the 
product and thus brings theory closer to experi¬ 
ment. 

3. Detector height—AXw(A,H). 

Figure 12 is used to obtain a correction to equiv¬ 
alent wall mass thickness when the detector is 
elevated above the standard height of 3 feet. 
The curves include two effects: the change in 
wall barrier effectiveness with height; and the 
screening effect of the floor below the detector. 
This second effect is dependent on the area of the 
building. Calculations show that for exterior 
walls equal to or greater than 50 psf, the combined 
correction remains constant for a particular 
height. For weights below 50 psf, there is a 
noticeable change in the positive direction. Two 
supplementary tables for Xw=0 and Xw=25 
have been placed above the curves. These 
tables provide additive corrections to the basic 
curves for walls less than 50 psf. 

The fact that ligher walls require heavier 
equivalent weights requires further explanation. 
For heavy walls, radiation absorption is greater 
than radiation scatter. For very thin walls 
(Xw=0), the radiation is neither absorbed nor 
scattered but is transmitted. For detectors in 
upper floors, the detector is screened from much 
of the direct radiation by the floor below. Since 
radiation is not scattered by the thin walls into 
the detector, very little except skyshine and ceiling 
shine reaches the detector and thus walls appear 
to be relatively thick which requires an added 
equivalent wall weight. For medium thick walls 
(Xw=25) a considerable portion of the incident 
radiation is scattered by the walls into the de¬ 
tector. The 25 psf corrections are thus lower 
than the 0 psf correction. 

4. Mutual Shield—AXw(Ms). 

A mutual shield improves the protection factor 
of a building. This effect can be simulated by 
changing the actual wall mass thickness by the 
proper amount to obtain the same effect. Figure 
13, AXw(Ms), is an incremental increase to Xw 
due to the effect of a limited strip of contamina¬ 

tion. For a strip 100 ft wide, the wall is increased 
by 40 psf. (See example problem No. 10.) 

5. Exposed Basement Walls—AXw(Ex). 

When basement walls are partially exposed, 
the protection factor of the basement location 
decreases. Such a problem could be handled in 
two ways; the basement protection factor curves 
could be used by providing a negative correction 
to the belowground charts or an additive correc¬ 
tion could be used with the aboveground charts. 
The latter proved to be more feasible, since ex¬ 
posing even a small portion of a basement wall 
drastically reduces the protection factor and 
more nearly approaches the aboveground case. 

Figure 15, AXw(Ex), is used with the above¬ 
ground charts, though a correction for a semibase¬ 
ment case. We simply consider all such cases as 
partially buried instead of partially exposed. The 
belowground curves do not provide low enough 
protection factor values and thus the aboveground 
curves were easier to use. The exposed wall 
fraction (EX) is the ratio of wall exposed to total 
walls. 

6. Contributions from Floor Above and Below the 

Detector Floor—AXw(FC). 

In addition to the ground contribution through 
the walls of the detector floor, significant amounts 
of radiation may reach the detector from the 
floors above and below the detector floor. For 
nominal floor and wall thicknesses, this usually 
amounts to approximately 10%. Table I has 
been provided as an approximate correction for 
this additional contribution. The values in table I 
are subtracted from Xw. 

Tables II and III and figure 14 are provided so 
that a more accurate computation of this effect 
can be made. The method used is to obtain the 
protection factor for the floor of the detector (Pfo), 
the protection factor for the floor above (Pfu), 
and the protection factor for the floor below (Pfb). 
These three protection factors are then directly 
combined to obtain the Pf of the detector, as 
follows: 

Pf=PfoX- 
Pfu 

X 
Pfb 

(Pfo + Pfu)(Pfo 4-Pfb) 
(See Example, p. 5.) 

a. For Floor Above Detector. Since the pro¬ 
tection factor for the floor of the detector 
included the roof contribution, the protection 
f actor for the floor above should be determined by 
excluding any roof contribution. This is easily 
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EQUIVALENT BUILDING METHOD SOLUTION FORM 

PARAMETERS 

w= !0O 
Wc= 
Z=_ 
H=_ 
Ap= 
Ms= 

l- /ao a 
Lc=_~~ . Ac=_., 

a'= 3.44,0. 
Ac=-_- 
Xo= /OO 
Xe= /<?<? 
Xi=_ 

SKETCH 

EQUATIONS 

Xw' = Xe' (Ap) + Xi+^ A Xw 

Xo'=Xo(A,Z)+A Xo(Xi) 

EQUIVALENT WALL MASS THICKNESS Xw' 

V/o ?/(r VfaAr) 

Factor Fig. Sector -#1 Sector -*2 Sector*3 Sector *4 
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accomplished by assuming a roof with infinite 

mass thickness. The upper curve of the pro¬ 

tection factor charts is the infinite roof case or 

simply the ground contribution curve. Table II 

provides the AXw(FC) correction of the floor 

above. In addition, figure 14 (upper curves) 

must be used to correct for the barrier effect of 

the floor above the detector. All other cor¬ 

rections which apply must be made. 

For the height correction AXw(A,H), the 

mid-height of the floor above the detector is 

used for H. If there is no floor below the 

detector, the final Pf is: 

Pf = (PfoX Pfu)/(Pfo + Pfu). 

b. Basement Problems. In addition to charts 

5-9, the above procedure can be used to solve 

basement problems since the only ground con¬ 

tribution in a basement is from the floor above 

the detector. For basement problems, however, 

the equivalent roof mass thickness, Xo', must 

be used so that roof contribution will be 

included. 

c. For Floor Below Detector. The same pro¬ 

cedure is used for this case as for the floor above 

the detector. Table III is used to provide the 

AXw(FC) correction. Figure 14 (lower curves) 

provides the correction for the floor barrier 

effect, in this case, the floor below the detector. 

The height used for the AXw(A,H) correction 

is the mid-floor height of the floor below the 

detector. Again an infinite roof mass thickness 

is used to insure that only ground contribution 

is added. If there is no floor above the detector, 

the final Pf is: 

Pf = (Pfo X Pfb)/ (Pfo + Pfb). 

7. Floor Barrier Factor Correction—AXw(Xf). 

In the Engineering Manual method, floor 

barrier factors Bo and Bo' are included as mul¬ 

tipliers in the ground contribution equations. 

The previous section explained how figure 14 was 

used to include this factor in the contribution 

from the floors above and below the detector 

floor. Figure II—1 indicates that the basement 

Pf charts (fig. 5-9) are based on a floor barrier 

factor of 1.0 or a mass thickness of zero for the 

floor above the detector. This was done so that 

any correction made would be additive. When 

using figures 5-9 to compute a Pf for a basement 

location, figure 14 (upper curves) must be used 

to correct for the barrier effect of the floor above 

the detector. The curves of figure 14 were derived 

by simply converting the Bo and Bo' curves from 

chart 1 of the Engineering Manual to equivalent 

weights of wall barrier factor, Bw, from the same 

chart. 

V. Computing Equivalent Overhead Mass 

Thickness 

The equivalent overhead mass thickness, Xo', 

depends on the contributing roof area, the distance 

of the detector from this roof area, and for certain 

problems, the interior screening partitions. The 

functional equation for Xo' is: 

Xo'=Xo(A,z,Xi)_(1) 

The basic value of roof mass thickness, Xo, is 

the total mass overhead between the detector and 

the contributing roof area. The protection factor 

charts have curves for each 50 psf of equivalent 

roof mass thickness up to 300 psf. The final up¬ 

per curve is for an infinite roof mass thickness 

for those cases when Xo' exceeds 300 psf or for 

decontaminated roofs. This infinite Xo' curve is 

also the plot of Cg since only ground contribution 

is included. 

Figures 16 and 17 are used to determine Xo'. 

Figure 16 is a plot of roof contribution, Co, vs 

the adjusted roof area, A'. Roof mass thickness 

is plotted for each 10 psf from 0 to 300 psf. Figure 

16 is based on a distance from roof to detector of 

10 feet (z = 10'). This is the standard distance 

for the aboveground equivalent building. See 

figure II—1. Determining Xo' is easy if we keep 

in mind that every point on figure 16 is the inter¬ 

section of three values: Roof contribution, Co, 

adjusted roof area, A', and roof mass thickness, 

Xo. 

Figure 16 has several characteristics which 

should be noted. The terminal value line means 

that all Xo curves above this line are vertical and 

thus each Xo curve has reached a maximum and 

constant value of Co at this terminal line. The 

chart is actually a 6 cycle log chart which has 

been split at the 1,000 sq ft area line. Areas 

greater than 1,000 sq ft have been plotted in the 

lower righthand corner. This was done to keep 

the chart as compact as possible. Use the left 

hand ordinate for curves above and to the left 

(areas from 1-1,000); use the right hand ordinate 

for curves below and to the right (areas from 1.000 

to 1 million sq ft). Since these two sections are 

parts of the same chart, you may proceed vertically 

from one set of curves to the other as necessary. 
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The abscissa is the roof contribution reduction 

factor, Co, and should provide the same value as 

chart No. 4 in the Engineering Manual for square 

roofs. Figure 16 is used to determine the Reduc¬ 

tion Factor (Rf) for completely buried shelters 

where Co is the only contribution. 

There is only one rule to remember in solving 

for Xo'. Find the actual rooj contribution, Co; 

with Co and the total actual rooj area, enter jigure 16- 

and determine the corresponding value oj Xo. This 

is the equivalent rooj mass thickness, Xo'. 

This rule will now be applied to the various 

circumstances that occur. 

1. Variation in Distance of Detector from Roof 

Figure 16 is based on a standard “z” distance 

of 10 feet. If the detector distance is other than 

10 feet, Xo' will be different than Xo. To deter¬ 

mine Co, we enter figure 16 with an adjusted roof 

area (A') and with Xo. This adjusted roof area 

corrects for the change in solid angle fraction 

subtended by the roof from the solid angle sub¬ 

tended at the standard distance. The solid angle 

varies inversely as the distance squared, therefore: 

A'=A (10/z)2__(3), 

In this case the actual value of Co is not needed. 

With A' and Xo, we locate a point on figure 16. 

To maintain the proper value of Co, wre stay on 

the vertical Co line oj the point determined. On 

this vertical Co line, proceed either up or down to 

the actual total building area and read out the 

equivalent roof mass thickness, Xo'. We use the 

total building area, since we use this area with 

the protection factor chart. 

Example: If A=7,500 sq ft 

z = 53' 

Xo = 150 psf, find Xo'. 

Compute A': A' = A(10/z)2 

= 7,500(10/53)2 

= 267 sq ft. 

With A'= 267, and Xo = 150, enter figure 16. 

(This particular example is shown on figure 16 in 

dotted lines.) At the intersection of 267, and 150 

psf (Co = 0.0037), proceed vertically down to 7,500 

sq ft. In this case the terminal value line lies 

below 7,500 and so we must keep going down 

until we intersect this terminal value line. This 

intersection occurs at Xo = 172 psf; this is the 

proper value of Xo' for this problem. 

2. Variation in Roof Area 

There are many cases when the contributing 

roof area is different than the total building area 

at ground level. A stepped building, or a build¬ 

ing with a central core area are two examples. 

In this case use the contributing roof area under 

consideration and Xo to determine Co and then 

proceed vertically to the total building area to 

determine Xo'. If there is a change in height and 

a different roof area, compute the proper adjusted 

area and enter figure 16 with this area and Xo to 

determine Co. 

Example: If A= 1,000 with a central core 

area, Ac = 200 

z = 20' 

Xo = 100 psf, find Xo'. 

First compute the adjusted core area, Ac' 

Ac' = Ac(10/z)2 

= 200(10/20)2 
= 50 sq ft. 

With Ac' = 50 and Xo=100, find Co. At this 

point, go vertically up to 1,000 sq ft and read out 

Xo' = 165 psf. 

Note that in both of these examples, the actual 

value of Co was not needed or used to determine 

Xo'. 

3. Core Type Problems 

In many practical shielding problems, the 

shielded space is protected by interior partitions. 

These interior partitions not only provide a bar¬ 

rier to ground contributions but also act as a 

barrier to portions of the roof contribution. In 

these cases, the standard procedure is to compute 

the roof contribution in two parts. The area of 

the roof not screened by interior partitions is 

called the “Core Area,” and the portion of the 

roof screened by interior partitions is called the 

“Peripheral Area.” 

The general principle of solving for Xo' applies 

for this type of problem. The total roof con¬ 

tribution, Co, is determined and is used with total 

building area to determine Xo'. In this case, 

however, Co is determined by adding the periph¬ 

eral roof contribution to the core roof contribution. 

In determining the roof contribution to the 

periphery, figure 17 is used to include the barrier 

effect of interior partitions. For the periphery 

then, the value of mass thickness which is used 

to determine the periphery roof contribution is: 

Xop = Xo + AXo (Xi) 

Where Xop is the equivalent periphery roof 

mass thickness. AXo(Xi) is the additional 

mass thickness required to account for the 

interior partition barrier. 
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To solve for Xo', use the following steps, using 

figures 16 and 17: 

(1) Solve for Co for the core area (fig. 16, with 

Ac', Xo). 
(2) Solve for Co for the total roof area. Include 

the interior partition effect (fig. 16 with A', 

Xop). 
(3) Solve for Co for the core area as if it was 

affected bv interior partitions (fig. 16 with Ac', 

Xop). 

(4) The difference between steps (2) and (3) 

is the contribution from the peripher}r. 

(5) Solve for total Co (add step 4 to step 1). 

(6) Determine Xo' from figure 16 by using Co 

and total area of building, A. 

Example: 

Let A =1,000 sq ft 

Ac = 200 sq ft 

Xi = 50 psf 

Xo = 100 psf 

z = 20 ft, find Xo . 

This is the same example we had before, but now 

we will include the effect of the periphery. The 

numbers refer to the steps above. 

(1) Solve for Co for the core area. 

a. The adjusted core area Ac' is: 

AC = 200 (10/20)2 

= 50 sq ft. 

b. Enter figure 16 with 50 sq ft and Xo = 

100. At this intersection, read out 

Co = 0.0040 

(2) Solve for total area including effect of in¬ 

terior partitions. 

a. The adjusted area is: 

A' = 1,000 (10/20)* 

= 250 sq ft. 

b. Determine the equivalent periphery roof 

mass thickness, Xop: 

Xop = Xo + AXo (Xi) 

From figure 17, for Xi = 50 and Xo = 100, 

AXo(Xi) =60 psf 

Xop =100+ 60 = 160 

c. Enter figure 16 with A'= 250, and 

Xop = 160, and read out Co = 0.0030 

(3) Solve for Co for core area with interior 
partition effect. 

Ac' = 50, Xop=160; from figure 16 read out 
Co = 0.0011 

(4) Solve for the peripheral contribution: 

Co(P) =0.0030-0.0011 =0.0019 

(5) Solve for total roof contribution: 

Co = 0.0040+ 0.0019 = 0.0059 

(6) Solve for Xo': 

Enter figure 16 with Co = 0.0059 and 

A =1,000; Xo' = 145 psf 

The example on page ? is solved using the 

suggested solution form, from section IX. Note 

that the periphery contribution is determined 

first. Then the core area contribution is added. 

4. Basement Roof Problems 

The basement protection factor charts (figs. 

5-9) are based on a detector to roof distance of 

17' as shown on figure II-l. Two methods can 

be used to solve for basement protection factors. 

The first method uses the aboveground charts and 

table II to correct for the basement location (the 

floor above the detector). In this case, the 

equivalent roof mass thickness is determined as 

described above. 

If we wish to use the belowground charts 

(figs. 5-9) chart 16 must be corrected to allow for 

the basement standard distance of 17'. This is 

done by computing an equivalent roof area for 

the basement, Ab. 

Ab=A(10/17)2 

= 0.346A 

With this value of Ab and the true roof contri¬ 

bution, Co, enter figure 16 and determine Xo' 

(see Example p. 9). 

VI. Complex Applications 

The Equivalent Building Method was originally 

developed to provide “ball park” estimates. 

With engineering judgment, the protection factor 

charts can still be used for estimating purposes. 

Problem 14, for example, required a twelve page 

Engineering Manual solution for a value of 47; 

a quick estimate yielded a Pf of 47; the Equiva¬ 

lent Building “wall by wall” analysis gives a 

value of 50. 

Complex applications are best solved by using 

a “wall by wall” analysis with appropriate ficti¬ 

tious buildings similar to the Engineering Manual 

method. One must remember, however, that the 

Equivalent Building Method yields an answer 

which has both an overhead contribution and a 

ground contribution. When the protection fac¬ 

tors are modified by an azimuth sector, the over¬ 

head contribution is also affected by the same 

azimuth fraction. It is important to make certain 
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that important parts of the roof contribution are 

not omitted. Problem 14 is a good example of 

the correct procedure. In this problem, certain 

sectors had a negligible Cg because of many inter¬ 

vening partitions, however, the contributions 

from the roof over these azimuth sectors could 

not be ignored. This was easily handled bv 

assuming that the walls for these sectors were 

infinitely thick. The protection factors obtained 

for each contributing sector are combined by in¬ 

verting (or changing to reduction factors), multi¬ 

plying by the azimuth fraction, and then adding. 

The azimuth fractions can be divided by the Pf to 

obtain the same result. Once the total reduction 

factor is known, this is inverted to obtain the 

protection factor. 

In complex applications it is not uncommon to 

have 15 or 20 separate azimuth fractions since an 

azimuth fraction is used whenever the conditions 

within a structure change. Changes are caused 

by doorways and interior partitions. The pro¬ 

tection factor charts are helpful in combining 

sectors. For example, if the overhead mass 

thickness for a particular building is 100 psf, 

and the gross area of the building is 10,000 sq ft., 

Figure 3 tells us that all sectors with wall weights 

equal or greater than 250 psf can be combined 

because the resulting Pf will be the same. 

VII. Design Procedure, 

The Equivalent Building Method lends itself 

to preliminary design of fallout shelter since it 

provides the architect or engineer with a quick 

method of determining the effect of changing the 

various parameters concerned. We are concerned 

here only with the design of the shielding required 

and not with structural design methods. A 

designer is concerned with obtaining the most 

protection for the least money. Since the pro¬ 

tection factor is a complex function of radiation 

contributions from various sources, determining 

the economic shield for a particular application 

can be a most complex process. To indicate 

how the Equivalent Building Method can be used 

to solve such problems, an example will be 

demonstrated. 

Figure VII-1 is a simplified sketch of a two story 

school building with 24 classrooms. The class¬ 

rooms surround a central area which houses the 

administration and service areas. In the center 

of this area on the first floor is the cafeteria. 

The second floor has a clerestory section over a 

Figure VIII - 1 

ECONOMIC DESIGN PROBLEM 

multi-purpose area. The service area includes 

office space, lavatories, machinery spaces, etc. 

If we use the cafeteria area for shelter, what wall 

and roof thicknesses should be used to obtain the 

most economic shield? 

The following assumptions will be used for this 

problem: 

1. Reinforced concrete will be used as shielding 

material. Inplace costs are: walls, $50/cu yd; 

ceiling, $80/cu yd. 

2. The following material would normally be 

used if no shelter was included: 

a. North-South exterior walls (classroom 

walls) would be 8" concrete faced with 4" brick. 

Xe=140 psf. 60% of these walls will be 

window area, with sill height at 3 ft. 

b. East-West walls would be 12" concrete 

block with no windows. The clerestory will 

have windows all around. Xe = 85 psf. 

c. The interior partitions supporting the 

clerestory will be 12" concrete block, Xi = 85 

psf. All other interior partitions will be light¬ 

weight concrete block, Xi = 22 psf. 

d. The East entrance to the school contains 

office space with exterior walls light metal 

framing and glass, Xe = 0. 
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3. The dotted lines indicate interior partitions. 

The heavy lines indicate the position of shelter 

shield. The shelter ceiling covers the service 

area. The following data has been taken off 

the sketch: 

a. Area of school = 27,000 sq ft. 

b. Area of shelter = 13,500 sq ft. 

c. North and South wall area including 

baffles=4,500 sq ft. 

d. Area of baffles, North and South — 900sq ft- 

e. East and West wall area = 2,640 sq ft. 

Problem: Determine wall and ceiling weights 

for shelter area which can be placed at least cost. 

Determine cost per sq ft of shelter space over and 

above cost without shelter and compare to 

$2.50/sq ft shelter incentive allowance. Pf=100 

required. 

Assuming that concrete weighs 4,000 lbs/cu 

yd, we can write the following cost equation: 

Cost = Cost of interior walls (NS) + Cost of 

exterior walls (EW) + Cost of Shelter 

Ceiling. 

For a first cut at the problem, we will assume 

that the contribution from the floor above will be 

negligible. Since the area of the shelter is quite 

large, we will assume that the “z” distance of 22' 

will not materially affect Xo'. There is no mutual 

shielding or height correction to make. 

The cost of interior walls (NS) depends on the 

area of the NS walls, the required weights (Xi), and 

the unit cost of material, or 

Cost (NS-walls) =Xi Aw (NS) Cw, 

For exterior walls (EW), assuming the walls 

inside the exterior office space are exterior walls, 

the equation would be: 

Cost (EW-walls) =Xe Aw(EW) (V 

For the ceiling: 

Cost (ceiling) =Xf Ar Cr- 

If the costs (Cw, Cr) are costs in $/lb, these can 

be obtained by dividing the cost per cu yd by the 

4,000 lbs/cu yd. The product of mass thickness 

and area is lbs of material and our equation gives 

us costs in dollars. 

The wall functional equation which applies to 

this problem is: 

Xw'=Xe'(Ap, Xe) + Xi. 

Thus for the North-South walls, Xi=Xw' —Xe\ 

For the East-West walls, Xe=Xw'-Xi. For 

the ceiling, Xf=Xo'—Xr. Substituting these 

quantities into our cost equations, we have the 
following: 

Cost = (Xw' — Xe')Aw(NS)Cw-f (Xw'~ Xi) 

Aw(EW)Cw+ (Xo' —Xr)ArCr. 

For $ costs, this equation must be divided by 

4,000 lbs/cu yd. 

Substituting areas and weights from the data 

of the building and dividing by 4,000 yields: 

Cost=56.3(Xw'-Xe') + 33(Xw'-Xi) + 270 

(Xo'-Xr). 

From Figure 10c, for Xe=140 and Ap = 60%, 

we obtain Xe' = 77. For Xi, we have 85-f-22 or 

107. For Xr, we have 50. Substituting and 

adding we have: 

Cost=89.3 Xw' + 270 Xo'-21,260 

The only unknowns in this equation are Xw' 

and Xo'. These are directly obtained from the 

Pf charts. Referring to figures 3 and 4 we obtain 

the following set of combinations of Xw' and Xo' 

which will produce a Pf of 100. 

For Pf= 100, A=10,000 

Xw'= 145 155 165 173 185 210 233 297, 

Xo' = 250 200 175 160 150 140 135 130. 

For Pf=100, A=100,000 

Xw'= 97 103 113 145 153 200 350, 

Xo' = 250 200 175 150 140 130 127, 

using the cost equation, we can now construct a 

cost table (not shown) for both areas. We will 

interpolate linearly between the two sets of values 

for our area of 27,000 sq ft. The cost table 

indicates a minimum cost value for Xo'=140 

for both tables. Listing the values from both 

tables to obtain the required wall thickness, we 

have: 

A= 10,000 Xo' = 140 Xw' = 210 

A = 100,000 Xo' = 140 Xw' = 153 

A= 27,000 Xo' = 140 Xw' = 199. (use 200) 

For the North-South walls then, the interior 

mass thickness required would be 200-77 or 123 

psf. For East-West walls, the exterior mass 

thickness required would be 200-107 or 93 psf. 

The shelter ceiling would have to be 140-50 or 90 

psf, or 40 psf more than normal construction. 

Since the exterior East-West walls would 

normally be 85 psf, these walls are almost sufficient 

as is. By filling the hollow blocks with sand or 

grout, the additional mass thickness would exceed 

the required 8 psf. The cost wrnuld be very small 

but for purposes of this problem we will compute 

this cost at $50/cu yd. The North-South walls 
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would have to be 11" of concrete for the 123 

psf required or 101 psf more than normal con¬ 

struction. The added cost of shelter would be: 

Cost ceiling = 
(140-100) X270 = $10, 800 

Cost XS walls = 
(101) (50) (3,600/4,000)= 4,550 

Cost XS baffles = 

(123) (50) (900/4,000)= 1,400 

Cost EW walls = 

(8) (50) (2,640/4,000)= 264 

Total additional cost = 17, 014 

Cost per sq ft= SI7,014/13,500 sq ft = $1.26 per 

sq ft. 

Using the values of Xo' = 140 and Xw' = 200, 

we should check the Pf of this structure. This 

should be done by the Engineering Manual 

method. Using the EBM, for A= 10,000 the Pf 

= 95. For A= 100,000, the Pf is 125. For 27,000, 

the Pf is 101. A check of the contribution from 

floor above indicates negligible contribution. 

Xo' does change from 140 to-142 for a change in 

Z from 10' to 22', but this increases the Pf slightly. 

Thus the two assumptions used for simplicity do 

not materially change the economic analysis. 

VIII. Engineering Estimate Procedure 

The ability to make good engineering approxi¬ 

mations is usually directly proportional to the ex¬ 

perience in a given field. For estimating protection 

factors of buildings, the Pf charts plus a few rules 

of thumb should aid in obtaining good estimates. 

If possible, try to bracket the Pf by obtaining 

maximum and minimum values. If the maximum 

and minimum are within a factor of two, you have 

accomplished the purpose of estimating the Pf of 

a building; i.e., getting within a factor of two. An 

average of these two values could be used if a 
single number is desired. 

For most problems, using the actual roof mass 

thickness will give good results. If the “z” dis¬ 

tance is large or if the core is small, use Xo. The 

Pf obtained will be lower than the actual Pf. A 

check of the Pf chart will indicate the degree of 

conservativeness that may be involved, and how 

sensitive the Pf is to the Xo' in this particular 
configuration. 

For example, suppose that a building has an 

area of 1000 sq ft with Xo = 100 and z = 40 ft. 

The walls are 100 psf. Chart 3 tells us that the Pf 

must be at least 14 (using Xw' = 100, and Xo' 

= 100). With an infinitely thick roof, the Pf wcmid 

only be 19. Thus a change in z for this example is 

not very important. However, if Xw=200, the 

minimum Pf would be 40 and the maximum would 

be 160 (for an infinite Xo'). The following rule of 

thumb works fairly well for a change in z. 

Rule for Change in “z”: For small areas (A ^ 1,000), 

add 1 psf for each foot over standard distance 

(10'). For large areas (A^ 10,000) add 1 psf 

for each 4 feet over the standard distance. 

For the example above, add 30 psf (40-10) to 

Xo for a total of 130. The estimated Pf would 

then be 65. 

The following additional rules of thumb are 

useful. 

Rule for Windows: Xe' = Xe(l-Ap)f 

Rule for Height: Up to 50', add 1 psf for each 

foot of height over the standard 3' For 

heights over 50', add 1 psf for each 4 ft over 

50 ft. (For 100 ft height, correction =50 

+ 50/4 = 62 psf.) 

Rule for floor above and floor below correction: 

Decrease Pf by 10%. 

For Minimum Pf: Assume ground floor con¬ 

ditions. Correct for windows. 

For Maximum Pf: Follow Xo line to right 

ordinate. Correct for any large z changes or 

for small cores. 

To correct for core changes, convert the core 

area into a z change and apply z rule. A 400 sq 

ft core in a 10,000 sq ft building is the same as a z 

change of 50 ft. The Xo correction would be 

10 psf. 

Example: Suppose we have a building with a 

gross area of 5,000 sq ft. We wish to estimate the 

Pf on the 7th floor of a nine story building. If 

Xe=200, Ap=60%, Xf=50 (all floors), z=27', 

and H = 63', what is the Pf? 

Minimum Pf: Assume ground floor conditions. 

Xw' = 200X0.4 = 80, Xo' = 3X50=150 psf (3 

floors). Average Pfs from figures 2 and 3: 

Pf(min) = (11 T21)/2 = 16. 

Maximum Pf: Average Pfs from figures 2 

and 3 for Xo = 150 at right ordinate: 

Pf (max) = (180 +160) /2 =T 70 , 

Since the min and max are not close, we should 

make a closer estimate bv applying rules of thumb. 

Height correction=50+13/4 = 53 psf Xw' = 

80 + 53 = 133 psf “z” correction= (27—10)/4 = 4; 

Xo'= 150 + 4= 154 psf. 
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I'se average of Figures 2 and 3. 

Pf(est) = (35+65) ,/2 = 50 - 

Reduce bv 10% for floor and ceiling correc¬ 

tion: 

Pf(est)=45 ANS (EBM Sol = 43) . 

IX. Summary 

The Equivalent Building Method is not pre¬ 

sented as a cure-all for all fallout shelter shielding 

problems. Rather it has been developed to 

explore the problem of fallout shielding from a 

different viewpoint. The state of the art at 

present can only furnish answers that are within, 

roughly, a factor of two. This method is within 

this range. 

There are many complex shielding situations 

which require a tremendous amount of arithmetic 

to compute the protection factor using the 

Engineering Manual Method. The complexity 

does not lend itself to analyzing or obtaining a 

“feel” for how various changes in the parameters 

would affect the final answer. The Equivalent 

Building Method does give a quick method of 

“seeing” how changes affect the result; how the 

various parameters influence each other. This 

Equivalent Method then lends itself to preliminary 

design as well as analysis since changes can be 

made easily or a number of possible solutions can 

be done. The Engineering Manual Method should 

be used as a final check of any preliminary design. 

The method also lends itself to the quick bracket¬ 

ing of maximum and minimum answers which 

may, in many cases, be sufficient for the purposes 

at hand. 

The Equivalent Building Method is based on 

empirical corrections to the overhead and wall 

mass thicknesses of a building. These empirical 

vaues have been derived by solutions to many 

problems by using either the Engineering Manual 

or the Spencer Monograph. Correct use of this 

method should yield results within 10% of the 

Engineering Manual Method. 

A suggested solution form for the EBM method 

is shown on page 5. 
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TABLE I CORRECTION TO Xw FOR FLOOR AND CEILING CONTRIBUTIONS 

(Tabular values are subtracted from Xw) 

Area Xf=20 40 60 80 

1,000 5 2% — -- 

10,000 

rl\^
 

(N
 

1—
1 10 5 2% 

100,000 10 7% 5 2% 

TABLE II CORRECTION TO Xw FOR CONTRIBUTION 

FROM FLOOR ABOVE DETECTOR (BASEMENT) 

AREA = 100 1,000 5,000 10,000 100,000 

Xw=0 255 150 105 107 70 

25 190 95 52 60 45 

50 180 80 45 50 35 

100 170 80 43 45 25 

150 170 80 38 40 20 

TABLE III CORRECTION TO Xw FOR CONTRIBUTION 

FROM FLOOR BELOW DETECTOR 

AREA = 100 1,000 10,000 100,000 

Xw=0 55 15 -20 -45 

50 70 20 - 7 -30 

100 82 22 - 3 -18 

150 85 30 3 -15 

200 90 32 7 -12 

250 90 35 8 - 7 

300 90 35 10 - 3 
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Change #1 to TR-20, Shelter Design and Analysis Volume 2, Equivalent 
Building Method 
(This change replaces Figures 16 and 17) 

V. Computing Equivalent Overhead Mass Thickness 

The equivalent overhead mass thickness, Xo', depends on the con¬ 
tributing roof area, the distance of the detector from this roof area, 
and for certain problems, the interior screening partitions. The 
functional equation for Xo' is: 

Xo' = Xo (A, z, Xi ).(1) 

The basic value of roof mass thickness, Xo, is the total mass overhead 
between the detector and the contributing roof area. The protection 
factor charts have curves for each 50 psf of equivalent roof mass 
thickness up to 300 psf. The final upper curve is for an infinite 
roof mass thickness for those cases when Xo' exceeds 300 psf. This 
infinite roof curve is also the plot of Cg since only ground con¬ 
tribution is included. 

Figure 16 with subsections a, b, c, and d is used to determine 
Xo'. Figure 16 is a plot of roof contribution, Co, vs the adjusted 
roof area. A'. Figure 16 is based on a Z distance of 10 ft. The 
adjusted area depends on the actual Z distance which may be different 
than 10 ft. The roof mass thickness is plotted for each 10 psf from 
0 to 300 psf. Every point on Figure 16 is the intersection of three 
parameters; roof weight, Xb, roof contribution, Co, and the adjusted 
roof area, A'. 

1. Detector to Roof Distance Variation. 

Part a) of Figure 16 is a nomogram for computing A*. Since the solid 
angle fraction varies inversely with the square of the distance, the ad¬ 
justed area can be found by the following equation: 

A* = A (10/Z)2 . 

To find A* using the nomogram, draw a line from the total roof area 
A (left hand line) through the Z distance (middle line) to the left 
hand ordinate of part b) of Figure 16. This is the adjusted area A'. 

Part b)of Figure 16 is the plot of Xo vs A' for the determination of 
roof contribution Co and the equivalent roof mass thickness, Xo'. 

Once A* is determined, go horizontally in Part b) until the total 
overhead mass thickness line is reached. This point is the roof con¬ 
tribution Co line. If we remain on this vertical line, the true value 
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of Co will be maintained in tne prooiem. To determine the value of 
equivalent roof thickness, Xo', go vertically to the area of the 
building. The area of the building is the area used with the Pf 
charts and is that area from which ground contamination is excluded. 

Example: A = 1500 sq ft Z=30' 
Xo = 150 psf 
Xw = 200 psf 

From 1500 on Part a), a line is drawn through 30’, intersecting 
the left hand ordinate of Part b) at 170. Go horizontally until the 
Xo=150 line is reached. Note that the Co value is .0031. 

Go vertically to A=1500, and read out Xo,=172 psf. From Figure 2 
with Xw’=200 and Xo'=172, the Pf=100. 

Note that in this problem, the actual value of Co was not needed 
nor used. The value was extracted only for instructional purposes. 
The procedure used in this simple problem can be applied to more 
complicated ones. There is only one rule to remember when solving for 
Xo' and that is: FIND THE ACTUAL ROOF CONTRIBUTION, Co. WITH Co AND 
BUILDING AREA TO BE USED IN THE PROBLEM, FIND THE VALUE OF Xo. THIS 
IS THE EQUIVALENT ROOF MASS THICKNESS Xo'. 

2. Intermediate Area Problems. 

For adjusted roof areas less than 1000 sq ft, the roof lines slope 
sharply to the left. For accuracy, we should interpolate for roof areas 
as well as ground areas. The following problems illustrate this. 

Example: A = 400 Z=10' 
Xd = 100 
Xw = 20C 

From Figure 16, the following values of Xo* are obtained: 

Xo* (100) = 55 psf 
Xo' (1000) = 110 psf 

The corresponding Pf values from Figure 1 and 2 are: 

Pf (100) = 43 
Pf (1000) = 47 
Pf (400) = 45 (linear interpolation) 

(Note: The method of section 1 for solving this problem, i.e. using a 
value of Xo' = 100 for both A = 100 and A = 1000 and then interpolating. 
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yields a value of 55. Such large differences will only result for small 
areas between 100 and 1000 sq ft. Above 1000 sq ft, the value of Xo' 
will be essentially constant, and only one value of Xo' is needed for 
interpolation). 

3. Core Type Problems. 

In many practical shielding problems, the shielded space is protected 
by interior partitions. These interior partitions not only provide a 
barrier to ground contributions but also act as a barrier to portions cf 
the roof contribution. In these cases, the standard procedure is to 
compute the roof contribution in two parts. The area of the roof not 
screened by interior partitions is called the "Core Area," and the 
portion of the roof screened by interior partitions is called the 
"Peripheral Area." 

The general principle of solving for Xo' applies for this type of 
problem. The total roof contribution, Co, is determined and is used 
with total building area to determine Xo’. In this case, however, Co 
is determined by adding the peripheral roof contribution to the core 
roof contribution. In determining the roof contribution from the 
periphery. Part c) is used to include the barrier effect of interior 
partitions. For the periphery then, the value of roof mass thickness 
which is used to determine the periphery roof contribution is: 

Xop = Xo + Xo(Xi) 

Where Xop is the equivalent periphery roof mass thickness. 

/\ Xo(Xi) is the additional mass thickness required to account for 
the interior partition barrier. (Part c). 

To solve for Xo’, use the following steps: 

(1) Solve for Co for the core area (Ac', Xo). 
(2) Solve for Co for the total roof area. Include the interior 

partition effect (Ar, Xop). 
(3) Solve for Co for the core area as if it was effected by interior 

partitions (Ac1, Xop). 
(4) The difference between steps (2) and (3) is the contribution 

from the periphery. 
(5) Solve for total Co (add step 4 to step 1). 

(6) Determine Xo1 from figure 16 by using Co and total area of 
building A. 
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Example: 

Let A = 1,000 sq ft 
Ac = 200 sq ft 
Xi = 20 psf 
Xo = 100 psf 
z = 20 ft, find Xo* 

Figure V-l indicates schematically the solution to this problem. Each 
step is labeled to correspond with the following steps: 

(1) Solve for Co for the core: 

a. Using nomogram: A = 200; Z = 20'; Xo = 100: Co = .0035, 

(2) Solve for Co from the entire roof but include the effect of 
interior partition barrier: 

a. From part c) obtain A Xo = 25 psf; 
b. Using nomogram: A = 1000; Z = 20'; Xop = 125: Co = .0063, 

(3) Solve for Co from core area but with interior partition effect: 

a. Using nomogram: A = 200; Z = 20'; Xop = 125: Co = .0022^ 

(4) 

(5) 

(6) 

An alternate procedure is to move along the Xo = 125 
line until you intersect the Ac’ line. 

Obtain A Co: A Co = (2)-(3) = .0063 - .0022 = .0041, 

Add this peripheral contribution (A Co) to the core 
contribution to get Co- 

a. Co = (1) + A Co = *0035 + *0041 Co = .0076. 

Determine Xo' by going vertically to A 

a. With Co = .0076; A = 1000; Xo’ = 135 Xo* = 135 psf ANS 

As a general rule of thumb, if the adjusted core area exceeds 1000 sq ft 
or if the interior partition mass thickness exceeds 100 psf, the peripheral 
roof contribution will be negligible. 

4. Eccentric Roof Areas , 

For many practical problems, the best shelter area is located in the 
central corridor of a building. This corridor will likely be quite 
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eccentric and using the total area of the CORRIDOR AS IF IT WERE SQUARE 
could lead to serious error. The areas far from the detector will not 
contribute very much to the total roof contribution. 

Part d) of Figure 16 has been included to correct for eccentric 
roof areas. The abcissa of this chart is the eccentricity ratio, e, 
or simply the ratio of width to length, W/L. The ordinate is a 
multiplying factor which is applied to the actual roof area to obtain 
an "effective contributing" area. This effective area is always 
smaller than the actual area. 

The correction factor F(A) is limited to eccentricities of 10 to 
1 (e = 0.1). If the roof has an eccentricity ratio of less than 0.1 
use only that portion of the corridor or roof area which will yield an 
eccentricity ratio of 0.1. 

For example: suppose that we are analyzing a corridor 10' wide 
and 150' long. The eccentricity ratio for this corridor is .067. To 
increase the e ratio to 0.1, we simple reduce the effective corridor 
length to 100'. In effect we are neglecting roof contribution from 
the corridor roof beyond 50' from the detector for this problem. Even 
for thin roofs, (Xo = 25 psf) such contribution is negligible. 

Using an e - 0.1 then, and an area of 1000 sq ft, we would obtain 
F(A') = .34 from Part d). Applying this to the 1000 sq ft, we obtain 
an effective contributing area of 340 sq ft for the core part of the 
roof problem. From this point, proceed as in the core type problem 
demonstrated in the previous section. In section VI (Complex 
Applications), a corridor type problem will be worked out in detail 
in conjunction with an azimuth problem. 

5. Basement Roof Problems. 

The basement protection factor charts (figs. 5-9) are based on a 
detector to roof distance of 17' as shown on figure II-l. Two methods 
can be used to solve for basement protection factors. The first method 
uses the aboveground charts and table II to correct for the basement 
location (the floor above the detector). In this case, the equivalent 
roof mass thickness is determined as described above. 

If we wish to use the belowground charts (figs 5-9) chart 16 must 
be corrected to allow for the basement standard distance of 17*. This 
is done by computing an equivalent roof area for the basement, Ab. 

Ab = A (10/17)2 

= 0.346A 
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This can be accomplished easily with the nomogram, part a). Area 
Ab is determined by drawing a line through A and Z = 17'. For basement 
cases, exit on Ab instead of A. 

With this value of Ab and the true roof contribution, Co, enter figure 
16 and determine Xo1 (see Example p.9). 
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SAMPLE PROBLEMS 

The Equivalent Building Method will be demonstrated by a number of typical 

examples. Most of these problems have been worked out in other publications by 

the Engineering Manual. Where this is the case, the answers will be compared.- 

The notation (EM = 25) means: Engineering Manual method protection factor is 25. 

Several design problems are worked out indicating the use of this method for such 

problems. 

These sample problems are organized as follows: (1) Descriptions of the 14 

problems, (2) solution of problems 1-8, (3) quick estimates for the complex problems 

9-14, and (4) complete solutions for problems 9-14. 

When possible for short problems, one solution form has been used for more 

than one problem to conserve space. All problems are worked out “long hand” to 

differentiate solution form from solution. 
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Sample Problems 

Length = 100' 

Width = 100' 

T 
13* 

1 

Xr = 100 

Sketch for examples 1~4 

Aboveground Windowless: Xw=100 psf, 

Xo=150 psf , 

Pf=? 

Required Wall Thickness: With Xo=150 psf, 

what Xw is required for a protection factor of 

100? 

Economic Design Analysis: What is the most 

economical roof and wall thickness assuming that 

roof concrete cost $100/cu yd and wall concrete 

$75/cu yd? Assume concrete weighs 4,000 lbs 

per cu yd. Find the best combination for a Pf 

of 100 and a Pf of 1,000. (Use a wall height of 

10 ft for this problem.) 

Aboveground With Windows: With windows as 

sketched below, what is the protection factor 

when Xw=210 psf and Xo=140 psf? 

Sketch for problem 4 

Aboveground-Intermediate Area: Same sketch as 

above except Width=60'. What is protection 

factor when Xw=200 psf and Xo = 150 psf? 

Basement-Windowless Ground Floor: What is 

the protection factor for the following building? 

Length=110' Width=90/ 

Xw=70 psf Xr=100 psf Xf=50 psf 

Basement With Exposed Walls: What is the pro¬ 

tection factor for the following building? 

Length=100' Width = 50' 

Xw=100psf Xr=100 psf Xf = 60 psf 

Sketch for problem 6 

Xr = 100 

-—10*-- —6'- 9 

/// /// 

1 

/// & y 

8. Basement With Windows on Ground Floor: 

Same building as Problem 6 but with windows 

on the ground floor. The aperture fraction is 

0.80. What is the protection factor for the 

basement? 

9. Building With Core: What is the protection 

factor at the center of the core? 

Xe= 100 psf Xi=40 psf Xo = 80 psf 

©- 

—r 
10* 

I-3V I 
Sketch for problem 9 
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10. Mutual Shield: What is the Pf on the upper 

floor? 

Xe^=60 psf Xo=100psf Xf = 40 psf 

0 

10' 

50' 

Sketch for problem 10 

11. Upper Stony-Windowless: What is protection 

factor at location indicated? - 

Length = 100' Width=75' 

Xe = 80 psf Xr=90 psf Xf=60 psf 

(all floors) 

12. Upper Story With Windows: Same as Problem 

11 except Aperture fraction is 0.40. What is 

protection factor at same location? 

0- 

t 
171 

t 

531 

Sketch for problem 11 

13. Complex Building With L-Wing: What is pro¬ 

tection factor for location indicated? 

Xe=55 psf Xr=60 psf 

Xf=75 psf Xd=0 psf Ap = 0.15 

-40‘ -40' -50' 

Sketch for problem 13 
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14. Complex Building-Upper Story With Interior- 

Well: What is protection factor for location 

indicated? 

Xe=100 psf Xi = 50 psf Xr = 50 psf 

Xf=75 psf (all floors) Ap = 0.36 

10' floor heights Detector 3' from floor 

}7i \ 20' 

40’ 90' 

90‘ 
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FROBL 2 fc> #1 & 2 

EQUIVALENT BUILDING METHOD SOLUTION FORM 

P^OftcerriS '/ 2 
PARAMETERS 

W -1£>0 L *100 te/QSW 

EQUATIONS 

Xw' = Xe' (Ap)+ Xi+£ A Xw 

Xo'= Xo(A,Z)+ A Xo(Xi) 

EQUIVALENT WALL MASS THICKNESS Xw' 

Wr.s - lr.= - A r.= — 
7= to ctxto.m 
Hs 3 fir's - 
Ad= 0 Xo= !&> 
Ms= — Xe= ZOO 

Xi=^^ 

Factor Fjg- Sector Sector *2 Sector ^*3 Sector *4 

Xe'(Ap) 
10 
11 10(0 

SKETCH 

-O /Is Xi — 

AXw(A.H) 12 — 

1^/00' 
IVS /00 ' 

7//os /A''y//c"/1 <'N 

AXw(Ms) 13 — 

AXw(FC) 1 — 

^ /4<?0 0 

/^'r /0,03d 

/tY r /oO 

/o “ /i>1 (?st 

ft = 3/ *** 

& -7 

AXw(Xf) 14 — 

^Xw(Ex) 15 — 

Xw' too ? 

EQUIVALENT ROOF MASS THICKNESS Xw' 

Co(A', Xo* A Xo) 
/ ( 

* Co(Ac',Xo+ A Xo) \ / 
/ /«ruo • ' / A 

-- 0 

T«' 

Co( Periphery) A  / 
\ /o« 

IV - /GO 
♦ Co(Ac',Xo)(Core) / 

-1- 

%t/O0 
Co(Total Roof) 

Area = 

f 

Xo' = /s? 1ST) 

/'j- =r 5/ /oo 

* For Basement Case 
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Problem No. 3 Solution: 

This problem asks that, we obtain the most economical combination 

of roof and wall mass thickness. First we write a cost equation. 

COSt: = ($75 AwXw + $100 ArXo)/4,000 

= $75 Xw+$250 Xo 

Since the building area is 10,000 sq ft we can use figure 3 . For inter- 
mediate areas , simple interpolation is possible. At the horizontal 
line for Pf 100 and Pf 1,000, list the combinations of Xw and Xo 
which are possible. Then construct a cost table to determine the 
minimum cost . 

Xw Xo Cw Cr Ctot 
145 250 10, 900 62,500 73, 400 
153 200 11, 500 50,200 61, 500 
165 175 12,400 43, 700 58, 100 
173 160 13,000 40,000 53,000 
185 150 13, 900 37,500 51,400 
210 140 15, 800 35, 000 50, 800* 
232 135 17,400 33,700 51, 100 
297 130 22,300 32,500 54, 800 

•Minimum. 

For part (a) then, the answer would be: Xw—210, Xo = HO, 
The same procedure is used for the Pf 1,000 case: 

Xw Xo Cw Cr Ctot 
265 300 19, 900 75, 000 94, 900 
272 275 20, 400 68, 700 89. 100 
283 260 21, 200 65, 000 86, 200 
295 250 22, 100 62,500 84,600 
315 240 23, 600 59, 000 82, 600* 
350 232 26, 200 58, 000 84,200 

•Minimum. 

For part (b), the answer would be: Xw = 575, Xo=2'+0. 
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VIII - VARIOUS SOURCES OF UNCERTAINTIES IN FALLOUT SHIELDING METHODS 
OF ANALYSIS 

A. Introduction 

Discussions with various administrative and technical 
personnel have indicated that there is a general lack of 
knowledge concerning the accuracy of the present method used 
for fallout shielding analysis. Engineering methods in general 
are usually based on a number of assumptions to decrease the 
complexity of analysis and design. We usually compensate by 
introducing "safety factors" which are in essence "factors of 
ignorance." Nuclear radiation shielding, at the present time, 
is more an art than a science, and is also based on a number 
of simplifying assumptions. Such assumptions had to be made 
in order to develop a method at all. The fact that a method 
is long and tedious does not insure accuracy nor does writing 
a computer code improve the accuracy if the input data itself 
has limitations. It is well then to attempt to set forth the 
various sources of errors in the present method of fallout 
shielding analysis and design so that our technical personnel 
can appreciate the strengths and weaknesses of the present 
method. The method under discussion is the Engineering Manual 
method. Whenever possible, the range of possible error is 
listed. There are a certain number of assumptions, however, 
whose effect upon the accuracy is unknown. We merely know that 
the assumption is not based solidly on known facts. 

The sources of error can be classified into five categories 
(i) Those dealing with the physical measurements of the 
structure being analyzed; (2) the basic assumptions relative to 
fallout; (3) the basic input data and theory; (4) the basic 
methodology; and (5) computational errors. 

1. Errors involved in physical measurements of structure 
being analyzed. 

a. * Measurements of mass thickness 

b. Irregularities in walls and roofs 

c. Mutual shield effect 

d. Building and room dimensions 

All of the above are subject to slight errors in either 
the analysis or design situation. It is very difficult to 
measure exactly the mass thickness of walls or roof unless 
wall borings are made. An error of about 7 per cent in wall 
and roof mass thickness in 12" concrete will produce a 
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possible + 25 per cent difference in protection factors 
calculated. In addition most walls and roofs have irregularities 
such as beams and columns which make measurement even more 
difficult. The accuracy of measuring buildings providing 
mutual shields also will produce uncertainties. 

2. Errors involved in the basic assumptions relative to 
fallout: 

a. Spectrum. The 1.12 hr. fission spectrum is assumed 
for all methods of analysis. Generally, any error 
here will be in the conservative direction, although 
somewhat minor in nature. In certain cases, 
fractionation of the fission products could produce 
a harder spectrum than the 1.12 hr. spectrum; again, 
this is probably negligible. 

b. Uniform distribution. For planning purposes, this 
is the only logical assumption to make. Under 
actual conditions it is almost certain not to be 
the case because of ground roughness and 
micrometeorological effects. Fallout will tend to 
drift like snow or dust and collect in valleys, 
gutters, etc. This may or may not improve the Pf 
of a shielded location. 

c. Flat roof. We normally replace all roof structures 
by a flat roof. Fallout which is blown or falls 
from an eaved roof would collect on the ground next 
to the building or in gutters. Radiation 
penetrates vertical barriers easier than horizontal 
barriers and this assumption could be unconservative. 

d. Horizontal surfaces. We assume that fallout will 
settle only on horizontal surfaces. We nelgect any 
fallout which may settle on window sills and which 
could, under certain conditions, cling or stick to 
vertical surfaces. (A water burst could produce 
a sticky type of fallout—Pacific tests and 
Japanese fishing boat experience.) Under these 
conditions, the protection factor for a location 
within a building would decrease by a factor roughly 
equivalent to another roof contribution (assuming 
one side of a building is contaminated.) 

No + figures are given here, although it would be possible 
to compute some for typical cases. Some are usually always 
conservative, such as the 1.12 hr. spectrum and the ground 
roughness. Others could go either way depending on the particular 
building involved. 
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3• Errors of basic input data and theory: 

Here we must go back to the Spencer Monograph and investigate 
the input data which Dr. Spencer used. He discusses possible 
errors on page 8l of the monograph, but for our purposes we can 
summarize his discussion as follows: 

a. Input data. The basic cross sectional information 
(i.e. the gamma ray interaction probabilities) are 
known to within a factor of 1 per cent. Nevertheless 
at deep penetrations, this could lead to errors 
of 10 per cent in barrier factors for good geometry 
conditions: i.e. an infinite, homogeneous medium. 
Variations from this ideal will produce further 
uncertainties. The following are Dr. Spencer's 
estimate of possible errors for various basic 
curves: 

Roof barrier L(x) 8% Wall barrier W(X,d) 10 to 50$ 
Skyshine S(d) 15% Geometry factors 20 to 25% 
Barrier to skyshine 100% 

b. Homogeneous medium. Most basic data is derived 
assuming an infinite homogeneous medium. Although 
basic interactions for air, water, concrete, and 
earth are somewhat the same on a mean free path 
basis, there are differences. The Monograph curves 
are based on water. Most practical situations 
are far from homogeneous. Error here is some¬ 
where in the range of 10 per cent (guess). 

c. Interface problem. Theory based on air-air interface. 
In practice, we have air to ground, air to concrete, 
etc. Range here also about 10 per cent (guess). 

d. Vertical wall data. The available source data for 
vertical walls produces uncertainties in wall 
penetration. These uncertainties are due to 
inaccuracies in the angular distribution, changes 
in spectrum with depth of penetration, incorrect 
correlation of spectrum with direction. The 
uncertainties increase as height above the contami¬ 
nated plane increase. 

k. Errors involved in basic methodology: The following 
discussion relates to the Engineering Manual assumptions: 

a. Solid angle fraction. Solid angle fraction is used 
throughout the Manual as the best parameter for 
representing the geometry. It doesn't measure or 
indicate the geometry factor directly, but is a 

basic parameter like mass thickness is a measure 
of barrier factor. The use of solid angle fraction 
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will introduce no error ONLY when the radiation 
is isotropic at the detector, i.e. coming equally 
from all directions. Though individual fallout 
parricles may be assumed to be isotropic, a fallout 
field will produce an isotropic response at the 
detector only under a few limited conditions. 

b. Distribution of radiation. The angular distribution 
of radiation is known fairly well only for a few 
cases; through the roof; at the outside of the wall 
for small heights. For thick walls, or for great 
heights, the distribution is not known. 

c. Pillbox building. The Engineering Manual is based 
on a pillbox (cylindrical) building. Buildings 
which vary from this round shape will be approxi¬ 
mations to the basis of calculations. 

d. Roof contributions. Spencer computed three separate 
cases for roof contributions. The Engineering 
Manual selected one of these for universal use, 
the so-called smeared barrier case . Here the 
total mass thickness between source and detector is 
assumed to be uniformly distributed between source 
and detector. Depending on the actual situation, 
using this smeared barrier curve could produce 
results + 40 per cent frcm the other two Spencer 
curves. In addition, the use of a circle to 
represent a rectangular roof introduces an 
additional error which depends on the actual angular 
distribution of radiation. For rectangles with 
eccentricities of 5 to 1, the error could be as 
much as + 25 per cent. 

e. Wall scattered radiation. The wall scattered 
directional response function is based on the 
ASSUMPTION that radiation scattered within a wall 
has the same angular distribution as air scattered 
radiation both above and below the detector plane. 
We do not now have information of the actual distri¬ 
bution of wall scattered radiation. Range of 
uncertainty here now known. It appears, however, 
that Gs(upper) would be less than Gs(lower) since 
radiation tends to scatter in forward directions. 

f. Ceiling-shine. The air scattered directional 
response function has a ceiling-shine factor incor¬ 
porated in it. This is the radiation which reflects 
from the ceiling into the detector. This 
contribution is based on a series of assumptions 
which so far have not been tested or evaluated. 
The effect appears to be small, so that a large 
error will not normally be significant. However, 
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certain situations could neglect this effect when 
it was significant; for instance a high band of 
windows with a roof overhang would appear to cut 
out skyshine (which it would) but it would tend to 
increase ceiling-shine. Since ceiling-shine is 
part of skyshine in the present method, neglecting 
the skyshine effect also neglects ceiling-shine. 
(See Section X for ceiling-shine analysis.) 

g. Shape Factor. Shape factor is based on the assumption 
that for very thick walls, radiation emerges with a 
cosine distribution. The factor is applied only 
to the scattered component. The wall scattered 
component is weighted further by the scattering 
fraction. For walls of nominal thickness, we know 
that the scattered radiation does not have a true 
cosine distribution. How good is the shape factor 
under these conditions? The factor varies from 1 
to 1.4, thus the maximum error would be 40 per cent 
for the wall scattered component. 

h. Scattered fraction. The scattered fraction is based 
on the data of perpendicular incidence of Co-60 
radiation. First floor wall radiation is essentially 
peaked from the horizon and thus the perpendicular 
incidence should introduce little error. The use 
of Co-60 in lieu of the fission spectrum will 
produce perhaps a maximum error of 10 per cent. 
The procedure used in the Manual, however, applies 
this factor only to the exterior wall regardless 
of the interior wall thickness. Radiation will 
also scatter in the interior walls, but the 
distribution in energy and angle have changed 
because of exterior wall scatter. We have no 
information of the distribution at the interior 
walls and scattering here is neglected. As a matter 
of procedure, it seems that the scattering fraction 
should be based on the combined mass thickness 
of both interior and exterior walls. The possible 
error here could be as much as 100 per cent. In 
buildings with windows (see Section X for interior 
wall scatter analysis) 

i. Azimuth sectors. Present procedure calls for the 
use of either azimuth sectors or perimeter ratios 
when computing contributions from portions of walls. 
No error is introduced when the total wall is used, 
as for example, when one wall of a building is 
thicker than the other three . When portions of 
walls are used, a large error is possible, because 
this method says, if effect, we receive equal 
contributions from equal angles (or equal perimeters). 
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This is not true. We receive the greatest radiation 
from the wall closest to the detector. As a 
rough rule, we receive about 90 per cent of the 
total contribution within an arc of 60° (30° 
on either side of the perpendicular to the wall) 
for an infinitely long wall. Any error here would 
depend on the actual situation and could be + . 

j. Entranceways and Ducts. Present method only accurate 
within a factor of 2 (200$) for simple, single 90° 
bend. 

k. Detector location. We normally only analyze the 
center of a shelter. Other locations within 
shelter can be different by a factor of 2 to 4 
depending on the situation. Normally, the center 
of the shelter would give the best protection. 

5. Computational errors. 

Because of the complexity of the method, hand computations 
have a large probability of error for any one computation. 
Machine computation will normally be errorless for the data fed 
into the program but machine programs normally have to be 
simplified from the Engineering Manual for reasonable workability. 
The program used for the survey was better than the A&E Guide, 
but less rigorous than the Engineering Manual. 

Summary,. It is very difficult to asses the total uncertainty 
in the present method of analysis. It appears that under certain 
conditions (complex situations, maximum errors applying, etc.), 
the degree of uncertainty could be in the range of 1.5 to 2. Thus 
a protection factor of 100 would lie in the range of 50 to 200. 
On the other hand, the degree of uncertainty of the source itself, 
(i.e. the intensity of fallout for any particular location) 
would probably be in the range 10-20. Since we can design for 
the worst conditions of high radiation intensity (a Pf of 100 
seems to insure survival under these conditions), the degree 
of uncertainty on the actual protection factor may not be 
significant. Under actual conditions, the shelterees can also 
take corrective actions for actual conditions which exist. 
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IX - ENTRANCEWAYS AND DUCTS 

The subject of entranceways and ducts is a complex one and 

has been given extensive coverage in the literature. Three of 

these reports have been selected to give a good overall picture 

of the state of the art for gamma rays streaming down ducts. 

The first report is a summary of the field for both theory 

and experiment. It is: 

Huddleston, C. M. and W. L. Wilcoxin, "Gamma Rays Streaming 

Through Ducts." NCEL R 289, Naval Civil Engineering 

Laboratory, Port Hueneme, Calif., 6 Feb 1964 (Y-F008-08- 

05-201, DASA 11.026). 

The second report has been the basic theoretical treatise 

for this field. It has been used as the starting point for 

further work. It is: 

LeDoux, J. C„ and A. B. Chilton, "Gamma Rays Streaming 

Through Two-Legged Rectangular Ducts." Nuclear Science 

and Engineering: 11; 362-368 (1959). 

The third report provides a method of computing differential 

dose albedo based on monte carlo computations. This differential 

dose albedo should be used in using the LeDoux-Chilton Theory in 

lieu of the assumed isotropic dose albedo assumed in their 

original work (second report above). The third report is: 

Chilton, A. B. and C. M. Huddleston, "A Semiempirical 

Formula for Differential Dose Albedo for Gamma Rays on 

Concrete." NCEL R-228, Nov 1962 (Y-F011-05-329(b)). 

The Detailed Procedure, Section VI, also presents a method 

of computing the reduction factor in right angled ducts and 

entranceways. The method is quite simple and produces fairly 

good results for square ducts when the L/W ratio is equal to or 

greater than 3. 

Chart 10 (Section VI) is used to determine the reduction 

factor for the first leg of the duct. The second leg attenuation 

is: 

RF2 =0.2 w2 

where w2 is the solid angle fraction measured from the 

point of interest (on the centerline of the duct exit) 

to the nearest edge of the duct. The Z distance is 

then L2 minus W/2. 

For subsequent legs, the multiplying factor is taken as 0.5. 
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GAMMA-RAY STREAMING THROUGH DUCTS 

Y-F008-08-05-201, DASA 11.026 

Type C 

by 

C. M. Huddleston and W. L. Wilcoxson 

ABSTRACT 

A survey is presented of the current status of experimental and theoretical 

investigations of the problem of gamma-ray streaming through air ducts in concrete. 

Data are tabulated and plotted for a variety of experiments. Comparisons are made 

between theory and experiment, inconsistencies are pointed out, and areas needing 

further investigation are indicated. 

Qualified requesters may obtain copies of this report from DDC. 

The laboratory invites comment on this report, particularly on the 

results obtained by those who have applied the information. 

This work sponsored by the Defense Atomic Support Agency. 
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INTRODUCTION 

In the shielding of personnel against gamma radiation from nuclear weapons, 

an important aspect of the problem is consideration of the hazard caused by radiation 

which is scattered off interior surfaces of entranceways and air ducts into the shelter 

area. The duct streaming problem has been investigated both experimentally and 

theoretically at several laboratories. Current understanding of the problem has 

progressed to the stage where a review of progress to date is indicated. This report 

purposes to survey this information. 

Section I will describe some experimental determinations of the attenuation of 

gamma-ray dose within concrete ducts as a function of distance from the radioactive 

source. Section II will be concerned with albedo, which is an important concept in 

gamma-ray scattering. Section III will describe theoretical approaches to the duct 

streaming problem. The figures, presenting plotted and tabulated data, follow the 

text. 

I. EXPERIMENTAL INVESTIGATIONS 

Several investigators have conducted experiments giving information on the 

distribution of radiation along the axis of air ducts in concrete with square, rec¬ 

tangular, and round cross sections. Some of the ducts have one right-angle bend, 

and some have two right-angle bends. In every case treated here the measurements 

were made with a gamma-ray point source. 

The significant results of these investigations will be discussed and compared 

with each other and with theory. A systematic effort will be made to give as much 

information as is available on actual experimental results so that the data may be 

convenient to other investigators. 

Definition of Terms 

A uniform terminology is used for the various sources of data: 

D = measured dose rate in mr/hr at some distance along the axis of the duct 

D = dose rate in mr/hr at 1 foot from source in air 
o 
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L = total length of the duct in feet as measured along the axis; i. e., 

L = L-, + l_2 for a two-legged duct, and L = L-| + 1-2 + Lg for a 

three-legged duct 

= length of first leg in feet, measured from the point source on the axis 

to the center of the first corner 

l_2 = length of second leg in feet, measured from the center of the first 

corner to the end of the duct in the case of a two-legged duct, or 

from the center of the first corner to the center of the second corner 

in the case of a three-legged duct 

T = the distance in feet from the source to a point on the axis measured 

along the axis of the duct 

W/2 = half-width of duct in feet: for a square, W/2 is half of the width of 

a side of the cross section of the duct; for a rectangle, W/2 is the 

geometric mean of the half-height and half-width of the duct (i. e., 

is the area of the cross section of the duct); for a round cross 

section with radius R, W/2 is given by W/2 = V7tR/2 (i.e., W 

the area of the cross section of the duct) 

is 

L-shape refers to a duct with a single right-angle bend. 

U-shape refers to a duct with two right-angle bends of the same sense, so that 

radiation reaching the detector streams in the opposite direction to 

radiation streaming from the source down the first leg. 

Z-shape refers to a duct with two right-angle bends of opposite sense, such 

as a tunnel with an offset. 

Experimental Findings 

Eisenhauer. The scattering of Co^ gamma radiation in square and rectangular 

air ducts in concrete was investigated experimentally by Eisenhauer. ^ He measured 

dose rates along the axis of the second leg of a two-legged duct, and along the axis 

of the third leg of a three-legged duct. Results are plotted and tabulated in 

Figures 1 through 5. 

Eisenhauer found that the dose rate along the axis of the second leg of a 

two-legged duct varied as the inverse cube of the distance along the second leg. 

Also, he demonstrated the importance of scattering from the inside corner of the 

first right-angle junction. He made some "trapping" experiments by setting back 

one of the walls in a corner junction. 



Terrell. Extensive experimental investigations of gamma-ray streaming 

through air ducts in concrete have been carried out by Terrell and his co-workers 

at the Armour Research Foundation. 3, 4 Resu|fs are shown in Figures 6 through 23. 

This series of studies included Co^O, Cs^^, Na^, and Au^®. All ducts had 

square cross sections, some 6x6 feet and some 1 x 1 foot. Some of the ducts had 

one right-angle bend, and some had two right-angle bends. 

Terrell^ investigated the relative importance of scattering from the walls and 

ceiling at a corner, both by covering surface areas with lead (which has a much 

lower gamma-ray albedo than does concrete) and by removing walls. 

Experiments with U-shaped and Z-shaped ducts^ showed that the sense of the 

second right-angle bend is not a significant factor, at least as long as the axes of 

all three legs of a duct lie in the same plane. 

Green. An experimental study of the streaming of the gamma radiation of 

Co^ in an 11-inch square duct with one right-angle bend led Green^ to three 

principal conclusions: 

1. Trapping the corner surfaces of a duct is not generally an economically 

feasible means for improving attenuation factors. 

2. Dose-rate contributions due to multiple scatter represent a significant 

contribution to total dose rate at the detector. 

3. Dose rate falls off as the inverse square of axial distance along the first 

leg of a duct and almost as the inverse cube along the axis of the second 

leg. 

Results of Green's measurements are shown in Figures 24 and 25. 

Chapman. Dose-rate measurements and gamma-ray spectrum measurements 

were made inside a square concrete duct with a 3 x 3-foot cross section.^* By 

measuring the energy spectra of gamma rays scattered from particular surface 

elements, Chapman was able to demonstrate the importance of multiple scatter. 

He showed that, at some places within a duct, dose contributions due to multiple 

scatter can be of the same magnitude as the dose contribution due to single scatter. 

Results of Chapman's duct-streaming measurements are presented in Figures 26 and 27. 

Fowler and Dorn. Measurements were made of dose attenuation along the 

axis of a three-legged duct having a circular cross section. ^ Results are presented 

in Figures 28 and 29. It was shown that, except for minor differences, a round duct 

attenuates gamma radiation in much the same way as a square duct of the same 

cross-sectional area. 
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Jacovitch and Chapman. J. M. Chapman of NCEL is working on an 

experimental study initiated by J. Jacovitch of the possibility of a gamma-ray 

polarization effect which may improve the protection afforded by a three-legged 

duct if one of the legs is noncoplanar with the other two. The problem was suggested 

by L. V. Spencer, who pointed out that a gamma-ray photon is unlikely to scatter 

out of its plane of polarization. It is not clear whether gamma-ray polarization 

will be important in the crude geometry of a concrete duct. Experimental results 

are not yet available. 

Review of Experimental Findings 

Figures 30 and 31 are composite plots of all the data of Figures 1 through 29. 

There are several reasons why one would expect wide dispersion in the data: 

1. Several different initial energies were used. 

2. Some ducts had two legs and some had three. 

3. Several different widths were used. 

4. Several different lengths were used. 

Despite all the reasons given above, it can be seen from Figures 30 and 31 

that dose tends generally to fall off exponentially with T/L. Clearly, such an 

exponential decay cannot be true for both very short (L W) and very long 

(L » W) ducts. The reason for the apparent e'^/L behavior is presumably that 

most experimenters chose leg lengths equal to a few (~3) duct diameters. 

Efforts have been made at NCEL to find an empirical expression relating 

dose to such factors as number of legs, lengths of legs, initial energy, and duct 

width. No reasonable expression with acceptable accuracy has yet been found. 

A relatively simple formula needs to be found before useful criteria can be specified 

for designers. 

II. ALBEDO 

Theory 

An important concept in gamma-ray scattering is "albedo," or reflection. 

The term "differential dose albedo" is discussed by Rockwell^ and by Chilton and 

Huddleston.^ The definition of differential dose albedo will be reproduced here 

since it will be important to theoretical arguments which will follow. The scat¬ 

tering of radiation from a point source incident on a slab is diagramed as follows. 
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dD 

D.a (E ,9 , 9, cp) cos0 dA 
I o o_o 

• 2 2 
r. 

where dD D, 
9 

o 

9 

<P 

dA 

1 

differential dose at point of measurement 

dose in air at unit distance from source 

energy of incident .radiation 

polar angle of incidence of radiation 

polar angle of backscattered radiation 

azimuthal angle of backscattered radiation 

differential area of scattering surface 

distance from source to dA 

distance from dA to detector. 

(1) 
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It is seen that oc may be a function of E0 and of the three angles: 0O, 6, and 

ip, where a can be thought of as a coefficient of dose reflection. 

From Equation 1 and the diagram it is clear that the dose from the source 

incident per unit area at dA is D-| cosQq/t^. If the incident radiation is a broad 

parallel beam incident on a semi-infinite plane slab, the radiation intensity per 

unit area at dA becomes DQ cos0o, where DQ is the dose measured in the incident 

beam. Equation 1 then becomes 

D a cos0 dA 

(2) 

Differential dose albedo, as used here, will be the quantity a as defined by 

Equation 2. 

Attempts have been made to determine cl as a function of anqles and incident 
r 10111213 ^ i4 

energy. Monte Carlo techniques, ' ' ' analytical approaches, and experi¬ 

mental measurements^' ^ have all been used to determine a. 

Raso^ performed Monte Carlo calculations fora broad, parallel monoenergetic 

beam of gamma rays incident on a semi-infinite slab of concrete. From backscattering 

histories, differential dose albedo was computed as a function of initial energy, polar 

angle of incidence, and polar and azimuthal angles of reflection. Using Raso's data, 

Chilton and Huddleston^ developed a semiempirical formula for the differential dose 

albedo of gamma rays on concrete. The formula can be expressed as 

CK(e)io26 + c 
S 

cos 0 

1 + —ft cos 0 

(3) 

where K (0S) is the Klein-Nishina differential energy-scattering cross section; C and 

C' are parameters dependent on the initial energy, EQ; and a, 0Q, and 0 are as 

previously defined. 0$ is the spacial angle of gamma-ray scatter. 
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The parameters for the energies considered by Raso are shown below: 

E (Mev) 
o 

C C' 

.2 .0221 ± .0018 .0356 ± .0033 

.5 .0336 ± .0016 .0220 ± .0012 

1 .0547 ± .0020 .0111 ± .0007 

2 .0869 ± .0027 .0077 ± .0004 

4 . 1238 ± .0046 .0076 ± .0003 

6 . 1490 ± .0065 .0075 ± .0003 

10 . 1660 ± .0084 .0070 ± .0002 

The values were obtained by fitting the data of Raso to Equation 3 by a 

least-squares method. 

Experimental Investigation 

The U. S. Naval Radiological Defense Laboratory has made experimental 

measurements of the differential angular backscatter of gamma-ray doses from thick 

slabs of steel, aluminum, and concrete, using radioactive sources of Co^ and 

Cs^7. Although final results of the NRDL study are not yet available, preliminary 

results reported to NCEL indicate fair agreement with the results of Raso. 

Uses of the Theory 

The semiempirical formula of Equation 3 has been used by Chilton^ to 

calculate the backscatter by an infinite concrete slab of the radiation from isotropic 

point sources of Na^, Co^, Cs^^, and Au^®. Agreement was found with the 

experimental results of Clarke and Batter^ within the limits of experimental error. 

Another test and use of Equation 3 is in the calculation of gamma-ray dose 

attenuation along the axis of a two-legged rectangular duct. Chapman^ has found 

that the semiempirical formula can be used to calculate dose attenuation in a con¬ 

crete duct. Chapman compares his calculated results with the experimental results 

tabulated in Figures 1 through 29. He finds agreement within 30 percent in all cases 

except for the Au^® data, where the calculated results are about a factor of 2 

higher than the experimental results. 

The theory indicates that protection factors (which are the reciprocals of the 

D/D0 attenuation factors) should decrease as the energy of the gamma-ray source 

decreases. Therefore, among the various sources experimentally investigated, the 

greatest protection factor should obtain for Na^, while the protection factor for 
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198 
Au should be the smallest, provided the duct geometry is the same in all cases. 

However, experimental results^ indicate a larger protection factor for Aul^8 radi¬ 

ation than for Cs^'7 radiation. Further experimental study of the streaming of Au^® 

gamma radiation through concrete ducts should be undertaken to resolve the "gold 

anomaly. " 

A Simplification of the Albedo Problem 

20 
It has been shown by Shoemaker and Huddleston u that variations in the 

azimuthal angle ip are redundant in experimental measurements of differential dose 

albedo provided that Equation 3 or a generalization of Equation 3 is valid. Once 

differential dose albedo has been determined for a complete set of incident and 

reflected polar angles with zero azimuth, albedo at any azimuth is shown to be 

calculable by a suitable mathematical transformation. 

III. THEORY OF DUCT STREAMING 

Most treatments of the streaming of gamma radiation through air ducts in 

concrete are based on the method of LeDoux and Chilton.^ They considered 

backscattered radiation from those areas within a two-legged duct which could be 

"seen" by both the source and the detector. They also considered in-scatter by the 

inside corner lip at the intersection of the two legs. Results generally gave good 

qualitative agreement with experiment, but theoretical predictions were low because 

of neglect of multiple-scatter contributions. 

Green^ demonstrated the importance of multiple scatter. Silverman^ 

indicated how second scatter could be computed, although he did not actually 

carry out the calculations. Ingold^ computed second-scatter contributions within 

a straight cylindrical duct. Chapman, ^ using the albedo concept and an exten¬ 

sion of the LeDoux-ChiIton method, calculated dose attenuations for gamma rays 

of various energies in two-legged concrete ducts of. various sizes. 

With the geometry of rectangular ducts it should be possible to use the 

ADONIS^ computer code for calculating gamma-ray dose attenuation. Efforts 

are currently underway at NCEL to perform such calculations. ADONIS is an 

IBM-7090 Monte Carlo computer code which can compute the neutron or gamma- 

ray dose anywhere within a configuration composed of rectangular parallelepipeds. 

Such a code is expected to be useful for calculations of dose rates within ducts. 
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CONCLUSION 

The status of the gamma-ray streaming problem is such that current theory 

accounts for almost all observed results. Although the problem is by no means 

solved, important advances of recent years have greatly added to our understanding. 

The corresponding problem for neutrons is not nearly so well understood. 

Increased emphasis should be placed on neutron work in the future. 
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Figure 9. L-shaped 6 x 6-foot concrete entranceway with 

W/2 = 3.0 feet; 3.67-curie Co^ point source. 

(From Reference 2, Table 5C. ) 
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W/2 = 3.0 feet; 8. 1-curie Au^^ point source. 
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Figure 19. U-shaped 6 x 6-foot concrete entranceway with 
W/2 = 3.0 feet; 80-curie point source. 
(From Reference A, Table 4.) 
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Figure 20. Z-shaped 1 x 1-foot concrete entranceway with 
W/2 = 0.5 foot; 50-curie Co^ point source. 
(From Reference 4, Table 6.) 
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Figure 21. Z-shaped 1 x 1-foot concrete entranceway with 
W/2 = 0.5 foot; 80-curie point source. 
(From Reference 4, Table 7.) 
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U-shaped 1 x 1-foot concrete entranceway with 
W/2 = 0.5 foot; 50 -curie Co point source. 
(From Reference 4, Table 8.) 
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Figure 23. U-shaped 1 x 1-foot concrete entranceway with 
W/2 = 0.5 foot; 80-curie Cs^ ^ point source. 
(From Reference 4, Table 9.) 
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Figure 24. L-shaped 0.9167 x 0.9167-foot square concrete duct 
with W/2 = 0.4583 foot; 0.34-curie Co^O point source. 
Source in corner for L] measurements. (From Reference 5, 
Figure 12 and Table 8C-C.) 
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L-shaped 0.9167 x 0.9167-foot square concrete duct 
with W/2 = 0.4583 foot; 0.34-curie Co^ point source. 
(From Reference 5, Table 10C-C.) 
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Figure 26. L-shaped 3 x 3-foot square concrete entranceway with 
W/2 = 1.5 feet; 2. 1-curie Co^ point source. 
(From Reference 6, Table 1A.) 
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Figure 27. L-shaped 3 x 3-foot square concrete entranceway with 
W/2 = 1.5 feet; 2. 1-curie Co^ point source. 
(From Reference 6, Table IB.) 
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0.3-curie source used for L] (D/7 = actual dose). 
(From Reference 7, Tables I, III, IV.) 
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Figure 29. Z-shaped 1-foot-diameter round concrete duct with 
W/2 = 0.443 foot; 2. 1 -curie Co ^ point source. 
(From Reference 7, Tables III, IV.) 
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Figure 30. Attenuation factor vs ratio T/L for 6 x 6-foot ducts. 
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An analytical approach is developed to permit determination of gamma radiation attenuation as 
it passes through two-legged rectangular ducts and shelter entranceways. The approach used 
employs the albedo concept for wall scattering and includes correction terms necessary to account 
for the “corner lip effects.” With appropriate simplifying assumptions, moderately simple engi¬ 
neering formulas are obtained. Actual use of the formulas requires better knowledge of differential 
angular albedo than is presently available; however, by assuming isotropic distribution of the 
albedo function, a very good comparison of experimental information with results calculated by 
this technique is obtained. 

INTRODUCTION 

The analysis of nuclear radiation streaming 
through ducts has received insufficient attention in 
the past. For small diameter ducts through reactor 
shields, the provision of one or two 90° bends has 
usually proved more than adequate. More accurate 
methods are now needed for the design of large 
ducts and entranceways for irradiation facilities, hot 
cells, and civil defense shelters. 

Previous work has dealt mainly with neutron 
streaming through straight, cylindrical ducts. Simon 
and Clifford (1) have studied this, using both an 
albedo approach and a single-scattering approach 
to determine the effect of the walls. Isotropic scat¬ 
tering was assumed, and a duct radius to length 
ratio «1 was specified. For the case of a bend, 
equivalent to two straight ducts joined at an angle, 
the basic formula was modified in a rather approxi¬ 
mate fashion by a simple function of the sine of the 
angle. Roe (2) had previously analyzed similar 
problems, using a one-group diffusion approach and 
assuming also a small radius to length ratio. 

Analytical approaches for gamma rays or particles 
with nonisotropic scattering behavior seem to be 
lacking. Previously published techniques are not 
readily applied in such a case with any hope of get¬ 
ting accurate results. In particular, the two-legged 
duct problem seems to require additional study. 
There have been some recent experimental results 

* Now at the U. S. Naval School, Civil Engineer Corps 
Officers, Port Hueneme, California. 

published dealing with gamma rays streaming 
through square ducts having one 90° bend. Eisen- 
hauer (3) has performed experiments on small 
ducts, using a point source of Co60. The work of 
Terrell (4) deals with ducts up to 6 ft in width, 
employing both Co60 and Cs13' sources. 

It is the purpose of this paper to analyze the 
transmission of gamma rays through rectangular 
ducts from basic scattering principles, using largely 
the albedo concept. In so doing, there are two pri¬ 
mary ends in view. The first is to lay down a set of 
tentative analytical techniques to be used by nu¬ 
clear shield designers concerned with this problem, 
pending further refinement of the art; the second is 
to provide some theory to tie together experimental 
data now being accumulated. It will also be possible 
to make comments as to how the radiation attenua¬ 
tion factors vary with the geometric scale of the 
physical layout. Such a knowledge may be useful in 
permitting analysis of large-scale entranceways 
through the use of model experiments. 

ASSUMPTIONS AND BASIC APPROACH 

The approach used in this paper employs the 
albedo concept, which we will review briefly in 
order to establish the notation to be used (see Fig. 1). 

If appropriate* means are provided to eliminate 
any passage of radiation from source to detector 
except by scattering off A, and if there is no attenua¬ 
tion by media in the path from-source-to-area-to- 
detector, the detector reading is (5): 
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Fig. 2. Duct configuration, indicating reflecting areas 

D _ Do Aa cos fli 

ri2r22 

where D0 is a detector response in the direct beam, 

at one unit of distance from the source; and a = 

d(6i,d2,4>) is the differential directional albedo 

(hereinafter referred to as the “differential albedo”). 

All detectors are assumed to have isotropic response. 

If D and D0 are numbers of particles (or photons), 

a must be a “number albedo”; if, on the other 

hand, the detector measures radiation energy flux, 

D and D0 represent energy and a is an “energy 

albedo”; finally, if D and D0 indicate “dose,” a is a 

“dose albedo.” 

There is. available at present considerably more 

information on total albedo, than on the differential 

albedo. In such a case one must make some assump¬ 

tions as to the actual distribution with emergent 

angles 02 and 0. For example, if an isotropic assump¬ 

tion is made, Eq. (1) becomes: 

D = 
D0 Aar cos 0i 

27t rx2r22 
(2a) 

where cq- = Or(0i) is the total albedo factor for the 

radiation energy and reflecting material considered, 

and 

Ot(0i) = J a(0i , 02, <j>) sin 02 dd2 dxf> (2b) 

upper hemisphere 

If a number of scattering areas of different orienta¬ 

tion are involved, the detector dose becomes: 

D = Z>„ £ i(0il ’ 9“ C0S (2c) 
* I'll Til 

The basic problem to be solved is depicted in 

Fig. 2. This shows a two-legged duct, with legs inter¬ 

secting perpendicularly, having a rectangular cross 

section. The height of the rectangle, H, is the di¬ 

mension perpendicular to the plane of the paper in 

the figure; it is taken to be the same for both legs—- 

a usual situation. The transmission of radiation 

through the duct will be calculated first with the 

assumption that only those areas which can be 

seen by both the source and the detector are im¬ 

portant. The case is considered to be the “basic” 

case; its solution is the first approximation to the 

total solution; the scattering areas involved are 

called “prime” scattering areas and are shown as 

areas A i through A4 , inclusive, in Fig. 2. Areas 1 

and 2 are wall areas; areas 3 and 4 each include 

both roof and floor. 

It is assumed that the leg lengths are appreciably 

greater than the widths and the height. Also, to 

minimize direct transmission of radiation from 

source to detector, both legs should not be less than 

several feet in length. To establish an upper limit, 

we assume that the leg dimensions are much less 

than a mean free path of the radiation in air, so that 

interaction with the air may be considered negligible. 

All the linear dimensions of the duct, such as width 

and height, are on the order of or greater than a 

mean free path of the radiation in the material of 

which the walls are composed. 

The wall materials are assumed uniform in com¬ 

position and density, especially at the corner. If the 

wall is made of a liner of some material imbedded in 

another material, the liner has a thickness on the 

order of or greater than a mean free path of the 

radiation in the liner material. 

The radiation source is assumed to be located at 

or near the center of the duct entrance; the detector 

is located at or near the center of the duct exit. A 

source distributed over the mouth of the duct 
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entrance may be considered as concentrated in the 

center without severe inaccuracy, provided D0 is 

appropriately calculated for such a case. 

The areas considered for significant contribution 

to the detector response are those providing a single 

reflecting path from source to detector. The most 

important areas are those labeled Ax through A4, 

inclusive, the values of which are readily obtained 

from geometrical considerations. We shall group the 

contributions from these four areas and consider 

the result as the basic calculation. 

A very precise analysis would require that differ¬ 

ential portions of each reflecting area be considered 

separately and the resulting expressions integrated 

over the whole reflecting surface. We have chosen a 

more simple procedure, although less elegant, in the 

belief that the lack of availability of accurate albedo 

data, in conjunction with the use of certain necessary 

analytical simplifications, makes such a procedure 

adequate for the purposes of this paper. In general, 

the procedure followed for each numbered area is as 

follows: The area is considered sufficiently small in 

linear dimensions to permit the use of a single 

representative value each of r4 and r2 in Eq. (1). 

The distances are generally taken to a convenient 

point at or near the centroid of the area, permitting 

use of simple mathematical expressions. The values 

of the incident and emergent angles are taken at 

this point, and the albedo value determined (or 

assumed) accordingly. The details and data used 

in this approach have been provided by the authors 

in a separate publication (6). 

By this means, the doses resulting from the various 

areas are readily arrived at and are listed in Table 

I. The sum of the contributions from the four prime 

areas is given as follows: 

-Dbasic — 7)i(4/3i f32 P'i) (Gb) (3a) 

where 

D - D° 
Dl~w 

(3b) 

P‘ 2 L, P 2Li 
03 = 

H 

2L2 
(3c) 

ft _ a 1 _| ft 

1+01 02+ + 02) 

1 - ft 1 - 02 

ft > ft , ft , and a4 are the differential dose albedos 

from prime areas 1, 2, 3, and 4, respectively. 

It is to be noted that Di is the theoretical dose 

TABLE I 

DOSE CONTRIBUTIONS FROM AREAS INVOLVED IN BASIC 

ANALYSIS AND LIP TRANSMISSION EFFECT 

Area 
designation 

Dose contribution 

1 
D0W2HaiWi 

2Li3L2i(\ -f- ft) 

2 
DoWiHch 

LlSZ/22(l + ft) 

3 
D0W iW 2aJ{ 

2L1IL22(1 - ft) 

4 
DAVxW^H 

2W(1 - 02) 

5 
DoW'iHW ,a.r, 

WLJLSil - ft)3(l - ft) 

6 
DoW.Ha, 

2juaLi3L22(l - ft)2(l - 0,) 

7 
DoWWzHa-, 

2Ma7,23L,3(l - ft)3(l - ft)2 

8 
D0W1W2Hai 

2/xaZ,14L22(l - ft)2(l - ft)2 

expected (without wall scattering effects) at the 

corner, that is, where the mid-lines of the two legs 

intersect. It is useful to separate out this particular 

factor, since certain effects can be approximated by 

appropriate modifications to this term. This is dis¬ 

cussed below. 

CORNER LIP EFFECTS 

It is desirable to consider certain other important 

contributions, for in some cases they are almost 

comparable to results of the basic computation. 

These effects are related to the existence of the 

so-called corner “lip,” and their inclusion in the 

analysis constitutes an improvement to the ac¬ 

curacy of the basic solution. 

There are two important corner lip effects. The 

first of these might be called “the corner lip trans¬ 

mission effect.” In the basic calculation it has been 

assumed that the corner lip (the inner edge of the 

intersection of the two legs) is completely opaque 

to the radiation. This can never be precisely true, 

and in some cases radiation penetration of the lip 

can be quite significant. 

If it is assumed that radiation absorption of a 

ray passing through the lip is exponential in char¬ 

acter, one can show on an elementary basis that the 

amount of radiation passing through the lip is the 
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same as if all the radiation within a certain cutoff 

point were transmitted and all beyond it were ab¬ 

sorbed. Furthermore, the distance of travel within 

the lip material of that particular ray passing exactly 

through the cutoff point can be shown to be the 

reciprocal of the effective attenuation coefficient for 

the radiation passing through it, assuming the use 

of an “effective attenuation coefficient” for dose 

absorption is valid (6). 

The simplest assumption for an effective absorp¬ 

tion coefficient is that which accounts for all energy¬ 

absorbing processes and assumes that all energy 

scattered but not absorbed is scattered through a 

negligibly small angle. The use of the “energy 

absorption coefficient” thus gives a reasonable value 

to use in this regard. It is fortuitous in application 

that this coefficient is a very slowly varying function 

of energy over the part of the gamma ray energy 

spectrum of practical interest. 

On this basis, then, the effect of corner-lip pene¬ 

tration can be readily approximated by an increase 

in the scattering area beyond the primary scattering 

areas. The areas on Fig. 2 which are designated A 5 

through As , inclusive, show the new scattering 

surfaces which contribute to detector response, 

through the albedo process. The calculation of the 

values of these areas and other variables required 

to determine their effect, according to Eq. (1), is 

straightforward. Table I lists the dose contribution 

from these areas also. 

It is convenient to break up this lip transmission 

effect contribution into two parts: one in which wall 

scattering occurs before lip transmission, and the 

other in which lip transmission occurs before wall 

scattering. We find then that: 

where 

Gt = Gti 4~ G t2 (6b) 

The other corner lip effect may be called the 

“comer lip in-scattering effect.” Not only may the 

corner lip transmit some of the photons completely, 

but it may also serve to scatter some of them one 

or more times in the passage. Such scattering will in 

part redirect radiation toward the detector. Thus 

the detector not only “sees” the prime and addi¬ 

tional scattering areas on the outer walls by means 

of their radiation scatter, but also “sees” the corner 

lip as a “bright” source—almost a line source. 

In analyzing the contribution of this effect we 

make certain simplifications. In similar spirit to 

that used in the preceding section we utilize an 

“effective attenuation coefficient” for radiation pass¬ 

ing to and from each scattering center, thus again 

using what might be considered a “straight-ahead 

approximation.” The previous approach is modified 

to the extent that we recognize a small but definite 

probability of scattering into the direction which 

will cause the radiation to hit the detector. Thus we 

have a single-scatter approximation for the most 

part, but the approach does not eliminate multiple 

scattering provided all the scattering processes but 

one are considered of a small angle nature. Scattering 

through two or more large angles is considered of 

negligible proportion. 

The computation of the effect for gamma ray 

photons is based on the Klein-Nishina scattering 

formula (7). Its use in this particular case has been 

explained in detail previously by the authors (6). 

The results of the detailed analysis are as follows: 

Da = 

Dtr — -Dtrl 4* DU2 

where DU1 = Z>i(4/Sx ft ft)Gu 

(1 — ft)^5 + 2a7 
G a = 

2Ma'L2(l - ft)2(l - ft)3 

and Du2 = 7)i(4ft ft ft)(?t2 

(1 - ft)a6 4- 2ft a8 
Gt-, = 

2Ma U ft(l - ft)2(l - ft)2 

(4a) 

(4b) 

(4c) 

(5a) 

(5b) 

D0W,W2HZNK 

4L,3L2W(1 - ft)3(l - ft)3 

7ft(4ft ft ft)Gs (7b) 

where 

Ga = 
ZNK 

(7c) 

Di has been previously defined by Eq. (3b). is 

the energy absorption coefficient of the primary 

radiation; jua' is the coefficient of the radiation re¬ 

flected from the surfaces. 

Dui and Dtl2 can be added to give: 

2Ma2L2(l - ft)3(l - ft)3 

and where 

Z = number of electrons per atom of the scatter¬ 

ing material 

N = number of atoms per unit volume of the 

scattering material 

K = K(6a , E0) is the Klein-Nishina coefficient 

for scattering probability per electron. 

9a = 90° — a\ — a 2 

DtT — 7)l(4ft ft ft)Crt (6a) 
cx\ = tan 

-1 Wx 

2Li(l — ft) 

(7d) 

(7e) 
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£*2 = tan 
W2 

2L2(1 — /3i) 
(7f) 

COMPUTATION OF ATTENUATION FACTORS 

Adding Eqs. (3a), (6a), and (7b) we get the 

total dose at the end of the second leg: 

Dr = Zh(4/3X ^3)Grot (8a) 

where 

Grot = Gb + Gt + Ge (8b) 

We are now at the point where we can introduce 

the attenuation factor and solve for it. For the 

purpose of this paper, we will use the following 

definitions: 

Fr — DT/Do, being the ratio of dose at the end 

of the second leg to that at the reference 

point, one foot from the source in a non- 

absorptive, nonscattering medium 

Fi = Di/Do, being the ratio of the dose at the 

intersection of the leg center lines to that 

at the reference point, one foot from the 

source in a nonabsorptive, nonscattering 

medium 

F2 = DT/D1 , being the ratio of the dose at the 

end of the second leg to that at the inter¬ 

section of the leg center lines 

We will commonly call F\ the attenuation factor 

for the first leg, and F2 the attenuation factor for 

the second leg. Obviously, FT = FtF2. 

We now find it possible to consider the attenua¬ 

tion factors for the two legs separately. We readily 

see that: 

and that 

Ft 
1 

w 

F2 — 4/31 /32 ^3 Grot 

(9) 

(10) 

By separating the factors in this way, one is per¬ 

mitted, if he wishes, to use a different reference 

point for over-all attenuation (rather than the 

point at which D0 is measured) without affecting 

the analysis for F2. For example, in case of a dis¬ 

tributed source over the entrance to the duct, the 

equation for F2 should still be approximately valid. 

The equation for Ft would depend upon the nature 

of the source emission. It can be readily shown (8) 

that for the so-called isotropic source emission case 

F/ 
Wi H 

tLM [1 + (Wt H/v)] 
(11) 

if the reference point is taken as one unit of distance 

away from the center face of the duct; and for a 

cosine emission case the attenuation factor in the 

first leg, based upon a reference value at the en¬ 

trance to the duct, is 

F/' 
WtH 
2trL,2 

(12) 

provided the first leg width and height are of the 

same order of magnitude. 

SCALING RELATIONSHIPS 

It is obvious from a glance at Eq. (3a) that the 

last two factors are nondimensional, and that for a 

given geometrical configuration, their product is 

independent of any scale selection. Under circum¬ 

stances which allow this basic analysis to be an 

adequate approximation, the scaling-independence 

of this part of the expression permits ready adapta¬ 

tion of experimental solutions on a small model 

scale for solution of large-scale problems of this 

nature. 

It is to be noted that in Eqs. (4b), (5a), and 

I 2 3 4 5 6 
l2/w 

Fig. 3. Comparison of LeDoux-Chilton analysis with 

NBS experiment using Co60 source and a concrete duct 

19.2-cm square. 
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(7b) the two latter terms of each equation are 

nondimensional; however, the product of these 

two terms is not independent of the geometric scale 

selection but is inversely proportional to the scale 

size. We note that the attenuation coefficients are 

fixed and do not change value with a change in 

geometric scale. Since the scaling relationships for 

similar factors in the basic problem and the corner 

lip correction are not the same, the problem of 

scaling up from model experiments to larger-scale 

prototypes is seen to be impossible unless means are 

found to separate experimental data into the basic 

part and the corner lip effect terms, or unless the 

corner lip effect terms can be shown to be negligible 

at all scales considered. 

This comment of course relates to the second-leg 

attenuation only, since the factors involving first-leg 

attenuation are eliminated from consideration. 

COMPARISON WITH EXPERIMENT 

The experiments performed by Eisenhauer (3) 

were on concrete ducts, having two legs at right 

angles. In cross-section they were square, being 19.2 

cm. on a side in one case and 28.2 cm. in another. 

The length of the first leg was fixed at 100 cm. With 

a Co60 source at the center of the entrance, measure¬ 

ments were made of dose at various points on the 

Fig. 4. Comparison of LeDoux-Chilton analysis with 

NBS experiment using Co60 source and a concrete duct 
I9.2-cm square and having a lead cornerlip. 

Fig. 5. Comparison of the LeDoux-Chilton analysis 
with ARF experiment using Co60 source and a concrete 

duct 6-ft square. 

center line of the second leg, which was at right 

angles to the first. 

Figure 3 shows a comparison between Eisenhauer’s 

experimental results for the 19.2 cm. duct and 

computations based on our present analysis. In 

making our analysis, the dose albedo data of Berger 

and Raso (9) were used, with an assumption of 

isotropicity of the differential dose albedo. Such an 

assumption for differential albedo, taken as total 

albedo divided by 2ir, seems to give reasonably good 

agreement. A cosine distribution for differential 

albedo was also tried but compared less favorably 

with experimental results, giving answers greater 

than experimental results for small values of L2/W 
and smaller than experimental results for larger 

values of L2/W. 
In order to determine the magnitude of the corner 

lip contributions Eisenhauer placed a lead block in 

the corner of the 19.2 cm. duct to reduce the effect 

to a small amount. Figure 4 shows the comparison 

of our analysis with the experimental results in such 

case. The corner lip contributions in the analysis 

were substantially lessened by considering lead 

rather than concrete as the corner material. It is 

only fair to state here that Eisenhauer does not con¬ 

sider his data highly accurate in this case, and the 

rather good agreement indicated might be some¬ 

what fortuitous. 

The experiments of Terrell et al. (4) were of a 

similar nature, but the ducts were large, being 6 

feet by 6 feet. Figure 5 gives a comparison between 

in-no 
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his data and our analysis, using isotropic albedo 

assumption. Again agreement is considered good. 

DISCUSSION 

We have provided herein a fairly simple analytical 

technique for predicting the attenuation of gamma 

radiation down two-legged rectangular ducts, with 

right-angle corner, under somewhat idealized condi¬ 

tions. Adequacy of the formulas developed seems to 

be confirmed by experiment. Nevertheless, it is only 

proper to emphasize some of the factors which make 

the present state of knowledge in the matter incom¬ 

plete and subject to future study. 

The elimination of multiple reflections is a factor 

which undoubtedly reduces the computed doses and 

thus abnormally improves the computed attenua¬ 

tion factors. The magnitude of such contribution 

can only be approximately guessed at except where 

specific measurements can be made. Measurements 

made by Terrell et al. (4) indicate that, because of 

wall scattering, radiation reaching the corner might 

be under some circumstances as much as 25% 

higher than would arrive directly from the source. 

Further wall scattering in the second leg undoubt¬ 

edly occurs also. 

The use of an assumed isotropic distribution for 

the differential albedo function, as derived from the 

data of Berger and Raso, can only be justified on the 

very pragmatic grounds that it seems to give good 

results when used in the analytical technique de¬ 

scribed in this paper. Aside from the theoretical 

dubiousness of the isotropic assumption, there is the 

fact, recently called to the attention of the authors 

(10), that the Berger-Raso dose albedo data are 

based on reflected photon current rather than flux 

and are thus not realistic. As we have used the data, 

there has undoubtedly been an exaggeration of the 

contribution from some of the reflecting areas and a 

corresponding slighting of the contribution from 

others. The overall effect of using accurate data for 

directional differential albedo, as well as the magni¬ 

tude of the individual contributions of the various 

reflecting surfaces, awaits the publication of better 

data. 

It should also be pointed out that the formulas de¬ 

rived are more accurate for conditions in which the 

legs are long compared to their width. In this re¬ 

spect, our analysis is similar to those previously 

referred to (/, 2). Nevertheless, the results appear 

surprisingly good at rather short lengths of the 

second leg (see Figures 3, 4, and 5). 

Further experimental confirmation is considered 

desirable. The present range in scale seems to be 

adequate, but there are other parameters to be 

varied. For example, experiments on non-square 

ducts should be carried out. 

One further aspect of the results is worth men¬ 

tion here. A comparison between the results in Figure 

3 and Figure 4 indicates that the overall effect of the 

corner is on the order of 35 % of the total attenuated 

dose in the second leg in the case given. This indi¬ 

cates a degree of significance that cannot be ignored. 

However, the scaling relationship derived in this 

paper indicates that for an entranceway on the 

order of ten times the linear dimensions of such an 

experimental situation the corner effects will be 

reduced to only a few percent, and thus they may 

all be safely ignored under such circumstances. 
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ABSTRACT 

A semiempirical formula is developed which yields values for the differential 

dose albedo of gamma rays on concrete. Gamma rays of incident energies 0.2, 0.5, 

1.0, 2.0, 4.0, 6.0, and 10. 0 Mev are considered. Results of the formula are com¬ 

pared with values derived from Monte Carlo calculations for the backscattering of 

gamma rays from a semi-infinite slab of concrete. 

Results show that a two-parameter formula gives satisfactory agreement with 

the Monte Carlo calculations. 

The principal assumption involved in the theoretical analysis is that the actual 

reflection process can be approximated by two terms, one involving a single Compton 

scattering event, and the other involving isotropic scattering. 

This work was supported by the Defense Atomic Support Agency. 

Qualified requesters may obtain copies of this report from ASTIA. 
The Laboratory invites comment on this report, particularly on the 

results obtained by those who have applied the information. 
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INTRODUCTION 

In problems involving the scattering of gamma rays by structural elements, it 

is often useful to employ the albedo concept. Such an approach has been used at 

the Naval Civil Engineering Laboratory and elsewhere in the study of gamma radiation 

streaming through ducts. ^'^/3 

Accurate analysis in this problem requires the use of differential dose albedo, 

rather than total albedo. Practical shielding technology generally uses concrete as 

the structural material involved in the shielding. Raso has given results of Monte 

Carlo studies in the determination of gamma-ray differential dose albedo for concrete. 

The calculations involved the assumption of broad, paral lei -beam monoenergetic 

radiation incident at various angles to the normal. The initial energy and incident 

angle were varied, and the results were tabulated as a function of exit polar and 

azimuthal angles. Because of the necessarily limited number of photon histories 

(5000) accumulated for each case, the data are subject to statistical fluctuations. 

4,5 

It would obviously be useful to find a simple formula which expresses differential 

dose albedo. Such a formula would provide assistance in smoothing and interpolating 

between the tabulated values in Raso's tables. Further, it would provide a simple 

analytical means for obtaining differential albedo under circumstances when use of 

tabulated data is inconvenient; e.g., in machine computations. Even if the formula 

provided were somewhat approximate, the usefulness of a simple formula might 

outweigh its lack of a high degree of accuracy. 

This study undertakes to develop such a formula. 

PRELIMINARY DISCUSSION 

Differential dose albedo, as used herein and designated as a, is the same as 

R in Rockwell's formula on page 335 of his manual:^ 

D 

D.a cos0 S 
o 

2 2 
r| r2 

(1) 
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where (see Figure 1) D dose at point of measurement 

= dose at reference point 1 unit distance from point source 

0^ = polar angle of incidence 

S = area of scattering surface 

r 
1 

distance from source to S 

r„ = distance from S to detector. 

2 
Note that D]/r] is the dose at area S due solely to the incident beam. If 

the beam has broad, parallel-ray geometry, one cannot, strictly speaking, assume 

a point source, and D^/r-j can be replaced by the dose measured in the incident 

beam, called, say, D . 
o 

Figure 1. Scattering of radiation from a slab. 
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Thus, one has in this case: 

D 

D a cos 0 S 
o o 

o 

Let us consider a case in which S = sec 0Q. This is the case if the pencil of 

rays striking the area is of unit cross-sectional area as measured in a plane normal 

to the incident direction. In such a case, one finds that 

and by analyzing this case, one can approach the problem of determining a. 

One should particularly note that is representative of the reflected 

radiation per steradian, converted into dose, if DQ represents the radiation dose in 

the incident pencil of rays of unit cross-sectional area. This can be explained as 

follows: Consider that the detector has unit cross-sectional area. It intercepts all 

the incoming radiation when measuring the incident beam; it will subtend a unit 

solid angle if placed at a distance of 1 unit from the area S. At the distance 

the unit cross-section detector will detect \/v^ of the radiation measured at 1 unit 

distance, and thus is equivalent to the interception of radiation scattered per 

steradian from the material. 

DERIVATION OF FORMULA 

Consider a beam of radiation, 1 unit in cross-sectional area, incident on a 

slab of material. See Figure 2. 

Assume that the scattered radiation can be divided into two parts: that part 

which "remembers" the original direction of incidence, and that part which has 

"forgotton" the original direction of incidence. The former part is to a great extent 

singly scattered radiation, or radiation where only one of its scatterings is through 

a significantly large angle. The latter part is composed either of radiation scattered 

many times or of positron-annihilation radiation (under circumstances leading to such 

a contribution). Consider each part in turn. 
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Figure 2. Radiation incident on a slab. 
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Since the first part is to a great extent single-scattered radiation, or nearly 

the same as single-scattered radiation, we will examine the single Compton scat¬ 

tering aspect, and assume that this scattered-radiation component is proportional to it. 

Consider scattering from a volume dV, of unit cross-sectional area and 

thickness dx at slant depth x. The probability of energy scatter by a single electron 

through the angle 0$ is given by K (0S, E0). ^ 

The number of electrons in the differential volume dx is given by ZMpdx, 

where 

Z = number of electrons per atom of the scattering material 

M = number of atoms per unit mass of the scattering material 

p = density of the scattering material 

The probability of a unit of gamma-ray energy traversing the distance inward 

from the surface to the differential volume can be closely approximated by a function 

of the form 

"M-|PX 
e 

where 4^ = an effective mass attenuation coefficient for the gamma ray of initial 

energy EQ. 

After scatter, the probability of a unit of gamma-ray energy traversing the 

distance from the scatterer to the outer surface is 

x cos 0 
o 

e 

sec 0 

where 42 = an effective mass attenuation coefficient for the gamma-ray energy 

after scatter. 

\ 
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Thus, the proportion of initial energy scattering from this first type of effect 

into a direction (0, co) per unit solid angle from the layer of thickness dx equals: 

AZMpK (0 ) \ e 
s Jo 

/-»ao -px (jl. + lu cos0 sec 0) 
\ I Z o 

J c 
dx 

AZMpK (6 ) 

p (u, + fcL cos0 sec0) 
I Z o 

AZMK (0 ) 
_s_ 

4. + £L cos0 sec0 
Z o 

where A is an undetermined proportionality factor. 

To get the proportion of dose scatter, it is necessary to multiply the above 

result by the ratio of air energy absorption coefficients |l_^ and MQ2' *° obtain: 

AZM4 0K (0 ) 
aZ s 

U . (ji, + 40 cos0 sec 0) 
al l 2 o 

By a similar reasoning, we may find the portion of the scattered radiation due 

(or proportional) to production and multiple scattering of an isotropic nature. This 

part, per differential volume dx, is expressed on an energy basis by: 

-px (u. 

Bpe 

cos0 
3 o 

sec 0) 

dx 

where = an effective attenuation coefficient for the isotropically scattered 

gamma-ray energy. After integrating and converting to dose, we obtain: 

B(ila2}Av 

fl , (u. + Cm0}a cos0 seed) 
all 3 Av o 
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where B is an undetermined proportionality factor, [u^^Av 's an average value for 

the air energy absorption coefficient for outgoing radiation from dV, and 's 

the average value of the effective energy attenuation coefficient for the outgoing 

radiation from dV. 

For a given material, and a given initial energy, one may lump all parameter 

depending on such factors into parametric multipliers, and leave separate those 

parameters depending on angles; and then one gets for differential albedo the 

expression: 

a (0 , 0, cp) = 

A' K (0 ) 

+ 
B‘ 

a, + iu cos0 sec 0 u. + {u0}. cos0 sec0 
2 o 1 3 Av o 

On the assumption that \i, the effective attenuation coefficient, is not greatly 

energy dependent for light material in the photon energy range of interest (a few 

hundred kev to several Mev), we can simplify the form still further by making it: 

a (0j, @2/ <p) ~ 

CK(e no26 + c 
1 + cos0 sec 0 

o 

(2) 

where the factor 10^6 is entered arbitrarily to make the empirical parameters C and C1 

of the same order of magnitude. C is a measure of that part of the scattered radiation 

which "remembers" the original direction of incidence, as mentioned under 51 Derivation 

of Formula, " and C1 is a measure of that part which has "forgotten" the original 

direction of incidence. 

The approximation that u does not vary much with energy during a scattering 

history is surely the weakest part of the development. The results will show, however, 

that this simplifying assumption is good enough to give generally satisfactory agree¬ 

ment between the Monte Carlo results and the results of the two-parameter formula. 

THE KLEIN-NISHINA FORMULA 

In Equation 2, K (0 ) is the Klein-Nishina differential energy scattering cross 

section for angle 0S« K (^$) is also a function of the energy of the incident photon EQO 
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For purposes of computation, a convenient way to write K (0S) is 

K(e) 
s 

R 

P2[l + P - P (1 - cos 9s)] 

where R is the electron radius (2.818 x 10 cm) and P = E/E . 
o o 

The energy of a photon after a Compton scatter is given by: 

E ♦ 

cos 0 ) 
s 

A convenient way of defining 0$, the angle of scatter, in terms of 0O, 0, and <p 

(see Figure 2) is by the spherical trigonometric relationship: 

cos 0 
s 

sin 0 cos<psin0 - cos 0 cos0e 
o o 

THE CONCEPT OF DIFFERENTIAL DOSE ALBEDO 

Differential dose albedo, a, as it is used in this paper, was defined in the 

"Preliminary Discussion. " Since the tabulated values, TV, of Raso's study^ are not 

the same as a, the relationship between a and TV is expressed in Equation 3, as 

given by Raso: 

a 

TV 

COS0, - COS0, , , 
k k + 1 

1000E fj, (E ) [2Ao(cos0, - cos0. .)] 
o a o k k + 1 

(3) 

where fiQ (EQ) is the mass absorption coefficient for a gamma ray of energy EQ, and 

E0 is expressed in Mev. 
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LEAST-SQUARES ANALYSIS 

The Monte Carlo tabulated results are first converted to differential dose 

albedo by Equation 3. Best values for [C, C1} for Equation 2 are then sought by a 

least-squares computer analysis. 

For each of the 7 values of EQ considered, there are 480 tabulated values for 

backscattering, corresponding to 5 values for 0 , 8 values for 0, and 12 values for (p. 

To solve for the parameters [C, C1}, let 

x = 

1 + 

cos 0 
c 

cos 0 

xK (0 ) 

TV 
z = 

E u (E ) 
o a o 

e = 

COS0 + COS0 , . 
_n_n + 1_ 

4OOOA<p(cos0 - cos0 . ,) 
n n + 1 

Now define: 

C'x... 
*|k 

+ Cy.., 
' 11 k 

+ e. 
ijk 

where B = 10^C, and e^ is the (i, j, k)th deviation of the data from the fitted 

equation. The subscripts i, j, and k refer to 0O/ (p, and 0, respectively. 

The sum of the squares of the errors is given by: 

U.-i 

i = 1 k = 1 

n 
<P 

n 
0 

i = 1 k = 1 

(4) 
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The parameters [C, C' } are obtained by differentiation of Equation 4 with 

respect to C and C1. 

One then obtains: 

S S - S 5 
r, _ yy xz xy yz 

D 

S S - S S 
xx yz xy xz 

(5a) 

(5b) 

A straightforward least-squares analysis, however, is not what is actually 

needed. A fit more useful in practice is obtained if Equation 4 is modified to in¬ 

clude a weighting factor which will give greater weight to small values that to 

large. (It is hoped that this will improve the ratio of computed to tabulated values.) 

Thus: 

C'x., 
«|k - %k>‘ 
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The procedure actually adopted was to solve Equations 5a and 5b for B and C1. 

Those values [B, C } were then used to generate first guesses for Z. Weighting 

factors Wjjk = l/Zjj^ were then used in Equation 6. In this way new values were 

generated for (B, C } . These new values for the parameters were used as a second 

guess to generate still another set of parameters [B, C1}. This iteration process 

was continued until the results [B, C1} converged. 

Two points should be made concerning this iteration process: 

1. Varying the values of the initial guess {B, C1} over a range of a factor of 

2 does not change the values to which [B, C1} converge upon iteration. 

2. The [B, C} values converge very rapidly, with no more than 2 to 4 

iterations being required before they change only in the 4th or 5th 

significant figure. 

RESULTS 

Some typical results of the computer program are compared with the Monte 

Carlo values in Figures 3 through 7. In Figure 3, the Monte Carlo results are indi¬ 

cated by the solid circles. In this case, the albedo must be independent of 

azimuthal angle since the gamma rays are normally incident on the concrete slab. 

In Figure 4, for non-normal incidence, it is seen that the two-parameter curve 

gives rather good agreement with the Monte Carlo results. In Figure 5, the radiation 

is again normally incident. Here it is seen that the Monte Carlo results vary by 

more than a factor of 10 because of statistical fluctuations. Figure 6 shows good 

agreement for near-grazing incidence. Figure 7 shows a case where agreement is 

not very good. This case is, in fact, one of the worst cases, the two-parameter 

formula generally giving values too low by a factor of about 1.5 for large polar 

angles of incidence and small azimuthal angles of the exiting ray. 

Figure 8 shows how the parameters [ C, C1} vary with energy. Table I gives 

the computed values for {C, C1 3 for the energies investigated. 

It must be pointed out that what has been shown is generally good agreement 

between the results of Monte Carlo calculations and a semiempirical formula. 

Experimental data over a wide range of energies and angles are not yet available. 

Definitive statements regarding differential dose albedo must await experimental 

study. Such an experimental investigation is being undertaken by the U. S. Naval 

Radiological Defense Laboratory. 
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Figure 7. Differential dose albedo for E 
o 

10 Mev, cos© = 0.25, 0 = 45°. 
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Figure 8. Variation of backscattering parameters with gamma-ray 

energy for weighted and nonweighted models. 
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Table I. Parameters for Semiempirical Formula for Differential 

Gamma-Ray Dose Albedo 

Eq (Mev) 
Nonweighted Model Iterated Weighted Model 

C Cl C C 

.2 .022437032 .034817388 .022126134 .035648111 

.5 .034099514 .021695918 .033556571 .02215299 

1 .050097528 .013696993 .054677888 .011132052 

2 .074664107 .010657877 .086899748 .0077462231 

4 .10184950 .0099281972 .12381103 .0075919821 

6 .12089736 .0093307047 .14897540 .0074920140 

10 .12836012 .0083441443 .16600843 .0070037501 

ck (e) io26 + c 
_S_._ 

COS 0 

-+ 1 cos 0 
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X MISCELLANEOUS TOPICS 

A. Ceiling Shine Analysis,, 

This is a copy of NCDL Technical Study #30. The basis 

of the ceiling shine component as derived in section V does 

not adequately account for all the parameters involved. 

This analysis is one attempt to do so. Both experimental 

and theoretical work is now in progress on this problem 

since it can be an important component under certain 

conditions. 

B. Derivation of Solid Angle Fraction for Rectangles, 

The solid angle fraction for rectangles is an important 

parameter for the detailed procedure. The derivation of 

for this case is easy if one happens to find or know a parti¬ 

cular integral. This solution is presented merely to complete 

the notes of the student or instructor. 
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ABSTRACT 

Ceiling-shine is that radiation which enters through the wall of a struc¬ 
ture reflects from the ceiling and increases the radiation within a shielded 

space. In most cases the ceiling-shine contribution is.small when compare 

to direct and wall-scattered radiation. In some cases it can be an importan 

contribution. The present method of analyzing buildings, the Engineering 

Manual, OCD PM 100-1, includes the ceiling-shine effect in the.air scattere 

contribution, but does not provide a separate method of analysis. This 

report discusses the theory and application of ceiling-shine and proposes 

method of computing its contribution. 
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Ceiling-Shine Contribution 

BACKGROUND 

1 
The Engineering Manual includes the ceiling-shine effect in the air- 

scattered (skyshine) directional response function, Ga* Since ceiling-shine 

is assumed to be small compared to skyshine, it was added as a corrective fac¬ 

tor to skyshine. There are certain cases, however, where ceiling-shine could 

be a predominant effect in an otherwise well shielded structure. A building 

with a high narrow band of windows protected by a large roof overhang would 

appeal to be a very good shelter if the roof and wall thicknesses were in the 

200 to 250 psf range. Present methods of analysis would indicate excellent 

shielding against direct, wall-scattered, and air-scattered radiation* Cal¬ 

culations based on the method presented here, reduce the protection factor 

for such a building from 300 to 150 when ceiling-shine contribution is con¬ 

sidered. Perhaps a more likely example would be a mutual shield which blocks 

out skyshine. Ceiling-shine would still be present and in the present method 

would be neglected. In view of this, it is evident that a method of computing 

ceiling-shine is needed to insure that its effect will not be overlooked. 

THEORY 

Figure 1 illustrates a simple building with windows and the two con¬ 

tributions skyshine and ceiling-shine. Since there is little theoretical or 

experimental data available upon which to base a calculational procedure, we 

must use those functions which are now available in the Engineering Manual and 
the Spencer Monograph,^ 

Figure 2 is a sketch indicating that ceiling-shine must be some function 

of the radiation which is incident on the ceiling. The direct radiation 

directional response function, Gd, measures the radiation which comes from an 

infinite plane source of radiation, through the complement of the solid angle 

fraction which is below the detector plane. If we place a detector on the 

ceiling directly above the room detector position and measure the radiation 

which enters this detector through the complement of the solid angle fraction, 

we would have some measure of the radiation incident on the ceiling. The 

ceiling-shine response function, Gc, must then be proportional to Gd. 

Scattering does not#take place at the surface of the ceiling but within 

the interior of the slab. First floor ceiling height would be about 10 feet 

and we might be tempted to use Gd for H=10'. Within the first mean free path 

(about 2.5 inches of concrete for 1 mev gamma photons), 50% of the incident 

photons would suffer some interaction with the electrons. Only a smaller 

fraction of these would be back-scattered out of the slab to contribute to the 

ceiling-shine. The deeper the penetration into the slab before an interaction, 

the less is the probability that the photon will emerge again. Consequently, 

most of the gamma radiation contributing to ceiling-shine will be back-scattered 

within the first mean free path (32 psf), Fifty percent of the radiation which 

is back-scattered comes from the first 6 psf of a reflecting slab.^ 
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Charts 5 and 6 of the Engineering Manual plot as a function of solid 

angle fraction and height of the detector. In order to use this information 

to correspond to radiation incident on and then reflected from the ceiling, 

the slab was divided into a number of small horizontal slabs each at 1 psf. 

The thickness of the mid-point of each differential slab was converted to 

equivalent height of air. To this was added a nominal first floor ceiling 

height of 10'. The proper value of was then obtained from Chart 6. This 

value was multiplied by the fraction of the radiation reflected from this 

incremental slab.^ A response function was then constructed which "accounts" 

for the radiation incident on the ceiling and then reflected back toward the 

floor detector. Figure 5 has two Gr curves: one for a ceiling height, Hc, of 

10 feet; one for a ceiling height of 100 feet. These curves have been normalized 

so that the 10' curve has a value of 1.0 for '<0 =0. 

Since radiation which emerges from the ceiling and strikes the lower de¬ 

tector is all scattered radiation, it must be similar to air-scattered radia¬ 

tion. The 'Sa' function from the Spencer Monograph^ (Figure 28.15) is the 

geometry factor for air-scattered radiation incident in a limited cone of 

directions about a perpendicular axis through the detector. Sa is a function 

of the solid angle fraction, to QJ which measures the overhead contributing 

ceiling. The ceiling-shine function must then be proportional to Sa. 

Finally the ceiling-shine will depend on the thickness of the reflecting 

slab. A thin slab will reflect some radiation, but will also transmit some. 

The Gr curves of Figure 5 have assumed an infinitely thick ceiling slab to pro¬ 

duce maximum reflection. Actually a 4" concrete slab will reflect this same 

maximum amount. Any additional thickness does not materially increase the 

amount reflected out. Since 4" of concrete is a common thickness found in most 

floor slabs and would be a minimum thickness for shelters, maximum reflection 

is a good assumption. 

The ceiling-shine equation must have a normalizing factor to make the func¬ 

tion agree with some known conditions. The ceiling-shine equation would then 

be of the following form; 

Gc = KGr( u)c>Hc) Sa( u) 0). 

This equation has the proper characteristics. As the area of the reflect¬ 

ing surface increases, ceiling-shine increases. As the cleared area around the 

detector increases, ceiling-shine decreases. When either CO o=0, or Cdc=l, 

ceiling-shine must be zero. 

In order to determine our normalizing factor 'K', assume an infinite plane 

of contamination. Over this plane, place an infinitely thick roof slab of 

infinite extent at normal first floor ceiling height, 10'. Under these condi¬ 

tions, CO 0=1, and C0c=0, From Figure 5, Gr=1.0, and Sa=1.0, Then; 
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Figure 1. Concept of Ceiling-shine and Skyshine 

Sa 

Figure 2. Dependence of Ceiling-Shine on functions and Sa 
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Since we have assumed maximum reflection, ceiling-shine for this case 
must equal maximum skyshine which is 0.10. Therefore, K must equal 0.10. 

Figure 5 also plots Sa from the Spencer Monograph for two values of detector 
height, H. As detector height increases from 3', K must be modified by an 
additional height correction factor. Figure 5 has a chart of this correction. 

GENERAL SOLUTION 

Figure 3 illustrates the various parameters for a completely general case. 

This is a building with windows which do not extend to ceiling height, U) Q 
is the ceiling solid angle fraction which measures the extent of the cleared 
area. W and ^ 1 are the solid angle fractions which measure the lower and 

O O 

upper window sills respectively. Similar angles could be used if a limited 
plane of contamination existed and would apply to the value of Gr. 

The total ceiling-shine contribution, Cc, would then be: 

Cc “ ^cg + ^cw " ^cgw 

where Cro. is the ceiling-shine through windows 

Ccw is the ceiling-shine through total solid wall 

GCgW is the ceiling-shine through window area with 

solid walls. 

ccg = 0.1 B„(0,H) [GrOg,Hc) - Gr(u>g',Hc)] sa( %)PaFh(H) 

Ccw = 0.1 Bw(Xe,H) Gr(uJc,Hc) Sa( u) 0) [l-Sw]Fh(H) 

Ccgw= 0.1 Bw(Xe,H) [Gr( Wg,Hc) - Gr( oug',Hc)] Sa( uJQ)Pa [l-Sw]Fh(H) 

where B„ is the wall barrier factor, Chart 2 E.M. 
w 

H is the detector height 
Hc is the height of ceiling 

Pr is the perimeter ratio of windows 

Sw is the scattering fraction, Chart 7 E.M. 

F^ is height correction factor, Figure 5» 

APPLICATION 

Normally, ceiling-shine, like skyshine,is small when compared with direct 
and wall-scattered radiation. Since it is small,some simplifying assumptions 
can be made for most building types. 

Figure 4 illustrates the solid angle fractions which can be used for most 

buildings with little error. Three assumptions are made: (1) the lower sill 
height is at detector height, 3 feet; (2) windows extend to the ceiling; and 

(3) the ceiling-shine contribution from below the sill or through the solid 
wall is negligible. Using these assumptions, 0l)q = toc and composite curves 
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of skyshine + ceiling-shine can be plotted as a function of a single solid 

angle fraction. Figure 6 is a replacement for Chart 5 of the Engineering 

Manual. Two air-scattered curves are shown” Ga which is still skyshine + 

ceiling-shine, and Ga' which is skyshine only. 

Buildings which meet the conditions of these three assumptions are 

handled in the usual manner using G^c Slight variations from this idealized 

building will not introduce serious errors. For other applications, Ga' is 

used in place of Ga' is used in place of Ga, and the ceiling-shine contribu¬ 

tion, Cc, is computed and added to CQ and Cg.^ Figure 5 is used to compute 

Cc and has two curves for Gr and Sa; one for first floor applications and 

one for a height of 100 feet. 

EFFECT OF HEIGHT 

As the ceiling or reflecting surface height increases, ceiling-shine 

will decrease. The directional distribution of radiation changes from a 

horizon oriented distribution at the 3' level to a more and more vertical 

orientation as the height increases. This change in distribution is re¬ 

flected in the G^ function as used in the Engineering Manual and in the Gr 

function used in this paper. Figure 5 has a plot of two Gr curves, one for 

a ceiling height of 10 feet and one for a ceiling height of 100 feet. Linear 

interpolation between these two curves for other heights should be accurate 

enough for ceiling-shine problem. The amount of radiation available for 

contribution to ceiling-shine decreases also due to absorption and scattering 

which take place before the ceiling is reached. This effect is reflected in 

the Sa curves and the Height Correction chart on Figure 5. The Height Cor¬ 

rection (Fft) is a simple multiplying factor applied to the basic equations. 

H is the height of the room detector. 

EXAMPLE 

There are certain cases where ceiling-shine could be an important con¬ 

tribution to the total radiation. For example, a building with a roof over¬ 

hang and a high band of windows could have an important contribution from 

ceiling-shine. If the roof and wall mass thicknesses are in the 200 to 300 

psf range and if the overhang shields out air-scattered radiation from the 

window areas, ceiling-shine could be the most important contribution. Another 

and perhaps more likely example, is the case where a mutual shield apparently 

blocks out all skyshine. Ceiling-shine will still be present. In fact, the 

major source of ceiling-shine is fallout particles which are close to the 

structure. 

The following example illustrates this point. Two solutions are shown; 

one with the usual Engineering Manual solution using the new value of Ga, 

and the second solution using G&' and computing the ceiling-shine separately. 

The ceiling-shine contribution through the solid wall is computed but it is 

negligible. 
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Figure 3. Solid Angle Fractions for general case. 
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Example: Building with roof overhang. 
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z e n to Gd Gr Gs Ga Ga' sa 

to 
o 

r 1.0 0.2 0.82 XX XX 0.20 .051 .042 .58 BW(0,H)=1.0 

001 3 ' 1.0 

C
M

 
T“—

1 • 

O
 0.89 .43 XX 0.13 XX XX XX Bx(Xe,H)=.0032 

uu 
C 10' 1.0 0.4 0.66 XX .39 XX XX XX XX Pr=1.0 

uO 2' 1.0 0.08 0.92 XX .06 XX XX XX XX E=1.41 
g 

STANDARD SOLUTION USING Ga 

Cg = B„ { Cg.(W4)+G8( w0>] ESw+ [Gd(u)t) +Gb(«.0)] (1-Sw)} 

= .0032 (.33 x 1.41 x .88) + (.481 x .12) 

C = .0018 
o 

Rf = .0033 Pf = 303 ANS 

SOLUTION USING Ga' AND ADDING Cc 

Ga1 is .042 and is only slightly different than Ga which is .051 

The ground contribution without ceiling-shine remains the same, to two 

significant figures. 

Cc = 0.1 Bw(0,H) Gr( o)cHc) Sa( t0o,H) PrFh(H) 

= 0.1 x 1.0 x .06 x .58 x 1.0 x 1.0 

C„ = .0035 c 

C = .0015 
g 

CQ = .0018 

Rf = .0068 Pf = 147 ANS 

Ceiling-shine through solid wall is only 0.000007, 
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SUMMARY 

4 
A recent report derived a ceiling-shine solution in a similar but 

independent effort. Circular ring sources and reflecting areas using albedo 

theory were used to develop functions describing the source plane and re¬ 

flecting surface. These two functions are basically the same as the Gr and 

Sa curves used in this paper. The correction for height is handled in a 

slightly different manner. This report^ has some experimental results which 

verify the method. Both methods predict within a few percent the same total 

ceiling-shine. The method proposed in this paper is developed within the 

framework of the Engineering Manual and those familiar with the Engineering 

Manual should be able to apply it with no difficulty. 
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A SOLUTION FOR CO FOR RECTANGLES 

a=y%2 + ^2+z2 

dA= dydx 

U) = 

:.U)-4'2TT 
zdx 

(\/ X2 + 1^2+Z2 ): 

a2 ' 
0 
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page 

1Cand %g are now constant. Integrate over y 

_ uj = ik /-^Zo 
IT Czo+(d2) /*!+H*+yi 

If a2=z|and b2=%f + z| we have the integral: 

dy 1 ,__ 

(a2ty2) t^+y2 afb^-a1 a\J y2+b2 

or uj IT 
1 ,__ tan'1 

^%2<r^Z Z/X^+Z1 

to=^ tan"1 —^ 
V**+#+z 

2 
o 

i-f 6= and >i = 

then: 
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A. General Preliminaries 

1. Introduction 

In a sense, the experimental part of each summer’s Shielding Institute 

was begun long before the official opening date, because of the many advance 

preparations required to assemble the equipment and facilities and check out 

their adequacy. This was particularly true of the first Institute, for which 

a great amount of preliminary effort was needed for planning the experiments, 

determining the budget estimates, negotiating the contract with OCD, obtaining 

the AEC license, obtaining a suitable site, procuring equipment and materials, 

calibration checking of sources and detectors, and taking care of a host of 

miscellaneous details. 

The layout of the facilities constructed is shown in Figure III-0-1. 

These facilities were placed on a rather flat—topped hill, within a tract 

of land sufficiently large that there was no hazard outside the property 

to any member of the general public. The property was surrounded with a 

barbed wire fence, and a locked gate provided for entry. A gravel road 

was constructed from the gate to the experimental facilities. 

When the detection instruments arrived, they were calibrated by the 

Institute staff, with the use of radium and cobalt-60 calibrated sources 

available in the Nuclear Engineering Department of Kansas State University. 

The self-reading instruments in general appeared to read correctly within 

a few percent. Some special effort was required in connection with the 

non-self-reading dosimeter chambers. Two different designs of readers 

were obtained for them, and calibration had to be performed for each 

combination of instrument type and reader. 
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The sources arrived at a time so close to the beginning of the 1962 

Institute that careful checking of their calibration was not possible, but 

a brief preliminary checking seemed to indicate that the values given by 

the vendors were consistent with the instrument calibration data, within 

the limits of error considered acceptable for the purposes of the Institute, 

that is, within 10%. Subsequent experience in using the sources has increased 

confidence in their stated strengths, and it is now believed that one can 

accept the vendors’ original claim within 5% limits of error. 

The 1962 experimental program was so successful that no significant 

changes were made in the original experimental plan during the 1963 Institute. 

Certain minor improvements were made in the facilities; and some slight 

differences in techniques were tried, which did not necessarily turn out to 

give better results. 
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2. Nature of the Experiments 

The experiments undertaken were selected and planned with full 

recognition of the fact that their prime purpose was pedagogical in 

nature. It was not expected that the experiments would reveal much 

new and startling information; it was not expected that the results 

achieved would be highly accurate; most of the experiments themselves 

are not original. The effort was made to provide to the participants 

within the time available some knowledge and appreciation of experimental 

work being done in the field of radiation shielding for civil defense 

purposes, to learn to use the standard techniques and instruments involved 

in such work, and to obtain an appreciation of the difficulties and likely 

sources of error inherent in such work. Any new information arising from 

the experiments must be regarded as a by-product of the effort. 

Six experiments were undertaken. They are as follows: 

1) Blockhouse Experiment—Roof Contamination 

2) Foxhole Experiment 

3) Duct Experiment 

4) Blockhouse Experiment—Ground Contamination 

5) Model Experiment 

6) Compartmentation Experiment 

Others were considered, and facilities and equipment were provided in case 

they were undertaken. Time, however, has not permitted their study, but 

the capability still exists for possible inclusion in future programs of 

this sort. Such potential experiments might include: a study of light 

frame structure attenuation; gamma ray and neutron albedo experiments; 

simple attenuation experiments; more extended calibration experiments; and 

others. 



Each experiment required its own particular set of instruments and 

equipment, and these are indicated in the sections devoted to the individual 

experiments. However, a general description of the facilities and the 

supporting items and services might be appropriate at this point. 

The principle facilities are as indicated on the layout drawing, Figure 

III-O-L. The major facility item is a simple blockhouse, about 20’ square and 

8’ high, with basement. This blockhouse is made of lightweight concrete, 

averaging about 103 pounds per cubic foot in density. The roof and floor 

were made of pre-cast, pre-stressed slabs, of nominal thickness 6", and 

with a more precise thickness value, based on pounds per square foot of 

material, of 55 psf. The sides were made of solid concrete block, which 

had been cast in a somewhat irregular shape so that when they were laid up 

the cracks between the blocks would not run straight through the wall but 

would be zig-zagged. These sides were of nominal thickness of 8”, and 

were determined to have a thickness by weight of about 69 psf. The roof 

was tied down by cables to ground anchors, to provide resistance to high 

winds, inasmuch as the walls were laid up dry rather than with mortar. 

In addition to the blockhouse, a cylindrical foxhole, lined with 

concrete of normal density was provided, measuring 4’ deep and 4’ in 

diameter. Also a concrete duct system was built in sections, so as to permit 

portability. The first one built was of lightweight concrete; but between 

the 1962 and 1963 Institutes, it was replaced with one of normal density 

concrete. Provisions for a model structure were provided, by having a 

hole representing the blockhouse basement, on a 1 to 12 model basis, put 

in the concrete pad. Over this hole a steel model representation of the 

blockhouse could be placed. 



Auxiliary facilities included a small, portable, wooden building, 

about 10’ by 20'^which was built for storage and use as an instrument 

shelter. A truck was provided for transportation of the heavy storage 

pigs used to house the radioisotopes. Hoists and fork-lift trucks were 

provided to assist in the handling. Miscellaneous equipment included: 

spotting telescope, 20-power, for distant observations of the radiation 

sources; pumping apparatus and polyethylene tubing for movement of the 

sources to simulate fallout; sandbags; bags of lead shot; health physics 

monitoring equipment; and many kits of repair tools and spare parts. 

Help and cooperation were rendered and received most appreciatively, 

from the University Physical Plant Department, the Student Health Center, 

and to a lesser extent from many other groups and individuals too numerous 

to mention. 
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3. Preliminary Analysis 

Certain analyses are basic to all the experiments and are indicated 

at this point rather than being made a part of each experimental write-up. 

a. Exclusion radius. 

Average conditions at the site are taken to be the following: 

Temperature—90° F. (32°c.) 

Pressure--28.79” Hg. (731mm.) 

Relative Humidity—50% 

-3 3 
For these conditions, air density equals 1.1034 x 10 g./cm. 

Following data apply: 

At 1 m., 1 curie of Co_60 provides a dose-rate of 

1.3r./hr. (NBS Handbook 73). This is equivalent to 14,000 mr./hr. 

per curie at 1 foot. 

For air under site conditions: 

u. 
o 2 . 

—-- = 0.0567 cnu/g.at 1.25 Mev. 

-5 -1 
p = 6.256 x 10 cm, 

o 

1 
1 mean-free-path =-—= 15,980 cm. 

= 525 ft. 

Let D(r) = dose-rate 3’ above ground, with source of Co~60 

on ground at distance r. 

D(r) = 14,000 B » K e ~ ^ P C (mr/hr.) 

2 
r 

where B = build-up factor for point isotropic source of Co-60 

in infinite, homogeneous air-like medium (use of aluminum 
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is adequate). (See NYO-3075, Goldstein and Wilkins.) 

K = correction factor for earth-air interface effect. 

(M. J. Berger, Journal of Appl. Physics 26$, No. 12, 

1502-8 (1957).) 

C = Number of curies. 

As a sample calculation, the dose-rate from a 125 curie source 

at 525 feet (one mean-free-path)is indicated: 

D (525) = 14,000 x 2.01 x 0.835 x e 1 x 125 

(525)2 

= 3.91 mr/hr. 

A plot of dose-rate at 3’ height versus distance for Co-60 

on the ground is given in Figure III-0-2. This figure was used as 

the basis for the preliminary estimate of the exclusion area at the 

site, being the area enclosed in the 2 mr./hr. perimeter. The 

final perimeter, determined by actual measurement with the 123 

curie source exposed, extended as far as 660’ from the exposure 

area, but in some directions was reduced by the topographic aspects 

of the area. 

b. Reference Dosage. 

For most shielding calculations relating to nuclear weapon 

fallout, the reference dose-rate, to which all others are compared, 

is usually taken as the dose-rate 3 feet (sometimes taken as one 

meter) above a smooth, infinite plane with fallout evenly distributed on 

it. 

Figure III-0-3 
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Consider a source density of one curie per square foot over the 

infinite plane. A differential area in this plane will provide a 

differential dose-rate at the reference point, in r./hr. 

- p-o R 

dD = 
(14.0) (dA) B(-oR) e 

R 

where B(R) = the build-up factor. 

= 1.11 + 0.529 p R 
o 

for source on ground and detector three feet above ground (see NDL Report 

NDL-TR-2). 

dA = rdrd cp 

D 14.0 

;x> 
_ P R 

r B(P R) e ° 
Q 

R 

dr 

B(PQR) e 

_ P R 
o 

dR 

*8 JjL.ll Ex (3/525) + 0.529e 

2 

R 

- (3/525) 
= 87, 

= 494 r/hr., for 1 curie/ft. 

There is a theorem, given elsewhere in this report, which indicates 

that one could have used a build-up factor for infinite, homogeneous 

atmosphere, regardless of the air-ground interface, if one assumes the 

ground to act like condensed air in its radiation attenuation and scat¬ 

tering properties. Thus we could substitute in the above derivation an 

empirical expression for build-up factor assuming an infinite, homogeneous 

atmosphere (Chilton, Donovan, and Holoviak, NCEL Report N-389, 1960). 

B = 1 + 0.92 p R e+0,06M'°R 
o 
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This gives: 

D = 87.8 E (3/525) + 0.979 e 

= 490 r/hr., for 1 curie/ft.^ 

+0.94 x 3/525 

The latter figure is used herein for the experimental calculations. 

c. Normalization of data. For the sake of consistent treatment of data, it 

is often necessary to normalize to a standard set of conditions. Usually, 

where this is necessary, the data in this report have been normalized to 

a dose-rate in milliroentgen (or roentgen) per hour, obtained from a fallout 

(or simulant) field of one curie per square foot. In case integrating 

dosimeters are used, the experiment is normalized on the assumption that 

the accumulation of dose occurred for a period of one hour. 

In some experiments the infinite field is approximated by a pumped 

source of C curies moving with constant speed through a tube laid out 

so as to provide approximately uniform distribution over an area, A, 

(sq. ft.). If the source spends T? hours in moving through the tube and 

R(r) is the dose-rate per hour at any position, r, due to a source of 

one curie per square foot, then the measured dose, D(r) is: 

D (r) 
C R(r) T 

A 

Conversely, data taken can be normalized to 1 curie/ft. -hr. by 

an inverse calculation: 

D(r) 
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B„ Experimental Reports 

1. Blockhouse Experiment ..Roof Contamination 

a) Purpose. Primarily, to determine the fallout protection capability of 

an idealized structure against simulated fallout roof contamination, 

and to compare experimental results with theoretical predictions. 

Secondarily, to provide experience in the calibration of field type 

dose-rate meters. 

b) References and bibliography. 

1) L. V. Spencer, "Structure Shielding against Fallout Radiation from 

Nuclear Weapons," National Bureau of Standards Monograph 42 (1962). 

2) "Shelter Design and Analysis, Vol.l, Fallout Protection," Office 

of Civil Defense Compilation (Revised ed., 1962). (This is a 

revision of an OCD draft document commonly referred to as the 

"Engineering Manual.") 

3) "Fallout Shelter Surveys: Guide for Architects and Engineers,” 

Office of Civil Defense Document NP-10-2 (1960). (This is commonly 

referred to as the "Architect Engineers'* Guide.") 

4) C. Eisenhauer, "An Engineering Method for Calculation Protection 

Afforded by Structures against Fallout Radiation," National Bureau 

of Standards Report 7810 (1963). 

5) R. E. Rexroad and M. A. Schmoke, "Scattered Radiation and Free Field 

Dose-Rates from Distributed Cobalt-60 and Cesium-137 Sources," 

Nuclear Defense Laboratory Report NDL-TR-2 (1960). 

6) J. Batter, "Cobalt and Iridium Buildup Factors Near the Ground/Air 

Interface," Trans. Am. Nucl. Soc. 6, No. 1, 198 (1963). 
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c) Facilities and apparatus used. 

1) Concrete blockhouse (see Figure III-l-l) with roof access ladder. 

2) Five cobalt-60 sources of approximately equal strength, 4.60 

millicuries each (+_ 10%). (As long as they are equal, the exact 

value of each source is not important, since results, obtained as 

ratios of dose-rates, are independent of source strength). 

3) Four dose-rate survey meters, with scales permitting readings from 

background up to 50 mr./hr. 

4) One pair radioactive .source handling tongs, about 40" in length. 

5) Miscellaneous equipment -“flashlights, meter sticks, tape measure. 

d) Background. The most basic type of penetration analysis of fallout 

gamma radiation is that required for the slab roof covered with fallout, 

uniformly distributed. This can be simulated by the use of a finite 

number of concentrated sources of equal strength, distributed in a 

pattern on the roof of a structure at equal intervals. Cobalt-60 

makes a useful simulant for this purpose, especially since calculations 

have been published (Reference 1) for penetration of cobalt-60 radiation 

through slabs on which the radioactive material is considered to be spread. 

The use of a full-scale structure, of a simplified and idealized 

type, is desirable to test theoretical predictions carefully, and thus 

bridge the gap between the analysis of simple elements and the complete 

analysis of practical structures. 

% 

e) Procedure. 

1) Calibration of the dose—rate meters was carried out on a laid out 

calibration range, by using the five individual sources grouped 
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together to form essentially a point* source of (assumed) 23.0 

millicuries strength. Section k, Appendix,gives the details of 

this calibration. 

2) A uniformly distributed source was simulated by placing point sources 

at specific locations on the roof. (Figure III-I-l shows the block 

house in general; Figure III-1-2 shows the detector stations in the 

blockhouse; and Figure III-1-3 shows the locations on the roof 

where individual sources were placed.) In actuality, since there were 

twenty-five locations in a quarter of the building roof, only one- 

fifth of the spots could be covered at a time. However, with one 

row covered readings were taken, and in successive runs, each of the 

other rows were covered, during which new readings were taken at the 

same reading stations. 

3) Results for the case of complete roof contamination were calculated; 

and comparisons were made with theoretical predictions. 

f) Theory. 

1) The reduction factor for a point in the middle of the blockhouse can 

be obtained by the following equation, using the functions in 

Spencer’s Monograph: R^ = L(X) L(X,uo). 

R represents the ratio of the dose-*rate reading at the point in 

question to the reference dose-rate, which is given as the value 

three feet above a uniformly contaminate d,infinite, smooth plane of 

source density equal to the average source density on the roof of 

the blockhouse. (R^ is the reciprocal of P^, the protection factor.) 

L(X) is the barrier factor provided by the roof; and L(X,co) is the 

geometry factor to allow for the finite area of the contaminated roof. 
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In the Engineering Manual, the reduction factor is given by a 

single factor, C^(X^,W), which is equivalent to the product of 

the two factors given in the formula above. The value of this 

factor is found in a chart. The Architect-Engineers’ Guide also 

handles this problem by use of a chart. The values are given for 

a detector ten feet below the roof, as a function of roof area and 

thickness; and a correction factor is provided for adjusting the 

roof area, should the detector distance be different from ten 

feet. 

It should be noted that the predictions obtained from the 

curves of the Engineering Manual and the Architect Engineers’ 

Guide are based on fission product energy spectra at 1.12 hours 

after weapon burst, whereas calculations made for a distributed 

cobalt-60 source can be made most accurately by using curves from 

Spencer’s Monograph for cobalt-60 gamma ray energies. Therefore, 

the experimental results are more properly comparable to calculations 

based on the Monograph than to predictions using either of the 

referenced OCD publications; and we compare results only with 

calculations from the former document. 

The term L used in the above mentioned formula is one of three 
c 

closely related terms provided in the Monograph, L^, , and L^. 

According to Eisenhauer (Ref. 4), these three terms are used, respec¬ 

tively, in case the absorbing medium is uniformly distributed between 

source and detector, when the barrier material is concentrated at the 

source, or when the barrier material is concentrated at the detector. 
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Either of the three situations is an idealized extreme, and in an 

actual situation the proper answer is undoubtedly somewhere between 

extremes of the answers provided by these three factors. Since in 

a practical situation, the absorbing floors represent a somewhat 

distributed absorbing medium, the OCD publications follow 

Eisenhauer’s suggestion that be used for this type of calcuation. 

(It is to be noted that Spencer uses L for this type of problem; 
a 

however, we follow Eisenhauer's suggestion, with the knowledge of 

the fact that for floor thicknesses of the order of those in the 

blockhouse under investigation the theoretical answers provided 

are an upper limit. See Table I, Ref. 4.) 

2) For detector positions not in the center of the building, theoretical 

reduction factors can be calculated using the method of "fictitious 

structures" contained in the older draft of the Engineering Manual. 

The method is illustrated in the calculations. 

3) In reducing the experimental data provided, the calibration curves 

obtained (see Figures III-1-4, «*5, and -6 in Section k) are used 

to give corrected values. The results for each run are then added 

to give the total effect of covering one-quarter of the roof. 

Because of the symmetry of the situation, experimental values for a 

completely contaminated roof can be obtained by adding the readings 

for equivalent stations in the four quarters of the building. 

The final value of the experimental reduction factor for each 

specific location is then determined by dividing the dose^rate 

obtained by the value of the reference dose-rate calculated on the 
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basis of a value of 490 r./hr. for a smooth infinite plane source 

density of one curie per square foot. 

g) Preliminary Calculations. 

1) Theoretical roof contamination reduction factors, based on Figure 

B-43 of Reference 1). All detector heights are 3’ above the floor, 

unless otherwise noted. Detector positions are indicated on 

Figure 111-1-2. 

Equiv. 

Bldg. No. W L e Z ri CO X 
O 

L-L 
c 

Factor 
Rf 

Detector Loca tion I, Center of Blockhouse , First Floor 

De t. =3 ’ 19.0 19.0 1.0 5.17 .545 .56 55 .050 1.0 .050 

" 7T 19.0 19.0 1.0 1.17 .123 .89 55 .062 1.0 .062 

Basement 

Det.=3’ 19.0 19.0 1.0 13.0 1.37 .23 110 .0073 1.0 .0073 

" 7’ 19.0 19.0 1.0 9.0 .95 .36 110 .0098 1.0 .0098 

Detector Location II , First Floor 

1 9.5 19.0 0.5 5.17 ! 545 .40 55 .036 0.5 .018 

2 19.0 28.5 .667 5.17 .363 .62 55 .052 0.5 .026 

ms 

Basement 

1 9.5 19.0 0.5 13.0 1.37 .13 110 .0050 0.5 .0025 

2 19.0 28.5 .667 13.0 .912 .29 110 .0088 0.5 .0044 

.0069 
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Equiv. 

Bldg. No. W L € Z r) w X 
o 

L' L 
c 

Factor R 
f 

Detector Location II! . First Floor 

1 9.5 9.5 1.0 5.17 1.09 .30 55 .029 0.25 .007 

2 9.5 28.5 .333 5.17 .363 .45 55 .042 0.5 .021 

3 28.5 28.5 1.0 5.17 .363 .69 55 .057 0.25 .014 

.042 

Basement 

1 9.5 9.5 1.0 13.0 2.74 .076 110 .0028 0.25 .0007 

2 9.5 28.5 .333 13.0 . 913 .17 110 .0060 0.5 .0030 

3 28.5 28.5 1.0 13.0 . 913 .37 110 .010 0.25 .0025 

.0062 

Detector Location IV, First Floor 

1 19.0 38.0 0.5 5.17 .272 .64 55 .052 0.5 .026 

Basemer it 

1 19.0 38.0 0.5 13.0 .684 .32 110 .009 0.5 .0045 

Detector Location V, 7irst F] Loor 

1 38.0 38.0 1.0 5.17 .272 .77 55 .060 0.25 .015 

] 3asemen1 ; 

1 38.0 38.0 1.0 13.0 .684 .48 110 .0116 0.25 .0029 

Detector Location VI First Floor 

1 28.5 38.0 .75 5.17 .272 .725 55 .062 0.25 .015 

2 9.5 38.0 .25 5.17 .272 .46 55 .044 0.25 .011 

.026 
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Equiv. 

Bldg. No. W L C Z -n CO X 
o 

L* L 
c 

Factor 
Rf 

1 

E 

28.5 

iasement 

38.0 .75 13.0 .684 .42 110 .0108 0.25 .0027 

2 9.5 38.0 .25 13.0 .684 .18 110 .0063 0.25 .0016 

.0043 

2) Normalization factor for experimental data. 

A source strength of 4.60 millicuries placed in each square of 

O r) 

dimension l’10-?3/4" is equivalent to 1.280 x 10** curies/ft.“ Since 

one curie per square foot provides a reference dose rate 3’ above 

an infinitely contaminated smooth plane of 490 r./hr., a source 

— O 

strength of 1.280 x 10 curies/sq. ft. provides a reference point 

dose-rate of 627 mr./hr. Then for each point in the blockhouse, the 

value of R (= D/D ) is given if the appropriate value from the 
f o 

experiment in mr./hr. is divided by 627, or is multiplied by 

1.595 x 10~3. 
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h) Data and data reduction. 

Detector Readings, mr./hr. 

Floor: First 

Dose-rate meter: Victoreen #526 (3»scale unless noted) 

Detector Run A Run B Run C Run D Run E Sum of 

Location 

Raw 

>> 
Corr. Raw Corr. Raw Corr. Raw Corr. Raw Corr. 

Corrected 

Values 

(1, A) .05 .16 . 05 .16 - 0 .02 .12 - 0 .44 

B .10 .21 .13 .24 .05 .16 .06 .17 .05 .16 .94 

C .25 .36 .12 .23 .06 .17 .08 .19 .05 .16 1.11 

D .40 .51 .24 .35 .13 .24 .10 .21 .05 .16 1.47 

E .35 .46 .20 .31 .10 .21 .10 .21 ,05 .16 1.35 

(2,A) .15 .26 .10 .21 .05 .16 .08 .19 .03 .14 .96 

B .40 .51 .22 .33 .16 .27 .15 .26 .06 .17 1.54 

C 1.00 1.12 .60 .71 .33 .44 .25 .36 .10 .21 2.84 

D 1.45 1.55 .72 .83 .40 .51 .20 .31 .13 .24 3.44 

E . 95 1.07 .55 .66 .35 .46 .20 .31 .12 .23 2.73 

(3,A) .25 .36 .20 .31 .15 .26 .10 .21 .08 .19 1.33 

B .55 .66 .50 .61 .37 .48 .23 .34 .15 .26 2.35 

C 3’ 2.35 2.45 2.10 2.22 1.20 1.31 .62 .73 
* 

.36 .47 7.18 

C 7s o
 

• 00
 

o
 

6.80 2.05 2.17 .50 .61 .25 .36 .12 .23 10.17 

D 4.15* 4.23 2.67 2.80 1.80 1.91 . 90 1.02 .50 .61 10.57 

E 2.50# 2.50 2.40 2.52 1.65 1.76 .85 .97 .50 .61 8.36 

* 
Corrected values are obtained by use of the calibration curves (see 

Figures III-1-4 and -5 in Section k Appendix). 

#10 scale 
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Detector Run A Run B Run C Run D Run E Sum of 

Location Raw Corr, Raw Corr Raw Con Raw Corr, Raw Corr. 
Corrected 
Values 

(4,A) .20 .31 .30 .41 .20 .31 .25 .36 .20 .31 1.70 

B .60 .71 .80 .91 .60 .71 .60 .71 .60 .71 3.75 

C 1.70 1.82 2.20 * 2.20 2.20* 2.20 2.60* 2.60 1.75 1.87 10.69 

D 2.20 2.33 
# 

3.60 3.65 4.00* 4.08 3.80* 3.87 2.60 2.72 16.65 

E 1.65 1.77 2.50 2.62 3.10* 3.13 2.35 2.47 1.45 2.07 12.06 

(5,A) .10 .21 .10 .21 .15 .26 .23 .34 .17 .28 1.30 

B .20 .31 .30 .41 .40 .51 .60 .71 .59 .70 2.64 

C .45 .56 .85 .96 1.40 1.51 2.37 2.49 2.50 2.62 8.14 

D .45 .56 1.10 1.20 2.20 2.32 
# 

3.80 3.87 4.10# 4.18 12.13 

E .60 .71 1.10 1.20 1.80 1.92 2.90* 2.93 
# 

3.00 3.03 9.79 
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Floor: First 

Dose rate meter: Victoreen #527 (3~scale unless noted) 

Detector Run A Run B Run C Run D Run E Sum of 
Corrected 
Values Location Raw 

* 
Corr. Raw Corr. Raw Corr. Raw Corr. Raw Corr. 

(1, A) - 0 .10 0 .10 0 - 0 - 0 0 

B .20 .15 .15 .05 .15 .05 .05 0 - 0 .25 

C .25 .22 .20 .15 .10 0 .03 0 - 0 .37 

D .60 .56 .10 0 .10 0 .02 0 - 0 .56 

E .40 .39 .30 .29 .10 0 .08 .01 - 0 .68 

(2, A) .10 0 .10 - .10 0 - 0 - 0 0 

B .30 .29 .30 .29 .10 0 .10 .03 - 0 .58 

C .90 .83 .70 .65 .40 .39 .30 .22 .05 0 2.16 

D 1.15 1.04 1.10 1.00 .40 .39 .40 .32 .10 0 2.82 

E 1.00 .91 .70 .65 .70 .65 .20 .13 .10 0 2.36 

(3,A) .25 .22 .20 .15 .10 0 .10 .03 .10 0 .37 

B .70 .65 .60 .56 .30 .29 .20 .13 .10 

* 

0 1.65 

C 3’ 2.35 2.45 2.10 2.22 1.20 1.31 .62 .73 .36 .47 7.18 

C 7 ' 6.80* 6.80 2.05 2.17 .50 .61 .25 .36 .12 .23 10.17 

D 4.15# 4.23 2.67 2.80 1.80 1.91 .90 1.02 .50 .61 10.57 

E 2.50* 2.50 2.40 2.52 1.65 1.76 .85 .97 .50 .61 8.36 

* 
Corrected values are obtained by use of the calibration curves (see Figures III-1-4 

and -5 in Section k, Appendix). 



Detector Run A Run B Run C Run D Run E Sum of 
Corrected 
Values Location Raw Corr. Raw Corr. Raw Corr. Raw Corr. Raw Corr. 

(4,A) .30 .22 .40 .39 .40 .39 .30 .29 .20 .15 1.51 

B .80 .69 .40 .39 .70 .65 1.00 .91 .60 .56 3.25 

C 2.00 1.81 3.40* 3.05 2.80* 2.52 2.80 2.56 1.90 1.72 11.66 

D 2.80 2.56 4.70* 4.25 

o
 

o
 3.60 

# 
3.80 3.42 2.50 2.25 16.08 

E 2.00* 1.78 
# 

3.60 3.25 
# 

3.00 2.68 2.65 2.38 1.80 1.62 11.71 

(5,A) .10 0 .30 .29 .20 .15 .30 .29 .20 .15 .87 

B .30 .29 .70 .65 .40 .39 .70 .65 .70 .65 2.63 

C .60 .56 1.00 . 91 1.80 1.62 3.10* 2.78 
# 

3.60 3.25 9.12 

D .80 .74 1.40 1.25 2.50 2.28 3.40* 3.05 4.20* 3.80 11.12 

E . 90 .83 1.40 1.25 2.30 2.09 

it o
 

00 
<N 2.52 3.00* 2.70 9.39 

*10-scale 
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Detector Readings, mr./hr. 

Floor: Basement 

Dose-rate meter: Bendix #71 (Xl~scale unless noted) 

Detector Run A Run B Run C Run D Run E Sum of 
Correctec 
Values Location Raw Corr.* Raw Corr. Raw Corr. Raw Corr. Raw Corr. 

(1, A) .04 .020 .045 .025 .015 0 .015 0 .005 0 .045 

B .095 .075 .055 .075 .055 .055 .035 .015 .025 .005 .205 

C .135 .120 .095 .075 .065 .045 .045 .025 .025 .005 .270 

D .125 .110 .075 .055 .055 .035 .045 .025 .035 .015 .240 

E .095 .075 .045 .025 .075 .055 .025 .005 .045 .025 .185 

(2,A) .035 .015 .085 .065 .065 .045 .025 .005 .005 0 .130 

B .135 .120 .095 .075 .105 .090 .045 .025 .035 .015 .325 

C .165 .150 . 145 .130 .085 .065 .065 .045 .055 .035 .425 

D .245 .235 .135 . 120 .065 .045 .065 .045 .055 .035 .480 

E .145 .130 .095 .075 .095 .075 .015 0 .065 .045 .325 

(3, A) .055 .035 .065 .045 .035 .015 .045 .025 .025 .005 .125 

B .185 .170 .175 .160 .125 .110 .125 .110 .075 .055 .605 

C 3’ .205 .195 .275 .265 .275 .265 .185 .175 .135 .120 1.015 

C 7 ’ .375 .370 .375 .370 .425 .425 .215 .205 .095 .075 1.445 

D .275 .265 .275 .265 .175 .160 .255 .245 .125 .110 1.045 

E .225 .215 .155 .140 .185 .170 .205 .195 .095 .075 .795 

* 
Corrected values are obtained by use of the calibration curves (see Figure III-1-6 

in Section k, Appendix). 
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Detector Run A Run B Run C Run D Run E Sum of 

Corrected 
Values Location Raw Corr. Raw Corr. Raw Corr. Raw Corr. Raw Corr. 

(4,A) .065 .045 .105 .090 .025 .005 .125 .110 .025 .005 .255 

B .105 .090 .115 .100 .125 .110 .185 .170 .085 .065 .535 

C .225 .215 .275 .265 .365 .360 .245 .235 .175 . 160 1.235 

D .245 .235 .335 .330 .325 .320 .335 .330 .215 .205 1.420 

E .195 .180 .175 .160 .195 .180 .235 .225 .135 .120 .865 

(5,A) .025 .005 .035 .015 .025 .005 .085 .065 .035 .015 .105 

B .025 .005 .095 .075 .115 .100 .145 .130 .095 .075 .385 

C .125 .110 .165 .150 .195 .180 .255 .245 .225 .215 . 900 

D .195 .180 .255 .245 .235 .225 .335 .330 .215 .205 1.185 

E .175 .160 .125 .110 .195 .180 .225 .215 .195 .180 .845 
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Detector Readings, mr./hr. 

Floor: Basement 

Dose-rate meter: Renriix #72 (Xl~scale unless noted) 

Detector Run A Run B Run C Run D Run E Sum of 

Corrected 

Values Location Raw 
* 

Corr. Raw Corr. Raw Corr. Raw Corr. Raw Corr. 

(1, A) .06 .02 .06 .02 .01 0 .04 0 .03 0 .04 

B .08 .03 .06 .02 .02 0 .04 0 .04 0 .05 

C .24 .14 .11 .05 .03 0 .05 .01 .06 .02 .22 

D .24 .14 .16 .09 .06 .02 .09 .04 .06 .02 .31 

E .14 .075 .11 .05 .04 0 .03 0 .06 .02 .145 

(2, A) .06 .02 .16 .09 .02 0 .06 .02 .06 .02 .15 

B .21 .12 . 11 .05 .06 .02 .09 .04 .02 0 .23 

C .36 .21 .26 .15 .21 .12 . 14 .075 .12 .06 .615 

D .48 .28 .46 .27 .16 .09 .13 .065 .16 .09 .795 

E .26 .15 .21 .12 .11 .05 . 11 .05 .06 .02 .39 

(3,A) .04 0 .14 .075 .01 0 .07 .025 .06 .02 .120 

B .26 .15 .21 .12 .06 .02 .14 .075 .11 .05 .415 

C 3’ .41 .24 .36 .21 .36* .21 .44* .255 ,16 .09 1.005 

C 7 ’ .66 .385 . 66 .385 .36* .21 .46* .21 .21 .12 1.370 

D .51 .30 .56 .325 .31* . 185 .46* .27 .36 .21 1.290 

E .36 .21 .31 .185 .26* .15 .26* .15 .26 .15 .845 

Corrected values are obtained by use of the calibration curves (see Figure III-1-6 

in Section k, Appendix). 

n 
X10-scale 
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Detector Run A Run B Run C Run D Run E Sum of 

Corrected 

Values Location Raw Corr. Raw Corr. Raw Corr. Raw Corr. Raw Corr. 

(4,A) .12 .06 0 .11 .05 .06* .02 .05 .01 .14 

B .13 .065 0 .16 .09 .16* .09 .16 .09 .335 

C .36 .21 .29 .17 .26* . 15 .51* .30 .36 .21 1.04 

D .36 .21 .51 .30 .36* .21 .66* .385 .34 .20 1.305 

E .33 .195 .31 .185 .36* .21 
# 

.56 .325 .31 . 185 1.100 

(5,A) .07 .025 .06 .02 .11 .05 .06* .02 .05 .01 .125 

B .14 .075 .20 .115 .16 .09 .21* .12 .11 .05 .450 

C .26 .15 .31 .185 .36* .21 .31* .185 .46 .27 1.000 

D .26 .15 .35 .205 .36* .21 .46* .27 .41 .24 1.075 

E .14 .075 .22 .13 .36* .21 .46* .27 .36 .21 .895 
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i) Results. Experimental reduction factors. 

1) First floor 

Location Quarter 

Corrected 

mr. /h' 

Instr. Reading, 

r. 

R = 1.595 

, *“3 
10 x Av. 

X 

Rdg 

Viet.#526 Viet.#527 Average 

Center, 
Each 

7.18 x 4 6.56 x 4 
27.44 .044 

3 ’Ht. =28.72 =26.16 

Center, 

Each 

10.17 x 4 7.66 x 4 

35.66 .057 

7 ’Ht. =40.68 =30.64 

Halfway 1 10.69 11.66 

to Side 2 10.57 9.16 

(II) 3 2.35 1.65 

4 2.84 2.16 

Total 26.45 24.63 25.54 .041 

Halfway 1 16.65 16.08 

to Cornei 2 3.75 3.25 

(III) 3 3.44 2.82 

4 1.54 .58 

Total 25.38 22.73 24.06 .038 

Middle oi 1 8.14 9.12 

Side 2 8.36 8.33 

(IV) 3 1.33 .37 

4 1.11 .37 

Total 18.94 18.19 18.56 .030 
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Location Quarter 

Corrected 

mr. /h 

Instr. Reading, 

r. 

R „ = 1.595 x 
f_o 

10 x Av* Rdg. 

Viet.#526 Viet.#o27 Average 

Corner 1 9.79 9.39 

(V) 2 1.30 .87 

3 1.35 .68 

4 .44 .00 

Total 12.88 10.94 11.91 .019 

Halfway ( 12.13 11.12 

1 ( 
between ( 12.06 ✓ 11.71 

Corner ( 2.64 2.63 

2 ( 
and ( 1.70 1.51 

Middle ( 2.73 2.36 

3 ( 

of Side ( 1.47 .56 

(VI) ( . 96 .00 

4 ( 

( . 94 .25 

Total 34.63 30.14 16.20 .026 

\ Total 17.32 15.07 

240- 816 0-67—43 IV-31 



2) Basement. 

Location Quarter 

Corrected Instr. Reading, 

mr./hr. 

R = 1.595 x 
f 

-3 
10 x Av. Rdg. Bend.#71 Bend.#72 Average 

Center, 1.015 x 4 1.005 x 4 

Each 

3 ’ Ht. =4.06 =4.02 4.04 .0064 

Center 1.445 x 4 1.370 x 4 

Each 

7' Ht. =5.78 =5.48 5.63 .0090 

Halfway 1 1.235 1.040 

to Side 2 1.045 1.290 

(II) 3 . 605 .415 

4 .425 . 615 

Total 3.310 3.360 3.335 .0053 

Halfway 1 1.420 1.305 

to Corner 2 . 535 .335 

(III) 3 .480 .795 

4 .325 .230 

Total 2.760 2.665 2.712 .0043 

Middle of 1 . 900 1.000 

Side 2 .795 .845 

(IV) 3 .125 .120 

4 .270 .220 

Total 2.090 2.185 2.138 .0034 
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Location Quarter 

Corrected Instr. Reading, 

mr./hr. 
R = 1.595 x 

-3 
10 x Av. Rdg. Bend.#71 Bend. #72 Average 

1 .845 .895 

Corner 2 .105 .125 

(V) 3 . 185 .145 

4 .045 .040 

Total 1.180 1.205 1.192 .0019 

Halfway ( 1.185 1.075 

1 ( 
between ( .865 1.100 

Corner ( .385 .450 

2 ( 

and ( .255 .140 

Middle ( .325 .390 

3 ( 

of Side ( .240 .310 

(VI) 
( . 130 .150 

4 ( 

( .205 .050 

Total 3.590 3.665 

2 Tot. 1.795 1.832 1.814 .0029 
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j) Summary, discussion, and conclusions'. The comparison between 

theory and experimental is provided in the following tabulation 

of reduction factors. 

Location (first floor) Theory Experiment 

I (3*) Building center .050 .044 

I (7’) 
11 tt 

.062 .057 

II Halfway, center to midpoint wall .044 .041 

III Halfway, center to corner .042 .038 

IV Midpoint of wall .026 .030 

V Corner .015 .019 

VI Halfway, corner to midpoint wall .026 .026 

Location (basement) Theory Experiment 

I (31) Building center .0073 .0064 

1 (7,) .0098 .0090 

II Halfway, center to midpoint wall .0069 .0053 

III Halfway, center to corner .0062 .0043 

IV Midpoint of wall .0045 .0034 

V Corner .0029 .0019 

VI Halfway, corner to midpoint wall .0043 .002 9 

It is seen that experimental results are in rather good agreement 

with theoretical predictions for the first floor, but for the basement 

there is a consistent pattern in which the experimental are lower 

than theoretical by amounts from 10 to 30% of the latter. 

The basis for this rather consistent picture cannot be ascribed 

to random statistical variations with any degree of likelihood. It is 
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recognized that, as explained in Section f, Theory, the theoretical 

values are expected to be an upper limit to the true values; however, 

the basic assumption behind the theoretical formula(uniform distribution 

of attenuating material between source and detector) is less true for the 

first floor case than for the basement case. Therefore, such an explanation 

of results is inadequate. 

It may be noted that the percentage of disagreement tends to be 

* 
greater for the locations having the lowest readings. This may provide 

some basis for guessing the greatest source of variation. At these 

locations, the individual readings were hardly greater than background--in 

some cases smaller than background. The Bendix instruments provided were 

able to respond at this range; but because of the short time constant of this 

type of instrument, the pointers varied wildly in position for values near 

background, thus rendering accuate reading extremely difficult. This 

condition also prevailed for low values of the radiation field during 

calibration, and a look at the calibration data (Section k) for the Bendix 

dose-rate meters shows the wide percentage variability at low ranges. 

For any future repetition of this experiment, it would be desirable 

either to use stronger sources, or to use instruments able to read more 

accurately at dose-rate levels near background, or both. 

Considering the conditions under which the experiment was made, adequacy 

of the theory to predict experimental results is a tenable hypothesis. 

Further more careful experimentation would be needed to rule out the possibility 

that the lessened agreement for the basement is a real effect. 

* 
Editorial comment: This experimental report is based upon the 1963 work. It 

should be pointed out that the same experiment conducted in 1962 gave results 

which were higher at these particular points and more consistent with present 

theory. 
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k) Appendix. This section covers the details of calibration of the dose-rate 

meters used in this experiment. 

In the calibration exercise, undertaken just before the experiment 

proper, the five individual sources were grouped together on the ground 

(concrete pad) essentially as a point source. From this point, a calibration 

line was marked off so that the instruments could be held at various 

horizontal distances from the source and read. For each reading, the 

instruments were held three feet off the ground. The value of true dose- 

rate in mr./hr. is given by the following formula: 

n _ 14.0 S e~ ^ RB( jj, R) 

2 
R 

where 

S = source strength in millicuries. 

R = distance, source to detector, (H + 3 ’ )2 

H = horizontal distance, source to detector, feet. 

p, = total linear attenuation coefficient for cobalt-60 radiation, (1/525) ft. 

B is the build-up factor, = 1.11 x .529 p,R for distances greater than 

50 feet (Reference 5). For distances less than 50’, data from 

Reference 6 are used, slightly smoothed out. 

For correspondence between calculated true dose-rate values and those 

read during the calibration run for each instrument the table below provides 

the information. These data are used to plot calibration curves, included 

herein as Figures III-1-4, III-1-5, and III-1-6. 

It might be noted that no specific correction is made for background 

in these calibrations. Likewise, no account is taken for background in the 

actual blockhouse measurements; and on the assumption that background is 
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constant for the whole period of the operation no error is introduced 

by disregarding it entirely. 

H 

Calculated 

Dose-rate 

Observed Readings 

Viet.#526 Viet.#527 Bendix#71 Bendix#72 

10-scale 3-scale 10-scale 3-scale X10 XI 

6 ’ 8.21 8.8 9.0 

7 6.44 6.6 7.0 

8 5.11 5.2 5.6 

9 4.17 4.1 4.7 

10 3.45 3.4 2.8 3.8 3.6 7.9 

15 1.61 1.6 1.5 1.8 1.8 1.3 3.7 

20 .918 .8 .8 1.0 . 9 1.5 

30 .412 .3 .3 .40 .45 .4 .70 

40 .233 .1 .1 .30 .30 .25 .40 

50 .149 .1 .1 .22 .20 .17 .26 

60 .103 .22 .15 .16 .19 

80 .0588 .13 .09 . 11 

100 .0382 .13 .04 .10 

125 .0249 .12 .055 .08 

150 .0175 .13 .05 .06 

175 .0131 .20 .03 .05 

200 .0101 .22 .03 .08 
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2. Foxhole Experiment 

a) Purpose. To determine the shielding potential of an idealized 

foxhole in the middle of a uniformly contaminated plane and to 

compare experimental results with predictions. 

b) References and bibliography. 

1) L. V. Spencer, "Structure Shielding against Fallout Radiation 

from Nuclear Weapons,” National Bureau of Standards Monograph 

42 (1962). 

2) C. E. Clifford, "Gamma Dose in a Hole in a Uniformly Contaminated 

Plane: Contribution by Ground Penetration," Can. Jour, of Physics 

39, 604 (1961). Also published as Defence Research Chemical 

Laboratories Report No. 310A. 

3) H. Goldstein and J. E. Wilkins, Jr., "Calculations of the 

Penetration of Gamma Rays," U. S. Atomic Energy Commission Report 

NYO-3075 (1954). 

4) M. J. Berger and L. V. Spencer, "Penetration of Gamma Rays from 

Isotropic Sources through Aluminum and Concrete," National 

Bureau of Standards Technical Note 11 (1959). 

5) A. B. Chilton, D. Holoviak, and L. K. Donovan, "Determination of 

Parameters in an Empirical Function for Build-up Factors for 

Various Photon Energies,” U. S. Naval Civil Engineering Laboratory 

Technical Note N-389 (1960). 

6) M. J. Schumchyk and H. J. Tiller, "Ground Penetrating Radiation 

(Lip Contribution) in a Foxhole from a Fallout Field Simulated 

by Cobalt-60," Nuclear Defense Laboratory Report NDL-TR-3 (1960). 
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c) Facilities and apparatus used. 

1) Concrete-lined cylindrical hole 4s diameter and 4s deep, in 

middle of concrete slab, with one radial line from it providing 

extensive lead shielding. (See Figure III-2-1.) 

2) Cobalt-60 sources, of nominal strengths 0.5 and 5 curies, with 

appropriate container and projector. 

3) Dosimeter chambers, 1-mr., 10-mr., and 200-mr., seven of each. 

4) Charger-reader for dosimeters. 

5) Thin lead blocks, bags of lead shot. 

d) Background. The solution to this problem is important for the soldier 

in a foxhole, in order to determine the contribution of the radiation 

incident on him which penetrates the foxhole lip directly from the 

fallout near the lip edge. Similar considerations are also important 

in cases such as lip penetration for a basement. (See Reference 1, 

Sections 31 and 34.) 

Two theoretical approaches to this subject have been suggested. 

One, given by Spencer (Ref. l), provides a formula and graphed values 

of an appropriate integral used in the formula which can estimate 

directly the lip penetration dose for a uniformly distributed fallout 

field over the ground outside the foxhole. The other method involves 

a point-source-to-point-detector calculation for each incremental 

contaminated area, followed by an integration over all the contaminated 

plane. This approach is followed by Clifford, who suggests a semi- 

empirical approach for estimating the "build-up factor" which is 

part of the point-to-point kernel. (Reference 2). 
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e) Procedure. 

1) Points were marked out on the ground, indicating locations of 

source at predetermined distances from the center of the fox¬ 

hole. These were laid out in two radial lines--one over plain 

concrete and one over the line of lead bricks emplaced in the 

concrete. 

2) Dosimeters were charged and placed in locations at or near the 

centerline of the hole at distances 1, 2, and 3.5 feet below the 

top of the foxhole. (Dosimeters were also placed at intermediate 

intervals, for some runs, but these results are not reported 

herein.) 

3) As expeditiously as possible, the source was projected from the 

shielded container and placed on the spot nearest the foxhole on 

the radial line across the plain concrete. The source was left 

for a predetermined time; the source was removed back to its 

shielded container; the dosimeters removed and read. Times 

were recorded throughout. 

4) The above procedure was repeated for each location designated 

from the edge of the lip out to a distance of 8’ from the fox¬ 

hole center. The designated distances from the center were: 2', 

2 ’ 2 ”, 2 *4 ", 2 ! 6 ", 3 T , S’e”, 4’, and 6’. 

5) The procedure was repeated over the line of lead bricks. The 

distances used for the source were 2T2", 2,4", 2’6", 3’ and 4' 

from the center. 

6) Dose readings were converted as necessary; skyshine was estimated 

and subtracted. Total dose from infinite contaminated plane was 
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calculated and compared with Spencer’s theoretical prediction 

formula. Build-up factors for point-to-point kernals were 

calculated and compared with Clifford’s "recipe”. 

f) Theory. 

1) The following proof of Spencer’s equation for lip penetration 

(Ref. 1, p. 57) is presented. Use is made of the function ^(X, cosQ 

which represents the dose angular distribution at a depth X below 

an infinitely contaminated plane as a function of this depth and 

the cosine of the angle between the normal and the direction from 

which the radiation is indent upon the detector. If we assume 

that the presence of the foxhole has little perturbing effect 

upon the radiation arriving at a point on the surface of the 

foxhole, it can be readily seen that at the point on the foxhole 

axis at depth y, the dose will be as given in the following 

equation: ,cos0^ 

D = d (cosQ) 

A 
X (0), cos0 11 

The lower limit on the equation is based on the assumption that 

for all practical purposes the calculation is affected very little 

by assuming the foxhole to be bottomless. 

) 

Figure III-2-2 
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From the figure it is clearly seen that 

x = y - a cot 

2 
dx = a esc 9 d 9 

The depth X is given in weight per unit area and obviously X = p x, 

where p is the material density. Thus, 

dX = p dx = 
i a 

sin^ 9 

in 0 sm 

a = y 
cos 9 

d9 

d (cos 9 ) = ~sin9 d9 

Therefore 

sin 9 

dX =y p ' 

d (cos 9 ) 

3 „ 
sin 9 

Since important contributions arise only from directions near 9 , to a 

fairly good approximation one can consider 9^9 ^ and therefore sin 9 ^ 

sin 9 . With these approximations dX becomes 

d(cos 9 ) 
dX = - p y 

cos9 sin 9 

d(cos 9 ) 

dX 

-1 

p y 

cos 9 ^sin 9 ^ 

We thus get that 

D 
d(cos9 ) 

dX 
dX-ljx(Q), cos 9^ 

(1 - 0) ) (2 ~ qj ) 

p y 

dX- £'(X, 1-u)), 

o 

where uu is equal to 1 - cos 0 . In the integrand of the last expression, 

it should be noted that cos 0 is not allowed to vary but is kept at the value 

cos9 (= 1 - o) ) , since the greatest contributions to the value of the integral 

occur only for values of cos 9 near this limit. 
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2) Clifford's approach involves the determination of an equivalent 

build-up factor for the foxhole situation which can then be used in 

calculations. He theorizes as follows (Reference 2): Radiation penetrating 

the lip can be divided into that part which is uncollided and that part 

which is the scattered component. One might compare the lip penetration 

radiation to that which one would receive if an infinite attenuating 

medium were present through all space. In the latter case, the scattered 

contribution is evidently B^-l, expressed as a ratio to the uncollided 

contribution. Clifford then says that one should expect only about half 

the scattered contribution in case of the foxhole penetration as compared 

to the infinite medium case. Thus, the scattered contribution should be 

about in the proportion of (B -l)/2 to the uncollided contribution; and 

if one adds 1 to this, one should get approximately the total dose 

measured, in terms of the uncollided contribution. This then, gives us 

a new build-up factor, (B ~l)/2 + or (B + l)/2. 
00 00 

One can readily compute the uncollided contribution for any given 

situation, and one can determine experimentally the true total dose for 

said situation. A ratio of the latter to the former gives what might be 

called B . The question which arises is: to what extent does B 
exp exp 

deviate from the approximation computed above, to wit, (B + l)/2. 

Clifford's experiments using cesium-137 provide a number,where 

B 
/a = exp 
^ (B + 1)/2 

oo 

(B^is readily available from Reference 3 or Reference 4, and may be 

approximated by a formula given in Reference 5.) The results of his 

experiments are given in Figure II1-2-3, below. 
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Figure III-2-3 

In this figure, cj) is the angle with the horizontal of the line 

between source and detector. It is thus 90° - 0 , where 0 is as 

indicated in Figure III-2-2. (Clifford uses 0 instead of <t> , but in 

this report the nomenclature is modified to avoid confusion.) 

As far as is known, neither Clifford nor anyone else has previously 

made such an analysis using cobalt-60. 

3) The method for obtaining the dose from an infinite contaminated plane 

on the basis of point source measurements is readily shown. 

a = radius 

of foxhole 

Figure III-2-4 
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Suppose that dose measurements at a certain point in the foxhole have been 

made with a one-curie source at various distances, r, from the axis of 

the foxhole, exposed for a certain period of time, say one hour. These 

measurements, R(r), are then multiplied by 2 rr r ; and the results are plotted 

to form a graph as shown in Figure III-2-4. 

The hatched strip has the area 2rrR(r) rdr, which also can be seen 

to correspond to the differential dose from an annulus strip of the 

plane at radius r and of width dr, when the plane is contaminated uniformly 

to a source density of one curie per unit area. 

Thus the dose from the whole infinite plane may be obtained by 

integrating the curve between the limits a and infinity. In practice, 

this integration may have to be done numerically; although if the curve 

can be expressed by a simple mathematical expression, an analytical 

integration may be possible. 

4) There are several methods available for estimating the effect of sky- 

shine, or air scattering into the foxhole. This must be dene so that 

it may be subtracted from the measurements which include both skyshine and 

lip penetration. One method is to perform the experiment over a radial 

path with extensive lead inserted into the lip, to minimize the lip penetration 

and thereby lead to a close estimate of pure skyshine effect. (This method 

was tried in the present experiment, but results were dubious. The 

technique involves very low measurements, and results are easily influenced 

by minor variations in source position, cracks in lead bricks, and other 

non-ideal aspects which are difficult to eliminate.) 

Another method is based upon the analysis of the originally plotted 

curve, which included both skyshine and lip penetration. Lip penetration, 
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as is fairly obvious, will fall off with distance from the lip in a 

very rapid fashion-- becoming negligible at a distance of half a 

dozen feet. The skyshine does not do so, but falls off very slowly-- 

in fact, over a distance of a few dozen feet, the plot of skyshine 

contribution multiplied by 2 it r should be almost constant, as one can 

see from previous experiments (see Ref. 6). One can also make this 

fact plausible through the following rationale: 

It is reasonable to assume that the skyshine, being caused by 

atmospheric scattering, is proportional to the degree of scattering 

one would detect at the surface of the foxhole, which in turn should be 

roughly proportional to the scattering in an infinite, homogenous 

atmosphere with the same separation distance between source and detector. 

Thus, the skyshine from a point source at radial distance r should be 

given by 

D = k e 
s 

- M- r 
( n r) - 1 /r 

A simple empirical approximation to B is given in Reference 5 as 

B = 1 + A /i r eC^r 

in which, for average gamma ray energies,A is close to unity and C is 

very small. If is multiplied by 2 it r, the result will thus show 

2 n r — (k A /j, ) - exp J(C - 1) ju rJ 
Since ju is on the order of .002 ft. 1 for cobalt-60, it can be seen 

that this expression changes very little over distances of many dozens 

of feet. 

Thus the method involves carrying measurements out far enough 

that the curve becomes almost flat. In fact, if the plot is made on 

semilogarithmic paper, the equation above shows that the curve should, 

IV-50 



after half a dozen feet more or less, become a straight line with a 

very slight negative slope. It is possible to extrapolate this 

straight portion back toward the origin (at least as far as the lip 

radius) and thereby estimate the skyshine for all distances. This 

gives what is called the "extrapolated skyshine" (Ref. 6). 

A third method of eliminating skyshine is to perform the 

experiment in the first place in such a manner as to do so. That is 

to say, it is in principle possible to cover the source, as it is 

exposed at the appropriate distances, with a lead cover of sufficient 

thickness to prevent any appreciable amount of radiation from going 

upward into the atmosphere. There are certain practical difficulties 

inherent in this technique, but as it is not used in this experiment, 

no further discussion is warranted. 
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g) Preliminary calculations. 

1) Theoretical predictions by Spencer’s Monograph (Ref. 1, pp. 57 and 

132) . 

Concrete density, p , given as 143 lb./cu. ft. 

Depth: 1 ’ 2 ’ 3 ’6” 

cosQ^ = l-o) .447 .707 .868 

0) .553 .293 .132 

2-0) 1.447 1.707 1.868 

o) (1 _o) ) (2 - oo ) .00250 .00131 .000428 

oe py 

/ dX 1 - oo) 

/o 

12.3 x .94 12.3 x .98 12.3 x .99 

= 11.56 = 12.05 = 12.17 

D/D 
o 

.0289 .0158 .0052 

2) Calculation of B according to Clifford’s analysis (Ref. 2). 
exp 

Figure III-2-5 
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As has been stated previously B is that value which makes the 
exp 

following formula valid for a source strength of 1 curies 

14.0 e B 

D(1) 
exp 

, where distances are in feet, and 

z 

where the variables are as given in Figure 111-2-5. Then after 

experimental determination of D, for specific values of y and r, one 

can calculate B by means of the expressions 
exp 

B = D(1) • (z2 e^X/l40 0) 
exp 

We may also calculate readily the denominator to Cliffordss 

expression for^, B^ can be readily obtained, for example, by use of 

the approximate formula provided in Reference 5s 

B^ (1.25 MeV) = 1 + . 92 jj, x e°" °6 ^X 

From this, (B^ + l)/2 is readily obtained. It is possible, then, to 

2 X 
establish, for every value of y and r, a factor F = (z e /14.0)/((B^+ l)/2), 

which when multiplied by the value of the appropriate normalized dose 

value at the detector point in r./hr. will give the value of . The 

pertinent values of the variables and this factor are readily derived 

and summarized in the table below. 
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p = 143 lb./ft.3 = 2.29 g./cm.3 

H = 2.29 x .0567 = .130 cm. 1 = 3.96 ft. 

y r X 
2 

z 
jU x 

e B 
00 

(B +1)/2 
00 

2 px 
(z e ^ /14, Factor, F 

2.0 2.333 
o 

49.4 .439 9.443 5.69 2.775 1.888 3.84 2.03 

2.5 51.3 .640 10.25 12.55 3.71 2.36 9.19 3.89 

3.0 56.4 1.202 13.0 116.7 6.83 3.92 108.4 27.7 

4.0 63.4 2.24 20.0 ' r172 . 14.89 7.94 10,170. 12,80. 

3.5 2.333 33.6 . 601 17.69 10.80 3.54 2.27 13.65 6.01 

2.5 35.5 .860 18.50 30.3 4.86 2.93 40.1 13.7 

3.0 40.5 1.537 21.25 441 . 9.07 5.04 669. 133. 

4.0 48.8 2.66 28.25 37400 19.23 10.12 40,400. 3,990. 

The computation is not carried out for y equal to 1.0, since measurements at this 

point are subject to great error with minor variations in location of source or 

detector; and it is not believed that this experiment should expect a sufficient 

degree of accuracy to permit a Clifford type analysis for this point. 
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h) Data and data reduction. 

1) Raw field data. Lip penetration plus skyshine. 

Detector depth: 2.0 feet Estimate of background: .04 mr./hr. 

Dist. 

from 

axis 

Detector readings, mr. Time, Instr. 

type 

& no. 

Charger- 

reader 

Source 

stren. 

curies 
After Before Net min. 

2 ' 80 10 70 5.00 200mr. Self- 0.47 
#083 reading 

2 '2” 90 3 87 9.50 
Tt TT TT 

2 ’4” 52 12 40 10.00 
Tt TT TT 

2 *6" 23 2 21 10.00 
TT TT TT 

3 ’ 5 0 5 10.00 
ft TT TT 

3 ’ 48 - 10.00 10-mr. Tech/ 

#05 Ops 
TT 

4 * 8 - 5.00 
TT TT TT 

4 * 14 - 5.00 1-mr. 

#36 
TT TT 

6’ 8.5 — 10.00 
TT TT TT 

8 * 10 - 15.00 1-mr. 
TT TT 

#32 
8 * 16 - 15.00 1-mr. 

TT TT 

_ 

#41 

* 
Editorial comment: This was perhaps the least satisfactory of all 

experiments performed, for several reasons. The apparatus used was 

not highly suitable for this particular type of experiment. The 

experiment itself requires a great deal of care. There are many 

sources of substantial error. For these reasons, it is not desirable 

to pass on to posterity the dubious results obtained. As illustrations 

of the approximate magnitude of the data, the format of the tabulations, 

and the method of anlaysis, we are however including information for the 
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2) Reduced and corrected data. This is obtained by use of calibration curves 

previously obtained and provided for each combination of reader and detector 

type. 

Dist. 

from 

axis, r 

Time, 

min. 

Corrected 

readings, R, 

mr. 

Normalized 

values, (mr. /hr. )/ (c./ft. )* 

2’ 5.0 70 22,500 

2’2” 9. 5 87 16,000 

CM
 10. 0 40 7,500 

*
4

 

10. 0 21 4,220 

3 ’ 10. 0 5 1,210 

3’ 10. 0 4.2 1,010 

4’ 5. 0 3.3 (?) 1,610 

4’ 5. 0 0. 4 694 

6’ 10. 0 0. 22 68 

8 ' 15.0 0. 14 69 

8’ 15. 0 0. 16 108 

*This is obtained by the formula: 2tt r(ft. ) x R(mr. ) x —: r- x ——\ 
t(min. ) 0. 47(c. ) 

(continued from previous page) readings of lip penetration plus skyshine at 

2.0’ depth in the foxhole, taken from the experiment conducted during the 

1962 Institute. This particular set of data appear more reasonable and self- 

consistent than most of the other, but should still not be regarded as 

satisfying the minimum conditions of reportable experimentation. 

I 
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i) Results. The reduced and normalized data are plotted in Figure III-2-6 and 

a smooth curve is drawn through the points. The extrapolated skyshine is 

estimated from what appears to be the asymptotic trend of the curve at 

large values of r. Subtraction of the values on the extrapolated skyshine 

curve from the main curve gives values for lip penetration only. Integration 

of this data provides the experimental value of lip penetration. This is 

accomplished in the following table, by use of Simpson’s rule for numerical 

integration. 
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Dist. 

f rom 

axis, r 

Normalized values 

from smooth graph 

(skyshine subtracted) 

Simpson’s 

rule 

multiplier 

Product 

2 * 22,400 1 22,400 

2 ’2” 15,900 4 63,600 

2 ’4" 7,400 2 14,800 

2»6" 4,100 4 16,400 

2 ’8" 2,500 2 5,000 

2*10” 1,500 4 6,100 

3 ’ 950 2 1,900 

3 ’2" 610 4 2,440 

3 ’4” 400 2 800 

3'6" 270 4 1,080 

3 ’8” 180 2 360 

3 f10M 125 4 500 

4 ’ 90 2 180 

4 ’2” 60 4 240 

4,4" 40 2 80 

4 ’ 6 " 30 4 120 

00
 

20 2 40 

4'10 " 15 4 60 

5 ' 10 2 20 

5 '2" 8 4 32 

5'4 " 6 2 12 

5’6” 4 4 16 

5 ’8" 3 1 3 

Total 136,183 
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The normalized dose at the 25 depth is then: 

D (2’) = (1/3 x (2/12) x 136,183 = 7,560 mr. 

Since the normalized reference dose 3* above the contaminated plane 

is 490,000 mr. received in an exposure of 1 hour, the attenuation 

factor, with respect to lip penetration, is given by 7,560/490,000, 

or .0154. This is to be compared to the theoretical value, as 

calculated in Section g , of 0.0158. 

A Clifford type analysis can be made at the 2' dosimeter 

depth for the radial values of r of 2’4", 2’6", and 3’. (It is not 

very likely that good answers should be obtained for values of r as 

small as 2'2" or as large as 4'. In the former case, the results 

are too sensitive to source position errors; in the latter case, the 

dose readings are so low that accurate values cannot be expected to 

be achieved in a hasty experiment such as this.) The results obtainable 

are as given in the following table: 

y r No. of M.F.P. *s 

( H x) 

D(l) , 

r ./hr. 

Factor A 

2 ’ 2 *4” 1.74 
o 

49.4 .505 2.03 1.03 

2*6" 2.53 51.3 .280 3.89 1.09 

3 ’ 4.76 56.4 .0504 27.7 1.40 

In the above table, 
D(l) 

(Experimental Lip Penetration Dose, roentgens) 

(Source strength, curies) x (Time, hours) 

These results are comparable to those of Clifford, noted in Section f. 
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j) Summary, discussion, conclusions. On the basis of the results analyzed 

in this report, it is obvious that an excellent agreement is found between 

Spencer’s theory and the experimental facts. This fact is probably true, 

regardless of the difficulties encountered in this experiment; for the 

values of dose-rates are obtained by integrating over the whole contaminated 

plane and are largely governed by the experimental results with the source 

within a few inches of the lip, and the experimental results seemed more 

self-consistent in this region. 

The results of the Clifford type analysis are inadequate to provide 

more than a qualitative conclusion. The results for a small number of 

mean-free-paths are fairly consistent with those of Clifford; and for 

o 
greater than 40 , a rising trend for higher values of the number of mean- 

free-paths is evident, again similar to Clifford’s results. However the 

trend seems more marked than in the case of Clifford’s results; and whether 

the effect is a true effect, because of the different gamma ray energies 

involved (one remembers that Clifford used cesium-137), or whether it 

is a result of poor data in the present experiment, there is no way of 

* 
saying definitely. 

Editorial comment: This experiment is being written up on the basis of the 

1962 Institute results. However, it might be noted that the 1963 Institute 

obtained values in this experiment which were somewhat lower, especially 

at higher values of r (larger number of mean-free-paths in concrete). Even, 

though the 1963 Institute results showed a rather unsatisfactory amount of 

individual scatter, results appeared on the whole to confirm the general 

shape of Clifford’s curves for R as a function of cp and number of mean- 

free- paths. 
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It is felt desirable to conclude this report with a list of 

recommendations and precautions which should be observed in future 

conduct of this experiment. 

1) The source used should be as small as possible, consistent with the 

requirements for safe and easy handling. It should be able to be 

exposed bare, and should be placed as close to the surface as possible. 

In fact, if the emphasis in the experiment is on lip penetration, it 

might be desirable to embed the source halfway into the concrete, by 

providing a slight recess in the concrete, with shape and size to 

accomodate the source snugly (personal comment from C. E. Clifford 

to A. B. Chilton). On the other hand, if the emphasis is on the 

skyshine component, it might be better to lay the source on the top 

of the concrete plane, without embedment (personal observation by 

John Batter to A. B. Chilton). In either case it is desirable to 

lay a sheet of lead between the source and the lip, of a thickness 

equal to the height that the source protrudes above the plane, so as 

to minimize the possible backscatter from the lip on the farther side 

of the foxhole. 

2) Because there is a severe dose-rate gradient as one passes into the 

foxhole from a point above the foxhole, there is danger of not having 

electronic equilibrium in the dosimeters used in the measurement, if 

they are of usual commercial type. In such case, it is important to 

enclose the chambers in air-equivalent (such as plastic) sleeves of 

not less than 1/8" thickness. The dosimeters should be calibrated 

with sleeves on. 
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3) If small chambers are used, such as pocket chambers, it is probably 

all right to place a number of them in the foxhole for a single 

run at close intervals down the axis, say every six inches. However, 

for larger chambers, especially with sleeves on them, it is likely 

that too many chambers cause problems with respect to shielding 

of the lower ones by the upper ones. In such case, intervals closer 

than one foot apart are not recommended. 

4) It is necessary that the dosimeters and sources used be calibrated 

so as to be consistent with one another. If possible, the source 

should be used to check the chambers’ calibrations. 

5) Any of the methods used to eliminate skyshine discussed earlier in 

this report can probably be made effective for this experiment; how¬ 

ever, it is not believed that the skyshine component can be adequately 

studied for its own sake within the bounds of time and effort prescribed 

for an Institute of this sort. This is mainly because appreciable 

skyshine contribution is caused by sources many hundreds of feet 

away from the foxhole; and to study the effect at such distances, 

very strong sources and/or long periods of time must be involved. 
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3. Duct Experiment' 

a) Purpose. To study the streaming of gamma radiation through ducts and 

to compare the theoretical and engineering method results with the 

experimental values. 

b) References and bibliography. 

1) J. C. LeDoux and A. B. Chilton, "Gamma Ray Streaming through 

Two-legged Rectangular Ducts,” Nucl. Sci. and Eng. 11, No. 4, 

362 (1961). Also published under the title, "Attenuation of 

Gamma Radiation through Two-legged Rectangular Ducts and Shelter 

Entranceways—An Analytical Approach,” U. S. Naval Civil Engineering 

Laboratory Note TN-383 (1961). 

2) D. W. Green, "Attenuation of Gamma Radiation in a Two-legged 

Ducts Using the Albedo Concept,” U. S. Naval Civil Engineering 

Laboratory Report R-195 (1962). 

3) J. M. Chapman, "Computer Calculation of Dose Rates in Two-legged 

Ducts Using the Albedo Concept,” U. S. Naval Civil Engineering 

Laboratory Report R-264 (1963). 

4) C. W. Terrell, A. J. Jerri, R. 0. Lyday, and D. Sperber, "Radiation 

Streaming in Shelter Entranceways,” Armour Research Foundation 

Report ARF 1158-12 (1960). 

5) D. J. Raso, "Monte Carlo Calculations on the Reflection and 

Transmission of Scattered Gamma Radiations,” Technical Operations, 

Inc., Report T0~B 61-39 (1961, revised 1962). 

6) A. B. Chilton and C. M. Huddleston, "A Semiempirical Formula for 

Differential Dose Albedo for Gamma Rays on Concrete,” Nuclear Sci. 



and Eng. 17, No. 3, 419 (1963). Also published as U. S. Naval 

Civil Engineering Laboratory Report R-228 (1962). 

7) "Shelter Design and Analysis, Vol. 1, Fallout Protection," Office 

of Civil Defense Compilation (Revised ed., 1962). (This is a 

revision of an OCD draft document commonly referred to as the 

"Engineering Manual." ) 

8) C. W. Terrell, A. J. Jerri, and R. 0. Lyday, "Radiation Streaming 

in Ducts and Shelter Entranceways," Armour Research Foundation 

Report ARF 1158A02-7 (1962). 

9) A. B. Chilton, "Further Analysis of Gamma Ray Attenuation in 

Two-legged Rectangular Ducts," U. S. Naval Civil Engineering 

Laboratory Note TN-412 (1961). 
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c) Facilities and apparatus used. 

1) Cast concrete structural segments, whichwhen put together, 

make up a concrete lined duct, with cross-section ll” x ll", with 

first leg of length 4’ and with second leg of variable length 

from 2’ to 4*. (See Figure II1-3-1.) 

2) Cobalt-60, of nominal strength 0.5 curies, with associated 

projection apparatus for storage and remote handling. 

3) 6 pocket type dosimeters, 200_mr. 

4) 1 low-level dose-rate meter (previously calibrated with respect 

to the source). 

5) Several dosimeter chambers of l“mr. and 10-mr. size, with associated 

charger-reader. 

6) Lead block for corner lip replacement. 

7) Several dozen lead brick, sandbags, bags of lead shot. 

8) Stand and clamp for holding source in place. 

d) Background. Knowledge of shield design is more advanced than knowledge of 

the transmission of radiation through ducts, although the latter has 

lately become the subject of intensive studies. Ducts of practical interest 

include radiation shelter entrances and ventilation and utility conduits 

piercing shelter walls. In the design of a shelter one must insure that 

necessary ducts and entrances do not compromise the specified protection 

factor. The otherwise satisfactory systems of shelter analysis and 

design require further refinement with respect to ducts. 

Efficient ducts have two or more legs to eliminate unscattered 

radiation and induce a maximum of scattering and absorption. Two factors, 

therefore, complicate the analysis of ducts. The first is intractable 
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geometry. The second is the necessity of accounting for multiple scattering. 

The geometric difficulties preclude use of the elegant analytic approximation 

methods that have proved so successful in other aspects of shelter analysis. 

Experimentation and Monte Carlo calculations are useful and necessary, but 

cannot serve national shelter programs until simple and accurate methods of 

analysis are evolved. Two current methods of analysis are available which 

permit a straight-forward analytical approach to the problem. 

Many variables appear in even the simplest duct problem. However, 

experimentation and analysis of idealized cases are desirable to give insight 

into duct phenomena so that more complex cases can be understood. 

* 
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FIGURE m-3-l 
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e) Procedure. 

1) 200-mr. chambers were placed at the middle of the corner position. 

2) As expeditiously as possible, the source was brought into position 

in the middle of the duct entrance. The source was left exposed 

for a predetermined length of time; then it was withdrawn expeditiously 

into the shielded container. 

3) The second leg was built to a length of 4’. The radiation field 

at the middle, sides, and bottom of the second leg was determined 

by means of the dose-rate meter and by a timed exposure of low level 

dosimeters. 

4) The second leg length was reduced to 3'; and step 3 was repeated, 

using the dose-rate meter. 

5) Step 4 was repeated, after the concrete corner had been removed 

and replaced with a lead block. 

6) The concrete corner block was replaced, the second leg was shortened 

to 2T, and step 4 was repeated. 

f) Theory. 

1) A somewhat tedious, but basically simple approach to radiation 

streaming through two-legged, rectangular ducts is provided by 

the LeDoux-Chilton technique (Reference 1), which essentially uses 

differential albedo to determine wall reflection by those areas 

which are in view both from the source end and the detector end 

of the duct system. The in-scattering contribution of the duct 

corner is added also. 

The originally prescribed method ignores the possibility of multiple 

reflection contributions, although these effects have been recently 

proved to be not unimportant (References 2 and 3). If considerations 

IV-69 



of multiple reflections are given the same type of treatment as the 

single reflections, the tediousness of the procedure is greatly 

compounded, and a programmed computer is needed to handle the problem 

(see Reference 3). An approximate way of doing the same thing is to 

multiply the results of a simpler type computation by factors to 

take account of multiple reflections. It is known, for example, 

that the attenuation factor at the end of the first leg is about 30% 

higher than that given by a simple inverse square relationship in 

the open (References 2 and 4); and the multiple reflection effect 

is such as to make the attenuation factor for the second leg about 

double the value given by considering only single reflections (Reference 

3) . 

The previous use of the single reflection approach by LeDoux 

and Chilton had been successful in matching experimental values 

because of the use by them of an assumption of istropicity of the 

albedo function, which provided values of albedo for insertion in the 

attenuation formulas that were too high. This procedure is outmoded by 

the more recent publication of good albedo data (References 5 and 6), 

but it can still be used if desired (see Reference 1). 

No detailed derivation of the LeDoux-Chilton formulas is 

considered warranted, since they are somewhat lengthy and the report 

* 
given as Reference 1 developsthem in detail. Section g illustrates 

* 
Editorial comment: The LeDoux-Chilton theory is discussed and developed 

more fully elsewhere in the present document. 
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the method by presenting a sample solution in detail. 

2) The method of handling ducts and entranceways given in the Engineering 

Manual (Reference 7) is quite simple in application, but rests upon 

rather crude theoretical considerations. Radiation coming down the 

first leg is simply computed as the direct contribution, subject to 

the inverse square relationship. This may be handled alternately 

by considering it proportional to the solid angle fraction of the 

entrance aperture. Since the corner acts as a new source for radiation 

down the second leg, the attenuation factor for this (and subsequent) 

legs is considered proportional to the solid angle subtended by the 

corner and with vertex at the end of the leg in question. The 

constant of proportionality is obtained empirically. It is said to 

be 0.1 for the second leg (including the first corner), and 0.5 for 

subsequent legs. There is some reason to suspect that the value of 

0.1 may be low in some cases (personal observation by J. C„ LeDoux), 

and there is experimental evidence (Reference 8) to suggest that 

a proportionality of 0.5 for the third leg is too high. LeDoux 

has made a suggestion that a value for the second leg of 0.2 would 

be safer. 

3) Based upon the original premises of the LeDoux-Chilton approach, 

Chilton (Reference 9) has developed an analytical method of obtaining 

the attenuation factor when the detector is off-center to one side 

or the other, that is, near either wall. Although this development 

suffers from the same inadequacy as the basic LeDoux-Chilton 

formulation, in that it only considers single reflections, the 
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relative values of the computed attenuation factors at the walls with 

respect to the LeDoux-Chilton computed value at the center may have some 

significance. If the multiple-reflected radiation varies from one side 

of the duct to the other in the same way that the singly reflected 

radiation does, these computed relative values should be valid for the 

experimental situation. On the other hand, one would expect the multiple- 

reflected radiation to be more divergent in direction than the singly 

reflected radiation and thus to be less likely to show a change with respect 

to a side-to-side variation in detector position. Therefore, we have a 

possible hypothesis at the opposite extreme which would predict no change 

in multiple reflection contribution with respect to sidewise change in 

detector position. Under the latter hypothesis, if the multiple-reflected 

radiation is approximately half of the total radiation the detector sees, 

for example, then one would predict that the experimental dose rate variation 

with respect to change in detector position should be about half that predicte< 

by Chilton's method of analysis. In actuality, one would expect the situation 

to be somewhere between these two extremes, so that at least there is a means 

of predicting an upper and a lower bound on the variation. 
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Source 

AREAS 1,2,5 & 6 ARE WALL AREAS, 

AREAS 3, 4, 7 8 8 INCLUDE THE TOP 

a BOTTOM AREAS OF THE 
INSIDE OF THE DUCT. 

DUCT GEOMETRY 

FIGURE m-3-2 
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g) Preliminary calculations. 

1) LeDoux-Chilton analysis. Sample calculation for L= 4'0”. 

See Figure III-3-2 for description of the geometric parameters. 

L = 4* = 48” 

L = 41 = 121.92 cm. 
2 

W = W = H = ll” = 27.94 cm. 
1 2 

E = 1.25 Mev . 
o 

. 3 
Concrete (lightweight) density, = 1.65 g./cm. 

At 1.25 Mev, „ 

-- = .0272 cm. /g. 

= .0449 cm. 
M* a 

At single scattering energy (^A35 Mev), 

01 

8 = 
2 

8. = 

3 

= .0296 cm 

M* a 
— .0488 cm 

w 11 

2L2 
2 x 48 

w 11 

2L 
1 

2 x 48 

H 11 

2L2 
2 x 48 

= 0.1146 

= 0.1146 

= 0.1146 

1+3 i - 3 (i -3 )2 (l -3 )3 

Si 1.1146 .8854 .784 .694 

3 2 1.1146 .8854 .784 .694 
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Scatter 

Area 

COS0 
1 

Formula Value 

sin9^ COS0„ 
2 

Formula Value 

Sln02 

A 
1 

W/24L1 . 1146 . 993 1.00 1.00 0 

A2 
1.00 1. 00 0 W/2L .1146 

2 
• 993 

A 
3 

H/2L1 . 1146 .993 H/2L2 .1146 • 993 

A4 
H/2Lx . 1146 .993 H/2L2 . 1146 • 993 

A 
5 

W . 1294 .992 1.00 1.00 0 

2Ll(1-e2) 

A6 1.00 1.00 0 W .1294 o 992 

2L2(1-V 

A 
7 H . 1294 .992 H/2L .1146 © 993 

2Li d-P2) 

A 
8 

H/2L1 .1146 .993 H .1294 • 992 

2L2(1-V 

COS0 = 
s 

; sin0 sin0 
I Z 

CO&9 - COS0, COS0 
1 2 

Scatter 

Area 
9 

COS0^ 

COS0 
z 

sinO^ 

sin0 

COS0 
s 

2 

0 
s 

cosT 

A 
1 

0 1146 0 - .1146 96.6° 

A2 
0 1146 0 - .1146 96. 6 

A 
3 

90° 0131 0 - .0131 90.8° 

A4 
90° 0131 0 - .0131 

o 
90.8 

A5 
0 1294 0 - .1294 97.4° 

A 
6 

0 1294 0 - .1294 97.4° 

A7 
90° 0148 0 - .0148 90.8° 

A 
8 

90° 0148 0 - .0148 
o 

90.8 
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Klein-Nishina Energy Scattering Coef. for 1.25 MeV, 

e 
s 

K (9 ) 
e s 

0 -26 
60 0.705 x 10 

65 0.573 

70 0.478 

75 0. 400 

80 0.344 

85 0.300 

90 0. 266 

95 0. 239 

100 0. 217 

105 0. 199 

110 0. 184 
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Albedo Computation (Reference 6): 

C K (0 )*1026 
e s 

+ C' 

1 4 

COS0^ 

COS0 
2 

C = 0.064 

C* = 0.0090 

Area K ( 0 ) 
e s 

C K ( 0 
e 

_ 26 
) C • K . 10 

s 
COS0^ cosQ^ 

a 

in26 x 10 
in 26 

x 10 + c* COS@2 
1 + 

COS0 

1 0. 232 .0148 .0238 . 1146 1.1146 .0214 

2 0. 232 . 0148 .0238 8.726 9.726 .00245 

3 0. 262 . 0168 .0258 1. 000 2. 000 . 0129 

4 0. 262 .0168 .0258 1. 000 2. 000 .0129 

5 0. 228 .0146 .0236 . 1294 1. 1294 .0209 

6 0. 228 .0146 .0236 7. 298 8.728 .00270 

7 0. 262 .0168 .0258 1. 129 2. 129 .0121 

8 0. 262 .0168 .0258 .886 1.886 .0137 

°b 

.0214 .00245 .0129 .0129 

1.1146 + .1146 x 1 . 1146 .8854 .8854 

= .0192 + .0192 + .0146 + .0146 

= .0676 

G = .8854 x .0209 + 2 x 0,0121_ 

2 x .0488 x 121.92 x .784 x 0.694 

.0185 .0242 

“6.47 + 6.47 
.00286 + .00374 

= .00660 
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, .8854 x .00270 + 2 x .1146 x .0137 

t2 " 2 x .00449 x 121.92 x .784 x .784 x .1146 

.00239 .00314 

. 771 

.00717 

.771 
.00310 + .00407 

ZN 
K (0 ) 

e s 

2L2 (l-g/ (1-|32>3 

ZN 

M- 

, 3 23 
No. of electrons/cm. = 4.97 x 10 

a =0.0449 cm. 
-1 

P< 

ZN 

2 
= 2.465 x 10 

26 

a 

*1 

-1 
= tan 

0 
• 

h- II 

. -1 
= tan 

0 
• 

t- 11 

0 11 to
 

0
 0 

1 

W, 

2L! 
= tan 

-1 11 

2 x 48 (.8854) 
= tan 

-1 

W, 

2L2 (1~V 

= tan 
-1 11 

2 x 48 x .8854 
= tan 

-1 

K (0 ) = .398 x 10 
e s 

 2.465 x .398 

2' 

-26 

s 2 x 121.92 x .694 x .694 

= .00836 

. 981 

117.4 

= .0676 + .00660 + .00717 + .00836 
tot 

= .0898 

Attenuation factor for second leg is given by 

F2 =4W3Gtot 

= 4 x .1146 x .1146 x .1146 x .0898 

= .000541 

0.1294 

0.1294 
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To account for multiple reflection, multiply this value by 2. 

F ’ = 2 x .000541 = .00108 

The value of attenuation factor for first leg, based on direct dose, is: 

F = _1_ = 1 = . 0625 

2 2 

Li 4 

If wall reflections are included, multiply this value by 1.3, 

F ' = .0625 x 1.3 = .08125 

Similar calculations for L = 2* and 3* give the following results: 

F '(2T) = 2 x .00386 = .00772 

F '(3') = 2 x .00120 = .00240 
& 

Attenuation factor for L = 3', with lead corner lip, involves only 
£ 

G , since it is assumed no radiation penetrates the lip. It can be 
b 

readily found that 

= .0784 , for L2 = 3 

F = 4p £ 3 G x2 (including multiple reflection factor) 
2 12 3b 

= .00168 

This value is .00168 , or 70% of the value with regular 

.00240 

concrete lip. 

2) Attenuation calculation according to the Engineering Manual (Reference 7). 

240-816 0-67— 46 IV-T9 



1 
0.0625 

L 
2 

e ri 0) 
F2 = °a Rf = F1F2 

F^ = 0.2 
Rf =F1F2 

2 ’ 1.0 3.27 .055 .0055 .000344 .011 .000688 

3 ’ 1.0 5.45 .020 .0020 .000125 .004 .000250 

4 * 1.0 7.64 .0085 .00085 .000053 .0017 .000106 

3) Effect of moving detector to walls, at L = 4’: according to Reference 9, 

this is best accomplished by means of a table of comparative ratios with 

the individual area contributions in the original case. The original case 

is called the "C~C" case; the situation in which the detector is moved to 

the wall farthest from the first leg is called the "C-F" case; the detector 

at the nearer wall gives the "C-N" case. 

There is no G contribution for the C~N case; for the C~F case, 

al 

II o
 0

 

-1 

012 
= tan .258 

9 
0

 rH
 • 

00 II 

s 

K ( 9 ) = .514 
e s 

G a .0216 
s 
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The Table of Individual Contributions Follows 

Area C-C 

Case 

Multipliers 

for C-F 

C-F 

Case 

Multipliers 

for C-N 

C-N 

1 .0192 1.115 . 0214 .885 .0170 

Gb 
2 .0192 1 .0192 1 .0192 

3 .0146 1.115 .0163 .885 .0129 

4 .0146 1 .0146 1 .0146 

Gtl 
5 .00286 2 .00572 0 0 

°t2 
6 .00310 1 .00310 1 .00310 

Gtl 
7 .00374 2 .00748 0 0 

°t2 
8 .00407 1 .00407 1 .00407 

G 
s 

Lip .00836 - .0216 - 0 

G .0898 .1135 .0709 

It is seen that the C-F case gives a result of about 26% higher than the 

C-C case, whereas the C-N case gives a result of about 21% lower. 
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h) Data and data reduction. 

All runs were made with the 0.47 curie cobalt-60 source. The 

locations of the instruments are as indicated in Figure III-3-4. 

Measurements with 200-mr. dosimeters. 

(All exposure times are 10-minutes.) 

Detector 

Position 

Detector 

No. 

Reading, mr. Dose-rate, 

mr./hr. 

Position 

Average After Before Net 

1 095 93 0 93 558 

540 1 091 88 6 82 4 92 

1 074 96 1 95 570 

2 086 91 1 90 5 40 

540 

2 095 92 2 90 540 

3 076 92 7 85 510 

540 

3 082 98 3 95 570 

4 075 92 3 89 534 534 
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c 

SECTION B-B 

FIGURE m-3-4 
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Measurements (mr./hr.) with Dose-rate meter (Bendix No. 69) 

Correction factors: 1.35 for 10-scale 

1.05 for 100-scale 

Unless stated, readings are with concrete corner lip. 

Posi- 
L2 

= 2 1 
L2 “ 

3 ’ L 
2 

* 
3 ’ 

L2 
4’ 

tion Raw Corr. Raw Corr. Raw Corr. Raw Corr. 

10 205 
x 10 

2.77 
.045 
x 10 

.61 
.04 
x 10 

.54 
.035 
x 10 

.47 

11 . 45 x 
.05 x 

10 
100 

6.10 
5.25 

.095 
x 10 

1.28 
.055 
x 10 

.74 
.06 
x 10 

.675 

12 .062 
x 100 

8.40 
.165 
x 10 

2.23 
.12 
x 10 

1.62 
.08 
x 10 

1.08 

13 .056 
x 100 

7.60 
.15 

x 10 
2.02 

.135 
x 10 

1.82 
.08 

x 10 
1.08 

14 .40 

x 10 
5.40 

.11 
x 10 

1.50 
.12 

x 10 
1.62 

.08 

x 10 
1.08 

15 .26 
x 10 

3.50 
.065 

x 10 
.88 

.09 
x 10 

1.21 
.059 

x 10 
.77 

16 .15 
x 10 

2.00 
.035 

x 10 
.47 

.045 

x 10 
0.61 

.05 

x 10 
.675 

17 .40 

x 10 
5.40 

.05 
x 10 

.675 
.065 
x 10 

0.88 
.055 

x 10 
.74 

18 .04 
x 10 

.54 
.08 
x 10 

1.08 

* 
With lead corner. 

The corrected values from this table are plotted in Figure I1I-3-5. 
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i) Results. 

1) Measurements at corner. The resulting values at the corner, are 

all seen to be essentially 540 mr./hr., regardless of where the 

detector is placed in the corner. Assuming that this is the correct 

value, the resulting experimental reduction factor for the first leg 

is taken to be .540/(14.0 x .470) , or .0821. This is to be compared 

with the theoretical values of (without consideration of wall 

reflection) of .0625, or with the theoretical value of F ’ (including 

wall reflections) of .08125. 

2) Measurements at end of second leg. The measurements which are 

displayed in Figure III-3~5 are subject to an appreciable background 

of radiation which either comes somewhat directly from the source 

through the sides of the duct or results from air and ground scatter 

contributions outside the duct system. The most practical way of 

determining this background in the present series of experiments 

seems to be to draw tangent lines underneath the individual curves 

and consider that it represents the background. This assumes that 

just to either side of the opening at the duct exit, the radiation 

level is all due to background. One may then obtain net readings 

which represent only duct streaming by direct reading of the 

differences from the graph. This gives the results displayed in 

the following table. Values are in mr./hr. 

Length, second leg 2 ’ 3 ’ 3* (lead lip) 4 ’ 

Far (left) side 6.4 1.7 1.1 0.6 

Center 5.6 1.5 1.2 0.55 

Near (right) side 3.4 1.0 1.0 0.5 
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These results may be readily converted into second-leg 

attenuation factors, by dividing by 540 mr./hr. This gives a similar 

table. 

Length, second leg 2 ’ 3 ’ 3’ (lead lip) 4 ’ 

Far (left) side .0119 .0031 .0020 .0011 

Center .0104 .0028 .0022 .0010 

Near (right) side .0063 .00185 .00185 .0009 

It is possible to compare these attenuation factors with those 

previously computed from theory or by engineering formulas. It is 

also possible to compute the dose-rates at the end of the second leg 

by applying the theoretical values of attenuation to the reference 

dose-rate and comparing the results to the dose-rate experimental 

values given in the prior table. Figure III-3-6 presents the results 

of this type of comparison. 

The experimental values of dose-rate are also presented in 

Figure III-3-7 as a function of co , the solid angle fraction of the 

duct corner as seen from the end of the second leg. This figure also 

provides two theoretically determined values of dose-rate, according 

to the Engineering Manual approach, with the two suggested values of 

the proportionality constant, 0.1 and 0.2, for the sake of comparison. 

The reference dose at the corner is taken as 540 mr./hr. 
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j) Summary, discussion, and conclusions. Reasonably good agreement 

appears to exist between LeDoux-Chilton calculations and experiment, 

as shown in Figure III-3-6, provided appropriate means are taken to 

account for the multiple reflection process in the theoretical analysis. 

The agreement is better for large values of L /W , which is consistent 

with the assumptions inherent in the theory. Considering the appre¬ 

ciable amount of background present, the rough means of determining 

it, the questionable accuracy of the detection instrument for low 

energy scattered radiation, the approximation inherent in estimating 

the multiple-scattering factor and other possible sources of error— 

* 
the agreement must be considered quite fortuitous. 

As seen in Figure III-3-6 and -7, the Engineering Manual method 

appears to be very roughly correct, but a factor of 0.2 rather than 0.1 

appears to be necessary to give results on the safe side—at least for 

ducts of this general size. 

3|< 

Editorial comment: The report of this experiment is based upon the work 

of the 1962 Institute. It is only fair to state that, during both the 

summers of 1962 and 1963, measurements at the end of the second leg with 

integrating dosimeters of the 1- and 10-mr. size were made, which gave 

results generally higher, and definitely more erratic, than those reported 

herein with dose-rate meters. These dosimeter data were not included in 

this present report, not so much because they do not fit the theory so well, 

but rather because the interfering background for such measurements could 

not be quite so readily estimated. The reason for the dubious results 

with the integrating chambers is a matter of speculation, but it is very 

probably related to the ornery nature of such instruments when used in 

the hot, humid, and dusty environment of a Kansas hilltop in July. 
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The reduction in dose at the end of the second leg when the lead 

corner lip was inserted, thus cutting out essentially all the corner 

lip transmission and scattering effects, is noted as expected in the 

experimental results, although the amount of the reduction (on the 

order of 20% for measurements on the axis 3’ down the second leg) 

is somewhat lower than that expected from theoretical considerations 

(a reduction of 30% on the basis of single-reflection LeDoux- 

Chilton analysis). The reason for this is believed to be the fact that 

the lead corner blocks did not fit well, and there were substantial 

cracks in the lead lip, inadequately filled with small irregular bits of 

lead. This probably allowed some radiation leakage. 
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4. Blockhouse Experiment— Ground Contamination 

a) Purpose. To measure the protection afforded by an idealized structure 

against the radiation from simulated ground fallout contamination, to 

compare experimental results with theoretical predictions, and to 

obtain a knowledge of how protection from ground contamination varies 

within a structure. 

b) References and bibliography. 

1) "Operation of Tech/Ops Model 539 Duplex Hydraulic Source Circulation 

System,” Technical Operations, Inc., Manual No. TO~B 62-38 (1962). 

2) J. F. Batter, et al., "An Experimental Evaluation of Radiation 

Protection Afforded by a Large Modern Concrete Office Building,” 

Technical Operations, Inc., Report TO~B 56~5 (1959). Also 

published as Atomic Energy Commission Report CEX-59.1 (1959). 

3) J. F. Batter, et al., "Attenuation of Cobalt-60 Radiation Distributed 

about a Concrete Blockhouse," Technical Operations, Inc., Report 

TO-B 61-34 (1961). 

4) J. F. Batter and A. W. Starbird, "Attenuation of Cobalt-60 

Radiation by a Simple Structure with a Basement," Technical Operations, 

Inc., Report TO~B 61~38 (1961). 

5) L. V. Spencer, "Structure Shielding against Fallout Radiation from 

Nuclear Weapons," National Bureau of Standards Monograph 42 (1962). 

6) "Shelter Design and Analysis, Vol. 1, Fallout Protection," Office 

of Civil Defense Compilation (Revised ed., 1962). (This is a 

revision of an OCD draft document commonly referred to as the 

"Engineering Manual.") 
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7) Fallout Shelter Surveys: "Guide for Architects and Engineers," 

Office of Civil Defense Document NP-10-2 (1960). (This is 

commonly referred to as the "Architect-Engineers’ Guide.”) 

8) C. Eisenhauer, "An Engineering Method for Calculating Protection 

afforded by Structures against Fallout Radiation," National 

Bureau of Standards Report 7810 (1963). 
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c) Facilities and apparatus used. 

1) Concrete blockhouse, surrounded by level plain, at least out to 

160' for one quarter of the perimeter. (See Fig. III-4-1.) 

2) 1 cobalt-60 source, about 100 curies in strength, suitable for 

being pumped through polyethylene tubing. 

3) Apparatus associated with the hydraulic pumping system, such as pump 

and valving assembly, water reservoir tank, lead "pig" for safe 

storage of source. (See Reference 1.) 

4) About 5000 feet of polyetheylene tubing. 

5) About 20 each of various sized dosimeter chambers, such as 1-mr., 

10 mr.y 200-mr., and 2~Z. 

6) Spotting telescope, 20-power. 

d) Background. Analysis of idealized structures is required to bridge the 

gap between theoretical analysis of simple shielding elements and the 

analysis of practical structures. 

Cobalt-60 is a practical simulant for fallout, especially as used in 

the pumped source technique (see References 1~4). Theoretical curves are 

available for cobalt-60, as well as for mixed fission products (see 

Reference 5). Procedures are available for analysis of structures in 

the. OCD Engineering Manual (Reference 6). These procedures involve 

certain approximations, idealizations, and simplifications, and 

# 

experimental confirmation is very desirable. 
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e) Procedure. 

1) The polyethylene tubing for the pumped source was laid out in each 

of three areas as shown in Figures III-4-2, III-4-3, III-4-4, and 

III-4-5, for three runs, made in successive periods. 

2) For each of the three runs, dosimeters of appropriate size were charged 

and placed in the blockhouse to be irradiated from the appropriate 

source area. The dosimeter locations for irradiations for the three 

successive runs are as shown in Figures III-4-6, III-4-7, and III-4-8. 

3) For each of the three runs, the source was pumped through the tubing 

at a constant rate of speed, so that, since the tubing in each area 

was laid out at constant spacing, a uniformly distributed fallout 

field was simulated. (Operation of the pumped source system, 

including all safety precautions, is described in detail in Reference 

1.) The operation was controlled and observed from a safe distance 

(about 500 feet). 

4) After each run was completed, the dosimeters were recovered and 

measured. Data was reduced, the "far field" correction was applied, 

and comparisons were made with theory. 

f) Theory. 

1) The reduction factor for a point in the middle of the first floor of 

the blockhouse may be obtained by adapting a method in Spencer's 

Monograph (Reference 5) which provides the following formula, 

slightly modified to suit the present case: 

R = (4) (0.9) W(X, d) W 1 (X,d ,co ) , 

where 

W . (X,d, ui ) = b(X) W (d, 00 ) + 1.15 (1 - b(X) ) PS (00 , u>) , 
cl 1 cl cl 

and 

b(X) = P(o)(X)/P(X) IV-103 



In the above expressions, W(X,d) represents the barrier factor for a wall 

W (X,d,uo) represents the geometry factor, split into two parts in 
3 -L 

proportion to the amount which penetrates in unscattered fashion , 

(b(X)),and that which is the scattered component, (1 - b(X)). The 

factor 4 in the above expression takes care of the four walls. 

The Engineering Manual (Reference 6) provides a formula which 

is somewhat different in detail, but in principle is the same approach 

as that previously given: 

R„ = B (X,d) G , 
f w g 

where 

G ( G ((*>.) + G(w ))S E + (G(w ) + G (<*> )) (1 “ S ) . 
g = s 1 suw d 1 au w 

In the Architect-Engineers' Guide (Reference 7), all factors 

are combined so that the reduction factor for the middle of the first 

floor against ground contamination is obtained from a single graph with 

wall thickness and floor area as arguments. For the basement center, 

a similar graph is provided, with an additional chart to give the 

attenuation factor for the basement ceiling. 

For a detector position in the middle of the basement, the 

Engineering Manual provides the following formulas: 

R „ = B B ' G 
f w o g 

where 

G = (G(w') - G(tO-’)) S E + (G (<*>' ) - G (w ’)) (1 - S ) 
g SU s 1 W vau a 1 w 

It might be noted that the data given in the Engineering 

Manual and the Architect-Engineers' Guide are for fallout radiation 

1.12 hours after fission, whereas the experiment reported on herein 

uses cobalt-60. However, a comparison of the fundamental curves in 
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Spencer's Monograph upon which the information in the Manual and the 

Guide is based indicates little variation between the fallout data and 

the equivalent data for cobalt-60, at least with respect to those 

pertinent to the formulas displayed above. Consequently, it is adequate 

to compare theoretical values based on the fallout attenuation 

computations with experimental values based on the use of cobalt-60 as 

a simulant. 

2) In determining the experimental values of the reduction factor, one 

should, after correcting the data by means of calibration charts 

provided, account for the fact that the simulated field did not completely 

surround the structure but only a quarter(or an eighth)of the perimeter was 

surrounded. This is readily done, for example, by multiplying the center 

values by four. Readings for eccentric positions can be obtained by 

adding readings for corresponding positions in the four quarters of the 

structure. In case the field only went an eighth of the way around 

the structure, the sum of the four values must be multiplied by two. 

After this step, the contributions from the three field areas 

must be added together for the same detector positions. This however, 

leaves unconsidered the possible contribution beyond the limits of 

the finite fields actually covered with the simulated fallout. This 

so-called "far field" contribution can be estimated in the following 

way. For every detector point, one would expect the ratio of the 

"far field" contribution to the contribution from Area 3 to be 

almost the same. We can readily estimate this value for the center 

of the blockhouse, 3' above the plane on contamination, and this 
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factor will be used as a multiplier of the Area 3 contribution, 

in each case, to estimate the far field. The factor is readily 

seen to be: oo 

'160. 03 
B(|ir) e1^ (1/r) dr 

C. F. = 

160.03 

80.06 
B(p-r) e (l/r) dr 

where (j, is the total attenuation coefficient for cobalt-60 gamma rays 

in units of ft. \ In this expression, B(p,r) can be approximated by 

the following formula (Reference 8): 

B( (j, r) = 1.11 + .529|j,r , 

which is reasonably valid over the distances involved in the above 

expression. (Although the above formula for B is not expected to be 

very accurate beyond a thousand feet, the contribution to the integral 

beyond this distance is small, and the error is minor in using it.) 

Figure III-4-9 

g) . Preliminary calculations. 

1) Theoretical values at first floor center position, from Spencer's 

Monograph. 

e = 0.4, T) = 1.0, ou = 0.17 

First floor above ground at 4s level -- center: 
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D/D = 0.9 W(x,d) W (x , d , (1) ) 4 
o al 

where W(x,d) = 0.1 

W (x, d ,0)) = b (x) W (d , (JO) + 1.15 (l-b(x)) PS , 03 ) 
ala a 

Therefore, 

D'D - (0.9) (0.1) (0.5) (4.0) = 0.18 
o ■ 

2) Theoretical values at center positions, from Engineering Manual. 

03 
U 

0) 
1 

03 , 03 
1 1 

e 1 1 1 1 

T] 0.53 0.32 1.3 0.5 

'03 0.58 0.73 0.24 0.6 

G 
d 

- 0.63 - - 

G 
a 0.080 - 0.095 0.078 

G 
s 

0.345 0. 262 0.45 0.335 

B =0.18 
w 

S =0.67 
w 

B’ = 0.06 
o 

E =1.41 

First floor at 3’ level-~center: 

Rf = [<V »i ) + G ( a; )) S E + (G ( 03, ) + G ( ^ )) (1 ~ S )> B 
suw dl au w(e 

Rf = 0.145 

Basement at the 3’ level"center: 

= !(G ( 0) i) - G ( u)-i ,)) S E + (G ( U) )- G ( 03, ,) (1-S) BB' 
isu s 1 w a u' a 1 w/eo 

Rf = 0.001. 

3) Theoretical values at center positions, from Architect-Engineers Guide 

-c 2 
On first floor, X = 69psf and area = 400 ft. ; 

w 

therefore R^, = 0.16, from Chart 3. 
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For basement, same data: and X = 55 psf there- 
o r 

fore, = .015 x .07 = .001, from Charts 4 and 1. 

4) Theoretical values at middle of wall, from Engineering Manual. 

Theoretical dose against wall, 1st Floor, 3’ level, from Engineering 

Manual. 

R„, = 5 GO = 1) * B = 0.09 
f 1 w 

S =0.67 
w 

(1 - S ) = 0.33 
w 

E = 1.34 

B = .18 
w 

G = (G (co ) + G (go,) ) S E = .485 
s s u si w 

G = (G (go ) + G (go ) ) (1 - S ) = .219 
D a u d 1 w 

G = G + G = .704 
g s D 

G /2 = actual situation, since G is based on a structure of 
g g 

double size , 

Therefore: R = \ x 4.707 x .18 = 0.0634 
X z 

Rf = Rfl + Rf2 = -09 + *063 =-153 

GO 
U 

GO 
3. 

L 37.8 37.8 

W 18.9 18.9 

e 0.5 0.5 

z 5.0 3.0 

'll .265 .159 

GO .65 0.78 

G 0.31 0.23 
s 

G 
a .074 — 

Gd 
— .59 
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5) Calculation of the "far field"' correction factor. 

M- 

M- 

M- 

= 2.064 

= 1/525 

• 80.06 = .1525 

• 160.03 = .3048 

”M>r 

(1.11 + . 529 |ir) e 
dr 

r 

El (.1525) + .529 e * 1525 

= 1.382 

-p,r 
(1.11 + . 529 |j,r) e 

dr 

r 

Ex (.3051) + .529 e *3051 

C„F. 
1.382 

2.064 - 1.382 
2.03 

iv-109 



h) Data and data reduction. 

Area l--Ground Floor (First Run) 

Instrument 

Number 

Meter 

Size 

Position Zero 
Reading 

Corrected 

Reading 

Dose 

(r.) 

Normalized 

Dose (r.) 
x) y Z 

0060 2r 18, 10 3 0 27 .306 2.27 

148 200mr 18, 18 3 3 140 .140 1.04 

0048 2r 10, 18 3 0 24 .275 2.04 

0050 
tt 

2, 18 3 0 18 .2 1.49 

0054 
tt 

2, 10 3 0 86 .99 7.36 

0051 
tt 

2, 2 3 0 180 2.065 15.34 

143 20r 2,2 3 0 2.1 2.1 15.60 

0047 2r 10, 2 3 0 82 .94 6.98 

0045 
tt 

18, 2 3 0 24 .275 2.04 

0059 
tt 

10, 10 0 0 57 .650 4.83 

0053 
tt 

10, 10 3 0 56 .640 4.76 

0055 
tt 

10, 10 3 0 50 .575 4.27 

0056 
tt 

10, 10 3 0 48 .550 4.09 

0063 
tt 

10, 10 6 0 49 .560 4.16 

0064 
tt 

10, 10 6 0 44 .5 3.72 

0062 
tt 

10, 10 8 0 41 .470 3.49 

Time of run = 22 minutes 

A 

C T 
D 

281_ 

103 x .367 
= 7.43 D 

Where 

A = 281 sq. ft. 

C = 103 curies 

T = 22 min. = .367 hr. 

D = Corrected dose readings. 

R = Normalized values, (r/hr.) / (curies/sq. ft.) 
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Area 1—Ground Floor (Second Run) 

Instrument Meter Position Zero Corrected Dose Normalized 
Number Size X y z Reading Reading (r.) Dose (r.) 

0060 2r 18, 10 3 0 29 .330 1.70 

77 200mr 18, 18 3 0 210 .21 1.08 

0048 2r 10, 18 3 0 31 .35 1.81 

0053 
tt 

2, 18 3 0 29 .33 1.70 

0054 
tt 

2, 10 3 0 130 1.49 7.69 

0057 
tt 

2, 2 3 0 off 

scale 

2+ (?) 10.3+(?) 

144 20r 2, 2 3 0.2 2.7 2.7 13.93 

0045 2r 10, 2 3 0 119 1.365 7.04 

0055 
tt 

18, 2 3 0 25 .29 1.50 

0056 
tt 

10, 10 0 0 60 .68 3.51 

0062 
tt 

10, 10 3 0 68 .775 4.00 

0063 
tt 

10, 10 3 0 76 .865 4.46 

0064 
tt 

10, 10 3 0 68 .775 4.00 

0047 
tt 

10, 10 6 0 67 .77 3.97 

0059 
tt 

10, 10 6 0 68 .775 4.00 

0051 
It 

10, 10' 8 0 72 .82 4.23 

Time of run = 31 minutes 42 sec. 

_A  _ 281_ 

R = D CT " D 103 x .5283 

Where 

A = 281 sq. ft. 

C = 103 curies 

T = .5283 hrs. 

5.16 D 
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Area 1—Basement 

Instrument 

Number 

Meter 

Size 

Posit] Lon Zero 
Reading 

Corrected 

Reading 

Dose 

(mr.) 

Normalized 

Dose (mr.) X y z 

121 200 2, 2 7.5 8 53 53 273 

9 10 2, 2 7.5 0 off scale ? ? 

149 200 2, 2 6 22 22 22 114 

14 10 2, 2 6 0 off scale ? ? 

96 200 2, 2 3 1 11 11 56.8 

4 10 2, 2 3 0 137 14.1 72.8 

111 200 18, 2 7.5 8 2 2 10.3 

23 10 18, 2 7.5 0 56 5.7 29.4 

120 200 18, 2 6 8 3 3 15.5 

12 10 18, 2 6 0 48 4.9 25.3 

151 200 18, 2 3 1 5 5 25.8 

27 10 18, 2 3 0 38 3.9 20.1 

83 200 18, 18 7.5 2 7 7 36.1 

16 10 18, 18 7.5 0 33 3.35 17.3 

110 200 18, 18 6 8 1 1 5.2 

6 10 18, 18 6 0 29 2.95 15.2 

152 200 18, 18 3 8 3 3 15.5 

20 10 18, 18 3 0 27 2.75 14.2 

112 200 2, 18 7.5 5 5 5 25.8 

24 10 2, 18 7.5 0 off scale ? 

150 200 2, 18 6 3 3 3 15.5 

19 10 2, 18 6 0 54 5.5 28.4 

93 200 2, 18 3 1 2 2 10.3 

18 10 2, 18 3 0 31 3.16 16.3 
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Instrument 
Number 

Meter 

Size 

Position Zero 

Reading 

Corrected 

Reading 

Dose 

(mr. ) 

Normalized 

Dose (mr.) X y z 

84 200 10, 10 7.5 9 3 3 15.5 

5 10 10, 10 7.5 0 81 8.25 42.6 

148 200 10, 10 6 4 12 12 55.1 

8 10 10, 10 6 0 136 12.9 66.6 

89 200 10, 10 3 3 11 11 56.8 

25 10 10, 10 3 0 150 15.5 80.0 

95 200 10, 10 3 9 9 9 46.4 

87 200 10, 10 3 1 9 9 46.4 

26 10 10, 10 3 0 144 14.8 76.4 

11 10 10, 10 3 0 129 13.2 68.1 

R = 5.16 D, as for 1st Floor 
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Inst 
Numb* 

089 

120 

0054 

0060 

0058 

152 

0063 

148 

095 

127 

084 

111 

0051 

149 

109 

083 

Area 2—Ground Floor 

Meter Position Zero Reading Dose Normalized 

Size X y z Reading (mr. ) Dose (mr.) 

200mr 18, 10 3 3 59 .059 4.07 

11 
18, 18 3 9 53 .053 3.65 

2r 10, 18 3 0 11 .110 7.58 

11 

2, 18 3 0 12 .125 8.61 

11 

2, 10 3 0 16 
off scale 

.180 12.40 

200mr 2, 2 3 4 218 .218 15.02 

2r 2, 2 3 0 14 .160 11.02 

200mr 10, 2 3 3 124 .124 8.54 

11 
18, 2 3 0 53 .053 3.65 

11 
10, 10 0 4 79 .079 5.44 

11 
10, 10 3 7 96 .096 6.61 

11 
10, 10 3 1 96 .096 6.61 

2r 10, 10 3 0 11 .110 7.58 

200mr 10, 10 6 2 95 .095 6.55 

11 
10, 10 6 2 104 .104 7.17 

11 
10, 10 8 5 92 .092 6.34 

Time of run = 39 minutes 15 sec. 

Where 

4643 
103 x .654 - 68.9 D 

A = 4643 sq. ft. 

C = 103 curies 

T = . 654 hrs.. 
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Area 2—Basement 

Instrument 
Number 

Meter 
Size 

Position Reading Dose 

(mr. ) 
Normalized 
(mr.) X y z 

42 10 2, 2 7.5 41 4.20 289 

3 10 2, 2 6 17 .75 51.7 

4 1 2, 2 3 30 .49 33.8 

12 10 18, 2 7.5 15 1.55 106.8 

18 10 18, 2 6 5 .53 36.5 

39 1 18, 2 3 30 .49 33.8 

8 10 18, 18 7.5 16 1.65 113.7 

6 10 18, 18 6 7 .73 50.3 

29 1 18, 18 3 27 .44 30.3 

20 10 2, 18 7.5 11 1.15 79.2 

16 10 2, 18 6 5 .53 36.5 

41 1 2, 18 3 27 .44 30.3 

9 10 10, 10 7.5 13 1.35 93.0 

5 10 10, 10 6 12 1.23 84.7 

30 1 10, 10 6 76 1 .25 86.1 

23 10 10, 10 3 16 1.66 114 

28 1 10, 10 3 71 1.17 80.6 

31 1 10, 10 3 71 1.17 80.6 

R = 68.9 D, as for 1st floor. 
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Area 3—Ground Floor 

Instrument 
Number 

Meter 
Size 

Position Zero 
Reading 

Corrected 
Reading 

Dose 
(r.) 

Normalized 
Dose (r.) X y z 

112 200mr 18, 10 3 5 16 .016 1.23 

84 
tt 

18, 18 3 1 18 .018 1.38 

095 
tt 

10, 18 3 5 19 .019 1.46 

121 
tt 

2, 18 3 0 30 .03 2.30 

089 
tt 

2, 18 3 3 35 .035 2.69 

149 
tt 

2, 2 3 2 30 .03 2.30 

148 
it 

10, 2 3 7 13 .013 1.00 

083 
tt 

20, 2 3 1 8 .008 0.61 

111 
tt 

10, 10 0 3 9 .009 0.69 

109 
tt 

10, 10 3 3 24 .024 1.84 

147 
tt 

10, 10 3 0 140 .14 10.75 

096 
tt 

10, 10 3 2 22 .022 1.69 

152 10, 10 6 9 23 .023 1.77 

120 
tt 

10, 10 6 5 27 .027 2.07 

127 
tt 

10, 10 8 9 22 .022 1.69 

Time of run = 57 minutes 11 sec. 

R D 
A 
CT 

Where 

D x 7540 
103 x .953 

76.8 D 

A = 7540 sq. ft. 

C = 103 curies 

T = .953 hr. 
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In: 

Nui 

16 

4 

41 

8 

3 

31 

18 

9 

30 

20 

5 

39 

6 

23 

12 

29 

28 

Area 3— Basement 

Meter 

Size 

Position Reading Dose 

(mr) 
Normalized 

Dose (mr) X y z 

10 2, 2 7.5 3 .33 25.3 

10 2, 2 6 6 .64 49.2 

1 2, 2 3 5 .08 6.1 

10 18, 2 7.5 off scale 9 

10 18, 2 6 5 .54 41.5 

1 18, 2 3 9 .15 11.5 

10 18, 18 7.5 2.8 .30 23.0 

10 18, 18 6 4 .43 33.0 

1 18, 18 3 13 .21 16.1 

10 2, 18 7.5 3 .33 25.3 

10 2, 18 6 4 .43 33.0 

1 2, 18 3 6 .10 7.7 

10 10, 10 7.5 7 .73 56.1 

10 10, 10 6 9 .95 73.0 

10 10, 10 3 10 1.05 80.6 

1 10, 10 3 16 .26 20.0 

1 10, 10 3 17 .28 21.5 

R = 76.8 D, as for 1st Floor. 
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i) Results. Experimental reduction factors are listed herein, as 

computed from the foregoing data. It is pointed out that a certain 

amount of smoothing and selection of the data were necessary, since 

some of the data appeared quite erratic, especially in the basement. 

The resulting values, since they contain this judgment factor, are 

not entirely objectively arrived at. However, it is believed that 

they are roughly valid; and evidence of this may be seen in the 

degree of internal consistency among the separately arrived at 

computations for results from the three separate areas. 

1) Experimental data (corrected to full circle source) for first 

floor, and normalized•to a source strength of 1 curie/sq. ft. 

for 1 hour. 

Location Area 1 

(r.) 

Area 2 

(r.) 

Area 3 

(r.) 

Far field 

(r.) 

Total 

(r.) 
Rf 

Ht. 0’6" 

Center 
14.0 21.6 5.5 11 .2 52.3 .107 

Ht. 3’ 

Center 
16.0 26.3 14.2 28.8 85.3 .174 

Ht. 6’ 

Center 
16.0 27.4 15.4 31.3 90.1 .184 

Ht. 8’ 

Center 
16.9 25.2 13.5 27.4 83.0 .169 

Ht. 3’ 

Corner 
18.2 30.8 13.2 26.8 89.0 .182 

Ht. 3 T 

Side 
18.2 32.3 12.8 26.0 89.3 . 182 

In this table, the values of are obtained by dividing the total 

normalized dose to the reference dose in the open, under the same 

conditions, which amounts to 490 r./hr. 
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2) Experimental data (corrected to full circle source) for basement, 

and normalized to a source strength of 1 curie/sq. ft. for 1 hour. 

Location Area 1 

(mr. ) 

Area 2 

(mr. ) 

Area 3 

(mr. ) 

Far Field 

(mr. ) 

Total 

(mr. ) 
Rf 

Ht. 3 ’ 

Center 
250 325 172 349 1096 .0022 

Ht. 6T 

Center 
256 349 585 1188 2378 .0049 

Ht. 7.5’ 

Center 
281 377 449 911 2018 .0041 

Ht. 3’ 

Corner 
111 129 63 128 431 .00088 

Ht. 6’ 

Corner 
182 177 314 637 1310 .0027 

Ht. 7.5’ 

Corner 
345 595 198 402 1540 .0031 
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j) Summary, discussion, and conclusions. The comparison between ex¬ 

perimental results and the predictions of various theoretical 

approaches is indicated in the following table. 

Theoretical 

Position Spencer’s Engineering Arch.-Eng. Experimental 

Monograph Manual Guide 

First Floor 

Ht. 3 1 

Center 
.145 .16 .174 

Ht. 4’ 

Center 
.18 

Ht. 6’ 

Center 
.184 

Ht. 3’ 

Side Wall .153 .182 

Basement 

Ht. 3 T 

Center 
.001 .001 .0022 

It is seen that the theoretical and experimental values are within 

fairly reasonable agreement, considering the approximations inherent 

in the theoretical approach as well as the scatter in the experimental 

results. 

There is one important exception, however, and that is in the 

basement. Here it appears that the experimental reduction factors 

are on the order of twice the theoretical. This is consistent with 

a remark by Eisenhauer (Reference 8) to the same effect, and therefore 

it is believed to be a genuine discrepancy and a failure of the 

theoretical prediction methods for such a case. 
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It is interesting to note from the results that the dose~rates on 

the first floor vary very little from point to point. What appears 

to be a low value at the height of 6" above the floor is unquestionably 

a peculiarity of the experimental site, in that an appreciable portion of 

Area 3 contribution is missing because of the fact that the ground is not 

quite level, and that part which skims close to the ground is shielded out 

by the ground contours. This affects the far field estimate also, since 

it is based on Area 3 measurements. 

In the basement, the situation is different. The dose-rate increases 

with height, at least up to a point a few feet from the first floor slab. 

In this region, it appears to be about constant or even decrease slightly 

with height. The corner has a much smaller dose-rate than the center, and 

it is obviously the safest place in the structure. 

The following suggestions are made with a view toward improving the 

quality of the data in future experiments of this type. 

1) The basement collects rain water and is exceedingly damp. This 

causes serious problem with dosimeter leakage. Measures should 

be taken to prevent water from entering the basement of the 

blockhouse, and to reduce the amount of moisture in the air which 

naturally tends to be present. 

2) Because of the high intensity of the source, it is not very suitable 

for instrument calibration, and thus the instruments and source are 

not compared against one another. This requires that both source and 

the instrumental calibration be very carefully checked to provide an 

absolute, rather than a relative, calibration; or else some means 

of checking the calibration of one against the other should be devised. 
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Editorial note added in proof: Mr. Russel 0* Lyday, Jr., in reviewing 

these experiments, has pointed out that a certain amount of self-shielding 

of the pumped source occurs. Aside from a small amount of intrinsic self¬ 

absorption, two other factors may be significant: one is the absorption 

caused by adjacent tubing (3/8" O.D.) in the field for radiation emitted 

in a direction which almost grazes the ground; the other is the greater 

self-absorption occasioned when the source (cylindrical in shape) is 

traveling in a radial direction from the detector. These factors and the 

correction for them are discussed in Technical Operations, Inc., Report 

TO-B 62-58, "The Effect of Limited Strips of Contamination on the Dose 

Rate in a Multistory Windowless Building," bv J« F. Batter, A. W0 Starbird, and 

N. York (1962). Precise estimates of these correction factors are probably 

best obtained by experiment; however approximate estimates can be fairly 

easily obtained. Improved accuracy in these experiments, especially for 

the contributions from the more remote fields, could be obtained by use of 

such a correction, even though estimated. It must be noted, however, that 

the percentage of time for radial travel of the source is very small in case 

of the KSU Summer Institute experiments, contrasted with a more substantial 

proportion of time for the Technical Operations, Inc., experiments. Also, 

the degree of absorption to be considered by adjacent tubing depends upon 

geometric factors such as tube-spacing, building height, and source distance. 

Comparison of the KSU experimental configuration with that of Technical 

Operations, Inc., and review of their correction factors seems to imply that 

for the KSU experiments, the correction required in overall results for 

these self-shielding factors is of the order of or less than ten percent, 
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except for dosimeters placed 

experiment for the dosimeter 

due in part to these factors. 

near floor level. The low results in this 

at 0*6" above the first floor level are certainly 
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5. Model Experiment 

a) Purpose. To carry out a shielding experiment on a scaled model basis; 

to compare results with similar results on a full-scale prototype, 

thereby determining the efficiency of this approach. 

b) References and bibliography. 

1) A. W. Starbird, J. F. Batter, and H. A. Mehlhorn, "Modeling 

Techniques as Applied to Fallout Simulation on Residential-type 

Structures, and Some Preliminary Results," Technical Operations, 

Inc., Report TO~B 61-35 (1961). 

2) P. M. Frazier, C. R. Buchanan, and G. W. Morgan, "Radiation Safety 

in Industrial Radiography with Radioisotopes," U. S. Atomic Energy 

Commission Report AECU-2967 (1954). 

3) R. E. Rexroad and M. A. Schmoke, "Scattered Radiation and Free Field 

Dose Rates from Distributed Cobalt-60 and Cesium-137 Sources," 

Nuclear Defense Laboratory Report NDL-TR-2 (1960). 

4) J. Batter, "Cobalt and Iridium Buildup Factors Near the Ground/Air 

Interface," Trans, of Amer. Nucl. Soc. 6, No. 1, 198 (1963). 
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c) Facilities and apparatus used. 

1) Steel model of blockhouse, one-twelfth full-scale, with walls, 

roof and floor scaled to approximately the same mass per unit 

area as the concrete blockhouse of Experiment No. 4 of this series. 

(See Figure II1-5-1.) 

2) Cobalt-60 gamma source, 9.1 curies (+ 5%). 

3) Motor, pump, hose, and associated equipment necessary to circulate 

the source over the ground contamination area which simulates that 

designated area 3 in Experiment No. 4. (See Figure III-5-2.) 

4) Fourteen (14) pen-type pocket dosimeters of 200-mr. size. 

5) Nine (9) 10-mr. dosimeters. 

6) Charger-reader. 

7) Two stopwatches. 

d) Background. Considerations of time and expense make scale-model experimentation 

highly desirable in predicting radiations levels within proposed new structures 

which might be subjected to fallout gamma radiation. Contributing to the 

attractiveness of model studies, in these considerations, are the extent of 

contaminated field and the strength sources which would be required with 

full-scale buildings. 

While it is to be expected that the first requirement in similitude 

is the true scaling of overall dimensions, considerable importance must 

be assigned to the maintenance of similarity in gamma ray behavior. The 

model roof, walls, partitions, and floors should exhibit the same scattering, 

absorption, and buildup as shown by corresponding sections of the prototype. 
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4" 

TUBING LAYOUT AROUND MODEL STRUCTURE FOR MODEL 
AND COMPARTMENTATION EXPERIMENTS 

FIGURE nr-5-2 
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e) Procedure. 

1) The model was assembled at the site (see Figure III-5-1). A grid 

pattern was laid out around the structure to represent Area #3 in 

the blockhouse experiment (see Figure III-5-2). A scaling factor 

of 1:12 was used. Tubing was laid in a circular fashion on the 

established grid, beginning at a radius of 80" from the model center 

and extending outward to 160". 

2) Dosimeters were charged and placed on end in locations as near as 

possible to those positions established in the blockhouse for 

Experiment 4 (see Figure III-5-4). 

3) The Cobalt-60 source was pumped through the tubing at constant 

speed. Time of entry of the source into the field was recorded, 

as well as exit time, with stopwatch. 

4) Dosimeters were recovered and read. 

f) Theory. 

Model scaling techniques require the proper application of two 

concepts: geometric scaling and dynamic similitude. The physical 

scaling of all dimensions satifies the first requirement. The second 

requires that the behavior of the radiation being studied be identical 

in model and prototype, implying that scattering, absorption, and build¬ 

up factors be independent of the linear scaling factor. 

These requirements would apply theoretically, not only to the 

building materials themselves, but as well to the field of contamination, 

and to the surrounding earth and atmosphere. 

The concrete of the blockhouse was simulated with iron in the model. 

This substitution yields the approximate mass thickness but results in an 
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overscale wall thickness in the model. It is considered, however, 

that little error would be introduced by this deviation, since the 

total model wall thickness was less than 10% of the interior room width in 

the model. 

The atmosphere surrounding the model experiment was not scaled. 

As a result, skyshine is not properly reproduced in the modeling. This 

effect is accounted for in the analysis of this experiment by the for¬ 

mulation of a correction factor for non-scaled air. 

The gamma ray interaction with the respective materials of model 

and prototype should be the same. From the viewpoint of attenuation, 

three methods of comparison may be employed. These require individually 

the equating of: (1) mass thicknesses 

(2) broad-beam absorption data for flat slabs 

(3) electron density. 

To illustrate these three comparisons, we note that 8 inches of light¬ 

weight concrete (69 psf) is equivalent in mass thickness to 1.68 inches 

of iron. By absorption criteria, the required thickness is 1.7 inches; 

and for electron density equivalence, 1.8 inches. 

The cross-sections for concrete are very similar to those of aluminum, 

the various components of which are shown on the next page (Figure III-5-3). 

It will be noted that the photoelectric component dominates Compton scat¬ 

tering below 0.05 Mev. The interactions that take place with gamma rays 

below 0.05 Mev are those of absorption. While the Compton cross-section 
» 

remains constant with changes in atomic number, the photoelectric cross- 

5.00 
section goes up at a rate somewhat greater than Z . Since iron has a 

"z" of 26 and aluminum has a "z" of 13, the Compton scattering cross-section 

of iron per atom is at least twice as large, for a given energy, as that of 

aluminum. 
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As is shown in Figure III-5-3,the crossover point from dominance 

of photoelectric effect to that of Compton scattering occurs at 

approximately 0.05 Mev, and noticeable effect of the absorption phenomenon 

continues slightly beyond 0.1 Mev. Thus, the use of iron in models to 

simulate concrete causes gamma rays below 0.1 Mev to be omitted in dose 

measurements. Since the source used in this experiment averages 1.25 Mev 

per photon, a great number of interactions were required to degrade the 

energy to 0.1 Mev, and thus no large error should have resulted in this 

substitution. See Reference 1 for general discussion of this subject. 
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g) Preliminary calculations. 

1) Correction factor due to mismatch in wall thickness. Assuming that 

modeling on basis of mass thickness is proper, there is a slight 

misjnatch between model and phototype. The thickness of steel 

equivalent to 69 psf is 1.68", whereas the model only has wall 

thickness of 1.625". According to Reference 2, this causes a 

variation of about 4% in a cobalt-60 dose. Thus for radiation 

penetrating the walls, a correction factor of 0.96 is required. 

Since most of the first floor radiation is that penetrating the 

walls, this factor will be applied to all first floor readings. 

For radiation entering the basement, an additional correction 

is needed because of the fact that 55 psf corresponds to 1.35" of 

steel, whereas the model only has 1.25" thickness in the first floor 

slab. It must also be noted that the radiation into the basement, 

being scattered, has a lower photon energy and therefore is more 

readily attenuated. Finally, it is noted that much of the radiation 

penetrating the floor slab does so at an angle from the normal. For 

these reasons an estimate of about 10% is made for this effect, which 

implies a correction factor for basement dose readings of 0.90 x 0.96, 

or 0.86. 

2) Correction factor due to lack of scaling in atmospheric density. 

Because of this fact, the radiation in the model situation has less 

air to penetrate than for the prototype blockhouse experiment. To 

get a correction factor, one can assume that the average radiation 

goes a distance equal to the average radial distance from the 
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structure center to the contaminated area. The relative absorption 

in such a case gives the correction factor: 

Factor = B( 120') ‘ e 120^525 

B(IO') ' e’107525 

B (120’) can be estimated from an experimental curve in Reference 3, 

for a situation in which the source is on the ground and the detector 

is a foot above the ground, and equals 1.24. The value of B (10’) is 

best obtained from Reference 4, for a detector height of one foot, 

and equals 1.16. Thus the correction factor is: 

1.24 x .795 = 0.87 

1.16 .981 

3) Combined correction factors. 

For first floor readings: 0.96 x .87 = .83. 

For basement readings: 0.86 x .87 = .75. 

h) Data and data reduction. 

Source strength =9.1 curies 

Area covered = 419 sq. ft. 

Duration of run = 32.9 min. = .548 hr. 

419 
Normalization factor = 9 i x 548 

84.0 

"Corrected Normalization Factor" = 

correction factor times normalization factor: 

For first floor readings, C.N.F. = 84 x .83 = 70. 

For basement readings, C.N.F. = 84 x .75 = 63. 
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200-mr. dosimeter 10-mr. dosimeter 

numbers 

95 148 84 

109 

89 120 83 

111 

149 127 152 

numbers 

9 14 6 

5 3 12 

8 23 4 

First Floor Basement 

Instrument Plan 

Figure III-5-4 
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Instr. Readings (mr.) Normalized and 
No. After Before Net Corrected (mr.) 

95 187 

Fir5 

4 

5t Floor 

183 12810 

84 176 2 174 12180 

152 174 4 170 11900 

149 172 9 163 11410 

109 179 0 179 12530 

120 183 6 177 12390 

111 173 7 166 11620 

148 151 3 148 10360 

83 152 8 144 10080 

127 168 7 161 11270 

89 161 0 161 11270 

9 

(Instr. Rdg.) 

15 

Be isement 

(mr.)* 

1.55 97.6 

6 12 1.25 78.7 

4 13 1.35 85.0 

8 16 1.65 104.0 

14 24 2.45 154.0 

12 20 2.05 129.0 

23 18 1.85 116.0 

5 16 1.65 104.0 

3 21 2.15 135.0 

* 
From calibration data provided 
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i) Results. Because of symmetry, the dosimeters in corresponding positions 

in the four quarters of the structure should read the same. Therefore, 

where appropriate, values are averaged over four readings in equivalent 

locations. 

Location Normalized values 

Corrected Model 
* 

Prototype (Exp. 4) 

First Floor (r.) 

Center 12.2 14.2 

Side 10.7 12.8 

Corner 12.1 13.2 

Basement (mr.) 

Center 135.0 172.0 

Side 126.0 
— 

Corner 91.0 63.0 

* 
Taken at 3* Height. 
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j) Summary, discussion, and conclusions. 

It appears from the results obtained and the comparison with the 

prototype results that fairly good agreement exists, at least within 

the probable accuracy of the experiments. On the first floor, the 

discrepancies are of the order of 20% or less. In the basement, the 

discrepancies appear to be greater; however, the scatter of experimental 

results in the basement, both in the model and in the prototype, make 

it difficult to determine whether the discrepancies are the result of 

failure of the modeling relationships or measurement errors. It appears 

quite certain that the modeling technique has great promise, if not for 

obtaining exact answers applicable to prototype structures, at least 

for getting an approximate answer for many situations and a good under¬ 

standing of dose variations with position. 

The one difficulty that must be expected, and one which probably 

played a part in the present experiment, is the difficulty of getting 

a measurement indicative of dose at a point using chambers whose size 

is substantial compared to the dimensions of the room in the model 

structure in which it is placed. Under circumstances in which the dose 

gradients are small, this is no great problem; but under many circum¬ 

stances there are large gradients, and the measurements can be considered 

no more than general averages over substantial regions of space in the 

prototype. In the model experiment reported herein, the instruments 

on the first floor were "pocket” or "pencil" type dosimeters, stood on 

end; and in the prototype they would represent an average dose almost from 

zero to six feet height above the floor. They were compared to proto¬ 

type results at 3’ height, which is presumed to provide a reasonable 
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mean value. In the basement, the instruments used were 10-mr. chambers, 

which are not as high, but are several centimeters in diameter, and 

thus cannot accurately measure the substantial variation in the basement 

found in the full-scale blockhouse. 

This situation can be improved, of course, by using smaller (and 

presumably less sensitive) instruments, exposed for a longer period of 

time. Alternatively, one might consider exposure for short time 

* 
periods, but with a stronger source. 

* 
Footnote: See note added in proof for Experiment 4. 
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6. Compartmentation Experiment 

a) Purpose. To examine by experimental means the adequacy of each of 

two schematizations for determination of shielding effectiveness 

of structures with moderately thick internal partitions. 

b) References and bibliography. 

1) "Shelter Design and Analysis, Vol. 1, Fallout Protection," Office 

of Civil Defense Compilation (Revised ed., 1962). (This is a 

revision of an OCD draft document commonly referred to as the 

"Engineering Manual.") 

2) L. V. Spencer, "Structure Shielding against Fallout Radiation from 

Nuclear Weapons," National Bureau of Standards Monograph 42 (1962). 

c) Facilities and equipment used. 

1) Steel model of blockhouse, as used in Experiment No. 5 (Model 

Experiment), with additional assemblies to simulate interior partitions. 

(See Figure III-6-1.) 

2) Cobalt-60 source, 11.0 curies. 

3) Pumping apparatus and associated equipment (see Experiment 4). 

4) 2 dosimeters, 200-mr. 

5) Stop watch. 

d) Background. Adequate analytical techniques for analyzing complex, highly- 

compartmented structures are lacking. There are various possible methods 

of approach, involving usually some simplification of the geometry of the 

structure. Two of these which appear simple and reasonable involve the 

following ideas: 
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1) One may determine, for each radial direction outward from the 

detector point, the normal thickness of all slabs intercepted by 

such a radial line. The outer wall at the point of its intersection 

with the radial direction line may be considered to have a thickness 

equal to sum of the normal thicknesses of all slabs intersected. 

Determination of the dose reduction factor for a simple structure with 

variable thickness outer walls and no internal compartmentation is a 

straight-forward calculation. 

2) One may consider that the total structure can be replaced for 

analytical purposes by an idealized material having the same outside 

configuration as the structure and the same total weight, but with the 

masses of the structure homogenized to give a constant density of 

material within the overall dimensions. 

Evaluation by simple model experiments should provide information as to the 

adequacy of each of these ideas for determining dose reduction factors. 

e) Procedure. 

1) The basic model structure was assembled at the site. The tubing 

was laid out in a circular ring between 80" and 160" from the center 

of the model blockhouse. (See Figure III-6-2.) 

2) Two reliable dosimeters were placed in a vertical array at the center 

of the model structure, after charging. 

3) The source was pumped through the tubing at a steady rate of speed. 

Time of entry of the source into the simulated fallout field was 

accurately recorded, as well as the time of leaving. 

4) Dosimeters were recovered and read. 

5) The experiment was repeated for the first variation in the assembly. 

6) The experiment was repeated for the second variation in the assembly. 
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TUBING LAYOUT AROUND MODEL STRUCTURE FOR 
MODEL AND COMPARTMENTATION EXPERIMENTS. 
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f) Theory. No precise, simple theory yet exists which adequately accounts 

for the attenuation in a structure which is substantially compartmentalized 

that is, has a appreciable amount of interior partitioning. Established 

methods (References 1 and 2) generally handle the problem either by 

considering that all partitions in a solid angle sector attenuate in 

fashion corresponding to their normal thickness, or assuming that the 

material composing the structure is spread uniformly throughout the 
\ 

volume of the structure. The latter approach is recommended by Spencer 

(Reference 2) when the structural walls and partitions are less than 

about 40 psf. in thickness. 

In the present experiment, the walls are about 65 psf and the 

interior partitions are about 40 psf. This then would represent a case 

somewhat on the border of that in which "smearing out" might be appropriate 

It is not considered desirable to amplify the theoretical background 

to any further extent. Present schematizations which permit analytical 

approaches are based more on experience and intuition than on theory, and 

the experiment presently described is to help justify or deny the validity 

of the intuitively possible approaches for this experiment already noted. 

It is also pertinent to remark that since for this experiment the area of 

contamination is an annulus rather than an infinite plane, existing 

engineering methods which are designed for practical problems are not 

greatly suited for analyzing this particular case. 

g) Preliminary calculations. None are needed for this experiment. 

h) Data and data reduction. In each of the three runs, two pocket type 
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dosimeters (200-mr.) were placed in the center of the structure, one 

above the other. 

Experimental 

Configuration 

Instrument Readings (mr.) Exposure 

Number After Before Net Time (hrs.) 

Basic 074 (top) 58 1 57 .494 

083 (bottom) 40 1 39 
ft 

First 

variation 
074 (top) 59 1 58 .467 

083 (bottom) 44 2 42 
tl 

Second 

variation 
074 (top) 23 0 23 .447 

083 (bottom) 20 2 18 
ft 

The area is 419 sq. ft. The source strength was given as 11.0 curies. 

Normalization factors to provide equivalent results in mr./hr. at 1 

curies/sq. ft. contamination strength are : 

For basic configuration, 419/(11 x .494) =77.1 ; 

for first variation, 419/(11 x .467) = 81.6 ; 

for second variation, 419/(11 x .447) = 85.2 

i) Results. Normalized dose-rate readings in middle of model structures. 

The normalized dose-rate readings, mr./hr. for contamination of 1 curie/sq. ft. 

are obtained by multiplying the results by the computed normalizing factors. 

Location of 

Instrument 

Basic 

Configuration 

First 

Variation 

Second 

Variation 

Center, 

top 
4.39 4.73 1.96 

Center, 

bottom 
3.01 3.43 1.53 
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j) Summary, discussion, and conclusions. It is quite evident that the first 

variation gives results much closer to the basic case than the second 

variation, and we can conclude that the technique of homogenization is 

not a very good technique for the moderately thick walls encountered in 

compartmented structures such as this model portrays. Although the 

experimental data may be subject to some error, the results are sufficiently 

consistent to make this conclusion quite definite.* 

* 

Footnote: See note added in proof for Experiment 4. 
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A. Brief History 

1. Before 1958 - 

My lecture this morning will be primarily a brief history of 

the fallout shielding program. While you are here you probably 

will hear several different histories from several different people 

and hopefully where they overlap, the picture will be consistent. 

I will emphasize the events with which 1 have been most closely 

associated. In particular, I would like to trace the development 

of some of the present theory and some of the early experiments. 

My discussion begins with March of 1954 when the dangers of 

radioactive fallout first became apparent. It was the date of the 

nuclear detonation in the Pacific which showered fallout particles 

on a group of Pacific Islanders. From then on we realized that fall¬ 

out was an important aspect of nuclear weapons. Shortly after this, 

in about 1955? discussions were initiated between FCDA (the Federal 

Civil Defense Agency), the National Bureau of Standards and the Atomic 

Energy Commission to discuss what could be done about protecting 

citizens from this hazard. The main persons involved in these discussions 

were Mr. Pat Gallagher from FCDA, Dr. Lauriston Taylor of the National 

Bureau of Standards and Commissioner Willard Libby from the Atomi*c 

Energy Commission. The key question was "how much protection is afforded 

by existing structures?" That was in June 1955. In June 1957, the 

first experiment designed specifically to measure the penetrability 
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of fallout radiation was performed by Dr. Frank Titus who was then 

with the National Bureau of Standards. This experiment was suggested 

by Lew Spencer. It was an attempt to get some basic data on the pene¬ 

tration of fallout radiation through concrete. The scheme was to try 

to pick an area where, during one of the nuclear tests, fallout was 

expected to be deposited. A number of horizontal concrete slabs were 

buried in the ground, the top surface of the pile being flush with the 

ground. Sandwiched between these concrete slabs were detectors of 

gamma radiation. Hopefully, fallout would be distributed on the ground 

over the slabs. From the measurements at various depths of concrete, 

the penetration of radiation from a plane isotropic source of actual 

fallout could be obtained. Fortunately, in this case, fallout was 

deposited over the slabs and the experiment was a success. 

2. Experiments at Nevada Test Site, 1958 - 

Things began to pick up in 1957. In November of 1957? Commissioner 

Libby approached Governor Hoegh, who was then head of the FCDA, and of¬ 

fered the services of the Atomic Energy Commission in seeking solutions 

to the problems of shielding from fallout radiation. This resulted in a 

meeting in December between FCDA, the National Bureau of Standards, and 

the Atomic Energy Commission to try and agree on an approach to the prob 

lem. Now, at that time Dr. Libby wanted to see some kind of a mobile 

vehicle which could go into a community and measure protection in homes. 

He suggested Battle Creek, Michigan, which was the civil defense head¬ 

quarters at that time, as the site of such an experiment. The civil 

defense organization was less than lukewarm to this suggestion. Their 
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public image was not too good at that time, anyway, and if any of you 

have had any experience in trying to bring a radioactive source of 

the order of a Curie into a residential area you can well imagine what 

the opposition to a plan like this would be. Therefore, the people 

at Civil Defense tried to modify the plan for a mobile vehicle and 

perhaps to divert it into what they considered constructive channels. 

This resulted in a big meeting at NBS in January 1958. Since I had 

just come to NBS I was asked to attend this meeting. The purpose was 

to discuss specific experiments. The outcome of this meeting was the 

decision to do some experiments on residences at the Nevada Test Site. 

The Nevada Test Site had several advantages. Since it was a restricted 

area there was no danger to the public of being exposed to any radiation 

Since there were no nuclear testing programs at that particular time, 

there were facilities such as transportation and housing available to 

the experimenters. Finally, there were already in existence a number 

of typical residences which had been built primarily for blast studies 

from nuclear weapons. The experiment was performed in May of 1958. 

There were about 10 of us who participated in the month-long experiment. 

It was the first systematic experiment on structure shielding ever per¬ 

formed in this country. Since there was virtually no theory existent 

at the time, it was an exploratory type of experiment. 

The two structures on which most of the experiments were made were 

a two-story wood frame house and a two-story brick veneer house. Experi 

ments were also made on a rambler-type residence and a precast concrete 

home of a type which is fairly common out West. Right now there is a 
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renewed interest in these experiments, because OCD is thinking of 

running a survey on residential structures in this country. In order 

to demonstrate that the current calculations give sufficiently ac¬ 

curate estimates of protection,comparisons are again being made with 

the experimental data from these residences. In fact, the AEC is now 

sponsoring further experiments on these same structures to obtain 

more detailed data. 

The first experimental program on these structures had several 

purposes. One purpose was to measure the relative effect of the roof 

sources and ground sources. At that time no one had much feeling for 

what the relative effects of the two components would be. Another 

purpose was to test out some of the emergency procedures that OCD had 

recommended - procedures such as sandbagging basement windows - to see 

if they really were effective in improving protection. Still another 

purpose was to examine the dependence of radiation protection on the 

source energy of the radiation since there is a wide distribution of 

energies in the fission product gamma ray spectrum associated with fall¬ 

out. Artificial radioactive sources of Co-60 and Cs-137 were used to 

test the sensitivity of the results to the energy of the source. Anothe 

purpose was to test so-called "reciprocity". Reciprocity holds if the 

position of source and detector can be interchanged without changing 

the detector reading. The situation of interest in structure shielding 

is one in which the sources are outside of the structure and a detector 

is in a shielded position inside the structure. However, if sources 



could not be distributed in the streets in a residential area, perhaps 

the source could be placed inside and the detectors outside the struc¬ 

ture; this presumably being a less objectionable way of operating in 

actual residential areas. The question was, "how closely would the re¬ 

sults for the reciprocal situation correspond to those for the original 

situation?" The technique of handling the sources was rather amusing. 

As you know, most experiments are now conducted with radioactive sources 

which are pumped hydraulically through plastic tubing. However, at that 

time the sources we used were small Cobalt sources imbedded 2 feet apart 

in plastic tubing. These tubes of plastic were then laid out in circles 

around the structures. The difficulty arose in "turning off" the source. 

The sources had to be removed from the vicinity of the structure as 

quickly as possible to minimize radiation received during the transient 

period. The method which was used to tie a long string to the end of 

one of these hot pieces of tubing, each of which contained about a Curie. 

As soon as the experiment was finished someone had to grab the end of the 

string, run around the house unwinding the tube, and then run out into 

the desert. We almost lost Neal FitzSimons one night when he kept running 

and did not hear anybody yell "Stopl" 

There were quite a few important conclusions that came out of this 

experiment with regard to shielding in residential structures. First, 

we found that in the wood frame structure, the protection factor was 

only about 2 on the first story of the structure. In the brick veneer 

house it was more like 5 or 6, which is better, but still not very ap¬ 

preciable. This, of course, is due entirely to the extra shielding of 

the brick. We also found out that the protection factors in basements 
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of structures tended to be about 30 and did not seem to depend on 

whether the upper stories were made of brick veneer or of wood. The 

two basements were a little different in construction, but generally 

this was the order of magnitude of the protection factor in the base¬ 

ments. 

In the two-story wood frame structure we found the rather surprising 

result that about 10 times as much radiation reaching a detector on the 

first story came from ground sources as from roof sources. Although the 

roof sources are relatively close, the cumulative effect of the many 

sources on the ground tends to outweigh the effect of the roof. In the 

brick veneer house the relative contribution from the ground sources 

would be less since the walls provide greater shielding. 

On the subject of reciprocity, we found that if a source is placed 

inside of the structure and a detector outside and then they are reversed, 

the readings may be significantly different for a single source-detector 

configuration. However, if the structure is surrounded with a ring 

source so that an average is performed over all compass points or azimuthal 

directions, then the results, surprisingly enough, agreed within about 20%, 

This implies that - at least for light structures - if a point source is 

placed in the middle of a building and surrounded with about 20 detectors, 

equally spaced around a circle, and then the sum of the readings of these 

dosimeters is taken, it will correspond to the reading obtained by dis¬ 

tributing a source of the same intensity around the structure and placing 

the detector at the center of the structure. The individual readings will 

vary greatly because of the number of joists or wall studs between the 
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source and the detector fluctuates greatly. But, when these effects 

are averaged over the azimuth, the reciprocal situation seems to give 

similar results. I think the main reason that no one has exploited this 

phenomenon is that the uncertainties are just large enough to make the 

procedure of dubious value. But I think that reciprocity worked a little 

bit better than we might have expected beforehand. 

Another surprising result of these experiments was that the base¬ 

ment shelters did not yield as much protection as had been estimated 

beforehand. The estimate was based on the following line of reasoning. 

Suppose we start with a protection factor of, let us say, 30 at the center 

of the basement. Suppose now we move to the comer of the basement, the 

protection there ought to be as much as a factor of 4 better, because 

in the center of the basement a detector receives from all directions 

overhead, while in the corner it receives only from 90°, or one quarter 

of the azimuth. Suppose, finally, we are inside of a shelter in the cor¬ 

ner of the building with 8-inch solid cinder-block walls and ceiling. 

An additional factor of 10 was expected inside of the shelter. The ex¬ 

pected protection factor inside of the shelter was therefore 30 x 4 x 10 

= 1200. However, the experimentally measured protection factor in these 

corner basement shelters was only about 150 to 200, which was disappoint¬ 

ing. I don't think we understand all the reasons yet why the PE is so 

low in these basement shelters. However, we know that the PF does not 

increase by a factor of 4 when you move to the corner, but more like 

2-l/2 or 3. But, it was mainly the factor of 10 inside of the shelter 

that did not materialize. I think the unexpectedly low PF in the shelter 
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must be attributed to in-scattering effects. For example, although 

the shelter ceiling increases the protection against radiation from 

roof sources it may decrease the protection against radiation from 

ground sources because its presence enables this radiation to scatter 

into the direction of the detector. The concept of in-scattering will 

be more fully discussed in a later lecture. 

These experiments were performed during the month of May 1958. 

John Auxier of Oak Ridge was primarily responsible for the success of 

the experiments. The experimental results are reported in an AEC Report 

CEX 58.1. My analysis of these experiments is reported in NBS Report 

6539. 

3. Other Experiments - 

In November 1958, a second series of experiments was done by Techni¬ 

cal Operations, Inc. They repeated some of the measurements on the 

residences with slightly stronger sources and, in general, verified the 

results we had obtained earlier. They also examined some large structures 

because by this time the shielding afforded by commercial structures began 

to be of concern. 

Another important experiment was begun in 1957 at the U.S. Army 

Chemical Center, in Edgewood, Maryland. It involved a square concrete 

blockhouse 12 feet on a side and B feet high, now usually referred to as 

the NDL blockhouse. The experiment again had been suggested by Lew 

Spencer and was an attempt to get some measurements on a very simple 

structure in order to understand the calculations that were being performed 

and how wen they corresponded to reality. This.experiment has been a 

continuing one. It was very helpful at the time we were devising the 

v-8 



Engineering Method because it enabled us to compare our calculations 

with experiment. 

Since 1958 there have been many experiments on structures. I am 

not going to go into detail on them. There have been experiments both 

on full scale structures and on model buildings. Perhaps Art Chilton will 

cover some of the more recent experiments. Most of the experiments have 

been designed to test some aspect of the engineering method. During this 

period the basic radiation calculations reported in NBS Monograph 42 were 

completed and the engineering method was beginning to evolve. The engineer¬ 

ing method was developed primarily by Neal FitzSimons of the Office of 

Civil Defense, Lew Spencer and myself. The problem was to take the results 

for idealized situations which were reported in NBS Monograph 42 and to 

incorporate them into detailed calculations which would apply to actual 

buildings. The calculations were successfully developed, but they were 

tedious. If any of you have done engineering manual calculations, you 

know that the basic calculation is simple enough but an attempt to calcu¬ 

late all the various contributions becomes very tedious. Furthermore, 

many of the contributions, when finally calculated, turn out to be negli¬ 

gible. Consequently, there was pressure at the time to develop a simpli¬ 

fied method. The result of the pressure was the method described in the 

Guide for Architects and Engineers - the first of several simplified 

methods that have been developed since that time. 

4. National Fallout Shelter Survey 

In September 1961, the National Fallout Shelter Survey (NFSS) was 

initiated. I would like to say a few words about the magnitude of the 

survey. The data processing turned out to be an enormous job. It was 

240-816 0-67—51 
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handled by the computation laboratory at the National Bureau of 

Standards. This group is entirely separate from the one with which 

Lew Spencer and I are associated. Having had a great deal of experience 

in dealing with large amounts of data, this group set up the method 

by which this data was to be handled. It was really quite complex. 

I do not know whether any of you took part in this survey, but the 

general procedure was the following: In all parts of the country 

architects and engineers went out to their local buildings and filled 

out so-called POSDIC forms, on which they noted wall thicknesses, build¬ 

ing dimensions, and ail the parameters that were needed to calculate 

shielding. Then, whole booklets of these POSDIC forms were sent to 

Indiana, where the Bureau of Census has a microfilming installation. 

The microfilmed forms were then sent to the Bureau of Census in Washing¬ 

ton, D. C. where they were interpreted by scanning the microfilm optically 

and translating-this information onto tapes. Since these tapes were 

not compatible with the data processing system at the National Bureau of 

Standards they had to be sent to the David Taylor Model Basin in Washington, 

D. C., where the information was transferred from one type of tape to 

another. They then were sent to the National Bureau of Standards where 

they were put through a very elaborate check to see whether the data was 

consistent. For example, suppose a ten-story building height was reported 

as 20 feet. It would then be assumed that the data were internally incon¬ 

sistent and they would be sent back for correction. If the data were 

consistent, they were subjected to a protection factor analysis. Lew 

Spencer and I had written the first version of the computer program of 
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the PF analysis. It was rewritten in machine language by the NBS 

Computation Laboratory and streamlined in order to minimize the calcu¬ 

lation time. The National Fallout Shelter Survey cost in the neighbor¬ 

hood of 50,000,000 dollars, most of which went to the architects and 

engineers who recorded the extensive compilation of input data. The 

actual data processing part of it was a small part of the total cost. 

The total number of buildings examined in the survey was about 350,000, 

distributed throughout the country. Most estimates of potential fallout 

shelter in this country are based on this National Fallout Shelter 

Survey. 

In setting up the PF calculation for the NFSS we were forced to 

think about contributions from finite contaminated planes. Up until 

that time, we tended to think mostly about buildings surrounded by in¬ 

finite planes of contamination. This survey focused our thinking on 

buildings surrounded by finite planes of contamination at different levels 

and the techniques for handling more than one contaminated plane came into 

existence during this survey. 

In planning for a large survey it became evident that a large 

number of people who knew at least the rudiments of protective shielding 

would be needed. Consequently, courses were instituted, the first of which 

was held at Ft. Belvoir, Va., in the summer'of 1961. The courses were 

taught primarily by Army personnel at the Ft. Belvoir Engineering Installa¬ 

tion. It was during these courses that the concept of azimuthal sectors 

was incorporated into the engineering method. Until that time calculations 

for detectors not at the center of a structure were made by constructing 
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four hypothetical buildings. For example, for the contribution from the 

★ 
wall in quadrant A of Figure 1, the calculation was made as if the 

detector were located at the center of a hypothetical building indicated 

by the dashed lines. The result was then divided by 4 to obtain the 

contribution fromquadrant A. No recommendations were given for cases 

in which the height of the contaminated plane had more than one value 

along the length of the building. The instructors at Ft. Belvoir 

found that buildings were never very simple and in particular that the 

surroundings of a building might not be very simple. They therefore 

made a logical extension of the existing method. They divided the azi¬ 

muth into parts and treated each one of these separately. For example, 

if in Figure 2 the area C represents an adjoining high building, the 

contribution from A would be weighted by the relative azimuthal angle 

cpj., while the contributions from B and D would be weighted by tf^. I 

mention this because there is a real problem in the engineering method 

of how far one can refine the technique of azimuthal sectors. The main 

shortcoming is that the technique applies barrier factors which were not 

designed for that particular type source. 

5. Simplified Engineering Methods - 

In 1962 the first OCD Summer Institute "was held at Kansas State 

University. At about this time, the equivalent building method was being 

developed by Jack LeDoux. He felt that the engineering method was too 

involved and thought that a simpler method could be devised which was 

better than that in the Guide for Architects and Engineers. The simplified 

methods than began to proliferate. First of all, the method used in the 

NFSS did not correspond exactly to that in the Guide for Architects and 

* All figure references in this volume apply to figures in this volume, 

e.g. , Figure 1 refers to Figurt V-l.' 
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Fig. V-l. Hypothetical building used to calculate the contribution 

through the wall in quadrant A to an off-center detector. 

Fig. V-2. Division of the surroundings of a building into azimuthal 

sectors. 
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Engineers. Also, each new method was not only a simplification of 

the engineering method but also differed in some assumptions. Conse¬ 

quently, we went from the situation in 1958 when we had no methods at 

all to approximately the present time where we have too many methods. 

I think one of the operational problems of the people in OCD is to define 

how these methods differ and perhaps even choose one recommended method. 

Because people who use the different methods get different results, 

the obvious question is "which one is more correct?" 

Although we have many methods, they are all based on the engineering 

method. This is still, in my opinion, the basic method. In addition to 

our approximate methods, the British point scheme is now also based on 

the engineering method. The British had a method of calculation earlier 

than we did, but in 1963 they incorporated our technical data into their 

method. Theoretically, the British point scheme results should corres¬ 

pond to the results obtained by the engineering method. In practice, 

however, the methods differ in detail and do not necessarily give equal 

results. The Canadian methods are now also based generally on the engineer 

ing method. The U. S. Engineering Method is generally accepted in Europe 

as the best available method for calculating shielding from fallout. 

At this point I would like to use the box diagram shown in Figure 3 

to show how some of these methods are related. At the top we have the 

basic radiation penetration data reported in NBS Monograph 42. Below it 

we have the engineering method, reported in PM 100-1 which applies these 

results to actual buildings. Now we consider the simplified methods. 

The first that I mentioned was the Guide for Architects and Engineers. 
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Fig. V-3. Diagram showing the relationship among the various methods of 
shielding analysis. 
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This was the first simplification of the engineering method. From 

that came the National Fallout Shelter Survey. Although it was based 

on the AE Guide, there are differences which I will mention in detail 

later on. The nomographic method is a successor to the method in the 

Guide for Architects and Engineers and is intended, eventually, to 

replace the AE Guide method. It is essentially the same method, but it 

has been updated in some respects and instead of using curves, it uses 

nomograms. The computer method used in pilot surveys in Canada was 

influenced by the U. S. computer program. However, the PF calculation 

itself is most closely related to the nomographic method. The diagram 

therefore shows it to be related to both methods. The two boxes on 

the right refer to the equivalent building method and the protection 

factor estimator, both devised by Jack LeDoux. These two methods are 

fundamentally different from the other simplified methods in that they 

treat corrections in terms of adjustments to the actual wall thickness. 

My own feeling on the hierarchy of methods is that the engineering 

method should still be regarded as the "official method." Any substitute 

for this method must be derived directly from the data in NBS Monograph 

42 or some other source of basic radiation penetration data. Until this 

is achieved, I think that the accuracy of all the simplified methods has 

to be evaluated in terms of the engineering method, even though we know 

there are shortcomings in this method. 
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B. Development of the Engineering Method 

1. Introductory Remarks - 

In the field of fallout radiation shielding I have been sort of 

the "middle" man. It was my job to take the data that Lew Spencer 

had calculated for certain idealized geometries and fit them into an 

engineering recipe for calculating protection in actual buildings. 

In order to do this I had to know what problems occurred in practice 

and just what type of information was needed by the engineer. 

Neal FitzSimons was the man who did an excellent job of making me 

aware of the problems encountered in practice and of prodding me into 

doing something about them. The Engineering Method we will discuss 

in these lectures is the result of a constant exchange of ideas among 

the three of us. 

In developing the Engineering Method I have found a few concepts 

which have been very helpful to me in getting a "feel" for how radiation 

penetrates into a building. One of these concepts is the analogy between 

the penetration of gamma radiation through matter and the transmission 

of visible light through translucent barriers. Another concept is what 

I would call taking a "detector's eye view" of the problem; that is, 

concentrating on those gamma rays which reach the detector and ignoring 

the rest. I will attempt to develop these two concepts in more detail 

during this lecture. 
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I would also like to spend some time on the directional distribu¬ 

tion of radiation, with particular emphasis on the directional dis¬ 

tribution above an infinite plane, uniformly contaminated with fallout. 

I think a thorough understanding of the directional distribution, 

with no buildings present, is necessary in order to understand the 

shielding effects of buildimgs. ,, 

In my later lectures I will present the reasoning by which we 

arrived at the Engineering formulas for calculating shielding in 

buildings. I will develop the formulas for very simple buildings and 

for radioactive sources on the roof and on the ground surrounding 

the building. I'll also present a few examples, finally, I will 

give a brief discussion on some specialized types of sources and 

geometries, such as skyshine radiation and limited strips of contamination. 

This, then, is a brief review of the material I hope to cover. 

2. Analogy between gamma radiation and light - 

We return no*;, to the first concent I would like to discuss, namelv, 

the analogy between the penetration of gamma radiation through matter 

and the transmission of visible light through slabs of translucent glass. 

In Figure 4 we see a diagram of gamma rays from a noint source 

penetrating a barrier. Three types of events can occur: Some gamma 

rays will penetrate through the barrier without interaction and, consequently, 

no change of direction. We refer to this radiation as direct, or 

unscattered radiation. Some gamma rays will be stopped in the 

barrier by undergoing a photoelectric absorption. Other gamma rays 
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may penetrate the barrier after undergoing one or more changes of 

direction by the Compton scattering process. When they emerge from 

the barrier they will have a different direction and a lower energy 

than when they entered the barrier. A distinction is sometimes made 

between those gamma rays emerging from the right and left sides of 

the slab. The latter are referred to as backseattered gamma rays. 

The scattering is analogous to the diffusion of visible light in 

translucent glass, in that the rays do not travel in a single straight 

line when traversing the medium. 

At this point I want to introduce the second concept of the 

"detector's eye vie\/' of the problem. Until now, we have been 

standing off to one side viewing the penetration of radiation through 

the slab. Let us now put our eye at the detector and look toward the 

slab. Let's examine the intensity, that is, the number of gamma rays 

reaching the detector with and without the slab in place. The main 

effect of the slab is to reduce the intensity. This is due primarily 

to gamma rays lost by absorption. In addition, some gamma rays scatter 

out of the direct beam and never reach the detector. These are 

partially compensated for, however, by gamma rays which were originally 

headed away from the detector but then scattered in a direction toward 

the detector. A secondary effect of the barrier, then, is the generation 

of gamma rays, emerging from many other points of the slab beside 

that on the line of sight between source and detector. If these 

rays were visible it would appear that the barrier had diffused 
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the source. It no longer looks like a point source but a smeared-out 

source. I would like to illustrate this analogy further by the use of 

some photographs. 

Figure 5 shows a picture of a point source of light taken from 

behind slabs of varying degrees of translucency. The lef t view is 

through transparent glass. The analogous case in gamma radiation is 

a point source and a point detector with a barrier of zero thickness, 

that is, no barrier between them. The second view is through a lightly 

frosted slab of glass. In addition to the original point source, we 

see a haze of scattered radiation around it. This corresponds to the 

distribution of radiation "seen" by a detector when a thin slab is 

interposed between source and detector. I would like to emphasize that 

this slide illustrates only the diffusive effect of slabs. It does not 

reproduce the true behavior of the intensity. If it were a faithful 

illustration, the intensity of light emerging from the second slab 

would be less than that from the first. Unfortunately, the figure does 

not convey this decrease in intensity. The right view is through 

heavily frosted glass. The point source is almost indistinguishable 

from the haze of scattered radiation around it. This means that most 

of the radiation emerging from the slab has been scattered at least 

once in the slab. The haze is analogous to the distribution of gamma 

radiation "seen" by a detector when a thick slab is interposed between 

source and detector. Here again, however, the intensity emerging from 

the bottom slab should be the smallest; that is, it should appear dimmest. 
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Fig v-5 POINT SOURCE OF LIGHT VIEWED THROUGH GLASS 
PLATES HAVING VARYING DEGREES OF TRANSLUCENCY 
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In summary, the presence of the barrier reduces the intensity of 

radiation reaching the detector and also changes the angles from 

which the radiation arrives at the detector. For a point source 

the distribution varies from a point of light, in the case of a 

thin barrier, to a haze of light, in the case of a thick barrier. 

The preceding discussion applies when the barrier lies between 

the source and the detector. Another important configuration to 

consider, however, is the case when the barrier does not lie between 

source and detector. The lower half of Figure 6 shows a diagram of 

this situation for the case of visible light. (An opaque material 

is assumed to lie between the source and the eye.) If the barrier is 

of zero thickness and if the line-of-sight between source and detector 

is heavily shielded no radiation will reach the detector. If we now put 

in a barrier of about one mean free path thickness, some radiation will 

reach the detector because of what we will call "in-scattering". In 

this case, the radiation intensity is actually increased when a barrier is 

added. The qualification, of course, is that the barrier does not lie on 

the line from source to detector. As the barrier is made thicker, the 

radiation reaching the detector will eventually decrease. There is some 

intermediate thickness of barrier which will produce a maximum intensity at 

the detector. The thickness will vary with geometry but will be of the 

order of one mean free path, or about 3 inches of concrete. 

Resorting again to our optical analogy, we can think of the detector 

as the eye of a person in a foxhole on a dark night. If a bright light is 

placed some distance away, and he is down far enough, he will see 
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no light. If a translucent wall is erected around the hole, he will 

then see some light scattered down by the wall. Indeed, this is the 

main mechanism by which radiation penetrates into a basement lying 

completely below grade: it scatters down from the walls of the building 

Pursuing the optical analogy one step further, the problem of 

calculating the radiation intensity in a structure due to fallout is 

similar to calculating the intensity of light in a building constructed 

of glass walls of varying degrees of translucency. The sources of 

light are distributed on the roof and on the ground around the building. 

Heavily frosted slabs are analogous to thick barriers. The eye or a 

photometer is analogous to the detector. The problem of the shield 

designer is to minimize the intensity of radiation inside of the 

structure. 

3. Directional Distribution 

a. General 

I would like to spend some time discussing the directional distribu 

tion of radiation reaching the detector. I might say, first, that 

knowledge of the directional distribution of radiation in the various 

configurations associated with fallout shielding constitutes the main 

advance over earlier attempts to treat this problem. Earlier attempts 

usually utilized buildup factors. These factors give the total amount 

of radiation emerging from a slab but no indication of its directional 

distribution. We will see why knowledge of the directional distribution 

is necessary in structure shielding. 
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Figure 7 shows the directional distributions appropriate to three 

different shielding situations. On the left are three configurations 

and on the right are plotted the corresponding directional distributions 

of radiation at tne detector. S represents the source and D the detector. 

The angle 0 is the polar angle relative to the direction DS. We will 

assume azimuthal symmetry about the line DS. The top configuration 

represents the case of no barrier. Radiation reaches the detector only 

from the direction 0=0. Thus, the plot of the corresponding directional 

distribution is a 6-function with the spike at cos0 = 1. Negative values 

of cos0 represent radiation reaching the detector from the right-hand side. 

The next configuration shows a thin circular disk barrier, B, interposed 

between source and detector. Now radiation can reach the detector from 

all angles 0 < 0 . In general, however, the greatest intensity exists 

at 0^0. The corresponding plot of the directional distribution, therefore, 

shows a peak at cos0 = 1 and a continuous decrease in intensity down to cos©^ 

and zero intensity elsewhere. The lowest configuration shows a thick barrier 

between source and detector. In addition, a barrier has been placed behind 

the detector. This barrier will backscatter some radiation to the detector. 

The corresponding plot shows a less peaked distribution between cos0^ and +1 

due to the disappearance of much of the direct radiation. In addition, some 
\ 

intensity from radiation backscattered from the second slab reaches the de¬ 

tector from angles between 0^ and tt . In the Engineering Method we generally 

neglect the backscattered contribution since it usually contributes less 

than 10/o relative to radiation reaching the detector from the primary barrier 

The concept of backscattered radiation, however, is important in the develop¬ 

ment of the Engineering Method, as we shall see. 
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7 SIMPLE SHIELDING CONFIGURATIONS (LEFT) AND THE 
CORRESPONDING DIRECTIONAL DISTRIBUTION AT THE DETECTOR 
(RIGHT) 



Figure 7 shows the directional distribution for three cases which 

we saw earlier in Figure 5 . We therefore refer to that figure for a 

visual picture of those angular distributions. The top view corresponds 

to the 6-function distribution, while the other two correspond quali¬ 

tatively to the other two distributions. Figure 5 , however, is limited 

to positive directions of cos0. Another figure would be required to 

show any radiation arriving from the backward hemisphere, that is, 

-1 < cos0 < 0. Figure 5 also shows that the shielding requirements 

are different for the three configurations. A thick shield of small 

lateral dimensions placed directly between source and detector in the 

top configuration would serve as an adequate shield. The same shield 

placed near the barrier in the other two cases would still allow a 

considerable amount of radiation to reach the detector. Thus, knowledge 

of the directional distribution is often necessary for intelligent use 

of available shielding material. 

b. Open Field - 

We turn now to the first directional distribution of practical 

importance in fallout shielding, namely, that at three feet above an 

infinite plane, uniformly contaminated with fallout. This is important 

not only because radiation protection is expressed relative to the 

intensity at this position, but, even more important because it is 

representative of the unperturbed distribution, so to speak, before the 

building is put in place. 

Consider, first, the unscattered radiation reaching the detector. 

The general shape of the directional distribution at a few feet above 

the ground is sketched in Figure -8 The intensity is the product 

of exponential absorption in air and a cos0 factor due to the 
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obliquity of the source plane. The total intensity, given by the 

integral over this expression, is 

I 

, -yh/cosG 
1 e 

d(cos0) - 

'o COS0 

where h is the height of the detector above the ground. 

Let r = yh/cos0. Substituting in this equation we can derive the more 

familiar exponential integral expression for I: 

I 
f°° e rdr 

- = E (yh) . 

^yh r 

Returning to the directional distribution, the factor l/cos0 

-yh/cos0 
dominates near cos0 = 1 and the exponential absorption in air, e 

dominates near cos0 = 0. The result is a distribution with a sharp 

maximum at cos0 = yh. At greater heights the maximum shifts to higher 

values of cos0. For small values of h the direct radiation determines 

the main features of the distribution for cos0 > 0. 

When radiation scattered in the air is added to this distribution. 

the result shown in Figure 9 is obtained. This result was calculated 

for h = 3 ft by Lew Spencer. We see that the general shape of the curve is th< 

same as that for direct radiation for positive values of cos0. In addition, 
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however, radiation now reaches the detector from directions above the 

detector, that is, cos0 < 0. This component is often referred to as 

skyshine. The total skyshine, which is the integral over negative 

values of cos6» is about 10% of the integral over all angles. 

The integral over all angles of this distribution is normalized 

to unity and all dose rates are expressed relative to this one. The 

REDUCTION FACTOR is defined as the ratio of dose rate at a particular 

location to that at three feet above an infinite plane, the source 

intensity being the same in both cases. 

Figure qO shows directional distributions calculated by Lew Spencer 

for various heights above an infinite plane. The main effect we see is 

a decrease in intensity with height. We see that for small heights this 

decrease is due mainly to the decrease in the spike near cos0 =0, that 

is, in the direction of the horizon. The intensity from radiation ar¬ 

riving from beneath the detector (cos0 = 1) decreases much more slowly. 

This is due, of course, to the exponential factor, e We see 

also the shift in the peak to greater values of cos0 which I mentioned 

before. Increasing the height of the detector, then, gradually shifts 

the peak intensity from the horizon to the nadir. In terms of our light 

analogy, the intensity pattern would change from one which was brightest 

near the horizon to one which was brightest directly below. 

c. Inside of Structures - 

Now we will consider in a qualitative way the intensity and direc¬ 

tional distribution of radiation inside of a structure. We might start 

with the optical analogy, by plotting the intensity of light inside of 
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V-10. directional distribution of radiation at various heights 
IN AIR ABOVE A PLANE ISOTROPIC SOURCE OF TALLOUT RADIATION 
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tais classroom. In our previous example of the directional distribu¬ 

tion in an open field, the distribution was independent of the azimuth, 

that is, of the compass direction. In the classroom, however, we must 

specify a compass direction. Let’s pick a direction which includes a 

lighting fixture. The intensity of light looks something like that shown in 

Figure 11. At cos0 = 1, that is, looking toward the floor, the intensity 

of light is low. The walls are brighter and the ceiling still brighter. 

The ceiling lights, however, are the brightest and show up as a spike 

near cos0 = -1. If there were a window in the azimuthal direction 

we have chosen, the distribution would look like the dashed line added 

in Figure 8 . 

We turn now to some examples of directional distributions of 

radiation within structures. Figure 12 shows a possible directional 

distribution at a detector above the window-sill level in a building 

with very thick walls. If the detector is on the first story, prac¬ 

tically no radiation will arrive from directly below the detector. 

As the detector is swept toward the horizon it sees some radiation 

penetrating the wall below the window. When it reaches the direction 

corresponding to sill level there is an abrupt increase in intensity 

since radiation can travel directly from source to detector with no 

intervening barrier. Thus, the detector sees the same intensity as 

if it were out in the open field. Hence, the directional intensity 

corresponds to the open field intensity which appears as a dashed 

line on Figure 12, Urnen the detector is raised toward the zenith it 

encounters first the wail above tiie windows and finally the ceiling 
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Fig. V-l1. HYPOTHETICAL DIRECTIONAL DISTRIBUTION OF VISIBLE LIGHT IN A 
ROOM. DASHED LINE CORRESPONDS TO THE PRESENCE OF A WINDOW. 
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Fig. V-12. HYPOTHETICAL DIRECTIONAL DISTRIBUTION AT A DETECTOR 
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where the intensity is again increased due to the presence of sources 

on the roof. If this wer-i a cylindrical building, so that the dis¬ 

tribution shown in Figure 12 were the same for all azimuths, then the 

total intensity would be given by the integral under the solid curve. 

The reduction factor would be given by the ratio of this integral to 

the integral under the dashed curve. 

Figure 13 shows a directional distribution representative, of a 

detector located below sill level. In this case the intensity is low 

for all positive values of cosG, since the radiation through the window 

comes only from negative values of cosG. We can see from this illus¬ 

tration why the dose rates above and below sill level may be quite 

different. In the present example the sharp spike in the open field 

distribution is attenuated while in the previous example of a detector 

above sill level, radiation from part of the spike arrived at the 

detector unattenuated. 

d. Types of Sources - 

We have seen how the direction distribution may vary inside of 

a structure. The problem now is to give a quantitative description 

and to present a simple method of evaluation. As the first step in 

this development we consider the types of sources which contribute 

to the radiation intensity in a structure. We find it convenient to 

divide the sources into three types, as shown in Figure 14. The first 

type of source is due to fallout distributed on the roof of the struc¬ 

ture. For a flat roof we assume that it constitutes a plane isotropic 

V-37 



g 
(c

o
s 

9
) 

cos 9 

Fig. V-13. hypothetical directional distribution at a detector 
BELOW WINDOW-SILL LEVEL IN A THICK-WALLED BUILDING 

V-38 



X X X X X X X 

Fig. 

xxxxxxxxxx 

Xs/T^/V^YYiOCX ~~ ^ XX xxxxxxxxxxxxxxxxxxxxx 

100 500 

V-L4. SCHEMATIZED VIEW OK THE THREE TYPES OF 
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source of fallout radiation. The second type of source is due to 

fallout distributed on the ground around the structure. The radia¬ 

tion from this type of source travels directly from source to the 

wall of the structure. Since about 3/4 of the intensity is due to 

sources within about 100 feet of the building we indicate 100 feet is 

representative of the distance within which sources are important. 

The third type of source is also due to sources on the ground, but 

it is constituted of radiation which has made at least one scatter 

in the air surrounding the building and impinges on the wall from 

an upward direction. It is often referred to as "skyshine". We 

can picture the structure as immersed in a bath of air. The mean 

free path for fallout gamma radiation in air is of the order of 

300 feet. It turns out, therefore, that sources out to 500 feet 

from the structure still make important contributions to the skyshine 

radiation. An important result is that decontamination is not a very 

practical method for reducing the intensity of skyshine radiation. 

The schematized building which we have considered in the de¬ 

velopment of the calculations described in this report is shown in 

Figure 15. It is a cylindrical pillbox, divided into horizontal 

layers, each of which represents a story of the structure. Since 

most buildings of interest in shielding are Several times longer and 

wider than an average story height, the radius of our cylinder is 

several times greater than the height of each layer. Each layer may 

contain apertures of uniform size and location. This uniformity is 
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Fig. V-15. 
SCHEMATIZED VERSION OF A BUILDING USED IN 
THE DEVELOPMENT OF THE ENGINEERING METHOD 

V-41 

240-816 0-67 —53 



apt to be present in upper stories of actual buildings, but not perhaps 

in the first story. We will now discuss these three main types of 

sources and methods for evaluating their contribution. 

4. Roof Source - 

We consider first the dose rate due to sources distributed on the 

roof of a building. Since most buildings are fairly complicated affairs 

we resort again to SCHEMATIZATION, that is, we replace the actual con¬ 

figuration by a much simpler one. In doing this, however, we must 

specify certain parameters which determine the shielding capability of 

the actual configuration and we must relate these parameters to the 

schematized configuration. Figure illustrates the schematization 

which we use for roof sources. On the left is shown a typical rectangular 

roof covered with fallout oarticles. The roof has a thickness X and 
‘ o 

subtends a solid angle co^ at the detector. On the right is shown the 

schematization. The sources are now distributed on a circular area 

subtending the same solid angle at the detector. Also the barrier ma¬ 

terial is nowT uniformly distributed between source and detector, but 

its total mass thickness remains the same as on the left side. In this 

schematization, we tacitly assume that once we fix the total mass 

thickness between source and detector and the solid angle subtended 

by the source at the detector, the dose rates will be approximately the 

same. 

We can use the curves shown in Figure 10 to obtain reduction factors 

for the roof schematization. Consider the integral 



V-43 

D
ig

. 
V

-1
6
. 

R
E

L
A

T
IO

N
 

b
et

w
ee

n
 

a
c
tu

a
l 

c
o

n
fi

g
u

ra
ti

o
n
 

(l
e
ft

) 
an

d
 

a 
C

O
N

FI
G

U
R

A
T

IO
N
 

(R
IG

H
T

) 
SC

H
E

M
A

T
IZ

E
D
 

TO
 

C
O

M
PU

TE
 

R
A

D
IA

T
IO

N
 

FR
O

M
 

R
O

O
F 

SO
U

R
C

ES
 



L(d) = ^ £(d, cosQ)d(cosG) * 

-1 

It represents the dose rate at a perpendicular distance of d feet 

of air from a plane isotropic source, however, it also represents 

the dose rate above a circular cleared area for which the slant 

distance, r , to the nearest source is d. The dose rate from a 
o 

circular source is therefore given by 

L(d) - L(d/cos0 ), cos0 = d/r 
o o o 

where d is the detector height. 

If we assume that concrete and air have similar scattering properties 

we can convert from feet of air to psf of concrete. The conversion 

factor is 13.3 ft. of air * 1 psf of concrete. We then convert the 

parameter 0^ to the solid angle fraction parameter oo by means of 

w = 1 -COS0 
o 

and obtain a new expression for the dose rate: 

B(X ,co) = L(X ) - L[X /(l-oo)]. 
o o o 
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Therefore, we can use the curves in Figure 10 to obtain the function 

B(Xq, <o) which gives the reduction factor from a disk source subtending 

a solid angle fraction of to at the detector and separated from the 

detector by a mass thickness Xq. But this is precisely the result we 

asked for in our schematization. This function is plotted as a series 

of contour curves in Chart 4 of the Engineering Manual. 

Example 1: (See Diagram 1). 

If we assume that the density of concrete is 150 pcf then the mass 

4 
thickness of the roof slab is 150 x — = 50 PSF. 

The solid angle fraction to can be obtained from Chart 3. 

n = 2Z/L = = .4 

e = W/L = f = .6 

to = .56 

From Chart 4: 

B(X ,<o) = B(50, .56) = .07 
u Diagram 1 

The errors inherent in the schematization by circular disk sources 

and by barriers uniformly distributed between source and detector are 

discussed in NBS Monograph 76. The maximum error due to smearing 
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out the barrier is about 40%. The error due to the circular disk 

approximation is less than 25% for rectangles with length-to-width 

ratios of less than five. Although the error due to smearing the 

barrier is fairly large, we should keep in mind two facts. First, 

Lew Spencer has calculated results for two other configurations, 

namely, the case of barrier material concentrated near the source 

and the case of barrier material concentrated near the detector. 

In situations where the roof sources make an important contribution, 

one of these two alternatives may provide a closer estimate of the 

actual reduction factor. Second, in most situations where reasonable 

shelter is afforded, that is, in middle stories or in basements of 

multistory buildings, the ground sources make the predominant 

contribution• 

5. Ground Source - 

a. Detector above Grade - 

The calculation of radiation from sources on the ground surrounding 

a building is considerably more complicated than the calculation of 

radiation from roof sources. The basic difficulty is that the radiation 

from ground sources must penetrate a barrier which is perpendicular to 

the plane of the source material. Thus, we are confronted with two 

possible reference directions, namely, the direction normal to the 

source plane and the direction normal to the barrier. If we choose 

the latter as our reference direction and consider a detector opposite 

the center of a rectangular wall we may choose our origin of coordinates 
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at the detector and our polar axis as the line through the detector 

and perpendicular to the barrier. But, then we find that the angular 

distribution of radiation emerging from the wall is no longer azimuthallv 

symmetric about an axis perpendicular to the wall as it was in the case 

of radiation from the roof. For example, more radiation arrives from 

below the detector than from above it. Furthermore, walls are often 

about 10 feet high per story, but over 50 feet long. Thus, it is in¬ 

accurate to approximate these highly eccentric rectangles by circular 

disks. Since we have no information on responses from highly eccentric 

rectangles radiating with anisotropic azimuthal angular distributions, 

all angular distributions are referred to the (vertical) direction 

normal to the source plane. This has the added advantage that we 

maintain the vertical direction as an axis of symmetry. It has the 

disadvantage that some correction must be made for the azimuthal 

dependence of radiation. The azimuth in this system of coordinates is repre¬ 

sented by the points of the compass. For example, in a long narrow building 

there will be a greater intensity arriving from the longer walls than from 

the shorter walls. No matter which direction we pick for our direction 

of symmetry, however, we must face a more important shortcoming, and 

that is that no calculations have been made for the angular distribu¬ 

tion of radiation emerging from the inner walls of a building. We 

have been forced to use angular distributions calculated by Lew Spencer 

for some idealized configurations. 



Before discussing the method we have developed for calculating 

dose rates from ground sources, I would like to introduce two con¬ 

cepts, namely, barrier factor and geometry factor. Suppose we have 

an angular distribution g(X,cos0) emerging from a slab of thickness X 

and suppose we rewrite g as 

g(X,cos0) = 

or 

g(X,cos0) = B(X)g'(X,cos0) 

where B and g' are condensed notation for the first and second factors, 

respectively. From the definition of g* it can be seen that 

,1 
' g*(X,cos0)d(cos0) = 1 . 

We could then express the dose rate at a detector with collimating 

half-angle of 0 as: 
o 

R 

1 , 1 
g(X,cos0) = B(X) / g'(X,cos0) = B(X)G(X,w) • 

cos0 (l-io) 
o 

v-48 



The first factor, the barrier factor, depends only on the mass 

thickness, while the second factor, the geometry factor, depends 

primarily on the solid angle fraction and only weakly on the mass 

thickness. It is a correction for the fact that the detector 

receives radiation from within a limited solid angle. 

It is convenient to make this separation when the directional 

distributions are nearly constant in shape or, even more important, 

when it is necessary to approximate unknown directional distribu¬ 

tions. It is for the latter reason that we have used this separa¬ 

tion in the treatment of radiation from ground sources. 

We consider first the dose rate inside of a cylindrical struc¬ 

ture with vanishingly thin walls. We find it convenient to use 

solid angle fractions to = 1 -cos0 and oo„ = 1 -cos0n. The angle 0 
u u x, x, 

is the polar angle relative to the downward vertical direction and 

0^ is the polar angle relative to the upward vertical direction. 

The dose rates from radiation through the walls can be expressed as 

„cos0 
l 

o 

R £(3’, cos0)d(cos0) + 2.(3', cos0)d(cos0) , 

o -cosO 
u 

or 

R - Gd <V3’> + W3') 
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The first equation uses the nomenclature of Lew Spencer’s Monograph 

and gives the mathematical expression for the geometry factors for 

radiation through the walls. The second equation uses the nomen¬ 

clature of the Engineering Manual. The subscripts d and a refer to 

■k 

direct and air-scattered, respectively. In physical terms we con¬ 

sider all radiation which arrives at the detector from directions 

which intersect the walls of the structure. Since the walls of 

the structure are of zero thickness, the directional distribution 

is the same as that for the open field. 

For thin walls we write the dose rate as: 

R = B(Xw)[Gd<V3') + Ga(V31)] 

where the barrier factor B(X ) accounts for the attenuation of the 
w 

walls. This barrier factor has been computed by Lew Spencer for a 

wide range of wall thicknesses. Note that we have simplified the 

geometry factor by ignoring its dependence on X . This is equivalent 
w 

to assuming that the barrier does not distort the shape of the 

^Actually G (m ,3') also includes a correction for ceiling shine and 
a u 

is given by G = G [1+5(.1-G )] where C is given by the second 
a a a a 

term on the RilS of Spencer's equation. 
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directional distribution. This assumption can only be justified 

insofar as it predicts dose rates to within an accuracy satisfactory 

to the shield designer. The geometry factors and are plotted 

in Chart 5 of the Engineering Manual. 

We turn now to the opposite extreme of a structure with very thick 

walls. In this context, the work "thick" means much greater than about 

40 psf (about 3 inches of concrete). In this case, virtually all the 

radiation emerging from the inner side of the wall will have scattered 

at least once in the barrier. The problem then was to assume some 

directional distribution for this radiation, since no calculations 

existed at the time. We chose the directional distribution of air- 

scattered radiation as an approximate distribution. The implicit 

reasoning behind this choice is that the distribution of scattered 

radiation behind a barrier will resemble the equilibrium distribution 

of scattered radiation in air. We therefore calculate the geometry 

factor for wall-scattered radiation as: 

G 
s 

(oO 5/ £(3 *, cos0)d(cos9), 
-cosQ . 

l 

where the subscript i refers to either upper or lower angles. 



Since the integral from -1 to 0 is 0.1 and since we assume that the 

distribution is the same in the upper and lower hemisphere, the 

factor of 5 is required for proper normalization. In physical terms 

we assume that the radiation scatters so many times that the up-down 

asymmetry in the original distribution washes out. Figure \~j shows 

the distributions assumed for thick walls. 

having obtained an expression for the geometry factor we seek 

one for the barrier factor. The barrier factor calculated by 

Lew Spencer applies to a detector located between two parallel walls 

of infinite extent, as shown on the right side of Figure 18. Our 

geometry factor, however, is based on a cylindrical structure, since 

we have ignored any variation of intensity with azimuth. This conflict 

of rectangular and cylindrical geometries is the main disadvantage of 

the approach used in the Engineering Method. We have welded the two 

geometries together by r aans of a shape factor. This factor is an 

attempt to correct for the fact that the dose rates in the two con¬ 

figurations of Figure 18 are expected to be different, even though 

the barrier thicknesses are identical. The shape factor is based on 

the assumption that the dose rate from a straight wall varies as cos<j> 

where <J> is the azimuthal angle. (4> = 0) is defined by a line from the 

detector, perpendicular to the wall. The reduction factor is then 

expressed as 

Rf = B(XM)E[Gs(u,p + Gs(«u)] . 

The shape factor E is plotted in Chart 8 of the Engineering Manual. 
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Fig. V-18. CYLINDRICAL STRUCTURE (LEFT AND LONG, 
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We have now discussed the formulas to be used in the case of 

very thin and very thick walls. Most practical cases of interest 

fall somewhere in between, of course. Since the two extremes are 

based on the absence of scattered radiation (thin wall) and on the 

preponderance of scattered radiation (thick wall), each result may 

be weighted by the fraction of scattered radiation emerging from 

a wall of some intermediate thickness. What we require, then,is 

the fraction of the emerging radiation which is scattered. This 

fraction can be obtained from buildup factor data. The ratio of 

scattered to total radiation is given by 

SC = T-U 1 
T T B 

where 

SC is the intensity of scattered* radiation 

T is the total intensity 

U is the intensity of unscattered radiation 

and 

B is the buildup factor • 

We call the fraction SC/T of scattered radiation S (X). We calculated 
w 

it from buildup factor data for Co-60 and normal incidence on slabs. 
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It turns out, as discussed in NBS Monograph 76, that the S (X) curve 
w 

obtained in this way is not very different from one obtained by 

using point source data for fission product radiation. The reduction 

factor for walls of intermediate thickness is given by 

(1) R = B (X ) 
r w 

Example 2: (See Diagram 2). 

We consider the reduction factor for radiation penetrating the 

walls of a blockhouse with 40 psf walls. For simplicity we place the 

detector at a height of 5 feet so that the upper and lower solid angle 

are equal. 

First we find the value of the solid angle fraction. The ec¬ 

centricity ratio is e = 40/100 = 0.4 and the "normality" ratio is 

n = 10/100 = 0.1 

From Chart 3, u)0= oj = .835 
* u 

From Chart 5, G^(co^) = .54 

G (<d ) = .047 
a u 

G (to) = .18 
s 10 

From Chart 7, S (X) = .53 
w 

From Chart 8, E(0.4) =1.3 
Diagram 2 

100' 

and finally, from Chart 1 B(X ) = .38 
w 



(Therefore 

Rf = B(Xw){ESw(X)[Gs(a)£)+Gs(a)u)] + [l-Sw(X)][Gd(a)1)+Ga(a)u>]} 

= (•38){(1.3) (.53)[.18 + ,18]+(.47)[.54 + .047]} 

= (.38){.25 + .28} = .20 ANSWER 

b. Detector Below Grade 

The previous discussion has applied to the case when a horizontal 

plane through the detector (the "detector plane") intersects the wall of 

interest. In many cases, however, such as a detector located below grade, 

the wall of interest lies entirely above or entirely below the detector. 

In such cases we have to modify the expression for the reduction factor. 
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Consider a detector located below grade as in Figure 19 . If we 

neglect albedo from the walls and floor below the detector plane we 

can delete any terms in equation (1) involving to . On the other hand, 

the wall is now defined by two upper solid angle fractions, oo^ and 

In order to obtain the response from such a wall we must difference the 

geometry factors for the two solid angle fractions. The resulting ex¬ 

pression is 

(2) R- = B(X ){ES (X) [G (to ' )“G (to )] + [l-S (X)]X[G (u> ')-G (to ) ]} . 
f w w s u s u w au a u 

This expression predicts a phenomenon which is worth discussing 

in a little detail. Suppose we do a hypothetical experiment in which 

we start with a building whose walls are of zero thickness and measure 

the dose below grade as we increase the thickness of the walls. 

If we examine the various factors in equation (2) we see that the barrier 

factor decreases with increasing values of X . The thick-wall geometry 
w 

factor (the first term inside of the braces) increases with X . while 
v 

the second term decreases. For some configurations the first term may 

increase so rapidly that it outweighs the decrease in the other term 

and the barrier factor. The dose mav therefore increase with X , go 
w 

through a maximum, and then decrease with X . Although such an in¬ 

crease has not been demonstrated experimentally, it is certain that 
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the first 40 psf added to the first story wall do not significantly 

decrease the dose rate at detectors below grade, and may possibly 

increase it. This concludes the discussion on ground sources. 

6. Skyshine - 

The third type of source which we mentioned is skyshine. Skyshine 

is ordinarily a secondary effect in that it accounts for only 10% of the 

dose in an open field. However, in situations where the direct com¬ 

ponent of radiation is absent due to heavy shielding of some sort, 

skyshine must be taken into account. 

Two situations where skyshine may be important are the case of a 

detector located below windows in a thick walled building, and a detector 

in the basement of a building with a light superstructure. The first 

situation is shown in Figure 20 a. This actually represents a special 

case of equation 2. Since we are considering only the contribution 

through apertures the value of X is 0, the first term in the 
w 

brackets disappears, and [1—S (X)] is equal to unity. Furthermore, 
w 

B(X^) =1. If the windows occupy a certain fraction P^ of the perimeter, 

then the expression for the reduction factor for radiation received through 

the apertures is 

R, = [G (w ' )-G (a. )]P . 
f a u a u a 
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In the second situation, shown in Figure 20b, we wish to calculate 

the reduction factor in the basement. In order to do this, we must 

first derive a barrier factor for the penetration of skyshine radiation. 

This barrier factor can be calculated if we consider the schematization 

shown in Figure 18. The actual configuration is a detector located at 

a depth Xq' below a clearing whose radial dimension may be of the order 

of 25'. The schematized situation represents a detector at a depth X ' 

below a source which emits photons only into the upward hemisphere. All 

photons counted by the detector must have crossed the interface an odd 

number of times. 

The main difference between the actual and schematized situations 

is that the actual situation contains a clearing above the detector 

whereas the schematized configuration contains" an infinite plane isotropic 

source. It has been demonstrated both theoretically and experimentally, 

however, that the sources lying within a radius of about 50 feet from a 

point contribute only about 10% to the intensity of skyshine at that point. 

Therefore, the skyshine in the actual situation should be about the same 

as that in the case of an infinite plane isotropic source at a ground-air 

interface. But this, in turn, should be approximately equal to the 

schematized situation of a plane isotropic source in a uniform infinite 

medium. 

The barrier factor for the schematized case has been calculated by 

Lew Spencer, and for the reasons just discussed we apply it to the pene¬ 

tration of fallout radiation through a basement ceiling. This barrier 



ACTUAL SCHEMATIZED 

X X X X X X | 

• RELATION BETWEEN ACTUAL CONFIGURATION (LEFT) AND A CONFIGURATION 
(RIGHT) SCHEMATIZED TO COMPUTE PENETRATION OF SKYSHINE RADIATION 
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curve is labeled B '(X ') and is shown as Case 3 in Chart 1. The 
o o 

reduction factor in a basement due to skyshine radiation is given by 

Rf ■ 

7. Limited Strips of Contamination - 

Up to this point our entire discussion has been concerned with 

isolated buildings, surrounded by an infinite plane isotropic source. 

However in urban, or even in suburban, areas where most of our 

existing shelter space lies, buildings are surrounded by strips of 

contamination such as lawns and roads whose extent is limited by 

the presence of other buildings. Calculations must therefore include 

some way of handling limited areas of contamination. 

When we reduce the semi-infinite field on one side of a long wall 

to a finite area,we reduce the dose on the other side of the wall for 

two reasons. First, the dose is decreased because the intensity 

incident on the wall is decreased by virtue of our having removed 

some of the sources. But, secondly, the barrier factor is reduced 

because we have altered the directional distribution incident on the 

wall. By eliminating those sources at great distance we have removed 

much of the radiation which was perpendicularly incident on the barrier. 
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The remaining incident radiation therefore contains a higher fraction 

of radiation incident at slant angles and not as likely to penetrate. 

Although limited areas of contamination are apt to be rectangular 

in practice, we have only Lew Spencer's calculations for semicircular 

areas of contamination of radius p and detectors at height h. (See 

Figure 22.) The correspondence between the rectangle and the semicircles 

was determined by equating solid angles at the detector: 

a) = (l-cos0) = —tan ^ --- 
7T 

n/n2^e2+i 

Thus, for a given detector height H and a rectangular strip of width W 

and length L, the solid angle subtended by the strip can be calculated. 

This solid angle and the wall thickness are the input numbers required 

for Lew Spencer's calculations for semicircular sources. The calculated 

curve B (X , co) is plotted as a series of contour curves in Chart 9 of 
ws w 

the Engineering Manual. 

In these few lectures I have tried to indicate how the Engineering 

Method was developed for a simple type of building such as a blockhouse. 

My discussion has been limited to detector locations on the first story 

or in the basement. 
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Although I have tried, in some cases, to justify the procedures 

we have developed, the ultimate justification depends on experimental 

confirmation. The results of experiments to date indicate that some 

changes will have to be made in the basic charts and some minor changes 

in procedures. however, experimental results are not always conclusive. 

The next big step in the development of the Engineering Method seems to 

be a detailed analysis of existing experiments to determine in what ways 

the calculational procedures should be modified. 





C. Simplified Engineering Methods 

1. Simplified Method in Guide for Architects and Engineers - 

I would like now to give a somewhat detailed discussion of 

the Guide for Architects and Engineers which I will refer to 

as the AE Guide. As I mentioned, there was pressure early in the 

development of the engineering method to come up with a simplified 

method. We therefore tried to develop a method suitable for 

surveys. I will call it the survey method. The philosophy of this 

method, in general, is as follows: It was designed primarily for 

statistical application. Since it was a simplified method with 

fewer variables than the engineering method we had less faith in 

the accuracy of the calculations. We therefore felt it should be 

used only on a large number of buildings where some kind of 

statistical estimate is required. It was not designed to obtain 

detailed information on individual buildings. It was hoped that 

the engineering method would be used in the latter case. 

The main difference between the AE Guide method and the 

engineering method in terms of parameters was that we eliminated 

the use of solid angles. It was felt at the time that a solid 

angle was a concept that most engineers did not use in everyday 

practice and that eliminating it as a parameter would simplify 

the calculations. We therefore assumed a square building, and 



fixed the detector height. Once that was done, the solid angle 

parameter could be translated into an area parameter which was 

much more familiar to the people who would be using the survey 

method. Another simplification was the elimination of separate 

calculations for barrier and geometry factors. The charts in the 

AE Guide are the result of calculations in which the geometry and 

barrier factors have been combined beforehand. 

Besides the assumption of a square building, the survey method 

also assumed that the detector position above grade was fixed at 

3 feet above grade. This height does not necessarily correspond to 

3 feet above the first floor. However, when the two are different, 

the calculation actually applies to 3 feet above grade. For below 

grade, the detector position was arbitrarily selected at 5 feet 

below the first floor. Again, if the first floor is not at grade 

level, the detector height will correspond to some height other than 

3 feet below grade. Since the main contribution to below-grade 

detectors may come from radiation which enters the walls of the story 

above and scatters down, some assumption had to be made about the 

height of the story above, that is, the first story of the building. 

This was assumed to be 12 feet in height. These numbers are rather 

arbitrary. At the time we did this calculation we were probably 

thinking more of typical story heights in large commercial structures, 

rather than residences. In any case, the results are not very 

sensitive to the height of the first story. 
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At this point I would like to discuss the survey method by 

reviewing the charts in the AE Guide. I will examine each of the 

Charts and relate them to the engineering method. These charts 

are reproduced at the end of the section. 

Chart 1, on page 33 of the AE Guide, shows barrier shielding 

effects. It was included primarily to present visually the 

shielding effects of three different cases of barrier configurations. 

The curve for Case 3 is the only one used explicitly in the calcula¬ 

tions. Case 1 represents fallout on the roof. The corresponding 

barrier factor is given by the solid line. The result, obtained 

directly from NBS Monograph 42, was calculated for a plane isotropic 

source of gamma radiation from 1.12 hour fission products. It is 

normalized to unity at a depth of 0.22 psf which corresponds to 3 

feet of air. Case two represents fallout on the ground next to an 

external wall. The barrier factor for penetration through the walls 

is shown by the dashed line. Actually, the diagram for Case 2 is 

not quite accurate. To be strictly correct, that diagram ought 

to depict a detector sandwiched very closely between two vertical 

walls, with an infinite plane of contamination on either side. 

This barrier factor is the ratio of the dose rate at a height of 

3 feet and a depth X to the dose rate at 3 feet above an infinite 

plane. As the wall thickness shrinks to zero, this ratio approaches 
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unity. When you go through an example in this method, you do not 

have to refer to either of these curves specifically. They are 

here mainly for instructive purposes. Case 3 represents fallout 

adjacent to a horizontal barrier. In order for radiation to reach 

the detector it has to start out in the upward direction, scatter 

in the air or the structure and penetrate down through the floor. 

The dotted curve is the barrier factor calculated for this case. 

Its main application is to detectors in basements. I will go into 

a little more detail on that when I discuss the details of the 

engineering method, and how these curves were derived. But the 

main point here is that it is used for penetration through hori¬ 

zontal barriers inside the building - penetration in and down so 

to speak - and its main application is to detectors in the basement. 

Chart 2 is the roof contribution, presented in terms of a 

contour curve. The principle variable is the total overhead mass 

thickness, X , between the detector and the roof source. In this 
o 

method the roof contribution is calculated separately from the 

ground contribution and combined at the end o'f the calculation. 

In that respect, it follows the Engineering Method. If there are 

a number of floors between the detector and the roof source, X 
o 

is the sum of the mass thicknesses lying between the detector and 

the source. The other variable in Chart 2 is the adjusted roof area. 
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An adjusted area is necessary because Chart 2 was calculated for a 

fixed detector distance of 10 feet. However, if all linear di¬ 

mensions are multiplied by the same factor, the solid angle and 

therefore the dose rate remains the same. The adjusted area in 

Chart 2 is the area which subtends the same solid angle at a de¬ 

tector with Z = 10 as does the real area at the real detector 

location. In other words, if the solid angle is fixed and the mass 

thickness is fixed the same dose rate is obtained. The adjusted 

area is obtained by multiplying the real area by (10/z) . Each 

contour curve corresponds to a unique reduction factor. Generally 

as X increases the reduction factor of the dose decreases. This is 

very reasonable. Generally as the roof area increases, the reduction 

factor increases. As you can see, for large areas these contours 

approach a vertical slope which means that for a given mass thickness, 

if the roof area is increased beyond a certain amount, the additional 

sources do not contribute, because they are so far away and have to 

come through an extreme slant thickness of roof. 

Chart 3 is a series of contour curves used for the ground 

contribution for detectors above grade. Just as in Chart 2, the 

reduction factor decreases as the wall mass thickness increases. 

Here, increasing the area is equivalent to moving the wall farther 

and farther away from the detector. Therefore, the reduction factor 
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2 
decreases with increasing area. This can be interpreted as an r 

effect, since removing the walls farther and farther away corresponds 

to removing the effective source. Knowing the wall mass thickness and 

the adjusted area of the building the ground reduction factor can be 

obtained from this Chart. These reduction factors are based on a 

detector height of 3 feet above grade. 

Now, Chart 4> I think, is probably the most interesting. This 

gives the ground contribution to a detector below grade. This Chart 

is used only for radiation through the first story walls which comes 

down to the detector. There are two types of radiation which are 

included in this contribution. One is radiation which comes directly 

from a ground source, scatters in the wall, and heads down to the 

detector. The other component is skyshine - that is, radiation which 

is emitted into the upper hemisphere - scatters in the air, and comes 

down straight towards the detector. As I said earlier, the detector is 

understood to be 5 feet below the first floor. Suppose we look at the 

dose rates for fixed area, let us say, 4-000 feet and then examine the 

reduction factor as a function of the wall mass thickness. This method 

predicts that when the wall thickness increases from X = 0 to X = 13 

psf, a slight increase in reduction factor will occur. Notice that 

this is not very dramatic and certainly the calculations are not 

really accurate enough to say that this is a real physical effect. I 

think the best that can be said is that the reduction factor is nearly 



constant between X = 0 and X = 40 psf. Technical Operations has made 

some measurements recently on the wall-scatter component. Since 

there is no wall-scatter for zero thickness walls, this component 

has a much more dramatic behavior. If the wall-scattered component 

were plotted against wall thickness the contribution would start 

from zero at X = 0 and then build up to a maximum at X ~ 30 psf 

and then decrease. That much has been verified by a scale model 

experiment. However, it is more difficult to measure the other 

component, the skyshine, because about one third of the skyshine 

component comes from sources beyond 500 feet. It is extremely 

difficult even with kilocurie sources to get measurements when 

the sources are so far away. I do not think we have definitive 

measurement yet. Personnel from Edgerton, Germeshausen & Grier 

have just reported some measurements on penetration of skyshine 

through vertical and horizontal barriers. It is possible that 

their measurements may yield the attenuation of the skyshine com¬ 

ponent. At any rate, what we can say generally, is that the first 

40 psf of shielding on the first story does not contribute in any 

important way in improving protection in the basement. It certainly 

improves the protection on the first floor, but it does so by 

scattering the radiation downward. 

Another interesting feature of Chart 4 is the variation of 

the with area. If you consider a fixed mass thickness, say 
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20 psf, and ask what happens as the building varies in size, you 

find that the reduction factor has a maximum at an area of about 

4000 square feet. For very large areas, the effective sources lie 

farther from the detector. Therefore, for fixed mass thickness, 

the reduction factor would be expected to decrease. However, the 

surprising thing is that when the building is smaller than about 

4000 square feet, the reduction factor again decreases. The 

reason for this, basically, is that the angular distribution coming 

out of the wall, is peaked in the horizontal direction. As the 

building gets very small, the detector is sampling a part of the 

angular distribution, where there are not many photons. Accordingly, 

the reduction factor decreases. Knowing the first story wall thick¬ 

ness and the area of the building, one can obtain the ground con¬ 

tribution from the first story walls from this Chart. 

Chart 5 is a correction for height dependence, and is taken 

directly from NBS Monograph 42, Figure 28.2a. It is intended to 

correct the reduction factor when detectors are not at three feet 

above grade, but at some greater height. This correction would 

be quite good, if the position of interest were on the outside of 

a building, because in that case the detector views radiation coming 

from all directions. However, in a multistory building with thick 



floors, the detector sees radiation only from a limited cone of 

direction near the horizon. But the dependence on height of 

radiation traveling parallel to the horizon is significantly dif¬ 

ferent from the height dependence of radiation integrated over all 

directions. 

An estimate of the height dependence of the radiation traveling 

parallel to the horizon can be obtained from examining £(d,cos6) near 

cosb ~ .01 (see Fig. 26.1 of NBS Monograph 42). The value of these 

curves near cost) = 1 decreases by a factor of 10 as the height in¬ 

creases from 3 feet to 16 feet. On the other hand, the intensity of 

the radiation integrated over all directions, L(d), decreases only 

by about 30% between 3 feet and 16 feet (see Fig. 28.2a of i\BS 

Monograph 42). 

Chart 6 is one that in practice has not been used too much. 

It was designed primarily for application to commercial structures 

with large glass-wall areas, very often on the first floor. I will 

not go into detail on this Chart primarily because it does not appear 

in the newer methods. I would suspect that the main reason that it 

has not been used is that protection is too poor in these situations 

to be of practical interest. 

This ends the discussion of the Charts in the AE Guide. There 

are three tables on page 44 which provide correction factors. These 

are definitely of less accuracy than the Charts we have been dis¬ 

cussing. They were intended to account for what we felt were some 

important effects for which we did not have very good methods of 

attack. 
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Table CF-1 provides a correction for apertures. A distinction 

is made between above- and below-sill level. The calculations in 

the AE Guide apply to a detector above sill level with zero 

thickness floors. Therefore, the correction factors for thin 

floors above sill are all equal to unity. The remaining three 

columns of this Table are based on some calculations we had made 

earlier for the OCD headquarters building at Battle Creek, Michigan. 

For thick floors, the correction factor for a detector below sill 

was about 0.2, independent of the story height, while the correction 

factor for a detector above sill varied as shown in the second column. 

For detectors below sill in a building with thin floors, the reasoning 

was as follows: On the first story the correction factor should be 

the same as that for thick floors. On upper stories the factor should 

be greater than 0.2 since there is some contribution from the lower 

stories. On the other hand, the correction factor should be less 

than 1.0 since the reduction factor is generally lower below sill 

level than above sill level. The correction factor was therefore 

arbitrarily assumed to be equal to those for the above-sill case for 

thick floors. 

A correction for skyshine contribution through the roof is given 

in Table CF-2. Its main purpose is to estimate the skyshine con¬ 

tribution when the roof sources have been removed by decontamination 

or natural blow-off. Decontamination has long been discussed as 

a possible way of improving protection in structures. At one time 

elaborate wash-down systems were considered seriously. There 

are many problems connected with decontamination. If the sources 



are to be washed off the roof they must be handled in such a way 

that they do not become concentrated somewhere else around the 

building. Also, I think that before the importance of skyshine 

was realized, it was felt that decontaminating the roof removed 

all the radiation. That is not true. If we consider the radiation 

which comes through the solid angle subtended by the roof, the 

sources on the roof certainly do make the main contribution. However, 

there is also a considerable amount of skyshine which comes down 

through that roof, which comes, not from the sources on the roof, 

but from the sources on all the horizontal surfaces within several 

hundred feet of the building. Even in an urban area these sources, 

which may be distributed at various heights, can all shine up into 

the air and shine down upon the building in question. It can be 

seen that for X near zero the skyshine represents an appreciable 

percentage, about lb/b of the contribution, from the roof sources 

themselves. 

Table CF-3 was an attempt to correct for what is now generally 

called mutual shielding. When we first developed this method, we 

thought of. isolated buildings surrounded by infinite planes of con¬ 

tamination. As I mentioned earlier our work in planning for the 

National Fallout Shelter Survey forced us to consider seriously the 

very practical case of finite fields in urban areas. At the time 

the AE Guide was written, however, we had not yet focused on this 

problem. 
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The mutual shielding factor in Table CF-3 was based primarily 

on the following type of reasoning. Suppose you have a detector at 

the center of a building and assume that the building has an effective 

radius of about 30 feet and that it is surrounded by an annular source 

of width W . The correction factor is the ratio of the dose rate from 
c 

a source annulus of this width compared to one where the sources ex¬ 

tended out to infinity. This is the sort of simple reasoning on which 

Table CF-3 is based. The most important weakness in the AE Guide is 

that mutual shielding is not at all adequately handled. 

Question: Coul.d the combined behavior of wall-scatter and skyshine 

as a function of wall thickness be measured with models? 

Answer: It would be difficult. Ihe air would have to be scaled by 

using polystyrene or some similar material. Although the effect is 

academically interesting, the uncertainties are small compared with 

other shielding problems. It is therefore not a critical experiment 

from the standpoint of OCD. 

Question: How are the curves in Chart 4 affected by the presence of 

a basement barrier? 

Answer: These curves do not include the ceiling barrier. Since the 

survey method treats the attenuation in the ceiling as a multiplica¬ 

tive factor, the shape of the curves is not altered by the presence 

of the ceiling. We have found, however, that this simple treatment of 

ceiling attenuation is inadequate and that the shape of these curves really 

does vary with ceiling thickness. 
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Reduction Factors for Combined Shielding Effects 
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TABLES OF CORRECTION FACTORS 

Table CF-1.;—Aperture correction to ground contribution 1 

Floor No. 

Thick floors 
(X treater than 40 ptf) 

Thin floors 
(X leu than !fl ptf) 

Above sill Below sill Above sill Below sill 

1 1.0 0. 2 1.0 0.2 
2 . 7 .2 1.0 .7 
3 .6 .2 1.0 .6 
4 . 5 .2 1.0 .6 
5 .4 . 2 1.0 .4 
6 .3 .2 1.0 .3 
6+ .2 .2 1.0 .2 

1 Table CF-1 may be used for either simple or complex (wall-by-wall) cases. See example 2 for 
chart 5 for use of this table. 

Table CF-3.—Mutual shielding correction to 
ground contribution 1 

Table CF-2.—Sky shine correction to roof 
contribution *•2 

Total over¬ 
head mass 

thickness, X0 

Contami¬ 
nated roof 

Decontami¬ 
nated roof 

0 1. 15 0. 15 
50 1.08 .08 100 1.04 .04 200 1.01 .01 

1 Applied to reduction factor from chart 2 (p. 35). 
* Table CF-2 is generally used for cursory checks 

only. However, it is also used to evaluate the efficacy 
of roof decontamination. See examples 4 and 5 for ohart 
2 for use of this table. 

Width of field (W„) Correction factor (MB) 

feet 0 0. 00 10 .08 
20 . 10 
50 .20 100 .40 200 .60 

500 .80 1000 . 90 
Infinite 1.00 

1 Table CF-3 is for wall-by-wall calculations. See 
example 2 for chart 6 for use of this table. When 
a condensed computational form (supp. E) is used, 
make the following adjustments in tabular values in the 
case of urban buildings (those in areas of predominantly 
multistory commercial buildings): Streets on one side, 
X Yt \ on two sides, X Hi on three sides, X Ji. (Streets 
on all sides, use values “as is.") 

These tables are from NP-10-2: “Guide for Architects and Engineers”, OCD, 1960. 
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2. Equivalent Building Method - 

iMow I would like to discuss the equivalent building method. 

Jack LeDoux who is now with the Bureau of Yards and Docks is the 

person who derived the equivalent building method. The philosophy 

of this method is the same as that of the original AE Guide. It 

was designed to replace the tedious calculations of the engineering 

method with a quick method which would give essentially the same 

results as the engineering method for most shielding situations 

occurring in practice. Originally it was a very simple method, 

however, as the pressure to handle more detailed problems was 

increased, more charts were added. Now it is a fairly complex 

method in the sense that there are 24 charts and 3 tables in the 

equivalent building method. Only a few of them are used, however, 

in any one calculation. 

The essence of the method is to replace a complicated building 

by 4n equivalent blockhouse with just one wall thickness and one 

roof thickness. All corrections for mutual shielidng, height, area, 

and basement exposure are treated by adjusting barrier thicknesses. 

The hypothetical roof thickness is now a function of several variables 

the area of the building, the height or distance of the detector from 

the source, and the thickness of interior partitions. Corrections 

for all three of these variables are treated by adjusting the overhead 

V-89 

240-816 0-67—56 



roof thickness. The equivalent exterior wall thickness is a 

function of the actual wall thickness, the aperture ratio in 

the walls, the thickness of the interior partitions, and several 

other variables associated with mutual shielding and height ef¬ 

fects. how, I would like to discuss the figures in the equivalent 

building method. The figures are reproduced in Volume III of this book. 

Figures 1 to 4* are the basic charts that would be used in a 

simple calculation. They give the protection factor for a detector 

location three feet above grade. The ordinate is the protection 

factor (P ) and the abscissa is the wall mass thickness. There 

are various curves for different overhead roof thicknesses. For 

a given wall thickness it can be seen that as the roof thickness in¬ 

creases the protection factor increases. Furthermore, the curves 

begin to approach a constant value for large values of the wall 

thickness and small values of the roof thickness. This shows that 

t 

for a very thin roof overhead, let us say, = 0, making the walls 

thicker does not improve the protection because the predominant 

contribution comes from sources on the roof. In this situation 

greater protection can be obtained only by making the roof thicker. 

Figures 1, 2, 3? and 4» correspond to four different areas of buildings. 

Consequently, one feature of this method is that it is limited to 

calculations for just four areas, ranging from 100 to 100,000 square 

* Figures referred to with respect to the Equivalent Building Method 

can be found on Ih.ges III-22 through III-40. 
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feet. In working out an actual problem, this turns out to be a 

bit of a disadvantage because the area seldom corresponds to pre¬ 

cisely the areas for which these charts are calculated. At least 

two calculations and an interpolation are therefore generally 

necessary. Since the is not a strong function of area, linear 

interpolation is generally accurate enough. 

Figures 5 through 9 are the corresponding figures for calculating 

dose rates in basements. The reason there are five of these instead 

of four is that the sensitivity to area is somewhat greater than for 

detectors above grade. The extra figure gives curves for an area of 

4j000 square feet. For large values of the wall thickness, the general 

nature of the curves is the same as that for the above-ground case. 

For a fixed wall thickness, the protection factor increases with 

increasing roof thickness. As in the above-grade case, the curves 

approach a constant value for large wall thicknesses and small roof 

thicknesses. As before, this indicates that in this region the roof 

contribution is the main one. For small values of , the peculiar 

shape of the curves is due to the same phenomenon that we saw in the 

AE Guide, namely, that for first story wall thicknesses below about 

2d psf, removal of shielding material may actually increase protection 

in the basement. This is because there is less wall material from 

which radiation can be deflected to a detector below grade. The 

minima in these curves are therefore due to the same effect .as 

the maxima in the R^ curves of the AE Guide. Figures 5 through 9 
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apply to a basement with no exposure. They are analogous to the 

below grade chart in the survey method except that here the roof 

contribution is included. 

Figures 10a through lOd on page 25 present corrections for 

apertures. In using these figures one looks for the actual wall 

thickness on the abscissa ana reads an equivalent wall thickness 

on the ordinate. The equivalent wall thickness is generally less 

than the actual wall thickness because the apertures reduce the 

shielding effectiveness of the wall. For heavy wall thicknesses, 

of around 200 and 300 psf, the behavior of the equivalent wall 

thickness as a function of the percent of apertures is straightforward. 

As the aperture percentage increases, protection decreases, and the 

equivalent wall thickness therefore decreases. Small equivalent 

wall thicknesses here mean low protection factors. On the other 

hand, for small exterior wall thicknesses there is a cross over 

point in these curves. For wall thicknesses of about 20 or 25 psf, 

increasing the number of apertures increases the equivalent wall 

thickness, and therefore increases the protection. It is important 

to remember that in the equivalent building method the protection 

factor is calculated for detector locations just below window sill 

level. In this case, therefore the apertures are always above the 

detector. Varying the aperture thickness produces the same effect 

V-92 



on an above-grade detector as varying the first story wall thickness 

does on a basement detector. Each of the four curves correspond to 

a different building area. Similar corrections for the effect of 

apertures on a detector below grade are given in Figures 11a through 

lie. Although the corrections apply to a basement detector, the wall 

mass thicknesses in these figures refer to the first story walls. 

Here again, for large wall thicknesses increasing the aperture 

percentage decreases the protection. On the other hand, for small 

mass thicknesses, this trend reverses resulting in some peculiar con¬ 

tours for small values of X . The peculiar nature of the curves is 
e 

due to the fact that the curves in Figures 5 through 9 are double 

valued functions when is regarded as the independent variable. For 

example, for X^ between 0 and 25 psf in Figure 11a, the curves could 

have been drawn so that they all passed through the origin. This is 

t i 

because X^ =0 and X^ = 80 yield the same P^ in Figure 5. Figure lie 

is included for an area of 4,000 square feet. 

Figure 12 provides a correction for detector height. The four 

curves in Figure 12 apply to four different areas. These curves are 

designed to correct for shielding effects of the floors above and 

below the detector. In other words, the detector is assumed to be 

in a multistory building with thick floors. For the higher stories 

the apparent shielding is increased primarily because the radiation 

intensity decreases with height above the ground. As the area of 
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the building is increased the floor and ceiling subtend larger solid 

angles and are thus more effective in attenuating radiation from walls 

of other stories. Therefore, in Figure 12 larger areas correspond to 

larger increments in the equivalent wall thickness. However, this 

dependence on area cannot be assumed for all mass thicknesses. If the 

wall is very thin, a relatively greater contribution comes from the 

stories below. The floor is therefore even more effective in in¬ 

creasing the protection than in the case of thick walls. Thus, the 

table = 0 indicates that a number of psf should be added to the 

values which were obtained from the curves. The general interpretation 

here is that the shielding effect of floors is relatively greater in 

thin-walled buildings. 

This prediction is a property of the engineering method that is 

reproduced in the equivalent building method. In some extreme cases 

it can be shown to lead to spurious results. For example, consider 

a limited source terminated by a large adjoining building. The question 

is how much radiation would get to a detector in the center of an upper 

story with window walls, that is, = 0. According to the engineering 

method, if the source strip is narrow enough, a thick floor will remove 

all direct radiation. On the other hand, the wall-scattered radiation 

is weighted by the S (X ) function and S (0) = 0. Because the wall 

is of zero thickness, cthere is no mechanism for in-scattering. Conse¬ 

quently, the engineering method indicates that the detector receives 



no radiation. In reality, there are mechanisms such as ceiling 

shine and perhaps scattering off of the neighboring building which 

could in the real physical situation, enable radiation to reach the 

detector from the finite strip source. This is the reason why the 

engineering method was recently revised to include the skyshine 

contribution to a detector even though neighboring buildings block 

out skyshine. It was felt that the fictitious skyshine contribution 

would compensate for the absence of the unknown contributions, such 

as ceiling shine. 

Let us now return to the discussion of the equivalent building 

method. In Figure 13, we have the mutual shielding factor calculated 

by the equivalent building method. It is important to note that the 

equivalent building method (1964 version) is based on curves from the 

AE Guide. The mutual shielding correction for the protection factor 

estimater is based on experimental data. To complicate matters even 

more, in the 1963 version the present plan is to use the mutual 

shielding correction calculated by the engineering method. Therefore, 

although all three of these approximate methods are based on the 

engineering method approach, they may yield different answers for 

specific problems. This illustrates the disadvantage of producing 

simplified methods which are based on modified versions of the 

engineering method. I think fundamental changes should be made first 

in the engineering method and later in the various approximate, methods. 
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Otherwise, it makes it very difficult to compare the accuracy of 

the methods. For example, suppose you go through a detail calcu¬ 

lated by, let us say, the nomographic method and then you do a 

detailed calculation by the equivalent method, if they do not 

agree you are told that it is because they each use a different 

correction for mutual shielding. This is obviously not a very 

satisfactory state of affairs. 

Corrections for basement ceiling barriers are given in 

Figure 14a. There are two curves on Figure 14a indicating some 

sensitivity to the wall thickness. However, this sensitivity is 

a bit artificial for the following reason: The wall barrier factor 

as a function of the wall thickness which is now used in the engineering 

method is concave upward on semilog graph paper. It is shown as Case 2 

in Chart 1 of the AE Guide (Page V-82). In the equivalent building 

method, an attenuation of say l/lO, produced by a ceiling barrier of 

about 50 psf, is translated into an equivalent wall thickness. Hear 

zero wall thickness, where the curve decreases more steeply, a 

relatively small equivalent wall thickness is needed to produce a 

factor of 10 in attenuation. On the other hand, for large wall 

thicknesses where the curve decreases more slowly, a larger equivalent 

wall thickness is required to obtain an attenuation of a factor of 10. 

The two curves in Figure 14a represent average estimates of this ef¬ 

fect for X^ near zero and X^ near 150 psf. Consequently, the dependence 

on wall thickness in Figure 14a is due to the peculiarities of the 



equivalent building method rather than any inherent dependence of 

ceiling barrier on wall thickness. The same explanation accounts 

for the two floor barrier curves in Figure 14b. These curves give 

the equivalent mass that must be added to the wall barrier to ac¬ 

count for the attenuation in the floor barrier. 

Figure 15 is an attempt to correct for basement exposure. It 

is used with above grade charts, that is, the basement is treated 

as if it were a partly submerged above-grade structure. Less ex¬ 

posure implies greater protection which, in turn, requires a larger 

correction to the equivalent wall thickness. Figure 16 is used to 

obtain an equivalent overhead mass thickness. This parameter is 

necessary in order to use the basic figures, 1 through 9. The 

first procedure is to find the adjusted roof area corresponding to 

the actual detector distance z. This is done by means of a nomogram. 

2 
Entering the figure with a certain adjusted area, say 170 ft , and 

the actual overhead mass thickness, let us say 150 pfs, an R of .0031 

can be obtained. At this point the equivalent building method is a 

little artificial because the method ignores the reduction factor 

which has been obtained and seeks only an effective mass thickness 

which can be used in one of the first nine charts to find the com¬ 

bined P_p for roof and ground sources. I personally think one dis¬ 

advantage of the method is that it mixes the roof and wall contributions. 
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I prefer to see them separate. However, I think that arguments 

can be made in favor of it too. Examination of the first nine 

charts does give a feeling of how important roof contributions 

are relative to ground contributions. For example, the results 

for infinite roof thickness give the for the ground contribution 

alone. 

There are a couple of other corrections to the overhead mass 

thickness included in Figure 16 . If you want to know what effect 

interior partitions have on the equivalent overhead mass thickness, 

■X- 
you can use Chart C to obtain the increment in the effective mass 

thickness. Chart D*is included to correct for the effect of highly 

eccentric rectangular buildings. The method in these pages was 

originally derived for square buildings. 

* See Page III-40 



Question: 

Answer: 

Can Figure 14a be used on upper stories? 

Yes. Although Figure 14a is labeled "basement" it would 

probably be better to discuss 14a and 14b in terms of a 

detector in an upper story. Figure 14a would apply to 

radiation which has to come down through the ceiling 

barrier and 14b would apply to radiation which has to 

come up through the floor barrier. In the engineering 

method, it was assumed that the attenuation of the floor 

barrier is different from the radiation coming down 

through the ceiling barrier. Therefore, the curves in 

14a for basements is a special but very important 

application. 
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3- NOMOGRAPHIC METHOD 

The nomographic method is intended as a successor to the method 

described in the Guide for Architects and Engineers (A. E. Guide). 

The main differences between the two methods are that the nomographic 

method is quicker than the older method, it has a more accurate 

treatment of mutual shielding corrections, and information is calcu¬ 

lated from nomograms rather than read from contour curves. Although 

the nomograms contain similar information as the Charts in the 

A. E. Guide, they have been rederived directly from the engineering 

method. 

The nomographic method is based on many of the same assumptions 

as the A. E. Guide, namely: 

1. Square building 

2. Detector position 3’ above floor, for above-grade detectors 

3. Detector position below basement ceiling, for below-grade 

detectors 

However, the detector is assumed to be at or below sill level. The 

roof and ground contributions are computed separately. Details of 

the method can best be seen by reviewing the nomograms individually. 

Nomogram 1 is used to compute the roof contribution. It is a 

two-step calculation. Knowing the area of a structure, which is 

generally rectangular and the detector distance, a normality ratio, 

N, is calculated as if tne building were square. The ratio N is re¬ 

lated to the solid angle subtended by a square. Knowing N and the 
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mass thickness X , the roof contribution is calculated as if the roof 

were circular. Use of calculations for circular roofs is common to 

all methods based on the engineering method. If there are interior 

partitions of thickness X^, the peripheral roof contribution is cal¬ 

culated from Nomogram 1 using a roof thickness of Xq + X^ + 10 psf. 

Nomogram 2 is used to calculate the ground contribution to above¬ 

grade detectors. The results of nomogram 2 apply for an infinite field 

and a detector height of 3 feet. The minimum area listed on the nomo¬ 

gram is IjOO square feet. For buildings with smaller area the geometry 

factor is near unity and the ground contribution is given by B (X ) 
o w 

for an infinite field or B (cu, X ) for finite fields. 

Nomogram 3 is used to calculate the ground contribution to below- 

grade detectors. This chart requires special discussion. Consider 

first the simplest case of a basement with no exposure. The nomogram 

is applicable to buildings with areas between 1*00 and llj,000 square 

feet. We first note, however, that the area of the building does not 

appear as one of the variables of the nomogram. This means that the 

variation with area has been neglected in making up this nomogram. 

We can see from Chart ij of the A. E. Guide that this could introduce 

as much as a 50% error for ^ = 20 psf, since the dependence on area 

extends from C (i|000, 20) = .06 to C (£00, 20) = .0I4. Secondly, the 
g g 

nomogram for X is double-valued. The arrow on the left scale indi¬ 

cates the direction on increasing X^.. This is the nomographic inter¬ 

pretation of the fact, for example, that X = 0 and X = 67 yield the 
w w 
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same ground contribution. To obtain the ground contribution you merely 

lay a straight edge between the value of the first story wall thickness, 

X and the value of the basement ceiling thickness X' and read off 
w & o 

the value of C1.. 
g 

The procedure just described gives the contribution through the 

first story walls. If the basement is partially exposed, another 

term must be added to account for the radiation penetrating the exposed 

basement walls. This is obtained as follows. Using the thickness of 

the basement walls for X and setting X’ equal to zero, read off C’. 

Then multiply this value of by the obtained from Table H. If 

the exposure is greater than 5', but the detector is below grade, use 

the obtained for an exposure of 5’. If the detector is above grade, 

regardless of the exposure, it should be treated as an above-ground 

case and the basement wall thickness with Nomogram 2 should be used. 

If there are apertures in the exposed basement wall, the following 

procedure is recommended. If the basement wall thickness is less than 

5>0 psf, ignore the apertures. If it is greater than $0 psf, arid 2% 

of the calculated contribution through the exposed walls for each 

psf of basament wall thickness over 50 psf, regardless of the aperture 

percentage. For example, if the basement wall thickness were 75 psf, 

the calculated ground contribution irould be multiplied by 1.5. 

Nomogram 1* is used to correct for detector height and finite 

fields of contamination. Unlike the engineering method and the method 

of the A. E. Guide, these corrections are based on experimental data 
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rather than calculations. Whenever this nomogram is used, therefore, 

calculations cannot be directly compared with the other tvro methods. 

The results of Nomograms 2 or 3 are multiplied by the NS factor 

obtained from this nomogram in order to obtain the ground contribution 

from finite sources. A straight line between the width of the contami¬ 

nated field on the W scale and the detector height on the H scale 
0 

intersects the middle scale at the MS factor. For V < 300 ft, we 
c 

distinguish between two cases. The scale called "case B" is used if 

the detector is on an upper story of a building with thick (> 5>0 psf) 

floors. Case A is used for all other situations. For W > 300 ft, 
c 

the results for W = 300 and case A are used for all situations. This 
c 

latter rule is an approximation designed to avoid a complicated pro¬ 

cedure for very large fields. 

Nomogram 5 is used to calculate the ground contribution through 

horizontal passageways such as entrance ducts or tunnels. A straight 

line on the nomogram between the d scale (the dLstance from the opening) 

and the W scale (width of the opening) gives the redaction facotr. 

This nomogram is based on calculations made by Dr. Eric Clarke of 

Technical Operations Research during the National Fallout Shelter 

Survey. 

I would like to illustrate the use of this method by doing prob¬ 

lem la-7 in the Engineering Manual (PM 100-1) by the nomographic method. 

The detector is located on the fifth story of a ten story building. 

The detector is h3 feet in height. The width of this building is 80 

feet. The length is lUO feet. The exterior wall thickness is 80 psf. 
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The floor thicknesses are assumed to be uniform at 60 psf. In the 

nomographic method, the first thing we have to know is the area of the 

building, which in this case is 11,200. The exterior mass thickness 

is 80 psf. There are no interior partitions mentioned. Using 

Nomogram 2 for the ground contribution and putting a straight edge 

on the area 11,200, and mass thickness of 80 psf, you should come up 

with a ground contribution of .01^2. This would be the ground contri¬ 

bution on the first story of this building. However, the detector 

is on the fifth story at a height of 1*3 feet. To obtain the height 

correction. Nomogram h is used. Two cases, A and B are given in this 

nomogram. Strictly speaking, the nomogram says that if the floor 

thickness is greater than 5>0 psf, use case B. However, the method 

recommended for an infinite field, is to use the 300 feet point for 

case A as one entry and the height of U3 feet as the other entry. 

If we lay a straight edge between those two numbers, we come up with 

a height correction of 0.39. Therefore, the reduction factor is equal to 

.0li2 x .39 which is equal to about .0161* and we get a equal to about 

61. That is the calculated value by the nomographic method. Now, if you 

look at example i|-7 in the Engineering Manual, you see that the protection 

factor comes out about 60. You will note that the agreement is partly 

fortuitous because, as I explained before, this method uses different 

data from the engineering method in correcting for mutual shielding. 

However, the agreement in this case, is good. 
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Nomograms from 

Simplified Method of Shielding Analysis 

PG 80-14 Department of Defense, Office of Civil Defense 

(not distributed) 
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REDUCTION FACTORS FOR COMBINEO SHIELDING EFFECTS 

Z(ft.) 
Example 

Solution- Use A with Z to locate turning 

point N (10) 

Use N with X., Read C. 

Answer Roof Contribution, C. .022 

Nomogram-I Nov 1963 
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REDUCTION FACTORS FOR COMBINED SHIELDING EFFECTS 

GROUND CONTRIBUTION-ABOVEGROUND AREAS 

Example 

Ground Floor Area, A= 3000 sq ft 

Wall Mass Thickness, Xw * 100 psf 

Sofcjtiom Ground Contribution, C'g 

— 5,000 

4,500 

— 4,000 

- 3,50 0 

0455 

15,000 

14,000 

13,000 

12,000 

I 1,000 

10,000 

9,000 

8,000 

- - 7,000 

—- 6,000 

±— 3,000 

2,500 

2,000 

1,500 

=- 1,000 

j§- 900 

=- 800 

700 

600 

— 500 

400 

A (sq.ft.) 

Nomogram -2 

180 

170 

160 

150 

140 

130 

120 

110 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

Xw(p«f) 

Nov. 1963 
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REDUCTION FACTORS FOR COMBINED SHIELDING EFFECTS 

GROUND CONTRIBUTION - BELOWGROUND AREAS 

200 , 
190 

Table II 

MULTIPLIER FOR 

BASEMENT EXPOSURE (Kb) 

180 

170 

160 — 

150 — 

80 

70 

60 

Example 

Wall Mass Thickness, Xw 

Immediate Overhead Mass 

Thickness, X'0 

Solution Ground Contribution, Cg 

80 psf so 

i— o 

50 psf 

.00146 

40 -g 

3“ 5 
1 30 -4-- to 

15 -—15 

Xw(psf) 
* 

For exposures which put 

detector above ground level, 

use Nomogram 2 

0000003 

0000005 

000001 

000005 

Area Exposed basement in feet - 

sq.ft. r 2' 3‘ 4' 5’ 1 40 —E 00001 140 -g 

to 400 35 70 1 05 140 1.75 . -= 

1000 32 .64 96 128 1.60 130 -e 130 -E 

2 000 28 .55 83 l.l 0 1.36 — 

3000 2 4 47 .71 95 1.19 120 — 120 -= 
4000 21 42 6 3 84 1.05 z 

5000 .1 9 38 .5 7 .76 .95 
.00005 z 

6000 1 8 35 53 .70 .86 11 o -= no -g 

7000 .1 7 .33 .50 66 .83 0001 3 z 

8000 .1 6 .31 47 .6 3 .79 100 -= ioo -E 

9 000 .15 31 46 .6 1 .77 | 

10000 .15 .30 45 .60 —.,7.8 90 — 
0002 90 -= 

0003 

0004 

0005 

001 — 

002 

003 

004 

005 

.01 

02 -4 

03 

04 

.05 -4 

200 -a 

190 — 

180 — 

170 — 

160 — 

150 

80 — 

70 

Solution 

’ eo 
\ 

50^ 

40 

30 

20 

-1 

Nomogram-3 

C'n 
X'o(psf) 

Nov 1963 
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MS, FRACTION OF FIRST STORY INFINITE FIELD 

DOSE FROM A FINITE RECTANGULAR FIELD 

Case A - Upper Stories, Thin Floors 
(Xf*50psf), and First Story, 
Thin or Thick Floors. 

Case B - Upper Stories, Thick Floors 
(Xf > 50 psf) 

Example 

First Story Detector, H = 3ft., 
Wc » 100 ft. 

Use Case A 

Solution' MS * .825 

Fourth Story Detector, H=40ft., 

Xf 380psf, Wc = 60ft. 
Use Case B 

Solution MS = .025 

300 

250 

200 

175 

150 

125 

96 

90 -- 

100 
/ 

90 

80 

70 

60" 

50 

45 - 

40 - 

35 - 

30 - 

25 - 

20 - 

?' 

Solution 85 .. / 

/ 
/ 
/ 
/ 
/ 
/ 
/ 

15 

10 J 

Wc(ft.) 

/ 
/ 

.80 

/.75 

.70 

.65 

.60 

.50 

.45 

.40 

35 

.30 

25 + 

20 
.18 
.16 
.14 

.10 

.08 
07 
06 
05 
04 

.03 x 

/ 
/ 
/ 
/ 
/ 
/ 

A 3 

/ 
/ 

■ .60 

.56 

.52 

.47 

.43 

.34 

.30 

25 

.20 

.15 

.11 

.074 
.060 
.048 

038 Solution 
.030 -- 

'.022 
N 

.015 

.013 

.010 
008 
.006 

.003 

Case A Case B 

MS 

- 5 

- 7 

8 

9 

10 
I f 
12 
13 
14 

h 15 

Nomogram-4 

|- 20 

25 

30 

35 

40 

45 

50 

- 60 

- 70 

- 80 

90 

I- 100 

120 

140 

160 

180 

200 

H (ft.) 

Nov. 1963 
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Reduction Factors for 

HORIZONTAL PASSAGEWAYS 

(S'ngle Opening) 

Reduction Factor Computed 

for 10 ft. Height of Opening. 

For Other Heights , Increase 

"d" by 1% for Each 2 ft. 

of Additional Height 

Example 

Width of Opening, W * 20 ft , 

Distance from Opening, 

d* 200 ft. 

Solution 

Read Rf = .00187 

.7 

.6 

.5 

.4 

.3 

.2 

30 — 

— .1 

EE 07 
— 06 

— .05 

— 04 

60 — 03 

70 -E 
— 02 

01 

007 
006 
003 

004 

.003 

002--- 

300 — 

400 

500 — 

d(ft.) 

=- .001 

EE 0007 
— 0006 
— .0005 

— .0004 

E- .0003 

— 0002 

Nomogram-5 

100 -q 

90 -E 

80 “E 

70 

60 — 

30 — 

40 — 

30 — 

— 

— 20- 

10 — 

W(ft.) 

Nov. 1963 
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