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Abstract: The flow transport behavior in a peristaltic-ciliary fallopian tube in the human system caused by 

a sinusoidal pressure gradient due to magnetic lines of force has been investigated. A descriptive prototype 

model is established and presented in cylindrical coordinates for the fallopian tapered tubal linearly viscous 

fluid influenced by an external magnetic force in the human body. Under the wavelength approximation, the 

consequential partial differential equations governing this biological phenomenon are solved analytically. 

The solutions obtained are presented in modified Bessel functions of zeroth order of the first kind. Also, 

solutions are obtained for the velocity components along the axial and the radial directions, pressure gradient, 

pressure differences over a wavelength, and the stream function. The impacts of the various physical 

quantities of interest on the momentum transport, wavy curve patterns depicting the velocity range, and the 

pressure change are plotted. A comparison study of peristaltic, peristaltic-ciliary, and magnetic peristaltic-

ciliary flows is also presented as a special case. Furthermore, the embryo's development in the interior of the 

narrow fallopian tube intramural fluid coming from the ampulla is discussed.  
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1. Introduction 

In the hollow female abdomen, a couple of lengthy muscular, very narrow tubes exist, called 

fallopian tubes. Geometrically this one appears in the form of a cylinder, with measurements, 

length-wise 10 cm to 13 cm, with a diameter varying in the range (0.5 cm, 1.2 cm). The fallopian 

tube has periodic peristaltic shrinkages with an internal mucous membrane layer, which is crammed 

Nomenclature: 

A The metachronal cilia wave of amplitude Re  Reynolds number 

B0
 

Magnetic field applied U,w Velocity components 

b The sinusoidal wave of amplitude 
z

d p,
 
 Pressure gradient 

F Sinusoidal wave propagation 
r

t  
 Residue time over the wavelength 

G Metachronal wave propagation   
 Stream function 

H Wave traveling scale 
T

Q   
Time mean volume flow 

h Traveling wave    Metachronal wave parameter 

I0,I1
 Modified Bessel functions zeroth order of 

first kind 


 
 Amplitude ratio 

K Constant    Traveling wavelength 

m Magnetic field   
 Viscosity 

q Volume flow rate   
 Density 

R,Z Radial and axial coordinates p 
 
 Pressure difference over the wavelength 

https://biointerfaceresearch.com/
https://biointerfaceresearch.com/
https://doi.org/10.33263/BRIAC131.055
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9611-0209
https://orcid.org/0000-0001-8140-3212


https://doi.org/10.33263/BRIAC131.055  

 https://biointerfaceresearch.com/ 2 of 15 

 

with ciliary cells of distinct heights. Each cell has a length in millimeters about 10 to 0.5 and with 

radii of 5 mm to 0.125 mm [1-10]. Fallopian tubes, also known as uterine tubes or oviducts, are 

lengthy narrow tubes existing in the human female abdomen cavity that allow sperm cells to the 

egg from the ovary, providing a perfect environment for fertilization to the central lumen of the 

uterus. Most fallopian tubes are rarely 3-4 inches in length, about 0.1-0.3 inches in radius.The tube 

passage is aligned with many folds consisting of a mucous membrane layer, and thereafter, this 

consists of muscle tissue with three layers; the interior layer has a spiral shape with organized stuff, 

the mid one is in a circular shape, and the furthest layer with the stuffs of longitudinal which ends 

in fimbriae, nearer to the ovaries. The major constituents of fallopian narrow tube fluid are glucose, 

sodium, and chloride, protected by calcium and several proteins supplements and lactic acids. These 

constituents occur as a combination of bicarbonates and lactic enzymes and play a vital role in the 

growth of egg fertilization as well as in the oxygen supplement to the sperm. The main nutrient in 

the growth of eggs and sperm is glucose. At the same time, the other chemicals support a 

comfortable environment to ensure fertilization. 

            Studies show that these secretory cells dispense the least amount of fluid through the 

fallopian tube; this keeps the alive embryo and the ovum to sustain the growth of the embryo in the 

uterus [11-13]. The periodic peristaltic shrinkages of the surface tube progress as oscillatory waves 

[14-24]. The wavelets progressing in a sinusoidal pattern are termed fallopian-cilia flow, which is 

said to be one of the important transportations in the fluid tube to intramural, the extreme regime of 

the tube. Due to this transportation, the fully developed embryo flows into the uterus of a non-

pregnant (further peristaltic contractions), helping the uterus to afford by assisting the embryo's 

growth in the whole procedure of human reproduction [25-28]. A linearly viscous peristaltic 

incompressible flow in a channel of fallopian tubal fluid about embryo transport has significant 

applications, as suggested by Eytan et al.- [29]. It also has important uses in the uterine cavity. [30]. 

Muhammad Mawlood and Malath Sagban abide [31] show that endometriosis affects the peristaltic-

ciliary transit of a developing embryo through the fallopian tubal fluid in the human fallopian tube. 

Biomechanically explains the transplantation of growing embryos into the human fallopian tube 

[32-38]. Ashraf et al. [39] developed a mathematical model on the peristaltic-ciliary flow of a 

human fallopian tubal fluid and brought out some interesting results. Based on these studies in the 

literature, we have been motivated and carried out the following research work, which is 

biologically significant.    

To the best knowledge of the author’s, transport phenomena of the peristaltic-ciliary flow 

of embryo development in the human fallopian narrow tube influenced by the magnetic field have 

not yet been addressed. Hence, this article aims to investigate the effects of the field of magnetism 

over transport characteristics. The solutions of the governing problem are obtained analytically, and 

the numerical results obtained for this investigation are presented with a comparison study with the 

sources of published results with previous studies. It is noted that the emerging parameters affect 

the flow significantly. These effects are reported and analyzed with graphical representations and 

with physical reasoning. 

2. Mathematical Description 

Based on the physical geometry of the fallopian tube, it is customized to write the governing 

equations in cylindrical coordinates by choosing the Z -axis in the flow direction; that is, over the 

narrow tube and R in straight up with the horizon. The motivation is to study the peristaltic-cilia 

transport that helps the embryo’s growth in the tube of human fallopian fluid. The biological 
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structure of the human fallopian tube and the narrow tube with axes of coordinates along the tube 

have been shown in Figure1. The fluid of the embryo is linear, viscous, and incompressible, and the 

flow is bi-directional with the impact of a magnetic field of strength  0B , applied externally to get 

the outer control on the system: It has significance in surgical administration of medication. The 

surface tube is assumed to have the property of peristaltic contractions and lined interactions with 

the mucous membrane layer. The main pursuit of the phenomena is that the most crowded mucous 

and membrane with secretory cells have different attitudes in the fallopian tube. The formation of 

least volume in the fallopian tube due to the secretory cells, whereas the variation of the heights in 

cilia cells form hair, alike structure. In the fallopian tube, the contraction of peristaltic motion and 

oscillations of cilia tip throughout the process. This entire phenomenon is modeled as: 

 
 

tF(n) G(n) r H(n)+ = − +                                                                                                          (2.1)        

In the above equation, F( z, t)  describes sinusoidal peristaltic wave propagations for 

different speeds of amount c, and b is the amplitudes of waves  

( )
 
 
 

2π
F n = bsin s

λ
                                                                                                         (2.2)                              

( )
2π 2π 2π

G = sin cos ks Ab
λ λ λ

   
   
   

n s                                                                                 (2.3)                     

where G(z, t) describes metachronal wave propagation while s Z ct= - . Here n Z, t= , and 

all the parameters appearing in those equations are defined in the Nomenclature.  

Here, we label the cylindrical system in two frameworks. One is a moving frame reference 

(r,z)  in which we consider the flow-through narrow tube to be time-independent. In contrast, 

another one, in a framework of laboratory reference  which includes time dependence, also defined 

R is the radial direction. Z is the axial direction in laboratory reference, to study the velocity 

components U , W  respectively and the wave traveling scale H , pressure P  with all these 

quantities the following relations are defined. 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, 



= = − 


= = 

r = R Z - ct = s,

u r,s  U R,Z ,t and w r,s W R,Z ,t c

p s P n and h s H n ,

                                                                 (2.4)                                             

Parameters defined for the purpose of the non-dimensionalization of the above equations are 

as follows: 

, , / , , / ,= = = = = =2
t t tr r r z 2πλz u 2πcr u λ w wc p μλcp 2πr t h hr

 The basic equation of cylindrical co-ordinates: 

( ) ( ) ( )1 1

r r θ z zr rv + r v + v = 0− −

∂ ∂ ∂                                                                                              (2.5)     

( ) ( )( )1 1 2 2 2 2

r r r θ r z z r r r r θ rρ (v )+v (v )+v (v )+v (v ) = ρg - p+μ r (v ) + r (v ) -2r (v ) - vt r z r rr r r− − − − −

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

            

(2.6)     

Figure 1. Physical model of the problem 
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( ) ( )( )1 1 2 2 2

z r z θ r z z z z z zρ (v )+v (v )+v (v )+v (v ) = ρg - p+μ r (v ) + r (v )+ (v )− − −

t r z z r r zr r ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

   

(2.7)     

The governing flow of 2D viscous incompressible, varying linearly with negligible thermal 

effects and body force in the moving reference frame are given in non-dimensional form as follows: 

u + u + r 0r w
r z
  =                                                                                                     (2.8)                      

( ) ( )( ) 23 2 -1 4(Re)α u +w u = - p +α r ru +αr z r r r r z                                                             (2.9)                   

( ) ( ) ( )2 2 2

0

1
(Re)α u +w w = - p + r w +α w -σB w +c

r
r z z r r z                                       (2.10)        

where t2πr
α =

λ
  is the wave-number, while the notations r∂, z∂and  ∂used to represent the   

Partials of the variables r, z, and    respectively, Reynolds number tcr
(Re) =

γ
. With the 

utility of the transformation given by the Eq. (2.4) and non-dimensional scaling parameters, the 

traveling wave Eq. (2.1) implies that  

h(z) = εφcos(kz)sinz+φsinz+1                                                                                           (2.11)          

In which amplitude quotient 
t

b
(φ) =

r
, metachronal wave propagation

2πA
=

λ
( ∈) .  

In moving of the dimensionless form of Eq.(2.4) is given by the Eq.(2.11) along with 

associated conditions defined at boundaries given by Eq.(2.9) -(2.10) as follows:  

u(r,z) = 0 ,      at r=0             
dh

u(r, z) = -
dz

       at r=h                                                            (2.12)                                                                            

           

( )r, z = 0rw ,   at r=0   w(r,z) = -1         at r=h                                                           (2.13)                                               

It is assumed that Re is an order of 10-3, hence the wavelength λ is very large in comparison 

to the tube radius ( tr ), it is observed from the references [9,16,17]. Under these assumptions, Eq. 

(2.9) and Eq. (2.10) reduce to  

dp
= 0

dr
                                                                                                                                    (2.14)          

dp 1 w
= r

dz r r r

 
 
 

∂ ∂

∂ ∂
                                                                                                         (2.15)                          

From Eq. (2.14), it is evidence that p is a function of z alone. Thereafter, Eq. (2.14) reduces 

to 
2

2

w dp
= r

r r dz

w
r +
∂ ∂

∂ ∂
                                                                                                  (2.16)                            

Eq. (2.16) represents the Bessel differential equation of second order, by solving analytically 

subject to the boundary conditions given in Eq. (2.13), one acquires 

( ) ( )

( )
0 0z

2

0

I mr - I mhd p
w(r, z) = -1

m I mh

 
 
  

                                                                                  (2.17)                                 

is the solution for velocity in the z-direction of the ciliary flow. 

The corresponding time residue on wavelength, tr, is: 
2π

r

0

1
t = dz

w(r, z)                                                                                                                    (2.18)        
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during the integration process, it is treated that r is constant and rt = t λ / 2  , rt  is computed with 

the substitution of Eq.(2.17) in the Eq.(2.18). And with the use of conditions given by the Eq.(2.12), 

the radial velocity and pressure gradient of the ciliary flow are derived as follows: 

( )

( )

2
1z

2

0

I mrd p r
u(r, z) = -

m 2 I mh

 
 
  

                                                                                               (2.19)                                        

2

0

0 1

-2m I (mh)dp
= h(z) + D

dz hI (mh) - 2I (mr)
                                                                                         (2.20)  

in which D,  is the integral constant to be found. Using  
dp(0)

= -
dz

   (  is arbitrary fixed value 

defined at tube entrance of the pressure gradient) into Eq. (2.17), it is computed as  

 
2

0

0 1

2m I (mh)dp
= 1- h(z) -

dz hI (mh) - 2I (mr)
                                                                                             (2.21)         

is the solution for the gradient of pressure nearer to the tube passage of the ciliary flow. The pressure 

difference over wavelength Δpλ  in a dimensionless form is defined as 
2π

0

dp
Δpλ = dz

dz                                                                                                                  (2.22)                                          

Then, using Eq. (2.22), it is also computed that pressure difference Δpλover the wavelength 

along with the stream function from Eq. (2.23) and Eq. (2.24) defined as follows:  

1 ψ
u(r, z) = -r

z

− ∂

∂
                                                                                                                    (2.23)                                        

1 ψ
w(r, z) = r

r

− ∂

∂
                                                                                                                    (2.24)        

Then Eq. (2.20) implies that 

( )

( )
1

12

0

I mrr r dp
ψ(r, z) = - - + c (r)

m 2 I mh dz

 
 
  

                                                                                (2.25)                                                       

where 1c (r)  is the arbitrary constant, it is computed by convection as at the tube midpoint 

the streamlines are stationary 

ψ(r,z) = 0              at  r=0                                                                                          (2.26)                                              

Once completing the arbitrary values with the above equations, we get                                          

( )

( )
1

2

0

I mrr r dp
ψ(r, z) = - -

m 2 I mh dz

 
 
  

                                                                                          (2.27)                                          

The volume flow rate is given by the Eq. (2.28) as follows: 
H

0

Q = RWdR                                                                                                                      (2.28)                                                                                                                     

where Rr R=t , Z = λz / 2 , λ / 2t t c= , W = Wc , and H = Hrt .In Eq.(2.23), during the integration 

process, it is treated that Z  and t to be kept stationary, the coordinates, in the moving and laboratory 

frame of references the axial velocities as well as traveling waves relations are given by 

z + ct = Z,   r = R,

w(r,z) +1 = W(R, Z, t),  h(z) = H(Z, t)





                                                                             (2.29)    

With Eq. (2.28) into Eq. (2.27), yields 
2h

Q = q +
2

                                                                                           (2.30)                               

where  
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h

0

q = w(r, z)rdr                                                                                                        (2.31)                                   

in which q is computed from Eq. (2.31). 

Over a time period, T mean time cubic flow of the rate, which is the traveling wave in a 

given framework, is as follows 
T

T

0

TQ = QdT                                                                                                                       (2.32)                      

with Eq. (2.31) with the use of Eqs. (2.29) and Eq. (2.30) produces  
1

2

T

0

1
Q = q + h dz

2 
                                                                                                           (2.33)           

Eq. (2.32) from Eq. (2.11) gives that 

( ) ( ) ( )
2 2 2

2 31 2
T 2 2

εφKε φ K εφ K23 71Q = q + + φ + φ + + +
2 50 50 32 k(k - 4) (k -1)

                               (2.34)

                             

 
1

sin(2(1- k)) 2sin2k sin(2(1+ k))
K = 2.18 - + -

1 k k k +1−  
 

   where 
2

2K = 0.91kcosk - (2-0.17k )sink  

3K = 0.54cosk + 0.84sink -1  

Eq. (2.30)  written in the form of stream function  followed by 
h

0

ψ
q = dr

r
∂

∂
                                                                                                              (2.35)                                                             

After employing the boundary conditions in Eq. (2.25) and Eq. (2.26) at r = h  implies that  

( )

( )
1

2

0

I mhh dp h
q = - -

m dz 2 I mh

 
 
  

                                                                                                  (2.36)    

3. Results and Discussions  

To analyse the flow model of fallopian tubal fluid, the governing equations are solved 

analytically and presented exact solutions for axial and radial velocity components; pressure 

gradient; stream-lines; and time over length, in terms of first and zeroth-order modified Bessel 

functions of the first and second kinds without loss of any generality on the modeling. To focus on 

the results as a main theme, it is taken to be an appropriate quantitative value followed by a 

discussion on each plotting through the observation on plotted curves and contours. The impact of 

various physical quantities was thoroughly studied from the obtained solution. The volume flow 

rate, the rate at which pressure changes near the tube entrance, and the pressure differences are 

computed. The influence of the amplitude parameter, the magnetic parameter, the wavelength 

parameter, and the metachronal wave quantity are investigated. An inclined cross-section at a 

particular value of 
4

3
z


=  is considered, while one horizontal, inclined cross-section at r = 0.3 is 

done to understand the impact of parameters of interest. In Table 1, it is provided that a summary 

of results of comparison along the radial axis, also provides a contrast between the peristaltic flow 

and ciliary flow, which usually occurs at = 0.00 and 0.15, respectively. In view of the axial 

https://doi.org/10.33263/BRIAC131.055
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC131.055  

 https://biointerfaceresearch.com/ 7 of 15 

 

velocity, the peristaltic flow dominates peristaltic-cilia flow. This table also reveals that the current 

results are in good comparison with the earlier studies considered by the other authors. The 

maximum velocity is identified in the axial direction because of swaying momentum relative to 

those at the tips of ciliary oscillating peristaltic vibrations. The negative sign indicates the backward 

flow. 

In Figure 2, axial velocity versus radial are presented at 
4π

z =
3

. The parabolic curves are  

obtained nearer tube entrance due to pressure gradient: This is true with the changes in the 

metachronal parameter, amplitude fraction parameter. Also, these velocities are suppressed with 

enhancement in r and w. The axial and the radial distributions of the velocity components in 

peristaltic-ciliary flow are much smaller than those in peristaltic flow. It is defined that the 

amplitude parameter is the ratio of b and tr , where b symbolizes amplitude of the wave propagation 

of the peristaltic shrinkages. It is considered that the tube radius as 1.0, hence it is clear that tr  and 

b vary proportionately while the mechatronic quantity is the ratio of A with λ , where A is the 

mechatronic cilia wave and λ is the traveling wavelength. If λ  assigned as 2π then undoubtedly as 

A increases,  also increases. The maximum velocity almost in all figures occurs at the midway of 

the tube because of not experiencing the shear stresses at the tube wall and no-slip condition. 

Figure 3 provides the changes in the axial transport across the cross-section at the tube 

frontal (0.3, z). It is interesting to note from this figure the impact of the
dp

dz
  at the tubal entry, 

the   and the quotient of amplitude   over the axial transport. From figure 3(a) we see that as 

metachronal quantity increases, the fluid flow transport in the axial direction increases. For tube 

length of 2 = 4π (and for the subdivisions of 8 intervals), the axial velocity diminishes in the 

interval of beginning and next half of wavelength. Figure 3(d) reveals the u(r, z) distribution of the 

peristaltic flow (=0.00) and ciliary flow of the peristaltic case (=0.15). Maximum deviation 

occurs in the case of u(r, z) compared to the axial distance. The flow is slow in the case of ciliary 

flow; however, higher in the second wavelength. Vector contour plots are drawn for a certain range 

of values of the parameters in Figure 4, to point out the local behavior of the ciliary flow of a viscous 

varying linearly fluid flow. The impacts of 
dp

dz
  at the tube entry  , metachronal biological 

quantity  and the quotient of amplitude : These effects on the tubal fluid are shown in Figure 4. 

From Figures 4(a) to 4(j), the realistic contrast between peristaltic ciliary and peristaltic flow can 

be seen. It is perceived that these parameters instigate a backword flow.The complete scenario of 

streamlines indicates that they divide and reaches close to the bolus and navigates such as 

wavefront. 

The entire patterns of streamlines are plotted with forming boluses through Figure 5 to study 

the effects of the various flow quantities of interest. We see the floating boluses of fluid in an 

elliptical shape, and the size of the bolus can be described through the dense patter of the 

streamlines. At the maximum diameter of the tube, these boluses appear strongly while low at 

minimum diameter length. The effect of   at the entry of the tube on the size of boluses can be 

understood through the patterns in Figures 5(a) to 5(d). The bolus magnitude was found to shrink 

with an increase in the pressure gradient. Among these, Figures 5(e) to 5(i) exhibit the impact of 

amplitude quotient and the metachronal quantity on trapped boluses. With an increase in these 

quantities, the bolus size tends to increase. A comparison of the study is performed by plotting 

streamlines of peristaltic-ciliary with peristaltic fluid flow through Figures 5(i) and 5(j): The bolus 
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size is slightly larger in the ciliary flow of peristaltic. Surprisingly these boluses appear quite smaller 

at the tube entry. This is due to peristaltic contractions. Further, it can be stated that along with these 

peristaltic contractions, when there is a swaying motion at the cilia tips, trapped boluses grow.    

 
2(a) 

 
2(b) 

 
2(c) 

 
2(d) 

 
2(e)  

2(f) 
Figure 2. Velocity profiles of Axial velocity against  radial distance are plotte when there are variations in  2(a)   

(when m=0.1, ε =0.08,  =0.13,and  k=1.5), 2(b) ε  (when  k= 1.5,  = 7.0,  = 0.25and  m=0.1),and 2(c)   (when 

m=0.1,   = 0.08, k= 1.5and,   =7.0,), 2(d)  (when  ε = 0.08 ,m=0.1,   k = 1.5,and  = 0.13), 2(e) magnetic 

parameter , m( = 0.25,  = 7.0, and k= 1.5) and  2(f) comparative study observing  ciliary flow with peristaltic flow 

(when  k= 1.5,,  = 0.19  = 7.0, and  m=0.1) at ( ), 4 / 3r  . 
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3(a) 

 
3(b) 

 
3(c) 

 
3(d) 

 
3(e) 

Figure 3. Velocity curves for u against z are plotted when there are variations in 3(a)   (when ε  = 0.08, m=0.1, k 

= 1.5,and   = 0.13), 3(b) ε  (when  = 0.13, m=0.1, k = 1.5, and   = 7.0),and 3(c)   (when m=0.1, k = 1.5,  = 

7.0,and   = 0.08)  3(d) a comparative study observing ciliary flow with  peristaltic flow (when m=0.1, k = 1.5,   

= 0.19, and    = 7.0) at  (0.3,z) and  3(e) magnetic parameter , m(k= 1.5,  = 7.0, and = 0.25). 

 
 

4(b) 
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4(a) 

 
4(d) 

 
4(e) 

 
4(f) 

 
4(g) 

 
4(h) 

 
4(i) 

 
4(j) 

Figure 4. Vector plots of  the local flow behavior for various pressure gradients at the tube entrance (4(a)  = 0, 

4(b)   = 1) when m=0.1, ε  = 0.08, k = 1.5, and   = 0.13, for distinct ε   (4(c) ε  = 0.9,4(d)  =0.12) when m=0.1, 

k = 1.5,  = 0.13, and  = 7.0, and for distinct various   4(e)   = 0.05,4 (f)   = 0.6, 4(g) m= 0.5, and 4(h) m= 0.9 

when k = 1.5,  = 10, ε = 0.08, and a comparative study observing with 4(i) peristaltic flow and 4(j) ciliary flow 

when m=0.1,  = 10,   = 0.19, and k = 1.5. 

 

 
5(a) 

 
5(b) 

 
5(c) 

 
5(d) 

 
5(e) 

 
5(f) 
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5(g)  

5(h) 

 
5(i) 

 
5(j) 

Figure 5.  stream function  plotting with trapped boluses in a dynamic reference frame for variation in the 
dp

dz
  at 

the tube entrance (5(a)  = 9, 5(b)  = 12) when m=0.1, ε  = 0.08, k = 1.5, and   = 0.13, for different values of ε  

(5(c) ε =0, 5(d) =0.08), when m=0.1,   = 8,   = 0.13, and k = 1.5, and for variations in amplitude ratio (5(e)   = 

0.07, 5(f)   = 0.13,)  when m=0.1, ε  = 0.08,
   = 8, and k = 1.5,for  variation in magnetic field (5(g)m=0.9,6 

(h)m=1)  when   = 8, ε  = 0.08, k = 1.5, and   = 0.13 and comparative study observing with 5(i) peristaltic flow 

and 5 (j) ciliary flow when m=0.1,    = 0.13, and k = 1.5. 

Table 1. Distribution of the axial velocity along the radial distance when = 0.13,
 
ξ = 7.0, k = 1.5, m =0.1. 

Flow type 

 

        

       r 

Peristaltic flow 

 =0.00, 
4π

w r,
3

 
 
 

 

Eytan et al. (2001) 

Peristaltic-ciliary flow 

=0.15, 
4π

w r,
3

 
 
 

 

Ashraf et al. (2018) 

Magnified- peristaltic ciliary flow 

=0.15, 
4π

w r,
3

 
 
 

 

Present results 

-1.00 -1.453546 -1.533725 -1.423314781822291 

-0.50 0.148408 0.119154 -0.111328082854494 

0.00 0.682543 0.670107 0.326162431552843 

0.50 0.148408 0.119154 - 0.111328126234323 

1.00 -1.453546 -1.533725 -1.423807894397956 

4. Conclusions 

In a biological context, a theoretical analysis is performed over a human fallopian tubal fluid 

by considering a linearly varying viscous fluid in a situation of magnetic impact is required during 

medication. A  mathematical model is devolved based on the Navier-Stokes equation in the literature 

to study the fluid flow phenomena by modeling being done in a cylindrical coordinate system. The 

model is executed on governing geometrical configuration, which is turned into a Bessel differential 

equation of non-homogeneous type. The elucidations of results are presented in terms of the first 

and second kind of modified Bessel function. Consequently, after employing boundary conditions, 

the Bessel function of the second kind vanishes. And the final solutions involve only the modified 

Bessel function of the first kind with various orders obtained in the solvation process. The impacts 

of several physical quantities have been examined, and how the flow field affects and turns to help 

in revealing the facts as results. In the context of the physics of the problem, exclusively and 

explicitly presented for axial and radial velocities along with pressure gradient, time residual, and 
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pressure differences of the considered fallopian tubal fluid. Some of the findings brought out 

through this investigation are noted as follows. In the radial direction, the axial velocity progresses 

rapidly at the tube entrance while depressing in a radial direction with an increment in metachronal 

quantity and amplitude quotient. In the axial direction, this velocity raises in upsurge values of 

amplitude ratio and near the tube entry point, while it decreases during the beginning wavelength, 

but during next half wavelength, it results in axial increment. The curves in nature appear in an 

illustrative fashion nearer to the tube entrance due to the pressure gradient. The model executed on 

governing geometrical configuration is turned into a Bessel differential equation of non-

homogeneous type. The elucidations of results are presented in terms of the first and second kind 

modified Bessel function. The bolus size is slightly larger at ciliary flow than the peristaltic flow 

motion. Interestingly these boluses appear quite smaller at the tube. The bolus size is somewhat 

larger at ciliary flow than at the peristaltic flow. Interestingly these boluses appear quite smaller at 

the tube entry only because of peristaltic contractions. 
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