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Summary 
Pressure transients are modeled by the logarithmic ap
proximation of the exponential integral (Ei) function dur
ing the infinite-acting period. Use of the logarithmic ap
proximation has been made for studying pressure 
buildup, drawdown, and falloff behavior. The conven
tional methods of transient analyses have been applied 
successfully over the past 30 years for calculating 
permeability-thickness product and skin. Unfortunately, 
estimation of average reservoir pressure (j)) from 
pressure buildup tests for closed systems has lacked the 
desired level of accuracy because of the uncertainties 
associated with the definition of drainage shape in field 
applications. 

A three-constant equation has been developed from the 
logarithmic approximation of the Ei function to describe 
the transient pressure behavior. The equation developed 
traces a rectangular hyperbola, which is unique to the 
well at the time of testing. Because of the very nature of 
the equation, it is possible to extrapolate a buildup curve 
beyond the infinite-acting period to obtain p directly 
regardless of the drainage shape and boundary condi
tions. Consequently, we always obtain a superior p 
estimate compared with the conventional methods, 
whose applications are often uncertain in actual cases. 
The proposed method also enables one to calculate the 
permeability-thickness product and skin with accuracy 
comparable to the conventional methods. The theoretical 
validity and applicability of the method have been 
demonstrated by examples. 

Introduction 
The conventional methods 1-3 of pressure buildup 
analysis are well known. These methods have been 
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discussed in great detail by Ramey and Cobb 4 for closed 
or no-flow boundary systems, and by Kumar and 
Ramey 5 and Ramey et al. 6 for constant-pressure boun
dary systems. A comprehensive review of these works 
can be found in Ref. 7. 

Homer's method 2 of buildup analysis is by far the 
most popular in the petroleum industry. Ramey and 
Cobb and Cobb and Smith 8 concluded that the Homer 
graph is superior to both the Miller-Dyes-Hutchinson 3 

(MDH) and Muskat I graphs regardless of the producing 
time in closed systems. Even though determination of 
permeability-thickness product and skin are relatively 
straightforward, the estimation of static reservoir 
pressure remains somewhat difficult for a well that pro
duces at pseudosteady state before shut-in. Homer's 
method requires correction of the extrapolated false 
pressure, p*, to obtain the static reservoir pressure, p, 
for closed reservoir boundaries. To correct p* for various 
reservoir drainage shapes, Mathews, Brons, and 
Hazebroek 9 (MBH) generated dimensionless pressures 
as a function of dimensionless producing time. These 
MBH pressure function curves have been used exten
sively in the industry and are presented in Refs. 7, 10, 
and II. 

Ramey and Cobb 4 also suggest a method for ex
trapolating a Homer straight line to average reservoir 
pressure for a well producing at pseudo steady state in a 
known reservoir drainage boundary. Odeh and AI
Hussainy 12 proposed a technique that correlates p* to p 
as a function of drainage shape. Likewise, the Dietz 13 

method of estimating p from an MDH plot also requires 
the knowledge of drainage shape. Once the 
pseudo steady-state flow is achieved, application of 
Slider's 14 technique appears to be superior to the other 
methods just mentioned. The main advantage of Slider's 
desuperposition method is that the reservoir shape defini
tion no longer is required. 
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The problem with the application of the MBH pressure 
function and its variations 12,13 lies in defining the true 
drainage shape in the field. Lack of enough well control 
and the complexity of reservoir geology largely con
tribute to the poor drainage shape definition. More im
portant, the location of the well within a reservoir shape 
has a greater impact on the estimation of f5 than does the 
shape itself. 

Taylor l5 and Taylor and Caudle 16 recently demon
strated that the MBH pressure functions cannot be used 
successfully in multi well reservoirs even for theoretical 
examples with known flow streamlines. This problem 
stems from the very sensitive nature of the MBH func
tion on well location in a given drainage shape. Taylor 
developed a computer model using Lin's 17 bounding 
technique to generate a specific MBH pressure function 
for any reservoir system. Although this method appears 
to be an improvement on the existing MBH pressure 
functions, both lack of an analytical solution and the re
quirement that the well be produced at pseudo steady 
state before shut-in impose severe limitations on the use 
of this method. Rigorously, the methods of MBH and 
Taylor are valid only for closed systems-i.e., no flow at 
the outer boundary. In many cases oil reservoirs are 
under some form of enhanced recovery, and fluid injec
tion would eliminate the use of MBH pressure functions 
in such reservoirs. 

Prediction of true average reservoir pressure is crucial 
for any type of reservoir study; yet there seems to be no 
easy analytical tool available to practicing engineers for 
estimating f5. Ramey et al. 6 presented the dimensionless 
pressure functions for constant-pressure boundary 
systems. A subsequent publication by Kumar 18 gives a 
more elegant analysis of pressure-transient behavior 
under various degrees of pressure maintenance by water 
injection. Unfortunately, only one reservoir shape, a 
well in the center of a square, was analyzed rigorously. 
Lack of similar pressure functions for other reservoir 
geometries makes Kumar's work somewhat limited in 
practical application. 

Mead 19 recently proposed an empirical method for 
determining f5 from the asymptote of a rectangular hyper
bola. He observed that a rectangular hyperbola 
characterizes the buildup behavior after the wellbore 
storage effect dissipates. Mead's analysis did not present 
a mathematical basis to confirm his observation but, 
nevertheless, the results were indisputable. It was 
unclear from Mead's work whether the region beyond 
the infinite-acting period can be modeled by the same 
rectangular hyperbola that characterized the infinite
acting period. 

This paper expands upon the work of Mead and 
presents the mathematical basis for a simplified pressure 
buildup analysis procedure. The technique enables one 
to determine f5 directly from the field data without prior 
knowledge of the drainage shape and to obtain good 
estimates of kh and s. This method thus provides a 
powerful tool to the practicing engineer because of its 
simplicity and accuracy in any type of reservoir drainage 
system: infinite-acting, closed, or pressure-maintained. 

Theory 
The Homer working equation for a well shut in after pro
ducing at a constant rate in an infinite-acting reservoir is 

JANUARY 1983 

given by2,7,10 

The logarithmic term on the right side of Eq. 1 may be 
written as 

( 
t p +,1t) ( t p ) t p - (a - 1 ),1t 

In -- =In 1+- =lna+-'-----
,1t ,1t ,1{ 

=In(a+x), .................... (2) 

where a is a constant and 

tp -(a-l),1t 
x=-'----- ......................... (3) 

The right side ofEq. 2 may be expanded as follows. 20 

In(a+X)=lna+2[(-X ) +~ (_X ) 3 
2a+x 3 2a+x 

+~(_X )5 + ... J 
5 2a+x 

00 1 ( x ) 2n-1 
=lna+2 ~ -- --

n = I 2n - 1 2a + x 

............................... (4) 

The term xl(2a + x) under the summation sign of Eq. 4 
may be written, after substituting for x from Eq. 3, as 

x [tp -(a-l),1t]/,1t 

2a+x 2a+[tp -(a-l),1t]/,1t 

or 

2(tp +,1t) 
--- ---'---- -1. . ................. (5) 

tp +(a+ 1),1t 

x 

2a+x 

Note that in Eq. 4, a must be a positive constant and x 
must lie between -a and plus infinity. Now if x/(2a+x) 
is a small term as given by Eq. 5, only the first two terms 
on the right side of Eq. 4 need to be considered. We 
demonstrate validity of this assumption in the Field Ex
ample. 

Therefore, we can rewrite Eq. 2 as 

In (1 +~) =In(a+x)=lna+2 (_X_) 
,1t 2a+x 

or 

In (1 +~) = Ina - 2 + _4_(t..:....p_+_,1_t_) -
,1t tp +(a+l),1t 

......... (6) 
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Combining Eqs. 1 and 6, we obtain 

m 4m(tp+~t) 

p", =Pi - 2.303 (lnex-2)- 2.303[tp +(ex+ 1)~t] 

Assuming that tp +~t=tp and rearranging, we have 

(Pws -a)(b+~t)=c, ....................... (7) 

where 

m 
a=pi - 2.303 (lnex-2), ................... (8) 

tp 
b=- .............................. (9) 

ex+ 1 ' 

and 

4mtp 
-c=------'--- . . . . . . . . . . . . . . . . . . . . . . . (10) 

2.303(ex+ 1) 

Eq. 7 represents a rectangular hyperbola with an 
asymptote equal to a. Because Eq. 7 has been derived for 
an infinite-acting reservoir, any change in the boundary 
condition does not alter its form. For instance, in a reser
voir of closed outer boundaries, Pi should be replaced by 
P* in both Eqs. 1 and 8. Thus, constant a in Eq. 7 im
plicitly accounts for the various boundary conditions of 
infinite-acting, no-flow, and different degrees of 
pressure maintenance. 

Let us briefly examine the implications of the assump
tion: t p + flt=t p . That is, ~t~ t p' This condition, 
however, does not mean that the producing time has to 
be long enough to reach pseudo steady state, t pss' Thus, a 
buildup behavior following a short flow period (infinite
acting) can be analyzed with Eq. 7 to obtain meaningful 
reservoir properties. The condition flt~tp also implies 
that the MDH method of semilog analysis is applicable. 
In a conventional semilog analysis, the MDH graph 
straightens buildup data to much shorter shut-in times 
compared with a Homer plot. Such an apparent limita
tion is not a serious drawback in the proposed method 
when t p is small, because few data points in the early 
shut-in period are needed to generate a unique hyper
bola. 

Reservoir Static Pressure, p 
Homer's method gives P i or P directly from a plot of P ws 
vs. the logarithm of the time ratio, (t p + ~t)/ ~t, for an in
finite reservoir. For a developed reservoir, the ex
trapolated Homer false pressure, p*, at a time ratio of 
unity has to be corrected to obtain p. 

Interestingly enough, the use of Eq. 7 always should 
yield p, because at infinite shut-in time the wellbore 
shut-in pressure will build up to the static pressure, p, 
provided that the adjacent wells do not interfere. The 
preceding statement is also valid for a well located in a 
pressure-maintained reservoir. Thus, the asymptote of 
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Eq. 7 is the static pressure, p. 

p=a . ................................... (11) 

Constant a 
The constant ex, which appears in Eqs. 7, 8, and 9, can 
be determined from either of these equations for a given 
buildup test. 

For an infinite-acting reservoir, 

Pi =p . .................................. (12) 

Combining Eqs. 8, 11, and 12, we obtain 

Inex=2 

or 

ex=e 2 =7.289 ............................ (13) 

Thus, Eq. 13 is valid for rinv < r e' For a finite reser
voir, p <p i; therefore, ex> 7.389. Because the value of 
ex is + 7 .389 or greater, it satisfies one of the conditions 
for Eq. 4 to be valid . 

Permeability-Thickness Product, kh 
An expression for the semilog slope, m, can be obtained 
by combining Eqs. 9 and 10. 

( -c) 
m=0.5758-- . ......................... (14) 

b 

The semilog slope of Eq. 1 is given by 

162.6qp.B 
m= .......................... (15) 

kh 

Eqs. 14 and IS are combined to obtain an equation for 
kh in terms of the constants of the rectangular hyperbola, 

282. 39qp.Bb 
kh= ........................ (16) 

-c 

Mead 19 empirically determined that the maximum 
slope on the MDH type of plot (Pws vs. log ~t) on a 
Cartesian graph yields the semilog slope, m. In Appen
dix A we give theoretical reasoning to Mead's intuitive 
finding. 

Skin Factor, s 
The van Everdingen 21 skin factor can be calculated from 
the following equation, once constants a and bare 
evaluated from the field data. 

I [2.303 
s=- --(a-pwflt.(=o)+lnex+5.4316 

2 m 

k ] -In 2 -Intp .................. (17) 
¢p.c(rW 
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The derivation ofEq. 17 is given in Appendix B. 
The pressure drop resulting from the skin is given 

by 7.10.11 

!:J.ps=0.87ms . ........................... (18) 

Solution of the Rectangular 
Hyperbola Equation 
The ideal solution of Eq. 7 is to perform a nonlinear 
regression analysis to estimate the three constants a, b, 
and c. Eq. 7 is rearranged in the form: 

c 
pws=a+-- . ......................... (19) 

b+!:J.t 

A linear regression can be performed for the variables 
Pws and 1/(b+!:J.t) to obtain optimal values of a, b, and 
c. Because Eq. 19 is a three-constant equation, a trial
and-error procedure has to be employed by assuming 
values of b until a value of the regression coefficient 
close to unity is obtained. A programmable calculator 
can be used to perform this trial-and-error calculation. * 

An alternative solution to the regression analysis lies 
in the approach of Mead. 19 Mead proposed that because 
Eq. 7 contains three constants, any three sets of pressure
time data may be used to describe the unique rectangular 
hyperbola for the well. He gave the following solutions 
for the constants, where t=!:J.t andp =Pws' 

. . . . . . . . . . . . . . . . . . . . . . . . (20) 

c=(b-tl )(a-p d ......................... (22) 

Mead gave a program listing for an HP-67/97 
calculator to solve Eqs. 20, 21, and 22. Although 
Mead's approach provides satisfactory results, the 
method does not provide unique answers. Because data 
scatter is inherent in any field test, the values of a, b, and 
c vary depending on the choice of data sets. Also, since 
Eq. 7 is not an exact equivalent of Eq. 1, the constants b 
and c will be somewhat sensitive to points chosen to 
describe the rectangular hyperbola. 

The regression analysis procedure described previous
ly provides the most satisfactory results. However, one 
may wish to get a good estimate for the value of b 
following Mead's approach and then perform the trial
and-error regression analysis either graphically or 
numerically. 

,. A program listing is available upon request from either author. 
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Fig. 1-Buildup behavior in various drainage areas. 

".£"'OA 1{fo, 2 1 ,ocI.nql.1 

Fig. 2-Theoretical Horner graphs at t DA = 0.4 (adapted from 
Ref. 20) . 
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Fig. 3-Buildup behavior in an 8:1 rectangular drainage 
boundary. 
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TABLE 1-PRESSURE BUILDUP DATA FOR A WELL 
IN THE CENTER OF A CLOSED SQUARE22 

Pws 
(psi) 

3,191 * 
3,222 
3,251 
3,273 
3,297 
3,315 
3,323 
3,345 
3,359 
3,375 
3,399 
3,428* 
3,438* 

flt 
(hours) 

0.10* 
0.20 
0.41 
0.71 
1.30 
2.01 
2.49 
4.38 
6.14 
9.46 

18.92 
52.55* * 

107 * 

* Beginning of semilog straight line. 

Known Reservoir Data 
P" psi 3,640 
q 0' STB/D 450 
t , hours 473 
Bo,RB/STB 1.20 
I-'o,cp 0.8 
ci, psi- 1 14x10- 6 

Calculated Data 
m, psi/~ 
tOA 

1>hA, cu It 

93 
0.40 

21 x 10 6 

* * Note that the last two data sets are calculated from the 
theoretical Horner graph. 

TABLE 2-PRESSURE BUILDUP DATA FOR A WELL IN 
THE CENTER OF A SQUARE WITH CONSTANT-PRESSURE 

BOUNDARIES 5,6,7, 

Shut-in Time 
flt 

(hours) 

o 
0.333 
0.500 
0.667 
0.883 

1 
2* 
3 
4 
5 
6 
7 
8 
9 

10 
20 

Pressure 
Pws 
(psi) 

3,561 
3,851 
3,960 
4,045 
4,104 
4,155 
4,271 * 
4,306 
4,324 
4,340 
4,352 
4,363 
4,371 
4,380 
4,387 
4,432 

Known Reservoir Data 
tp , hours 4,320 
q, STB/D 350 
1-', cp 0.80 
c t' psi -1 17 x 10 - 6 

A, acres 7.72 
B, RB/STB 1.136 
h, It 49 
, w' fI 0.29 
1> 0.23 

* Beginning of semilog straight line. 

TABLE 3-COMPARISON OF REGRESSION AND SEMILOG 
ANALYSES (DATA OF TABLE 2) 
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Regression Analysis of the 
Hyperbola, flt Semilog 

(hours) Analysis 

2-20* 6-20 2-7 

a =P, psig 4,491.4 4,516.65 4,436.79 4,458 
m, psi/~ 172.59 159 183.07 152 
b, hours 5.2 8.84 2.16 
-c, psi-hr 1,558.76 2,441.93 686.81 ,2 0.99669 0.99982 0.99823 

*2·20 implies that the pressure·time data for 2 «:It< 20 were used for the 
regression analysis. 

Application of the Rectangular 
Hyperbola Equation 
Theoretical Examples 
No-Flow Boundary. Denson et al. 22 presented pressure 
buildup data for a well in the center of a closed square as 
given in Table 1. We use these data to predict p by Eq. 
7. We also examine whether the same p can be obtained 
for other reservoir geometries, given the same reservoir 
kh, t p' and Pi' The pressure-time data for other reservoir 
geometries were obtained from the theoretical Homer 
graphs. 23 

Fig. 1 is a Cartesian plot of shut-in pressure vs. shut-in 
time. The graph compares the buildup profiles obtained 
for three different locations of a well in two reservoir 
geometries. We observe distinctly different buildup 
characteristics asymptotically reaching the same P in 
each case with less than 0.5% error. This observation 
suggests that a rectangular hyperbola can describe uni
quelya well's buildup behavior in closed systems. 

A very interesting feature of Fig. I is that the infinite
acting period, where the semilog analysis applies, ended 
in less than 10 hours in all cases. Only the late-time data 
helped to characterize the different pressure profiles to 
attain the same p. Thus the very nature of the alternate 
form of the logarithmic approximation of the Ei function 
allows us to obtain p directly. In this respect,' the pro
posed method has a distinct advantage over the conven
tional semilog analysis of Homer and MDH. 

We have found that analysis of only the late-time data, 
dominated by the boundary effects, also gives the correct 
value of p, as one might expect intuitively. However, the 
proposed method requires analysis of only the infinite
acting data for calculating the correct kh and s from Eqs. 
16 and 17, respectively. 

We also investigated the applicability of Eq. 7 in 
describing the buildup behavior in other reservoir boun
daries, such as an asymmetric well location in a rec
tangle and a well located in the center of a long rec
tangle. The unusual feature about these reservoir shapes 
is that the MBH pressure function, P DMBH, can become 
negative for certain producing times. Fig. 2 displays 
theoretical Homer graphs at t DA equals 0.4 for a well 
one-eighth of the length away from the side in a 2: 1 rec
tangle and for a well in the center of an 8: 1 rectangle. 
Both buildup behaviors exhibit an increase in the rate of 
buildup following the end of the semilog period. A tran
sition period, indicated between the dotted lines for an 
8: 1 rectangle, can be observed before the change in the 
buildup rate occurs. 

To study this unusual shape effect, we obtained a 
buildup graph using the Denson et al. 22 data for a well in 
an 8: 1 rectangle. The theoretical Homer graph 23 was 
employed to generate the graph displayed in Fig. 3. A 
break in the rather smooth buildup behavior at 136 hours 
is observed, followed by a rapid pressure increase over a 
short time interval and then the final buildup period. The 
buildup to the static pressure ultimately is achieved after 
3,638 hours of shut-in. This unusual buildup behavior 
can be appreciated by inspecting Fig. 2, the semilog 
graph. 

Note that the final buildup curve in Fig. 3 spans the 
majority of total buildup time, 163 hours<Llt<3,638 
hours; thus one has to use the data beyond 163 hours to 
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obtain the correct p. Although such a long shut-in period 
may be impractical from the standpoint of testing, this 
unusual buildup behavior can be avoided once a (t DA) pss 

of 3.0 is reached. The (tDA)pss will be approached with 
decreasing length of the semilog line on a Homer graph. 
For instance, the end of the semilog straight line occurs 
after just 5 hours of shut-in when t DA equals 0.4. Further 
increase in t DA would result in a duration of the semilog 
period of less than 5 hours. 

Constant-Pressure Boundary. Simulated pressure 
buildup data for a well in the center of a square drainage 
area with constant-pressure boundaries are provided in 
Table 2.5-7 Other relevant data also are given in the 
table. 

The linear regression analysis performed on the data 
beyond 2 hours yields the following results. For the in
tercept, a=p=4,491.40 psi (30 968.20 kPa) [4,458 psi 
(30 737.91 kPa) by semilog analysis]. For the slope, 
-c= 1 ,558.757 psi-hr (10 747.63 kPa' h). The regres
sion coefficient, r2, equals 0.99669. The semilog slope, 
m, is calculated as follows. 

2.303 -c 
m=---- = 172.59 psi/ - (1190.01 kPa/ -) 

4 b 

[152 psi/ - (1048.04 kPa/ -) by semilog analysis]. 
We observe that the proposed method predicts p to be 

0.75% higher than the semilog method. The m value is 
predicted even higher, at 13.55 %; consequently, the 
permeability-thickness product, kh, will be underesti
mated by the same margin. The constant a (equal to p) is 
relatively insensitive to changes in the other two con
stants band c of Eq. 7. Therefore, the regression 
analysis can be optimized to give a better value of m, 
comparable to the semilog analysis. 

The error involved in neglecting the higher-order 
terms in Eq. 4 is about 3.32% at D.t= 10 hours. This er
ror is incurred because of the translation of the Homer 
equation to its equivalent rectangular hyperbola equa
tion, Eq. 7. However, the translational error can be 
reduced significantly if only the late infinite-acting data 
are analyzed for estimating kh and S D and the early-time 
data for p. Table 3 shows the results of the analyses. 

The problem examined here assumes that all four 
boundaries of the reservoir are fully pressure
maintained. Kumar 18 demonstrated that the degree of 
pressure maintenance has rather significant influence on 
the P DMBH at a given value of t DA' Consequently, the 
correction for p* to p is dependent on the correct estima
tion of the degree of pressure maintenance in field ap
plications. One also should bear in mind that incorrectly 
guessing the shape of the drainage area or the well loca
tion in a given shape has very serious consequences on 
the p estimate. 

Thus the simplicity and ease of directly calculating the 
p with less than 1 % error makes the proposed technique 
superior to conventional techniques. 

Field Example 

Table 4 provides buildup and other pertinent test data 
reported by Earlougher. 7 A regression analysis was 
made for the data for 2.51 <D.t<37.54 hours as shown 
in Fig. 4. The following results were obtained from Fig. 
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TABLE 4-PRESSURE BUILDUP TEST DATA 
FOR THE FIELD EXAMPLE? 

tl.t 
(hours) 

0.0 
0.94-
1.05 
1.15 
1.36 
1.68 
1.99 
2.51 
3.04 
3.46 
4.08 
5.03 
5.97 
6.07 
7.01 
8.06 
9.00 

10.05 
13.09 
16.02 
20.00 
26.07 
31.03 
34.98 
37.54 

Pws 
(psig) 

2,761 
3,266-
3,267 
3,268 
3,271 
3,274 
3,276 
3,280 
3,283 
3,286 
3,289 
3,293 
3,297 
3,297 
3,300 
3,303 
3,305 
3,306 
3,310 
3,313 
3,317 
3,320 
3,322 
3,323 
3,323 

Known Reservoir Data 
qo' STB/D 4,900 

310 
4.25/12 

tp , hours 
r w' ft 
c t ' psi- 1 

h, It 
1-'0' cp 

'" Bo, RB/STB 
Depth, ft 
A, acres 
r e' ft 

22.6x10- 6 

482 
0.20 
0.09 
1.55 

10,476 
502.65 

2,640 

• Beginning of semilog straight line. 

3340-·,...---,---,----,-----,----,----,---, 

...... I ntercept, a = P = 3333 pSI 

3320 

3300 

3280 

0.02 0.04 0.06 0.08 0.10 012 0.14 

l/(b+M) ,hr,1 

Fig. 4-Regression analysis of the field example data. 
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4. For the intercept, a=p=3,333 psig (22 981.04 kPa) 
[3,342 psig (23043.09 kPa) by semilog analysis]. For 
the slope, -c=392.65 psi-hr (2907.32 kPa' h), and 
b=4.898321 hours. The regression coefficient, r2, 
equals 0.999115. 

The permeability-thickness product is calculated from 
Eq. 16 as follows. 

or 

282. 39qp,Bb (282.39)(4,900)(0.21)(4.8983) 
kh=----

-c 392.65 

=5,351.15 md-ft (1.61 md' m) 

k= 11.10 md (12.8 md by semilog analysis). 

The semilog slope is 

2.303( -c) 2.303(392.65) 
m=----

4b (4)(4.8983) 

=46.15psi/- (318.20 kPa/-)[40psi/- (275.80 

kPal - ) by semilog analysis]. 

The skin factor can be estimated with Eq. 17: 

1 [2.303 
s=- --(a-p'4Itlt=o)+lna+5.4316-lntp 

2 m 

k J 1 [ 2.303 -In 2 =- --(3,333-2,761) 
c!>p,ctr w . 2 46.152 

+ In62.287 +5.4316-ln310 

[ 
11.10 JJ 

-In (0.09)(0.2)(22.6 x 10 -6)(4.25112)2 

=6.6 (8.6 by semilog analysis). 

The results obtained by the proposed method are in 
good agreement with those of semilog analysis. We 
observe that the difference between values of m and So 
calculated from both the methods is rather large; 
however, if we use m=40 psi/- (275.80 kPa/-) in Eq. 
17, we obtain a skin value of 8.67. 

These differences are expected to occur because the 
rectangular hyperbola is not an exact equivalent of the 
Homer equation. For instance, at !::.t= 10 hours, the term 
xl(2a+x) of Eqs. 4 and 5 is equal to -0.3424. 
Therefore, the value of the largest term neglected is 
equal to -0.01338, which is 3.9% of the first term of 
the series. Given the degree of error involved in any 
graphical procedure, we believe that the proposed 
technique is an adequate approximation of the conven
tional graphical methods of Homer and MDH. The main 
advantage of the new method is that it always would 
yield a superior static reservoir pressure estimate in field 
applications where the drainage shape is not known ac
curately. 
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Note that a of +64.287 calculated from Eq. 8 is 
positive, a necessary condition for Eq. 4 to be valid. 
Also, x=[tp -(a-I)!::.t]l!::.t having a minimum value of 
- (a - I) when !::.t---+ 00 satisfies the second necessary 
condition: -a<x< +00 forEq. 4 to be valid. 

Discussion 

We should recognize that the ideal geometrical reservoir 
shapes for which mathematical solutions are available do 
not exist in reality. Also, in multiwell reservoirs, the true 
no-flow boundaries are the physical boundaries. 
Although effective no-flow boundaries between wells 
might exist when all wells are producing, these boun
daries move depending on relative producing rates. Thus 
one ought to estimate approximate reservoir drainage 
shape even though the same well may be tested every 
year because of the changing production and/or injection 
scenarios. Furthermore, whenever a fluid is injected into 
a reservoir, the degree of pressure maintenance has a 
profound effect on the p OMBH function. 

The facts of the preceding paragraph present serious 
complications for routine buildup analysis. Taylor l5 and 
Taylor and Caudle 16 highlighted this complication by 
using computer-generated flow streamlines for a 
homogeneous multi well reservoir with no-flow boun
daries. Examination of streamlines dictated the use of a 
4: I rectangle reservoir shape for the drainage boundary. 
However, Taylor's rigorous solution to the specific 
problem indicated a higher value for the MBH pressure 
function. Therefore, the existing methods do not easily 
afford correct p solution to the actual field problems. 

This observation, however, does not imply that the 
MBH pressure functions are no longer valuable. On the 
contrary, they can serve a very useful purpose. One can 
estimate p* from a Homer plot and p by the proposed 
method to calculate the p OMBH. Corresponding to the 
t OA and known p OMBH for a buildup test, an estimate of 
the drainage shape can be made from the MBH graphs 
by trial and error. This independent method of estimating 
a drainage shape from well test data is a significant find
ing of this study. 

The method presented here provides a simple 
analytical tool for estimating accurate p within a well's 
drainage volume. All the assumptions 10,11 made while 
the Ei solution to the diffusivity equation is derived are 
implicit in the rectangular hyperbola equation. 

The assumptions for a line-source well are: an ideal, 
isotropic, and homogeneous formation of constant 
permeability, porosity, and thickness; a single-phase 
noncompressible flowing fluid of constant viscosity; 
small pressure gradients everywhere in the system; and 
small total system effective isothermal compressibility. 
One assumption deserves special comment, however. 
When we make the logarithmic approximation of the Ei 
function, we assume that to I r 0 2 > 100-i. e., the line
source well. Recently, Morrison 24 demonstrated that for 
short-time drillstem tests in tight formations, Edwardson 
et at. 25 solutions of the Po function for a finite-radius 
wellbore are applicable. Use of the line-source solution 
causes significant errors when kh and p are estimated by 
the Homer method. The proposed method is subject to 
the condition that tolro2 > 100 is true for the reservoir 
system being investigated. 
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The rectangular hyperbola predicts transient buildup 
pressure behavior in the infinite-acting regime and 
beyond. The early-time data affected by wellbore storage 
and skin must be eliminated from the analysis. Thus 
identification of the beginning of the semilog straight 
line or the end of the storage effect by the well-known 
log-log type-curve analysis 26-28 is a prerequisite for the 
use of the proposed method. 

The proposed method can be very valuable in a situa
tion where the early-time data are dominated by the 
wellbore storage phenomenon, while the late-time data 
are affected by the boundary effects; consequently, 
eliminating the semilog period in the process. Wells 
located in a dense spacing and/or near a boundary could 
exhibit such a characteristic behavior. We still would be 
able to use the boundary-affected data to obtain a valid p 
solution. The early-time data could be analyzed by the 
conventional type-curve analysis for estimating kh and s. 
To our knowledge, no valid p estimation is possible for a 
situation just described using a conventional technique. 

Although the method as presented here has been 
developed for liquid reservoirs, the application of this 
technique to gas reservoirs can be made easily. The use 
of pseudopressure 29 and real time provides an accurate 
estimate of reservoir properties in most gas-well situa
tions. Strictly speaking, p DMBH functions are not direct
ly applicable to gas reservoirs for determining p. 
p DMBH functions were developed originally for liquid 
systems where the product of J.l-C r remains essentially 
constant for the duration of a well test. However, for a 
gas reservoir, the pseudopressure transformation does 
not linearize the diffusivity equation completely because 
of the nonconstant J.l-C r and consequently may cause a 
significant error in the p estimate. Kazemi 30 suggested 
an iterative scheme to circumvent the problem that stems 
from the partially linearized diffusivity equation by 
evaluating the W r product at the prevailing average 
reservoir pressure. More recently, Ziauddin 31 proposed 
a correction term for the p DMBH function when deter
mining p in gas reservoirs. This correction term was ob
tained from Kale and Mattar's32 semi analytical solution 
of the diffusivity equation for the gas flow. Interestingly 
enough, our proposed method is independent of the 
preceding problem because the rectangular hyperbola 
directly yields p, unlike an indirect method involving the 
p DMBH function. 

Extension of the proposed method to drawdown, 
specifically to reservoir limit testing, has been addressed 
recently in Ref. 33. For the sake of brevity. we defer 
discussion on further application of the proposed model 
to fractured wells, injection wells, and the gas wells for 
deliverability testing. 

Conclusions 

The following conclusions can be made from this study. 
I. Pressure buildup behavior of a well can be defined 

uniquely by a rectangular hyperbola regardless of the 
boundary conditions-i.e., infinite-acting, no-flow, or 
various degrees of pressure maintenance at the outer 
boundary in a homogeneous reservoir. 

2. The rectangular hyperbola equation and the 
logarithmic approximation of the Ei function that is used 
to generate the buildup equation of Homer and MDH are 
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equivalent. Unlike the Homer and MDH methods, the 
hyperbola can predict pressure behavior beyond the 
infinite-acting period in most instances. The exceptions 
are cases where wells are located in either asymmetrical 
drainage shapes or long narrow rectangles that are 
characterized by negative p DMBH values before the 
(t DA) pss is reached. 

3. The asymptote of the three-constant rectangular 
hyperbolic equation directly yields p, the static reservoir 
pressure. This technique is therefore superior to the con
ventional methods of Homer and MDH where p is 
estimated by indirect methods for closed systems. 

4. The proposed method offers a distinct advantage 
over the conventional methods, because knowledge of 
neither the wellireservoir configuration nor the boundary 
condition is required for a routine buildup analysis. 

5. The permeability-thickness product and skin also 
can be calculated from the constants of the hyperbolic 
equation. However, the conventional methods, when 
correctly used, would provide superior results. 

6. Reservoir drainage shape can be estimated from the 
MBH pressure functions when the proposed method is 
used in conjunction with Homer'sp*. 

Nomenclature 
a = asymptote of rectangular hyperbola, psi 

(kPa) 
A = drainage area, sq ft (m 2) 
b = constant of rectangular hyperbola, hours 
B = formation volume factor, RB/STB (res 

m 3 /stock-tank m 3) 

C = constant of rectangular hyperbola, psi-hr 
(kPa' hr) 

c r = total system compressibility, psi - 1 

(kPa -1) 

h = formation thickness, ft (m) 
k = formation permeability, md 

m = slope of linear portion of semilog plot of 
pressure buildup curve, psi/ - (kPa/ - ) 

n = exponent of logarithmic expansion series, 
Eq. 4 

P DMBH = MBH pressure, dimensionless 
Pi = initial reservoir pressure, psi (kPa) 
P, = pressure drop resulting from skin, psi 

(kPa) 
P wf = flowing bottomhole pressure, psi (kPa) 
P WI = bottomhole shut-in pressure, psi (kPa) 

p = volumetric average pressure in drainage 
area, psi (kPa) 

Pi = volumetric average pressure before the 
last production period in the drainage 
area of the test well, psi (kPa) 

p* = pressure obtained from extrapolation of 
the Homer straight line to a time ratio 
of unity, psi (kPa) 

q = volumetric producing rate, STB/D 
(stock-tank m 3 /d) 

r 0 radial distance, dimensionless 
r e external radius of drainage boundary, 

ft (m) 
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t:.t 

(t:.t)p 

x 
a 

Subscripts 
max 

o 
1,2,3 

radius of investigation, ft(m) 
wellbore radius, ft (m) 
skin factor, dimensionless 
semilog slope as defined by Eq. A-2, 

psi! - (kPa! - ) 
dimensionless producing time based on 

rw 
dimensionless producing time based on A 
dimensionless producing time at the 

beginning of pseudo steady-state flow 
producing time, hours 
producing time at the beginning of 

pseudo steady-state flow, hours 
shut-in time, hours 
shut-in time required to reach p, hours 
dimensionless variable defined by Eq. 3 
dimensionless constant introduced in 
Eq. 2 
porosity, fraction 
viscosity, cp (mPa' s) 

maximum 
oil 
separate sets of data 
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APPENDIX A 

The Maximum Slope of the MDH Graph 
Mead 19 had determined empirically that the maximum 
slope of the MDH graph plotted on Cartesian paper gave 
the semi log slope, m. The correctness of Mead's finding 
is given in the followin'g analysis. 

Eq. 19 is reproduced here: 

c 
Pws =a+-- . ........................ (A-I) 

b + t:.t 
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The semilog slope, S, for a Cartesian MDH graph is 
given by 

dpws dpws d(D.t) dpws 
S=--=--·--=D.t-- ...... (A-2) 

d InD.t d(D.t) d InD.t d(D.t) 

Differentiating Eq. A-I with respect to D.t, we obtain 

dpws -c 
(b+D.t)2' ...................... (A-3) 

d(D.t) 

Combining Eqs. A-2 and A-3, we have 

D.t 
S=( -c) ...................... (A-4) 

(b + D.t) 2 

Note that S is always positive since c is a negative 
quantity, while b is positive. To obtain the shut-in time, 
D.t, at which S reaches a maximum, we differentiate Eq. 
A-4 with respect to D.t and set the equation to zero. 

ds [I 2D.! ] 
d(D.t) =( -c) (b+D.t)2 - (b+D.t)3 =0 

or 

D.t=b. . ............................... (A-5) 

We now show that m is a maximum at D.t=b by ob
taining the negative value of the differential, 
d 2S/d(D.t) 2 . 

d
2 S [-2 2 6D.t ] 

d(D.t)2 =( -c) (b+D.t)3 - (b+D.t)3 + (b+D.t)4 . 

At D.t=b, we have 

d
2
S (1 I ) 

d(D.t)2 =( -c) 2.6667b 3 - 2b 3 = -ive. 

.................. (A-6) 

Eq. A-6 is always negative because b is positive and c 
is negative. Therefore, the value of Smax is given by Eq. 
A-4. 

D.t -c 
Smax/tlt=b = (-c) (b + D.t) 2 .......... (A-7) 

4b 

Eq. 14 of the text indicates that the semi log slope, m, 
is given by 

m -c 

2.303 4b 

Hence the maximum slope on the Cartesian graph of 
Pws vs. D.tequals the semilog slope of Homer or MDH. 
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APPENDlXB 
Derivation of the Equation for Skin 
The flowing bottomhole pressure, Pwf' for a well in an 
infinite-acting reservoir where the logarithmic approx
imation of the line-source solution applies, is given 
by 7,1O,11 

....................... (B-1) 

The Homer buildup equation is reproduced here from 
the text: 

............ (B-2) 

m [ ( t p + D.t ) Pwf-Pws=Pi--- Intp-In ---
2.303 D.t 

....................... (B-3) 

Recalling Eq. 6 of the text, and assuming that 
t p +D.t=tp ' we have 

( 
t p + D.t ) 4t p 

In -- =lna-2+ ....... (B-4) 
D.t tp +(a+ 1)D.t 

Combining Eqs. B-3 and B-4, we obtain 

m [ 4tp 
P"'S -Pwf=-- Intp -lna+2------'----

2.303 tp +(a+ 1)D.t 

or 

Pws -Pwf=~ (Int p -lna-5.4316 
2.303 

4mtp 

2.303[t p + (a + 1)D.tJ 
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Rearranging, we have 

(p -a') _P_+.::lt = P ( 
t ) -Amt 

ws a+l 2.303(a+l) 

or 

(Pws -a ')(b' + .::It) =c, .................... (B-5) 

where 

a'=pwf+~ (lntp 
2.303 

-lna-5.4316+ln k +2S), ..... (B-6) 
¢llc {r W

2 

t 
b'=-P- ............................. (B-7) 

a+l ' 

and 

-4mt 
c'= P ....................... (B-8) 

2.303(a+ 1) 
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Note that constants b' and c' of Eq. B-5 are identical 
to the constants band c, respectively, of Eq. 7. 
Therefore, 

a'=a . ................................. (B-9) 

Eq. B-6 can be rearranged to obtain an expression for 
skin, s, 

1 [ 2.303 
s=- (a-pwf)-- -Intp +lna+5.4316 

2 m 

-In ¢1lC:rw 2 J. .................... (B-lO) 

SI Metric Conversion Factors 
acre x 4.046 856 E+03 m2 

bbl X 1.589 873 E-Ol m3 

cp x 1.0* E-03 Pa's 
cu ft x 2.831 685 E-02 m3 

ft x 3.048* E-OI m 
psi x 6.894 757 E+OO kPa 

psi -J x 1.450 377 E-OI kPa -J 

*Conversion factor is exact. JPT 
Original manuscript received in Society of Petroleum Engineers office Feb. 1, 1982. 
Paper accepted for publication Sept. 30, 1982. Revised manuscript received Nov. 21, 
1982. Paper (SPE 10542) first presented at the 1982 SPE California Regional Meeting 
held in San Francisco March 24-26. 
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a routine interpretation scheme 
this one. 

._____.. 
Pressure Buildup Analysis: A Simplified 

Approach develops a three-constant equation (a 
rectangular hyperbola) to approximate the exponential 
integral (Ei) function that describes transient pressure 
behavior. This equation is unique to the well at the 
time of testing and makes it possible to obtain the 
volumetric average pressure (j5) directly , regardless of 
the boundary conditions and the shape of the drainage 
area in most instances . This paper extends the work of 
Mead and provides a powerful tool for the practicing 
engineer because of its simplicity and accuracy in any 
type of reservoir drainage system. The authors 
conclude that , in addition top, the constants of the 
rectangular hyperbolic equation pem1it the 
permeability-thickness product and the skin resistance 
to be estimated directly and the reservoir drainage 
shape to be estimated indirectly. 

Obviously, the proposed method can be applied to 
a number of cases involving transient pressure 
behavior whenever an approximation to an 
approximation is adequate. (Unfortunately, this 
probably will generate a new series of papers treating 
all previously published topics via a lower-order 
approximation.) 

Nonstatic Reservoirs: The Natural State of the 
Geothermal Reservoir describes the dynamic 
equilibrium associated with the continual upward 
movement of fluid through most geothen11al reservoirs. 
Temperature, pressure , and fluid distribution are 
controlled by this natural flow rather than by the one
time emplacement of a fluid that becomes static. This 
paper presents data from the Wairakei reservoir in 
New Zealand that indicate a vertical pressure gradient 
7 % above hydrostatic and a vertical penneabil ity of 5 
md; it also tabulates comparable data for other fields. 
As a consequence of their observations about dynamic 
geothennal behavior, the authors conclude the 
following: 

I . A dynamic reservoir need not (and probably 
does not) have a caprock. 

2 . A pressure difference between two points in the 
reservoir that exceeds hydrostatic does not necessarily 
imply an impenneable barrier; it may indicate vertical 
flow. 

3. A two-phase (boiling) zone can exist if it is 
sustained by natural upflow ; i.e . , controlled by vertical 
penneability, gas content of the fluid , and temperature 
of the deeper water. 

4. A downhole pressure/temperature profile does 
not reflect the natural state of the reservoir since the 
presence of the well itself and the dominance of 
horizontal penneability during testing disto11s the 
observed pattern. 

An extremely educational exposition for those of 
us who are not conversant with geothen11al reservoirs. 
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Alkaline Injection for Enhanced Oil Recovery 
comprehensively summarizes (1) known completed 
field tests , including the amount of alkali injected and 
perfon11ance results, (2) currently operating and 
planned projects (41 alkaline flood projects certified 
under the U.S. DOE's Tertiary Incentive Program 
from Aug. 1979 to Jan. 1981), (3) recent laboratory 
investigations, largely sponsored by the DOE, and (4) 
theoretical/simulation research. This paper comments 
that the interplay of several possible mechanisms 
makes alkaline flooding an extremely complex oil 
recovery process with a marked tendency to be site 
specific. Since early field tests of the process were 
limited in areal extent and amount of chemical 
injected, they often were difficult to evaluate 
objectively. However, the authors express the hope 
that the results from recently completed tests, current 
projects , and ongoing research will establish 
conclusively the economic merit of alkaline flooding in 
the near future. 

A monumental effort-and an excellent status 
report. 

Offshore Installation and Maintenance of 
Submersible Pumps relates the history (8 years) of 
the successful operation of a large, offshore production 
complex in the Java Sea (9 fields, 33 platfom1s, 167 
wells) that is completely dependent on submersible , 
electric pumps for artificial lift and for transfer of 
produced fluids to a central treating facility. This 
paper describes the considerations that resulted in the 
initial selection and eventual standardized use of these 
particular pumps; it also discusses the operational 
problems (electrical and mechanical) encountered and 
solved. The author summarizes the perfon11ance record 
of the submersible pumps (now reduced to well below 
one failure per operated pump per year) and indicates 
the improvement in pump maintenance effected by the 
use of a barge/crane/workover rig system-an average 
of 2.5 days , from move on to move off, required to 
change a pump. 

A very readable, practical paper that describes the 
heart of an innovative, effective production complex. 

Reservoir Management at Dunlin presents an 
example of the use of reservoir simulation as a 
working tool for development and operational planning 
in one of the intensely faulted, geologically complex, 
and highly stratified Viking Graben fields in the North 
Sea. This paper describes the initial development plan, 
based on only a few wells and relatively widespread 
seismic data , which was made flexible and adaptive by 
requiring continuous updating of the reservoir 
description by means of simulation to pem1it the 
evolution of a final plan that approached optimality. 
The author concludes that the reservoir simulation 
program and the cross-sectional model adequately 
matched the pressure and water-cut perfon11ance at 
Dunlin and aided reservoir management vis-a-vis well 
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Discussion of Pressure Buildup Analysis: 
A Simplified Approach 
Neil V. Humphreys, SPE, Mobil R&D Corp. 

The following addresses a paper (Jan. 1983, 1. Pet. 
Tech., Pages 178-88) by A.R. Hasan and C.S. Kabir. 

The author's approach to a long-standing problem in 
well-test analysis is most innovative, and appears to of
fer a very welcome solution to a persistent problem. 
Their analysis of the problem is most interesting, and for 
the examples quoted appears to offer a superior solution 
technique. However, one of the assumptions implicit in 
their analysis gives cause for concern. 

A fundamental assumption in this paper is that higher
order terms of the expansion 

In(a+x)=lna+2 [(_X ) +2. (_X ) 3 
2a+x 3 2a+x 

1 ( X ) 5 +- -- + 
5 2a+x 

... ] 
0149·2136/83/0051·1867$00.25 
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may be ignored. In fact, the authors propose considera
tion of the first two terms of the expansion only, stating 
that justification for this will be shown in a field exam
ple. I show that this assumption is not always valid. 

Using the authors' nomenclature, 

_x_ = _2_(t,,-p_+_.::l_t)_ -1, 
2a+x tp +(a+ l).::lt 

which may be rearranged as 

_x_= 2[(tpl.::lt)+1] -l=F. 

2a+x (tpl.::lt) +a+ 1 

Defining this as F, the given expansion of In(a+x) 
may be rewritten as 

2F3 2F5 

In(a+x) =lna+2F + -- + -- + 
3 5 
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In(a+X);lna+Z[ [ x ]+1[ x ]'+ .... ] 
2a+X ! 2a+X 

10.0,-----------------_-. 

5.0 

o.o+------------::o_..:::...--"....~__! 

-5.0 

o 

In(G+X).lnG+2[ [ x ]+l[ x ]3+ .... ] 
2a+X ! 2a+X 

~ -10.0 
-1 , . 

! 
25.0 

-15.0 

o.0t--------:;;::~-~S=_=_~_::::;~;:;;._=9 

-20.0 
-25.0 

-25.0 -50.0 

-75.0 
-30.0 

0.1 0.5 1.0 10.0 50.0 100.0 -100,0 +----'--.,L-L-..JL-~----__r----~ 

0.1 1.0 100.0 1000.0 

Fig. D-1-Error implied by consideration of only the first two 
terms of the expansion as opposed to the first three 
terms. 

Fig. D-2-Error implied by consideration of only the first 2 terms 
of the expansion as opposed to the first 11 terms. 

TABLE D-1-ERROR (%) FOR VARIOUS a IMPLIED BY CONSIDERATION OF ONLY THE FIRST TWO 
TERMS OF THE EXPANSION' AS OPPOSED TO CONSIDERING THE FIRST THREE TERMS OF THE 

EXPANSION' 

teiM a = 7.389 10.00 50.00 62.287 100.00 250.00 500.00 1,000.00 

0.10 -109.6396 - 96.7097 -41.3190 - 36.9307 - 30.8250 - 22.4695 -18.4527 -15.5836 
0.50 -40.2914 - 48.4931 - 37.8346 -34.6005 - 29.6488 - 22.1586 -18.3318 -15.5345 
1.00 -17.3637 - 25.5962 -34.0153 - 31.9548 - 28.2590 - 21.7775 -18.1820 -15.4736 

10.00 0.2105 0.0030 -7.0849 -9.4123 -12.9291 -16.1067 -15.7195 -14.4224 
31.00 4.7657 2.7804 -0.2035 - 0.7249 -2.6162 -8.3980 -11.3424 -12.2761 
50.00 7.3651 5.2589 0.0000 - 0.0260 -0.5792 -4.8084 - 8.5400 -10.6438 

100.00 10.3318 8.5238 0.5568 0.1583 0.0000 -1.1035 -4.1579 -7.3890 
250.00 12.5711 11.2288 3.6451 2.5237 0.9618 0.0000 -0.4396 - 2.5701 
500.00 13.4050 12.2809 6.1810 5.1097 3.2264 0.4005 0.0000 -0.3939 

1,000.00 13.8394 12.8377 7.9462 7.1094 5.5297 2.1005 0.3589 0.0000 

"In(a+x)+lna+2 [(_X _) + 2. (_X_) 3 + 
2a+x 3 2a+x 

o oJ. 

TABLE D-2-ERROR (%) FOR VARIOUS a IMPLIED BY CONSIDERATION OF ONLY THE FIRST 2 TERMS OF THE 
EXPANSION' AS OPPOSED TO CONSIDERING THE FIRST 11 TERMS OF THE EXPANSION' 

t[!/M a = 7.389 10.00 50.00 62.287 100.00 250.00 500.00 1,000.00 

0.10 -441.8062 -616.3900 -448.4360 -364.7826 - 260.5470 -148.6116 -107.6193 - 82.9639 
0.50 -66.4600 -103.1356 -259.9822 - 246.4687 - 210.0029 -139.3406 -104.7172 - 81.9666 
1.00 -22.9251 - 39.8270 -165.1508 -171.7534 -167.4648 -129.0813 -101.2706 - 80.7475 

10.00 0.2155 0.0030 -9.8180 -14.5857 -25.0572 -49.6313 - 61.2616 -63.0202 
31.00 6.2353 3.3335 - 0.2096 - 0.7785 -3.1489 -14.6732 - 27.7098 - 39.5742 
50.00 11.1308 7.2471 0.0000 - 0.0262 -0.6190 - 6.7996 -16.5096 -28.2575 

100.00 18.9886 14.5087 0.5981 0.1632 0.0000 -1.2424 - 5.8865 -14.2049 
250.00 27.5297 23.7068 5.0285 3.2159 1.0838 0.0000 -0.4713 - 3.3456 
500.00 31.4854 28.4683 10.6849 8.1602 4.4552 0.4295 0.0000 -0.4224 

1,000.00 33.7300 31.3094 16.5929 14.0026 9.6044 2.7017 0.3849 0.0000 

"In(a+x)+lna+2 [(_X_) +2. (_X _) 3 + 
2a+x 3 2a+x 

o • .J. 
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Thus, the percentage error incurred by truncating the 
series at the second term as opposed to the third term of 
the expansion may be evaluated from 

(2F3/3) 
error = x 100%. 

Ina + 2F + (2F3 /3) 

This has been evaluated for various values of a and 
tplt.t, and is shown in Table D-1 and Fig. D-l. It is ap
parent, because of the additive nature of the series, that 
disregard of higher-order terms will result in some addi
tional, significant, error. This is shown in Table D-2 and 
Fig. D-2, where the first 11 terms of the expansion are 
considered. It is observed from the tables that, for a 
given value of a, the error incurred by ignoring higher
order terms of the expansion is highly significant when 
the value of t pi t.t is not of the same order of magnitude 
as the value of a. This is particularly apparent for an in
finite acting system (a=7.389), where, at small values 
of i pi t.t, the error is greater than 100%. 

Note from Table D-2 that when a=tplt.t, the error 
implied by the authors' assumptions becomes negligible. 

SPE 11926 

This would imply that for the authors' method to be ex
actly applicable, a=tplt.t. Unfortunately, this makes 
the authors' Eq. 6 nonlinear in t.t, and thus precludes the 
representation of this equation by a rectangular hyper
bola, which is fundamental to the authors' approach. 

It is interesting to note that for examples in the paper 
where a may be calculated, the associated tplM values 
are such that the error induced by the authors' assump
tion is small. This may be fortuitous, or it may imply 
some physical dependence of a on t p' which makes the 
authors' assumption valid. Such a relationship is not ad
dressed in the paper, nor is one immediately apparent 
from cursory examination of the authors' equations. 

It is possible that such a relationship may be 
demonstrated, either theoretically or empirically. Until 
this dependence has been demonstrated, I believe that 
users of the approach presented in the paper should exer
cise considerable caution, and it is imperative that they 
calculate the error implied by the authors' assumption 
over the entire range of t pi t.t values they intend to 
analyze. This appears particularly necessary for systems 
which approximate to infinite-acting (i.e., low values of 
a) and for low or high values of tplt.t. 

Authors' Reply to Discussion of Pressure 
Buildup Analysis: A Simplified Approach 
A.R. Hasan, SPE, U. of North Dakota 

C.S. Kabir, * SPE. Dome Petroleum Ltd. 

We appreciate this opportunity to clarify certain points 
presented in our paper. Of particular significance and in
terest is the assumption concerning truncation error, 
made while deriving the rectangular hyperbola equation. 
Mr. Humphreys' Discussion in this regard is very 
illuminating. 

As he points out, neglecting the higher-order terms in 
the infinite series expansion for In (a + x) is fundamental 
to the derivation of the hyperbola equation. This assump
tion is valid whenever the value of a is close to t pi t.t. 
The dramatically large truncation errors presented in 
Tables D-1 and D-2 by Humphreys are true for very low 
t pi t.t values because of the inherent assumption in our 
derivation, t p + t.t == t p' However, we point out that 
tplt.t< 1.0 implies shut-in time greater than the produc
ing time.As Earlougher and Kazemi 1 note, whenever 
t.t> t p' no useful additional data are obtained for the 
buildup segment of the test because the radius of in
vestigation is governed by the producing time. 

Additionally, the constants a, b (and hence 
a=tplb-l), and c of the hyperbola equation are ob
tained by optimization. The optimization procedure 
leads to a value of a that does not deviate greatly from 
tplt.t, indicating a minimum truncation error. Thus, we 
have shown in the boxed portion of Humphreys' Table 
D-2 the error (% ) that would typically apply to field data 

'Now with ARCO Oil & Gas Co. 
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when analyzed by our method. 
Examination of Humphreys' Fig. D-2 reveals that the 

error band decreases substantially with an increase in a, 
because the length of an a curve on the zero-percent
error line increases dramatically as t pi t.t is increased. 
This observation implies that, with an increase in a 
well's producing life, reliability of the rectangular hyper
bola predictions is enhanced. 

Thus, the excellent results obtained by the use of a rec
tangular hyperbola are not fortuitous, but rather are in
evitable. Mead 2 and much of our own in-house analysis 
substantiate this point. 

With regards to the value of a=e 2 =7.389 for an 
infinite-acting reservoir, we wish to point out that this 
value was calculated on a theoretical basis. The underly
ing thought was to show that for a finite reservoir, 
a> 7.389. Our recent observation indicates that 
a> 7.389 is true even for an infinite-acting reservoir. 
Thus, a=7.389 should be construed as a minimum value 
for any set of test data. All the parameters in the hyper
bola equation, including a, must be determined from the 
field data as outlined in the second paragraph of Page 
181 of our paper. 
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Discussion of Pressure Buildup Analysis: SPE 11862 

A Simplified Approach 
Dennis L. Bowles, SPE, Cities Service Co. 

Christopher White, Cities Service Co. 

In their paper (J. Pet. Tech., Jan. 1983, Pages 178-88), 
authors A.R. Hasan and C.S. Kabir ambitiously under
took the task of clarifying the often complex field of 
pressure-transient analysis. They developed a three
constant hyperbolic equation approximating the 
logarithmic approximation of the exponential integral 
(line-source solution). They then stated that the hyper
bolic constants may be used to estimate kh, s, and p. 

A careful analysis of their work has led us to suspect 
that application of the proposed method will often yield 
results significantly different from those obtained by 
conventional analysis. 

Theory 

We examined the applicability of the Hasan-Kabir 
method during three time ranges: (1) wellbore 
dominated, (2) infinite-acting, and (3) late transient or 
boundary -affected. 

1. The Hasan-Kabir method considers pressure change 
to be inversely related to time. Thus, it cannot fit frac
tured well data for which !lp is proportional to .Jt;i or 
storage-dominated behavior for which Ap is linearly pro
portional to At. Analysis of these regimes by the pro
posed method will result in errors similar to those in
curred by misapplication of conventional techniques. 
Hasan and Kabir do not claim to be able to analyze linear 
flow or wellbore storage data. 

2. Serious difficulties arise when the Hasan-Kabir 
method is applied to infinite-acting data. They use the 
common assumption that t p ~ At or t p + At "" t p. The im
plications of that statement with regard to the hyperbolic 
approximation must be assessed very carefully. 

For small At (t plAt;:: 100), we find that significant er
ror results from truncation of the infinite series \ (Eq. 1) 
after the second term. 

00 

In(a+x)=lna+2 ~ _1_ (_X_) 2n-\, .. (1) 
n=\ 2n-l 2a+x 

where 

t -(a-l)At 
x= p . . ........................ (2) 

At 

For an infinite system, Hasan and Kabir show that 

a=e2 =7.389 ............................. (3) 

The truncation error for an infinite system is tabulated 
vs. tplAt in Table D-l. Note that the error may exceed 

0149·2136/83/0051·1862$00.25 
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20%, indicating that the Hasan-Kabir method does not 
approximate infinite-acting behavior even when t p ~ At. 

For large At, t p is not much larger than At and 
t p +t =1= t p. Thus, the Hasan-Kabir method improperly 
superposes the pressure transient induced by the produc
tion preceding shut-in for the buildup test. 

In summary, the Hasan-Kabir method cannot accurate
ly model infinite-acting behavior for large or small At. 
We provide a quantitative demonstration of this state
ment later in this Discussion. 

3. The form of the rectangular hyperbola proposed by 
Hasan and Kabir for analysis of pressure transients is 
based on the line-source solution in an infinite reservoir. 
The hyperbola does not bear a close mathematical 
resemblance to the bounded reservoir solution, which is 
in terms of Bessel's functions rather than the exponential 
integral. Therefore, there is no theoretical basis for using 
the Hasan-Kabir method to analyze data during the late
time (boundary-affected) portion of the test. 

All of these factors caused us to have profound reser
vations regarding the basis and accuracy of the Hasan
Kabir method. We therefore proceeded to formulate 
comparisons between the Hasan-Kabir method and 
classical techniques of analysis. We accomplished this 
by the well-established method of solving the diffusivity 
equation with appropriate boundary conditions in 
Laplace space2,3 and numerically inverting using the 
Stehfest algorithm. 4 

Effects of Truncation Error. The parameters shown in 
Table D-2 were used to generate an infinite reservoir 
data set. Two intervals-one meeting all criteria given by 
Hasan and Kabir, the other including some wellbore
dominated data-were analyzed using the same type of 
iterative linear regression that they used. Fig. D-l and 
Table D-2 clearly indicate that erroneous results are ob
tained for p, k, and s; the errors are even more acute 
when storage-dominated data are included in the 
analysis. Since no boundary-affected data were ana
lyzed, a correct model should extrapolate to p = Pi. The 
hyperbolas indisputably and falsely indicate a boundary 
where conventional methods suggest no such thing. 
These analyses underestimate both p and drainage area. 
Thus, use of these parameters in volumetrics will result 
in a substantial underestimation of reserves. The net 
result could be failure to develop a potentially profitable 
discovery. 

Uniqueness of the Solution. In their Summary and Con
clusions, Hasan and Kabir state that the pressure 
behavior of a well can be defined uniquely by a rec
tangular hyperbola regardless of boundary conditions. 
They do, however, note that the constants band c will be 
somewhat sensitive to the time interval chosen to 
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TABLE 0-1-TRUNCATION 
ERROR FOR INFINITE SYSTEM 

1 
6.389 

10 
100 

1,000 
10,000 

Truncation 
Error (%) 

22.9 
0.0 
0.2 

19.2 
42.5 
56.6 

TABLE D-2-PARAMETERS AND RESULTS FOR EXAMPLE 1 (FIG. 0-1) 

Parameters Results of Hasan-Kabir Analysis 

k, md 
h, ft 
{t,cp 
8 0 , RB/STB 
tp ' hours 
tpo 
s 
Co 
Pi' psig (=p) 
<P 
c t ' psi- 1 

r W' ft 
Pwf' psig 

10 
500 

0.20 
1.2 

3,792 
10 8 

5 
250 

3,000 
0.10 

20x10- 6 

0.50 
2504.7 

k, md 
f5, psig 
s 
m, psig/cycle 
b, hours 
-c, psi-hr 
apparent reo 
apparent r e' ft 

Including Infinite-
Storage Acting 

Data Data Only 

4.54 8.55 
2,970.4 2,979.1 

-1.3 3.2 
85.88 45.65 
16.89 115.85 

2,519.7 9,185.1 
-15,000 
-7,500 

TABLE D-3-PARAMETERS AND RESULTS FOR 
EXAMPLE 2 (FIG. 0-2) (field example from Ref. 5) 

Parameters Results of Hasan-Kabir Analysis' 

qo' STB/D 
tp ' hours 
tpo 
r W' 112 ft 
c t, Ipsi- 1 

h, ft 
{t, cp 
<P 
8 0 , RB/STB 
A, acres 
r e' ft 
reO 

4,900 
310 

2.028x10 7 

4.25 
22.6x10- 6 

482 
0.20 
0.09 
1.55 

502.65 
2,640 
7,454 

k, md 
p, psig 
s 
m, psig/cycle 
apparent reO 
r e' ft 
b, hours 
-c, psi-hr 

11.10 
3,333 

6.6 
46.15 
5,000 
1,771 
4.898 

392.65 

* Our analysis results appear in parentheses. 

Data 
Set 

1 
2 
3 
4 

k 
(md) 

5.35 
12.87 
13.05 
22.62 

TABLE D-4-PARAMETERS AND RESULTS 
FOR EXAMPLE 3 (FIG 0-3) 

Parameters (same as Example 1 except) 

tp ' hours 379,200 
tpo 10 10 
S 0 
Co 0 
Pwf' psig 2,596.1 

Results of Analysis by Hasan-Kabir Method 

m p b 
(psig/cycle) (psig) s (hours) 

72.94 
30.32 
29.90 
17.25 

2927.9 
2856.5 
2895.4 
2934.2 

-6.4 
-2.2 
-0.53 

+ 10.2 

190.2 
6.392 
6.374 

617.2 

(12.66) 
(3,331.3) 

(7.95) 
(40.92) 

-c 
(psi-hr) 

24,080.0 
557.6 

5,494 
5,556.4 
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Fig. D-1-Horner plot of two hyperbolic fits to infinite reservoir 
data, showing that the Hasan-Kabir method falsely 
indicates no-flow boundaries. The hyperbolas 
(Curves 1 and 2), infinite solution, and two-bounded 
solutions are displayed. 

describe the rectangular hyperbola. They attempt to 
demonstrate the robustness of their method with a series 
of examples. It was difficult to investigate the validity of 
their examples because of numerous typographical errors 
throughout their paper. 

Their field example is included as our Example 2.5 
Note that t p is not much greater than I:1t for all of the test 
and that this is a bounded reservoir for which their ap
proximation (of the infinite solution) is not appropriate. 
There is therefore no reason to expect that their method 
will yield accurate results for this example. However, 
the data displayed in Table D-3 and Fig. D-2 indicate 
that in this case the Hasan-Kabir method gives a 
reasonable estimate of p although their estimates of k and 
s exhibit more error than one would desire. It is also im
portant to note that an engineer using the Hasan-Kabir 
method would enter material-balance calculations with a 
PV 120% too high, since our Homer plot indicates that 
reD = 5 ,000 rather than 7,454 that Hasan and Kabir and 
Earlougher5 use as a parameter. In some cases, such an 
error may lead to a decision to develop a field that is ac
tually uneconomic due to insufficient reserves. One 
should also note that the goodness of fit which Hasan and 
Kabir obtain in this example is partly because the data 
analyzed lie in the time interval in which truncation error 
is relatively small (see Table D-1). Also, boundary ef
fects are apparent during the last 21 hours of the test, and 
they extrapolate less than one cycle in Homer time. 
Therefore it seems that their agreement with classical 
analysis results from fortuitous selection of data rather 
than the reliability of their method. 

It is prudent to examine the sensitivity of the Hasan
Kabir method to the time interval selected for analysis. 
We generated a purely infinite-acting data set and 
selected 17 points spanning 4 decades of magnitude. We 
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Fig. D-2-Horner plot of the field example from Hasan and 

Kabir, originally from Ref. 5. The hyperbola (dashed 
line) and several conventional solutions are shown. 

subdivided these data into four sets as noted by the 
legend in Fig. D-3. The data sets were analyzed by the 
Hasan-Kabir method. The results of these analyses are 
shown in Table D-4. After comparing the parameters 
and results, we noted the following. 

1. None of the hyperbolas model all the infinite-acting 
data. 

2. One would hope that including more infinite-acting 
data would improve the curve fit and provide better 
estimates of p, k, and s. We find that this is not the case. 

3. None of the fits yield the correct p. The hyperbolas 
should all extrapolate to p=pj. 

4. The analyst may choose almost any value of p by 
choosing the appropriate data set. 

5. The error in estimates of permeability (k) may ex
ceed 120%. Errors in estimates of skin factor (s) are even 
more severe. 

6. All properties are apparent functions of time. 

Conclusions 

For clarity, we address the conclusions made by Hasan 
and Kabir point-by-point. 

1. The rectangular hyperbola does not uniquely define 
the pressure behavior of a well. It is insensitive to boun
dary conditions, and use of the Hasan-Kabir method can 
lead to erroneous conclusions regarding p and drainage 
area. 

2. The hyperbolic equation is a truncated series ap
proximating the logarithmic approximation of the ex
ponential integral function and is not equivalent to the 
buildup equation of Homer or Miller-Dyes-Hutchinson. 
Even if it were equivalent, there is no reason to believe 
that the hyperbola can predict pressure behavior beyond 
the infinite-acting period. It will certainly be in error in 
highly asymmetric drainage shapes as noted by Hasan 
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and Kabir. 
3. The method of Hasan and Kabir is an empirical 

curve-fitting technique and does not yield p direct! y . 
Conventional methods are direct, although the use of 
published corrections may cause them to appear to be in
direct. We do not find the Hasan-Kabir method superior 
to conventional analysis. 

4. The proposed method is insensitive to boundary 
conditions. As our examples show, substantial errors in 
volumetric calculations can result. 

5. Conventional methods will always yield superior 
estimates of kh and skin. Hasan and Kabir concede this 
point in their paper. 

6. In light of the factors we have discussed, use of the 
Hasan-Kabir method to estimate dminage shape indirect
ly will necessarily result in erroneous conclusions. 

Nomenclature 
a = intercept in hyperbolic equation, psi 

(kPa) 
b = constant in hyperbolic equation, hours 
B = formation volume factor, RB/STB 

(res m 3 /stock-tank m3 ) 

c = constant in hyperbolic equation, 
psi-hr (kPa' h) 

C t = total reservoir compressibility, 
psi - I (kPa - I ) 

CD = dimensionless wellbore stomge 
coefficient 

h = formation thickness, ft (m) 
k = permeability, md 
p = avemge pressure, psi (kPa) 

P D = dimensionless pressure 
Pi = initial pressure, psi (kPa) 

Pwf = flowing well pressure at time of shut
in, psi (kPa) 

Pws = static well pressure, psi (kPa) 
q = flow rate, BID (m 3 Id) 

r e = mdius of reservoir, ft (m) 
reD = dimensionless mdius of reservoir, 

re1rw 
r w = radius of wellbore, ft (m) 
. s = skin factor 
t D = dimensionless time 
t p = production time, hours 

t pD = dimensionless production time 
ilt = shut-in time, hours 

iltD = dimensionless shut-in time 

MAY 1983 

x = dimensionless constant introduced by 
Hasan and Kabir, defined by Eq. 2 

ex = dimensionless constant introduced by 
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Fig. 0-3-Series of hyperbolic fits to a single semilog straight 
line, demonstrating that the Hasan-Kabir method 
does not generate unique solutions. 

Subscripts 

Hasan and Kabir 
/J. = viscosity, cp (Pa' s) 
cf> = porosity, fraction 

1, 2, 3, 4 = different data sets 
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SI Metric Conversion Factors 
bbl x 1.589873 E-Ol m3 

cp x 1.0* E-03 Pa's 
ft x 3.048* E-Ol m3 

psi x 6.894757 E+OO kPa 

*Conversion factor is exact. JPT 
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Author's Reply to Discussion of Pressure 
Buildup Analysis: A Simplified Approach 

SPE 11925 

A.R. Hasan, SPE, U. of North Dakota 

C.S. Kabir, * SPE, Dome Petroleum Ltd. 

Bowles and White make a very determined effort to 
disprove the conclusions we reached in our paper. We 
must confess to being somewhat taken aback by their 
vehement dislike of our proposed analysis method. 

We discuss their concerns in the same order as they ad
dress various flow regimes: (1) well bore-dominated or 
early-time behavior, (2) infinite-acting reservoir 
(t p < t pss) behavior, and (3) infinite-acting period in a 
bounded system (t p > t pss), during a buildup test. 

Wellbore-Dominated (.1t< .1tbsl) Period** 

We clearly state in our paper that the wellbore
dominated data must be excluded for a valid analysis. 
This exclusion is also required for the conventional 
Homer and MDH analyses. Same is true when the early
time data are influenced by the fracture linear flow. 

We cannot comprehend why Bowles and White bring 
up this point despite our clear statement on the ap
plicability of the hyperbola. In their Example 1 (Table 
D-2) they even use the early-time data to demonstrate the 
inadequacy of the hyperbola! 

Infinite-Acting Reservoir (/p <Ipss) Period 
They attempt to demonstrate the limitations of the hyper
bola, for an infinite-acting reservoir, by showing the so
called truncation error in their Table D-l. We address 
the question of truncation error in our Reply to Mr. 
Humphreys. 

We point out that for an infinite-acting reservoir, 
Homer's method always provides superior results 
because p is obtained by direct extrapolation of the 
semilog line to the Homer time ratio, (tp +M)/.1t, of 
unity. Thus, there is no advantage of using our suggested 
approach although the results obtained are quite 
acceptable. 

Here, Table R-I compares the results obtained by 
Bowles and White's own conventional analysis with 
those of rectangular hyperbola. To a practicing engineer, 
the results obtained by the two methods could be con
sidered to be very good even though the assumption of 
t p +.1t::::: t p was made for the development of the rec
tangular hyperbola equation. Interestingly enough, the 
hyperbola predicts a p which is 99.303 % of the true 
value-an accuracy considered unacceptable by Bowles 
and White! 

We offer the following on the discrepancy of k and s 
values as shown in Table R-l. One of the most important 
uses of k value, obtained from well testing, is in reser
voir simulation studies. A reservoir engineer could ap
preciate that a reservoir having 8.55-md permeability 
does not perform very differently for most problems 
'Now with ARGO Oil & Gas Go. 

, , tlt 0$1 = shut·in time prior to the beginning of the semilog straight line. 
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when a k of 10 md is used or vice versa. 
We note that the skin calculated from the hyperbola is 

lower than the true skin of 5.0. However, from a prac
tical point of view, any decision on a stimulation job is 
very unlikely to be affected by the difference in the skin 
pressure drop that we calculate in Table R-I. 

Thus, when a rectangular hyperbola is used to describe 
the pressure behavior in an infinite-acting reservoir 
(t p < t pss), the results obtained are acceptable for all 
practical purposes, as shown by the results (Table R-l). 
However, we recommend use of Homer graph for 
simplicity and accuracy. 

Uniqueness of the Solution. To prove nonuniqueness 
of the rectangular hyperbola solutions, Bowles and 
White chose an extreme, theoretical example to illustrate 
their point of view (Example 3). We cannot conceive of 
a situation where a well produces for 43.29 years 
(tp=379,200 hours) without rinv reaching the reservoir 
boundaries. This fact implies that r e is at least 106 ft! 
One other impracticality is readily apparent from this ex
ample. They analyze the data over two to four log 
cycles. A practicing engineer rarely gets an opportunity 
to analyze data over a 1 V2 log cycle without the storage 
and lor skin effects. For the example cited (Example 3), a 
(tp +.1t)/.1t= 100 translates to a shut-in time of 3,830 
hours or 160 days. We are unaware of such long shut-in 
times being used for reservoirs having transmissivity in 
the order of 25,000 md-ft/cp. 

Even in this extreme case, for Data Set 2, they show a 
maximum error of 4.8% in the p estimate. Data Set 2 
reflects a realistic shut-in time of 38 hours. Permeability 
of 12.87 md compares favorably with the true value of 
10 md. Skin, however, is more optimistic than desired. 

Because of the assumption of t p +.1t "" t p' the hyper
bola is not expected to provide unique solutions as 
Bowles and White had hoped to obtain. We restate that 
the Homer method is obviously superior whenever 
t p < t pss' The primary application of hyperbola lies in 
bounded andlor pressure-maintained systems, where pis 
difficult to determine by the conventional methods. 

The use of the word "unique" in our paper is admit
tedly rather confusing. We meant to say that the con
stants of the hyperbola are defined by the data from 
infinite-acting period no matter what the shape of the 
reservoir is, hence the unfortunate choice of the word 
unique. However, we clearly indicated that the constants 
a, b, and c are somewhat sensitive to the choice of the 
data set (see Table 3 of our paper, Page 182). Our state
ment concerning the equivalence of Homer and hyper
bola equations (our second conclusion) is also somewhat 
ambiguous. We intended to say that the mathematical 
derivation we presented shows the equivalence between 
these two equations for the infinite-acting data under the 
constraints we have already discussed. 
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Bounded Systems (I p :::: 1 pss) 

Bowles and White state that the hyperbola is not capable 
of predicting pressures in bounded systems, because the 
hyperbola does not bear a close mathematical 
resemblance to the bounded reservoir solution. We refer 
them to Pages 2-92 of Ref. 1, where Eq. 1 is presented. 

P*-Pwf 
P D = = 1/2 (In t D +0.809). . .......... (1) 

PiqD 

We quote Ref. 1: "Eq. 1 [Eq. 2-128 of Ref. 1] 
represents the pressure at a well in a reservoir of any 
shape, may be obtained by replacing Pi by P * !n Eq. 2 
[Eq. 2-75 of Ref. 1], which is the equation apphcable to 
an infinite reservoir. " 

PD=Pi-Pw
f 

=1/2 (In tD+0.809) . ............ (2) 
PiqD 

No further discussion of this point is necessary. 
One of the most remarkable and contradictory features 

about their Discussion is that they do not believe in the 
hyperbola's ability to predict pressures in bounded 
systems, yet they use· a field example where t p > t pss 

(310 hours> 264 hours) to illustrate their point of view, 
which is not clearly understood. 

While citing Example 2 (field example in our paper, 
also Earlougher2) they state that the agreement between 
their analysis and ours is perhaps coincidental and for
tuitous. Could Bowles and White explain why we obtain 
a p anywhere near their value if the hyperbola does not 
trace beyond the infinite-acting period? 

We prepared Table R-2 to compare the various results. 
One readily observes that Earlougher obtains a slightly 
higher p because of lower P DMBH value for a corre
spondingly higher drainage area. Earlougher2 clearly 
states that the drainage radius of 2,640 ft is only an 
estimate. For all practical purposes, it matters very little 
whether the true pis 3,342 or 3,331.3 psig. 

We note with interest that our analysis yields a p of 
3,333 psig (for the data for 2.51 <dt<37.54 hours) 
without having to enter the drainage radius as a variable. 
This observation indicates the superiority of our ap-
proach in field applications. . 

Bowles and White express undue concern regardmg 
PV calculations. If a material-balance approach is used, 
one could easily obtain p as a function of producing time 
for a known reservoir drainage area from Eq. 3. 3 

kh 
---(Pi-P)=27rtDA' ................. (3) 
141.3qB/L 

Because hyperbola could predict p accurately without the 
knowledge of the drainage area, A, use of Eq. 3 con
ceivably could give an estimate of A. 

Bowles and White also state in their Example 2 that 
the last 21 hours of the test are affected by the boundary. 
Interestingly enough, Earlougher2 could draw a semi log 
straight line through the points in question. We concur 
with Earlougher's analysis, and we fail to understand 
what Bowles and White are trying to say. 
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TABLE R-1-COMPARISON OF RESULTS 
PRESENTED BY BOWLES AND WHITE-EXAMPLE 1 

(tp<tpss) 

Parameter 

ko' md 
Pie =p), psig 
s 
llPskin, psi 

Bowles 
and White 

10.0 
3,000.0 

5.0 
169.78 

Rectangular 
Hyperbola 

8.55 
2,979.1 

3.2 
127.09 

TABLE R·2-COMPARISON OF VARIOUS RESUL TS
EXAMPLE 2(tp >tpss) 

Bowles Rectangular 
Earlougher 2 Parameter and White Hyperbola 

P, psig 3,331.3 3,333.0 3,342.0 
ko' md 12.66 11.10 12.80 
s 7.95 6.60 8.60 

Concluding Remarks 
1. We do not understand what the confused and con

tradictory arguments of Bowles and White accomplish. 
All the conclusions reached in our paper are valid. 

2. The use of a hyperbola is clearly meant for bound
ed and/or pressure-maintained reservoirs where p is di~
ficult to determine. For an infinite-acting reservOir 
(tp <tpss ), Homer's approach is certa!nly desirable. W~ 
may not have stated this point clearly m our paper, but It 
was certainly implied because all the examples presented 
satisfy the condition t p > t pss . 

3. Agreement between our results and those of con
ventional analyses is certainly not fortuitous, but has 
theoretical basis. Mead 4 has proved the validity of the 
solutions for numerous field examples. Our in-house 
analysis of a large number of wells indicat~s th.e same: 

4. Whenever a well/reservoir configuratIOn IS POSSI
ble to determine for field applications, conventional 
methods (Homer in conjunction with MBH) would pro
vide superior results. However, as explained in our 
paper, such geometries for which MBH solutions are 
available are very difficult to define in the real world. 

5. Conventional methods provide superior estimates 
of skin and permeability. These values could also be ob
tained from the rectangular hyperbola with accuracy 
comparable to the conventional methods. 
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SI Metric Conversion Factors 
cp x 1.0* E-03 
ft x 3.048* E-Ol 

psi x 6.894 757 E+OO 
"Conversion factor is exact. 

Pa's 
m 
kPa 
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Discussion of Pressure Buildup Analysis: SPE 13676 
A Simplified Approach 
Liu Ruei Jin, SPE, Ins!. of Chang-Qing Oil Field 

This Discussion addresses "Pressure Buildup Analysis: 
A Simplified Approach" by Hasan and Kabir (Jan. 1983 
lPT, Pages 178-80) and the relevant Discussions and 
Replies (May 1983 lPT, Pages 905-17). I agree with 
some of the authors' work in estimation of static reser
voir pressure, p, but I think that this approach may be 
simplified and made more rigorous by the following 
method. 

From the authors' Eqs. 7 and 19, respectively, and 
because of the unique slope in a line, in a set of any three 
points of Fig. 4 we have 

P3-P2 
------=0, 

1 1 

where 
P = reservoir pressure, psi [kPa], 
b = constant of rectangular hyperbola, hours, 

and 
I = time, hours. 

When 12 -tl =t3 -t2, and PI, P2, and P3 are the cor
responding pressures, respectively, this equation is true 
also. After simplifying and rearranging, 

tlPI -tIP2 +t3P3 -t3P2 
b= . . .............. (1) 

2P2 -PI -P3 

(SPE 13676) 
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Again, as a result of the unique slope of the line and 
the authors' Eq. 7, we have 

where a is the asymptote of rectangular hyperbola, psi 
[kPa]. Then, 

bP2 -bpI +t2P2 -tiP I _ 
a= =p . .............. (2) 

t2 -tI 

From the authors' Table 4, after a regression analysis for 
2.51 < ~t< 37.54 hours, the Miller-Dyes-Hutchinson 
(MDH) linear equation may be obtained as follows. 

tp =3267.023+37.423 In t .................. (3) 

and we can estimate permeability, k, and skin factor, s, 
with Eq. 3 and other data directly. If Eq. 3 is extrapolated 
to II = 10 hours, t2 =20 hours, and t3 =30 hours. 
Therefore, P 1=3,304.45 psig [22 780 kPa], P2 =3,316 
psig [22 863 kPa], and P3 =3,322 psig [22 904 kPa], 
respectively. Substituting for them to my Eqs. 1 and 2, 
we may obtain b= 11.62 and a=3,341 psig [23035 
kPa]=p. 

This is in better agreement with field data and the 3,342 
psig [23 042 kPa] obtained by the semi log analysis than 
Hasan and Kabir's 3,333 psig [22980 kPa]. Perhaps this 
modified procedure is more simplified in practice and 
rigorous in mathematics. 
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SOLVING THE RECTANGULAR HYPERBOLA 
EQUATION FOR PRESSURE BUILDUP ANALYSIS EORlJl~i 

by 
);;"3S3 

J. P. MEYER, A. R. HASAN, AND C. S. KABIR 

Application of the rectangular hyperbola equation to pressure buildup 

analysis has been recently discussed. l We suggested an iterative linear 

regression scheme for estimating the values of the parameters a, b, and c in 

the hyperbolic equation that leads to a direct estimation of the average 

reservoir pressure p. The purpose of this note is to discuss a direct 

regression scheme as well as an improved iterative regression scheme for 

estimating the three parameters in the hyperbolic equation. 

Direct Regression Approach 

The rectangular hyperbolic equation 

(p-a) (b+l1t) = C 

can be rearranged in the following form: 

p = at l1t + bt (p 6t) + c t 

where 

at = alb 

b t = -lib 

c t = (ab+c)/b 

Eq. 2 is linear in variables l1t and PD.t with parameters at, bt , and ct. 

Setting 

vie have 

(1 ) 

(2 ) 

(3) 

(4 ) 

(5) 

(6 ) 

(7) 

(8 ) 



To determine coefficients ai, b' , and c l
, linear least squares regression may 

be used. 2 This is done by minimizing the squared residual error between the 

observed pressures and those calculated by Eq. 8, 

E = !: (po - p)2 
(9 ) 

= !: (p - a l 

xl - b'x -c I) 2 
0 2 

By differentiating Eq. 9 with respect to each parameter and setting the result 

to zero, we obtain the following set of normalized equations: 

a l E x 2 + b' E x I X 2 + c l !: Xl = z: P Xl I 

a l !: Xl X 2 + b' !: X 2 + c l <"' X2 = !: P X2 2 J.. 

a l !:xl+b' !: X
2 

+ c l N = !:p 

where N is the total number of data points. Eq. 10, 11, and 12 can be 

expressed in matri x form 

A • C = 0 
= 

or 

!: x 2 
I E Xl X2 !: Xl a l p Xl 

!: Xl X 2 
!: X 2 L: X2 b' = P X2 2 

L: Xl L: X2 N c l L: P 

(10 ) 

(11 ) 

(12 ) 

(13) 

(14 ) 

The solution of this linear set for the column vector C, whose elements are 

a l 
J b' , and c l is of the general form 

C = A-I. 0 (15) 
= 

Packaged programs are available for TI 59, HP67, and other calculators for 

solving the 3 x 3 matrix of Eq. 14. 
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After the least square coefficients have been· determined, the original 

parameters a, b, and c of the hyperbola (and hence average reservoir pressure, 

p = a, and semi log slope m = -0.5758 c/b) can be computed from Eqs. 3, 4, and 

5. We have developed a program for a TI 59 calculator which gives p, b, and m 

directly from pressure-time data input and is available upon request. 

Iterative Regression Approach 

Eq. 1 is written in the following form: 

p = a + b .; llt (16) 

If the value of b is known, the parameters a and c can be obtained by 1 i near 

regression with I/(b + llt) as the independent variable. Since the value of b 

is unknown, an iterative solution is needed to search for the optimum value of 

b for which the correlation coefficient is maximum. Any such search will be 

aided by a good starting value for b. There are t·tiO methods of estimating an 

initial value of b. 

Method 1: For Eq. 1 to be exactly the same as the Horner equation, it is 

necessary that the expa.ns;on of In(a + x) satisfy the condition1 

or 

x 2{t + llt) 
P 

--- = ------.,--- - 1 = 0 
2a + x t + (a + l)llt 

p 

llt = t I(a - 1) 
P 
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Because ex » 1 

and 
(19 ) 

or 
b = tot 

Since tot is variable, an average shut-in time should be used to approximate 

b. Experience indicates that the geometric mean of the first and last shut-in 

time data (that would be used for the analysis) is an excellent starting value 

for b. Thus 

(20) 

Method 2: Another way to estimate a starting value for b would be to use 

three data points and three equations to solve for the three parameters in 

Eq. 1 or 16. Algebraic manipulations lead to the following expression for b: 

b = 
(tot 2 - 6 tot1 ) 

(6 - 1) 
(21 ) 

where 

P1 - P (tot
3 - to t2 

6 = (p 3 ) ) 
2 P3 to t3 - to tl 

(22) 

The three sets of data should include the early, middle, and late time data 

belonging to the semilog period. 
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Field Example 

Table 1 compares the two approaches using the field example cited in the paper 

(Table 4, Ref. 1). Ten data points between 2.51 ~~t ~ 10.05 (excluding 

~t = 5.97) were used. The entries in Table 1 show that the two methods yield 

virtually identical values of p, m, k, and s, although the direct regression 

approach takes less computation time on a TI59 calculator than the iterative 

method. 

Direct 
Regression 

Iterati ve 
Regression 

where 

References: 

P 
(psig) 

3334 

3333 

Table 1: Comparison of Solution Methods 

m 
(psi/cycle) 

46.12 

46.51 

o = 

k 
(md) s 

11.66 6.58 

11.57 6.45 

Computation 
Time (min) 

1 :05 

7:00 

Standard 
Deviation 

(0 psi) 

0.365 

0.358 

lHasan, A. R., and Kabir, C. S., "Pressure Buildup Analysis: A Simplified 

Approach," J. Pet. Tech. (Jan. 1983) 178-188. 

2Guttman, I., and Wilkes, S., Introductory Engineering Statistics, John Wiley 

and Sons, New York, N. Y, pp. 241-259, 1965. 
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