

Technical Appendices Q2 to Q5

Draft Environmental Impact Statement/Environmental Review and Management Programme for the Proposed Wheatstone Project

July 2010

Disclaimer

In preparing this Draft Environmental Impact Statement/Environmental Review and Management Programme (Draft EIS/ERMP), Chevron Australia Pty Ltd (Chevron) has relied on material provided by specialist consultants, government agencies and other third parties who are identified in the Draft EIS/ERMP. Chevron has not verified the accuracy or completeness of the material provided by these consultants, government agencies and other third parties, except where expressly acknowledged in the Draft EIS/ERMP. Should there be any difference or inconsistency between the material presented in this Draft EIS/ERMP and that in any third-party document referred to herein (including assessments, findings, opinions, project descriptions, proposed management measures and commitments), the material presented in the Draft EIS/ERMP alone shall be taken to represent Chevron's position.

Copyright Note

© 2010 Chevron Australia Pty Ltd. The information contained in this document is the property of Chevron Australia Pty Ltd and may not be used or copied in whole or part without its prior written consent.

Title: Draft Environmental Impact Statement/Environmental Review and Management Programme for the Proposed Wheatstone Project: Technical Appendices Q2 to Q5

Appendix Q2 to Q5

Q2	Hydrocarbon Spill Modelling	2
Q3	Modelling of the Discharges to the Marine Environment	98
Q4	Nearshore Acid Sulfate Soils Investigation (Turning Basin and Dredge Channel)	220
Q5	Sediment Quality Assessment – Wheatstone Dredging Program	470

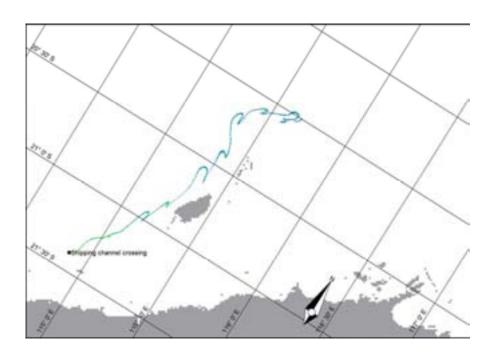
Appendix Q2

Hydrocarbon Spill Modelling

1	Introdu	uction		9
2	Study	Approach		1
	2.1	Spill Sce	enarios	1
	2.2	Modellir	ng Approach	15
3	Oil Spi	ll Modelling		17
	3.1	Overvie	w	17
	3.2	Oil Spill	Processes	17
	3.3	Oil Spill	Process Properties	19
	3.4	Oil Prop	erties	19
	3.5	Environ	mental Properties	20
		3.5.1	Wind Data	20
		3.5.2	Other Atmospheric Data and Current Data	20
		3.5.3	Current Data	2
		3.5.3.1	Combining wind drift and currents from hydrodynamic model	2
		3.5.4	Other Oceanographic Data	2
	3.6	Probabi	listic Oil Spill Modelling	2
4	Oil Spi	ll Modelling	Results	29
	4.1	General		29
	4.2	Key Mod	delling Results	3
		4.2.1	Scenario 1 - Condensate Spill at Iago #1 Well	3
		4.2.2	Scenario 2 - Diesel Spill at Wheatstone Platform	3
		4.2.3	Scenario 3 - Condensate Leak at Shipping Channel Crossing	3
		4.2.4	Scenario 4 - Condensate Spill at PLF	3
		4.2.5	Scenario 5 - Diesel spill at MOF	3
		4.2.6	Scenario 6 - Diesel spill at MOF (with Mitigation)	3
5	Refere	nces		35

Tables		
Table 2.1	Spill parameters for spill scenarios 1 to 6	12
Table 2.2	Definition of seasons for oil spill modelling	15
Table 2.3	Overview of spill simulations	15
Table 3.1	Composition of diesel and condensates	20
Table 4.1	Overview of spill simulations	30
Figures		
Figure 2.1	Spill locations at the PLF (upper red dot) and inside the MOF (lower red dot)	14
Figure 3.1	Weathering processes (from www.itopf.com)	18
Figure 3.2	A schematic representation of the fate of a crude oil showing changes in the relative importance of weathering processes with time (the width of each band indicates the importance of the process) (from www.itopf.com)	18
Figure 3.3	Logarithmic current profile (with the same depth integrated current speed as the MIKE 21 HD current profile) and wind induced current profile (with zero depth integrated current speed) are added in oil spill simulations	21
Figure 3.4	One individual oil spill from shipping channel crossing lasting five days with simulation results shown after 1, 2, 3, 4, 5, 6, 7, and 8 days	23
Figure 3.5	One individual oil spill from shipping channel crossing lasting five days with simulation results 9, 10, 12, and 15 days	24
Figure 3.6	Fate of 5568 m³ condensate spill during 15 days simulation	25
Figure 3.7	Maximum oil thickness during 15 days period from one simulation	25
Figure 3.8	Minimum time of arrival of oil slick during 15 days period from one simulation	26
Figure 3.9	Maximum oil thickness during 15 days period from 108 simulations (note area shown is larger than in figures above)	26
Figure 3.10	Minimum time of arrival of oil slick during 15 days period from 108 simulations (note area shown is larger than in figures above)	27
Figure 3.11	Probability (in percentage) of an oil slick with a thickness of 0.001 mm or above reaching a given area based on 108 simulations	27
Figure 4.1	Possibility of diesel escaping the MOF as a function of time (all seasons)	32
Figure 4.2	Possibility of diesel escaping the MOF as a function of time (summer)	32
Figure 4.3	Possibility of diesel escaping the MOF as a function of time (transition periods)	33
Figure 4.4	Possibility of diesel escaping the MOF as a function of time (winter)	33
Appendices		
Appendix A	MIKE 21 & MIKE 3 SA, Spill Analysis, Short Description	
Appendix B	Scenario 1 - Condensate Spill at lago #1 Well, Key Results	
Appendix C	Scenario 2 - Diesel Spill at Wheatstone Platform, Key Results	
Appendix D	Scenario 3 - Condensate Leak at Shipping Channel Crossing, Key Results	
Appendix E	Scenario 4 - Condensate Spill at PLF, Key Results	
Appendix F	Scenario 5 - Diesel Spill at MOF, Key Results	

This page is intentionally blank


This page is intentionally blank

Wheatstone Project Appendix Q2 - Hydrocarbon Spill Modelling

Wheatstone Project

Hydrocarbon Spill Modelling

Chevron Australia Pty Ltd

July 2010

Wheatstone Project Hydrocarbon Spill Modelling

11th Floor, Hill-View Side Wisma Perindustrian Jalan Istiadat, Likas 88400 Kota Kinabalu

Tel: +60 88 260 780 Fax: +60 88 260 781 e-mail: dhi@dhi.com.my Web: www.dhi.com.my

			esentative Morgan	e			
	Title Itstone Project Ocarbon Spill Modelling	Project No 62700022	Project No 62700022				
Author	s	Date July 2 20	10				
	n Rugbjerg	Approved b					
Nurle	n Parsberg Jakobsen na Quadra ne Chung	Claus Pe	dersen				
4	Final Report	AMY/URS	JHJ	CLP	04/05/2010		
3a/3b	Updated Draft Report	MNR	CLP	CLP	15/17.02.201		
3	Draft Report	MNR			14.02.2010		
2	Progress Report	YVC	KPJ	CLP	08.01.2010		
1a	Progress Report	NMQ/YVC	KPJ	CLP	06.01.2010		
1	Progress Report	NMQ	KPJ	CLP	21.12.2009		
0	Progress Report	KPJ	NMQ	CLP	29.11.2009		
Revision	Description	Ву	Checked	Approved	Date		
Key wo	ords	Classification	n				
	utstone	☐ Oper	า				
Diesel and Condensate Spill MIKE 21		☐ Inter	☐ Internal				
Oil Spill Model		⊠ Prop	□ Proprietary				
Distribu	Ition			No of	copies		
	ron Australia Pty Ltd			PI			
	Vater & Environment (M) Sdn Bhd				OF .		

1 INTRODUCTION

Chevron Australia Pty Ltd (Chevron) proposes to construct and operate a multi-train Liquefied Natural Gas (LNG) and domestic gas (Domgas) plant 12 km south west of Onslow on the Pilbara coast. The LNG and Domgas plant will initially process gas from fields located approximately 200 km offshore from Onslow in the West Carnarvon Basin. The Wheatstone Project is referred to as the Project and the Ashburton North Strategic Industrial Area (Ashburton North SIA) is the proposed site for the LNG and Domgas plant. The Project will require the installation of gas gathering, export and processing facilities in Commonwealth and State Waters and on land. The LNG plant will have a maximum capacity of 25 Million Tonnes Per Annum (MTPA) of LNG.

The Project has been referred to the State Environmental Protection Authority (EPA) and the Commonwealth Department of Environment, Water, Heritage and the Arts (DEWHA). The investigations outlined in this report have been conducted to support the environmental impact assessment (EIA) process.

The potential for accidental hydrocarbon spills are rare events due to ever-improving technical solutions for offshore facilities and health, safety and environment in the oil and gas industry. However, the risk cannot be totally eliminated and therefore an analysis of the consequences of an oil spill needs to be undertaken as part of the EIA.

The aim of the hydrocarbon spill modelling is to provide an understanding of the trajectory of hydrocarbon spills from the Project for both nearshore and offshore components, using a range of conservative oil spill and climatic scenarios. This report provides details of the selected spill and climatic scenarios, the related assumptions, and a brief description of the modelling approach used. The approach for this study, including a description of the spill scenarios, is described in Section 2, while Section 3 provides a description of the applied oil spill model. The spill modelling results for all scenarios are presented in Section 4 and Appendix A to Appendix F.

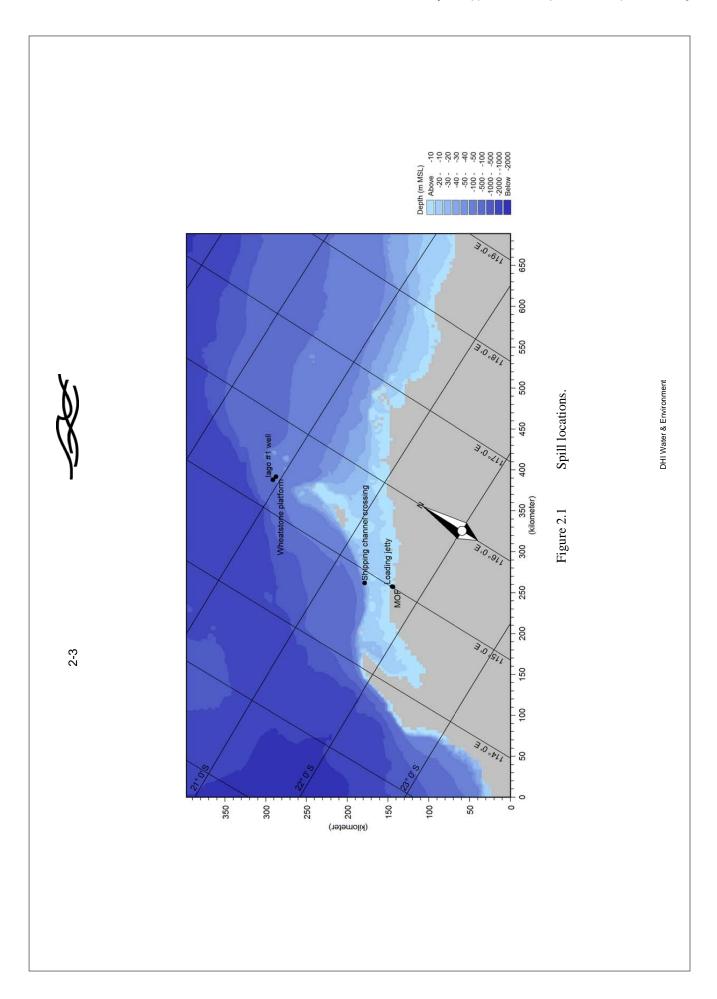
This page is intentionally blank

Wheatstone Project Appendix Q2 - Hydrocarbon Spill Modelling

2 STUDY APPROACH

2.1 **Spill Scenarios**

Six spill scenarios have been identified for the EIA for the Project. These scenarios are:


- Scenario 1: Iago #1 Well subsea spill of natural gas condensate (condensate) during drilling (due to loss of well control).
- Scenario 2: Wheatstone Platform (WP) surface spill of diesel from leaking tanks.
- Scenario 3: Shipping channel crossing subsea spill of condensate from leaking trunkline.
- Scenario 4: Product loading facility (PLF) condensate spill to surface at loading
- Scenario 5: Materials offloading facility (MOF) diesel fuel spill.
- Scenario 6: MOF diesel fuel spill (with mitigation analysis of boom deployed across entrance).

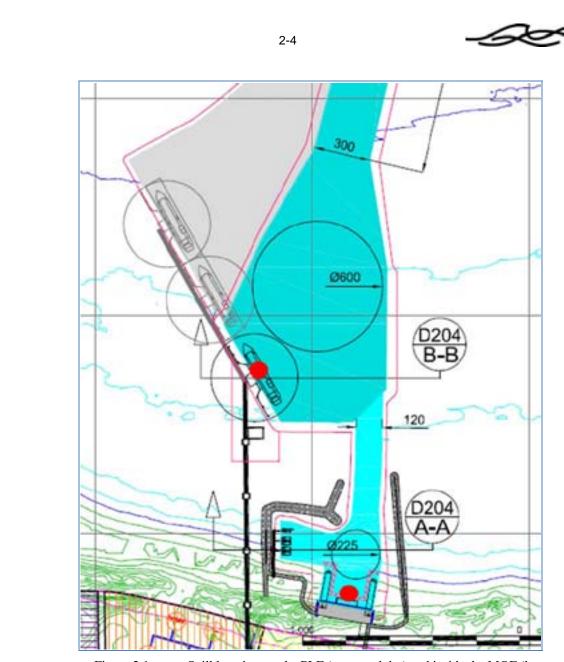

Details for the identified spills are given in Table 2.1. Note that while a scenario number has been used to identify the individual scenario throughout this report, the scenario identification (Id), as provided in DHI (2010), is also listed in Table 2.1 for cross referencing purposes. The spill locations for the six scenarios are shown in Table 2.1 and Figure 2.1.

Table 2.1 Spill parameters for spill scenarios 1 to 6.

Scenario Number	1	2	3	4	5	9
Scenario Id	V	H	Æ	G	Н	I
1 (p)	Iago #1 Well	Wheatstone Platform	Shipping channel crossing	PLF	MOF	MOF (with mitigation)
Location	19° 55° 54.48° S 19° 56° 34.80° 115° 20° 2.89° E 115° 22° 55.20°	19° 56' 34.80'' 115° 22' 55.20''	21° 23′ 46.32′′ 114° 52′ 26.40′′	1	1	1
Type of oil / condensate	Iago condensate	Diesel	70/30 Wheatstone / Iago condensate	70/30 Wheatstone / Iago condensate	Standard diesel	Standard diesel
Water depth	100 m	At surface	30 m	Surface	At surface	At surface
Temperature	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient
Total spill	165 380 m ³	135 m ³	5568 m ³	$100 \mathrm{m}^3$	$2.55 \mathrm{m}^3$	$2.55\mathrm{m}^3$
Duration	90 days	10 minutes	5 days	1 minute	Instantaneous	Instantaneous
Flow rate	$0.0212 \mathrm{m}^{3/s}$	$0.225 \text{m}^{3/\text{s}}$	$0.0129 \mathrm{m}^{3/s}$	1.667 m ³ /s	-	

Spill locations at the PLF (upper red dot) and inside the MOF (lower red dot). Figure 2.1

2.2 **Modelling Approach**

The oil spill modelling was carried out using a probabilistic modelling approach as described in Section 3.6. For each of the six scenarios and for each of the three seasons, described below (Table 2.2), a larger number of oil spill simulations were performed using the oil spill model described in Section 3.

Table 2.2 Definition of seasons for oil spill modelling.

Season	Months
Summer	September to February
Transition periods	March to April and August
Winter	May to July

The applied simulation periods, grid resolutions (DHI 2010) and number of simulations are listed for each scenario below (Table 2.3). For scenarios 1 to 5, and for each of the three seasons, the key results are presented as maps showing the following parameters:

- Maximum oil slick thickness (mm);
- Minimum time of arrival (hours); and
- Probability (percentage) of an oil slick of 0.001 mm or more reaching any given

The maps depicting these six scenarios are further described in Section 4 and provided in Appendix B to Appendix F. The results for scenario 6 are presented as a statistical analysis in Section 4.2.6.

Table 2.3 Overview of spill simulations.

Scenario Number	1	2	3	4	5	6
Scenario Id	A	${f E}$	F	G	Н	I
Location	Iago #1 Well	Wheatstone Platform	Shipping channel crossing	PLF	MOF	MOF (with mitigation)
Spill Duration	90 days	10 minutes	5 days	1 minute	Instantaneous	Instantaneous
Simulation Duration	100 days	10 days	15 days	10 days	10 days	10 Days
HD model grid resolution	3645 m	3645 m	1215 m	405 m	15 m	15 m
Output grid resolution	405 m	405 m	405 m	405 m	15 m	15 m
Number of Simulations	36	324	324	324	324	324*

Note: * Simulations from scenario 5 have been applied to scenario 6.

This page is intentionally blank

Wheatstone Project Appendix Q2 - Hydrocarbon Spill Modelling

3 **OIL SPILL MODELLING**

3.1 Overview

The simulation of hydrocarbon spills was been carried out using DHIs oil spill model MIKE 21/3 SA (DHI 2009). In this model the oil is represented initially as buoyant Lagrangian particles being advected and dispersed while exposed to a range of weathering processes. The advection (drift) and dispersion of the individual particles is determined by the combined effects of current (tidal and/or wind driven), wind and bed drag. The model provides information on oil slick locations, the amount of oil left on the sea surface, the slick mobility and the evolution of the physicochemical properties of the oil.

The weathering processes included in the model are described below. A more detailed description of MIKE 21/3 SA including equations and key references for these is provided in Appendix A, while a full scientific documentation is available in DHI (2009).

3.2 **Oil Spill Processes**

The MIKE 21/3 SA model describes the spreading and weathering of oil spills in an aquatic environment under the influence of water movements (i.e. advection and the associated dispersion processes). The oil itself is defined according to its distillation properties and chemical structure.

The weathering processes may change the buoyancy of a particle, and particles may eventually settle on the seabed. Sedimentation, however, only occurs for very heavy oils in connection with mineral particles (sand/clay) and not for diesel and condensates as considered in the present study. Biodegradation and photooxidation only affect oil spills in the longer term (i.e. weeks to months or years) and therefore have not been considered. A schematic presentation of time scales for crude oil is shown in Figure 3.2.

The following processes are considered in the models (see Figure 3.1):

- Spreading (through advection and dispersion by tidal or wind-driven currents)
- Evaporation
- **Emulsification**
- Vertical dispersion (entrainment)
- Dissolution

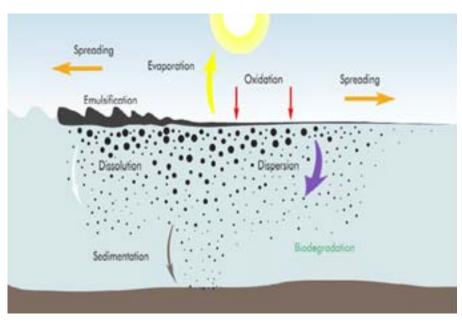


Figure 3.1 Weathering processes (from www.itopf.com)

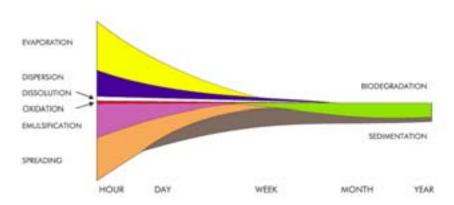


Figure 3.2 A schematic representation of the fate of a crude oil showing changes in the relative importance of weathering processes with time (the width of each band indicates the importance of the process) (from www.itopf.com)

3.3 **Oil Spill Process Properties**

The different parameters applied for the oil spill processes are listed below.

- Spreading: The currents define the water movement (advection) while the dispersion in the SA module is described using three dispersion coefficients that are proportional to the current in the longitudinal, transverse and vertical directions. Proportionality constants of 1.0 [m], 0.1 [m] and 0.01 [m] respectively were applied.
- Evaporation: Evaporation is given as a constant that is proportional to the amount of the evaporated oil. A default value of 0.0292 (dimensionless) has been applied.
- Emulsification: The emulsification process (water uptake) leads to a reduction in concentration, but also diminishes the evaporation of components from an emulsion. Emulsification is not included for either diesel or condensate (as specified by Chevron).
- Dispersion (called entrainment in MIKE 21/3 SA): The entrainment of oil (or vertical dispersion) into the water column is simulated using an interfacial tension parameter with a value of 20 dyne/cm (default value) valid for non-breaking waves.
- Dissolution: The volume of oil leaving the slick due to dissolution is calculated via a mass transfer coefficient set to a default value of 2.36·10⁻⁶ (dimensionless).

Additionally the heat transport is considered in MIKE 21/3 SA with the following parameters used in the balance calculation:

Albedo value: 0.14 Emissivity of oil: 0.8 Emissivity of water: 0.95 Emissivity of air: 0.82

3.4 **Oil Properties**

Oil properties are described in MIKE 21/3 SA through the percentage of each of eight oil fractions given below:

- C6 C12 (Paraffin)
- C13 C25 (Paraffin)
- C6 C12 (Cycloparaffin)
- C13 C23 (Cycloparaffin)
- C6 C11 (Aromatic)
- C12 C18 (Aromatic)
- C9 C25 (Naphteno-aromatic)
- Residual (including heterocycles)

Additionally the viscosity (in centistokes) and the reference temperature are required. The relative volumes for the eight fractions for diesel, Iago Condensate and 70/30 Iago/Wheatstone Condensate are given in Table 3.1.

Table 3.1 Composition of diesel and condensates.

Composition	Boiling Point	Diesel	100 % Iago Condensate	70% / 30% Iago / Wheatstone condensate
C6 - C12 (Paraffin)	69 – 230 °C	11.30%	26.30%	18.70%
C13 - C25 (Paraffin)	230 – 405 °C	5.80%	23.00%	13.50%
C6 - C12 (Cycloparaffin)	70 − 230 °C	20.90%	20.70%	31.90%
C13 - C23 (Cycloparaffin)	230 – 405 °C	37. 8 %	20.20%	31.30%
C6 - C11 (Aromatic)	80 − 240 °C	10.30%	2.40%	1.10%
C12 - C18 (Aromatic)	240 – 400 °C	10.50%	3.50%	2.20%
C9 - C25 (Naphteno-aromatic)	180 − 400 °C	3.40%	0.00%	0.00%
Residual (including heterocycles)	> 400 °C	0.00%	3.80%	1.30%
Max water content from emulsification		0%	0%	0%
Asphaltene content		< 0.5 %	< 0.05 %	< 0.05 %
Wax content		5.80%	< 1 %	< 0.37 %
Density and viscosity				
Reference temperature		30 °C	30 °C	30 °C
Density		839 kg/m3	797.5 kg/m3	803.6 kg/m3
Kinematic viscosity		2.9 cS	1.518 cS	1.687 cS

For subsea spills the droplet diameter of the oil determines how fast the spill surfaces. Deep spill experiments with diesel show that droplet diameter varies from approximately 1 to 10 mm, with droplet diameters of 2 to 5 mm accounting for 70-75 per cent of the spill volume (Zheng and Yapa 2000). Condensate droplets with a diameter of 2 mm and 5 mm will surface within 12 minutes and 8 minutes respectively from a depth of 100 m., Even in strong currents, oil will surface within a few hundred metres from the spill location. Furthermore, with changing current and wind directions, the oil slick will pass the spill location and the surfacing of the spill will be of minor importance for the spreading potential.

3.5 **Environmental Properties**

3.5.1 **Wind Data**

The wind data applied in the oil spill model to describe the surface drift are for Scenario 2 to 6 identical to the wind data applied in the hydrodynamic simulations providing the currents for the oil spill simulations. For Scenario 1 wind fields have been applied to describe the surface drift, which is different from the wind applied for the hydrodynamic simulations (see section 3.5.3). A description of how the wind drift is combined with the hydrodynamic model currents are given in section (3.5.3).

3.5.2 Other Atmospheric Data and Current Data

A constant relative cloudiness of 0.4 and a time varying air temperature (taken from 3 hourly measurements covering several years) has been applied. For the present study existing 2D hydrodynamic results as described in DHI (2010) have been applied.

3.5.3 **Current Data**

Existing 2D hydrodynamic results as described in Ref /2/ have been applied for Scenarios 2 to 6. For Scenario 1 hydrodynamic results have been generated for an extending domain using an approach similar to that described in Ref /2/, but with a time series of wind conditions extracted at the well.

3.5.3.1 Combining wind drift and currents from hydrodynamic model

The drift profile applied in the oil spill simulations is derived using a combination of the theoretical bed shear profile (equivalent to a logarithmic profile of velocity) and wind acceleration of particles in near-surface layers directly exposed to the wind. Figure 3.3 illustrates how the MIKE 21 HD depth-averaged current is converted to the logarithmic profile (by maintaining the flux) which is added to the wind drift profile. The drift profile applied in the model is the sum of these two profiles.

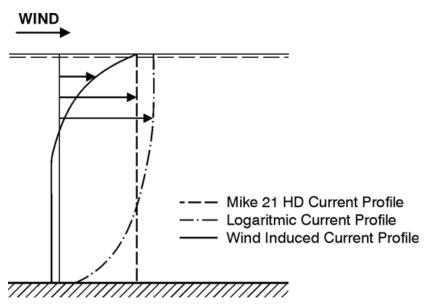


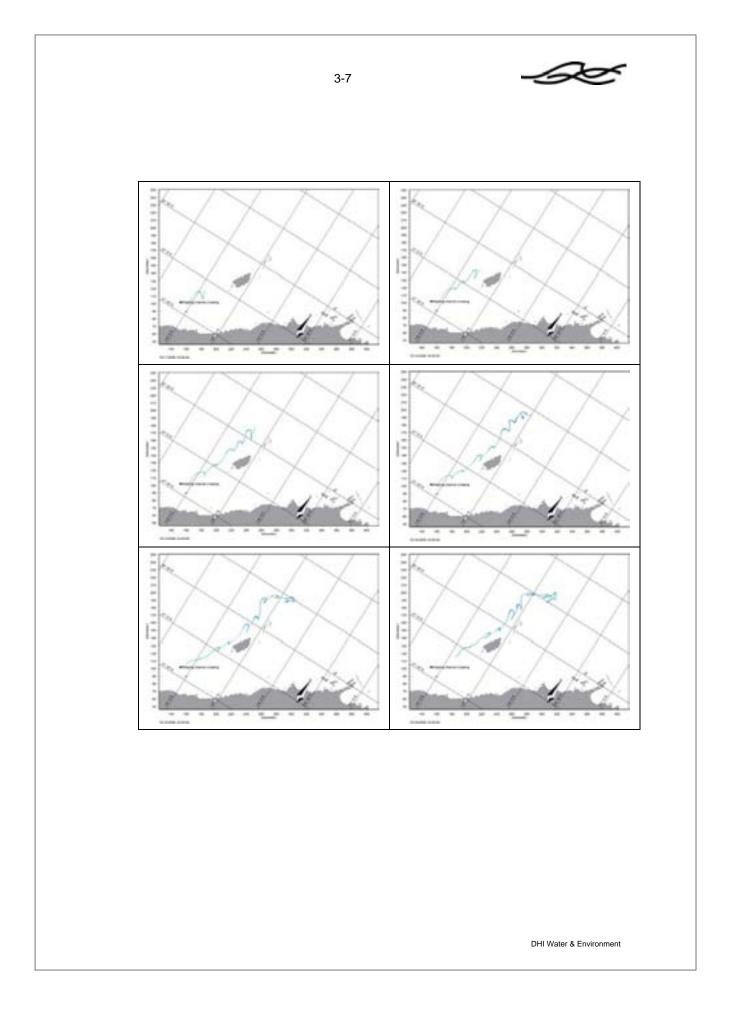
Figure 3.3 Logarithmic current profile (with the same depth integrated current speed as the MIKE 21 HD current profile) and wind induced current profile (with zero depth integrated current speed) are added in oil spill simulations

3.5.4 Other Oceanographic Data

A constant salinity of 33 psu and a time varying sea water temperature (taken from 3 hourly measurements covering several years) have been applied.

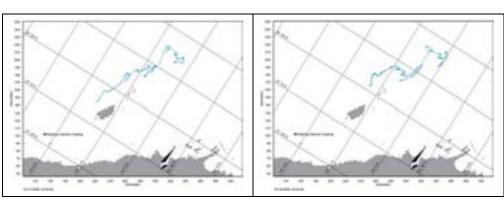
3.6 **Probabilistic Oil Spill Modelling**

An oil spill simulation using MIKE 21/3 SA describes the spreading and weathering of a spill taking place over a specific period (e.g. five days) and for a number of days after the spill has been stopped. The spill is subject to one set of environmental parameters (wind, currents etc.). A single simulation will thus only provide one possible outcome of the spill,



while different environmental parameters would result in another outcome and thus impacted areas.

By running a large number of simulations with a large variety of environmental conditions it is assumed that all normally occurring combinations of wind, currents etc. are covered. Based on all these simulations an "envelope" of potentially affected areas is derived. This "envelope" is presented as a map providing information on the probability of a given area being impacted by a hydrocarbon spill. .


This probabilistic approach is illustrated in Figure 3.4 to Figure 3.10 for a condensate spill of 5568 m³ taking place at the shipping channel crossing and lasting five days. The simulation period starts at 14:00 on 10/10-2006 and lasts for 15 days:

- Figure 3.4 and Figure 3.5 show model results (slick thickness) after 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 and 15 days.
- Figure 3.6 shows the fate of the condensate during the 15 days simulation.
- Figure 3.7 shows the maximum oil thickness occurring during this single simulation, while Figure 3.8 shows the minimum time it takes for the oil slick to reach the area covered at any time during the 15 days simulation.
- Having carried out 108 individual simulations the maximum of all "maximum thickness maps" is computed. The result is shown in Figure 3.9.
- Likewise, the "minimum arrival time maps" for all 108 simulations are combined into one map providing the minimum for all simulations. This is shown in Figure
- Finally, the probability of an oil slick reaching a given location can be computed based on all 108 simulations (Figure 3.11). For example, if a given location is reached by an oil slick with a thickness of more than 0.001 mm in 12 out of 108 simulations the probability amounts to 12/108*100 = 11 per cent for that location.

One individual oil spill from shipping channel crossing lasting five days with simulation results shown after 1, 2, 3, 4, 5, 6, 7, and 8 days. Figure 3.4

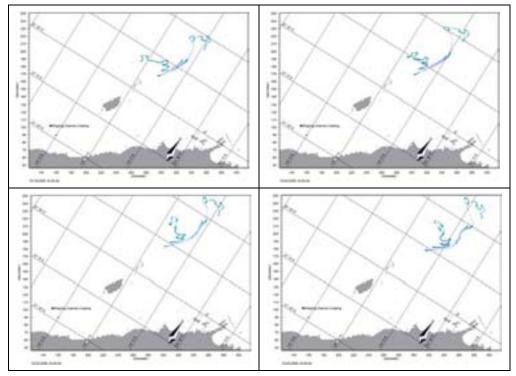


Figure 3.5 One individual oil spill from shipping channel crossing lasting five days with simulation results 9, 10, 12, and 15 days.

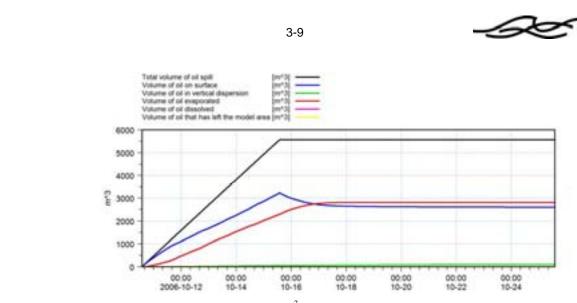


Figure 3.6 Fate of 5568 m³ condensate spill during 15 days simulation.

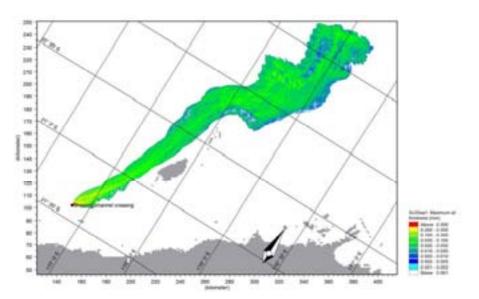


Figure 3.7 Maximum oil thickness during 15 days period from one simulation.

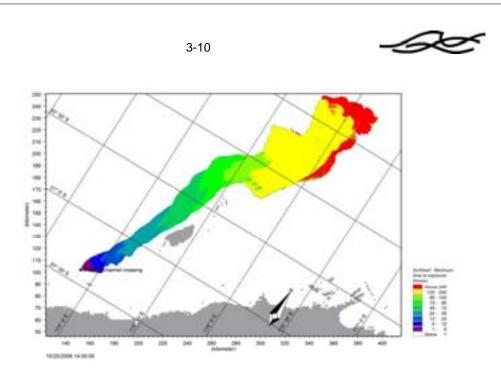


Figure 3.8 Minimum time of arrival of oil slick during 15 days period from one simulation.

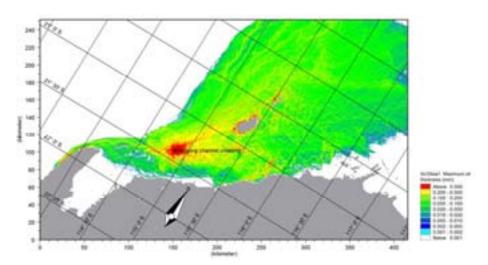
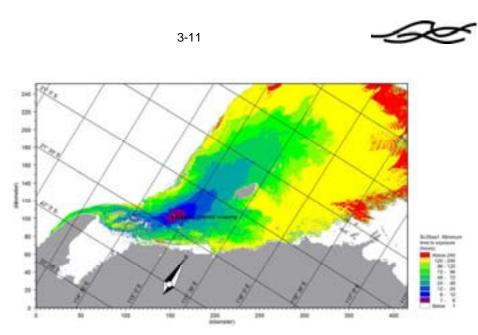



Figure 3.9 Maximum oil thickness during 15 days period from 108 simulations (note area shown is larger than in figures above).

Minimum time of arrival of oil slick during 15 days period from 108 Figure 3.10 simulations (note area shown is larger than in figures above).

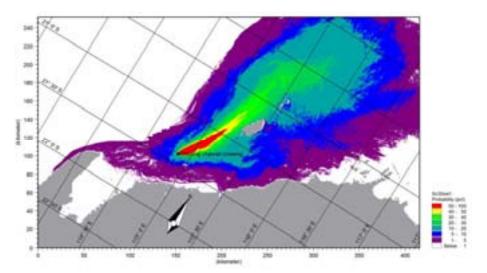


Figure 3.11 Probability (in percentage) of an oil slick with a thickness of 0.001 mm or above reaching a given area based on 108 simulations.

This page is intentionally blank

Wheatstone Project Appendix Q2 - Hydrocarbon Spill Modelling

4 OIL SPILL MODELLING RESULTS

4.1 General

Results from the six spill scenarios as described in Section 2 are provided in this section and in Appendix B to Appendix G. An overview of the spill simulations are provided in

Table 4.1.

For each scenario and for each season the key results are presented as maps showing:

- Maximum oil slick thickness (mm);
- Minimum time of arrival (hours); and
- Probability (percentage) of an oil slick of 0.001 mm (the minimum) or more reaching any given area.

For the maps showing the probability of an oil slick reaching a given location an accuracy of 1 per cent is provided for all scenarios except scenario 1. In scenario 1 the accuracy is approximately 10 per cent as only 12 simulations have been carried out (see also Section

For all simulations the effect of the seasonal variation of the wind is clearly seen in the results. During the summer the westerly to south westerly winds dominate forcing the oil slicks towards east and north east (see for example Appendix A Figure B-1). During the winter the easterly to south easterly winds force the oil slicks towards the west (see for example Appendix A Figure B-7). During the transition periods (April-May and August) the winds are variable and generally calmer than summer or winter. This is reflected in the relevant oil spill simulations which indicate the oil slicks may move in any direction (see for example Appendix A Figure B-4).

A discussion of the individual scenarios is not provided in the present report, however the results are presented in Appendix B to Appendix F.

Overview of spill simulations.

Table 4.1

		<u></u>															
9	I	MOF (with mitigation)	Instantaneous	10 Days	15 m	15 m	3 (years) *	3 (seasons) * $36 = 324^*$	11 hours*	2007-Jan/Feb	2008-Jan/Feb** 2009-Jan/Feb	2007- Apr/May	2008- Apr/May	2009-Apr/May	2007- Jun/Jul	2008- Jun/Jul**	2009- Jun/Jul**
5	Н	MOF	Instantaneous	10 days	15 m	15 m	3 (years) *	3 (seasons) * $36 = 324$	11 hours	2007-Jan/Feb	2008-Jan/Feb** 2009-Jan/Feb	2007- Apr/May	2008- Apr/May	2009-Apr/May	2007- Jun/Jul	2008- Jun/Jul**	2009- Jun/Jul**
4	9	FLF	1 minute	10 days	405 m	405 m	3 (years) *	3 (seasons) * $36 = 324$	11 hours	2007-Jan/Feb	2008-Jan/Feb*** 2009-Jan/Feb***	2007- Apr/May	2008- Apr/May	2009-Apr/May	Inf/unf -7002	2008- Jun/Jul**	2009- Jun/Jul**
3	Ħ	Shipping channel crossing	5 days	15 days	1215 m	405 m	3 (years) *	3 (seasons) * $36 = 324$	59 hours	2006-Sep to 2007-Feb,	2007-Sep to 2008-Feb, 2008-Sep to 2009-Feb	2006 Mar, Apr, Aug,	2007 Mar, Apr, Aug,	2008 Mar, Apr, Aug	2006 May to Jul,	2007 May to Jul,	2008 May to Jul
2	Э	Wheatstone Platform	10 minutes	10 days	3645 m	405 m	3 (years) *	3 (seasons) * $36 = 324$	95 hours	2006-Sep to 2007-Feb,	2007-Sep to 2008-Feb, 2008-Sep to 2009-Feb	2006 Mar, Apr, Aug,	2007 Mar, Apr, Aug,	2008 Mar, Apr, Aug	2006 May to Jul,	2007 May to Jul,	2008 May to Jul
1	V	Iago #1 Well	90 days	100 days	3645 m	405 m	3 (years) *	3 (seasons) * $4 = 36$	1 month (summer), 15 days (transition), 10 days (winter)	2006-Sep to 2007-Feb,	2007-Sep to 2008-Feb, 2008-Sep to 2009-Feb	2006 Mar, Apr, Aug,	2007 Mar, Apr, Aug,	2008 Mar, Apr, Aug	2006 May to Jul,	2007 May to Jul,	2008 May to Jul
Scenario Number	Scenario Id	Location	Spill Duration	Simulation Duration	HD model grid resolution	Output grid resolution	Number of	Simulations	Interval between start of individual simulations	Individual cimulations started	during these periods, summer	Technical circulations atomost	Individual simulations started during these periods, transition		Individual simulations started during these periods, winter		during mese periods, winter

Note: *: Simulations from scenario 5 have been applied to scenario 6

 $^{^{**}}$: Hydrodynamic model results from 2007 applied together with wind from actual year

4.2 **Key Modelling Results**

4.2.1 Scenario 1 - Condensate Spill at lago #1 Well

Key results are shown for season 1 (summer months), season 2 (transition months), and season 3 (winter months) in Appendix B. It is noted that part of the spilled condensate leaves the model domain at the northern boundaries (in summer conditions) and western boundaries (in winter) towards areas with no known environmental sensitive receptors.

4.2.2 Scenario 2 – Diesel Spill at Wheatstone Platform

Key results are shown for season 1 (summer months), season 2 (transition months), and season 3 (winter months) in Appendix C.

4.2.3 Scenario 3 - Condensate Leak at Shipping Channel Crossing

Key results are shown for season 1 (summer months), season 2 (transition months), and season 3 (winter months) in Appendix D.

4.2.4 Scenario 4 - Condensate Spill at PLF

Key results are shown for season 1 (summer months), season 2 (transition months), and season 3 (winter months) in Appendix E.

4.2.5 Scenario 5 – Diesel spill at MOF

Key results are shown for season 1 (summer months), season 2 (transition months), and season 3 (winter months) in Appendix F.

4.2.6 Scenario 6 – Diesel spill at MOF (with Mitigation)

The simulations carried out for scenario 5 have been analysed to illustrate the effect of deploying a boom across the entrance to the MOF to mitigate the spread of a diesel spill. Figure 4.1 shows the possibility of diesel escaping the MOF as a function of time. For example, if a boom is deployed 4 hours after a spill event (diesel of any given amount) will have escaped with a possibility of 20 per cent (i.e. in 20 per cent of all cases considered). The possibilities vary from season to season as shown in Figure 4.2 to Figure 4.4.

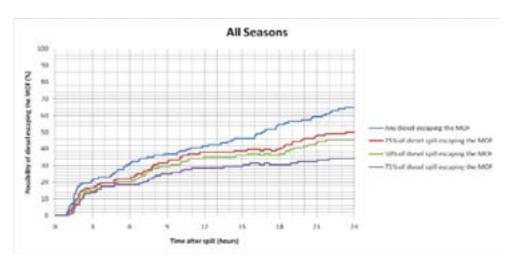


Figure 4.1 Possibility of diesel escaping the MOF as a function of time (all seasons).

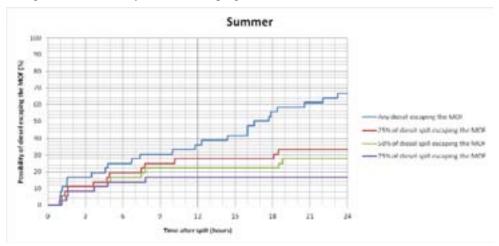


Figure 4.2 Possibility of diesel escaping the MOF as a function of time (summer).

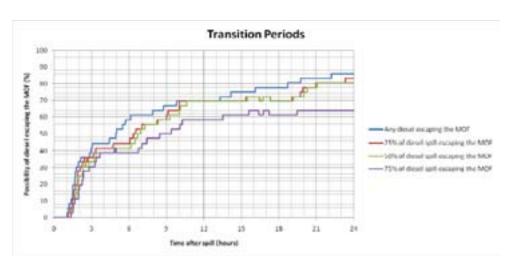


Figure 4.3 Possibility of diesel escaping the MOF as a function of time (transition periods).

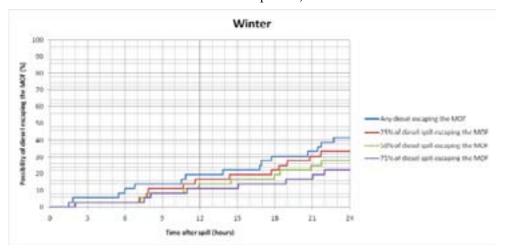


Figure 4.4 Possibility of diesel escaping the MOF as a function of time (winter).

This page is intentionally blank

Wheatstone Project Appendix Q2 - Hydrocarbon Spill Modelling

5-1

5 **REFERENCES**

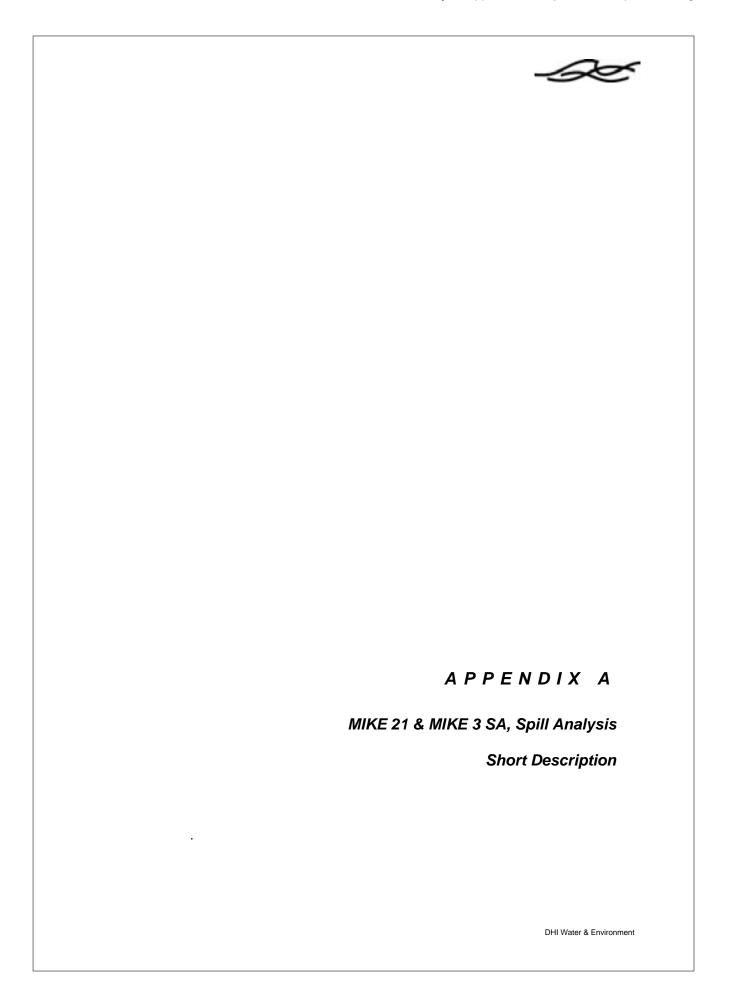
Chevron Australia Pty Ltd (2010). Oil Spill Matrix Rev I. Provided by Chevron Australia Pty Ltd, 12-02-2010.

DHI (2009). MIKE 21/3 PA/SA Particle Analysis and Oil Spill Analysis Module: User guide.

DHI (2010). Dredge Spoil Modelling. Unpublished report for Chevron Australia Pty Ltd.

Zheng, L. and Yapa, P. D. (2000). Buoyant Velocity of Spherical and Nonspherical Bubbles/Droplets. Journal of Hydraulic Engineering, Vol. 126, No. 11, pp. 852-854, November 2000.

DHI Water & Environment


This page is intentionally blank	

Wheatstone Project Appendix Q2 - Hydrocarbon Spill Modelling

This page is intentionally blank	

Wheatstone Project Appendix Q2 - Hydrocarbon Spill Modelling

This page is intentionally blank

Wheatstone Project Appendix Q2 - Hydrocarbon Spill Modelling

MIKE 21 & MIKE 3 SA

Spill Analysis

Short Description

MIKE 21/3 SA DHI Water & Environment 5 Agern Allé DK-2970 Hørsholm Denmark Tel: +45 45 16 92 00 +45 45 16 92 92 Fax: E-Mail: dhi@dhigroup.com www.dhigroup.com Web: 04 May 1999 / m21shortenv.doc/bgr Revised 2009-02-22 by MNR

MIKE 21 SA -SPILL ANALYSIS MODULE

The Spill Analysis Module of MIKE 21 simulates the spreading and weathering of suspended substance in an aquatic environment under the influence of the fluid transport and the associated dispersion processes.

The substance may be an oil pollutant, defined according to its distillation properties and chemical structure (alkane or aromatic).

The pollutant is transported as discrete particles by a random walk tracking scheme calculating the displacement of each particle as the sum of an advective deterministic component and an independent, random Markovian component, which statistically approximates the random and/or chaotic nature of time-averaged tidal mixing.

Application Areas

The MIKE 21 SA module is an essential part in:

- online forecasting oil spill. Together with a hydrodynamic database and online measurements of currents the module can give information about oil slick locations, how much oil is left on the surface of the sea, the slick mobility and the evolution of the physicochemical properties of the oil
- risk analysis
- scenario studies of possible spills, which will assist in the development of contingency plans and assess likely environmental impacts
- guiding field data collection

Basic Equations

MIKE 21 SA solves the so-called Fokker-Planck equation for suspended oil-substances in two dimensions through the introduction of a consistent random walk particle method:

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial x_i} (A; f) = \frac{\partial^2}{\partial x_i x_j} (B_{ik} B_{jk} f)$$

A(f,t) is a known vector representing the deterministic forces which act to change f(t). B(t) is a known tensor characterising the random forces and $f = c \cdot h$, where c is the concentration and h is the water depth.

The movement of each parcel is affected by the physicochemical processes. Once the parcels are released in the water body, their discrete path and mass are followed and recorded as a function of time relative to the reference grid system fixed in space.

Advection/Diffusion

The surface current velocity is based on a nearly logarithmic vertical velocity profile and the wind velocity component is added to the current velocity vectorially in order to determine the total surface drift velocity.

Horizontal diffusion due to turbulent fluctuation of the drift velocity is simulated, based on the random walk analysis, Fisher et al (1979). The formulas for the random longitudinal and transversal dispersions are:

$$V_2 B B^T = \begin{vmatrix} D_{xx} & D_{xy} \\ D_{yx} & D_{yy} \end{vmatrix}$$

In the special case where $D_{xy} = D_{yx} = 0$, ie $D_l = D_{xx}$ and $D_r = D_{yy}$, the displacement in the horizontal and transversal directions are:

$$\Delta L = r \bullet \sqrt{(6D_l \bullet t)},$$

$$\Delta T = r \bullet \sqrt{(6D_r \bullet t)}$$

where r is a random number between -1 and 1.

Evaporation

The evaporation process is modelled by a pseudocomponent approach in which oil is described by a set of fractions. The rate of evaporation can be expressed as:

$$\frac{dVe_i}{dt} = Ke_i \frac{P_i^{sat}}{RT_{oil}} Xmol_i \frac{M_i}{\rho_i} A$$

According to Mackay & Matsugu (1973) Kei is estimated by

$$Ke_i = 0.029 D_s^{-0.11} S c_i^{-0.67} u^{0.78}$$

A Short Description Page 1

MIKE 21/3 SA

The slick diameter is calculated by simply assuming a circular shape for the patch.

Natural Dispersion

Crude oils or refined products after spillage at sea are dispersed by the forming of small droplets of oil to be incorporated in the water column. Besides evaporation, the rate of natural dispersion largely determines the life of an oil spill. The model uses a formulation of Mackay et al (1980) to compute the entrainment or dispersion on the water column. The fraction of sea surface dispersed in the water column is calculated as a lost fraction of sea surface per hour given by:

$$D = D_a D_b$$

where Da is the fraction of sea surface dispersed per hour and D_b is the fraction of the dispersed oil not returning to the oil slick, expressed by

$$D_a = \frac{0.11(u+1)^2}{3600}$$

$$D_b = \frac{I}{I + 50 \,\mu_{oil} \,\delta \,\gamma_{ow}}$$

Mechanical Spreading

Fay's spreading theory (1971) is used to model the slick area growth. The gravity-viscous formulation determines the spreading rate

$$\frac{dA}{dt} = K_A A^{1/3} \left[\frac{V_{oil}}{A} \right]^{4/3}$$

Dissolution

Using the assumption that the actual concentration of hydrocarbons is negligible compared to the

$$\frac{dV_{dsi}}{dt} = Ks_i C_i^{sat} Xmol_i \frac{M_i}{\rho_i} A$$

solubility, the rate of dissolution is expressed as:

where the mass transfer coefficient for dissolution is given by:

$$Ks_i = 2.36 \times 10^{-6} e_i = \begin{cases} 1.4 & (alkanes) \\ 2.2 & (aromatics) \\ 1.8 & (oilfines) \end{cases}$$

Symbol List

: slick area

A(f,t): vector of deterministic forces

A_s: content of asphaltenes in the oil (wt %)

 $egin{array}{ll} B & : tensor of forces \ C_i^{sat} & : solubility of fraction i \end{array}$

 D_{xx} , D_{xy} , $D_{y\gamma}$, D_{yy} :

dispersion coefficients in a cartesian

system

 D_L : longitudinal dispersion D_T : transversal dispersion

: slick diameter

: $c \cdot h$, c = concentration and h = water

depth

Ka : constant

: mass transfer coefficient for Ke_i

evaporation

 Ks_i : mass transfer coefficient for

dissolution for i'th component

K₁, K₂: constants

M_i : molar weight of fraction i

: vapour pressure for fraction i

: uniform distributed random number

R : gas constant

 Sc_i : Schmidt number for component i

: time

 T_{oil} : oil temperature

: wind speed

V_{oil} : spilled volume of oil

Ve_i : evaporated volume of component _i

Wax : content of wax in the oil (wt %)

X_i : Cartesian coordinates

Xmol_i: molefraction of component i

Y : water fraction on water-in-oil emulsion

: maximum water intake

ΔL : longitudinal displacement

 ΔT : transversal displacement

: oil-water interfacial tension $\gamma_{\rm ow}$

: density of fraction i ρ_i

: dynamic oil viscosity : slick thickness

Emulsification

A result of the emulsification is a large increase in the volume of the oil slick and a significant increase in the density and viscosity of the oil.

The incorporation of water in oil is expressed as:

A Short Description

Page 2

MIKE 21/3 SA

$$\frac{dY}{dt} = R_1 - R_2$$

where

$$R_{I} = K_{I} \frac{(I+U)^{2}}{\zeta_{oil}} \Phi_{\text{max}} - y$$

$$R_2 = K_2 \frac{y}{A_s Wax \bullet \zeta_{oil}}$$

which is a formula derived by Mackay (1980).

Solution Technique

The Fokker-Planck equation for suspended oil substances is solved by the Lagrangian Discrete Parcels Method (LDPM). The weathering processes are solved by a Runge-Kutta fourth order method.

The LDPM is inherently stable although the time step should be compatible with the grid size of the used bathymetry. The scheme does not require the solution of a system of equations. Since the computations follow the parcels, the scheme is more efficient than Eulerian schemes.

Input

Basic model parameters

- time step
- length of simulation

Starting conditions

hydrodynamic input as constant, time series and bathymetry or 2D hydrodynamic maps or database-file created by MIKE 21 HD

Environmental data

- water temperature, constant or time series
- water density, constant or time series
- air temperature, constant or time series
- cloudiness, constant or time series

Weathering data

- heat transport data
- dispersion coefficients
- stratification data
- emulsification data
- dissolution

Source specifications

- the model can handle up to 64 simultaneous sources, which in both magnitude and position can be a constant or may vary as a function in
- for each source, oil properties and oil temperature is specified

Miscellaneous specifications

- wind data, constant, time series or 2D wind
- logarithmic or homogenous vertical profile
- light attenuation
- exceeding frequency
- time exposure
- line discharge calculations
- create particle path to time series file.

- The model can create up to eight simultaneous output areas with a certain grid size and extent
- the output data can be instantaneous or averaged values
- the oil concentrations can be created for each fraction or as a sum of all fractions

The output items are:

- oil concentrations
- emulsification
- 3 temperature
- 4 evaporation
- dissolution
- light attenuation
- exceedance frequency
- 8 time exposure
- current velocity

References

Ambrose, R B, Vandergrift, P E S B & Wool, T A (1986) Wasp3, A Hydrodynamic and Water Quality Model - Model Theory, User's Manual, and Programmer's Guide. Environmental Protection Agency, Athens, Georgia 30613.

Banks, R B (1975) Some Features of Wind Action on Shallow Lakes. Proceedings, American Society of Civil Engineers, pp 101-813.

A Short Description Page 3

MIKE 21/3 SA

Bender, K, Østfeldt, P, Bach, H, Hedegaard, I B, Kronborg, P & Jørgensen, G (1988) Use of Biomarkers and Models in the Prediction of Coastal Vulnerability. Copenhagen, Denmark.

Briggs, G G (1981) Theoretical and Experimental Relationships between Soil Adsorption, Octanol/Water Partition Coefficients, Water Solubilities, Bioconcentration Factors, and the Parachor. J. Agric. Food Chem., pp 29-1050.

Buchanan, I and Hurford, N (1988) Methods for Predicting the Physical Changes in Oil Spilt at Sea. Oil Chem. Pollut., Vol 4(4), 311-328.

CMFMWOS (1985) Computer Model Forecasting Movements and Weathering of Oil Spills. Final Report for The European Economic Community, WQI and DHI, October 1985.

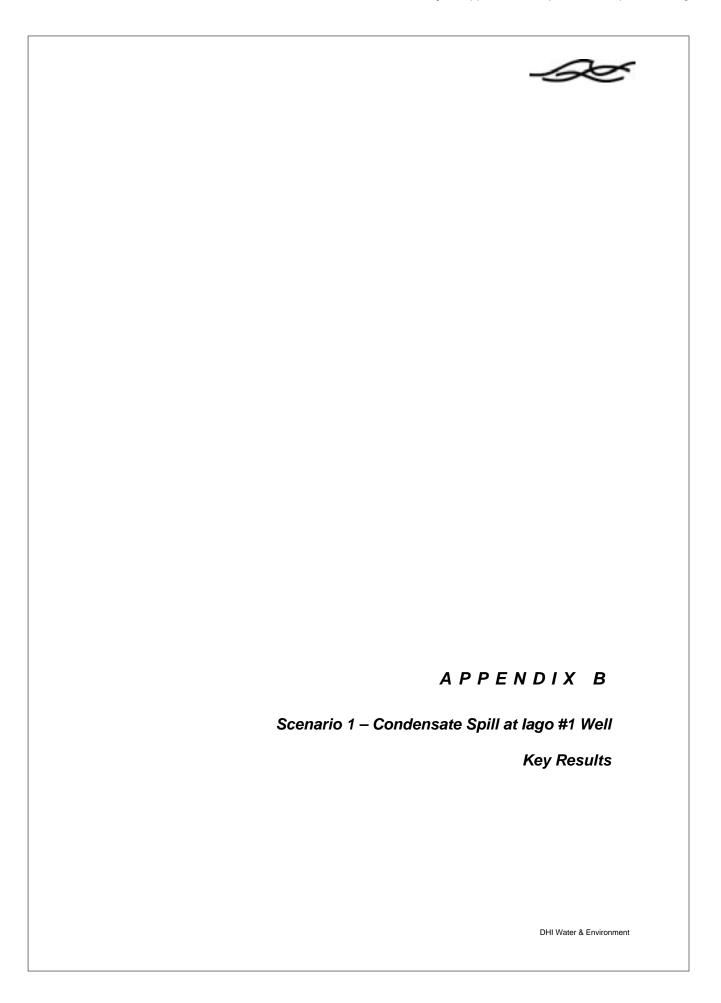
CONCAWE (1983) Characteristics of Petroleum and its behaviour at Sea. Report No 8/83.

Di Toro, D M, Mahony, J D, Kirchgraber, P R, O'Byrne, A L, Pascale, L R & Piccirilli, D C (1986) Effects of Nonreversibility, Particle Concentration and Ionic Strength on Heavy Metal Sorption. Environ. Sci. Technol., Vol 20, pp 55-61.

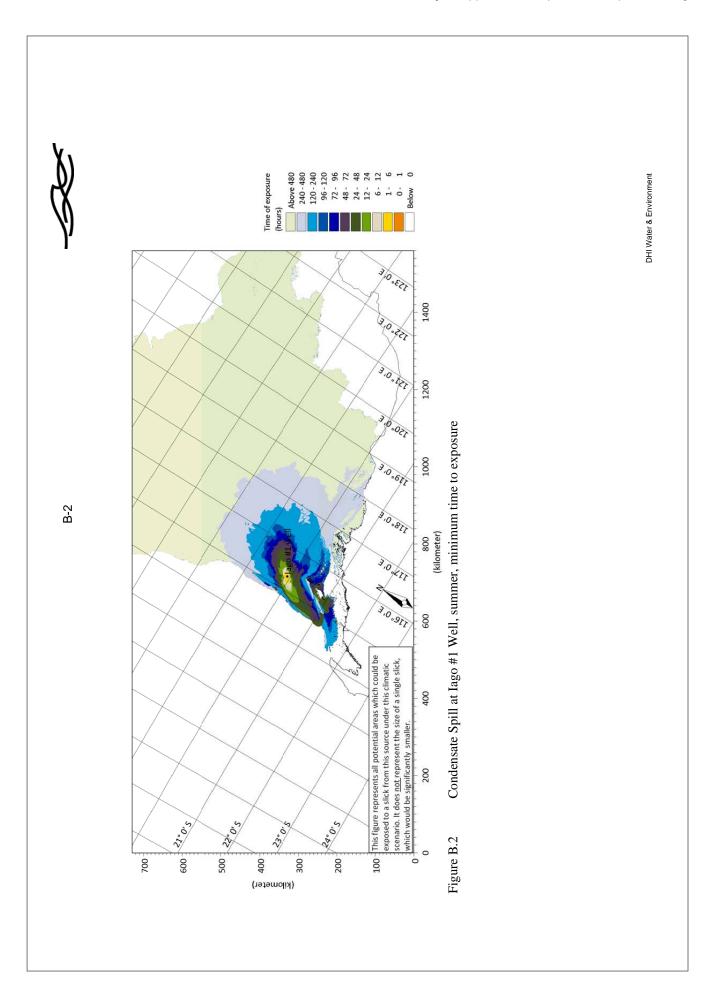
Dimou, K N & Adams, E E (1993) A Randomwalk, Particle Tracking Model for Well-mixed Estuaries and Coastal Waters. Estuarine, Coastal and Shelf Science, Vol 33, pp 99-110.

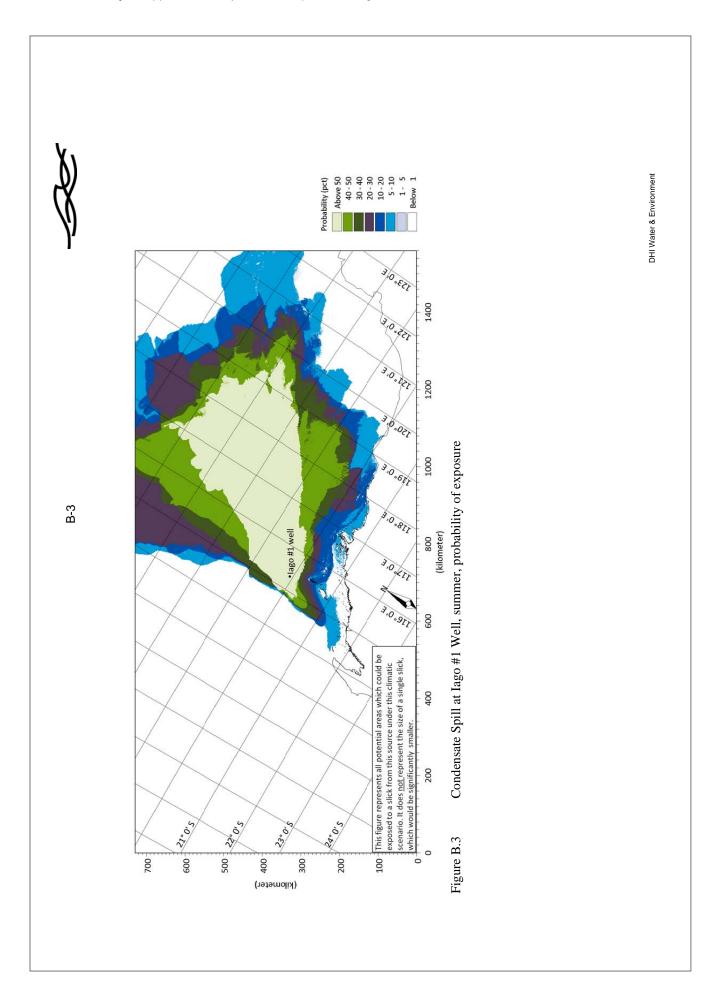
Duffie, JA and Beckman, WA (1980) Solar Engineering of Thermal Processes. Wiley-Interscience, NY.

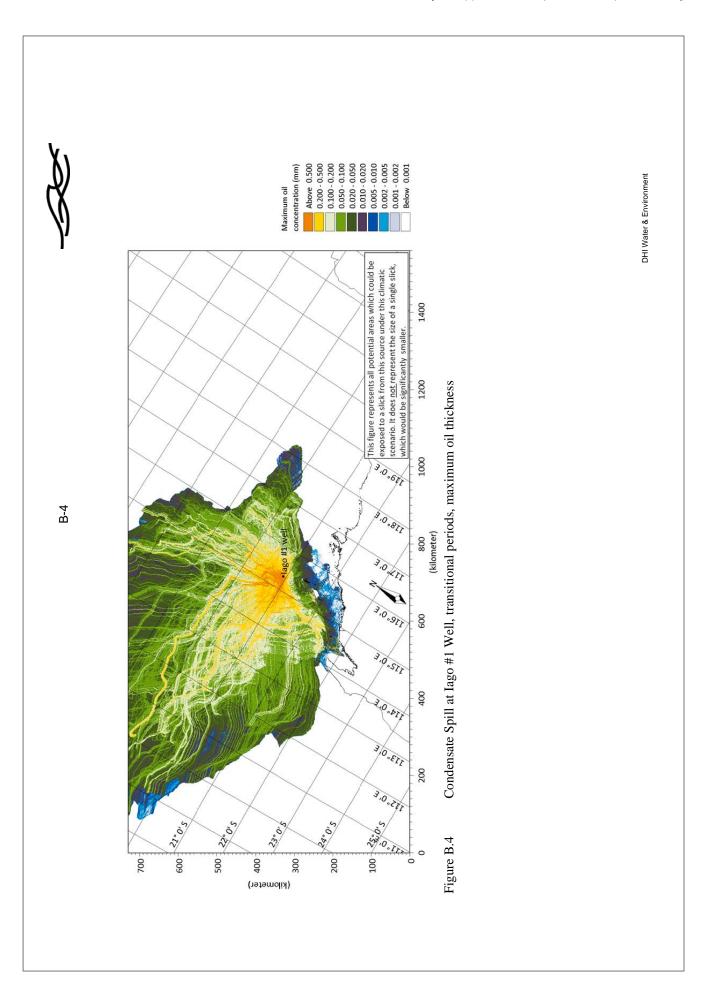
Fag, JA (1969) The Spread of Oil Slick on a Calm Sea in Oil on the Sea.

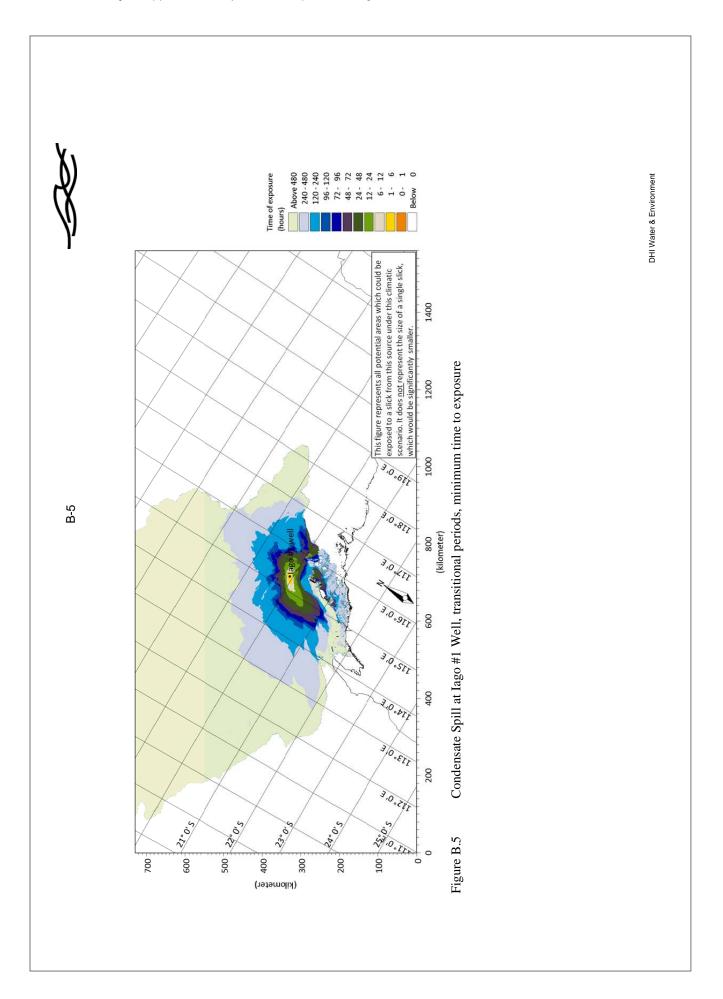

Hutzinger, P (1980) The Handbook of Environmental Chemistry, Vol. 2, Part A.: Reaction Processes. Springer Verlag. Berlin, Heidelberg, New York.

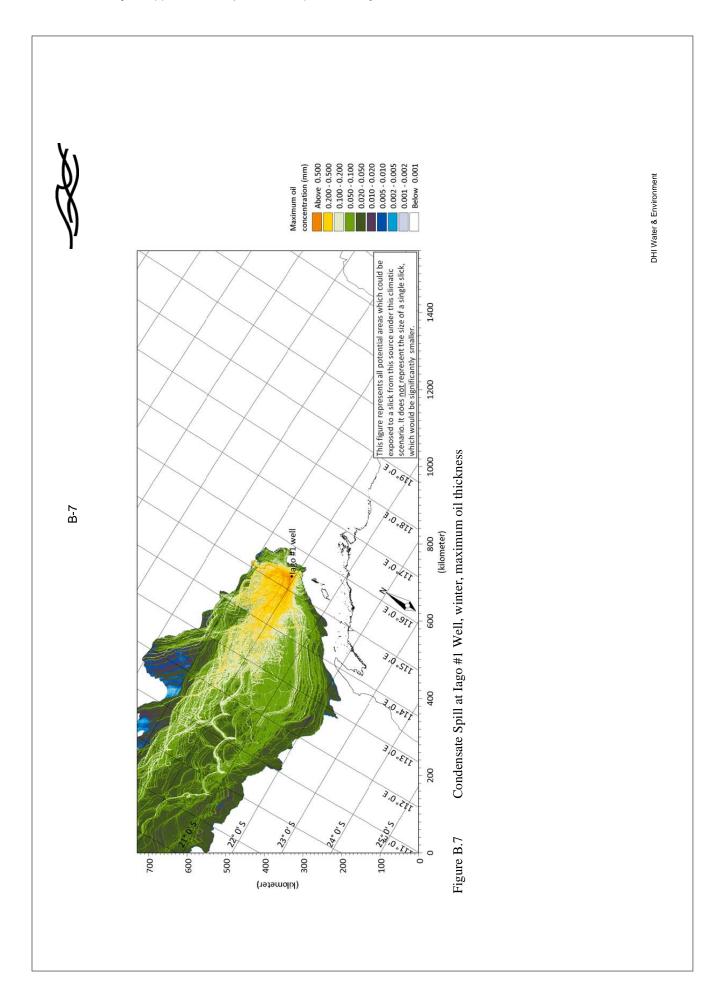

Jørgensen, S E & Gromiec, M J (1989) Mathematical Models in Water Quality Systems, Developments in Environmental Modelling. Vol 14, Elsevier.

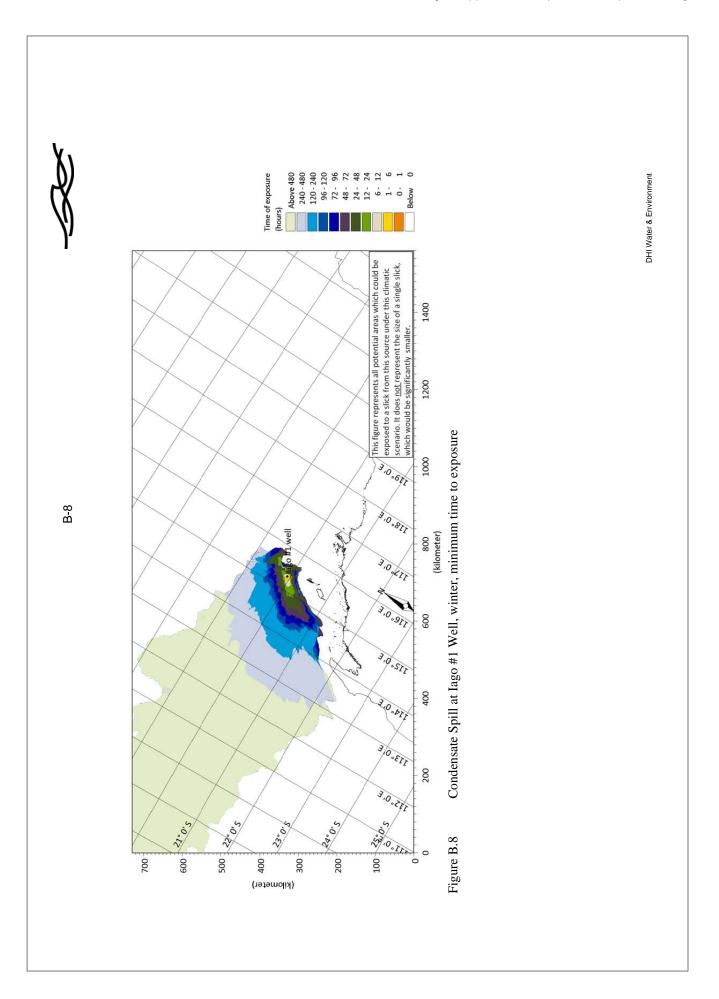

Karickhoff, S W, Brown, D S & Scott, T A (1979) Sorption of Hydrophobic Pollutants on Natural Sediments. Water Res., pp 13-241.

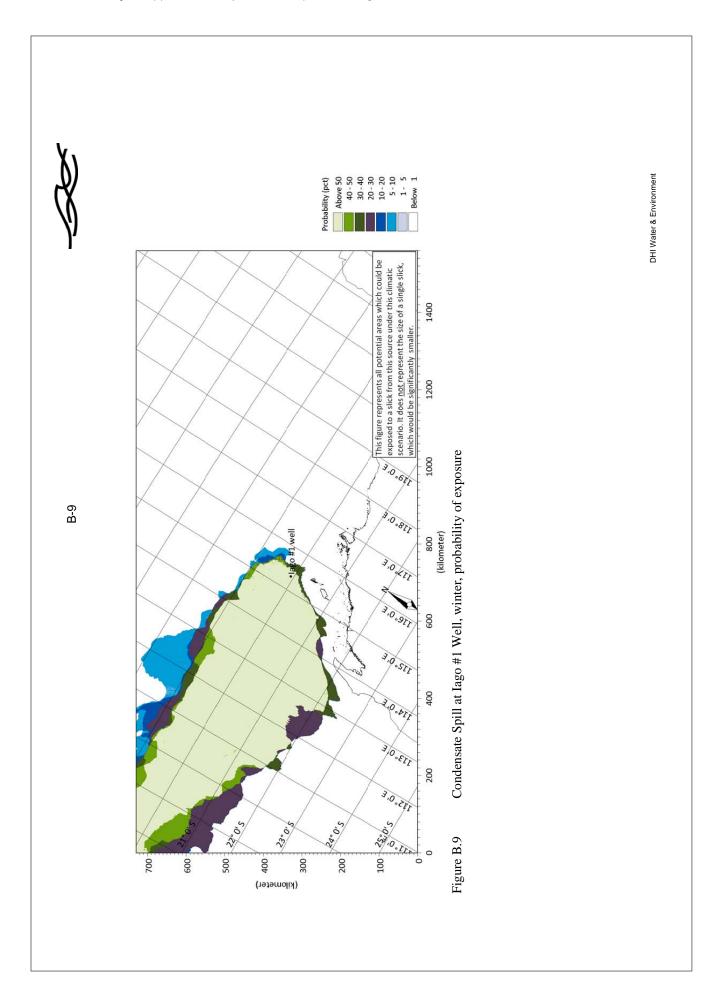

Water Quality Institute, ATV & Danish Hydraulic Institute, ATV (1985). Computer Model Forecasting Movements and Weathering of Oil Spills. Final Report to the European Economic Community.

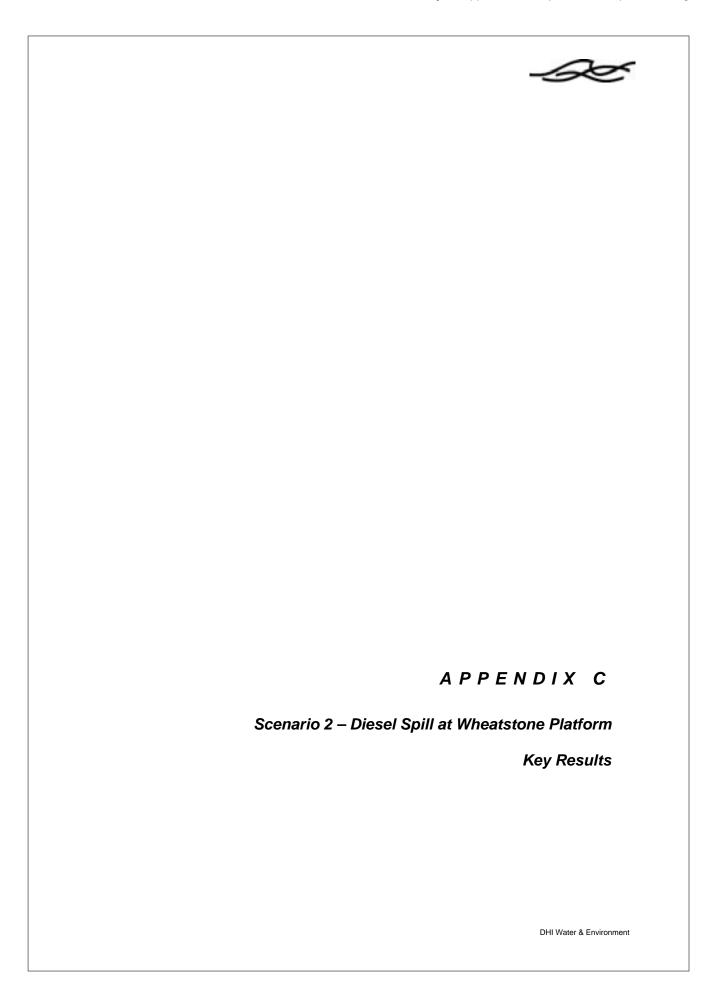

Page 4 A Short Description

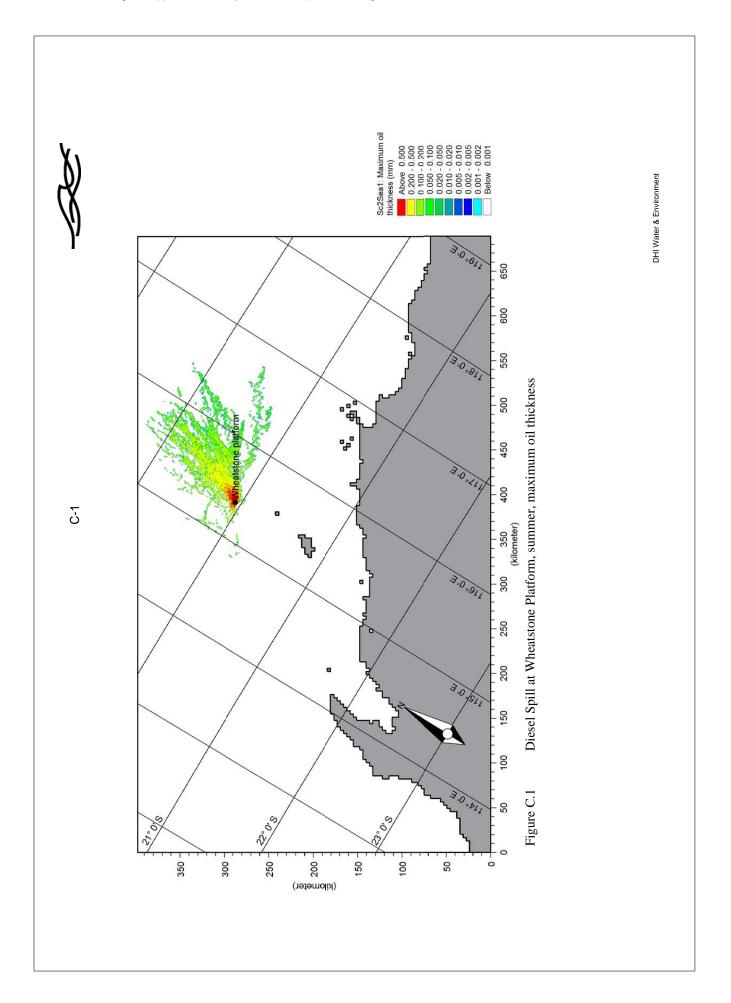


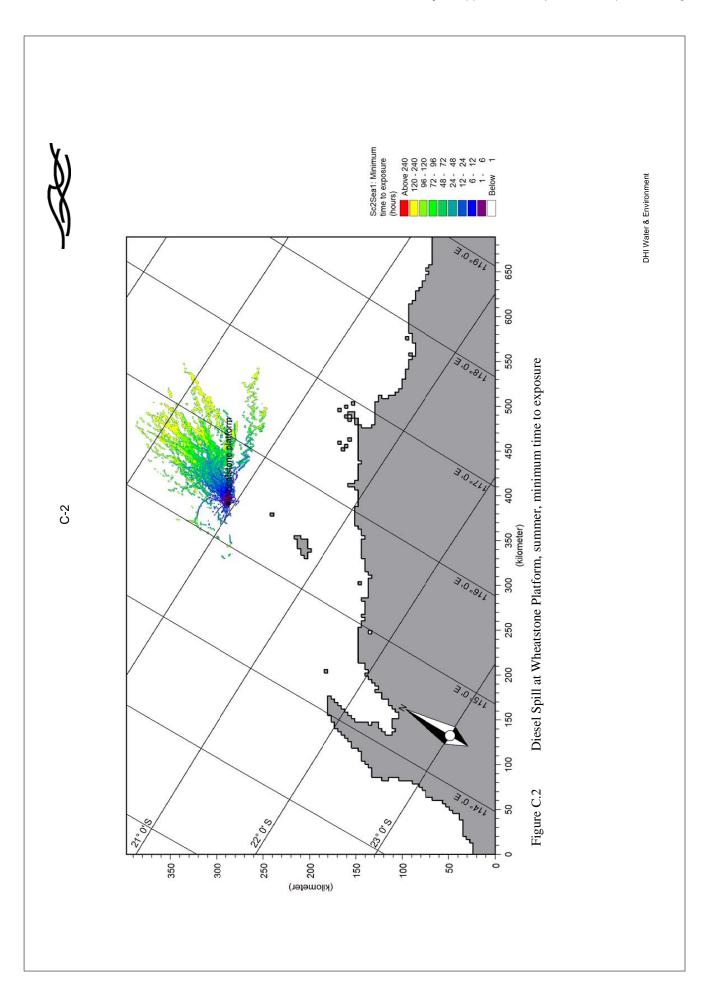


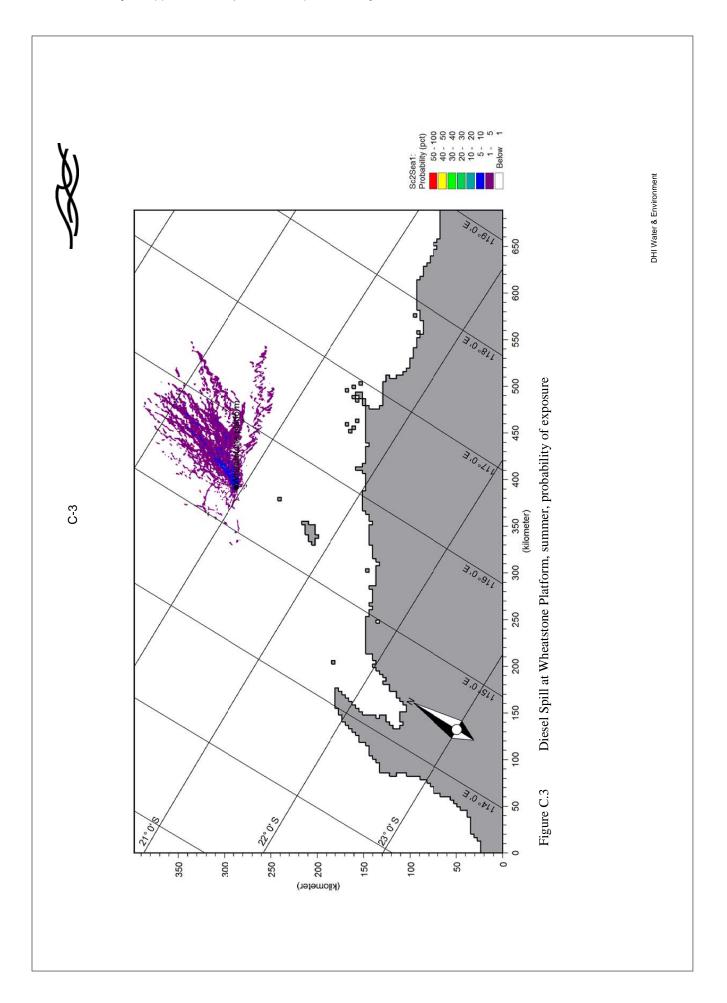


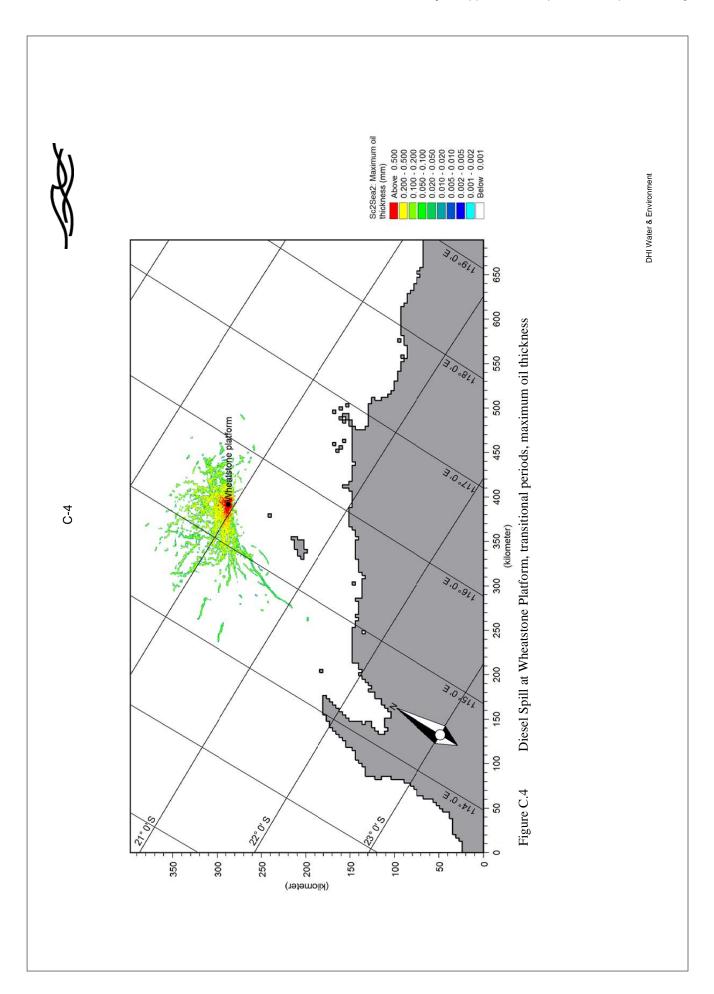


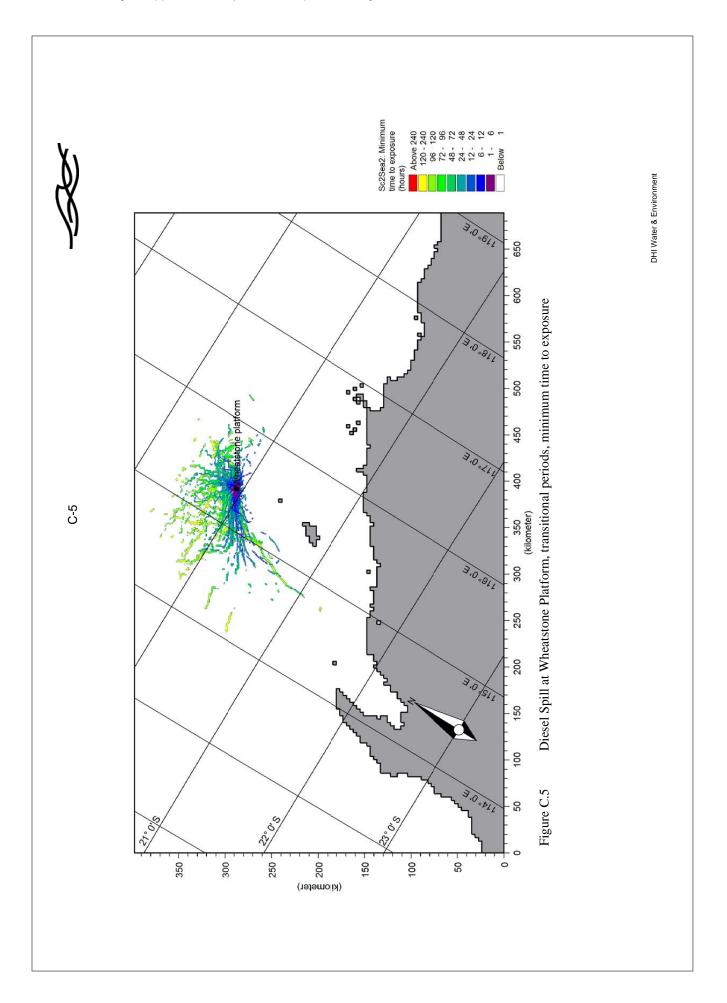


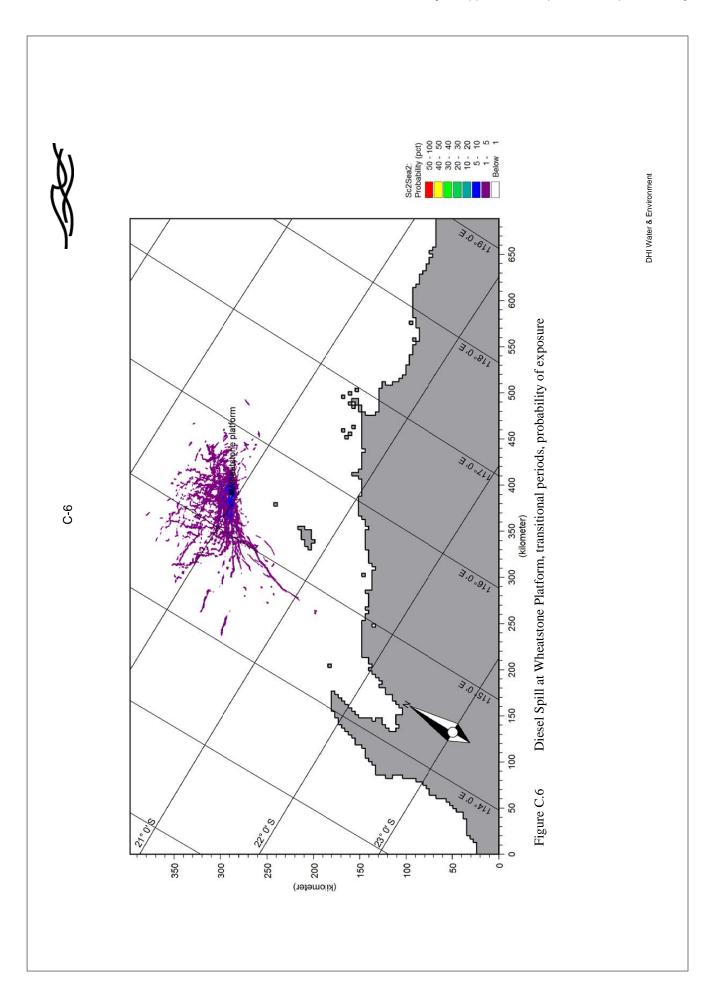


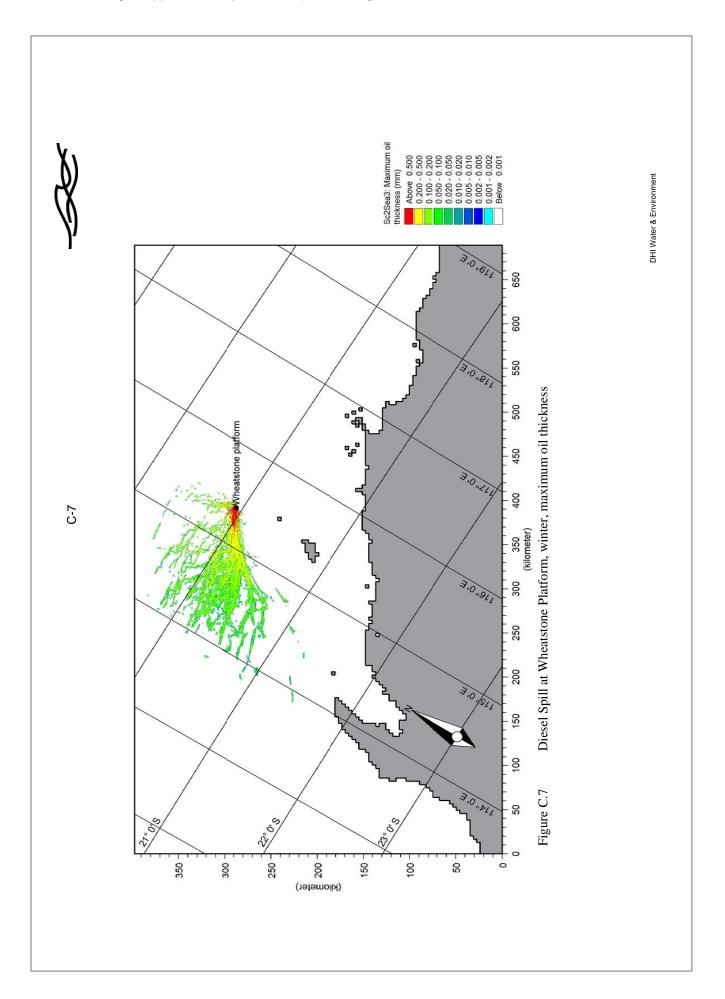


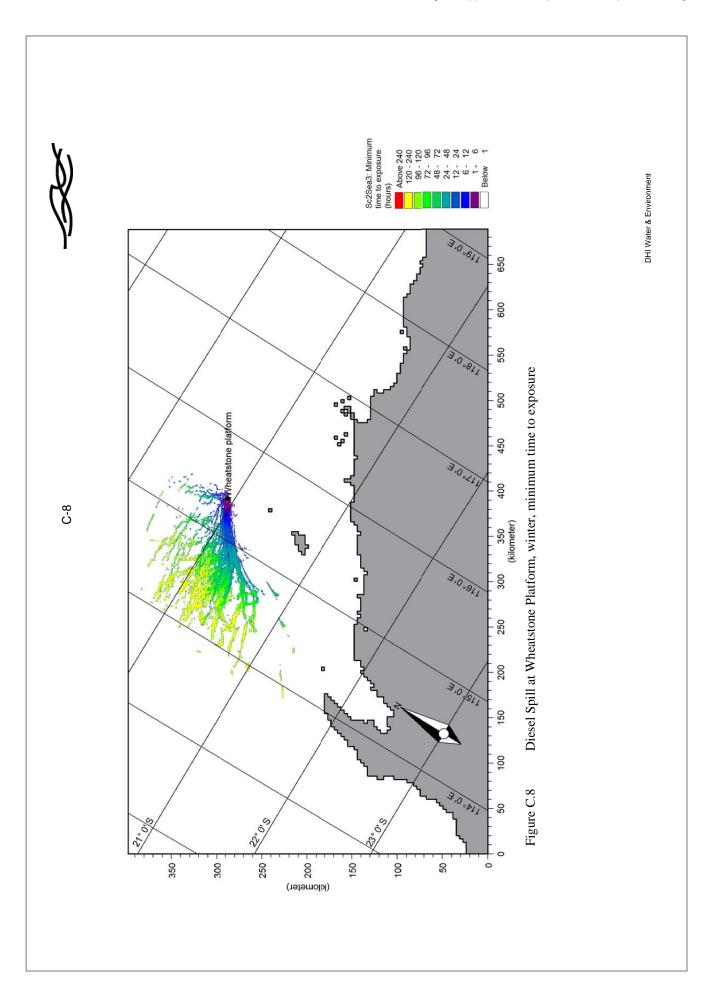


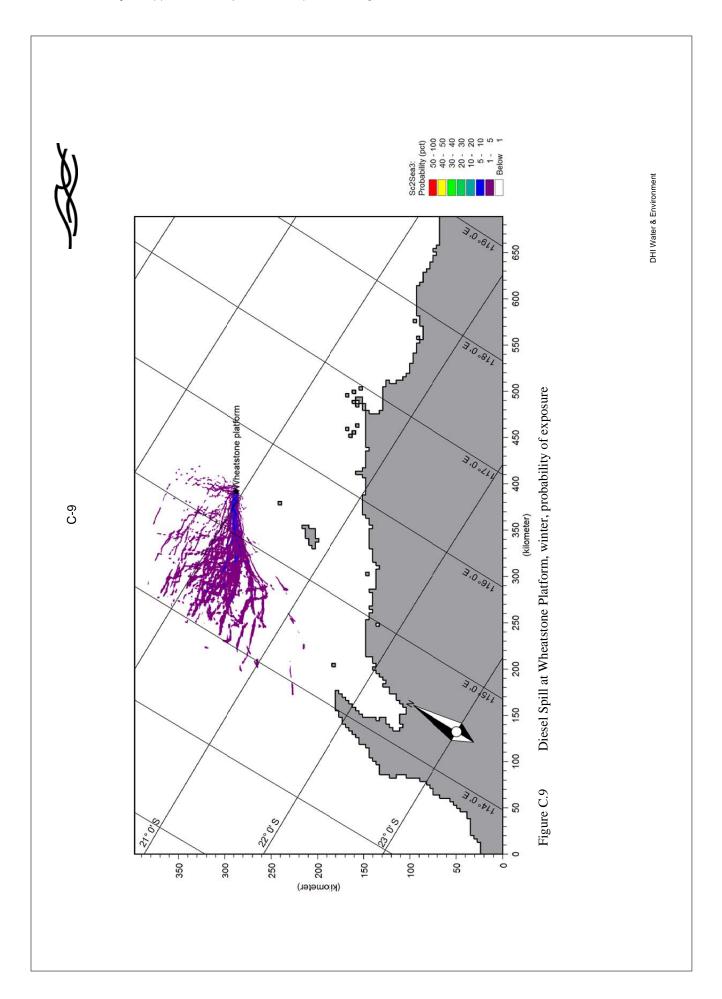


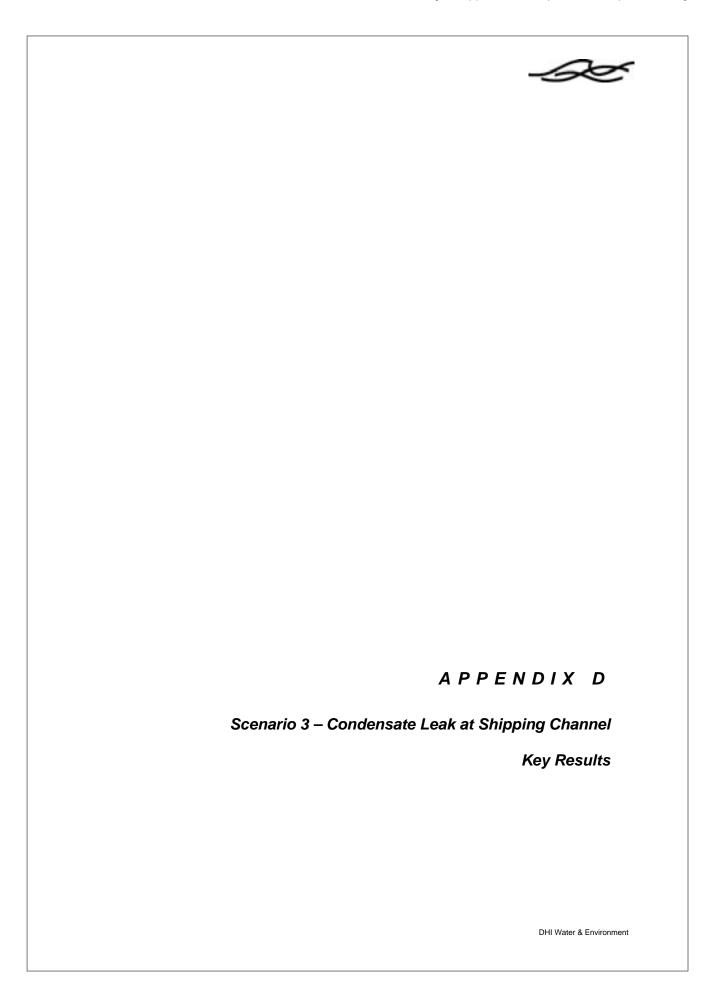


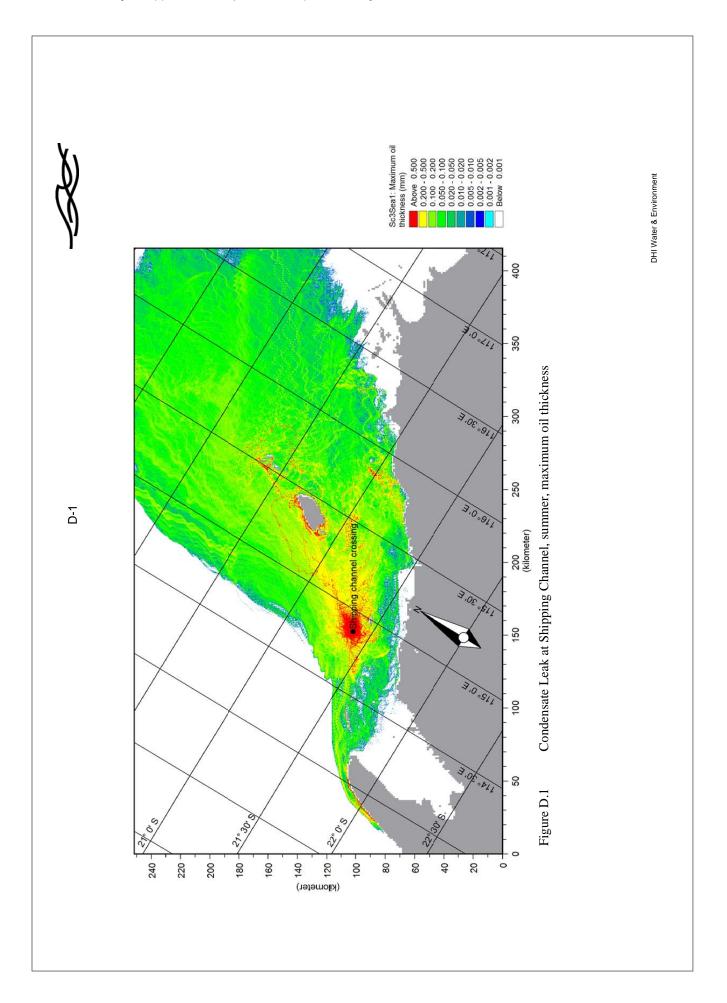


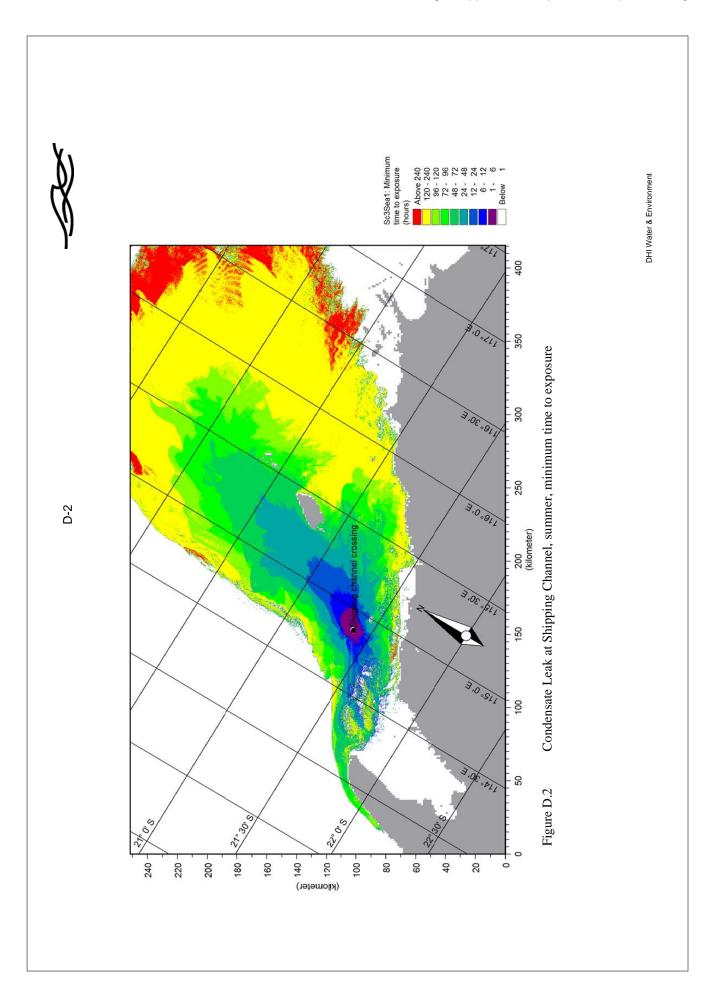


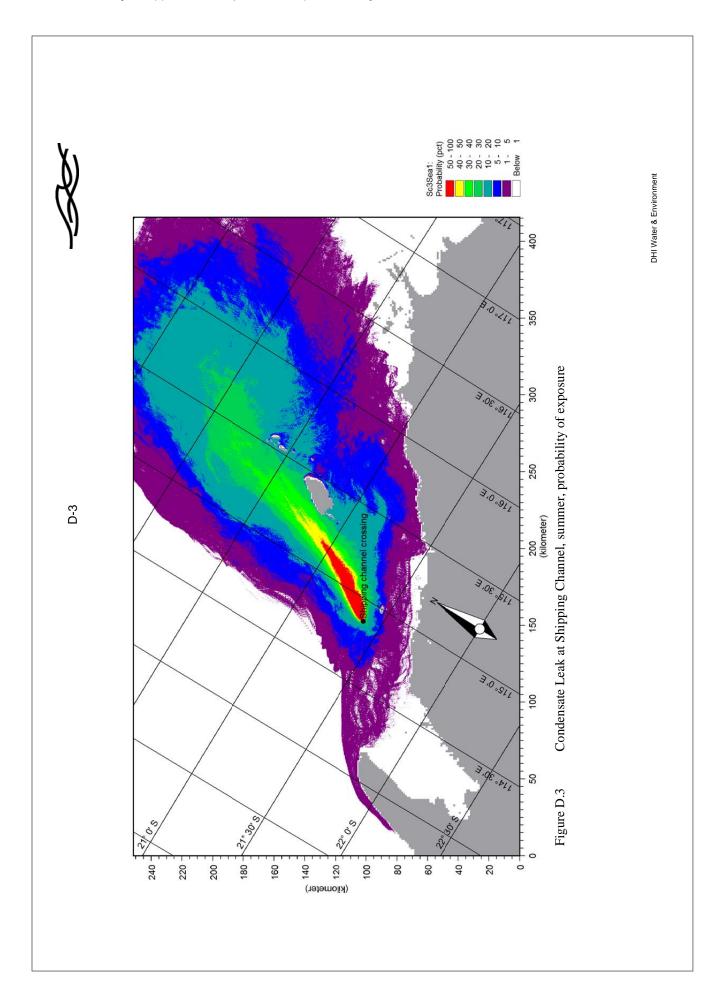


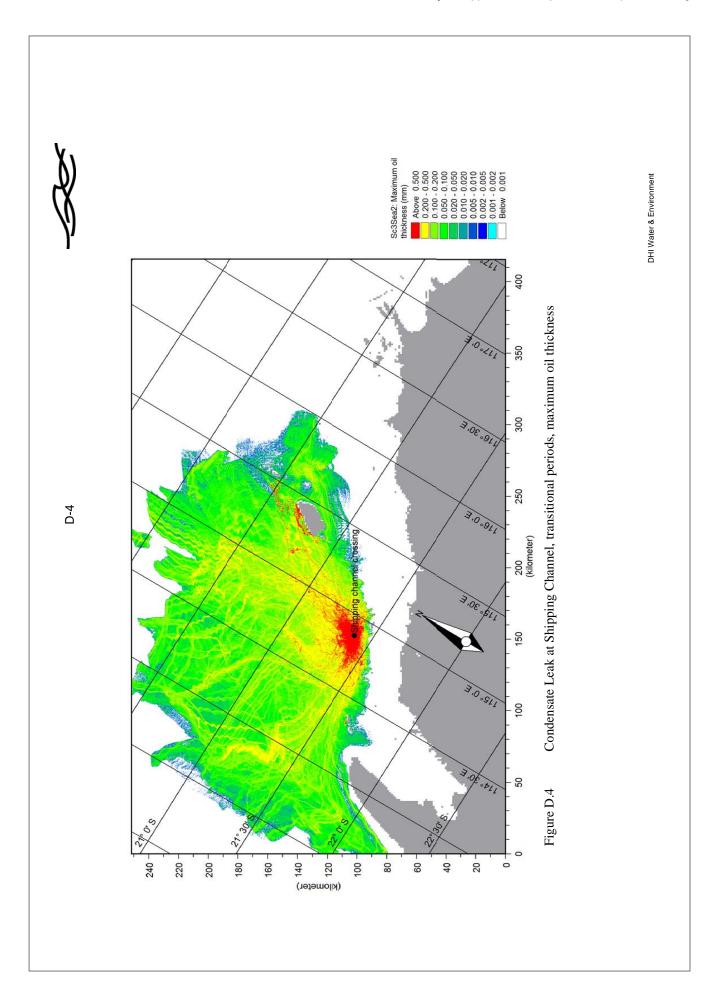


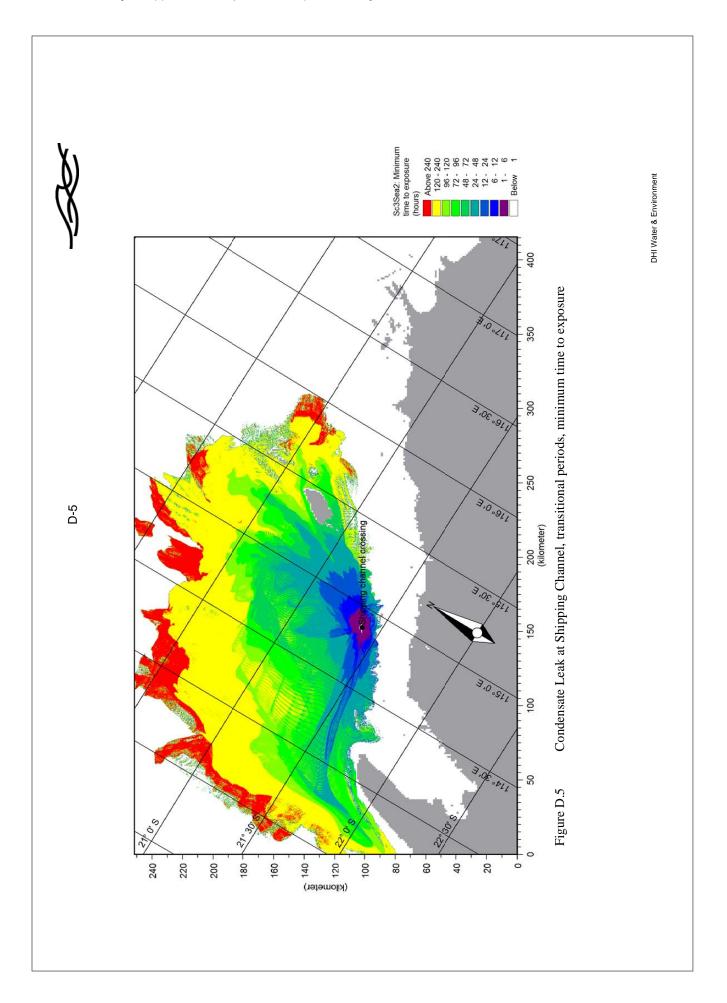


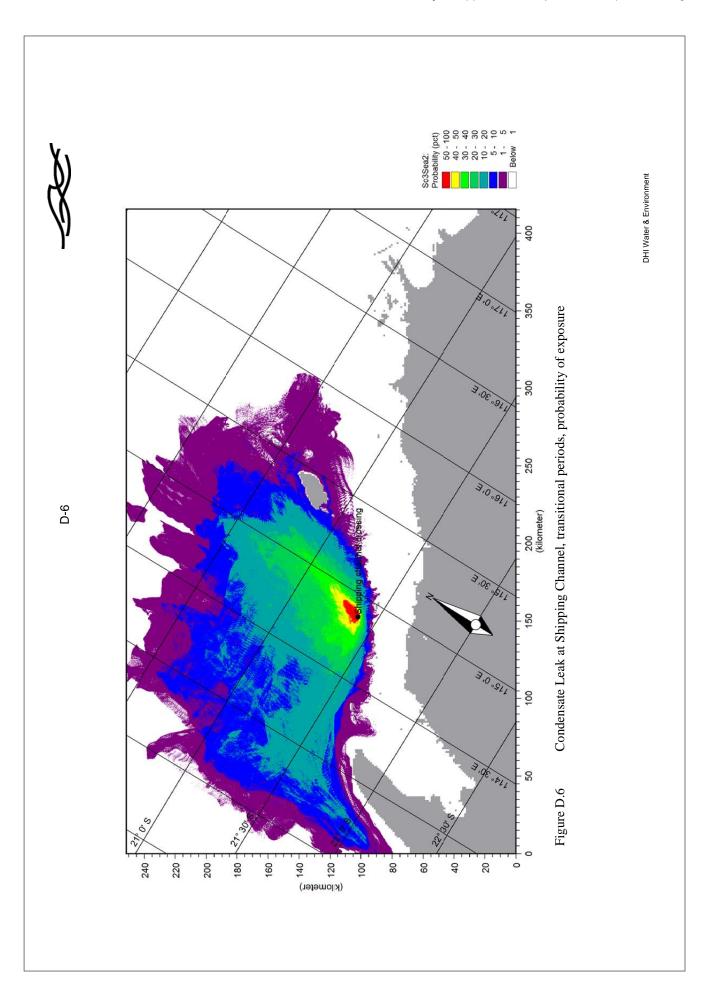


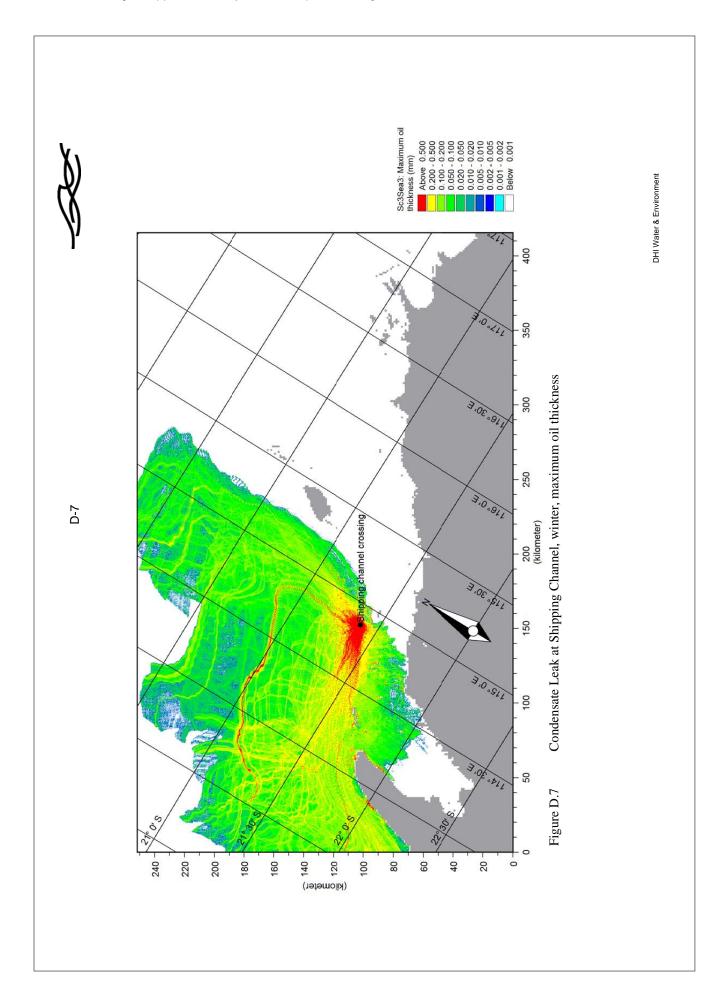


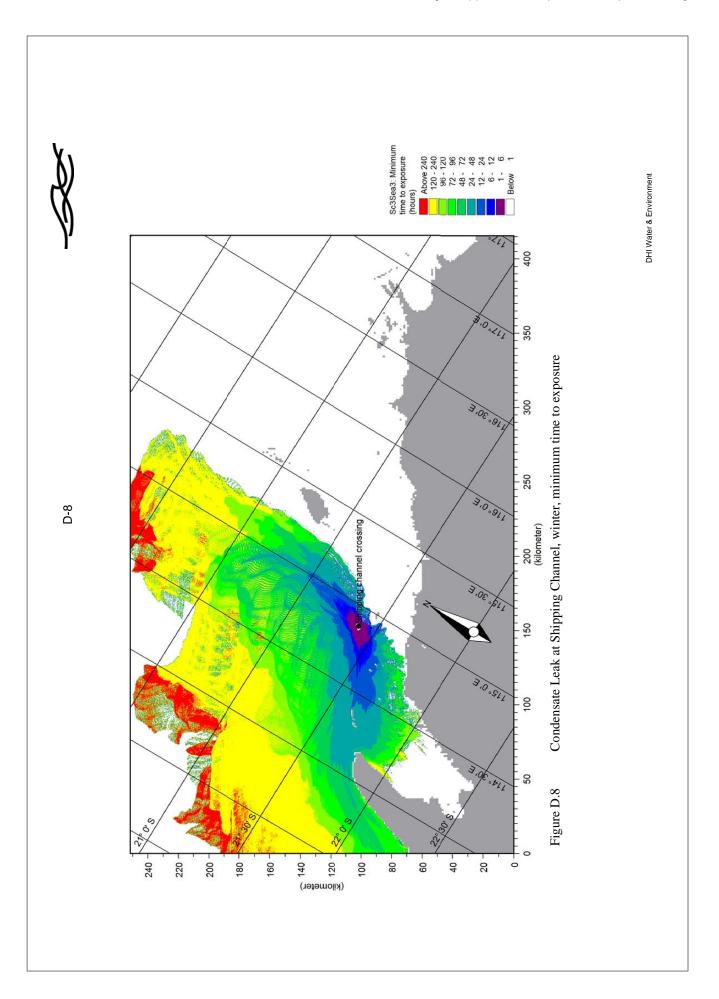


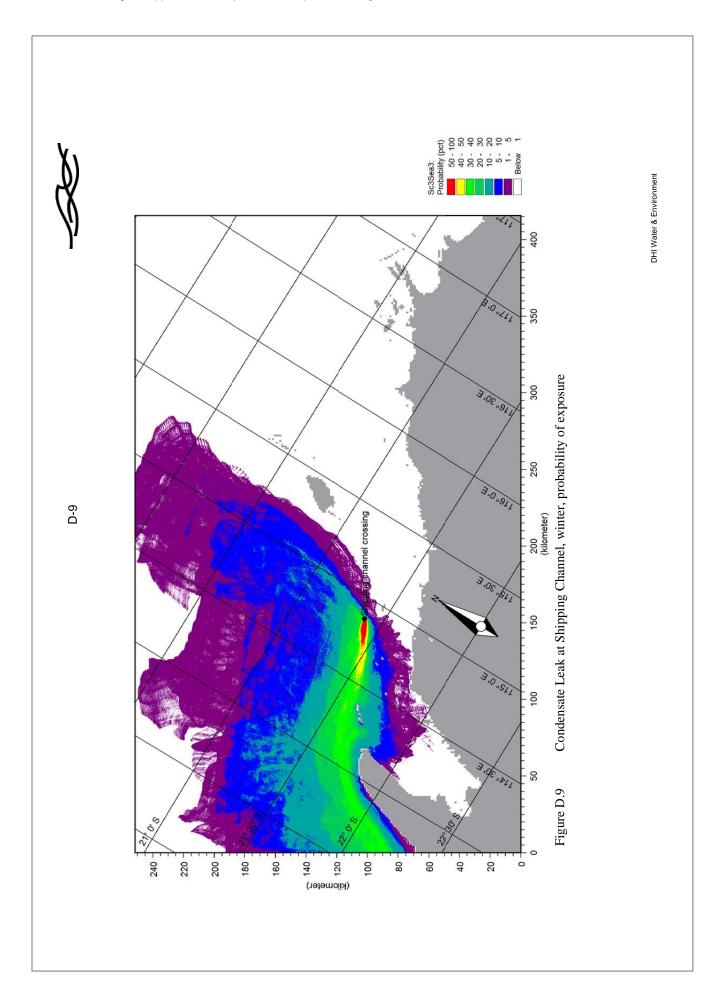


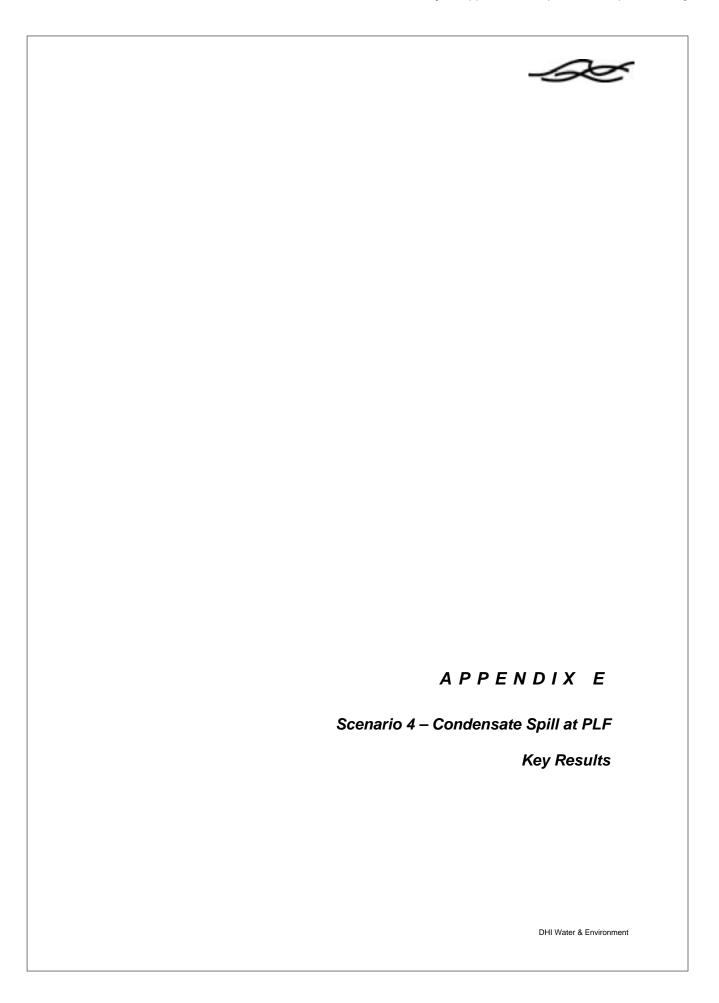


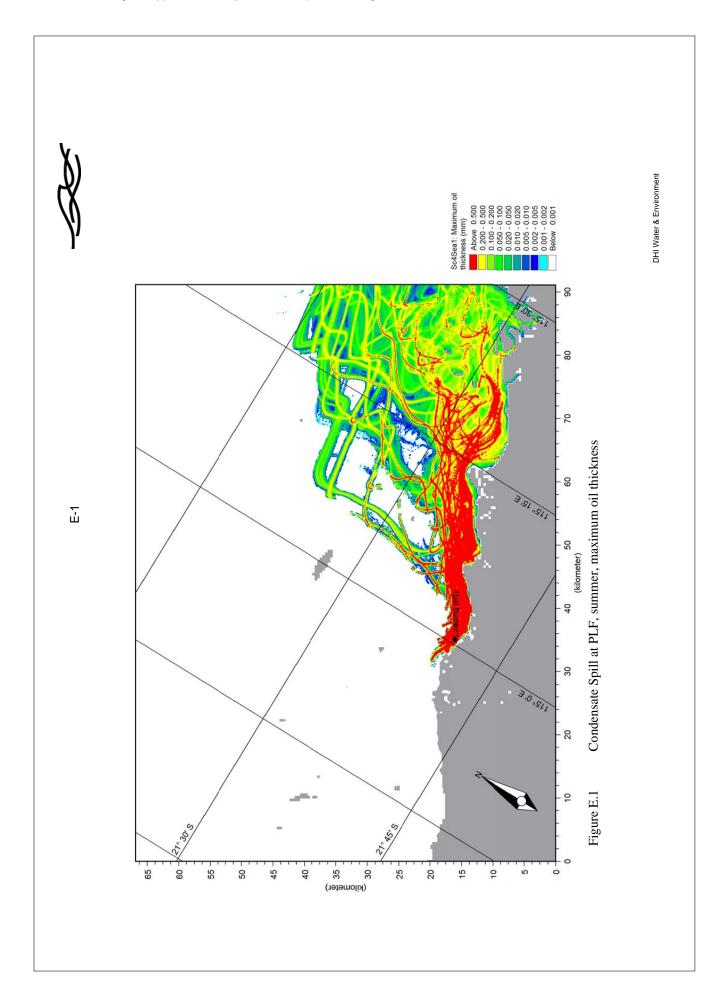


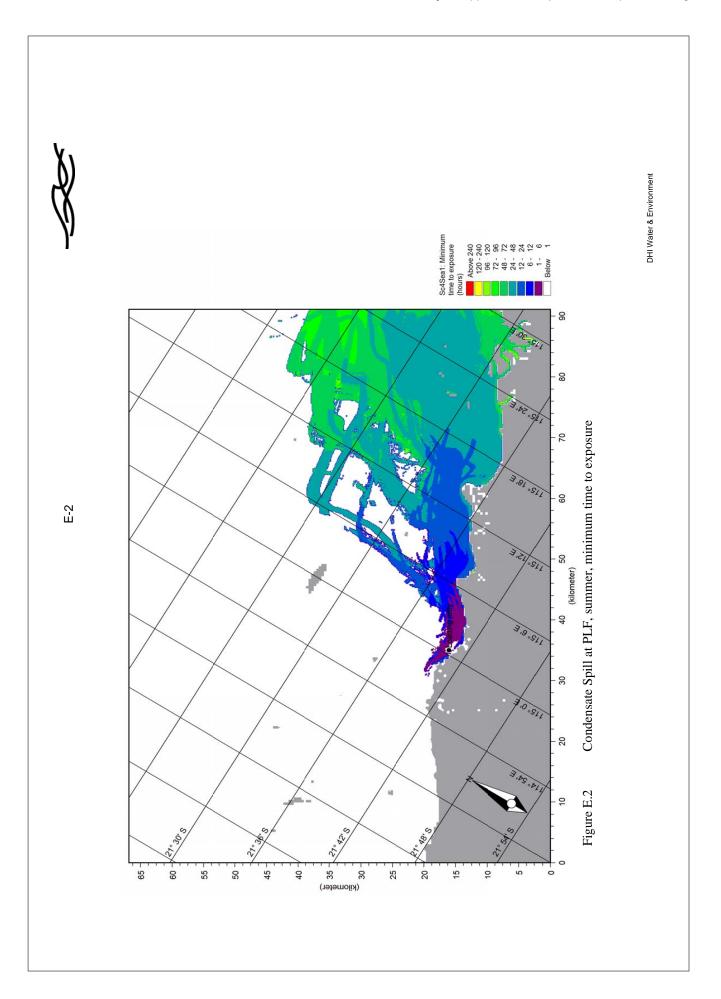


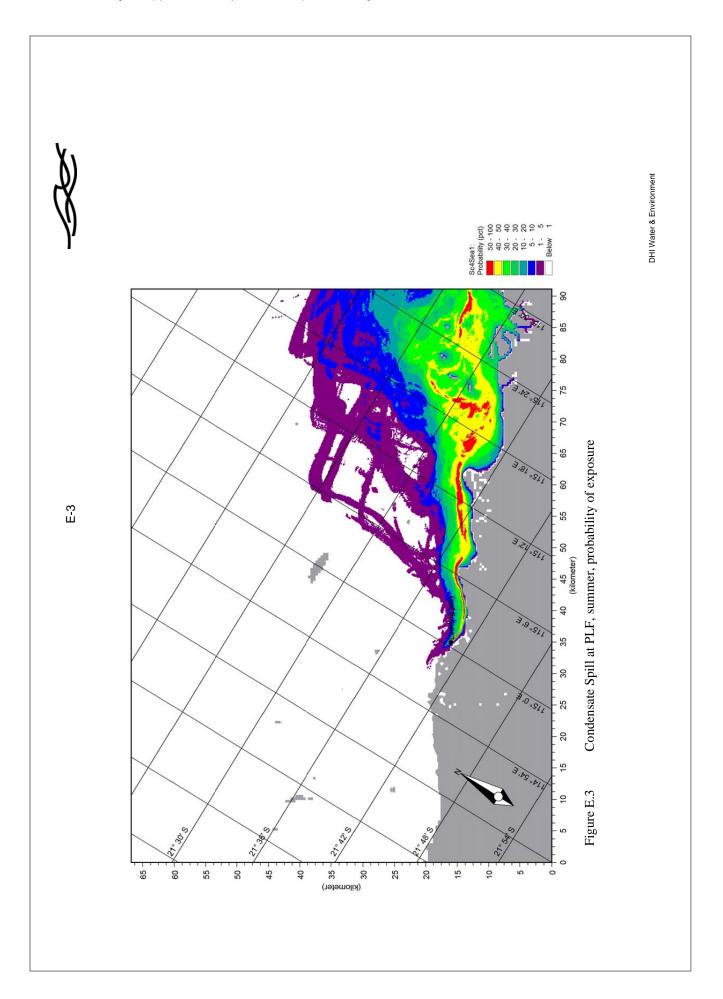


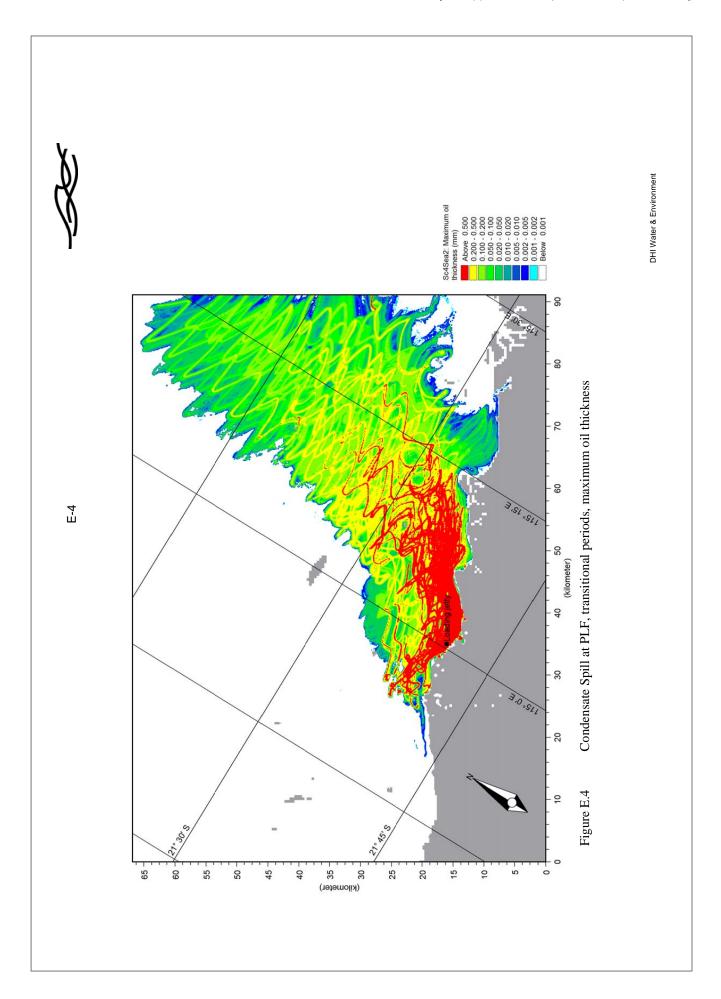


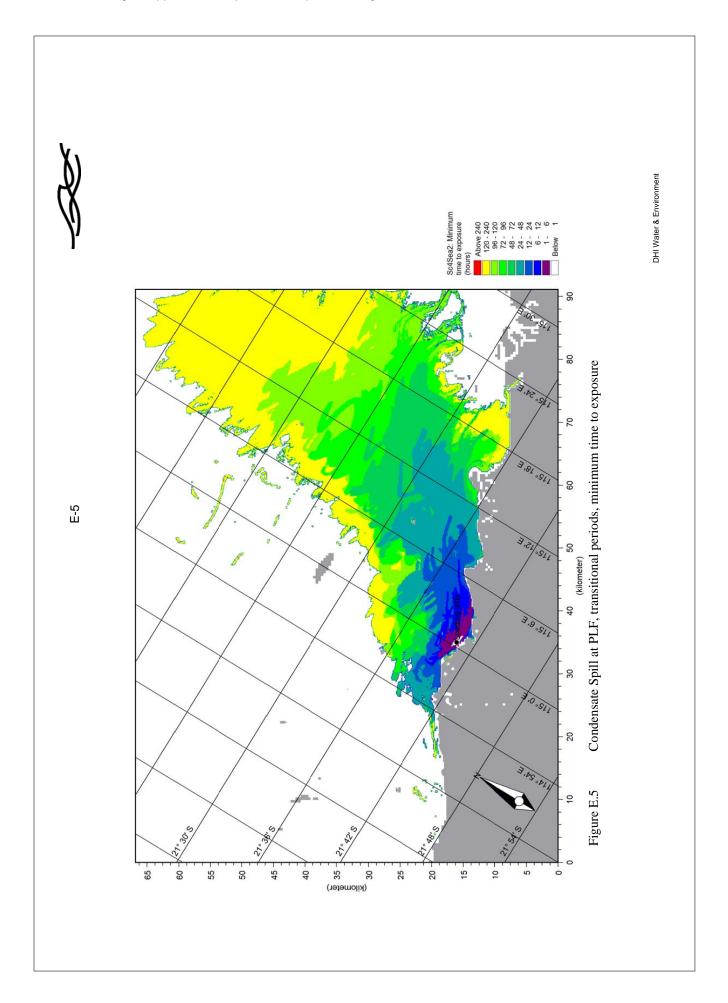


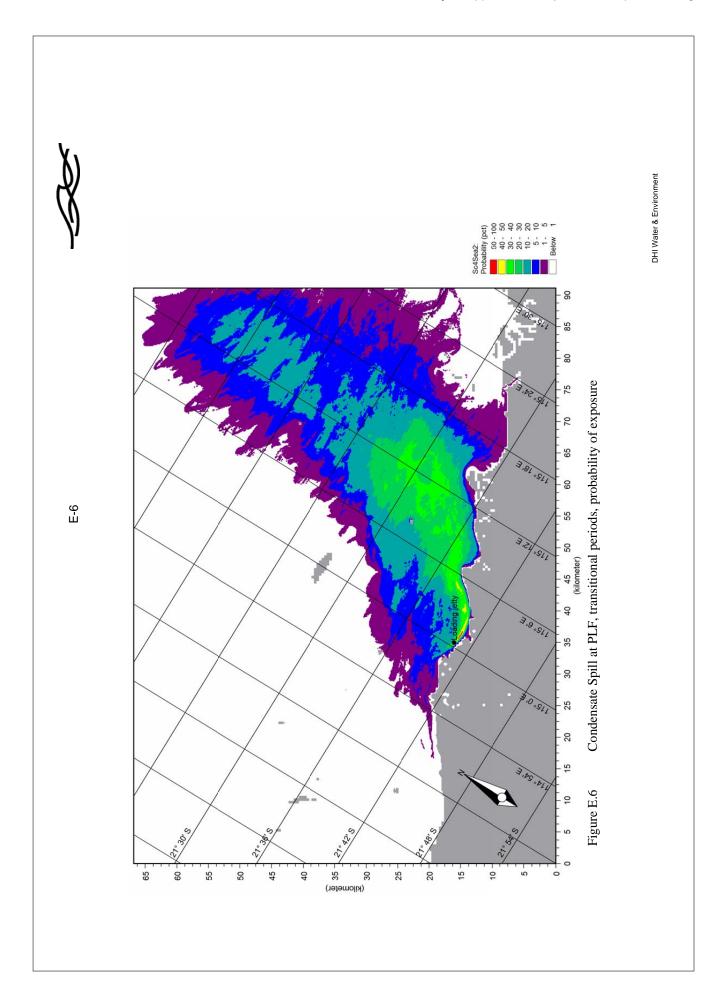


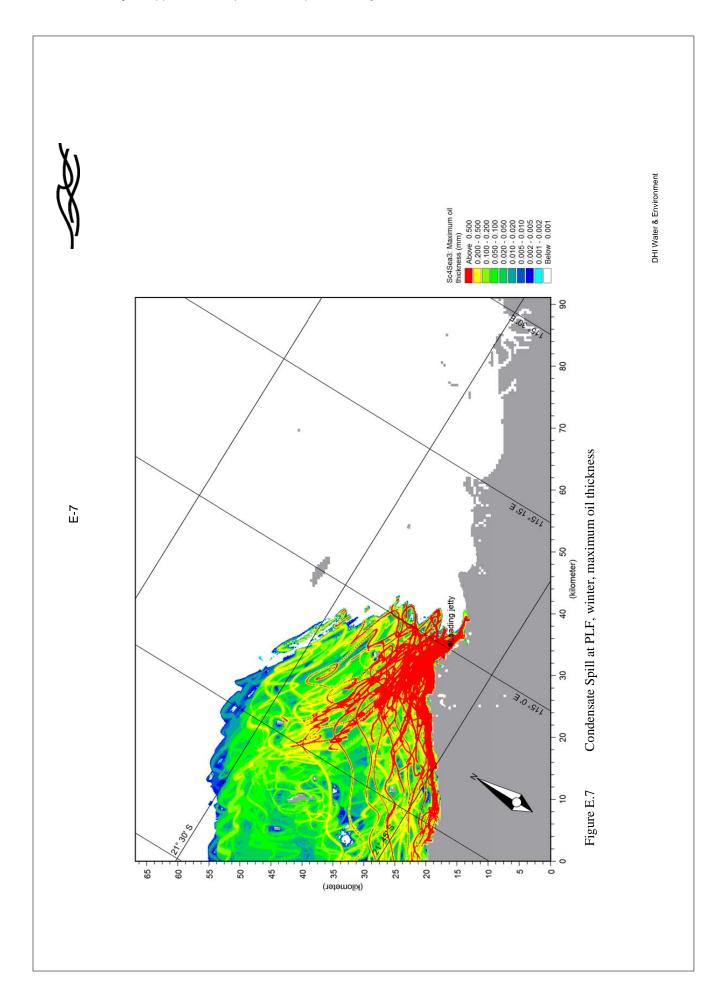


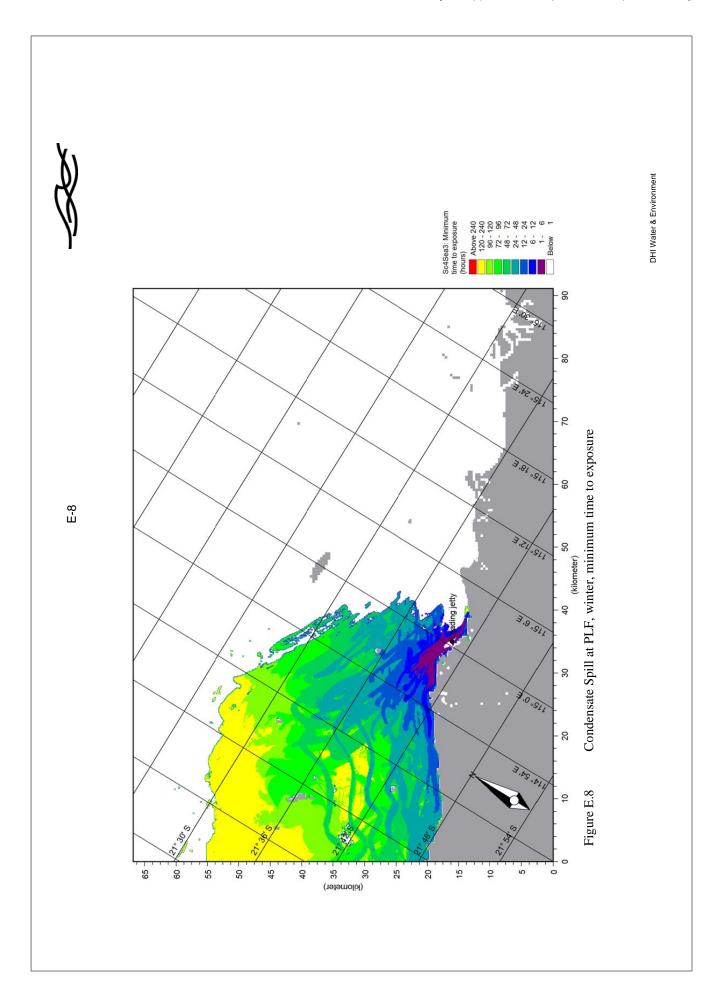


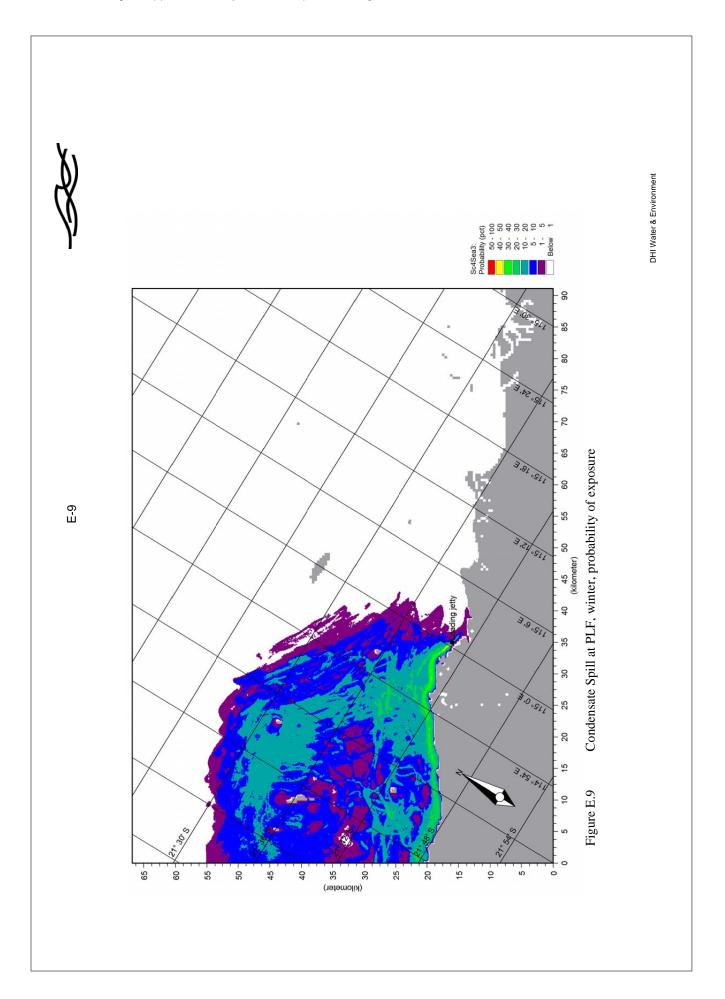


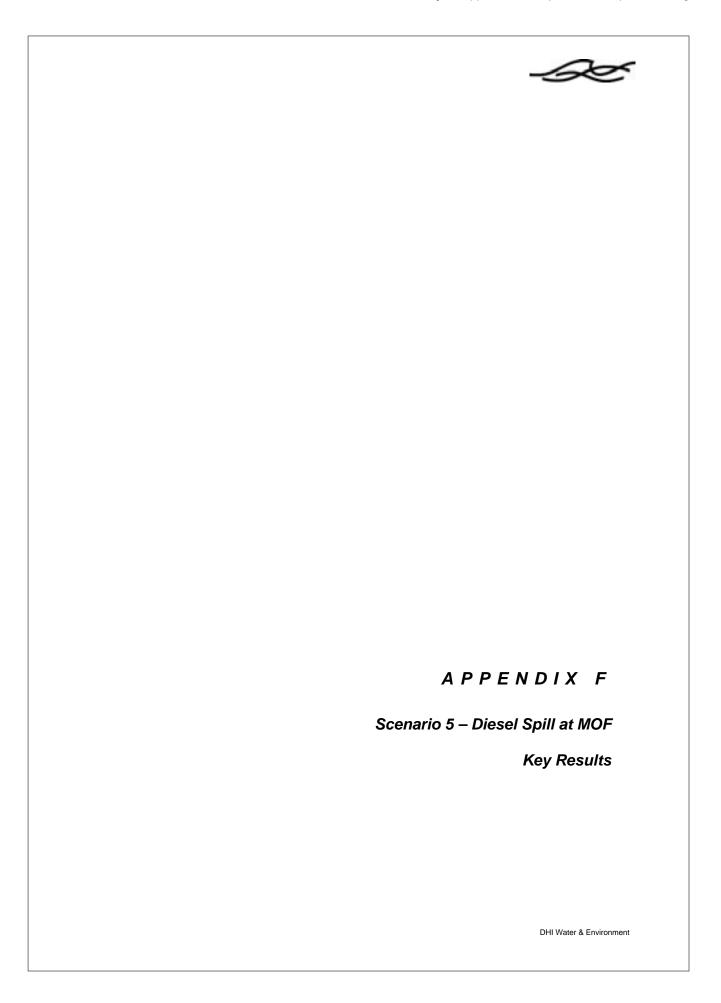


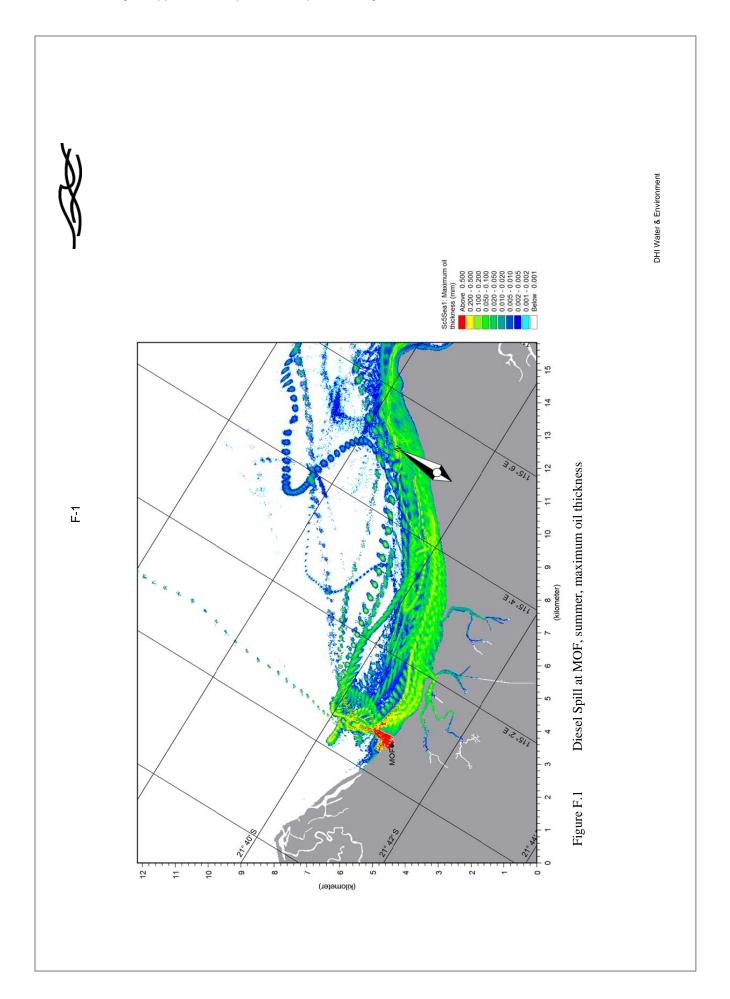


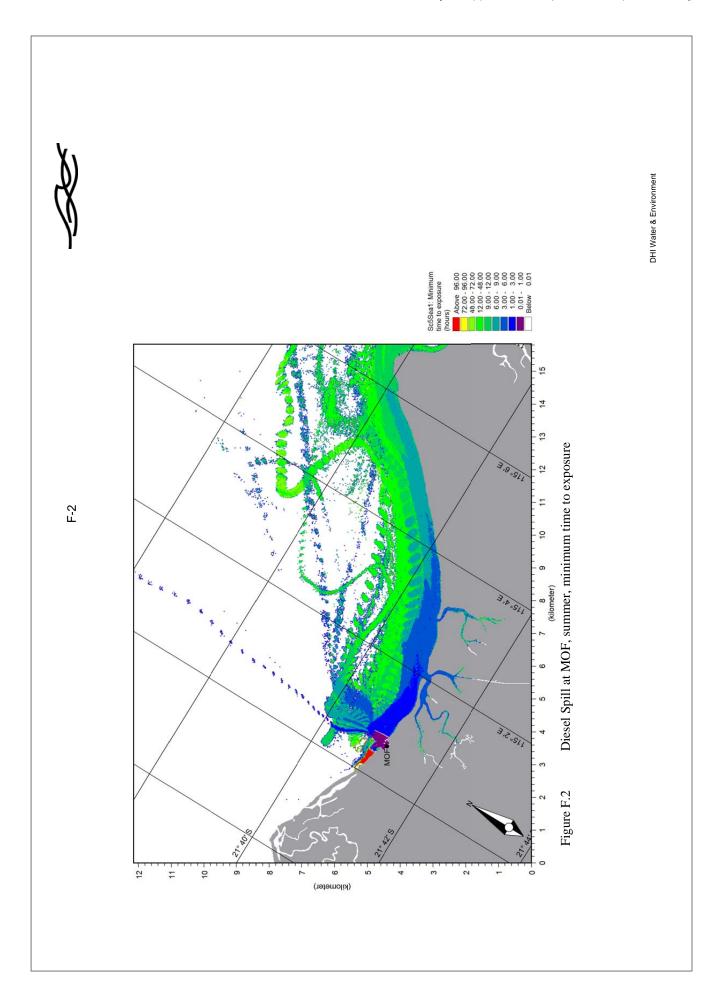


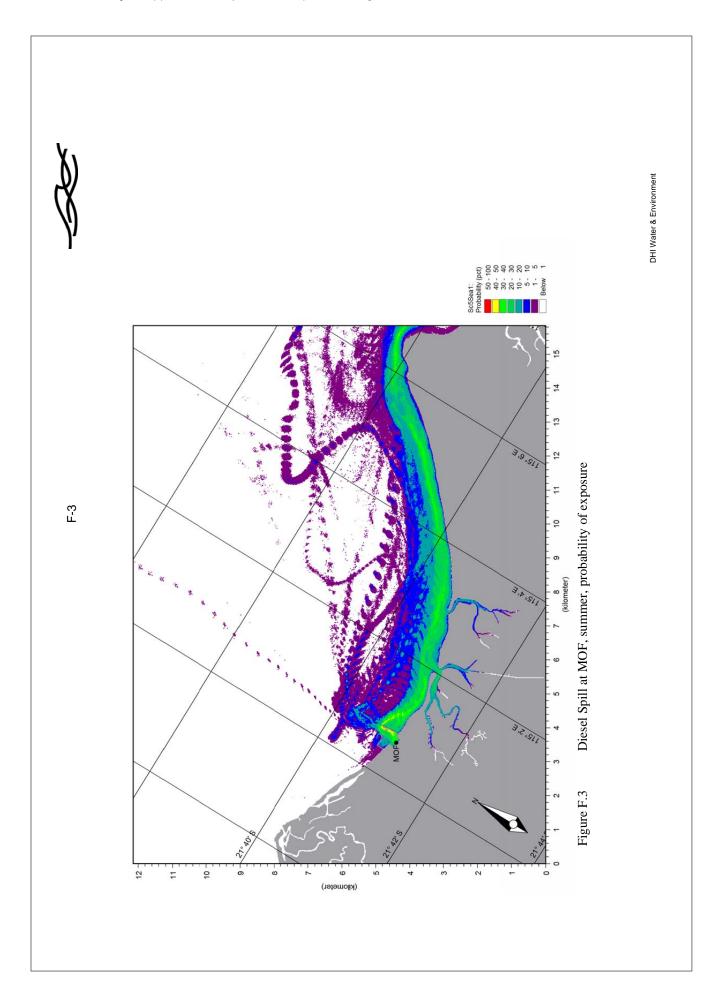


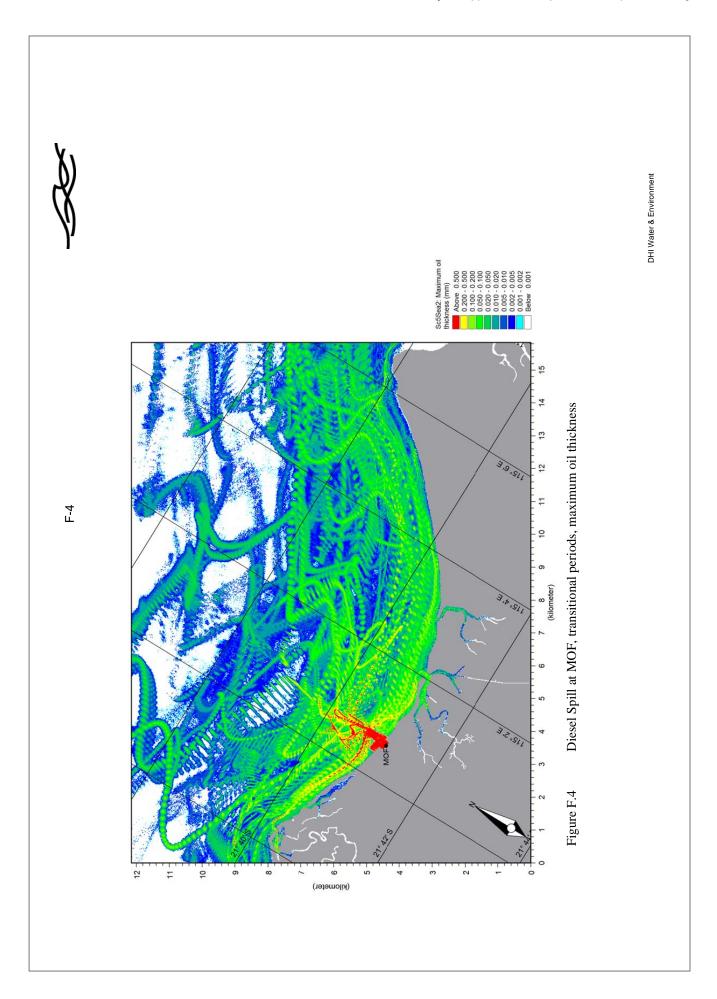


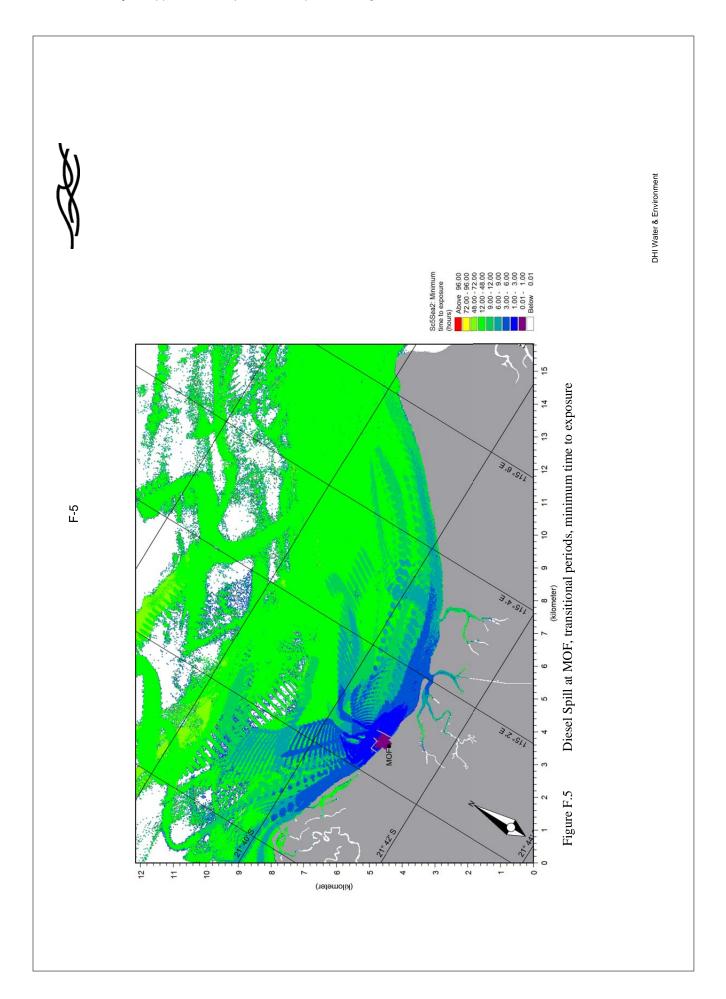


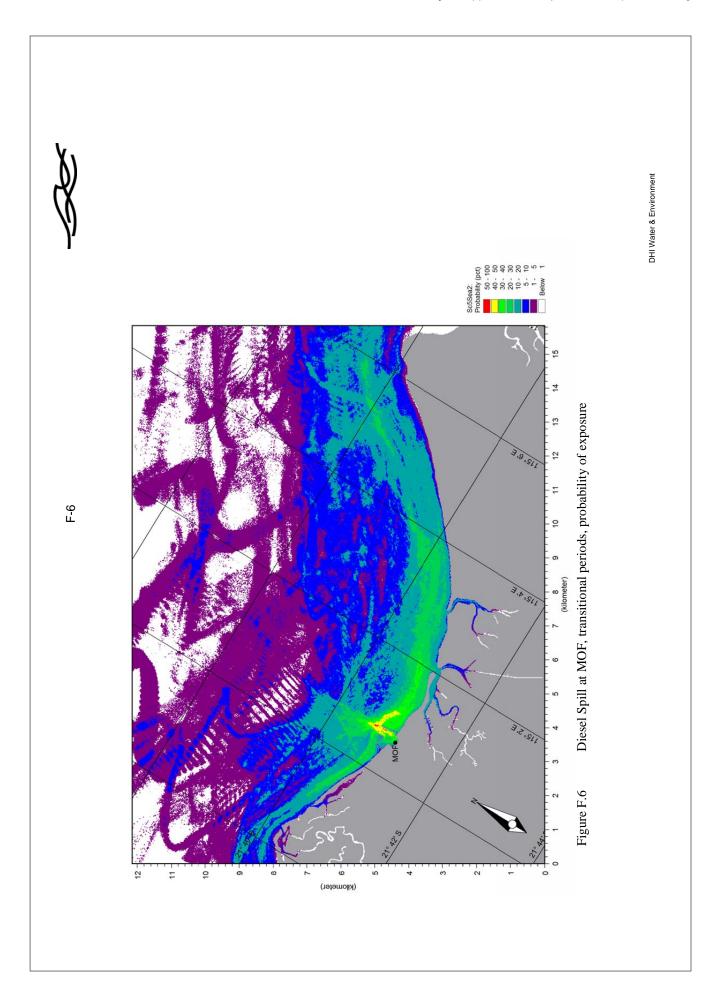


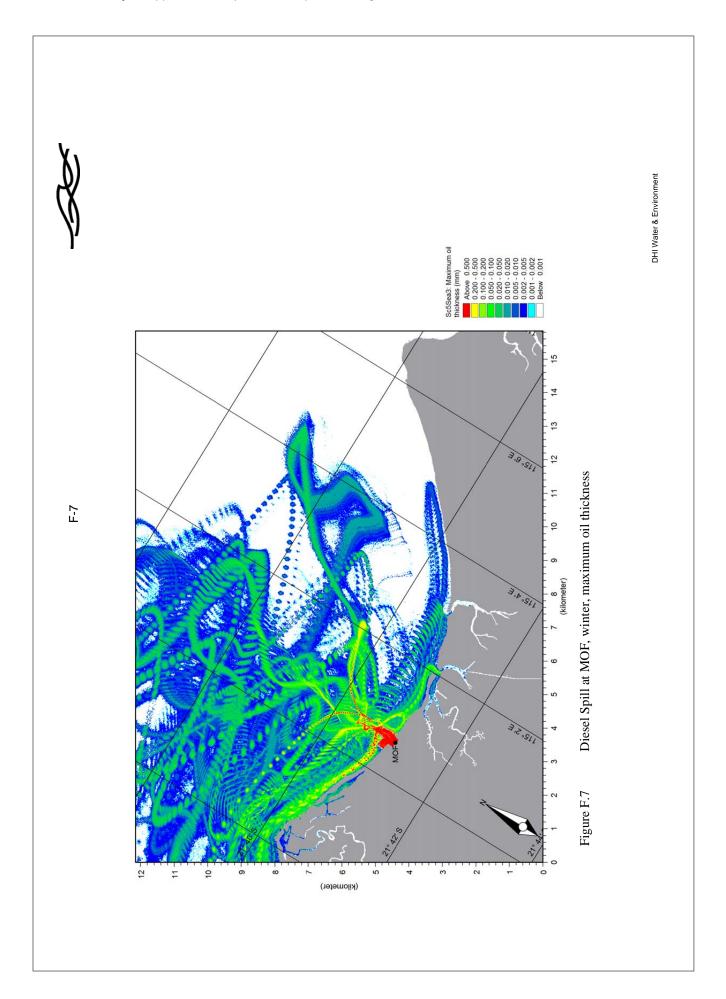


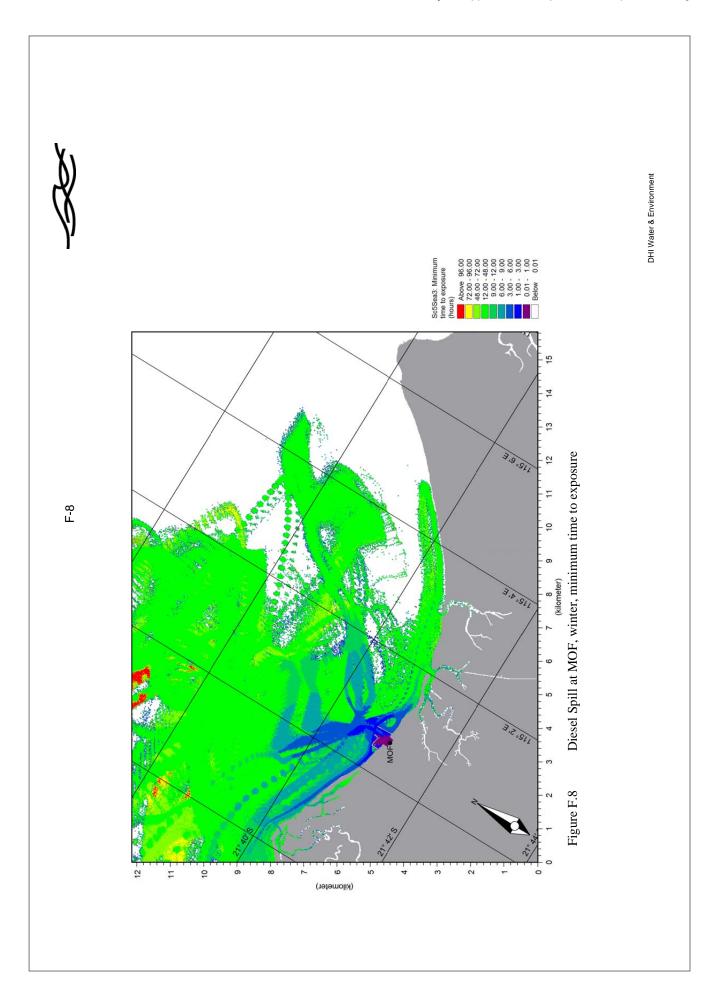


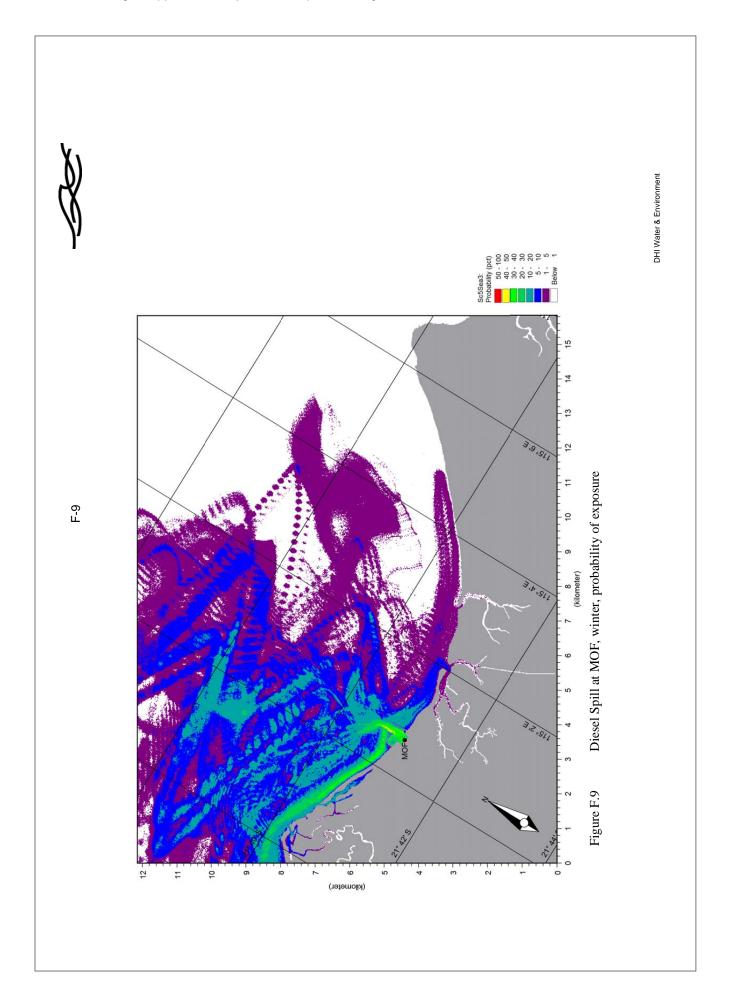












This page is intentionally blank

Appendix Q3

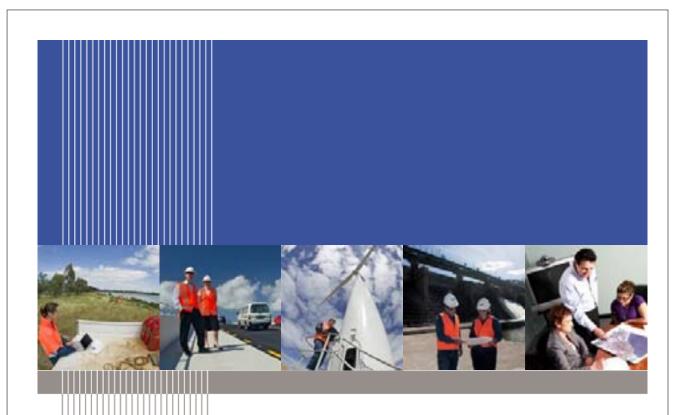
Modelling of the Discharges to the Marine Environment

Exec	utive Sum	mary		111
1	Introdu	ction		113
	1.1	Backgro	und	113
2	Dischar	ge Scenar	ios	115
	2.1	Dischar	ge Locations	115
	2.2	Nearsho	ore Discharge Scenarios	118
		2.2.1	Scenario 1: Continuous Co-mingled Discharges from Outlet 1	118
		2.2.2	Scenario 2: Discharge of Produced Water from Outlet 2	120
	2.3	OffShor	e Discharge Scenarios	121
		2.3.1	Scenario 3: Continuous Discharge of Produced Water from the Wheatstone Platform	121
		2.3.2	Scenario 4: Batch Discharge of MEG from the Wheatstone Platform	122
3	Charac	terisation (of the Ambient Environment	125
	3.1	Nearsho	ore Environment	125
		3.1.1	Bathymetry	126
		3.1.2	Ambient Air and Seawater Temperature	126
		3.1.3	Salinity	126
		3.1.4	Currents	127
	3.2	Offshore	e Environment	129
		3.2.1	Bathymetry	129
		3.2.2	Temperature	130
		3.2.3	Salinity	130
		3.2.4	Currents	130
4	Water C	uality Crit	teria	133
5	Dischar	ge Modelli	ing Methodology	135
	5.1	CORMIX		135
	5.2	URS Dilu	ution Model	135
	5.3	Limitatio	ons of the Dilution Modelling	136
	5.4	Interpre	tation of Results	137
6	Nearsh	ore Discha	rges - Co-mingled and Produced Water	139
	6.1		ge Scenario 1A: Co-mingled Discharge ional Phase)	139
	6.2	Discharge Scenario 1B: Co-mingled Discharge (Operational Phase)		
	6.3	Discharge Scenario 1C: Co-mingled Discharge (Construction Phase)		
	6.4	Dischard	ne Scenario 2: Produced Water	146

7	Offsho	re Dischar	ges - Produced Water and MEG	149
	7.1	Dischar	ge Scenario 3: Produced Water	149
		7.1.1	Scenario 3A	150
		7.1.2	Scenarios 3B, 3C, 3D and 3E	152
		7.1.3	Summary Scenario 3	156
	7.2	Dischar	ge Scenario 4: MEG	156
		7.2.1	Discharge Scenario 4C	158
		7.2.2	Implication for Discharge Scenarios 4A, 4B, 4D	162
	7.3	Dischar	ge Scenario 4E	163
		7.3.1	Scenario 4E: Mitigation Options	165
8	Summa	ary		167
	8.1	Nearsh	ore Discharges	167
	8.2	Offshore Discharges		167
	8.3	Recommendations		168
9	Refere	nces		169
10	Limitat	ions		171

Tables		
Table 2-1	Discharge Locations	115
Table 2-2	Scenario 1: Co-mingled Discharge from Outlet 1	118
Table 2-3	Diffuser Design Characteristics	120
Table 2-4	Scenario 2: Discharge of Produced Water from Outlet 2	120
Table 2-5	Scenario 3: Discharge of Produced Water	122
Table 2-6	Scenario 4: Batch Discharge of MEG	123
Table 3-1	Percentile Distribution of Depth Averaged Current Speeds (m/s) for Year 2007	127
Table 3-2	Percentile Distribution of Depth Averaged Current Speeds (m/s), 2006-2007	13
Table 4-1	Project Water Quality Criteria	133
Table 6-1	Outlet 1 Depth Averaged Current Speeds, MIKE21 2007	139
Table 6-2	Percentile Distribution of Depth Averaged Current Speeds (m/s), MIKE212007	146
Table 7-1	Current percentile velocities, 2006 -2007 (MIKE21)	149
Table 7-2	Dilutions Required to meet Water Quality Criteria	149
Table 7-3	CORMIX Results for the Worst-Case Distance (m) to Required Dilution	
	(Ambient Current Speed, 20 cm/s)	153
Table 7-4	Scenario 4: Dilutions to Meet Water Quality Criteria of 50 mg/l	157
Table 7-5	Scenario 4: Ambient and Discharge Characteristics	158
Table 7-6	Scenario 4C: Side view of plume development (m) (current speed of 23.3 cm/s)	159
Table 7-7	Scenario 4C: Worst Case Distance to Required Dilution (m), CORMIX (5th percentile)	160
Table 7-8	Scenario 4C: Hour O, Distance to Required Dilution (m), CORMIX (5 th percentile)	162
Table 7-9	Scenario 4E Comparison of Mitigation Options (current speed of 20 cm/s)	165
Figures		
Figure 2-1	Discharge Locations	116
Figure 2-2	Close up of Discharge Locations	117
Figure 2-3	Diffuser Configuration: (A) Top left, side view (B) Top right, top view, (C) Side view with diffuser perpendicular to coastline	119
Figure 3-1	Location of Ambient Environment Sampling Locations	125
Figure 3-2	Comparison of Monthly Averaged Air and Seawater Temperature Data	126
Figure 3-3	Salinity Data	127
Figure 3-4	Ranked Depth Averaged Current Speeds for Outlet 1 and Outlet 2, 2007	128
Figure 3-5	Outlet 1 Depth Averaged Current Direction Frequency Plot, 2007	128
Figure 3-6	Outlet 2 Depth Averaged Current Direction Frequency Plot, 2007	129
Figure 3-7	Bathymetry in the Vicinity of the Wheatstone Platform	130
Figure 3-8	Ranked Depth Averaged Current Speeds for Wheatstone Platform, 2006-2007	13
Figure 3-9	Wheatstone Platform Depth Averaged Current Direction Frequency Plot, 2006-2007	132
Figure 6-1	Scenario 1A: Side view of plume development downstream (m) of the diffuser (current speed of 20 cm/s)	140
Figure 6-2	Scenario 1A: Results from the Dilution Model, 2007	140
Figure 6-3	Scenario 1A: Worst Case Dilution with Distance from the Outlet, 2007	14
Figure 6-4	Scenario 1A: Near Field Worst Case Dilution with Distance from the Outlet, 2007	14
•		

Figures (cont'd)


Figure 6-5	Scenario 1B: Side view of plume development downstream (m) of the diffuser (current speed of 20 cm/s)	142
Figure 6-6	Scenario 1B: Results from the Dilution Model, 2007	143
Figure 6-7	Scenario 1B: Worst Case Dilution with Distance from the Outlet, 2007	143
Figure 6-8	Scenario 1B: Near Field Worst Case Dilution with Distance from the Outlet, 2007	144
Figure 6-9	Scenario 1C: Results from the Dilution Model, 2007	145
Figure 6-10	Scenario 1C: Worst Case Dilution with Distance from the Outlet, 2007	145
Figure 6-11	Scenario 1C: Near Field Worst Case Dilution with Distance from the Outlet, 2007	146
Figure 6-12	Scenario 2: Side view of plume development downstream (m) of the diffuser (current speed of 30 cm/s)	147
Figure 6-13	Scenario 2: Results from the Dilution Model, 2007	147
Figure 6-14	Scenario 2: Worst Case Dilution with Distance from the Outlet, 2007	148
Figure 6-15	Scenario 2: Near Field Worst Case Dilution with Distance from the Outlet, 2007	148
Figure 7-1	Scenario 3: Side view of Plume Development with Distance Downstream (m) from the Caisson, (Depth Averaged Current Speed of 20 cm/s)	150
Figure 7-2	Scenario 3: Results of the Dilution Model, 2006-2007	15
Figure 7-3	Scenario 3: Worst Case Dilution with Distance from the Caisson, 2006-2007	15
Figure 7-4	Scenario 3: Worst Case Near Field Dilution with Distance from the Caisson, 2006-2007	152
Figure 7-5	Scenario 3B and Scenario 3C: Near Field Worst-case Dilution with Distance Downstream of the Platform (Ambient Current Velocity 20 cm/s)	154
Figure 7-6	Scenario 3B and Scenario 3C: Far Field Worst-case Dilution with Distance Downstream of the Platform (Ambient Current Velocity 20 cm/s)	154
Figure 7-7	Cooling Water Discharge: Near Field Worst-case Dilution with Distance Downstream of the Platform (Ambient Current Velocity 20 cm/s)	155
Figure 7-8	Produced Water Discharge: Near Field Worst-case Dilution with Distance Downstream of the Platform (Ambient Current Velocity 20 cm/s)	155
Figure 7-9	Scenario 4A: Side view of plume development downstream (m) of the caisson (current speed of 20 cm/s)	157
Figure 7-10	Scenario 4C: Top view of plume development (m) both upstream and downstream of the caisson (current speed of 6.2 cm/3)	158
Figure 7-11	Scenario 4C: Dilution Contours for Various Ambient Current Speeds for Hour O, CORMIX	159
Figure 7-12	Maximum Tracer Concentrations from MIKE3D for the Winter Scenario, 11/06/07 - 25/06/07	16
Figure 7-13	Footprint of Tracer Concentration from MIKE3D for the Winter Scenario, Hour 27:30	16
Figure 7-14	Scenario 4E: Side view of plume development downstream of the caisson (current speed of 20 cm/s)	163
Figure 7-15	Scenario 4E: Results from the Dilution Model, 2006-2007	164
Figure 7-16	Scenario 4E: Worst Case Dilution with Distance from the Caisson, 2006-2007	164
Figure 7-17	Scenario 4E: Worst Case Near Field Dilution with Distance from the Caisson, 2006-2007	165

Appendices

Appendix A Characterisation of Discharges Appendix B MEG Discharge Scenarios Appendix C Dispersion Modelling Software Appendix D Development of the Dilution model Appendix E Calibration of Dilution model against Results from MIKE3D Appendix F Results of MIKE3D for MEG Scenario 4C

This page is intentionally blank

Wheatstone Project Appendix Q3 - Modelling of the Discharges to the Marine Environment

Report

Wheatstone Project - Modelling of the Discharges to the Marine Environment

25 JUNE 2010

Prepared for Chevron Australia Pty Ltd

QV1 Building 250 St Georges Terrace Perth, Western Australia 6000

42907466

This page is intentionally blank

Wheatstone Project Appendix Q3 - Modelling of the Discharges to the Marine Environment

Project Manager:

Damian Ogburn

Project Manager-Wheatstone Project

Principal-In-Charge:

Bob Anderson Senior Principal Marine Environmental Engineer

Author:

Dr Darlene Heuff

Senior Associate Scientist

Reviewer:

Dr Chris Reed Senior Project Scientist **URS Australia Pty Ltd**

Level 3, 20 Terrace Road East Perth WA 6004 Australia

T: 61 8 9326 0100 F: 61 8 9326 0296

Date: Reference: Status:

25 June 2010 42907466/WHST-STU-EM-RPT-0126/Rev 3 Final

© Document copyright of URS Australia Pty Limited.

This report is submitted on the basis that it remains commercial-in-confidence. The contents of this report are and remain the intellectual property of URS and are not to be provided or disclosed to third parties without the prior written consent of URS. No use of the contents, concepts, designs, drawings, specifications, plans etc. included in this report is permitted unless and until they are the subject of a written contract between URS Australia and the addressee of this report. URS Australia accepts no liability of any kind for any unauthorised use of the contents of this report and URS reserves the right to seek compensation for any such unauthorised use.

Document delivery

URS Australia provides this document in either printed format, electronic format or both. URS considers the printed version to be binding. The electronic format is provided for the client's convenience and URS requests that the client ensures the integrity of this electronic information is maintained. Storage of this electronic information should at a minimum comply with the requirements of the Commonwealth Electronic Transactions Act (ETA) 2000.

Where an electronic only version is provided to the client, a signed hard copy of this document is held on file by URS and a copy will be provided if requested.

URS

("jubal-4290" FREE mail-appendixes task reports may 2017 app glqDicumen900 FE, modeling of decharges to the mailne or

This page is intentionally blank

Wheatstone Project Appendix Q3 - Modelling of the Discharges to the Marine Environment

Abbreviations

Abbreviation	Description
℃	Degrees Celsius
2D	Two-dimensional
3D	Three-dimensional
ANZECC	Australian and New Zealand Environment Conservation Council
bpd	Barrels per day
cm/s	Centimetres per second
CW	Cooling water
E	Easting
g/kg	Grams per kilogram
g/L	Grams per litre
km	kilometres
kg/m ³	Kilograms per cubic metre
I/s	Litres per second
LNG	Liquefied natural gas
m	Meters
m³/hr	Cubic meters per hour
MEG	Monoethylene glycol
MEG/PW	Monoethylene glycol and produced water stream
MEG/PW/CW	Monoethylene glycol, produced water and cooling water streams
mm	Millimetres
Mtpa	Million tonnes per annum
N .	Northing
ppt	Parts per thousand
PW	Produced water
RO	Reverse osmosis
USEPA	United States Environmental Protection Agency

_	
	This page is intentionally blank

Wheatstone Project Appendix Q3 - Modelling of the Discharges to the Marine Environment

Executive Summary

URS has been commissioned by Chevron Australia (Chevron) to conduct modelling of discharges to the marine environment associated with The Wheatstone Project (Project).

A total of three discharge locations have been considered. Two discharge points are located within the nearshore environment and the third is located in the offshore environment at the Wheatstone Platform (WP).

The URS Dilution Model was developed specifically for this project and was used to extend short period 3D far field model simulations of discharge impacts to represent long-term conditions. The URS Dilution Model required less than one minute of computer processing to simulate a two year time period, and could therefore provide long-term 'worst case' conditions for each discharge that were not otherwise feasible using detailed 3D transport models. The URS Dilution Model is an extension of the steady-state CORMIX dilution model that takes into account unsteady currents for year long (or multiple-year) time periods.

For each of the discharge scenarios investigated, dilution curves were developed highlighting the predicted dilution as a function of distance from the discharge point. This information was then used to determine mixing zone concentrations relative to ANZECC guidelines or relative to derived environmental quality criteria and subsequently to assess potential discharge impacts. The interpretation of the results of the dilution modelling based on the project water quality goals is outside the scope of this assessment and has been considered elsewhere (Chevron Australia 2010),

Nearshore Discharges

Discharges in the nearshore emanated from two discharge points: Outlet 1 located along the Product Loading Facility (PLF) in 5 m depth of water, and Outlet 2 approximately 20 km offshore in 20 m depth of water.

Scenario 1 focused on three discharge scenarios from Outlet 1. Two operational flow scenarios were considered: a maximum flow scenario (Scenario 1A) and a typical flow scenario (Scenario 1b). The characteristics of the discharge were such that the discharge plume for Scenario 1A was buoyant, while the plume associated with Scenario 1B was determined to be negatively buoyant. Scenario 1C focused on a scenario during the construction phase of the Project and was also associated with a negatively buoyant plume.

Although Outlet 1 is proposed to be equipped with a diffuser, results of the assessment suggest that the dilution potential of the nearshore environment is limited by a combination of the density differential between the discharge and the ambient environment combined with the limited depth of the water column.

Scenario 2 involved the discharge of produced water (PW) from Outlet 2. At the time of the assessment, information relating to the characterisation of the discharge was limited. The discharge plume is anticipated to be positively buoyant. The effectiveness of the proposed diffuser will depend on the details of the characterisation of the produced water that will be discharged form this location.

Offshore Discharges

Discharges associated with the WP, located approximately 150 km offshore in 73 m of water, involved the release of PW, cooling water (CW) and monoethylene glycol (MEG) into the marine environment.

Executive Summary

Scenario 3 investigated the fate of a continuous discharge of PW from the platform. Scenarios have been considered for the discharge of produced water in isolation (Scenario 3A, 3D, 3E, 3F) as well as in combination with CW (Scenarios 3B and 3C). The combined PW/CW discharge has a significant impact on the characterisation of the discharged stream as the volume of CW discharged (8000 m³/hr) is significantly greater than the flow rate of produced water (272 m³/hr). Results suggest that improved dilution outcomes for PW are associated with segregated discharge streams of PW and CW.

Scenario 4 was associated with a total of five different MEG/PW 18 hour batch discharge scenarios including the co-mingled discharge of MEG/PW and CW that is discharged via the same caisson.

Scenario 4A, 4B, 4C, and 4D considered the dilution of the MEG/PW stream in isolation of the CW. Scenario 4C was identified as the worst-case dilution scenario and was investigated in some detail. Results of the dilution modelling suggested that the MEG would disperse within 24 hours of cessation of the MEG from the discharge stream.

Scenario 4E represents the MEG/PW/CW discharge configuration. A preliminary investigation into a variety of mitigation options has been conducted and results suggest that end of pipe engineering may lead to an improved environmental outcome.

Introduction

Chevron Australia Pty Ltd proposes to construct and operate a multi-train Liquefied Natural Gas (LNG) and domestic gas (Domgas) plant 12 km south west of Onslow on the Pilbara Coast. The LNG and Domgas plant will initially process gas from fields located approximately 200 km offshore from Onslow in the West Carnarvon Basin and other yet-to-be determined gas fields. The project is referred to as the Wheatstone Project and "Ashburton North" is the proposed site for the LNG and Domgas plant. The Project will require the installation of gas gathering, export and processing facilities in Commonwealth and State Waters and on land. The LNG plant will have a maximum capacity of 25 Million Tonnes Per Annum (MTPA) of LNG. The Wheatstone Project has been referred to the State Environmental Protection Authority (EPA) and the Commonwealth Department of Environment, Water, Heritage and the Arts (DEWHA). URS has been commissioned by Chevron to undertake dispersion modelling of discharges to the marine environment associated with the Project to support the environmental impact assessment process.

A total of three discharge locations have been considered. Two discharge points are located within the nearshore environment and the third is located in the offshore environment at the Wheatstone Platform.

This report presents the methodology and findings of the discharge modelling including both near and far field modelling of the various discharges to the marine environment. The focus of the assessment is on the development of estimates of worst-case profiles of dilution.

The interpretation of the results of the dilution modelling based on the project water quality goals is outside the scope of this assessment and has been considered elsewhere (Chevron 2010)

1.1 **Background**

Chevron is proposing to develop the Petroleum Titles for locations WA-17-R, WA-253-P and WA 356-P which are located approximately 145 km offshore in the Carnarvon Basin.

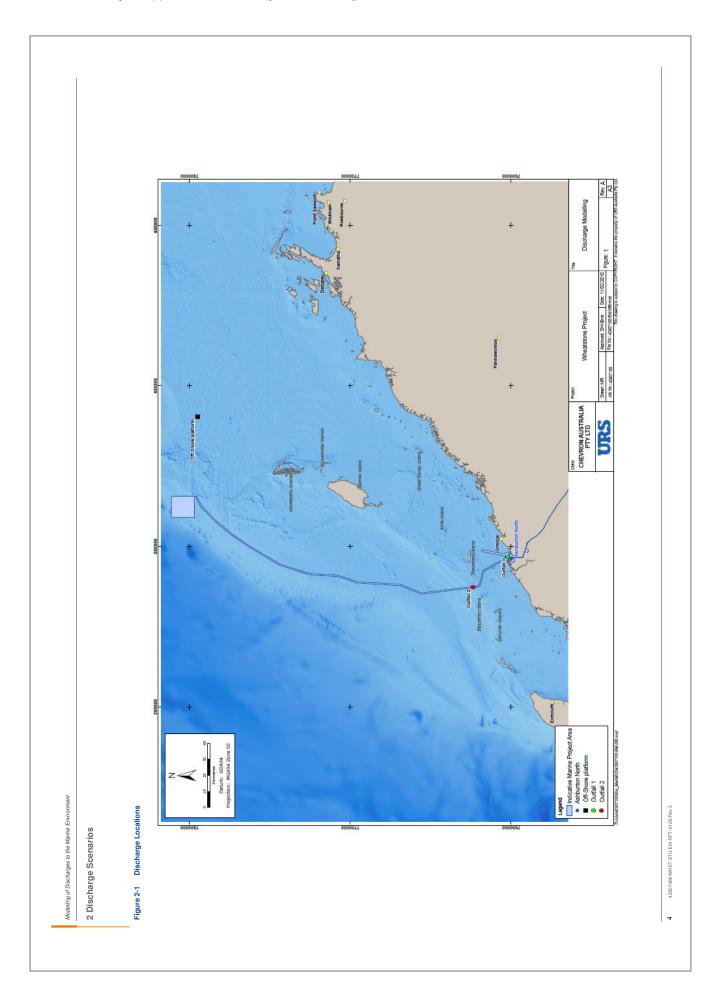
Gas, condensate and associated water will be brought to the surface via a network of sub-sea wells and pipelines to the central Wheatstone Platform for processing. At the platform the water produced with the gas and condensate will be separated from the stream, cleaned and discharged to the marine environment. The gas and condensate will be dehydrated, compressed and sent to the onshore liquefied natural gas (LNG) facility via a 200 km pipeline.

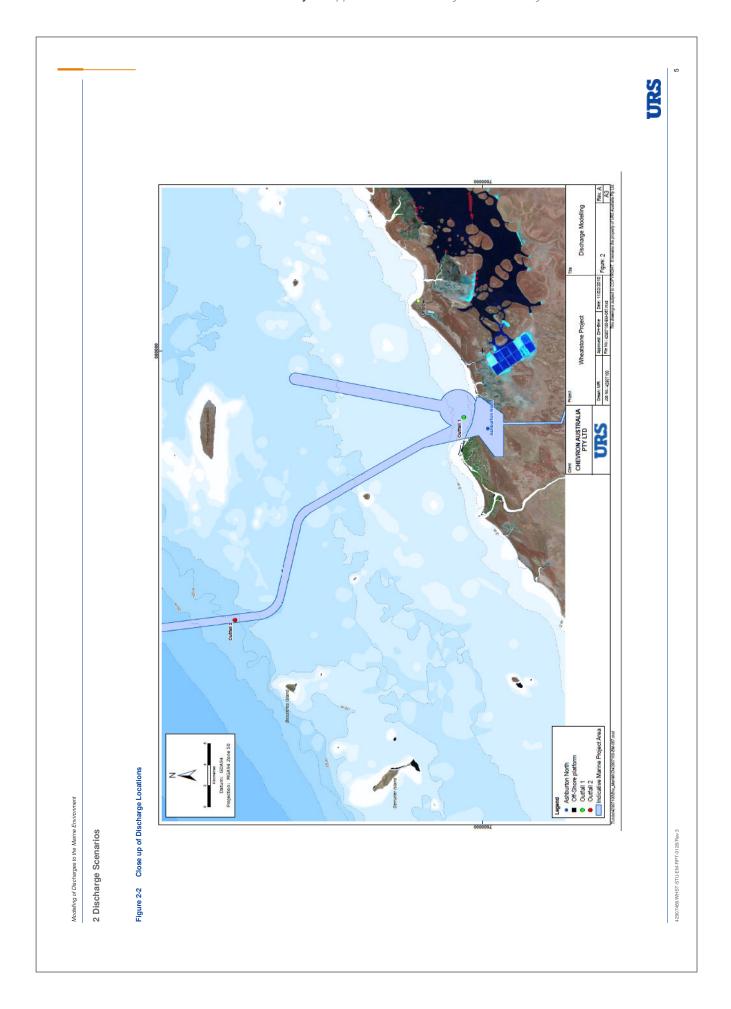
The onshore facility will consist of up to five LNG trains with a total capacity of 25 MTPA. At the onshore facility, the condensate and gas streams will be separated. The condensate will be stabilised in preparation for refining at Australian and overseas destinations. The gas stream will be prepared for use both domestically and for export.

This page is intentionally blank

 $\textbf{Wheatstone Project} \ \mathsf{Appendix} \ \mathsf{Q3-Modelling} \ \mathsf{of} \ \mathsf{the Discharges} \ \mathsf{to} \ \mathsf{the Marine Environment}$

Discharge Scenarios


2.1 **Discharge Locations**


Figure 2-1 and Figure 2-2 show the location of the discharge outlets associated with the onshore LNG facility (Outlet 1 and Outlet 2) and the Wheatstone Platform located approximately 145 km offshore

Within the nearshore environment, Outlet 1 and Outlet 2 are located at approximately -5 m chart datum (CD) and -20 m CD in marine water, respectively. Due to the gradual slope of the seafloor, Outlet 2 is located approximately 20 km offshore. The Wheatstone Platform is located within 73 m of water depth (Table 2-1).

Table 2-1 **Discharge Locations**

Parameter	Outfall 1	Outfall 2	Offshore platform	
Location	293,754 E, 7,601,736 N	274,621 E, 7,623,332 N	380,860 E, 7,795,000 N	
Depth of water column	5	20	73	

2 Discharge Scenarios

2.2 **Nearshore Discharge Scenarios**

As noted in Section 2.1, there are two Outlet locations associated with discharges to the marine environment in the nearshore environment.

From Outlet 1 located along the Product Loading Facility (PLF), a number of different waste streams will be continuously co-discharged including treated sanitary wastewater, treated process wastewater, treated contact storm water, desalination filter plant brine, and desalination reverse osmosis plant brine. The characteristics of the co-mingled discharge will vary with the ratio of the input streams.

Treated produced water (PW) will be continuously discharged from Outlet 2. The characteristics of the PW discharge will be more consistent than the discharge from Outlet 1.

This section presents the details of the nearshore discharges and the specifics of the discharge scenarios that have been considered for this assessment.

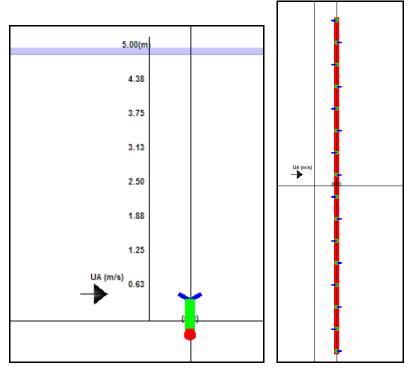
2.2.1 Scenario 1: Continuous Co-mingled Discharges from Outlet 1

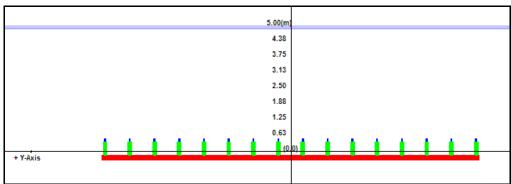
The discharge of sanitary wastewater, process wastewater, contact stormwater, desalination filter plant brine and desalination plant reverse osmosis (RO) plant brine, is proposed to be co-discharged from the nearshore outlet located along the PLF in 5 m of water (Outlet 1, Figure 2-2). A total of three continuous discharge scenarios have been considered; representing peak volumes during the operational phase of the onshore facility (associated with heavy rainfall events and large percentage discharges of stormwater runoff), typical operational volumes of co-mingled discharges, and a discharge scenario associated with the construction phase of the Project.

Details of the discharge scenarios are presented in Table 2-2 and additional information relating to the characterisation of the co-mingled discharges is presented in Appendix A.

Scenario 1: Co-mingled Discharge from Outlet 1

Parameter	Units	Scenario 1A	Scenario 1B	Scenario 1C
Description	-	Operational – maximum	Operational -typical	Construction
Discharge Streams	-	Sanitary wastewater, process wastewater, contact stormwater, desalination filter plant brine, Desalination RO Plant Brine	Sanitary wastewater, process wastewater, contact stormwater, desalination filter plant brine, Desalination RO Plant Brine	Sanitary wastewater, contact stormwater, Desalination RO Plant Brine
Depth	m 5		5	5
Temperature	С	ambient	ambient	ambient
Salinity	ppt	22.4 ⁽¹⁾	60.16 ⁽¹⁾	45.69 ⁽¹⁾
Density kg/m ³		1013.88 ⁽¹⁾	1042.51 ⁽¹⁾	1031.41 ⁽¹⁾
Flow rate	m³/hr	776	172	517


Note (1): Calculated based on an ambient temperature of 25 °C


Based on the resultant densities and ambient water characteristics, it is expected that the discharge for Scenario 1A will be positively buoyant, and tend to rise to the water surface. The discharges for Scenario 1B and 1C will be negatively buoyant and initially remain near sea floor.

2 Discharge Scenarios

The discharge outlet is proposed to be fitted with a diffuser designed to optimise the dilution of the discharge within the marine environment. Details of the proposed diffuser are summarised in Table 2-3 and depicted in Figure 2-3.

Figure 2-3 Diffuser Configuration: (A) Top left, side view (B) Top right, top view, (C) Side view with diffuser perpendicular to coastline

2 Discharge Scenarios

Table 2-3 **Diffuser Design Characteristics**

Parameter	Units	Value
Design volume	m³/hr	331 ⁽¹⁾
Pipeline diameter	mm	254 ⁽¹⁾
Port diameter	mm	76.2 ⁽¹⁾
Number of ports	-	16 ⁽¹⁾
Port arrangement	-	alternating without fanning ⁽¹⁾
Port type	-	Sharp edge ⁽¹⁾
Diffuser length	m	15 ⁽¹⁾
Diffuser type	-	Alternating perpendicular ⁽¹⁾
Length of port	m	0.5 ⁽²⁾
Angle of outlets	degrees	30 ⁽²⁾

Note (1) Based on information provided by Bechtel

Scenario 2: Discharge of Produced Water from Outlet 2 2.2.2

Outlet 2 (Figure 2-2) is associated with the continuous discharge of PW from the onshore facility. At the time of this assessment, source and detailed characterisation of the PW was not available. The discharge scenario is summarised in Table 2-4 and was developed based on characteristics of the PW that will be discharged from the offshore platform (Scenario 3, Section 2.3.1).

A diffuser has been proposed for use at Outlet 2. As details of the diffuser design are yet to be finalised, for this assessment, a diffuser similar that that described in Section 2.2.1 was assumed. In order to satisfy the near field model design criteria (Appendix C), it has been assumed that the diffuser for Outlet 2 is 20 m in length. All other diffuser design characteristics applied to Outlet 2 are as summarised in Table 2-3.

Table 2-4 Scenario 2: Discharge of Produced Water from Outlet 2

Parameter	Units	Scenario 2A
Description	-	Operational phase, continuous discharge
Discharge Streams	-	PW
Depth	m	20
Temperature	С	Ambient + 30
Salinity	ppt	17 ⁽¹⁾
Density	kg/m ³	998.19 ⁽²⁾
Flow rate	m³/hr	552

Note (1): Assumed based on salinity characteristics of lago (conservative).

⁽²⁾ Assumed for the purposes of this assessment.

^{(2):} Calculated based on an ambient temperature of 25 °C Based on the discharge densities and ambient water characteristics, it is expected that the discharge for Scenario 2 will be positively buoyant, and tend to rise to the water surface.

2 Discharge Scenarios

2.3 OffShore Discharge Scenarios

Three discharge types have been assessed: the continuous discharge of PW, the continuous discharge of CW and the batch discharge of monoethylene glycol (MEG). The primary focus of the assessment is on the PW and MEG discharges. The co-mingled discharge of PW or PW/MEG with the CW stream has been investigated as mitigation options for the PW and the PW/MEG discharge streams. The details of the discharge scenarios are presented in the following sections.

2.3.1 Scenario 3: Continuous Discharge of Produced Water from the Wheatstone Platform

The discharge of PW at the Wheatstone Platform is proposed to occur continuously at a rate of approximately 6.36 ML (40,000 barrels) per day. Six PW discharge scenarios have been investigated for worst-case dilutions associated with the discharge of PW in isolation and in combination with the discharge of CW. CW is proposed to be discharged continuously at a rate of approximately 238 GL (1.5 million barrels) per day.

Scenario 3A involves an isolated discharge of PW from a 1.5 m caisson with a discharge depth of 20

Scenario 3B incorporates the continuous discharge of CW within the same caisson as the PW. The discharge will thus consist of co-mingled PW and CW which enters the marine environment at a depth of 20 m below the surface of the water column.

Scenario 3C is identical to Scenario 3B with the exception that the co-mingled PW/CW discharge is proposed to enter the marine environment at a depth of 40 m.

Scenario 3D, Scenario 3E and Scenario 3F incorporate segregated PW and CW discharge streams that are separated by a horizontal distance of 124 m. For these scenarios, the release of the CW and the PW occur at opposite corners of the platform. The dilution of the discharge streams are investigated for a PW release depth of 40 m (all three scenarios) and a release depth of CW of either 20 m (Scenario 3D) or 40 m (Scenario 3E and Scenario 3F). In order to maximise the path length between the two discharges, Scenario 3F incorporates a PW discharge pipe that is oriented at an angle of 45° below horizontal and directed away from the CW outlet.

Details of the discharge scenarios are summarised in Table 2-5. In all cases, the discharges associated with Scenario 3 are positively buoyant.

2 Discharge Scenarios

Table 2-5 Scenario 3: Discharge of Produced Water

Parameter	Units	Scenario 3A	Scenario 3B	Scenario 3C	Scenario 3D	Scenario 3E	Scenario 3F
Description	-	Operational phase, continuous discharge					
Discharge Streams	-	PW	Co-mingled PW and CW	Co-mingled PW and CW	Separated PW and CW streams	Separated PW and CW streams	Separated PW and CW streams
Pipe Diameter	m	1.5	1.5	1.5	PW 0.305 CW 1.5	PW 0.305 CW 1.5	PW 0.305 at 45° ⁽²⁾ CW 1.5
Depth	m	73	20	40	PW 40 CW 20	PW 40 CW 40	PW 40 CW 40
Temperature	С	75	45.8	45.8	PW 75 CW 45	PW 75 CW 45	PW 75 CW 45
Density	kg/m ³	963 ⁽¹⁾	1012	1012	PW 963 @ 75 CW 1013 @ 45	PW 963 @ 75 CW 1013 @ 45	PW 963 @ 75 CW 1013 @ 45
Flow rate	m ³ /hr	272	7788	7788	PW 208 CW 7580	PW 208 CW 7580	PW 208 CW 7580
Chlorine concentration	ppm	n/a	0.195	0.195	PW n/a CW 0.2	PW n/a CW 0.2	PW n/a CW 0.2

Note (1): Based on information provided by Chevron

2.3.2 Scenario 4: Batch Discharge of MEG from the Wheatstone **Platform**

The discharge of MEG from the WP is proposed to occur approximately four times per year during start up events. Five discharge scenarios have been considered. Scenario A through Scenario D involve the discharge of a mixture of MEG and PW to the marine environment at 50 ℃ for a period of 18 hours (Appendix B). The volume of MEG discharged each hour remains constant for a given scenario at between 20 m³/hr and 150 m³/hr. The volume of PW increases during the 18 hours from a flow rate of 0 m³/hr to a maximum of between 36.3 m³/hr and 272 m³/hr depending on the scenario (Table 2-6). The co-mingled discharge stream of MEG and PW will be abbreviated as MEG/PW.

Due to the characteristics of the combined MEG and PW, this discharge stream (in isolation) is negatively buoyant for the 18 hours that MEG is contained within the discharge stream (Appendix B). Thus the MEG/PW (in isolation) will descend through the water column to the seafloor.

Alternatively, the discharge of MEG/PW may occur within the same caisson as the CW discharge. The combined discharges will be positively buoyant (Appendix B) and will rise to the surface of the water column once entering the marine environment. The co-mingled discharge of MEG/PW and cooling water (MEG/PW/CW) has also been assessed (Scenario E).

Additional information relating to these five discharge scenarios is provided in Appendix B.

⁽²⁾ Angled downward from horizontal and away from CW discharge point

2 Discharge Scenarios

Table 2-6 Scenario 4: Batch Discharge of MEG

Parameter	Units	Scenario 4A	Scenario 4B	Scenario 4C	Scenario 4D	Scenario 4E
Description	-	Combined MEG & PW	Combined MEG & PW	Combined MEG & PW	Combined MEG & PW	Combined MEG & PW & CW
Discharge Streams	-	384 & 484	384 & 484	384 & 484	384 & 484	384 & 484 & CW
Depth	m	73	73	73	73	73
Duration	hr	18	18	18	18	18
Temperature	С	50	50	50	50	50
Density	kg/m ³	Variable ⁽¹⁾	Variable ⁽¹⁾	Variable (1)	Variable (1)	Variable (1)
MEG flow rate	m³/hr	20	50	150	100	100
PW flow rate	m ³ /hr	Ramping from 0 to 36.3	Ramping from 0 to 90.7	Ramping from 0 to 272	Ramping from 0 to 272	Ramping from 0 to 272
CW flow rate	m³/hr	-	-	-	-	8000
Note (1): Varies by hour depending on ratio of PW to MEG in solution. Refer to Appendix B.						

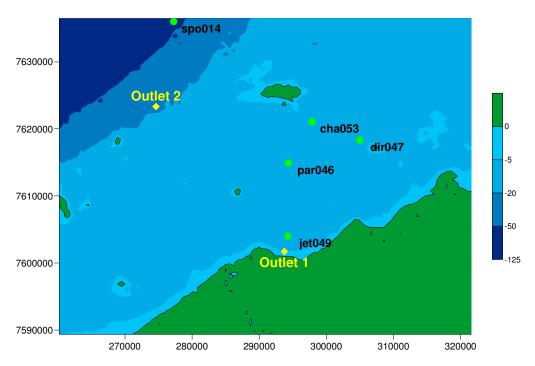
This page is intentionally blank	

Wheatstone Project Appendix Q3 - Modelling of the Discharges to the Marine Environment

Characterisation of the Ambient Environment

Detailed analysis of available ambient environmental data including both meteorological and marine data has been presented elsewhere in the EIS including, but not limited to:

- Chevron Australia (2010) Chapter 6
- DHI (2010): "Wheatstone Project. Dredge Spoil Modelling"
- GEMS (2010): Wheatstone Wind, Currents and Wave Verification and Analysis


The following sections summarise the data that will be used in the near and/or far field modelling of the discharges to the marine environment.

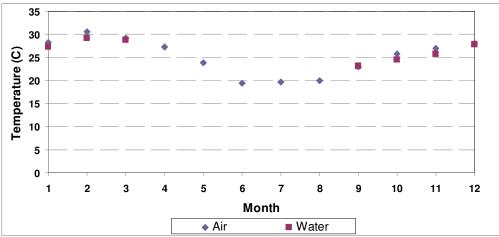
Details of the analysis of observational data that has been undertaken for use in the development and calibration of the URS Dilution Model (Section 5.2) are provided in Appendix E

3.1 **Nearshore Environment**

Seawater temperature, salinity and current data from a number of nearshore locations (Figure 3-1) have been reviewed for the purposes of this assessment. Temperature data was available for the 46 day period 26/07/09 through 10/09/2009 at several locations, and the extended through month 11/01/09 and 16/04/09 at two locations (jet049 and spo014).

Location of Ambient Environment Sampling Locations

3 Characterisation of the Ambient Environment

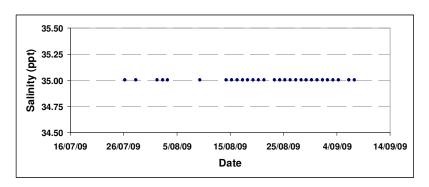

Bathymetry 3.1.1

As noted in Section 2.1, Outlet 1 and Outlet 2 are located within the nearshore environment at water depths of 5 m and 20 m respectively. The seafloor slopes gradually with Outlet 2 (at -20 m CD) located approximately 20 km from the shoreline (Figure 3-1).

3.1.2 **Ambient Air and Seawater Temperature**

In the absence of a additional seawater temperature data, data from the Onslow Meteorological Station was processed into monthly averaged ambient air temperature and compared with monthly averaged temperature measurements of seawater from jet049 (Figure 3-1). Results show good agreement between the monthly averaged air temperature and seawater temperature at these locations. Thus, when required, gaps in the seawater temperature were supplemented by the monthly averaged air temperature.

Comparison of Monthly Averaged Air and Seawater Temperature Data



3.1.3 Salinity

In the absence of additional salinity data, salinity data at the jet049 location (Figure 3-1) the 46 day period 26/07/09 through 10/09/09 was used to characterize the salinity in the area. The data is shown in Figure 3-3 from which an ambient salinity of 35 ppt was adopted for this assessment.

3 Characterisation of the Ambient Environment

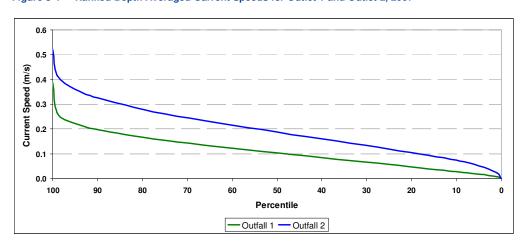
Figure 3-3 Salinity Data

3.1.4 **Currents**

The currents used for this assessment were extracted from the DHI developed MIKE21 hydrodynamic model that has been set-up for this area has been described in detail in DHI Wheatstone Project Dredge Spoil Modelling (DHI 2010). A total of 12 months of hourly depth averaged currents (2007) were extracted from the model in the vicinity of Outlet 1 and Outlet 2.

Appendix C provides further details on the MIKE21 model set-up.

A summary of the depth averaged current speeds is presented in Table 3-1 and depicted in Figure 3-4. In general, the percentiles of current speeds at Outlet 1 are less than those for Outlet 2 with median current speeds of 10 cm/s and 19 cm/s respectively.


Table 3-1 Percentile Distribution of Depth Averaged Current Speeds (m/s) for Year 2007

Percentile	Outlet 1	Outlet 2
100	0.39	0.52
99	0.26	0.42
95	0.22	0.36
75	0.15	0.26
50	0.10	0.19
25	0.06	0.12
10	0.03	0.07
5	0.02	0.05

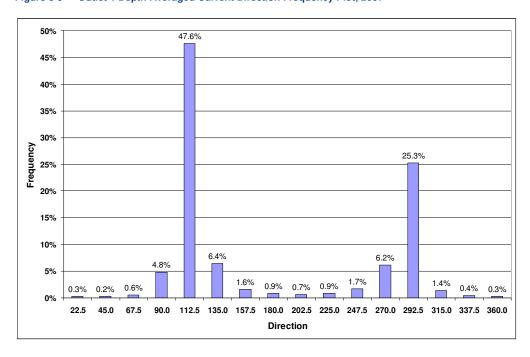

3 Characterisation of the Ambient Environment

Figure 3-4 Ranked Depth Averaged Current Speeds for Outlet 1 and Outlet 2, 2007

The longshore directionality of the current at Outlet 1 is highlighted in the direction frequency distribution plot of Figure 3-5 with increased variability in current direction associated with Outlet 2 located approximately 20 km offshore (Figure 3-6).

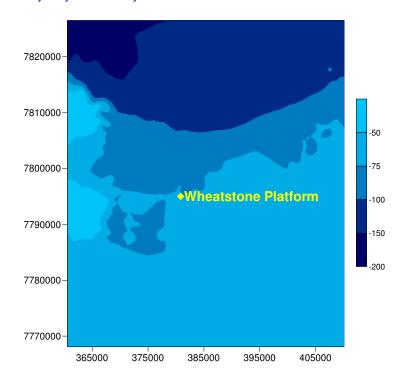
Outlet 1 Depth Averaged Current Direction Frequency Plot, 2007

3 Characterisation of the Ambient Environment

Figure 3-6 **Outlet 2 Depth Averaged Current Direction Frequency Plot, 2007**

3.2 **Offshore Environment**

Limited data was available for the characterisation of the ambient environment in the vicinity of the Wheatstone Platform.


3.2.1 **Bathymetry**

As noted in Section 2.1, the Wheatstone Platform is to be located approximately 150 km off shore in water depth of 73 m (Figure 3-7).

3 Characterisation of the Ambient Environment

Figure 3-7 **Bathymetry in the Vicinity of the Wheatstone Platform**

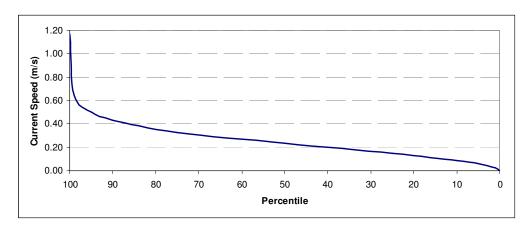
3.2.2 **Temperature**

In the absence of additional information, for the purposes of this assessment, ambient temperatures were assumed to correspond to those of the nearshore environment.

3.2.3 Salinity

In the absence of additional information, for the purposes of this assessment, ambient salinity was assumed to be equal to 35 ppt for all months.

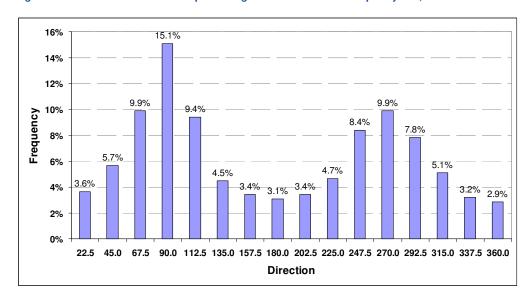
3.2.4 **Currents**


A total of 24 months of hourly depth averaged currents (2006-2007) in the vicinity of the platform were extracted from the 1215 m grid of the DHI two-dimensional hydrodynamic model MIKE21.

3 Characterisation of the Ambient Environment

Table 3-2 Percentile Distribution of Depth Averaged Current Speeds (m/s), 2006-2007

Percentile	Wheatstone Platform
100	1.17
99	0.65
95	0.50
75	0.33
50	0.23
25	0.15
10	0.09
5	0.06


Figure 3-8 Ranked Depth Averaged Current Speeds for Wheatstone Platform, 2006-2007

3 Characterisation of the Ambient Environment

Figure 3-9 Wheatstone Platform Depth Averaged Current Direction Frequency Plot, 2006-2007

Water Quality Criteria

The Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC 2000) established the water quality standard necessary to support the environmental values identified in the State Water Quality Management Strategy No.6 (Department of Environment 2004). These guidelines provide instructions for translating the desired environmental values into water quality management criteria and also provide a framework for assessing the risks of each pollutant in the proposed discharge and how it affects each environmental value.

Summarised in Table 4-1 are the adopted project-related water quality criteria.

The interpretation of the results of this assessment based on the project-goals has been considered elsewhere (Chevron Australia 2010, Appendix Q).

Table 4-1 **Project Water Quality Criteria**

Region	Pollutant	Units	Objective
Nearshore	Nitrogen ⁽¹⁾	μg/l	100
	Phosphorous ⁽¹⁾	μg/l	15
	PW ⁽²⁾	-	1300 dilution
	Temperature excess	С	2
	Salinity excess/deficit	ppt	±5%
Off shore	MEG	mg/l	50
	Untreated PW ⁽²⁾	-	1300 dilution
	Temperature excess	∞	<3
	Salinity excess/deficit	ppt	±5%
	Chlorine	ppb	3

Note(1): ANZECC Table 3.3.4 http://www.mincos.gov.au/ data/assets/pdf file/0019/316126/wqg-ch3.pdf

(2): Pluto EIA http://www.woodside.com.au/Our+Business/Projects/Pluto/Sustainability/Environmental+Approval.htm

This page is intentionally blank	

Wheatstone Project Appendix Q3 - Modelling of the Discharges to the Marine Environment

Discharge Modelling Methodology

For this assessment a combination of models has been utilised including MIKE21, MIKE3D, CORMIX and a URS developed steady state dilution model based on the results of CORMIX.

Further details are presented in:

- Appendix C Dispersion Modelling Software
- Appendix D Development of the URS Dilution Model
- Appendix E Calibration of URS Plume Model Using Results of MIKE3D

5.1 **CORMIX**

The CORMIX modelling system is a software system for the analysis, prediction and design of pollutant discharges into diverse water bodies. The key focus of the assessment is on the geometry and dilution characteristics of the initial mixing zone, including compliance with regulatory constraints as well as predicting the behaviour of the discharge plume with distance from the diffuser. CORMIX consists of a series of software modules for the prediction of discharges into receiving waters, with emphasis on steady-state values for the geometry and dilution characteristics. The collection of modules consist of regional flow models based upon integral, length scale, and passive diffusion approaches to simulate the hydrodynamics of near field and far field jets and plumes (Doneker and Jirka, 2007). The CORMIX modelling system consists of four integrated hydrodynamic models:

- CORMIX 1 for single port discharges.
- CORMIX 2 for multi-port diffuser discharges.
- CORMIX 3 for buoyant surface discharges.
- DHYDRO for the analysis of dense and/or sediment discharges in coastal environments.

CORMIX predicts the geometry and dilution characteristics of effluent flow resulting from a single or multi-port discharge or arbitrary density, location, and geometry into an ambient receiving water body that may be stagnant or flowing and have ambient density stratification of different types. The plume is assumed to be at steady state, which means that successive elements follow the same trajectory. Predictions include dilution, plume diameter, plume elevation, and other plume properties. Once the effluent plume surfaces, the far field solution calculates dilution due to horizontal turbulent mixing of the plume with ambient water.

Appendix C provides details of the CORMIX model set-up for the different discharge scenarios.

5.2 **URS Dilution Model**

The URS Dilution Model was developed specifically for this project and intended to be used to extend short period 3D far field model simulations of discharge impacts to represent long-term conditions. The URS Dilution Model requires less than one minute of computer processing to simulate a two year time period, and could therefore provide long-term 'worst case' conditions for each discharge that are not feasible within this project deliverable using detailed 3D transport models.

The URS Dilution Model is an extension of the steady-state CORMIX dilution model to account for unsteady currents for year-long time periods.

The adjustments to the CORMIX model predictions are made to account for the effects of unsteady currents on:

· plume duration and direction

5 Discharge Modelling Methodology

- plume dispersion
- build-up of background concentration

Appendix D provides details about the development of the URS Dilution Model and Appendix E details of the calibration of the model using results from MIKE3D.

5.3 **Limitations of the Dilution Modelling**

General Limitations

Modelling of complex physical systems is based on the use of numerical techniques to solve a set of governing equations. In general, the more complicated the system that is modelled, the more parameterisations (or approximations) that are required in order to solve these equations; particularly in relation to the representation of sub-grid scale processes. Thus, there are inherently a number of 'tuneable' parameters that are required as input into the models. Model developers often suggest default values for these parameters which may be based on observational data, laboratory experiments or professional experience. Depending on the scale of the project, assessing the sensitivity of model results to input data and/or the value of tuneable parameters can be prohibitive, either in terms of computational requirements, timeframes for completion of the assessment, and/or budget constraints.

Model validation is a critical component to both model development and application. Rarely, however, does a suitable data set exist with which to conduct a detailed, statistically meaningful model validation study.

Another challenge facing the dilution modeller is the uncertainty in relation to the preciseness and representativeness of input data combined with limited observational data, which are key factors contributing to the lack of comprehensive model validation studies for the majority of dilution/dispersion assessments.

CORMIX Assumptions and Limitations

Dispersion of the discharges associated with the Wheatstone Project was modelled using CORMIX, which has been widely used elsewhere for near field modelling studies. These models describe the dispersion of pollutants on timescale from minutes to hours after discharge from the diffuser.

However, CORMIX is based upon a number of assumptions that need to be considered when interpreting the data from the model including (but not limited to):

- CORMIX is a simplified simulation of a complex process. It is most robust in simulation of the initial mixing of a plume. The model calculates far field dispersion based on depth specified data at a single port, and as such cannot capture circulation or ambient conditions that change with distance from the diffuser.
- In general, it is recommended that the dilution and path predictions provided by CORMIX should only be treated with confidence within approximately 100 m from the diffuser. While dilutions at greater distances can be obtained using the model, these should be treated as indicative only.
- CORMIX assumes that the area available for dilution is unconstrained by changing bathymetry. This assumption may be a significant simplification of the true environment.
- CORMIX does not cope well with a "bottom hit" of the plume. In reality, a bottom hit will also constrain the entrainment into the plume, and should result in decreased rate of dilution.

5 Discharge Modelling Methodology

 For a diffuser that incorporates alternating outlet designs, CORMIX assumes that the discharge is adequately represented by the average angle which is typically equivalent to a vertically upwards release of effluent to the receiving environment.

URS Dilution Model Limitations

The URS Dispersion Model has been developed to estimate the dilution of a conservative tracer within a homogenous marine environment. It has been calibrated against DHI MIKE3D simulations for scenarios representing a two-week period in each of summer and winter (Appendix E).

The URS Dilution Model is based on the steady state solutions of CORMIX and has been calibrated against output from MIKE21 and MIKE3D. Thus the inherent limitations associated with CORMIX, MIKE21 (Appendix C, DHI (2009)) and MIKE3D (Appendix C) will apply to the URS Dilution Model well.

Project-Specific Limitations

This assessment relies on the completeness, accuracy and/or representativeness of a number of input data sets including:

- · Project information including (but not limited to):
 - Representativeness of the discharge scenarios
 - Characterisation of the discharges
 - Diffuser design
- Client supplied data including (but not limited to):
 - Bathymetry
 - Current
 - Temperature, salinity
 - Wind fields
- Non site-specific default parameters used in the modelling including (but not limited to):
 - Manning number
 - Background accumulation
 - 2D dispersion coefficients
 - 3D eddy viscosity coefficients

Other limitations of the assessment include (but may not be limited to):

- The accuracy of the characterisation of the ambient environment; and
- The sensitivity of the dilution modelling results to tuneable model input parameters.

5.4 Interpretation of Results

When reviewing contour plots from the URS Dilution Model or dispersion results from MIKE21 and MIKE3D it is important to interpret the results presented in the context of the limitations outlined in the previous section. In particular, those associated with validating the relevance and applicability of both the model input data sets and model output which may have a significant impact on the accuracy of the results presented.

5 Discharge Modelling Methodology

It is noted that the presentation of CORMIX results within the tables are reported to include several significant figures. However, this suggests a level of accuracy of model predictions which is not realisable, nor verifiable. Quantifying the uncertainty in the results presented is in general, not undertaken for the reasons discussed in Section 5.3.

It should be noted that software graphics packages such as SURFER, which has been used in this assessment to develop the dilution contour plots, involve the interpolation of results onto the contour grid and will therefore be associated with some degree of spatial uncertainty. Results presented in tabular form are extracted directly from model output and are thus a better representation of predicted dilutions.

Finally, it is important to note that the results presented in the form of a contour plot for the maximum dilution (concentration, etc), represents a composite of the maximum dilution for the period under consideration at each location on the grid (regardless of when it occurred) and does not represent a 'snapshot' in time.

Nearshore Discharges – Co-mingled and Produced Water

This section presents the findings of the dispersion modelling of the nearshore discharges using CORMIX and/or the URS Dilution Model described in Section 5 and presented in detail in Appendix C and Appendix D.

6.1 Discharge Scenario 1A: Co-mingled Discharge (Operational Phase)

Table 2-2 showed that scenario 1A represents the co-mingled discharge of a number of streams (sanitary waste water, process wastewater, contact stormwater, and brine) and is associated with maximum flow volume conditions (776 m³/hr) during the operational phase of the project at a depth of -5 m CD. The discharge stream will be released into the marine environment at ambient temperature but is buoyant relative to the marine environment due to the high volume of stormwater runoff. The outlet is proposed to be fitted with a diffuser with characteristics as outlined in Section 2.2.1

Table 3-1 showed that the depth averaged current speeds for 2007 at the location of outlet 1 ranged from 3 cm/s (10th percentile) to 22 cm/s (95th percentile) with a top speed of 39 cm/s (Table 6-1).

Table 6-1 Outlet 1 Depth Averaged Current Speeds, MIKE21 2007

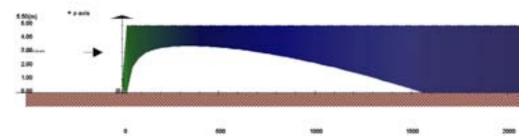
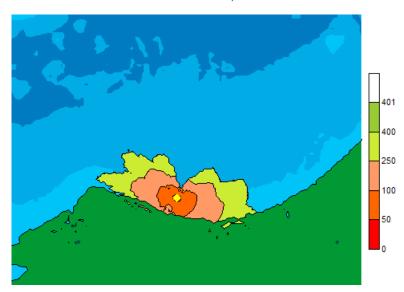

Percentile	Speed (m/s)
100	0.39
95	0.22
75	0.15
50	0.10
25	0.06
10	0.03
5	0.02

Figure 6-1 shows an example of plume development downstream of the diffuser, based on results of CORMIX for a uniform current speed of 20 cm/s. Results for Scenario 1A (for all current speeds) suggests that initial mixing of the discharge over the 5 m water column occurs rapidly. However, the density of the combined discharge with the ambient environment results in a marine mixture that is less dense than the far field ambient environment and the plume is predicted to begin to rise to the surface at a distance of approximately 25 m downstream of the diffuser, Continued mixing as the plume propagates downstream leads eventually to a uniformly mixed 5 m layer, with the downstream distance to return to a state that is uniformly mixed over the water column dependent on the ambient current speed.

6 Nearshore Discharges – Co-mingled and Produced Water


Figure 6-1 Scenario 1A: Side view of plume development downstream (m) of the diffuser (current speed of 20 cm/s)

A contour plot of the results from the URS Dilution Model is presented in Figure 6-2 for 2007.

The worst-case dilution as a function of distance from the diffuser is depicted in Figure 6-3 and for the near field in Figure 6-4. Results suggest that the dilution of the plume occurs gradually with dilutions of less than 600 occurring at distances of over 5 km downstream. Results of the modelling (Appendix E) do not suggest significant build up of pollutants in this area, however, the continuous discharge of materials combined with the limited water depth inhibit rapid dilution of the plume.

Figure 6-2 Scenario 1A: Results from the Dilution Model, 2007¹

¹ Note that the results presented in the figure represent a composite of the maximum dilution at each location on the grid (regardless of when it occurred) for the one year period and are not representative of a snap shot in time.

^{42907466/}WHST-STU-EM-RPT-0126/Rev 3

6 Nearshore Discharges - Co-mingled and Produced Water

Figure 6-3 Scenario 1A: Worst Case Dilution with Distance from the Outlet, 2007

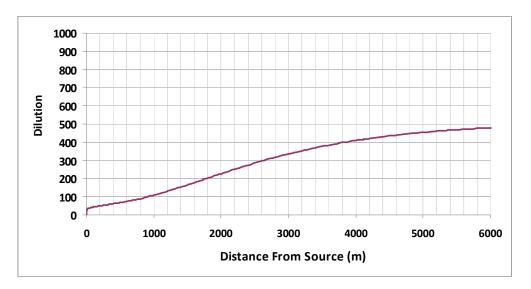
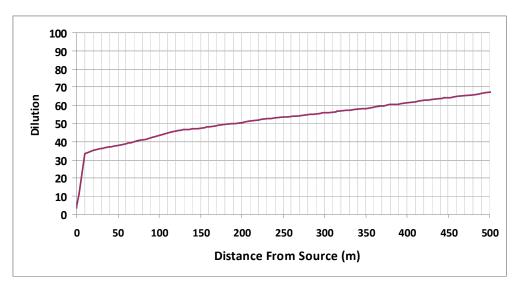



Figure 6-4 Scenario 1A: Near Field Worst Case Dilution with Distance from the Outlet, 2007

6 Nearshore Discharges - Co-mingled and Produced Water

6.2 Discharge Scenario 1B: Co-mingled Discharge (Operational Phase)

Scenario 1B is associated with a co-mingled discharge of sanitary waste water, process wastewater, contact stormwater, and brine which is discharged into the marine environment at a rate of 172 m³/hr and a depth of -5 m CD. In contrast to the Scenario 1 discharge, Scenario 2 is associated with a negatively buoyant discharge plume whose tendency is to descend within the water column to the seafloor.

Momentum associated with the diffuser leads initially to a well mixed water column in the vicinity of the diffuser. However, as was the case for Scenario 1, the combined marine mixture of the initial discharge and the ambient environment is predicted by CORMIX to lead to a plume which is still negatively buoyant when compared with the far field marine environment and will descend within the water column as depicted in Figure 6-5. The extent of the descent and the distance downstream for which uniform mixing over the entire water column occurs depends on the ambient current velocity.

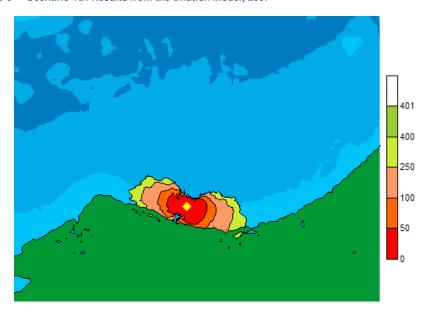
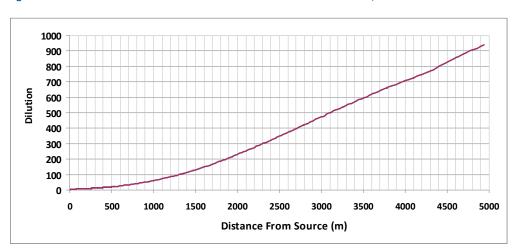
Figure 6-5 Scenario 1B: Side view of plume development downstream (m) of the diffuser (current speed of 20 cm/s

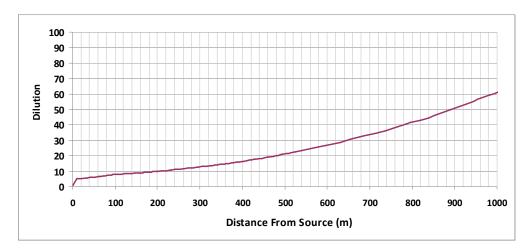
A contour plot of the results from the URS Dilution Model is presented in Figure 6-6 for 2007.

The worst-case dilution as a function of distance from the diffuser is depicted in Figure 6-7 and for the near field in Figure 6-8. Results suggest that the dilution of the plume occurs more rapidly than was found for Scenario 1. Dilution is still predicted to occur gradually, however, with limited water depth playing a significant role in inhibiting dilution in this area.

6 Nearshore Discharges - Co-mingled and Produced Water

Figure 6-6 Scenario 1B: Results from the Dilution Model, 2007²


Figure 6-7 Scenario 1B: Worst Case Dilution with Distance from the Outlet, 2007

² Note that the results presented in the figure represent a composite of the maximum dilution at each location on the grid (regardless of when it occurred) for the one year period and are not representative of a snap shot in time.

6 Nearshore Discharges - Co-mingled and Produced Water

Figure 6-8 Scenario 1B: Near Field Worst Case Dilution with Distance from the Outlet, 2007

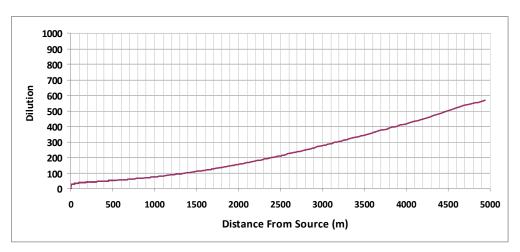
6.3 Discharge Scenario 1C: Co-mingled Discharge (Construction Phase)

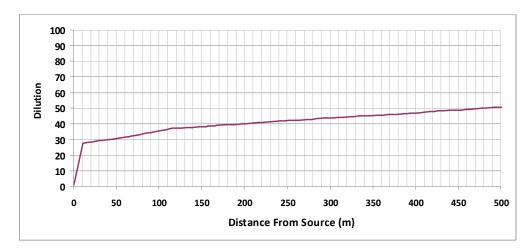
Scenario 1C focuses on the impact of co-mingled discharges (sanitary waste water, contact stormwater, brine) from Outlet 1 associated with the Construction phase of the project. The discharges will enter the marine environment at a rate of 517 m³/hr and a depth of -5 m CD. Based on the properties of the co-mingled discharge (Appendix A), the plume is less buoyant than the surrounding marine environment. The diffuser will ensure that the discharge is mixed over the vertical extent of the water column within a short distance of the discharge outlets. However, as was found in the previous scenarios, the resultant mixture will still be denser than the far field ambient environment. Results from CORMIX suggest that a situation similar to that depicted in Figure 6-5 is likely to occur in which the plume becomes isolated within the lower portion of the water column, before being entrained to form a well-mixed layer further downstream.

Presented in Figure 6-9 is a contour plot of dilution based on the results of the URS Dilution Model for 2007. Presented in Figure 6-10 is the worst-case dilution for 2007 with a close up of the near field region presented in Figure 6-11. Results are similar to that found for Scenario 1A and Scenario 1B with dilution occurring gradually with distance from the discharge point.

6 Nearshore Discharges - Co-mingled and Produced Water

Scenario 1C: Results from the Dilution Model, 2007³ Figure 6-9


Figure 6-10 Scenario 1C: Worst Case Dilution with Distance from the Outlet, 2007

³ Note that the results presented in the figure represent a composite of the maximum dilution at each location on the grid (regardless of when it occurred) for the one year period and are not representative of a snap shot in time.

6 Nearshore Discharges - Co-mingled and Produced Water

Figure 6-11 Scenario 1C: Near Field Worst Case Dilution with Distance from the Outlet, 2007

6.4 Discharge Scenario 2: Produced Water

Scenario 2 involves the discharge of PW at a rate of $552 \text{ m}^3/\text{hr}$ from Outlet 2 located approximately 20 km off shore in -20 m CD of water and equipped with a diffuser to accelerate the dispersion of the plume in the near field.

Table 6-2 Percentile Distribution of Depth Averaged Current Speeds (m/s), MIKE21 2007

Percentile	Speed
100	0.52
95	0.36
75	0.26
50	0.19
25	0.12
10	0.07
5	0.05

The plume of PW is buoyant relative to the marine environment and although initially mixed to the depth of the water column, similar to Scenario 1, the plume is predicted by CORMIX to be distinguishable from the ambient marine environment and rise to the surface of the water column (Figure 6-12). For the case of an ambient current velocity of 20 cm/s, the plume is predicted to be well mixed through the depth of the water column at a distance greater than 4 km from the outlet.

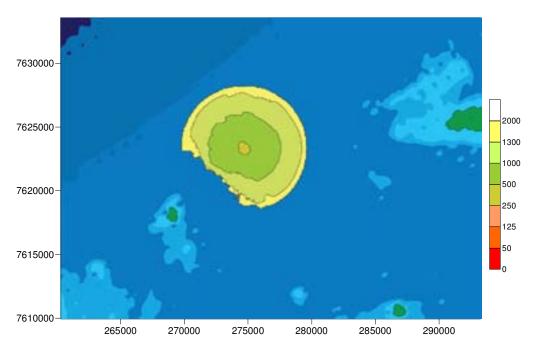

6 Nearshore Discharges - Co-mingled and Produced Water

Figure 6-12 Scenario 2: Side view of plume development downstream (m) of the diffuser (current speed of 30 cm/s

Presented in Figure 6-13 is a contour plot of the dilution for 2007 based on results from the URS Dilution Model. Figure 6-14 presents the worst-case dilution transect, with results depicted in Figure 6-15 for the near field region. Dilutions of approximately 400 are predicted within 120 meters from the discharge. Dilutions of 1300 are predicted to occur at distances of over 4 km from the discharge outlet.

Figure 6-13 Scenario 2: Results from the Dilution Model, 2007⁴

⁴ Note that the results presented in the figure represent a composite of the maximum dilution at each location on the grid (regardless of when it occurred) for the one year period and are not representative of a snap shot in time.

6 Nearshore Discharges - Co-mingled and Produced Water

Figure 6-14 Scenario 2: Worst Case Dilution with Distance from the Outlet, 2007

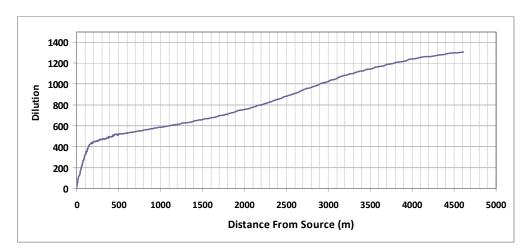
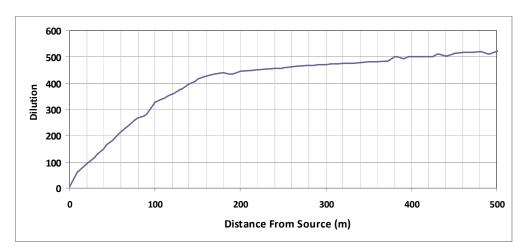



Figure 6-15 Scenario 2: Near Field Worst Case Dilution with Distance from the Outlet, 2007

Offshore Discharges – Produced Water and MEG

This section presents the findings of the dispersion modelling of the offshore discharges using CORMIX and/or the URS Dilution Model described in Section 5 and presented in detail in Appendix C and Appendix D.

Table 7-1 shows the current velocity percentiles based on 2 years of MIKE21 simulations (2006-2007). The depth average currents for 2006-2007 will be used to assess the dispersion of the offshore plumes for Scenario 3 and Scenario 4.

Table 7-1 Current percentile velocities, 2006 -2007 (MIKE21)

Percentile	Velocity (cm/s)
99	64.5
95	50.1
90	43.1
75	32.9
50	23.3
25	14.9
10	8.9
5	6.2
1	2.8

7.1 **Discharge Scenario 3: Produced Water**

Scenario 3 focuses on the discharge of PW from the Wheatstone Platform. Results for six scenarios are presented which investigate worst-case dilution associated with the discharge of PW in isolation and in combination with the discharge of CW.

Table 7-2 summarises the dilutions required to achieve the water quality criteria presented in Table 4-1 for each of the six scenarios.

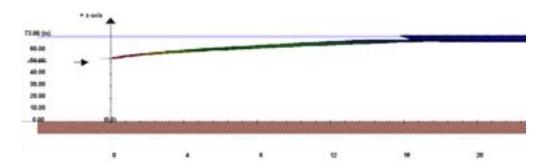
Dilutions Required to meet Water Quality Criteria

Parameter	Scenario 3A	Scenario 3B	Scenario 3C	Scenario 3D	Scenario 3E	Scenario 3F
Oil	1300	1270 ⁽²⁾	1270 ⁽²⁾	PW 1300, CW n/a	PW 1300, CW n/a	PW 1300, CW n/a
Temperature ⁽¹⁾	18.3	8.6	8.6	PW 18.3, CW 8.3	PW 18.3, CW 8.3	PW 18.3, CW 8.3
Chlorine	-	65.0	65.0	PW n/a CW 66.7	PW n/a CW 66.7	PW n/a CW 66.7

Note (1): Based on an ambient temperature of 20 ℃.

(2): An initial dilution of 30 is achieved as a result of the commingling of PW with CW prior to release.

(3): n/a Not applicable


7 Offshore Discharges – Produced Water and MEG

7.1.1 Scenario 3A

Scenario 3A represents the discharge of PW from the Wheatstone Platform in isolation from other discharge streams. The PW will be discharged at a rate of 272 m³/hr and a depth of 20 m. Due to its low density (963 kg/m³) the discharge plume will be very buoyant when compared with the ambient environment into which it is discharged.

The development of the discharge plume with distance from the caisson, based on the near field modelling using CORMIX is depicted in Figure 7-1 for an ambient current speed of 20 cm/s. The highly buoyant plume is predicted to rise rapidly to the surface and remain as a thin layer at the surface for some distance downstream.

Figure 7-1 Scenario 3: Side view of Plume Development with Distance Downstream (m) from the Caisson, (Depth Averaged Current Speed of 20 cm/s)

A contour plot of the results of the URS Dilution Model is presented in Figure 7-2. The worst case dilution transect is presented in Figure 7-3 with Figure 7-4 focusing on the near field region. The dilution profile is similar to that for Scenario 3 (discharge of PW from Outlet 2), with dilution contours of 1300 extending beyond 4 km from the point of discharge.

7 Offshore Discharges – Produced Water and MEG

Figure 7-2 Scenario 3: Results of the Dilution Model, 2006-2007⁵

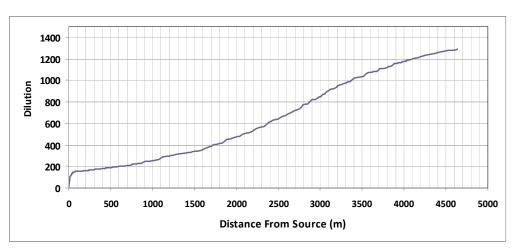



Figure 7-3 Scenario 3: Worst Case Dilution with Distance from the Caisson, 2006-2007

⁵ Note that the results presented in the figure represent a composite of the maximum dilution at each location on the grid (regardless of when it occurred) for the two year period and are not representative of a snap shot in time.

42907466/WHST-STU-EM-RPT-0126/Rev 3

39

7 Offshore Discharges – Produced Water and MEG

250 200 Dilution 150 100 50 0 0 50 100 150 200 250 300 350 400 450 500 Distance From Source (m)

Figure 7-4 Scenario 3: Worst Case Near Field Dilution with Distance from the Caisson, 2006-2007

7.1.2 Scenarios 3B, 3C, 3D and 3E

Results from CORMIX

Presented in Table 7-3 is a summary of CORMIX results. For each of the scenarios, the downstream distance to achieve the required dilution for temperature is highlighted in the table in red, chlorine in green and PW dilution in blue.

Results suggest that the dilution of PW in isolation is more effective than when combined with the CW. The initial improved dilution of 30 associated with the co-mingled discharged is lost as the co-mingled discharge plume is large as well as very buoyant relative to the ambient environment and reaches the surface within 16 m (Scenario 3B) when released at 20 m depth. Releasing the co-mingled discharge at 40 m depth does not lead to significant improvements in dilution with the plume predicted to reach the surface at a downstream distance of 33 m (Scenario 3C) in a 20 cm/s current.

Results highlight the benefit of segregated PW and CW discharge outlets. PW released in isolation of CW at a depth of 20 m is estimated to exceed the dilution criteria of 1300 at distances of 1,700 m downstream of the discharge outlet (Scenario 3A). As is the case for the release of CW (Scenario 3D and 3E), increasing the discharge depth of PW to 40 m leads to a significant improvement in the dilution with criteria attainable within a downstream distance of 65 m from the discharge outlet.

Results do not highlight any issues relating to temperature with the <3 ℃ above ambient criteria met within 15 m of the point of discharge outlet.

With respect to chlorine, results suggest that the water quality objective of 3 ppb will be achieved within 50 m to 150 m for discharges released from 40 m depth (Scenario 3C, Scenario 3E, Scenario 3F). Results for Scenario 3B and Scenario 3D which involve the release of CW at a depth of 20 m

7 Offshore Discharges – Produced Water and MEG

suggest that distances in the order of 2000 m will be required in order to achieve the 3 ppb water quality objective for chlorine.

Table 7-3 CORMIX Results for the Worst-Case Distance (m) to Required Dilution (Ambient Current Speed, 20 cm/s)

Dilution	Scenario 3A PW @ 20 m			Scenario 3D		Scenario 3E		Scenario 3F	
		@ 20 m			CW @20	PW @40	CW @40	PW @40	CW @40
10	2	12 ⁽¹⁾	12 ⁽¹⁾	2	13	2	13	0.5	13
20	4 ⁽¹⁾	22	21	3.5	22	3.5	22	2	22
65	9	2,200 ⁽²⁾	120 ⁽²⁾	8	2,000	8	48	7	48
100	12	3,500	850	12	3,200	12	840	10	840
500	422	9,200	8,450	36	8,600	36	8,030	34	8,030
1000	1,300	12,600	12,400	59	12,000	59	12,000	57	12,000
1270	1,650	14,000 ⁽³⁾	14,000 ⁽³⁾	65	13,300	65	13,200	64	13,200
1300	1,700 ⁽³⁾	14,200	14,200	65	13,400	65	13,500	64	13,500
1500	1,950	15,000	15,000	66	14,300	66	14,500	66	14,500

Note (1): Distance to required dilution based on temperature criteria (< 3 °C above ambient)

- (2): Distance to required dilution based on criteria relevant to chlorine (3 ppb)
- (3): Distance to required dilution based on criteria for PW (dilution of 1300)

To complement the information presented in Table 7-3, the CORMIX results are presented graphically in Figure 7-5 through Figure 7-8. The dilution as a function of downstream distance from the discharge point is presented along with the required dilutions to achieve ambient water quality criteria.

7 Offshore Discharges – Produced Water and MEG

Figure 7-5 Scenario 3B and Scenario 3C: Near Field Worst-case Dilution with Distance Downstream of the Platform (Ambient Current Velocity 20 cm/s)

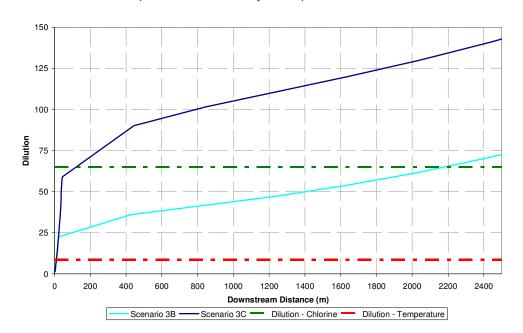
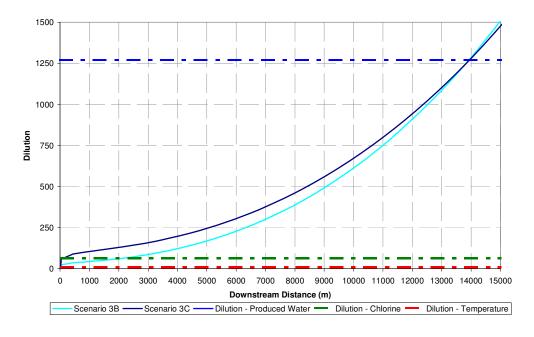



Figure 7-6 Scenario 3B and Scenario 3C: Far Field Worst-case Dilution with Distance Downstream of the Platform (Ambient Current Velocity 20 cm/s)

7 Offshore Discharges - Produced Water and MEG

Figure 7-7 Cooling Water Discharge: Near Field Worst-case Dilution with Distance Downstream of the Platform (Ambient Current Velocity 20 cm/s)

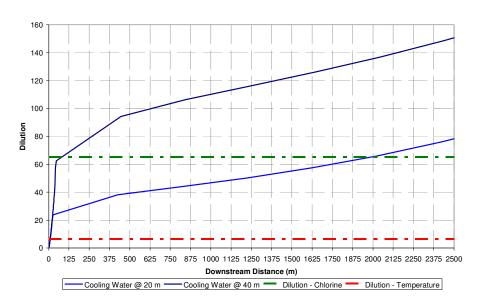
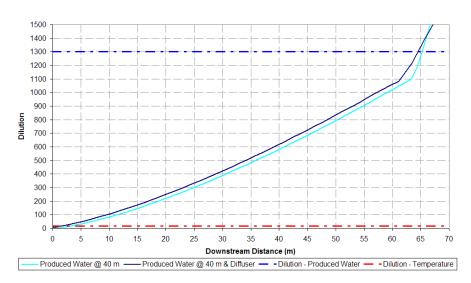



Figure 7-8 Produced Water Discharge: Near Field Worst-case Dilution with Distance Downstream of the Platform (Ambient Current Velocity 20 cm/s)

42907466/WHST-STU-EM-RPT-0126/Rev 3

43

7 Offshore Discharges – Produced Water and MEG

7.1.3 **Summary Scenario 3**

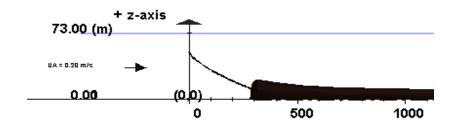
CORMIX results for Scenario 3 suggest that:

- Meeting the water quality objective of <3°C above ambient will be achievable within 15 m of the discharge outlet for all scenarios.
- Results for a segregated PW discharge at 20 m depth (Scenario 3A) suggest that the water quality criteria for PW dilution are exceeded at distances in excess of 1700 m.
- Results for co-mingled CW/PW discharge at both 20 m and 40 m depth (Scenario 3B and Scenario 3C) suggest that the water quality criteria for PW dilution are exceeded at distances in excess of 14,000 m.
- Results for CW discharges at 20 m depth (Scenario 3D) suggest that water quality criteria for chlorine are exceeded at distances in excess of 2000 m.
- The segregation of the PW and CW discharges and release at a horizontal separation distance of 124 m will lead to improved dilution outcomes when compared with co-mingled or adjacent discharges.

Results for segregated CW and PW discharges at 40 m depth (Scenario 3E and Scenario 3F) suggest that water quality criteria for chlorine and PW dilution are achievable within 65 m of the platform.

7.2 **Discharge Scenario 4: MEG**

As noted in Section 2.3.2, consideration has been given to the discharge of the MEG/PW in isolation (Scenarios 4A, 4B, 4C and 4D) and in combination with CW (Scenario 4E) that is discharged from the same caisson.


For Scenario 4A through Scenario 4D the assessment of the dilution of the MEG/PW discharge has focused on worst-case discharge conditions. As the ratio of PW to MEG increases, the density differential between the discharge and the ambient marine environment (during summer ambient conditions) reduces from a maximum effluent density access of 61.3 kg/m3 (Hour 0, Appendix B) to 4.9 kg/m³ (Hour 17, Appendix B). Consequently, the discharge flow rate increases with increasing volumes of PW.

For Scenario 4A through Scenario 4D, as a result of the negative buoyancy of the MEG/PW with respect to the marine environment into which it is discharged, results of the CORMIX modelling suggests that for all 14 hours of the batch discharge, the effluent will descend through the water column to the seafloor.

The plume profile depicted in Figure 7-9 is typical of the CORMIX results and highlights the characteristics of the MEG/PW layer once it impacts the seafloor. The layer thickness is predicted to range from approximately 3 m to greater than 10 m. Under certain conditions (higher flow rates and light ambient current conditions), the plume may also spread upstream of the impact point along the seafloor.

7 Offshore Discharges - Produced Water and MEG

Figure 7-9 Scenario 4A: Side view of plume development downstream (m) of the caisson (current speed of 20 cm/s

Based on water quality criteria for MEG concentration of less than 50 mg/l, the required dilutions per hour for each of the five MEG discharge scenarios is presented in Table 7-4.

Table 7-4 Scenario 4: Dilutions to Meet Water Quality Criteria of 50 mg/l

Hour	Scenario 4A	Scenario 4B	Scenario 4C	Scenario 4D	Scenario 4E
0	19840	19840	19840	18973	269
1	18175	18175	18175	16771	269
2	16768	16768	16768	15028	268
3	15563	15563	15563	13612	268
4	14520	14520	14520	12441	267
5	13607	13607	13607	11455	267
6	12803	12803	12803	10613	266
7	12089	12089	12089	9887	266
8	11450	11450	11450	9254	265
9	10875	10875	10875	8697	265
10	10355	10355	10355	8204	264
11	9882	9882	9882	7763	264
12	9451	9451	9451	7367	263
13	9056	9056	9056	7010	263
14	8693	8693	8693	6686	262
15	8357	8357	8357	6390	262
16	8047	8047	8047	6120	261
17	7758	7758	7758	5871	261

As CORMIX is a steady state dilution model, and since the discharge of MEG/PW is a batch discharge for which the MEG concentration decreases as the flow rate increases with increasing time, results from CORMIX are likely to be highly conservative. Thus in order to assess more realistically the timescale of the dilution of MEG within the ambient environment over the period of hours to days after

7 Offshore Discharges – Produced Water and MEG

the cessation of the batch discharge, 3D modelling using MIKE3D was undertaken for Scenario 4C (Appendix B) corresponding to the highest discharge rate of MEG per hour.

Detail results for Scenario 4C from both the CORMIX and MIKE3D modelling studies are presented in detail in the following sections.

7.2.1 Discharge Scenario 4C

Results from CORMIX

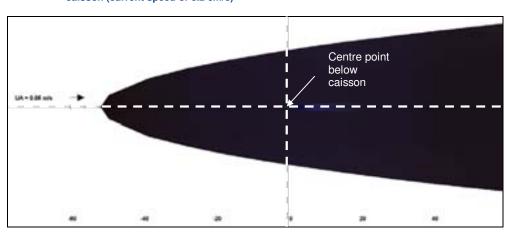

For the purposes of assessing the worst case impact of the release of MEG from the Wheatstone Platform, consideration has been given to the results of the CORMIX modelling for Hour 0 (Appendix B) with ambient and discharge conditions as summarised in Table 7-5.

Table 7-5 Scenario 4: Ambient and Discharge Characteristics

Flow	Parameter	Unit	Value
Ambient	Temperature	С	30
	Salinity	ppt	35
	Velocity	m/s	Variable
	Density		1021.38
Discharge	Density		1082.7
	Flow rate	m3/hr	165.11
	End of pipe	-	None

Presented in Figure 7-10 is a depiction of steady state plume development based on CORMIX results for an ambient current speed of 6.2 cm/s (5th percentile). Under these conditions the plume is predicted to extend along the sea floor upstream of the caisson by approximately 50 m.

Figure 7-10 Scenario 4C: Top view of plume development (m) both upstream and downstream of the caisson (current speed of 6.2 cm/3)

7 Offshore Discharges - Produced Water and MEG

Table 7-6 Scenario 4C: Side view of plume development (m) (current speed of 23.3 cm/s)

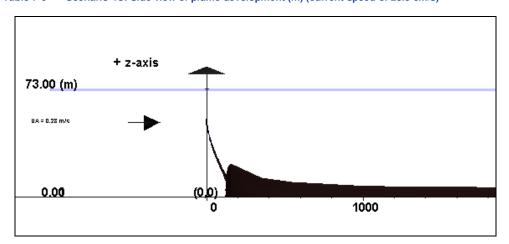
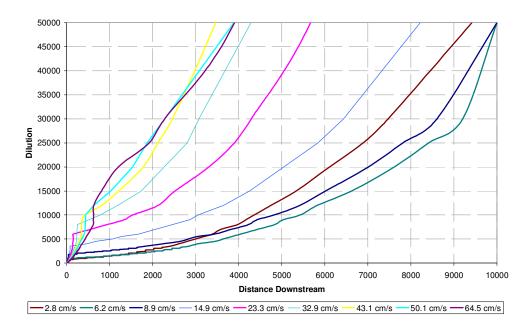



Figure 7-11 Scenario 4C: Dilution Contours for Various Ambient Current Speeds for Hour 0, CORMIX

Presented in Table 7-7 are the worst-case distances to different dilutions based on the steady-state results of CORMIX for hour 0, hour 5, hour 11, and hour 17. With the exception of the dilution of 1000, the maximum distances to the different dilutions were associated with the 5th percentile current velocity of 6.2 cm/s. Highlighted in blue font is the approximate distance to the required dilutions for each of the hours presented (refer to Table 7-4).

7 Offshore Discharges – Produced Water and MEG

Table 7-7 Scenario 4C: Worst Case Distance to Required Dilution (m), CORMIX (5th percentile)

Dilution	Hour 0	Hour 5	Hour 11	Hour 17
1000	60	851	1444	1445
2000	1651	2243	2837	2639
3000	2446	3238	3633	3435
4000	3042	3834	4230	4031
5000	3639	4232	4827	4628
6000	4036	4829	5225	5026
7000	4434	5227	5623	5424
8000	4831	5624	6021	5822
9000	5030	5823	6419	6220
10000	5428	6221	6617	6419
11000	5627	6420	7015	6817
12000	5825	6818	7214	7016
13000	6223	7017	7612	7215
14000	6422	7216	7811	7613
15000	6621	7613	8010	7812
20000	7615	8608	9204	8806
25000	8410	9602	10000	9801
30000	9205	10000	10000	10000

Results from MIKE3D

The results presented in the previous section were limited by the steady-state assumptions of CORMIX. As the MEG component of the MEG/PW discharge occurs for an 18 hour period only, CORMIX is not able to provide critical information on the timescale of dilution of the MEG within the marine environment once the MEG stream has been terminated.

Therefore, in order to better understand the timeframe of dilution post hour 18, three-dimensional, twoweek simulations for a summer and winter scenario were undertaken by DHI using the MIKE3D software (Appendix E).

A summary of results for the winter scenario (11/06/07-25/06/07) which is the more conservative case is presented here. The reader is directed to Appendix E for more details.

Presented in Figure 7-12 is the foot print of the maximum tracer concentration for the duration of the two week simulation. The (0.004578) contour is equivalent to the water quality objective for the concentration of MEG of 50 mg/l.

Presented in Figure 7-13 is a snapshot of the footprint of the area that exceeds the 50 mg/l water quality objective at Hour 27:30. (Note that there has been a change in colour scale between these two figures.)

Results from MIKE3D suggest that the MEG will dilute to the required concentration of 50 mg/l rapidly (i.e. within an estimated 24 hours) after the cessation of the discharge of MEG to the marine environment under these conditions. Additional simulations would be required to determine the maximum dilution time required for a range of environmental conditions.

7 Offshore Discharges – Produced Water and MEG

Figure 7-12 Maximum Tracer Concentrations from MIKE3D for the Winter Scenario, $11/06/07 - 25/06/07^6$

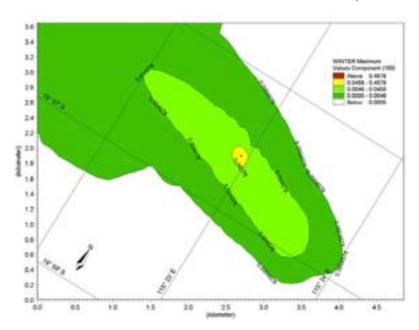
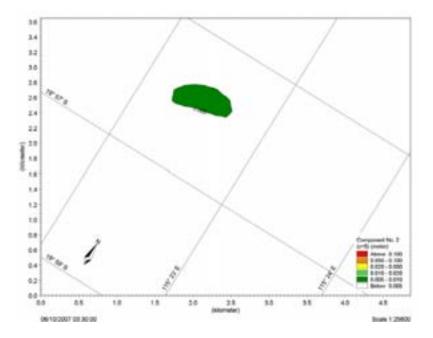



Figure 7-13 Footprint of Tracer Concentration from MIKE3D for the Winter Scenario, Hour 27:30

⁶ Note that the results presented in the figure represent a composite of the maximum dilution at each location on the grid (regardless of when it occurred) for the two week period and are not representative of a snap shot in time.

7 Offshore Discharges – Produced Water and MEG

7.2.2 Implication for Discharge Scenarios 4A, 4B, 4D

Table 7-8 is a summary of the downstream distance from the caisson to the required dilution based on results from CORMIX for hour 0 for Scenario A, Scenario B and Scenario D. Included in the table are the results from Scenario C (Table 7-7) for comparison.

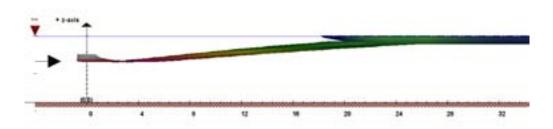
Of the four MEG discharge scenarios proposed in Table 2-6, results presented in Table 7-8 highlight that Scenario 4C represents the worst-case conditions (as assessed using CORMIX) and is likely to be associated with the maximum dispersal time. Additional three-dimensional modelling would be required in order to confirm the relative dispersal rate of these four scenarios.

As Scenario 4C represents the worst-case condition and has been assessed in detail in Section 7.2.1, Scenarios 4A, 4B and 4 D have not been considered further.

Table 7-8 Scenario 4C: Hour 0, Distance to Required Dilution (m), CORMIX (5th percentile)

Dilution	4A	4B	4D	4C
1000	16	21	29	60
2000	26	33	649	1651
3000	35	43	1643	2446
4000	43	242	2240	3042
5000	49	638	2638	3639
6000	52	1035	3036	4036
7000	59	1332	3235	4434
8000	62	1630	3633	4831
9000	62	1927	3832	5030
10000	160	2125	4031	5428
11000	358	2323	4230	5627
12000	457	2423	4429	5825
13000	654	2621	4827	6223
14000	753	2720	4827	6422
15000	951	2918	5026	6621
20000	1444	3513	5822	7615
25000	1839	4009	6618	8410
30000	2136	4405	7214	9205

7 Offshore Discharges – Produced Water and MEG


7.3 Discharge Scenario 4E

Scenario 4E investigates the fate of the discharge of MEG/PW within the same caisson as the CW. The combination of 50 °C MEG/PW (maximum flow rate of 422 m³/hr) and 8000 m³/hr of 45 °C CW will result in an effluent that is buoyant when compared to the marine environment into which it is discharged.

An investigation into the dilution of the combined MEG/PW/CW discharge has been undertaken using CORMIX and the URS Dilution Model.

Figure 7-14 presents a side view of the development of the discharge plume downstream of the caisson as predicted by CORMIX for an ambient current speed of 20 cm/s. Discharged at a depth of 20 m, results suggest that the plume will reach the surface of the water column approximately 25 metres downstream of the discharge point. A dilution of 18 is predicted at this point on the surface. Once reaching the surface of the water column, the potential for dilution will be reduced when compared with the dilution over the first 20 metres.

Figure 7-14 Scenario 4E: Side view of plume development downstream of the caisson (current speed of 20 cm/s

Presented in Figure 7-15 is a contour plot of the results from the URS Dilution Model for 2006-2007. The worst-case dilution transect is presented in Figure 7-16 and a close-up of the near field dilution is presented in Figure 7-17.

Table 7-4 showed that a dilution of 269 is required if the MEG concentration is to meet the water quality objective of 50 mg/l. Results of the dilution modelling suggest that a distance of over 5.6 km from the discharge caisson will be required to meet this dilution objective.

Note that these results are comparable with those of Scenario 3 (nearshore discharge of PW) with discrepancies attributed to slight differences in the discharge temperature, discharge density, and flow rate.

7 Offshore Discharges – Produced Water and MEG

Figure 7-15 Scenario 4E: Results from the Dilution Model, 2006-2007⁷

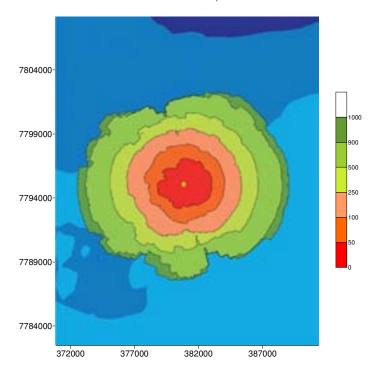
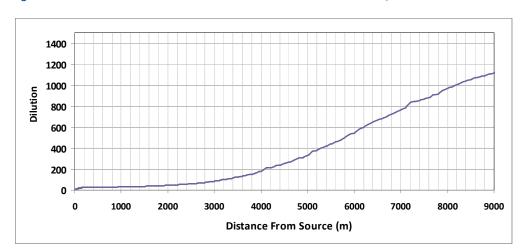
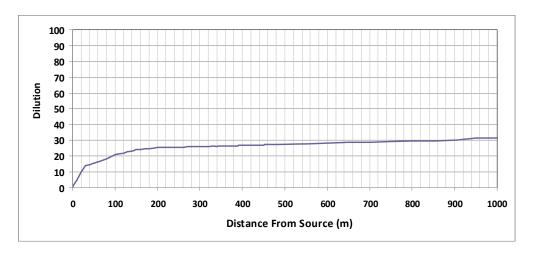



Figure 7-16 Scenario 4E: Worst Case Dilution with Distance from the Caisson, 2006-2007



Note that the results presented in the figure represent a composite of the maximum dilution at each location on the grid (regardless of when it occurred) for the two year period and are not representative of a snap shot in time.

^{52 42907466/}WHST-STU-EM-RPT-0126/Rev 3

7 Offshore Discharges – Produced Water and MEG

Figure 7-17 Scenario 4E: Worst Case Near Field Dilution with Distance from the Caisson, 2006-2007

7.3.1 Scenario 4E: Mitigation Options

Ideally, water quality criteria are achievable prior to the plume reaching the top (or bottom) of the water column as the rate of dilution may be significantly reduced once reaching the boundaries.

An investigation into various mitigation options has been conducted in order to assess the increase in dilution when the plume first impacts on the top of the water column including:

- a) Extending the depth of the discharge to 40 m:
- b) End of pipe discharge diameter of 1 m; and
- c) End of pipe diffuser consisting of two downward pointing (-45°) outlets of 0.5m diameter.

All other discharge characteristics for each of the mitigation scenarios are the same as those in Table 2-6 for Scenario 4C.

Results of the CORMIX runs for an ambient current speed of 20 cm/s for each of the three mitigation options are summarised in Table 7-9.

Table 7-9 Scenario 4E Comparison of Mitigation Options (current speed of 20 cm/s)

Parameter	Scenario	Mitigation Option			
	4E	(a)	(b)	(c)	
Dilution when plume reaches surface	18	43	40	98	
Distance downstream (m) when plume reaches surfaces	25	46	47	94	
Approximate distance (m) to 269 dilution	5600	4500	4450	900	

7 Offshore Discharges – Produced Water and MEG

Results suggest that none of the mitigation options considered will, in isolation, achieve the required dilution of MEG prior to the discharge plume reaching the surface of the water column. Scenario 4E(c) does suggest that two downward pointing outlets of 0.5 m diameter would significantly reduce the distance downstream of the caisson at which the required dilution of 269 is achieved from 5600 m to 900 m.

It is important to recall that CORMIX is a steady state model that assumes the discharge is continuous. CORMIX modelling alone will not be able to provide insight into the rate of dilution once the MEG within the discharge stream ceases.

Results do suggest, however, that mitigation measures such as options for end of pipe engineering may lead to improved dilution outcomes.

Summary

URS has conducted dilution modelling of discharges to the marine environment associated with the Chevron Wheatstone Project.

The URS Dilution Model was developed specifically for this project and was used to extend short period 3D far field model simulations of discharge impacts to represent long-term conditions. The URS Dilution Model required less than one minute of computer processing to simulate a two year time period, and could therefore provide long-term 'worst case' conditions for each discharge. This was not feasible within this project deliverable using a detailed 3D transport models. The URS Dilution Model is an extension of the steady-state CORMIX dilution model that takes into account unsteady currents for year long (or multiple-year) time periods.

Note that the assessment of the impact of the results of the dilution modelling as it relates to the water quality objectives of Section 4 has been addressed separately from this assessment (Chevron Australia 2010).

8.1 **Nearshore Discharges**

Discharges in the nearshore emanated from two discharge points:

Outlet 1 located on the PLF at -5 m CD, and

Outlet 2 located approximately 20 km offshore at -20 m CD.

Scenario 1 with three discharge scenarios from Outlet 1:

- Two discharge flow scenarios were considered for the Operational Phase: a maximum flow scenario (Scenario 1A) and a typical flow scenario (Scenario 1B). The characteristics of the discharge were such that the discharge plume for Scenario 1A was buoyant, while the plume associated with Scenario 1B was determined to be negatively buoyant.
- Scenario 1C focused on a Construction discharge scenario and was also associated with a negatively buoyant plume.

Although Outlet 1 is proposed to be equipped with a diffuser, results of the assessment suggest that the dilution potential of the nearshore environment is limited by a combination of the density differential between the discharge and the ambient environment combined with the limited depth of the water column.

Scenario 2 concerns the discharge of PW from Outlet 2. At the time of the assessment, information relating to the characterisation of the discharge was limited. The discharge plume is anticipated to be positively buoyant. The effectiveness of the proposed diffuser will depend on the details of the characterisation of the PW that will be discharged form this location.

Offshore Discharges

Discharges associated with the Wheatstone Platform located approximately 150 km offshore in 73 m of water, included the release of PW and MEG from a 1.5 m diameter caisson into the marine

Scenario 3 investigated the fate of a continuous discharge of PW from the platform both in isolation and co-mingled with CW. This combined PW/CW flow will have a significant impact on the characterisation of the discharged stream as the volume of CW discharged (8000 m³/hr) is significantly

8 Summary

greater than the flow rate of PW (272 m³/hr). A total of six scenarios were considered. Results suggested that segregated CW and PW discharges would lead to improved dilution outcomes for PW.

Scenario 4 was associated with a total of five different MEG/PW 18 hour batch discharge scenarios including the co-mingled discharge of MEG/PW and CW that is discharged via the same caisson.

Scenario 4A, 4B, 4C, and 4D considered the dilution of the MEG/PW stream in isolation of the CW. Scenario 4C was identified as the worst-case dilution scenario and was investigated in some detail. Results of the dilution modelling suggested that the MEG would disperse within 24 hours of cessation of the MEG from the discharge stream.

Scenario 4E represents the MEG/PW discharge configuration that will be realised in practice. A preliminary investigation into a variety of mitigation options was conducted and results suggest that end of pipe engineering may lead to an improved environmental outcome.

8.3 Recommendations

Consideration should be given to some or all of the following:

- Refinement of the characterisations of the discharges
- Refinement of the discharge scenarios
- Refinement of the CORMIX, URS Dilution Model, and/or MIKE3D modelling to include heat flux at the surface of the water column. This would reduce the level of conservatism in the results predicted by the models.
- Extension of the time period covered by the 3D simulations

References

Australian and New Zealand Environment Conservation Council (ANZECC) 2000, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Table 3.3.4, viewed http://www.mincos.gov.au/__data/assets/pdf_file/0019/316126/wqg-ch3.pdf.

Chevron Australia 2009, Wheatstone Project Environmental Scoping Document, Revision 3. Chevron Australia, Perth, WA.

Chevron Australia 2010, Wheatstone Project EIS/ERMP, Chevron Australia, Perth, WA.

Department of Environment. 2004. State Water Quality Management Strategy No. 6. Government of Western Australia, Perth, WA.

DHI 2010, Wheatstone Project: Dredge Spoil Modelling. Prepared for URS and Chevron Australia Pty Ltd, May 2010.

Doneker, RL and Jirka GH, 2007, 'CORMIX User Manual: A Hydrodynamic Mixing Zone Model and Decision Support System for Pollutant Discharges into Surface Waters', EPA-823-K-07-001, Dec.

GEMS 2010, Wheatstone: Wind, Currents and Wave Verification and Analysis. Prepared for URS and Chevron Australia Pty Ltd, May 2010.

Woodside 2006, Pluto LNG Project Environmental Impact Assessment, viewed http://www.woodside.com.au/Our+Business/Projects/Pluto/Sustainability/Environmental+Approval.ht m>

This page is intentionally blank

Wheatstone Project Appendix Q3 - Modelling of the Discharges to the Marine Environment

Limitations

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Chevron Australia Pty Ltd and only those third parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated 20/01/2010.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between 27/01/2010 and 17/02/2010 and is based on the conditions encountered and information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

42907466/WHST-STU-EM-RPT-0126/Rev 3

59

This page is intentionally blank

Wheatstone Project Appendix Q3 - Modelling of the Discharges to the Marine Environment

Appendix A Characterisation of Discharges

A.1 Scenario 1: Nearshore Discharge Outlet 1

Table A-1 Scenario 1 A: Characterisation of Co-mingled Discharge during Operation – Maximum Flow Rate

Outfall 1	Volume	BOD5	TN	TP	TDS	TSS	рН	oil/grease
Units	(kl/d)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	-	(mg/l)
Sanitary outfall	435	10	30	5	750	10	7.5	10
CPI outfall	12600	70.2	0.8	0.004	111.9	18.6	5.9	6.7
RO plant outfall	5100	10	0	0	55000	0	7.9	0
Desal filter plant brine	500	-	-	-	35000	360	-	0
Total	18635	50	1	0.12	16085	22	6	5

Table A-2 Scenario 1 B: Characterisation of Co-mingled Discharge during Operation – Normal Flow

Outfall 1	Volume	BOD5	TN	TP	TDS	TSS	рН	oil/grease
Units	(kl/d)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	-	(mg/l)
Sanitary outfall	120	10	30	5	750	10	7.5	10
CPI outfall	360	295.0	1.0	0.015	150.0	30.0	6.8	12.0
RO plant outfall	3456	10	0	0	55000	0	7.9	0
Desal filter plant brine	192	-	-	-	35000	360	•	0
Total	4128	34	1	0.15	47709	20	7	1

Table A-3 Scenario 1C: Characterisation of Co-mingled Discharge during Construction

Outfall 1	Volume	BOD5	TN	TP	TDS	TSS	рН	oil/grease
Units	(kl/d)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	•	(mg/l)
Sanitary outfall	2315	10	30	5	750	10	7.5	10
CPI outfall	1396	129.1	0.9	0.007	121.9	21.6	6.1	9.4
RO plant outfall	7450	10	0	0	50100	80	7.9	0
Total	11161	25	6.33	1.04	33613	58	8	3

Appendix A

Conversion of TDS to Salinity A.1.1

In order to estimate the density of the discharge, the TDS value (mg/L) was added to the density of pure water at ambient temperature. To determine the equivalent salinity of the discharge, the density and temperature values were used to back calculate the required salinity. This methodology is demonstrated with an example (Table A-4).

Example - Converting TDS to Salinity (ppt) Table A-4

Step #1 – Convert TDS to De	noity in	unite of ka/m ³				
Step #1 - Convert 105 to De	ensity in	runits or kg/m				
TDS	=	16,085	mg/l			
	=	16.1	g/l			
	=	16.1	kg/m3			
Step #2 Calculate ⁽¹⁾ the density of pure water @ 25 °C (ambient temperature)						
D_{fresh}	=	997	kg/m ³			
Step #3 Calculate(1) the Dens	sity of t	he Discharge				
D _{Discharge}	=	D _{fresh} + TDS	kg/m3			
	=	997+16.1	kg/m ³			
	=	1013.1	kg/m ³			
Step #4 Calculate ⁽¹⁾ the salinity (ppt) that corresponds to the required density at 25 °C						
S _{Discharge}	=	21.4	ppt			

Note (1): Calculated using the CORMIX Density Calculator (minimum salinity of 1 ppt required)

A.2 Scenario 2: Nearshore Discharge Outlet 2

Characterisation of the nearshore PW was not available at the time of this assessment. Thus for the purposes of assessing the potential impact of the discharge of PW into the marine environment, a number of assumptions have been applied as summarised in Table A-5.

Table A-5 Scenario 2: Characterisation of Produced Water Discharge

Parameter	Units	Value	Source
Temperature	С	Ambient + 30	Based on PW discharge temperature of 50 C at Wheatstone Platform (Scenario 3). Conservative.
Salinity	ppt	17	Based on the salinity content of lago PW. Conservative.

Scenario 3: Off Shore Discharge of Produced Water from the **A.3 Wheatstone Platform**

Table A-6 Scenario 3: Characterisation of PW Discharge

Parameter	Units	Value
Temperature	С	75
Salinity	ppt	17 ⁽¹⁾

Note (1) Based on formation water estimated salt content for lago,. Conservative

Table A-7 Formation Water Estimated Salt Content

Parameter	Salt	Value
Wheatstone	NaCl	19.293
	KCI	1.236
lago	NaCl	17.097
	KCI	0

Scenario 4: Off Shore Discharge of MEG from the Wheatstone **A.4 Platform**

Table A-8 Scenario 4: Characterisation of MEG Discharge

Discharge Stream	Parameter	Units	Value
MEG	Temperature	С	50
	Density	Kg/m ³	1092
PW	Temperature	С	50
	Density ⁽¹⁾	Kg/m ³	990
CW	Temperature	С	45
	Salinity	ppt	35
	Density	Kg/m ³	1015.86

Note (1) Based on pure water at 50 °C, Chevron

This page is intentionally blank

 $\textbf{Wheatstone Project} \ \mathsf{Appendix} \ \mathsf{Q3} \text{ -} \ \mathsf{Modelling} \ \mathsf{of} \ \mathsf{the Discharges} \ \mathsf{to} \ \mathsf{the Marine Environment}$

Appendix B MEG Discharge Scenarios

Table B-9 Scenario 4A Condensed Water Only: Mid Field-Life (5,400 bbl/d)

Time	PW	MEG (@100% Concentration)	PW, MEG Total	%Meg in solution	Density of solution
hr	m3/hr	m3/hr	m3/hr	-	kg/m3
0	2.0	20	22.0	91%	1082.7
1	4.0	20	24.0	83%	1074.9
2	6.1	20	26.1	77%	1068.3
3	8.1	20	28.1	71%	1062.7
4	10.1	20	30.1	66%	1057.8
5	12.1	20	32.1	62%	1053.6
6	14.1	20	34.1	59%	1049.8
7	16.1	20	36.1	55%	1046.5
8	18.2	20	38.2	52%	1043.5
9	20.2	20	40.2	50%	1040.8
10	22.2	20	42.2	47%	1038.4
11	24.2	20	44.2	45%	1036.2
12	26.2	20	46.2	43%	1034.1
13	28.2	20	48.2	41%	1032.3
14	30.3	20	50.3	40%	1030.6
15	32.3	20	52.3	38%	1029.0
16	34.3	20	54.3	37%	1027.6
17	36.3	20	56.3	36%	1026.2
18	36.3	0	36.3	0%	990.0
19	36.3	0	36.3	0%	990.0
20	36.3	0	36.3	0%	990.0
21	36.3	0	36.3	0%	990.0
22	36.3	0	36.3	0%	990.0
23	36.3	0	36.3	0%	990.0

Appendix B

Table B-10 Scenario 4B Mid Water Production (13,500 bbl/day)

Time	PW	MEG (@100% Concentration)	PW, MEG Total	%Meg in solution	Density of solution
hr	m3/hr	m3/hr	m3/hr	-	kg/m3
0	5.0	50	55.0	91%	1082.7
1	10.1	50	60.1	83%	1074.9
2	15.1	50	65.1	77%	1068.3
3	20.2	50	70.2	71%	1062.7
4	25.2	50	75.2	66%	1057.8
5	30.2	50	80.2	62%	1053.6
6	35.3	50	85.3	59%	1049.8
7	40.3	50	90.3	55%	1046.5
8	45.4	50	95.4	52%	1043.5
9	50.4	50	100.4	50%	1040.8
10	55.4	50	105.4	47%	1038.4
11	60.5	50	110.5	45%	1036.2
12	65.5	50	115.5	43%	1034.1
13	70.5	50	120.5	41%	1032.3
14	75.6	50	125.6	40%	1030.6
15	80.6	50	130.6	38%	1029.0
16	85.7	50	135.7	37%	1027.6
17	90.7	50	140.7	36%	1026.2
18	90.7	0	90.7	0%	990.0
19	90.7	0	90.7	0%	990.0
20	90.7	0	90.7	0%	990.0
21	90.7	0	90.7	0%	990.0
22	90.7	0	90.7	0%	990.0
23	90.7	0	90.7	0%	990.0

Table B-11 Scenario 4C Peak Water Production (40,000 bbl/day)

Time	PW	MEG (@100% Concentration)	PW, MEG Total	%Meg in solution	Density of solution
hr	m3/hr	m3/hr	m3/hr	-	kg/m3
0	15.1	150	165.1	91%	1082.7
1	30.2	150	180.2	83%	1074.9
2	45.3	150	195.3	77%	1068.3
3	60.4	150	210.4	71%	1062.7
4	75.6	150	225.6	66%	1057.8
5	90.7	150	240.7	62%	1053.6
6	105.8	150	255.8	59%	1049.8
7	120.9	150	270.9	55%	1046.5
8	136.0	150	286.0	52%	1043.5
9	151.1	150	301.1	50%	1040.8
10	166.2	150	316.2	47%	1038.4
11	181.3	150	331.3	45%	1036.2
12	196.4	150	346.4	43%	1034.1
13	211.6	150	361.6	41%	1032.3
14	226.7	150	376.7	40%	1030.6
15	241.8	150	391.8	38%	1029.0
16	256.9	150	406.9	37%	1027.6
17	272.0	150	422.0	36%	1026.2
18	272.0	0	272.0	0%	990.0
19	272.0	0	272.0	0%	990.0
20	272.0	0	272.0	0%	990.0
21	272.0	0	272.0	0%	990.0
22	272.0	0	272.0	0%	990.0
23	272.0	0	272.0	0%	990.0

Appendix B

Table B-12 Scenario 4D Peak Water Production (40,000 bbl/day)

Time	PW	MEG (@100% Concentration)	PW, MEG Total	%Meg in solution	Density of solution
hr	m3/hr	m3/hr	m3/hr	-	kg/m3
0	15.1	100	115.1	87%	1078.6
1	30.2	100	130.2	77%	1068.3
2	45.3	100	145.3	69%	1060.2
3	60.4	100	160.4	62%	1053.6
4	75.6	100	175.6	57%	1048.1
5	90.7	100	190.7	52%	1043.5
6	105.8	100	205.8	49%	1039.6
7	120.9	100	220.9	45%	1036.2
8	136.0	100	236.0	42%	1033.2
9	151.1	100	251.1	40%	1030.6
10	166.2	100	266.2	38%	1028.3
11	181.3	100	281.3	36%	1026.3
12	196.4	100	296.4	34%	1024.4
13	211.6	100	311.6	32%	1022.7
14	226.7	100	326.7	31%	1021.2
15	241.8	100	341.8	29%	1019.8
16	256.9	100	356.9	28%	1018.6
17	272.0	100	372.0	27%	1017.4
18	272.0	0	272.0	0%	990.0
19	272.0	0	272.0	0%	990.0
20	272.0	0	272.0	0%	990.0
21	272.0	0	272.0	0%	990.0
22	272.0	0	272.0	0%	990.0
23	272.0	0	272.0	0%	990.0

Table B-13 Scenario 4E Peak Water Production (40,000 bbl/day) Co-mingled with Cooling Water Discharge

Time	PW	MEG (@100% Concentration)	CM	Total	%Meg in solution	Density of solution
hr	m3/hr	m3/hr	m3/hr	m3/hr	-	kg/m3
0	15.1	100	8000	8115.1	1.2%	1016.8
1	30.2	100	8000	8130.2	1.2%	1016.7
2	45.3	100	8000	8145.3	1.2%	1016.7
3	60.4	100	8000	8160.4	1.2%	1016.6
4	75.6	100	8000	8175.6	1.2%	1016.6
5	90.7	100	8000	8190.7	1.2%	1016.5
6	105.8	100	8000	8205.8	1.2%	1016.5
7	120.9	100	8000	8220.9	1.2%	1016.4
8	136.0	100	8000	8236.0	1.2%	1016.4
9	151.1	100	8000	8251.1	1.2%	1016.3
10	166.2	100	8000	8266.2	1.2%	1016.3
11	181.3	100	8000	8281.3	1.2%	1016.2
12	196.4	100	8000	8296.4	1.2%	1016.2
13	211.6	100	8000	8311.6	1.2%	1016.1
14	226.7	100	8000	8326.7	1.2%	1016.1
15	241.8	100	8000	8341.8	1.2%	1016.0
16	256.9	100	8000	8356.9	1.2%	1016.0
17	272.0	100	8000	8372.0	1.2%	1015.9
18	272.0	0	8000	8272.0	0.0%	1015.0
19	272.0	0	8000	8272.0	0.0%	1015.0
20	272.0	0	8000	8272.0	0.0%	1015.0
21	272.0	0	8000	8272.0	0.0%	1015.0
22	272.0	0	8000	8272.0	0.0%	1015.0
23	272.0	0	8000	8272.0	0.0%	1015.0

This page is intentionally blank

Wheatstone Project Appendix Q3 - Modelling of the Discharges to the Marine Environment

Appendix C Dispersion Modelling Software

C.1 MIKE 21

Details of the MIKE21 model developed for this region are outlined in DHI (2009). The reader is directed to this report for details of the model set-up and calibration.

C.2 MIKE 3HD

C.2.1 **Background**

DHI's MIKE 3 has been setup to simulate the sediment plume dispersion and stratification in the vicinity of the proposed dredged channels and disposal site. MIKE 3 is an engineering software tool for three-dimensional free-surface flows. It is applicable to simulations of hydraulics, water quality and sediment transport in rivers, lakes, estuaries, bays, coastal areas, seas and other water bodies. MIKE 3 simulates unsteady flow taking into account density variations, bathymetry and external forcing such as meteorology, tidal elevations, currents and other hydrographic conditions.

The equations on which Mike 3 is based are discretised in an implicit finite difference scheme on a staggered grid, solved non-iteratively by the use of the alternating directions implicit finite difference technique. A phase and amplification analysis neglecting the effects of viscosity, corrective terms, rotation and density variations renders the finite difference scheme unconditionally stable.

The mathematical foundation for the system is the Reynolds-averaged Navier-Stokes equations in three dimensions together with the mass conservation equation:

$$\frac{\partial u_i}{\partial t} + \frac{\partial (u_i u_j)}{\partial x_j} + 2\Omega_{ij} u_j = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + g_i + \frac{\partial}{\partial x_j} \left[v^T \left\{ \frac{\partial u_i}{\partial x_j} + \frac{\partial u_i}{\partial x_i} \right\} - \frac{2}{3} \delta_{ij} K \right]$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_j) = 0$$

where ρ is the local density of the fluid, v_i^T is the turbulent eddy viscosity, u_i is the velocity in the x i direction, δ is the Kronecker delta function, Ω_{ij} is the Coriolis tensor, K is the turbulent kinetic energy, P is the fluid pressure, t is time, and g_i is the gravitational vector.

$$\frac{\partial(\rho S)}{\partial t} + \frac{\partial}{\partial x_i} (\rho S u_j) = \frac{\partial}{\partial x_i} (\rho D_s) \frac{\partial S}{\partial x_i}$$

$$\frac{\partial(\partial T)}{\partial t} + \frac{\partial}{\partial x_j} \left(\rho T u_j \right) = \frac{\partial}{\partial x_j} \left(\rho D_t \frac{\partial T}{\partial x_j} \right)$$

where S is the salinity and T the temperature. D_S and D_T are the dispersion coefficients for salinity and temperature respectively.

The closure problem is solved in the turbulence module through the Boussinesq eddy viscosity concept relating the Reynold stresses to the mean velocity field. To handle density variations, the equations for conservation of salinity and temperature are included and solved in the transport equation module. An equation of state (the UNESCO formulation) constitutes the relation between the density and the variations in salinity and temperature. Thus, the turbulence module and the transport

Appendix C

equation module are integrated components of the hydrodynamic module, and the suite of those three constitutes the HD module.

The turbulent fluctuations (Reynolds stresses) are modelled employing the Boussinesq eddy viscosity concept. In MIKE 3 a total of five different turbulent closures can be employed. These are:

- constant eddy viscosity
- Smagorinsky subgrid scale model
- k-model
- k- ε model
- mixed Smagorinsky/ k-ɛ model

The latter turbulence formulation is a combination of the Smagorinsky model in the two horizontal directions and the k- ε model in the vertical direction. This formulation utilises the advantages from both models and is the turbulent closure model adopted for the present study.

C.2.2 MIKE3HD Model Set-up

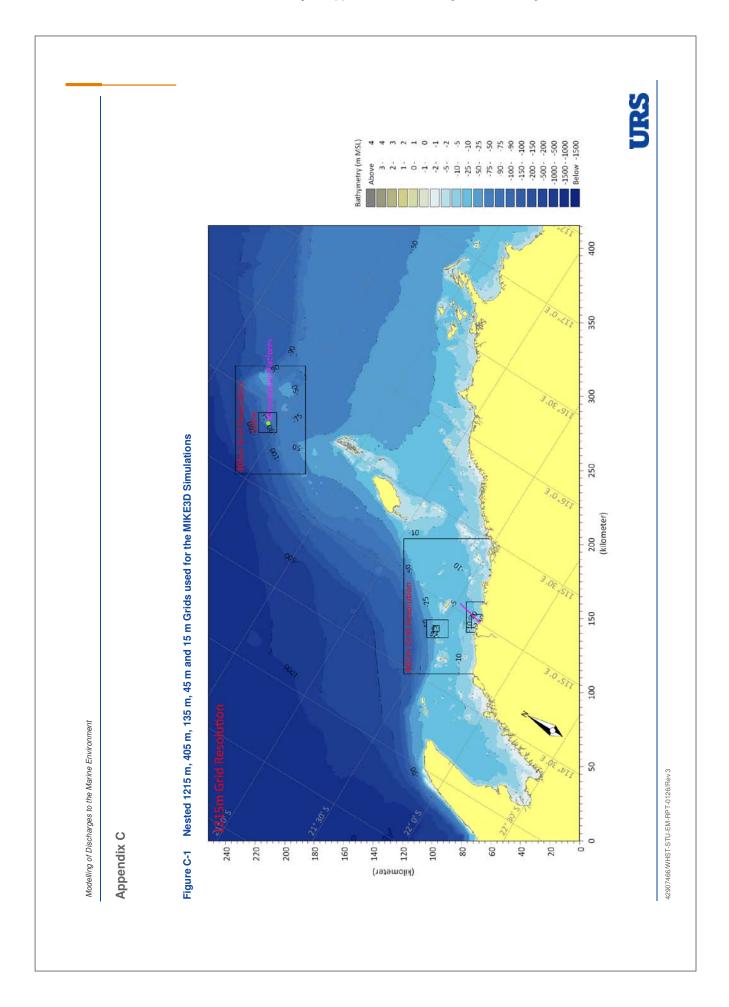
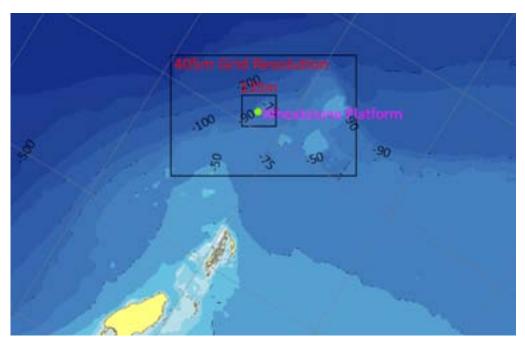

For each discharge scenario modelled using MIKE3HD, both a two week summer (13/01/07-30/01/07) and a two week winter (8/06/07-25/06/07) were simulated. The time periods modelled were consistent with those selected by DHI based on previous work conducted by DHI in this locale (DHI, 2009).

Table C-14 Parameters used in the Set-up of MIKE3HD

Parameter	Value	Outlet 1	Outlet 2	Wheatstone Platform
Grid resolution	1215	\checkmark	√	V
(m)	405	√	√	√
	135	√	√	\checkmark
	45	√	√	-
	15	\checkmark	-	-
Vertical	Number of layers	7	7	18
resolution	Layer thickness (m)	1	1	5
Wind forcing	-	Onslow Met Station	Onslow Met Station	MesoLaps (6-hourly)

Other model parameters include (but may not be limited to):

- Turbulence Model (Smagorinsky formulation):
 - Smagorinsky coefficients: Horizontal: 0.5 Vertical: 0.176
- Dispersion:
 - Proportional Eddy viscosity: with dispersion factor: Horizontal: 0.1 Vertical: 0.1



Appendix C

Figure C-2 Close Up of Grid Coverage for Outlet 1 and Outlet 2

Figure C-3 Close Up of Grid Coverage for Wheatstone Platform

C.3 CORMIX

The CORMIX modelling system is a software system for the analysis, prediction and design of pollutant discharges into diverse water bodies. The key focus of the assessment is on the geometry and dilution characteristics of the initial mixing zone, including compliance with regulatory constraints as well as predicting the behaviour of the discharge plume with distance from the diffuser. The CORMIX modelling system consists of four integrated hydrodynamic models:

- · CORMIX 1 for single port discharges.
- CORMIX 2 for multi-port diffuser discharges.
- CORMIX 3 for buoyant surface discharges.
- DHYDRO for the analysis of dense and/or sediment discharges in coastal environments.

CORMIX predicts the geometry and dilution characteristics of effluent flow resulting from a single or multi-port discharge or arbitrary density, location, and geometry into an ambient receiving water body that may be stagnant or flowing and have ambient density stratification of different types. The plume is assumed to be at steady state, which means that successive elements follow the same trajectory. Predictions include dilution, plume diameter, plume elevation, and other plume properties. Once the effluent plume surfaces, the far field solution calculates dilution due to horizontal turbulent mixing of the plume with ambient water.

C.3.1 **Near Field Model Set-up**

For the purposes of this assessment, the following apply:

- Wind speed of 3 m/s
- Uniform water column properties of temperature and salinity
- Typically, a range of current speeds have been investigated
- Scenario 4A, 4B, 4C, 4D comparison:
 - ambient current velocity of 20 cm/s
- Scenario 4E mitigation options:
 - ambient current velocity of 20 cm/s
- Manning number of 0.025 (a measure of seabed roughness).

This nage is intentionally blank
This page is intentionally blank

Wheatstone Project Appendix Q3 - Modelling of the Discharges to the Marine Environment

Appendix D Development of the Dilution model

The URS Dilution Model was developed specifically for this project and intended to be used to extend short period 3D far field model simulations of discharge impacts to represent long-term conditions. The URS Dilution Model required less than one minute of CPU to simulate a two year time period, and could therefore provide long-term 'worst case' conditions for each discharge that were not feasible within this project deliverable using a detailed 3D transport model.

The URS Dilution Model is an extension of the steady-state CORMIX dilution model to account for unsteady currents for year long time periods. CORMIX consists of a series of software modules for the prediction of discharges into receiving waters, with emphasis on steady-state values for the geometry and dilution characteristics. The collection of modules consist of regional flow models based upon integral, length scale, and passive diffusion approaches to simulate the hydrodynamics of near field and far field jets and plumes (Doneker and Jirka, 2007)

The adjustments to the CORMIX model predictions are made to account for the effects of unsteady currents on:

- plume duration and direction
- plume dispersion
- build-up of background concentration

The model approach consists of analysing a current time series for sequences of flow direction, duration and speed. Each sequence identified is referred to as a "current scenario" and defined by the current speed, duration and direction. For each current scenario, the discharge plume is estimated using a CORMIX model simulation using input parameters that reflect the current scenario, speed, duration and direction of the flow, the ambient water conditions and the discharge density, flow rate and diffuser configuration.

The output from each CORMIX simulation consists of the plume dilution and width as a function of distance away from discharge location. As a steady-flow model, CORMIX can predict dilutions to large distances from the discharge location. For unsteady flows, such as those that occur in coastal regions, the plume extent is typically limited due to flow reversals associated with changing tides and winds, Therefore, the duration of each current scenario is used to limit the downstream extent of the plume predicted by CORMIX.

As the current time series is analysed over the entire time period (typically 30 minute data over a one year period) current scenario and associated CORMIX predicted plume is mapped onto a discrete grid centred on the discharge location so that the plume dilution pattern is recorded. The square grid extends from the discharge location a 10 kilometres in the east, west and north and south directions, with 10 m grid spacing for the first kilometre, 50 meters spacing from 1 km to 4 km, and 100 meter spacing from 4 km to 10 km. This arrangement was developed to produce manageable files sizes and provide sufficient resolution in the vicinity of the discharge while covering the full range of plume extent

Very often multiple plumes will record dilutions in a particular cell. Since the 'worst case' conditions are required for this project, only the minimum dilution is at each cell is retained. Dilution values from plumes that are higher than the minimum recorded at a cell are discarded.

A number of methods were developed and tested for efficiently identifying current scenarios. After some testing it was found that the simple approach of using a 6 hour sliding time average of currents yielded very good results. Thus for a current time series with a 30 minute interval, each consecutive 12 currents was vector averaged to determine the total excursion length, as well as the average speed

Appendix D

and direction. These values were then used to set-up the CORMIX simulations, the results of which were mapped onto the grid. The 6 hour scale was chosen initially because it represented one-half of a tidal period.

Two additional parameters have been introduced to adjust the CORMIX outputs to account for dispersion due to unsteady currents, and background build-up. The CORMIX predicted dilution D(s), where s is the downstream distance was modified according to

$$D'(s) = D(s)*f,$$

where f is the scale factor. The background build-up, as a percentage of the discharge concentration, is introduced by another modification to the CORMIX predicted dilution according to:

$$D''(s) = 1 / (1/D'(s) - g),$$

where g is the background build-up.

In order to facilitate the assembly of CORMIX simulations, a discrete set of simulations were made for a range of likely speeds. The final speeds selected are 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.0 and 1.1 m/s. The speeds were selected to span the range of possible currents speeds and provide good coverage of the changes in plume behaviour as the current speed changes.

The final set of URS Dilution Model inputs are:

- · A time series of current speed and direction (or u and v components) at the discharge location for the desired period of time (typically 30 minute intervals for a year).
- A set of CORMIX simulation outputs for each of the discrete speeds identified above.
- For the CORMIX simulations the following data are required:
 - Discharge characteristics (flow rate, concentration, density)
 - Ambient water conditions (density, current speed, water depth, bottom slope)
 - Discharge configuration (number of ports, orientation, depth in the water column)

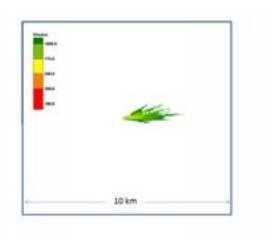

An example application of the URS Dilution is provided below. Figure D-4, the time series of flow speed and direction is shown, along with the vector components and the associated speed, length and direction for the first three current scenarios.

Figure D-4 Example showing the vector averaging of the current time series data for use in the URS **Dilution Model**

Date	Speed (m/s	Dir (deg)	V	k(m/s)	Vy (m/s)	Ave	eSpd(m/s)	AveDir(deg)
1/13/2007 0:00	0.010	87.525		0.010	0.000	\rightarrow	0.209	84.858
1/13/2007 0:15	0.040	87.221		0.040	0.002	\rightarrow	0.237	84.580
1/13/2007 0:30	0.150	95.981		0.150	0.016	\rightarrow	0.262	84.032
1/13/2007 0:45	0.103	75.052		0.099	0.027		0.277	82.173
1/13/2007 1:00	0.152	74.815		0.147	0.040		0.293	80.630
1/13/2007 1:15	0.197	77.895		0.192	0.041		0.303	78.800
1/13/2007 1:30	0.254	74.895		0.245	0.066		0.307	76.070
1/13/2007 1:45	0.264	79.610		0.259	0.048		0.305	72.627
1/13/2007 2:00	0.297	80.996		0.293	0.046		0.301	69.212
1/13/2007 2:15	0.307	91.117		0.307	-0.006		0.296	65.422
1/13/2007 2:30	0.375	92.464		0.374	-0.016		0.291	60.638
1/13/2007 2:45	0.385	91.094		0.385	-0.007		0.284	55.234
1/13/2007 3:00	0.340	82.618		0.337	0.044		0.279	50.362
1/13/2007 3:15	0.346	79.898		0.341	0.061		0.274	46.770
1/13/2007 3:30	0.329	70.553		0.310	0.109		0.270	43.523
1/13/2007 3:45	0.309	61.845		0.272	0.146		0.266	41.427
1/13/2007 4:00	0.308	55.345		0.254	0.175		0.263	40.152
1/13/2007 4:15	0.300	42.261		0.202	0.222		0.260	38.792
1/13/2007 4:30	0.317	30.837		0.163	0.272		0.256	38.147
1/13/2007 4:45	0.277	31.106		0.143	0.237		0.251	38.307
1/13/2007 5:00	0.275	30.072		0.138	0.238		0.250	38.271
1/13/2007 5:15	0.265	28.718		0.127	0.232		0.251	38.672
1/13/2007 5:30	0.251	31.150		0.130	0.215		0.250	39.130
1/13/2007 5:45	0.241	41.212		0.159	0.181		0.250	39.321
1/13/2007 6:00	0.230	44.141		0.160	0.165		0.251	38.656

The CORMIX plume that is mapped onto the grid for the first three current scenarios shown is shown in Figure D-5. Note that for any grid cells that were overlain by two or more plumes, the minimum dilution was recorded.

Figure D-5 Example showing the modified CORMIX plumes for the first three records in Figure D-4 mapped onto the grid

Appendix D

There are actual six plumes visible in Figure D-5. After some initial testing and calibration it was found that using two time scales provided better results. The URS Dilution Model was modified to sample the current time series twice, once for each time scale. For the example above the time scales were 3 hours and 6 hours, For some applications where longer plumes occurred, the time scales were set to 6 hours and 12 hours. The longer time scale assured that some current scenarios with large excursions were simulated in the analysis.

Results for one week of simulation are shown in Figure D-6 and results for the entire year's record of currents times series is shown in Figure D-7.

Figure D-6 Example showing the modified CORMIX plumes for the first week of current time series records

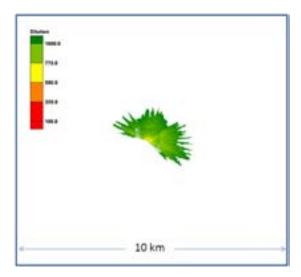
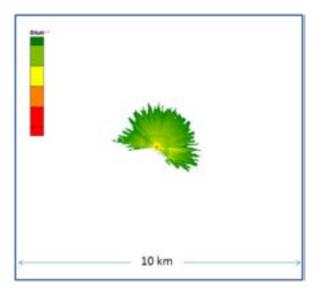



Figure D-7 Example showing the modified CORMIX plumes for the entire year of current time series

The increased area for the dilution contours with increasing current time series length is evident in these results.

The URS Dilution Model provides a means to extend short-term detailed discharge model of far field conditions. Since the model is based on extensions of CORMIX, the URS Dilution Model also includes near filed dilutions results, thus providing both near field and far field dilution contours.

The URS Dilution Model should not be applied without first calibrating to short period results, and should not be applied for current conditions and dilution levels that differ significantly from the calibrated range. However, since the CORMIX model does account for variations in discharge flow rates and density differences, the URS Dilution Model can be applied for different discharge conditions than those explicitly used for calibration.

D.1 References

Doneker, R.L. and G.H. Jirka, "CORMIX User Manual: A Hydrodynamic Mixing Zone Model and Decision Support System for Pollutant Discharges into Surface Waters", EPA-823-K-07-001, Dec. 2007.

_	
	This page is intentionally blank

Wheatstone Project Appendix Q3 - Modelling of the Discharges to the Marine Environment

Appendix E Calibration of Dilution model against Results from

The URS Dispersion Model was developed specifically for this project and intended to be used to extend short period 3D far field model results to represent long-term conditions. The URS Dilution Model required less than one minute of CPU to simulate a two year time period, and could therefore provide long-term 'worst case' conditions for each discharge that were not feasible using a detailed 3D transport model. To calibrate the URS Dilution Model, six 3D discharge simulations using the MIKE3D modelling package were executed for two 14 day periods, one representing summer hydrodynamic conditions and one representing winter hydrodynamic conditions. The six scenarios are listed in Table E-15.

Table E-15 Modelling scenarios for Constraining the URS Dilution Model

Parameter	Property	Units	Outlet 1 Positively Buoyant Discharge		Negativel	et 1 y Buoyant harge
			Scenario E1 Summer	Scenario E2 Winter	Scenario E3 Summer	Scenario E4 Winter
Ambient	Temperature	С	30	20	30	20
	Salinity	ppt	35	35	35	35
	Density	Kg/m3	1021.73	1024.76	1021.73	1024.76
Discharge	Temperature	С	30	20	30	20
	Salinity	ppt	15.9	15.9	44.7	44.7
	Release	-	surface	surface	bottom	bottom
	Flow rate	m3/hr	776	776	172	172
	Density	Kg/m3	1007.48	1010.26	1029.02	1032.18

These scenarios were intended to represent the range of environmental and discharge conditions that might be realized at each discharge location. The time period for the summer simulation period is 16/01/07 - 30/01/07 and for the winter period, 11/06/07 - 25/06/07.

The model calibration was conducted in two phases to accommodate the differences in applying 3D currents and 2D currents in the analysis. The short-term two-week summer and winter MIKE3D model simulation provided 3D currents for use in the model calibration. However, for the application of the URS Dilution Model to extend conditions over a full year, only depth-averaged (2D) data was available from previous MIKE21 hydrodynamic models (DHI, 2009). Therefore the URS Dilution Model was first calibrated using the 3D current data for each two week period. These calibrations demonstrated the capabilities of the URS Dilution Model when exact flow conditions are known. The URS Dilution Model was then calibrated using the 2D current data corresponding to the same two week period. This calibration demonstrates any potential limitation associated with using the 2D current data. For the calibration using the 3D current data, surface layer currents were used when calibrating for positively buoyant discharges and bottom layer currents were used when calibrating to negatively buoyant discharges.

The basis of the calibrations is a comparison of minimum dilution with distance from the discharge location. For each calibration the URS Dilution Model parameters for dilution scale, the background

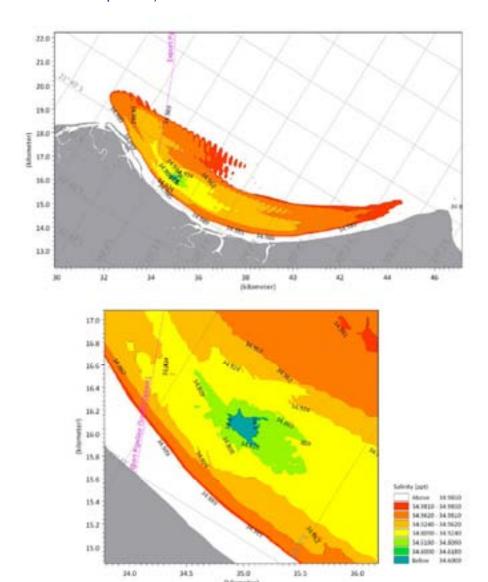
Appendix E

build-up, and time scales were varied to obtain the calibration. The time scale was initially set to 6 hours, which is one-half the tidal period, and representative of the normal tidal excursions. These values worked well for the Outfall 2 location. However, prevailing winds during the summer and winter can prevent tidal current reversals and create longer excursions lengths for the Outfall 1 location. It was found during some initial URS Dilution Model simulations that a time scale twice the half-tidalperiod scale was required to properly simulate the impact of the discharges farther from the discharge location, in the 5K to 10K range. For those simulations, the two time scales used were 6 hours, and 12 hours.

For each calibration scenario, a series of CORMIX simulations were conducted and the output processed for use in the URS Dilution Model. The CORMIX simulations were executed for the range of speed (0.5, 0.10, 0.15, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90 and 1.0 m/s using the discharge flow rate and density conditions specific to each scenario (Table E-15).

E.1 Positively Buoyant Discharge from Outlet 1

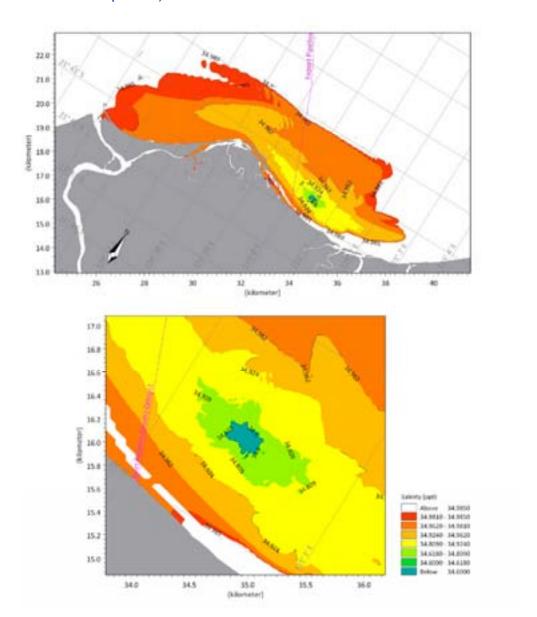
The MIKE3D simulation results for the summer and winter two-week periods are shown in Figure E-8 and Figure E-9. The MIKE3D plots are show contours of salinity. The dilutions associated with the salinity contours are listed in Table E-16. The farthest distance at which each dilution occurs is also recorded in Table E-16, and was determined by measuring the distance of each contour in Figure E-8 and Figure E-9


Table E-16	MIKE3D model	Temperature and	Related Dilutions
------------	--------------	-----------------	--------------------------

Temperature (°C)	Dilution	Maximum Distance (m) (summer)	Maximum Distance (m) (winter)
34.618	50	200	200
34.809	100	700	700
34.924	250	2200	2800
34.962	500	5400	6000
34.981	1000	7800	8500
34.985	1300	9500	9600

The maximum distances for each dilution level for the larger dilutions are slightly higher for the winter conditions than for the summer conditions. This is likely due to the coastline geometry. During the summer the predominant current direction is to the east, where the coastline curvature is concave. During the winter, the predominant current direction is to the west, where the coastline curvature is convex. The convex curvature is likely to enhance dispersion since the flows will tend to diverge.

For the lower dilution levels (100 and 250 m), the maximum distance to the dilution level is the same for both the summer and winter. This is the expected results since the near field conditions are less sensitive to the coastline curvature.


Figure E-8 MIKE 3D results for Outfall 1 Positively Buoyant Summer (Scenario E1) Conditions showing the maximum distance to each dilution (refer to Table E-16 for temperature – dilution correspondence)

Appendix E

Figure E-9 MIKE 3D results for Outfall 1 Positively Buoyant Winter (Scenario E2) Conditions showing the maximum distance to each dilution (refer to Table E-16 for temperature – dilution correspondence)

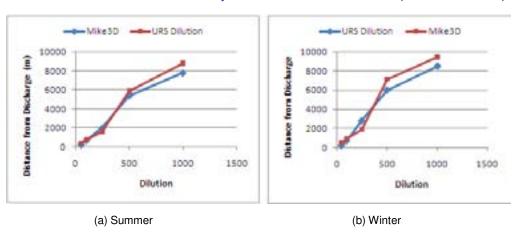
The corresponding results for the URS Dilution Model for the Phase 1 calibration using the 3D surface currents) are shown in Figure E-10 and Figure E-11.

Figure E-10 URS Dilution Model results for Outfall 1 Positively Buoyant Summer (Scenario E1) Conditions showing the maximum distance to each dilution using 3D currents

Figure E-11 URS Dilution Model results for Outfall 1 Positively Buoyant Winter (Scenario E2) Conditions showing the maximum distance to each dilution using 3D currents

In general the alignment of the minimum dilution contours and the general maximum distances to each dilution level are consistent with those of the MIKE3D simulations. The most notable difference in the MIKE3D results and the URS Dilution Model are (1) the larger spread in the dilution contours and (2) the contours do not follow the general curvature of the coastline.

The larger spread is a direct consequence of the URS Dilution Model only using the current speeds at the discharge location. When the model calculates the excursion from the discharge point for any point in the current time series, it may happen that the direction is not exactly parallel to the coastline. In actuality, as the plume moves away from the discharge point, the current direction will change and become more parallel to the coastline, but this process is not captured in the URS Dilution Model. Thus the plume is simulated to follow the initial path and yields a larger spread.



Appendix E

The lack of curvature is also a direct effect of the URS Dilution Model only using the currents at the discharge location. The CORMIX plumes are aligned with the current direction at the discharge location, which does not reflect the changes in coastline direction and associated change in current direction both upstream and downstream from the discharge location.

The larger spread and lack of curvature are not critical, however, since the primary results are the maximum distance to each dilution level is similar. Figure E-12 shows a comparison of the maximum distance to each dilution level for the MIKE3D and the URS Dilution Model simulations.

Figure E-12 Comparison of MIKE 3D and URS Dilution Model predicted maximum distance to dilution levels for both the Outfall 1 Buoyant Summer and Winter simulations (Scenarios E1 and E2)

There is generally very good agreement between the two models. The URS Dilution Model calibration was obtained using a dilution scale factor of 1.5 for the summer conditions, 1.2 for the winter conditions and a background build-up of 0.035 ℃ for both scenarios.

The dilution scale factor of 1.5 and 1.1 indicate that the MIKE21 results represent a higher dispersion than those predicted by the CORMIX model. This is likely due to the CORMIX model being steadystate and not including the effects of unsteady flow, large scale eddies and possible wind shear related dispersion. Also, CORMIX is known to be highly conservative and therefore under-represent dispersion. The build-up value of 0.035 °C is low, and consistent with the highly dispersive conditions characteristics of offshore regions (as opposed to confined tidal regions such as bays and estuaries.

The Phase 2 calibration was conducted next for scenarios E1 and E2, which differed only by the application of the depth-averaged currents for each of the two-week simulation periods. The results for the URS Dilution Model for scenarios E1 and E2 are shown in Figure E-13 and Figure E-14.

Figure E-13 URS Dilution Model results for Outfall 1 Positively Buoyant Summer (Scenario E1) Conditions showing the maximum distance to each dilution using 2D currents

Figure E-14 URS Dilution Model results for Outfall 1 Positively Buoyant Winter (Scenario E2) Conditions showing the maximum distance to each dilution using 2D currents


In general the alignment of the minimum dilution contours and the general maximum distances to each dilution level are consistent with those of the MIKE3D simulations and Phase 1 URS Dilution Model simulations. There appears to be a larger spread in the contours, in comparison to the previous Phase 1 URS Dilution Model results and is larger due to differences in the 3D and 2D current patterns obtained form the 2D and 3D MIKE21 and MIKE3D models.

Appendix E

Figure E-15 shows a comparison of the maximum distance to each dilution level for the MIKE3D and the Phase 2 URS Dilution Model simulations.

Figure E-15 Comparison of MIKE 3D and URS Dilution Model predicted maximum distance to dilution levels for both the Outfall 1 Positively Buoyant Summer and Winter simulations (Scenarios E1 and E2)

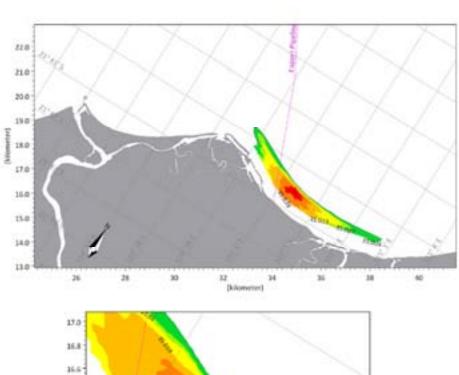
There is generally very good agreement between the two models. The URS Dilution Model calibration was obtained using a dilution scale factor of 1.4 for the summer conditions, 1.2 for the winter conditions and a background build-up of 0.035 ℃ for both scenarios.

The results plotted in Figure E-15 highlight the ability of the URS Dilution Model to simulate the maximum distance to the dilution levels relative to the MIKE3D model. Thus the plots represent accuracy limitations. Subsequent applications of the model should not be used to delineate distances for dilutions much larger than 1000, as this is the upper range for which the model was calibrated.

E.2 Negatively Buoyant Discharge from Outlet 1

The MIKE3D simulation results for the summer and winter two-week periods are shown in Figure E-16 and Figure E-17. The MIKE3D plots are show contours of salinity. The dilutions associated with the salinity contours are listed in Table E-17. The farthest distance at which each dilution occurs is also recorded in Table E-3, and was determined by measuring the distance of each contour in Figure E-16 and Figure E-17.

Table E-17 MIKE3D model Temperature and Related Dilutions


Temperature (°C)	Dilution	Maximum Distance (m) (summer)	Maximum Distance (m) (winter)
35.194	50	200	200
35.097	100	500	500
35.039	250	900	1100
35.019	500	1500	1700
35.010	1000	2000	2800
35.007	1300	2250	3100

The results for negatively buoyant discharge are similar to those for the positively buoyant discharge with similar maximum distances for the lower dilution levels for summer and winter periods, and a larger maximum distance to the larger dilutions levels in the winter than in the summer. The primary difference in the results is that the maximum distances are lower for the negatively buoyant discharges. The smaller extent of the plume is due to lower bottom currents and a lower discharge rate for these scenarios.

Appendix E

Figure E-16 MIKE 3D results for Outfall 1 Negatively Buoyant Summer (Scenario E3) Conditions showing the maximum distance to each dilution (refer to Table E-2 for temperature – dilution correspondence)

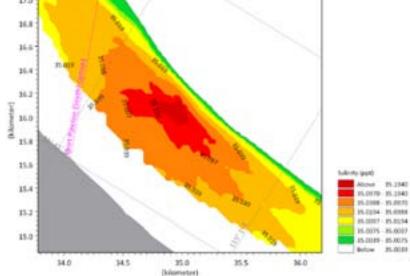
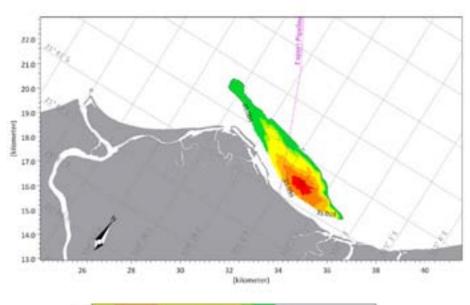
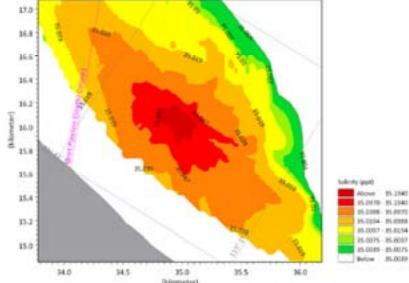
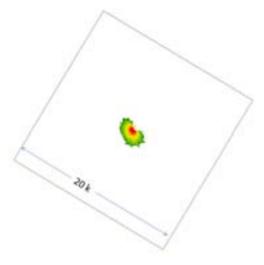




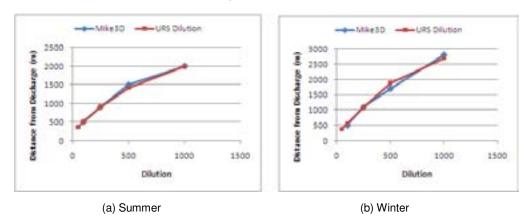
Figure E-17 MIKE 3D results for Outfall 1 Negatively Buoyant Winter (Scenario E4) Conditions showing the maximum distance to each dilution (refer to Table E-2 for temperature – dilution correspondence)

The corresponding results for the URS Dilution Model for the Phase 1 calibration using the 3D surface currents) are shown in Figure E-18 and Figure E-19.

Appendix E

Figure E-18 MIKE 3D results for Outfall 1 Negatively Buoyant Summer (Scenario E3) Conditions showing the maximum distance to each dilution using 3D currents




Figure E-19 MIKE 3D results for Outfall 1 Negatively Buoyant Winter (Scenario E4) Conditions showing the maximum distance to each dilution using 3D currents

In general the alignment of the minimum dilution contours and the general maximum distances to each dilution level are consistent with those of the MIKE3D simulations. The most notable difference in the MIKE3D results and the URS Dilution Model are (1) the larger spread in the dilution contours and (2) the contours do not follow the general curvature of the coastline. The explanation for these differences are the same here as for the positively buoyant plume and are related to the use of a single current time series to represent a spatially variable flow field. (Section E.2)

The larger spread and lack of curvature are not critical, however, since the primary results are the maximum distance to each dilution level is similar. Figure E-20 shows a comparison of the maximum distance to each dilution level for the MIKE3D and the URS Dilution Model simulations.

Figure E-20 Comparison of MIKE 3D and URS Dilution Model predicted maximum distance to dilution levels for both the Outfall 1 Buoyant Summer and Winter simulations (Scenarios E1 and E2)

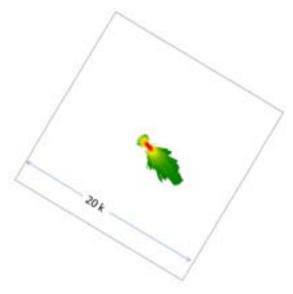
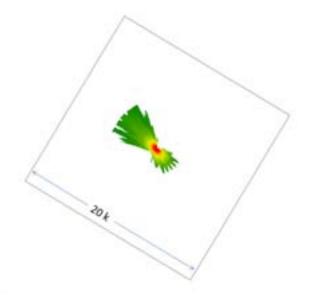
There is generally very good agreement between the two models. The URS Dilution Model calibration was obtained using a dilution scale factor of 0.85 for the summer conditions, 0.8 for the winter conditions and a background build-up of 0.005 °C for both scenarios.

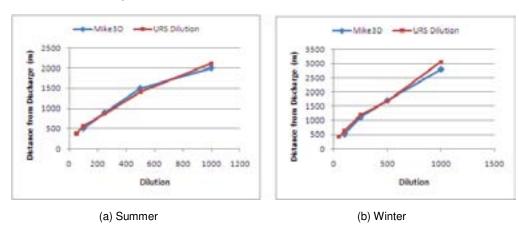
The dilution scale factor of 0.85 and 0.8 indicate that the MIKE21 results represent a lower dispersion than those predicted by the CORMIX model. However, the negatively buoyant module of the CORMIX model is relatively new, and therefore it's testing and validation is still evolving. Thus it is likely that the required reduction of the CORMIX predicted dilutions, relative to those of MIKE21, are due to uncertainties associated with the recently developed CORMIX module. The build-up value of 0.005 °C is low, and consistent with the highly dispersion conditions characteristics of offshore regions (as opposed to confined tidal regions such as bays and estuaries.

The Phase 2 calibration was conducted next for scenarios E1 and E2, which differed only by the application of the depth-averaged currents for each of the two-week simulation periods. The results for the URS Dilution Model for scenarios E1 and E2 are shown in Figure E-21 and Figure E-22.

Appendix E

Figure E-21 MIKE 3D results for Outfall 1 Positively Buoyant Summer (Scenario E1) Conditions showing the maximum distance to each dilution using 2D currents


Figure E-22 MIKE 3D results for Outfall 1 Positively Buoyant Winter (Scenario E2) Conditions showing the maximum distance to each dilution using 2D currents

In general the alignment of the minimum dilution contours and the general maximum distances to each dilution level are consistent with those of the MIKE3D simulations and Phase 1 URS Dilution Model simulations. There appears to be a larger spread in the contours, in comparison to the previous Phase 1 URS Dilution Model results and is larger due to differences in the 3D and2D current patterns obtained form the 2D and 3D MIKE21 and MIKE 3D models.

Figure E-23 shows a comparison of the maximum distance to each dilution level for the MIKE3D and the Phase 2 URS Dilution Model simulations.

Comparison of MIKE 3D and URS Dilution Model predicted maximum distance to dilution levels for both the Outfall 1 Positively Buoyant Summer and Winter simulations (Scenarios E1 and E2)

There is generally very good agreement between the two models. The URS Dilution Model calibration was obtained using a dilution scale factor of 0.75 for the summer conditions, 0.7 for the winter conditions and a background build-up of 0.005 °C for both scenarios.

The results plotted in Figure E-16 represent the ability of the URS Dilution Model to simulate the maximum distance to the dilution levels relative to the MIKE3D model. Thus the plots represent accuracy limitations. Subsequent applications of the model should not be used to delineate distances for dilutions much larger than 1000, as this is the upper range for which the model was calibrated.

Appendix E

E.3 Produced Water Discharge from Outlet 2

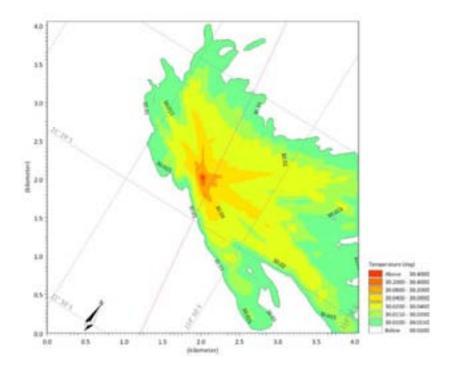
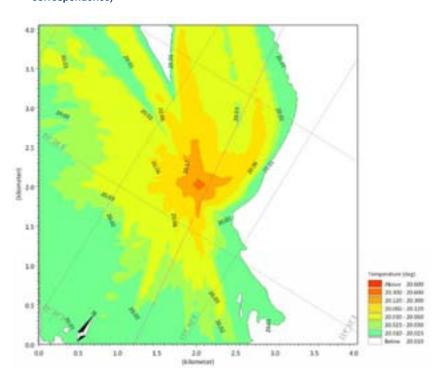

The MIKE3D simulation results for the summer and winter two-week periods are shown in Figure E-24 and Figure E-25. The MIKE3D plots are show contours of temperature. The dilutions associated with the temperature contours are listed in Table E-18. The farthest distance at which each dilution occurs is also recorded in Table E-18, and was determined by measuring the distance of each contour in Figure E-24 and Figure E-25.

Table E-18 MIKE3D model Temperature and Related Dilutions

Scenario E5 (Summer)			Scenario E6 (Winter)		
Temperature (°C)	Dilution	Maximum Distance m) (summer)	Temperature (°C)	Dilution	Maximum Distance m) (winter)
30.4	50	-	20.6	50	-
30.2	100	-	20.3	100	50
30.08	250	250	20.12	250	600
30.04	500	900	20.06	500	2000
30.02	1000	2200	20.03	1000	2500
30.015	1300	2800	20.023	1300	3100

The maximum distances for each dilution level for the larger dilutions are slightly higher for the winter conditions than for the summer conditions.


Figure E-24 MIKE 3D results for Outfall 2 Positively Buoyant Summer (Scenario E5) Conditions showing the maximum distance to each dilution (refer to Table E-3 for temperature – dilution correspondence)

Appendix E

Figure E-25 MIKE 3D results for Outfall 2 Positively Buoyant Winter (Scenario E6) Conditions showing the maximum distance to each dilution (refer to Table E-3 for temperature - dilution correspondence)

The corresponding results for the URS Dilution Model for the Phase 1 calibration using the 3D surface currents) are shown in Figure E-26 and Figure E-27.

Figure E-26 URS Dilution Model results for Outfall 2 Positively Buoyant Summer (Scenario E5) Conditions showing the maximum distance to each dilution using 3D currents

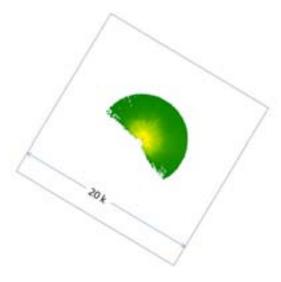
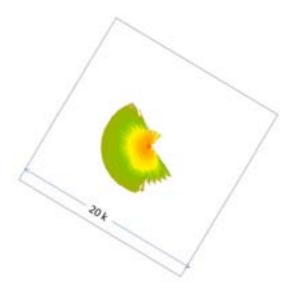
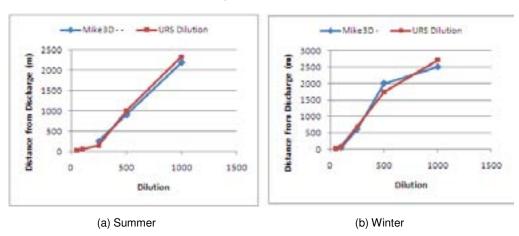



Figure E-27 URS Dilution Model results for Outfall 2 Positively Buoyant Winter (Scenario E6) Conditions showing the maximum distance to each dilution using 3D currents


In general the area of impact is well represented by the URS Dilution Model. The detailed patterns seen in the MIKE3D results are not as distinct in the results of the URS Dilution Model, and are due to limitations of the URS Dilution Model in representing patterns associated with the unsteady currents.

Appendix E

These differences are not critical, however, since the primary results are the maximum distance to each dilution level is similar, which are well represented. Figure E-28 shows a comparison of the maximum distance to each dilution level for the MIKE3D and the URS Dilution Model simulations.

Figure E-28 Comparison of MIKE 3D and URS Dilution Model predicted maximum distance to dilution levels for both the Outfall 1 Buoyant Summer and Winter simulations (Scenarios E1 and E2)

There is generally very good agreement between the two models. The URS Dilution Model calibration was obtained using a dilution scale factor of 1.7 for the summer conditions, 1.8 for the winter conditions and a background build-up of 0.015 °C and 0.02 °C for summer and winter conditions.

The dilution scale factor of 1.7 and 1.8 indicate that the MIKE21 results represent a higher dispersion than those predicted by the CORMIX model. This is likely due to the CORMIX model being steadystate and not including the effects of unsteady flow, large scale eddies and possible wind shear related dispersion. Also, CORMIX is known to be highly conservative and therefore under-represent dispersion. The scale factor values are also higher for the Outfall 2 location relative to the Outfall 1 location. This is consistent with expectations, since the Outfall 2 location is further away from the coastline; the currents are expect to be more variable and therefore the dispersion higher. The buildup value of 0.015 ℃ and 0.02 ℃ are low, and consistent with the highly dispersion conditions characteristics of offshore regions (as opposed to confined tidal regions such as bays and estuaries).

The Phase 2 calibration was conducted next for scenarios E5 and E6, which differed only by the application of the depth-averaged currents for each of the two-week simulation periods. The results for the URS Dilution Model for scenarios E5 and E6 are shown in Figure E-29 and Figure E-30.

Modelling of Discharges to the Marine Environment

Figure E-29 URS Dilution Model results for Outfall 2 Positively Buoyant Summer (Scenario E5) Conditions showing the maximum distance to each dilution using 2D currents

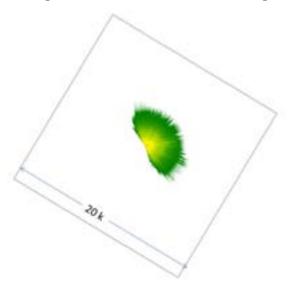
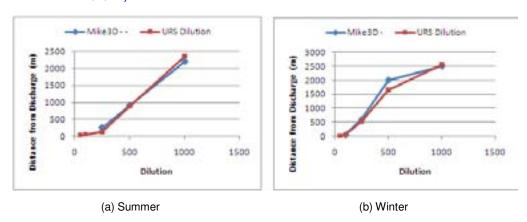


Figure E-30 URS Dilution Model results for Outfall 2 Positively Buoyant Winter (Scenario E6) Conditions showing the maximum distance to each dilution using 2D currents

The Phase 2 calibration patterns for summer conditions are very similar to those of the Phase 1 calibration, but less so for the winter conditions. The differences can be attributed to differences in the 3D and2D current patterns obtained from the 2D MIKE21 and 3D MIKE3D models.


42907466/WHST-STU-EM-RPT-0126/Rev 3

Modelling of Discharges to the Marine Environment

Appendix E

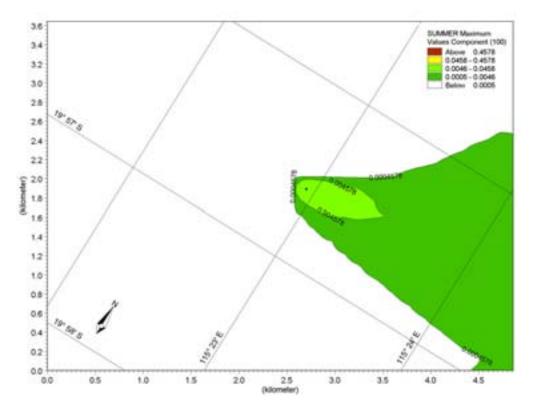
Figure E-31 shows a comparison of the maximum distance to each dilution level for the MIKE3D and the Phase 2 URS Dilution Model simulations.

Figure E-31 Comparison of MIKE 3D and URS Dilution Model predicted maximum distance to dilution levels for both the Outfall 2 Positively Buoyant Summer and Winter simulations (Scenarios E1 and E2)

There is generally very good agreement between the two models. The URS Dilution Model calibration was obtained using a dilution scale factor of 1.6 for the Summer conditions, 1.8 for the winter conditions and a background build-up of 0.015 °C and 0.02 °C for the summer and winter scenarios.

The results plotted in Figure E-31 represent the ability of the URS Dilution Model to simulate the maximum distance to the dilution levels relative to the MIKE3D model. Thus the plots represent accuracy limitations. Subsequent applications of the model should not be used to delineate distances for dilutions much larger than 1000, as this is the upper range for which the model was calibrated.

42907466/WHST-STU-EM-RPT-0126/Rev 3

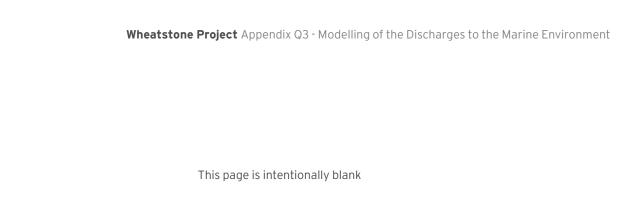

Modelling of Discharges to the Marine Environment

Appendix F Results of MIKE3D for MEG Scenario 4C

F.1 **Summer**

Results for the summer scenario suggest that under these conditions, the plume disperses quickly downstream of the discharge point.

Figure F-32 Maximum Tracer Concentrations from MIKE3D for the Summer Scenario, 16/01/07 – 30/01/07


42907466/WHST-STU-EM-RPT-0126/Rev 3

URS Australia Pty Ltd Level 3, 20 Terrace Road East Perth WA 6004 Australia T: 61 8 9326 0100 F: 61 8 9326 0296

www.ap.urscorp.com

Appendix Q4

Nearshore Acid Sulfate Soils Investigation (Turning Basin and Dredge Channel)

Exe	cutive Sur	cutive Summary					
1	Introd	uction		229			
	1.1	Project	229				
	1.2	Project	229				
	1.3	Deep C	ore Sampling Programme	231			
	1.4	Objecti	231				
	1.5	Scope	231				
	1.6						
		1.6.1	Regional Geology	234			
		1.6.2	Project Geology	234			
2	Sampl	237					
	2.1	Progra	mme Rationale	237			
	2.2	Assess	ment Guideline	237			
	2.3	Survey	Details	237			
	2.4	Samplii	ng Methodology & Analysis	238			
		2.4.1	Coring Decontamination	238			
		2.4.2	Sample Collection	238			
		2.4.3	Sample Analysis	239			
		2.4.4	Data Validation	241			
3	Result	S		247			
	3.1	Assess	ment Guideline	247			
	3.2	Litholo	247				
	3.3	pH _f &p	250				
	3.4	Chromi	252				
	3.5	Carbon	254				
	3.6	Data Va	254				
4	Conclu	Conclusion					
5	Refere	ences		259			
6	Limita	tions		261			

Tables		
Table 1-1	Project dredge material volumes	229
Table 2-1	Nearshore borehole sampling details	238
Table 2-2	Sample depths	239
Table 2-3	Summarised laboratory schedule for PASS analytical methods	240
Table 2-4	Analytical data for split sample analyses	243
Table 2-5	Total metals data for rinsate sample analysis	245
Table 3-1	Texture based action criteria for PASS (Ahern et al. 1998, McDonald et al. 1990)	247
Table 3-2	Generalised lithological profile along the navigation channel and turning basin	248
Table 3-3	Data summary for pH_f and pH_{fox} with reaction type, by sediment type	251
Table 3-4	Data summary for Scr, by sediment type	253
Table 3-5	Data summary for carbonate buffering potential of selected sediment samples	254
Table 3-6	Field duplicate RPD values for PASS field screening and Scr tests	256
Figures		
Figure 1-1	Location of proposed dredged navigation channel and turning basin, and proposed dredge material placement sites (A-E)	230
Figure 1-2	Location of deep core sample sites from within the propose navigation channel and turning basin (MC001-MC015)	233
Figure 1-3	Seabed surface geology mapping	235
Appendices	5	
Appendix A	Sampling & Analysis Plan	
Appendix B	Laboratory Schedule	
Appendix C	Field Test Procedures and Guidelines	
Appendix D	Bore Logs (Draft) Coffey	
Appendix E	Core Photos (Coffey)	
Appendix F	Coffey Geological Cross-Section	
Appendix G	Analytical Test Results	
Appendix H	Laboratory Certificates	

Report

Wheatstone Project

Nearshore Acid Sulfate Soils Investigation (Turning Basin & Dredge Channel)

9 JULY 2010

Prepared for Chevron Australia Pty Ltd QV1, 250 St Georges Terrace Perth WA 6000

42907466

Project Manager:

Damian Ogburn Principal Environmental Scientist

Project

Bob Anderson Senior Principal Environmental Engineer

Author:

Melanie Nunn **Environmental Scientist**

Reviewer:

Julian Gould Senior Principal **Environmental Geologist**

Juniu Brooke Hay **Project Marine Environmental Scientist** **URS Australia Pty Ltd**

Level 3, 20 Terrace Road East Perth WA 6004 Australia

T: 61 8 9326 0100 F: 61 8 9326 0296

Date: Reference: Status:

9 July 2010 42907466/01/1

Final

© Document copyright of URS Australia Pty Limited.

This report is submitted on the basis that it remains commercial-in-confidence. The contents of this report are and remain the intellectual property of URS and are not to be provided or disclosed to third parties without the prior written consent of URS. No use of the contents, concepts, designs, drawings, specifications, plans etc. included in this report is permitted unless and until they are the subject of a written contract between URS Australia and the addressee of this report. URS Australia accepts no liability of any kind for any unauthorised use of the contents of this report and URS reserves the right to seek compensation for any such unauthorised use.

Document delivery

URS Australia provides this document in either printed format, electronic format or both. URS considers the printed version to be binding. The electronic format is provided for the clients convenience and URS requests that the client ensures the integrity of this electronic information is maintained. Storage of this electronic information should at a minimum comply with the requirements of the Commonwealth Electronic Transactions Act 2000.

Where an electronic only version is provided to the client, a signed hard copy of this document is held on file by URS and a copy will be provided if requested.

j:\jobs\42907466\6 deliv\appendices tech reports-may 2010\app q\q4\current\000101-nearshore acid sulphate soils rev1.doc

This page is intentionally blank

Wheatstone Project Appendix Q4 - Nearshore Acid Sulfate Soils Investigation (Turning Basin and Dredge Channel)

Executive Summary

Chevron Australia Pty Ltd (Chevron) proposes to construct and operate a multi-train Liquefied Natural Gas (LNG) and domestic gas (Domgas) plant 12 km south west of Onslow on the Pilbara coast. The LNG and Domgas plant will initially process gas from fields located approximately 200 km offshore from Onslow in the West Carnarvon Basin and other yet-to-be determined gas fields. The Wheatstone Project is referred to as the Project and the Ashburton North Strategic Industrial Area (Ashburton North SIA) is the proposed site for the LNG and Domgas plant. The Project will require the installation of gas gathering, export and processing facilities in Commonwealth and State Waters and on land. The LNG plant will have a maximum capacity of 25 million tonnes per annum (MTPA) of LNG.

The Project has been referred to the State Environmental Protection Authority (EPA) and the Commonwealth Department of Environment, Water, Heritage and the Arts (DEWHA). The investigations outlined in this report have been conducted to support the environmental impact assessment process.

Commissioning of the Project will require installation of onshore and nearshore infrastructure, adjacent to the Ashburton River delta and nearby to the Hooley Creek tidal system. Infrastructure installation will require dredging of marine sediments (approximately 45 000 000 m³) to construct a navigation channel and turning basin, with the sediments being placed at one of five proposed offshore dredge material placement sites.

For dredging, and subsequent placement to occur, a geochemical assessment of the sediment is required to determine whether the potential for acid sulphate soils (ASS) to develop exists. ASS is naturally occurring in soils, sediments and peats that contain iron sulfide minerals (commonly in the form of pyrite (FeS₂)). They are typically encountered in low lying, water logged, high organic areas as these environments provide key elements for the formation of sulfuric acid (e.g. bacteria, oxygen). In an undisturbed anoxic state these materials remain benign, do not pose a significant risk to the environment, and are referred to as potential acid sulphate soils (PASS). Development of ASS may cause biological changes in the surrounding environs, including disturbance or displacement of benthic primary producer habitat (BPPH) and marine fauna due to the placement of potentially contaminated sediment into the marine environment.

The objective of this investigation was to determine whether the sediments and profiles that may be disturbed during the dredging process will pose any adverse environmental impacts to the marine environment. This was achieved by compiling and interpreting lithological core log data and interpreting analytical laboratory data.

The nearshore sampling programme was undertaken between 26 June 2009 and 12 July 2009, with a total of 72 samples being taken from 15 deep core borehole locations (MC001-MC015) at varying depths, along the length of the proposed navigation channel and turning basin. An assessment of potential acid sulphate soils (PASS) and the carbonate buffering capacity of shallow and deep sediments was made from these samples.

The collection of samples was made in accordance with the following guidelines:

- Development of Sampling and Analysis Programs
- DRAFT Treatment and Management of Soils and Water in Acid Sulfate Soil Landscapes
- Identification and Investigation of Acid Sulfate Soils and Acidic Landscapes
- Contaminated Sites Management Series: Assessment levels for Soil, Sediment and Water, and
- National Assessment Guidelines for Dredging.

Executive Summary

The assessment criteria adopted for PASS in Western Australia is the Texture Based PASS Action Criteria, developed by Ahern et al. (1998).

Analytical methods used to determine the presence of PASS included the Acid Sulfate Soils Screening test (based on pH_f and pH_{fox} values and a reaction rating), the Chromium Suite (Scr) for Acid Sulfate Soils test (based on levels of chromium reducible sulfur (Scr), pH_{KCI} , total titratable acid (TAA), and acid neutralising capacity (ANC)) and Carbonate Buffering.

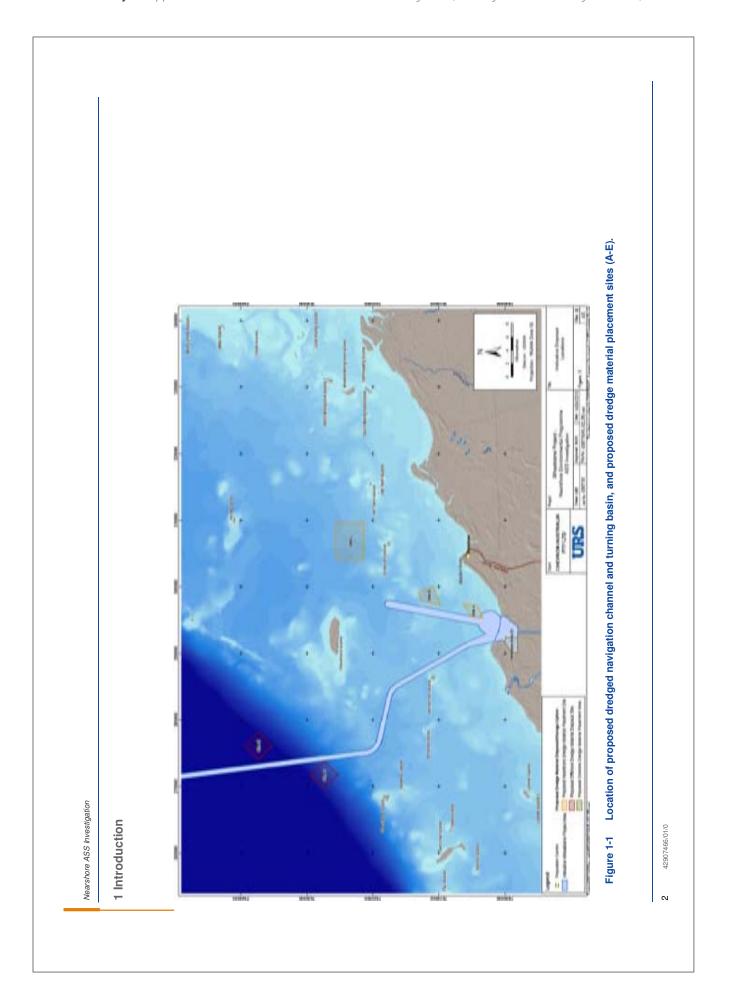
It is anticipated that the likelihood of encountering PASS or AASS material during the construction of the proposed navigation channel and turning basin is low. This is indicated by the negligible acid generating capacity of the sediment encountered during the field sampling programme. Where PASS was encountered, typically in the superficial sediment profile close to the coastline, based on laboratory results it is considered that the sediments have sufficient available carbonate buffering capacity to negate any potential acidity for material that may be placed onshore. However, given the requirements outlined in the DEC (2009b) guidelines, it is likely that management options, in the form of an acid sulfate soils management plan (ASSMP) would be required if onshore placement of material is undertaken of the dredge material.

Introduction

1.1 **Project Description**

Chevron Australia Pty Ltd (Chevron) proposes to construct and operate a multi-train Liquefied Natural Gas (LNG) and domestic gas (Domgas) plant 12 km south west of Onslow on the Pilbara coast. The LNG and Domgas plant will initially process gas from fields located approximately 200 km offshore from Onslow in the West Carnarvon Basin and other yet-to-be determined gas fields. The Wheatstone Project is referred to as the Project and the Ashburton North Strategic Industrial Area (Ashburton North SIA) is the proposed site for the LNG and Domgas plant. The Project will require the installation of gas gathering, export and processing facilities in Commonwealth and State Waters and on land. The LNG plant will have a maximum capacity of 25 million tonnes per annum (MTPA) of LNG.

The Project has been referred to the State Environmental Protection Authority (EPA) and the Commonwealth Department of Environment, Water, Heritage and the Arts (DEWHA). The investigations outlined in this report have been conducted to support the environmental impact assessment process.


1.2 **Project Dredging Requirements**

Onshore and nearshore infrastructure will be located adjacent to the Ashburton River delta and nearby to the Hooley Creek tidal system. The construction of onshore and nearshore infrastructure will require the dredging of a navigation channel and turning basin (Figure 1-1). Dredging of marine sediments will be required to enable the construction of the aforementioned marine facilities, with the resultant dredged material requiring placement at one of five potential sites (Sites A - E; Figure 1-1). It is understood that up to 10 Mm³ of dredge material may require placement onshore.

Capital dredging of sediments as part of construction at the Ashburton North SIA requires a geochemical assessment of sediments, which is the principal focus of this report. The indicative in-situ gross volume of sediment expected to be dredged during construction is anticipated as being 45 000 000 m³ (Table 1-1) over an area of approximately 11 500 000 m²).

Table 1-1 Project dredge material volumes.

Dredge Area	Total for Area
Temporary access channel	935 000
Materials offloading facility (MOF)	1 580 000
Product loading facility (PLF)	16 445 000
PLF Approach	20 160 000
Total Capital Dredge volume	39 120 000
Design uncertainties	5 880 000
Estimated total Capital Dredge volume	45 000 000

1 Introduction

1.3 **Deep Core Sampling Programme**

Potential environmental issues arising from the proposed dredging activities may include physical changes arising from sediment dispersion, oxidation and subsequent acid generation in marine sediments. Biological changes may also occur ad include disturbance or displacement of benthic primary producer habitat (BPPH) and marine fauna due to the placement of potential acid sulfate soil (PASS) dredged material into the marine environment.

Chevron commissioned URS Australia Pty Ltd (URS) to complete the reporting component of the nearshore deep core sampling field programme, undertaken by Coffey Geosciences (Coffey; 2009), in conjunction with the nearshore geotechnical investigation. The nearshore sampling programme was undertaken between 26 June 2009 and 12 July 2009 at 15 deep core locations (MC001-MC015) from along the length of the proposed navigation channel and turning basin (Figure 1-2).

The sampling programme completed during this investigation included an assessment of PASS and an assessment of the carbonate buffering capacity of shallow and deep core sediments along the route of the turning basin and navigation channel. The programme was undertaken in accordance with the following guidelines:

- Development of Sampling and Analysis Programs (Department of Environment and Conservation) (DEC) 2001):
- DRAFT Treatment and Management of Soils and Water in Acid Sulfate Soil Landscapes (DEC
- Identification and Investigation of Acid Sulfate Soils and Acidic Landscapes (DEC 2009b);
- Contaminated Sites Management Series: Assessment levels for Soil, Sediment and Water (DEC 2010); and
- National Assessment Guidelines for Dredging (DEWHA 2009).

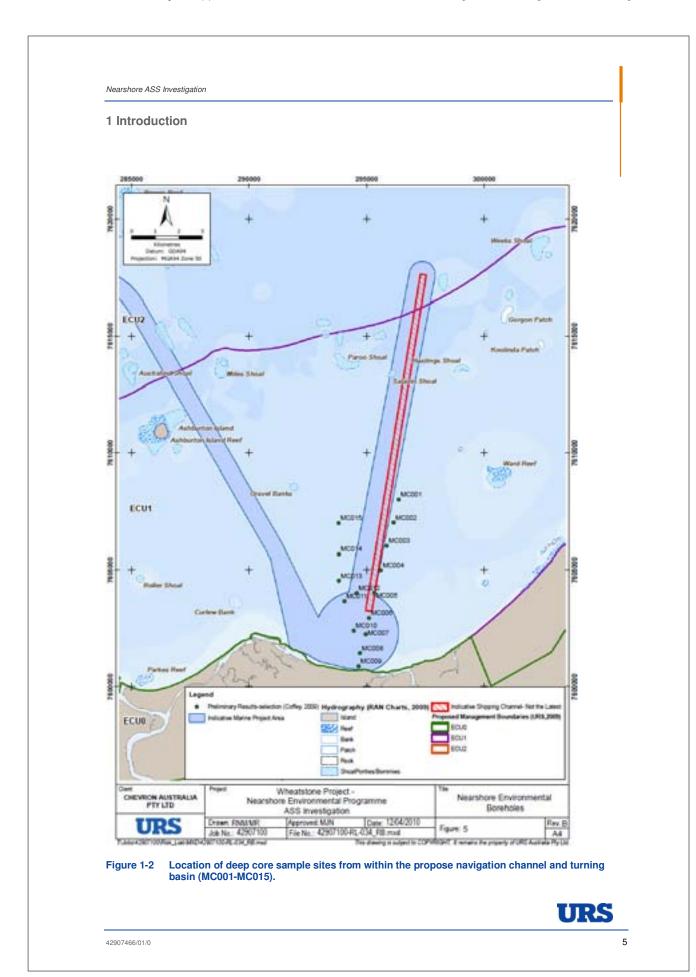
This report is for the interpretation and reporting of PASS of the proposed turning basin and navigation channel only. The interpretation and reporting of metals in sediments was completed in a separate study (URS 2010).

Objective & Aims

The objective of this investigation is to determine whether the sediments and strata that will be disturbed during the dredging process will pose any adverse environmental impacts to the marine environment.

Specific aims of the investigation are to:

- Obtain a broad understand of the acid-generating potential of sediments at depth along the proposed turning basin and navigation channel.
- Establish whether dredged material type will negatively impact the surrounding environment based on the proposed placement options.


1.5 Scope of Work

To meet the objectives and aims outlined above, the following works were required:

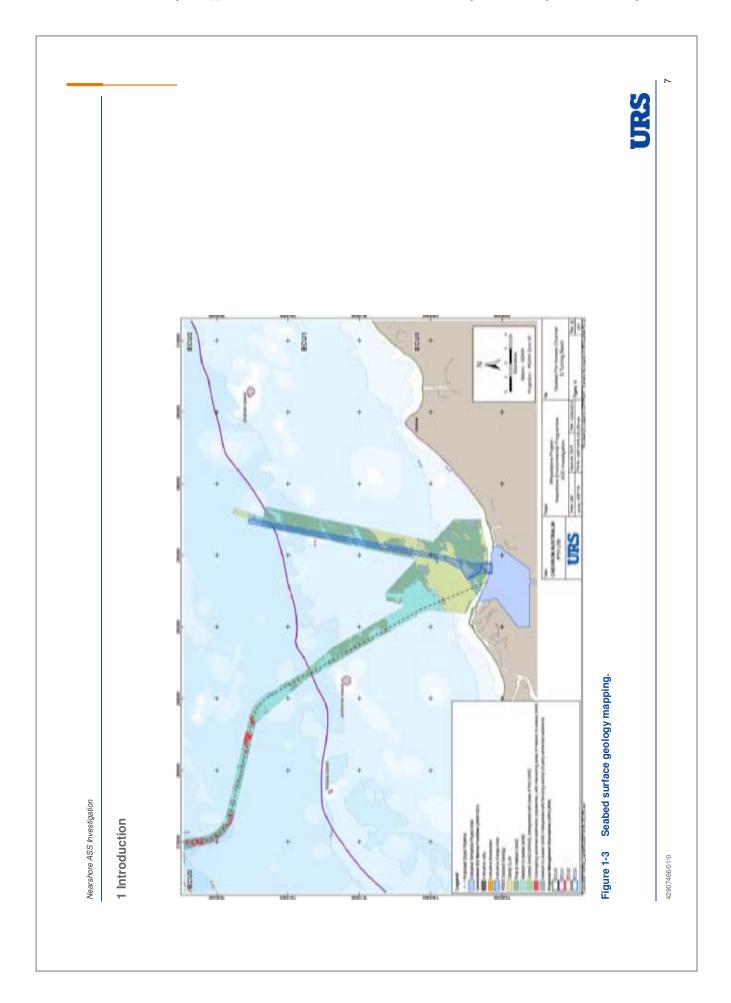
 interpretation of lithological core log data, provided by Coffey (2009), to identify PASS and to produce generalised lithological core profiles;

Nearshore ASS Investigation	
1 Introduction	
preparation of a report comp	ata provided by Coffey (2009); orising methodology, field results and analytic data; and or BPPH and marine fauna with regard to dredging of sediments, and ged material.

1 Introduction

1.6 **Environmental Setting**

1.6.1 **Regional Geology**


The Palaeozoic-Recent Northern Carnarvon Basin is a large, mainly offshore basin located on the northwest shelf of Western Australia. It developed during four successive periods of extension and thermal subsidence. The nearshore Project infrastructure sits within the Peedamullah Shelf in the southeast of the Northern Carnarvon Basin. The main deposition centres of the Northern Carnarvon Basin host up to 12 km of sedimentary infill. Triassic to Early-Cretaceous deposition is dominantly siliclastic deltaic to marine, whereas slope and shelfal marls and carbonates dominate the Mid-Cretaceous to Cainozoic section. The carbonate rich sediments were deposited as a series of northwest propagating wedges as the region continued to cool and subside resulting in the deep burial of the underlying Mesozoic sequence.

Partially lithified and unconsolidated alluvial sediments, mainly red sands, dominate the terrestrial landscape of the Project. In the nearshore environment these are overlain, in places, by sediments of marine origin including mainly shelly sands and reworked alluvial sands (Semeniuk 1993, Semeniuk 1996). Some of the sands are of recent Holocene origin. Mixed with reworked alluvial material, these recent sands abut and overlie older Pleistocene sedimentary structures, particularly along the beach and in the nearshore waters.

1.6.2 **Project Geology**

A generalised sub-seabed profile was completed by Coffey (2009). The profile comprises a thin veneer of sand, overlying sedimentary deposits of red/brown carbonate silty sandy clayey mud, becoming variably cemented claystone, siliceous calcarenite, sandstone and conglomeratic calcirudite with increasing depth. Cementing agents consist of predominantly calcium carbonate (CaCO₃) and limonite (an iron oxide). These overlie CaCO₃-cemented off-white/yellow siliceous detrital limestone.

The shallow geological sequence was further characterised by geophysical survey which was used to acquire in situ seismic velocity data (to approximately 6 m BSBL) and structural data (to the limit of acoustic penetration) for the shallow sediments (Coffey 2009). During the survey, seabed topography and sediment type was mapped. Seabed surface geology along the proposed navigation channel and turning basin is illustrated below (Figure 1-3). Survey methodology is reported in Coffey 2009. Results of the geophysical survey indicate that shallow seabed sediments along the navigation channel and turning basin generally comprise sandy clay and fine to medium grained sands. Partly cemented sediments of flat-lying outcrops were interspersed throughout the survey area.

1 Introduction

Acid Sulfate Soils

Acid sulfate soils (ASS) are naturally occurring soils, sediments and peats that contain iron sulfide minerals (commonly in the form of pyrite (FeS2)). ASS are generally of Holocene origin, and are typically encountered in low lying, water logged, high organic areas as these environments provide key elements for the formation of sulfuric acid (e.g. bacteria, oxygen). In an undisturbed anoxic state these materials remain benign, do not pose a significant risk to the environment, and are referred to as PASS. However, the disturbance of PASS, and its exposure to oxygen, leads to sulfide oxidation which supplies a significant source of iron and acid in solution. Acidic conditions may lead to dissolution of aluminosilicate and oxide minerals which may release elements such as aluminium, silicon, manganese and chromium. The release of acid and metals, which may result from the oxidation of sulfides in ASS, has the potential to cause significant environmental and economic impacts including:

- fish kills and loss of biodiversity in waterbodies;
- contamination of groundwater through leaching of arsenic and heavy metals, and acidification; and
- corrosion of concrete and steel infrastructure.

Inappropriate disposal of PASS, including dredged materials, can also provide appropriate conditions for the formation of secondary sulfide minerals. As the sediments age, they increase in pyrite content due to sulfate reduction while the carbonate buffering capacity is depleted over time. Older dredged material may have little to no buffering capacity and, if these sediments are disturbed or exposed on a large scale, sulfide oxidation rapidly depletes the limited bicarbonate buffering capacity. This can cause offsite impact due to the discharge of large amounts of acidic and potentially metal-rich waters.

Although the DEC, in association with LandGate, has produced ASS risk maps for terrestrial landscapes (LandGate 2009), similar maps have not been produced for the nearshore environment. Therefore it has been assumed, based on the proximity of the proposed dredged areas to BPPH of the Ashburton River delta and Hooley Creek tidal system, that a risk of encountering ASS exists. It is expected, however, that the risk of intercepting ASS material will reduce with increasing distance from shore. The risk is anticipated to be moderate for sediments of the intertidal to nearshore zone at depths of less than 3 mBSBL. The risk is anticipated to be low to nonexistent for sediments further from the shore in deeper water.

Sampling & Analysis Protocol

2.1 **Programme Rationale**

The sampling programme undertaken by Coffey (2009), in conjunction with the geotechnical investigation, was completed in accordance with the Sampling and Analysis Plan (SAP) presented in Appendix A. however, where deviations from the SAP were anticipated or were inevitable, Chevron were notified, therefore the SAP is to be referred to as a guide only and should not be used to determine compliance. Additionally, the SAP was designed based on plans produced by Bechtel (2009a; 2009b), which have subsequently been amended since the sampling programme was implemented. The sampling programme is still valid, however, as sediment samples were taken from the current proposed navigation channel and turning basin.

2.2 **Assessment Guideline**

The assessment criteria adopted for PASS in Western Australia is the Texture Based PASS Action Criteria developed by Ahern et al. (1998). The criteria act as a guide to determine whether sediments will generally require treatment and/or management, based on net acidity (net acidity = S_{cr} + titratable actual acidity (TAA)) as sulfur (% S) or equivalent acidity (mole H⁺/tonne). As clay content tends to influence a sediments natural buffering capacity, the action criteria are grouped into three broad texture categories (i.e. sands to loamy sands, sandy loams to light clays, medium to heavy clays and silty clays). Texture categories are based on McDonald et al. (1990).

2.3 **Survey Details**

The fieldwork component of the nearshore geotechnical investigation involved collecting samples from a total of 15 boreholes, with sample depth ranging from 2.0 m to 45.5 m below sea bed level (BSBL). Final borehole locations and termination depths were based on data provided by Chevron.

Sampling data for each of the boreholes surveyed as part of the sampling programme is presented below (Table 2-1). The location of each borehole is presented above (Figure 1-2).

2 Sampling & Analysis Protocol

Table 2-1 Nearshore borehole sampling details.

Borehole	Location	Easting (m)	Northing (m)	Water Depth (LAT)	Drilling Depth mBSBL	Completion Date
MC001	Navigation Channel	296373.5	7608001.7	-11.17	7.0	03/07/2009
MC002	Navigation Channel	296146.4	7607006.9	-10.02	8.0	04/07/2009
MC003	Navigation Channel	295865.0	7606006.0	-9.27	9.0	05/07/2009
MC004	Navigation Channel	295609.4	7604977.9	-7.95	10.0	06/07/2009
MC005	Navigation Channel	295330.2	7604003.1	-7.28	10.5	07/07/2009
MC006	Turning Basin	295109.2	7602919.8	-6.85	12.0	09/07/2009
MC007	Navigation Channel	294963.6	7602227.9	-3.71	12.0	27/06/2009
MC008	Navigation Channel	294721.8	7601435.8	-2.45	13.5	26/06/2009
MC009	Turning Basin	294655.3	7600873.7	-1.69	14.0	12/07/2009
MC010	Navigation Channel	294454.0	7602375.9	-6.20	12.0	11/07/2009
MC011	Navigation Channel	294059.9	7603651.7	-5.76	10.5	28/06/2009
MC012	Navigation Channel	294588.0	7603999.5	-7.79	11.0	08/07/2009
MC013	Navigation Channel	293818.8	7604525.0	-6.69	9.5	30/06/2009
MC014	Navigation Channel	293822.4	7605658.3	-7.68	8.5	01/07/2009
MC015	Navigation Channel	293815.5	7606981.1	-7.53	8.0	02/07/2009

NB: LAT - lowest astronomical tide.

2.4 Sampling Methodology & Analysis

2.4.1 **Coring Decontamination**

All cores, spilt tubes, drill bits and rods were degreased and cleaned using Decon 90, a nonhazardous laboratory grade cleaning fluid, prior to environmental core sampling. In addition, non-hazardous and non-toxic drilling grease was used on all drill and core parts for corrosion protection and lubrication while drilling.

2.4.2 Sample Collection

Samples were collected in accordance with the SAP (Appendix A), and as per Coffeys Standard Operating Procedures for field sampling. Procedural information followed to develop the geotechnical borehole logs and engineering logs are available in Coffey (2009). Colour core photographs are presented in Appendix E.

The sampling programme was designed to be representative of strata encountered across the dredge area. Sampling generally targeted shallow, unconsolidated sediments (up to 1 m BSBL), with additional samples collected below this depth at intervals of approximately 2-3 m BSBL based on strata encountered.

In total, 72 primary samples were collected from 15 boreholes. The total number of samples selected reflects the analytical regime of taking between four and five samples per environmental borehole. Depths at which each sample was taken in provided below (Table 2-2).

2 Sampling & Analysis Protocol

Table 2-2 Sample depths.

Borehole Location	Sample D	epths (m BS	BL)			
MC001	0.45-0.55	0.90-1.00	1.00-2.00*	3.40-3.50	6.4-6.5	-
MC002	1.00-1.10	1.90-2.00	2.90-3.00	6.40-6.50	-	-
MC003	0.45-0.55	0.90-1.00	1.00-2.00*	3.40-3.50	6.9-7.0	-
MC004	0.50-1.00	1.00-2.00*	3.90-4.00	8.00-8.10	-	-
MC005	0.45-0.55	0.90-1.00	1.00-2.00*	3.00-3.10	6.9-7.0	-
MC006	0.45-0.55	0.90-1.00	3.26-3.36	9.90-10.00	1.0-2.0	-
MC007	0.45-0.55	0.80-0.90	1.00-2.00*	-	-	-
MC008	0.45-0.55	0.80-0.90	2.00-3.00*	3.80-3.90	7.0-7.1	-
MC009	1.00-1.10	2.00-3.00	3.90-4.00	8.90-9.00	13.4-13.5	-
MC010	0.45-0.55	0.90-1.00	1.00-2.00	3.45-3.55	7.9-8.0	10.9-11.0
MC011	0.00-0.40	1.00-1.10	2.00-3.00*	3.50-3.60	7.45-7.55	-
MC012	9.40-9.50	0.45-0.55	0.90-1.00	1.00-2.00*	4.0-4.1	-
MC013	0.45-0.55	0.80-0.90	1.00-2.00*	3.40-3.50	7.9-8.0	-
MC014	0.45-0.55	0.80-0.90	1.00-2.00*	3.40-3.50	6.9-7.0	-
MC015	0.45-0.55	0.90-1.00	1.00-2.00*	3.40-3.50	6.4-6.5	-

NB: * indicates a composite sample.

Sample Transport

All PASS samples were frozen in bags immediately after sampling to prevent oxidation of the sample material. To ensure the integrity of the sample was not jeopardised, samples remained frozen during transportation from Onslow to Perth in sealed eskies. Coffey managed the transportation of the samples to the analytical laboratory with appropriate chain of custody documentation.

2.4.3 Sample Analysis

PASS screening tests are typically completed in the field however, due to the large number of samples collected during the sampling programme and the length of time required for the completion of the field tests, PASS screening tests were completed in the laboratory.

Primary samples were submitted to Australian Laboratory Services (ALS) Perth, a National Association of Testing Authorities (NATA) accredited laboratory, for the completion of PASS screening tests. Of the 72 samples taken, 55 were submitted on the 9th of July 2009 and the remaining 17 samples were submitted on the 15th of July 2009. The summarised laboratory schedule is presented below (Table 2-3) and the complete laboratory schedule is presented in Appendix B.

2 Sampling & Analysis Protocol

Table 2-3 Summarised laboratory schedule for PASS analytical methods.

	Doto	Date # samples/		Analytical Schedule (tests completed)			
Borehole	Sampled	# samples/	PASS Field Screening	Chromium Suite	Carbonate Buffering		
MC001	03/07/2009	5	5	5	0		
MC002	03/07/2009	4	4	4	0		
MC003	04/07/2009	5	5	5	0		
MC004	05/07/2009	4	4	4	1		
MC005	06/07/2009	5	5	5	1		
MC006	15/07/2009	5	5	5	0		
MC007	26/06/2009	3	3	3	0		
MC008	26/06/2009	5	5	5	1		
MC009	11/07/2009- 12/07/2009	5	5	5	0		
MC010	09/07/2009- 11/07/2009	6	6	6	0		
MC011	27/07/2009- 28/07/2009	5	5	5	0		
MC012	07/07/2009	5	5	5	1		
MC013	29/06/2009	5	5	5	1		
MC014	30/06/2009	5	5	5	1		
MC015	02/07/2009	5	5	5	0		
Total Prima	ary Tests Cor	npleted	72	72	6		

Overview of PASS Screening Methods

The analytical methods selected for the analysis of PASS was undertaken in accordance with laboratory methodologies outlined in Ahern *et al.* (2004) and is the preferred analytical method adopted by the DEC (2009a; 2009b).

A brief description of the three selected NATA accredited laboratory analytical methods is as follows:

- EA037: Acid Sulfate Soils Screening Test This method is used to aid the selection of samples
 for analytical testing. The method used is described in Ahern et al. (2004). As samples are
 received, they are tested for pH_f and pH_{fox} and are given a reaction rating.
- EA033: Chromium Suite (Scr) for Acid Sulfate Soils This method determines levels of chromium reducible sulfur (SCR); pH_{KCl}; TAA; acid neutralising capacity (ANC) by back titration; liming rate; and net acid soluble sulfur, which incorporates peroxide sulfur. It applies to sediments derived from coastal regions.
- Carbonate Buffering ANC was determined by oven-drying moist sediments (at 800°C for 24 hrs), and then crushing them in a jaw-crusher with clearance set to 2 mm. Equilibration time between titrant additions was 15 minutes with 1.00 g of crushed sample initially dispersed in 150 mL of deionised water. Titrations were performed using a Metrohm ® 736 Titrino auto-titrator and 0.05 M-H₂SO₄.

2 Sampling & Analysis Protocol

Description of PASS Screening Tests

PASS screening tests are a measure of pH_f and pH_{fox} (including an assessment of reaction rating). The pH_f test measures the existing acidity and is therefore a useful indicator as to whether ASS are present. The pH_{fox} test (or rapid oxidation) is used to indicate the presence of iron sulfides or PASS.

The test involves adding 30 per cent hydrogen peroxide (H₂O₂) to a sample of sediment (to mimic the natural addition of air to the sediment). If sulfides are present, a reaction with the hydrogen peroxide will occur. The reaction can be influenced by the amount of sulfides in the sample and the presence of organic matter. A more vigorous reaction usually indicates a higher potential for acidity. The value of pH_{tox} and its relationship to pH_f is also used to identify PASS. A lower final pH_{tox} value and a greater difference between pH_{fox} in comparison pH_{f.} is indicative of the presence of PASS.

Detailed PASS screening test methodology is presented in Appendix C (DEC 2001; Ahern et al. 2004) and is further described in the Acid Sulfate Soils Laboratory Methods Guidelines (Ahern et al. 2004).

Chromium Suite Testing

Laboratory analytical tests quantitatively assess the amount of existing, and potential, acidity present in sediments. This provides a general measure of the likelihood of acidic conditions forming if these sediments are disturbed, and may assist with determining whether sediments require treatment and/or management based on net acidity produced by the sediment. The chromium suite (Scr) method provides an analytical determination of inorganic sulfur (e.g. iron sulfides) in sediments, and is not subject to interferences from sulfur, either in organic matter or as sulfate minerals.

A total of 72 primary samples were assessed for their ANC and for the presence of PASS using the Scr method.

Carbonate Buffering

Based on the analytical results of the Scr analytical tests, a total of six samples were selected for carbonate buffering using the acidimetric auto-titration method and where submitted to Graeme Campbell and Associates (GCA) for testing. The auto-titration methodology assesses the acid consuming properties of marine sediment samples and is conducted in accordance with procedures detailed by Sobek et al. (1978).

2.4.4 **Data Validation**

Analytical data was thoroughly checked by ALS Perth prior to release. URS subsequently checked the analytical data against the data quality objectives of the project by comparing detection limits against action criteria trigger values, calculating Relative Percent Differences (RPDs) for field duplicates and by comparing RPDs with guideline recommendations. The RPD calculation is used to normalise each pair of results to allow for better QA/QC data interpretation. In general, an RPD value of below 50% for data correlation is considered acceptable. However, there are exceptions based on limit of reporting. The permitted ranges for the RPD of duplicates are dependent on the magnitude of results, in comparison to the level of reporting (i.e. Result = < 10 times the LoR: no Limit; Result = 10-20 times the LoR: 0%-50%; Result = > 20 times the LoR: 0%-20%). The 50% data correlation value is an internationally accepted guideline and is used through Australia.

Comparison of duplicates using RPDs may identify analytical results that appear to be outliers, prompting reanalysis of the samples by the laboratory as a further check of precision. Results may

2 Sampling & Analysis Protocol

also be categorised as 'estimates only'. High RPD values may also be an indication of high heterogeneity of sediment contaminant levels at the sample locations, or might result from widely varying characteristics of the sediments, such as particle size distribution and/or organic content.

The following quality control/quality assurance (QA/QC) procedures were undertaken during the collection of samples in the field:

- · compilation of field records;
- · completion of chain-of-custody (CoC) documentation; and
- adherence to Coffey Standard Operating Procedures for geochemical sample collection and storage.

The following QA/QC procedures were undertaken by ALS Perth:

- testing of primary and duplicate samples (split sample analysis; Table 2-4);
- testing of rinsate blank samples (two rinsate samples were analysed for inorganic analytes only; Table 2-5);
- · testing of laboratory duplicates;
- · testing of method blanks;
- testing of laboratory control samples;
- testing for matrix spikes;
- · provision of certificates of analysis; and
- provision of data validation reports.

Results of field and laboratory QA/QC analyses are presented in Appendix G.

15

Nearshore ASS Investigation

2 Sampling & Analysis Protocol

Analytical data for split sample analyses. Table 2-4

A 10 11 40	4:4	9	Sample ID	_				
Analyte	S III S	בפע	MC009	600DM	MC012	MC012	MC015	MC015
Depth	mBSBL	n/a	3.9-4.0	3.9-4.0	0.1-6.0	0.9-1.0	0.45-0.55	0.45-0.55
Sample Type	QA/QC or Analytical	n/a	QA/QC	Analytical	QA/QC	analytical	QA/QC	analytical
PASS Field Screening Analysis								
pH (F)	pH Unit	0.1	7.5	7.6	8.3	8.4	8.9	8.6
pH (Fox)	pH Unit	0.1	6.1	6.5	6.3	6.4	9.9	9.9
Reaction Rate	n/a	n/a	Slight	Moderate	Slight	Slight	Slight	Slight
Scr Method Analysis								
Actual Acidity								
pH _{KGI}	pH Unit	0.1	9.8	6	9.2	6	9.6	9.5
TAA	mole H+ / t	2	<2	<2	5>	\$	<2	\$
Sulfidic - TAA	% pyrite S	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Potential Acidity								
Chromium Reducible Sulfur	S %	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Acidity - Chromium Reducible Sulfur	mole H+ / t	10	<10	<10	<10	<10	<10	<10
ANC								
ANC	% CaCO3	0.01	1.06	4.69	5.26	5.41	48.5	32.8
Acidity - ANC	mole H+ / t	10	212	937	1,050	1,080	069'6	6,560
Sulfidic - ANC	% pyrite S	0.01	0.34	1.5	1.68	1.73	15.5	10.5
Acid Base Accounting								
ANC Fineness Factor	-	0.5	1.5	1.5	1.5	1.5	1.5	1.5

MC012 MC012 <0.02 <0.02 <10 <10 <1 <1		MC015 <0.02 <10
2	<0.02	<0.02
	<10	v 10
		 -
	7	7
<0.02 <0.02	<0.02	<0.02
	<10	<10
\[\tau_{\tau} \]	7	⊽

2 Sampling & Analysis Protocol

Table 2-5 Total metals data for rinsate sample analysis.

A b. 4 -	LOR	1114	Sample ID	
Analyte	LOR	Units	QA/QC	QA/QC
Date Sampled	n/a	n/a	3/07/2009	9/07/2009
Antimony	0.001	mg/L	0.002	<0.005
Arsenic	0.001	mg/L	<0.001	<0.005
Barium	0.001	mg/L	0.006	0.065
Beryllium	0.001	mg/L	<0.001	<0.005
Chromium	0.001	mg/L	<0.001	<0.005
Cobalt	0.001	mg/L	<0.001	<0.005
Copper	0.001	mg/L	0.006	0.026
Iron	0.05	mg/L	0.27	2.41
Lead	0.001	mg/L	<0.001	<0.005
Manganese	0.001	mg/L	0.005	0.018
Mercury	0.0001	mg/L	<0.0001	<0.0001
Molybdenum	0.001	mg/L	0.012	0.013
Nickel	0.001	mg/L	0.005	0.009
Selenium	0.01	mg/L	<0.01	<0.05
Silver	0.001	mg/L	<0.001	-
Tin	0.001	mg/L	<0.001	0.008
Vanadium	0.01	mg/L	<0.01	<0.05
Zinc	0.005	mg/L	0.01	0.027
Cadmium	0.0001	mg/L	<0.0001	<0.0005

This page is intentionally blank

Wheatstone Project Appendix Q4 - Nearshore Acid Sulfate Soils Investigation (Turning Basin and Dredge Channel)

Results

3.1 **Assessment Guideline**

Classification of the sediments encountered during the field survey ranged from medium to fine grained. Based on this generalised classification, and assuming a disturbance of greater than 1 000 t of sediment, the selected action criteria for net acidity is 0.03 % S or 18.7 mole H⁺/tonne (Table 3-1).

Table 3-1 Texture based action criteria for PASS (Ahern et al. 1998, McDonald et al. 1990).

Material Trees		Net A	cidity Action Crite	eria	
Material Type		1-100	0 tonnes	>1000) tonnes
Texture range	Clay Content (%)	% S	mole H+/tonne	%S	mole H+/tonne
Coarse Texture (sands to loamy sands)	<5%	0.03	18.7	0.03	18.7
Medium Texture (sandy loams to light clays)	5-40%	0.06	37.4	0.03*	18.7*
Fine Texture (medium to heavy clays and silty clays)	>40%	0.1	64.8	0.03*	18.7*

NB: an * indicates that the values has exceeded the action criteria.

3.2 **Lithological Profile**

The generalised lithological profile identified along the proposed navigation channel and turning basin consists of variable amounts of silty sand, clay, and gravel at depths of up to 10 m BSBL. The profile is typically thicker and sandier closer to the shore line. Underlying the unconsolidated and consolidated sediment layer is extremely low strength claystone and conglomerate rock, with extremely low strength carbonate rock generally detected closer to the shoreline.

Typical lithological units identified in-situ along the length of the turning basin and navigation channel are presented below (Table 3-2). Deep core borehole logs and descriptions of the vertical profile of each borehole have been included in Appendix D. Core photos are included in Appendix E. Appendix F present geological cross section data (Coffey 2009). These cross sections illustrate the generalised subsurface profiles of each borehole at depth along the length of the proposed navigation channel and turning basin.

3 Results

Generalised lithological profile along the navigation channel and turning basin. Table 3-2

			.,			
Unit Name	Material Type	Profile	Profile Depth Range (mBSBL)	Profile Thickness (mBSBL)	Description	Borehole
Dune sand and sandplain, marine sediments and recent alluvial soils, Ashburton red bed	Marine sediment	Sandy clay clayey sand clayey sandy gravel gravelly clay clay sand	Between 0.0 and 10.0	0.9 to 10.0 Profile is typically thicker and sandier closer to shore	Variable amounts of silts, clays, sands (quartz) and carbonate material in profiles. Some shell fragments. Generally brown to red brown.	All boreholes
		Claystone	Between 0.9 and 9.40	0.55 to 4.75	Generally underlies the unconsolidated/consolidated sediment. Typically not encountered close to shore. Red brown, fine to medium, variably cemented, rock mass extremely low to very low strength rock.	All boreholes except MC008, MC010
Ashburton Red Bed	Rock	Conglomerate	Between 5.0 and 11.6	0.75 to 3.75	Generally fine to coarse grained, red brown, clasts are sub-angular to angular, of well cemented claystone in a matrix of clay/siltstone, variably cemented, extremely low strength rock	MC001, MC003, MC004, MC005, MC006, MC009, MC012, MC015
		Clayey sandstone/ Clayey sand Sandstone	Between 2.5 and 8.2	0.8 to 3.45	Generally underlies claystone and/or conglomerate layers. Fine to medium, red brown, variably cemented soil unit becoming extremely slow strength clayey sandstone to sandstone dense to very dense.	MC001, MC002, MC003, MC004, MC006, MC007, MC010, MC011, MC012, MC013, MC015.

42907466/01/0

20

5

3 Results

Nearshore ASS Investigation

Unit Name	Material Type	Profile	Profile Depth Range (mBSBL)	Profile Thickness (mBSBL)	Description	Borehole	
		Calcareous conglomerate	Between 8.45 and 12.1	0.4 to 3.55	Fine to coarse grained, clasts are fine to cobble sized, sub rounded to angular, of well cemented claystone, quartzite, chert and or sandstone in a matrix of, claystone, clay, sand silt.	MC006, MC007, MC008, MC009, MC010, MC011, MC013.	
Carbonate Rock	Carbonate rock	Calcareous sandstone. siliceous calcarenite	12	1	Fine to medium grained, pale yellow brown, sand is mainly quartz, well cemented.	MC008.	
		Calcareous siltstone	13	-	Fine to medium grained, red brown, with some well cemented nodules of sandstone	MC008.	

3 Results

pH_f & pH_{fox} Screening Tests 3.3

As mentioned above, PASS field screening tests for pH_f and pH_{fox} are normally undertaken in the field to provide a rapid qualitative assessment of the likelihood of PASS occurring by providing an indication of the existing and potential acidity levels in sediments. The tests, however, cannot give a quantitative measure of the amount of PASS that has been in the sediment, or how much may be produced through oxidation.

Interpretation of PASS field screening tests was undertaken in accordance with Ahern et al (1998) (Appendix C) which considers a combination of three factors in arriving at a positive identification of sulfides or PASS (i.e. hydrogen peroxide reaction, pH_{fox} value, change in pH_{fox} and pH_f values).

Data mean and range values, and reaction type for pH_f and pH_{fox}, by sediment type, is presented below (Table 3-3). Complete analytical test results are presented in Appendix G. Laboratory certificates are presented in Appendix H.

The sediment sampling during the field survey ranged in mean pH_f from 7.2 pH for silty clayey sands, to 8.5 pH for clayey sandy gravel. Subsequent pH_{fox} values ranged from 6.4 pH for clayey gravel to 7.4 pH for clayey gravelly sand, indicating that the likelihood of encountering PASS material is low. Mean changes in pH ranged between 0.9 pH for clay, calcareous conglomerate, and sandstone, and 1.65 pH for clayey sandy gravel.

Reaction types ranged from slight to strong throughout the sediment profile, with the strongest reaction observed in claystone and the least reaction observed in sandy clay. However, end pH values suggest that reactions may have been buffered, with a large amount of carbonate material being observed throughout the profile.

23

Nearshore ASS Investigation

3 Results

Data summary for pH_f and pH_{fox} with reaction type, by sediment type. Table 3-3

Sodimont Tyno	acipaco I clodoso a	(^j)Hd		pH(fox)		pH (difference)	erence)	om Lacitore
	Borenole Location	meam	range	mean	range	mean	range	reaction Type
Calcareous conglomerate	MC009, MC010	7.6	7.4-7.8	2.9	6.7	6.0	0.7-1.1	slight
Clay	MC003, MC006, MC009, MC010	7.74	7.3-8.5	6.84	6.4-7.2	6.0	0.3-2.1	slight to strong
Clayey gravel	MC009	8.4	n/a	6.4	n/a	2	n/a	slight
Clayey gravelly sand	MC014	8.7	n/a	7.4	n/a	0.4	n/a	strong
Clayey sand	MC002, MC003, MC005, MC007, MC008, MC012, MC014, MC015	8.29	7.6-8.6	6.64	6.1-7.1	1.65	0.9-2.6	slight to strong
Clayey sandstone	MC001, MC006	7.85	8.8-6.9	6.45	6.9-0.9	1.4	0.9-1.9	slight and strong
Clayey sandy gravel	MC004	8.5	n/a	8.9	n/a	1.7	n/a	moderate
Claystone	MC001, MC005, MC006, MC010, MC015	96'2	7.4-8.6	6.81	6.4-8.7	1.14	-0.7-2.1	slight to strong
Conglomerate	MC001, MC003, MC012	7.57	7.0-8.4	6.33	6.1-6.5	1.23	0.8-2.0	slight and strong
Gravelly day	MC009, MC11	8.15	8.0-8.3	6.65	6.4-6.9	1.5	1.4-1.6	slight and strong
Sand	MC008	2.7	n/a	6.5	n/a	1.2	n/a	slight
Sandstone	MC11	8.1	n/a	7.2	n/a	6.0	n/a	strong
Sandy clay	All boreholes except MC009	8.4	7.9-8.8	9.9	6.0-7.7	1.8	0.7-2.1	slight to strong
Silty dayey sand	MC10	7.2	n/a	6.5	n/a	0.7	n/a	strong
Silty sand	MC002	8.4	n/a	6.7	n/a	1.7	n/a	moderate

3 Results

3.4 Chromium Suite

As mentioned above, Scr analytical results were compared against the 'action criteria' of 0.03 % S as an indication of whether PASS material is present within the proposed navigation channel and turning basin.

A data summary of the Scr results is presented below (Table 3-4). Complete analytical test results are presented in Appendix G. Laboratory certificates are presented in Appendix H¹.

Alkaline sediments were identified along the length of the navigation channel and turning basin, with results showing a mean pH $_{\rm KCI}$ of 9.1 pH and a range of 8.6 pH to 9.5 pH. All TAA concentrations were below the LoR (<0.02 % S) for existing acidity (sulfer). Calculated net acidity concentrations in exceedance of the action criteria of 0.03 % S ranged between 0.03 % S and 0.04 % S at boreholes MC005, MC0010, MC011 and MC012. Sample depths at each borehole ranged between 0.0 mBSBL and 0.55 mBSBL. Sediment types with elevated S % concentrations included clayey sand, gravelly clay and sandy clay.

The ANC of sediments ranged between 0.65 % kg CaCO₃/t and 52 % kg CaCO₃/t, indicating a potential for significant buffering of low pH sediments. The ANC was highly variable both along the length of the proposed navigation channel and turning basin, and within the sediment type (Table 3-4).

Four sampling locations within shallow unconsolidated surface sediments showed elevated acid levels, slightly above or at the action criteria trigger value (Table 3-4).

Overall, it is considered that there would be negligible risk to the environment (with regard to acid sulfate soils issues) of the subaqueous disposal of the dredged material at the proposed offshore placement sites (A to E), given that sediments will remain underwater or are kept saturated during transport and following disposal, acid production is considered low.

With regards to onshore placement of dredge spoil, although some oxidation of PASS material may occur during the drying process associated with onshore placement, acid generation is considered to be low given the relatively small volume of PASS material encountered, the comparably low %S concentrations reported, and the calculated ANC of the dredge spoil. It should be noted, however, that given the requirements outlined in the DEC (2009b) guidelines, ANC (Carbonate availability is discussed further in Section 3.5.) is typically excluded when assigning requirements for an ASSMP.

¹ It should be noted, that the environmental sampling program (ASS investigation) was undertaken in conjunction with the geotechnical program undertaken by Coffey. A number of samples (MV series) submitted and analysed for Scr suite by Coffey were done so erroneously as they are not within the scope of work proposed by URS (i.e. they are considered to be outside the dredging footprint investigation area). These results have not been used for interpretation purposes. The results, however, are presented in Appendix H as part of the laboratory documentation.

25

Nearshore ASS Investigation

3 Results

Data summary for Scr, by sediment type. Table 3-4

		# samples	рНксі		Chromium Reducible	E a	Net acidity (excluding	Net acidity (excluding ANC)	ANC (%C2CQ3)		
Sediment Type	Borenoie Location	Exceeding 0.03%			sulfur (%S)	(S)	(%%)		(%caco		
		% 50.0-	ueau	range	mean	range	mean	range	mean	range	
Calcareous conglomerate	MC009, MC010	0	9.35	9.3-9.4	QN	NA	ND	NA	51.55	51.1-52	
Clay	MC003, MC006, MC009, MC010	0	6	8.6-9.1	Q	NA	QN	NA	5.65	1.17-11.9	
Clayey gravel	MC009	0	8.2	NA	ND	NA	ND	NA	1.03	NA	
Clayey gravelly sand	MC014	0	6.8	NA	ND	NA	ND	NA	0.65	NA	
	MC002, MC003, MC005,	c	o o	L C	L		L	0	1	1,00	
Clayey sand	MC007, MC008, MC012, MC014, MC015	N	9.3	9.1-9.5	0.035	<0.02-0.04	0.035	<0.02-0.04	1/./	0.74-35	
Clayey sandstone	MC001, MC006	0	6	8.8-9.2	ND	NA	ND	NA	18.4	0.88-35.9	
Clayey sandy gravel	MC004	0	9.3	NA	ND	NA	ND	NA	26.1	NA	
Claystone	MC001, MC005, MC006, MC010, MC015	0	6	8.8-9.2	ND	NA	ND	NA	6.7	1.01-17.2	
Conglomerate	MC001, MC003, MC012	0	9.1	9.0-9.2	QN Q	NA	ND	NA	8.3	5.3-13	
Gravelly day	MC009, MC11	-	9.25	9.1-9.4	0.03	<0.02-0.03	0.03	<0.02-0.03	17.6	0.74-32.8	
Sand	MC008	0	9.4	NA	0.02	NA	0.02	NA	6.61	NA	
Sandstone	MC11	0	8.2	NA	ND	NA	ND	NA	31.3	NA	
Sandy clay	All boreholes except MC009	1	9.1	8.8-9.4	0.03	<0.02-0.03	0.03	<0.02-0.03	8.35	0.8-31.7	
Silty clayey sand	MC10	0	8.6	NA	ND	NA	ND	NA	13.4	NA	
Silty sand	MC002	0	6.3	NA	ND	NA	ND	NA	23	NA	

3 Results

3.5 **Carbonate Buffering Potential**

A data summary of the carbonate buffering capacity of the sediments sampled is presented below (Table 3-5). Complete analytical test results are presented in Appendix G. Laboratory certificates are presented in Appendix H.

The ANC values reported for carbonate buffering potential ranged from 26 kg H₂SO₄/tonne at borehole MC005 (1.6-1.65 mBSBL) to 350 kg H₂SO₄/tonne at borehole MC004 (5-0.56 mBSBL). Samples reacted vigorously upon addition of dilute HCI, indicating the presence of reactive variants of carbonate minerals (e.g. calcite). Sediment samples with the highest ANC where those comprising fine to coarse grained sandy gravel, while samples with the lowest ANC where those comprising brown, low plasticity sandy clay, variably cemented with chert and sandstone.

The pH buffering curves for the samples typically showed inflection points of between 6 pH and 7 pH, which is usually consistent with the occurrence of reactive carbonates. This was less evident for the low ANC samples (e.g. MC005 (1.6 -1.65 mBSBL)), which were only slightly calcareous.

Overall, it is considered that the carbonate buffering potential of the subsurface profile indicates that in the event of PASS oxidation, there is sufficient available carbonate buffering capacity of the surrounding environment to negate any potential acidity generation, particularly where onshore placement of dredge spoil is proposed. As discussed in Section 3.4, however, the DEC (2009b) will require an ASSMP regardless of the ANC and carbonate buffering capacity of PASS where any exceedances of the adopted trigger value for %S (0.03 %S) is reported.

Table 3-5	Data summary for carbonate buffering potential of selected sediment samples.
-----------	--

Borehole	ANC	ANC
Borenoie	(kgH ₂ S0 ₄ /tonne)	(%CaCO₃)
MC004	350	35
MC005	26	2.6
MC008	99	9.8
MC012	140	14
MC013	310	31
MC014	59	5.9

Data Validation 3.6

A review of pH values reported for the PASS field screening test and Scr suite method was undertaken to ensure that results were reproducible and that no oxidation of the samples had occurred between field screening tests and Scr testing. It was identified that pH_{KCI} values were more alkaline than the initial pH_f values reported during the PASS field screening tests. This was most likely due to a difference in methodology used when assessing pH. Specifically, the PASS field screening test was undertaken on 'wet' samples, while the Scr test was undertaken on dried and pulverised sediments, hence pH may be overestimated and therefore ANC may also be overestimated. However, it is unlikely that this difference in methodology will impact the outcome of the investigation as field screening tests for pH_f also reported alkaline pH values.

3 Results

Calculated RPD values for PASS field screening tests and Scr tests from field duplicates were generally below the guideline of ±50% (Table 3-6). The only exception was for the duplicate ANC value for borehole MC009. It was identified that the reported ANC values for sediments sampled during the field programme were highly variable and that the RPD non-compliance reflects this variability.

Rinsate samples reported slightly elevated concentrations of antinomy, barium, copper, iron, manganese, molybdenum, nickel, tin and zinc. As the concentrations were generally near the LoR it was deemed unlikely that contamination had occurred between sample sites.

ALS Perths laboratory interpretive quality control report (Appendix H) indicated that no outliers existed in any of the data sets for any of the data batches submitted (Batch Report #s EP0903738, EP0903741, EP0903858 and EP0904291).

3 Results

Field duplicate RPD values for PASS field screening and Scr tests. Table 3-6

	Sample ID	MC009	MC009	RPD (%)	MC012	MC012	RPD (%)	MC015	MC015	RPD (%)
Analyte	Units									
Depth	mBSBL	3.9-4.0	3.9-4.0		0.1-6.0	0.1-6.0		0.45-0.55	0.45-0.55	
Sample Type	-	QA/QC	QA/QC		QA/QC	QA/QC		QA/QC	QA/QC	
PASS Field Screening Analysis										
pH _f	Hd	7.5	7.6	1.32	8.3	8.4	1.2	8.9	8.6	3.43
pH _{fox}	Hd	6.1	6.5	6.35	6.3	6.4	1.57	9.9	9.9	0
Reaction Rate	1	Slight	Moderate	1	Slight	Slight	1	Slight	Slight	1
Actual Acidity										
рНка	Hd	9.8	6	4.55	9.5	6	2.2	9.6	9.5	1.05
TAA	mole H+/tonne	<2	<2	-	<2	<2		<2	<2	1
sulfidic - TAA	S %	<0.02	<0.02	1	<0.02	<0.02	1	<0.02	<0.02	1
Potential Acidity										
Chromium Reducible Sulfur	S %	<0.02	<0.02		<0.02	<0.02		<0.02	<0.02	1
acidity - Chromium Reducible Sulfur	mole H+/tonne	<10	<10	-	<10	<10	-	<10	<10	
ANC										
ANC	% CaCO ₃	1.06	4.69	126.26	5.26	5.41	2.81	48.5	32.8	38.62
acidity - ANC	mole H+/tonne	212	286	126.2	1050	1080	2.82	0696	0959	38.52
sulfidic - ANC	S %	0.34	1.5	126.09	1.68	1.73	2.93	15.5	10.5	38.46

42907466/01/0

88

Conclusion

It is anticipated that the likelihood of encountering PASS or AASS material during the construction of the proposed navigation channel and turning basin is low. This is indicated by the negligible acid generating capacity of the sediment encountered during the field sampling programme. Where PASS was encountered, typically in the superficial sediment profile close to the coastline, based on laboratory results it is considered that the sediments have sufficient available carbonate buffering capacity to negate any potential acidity for material that may be placed onshore. However, given the requirements outlined in the DEC (2009b) guidelines, it is likely that management options, in the form of an acid sulfate soils management plan (ASSMP) would be required if onshore placement is undertaken of the dredge material.

Results of the pH_f & pH_{fox} screening tests confirm this conclusion and, based on the results presented above, it is anticipated that it would be unlikely that PASS material exists along the length of the proposed navigation channel and turning basin. This is further supported by the results of the Scr testing which also indicated, overall, that the sediment profiles along the survey area where not likely to be acid generating. The ANC values of all sediment samples corresponded to alkalinity forms (chiefly reactive carbonates) which suggest a circum-neutral buffering capacity of the sediments that is not chemically non-limiting.

This page is intentionally blank

References

- Ahern. C.R., Ahern. M.R. and Powell. B. (1998). Guidelines for Sampling and Analysis of Lowland Acid Sulfate Soils (ASS) in Queensland. QASSIT, Department of Natural Resources, Resource Sciences Centre, Indooroopilly.
- Ahern. C.R., McElnea. A.E., Sullivan. L.A., (2004). Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1.
- Bechtel (2009a). Proposed nearshore geotechnical survey (Phase I). Drawing # WS1-0000-GEO-SUR-BEC-000-00010-000. Produced for Chevron Australia Pty Ltd.
- Bechtel (2009b). Proposed nearshore geotechnical survey (Phase I). Drawing # WS1-0000-GEO-SUR-BEC-000-00006-000. Produced for Chevron Australia Pty Ltd.
- Coffey (2009). Nearshore Geotechnical Investigation Downstream. Unpublished report for Chevron Australia Pty Ltd.
- Damara WA (2010). Coastal Geomorphology of the Ashburton River Delta and Adjacent Areas. Unpublished report for Chevron Australia Pty Ltd.
- DEC (2001). Development of Sampling and Analysis Programs. Department of Environment and Conservation, Perth, Western Australia.
- DEC (2009a). DRAFT Treatment and Management of Soils and Water in Acid Sulfate Soil Landscapes. Department of Environment and Conservation, Perth, Western Australia.
- DEC (2009b). Identification and Investigation of Acid Sulfate Soils and Acidic Landscapes. Department of Environment and Conservation, Perth, Western Australia.
- DEC (2010). Contaminated Sites Management Series: Assessment levels for Soil, Sediment and Water. Department of Environment and Conservation, Perth, Western Australia.
- DEWHA (2009). National Assessment Guidelines for Dredging. Department of Environment, Water, Heritage and the Arts, Canberra, Australian Capital Territory.
- LandGate (2009). https://www.landgate.wa.gov.au/bmvf/app/waatlas/#. Acid Sulfate Soils Risk Map. Accessed December 2009.
- McDonald RC, Isbell RF, Speight JG, Walker J, Hopkins MS (1990). Australian Soil and Land Survey Field Handbook. CSIRO Publishing, Melbourne, Victoria.
- Semeniuk V. (1993). The Pilbara Coast: a riverine coastal plain in a tropical arid setting, northwestern Australia. Sedimentary Geology, Volume 83, Issues 3-4, March 1993, Pages 235-256.
- Semeniuk V. (1996). Coastal forms and Quaternary processes along the arid Pilbara coast of northwestern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 123, Number 1, July 1996, pp. 49-84(36).
- Sobek, A.A., W.A. Schuller, J.R. Freeman, and R.M. Smith, 1978. Field and laboratory methods applicable to overburden and minesoils. U.S. E.P.A. Report EPA-600/2-78-054.

Noor	hore ASS Investigation
	eferences
JRS	3 (2010). DRAFT Sediment Quality Assessment: Wheatstone Dredging Programme. Unpublished report for Chevron Australia Pty Ltd.

Limitations

URS Australia Pty Ltd has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Chevron Australia Pty Ltd and only those third parties who have been authorised in writing by URS Australia Pty Ltd to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in CTR 1.14.

The methodology adopted and sources of information used by URS Australia Pty Ltd are outlined in this report. URS Australia Pty Ltd has made no independent verification of this information beyond the agreed scope of works and URS Australia Pty Ltd assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS Australia Pty Ltd was false.

This report was prepared between 1 November and 11 May 2010 and is based on the conditions encountered and information reviewed at the time of preparation. URS Australia Pty Ltd disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

This page is intentionally blank

Nearshore ASS Investigation Appendix A Sampling & Analysis Plan URS 42907466/01/0

This page is intentionally blank

6 May 2009

Project No. 42907103

Chevron Wheatstone LNG 250 St. George's Terrace Perth WA 6000

Attention: Karl Bauer

Dear Karl,

Subject: Wheatstone LNG Settlement Characteristics and Acid Generating Properties

of Material to be Dredged Scope of Work and Methodologies

Summary of Changes

The following amended scope of work and methodologies is in response to a number of logistical issues presented to URS Australia Pty Ltd (URS) by Coffey Geotechnics of Perth (Coffey) on 19 March 2009 with respect to the completion of environmental sampling in conjunction with geotechnical requirements for the nearshore Wheatstone Project.

Further, the scope of works and methodologies has been amended to account for the most current survey as presented in Drawing No. WS1-0000-GEO-SUR-BEC-000-00010-00 Rev0, WS1-0000-GEO-SUR-BEC-000-00006-00 Rev0 and preliminary coordinates provided for the export pipeline (EP-41 to EP-58).

Lastly, the SAP was further finalised on 6 May 2009 based on specific sampling requirements outlined in the 2009 National Assessment Guidelines for Dredging and changes to the upstream nearshore investigation. The changes to the SAP are outlined in Section 6.3.1 and are highlighted in Table 1.

The sampling and analysis plan (SAP) has been provided and was largely developed assuming a certain level of homogeny of the consolidated material at depth along the proposed areas of disturbance and hence is based on a minimum requirement to satisfy regulatory guidelines. It is anticipated that this will be satisfactory for the completion of the geotechnical component with disturbing the integrity of the cores.

The total number of analytical tests has been reduced to reflect the new number of geotechnical locations. Total organic carbon has been eliminated from the laboratory schedule due to issues with holding times. This is not considered critical to the outcome of the investigation. The SPOCAS suite has been replaced with Scr Suite for ASS material which is now the preferred analytical suite for the Department of Environment and Conservation. Based on analytical results provided from the pilot URS Australia Pty Ltd (ABN 46 000 691 690)

Level 3, 20 Terrace Road East Perth WA 6004 Australia

Tel: 61 8 9326 0100 Fax: 61 8 9326 0296

6 May 2009 Page 2

sediment study completed by URS-Marine, it is not anticipated that ecotoxicology or elutriate analysis is required.

2 Introduction and Background

URS has been commissioned by Chevron Australia Pty Ltd (Chevron) to undertake an assessment of the settlement characteristics and the potential acid generating capacity of materials to be dredged offshore at the proposed Wheatstone LNG facility (the site). The site is located at the proposed Ashburton North site situated 10km to the south-west of the town of Onslow in Western Australia.

As part of the environmental impact assessment works, impacts to the marine environment from the proposed dredging activities is to be assessed through the development and running of an Ocean Model. The model, which is currently being developed by DHI, requires calibration using quantitative data of the settlement characteristics of the actual material that will be dredged.

Further, in the event that dredge spoil will be returned onshore, an investigation into the potential acid generating capacity (and hence potential metal contamination) of the dredge spoil and assessment of the risk to the receiving environment and human health will be assessed. Based on the outcomes of the investigation, management of such material may need to be addressed prior to the commencement of dredging.

The most effective way of obtaining this data is through the selective testing and analysis of samples obtained from cores obtained through the proposed geotechnical investigation of the areas of interest.

Based on the most current drawings, it is understood that a total of 17 locations (M101, M103, M105, M107, M109, M111, M113, M115, M117, M120, M122, M123, M125, M218, M220, M222, M224) will be investigated along the shipping channel, turning basin and breakwater with depths of bores ranging between 2m and 32.5 m, and a further 18 (EP-41 to EP-58) locations along the export pipeline with depths of bores ranging between 2.80 m and 18.05m.

This letter report outlines the amended proposed scope of work and associated methodologies associated with the identification and assessment of the settlement characteristics and potential acid generating capacity of the material to be dredged, to enable Coffey to cost and schedule the required works.

Objectives

The principal objectives of the proposed works are to:

1. Provide sufficient quantitative data on the particle size distribution and settlement characteristics of the material to be dredged for input into the dredging component of the Ocean Model being developed by DHI. Ultimately all the information obtained from the various investigation component including the modelling, will be used to develop a comprehensive Dredge Management Plan;

6 May 2009 Page 3

- 2. Determine whether strata that will be disturbed during dredging operations will pose any environmental risks to the marine environment, or to the terrestrial environment if bought onshore; and
- 3. Identify specific issues including potential acid generation and potential metal contamination. Further, the carbonate availability dredge spoil material for the buffering of potentially acid generating material will be investigated

The works are to be completed in accordance with State and National Regulations and Guidelines, where relevant, and to internal Chevron Guidelines.

Proposed Scope of Works

In order to meet the objectives outlined above, a comprehensive scope of works has been identified. At this time it is envisaged that the works will be undertaken in one phase (one mobilisation) as the data needs to be obtained in a timely manner to allow sufficient time for inclusion in the dredging component of the Ocean Model.

This scope of work needs to be coordinated with the geotechnical investigation. Coordination between these study components is considered crucial to allow sufficient material to be obtained for all of the study requirements and to reduce the requirement for multiple mobilisations.

The following tasks address the general scope of works, with more detailed methodologies presented in Section 6.

Task 1: Investigation of Geotechnical Characteristics of Dredge Material-This component of the investigation will be completed by Coffey, however to meet the objectives of the investigation and for the completion of Task 2 and Task 3, the completion of field tests specific for the identification of acid potential generating material and a specific sampling programme, will need to be completed as part of the geotechnical investigation. These requirements (and assumptions) are outlined in greater detail in Section 5 and Section 6.

Further, this work should include a suitable number of geological cross-sections within the subject areas presenting the different stratigraphic units present.

Task 2: Investigation of Settlement Characteristics of Dredge Material - This includes the Particle Size Distribution (PSD) testing and Laser Diffraction or equivalent testing on selected representative samples.

Task 3: Environmental Investigation -- This includes field testing of cores, sampling (including the appropriate storage of samples) and the completion of analytical tests for the determination of the acid generating potential, metal contamination and the carbonate buffering potential. The selected analytical methods proposed include the Chromium reducible method (S_{cr}) method, a suite of total metals of commonly detected metals in the Pilbara region, and the completion of acidimetric autotitrations on a select number of samples.

The above works are in accordance with the Department of Environment and Conservation (DEC) Guidelines for Acid Sulphate Soils (2003).

Task 3: Reporting – two separate reports will be provided.

6 May 2009 Page 4

The first report will be based on works completed as part of Task 1 and Task 2 and will include an actual report and presentation of data in a format suitable for submittal to DHI.

The second report (environmental report) will be based on works completed as part of Task 1 and Task 3 and will include the preparation of a factual report that covers the methodology, observations and results of the field work and laboratory results. The report will also provide technical input into the discussion of implications for dredging impacts of onshore disposal.

Roles and Responsibilities

The following roles and responsibilities have been identified for the duration of the nearshore geotechnical and environmental investigation.

Coffey are responsible for the provision of personnel for the completion of environmental investigation which includes the extraction of environmental samples, ensuring decontamination between locations, completion of field tests, sampling (including quality control samples), appropriate sample storage, transfer of samples to appropriate laboratory, provision of field test results and preliminary log data to URS with COC (so sample selection can be completed), scheduling of analytical testing (once URS have selected appropriate samples for analysis), and all analytical results and accompanying laboratory certificates.

URS also understands that Coffey will provide analytical results required for the Ocean Modelling component of the investigation in a timely manner as received from CSIRO. It is also understood that Coffey will be transporting samples on a weekly basis, pending the momentum of the drilling programme.

URS' key responsibilities will be to liase with Coffey to provide guidance with the proposed environmental programme, to complete sample selection prior to submission of samples to CSIRO (based on field tests and preliminary field logs as provided by Coffey) and completion of the environmental interpretative report in a timely manner.

Detailed Methodologies

The following sections provide information on the methodologies that will be employed for the various tasks identified.

6.1 Task 1 - Investigation of Geotechnical Characteristics of **Dredge Material**

It is assumed that for the completion of Task 2 and Task 3 the following will be completed:

- Boreholes will be advanced using geotechnical drill rigs mounted on jack-up barges.
- Standard penetration testing (SPT) will be carried out on granular materials in accordance with AS1289.6.3.1 to determine the SPT "N" value.
- Continuous PQ3 wire-line coring will be carried out in the consolidated sediment, variably cemented materials and sound rock to obtain core for laboratory examination, testing and for future inspection/reference.

6 May 2009 Page 5

- Field strength testing of the core will be completed which will comprise Point Load Strength Index testing, performed at approximate 1m intervals in accordance with AS4133.4.1.
- Borehole logs will be compiled in the field with descriptions of soils and rocks encountered in accordance with the Soil and Rock Classification System from AS1726-1993. The field logs will be augmented by the laboratory test results and the final logs updated to include this information as deemed relevant.
- Laboratory testing will include, in addition to analytical testing required for the completion of Task 2 and Task 3, the following:
 - Calcium carbonate tests.
 - Rock Porosity and Dry Density.
 - Rock Strength Tests.

Using the information obtained in the field and from the laboratory testing, the site conditions in the areas of interest will be identified. This will include the identification of the stratum encountered in the investigation areas, usually divided into Units. A profile of the dredging area will be presented which is to include geological cross-sections along the borehole transects where sufficient relevant information is available for cross-sections to be developed.

Task 2 – Investigation of the Settlement Characteristics of **Dredge Material**

In addition to the general geotechnical assessment, comprehensive PSD testing and analysis is required on the material to be dredged to identify the settlement characteristic of the material. To make this meaningful in relation to the dredging, this requires the complete crushing of the consolidated and sound rock found in the profile to assume the worst case scenario (use of a Cutter Suction Dredger).

The principal objective of the Task 2 works is to provide information and advice on the total fines content of the dredged material particularly the PSD of the fraction below 30 microns. It is assumed that all the proposed geotechnical boreholes will be utilised for the Task 2 study.

It is understood that the laboratory testing for the PSD using Laser Diffraction or equivalent testing will be carried out by a combination of Coffey and CSIRO Minerals of Perth. The PSD analysis identifies the size distribution of fines within a given sample of material, while the specialist Laser Diffraction (or equivalent) testing provides additional information on the settling characteristics of the fines

PSD testing will be carried out on selected samples. At this stage it is envisaged that samples will be obtained from each strata encountered in each of the boreholes to the depth of the borehole (assumed proposed dredge depth plus an allowance of 1.5m over-dredge depth). As a conservative measure, an allowance for up to 4 samples per borehole should be allowed for. PSD testing is to be carried out in accordance with AS1289.3.6.1 and where the sample contains 10% or more fines, the test method is to revert to AS1289.3.6.2 (includes a hydrometer analysis of the fine fraction of the sample).

6 May 2009 Page 6

Diffraction testing is to be undertaken on selected samples. Samples will be sent to CSIRO by Coffey, who will select suitable sub-samples for testing. The testing includes the removal of coarse grain sized material (>500um) by wet sieving followed by laser diffraction which calculates the PSD based on laser light scattering.

The results of the PSD using Laser Diffraction (or equivalent) testing will be divided into the geological strata from which the sample originated and the results used to identify an average PSD for each stratum. PSD distributions and graphs are to be prepared for each same analysed (percentage fines and settling curves).

Note: To meet proposed settlement modelling timelines, it is critical that samples are received by the laboratory as soon as reasonably possible. It is important that samples are transported to Perth in batches on a weekly basis, to allow for the commencement of analysis. This also allows the laboratory to schedule and complete the works in a timely manner.

6.3 Task 3- Environmental Investigation

In addition to the field works outlined in Task 1, the following will be required to achieve the objectives of the investigation:

Field Tests: The pH of an unaltered sample (pH_{field}) and an oxidised sample (addition of hydrogen peroxide) (pH_{fox}) will be determined to semi-quantitatively assess potential acidity. This information is used to guide sample selection for laboratory analysis. Field test procedures are attached to the letter proposal as Attachment 1. Field test depths are outlined in the sampling and analysis plan detailed in Section 6.3.1.

Note: It is critical that samples are not contaminated with hydrogen chloride, hydrogen peroxide, sodium hydroxide or any other chemical used in field testing as this will interfere with laboratory test results.

Sampling Requirements: Sampling requirements are outlined in detail in Section 6.3.1. The sampling and analysis plan has largely been developed assuming a certain homogeny of the consolidated material at depth along the proposed areas of disturbance and hence are based on a minimum requirement to satisfy regulatory guidelines.

It is assumed that the less consolidated material intercepted at the sediment interface will be extracted using the most reliable method, such as SPT, to provide reasonable core recovery.

All samples should be labelled with the project name, project number, field engineer's initials, the date, bore location and depth of sample prior to the appropriate storage

Coring Decontamination Requirements for Environmental Cores: Prior to environmental core sampling all cores, spilt tubes, drill bits and rods will be degreased and cleaned using nonhazardous environmental fluid such as Liquid-Pol and a non-hazardous and non-toxic grease, such as Liquid Lanolin, will be used on all drill and core parts for corrosion protection and lubrication while drilling.

Cold Storage Requirements: All ASS samples (bags) are required to be frozen immediately after sampling to prevent oxidation of samples. To ensure the integrity of the sample is not jeopardised, samples must remain frozen during transportation. There are a number of cold transport companies

6 May 2009 Page 7

that courier from Karratha to Perth. Samples should be sent in sealed eskies with appropriate COC documentation.

Samples for metals analysis (glass jars) do not require to be frozen, although must be kept in a cool area with a continuous temperature of approximately 4°C

Laboratory Assessment: It is anticipated that on arrival of samples to Perth, a URS personnel experienced in acid sulphate soils, will select samples for laboratory analysis. Sample selection will be based on field logs and field tests for pH_(field) and pH_(fox). URS assume that draft field logs will be provided to aid in sample selection.

Based on the proposed 13 geotechnical cores completed as part of the nearshore investigation (dredge main access channel and turning basin and breakwater), it is anticipated that a total of 56 primary samples and 3 field duplicates (and other required QA/QC requirements) will be submitted to a NATA accredited laboratory, ALS Environmental (ALS) (Perth) for Scr suite (which includes Scr, pH_{KCL}, TAA, ANC and S_{NAS}). The total sampling regime equates to approximately 4 samples per location (although will ultimately depend on materials encountered). If any significant metals or acid producing material is detected from analysis additional testing may be required on stored samples.

It is currently anticipated that the assessment of geotechnical cores along the export pipeline will be based on analytical results of the nearshore investigation.

A further 10 primary samples will be submitted for acidimetric auto-titrations (carbonate buffering) to Graeme Campbell and Associates (GCA).

A brief description of the laboratory methods is provided:

- 1. Scr Suite:. Chromium Reducible Sulfur A commonly used method of determining reducible inorganic sulfur compounds. It does not suffer from interferences from organic sulfur compounds or sulfates. Often used where results are close to trigger values, and where significant organics are present although does not quantify the actual acidity resulting from AASS
- 2. Metals: Samples will be analysed for a range of heavy metals known from the Pilbara and compared against ANZECC (2000) sediment quality guidelines. These guideline values also apply to sea dumping. It is anticipated that the metals suite will include Sb, As, Ba, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Mo, Ni, Ag, Se, Sn, Zn by ICP-MS
- 3. Carbonate Buffering: Each sample will be oven-dried (80°C for c. 24 hrs), and crushed in a jaw-crusher with clearance set to 2-3mm (final clearance to be discussed with analytical laboratory). Equal-weight-based composites will be prepared from respective individual samples. The Acid-Neutralisation-Capacity (ANC) values will be based on laboratory results provided by CSIRO, while the acidimetric auto-titrations will be performed in the Graeme Campbell and Associates (GCA) Testing-Laboratory in Bridgetown.

Please note, that testing for carbonate material is a subsample of the ASS sample and collection of a separate sample is not required. ALS will need to provide GCA with the prepared sample once they have completed the required ASS analysis (inclusive of ANC).

6 May 2009 Page 8

6.3.1 Sampling and Analysis Plan

The following sampling and analysis plan (SAP) has been proposed based on known bore locations and depths of geotechnical bores along the shipping channel and turning basin and on preliminary bore locations for the export pipeline.

Approximate sample depths for the export pipeline will be determined once analytical results have been received for the dredged main access channel and turning basin. Based on these results the sampling intensity may be reduced and/or specific lithologies identified as 'high risk' will be targeted.

Please note that that the following SAP was amended on 17 April 2009 to comply with the new 2009 National Assessment Guidelines for Dredging in addition to the DEC Guidelines for ASS (2003) and the Contaminated Sites Guidelines (2001).

To comply with ALL guidelines the following has been amended:

- Approximate Sample Depths: In core sampling, the top 50 cm of the core (or to the depth of dredging if less than 50 cm) is to be used as a single sample for analysis. A second sample is to be taken from the 50 – 100 cm interval. A composited single sample is required of material below 1 m. Additional sample depths are notated and highlighted in Table 1.
- QA/QC Sampling Frequency and Sample Control Requirements:
 - 1. 1 in 20 (locations) a composite sample representative of the core should be thoroughly mixed then split into three containers to assess laboratory variation, with one of the three samples sent to a second (reference) laboratory for analysis,
 - 2. Rinsate Sample (of selected field equipment) at a frequency of one per week
 - 3. 1 sample that has been analysed in a previous batch (if more than one batch is sent) to determine the analytical variation between batches.

These changes have been highlighted in the following table.

Table 1: Amended Sampling and Analysis Plan for Environmental Investigation

Area	Bore Location	Approximate Boring Penetration (m)	Total Samples required per borehole	Approximate Sample Depths (m)	Field Tests ¹	Acid sulphate soils ²	Metals ³	Carbonate Buffering ⁴	QA/QC Sample⁵
Dred ged Main	MD101	2	3	Top 0.5 m Between 0.5-1.0 m Composite below 1m	х	All but composite	х	Composite below 1m	QC_01 (at M101_0.0)

¹ Field test methodology attached to document as **Attachment 1**.

ASS samples require 200g in a laboratory supplied sealable plastic bag and frozen

MASS samples require 250 g in a laboratory supplied Teflon lid glass jar

4 Carbonate sample is a subsample of the ASS sample and does not need a separate sample bag. Please note on COC which sample will require carbonate buffering as outlined in **Table 1**.

Field duplicate for both ASS and metals analysis must be completed and labeled QC_xx

6 May 2009 Page 9

Area	Bore Location	Approximate Boring Penetration (m)	Total Samples required per borehole	Approximate Sample Depths (m)	Field Tests ¹	Acid sulphate soils ²	Metals ³	Carbonate Buffering ⁴	QA/QC Sample ⁵
	MD103	3.5	3	Top 0.5 m Between 0.5-1.0 m Composite below 1m	х	All but composite	x		
	MD105	4.5	3	Top 0.5 m Between 0.5-1.0 m Composite below 1m	х	All but composite	x		
	MD107	6	4	Top 0.5 m Between 0.5-1.0 m Composite below 1m Sample at 1.5	х	All but composite	x	0.5	
	MD109	6	4	Top 0.5 m Between 0.5-1.0 m Composite below 1m Sample at 3.5	х	All but composite	х		
	MD111	6.5	4	Top 0.5 m Between 0.5-1.0 m Composite below 1m Sample at 3.0	х	All but composite	х		
	MD113	9.5	5	Top 0.5 m Between 0.5-1.0 m Composite below 1m Sample at 6.0 and 8.0	х	All but composite	х	6.0	
	MD115	9.5	5	Top 0.5 m Between 0.5-1.0 m Composite below 1m Sample at 5.0 and 8.0	х	All but composite	х		QC_02 (at M115_2.0)
	MD117	10.5	6	Top 0.5 m Between 0.5-1.0 m Composite below 1m Sample at 4.0, 7.0, 10.0	х	All but composite	х	7.0	
	MD120	11.5	6	Top 0.5 m Between 0.5-1.0 m Composite below 1m Sample at 4.5, 7.0, 11.0	х	All but composite	х		
	MD122	11.5	6	Top 0.5 m Between 0.5-1.0 m Composite below 1m Sample at 5.0, 9.0, 11.5	х	All but composite	х	11.5	
	MD123	7	4	Top 0.5 m Between 0.5-1.0 m Composite below 1m Sample at 5.0	х	All but composite	х		QC03 (at M123_5.0)
	MD125	8	5	Top 0.5 m Between 0.5-1.0 m Composite below 1m Sample at 2.0 and 5.5	x	All but composite	х		
vater	MD218	32.5	6	Top 0.5 m Between 0.5-1.0 m Composite below 1m Sample at 3,7,14,	x	All but composite	x		
Breakwater	MD220	28	7	Top 0.5 m Between 0.5-1.0 m Composite below 1m Sample at 3.0, 5.0, 10, 14,	х	All but composite	х	10.0	

6 May 2009 Page 10

Area	Bore Location	Approximate Boring Penetration (m)	Total Samples required per borehole	Approximate Sample Depths (m)	Field Tests ¹	Acid sulphate soils ²	Metals ³	Carbonate Buffering ⁴	QA/QC Sample ⁵
	MD222	32.5	6	Top 0.5 m Between 0.5-1.0 m Composite below 1m Sample at 5.0, 9, 14	х	All but composite	x	14	Composite Triplicate Sample
	MD224	28	6	Top 0.5 m Between 0.5-1.0 m Composite below 1m Sample at 2.0 , 8.0, 14	х	All but composite	х		QC04(at M224_5.0)
	MU001	3	3	-	х	х	х		
	MU003	3	3		х	x	х		
	MU005	5	3	-	х	x	х		
	MU007	3	3		х	х	х		
Je	MU009	3	3	-	х	х	х		
pelir	MU011	3	3		х	x	х		
Export Pipeline	MU013	3	3	-	х	х	х		
kpor	MU015	3	3		х	х	х		
Ú	MU017	3	3	-	х	х	х	х	
	MU019	5	3		х	х	х		
	MU021	3	3	-	х	х	х		
	MU023	3	3		х	х	х		
	MU025	3	3	-	х	x	х		

6.4 Reporting

URS will provide two separate reports for the works completed as part of Task 2 and Task 3 of the investigation.

The comprehensive interpretative reports will include copies of all field data, including field logs, as well as the finalised logs. Plans showing the locations of boreholes advanced (including the borehole identification number and samples obtained from each borehole) are to be produced including the geological cross-sections where possible. All laboratory reports are to be included as appendices.

Additionally, the environmental report will compare analytical results with current DEC guidelines for metals and ASS material, with respect to known background levels of the Pilbara Region. Further, the report will also provide technical input into the discussion of implications for dredging impacts of onshore disposal inclusive of an assessment of risk to the receiving environment and human health.

	rl Bauer
6 M Pa	May 2009 ge 11
	s hoped that the above provides sufficient information on the proposed/required scope of work
	d associated methodologies. If you have any queries in relation to the above or require further tail please do not hesitate to contact the undersigned.
	ours sincerely RS Australia Pty Ltd
0.	to Adolfalla Fty Eta
	lian Gould enior Principal
00	and i mopal
	J:\Jobs\42907103\0 Prop\Geotech-Offshore Scope of works\Wheatstone LNG Settlement Characteristics of Material to be
	Dredged.Rev.3.doc

This page is intentionally blank

Nearshore ASS Investigation	
Appendix B Laboratory Schedule	
	URS

This page is intentionally blank

Nearshore Environmental Programme

PASS Laboratory Schedule

Wheatstone Project, Onslow WA

SampleCode	Sampled_D ate/Time	Lab Login-ASS Screening	Lab_Login_ Date_Other	LocCode	Sample_Depth	ASS Screening	Scr Suite	carbonate buffering
EP0904291047	3-Jul-09	9-Jul-09	4-Aug-09	MC001	0.45-0.55	1	1	
EP0904291048	3-Jul-09	9-Jul-09	4-Aug-09	MC001	0.9-1.0	1	1	
EP0904291049	3-Jul-09	9-Jul-09	4-Aug-09	MC001	(comp)1.0-2.0	1	1	
EP0904291050	3-Jul-09	9-Jul-09	4-Aug-09	MC001	3.4-3.5	1	1	
EP0904291051	3-Jul-09	9-Jul-09	4-Aug-09	MC001	6.4-6.5	1	1	
EP0904291043 EP0904291044	3-Jul-09 3-Jul-09	9-Jul-09 9-Jul-09	4-Aug-09 4-Aug-09	MC002 MC002	1.0-1.1 1.9-2.0	1	1	
EP0904291045	3-Jul-09	9-Jul-09	4-Aug-09	MC002	2.9-3.0	1	1	
EP0904291046	4-Jul-09	9-Jul-09	4-Aug-09	MC002	6.4-6.5	1	1	
EP0904291038	4-Jul-09	9-Jul-09	4-Aug-09	MC003	0.45-0.55	1	1	
EP0904291039	4-Jul-09	9-Jul-09	4-Aug-09	MC003	0.9-1.0	1	1	
EP0904291040	4-Jul-09	9-Jul-09	4-Aug-09	MC003	(comp)1-2	1	1	
EP0904291041	4-Jul-09	9-Jul-09	4-Aug-09	MC003	3.4-3.5	1	1	
EP0904291042 EP0904291034	5-Jul-09 5-Jul-09	9-Jul-09 9-Jul-09	4-Aug-09 4-Aug-09	MC003 MC004	6.9-7.0 0.5-1.0	1	1	1
EP0904291034 EP0904291035	5-Jul-09 5-Jul-09	9-Jul-09	4-Aug-09 4-Aug-09	MC004 MC004	(comp)1.0-2.0	1	1	- 1
EP0904291036	5-Jul-09	9-Jul-09	4-Aug-09	MC004	3.9-4.0	1	1	
EP0904291037	6-Jun-09	9-Jul-09	4-Aug-09	MC004	8.0-8.1	1	1	
EP0904291029	6-Jul-09	9-Jul-09	4-Aug-09	MC005	0.45-0.55	1	1	1
EP0904291030	6-Jul-09	9-Jul-09	4-Aug-09	MC005	0.9-1.0	1	1	
EP0904291031	6-Jul-09	9-Jul-09	4-Aug-09	MC005	(comp)1.0-2.0	1	1	
EP0904291032	6-Jul-09	9-Jul-09	4-Aug-09	MC005	3.0-3.1	1	1	
EP0904291033	6-Jul-09	9-Jul-09	4-Aug-09	MC005	6.9-7.0	1	1	
EP0904291071	8-Jul-09	15-Jul-09	4-Aug-09	MC006	0.45-0.55	1	11	-
EP0904291072 EP0903858029	8-Jul-09	15-Jul-09	4-Aug-09 4-Aug-09	MC006 MC006	0.9-1.0	1	1	-
EP0903858029 EP0904291073	15-Jul-09 8-Jul-09	15-Jul-09 15-Jul-09	4-Aug-09 4-Aug-09	MC006	1.0-2.0 3.26-3.36	1	1	
EP0904291073 EP0904291074	9-Jul-09	15-Jul-09	4-Aug-09 4-Aug-09	MC006	9.9-10.0	1	1	
EP0904291001	26-Jun-09	9-Jul-09	4-Aug-09	MC007	0.45-0.55	1	1	
EP0904291002	26-Jun-09	9-Jul-09	4-Aug-09	MC007	0.8-0.9	1	1	
EP0904291003	26-Jun-09	9-Jul-09	4-Aug-09	MC007	(comp)1.0-2.0	1	1	
EP0904291004	25-Jun-09	9-Jul-09	4-Aug-09	MC008	0.45-0.55	1	1	
EP0904291005	25-Jun-09	9-Jul-09	4-Aug-09	MC008	0.8-0.9	1	1	
EP0904291006	25-Jun-09	9-Jul-09	4-Aug-09	MC008	(comp)2.0-3.0	1	1	
EP0904291007	25-Jun-09	9-Jul-09	4-Aug-09	MC008	3.8-3.9	1	1	
EP0904291008	25-Jun-09	9-Jul-09	4-Aug-09	MC008	7.0-7.1	1	1	1
EP0904291058 EP0904291062	11-Jul-09 12-Jul-09	15-Jul-09 15-Jul-09	4-Aug-09 4-Aug-09	MC009 MC009	1.0-1.1 13.4-13.5	1	1	
EP0904291059	11-Jul-09	15-Jul-09	4-Aug-09	MC009	2.0-3.0	1	1	
EP0904291060	11-Jul-09	15-Jul-09	4-Aug-09	MC009	3.9-4.0	1	1	
EP0904291061	12-Jul-09	15-Jul-09	4-Aug-09	MC009	8.9-9.0	1	1	
EP0904291064	9-Jul-09	15-Jul-09	4-Aug-09	MC010	0.45-0.55	1	1	
EP0904291065	9-Jul-09	15-Jul-09	4-Aug-09	MC010	0.9-1.0	1	1	
EP0904291066	9-Jul-09	15-Jul-09	4-Aug-09	MC010	1.0-2.0	1	1	
EP0904291069	11-Jul-09	15-Jul-09	4-Aug-09	MC010	10.9-11.0	1	1	
EP0904291067	9-Jul-09	15-Jul-09	4-Aug-09	MC010	3.45-3.55	1	1	
EP0904291068 EP0904291009	9-Jul-09 27-Jun-09	15-Jul-09 9-Jul-09	4-Aug-09 4-Aug-09	MC010 MC11	7.9-8.0 0.0-0.4	1	1	
EP0904291010	27-Jun-09	9-Jul-09	4-Aug-09	MC11	1.0-1.1	1	1	
EP0904291011	28-Jun-09	9-Jul-09	4-Aug-09	MC11	(comp)2.0-3.0	1	1	
EP0904291012	28-Jun-09	9-Jul-09	4-Aug-09	MC11	3.5-3.6	1	1	
EP0904291013	28-Jun-09	9-Jul-09	4-Aug-09	MC11	7.45-7.55	1	1	
EP0904291024	7-Jul-09	9-Jul-09	4-Aug-09	MC012	0.45-0.55	1	1	1
EP0904291025	7-Jul-09	9-Jul-09	4-Aug-09	MC012	0.9-1.0	1	1	
EP0904291026	7-Jul-09	9-Jul-09	4-Aug-09	MC012	(comp)1.0-2.0	1	1	-
EP0904291027 EP0904291070	7-Jul-09	9-Jul-09 15-Jul-09	4-Aug-09 4-Aug-09	MC012 MC012	4.0-4.1 9.4-9.5	1	1	
EP0904291070 EP0904291014	8-Jul-09 29-Jun-09	9-Jul-09	4-Aug-09 4-Aug-09	MC012 MC013	0.45-0.55	1	1	
EP0904291015	29-Jun-09	9-Jul-09	4-Aug-09	MC013	0.8-0.9	1	1	1
EP0904291016	29-Jun-09	9-Jul-09	4-Aug-09	MC013	(comp)1.0-2.0	1	1	
EP0904291017	29-Jun-09	9-Jul-09	4-Aug-09	MC013	3.4-3.5	1	1	
EP0904291018	29-Jun-09	9-Jul-09	4-Aug-09	MC013	7.9-8.0	1	1	
EP0904291019	30-Jun-09	9-Jul-09	4-Aug-09	MC014	0.45-0.55	1	1	1
EP0904291020	30-Jun-09	9-Jul-09	4-Aug-09	MC014	0.8-0.9	1	1	
EP0904291021	30-Jun-09	9-Jul-09	4-Aug-09	MC014	(comp)1.0-2.0	1	11	
EP0904291022	30-Jun-09	9-Jul-09	4-Aug-09	MC014	3.4-3.5	1	1	
EP0904291023 EP0904291052	30-Jun-09 2-Jul-09	9-Jul-09 9-Jul-09	4-Aug-09 4-Aug-09	MC014 MC015	6.9-7.0 0.45-0.55	1	1	-
EP0904291052 EP0904291053	2-Jul-09 2-Jul-09	9-Jul-09 9-Jul-09	4-Aug-09 4-Aug-09	MC015 MC015	0.45-0.55 0.9-1.0	1	1	-
EP0904291053	2-Jul-09 2-Jul-09	9-Jul-09	4-Aug-09 4-Aug-09	MC015	(comp)1.0-2.0	1	1	
EP0904291055	2-Jul-09	9-Jul-09	4-Aug-09	MC015	3.4-3.5	1	1	
EP0904291056	2-Jul-09	9-Jul-09	4-Aug-09	MC015	6.4-6.5	1	1	
TOTAL PRIMA	ARY SAMPL	ES				72	72	6

J:\Jobs\42907100\6 Deliv\E0000 Environmental Marine\E0700 Marine Sediment Dredging Study\ASS Nearshore Investigation\Final Report_Rev B\Appendix B\ Lab Schedule.xls

URS Australia Pty Ltd

This page is intentionally blank

Nearshore ASS Investigation Appendix C Field Test Procedures and Guidelines URS 42907466/01/0

This page is intentionally blank

APPENDIX 1. Performing and interpreting soil field pH tests

It is important to note that whilst a useful exploratory tool, soil field pH tests are indicative only, are definitely not quantitative and cannot be used as a substitute for laboratory analysis to determine the presence or absence of ASS. Laboratory analysis is needed to quantify the amount of existing, plus potential, acidity. This Appendix provides information on how to perform field pH tests and interpret the results from them. For further information on how to conduct and interpret these tests, consult the Guidelines for Sampling and Analysis of Lowland Acid Sulfate Soils (ASS) in Queensland 1998 (Ahern et al., 1998).

Field pH tests should be conducted using a field pH meter calibrated according to the manufacturer's instructions. All results (pH_F and pH_{FOX} values, peroxide reaction) should be tabulated and reported.

A1 Suggested equipment for field tests

It is important that prior to conducting the field tests, the appropriate testing equipment is obtained. For a basic set up the following items would be required:

- 1. pH meter and electrode charged and calibrated
- 2. at least 2 buffer solutions e.g. pH 4.0 and pH 7.0
- 3. test tubes or beakers wide, unbreakable, heat resistant, and clear e.g. Falcon 50ml polypropylene (pH_F test tubes are ideally shallow to facilitate cleaning e.g. cut the top off a 50ml tube at about 10ml)
- 4. test tube rack or jar rack marked with depths use a separate rack for pH_F tests and pH_{FOX} tests in case they bubble over
- skewers or stirrers wooden, for test tubes
- 30% hydrogen peroxide (H₂O₂) pH adjusted to 4.5–5.5
- storage bottle for H₂O₂
- sodium hydroxide (NaOH) to raise pH of peroxide to 4.5-5.5 (pH 5.5 ideal)
- deionised (DI) water 9.
- 10. squirt bottle for DI water
- 11. tissues
- 12. gloves and safety glasses
- 13. protective clothing
- 14. bucket to tip used soil and hydrogen peroxide into
- 15. bucket and brush to rinse tubes out in ready for next site
- 16. recording sheets
- 17. excess water for rinsing
- 18. first aid kit especially eye wash solutions
- 19. 1M hydrochloric (HCI) acid to test for shell presence

A2 Conducting field tests – Some considerations

When the analytical results are reported, the field test results (when accompanied by good soil profile descriptions) will help increase the understanding of profile processes with respect to acidity.

When performing field tests, the soil samples must not be left in the open air in the test tubes or beakers for an extended period of time before conducting the tests. If sulfides are present, there is

Identification and investigation of acid sulfate soils and acidic landscapes

a risk that they will oxidise, and this will substantially affect the end pH result by lowering the pH_F. This will give a misleading result that the soil profile is more acid than it really is. It would be preferable (and more efficient) to prepare the field pH test tubes with the soil:water pastes and the soil:peroxide mixtures and commence the soil profile descriptions while the reactions are occurring. This way, the soils are given time to react and there is no time wasted waiting for pH_{FOX} samples to cool. It is important though, to keep an eye on the reactions as some may be vigorous and overflow, and result in contamination of nearby soil samples.

When conducting the pH_{FOX} test, it is important to allow enough time for the reaction to occur, especially if low strength (i.e. <30%) hydrogen peroxide is used.

The field pH_F and pH_{FOX} tests can be made more consistent if a fixed volume of soil (using a small scoop) is used, a consistent volume of peroxide is added and left to react for at least an hour (at a secure location, the pH_{FOX} can be left overnight). The sample can then be moistened with deionised water before reading the pH_F and pH_{FOX}.

Field tests should preferably be performed on-site, however there are many areas (e.g. wetlands) where performing field tests can prove difficult (e.g. too wet, mosquito problems). In this situation, samples must be placed on dry ice and taken to a suitable location for conducting field tests. These tests should be performed ideally within 24 hours. As some samples may contain large amounts of organic matter (especially in wetland situations) and may also contain monosulfides, any delay in performing field tests could result in misleading pH_F results.

A3 On-site Chemical and Material Safety Precautions

A3.1 Hydrogen peroxide

Care needs to be taken when using hydrogen peroxide (H₂O₂) in the field. H₂O₂ (30%) is used as the primary reagent in the pH_{FOX} test. The concentration is 10 times stronger than the peroxide commonly found in household medicine cabinets. The reaction of peroxide with soil containing iron sulfides may produce sulfurous gases, as well as giving off heat in excess of 90°C.

Caution: 30% Hydrogen Peroxide is a strong oxidising agent and should be handled carefully with appropriate eye and skin protection. This test is suitable for experienced operators only. Even the less concentrated 6% peroxide (which some operators are using) should be used with caution.

The peroxide when first received may have a pH of 3.5 or lower. Chemical companies commonly put stabilisers in the peroxide to prevent it from decomposing and releasing oxygen by keeping the pH low. The pH required for the field pH peroxide test is pH 4.5-5.5. This may be obtained by adding sodium hydroxide (pH 14) to the peroxide. Since both of these chemicals are highly corrosive, and many of the long-term side effects are not fully known, it is recommended that the following precautions are taken when performing field tests.

Always:

- use gloves, safety glasses, lab coat or protective clothes;
- conduct pH peroxide test in a well ventilated area; 2.
- use test tubes capable of withstanding rapid heat changes and high temperatures; 3
- 4. avoid skin and eye contact with peroxide; and
- label all peroxide bottles with safety data information.

A3.2 Other chemicals

Several other chemicals are used in the field when sampling for ASS. Buffering solutions and potassium chloride (KCI) solutions are used to calibrate and maintain pH meters and care should be exercised when using these substances. Follow safety directions on Material Safety Data Sheets (MSDS).

Department of Environment and Conservation

Identification and investigation of acid sulfate soils and acidic landscapes

Hydrochloric acid (HCI) is used when performing tests to assess the presence of carbonates in soil material. HCI is strongly acidic and is very corrosive to skin therefore caution is required when using it. Again, follow directions on MSDS. Store HCI separate from buffer solutions as HCI gas may slowly diffuse through the plastic bottles and alter the buffer solutions.

A4 Field pH test (pH_F)

The pH_F test measures the existing acidity of a soil:water paste, and is therefore used to help identify if ASS are present. If the measured pH of the soil paste is pH_F < 4, oxidation of sulfides has probably occurred in the past, indicating the presence of AASS. Highly organic soils or heavily fertilised soils may also return a pH_F close to 4. A pH_F >4 but \leq 5 indicates an acid soil, but the cause of the acidity will need to be further investigated by laboratory analysis. The pH_F test does not detect any unoxidised sulfides (i.e. PASS). For this reason, this test must be used in conjunction with the pH_{FOX} test.

A4.1 Soil: water mixtures and soil pastes

Standard field soil pH tests have been conducted using a 1:5 soil:water mixture. This is quite successful where sands are concerned (as they breakdown readily), however in a field situation it is often difficult to get all soil into solution by shaking only for a brief period of time. In particular, where wet clays are present, it becomes very difficult in the field to shake the mixture to suspend all the clay particles in solution. It is more likely that the clay will stay in a ball and while some fine particles previously attached to the edge of the clay bolus are suspended, the remainder sticks to the bottom of the test tube. This means that the soil:liquid ratio is widened substantially and the pH of the mixture will have a higher reading, so that it will not give a true and accurate measurement of the pH of the soil. In the laboratory, this sample would be dried, ground, mixed, and shaken mechanically for hours allowing substantial time for the clay to be broken down—in the field, this option is not practical. Further, it is not practical to weigh out soils in the field to obtain a perfect 1:5 soil:water mixture, and so any solutions made up are usually done on a volumetric basis assisted by graduated test tubes, flasks, or beakers.

Making a soil:water paste is more practical for field situations and is recommended for ASS field pH (pH_F) tests. This is detailed in the procedure below. It is recommended that short test tubes are used for pH_F tests as they are easy to clean. Further, the paste must be stirred using a stirring implement (e.g. skewer or strong toothpicks). Stirring the paste well will enhance the accuracy of the pH result as the electrode will get good contact with the soil.

A4.2 Field pH test procedure

Procedural outline - field pH_F test

- 1. Calibrate battery powered field pH meter.
- Prepare the test tubes in the test tube rack. Make sure the rack is marked with the depths so
 there is no confusion about the top and bottom of the profile. Use of separate racks for the
 pH_F and pH_{FOX} tests is recommended as contamination may occur when the pH_{FOX} reactions
 are violent.
- Conduct tests at intervals on the soil profile of 0.25m or at least one test per horizon whichever is lesser.
- 4. Remove approximately 1 teaspoon of soil from the profile. Place approximately ½ teaspoon of the soil into the pH_F test tube and place ½ teaspoon of the soil into the pH_{FOX} test tube for the corresponding depth test. It is important that these 2 sub-samples come from the same depth and that they are similar in characteristics. For example, DO NOT take ½ teaspoon of soil from the 0–0.25m depth that is grey mud, while selecting ½ teaspoon from the same depth that is a yellow mottled sample. These will obviously give different results independent of the type of test conducted.
- 5. Place enough deionised water (pH 5.5) in the pH_F test tube to make a paste similar to 'grout mix' or 'white sauce', stirring with a skewer or similar to ensure all soil 'lumps' are removed. Do not leave the soil samples in the test tubes without water for more than 10 minutes.

- 6. This will reduce the risk of sulfide oxidation—the pH_F is designed to measure existing acidity, any oxidation subsequent to the soil's removal from the ground will not reflect the true situation. In some instances, in less than 5 minutes, monosulfidic material may start to oxidise and substantially affect the pH_F results.
- Immediately place the spear point electrode (preferred method) into the test tube, ensuring that the spear point is totally submerged in the soil: water paste. Never stir the paste with the electrode. This will damage the semi-permeable glass membrane.
- Measure the pH_F using a pH meter with spear point electrode. 8
- Wait for the reading to stabilise and record the pH measurement. All measurements and pH calibration should be recorded on a data sheet.

TABLE A1: Results - field pH test

pH value	Result	Comments
pH _F ≤4	Actual acid sulfate soils (AASS) indicating oxidation of sulfides	This is generally <u>not</u> conclusive because highly organic soils such as peats and occasionally heavily fertilised soils may also give $pH_F \le 4$.
pH _F ≤3.7	Expected if jarosite exists in the sample	This is also an AASS. Jarosite needs a pH of 3.7 or lower to form. Horizons containing some jarosite and some other mottling (iron, grey) may have a pH >3.7 if the sample contains a mixture of jarosite and higher pH soil. This depends on the level of oxidation and the ability of the soil to 'hold' the acid.
pH _F >7	Expected in waterlogged, unoxidised, or poorly drained soils	Marine muds commonly have a pH >7 and this reflects seawater (pH 8.2) influence. May be a PASS after oxidation with H_2O_2 .
4 < pH _F ≤5.5	An acid soil	Investigate further for possible ASS link, e.g. AASS with shell presence.

A5 Field pH peroxide test (pH_{FOX})

The pH_{FOX} test is used to indicate the presence of iron sulfides or PASS. This test involves adding 30% hydrogen peroxide (pH adjusted to 4.5-5.5) to a sample of soil. If sulfides are present a reaction will occur. The reaction can be influenced by the amount of sulfides present in the sample, the presence of organic matter, or the presence of manganese. Once the reaction has occurred, the pH is measured.

Adding hydrogen peroxide, a strong oxidising agent, 'mimics' what would naturally occur if the soil was exposed to air. In a natural environment, if left exposed, soils may take from two hours for sands, possibly through to many decades for heavy marine clays, for some or all of the oxidation reactions to take place. Obviously it is not practical to wait for this long for a reaction to occur.

It should be noted that although the iron sulfides are oxidised and acid is produced over a shorter amount of time than would occur naturally, the total amount of acid produced is the same. It is important to assess first the likely presence (through field tests) and secondly the level of iron sulfides present (through laboratory analyses) so that management can prevent any undesirable impacts.

The pH_{FOX} test is purely qualitative. No calculations can be performed to give an accurate account of the levels of sulfides present in the sample. Rather, the test gives an indication of whether sulfides may occur (or whether there is another form of compound contributing to acidity).

This means that a pH_{FOX} test CANNOT give an accurate measurement of how much lime should be added to the soil.

The sample of soil must be taken from the same depth increment (sub-sample) for which the pH_F was measured. It is important that the pH_{FOX} is performed on a separate sub-sample, and NOT on the soil:water paste that was prepared for the pH_F test. This will ensure that the minimal degree of dilution occurs during the oxidation phase, and that the resulting pHFOX measurement is as accurate as possible an indication of the potential for oxidation of that particular sub-sample of soil.

A combination of three factors is considered in arriving at a 'positive field sulfide identification':

- a reaction with hydrogen peroxide the strength of the reaction with peroxide is a useful indicator but cannot be used alone. Organic matter, coffee rock and other soil constituents such as manganese oxides can also cause a reaction. Care should be exercised in interpreting a reaction on surface soils and high organic matter soils such as peats and coffee rock and some mangrove/estuarine muds and marine clays. This reaction should be rated, e.g. L = Low reaction, M = Medium reaction, H = High reaction, X = Extreme reaction, V = volcanic reaction.
- The actual value of pH_{FOX}. If pH_{FOX} <3, and a significant reaction occurred, then it strongly indicates a PASS. The more the pH_{FOX} drops below 3, the more positive the presence of inorganic sulfides.
- A much lower pH_{FOX} than field pH_F The lower the final pH_{FOX} value and the greater the difference between the pH_{FOX} compared to the pH_F, the more indicative of the presence of PASS. This difference may not be as great if starting with an already very acid pH_F (close to 4), but if the starting pH is neutral or alkaline then a larger change in pH should be expected. Where fine shell, coral or carbonate is present the change in pH may not be as large due to buffering. The 'fizz test' (effervescence with 1 M HCl) should be used to test for carbonates and shell.

Of these three factors, the final pH_{FOX} value is the most conclusive indicator, and the lower the final pH_{FOX}, the more confident one can be that PASS may be present.

A5.1 Strength and pH of peroxide

The pH and strength of peroxide used is important. The pH of the peroxide should be pH 4.5-5.5 (ideally pH 5.5). This ensures that the result measured is a reflection of the oxidation of the soil (if any) and not of the existing pH of the peroxide. When peroxide is purchased often the stabilisers added by the chemical companies will result in a pH of approximately 3.5. This pH can be raised by adding small amounts of sodium hydroxide (NaOH)—failure to adjust the pH can lead to false field results.

Analytical grade peroxide (30%) is most suitable for field pH_{FOX} tests as an oxidation agent that is highly effective and 'guick' to react with any iron sulfides in a soil sample. This strength of peroxide is highly corrosive, slightly unstable, highly reactive and can cause severe skin irritation. As such, a high level of safety precautions is required. However, there is no reason why a well-trained officer cannot safely and responsibly conduct field tests with 30% hydrogen peroxide.

A5.2 Field pH peroxide test procedure

Procedural outline - Field pH peroxide test

Adjust the pH of the hydrogen peroxide to 5.0 -5.5 before going into the field. This can be done by adding a few drops of NaOH at a time, checking the pH with the electrode regularly. NaOH is highly caustic so safety precautions must be exercised. Also, NaOH will raise the pH quickly so the pH needs to be monitored. Do NOT buffer a large quantity of hydrogen peroxide at one time. Only buffer the amount to be used in the field. Hydrogen peroxide

should be well labelled and only small quantities should be taken into the field at any one time. This will ensure the longevity of the peroxide. Further, over time, the pH of the peroxide that has already been buffered may change. It is important to check the pH of the peroxide in the morning before departing to the field. Having a small quantity of NaOH in the field kit is recommended so the pH of the peroxide can be adjusted if required.

- 2. Calibrate battery powered field pH meter.
- Prepare the test tubes in the test tube rack as for pH_F test. Make sure the rack is marked with the depths so there is not confusion about the top and bottom of the profile. Use of separate racks for the pH_F and pH_{FOX} tests is recommended as contamination may occur when the pH_{FOX} reactions are violent.
- Conduct pH_F tests at intervals of 0.25m down the soil profile or at least one per horizon 4. whichever is lesser.
- Remove approximately one teaspoon of soil from the profile. Place approximately ½ teaspoon of that soil into the pH_F test tube and place ½ teaspoon of soil into the pH_{FOX} test tube for the corresponding depth test. It is important that these two sub-samples come from the same depth and that they are similar in characteristics. For example, DO NOT take ½ teaspoon of soil from the 0-0.25m depth that is grey mud, while selecting ½ teaspoon from the same depth that is a yellow mottled sample. These will obviously give different results independent of the type of test conducted.
- 6. Add a few drops of 30% H₂O₂ adjusted to pH 4.5-5.5 to the soil in a heat-resistant test tube and stir the mixture. DO NOT add the peroxide to the test tube in which the pH_F test was conducted. The pH_{FOX} test tube should not have any deionised water in it. Beakers can be used however when multiple tests are being conducted it is difficult to handle the large beaker size efficiently. DO NOT add more than a few drops of H₂O₂ at a time. This will prevent overflow and wastage of peroxide. A day's supply of peroxide should be allowed to reach room temperature prior to use (cold peroxide from the fridge may be too slow to react).
- Ideally, allow approximately 20 minutes for any reactions to occur. If substantial sulfides are present, the reaction will be vigorous and may occur almost instantly. In this case, it may not be necessary to stir the mixture. Careful watch will be needed in the early stages to ensure that there is no cross contamination of samples in the test tube rack. If the reaction is violent and the soil/peroxide mix is escaping from the test tube, a small amount of deionised water can be added to cool and calm the reaction. Usually this controls overflow. Do NOT add too much deionised water as this may dilute the mixture and affect the pH value. It is important to only use a small amount of soil otherwise violent reactions will overflow and the sample will be lost.
- Steps 6 and 7 may be repeated until the soil/peroxide mixture reaction has slowed. This will 8. ensure that most of the sulfides have reacted. In the lab this procedure would be repeated until no further reaction occurs, however in the field, best judgement is recommended.
- If there is no initial reaction, individual test tubes containing the soil/peroxide mixture can be placed into a cup of hot water (especially in cooler weather) or in direct sunlight. This will encourage the initial reaction to occur. When the sample starts to 'bubble', remove the test tube immediately from the cup and replace into test tube rack.
- Wait for the soil/peroxide mixture to cool (may take up to 10 minutes). The reactions often exceed 90°C. Placing an electrode into these high temperature situations may result in physical damage and inaccurate readings as most pH meters are set to record a result for an ambient temperature of approximately 25°C.
- Use an electronic pH meter (preferred method) to measure the pH_{FOX}. Place a spear point electrode into the test tube, ensuring that the spear point is totally submerged in the soil/peroxide mixture. Ensure that the plastic soil sleeve that exposes the spear point totally is used on the end of the electrode in preference to the protective pronged sleeve that almost totally conceals the spear point. This will ensure good contact with the soil. Never stir the mixture with the electrode. This will damage the semi-permeable glass membrane.
- 12. Rate the reaction using a LMHXV scale (Section A5).
- Wait for the reading to stabilise and record the pH_{FOX} measurement.

14. All measurements and pH calibration measurements should be recorded on a data sheet.

TABLE A2: Results - field pH_{FOX} test.

pH value and reaction	Result	Comments
A strong reaction of soil with peroxide – X or V	A useful indicator but cannot be used alone.	Organic matter, coffee rock, and other soil constituents such as manganese oxides can also cause a reaction. Care must be exercised in interpreting a reaction on surface soils and high organic matter soils such as peats and coffee rocks, and some mangrove/estuarine muds and marine clays.
pH _{FOX} value at least one unit below field pH _F and reaction to peroxide	May indicate PASS but depends on the initial and resultant pH	The greater the difference between the two measurements (Δ pH), the more indicative the value is of a PASS. The lower the final pH _{FOX} , the better the indication of a positive result (e.g. a 1 unit change from pH 8 to 7 would not indicate PASS, however a 1 unit change from pH 3.5 to 2.5 would be indicative).
pH _{FOX} <3, strong reaction with peroxide, and large ΔpH	Strongly indicates PASS – potential for the soil to produce sulfidic acid upon oxidation	The lower the pH _{FOX} below 3, the more positive the likely presence of sulfides. A combination of all three parameters (reaction strength, unit pH change, and final pH _{FOX} result) is most confirmatory.
A pH _{FOX} 3–4 and reaction to peroxide	The test is less positive and is a borderline result	Sulfides may be present however organic matter may also be responsible for the decrease in pH. Laboratory analyses are required to confirm if sulfides are present.
pH _{FOX} 4–5	The test is neither positive nor negative	Sulfides may be present either in small quantities and be poorly reactive under quick test field conditions, or the sample may contain shell/carbonate, which neutralises some or all acid produced by oxidation. Equally the pH _{FOX} value may be due to the production of organic acids and there may be no sulfides present in this situation. In such cases, the chromium reducible sulfur method would be best to check for the presence of iron sulfides.
pH _{FOX} >5 and little or no drop in pH from pH _F but reaction to peroxide	Little net acidifying ability is indicated	On soils with neutral to alkaline field pH and shell or white concretions present, the fizz test with 1M HCl should be used to test for carbonates. The SPOCAS method should be used to check for any oxidisable sulfides and the presence of self-neutralising ability.

A6 Field test results interpretation

Field test results are dependant on many factors including accuracy of pH meters, strength of reagents, and operator skill. The reactions and results obtained from the field pH peroxide test can be further influenced by additional factors such as soil type, moisture content, ambient air temperature, presence of organic matter, or bicarbonate as shell or seawater in the soil sample. Some of these reactions are listed in Table A3 together with explanatory comments.

TABLE A3: Some common field test results.

pH₅	pH _{FOX} (at completion of reaction)	Δ pH	Reaction rate	Result (e.g. **PASS or ***AASS)	Comments / Possible explanation
3.5	3.3	0.2	L	AASS present	Oxidation has occurred and sulfuric acid has formed in the past. This soil may not have much more potential to oxidise further as the pH _F and pH _{FOX} are similar.
3.7	1.4	2.3	X or V	AASS present; PASS – strong indication	Oxidation has occurred in the past. This soil has the potential to oxidise further indicated by the strong reaction, appreciable pH unit difference (pH _{FOX} is significantly lower than the pH _F) and the very low final pH _{FOX} .
6.5	2.1 (1.9)*	4.4	X or V	No AASS; PASS – strong indication	This soil is not yet oxidised but has the ability to produce sulfuric acid if exposed. Little buffering capacity in the soil. Laboratory analysis using SPOCAS could confirm this.
8.5	3.0 (3.2)*	5.5	Н	No AASS; PASS – likely	The initial pH may be reflecting a strong seawater influence (pH 8.2) or some form of dissolved carbonates. The large Δ pH indicates a strong likelihood of PASS even though the pH _{FOX} is borderline. Here, the Δ pH and the reaction gives strength to the argument. Laboratory analysis using SPOCAS and reacted calcium (Ca _A) could confirm this (see Ahern & McElnea (1999)).
8.0	2.0 (6.0)*	?	н	No AASS; PASS – strong indication; Considerable buffering capacity	The initial alkaline pH_F indicates a seawater influence. The initial large decrease in pH indicates the soil is likely to contain sulfides. The pH measured after 20 minutes may indicate a large % of shell dissolving into solution as the acid contacts it (a small amount of HCl added to a sample of soil could confirm its presence). Laboratory analysis using SPOCAS and Ca_A could confirm this (see Ahern & McElnea (1999)).
5.5	5.4 (5.3)*	0.2	X or V	No AASS; PASS – unlikely	The strong reaction is probably due to the presence of manganese in the soil sample.
5.5	3.8 (3.5)*	2.0	H (slow froth)	No AASS; PASS – possible	The strength of the reaction indicates possible organic matter. There may be some sulfides present also. Laboratory analysis using the S _{CR} could confirm this.

^{*} pH_{FOX} after 20 minutes (or overnight) ** PASS – Potential Acid Sulfate Soils *** AASS – Actual Acid Sulfate Soils

SECTION H: FIELD TESTS

1. ACID SULFATE SOIL FIELD PH TESTS

KM Watling, CR Ahern and KM Hey

1.1 INTRODUCTION

The field pH (pH_F) and field pH peroxide (pH_{FOX}) tests have been developed for a rapid assessment in the field of the likelihood of acid sulfate soils. These tests are easy to conduct, quick, and have a minimum set-up cost. The field tests have been developed to give reasonable prediction for many soils (provided the tests are performed properly) whilst at the same time being relatively easy to perform with a minimal amount of equipment. Soil field pH tests provide a useful indication of the existing and potential acidity levels in the soil. Although these field tests may provide an indication of ASS presence, they are purely qualitative and do not give any quantitative measure of the amount of acid that has been or could be produced through the oxidation process.

Field pH tests should be part of any ASS investigation. The field pH tests (both pH_F and pH_{FOX}) should be conducted at 0.25 m intervals on the soil profile, ensuring at least one test per horizon. It is recommended that field tests be conducted on-site, in the field. If the tests can't be performed in the field on-site, tests should be conducted within 24 hours of soil sample collection, ensuring appropriate sample handling procedures (see Section B). Samples suspected of containing monosulfides should undergo field pH testing immediately in the field.

FIELD PH TEST (PH_F) 1.2

The procedure for the field pH test (pH_E) is outlined below:

- □ Calibrate battery powered field pH meter according to manufacturer's instructions.
- □ Prepare the test tubes in the test tube rack. Make sure the rack is marked with the depths so there is no confusion about the top and bottom of the profile. Use of separate racks for the pH_F and pH_{FOX} tests is recommended as contamination may occur when the pH_{FOX} reactions are violent. As the soil:water paste is inclined to stick to the walls of tubes, it is best to use shallow, broad test tubes as this makes cleaning easier.
- □ Conduct tests at intervals on the soil profile of 0.25 m or at least one test per horizon whichever is lesser.
- \square Remove approximately 1 teaspoon of soil from the profile. Place approximately $\frac{1}{2}$ teaspoon of that soil into the pH_F test tube and place ½ teaspoon of the soil into the pH_{FOX} test tube for the corresponding depth test. It is important that these two sub-samples come from the same depth and that they are similar in characteristics. For example, DO NOT take ½ teaspoon of soil from the 0-0.25m depth that is grey mud, while selecting ½ teaspoon from the same depth that is a yellow mottled sample. These will obviously give different results independent of the type of test conducted.
- □ Place enough deionised water (or demineralised water if deionised water is not available; never use tap water) in the pH_F test tube to make a paste similar to 'grout mix' or 'white sauce', stirring the soil:water paste with a skewer, strong tooth pick or similar to ensure all soil 'lumps' are removed. Do not leave the soil samples in the test tubes without water for more than 10 minutes. This will reduce the risk of sulfide oxidation—the pH_F is designed to indicate the existing pH of a soil in the field; any oxidation subsequent to the soil's removal

- from the ground will not reflect the true field pH. In some instances, in less than 5 minutes, monosulfidic material may start to oxidise and substantially affect the pH_F results.
- □ Immediately place the spear point electrode (preferred method) into the test tube, ensuring that the spear point is totally submerged in the soil:water paste. Never stir the paste with the electrode. This will damage the semi-permeable glass membrane.
- \square **Measure the pH**_F using a pH meter with spear point electrode.
- Wait for the reading to stabilise and record the pH measurement.
- All measurements should be recorded on a data sheet.

1.3 FIELD PH PEROXIDE TEST (PHFOX)

It is recommended that 30% hydrogen peroxide (H₂O₂) be used in the pH_{FOX} test. 30% H₂O₂ is highly corrosive and care should be taken when handling and using the peroxide. Safety glasses and gloves should be worn when handling and using peroxide. All chemical bottles should be clearly labelled and Material Safety Data Sheets (MSDS) should be kept with the chemicals at all times. Appropriate health and safety precautions should be adhered to. Peroxide should be kept in the fridge when not in

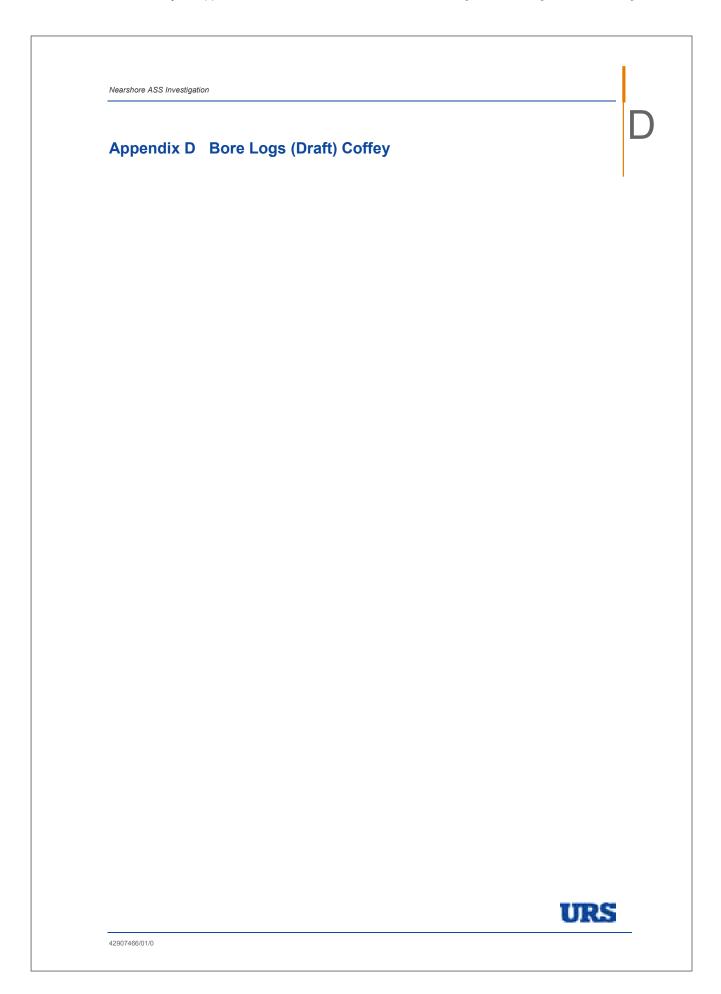
The procedure for the field pH peroxide test (pH_{FOX}) is outlined below:

- □ Adjust the pH of the hydrogen peroxide to pH 4.5–5.5 before going into the field. This can be done by adding a few drops of dilute NaOH stirring and checking the pH with the electrode regularly until the correct range is reached. NaOH is highly caustic so safety precautions must be exercised. NaOH can raise the pH quickly or slowly, so the pH needs to be monitored. Recheck the pH after allowing the peroxide to stand for 15 minutes. Do NOT buffer a large quantity of hydrogen peroxide at one time. Only buffer the amount to be used in the field for about a month. This must be kept in a fridge, well labelled with only small quantities to be taken into the field at one time. This will ensure the longevity of the peroxide. Further, over time, the pH of the peroxide that has already been buffered may change. It is important to check the pH of the peroxide in the morning before departing to the field. Having a small quantity of NaOH in the field kit is recommended so the peroxide can be buffered if required.
- □ Calibrate battery powered field pH meter according to manufacturer's instructions.
- Prepare the test tubes in the test tube rack as for pH_F test. Make sure the rack is marked with the depths so there is not confusion about the top and bottom of the profile. Use of separate racks for the pH_F and pH_{FOX} tests is recommended as contamination may occur when the pH_{FOX} reactions are violent. It is important to use **heat-resistant test tubes** for the pH_{FOX} test as the reaction can generate considerable heat (up to 90°C). It is recommended that a tall, wide tube be used for this test as considerable bubbling may occur, particularly on highly sulfidic or organic samples.
- Conduct pH_{FOX} tests at intervals on the soil profile of 0.25 m or at least one per horizon whichever is lesser.
- From the teaspoon of soil previously collected for the pH_F test, place approximately $\frac{1}{2}$ teaspoon of the soil into the pH_{FOX} test tube for the corresponding depth test. It is important that these two sub-samples come from the same depth and that they are similar in characteristics. For example, DO NOT take ½ teaspoon of soil from the 0-0.25m depth that is grey mud, while selecting ½ teaspoon from the same depth that is a yellow mottled sample. These will obviously give different results independent of the type of test conducted.
- □ Add a few millilitres of 30% H₂O₂ (adjusted to pH 4.5–5.5) to the soil (sufficient to cover the soil with peroxide) and stir the mixture. Do NOT add the peroxide to the test tube in which the pH_F test was conducted, that is, the pH_{FOX} test tube should not have any deionised water in it. Beakers can be used, however glass is usually easily broken when conducting field work, and when multiple tests are being conducted it is difficult to handle large beaker

- sizes efficiently. Do NOT add more than a few millilitres at a time. This will prevent overflow and wastage of peroxide. A day's supply of peroxide should be allowed to reach room temperature prior to use (cold peroxide from the fridge may be too slow to react).
- □ Rate the reaction of soil and peroxide using a XXXX scale (see below and Table H1.1).
- □ Ideally, allow approximately 15 minutes for any reactions to occur. If substantial sulfides occur, the reaction will be vigorous and may occur almost instantly. In this case, it may not be necessary to stir the mixture. Careful watch will be needed in the early stages to ensure that there is no cross contamination of samples in the test tube rack. If the reaction is violent and the soil:peroxide mix is escaping from the test tube, a small amount of deionised water (or demineralised water; not tap water) can be added (using a wash bottle) to cool and calm the reaction. Usually this controls overflow. Do NOT add too much deionised water as this may dilute the mixture and affect the pH value. It is important to only use a small amount of soil otherwise violent reactions will overflow and the sample will be lost.
- □ Steps 6 to 8 may be repeated until the soil:peroxide mixture reaction has slowed. This will ensure that most of the sulfides have reacted. In the lab this procedure would be repeated until no further reaction occurs, however in the field, best judgement is recommended. Usually one or two extra additions of a few millilitres of peroxide are sufficient.
- ☐ If there is no initial reaction, individual test tubes containing the soil:peroxide mixture can be placed into a container of hot water (especially in cooler weather) or in direct sunlight. This will encourage the initial reaction to occur. When the sample starts to 'bubble', remove the test tube immediately from the hot water and replace into test tube rack.
- □ Wait for the soil:peroxide mixture to cool (may take up to 10 minutes). The reactions often exceed 90°C. Placing an electrode into these high temperature situations may result in physical damage and inaccurate readings. Check the temperature range of the pH meter and probe to see what temperature is suitable. Note that a more exact pH is achieved if a temperature probe is also used, however this may be impractical in some field situations.
- \Box Use an electronic pH meter (preferred method) to measure the pH_{FOX}. Place a spear point electrode into the test tube, ensuring that the spear point is totally submerged in the soil:peroxide mixture. Never stir the mixture with the electrode. This will damage the semipermeable glass membrane.
- Wait for the reading to stabilise and record the pH_{FOX} measurement.
- □ All measurements should be recorded on a data sheet.

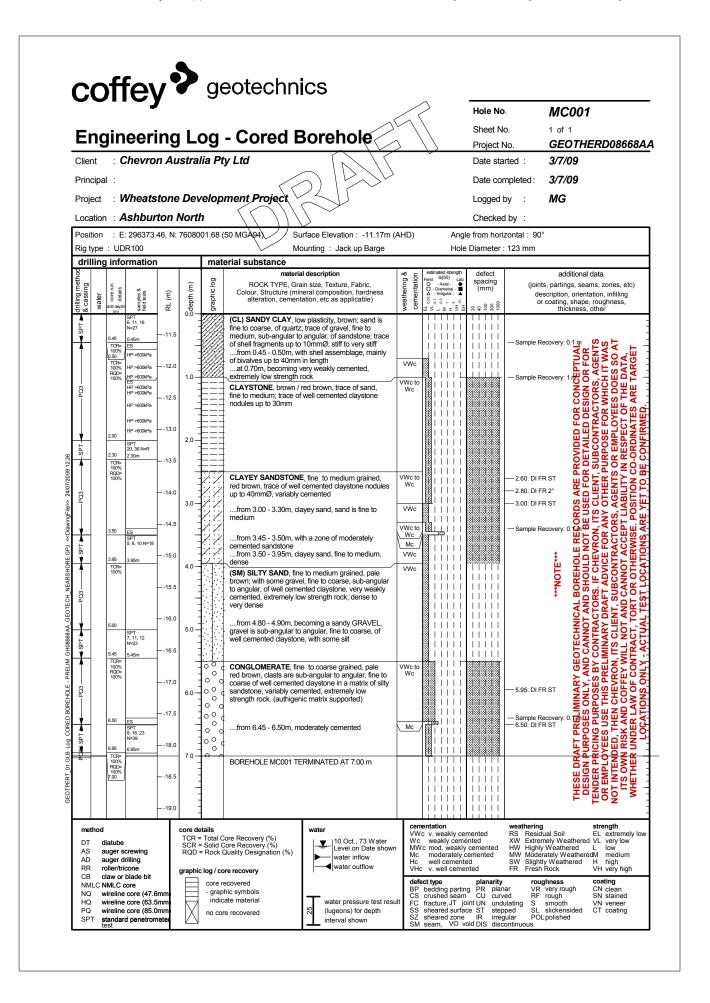
a) Rating soil reactions of the pH_{FOX} test using the XXXX scale

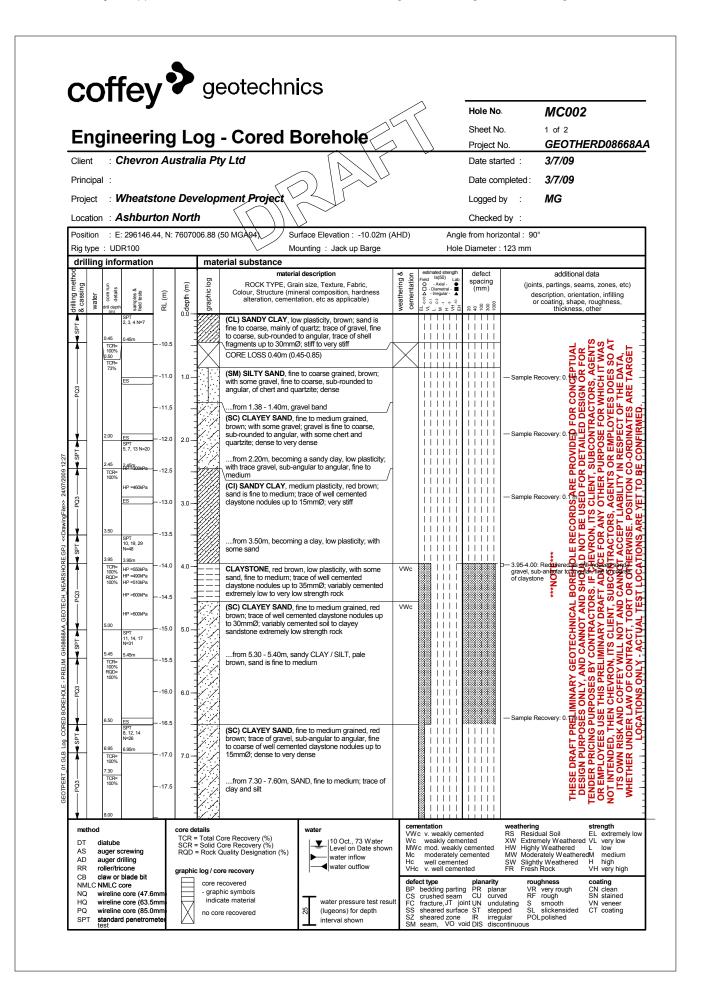
The rate of the reaction generally indicates the level of sulfides present, but depends also on texture and other soil constituents. A soil containing very little sulfides may only rate an 'X' however a soil containing high levels of sulfides (remember the exact level of sulfides cannot be determined using the pH_{FOX} test) is more likely to rate a 'XXXX' although there are exceptions. This rating scale alone should not be used to identify ASS. It is not a very reliable feature in isolation as there are other factors including manganese and organic acids which may trigger reactions. Reactions with organic matter tend to be more 'frothing' and don't tend to generate as much heat as sulfidic reactions. Manganese reactions will be quite extreme, but don't tend to lower the pH_{FOX}. Table H1.1 indicates the reaction scale for pH_{FOX} tests.

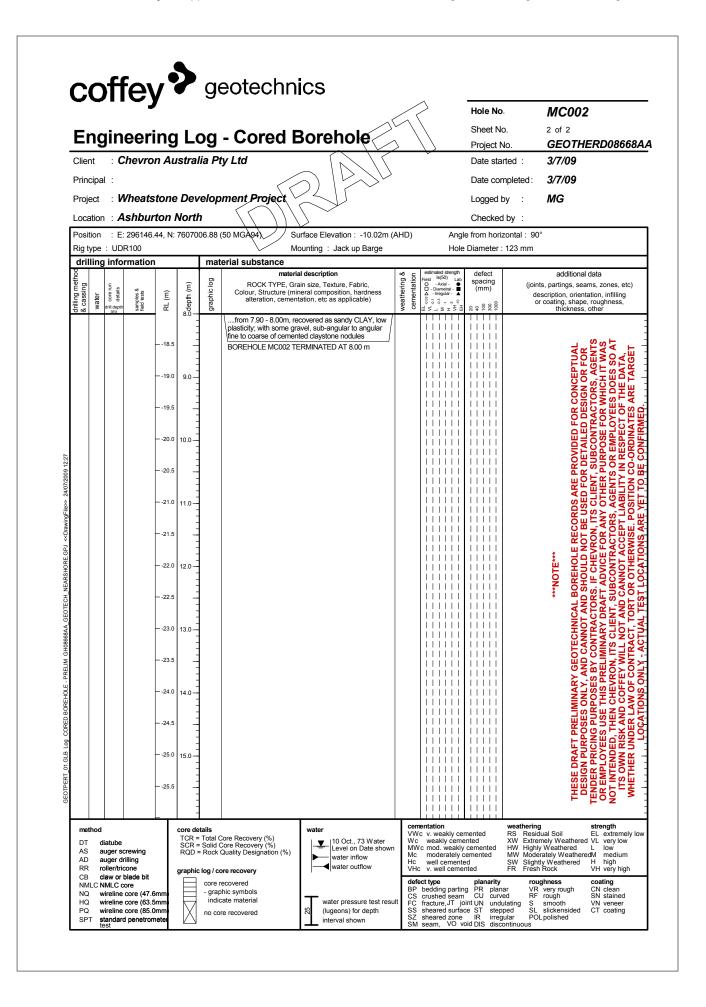

Table H1.1. Soil reaction rating scale for the pH_{FOX} test.

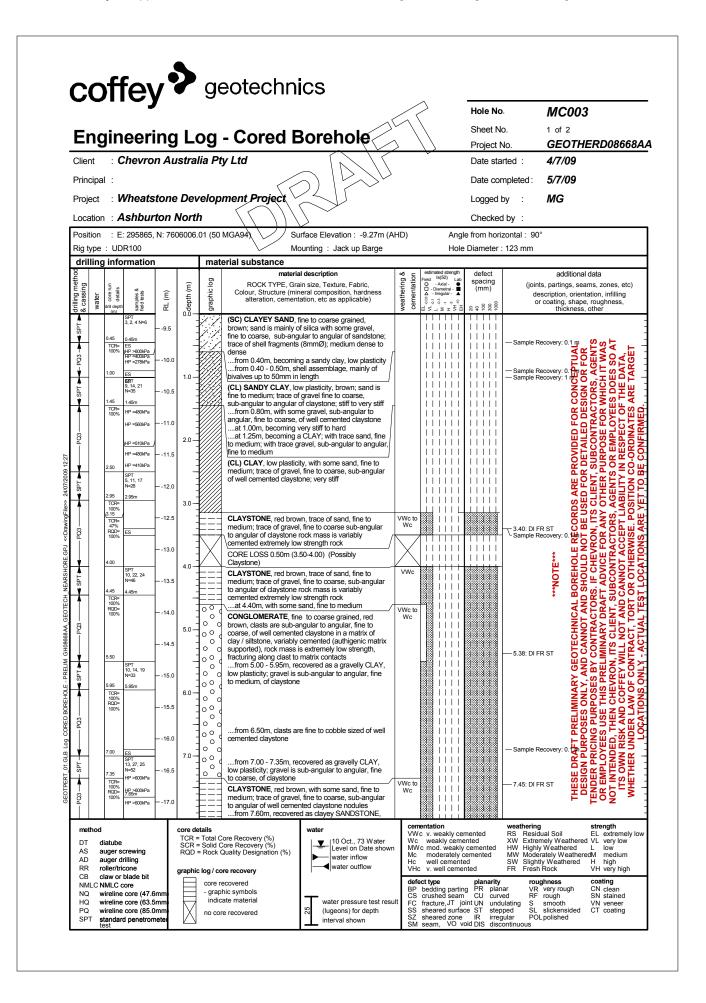
Reaction scale	Rate of reaction
X	Slight reaction
XX	Moderate reaction
XXX	High reaction
XXXX	Very vigorous reaction, gas evolution and heat generation commonly >80°C

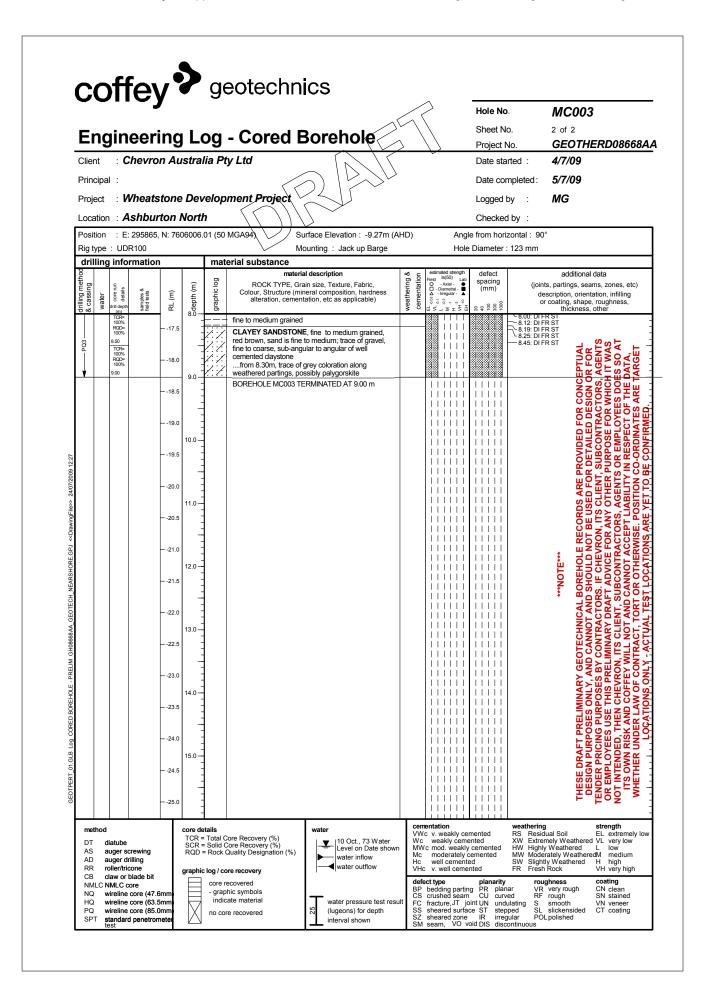
INTERPRETATION OF FIELD PH TESTS

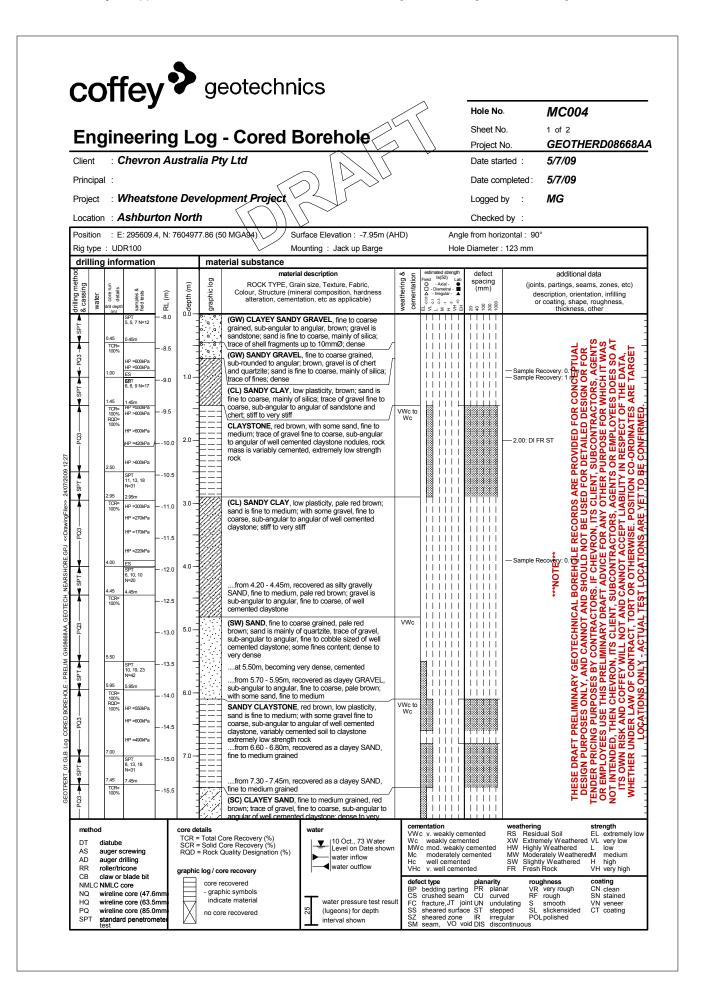

For information on interpreting field pH test results, please consult the following documents and publications:

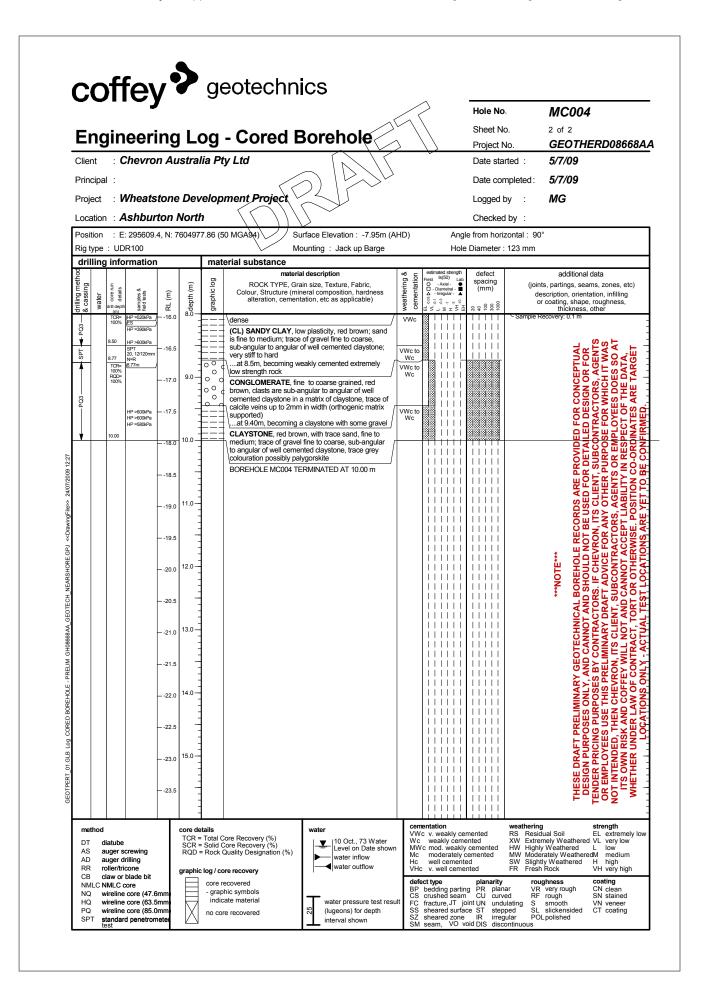

- Ahern CR, Ahern MR, Powell B (1998). 'Guidelines for Sampling and Analysis of Lowland Acid Sulfate Soils (ASS) in Queensland 1998'. pp. 28-30 (Queensland Department of Natural Resources: Brisbane)
- Ahern CR, Stone Y, Blunden B (1998). Acid Sulfate Soils Assessment Guidelines. In 'Acid Sulfate Soils Manual 1998'. pp. 56-58 (Acid Sulfate Soil Management Advisory Committee: Wollongbar, NSW)
- Hey KM, Ahern CR, Watling KM (2000) Using Chemical Field Tests to Identify Acid Sulfate Soils Likelihood. In 'Acid Sulfate Soils: Environmental Issues, Assessment and Management, Technical Papers.' (Eds CR Ahern, KM Hey, KM Watling, VJ Eldershaw) pp. 16/9-16/12 (Queensland Department of Natural Resources: Brisbane)
- Hey KM (Ed) (2002). 'Field Testing, Sampling and Safety for Acid Sulfate Soils'. pp. 12-16 (Queensland Department of Natural Resources and Mines: Brisbane)

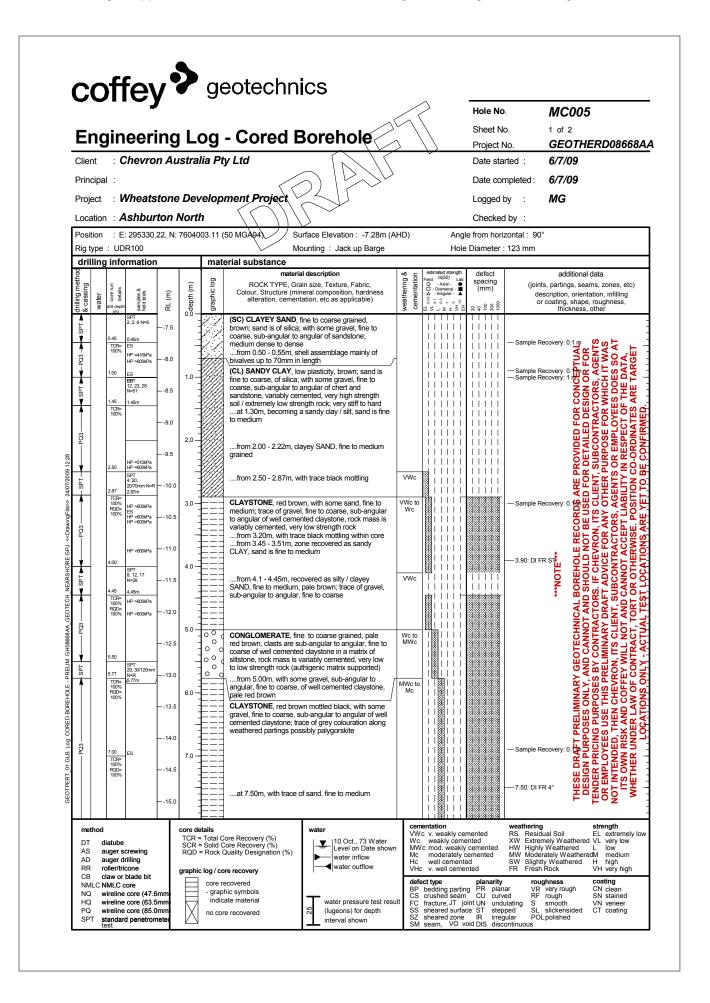


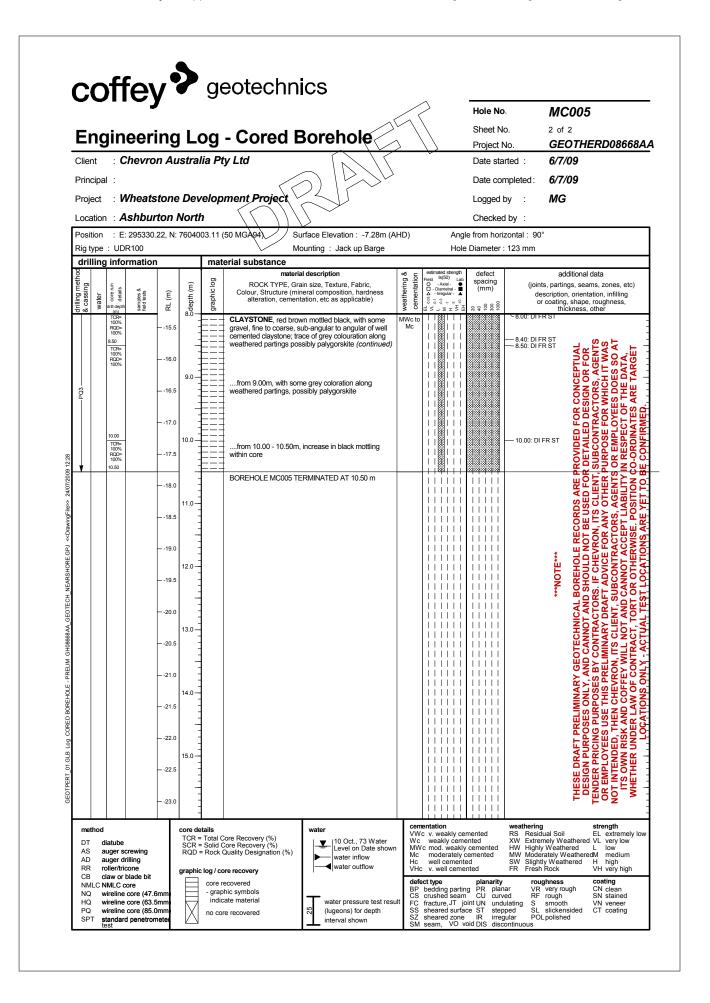

This page is intentionally blank

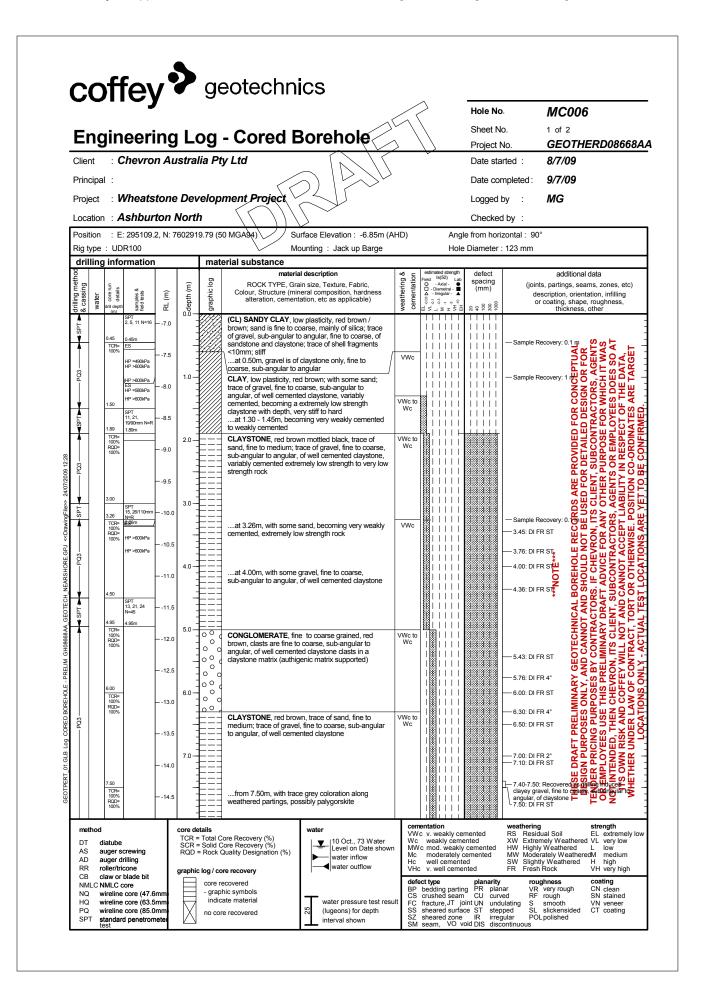

Wheatstone Project Appendix Q4 - Nearshore Acid Sulfate Soils Investigation (Turning Basin and Dredge Channel)

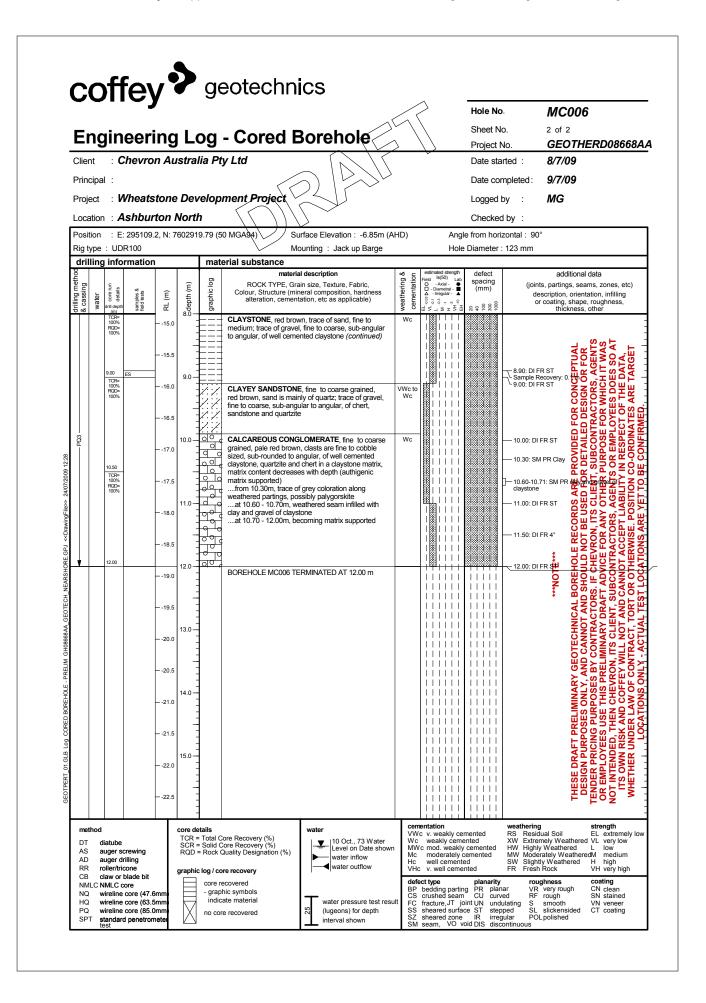


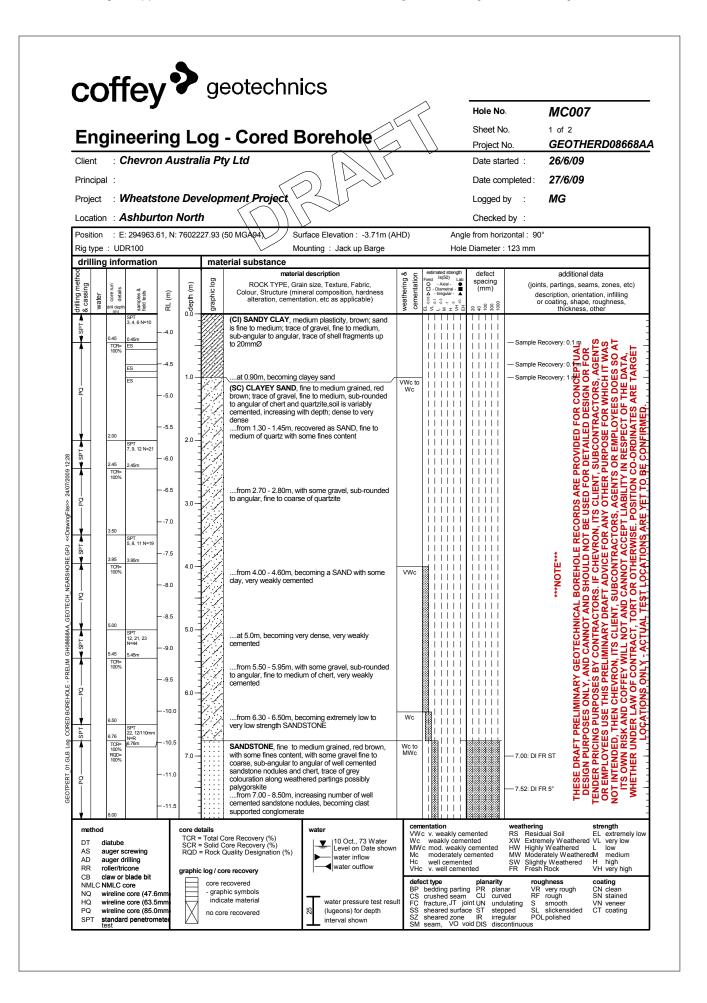


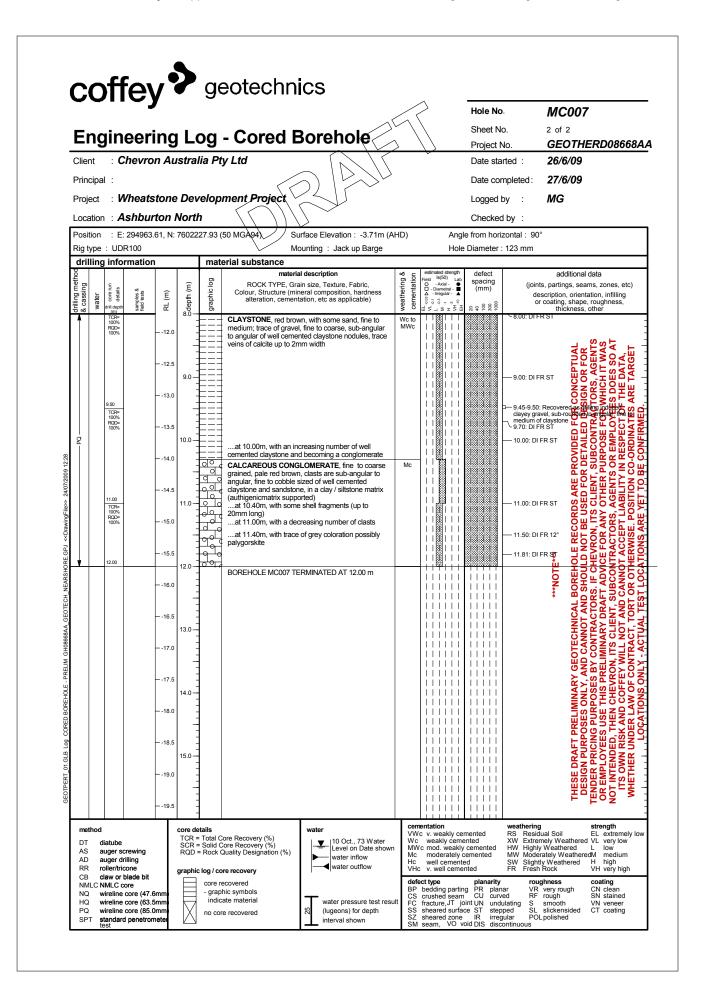


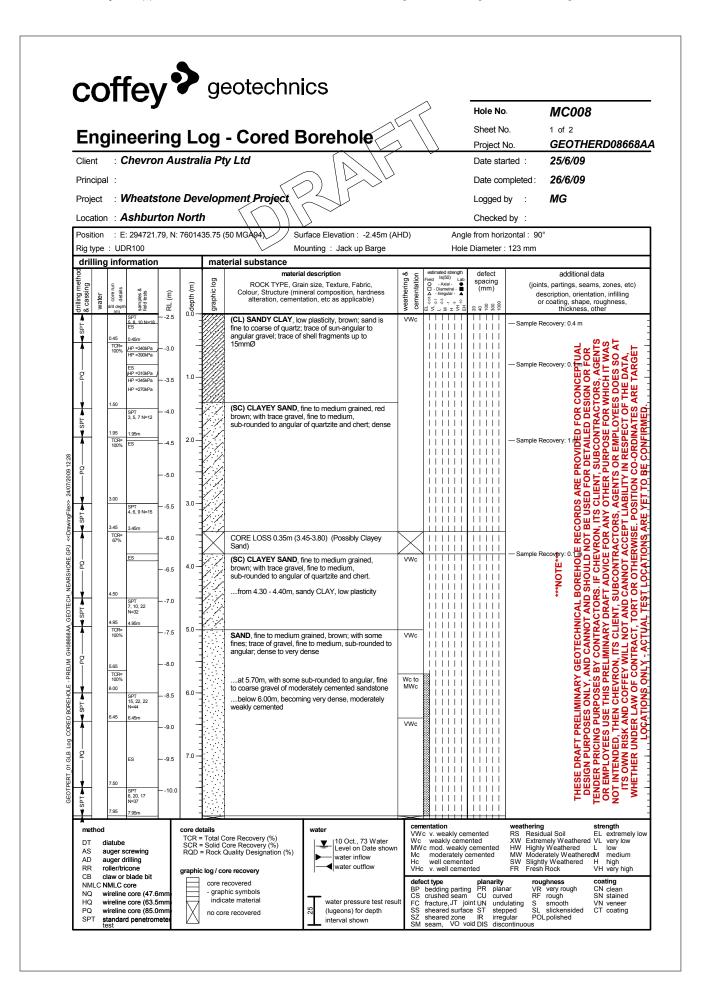


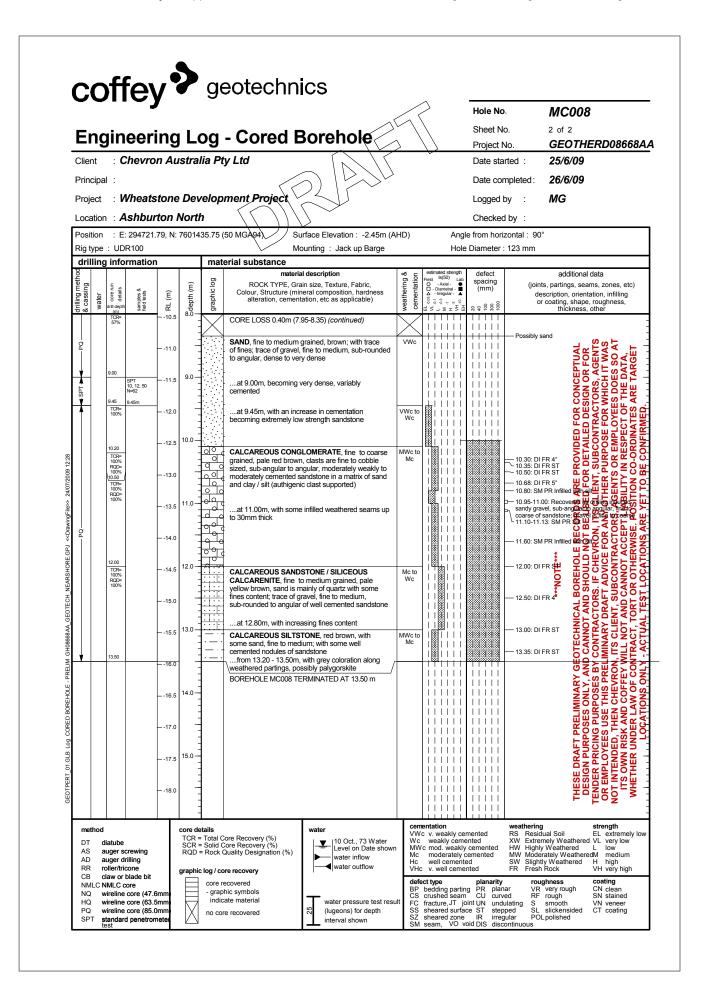


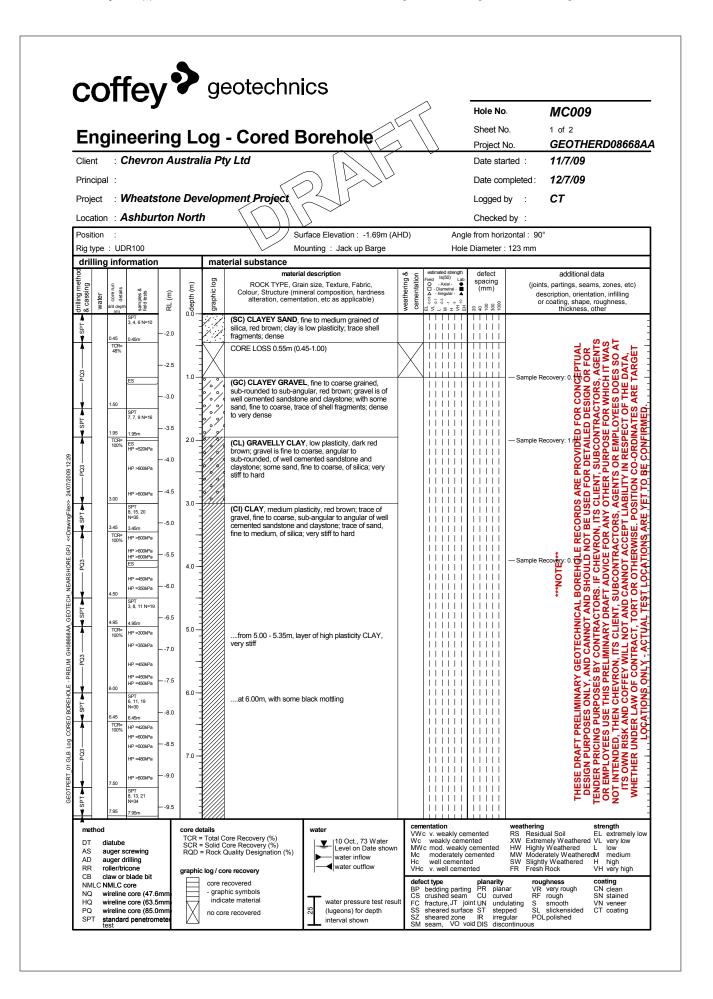


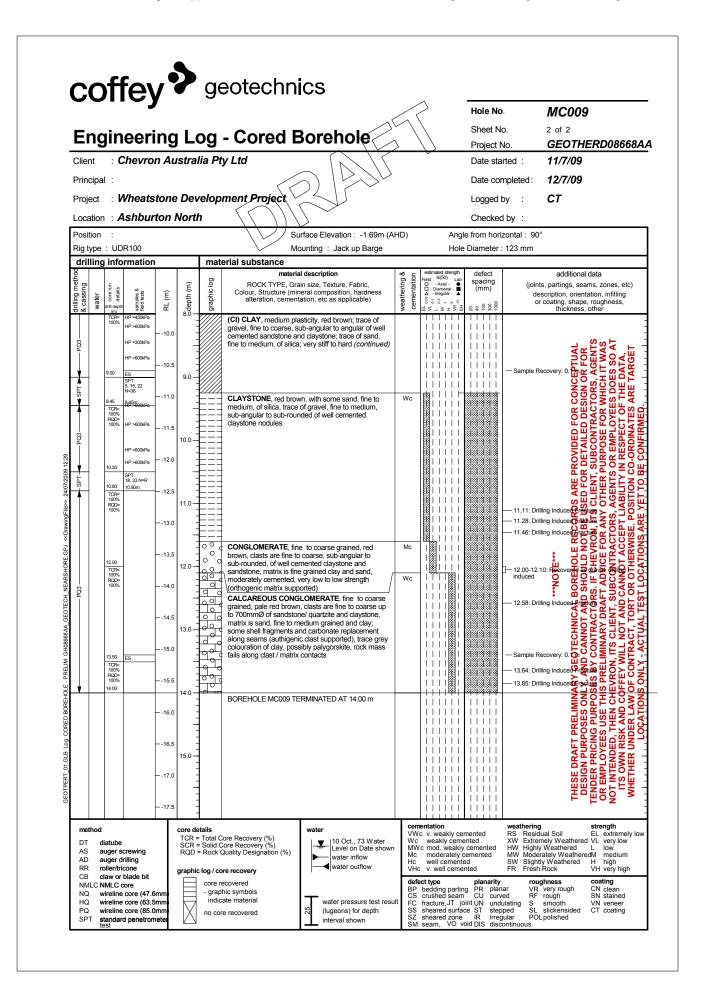


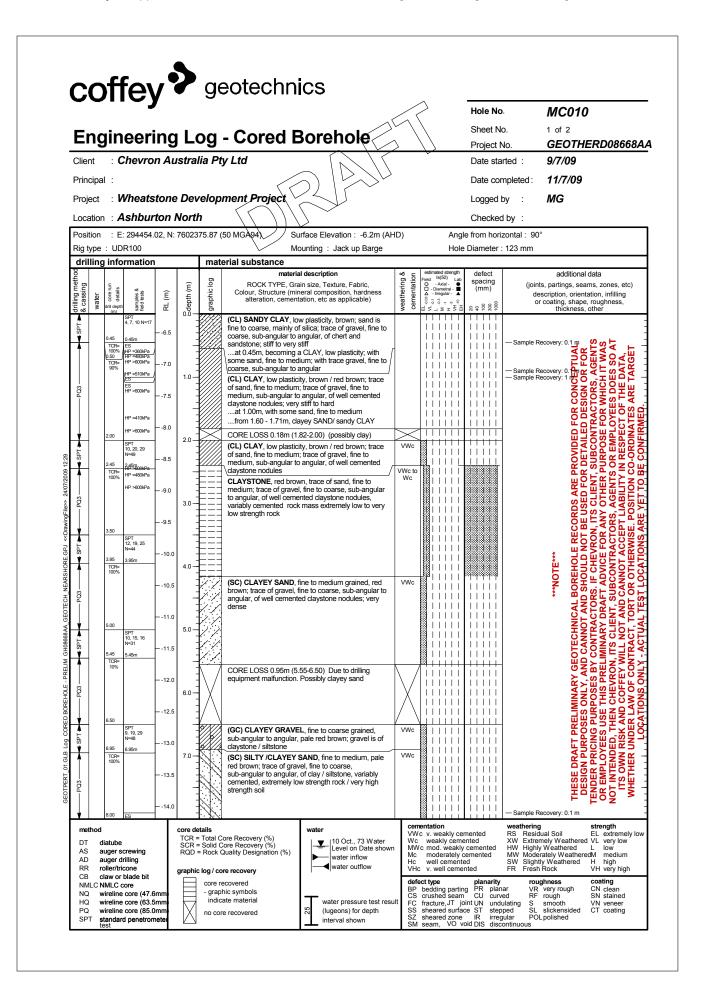


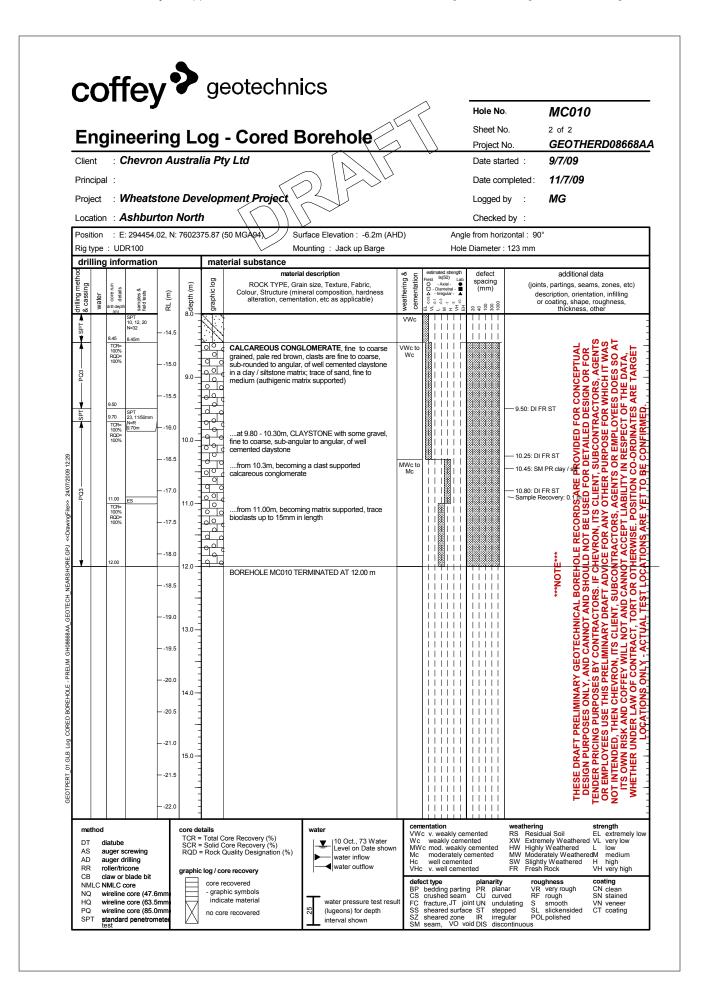


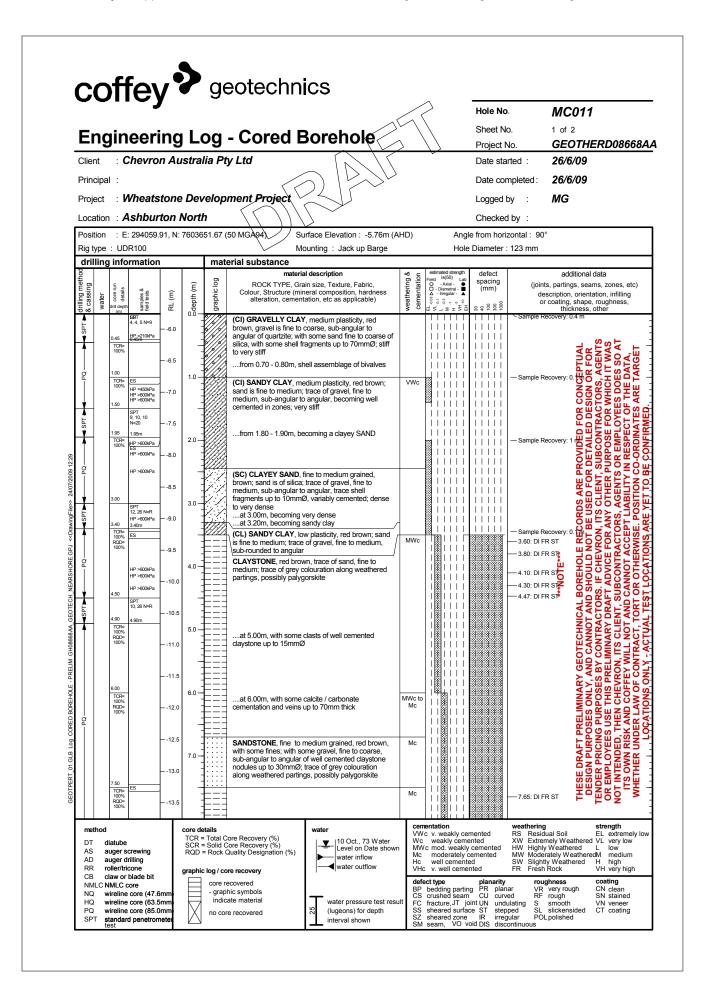


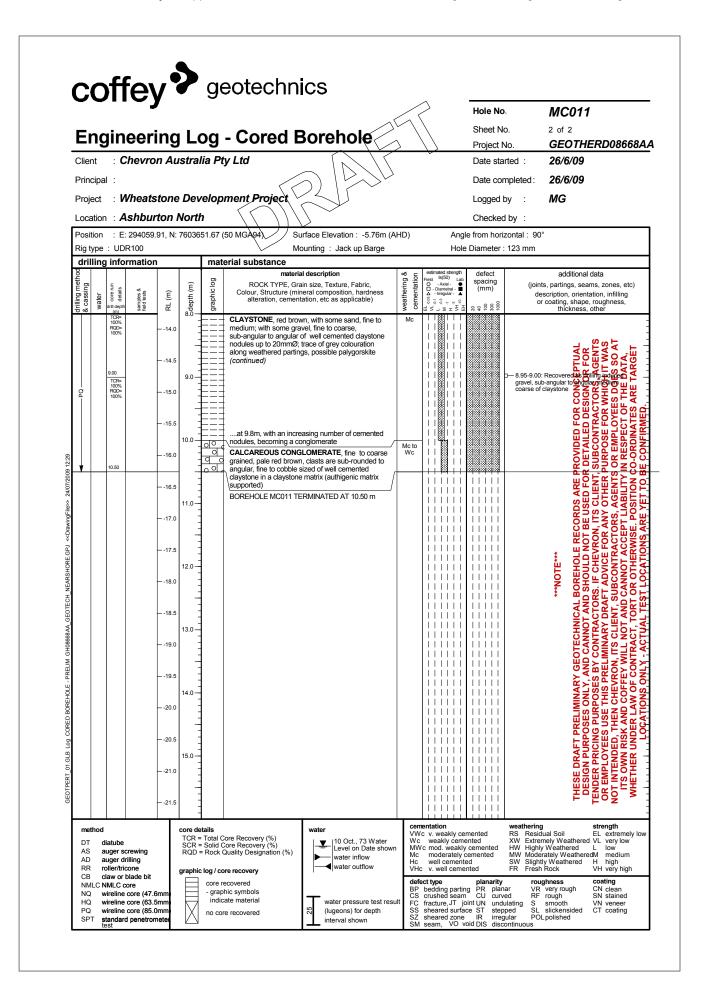


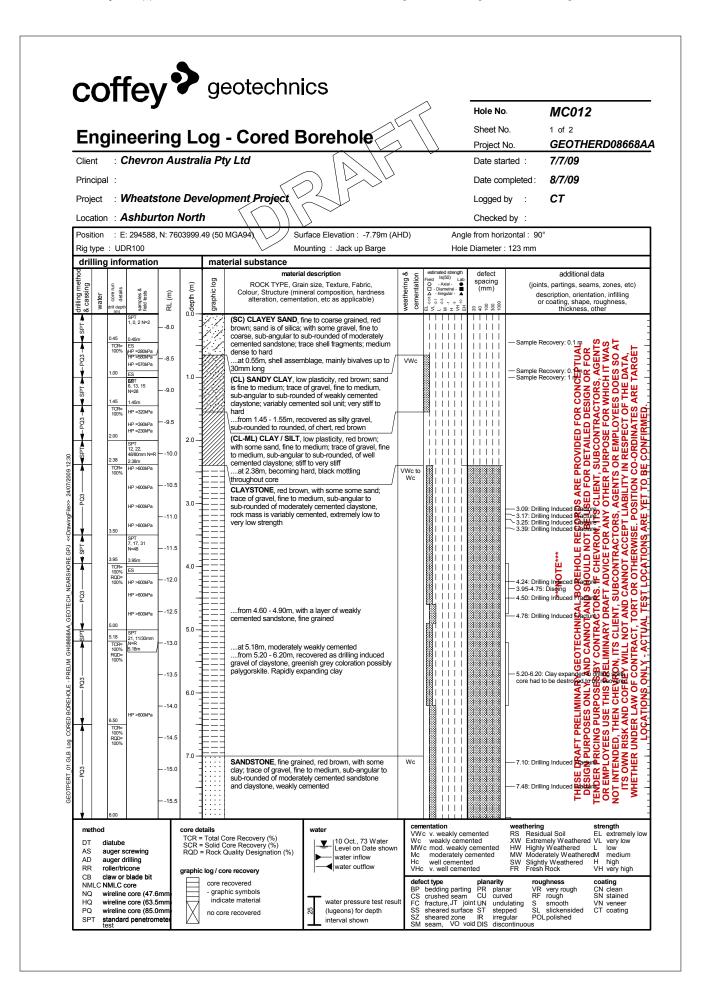


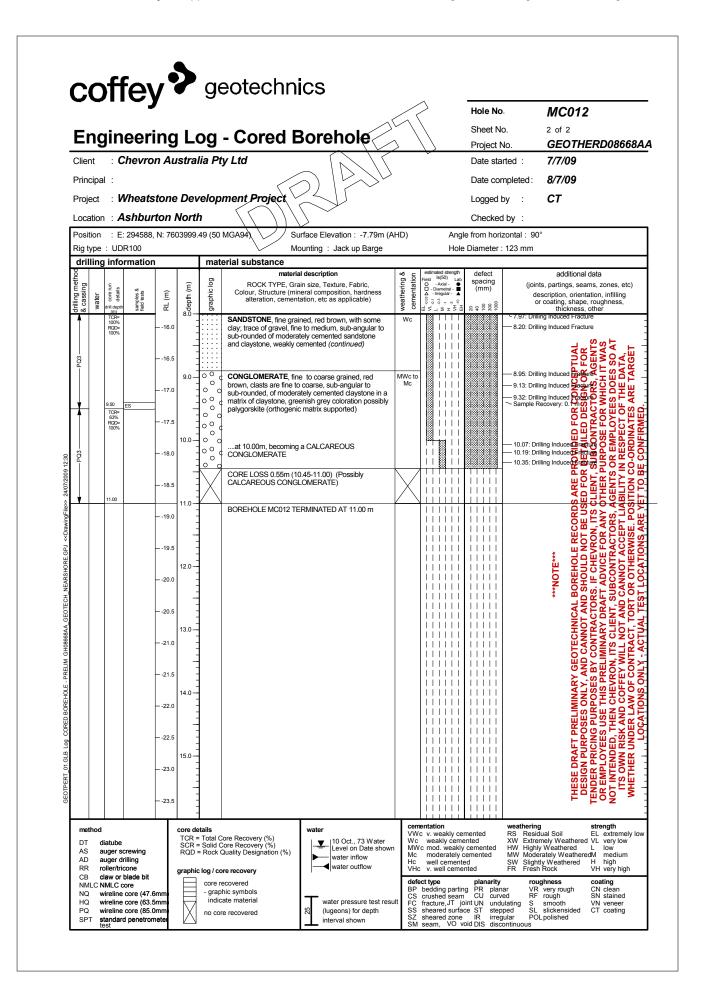


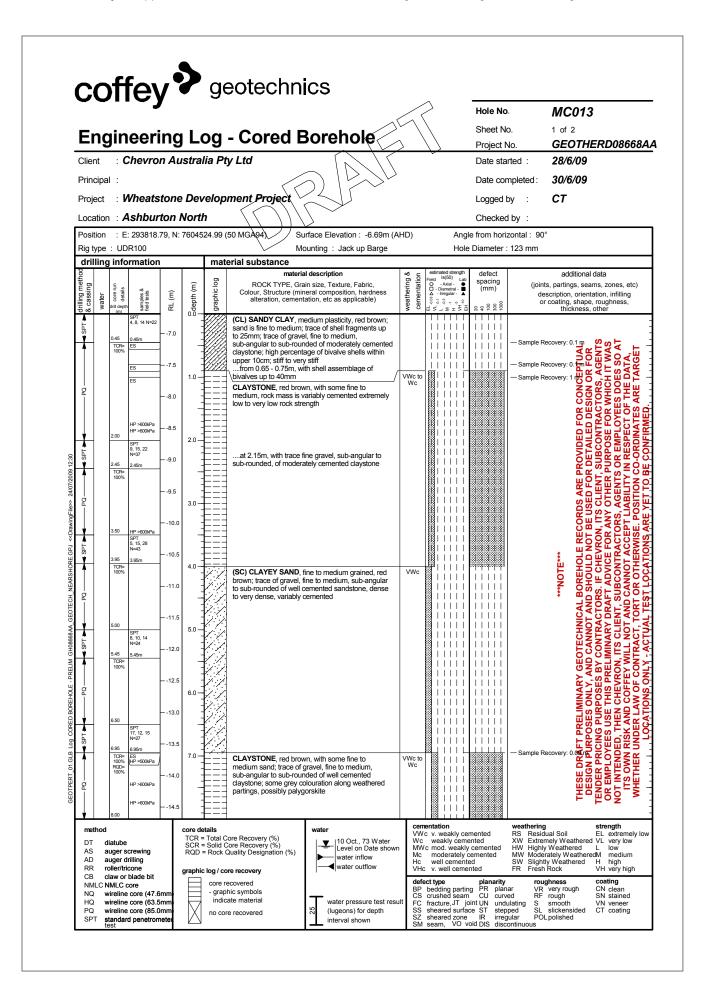


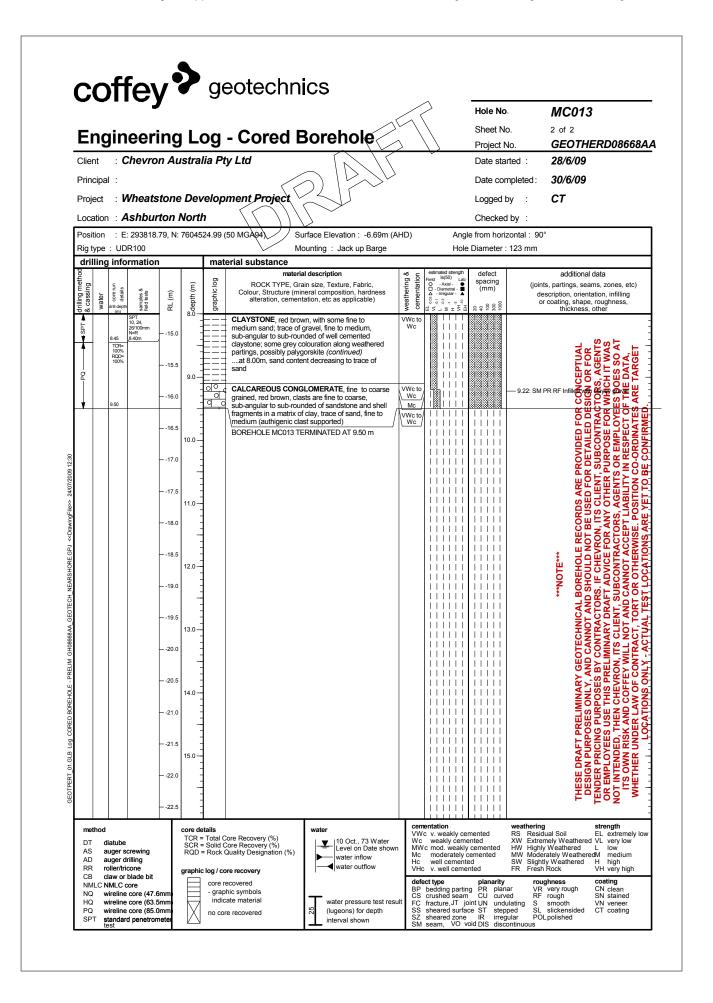


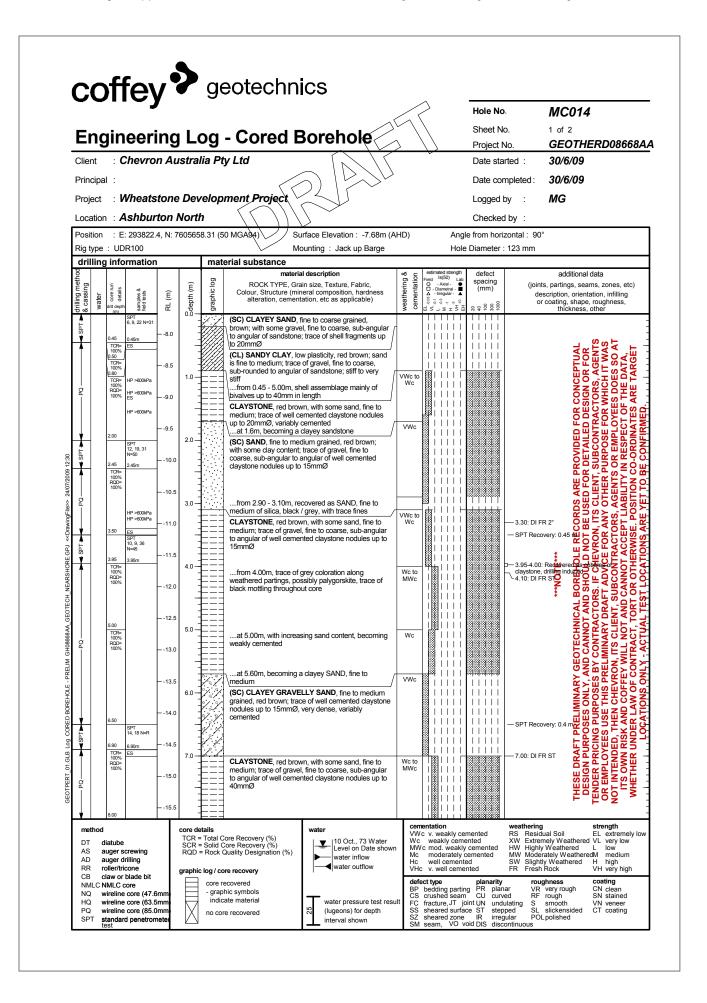


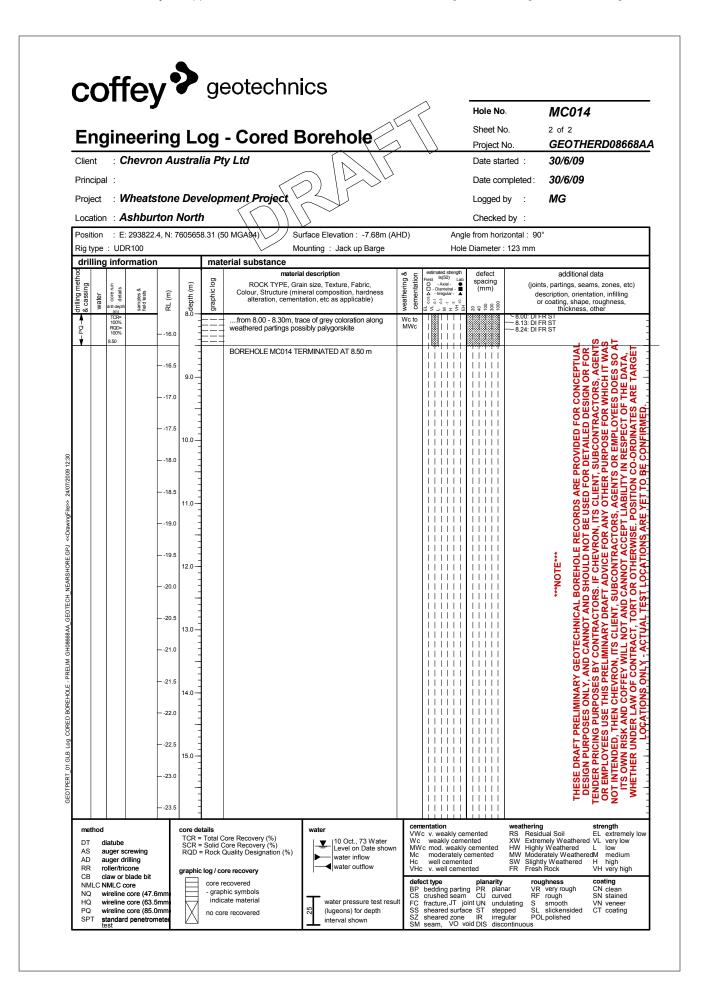


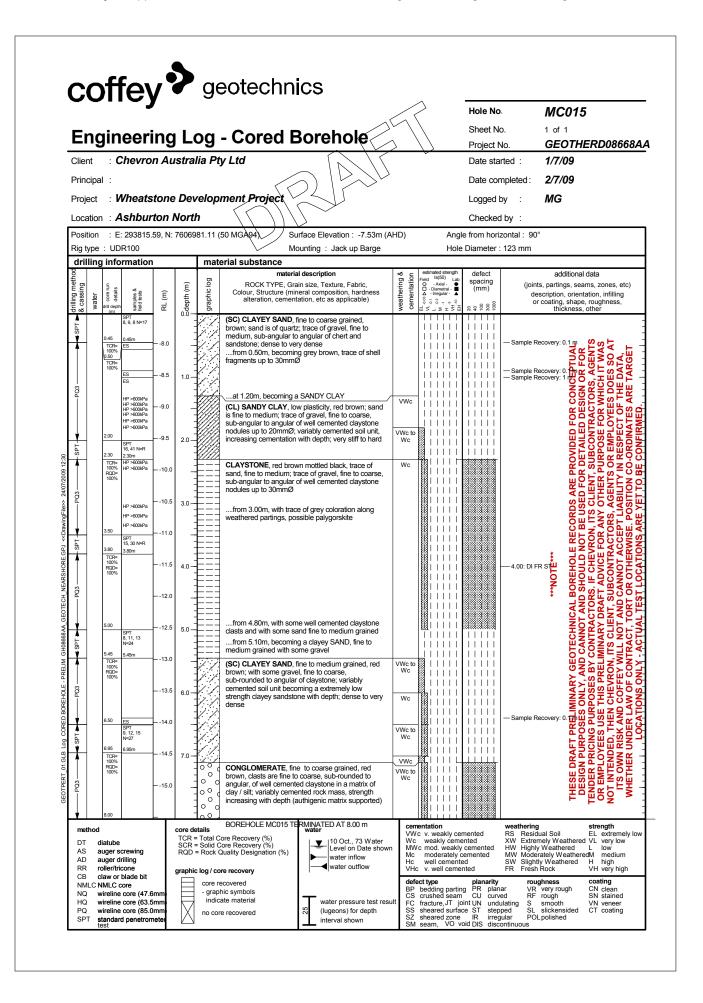


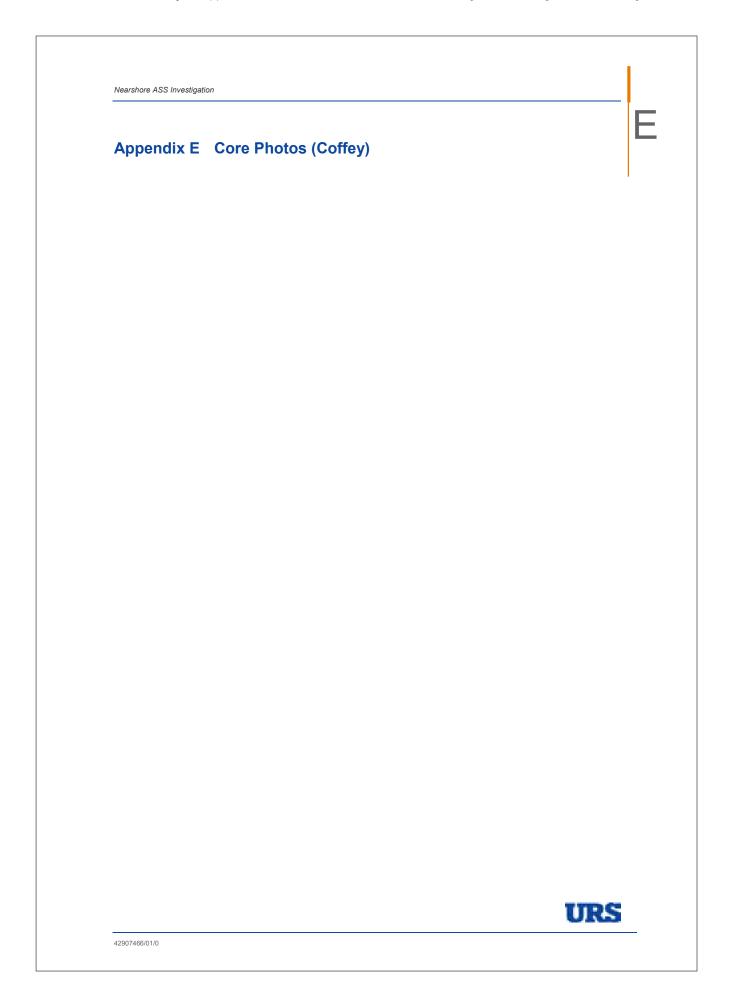






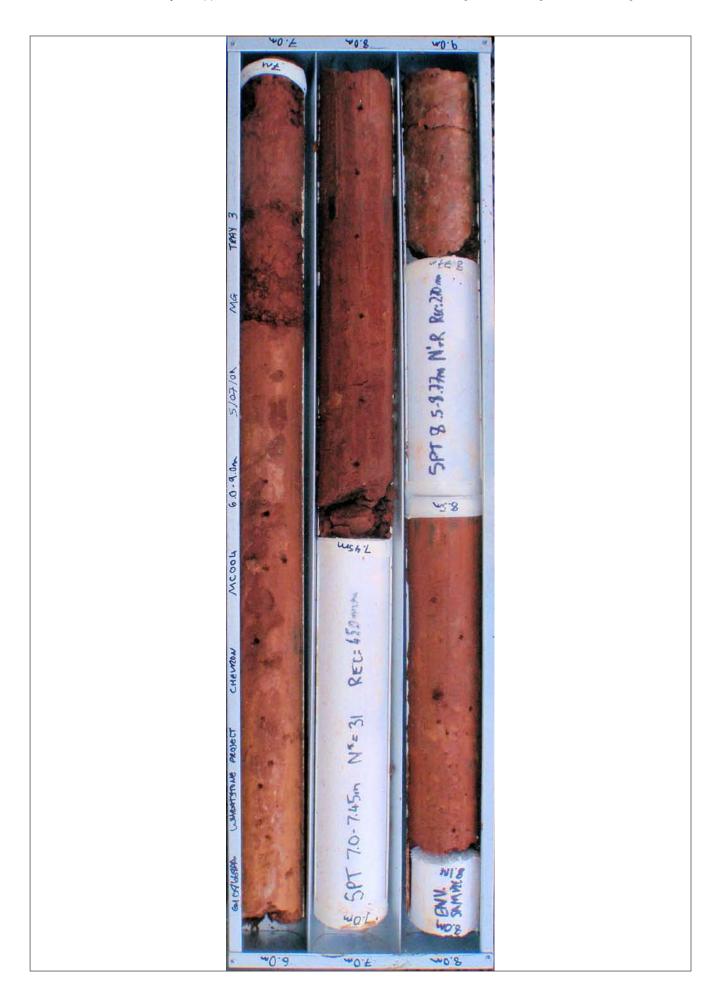


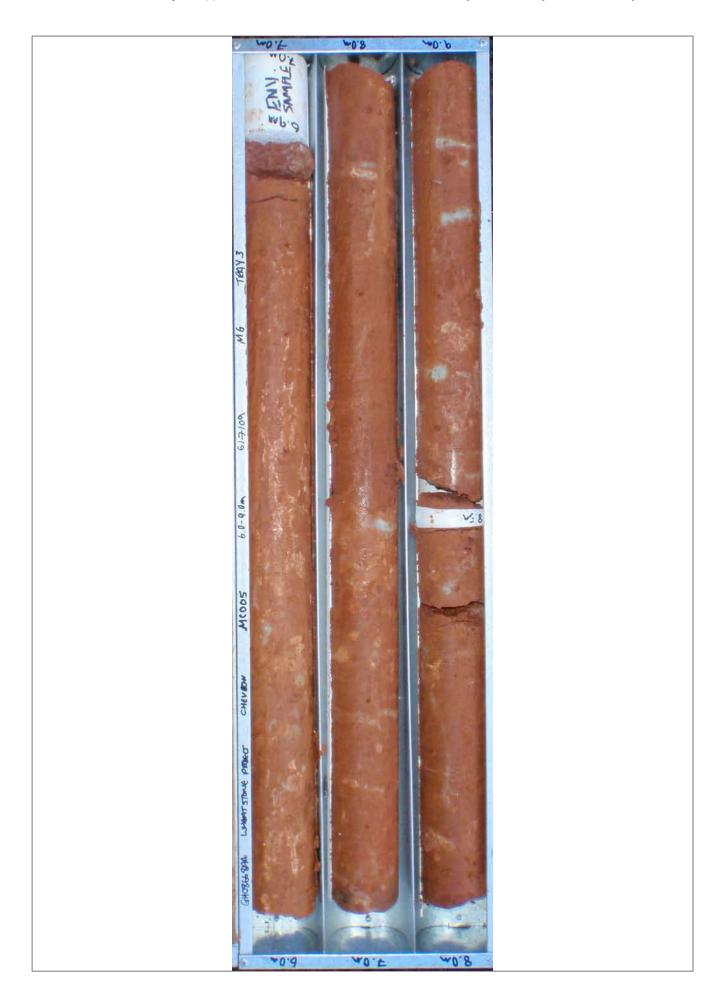


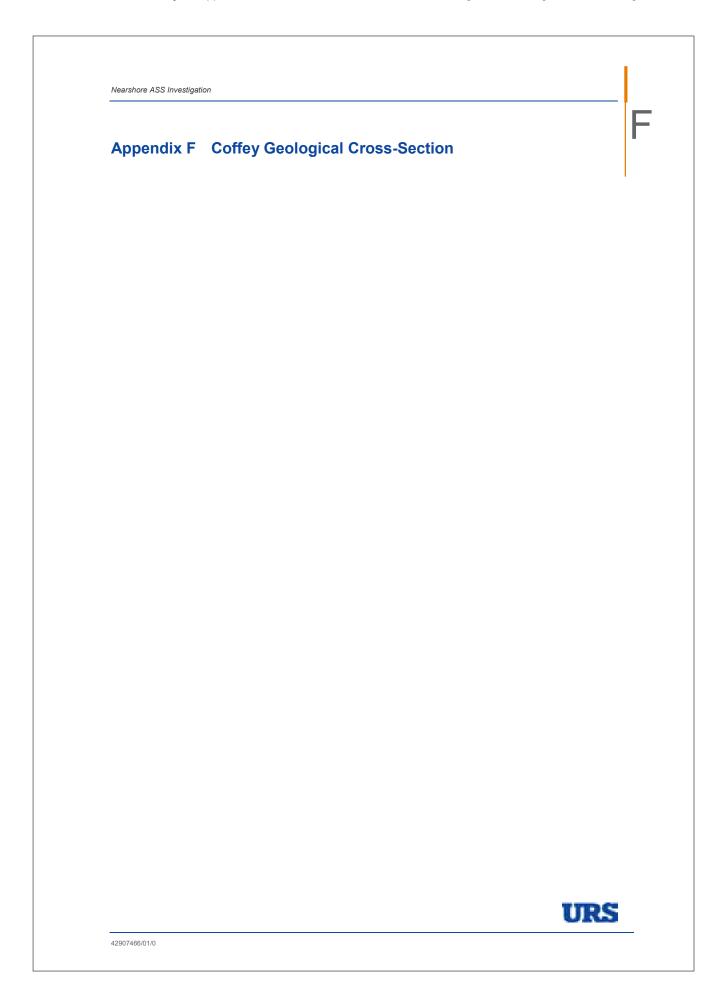


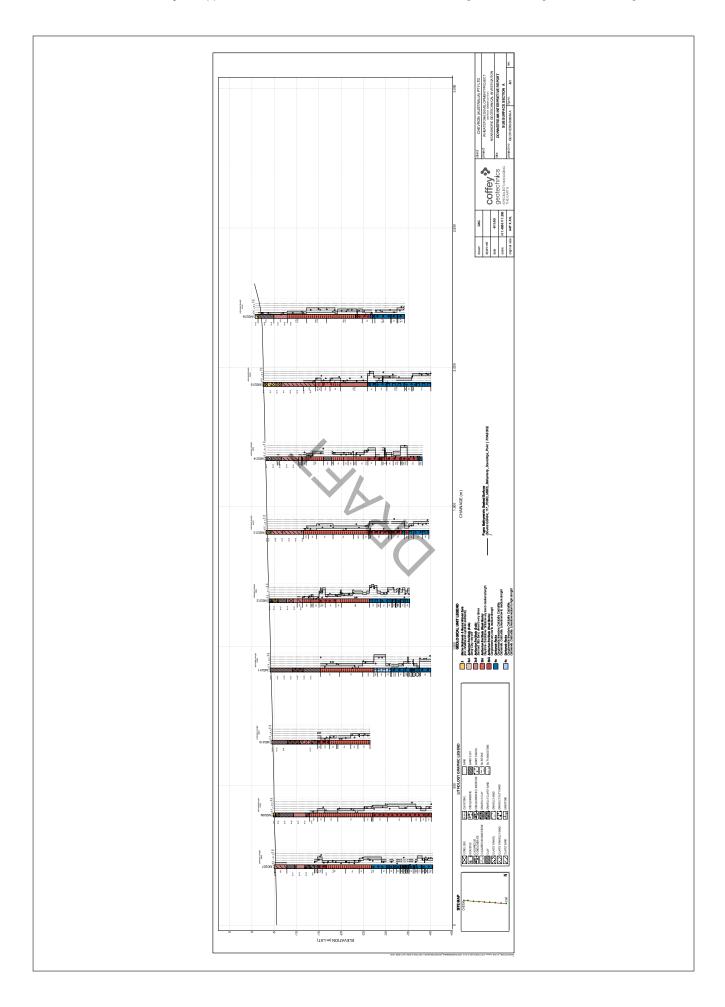
This page is intentionally blank

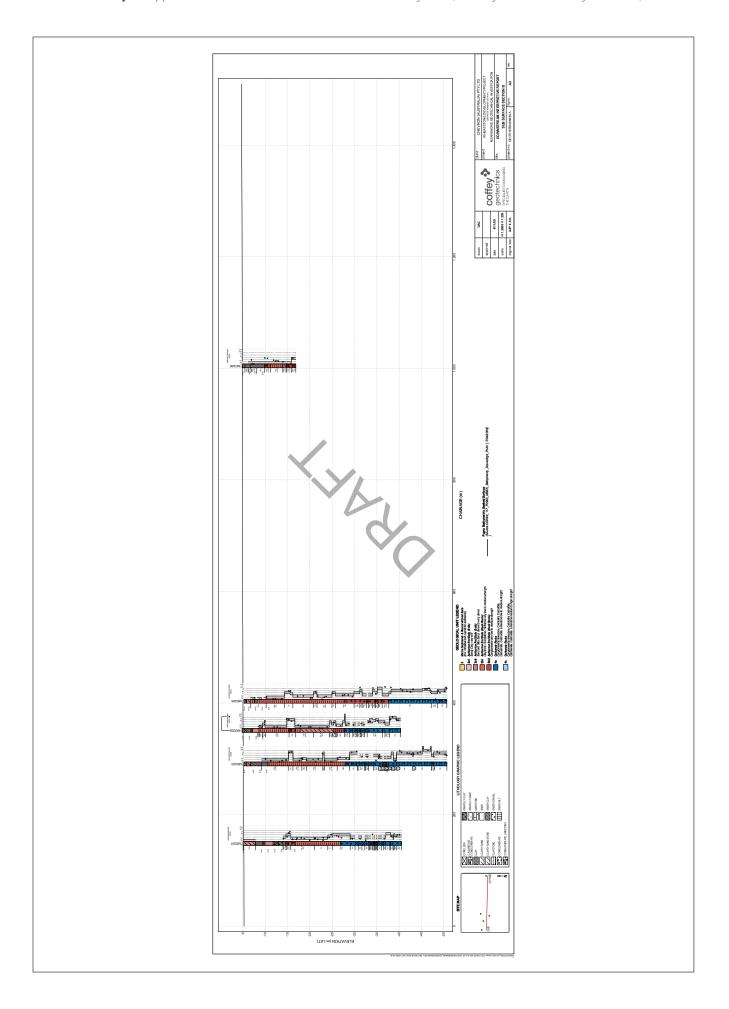
Wheatstone Project Appendix Q4 - Nearshore Acid Sulfate Soils Investigation (Turning Basin and Dredge Channel)

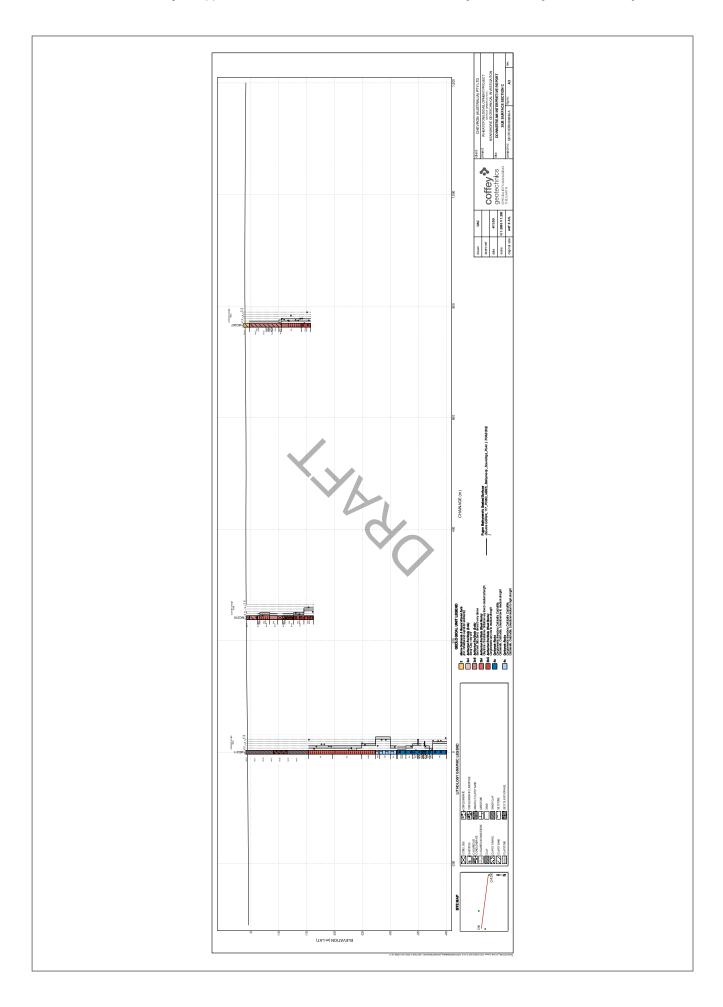







This page is intentionally blank


Wheatstone Project Appendix Q4 - Nearshore Acid Sulfate Soils Investigation (Turning Basin and Dredge Channel)



This page is intentionally blank

Wheatstone Project Appendix Q4 - Nearshore Acid Sulfate Soils Investigation (Turning Basin and Dredge Channel)

Nearshore ASS Investigation **Appendix G** Analytical Test Results URS 42907466/01/0

This page is intentionally blank

Wheatstone Project Appendix Q4 - Nearshore Acid Sulfate Soils Investigation (Turning Basin and Dredge Channel)

APPENDIX G **ASS Field Screening Test Results**

	[pH (F)	pH (Fox)	pH(change)	Reaction Rate
Bore Location	Sample Depth	Soil Type	pH Unit	pH Unit	pH Unit	slight/moderate high/vigorous
		Field Classification	0.1	0.1	0.1	
MC001	0.45-0.55	Sandy CLAY	8.8	6.5	2.3	Moderate
MC001 MC001	0.9-1.0	CLAYSTONE CLAYSTONE	8.6	6.5	2.1	Slight
MC001	(comp)1.0-2.0 3.4-3.5	Clayey SANDSTONE	8.2	6.4	1.8	Slight
MC001	6.4-6.5	CONGLOMERATE	8.8 8.4	6.9 6.4	1.9	Strong
MC002	1.0-1.1	Silty SAND	8.4	6.7	1.7	Slight Moderate
MC002	1.9-2.0	Clayey SAND	9	6.4	2.6	Slight
MC002	2.9-3.0	Sandy CLAY	7.9	6.4	1.5	Moderate
MC002	6.4-6.5	Clayey SAND	7.9	7	0.9	Strong
MC003	0.45-0.55	Clayey SAND	8.6	6.6	2	Slight
MC003	0.9-1.0	Sandy CLAY	8.5	6.7	1.8	Slight
MC003	(comp)1-2	Sandy CLAY	8.7	6.5	2.2	Slight
MC003	3.4-3.5	CLAY	7.5	6.9	0.6	Strong
MC003	6.9-7.0	CONGLOMERATE	7	6.1	0.9	Slight
MC004	0.5-1.0	Clayey Sandy GRAVEL	8.5	6.8	1.7	Moderate
MC004	(comp)1.0-2.0	Sandy CLAY	8.8	6.7	2.1	Slight
MC004	3.9-4.0	Sandy CLAY	8.4	6.9	1.5	Moderate
MC004	8.0-8.1	Sandy CLAY	8.3	6.4	1.9	Slight
MC005	0.45-0.55	Clayey SAND	8.5	6.6	1.9	Slight
MC005	0.9-1.0	Sandy CLAY	8.6	6.7	1.9	Slight
MC005	(comp)1.0-2.0	Sandy CLAY	8.2	6	2.2	Slight
MC005	3.0-3.1	CLAYSTONE	7.8	6.8	1	Strong
MC005	6.9-7.0	CLAYSTONE	7.4	6.2	1.2	Slight
MC006 MC006	0.45-0.55	Sandy CLAY	8.1	7.4	0.7	Strong
	0.9-1.0	CLAY	7.9	7.2	0.7	Strong
MC006 MC006	3.26-3.36 9.9-10.0	CLAYSTONE Clayey SANDSTONE	7.1 6.9	7.1 6	0.9	Strong Slight
MC006	1.0-2.0	CLAY	7.4	6.4	1	Strong
MC007	0.45-0.55	Sandy CLAY	8	6.5	1.5	Slight
MC007	0.8-0.9	Sandy CLAY	8.5	6.5	2	Slight
MC007	(comp)1.0-2.0	Clayey SAND	8.3	6.6	1.7	Moderate
MC008	0.45-0.55	Sandy CLAY	8.4	6.4	2	Slight
MC008	0.8-0.9	Sandy CLAY	8.5	6.5	2	Slight
MC008	(comp)2.0-3.0	Clayey SAND	7.6	6.1	1.5	Slight
MC008	3.8-3.9	Clayey SAND	7.6	6.6	1	Slight
MC008	7.0-7.1	SAND	7.7	6.5	1.2	Slight
MC009	1.0-1.1	Clayey GRAVEL	8.4	6.4	2	Slight
MC009	2.0-3.0	Gravelly CLAY	8	6.4	1.6	Slight
MC009	3.9-4.0	CLAY	7.6	6.5	1.1	Moderate
MC009	8.9-9.0	CLAY	7.3	6.8	0.5	Moderate
MC009	13.4-13.5	Calcareous CONGLOMERATE	7.8	6.7	1.1	Slight
MC010	0.45-0.55	Sandy CLAY	8.5	6.4	2.1	Slight
MC010	0.9-1.0	CLAY	8.5	6.4	2.1	Slight
MC010	1.0-2.0	CLAY	8	7.7	0.3	Strong
MC010	3.45-3.55	CLAYSTONE	7.9	6	1.9	Moderate
MC010 MC010	7.9-8.0	Silty Clayey SAND Calcaerous CONGLOMERATE	7.2	6.5	0.7	Strong
MC11	10.9-11.0 0.0-0.4	Gravelly CLAY	7.4 8.3	6.7	0.7 1.4	Slight Strong
MC11 MC11	1.0-1.1	Sandy CLAY			1.4	
MC11	(comp)2.0-3.0	Sandy CLAY Sandy CLAY	7.9 8.1	6.6 6.2	1.3	Slight Slight
MC11	3.5-3.6	CLAYSTONE	8	8.7	-0.7	Strong
MC11	7.45-7.55	SANDSTONE	8.1	7.2	0.9	Strong
MC012	0.45-0.55	Clayey SAND	8.4	6.6	1.8	Moderate
MC012	0.9-1.0	Sandy CLAY	8.4	6.4	2	Slight
MC012	9.4-9.5	CONGLOMERATE	7.3	6.5	0.8	Strong
MC012	(comp)1.0-2.0	Sandy CLAY	8.1	6.6	1.5	Slight
MC012	4.0-4.1	CLAYSTONE	7.4	6.2	1.2	Slight
MC013	0.45-0.55	Sandy CLAY	8.7	7.7	1	Moderate
MC013	0.8-0.9	Sandy CLAY	8.8	6.5	2.3	Moderate
MC013	(comp)1.0-2.0	CLAYSTONE	8.6	6.7	1.9	Strong
MC013	3.4-3.5	CLAYSTONE	8.3	7.1	1.2	Strong
MC013	7.9-8.0	CLAYSTONE	8.2	7.6	0.6	Strong
MC014	0.45-0.55	Clayey SAND	8.3	7.1	1.2	Moderate
MC014	0.8-0.9	Sandy CLAY	8.3	6.8	1.5	Slight
MC014	(comp)1.0-2.0	CLAYSTONE	8.4	6.4	2	Slight
MC014	3.4-3.5	CLAYSTONE	7.7	7.6	0.1	Strong
MC014	6.9-7.0	Clayey Gravelley SAND	7.8	7.4	0.4	Strong
MC015	0.45-0.55	Clayey SAND	8.6	6.6	2	Slight
		Cti-CLAV	8.6	6.4	2.2	Slight
MC015 MC015	(comp)1.0-2.0 3.4-3.5	Sandy CLAY CLAYSTONE	0.0	6.1	1.7	Slight

J:\Jobs\42907100\6 Deliv\E0000 Environmental Marine\E0700 Marine Sediment Dredging Study\ASS Nearshore Investigation\Final Report_Rev B\Appendix G\
PASS Tables.xls

URS Australia Pty Ltd

URS Australia Pty Ltd

G
×
₽
Ĺ
ď
7

				Brimary Sample	Drimery Semple	Drimary Sample	Drimary Sample	Drimany Sample	Drimary Sample
		ίĬ	Sample Type:	i illiai y campie	adma dama			rimary campie	odulpi odulpio
		ALS Sam	ALS Sample number:	EP0904291047	EP0904291048	EP0904291049	EP0904291050	EP0904291051	EP0904291043
		S	Sample date:	03/07/2009	03/07/2009	03/07/2009	03/02/2009	03/07/2009	03/07/2009
		Client san	Client sample ID (1st):	MC001	MC001	MC001	MC001	MC001	MC002
		Client sam	Client sample ID (2nd):	0.45-0.55	0.9-1.0	(comp)1.0-2.0	3.4-3.5	6.4-6.5	1.0-1.1
Analyte grouping/Analyte	Units	LOR	Action Criteria for >1000 tonnes disturbed						
Soil Type (Field Classification)				Sandy CLAY	CLAYSTONE	CLAYSTONE	Clayey SANDSTONE	CONGLOMERATE	Silty SAND
ASS Field Screening Analysis									
pH (F)	pH Unit	0.1		8.8	8.6	8.2	8.8	8.4	8.4
pH (Fox)	pH Unit	0.1		6.5	6.5	6.4	6.9	6.4	6.7
Reaction Rate		-		Moderate	Slight	Slight	Strong	Slight	Moderate
Actual Acidity									
pH KCI (23A)	pH Unit	0.1		9.2	9.1	6	9.2	9.2	9.3
Titratable Actual Acidity (23F)	mole H+/t	2		<2	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	% pyrite S	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Potential Acidity									
Chromium Reducible Sulfur (22B)	s%	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	mole H+/t	10		<10	<10	<10	<10	<10	<10
Acid Neutralising Capacity									
Acid Neutralising Capacity (19A2)	% CaCO3	0.01		9.27	7.58	11.5	35.9	5.33	23
acidity - Acid Neutralising Capacity (a-19A2)	mole H+/t	10		1850	1510	2300	7180	1060	4610
sulfidic - Acid Neutralising Capacity (s-19A2)	% pyrite S	0.01		2.97	2.43	3.68	11.5	1.71	7.38
,									
Acid Base Accounting									
ANC Fineness Factor	-	0.5		1.5	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	s%	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	mole H+/t	10		<10	<10	<10	<10	<10	<10
Liming Rate	kg CaCO3/t	1		<1	<1	<1	<1	<1	<1
Net Acidity excluding ANC (sulfur units)	S %	0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	mole H+/t	10	18	<10	<10	<10	<10	<10	<10
Liming Rate excluding ANC	kg CaCO3/t	1		<1	<1	<1	<1	√1	<1
Carbonate Buffering Potential									
ANC	kg H ₂ S0₄/tonne								
ANC	% CaCO3	-							

Exceeds the Action Criteria of 0.03 %S for >1000 tonnes disturbed
Source: 'Ahem et al. 1998. Action Criteria' Based on ASS Analysis for Three Texture Categories
* RPD Acceptable Limits: 4-10 x LOR (50%), >10 x LOR (30%)

J:J.Obs/4290710016 DeliviE0000 Environmental Marine E0700 Marine Sediment Dredging Study/ASS Nearshore Investigation/Final Report_Rev BiAppendix G/ PASS Tables.xls

URS Australia Pty Ltd

(
2		
6	_	1
2	2	
Ļ	ļ	
Ę	1	
5	1	

		•	1	Primary Sample					
		ALS San	Sample Type: ALS Sample number:	EP0904291044	EP0904291045	EP0904291046	EP0904291038	EP0904291039	EP0904291040
			Sample date:	03/07/2009	03/02/2009	04/07/2009	04/07/2009	04/07/2009	04/07/2009
		Client sar	Client sample ID (1st):	MC002	MC002	MC002	MC003	MC003	MC003
		Client san	Client sample ID (2nd):	1.9-2.0	2.9-3.0	6.4-6.5	0.45-0.55	0.9-1.0	(comp)1-2
	Units	LOR	Action Criteria for >1000 tonnes disturbed						
Anialy to grouping Anialy to Soil Type (Field Classification)				Clayey SAND	Sandy CLAY	Clayey SAND	Clayey SAND	Sandy CLAY	Sandy CLAY
Cicylos A serimon O Fig. 1									
Aco rield ocreening Analysis	2011111			c	c I	1	c		ı
pH (F)	DH CHIL	0.1		s ?	8. j	S: 1	8.6	8°.5	8.7
pH (Fox)	pH Unit	0.1		6.4	6.4	,	9.9	6.7	6.5
Reaction Rate		-		Slight	Moderate	Strong	Slight	Slight	Slight
Actual Acidity									
pH KCI (23A)	pH Unit	0.1		9.1	8.8	9.3	9.3	9.2	9.2
Titratable Actual Acidity (23F)	mole H+/t	2		<2	~	~	~	~	7
sulfidic - Titratable Actual Acidity (s-23F)	% pyrite S	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Potential Acidity									
Chromium Reducible Sulfur (22B)	S %	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	mole H+/t	10		<10	<10	<10	<10	<10	<10
Acid Neutralising Capacity									
Acid Neutralising Capacity (19A2)	% CaCO3	0.01		0.74	2.21	12.5	20.3	13.3	10.2
acidity - Acid Neutralising Capacity (a-19A2)	mole H+/t	10		148	441	2500	4050	2650	2040
sulfidic - Acid Neutralising Capacity (s-19A2)	% pyrite S	0.01		0.24	0.71	4.01	6.49	4.26	3.27
Acid Base Accounting									
ANC Fineness Factor		0.5		1.5	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	S %	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	mole H+/t	10		<10	<10	<10	<10	<10	<10
Liming Rate	kg CaCO3/t	1		<1	۱>	<1	۲>	۲>	\
Net Acidity excluding ANC (sulfur units)	S %	0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	mole H+/t	10	18	<10	<10	<10	<10	<10	<10
Liming Rate excluding ANC	kg CaCO3/t	1		<1	1>	<1	<1	-<1	-<1
Carbonate Buffering Potential									
ANC	kg H ₂ S0₄/tonne	•							
ANC	% CaCO3								

Exceeds the Action Criteria of 0.03 %S for >1000 tonnes disturbed
Source: 'Ahem et al. 1998. Action Criteria' Based on ASS Analysis for Three Texture Categories
• RPD Acceptable Limits: 4-10 x LOR (50%), >10 x LOR (30%)

J.J.obs/42907100/6 Deliv/E0000 Environmental Marine/E0700 Marine Sediment Dredging Study/ASS Nearshore Investigation/Final Report_Rev B\Appendix G\PASS Tables.x/s

9.4 <2 <0.02

<0.02

31.7 6340 10.2

URS Australia Pty Ltd

APPENDIX G

		ø	Sample Type:	Primary Sample	rimary Sample Primary Sample Primary Sample Primary Sample Primary Sample Primary Sample	Primary Sample	Primary Sample	Primary Sample	Primary Sample
		ALS Sarr	ALS Sample number:	EP0904291041	EP0904291042	EP0904291034	GCA8529	EP0904291035	EP0904291036
		0,	Sample date:	04/07/2009	05/07/2009	02/02/2009	05/07/2009	02/02/2009	05/07/2009
		Client san	Client sample ID (1st):	WC003	MC003	MC004	MC004	MC004	MC004
		Client sam	Client sample ID (2nd):	3.4-3.5	6.9-7.0	0.5-1.0	0.5-0.56	(comp)1.0-2.0	3.9-4.0
	1		Action Criteria						
alyte	Summer	ב ב	ror>1000 tonnes disturbed						
sification)				KVID	CONGLOMERATE GRAVEL	Clayey Sandy GRAVEL		Sandy CLAY	Sandy CLAY
Analysis									
	pH Unit	0.1		2.5		8.5		8.8	8.4

Analyte grouping/Analyte	Units	LOR	Action Criteria for >1000 tonnes disturbed					
Soil Type (Field Classification)				CLAY	CONGLOMERATE	Clayey Sandy GRAVEL		Sandy CLAY
ASS Field Screening Analysis								
рн (F)	pH Unit	0.1		7.5	7	8.5		8.8
pH (Fox)	pH Unit	0.1		6.9	6.1	6.8		6.7
Reaction Rate		1		Strong	Slight	Moderate	i	Slight
Actual Acidity								
pH KCI (23A)	pH Unit	0.1		8.6	9.1	9.3		9.3
Titratable Actual Acidity (23F)	mole H+/t	2		<2	<2	<2		<2
sulfidic - Titratable Actual Acidity (s-23F)	% pyrite S	0.02		<0.02	<0.02	<0.02		<0.02
Potential Acidity								
Chromium Reducible Sulfur (22B)	S %	0.02		<0.02	<0.02	<0.02		<0.02
acidity - Chromium Reducible Sulfur (a-22B)	mole H+/t	10		<10	<10	<10		<10
Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)	% CaCO3	0.01		3.68	6.64	26.1		18.6
acidity - Acid Neutralising Capacity (a-19A2)	mole H+ / t	10		734	1330	5210		3720
sulfidic - Acid Neutralising Capacity (s-19A2)	% pyrite S	0.01		1.18	2.13	8.35		5.96
Acid Base Accounting								
ANC Fineness Factor	-	0.5		1.5	1.5	1.5		1.5
Net Acidity (sulfur units)	S %	0.02		<0.02	<0.02	<0.02		<0.02
Net Acidity (acidity units)	mole H+ / t	10		<10	<10	<10		<10
Liming Rate	kg CaCO3/t	1		۲>	<1	<1		\
Net Acidity excluding ANC (sulfur units)	S %	0.02	0.03	<0.02	<0.02	<0.02		<0.02
Net Acidity excluding ANC (acidity units)	mole H+ / t	10	18	<10	<10	<10		<10
Liming Rate excluding ANC	kg CaCO3/t	1		<1	<1	<1		<1
Carbonate Buffering Potential								
ANC	kg H ₂ S0₄/tonne	-					350	
ANC	% CaCO3						35	

Exceeds the Action Criteria of 0.03 %S for >1000 tonnes disturbed

Source: Ahem et al. 1998. Action Criteria Based on ASS Analysis for Three Texture Categories

* RPD Acceptable Limits: 4-10 x LOR (50%), >10 x LOR (30%)

J.J.Obs/4/2907100/6 DeliviE0000 Environmental Marine E0700 Marine Sediment Dredging StudyASS Nearshore Investigation/Final Report_Rev BlAppendix GI PASS Tables.xls

URS Australia Pty Ltd

	ď	9
į	2	<
į	2	1
í		_
ĺ	٥	
Į	9	Ļ

		Ū,	Sample Type:	Primary Sample					
		ALS San	ALS Sample number:	EP0904291037	EP0904291029	EP0904291030	EP0904291031	GCA8526	EP0904291032
			Sample date:	06/06/2009	00/02/2009	06/07/2009	06/07/2009	06/07/2009	06/02/2009
		Client sa	mple ID (1st):	MC004	MC005	MC005	MC005	MC005	MC005
		Client san	Client sample ID (2nd):	8.0-8.1	0.45-0.55	0.9-1.0	(comp)1.0-2.0	1.6-1.65	3.0-3.1
	Units	LOR	Action Criteria for >1000 tonnes						
Analyte grouping/Analyte									
Soil Type (Field Classification)				Sandy CLAY	Clayey SAND	Sandy CLAY	Sandy CLAY		CLAYSTONE
ASS Field Screening Analysis									
PH (F)	pH Unit	0.1		8.3	8.5	8,6	8.2		7.8
pH (Fox)	PH Unit	0.1		6.4	9.9	6.7	9		6.8
Reaction Rate		-		Slight	Slight	Slight	Slight		Strong
									9
Actual Acidity									
pH KCI (23A)	pH Unit	0.1		9.1	9.5	9.2	9.1		8.9
Titratable Actual Acidity (23F)	mole H+/t	2		<2	<2	<2	<2		<2
sulfidic - Titratable Actual Acidity (s-23F)	% pyrite S	0.02		<0.02	<0.02	<0.02	<0.02		<0.02
Potential Acidity									
Chromium Reducible Sulfur (22B)	S %	0.02		<0.02	0.04	<0.02	<0.02	-	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	mole H+ / t	10		<10	23	<10	<10	-	<10
Acid Neutralising Capacity									
Acid Neutralising Capacity (19A2)	% CaCO3	0.01		6.13	32.4	13.2	3.73		1.01
acidity - Acid Neutralising Capacity (a-19A2)	mole H+/t	10		1220	6470	2650	746		202
sulfidic - Acid Neutralising Capacity (s-19A2)	% pyrite S	0.01		1.96	10.4	4.25	1.2	-	0.32
A Carlot Days A population									
Acid base Accoding		LI C		4.6	9.4		4.6		4.6
Not Acidity (culfur units)	S 70	5.0		500	5.0	500	500		500
Not Acidity (adidity mits)	1 2	40.02		-40.02	20.02	20.02	20.02	•	20.02
Thet Actually diffes	MODELITY / L	2 +		7.0	2 7	2, 7	2, 7		2 7
Mark Science Class Class Control of the Control of	Ng CacColl	- 0	000	,	700	, 6	, ,		, ,
Net Acidity excluding ANC (suilul units)	0%	0.02	0.03	<0.02	0.04	<0.02	<0.02		<0.02
Net Acidity excidently ANC (acidity units)	1/+Ualou	2 .	10	~10	67	OI.	01,		01.
Liming Rate excluding ANC	kg CaCO3/t	-		<u>۲</u>	2	₹	<u>^</u>		₹
Carbonate Buffering Potential									
ANC	kg H ₂ S0₄/tonne							26	
CNA	% CaCO3	,						36	

Exceeds the Action Criteria of 0.03 %S for >1000 tonnes disturbed
Source: 'Ahem et al. 1998. Action Criteria' Based on ASS Analysis for Three Texture Categories
• RPD Acceptable Limits: 4-10 x LOR (50%), >10 x LOR (30%)

J.J.obs/4/2907 100/6 Deliv/E0000 Environmental Marine/E0700 Marine Sediment Dredging Study/ASS Nearshore Investigation/Final Report_Rev B\Appendix G\PASS Tables.xis

URS Australia Pty Ltd

G
×
₽
m
ř
>

	0)	Sample Type:	Primary Sample	Primary Sample	Primary Sample	Primary Sample Primary Sample Primary Sample Primary Sample Primary Sample Primary Sample	Primary Sample	Primary Sample
	ALS San	ALS Sample number:	EP0904291033	EP0904291071	EP0904291072	EP0904291073	EP0904291074	EP0904291086
	•,	Sample date:	06/02/2009	08/07/2009	08/07/2009	08/07/2009	09/02/2009	15/07/2009
	Client sar	Client sample ID (1st):	MC005	MC006	MC006	MC006	MC006	MC006
	Client sarr	Client sample ID (2nd):	6.9-7.0	0.45-0.55	0.9-1.0	3.26-3.36	9.9-10.0	1.0-2.0
Units	LOR	Action Criteria for>1000 tonnes disturbed						
			CLAYSTONE	Sandy CLAY	CLAY	CLAYSTONE	Clayey SANDSTONE	CLAY

Analyte grouping/Analyte	Units	LOR	Action Criteria for >1000 tonnes disturbed						
Soil Type (Field Classification)				CLAYSTONE	Sandy CLAY	CLAY	CLAYSTONE	Clayey SANDSTONE	CLAY
ASS Field Screening Analysis									
pH (F)	pH Unit	0.1		7.4	8.1	6.7	7.1	6.9	7.4
pH (Fox)	pH Unit	0.1		6.2	7.4	7.2	7.1	9	6.4
Reaction Rate	-	1		Slight	Strong	Strong	Strong	Slight	Strong
Actual Acidity									
pH KCI (23A)	pH Unit	0.1		6	9.1	6	6	8.8	6
Titratable Actual Acidity (23F)	mole H+/t	2		<2	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	% pyrite S	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Potential Acidity									
Chromium Reducible Sulfur (22B)	S %	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	mole H+ / t	10		<10	<10	12	<10	<10	<10
Acid Neutralising Capacity									
Acid Neutralising Capacity (19A2)	% CaCO3	0.01		17.2	11.7	11.9	1.93	0.88	3.88
acidity - Acid Neutralising Capacity (a-19A2)	mole H+/t	10		3440	2330	2380	386	177	775
sulfidic - Acid Neutralising Capacity (s-19A2)	% pyrite S	0.01		5.52	3.74	3.81	0.62	0.28	1.24
Acid Base Accounting									
ANC Fineness Factor	-	0.5		1.5	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	S %	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	mole H+/t	10		<10	<10	<10	<10	<10	<10
Liming Rate	kg CaCO3/t	1		<1	<1	\	1>	۲>	1 >
Net Acidity excluding ANC (sulfur units)	S %	0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	mole H+/t	10	18	<10	<10	12	<10	<10	<10
Liming Rate excluding ANC	kg CaCO3/t	1		<1	<1	<1	<1	^	۷,
Carbonate Buffering Potential									
ANC	kg H ₂ S0₄/tonne	-							
ANC	% CaCO3								

Exceeds the Action Criteria of 0.03 %S for >1000 tonnes disturbed
Source: Ahem et al. 1998. Action Criteria Based on ASS Analysis for Three Texture Categories
* RPD Acceptable Limits: 4-10 x LOR (50%), >10 x LOR (30%)

J:J.Obs/4290710016 DeliviE0000 Environmental Marine E0700 Marine Sediment Dredging Study/ASS Nearshore Investigation/Final Report_Rev BiAppendix G/ PASS Tables.xls

URS Australia Pty Ltd

(9
2	•	¢
í		1
i		
i		Ĺ
(1	Ļ

		Ø	Sample Type:	Primary Sample					
		ALS Sam	ALS Sample number:	EP0904291001	EP0904291002	EP0904291003	EP0904291004	EP0904291005	EP0904291006
		υ,	Sample date:	26/06/2009	26/06/2009	26/06/2009	25/06/2009	25/06/2009	25/06/2009
		Client san	nple ID (1st):	MC007	MC007	MC007	MC008	MC008	MC008
		Client sam	Client sample ID (2nd):	0.45-0.55	6:0-8:0	(comp)1.0-2.0	0.45-0.55	6.0-8.0	(comp)2.0-3.0
Analyte grouping/Analyte	Units	LOR	Action Criteria for >1000 tonnes disturbed						
Soil Type (Field Classification)				Sandy CLAY	Sandy CLAY	Clayey SAND	Sandy CLAY	Sandy CLAY	Clayey SAND
ASS Field Screening Analysis									
pH (F)	pH Unit	0.1		8	8.5	8.3	8.4	8.5	9.2
pH (Fox)	pH Unit	0.1		6.5	6.5	9.9	6.4	6.5	6.1
Reaction Rate		1		Slight	Slight	Moderate	Slight	Slight	Slight
Actual Acidity									
pH KCI (23A)	pH Unit	0.1		6	6	9.1	8.9	8.9	9.2
Titratable Actual Acidity (23F)	mole H+/t	2		<2	<2>	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	% pyrite S	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Potential Acidity									
Chromium Reducible Sulfur (22B)	s%	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	mole H+ / t	10		<10	<10	<10	<10	<10	<10
A principal of the state of the									
Acid Northalising Capacity (40.02)	2000	0		4 07	c	204	4.63	00.4	4.76
Acid the Acid No. trailing Capacity (1972)	% Cacco	0.01		1.90	7	2004	900	07'1	4.20
sulfidic - Acid Neutralising Capacity (s-1972)	% pvrite S	0.01		0.63	0.64	1.6	0.52	0.41	1,36
Acid Base Accounting									
ANC Fineness Factor	-	0.5		1.5	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	8 %	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	mole H+ / t	10		<10	<10	<10	<10	<10	<10
Liming Rate	kg CaCO3/t	1		<1	!>	<1	<1	<1	<1
Net Acidity excluding ANC (sulfur units)	S %	0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	mole H+/t	10	18	<10	ot>	<10	<10	<10	<10
Liming Rate excluding ANC	kg CaCO3/t	1		<1	<١	<1	<1	<1	<1
Carbonate Buffering Potential									
ANC	kg H ₂ S0₄/tonne	-							
ANC	% CaCO3	-							

Exoeeds the Action Criteria of 0.03 %S for >1000 tonnes disturbed
Source: 'Ahem et al. 1998, Action Criteria' Based on ASS Analysis for Three Texture Categories
+ RPD Acceptable Limits: 4-10 x LOR (50%), >10 x LOR (30%)

J.J.obs/42907100/6 Deliv/E0000 Environmental Marine/E0700 Marine Sediment Dredging Study/ASS Nearshore Investigation/Final Report_Rev B\Appendix G\PASS Tables.x/s

URS Australia Pty Ltd

C	9
2	<
č	2
2	_
č	Ĺ
9	Ļ

		0	Tomo		and in the second	rillialy sample	rumary sample	rilliary Sample	rillialy sample
		ALS Sarr	ALS Sample number:	EP0904291007	EP0904291008	GCA8522	EP0904291058	EP0904291059	EP0904291060
		υ,	Sample date:	25/06/2009	25/06/2009	25/06/2009	11/07/2009	11/07/2009	11/07/2009
		Client san	Client sample ID (1st):	MC008	MC008	MC008	MC009	MC009	MC009
		Client sam	Client sample ID (2nd):	3.8-3.9	7.0-7.1	7.16-7.22	1.0-1.1	2.0-3.0	3.9-4.0
Analyte grouping/Analyte	Units	LOR	Action Criteria for >1000 tonnes disturbed						
Soil Type (Field Classification)				Clayey SAND	SAND		Clayey GRAVEL	Gravelly CLAY	CLAY
ASS Field Screening Analysis									
pH(F)	pH Unit	0.1		7.6	7.7		8.4	8	7.6
pH (Fox)	pH Unit	0.1		9.9	6.5	-	6.4	6.4	6.5
Reaction Rate		1		Slight	Slight		Slight	Slight	Moderate
Actual Acidity									
pH KCI (23A)	pH Unit	0.1		9.1	9.4		9.2	9.1	6
itratable Actual Acidity (23F)	mole H+ / t	2		<2	<2		<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	% pyrite S	0.02		<0.02	<0.02	-	<0.02	<0.02	<0.02
Potential Acidity									
Chromium Reducible Sulfur (22B)	% S	0.02		<0.02	0.02	-	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	mole H+ / t	10		<10	15	•	<10	<10	<10
Acid Neutralising Capacity									
Acid Neutralising Capacity (19A2)	% CaCO3	0.01		1.59	6.61	-	1.03	7.99	4.69
acidity - Acid Neutralising Capacity (a-19A2)	mole H+ / t	10		318	1320	-	205	1600	937
sulfidic - Acid Neutralising Capacity (s-19A2)	% pyrite S	0.01		0.51	2.12		0.33	2.56	1.5
Acid Base Accounting									
ANC Fineness Factor	,	0.5		1.5	1.5		1.5	1.5	1.5
Net Acidity (sulfur units)	s%	0.02		<0.02	<0.02		<0.02	<0.02	<0.02
Net Acidity (acidity units)	mole H+/t	10		<10	<10		<10	<10	<10
Liming Rate	kg CaCO3/t	1		٧.	<۱		\	Þ	۲
Net Acidity excluding ANC (sulfur units)	s %	0.02	0.03	<0.02	0.02		<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	mole H+/t	10	18	<10	15		<10	<10	<10
Liming Rate excluding ANC	kg CaCO3/t	1		^	1		۸	V	۲
Carbonate Buffering Potential									
ANC	kg H₂S0₄/tonne	-				99			
ANC	% CaCO3					8.6			

Source: Ahem et al. 1998. Action Criteria of 0.03 %S for >1000 tonnes disturbed
Source: 'Ahem et al. 1998. Action Criteria' Based on ASS Analysis for Three Texture Categories
* RPD Acceptable Limits: 4-10 x LOR (50%), >10 x LOR (30%)

J.;Jobs/4290710016 Deliv/E0000 Environmental Marine/E0700 Marine Sediment Dredging Study/ASS Nearshore Investigation/Final Report_Rev BlAppendix Gl PASS Tables.xls

URS Australia Pty Ltd

C	,
≥	
	١
Z	2
Ц	J
ŏ	
_	;
4	L

Primary Sample | Primary Sample | Primary Sample | Primary Sample

RPD %*

Duplicate Sample

		0,	Sample Type:	Sample	RPD %*	Primary Sample	Primary Sample Primary Sample	Primary Sample	Primary Sample
		ALS San	ALS Sample number:	EP0904291063		EP0904291061	EP0904291062	EP0904291064	EP0904291065
			Sample date:	11/07/2009		12/07/2009	12/07/2009	09/02/2009	09/02/2009
		Client sar	Client sample ID (1st):	MC009		MC009	MC009	MC010	MC010
		Client san	Client sample ID (2nd):	QA/QC		8.9-9.0	13.4-13.5	0.45-0.55	0.9-1.0
	Units	LOR	Action Criteria for >1000 tonnes						
Analyte grouping/Analyte									
Soil Type (Field Classification)				CLAY		CLAY	Calcareous CONGLOMERATE	Sandy CLAY	CLAY
ASS Field Screening Analysis									
pH(F)	pH Unit	0.1		7.5	1.32	7.3	7.8	8.5	8.5
pH (Fox)	pH Unit	0.1		6.1	6.35	8.9	6.7	6.4	6.4
Reaction Rate		1		Slight		Moderate	Slight	Slight	Slight
Actual Acidity									
pH KCI (23A)	pH Unit	0.1		8.6	4.55	9.1	9.4	9.1	9.1
Titratable Actual Acidity (23F)	mole H+ / t	2		<2		<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	% pyrite S	0.02		<0.02		<0.02	<0.02	<0.02	<0.02
Potential Acidity									
Chromium Reducible Sulfur (22B)	% S	0.02		<0.02		<0.02	<0.02	0.03	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	mole H+/t	10		<10		<10	<10	16	<10
Acid Neutralising Capacity									
Acid Neutralising Capacity (19A2)	% CaCO3	0.01		1.06	126.26	9.62	52	2.96	4.65
acidity - Acid Neutralising Capacity (a-19A2)	mole H+/t	10		212	126.20	1920	10400	591	930
sulfidic - Acid Neutralising Capacity (s-19A2)	% pyrite S	0.01		0.34	126.09	3.08	16.7	0.95	1.49
Action Accounting									
ANC Finance Factor		3		٦,	c	٦,	٦,	<u>ر</u> م	4
Net Acidity (sulfur units)	s %	0.02		SU 0>	, '	20.0>	20.0>	\$0.0×	\$0.0>
Net Acidity (acidity units)	mole H+/t	10		√10 V		- OL>	410	<10	<10
Liming Rate	kg CaCO3/t	-		. ∠		₹ ₹	\	₹	₹
Net Acidity excluding ANC (sulfur units)	s%	0.02	0.03	<0.02		<0.02	<0.02	0.03	<0.02
Net Acidity excluding ANC (acidity units)	mole H+/t	10	18	<10		<10	<10	16	<10
Liming Rate excluding ANC	kg CaCO3/t	1		₹		₹	٧	-	₹
Carbonate Buffering Potential									
ANC	kg H₂S0₄/tonne	-							
CNA	% CaCO3								

Exceeds the Action Criteria of 0.03 %S for >1000 tonnes disturbed
Source: 'Ahem et al. 1998. Action Criteria' Based on ASS Analysis for Three Texture Categories
• RPD Acceptable Limits: 4-10 x LOR (50%), >10 x LOR (30%)

J.J.obs/42907100/6 Deliv/E0000 Environmental Marine/E0700 Marine Sediment Dredging Study/ASS Nearshore Investigation/Final Report_Rev B/Appendix G/ PASS Tables.xis

URS Australia Pty Ltd

ני
×
9
出
₾

i i	Primary Sample	Primary Sample Primary Sample Primary Sample	Primary Sample	
Sample Type: ALS Sample number:	EP0904291066	EP0904291067	EP0904291068	
Sample date:	09/07/2009	09/02/2009	09/07/2009	
Client sample ID (1st):	MC010	MC010	MC010	
Client sample ID (2nd):	1.0-2.0	3.45-3.55	7.9-8.0	

Primary Sample Primary Sample

Primary Sample

EP0904291009 27/06/2009 MC11

Analyte grouping/Analyte	Units	LOR	Action Criteria for >1000 tonnes disturbed						
Soil Type (Field Classification)				CLAY	CLAYSTONE	Silty Clayey SAND	Calcaerous CONGLOMERATE	Gravelly CLAY	Sandy CLAY
ASS Field Screening Analysis									
pH (F)	pH Unit	0.1		8	6.7	7.2	7.4	8.3	6.7
pH (Fox)	pH Unit	0.1		7.7	9	6.5	6.7	6.9	9.9
Reaction Rate	-	1		Strong	Moderate	Strong	Slight	Strong	Slight
Actual Acidity									
pH KCI (23A)	pH Unit	0.1		9.1	8.9	9.3	9.3	9.4	9.2
Titratable Actual Acidity (23F)	mole H+/t	2		<2	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	% pyrite S	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Potential Acidity									
Chromium Reducible Sulfur (22B)	s%	0.02		<0.02	<0.02	<0.02	<0.02	0.03	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	mole H+/t	10		<10	<10	<10	<10	22	<10
Acid Neutralising Capacity									
Acid Neutralising Capacity (19A2)	% CaCO3	0.01		1.17	4.2	13.4	51.1	27.2	14.5
acidity - Acid Neutralising Capacity (a-19A2)	mole H+/t	10		233	838	2670	10200	5450	2890
sulfidic - Acid Neutralising Capacity (s-19A2)	% pyrite S	0.01		0.37	1.34	4.28	16.4	8.73	4.64
Acid Base Accounting									
ANC Fineness Factor	-	0.5		1.5	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	8 %	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	mole H+/t	10		<10	<10	<10	<10	<10	<10
Liming Rate	kg CaCO3/t	-		٧	>	۲		۲	۲
Net Acidity excluding ANC (sulfur units)	s %	0.02	0.03	<0.02	<0.02	<0.02	<0.02	0.03	<0.02
Net Acidity excluding ANC (acidity units)	mole H+/t	10	18	<10	<10	<10	<10	22	<10
Liming Rate excluding ANC	kg CaCO3/t	1		<1	<1	<1	-<1	2	<1
Carbonate Buffering Potential									
ANC	kg H ₂ S0₄/tonne								
ANC	% CaCO3	٠							

Exceeds the Action Criteria of 0.03 %S for >1000 tonnes disturbed
Source: Ahem et al. 1998. Action Criteria Based on ASS Analysis for Three Texture Categories
* RPD Acceptable Limits: 4-10 x LOR (50%), >10 x LOR (30%)

J.J.ObsW290710016 DeliviE0000 Environmental Marine E0700 Marine Sediment Dredging StudyASS Nearshore Investigation/Final Report_Rev BlAppendix G/ PASS Tables.xls

URS Australia Pty Ltd

ď	
ž	
Ē	
Ž	
ä	
9	

		U,	Sample Type:	Primary Sample					
		ALS San	ALS Sample number:	EP0904291011	EP0904291012	EP0904291013	EP0904291024	GCA8524	EP0904291025
		•	Sample date:	28/06/2009	28/06/2009	28/06/2009	02/02/2009	02//02/00	02//02/0
		Client sar	Client sample ID (1st):	MC11	MC11	MC11	MC012	MC012	MC012
		Client san	Client sample ID (2nd):	(comp)2.0-3.0	3.5-3.6	7.45-7.55	0.45-0.55	0.66-0.71	0.9-1.0
	Units	LOR	Action Criteria for >1000 tonnes						
Analyte grouping/Analyte			disturbed						
Soil Type (Field Classification)				Sandy CLAY	CLAYSTONE	SANDSTONE	Clayey SAND		Sandy CLAY
ASS Field Screening Analysis									
	+141			6	0	6	0.4		7 0
(L) Ld) III :	- 0		- 6	٥	- 6	9.4		9.4
pH (Fox)	pH Unit	0.1		6.2	8.7	7.2	9.9		6.4
Reaction Rate		1		Slight	Strong	Strong	Moderate		Slight
Actual Acidity									
pH KCI (23A)	pH Unit	1.0		9.1	9.2	9.2	9.4	•	6
Titratable Actual Acidity (23F)	mole H+/t	2		<2	<2	<2	<2		<2
sulfidic - Titratable Actual Acidity (s-23F)	% pyrite S	0.02		<0.02	<0.02	<0.02	<0.02		<0.02
Potential Acidity									
Chromium Reducible Sulfur (22B)	S %	0.02		<0.02	<0.02	<0.02	0.03	•	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	mole H+/t	10		<10	12	<10	19		<10
Acid Neutralising Capacity									
Acid Neutralising Capacity (19A2)	% CaCO3	0.01		8.0	1.49	31.3	30.5	•	5.41
acidity - Acid Neutralising Capacity (a-19A2)	mole H+/t	10		160	738	6260	6100		1080
sulfidic - Acid Neutralising Capacity (s-19A2)	% pyrite S	0.01		0.26	0.48	10	9.77		1.73
Acid Base Accounting									
ANC Fineness Factor		0.5		1.5	1.5	1.5	1.5		1.5
Net Acidity (sulfur units)	S %	0.02		<0.02	<0.02	<0.02	<0.02		<0.02
Net Acidity (acidity units)	mole H+/t	10		<10	<10	<10	<10		<10
Liming Rate	kg CaCO3/t	1		۲>	۲>	۲>	-<1		۲>
Net Acidity excluding ANC (sulfur units)	S %	0.02	0.03	<0.02	<0.02	<0.02	0.03		<0.02
Net Acidity excluding ANC (acidity units)	mole H+/t	10	18	<10	12	<10	19		<10
Liming Rate excluding ANC	kg CaCO3/t	1		^	۲>	۲	1		\
Carbonate Buffering Potential									
ANC	kg H ₂ S0₄/tonne	-						140	
JNA	% CaCO3							77	

Exceeds the Action Criteria of 0.03 %S for >1000 tonnes disturbed
Source: 'Ahem et al. 1998. Action Criteria' Based on ASS Analysis for Three Texture Categories
• RPD Acceptable Limits: 4-10 x LOR (50%), >10 x LOR (30%)

URS Australia Pty Ltd

c		
>	<	
c	1	ì
Z	2	
Ū	U	ĺ
٥	L	
٥	Ļ	
<	1	

Client sample due: CEOGOAGEGIGE CEOGOAGEGIGE	e grouping/Analyte rpe (Field Classification) ield Screening Analysis	Client san	ple number: ample date: ple ID (1st): ple ID (2nd): Action Criteria for >1000 tonnes disturbed	EP0904291028 07/07/2009 MC012 QA/QC		EP0904291070 08/07/2009 MC043	EP0904291026 07/07/2009 MC012	EP0904291027 07/07/2009	EP0904291014 29/06/2009
Colora Sample Delay Colora Sample Delay	e grouping/Analyte pe (Field Classification) ield Screening Analysis	Client sa Client sa LOR	ample date: ple ID (1st): ple ID (2nd): Action Criteria for >1000 tonnes disturbed	07/07/2009 MC012 QA/QC		08/07/2009 MC042	07/07/2009 MC012	07/07/2009	29/06/2009
Client sample D Cardy MCD/2	e grouping/Analyte pe (Field Classification) ield Screening Analysis	Client sa Client sa Client san Client san Cl	ple ID (1st): ple ID (2nd): Action Criteria for >1000 tonnes disturbed	MC012 QA/QC		MC042	MC012		
Client sample D Clotd: DACOC 9.4.9.5 Compilo 2.0 4.0.4.1	e grouping/Analyte pe (Field Classification) ield Screening Analysis		ple ID (2nd): Action Criteria for >1000 tonnes disturbed	QA/QC		MOUN	1	MC012	MC013
Particular Par	pe (Field Classification) ield Screening Analysis		Action Criteria for >1000 tonnes disturbed			9.4-9.5	(comp)1.0-2.0	4.0-4.1	0.45-0.55
Part	pe (Field Classification) ield Screening Analysis								
No. No.	ield Screening Analysis			Sandy CLAY		CONGLOMERATE	Sandy CLAY	CLAYSTONE	Sandy CLAY
Signt Fig.	(x								
Part				8.3	1.20	7.3	8.1	7.4	8.7
1 1 1 1 1 1 1 1 1 1		-		6.3	1.57	6.5	9.9	6.2	7.7
Particulary Pit of the particulary Pit o	Reaction Rate			Slight		Strong	Slight	Slight	Moderate
Activity									
	ty								
Page Actual Active (2287) The Hot II of the Actual Active (2287) The Actual Active (2287) The Actual Active (2287) The Active Actual Active (2287) The Active Active Active Active (2287) The Active A				9.2	2.20	6	9.1	8.9	9.1
c. Titriable Actual Acidity (5:23f) % bythe S 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 <th< td=""><td></td><td></td><td></td><td><2</td><td></td><td><2</td><td><2</td><td><2</td><td><2</td></th<>				<2		<2	<2	<2	<2
ritial Acidity % S 0.02 <0.02 . <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <				<0.02		<0.02	<0.02	<0.02	<0.02
Intial Acidity Acidity (2.18) % S 0.02 -									
Abutralising Capacity % S 0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <									
V-Chromium Reducible Sulfur (a-22B) mole H+ /t 10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10		0.02		<0.02		<0.02	<0.02	<0.02	<0.02
Neutralising Capacity % CaCO3 0.01 5.26 2.81 13 5.54 3.06 c - Acid Neutralising Capacity (34-19A2) mole H+ / t 10 1650 2.82 2600 1110 612 c - Acid Neutralising Capacity (3-19A2) % pyrite S 0.01 1.68 2.82 2600 1110 612 c - Acid Neutralising Capacity (3-19A2) % pyrite S 0.01 1.6 2.93 4.18 1.77 0.98 Fineness Factor - Acid Neutralising Capacity (3-19A2) - Acid Neutralising Capacit				<10		<10	<10	<10	<10
Neutralising Capacity Secretary Secretary <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Variation Capacity (19A2) % CaCO3 0.01 5.26 2.81 13 5.54 3.06 V- Acid Neutralising Capacity (a-19A2) mole H+ / t 10 168 2.93 4.18 1.77 0.98 Ease Accounting c - Acid Neutralising Capacity (a-19A2) % Syrite S 0.01 1.68 2.93 4.18 1.77 0.98 Base Accounting - 0.5 - 0.02 - 0.02 - 1.5 1.0									
y - Acid Neutralising Capacity (a-19A2) mole H+ / t 10 166 2.82 2600 1110 612 c - Acid Neutralising Capacity (a-19A2) % pyrite S 0.01 1.68 2.93 4,18 1.77 0.98 Base Accounting - 0.5 - 0.5 1.5 0.00 1.5 1.5 Fineness Factor - 0.02 - - 0.02 - - 0.02 - 0.02 -				5.26	2.81	13	5.54	3.06	1.33
C - Acid Neutralising Capacity (s-19A2) % pyrite S 0.01 1.68 2.93 4.18 1.77 0.98 Base Accounting - 0.5 1.5 0.00 1.5 1.5 1.5 Fineness Factor cidity (sulfur units) - 0.5 - 0.02 - - - 0.02 - - - - 0.02 -				1050	2.82	2600	1110	612	266
Base Accounting - 0.5 1.5 0.00 1.5 1.0 1.5 1.0				1.68	2.93	4.18	1.77	0.98	0.43
Fineness Factor	Acid Base Accounting								
cidity (sulfur units) % S 0.02 <-0.02 - <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-	ANC Fineness Factor	0.5		1.5	0.00	1.5	1.5	1.5	1.5
cidity (acidity units) mole H+ / t 10 <10 - <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10<		0.02		<0.02		<0.02	<0.02	<0.02	<0.02
g Rate kg CaCO3/t 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1				<10		<10	<10	<10	<10
cicity excluding ANC (sulfur units) % S 0.02 0.03 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 <td></td> <td></td> <td></td> <td><1</td> <td></td> <td><1</td> <td><1</td> <td><1</td> <td><1</td>				<1		<1	<1	<1	<1
cidity excluding ANC (acidity units) mole H+ / t 10 18 <10 - <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10			0.03	<0.02		<0.02	<0.02	<0.02	<0.02
g Rate excluding ANC kg CaCO3/t 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <t< td=""><td></td><td></td><td>18</td><td><10</td><td></td><td><10</td><td><10</td><td><10</td><td><10</td></t<>			18	<10		<10	<10	<10	<10
Duate Buffering Potential kg H ₂ SO ₄ /tonne % CaCO3		3/t 1		٧			 >	\	^
onate Buffering Potential kg H ₂ SO ₄ tonne % CaCO3									
kg H₂So₄/tonne % CaCO3	onate Buffering Potential								
% CaCO3	1								
	ANC % CaCO3								

Source: 'Ahem et al. 1998. Action Criteria of 0.03 %S for >1000 tonnes disturbed
Source: 'Ahem et al. 1998. Action Criteria' Based on ASS Analysis for Three Texture Categories
• RPD Acceptable Limits: 4-10 x LOR (50%), >10 x LOR (30%)

J:J.Obs429071006 Deliv/E0000 Environmental Marine/E0700 Marine Sediment Dredging Study/ASS Nearshore Investigation/Final Report_Rev B/Appendix G/ PASS Tables.xls

URS Australia Pty Ltd

O
\succeq
2
뿝
ᆽ
⋖

		0,	Sample Type:	Primary Sample	Primary Sample	Primary Sample	Primary Sample	Frimary Sample	Primary Sample
		ALS San	ALS Sample number:	EP0904291015	GCA8525	EP0904291016	EP0904291017	EP0904291018	EP0904291019
			Sample date:	29/06/2009	29/06/2010	29/06/2009	29/06/2009	30/07/2009	30/07/2009
		Client sar	Client sample ID (1st):	MC013	MC013	MC013	MC013	MC013	MC014
		Client san	Client sample ID (2nd):	0.8-0.9	0.9-1.0	(comp)1.0-2.0	3.4-3.5	7.9-8.0	0.45-0.55
			'						
:	Units	LOR	Action Criteria for >1000 tonnes disturbed						
Analyte grouping/Analyte									
Soil Type (Field Classification)				Sandy CLAY		CLAYSTONE	CLAYSTONE	CLAYSTONE	Clayey SAND
ASS Field Screening Analysis									
pH (F)	pH Unit	0.1		8.8		8.6	8.3	8.2	8.3
pH (Fox)	pH Unit	0.1		6.5		6.7	7.1	7.6	7.1
Reaction Rate		1		Moderate		Strong	Strong	Strong	Moderate
						9		9	
Actual Acidity									
pH KCI (23A)	pH Unit	0.1		9.3		9.1	8.8	9.2	9.3
Titratable Actual Acidity (23F)	mole H+/t	2		<2		<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	% pyrite S	0.02		<0.02	•	<0.02	<0.02	<0.02	<0.02
Potential Acidity									
Chromium Reducible Sulfur (22B)	s %	0.02		<0.02		<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	mole H+/t	10		<10		11	<10	<10	<10
Acid Neutralising Capacity									
Acid Neutralising Capacity (19A2)	% CaCO3	0.01		26.2		15.2	11.9	4.48	27.4
acidity - Acid Neutralising Capacity (a-19A2)	mole H+/t	10		5240	•	3040	2380	895	5470
sulfidic - Acid Neutralising Capacity (s-19A2)	% pyrite S	0.01		8.4		4.87	3.81	1.43	8.78
,									
Acid Base Accounting		1		1					
ANC Fineness Factor		0.5		1.5		1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	% S	0.02		<0.02		<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	mole H+/t	10		<10		<10	<10	<10	<10
Liming Rate	kg CaCO3/t	1		<1		<1	<1	<1	<1
Net Acidity excluding ANC (sulfur units)	8 %	0.02	0.03	<0.02	-	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	mole H+/t	10	18	<10	•	11	<10	<10	<10
Liming Rate excluding ANC	kg CaCO3/t	1		<1	•	<1	<1	<1	<1
Carbonate Buffering Potential									
ANC	kg H ₂ S0₄/tonne	-			310				
CNA	% C2C3				3				

Exoeeds the Action Criteria of 0.03 %S for >1000 tonnes disturbed
Source: 'Ahem et al. 1998, Action Criteria' Based on ASS Analysis for Three Texture Categories
+ RPD Acceptable Limits: 4-10 x LOR (50%), >10 x LOR (30%)

J.J.doss/42907100/6 Deliv/E0000 Environmental Marine/E0700 Marine Sediment Dredging Study/ASS Nearshore Investigation/Final Report_Rev BlAppendix G\PASS Tables.xis

URS Australia Pty Ltd

C	9
2	<
2	1
2	_
č	Ĺ
٥	۶

Action of the particular partic				Primary Sample	Primary Sample				
Client sample date 3007/2009 3007/20		SSIV	sample Type:	EP0904291020	EP0904291021	GCA8527	EP0904291022	FP0904294023	EP0904291052
Units LOR Action criteria Action criteri			Sample date:	30/02/2009	30/02/2008	30/02/20/08	30/02/2008	30/02/2008	02/02/2006
Client sample D. (2nd) Con C		Clients	ample ID (1st):	MC014	MC014	MC014	MC014	MC014	MC015
Units and part LOR Action Crients Sandy CLAY CLAYSTONE		o sacil	male ID (2nd).	0000	00000000	4 40 4 56	1000	1 0 0	0.45.0.55
Units LOR			Inple to (zind).	0.0-0.9	(comp) 1.0-2.0	06:1-84:1	0.4-0.0	0.7-8.0	0.49-0.55
Sandy CLAY CLAYSTONE			Action Criteria for>1000 tonnes disturbed						
India Screening Analysis Def Unit O.1 Signt Signt	d Classification)			Sandy CLAY	CLAYSTONE	•	CLAYSTONE	Clayey Gravelley SAND	Clayey SAND
Activity	eening Analysis								
National				8.3	8.4		7.7	7.8	8.6
Acidity	J Hd			6.8	6.4		7.6	7.4	9.9
Acidity Delicity		1		Slight	Slight		Strong	Strong	Slight
Actidity									
10(34)									
Neutralising Capacity (19A2)	pH L			9	6		8.9	8.9	9.6
to- Titratable Actual Acidity (s-23f) % pyrite S 0.02 <0.02 <0.02 ritial Acidity % S 0.02 <0.02 <0.02 <0.02 num Reducible Sulfur (s-22B) % S 0.02 <0.02 <0.02 <0.02 Y- Chromium Reducible Sulfur (s-22B) mole H+ / t 10 <10 <10 <10 Neutralising Capacity % CaCO3 0.01 1.51 5.7 Y- Acid Neutralising Capacity (s-19A2) % CaCO3 0.01 1.51 5.7 Y- Acid Neutralising Capacity (s-19A2) % Pyrite S 0.01 1.51 5.7 Y- Acid Neutralising Capacity (s-19A2) % Pyrite S 0.01 1.51 5.7 Y- Acid Neutralising Capacity (s-19A2) % Pyrite S 0.01 1.5 1.40 Rase Accounting - Acid Neutralising Capacity (s-19A2) % Pyrite S 0.01 1.5 1.5 Base Accounting - Acid Neutralising Capacity (s-19A2) % S 0.02 - Acid 1.5 1.5 Gidity				<2	<2		<2	<2	<2
min Feducity % S 0.02 <0.02 <0.02 Y - Chromium Reducible Suffur (22B) mole H+ /1 10 <10				<0.02	<0.02		<0.02	<0.02	<0.02
Marketing Capacity (a-19A2) % S 0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.02 <-0.0									
Neutralising Depactly % S 0.02 <0.02 <0.02 Neutralising Depactly Mole H+ / t 10 <10				000	9		o o	9	i d
VChromium Reducible Sulfur (a-22B) mole H+ / 1 10 <10 <10 Neutralising Capacity % CaCO3 0.01 1.51 5.7 6.7 V- Acid Neutralising Capacity (19A2) % pyrite S 0.01 0.48 1.40 P. Acid Neutralising Capacity (a-19A2) % pyrite S 0.01 0.48 1.82 Base Accounting - 0.5 1.5 1.5 Ciffineness Factor - 0.5 1.5 1.5 Ciclity (sulfur units) % S 0.02 <0.02		1		<0.02	<0.02		<0.02	<0.02	<0.02
Neutralising Capacity % CaCO3 0.01 1.51 5.7 Y- Acid Neutralising Capacity (19A2) mole H+ / t 10 302 1140 y- Acid Neutralising Capacity (s-19A2) % pyrite S 0.01 0.48 1.82 Base Accounting - 0.5 1.5 1.5 Fineness Factor - 0.5 1.5 1.5 Cidity (sulfur units) % S 0.02 <0.02		_		<10	<10		<10	<10	<10
Veutralising Capacity (19A2) % CaCO3 0.01 1.51 5.7 V- Acid Neutralising Capacity (a-19A2) mole H+ /t 10 302 1140 Ic. Acid Neutralising Capacity (a-19A2) % pyrite S 0.01 0.48 1.82 Base Accounting - 0.5 1.5 1.5 Fineness Factor - 0.5 1.5 1.5 Cidity (sulfur units) mole H+ /t 10 <10	ng Capacity								
y - Acid Neutralising Capacity (a-19A2) mole H+ / 1 10 302 1140 ic - Acid Neutralising Capacity (s-19A2) % pyrite S 0.01 0.48 1.82 Base Accounting - 0.5 1.5 1.5 Fineness Factor - 0.5 1.5 1.5 Cidity (sulfur units) - 0.02 <0.02				1.51	5.7		5.7	0.65	32.8
Lo. Acid Neutralising Capacity (s-19A2) % pyrite S 0.01 0.48 1.82 Base Accounting 0.5 1.5 1.5 Finaness Factor 0.5 1.5 1.5 Ciclity (sulfur units) 0.02 <0.02				302	1140		1140	131	6560
Base Accounting - 0.5 1.5 1.5 Fineness Factor - 0.5 1.5 1.5 cidity (sulfur units) , S 0.02 <0.02				0.48	1.82		1.83	0.21	10.5
Finaness Factor	onntina								
cidity (sulfur units) % S 0.02 <0.02 <0.02 g Rate kg GaCO3rt 1 <10	-actor	0.5		1.5	1.5		1.5	1.5	1.5
clidity (acidity units) mole H+ / t 10 <10 <10 g Rate kg CaCO3/t 1 <1				<0.02	<0.02		<0.02	<0.02	<0.02
g Ratie kg CaCO3rt 1 <1 <1 cidity excluding ANC (sulfur units) % S 0.02 0.03 <0.02		1		<10	<10		<10	<10	<10
cidity excluding ANC (sulfur units) % S 0.02 0.03 <0.02 <0.02 cidity excluding ANC (acidity units) mole H+ / f 10 18 <10		_		^	۲		۲	₹	^
cidity excluding ANC (acidity units) mole H+ / t 10 18 <10 <10 g Rate excluding ANC kg CaCO3/t 1 <1			0.03	<0.02	<0.02		<0.02	<0.02	<0.02
g Rate excluding ANC kg CaCO3/t 1 <1 <1 onate Buffering Potential kg H ₂ SO ₄ /tone - % CaCO3 % CaCO3 -			18	<10	<10		<10	<10	<10
onate Buffering Potential Kg H ₂ SO ₄ tonne -		3O3/t 1		<1	۲>		<1	^	<1
Onate Buffering Potential kg H ₂ SO ₂ /tonne -									
kg H ₂ SO ₄ tonne									
% Cach	kg H ₂ S0 ₂	√tonne -				29			
20000000	% CaC					5.9			

Exceeds the Action Criteria of 0.03 %S for >1000 tonnes disturbed
Source: 'Ahem et al. 1998. Action Criteria' Based on ASS Analysis for Three Texture Categories
* RPD Acceptable Limits: 4-10 x LOR (50%), >10 x LOR (30%)

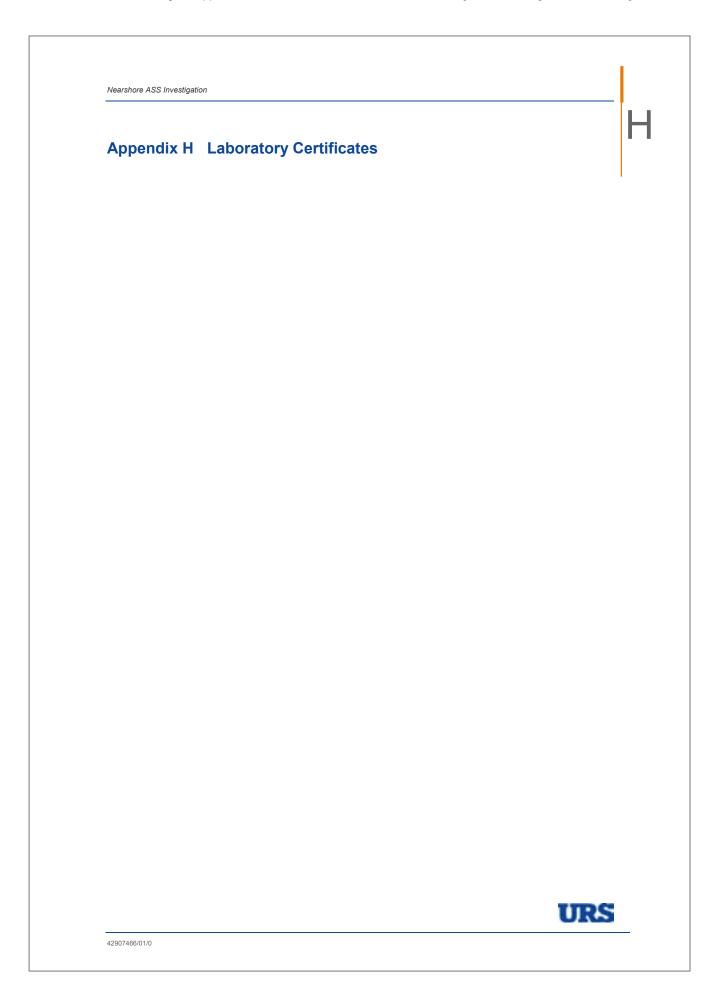
J:J.Obs429071006 Deliv/E0000 Environmental Marine/E0700 Marine Sediment Dredging Study/ASS Nearshore Investigation/Final Report_Rev B/Appendix G/ PASS Tables.xls

Sar	ALS Sampl	ć

APPENDIX G

Duplicate Sample	RPD %∗	Primary Sample	Primary Sample Primary Sample Primary Sample	Primary Sample
EP0904291057		EP0904291054	EP0904291055	EP0904291056
02/01/2009		02/01/2009	002/20/20	02/01/2009
MC015		MC015	MC015	MC015
00/00		0 C-01 (Jumos)	34.35	64.65

Client sample ID (1st): MC015	Client sample ID (2nd): QA/QC
Client sar	Client san


Analyte grouping/Analyte	Units	LOR	Action Criteria for >1000 tonnes disturbed					
Soil Type (Field Classification)				Clayey SAND		Sandy CLAY	CLAYSTONE	Clayey SAND
ASS Field Screening Analysis								
pH (F)	pH Unit	0.1		8.9	3.43	8.6	7.8	8.4
pH (Fox)	pH Unit	0.1		9.9	0.00	6.4	6.1	8.9
Reaction Rate	-	1		Slight		Slight	Slight	Strong
Actual Acidity								
pH KCI (23A)	pH Unit	0.1		9.6	1.05	6	8.9	9.4
Titratable Actual Acidity (23F)	mole H+/t	2		<2		<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	% pyrite S	0.02		<0.02	-	<0.02	<0.02	<0.02
Potential Acidity								
Chromium Reducible Sulfur (22B)	S %	0.02		<0.02	-	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	mole H+/t	10		<10		<10	<10	<10
Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)	% CaCO3	0.01		48.5	38.62	6.87	2.3	26.8
acidity - Acid Neutralising Capacity (a-19A2)	mole H+/t	10		0696	38.52	1370	460	2350
sulfidic - Acid Neutralising Capacity (s-19A2)	% pyrite S	0.01		15.5	38.46	2.2	0.74	8.57
Acid Base Accounting								
ANC Fineness Factor	-	0.5		1.5	0.00	1.5	1.5	1.5
Net Acidity (sulfur units)	S %	0.02		<0.02	-	<0.02	<0.02	<0.02
Net Acidity (acidity units)	mole H+ / t	10		<10	-	<10	<10	<10
Liming Rate	kg CaCO3/t	1		۲>		<1	۲>	<1
Net Acidity excluding ANC (sulfur units)	S%	0.02	0.03	<0.02		<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	mole H+ / t	10	18	<10		<10	<10	<10
Liming Rate excluding ANC	kg CaCO3/t	1		<1	•	<1	<1	<1
Carbonate Buffering Potential								
ANC	kg H ₂ S0₄/tonne							
ANC	% CaCO3							

Exceeds the Action Criteria of 0.03 %S for >1000 tonnes disturbed
Source: 'Ahem et al. 1998. Action Criteria' Based on ASS Analysis for Three Texture Categories
• RPD Acceptable Limits: 4-10 x LOR (50%), >10 x LOR (30%)

J.J.obs/42907100/6 Deliv/E0000 Environmental Marine/E0700 Marine Sediment Dredging Study/ASS Nearshore Investigation/Final Report_Rev B\Appendix G\PASS Tables.x/s

This page is intentionally blank

Wheatstone Project Appendix Q4 - Nearshore Acid Sulfate Soils Investigation (Turning Basin and Dredge Channel)

This page is intentionally blank

Wheatstone Project Appendix Q4 - Nearshore Acid Sulfate Soils Investigation (Turning Basin and Dredge Channel)

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

EP0903741 Page :1 of 9	COFFEY GEOTECHNICS Laboratory : Environmental Division Perth MS CASSANDRA TURVEY Contact : Michael Sharp PO BOX 1810 Address : 10 Hod Way Malaga WA Australia 6090 WEST PERTH WA, AUSTRALIA 6872 . 10 Hod Way Malaga WA Australia 6090	cassandra_turvey@coffey.com	3EOTHERD08668AA QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement
: EP0903741	: COFFEY GEOTECHNICS : MS CASSANDRA TURVEY : PO BOX 1810 WEST PERTH WA, AUSTR	: cassandra_turvey@coffey.c : +61 08 9347 0321 :	: GEOTHERD08668AA : : CASSIE TURVEY : WHEATSTONE NEARSHC
Work Order	Client Contact Address	E-mail Telephone Facsimile	Project Order number C-O-C number Sampler Site Quote number

for This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved release.

This Certificate of Analysis contains the following information: General Comments

Analytical Results

Signatories

NATA Accredited Laboratory 825 This document is issued in accordance with NATA

accreditation requirements.

Accredited for compliance with

ISO/IEC 17025.

VORLD RECOGNISED

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has Accreditation Category Perth ASS carried out in compliance with procedures specified in 21 CFR Part 11.

peen

Senior Chemist - Acid Sulphate Soils Stacey Hawkins Signatories

10 Hod Way Malaga WA Australia 6090 Tel. +61-8-9209 7655 Fax. +61-8-9209 7600 www.alsglobal.com Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental Division Perth

: 2 of 9 : EP0903741 : COFFEY GEOTECHNICS GEOTHERD08668AA Project Client

Page Work Order

General Comments

AS and NEPM. In house APHA, as those published by the USEPA, The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Key

^ = This result is computed from individual analyte detections at or above the level of reporting LOR = Limit of reporting

ASS Field Screening: NATA accreditation does not cover performance of this service.

ts
3
es
ď
a
ţ
\geq
na
₹

: 3 of 9 : EP0903741 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order Client Project

Sub-Matrix: SOIL		Clie	Client sample ID	MC012	MC012	MC012	MC012	MC012	
				0.45-0.55	0.9-1.0	(comp)1.0-2.0	4.0-4.1	QA/QC	
	Ö	Client samplin	ling date / time	07-JUL-2009 15:00					
Compound	CAS Number	LOR	Unit	EP0903741-001	EP0903741-002	EP0903741-003	EP0903741-004	EP0903741-005	
EA037: Ass Field Screening Analysis									_
pH (F)	-	0.1	pH Unit	8.4	8.4	8.1	7.4	8.3	
pH (Fox)	-	0.1	pH Unit	9.9	6.4	9.9	6.2	6.3	
Reaction Rate	-	-	,	Moderate	Slight	Slight	Slight	Slight	

06-JUL-2009 15:00 EP0903741-010 6.9-7.0 MC005 7.4 6.2 Slight 06-JUL-2009 15:00 EP0903741-009 3.0-3.1 MC005 7.8 6.8 Strong (comp)1.0-2.0 06-JUL-2009 15:00 EP0903741-008 MC005 8.2 6.0 Slight 06-JUL-2009 15:00 EP0903741-007 0.9-1.0 MC005 8.6 6.7 Slight 06-JUL-2009 15:00 EP0903741-006 MC005 0.45-0.55 8.5 6.6 Slight Client sample ID Client sampling date / time pH Unit Unit LOR 1.0 -CAS Number | | | EA037: Ass Field Screening Analysis Analytical Results Sub-Matrix: SOIL pH (F) pH (Fox) Reaction Rate Compound

414 Chevron Australia Pty

Project Client

: 4 of 9 : EP0903741 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

• •		٠.		ts (s
				Results
Page	Work Order	Client	Project	Analytical

: 5 of 9 : EP0903741 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Sub-Matrix: SOIL Client sample ID MC004 MC004 MC004		Client sampling date / time 05-JUL-2009 15:00 05-JUL-2009 15:00	CAS Number LOR Unit EP0903741-011 EP0903741-011 EP0903741-012	EA037: Ass Field Screening Analysis	0.1 pH Unit 8.5 8.8	0.1 pH Unit 6.8 6.7	Reaction Rate 1 - Moderate Slight
		15:00 05-JUL-2009 15:00			8.4	6.9	Moderate
MC004	8.0-8.1	06-JUN-2009 15:00	EP0903741-014		8.3	6.4	Slight
MC003	0.45-0.55	04-JUL-2009 15:00	EP0903741-015		8.6	9.9	Slight

03-JUL-2009 15:00 EP0903741-020 Moderate 1.0-1.1 8.4 05-JUL-2009 15:00 EP0903741-019 MC003 6.9-7.0 7.0 6.1 Slight 04-JUL-2009 15:00 EP0903741-018 3.4-3.5 MC003 7.5 6.9 Strong (comp)1-2 04-JUL-2009 15:00 EP0903741-017 MC003 8.7 6.5 Slight 04-JUL-2009 15:00 EP0903741-016 0.9-1.0 MC003 8.5 6.7 Slight Client sample ID Client sampling date / time pH Unit PH Unit Unit LOR 1.0 1.0 CAS Number | | | EA037: Ass Field Screening Analysis Analytical Results Sub-Matrix: SOIL pH (F) pH (Fox) Reaction Rate Compound

Project Client

: 6 of 9 : EP0903741 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

: 7 of 9 : EP0903741 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

Project Client

Sub-Matrix: SOIL

MC001 0.9-1.0 03-JUL-2009 15:00 EP0903741-025 8.6 6.5 Slight **0.45-0.55** 03-JUL-2009 15:00 EP0903741-024 Moderate 8.8 MC002 6.4-6.5 04-JUL-2009 15:00 EP0903741-023 7.9 7.0 Strong MC002 2.9-3.0 03-JUL-2009 15:00 EP0903741-022 Moderate 6.4 MC002 1.9-2.0 03-JUL-2009 15:00 EP0903741-021 9.0 6.4 Slight Client sample ID Client sampling date / time pH Unit pH Unit Unit LOR 0.1 CAS Number 1 1 1 EA037: Ass Field Screening Analysis Analytical Results

pH (F)
pH (Fox)
Reaction Rate

Compound

A Campbell Brothers Limited Company

02-JUL-2009 15:00 EP0903741-030 0.9-1.0 8.8 6.7 Slight 02-JUL-2009 15:00 EP0903741-029 0.45-0.55 MC015 8.6 6.6 Slight 03-JUL-2009 15:00 EP0903741-028 6.4-6.5 MC001 8.4 6.4 Slight 03-JUL-2009 15:00 EP0903741-027 3.4-3.5 MC001 8.8 6.9 Strong 03-JUL-2009 15:00 (comp)1.0-2.0 EP0903741-026 MC001 8.2 6.4 Slight Client sample ID Client sampling date / time pH Unit Unit LOR 1.0 1.0 CAS Number | | | EA037: Ass Field Screening Analysis Analytical Results Sub-Matrix: SOIL pH (F) pH (Fox) Reaction Rate Compound

418		Chevron	Australia	Pty Ltd
-----	--	---------	-----------	---------

Project Client

: 8 of 9 : EP0903741 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

: 9 of 9 : EP0903741 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

Project Client

| | | I **QA/QC** 02-JUL-2009 15:00 EP0903741-034 MC015 8.9 6.6 Slight MC015 6.4-6.5 02-JUL-2009 15:00 EP0903741-033 8.4 6.8 Strong MC015 3.4-3.5 02-JUL-2009 15:00 EP0903741-032 7.8 6.1 Slight (comp)1.0-2.0 02-JUL-2009 15:00 EP0903741-031 MC015 8.6 6.4 Slight Client sample ID Client sampling date / time pH Unit pH Unit Unit LOR 0.1 CAS Number 1 1 1 EA037: Ass Field Screening Analysis Analytical Results Sub-Matrix: SOIL pH (F)
pH (Fox)
Reaction Rate

Compound

Chevron Australia	Pty L	_td
-------------------	-------	-----

A Campbell Brothers Limited Company

Environmental Division

CERTIFICATE OF ANALYSIS

:1 of 8	: Environmental Division Perth	: Michael Sharp	: 10 Hod Way Malaga WA Australia 6090		: michael.sharp@alsenviro.com	: +61-8-9209 7655	: +61-8-9209 7600	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement		Received : 14-JUL-2009	: 16-JUL-2009		s received : 29	s analysed : 29
Page	Laboratory	Contact	Address		E-mail	Telephone	Facsimile	QC Level		Date Samples Received	Issue Date		No. of samples received	No. of samples analysed
: EP0903858	COFFEY GEOTECHNICS	: MR ERIK BROUWER	: PO BOX 1810	WEST PERTH WA, AUSTRALIA 6872	: erik_brouwer@coffey.com		1	: GEOTHERD08668AA	1		: CASSIE TURVEY	: WHEATSTONE NEARSHORE		:
Work Order	Client	Contact	Address		E-mail	Telephone	Facsimile	Project	Order number	C-O-C number	Sampler	Site		Quote number

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for

This Certificate of Analysis contains the following information:

- General Comments
 - Analytical Results

NATA Accredited Laboratory 825 This document is issued in

been has

indicated below. Electronic signing

Signatories
This document has been electronically signed by the authorized signatories

carried out in compliance with procedures specified in 21 CFR Part 11.

Accreditation Category Perth ASS

Senior Chemist - Acid Sulphate Soils

Accredited for compliance with accreditation requirements. accordance with NATA

ISO/IEC 17025.

VORLD RECOGNISED

Stacey Hawkins

10 Hod Way Malaga WA Australia 6090 Tel. +61-8-9209 7655 Fax. +61-8-9209 7600 www.alsglobal.com Part of the ALS Laboratory Group **Environmental Division Perth**

COFFEY GEOTECHNICS GEOTHERD08668AA 2 of 8 EP0903858 Page Work Order Project Client

General Comments

AS and NEPM. In house APHA, as those published by the USEPA, The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by dient.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Key:

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ASS Field Screening: NATA accreditation does not cover performance of this service.

12-JUL-2009 15:00 EP0903858-005 13.4-13.5 7.8 6.7 Slight 12-JUL-2009 15:00 EP0903858-004 7.3 6.8 Moderate 8.9-9.0 MC009 11-JUL-2009 15:00 EP0903858-003 3.9-4.0 Moderate MC009 7.6 11-JUL-2009 15:00 EP0903858-002 2.0-3.0 MC009 8.0 6.4 Slight 11-JUL-2009 15:00 EP0903858-001 1.0-1.1 MC009 8.4 6.4 Slight Client sample ID Client sampling date / time pH Unit Unit LOR 1.0 1.0 CAS Number | | | EA037: Ass Field Screening Analysis Analytical Results Sub-Matrix: SOIL pH (F) pH (Fox) Reaction Rate Compound

422 | Chevron Australia Pty Ltd

Client Project

: 3 of 8 : EP0903858 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

: 4 of 8 : EP0903858 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

Client Project

MC010 3.45-3.55 09-JUL-2009 15:00 EP0903858-010 7.2 6.5 Strong **1.0-2.0** 09-JUL-2009 15:00 EP0903858-009 MC010 Moderate 6.0 MC010 0.9-1.0 09-JUL-2009 15:00 EP0903858-008 8.0 7.7 Strong MC010 0.45-0.55 09-JUL-2009 15:00 EP0903858-007 8.5 6.4 Slight MC009 QA/QC 11-JUL-2009 15:00 EP0903858-006 7.5 6.1 Slight Client sample ID Client sampling date / time pH Unit pH Unit Unit LOR 0.1 CAS Number 1 1 1 EA037: Ass Field Screening Analysis Analytical Results Sub-Matrix: SOIL pH (F)
pH (Fox)
Reaction Rate Compound

Chevron Australia Pty Lt	C	1	
--------------------------	---	---	--

A Campbell Brothers Limited Company

08-JUL-2009 15:00 EP0903858-015 0.9-1.0 MC006 7.9 7.2 Strong 08-JUL-2009 15:00 EP0903858-014 0.45 - 0.55MC006 8.1 7.4 Strong 08-JUL-2009 15:00 EP0903858-013 9.4-9.5 MC012 7.3 6.5 Strong 11-JUL-2009 15:00 EP0903858-012 10.9-11.0 MC010 7.4 7.0 Slight 09-JUL-2009 15:00 EP0903858-011 7.9-8.0 MC010 7.4 6.7 Slight Client sample ID Client sampling date / time pH Unit Unit LOR 1.0 1.0 CAS Number | | | EA037: Ass Field Screening Analysis Analytical Results Sub-Matrix: SOIL pH (F) pH (Fox) Reaction Rate Compound

121	Chevron	Australia	Dty I to
424	Chevron	Australia	PIV LIC

Client Project

: 5 of 8 : EP0903858 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

: 6 of 8 : EP0903858 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

Client Project

MV021 1.0-2.0 13-JUL-2009 15:00 EP0903858-020 8.0 6.7 Slight **09-1.0** 13-JUL-2009 15:00 EP0903858-019 MV021 Moderate 8.6 6.8 MV021 0.45-0.55 13-JUL-2009 15:00 EP0903858-018 Moderate 8.2 MC006 9.9-10.0 09-JUL-2009 15:00 EP0903858-017 6.9 6.0 Slight MC006 3.26-3.36 08-JUL-2009 15:00 EP0903858-016 7.1 7.1 Strong Client sample ID Client sampling date / time pH Unit pH Unit Unit LOR 0.1 CAS Number 1 1 1 EA037: Ass Field Screening Analysis Analytical Results Sub-Matrix: SOIL pH (F)
pH (Fox)
Reaction Rate Compound

Chevron Australia Pty Lt	C	1
--------------------------	---	---

A Campbell Brothers Limited Company

13-JUL-2009 15:00 EP0903858-025 0.45-0.55 8.4 7.0 Moderate 12-JUL-2009 15:00 EP0903858-024 3.4-3.5 MV025 7.9 6.2 Slight 12-JUL-2009 15:00 EP0903858-023 MV025 1.0-2.0 8.3 6.6 Slight 12-JUL-2009 15:00 EP0903858-022 0.9-1.0 8.4 6.6 Slight 12-JUL-2009 15:00 EP0903858-021 0.45-0.55 8.5 7.4 Extreme MV025 Client sample ID Client sampling date / time pH Unit Unit LOR 1.0 1.0 CAS Number | | | EA037: Ass Field Screening Analysis Analytical Results Sub-Matrix: SOIL pH (F) pH (Fox) Reaction Rate Compound

426	Chevron	Australia	Ptv I td

Client Project

7 of 8 EP0903858 COFFEY GEOTECHNICS GEOTHERD08668AA

Page Work Order

: 8 of 8 : EP0903858 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

Client Project

| | | I **1.0-2.0** [15-JUL-2009] EP0903858-029 MC006 7.4 6.4 Strong MV023 3.5-3.6 13-JUL-2009 15:00 EP0903858-028 8.0 6.9 Strong MV023 1.0-2.0 13-JUL-2009 15:00 EP0903858-027 8.0 7.3 Slight MV023 0.9-1.0 13-JUL-2009 15:00 EP0903858-026 8.9 7.2 Strong Client sample ID Client sampling date / time pH Unit pH Unit Unit LOR 0.1 CAS Number 1 1 1 EA037: Ass Field Screening Analysis Analytical Results Sub-Matrix: SOIL pH (F)
pH (Fox)
Reaction Rate Compound

Chevron	Austral	ia F	⊃ty	Ltd
---------	---------	------	-----	-----

A Campbell Brothers Limited Company

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order Client Contact Address E-mail Telephone Facsimile Project Order number C-O-C number Sampler Site	EP0904291 COFFY GEOTECHNICS MS CASSANDRA TURVEY PO BOX 1810 WEST PERTH WA, AUSTRALIA 6872 cassandra_turvey@coffey.com +61 08 9347 0321 Ex-EP0903726 3741 3738 3858 3984 CASSIE TURVEY WHEATSTONE NEARSHORE	Page Laboratory Contact Address E-mail Telephone Facsimile QC Level Date Samples Received Issue Date	Environmental Division Perth Environmental Division Perth Michael Sharp 10 Hod Way Malaga WA Australia 6090 michael sharp@alsenviro.com +61-8-9209 7655 +61-8-9209 7600 NEPM 1999 Schedule B(3) and ALS QCS3 requirement 03-AUG-2009
Quote number	:	No. of samples analysed	: 92

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for

This Certificate of Analysis contains the following information:

- General Comments
 - Analytical Results

NATA Accredited Laboratory 825 This document is issued in accordance with NATA

been has

indicated below. Electronic signing

has been electronically signed by the authorized signatories

carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories
This document to

Accreditation Category Perth ASS

Senior Chemist - Acid Sulphate Soils

accreditation requirements.

Accredited for compliance with

ISO/IEC 17025.

VORLD RECOGNISED

Stacey Hawkins

2 of 21 EP0904291 COFFEY GEOTECHNICS Ex-EP0903726 3741 3738 3858 3984 Work Order

Client

Project

General Comments

and NEPM. In house AS APHA, as those published by the USEPA, The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Key

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of line. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x'wet bulk density of soil in t/m3'. Retained Acidity not required because pH KCI greater than or equal to 4.5

Analytical Results								
Sub-Matrix: SOIL		Ö	Client sample ID	MC007	MC007	MC007	MC008	MC008
				0.45-0.55	6.0-8.0	(comp)1.0-2.0	0.45-0.55	0.8-0.9
	O	Client sampling da	ing date / time	26-JUN-2009 15:00	26-JUN-2009 15:00	26-JUN-2009 15:00	25-JUN-2009 15:00	25-JUN-2009 15:00
Compound	CAS Number	LOR	Unit	EP0904291-001	EP0904291-002	EP0904291-003	EP0904291-004	EP0904291-005
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.0	9.0	9.1	8.9	6.8
Titratable Actual Acidity (23F)	1	2	mole H+/t	<2	<2	\$	<2	\$
sulfidic - Titratable Actual Acidity (s-23F)	1	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur	1	10	mole H+/t	<10	<10	<10	<10	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)	-	0.01	% CaCO3	1.97	2.00	5.01	1.63	1.28
acidity - Acid Neutralising Capacity	1	19	mole H+/t	394	399	1000	326	255
(a-19A2)								
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	0.63	0.64	1.60	0.52	0.41
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		9.0		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	1	9	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	-	kg CaCO3/t	۲۰	^	2	٧	₹
Net Acidity excluding ANC (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	1	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate excluding ANC	1	-	kg CaCO3/t	^	<u>^</u>	۲	٧	₹

3 of 21 EP0904291 COFFEY GEOTECHNICS Ex-EP0903726 3741 3738 3858 3984

Page Work Order Client Project

Page Work Order

Project Client

27-JUN-2009 15:00 EP0904291-010 1.0-1.1 40.02 <0.02 **1.5** <0.02 <0.02 14.5 **6** 5 5 5 5 4.64 27-JUN-2009 15:00 EP0904291-009 0.0-0.4 MC11 27.2 5450 <0.02 **9.4** 0.03 8.73 25-JUN-2009 15:00 EP0904291-008 7.0-7.1 **9.4** <2 <0.02 **1.5** 0.02 0.0 2 c − 1 6.61 2.12 ×10 25-JUN-2009 15:00 EP0904291-007 MC008 3.8-3.9 4.5 <0.02 <10 <10 <0.02 <0.02 <0.02 <0.02 **9.1** <2 <0.02 <0.02 5 £ 318 0.51 (comp)2.0-3.0 25-JUN-2009 15:00 EP0904291-006 MC008 <0.02 **1.5** <0.02 ×0.02 <0.02 <10 ² 2 **9.2** <2 4.26 851 1.36 % S mole H+ / t Client sample ID mole H+/t mole H+/t mole H+/t kg CaCO3/t kg CaCO3/t Client sampling date / time % pyrite S % CaCO3 mole H+/t % pyrite S pH Unit s % s % Chit LOR 0.02 0.5 0.02 0.02 0.01 10 9 9 0.01 1 1 CAS Number 1 1 1 11 sulfidic - Titratable Actual Acidity (s-23F) EA033-C: Acid Neutralising Capacity Net Acidity excluding ANC (acidity units) Net Acidity excluding ANC (sulfur units) EA033-E: Acid Base Accounting acidity - Chromium Reducible Sulfur sulfidic - Acid Neutralising Capacity acidity - Acid Neutralising Capacity Acid Neutralising Capacity (19A2) Chromium Reducible Sulfur (22B) pH KCI (23A) Titratable Actual Acidity (23F) EA033-B: Potential Acidity Liming Rate excluding ANC EA033-A: Actual Acidity Analytical Results Net Acidity (acidity units) Net Acidity (sulfur units) **ANC Fineness Factor** Sub-Matrix: SOIL (a-19A2) (s-19A2)

A Campbell Brothers Limited Company

Analytical Results								
Sub-Matrix: SOIL		Ö	Client sample ID	MC11	MC11	MC11	MC013	MC013
				(comp)2.0-3.0	3.5-3.6	7.45-7.55	0.45-0.55	0.8-0.9
	O	Client sampling da	ing date / time	28-JUN-2009 15:00	28-JUN-2009 15:00	28-JUN-2009 15:00	29-JUN-2009 15:00	29-JUN-2009 15:00
Compound	CAS Number	LOR	Unit	EP0904291-011	EP0904291-012	EP0904291-013	EP0904291-014	EP0904291-015
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.1	9.2	9.2	9.1	9.3
Titratable Actual Acidity (23F)	1	2	mole H+/t	<2	<2	\$	\$	\$
sulfidic - Titratable Actual Acidity (s-23F)	-	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur		10	mole H+/t	<10	12	<10	<10	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)	-	0.01	% CaCO3	0.80	1.49	31.3	1.33	26.2
acidity - Acid Neutralising Capacity	-	9	mole H+/t	160	298	6260	266	5240
(a-19A2)								
sulfidic - Acid Neutralising Capacity	-	0.01	% pyrite S	0.26	0.48	10.0	0.43	8.40
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	1	10	mole H+ /t	<10	<10	<10	<10	<10
Liming Rate	1	-	kg CaCO3/t	^	<u>^</u>	2	₹	₹
Net Acidity excluding ANC (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	1	10	mole H+ / t	<10	12	<10	<10	<10
Liming Rate excluding ANC		_	kg CaCO3/t	۲	^	۲	٧	₹

Page Work Order

Project Client

Analytical Results								
Sub-Matrix: SOIL		Ö	Client sample ID	MC013	MC013	MC013	MC014	MC014
				(comp)1.0-2.0	3.4-3.5	7.9-8.0	0.45-0.55	0.8-0.9
	Cli	ent sampl	Client sampling date / time	29-JUN-2009 15:00	29-JUN-2009 15:00	30-JUL-2009 15:00	30-JUL-2009 15:00	30-JUL-2009 15:00
Compound	CAS Number	LOR	Unit	EP0904291-016	EP0904291-017	EP0904291-018	EP0904291-019	EP0904291-020
EA033-A: Actual Acidity								
pH KCI (23A)	1	0.1	pH Unit	9.1	8.8	9.2	9.3	0.6
Titratable Actual Acidity (23F)	1	2	mole H+/t	<2	<2	42	\$	\$
sulfidic - Titratable Actual Acidity (s-23F)	-	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-228)	-	10	mole H+/t	-	<10	<10	<10	<10
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)	1	0.01	% CaCO3	15.2	11.9	4.48	27.4	1.51
acidity - Acid Neutralising Capacity	1	10	mole H+/t	3040	2380	895	5470	302
(a-19A2)								
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S	4.87	3.81	1.43	8.78	0.48
EA033-E: Acid Base Accounting								
ANC Fineness Factor	-	0.5		1.5	1.5	1.5	1.5	7.5
Net Acidity (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	1	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	-	kg CaCO3/t		1,	₹	₹	₹
Net Acidity excluding ANC (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	-	10	mole H+/t	11	<10	<10	<10	<10
Old a miletilesse about a miletile		-	# 6000	,	7	7	7	7

Analytical Results								
Sub-Matrix: SOIL		Ö	Client sample ID	MC014	MC014	MC014	MC012	MC012
				(comp)1.0-2.0	3.4-3.5	6.9-7.0	0.45-0.55	0.9-1.0
	Ö	Client sampling da	ling date / time	30-JUL-2009 15:00	30-JUL-2009 15:00	30-JUL-2009 15:00	07-JUL-2009 15:00	07-JUL-2009 15:00
Compound	CAS Number	LOR	Unit	EP0904291-021	EP0904291-022	EP0904291-023	EP0904291-024	EP0904291-025
EA033-A: Actual Acidity								
pH KCI (23A)	1	0.1	pH Unit	9.0	8.9	8.9	9.4	9:0
Titratable Actual Acidity (23F)	1	2	mole H+/t	<2	<2	<2	<2	\$
sulfidic - Titratable Actual Acidity (s-23F)	1	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)	1	0.02	s%	<0.02	<0.02	<0.02	0.03	<0.02
acidity - Chromium Reducible Sulfur		10	mole H+/t	<10	<10	<10	19	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)	1	0.01	% CaCO3	5.70	5.70	0.65	30.5	5.41
acidity - Acid Neutralising Capacity		10	mole H+/t	1140	1140	131	6100	1080
(a-19A2)								
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S	1.82	1.83	0.21	9.77	1.73
EA033-E: Acid Base Accounting								
ANC Fineness Factor	1	0.5		1.5	1.5	1.5	1.5	5:
Net Acidity (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	1	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	-	kg CaCO3/t	^	^	٧	₹	₹
Net Acidity excluding ANC (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	0.03	<0.02
Net Acidity excluding ANC (acidity units)	-	10	mole H+/t	<10	<10	<10	19	<10
Liming Rate excluding ANC	1	-	ka CaCO3/t	٧	٧	₹		٧

434 | Chevron Australia Pty Ltd

7 of 21 EP0904291 COFFEY GEOTECHNICS Ex-EP0903726 3741 3738 3858 3984

Page Work Order

Project Client

Sub-Matrix: SOIL		Ö	Client sample ID	MC012	MC012	MC012	MC005	MC005
				(comp)1.0-2.0	4.0-4.1	QA/QC	0.45-0.55	0.9-1.0
	CI	Client sampling	ing date / time	07-JUL-2009 15:00	07-JUL-2009 15:00	07-JUL-2009 15:00	06-JUL-2009 15:00	06-JUL-2009 15:00
Compound	CAS Number	LOR	Unit	EP0904291-026	EP0904291-027	EP0904291-028	EP0904291-029	EP0904291-030
EA033-A: Actual Acidity								
pH KCI (23A)	1	0.1	pH Unit	9.1	8.9	9.2	9.5	9.2
Titratable Actual Acidity (23F)	1	2	mole H+/t	<2	<2	\$	\$	7
sulfidic - Titratable Actual Acidity (s-23F)	1	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)	1	0.02	s%	<0.02	<0.02	<0.02	0.04	<0.02
acidity - Chromium Reducible Sulfur	-	10	mole H+/t	<10	<10	<10	23	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)	-	0.01	% CaCO3	5.54	3.06	5.26	32.4	13.2
acidity - Acid Neutralising Capacity (a-19A2)	-	10	mole H+/t	1110	612	1050	6470	2650
sulfidic - Acid Neutralising Capacity (s-19A2)	1	0.01	% pyrite S	1.77	0.98	1.68	4.01	4.25
EA033-E: Acid Base Accounting								
ANC Fineness Factor	1	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	1	10	mole H+ / t	<10	<10	<10	<10	<10
Liming Rate	1	-	kg CaCO3/t		1,	₹	₹	₹
Net Acidity excluding ANC (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	0.04	<0.02
Net Acidity excluding ANC (acidity units)	1	10	mole H+ /t	<10	<10	<10	23	<10
		,						

Analytical Results								
Sub-Matrix: SOIL		Ö	Client sample ID	MC005	MC005	MC005	MC004	MC004
				(comp)1.0-2.0	3.0-3.1	6.9-7.0	0.5-1.0	(comp)1.0-2.0
	O	lient sampl	Client sampling date / time	06-JUL-2009 15:00	06-JUL-2009 15:00	06-JUL-2009 15:00	05-JUL-2009 15:00	05-JUL-2009 15:00
Compound	CAS Number	LOR	Unit	EP0904291-031	EP0904291-032	EP0904291-033	EP0904291-034	EP0904291-035
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.1	8.9	9.0	9.3	9.3
Titratable Actual Acidity (23F)	1	2	mole H+/t	<2	<2	<2	<2	\$
sulfidic - Titratable Actual Acidity (s-23F)	-	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur	i	10	mole H+ /t	<10	<10	<10	<10	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	3.73	1.01	17.2	26.1	18.6
acidity - Acid Neutralising Capacity	-	10	mole H+ / t	746	202	3440	5210	3720
(a-19A2)								
sulfidic - Acid Neutralising Capacity	1	0.01	% pyrite S	1.20	0.32	5.52	8.35	5.96
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	1	10	mole H+ / t	<10	<10	<10	<10	<10
Liming Rate	1	-	kg CaCO3/t		^	۲	₹	₹
Net Acidity excluding ANC (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	1	10	mole H+ /t	<10	<10	<10	<10	<10
Liming Rate excluding ANC	1	-	kg CaCO3/t	۲	٧	٧	₹	₹

436 | Chevron Australia Pty Ltd

9 of 21 EP0904291 COFFEY GEOTECHNICS Ex-EP0903726 3741 3738 3858 3984

Client	COFFEY GEOTECHNICS	CHNICS						
Project	Ex-EP0903726 3	Ex-EP0903726 3741 3738 3858 3984	84					
Analytical Results	ults							
Sub-Matrix: SOIL			C	Client sample ID	MC004	MC004	MC003	
					3.9-4.0	8.0-8.1	0.45-0.55	
		C	ient sampli	Client sampling date / time	05-JUL-2009 15:00	06-JUN-2009 15:00	04-JUL-2009 15:00	
Compound		CAS Number LOR	LOR	Unit	EP0904291-036	EP0904291-037	EP0904291-038	
EA033-A: Actual Acidity	cidity							
pH KCI (23A)		-	0.1	pH Unit	9.4	9.1	9.3	
Titratable Actual Acidity (23F)	dity (23F)	-	2	mole H+/t	<2	<2	<2	
sulfidic - Titratable Actual Acidity (s-23F)	ctual Acidity (s-23F)	-	0.02	% pyrite S	<0.02	<0.02	<0.02	

Page Work Order

		i						
Sub-Matrix: SOIL		Ö	Client sample ID	MC004	MC004	MC003	MC003	MC003
				3.9-4.0	8.0-8.1	0.45-0.55	0.9-1.0	(comp)1-2
	O	Client sampling da	ng date / time	05-JUL-2009 15:00	06-JUN-2009 15:00	04-JUL-2009 15:00	04-JUL-2009 15:00	04-JUL-2009 15:00
Compound	CAS Number	LOR	Unit	EP0904291-036	EP0904291-037	EP0904291-038	EP0904291-039	EP0904291-040
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.4	9.1	9.3	9.2	9.2
Titratable Actual Acidity (23F)	1	2	mole H+/t	~	~	\$	42	\$
sulfidic - Titratable Actual Acidity (s-23F)	1	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur		10	mole H+/t	<10	<10	<10	<10	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	31.7	6.13	20.3	13.3	10.2
acidity - Acid Neutralising Capacity	1	10	mole H+/t	6340	1220	4050	2650	2040
(a-19A2)								
sulfidic - Acid Neutralising Capacity	1	0.01	% pyrite S	10.2	1.96	6.49	4.26	3.27
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor	-	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	-	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	-	10	mole H+ /t	<10	<10	<10	<10	<10
Liming Rate	1	-	kg CaCO3/t	₹	1>	^	۲>	₹
Net Acidity excluding ANC (sulfur units)	1	0.02	s %	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	1	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate excluding ANC		-	kg CaCO3/t	^	^	٧	٧	۲

Analytical Results								
Sub-Matrix: SOIL		Clic	Client sample ID	MC003	MC003	MC002	MC002	MC002
				3.4-3.5	6.9-7.0	1.0-1.1	1.9-2.0	2.9-3.0
	0	Client sampling da	ng date / time	04-JUL-2009 15:00	05-JUL-2009 15:00	03-JUL-2009 15:00	03-JUL-2009 15:00	03-JUL-2009 15:00
Compound	CAS Number	TOR	Unit	EP0904291-041	EP0904291-042	EP0904291-043	EP0904291-044	EP0904291-045
EA033-A: Actual Acidity								
pH KCI (23A)	1	0.1	pH Unit	8.6	9.1	9.3	9.1	8.8
Titratable Actual Acidity (23F)	1	2	mole H+/t	<2	<2	₽	<2	\$
sulfidic - Titratable Actual Acidity (s-23F)	-	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur	-	10	mole H+/t	<10	<10	<10	<10	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	3.68	6.64	23.0	0.74	2.21
acidity - Acid Neutralising Capacity		10	mole H+/t	734	1330	4610	148	441
(a-19A2)								
sulfidic - Acid Neutralising Capacity	-	0.01	% pyrite S	1.18	2.13	7.38	0.24	0.71
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor	-	0.5		1.5	1.5	1.5	1.5	7.5
Net Acidity (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	-	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	-	kg CaCO3/t	۸۲	^	2	₹	₹
Net Acidity excluding ANC (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	1	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate excluding ANC	1	-	kg CaCO3/t	^	^	۲۷	₹	₹

Page Work Order Client

Project : Analytical Results

Sub-Matrix: SOIL		Ö	Client sample ID	MC002	MC001	MC001	MC001	MC001
				6.4-6.5	0.45-0.55	0.9-1.0	(comp)1.0-2.0	3.4-3.5
	CI	ent sampl	Client sampling date / time	04-JUL-2009 15:00	03-JUL-2009 15:00	03-JUL-2009 15:00	03-JUL-2009 15:00	03-JUL-2009 15:00
Compound	CAS Number	LOR	Unit	EP0904291-046	EP0904291-047	EP0904291-048	EP0904291-049	EP0904291-050
EA033-A: Actual Acidity								
pH KCI (23A)	-	0.1	pH Unit	9.3	9.2	9.1	9.0	9.2
Titratable Actual Acidity (23F)	-	7	mole H+/t	<2	<2	\$	\$	<2
sulfidic - Titratable Actual Acidity (s-23F)	1	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)	-	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur		10	mole H+/t	<10	<10	<10	<10	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	12.5	9.27	7.58	11.5	35.9
acidity - Acid Neutralising Capacity (a-19A2)	-	10	mole H+ / t	2500	1850	1510	2300	7180
sulfidic - Acid Neutralising Capacity	1	0.01	% pyrite S	4.01	2.97	2.43	3.68	11.5
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor	-	0.5		1.5	1.5	1.5	1.5	7.5
Net Acidity (sulfur units)	-	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	-	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	-	-	kg CaCO3/t	₹	>	₹	₹	₹
Net Acidity excluding ANC (sulfur units)	-	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	-	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate excluding ANC	1	-	kg CaCO3/t	^	^	<u>^</u>	<u>\</u>	₹
,								

Analytical Results								
Sub-Matrix: SOIL		Ö	Client sample ID	MC001	MC015	MC015	MC015	MC015
				6.4-6.5	0.45-0.55	0.9-1.0	(comp)1.0-2.0	3.4-3.5
	O	lient samp.	Client sampling date / time	03-JUL-2009 15:00	02-JUL-2009 15:00	02-JUL-2009 15:00	02-JUL-2009 15:00	02-JUL-2009 15:00
Compound	CAS Number	LOR	Unit	EP 09 04 291-051	EP0904291-052	EP0904291-053	EP0904291-054	EP0904291-055
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.2	9.5	9.2	0.6	8.9
Titratable Actual Acidity (23F)	1	2	mole H+/t	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	1	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur	1	10	mole H+/t	<10	<10	<10	<10	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)	-	0.01	% CaCO3	5.33	32.8	16.2	6.87	2.30
acidity - Acid Neutralising Capacity	1	10	mole H+/t	1060	6560	3240	1370	460
(a-19A2)								
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	1.71	10.5	5.20	2.20	0.74
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	1	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	-	kg CaCO3/t	1,	۲۸	۲۸	₹	₹
Net Acidity excluding ANC (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	1	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate excluding ANC	1	-	kg CaCO3/t	^	٧	۸	۲	7

984

								ts	Ins	Res	Analytical Results	χŧ	nal	Ā	
33	3858	Ex-EP0903726 3741 3738 3858 39	741	26 3	037	P09	Ä Ä						Project	Pro	
		IICS	COFFEY GEOTECHNICS	OTE	GE	Ē	Š						aut	Client	
					91	EP0904291	PO					Nork Order	Ž O	Wo	
						14 of 21	4						Эе	Page	

Sub-Matrix: SOIL		Clik	Client sample ID	MC015	MC015	MC009	MC009	MC009
				6.4-6.5	QA/QC	1.0-1.1	2.0-3.0	3.9-4.0
	Ö	Client sampling a	ng date / time	02-JUL-2009 15:00	02-JUL-2009 15:00	11-JUL-2009 15:00	11-JUL-2009 15:00	11-JUL-2009 15:00
Compound	CAS Number	LOR	Unit	EP0904291-056	EP0904291-057	EP0904291-058	EP0904291-059	EP0904291-060
EA033-A: Actual Acidity								
pH KCI (23A)	1	0.1	pH Unit	9.4	9.6	9.2	9.1	9.0
Titratable Actual Acidity (23F)	1	2	mole H+/t	~	<2	<2	42	<2
sulfidic - Titratable Actual Acidity (s-23F)	1	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur	-	10	mole H+/t	<10	<10	<10	<10	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)	-	0.01	% CaCO3	26.8	48.5	1.03	7.99	4.69
acidity - Acid Neutralising Capacity	-	10	mole H+/t	5350	0696	205	1600	937
sulfidic - Acid Neutralising Capacity	1	0.01	% pvrite S	8.57	15.5	0.33	2.56	1.50
(s-19A2)			·					
EA033-E: Acid Base Accounting								
ANC Fineness Factor	-	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	-	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	-	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	-	kg CaCO3/t	^	1>	^	^	
Net Acidity excluding ANC (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	1	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate excluding ANC	1	-	kg CaCO3/t	^	^	1	^	₹

Analytical Results								
Sub-Matrix: SOIL		Ö	Client sample ID	MC009	MC009	MC009	MC010	MC010
	Č	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.9-9.0	13.4-13.5	QA/QC	0.45-0.55	0.9-1.0
	3	Client sampling da	ing date / time	1Z-JUL-Z009 19:00	12-JUL-2009 15:00	11-301-2009 19:00	09-201-2009 15:00	08-201-2008 15:00
Compound	CAS Number	LOR	Unit	EP0904291-061	EP0904291-062	EP0904291-063	EP0904291-064	EP0904291-065
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.1	9.4	8.6	1.6	1.6
Titratable Actual Acidity (23F)	-	2	mole H+/t	<2	<2	\$	<2	42
sulfidic - Titratable Actual Acidity (s-23F)	-	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)	-	0.02	s%	<0.02	<0.02	<0.02	0.03	<0.02
acidity - Chromium Reducible Sulfur	-	10	mole H+/t	<10	<10	<10	16	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	9.62	52.0	1.06	2.96	4.65
acidity - Acid Neutralising Capacity	-	10	mole H+/t	1920	10400	212	591	930
(a-19A2)								
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S	3.08	16.7	0.34	0.95	1.49
EA033-E: Acid Base Accounting								
ANC Fineness Factor	1	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	-	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	-	kg CaCO3/t	۲۰	1,	۲	۲	₹
Net Acidity excluding ANC (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	0.03	<0.02
Net Acidity excluding ANC (acidity units)		10	mole H+/t	<10	<10	<10	16	<10
Liming Rate excluding ANC	-	-	kg CaCO3/t	>	7	₹	-	₹

: 15 of 21 : EP0904291 : COFFEY GEOTECHNICS : EX-EP0903726 3741 3738 3858 3984

	Analytical Results
Ex-EP0903726 3741 3738 3858 3	Project : E
COFFEY GEOTECHNICS	Client : 0
EP0904291	Work Order : E
16 of 21	Page : 1

•								
Sub-Matrix: SOIL		Clie	Client sample ID	MC010	MC010	MC010	MC010	MC012
				1.0-2.0	3.45-3.55	7.9-8.0	10.9-11.0	9.4-9.5
	Cli	ent samplii	Client sampling date / time	09-JUL-2009 15:00	09-JUL-2009 15:00	09-JUL-2009 15:00	11-JUL-2009 15:00	08-JUL-2009 15:00
Compound	CAS Number	LOR	Unit	EP0904291-066	EP0904291-067	EP0904291-068	EP0904291-069	EP0904291-070
EA033-A: Actual Acidity								
pH KCI (23A)	-	0.1	pH Unit	9.1	8.9	9.3	9.3	0.6
Titratable Actual Acidity (23F)	1	2	mole H+/t	<2	<2	<2	\$	<2
sulfidic - Titratable Actual Acidity (s-23F)	1	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)	-	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur	-	10	mole H+/t	<10	<10	<10	<10	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)	-	0.01	% CaCO3	1.17	4.20	13.4	51.1	13.0
acidity - Acid Neutralising Capacity	-	10	mole H+/t	233	838	2670	10200	2600
(a-19A2)		5	O offined %	0.07	7 0 7	7 30	7 97	7 40
(s-19A2)		- 5		5	1	ì	<u>.</u>	<u>.</u>
EA033-E: Acid Base Accounting								
ANC Fineness Factor	-	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	-	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	-	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	-	-	kg CaCO3/t	۲>	~	٢	₹	₹
Net Acidity excluding ANC (sulfur units)		0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	-	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate excluding ANC	-	-	kg CaCO3/t	۲۷	<1	٢	۲	₹

Analytical Results								
Sub-Matrix: SOIL		Ö	Client sample ID	MC006	MC006	MC006	MC006	MV021
				0.45-0.55	0.9-1.0	3.26-3.36	9.9-10.0	0.45-0.55
	O	Client sampling da	ing date / time	08-JUL-2009 15:00	08-JUL-2009 15:00	08-JUL-2009 15:00	09-JUL-2009 15:00	13-JUL-2009 15:00
Compound	CAS Number	LOR	Unit	EP0904291-071	EP0904291-072	EP0904291-073	EP0904291-074	EP0904291-075
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.1	9.0	9.0	8.8	9.5
Titratable Actual Acidity (23F)	1	2	mole H+/t	<2	<2	7	<2	₽
sulfidic - Titratable Actual Acidity (s-23F)	1	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur	1	10	mole H+/t	<10	12	<10	<10	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	11.7	11.9	1.93	0.88	31.8
acidity - Acid Neutralising Capacity	-	10	mole H+/t	2330	2380	386	177	6350
(a-19A2)								
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	3.74	3.81	0.62	0.28	10.2
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor	1	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	1	9	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	-	kg CaCO3/t	۲۰	<u>^</u>	1	₹	₹
Net Acidity excluding ANC (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	1	10	mole H+/t	<10	12	<10	<10	<10
Liming Rate excluding ANC	1	-	kg CaCO3/t	^	<u>^</u>	2	₹	₹

Page Work Order

Project Client

Analytical Results								
Sub-Matrix: SOIL		Ö	Client sample ID	MV021	MV021	MV025	MV025	MV025
				09-1.0	1.0-2.0	0.45-0.55	0.9-1.0	1.0-2.0
	C	ient sampl	Client sampling date / time	13-JUL-2009 15:00	13-JUL-2009 15:00	12-JUL-2009 15:00	12-JUL-2009 15:00	12-JUL-2009 15:00
Compound	CAS Number	TOR	Unit	EP0904291-076	EP0904291-077	EP0904291-078	EP0904291-079	EP0904291-080
EA033-A: Actual Acidity								
pH KCI (23A)	-	0.1	pH Unit	9.3	9.2	9.2	8.9	8.9
Titratable Actual Acidity (23F)	-	7	mole H+/t	<2	<2	~	<2	\$
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)	-	0.02	s%	90.0	<0.02	0.07	90.0	<0.02
acidity - Chromium Reducible Sulfur	-	10	mole H+/t	36	<10	42	41	12
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)	-	0.01	% CaCO3	33.8	19.0	10.1	2.61	2.10
acidity - Acid Neutralising Capacity (a-19A2)	-	10	mole H+ / t	6750	3800	2020	522	420
sulfidic - Acid Neutralising Capacity	-	0.01	% pyrite S	10.8	6.10	3.24	0.84	0.67
EA033-E: Acid Base Accounting								
ANC Fineness Factor	-	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	-	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	-	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	-	-	kg CaCO3/t	₹	₹	₹	₹	₹
Net Acidity excluding ANC (sulfur units)		0.02	s %	90.0	<0.02	0.07	90.0	<0.02
Net Acidity excluding ANC (acidity units)	-	10	mole H+/t	36	<10	42	41	12
Liming Rate excluding ANC		-	kg CaCO3/t	3	<1	က		۲

Analytical Results								
Sub-Matrix: SOIL		Cli.	Client sample ID	MV025	MV023	MV023	MV023	MV023
				3.4-3.5	0.45-0.55	0.9-1.0	1.0-2.0	3.5-3.6
	O	Client sampling da	ing date / time	12-JUL-2009 15:00	13-JUL-2009 15:00	13-JUL-2009 15:00	13-JUL-2009 15:00	13-JUL-2009 15:00
Compound	CAS Number	TOR	Unit	EP0904291-081	EP0904291-082	EP0904291-083	EP0904291-084	EP0904291-085
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.2	9.1	8.9	9.0	9.4
Titratable Actual Acidity (23F)	1	2	mole H+/t	<2	<2	₽	<2	8
sulfidic - Titratable Actual Acidity (s-23F)	-	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur	-	10	mole H+/t	<10	<10	10	<10	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)	1	0.01	% CaCO3	5.94	17.4	9.28	15.9	29.7
acidity - Acid Neutralising Capacity	-	10	mole H+/t	1190	3480	1860	3180	2930
(a-19A2)								
sulfidic - Acid Neutralising Capacity	1	0.01	% pyrite S	1.90	5.58	2.97	5.10	9.50
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	1	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	-	kg CaCO3/t	۲۷	, -	۲	۲	₹
Net Acidity excluding ANC (sulfur units)	1	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	1	10	mole H+/t	<10	<10	10	<10	<10
Liming Rate excluding ANC	1	-	kg CaCO3/t	۲۷	^	۲	₹	₹

	Analytical Results
Ex-EP0903726	Project :
COFFEY GEOTE	Client
EP0904291	Work Order
20 of 21	Page

Sub-Matrix: SOIL		Clie	Client sample ID	MC006	MV013	MV013	MV013	MV013
				1.0-2.0	1.45-2.5	3.9-4.0	0.5-0.95	1.0-1.45
	CI	ənt samplii	Client sampling date / time	15-JUL-2009 15:00	16-JUL-2009 15:00	16-JUL-2009 15:00	16-JUL-2009 15:00	16-JUL-2009 15:00
Compound	CAS Number	LOR	Unit	EP0904291-086	EP0904291-087	EP0904291-088	EP0904291-089	EP0904291-090
EA033-A: Actual Acidity								
pH KCI (23A)	-	0.1	pH Unit	9.0	9.7	9.7	9.7	8.6
Titratable Actual Acidity (23F)	1	2	mole H+/t	<2	<2	\$	42	\$
sulfidic - Titratable Actual Acidity (s-23F)	-	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)	-	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur		10	mole H+/t	<10	<10	12	<10	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)	-	0.01	% CaCO3	3.88	51.6	50.4	55.5	56.8
acidity - Acid Neutralising Capacity	1	10	mole H+/t	775	10300	10100	11100	11400
(a-19A2)								
sulfidic - Acid Neutralising Capacity	-	0.01	% pyrite S	1.24	16.5	16.1	17.8	18.2
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	-	0.02	s%	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	1	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	-	-	kg CaCO3/t	\	\	₹	₹	₹
Net Acidity excluding ANC (sulfur units)	-	0.02	s %	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity excluding ANC (acidity units)	-	10	mole H+ / t	<10	<10	12	<10	<10
Liming Rate excluding ANC	-	-	kg CaCO3/t	-	۲	₹	₹	₹

Analytical Results								
Sub-Matrix: SOIL		Ö	Client sample ID	MV021 4.9-5.0	QA/QC	1	-	1
	O	Client sampling	ing date / time	15-JUL-2009 15:00	15-JUL-2009 15:00	-		-
Compound	CAS Number	LOR	Unit	EP0904291-091	EP0904291-092	1	-	-
EA033-A: Actual Acidity								
рн КСІ (23A)	1	0.1	pH Unit	9.3	9.2	-		1
Titratable Actual Acidity (23F)	1	2	mole H+/t	<2	<2	-	-	-
sulfidic - Titratable Actual Acidity (s-23F)	1	0.02	% pyrite S	<0.02	<0.02	-		-
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)	1	0.02	s%	<0.02	<0.02	-	-	1
acidity - Chromium Reducible Sulfur	1	10	mole H+/t	<10	<10	-		
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)	-	0.01	% CaCO3	16.2	15.1	1	1	1
acidity - Acid Neutralising Capacity (a-19A2)	-	10	mole H+ / t	3230	3030			-
sulfidic - Acid Neutralising Capacity	-	0.01	% pyrite S	5.18	4.85			
EA033-E: Acid Base Accounting								
ANC Fineness Factor	-	0.5		1.5	1.5			1
Net Acidity (sulfur units)	1	0.02	s%	<0.02	<0.02	-	-	1
Net Acidity (acidity units)	1	10	mole H+/t	<10	<10	-	-	1
Liming Rate	-	-	kg CaCO3/t	₹	\	1	1	1
Net Acidity excluding ANC (sulfur units)	-	0.02	s%	<0.02	<0.02	1	1	1
Net Acidity excluding ANC (acidity units)	-	10	mole H+/t	<10	<10	1	1	1
Liming Rate excluding ANC		-	kg CaCO3/t	^	^			

GRAEME CAMPBELL & ASSOCIATES PTY LTD Specialists in Mine-Waste Geochemistry, & Soil-Moisture-Retention Testing

P.O. Box 247, Bridgetown, Western Australia 6255 Phone: (61 8) 9761 2829 Fax: (61 8) 9761 2830 E-mail: gca@wn.com.au

1002

COMPANY: URS Australia Pty Ltd

ATTENTION: Melanie Nunns

FROM: Graeme Campbell

SUBJECT: Wheatstone Project: pH-Buffering Properties of Seabed-

Sediment Samples

NO. PAGES (including this page): 18 DATE: 24th March 2010

Melanie.

The testwork results for the seabed-sediment samples are presented in Table 1, and shown on Figures 1 and 2. Copies of the laboratory-reports are also attached.

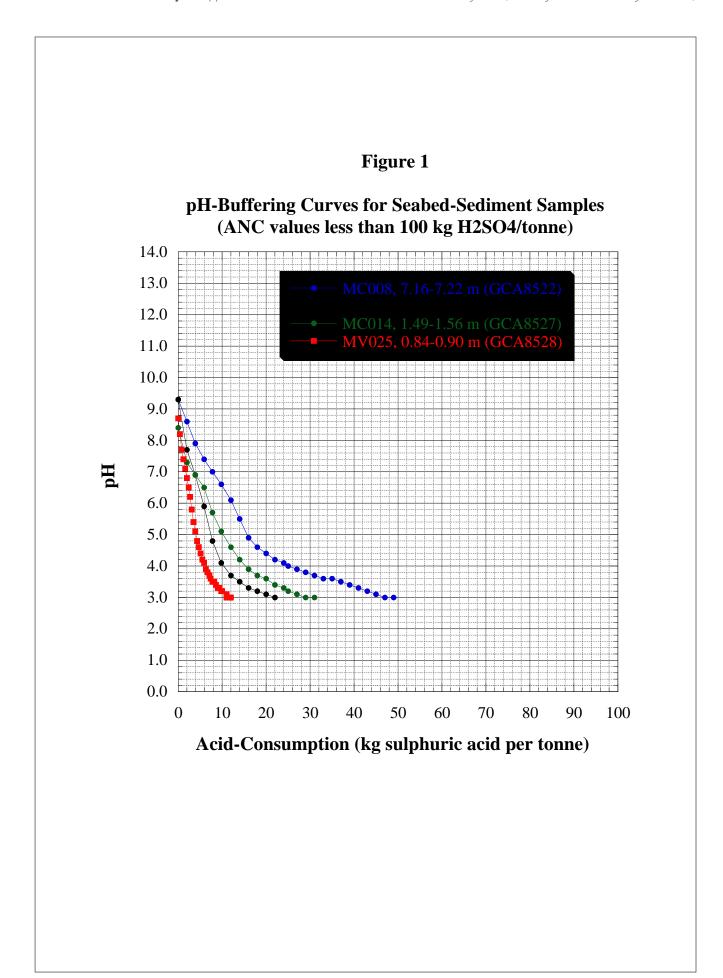
The as-submitted samples were crushed to nominal -2 mm for testing (i.e. the samples were <u>not</u> pulverised to powders [e.g. -75 μm, nominal] for testing).

The Acid-Neutralisation-Capacity (ANC) values were within the range 17-620 kg H_2SO_4 /tonne (i.e. c. 1.7-62.0 %, as $CaCO_3$ -equivalents) [Table 1]. The samples typically "fizzed" vigorously upon the addition of dilute HCl ('in-the-cold') in the ANC testwork indicating the occurrence of reactive variants of carbonate-minerals (e.g. calcites, aragonites, etc.).

The pH-buffering curves for the samples typically showed "inflection-points" near pH=6-7, consistent with the occurrence of reactive-carbonates (Figures 1 and 2). Such behaviour was less evident for the Low-ANC samples GCA8526 and GCA8528 (viz. ANC values 17-26 kg H₂SO₄/tonne) which were only slightly calcareous.

In brief, the ANC values of all samples correspond to alkalinity forms (chiefly reactivecarbonates) whose rates of availability for circum-neutral buffering are "chemicallynon-limiting".

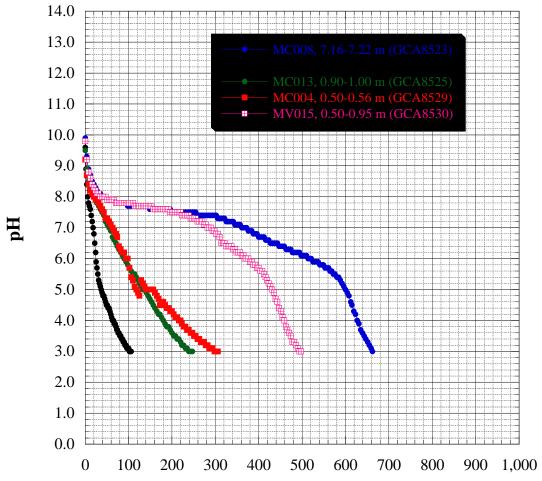
Regards,


Dr GD Campbell Director

Graeme Campbell & Associates Pty Ltd

Table 1: **Acid-Neutralisation-Capacity Values of Seabed-Sediment Samples**

GCA- SAMPLE NO.	SAMPLE DETAILS	ANC (kg H ₂ SO ₄ /tonne)
GCA8522	MC008, 7.16-7.22 m	99 (97)
GCA8523	MV017, 0.50-0.95 m	620
GCA8524	MC012, 0.66-0.71 m	140
GCA8525	MC013, 0.90-1.00 m	310
GCA8526	MC005, 1.60-1.65 m	26
GCA8527	MC014, 1.49-1.56 m	59
GCA8528	MV025, 0.84-0.90 m	17
GCA8529	MC004, 0.50-0.56 m	350
GCA8530	MV015, 0.50-0.95 m	480


Notes:
ANC = Acid-Neutralisation Capacity.
Values in parentheses represent duplicates.

Chevron Australia Pty Ltd | 451

Figure 2

pH-Buffering Curves for Seabed-Sediment Samples (ANC values greater than 100 kg H2SO4/tonne)

Acid-Consumption (kg sulphuric acid per tonne)

Dr G Campbell

CAMPBELL, GRAEME and ASSOCIATES PO Box 247 **BRIDGETOWN WA 6255**

JOB INFORMATION

JOB CODE	143.0/1001375
No. of SAMPLES	9
CLIENT O/N	GCA1002
PROJECT	Seabed-Sediments
STATE	Drill core
DATE RECEIVED	9/02/2010
DATE COMPLETED	18/02/2010

LEGEND

= Less than Detection Limit N/R = Sample Not Received = Result Checked

() = Result still to come I/S = Insufficient Sample for Analysis

E6 = Result X 1,000,000

UA = Unable to Assay

= Value beyond Limit of Method

The samples were received as mine waste and required crushing, drying, mixing, splitting and fine pulverising in a zirconia bowl.

Acid Neutralisation Capacity (ANC)

sample name		Fizz Rate	HCI molarity	NaOH molarity	Colour Change	ANC soln pH	pH Drop	ANC (kg H2SO4/tonne)
GCA8522		3	0.9938	0.9602	N	1.1		99
GCA8522	check	3	0.9938	0.9602	N	1		97
GCA8523		3	0.9938	0.9602	N	0.9		621
GCA8524		3	0.9938	0.9602	N	1		143
GCA8525		3	0.9938	0.9602	N	1.1		310
GCA8526		2	0.4801	0.5111	N	1.2		26
GCA8527		3	0.9938	0.9602	N	1		59
GCA8528		1	0.4801	0.0956	N	1.6		17
GCA8529		3	0.9938	0.9602	N	1.3		353
GCA8530		3	0.9938	0.9602	N	0.8	3.5	482

Notes:

- ANC was determined on 2g of the -2mm portion. Acid concentrations are as stated.
- Colour change: Y indicates the appearance of a green colouration as the pH=7endpoint was 2. approached. N no change. Two drops of hydrogen peroxide are added to each sample as the endpoint is approached to oxidise any ferrous iron
- 3. pH drop : Result reported when the pH drops to a value below 4 on addition of peroxide
- This procedure according to Genalysis method number ENV_W035

PO Box 144 Gosnells Western Australia 6990 T +61 (0) 8 9251 8100 | F +61 (0) 8 9251 8110 genalysis@genalysis.com.au | www.genalysis.com.au ABN 32 008 787 237

Page 1 of 2

GLS Job Code 143.0/1001375

Client ON GCA1002

NATA ENDORSED DOCUMENT

Company Accreditation Number 3244

The contents of this report have been prepared in accordance with the terms of NATA accreditation and as such should only be reproduced in full.

NATA Signatory: Ann Evers

Date: 18th February 2010

This document is issued in accordance with NATA's accreditation requirements.

Page 2 of 2

Laboratory Report

pH-BUFFERING TESTWORK (GCA8522)

Cumulative Volume of Acid Added (mL)	Cumulative Acid Consumption (kg H ₂ SO ₄ /tonne)	pН
0.00	0.0	9.3
0.40	2.0	8.6
0.80	3.9	7.9
1.20	5.9	7.4
1.60	7.8	7.0
2.00	9.8	6.6
2.40	12	6.1
2.80	14	5.5
3.20	16	4.9
3.60	18	4.6
4.00	20	4.4
4.40	22	4.2
4.80	24	4.1
5.20	25	4.0
5.60	27	3.9
6.00	29	3.8
6.40	31	3.7
6.80	33	3.6
7.20	35	3.6
7.60	37	3.5
8.00	39	3.4
8.40	41	3.3
8.80	43	3.2
9.20	45	3.1
9.60	47	3.0
10.00	49	3.0

Note: Titration performed using a Metrohm $^{\circ}$ 736 Titrino auto-titrator, and 0.05 M-H₂SO₄. Equilibration time between titrant additions was 15 minutes. 1.00 g of crushed sample (nominal -2mm) initially dispersed in 150 mL of deionised-water. Test mixture in contact with air, at ambient temperature, and continuously stirred.

Calibration of pH-Glass Electrode:

Immediately prior to titration: asymmetry potential = -7 mV (pH=7.00); slope-point = 175 mV (pH=4.00);

94.9 % of Nernstian response for 25 °C. Immediately following titration: pH=7.00 buffer read pH=7.03 and pH=4.00 buffer read pH=4.02. These discrepancies represent drift in pH-Glass electrode response during course of auto-titration.

Dr GD Campbell 1st March 2010

Laboratory Report

pH-BUFFERING TESTWORK (GCA8523)

Cumulative	Cumulative		Cumulative	Cumulative	
Volume of Acid	Acid Consumption	рH	Volume of Acid	Acid Consumption	pН
Added (mL)	(kg H ₂ SO ₄ /tonne)	PII	Added (mL)	(kg H ₂ SO ₄ /tonne)	PII
radea (mz)	(lig li ₂ 5 5 \$ toline)		raucu (mz)	(lig 1125 o # tolline)	
0.00	0.0	9.9	16.80	165	7.6
0.40	3.9	9.3	17.20	169	7.6
0.80	7.8	8.9	17.60	172	7.6
1.20	12	8.7	18.00	176	7.6
1.60	16	8.5	18.40	180	7.6
2.00	20	8.4	18.80	184	7.6
2.40	24	8.3	19.20	188	7.6
2.80	27	8.2	19.60	192	7.6
3.20	31	8.1	20.00	196	7.6
3.60	35	8.1	20.40	200	7.5
4.00	39	8.0	20.80	204	7.5
4.40	43	8.0	21.20	208	7.5
4.80	47	8.0	21.60	212	7.5
5.20	51	7.9	22.00	216	7.5
5.60	55	7.9	22.40	220	7.5
6.00	59	7.9	22.80	223	7.5
6.40	63	7.9	23.20	227	7.5
6.80	67	7.9	23.60	231	7.5
7.20	71	7.8	24.00	235	7.5
7.60	74	7.8	24.40	239	7.5
8.00	78	7.8	24.80	243	7.5
8.40	82	7.8	25.20	247	7.5
8.80	86	7.8	25.60	251	7.5
9.20	90	7.8	26.00	255	7.5
9.60	94	7.8	26.40	259	7.4
10.00	98	7.7	26.80	263	7.4
10.40	102	7.7	27.20	267	7.4
10.80	106	7.7	27.60	270	7.4
11.20	110	7.7	28.00	274	7.4
11.60	114	7.7	28.40	278	7.4
12.00	118	7.7	28.80	282	7.4
12.40	122	7.7	29.20	286	7.4
12.80	125	7.7	29.60	290	7.4
13.20	129	7.7	30.00	294	7.4
13.60	133	7.7	30.40	298	7.4
14.00	137	7.7	30.80	302	7.4
14.40	141	7.7	31.20	306	7.3
14.80	145	7.7	31.60	310	7.3
15.20	149	7.6	32.00	314	7.3
15.60	153	7.6	32.40	318	7.3
16.00	157	7.6	32.80	321	7.3
16.40	161	7.6	33.20	325	7.2

Cumulative Volume of Acid	Cumulative Acid Consumption	pН	Cumulative Volume of Acid	Cumulative Acid Consumption	pН
	-	рп			рn
Added (mL)	(kg H ₂ SO ₄ /tonne)		Added (mL)	(kg H ₂ SO ₄ /tonne)	
33.60	329	7.2	44.00	431	6.5
34.00	333	7.2	44.40	435	6.5
34.40	337	7.2	44.80	439	6.5
34.80	341	7.2	45.20	443	6.5
35.20	345	7.1	45.60	447	6.4
35.60	349	7.1	46.00	451	6.4
36.00	353	7.1	46.40	455	6.4
36.40	357	7.1	46.80	459	6.4
36.80	361	7.0	47.20	463	6.3
37.20	365	7.0	47.60	466	6.3
37.60	368	7.0	48.00	470	6.3
38.00	372	7.0	48.40	474	6.3
38.40	376	6.9	48.80	478	6.2
38.80	380	6.9	49.20	482	6.2
39.20	384	6.9	49.60	486	6.2
39.60	388	6.8	50.00	490	6.2
40.00	392	6.8	50.40	494	6.2
40.40	396	6.8	50.80	498	6.1
40.80	400	6.7	51.20	502	6.1
41.20	404	6.7	51.60	506	6.1
41.60	408	6.7	52.00	510	6.1
42.00	412	6.7	52.40	514	6.0
42.40	416	6.6	52.80	517	6.0
42.80	419	6.6	53.20	521	6.0
43.20	423	6.6	53.60	525	5.9
43.60	427	6.5	54.00	529	5.9

2

3

Cumulative Volume of Acid Added (mL)	Cumulative Acid Consumption (kg H ₂ SO ₄ /tonne)	pН	Cumulative Volume of Acid Added (mL)	Cumulative Acid Consumption (kg H ₂ SO ₄ /tonne)	pН
54.40	533	5.9	64.80	635	3.7
54.80	537	5.9	65.20	639	3.6
55.20	541	5.8	65.60	643	3.5
55.60	545	5.8	66.00	647	3.4
56.00	549	5.8	66.40	651	3.3
56.40	553	5.7	66.80	655	3.2
56.80	557	5.7	67.20	659	3.1
57.20	561	5.7	67.60	662	3.0
57.60	564	5.6			
58.00	568	5.6			
58.40	572	5.5			
58.80	576	5.5			
59.20	580	5.4			
59.60	584	5.4			
60.00	588	5.3			
60.40	592	5.2			
60.80	596	5.1			
61.20	600	5.0			
61.60	604	4.9			
62.00	608	4.8			
62.40	612	4.6			
62.80	615	4.5			
63.20	619	4.3			
63.60	623	4.2			
64.00	627	4.0			
64.40	631	3.9			

Note: Titration performed using a Metrohm® 736 Titrino auto-titrator, and 0.05 M-H₂SO₄. Equilibration time between titrant additions was 15 minutes. 0.50 g of crushed sample (nominal -2mm) initially dispersed in 150 mL of deionised-water. Test mixture in contact with air, at ambient temperature, and continuously stirred.

Calibration of pH-Glass Electrode: Immediately prior to titration: asymmetry potential = -7 mV (pH=7.00); slope-point = 176 mV (pH=4.00); 95.3 % of Nernstian response for 25 °C.

Immediately following titration: pH=7.00 buffer read pH=7.04 and pH=4.00 buffer read pH=4.03. These discrepancies represent drift in pH-Glass electrode response during course of auto-titration.

Dr GD Campbell 1st March 2010

Laboratory Report

pH-BUFFERING TESTWORK (GCA8524)

Cumulative Volume of Acid Added (mL)	Cumulative Acid Consumption (kg H ₂ SO ₄ /tonne)	pН	Cumulative Volume of Acid Added (mL)	Cumulative Acid Consumption (kg H ₂ SO ₄ /tonne)	рН
radea (mz)	(lig 1120 o # tollile)		radea (m2)	(lig 1120 o 4 tollie)	
0.00	0.0	9.6	16.80	82	3.5
0.40	2.0	8.9	17.20	84	3.4
0.80	3.9	8.4	17.60	86	3.4
1.20	5.9	8.0	18.00	88	3.3
1.60	7.8	7.8	18.40	90	3.3
2.00	9.8	7.7	18.80	92	3.2
2.40	12	7.6	19.20	94	3.2
2.80	14	7.4	19.60	96	3.1
3.20	16	7.2	20.00	98	3.1
3.60	18	7.0	20.40	100	3.1
4.00	20	6.8	20.80	102	3.0
4.40	22	6.5	21.20	104	3.0
4.80	24	6.2	21.60	106	3.0
5.20	25	5.9			
5.60	27	5.7			
6.00	29	5.5			
6.40	31	5.3			
6.80	33	5.2			
7.20	35	5.1			
7.60	37	5.0			
8.00	39	4.9			
8.40	41	4.8			
8.80	43	4.8			
9.20	45	4.7			
9.60	47	4.6			
10.00	49 51	4.5			
10.40	53	4.5 4.4			
10.80 11.20	55	4.4			
11.60	55 57	4.4			
12.00	59	4.3			
12.40	61	4.2			
12.80	63	4.0			
13.20	65	4.0			
13.60	67	3.9			
14.00	69	3.9			
14.40	71	3.8			
14.80	73	3.7			
15.20	74	3.7			
15.60	76	3.6			
16.00	78	3.6			
16.40	80	3.5			

Note: Titration performed using a Metrohm® 736 Titrino auto-titrator, and 0.05 M-H₂SO₄. Equilibration time between titrant additions was 15 minutes. 1.00 g of crushed sample (nominal -2mm) initially dispersed in 150 mL of deionised-water. Test mixture in contact with air, at ambient temperature, and continuously stirred.

Calibration of pH-Glass Electrode:
Immediately prior to titration: asymmetry potential = -8 mV (pH=7.00); slope-point = 176 mV (pH=4.00); 95.0 % of Nernstian response for 25 °C.
Immediately following titration: pH=7.00 buffer read pH=7.02 and pH=4.00 buffer read pH=4.01. These discrepancies represent drift in pH-Glass electrode response during course of auto-titration.

Dr GD Campbell 2nd March 2010

Laboratory Report

pH-BUFFERING TESTWORK (GCA8525)

Cumulative Acid Consumption (kg H ₂ SO ₄ /tonne)	pН	Cumulative Volume of Acid Added (mL)	Cumulative Acid Consumption (kg H ₂ SO ₄ /tonne)	pН
0.0	0.5	15.00	1.55	4.2
0.0	9.5	16.80	165	4.3
3.9 7.8	8.9 8.5	17.20 17.60	169 172	4.2 4.2
12	8.3	18.00	176	4.2
16	8.2	18.40	180	4.1
20	8.0	18.80	184	3.9
24	7.9	19.20	188	3.8
27	7.8	19.60	192	3.8
31	7.7	20.00	196	3.7
35	7.6	20.40	200	3.6
39	7.5	20.80	204	3.5
43	7.4	21.20	208	3.5
47	7.2	21.60	212	3.4
51	7.1	22.00	216	3.4
55	7.0	22.40	220	3.3
59	6.9	22.80	223	3.2
63	6.7	23.20	227	3.2
67	6.6	23.60	231	3.1
71	6.5	24.00	235	3.1
74	6.4	24.40	239	3.0
78	6.3	24.80	243	3.0
82	6.2	25.20	247	3.0
86	6.1			
90	6.0			
94	5.9			
98	5.8			
102	5.7			
106	5.6			
110	5.5			
114	5.5			
118 122	5.4 5.3			
125	5.3			
129	5.1			
133	5.0			
137	5.0			
141	4.9			
145	4.8			
149	4.7			
153	4.6			
157	4.5			
161	4.4			

Note: Titration performed using a Metrohm® 736 Titrino auto-titrator, and 0.05 M-H₂SO₄. Equilibration time between titrant additions was 15 minutes. 0.50 g of crushed sample (nominal -2mm) initially dispersed in 150 mL of deionised-water.

Test mixture in contact with air, at ambient temperature, and continuously stirred.

Calibration of pH-Glass Electrode:
Immediately prior to titration: asymmetry potential = -9 mV (pH=7.00); slope-point = 178 mV (pH=4.00); 95.2 % of Nernstian response for 25 °C.
Immediately following titration: pH=7.00 buffer read pH=7.02 and pH=4.00 buffer read pH=4.01. These discrepancies represent drift in pH-Glass electrode response during course of auto-titration.

Dr GD Campbell 2nd March 2010

Laboratory Report

pH-BUFFERING TESTWORK (GCA8526)

Cumulative Volume of Acid Added (mL)	Cumulative Acid Consumption (kg H ₂ SO ₄ /tonne)	pН
0.00	0.0	9.3
0.40	2.0	7.7
0.80	3.9	6.9
1.20	5.9	5.9
1.60	7.8	4.8
2.00	9.8	4.1
2.40	12	3.7
2.80	14	3.5
3.20	16	3.3
3.60	18	3.2
4.00	20	3.1
4.40	22	3.0

Note: Titration performed using a Metrohm $^{\circ}$ 736 Titrino auto-titrator, and 0.05 M-H₂SO₄. Equilibration time between titrant additions was 15 minutes. 1.00 g of crushed sample (nominal -2mm) initially dispersed in 150 mL of deionised-water. Test mixture in contact with air, at ambient temperature, and continuously stirred.

Calibration of pH-Glass Electrode:
Immediately prior to titration: asymmetry potential = -7 mV (pH=7.00); slope-point = 176 mV (pH=4.00); 95.1 % of Nernstian response for 25 °C.
Immediately following titration: pH=7.00 buffer read pH=7.03 and pH=4.00 buffer read pH=4.02. These discrepancies represent drift in pH-Glass electrode response during course of auto-titration.

Dr GD Campbell 3rd March 2010

Laboratory Report

pH-BUFFERING TESTWORK (GCA8527)

Cumulative Volume of Acid Added (mL)	Cumulative Acid Consumption (kg H ₂ SO ₄ /tonne)	pН
0.00	0.0	8.4
0.40	2.0	7.3
0.80	3.9	6.9
1.20	5.9	6.5
1.60	7.8	5.7
2.00 2.40 2.80 3.20 3.60	9.8 12 14 16	5.1 4.6 4.2 3.9 3.7
4.00	20	3.6
4.40	22	3.4
4.80	24	3.3
5.20	25	3.2
5.60	27	3.1
6.00	29	3.0
6.40	31	3.0

Note: Titration performed using a Metrohm $^{\circ}$ 736 Titrino auto-titrator, and 0.05 M-H₂SO₄. Equilibration time between titrant additions was 15 minutes. 1.00 g of crushed sample (nominal -2mm) initially dispersed in 150 mL of deionised-water. Test mixture in contact with air, at ambient temperature, and continuously stirred. Calibration of pH-Glass Electrode: Immediately prior to titration: asymmetry potential = -10 mV (pH=7.00); slope-point = 177 mV (pH=4.00); 94.5 % of Nernstian response for 25 °C. Immediately following titration: pH=7.00 buffer read pH=7.04 and pH=4.00 buffer read pH=4.05. These discrepancies represent drift in pH-Glass electrode response during course of auto-titration.

Dr GD Campbell 3rd March 2010

Laboratory Report

pH-BUFFERING TESTWORK (GCA8528)

Cumulative Volume of Acid	Cumulative Acid Consumption	pН
Added (mL)	(kg H ₂ SO ₄ /tonne)	
0.00	0.0	8.7
0.40	0.4	8.2
0.80	0.8	7.7
1.20	1.2	7.4
1.60	1.6	7.1
2.00	2.0	6.8
2.40	2.4	6.5
2.80	2.7	6.2
3.20	3.1	5.8
3.60	3.5	5.4
4.00	3.9	5.1
4.40	4.3	4.8
4.80	4.7	4.6
5.20	5.1	4.4
5.60	5.5	4.2
6.00	5.9	4.1
6.40	6.3	3.9
6.80	6.7	3.8
7.20	7.1	3.7
7.60	7.4	3.6
8.00	7.8	3.5
8.40	8.2	3.5
8.80	8.6	3.4
9.20	9.0	3.3
9.60	9.4	3.3
10.00	9.8	3.2
10.40	10	3.2
10.80	11	3.1
11.20	11	3.1
11.60	11	3.0
12.00	12	3.0

Note: Titration performed using a Metrohm® 736 Titrino auto-titrator, and 0.05 M-H₂SO₄. Equilibration time between titrant additions was 15 minutes. 5.00 g of crushed sample (nominal -2mm) initially dispersed in 150 mL of deionised-water. Test mixture in contact with air, at ambient temperature, and continuously stirred.

Calibration of pH-Glass Electrode:
Immediately prior to titration: asymmetry potential = -8 mV (pH=7.00); slope-point = 177 mV (pH=4.00); 95.2 % of Nernstian response for 25 °C.
Immediately following titration: pH=7.00 buffer read pH=7.03 and pH=4.00 buffer read pH=4.04. These discrepancies represent drift in pH-Glass electrode response during course of auto-titration.

Dr GD Campbell 3rd March 2010

Laboratory Report

pH-BUFFERING TESTWORK (GCA8529)

Cumulative Volume of Acid Added (mL)	Cumulative Acid Consumption (kg H ₂ SO ₄ /tonne)	pН	Cumulative Volume of Acid Added (mL)	Cumulative Acid Consumption (kg H ₂ SO ₄ /tonne)	pН
Added (IIIL)	(kg 112504/tollic)		Added (ML)	(kg 112504/tollic)	
0.00	0.0	9.2	16.80	165	4.8
0.40	3.9	8.7	17.20	169	4.7
0.80	7.8	8.4	17.60	172	4.5
1.20	12	8.2	18.00	176	4.6
1.60	16	8.1	18.40	180	4.6
2.00	20	8.0	18.80	184	4.5
2.40	24	7.9	19.20	188	4.4
2.80	27	7.9	19.60	192	4.4
3.20	31	7.8	20.00	196	4.3
3.60	35	7.7	20.40	200	4.3
4.00	39	7.6	20.80	204	4.2
4.40	43	7.5	21.20	208	4.1
4.80	47	7.3	21.60	212	4.1
5.20	51	7.3	22.00	216	4.0
5.60	55	7.2	22.40	220	4.0
6.00	59	7.1	22.80	223	3.9
6.40	63	7.0	23.20	227	3.8
6.80	67	6.9	23.60	231	3.8
7.20	71	6.8	24.00	235	3.7
7.60	74	6.7	24.40	239	3.7
8.00	78	6.4	24.80	243	3.6
8.40	82	6.3	25.20	247	3.6
8.80	86	6.2	25.60	251	3.5
9.20	90	6.2	26.00	255	3.5
9.60	94	6.0	26.40	259	3.4
10.00	98	6.0	26.80	263	3.4
10.40	102	5.7	27.20	267	3.3
10.80	106	5.4	27.60	270	3.3
11.20	110	5.3	28.00	274	3.3
11.60	114	5.1	28.40	278	3.2
12.00	118	5.0	28.80	282	3.2
12.40	122	4.9	29.20	286	3.1
12.80	125	4.8	29.60	290	3.1
13.20	129	5.3	30.00	294	3.1
13.60	133	5.2	30.40	298	3.0
14.00	137	5.1	30.80	302	3.0
14.40	141	5.0	31.20	306	3.0
14.80	145	5.0			
15.20	149	5.0			
15.60	153	5.0			
16.00	157	5.0			
16.40	161	4.9			
			4- 4-4-4 10 05 M		

Note: Titration performed using a Metrohm® 736 Titrino auto-titrator, and 0.05 M-H₂SO₄. Equilibration time between titrant additions was 15 minutes. 0.50 g of crushed sample (nominal -2mm) initially dispersed in 150 mL of deionised-water.

Test mixture in contact with air, at ambient temperature, and continuously stirred.

Calibration of pH-Glass Electrode:
Immediately prior to titration: asymmetry potential = -9 mV (pH=7.00); slope-point = 177 mV (pH=4.00); 94.7 % of Nernstian response for 25 °C.
Immediately following titration: pH=7.00 buffer read pH=7.04 and pH=4.00 buffer read pH=4.05. These discrepancies represent drift in pH-Glass electrode response during course of auto-titration.

Dr GD Campbell 4th March 2010

Laboratory Report

pH-BUFFERING TESTWORK (GCA8530)

Cumulative	Cumulative		Cumulative	Cumulative	
Volume of Acid	Acid Consumption	pН	Volume of Acid	Acid Consumption	pН
Added (mL)	(kg H ₂ SO ₄ /tonne)	pii	Added (mL)	(kg H ₂ SO ₄ /tonne)	PII
raucu (IIII)	(lig 1125 04 tolline)		rauca (mz)	(iig iigs of tollie)	
0.00	0.0	9.8	16.80	165	7.6
0.40	3.9	9.2	17.20	169	7.6
0.80	7.8	8.8	17.60	172	7.6
1.20	12	8.6	18.00	176	7.6
1.60	16	8.4	18.40	180	7.6
2.00	20	8.3	18.80	184	7.6
2.40	24	8.2	19.20	188	7.6
2.80	27	8.1	19.60	192	7.6
3.20	31	8.1	20.00	196	7.5
3.60	35	8.0	20.40	200	7.5
4.00	39	8.0	20.80	204	7.5
4.40	43	8.0	21.20	208	7.5
4.80	47	8.0	21.60	212	7.5
5.20	51	7.9	22.00	216	7.5
5.60	55	7.9	22.40	220	7.5
6.00	59	7.9	22.80	223	7.4
6.40	63	7.9	23.20	227	7.4
6.80	67	7.9	23.60	231	7.4
7.20	71	7.8	24.00	235	7.4
7.60	74	7.8	24.40	239	7.4
8.00	78	7.8	24.80	243	7.3
8.40	82	7.8	25.20	247	7.3
8.80	86	7.8	25.60	251	7.3
9.20	90	7.8	26.00	255	7.3
9.60	94	7.8	26.40	259	7.2
10.00	98	7.8	26.80	263	7.2
10.40	102	7.8	27.20	267	7.2
10.80	106	7.8	27.60	270	7.2
11.20	110	7.8	28.00	274	7.1
11.60	114	7.7	28.40	278	7.1
12.00	118	7.7	28.80	282	7.0
12.40	122	7.7	29.20	286	7.0
12.80	125	7.7	29.60	290	7.0
13.20	129	7.7	30.00	294	6.9
13.60	133	7.7	30.40	298	6.9
14.00	137	7.7	30.80	302	6.8
14.40	141	7.7	31.20	306	6.8
14.80	145	7.7	31.60	310	6.7
15.20	149	7.7	32.00	314	6.5
15.60	153	7.7	32.40	318	6.5
16.00	157	7.6	32.80	321	6.5
16.40	161	7.6	33.20	325	6.4

Cumulative Volume of Acid	Cumulative Acid Consumption	рH	Cumulative Volume of Acid	Cumulative Acid Consumption	pН
Added (mL)	(kg H2SO ₄ /tonne)		Added (mL)	(kg H ₂ SO ₄ /tonne)	
` `	, , ,		` ′		
33.60	329	6.4	44.00	431	5.0
34.00	333	6.4	44.40	435	4.9
34.40	337	6.4	44.80	439	4.7
34.80	341	6.3	45.20	443	4.6
35.20	345	6.3	45.60	447	4.4
35.60	349	6.2	46.00	451	4.3
36.00	353	6.2	46.40	455	4.1
36.40	357	6.2	46.80	459	4.0
36.80	361	6.1	47.20	463	3.8
37.20	365	6.1	47.60	466	3.7
37.60	368	6.0	48.00	470	3.6
38.00	372	6.0	48.40	474	3.5
38.40	376	6.0	48.80	478	3.3
38.80	380	5.9	49.20	482	3.3
39.20	384	5.9	49.60	486	3.2
39.60	388	5.8	50.00	490	3.1
40.00	392	5.8	50.40	494	3.0
40.40	396	5.7	50.80	498	3.0
40.80	400	5.7			
41.20	404	5.6			
41.60	408	5.6			
42.00	412	5.5			
42.40	416	5.4			
42.80	419	5.3			
43.20	423	5.2			
43.60	427	5.1			

Note: Titration performed using a Metrohm® 736 Titrino auto-titrator, and 0.05 M-H₂SO₄. Equilibration time

Note: Titration performed using a Metrohm 7/36 Titrino auto-titrator, and 0.05 M-H₂SO₄. Equilibration time between titrant additions was 15 minutes. 0.50 g of crushed sample (nominal -2mm) initially dispersed in 150 mL of deionised-water. Test mixture in contact with air, at ambient temperature, and continuously stirred.

Calibration of pH-Glass Electrode:

Immediately prior to titration: asymmetry potential = -8 mV (pH=7.00); slope-point = 176 mV (pH=4.00); 95.1 % of Nernstian response for 25 °C.

Immediately following titration: pH=7.00 buffer read pH=7.03 and pH=4.00 buffer read pH=4.04. These discrepancies represent drift in pH-Glass electrode response during course of auto-titration.

Dr GD Campbell 4th March 2010

This page is intentionally blank
This page is intentionally blank

Wheatstone Project Appendix Q4 - Nearshore Acid Sulfate Soils Investigation (Turning Basin and Dredge Channel)

URS Australia Pty Ltd Level 3, 20 Terrace Road East Perth WA 6004 Australia T: 61 8 9326 0100 F: 61 8 9326 0296

www.ap.urscorp.com

Appendix Q5

Sediment Quality Assessment – Wheatstone Dredging Program

Execu	tive Sumn	nary		481
1	Introduc	tion		483
	1.1	Backgrou	und	483
	1.2	Hydrody	namics and Coastal Processes	487
	1.3	Regional	Physical Sediment Characteristics	487
	1.4	Potential	Contaminant Sources of the North-West Shelf	488
		1.4.1	TributyItin	490
		1.4.2	Mercury	491
	1.5	Objective	es	491
	1.6	Sedimen	t Quality Assessment Rationale	491
		1.6.1	Dredge Area	491
	1.7	Scope of	Works	492
		1.7.1	Contaminants of Potential Concern	492
2	Methodo	logy		493
	2.1	Sedimen	t Sampling	493
		2.1.1	Short Cores and Deep Cores	493
		2.1.2	Selection of Sample Locations	493
		2.1.3	Shallow and Deep Cores in Dredge Area	494
		2.1.4	Grab Sampling in Proposed Dredge Material Placement Sites	497
	2.2	Sample H	Handling	500
	2.3	Sedimen	t Subsampling Procedures	501
	2.4	Sedimen	t Analyses	501
		2.4.1	Whole Sediment Chemical Analyses	501
		2.4.2	Quality Assurance and /Quality Control	504
		2.4.3	Laboratory Procedures	507
	2.5		ory Analytical Quality Assurance/ Control (QA/QC)	508
		2.5.1	Laboratory Duplicates	508
		2.5.2	Independent Verification Standards	508
		2.5.3	Calibration Check Standards	508
		2.5.4	Surrogate Spikes	508
		2.5.5	Standard Reference Materials	509
	2.6	Data Har	ndling	510
		2.6.1	Data Validation	510
		2.6.2	Analytical Data Quality Objectives	510
	2.7	Statistica	al Methodology	511
3	Results			513
	3.1	Sedimen	t Texture	513
		3.1.1	Dredge Area	514
		3.1.2	Proposed Dredge Material Placement Sites	515
	3.2	Geochem	nical Results	515
		3.2.1	Dredge Area	515

		3.2.2	Proposed Dredge Material Placement Sites	515
		3.2.3	Concentrations and Distributions of Inorganic Contaminants of Potential Concern	526
		3.2.4	Concentrations of TributyItin	530
	3.3	Radionuc	lide Activity Analyses	530
	3.4	Geochem	ical Data Validation Summary	530
4	Discussion	on		533
	4.1	Textural (Jnits in the Dredge Area	533
	4.2	Assessme	ent of Geochemical Dataset	533
	4.3	Comparis	on with Previous Analytical Data	533
	4.4	Factors In	fluencing Contaminant Distributions	533
	4.5	Backgrou	nd Concentrations of Contaminants	536
		4.5.1	Inorganic Analytes	536
		4.5.2	Nickel and Arsenic Concentrations in Dredge Area	536
	4.6	Sediment	Quality in Dredge Area	537
		4.6.1	Comparison with the NAGD Screening Levels	537
		4.6.2	Dredge Area	537
		4.6.3	Dredge Material Placement Sites	537
		4.6.4	95% UCL of Mean Concentrations	537
		4.6.5	Weak Acid Extractions	538
	4.7	Sediment	s within Trunkline Route	540
	4.8	Classifica	tion of Sediment in Dredge Area	542
	4.9	Assessme	ent Limitations	542
5	Reference	ces		545
6	Limitatio	ns		549

Tables		
Table 1-1	Dredge Area volumes.	484
Table 2-1	Short core sample IDs and locations.	496
Table 2-2	Deep core sample IDs and locations.	497
Table 2-3	Sample locations within the five proposed dredge material placement sites.	499
Table 2-4	Analytes, PQLs, LORs and the NAGD Screening and Maximum Levels.	503
Table 2-5	Container type, preservation and holding times for sediment samples.	503
Table 2-6	Analytical data for short core sample field triplicate samples.	505
Table 2-7	Analytical data for short core and grab sample split sample analysis.	507
Table 2-8	Analytical data for deep core split sample analysis.	507
Table 2-9	Analytical Data Quality Objectives.	511
Table 3-1	Descriptive statistics of sediment PSD in the Dredge Area and the proposed dredge material placement sites.	514
Table 3-2	Analytical data and descriptive statistics for short core samples from within and adjacent to the Dredge Area.	516
Table 3-3	Analytical data and descriptive statistics for deep core samples from within the Dredge Area.	520
Table 3-4	Analytical data and descriptive statistics for sediments in proposed dredge material placement sites.	522
Table 3-5	Completeness of data quality objectives.	531
Table 4-1	Correlations between metals and metalloids within sediment samples.	534
Table 4-2	95% Upper Confidence Limits of Mean Contaminant Concentrations.	538
Table 4-3	Analyses of weak acid-extractable (1 M HCl) As, Ni, and Cr in selected sediment short core samples.	539
Table 4-4	Descriptive statistics summary for concentrations of metals in the Dredge Area, the proposed dredge material placement sites and the Pilot Survey, in comparison to data for Trunkline Route samples.	542
Figures		
Figure 1-1	Location of the proposed Dredge Area and relevant sampling sites.	485
Figure 1-2	Location of potential dredge material placement sites (Site A - E).	486
Figure 3-1	Spatial distribution of Cu at short core and grab sample sites.	527
Figure 3-2	Spatial distribution of As at short core and grab sample sites.	527
Figure 3-3	Spatial distribution of Zn at short core and grab sample sites.	528
Figure 3-4	Spatial distribution of Ni at short core and grab sample sites.	528
Figure 3-5	Spatial distribution of CaCO ³ content at short core and grab sample sites.	529
Figure 3-6	Spatial distribution of PSD at short core and grab sample sites.	529
Figure 4-1	Bivariate correlation between Cu and mud in grab samples and short core samples.	535
Figure 4-2	Bivariate correlation between Al and Cu in grab samples and short core samples.	535
Figure 4-3	Bivariate correlation between AI and CaCO3 content in grab samples and short core samples.	536
Figure 4-4	Bivariate plot of As and Cu in sediments from the Dredge Area, the proposed dredge material placement sites and the Pilot Survey.	541


Appendices

Appendix A	Sampling and Analysis Plan
Appendix B	Short & Deep Core Logs & Photographs
Appendix C	Short Core and Grab Sample Descriptions
Appendix D	Short Core & Grab Sample Analytical & Physicochemical Data
Appendix E	Deep Core Analytical & Physicochemical Data
Appendix F	Particle Size Distribution Analysis
Appendix G	Radionuclide Analysis
Appendix H	Weak Acid Extraction Analysis

This page is intentionally blank

This page is intentionally blank

Wheatstone Project Appendix Q5 - Sediment Quality Assessment - Wheatstone Dredging Program

Report

Sediment Quality Assessment Wheatstone Dredging Program

09 JULY 2010

Prepared for Chevron Australia Pty Ltd QV1, 250 St Georges Terrace Perth WA 6000

42907466

This page is intentionally blank

Wheatstone Project Appendix Q5 - Sediment Quality Assessment - Wheatstone Dredging Program

Project Manager:

Damian Ogburn Principal Environmental

Scientist

URS Australia Pty Ltd

Level 3, 20 Terrace Road East Perth WA 6004 Australia

T: 61 8 9326 0100 F: 61 8 9326 0296

Project:

Bob Anderson Senior Principal **Environmental Engineer**

Author:

Dr. Carsten Matthai Associate Environmental

Principal Environmental

Scientist

Scientist

Dr. Stuart Taylor

Reviewer:

Date: Reference: Status:

09 July 2010 42907466/00090/1

Final

© Document copyright of URS Australia Pty Limited.

This report is submitted on the basis that it remains commercial-in-confidence. The contents of this report are and remain the intellectual property of URS Australia Pty Limited and are not to be provided or disclosed to third parties without the prior written consent of URS. No use of the contents, concepts, designs, drawings, specifications, plans etc. included in this report is permitted unless and until they are the subject of a written contract between URS Australia Pty Limited and the addressee of this report. URS Australia Pty Limited accepts no liability of any kind for any unauthorised use of the contents of this report and URS Australia Pty Limited reserves the right to seek compensation for any such unauthorised use.

Document delivery

URS Australia Pty Limited provides this document in either printed format, electronic format or both. URS Australia Pty Limited considers the printed version to be binding. The electronic format is provided for the clients convenience and URS Australia Pty Limited requests that the client ensures the integrity of this electronic information is maintained. Storage of this electronic information should at a minimum comply with the requirements of the Commonwealth Electronic Transactions Act 2000.

Where an electronic only version is provided to the client, a signed hard copy of this document is held on file by URS Australia Pty Limited and a copy will be provided if requested.

J:\Jobs\42907466\6 Deliv\Appendices Tech Reports-May 2010\App Q\Q5\Current\00090-Draft Sediment Quality Assessment Rev 1.doc

This page is intentionally blank

Wheatstone Project Appendix Q5 - Sediment Quality Assessment - Wheatstone Dredging Program

Executive Summary

Chevron Australia Pty Ltd (Chevron) proposes to construct and operate a multi-train liquefied natural gas (LNG) and domestic gas (Domgas) plant 12 km south west of Onslow on the Pilbara Coast. The LNG and Domgas plant will initially process gas from fields located approximately 200 km offshore from Onslow in the West Carnarvon Basin and other yet-to-be determined gas fields. The Wheatstone Project is referred to as the Project and the Ashburton North Strategic Industrial Area (Ashburton North SIA) is the proposed site for the LNG and Domgas plant. The Project will require the installation of gas gathering, export and processing facilities in Commonwealth and State Waters and on land. The LNG plant will have a maximum capacity of 25 million tonnes per annum (MTPA) of LNG.

The Project has been referred to the State Environmental Protection Authority (EPA) and the Commonwealth Department of Environment, Water, Heritage and the Arts (DEWHA). The investigations outlined in this report have been conducted to support the environmental impact assessment process.

Onshore infrastructure will be located adjacent to the Ashburton River delta and nearby to the Hooley Creek tidal system and requires construction of breakwaters across a sandy coastline for the placement of a materials offloading facility (MOF) and navigation channel, a product loading facility (PLF), and the installation of the gas trunkline (Trunkline Route). As part of this proposal, dredging of approximately 45 700 000 m3 (45 000 000 m3 for the navigation channel, MOF and PLF; 3 million m3 for the Trunkline Route) of marine sediments will be required to enable the construction of the aforementioned marine facilities. A range of statutory approvals are required under State and Commonwealth legislation, prior to the proposed development taking place.

Geochemical testing, as well as physical characterisation, of sediments in the Dredge Area and the proposed dredge material placement sites was completed to assess the distribution, variability and concentrations of contaminants of potential concern (COPCs) within dredged sediments, in comparison to sediments within the proposed dredge material placement sites. Preliminary Pilot Survey data (URS Australia Pty Ltd (URS) 2009a) was also incorporated to provide support for the proposed excavation of the Trunkline Route. The sediment quality assessment was carried out in alignment with the Sampling and Analysis Plan (SAP) and the National Assessment Guidelines for Dredging (NAGD) (Commonwealth of Australia, 2009). The primary use of the sediment quality data was to characterise the contaminant status of sediment and confirm its acceptability for offshore placement options.

A total of 72 short core, 15 deep core and 64 grab sediment samples were taken from within and adjacent to the Dredge Area and from within the proposed dredge material placement sites. These samples were analysed for

- total metals and metalloids (short cores: aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), zinc(Zn); deep cores: as above plus beryllium (Be), cobalt (Co), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), silver (Ag), tin (Sn), vanadium (V));
- tributyltin (TBT) (excluding deep cores);
- total organic carbon (TOC) (excluding deep cores);
- moisture content (MC);
- particle size distribution (PSD) (selected short cores and grab samples); and
- carbonate (CaCO₃) content (selected short cores and grab samples).

The objectives of the sediment quality assessment included;

Executive Summary

- · to complete a field and analytical program of sediment proposed for dredging in accordance with guidance provided in the NAGD;
- to characterise sediment PSD and contaminant concentrations at the proposed dredge material placement sites;
- to assess the physical property of surficial sediment;
- to determine whether the quality and quantity of data gathered are sufficient to adequately characterise the contamination status of the sediments to assess placement options; and
- to classify the sediment as acceptable, or otherwise, for unconfined placement at proposed dredge material placement sites.

The assessment of the physical properties of surficial sediment was also carried out so the resultant information could be used in predictive models of sediment behaviour in dredge and placement plumes.

Concentrations of the COPCs As, Cr and Ni exceeded the NAGD Screening Levels for marine sediments however this only occurred at a limited number of sites and it could be demonstrated that they existed in naturally occurring concentrations. It was determined that dredged sediments from within the Dredge Area would be acceptable for unconfined, offshore placement at the proposed dredge material placement sites. It was also extrapolated that sediments from within the Trunkline Route would not contain significantly high levels of COPCs and thus could also be disposed of within the proposed dredge material placement sites.

Introduction

1.1 **Background**

Chevron Australia Pty Ltd (Chevron) proposes to construct and operate a multi-train liquefied natural gas (LNG) and domestic gas (Domgas) plant 12 km south west of Onslow on the Pilbara Coast. The LNG and Domgas plant will initially process gas from fields located approximately 200 km offshore from Onslow in the West Carnarvon Basin and other yet-to-be determined gas fields. The Wheatstone Project is referred to as the Project and the Ashburton North Strategic Industrial Area (Ashburton North SIA) is the proposed site for the LNG and Domgas plant. The Project will require the installation of gas gathering, export and processing facilities in Commonwealth and State Waters and on land. The LNG plant will have a maximum capacity of 25 million tonnes per annum (MTPA) of LNG.

The Project has been referred to the State Environmental Protection Authority (EPA) and the Commonwealth Department of Environment, Water, Heritage and the Arts (DEWHA). The investigations outlined in this report have been conducted to support the environmental impact assessment process.

Onshore infrastructure will be located adjacent to the Ashburton River delta and nearby to the Hooley Creek tidal system and requires construction of breakwaters across a sandy coastline for the placement of a materials offloading facility (MOF) and navigation channel, a product loading facility (PLF), and the installation of the gas trunkline (Trunkline Route). As part of this proposal, dredging of approximately 45 700 000 m³ (45 000 000 m³ for the navigation channel, MOF and PLF; 3 million m³ for the Trunkline Route) of marine sediments will be required to enable the construction of the aforementioned marine facilities. A range of statutory approvals are required under State and Commonwealth legislation, prior to the proposed development taking place.

The Dredge Area (Figure 1-1) and the proposed volume to be dredged (Table 1-1) are described in Section 2.1 of the SAP (Appendix A). Capital dredging of sediments as part of construction at the Ashburton North SIA requires a geochemical assessment of these sediments, which is the principal focus of this Sediment Quality Assessment report. Area and volume estimates for capital dredging are based on previously surveyed seabed bathymetry.

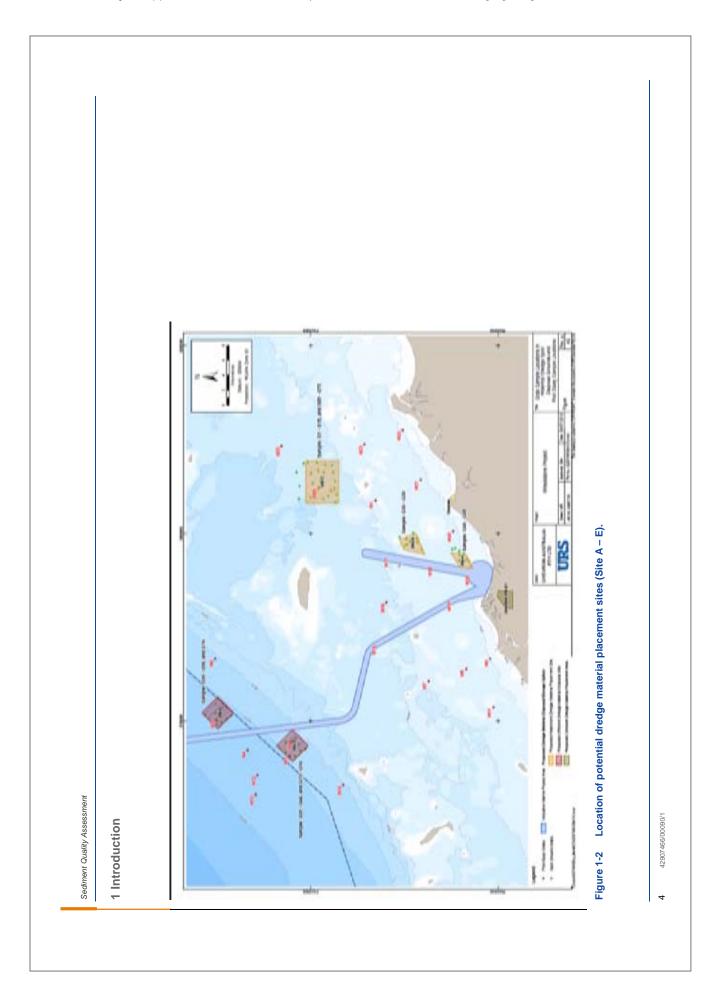
The current bathymetry was compared against initial dredging estimates and design depths in order to determine the location, volume and depth of sediment to be dredged in the Dredge Area (including the navigation channels, PLF and MOF). The design depths (including a siltation allowance of 0.45 m, a dredge tolerance of 0.75 m and a survey accuracy of 0.1 m) for the main navigation channel, the MOF and navigation channel and the PLF are no more than 15 m, 15 m and 9 m below LAT, respectively.

The indicative in situ gross volume of sediment expected to be dredged in the MOF and the PLF is approximately 45 000 000 m³ over an area of 11 500 000 m² (Table 1-1). It is proposed that dredged sediments will be disposed of at one of the five proposed dredge material placement sites (Figure 1-2).

The establishment of a Trunkline Route will also be necessary for the placement of the 225 km gas trunkline, running from the Wheatstone Platform (WP) to the onshore facility. This Trunkline Route will cross the shallow, nearshore shelf between Thevenard and Bessiers islands and skirt Ashburton Island before coming ashore at the plant site. The Trunkline Route slopes down from the WP in approximately 70 m of water to 120 m for about 25 km before following the 110 m water-depth contour for most of its length until 60 km from shore. From there it will gradually slope up to the shelf for about 30 km and will level off in about 10 m of water, before rising to the onshore plant in the last few

1 Introduction

kilometres. The gas trunkline will be up to approximately 1.2 m in diameter and be no more than 1 m in height from the sea floor.


The indicative gross volume of sediment to be mechanically trenched from a nearshore section of the Trunkline Route is approximately 3 million m3. The excavated area will be approximately 5 m wide, while there will be a disturbance corridor of approximately 20 m in width. The excavated material will be placed at the proposed Nearshore Dredge Material Placement Site C.

The dredge material volumes presented below relate to dredging required for the key marine infrastructure, and which have been used in this version of the impact assessment. These volumes do not include excavation material volumes that may be generated from the installation of the Trunkline Route. Ongoing work is being undertaken to finalise these volumes and identify implications for the results of the sediment quality assessment presented to date.

Table 1-1 Dredge Area volumes.

Dredge Area	Total for Area (M3)		
Temporary navigation channel	935 000		
MOF areas	1 580 000		
PLF areas	16 445 000		
PLF Approach	20 160 000		
Total Capital Dredge volume	39 120 000		
Design uncertainties	5 880 000		
Estimated total Capital Dredge volume	45 000 000		

Sediment Quality Assessment 1 Introduction ction. MGAN Zone 50 Deep Cores Short Cores Figure 1-1 Location of the proposed Dredge Area and relevant sampling sites. 42907466/00090/1

1 Introduction

Geochemical testing of sediments in the Dredge Area and the proposed dredge material placement sites was completed to assess the distribution and variability of contaminants within sediments and to compare the concentrations of COPCs to Screening Levels in the NAGD.

Preliminary sediment and geotechnical investigations have indicated that marine sediments in this remote region are unlikely to be contaminated by anthropogenic sources and are likely to be suitable for unconfined placement at sea (URS 2009a). The Pilot Survey involved the collection of 24 sediment grab samples obtained over a large regional area and found that a majority of analytes present in the sediments did not exceeded the NAGD Screening Levels. Ni and As, however, did exceed the NAGD Screening Levels.

This report was prepared with reference to the NAGD to assess the proposed dredging program and any available historical data on the physical and chemical characteristics of sediments in the vicinity of the Dredge Area (Phase I assessment). In addition, this report details sampling and analysis of sediments in the Dredge Area for COPC listed on the Contaminants List of the SAP (Appendix A) and a comparison to NAGD Screening Levels (Phase II assessment). Sampling was undertaken in alignment with the initial SAP.

The primary use of the sediment data is to characterise the contaminant status of sediment and assist in the selection of placement options. The new data, together with limited historic data (where current and appropriate), will be used to classify the sediments in a single dredge management unit.

This report presents the methodologies that were employed during the investigation and covers the following aspects:

- Objectives;
- Brief description of proposed dredging program; and
- Environmental setting.

Historic data and existing information from previous studies is compiled in the SAP (Appendix A) and includes:

- Identification of potential contaminant sources, COPCs and potential data gaps;
- Rationale for the proposed sampling design; and
- Scope of work including assessment methodology.

Field Methods and Procedures and the laboratory analytical program employed during the investigation are also outlined in the SAP (Appendix A).

1.2 **Hydrodynamics and Coastal Processes**

A summary of hydrodynamics and coastal processes in and near the Dredge Area is provided in the SAP (Appendix A).

1.3 **Regional Physical Sediment Characteristics**

Surficial sediment may be remobilised by natural processes including current and wind resuspension and large rainfall events, but is not expected to be frequently resuspended by vessels operating in the proposed navigation channel.

As stated in Section 2.3.7 of the SAP (Appendix A), much of the nearshore region adjacent to the Ashburton River mouth is covered by silt and sand sheets of varying thickness that overlie Pleistocene

1 Introduction

limestone. Sediments located in the vicinity of Ashburton River discharge areas comprise silts and clays with a high silica content. Sediments become increasingly coarse grained and increase in CaCO₃ content with distance offshore, due to decreasing input of terrigenous silts and clays from river runoff and coastal erosion. Sediment re-suspension is frequent immediately seaward of the intertidal zone and leads to considerable turbidity (Forde, 1985). Resuspension is mainly due to wind-driven waves, whereas further offshore the sediment movement is a result of internal or subsurface waves (Heywood et al., 2000). Coarse and medium-grained calcareous sandy sediments predominate to the 100 m depth contour, with a transition to continental slope muds around 100-150 m depth (Black et al., 1994).

1.4 **Potential Contaminant Sources of the North-West Shelf**

There is a paucity of published literature directly relevant to the NWS as outlined by Heywood et al. (2006). A search of the bibliography by Jernakoff et al. (2006) reveals that of the 1,725 records, only 26 relate to chemistry, and of those, only 15 are in published literature. Due to the largely undeveloped nature of the Ashburton River catchment area and the Dredge Area, there are very few known sources of anthropogenic contaminants. In addition, potential point sources of contamination to the Dredge Area are likely to result in a low level of contamination of surficial sediments, due to the highly dispersive nature of the NWS marine environment. In particular cyclone activity effectively resuspends and transports sediments to water depths exceeding the depths of the Dredge Area (URS 2009b).

On a broader regional scale, it is difficult to determine the total loading of pollutants to the marine environment from industrial and domestic point sources on the NWS (Heywood et al., 2006). Coastal issues related to domestic waste, such as sewage disposal, have been perceived as less significant in this region than elsewhere because of its low population density. However, recurring pollutants from diffuse sources in the region include metals from antifoulants on shipping, harbour works, shore-based plants and cross-shelf trunklines. Several studies using local invertebrates, such as oysters and intertidal gastropods, have detected elevated levels of some metals (Heywood et al. 2006).

Potential contaminants from marine based activities on the NWS include organic and inorganic contaminants from the oil and gas industry (i.e. drilling activities and production), shipping activities, commercial and recreational fishing activities aquaculture and tourism (D.A. Lord and Associates, 2002).

Sediment quality has been assessed in the vicinity of the Dredge Area on two previous occasions. In June 2005, marine sediments were sampled by the Department of Environment and Conservation (DEC) at four locations offshore of the mouth of the Ashburton River and at four locations offshore from Onslow to estimate the background concentrations for selected contaminants (DEC, 2006). A primary assumption for this study was that no anthropogenic contamination had occurred in these areas, with sediments analysed for organotins, polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene and xylene compounds (also referred to as BTEX), organochlorine (OC) pesticides and polychlorinated biphenyls (PCBs), as well as total metals and metalloids (Al, As, Cd, Cr, Co, Cu, Fe, Pb, Hg, Ni, Se, Ag, Va and Zn) (DEC, 2006). The results of this study confirmed no discernible anthropogenic enrichment of contaminants in sediments offshore of the Ashburton River mouth or the town of Onslow. All concentrations of organotins, PAHs, TPH, BTEX compounds, OC pesticides and PCBs were reported as below the laboratory limit of reporting (LOR), although the LOR in that investigation exceeded the Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia

1 Introduction

and New Zealand (ANZECC/ARMCANZ) (2000) guideline values for some organic compounds. The DEC (2006) also estimated natural background concentrations of metals in marine sediments, noting that natural background concentrations of As were above the ANZECC/ARMCANZ (2000) guideline value. All other mean metal concentrations in sediments around the Ashburton River mouth and Onslow were below their relevant ANZECC/ARMCANZ (2000) guideline values (DEC, 2006).

In February 2009, URS collected surface sediment samples for the Project at 17 nearshore sites in the vicinity of the Dredge Area and at eight sites within a proposed dredge material placement site. Sediments were analysed for a suite of total metals (Al, As, Cd, Cr, Cu, Fe, Mn, Hg, Ni, Pb, Va and Zn), TPH, BTEX compounds and TBT (URS 2009a). The results of this study supported those of the DEC study, with concentrations of TPH, BTEX compounds, TBT and metals being below the laboratory LOR, or below the relevant NAGD Screening Levels (URS 2009a). The NAGD Screening Levels for As were exceeded in eight of the 25 surficial sediment samples, as previously found in the DEC (2006) investigation. In addition, the concentrations of Ni exceeded NAGD Screening Levels in two of the 25 surficial sediment samples obtained during the Pilot Survey (URS 2009a).

The concentrations of metals in whole sediments sampled in the Pilot Survey (URS 2009a) correlate strongly with the concentrations of Al, which is a proxy analyte for grainsize (i.e. clay mineral content) (Loring and Rantala, 1992). Grainsize is therefore likely to be the principal factor which determines the concentrations of metals in whole sediment, while anthropogenic contributions in these sediments were not discernible in previous investigations. An exception is As, which does not correlate strongly with AI. As may be more strongly associated with the sediment sand fraction (>0.063 mm fraction) and the carboniferous and Fe-oxide sediment components (Davies, 1979). Studies of the geochemistry and mobility of As from sediments under different environmental conditions confirmed that large amounts of As may be bound to sediments due to Fe/As co-precipitation and the formation of insoluble precipitates at the water-sediment interface (Nikolaidis et al., 2004). Similarly, Devesa-Rey et al. (2008) found As in sediments to be mainly associated with the least mobile fractions and bound to Fe-Al oxides and the residual mineral phase.

Once contaminants are introduced to the marine environment of the NWS they are subject to a range of physical, chemical and biological processes that influence their fate. A review of contaminant sources, impacts, pathways and effects on the NWS by Fandry et al. (2006) identified several COPC in the region, including:

- metals (Ba, Cd, Cr, Cu, Pb, Hg and Zn), associated with shipment of minerals and runoff from onshore mining activities;
- TBT, an antifouling constituent on ships;
- nitrogen, a nutrient;
- produced water (PW); and
- hydrocarbons, associated with oil spills and chronic releases such as bilge and tank residues from

As well as these identified COPCs, it was also considered conceivable that PAHs and OC pesticides may have contaminated sediments via runoff from the Ashburton River (Department of Environment, Water, Heritage and the Arts (DEWHA) 2009). However, because of the undeveloped nature of the catchment and the sparse nature of farming activities, it was further considered that these sources would be unlikely to make a substantial contribution to contaminant loads in offshore sediments on the NWS, particular with regard to the highly dispersive inner shelf environment (Department of Agriculture, Forestry and Fishing 2008).

1 Introduction

Significant dredging activity occurs in the NWS region, particularly in the major ports of Dampier and Port Hedland. During dredging operations, suspended sediment concentrations are very high for sustained periods. Monitoring suggests that the impact on existing adjacent macro-benthos communities is minimal, but there are no data to show the effects of suspended sediment on very small organisms and on new recruits such as juvenile corals. When synthetic olefin- and ester-based drilling muds are adopted for exploration purposes their effects will need to be studied, particularly in more sensitive areas. Little is known about the transport of cuttings on the NWS or about the implications for dispersion and degradation of the fluids (Heywood et al., 2006).

The effects of aromatic components of the PW plume on the water column, and the fate of these compounds in the sea surface microlayer given the high possibility of photo-oxidation, are not fully understood to date. The volume of PW released will increase with the number and age of drilling platforms on the NWS. The fate and effects (if any) of the components other than hydrocarbons, including added chemicals such as corrosion inhibitors, are yet to be studied. Research will be required to determine the effects of chronic, low-level pollution loads on the NWS (Heywood et al., 2006).

1.4.1 **Tributyltin**

The need for effective antifoulants, which prevent the settlement and growth of marine organisms on submerged structures, such as buoys, fish cages and ships hulls, is recognised universally (Evans Birchenough and Brancato 2000; Evans, Tsvetnenko and Woodworth 2000; Konstantinou and Albanis, 2004). For many years, TBT compounds were the most widely used active ingredients in paint formulations. However, use of TBT has been regulated internationally since 1990 due to its severe impact on the aquatic ecosystem (Fent, 1996) and the demonstrated effects of TBT on the disruption of the endocrine system by mimicking or inhibiting the action of gonadal steroid hormones, oestradiol and testosterone (Makita and Omura, 2006).

Prolonged release of TBT from ship-bottom coatings has resulted in the imposition of male sexual characteristics upon female gastropods, or imposex, a phenomenon which was first described by Blaber (1970) in the United Kingdom. Imposex in marine gastropods has subsequently been linked to the exposure of these biota to TBT in aquatic systems worldwide (e.g. Smith, 1981a; Smith, 1981b; Smith, 1981c; Santos et al., 2004; Foale, 1993). This cause and effect relationship ultimately resulted in a global ban of TBT. The decline in the occurrence of imposex following worldwide bans has been used as a biomarker and biological indicator for environmental monitoring of TBT since the introductions of these bans in countries worldwide (Axiak et al., 2003).

The use of TBT as an antifouling agent was regulated from 1989 and is now controlled under Victoria Government Notifiable Chemicals Order (Victorian State Government 2000). TBT is banned from use on small vessels (i.e. less than 25 m in length) and is being phased out on larger and international vessels. However, despite the partial ban on the use of TBT in Australia, a survey of imposex in Thais orbita (a predatory gastropod mollusc) along the New South Wales (NSW) coast found imposex was still widespread 10 years after the introduction of the ban, in particular within harbour/bay areas where contamination "hotspots" are still present and where physical remobilization and dispersion processes may be less pronounced compared to high-energy coastal areas (Gibson and Wilson, 2003).

Australia is signatory to the International Convention on the Control of Harmful Anti-fouling Systems on Ships (International Maritime Organisation 2001), which prohibits the use of harmful organotins in anti-fouling paints used on ships and establishes a mechanism to prevent the potential future use of

1 Introduction

other harmful substances in anti-fouling systems. Under the terms of the Convention, Parties to the Convention are required to prohibit and/or restrict the use of harmful anti-fouling systems on ships flying their flag, as well as ships not entitled to fly their flag but which operate under their authority and all ships that enter a port, shipyard or offshore terminal of a Party.

Importantly, the presence of TBT is not necessarily linked to silts and muds because TBT occurs in flakes that may be deposited in sandy areas as well. Therefore, TBT may potentially be present in quantities above the required analytical detection limit of 0.5 μg Sn/kg.

1.4.2 Mercury

There are no natural resources of Hg in the Ashburton River catchment and offshore environment adjacent to Onslow. Atmospheric contributions of particulate-bound anthropogenic Hg emissions have been shown to be responsible for elevated levels of CH₃Hg⁺ (methyl-mercury) since the 1980s that are present in piscivorous fish from aquatic environments remote from industrial sources, such as the Gippsland Lakes region (Fitzgerald et al., 1997). However, no such data are currently available for the NWS region.

1.5 **Objectives**

This Sediment Quality Assessment has the following objectives:

- to complete a field and analytical program of sediment proposed for dredging in accordance with guidance provided in the NAGD;
- to characterise sediment grainsize and contaminant concentrations at the proposed dredge material placement sites;
- to assess the physical property of surficial sediment;
- to determine whether the quality and quantity of data gathered are sufficient to adequately characterise the contamination status of the sediments to assess placement options; and
- to classify the sediment as acceptable, or otherwise, for unconfined placement at proposed dredge material placement sites.

The assessment of the physical properties of surficial sediment was carried out so the resultant information could be used in predictive models of sediment behaviour in dredge and placement plumes. Additionally, geochemical characteristics of sediments within the Trunkline Route were extrapolated using the existing data set to provide evidence that no further geochemical sampling of sediments is necessary along the Trunkline Route.

1.6 **Sediment Quality Assessment Rationale**

The SAP (Appendix A) was developed for the sediment quality assessment program at the Dredge Area on the basis of the rationale outlined in the following sections. In accordance with the SAP, samples were collected from within, and outside of, the proposed Dredge Area as well as at five proposed dredge material placement sites (Figure 1-1; Figure 1-2).

1.6.1 **Dredge Area**

The limited existing chemical data indicates that sediments from within, and adjacent to, the Dredge Area are generally uncontaminated. The exceptions are As and Ni which have been documented as exceeding the NAGD Screening Levels (URS 2009a). However, unlike the current investigation, the

1 Introduction

previous regional investigation did not specifically focus on sediment within the proposed Dredge Area.

1.7 Scope of Works

This investigation assessed sediments to be dredged from the proposed navigation channel, the MOF and the PLF, and sediments from the proposed dredge material placement sites. Sediments proposed for dredging in this area have been inadequately characterised to date and represent a total estimated area of about 11,500,000 m2 with a corresponding volume of assessable sediment of about 11,500,000 m³ in the upper 1 m of the sediment profile (Appendix A).

The primary use of the sediment quality data was to characterise the contaminant status of sediment and confirm its acceptability for offshore placement options. The scope of works for the Dredge Area contamination investigation is outlined in the following sections.

1.7.1 Contaminants of Potential Concern

Review of the available literature in the SAP (Appendix A) indicates that the Dredge Area is distant from all known, current and historical, contaminant sources. The Contaminants List presented in the SAP (Appendix A) was based on COPCs derived from the current understanding of site history (including urbanization and catchment wide industrial activities) and existing data. Short cores were collected at 60 sample locations and sediment samples from short cores were analysed for all COPCs on the Contaminants List:

- metals (Ba, Cd, Cr, Cu, Hg, Ni, Pb, and Zn);
- metalloids (As, Sb);
- TBT; and
- TOC.

In addition, AI was analysed in all samples and a select number of short core samples were analysed for CaCO₃ content and PSD to enable a comparison of surficial sediment texture in the Dredge Area and in the proposed dredge material placement sites.

Sediment samples from five randomly selected locations within the Dredge Area also underwent testing for radionuclide activity (SC5, SC13, SC17, SC33, SC55). Sediment samples from deep cores were analysed for the same COPCs as sediment samples from the short cores (excluding TBT, TOC, PSD and CaCO₃ content) to confirm the contaminant status of these sediments. Additional metal analytes were opportunistically included for deep core sediment samples, including Be, Co, Fe, Mn, Mo, Se, Ag, Sn and V, although these analytes are not considered further in the current assessment.

As concentrations of TBT in all samples were below the analytical LOR of 0.5 μgSn/kg, normalisation of TBT concentration was not required. Normalisation is usually required when concentrations exceed this limit.

Methodology

Sediment Sampling 2.1

Sampling in the Dredge Area and in the proposed dredge material placement sites commenced on 22 September 2009 and was completed on 28 September 2009. Sampling was conducted from a 17 m long twin hull catamaran (RV Adrenalin Sprint; Operator: Broadsword Marine Pty Ltd). The sampling position at each sample location was recorded using a global positional system (GPS) with an accuracy of +/-4 m. Locations were recorded in Eastings and Northings in the AMG94 (Zone 54) coordinate system. Water depths at each sample location were determined using a depth profiler.

2.1.1 **Short Cores and Deep Cores**

Near-surface sediments were sampled at 60 sample locations (Figure 1-1) using a manually-driven piston coring device to refusal. Refusal was encountered at every short core sample location at a depth of less than 0.40 m, resulting in only one sample per short core location. Sediment samples from the short cores were analysed for all COPCs on the SAP Contaminants List (Appendix A), excluding radionuclide (the sum of gross alpha and gross beta activity) activity, which was assessed in five randomly selected samples.

An additional 12 sample locations adjacent to the Dredge Area (i.e. within 100-200 m west and east) were sampled by short piston corer, or grab sampler if there was a refusal of the corer at or near the surface. Samples from these additional 12 sample locations (SC61-SC72) were analysed for all COPCs on the SAP Contaminants List.

A randomly selected and distributed sample of 19 short cores from across the Dredge Area were also analysed for CaCO₃ content and PSD.

In addition to the short cores, 15 deep cores (Figure 1-1) were sampled to the full depth of dredging and were analysed for all COPCs on the SAP Contaminants List, excluding TBT and radionuclide activity. Subsurface, consolidated sediments and sediments deeper than 1 m below the sea floor were sampled as part of geotechnical investigations to characterise the geological strata within and near the Dredge Area. The 15 deep core samples were all taken from within the southern nearshore section of the proposed navigation channel. These deep cores penetrated to the depth of dredging and were collected to validate the assumption that subsurface sediments were not contaminated.

2.1.2 Selection of Sample Locations

The sampling rationale outlined in Section 3 of the SAP (Appendix A) was developed on the basis of the history of the proposed Dredge Area, its known contaminant status and its generally uncontaminated sediment.

Short core sample locations SC1-SC60 were selected by placing a 90 x 90 m square grid over the entire area to be dredged, numbering each square (total 1,500) and selecting 60 squares using random numbers generated by internet sourced software (Urbaniak and Plous, 2009). Samples were collected as close as practicable to the centre of each of the selected grid squares.

An additional 12 sample locations were included within 100-200 m to the west and east of the navigation channel (SC61-SC72), to enable a geochemical characterization of near surface sediments outside the proposed Dredge Area and to provide additional data, should subsequent adjustments to the location of the navigation channel be required (Figure 1-1).

2 Methodology

Shallow and Deep Cores in Dredge Area 2.1.3

Sediment was collected to a maximum depth of 0.40 m at the 72 sample locations using a piston corer. A Van Veen sediment grab sampler was used where a core sample was not obtained due to a lack of penetration of the piston corer at these locations (i.e. armoured, shelly and limestone surface and loss of core). A Van Veen grab sampler was used at 11 of the 72 short core sample locations, six of which are located within the Dredge Area (i.e. SC5, SC13, SC16, SC24, SC25 and SC51).

Piston cores in the Dredge Area and in water depths of <15 m were collected by highly experienced URS personnel from the workboat, which was anchored at each sample location. The corer was used to collect unconsolidated sediment to a maximum depth of penetration. Although a maximum designated depth of penetration of 1.0 m below the seabed was attempted at every location, refusal of the core tube at or near the surface in armoured beds (limestone, shells) or in stiff clays at depths of 0.4 m or less was observed at all sample locations.

A clean, polycarbonate barrel (80 mm inner diameter) was loaded into the corer and lowered to the seabed. The barrel was then remotely driven (using weights) into the sediment with a piston remaining at bed level to create a partial vacuum and draw sediments into the barrel. The corer was able to penetrate and retain the entire profile of soft sediments, but penetration was limited in dense sand, or stiff clay units. Core catchers were successfully used in sandy and gravelly substrates to prevent core loss during retrieval from the seabed.

Following sample retrieval, the core length was measured and the sample described, including colour, composition and sediment texture, as well as other distinguishing characteristics, such as shell content, biota and presence of a hydrous layer.

URS sampling staff determined the acceptability of the core following collection, which was based on the following criteria:

- no obvious loss of surficial sediment or sediment from the bottom of the core;
- vertical penetration of core through the sedimentary profile to the required depth or depth of refusal; and
- continuous and undisturbed sediment stratigraphy.

The cores were each logged and photographed through the clear core barrel prior to or after extraction (Appendix B). Descriptions of short core and grab samples are shown in Appendix C and deep core logs are shown in Appendix D. Sample identifiers included the location and depth interval, for example, SC18_0.0-0.30, indicates that the sediment sample was collected from location SC18 and over the interval from 0.0 m to 0.30 m, using a piston corer (i.e. short core). The sampling date was also recorded on the label. A summary of short core and deep core samples is provided in Table 2-1 and Table 2-2, and locational and descriptive data are shown in Appendices C and D. Analytical and physicochemical data (including PSD) for short core samples are shown in Appendix D and analytical data for the deep cores are shown in Appendix E.

The locations of deep cores were selected for geotechnical purposes and their distribution covers the area in and near the Dredge Area evenly. While all 60 short core sample locations (SC1-SC60) are located within the proposed Dredge Area, 11 of the 15 deep core sample locations (MC001-MC015) are located outside of the proposed Dredge Area. These deep cores were obtained as part of the geotechnical investigation. However, 11 of the deep core sample locations are within 500 m of the Dredge Area and therefore provide an adequate characterization of the subsurface sediments below a depth of 1 m and to the depth of dredging in a regional setting.

2 Methodology

Surfical sediments were assessed by URS using shallow sediment coring, while sediments in deep cores were subsampled in cooperation with Coffey Geotechnics, who undertook the geotechnical sampling to maintain project synergies and avoid duplication of sampling activities. Although it is unlikely that contaminants would occur in the sediment below 1.0 m in depth and, while sampling intervals in the deep cores may usually necessitate a compositing of long subsurface core intervals at depths below 1.0 m, the actual subsampling intervals depended on the requirements of the geotechnical investigation. Although 0.1 m sample intervals were selected at appropriate depths and to the depth of dredging to assess the concentrations of COPCs (excluding TBT), composite samples of the 1.0-2.0 m depth interval were also obtained in each core, or where available, to assess the potential for contamination below the upper 1.0 m of sediments, which was assessed by the shallow coring. A total of between four and six downcore subsamples per deep core were taken and analysed for COPCs (excluding TBT), therefore adequately assessed the contamination status at each deep core location.

2 Methodology

Table 2-1 Short core sample IDs and locations.

Sample ID	Easting	Northing	Sample ID	Easting	Northing
SC1 294811 7601769 SC37		SC37	294280	7602127	
SC2	296346	7611579	SC38	295623	7603478
SC3	295623	7603117	SC39	296611	7613104
SC4	296611	7613015	SC40	294724	7603477
SC5	296249	7610056	SC41	294546	7602486
SC6	295082	7602579	SC42	295351	7605190
SC7	295260	7604469	SC43	295167	7602947
SC8	295265	7603746	SC44	295172	7602223
SC9	295355	7603386	SC45	296341	7611399
SC10	295888	7608426	SC46	296075	7609054
SC11	295178	7601771	SC47	294551	7603207
SC12	295983	7608250	SC48	296885	7614639
SC13	295726	7607976	SC49	296887	7615181
SC14	295358	7602392	SC50	294634	7603305
SC15	295625	7606630	SC51	297065	7615718
SC16	296068	7609695	SC52	296880	7614370
SC17	295177	7604291	SC53	295354	7605281
SC18	295171	7603565	SC54	295626	7606088
SC19	296976	7614726	SC55	296073	7608697
SC20	294455	7602579	SC56	295442	7602396
SC21	295895	7607801	SC57	294996	7602039
SC22	295535	7602847	SC58	295530	7605550
SC23	294995	7603567	SC59	295268	7604199
SC24	297337	7616981	SC60	295893	7608613
SC25	295897	7608159	SC61	294112	7602449
SC26	295176	7602488	SC62	295694	7602174
SC27	294542	7602401	SC63	295202	7601407
SC28	295530	7606178	SC64	294421	7601591
SC29	294634	7602316	SC65	297483	7616720
SC30	296344	7610946	SC66	297037	7616787
SC31	296435	7612208	SC67	296156	7612320
SC32	295263	7603030	SC68	296858	7612181
SC33	294722	7603660	SC69	295656	7608403
SC34	294638	7603470	SC70	296183	7608312
SC35	295356	7604558	SC71	295138	7605216
SC36	296793	7614095	SC72	295687	7605137

2 Methodology

Table 2-2 Deep core sample IDs and locations.

Sample ID	Easting	Northing	
MC001	296373	7608002	
MC002	296146	7607007	
MC003	295865	7606006	
MC004	295609	7604978	
MC005	295330	7604003	
MC006	295109	7602920	
MC007	294964	7602228	
MC008	294722	7601436	
MC009	TBC	TBC	
MC010	294454	7602376	
MC011	294060	7603652	
MC012	294588	7603999	
MC013	293819	7604525	
MC014	293822	7605658	
MC015	293816	7606981	

2.1.4 **Grab Sampling in Proposed Dredge Material Placement Sites**

Dredged sediments are likely to be disposed of at one or more of five proposed dredge material placement sites, located to the east, northeast and northwest of the Dredge Area (Figure 1-2). Surface grab samples were obtained at the following sample locations to assess the surficial sediments:

- 10 sample locations at the proposed Nearshore Dredge Material Placement Site A;
- 10 sample locations at the proposed Nearshore Dredge Material Placement Site B;
- 24 sample locations at the proposed Nearshore Dredge Material Placement Site C, including 4 sample locations to the north of the site;
- 10 sample locations at the proposed Offshore Dredge Material Placement Site D; and
- 10 sample locations at the proposed Offshore Dredge Material Placement Site E.

One sample location at the proposed Nearshore Dredge Material Placement Site C, one sample location at the proposed Nearshore Dredge Material Placement Site A, and two sample locations at the proposed Nearshore Dredge Material Placement Site B had been previously sampled during the Pilot Survey (URS 2009a). The analytical data for these four samples were not included in subsequent discussions to maintain the integrity of the sampling, analysis and data interpretation of the works undertaken in the current investigation.

Therefore, a total of 64 sample locations were sampled within the five proposed dredge material placement sites. Samples were analysed for all COPCs on the Contaminants List, excluding TBT and TOC.

TBT and TOC were analysed in two samples randomly selected from each proposed dredge material placement site, excluding the proposed Nearshore Dredge Material Placement Site C, in which four samples were analysed. CaCO₃ content and PSD were also assessed in five or six samples from each proposed dredge material placement site, excluding PSD at the proposed Nearshore Dredge Material Placement Site C, from which 12 samples were obtained.

2 Methodology

A Van Veen grab sampler with a gape of 0.16 m² was used to collect surficial sediments to a depth of up to 0.1 m at 64 sample sites within the five proposed dredge material placement sites (Figure 1-2). The grab sampler was retrieved from the seabed to recover the most recently deposited sediments. The depth of penetration of the grab sampler was dependent on the surficial sediment texture, and penetration below a depth of 5 cm was limited in well-armoured substrates overlying stiff clays. A representative and well-homogenized subsample of the recovered grab sample was collected for analysis of COPCs (i.e. metals). Selected grab samples were also analysed for CaCO₃ content, PSD, TBT and TOC. A minimum of 10 randomly selected locations were also sampled within each of the potential dredge material placement sites to characterise surface sediments. A summary of grab samples collected is provided below (Table 2-3), while and locational and descriptive data are shown in Appendices C and D. Analytical and physicochemical data (including PSD) for grab samples are shown in Appendix D.

2 Methodology

Table 2-3 Sample locations within the five proposed dredge material placement sites.

Dredge Material	Sample	Easting	Northing	Samples	Total	Priority
Placement Site	ID		,	Collected	Samples	
	G40	297892	7606074			
	G41	298032	7605724			
	G42	297303	7604505			
	G43	296365	7604379		10	High
Dredge Material	G44	296379	7605178	10		
Placement Site A	G45	296617	7604071			
	G46	297205	7605136			
	G47	296645	7604757			
	G48	296253	7603861			
	G49	297639	7605178			
	G30	298354	7612444			
	G31	298508	7612080			
	G32	299264	7612178			
	G33	299376	7611408	1		High
Dredge Material	G34	297822	7610204	10		
Placement Site B	G35	298774	7610764	10	10	
	G36	300048	7611338			
	G37	299292	7610792			
	G38	298886	7611730			
	G39	299502	7613074	1		
Dredge Material	G1	309172	7623120	24	25 (1)	High
Placement Site C	G10	306998	7623695	1		
	G11	308001	7624956	1		
	G12	309431	7625395			
	G13	309442	7624201	1		
	G14	309026	7622163	1		
	G15	306942	7621758	1		
	G16	308113	7623267	1		
	G17	306683	7624697	1		
	G18	304678	7624280	1		
	G19	305163	7621532	1		
	G2	306289	7626476]		
	G3	309296	7625924	1		
	G4	308147	7626870			
	G5	304588	7626589	1		
	G6	304814	7625046	1		
	G69	305642	7624221	1		
	G7	304577	7623346	1		
	G70	308353	7623985	1		

2 Methodology

Dredge Material	Sample	Easting	Northing	Samples	Total	Priority
Placement Site	ID			Collected	Samples	
	G71	308124	7622034			
	G72	305969	7621821			
	G73	304933	7622661			
	G8	304127	7621690			
	G9	305726	7622309			
Dredge Material Placement Site D	G59	271467	7629145	- 10	11 (1)	Medium
	G60	270341	7627073			
	G61	271242	7625711			
	G62	272706	7626994			
	G63	272177	7628301			
	G64	271332	7627343			
	G65	270769	7628368			
	G66	271895	7626589			
	G75	272178	7627681			
	G76	271060	7626382			
Dredge Material Placement Site E	G50	276051	7636961	- 10	12 (2)	Medium
	G51	275792	7639056			
	G52	276085	7637659			
	G53	277233	7637671			
	G54	276772	7636770			
	G55	275679	7635632			
	G56	274857	7636882			
	G57	275251	7638527			
	G58	274497	7637468			
	G74	275223	7636231			

NB: a number in brackets represents the number of pre-existing sediment grab samples.

2.2 **Sample Handling**

Samples were taken in a manner that ensured that cross-contamination between samples was minimized. Samples collected from each interval were homogenised and then placed into appropriately cleaned and preserved containers provided by ALS. Sample containers were filled with some headspace to allow for freezing and labelled immediately. Samples were then stored in a large freezer for the duration of the sampling program, as the logistics of sampling in remote areas prevented daily dispatches of samples.

Upon completion of the sampling program, eskies were filled to capacity with jars and sealed with adhesive tape and promptly delivered to ALS for processing and analysis. A chain of custody (CoC) form was included in the eskies. Given that the analytical holding times for sediment, as specified in the NAGD, are 14 days for organics (TBT), 28 days for Hg and six months for other metals, submission of samples within 24 hours of sampling is not critical, provided the samples are chilled and kept in the dark.

2 Methodology

2.3 **Sediment Subsampling Procedures**

Sample management procedures on the sampling barge included the careful collection of the sediment samples from the core tubes or grab sampler, following the recovery of the sediment core or grab from the seafloor. The penetration of short piston cores varied from less than 0.1 m to 0.4 m, depending on the sediment substrate encountered, but core refusal was encountered at every sample location. All sample handling and processing was performed to minimize contamination, as described below:

- nitrile gloves were worn by all sampling personnel and gloves were disposed of immediately after each core sample processing to reduce the potential for cross-contamination between samples;
- the workspace on the sampling vessel was rinsed down regularly with ambient seawater to clean all surfaces and minimize dust contamination of samples (e.g. dust from clothing on sampling personnel, shoes, storage containers, etc.;
- sediment was subsampled using a stainless steel sampling spoon; and
- samples collected from each interval were homogenised in a stainless steel bowl and placed into certified clean new screw-cap 250 ml glass jars with Teflon lid liners (inorganics metals and TBT analyses) and clean plastic zip lock bags (PSD analyses) that were provided by ALS Laboratory Group (ALS) Brisbane.

The chemicals in the Contaminants List are non-volatile substances and the concentrations of these chemicals are unlikely to be significantly affected by the homogenization procedure and the storage procedure. The subsampling and storage procedure is therefore unlikely to have resulted in measurable changes in concentrations of analytes on the Contaminants List.

Sample jars were kept in a freezer for the duration of the sampling trip and submitted to ALS frozen in eskies, using a same day courier delivery. A CoC form was included in the eskies. ALS separated samples for analysis of TBT, TOC and other inorganic analytes and PSD. The samples for PSD analyses were then forwarded by courier from ALS Brisbane to ALS in Newcastle, where sample receipt was again confirmed. Analytical holding times were met for all samples and analytes, in alignment with the required time limits set out in the NAGD. Sample analyses were scheduled as soon as practicable following delivery to the laboratory and extractions and analyses were consistent with the analyte holding times required in the NAGD.

2.4 **Sediment Analyses**

Whole Sediment Chemical Analyses

ALS is a National Association of Testing Authorities (NATA) accredited laboratory service, and carried out the project specific analyses, excluding analyses for PSD. ALS has also previously been independently audited and approved for use by URS environmental chemists.

Classification testing, comprising quantitative determination of the PSD of the sediment into silt/clay and sand/gravel fractions, was undertaken by ALS in accordance with AS1289.3.6.2/AS1289.3.6.3. PSD analysis data is shown in Appendix F.

Whole sediment samples from the Dredge Area and the proposed dredge material placement sites were submitted to ALS Brisbane (short core and grab samples) (Appendix D) and ALS Perth (deep core samples) (Appendix E). All sediment subsamples from the 15 deep cores up to the maximum depth of 13.5 m and the short cores up to a depth 0.4 m were analysed for all COPCs on the

2 Methodology

Contaminants List, excluding radionuclide activity which was analysed in five core samples from five locations only and TBT in the deep core samples.

Whole sediment samples from short cores were analysed for the following:

- total metals and metalloids (Al, As, Ba, Cd, Cr, Cu, Hg, Ni, Sb, Pb, and Zn);
- TBT;
- TOC:
- PSD (selected samples only); and
- CaCO₃ content (selected samples only).

Grab samples obtained in the proposed dredge material placement sites were analysed for the same suite of analytes, and with TBT, TOC, PSD and CaCO₃ content being assessed in a selected number of samples only.

An assessment of the detection limits achieved by ALS, against NAGD Screening Levels and the requirements of the SAP (Appendix A) is provided in Table 2-4. Analytical LOR in all short core and grab samples met the practical quantitation limits (PQLs), as stipulated in the NAGD, while the LORs in samples from the deep cores were above the PQLs for all analytes. Analytical holding time, sample containers and preservation requirements of samples are shown in Table 2-5.

Radionuclide activity was measured at five sample locations in the Dredge Area (SC5, SC13, SC17, SC33, SC55). The sample locations for the analysis of radionuclide activity were selected randomly from the total number of short core sampling sites. Radionuclide activity assessment was undertaken by a designated subcontractor of ALS (Appendix G).

CaCO₃ content and PSD were determined in 19 short core sediment samples, 25 grab samples (CaCO₃) and 38 grab samples (PSD). Samples were selected randomly from locations distributed throughout the Dredge Area and the proposed dredge material placement sites.

16

2 Methodology

Table 2-4 Analytes, PQLs, LORs and the NAGD Screening and Maximum Levels.

Analyte	Unit	PQL ¹	LOR ²	LOR ³	NAGD Screening	NAGD Maximum
Al	mg/kg	200	na	50 (na)	na	na
As	mg/kg	1	1	1 (5)	20	70
Ва	mg/kg	na	0.10	na (10)	na	na
Cd	mg/kg	0.10	0.10	0.1 (1)	1.50	10
Cr	mg/kg	1	1	1 (2)	80	370
Cu	mg/kg	1	1	1 (5)	65	270
Hg	mg/kg	0.01	0.01	0.01 (0.1)	0.15	1
Ni	mg/kg	1	1	1 (2)	21	52
Pb	mg/kg	1	1	1 (5)	50	220
Sb	mg/kg	0.50	0.50	0.5 (5)	2	25
TBT	ugSn/kg	1	0.50	0.5 (na)	9	70
TOC	%	0.10	0.10	0.1 (na)	na	na
Zn	mg/kg	1	1	1 (5)	200	410

¹PQL from the NAGD; ²LOR from the SAP (for short core and grab samples, deep core in brackets); ³LOR from ALS.

NB: "na" indicates that a requirement is not available for that analyte.

Table 2-5 Container type, preservation and holding times for sediment samples.

Analyte	Container	Preservation	Holding Time	Reference
MC	G (T)	frozen	7 days	AS 1289.2.1.1 (1992)
Metals & Metalloids	G (T)	frozen	6 months	US EPA SW846 (1994), National Environment Protection Council (NEPC) (1999)
Hg	G (T)	frozen	28 days	US EPA SW846 (1994), NEPC (1999)
тос	G (T)	frozen	180 days	ALS
ТВТ	G (T)	frozen	extract within 14 days, analyse within 40 days	US EPA SW846 (1994)
PSD	Z	frozen	na	AS 1289.3.6.2/AS 1289.3.6.3

NB: G(T) = glass jar with teflon coated lid liner; Z = 250ml plastic ziplock bag.

2 Methodology

2.4.2 **Quality Assurance and /Quality Control**

Field and laboratory Quality Assurance/Quality Control (QA/QC) measures carried out for the sampling program included the analysis of one trip blank sample, field triplicate samples (Table 2-6) and split samples (Table 2-7; Table 2-8). In addition, samples were submitted to a NATA-accredited analytical laboratory and detailed field records, CoC documentation, certificates of analysis and data validation reports were produced and kept. QA/QC reports are available for short cores and grab samples (Appendix D) and deep core samples (Appendix E).

Interbatch samples requiring analysis of one sample from a previous batch were not required, as all short core and grab samples were submitted to the analytical laboratory in a single batch at the conclusion of the sampling program.

19

Sediment Quality Assessment

2 Methodology

Table 2-6 Analytical data for short core sample field triplicate samples.

2		3		0	3	ځ	ċ	3	ä	5	4	2	твт	TOC	MC
20	Sample ID	ī	Y.	Da	3	5	3	бL	Ē	2	ac	117	(mgSn/kg)	(%)	(%)
QC126	SC3	3850	16.20	8.40	<0.1	29.50	11.20	<0.01	8.80	5.20	<0.5	18.90	n/a		28.40
QC208	SC3	3940	19.80	09.6	<0.1	32.40	10.50	<0.01	11.10	2.60	<0.5	22.40	n/a		29.20
	SC3_0.0-0.22	4050	18.30	10.20	<0.1	35.30	10.70	<0.01	10.40	00.9	<0.5	21.80	<0.5	0.34	27.40
Mean		3947	18.10	9.40	n/a	32.40	10.80	n/a	10.10	2.60	n/a	21.03	n/a	n/a	28.33
SD		100	1.81	0.92	n/a	2.90	0.36	n/a	1.18	0.40	n/a	1.87	n/a	n/a	06:0
RSD (%)		2.5	10.00	9.80	n/a	9.00	3.30	n/a	11.70	7.10	n/a	8.90	n/a	n/a	3.20
QC124	SC6	4460	7.98	14.90	<0.1	41.30	12.90	<0.01	12.90	08.9	<0.5	19.50	<0.5	0.05	21.20
QC206	SC6	3920	8.38	16.10	<0.1	37.00	12.00	<0.01	11.40	00.9	<0.5	17.90	n/a		21.80
	SC6_0.0-0.2	4310	8.65	20.70	<0.1	41.00	12.50	<0.01	12.70	09.9	<0.5	19.40	<0.5	0.04	22.40
Mean		4230	8.34	17.23	n/a	39.77	12.47	n/a	12.33	6.47	n/a	18.93	n/a	n/a	21.80
SD		279	0.34	3.06	n/a	2.40	0.45	n/a	0.81	0.40	n/a	06.0	n/a	n/a	09:0
RSD (%)		9.9	4.00	17.80	n/a	00.9	3.60	n/a	09.9	6.40	n/a	4.70	n/a	n/a	2.80
QC127	SC38	4040	19.00	8.60	<0.1	31.00	10.70	<0.01	10.10	2.60	<0.5	20.20	n/a	n/a	26.40
QC209	SC38	4170	11.90	09.6	<0.1	31.90	9.00	<0.01	9.80	5.50	<0.5	18.40	n/a	n/a	25.20
	SC38_0.0-0.40	3920	11.70	8.60	<0.1	31.70	9.40	<0.01	09.6	5.50	<0.5	19.40	<0.5	0.11	23.80
Mean		4043	14.20	8.93	n/a	31.53	9.70	n/a	9.83	5.53	n/a	19.33	n/a	n/a	25.13
SD		125	4.16	0.58	n/a	0.47	0.89	n/a	0.25	0.07	n/a	06.0	n/a	n/a	1.30
RSD (%)		3.1	29.30	6.50	n/a	1.50	9.20	n/a	2.60	1.00	n/a	4.70	n/a	n/a	5.20
QC125	SC43	5310	9.31	23.60	<0.1	38.80	13.30	<0.01	13.30	7.00	<0.5	24.20	<0.5	0.11	22.60
QC207	SC43	2290	9.36	24.80	<0.1	43.00	15.50	<0.01	15.50	7.60	<0.5	24.80	n/a	n/a	25.10
	SC43_0.0-0.23	2300	10.20	21.80	<0.1	39.20	13.20	<0.01	13.60	6.80	<0.5	24.00	<0.5	0.09	22.50
Mean		5400	9.62	23.40	n/a	40.33	14.00	n/a	14.13	7.13	n/a	24.33	n/a	n/a	23.40
SD		165	0.50	1.51	n/a	2.32	1.30	n/a	1.19	0.42	n/a	0.42	n/a	n/a	1.47
RSD (%)		3.0	5.20	6.50	n/a	5.70	9.30	n/a	8.40	5.80	n/a	1.70	n/a	n/a	6.30

Annonna	Toomoor T
O LINE	Saging
+uominoo.	מחווופוז

2 Methodology

41.00		10	0	0	7	ċ	;	1	i.	5	40	7	TBT	TOC	MC
20	ac id sample id	₹	Ä	o O	3	วั	3	D L	Ē	5	o S	u 7	(mgSn/kg)	(%)	(%)
QC128	SC53	4310	12.80	9.10	<0.1	33.60	09.6	<0.01	10.40	5.70	<0.5	18.80	n/a	n/a	27.20
QC210	SC53	3930	10.90	8.80	<0.1	30.50	9.00	<0.01	8.70	5.30	<0.5	19.00	n/a	n/a	24.20
	SC53_0.0-0.05	4180	12.80	9.80	<0.1	33.50	9.80	<0.01	10.40	00.9	<0.5	19.70	<0.5	0.10	27.90
Mean		4140	12.17	9.23	n/a	32.53	9.47	n/a	9.83	2.67	n/a	19.17	n/a	n/a	26.43
SD		193	1.10	0.51	n/a	1.76	0.42	n/a	0.98	0.40	n/a	0.47	n/a	n/a	1.97
RSD (%)		4.7	9.00	2.60	n/a	5.40	4.40	n/a	10.00	6.20	n/a	2.50	n/a	n/a	7.40
QC123	SC56	3780	9.00	8.30	<0.1	36.50	10.80	<0.01	11.20	00.9	<0.5	18.80	<0.5	60.0	18.90
QC205	SC56	4060	9.73	9.20	<0.1	37.80	10.70	<0.01	11.70	6.20	<0.5	19.80	n/a	n/a	24.10
	SC56_0.0-0.31	3670	12.00	15.90	<0.1	39.40	10.30	<0.01	11.50	6.80	<0.5	20.40	<0.5	90.0	24.10
Mean		3837	10.24	11.13	n/a	37.90	10.60	n/a	11.47	6.33	n/a	19.67	n/a	n/a	22.37
SD		201	1.56	4.15	n/a	1.45	0.26	n/a	0.25	0.40	n/a	0.81	n/a	n/a	3.00
RSD (%)		5.2	15.30	37.30	n/a	3.80	2.50	n/a	2.20	09.9	n/a	4.10	n/a	n/a	13.40

NB: all data in mg/kg unless otherwise indicated; bold data = exceedance of RSD limit by >20%; n/a = not analysed.

42907466/00090/1

20

2 Methodology

Table 2-7 Analytical data for short core and grab sample split sample analysis.

QC ID	Sample ID	AI	As	Ва	Cd	Cr	Cu	Hg	Ni	Pb	Sb	Zn
	G13	4060	19.8	12.3	<0.1	25.1	4.7	<0.01	4.7	4.4	<0.5	11.9
QC201	G13	5200	20	11	<2	23	5.1	<0.01	15	3.9	<2	11
	G17	4200	25	12.1	<0.1	30	5.2	<0.01	5.2	4.9	<0.5	12.7
QC200	G17	5000	21	10	<2	24	4.6	<0.01	15	3.9	<2	10
	SC13	6820	20.9	17.5	<0.1	35	11.1	<0.01	11.4	6.2	<0.5	24
QC202	SC13	7800	26	16	<2	33	11	<0.01	21	6.8	<2	22
	SC16	5680	20.5	12.9	<0.1	34.1	8.2	<0.01	9.4	5.6	<0.5	21.3
QC203	SC16	5800	19	12	<2	32	8.2	<0.01	16	5.1	<2	19
	SC17_ 0.0-0.35	5560	22.6	5.4	<0.1	40.4	9.3	0.01	10.9	6.1	<0.5	23
QC204	SC17	6600	22	11	<2	36	9.4	<0.01	16	5.5	<2	21

NB: all data in mg/kg.

Table 2-8 Analytical data for deep core split sample analysis.

QA/QC	Sample ID	As	Ва	Ве	Cr	Со	Cu	Fe	Pb	Mn	Ni	V	Zn
	MC015_0.45-0.55	11	n/a	n/a	20	5	6	18200	369	n/a	6	36	12
Yes	MC015_0.45-0.55	10	n/a	n/a	20	4	7	18000	370	n/a	6	36	11
	MC012_0.9-1.0	7	20	n/a	45	8	24	34600	8	186	18	57	23
Yes	MC012_0.9-1.0	<5	10	n/a	45	9	18	40100	8	171	20	62	26
	MC009_3.9-4.0	n/a	60	1	62	17	29	53000	14	389	38	76	56
Yes	MC009_3.9-4.0	n/a	60	<1	57	17	26	50100	14	326	36	73	55

NB: n/a = not assessed; all data is mg/kg.

2.4.3 **Laboratory Procedures**

Receipt of Samples

On receipt of the sediment samples at ALS, the following checks and procedures were undertaken:

- · custody seals and tape on the esky check to ensure they were unbroken and uncut;
- signature on the external custody seal checked to ensure it matched one of the sampler(s) signature(s) on the internal CoC;
- examination was untaken to determine if samples had been maintained at the appropriate temperature during shipment;
- · sample containers were checked within the cooler to ensure they were intact;
- identification on the sample containers was checked to ensure it corresponded to the entries on the
- number of sample containers received was checked to ensure it was equal to the number of samples listed on the CoC;
- · the relevant area on the CoC was completed by laboratory staff; and

2 Methodology

 a copy of the CoC was delivered electronically to the designated URS Project Manager or contact person within three working days.

Once sample custody was determined to be valid, the samples were logged in by the laboratory as per the standard operating procedure. If CoC discrepancies existed, appropriate notes (signed and dated) were made on the CoC and the URS Project Manager was notified by ALS. In the event that the laboratory Sample Custodian judged the sample custody (or part thereof) to be invalid (e.g. samples arrive damaged or custody seals are broken), the Project Manager was advised immediately and those samples were not analysed until authorised by the Project Manager. Any problem with a sample was noted on the CoC Record and URS was notified in writing as soon as practicable for action or response.

2.5 Laboratory Analytical Quality Assurance/Quality Control (QA/QC)

Specific mechanisms that were used to check the accuracy and precision of the analytical data to ensure the data quality objectives for the project are met are outlined in the following sections:

2.5.1 Laboratory Duplicates

Laboratory duplicates are samples prepared by dividing a field sample into two or more aliquots, then analysed separately. Duplicate samples are considered to be two replicates. Replicate samples were ideally representative of the originating sample, but in many cases this is not practical due to the nature of the sample; hence the analysis of replicate samples provide an indication of the effect of sample matrix variability on precision, in addition to assessing analytical precision

2.5.2 Independent Verification Standards

Independent verification standards are standards prepared from an independent batch of primary reference standard(s) to those used for routine calibration. Certified calibration check standards were used to verify that an analytical instrument was correctly calibrated.

2.5.3 Calibration Check Standards

Calibration check standards are pre-prepared from the same solution and were used to confirm linearity of the initial calibration curve. Acceptance must be within predicted limits.

2.5.4 Surrogate Spikes

Surrogates are organic compounds which are similar to analytes of interest in chemical composition, extraction, and chromatography, but which are not normally found in field samples. These compounds are spiked into all sample aliquots prior to preparation and analysis. Percent recoveries are calculated for each surrogate, providing an indication of analytical accuracy including unusual matrix effects and gross sample processing errors.

2 Methodology

2.5.5 Standard Reference Materials

The NAGD states:

"to ensure analytical procedures are conducted properly and produce reliable results, standard reference materials (SRM) should be analysed with each batch, that is, a sample of certified composition".

The intent of the NAGD is that the analytical techniques undertaken will be able to determine potential bias in the analysis. If analyses were regularly under reporting the measured concentrations of contaminants in samples, this would be detected with the use of control samples or standards (SRM). Control samples or alternatively, SRM are required to determine if there is a bias towards under reporting in the analysis of samples. The purpose of the SRM is to verify that there is minimal bias in the results and the concentrations reported in the samples are as close as practical to the measured concentration present in the sample for analysis. This bias can be assessed by a number of alternate methodologies. These alternate methodologies are run with each batch (10 to 20 samples). The three key methodologies employed by ALS to measure bias were:

- laboratory control samples (LCS);
- matrix spikes; and
- surrogates.

A laboratory control sample (LCS), is a sample of known composition (similar to an SRM). The United States Environmental Protection Agencys (US EPA) Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW846) Chapter 2 (US EPA 1993) defines a laboratory control sample as follows:

"A laboratory control sample consists of either a control matrix spiked with analytes representative of the target analytes or a certified reference material".

The ALS laboratory control samples (for non-metal inorganics and organics) and the ALS in-house certified reference material for metals are considered to be samples of certified composition. In commercial laboratories in Australia, SRMs are not commonly used due to the high cost and difficulty in obtaining standards for suitable analyte concentrations. Commercial laboratories in Australia do not routinely run SRM with each batch of analysis (10-20 samples) as suggested in the NAGD. There are numerous problems with obtaining SRMs for regular use including:

- timely delivery of the SRM and storage within holding time;
- provision of an SRM for the correct analytes from different suppliers (different SRMs are required for different analyse);
- obtaining an SRM of a comparable matrix to the subject site; and
- obtaining an SRM with a range of contaminant concentrations that is similar to that of the subject site. Ultra trace techniques have a limited dynamic range.

ALS quality procedures follow those outlined in the NEPC (1999) and are based on US EPA protocols, however these procedures differ from those of the NAGD in that ALS spikes appropriate representative surrogates into all samples for targeted organic compound analysis and they do not routinely use certified reference materials as laboratory control samples for organics, but instead use laboratory control samples.

In summary, URS considers that the use of laboratory and control samples, matrix spikes and surrogates by ALS conforms to the intent of the NAGD with respect to SRM. Although SRM are useful

2 Methodology

for metal analyses, they are not as prevalent or available for organic contaminants. The approach undertaken by ALS, using a combination of laboratory control samples, matrix spikes and surrogates is appropriate for the analysis of organic contaminants in environmental samples. ALS currently uses an in-house certified sample for metals analysis. The use of an in-house certified sample is appropriate in lieu of a SRM.

2.6 **Data Handling**

All analytical data generated by the analytical laboratory were appropriately reduced and underwent comprehensive validation prior to reporting. Records and numerical calculations were performed so that reconstruction of the work by a qualified individual other than the originator could be preformed.

The originating analyst validated a given data package to ensure that:

- holding times had been met;
- appropriate standard operating procedures had been followed;
- field sample results were correct and complete (if applicable);
- QA/QC checks ensured that results were correct and complete;
- QA/QC checks ensured that results were within established control limits and data quality objectives; and
- documentation was complete.

If the originating analyst found the validity of data to be in doubt due to non-conformance with the above checklist, then the data was flagged and appropriate corrective procedures are initiated. Once the originating analyst has reduced and validated the data package, it was passed onto the Document Control/Quality Assurance Officer, Laboratory Manager, or other appropriately qualified senior personnel for independent review. A NATA approved signatory then signed and released the work reported.

2.6.1 **Data Validation**

The primary objective of the data validation process is to ensure the data reported can be used to achieve the project objectives. The validity of all analytical data reported was assessed by URS by review of the QA/QC check results. This was performed in accordance with the US EPA guidelines and the NAGD where appropriate (US EPA, 1993). Accuracy and precision measurements from the appropriate QA/QC checks were compared with the analytical Data Quality Objectives (DQOs) to assess the quality of the analytical data.

2.6.2 **Analytical Data Quality Objectives**

Analytical DQOs requirements are summarized below (Table 2-9). In cases where the DQOs were not met, the potential reasons for non-compliance were identified and the analytical results was flagged, if warranted. The NAGD data validation requirements were met for blanks ("at or near the detection limit"), field replicates (+/-50% relative percentage deviation (RPD)) and spiked duplicates (+/-35% RPD).

2 Methodology

Table 2-9 **Analytical Data Quality Objectives.**

Parameter	Data Quality Objective
Blank Samples (1 per trip)	at or near the LOR and approximately 10% of primary analytical sample concentrations (excluding Hg)
Sample Condition	samples received intact and cold
Holding Time	samples analysed within the NAGD-specified holding times
Field Duplicate Samples (6 triplicate, 5 split, 6 field duplicate (deep cores))	RPD <35% (duplicates) and RSD <50% (triplicates)
Lad Duplicate Sample (1 in 10)	RPD <35% or as per laboratory requirement
Interbatch Samples	n/a (one batch only for short core and grab samples, none for deep core samples)
Laboratory Control Samples (1 in 10)	RPD <35% or as per laboratory requirement
Surrogate (all samples)	recovery as per laboratory requirement

2.7 Statistical Methodology

Spatial assessment of selected COPCs was undertaken using MapInfoTM, a geographical information system. Analytical data was stored, manipulated and analysed in Microsoft Excel™. Laboratory analytical results were supplied as comma separated files. This reduced the labour required for data entry and minimised potential for errors in data input. Laboratory issued data were imported into EDM™, a proprietary database. Tables were created by exporting data from EDM™ into Excel™. Concentrations of organic contaminants, including TBT, were normalised to 1% TOC content in accordance with the requirements in NAGD in Microsoft Excel™.

The NAGD refer to guidance for undertaking 95% Upper Confidence Limit (UCL) provided by the New South Wales Environmental Protection Authority (NSW EPA) (1995). This guidance recommends two procedures for normal and log-normal distributions. Where the coefficient of variation (CoV) is less than 1.2 (indicating a normal distribution), the recommendation is to undertake Procedure D. In cases where the coefficient is greater than 1.2 (indicating a possible log normal distribution) the recommendation is to undertake Procedure G, if it can be demonstrated that the distribution is lognormal. However with variable datasets of log-normal distribution, Procedure G is prone to producing anomalously large results therefore 'bootstrapping' routines are commonly undertaken.

The 95% UCL of mean concentrations were calculated for As, Cr and Ni as they exceeded the NAGD Screening Levels). These 95% UCLs were calculated as follows:

- · values less than the analytical LOR were assigned a value equal to half the LOR for the purpose of calculating the 95% UCL;
- the CoV of the dataset was determined;
- if the CoV was less than 1.2, the dataset was assumed to be normally distributed and the 95% UCL is calculated based on arithmetic mean (Procedure D of NSW EPA guidance);

2 Methodology

- if the CoV was greater than 1.2, the dataset was tested for log-normal distribution;
- if the dataset was log normal, the 95% UCL was calculated based on geometric mean (Procedure
- if the dataset was not log normal, Procedure D was used to calculate the 95% UCL based on arithmetic mean.
- the 95% UCL of mean contaminant concentration was compared with the NAGD Screening Levels.

The NSW EPA (1995) acknowledges that Procedure D can be applied to many forms of contaminant concentration distributions including those that are not normally distributed.

Results

3.1 **Sediment Texture**

Sediments from the Dredge Area and the five proposed dredge material placement sites varied substantially in textural characteristics and between areas, but were generally similar locally within a single area. The descriptive statistics (minimum, maximum, mean and standard deviation values, and the number of samples) for PSD in sediments within the Dredge Area and in the five proposed dredge material placement sites in presented below (Table 3-1). Note that cobbles are particles greater than 6 cm in width, gravel is greater than 2 mm, sand is 63 μ m – 2mm, silt is 2 μ m – 63 μ m and clay is less than 2 μ m.

Mean sand percentages were around 60% in surficial sediments of the proposed Nearshore Dredge Material Placement Sites A and B, increasing to about 70% sand content in sediments of the proposed Nearshore Dredge Material Placement Site C and Offshore Dredge Material Placement Site E. Sediment from the proposed Offshore Dredge Material Placement Site D comprised approximately 80% sand content (Table 3-1). This compares to a mean sand content of about 52% in near surface sediments in the Dredge Area.

Mean clay content was generally similar at all proposed dredge material placement sites, with mean clay content varying between 13.3% and 16.6%. The exception was the proposed Offshore Dredge Material Placement Site D, where mean clay content was 8.4%. Sediments in the Dredge Area were slightly more clayey, with a mean clay content of 17.8% (Table 3-1). However, this slightly higher clay content may be due to the collection of deeper sediment samples of up to a depth of 0.4 m in the Dredge Area compared to the shallow grab samples (<0.1 m depth) collected within the proposed dredge material placement sites.

3 Results

Table 3-1 Descriptive statistics of sediment PSD in the Dredge Area and the proposed dredge material placement sites.

A	Ctatiatia	Cobbles	Gravel	Sand	Silt	Clay
Area	Statistic	(%)	(%)	(%)	(%)	(%)
	Min	0	2	17	6	10
Whatter Doods Ass	Max	0	34	71	53	33
Wheatstone Dredge Area (SC1 - SC60)	Mean	0	14	53	16	18
(301-3000)	SD	0	10	14	10	6
	n	19	19	19	19	19
	Min	0	0	42	2	9
Dundan Matarial	Max	0	39	83	14	16
Dredge Material Placement Site C	Mean	0	9	71	7	13
riacement site c	SD	0	13	15	4	2
	n	12	12	12	12	12
	Min	0	6	56	8	11
Duadaa Matadal	Max	0	25	64	13	19
Dredge Material Placement Site B	Mean	0	13	61	10	17
i lacement one b	SD	0	7	3	2	3
	n	5	5	5	5	5
	Min	0	2	42	6	12
Dradas Material	Max	0	34	68	12	28
Dredge Material Placement Site A	Mean	0	16	58	10	17
I lacement one A	SD	0	12	10	3	7
	n	5	5	5	5	5
	Min	0	2	59	9	9
Dradas Material	Max	0	10	77	17	21
Dredge Material Placement Site E	Mean	0	5	70	12	13
i idooment one L	SD	0	3	7	3	5
	n	5	5	5	5	5
	Min	0	1	72	3	8
Drades Material	Max	0	9	88	11	9
Dredge Material Placement Site D	Mean	0	3	82	7	8
i lacoment dite D	SD	0	3	6	3	1
	n	5	5	5	5	5

3.1.1 **Dredge Area**

Sediments within the Dredge Area are generally dark red to red-brown clayey gravelly sands with abundant CaCO3 shells and shell fragments, with varying mud (silt and clay fraction) contents of between 20-40% and gravel contents ranging from <5% to 34%. Hard, armoured surfaces were sampled at numerous locations, where shell and limestone beds made penetration of the piston corer difficult. Clay content of between 10% and 33% was present within the area and refusal of the piston corer in stiff clay or limestone and shell beds at a depth of less than 0.40m was observed at all sample locations. TOC content was generally less than 0.2%.

3 Results

3.1.2 **Proposed Dredge Material Placement Sites**

Sediment texture between three of the proposed Nearshore Dredge Material Placement Site A (water depth: <7 m), Site B (water depth: 10-12 m) and Site C (water depth: 12-15 m) was similar, with mud content ranging from about 20% to 26.8% and surficial sediments comprising red-brown ferruginous slightly gravelly muddy sands. CaCO3 content increased from 40% in the proposed Nearshore Dredge Material Placement Site A and Site B, to more than 60% in the proposed Nearshore Dredge Material Placement Site C. Sediment colour was progressively more gray-greenish with increasing distance from the shore, reflecting the increasing marine influence to the sediment composition (i.e. CaCO₃) and a decreasing lithogenic/terrigenous component (i.e. ferruginized clays and silts). Sediments at the proposed Offshore Dredge Material Placement Site D (water depth 38-48 m) and the proposed Offshore Dredge Material Placement Site E (water depth 63-71 m), which are furthest offshore, were generally olive gray-green muddy sands with some shell fragments (<5% gravel) and up to 70% CaCO₃. TOC content was generally less than 0.3%.

3.2 **Geochemical Results**

3.2.1 **Dredge Area**

A summary of descriptive statistics of the COPCs from the 72 short core samples taken from within the Dredge Area (SC1-SC54, SC56-SC60) and adjacent to the Dredge Area (SC61-SC72) are presented below (Table 3-2). One field replicate sample (SC55) has also been included. Analytical results for geochemical analyses are also shown in Appendix D.

A summary of descriptive statistics of the COPCs from the 15 deep core samples taken from within the Dredge Area (MC001-MC015) are presented below (Table 3-5). Analytical results for geochemical analyses are also shown in Appendix E.

3.2.2 **Proposed Dredge Material Placement Sites**

A summary of descriptive statistics of the COPCs from the 64 grab samples taken from within the five proposed dredge material placement sites are presented below (Table 3-6). Analytical results for geochemical analyses are also shown in Appendix D.

3 Results

Analytical data and descriptive statistics for short core samples from within and adjacent to the Dredge Area. Table 3-2

CI CI	2	0	Ğ	3	٤		3	=	3	á	2	TBT	TOC	CaCO ₃	MC
odinple ID	₹	â	0	3	5	3	D E	Ž	20	2	17	(µg Sn/kg)	(%)	(%)	(%)
SC1_0.0-0.27	8490	13.20	28.00	0.05	67.80	18.50	0.01	21.10	0.25	9.40	33.70	0.25	90.0		22.50
SC2_0.0-0.22	4070	18.90	12.20	0.05	31.10	5.90	0.01	6.10	0.25	4.80	14.80	0.25	60.0	55.20	25.00
SC3_0.0-0.22	4050	18.30	10.20	0.05	35.30	10.70	0.01	10.40	0.25	00.9	21.80	0.25	0.34		27.40
SC4_0.0-0.25	4270	18.60	10.50	0.05	27.50	5.20	0.01	4.50	0.25	4.40	13.40	0.25	0.13		27.00
SC5	11000	21.40	17.70	0.05	50.90	17.30	0.01	20.30	0.25	9.30	38.90	0.25	0.34	39.10	40.60
SC6_0.0-0.2	4310	8.65	20.70	0.05	41.00	12.50	0.01	12.70	0.25	09.9	19.40	0.25	0.04		22.40
SC7_0.00.050	5270	21.50	10.60	0.05	38.20	9.40	0.01	10.20	0.25	00.9	23.10	0.25	0.11	38.50	20.10
SC8_0.0-0.30	5730	21.70	7.00	0.05	42.10	9.80	0.01	11.20	0.25	6.40	24.50	0.25	0.18		21.40
SC9_0.0-0.20	7780	22.90	9.50	0.05	55.00	14.70	0.01	16.30	0.25	8.60	32.10	0.25	0.15		30.10
SC10_0.00.050	6040	18.10	12.60	0.05	36.10	9.20	0.01	9.60	0.25	2.60	21.80	0.25	0.12	46.70	25.70
SC11_0.00.055	13400	13.10	112.00	0.05	82.10	39.00	0.01	37.00	0.25	15.10	62.00	0.25	90.0		30.80
SC12_0.00.055	0809	16.30	11.00	0.05	37.10	9.20	0.01	9.80	0.25	5.60	21.70	0.25	0.14	46.50	24.80
SC13	6820	20.90	17.50	0.05	35.00	11.10	0.01	11.40	0.25	6.20	24.00	0.25	0.16		30.50
SC14_0.00.051	2990	5.48	53.20	0.05	48.80	15.30	0.01	18.10	0.25	8.50	24.70	0.25	0.04		21.30
SC15	0969	18.50	11.40	0.05	49.40	12.30	0.01	15.00	0.25	7.40	28.20	0.25	0.10	32.70	24.60
SC16	2680	20.50	12.90	0.05	34.10	8.20	0.01	9.40	0.25	2.60	21.30	0.25	0.13		29.00
SC17_0.0-0.35	2560	22.60	5.40	0.05	40.40	9.30	0.01	10.90	0.25	6.10	23.00	0.25	0.10	38.50	22.30
SC18_0.0-0.30	0909	23.40	00.9	0.05	40.80	10.20	0.01	11.20	0.25	6.40	24.30	0.25	0.12	45.70	24.90
SC19_0.00.052	4660	16.20	10.90	0.05	30.30	5.70	0.01	6.20	0.25	4.90	15.00	0.25	60.0		26.20
SC20_0.0-0.20	10600	15.80	27.30	0.05	70.00	24.30	0.01	24.40	0.25	10.10	38.60	0.25	90.0		26.00
SC21_0.00.055	8820	14.80	15.90	0.05	25.00	17.40	0.01	18.10	0.25	8.10	31.20	0.25	0.13	37.00	25.50
SC22_0.00.053	4540	6.24	19.10	0.05	36.40	18.90	0.01	13.90	0.25	6.40	19.70	0.25	90.0		22.20
SC23_0.0-0.25	5950	21.10	10.30	0.05	42.90	10.80	0.01	11.80	0.25	09.9	25.40	0.25	60.0		23.40

42907466/00090/1

30

31

<u>:</u>			í		Ċ	Ć		i	ō	i	ı	TBT	TOC	CaCO ₃	MC
Sample ID	₹	AS	g	3	ว	3	D L	Ē	<u>0</u>	5	u 7	(hg Sn/kg)	%	(%)	%
SC24	4210	19.90	18.10	0.05	22.10	4.50	0.01	3.00	0.25	4.30	12.70	0.25	0.14	77.20	30.70
SC25	3970	19.80	12.20	0.05	23.70	6.10	0.01	5.80	0.25	4.30	15.90	0.25	0.15		24.80
SC26_0.00.051	6100	08.9	15.90	0.05	49.50	16.80	0.01	18.50	0.25	8.80	24.60	0.25	0.05	0.01	19.30
SC27_0.0-0.32	5570	11.70	13.60	0.05	42.10	11.00	0.01	12.20	0.25	5.50	18.70	0.25	0.07		19.40
SC28_0.0-0.25	8110	18.80	11.10	0.05	53.30	16.00	0.01	18.10	0.25	7.90	28.40	0.25	0.10	37.50	24.60
SC29_0.0-0.20	8900	15.30	96.30	0.05	00'.29	18.40	0.02	22.30	0.25	9.40	33.60	0.25	0.07		23.40
SC30_0.0-0.2	6850	18.80	12.80	0.05	33.70	9.50	0.01	9.70	0.25	6.10	21.90	0.25	0.16	52.40	27.30
SC31_0.0-0.20	3860	20.30	10.00	0.05	23.30	4.40	0.01	3.60	0.25	4.00	11.80	0.25	0.10		25.10
SC32_0.00.05	4040	12.70	10.60	0.05	30.70	9.90	0.01	9.40	0.25	5.60	20.10	0.25	0.10		21.70
SC33_0.0-0.33	6850	19.10	8.40	0.05	42.80	9.70	0.01	11.20	0.25	6.50	23.00	0.25	0.15		29.70
SC34_0.0-0.25	8140	28.50	9.20	0.05	53.00	14.40	0.01	16.00	0.25	8.50	33.20	0.25	0.14		34.30
SC35_0.00.055	4710	22.40	12.60	0.05	34.10	8.40	0.01	8.70	0.25	5.60	20.00	0.25	0.01		24.40
SC36_0.00.050	2660	19.80	13.60	0.05	33.50	7.70	0.01	8.10	0.25	5.40	21.90	0.25	0.17		25.80
SC37_0.00.051	13800	14.30	45.60	0.05	78.10	31.40	0.02	35.40	0.25	13.40	57.70	0.25	0.10		28.80
SC38_0.0-0.40	3920	11.70	8.60	0.05	31.70	9.40	0.01	09.6	0.25	5.50	19.40	0.25	0.11		23.80
SC39_0.00.050	4910	20.00	10.30	0.05	32.60	6.30	0.01	06.9	0.25	5.00	16.20	0.25	0.14		29.20
SC40_0.0-0.31	7890	26.60	7.80	0.05	20.60	14.10	0.02	15.90	0.25	8.10	32.40	0.25	0.17		26.30
SC41_0.0-0.30	7250	19.00	20.10	0.05	59.10	15.40	0.01	17.80	0.25	8.00	29.70	0.25	0.09		22.60
SC42_0.0-0.25	5020	18.80	7.50	0.05	31.80	8.60	0.01	7.80	0.25	5.20	17.60	0.25	0.09		24.10
SC43_0.0-0.23	2300	10.20	21.80	0.05	39.20	13.20	0.01	13.60	0.25	08.9	24.00	0.25	0.09		22.50
SC44_0.00.052	2860	4.69	31.90	0.05	50.70	15.00	0.01	19.00	0.25	8.80	23.10	0.25	90.0		20.50
SC45	4540	17.40	11.20	0.05	30.30	00.9	0.01	5.70	0.25	4.70	15.00	0.25	0.15	50.30	24.70
SC46_0.0-0.25	6640	14.00	13.00	0.05	38.30	11.10	0.01	12.60	0.25	6.10	23.80	0.25	0.08	46.90	23.40
SC47_0.0-0.25	4770	23.80	5.40	0.05	39.10	7.30	0.01	8.80	0.25	2.60	20.10	0.25	0.10		22.20
SC48_0.00.050	4360	16.90	11.40	0.05	25.50	5.70	0.01	5.70	0.25	4.70	14.40	0.25	0.11	63.20	26.60

Sediment Quality Assessment

3 Results

₩ %

CaCO₃ (%)

TOC (%)

(hg Sn/kg) TBT

Zn

14.70

0.25 0.25 0.25 0.25

29.80

16.20 19.70

26.90 22.80 30.40 25.60 31.70 26.20 27.90 26.20 25.00 25.00 22.30 26.70 22.30

46.00 23.40 23.60 23.40 40.60

22.30

36.10 29.20

26.80

1.23

Sediment Quality Assessment										
3 Results										
Sample ID	A	As	Ва	8	'n	Cu	Нg	Ē	Sb	Pb
SC49_0.00.050	4610	17.40	12.70	0.05	26.90	00.9	0.01	5.00	0.25	4.70
SC50_0.0-0.23	7350	22.20	7.30	0.05	51.80	13.50	0.01	15.50	0.25	8.00
SC51	4270	47.40	20.90	0.10	24.70	5.50	0.01	2.20	0.25	4.50
SC52_0.00.050	4920	18.50	12.10	0.05	36.20	6.40	0.01	7.10	0.25	5.50
SC53_0.00.055	4180	12.80	9.80	0.05	33.50	9.80	0.01	10.40	0.25	00.9
SC54_0.0-0.20	8880	22.00	14.80	0.05	48.40	16.50	0.01	17.80	0.25	34.00
SC55_0.0-0.30	8400	16.20	20.90	0.40	46.30	14.20	0.01	14.10	0.25	7.10
SC55_0.0-0.25	5620	22.80	7.00	0.05	43.50	8.90	0.01	11.00	0.25	09.9
SC56_0.0-0.31	3670	12.00	15.90	0.10	39.40	10.30	0.01	11.50	0.25	6.80
SC57_0.00.055	10100	17.60	37.00	0.05	77.40	23.50	0.01	26.70	0.25	11.80
SC58_0.00.055	5820	24.90	11.50	0.05	38.80	9.50	0.01	10.60	0.25	6.40
SC59_0.0-0.23	2160	22.00	6.40	0.05	41.60	9.70	0.01	11.70	0.25	6.20
SC60_0.0-0.20	6460	16.00	7.30	0.05	47.30	10.70	0.01	13.20	0.25	09.9
SC61_0.00.058	10200	18.50	24.80	0.05	62.20	22.30	0.02	23.40	0.25	9.70
SC62_0.00.050	0096	13.30	34.50	0.05	71.20	19.20	0.03	23.90	0.25	10.50
SC63	6820	19.70	9.40	0.05	52.90	13.80	0.02	14.90	0.25	8.00
SC64_0.00.055	7680	12.20	14.20	0.05	61.70	16.60	0.01	18.50	0.25	8.30
SC65	3470	21.80	12.60	0.05	19.10	3.60	0.01	1.50	0.25	3.90
SC66	4360	26.10	13.50	0.05	24.40	4.70	0.01	4.00	0.25	4.70
SC67_0.00.055	3430	28.20	5.40	0.05	24.90	3.90	0.01	3.70	0.25	4.00
SC68_0.0-0.20	3590	19.50	7.00	0.05	27.40	4.40	0.01	3.50	0.25	4.20
SC69_0.00.056	8020	15.00	15.20	0.10	51.20	18.70	0.01	17.80	0.25	8.10
SC70_0.00.050	6510	19.90	10.20	0.05	40.70	9.60	0.01	10.80	0.25	6.30
SC71	7020	24.70	7.60	0.05	49.50	11.30	0.01	13.40	0.25	7.40
SC72	6020	23.40	06.9	0.05	41.40	9.80	0.01	10.50	0.25	6.30

33

40.60 25.56 18.80 40.60 25.47 3.63 3.82 73 CaCO3 19.13 77.20 43.47 77.20 19.13 0.01 0.01 19 0.34 0.11 0.05 73 0.01 0.34 90.0 8 0.01 0.11 (hg Sn/kg) TBT 0.25 0.25 0.25 0.00 73 0.25 0.25 0.00 11.00 62.00 24.45 24.31 99.6 9.64 73 34.00 34.00 7.17 3.83 4.00 4.08 73 В 0.25 0.25 0.00 0.25 0.25 0.25 0.00 Sb 73 37.00 12.82 12.71 96.9 2.20 6.84 73 Ź 0.00 0.02 0.00 0.03 0.01 0.01 0.01 0.01 롼 73 11.88 39.00 6.29 4.40 3.60 6.27 73 S 82.10 14.15 22.10 82.10 42.60 13.66 42.82 73 61 ပ် 90.0 0.04 73 0.40 90.0 0.40 0.05 ၓ 112.00 112.00 16.52 15.62 17.12 16.66 5.40 Ва 73 61 18.40 47.40 18.05 6.16 4.69 6.34 73 As 61 13800 13800 3670 6303 2226 6285 2226 73 61 ₹ Maximum Minimum Maximum Minimum Mean Mean SD S Sample ID SC1-SC72 SC1-SC60

Sediment Quality Assessment

3 Results

NB: all units are mg/kg unless otherwise indicated; if a concentration was recorded as being below the LOR, half of that LOR is reported; bold text indicates that a concentration exceeds the NAGD

Screening Level.

3 Results

Analytical data and descriptive statistics for deep core samples from within the Dredge Table 3-3

Commis ID	۸-	D-	C-4	0-	C	11	NI:	C.L.	DL	7	МС
Sample ID	As	Ва	Cd	Cr	Cu	Hg	Ni	Sb	Pb	Zn	(%)
MC001_1.0-2.0m	2.50	10.00	0.50	52.00	39.00	0.05	30.00	2.50	13.00	38.00	17.80
MC001_0.45-0.55m	2.50	30.00	0.50	46.00	19.00	0.05	20.00	2.50	10.00	24.00	14.80
MC001_0.9-1.0m	5.00	90.00	0.50	61.00	25.00	0.05	38.00	2.50	14.00	39.00	18.90
MC001_3.4-3.5m	8.00	20.00	0.50	29.00	14.00	0.05	13.00	2.50	8.00	18.00	19.60
MC001_6.4-6.5m	6.00	0.50	0.50	34.00	16.00	0.05	12.00	2.50	7.00	15.00	15.40
MC002_1.0-1.1m	8.00	20.00	0.50	43.00	17.00	0.05	15.00	2.50	8.00	19.00	20.10
MC002_1.9-2.0m	2.50	140.00	0.50	44.00	17.00	0.05	17.00	2.50	7.00	20.00	12.90
MC002_2.9-3.0m	2.50	40.00	0.50	56.00	34.00	0.05	29.00	2.50	13.00	41.00	25.30
MC002_6.4-6.5m	7.00	20.00	0.50	31.00	8.00	0.05	10.00	2.50	6.00	12.00	17.60
MC003_1-2m	2.50	50.00	0.50	56.00	26.00	0.05	29.00	2.50	10.00	37.00	17.10
MC003_0.45-0.55m	6.00	30.00	0.50	51.00	20.00	0.05	21.00	2.50	8.00	26.00	16.20
MC003_0.9-1.0m	5.00	40.00	0.50	51.00	27.00	0.05	25.00	2.50	9.00	31.00	16.10
MC003_3.4-3.5m	2.50	80.00	0.50	65.00	39.00	0.05	35.00	2.50	17.00	54.00	18.70
MC003_6.9-7.0m	2.50	20.00	0.50	46.00	17.00	0.05	19.00	2.50	8.00	26.00	20.40
MC004_1-2m	5.00	20.00	0.50	36.00	12.00	0.05	12.00	2.50	6.00	14.00	14.20
MC004_0.9-1.0m	7.00	60.00	0.50	34.00	14.00	0.05	12.00	2.50	6.00	14.00	14.20
MC004_3.9-4.0m	14.00	20.00	0.50	20.00	6.00	0.05	6.00	2.50	2.50	7.00	18.90
MC004_8.0-8.1	2.50	80.00	0.50	38.00	13.00	0.05	15.00	2.50	7.00	16.00	16.30
MC005_1-2m	2.50	20.00	0.50	42.00	15.00	0.05	19.00	2.50	9.00	24.00	22.40
MC005_0.45-0.55m	17.00	0.50	0.50	30.00	8.00	0.05	9.00	2.50	6.00	17.00	21.20
MC005_0.9-1.0m	6.00	230.00	0.50	48.00	27.00	0.05	23.00	2.50	10.00	31.00	20.70
MC005_3.0-3.1m	2.50	100.00	0.50	47.00	30.00	0.05	29.00	2.50	13.00	35.00	15.00
MC005_6.9-7.0m	2.50	20.00	0.50	43.00	24.00	0.05	28.00	2.50	12.00	35.00	16.50
MC006_1-2m	2.50	20.00	0.50	48.00	20.00	0.05	22.00	2.50	7.00	27.00	15.80
MC006_0.45-0.55	2.50	20.00	0.50	60.00	34.00	0.05	30.00	2.50	10.00	35.00	23.70
MC006_0.9-1.0	2.50	240.00	0.50	54.00	29.00	0.05	28.00	2.50	10.00	35.00	16.60
MC006_3.26-3.36	6.00	50.00	0.50	46.00	20.00	0.05	20.00	2.50	6.00	27.00	14.00
MC006_9.9-10.0	14.00	90.00	0.50	52.00	32.00	0.05	24.00	2.50	14.00	21.00	18.40
MC007_0.45-0.55	2.50	50.00	0.50	52.00	21.00	0.05	21.00	2.50	10.00	31.00	15.60
MC007_0.8-0.9	6.00	50.00	0.50	58.00	27.00	0.05	24.00	2.50	12.00	32.00	15.60
MC007_1.0-2.0	2.50	30.00	0.50	48.00	26.00	0.05	23.00	2.50	10.00	27.00	15.20
MC008_0.45-0.55	2.50	40.00	0.50	58.00	27.00	0.05	32.00	2.50	13.00	43.00	15.30
MC008_0.8-0.9	2.50	110.00	0.50	62.00	28.00	0.05	32.00	2.50	14.00	44.00	17.60
MC008_2.0-3.0	2.50	0.50	0.50	46.00	19.00	0.05	16.00	2.50	8.00	18.00	12.60
MC008_3.8-3.9	5.00	30.00	0.50	44.00	23.00	0.05	17.00	2.50	8.00	21.00	17.80
MC008_7.0-7.1	6.00	10.00	0.50	34.00	7.00	0.05	9.00	2.50	2.50	12.00	18.80
MC009_2.0-3.0	2.50	40.00	0.50	51.00	21.00	0.05	29.00	2.50	11.00	40.00	15.70
MC009_1.0-1.1	7.00	50.00	0.50	48.00	13.00	0.05	15.00	2.50	6.00	21.00	16.10
MC009_13.4-13.5	16.00	0.50	0.50	17.00	5.00	0.05	6.00	2.50	2.50	7.00	17.20
MC009_3.9-4.0	2.50	60.00	0.50	62.00	29.00	0.05	38.00	2.50	14.00	56.00	21.50

3 Results

Sample ID	As	Ва	Cd	Cr	Cu	Hg	Ni	Sb	Pb	Zn	MC (%)
MC009_8.9-9.0	2.50	50.00	0.50	48.00	25.00	0.05	23.00	2.50	8.00	25.00	12.20
MC010_1.0-2.0	2.50	20.00	0.50	48.00	25.00	0.05	20.00	2.50	7.00	26.00	15.40
MC010_0.45-0.55	6.00	30.00	0.50	55.00	33.00	0.05	23.00	2.50	8.00	30.00	15.60
MC010_0.9-1.0	2.50	20.00	0.50	54.00	24.00	0.05	22.00	2.50	8.00	29.00	14.10
MC010_10.9-11.0	13.00	30.00	0.50	42.00	18.00	0.05	15.00	2.50	2.50	16.00	15.40
MC010_3.45-3.55	2.50	90.00	0.50	60.00	34.00	0.05	30.00	2.50	10.00	42.00	14.10
MC010_7.9-8.0	7.00	0.50	0.50	37.00	12.00	0.05	14.00	2.50	2.50	15.00	18.00
MC011_0.0-0.4	19.00	0.50	0.50	31.00	12.00	0.05	12.00	2.50	7.00	24.00	30.50
MC011_1.0-1.1	2.50	20.00	0.50	50.00	24.00	0.05	26.00	2.50	12.00	32.00	18.80
MC011_2.0-3.0	2.50	20.00	0.50	52.00	21.00	0.05	24.00	2.50	8.00	38.00	20.30
MC011_3.5-3.6	5.00	140.00	0.50	52.00	30.00	0.05	27.00	2.50	9.00	40.00	16.30
MC011_7.5-7.55	5.00	70.00	0.50	44.00	26.00	0.05	23.00	2.50	13.00	30.00	15.30
MC012_1.0-2.0m	5.00	40.00	0.50	51.00	31.00	0.05	26.00	2.50	11.00	31.00	17.20
MC012_0.45-0.55m	16.00	0.50	0.50	26.00	10.00	0.05	10.00	2.50	6.00	18.00	21.30
MC012_0.9-1.0m	7.00	20.00	0.50	45.00	24.00	0.05	18.00	2.50	8.00	23.00	15.30
MC012_4.0-4.1m	2.50	140.00	0.50	52.00	40.00	0.05	36.00	2.50	13.00	50.00	21.60
MC012_9.4-9.5	7.00	170.00	0.50	47.00	28.00	0.05	34.00	2.50	16.00	35.00	21.60
MC013_0.45-0.55	16.00	20.00	0.50	53.00	21.00	0.05	22.00	2.50	12.00	31.00	17.30
MC013_0.8-0.9	8.00	10.00	0.50	37.00	16.00	0.05	16.00	2.50	9.00	25.00	17.70
MC013_1.0-2.0	5.00	60.00	0.50	55.00	32.00	0.05	30.00	2.50	14.00	41.00	16.50
MC013_3.4-3.5	2.50	200.00	0.50	56.00	38.00	0.05	38.00	2.50	14.00	50.00	19.10
MC013_6.9-7.0	6.00	0.50	0.50	41.00	11.00	0.05	14.00	2.50	8.00	20.00	13.20
MC014_0.45-0.55	2.50	80.00	0.50	54.00	26.00	0.05	22.00	2.50	10.00	32.00	20.60
MC014_0.8-0.9	2.50	20.00	0.50	68.00	20.00	0.05	30.00	2.50	14.00	41.00	16.40
MC014_1.0-2.0	2.50	20.00	0.50	62.00	19.00	0.05	26.00	2.50	11.00	36.00	16.50
MC014_3.4-3.5	2.50	60.00	0.50	54.00	33.00	0.05	30.00	2.50	9.00	49.00	20.90
MC014_6.9-7.0	6.00	30.00	0.50	52.00	22.00	0.05	20.00	2.50	10.00	20.00	11.00
MC015_1.0-2.0m	2.50	20.00	0.50	52.00	24.00	0.05	23.00	2.50	11.00	46.00	18.20
MC015_0.45-0.55m	11.00	0.50	0.50	20.00	6.00	0.05	6.00	2.50	2.50	12.00	17.80
MC015_0.9-1.0m	9.00	60.00	0.50	27.00	9.00	0.05	8.00	2.50	2.50	13.00	18.40
MC015_3.4-3.5m	2.50	10.00	0.50	60.00	40.00	0.05	34.00	2.50	14.00	48.00	16.90
MC015_6.4-6.5m	13.00	20.00	0.50	23.00	7.00	0.05	8.00	2.50	5.00	12.00	17.00
Minimum	2.50	0.50	0.50	17.00	5.00	0.05	6.00	2.50	2.50	7.00	11.00
Maximum	19.00	240.00	0.50	68.00	40.00	0.05	38.00	2.50	17.00	56.00	30.50
Mean	5.63	48.67	0.50	46.54	22.07	0.05	21.69	2.50	9.20	28.75	17.48
SD	4.27	52.25	0.00	11.39	9.09	0.00	8.50	0.00	3.52	11.83	3.17
n	72	72	72	72	72	72	72	72	72	72	72

NB: all units are mg/kg unless otherwise indicated; if a concentration was recorded as being below the LOR, half of that LOR is reported; bold text indicates that a concentration exceeds the NAGD Screening Level.

3 Results

Analytical data and descriptive statistics for sediments in proposed dredge material placement sites. Table 3-4

	Sample	;		å	-	d	ė	-	=	ð	ä	ř	TBT	T0C	CaCO ₃	MC
Area	□	₹	AS	g	5	5	3	6 L	Ē	2	5	u7	(µg Sn/kg)	(%)	(%)	(%)
	G40	5440	24.50	10.80	0.05	38.90	9.30	0.01	10.90	0.25	6.50	23.60				28.80
	G41	6040	23.50	8.60	0.05	45.40	10.00	0.01	11.80	0.25	08.9	24.70			33.10	25.10
	G42	5200	29.00	11.60	0.20	40.10	10.10	0.01	10.00	0.25	7.00	20.80			44.20	25.80
	G43	6510	25.80	8.50	0.05	45.40	10.80	0.01	12.60	0.25	10.60	26.60				27.10
Dredge Material	G44	5300	24.70	7.80	0.05	39.50	8.40	0.01	9.70	0.25	2.90	21.20			38.80	23.30
Site A	G45	8210	24.10	11.10	0.05	55.10	14.70	0.01	16.50	0.25	8.60	32.60				34.10
	G46	0299	24.10	8.30	0.05	46.10	11.10	0.01	12.60	0.25	7.00	25.90	0.25	0.89	34.60	26.50
	G47	7110	21.20	10.00	0.05	47.30	13.20	0.01	14.10	0.25	7.60	29.50	0.25	0.15	35.80	26.60
	G48	5790	31.60	12.10	0.10	32.70	9.80	0.01	9.00	0.25	2.60	20.60				28.90
	G49	5120	23.20	8.60	0.05	34.90	8.40	0.01	8.50	0.25	5.40	19.80				25.60
Min		5120	21.20	7.80	0.05	32.70	8.40	0.01	8.50	0.25	5.40	19.80	0.25	0.15	33.10	23.30
Мах		8210	31.60	12.10	0.20	55.10	14.70	0.01	16.50	0.25	10.60	32.60	0.25	0.89	44.20	34.10
Mean		6139	25.17	9.74	0.07	42.54	10.58	0.01	11.57	0.25	7.10	24.53	0.25	0.52	37.30	27.18
SD		994	3.01	1.57	0.05	6.61	2.01	0.00	2.48	0.00	1.56	4.21	0.00	0.52	4.39	2.94
c		10	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	2.00	2.00	2.00	10.00
Dredge Material	G30	4860	33.90	15.20	0.05	26.80	09.9	0.01	2.00	0.25	4.70	13.50				24.70
Placement	G31	6110	32.30	14.20	0.05	34.70	8.60	0.01	8.20	0.25	6.20	18.60			62.60	30.20
Site B	G32	6530	24.00	14.20	0.05	39.60	10.60	0.01	11.20	0.25	0.70	22.80				34.40
	633	7180	23.30	9.10	0.05	46.60	12.20	0.01	13.80	0.25	7.20	29.00	0.25	0.14	37.80	27.90
	G34	6270	18.30	13.60	0.05	43.00	9.60	0.01	11.90	0.25	6.40	23.60				30.00
	G35	5630	17.40	9.80	0.05	36.80	8.10	0.01	8.60	0.25	5.50	20.00			45.20	30.60
	G36	4420	19.40	12.00	0.05	40.30	7.10	0.01	8.00	0.25	5.80	17.80				26.60
	G37	6120	18.10	10.30	0.05	38.80	8.80	0.01	10.00	0.25	00.9	22.10				28.70

42907466/00090/1

36

Carrolle Ali As Ba Cd Cr Cu Hg Ni Sb Pb Zr Qug Snrkg) Cd	3 Results																
Halfarrial G1 1 2400 1530 1530 1530 1530 1530 1530 1530 15	Area	Sample	A	As	Ba	8	ن	5	Hg	Z	Sb	Pp 9	Zn	TBT	T0C	CaCO3	MC
Control Cont		a 8	7420	20.70	42.70	30.0	00		50	14 60	30.0	0 2 9	02 00	(hg sn/kg)	(%)	(%)	%) ²
Material State S		023 033 043	3120	12.60	15.70	0.05	13.40	9.90	0.0	06.11	0.25	0.70	8.70	0.25	C0	37.80	25.30
Frage 17180 33.90 15.30 0.66 46.60 12.20 0.12 6.05 6.00 6.05 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	ij	3	3120	12.60	9.10	0.05	13.40	4.10	0.01	0.00	0.25	2.80	8.70	0.25	0.14	37.80	24.70
FATA CLEA OLOG 8.5G OLOG 8.82 0.26 5.80 0.05 6.05 0.00 3.97 0.00 1.27 6.70 0.00 1.27 6.70 0.00 0.00 1.27 0.00 <th< td=""><td>Мах</td><td></td><td>7180</td><td>33.90</td><td>15.30</td><td>0.05</td><td>46.60</td><td>12.20</td><td>0.01</td><td>13.80</td><td>0.25</td><td>7.20</td><td>29.00</td><td>0.25</td><td>0.15</td><td>81.40</td><td>34.40</td></th<>	Мах		7180	33.90	15.30	0.05	46.60	12.20	0.01	13.80	0.25	7.20	29.00	0.25	0.15	81.40	34.40
National G1 4173 6.67 2.26 0.00 9.67 2.27 0.00 3.97 0.00 1.27 6.00 0.00	Mean		5737	22.00	12.64	0.05	36.10	8.56	0.01	8.82	0.25	5.80	19.96	0.25	0.15	52.96	28.96
Material G1 10.00 <th< td=""><td>Q</td><td></td><td>1273</td><td>29.9</td><td>2.26</td><td>00.00</td><td>9.56</td><td>2.27</td><td>00.00</td><td>3.97</td><td>0.00</td><td>1.27</td><td>5.73</td><td>0.00</td><td>0.01</td><td>18.85</td><td>2.95</td></th<>	Q		1273	29.9	2.26	00.00	9.56	2.27	00.00	3.97	0.00	1.27	5.73	0.00	0.01	18.85	2.95
Material G1 4130 29.6 13.70 0.05 22.80 5.40 0.01 4.50 0.25 4.70 11.60 Heat of G2 4650 22.00 12.10 0.05 28.20 4.60 0.01 3.90 0.25 4.60 12.40 G3 4920 21.50 11.50 0.05 28.00 4.00 0.01 5.00 0.25 4.60 12.40 G5 4620 21.50 11.50 0.05 28.00 4.00 0.01 3.00 0.25 4.60 12.40 0.01 3.00 0.25 4.00 0.02 4.00 0.01 3.00 0.25 4.00 0.02 4.00 0.01 3.00 0.25 4.00 0.02 0.01 4.00 0.02 4.00 0.01 4.00 0.02 4.00 0.01 4.00 0.02 4.00 0.01 4.00 0.02 4.00 0.02 4.00 0.01 4.00 0.02 4.00 0.01			10	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	2.00	2.00	2.00	10.00
G2 4650 2200 12.10 0.05 28.20 460 0.01 3.90 0.25 460 12.10 0.05 28.20 460 0.01 3.90 0.25 460 12.10 0.05 20.00 5.20 0.01 5.00 0.25 460 13.30 460 13.30 460 13.30 460 13.30	Dredge Material	G1	4130	29.60	13.70	0.05	22.80	5.40	0.01	4.50	0.25	4.70	11.60				23.90
G3 4920 21.50 11.50 0.05 5.00 6.01 5.00 6.02 4.60 13.30 G4 4240 23.40 11.90 0.05 26.00 4.00 0.01 5.00 0.25 4.50 0.01 3.00 0.25 4.30 0.07 9.00 0.01 3.00 0.25 4.30 0.07 9.00 0.01 3.00 0.25 4.30 0.07 9.00 0.01 3.00 0.25 5.00 1.00 0.01 3.00 0.02 5.00 0.01 3.00 0.02 5.00 0.01 3.00 0.02 5.00 0.01 3.00 0.02 5.00 0.01 4.00 0.02 5.00 0.01 4.00 0.02 5.00 0.01 4.00 0.02 5.00 0.01 4.00 0.02 5.00 0.01 5.00 0.02 5.00 0.01 5.00 0.02 5.00 0.01 4.00 0.02 5.00 0.01 4.00	Placement	G2	4650	22.00	12.10	0.05	28.20	4.60	0.01	3.90	0.25	4.60	12.40				32.20
4240 23.40 11.90 0.05 26.00 4.00 0.01 3.00 0.25 4.30 10.70 4620 21.00 13.70 0.05 29.90 4.80 0.01 3.60 0.25 5.40 13.00 4280 28.40 12.90 0.05 28.80 4.40 0.01 3.60 0.25 5.40 13.00 4900 26.20 20.50 26.80 5.90 0.01 5.80 0.25 4.70 14.20 0.25 0.04 4900 26.20 20.60 0.05 25.80 0.01 5.80 0.25 4.70 14.20 0.25 0.14 4900 26.20 20.80 27.00 4.80 0.01 4.70 0.25 4.70 14.20 0.25 0.15 0.15 0.15 0.25 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.25 0.15 0.15	Site C	63	4920	21.50	11.50	0.05	30.00	5.20	0.01	5.00	0.25	4.60	13.30				28.80
4620 21.00 13.70 0.05 29.90 4.80 0.01 3.60 0.25 5.40 13.00 4280 28.40 12.90 0.05 28.80 4.40 0.01 4.40 0.25 5.00 12.00 0.25 0.14 4660 27.30 16.00 0.05 28.80 4.40 0.01 5.80 0.25 4.70 12.00 0.25 0.14 4900 26.20 20.60 0.05 25.80 0.01 5.80 0.25 4.70 14.00 0.25 0.14 0.14 0.25 4.70 14.00 0.25 0.14 0.14 0.01 4.70 0.25 4.70 14.00 0.25 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.15 0.25 0.25 4.70 14.00 0.25 4.80 0.01 4.70 0.25 4.80 0.15 0.25 4.80 0.15 0.25 4.80 0.25 4.80		G 4	4240	23.40	11.90	0.05	26.00	4.00	0.01	3.00	0.25	4.30	10.70				30.40
4280 28.40 12.90 0.05 28.80 4.40 0.01 4.40 0.25 5.00 12.00 0.25 0.14 0.25 5.00 12.00 0.25 0.14 0.25 5.00 0.25 4.70 14.20 0.25 0.14 4900 26.20 20.60 0.05 25.80 5.90 0.01 5.90 0.25 4.70 14.20 0.25 0.15 4110 24.70 12.80 0.05 25.80 6.90 0.01 4.70 0.25 4.70 14.00 0.25 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.10 4.70 0.25 4.80 0.25 4.80 0.15 0.15 0.15 0.10 4.70 0.25 4.70 1.20 0.25 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15		G5	4620	21.00	13.70	0.05	29.90	4.80	0.01	3.60	0.25	5.40	13.00				32.20
466027.3016.000.0526.905.900.015.800.254.7014.20490026.2020.600.0525.805.900.015.900.254.7014.00411024.7012.800.0525.800.014.700.254.7012.800.250.15440025.0012.400.0529.804.800.014.700.254.8012.800.250.15440025.3011.600.0526.104.700.014.000.254.7011.500.250.15406019.8012.300.0524.704.700.014.700.254.4011.200.250.15445025.4011.000.0524.703.800.014.700.254.4011.200.25445025.4011.300.0528.704.400.014.800.254.8011.20425025.4011.300.0528.704.400.014.800.254.8012.20421022.0013.100.0525.000.013.800.254.9012.70421022.0013.100.0525.000.013.800.254.9012.70		95	4280	28.40	12.90	0.05	28.80	4.40	0.01	4.40	0.25	2.00	12.00	0.25	0.14	68.80	29.40
490026.200.060.055.900.015.900.254.7014.00411024.7012.800.0527.004.900.014.700.255.5012.400.250.15436026.6012.400.0529.804.800.014.900.024.800.254.8012.800.250.15440032.3011.600.0538.605.200.014.000.024.7011.500.250.15456019.8012.300.0524.704.700.014.700.254.4011.500.250.15445025.4011.600.0524.703.800.014.800.254.3011.200.15420025.0011.300.0528.704.400.014.800.254.7011.20421025.0013.100.0525.000.013.800.024.3012.20421022.0013.100.0525.000.013.800.024.3012.20421022.0013.100.0525.000.013.800.254.3012.20		C 7	4660	27.30	16.00	0.05	26.90	5.90	0.01	5.80	0.25	4.70	14.20				29.30
4110 24.70 12.80 0.05 27.00 4.90 0.01 4.70 0.25 5.50 12.40 0.25 0.15 4360 26.60 12.40 0.05 29.80 4.80 0.01 4.90 0.25 4.80 12.80 0.25 0.15 4400 32.30 11.60 0.05 38.60 5.20 0.01 4.00 0.25 4.80 14.70 0.25 0.25 0.25 0.17 0.15 4060 19.80 11.60 0.05 25.10 4.70 0.01 4.70 0.25 4.40 11.50 0.25 0.15 3690 26.60 11.00 0.05 24.70 3.80 0.01 4.70 0.25 4.40 11.20 0.15 4450 25.40 11.30 0.05 29.40 5.30 0.01 4.80 0.25 4.80 11.20 0.15 4200 25.00 12.10 25.00 0.01 4.80 0.25		85	4900	26.20	20.60	0.05	25.80	5.90	0.01	5.90	0.25	4.70	14.00				26.10
4360 26.60 12.40 0.05 29.80 4.80 0.01 4.90 0.25 4.80 12.80 0.25 0.05 4400 32.30 11.60 0.05 38.60 5.20 0.01 4.90 0.25 4.80 14.70 0.05 0.01 4.00 0.02 4.40 11.50 0.05 25.10 4.70 0.01 4.70 0.25 4.40 11.50 0.05 24.70 3.80 0.01 4.70 0.25 4.40 11.50 0.05 24.70 3.80 0.01 4.70 0.25 4.40 11.20 0.15 0.15 24.70 0.15 4.80 0.25 4.80 11.20 0.15 0.15 0.11 0.01 4.80 0.25 4.80 11.20 0.15 </td <td></td> <td>65</td> <td>4110</td> <td>24.70</td> <td>12.80</td> <td>0.05</td> <td>27.00</td> <td>4.90</td> <td>0.01</td> <td>4.70</td> <td>0.25</td> <td>5.50</td> <td>12.40</td> <td>0.25</td> <td>0.15</td> <td>61.20</td> <td>28.90</td>		65	4110	24.70	12.80	0.05	27.00	4.90	0.01	4.70	0.25	5.50	12.40	0.25	0.15	61.20	28.90
4400 32.30 11.60 0.05 38.60 5.20 0.01 5.30 0.25 5.80 14.70 3950 28.00 11.60 0.05 30.40 4.00 0.01 4.00 0.25 4.70 11.50 4060 19.80 11.60 0.05 25.10 4.70 0.01 4.70 0.25 4.40 11.90 0.25 4450 26.00 11.00 0.05 29.40 5.30 0.01 6.00 0.25 4.80 11.20 0.15 4090 29.80 11.30 0.05 29.40 5.30 0.01 4.80 0.25 4.80 13.40 4200 25.00 12.10 0.05 29.40 5.30 0.01 4.80 0.25 4.70 12.20 4200 25.00 13.10 0.05 25.60 4.50 0.01 3.80 0.25 4.90 12.70		G10	4360	26.60	12.40	0.05	29.80	4.80	0.01	4.90	0.25	4.80	12.80	0.25	0.15	65.60	29.80
3950 28.00 11.60 0.05 30.40 4.00 0.01 4.00 0.25 4.70 11.50 4060 19.80 12.30 0.05 25.10 4.70 0.01 4.70 0.25 4.40 11.90 0.25 0.15 3890 26.60 11.00 0.05 24.70 3.80 0.01 3.40 0.25 4.80 11.20 0.15 4450 25.40 11.00 0.05 29.40 5.30 0.01 6.00 0.25 4.80 13.40 11.20 4090 29.80 11.30 0.01 4.40 0.01 4.80 0.25 4.70 12.20 12.20 4200 25.00 12.10 0.05 25.00 0.01 5.20 0.25 4.90 12.70 4210 22.00 13.10 0.05 25.60 4.50 0.01 3.80 0.25 5.20 12.20		G11	4400	32.30	11.60	0.05	38.60	5.20	0.01	5.30	0.25	5.80	14.70				32.70
406019.8012.300.0525.104.700.014.700.254.4011.900.250.05369026.6011.000.0524.703.800.013.400.254.3011.20445025.4011.600.0529.405.300.016.000.254.8013.40420025.0012.100.0528.704.400.014.800.254.7012.20421022.0013.100.0525.604.500.013.800.255.2012.20		G12	3950	28.00	11.60	0.02	30.40	4.00	0.01	4.00	0.25	4.70	11.50				28.50
3690 26.60 11.000.0524.703.800.013.400.254.3011.204450 25.40 11.600.0529.405.300.016.000.254.8013.404090 29.80 11.300.0528.704.400.014.800.254.7012.204200 25.00 12.100.0530.005.200.015.200.254.9012.704210 22.00 13.100.0525.604.500.013.800.255.2012.20		G13	4060	19.80	12.30	0.05	25.10	4.70	0.01	4.70	0.25	4.40	11.90	0.25	0.15	09.59	28.30
4450 25.40 11.60 0.05 29.40 5.30 0.01 6.00 0.25 4.80 4090 29.80 11.30 0.05 28.70 4.40 0.01 4.80 0.25 4.70 4200 25.00 12.10 0.05 30.00 5.20 0.01 5.20 0.25 4.90 4210 22.00 13.10 0.05 25.60 4.50 0.01 3.80 0.25 5.20		G14	3690	26.60	11.00	0.05	24.70	3.80	0.01	3.40	0.25	4.30	11.20			02.69	29.00
4090 29.80 11.30 0.05 28.70 4.40 0.01 4.80 0.25 4.70 4200 25.00 12.10 0.05 30.00 5.20 0.01 5.20 0.25 4.90 4210 22.00 13.10 0.05 25.60 4.50 0.01 3.80 0.25 5.20		G15	4450	25.40	11.60	0.02	29.40	5.30	0.01	00.9	0.25	4.80	13.40				29.10
4200 25.00 12.10 0.05 30.00 5.20 0.01 5.20 0.25 4.90 4210 22.00 13.10 0.05 25.60 4.50 0.01 3.80 0.25 5.20		G16	4090	29.80	11.30	0.05	28.70	4.40	0.01	4.80	0.25	4.70	12.20				29.10
4210 22.00 13.10 0.05 25.60 4.50 0.01 3.80 0.25 5.20		G17	4200	25.00	12.10	0.05	30.00	5.20	0.01	5.20	0.25	4.90	12.70				30.40
		G18	4210	22.00	13.10	0.05	25.60	4.50	0.01	3.80	0.25	5.20	12.20				34.00
																	U

Ç Q	Sample	ī	0	G	3	ż	į	3	::2	3	5	2	TBT	TOC	CaCO ₃	MC
Area	□	₹	AS	o O	5	วั	3	6 L	Ē	2	5	17	(µg Sn/kg)	(%)	(%)	%
	G19	2280	24.80	19.20	0.20	33.20	11.00	0.01	9.10	0.25	00.9	17.00				28.90
	695	2790	19.20	10.20	0.05	22.40	3.70	0.01	5.10	0.25	4.30	10.60				30.30
	G70	2430	27.30	10.10	0.05	19.30	2.60	0.01	3.50	0.25	4.00	9.20				28.90
	G71	3600	21.30	11.00	0.05	28.90	5.30	0.01	7.20	0.25	5.20	14.10				31.50
	G72	3350	21.10	12.20	0.05	23.80	4.60	0.01	5.40	0.25	4.60	12.10				32.80
	G73	3440	22.10	14.10	0.05	21.80	4.90	0.01	5.70	0.25	4.50	13.10				32.20
Min		2430	19.20	10.10	0.05	19.30	2.60	0.01	3.50	0.25	4.00	9.20	0.00	0.00	0.00	28.90
Мах		5590	29.80	19.20	0.20	33.20	11.00	0.01	9.10	0.25	00.9	17.00	0.00	0.00	0.00	34.00
Mean		3815	23.80	12.49	0.07	26.31	5.15	0.01	5.58	0.25	4.82	12.66	#DIV/0!	#DIV/0i	#DIV/0i	30.72
SD		901	3.23	2.66	0.05	4.40	2.22	0.00	1.62	0.00	0.56	2.07	#DIV/0i	#DIV/0i	#DIV/0i	1.83
L		10	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	0.00	0.00	00.00	10.00
	G50	3870	5.88	15.30	0.10	26.50	3.70	0.01	9.10	0.25	3.80	9.30	0.25	0.28	69.10	35.20
	G51	3990	5.42	14.10	0.20	28.60	3.80	0.01	9.10	0.25	3.80	16.30			70.30	33.60
	G52	3640	5.56	14.60	0.10	25.90	3.70	0.01	8.50	0.25	3.60	8.90			71.80	35.20
	G53	3500	7.49	13.20	0.10	25.00	3.00	0.01	8.10	0.25	3.60	9.00			72.40	32.30
Dredge Material	G54	3960	5.40	13.80	0.10	25.70	3.90	0.02	8.60	0.25	3.40	9.80				34.60
Site E	G55	3120	5.94	13.00	0.10	22.50	2.80	0.02	7.20	0.25	3.40	7.90				33.20
1	G56	3840	5.03	14.90	0.10	25.70	3.90	0.01	8.80	0.25	3.50	9.20				35.60
	G57	4270	5.21	14.70	0.10	29.40	4.00	0.01	10.00	0.25	3.80	10.80				36.40
	G58	4700	6.91	16.80	0.10	31.80	5.20	0.01	10.60	0.25	4.00	12.50	0.25	0.40	67.10	41.60
	G74	3590	90.5	13.90	0.10	24.00	3.60	0.01	8.20	0.25	3.20	8.50				34.60
Min		3120	5.03	13.00	0.10	22.50	2.80	0.01	7.20	0.25	3.20	7.90	0.25	0.28	67.10	32.30
Мах		4700	7.49	16.80	0.20	31.80	5.20	0.02	10.60	0.25	4.00	16.30	0.25	0.40	72.40	41.60
Mean		3848	6.79	14.43	0.11	26.51	3.76	0.01	8.82	0.25	3.61	10.22	0.25	0.34	70.14	35.23
SD		434	0.81	1.11	0.03	2.73	0.64	0.01	0.97	0.00	0.24	2.50	0.00	0.08	2.13	2.54

38

Sediment Quality Assessment

3 Results

1

39

	Sample	2	0	6	č	ţ	į	5	Ë	4	4	7	твт	T0C	CaCO ₃	MC
Alca	□	ī	â	D	3	5	3	D E	Ē	200	2	-	(hg Sn/kg)	(%)	(%)	(%)
u		10	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	2.00	2.00	5.00	10.00
	G29	2890	4.77	21.10	0.10	23.00	3.40	0.01	7.50	0.25	2.90	9.50			74.60	37.30
	095	3230	7.16	14.80	0.10	22.80	3.20	0.01	7.20	0.25	3.40	8.20			70.40	36.00
	G61	2700	8.32	12.50	0.05	19.60	2.60	0.01	6.50	0.25	2.90	09.9			70.00	35.10
	G62	2640	9.11	13.30	0.05	20.60	2.50	0.01	5.90	0.25	2.90	09.9				35.20
Dredge Material	G63	2940	89.9	12.90	0.10	20.90	3.00	0.01	09.9	0.25	3.10	7.80				36.60
Site D	G64	3040	7.83	13.60	0.10	22.20	3.00	0.01	06.9	0.25	3.20	7.70	0.25	0.20	71.40	35.60
	G65	3300	6.82	14.50	0.10	23.40	3.20	0.02	7.40	0.25	3.70	8.50				35.50
	999	2950	7.60	13.10	0.05	20.70	3.10	0.01	09.9	0.25	3.00	7.40	0.25	0.22	69.40	34.70
	G75	2570	7.79	12.30	0.10	20.40	2.40	0.01	2.60	0.25	2.80	6.50				34.20
	929	3350	7.99	14.10		23.20	3.20	0.01	7.50	0.25	3.40	8.40				35.30
Min		2570	4.77	12.30	0.05	19.60	2.40	0.01	2.60	0.25	2.80	6.50	0.25	0.20	69.40	34.20
Мах		3350	9.11	21.10	0.10	23.40	3.40	0.02	7.50	0.25	3.70	9.50	0.25	0.22	74.60	37.30
Mean		2961	7.41	14.22	0.08	21.68	2.96	0.01	6.77	0.25	3.13	7.72	0.25	0.21	71.16	35.55
SD		274	1.17	2.55	0.03	1.38	0.34	0.00	99.0	0.00	0.29	0.98	0.00	0.01	2.06	06.0
n		10	10.00	10.00	9.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	2.00	2.00	5.00	10.00
	17	$\mathcal{G}_{i} = i - i - i - i - i - i - i - i - i - i$. J. T1-	,,,				0		. 00	1 1 -1			,,	0000	

Sediment Quality Assessment

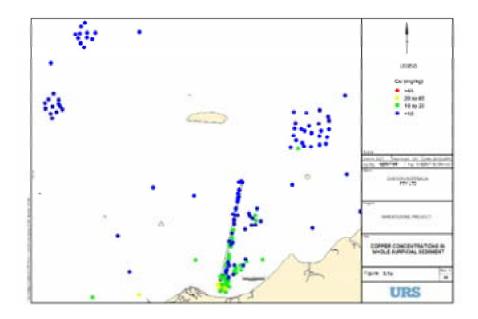
3 Results

NB: all units are mg/kg unless otherwise indicated; if a concentration was recorded as being below the LOR, half of that LOR is reported; bold text indicates that a concentration exceeds the NAGD

Screening Level.

3 Results

3.2.3 Concentrations and Distributions of Inorganic Contaminants of Potential Concern


Of the 11 metals and metalloids tested for in sediments, As, Cr and Ni were present in concentrations exceeding the NAGD Screening Levels. The spatial distribution of selected metals and metalloids are shown below (Figure 3-1 – Figure 3-6) and indicate concentrations of the COPCs in surface and near-surface sediments. Sediment grab sample locations from the Pilot Survey (URS 2009a) have been included in the spatial display of the data. Distributions of Cu, Zn and Ni in whole sediment were similar (Figure 3-1; Figure 3-3; Figure 3-4). Higher concentrations of these metals generally occurred within fine-grained material, present in the turning basin and close to shore. In comparison, higher CaCO₃ content in the sediment (>50%) was present in the seaward end of the proposed navigation channel and at the proposed Offshore Dredge Material Placement Sites D and E (Figure 3-5). CaCO₃ concentrations were lower in the nearshore are of the turning basin, reflecting the lack of shell material in the stiff red sandy-gravel clay.

The distribution of metals in sediments was concurrent with mud (silt and clay) content, and the percentage of mud decreased with distance from shore (Figure 3-6). Dilution by coarser grained and CaCO₃-rich material with less adsorptive capacity increases with distance from shore and concentrations of metals were therefore controlled by variability in sediment texture.

Concentrations of Ni in sediment exceeded the NAGD guideline value (21 mg/kg) within the clay units of the turning basin (Figure 3-4). In contrast, concentrations of As in sediments within the turning basin were relatively low (<15 mg/kg) (Figure 3-2). Concentrations of As in the proposed Nearshore Dredge Material Placement Sites A, B and C were similar to concentrations in the Dredge Area, but considerably higher than concentrations in the proposed Offshore Dredge Material Placement Sites D and E. This finding suggests that the absorption of As is controlled by factors other than grainsize.

40

3 Results

Spatial distribution of Cu at short core and grab sample sites. Figure 3-1

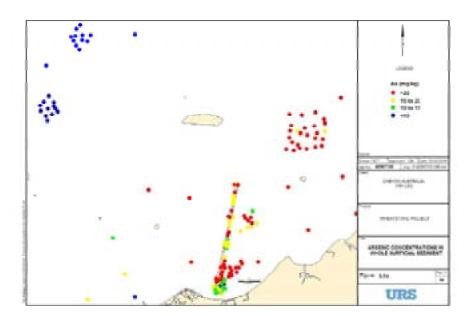


Figure 3-2 Spatial distribution of As at short core and grab sample sites.

3 Results

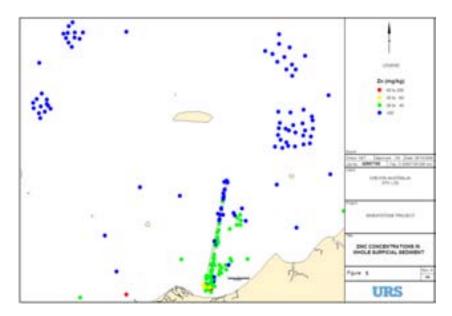


Figure 3-3 Spatial distribution of Zn at short core and grab sample sites.

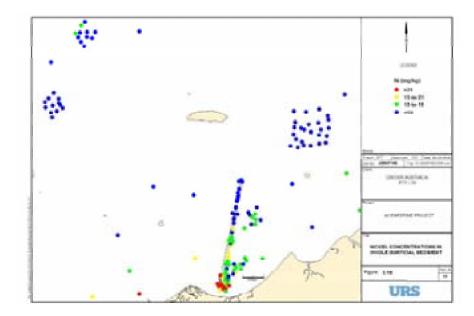
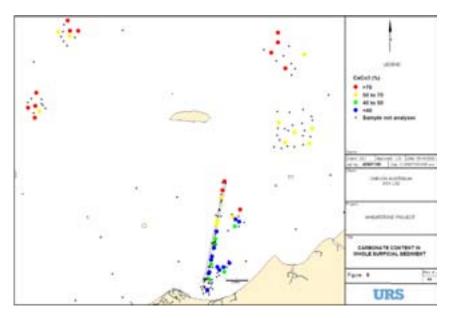



Figure 3-4 Spatial distribution of Ni at short core and grab sample sites.

3 Results

Spatial distribution of CaCO³ content at short core and grab sample sites. Figure 3-5

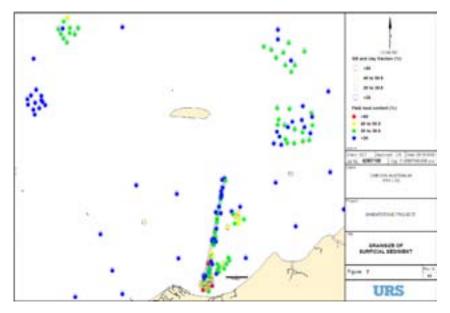


Figure 3-6 Spatial distribution of PSD at short core and grab sample sites.

3 Results

3.2.4 Concentrations of Tributyltin

Concentrations of TBT were recorded as being below the analytical LOR (0.5 μ gSn/kg) in all sediment samples from all locations, therefore a spatial assessment of TBT cannot be established.

3.3 Radionuclide Activity Analyses

Five short core sediment samples were analysed for radionuclide activity and results are shown in Appendix G. All five sediment samples analysed exhibited an activity of <0.5 Bq/g, which is below the NAGD Screening Level of 35 Bq/g.

3.4 Geochemical Data Validation Summary

The data validation indicates only a relatively small number of data quality non-conformances associated with the sediment analyses. Some of these non-conformances are commonly encountered during sediment quality assessment programs and analyses of sediments with variable MC and at concentrations that are approaching the analytical LOR. Individual QA/QC failures should be considered in the context of other QA/QC data and the contaminant concentrations present in the sample. None of the analyses of sediment samples were undertaken outside recommended holding times, presented in the NAGD.

LOR were at or below the PQLs recommended by the NAGD, except for analytes assessed in the deep cores, which exceeded the PQLs. However, the generally low concentrations of COPCs in sediments were confirmed in surficial sediments. Exceedances of NAGD Screening levels were not present in any sediment sample, with the exception of Ni, which frequently exceeds the NAGD Screening Level in deep core samples.

No analytes were detected above the LORs for any of the laboratory method blanks analysed. The trip blank sample reported In Batch EB0915491 indicated the presence of Al, As, Cr, Zn, Ba and Hg. Typically trip blanks are supplied by the laboratory to be used in conjunction with the transport of volatile samples and are used to ensure there has been no transfer of contamination between samples in transit. The likelihood of sample transfer for analytes other then volatiles (i.e. metals) is unlikely, which was confirmed by the laboratory. The laboratory results for this sample indicate the presence of the above analytes in the same concentrations.

The field replicates (duplicates and triplicates) reported elevated RPDs for some analytes, however these results were reported as acceptable by ALS as the samples were significantly heterogeneous. This was further confirmed by re-analysis of total metal results, which has been reported in batch EB0916628. The investigation identified that the correct Inter-Element Correction factors had been applied to account for the saline sample matrix. It also confirmed that repeat analysis showed the samples to be heterogeneous. The majority of results met the data quality objectives.

Inter-batch duplicate data was not required as all sediment samples were received by the lab in one batch.

Recovery monitoring using matrix spikes and surrogates indicated very good method efficiency and accurate representation of the sediment sampled.

LCS recoveries were within DQOs, indicating acceptable accuracy of analytical procedures. There were a few LCS exceedances, however these were reported as acceptable by ALS as all associated analyte results were reported as less than the LOR.

3 Results

The number of samples taken within the Dredge Area conformed with the number outlined in the SAP (Appendix A) and exceeded the required number within the proposed dredge material placement sites. However, deep core sediment samples MC001 to MC015 were not all obtained within the Dredge Area because of the requirement to collect these samples as part of the geotechnical investigation. However, the geochemical characterization of the deep core samples to a depth of up to 13.5 m has shown that the subsurface sediment geochemistry is similar and very homogeneous throughout the horizons sampled. Concentrations of COPCs were generally below those specified by the NAGD Screening Levels, excluding Ni which was present in higher levels within deep core sediments.

The completeness of DQO was assessed by determining the percentage of each data quality parameter that met the criteria specified in the NAGD, with the sum total of validated data exceeding the 95% completeness guideline. The percentage of DQO compliance for each data quality parameter is provided below (Table 3-5). The secondary data was used to validate the primary dataset and the overall completeness of Data Quality Objectives exceeding 95% meant that the primary data could be accepted. All primary data was used in calculation of 95% UCL of mean contaminant concentrations.

In summary, the detailed data validation process identified that although some data that did not meet the data quality objectives, URS considers that the data quality non-conformances do not represent significant data quality issues, on advice from ALS, and therefore do not affect the overall interpretation or classification of sediment quality.

Table 3-5 Completeness of data quality objectives.

Data Quality Parameter	Total number of results (all analytes)	DQO Compliant (%)
Core Splits	31	TBC
Field Triplicates	TBC	TBC
Inter-batch Duplicates	TBC	TBC
Laboratory Control Samples	63	100
Laboratory Duplicates	209	100
Matrix Spikes	102	91%
Method Blanks	63	100
Surrogate Spikes	TBC	TBC
Overall Completeness	TBC	TBC

This page is intentionally blank

Wheatstone Project Appendix Q5 - Sediment Quality Assessment - Wheatstone Dredging Program

Discussion

4.1 **Textural Units in the Dredge Area**

The thickness of unconsolidated sediments is generally shallow, with all short cores having reached depths of refusal in hard substrate at 0.4 m or less (i.e. stiff clay, shelly reef, coral beds). The hard subsurface sedimentary deposits comprise sandy and gravelly clays, clayey sands, claystone and conglomerate, as shown in the deep core logs (Appendix D).

4.2 **Assessment of Geochemical Dataset**

Concentrations of COPCs in sediments within the Dredge Area were generally low. The geochemical dataset for the assessment of sediment quality in the Dredge Area comprises data collected at 60 short core sample locations and 15 deep core sample locations, with an additional 12 short core sample locations in areas adjacent to the Dredge Area. A total of 64 surface sediment grab samples were also collected in the five proposed dredge material placement sites.

4.3 **Comparison with Previous Analytical Data**

Previous contaminant assessments of sediment in the region near the Dredge Area have been summarized in the SAP (Appendix A) and include the initial Pilot Survey (URS 2009a). Previous investigation also confirms that concentrations of COPCs in sediments on the North-West Shelf, and in the Dredge Area, were low (i.e. below NAGD Screening Levels). Additionally, a majority of both organic and inorganic CPOCs were present at levels below the LOR.

4.4 **Factors Influencing Contaminant Distributions**

The spatial distribution of COPCs in sediments within and near the Dredge Area is likely to be mainly driven by a strongly positive correlation between contaminants and fine grained particles and/or TOC, which is known to increase the adsorptive capacity of sediment (e.g. Förstner, 1995; Matthai and Birch, 2000). Therefore, it is necessary to assess the relationship between concentration of COPCs in the sediment and the proportion of mud (silt+clay) fraction in the sediment, as exemplified by the positive correlation between Cu and mud content (Table 4-1). It is unlikely that the spatial distribution of COPCs in surface and near surface sediments is due to proximity of these sediments to anthropogenic contaminant sources (e.g. shipping activity), and more likely to be linked to PSD.

The relationship between concentrations of inorganic contaminants in sediment and AI (a proxy for mud content) for all 136 short core and grab samples are shown below (Figure 4-1 - Figure 4-3). Positive correlations existed between Al and all other metals tested for (Table 4-1), while statistically significant correlations existed between Al and Cr, Cu, Ni, and Zn (r>0.72; n=136; p<0.001). This confirms the capacity of muds and clays to adsorb metals and supports the notion that lower concentrations of metals would exist in sandy sediments. In addition, metal concentrations in surficial sediments generally decrease with greater distance from shore and at greater water depths due to a larger CaCO₃ component relative to the terrigenous component in deeper waters, as indicated by the correlation between Al and CaCO₃ (Figure 4-3).

This correlation between metals (excluding As) provides support for a common 'diffuse' source for these metals. If major point sources of contaminants existed this would not be the case, as the correlation between PSD and metal concentrations would be weakened by disproportionately high concentrations of these analytes relative to the PSD content in the sediments. In contrast, the correlation between mud content and As in whole sediment is close to zero (r=-0.01), suggesting that

4 Discussion

As may be more likely to be bound to the sand fraction of sediments, possibly as coprecipitates of FeO and oxyhydroxides and arsenopyrites.

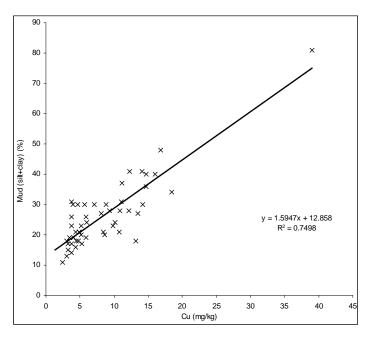
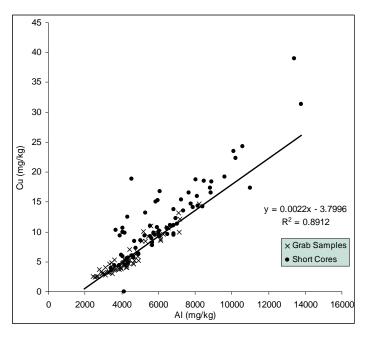
The overall variability in magnitude of organic and inorganic contaminant concentrations in sediments in the Dredge Area and the proposed dredge material placement sites is generally low, when compared to other estuarine environments in urban and metropolitan areas (e.g. Port Phillip Bay, Sydney Harbour). These conditions, however, are similar to other high energy marine environments (e.g. Central NSW Continental margin) (Matthai and Birch, 2000). The increased variability and higher concentrations of contaminants in the shallow nearshore environment is likely to result from natural contributions from clay minerals rather than from anthropogenic enrichment. However, the concentrations of COPCs in these nearshore sediments are generally below the NAGD Screening Levels, with the exception of As and Ni.

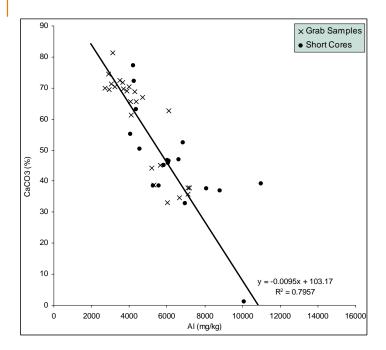
Table 4-1 Correlations between metals and metalloids within sediment samples.

	AI	As	Ва	Cr	Cu	Ni	Pb	Zn
AI	n/a							
As	-0.01	n/a						
Ва	0.46	-0.16	n/a					
Cr	0.93	-0.08	0.46	n/a				
Cu	0.92	-0.13	0.58	0.93	n/a			
Ni	0.90	-0.27	0.58	0.94	0.95	n/a		
Pb	0.72	0.03	0.35	0.70	0.72	0.69	n/a	
Zn	0.95	-0.04	0.46	0.95	0.96	0.92	0.74	n/a

NB: bold data indicates a statistically significant correlation.

4 Discussion


Figure 4-1 Bivariate correlation between Cu and mud in grab samples and short core samples.

Bivariate correlation between Al and Cu in grab samples and short core samples. Figure 4-2

4 Discussion

Bivariate correlation between Al and CaCO3 content in grab samples and short core Figure 4-3

4.5 **Background Concentrations of Contaminants**

4.5.1 **Inorganic Analytes**

Background concentrations may only be estimated for metals, although other inorganic analytes, including nutrients, and some organic contaminants (e.g. PAHs) are generally present naturally in the marine environment. Due to the relationship between the concentrations of metal in sediment and PSD, it is not possible to establish a single background concentration value for sediments in the Dredge Area without adopting a grain size normalisation approach.

By using the proportion of mud content as a proxy for grain size and plotting mud content against the concentration of metals in the total sediment, it may be possible to estimate a range of normalized background concentrations to minimise the confounding effects of variable sediment grain size. However, an assessment of background concentrations for sediments in the Dredge Area was not required as only one contaminant (Ni) exceeded mean concentrations of 95% UCLs of the NAGD Screening Levels in sediments within the Dredge Area (Section 4.6.4).

4.5.2 Nickel and Arsenic Concentrations in Dredge Area

The concentrations of Ni and As typically exceed the NAGD Screening Levels in otherwise uncontaminated sediments in large areas of south-eastern Australia and in many coastal regions throughout Australia. The exceedances of the NAGD Screening Levels in some sediment samples for these two contaminants in the Dredge Area (As and Ni in short core samples, Ni in deep core

4 Discussion

samples) is therefore unlikely to be related to anthropogenic contributions. In addition, the concentrations of As in sediments in the proposed dredge material placement sites and at regional sample locations (URS 2009a) have been shown to exceed the NAGD Screening Level for As in surficial sediments (20 mg/kg). The assessment of Ni concentrations in relation to the positive correlation between mud content and Ni, or Al and Ni, and the concentration of these elements in sediment has shown that the concentrations of Ni are also likely to be of natural origin and related to PSD.

Conversely, concentrations of As did not correlate with mud content (proxy AI) in sediments, which is likely due to the coprecipitation of As in FeO and oxyhydroxides or arsenopyrites onto sand-sized grains. Although the concentrations of As exceed the NAGD Screening Level (20 mg/kg) in many surficial sediment samples, elevated concentrations of As have been shown to be of natural origin and related to sediment mineralogy and diagenetic processes in south-eastern Australia (Davies, 1979). Naturally elevated concentrations of As (up to 180 mg/kg) have been found in sediments on the southeastern Australian continental margin, suggesting that concentrations of As exceeding 20 mg/kg may not always be due to the presence of anthropogenic activity.

4.6 **Sediment Quality in Dredge Area**

4.6.1 Comparison with the NAGD Screening Levels

4.6.2 **Dredge Area**

Concentrations of As (21 samples), Cr (one sample) and Ni (five samples) from short core samples exceeded the NAGD Screening Levels for COPCs within the Dredge Area.

Concentrations of Ni (41 samples) from deep core samples exceeded the NAGD Screening Levels for COPCs within the Dredge Area.

4.6.3 **Dredge Material Placement Sites**

Concentrations of As from short core and grab samples exceeded the NAGD Screening Levels for COPCs within the proposed Nearshore Dredge Material Placement Site A (5 samples), Site B (22 samples), and Site C (22 samples).

95% UCL of Mean Concentrations 4.6.4

The secondary data was used to validate the primary dataset and the overall completeness of DQO exceeded 95%. This means that the primary data can be accepted. Primary data was used in calculating the 95% UCL of mean contaminant concentrations, using half the analytical LOR where concentrations are below the LOR. As the NAGD Screening Levels were exceeded for As, Cr and Ni concentrations at a number of sites, the 95% UCL of mean concentrations of COPCs were calculated for each contaminant for which a NAGD Screening Level exists and for which at least one concentration exceeds the analytical LOR (Table 4-2).

The 95% UCLs of the mean concentrations of As and Ni were below NAGD Screening Levels for all short core and the majority of deep core samples (Table 4-3), indicating that additional sediment assessment, including elutriate, bioavailability and toxicity testing, were not required. There was one

4 Discussion

exception for Ni concentrations in deep core samples (23.4 mg/kg), which exceeded the NAGD Screening Levels by 2.4 mg/kg.

Nickel in sediments is derived from non-anthropogenic sources. The 95% UCL Screening Level exceedance of the concentrations of nickel in deep core sediments is marginal, i.e. 23.4 mg/kg vs Screening Level of 21 mg/kg and the absence of a 95% UCL Screening Level exceedance in short core sediments, i.e. 14.4 mg/kg suggests that all of the nickel is of natural origin.

Concentrations of nickel in surface sediments collected at the potential disposal sites (muddy sands) are not suitable for assessing background concentrations of nickel in clays found at depth in the dredging areas.

Nickel concentrations in proposed dredging areas (based on our knowledge of sediment texture and contaminant concentrations) are unlikely exceed background concentrations in deeper sediments at the disposal ground.

Table 4-2 95% Upper Confidence Limits of Mean Contaminant Concentrations.

	# of Samples	As	Ва	Cr	Cu	Hg	Ni	Pb	Zn
NAGD Screening Level	n/a	20	n/a	80	65	0.15	21	50	200
Short Core Samples	61	19.40	26.40	45.50	13.30	0.01	14.40	8.10	26.50
Deep Core Samples	72	7.80	87.10	48.80	23.90	0.05	23.40	9.80	31.10

NB: all data in mg/kg.

4.6.5 Weak Acid Extractions

As stipulated in the SAP, if the 95% UCL of mean concentrations of COPCs in sediments exceed NAGD Screening Levels, a weak acid extraction using 1 M HCl needs to be undertaken for these COPCs. Although the 95% UCL of the mean concentrations does not exceed the NAGD Screening Level for As, a weak acid extraction and analysis of short core sediment samples within and near the Dredge Area (i.e. SC1-SC72) was still undertaken for As (19 samples), Ni (8 samples) and Cr (1 sample) (Table 4-3) (Appendix H).

Weak acid tests were undertaken to assess the significance of the observed nickel concentrations. The weak acid extracted an average of 17.8% of the "total" nickel in the analysed samples. The mean weak acid extractable concentration of nickel of 4.8 mg/kg is substantially less than the "total" mean nickel concentration of 26.8 mg/kg in the analysed samples.

The results of the weak acid-extractions indicate that the extractable proportion of As, Ni and Cr in near surface sediments is about 10% of the total extractable concentration, which is well below the actual NAGD Screening Levels in all samples analysed. The As and Ni in the sediments tested is therefore unlikely to be bioavailable at concentrations above which adverse effects on aquatic biota may be present. Therefore no further sediment quality assessment was required.

4 Discussion

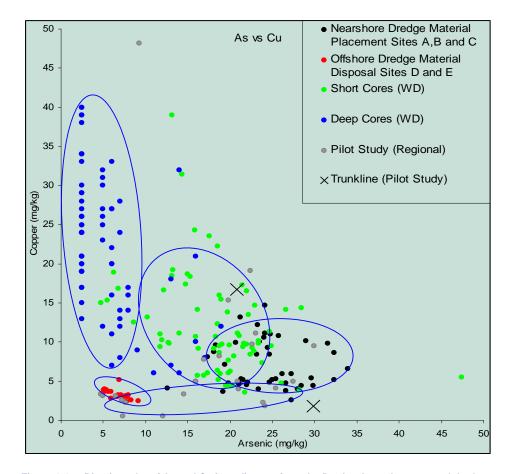
Table 4-3 Analyses of weak acid-extractable (1 M HCI) As, Ni, and Cr in selected sediment short core samples.

Sample ID	As*	Cr*	Ni*	As^	Ni^	Cr^
SC1_0.0-0.27	13.2	67.8	21.1		1.0	
SC5	21.4	50.9	20.3			
SC7_0.0-0.10	21.5	38.2	10.2	1.7		
SC8_0.0-0.30	21.7	42.1	11.2	1.6		
SC9_0.0-0.20	22.9	55	16.3	1.8		
SC11_0.0-0.5	13.1	82.1	37		1.7	1.6
SC13	20.9	35	11.4	3.0		
SC16	20.5	34.1	9.4			
SC17_0.0-0.35	22.6	40.4	10.9	1.5		
SC18_0.0-0.30	23.4	40.8	11.2	1.4		
SC20_0.0-0.20	15.8	70	24.4		1.2	
SC23_0.0-0.25	21.1	42.9	11.8	1.4		
SC29_0.0-0.20	15.3	67	22.3		1.5	
SC31_0.0-0.20	20.3	23.3	3.6			
SC34_0.0-0.25	28.5	53	16	1.3		
SC35_0.0-0.5	22.4	34.1	8.7	1.9		
SC37_0.00.051	14.3	78.1	35.4		1.2	
SC40_0.0-0.31	26.6	50.6	15.9	1.4		
SC47_0.0-0.25	23.8	39.1	8.8	1.8		
SC50_0.0-0.23	22.2	51.8	15.5	1.5		
SC51	47.4	24.7	2.2		1.4	
SC54_0.0-0.20	22	48.4	17.8	1.5		
SC55_0.0-0.25	22.8	43.5	11	1.9		
SC57_0.0-0.5	17.6	77.4	26.7			
SC58_0.0-0.15	24.9	38.8	10.6	1.8		
SC59_0.0-0.23	22	41.6	11.7	1.7		
SC61_0.0-0.18	18.5	62.2	23.4		1.6	
SC62_0.0-0.1	13.3	71.2	23.9		<1.0	
SC65	21.8	19.1	1.5			
SC66	26.1	24.4	4			
SC67_0.0-0.15	28.2	24.9	3.7	2.5		
SC71	24.7	49.5	13.4	2.0		
SC72	23.4	41.4	10.5	2.2		

NB: all units are mg/kg unless otherwise indicated; * indicates actual concentrations, ^ indicates the weak acid extraction concentration; if a concentration was recorded as being below the LOR, half of that LOR is reported; bold text indicates that a concentration exceeds the NAGD Screening Level.

4 Discussion

4.7 Sediments within Trunkline Route


No short or deep core sampling was undertaken within the Trunkline Route, however two grab samples (W15, W19) were taken from within the Trunkline Route, and several other grab samples were taken from within the vicinity of the Trunkline Route, during the Pilot Survey (URS 2009a) (Table 4-4). Geochemical characterisation of these samples were similar in COPCs composition to those taken from surface and deep samples collected from within the Dredge Area and the proposed dredge material placement sites.

Concentrations of As exceed the NAGD Screening Levels in the two sediment samples collected from the Trunkline Route during the Pilot Survey (URS 2009a), however these results were reflected in data collected as part of the current study. Additionally, the demonstrated correlation between grain size and concentration of metals in sediment provides support for the notion that sediments from within and in the vicinity of the Trunkline Route would not be geochemically different from the sediments collected as part of this study.

Using the means and calculated standard errors for concentrations of metals in sediments obtained from the Dredge Area and the proposed dredge material placement sites, the Pilot Survey (URS 2009a), the mean concentrations +2 times the SE are less than the NAGD Screening Levels for all analytes. Although sediments within the Trunkline Route have not been extensively sampled, the assessment of sediments in the Dredge Area and the proposed dredge material placement sites indicate that exceedances of the NAGD Screening Levels are unlikely.

Bivariate distributions of As and Cu concentrations from the proposed dredge material placement sites, the Dredge Area and regional surface sediments (URS 2009a) are presented below (Figure 4-4). The figure indicates that, generally, concentrations of As and Cu in surface sediments collected as part of this survey, are not significantly different from concentrations in the sediment collected from the Trunkline Route. Similarly, concentrations of other metals were similar in sediments collected as part of this assessment, to those collected during the Pilot Survey (URS 2009a) (Table 4-4). This exemplifies the regional spatial homogeneity of the sediment geochemistry and the generally uncontaminated nature of sediments within the regional area.

4 Discussion

Bivariate plot of As and Cu in sediments from the Dredge Area, the proposed dredge Figure 4-4 material placement sites and the Pilot Survey.

4 Discussion

Table 4-4 Descriptive statistics summary for concentrations of metals in the Dredge Area, the proposed dredge material placement sites and the Pilot Survey, in comparison to data for Trunkline Route samples.

Area/ Sample ID		As	Ва	Cd	Cr	Cu	Hg	Ni	Sb	Pb	Zn
	Max	47.40	240	0.50	82.10	48.20	0.05	42.20	2.50	34.00	69.40
Dredge Area/	Min	2.50	0.50	0.05	11.40	0.50	0.01	0.00	0.25	1.10	1.30
Dredge Material	SD	8.97	34.32	0.21	14.13	9.63	0.02	8.89	1.07	3.63	11.83
Placement Sites/	SE	0.60	1.60	2.60	3.60	4.60	5.60	6.60	7.60	8.60	9.60
Pilot Survey	Mean	14.37	25.16	0.20	39.04	12.97	0.02	13.82	1.03	6.98	22.11
	n	232	232	231	232	232	232	232	209	232	232
Trunkline Route	W15	29.80	7.10	0.05	15.10	1.80	0.01	3.80	n/a	3.00	4.50
Trunkline Route	W19	20.80	17.80	0.05	45.60	16.70	0.01	20.10	n/a	9.00	32.40

NB: all units are mg/kg; n/a = not tested for; if a concentration was recorded as being below the LOR, half of that LOR is reported; bold text indicates that a concentration exceeds the NAGD Screening Level.

4.8 Classification of Sediment in Dredge Area

The sediments in the Dredge Area have been classified based on the available geochemical results for sediment samples, in accordance with the SAP (Appendix A) and Figure 3 of the NAGD. Sediments at one or more sample locations exceeded the NAGD Screening Levels for As, Cr and Ni. Background concentrations of COPCs were demonstrated to be at ambient levels in sediment at the dredge material placement sites, and is expected to be unaffected by Placement of dredged material. Additionally, the 95% UCL for As and Ni did not exceed the NAGD Screening Levels, with the exception of Ni in deep cores. Therefore, a full assessment of the total number of sample locations recommended by the NAGD is not warranted. Neither a Phase III or a Phase IV assessment of acute and sub-acute toxicity was required to be undertaken on unconsolidated sediment collected in the Dredge Area. Sediments in the Dredge Area are acceptable for unconfined Placement at one or more of the proposed dredge material placement sites, and further geochemical, ecotoxicological, elutriate, bioavailability and toxicity testing is not warranted.

4.9 **Assessment Limitations**

Although deep cores were not all sampled within the proposed Dredge Area in strict accordance with the NAGD guidelines, the sampling and assessment of sediments in the Dredge Area provides an acceptable assessment of unconsolidated sediments at all short core locations to the depth of refusal in stiff clays or in limestone. Deep core locations generally confirmed the absence of unconsolidated sediments below a thin (<0.5 m deep) veneer of gravelly muddy to clayey sands. In addition, the concentrations of COPCs in deep core sediments were all below the NAGD Screening Levels for all COPCs assessed, with the exception of Ni, which has a demonstrably natural and grain-size-related origin. Exceedances of PQLs in deep core sample analyses and shorter sub-sampling intervals in the deep core samples are therefore unlikely to measurably affect the outcomes of this assessment, but should be noted in terms of non-compliance with the requirements outlined in the NAGD.

This investigation has not specifically targeted near surface sediments within the Trunkline Route. Based on the geochemical data obtained in the current and previous investigations, assessments of

Sediment Quality Assessment 4 Discussion sediments in the Trunkline Route are not recommended and deemed unnecessary. Extrapolation, based on existing data, indicates that the probability that sediments in the Trunkline Route are contaminated above Screening Level concentrations for the COPCs is negligible.

This page is intentionally blank
This page is intentionally blank

References

- ANZECC/ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand, October 2000.
- Axiak, V., Micallef, D., Muscat, J., Vella, A. and Mintoff, B. (2003). Imposex as a biomonitoring tool for marine pollution by tributyltin: some further observations. Environment International, 28, 743-
- Blaber, S.J.M. (1970). The occurrence of a penis-like outgrowth behind the right tentacle in spent females of Nucella lapillus (L.). Proceedings of the Malacological Society of London, 39, 231-
- Black, K., Brand, G., Grynberg, H., Gwyther, D., Hammond, L., Mourtika, S. Richardson, B. and Wardrop, J. (1994). Production Activities. In: Environmental implications of offshore oil and gas development in Australia - The findings of an independent scientific review, pp 209-407 (Eds. Swan J., Neff J. and Young P.). Australian Petroleum Exploration Association, Sydney.
- Commonwealth of Australia (2009). National Assessment Guidelines for Dredging, Commonwealth of Australia, Canberra, 2009.
- D.A. Lord and Associates (2002). North West Shelf Joint Environmental Management Study, Milestone Report No. 3.1, Toxicological Data for Key Contaminants on the North West Shelf, D.A Lord and Associates Pty Ltd, June 2002.
- Davies, P.J. (1979). Marine geology of the continental shelf off southeast Australia. Department of Mineral Resources Bulletin 195, Canberra, Australia, 51 pp.
- DEC (2006). Background quality of the marine sediments of the Pilbara coast Marine Technical Report Series, Department of Environment and Conservation, Western Australia.
- Department of Agriculture, Forestry and Fisheries (2008). Ashburton River: River Basin Summary, Bureau of Rural Science. http://adl.brs.gov.au/water2010/pdf/catchment_706_0_summary.pdf
- Devesa-Rey, R., Paradelo, R., Díaz-Fierros, F. and Barral, M. (2008). Fractionation and Bioavailability of Arsenic in the Bed Sediments of the Anllóns River (NW Spain), Water, Air, & Soil Pollution, 195, 189-199.
- DEWHA (2009). Substance fact sheet -Polycyclic aromatic hydrocarbons, Department of the Environment, Water, Heritage and the Arts, Commonwealth of Australia, Canberra. http://www.npi.gov.au/database/substance-info/profiles/74.html
- Evans, L., Tsvetnenko, Y. and Woodworth, J. (2000). Improving the precision of ecotoxicity testing protocols for crude oils and drilling fluids. MERIWA Report No. 220. pp 169.
- Evans, S.M., Birchenough, A.C. and Brancato, M.S. (2000). The TBT ban: out of the frying pan into the fire? Marine Pollution Bulletin, 40, 204-211.
- Fandry. C, Revill. A, Wenziker. K, McAlpine. K, Apte. S, Masini, R. Hillman. K. (2006). Contaminants of Australias North West Shelf: sources, impacts, pathways and effects - North West Shelf Joint Environmental Management Study, Technical report No. 13, Western Australian Department of Environment.
- Fent, K. (1996). Ecotoxicology of organotin compounds. Critical Reviews in Toxicology, 26, 1-117.

5 References

- Fitzgerald, W.F., Engstrom, D.R., Mason, R.P. and Nater, E.A. (1997). The case for atmospheric mercury contamination in remote areas. Environmental Science and Technology, 32, 1-7.
- Foale, S. (1993). An evaluation of the potential of gastropod imposex as a bioindicator of tributyltin pollution in Port Phillip Bay, Victoria, Marine Pollution Bulletin, 26, 546-552.
- Forde, M. (1985). Technical Report on Suspended Matter in Mermaid Sound, Dampier Archipelago. Bulletin 215, Department of Conservation and Environment, Perth, WA.
- Förstner, U. (1995). Risk assessment and technological options for contaminated sediments a geochemical perspective. Marine and Freshwater Research, 46, 113-127.
- Gibson, C.P. and Wilson, S.P. (2003). Imposex still evident in eastern Australia 10 years after tributyltin restrictions. Marine Environmental Research, 55, 101-112.
- Heywood, A., Revill, A. and Sherwood, C. (2000). Review of Research and Data Relevant to Marine Environmental Management of Australias North West Shelf. Prepared by the Australian Institute of Marine Science (AIMS) and CSIRO Marine Research for the Western Australian Department of Environmental Protection, Perth, WA.
- Heywood, A., Revill, A. and Sherwood, C. (2006). Review of research and data relevant to marine environmental management of Australias North West Shelf. North West Shelf Joint Environmental Management Study. Technical Report No. 1, June 2006.
- International Maritime Organization (2001). International conference on the control of harmful antifouling systems for ships. Agenda item 8 AFS/Conf/26. International convention on the control of harmful anti-fouling systems on ships. 18 October 2001
- Jernakoff, P., Scott, L., Heyward, A., Revill, A., and Sherwood, C. (2006). Bibliography of Research and Data Relevant to Marine Environmental Management of Australias North West Shelf. NWSJEMS Technical Report No. 2. CSIRO Marine and Atmospheric Research.
- Konstantinou, I.J. and Albanis, T.A. (2004). Worldwide occurrence of antifouling paint booster biocides in the aquatic environment: a review. Environment International, 30, 235-248.
- Loring, D. and Rantala, R. (1992). Manual for the geochemical analysis of marine sediments and suspended particulate matter. Earth Science Reviews, 32, 235-283.
- Makita, Y. and Omura, M. (2006). Effects of perinatal combined exposure to 1,1-dichloro-2,2 bis (pchlorophenyl) ethylene and tributyltin on male reproductive system. Basic and Clinical Pharmacology & Toxicology, 99, 128-132.
- Matthai, C. and Birch, G. (2000). Effect of coastal cities on surficial sediments mantling an adjacent high-energy continental margin - central New South Wales, Australia. Marine and Freshwater Research, 51, 565-576.
- National Environment Protection Council (1999). National Environment Protection (Assessment of Site Contamination) Measure. National Environment Protection Council Services Corporation. Adelaide, South Australia.
- Nikolaidis N., Dobbs, G., Chen, J. and Lackovic, J. (2004). Arsenic mobility in contaminated lake sediments, Environmental Pollution, 129, 479-487.
- NSW EPA (1995). Sampling Design Guidelines Contaminated Sites, EPA 95/59. New South Wales Environment Protection Authority, September 1995.

5 References

- Urbaniak, G.C. and Plous, S. 2009. Research Randomizer. www.randomizer.org/form.htm.
- Santos, M., Vieira, N., Reis-Henriques, M., Santos, A., Gomez-Ariza, J., Giradles, I. and ten Hallers-Tjabbes, C. (2004). Imposex and butyltin contamination off the Oporto COSAT (NW Portugal): a possible effect of the discharge of dredged material. Environment International, 30, 793-798.
- Smith, B.S. (1981a). Reproductive anomalies in stenoglossan snails related to pollution from marinas. Journal of Applied Toxicology, 1, 15-21.
- Smith, B.S. (1981b). Male characteristics on female mud snails caused by antifouling bottom paints. Journal of Applied Toxicology, 1, 22-25.
- Smith, B.S. (1981c). Tributyltin compounds induced male characteristics on female mud snails Nassarius obsoletus=Hyanassa obsoletus. Journal of Applied Toxicology, 1, 141-144.
- URS (2009a). Pilot Marine Sediment Quality Report for the Wheatstone Project, Onslow WA, Report to Chevron Australia Pty Ltd, 27 March 2009.
- URS (2009b). Ashburton River Flow and Sediment Study. Report to Chevron Australia Pty Ltd, 22 June 2009.
- US EPA 1993 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW846). Chapter 2. United Sates Environmental Protection Agency.
- Victorian State Government 2000. Victoria Government Gazette. No. S 94. Victorian Government Printer. 29th June.

This page is intentionally blank

Limitations

URS Australia Pty Ltd has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Chevron Australia Pty Ltd and only those third parties who have been authorised in writing by URS Australia Pty Ltd to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated September 2009.

The methodology adopted and sources of information used by URS Australia Pty Ltd are outlined in this report. URS Australia Pty Ltd has made no independent verification of this information beyond the agreed scope of works and URS Australia Pty Ltd assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS Australia Pty Ltd was false.


This report was prepared between October 2009 and May 2010 and is based on the conditions encountered and information reviewed at the time of preparation. URS Australia Pty Ltd disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

This page is intentionally blank

Draft Sediment Quality Assessment Appendix A Sampling and Analysis Plan **URS** 42907466/01/0

This	s page is	intention	ally blank	

Sampling and Analysis Plan Wheatstone Dredging Program

16 FEBRUARY 2010

Prepared for Chevron Australia Pty Ltd 250 St Georges Terrace Perth, WA 6000 42907100

URS

This page is intentionally blank
This page is intentionally blank

Project Manager:			
r roject munager.	Damian Ogburn	URS Australia	Pty Ltd
	Project Manager - Wheatstone	Level 3, 116 Mi North Sydney	ller Street
Project Director:	Ian Baxter Senior Principal Marine Environmental Scientist	NSW 2060 Australia T: 61 2 8925 55 F: 61 2 9922 69	
Author:			
	Dr Carsten Matthai Associate Environmental Scientist		
	Dr Stuart Taylor Principal Environmental Scientist		
Reviewer:	Brooke Hay Project Marine Environmental Scientist	Date: Reference: Status:	16 February 2010 42907100/01/A Draft

© Document copyright of URS Australia Pty Limited.

This report is submitted on the basis that it remains commercial-in-confidence. The contents of this report are and remain the intellectual property of URS and are not to be provided or disclosed to third parties without the prior written consent of URS. No use of the contents, concepts, designs, drawings, specifications, plans etc. included in this report is permitted unless and until they are the subject of a written contract between URS Australia and the addressee of this report. URS Australia accepts no liability of any kind for any unauthorised use of the contents of this report and URS reserves the right to seek compensation for any such unauthorised use.

Document delivery

URS Australia provides this document in either printed format, electronic format or both. URS considers the printed version to be binding. The electronic format is provided for the client's convenience and URS requests that the client ensures the integrity of this electronic information is maintained. Storage of this electronic information should at a minimum comply with the requirements of the Commonwealth Electronic Transactions Act (ETA) 2000.

Where an electronic only version is provided to the client, a signed hard copy of this document is held on file by URS and a copy will be provided if requested.

j:\jobs\42907466\6 deliv\appendices tech reports-may 2010\app q\q5\current\appendix a - sap\draft sampling and analysis plan_42907100_r1393_16-03-10.doc

This page is intentionally blank
This page is intentionally blank

Table of Contents

1	intro	auction	1
	1.1	Background	
	1.2	Objectives	2
2	Back	ground	4
	2.1	Proposed Dredging in Wheatstone Dredge Area	
	2.2	Project Area	6
	2.3	Environmental Setting	
	2.3.1	Bathymetry	7
	2.3.2	Intertidal, Nearshore and Deepwater Habitats	7
	2.3.3	Climate	8
	2.3.4	Geology and Geomorphology	8
	2.3.5	Oceanography	10
	2.3.6	Freshwater Discharge	11
	2.3.7	Marine Sediments	11
	2.4	Potential Contaminant Sources and Previous Investigations	12
	2.4.1	Data Gaps	14
	2.5	History of North West Shelf Development	17
	2.5.1	Contaminants from Land-based Activities	17
	2.5.2	Contaminants from Marine Based Activities	20
	2.5.3	Recreation/Tourism	23
	2.6	Contaminants of Potential Concern on the North West Shelf	23
	2.6.1	Nutrients	23
	2.6.2	Organic Contaminants	26
	2.6.3	Tributyltin	27
	2.6.4	Naturally Occurring Radioactive Materials (NORMs)	28
	2.7	Summary	29
3	Ratio	onale	31
	3.1	Contaminants List	34
4	Scop	e of Work	36
	4.1	Introduction	
	4.2	Sampling Location Selection	36
	4.2.1	Short Cores	
		**	ne

	4.2.2	Deep Coring	36
	4.2.3	Surface Sediment Sampling at Proposed Offshore Disposal Grounds	36
	4.2.4	Radionuclide Assessment	36
	4.3	Sediment Coring	36
	4.4	Sediment Subsampling	38
	4.5	Sample Handling	38
	4.6	Sediment Analyses	39
	4.6.1	Chemical Analyses	39
	4.6.2	Quality Assurance and Quality Control (QA/QC)	39
	4.6.3	Elutriate and Bioavailability Testing	40
	4.6.4	Toxicity and Bioaccumulation Testing	40
	4.7	Contingency Plan	42
	4.8	Health, Safety and Environment	42
	4.9	Field Records	43
	4.10	Data Management and Reporting	43
	4.11	SAP Report	43
	4.12	Estimated Time Lines for Sediment Assessment	44
5	Refer	rences	45
6	Limit	ations	51
Tab	les		
		eatstone Dredge Area and dredge volumes	6
		I nitrogen and phosphorus loads from major point sources on the North West Shelf	
		mates of nutrient loads to the North West Shelf	
		taminants list for sediments in the Wheatstone Dredge Area	
		tainer type, number and sample volume required	
Table	6: Prop	oosed dates for SAP & SAP report deliverables.	44
Figu	ures		
Figure	e 1: Pro	posed Dredge Area and deep core sampling locations.	. 5
Figure	e 2: Tra	ce metals and metalloids vs Al in sediments.	15
Figure	e 3: Loc	ations of main anthropogenic sources of contaminants to the North West Shelf	19
		TID	C

Appendice Appendix A	nical Survey			
	Appendices Appendix A Pilot Geocher			

This page is intentionally blank

Introduction

1.1 **Background**

Chevron Australia Pty Ltd (Chevron) proposes to construct and operate a multi-train Liquefied Natural Gas (LNG) and domestic gas (Domgas) plant near Onslow on the Pilbara Coast to process gas from various offshore fields in the West Carnarvon Basin. The Wheatstone Project is referred to as the Project and 'Ashburton North' is the proposed site for the LNG and Domgas plants.

The initial Project is expected to consist of two LNG processing trains each with a capacity of between 4 to 7 million tonnes per annum (MTPA) per train. Approval is being sought for the maximum capacity of the plant of 25 MTPA for the site. The Domgas plant will have a capacity equal to 15% of LNG sales, or approximately 230 Terajoule/day (TJ/d) based on initial LNG sales of 10 MTPA. Domestic gas plant capacity will increase as LNG production increases.

As part of the proposal, the dredging of marine sediments is required to enable vessel access via a shipping channel and turning basin.

Preliminary sediment and geotechnical investigations (Appendix A; URS Australia Pty Ltd (URS) 2009a) have indicated that the top layer of marine sediments in this remote region are unlikely to be contaminated with anthropogenic contaminants and likely to be suitable for disposal at sea. Pilot surface sampling using sediment grabs (24 samples) has been completed and none of the analytes investigated exceeded NAGD Screening Levels (Commonwealth of Australia 2009).

A range of statutory approvals will be required under relevant State and Commonwealth legislation prior to the proposed development taking place.

In order to provide consistency in the description of the proposed Dredge Area, the entire area proposed for dredging will be referred to as the Dredge Area throughout this document. This Sampling and Analysis Plan (SAP), prepared with reference to the National Assessment Guidelines for Dredging (NAGD) (Commonwealth of Australia 2009), assesses the proposed dredging program and available historical data on the physical and chemical characteristics of sediments in the vicinity of the Dredge Area (Phase I assessment). In addition, the sampling and analysis of sediments in the Dredge Area for proposed Contaminants of Potential Concern (COPCs) listed on the Contaminants List and a comparison to Screening Levels (Phase II assessment) is detailed in the SAP.

Elutriate and bioavailability testing (Phase III) and assessment of toxicity and bioaccumulation (Phase IV) may not be required, depending on the outcomes of the Phase II assessments. However, if necessary, Phase III and Phase IV assessments, briefly described in this Sampling and Analysis Plan (SAP), would be undertaken in the event that mean concentrations of contaminants in sediment exceeded NAGD Screening Levels. If necessary the Dredge Area would be adjusted in certain areas to excise potential contaminant "hot spots", as required.

Geochemical testing of sediments in the Dredge Area is proposed to assess the distribution and variability of contaminant concentrations and compare the concentrations of COPCs to Screening Level values in the NAGD (Commonwealth of Australia 2009). The primary use of the sediment data will be to characterise the contaminant status of sediment and assist in the selection of disposal options. The new data, together with limited historic data (where current and appropriate), will be used to classify the sediments in a single dredge management unit, or if required, assess several distinct dredge management units.

1 Introduction

This SAP presents the methodologies to be employed during the investigation and covers the following aspects:

- Objectives;
- Brief description of proposed dredging program;
- Summary of historic data and existing information from previous studies (Appendix A; URS 2009a);
- · Identification of contaminants of potential concern (COPCs);
- · Identification of potential data gaps;
- · Rationale for the proposed sampling design; and
- · Scope of work including assessment methodology.

Field Methods and Procedures:

- Occupational Health and Safety (OH&S);
- Sampling contingency plan (adverse weather and equipment failure);
- Surveying:
- · Documentation of field activities;
- · Chain of custody (CoC) protocols;
- Equipment decontamination; and
- Field QA/QC samples.

Laboratory Analytical Program:

- Analytical testing laboratories;
- Analytical testing program;
- · Sample handling, preservation and storage; and
- Analytical QA/QC and data validation.

It should be noted that not all field activities listed above will necessarily be included in the scope of works, however they are included to cover possible modifications or extensions to the proposed sampling program.

1.2 Objectives

Investigations to support the capital dredging program at the Dredge Area approximately 12 km west off the coast of Onslow have the following objectives:

- Complete a field and analytical program of sediment proposed for dredging in accordance with guidance provided in the National Assessment Guidelines for Dredging (NAGD) (Commonwealth of Australia 2009);
- Determine whether the quality and quantity of (previous and current) data gathered are sufficient to adequately characterise the contamination status of the sediments to assess disposal options; and
- Classify the sediment as acceptable, or otherwise for unconfined disposal at the proposed offshore disposal area.

An additional objective of this SAP is to collect samples to assess physical sediment properties to be used in modelling to predict sediment behaviour in dredge and disposal plumes.

This document comprises a review of existing information, and documents for the proposed sampling and analytical procedures in accordance with the NAGD (Commonwealth of Australia 2009). The purpose of this SAP is to describe the location and number of seafloor sediment samples, the

1 Introduction sampling methodology, analytical and sample transport procedures to confirm the chemical characteristics of the sediments proposed to be dredged in the Dredge Area and the surface sediments at the proposed offshore disposal site.

42907100/01/A

Chevron Australia Pty Ltd | **563**

2.1 **Proposed Dredging in Wheatstone Dredge Area**

Capital dredging of sediments as part of construction of the Ashburton North Strategic Industrial Area (SIA) is the principal focus of this SAP. As part of the proposal, capital dredging of marine sediments is required to enable vessel access via a shipping channel and a turning basin.

The current bathymetry was compared against initial dredging estimates and design depths in order to determine the location, volume and depth of sediment to be dredged in the Dredge Area (Main Access Channel and Turning Basin). The design depth for the main access channel, the turning basin, the LNG and condensate jetty and the materials offloading facility (MOF) is up to 15 m below lowest astronomical tide (LAT), for the purposes of permitting. This does not necessarily reflect the final depths of all marine infrastructure.

The indicative area proposed for dredging is shown below (Figure 1) and estimated dredge volumes for capital dredging works are summarised (Table 1).

The indicative total in situ gross volume of sediment expected to be dredged in the MOF the main access channel and in the Turning Basin is 45,000,000 m³ over an area of 11,500,000 m². It is proposed that the unconsolidated sediments will be disposed of at one of the five dredge material disposal grounds (Sites A - E).

Dredge volumes were calculated based on 1.25 m below development depth for tolerances and advanced maintenance dredging.

A combination of hopper and cutter suction dredge (CSD) will be used for all capital dredging in the MOF, main access channel and in the turning basin.

2 Background Dist 10n + 10n Wheatstone Project Figure 1: Proposed Dredge Area and deep core sampling locations. URS 42907100/01/A

Table 1: Wheatstone Dredge Area and dredge volumes.

Dredge Area	Total for Area
Temporary access channel	935 000
MOF areas	1 580 000
PLF areas	16 445 000
PLF Approach	20 160 000
Total Capital Dredge volume	39 120 000
Design uncertainties	5 880 000
Estimated total Capital Dredge volume	45 000 000

NB: all measurements are to LAT.

2.2 **Project Area**

Ashburton North is located to the east of the Ashburton River mouth and approximately 12 km southwest of Onslow in the Pilbara region of northwest Western Australia. The project area is largely undeveloped with the exception of a small boat harbour at Beadon Creek, a solar salt field with offshore loadout facilities to the west of Onslow, and the Roller oilfield in shallow coastal waters west of Onslow.

Solar salt fields are Onslow's newest industry, with Onslow Salt capable of producing 2.5 million tonnes of sodium chloride per annum. The project has handling facilities to transport, process store and load salt into ships for export. The offloading jetty is approximately 1.3 km long, situated off Sunset Beach (Shire of Ashburton 2009).

Western Australian Petroleum Pty Ltd developed the Roller oilfield around 20 km west of Onslow. The development consists of four monopod structures (Roller A, B, C and D), connected by pipelines to a gas separating plant located on Thevenard Island (Environmental Protection Agency 1991).

2.3 **Environmental Setting**

Dredging is proposed in shallow (<15 m), nearshore areas to the north of the mouth of the Ashburton River and Onslow town (Figure 1). The seafloor in this area is generally comprised of unconsolidated silt, sand and gravel, with patchy areas of macroalgae, seagrass, sponges, ascidians and hard and soft coral (P. Everson 2009, pers. comm., 25th June). The regional geology consists of Quaternary sedimentary, alluvial, shoreline and aeolian deposits (Department of Mines 1979).

The movement of contaminants associated with surficial sediments and resuspended fine particulates in shallow aquatic environments may be influenced by vessel movements, tidal movement and seasonal meteorological effects. Wind resuspension during extreme weather events (i.e. cyclones) is likely to contribute to the sporadic and efficient dispersal of particulate-bound contaminants on the inner continental shelf environment off the Ashburton River mouth, in particular in the less protected offshore area (Heyward et el. 2006).

The significance of erosion and sediment resuspension and transport as a result of cyclone-activity in tropical nearshore and inner shelf sediments on the Great Barrier Reef has been demonstrated by Gagan et al. (1988; 1990). Tropical storms and cyclones have shown to produce graded storm layers in sediments extending up to 30 km offshore in water up to 43 m deep, with extensive sediment

transport as a result of the storm-induced high wave energy. Erosion depths of >6.9 cm were observed by Gagan et al. (1990), suggesting that tropical cyclones are capable of sporadic but efficient cross-shelf transport of suspended sediments and associated contaminants. The implications of this for subsurface sedimentary profiles in the Dredge Area are that on a shallow cyclone-prone shelf, such as the North West Shelf (NWS), suspended sediment may easily be exchanged between adjacent sedimentary facies. In ancient shelf sequences, the transport history of fine-grained sediments (muds) may be complex, and stratigraphically equivalent facies may have similar mud types but completely different sands. Similarly, high current energy may also result in physical resuspension of surficial sediments and transport of fine particulates to water depths >80 m, as observed on the middle shelf adjacent to Sydney (Matthai et al. 2002).

2.3.1 **Bathymetry**

The marine environment in which the Dredge Area is situated extends from the upper intertidal zone at the mainland, through to depths of 200 m, encompassing the upper part of the continental slope and the nearshore component of the continental shelf. The gas fields occur in water depths of between 70 and 200 m and the planned submarine pipeline (Figure 1) will traverse the upper slope of the continental shelf at water depths of between 50 and 100 m, before crossing the nearshore shelf to a shore crossing at the mainland. The nearshore shelf is shallow and has a variable topography that includes flat submarine plains and many small sea-mounts and islands, supporting a varied abundance of reef habitat.

2.3.2 Intertidal, Nearshore and Deepwater Habitats

The intertidal habitats at Ashburton North and surrounds comprise sandy beaches and clayey estuarine sediments. Preliminary field investigations of these habitats of Ashburton North indicate a low diversity of infauna species and an absence of rare or protected species. The sandy beaches with low diversity and productivity levels are representative of the Pilbara coastline (B. Wilson 2008, pers. comm., 21st November).

Many of the nearshore islands are surrounded by shallow intertidal platforms (e.g. Thevenard Island). These are sand veneered and primarily support macroalgae and scattered ephemeral seagrass species. Limestone pavement is exposed at Onslow near Beadon Point and in other places along the coast. Many of the fringing coral reefs in the area are likely to be exposed for short periods at low spring tide.

The nearshore area is defined as the marine environment from the low water mark to the 20 metre bathymetric contour. The broad area is recorded as having high diversity of infauna from intertidal mudflats and sandflats associated with fringing mangals in bays and lagoons. Due to the highly turbid water from the suspended sediments associated with large tidal range and infrequent cyclonic activity, the nearshore area lacks significant benthic primary producer habitat (Commonwealth of Australia 2006). A Department of Environment, Water Heritage and the Arts (DEWHA) database search resulted in three small seagrass patches on the eastern side of Thevenard Island. Coral communities are known to occur in localised areas, such as Ashburton Island and Ward Reef, approximately 5 km from the coast.

The Petroleum Titles are located 145 km offshore from the mainland (approximately 100 km north of Barrow Island) in water depths of around 200 m, which is the outer part of the NWS. The deepwater environment is defined as the offshore marine environment from the 20 metre bathymetric contour.

The ocean in this region is recorded as having diverse benthic invertebrate communities and fish fauna. These water depths are below the photic zone and therefore preclude the presence of benthic primary producers. Demersal and benthic fish communities are likely to be present (Commonwealth of Australia 2006).

2.3.3 Climate

The climate in this region is arid-tropical, with high summer temperatures, and large spatial and interannual variability in rainfall. Annual rainfall effectively varies from zero to 1,000 mm, although average rainfall is 200-350 mm. Rainfall occurs mainly from December to March, although there is some winter rainfall in the south-western parts of the region. Winds are predominantly south to south-westerly from September to February, light and variable over March and April, and from the east and south during May to August. Continental heating and cooling causes strong sea breezes in the summer and land breezes in winter (Black et al. 1994). The region is also subject to cyclones between November and April. On average, 2.5 cyclones a year occur within the region (Lourensz 1981), bringing heavy rains and strong winds. The cyclones originate in the Timor Sea and are unpredictable in their path, but typically travel parallel to the coast and, in two out of three cases, cross the coast and travel inland. The extreme winds associated with tropical cyclones generate waves exceeding 20 m, storm surges exceeding 6 m and currents of up to 6 knots, causing direct damage to the marine environment, and representing a risk of indirect damage due to contaminant release from coastal and offshore facilities (D.A. Lord and Associates 2002).

The average annual maximum and minimum temperature for Onslow is 31.3°C and 18.1°C, respectively, and the area receives low, but variable annual rainfall, with an average of 275 mm per annum (Bureau of Meteorology 2009). The area is subject to episodic rainfall events, especially during cyclones which occur at a frequency of three to four per year within the Pilbara region. Tidal range in the region is approximately 3 m (Bureau of Meteorology 2009).

2.3.4 Geology and Geomorphology

The basement rocks in the NWS region are granitic and volcanic rocks of Precambrian age (2,700-3,300 million years [ma]). These rocks are overlain to the west by Phanerozoic sediments (70-300 ma) of the Canning basin that also extend offshore and contain the petroleum reserves being exploited at present. At the coast, the Precambrian and Phanerozoic rocks are generally overlain by a veneer of predominantly limestone sediments deposited in the last 65 ma (Bird and Schwartz 1985).

Five major geomorphic elements can be distinguished for the NWS region:

- The coastal system, which has creek and bay lined mangroves backed by extensive tidal salt flats or by beaches and dunes that form a thick cover over limestone. The latter is often exposed to form limestone pavements in the intertidal or sub-tidal zones off beaches and islands, as well as forming reefs;
- The Ashburton River delta, which includes spits, tidal flats, distributary channels, and partly lithified dunes:
- The two coastal bays, Exmouth Gulf at the western end of the Shelf and Nickol Bay, flanked to the West by the Dampier Archipelago;
- The submarine shelf area. The inner shelf slopes gently to 20-m depths some 20 km offshore, except in the Barrow Island/Monte Bello area where the contour extends about 90 km offshore. It is underlain by limestone that outcrops as local limestone reefs and platforms, islands, cays and

shoals interspersed with a veneer of coarse and medium sands, gravels and locally with corals;

- The Island Groups, which can be divided into three groups:
 - 1. Barrow and Muiron islands are the product of the folding of limestone;
 - 2. Thevenard and Airlie islands consist of predominately sandy deposits on a submarine limestone shelf: and
 - 3. Dampier Archipelago islands, some of which are comprised of rocks of Precambrian origin, and some of predominately limestone (D.A. Lord and Associates 2002).

At a regional scale, "coastal compartments" can be identified that are related to the regional geology, and secondarily related to coastal aspect and large coastal landforms such as deltas. Each compartment is comprised of a complex array of physical landforms and coastal processes in which the state of the environment is highly dynamic, varying over space and time. The primary compartment extends from Turbridgi Point to Cape Preston, encompassing the coast around Ashburton North.

Three distinct secondary compartments are discernable along this reach of coast, one of which is known as the Ashburton compartment and extends from Turbridgi Point, at the mouth of Exmouth Gulf, to Coolgra Point north-east of Onslow. This area is a single sediment cell extending over 70 km, and contains the active delta of the Ashburton River, long sandy beaches and dunes, and the island chains running approximately parallel to the shore. The western boundary of the compartment, a lithified chenier, marks a change from the west-north-west-facing shore of Exmouth Gulf to the northnorth-west-facing coast of the Pilbara Region. There is also a change from the extensive saltflat, mudflat and tidal creek complex of eastern Exmouth Gulf to the partially lithified and unconsolidated sandy landscapes of the Ashburton compartment (Damara WA 2009).

Within the Ashburton compartment, the geomorphology changes with distance eastwards. Saltflats and mudflats increase in extent east of Beadon Point. Alongshore, the sandy beaches and dunes of the Ashburton compartment gradually give way to saltflats and mudflats associated with the active deltas of Robe River and Fortescue River, east of Coolgra Point. Offshore, the thin cover of sandy sediments over the pavement of the inner continental shelf appears to have been moved along and offshore to merge with the sandy shoals and islands abutting the Barrow Island ridge.

The function of the Ashburton compartment as a single sediment cell is especially relevant to marine and coastal management, because disruption of one part of the cell is highly likely to affect the stability of the coast downstream. A sediment cell is a reach of coast, including the nearshore terrestrial and marine environments, within which the movement of sediment is readily identifiable, if not largely selfcontained (Komar 1996). Sediment cells are segments of the coast in which sediments derived from a common origin can be traced along transport paths to a sink, where they are temporarily or permanently lost to the coast. The Ashburton sediment cell has two sectors; the western shore between Tubridgi Point and the mouth of the Ashburton River, and the eastern shore from the river mouth to Coolgra Point. The net sediment movement within the cell is easterly, although reversible from time to time due to onshore winds. As a result, sediment in the western sector is largely sediment reworked by erosional processes and littoral drift along the shore. In contrast to this, sediment in the eastern sector is of fluvial origin and littorally reworked, as chenier spits migrating eastwards from the mouth of the Ashburton River.

Major sources of sediment in the eastern sector of the Ashburton compartment include:

- erosion of saltflats and mudflats by fluvial run-off and tidal creeks after flooding and tidal inundation:
- alluvial sediments discharged by the Ashburton River;
- erosion of dunes and rocky shores by nearshore processes; and
- bioproduction and reworking of material from the inner continental shelf.

The major transport path in the cell is along the shore, at the beachface, with much of the material being supplied as littoral drift along spits fed from the Ashburton River. There is also some evidence of sediment movement along slope breaks on the inner shelf and perhaps across the shelf pavement, although these are not as substantial as the littoral pathway. Sediment sinks include long chenier spits, coastal dunes and inshore shoals, as well as deposition on mudflats by tidal creeks (Damara WA 2009).

2.3.5 Oceanography

Currents are the most important oceanographic characteristic affecting the physical behaviour of contaminant inputs from human activities on the NWS. Currents (unlike waves) result in net water transport, and so affect the dilution and dispersion of water-borne contaminants. Currents are also important in the suspension and sorting of sediments and organic particulate matter.

Currents on the NWS are spatially and temporally variable, driven mainly by tides and wind stress and influenced by the complex bathymetry of the coast and around and between the islands (Osborne *et al* 2001a; 2001b). The tides are mainly semi-diurnal (i.e. undergoing two highs and two lows per day), and tidal range is large over much of the NWS, increasing in amplitude from south to north (e.g. spring tidal ranges of 2.5 m at Onslow, 4.5 m at Dampier and nearly 6 m at Port Hedland; Heywood *et al.* 2000).

In the NWS bioregion, wind stress, tides and bathymetry are also important, but there is the additional influence of the southwards-flowing Leeuwin Current and Indonesian throughflow. Tidal amplitude is still large in offshore waters, although smaller than in adjacent nearshore regions. Internal tides moving below the sea surface and up onto the shelf may also play an important role in transporting nutrients from the deep ocean to the surface.

An indication of typical current speeds at various NWS locations near oil/gas production facilities is provided by the following data (Buchan and Stroud 1993):

- Near Thevenard Island (15 m depth): mean current speed 5 m below sea surface of 0.28 m/s;
- Barrow Island (15 m depth): mean current speed of 0.42 m/s;
- Apache's Harriet offshore production wells (near the Lowendal Islands, 22 m depth): mean current speed 7 m below sea surface of 0.23 m/s; and
- North Rankin production wells (offshore area, 124 m depth): mean current speed 13 m below surface of 0.21 m/s.

These current measurements indicate the presence of a high energy dispersive marine environment at water depths of <40 m.

2.3.6 Freshwater Discharge

Groundwater

Appleyard (2000) has estimated groundwater discharge to the NWS as 138,200 ML/yr, based upon a division of the coastline into six zones according to their aquifer characteristics:

- 1. North West Cape coast (90 km), discharge 14,000 ML/year;
- 2. Yanrey coast (140 km), discharge 16,000 ML/year;
- 3. Onslow coastal plain (170 km), discharge 21,000 ML/year (Dredge Area is located in this region);
- 4. Karratha coast (150 km), discharge 200 ML/year;
- 5. Port Hedland coastal plain (240 km), discharge 45,000 ML/year; and
- 6. South-western Canning Basin coast (70 km), discharge 42,000 ML/year.

Although the inter- and intra-annual variability of groundwater flow is probably considerable, no data on the variability of groundwater discharges are currently available.

Riverine runoff

Eleven major rivers with a combined catchment area of 171,490 km² discharge to the NWS (Ruprecht and Ivanescu 2000). River flow in the NWS region varies considerably due to the irregular nature of rainfall. The rivers on the NWS have little or no flow for most of the year, and many rivers dry up for at least part of the year. River flow mainly occurs from December to March (especially February). In northern Pilbara rivers there is little or no flow for nearly 50% of years. The interannual variability of river flow in southern Pilbara rivers is also considerable, as typified by data for the Ashburton River from 1973 and 1997: average annual flow was 440 GL, but less than 200 GL in eight years, and in one year reached 4,500 GL.

The Ashburton River is one of the largest rivers in the Pilbara, with a catchment area of approximately 78,777 km², and is the major feature of the Ashburton River Drainage Basin. The majority of the Ashburton River catchment area is undeveloped and covered by woodland, shrubby pasture and pasture (Department of Agriculture, Forestry and Fishing 2008). URS (2009b) indicates that the average annual flow of the Ashburton River is around 840,000 ML, although this is highly variable and dependent on rainfall.

During a year with "higher than average" flow, an estimated 5,100,000 tonnes of sediment would be deposited into the lower reaches of the Ashburton River, and the nearshore marine area. During an "average" flow year, deposition would be around 360,000 tonnes of sediment. Above-average flow events have become more common over recent years since the mid 1990s, occur roughly every three years. Sampling showed that particle sizes were generally small, with more than 90% of sediments classified as silts and clays (less than 0.063 mm diameter) (URS 2009b).

The significance of river discharge of fine sediments and nutrients to nearshore marine environments of the NWS is not well known. Flow velocities from the Ashburton River are likely to decline significantly over the river delta, due to the low gradients and open land surface. Due to the reduced stream velocity, sediment deposition will be maximised in this zone.

2.3.7 **Marine Sediments**

Much of the nearshore region adjacent to the Ashburton River mouth is covered by silt and sand sheets of varying thickness overlying Pleistocene limestone. Near areas of river discharge from the

Ashburton River, sediments are usually fine silts and clays with high silica content. Sediments become increasingly coarse and increase in calcium carbonate content with distance offshore, due to decreasing input of terrigenous silts and clays from river runoff and coastal erosion. Sediment resuspension is frequent immediately seaward of the intertidal zone, and leads to considerable turbidity (Forde 1985). Resuspension is mainly due to wind-driven waves, whereas further offshore the sediment movement is a result of internal or subsurface waves (Heywood *et al.* 2000). Mainly coarse and medium-grained calcareous sandy sediments predominate to the 100 m depth contour, with a transition to continental slope muds around 100–150 m depth (Black *et al.* 1994).

2.4 Potential Contaminant Sources and Previous Investigations

On a regional scale, it is not possible to calculate the total loading of pollutants to the marine environment from industrial and domestic point sources on the NWS. Heyward *et al.* (2000) suggested that a regulatory government body, such as the Environmental Protection Authority (EPA), conduct a comprehensive inventory of contaminant inputs within the area of the NWS. There is a paucity of published literature directly relevant to the NWS, and a search of the bibliography of Jernakoff *et al.* (2006) reveals that of the 1,725 records, only 26 relate to chemistry. Only a further 15 are in the published literature. Due to the largely undeveloped nature of the Ashburton River catchment area and the Dredge Area, there are very few known sources of anthropogenic contaminants that can be identified. In addition, potential point sources of contamination to the Dredge Area are likely to result in a low level of contamination of surficial sediments, due to the highly dispersive nature of the NWS marine environment, and in particular due to the effects of cyclone activity on the resuspension and transport of sediments to water depths exceeding the depths of the Dredge Area (i.e. >13.5 m LAT).

Coastal issues related to domestic waste, such as sewage disposal, have been perceived as less significant in this region than elsewhere because of its low population density. However, recurring pollutants from diffuse sources in the region include heavy metals from antifoulants on shipping, harbour works, shore-based plants and cross-shelf pipelines. Several studies using local invertebrates, such as oysters and intertidal gastropods, have detected elevated levels of some metals (Heyward *et al.* 2006).

Sediment quality has been assessed in the vicinity of the Dredge Area on two previous occasions. In June 2005, marine sediments were sampled by the Department of Environment and Conservation (DEC) at four locations offshore of the mouth of the Ashburton River and at four locations offshore from Onslow to estimate the background concentrations for selected contaminants (Department of Environment and Conservation 2006). A primary assumption for this study was that no anthropogenic contamination had occurred in these areas, with sediments analysed for organotins, PAHs, Total Petroleum Hydrocarbons (TPH), BTEX compounds (benzene, toluene, ethylbenzene and xylene), organochlorine pesticides and Polychlorinated Biphenyls (PCBs), as well as total metals and metalloids (aluminium, arsenic, cadmium, chromium, cobalt, copper, iron, lead, mercury, nickel, selenium, silver, vanadium and zinc) (Department of Environment and Conservation 2006). The results of this study confirmed that there was no discernible anthropogenic enrichment of contaminants in sediments offshore of the Ashburton River mouth or the town of Onslow. All concentrations of organotins, PAHs, TPH, BTEX compounds, OC pesticides and PCBs were reported as below the laboratory limit of reporting (LOR), although the LOR in that investigation exceeded the Australia and New Zealand Environment and Conservation Council / Agriculture and Resource Management Council of Australia and New Zealand (ANZECC/ARMCANZ) (2000) Screening Levels for some organic compounds. The DEC (2006) also estimated natural background concentrations of

URS

trace metals in marine sediments, noting that natural background concentrations of arsenic were above the ANZECC/ARMCANZ (2000) Screening Level. All other mean trace metal concentrations in sediments around the Ashburton River mouth and Onslow were below their relevant ANZECC/ARMCANZ (2000) Screening Levels (Department of Environment and Conservation 2006).

In February 2009, URS collected surface sediment samples for the Project at 17 nearshore sites in the vicinity of the proposed dredge area and at eight offshore sites around the proposed spoil disposal ground. Sediments were analysed for a suite of total trace metals (aluminium, arsenic, cadmium, chromium, copper, iron, manganese, mercury, nickel, lead, vanadium and zinc), TPH, BTEX compounds and TBT (Appendix A; URS 2009a). The results of this study agreed with those of the DEC (2006), with concentrations of TPH, BTEX compounds, TBT and trace metals being below the laboratory LOR or below the relevant NAGD Screening Levels (URS 2009a). Arsenic exceeded NAGD Screening Levels, which was also previously confirmed by the DEC (2006) investigation.

The concentrations of trace metals in whole sediments sampled in the pilot investigation (Appendix A; URS, 2009a) correlate strongly with the concentrations of aluminium, which is a proxy analyte for grainsize (i.e. clay mineral content) (Loring and Rantala 1992) (Figure 3; URS 2009a). Grain size is therefore likely to be the principal factor which determines the whole sediment concentrations of trace metals in these sediments and anthropogenic contributions in these sediments are not discernible. An exception is arsenic, which does not correlate strongly with aluminium (R²=0.14; n=32; p>0.05) and which may be more strongly associated with the sediment sand fraction (>0.063 mm fraction) and the carboniferous and Fe-oxide sediment components (Davies 1979). Studies of the geochemistry and mobility of arsenic from sediments under different environmental conditions confirmed that large amounts of arsenic may be tightly bound to sediments due to iron/arsenic co-precipitation and the formation of insoluble precipitates at the water-sediment interface (Nikolaidis et al. 2004). Similarly, Devesa-Rey et al. (2008) found arsenic in sediments to be mainly associated with the least mobile fractions and bound to Fe-Al oxides and the residual mineral phase.

Once contaminants are introduced to the marine environment of the NWS they are subject to a range of physical, chemical and biological processes that influence their fate. A review of contaminant sources, impacts, pathways and effects on the NWS by Fandry et al. (2006) identified several contaminants of potential concern (COPCs) in the region, including:

- · Trace metals (barium, cadmium, chromium, copper, lead, mercury and zinc), associated with shipment of minerals and runoff from onshore mining activities;
- Tributyltin (TBT), an antifouling constituent on ships;
- Nitrogen, a nutrient:
- A waste stream: Produced formation waters (PFW); and
- Hydrocarbons, associated with oil spills and chronic releases such as bilge and tank residues from ships.

As well as these identified COPCs, it was also considered conceivable that polycyclic aromatic hydrocarbons (PAHs) and organochlorine (OC) pesticides may have contaminated sediments via runoff from the Ashburton River (Department for the Environment, Water, Heritage and the Arts 2009). However, because of the undeveloped nature of the catchment and the sparse nature of farming activities, it was considered unlikely that these sources would make a substantial contribution to contaminant loads in offshore sediments on the NWS, in particular in the highly dispersive inner shelf environment (Department of Agriculture, Forestry and Fishing 2008).

Significant dredging activity occurs in the NWS region, particularly in the major ports of Dampier and Port Hedland. During dredging operations, suspended sediment concentrations are very high for sustained periods. Monitoring suggests that the impact on existing adjacent macro-benthos communities is minimal, but there are no data to show the effects of suspended sediment on very small organisms and on new recruits such as juvenile corals. When synthetic olefin- and ester-based drilling muds are adopted for exploration purposes their effects will need to be studied, particularly in more sensitive areas. Little is known about the transport of cuttings on the NWS or about the implications for dispersion and degradation of the fluids (Heyward et al. 2006).

The effects of aromatic components of the Produced Formation Water (PFW) plume on the water column, and the fate of these compounds in the sea surface microlayer, given the high possibility of photo-oxidation, are not fully understood to date. The volume of PFW released will increase with the number and age of drilling platforms on the NWS. The fate and effects (if any) of the components other than hydrocarbons, including added chemicals such as corrosion inhibitors, are yet to be studied. Research will be required to determine the effects of chronic, low-level pollution loads on the NWS (Heyward et al. 2006).

2.4.1 **Data Gaps**

Due to the paucity of previous geochemical investigations in the offshore region adjacent to Onslow and the Ashburton River mouth, including the Dredge Area, there is an uncertainty of potentially elevated concentrations of organic and inorganic contaminants in sediments in this region. However, based on the available information and literature data and the dispersive nature of the NWS marine environment, an accumulation of contaminants in the sediments is unlikely. Naturally elevated concentrations of arsenic, and to a lesser degree nickel may occur in muddy areas adjacent to the Ashburton River mouth and in water depths greater than 40 m, where sporadic but efficient sediment resuspension due to cyclone activity and wave action is less likely.

The main limitations of the previous investigations highlight data gaps which can be summarised as follows:

- · Lack of sufficient sampling density in URS (2009a) pilot investigation and limited sampling within the proposed dredge area;
- Insufficient geochemical data in sediments below 0.1 m depth;
- Sparse data for organic contaminant concentrations;
- · Absence of available data for radionuclide activity (sum of gross alpha and gross beta) in sediments in the NWS region; and
- Lack of data regarding potential bioavailability of COPCs to marine organisms and the behaviour of sediment bound contaminants when material is disturbed, e.g. during dredging and disposal.

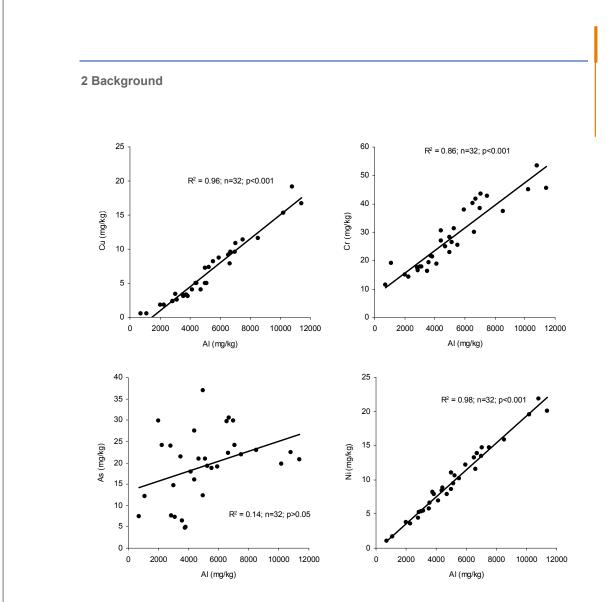
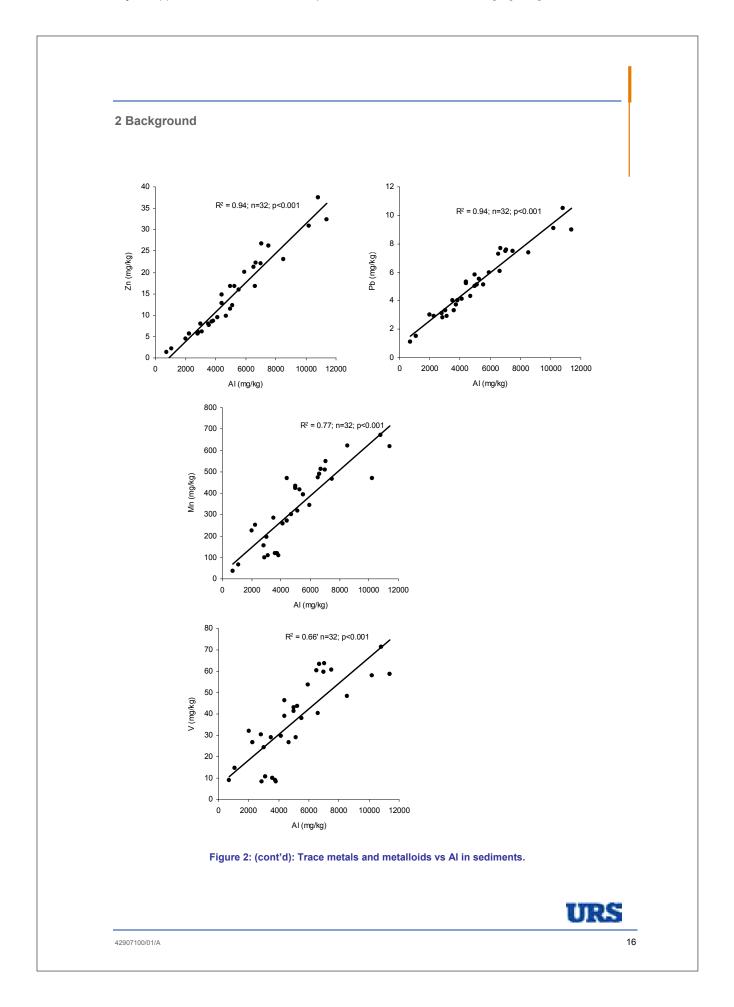



Figure 2: Trace metals and metalloids vs Al in sediments.

2.5 **History of North West Shelf Development**

A historical background to the NWS region has been provided by D.A Lord and Associates (2002). The Pilbara is the coastal province and hinterland to the NWS. It was first settled in the 1860s as pastoral land, and pastoral leases presently cover about a third of the region. There have been several gold rushes, and gold mining is still a viable industry today. Exploitation of the Pilbara's huge iron ore reserves commenced in 1960, and is serviced by export port facilities at Dampier, Cape Lambert (Port Walcott) and Port Hedland. Harvesting salt from seawater is also a major industry, established first at Karratha in 1972, and subsequently at Port Hedland and Onslow.

Oil was first found in the region in the Rough Range near Exmouth Gulf Station in 1953, and then at Barrow Island in 1964. Exploration and subsequent production grew exponentially from this time, with an overwhelming proportion of total production having taken place over the last 15 years. A third of Western Australia's oil production over the last thirty years has come from Barrow Island, another third from the Woodside Joint Venture's NWS Project, and the remainder from nine other projects. The equivalent production for natural gas has seen nearly 85% come from the NWS Project (Meaton 1999). The massive NWS reserves are accessed by three main operators: (1) Woodside Offshore Petroleum (mainly natural gas and liquefied natural gas); (2) West Australian Petroleum (WAPET) (oil) - now run by Chevron Australia Pty Ltd; and (3) BHP Petroleum (oil).

Other small but important industries to the NWS environment are commercial fishing; mainly prawning, some fin fishing, and increasingly, pearl shell aquaculture. National and international tourism based around marine attractions are also growing, particularly along the Onslow coast and within the Dampier Archipelago.

The population of the Pilbara is about 45,000 (Australian Natural Resources Atlas 2009), but was higher during the first (1976 and 1981) and second (1986 and 1991) phases of the NWS Project. Changes in employment patterns in the oil/gas industry (e.g. the adoption of 'fly in, fly out' policies for staff) have also affected population size.

Most of the population lives in the coastal towns of Port/South Hedland (13,300), Karratha (10,400), Roebourne (1,600), Wickham (1,500), Dampier (1,400), and Onslow (600) (Pilbara Development Commission 2001). The population is relatively young (over 30% between the ages of 25 and 40), and recreational activities centred around the marine environment (swimming, boating, diving and fishing) are very popular, particularly in the Dampier Archipelago (D.A. Lord and Associates 2002).

2.5.1 **Contaminants from Land-based Activities**

Land-based industries in the Pilbara region include construction, salt production, mining (mainly iron ore and gold), iron ore processing and petroleum products processing. The three most significant industrial activities on the coast are the salt production facilities at Dampier; the export facilities for iron ore at Dampier, Cape Lambert, and Port Hedland; and Woodside's gas processing facilities in Withnell Bay and supply base in King Bay on the Burrup Peninsula. There are also petroleum processing facilities on Thevenard Island, Airlie Island, Barrow Island, and Varanus Island (Figure 4; D.A. Lord and Associates 2002).

Major industry point source discharges from the land to the ocean are licensed by the environmental authorities, and include discharge from three outfalls at Hamersley Iron's Parker Point power station in Dampier (i.e. Dampier Salt: 3,800 ML/yr; Dampier domestic wastewater treatment plant: 50 ML/yr;

Woodside onshore treatment plant: 97.7 ML/yr; Hamersley Iron's Parker Point power station: ~90,000 ML/yr) (D.A. Lord and Associates 2002).

Airborne material carried offshore, particularly from materials stockpiles, may also be a source of contaminants to sediments in the Dredge Area, but this source has not been quantified and is likely to be insignificant due to the large area involved. Similarly, the Dampier wastewater treatment plant treats a very small volume of domestic sewage and is not considered a significant source of nutrients or contaminants to the offshore region. Contaminants discharged at levels above ANZECC/ARMCANZ (2000) guideline levels are copper (~150 μ g/L) and zinc (~80 μ g/L), but these concentrations would easily be diluted to below relevant guideline levels within the discharge mixing zone. The discharges from the other sources (i.e. outfalls at Hamersley Iron's Parker Point power station and domestic wastewater treatment plant in Dampier; Woodside onshore treatment plant; Hamersley Iron's Parker Point power station) are not considered to be relevant in the context of point source contributions to surficial sediments in the Dredge Area because of the large distance from these sources to the Dredge Area.

Fandry *et al.* (2006) identified that another potentially significant component of industrial wastewaters discharged into NWS waters is heavy metals. However, at all but Hamersley Iron Parker Point Power Stations, the reported annual loads are small and have decreased considerably over recent years. For example, at Woodside's onshore treatment plant at Withnell Bay, zinc discharges have decreased from 100 kg/yr in 1993 to 4.3 kg/yr in 2000. Discharges of copper have not exceeded 11 kg/yr (1995), while discharges of cadmium and lead were less than 5.5 kg/yr (1997) and 24.4 kg/yr (1995), respectively. In 2000 the discharge loads of copper and cadmium and lead were less than 0.8 kg/year, which is an insignificant input to the NWS offshore environment.

At the Parker Point sites in Dampier annual loads of cadmium, chromium, copper, lead and zinc ranged from 252 kg/yr for cadmium to 8,145 kg/yr for zinc. These are far higher than those at the other site and may be cause for concern, particularly for benthic habitats exposed to high concentrations of heavy metals that are likely to be accumulating in the bottom sediments. To determine the potential environmental impact, an investigation of heavy metals in sediments affected by the effluent discharges from the Parker Point Power Station was recommended by Fandry *et al.* (2006). However, this potential hot spot for heavy metals is more than 200 km from the proposed dredging area off the Ashburton River mouth and therefore unlikely to affect the concentrations of heavy metals in surficial sediments in the Dredge Area. Similarly, the accumulated levels of heavy metals in sediments around Woodside's onshore facilities at Withnell Bay and King Bay (Dampier) were also lower than the ANZECC/ARMCANZ (2000) Screening Levels, and are unlikely to contribute metals to sediments in the Dredge Area (Fandry *et al.* 2006).

At Hamersley Iron's Parker Point power station, the concentrations of metals in the discharge are low but the annual loads of cadmium, chromium, copper lead and zinc discharged are far larger than annual loads discharged from Woodsides' Offshore Treatment Plant. In 2000, estimated loads discharged from the Parker Point power station ranged from 252 kg/yr for chromium to 8,145 kg/yr for zinc, compared to loads from Woodsides' OTP of less than 0.8 kg/yr for cadmium, copper and lead, and less 5.5 kg/yr for zinc. Although the concentrations of metals in wastewater discharged at the Parker Point site are unlikely to cause adverse environmental effects, the loads are a cause for concern due to the potential for long-term trace metal accumulation in sediments. For this reason, an investigation of trace metals in sediments in the NWS region may be warranted, although the environmental effects, if any, are likely to be limited to the area in the vicinity of these sites.

Potential environmental impacts associated with NWS port operations include those due to stockpiling (and associated airborne dispersion of particulates and surface runoff), loading spillages, and dredging (capital and maintenance).

There are no data on the environmental impacts of stockpiling, but given that the bulk of stockpiling is iron ore, with salt being the only other significant product, it is not expected that either of these cause pollution. Spillages while loading no doubt lead to contamination with iron particles in the vicinity of the loading jetties, but given the chemistry of iron in marine waters this is not considered likely to cause a significant environmental impact from a toxicological point of view (D.A. Lord and Associates 2002).

Dredging is not a direct source of contaminants, but can be an issue in terms of resuspension of contaminated sediment. Disposal of dredge spoil at sea may also temporarily introduce contaminants into the water column and into the sediments on a longer term basis. Ship movements can also cause redistribution of contaminated sediments due to propeller movements and associated resuspension of sediments.

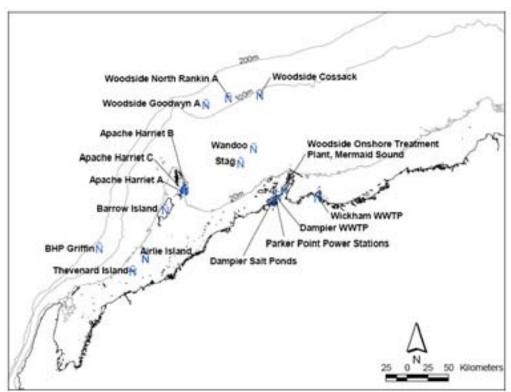


Figure 3: Locations of main anthropogenic sources of contaminants to the North West Shelf.

NB: 'N' is location of a sampling site.

2.5.2 Contaminants from Marine Based Activities

Contaminants which may potentially be contributed to the marine environment on the NWS from marine based activities include organic and inorganic contaminants from the oil and gas industry (i.e. drilling activities and production), shipping activities, commercial and recreational fishing activities aquaculture and tourism (D.A. Lord and Associates 2002).

Oil and Gas Industry

Exploitation of petroleum deposits on the NWS involves two principal activities; drilling (for both exploration and production), and oil/gas production from floating or fixed platforms. In addition there are a number of pipeline systems carrying product between platforms, or from platforms to offshore and onshore processing and/or shipping facilities.

Potential environmental effects from drilling are due to the dispersal of drilling fluids, drilling cuttings (mostly crushed rock), and to a much lesser extent onboard wastes (i.e. sewage and kitchen wastes). During the drilling process, drilling fluid is generally retained for re-use, with the cuttings separated out and discharged overboard, usually with some adherence of drilling fluid. Water-based drilling fluids are generally also discharged at intervals and/or at the end of the program.

Synthetic-based drilling fluids are expensive and so normally kept for reuse (URS 2001), although there is always some loss during the separation process from the drilling cuttings. The large majority of drilling fluids used on the NWS are water-based. Mixtures of drilling fluid and drilling cuttings are typically discharged from the bottom of a caisson, usually 10 m or more below sea level (or about 10 m above sea level in shallow waters). As the material falls to the seabed it splits into two downcurrent streams. One stream is the high density material which falls almost directly to the seafloor (most settling within 100 m of the drilling platform), and the other, estimated as approximately 5% of the solids, forms a visible turbid plume in the water column (D.A. Lord and Associates 2002).

Short-term environmental effects include physical processes such as burial, substrate modification, high turbidity and suspended solids loads on the seabed, and some exposure to chemicals of a potentially toxic nature. For exploration drilling, each well typically takes 7–30 days to complete (sometimes up to 75 days; URS 2001) depending on the target depth, depth of water, the difficulty of penetrating the geological formation and the amount of data required to assess the size of a discovery. For a series of development wells at a single production facility, drilling typically takes 12–18 months.

By 2002, approximately 300 wells, mostly for exploration purposes, had been drilled on the NWS (D.A. Lord and Associates 2002). An estimated 25 exploration wells are drilled for each successful production unit (Meaton 1999). Exploration wells are usually singular and widely dispersed. In contrast, development wells for production purposes are usually relatively small in number overall but at any individual production site there can be a significant number of wells, leading to a more concentrated environmental effect.

URS (2001) have reviewed the environmental findings of drilling programs at one site in Bass Strait, one in the Otway Basin, one in the Timor Sea and three on the NWS. URS (2001) concluded that:

 The main environmental effect of discharged drill cuttings is the temporary burial of seafloor organisms close to the well bore. The amount of drill cuttings produced during an exploration

drilling programme is rarely more than 500 m³ and does not normally result in a pile of drill cuttings on the sea floor except in shallow waters (i.e. <20 m). In deep waters (i.e. >50 m), cuttings are dispersed thinly across the seafloor. Where cuttings piles do form in shallow waters, they are usually redistributed by wave and current action within a 12 month period and recolonised by biota; and

Water-based drilling fluids may be discharged into the marine environment because of their low toxicity to marine organisms. In general, synthetic-based drilling fluids exhibit low or no toxicity for water column organisms and moderate toxicity for sediment amphipods, but are rarely discharged because of their high cost.

D.A. Lord and Associates (2002) identified 28 fixed offshore platforms and three floating off-take vessels on the NWS. Except for small amounts of sewage, grey waste, deck drainage and cooling water, the main discharge from these production platforms is produced formation water (PFW). Although accidents at offshore production facilities can also result in oil spills, these have to date, been infrequent and small-scale on the NWS (e.g. 1,030 L of PFW were spilled in 1999, i.e. less than

PFW comprises fossil water trapped in the petroleum-bearing rock, and injection water (seawater or formation water) used to increase production pressure. PWF usually contains elevated levels of some metals and petroleum hydrocarbons, naturally occurring radioactive materials (NORMs), suspended solids, organic acids and inorganic ions. It is also frequently has temperatures, salinities and dissolved oxygen concentrations that differ to ambient conditions. In addition, operational requirements may result in PFW including biosolids, corrosion inhibitors, emulsion inhibitors and-anti foaming agents (Swan et al. 1994).

PFW is normally separated from the oil/gas phase and then the primary oil stream is treated further to remove additional water which is added to the PFW stream. The PFW stream may also receive one or more additional treatments to remove oil and is then either re-injected back into reservoir, or discharged to the marine environment. Nine offshore production facilities have appreciable discharge of PFW, with concentrations of oil in water from 6-55 mg/L. The volume of PFW - and associated loads of oil - discharged from these facilities varied from about 65,000 m³/yr to 6,020,000 m³/yr, with corresponding oil volumes of 2.52 tonnes to 92.65 tonnes (D.A. Lord and Associates 2002).

The estimated load of oil to the NWS from PFW is about 214 tonnes/yr, which compares to an estimated 2-8 million tonnes of oil entering the marine environment worldwide each year: 45% from shipping; 38% from coastal, urban, municipal and river runoff; 8% from natural seepage; 6% from atmospheric fallout; and only 3% from offshore production (Minerals Council of Australia 1999).

Preliminary (and conservative) estimates based on available data indicate natural seeps on the NWS contribute at least 3,300 tonnes/yr (Fandry et al. 2006): for an oil/gas reservoir as large as the NWS, the contribution may conceivably be as high as those of the Californian, Alaskan and Gulf of Mexico reservoirs (i.e. 20,000-150,000 tonnes oil/yr). Available data thus indicate contributions from natural seeps far exceed the estimated contribution from PFW and the even lesser amounts discharged from occasional accidents at offshore facilities or from shipping operations (typically <1 tonne/yr).

Appropriately treated water-based PFW generally has a low to very low toxicity, and where there is attributable toxicity then this is often due to ammonia and sulphide, both of which are volatile and biodegradable, and therefore do not persist for extended periods in the environment (Swan et al. 1994). Few data on metal concentrations in NWS PFW are available, but data for the Harriet A, Airlie

Island and Cossack Pioneer facilities (Colman and West 2000) indicate that concentrations are either close to or below ANZEC/ARMCANZ (2000) guidelines for protection of 90% of species, or require little dilution to do so (e.g. 10-fold for most metals in Harriet A PFW, up to 50-fold for silver in Cossack Pioneer PFW, and 40-75 fold for copper in Airlie Island PFW). These dilutions would generally be achieved within the initial mixing zone of PFW discharge by the tidal and wind-driven currents. Adverse effects due to metal concentrations in PFW therefore appear unlikely.

To date there has been one comprehensive study of PFW on the NWS, at the Harriet A platform by Burns et al. (1999), and it provides a benchmark for similar studies. A combination of oceanographic techniques, geochemical tracer studies, chemical and biological assessment methods and dispersion modelling was used to describe the distribution and fate of the petroleum hydrocarbons and nutrients discharged in the PFW. Also, the Harriet A platform is in shallow water near the Lowendal Islands, and has one of the largest discharges of PFW, and so in relative terms has a higher potential for adverse environmental effects than many other facilities. Burns et al. (1999) determined that hydrocarbon uptake in oysters and inhibition of growth rates in natural marine bacterial and phytoplankton assemblages were confined to within 900 m of the discharge (corresponding to a PFW dilution of 1:5,000), with effects most apparent in the nearfield water column and in association with transient surface slicks. There were also measurable (albeit very low) levels of hydrocarbons in the sediments within 900 m of the discharge, but degradation and dissipation processes were fast enough to prevent any long-term buildup.

Shipping

The NWS region supports a number of significant ports and loading facilities which are managed by two Port Authorities; the Dampier Port Authority (DPA) and the Port Hedland Port Authority (PHPA). In 1998-1999 there were 2,231 shipping movements through Dampier Port and 616 through Port Hedland (D.A. Lord and Associates 2002). On a tonnages basis the two Ports shifted a total of 77% of exports for Western Australia in 1998-1999. The bulk of this export volume was iron ore (76% and 95% for Dampier Port and Port Hedland, respectively).

Shipping represents a potential source of contaminants from oil spills and from leaching of antifoulants (tributyltin - TBT) from hulls of vessels. The release of a large amount of bunker fuel is potentially more environmentally harmful than a similar volume from a NWS production facility, as the latter are typified by light oils that evaporate and degrade far more rapidly than heavy bunker fuels.

On a global basis the worst oil spills have been due to accidents at offshore wells, but these are less frequent than environmental disasters due to oil tanker accidents (Swan et al. 1994). The NWS has, however, experienced no major oil spills from either type of accident, nor have there been any major shipping accidents over the last 18 years (D.A. Lord and Associates 2002). The Australia Maritime Safety Authority database for the NWS region (to 2002) reports 44 minor spills from shipping operations, three from exploration activities, none from shore-based activities and 10 other reported spills or sheens reported. These spills ranged in size from 5 L to 30,000 L, with over 70% of spills less than 1,000 L (i.e. less than 1 tonne).

Commercial Fisheries

Significant commercial fisheries exist within the NWS region including the Onslow Prawn Managed Fishery, Nickol Bay Prawn Managed Fishery, Northern Demersal Scalefish Interim Managed Fishery, Pilbara Demersal Finfish Fishery and the North Coast Shark Fishery (Department of Fisheries 2000).

The main environmental impact associated with commercial fishing is habitat damage during trawling. Outside of the potential risk from the spillage of fuel while refuelling or due to boating accidents, commercial fishing activity is not considered a major source of contaminants. Some commercial vessels may exceed 25 m in length and therefore use TBT antifoulants. Smaller boats are likely to be using copper-based antifoulants. Contamination of sediments with TBT and copper is likely in areas where commercial fishing boats are moored (e.g. Beadon Creek port, Onslow) (D.A. Lord and Associates 2002).

Recreational Fishing and Aquaculture

In recent years the Pilbara has experienced significant growth in recreational fishing activity. Western Australia is also gaining an international reputation for the quality of its offshore pelagic sport and game fishing with the Dampier Classic fishing tournament being a State and national attraction. As for commercial fishing, recreational fishing activity is not considered a significant source of toxicants. There is likely to be some build up of metals in areas where boats are moored for long periods (e.g. the Hampton Harbour Boat and Sailing Club marina in Hampton Harbour).

Pearl oyster aquaculture—based on the production of pearls from the species Pinctada maxima - is the only form of aquaculture undertaken on the NWS at present. There are 13 lease sites in Exmouth Gulf, with an additional 14 sites between Onslow and Port Hedland (Department of Fisheries 2000). The oysters feed on naturally present plankton, and so there are no likely sources of contaminants from this activity, although there would be deposition of faecal material to the seabed beneath the aquaculture sites. The potential for nutrient build-up in sediments due to faecal material is considered low, but has not been studied on the NWS.

2.5.3 Recreation/Tourism

Recreational fishing, boating, diving and wildlife observation are popular activities with NWS residents, and are largely focused around the Montebello and Dampier Archipelago areas (Osborne et al. 2001a; 2001b). Pilbara coastal towns have the highest rate of boat ownership in the State, with over 1,200 boats registered in Karratha and Dampier alone. There was also an estimated 222,000 visitors to the Pilbara region in 1996, with the Dampier Archipelago and sections of the coastline being significant tourist attractions (Pilbara Development Commission 2001). These activities are not considered to be significant sources of contaminants, although there are other environmental degradation issues such as littering and habitat damage (D.A. Lord and Associates 2002).

2.6 **Contaminants of Potential Concern on the North West Shelf**

The following sections provide a brief outline of the contaminants which may potentially pose an environmental concern in relation to contributions to the offshore environment on the NSW.

2.6.1 **Nutrients**

Nutrient Dynamics

Nitrogen is generally the nutrient that limits the primary production of marine waters. Excessive nitrogen inputs to coastal environments can cause significant ecological changes (Windom 1992; Gijzen and Mulder 2001) such as seagrass or coral loss, and 'blooms' of nuisance species of

phytoplankton. Such impacts are, however, typically due to the discharge of domestic sewerage from large urban settlements, large volumes of nutrient-rich industrial effluent, or nutrient-rich catchment runoff from fertilised agricultural land. None of these scenarios presently applies to the NWS and the Dredge Area. Estimates of the nutrient loads to the NWS from river runoff have been made by the Water and Rivers Commission and were reported by D.A. Lord and Associates (2002). The estimated nutrient load from the Ashburton River to the offshore environment is 172 tonnes/yr of nitrogen and 26 tonnes/yr of phosphorus, although these estimates may be an order of magnitude higher or lower, depending on the annual river flow, which in itself is highly variable between years (D.A. Lord and Associates 2002).

Within the NWS region there are four types of licensed point source discharge that contribute nutrients to the marine environment:

- Produced Formation water (PFW) discharges from offshore production platforms;
- A small sewage treatment plant at Dampier;
- The Woodside Onshore treatment processing Plant on the Burrup Peninsula; and
- Dampier Salt.

However, these point sources are too distant from the Dredge Area to have a potential effect on the concentrations of nutrients in surficial sediments in the Dredge Area. Estimated nutrient inputs from major point sources are shown in Table 2. The list of offshore facilities is relatively short, as some facilities process material from several oil/gas fields, while some large oil/gas production fields, such as Barrow Island and Saladin, re-inject PFW back into the reservoir rather than discharging to the ocean.

Holloway et al. (1985) estimated the oceanic exchange for the NWS area from semi-diurnal tidal flow and low frequency advective upwelling events, which contribute equally to an input of 12.5 kg N/day per metre of NWS front. This results in an estimated total nitrogen load across the 550 km of the NWS front of 2,509,000 tonne/year, which compares to about 523 tonnes of total nitrogen from offshore drill operations (Table 2; D.A. Lord & Associates 2002). Holloway et al. (1985) further estimated that a typical cyclone could entrain nitrogen onto the Shelf at 140 kg N per metre of shelf. Assuming 2.5 such cyclones a year, this mechanism equates to a nitrogen input of about 190 tonnes/year. Advective upwelling is therefore a principal source of nutrients (total nitrogen) to sediments on the NWS and substantially more important than anthropogenic contributions from oil production activities.

Table 2: Total nitrogen and phosphorus loads from major point sources on the North West Shelf.

OPERATION	VOLUME (2000)	TN	TP
	m³/year	tonnes/year	tonnes/year
Dampier Salt	3,800,000	0.205	0.095
Dampier WWTP	50,000	0.809	0.333
Woodside Onshore Treatment Plant	104,700	0.406	0.081
PFW from offshore facilities*			
Apache Airlie Is	411,330	17.716	15.301
Woodside North Rankin A	64,987	2.799	2.418
Woodside Goodwyn A	242,408	10.441	9.018
Woodside Cossack	245,227	10.562	9.122
Mobil Wandoo	6,020,270	259.299	223.954
BHP Griffin	1,687,298	72.674	62.767
BHP Buffalo	510,171	21.974	18.978
Apache Stag	289,708	12.478	10.777
Apache Harriet A	2,677,611	115.327	99.607
TOTAL LOADS		523.27	451.942

^{*} Loads for all facilities calculated using NH₄ and PO₄ concentrations for Harriet A PFW reported in Apache's Varanus Island Hub 1999 Annual Report to the DEP.

Urban areas

Municipal wastewater treatment plants (WWTPs), urban stormwater runoff and groundwater can discharge nutrients and toxic substances (metals, hydrocarbons, herbicides, pesticides) to nearshore waters, but Pilbara coastal settlements are not considered major sources (D.A. Lord and Associates 2002).

The only domestic wastewater treatment plant discharging to the coast is a small system at Dampier and all other treatment plants have land disposal through irrigation (due to the prevailing need to recycle water wherever possible) or evaporation. Stormwater runoff is unlikely to be a significant source of nutrients and metals due to a combination of factors. The urban population centres are relatively small, rainfall is sporadic and generally sparse, and stormwater drains are not channelled to the ocean (due to the first two of these factors, groundwater beneath urban centres is also unlikely to be significant source of nutrients and contaminants).

Runoff is likely to be limited to the very small area surrounding the point of discharge, as the water needs to cross the extensive tidal salt flats that typify the NWS. Otherwise, stormwater drains are structured to discharge to local drainage systems where it is likely that runoff is absorbed well before reaching the sea. Although some short-term accumulation of metals in sediments may occur, this is probably rapidly dispersed and diluted with the next flood event.

Agriculture

Pastoral leases cover about a third of the NWS region's hinterland land mass and are mainly for grazing cattle, with some sheep grazing on the coastal plain. The pastoral industry operates with unimproved pasture (i.e. no addition of fertiliser, pesticides or herbicides). The only likely source of nutrients will be the export of those occurring naturally with catchment runoff or leached through to the groundwater. The only likely source of contaminants is drenching sites, which are usually in close

proximity to stock yards. Given the relative scale of such operations this is considered unlikely to be a significant source of contaminants.

2.6.2 Organic Contaminants

Concentrations of organochlorine pesticides (OCPs) in sediment are generally much higher than in water because these compounds readily partition from water onto particulate material, depending on the organic matter content of the sediment (Connell *et al.* 2002). A substantial amount of early work on OCPs in Australian aquatic environments has been conducted around sewage outfalls in the Sydney area (e.g. Thompson *et al.* 1992; Richardson 1996; Lincoln, Smith and Mann 1989a; 1989b). High concentrations of HCB were found in sediment (mean, 871 μ g/kg) offshore from the Malabar deepwater ocean outfall, which contains the greatest proportion of industrial waste (Mortimer and Connell 1995). These do not appear to originate from pesticide usage, but rather historical manufacture of carbon tetrachloride and long-term storage of these historical wastes which contain HCB at Botany Bay, Sydney.

An indication of the decline in pesticide concentrations in marine and estuarine urban areas in Australia since the peak usage period of POPs in the mid-1970s is shown through the overall decrease in the maximum concentrations of OCPs in Brisbane River water and sediment between 1972 and 1987, which is consistent with the usage patterns for these compounds in the Australian environment (Connell *et al.* 2002). However, concentrations of OCPs and other POPs in sediments in high hydrodynamic energy areas and in shallow aquatic environments, particularly in urban areas, may be affected by resuspension events, such as storms, which can transport surficial sediments and result in a reworking and resurfacing of material at different concentrations from an earlier period. Thus the concentrations of POPs in sediment in urban areas may still be relatively high in some locations (e.g. Taylor *et al.* 2004).

Mueller *et al.* (1999) determined the concentrations of 2,3,7,8-chlorine-substituted PCDDs, PCDFs, selected PCB congeners and HCB in sediments from sites along the east coast of Queensland. PCDDs were detectable in all sediment samples while PCDFs, PCBs and HCB were mainly found in sediments from sites in the Brisbane metropolitan area, suggesting that an unidentified source for higher chlorinated PCDDs exists along the Queensland coast, which was confirmed by regional assessments of marine sediments by Gaus *et al.* (2001).

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic environmental contaminants that form during the incomplete combustion of organic matter. High temperature combustion sources result in a distinct assemblage of unbranched PAH compounds that are dominated by 4-6 ring structures (McCready et al. 2000) and these high temperature combustion PAH profiles have been observed in sediments at locations that are remote from urban and industrial activities. Bushfires are a natural source of PAHs, however, anthropogenic sources can also affect remote catchments due to aerial deposition of fine ash particles, which, in turn, may be transported long distances in water. PAH-laden particles in sediments (regardless of source) have the potential to cause adverse effects upon sediment-ingesting benthic species and demersal fish.

Organic contaminants in sediments within the Dredge Area, if present, are likely to be limited to fine grained sediments accumulating in lower energy areas. However, to date there has been no evidence that organic contaminants are likely to pose an environmental risk in the Dredge Area or in the adjacent marine areas on the NWS.

2.6.3 **TributyItin**

There is marginal keel clearance for large ships in the dredged shipping channels leading into Port Hedland and through Mermaid Sound into Dampier, which increases both the likelihood of antifoulants (including TBT) contaminating shipping channel sediments and the redistribution of contaminated sediments by propeller wash.

The predominant contaminant of concern in ports is the antifoulant tributyltin (TBT), which is toxic to a wide range of marine organisms at low concentrations. Crawley (2000) estimated the potential loading of TBT from shipping to the ports of Cape Lambert, Port Hedland and Dampier as 1.3 kg/day, 3.3 kg/day and 4.8 kg/day, respectively, which represented a potential environmental concern. Hull cleaning is also a potential source of TBT and although there are presently no land-based hull cleaning facilities for large vessels in the NWS region, 'in-water' hull cleaning would also occur and contribute TBT.

The need for effective antifoulants, which prevent the settlement and growth of marine organisms on submerged structures, such as buoys, fish cages and ship's hulls, is recognised universally (Evans, Tsvetnenko & Woodworth 2000; Konstantinou and Albanis 2004). For many years, TBT compounds were the most widely used active ingredients in paint formulations. However, use of TBT has been regulated internationally since 1990 due to its severe impact on the aquatic ecosystem (Fent 1996) and the demonstrated effects of TBT on the disruption of the endocrine system by mimicking or inhibiting the action of gonadal steroid hormones, oestradiol and testosterone (Makita and Omura 2006).

Prolonged release of TBT from ship-bottom coatings has resulted in the imposition of male sexual characteristics upon female gastropods, or imposex, a phenomenon which was first described by Blaber (1970) in the United Kingdom. Imposex in marine gastropods has subsequently been linked to the exposure of these benthic biota to TBT in aquatic systems worldwide (e.g. Smith 1981a; 1981b; 1981c; Santos et al. 2004). This cause and effects relationship ultimately resulted in a global ban of TBT. The decline in the occurrence of imposex following worldwide bans has been used as a biomarker and biological indicator for environmental monitoring of TBT since the introductions of these bans in countries worldwide (Axiak et al. 2003). The ban on the use of TBT is primarily due to the adverse effects on the various shellfish, in particular the occurrence of imposex in aquatic biota (Foale 1993).

The use of TBT for antifouling was regulated from 1989 in Australia. TBT is banned from use on small vessels (i.e. less than 25 m in length) and is being phased out on larger and international vessels. However, despite the partial ban on the use of TBT in Australia, a survey of imposex in Thais orbita (Neogastropoda) along the NSW coast found imposex was still widespread 10 years after the introduction of the ban, in particular within harbour/bay areas, where contamination "hotspots" are still present and where physical remobilization and dispersion processes may be less pronounced compared to high-energy coastal areas (Gibson and Wilson 2003).

Australia is signatory to the International Convention on the Control of Harmful Anti-fouling Systems on Ships (International Maritime Organisation (IMO) 2001), which prohibits the use of harmful organotins in anti-fouling paints used on ships and which establishes a mechanism to prevent the potential future use of other harmful substances in anti-fouling systems. Under the terms of the Convention, Parties to the Convention are required to prohibit and/or restrict the use of harmful antifouling systems on ships flying their flag, as well as ships not entitled to fly their flag but which operate under their authority and all ships that enter a port, shipyard or offshore terminal of a Party.

Ships of above 400 gross tonnage and above engaged in international voyages (excluding fixed or floating platforms, FSUs and FPSOs) will be required to undergo an initial survey before the ship is put into service or before the International Anti-fouling System Certificate is issued for the first time; and a survey when the anti-fouling systems are changed or replaced. Ships of 24 m or more in length but less than 400 gross tonnage engaged in international voyages (excluding fixed or floating platforms, FSUs and FPSOs) will have to carry a Declaration on Anti-fouling Systems signed by the owner or authorized agent.

The harmful environmental effects of organotin compounds were recognized by the IMO in 1989. In 1990 IMO's Marine Environment Protection Committee (MEPC) adopted a resolution which recommended that Governments adopt measures to eliminate the use of anti-fouling paint containing TBT on non-aluminium hulled vessels of less than 25 m in length and eliminate the use of anti-fouling paints with a leaching rate of more than 4 μ g/d of TBT.

In November 1999, IMO adopted an Assembly resolution that called on the MEPC to develop an instrument, legally binding throughout the world, to address the harmful effects of anti-fouling systems used on ships. The resolution called for a global prohibition on the application of organotin compounds which act as biocides in anti-fouling systems on ships by 1 January 2003, and a complete prohibition by 1 January 2008.

By 1 January 2008 (effective date), ships either:

- shall not bear such compounds on their hulls or external parts or surfaces; or
- shall bear a coating that forms a barrier to such compounds leaching from the underlying noncompliant anti-fouling systems.

This applies to all ships (including fixed and floating platforms, floating storage units (FSUs), and Floating Production Storage and Offtake units (FPSOs).

Importantly, the presence of TBT is not necessarily linked to fine grained sediments (silt and mud) as TBT may occur in flakes that deposited in sandy areas.

The complex behaviour of TBT in the marine environment was illustrated by Reitsema and Spickett (1999), who surveyed TBT levels in water and biota at 18 sites along the coast of the Burrup Peninsula. They found TBT concentrations in water ranging from <0.3 to 25 ngSn/L, with 8 sites above the ANZECC/ARMCANZ (2000) guideline of 6 ngSn/L. TBT levels in the tropical neogastropods whelk, Morula granulata, ranged from <0.3 to 33 ngSn/g, and <0.3 to 80 ngSn/g in oysters. The highest concentration of TBT in water occurred at the site furthest from shipping activity, and high concentrations in water did not always correspond with high concentrations in biota. However, the degree of imposex in the whelk (which ranged from 0% to 57%) was correlated with distance to the nearest shipping activity, and so Reitsema and Spickett (1999) recommended its use as a bioindicator of TBT contamination.

2.6.4 Naturally Occurring Radioactive Materials (NORMs)

Naturally occurring radioactive materials (NORM) in PFW have long been a concern in the oil and gas industry (Hart et al. 1999). Production processes concentrate radium (Ra) isotopes in mineral scale inside production equipment, and this scale can build up over time (D.A. Lord and Associates 2002). Significantly elevated concentrations of 226Ra/228Ra eventuates in low specific activity (LSA) scale (Lysebo et al. 1999).

Exposure to these radium isotopes can result in the ingestion of alpha particles which have very low penetration but can cause significant cell damage over a short range (D.A. Lord and Associates 2002). Alpha particles also have an affinity for high-density tissue such as bone and will remain in the bone for a considerable time (D.A. Lord and Associates 2002). Other isotopes of the uranium and thorium decay series that may be present in PFW are ²³⁸U, ²³²Th, ²³⁵U and the shorter lived daughter nuclides ²²²Rn, ²¹⁰Po and ²¹⁰Pb (Szymczak 1999).

There are few data on the toxicity of LSA scale (Roddie et al. 1999), although there are data on the effects of low level radioactivity in general. On the NWS, the work of Colman and West (2000) for the Cossack-Pioneer offshore facility found PFW discharge was not causing any build-up of radionuclides in sediments around the facility. No other work on NORMS for the NWS is known at present.

2.7 Summary

After a preliminary evaluation of available literature information and in concordance with the NWS Joint Environmental Management Study (NWSJEMS) (Heywood et al. 2006), the following key contaminants may be considered to pose the highest risk to the environment in the NWS region:

- Trace metals (barium, cadmium, chromium, copper, lead, mercury and zinc);
- TBT;
- Nitrogen;
- Hydrocarbons (oil); and
- A waste stream: Produced Formation Water (PFW).

Additional contaminants of potential concern (COPC) may include aluminium (as a normalizing element and proxy for sediment grain size), nickel and arsenic (potential for natural enrichment in sediments).

Due to the dispersive and high energy nature of the receiving environment, the contributions of hydrocarbons, which have historically shown to be minor, to sediments within the Dredge Area are likely to be negligible and non-accumulating in surficial sediments. Similarly, the contributions of the PFW effluent stream would be limited to the vicinity of oil producing operations (i.e. within hundreds of metres) and are therefore highly unlikely to result in an accumulation of associated contaminants in sediments within the Dredge Area. In addition, anthropogenic nitrogen contributions from, for example, offshore PFW point source discharges, are likely to be minor compared to contributions from natural upwelling events, as has been suggested by D.A. Lord and Associates (2002) (Table 3).

Therefore the contaminants most likely to be of potential concern in sediments on the NWS and potentially within the Dredge Area, are the identified trace metals/metalloids arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel and zinc and the antifoulant TBT. Although the likelihood of concentrations of these contaminants to be present at concentrations that may pose an environmental and ecological risk in sediments in the Dredge Area is low, a Phase II investigation of sediments in accordance with the NAGD (Commonwealth of Australia 2009) may include these contaminants in the Contaminants List (Section 3).

Table 3: Estimates of nutrient loads to the North West Shelf.

SOURCE	NITROGEN INPUT		
	(tonnes/year)		
River Runoff	832 (average rainfall)		
Groundwater	1382 (inter-annual variability unknown)		
Point Sources	523		
Algal Mats	13-34		
Trichodesmium	69,874		
Oceanic Exchange	2,509,000		
Tropical Cyclones	190		

The current Project Area requiring dredging may be subject to change (Figure 1). Recently deposited, surficial sediments proposed for dredging are the focus of the proposed sampling program in this SAP. The area proposed for dredging at the Ashburton North Strategic Industrial Area (SIA), approximately 12 km south-west of Onslow, has not been previously dredged and comprises the main navigational access channel, MOF and turning basin. The proposed activity therefore represents capital dredging of areas away from existing anthropogenic sources and potentially contaminating activities and disposal at sea.

The objective of the proposed sampling program is to assess sediment quality at sufficient locations to characterise representative concentrations of COPCs in sediment proposed for dredging. Insufficient data are available from previous sampling of marine sediments, including sediments in the Dredge Area, to adequately characterise the contaminant status of sediments. Therefore, a Phase II assessment is required following guidance provided in the NAGD.

For capital dredging, samples are needed from the full depth of contaminated as well as potentially contaminated sediment. Full depth is defined as at least the top 1 m of sediment, or more if contamination could be found deeper. The NAGD (Commonwealth of Australia 2009) states that "where a project involves capital dredging in a port or locality with existing contamination (e.g. one metre of contaminated or potentially contaminated sediment overlying 5 m of natural geological materials), rather than the total dredge volume, the number of sampling locations should be based on the volume of contaminated and potentially contaminated dredged material (which includes the three categories of 'probably contaminated', 'suspect' and 'probably clean')."

The number of sampling locations in the proposed sediment assessment has been based on the volume of the layer of recent sediments which could be contaminated, but does not include the volume of underlying natural geological materials which are, except for a thin boundary layer, expected to be uncontaminated. The upper 1 m of sediment is considered to be 'probably contaminated', whereas the sediments below a depth of 1 m are considered to be 'probably clean'. A smaller number of deep cores penetrating to the depth of dredging will be collected to validate the assumption that the subsurface sediment is not contaminated.

A power analysis approach outlined in the NAGD is likely to result in collection of fewer samples, especially where the variance in the data is low, but requires pre-existing data on the chemistry of the sediments in the proposed dredge area (Commonwealth of Australia 2009).

It is proposed that surface sediments (up to 1.0 m depth; 0-0.5 m and 0.5-1.0 m depth intervals) will be sampled using percussion or vibro coring devices and analysed for total metals (aluminium, arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel and zinc), TBT and TOC (Contaminants List, Table 4). Subsurface, consolidated sediments and sediments deeper than 1 m below the sea floor will be sampled at fewer locations as part of geotechnical investigations to characterise the geological strata within the dredging area. Samples from these deep cores will be analysed for the same COPCs as the samples from the short (1 m cores) to determine natural background concentrations and confirm the uncontaminated status of these sediments.

Surface sediments will also be sampled at an offshore disposal ground (yet to be delineated) using a grab sampler, and analysed for the same COPCs as the short core sediment samples (i.e. metals, TBT, TOC).

The maximum area of proposed dredging is 11,500,000 m², with a total dredge volume of 45,000,000 m³ (Figure 1). The volume potentially contaminated material at 1 m thickness is therefore

11,500,000 m³ (i.e. the upper 1.0 m of sediment in the entire dredge area). As a result of the intermittent high wave energy and the frequent high current conditions, the net sediment deposition rate along the Pilbara coast is likely to be low (Dix 1989). Therefore the upper 1.0 m of the sedimentary profile is a conservative depth for the geochemical assessment of sediments which may potentially contain contributions from anthropogenic sources.

The NAGD (Commonwealth of Australia 2009) state that a minimum of 28 sampling locations are required to assess $468,000-509,000 \text{ m}^3$ of potentially contaminated material within a proposed dredge area, with the following equation to be used to determine the number of sampling locations at sites that exceed $500,000 \text{ m}^3$:

$$y = 0.025x + 15.547$$

where y is the number of sampling locations and x is the volume of dredge material (x 1,000 m^3) (Commonwealth of Australia 2009; p.60).

Assuming a volume of 11,500,000 m³, the equation yields 303 sampling locations. The NAGD recommends that for large projects, where insufficient current information exists, a pilot study may be appropriate to determine the Contaminants List. In such a study, approximately 20% of the sampling locations required to characterise the sediments (randomly selected from the area to be dredged) would be analysed for all contaminants that are likely to be present, based on the site history (Commonwealth of Australia 2009). This SAP therefore proposes collection of 60 sampling locations (i.e. ~20% of 303 sampling locations) of surficial material. It is important to note that the thickness of sediment recovered at each short coring location will be dependent on the nature of the sediment, but is expected to be at least 1.0 m at most locations. No cores or cores shorter than 1.0 m may be retrieved in areas where rocky sediments are present alternative locations would be randomly selected to achieve a minimum number of sampling locations.

Should the mean concentrations of COPCs in sediments in the dredge area exceed one tenth of the Screening Level concentrations, these concentrations would be compared to background concentrations that are expected for sediments in the area. URS expects that arsenic and nickel may exceed one tenth of mean Screening Level concentrations. However, arsenic and nickel have shown to be naturally elevated in Australian marine sediments and concentrations of these two analytes would be compared to natural background levels for sediment of similar grainsize and adsorptive capacity. Further testing to assess the potential mobility of arsenic and nickel from sediments would also be undertaken via elutriate testing, if the concentrations of arsenic and nickel exceed one tenth of their respective Screening Levels in the proposed sediment investigation.

Elutriate tests involve the mixing of sediment with four times its volume of seawater under specified conditions, to estimate the amounts of contaminants that will be released during dredging and during sea disposal (Commonwealth of Australia 2009). Fandry *et al.* (2006) reported that the coastal waters of the NWS are generally of very high quality and that the concentrations of metals were low by world standards, with localised elevations of some metals adjacent to industrial centres and ports. Recommendations of this study were that ANZECC/ARMCANZ (2000) 99% species protection guidelines should be used to assess trace metals in this region. Elutriate test results would therefore be compared to the relevant ANZECC/ARMCANZ (2000) marine water quality trigger values for 99% protection, or subsequent updates to these values. If elutriate testing determined that the concentrations of one or more COPCs are likely to pose a risk to aquatic biota, further assessment of sediments at another 243 sampling locations (i.e. remaining 80% of locations) would be undertaken.

Geochemical data from a previous pilot sampling program and analysis of sediments (Appendix A; URS 2009a) provide a preliminary indication of the sediment quality of surficial sediments in the Dredge Area, but only three samples were located within the proposed dredge footprint. The study indicates that low concentrations of COPCs are likely in sediments proposed for dredging. Sediment below 1 m depth is probably uncontaminated and unlikely to contain concentrations of COPCs that exceed NAGD Screening Levels, but this assumption would be tested and the entire thickness of sediment to be dredged would be assessed at a reduced number of deep core sampling locations.

In addition to collecting short cores of potentially contaminated material, sediments within the Dredge Area would be sampled and analysed to the maximum depth of dredging (13.5 m below LAT) at 12 sampling locations for all COPCs on the Contaminants List (except TBT) to test the assumption that underlying sediment is uncontaminated. If TBT were found in short cores, this analytes would be assessed in samples from deeper stratigraphic layers. The 12 proposed deep core locations are located in the nearshore southern end of the access channel and may not represent sediment proposed for dredging in the northern sections of the access channel.

In the unlikely event that concentrations of COPCs in sediment at depth were found to exceed NAGD Screening Levels, further sampling to characterise contaminant distribution to the full depth of dredging would be undertaken at additional deep core sampling locations.

In summary, sampling is proposed in order to:

- Undertake a detailed spatial assessment of sediment in the Dredge Area for NAGD Screening Level exceedances of COPCs (trace metals/metalloids and TBT) in the upper 1.0 m of sediment;
- Undertake a representative assessment of probably clean sediment for NAGD Screening Level exceedances of analytes on the Contaminants List (except TBT) to the proposed depth of dredging (maximum 13.5 m below LAT) in the Dredge Area at 12 deep core sampling locations.

Phase II assessment of sediments within the Dredge Area are unlikely to trigger assessment of the bioavailability of sediment contaminants and their behaviour during dredging and disposal (elutriate tests) (Phase III) but these assessments would be undertaken, if triggered. In addition, toxicity/bioaccumulation assessments would be undertaken in accordance with the NAGD.

If Phase III and Phase IV assessments are triggered by Phase II assessment of sediments in the Dredge Area, new samples would be collected in accordance with the procedures outlined in NAGD (Commonwealth of Australia 2009). For elutriate, bioavailability and toxicity testing, lesser numbers of sample locations are required, as specified in Table 7 of the NAGD, although at each location, samples would be representative of the full depth of contaminated sediment (as identified in Phase II) to be dredged, except where a discrete 'hot spot' has been identified, in which case it would be sampled separately. Importantly, samples collected for Phase III and Phase IV assessments would be representative of the overall dredged material composition in the dredge area(s) which require these tests. Alternatively, if a defined sub-area of the dredge area has been selected for testing on the basis of elevated contamination levels, samples must be representative of this sub-area, including the most contaminated locations. The sample selection process for Phase III and Phase IV sampling and assessment would be fully documented but is dependant on outcomes of the Phase II assessment.

Three replicate samples would be collected at each sampling location for bioavailability analysis for the COPCs that have exceeded NAGD Screening Levels during the Phase II assessment.

Compositing of cores for this purpose is not recommended, as exposure to air may affect the integrity of samples for certain bioavailability tests.

Bioaccumulation results of the Phase IV assessments, if required, would be compared statistically to controls, and a minimum of three test locations and three reference locations would be selected in consultation with DEWHA, should this Phase IV assessment be required.

The likelihood of contamination triggering Phase III and Phase IV assessments is considered to be minimal in sediments of the Dredge Area. Chevron has elected to proceed with the Phase II assessment first, and follow up with subsequent Phase III and Phase IV assessments in a timely manner, as required,

3.1 **Contaminants List**

From consideration of a review of the available literature in the previous section, it is considered that the Dredge Area is sufficiently far removed from known existing and historical contaminant sources. Selection of the analytes was based on COPCs derived from the current understanding of site history (including urbanization and catchment wide industrial activities) and existing data. However, because of a lack of existing data for the Dredge Area and the disposal ground, it is proposed that potentially contaminated sediments (unconsolidated sediments to a depth of 1 m below the seafloor) would be analysed for the following COPCs:

- Trace metals and metalloid (arsenic, barium, cadmium, chromium, copper, mercury, nickel, lead, and zinc);
- Major elements (aluminium); and
- TBT.

The determination of total organic carbon (TOC) content (Leco) in each sediment sample is necessary to normalise concentrations of organic compounds (i.e. TBT) to 1% total organic carbon, as specified in the NAGD (PQL: 0.1 %). Moisture content will also be determined in each sediment sample (PQL: 0.1%).

An assessment of the radionuclides (sum of gross alpha and gross beta activity) has not been undertaken previously in sediments within the Dredge Area, nor in any other areas within the NWS region. It is therefore recommended that sediment samples from a select number of sampling locations within the Dredge Area are assessed for the sum of gross alpha and gross beta activity. It is proposed that radionuclides (gross alpha and beta activity) would be determined in a small number (n=5) of surface sediment samples (0-0.5 m depth) selected randomly from the total number of 60 short core sampling sites. Radionuclides may be associated with certain mining and mineral processing activities and the NAGD recommend analysis of radionuclides (NAGD Screening Level: 35 Bq/g) only once for any particular dredge area.

If the 95 per cent upper confidence limit (UCL) of a contaminant exceeds the relevant NAGD Screening Level, concentrations of these contaminants should then be compared to ambient (i.e. baseline) levels for sediments of comparable grainsize to assess whether contaminants in the assessment area are elevated through natural causes. This may be the case for arsenic and nickel, which have shown to be naturally elevated in Australian marine sediments.

The degree of contamination may then be divided into contaminants of potential concern (COPCs) and contaminants of concern (COCs). COPCs are those contaminants that exceed the background

concentrations and the Screening Level (or elevated concentrations of contaminants for which guidelines do not exist). COCs are those contaminants which exceed the background concentrations and the NAGD Screening Level and for which the bioavailability, bioaccumulation or toxicity assessments indicate that significant effects from the contaminants are likely.

In addition to the short (1.0 m deep) sediment cores collected at 60 sampling locations, deep cores from a selected number of locations (12 sample locations) would be sampled to the full depth of dredging and analysed for all COPCs on the Contaminants List (except TBT). Short cores would be collected at 60 sampling locations and subsamples (0-0.5 m and 0.5 m-1.0 m depth) would be analysed for all COPCs on the Contaminants List (and TOC).

Table 4: Contaminants list for sediments in the Wheatstone Dredge Area.

Analytical Parameter	Practical Quantitation Limit (PQL) (NAGD 2009)	Laboratory LOR (Investigation Level) (mg/kg)	NAGD Screening Level (ISQG Trigger Level) (mg/kg)
Metals and Metalloids	(in mg/kg)	(in mg/kg)	(in mg/kg)
As	1	0.1	20
Ва	0.01	0.01	NS
Cd	0.1	0.1	1.5
Cr	1	0.1	80
Cu	1	0.1	65
Hg	0.01	0.01	0.15
Ni	1	0.1	21
Pb	1	0.1	50
Zn	1	0.1	200
Major Elements	(in mg/kg)	(in mg/kg)	(in mg/kg)
Al	50	50	NS
Organotins	(in □gSn/kg)	(in □gSn/kg)	(in □gSn/kg)
Tributyltin	1	0.5	9
Radionuclides	(in Bq/g)	(in Bq/g)	(in Bq/g)
Sum of gross alpha and gross beta activity	NS	1 (gross alpha); 0.5 (gross beta)	35

NB: 'NS' = not specified.

4.1 Introduction

This section of the SAP details the procedures to be used in the proposed sediment investigation. By defining the procedures to be used, it is possible to develop a uniform approach to the investigations and thereby, minimise potential impacts on the quality and representativeness of the collected data.

The proposed assessment program is based on testing sediment in the Dredge Area to determine the concentrations of COPCs on the Contaminants List that have a potential to exceed NAGD Screening I evels.

4.2 **Sampling Location Selection**

4.2.1 **Short Cores**

Sampling locations were selected by placing a 90 x 90 m square grid over the entire area to be dredged, numbering each square (total 1,500) and selecting 60 squares using random numbers generated by internet sourced software (Urbaniak and Plous, 2009) (Figure 1). Samples will be collected as close as practicable to the centre of each of the selected grid squares. Samples in squares on the boundary of the Dredge Area will be collected from within the dredge area.

4.2.2 **Deep Coring**

The locations of deep cores were selected for geotechnical purposes and the proposed sampling locations are shown in Figure 1. The distribution of these deep core locations covers the Dredge Area evenly rather than selecting a randomly chosen set of deep coring locations (Figure 1).

4.2.3 Surface Sediment Sampling at Proposed Offshore Disposal Grounds

Up to 15 surficial sediment samples will be collected in each of the potential offshore sediment disposal grounds (i.e. Bechtel Spoil Ground Sites A, B and C, URS Spoil Ground Site A, Chevron Spoil Ground and Chevron Alternative Spoil Ground. Sediments will be sampled using a Van Veen (or equivalent) grab sampler (0 to 0.1 m depth) to characterise surface sediments. Sediment samples will be analysed for all COPCs on the Contaminants List (i.e. metals and TBT). The sampling locations would be chosen using the same methodology described above for the collection of short cores in the Dredge Area, although the actual location of the proposed disposal ground or disposal grounds is yet to be determined.

4.2.4 Radionuclide Assessment

Surface sediment samples (0.0-0.5 m depth) from five sampling locations within the Dredge Area would be assessed for the sum of gross alpha and gross beta activity. The sampling locations would be selected randomly from the total number of short core sampling sites.

4.3 Sediment Coring

Percussion or vibro cores in shallow water locations (<15 m) would be collected from a suitably sized workboat or barge that will be anchored at each sampling location. A barge-mounted coring rig would be used to collect deep cores for geotechnical investigations and subsamples for geochemical assessments. All sampling locations would be located using a global positioning system (GPS) with an

accuracy of around 3 m. Positioning of the barge and locating of sampling positions will be the responsibility of the operators of the sampling vessel.

Short cores in the Dredge Area will be collected by highly experienced URS personnel using a percussion corer. This unique corer would be used to collect unconsolidated sediment to a maximum depth of 1.0 m below the seabed. A clean polycarbonate barrel (80 mm inner diameter) will be loaded into the corer and lowered to the seabed. The barrel is then remotely driven (using weights) into the sediment with a piston remaining at bed level to create a partial vacuum and draw sediment into the barrel. The corer is able to penetrate and retain the entire profile of soft sediments, but penetration is limited in dense sand, or clay units, in which case a vibro coring device would be used.

A vibro coring device would allow the penetration of aluminium core tubes to depths of up to 6 m into well-sorted compacted sandy and gravelly substrate, providing sediment samples in areas that cannot be sampled using other coring techniques. However, the disadvantage of this coring technique is the relatively slow rate of sampling efficiency, which is why other coring techniques (i.e. percussion coring) would be attempted first.

Core catchers may be used on either coring device for sandy and gravelly substrates to prevent core loss during retrieval from the seabed.

URS sampling staff will determine the acceptability of the core following collection which is based on the following criteria:

- No obvious loss of surficial sediment or sediment from the bottom of the core;
- Vertical penetration of core through the sedimentary profile to the required depth; and
- Continuous and undisturbed sediment stratigraphy.

The cores will each be logged and photographed (as required) through the clear core barrel prior to or after extraction.

In addition to the 1.0 m long short cores, deep cores will be collected at 12 sampling locations in the Dredge Area. The above acceptance criteria also apply to the deep cores, but each deep core must also reach the depth of proposed dredging (13.5 m below LAT) or refusal at calcareous rock, dense sand or clay.

The barge-mounted coring rig will be used at 12 sampling locations to obtain sediment samples to the depth of proposed dredging.

In summary sampling includes:

- Short core sampling using polycarbonate core tubes to a maximum depth of 1.0 m at 60 locations;
- Subsampling and homogenisation of sediment (as appropriate) from short cores (2 subsamples per core: 0.0-0.5 m; 0.5-1.0 m) (60 x 2 subsamples = 120 samples + QA/QC samples));
- Collection of 12 deep cores (to a maximum depth to 13.5 m LAT) or to refusal; and
- Subsampling and homogenisation of sediment (as appropriate) from 12 deep cores at intervals of 0.0-0.5 m, 0.5-1.0 m and subsequent 3 to 4 m intervals to end of core. The exact number of subsamples is dependent on stratigraphy encountered in the cores. Sediment from different stratigraphic units will be subsampled and analysed separately.

4.4 Sediment Subsampling

Samples from each location will be analysed to enable classification of the contaminant status of the sediments. Sample management procedures on the sampling barge include the careful collection of the sediment samples from the core tubes, following the recovery of the sediment core or grab from the seafloor. All sample handling and processing will be performed to minimise contamination and sample mix-ups. The workspace on the barge will be washed down regularly with ambient seawater to clean all surfaces and minimize dust contamination of samples. Nitrile gloves will be worn by all personnel handling the sediment and gloves will be disposed of after processing each core sample.

Photographs of the cores will be taken and URS personnel will log the geological/stratigraphic profile of the core. Cores will be logged following routine logging procedures in accordance with AS 1726-1993, before being split and subsampled. The core tube will be measured and the appropriate sample interval extruded and collected in a clean polyethylene basin for homogenisation.

Subsampling will be in accordance with the NAGD (Commonwealth of Australia 2009). The top 0.5 m of the core is to be used as a single sample for analysis. A second sample is to be taken from the 0.5 m –1.0 m interval. There is no reason to suspect contamination below 1.0 m depth in the cores and therefore no additional samples from a deeper sediment horizon would be collected at the short core sampling locations. Deep cores would be subsampled over intervals of 3 to 4 m below the upper 1 m depth interval (i.e. 0.0-0.5 m and 0.5-1.0 m sample intervals), due to the difficulty of subsampling and homogenisation of material over long intervals. Sediment in different stratigraphic units would be sampled separately, if these are more than 0.5 m thick.

Sample identifiers will include the location and depth interval, for example, MD101_0.50-1.00, would indicate that the sediment sample was collected from sampling location MD101 and over the interval from 0.50 m to 1.00 m.

4.5 Sample Handling

The sampler will maintain utmost care in ensuring that cross-contamination between samples is minimized. Samples collected from each interval will be homogenised and then placed into appropriately cleaned and preserved containers provided by the laboratories (Table 5). Sample containers will be filled with zero headspace and labelled immediately. Samples will then be stored in eskies on ice. All eskies will be filled to capacity and sealed with adhesive tape. A chain-of-custody (CoC) form will be included in the esky. Following return to shore, the samples will be delivered to the laboratory for processing and analysis.

Subsamples in deep cores will not transect different stratigraphic units as logged in the geological profile, therefore actual sample intervals are dependent on the stratigraphy encountered in the cores. A new sample would be collected at the top of each stratigraphic unit within the proposed dredge depth at that location.

Given that the analytical holding times for sediment, as specified in the NAGD, are 14 days for organics (TBT), 28 days for mercury and 6 months for other metals, submission of samples within 24 hours of sampling is not critical, provided the samples are chilled and kept in the dark. Similarly, any rinsate water samples required for quality control purposes have specified analytical holding times of 7 days (semi-volatile organics), 14 days (volatile organics (preserved) and mercury, and 6 months (metals) and a submission to the laboratory more than 24 hours post-sampling is therefore inconsequential.

URS

The NAGD (Commonwealth of Australia 2002) states that "cores are to be split on recovery and subsampled on one split only. The other split is to be stored under appropriate conditions for further testing, if required". This requirement would not be adhered to in this SAP, however, primary samples would be archived by the laboratory pending additional analyses. If significant contamination is observed in the composited core intervals, additional sampling may have to be scheduled and samples analysed at narrower intervals to determine the extent of contamination more accurately.

Maximum anticipated number of samples (excluding QA/QC samples) **Amount Analyte** Container Surface (g, wet weight) Subsurface **Disposal Ground Sediments Sediments Sediments** (<1.0 m) Metals 250 ml Glass Jar 100 120 approx. 72 21 TBT 125 ml Glass Jar 200 120 0 21 TOC Gross □/□ Ziplock Bag 500 4 1 21

Table 5: Container type, number and sample volume required.

NB: 'NA' = Not Applicable

activity

4.6 **Sediment Analyses**

4.6.1 **Chemical Analyses**

All sediment subsamples from the 12 deep cores up to the maximum depth of dredging (13.5 m below LAT) and the short cores up to a depth of 1.0 m would be analysed for all COPCs on the Contaminants List (except gross alpha and gross beta analyses - five samples from five locations only and TBT in the deep core samples).

Whole sediment samples from the Dredge Area and the disposal ground will be submitted to ALS Environmental (NATA accredited for the proposed chemical analyses).

Radionuclide activity (sum of gross alpha and gross beta) activities in sediments are proposed to be measured at five sampling locations in the Dredge Area and radionuclide activity assessment will be undertaken by ANSTO, Lucas Heights, NSW or a designated subcontractor of ALS Environmental.

4.6.2 Quality Assurance and Quality Control (QA/QC)

- One daily trip blank sample ('field blank') comprising of water supplied by the analytical laboratory and analysis of COPCs (inorganic analytes only: Al, As, Ba, Cd, Cr, Cu, Hg, Ni, Pb, Zn);
- Field Triplicate samples at 10% or more of sampling locations (i.e. three separate samples taken at the same location and analysis for inorganic analytes only: Al, As, Ba, Cd, Cr, Cu, Hg, Ni, Pb, Zn);
- Interbatch samples requiring analysis of one sample from a previous batch (inorganic analytes only: Al, As, Ba, Cd, Cr, Cu, Hg, Ni, Pb, Zn);

- Split samples at 5% of sampling locations requiring analysis of samples split into three separate containers to assess laboratory variation (Note: an interlaboratory sample would be submitted and two of the three split samples would be analysed by ALS Environmental, with a third sample analysed by a separate reference laboratory. Split samples would be analysed for inorganic analytes only: Al, As, Ba, Cd, Cr, Cu, Hg, Ni, Pb, Zn) (i.e. 3 locations (5% of 60 locations) x 3 samples = 9 split samples). One split sample would be obtained from a deep core sample and analysed for all COPCs on the Contaminants List (except for gross alpha and gross beta activity and TBT):
- Daily submission of sediment samples to ALS, a NATA-accredited analytical laboratory; and
- Compilation of field records, chain-of-custody documentation, certificates of analysis, data validation reports (QA/QC reports).

4.6.3 Elutriate and Bioavailability Testing

The availability of COPCs to aquatic organisms in sediments in the Dredge Area would be assessed only if mean concentrations of COPCs in sediments in the Dredge Area exceed NAGD Screening Levels. However, should elutriate/bioavailability testing be required, the test results would be compared to the relevant ANZECC/ARMCANZ (2000) marine water quality trigger values (99% protection). If all contaminants are below the relevant guideline values after initial dilution, effects on organisms in the water column would not be expected during disposal. If any COPCs are present at levels above their relevant NAGD Screening Levels, loading and disposal could cause adverse effects on water quality, and loading and disposal controls are evaluated to determine if impacts can be mitigated. If they can be mitigated the assessment proceeds to bioavailability testing. If not, the dredged material is unacceptable for open water disposal. Elutriate and bioavailability testing would be conducted in accordance with the requirements in NAGD (Commonwealth of Australia 2009).

4.6.4 Toxicity and Bioaccumulation Testing

If any of the Contaminants of Potential Concern (COPC) were found to be bioavailable, toxicity testing would be undertaken in accordance with Appendix D of the NAGD (Commonwealth of Australia 2009).

Ideally, test species should be widely occurring, readily available, sensitive to the COPC, ecologically or economically important, tolerant of a broad range of sediment types and easily handled in the laboratory. Toxicity testing, if required, would be undertaken on a homogenised sample collected over the entire thickness of potentially contaminated sediment. This approach allows a depth-integrated assessment of sediment toxicity at each site. Toxicity samples can only be collected where soft silt is encountered and toxicity assessment would not be conducted at locations where the sediments comprise stiff clays or sands. Individual sample subject to toxicity assessment would be a composite sample mixed from a minimum of three cores collected from the one sample location.

Four ecotoxicity tests would be proposed for sediments in the Dredge Area and test species would be dependent on the seasonal availability of the following test organisms:

Acute whole sediment tests:

- Toxicity test using the juvenile amphipod Melita plumulosa; and
- Algal cell viability test using Enteromoneis punctulata.

Subacute porewater toxicity tests:

- Larval abnormality test using rock oyster using Saccostrea commercialis; and
- Larval development test using the sea urchin Heliocidaris tuberculata.

Where a toxicity test shows less than a 20% effect in the endpoint (e.g. survival, growth) relative to the negative control, the difference is not significant and no toxicity is indicated. A 20-50% effect in the endpoint compared to the control indicates a significant degree of toxicity, and a greater than 50% effect indicates a high degree of toxicity.

Evidence of contaminant bioaccumulation in organisms exposed to in situ dredge sediments versus controls will indicate whether metals are more bioavailable at these sites and are, therefore, a legitimate line of evidence. Bioaccumulation tests are generally run for 28 days, and use several test species. The requirements for these species are similar to those for toxicity testing, except that the organisms need not be sensitive to contaminants. In addition, test organisms must provide adequate biomass for analysis, ingest sediments and be inefficient metabolisers of contaminants, particularly PAHs. At least two bioaccumulation tests would occur on each sample. These would include a deposit feeding bivalve mollusc and a burrowing polychaete.

Alternatively, organisms collected from the site may be analysed, if appropriate animals are available, after a suitable gut depuration interval where whole organisms are to be analysed, typically 24 hours. Data would need to be compared to organisms from appropriate control sites. For example, Curtin University of Technology in Perth, WA, has developed a solid-phase bioassay using the amphipod Grandidierella sp., to better determine the impacts of drilling fluids to benthic infauna. Results from the developmental study show that the LC-50 of the ester-based fluids ranges from 682-1,501 mg/L; paraffin-based fluid has an LC-50 of 166 mg/L; and the toxicity of the iso-olefin-based fluid is 722 mg/L (Evans, Birchenough & Brancato 2000). These results are significantly lower than those obtained for Northern Hemisphere species (McIlroy 1999).

Guidelines on the number of bioaccumulation tests required, sampling and the degree of replication, are presented in Appendix D and Table 7 of the NAGD (Commonwealth of Australia 2009).

For bioaccumulation, if there are no significant differences in the bioaccumulation data relative to controls (treatments or sites), bioaccumulation of contaminants is not a concern. For any contaminant where bioaccumulated concentrations are statistically greater than that measured in the controls (treatments or sites), bioaccumulation is a possible concern. Where bioaccumulated concentrations are three or more times greater than those measured in the controls (treatments or sites), bioaccumulation is a significant concern. If the bioavailability, bioaccumulation or toxicity assessments indicate that significant effects from the contaminants are likely, they are considered to be Contaminants of Concern.

For any dredge area, where toxicity (or bioaccumulation) is rated as very significant or significant in any of the tests on any of the samples, and toxicity is not considered due to natural causes (e.g. ammonia in sediments), the toxicity would be further investigated by:

- Checking existing data to see if a coincident hot spot (i.e. a cluster of two or more samples exceeding the relevant criteria) can be defined using the existing chemistry and/or toxicity data,
- If no hot spot can be identified, doing step-out sampling and testing (chemistry and toxicity) around the sample location where toxicity was found, to determine if a local hot spot is present.

There are three possible outcomes of this assessment:

- If any hot spots are identified, the sediments within them are considered toxic and unacceptable for unconfined ocean disposal, and therefore would require separate handling and disposal as per the existing hot spot provisions. The sediment outside the hot spots would be acceptable for ocean
- If no hot spots can be identified, and toxicity is only found in a single sample, the spoil may be considered acceptable for ocean disposal on the basis that the bulk composition of the dredge area, considering the initial toxicity testing plus step-out testing, indicates that it is non-toxic; and
- If no hot spots can be identified, yet toxicity is found at scattered locations throughout the dredge area, the toxicity of the sediments is still an issue. To resolve this, a Weight-of-Evidence assessment, which may include other lines of evidence, including benthic community assessment would be carried out with the agreement of DEWHA and follow the procedures set out in the Batley et al. (2008) draft Revision of the ANZECC/ARMCANZ Sediment Quality Guidelines, or updates to that document.

4.7 **Contingency Plan**

The proposed sediment investigation outlined in this SAP will be undertaken outside the cyclone season in the Pilbara region, reducing the risk that adverse weather will delay the survey. However, in the event of adverse weather conditions rendering the sampling programme unsafe, there is a downtime contingency. If the sampling programme has commenced, then the survey team will return to shore and assess the likely duration of the adverse weather conditions. A decision will then be made to either remain ashore on stand-by at Onslow, or to return to the URS head office in Perth and re-mobilise at a later date. The scope of work-specific Health, Safety and Environment Plan (HSEP) will detail the appropriate actions to take in the event of adverse weather conditions.

Where possible, spare equipment will be available and ample time will be budgeted to undertake each survey, in the event that there is critical equipment failure. The township of Onslow is a small town and, in the majority of situations, major equipment repairs would have to occur in Karratha, the nearest industrial centre.

4.8 **Health, Safety and Environment**

Prior to the start of fieldwork a Hazard Identification (HAZID) workshop will be undertaken by key project personnel to identify potential risks to health, safety and environmental factors (including weather, depth, currents and waves, substrate type, wildlife and remoteness). After the HAZID workshop a scope specific risk-based HSEP, including Job Safety Analysis worksheets, will be prepared by URS, incorporating the previously identified hazards. The scope specific HSEP will then be reviewed by Chevron and finalised at least five days prior to commencement of the field sampling programmes. The HSEP will include issues, such as handling and storage of chemicals used in fieldwork, and management of waste.

Safety planning includes job hazard analyses to identify the conduct, personnel and equipment requirements of all survey tasks, vessel navigation duties and responsibilities, the use of routine and emergency communication channels, and the development of an approved Emergency Response Plan to be followed in the event of a serious accident. On-site vessel and other 'tool-box' safety meetings will be conducted before the start of each sampling task.

An HSEP for the barge-mounted coring programme will be developed and implemented by the drilling contractors, in accordance with the HSEP provisions and requirements of Chevron.

4.9 **Field Records**

Field notes will include the manual recording of field conditions (weather, tides, and currents), site locations, sampling methods and handling and storage methods, field sample numbers, date, time and identity of sampler.

Field description of sediments will include the physical appearance, texture, colour, and presence of foreign material, presence of shell fragments and or biota (for example, seagrass) and stratification. Where multiple samples are collected at a site, notes will be made on the variability between samples. Records will also be made detailing the unique sample identifier for each sample collected.

For the geotechnical component, sediments will be logged in accordance with AS 1726-1993.

4.10 **Data Management and Reporting**

Validation of analytical data will be undertaken as soon as results are received from the analytical laboratory. The relative standard deviation (RSD) will be determined for field triplicates and duplicates and the relative percentage difference (RPDs) will be determined for laboratory duplicates. In accordance with the NAGD (Commonwealth of Australia 2009) laboratory duplicates that have a RPD of greater than ±35% will be reanalysed, if possible, prior to the expiry of the analytical holding time. Likewise, field triplicates and duplicates that have an RSD of greater than ± 50% will be reanalysed. An interpretive quality control report will be provided by the analysing laboratory, highlighting any outliers to quality control procedures.

ProUCL[™] v4.0 statistical software will be applied in comparing the sediment chemical data against the NAGD Screening Levels (i.e. calculation of 95% UCLs as per Appendix A of the NAGD (Commonwealth of Australia 2009)).

To allow comparisons of organic compounds (TBT) against the Screening Levels, concentrations will be normalised to 1% TOC content. Data will be retained on a project specific database held at URS.

4.11 **SAP Report**

A SAP report will accompany the sea dumping permit application for the offshore disposal of sediments from the Dredge Area. The report will include a description of actual sampling locations and numbers, results including QA/QC assessment of both field and laboratory data, an assessment of the results in accordance to the NAGD and conclusions as to the suitability or otherwise of proposed dredged materials for unconfined ocean disposal. The field data and laboratory results will be tabulated with the actual field sample numbers used and the laboratory identification numbers and will include all quality assurance data. The original laboratory certificates will also be included.

Specifically, the assessment of the analytical data under the NAGD (Commonwealth of Australia 2009) will include:

- Documentation of all field procedures and data including core photographs and logs;
- Data validation;
- Analysis of contaminant concentrations in sediment in the Dredge Area and comparison against NAGD Screening Levels;
- Comparison of the 95% UCL of contaminant concentrations in sediment in the Dredge Area with NAGD Screening Levels:

- If NAGD Screening Levels are exceeded, mean sediment contaminant concentrations would be assessed against background concentrations;
- If background levels are exceeded, additional bioavailability and/or and toxicity assessments required under NAGD Phases II, III and IV (briefly outlined in this SAP) would be undertaken with prior approval of DEWHA;
- Comparison of current concentrations of contaminants in sediment with levels established in previous studies (Appendix A; URS 2009a) to identify possible sources and sinks of contaminants and provide input to assess dredge management options, as required;
- GIS interpretation of spatial trends of contaminant concentrations in sediments; and
- Classification of sediments as acceptable (or otherwise) for unconfined ocean disposal, based on the assessments above.

The sediment assessment report would be submitted as part of the application for a Sea Dumping Permit and lodged with the Department of the Environment, Water, Heritage and the Arts (DEWHA) for review and comment.

4.12 **Estimated Time Lines for Sediment Assessment**

The sediment assessment is proposed for the period 1 September 2009 to 30 November 2009, although the timing may vary depending on the approval of the SAP for the proposed work, the timing of the sediment sampling, which may be delayed due to poor weather, and the revisions of the Draft SAP Report by Chevron and the Regulatory Authority (DEWHA). URS will be available for additional clarification of the Final SAP Report and communications and meetings with the Regulatory Authority (DEWHA).

Following the preparation and submission of the SAP to DEWHA, and its approval, sampling would commence by 1 September 2009 and be completed as soon as practicable (weather dependent).

Proposed key dates for the project commencement, sampling, analysis, assessment and reporting (Draft SAP Report and Final SAP Report) are presented below (Table 6).

Deliverable Date(s) Preparation of Draft of SAP to 13 July 2009 13 July to 13 Aug 2009 Commonwealth assessment of SAP 1 Sep to 30 Sep 2009 Sampling, analysis and data validation 1 Oct 2009 to 28 Feb Finalisation of SAP report and sea disposal permits 2010 Commonwealth assessment of sea disposal permits 15 Oct to TBA Disposal Permits issued (if no further assessments required TBA

Table 6: Proposed dates for SAP & SAP report deliverables.

URS notes that bad weather during sampling and the timing of the permit review by Chevron may possibly delay the assessment process for sediments in the Dredge Area. Actual sampling dates are weather dependent and sampling may be postponed until such time when the weather conditions make time-efficient sampling feasible and do not pose Health and Safety concerns. The dates above may be subject to change if all parties are in agreement.

Australia and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. October 2000.

Australian Natural Resources Atlas (2009). Western Australian Rangelands Overview. http://www.anra.gov.au/topics/rangelands/overview/wa/ibra-pil.html. Accessed 2nd February 2009.

Appleyard, S. 2000. Preliminary Assessment. Discharge of Nitrogen by Groundwater to the Marine Environment in the Pilbara Region. Hydrogeology Report No. HR 152. Water and Rivers Commission, Perth, WA.

Axiak, V., Micallef, D., Muscat, J., Vella, A. and Mintoff, B. (2003). Imposex as a biomonitoring tool for marine pollution by tributyltin: some further observations. Environment International, 28, 743-749.

Batley, G., Chariton, A., Simpson, S., Maher, W. (2007). Improved approaches to Sediment Quality Assessment, Final Report, CSIRO Land and Water Science Report 7/07, Report prepared for NSW Environment Trust, February 2007.

Bird, E. and Schwartz M.(1985). The Worlds Coastlines: Western Australia, pp. 929-947. Van Nostrand Reinhold Company.

Blaber, S.J.M. (1970). The occurrence of a penis-like outgrowth behind the right tentacle in spent females of Nucella lapillus (L.). Proceedings of the Malacological Society of London, 39, 231-233.

Black, K., Brand, G., Grynberg, H., Gwyther, D., Hammond, L., Mourtika, S. Richardson, B. and Wardrop, J. (1994). Production Activities. In: Environmental implications of offshore oil and gas development in Australia - The findings of an independent scientific review, pp 209-407 (Eds. Swan J., Neff J. and Young P.). Australian Petroleum Exploration Association, Sydney.

Buchan, S. and Stroud, S. (1993). Review of oceanography of North West Shelf and Timor Sea regions pertaining to the environmental impact of the offshore oil and gas industry. Steedman Science & Engineering Report No. R644. Steedman Science & Engineering, Jolimont, Western Australia.

Bureau of Meteorology 2009, Climate Statistics for Australian Locations, Australian Government. http://www.bom.gov.au/climate/averages/tables/cw_005016.shtml

Burns, K., Codi, S., Furnas, M., Heggie, D., Holdway, D., King, B. and McAllister, F. (1999). Dispersion and Fate of Produced Formation Water Constituents in an Australian Northwest Shelf Shallow Water Ecosystem. Marine Pollution Bulletin 38, 593–603.

Colman, J. and West, N. (2000). An Investigation of Benthic Sediment Characteristics in the Vicinity of the Cossack Pioneer FPSO, Northwest Shelf. APPEA Journal, pp. 667-681.

Commonwealth of Australia 2002. National Ocean Disposal Guidelines for Dredged Materials. Commonwealth of Australia. Canberra, 2002.

Commonwealth of Australia 2006. A guide to the Integrated Marine and Coastal Regionalisation of Australia - version 4.0 June 2006 (IMCRA v4.0).

Commonwealth of Australia 2009. National Assessment Guidelines for Dredging, Commonwealth of Australia, Canberra 2009.

Connell, D., Miller, G. and Anderson, S. (2002). Chlorohydrocarbon pesticides in the Australian marine environment after banning in the period from the 1970s to 1980s. Marine Pollution Bulletin, 45, 78-83.

Crawley, K. (2000). Estimated tributyltin inputs into port waters in the North West Shelf. Report to the Department of Environmental Protection, Perth, Western Australia, 13 pp.

D.A. Lord and Associates (2002). North West Shelf Joint Environmental Management Study, Milestone Report No. 3.1, Toxicological Data for Key Contaminants on the North West Shelf, D.A Lord and Associates Pty Ltd, June 2002.

Damara WA (2009). Coaslta geomorphology of the Ashburton River Delta and adjacent areas. Unpublished report for Chevron Australia Pty Ltd.

Davies, P.J. (1979). Marine geology of the continental shelf off southeast Australia. Department of Mineral Resources Bulletin 195, Canberra, Australia, 51 pp.

Department of Agriculture, Forestry and Fisheries (2008). Ashburton River: River Basin Summary, Bureau of Rural Science. http://adl.brs.gov.au/water2010/pdf/catchment_706_0_summary.pdf

Department of Environment and Conservation (2006), Background quality of the marine sediments of the Pilbara coast - Marine Technical Report Series, Department of Environment and Conservation, Western Australia.

Department of Mines (1979), Geological Map of Western Australia, Western Australian Department of Mines. Scale 1:2,500,000.

Department of the Environment, Water, Heritage and the Arts (2009), Substance fact sheet -Polycyclic aromatic hydrocarbons. Canberra, Australian Capital Territory. http://www.npi.gov.au/database/substance-info/profiles/74.html

Department of Fisheries (2000). State of the Fisheries Report – 1999/2000. Perth, Western Australia.

Devesa-Rey, R., Paradelo, R., Díaz-Fierros, F. and Barral, M. (2008). Fractionation and Bioavailability of Arsenic in the Bed Sediments of the Anllóns River (NW Spain), Water, Air, & Soil Pollution 195, 189-199.

Dix, G. (1989). High energy, inner shelf carbonate facies along a tide-dominated non-rimmed margin, north-western Australia. Marine Geology, 89, 347-362.

Evans, L., Tsvetnenko, Y. and Woodworth, J. (2000). Improving the precision of ecotoxicity testing protocols for crude oils and drilling fluids. MERIWA Report No. 220. pp 169.

Evans, S.M., Birchenough, A.C. and Brancato, M.S. (2000). The TBT ban: out of the frying pan into the fire? Marine Pollution Bulletin, 40 204-211.

Fandry. C, Revill. A, Wenziker. K, McAlpine. K, Apte. S, Masini, R. Hillman. K. (2006), Contaminants of Australia's North West Shelf: sources, impacts, pathways and effects - North West Shelf Joint Environmental Management Study, Technical report No. 13, Western Australian Department of Environment.

Fent, K. (1996). Ecotoxicology of organotin compounds. Critical Reviews in Toxicology, 26, 1-117.

Foale, S. (1993). An evaluation of the potential of gastropod imposex as a bioindicator of tributyltin pollution in Port Phillip Bay, Victoria. Marine Pollution Bulletin, 26, 546-552.

Forde, M. (1985). Technical Report on Suspended Matter in Mermaid Sound, Dampier Archipelago. Bulletin 215, Department of Conservation and Environment, Perth, WA.

Gagan, M., Johnson, D. and Carter, R. (1988). The cyclone Winifred storm bed, central Great Barrier Reef shelf, Australia. Journal of Sedimentary Petrology, 58, 845-856.

Gagan, M., Chivas, A. and Herczeg, A. (1990). Shelf-wide erosion, deposition, and suspended sediment transport during cyclone Winifred, central Great Barrier Reef, Australia. Journal of Sedimentary Petrology, 60, 456-470.

Gaus, C., Papke, O., Dennison, N., Haynes, D., Shaw, G., Connell, D. and Mueller, J. (2001). Evidence for the presence of a widespread PCDD source in coastal sediments and soils from Queensland, Australia. Chemosphere, 43, 549-558.

Gibson, C.P. and Wilson, S.P. (2003). Imposex still evident in eastern Australia 10 years after tributyltin restrictions. Marine Environmental Research, 55, 101-112.

Gijzen, H. and Mulder, A. (2001). The nitrogen cycle out of balance. Water, 21, 38-40. Magazine of the International Water Association, August 2001.

Hart A., Graham B. and Gettleson D. (1999). NORM associated with produced formation water discharges. Proceedings of: Petroleum Industry Workshop: Naturally Occurring Radioactive Materials (NORM), pp. 38-39. Department of Minerals and Energy. Western Australia.

Heywood, A., Revill, A. and Sherwood, C. (2000). Review of Research and Data Relevant to Marine Environmental Management of Australia's North West Shelf. Prepared by the Australian Institute of Marine Science (AIMS) and CSIRO Marine Research for the Western Australian Department of Environmental Protection, Perth, WA.

Heywood, A., Revill, A. and Sherwood, C. (2006). Review of research and data relevant to marine environmental management of Australia's North West Shelf. North West Shelf Joint Environmental Management Study. Technical Report No. 1, June 2006.

Holloway, P., Humphries, S., Atkinson, M. and Imberger, J. (1985). Mechanisms for Nitrogen Supply to the Australian North West Shelf. Australian Journal of Marine and Freshwater Research, 36: 753-764

International Maritime Organization (2001). International conference on the control of harmful antifouling systems for ships. Agenda item 8 AFS/Conf/26. International convention on the control of harmful anti-fouling systems on ships. 18 October 2001

Jernakoff, P., Scott, L., Heyward, A., Revill, A., and Sherwood, C. (2006). Bibliography of Research and Data Relevant to Marine Environmental Management of Australia's North West Shelf. NWSJEMS Technical Report No. 2. CSIRO Marine and Atmospheric Research.

Komar, P.D. (1996). The budget of littoral sediments, concepts and applications. Shore and Beach, 64 (3): 18-26.

Konstantinou, I.J. and Albanis, T.A. (2004). Worldwide occurrence of antifouling paint booster biocides in the aquatic environment: a review. Environment International, 30, 235-248.

Lincoln Smith, M. and Mann, R. (1989a). Bioaccumulation in nearshore marine organisms. I. Organochlorine compounds and trace metals in rocky reef animals near the Malabar Ocean outfall. State Pollution Control Commission, Sydney, New South Wales.

Lincoln Smith, M. and Mann, R.A., (1989b). Bioaccumulation in nearshore marine organisms. II. Organochlorine compounds in the Red Morwong, Cheilodactylus fuscus, around Sydney's three major sewage ocean outfalls. State Pollution Control Commission, Sydney, New South Wales.

Loring, D. and Rantala, R. (1992). Manual for the geochemical analysis of marine sediments and suspended particulate matter. Earth Science Reviews, 32, 235-283.

Lourensz, R. (1981). Tropical Cyclones in the Australian Region July 1909 to June 1980. Department of Science and Technology, Bureau of Meteorology, 94 pp.

Lysebo, I., Birovljev, A. and Strand, T. (1999). NORM in Oil Production - Occupational Doses and Environmental Aspects. Petroleum Industry Workshop: Naturally occurring Radioactive Materials (NORM), pp. 17–22. Department of Minerals and Energy, Western Australia.

Makita, Y. and Omura, M. (2006). Effects of perinatal combined exposure to 1,1-dichloro-2,2 bis (pchlorophenyl) ethylene and tributyltin on male reproductive system. Basic and Clinical Pharmacology & Toxicology, 99, 128-132.

Matthai, C., Birch, G., Jenkinson, H. and Heijnis, H. (2002). Physical resuspension and vertical mixing of sediments on a high energy continental margin (Sydney, Australia). Journal of Environmental Radioactivity, 52, 67-89.

McCready, S., Slee, D.J., Birch, G.F. and Taylor, S.E. (2000). The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbour, Australia. Marine Pollution Bulletin, 40, 999-1006.

McIlroy, W. (1999). Review of BHP's experience into the persistence of drilling fluids pollutants. In: Proceedings of International Workshop on Drilling Fluids, Ecotoxicology and Biodegradation, pp. 121-134. J. Woodworth (Ed). Curtin University of Technology, Western Australia.

Meaton, M. (1999). Oil and Gas Industry in Western Australia. APPEA Journal, pp 30–39.

Minerals Council of Australia (1999). Mining and the environment - Water quality management, Minerals Council of Australia. Viewed December 2001. http://www.minerals.org.au/media/mining.

Mortimer, M. and Connell, D. (1995). A model of the environmental fate of chlorohydrocarbon contaminants associated with Sydney sewage discharges. Chemosphere, 30 2021.

Mueller, J., Haynes, D., McLachlan, M., Bohme, F., Will, S., Shaw, G., Mortimer, M., Sadler, R. and Connell, D. (1999). PCDDs, PCDFs, PCBs and HCB in marine and estuarine sediments from Queensland, Australia. Chemosphere, 39, 1707-1721.

Nikolaidis N., Dobbs, G., Chen, J. and Lackovic, J. (2004). Arsenic mobility in contaminated lake sediments, Environmental Pollution, 129, 479-487.

Osborne, S., Bancroft, K., D'Adam, N. and Monks, L. 2001a. Dampier Archipelago. Regional Perspective. Marine Conservation Branch, Department of Conservation and Land Management, Fremantle, Western Australia.

Osborne, S., Bancroft, K., D'Adam, N. and Monks, L. 2001b. Montebello/Barrow Islands. Regional Perspective. Marine Conservation Branch, Department of Conservation and Land Management, Fremantle, Western Australia.

Pilbara Development Commission 2001. Pilbara Economic Perspective. An update on the economy of Western Australia's Pilbara Region. Prepared by the Department of Local Government and Regional Development and the Pilbara Development Commission.

Urbaniak, G.C. and Plous, S. 2009. Research Randomizer. www.randomizer.org/form.htm.

Reitsema, T. and Spickett, J. (1999). Imposex in Morula granulata as a bioindicator of tributyltin (TBT) contamination in the Dampier Archipelago, Western Australia. Marine Pollution Bulletin, 39, 1-12.

Richardson, B.J. (1996). The problem of chlorinated compounds in Australia's marine environment. Technical Paper, The State of the Marine Environment Report for Australia. Technical Annex: 2. Pollution Department of the Environment, Sport and Territories, Canberra.

Roddie, B., Skadsheim A., Runciman, D. and Kjeilen (1999). UKOOA Drill Cuttings Initiative Research and Development Programme. Project 1.2: Cuttings Pile Toxicity. UKOOA.

Ruprecht, J. and Ivanescu, S. (2000). Surface Hydrology of the Pilbara. Summary Report. Surface Water Hydrology Report Series, Report No. SWH 32. Water and Rivers Commission, Perth, Western Australia.

Santos, M., Vieira, N., Reis-Henriques, M., Santos, A., Gomez-Ariza, J., Giradles, I. and ten Hallers-Tjabbes, C. (2004). Imposex and butyltin contamination off the Oporto COSAT (NW Portugal): a possible effect of the discharge of dredged material. Environment International, 30, 793-798.

Shire of Ashburton (2009). Onslow, Shire of Ashburton, Western Australian Government, http://www.ashburton.wa.gov.au/community/townsites/onslow.html

Smith, B.S. (1981a). Reproductive anomalies in stenoglossan snails related to pollution from marinas. Journal of Applied Toxicology, 1, 15-21.

Smith, B.S. (1981b). Male characteristics on female mud snails caused by antifouling bottom paints. Journal of Applied Toxicology, 1, 22-25.

Smith, B.S. (1981c). Tributyltin compounds induced male characteristics on female mud snails Nassarius obsoletus=Hyanassa obsoletus. Journal of Applied Toxicology, 1, 141-144.

Swan, J., Neff, J. and Young, P. (1994). Environmental implications of offshore oil and gas development in Australia - the findings of an independent scientific review. Australian Petroleum Exploration Association, Sydney, NSW.

Szymczak, R. (1999). Petroleum Industry Workshop: Naturally occurring Radioactive Materials (NORM). Department of Minerals and Energy. Western Australia.

Taylor, S., Birch, G. and Links, F. (2004). Historical catchment changes and temporal impact on sediment of the receiving basin, Port Jackson, New South Wales. Australian Journal of Earth Sciences, 51, 233-246.

Thompson, G., Chapman, J. and Richardson, B. (1992). Disposal of hazardous wastes in Australia: implications for marine pollution. Marine Pollution Bulletin, 25, 155.

URS (2001). Review of Environmental Impacts of Petroleum Exploration and Appraisal Activities in Commonwealth Waters. Final Report prepared for the Commonwealth Department of Industry, Science and Resources, Petroleum and Electricity Division, February 2001.

URS (2009a). Pilot Marine Sediment Quality Report for the Project, Onslow WA. Unpublished report for Chevron Australia Pty Ltd.

URS (2009b). Ashburton River Flow and Sediment Study. Report to Chevron Australia Pty Ltd, 22 June 2009.

Windom, H. (1992). Contamination of the marine environment from land-based sources. *Marine Pollution Bulletin*, 25, 32–36.

Environmental Protection Authority (1991). Proposed Roller oilfield development, offshore Onslow: West Australian Petroleum Pty Ltd: Summary and recommendations of the Environmental Protection Authority. Bulletin No. 578, Assessment No 419.

6

Limitations

URS Australia Pty Ltd has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Chevron Australia Pty Ltd and only those third parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated October 2009.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between October 2009 and February 2010 and is based on the conditions encountered and information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

42907100/01/A

Appendix A	Pilot Geochemical Survey	
		URS

REPORT (DRAFT)

Pilot Marine Sediment Quality Report for the Wheatstone Project, Onslow WA

Prepared for

Chevron Australia Pty Ltd

Level 24, QV1 250 St Georges Terrace Perth WA 6000 27 March 2009

42907170 - 2163 : R1359

Project Manager:

...... Paul Everson

Project Marine

Environmental Scientist

East Perth WA 6004 Australia

Project Director:

Ian Baxter

Principal Marine **Environmental Scientist**

Author:

Luke Skinner

Marine Environmental Scientist

Date:

27 March 2009

Reference: Status:

URS Australia Pty Ltd

Tel: 61 8 9326 0100 Fax: 61 8 9326 0296

Level 3, 20 Terrace Road

42907170 - 2163 - R1395

Draft

Table of Contents

⊏xe	cutive	Summ	ary	E3-1
1	Intro	duction	າ	1
	1.1	Backgr	ound	1
	1.2	Objecti	ive	1
2	Sam	pling ar	nd Analysis Protocol	3
	2.1	Sampli	ng Design	3
	2.2	Survey	Details	3
	2.3	Sedime	ent Collection	3
	2.4	Sample	e Analysis	4
	2.5	Data As	ssessment	4
	2.6	Quality	Assurance and Quality Control Data	5
	2.7	Statisti	cal Analysis	5
	2.8	Data Va	alidation	5
3	Resu	ılts and	Discussion	7
	3.1	Metals		7
		3.1.1	Nearshore metals	7
		3.1.2	Offshore metals	7
		3.1.3	Comparison between nearshore and offshore metals	7
	3.2	Organi	c Compounds	8
		3.2.1	TPH	8
		3.2.2	BTEX compounds	8
		3.2.3	TBT	8
	3.3	Particle	e Size Distribution	8
	3.4	Data Va	alidation	8
4	Cond	clusion.		11
5	Refe	rences.		13
6	Limit	tations.		15

Tables, Figures, Appendices

Tables

Table 1: Sampling location descriptions

Table 2: Summary of metals results for nearshore sediments - February 2009

Table 3: Summary of nearshore metals results normalised using offshore iron concentrations -

February 2009

Table 4: Summary of metals results for offshore sediments - February 2009

Table 5: Summary of organic compound results for nearshore sediments - February 2009

Table 6: Summary of organic compound results for offshore sediments - February 2009

Table 7: Summary of particle size distribution results for nearshore sediments- February 2009

Table 8: Summary of particle size distribution results for offshore sediments - February 2009

Table 9: RPD/RSD calculations for metals from field duplicate and triplicate samples -

Wheatstone pilot sediment sampling program

Table 10: RPD/RSD calculations for organic compounds from field duplicate and triplicate

samples - Wheatstone pilot sediment sampling program

Figures

Figure 1: Pilot Marine Sediment Sampling Programme - Site locality and sampling site map

Appendices

Α **URS Chain of Custody** В **URS Field Data Sheets** С Original Laboratory Reports

D Laboratory Interpretive Quality Control Report

Executive Summary

Chevron Australia Pty Ltd (Chevron), as operator of the Wheatstone Project proposes to construct and operate a multi-train Liquefied Natural Gas (LNG) and domestic gas (Domgas) plant near Onslow on the Pilbara Coast, north-west Australia, to process gas from various offshore fields in the West Carnarvon Basin. The Project is referred to as the Wheatstone Project and 'Ashburton North' is the proposed site for the LNG and Domgas plants.

The proposal includes capital dredging of marine sediments to enable vessel access via a shipping channel and turning basin, as well as through a feed-gas pipeline corridor.

URS Australia Pty Ltd (URS) was commissioned by Chevron to undertake a pilot sediment quality survey in and around the possible disturbance area to assess the physical and chemical characteristics of nearshore (in the possible disturbance area) and offshore (at the proposed disposal ground) sediments.

During this pilot marine sediment quality study, a total of 17 samples, representing nearshore sediments and eight samples representing offshore sediments were analysed for a range of metal and organic contaminants. Ninety-five percent Upper Confidence Limit (UCL) values for each contaminant of potential concern were assessed against the relevant National Assessment Guidelines for Dredging (2009) screening levels. All calculated 95% UCLs were below the screening level, with the exception of arsenic in nearshore sediments. However, this concentration is considered natural and likely to be related to the geology of the region.

Comparison of metals in sediments in nearshore and offshore areas has shown that, although offshore sediments are generally comprised of larger sized particles, sediments have similar chemical characteristics.

All analyses for organic compounds, including total petroleum hydrocarbons, tributyltin, benzene, toluene, ethylbenzene and xylene were reported below the laboratory practical quantitation limit or the relevant screening levels.

From the data gathered in this pilot sediment sampling program there are no contaminants of concern that occur in sediments in the potential disturbance zone for the Project, and sediments in the nearshore area are suitability similar to those in the offshore area to allow ocean disposal of dredged material.

URS

ES-1

Introduction

Section 1

1.1 **Background**

Chevron Australia (Chevron), as operator of the Wheatstone Project proposes to construct and operate a multi-train Liquefied Natural Gas (LNG) and domestic gas (Domgas) plant near Onslow on the Pilbara Coast, north-west Australia, to process gas from various offshore fields in the West Carnarvon Basin. The Project is referred to as the Wheatstone Project and 'Ashburton North' is the proposed site for the LNG and Domgas plants.

The proposal includes capital dredging of marine sediments to enable vessel access via a shipping channel and turning basin, as well as through a feed-gas pipeline corridor.

URS Australia Pty Ltd (URS) was commissioned by Chevron to undertake a pilot sediment quality survey in and around the possible disturbance area to assess the physical and chemical characteristics of the unconsolidated sediments (Figure 1).

1.2 **Objective**

The objective of the sampling program was to:

- Obtain a broad understand of sediment characteristics within and surrounding the project area.
- Determine baseline levels of metals and organic compounds.
- Establish whether dredge sediment type and sediment chemistry are compatible with surface sediments at the proposed spoil disposal area.

URS

Sampling and Analysis Protocol

Section 2

2.1 Sampling Design

To make the best use of vessel and personnel field time, the pilot study sediment quality study was undertaken in conjunction with a subtidal survey, to assess the characteristics of nearshore and offshore areas within and surrounding the potential disturbance area (Figure 1). Nearshore sampling was carried out on the landward side of the 20 m depth contour, and included sampling in the proposed and alternative shipping channel, turning basin, feed-gas pipeline corridor as well as surrounding areas. Nearshore sampling was carried out to characterise sediments that may be disturbed during proposed dredging activities. Offshore sampling was carried out beyond the 30 m depth contour, in and around the proposed and alternative spoil grounds. The purpose of offshore sampling was to characterise surface sediments at proposed spoil grounds.

Samples were collected using a Van Veen grab, as the objective of this pilot program was to assess unconsolidated surface sediments. Characterisation of subsurface sediments will occur during a geotechnical drilling program to be undertaken at a later date.

Sampling was undertaken outside of the potential disturbance areas as it is considered that it aids the characterisation of the sediments in disturbance areas, as there is no reason to suspect that the contaminant levels by anthropogenic sources in these sediments would be any higher or lower than those in surrounding sediments.

Survey Details 2.2

Unconsolidated surface sediments were collected from a total of 25 locations, both nearshore (17 sites) and offshore (eight sites) (Table 1) between 9 and 12 February 2009. Sampling was undertaken by Paul Everson of URS, and the vessel and crew were provided by Broadsword Marine.

Sampling locations were chosen to be representative of nearshore and offshore sediments in and around the potential dredging area and spoil ground.

2.3 Sediment Collection

Sample collection was undertaken in accordance with the guidance provided in Appendix D: Sampling Methods and Design of Sampling Programs, of the National Assessment Guidelines for Dredging (NAGD) (Department of the Environment, Water, Heritage and the Arts [DEWHA], 2009). Unconsolidated surface sediments were collected using a Van Veen grab with a gape of 0.25 m², which typically sampled to a depth of 10-20 cm. The grab was operated via a hydraulic winch and crane. Once the grabs were retrieved onboard the vessel, the jaws were opened in a pre-cleaned area and sediments were transferred to a stainless steel mixing bowl for photographing and homogenisation. Sediments were then transferred into appropriate laboratory supplied sampling containers.

Prior to commencement of all sampling operations, an area of the support vessel was designated for sample handling. Potential contaminant sources in the vicinity of this area (e.g. galvanised or oily surfaces) were covered with appropriate material to reduce the potential for sample contamination.

Section 2

Sampling and Analysis Protocol

During sediment sampling, field personnel wore disposable latex gloves to minimise the potential for sample contamination by residues on the skin (e.g. hydrocarbons, sunscreen, etc.). Sterile Teflon plastic spatulas were used where direct contact with the sample was necessary. Smoking was not permitted in the vicinity of, or upwind from, the designated sample processing area. Where possible during sediment sampling, the vessel was anchored and engines turned off. When anchoring was not possible due to tidal currents and the location of sampling sites being close to shorelines, vessel exhaust systems were kept downwind of sampling areas by driving the vessel into the prevailing winds.

Sampling equipment was decontaminated between sites by thorough cleaning in seawater. If clayey sediments were encountered, then dilute hydrochloric acid solution was used to clean the sampling equipment, which was rinsed with seawater prior to use at the next site.

2.4 Sample Analysis

A total of 33 samples were forwarded to the Perth laboratory of ALS for analysis. The unique sample code for each sediment sample was recorded on a field data sheet and entered onto a URS Chain of Custody (CoC) form. Field data sheets were retained by URS for sample cross-referencing, while the CoC accompanied the samples to the receiving laboratory. Copies of URS CoC forms and field data sheets can be found in Appendix A and B respectively.

Sediment were analysed for the following;

- metals (aluminium, arsenic, cadmium, chromium, copper, iron, manganese, mercury, nickel, lead, vanadium and zinc)
- Total Petroleum Hydrocarbons (TPH)
- Benzene, Toluene, Ethylbenzene and Xylene (BTEX)
- Tributyltin (TBT)
- Total Organic Carbon (TOC).

As well as these parameters, sediments were also forwarded to CSIRO Minerals in Perth for analysis of Particle Size Distribution (PSD).

Both laboratories and all sampling methods were accredited by the National Association of Testing Authorities (NATA).

2.5 Data Assessment

Data were assessed against the appropriate screening levels and high levels provided in the NAGD (DEWHA, 2009). Screening levels are level of a substance in the sediment below which toxic effects on organisms are not expected. High levels are derived from sediment quality guidelines for bioaccumulating substances. If bioaccumulating substances are present above the high levels, bioaccumulation tests are required, and bioaccumulation may be of concern even where toxicity has not been identified.

Sampling and Analysis Protocol

Section 2

2.6 **Quality Assurance and Quality Control Data**

In accordance with the guidance provided in Appendix F: Field and laboratory assurance and quality control of the NAGD (DEWHA 2009) field triplicates (three separate samples taken at the same site) were collected at three sites, while field duplicates (one sample mixed and split into two) were collected at two sites.

Relative Percentage Differences (RPDs) and Relative Standard Deviations (RSDs) were calculated for field duplicates and field triplicates respectively, and assessed against the NAGD (DEWHA, 2009) guideline of ±50%.

Laboratory quality assurance and Quality Control (QAQC) procedures included laboratory duplicates, method blanks, laboratory control samples and matrix spikes.

2.7 Statistical Analysis

All statistical analysis was undertaken in accordance with the guidance from NADG (2009) (Appendix A: Dredged material assessment - detailed guidelines). For each analyte, the standard mean, standard deviation and 95% Upper Confidence Limit (95%UCL) concentrations were calculated using ProUCL (Version 4.0) which is computer software developed by the United States Environmental Protection Agency (USEPA) for calculating UCLs based on environmental data sets. ProUCL calculates the most reliable 95% UCL value based on the specific distribution of data points within each data set, thereby accounting for normally distributed, gamma distributed and non-normally distributed data that are commonly encountered in environmental data. For data sets that appeared normally distributed, the Student's t-Test was used to calculate the 95% UCLs. However, if the data were log-normally distributed, the Jack-knife method was used.

At sites where field triplicate and duplicate samples had been collected and where laboratory duplicates or re-analysis had been undertaken, the data point for that set was represented by the mean concentration of the samples. This was undertaken to maintain even representation from each location when calculating the mean concentration and 95% UCL for the proposed dredging area.

Where values were less that the laboratory Practical Quantitation Limit (PQL) the value was taken as half the PQL for statistical analysis.

For analysis of organic compounds, results were first normalised to 1% TOC. However, normalisation is only appropriate over the TOC range 0.2-10 per cent, which equates to a multiplication factor of 5 times to 0.1 times respectively. For values outside of this range, the appropriate end value was used (e.g. for less that 0.2 per cent TOC a factor of 5 is used).

Because grain size is a dominant influence on naturally-occurring elements such as metals (DEWHA 2009), the concentration of iron was used to normalise metals, so comparisons can be made between two areas (nearshore and offshore) with differing PSD.

2.8 **Data Validation**

The primary objective of the data validation process is to ensure that the reported data can be used to achieve the project objectives. Analytical data were thoroughly checked by the laboratory prior to release. URS subsequently checked the analytical data against the data quality objectives of the

Section 2

Sampling and Analysis Protocol

project - comparing requested detection limits against PQLs, calculating RPDs and RSDs for field duplicates and triplicates, respectively, and comparing RPDs and RSDs with guideline recommendations.

Comparison of duplicates/triplicates through RPDs and RSDs may identify analytical results that appear to be unrealistically high (or low) and might prompt a request to the laboratory to reanalyse the samples as a further check of precision, or result in categorisation of those results as 'estimates only'. High RPD/RSD values may also be an indication of high heterogeneity of sediment contaminant levels at the sample locations, or might result from widely varying characteristics of the sediments, such as particle size distribution and/or organic content.

URS

Results and Discussion

Section 3

Summary analytical data are presented in the tables section of this report. Original laboratory reports are included in Appendix C, while the laboratory interpretive quality control is included in Appendix D.

3.1 **Metals**

Analytical results for metals in sediments, taken in nearshore areas as well as the standard mean, standard deviation and 95% UCL calculations, are provided in Table 2. Table 3 presents a summary of the same results that have been normalised using the concentration of iron to allow comparison with offshore sediments as they have differing grain sizes. Table 4 presents the analytical results for metals in sediments, taken in offshore areas as well as the standard mean, standard deviation and 95% UCL.

3.1.1 **Nearshore metals**

The non-normalised concentration of metals were all below the relevant screening levels with the exception of arsenic and nickel (Table 2).

The concentration of arsenic exceeded the screening level of 20 mg/kg in the majority of samples, with a maximum recorded at W16 (36.9 mg/kg). Both the standard mean (21.5 mg/kg) and calculated 95% UCL value (23.6 mg/kg) were also marginally above the guideline.

The concentration of nickel exceeded the guideline value of 21 mg/kg at sites W9 (42.2 mg/kg) and W10 (21.9 mg/kg). However, the standard mean (13.0 mg/kg) and calculated 95% UCL value (18.6 mg/kg) were both below the screening level.

Elevated concentrations of arsenic and nickel are not unexpected as sediments in Australia commonly have high, naturally occurring levels (DEWHA 2009). A review of naturally-occurring background levels of metals in sediments in the Pilbara Coast by the Western Australian Deportment of Environment and Conservation (DEC) identified arsenic concentrations in sediments off Onslow and around the mouth of the Ashburton River with a medians of 34 mg/kg and 20 mg/kg respectively (DEC 2006). These concentrations are considered natural and likely to be related to the geology of the region (DEC 2006).

All calculated 95% UCL values for nearshore metals were within ranges recorded at sites around the mouth of the Ashburton River, or the town of Onslow during a study on the background quality of the marine sediments of the Pilbara coast (DEC, 2006).

3.1.2 Offshore metals

The concentrations of metals in sediments from the offshore area were all below the relevant screening levels, with the exception of arsenic at site W12 (23.9 mg/kg). Both the standard mean and calculated 95% UCL value for arsenic were below the screening level of 20 mg/kg (Table 4).

3.1.3 Comparison between nearshore and offshore metals

Calculated 95% UCL values for all non-normalised metal concentrations were higher in nearshore sediments than offshore sediments. After metals results were normalised using iron concentrations, the nearshore and offshore sediments had similar concentrations of metals. The calculated 95% UCL

Section 3

Results and Discussion

for aluminium, iron, arsenic, chromium, nickel and lead were higher in the offshore sediments, while copper, manganese, vanadium and zinc were higher in nearshore sediments.

3.2 Organic Compounds

Summary results as well as standard mean, standard deviation and calculated 95% UCL values for organic compounds for nearshore and offshore areas are presented in Tables 5 and 6 respectively.

3.2.1 TPH

The concentration of TPH in both nearshore and offshore sediments was reported below the screening level (Table 5 and 6). The calculated 95% UCL value for total (C_6 - C_{36}) hydrocarbons normalised to 1% TOC for nearshore (141.6 mg/kg) and offshore sediments (235.5 mg/kg) was well below the screening level of 550 mg/kg. In comparison to these results a previous sediment study around the mouth of the Ashburton River and the town of Onslow did not report TPH above the laboratory PQL in any sample (DEC 2006). However, this study used a different analytical method which could not achieve as low PQLs (DEC 2006). All reported concentrations of TPH in this current study were still below the relevant PQLs of the DEC study.

3.2.2 BTEX compounds

The concentration of BTEX compounds was below the laboratory PQL in all samples (Tables 5 and 6). This result is consistent with findings of the DEC (2006) study on marine sediments in the region.

3.2.3 TBT

The concentration of TBT was below the laboratory PQL in all samples (Tables 5 and 6). This result is consistent with findings of the DEC (2006) study on marine sediments in the region. For normalisation of TBT to 1% TOC, it was assumed that all samples had a concentration of half the PQL (i.e. $0.25 \,\mu gSn/kg$). After normalisation to 1% TOC, the calculated 95% UCL for TBT in nearshore (1.1 $\,\mu gSn/kg$) and offshore (1.16 $\,\mu gSn/kg$) sediments was well below the screening level of 9 $\,\mu gSn/kg$.

3.3 Particle Size Distribution

Generally nearshore sediments were comprised of small grained particles. On average, clay and silt accounted for 26.6% of sediments, while fine grained sand accounted for a further 28.0% (Table 7). These results are consistent with previous data, showing silt and clay content of 25.9% in nearshore sites around Onslow (DEC 2006). Offshore sediments were generally comprised of larger grained particles, with clay and silt accounting for only 9.5% of sediments (Table 8). The majority of offshore sediments were comprised of fine- (45.7%) and medium- (28.7%) grained sand.

3.4 Data Validation

The calculated RPD and RSD values for metals from field duplicates and field triplicates were all below the guideline of $\pm 50\%$ (Table 9). The calculated RPD and RSD values for organic compounds were all below the guideline, with the exception of C_{15} - C_{28} fraction petroleum hydrocarbons at site W16 (53.3%) and C_{26} - C_{36} fraction petroleum hydrocarbons at site W18 (62.9%). This high level of

Results and Discussion

variability between the samples may have been caused by minor differences in concentration within the original sample or in laboratories, as concentrations of contaminants were very close to the laboratory PQL. Although these results are elevated above the guideline, they are not large enough to affect the interpretation of the results.

According to the laboratory interpretive quality control report, the only outlier for data analysis was an exceedence in holding time for moisture content analysis (Appenxix D). This is not likely to affect the interpretation of the results.

Conclusion

Section 4

During this pilot marine sediment quality study, a total of 17 samples representing nearshore sediments and eight samples representing offshore sediments were analysed for a range of metal and organic contaminants. Ninety-five percent UCL values for each contaminant of potential concern were assessed against the relevant NADG (2009) screening levels. All calculated 95% UCL were below the screening level, with the exception of arsenic in nearshore sediments. However, this concentration is considered natural and likely to be related to the geology of the region (DEC 2006).

Comparison of metals in sediments in nearshore and offshore areas has shown that, although offshore sediments are generally comprised of larger sized particles, sediments have similar chemical characteristics.

All analysis for organic compounds, including TPH, BTEX compounds and TBT, were reported below the laboratory PQL or the relevant screening levels.

From the data gathered in this pilot sediment sampling program, there are no contaminants of concern that occur in sediments in the potential disturbance zone for the Project, and sediments in the nearshore area are suitability similar to those in the offshore area to allow ocean disposal of dredged material.

URS

References

DEC 2006, Background quality of the marine sediments of the Pilbara coast - Marine Technical Report Series, Department of Environment and Conservation, Western Australia.

DEWHA 2009, National Assessment Guidelines for Dredging, Department of the Environment, Water, Heritage and the Arts, Commonwealth of Australia, Canberra.

Prepared for Chevron Australia Pty Ltd, 27 March 2009 Ref: 42907170 - 2163 / R1395 / DK: M&C3064

URS

13

Limitations

Section 6

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Chevron Australia Pty Ltd and only those third parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works, and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared in between February and March 2009, and is based on the conditions encountered and information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

PILOT MARINE SEDIMENT QUALITY REPORT FOR THE WHEATSTONE PROJECT, ONSLOW W	H E V A
Table	es
Prepared for Chevron Australia Pty Ltd, 27 March 2009 Ref: 42907170 – 2163 / R1395 / DK: M&C3064	URS

Table 1: Sampling location descriptions

SITE ID	DATE	TIME	Latitude	Lonaitude	S Easting	F Northing DEPTH M	DEPTH M	DESCRIPTION
							,	Westerly - fine, 5-10 knots, 1 m s
M1	9/02/2009	7 056	950 21.32'40.38"	115.06'40.38	304396	7616399		8 fine shell fragments. No biota or odour.
2747	0000/00/0	7	77 00.30	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	010070	267777		Westerly - fine, 5-10 knots, 1 m swell. Dark to medium brown coarse to medium
7^^	9/02/2009	1120	1120 21.20 20.44	114.40 12.24	27.2340	1021423		40 Sania With fille Sin Idyels. No Shell flaginells of Diola.
M3	9/02/2009	1130	1130 21.26'14.58	114.46'59.88	270257	7627820	47	Westerly - Ille, 5-10 kilots, 1111 swell. Brown Hedium sand with light brown veneer of silt. Occasional shell fragments. No biota or odour.
								Westerly - fine, 5-10 knots, 1 m swell. Brown fine sand with light brown/grey silt
W4	9/02/2009	1155	1155 21.23'12.6	114.47'31.74	271095	7633431	9	67 veneer. Occasional shell fragments. No biota or odour.
								Westerly - fine, 5-10 knots, 1 m swell. Sand with light grey/brown silt veneer. Few
W5	9/02/2009	1345	345 21.20'59.64	114.49'53.46	275122	7637577	67.2	67.2 fine shell fragments. No biota or odour.
								Westerly - fine, 5-10 knots, 1 m swell. Brown medium sand with light grey silt
M6	9/02/2009	1420	1420 21.20'57	114.54'37.56	283307	7637769	42	veneer. Sparse fine shell fragments. No biota or odour.
								South-westerly, 15-20 knots, 1.5 m swell and seas. Dark brown coarse sand with
								silt grey/brown veneer. Large to moderate shell fragments. Sparse coralline algae
W7	10/02/2009	006	900 21.36'20.76	114.52'39.66	280295	7609309		10.5 (possible Halimeda sp.).
								South-westerly, 15-20 knots, 1.5 m swell and seas. Dark brown coarse sand with
W8	10/02/2009	920	920 21.39'5.34	114.53'34.08	281930	7604268		11.2 red/brown silt veneer. Coarse shell fragments. No observed biota. No odour.
								South-westerly, 15-20 knots, 1.5 m swell and seas. Darkened silt veneer over
								dark brown fine sand silt matrix, overlay very dark black organic layer. Slight
6M	10/02/2009	930	930 21.40'50.46	114.54'20.4	283305	7601053		4.6 odour, some organic material.
								South-westerly, 15-20 knots, 1.5 m swell and seas. Red silt veneer over dark
								brown silt to fine sand matrix with occasional layer fragments. No shells, biota or
W10	10/02/2009	1045	1045 21.39'32.64	115.00'50.4	294487	7603594	6.4	odour.
								South-westerly, 15-20 knots, 1.5 m swell and seas. Reddish brown silt veneer
								over dark brown silt/fine sand matrix. No shell or odour. One small plant (possibly
W11	10/02/2009	1345	1345 21.41'1.32	114.50'35.16	276834	7600630		10.2 seagrass).
								South-westerly, 15-20 knots, 1.5 m swell and seas. Gravel and large shell
								fragments with reddish brown silt veneer over coarse sand and silt matrix. Sparse
								Halophila spinulosa and Halophila decipiens (~10 leaves). One heart urchin, one
W12	10/02/2009	1415	1415 21.23'54.12	114.45'36.66	267798	7632106	11.2	small crustacean (crab).
								South-westerly, 15-20 knots, 1.5 m swell and seas. Fine/coarse sand matrix. Very
W13	10/02/2009	1435	1435 21.33'45.18	114.44'5.64	265172	7632344		13.2 sparse H. spinulosa. One mole crab, fine shell fragments, no odour.
								5-10 knots, 1 m swell. Medium/fine sand with fine shell fragments. No obvious
W14	11/02/2009	1045	1045 21.30'4.8	114.44'45	266474	7620682	_	5.4 silts present. Homogeneous matrix. No biota or odour.
								5-10 knots, 1 m swell. Medium to fine sand with fine/coarse shell fragments. No
W15	11/02/2009	1120	1120 21.32'43.8	114.55'33.6	285210	7616050		13.5 obvious silts present, no veneer. One polychaete worm. No odour.
								5-10 knots, 1 m swell. Reddish brown fine silt veneer over coarse/medium sand
W16	11/02/2009	1135	1135 21.33'24.9	114.58'48	290821	7614860		11.35 with medium shell fragments. No biota/odour.
W16 (T1)	11/02/2009	1140	1140 21.33'24.9	114.58'48	290821	7614860		11.35 Triplicate 1: Some silt veneer, larger shell fragments, possible Halimeda sp.

Table 1: Sampling location descriptions

SITE ID	DATE	TIME	Latitude	Longitude	S Easting	F Northing DEPTH M	EPTH M	DESCRIPTION
I								Friplicate 2: Some silt veneer, larger shell fragments, possible Halimeda sp.
W16 (T2)	11/02/2009	1145	1145 21.33'24.9	114.58'48	290821	7614860	11.35 S	11.35 Seagrass present (<i>Halophila spinulosa).</i>
W17	11/02/2009	1255	1255 21 33'42 96	115 02'18 9	96896	7614382	5. St	5-10 knots, 1 m swell. Reddish brown very thin silt veneer over coarse to medium sand with occasional medium shell fragments. One macro-brown algae, plus 12.2 prosestible searcrass (Halpinhila ovalis)
	0007/70/1	202	00:31	20.01	200004	4001	7 1	control cought and print a variety.
							<u> </u>	5-10 knots, 1 m swell. Reddish brown silt veneer over moderate shell fragments and brown medium/fine sands. Some macro algae present and one pycnogonid
W18	11/02/2009	1320	1320 21.36'52.8	155.01'33.54	295665	7608526	10.2 (s	10.2 (spider crab).
							F	Triplicate 3: Reddish brown silt veneer over moderate shell fragments and brown
W18 (T3)	11/02/2009	1330	1330 21.36'52.8	155.01'33.54	295665	7608526	10.2 m	10.2 medium/fine sands. Some large shell fragments.
							<u>F</u>	Triplicate 4: Reddish brown silt veneer over moderate shell fragments and brown
W18 (T4)	11/02/2009	1355	1355 21.36'52.8	155.01'33.54	295665	7608526	10.2 m	10.2 medium/fine sands.
W10	12/02/2008	1040	1040 21 38'14 22	114 58/51 18	201028	7605962	S C a	South-westerly, 10 knots, 1 m seas. Reddish brown silt veneer over large bivalve and 1 feast) with medium brown send. No order to
6 1	12/02/2003	2	77.41.00.17	1.000:+	201020	2000001	2.0	mistaces by the first and the dead with mistaces in the order to
							Ď	South-westerly, 10 knots, 1 m seas. Keddish brown silt over brown sand silt
W20	12/02/2009	1130	1130 21.38'16.98	115.04'12.72	300275	7605994	7.2 m	7.2 matrix. Occasional large shell fragments, one bryozoan.
							<u>~</u>	Replicate 1: Reddish brown silt over brown sand silt matrix. Occasional large shell
W20 (R1)	12/02/2009	1130	1130 21.38'16.98	115.04'12.72	300275	7605994	7.2 fr	7.2 fragments, one bryozoan.
							Ś	South-westerly, 10 knots, 1 m seas. Reddish brown silt veneer over brown
							Ε	moderate sand and silt complex with large shell fragments. One crinoid and no
W21	12/02/2009	1200	1200 21.35'57.36	115.08'13.98	307161	7610373	7.9 00	odour.
							<u> </u>	South-westerly, 10 knots, 1 m seas. Reddish brown silt veneer over dark brown
W22	12/02/2009	1310	1310 21.34'43.5	115.12'4.2	313757	7612723	7.2 si	silt and sand matrix. No biota or odour. Some fine shell fragments.
							Ĺ	Triplicate 5: Reddish brown silt veneer over dark brown silt and sand matrix. No
W22 (T5)	12/02/2009	1315	1315 21.34'43.5	115.12'4.2	313757	7612723	7.2 bi	biota or odour. Some fine shell fragments.
							<u>F</u>	Friplicate 6: Reddish brown silt veneer over dark brown silt and sand matrix. No
W22 (T6)	12/02/2009	1325	1325 21.34'43.5	115.12'4.2	313757	7612723	7.2 bi	biota or odour. Some fine shell fragments.
							Ñ	South-westerly, 10 knots, 1 m seas. Reddish brown silt veneer over fine sand and
W23	12/02/2009	1345	1345 21.31'56.34	115.11'1.26	311887	7617843	10.2 si	silt brown matrix with occasional fine shell fragments. No biota or odour.
								Replicate 2: Reddish brown silt veneer over fine sand and silt brown matrix with
W23 (R2)	12/02/2009	1345	1345 21.31'56.34	115.11'1.26	311887	7617843	10.2 00	occasional fine shell fragments. No biota or odour.
								South-westerly, 10 knots, 1 m seas. Reddish brown silt veneer over brown fine
W24	12/02/2009	1408	1408 21.28'35.16	115.07'41.76	306072	7623963	15.2 se	sands and silt matrix. Occasional fine shell fragments. No biota or odour.
W25	12/02/2009	1435	1435 21.25'57.24	115.10'57.24	311643	7628886	S 16.2 se	South-westerly, 10 knots, 1 m seas. Reddish brown silt veneer over brown fine 16.2 sands and silt matrix. No biota or odour. Occasional fine shell fragments.
								0

Table 2: Summary of metals results for nearshore sediments - February 2009

		Moisture												
		Content	AI	Fe	As	Cd	Cr	no	Mn	Ä	Pb	۸	Zn	Hg
	UNIT	%						mg/kg	ð					
	PQL^a	1	50	20	0.1	0.1	0.1	0.1	0.1	0.1	0.1	2	0.1	0.01
Screet	Screening levels ^b		NG	NG	20	1.5	80	99	NG	21	20	NG	200	0.15
Hig	High levels ^c		NG	NG	02	10	370	270	NG	52	220	NG	410	1
Site ID	Sample ID													
W1	W1	26.5	2270	11900	24.1	<0.1	14.3	1.8	250	3.6	2.9	26.7	2.7	<0.01
W7	Z/M	26.2	3020	11300	14.6	<0.1	17.7	3.4	194	5.4	3.3	24.2	8.0	<0.01
W8	W8	23.9	5540	19300	18.8	<0.1	25.4	8.2	393	10.2	5.1	38.1	15.9	<0.01
6M	6M	39.6	18200	61900	6.3	0.1	77.5	48.2	1060	42.2	16.7	97.3	69.4	0.03
W10	W10	38.9	10800	39800	22.4	<0.1	53.5	19.1	029	21.9	10.5	71.3	37.5	0.01
W11	W11	35.3	10200	33100	19.8	<0.1	45.1	15.3	471	19.5	9.1	58.0	30.9	0.01
W15	W15	21	2010	12500	29.8	<0.1	15.1	1.8	225	3.8	3.0	32.0	4.5	<0.01
W16	W16	29.2	4140	15300	17.9	<0.1	18.9	4.0	257	6.9	4.1	29.6	9.5	<0.01
W16	T1 ^d	31	4990	23900	36.9	0.1	22.9	5.0	422	9.8	5.0	42.9	11.5	<0.01
W16	Т2°	28.7	3510	14500	21.4	<0.1	16.2	3.3	285	5.8	4.0	29.0	7.9	<0.01
W17	W17	30.7	4410	22000	16.0	<0.1	30.4	2.0	272	8.8	5.3	39.1	12.8	<0.01
W18	W18	27.9	5940	26500	19.1	<0.1	37.8	8.7	344	12.2	0.9	53.6	20.1	<0.01
W18	Т3 ^а	31.3	4990	21800	12.4	<0.1	28.1	7.2	434	11.0	5.8	41.3	16.8	<0.01
W18	T4 ^d	26.7	5260	22100	19.3	<0.1	31.2	7.3	415	10.6	5.5	43.8	16.8	<0.01
W19	W19	31.9	11400	31400	20.8	<0.1	45.6	16.7	618	20.1	9.0	28.7	32.4	0.01
	W20	26.7	7510	34100	21.9	<0.1	42.6	11.4	465	14.7	7.5	60.7	26.2	0.01
W20	R1 ^e	29.4	7060	35200	24.2	<0.1	43.6	10.9	550	14.7	7.6	63.6	26.7	<0.01

		Moisture												
		Content	ΑI	Fe	As	Сд	Cr	Cu	Mn	ï	Pb	۸	uZ	Hg
	TINO	%						mg/kg	6					
	PQL^a	1	20	20	0.1	0.1	0.1	0.1	0.1	0.1	0.1	2	0.1	0.01
Scree	Screening levels ^b		NG	SN	20	1.5	80	92	NG	21	20	NG	200	0.15
Hig	High levels ^c		ŊŊ	9N	02	10	370	270	ŊĊ	52	220	ЭN	410	1
Site ID	Sample ID													
W21	W21	27.4	4400	24300	27.5	<0.1	26.9	2.0	468	8.4	5.2	46.2	14.7	<0.01
W22	W22	30.2	2000	34300	29.8	<0.1	38.4	9.6	510	13.4	7.5	9.65	22.1	<0.01
W22	T5 ^d	30.6	6700	35300		<0.1	41.8	9.6	511	13.9	7.7	63.2	22.3	0.01
W22	т6°	29.5		34300		<0.1	40.1	9.2	472	13.2	7.3	60.4	21.3	<0.01
W23	_	46.1	8530	27600	23.0	<0.1	37.4	11.6	622	15.9	7.4	48.5	23.0	<0.01
W23	$R2^{6}$		6630	23300	22.3	<0.1	30.1	7.9	488	11.6	6.1	40.2	16.8	<0.01
W24	W24	36.2	5130	19000	20.9	<0.1	26.5	5.0	316	9.5	5.1	29.0	12.2	<0.01
W25	W25	31.8	4700	17800	21.0	<0.1	25.0	4.0	300	7.9	4.3	26.7	8.6	<0.01
	standard mean	an	6665	25906	21.4	0.1	33.6	10.3	442.1	13.0	9.9	46.8	20.6	0.008
3,	standard deviation	ation	4077	12643	5.4	0.0	16.1	11.0	211.5	9.3	3.4	19.4	15.9	900.0
	35% UCL		9142 ⁹	32706 ⁹	23.6	NA	40.5	17.4	550.5^{9}	18.6 ⁹	6.39	55.0	31.19	0.011 ⁿ

Practical Quantitation Limit (detection limit) рα

DEWHA 2009, National Assessment Guidelines for Dredging - level of substance in sediments below which toxic effects on marine organisms are not expected ပ

DEWHA 2009, National Assessment Guidelines for Dredging - bioaccumulation testing is required when concentrations of bioaccumulation substances exceeds this level. Field triplicate

Field duplicate

Data are normally distributed and the UCL was calculated using Student's t-Test method

Data are lognormal and the UCL was calculated using 95% H-UCL
Data are Gamma distributed and the UCL was calculated using the non-parametric Jack-knife method
Not Applicable - as there too few distinct data points for statistical analysis
No Guideline
Not Analysed

At sites where field duplicates and triplicates were taken, the data point for that site was represented by the mean concentration in all samples

Table 3: Summary of nearshore metals results normalised using offshore iron concentrations - February 2009

		Moisture												
		Content	Ι	Fe	As	РЭ	C	Cu	Mn	Ņ	qd	۸	uZ	Н
	UNIT	%						mg	mg/kg					
	PQL^a	1	20	20	0.1	0.1	0.1	0.1	0.1	0.1	0.1	2	0.1	0.01
Screenir	Screening levels ^b		NG	9N	20	1.5	80	92	9N	21	92	9N	200	0.15
High	High levels ^c		ŊĊ	ÐΝ	20	10	370	270	9N	52	220	ÐΝ	410	1
Site ID	Sample ID													
W1	W1	26.5	774	4059	8.2	<0.1	4.9	9.0	85.3	1.2	1.0	9.1	1.9	<0.01
7W	Z/M	26.2	1030	3854	2.0	<0.1	0.9	1.2	66.2	1.8	1.1	8.3	2.7	<0.01
W8	W8	23.9	1890	6583	6.4	<0.1	8.7	2.8	134.0	3.5	1.7	13.0	5.4	<0.01
6M	6M	39.6	6208	21113	3.2	0.03	26.4	16.4	361.5	14.4	2.3	33.2	23.7	0.010
W10	W10	38.9	3684	13575	9.7	<0.1	18.2	6.5	228.5	7.5	3.6	24.3	12.8	0.003
W11	W11	35.3	3479	11290	8.9	<0.1	15.4	5.2	160.6	2.9	3.1	19.8	10.5	0.003
W15	W15	21	989	4263	10.2	<0.1	5.2	9.0	2.92	1.3	1.0	10.9	1.5	<0.01
W16	W16	29.2	1412	5219	6.1	<0.1	6.4	1.4	2.78	2.4	1.4	10.1	3.2	<0.01
W16	⊤ 1⁴	31	1702	8152	12.6	0.03	7.8	1.7	143.9	2.9	1.7	14.6	3.9	<0.01
W16	T2ª	28.7	1197	4946	7.3	<0.1	5.5	1.1	97.2	2.0	1.4	6.6	2.7	<0.01
W17	W17	30.7	1504	7504	5.5	<0.1	10.4	1.7	92.8	3.0	1.8	13.3	4.4	<0.01
W18	W18	27.9	2026	6806	6.5	<0.1	12.9	3.0	117.3	4.2	2.0	18.3	6.9	<0.01
W18	Т3 ^д	31.3	1702	7436	4.2	<0.1	9.6	2.5	148.0	3.8	2.0	14.1	5.7	<0.01
W18	Т4 ^а	26.7	1794	7538	9.9	<0.1	10.6	2.5	141.5	3.6	1.9	14.9	5.7	<0.01
W19	W19	31.9	3888	10710	7.1	<0.1	15.6	2.2	210.8	6.9	3.1	20.0	11.1	0.003
W20	W20	26.7	2562	11631	7.5	<0.1	14.5	3.9	158.6	2.0	2.6	20.7	8.9	0.003
W20	R1 ^e	29.4	2408	12006	8.3	<0.1	14.9	3.7	187.6	2.0	2.6	21.7	9.1	<0.01
W21	W21	27.4	1501	8288	9.4	<0.1	9.2	1.7	159.6	2.9	1.8	15.8	2.0	<0.01
W22	W22	30.2	2388	11699	10.2	<0.1	13.1	3.3	174.0	4.6	2.6	20.3	7.5	<0.01
W22	T5 ^d	30.6	2285	12040	10.4	<0.1	14.3	3.3	174.3	4.7	2.6	21.6	7.6	0.003
W22	т6⁴	29.5	2231	11699	10.1	<0.1	13.7	3.1	161.0	4.5	2.5	20.6	7.3	<0.01

		Moisture												
		Content	Ι	Fe	As	РЭ	j	Cu	иW	Z	qd	۸	Zn	Hg
	UNIT	%						bш	mg/kg					
	PQL^a	1	20	20	0.1	0.1	0.1	0.1	0.1	0.1	0.1	2	0.1	0.01
Screening levels ^b	ıg levels ^b		SN	9N	20	1.5	80	99	9N	21	90	9N	200	0.15
High It	High levels ^c		ŊŊ	ÐΝ	20	10	370	270	ÐΝ	52	220	9N	410	1
Site ID	Sample ID													
W23	W23	46.1	2909	9414	7.8	<0.1	12.8	4.0	212.2	5.4	2.5	16.5	7.8	<0.01
	$R2^{e}$	38.6	2261	7947	7.6	<0.1	10.3	2.7	166.4	4.0	2.1	13.7	5.7	<0.01
W24	W24	36.2	1750	6481	7.1	<0.1	0.6	1.7	107.8	3.2	1.7	6.6	4.2	<0.01
W25	W25	31.8	1603	6071	7.2	<0.1	8.5	1.4	102.3	2.7	1.5	9.1	3.3	<0.01
S	standard mean	an	2273	8836	7.3	0.04	11.5	3.5	150.8	4.4	2.2	16.0	7.0	0.005
sta	standard deviation	ation	1390	4312	1.8	0.01	5.5	3.8	72.1	3.2	1.2	9.9	5.4	0.002
	32% NCT		3118 ⁹	11155 ⁹	8.1	NA	13.8	5.9 ⁹	187.7 ⁹	6.36^{9}	2.89	18.8	10.7 ⁹	0.005 ⁿ

Practical Quantitation Limit (detection limit)

င ဝ

DEWHA 2009, National Assessment Guidelines for Dredging - level of substance in sediments below which toxic effects on marine organisms are not expected DEWHA 2009, National Assessment Guidelines for Dredging - bioaccumulation testing is required when concentrations of bioaccumulation substances exceeds this

Field duplicate Field triplicate

Data are lognormal and the UCL was calculated using 95% H-UCL

Data are normally distributed and the UCL was calculated using Student's t-Test method

Data are Gamma distributed and the UCL was calculated using the non-parametric Jack-knife method

Not Applicable - as there too few distinct data points for statistical analysis

No Guideline

Not Analysed

At sites where field duplicates and triplicates were taken, the data point for that site was represented by the mean concentration in all samples

Table 4: Summary of metals results for offshore sediments - February 2009

		Moisture												
		Content	ΙΑ	Fe	As	පි	స	Cu	Mn	Z	Pb	>	Zn	Hg
	TINO	%						mg/kg	(d					
	PQLª	1	90	20	0.1	0.1	0.1	0.1	0.1	0.1	0.1	2	0.1	0.01
Screer	Screening levels ^b		9N	NG	20	1.5	80	92	NG	21	20	9N	200	0.15
High	High levels ^c		ÐΝ	NG	20	10	370	270	NG	52	220	9N	410	-
Site ID	Sample ID													
W2	W2	34.4	3120	8130	7.3	0.1	17.7	2.6	109	5.5	2.9	10.8	6.2	<0.01
W3	KM3	37.5	3290	9420	6.4	0.1	19.2	3.1	118	9.9	3.3	10.0	9.7	<0.01
W4	W4	38.3	3760	11600	4.7	0.1	21.6	3.3	119	8.2	3.7	8.9	8.5	<0.01
M5	M2	33	3840	14500	4.9	0.1	21.4	3.1	108	7.9	4.0	8.4	9.8	<0.01
9M	9/\	31.5	2860	7500	7.7	<0.1	16.4	2.3	100	5.2	2.8	8.4	0.9	<0.01
W12	W12	26.3	2820	12300	23.9	<0.1	17.6	2.3	156	4.4	3.1	30.5	2.2	<0.01
W13	W13	24.8	230	2580	7.4	0.1	11.4	<1.0	37	1.1	1.1	9.1	1.3	<0.01
W14	W14	23	1100	4660	12.1	<0.1	19.0	<1.0	99	1.7	1.5	14.6	2.2	<0.01
,	standard mean	an	2728	8836	9.3	0.1	18.0	2.2	101.6	5.1	2.8	12.6	2.8	<0.01
st	standard deviation	ation	1187	3981	6.3	0.0	3.2	1.1	36.0	2.6	1.0	2.7	2.7	NA
	35% NCL		7610 ⁹	11503	15.0 ⁹	NA	20.2^{9}	3.09	125.7 ⁹	6.8	3.5	17.6 ⁹	19.7	NA

Practical Quantitation Limit (detection limit) рα

level. Field triplicate Field duplicate

DEWHA 2009, National Assessment Guidelines for Dredging - level of substance in sediments below which toxic effects on marine organisms are not expected DEWHA 2009, National Assessment Guidelines for Dredging - bioaccumulation testing is required when concentrations of bioaccumulation substances exceeds this ပ

Data are lognormal and the UCL was calculated using 95% H-UCL

Data are Gamma distributed and the UCL was calculated using the non-parametric Jack-knife method d + e e e A P N N N Ote:

Data are normally distributed and the UCL was calculated using Student's t-Test method

Not Applicable - as there too few distinct data points for statistical analysis

No Guideline

At sites where field duplicates and triplicates were taken, the data point for that site was represented by the mean concentration in all samples

Table 5: Summary of organic compound results for nearshore sediments - February 2009

		TOC		Total	Total Petroleum Hydrocarbons (mg/kg)	-1ydrocarbo	ins (mg/kg)				BTEX Compo	BTEX Compounds (mg/kg)		TBT	TBT ⁹
٠		%	⁶ ၁- ⁹ ၁	C10-C14	C ₁₅ -C ₂₈	C ₂₆ -C ₃₆	Total (C ₁₀ -C ₃₆)	Total (C ₁₀ -C ₃₆) ⁹	Benzene	Toluene	Ethylbenzene	Xylene	ortho-Xylene	µgSn/kg	µgSn/kg
	PQL ^a	0.02	3	3	3	5	14	14	0.2	0.2	0.2	0.2	0.2	0.5	0.5
Screenii	Screening levels ^b	NG	NG	SN	SN	NG	220	220	ÐΝ	SN	NG	NG	9N	6	6
High	High levels ^c	9N	100	009	1000	9N	NG	SN	ÐΝ	9N	NG	NG	9N	02	20
Site ID	Sample ID														
W1	W1	60'0	\$3	<3	6	8	23	115*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.25*
W7	2M	0.12	<3	<3	13	10	29	145*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.25*
W8	8M	0.24	<3	<3	10	6	25	104	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.04
6M	6M	0.85	<3	9	54	33	96	113	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	0.29
W10	W10	0.35	<3	<3	25	16	47	134	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	0.71
W11	W11	0.33	<3	<3	18	14	38	115	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	92'0
W15	W15	0.16	22	<3	13	10	48	240*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.25*
W16	W16	0.24	\$3	4	21	13	41	171	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.04
W16	T1 ^d	0.24	8	<3	16	7	29	121	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.04
W16	Т2ª	0.21	Ç	۷3	9	\$	17	81	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.19
W17	71W	0.13	<3	<3	18	15	38	195	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.25*
W18	W18	0.21	<3	<3	12	13	31	148	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.19
W18	Т3 ^д	0.27	ç	<3	6	2	20	74	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	0.93
W18	T4 ^d	0.23	ç	<3	∞	\$	19	83	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.09
W19	M19	0.37	<3	9	25	16	49	132	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	89.0
W20	W20	0.27		<3	12	6	27	100	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	0.93
W20	R1e	0.28	ç	<3	సి	\$	14	50	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	0.89
W21	W21	0.17	<3	<3		5 >	18	*06	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.47
W22	W22	0.24	€>	<3	8	9	20	83	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.04
W22	T5 ^d	0.25	83	<3	6	<5	20	80	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.00
W22	T6 ^d	0.19	<3	<3	8	<5	19	95*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.32
W23	W23	0.34	8	<3	14	6	29	85	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	0.74
W23	R2 ^e	0.34	<3	<3	<3	<5	14	41	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	0.74
W24	W24	0.27	<3	<3	11	8	25	63	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	0.93
W25	W25	0.28	<3	<3	21	11	38	136	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	0.89
standaı	standard mean	0.3	2.7	2.1	16.6	11.5	34.7	121.0	0.1	0.1	0.1	0.1	0.1	0.25	96.0
standard	standard deviation	0.2	5.0	1.4	11.1	9.9	18.9	43.3	ΝA	NA	NA	NA	ΝA	NA	0.29
%56	35% UCL	98'0	NA	2.7	21.2	15.3	42.72	141.6	ΝA	ΝA	NA	NA	ΝA	NA	1.10 ^h

Table 6: Summary of organic compound results for offshore sediments - February 2009

TOC To	T	Tc	-	Petroleum Hydrocarbons (mg/kg)	lydrocarbo	ns (mg/kg)	L		-	BTEX Compo	BTEX Compounds (mg/kg)		TBT	$1BT^9$
% Ce-C ₉ C ₁₀ -C ₁₄ C ₁₅ -C ₂₈ C ₂₆ -C ₃₆ To	C ₁₀ -C ₁₄ C ₁₅ -C ₂₈ C ₂₆ -C ₃₆	C ₁₅ -C ₂₈ C ₂₆ -C ₃₆	C_{26} - C_{36}		٩	Total (C ₁₀ -C ₃₆)	Total (C ₁₀ -C ₃₆) ⁹	Benzene	Toluene	Ethylbenzene	meta- & para-Xylene	ortho-Xylene	µgSn/kg	µgSn/kg
0.02 3 3 5	3 3			2		14	14	0.2	0.2	0.2	0.2	0.2	0.5	9.0
NG NG NG NG	NG NG	9N		NG		220	220	9N	NG	NG	NG	SN	6	6
NG 100 500 1000 NG	500 1000	1000		NG		NG	NG	9N	NG	NG	NG	NG	02	02
Sample ID														
0.22 <3 <3 17 13	<3 <3 17	17		13		36	164	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.14
0.27 <3 <3 20 15	<3 20	20		15		41	152	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	0.93
0.28 5 <3 18 16	5 <3 18	18		16		42	150	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	68'0
0.25 21 <3 20 17	21 <3 20	20		17		61	244	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.00
0.25 42 <3 16 12	42 <3 16	16		12		73	292	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.00
0.23 <3 4 31 16	<3 4 31			16		54	235	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.09
0.09 <3 <3 21 14	<3 <3 21	21		14		41	205*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.25*
0.13 7 <3 13 9	7 <3 13	13		6		32	160	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	1.25*
0.2 10.13 1.8 19.5 14.0	1.8 19.5	19.5		14.0		47.5	200.0	0.1	0.1	0.1	0.1	0.1	0.25	1.07
standard deviation 0.1 14.48 88 5.3 2.6	88 5.3	5.3	Н	2.6		14.0	52.6	NA	NA	NA	ΝA	ΝA	NA	0.14
0.3 19.82 NA 23.1 15.8	NA 23.1 ⁿ	23.1"	_	15.8"		.8°9	235.5	NA	ΑN	NA	ΝA	NA	ΑN	1.16"

м д о р в в н - - - - А В В — - - - - - В В

Practical Quantitation Limit (detection limit)

DEWHA 2009, National Assessment Guidelines for Dredging - level of substance in sediments below which toxic effects on marine organisms are not expected

DEWHA 2009, National Assessment Guidelines for Dredging - bioaccumulation testing is required when concnetrations of bioaccumulating substances exceeds this level

DEWHA 2009, National Assessment Guidelines for Dredging - bioaccumulation testing is required when concnetrations of bioaccumulating substances exceeds this level

Eleid duplicate

Normalised to 1% TOC

Data are normality distributed and the UCL was calculated using 95% H-UCL

Data are Ignormal and the UCL was calculated using 95% H-UCL

Data are Gamma distributed and the UCL was calculated using 95% H-UCL

Data are Ignormal and the UCL was calculated using 95% H-UCL

Data are Ignormal and the UCL was calculated using the non-parametric Jack-knife method

Not Applicable - all concentrations below PQLs

Not Guideline

Normalisation is only appropriate over the TOC range 0.2-10 per cent (equates to multiplication factors of 5 times - 0.1 times, respectively. Outside this range the end value which applies is used (e.g. for less than 0.2 per cent TOC, 5 times the total TPH/TOC value is used.

At sites where field duplicates and triplicates were taken, the data point for that site was represented by the mean concentration in all samples

Table 7: Summary of particle size distribution results for nearshore sediments- February 2009

%	% Composition	Clay	Silt	Fine Sand	Medium Sand	Coarse Sand	Gravel	Silt/Clay
Site ID	Sample ID	η / >	4 - 62 μ	62 – 250 µ	$250 - 500 \mu$	$500 - 2000 \mu$	>2000 µ	%
W1	W1	1.6	2.2	44.7	38.6	10.4	2.5	3.8
7W	W7	7.8	13.7	24.1	20.8	15.3	18.3	21.5
W8	M8	13.7	18.5	4.5	21.9	30.9	10.5	32.2
6M	6M	34.5	54.5	8.8	0.0	0.4	1.8	89.0
W10	W10	22.3	32.1	26.6	12.0	3.2	3.8	54.4
W11	W11	15.7	23.9	44.2	14.5	1.6	0.1	39.6
W15	W15	1.4	1.3	2.9	46.3	6.08	17.2	2.7
W16	W16	6.3	8.5	6.2	15.8	41.5	21.8	14.7
W17	W17	6.3	8.4	41.6	28.8	8.8	9.9	14.3
W18	W18	6.3	10.2	13.0	26.4	17.9	23.3	19.5
W19	W19	9.4	11.3	4.3	1.7	4.3	69.1	20.7
W20	W20	13.5	18.1	32.0	22.5	8.4	5.5	31.6
W21	W21	9.6	6.3	32.5	31.8	11.8	12.0	11.9
W22	W22	6.4	8.8	46.5	26.9	0.7	4.5	15.2
W23	W23	12.3	24.5	9.03	10.7	1.6	0.2	36.9
W24	W24	8.4	15.6	53.0	16.1	2.0	1.9	24.0
W25	W25	6.5	14.4	41.1	17.3	12.3	8.4	20.9
sta	standard mean	10.6	16.0	28.0	20.7	12.4	12.2	26.6
stan	standard deviation	8.1	12.8	18.1	12.0	11.8	16.5	20.7

Table 8: Summary of particle size distribution results for offshore sediments - February 2009

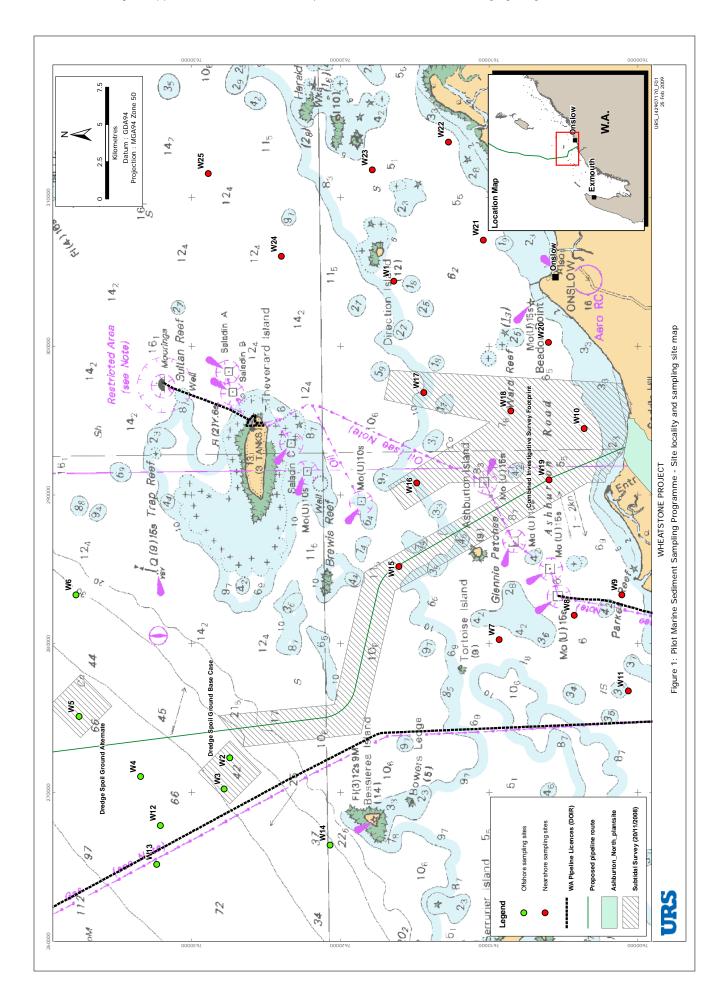
)%	% Composition	Clay	Silt	Fine Sand	Medium Sand	Coarse Sand	Gravel	Silt/Clay
Site ID	Sample ID	<4 μ	4 - 62 µ	62 – 250 µ	$250 - 500 \mu$	$500 - 2000 \mu$	>2000 µ	%
W2	W2	3.3	6.4	63.8	21.6	4.3	2.0	9.7
M3	W3	4.0	12.0	61.0	14.5	2.0	3.5	16.0
W4	W4	4.4	12.1	60.2	17.4	3.8	2.2	16.5
SW5	W5	4.5	13.4	54.3	15.1	2.7	2.2	17.9
9M	9M	3.1	9.9	265	25.4	3.5	1.9	9.7
W12	W12	2.3	3.9	8.6	16.6	26.6	40.8	6.2
W13	W13	0.0	0.0	21.3	63.0	15.0	0.7	0.0
W14	W14	0.0	0.0	32.6	55.8	7.8	8.0	0.0
sta	standard mean	2.7	8.9	45.7	28.7	9.5	7.8	9.5
ctan	standard deviation	۷ ۲	53	8 UC	19.4	Uα	135	7.2

Table 9: RPD/RSD calculations for metals from field duplicate and triplicate samples - Wheatstone pilot sediment sampling program

		IA	Fe	As	ဦ	၁	no	Mn	Z	Pb	۸	uZ	Hg
	TINO							mg/kg					
	PQL	20	20	0.1	0.1	0.1	0.1	0.1	0.1	0.1	2	0.1	0.01
Site ID	Sample ID												
W16	W16	4140	15300	17.9	<0.1	18.9	4	257	6.9	4.1	29.6	9.5	<0.01
M16		4990	23900	36.9	0.1	22.9	5	422	8.6	5	42.9	11.5	<0.01
M16	T2ª	3510	14500	21.4	<0.1	16.2	3.3	285	5.8	4	29	7.9	<0.01
	RSD	17.6%	29.1%	39.8%		17.4%	20.8%	27.5%	19.9%	12.6%	23.2%	18.7%	
W18	W18	5940	26500	19.1	<0.1	37.8	8.7	344	12.2	9	53.6	20.1	<0.01
M18	T3 ^d	4990	21800	12.4	<0.1	28.1	7.2	434	1	5.8	41.3	16.8	<0.01
W18	T4 ^d	5260	22100	19.3	<0.1	31.2	7.3	415	10.6	5.5	43.8	16.8	<0.01
L	RSD	9.1%	11.2%	23.2%		15.3%	10.8%	11.9%	7.4%	4.4%	14.1%	10.6%	
W20	W20	7510	34100	21.9	<0.1	42.6	11.4	465	14.7	7.5	2.09	26.2	0.01
W20	R1	2060	35200	24.2	<0.1	43.6	10.9	550	14.7	7.6	63.6	26.7	<0.01
_	RPD	6.2%	3.2%	10.0%	-	2.3%	4.5%	16.7%	%0:0	1.3%	4.7%	1.9%	
N22	W22		34300	29.8	<0.1	38.4	9.6	510	13.4	7.5	9.69	22.1	<0.01
V22	T5 ^d	6700	35300	30.5	<0.1	41.8	9.6	511	13.9	7.7	63.2	22.3	0.04
W22	Те		34300	29.7	<0.1	40.1	9.2	472	13.2	7.3	60.4	21.3	<0.01
.L	RSD	3.5%	1.7%	1.5%		4.2%	2.4%			2.7%	3.1%	2.4%	
N23	W23	8530	27600	23	<0.1	37.4	11.6		15.9	7.4	48.5	23	<0.01
N23	W23 R2 ⁶	6630	23300		<0.1		7.9	488		6.1	40.2	16.8	<0.01
	RPD	25.1%	16.9%	3.1%		21.6%	37.9%		31.3%	19.3%	18.7%	31.2%	

RPD/RSD Above the NAGD (2009) guideline of 50%

a Practical Quantitation Limit (detection limit)
d Field triplicate
e Field duplicate
RSD Realitive Percentage Difference
RPD Realitive Percentage Difference
- cannot calculate RSD/RPD due to results below the laboratory PQL


Table 10: RPD/RSD calculations for organic compounds from field duplicate and triplicate samples - Wheatstone pilot sediment sampling program

		T0C	Total	Petroleum H	Total Petroleum Hydrocarbons (mg/kg)	(mg/kg)		EB.	BTEX Compounds (mg/kg)	(mg/kg)		TBT
		%	ပ္- ⁹ ၁	C10-C14	C ₁₅ -C ₂₈	C_{26} - C_{36}	Benzene	Toluene	Ethylbenzene	Ethylbenzene meta- & para-Xylene	ortho-Xylene	µgSn/kg
	PQL^a	0.02	3	3	3	2	0.2	0.2	0.2	0.2	0.2	0.5
Site ID	Sample ID											
W16	W16	0.24		4	21	13	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
W16	T1 ^d	. ~		ç	16	7	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
W16	T2 ^d	0.21	ςγ	83	9	<5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
ď	RSD	7.5%			23.3%	42.4%						
W18	W18	0.21	<3	<3	12	13	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
	Т3 ^д	Ü	ς,	8	6	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
	T4°		ςγ	\$	8	~ 5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
ď	RSD	12.9%			21.5%	62.9%						
W20	W20	0.27	<3	<3	12	6	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
	R1 ^e	Ü	ςγ		ςγ	<5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
8	RPD	3.6%										
W22	W22	0.24		<3	8	9	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
W22	T5 ^d		ςγ	ςγ	6	< 5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
W22	те⁴	0.19		ç>	80	<5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
R	RSD	14.2%	-	-	%6:9	-			-		-	-
W23	W23	0.34	<3	<3	14	6	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
W23	R2 [®]	\circ	<3	<3	<3	<5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
8	RPD	%0'0										

RPD/RSD

a d RSD RPD

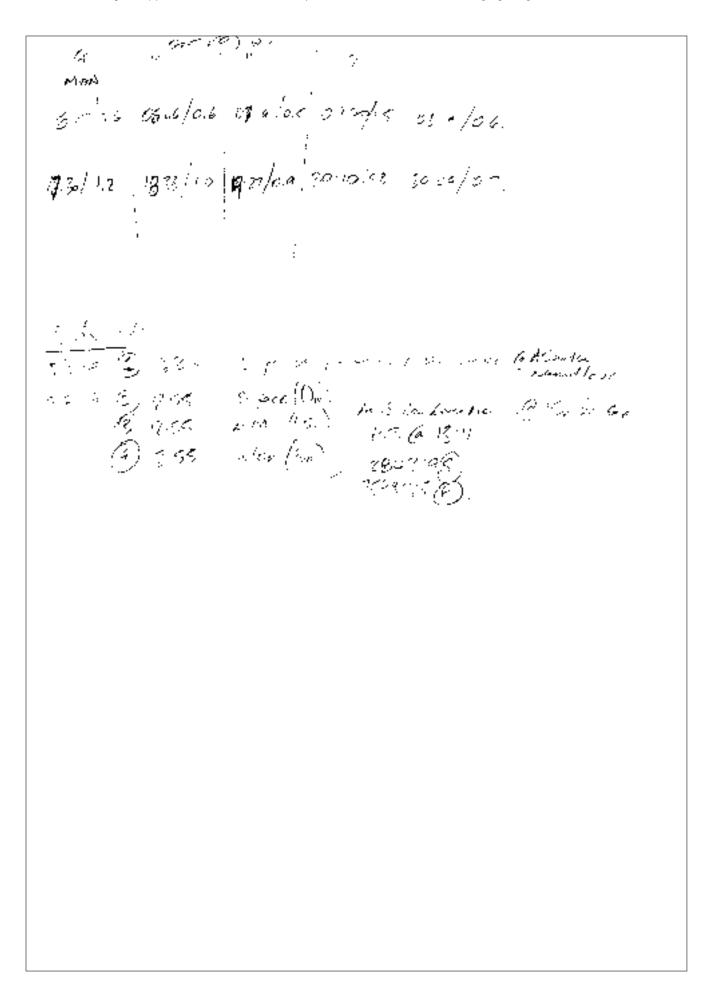
PILOT MARINE SEDIMENT QUAL WHEATSTONE P	ITY REPORT FOR THE ROJECT, ONSLOW WA	
	Figures	
Prepared for Chevron Australia Pty Ltd, 27 March 2009 Ref: 42907170 – 2163 / R1395 / DK: M&C3064		URS

PILOT MARINE SEDIMENT QUALITY REPORT FOR THE WHEATSTONE PROJECT, ONSLOW WA **URS Chain of Custody Appendix A** URS Prepared for Chevron Australia Pty Ltd, 27 March 2009 Ref: 42907170 – 2163 / R1395 / DK: M&C3064

	Comment San	E-P0900820	ACTION PROCESS SOCIETY OF STREET STRE
New Access of a new	25 20 113.4	Control of the Contro	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
, A			The second and the second seco

PILOT MARINE SEDIMENT QUALITY REPORT FOR THE WHEATSTONE PROJECT, ONSLOW WA **Appendix B URS Field Data Sheets** URS Prepared for Chevron Australia Pty Ltd, 27 March 2009 Ref: 42907170 – 2163 / R1395 / DK: M&C3064

Revolution Toyan Board Fast Penh, Wedern Andraha 6004 Tel: 01 \$ 9926 0290 Fac: 41 5 9926 0290 $\mathbf{E} = \mathrm{silt}(\mathbf{j}) \mathbf{f}^* = \mathrm{sgazze}(\mathbf{j}) \mathrm{ascorp}(\mathbf{som})$

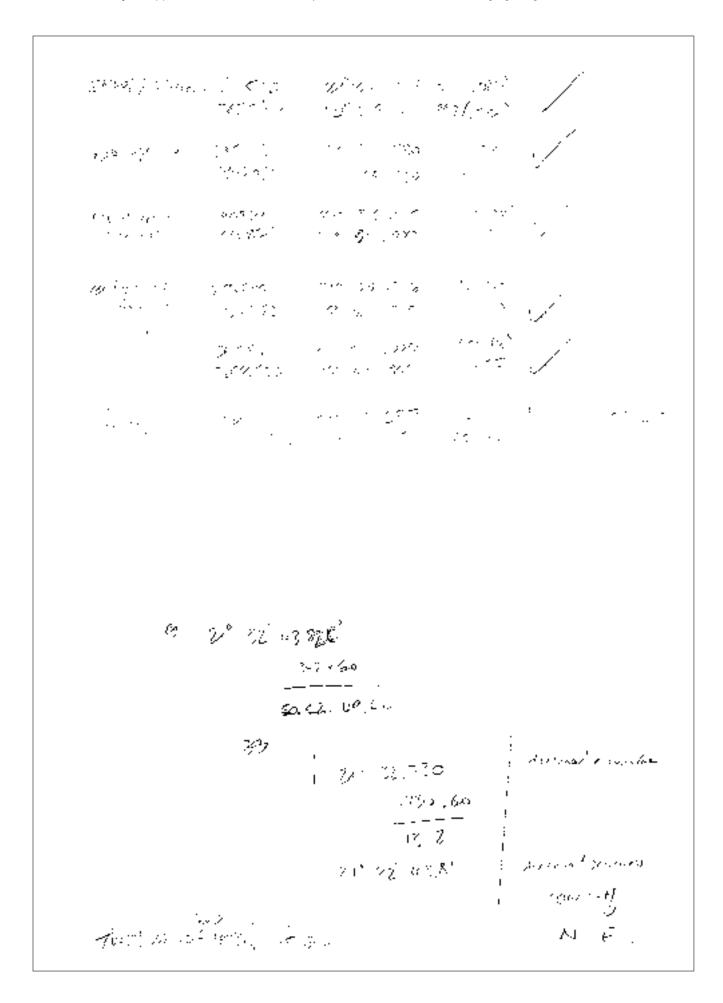

MARINE AND COASTAL ENVIRONMENTAL SERVICES

SAMPLING RECORD FORM DM-FORM-42A

COVER PAGE

JOB No.	6/9071/O	PAGENS, 1 of
CLIENT	138 V 1386 WT 578-15	
PROJECT NAME	<u> </u>	
PROJECT COMPONENT	MULLETION L CHESCHE	KINDON PLATING "42 79
PROTECT LOCATION	[3 <u>4525</u> 576 <u>+175</u> 37	· <u>3 668</u>
SAMPLE 10CATION	<u> </u>	
SAMPLING TYPE	737 <u>1877 5</u> 7 9 17 11 1	2017 Sec. 20
SAMPLED BY	- Tarakton of A	^ <u>^</u>
DATE	1.745.24	
COMMENTS		
	L	
	<u></u>	:

paracossista - Rev. II



. []			Andrew Andrew		
*	1000	Section of the sectio	Section 1999		
CONTINUATION PAGE No.			.	3.4	
CONTING	Commission		26 / Same		
1					
RECORDED BY	2.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		11/12/11	4N3Les I = I -		
8/2/20	LoseTub:	100 C		700 0000 1000 1000	
APLETA E NATA	- -		100	i	
Arriv	Salaria Salaria Salaria			524 14 02 30 72 72 C	
: ::	100 V				
DATA SHRET	8.4 0.7/2.0		7 2 2	720	
SITE DATA SHEET	3.00 y 12.00 d 17.00 d		. :	!	

SITE DATA SIGNET SECTIONS HOND IN THE SITE OF THE SITE
--

	` }	<u>:</u>			- <u> </u>	: - : -			T	80 3 8 P 4 3 80) 1	; , , , ,
			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				(20 A A A A A A A A A A A A A A A A A A	·	-	12.77	- A		: 3 . A	.'
CUNTINCATION PAGE NG	10 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×			100	173			: · I			:		XIII X	31.6753
CONTIN	—' ઢા	SOMBASS Something of	S S S			`								
': 		2 0.2		1000 平石	空ク				3		[3]	erskiif Argod Tijos	· ·	
	E. CORATEMY	100						, .	, (c)		15.0			
		V 200					130 2 CA				177			
	- ا ا	1. 1.7.2.7.		<u>S</u>			 -	S S S				25	: :	
	7. ·	#1.62%07	 .			·	(1) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	13			X \	[: 	! -:	
1. J. W.	TOWNS .	30 % 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		A 10 B 10 F	- - -		57.5% AVB	 75 15 15		S. 25.00				
	() ()			JE 19 49			<u>S</u>		$\cdot \Box$	78 94.0	<u>-</u> 	- - - - - - - - - -	:	
SITE DATA SHEKT	٠.	# 5.	I .I	24	2 S	17	γ I		1.	MA V		11.	 	
SITE DA		12 (77)				Ţ.,		.				7,004	-	

1000 COSCOLL COSCOLLA C
--

PILOT MARINE SEDIMENT QUALITY REPORT FOR THE WHEATSTONE PROJECT, ONSLOW WA Original Laboratory Reports **Appendix C** URS Prepared for Chevron Australia Pty Ltd, 27 March 2009 Ref: 42907170 – 2163 / R1395 / DK: M&C3064

Environmental Division

CERTIFICATE OF ANALYSIS

	ision Perth		: 10 Hod Way Malaga WA Australia 6090	senviro.com			: NEPM 1999 Schedule B(3) and ALS QCS3 requirement						
: 1 of 19	Environmental Division Perth	: Michael Sharp	: 10 Hod Way Malaę	: michael.sharp@alsenviro.com	+61-8-9209 7655	+61-8-9209 7600	: NEPM 1999 Sche		: 16-FEB-2009	: 04-MAR-2009		: 35	: 35
Page	Laboratory	Contact	Address	E-mail	Telephone	Facsimile	QC Level		Date Samples Received	Issue Date		No. of samples received	No. of samples analysed
: EP0900820	URS AUSTRALIA PTY LTD	: PAUL EVERSON	: LEVEL 3, HYATT CENTRE 20 TERRACE RD EAST PERTH WA, AUSTRALIA 6004	: Paul_Everson@URSCorp.com	: +61 08 9326 0221	: +61 08 9221 1639	: 42907170	1		: PE & FW			: EN/001/08
Work Order	Client	Contact	Address	E-mail	Telephone	Facsimile	Project	Order number	C-O-C number	Sampler	Site		Quote number

for of this report have been checked and approved This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages release.

This Certificate of Analysis contains the following information:

- General Comments
 - Analytical Results
- Surrogate Control Limits

This document is issued in accreditation requirements. accordance with NATA

Stafford Minerals - AY Accreditation Category Inorganics Organics Organics Organics Senior Organic Chemist carried out in compliance with procedures specified in 21 CFR Part 11. Inorganic Chemist Edwandy Fadjar Signatories

peen

has

This document has been electronically signed by the authorized signatories indicated below. Electronic signing

Signatories

NATA Accredited Laboratory 825

Organics Inorganics Senior Inorganic Chemist Senior Chemist Volatile Spectroscopist Sanjeshni Jyoyi Mala Wisam Abou-Maraseh Hoa Nguyen Kim McCabe

: 3 of 19 : EP0900820 : URS AUSTRALIA PTY LTD : 42907170 Page Work Order Project Client

General Comments

and NEPM. In house AS APHA, as those published by the USEPA, The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0.00 the information was not provided by client.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Key

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

•

LCS recovery for some elements falls outside ALS Dynamic Control Limit. However, they are within the acceptance criteria based on ALS DQO. No further action is required. EP080-SD:C6 -C9 positive for various samples due to presence of 2-methoxy-2-methyl-Propane.

A Campbell Brothers Limited Compar 09-FEB-2009 15:00 EP0900820-005 4500 <0.5 <0.2 <0.2 <0.2 <0.2 8 4. 33.0 4.94 4. 9 12.3 <0.01 0.25 <0.2 5. ۳. ۲. 2.6 7.9 8.4 8.6 0.2 గ్గ 17 09-FEB-2009 15:00 EP0900820-004 <0.2 11600 21.6 3.3 2.5 3.7 <0.2 <0.2 38.3 119 12.4 <0.07 0.28 <0.2 <0.2 5. 8.9 0.7 დ **წ წ** ξ 09-FEB-2009 15:00 EP0900820-003 3590 9420 <0.2 <0.2 <0.2 <0.2 <0.2 <0.5 37.5 6.4 4.0 3.1 2.4 3.3 3.3 1118 6.6 7.6 12.4 105 0.7 0.27 5 8 3 09-FEB-2009 15:00 EP0900820-002 <0.2 <0.2 3120 8130 <0.01 <0.2 <0.5 96.3 34.4 7.26 0.1 17.7 2.6 2.1 2.9 109 10.8 6.2 12.3 0.22 7 7 8 09-FEB-2009 15:00 EP0900820-001 2270 11900 <0.2 <0.2 26.5 <0.07 0.0 <0.2 <0.5 ₹ **24.1** 0.1 0.1 14.3 1.8 3.7 2.9 250 3.6 3.6 9.3 0.2 ဗ္ဂ တူ တ 84.7 5.7 Client sample ID Client sampling date / time µgSn/kg mg/kg Unit % % % LOR 1.0 0.01 0.02 0.5 1.00 0. 1.0 1.0 0.2 0.5 0. 9 2.0 1.0 0.1 0.1 0.2 0.2 0.1 20 2 Ī Ī 95-47-6 56573-85-4 7439-97-6 71-43-2 17060-07-0 7440-38-2 7440-62-2 7440-41-7 100-41-4 CAS Number 7429-90-5 7439-89-6 7440-50-8 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7440-66-6 7440-39-3 108-88-3 108-38-3 106-42-3 EP080-SD / EP071-SD: Total Petroleum Hydrocarbons EG020-SD: Total Metals in Sediments by ICPMS EG035T: Total Recoverable Mercury by FIMS EP080-SD: TPH(V)/BTEX Surrogates EP005: Total Organic Carbon (TOC) EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EG020T: Total Metals by ICP-MS **EP090: Organotin Compounds** EA055: Moisture Content 1.2-Dichloroethane-D4 **Total Organic Carbon** meta- & para-Xylene C10 - C14 Fraction EP080-SD: BTEX C29 - C36 Fraction C15 - C28 Fraction C6 - C9 Fraction Sub-Matrix: SOIL Ethylbenzene Manganese Aluminium Chromium Vanadium Cadmium Benzene Mercury Toluene Copper Arsenic Cobalt Nickel Lead <u>0</u>

4 of 19 EP0900820 URS AUSTRALIA PTY LTD

Page Work Order

42907170

Project

Client

Page : 5c
Work Order : EP
Client : UF
Project : 422

Analytical Results

: 5 of 19 : EP0900820 : URS AUSTRALIA PTY LTD : 42907170

Sub-Matrix: SOIL		Clie	Client sample ID	W1	W2	W3	W4	W5
	Clie	ent samplin	Client sampling date / time	09-FEB-2009 15:00				
Compound	CAS Number LOR	LOR	Unit	EP0900820-001	EP0900820-002	EP0900820-003	EP0900820-004	EP0900820-005
EP080-SD: TPH(V)/BTEX Surrogates - Continued	ntinued							
Toluene-D8	2037-26-5	0.1	%	94.6	87.8	97.5	93.5	87.8
4-Bromofluorobenzene	460-00-4	0.1	%	90.6	82.1	88.7	99.2	92.3
EP090S: Organotin Surrogate								
Tripropyltin	1	0.1	%	103	99.2	6.68	104	103

A Campbell Brothers Limited Compa 09-FEB-2009 15:00 EP0900820-010 10800 39800 <0.5 <0.2 <0.2 <0.2 <0. 2.0 2.0 38.9 53.5 19.1 15.5 10.5 670 21.9 16.8 9.0 0.0 0.35 105 ç గ్గ 52 9 09-FEB-2009 15:00 EP0900820-009 61900 <0.2 18200 77.5 48.2 23.7 16.7 1060 42.2 97.3 69.4 <0.2 <0.2 39.6 0.03 0.85 <0.2 <0.2 56.7 9 5. 9.8 33 09-FEB-2009 15:00 EP0900820-008 9300 5540 <0.2 <0.2 <0.2 <0.2 <0.2 <0.5 23.9 25.4 8.2 7.7 5.1 5.1 10.2 38.1 15.9 0.24 90.9 5 6.0 ე ე ე ი 09-FEB-2009 15:00 EP0900820-007 11300 <0.2 <0.2 <0.01 0.12 <0.2 <0.5 8 26.2 **14.6** 0.1 3.4 3.4 3.3 3.3 194 5.4 5.4 8.0 7.5 დ ლ მ 2 09-FEB-2009 15:00 EP0900820-006 <0.2 <0.2 31.5 2860 **7.65** 16.4 2.3 2.0 2.8 100 5.2 8.4 8.4 <0.07 0.25 <0.2 <0.5 0.2 104 Client sample ID Client sampling date / time µgSn/kg mg/kg Unit % % % LOR 1.0 2.0 0.01 0.02 0.5 1.00 0. 0. 1.0 0.2 0.5 0. 9 1.0 0.1 0.1 0.2 0.2 0.1 20 2 Ī ī 95-47-6 56573-85-4 7439-89-6 7439-97-6 71-43-2 17060-07-0 7440-38-2 7440-47-3 7440-62-2 7440-41-7 100-41-4 CAS Number 7429-90-5 7440-50-8 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7440-66-6 7440-39-3 108-88-3 108-38-3 106-42-3 EP080-SD / EP071-SD: Total Petroleum Hydrocarbons EG020-SD: Total Metals in Sediments by ICPMS EG035T: Total Recoverable Mercury by FIMS EP080-SD: TPH(V)/BTEX Surrogates EP005: Total Organic Carbon (TOC) EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EG020T: Total Metals by ICP-MS **EP090: Organotin Compounds** EA055: Moisture Content 1.2-Dichloroethane-D4 Total Organic Carbon meta- & para-Xylene C10 - C14 Fraction EP080-SD: BTEX C29 - C36 Fraction C15 - C28 Fraction C6 - C9 Fraction Sub-Matrix: SOIL Ethylbenzene Manganese Aluminium Chromium Vanadium Cadmium Benzene Mercury Toluene Copper Arsenic Cobalt Nickel Lead <u>5</u>

: 6 of 19 : EP0900820 : URS AUSTRALIA PTY LTD

Page Work Order 42907170

Project

Client

Page : 7 c
Work Order : EP
Client : UF
Project : 42

: 7 of 19 : EP0900820 : URS AUSTRALIA PTY LTD : 42907170

Sub-Matrix: SOIL		Clier	Client sample ID	We	W7	W8	6M	W10
	Clie	Client samplin	ing date / time	09-FEB-2009 15:00				
Compound	CAS Number LOR	LOR	Unit	EP0900820-006	EP0900820-007	EP0900820-008	EP0900820-009	EP0900820-010
EP080-SD: TPH(V)/BTEX Surrogates - Continued								
Toluene-D8	2037-26-5	0.1	%	104	9.66	107	89.7	91.6
4-Bromofluorobenzene	460-00-4	0.1	%	113	92.0	102	7.76	101
EP090S: Organotin Surrogate								
Tripropyltin	!	0.1	%	103	86.4	104	96.0	99.4

A Campbell Brothers Limited Compan 09-FEB-2009 15:00 EP0900820-015 2500 0.16 <0.2 <0.5 21.0 3.8 32.0 <0.01 <0.2 <0.2 <0.2 <0.2 115 15. 1.8 3.0 4.5 7. ٥. 52 დ ლ მ 09-FEB-2009 15:00 EP0900820-014 <0.2 <0.2 23.0 4660 19.0 41.0 1.5 14.6 <0.01 0.13 <0.2 <0.2 <0.2 1.7 106 **12.1** 9. 2 დ ლ ი 09-FEB-2009 15:00 EP0900820-013 W13 4.1 1.1 1.3 1.3 4.7 41.0 <0.2 <0.2 <0.2 <0.5 24.8 730 0.1 0.09 <0.2 <0.2 5. 0.1 & & 2 **4** 5 09-FEB-2009 15:00 EP0900820-012 2300 **c**0.01 <0.2 <0.5 12.6 0.2 0.23 <0.2 <0.2 115 26.3 **23.9** 17.6 2.3 2.2 3.1 156 4.4 30.5 4 등 9 09-FEB-2009 15:00 EP0900820-011 10200 33100 ž 35.3 15.3 9.1 19.5 58.0 0.0 0.33 <0.2</p>
<0.2</p> <0.2 <0.2 <0.2 <0.5 **19.8** 45.1 471 16.1 0.5 δ ς **8 4** Client sample ID Client sampling date / time µgSn/kg mg/kg Unit % % % LOR 0.01 0.02 1.0 2.0 0.5 9. 0. 0. 1.0 0.2 0.5 0. 9 1.0 0.1 0.1 0.2 0.2 0.1 20 2 က က 1 ī 95-47-6 56573-85-4 7439-97-6 71-43-2 17060-07-0 CAS Number 7440-62-2 7440-41-7 7429-90-5 7439-89-6 7440-38-2 7440-50-8 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7440-66-6 7440-39-3 108-88-3 100-41-4 108-38-3 106-42-3 EP080-SD / EP071-SD: Total Petroleum Hydrocarbons EG020-SD: Total Metals in Sediments by ICPMS EG035T: Total Recoverable Mercury by FIMS EP080-SD: TPH(V)/BTEX Surrogates EP005: Total Organic Carbon (TOC) EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EG020T: Total Metals by ICP-MS **EP090: Organotin Compounds** EA055: Moisture Content 1.2-Dichloroethane-D4 **Total Organic Carbon** meta- & para-Xylene C10 - C14 Fraction EP080-SD: BTEX C29 - C36 Fraction C15 - C28 Fraction C6 - C9 Fraction Sub-Matrix: SOIL Ethylbenzene ortho-Xylene Manganese Aluminium Chromium Vanadium Cadmium Beryllium Toluene Benzene Copper Mercury Cobalt Nickel Lead <u>5</u>

: 8 of 19 : EP0900820 : URS AUSTRALIA PTY LTD

Page Work Order 42907170

Client Project

: 9 of 19 : EP0900820 : URS AUSTRALIA PTY LTD : 42907170

Analytical Results								
Sub-Matrix: SOIL		Clie	Client sample ID	W11	W12	W13	W14	W15
	O	Client sampling c	ing date / time	09-FEB-2009 15:00				
Compound	CAS Number LOR	LOR	Unit	EP0900820-011	EP0900820-012	EP0900820-013	EP0900820-014	EP0900820-015
EP080-SD: TPH(V)/BTEX Surrogates - Continued	es - Continued							
Toluene-D8	2037-26-5	0.1	%	94.6	93.7	98.6	94.1	103
4-Bromofluorobenzene	460-00-4	0.1	%	100	100	92.4	90.2	101
EP090S: Organotin Surrogate								
Tripropyltin	-	0.1	%	4.77	95.4	87.5	7.86	86.3

Chevron Australia Pty Ltd | **665**

A Campbell Brothers Limited Compan 09-FEB-2009 15:00 EP0900820-020 34100 <0.2 <0.5 42.6 4. 13.5 465 14.7 0.27 <0.2 <0.2 <0.2 26.7 12.4 4. 9.0 8 ဗ္ဗ 7 É 09-FEB-2009 15:00 EP0900820-019 11400 31400 <0.2 <0.2 3.9 **20.8** 45.6 16.7 12.6 9.0 618 20.1 58.7 32.4 <0.2 <0.2 <0.2 13 9.0 0.37 0.5 5 25 16 09-FEB-2009 15:00 EP0900820-018 **M18** 26500 5940 1.0 <0.2 <0.2 <0.2 <0.5 27.9 37.8 10.3 6.0 344 12.2 53.6 0.3 <0.2 <0.2 90.0 8.7 20.1 0.21 S S 5 6 09-FEB-2009 15:00 EP0900820-017 22000 **c**0.01 <0.2 <0.5 0.13 <0.2 <0.2 30.7 **16.0** <0.1 30.4 5.0 7.3 5.3 272 272 8.8 39.1 8.8 \$ **8** 5 116 09-FEB-2009 15:00 EP0900820-016 W16 4140 15300 29.2 **17.9** <0.1 18.9 257 6.9 29.6 <0.01 0.24 <0.2</p>
<0.2</p> <0.2 <0.2 <0.2 <0.5 6. 5.0 6.6 0.3 120 8 72 5 Client sample ID Client sampling date / time µgSn/kg mg/kg Unit % % % LOR 0.01 0.02 1.0 2.0 0.5 9. 0. 0. 1.0 0.2 0.5 0. 9 1.0 0.1 0.1 0.2 0.2 0.1 20 2 က 1 ī 95-47-6 56573-85-4 7439-97-6 71-43-2 17060-07-0 CAS Number 7440-62-2 7440-41-7 7429-90-5 7439-89-6 7440-38-2 7440-50-8 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7440-66-6 7440-39-3 108-88-3 100-41-4 108-38-3 106-42-3 EP080-SD / EP071-SD: Total Petroleum Hydrocarbons EG020-SD: Total Metals in Sediments by ICPMS EG035T: Total Recoverable Mercury by FIMS EP080-SD: TPH(V)/BTEX Surrogates EP005: Total Organic Carbon (TOC) EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EG020T: Total Metals by ICP-MS **EP090: Organotin Compounds** EA055: Moisture Content 1.2-Dichloroethane-D4 **Total Organic Carbon** meta- & para-Xylene C10 - C14 Fraction EP080-SD: BTEX C29 - C36 Fraction C15 - C28 Fraction C6 - C9 Fraction Sub-Matrix: SOIL Ethylbenzene ortho-Xylene Manganese Aluminium Chromium Vanadium Cadmium Beryllium Benzene Copper Mercury Toluene Cobalt Nickel Lead <u>5</u>

: 10 of 19 : EP0900820 : URS AUSTRALIA PTY LTD

Page Work Order

42907170

Project Client

: 11 of 19 : EP0900820 : URS AUSTRALIA PTY LTD : 42907170

Page Work Order

Project Client

09-FEB-2009 15:00 EP0900820-020 91.2 110 **W19** 09-FEB-2009 15:00 EP0900820-019 102 97.1 115 09-FEB-2009 15:00 EP0900820-018 W18 90.5 97.8 09-FEB-2009 15:00 EP0900820-017 5 5 5 124 09-FEB-2009 15:00 EP0900820-016 W16 95.3 99.2 17 Client sample ID Client sampling date / time Unit % % % LOR 0.1 0.1 CAS Number 2037-26-5 1 460-00-4 EP080-SD: TPH(V)/BTEX Surrogates - Continued EP090S: Organotin Surrogate Analytical Results 4-Bromofluorobenzene Sub-Matrix: SOIL Tripropyltin Compound

Chevron Australia Pty Ltd | 667

A Campbell Brothers Limited Compan 09-FEB-2009 15:00 EP0900820-025 7800 <0.2 <0.5 31.8 25.0 0.4 300 12.5 6.3 <0.01 0.28 <0.2 <0.2 <0.2 115 0.1 5.4 4.3 8 ဗ္ဗ 7 Ξ 09-FEB-2009 15:00 EP0900820-024 19000 26.5 5.0 6.6 5.1 316 29.0 <0.2 <0.2 36.2 **20.9** <0.01 <0.2 <0.2 <0.2 92.0 0.27 0.3 Ω Ξ 09-FEB-2009 15:00 EP0900820-023 27600 8530 11.6 48.5 13.8 <0.01 <0.2 <0.2 <0.2 <0.5 37.4 10.7 7.4 622 15.9 23.0 0.5 0.34 <0.2 <0.2 88.6 46.1 0.1 ი ი <mark>4 ი</mark> 09-FEB-2009 15:00 EP0900820-022 34300 **c**0.01 <0.2 <0.5 7000 0.4 <0.2 <0.2 30.2 **29.8** <0.1 38.4 9.6 12.7 7.5 510 13.4 59.6 59.6 0.24 က္က 🐷 93.4 ဖ 09-FEB-2009 15:00 EP0900820-021 4400 24300 W21 27.4 **27.5** <0.1 26.9 10.5 5.2 468 8.4 46.2 <0.01 0.17 <0.2</p>
<0.2</p> <0.2 <0.2 <0.2 <0.5 93.5 5.0 14.7 8.0 0.2 ° ° ° ° **2** Client sample ID Client sampling date / time µgSn/kg mg/kg Unit % % % LOR 0.01 0.02 1.0 2.0 0.5 9. 0. 0. 1.0 0.2 0.5 0. 9 1.0 0.1 0.1 0.2 0.2 0.1 20 2 1 ī 95-47-6 56573-85-4 7439-97-6 71-43-2 17060-07-0 CAS Number 7440-62-2 7440-41-7 7429-90-5 7439-89-6 7440-38-2 7440-50-8 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7440-66-6 7440-39-3 108-88-3 100-41-4 108-38-3 106-42-3 EP080-SD / EP071-SD: Total Petroleum Hydrocarbons EG020-SD: Total Metals in Sediments by ICPMS EG035T: Total Recoverable Mercury by FIMS EP080-SD: TPH(V)/BTEX Surrogates EP005: Total Organic Carbon (TOC) EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EG020T: Total Metals by ICP-MS **EP090: Organotin Compounds** EA055: Moisture Content 1.2-Dichloroethane-D4 **Total Organic Carbon** meta- & para-Xylene C10 - C14 Fraction EP080-SD: BTEX C29 - C36 Fraction C15 - C28 Fraction C6 - C9 Fraction Sub-Matrix: SOIL Ethylbenzene ortho-Xylene Manganese Aluminium Chromium Vanadium Cadmium Beryllium Benzene Copper Mercury Toluene Cobalt Nickel Lead <u>5</u>

: 12 of 19 : EP0900820 : URS AUSTRALIA PTY LTD

Page Work Order

42907170

Project Client

: 13 of 19 : EP0900820 : URS AUSTRALIA PTY LTD : 42907170

Analytical Results								
Sub-Matrix: SOIL		Cļir	Client sample ID	W21	W22	W23	W24	W25
	Oli	ent sampli.	Client sampling date / time	09-FEB-2009 15:00				
Compound	CAS Number LOR	LOR	Unit	EP0900820-021	EP0900820-022	EP0900820-023	EP0900820-024	EP0900820-025
EP080-SD: TPH(V)/BTEX Surrogates - Continued	Continued							
Toluene-D8	2037-26-5	0.1	%	92.7	92.4	86.4	88.7	112
4-Bromofluorobenzene	460-00-4	0.1	%	90.5	6:06	83.8	95.9	110
EP090S: Organotin Surrogate								
Tripropyltin	-	0.1	%	108	126	75.1	63.0	76.0

Chevron Australia Pty Ltd | 669

A Campbell Brothers Limited Compan 09-FEB-2009 15:00 EP0900820-030 35300 <0.2 <0.5 96.3 30.6 8. 9.6 12.5 13.9 0.25 <0.2 <0.2 <0.2 51 6.6 4. 9.0 8 ဗ္ဗ 2 6 09-FEB-2009 15:00 EP0900820-029 22100 415 <0.2 <0.2 5260 **19.3** 43.8 16.8 <0.01 0.23 <0.2 <0.2 <0.2 82.9 26.7 7.3 9.5 5.5 10.7 0.3 ç ဗု 3 œ 09-FEB-2009 15:00 EP0900820-028 21800 7.2 7.2 10.3 5.8 434 11.0 41.3 4990 <0.2 <0.2 <0.2 <0.5 16.8 10.6 <0.2 <0.2 92.9 0.1 0.3 0.27 က က လူ လူ 09-FEB-2009 15:00 EP0900820-027 4500 16.2 3.3 4.8 4.0 4.0 285 5.8 5.8 7.9 **c**0.01 <0.2 <0.5 10.6 0.2 <0.2 <0.2 93.5 28.7 **21.4** 0.1 0.21 က္ (၁ v 2 09-FEB-2009 15:00 EP0900820-026 4990 23900 31.0 6.8 5.0 422 8.6 42.9 13.4 <0.01 0.24 <0.2</p>
<0.2</p> <0.2 <0.2 <0.2 <0.5 91.5 36.9 22.9 5.0 0.3 ဗူ လူ **မှ** Client sample ID Client sampling date / time µgSn/kg mg/kg Unit % % % LOR 0.01 0.02 1.0 0.5 9. 0. 0. 1.0 0.2 0.5 0. 9 2.0 1.0 0.1 0.1 0.2 0.2 0.1 20 2 1 ī 95-47-6 56573-85-4 7439-97-6 17060-07-0 CAS Number 7440-62-2 7440-41-7 7429-90-5 7439-89-6 7440-38-2 7440-50-8 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7440-66-6 7440-39-3 108-88-3 100-41-4 108-38-3 106-42-3 EP080-SD / EP071-SD: Total Petroleum Hydrocarbons EG020-SD: Total Metals in Sediments by ICPMS EG035T: Total Recoverable Mercury by FIMS EP080-SD: TPH(V)/BTEX Surrogates EP005: Total Organic Carbon (TOC) EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EG020T: Total Metals by ICP-MS **EP090: Organotin Compounds** EA055: Moisture Content 1.2-Dichloroethane-D4 **Total Organic Carbon** meta- & para-Xylene C10 - C14 Fraction EP080-SD: BTEX C29 - C36 Fraction C15 - C28 Fraction C6 - C9 Fraction Sub-Matrix: SOIL Ethylbenzene ortho-Xylene Manganese Aluminium Chromium Vanadium Cadmium Beryllium Toluene Benzene Copper Mercury Cobalt Nickel Lead <u>5</u>

: 14 of 19 : EP0900820 : URS AUSTRALIA PTY LTD

Page Work Order

42907170

Project Client

: 15 of 19 : EP0900820 : URS AUSTRALIA PTY LTD : 42907170

Analytical Results								
Sub-Matrix: SOIL		Clien	ent sample ID	Σ	12	Т3	T4	T5
	Oli	ent sampli.	Client sampling date / time	09-FEB-2009 15:00				
Compound	CAS Number LOR	LOR	Unit	EP0900820-026	EP0900820-027	EP0900820-028	EP0900820-029	EP0900820-030
EP080-SD: TPH(V)/BTEX Surrogates - Continued	Continued							
Toluene-D8	2037-26-5	0.1	%	92.7	94.4	94.0	95.5	93.2
4-Bromofluorobenzene	460-00-4	0.1	%	89.1	90.5	92.3	93.3	92.0
EP090S: Organotin Surrogate								
Tripropyltin	-	0.1	%	85.7	74.7	68.3	56.0	87.6

Chevron Australia Pty Ltd | **671**

A Campbell Brothers Limited Compa 1 | | | | -EP0900820-035 [17-FEB-2009] Trip Blank <0.5 <1.0 <0.2 <0.2 <0.2 ۲ 0. ۲-0.1 ۲.0 د <2.0 <0.2 <0.2 ٥.1 د0.1 <10 ٥. 1 ٥. 1. <0.07 <0.2 116 <50 <50 1 ဗု δ. _δ. 09-FEB-2009 15:00 EP0900820-033 23300 6630 30.1 7.9 8.8 6.1 6.1 11.6 <0.01 <0.2 <0.2 <0.2 <0.2 <0.2 <0.5 38.6 **22.3** 0.1 40.2 16.8 0.34 90.0 2.7 09-FEB-2009 15:00 EP0900820-032 35200 <0.2 <0.2 <0.2 43.6 10.9 15.1 7.6 550 550 63.6 63.6 <0.01 <0.2 <0.5 7060 **24.2** <0.1 0.28 쥰 29.4 0.4 δ δ A 93.1 09-FEB-2009 15:00 EP0900820-031 6540 34300 <0.2 <0.2 29.5 7.3 472 13.2 60.4 21.3 <0.07 0.19 <0.2 <0.5 94.6 **29.7** 40.1 9.5 10.4 4.0 უ წ დ 5 Client sample ID Client sampling date / time µgSn/kg mg/kg Unit % % LOR 1.0 2.0 0.01 0.02 0.5 1.00 0. 1.0 0. 0.2 0.5 0.1 9 1.0 0.1 0.1 0.2 0.1 20 2 7440-38-2 7440-39-3 Ī ī 7440-47-3 95-47-6 56573-85-4 7440-62-2 7439-97-6 71-43-2 100-41-4 17060-07-0 CAS Number 7440-41-7 7429-90-5 7439-89-6 7440-50-8 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7440-66-6 108-88-3 108-38-3 106-42-3 EP080-SD / EP071-SD: Total Petroleum Hydrocarbons EG020-SD: Total Metals in Sediments by ICPMS EG035T: Total Recoverable Mercury by FIMS EP005: Total Organic Carbon (TOC) EP080-SD: TPH(V)/BTEX Surrogates EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EG020T: Total Metals by ICP-MS **EP090: Organotin Compounds** EA055: Moisture Content 1.2-Dichloroethane-D4 Total Organic Carbon meta- & para-Xylene C10 - C14 Fraction EP080-SD: BTEX C29 - C36 Fraction C15 - C28 Fraction C6 - C9 Fraction Sub-Matrix: SOIL Ethylbenzene Manganese Aluminium Chromium Vanadium Cadmium Benzene Mercury Toluene Copper Cobalt Nickel Lead <u>5</u>

: 16 of 19 : EP0900820 : URS AUSTRALIA PTY LTD

Page Work Order

42907170

Project

Client

: 17 of 19 : EP0900820 : URS AUSTRALIA PTY LTD : 42907170

Page Work Order

Project Client

| | | I **Trip Blank** [17-FEB-2009] EP0900820-035 5 5 **R2** 09-FEB-2009 15:00 EP0900820-033 85.6 85.2 109 **R1** 09-FEB-2009 15:00 EP0900820-032 88.2 43 **T6** 09-FEB-2009 15:00 EP0900820-031 88.0 89.6 78.9 Client sample ID Client sampling date / time Unit % % % LOR 0.1 0.1 CAS Number 2037-26-5 I 460-00-4 EP080-SD: TPH(V)/BTEX Surrogates - Continued EP090S: Organotin Surrogate Analytical Results 4-Bromofluorobenzene Sub-Matrix: SOIL Tripropyltin

A Campbell Brothers Limited Company

A Campbell Brothers Limited Company

| | | | | | | | | | | | EP0900820-034 [17-FEB-2009] 40.01
40.001
40.001
40.001
40.001
40.001
40.001
40.001
40.001
40.001
40.001
40.001
40.005
40.005
40.005 Client sample ID Client sampling date / time Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L LOR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 7429-90-5 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-96-5 7440-02-0 7440-62-2 7440-66-6 7439-89-6 CAS Number EG020T: Total Metals by ICP-MS Analytical Results Sub-Matrix: WATER Arsenic Beryllium Barium Cadmium Chromium Manganese Aluminium Vanadium Copper Nickel Lead

-	_	,	

: 18 of 19 : EP0900820 : URS AUSTRALIA PTY LTD : 42907170

Page Work Order

Project

Client

: 19 of 19 : EP0900820 : URS AUSTRALIA PTY LTD : 42907170 Page : 19 of 19

Work Order : EP0800820

Client : URS AUSTRA

Project : 42907170

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)	rimits (%)
Compound	CAS Number	Low	High
EP080-SD: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	74.7	127
Toluene-D8	2037-26-5	74.8	129
4-Bromofluorobenzene	460-00-4	75.3	127
EP090S: Organotin Surrogate			
Tripropylfin		34	108

PILOT MARINE SEDIMENT QUALITY REPORT FOR THE WHEATSTONE PROJECT, ONSLOW WA **Laboratory Interpretive Quality Control Report Appendix D** URS Prepared for Chevron Australia Pty Ltd, 27 March 2009 Ref: 42907170-2163 / R1395 / DK: M&C3064

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

INTERPRETIVE QUALITY CONTROL REPORT

	Perth A Australia 6090	ro.com	NEPM 1999 Schedule B(3) and ALS QCS3 requirement 16-FEB-2009	
: 1 of 14	: Environmental Division Perth : Michael Sharp : 10 Hod Way Malaga WA Australia 6090	: michael.sharp@alsenviro.com : +61-8-9209 7655 : +61-8-9209 7600	: NEPM 1999 Schedule E : 16-FEB-2009	: 35 : 35
Page	Laboratory Contact Address	E-mail Telephone Facsimile	QC Level Date Samples Received Issue Date	No. of samples received No. of samples analysed
EP0900820	URS AUSTRALIA PTY LTD PAUL EVERSON LEVEL 3, HYATT CENTRE 20 TERRACE RD EAST PERTH WA, AUSTRALIA 6004	Paul_Everson@URSCorp.com : +61 08 9326 0221 +61 08 9221 1639	42907170 PE & FW	EN/001/08
Work Order :	Client : U Contact : P Address : L	E-mail : P Telephone :+ Facsimile :+	Project Stee C-O-C number Project Project Sampler Porder number Project Projec	

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- **Brief Method Summaries**
- Summary of Outliers

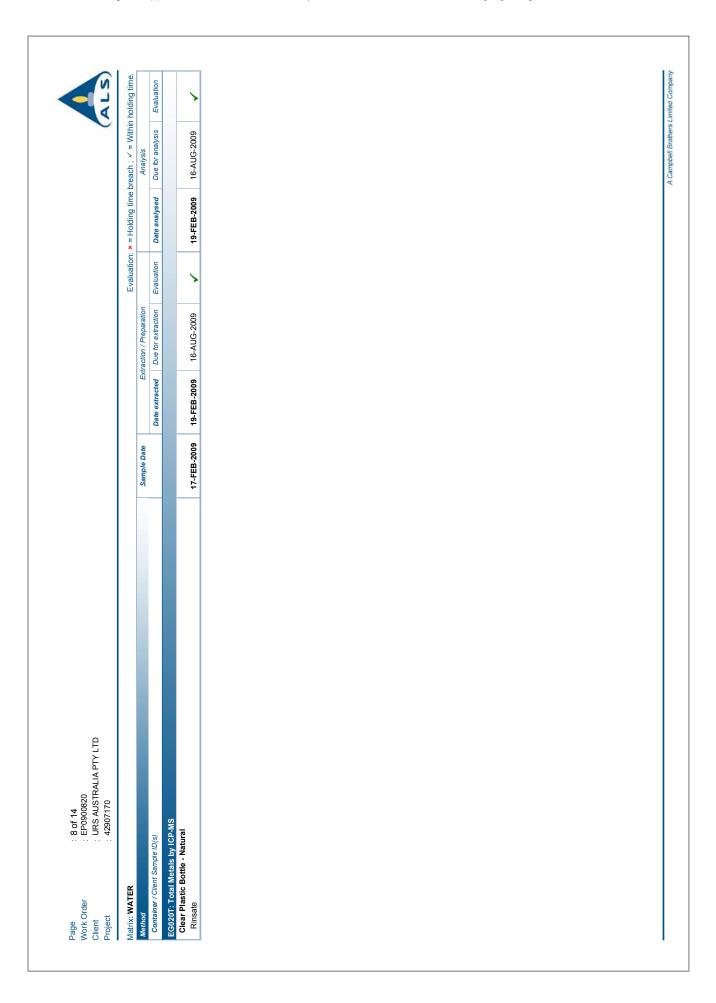
10 Hod Way Malaga WA Australia 6090 Tel. +61-8-9209 7655 Fax. +61-8-9209 7600 www.alsglobal.com Part of the ALS Laboratory Group **Environmental Division Perth** A Campbell Brothers Limited Company

2 of 14 EP0900820 URS AUSTRALIA PTY LTD 42907170 Page Work Order Project Client

Analysis Holding Time Compliance

dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent the Summary of Outliers. the Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does guarantee a breach for all non-volatile parameters.

Matrix: SOIL					Evaluation:	x = Holding time	Evaluation: $\mathbf{x} = \text{Holding time breach}$; $\checkmark = \text{Within holding time}$.	holding time.
Method		Sample Date	Ē	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Soil Glass Jar - Unpreserved								
W1,	W2,	09-FEB-2009	1	l	-	18-FEB-2009	16-FEB-2009	×
W3,	W4,							
W5,	W6,							
W7,	W8,							
W9,	W10,							
W11,	W12,							
W13,	W14,							
W15,	W16,							
W17,	W19,							
W20								
Soil Glass Jar - Unpreserved								
W18,	W21,	09-FEB-2009	ŀ	1	1	19-FEB-2009	16-FEB-2009	×
W22,	W23,							
W24,	W25,							
Т1,	T2,							
Т3,	Т4,							
T5,	Т6,							
R1,	R2							
Soil Glass Jar - Unpreserved								
Trip Blank		17-FEB-2009	!	1	-	19-FEB-2009	24-FEB-2009	>


Container / Client Sample ID(s) EG005T: Total Metals by ICP-AES Soil Glass Jar - Unpreserved W3, W3, W6, W7, W9, W11, W13, W13, W15, W15, W16, W16, W17, W17,	04	3	1	obion Control	Evaluation:	= Holding time	Evaluation: x = Holding time breach; V = Within holding time.	.⊑
'AE'S		Sample Date	Ext	Extraction / Preparation	:		Analysis	
			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	- 1
	-60	09-FEB-2009	19-FEB-2009	08-AUG-2009	>	19-FEB-2009	08-AUG-2009	
W21.								
W25, W25								
Soil Glass Jar - Unpreserved								
Trip Blank	1-2.1	17-FEB-2009	19-FEB-2009	16-AUG-2009	>	19-FEB-2009	16-AUG-2009	
EG020-SD: Total Metals in Sediments by ICPMS								
Soil Glass Jar - Unpreserved								
	1-60	09-FEB-2009	19-FEB-2009	08-AUG-2009	>	19-FEB-2009	08-AUG-2009	
W5,								
W15, W16,								
V25, T1,								
T4, T5,								
Soil Glass Jar - Unpreserved								
Trip Blank	17-1	17-FEB-2009	19-FEB-2009	16-AUG-2009	>	19-FEB-2009	16-AUG-2009	

Control of the cont	Page : . Client : . Project : .	: 4 of 14 : EP0900820 : URS AUSTRALIA PTY LTD : 42907170							A L
Sample Bigs 1 Card Month by CD-A15 1 Card Month by CD-A15 1 See Land Month by CD-A1	Matrix: SOIL					Evaluation:	× = Holding time b	reach;	holding tin
W.2. W.4. W.6. W.9. W.7. W.7. W.7. W.7. W.7. W.7. W.7	Method Container / Client Sample ID(s)		Sample L	Date extracted	xtraction / Preparation	Evaluation	Date analysed	Analysis Due for analysis	Evaluation
W2. W4. W6. W6. W7. W7. W7. W7. W7. W7. W7. W7. W7. W7	EG020T: Total Metals by ICF	SWid							
W4, W2, W4, W4, W4, W6, W6, W6, W6, W6, W6, W6, W6, W6, W6	Soil Glass Jar - Unpreserve	pe							
W4, W6, W8, W14, W14, W14, W15, W15, W15, W22, W22, W22, W22, W24, W25, W25, W26, W27, W27, W27, W27, W27, W27, W27, W27	W1,		09-FEB-2		08-AUG-2009	>	19-FEB-2009	08-AUG-2009	>
W. W	W3,	W4,							
W8. W12. W14. W16. W18. W22. W22. W23. W24. T1. T1.3. T1. T1.3. T1. T1.3. W2. W2. W4. W6. W6. W6. W6. W6. W6. W6. W7. W7. W7. W7. W7. W7. W7. W7. W7. W7	W5,	W6,							
W10. W14. W16. W18. W22. W22. W23. W24. T 1. T 15. R 1, R 1. W24. W27. W27. W27. W27. W28. W28. W29. W29. W29. W29. W29. W29. W29. W29	W7,	W8,							
WY2, WY4, WY6, WY6, WY8, WY2, WY2, WY2, WY4, WY2, WY4, WY4, WY6, WY6, WY6, WY7, WY7, WY7, WY7, WY7, WY7, WY7, WY7	W9,	W10,							
WY4, WY6, WY6, WY6, WY2, WZ2, WZ4, T1, T1, T3, R1, WZ, WY2, WY2, WY6, WY6, WY6, WY6, WY6, WY7, WY6, WY7, WY7, WY7, WY7, WY7, WY7, WY7, WY7	W11,	W12,							
WY16. WY22. WY24. T 1-1. T 1-3. R 1-1. W 22. W 24. W 24. W 25. W 26. W 27. W 2	W13,	W14,							
WVB, WV2, WV24, T11, T13, RR1. WA, WW, WW, WW, WW, WW, WW, WW, WW, WW,	W15,	W16,							
W22, W24, T1, T3, T6, W24, W27, W27, W27, W27, W27, W27, W27, W27	W17,	W18,							
W22. W24. T1. T3. F1. F1. W2. W4. W6. W6. W12. W14. W16. W16. W17. W18. W18. W19. W	W19.	W20,							
W24. T1. T3. R1. W2. W4. W6. W8. W14. W16. W16. W17. W17. W17. W17. W17. W17. W18. W18. W19. W19. W19. W19. W19. W19. W19. W19	W21	W22							
T1. T1. T1. T2. R1. W2. W2. W6. W6. W6. W6. W10. W10. W11. W14. W16. W18. W22. W24. T1. T1. T1. T1. T1. T1. T1. T1. T1. T1		(==:: 45W							
T5, R1, W2, W4, W6, W6, W6, W6, W10, W10, W10, W11, W12, W14, W16, W12, W20, W21, W14, W16, W17, W18, W20, W21, W21, W21, W21, W22, W22, W22, W22	W23,	W24,							
15. R1. W2. W2. W4. W6. W6. W12. W14. W18. W22. W23. W24. F15. F17. F17. F17. F18.2009 19.FEB.2009 10.FEB.2009 10.FEB.	W23,	, - H							
15, R1, W2, W4, W6, W6, W6, W70. W10,	12,	<u> </u>							
W2. W4. W6. W6. W6. W7. W8. W8. W7. W7. W7. W7. W7		<u> </u>							
W2. W4. W6. W8. W10. W10. W14. W16. W8. W16. W8. W17. FEB.2009 19.FEB.2009 19.FEB.2009 10.FEB.2009		K1,							
W2. W4, W6, W8, W10, W11, W12, W14, W16, W18, W18, W20, W22, W22, W24, W17, W18, W18, W20, W20, W21, W21, W21, W21, W21, W21, W22, W22	KZ								
W2, W4, W6, W8, W10. W112. W14, W16, W18, W18. W18. W19. T1,	Jrin Blank	Da	17-FFB			`	19-FFB-2009	16-AUG-2009	`
W2, W4, W6, W6, W8, W10, W110, W114, W114, W118, W22, W22, W22, W24, T1, T3, T5, R1,	The Digital			-	-	•			•
W2. W4. W6. W8. W7. W10. W11. W14. W14. W18. W22. W22. W24. T1. T3. T6. R1.	GU351: Total Recoverable	Mercury by FIMS							
W4, W6, W8, W10, W12, W14, W16, W18, W20, W20, W22, W24, T1, T3, T5, R1, R1, R1, R1, R1, R1, R1, R1, R1, R1	Soli Glass Jar - Unpreserv				00000 2110 80	`	0000	MAP 2000	`
W4. W10. W114. W114. W116. W118. W20. W22. W24. T1. T3. T5. R1.	, , , ,	, WZ,		_	000	>	202-1-1-2	000	>
W6, W8, W10, W14, W16, W16, W18, W20, W22, W24, T1, T3, T5, R1,	, w.s.	,400							
W8, W10, W12, W14, W16, W20, W22, W24, T1, T3, T5, R1,	W5,	, M6,							
W10, W14, W16, W18, W20, W22, W24, T1, T3, T5, R1,	W7,	W8,							
W12, W14, W16, W16, W20, W22, W24, T1, T3, T5, R1, R1,	W9,	W10,							
W14, W16, W18, W20, W22, W24, T1, T3, T5, R1,	W11,	W12,							
W16, W18, W20, W22, W24, T1, T3, T5, R1,	W13.	W14.							
W20, W22, W24, T1, T3, T5, R1,	W15	, M16							
W22, W24, W24, T1, T3, T5, R1,	717	(×1/W							
W22, W24, T1, T3, T5, R1,	, , , , ,	, , , , , , , , , , , , , , , , , , ,							
W22, W24, T1, T3, T5, R1, R1,	, N	WZU,							
W24, T1, T3, T5, R1, R1,	WZ1,	WZZ,							
T1, T3, T5, R1, A2,FER,2009 A2,FER,2009 A2,FER,2009 A3,FER,2009 A3,FER,2009	W23,	W24,							
T3, T5, R1, A2,FER.2004 16,AUG.2004 7, 20,FFR.2004 17,MAR.2004	W25,	Т1,							
T5, R1, A2,FFR.2009 A4,FFR.2009 A 20,FFR.2009	T2,	Т3,							
R1, 47.FFR.2009 40.FFR.2009 ./ 20.FFR.2009	Т4,	T5,							
17.FFR.2009 16-AUG-2009 7 20.FFR.2009 17-MAR-2009	Т6.	Σ.							
17.FFR.2009 16.FFR.2009 7 20.FFR.2009	R2	-							
17.FFR.3009 16.FFR.3009 ./ 20.FFR.3009 17.MAR.3009	Soil Glass Jar - Unpreserve	Pe							
	Trin Donk	ł	17.FEB.			`	2000	77 144 2000	`

Date extracted Due for extraction 20-FEB-2009 09-MAR-2009		x = Holding time b Date analysed	Evaluation: $\star = \text{Holding time breach}$; $\star = \text{Within holding time}$.	
Due for extraction 09-MAR-2009		Date analysed	Analysis	holding time
	>		Due for analysis	Evaluation
	>			
	>			
		23-FEB-2009	09-MAR-2009	>
_				
7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	71.1 13. 15.	T1. T3. T5.	7.1. T3. T5.	7.1. T3. T5.

		Sample Date Extraction / Preparation Date extracted Due for extraction Evaluation		AA EED JAMA 40 EED JAMA 22 EED JAMA	6007-Q31-01						09-FEB-2009 19-FEB-2009 23-FEB-2009										09-FEB-2009 19-FEB-2009 23-FEB-2009					17-FEB-2009 19-FEB-2009 03-MAR-2009	47 EED 2000
Work Order EP0900820 Client : URS AUSTRALIA PTY LTD Project : 42907170	Matrix: SOIL	Method Container / Client Sample ID(s)	EP080-SD / EP071-SD: Total Petroleum Hydrocarbons	Soil Glass Jar - Unpreserved		W5, W6,	W9,	W11, W12, W13	W17,	lass Jar - Unpreserved		W5, W6, W6,	W7, W9, W10.	W11, W12,			wz1, W23. W24.		6, R2	ass Jar - Unpreserved		W22,		5, R1 R2	Jar - Unpreserved	Trip Blank	Soil Glass Jar - Unpreserved

					:	:		
		Sample Date	EX	Extraction / Preparation	Evaluation:	= Holding time t	Evaluation: $\mathbf{x} = \text{Holding time breach}$; $\mathbf{v} = \text{Within holding time}$. Analysis	요
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080-SD: BTEX								
Soil Glass Jar - Unpreserved	CW CW	00-558-2009	18.FEB.2009	23.FFB.2009	`	20.FEB.2009	23.FFB.2009	
	wz, W4	207-11-00		77-77-77	>	202-01-1-07	1-04	
	W6,							
	W8,							
	W10,							
	W12,							
	W14,							
	ν, σίν							
	()							
Soil Glass Jar - Unpreserved								
	W21,	09-FEB-2009	19-FEB-2009	23-FEB-2009	>	23-FEB-2009	23-FEB-2009	
	W23,							
	W25,							
	7, 4 <u>7</u>							
	Į. 7							
	R2							
Soil Glass Jar - Unpreserved Trin Blank		17.FFB-2009	19.FFB.2009	03-MAR-2009	`	23.FFB.2009	03-MAR-2009	
ofin Compounds					•			
Soil Glass Jar - Unpreserved								
	W2,	09-FEB-2009	20-FEB-2009	23-FEB-2009	>	25-FEB-2009	01-APR-2009	
	W4,							
	W6,							
	W8,							
	W.10,							
	W14,							
	W16,							
	W18,							
	W20,							
	W22,							
	W24, T1							
	F							
	Σ. Ι.							
	R1,							
Matrix: WATER					Total cost	Evaluation: $\mathbf{x} = \text{Holding time breach} \cdot \mathbf{v} = \text{Mithin bolding time}$	aid#i/W = /: . doc	2

: 9 of 14 : EP0900820 : URS AUSTRALIA PTY LTD : 42907170

Page Work Order

Project Client

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Cuality Control Sample Type							
	Le calded A		Count		Rate (%)	Controlled	Quality Control Specification
Analytical Methods	Method	00	Reaular	Actua/	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	4	39	10.3	10.0	`	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Organotin Analysis	EP090	4	33	12.1	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS (Low Level)	EG035T-LL	4	34	11.8	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	4	34	11.8	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Metals by ICP-MS - Suite X	EG020X-T	4	34	11.8	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Metals in Sediments by ICPMS	EG020-SD	4	34	11.8	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Organic Carbon	EP005	4	33	12.1	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071-SD	4	34	11.8	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX in Sediments	EP080-SD	4	34	11.8	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Organotin Analysis	EP090	2	33	6.1	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Mercury by FIMS (Low Level)	EG035T-LL	2	34	5.9	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	2	34	5.9	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Metals by ICP-MS - Suite X	EG020X-T	2	34	5.9	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals in Sediments by ICPMS	EG020-SD	2	34	5.9	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Organic Carbon	EP005	2	33	6.1	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071-SD	2	34	5.9	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX in Sediments	EP080-SD	2	34	5.9	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Organotin Analysis	EP090	2	33	6.1	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS (Low Level)	EG035T-LL	2	34	5.9	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	2	34	5.9	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite X	EG020X-T	2	34	5.9	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Metals in Sediments by ICPMS	EG020-SD	2	34	5.9	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Organic Carbon	EP005	2	33	6.1	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071-SD	2	34	5.9	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX in Sediments	EP080-SD	2	34	5.9	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Organotin Analysis	EP090	2	33	6.1	5.0	>	ALS QCS3 requirement
Fotal Mercury by FIMS (Low Level)	EG035T-LL	2	34	5.9	5.0	>	ALS QCS3 requirement
Fotal Metals by ICP-AES	EG005T	2	34	5.9	5.0	>	ALS QCS3 requirement
Total Metals by ICP-MS - Suite X	EG020X-T	2	34	5.9	5.0	>	ALS QCS3 requirement
Fotal Metals in Sediments by ICPMS	EG020-SD	2	34	5.9	5.0	>	ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071-SD	2	34	5.9	5.0	>	ALS QCS3 requirement
TPH Volatiles/BTEX in Sediments	EP080-SD	2	34	5.9	5.0	>	ALS QCS3 requirement

: 11 of 14 : EP0900820 : URS AUSTRALIA PTY LTD : 42907170 Page Work Order Project Client

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (1999) Schedule B(3) (Method 102)
Total Metals by ICP-AES	EG005T	SOIL	(APHA 21st ed., 3120; USEPA SW 846 - 6010) (ICPAES) Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (1999) Schedule B(3)
Total Metals in Sediments by ICPMS	EG020-SD	SOIL	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector. Analyte list and LORs per NODG.
Total Metals by ICP-MS - Suite X	EG020X-T	SOIL	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS (Low Level)	EG035T-LL	SOIL	AS 3550, APHA 21st ed., 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3)
Total Organic Carbon	EP005	SOIL	In-house. Dried and pulverised sample is reacted with acid to remove inorganic Carbonates, then combusted in a LECO furnace in the presence of strong oxidants / catalysts. The evolved (Organic) Carbon (as CO2) is automaticaly measured by infra-red detector.
TPH - Semivolatile Fraction	EP071-SD	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 504)
TPH Volatiles/BTEX in Sediments	EP080-SD	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 501)
Organotin Analysis	EP090	SOIL	(USEPA SW 846 - 8270D) Prepared sample extracts are analysed by GC/MS coupled with high volume injection, and quanitified against an established calibration curve.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Preparation Methods	Method	Matrix	Method Descriptions

A Campbell Brothers Limited Company

USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (1999) Schedule cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for USEPA 200.2 Mod. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then compounds are simultaneously derivatised and extracted. The extract is further extracted with petroleum ether (USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge In house: 10g of sample, Na2SO4 and surrogate are extracted with 50mL 1:1 DCM/Acetone by end over end In house. 20g sample is spiked with surrogate and leached in a methanol:acetic acid:UHP water mix and analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This tumbling. An aliquot is concentrated by nitrogen blowdown to a reduced volume for analysis if required. vacuum filtered. Reagents and solvents are added to the sample and the mixture tumbled. The butyltin method is compliant with NEPM (1999) Schedule B(3) (Method 202) The resultant extracts are combined and concentrated for analysis. and Trap - GC/MS. B(3) (Appdx. 2) WATER SOIL SOIL SOIL SOIL **ORG16** ORG17D **ORG35** EN69 EN25 Methanolic Extraction of Soils for Purge Digestion for Total Recoverable Metals Tumbler Extraction of Solids for LVI Hot Block Digest for metals in soils Organotin Sample Preparation sediments and sludges (Non-concentrating) and Trap

A Campbell Brothers Limited Company

: 12 of 14 : EP0900820 : URS AUSTRALIA PTY LTD

Page Work Order

Client Project

42907170

: 13 of 14 : EP0900820 : URS AUSTRALIA PTY LTD : 42907170 Page Work Order Project Client

Summary of Outliers

Outliers: Quality Control Samples

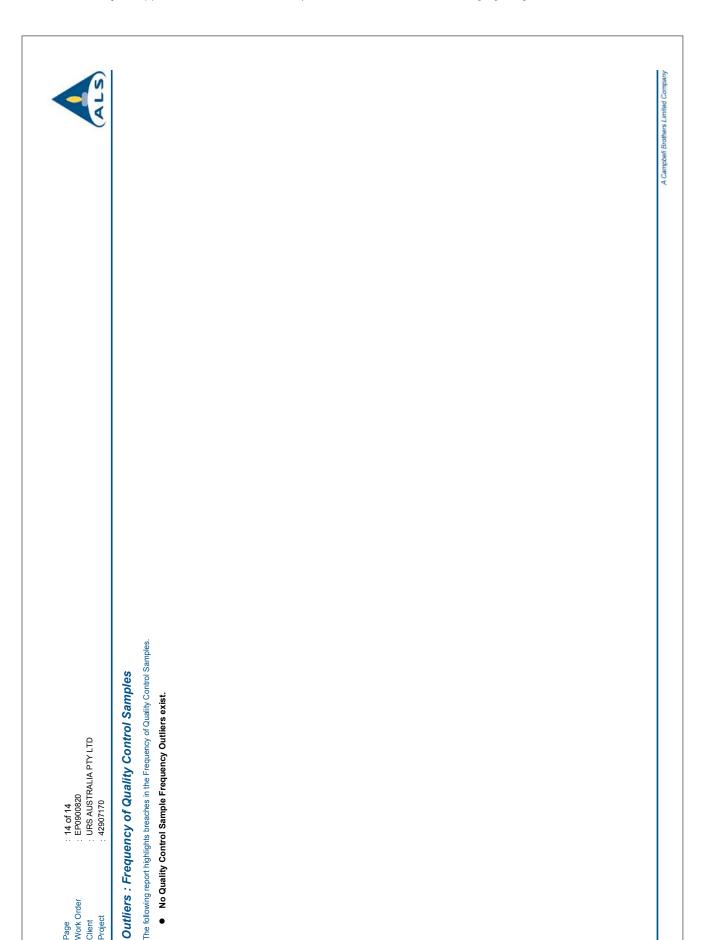
The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.

 - For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates


For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: SOIL

Part Part	Matily: 30L							
ved WZ, WG, WG, W10, W10, W12, W14, W16, W21, TZ, TZ, TZ, TZ, TZ, TZ, TZ, TZ, TZ, TZ	Method		Ê	traction / Preparation			Analysis	
ved W2, W4, W6, W6, W8, W10, W112, W14, W16, W19, W23, W23, W25, T2, T4, T6, R2	Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
W2, W4, W6, W8, W12, W14, W16, W19, W23, W25, T2, T4, T6, R2	EA055: Moisture Content							
W2, W2, W4, W4, W6, W8, W10, W12, W12, W14, W16, W19, W21, W23, W23, W25, T2, T4, T6, R2	Soil Glass Jar - Unpreserved							
W6, W6, W8, W10, W10, W112, W14, W16, W19, W21, W23, W23, W25, T2, T4, T6, R2	W1,	W2,	1	1	!	18-FEB-2009	16-FEB-2009	7
W6, W8, W10, W112, W14, W19, W21, W23, W23, W25, T2, T2, T4, T6, R2	W3,	W4,						
W8, W10, W112, W14, W16, W19, W21, W23, W25, T2, T2, T4, T6, R2	W5,	W6,						
W10, W14, W16, W19, W21, W23, W25, T2, T4, T6, R2	W7,	W8,						
W12, W14, W16, W16, W21, W23, W25, T2, T4, T6, R2	W9,	W10,						
W14, W16, W19, W21, W23, W25, T2, T4, T6, R2	W11,	W12,						
W16, W19, W21, W23, W25, T2, T4, T6, R2	W13,	W14,						
W21,	W15,	W16,						
W21, W23, W25, W26, T2, T4, T6, R2	W17,	W19,						
W21, W23, W25, T2, T4, T6, R2	W20							
W21,	Soil Glass Jar - Unpreserved							
	W18,	W21,	1	1	!	19-FEB-2009	16-FEB-2009	က
	W22,	W23,						
	W24,	W25,						
	Į,	72,						
	Т3,	Т4,						
	T5,	Т6,						
	R1,	R2						

Page Work Order Client Project

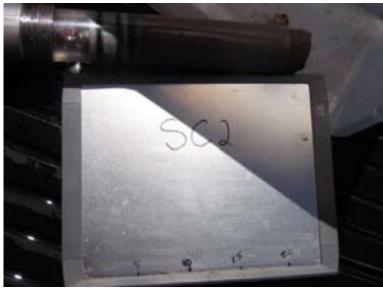
This page is intentionally blank

Wheatstone Project Appendix Q5 - Sediment Quality Assessment - Wheatstone Dredging Program

URS Australia Pty Ltd Level 3, 116 Miller Street North Sydney NSW 2060 Australia T: 61 2 8925 5500

F: 61 2 9922 6977

www.ap.urscorp.com


Draft Sediment Quality Assessment **Appendix B** Short & Deep Core Logs & Photographs **URS** 42907466/01/0

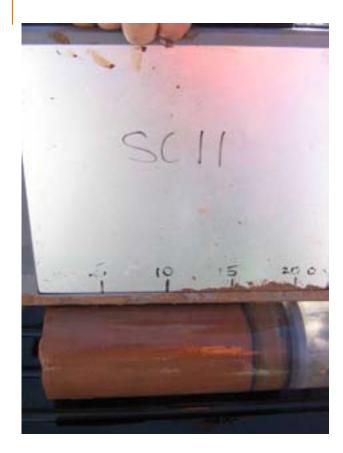
This page is intentionally blank
This page is intentionally blank

Wheatstone Project Appendix Q5 - Sediment Quality Assessment - Wheatstone Dredging Program

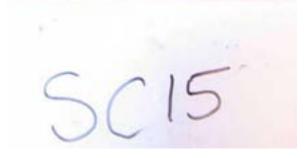
Short Core Photographs (SC1 - SC17, SC19 - SC72)

Appendix B

Appendix B



Appendix B

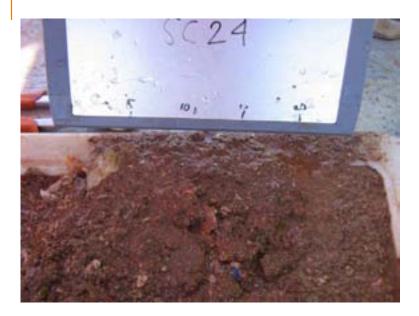


Appendix B

SC16 n/a

SC18 n/a

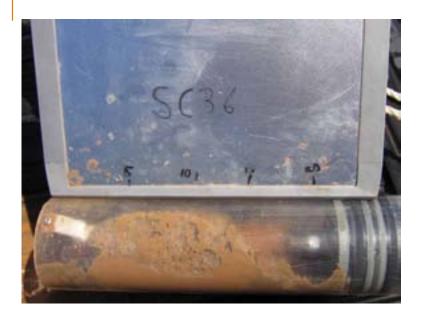
Appendix B



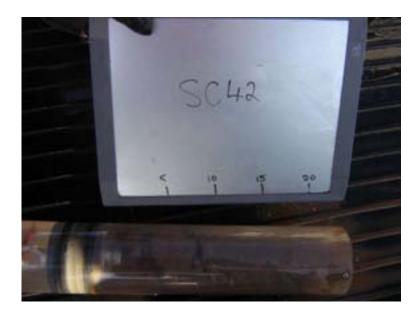
Appendix B

Appendix B

Appendix B



Appendix B



Appendix B

Appendix B

Appendix B

Appendix B

Appendix B

Appendix B

Appendix B

Appendix B

Appendix B

Draft Sediment Quality Assessment **Appendix C** Short Core and Grab Sample Descriptions **URS** 42907466/01/0

This page is intentionally blank

Wheatstone Project Appendix Q5 - Sediment Quality Assessment - Wheatstone Dredging Program

Appendix C

Table C-1 Dredge Area short core (or grab sample) descriptions.

Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
SC1_0.0-0.27	26/09/2009	1700pm	4.1	Piston Core	QC118	0.27	45	50	quartz	رى د	Ē	thin hydrous layer veneer (<1 cm - light brown); homogeneous dark red-brown stiff clayey sand; slightly gravelly; refusal at depth in gravelly mud/clay
SC2_0.0-0.22	23/09/2009	1050am	10.2	Piston Core		0.22	90	40		10		homogeneous sandy mud with gravelly shell fragments, red-brown to red; refusal at coral/rock (large 5 cm diameter coral fragment), refusal at depth
SC3_0.0-0.22	28/09/2009	1305pm	5.4	Piston Core	QC126 QC208	0.22	20	20	lithics	\$	īc	dark brown-red clayey sand; friable; dry organic charcoal-like fragments (soft) in clay; refusal in stiff clayey sand
SC4_0.0-0.25	24/09/2009	1145am	10.9	Piston Core		0.25	20	45	quartz; carbonate	35	shells	brown-red brown clayey gravelly sand; bivalves and coral fragments; refusal at depth
SC5	24/09/2009	1035am	10.4	Grab sample		0.08	10	20	quartz, carbonate	70	shells	gravelly-clayey red-brown to red; abundant bivalves up to 80 mm in length; bivalve bed; core refusal in shell bed at surface
SC6_0.0-0.2	58/09/2009	1145am	4.9	Piston Core	QC124 QC206	0.2	90	45	lithics	~ 5	trace lithic fragments	dark red clayey sand; homogeneous; light brown thin hydrous layer at surface; refusal in very

Draft Sediment Quality Assessment

Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
												stiff dark red friable clayey sand;
SC7_0.0-0.10	23/09/2009	1700pm	9	Piston Core		0.1	20	50	quartz, shells	30	bivalves, rock fragments	brown-red to brown clayey gravelly sand, abundant shell fragments, armoured bed, large >50 mm diameter shells and coral fragments at bottom of core; refusal at depth
SC8_0.0-0.30	25/09/2009	0815am	5.2	Piston Core	QC110	0.3	20	09	quartz; carbonate	20	shells	poorly developed light brown hydrous layer; red- red-brownish clayey gravelly sand; large lithic/coral fragments at bottom of core; refusal at depth;
SC9_0.0-0.20	25/09/2009	1620pm	5.9	Piston Core		0.2	20	92	carbonate detritus; quartz	15	shells	red-brown to red clayey muddy sand; shells and bivalves; refusal in coral/clay bed
SC10_0.0-0.10	24/09/2009	0915am	8.6	Piston Core		0.1	20	45	quartz, carbonate	35	shells	red to red-brown clayey gravelly sand abundant shell and coral/bivalves (>30 mm diameter); very stiff resistance and refusal at depth; lost bottom 5 cm of core
SC11_0.00.055	26/09/2009	1650pm	4.2	Piston Core		0.15	20	20	quartz	trace	nil	dark red-brown sandy clay; homogeneous; very stiff; refusal at depth;
SC12_0.0-0.15	24/09/2009	0855am	8.5	Piston Core		0.15	20	40	quartz, carbonate	40	shells	red-brown to red clayey gravelly sand with abundant coral assemblages; large

Appendix C

large bivalves (>50 mm diameter); little core penetration (<0.1 m) and lost core; refusal at 0.1 m depth; red-red-brown gravelly clayey sand bivalve and coral fragments in hard coral bed; lithic rock fragments (>50 mm diameter); refusal at depth rock'coral, lithic fragments; clayey matrix; 30-50 mm diameter shell fragments; dark red dry friable clayey sand; light brown near surface; refusal in very stiff clay muddy clay, large bivalves and shells (>50 mm diameter); very stiff clay at bottom of core; refusal at depth; large corals and rock fragments at depth; large shell fragments and red-brown to red gravelly at surface; armoured bed; gravelly-clayey sand, re-brown to red; no core sample; refusal collected using a grab sampler poorly developed Description lithic fragments shells, bivalves Gravel Comp. shells shells Gravel Visual % 30 Ŝ 20 20 30 quartz, carbonate quartz, carbonate Comp. Sand quartz, lithics Visual Sand % 20 20 30 20 20 Visual Mud % 30 20 45 4 20 Sample Depth 0.18 0.35 0.08 0.11 Ē 0.08 Sample QC105 QC202 QC107 QC203 QC109 ő Grab sample Grab sample Piston Core Piston Core Piston Core Method Sample Depth 10.2 Ξ 4.6 8.5 5.4 7.1 Sample 1015am 0820am 0745am 0745am 1055am Time 24/09/2009 28/09/2009 24/09/2009 24/09/2009 25/09/2009 Sample Date SC14_0.00.051 SC15_0.0-0.18 SC17_0.0-0.35 Sample ID SC13 SC16

Draft Sediment Quality Assessment

			1			Sample	Visual	Visual	3	Visual		
Sample ID	Sample Date	Sample Time	(m)	Sample	Sample	Depth (m)	(%)	Sand (%)	Sand Comp.	Gravel (%)	Gravel Comp.	Description
					QC204				carbonate			hydrous layer at surface; red-brown to red gravelly clayey sand; large shell fragments; refusal at depth;
SC18_0.0-0.30	25/09/2009	0830am	5.2	Piston Core		0.3	30	40	quartz; carbonate	30	shells	light brown poorly developed hydrous layer; red-brown to red clayey gravelly sand; large bivalves/shells up to 50 mm diameter and coral fragments; shell fragments; refusal at depth;
SC19_0.00.052	24/09/2009	00:00:0	12.2	Piston Core		0.12	15	02	quartz, carbonate	15	shells	red to red-brown gravelly clayey sand; shell fragments; some coral fragments (<20 mm diameter); refusal at depth
SC20_0.0-0.20	27/09/2009	1430pm	5.5	Piston Core		0.2	20	20	quartz	10	shells	dark red-brown clayey sand; some gravel shell fragments; refusal in stiff clayey sand
SC21_0.0-0.15	24/09/2009	0800am	8.4	Piston Core		0.15	30	40	quartz, carbonate	30	shells, bivalves	red-brown to red clayey gravelly mud, large shell fragments and bivalves (>50 mm diameter), clay matrix very stiff at bottom; refusal at depth;
SC22_0.00.053	28/09/2009	1200pm	5.2	Piston Core		0.13	50	50	lithics	. 55	lithic fragments	dark red-brown clayey sand; very dry and friable, refusal in stiff dark red-brown clayey sand

Appendix C

Sample Depth Sample QC Depth Mud Sand Time (m) Method Sample (m) (%) (%)	Sample QC Sample Visual Visual Method Sample (m) (%) (%)	QC Sample Visual Visual Sample (m) (%) (%)	Sample Visual Visual Depth Mud Sand (m) (%) (%)	Mud Sand (%)	Sand (%)		Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
										weathered basement rock
25/09/2009 0855am 5.2 Piston Core 0.25 25 45 iiit	Piston Core 0.25 25 45	0.25 25 45	25 45	25 45	45	ಕ ಬ ≣ ೧೯	quartz; carbonate; lithic fragments	30	shells, bivalves	2 cm deep hydrous layer (light brown); red to red-brown clayey gravelly sand; carbonate-rich; large shells/coral fragments at bottom of core; stiff clay and refusal of corer at bottom;
24/09/2009 1455pm 12.9 Grab sample 0.05 5 45 qu	Grab sample 0.05 5 45	0.05 5 45	5 45	5 45	45	ca qu tra	carbonate, quartz trace	50	shells, bivalves	red to red-brown slightly muddy sandy gravel; shells and coral fragments up to 50 mm diameter; core refusal in armoured bed and grab sample collection;
24/09/2009 0845am 7.4 Grab sample 0.05 20 50 carbona	Grab sample 0.05 20 50	0.05 20 50	20 50	20 50	50	qua cark	quartz, carbonate	30	shells	red-brown to red coral bed; large corals and shells; clayey matrix; no core, refusal at surface; hard armoured bed; coral fragment with 20 cm diameter collected
28/09/2009 1125am 4.7 Piston Core 0.11 50 50 lithics	Piston Core 0.11 50 50	0.11 50 50	50 50	50 50	20	lithic	SC	<5	trace lithic fragments	dark red-brown clayey sand; very stiff; refusal at depth
27/09/2009 1400pm 5.1 Piston Core 0.32 40 55 lithi	Piston Core 0.32 40 55	0.32 40 55	40 55	40 55	55	qua lithi frag	quartz; lithic fragments	5	nil	thin 2-3 cm deep hydrous layer (light brown); dark red-brown clayey sand; friable/dry; some lithic gravelly rock fragments (angular); refusal in stiff clayey sand

Draft Sediment Quality Assessment

Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
SC28_0.0-0.25	23/09/2009	1530pm	8.7	Piston Core	QC104	0.25	30	40	quartz, carbonate shells,	30	shells, bivalves	red-brown homogeneous clayey muddy sand, abundant bivalves and shell fragments up to 80 mm diameter, refusal at depth
SC29_0.0-0.20	27/09/2009	1315pm	4.9	Piston Core		0.2	50	90	lithic fragments	?	lin	dark red clayey sand; very stiff; trace shell fragments; friable; refusal in stiff clay at depth
SC30_0.0-0.20	24/09/2009	1055am	10.6	Piston Core		0.2	20	09	quartz, carbonate	20	shells	brown-red clayey gravelly sand, shell fragments (<50 mm diameter)
SC31_0.0-0.20	24/09/2009	1130am	10.2	Piston Core		0.2	25	45	quartz, carbonate	30	shells	red-brown to red clayey gravelly sand; shells (<50 mm length); refusal at depth
SC32_0.00.05	28/09/2009	1250pm	5.4	Piston Core		0.1	50	45	lithics	<5	lithics	dark red-brown clayey sand; large shell fragments; re-crystallized shells; very stiff and dry/friable; refusal in rock
SC33_0.0-0.33	25/09/2009	0910am	5.4	Piston Core		0.33	15	50	quartz; carbonate	35	shells; lithic fragments	well developed light brown hydrous layer; red- red-brown clayey gravelly sand; abundant gravelly coral fragments and shells; refusal at depth; stiff clay and shelly gravel at bottom;
SC34_0.0-0.25	25/09/2009	0925am	5.3	Piston Core		0.25	25	99	carbonate and quartz	10	shell fragments	red-brown to red gravelly clayey sand; shell fragments and bivalves; shelley gravel at bottom;

Draft Sediment Quality Assessment

Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
												refusal at depth;
SC35_0.00.055	23/09/2009	1645pm	6.1	Piston Core		0.15	30	40	quartz, carbonate, shells	30	shells, bivalves	red to brown-red clayey muddy gravelly sand; abundant shell fragments, abundant shells/bivalves and coral fragments at bottom of core; very stiff clay and refusal at bottom of core
SC36_0.00.050	24/09/2009	1320pm	11.9	Piston Core		0.1	20	02	quatz, carbonate	10	shells	red to red-brown gravelly clayey sand; shell fragments (<50 mm length); refusal at depth
SC37_0.00.051	27/09/2009	1245pm	4.7	Piston Core		0.11	50	45	lithic fragments	5	shell fragments	light brown hydrous layer (~2-3 cm deep); dark red- brown clayey sand with gravelly sandy clay at gravelly sandy clay at botrom; reflusal in gravelly clayey sand
SC38_0.0-0.40	58/09/2009	1330pm	5.6	Piston Core	QC127 QC209	0.4	40	20	lithics	10	shells	homogeneous dark red- brown clayey sand; friable; stiff and dry; refusal in stiff clayey sand
SC39_0.00.050	24/09/2009	1300pm	11.2	Piston Core		0.1	15	92	carbonate, quartz	10	shells	red to brown-red clayey gravelly sand, shell fragments; refusal at depth
SC40_0.0-0.31	25/09/2009	1540pm	6.3	Piston Core		0.31	15	75	carbonate detritus; quartz	10	shells	red-brown gravelly muddy sand; some shells and coral reef fragments; refusal at depth in stiff clay
SC41_0.0-0.30	27/09/2009	1415pm	5.3	Piston Core		0.3	20	45	lithic and	5	rock	dark red-brown clayey

Draft Sediment Quality Assessment

	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
									quartz		fragments	sand; friable; very stiff; 60 mm diameter coral accretions (dark gray- green); refusal in stiff clay
	25/09/2009	0725am	8.8	Piston Core		0.25	20	50	carbonate, quartz	30	shells	red to red-brown clayey gravelly sand; some shells and abundant shell fragments in sand fraction; refusal of core at depth
	28/09/2009	1220pm	5.3	Piston Core	QC125 QC207	0.23	50	45	lithics	5	ic	dark red-brown clayey sand; friable and dry; refusal in stiff clay red brown in colour
	28/09/2009	1040am	4.6	Piston Core		0.12	20	45	lithics	5	trace lithic fragments	dark red-brown clayey sand; brown-red near surface; dry and friable; refusal in very stiff clayey sand;
•	24/09/2009	1115am	10.7	Piston Core		0.2	20	50	quartz, carbonate	30	shells	red-brown clayey gravelly sand, large up to 50 mm diameter shells/coral fragments, refusal at depth
	24/09/2009	0955am	9.3	Piston Core	QC106	0.25	20	20	quartz, carbonate	30	shells	red brown clayey gravel; shells/corals (<50 mm diameter); refusal in very stiff clay
- 4	25/09/2009	1605pm	6.3	Piston Core		0.25	15	70	carbonate; quartz	15	detrital shells	red-brown to red gravelly muddy sand; some shell and derital carbonate fragments - 20 mm diameten); refusal in coral fragments and stiff clay

Draft Sediment Quality Assessment

Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
SC48_0.00.050	24/09/2009	1350pm	12.3	Piston Core		0.1	15	65	quartz, carbonate	20	shells	red to red-brown clayey gravelly sand; shell fragments (<20 mm diameter)
SC49_0.00.050	24/09/2009	1425pm	12.6	Piston Core		0.1	15	45	quartz, carbonate	40	shells	gravelly clayey sand; red- red-brown; large shell fragments and bivalves (<50 mm diameter); refusal at depth
SC50_0.0-0.23	25/09/2009	1550pm	6.3	Piston Core		0.23	15	75	carbonate detritus; quartz	10	shalls; coral fragments	light brown to red-brown gravelly muddy sand with some shell fragments; carbonate detritus; stiff clay at depth; refucal in coral bed and stiff clay
SC51	24/09/2009	1440pm	11.9	Grab sample		0.05	D.	55	carbonate, quartz, rock	40	shell/bivalves	slightly muddy sandy gravel; brown to red- brown; abundant shell fragments and bivalves; core refusal at surface; armoured bed; coral fragments and large liragments and large length);
SC52_0.00.050	24/09/2009	1335pm	12.1	Piston Core		0.1	20	70	quartz, carbonate	10	shells	red to red-brown clayey gravelly sand with shell fragments; some lithic rock fragments (<50 mm length); refusal at depth
SC53_0.00.055	28/09/2009	1350pm	6.8	Piston Core	QC128 QC210	0.15	20	40	lithics	10	shells	dark red-brown clayey sand; gravelly clay; rocky bottom
SC54_0.0-0.20	23/09/2009	1550pm	8.3	Piston Core		0.2	40	50		<10		sandy mud, clayey, red- brown , high stiffness,

Draft Sediment Quality Assessment

Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
												shell fragments, stiff clay at bottom of core, 80 mm diameter bivalve shell at bottom; refusal at depth
SC55_0.0-0.25	25/09/2009	0710am	6.4	Piston Core		0.25	30	09	quartz; carbonate	10	shells	red-brown to red clayey gravelly sand; bivalves up to 50 mm diameter; refusal at depth
SC55_0.0-0.30	24/09/2009	0940am	8.7	Piston Core		0.3	30	40	quartz, carbonate	30	shells	red-brown gravelly clayey sand, large shell and coral assemblages (~30-50 mm diameter); refusal at depth; very stiff clay
SC56_0.0-0.31	6002/60/82	1110am	4.6	Piston Core	QC123 QC205	0.31	50	40	lithics	10	lithic fragments	dark red homogeneous very stiff clayey sand; friable and dry; gravel/ithic and coral fragments fossilized/opaline shell fragments about 5 cm frong; refusal in very stiff clayey sand
SC57_0.00.055	26/09/2009	1715pm	4.5	Piston Core		0.15	20	45	quartz; lithic fragments	5	lin	dark red sandy clay; homogeneous; some shell fragments; refusal at depth in stiff clay
SC58_0.0-0.15	23/09/2009	0850am	6.7	Piston Core		0.15						gravelly muddy sand, clayey, abundant shell fragments and bivalves, red to brown-red, unconsolidated
SC59_0.0-0.23	25/09/2009	0800am	5.4	Piston Core		0.23	52	99	quartz; carbonate	10	shells	gravelly clayey sand; redred brown; abundant shells and coral fragments/bivalves (<50

Draft Sediment Quality Assessment Appendix C

Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
												mm diameter); refusal at depth
SC60_0.0-0.20	25/09/2009	1445pm	9.8	Piston Core		0.2	15	09	carbonate detritus; quartz	25	shells	light brown to red brown gravelly muddy sand; abundant shell detrifus and carbonate debris; large coral fragments and shells at bottom of core; refusal at depth;
SC61_0.0-0.18	27/09/2009	1300pm	5.3	Piston Core		0.18	55	40	quartz and lithic fragments	<5	nil	dark red-brown clayey sand; trace shell fragments; refusal in stiff clay
SC62_0.0-0.1	26/09/2009	1630pm	3.6	Piston Core		0.1	09	40	quartz; lithic fragments	<5	nil	dark red-brown sandy clay; very stiff; some carbonate shell fragments; refusal at depth; hydrous veneer (~1 cm)
SC63	25/09/2009	1710pm	4.4	Grab sample		0.05	30	65	quartz; carbonate	5	shells	slightly gravelly muddy sand with light brown hydrous layer (~1 cm deep)
SC64_0.0-0.15	27/09/2009	1235pm	3.9	Piston Core		0.15	09	40	quartz; carbonate	<5	lin	stiff dark red-brown clayey sand; slightly more hydrous in upper 2 cm; some shell fragments;
SC65	24/09/2009	1515pm	13.9	Grab sample		0.05	25	55	carbonate, trace quartz	20	shells/bivalves	coarse sandy gravel, slightly muddy; shells/bivalves; brown to red-brown; armoured bed and core refusal;
SC66	24/09/2009	1525pm	12.6	Grab sample		0.05	5	50	quartz,	45	shells	brown to red-brown

Draft Sediment Quality Assessment

Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
									trace and abundant carbonate			slightly muddy sandy gravel; shells and shell fragments
SC67_0.0-0.15	25/09/2009	1420pm	10	Piston Core		0.15	10	85	carbonate	<5	shell traces	red-brown slightly gravelly muddy sand; abundant sand-sized carbonate detritus; refusal at depth;
SC68_0.0-0.20	25/09/2009	1400pm	9.8	Piston Core		0.2	15	80	quartz, carbonate	5	shells	light red-brown, slightly gravelly muddy sand; carbonate fragments and shell detritus; refusal at depth
SC69_0.0-0.16	25/09/2009	1455pm	9.6	Piston Core		0.16	15	92	carbonate; quartz	20	shells/mussels	red-red-brown gravelly muddy sand with abundant shell and carbonate defiritus; refusal at depth in hard coral bed/siff clay, shells/mussels up to a depth of 10 cm
SC70_0.0-0.10	25/09/2009	1510pm	10	Piston Core		0.1	10	70	detrital carbonate and quartz	20	shells and mussels (50 mm diameter)	brown-red detrital-rich gravelly muddy sand; some shells; large shells and rock/algal bed at depth; refusal
SC71	25/09/2009	1655pm	9	Grab sample	QC112	0.05	09	40	detrital carbonate and quartz	\S	trace gravel	red-brown hydrous layer (1-2 cm deep with 10% sand and 90% mud); trace gravel and 60% mud/40% sand sandy mud/40% and candon in sand component

Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Sample Visual Visual Depth Mud Sand m) (%) (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
SC72	25/09/2009	1650pm	6.6	Grab sample		0.08	15	50	detrital carbonate and quartz	35	shells	red-brown gravelly muddy sand; abundant shell fragments and detritus

Dredge material placement sites grab sample descriptions. Table C-2

Area	Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
Site A	G40	22/09/2009	1720pm	6.2	Grab sample		0.05	25	45	quartz; lithic fragments	30	bivalves and shells	red-brown to reddish gravelly sandy mud with abundant shells and coral fragments; polychaete worms
Site A	G41	25/09/2009	1125am	6.3	Grab sample		0.08	35	50	quartz; carbonate	15	carbonat e detritus	carbonat gravelly muddy sand (red to red-brown); some e oyster shell fragments; small crab and bryozoans
Site A	G42	25/09/2009	1045am	5.2	Grab sample		0.05	20	50	quartz; carbonate	30	oyster shells	red-brown to red muddy clayey gravelly sand; carbonate-rich with oyster-armoured bed; jellyfish; sea grass

Draft Sediment Quality Assessment

brown to red-brown clayey muddy gravelly sand; large oyster shells; armoured bed (shells up to 80 mm length); armoured bed; red-brown gravelly muddy sand; large oyster shells at surface (~50 mm diameter) dark reddish-grayish gravelly muddy sand; some organic (dark gray) subsurface sediments in anoxic layer; some seagrass armoured bed; abundant mussels and bivalves; shells up to 5 cm long; red-red-brown muddy gravelly sand light brown to red-brown muddy gravelly sand; abundant oyster shells (~50 mm diameter); Description shells; mussels; bivalves Comp. shell detritus Gravel oyster shells shells shells Visual Gravel % 20 9 45 10 4 carbonate; quartz detritus quartz; carbonate fragments quartz; carbonate quartz; carbonate quartz; carbonate Comp. Sand Visual Sand % 20 4 32 20 40 Visual Mud % 40 30 30 20 20 Sample Depth 0.05 0.05 0.08 0.05 Ê 0.05 Sample QC111 ဗ္ဗ Grab sample Grab sample Grab sample Grab sample Grab sample Method Sample Depth Ê 6.2 5.2 6.3 5.6 5.4 Sample 1115am 1040am 1025am 1100am 1020am Time 25/09/2009 25/09/2009 25/09/2009 25/09/2009 25/09/2009 Sample Date Sample G45 G43 G46 **G44** G47 ₽ Site A Site A Area Site A Site A Site A

Area	Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
Site A	G48	25/09/2009	1010am	5.2	Grab sample		0.05	10	40	carbonate/l ithic fragments; shells	20	large oyster shells and coral fragment s	hard coral bottom; armoured bed with abundant large (up to 80 mm diameter) bivalves; oysters and coral fragments;
Site A	G49	25/09/2009	1115am	5.9	Grab sample		0.05	30	55	quartz; shell detritus;	15	large oyster shells (~80 mm long)	red-brown to red gravelly muddy sand; some large oyster shells and carbonate detritus;
Site B	G30	25/09/2009	1325pm	10.7	Grab sample		0.1	5	15	carbonate detritus; shells; shell fragments	70	carbonat e detritus; shells; bivalves	light brown muddy sandy gravel; abundant shell and carbonate detritus; bryozoans; shrimp; baby crabs
Site B	G31	25/09/2009	1315pm	-	Grab sample		0.12	20	30	detrital quartz and carbonate	50	abindant gravel and shells and bivalves	light brown muddy gravelly sand; abundant carbonate detritus and large shells (up to 80 mm long)
Site B	G32	24/09/2009	1705pm	10.5	Grab sample		0.1	45	50	quartz; carbonate; lithic fragments	<5	trace shells	muddy sand to sandy mud; red to brown-red to grayish;
Site B	G33	25/09/2009	1300pm	10.9	Grab sample		0.1	40	50	quartz; carbonate detritus	10	some shells/bi valves	light brown to red-brown muddy sand; slightly gravelly;

Draft Sediment Quality Assessment

Area	Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
Site B	G34	52/09/2009	1710pm	&. 6	Grab sample		0.08	40	40	quartz; shell fragments; lithic rock fragments	20	shells and bivalves and coral fragment s (~5 cm in diameye	reddish-brown to red gravelly muddy sand; rock fragments abundant; polychaete works
Site B	G35	25/09/2009	1220pm	10.7	Grab sample		0.1	30	09	detrital carbonate and quartz	10	shell fragment s	light brown to red-brown muddy sand; slightly gravelly; some bivalves up to 50 mm long;
Site B	G36	24/09/2009	1715pm	10	Grab sample	QC108	0.08	35	50	carbonate/l ithic fragments; trace quartz	15	shells; bivalves	muddy gravelly sand; dark lithic fragments; top 2 cm very muddy (poorly developed hydrous layer); red-brown red
Site B	G37	25/09/2009	1250pm	10.6	Grab sample		0.1	40	90	detrital carbonate and quartz	10	abundan t large shells/bi valves/m ussels up to 50 mm long	muddy surface; red to brown-red slightly gravelly muddy sand
Site B	G38	25/09/2009	1240pm	11.4	Grab sample		0.15	40	55	detrital carbonate and quartz	5	detrital shell fragment s	light brown to red muddy sand; some gravel; no large shells; thin hydrous layer (<1 cm deep)

Area	Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
Site B	G39	22/09/2009	1650pm	8.4	Grab sample		0.05	<10	40	quartz; carbonate shells	50	large bivalves (up to 6 cm long)	gravelly sand; slightly muddy; reddish to red- brown;
Site C	G1	22/09/2009	1536pm	12	Grab sample		0.05	15	50	quartz; carbonate/l ithic fragments	35	shell and coral fragment s	coarse gravelly muddy sand; abundant shells and coral/bivalves; angular lithic rock fragments
Site C	G2	24/09/2009	1610pm	14.7	Grab sample		0.05	20	75	quartz; lithic fragments; carbonate	<5	trace gravel	red to red-brown muddy sand; carbonate-rich; fine- grained sandy mud fraction; amphipod and trace sea grass
Site C	G3	24/09/2009	1630pm	14	Grab sample		0.05	20	75	quartz; carbonate/l ithic fragments	5	shells	red-brown to grayish- green muddy sand; some shells and shell fragments;
Site C	G4	24/09/2009	1625pm	41	Grab sample		0.08	15	80	carbonate and lithic fragments	ζ 5	trace gravel/s hells	muddy sand with trace gravel (shell fragments); red-brown to grayish brown;
Site C	G5	24/09/2009	1555pm	15.7	Grab sample		0.08	30	99	carbonate and lithic fragments	<5	trace gravel	muddy sand; brown to red-brown; well sorted;
Site C	G6	52/09/2009	1420pm	15	Grab sample		0.08	20	9/	quartz; shell fragments	5	bivalve shells (traces)	gravelly sandy mud; red- brown; ferruginous

Draft Sediment Quality Assessment

kppn	rown to ke yozoans yozoans andy wn;	riens and ke ke yozoans yozoans mandy wn; s;	reels and ke yozoans andy wn; s; si and; td; brown
shells up sand; abundant shells and to 5 cm rock fragments; brown to in red-brown; tube-like diameter organisms and bryozoans	fragment gravelly coarse sandy s (up to mud; reddish-brown; 5 cm polychaete worms;		
	40	0	
lithic and quartz fragments quartz;	carbonate fragments	carbonate fragments carbonate shells; quartz	carbonate fragments carbonate shells; quartz quartz lithic rock fragments; dark gray
45	8	02	00 20 99
(%) (%) 10 10 10		52	25 25 35
(m) (m) 0.05		0.08	0.08
Sample Sample			
Method Grab sample Grab sample		Grab sample	Grab sample
(m) (m) 15		12.8	12.8
Time 1443pm 1625pm		1605pm	1605pm 1455pm
Sample Date 22/09/2009 22/09/2009		22/09/2009	22/09/2009
Sample ID G7 G7		69	G9 G10
Area Site C		Site C	Site C Site C

Draft Sediment Quality Assessment

Area	Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
Site C	G12	22/09/2009	1333pm	15	Grab sample	QC100	0.05	<10	06	quartz, ferruginous , with shell fragments	<5	bivalves, shells	brown to green-brown slightly gravelly muddy sand; trace to <5% fines; some gravelly and Fe- oxide-coated sand
Site C	G13	22/09/2009	1523pm	13.5	Grab sample	QC102; QC103; QC201	0.1	20	70	quartz; lithic rock fragments;	10	shells	muddy sand; gravelly; red to brown;
Site C	G14	22/09/2009	1545pm	11.8	Grab sample		0.08	25	65	quartz and carbonate fragments	10	bivalve shells and whole shells	gravelly muddy sand; red- brown to reddish; abundant angular carbonate grains and shell fragments; polychaete worm
Site C	G15	22/09/2009	1555pm	12	Grab sample		0.1	30	9	quartz and carbonate fragments	10	shells	gravelly muddy sand; red- brown to red; shell fragments; green flamentous algae strings with green leaves (~5 cm length)
Site C	G16	22/09/2009	1510pm	15	Grab sample		0.08	20	70	quartz; rock fragments	10	shells	red-brown muddy sand; gravelly; lithic rock fragments; shells (bivalves); green algae
Site C	G17	22/09/2009	1400pm	14	Grab sample	QC101; QC200	0.08	15	80	quartz; lithic frock fragments	5	shells	red ferruginous muddy sand; medium-grained; some gravel;

Draft Sediment Quality Assessment

Area	Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
Site C	G18	22/09/2009	1430pm	15.5	Grab sample		0.08	20	75	quartz, lithic rock fragments	\S	shells	slightly gravelly muddy sand; brown to red-brown; lithogenic
Site C	G19	22/09/2009	1616pm	13	Grab sample		0.05	15	50	quartz and shells	35	bivalve shells	gravelly muddy sand; abundant shells; reddish to brown-red; polychaete worms
Site C	695	56/09/2009	1450 pm	14.6	Grab sample	QC116	0.08	30	09	carbonate fragments	10	shell fragment s	light brown to grayish- green gravelly muddy sand; soft; detrital carbonate
Site C	670	56/09/2009	1500pm	13.1	Grab sample		0.05	5	65	shell detritus	20	bivalves	light brown-red slightly muddy gravelly sand; large bivalves up to 50 mm long; soft
Site C	G71	26/09/2009	1520pm	12.5	Grab sample	QC117	0.05	35	09	shells; carbonate fragments	5	shell fragment s	light brown sandy mud; some shell fragments; soft; macrophytes
Site C	G72	26/09/2009	1530pm	13.5	Grab sample		0.1	35	09	detrital shells; lithic fragments	5	shell fragment s	light brown sandy mud; trace gravel; large sample; soft
Site C	G73	26/09/2009	1540pm	15	Grab sample		0.05	10	50	detrital carbonate and quartz	40	shells	light brown, slightly muddy sandy gravel; abundant shell fragments and bivalves;
Site D	G59	27/09/2009	0935am	48.3	Grab sample		0.05	15	75	shell detritus	10	shells	light olive gray-green to brown gravelly muddy

Draft Sediment Quality Assessment

Area	Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
										and shell fragments			sand
Site D	095	27/09/2009	1015am	45.5	Grab sample		0.03	10	06	carbonate	<5	trace shells	olive green muddy sand; trace gravel; well sorted; soft
Site D	G61	27/09/2009	1105am	40.1	Grab sample		0.05	10	85	carbonate shell fragments	<5	trace shells	olive gray-green well sorted sand; trace shells; soft
Site D	G62	27/09/2009	1035am	38.3	Grab sample		0.03	10	85	carbonate shell fragments	<5	trace shells	light olive green-gray muddy sand; well sorted
Site D	G63	27/09/2009	1000am	42.8	Grab sample	QC122	0.05	10	06	carbonate fragments	<5	iĒ	light green slightly muddy sand; well sorted; trace shells
Site D	G64	27/09/2009	1025am	43.6	Grab sample		0.05	10	85	carbonate shell fragments	<5	trace shells	well sorted olive gray- green muddy sand; soft
Site D	G65	27/09/2009	0945am	47.6	Grab sample	QC121	0.05	15	80	carbonate shell fragments	<5	shells	light gray muddy sand; some shell fragments
Site D	G66	27/09/2009	1050am	40.8	Grab sample		0.03	10	85	carbonate shell fragments	<5	trace shells	well sorted olive gray- green muddy sand; trace shells; light brown fine fraction
Site D	G75	27/09/2009	1050am	40.1	Grab sample		0.03	10	85	carbonate shell fragments	\\.5 \\.5	trace shells	well sorted olive gray- green muddy sand; soft
Site D	926	27/09/2009	1055am	42	Grab sample		0.05	10	85	carbonate shell fragments	. 5	trace gravel	light olive green-gray slightly muddy sand; well sorted; soft

Draft Sediment Quality Assessment

Area	Sample ID	Sample Date	Sample Time	Depth (m)	Sample Method	QC Sample	Sample Depth (m)	Visual Mud (%)	Visual Sand (%)	Sand Comp.	Visual Gravel (%)	Gravel Comp.	Description
Site E	G50	27/09/2009	0755am	64	Grab sample		0.08	30	99	carbonate shell fragments	<5	trace shells	light olive gray-green muddy sand with light brown hydrous layer (poorly developed); soft;
Site E	G51	27/09/2009	0715am	71.3	Grab sample		0.1	40	50	lithic green-gray shell fragments	10	coral fragment s	olive green-gray muddy sand; trace shells; soft
Site E	G52	27/09/2009	0810am	65.3	Grab sample		0.08	20	22	carbonate shell fragments	<5	lic	light green to olive-gray muddy sand; mudslider in top 1-2 cm;
Site E	G53	27/09/2009	0820am	63	Grab sample		0.08	25	20	carbonate shell fragments	<5	lin	olive gray-green muddy sand; abundant surficial worm tubes; trace shell gravel; soft
Site E	G54	27/09/2009	0830am	61.3	Grab sample		0.08	30	65	carbonate shell fragments	ro	lithic? And carbonat e fragment s	olive gray-green muddy sand; trace gravel; carbonate fragments in sand fraction; soft; feather star
Site E	G55	27/09/2009	0840 am	61.6	Grab sample		0.08	20	75	carbonate	5	shell fragment s	light olive gray-green muddy sand; some shell fragments; soft; squills (prawn killer) about 5 cm long

Appendix C

olive green-gray muddy sand; carbonate-rich; slightly hydrous in upper 1 cm; light-brownish to olive-gray hydrous layer; olive gray-green muddy sand; trace gravel; carbonate fragments in sand fraction; soft; light olive green-gray muddy sand; soft; one shrimp; yellow spongy coral olive gray-green muddy sand; trace shell; soft; Description Gravel Comp. rtrace shells trace shells trace shells ᇃ Gravel Visual (%) \$ \$ \$ \$ quartz trace; shell and carbonate fragments carbonate shell fragments carbonate shell fragments and lithic fragments carbonate and shell fragments Comp. Sand Visual Sand % 65 75 65 70 Visual Mud % 8 8 22 20 Sample Depth 0.08 Ê 0.1 0.1 QC Sample QC119 QC120 Grab sample Grab sample Grab sample Grab sample Sample Method Depth (m) 66.3 9.69 9.79 63 Sample 0745am 0725am 0740am 0850am Time 27/09/2009 27/09/2009 27/09/2009 27/09/2009 Sample Date Sample ID G57 G58 G56 G74 Site E Site E Site E Site E Area

This page is intentionally blank

Wheatstone Project Appendix Q5 - Sediment Quality Assessment - Wheatstone Dredging Program

Draft Sediment Quality Assessment Appendix D Short Core & Grab Sample Analytical & Physicochemical Data **URS** 42907466/01/0

This page is intentionally blank
This page is intentionally blank

Wheatstone Project Appendix Q5 - Sediment Quality Assessment - Wheatstone Dredging Program

Appendix D

Table D-1 Short core & grab sample analytical data.

Area	Sample ID	Ā	As	Ba	8	້ວ	n O	Нg	Ž	Sb	Pb	Zu	TBT (µg Sn/kg)	TOC (%)	caco ₃ (%)	MC (%)
Dredge Area	SC1_0.0-0.27	8490	13.2	28	0.05	67.8	18.5	0.01	21.1	0.25	9.4	33.7	0.25	90.0		22.5
	SC10_0.00.050	6040	18.1	12.6	0.05	36.1	9.2	0.01	9.6	0.25	5.6	21.8	0.25	0.12	46.7	25.7
	SC11_0.00.055	13400	13.1	112	0.05	82.1	39	0.01	37	0.25	15.1	62	0.25	90.0		30.8
	SC12_0.00.055	0809	16.3	11	0.05	37.1	9.5	0.01	9.8	0.25	5.6	21.7	0.25	0.14	46.5	24.8
	SC13	6820	20.9	17.5	0.05	35	11.1	0.01	11.4	0.25	6.2	24	0.25	0.16		30.5
	SC14_0.00.051	2990	5.48	53.2	0.05	48.8	15.3	0.01	18.1	0.25	8.5	24.7	0.25	0.04		21.3
	SC15	0969	18.5	11.4	0.05	49.4	12.3	0.01	15	0.25	7.4	28.2	0.25	0.1	32.7	24.6
	SC16	2680	20.5	12.9	0.05	34.1	8.2	0.01	9.4	0.25	5.6	21.3	0.25	0.13		29
	SC17_0.0-0.35	2560	22.6	5.4	0.05	40.4	9.3	0.01	10.9	0.25	6.1	23	0.25	0.1	38.5	22.3
	SC18_0.0-0.30	0909	23.4	9	0.05	40.8	10.2	0.01	11.2	0.25	6.4	24.3	0.25	0.12	45.7	24.9
	SC19_0.00.052	4660	16.2	10.9	0.05	30.3	5.7	0.01	6.2	0.25	4.9	15	0.25	60.0		26.2
	SC2_0.0-0.22	4070	18.9	12.2	0.05	31.1	5.9	0.01	6.1	0.25	4.8	14.8	0.25	60.0	55.2	25
	SC20_0.0-0.20	10600	15.8	27.3	0.05	20	24.3	0.01	24.4	0.25	10.1	9.88	0.25	90'0		56
	SC21_0.00.055	8820	14.8	15.9	0.05	22	17.4	0.01	18.1	0.25	8.1	31.2	0.25	0.13	37	25.5
	SC22_0.00.053	4540	6.24	19.1	0.05	36.4	18.9	0.01	13.9	0.25	6.4	19.7	0.25	90.0		22.2
	SC23_0.0-0.25	2950	21.1	10.3	0.05	42.9	10.8	0.01	11.8	0.25	9.9	25.4	0.25	60.0		23.4
	SC24	4210	19.9	18.1	0.05	22.1	4.5	0.01	3	0.25	4.3	12.7	0.25	0.14	77.2	30.7
	SC25	3970	19.8	12.2	0.05	23.7	6.1	0.01	5.8	0.25	4.3	15.9	0.25	0.15		24.8
	SC26_0.00.051	6100	8.9	15.9	0.05	49.5	16.8	0.01	18.5	0.25	8.8	24.6	0.25	0.05	0.01	19.3
	SC27_0.0-0.32	2570	11.7	13.6	0.05	42.1	11	0.01	12.2	0.25	5.5	18.7	0.25	20.0		19.4
	SC28_0.0-0.25	8110	18.8	11.1	0.05	53.3	16	0.01	18.1	0.25	7.9	28.4	0.25	0.1	37.5	24.6
	SC29_0.0-0.20	0068	15.3	6.99	0.05	29	18.4	0.02	22.3	0.25	9.4	33.6	0.25	0.07		23.4

27.3 21.7 34.3 24.4 25.8 28.8 23.8 29.2 26.3 22.6 24.1 22.5 20.5 24.7 23.4 26.6 40.6 29.7 26.9 22.8 22.2 25.1 ¥ ⊗ 27 caco₃ (%) 52.4 50.3 46.9 63.2 39.1 0.15 0.14 0.14 0.13 0.09 0.15 **TOC** (%) 0.17 0.17 60.0 90.0 0.34 0.08 0.13 0.11 0.01 0.11 0.1 0.11 0.1 0.1 0.1 (µg Sn/kg) TBT 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 21.8 21.9 33.2 20 21.9 13.4 32.4 17.6 23.1 23.8 38.9 29.8 57.7 19.4 16.2 14.4 29.7 20.1 14.7 20.1 Ž 23 24 15 5.4 13.4 5.5 5.6 6.5 8.5 5.6 8.9 8.8 5.6 9.3 4.4 5.2 윤 8. 4.7 6.1 6.1 2 0.25 S 15.9 17.8 20.3 35.4 15.5 13.6 12.6 6.9 4.5 7.8 9.7 3.6 9.4 16 8.7 8.1 9.6 19 5.7 89 Ž 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 퇀 13.5 17.3 14.4 31.4 14.1 15.4 13.2 10.7 9.5 4.4 9.6 8.4 9.4 6.3 5.2 8.6 7.3 3 9.7 7.7 12 5.7 33.5 78.1 31.7 50.6 35.3 23.3 34.1 32.6 27.5 59.1 31.8 39.5 30.3 38.3 39.1 25.5 26.9 50.9 51.8 33.7 30.7 42.8 50.7 53 ច 0.05 ၓ 12.6 10.5 10.6 13.6 45.6 10.3 11.2 10.2 12.8 21.8 31.9 12.7 17.7 20.1 7.8 7.5 Ba 8.4 9.5 8.6 5.4 7.3 10 5 20.3 28.5 11.7 20 18.6 26.6 4.69 23.8 21.4 22.2 18.3 18.8 19.8 14.3 18.8 10.2 17.4 12.7 19.1 22.4 17.4 16.9 As 19 4 5660 13800 3920 3920 4270 7890 7250 5020 5300 5300 6450 4040 8140 4710 4770 4610 6850 3860 6850 4360 7350 4050 ₹ \$C35_0.00.055 \$C36_0.00.050 \$C37_0.00.051 \$C38_0.0-0.40 \$C39_0.00.050 SC48_0.00.050 SC33_0.0-0.33 SC34_0.0-0.25 SC41_0.0-0.30 SC42_0.0-0.25 SC43_0.0-0.23 SC44_0.00.052 SC46_0.0-0.25 SC47_0.0-0.25 SC49_0.00.050 SC50_0.0-0.23 SC31_0.0-0.20 SC32_0.00.05 SC4_0.0-0.25 SC40_0.0-0.31 SC3_0.0-0.22 SC30_0.0-0.2 Sample ID Area

Draft Sediment Quality Assessment

Appendix D

29.4 27.9 31.7 24.3 26.2 18.8 25.4 22.9 22.4 30.4 22.3 28.7 26.2 25.6 26.7 24.3 26.6 20.1 **№** % 25 29 24 23 24 CaCO3 1.23 38.5 72.2 % 45 0.1 0.12 0.06 0.09 0.12 0.16 0.13 0.12 10C (%) 0.11 0.11 0.04 0.14 0.08 0.09 0.09 0.11 0.07 0.07 0.07 0.11 0.11 0.11 (µg Sn/kg) TBT 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 20.4 23.4 31.6 22.3 23.6 23.4 40.6 29.2 26.8 22.3 19.4 1.1 13.4 11.6 16.2 19.7 34.1 36.1 10.7 23.1 Ŋ 46 11.8 10.5 5.5 34 6.6 8.9 6.4 6.2 9.9 9.9 8.3 3.9 4.2 6.3 9.7 윤 7.1 8.1 9 9 0.25 S 11.5 10.6 26.7 13.2 23.9 14.9 18.5 17.8 10.2 10.8 10.4 17.8 14.1 11.7 12.7 23.4 1.5 3.5 2.5 3.7 Ż 0.01 0.01 0.02 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 퇀 10.3 23.5 12.5 16.5 14.2 22.3 19.2 13.8 16.6 1.3 10.7 18.7 9.8 8.9 9.2 9.7 3.6 3.9 4.4 9.4 9.6 5 6.4 4.7 39.4 38.8 40.7 36.2 33.5 48.4 43.5 46.3 77.4 41.6 47.3 62.2 71.2 52.9 61.7 19.1 24.4 24.9 27.4 51.2 38.2 24.7 4 ပံ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 ၓ 0.1 0.4 0.1 0.1 15.9 11.5 34.5 12.6 13.5 10.6 14.8 20.9 24.8 14.2 10.2 20.9 20.7 15.2 12.1 Ba 9.8 6.4 7.3 9.4 5.4 37 17.6 24.9 18.5 21.8 21.5 19.9 22 22.8 18.5 16.2 13.3 12.2 47.4 12.8 8.65 19.7 28.2 19.5 26.1 As 12 22 16 15 10100 6460 4180 8880 5620 8400 3670 5820 5760 4310 9600 6820 7680 3470 5270 6510 7020 4920 4360 3430 3590 8020 4270 ₹ SC70_0.00.050 SC71 SC53_0.00.055 SC54_0.0-0.20 SC55_0.0-0.25 SC55_0.0-0.30 SC57_0.00.055 SC58_0.00.055 SC69_0.00.056 SC61_0.00.058 SC64_0.00.055 SC67_0.00.055 SC52_0.00.050 SC56_0.0-0.31 SC59_0.0-0.23 SC60_0.0-0.20 SC62_0.00.050 SC68_0.0-0.20 SC7_0.00.050 Sample ID SC6_0.0-0.2 SC65 SC63 SC66 Area

Draft Sediment Quality Assessment

Appendix D

Draft Sediment Quality Assessment

Appendix D

Area	Sample ID	Ā	As	Ba	5	ວັ	7	Ę	Ž	gg S	g Q	ž	TBT (µg Sn/kg)	TOC (%)	CaCO ₃ (%)	MC (%)
	SC72	6020	23.4	6.9	0.05	41.4	9.8	0.01	10.5	0.25	6.3	22.7	0.25	0.12		27
	SC8_0.0-0.30	5730	21.7	7	0.05	42.1	9.8	0.01	11.2	0.25	6.4	24.5	0.25	0.18		21.4
	SC9_0.0-0.20	7780	22.9	9.5	0.05	55	14.7	0.01	16.3	0.25	9.8	32.1	0.25	0.15		30.1
	G41	6040	23.5	8.6	0.05	45.4	10	0.01	11.8	0.25	8.9	24.7			33.1	25.1
	G42	5200	59	11.6	0.2	40.1	10.1	0.01	10	0.25	7	20.8			44.2	25.8
	G43	6510	25.8	8.5	0.05	45.4	10.8	0.01	12.6	0.25	10.6	26.6				27.1
Dredge Material	G44	2300	24.7	8.7	0.05	39.5	8.4	0.01	9.7	0.25	5.9	21.2			38.8	23.3
Placement	G45	8210	24.1	11.1	0.05	55.1	14.7	0.01	16.5	0.25	9.8	32.6				34.1
Site A	G46	0299	24.1	8.3	0.05	46.1	11.1	0.01	12.6	0.25	7	25.9	0.25	68.0	34.6	26.5
	G47	71 10	21.2	10	0.05	47.3	13.2	0.01	14.1	0.25	9.7	29.5	0.25	0.15	35.8	26.6
	G48	22 60	31.6	12.1	0.1	32.7	8.6	0.01	6	0.25	5.6	20.6				28.9
	G49	5120	23.2	9.8	0.05	34.9	8.4	0.01	8.5	0.25	5.4	19.8				25.6
	G30	4860	33.9	15.2	0.05	26.8	9.9	0.01	2	0.25	4.7	13.5				24.7
	G31	61 10	32.3	14.2	0.05	34.7	8.6	0.01	8.2	0.25	6.2	18.6			62.6	30.2
	G32	6530	24	14.2	0.05	39.6	10.6	0.01	11.2	0.25	6.7	22.8				34.4
	G33	7180	23.3	9.1	0.05	46.6	12.2	0.01	13.8	0.25	7.2	59	0.25	0.14	37.8	27.9
Dredge Material	G34	6270	18.3	13.6	0.05	43	9.6	0.01	11.9	0.25	6.4	23.6				30
Site B	G35	5630	17.4	8.6	0.05	36.8	8.1	0.01	8.6	0.25	5.5	20			45.2	9.08
	929	4420	19.4	12	0.05	40.3	7.1	0.01	8	0.25	5.8	17.8				56.6
	G37	6120	18.1	10.3	0.05	38.8	8.8	0.01	10	0.25	9	22.1				28.7
	G38	7130	20.7	12.7	0.05	41	6.6	0.01	11.5	0.25	6.7	23.5	0.25	0.15	37.8	31.2
	G39	3120	12.6	15.3	0.05	13.4	4.1	0.01	0	0.25	2.8	8.7			81.4	25.3
Dredge Material	G1	4130	29.6	13.7	0.05	22.8	5.4	0.01	4.5	0.25	4.7	11.6				23.9
Placement	G2	4650	22	12.1	0.05	28.2	4.6	0.01	3.9	0.25	4.6	12.4				32.2

32.2 35.2 33.6 32.2 29.4 29.3 26.1 28.9 29.8 32.7 28.5 28.3 28.9 31.5 32.8 30.4 30.4 30.3 28.9 29.1 29.1 ₩ % 53 34 CaCO₃ (%) 61.2 9.59 9.59 69.1 68.8 69.7 0.15 0.28 10C (%) 0.14 0.15 0.15 (µg Sn/kg) TBT 0.25 0.25 0.25 0.25 0.25 14 11.9 11.2 9.3 13 12 14.2 12.8 11.5 13.4 12.2 12.7 12.2 10.6 13.3 10.7 14.7 14.1 12.1 13.1 9.2 ž 17 4.3 4.7 5.5 4.8 5.8 4.7 4.4 4.3 4.8 4.9 5.2 5.2 4.6 3.8 3.8 3.8 윤 4.7 5.4 9 0.25 Sp 5.3 4.9 3.6 5.8 4.7 4.7 3.4 4.8 5.2 3.8 9.1 3.5 7.2 5.4 5.7 9.1 9.1 Ï 5.1 0.01 튄 4.8 5.9 4.9 4.8 5.2 3.8 5.3 4.4 5.2 4.5 2.6 5.3 4.6 4.9 3.7 5 5.2 4.4 4.7 3.7 Ξ 29.8 38.6 29.4 21.8 26.5 29.9 28.8 26.9 25.8 30.4 25.1 24.7 25.6 33.2 22.4 19.3 28.9 23.8 28.7 27 30 56 30 ပံ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 ၓ 0.2 0.1 0.2 11.6 20.6 12.8 11.6 11.6 11.3 1.5 13.7 12.4 12.3 19.2 10.2 12.2 14.1 15.3 12.1 13.1 Ba 16 Ξ 10.1 23.4 21 28.4 27.3 26.2 26.2 26.6 26.6 21.5 32.3 28 29.8 24.8 27.3 21.3 19.8 25.4 19.2 21.1 22.1 5.88 5.42 As 25 22 4240 4620 4280 4660 4900 4110 4360 4400 3950 4060 3690 3690 4450 4090 4210 5590 2430 3350 3440 3870 3990 4920 2790 3600 ₹ Sample ID G18 G19 695 G70 G72 G73 G50 G51 Dredge Material Placement Site C Area

Draft Sediment Quality Assessment

Appendix D

Appendix D																
Area	Sample ID	Ā	As	Ba	PO	Ç	Cu	Н	Ž	gs	Pb	Zn	TBT (µg Sn/kg)	TOC (%)	CaCO ₃ (%)	MC (%)
Site E	G52	3640	5.56	14.6	0.1	25.9	3.7	0.01	8.5	0.25	3.6	8.9			71.8	35.2
	G53	3500	7.49	13.2	0.1	25	က	0.01	8.1	0.25	3.6	6			72.4	32.3
	G54	3960	5.4	13.8	0.1	25.7	3.9	0.02	9.8	0.25	3.4	8.6				34.6
	G55	3120	5.94	13	0.1	22.5	2.8	0.02	7.2	0.25	3.4	6.7				33.2
	G56	3840	5.03	14.9	0.1	25.7	3.9	0.01	8.8	0.25	3.5	9.2				35.6
	G57	4270	5.21	14.7	0.1	29.4	4	0.01	10	0.25	3.8	10.8				36.4
	G58	4700	6.91	16.8	0.1	31.8	5.2	0.01	10.6	0.25	4	12.5	0.25	0.4	67.1	41.6
	G74	3590	5.06	13.9	0.1	24	3.6	0.01	8.2	0.25	3.2	8.5				34.6
	G59	2890	4.77	21.1	0.1	23	3.4	0.01	7.5	0.25	2.9	9.5			74.6	37.3
	G60	3230	7.16	14.8	0.1	22.8	3.2	0.01	7.2	0.25	3.4	8.2			70.4	36
	G61	2700	8.32	12.5	0.05	19.6	2.6	0.01	6.5	0.25	2.9	9.9			70	35.1
	G62	2640	9.11	13.3	0.05	20.6	2.5	0.01	5.9	0.25	2.9	9.9				35.2
Dredge Material	G63	2940	6.68	12.9	0.1	20.9	3	0.01	9.9	0.25	3.1	7.8				36.6
Site D	G64	3040	7.83	13.6	0.1	22.2	3	0.01	6.9	0.25	3.2	7.7	0.25	0.2	71.4	35.6
	G65	3300	6.82	14.5	0.1	23.4	3.2	0.02	7.4	0.25	3.7	8.5				35.5
	G66	2950	9.2	13.1	0.05	20.7	3.1	0.01	9.9	0.25	3	7.4	0.25	0.22	69.4	34.7
	G75	2570	7.79	12.3	0.1	20.4	2.4	0.01		0.25	2.8	6.5				34.2
	9/5	3350	7.99	14.1		23.2	3.2	0.01	7.5	0.25	3.4	8.4				35.3

Table D-2 Short core & grab sample physicochemical data.

Area	Sample ID	Cobbles (%)	Gravel	Sand (%)	Silt	Clay (%)
Dredge Area	SC1_0.0-0.27	, ,	† <i>'</i>	\ <i>,</i> ,	 `´	† <i>′</i>
	SC10_0.00.050					
	SC11_0.00.055	0	2	17	53	28
	SC12_0.00.055					
	SC13	0	29	34	19	18
	SC14_0.00.051				†	
	SC15	0	24	35	22	19
	SC16					
	SC17_0.0-0.35					
	SC18_0.0-0.30					
	SC19_0.00.052	0	15	55	16	14
	SC2_0.0-0.22					
	SC20_0.0-0.20					
	SC21_0.00.055					
	SC22_0.00.053				1	
	SC23 0.0-0.25	0	18	54	11	17
	SC24	0	34	48	8	10
	SC25				†	
	SC26_0.00.051	0	5	47	15	33
	SC27_0.0-0.32	0	6	63	11	20
	SC28_0.0-0.25	0	8	52	19	21
	SC29_0.0-0.20	0	14	52	12	22
	SC3_0.0-0.22				†	
	SC30_0.0-0.2				†	1
	SC31_0.0-0.20					
	SC32_0.00.05					
	SC33_0.0-0.33				†	
	SC34 0.0-0.25				†	
	SC35 0.00.055				†	
	SC36_0.00.050				†	
	SC37_0.00.051				1	
	SC38_0.0-0.40				1	
	SC39_0.00.050				†	
	SC4_0.0-0.25	0	7	70	10	13
	SC40_0.0-0.31	0	11	48	22	19
	SC41_0.0-0.30				1	†
	SC42 0.0-0.25	0	19	61	6	14
	SC43 0.0-0.23				†	†
	SC44_0.00.052					1
	SC45	0	5	71	9	15
	SC46 0.0-0.25					1

Appendix D

	T	1		1	I	1
	SC47_0.0-0.25					
	SC48_0.00.050					
	SC49_0.00.050					
	SC5					
	SC50_0.0-0.23	0	3	70	13	14
	SC51					
	SC52_0.00.050					
	SC53_0.00.055					
	SC54_0.0-0.20					
	SC55_0.0-0.25					
	SC55_0.0-0.30	0	17	53	14	16
	SC56_0.0-0.31					
	SC57_0.00.055					
	SC58_0.00.055					
	SC59_0.0-0.23					
	SC6_0.0-0.2					
	SC60_0.0-0.20	0	33	46	10	11
	SC61_0.00.058					
	SC62_0.00.050					
	SC63					
	SC64_0.00.055					
	SC65					
	SC66					
	SC67_0.00.055					
	SC68_0.0-0.20					
	SC69_0.00.056					
	SC7_0.00.050					
	SC70_0.00.050					
	SC71					
	SC72					
	SC8_0.0-0.30	0	6	71	10	13
	SC9_0.0-0.20	0	13	51	15	21
	G41					
	G42	0	34	42	12	12
	G43	 	† ·		1	
Dredge Material	G44	0	11	68	6	15
Placement	G45	0	2	58	12	28
Site A	G46	 	-		-	
	G47	0	19	63	6	12
	G47	,	13	00	0	12
	G49					
	G49	1				

G30 G31 G32 G33 G34 G35 G36 G4 G38 G39 G39 G38 G39 G39 G39 G39 G39 G39 G40 G35 G39 G40 G40	9 11 13 8	18 18 19 17
G32	9 11 13 8	18 19 17
G33	9 11 13 8	18 19 17
G33	9 11 13 8	18 19 17
Dredge Material Placement Site B G34	9 11 13 8	18 19 17
Placement Site B G35 G36 G36 G37 G37 G38 G39 G39 G2 G3 G4 G5 G6 G7 G7 G7 G7 G7 G8 G9 G9 G1 G8 G9 G9 G1 G8 G9 G9 G1 G8 G9 G1 G8 G9 G1 G8 G9 G1 G8 G9 G1 G1 G8 G9 G1 G1 G1 G8 G9 G1 G1 G1 G1 G1 G1 G1 G1 G1	11 13 8	19 17
G36 0 6 64 G37 0 10 60 G38 G39 0 25 56 G1	11 13 8	19 17
G37 0 10 60 G38 G39 0 25 56 G1 G2 G3 G4 G5 G6 0 2 77 G7 0 3 71 G8 0 39 42 G9 0 5 74 G10 0 2 80 G11 Dredge Material	8	17
G38 G39 0 25 56 G1 G2 G3 G3 G4 G5 G6 0 2 77 G7 0 3 71 G8 0 39 42 G9 0 5 74 G10 0 2 80 G11 G12	8	
G39 0 25 56 G1		11
G1 G2 G3 G4 G5 G6 O 2 77 G7 O 3 71 G8 O 39 42 G9 O 5 74 G10 O 2 80 G11 G12		
G2 G3 G4 G5 G6 O 2 77 G7 O 3 71 G8 O 39 42 G9 O 5 74 G10 O 2 80 G11 Dredge Material	8	
G3 G4 G5 G6 O C7 G7 O C8 G8 O C9 G9 O C5 T4 G10 C11 C12 C12 C12 C13 C14 C15 C15 C15 C16 C17	8	
G4 G5 G6 Q7 Q7 Q7 Q7 Q8 Q9 Q9 Q0 S5 Q10 Q11 Dredge Material G12	8	
G5 G6 0 2 77 G7 0 3 71 G8 0 39 42 G9 0 5 74 G10 0 2 80 G11 Dredge Material	8	1
G6 0 2 77 G7 0 3 71 G8 0 39 42 G9 0 5 74 G10 0 2 80 Dredge Material	R	+
G7 0 3 71 G8 0 39 42 G9 0 5 74 G10 0 2 80 Dredge Material G12		13
G8 0 39 42 G9 0 5 74 G10 0 2 80 G11 Dredge Material G12		15
G9 0 5 74 G10 0 2 80 G11 Dredge Material G12		9
G10 0 2 80 G11 Dredge Material G12		14
Dredge Material G12		15
Dredge Material G12	- •	+
		+
Placement	14	16
Site C G13 0 25 45 G14 0 4 82		12
G15		+
G16 0 1 83	4	12
G17 0 2 78		16
G18	- '	+
G19		
G69 0 2 81	5	12
G70		+
G71 0 0 83	2	15
G72		+
G73 0 25 54	10	11
Dredge Material G50 0 10 59		21
Placement G51 0 2 75		12
Site E G52 0 2 72		12
G52 0 2 72 G53 0 5 77		9
G53 0 5 77	- 3	13
G55		++
G55 G56		+
GOO		1 !

URS

Appendix D

	G57	0	4	66	17	13
	G58					
	G74					
	G59	0	9	72	11	8
	G60	0	2	83	6	9
	G61					
 	G62					
Dredge Material Placement	G63					
Site D	G64	0	2	85	5	8
	G65	0	1	82	8	9
	G66					
	G75	0	1	88	3	8
	G76					

Draft Sediment Quality Assessment Appendix E Deep Core Analytical & Physicochemical Data **URS** 42907466/01/0

This page is intentionally blank

Wheatstone Project Appendix Q5 - Sediment Quality Assessment - Wheatstone Dredging Program

peen

Accreditation Category Perth Inorganics Perth Inorganics

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has

carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Position

Assistant Laboratory Manager Senior Chemist - Acid Sulphate Soils

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

:10f9	: Environmental Division Perth : Michael Sharp : 10 Hod Way Malaga WA Australia 6090	: michael.sharp@alsenviro.com : +61-8-9209 7655 : +61-8-9209 7600	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement : 08-JUL-2009 : 16-JUL-2009 : 35
Page	Laboratory Contact Address	E-mail Telephone Facsimile	QC Level Date Samples Received Issue Date No. of samples received No. of samples analysed
: EP0903726	: COFFEY GEOTECHNICS : MS CASSANDRA TURVEY : PO BOX 1810 WEST PERTH WA, AUSTRALIA 6872	: cassandra_turvey@coffey.com : +61 08 9347 0321 :	: GEOTHERD08668AA : : CASSIE TURVEY : WHEATSTONE NEARSHORE
Work Order	Client Contact Address	E-mail Telephone Facsimile	Project Order number C-O-C number Sampler Site

for This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved release.

This Certificate of Analysis contains the following information: General Comments

Analytical Results

NATA Accredited Laboratory 825 This document is issued in accreditation requirements. accordance with NATA

Accredited for compliance with

VORLD RECOGNISED

Stacey Hawkins

Scott James Signatories

Part of the ALS Laboratory Group **Environmental Division Perth**

10 Hod Way Malaga WA Australia 6090 Tel. +61-8-9209 7655 Fax. +61-8-9209 7600 www.alsglobal.com A Campbell Brothers Limited Company

A Campbell Brothers Limited Company

: 2 of 9 : EP0903726 : COFFEY GEOTECHNICS GEOTHERD08668AA Page Work Order Project Client

General Comments

APHA, AS and NEPM. In house as those published by the USEPA, The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by dient. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting Key:

This result is computed from individual analyte detections at or above the level of reporting

Poor metal matrix spike recoveries due to matrix effects. Confirmed by re-extraction and re-analysis.

٥. 1.

٥ 1.0

4. 0.

٥.1 د

٥. 1.

mg/kg

0.1

7439-97-6

: 3 of 9 : EP0903726 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

Project Client

Analytical Results								
Sub-Matrix: SOIL		Ö	Client sample ID	MC012	MC012	MC012 (comp)	MC012	QA/QC
				0.45-0.55m	0.9-1.0m	1.0-2.0m	4.0-4.1m	
	O	lient samp	Client sampling date / time	07-JUL-2009 15:00				
Compound	CAS Number	LOR	Unit	EP0903726-001	EP0903726-002	EP0903726-003	EP0903726-004	EP0903726-005
EA055: Moisture Content								
^ Moisture Content (dried @ 103°C)		1.0	%	21.3	15.3	17.2	21.6	16.2
EG005T: Total Metals by ICP-AES								
Antimony	7440-36-0	2	mg/kg	<5	<5	<5	<5	~ 2
Arsenic	7440-38-2	2	mg/kg	16	7	5	< 5	<5
Barium	7440-39-3	10	mg/kg	<10	20	40	140	10
Beryllium	7440-41-7	-	mg/kg		\	\	-	
Cadmium	7440-43-9	-	mg/kg		, ,	, ,	٧	
Chromium	7440-47-3	7	mg/kg	26	45	51	52	45
Cobalt	7440-48-4	7	mg/kg	11	8	41	19	ത
Copper	7440-50-8	ß	mg/kg	10	24	31	40	18
Iron	7439-89-6	20	mg/kg	26500	34600	44600	51600	40100
Lead	7439-92-1	ß	mg/kg	9	8	11	13	80
Manganese	7439-96-5	ß	mg/kg	403	186	462	1080	171
Molybdenum	7439-98-7	7	mg/kg	<2	<2	<2	<2	<2
Nickel	7440-02-0	7	mg/kg	10	18	26	36	20
Selenium	7782-49-2	വ	mg/kg	<5	<5	<5	~ 5	<5
Silver	7440-22-4	7	mg/kg	<2	<2	<2	<2	<2
Tin	7440-31-5	2	mg/kg	<5	<5	<5	<5	<5
Vanadium	7440-62-2	വ	mg/kg	49	25	92	82	62
Zinc	7440-66-6	22	mg/kg	18	23	31	50	26
EG035T: Total Recoverable Mercury by FIMS	by FIMS							

06-JUL-2009 15:00 EP0903726-010 6.9-7.0m 16.5 12 355 ٥. د **7** % **2** 7 63 63 06-JUL-2009 15:00 EP0903726-009 3.0-3.1m MC005 15.0 ٥. د 06-JUL-2009 15:00 MC005 (comp) EP0903726-008 <5 <5 <5 </pre>
20 20
< <1 </p>
< 1 </p>
< 15 </p>
34400 22.4 0.1 06-JUL-2009 15:00 EP0903726-007 0.9-1.0m 20.7 40. 1. 06-JUL-2009 15:00 EP0903726-006 0.45-0.55m MC005 28100 21.2 \$ \frac{1}{2} \quad \quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad \fra 365 ٥. 1. გ დ Client sample ID Client sampling date / time mg/kg Unit % LOR 0.1 1.0 9 20 7439-97-6 7440-41-7 7440-43-9 CAS Number 7440-50-8 7440-47-3 7440-48-4 7439-89-6 7439-92-1 7439-96-5 7439-98-7 7440-02-0 7782-49-2 7440-22-4 7440-66-6 EG035T: Total Recoverable Mercury by FIMS EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EA055: Moisture Content Analytical Results Sub-Matrix: SOIL Molybdenum Lead Manganese Cadmium Compound Antimony Barium Beryllium Vanadium Selenium Cobalt Copper Arsenic Nickel Silver

: 4 of 9 : EP0903726 : COFFEY GEOTECHNICS

Page Work Order

GEOTHERD08668AA

Project

Client

60.1

٥ 1.0

٥. 1.

٥.1 د0.1

60.1

mg/kg

0.1

7439-97-6

: 5 of 9 : EP0903726 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order Client

Application Automatical Part Automatical Part	Project : GEOTHERD08668AA	GEOTHERD08668AA							(ALS)
CAMERIAND CAMERIA CAMERIA MCOOCH (comp) MCOOCH MCOOCH	Analytical Results								
Cylent sampling date / time O5-JUL-2009 15:00 O5-JUL-2009 15:00 O6-JUL-2009 15:00<	Sub-Matrix: SOIL		Ö	ent sample ID	MC004 0.9-1.0m	MC004 (comp) 1-2m	MC004 3.9-4.0m	MC004 8.0-8.1	MC003 6.9-7.0m
45 Number LOR Unit EP0903726-014 EP0903726-013 EP0903726-014 1.0 % 14.2 14.2 18.9 16.3 740-38-0 5 45 45 45 45 45 740-38-2 5 mg/kg 7 5 14 45 45 740-38-2 5 mg/kg 7 5 14 45 45 740-38-2 10 mg/kg 7 5 14 45 45 740-38-2 10 mg/kg 6 20 20 80 41 740-41-7 1 mg/kg 7 5 3 8 41 42 42 42 42		Oli	ent sampl	ing date / time	05-JUL-2009 15:00	05-JUL-2009 15:00	05-JUL-2009 15:00	06-JUL-2009 15:00	05-JUL-2009 15:00
1.0 % 142 18.9 16.3 740-38-0 5 <5 <5 <5 740-38-0 5 14 <5 <5 740-38-0 5 mg/kg 7 5 14 <5 740-38-3 10 mg/kg 7 5 14 <5 740-38-3 10 mg/kg <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Sombound	CAS Number	LOR	Unit	EP0903726-011	EP 0903726-012	EP0903726-013	EP0903726-014	EP0903726-019
7440-36-0 5 442 142 183 163 7440-36-0 5 45 45 45 45 7440-38-0 5 mg/kg 7 6 80 71 45 80 7440-38-2 10 mg/kg 7 6 20 80 71 41 45 80 71 41	EA055: Moisture Content								
7440-36-0 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <6 <5 <5 <6 <5 <6 <5 <6 <5 <6 <5 <6 <5 <6 <5 <6 <5 <	Moisture Content (dried @ 103°C)	-	1.0	%	14.2	14.2	18.9	16.3	20.4
7440-36-0 5 -6 -7 <	G005T: Total Metals by ICP-AES								
7440-38-2 5 mg/kg 7 5 14 <5 7440-38-3 10 mg/kg 60 20 20 80 7440-43-3 1 mg/kg <1	ntimony	7440-36-0	5	mg/kg	<5	<5	<5	\$	<5
7440-39-3 10 mg/kg 60 20 20 80 7440-43-3 1 mg/kg <1	rsenic	7440-38-2	5	mg/kg	7	ശ	14	\$	<5
7440-41-7 1 mg/kg <1 <1 <1 7440-43-9 1 mg/kg <1	arium	7440-39-3	10	mg/kg	09	20	20	80	20
7440-43-9 1 mg/kg <1 <1 <1 <1 7400-43-3 2 mg/kg 34 36 20 38 7 740-48-4 2 mg/kg 7 6 13 8 8 8 740-40-60-8 8 8 8 8 13 8 8 13 8 13 14 14 12 12 6 6 6 6 6 7 7 14 14 14 14 14 14 14 14 14 14 14 16 14 16	eryllium	7440-41-7	-	mg/kg	7			₹	₹
7440-47-3 2 mg/kg 34 36 20 38 7 740-48-4 2 mg/kg 7 5 3 8 740-48-4 740-60-8 5 mg/kg 7 6 13 8 7 749-89-6 50 mg/kg 27100 24500 17300 27100 7 7439-86-5 5 mg/kg 6 6 7 7 7 7439-86-5 5 mg/kg 12 121 270 276 7 7 7439-86-7 2 mg/kg 12 12 6 15 7 7 7439-86-7 2 mg/kg 12 12 2 2 7 15 7 7 15 15 15 16 14 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	admium	7440-43-9	-	mg/kg	7	₹		₹	₹
7440-484 2 mg/kg 7 5 3 8 740-50-8 5 mg/kg 14 12 6 13 749-89-6 50 mg/kg 27100 27100 27100 7489-89-7 5 mg/kg 6 6 7 7489-80-7 5 mg/kg 129 121 270 276 7489-80-7 5 mg/kg <2	hromium	7440-47-3	7	mg/kg	34	36	20	38	46
7440-66-6 5 mg/kg 14 12 6 13 7439-89-6 50 mg/kg 27100 27100 27100 7439-92-1 5 mg/kg 129 121 270 7 7439-96-5 5 mg/kg 129 121 270 276 7 7439-96-7 5 mg/kg 12 12 270 276 2 2 2 2 2 2 15 2 2 2 2 2 15 2 15 2 45 2 <td>obalt</td> <td>7440-48-4</td> <td>7</td> <td>mg/kg</td> <td>7</td> <td>ß</td> <td>က</td> <td>80</td> <td>4</td>	obalt	7440-48-4	7	mg/kg	7	ß	က	80	4
7439-89-6 50 mg/kg 27100 <t< td=""><td>opper</td><td>7440-50-8</td><td>22</td><td>mg/kg</td><td>14</td><td>12</td><td>9</td><td>13</td><td>17</td></t<>	opper	7440-50-8	22	mg/kg	14	12	9	13	17
7439-92-1 5 mg/kg 6 6 5 7 7439-96-5 5 mg/kg 129 121 270 276 7439-96-7 2 mg/kg <2	uo	7439-89-6	20	mg/kg	27100	24500	17300	27100	37100
7439-96-5 5 mg/kg 129 121 270 276 7439-98-7 2 43 48 <td>ead</td> <td>7439-92-1</td> <td>5</td> <td>mg/kg</td> <td>9</td> <td>9</td> <td><5</td> <td>7</td> <td>8</td>	ead	7439-92-1	5	mg/kg	9	9	<5	7	8
7439-98-7 2 <2 <2 <2 7440-02-0 2 mg/kg 12 12 6 15 778249-2 5 mg/kg <5	langanese	7439-96-5	5	mg/kg	129	121	270	276	214
7440-02-0 2 mg/kg 12 12 6 15 15 7782-49-2 5 mg/kg <5	lolybdenum	7439-98-7	2	mg/kg	~	<2	<2	\$	<2
778249-2 5 mg/kg <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	ickel	7440-02-0	2	mg/kg	12	12	9	15	19
7440-224 2 mg/kg <2	elenium	7782-49-2	2	mg/kg	<5	<5	<5	\$	<5
7440-66-6 5 mg/kg <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <td>ilver</td> <td>7440-22-4</td> <td>2</td> <td>mg/kg</td> <td>~</td> <td><2</td> <td><2</td> <td>\$</td> <td><2</td>	ilver	7440-22-4	2	mg/kg	~	<2	<2	\$	<2
7440-66-6 5 mg/kg 52 50 43 48 7440-66-6 5 mg/kg 14 14 7 16	E	7440-31-5	22	mg/kg	<5	<5	<5	\$	<5 <5
7440-66-6 5 mg/kg 14 14 7 16	anadium	7440-62-2	വ	mg/kg	52	20	43	48	29
(G0351: Total Recoverable Mercury by FIMS	inc	7440-66-6	വ	mg/kg	41	41	۷	16	26
	G035T: Total Recoverable Mercu	ury by FIMS							

03-JUL-2009 15:00 EP0903726-024 0.45-0.55m 46 8 19 39100 4.8 ٥. د 10 167 **2** [^] [^] [^] ³ ³ ³ ³ ³ ³ **2** % % 6.5 6.5 04-JUL-2009 15:00 EP0903726-023 MC002 6.4-6.5m 24100 17.6 9 70 **⇔ ⇔ ⇔ ⇔** ٥. د 3 4 4 5 δ **4** 5 03-JUL-2009 15:00 EP0903726-022 2.9-3.0m MC002 25.3 0.1 03-JUL-2009 15:00 EP0903726-021 1.9-2.0m <5 <5 </pre>
140
14
4
7
17
17
36100 12.9 40. 1. 03-JUL-2009 15:00 EP0903726-020 1.0-1.1m MC002 <5 8 8 20 20 <1 43 43 17 17 33300 20.1 8 8 ٥. 1. Client sample ID Client sampling date / time mg/kg Unit % LOR 0.1 1.0 9 20 7439-97-6 7440-41-7 7440-43-9 CAS Number 7440-50-8 7440-47-3 7440-48-4 7439-89-6 7439-92-1 7439-96-5 7439-98-7 7440-02-0 7782-49-2 7440-22-4 7440-66-6 EG035T: Total Recoverable Mercury by FIMS EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EA055: Moisture Content Analytical Results Sub-Matrix: SOIL Molybdenum Lead Manganese Cadmium Compound Antimony Barium Beryllium Vanadium Selenium Cobalt Copper Arsenic Nickel Silver

: 6 of 9 : EP0903726 : COFFEY GEOTECHNICS

Page Work Order

GEOTHERD08668AA

Project

Client

: 7 of 9 : EP0903726 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

Client

Analytical Results								
Sub-Matrix: SOIL		Cliei	Client sample ID	MC001	MC001 (comp)	MC001	MC001	MC015
	9110	nilames tac	Client semuling date / time	0.9-1.0m	1.0-2.0m	3.4-3.5m	6.4-6.5m	0.45-0.55m
		on samplin	g date / mine	02-30E-2009 13:00	00-20E-2009 10:00	2000-200	20-20-20-20-20-20-20-20-20-20-20-20-20-2	02-30E-2009 13:00
Compound	CAS Number	LOR	Unit	EP0903726-025	EP0903726-026	EP0903726-027	EP0903726-028	EP0903726-030
EA055: Moisture Content								
^ Moisture Content (dried @ 103°C)	-	1.0	%	18.9	17.8	19.6	15.4	17.8
EG005T: Total Metals by ICP-AES								
Antimony	7440-36-0	2	mg/kg	<5	<5	<5	<5	<5
Arsenic	7440-38-2	2	mg/kg	ĸ	<5	80	9	-
Barium	7440-39-3	10	mg/kg	06	10	20	<10	<10
Beryllium	7440-41-7	-	mg/kg	~	^	^	۲	<u>۲</u>
Cadmium	7440-43-9	-	mg/kg	₽	^		₹	₹
Chromium	7440-47-3	2	mg/kg	61	52	29	34	20
Cobalt	7440-48-4	2	mg/kg	25	12	ဖ	2	2
Copper	7440-50-8	ည	mg/kg	25	39	41	16	9
Iron	7439-89-6	20	mg/kg	52000	46200	24200	27500	18200
Lead	7439-92-1	2	mg/kg	41	13	80	۷	<5
Manganese	7439-96-5	2	mg/kg	221	229	334	119	369
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	<2	<2
Nickel	7440-02-0	2	mg/kg	38	30	13	12	9
Selenium	7782-49-2	വ	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Tin	7440-31-5	2	mg/kg	<5	<5	<5	<5	<5 <
Vanadium	7440-62-2	2	mg/kg	84	25	47	49	36
Zinc	7440-66-6	2	mg/kg	39	38	18	15	12
EG035T: Total Recoverable Mercury by FIMS	y FIMS							

02-JUL-2009 15:00 EP0903726-035 QA/QC 18000 15.0 ٥. د \$\frac{1}{2}\$ \ \frac{1}{2}\$ \ \frac <5 370 7 ×2 % 36 02-JUL-2009 15:00 EP0903726-034 MC015 6.4-6.5m 17.0 293 293 293 293 41 41 41 41 ٥. د 02-JUL-2009 15:00 EP0903726-033 3.4-3.5m MC015 0.1 02-JUL-2009 15:00 MC015 (comp) EP0903726-032 1.0-2.0m 18.2 40. 1. 02-JUL-2009 15:00 EP0903726-031 MC015 0.9-1.0m 20600 18.4 <5 136 \$ \$ \$ \$ **6 6 6** ٥. 1. 60 4 4 4 6 °7 ∞ Client sample ID Client sampling date / time mg/kg Unit % LOR 0.1 1.0 9 20 7439-97-6 7440-41-7 7440-43-9 CAS Number 7440-50-8 7440-47-3 7440-48-4 7439-89-6 7439-92-1 7439-96-5 7439-98-7 7440-02-0 7782-49-2 7440-22-4 7440-66-6 EG035T: Total Recoverable Mercury by FIMS EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EA055: Moisture Content Analytical Results Sub-Matrix: SOIL Molybdenum Lead Manganese Cadmium Antimony Barium Beryllium Vanadium Selenium Cobalt Copper Arsenic Nickel Silver

Project

Client

: 8 of 9 : EP0903726 : COFFEY GEOTECHNICS

Page Work Order

GEOTHERD08668AA

: 9 of 9 : EP0903726 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

Analytical Results

Project

Client

| I | | | | ŀ | | | | l 03-JUL-2009 15:00 EP0903726-029 RINSATE 0.002 <0.001 <0.006 <0.0001 <0.0001 <0.0001 **0.006** 0.005 **0.005** <0.01 <0.001 <0.001 <0.01 **0.010** <0.0001 0.27 Client sample ID Client sampling date / time mg/L Unit mg/L LOR 7439-97-6 0.0001 0.001 0.001 0.001 0.001 0.00 0.001 0.01 0.001 7440-38-2 7440-41-7 7440-39-3 7440-43-9 7440-31-5 7440-62-2 7440-66-6 CAS Number 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7440-02-0 7782-49-2 7440-22-4 7439-89-6 7439-96-5 7439-98-7 EG035T: Total Recoverable Mercury by FIMS EG020T: Total Metals by ICP-MS Sub-Matrix: WATER Molybdenum Beryllium Barium Cadmium Chromium Manganese Vanadium Selenium Antimony Arsenic Copper Cobalt Nickel Silver Lead

Ē

A Campbell Brothers Limited Company

Environmental Division

CERTIFICATE OF ANALYSIS

: 1 of 7	ory Environmental Division Perth	: Michael Sharp	: 10 Hod Way Malaga WA Australia 6090		: michael.sharp@alsenviro.com	ine : +61-8-9209 7655	le : +61-8-9209 7600	el : NEPM 1999 Schedule B(3) and ALS QCS3 requirement		Date Samples Received : 08-JUL-2009	ate : 14-JUL-2009		No. of samples received : 23	No. of samples analysed : 23
: EP0903742 Page	: COFFEY GEOTECHNICS	: MS CASSANDRA TURVEY	: PO BOX 1810 Address	WEST PERTH WA, AUSTRALIA 6872	: cassandra_turvey@coffey.com	: +61 08 9347 0321	:	: GEOTHERD08668AA QC Level	1	: Date	: CASSIE TURVEY	: WHEATSTONE NEARSHORE	No. o	No. o
Work Order	Client	Contact	Address		E-mail	Telephone	Facsimile	Project	Order number	C-O-C number	Sampler	Site		Quote number

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for

This Certificate of Analysis contains the following information:

- General Comments
 - Analytical Results

NATA Accredited Laboratory 825 This document is issued in accreditation requirements. accordance with NATA

peen has

indicated below. Electronic signing

has been electronically signed by the authorized signatories

carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories
This document to

Assistant Laboratory Manager

Accreditation Category Perth Inorganics

> Accredited for compliance with ISO/IEC 17025.

> > VORLD RECOGNISED

Scott James Signatories

Environmental Division Perth Part of the ALS Laboratory Group

10 Hod Way Malaga WA Australia 6090 Tel. +61-8-9209 7655 Fax. +61-8-9209 7600 www.alsglobal.com

: 2 of 7 : EP0903742 : COFFEY GEOTECHNICS : GEOTHERD08668AA Page Work Order Project

Client

General Comments

and NEPM. In house AS APHA, The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0.00 the information was not provided by client.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Key

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Poor ICP AES matrix spike recovery due to matrix effects. Confirmed by re-extraction and re-analysis.

25-JUN-2009 15:00 EP0903742-005 0.8-0.9

 </l 14 ٥ 1. % % ŝ 7 و 9 ج 25-JUN-2009 15:00 EP0903742-004 0.45 - 0.55MC008 \$\left\{ \cdot \cd 15.3 ٥. 1. 26-JUN-2009 15:00 EP0903742-003 1.0-2.0 MC007 \$\frac{\lambda}{5}\$ \$\frac{\lambda}{5}\$ \$\frac{\lambda}{10}\$ \$\frac{\lam 10 453 453 65 65 65 72 72 72 72 73 0.1 26-JUN-2009 15:00 EP0903742-002 0.8-0.9 MC007 **0**.1 15.6 26-JUN-2009 15:00 EP0903742-001 0.45-0.55 MC007 15.6 ٥. 1. Client sample ID Client sampling date / time mg/kg Unit % LOR 1.0 0.1 9 20 2 7439-97-6 7440-41-7 7440-43-9 7440-50-8 7439-89-6 1 CAS Number 7440-47-3 7782-49-2 7440-48-4 7439-92-1 7439-96-5 7439-98-7 7440-02-0 7440-22-4 7440-66-6 EG035T: Total Recoverable Mercury by FIMS EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EA055: Moisture Content Analytical Results Sub-Matrix: SOIL Molybdenum Cadmium Manganese Compound Barium Beryllium Vanadium Selenium Antimony Cobalt Copper Arsenic Nickel Silver Lead

Project Client

: 3 of 7 : EP0903742 : COFFEY GEOTECHNICS

Page Work Order

GEOTHERD08668AA

٥. 1.

٥. 1.

٥ 1.

٥. 1.

٥. 1.

mg/kg

0.1

7439-97-6

Analytical Results Sub-Matrix: soll								1
Sub-Matrix: SOIL								
		Clie	Client sample ID	MC008 2.0-3.0	MC008 3.8-3.9	MC008 7.0-7.1	MC011	MC011
	Clie	nt sampling	Client sampling date / time	25-JUN-2009 15:00	25-JUN-2009 15:00	25-JUN-2009 15:00	27-JUN-2009 15:00	27-JUN-2009 15:00
Compound CA	CAS Number	LOR	Unit	EP0903742-006	EP0903742-007	EP0903742-008	EP0903742-009	EP0903742-010
EA055: Moisture Content								
^ Moisture Content (dried @ 103°C)	-	1.0	%	12.6	17.8	18.8	30.5	18.8
EG005T: Total Metals by ICP-AES								
Antimony	7440-36-0	2	mg/kg	₹2	<5	\$	\$	\$
Arsenic	7440-38-2	2	mg/kg	^ 5	ß	9	19	<5
Barium	7440-39-3	10	mg/kg	<10	30	10	<10	20
Beryllium	7440-41-7	-	mg/kg	7	₹	₹	₹	₹
Cadmium	7440-43-9	-	mg/kg	₹	₹	7	<u>^</u>	₹
Chromium	7440-47-3	2	mg/kg	46	44	34	31	20
Cobalt	7440-48-4	2	mg/kg	80	80	8	13	12
Copper	7440-50-8	2	mg/kg	19	23	7	12	24
Iron	7439-89-6	20	mg/kg	35000	34000	19800	29700	48100
Pead	7439-92-1	2	mg/kg	8	8	<5	7	12
Manganese	7439-96-5	2	mg/kg	207	158	88	480	281
Molybdenum	7439-98-7	2	mg/kg	\$	\$	<2	<2	\$
Nickel	7440-02-0	2	mg/kg	16	17	6	12	26
Selenium	7782-49-2	2	mg/kg	\$	~ 5	<5	<5	\$
Silver	7440-22-4	2	mg/kg	<2	ဧ	^	<2	~
Tin	7440-31-5	2	mg/kg	\$	<5	<5	<5	\$
Vanadium	7440-62-2	2	mg/kg	89	69	40	55	91
Zinc	7440-66-6	2	mg/kg	18	21	12	24	32

A Campbell Brothers Limited Company

29-JUN-2009 15:00 EP0903742-015 0.8-0.9 10 <1 <1 11 11 16 33200 ٥. د 17.7 306 45 7 **2** % 29 29 29-JUN-2009 15:00 EP0903742-014 0.45 - 0.55MC013 17.3 ٥. د 28-JUN-2009 15:00 EP0903742-013 MC011 7.5-7.55 0.1 28-JUN-2009 15:00 EP0903742-012 3.5-3.6 16.3 40. 1. 9 28-JUN-2009 15:00 EP0903742-011 MC011 2.0-3.0 20.3 8 ٥. 1. Client sample ID Client sampling date / time mg/kg Unit % LOR 0.1 1.0 9 20 7439-97-6 7440-41-7 7440-43-9 CAS Number 7440-50-8 7440-47-3 7440-48-4 7439-89-6 7439-92-1 7439-96-5 7439-98-7 7440-02-0 7782-49-2 7440-22-4 7440-66-6 EG035T: Total Recoverable Mercury by FIMS EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EA055: Moisture Content Analytical Results Sub-Matrix: SOIL Molybdenum Lead Manganese Cadmium Antimony Barium Beryllium Vanadium Selenium Copper Cobalt Arsenic Nickel Silver

: 5 of 7 : EP0903742 : COFFEY GEOTECHNICS

Page Work Order

GEOTHERD08668AA

Project

Client

: 6 of 7 : EP0903742 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

Project Client

Analytical Results								
Sub-Matrix: SOIL		Olie	Client sample ID	MC013	MC013	MC013	MC014	MC014
				1.0-2.0	3.4-3.5	6.9-7.0	0.45-0.55	0.8-0.9
	Cli	ient sampli.	Client sampling date / time	29-JUN-2009 15:00	29-JUN-2009 15:00	30-JUN-2009 15:00	30-JUN-2009 15:00	30-JUN-2009 15:00
Compound	CAS Number	LOR	Unit	EP0903742-016	EP0903742-017	EP0903742-018	EP0903742-019	EP0903742-020
EA055: Moisture Content								
^ Moisture Content (dried @ 103°C)		1.0	%	16.5	19.1	13.2	20.6	16.4
EG005T: Total Metals by ICP-AES								
Antimony	7440-36-0	2	mg/kg	<5	<5	<5	\$	<5
Arsenic	7440-38-2	2	mg/kg	ю	<5	9	<5	<5
Barium	7440-39-3	10	mg/kg	09	200	<10	80	20
Beryllium	7440-41-7	Ψ.	mg/kg	\	₹	^	2	7
Cadmium	7440-43-9	-	mg/kg		₹	^	۲	5
Chromium	7440-47-3	2	mg/kg	55	26	41	54	89
Cobalt	7440-48-4	2	mg/kg	15	33	9	6	15
Copper	7440-50-8	D.	mg/kg	32	38	11	26	20
Iron	7439-89-6	20	mg/kg	48200	47900	32800	38400	51600
Lead	7439-92-1	2	mg/kg	14	41	æ	10	14
Manganese	7439-96-5	2	mg/kg	373	1740	122	207	199
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	<2	<2
Nickel	7440-02-0	2	mg/kg	30	38	41	22	30
Selenium	7782-49-2	2	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Tin	7440-31-5	2	mg/kg	<5	<5	<5	<5	<5
Vanadium	7440-62-2	2	mg/kg	77	78	09	64	82
Zinc	7440-66-6	5	mg/kg	41	20	20	32	41
EG035T: Total Recoverable Mercury by FIMS	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

A Campbell Brothers Limited Company

| | 30-JUN-2009 15:00 EP0903742-023 MC014 6.9-7.0 ٥. د 30-JUN-2009 15:00 EP0903742-022 3.4-3.5 20.9 9 559 30 45 45 ٥.1 م **1.0-2.0** 30-JUN-2009 15:00 EP0903742-021 MC014 42600 16.5 65
 62
 64
 65
 65
 66
 66 **6**0.1 36 A5 A2 A3 Client sample ID Client sampling date / time mg/kg Unit % LOR 0.1 1.0 9 20 2 7439-97-6 -7440-31-5 7440-62-2 CAS Number 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7439-89-6 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-96-5 7439-98-7 7440-02-0 7782-49-2 7440-22-4 7440-66-6 EG035T: Total Recoverable Mercury by FIMS Mercury EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EA055: Moisture Content Analytical Results Sub-Matrix: SOIL Molybdenum Manganese Barium Beryllium Cadmium Chromium Compound Vanadium Selenium Antimony Arsenic Copper Cobalt Nickel Silver Lead <u>2</u> 를

Project

Client

: 7 of 7 : EP0903742 : COFFEY GEOTECHNICS

Page Work Order GEOTHERD08668AA

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

:1 of 3	Environmental Division Perth Michael Sharp : 10 Hod Way Malaga WA Australia 6090	michael.sharp@alsenviro.com +61-8-9209 7655 +61-8-9209 7600	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement	: 19-AUG-2009 : 20-AUG-2009	4 4
Page	Laboratory Contact Address	E-mail Telephone Facsimile	QC Level	Date Samples Received Issue Date	No. of samples received No. of samples analysed
: EP0904656	: COFFEY GEOTECHNICS : MS CASSANDRA TURVEY : PO BOX 1810 WEST PERTH WA, AUSTRALIA 6872	: cassandra_turvey@coffey.com : +61 08 9347 0321 :	Ex EP0903726 GEOTHERD08668AA	<u> </u>	
Work Order	Client Contact Address	E-mail Telephone Facsimile	Project Order number	C-O-C number Sampler	Site Quote number

for This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved release.

This Certificate of Analysis contains the following information: General Comments

Analytical Results

Signatories

NATA Accredited Laboratory 825 This document is issued in accordance with NATA

accreditation requirements.

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has Accreditation Category Perth Inorganics Assistant Laboratory Manager carried out in compliance with procedures specified in 21 CFR Part 11. Scott James Signatories

peen

Accredited for compliance with ISO/IEC 17025. VORLD RECOGNISED

10 Hod Way Malaga WA Australia 6090 Tel. +61-8-9209 7655 Fax. +61-8-9209 7600 www.alsglobal.com Part of the ALS Laboratory Group **Environmental Division Perth** A Campbell Brothers Limited Company

A Campbell Brothers Limited Company

Ex EP0903726 GEOTHERD08668AA : 2 of 3 : EP0904656 : COFFEY GEOTECHNICS Page Work Order Client Project

General Comments

APHA, AS and NEPM. In house as those published by the USEPA, The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by dient.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting Key:

This result is computed from individual analyte detections at or above the level of reporting

Poor metal matrix spike recoveries due to matrix effects.

٥ 1.0

٥.1 د

٥.1 د

٥ 1.

mg/kg

0.1

7439-97-6

: 3 of 3 : EP0904656 : COFFEY GEOTECHNICS : Ex EP0903726 GEOTHERD08668AA

Page Work Order

Project Client

Analytical Results								
Sub-Matrix: SOIL		Ö	Client sample ID	MC003	MC003	MC003	MC003	-
				0.45-0.55m	0.9-1.0m	(comp) 1-2m	3.4-3.5m	
	CI	Client sampling	oling date / time	04-JUL-2009 15:00	04-JUL-2009 15:00	04-JUL-2009 15:00	04-JUL-2009 15:00	1
Compound	CAS Number	LOR	Unit	EP0904656-001	EP0904656-002	EP0904656-003	EP0904656-004	1
EA055: Moisture Content								
^ Moisture Content (dried @ 103°C)	-	1.0	%	16.2	16.1	17.1	18.7	-
EG005T: Total Metals by ICP-AES								
Antimony	7440-36-0	5	mg/kg	<5	<5	<5	<5	
Arsenic	7440-38-2	2	mg/kg	9	2	<5	<5	
Barium	7440-39-3	10	mg/kg	30	40	50	80	
Beryllium	7440-41-7	-	mg/kg		^	^	-	
Cadmium	7440-43-9	-	mg/kg		1>	1,	۲	
Chromium	7440-47-3	2	mg/kg	51	51	26	65	-
Cobalt	7440-48-4	7	mg/kg	10	12	4-	17	-
Copper	7440-50-8	22	mg/kg	20	72	26	39	-
Iron	7439-89-6	20	mg/kg	39000	40800	45600	54500	-
Lead	7439-92-1	ß	mg/kg	80	6	10	17	
Manganese	7439-96-5	ß	mg/kg	152	199	223	671	
Molybdenum	7439-98-7	7	mg/kg	<2	<2	<2	<2	-
Nickel	7440-02-0	7	mg/kg	21	25	29	35	-
Selenium	7782-49-2	ß	mg/kg	<5	<5	<5	<5	-
Silver	7440-22-4	7	mg/kg	<2	<2	<2	<2	-
Tin	7440-31-5	ß	mg/kg	<5	<5	<5	<5	-
Vanadium	7440-62-2	2	mg/kg	82	7.1	83	85	
Zinc	7440-66-6	2	mg/kg	26	31	37	54	-
EG035T: Total Recoverable Mercury by FIMS	by FIMS							

Environmental Division

CERTIFICATE OF ANALYSIS

:10f9	: Environmental Division Perth	: Michael Sharp	: 10 Hod Way Malaga WA Australia 6090		: michael.sharp@alsenviro.com	: +61-8-9209 7655	: +61-8-9209 7600	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement		: 14-JUL-2009	: 22-JUL-2009		: 30	: 30
Page	Laboratory	Contact	Address		E-mail	Telephone	Facsimile	QC Level		Date Samples Received	Issue Date		No. of samples received	No. of samples analysed
: EP0903870	COFFEY GEOTECHNICS	: MS CASSANDRA TURVEY		WEST PERTH WA, AUSTRALIA 6872	: cassandra_turvey@coffey.com	: +61 08 9347 0321	1.	: GEOTHERD08668AA	1	1	: CASSIE TURVEY	: WHEATSTONE NEARSHORE		: EN/007/09
Work Order	Client	Contact	Address		E-mail	Telephone	Facsimile	Project	Order number	C-O-C number	Sampler	Site		Quote number

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for

This Certificate of Analysis contains the following information:

- General Comments
 - Analytical Results

NATA Accredited Laboratory 825 This document is issued in accordance with NATA

peen has

indicated below. Electronic signing

Accreditation Category Perth Inorganics

Assistant Laboratory Manager

Signatories
This document has been electronically signed by the authorized signatories carried out in compliance with procedures specified in 21 CFR Part 11. Scott James Signatories accreditation requirements.

Accredited for compliance with

ISO/IEC 17025.

VORLD RECOGNISED

Part of the ALS Laboratory Group **Environmental Division Perth**

10 Hod Way Malaga WA Australia 6090 Tel. +61-8-9209 7655 Fax. +61-8-9209 7600 www.alsglobal.com

COFFEY GEOTECHNICS GEOTHERD08668AA 2 of 9 EP0903870 Page Work Order Project Client

General Comments

AS and NEPM. In house APHA, The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primany sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by dient.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Key:

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- Ag not contained in LCS
- LOR raised due to high TDS
- Poor metal matrix spike recoveries for Antinomy due to matrix effects.

A Campbell Brothers Limited Company

12-JUL-2009 15:00 EP0903870-005 13.4-13.5 13100 ٥ 1. 17.2 \$ 92 \$ 4 Ÿ Ÿ δ 5 12-JUL-2009 15:00 EP0903870-004 MC009 8.9-9.0 <5
<55
<65
<10
<10
<11
<13
</pre>
25
39000 12.2 ٥. 1. 11-JUL-2009 15:00 EP0903870-003 MC009 3.9-4.0 <5 <5 <6 </pre>
60 60
1 1
17
17
29
53000 21.5 0.1 11-JUL-2009 15:00 MC009 (comp) EP0903870-002 2.0-3.0 <5
<65
<65
</pre>
<65
</p>
<67
</p>
<7
</ **0**.1 15.7 11-JUL-2009 15:00 EP0903870-001 MC009 1.0-1.1 <5</p>
7
7
50
60
<1</p>
<1</p>
<4</p>
4
<4</p>
<4</p> 16.1 137 2 **t** & 2 & **2** ٥. 1. Client sample ID Client sampling date / time mg/kg Unit % LOR 1.0 0.1 9 20 2 7439-97-6 7440-41-7 7440-43-9 7440-50-8 7439-89-6 1 CAS Number 7440-47-3 7782-49-2 7440-48-4 7439-92-1 7439-96-5 7439-98-7 7440-02-0 7440-22-4 7440-66-6 EG035T: Total Recoverable Mercury by FIMS EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EA055: Moisture Content Analytical Results Sub-Matrix: SOIL Molybdenum Cadmium Manganese Compound Barium Beryllium Vanadium Selenium Antimony Cobalt Copper Arsenic Nickel Silver Lead

Project Client

: 3 of 9 : EP0903870 : COFFEY GEOTECHNICS

Page Work Order

GEOTHERD08668AA

0.1

٥. 1.

٥. 1.

٥. 1.

٥. 1.

mg/kg

0.1

7439-97-6

Vanadium

Selenium

Nickel Silver

: 4 of 9 : EP0903870 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

Project

Client

3.45-3.55 09-JUL-2009 15:00 EP0903870-010 **30** % Ÿ 5 **1.0-2.0** 09-JUL-2009 15:00 MC010 (comp) EP0903870-009 MC010 0.9-1.0 09-JUL-2009 15:00 EP0903870-008 \$\frac{5}{5}\$
\$\frac{5}{5}\$
\$\frac{5}{20}\$
\$\frac{1}{20}\$
\$\frac{1}{2}\$
\$\frac{1}{2}\$ **0.45-0.55** 09-JUL-2009 15:00 EP0903870-007 MC010 MC009 QA/QC 11-JUL-2009 15:00 EP0903870-006 \$\leqsigma\$ \leqsigma\$ 19.9 Client sample ID Client sampling date / time mg/kg Unit % LOR 0. 9 20 2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-96-5 1 7440-38-2 CAS Number 7440-66-6 7439-89-6 7439-92-1 7439-98-7 7440-02-0 7782-49-2 7440-22-4 7440-31-5 EG035T: Total Recoverable Mercury by FIMS Mercury EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EA055: Moisture Content Analytical Results Sub-Matrix: SOIL Molybdenum Manganese

Chromium Beryllium Cadmium

Copper

Lead

<u>0</u>

Cobalt

Antimony

Arsenic

Barinm

A Campbell Brothers Limited Company

08-JUL-2009 15:00 EP0903870-015 0.9-1.0 <5
<5
240
240
17
17
17
10
830
28 16.6 ٥. 1. ŝ 7 76 76 08-JUL-2009 15:00 EP0903870-014 0.45 - 0.55MC006 <5
<55
<70
20
20
</pre>
<1 < 1 < 16
</p>
43300 23.7 ٥. 1. 08-JUL-2009 15:00 EP0903870-013 MC012 9.4-9.5 <5
170
170
<1
47
47
26
28
40800</pre> 16 1400 22 23 45 25 25 25 25 27 37 35 21.6 0.1 11-JUL-2009 15:00 EP0903870-012 10.9-11.0 MC010 45
13
13
14
15
17
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18< \$5 228 \$228 \$15 \$5 \$5 \$5 \$5 \$5 \$7 **0**.1 15.4 09-JUL-2009 15:00 EP0903870-011 MC010 7.9-8.0 18.0 \$ **7** \$ **7** \$ **7** \$ **6** \$ **7** \$ **9 9 1** \$ **1** ٥. 1. Client sample ID Client sampling date / time mg/kg Unit % LOR 1.0 0.1 9 20 2 7439-97-6 7440-41-7 7440-43-9 1 CAS Number 7440-47-3 7440-50-8 7782-49-2 7440-48-4 7439-89-6 7439-92-1 7439-96-5 7439-98-7 7440-02-0 7440-22-4 7440-66-6 EG035T: Total Recoverable Mercury by FIMS EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EA055: Moisture Content Analytical Results Sub-Matrix: SOIL Molybdenum Cadmium Manganese Compound Barium Beryllium Vanadium Antimony Selenium Copper Cobalt Arsenic Nickel Silver Lead

: 5 of 9 : EP0903870 : COFFEY GEOTECHNICS

Page Work Order

GEOTHERD08668AA

Project Client

: 6 of 9 : EP0903870 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

Analytical Results								
Sub-Matrix: SOIL		Ö	Client sample ID	MC006 3.26-3.36	MC006 9.9-10.0	MU021 0.45-0.55	MU021	MU021 (comp) 1.0-2.0
	Cli	ent sampl	Client sampling date / time	08-JUL-2009 15:00	09-JUL-2009 15:00	13-JUL-2009 15:00	13-JUL-2009 15:00	13-JUL-2009 15:00
Compound	CAS Number	LOR	Unit	EP0903870-016	EP0903870-017	EP0903870-019	EP0903870-020	EP0903870-021
EA055: Moisture Content								
^ Moisture Content (dried @ 103°C)	1	1.0	%	14.0	18.4	21.5	16.9	18.2
EG005T: Total Metals by ICP-AES								
Antimony	7440-36-0	2	mg/kg	\$	\$	\$	\$	\$
Arsenic	7440-38-2	2	mg/kg	9	41	18	7	80
Barium	7440-39-3	10	mg/kg	20	06	10	20	20
Beryllium	7440-41-7	-	mg/kg	₹	₹	₹	₹	₹
Cadmium	7440-43-9	-	mg/kg	₹	₹	₹	1>	₹
Chromium	7440-47-3	2	mg/kg	46	52	23	49	47
Cobalt	7440-48-4	2	mg/kg	6	18	10	12	-
Copper	7440-50-8	ß	mg/kg	20	32	7	20	20
Iron	7439-89-6	20	mg/kg	33000	41800	22700	30000	36700
Lead	7439-92-1	22	mg/kg	9	41	<5	7	6
Manganese	7439-96-5	22	mg/kg	461	639	438	171	183
Molybdenum	7439-98-7	7	mg/kg	<2	<2	<2	<2	<2
Nickel	7440-02-0	7	mg/kg	20	24	6	21	23
Selenium	7782-49-2	2	mg/kg	\	<5	<5	<5	\$
Silver	7440-22-4	7	mg/kg	\$	<2	<2	<2	42
Tin	7440-31-5	2	mg/kg	\$	\$	\$	<5	<5
Vanadium	7440-62-2	22	mg/kg	62	91	39	101	28
Zinc	7440-66-6	2	mg/kg	27	21	19	26	32
EG035T: Total Recoverable Mercury by FIMS	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

13-JUL-2009 15:00 EP0903870-026 0.45 - 0.55<5</p>
100
100
110
14
49
30
39700 ٥ 1. 18.2 11 \$ გ გ 7 12-JUL-2009 15:00 EP0903870-025 MU025 3.4-3.5 15.6 ٥. 1. 12-JUL-2009 15:00 MU025 (comp) EP0903870-024 1.0-2.0 19.4 0.1 12-JUL-2009 15:00 EP0903870-023 0.9-1.0 6 6 62 63 39 43000 455 19.8 10 786 786 72 72 75 75 75 75 75 75 75 78 84 84 . 12-JUL-2009 15:00 EP0903870-022 0.45-0.55 MU025 <5</p>
13
14
44
13
18
32400 22.7 8 **63** % % % **69** % ٥. 1. Client sample ID Client sampling date / time mg/kg Unit % LOR 0.1 1.0 9 20 2 7439-97-6 7440-41-7 7440-43-9 7440-50-8 7439-89-6 1 CAS Number 7440-47-3 7782-49-2 7440-48-4 7439-92-1 7439-96-5 7439-98-7 7440-02-0 7440-22-4 7440-66-6 EG035T: Total Recoverable Mercury by FIMS EG005T: Total Metals by ICP-AES ^ Moisture Content (dried @ 103°C) EA055: Moisture Content Analytical Results Sub-Matrix: SOIL Molybdenum Cadmium Manganese Compound Barium Beryllium Vanadium Selenium Antimony Cobalt Copper Arsenic Nickel Silver Lead

A Campbell Brothers Limited Company

: 7 of 9 : EP0903870 : COFFEY GEOTECHNICS

Page Work Order

GEOTHERD08668AA

Project Client

: 8 of 9 : EP0903870 : COFFEY GEOTECHNICS : GEOTHERD08668AA

Page Work Order

latrix: SOIL sound sound sound star content (dried listure listur	Work Order	COEEEX DECTECHNICS	0012							8
Colori Sample D	Project	GEOTHERD08668A	N A							(ALS)
Contant CAS Number LOR Mulo23 Mulo23 (comp) Mulo23 (comp) Mulo23 (comp) Mulo23 (comp) Mulo23 (comp) Mulo23 (comp) 3.5.36 1.2m 1.2m 1.2m 1.3.mu.2009 (sco) 1.3.uu.2009 (sco) 1.	Analytical Resu	ılts								
und CAS Number LOR LINI EP0803870-027 EP0803870-028 EP080387	Sub-Matrix: SOIL			Clié	ent sample ID	MU023	MU023 (comp)	MU023 3.5-3.6	MC006 (comp)	
Moisture Content			Cii	ent samplii	ng date / time	13-JUL-2009 15:00	13-JUL-2009 15:00	13-JUL-2009 15:00	13-JUL-2009 15:00	1
Noisture Content 1	Compound		CAS Number	LOR	Unit	EP0903870-027	EP0903870-028	EP0903870-029	EP0903870-030	1
1	EA055: Moisture Co	ntent								
Time	^ Moisture Content (dr	ried @ 103°C)	1	1.0	%	18.2	14.3	16.4	15.8	1
ryy 7440.360 5 mg/kg <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 mg/kg <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	EG005T: Total Metal	Is by ICP-AES								
Homeway 5 65 65 65 65 65 65 65 65 7440-38-0 7440-38-3 10 mg/kg 120 65 60 20 20 7440-49-1 7440-41-7 1 mg/kg <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Antimony		7440-36-0	5	mg/kg	<5	\$	\$	<5	-
Mark	Arsenic		7440-38-2	2	mg/kg	<5	<5	12	<5	ı
mm 7440-41-7 1 mg/kg <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	3arium		7440-39-3	10	mg/kg	120	330	09	20	1
mm 7440-43-9 1 mg/kg <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	3eryllium		7440-41-7	-	mg/kg		7	7	7	1
um 7440-47-3 2 mg/kg 57 62 19 48 9 9 48 9 48 9 48 9 48 9 48 9 48 9 48 9 48 9 48 48 40 48 40	Sadmium		7440-43-9	_	mg/kg	₹	7	7	7	-
TA40-48-4 2 mg/kg 20 18 4 10 10 10 10 10 10 10	Chromium		7440-47-3	2	mg/kg	57	62	19	48	-
r 7440-50-8 5 mg/kg 33 36 13 20 7 nase 7439-89-6 50 mg/kg 13 10 <5	Sobalt		7440-48-4	2	mg/kg	20	18	4	10	1
nase 7439-89-6 50 mg/kg 13 4600 14200 35300 7 nase 7439-80-1 5 mg/kg 13 10 <5	Sopper		7440-50-8	2	mg/kg	33	36	13	20	-
nese 7439-92-1 5 mg/kg 13 10 <5 7 7 Jenum 7439-96-5 5 mg/kg <2 <2 <2 <2 7 22 Jenum 7430-96-5 5 mg/kg <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	ron		7439-89-6	20	mg/kg	39500	44600	14200	35300	1
nese 7439-96-5 5 mg/kg 370 977 369 357 7 Jenum 7439-96-7 2 mg/kg <2	ead		7439-92-1	2	mg/kg	13	10	<5	7	1
Jenum 7439-38-7 2 mg/kg <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Manganese		7439-96-5	2	mg/kg	370	977	369	357	1
um 7440-02-0 2 mg/kg <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	Molybdenum		7439-98-7	2	mg/kg	<2	42	^2	<2	1
um 778249-2 5 mg/kg <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	Nickel		7440-02-0	2	mg/kg	30	31	7	22	1
7440-224 2 42 <t< td=""><td>Selenium</td><td></td><td>7782-49-2</td><td>2</td><td>mg/kg</td><td>~</td><td><5</td><td><5</td><td><5</td><td>1</td></t<>	Selenium		7782-49-2	2	mg/kg	~	<5	<5	<5	1
ddum 7440-31-5 5 mg/kg 69 74 65 65 65 67 74 67 74 67 74 67 74 67 74 67 74 67 74 67 74 67 74 67 74	Silver		7440-22-4	2	mg/kg	<2	42	^2	<2	1
ddum 7440-62-2 5 mg/kg 69 74 34 67 77 35T: Total Recoverable Mercury by FIMS aury 7439-97-6 0.1 mg/kg <0.1	Tin		7440-31-5	2	mg/kg	<5	<5	<5	<5	1
35T: Total Recoverable Mercury by FIMS 7440-66-6 5 mg/kg 38 40 10 27 77 7439-97-6 0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <	Vanadium		7440-62-2	2	mg/kg	69	74	34	29	1
7439-97-6 0.1 mg/kg <-0.1 <-0.1 <-0.1	Zinc		7440-66-6	2	mg/kg	38	40	10	27	1
7439-97-6 0.1 mg/kg <0.1 <0.1 <0.1 <0.1 <0.1	EG035T: Total Reco	pverable Mercury by Fil	MS							
	Mercury		7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	1

A Campbell Brothers Limited Company

1 | | | | | 1 | 1 1 | 1 | 1 09-JUL-2009 15:00 EP0903870-018 <0.005
<0.006
<0.006
<0.007
<0.00 0.013 <0.05 <0.05 **0.027** 2.41 <0.0001 Client sample ID Client sampling date / time Unit mg/L 7439-97-6 0.0001 LOR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.01 0.01 7440-36-0 7440-38-2 7440-41-7 7440-39-3 7440-43-9 7440-48-4 7440-50-8 7439-92-1 7439-96-5 7782-49-2 7440-31-5 7440-62-2 7440-66-6 CAS Number 7439-89-6 7439-98-7 7440-02-0 EG035T: Total Recoverable Mercury by FIMS EG020T: Total Metals by ICP-MS Analytical Results Sub-Matrix: WATER Lead Manganese Molybdenum Barium Cadmium Chromium Arsenic Beryllium Vanadium Selenium Antimony Copper Nickel Cobalt Ë

798	Chevron	Australia	Ptv Ltd

Client Project

: 9 of 9 : EP0903870 : COFFEY GEOTECHNICS

Page Work Order GEOTHERD08668AA

Draft Sediment Quality Assessment Appendix F Particle Size Distribution Analysis 42907466/01/0

This page is intentionally blank
This page is intentionally blank

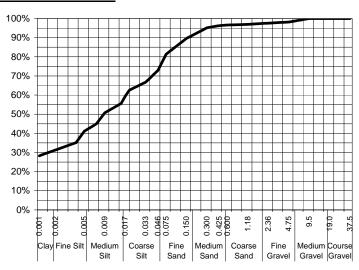
Wheatstone Project Appendix Q5 - Sediment Quality Assessment - Wheatstone Dredging Program

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

DATE REPORTED: 15-Oct-2009 CLIENT: Stuart Taylor


URS Australia (NSW) Pty Ltd DATE RECEIVED: **COMPANY:** 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915491-002 / PSD

> North Sydney, NSW, Australia 2060

SC11_0.0-0.15_26/9/09 **PROJECT:** 42907100 SAMPLE ID:

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	98%
2.36	98%
1.18	97%
0.600	97%
0.425	96%
0.300	95%
0.150	90%
0.075	81%
Particle Size (microns)	
46	73%
33	67%
17	59%
9	51%
5	41%
3	35%
1	28%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Silt, clay & shell **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

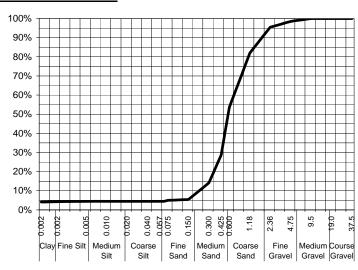
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915491-005 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G20 26/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	99%
2.36	95%
1.18	82%
0.600	54%
0.425	29%
0.300	14%
0.150	5%
0.075	5%
Particle Size (microns)	
57	4%
40	4%
20	4%
10	4%
5	4%
4	4%
2	4%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, fines & shell **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

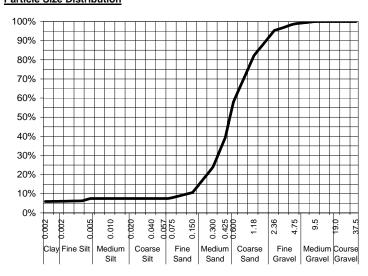
ALS Environmental

Newcastle, NSW

SAMPLE ID:

DATE REPORTED: 15-Oct-2009 CLIENT: Stuart Taylor

URS Australia (NSW) Pty Ltd DATE RECEIVED: **COMPANY:** 1-Oct-2009


REPORT NO: ADDRESS: Level 3, 116 Miller Street

North Sydney, NSW, Australia

2060

PROJECT: 42907100 EB0915491-006 / PSD

Particle Size Distribution

G21_26/9/09	
	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	99%
2.36	95%
1.18	82%
0.600	58%
0.425	39%
0.300	24%
0.150	11%
0.075	8%
Particle Size (microns)	
57	8%
40	8%
20	8%
10	8%
5	8%
4	6%
2	6%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, fines & shell **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

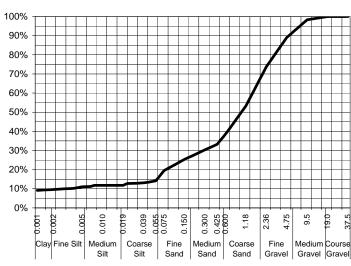
Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915491-008 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G22 26/9/09

Particle Size Distribution

Particle Size (mm)	Percent Passing
19.0	100%
9.5	98%
4.75	89%
2.36	74%
1.18	53%
0.600	38%
0.425	33%
0.300	30%
0.150	25%
0.075	20%
Particle Size (microns)	
55	14%
39	13%
19	12%
10	12%
5	11%
4	10%
1	9%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, fines & shell **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

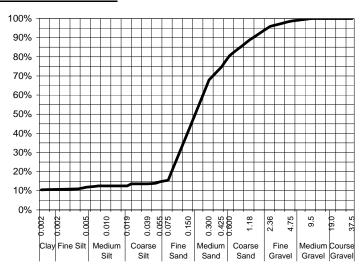
Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor


URS Australia (NSW) Pty Ltd DATE RECEIVED: **COMPANY:** 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915491-010 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G28 26/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	99%
2.36	96%
1.18	89%
0.600	81%
0.425	75%
0.300	68%
0.150	41%
0.075	15%
Particle Size (microns)	
55	15%
39	14%
19	13%
10	13%
5	12%
4	11%
2	11%
·	

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, fines & shell **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

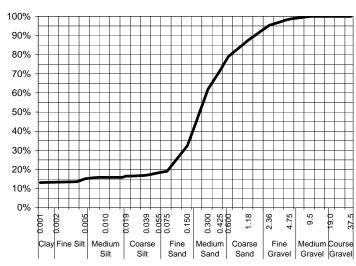
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915491-012 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G26 26/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	99%
2.36	95%
1.18	88%
0.600	79%
0.425	72%
0.300	62%
0.150	32%
0.075	19%
Particle Size (microns)	
55	18%
39	17%
19	17%
10	16%
5	15%
4	14%
1	13%

Samples analysed as received.

Soil Particle Density

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Assumed

Sample Description: Dispersion Method Shaker Sand & fines

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

2.65

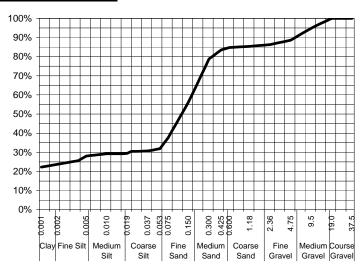
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915491-016 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC29_0.0-0.20_27/9/09

Particle Size Distribution

Particle Size (mm)	Percent Passing
19.0	100%
9.5	95%
4.75	89%
2.36	86%
1.18	85%
0.600	85%
0.425	84%
0.300	79%
0.150	56%
0.075	38%
Particle Size (microns)	
53	32%
37	31%
19	29%
10	29%
5	28%
3	26%
1	22%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: **Dispersion Method** Shaker Sand, clay & shell

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

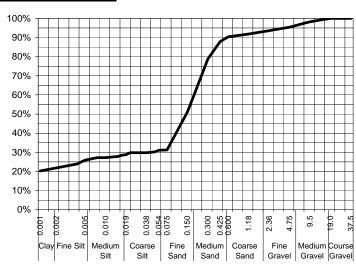
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915491-017 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC27_0.0-0.32_27/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	98%
4.75	95%
2.36	94%
1.18	92%
0.600	90%
0.425	88%
0.300	79%
0.150	51%
0.075	31%
Particle Size (microns)	
54	31%
38	30%
19	29%
10	27%
5	26%
4	24%
1	20%

Samples analysed as received.

Soil Particle Density

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Assumed

Sample Description: Dispersion Method Shaker Sand & clay

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

2.65

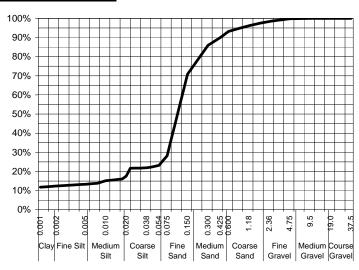
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

Level 3, 116 Miller Street **REPORT NO: ADDRESS:** EB0915491-020 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G51-27/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	100%
2.36	98%
1.18	96%
0.600	93%
0.425	90%
0.300	86%
0.150	71%
0.075	28%
Particle Size (microns)	
54	23%
38	22%
20	18%
10	15%
5	13%
4	13%
1	12%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: **Dispersion Method** Shaker Sand & fines

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

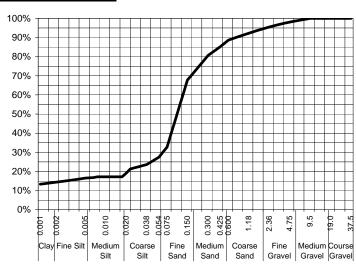
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915491-021 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G57-27/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	98%
2.36	96%
1.18	92%
0.600	89%
0.425	85%
0.300	81%
0.150	68%
0.075	33%
Particle Size (microns)	
54	27%
38	24%
20	19%
10	17%
5	17%
4	16%
1	13%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker Sand & fines

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

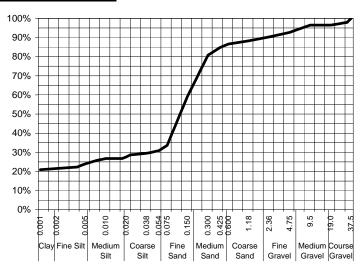
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915491-024 / PSD

North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G50-27/9/09

Particle Size Distribution

Particle Size (mm)	Percent Passing
37.5	100%
19.0	96%
9.5	96%
4.75	93%
2.36	90%
1.18	88%
0.600	87%
0.425	85%
0.300	81%
0.150	59%
0.075	34%
Particle Size (microns)	
54	31%
38	29%
20	28%
10	27%
5	24%
4	22%
1	21%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: **Dispersion Method** Shaker Sand, clay & shell

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

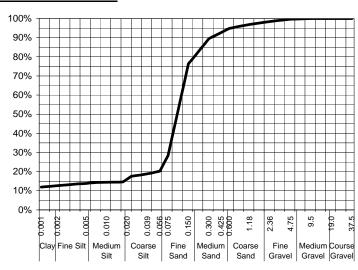
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915491-025 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G52-27/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	100%
2.36	98%
1.18	97%
0.600	95%
0.425	93%
0.300	90%
0.150	76%
0.075	28%
Particle Size (microns)	
56	20%
39	19%
20	16%
10	14%
5	14%
4	14%
1	12%

Samples analysed as received.

Soil Particle Density

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Assumed

Sample Description: Sand & fines **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

2.65

Dianne Blane Senior Analyst **Authorised Signatory**

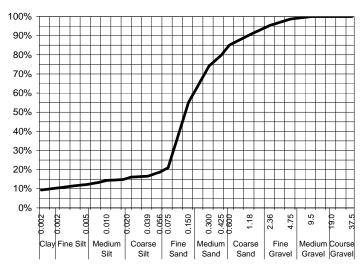
ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor

URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009 **COMPANY:**


Level 3, 116 Miller Street **REPORT NO:** ADDRESS: EB0915491-026 / PSD

North Sydney, NSW, Australia

2060

PROJECT: 42907100 SAMPLE ID: G53-27/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	99%
2.36	95%
1.18	91%
0.600	85%
0.425	80%
0.300	74%
0.150	55%
0.075	21%
Particle Size (microns)	
56	19%
39	17%
20	15%
10	14%
5	12%
4	12%
2	9%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand & fines **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Senior Analyst

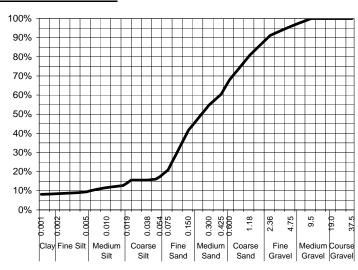
Authorised Signatory

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

DATE REPORTED: 17-Oct-2009 CLIENT: Stuart Taylor


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915491-030 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G59-27/9/09

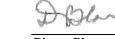
Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	96%
2.36	91%
1.18	81%
0.600	68%
0.425	60%
0.300	55%
0.150	42%
0.075	21%
Particle Size (microns)	
54	17%
38	16%
19	14%
10	12%
5	9%
4	9%
1	8%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%


Sample Description: Sand & fines **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

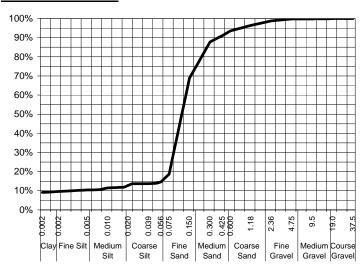
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor


URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009 **COMPANY:**

Level 3, 116 Miller Street **REPORT NO:** ADDRESS: EB0915491-031 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G65-27/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	100%
2.36	99%
1.18	96%
0.600	94%
0.425	91%
0.300	88%
0.150	69%
0.075	19%
Particle Size (microns)	
56	15%
39	14%
20	13%
10	11%
5	10%
4	10%
2	9%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand & fines **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

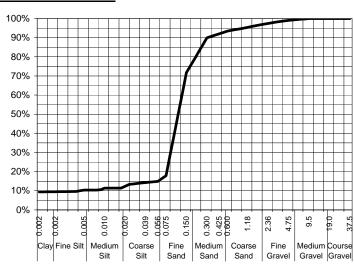
Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915491-033 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G60-27/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	99%
2.36	98%
1.18	95%
0.600	93%
0.425	92%
0.300	90%
0.150	72%
0.075	18%
Particle Size (microns)	
56	15%
39	14%
20	12%
10	11%
5	10%
4	10%
2	9%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand & fines **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

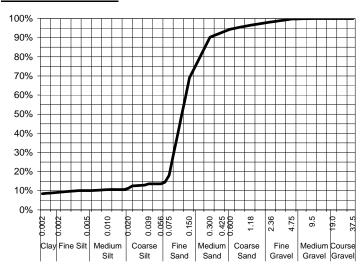
Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor


URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009 **COMPANY:**

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915491-034 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G64-27/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	100%
2.36	98%
1.18	97%
0.600	94%
0.425	93%
0.300	90%
0.150	69%
0.075	18%
Particle Size (microns)	
56	14%
39	14%
20	11%
10	11%
5	10%
4	10%
2	8%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand & fines **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

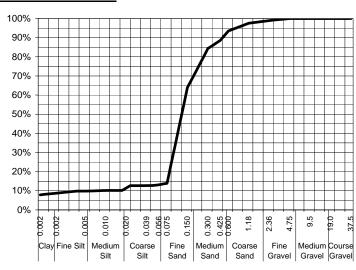
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915491-035 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G75-27/9/09

Particle Size Distribution

Percent
Passing
100%
100%
100%
99%
98%
94%
89%
84%
64%
14%
13%
13%
11%
10%
10%
10%
8%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand & fines **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

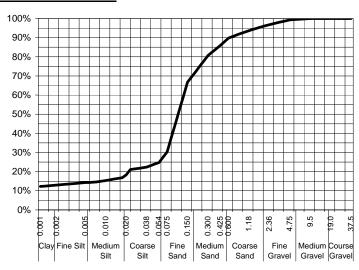
Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor


URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009 **COMPANY:**

Level 3, 116 Miller Street **REPORT NO:** ADDRESS: EB0915491-040 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: QC119-27/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	99%
2.36	97%
1.18	94%
0.600	90%
0.425	86%
0.300	81%
0.150	67%
0.075	30%
Particle Size (microns)	
54	25%
38	22%
20	18%
10	15%
5	14%
4	14%
1	12%
·	

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand & fines **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

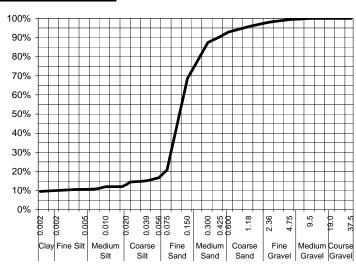
Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915491-042 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: QC121-27/9/09

Particle Size Distribution

nt
ıg
·
·

Samples analysed as received.

Soil Particle Density

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Assumed

Sample Description: Dispersion Method Shaker Sand & fines

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

2.65

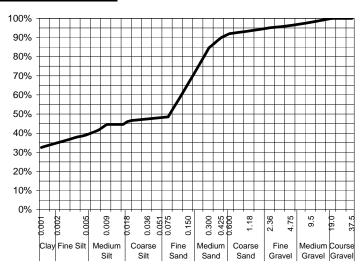
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915491-047 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC26_0.0-0.11_28/9/09

Particle Size Distribution

Particle Size (mm)	Percent Passing
19.0	100%
9.5	98%
4.75	96%
2.36	95%
1.18	93%
0.600	92%
0.425	90%
0.300	85%
0.150	66%
0.075	49%
Particle Size (microns)	
51	48%
36	47%
18	46%
9	45%
5	39%
3	38%
1	33%

Samples analysed as received.

Sample Comments: Analysed: 6-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: **Dispersion Method** Shaker Sand, clay & shell

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

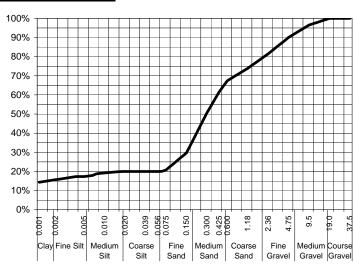
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915494-002 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC42_0.0-0.25_25/9/09

Particle Size Distribution

Percent
Passing
100%
97%
90%
81%
74%
67%
62%
51%
30%
21%
20%
20%
20%
19%
17%
17%
14%

Samples analysed as received.

Soil Particle Density

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Assumed

Sample Description: Dispersion Method Shaker Sand, shell & fines

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

2.65

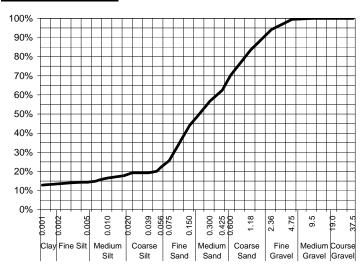
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


DATE RECEIVED: **COMPANY:** URS Australia (NSW) Pty Ltd 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915494-005 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC8 0.0-0.30 25/9/09

Particle Size Distribution

Particle Size (mm)	Percent Passing
,	
19.0	100%
9.5	100%
4.75	99%
2.36	94%
1.18	84%
0.600	70%
0.425	62%
0.300	57%
0.150	44%
0.075	26%
Particle Size (microns)	
56	22%
39	19%
20	19%
10	17%
5	14%
4	14%
1	13%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: **Dispersion Method** Shaker Sand & fines

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

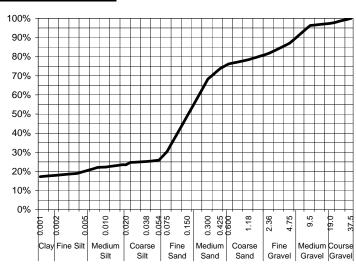
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915494-007 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC23_0.0-0.25_25/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
37.5	100%
19.0	97%
9.5	96%
4.75	87%
2.36	82%
1.18	78%
0.600	76%
0.425	74%
0.300	68%
0.150	49%
0.075	30%
Particle Size (microns)	
54	26%
38	25%
20	24%
10	22%
5	20%
4	19%
1	17%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker Sand, clay & shell

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Senior Analyst

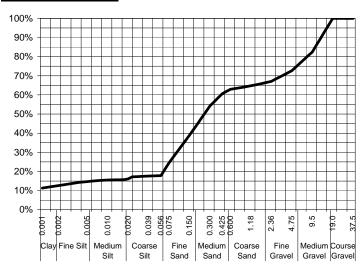
Authorised Signatory

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


DATE RECEIVED: **COMPANY:** URS Australia (NSW) Pty Ltd 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915494-012 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC60_0.0-0.20_25/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	82%
4.75	73%
2.36	67%
1.18	65%
0.600	63%
0.425	61%
0.300	54%
0.150	39%
0.075	25%
Particle Size (microns)	
56	18%
39	18%
20	16%
10	16%
5	15%
4	14%
1	11%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: **Dispersion Method** Shaker Sand, shell & fines

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

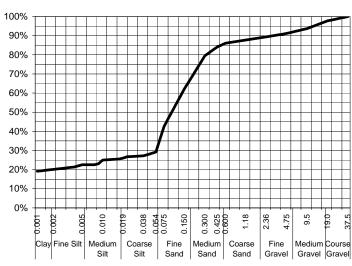
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915494-015 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC40_0.0-0.31_25/9/09

Particle Size Distribution

Particle Size (mm)	Percent Passing
37.5	100%
19.0	98%
9.5	94%
4.75	91%
2.36	89%
1.18	88%
0.600	86%
0.425	84%
0.300	80%
0.150	62%
0.075	43%
Particle Size (microns)	
54	29%
38	27%
19	26%
10	25%
5	23%
4	21%
1	19%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, silt, clay & shell **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

Senior Analyst **Authorised Signatory**

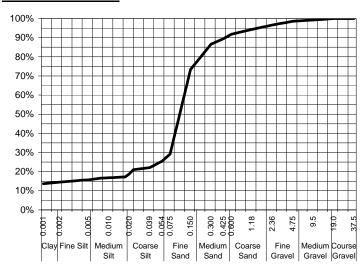
ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

DATE REPORTED: 15-Oct-2009 CLIENT: Stuart Taylor

URS Australia (NSW) Pty Ltd DATE RECEIVED: **COMPANY:** 1-Oct-2009


REPORT NO: ADDRESS: Level 3, 116 Miller Street

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: EB0915494-016 / PSD

SC50_0.0-0.23_25/9/09

Particle Size Distribution

Double Cine (mm)	Percent Passing
Particle Size (mm)	Passing
19.0	100%
9.5	99%
4.75	99%
2.36	97%
1.18	94%
0.600	92%
0.425	89%
0.300	87%
0.150	73%
0.075	29%
Particle Size (microns)	
54	25%
39	22%
20	19%
10	17%
5	16%
4	15%
1	14%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand & fines **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Senior Analyst

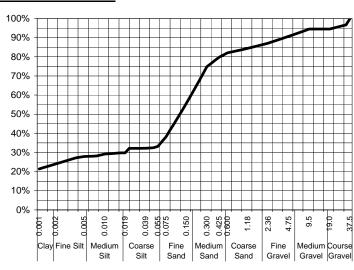
Authorised Signatory

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915494-018 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC9_0.0-0.20_25/9/09

Particle Size Distribution

Percent Passing
100%
94%
94%
91%
87%
84%
82%
80%
75%
56%
38%
33%
32%
30%
29%
28%
27%
21%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, silt, clay & shell **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Senior Analyst

Authorised Signatory

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor

URS Australia (NSW) Pty Ltd DATE RECEIVED: **COMPANY:** 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915494-023 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G45 25/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	99%
4.75	99%
2.36	98%
1.18	97%
0.600	94%
0.425	91%
0.300	81%
0.150	57%
0.075	42%
Particle Size (microns)	
53	42%
37	41%
19	39%
10	38%
5	34%
3	33%
1	28%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, clay & silt **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Senior Analyst

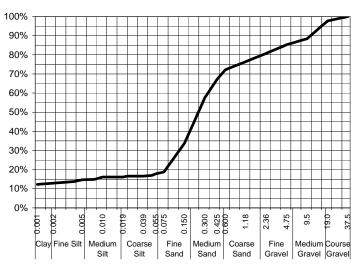
Authorised Signatory

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915494-025 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G47_25/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
37.5	100%
19.0	98%
9.5	88%
4.75	85%
2.36	81%
1.18	76%
0.600	72%
0.425	67%
0.300	58%
0.150	34%
0.075	19%
Particle Size (microns)	
55	18%
39	17%
19	16%
10	16%
5	15%
3	14%
1	12%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, fines & gravel **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

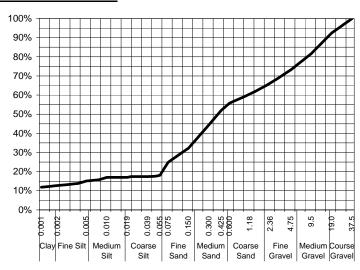
Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor


URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009 **COMPANY:**

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915494-026 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G42 25/9/09

Particle Size Distribution

_	
Particle Size (mm)	Percent Passing
, ,	
37.5	100%
19.0	92%
9.5	82%
4.75	73%
2.36	66%
1.18	60%
0.600	56%
0.425	52%
0.300	45%
0.150	32%
0.075	25%
Particle Size (microns)	
55	18%
39	17%
19	17%
10	17%
5	15%
3	14%
1	12%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, fines & gravel **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

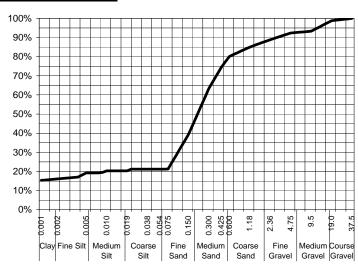
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915494-027 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G44 25/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
37.5	100%
19.0	99%
9.5	93%
4.75	92%
2.36	89%
1.18	85%
0.600	80%
0.425	74%
0.300	63%
0.150	39%
0.075	21%
Particle Size (microns)	
54	21%
38	21%
19	20%
10	20%
5	19%
3	17%
1	15%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker Sand, fines & gravel

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

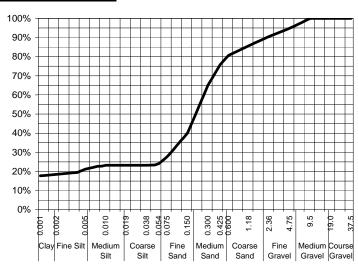
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915494-031 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G35 25/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	95%
2.36	91%
1.18	86%
0.600	81%
0.425	76%
0.300	65%
0.150	40%
0.075	28%
Particle Size (microns)	
54	24%
38	23%
19	23%
10	23%
5	21%
3	19%
1	18%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: **Dispersion Method** Shaker Sand & clay

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

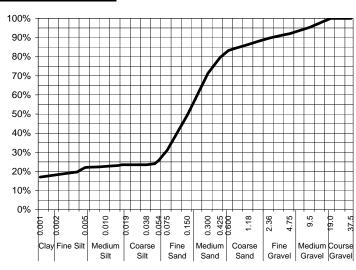
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915494-032 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G37 25/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	95%
4.75	92%
2.36	90%
1.18	86%
0.600	83%
0.425	80%
0.300	71%
0.150	50%
0.075	31%
Particle Size (microns)	
54	26%
38	24%
19	24%
10	23%
5	22%
3	20%
1	17%

Samples analysed as received.

Soil Particle Density

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Assumed

Sample Description: Dispersion Method Shaker Sand & clay

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

2.65

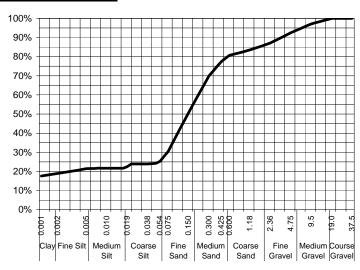
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915494-033 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G33 25/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	97%
4.75	92%
2.36	87%
1.18	83%
0.600	81%
0.425	77%
0.300	70%
0.150	51%
0.075	30%
Particle Size (microns)	
54	25%
38	24%
19	23%
10	22%
5	21%
3	21%
1	18%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: **Dispersion Method** Shaker Sand & clay

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Senior Analyst **Authorised Signatory**

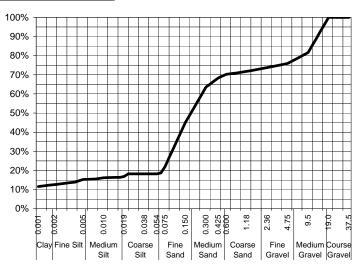
ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009

COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009


ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915494-038 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID:

QC110 25/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	82%
4.75	76%
2.36	74%
1.18	72%
0.600	70%
0.425	68%
0.300	64%
0.150	45%
0.075	22%
Particle Size (microns)	
54	18%
38	18%
19	17%
10	16%
5	15%
3	14%
1	12%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker Sand, fines & gravel

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

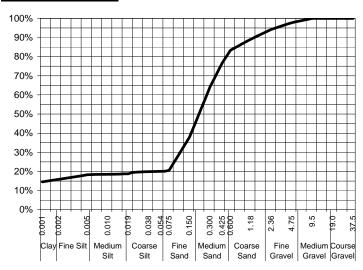
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915494-039 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: QC111_25/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	98%
2.36	94%
1.18	89%
0.600	83%
0.425	77%
0.300	64%
0.150	38%
0.075	21%
Particle Size (microns)	
54	20%
38	20%
19	19%
10	19%
5	18%
3	18%
1	15%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: **Dispersion Method** Shaker Sand, fines & shell

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

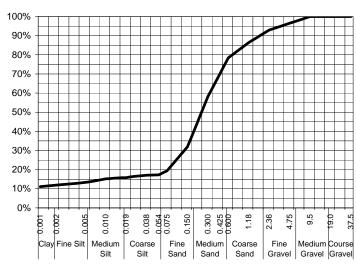
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915494-042 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G24 26/9/09

Particle Size Distribution

Percent
Passing
100%
100%
97%
93%
86%
78%
70%
58%
32%
19%
17%
17%
16%
15%
13%
13%
11%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, fines & shell **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

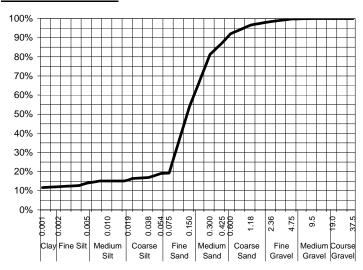
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor


URS Australia (NSW) Pty Ltd DATE RECEIVED: **COMPANY:** 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915494-045 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G69 26/9/09

Particle Size Distribution

200_20/0/00	
	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	100%
2.36	98%
1.18	97%
0.600	92%
0.425	87%
0.300	81%
0.150	54%
0.075	19%
Particle Size (microns)	
54	19%
38	17%
19	16%
10	15%
5	14%
4	13%
1	12%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand & fines **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

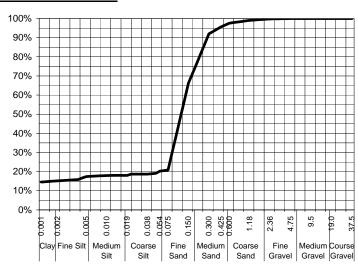
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915494-047 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G71_26/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	100%
2.36	100%
1.18	99%
0.600	98%
0.425	96%
0.300	92%
0.150	66%
0.075	21%
Particle Size (microns)	
54	20%
38	19%
19	18%
10	18%
5	17%
3	16%
1	15%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand & fines **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

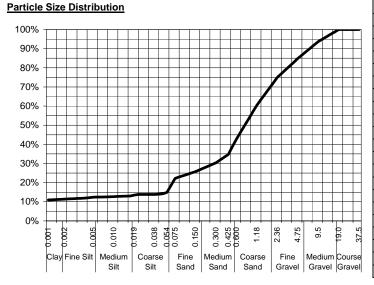
Dianne Blane

Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW


CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor

URS Australia (NSW) Pty Ltd DATE RECEIVED: **COMPANY:** 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915494-049 / PSD

North Sydney, NSW, Australia

2060 **PROJECT:** 42907100 SAMPLE ID: G73 26/9/09

Particle Size (mm)	Percent Passing
	- J
19.0	100%
9.5	94%
4.75	85%
2.36	75%
1.18	61%
0.600	43%
0.425	35%
0.300	30%
0.150	26%
0.075	22%
Particle Size (microns)	
54	15%
38	14%
19	13%
10	13%
5	12%
3	12%
1	11%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, fines & shell **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

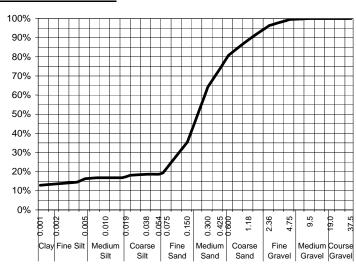
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915494-051 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: QC114 26/9/09

Particle Size Distribution

Particle Size (mm)	Percent Passing
. a.	. accing
19.0	100%
9.5	100%
4.75	100%
2.36	96%
1.18	89%
0.600	81%
0.425	74%
0.300	64%
0.150	35%
0.075	22%
Particle Size (microns)	
54	19%
38	19%
19	17%
10	17%
5	16%
3	14%
1	13%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, fines & shell **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

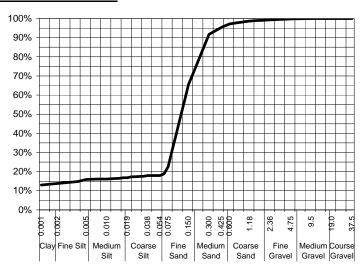
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor


URS Australia (NSW) Pty Ltd DATE RECEIVED: **COMPANY:** 1-Oct-2009

Level 3, 116 Miller Street **REPORT NO:** ADDRESS: EB0915494-055 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: QC117_26/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	100%
2.36	99%
1.18	99%
0.600	97%
0.425	95%
0.300	92%
0.150	66%
0.075	23%
Particle Size (microns)	
54	18%
38	18%
19	17%
10	16%
5	16%
3	15%
1	13%

Samples analysed as received.

Sample Comments: Analysed: 7-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand & fines **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

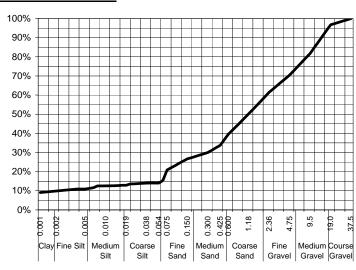
Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915496-001 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G8 22/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
37.5	100%
19.0	97%
9.5	82%
4.75	71%
2.36	61%
1.18	50%
0.600	40%
0.425	34%
0.300	30%
0.150	27%
0.075	21%
Particle Size (microns)	
54	14%
38	14%
19	13%
10	13%
5	11%
3	11%
1	9%

Samples analysed as received.

Soil Particle Density

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Assumed

Sample Description: Sand, shell & fines **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

2.65

Dianne Blane Senior Analyst

Authorised Signatory

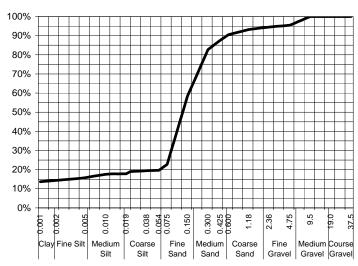
ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor

URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009 **COMPANY:**


Level 3, 116 Miller Street **REPORT NO:** ADDRESS: EB0915496-002 / PSD

North Sydney, NSW, Australia

2060

PROJECT: 42907100 SAMPLE ID: G9 22/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	95%
2.36	95%
1.18	93%
0.600	91%
0.425	88%
0.300	83%
0.150	58%
0.075	23%
Particle Size (microns)	
54	20%
38	19%
19	18%
10	18%
5	16%
3	15%
1	14%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand & clay **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

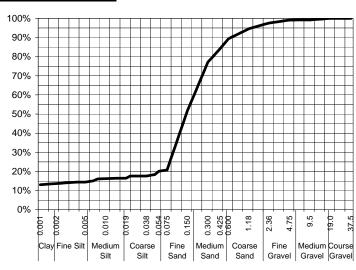
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915496-005 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G6 22/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	99%
4.75	99%
2.36	98%
1.18	95%
0.600	89%
0.425	84%
0.300	77%
0.150	52%
0.075	21%
Particle Size (microns)	
54	20%
38	18%
19	16%
10	16%
5	14%
3	14%
1	13%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker Sand & clay

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

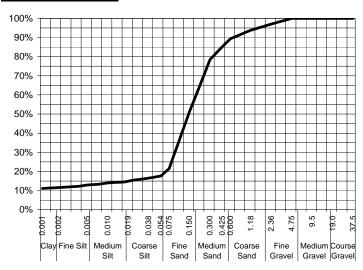
Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915496-010 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: QC103 22/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	100%
2.36	97%
1.18	94%
0.600	89%
0.425	85%
0.300	78%
0.150	51%
0.075	21%
Particle Size (microns)	
54	18%
38	17%
19	15%
10	14%
5	13%
3	12%
1	11%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: **Dispersion Method** Shaker Sand & clay

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

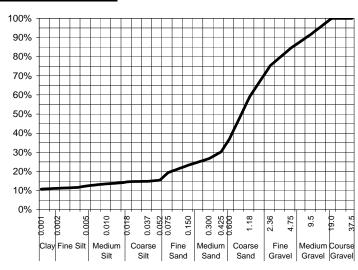
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915496-011 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G39 22/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	92%
4.75	84%
2.36	75%
1.18	59%
0.600	37%
0.425	30%
0.300	27%
0.150	23%
0.075	19%
Particle Size (microns)	
52	15%
37	15%
18	15%
10	14%
5	12%
3	12%
1	11%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker Sand, gravel & fines

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

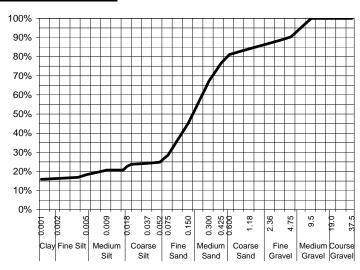
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

Level 3, 116 Miller Street **REPORT NO: ADDRESS:** EB0915496-013 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G40 22/9/09

Particle Size Distribution

- · · · <u>-</u> · · · · · · · · · · · · · · · · ·	
Particle Size (mm)	Percent Passing
19.0	100%
9.5	100%
4.75	90%
2.36	87%
1.18	84%
0.600	81%
0.425	77%
0.300	67%
0.150	45%
0.075	29%
Particle Size (microns)	
52	25%
37	24%
18	23%
9	21%
5	18%
3	17%
1	16%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: **Dispersion Method** Shaker Sand, clay & gravel

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

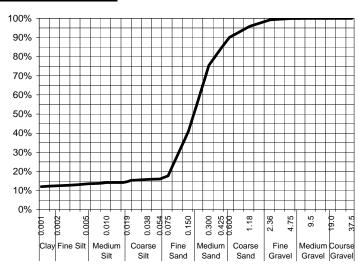
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915496-014 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G16 22/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	100%
2.36	99%
1.18	96%
0.600	90%
0.425	84%
0.300	75%
0.150	41%
0.075	18%
Particle Size (microns)	
54	16%
38	16%
19	15%
10	14%
5	14%
3	13%
1	12%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker Sand & clay

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

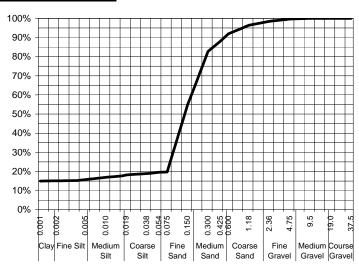
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915496-015 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G10 22/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	100%
2.36	98%
1.18	96%
0.600	92%
0.425	88%
0.300	83%
0.150	55%
0.075	20%
Particle Size (microns)	
54	20%
38	19%
19	18%
10	17%
5	16%
3	15%
1	15%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: **Dispersion Method** Shaker Sand & clay

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

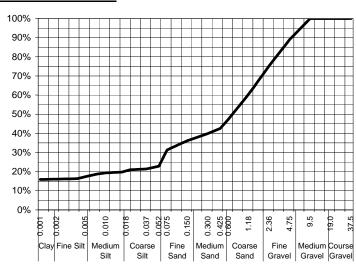
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW 2304 pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor **DATE REPORTED**: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street REPORT NO: EB0915496-016 / PSD

North Sydney, NSW, Australia 2060

PROJECT: 42907100 **SAMPLE ID:** G13_22/9/09

Particle Size Distribution

Percent
Passing
100%
100%
89%
75%
61%
47%
43%
40%
36%
31%
23%
21%
20%
19%
17%
16%
16%

Samples analysed as received.

Sample Comments: 8-Oct-09

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Assumed

Sample Description: Sand, clay & gravel Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 <u>Hydrometer Type</u> ASTM E100

NATA Accreditation: 825 Site: Newcastle

Soil Particle Density

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

2.65

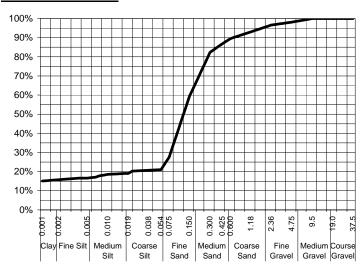
Dianne Blane
Senior Analyst
Authorised Signatory

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor


URS Australia (NSW) Pty Ltd DATE RECEIVED: **COMPANY:** 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915496-019 / PSD

> North Sydney, NSW, Australia 2060

G7_22/9/09 **PROJECT:** 42907100 SAMPLE ID:

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	98%
2.36	97%
1.18	93%
0.600	90%
0.425	87%
0.300	82%
0.150	59%
0.075	27%
Particle Size (microns)	
54	21%
38	21%
19	19%
10	19%
5	17%
3	17%
1	15%
·	·

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand & clay **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

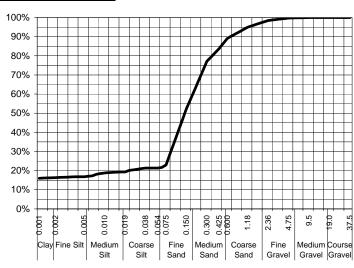
Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915496-020 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G17_22/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	100%
2.36	98%
1.18	95%
0.600	89%
0.425	84%
0.300	77%
0.150	52%
0.075	23%
Particle Size (microns)	
54	21%
38	21%
19	19%
10	19%
5	17%
3	17%
1	16%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Assumed

Sample Description: Sand & clay **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

NATA Accreditation: 825 Site: Newcastle

Soil Particle Density

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

2.65

Dianne Blane Senior Analyst

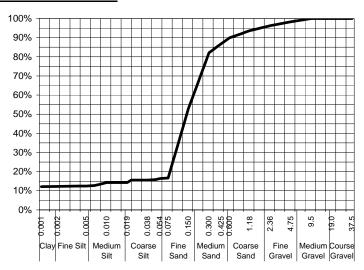
Authorised Signatory

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor


URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009 **COMPANY:**

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915496-021 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G14 23/9/09

Particle Size Distribution

_	
Particle Size (mm)	Percent Passing
, ,	
19.0	100%
9.5	100%
4.75	98%
2.36	96%
1.18	94%
0.600	90%
0.425	87%
0.300	82%
0.150	53%
0.075	17%
Particle Size (microns)	
54	16%
38	16%
19	14%
10	14%
5	12%
4	12%
1	12%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand & clay **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Senior Analyst

Authorised Signatory

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


URS Australia (NSW) Pty Ltd DATE RECEIVED: **COMPANY:** 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915496-028 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC28_0.0-0.25_23/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	99%
4.75	94%
2.36	92%
1.18	88%
0.600	85%
0.425	82%
0.300	73%
0.150	55%
0.075	41%
Particle Size (microns)	
50	31%
35	30%
18	29%
9	26%
5	24%
3	24%
1	21%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, silt & clay **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Senior Analyst

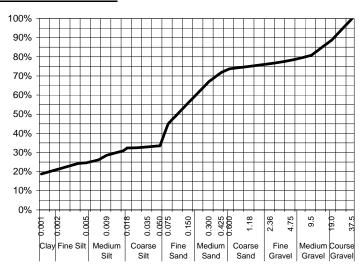
Authorised Signatory

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor


URS Australia (NSW) Pty Ltd DATE RECEIVED: **COMPANY:** 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915496-030 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC15 24/9/09 0.0-0.18

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
37.5	100%
19.0	89%
9.5	81%
4.75	78%
2.36	76%
1.18	75%
0.600	74%
0.425	72%
0.300	67%
0.150	56%
0.075	45%
Particle Size (microns)	
50	33%
35	33%
18	32%
9	29%
5	25%
3	24%
1	19%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, silt, clay & shell **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

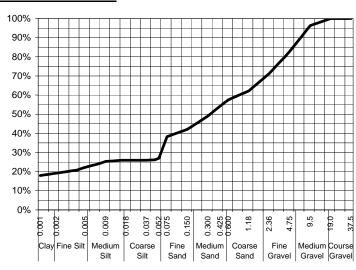
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: URS Australia (NSW) Pty Ltd DATE RECEIVED: 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915496-032 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC13 24/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	96%
4.75	83%
2.36	71%
1.18	62%
0.600	58%
0.425	54%
0.300	49%
0.150	42%
0.075	38%
Particle Size (microns)	
52	27%
37	26%
18	26%
9	25%
5	22%
3	21%
1	18%
1	18%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, silt, clay & gravel **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

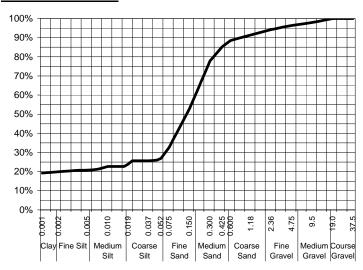
Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: DATE REPORTED: 15-Oct-2009 Stuart Taylor


URS Australia (NSW) Pty Ltd DATE RECEIVED: **COMPANY:** 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915496-035 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: G36 24/9/09

Particle Size Distribution

Particle Size (mm)	Percent Passing
Farticle Size (IIIII)	rassing
19.0	100%
9.5	98%
4.75	96%
2.36	94%
1.18	91%
0.600	88%
0.425	85%
0.300	78%
0.150	53%
0.075	33%
Particle Size (microns)	
52	27%
37	26%
19	24%
10	23%
5	21%
3	21%
1	19%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Sand, silt, clay & gravel **Dispersion Method** Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

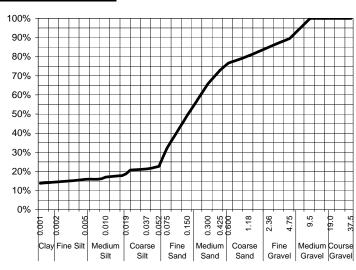
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915496-042 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC19_0.0-0.12_24/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	90%
2.36	85%
1.18	80%
0.600	77%
0.425	73%
0.300	66%
0.150	49%
0.075	32%
Particle Size (microns)	
52	23%
37	21%
19	19%
10	17%
5	16%
3	15%
1	14%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker Sand, silt, clay & gravel

Test Method: AS1289.3.6.2/AS1289.3.6.3 **Hydrometer Type** ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Senior Analyst

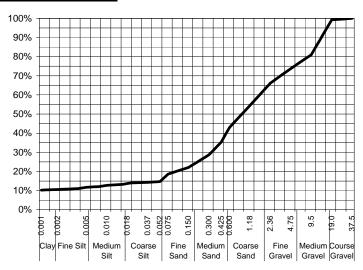
Authorised Signatory

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915496-045 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC24 24/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
37.5	100%
19.0	99%
9.5	81%
4.75	74%
2.36	66%
1.18	54%
0.600	43%
0.425	35%
0.300	29%
0.150	22%
0.075	19%
Particle Size (microns)	
52	15%
37	14%
18	14%
10	13%
5	12%
3	11%
1	10%
•	

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: **Dispersion Method** Shaker Sand, shell & fines

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

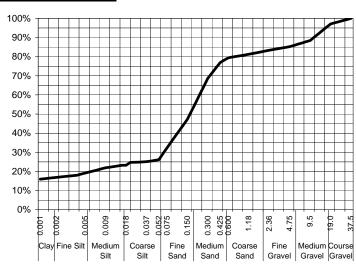
Dianne Blane Senior Analyst **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915496-054 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC55_0.0-0.30_24/9/09

Particle Size Distribution

Particle Size (mm)	Percent Passing
37.5	100%
19.0	97%
9.5	88%
4.75	85%
2.36	83%
1.18	81%
0.600	79%
0.425	77%
0.300	69%
0.150	47%
0.075	32%
Particle Size (microns)	
52	26%
37	25%
18	23%
9	22%
5	19%
3	18%
1	16%

Samples analysed as received.

Soil Particle Density

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker Sand, silt, clay & shell

Test Method: AS1289.3.6.2/AS1289.3.6.3 **Hydrometer Type** ASTM E100

Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

2.65

Dianne Blane Senior Analyst **Authorised Signatory**

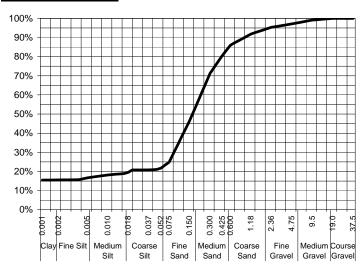
Certificate of Analysis

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

REPORT NO: ADDRESS: Level 3, 116 Miller Street EB0915496-059 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC45 24/9/09

Particle Size Distribution

Particle Size (mm)	Percent Passing
19.0	100%
9.5	99%
4.75	97%
2.36	95%
1.18	92%
0.600	86%
0.425	81%
0.300	71%
0.150	46%
0.075	25%
Particle Size (microns)	
52	22%
37	21%
18	19%
10	18%
5	17%
3	16%
1	15%

Samples analysed as received.

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: **Dispersion Method** Shaker Sand, silt, clay & shell

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density 2.65 Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Senior Analyst

Authorised Signatory

Page 1 of 1

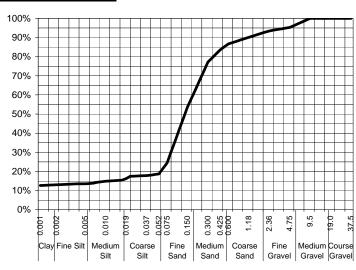
Certificate of Analysis

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT: Stuart Taylor DATE REPORTED: 15-Oct-2009


COMPANY: DATE RECEIVED: URS Australia (NSW) Pty Ltd 1-Oct-2009

ADDRESS: Level 3, 116 Miller Street **REPORT NO:** EB0915496-061 / PSD

> North Sydney, NSW, Australia 2060

PROJECT: 42907100 SAMPLE ID: SC4_0.0-0.25_24/9/09

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	95%
2.36	93%
1.18	90%
0.600	87%
0.425	84%
0.300	77%
0.150	54%
0.075	24%
Particle Size (microns)	
52	19%
37	18%
19	16%
10	15%
5	14%
3	14%
1	13%

Samples analysed as received.

Soil Particle Density

Sample Comments: Analysed: 8-Oct-09

Loss on Pretreatment Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker Sand, silt, clay & shell

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Assumed

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be

2.65

reproduced, except in full.

Dianne Blane Senior Analyst **Authorised Signatory**

Page 1 of 1

Draft Sediment Quality Assessment Appendix G Radionuclide Analysis **URS** 42907466/01/0

This page is intentionally blank
This page is intentionally blank

Wheatstone Project Appendix Q5 - Sediment Quality Assessment - Wheatstone Dredging Program

peen

Accreditation Category

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

:10f3	: Environmental Division Brisbane : Tim Kilmister	: 32 Shand Street Stafford QLD Australia 4053	: Services.Brisbane@alsenviro.com	: +61-7-3243 7222	: +61-7-3243 7218	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement		: 01-OCT-2009	: 26-OCT-2009		· · ·	: 5
Page	Laboratory Contact	Address	E-mail	Telephone	Facsimile	QC Level		Date Samples Received	Issue Date		No. of samples received	No. of samples analysed
: EB0916564	: URS AUSTRALIA PTY LTD : MR CARSTEN MATTHAI	: Level 3, 113 MILLER STREET NORTH SYDNEY NSW, AUSTRALIA 2060	: Carsten_Matthai@urscorp.com			: 42907100	1.		: E Heiden, S Taylor	: Wheatstone		: SY/374/09 V2
Work Order	Client	Address	E-mail	Telephone	Facsimile	Project	Order number	C-O-C number	Sampler	Site		Quote number

for This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved release.

This Certificate of Analysis contains the following information: General Comments

Analytical Results

NATA Accredited Laboratory 825 This document is issued in accordance with NATA

Accredited for compliance with

ISO/IEC 17025.

VORLD RECOGNISED

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has carried out in compliance with procedures specified in 21 CFR Part 11. Signatories accreditation requirements.

Signatories

Environmental Division Brisbane

32 Shand Street Stafford QLD Australia 4053 Tel. +61-7-3243 7222 Fax. +61-7-3243 7218 www.alsglobal.com Part of the ALS Laboratory Group A Campbell Brothers Limited Company

A Campbell Brothers Limited Company

ALS)

 Page
 : 2 of 3

 Work Order
 : EB0916564

 Client
 : URS AUSTRALIA PTY LTD

 Project
 : 42907100

General Comments

AS and NEPM. In house APHA, as those published by the USEPA, The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

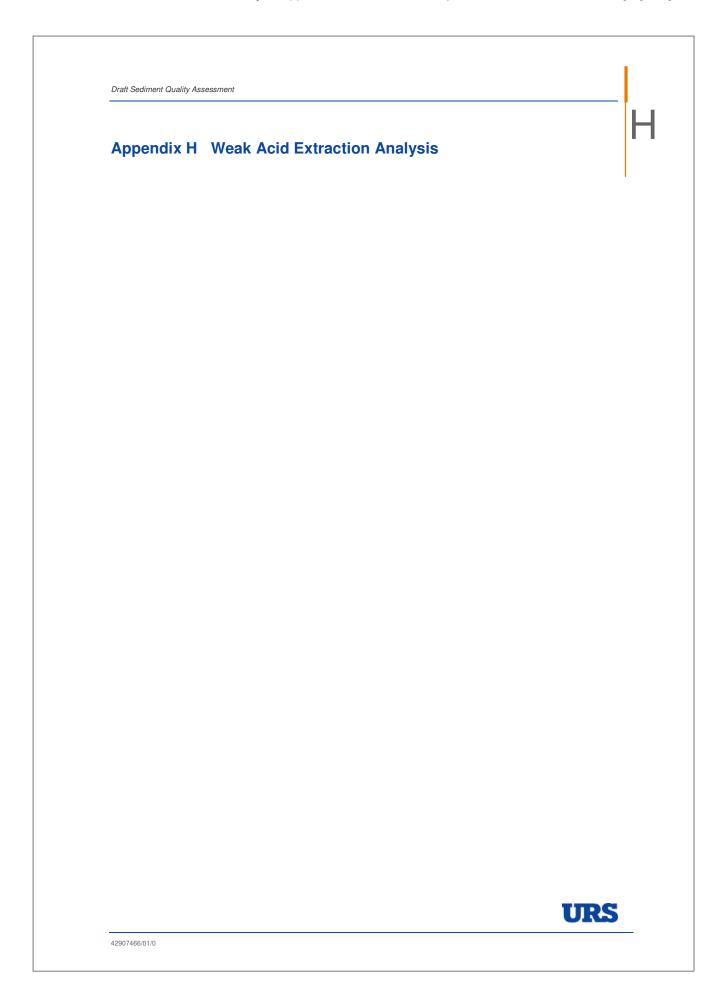
When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by dient.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting Key:

This result is computed from individual analyte detections at or above the level of reporting

Radiological work undertaken by ALS Laboratory Group (Ceska Lipa) under CAI accreditation No. L1163. Report No. CS0904944 and CS0904945. NATA and CAI accreditations' are both recognised under ILAC.

92


			Result
Page Work Order	Client	Project	Analytical

: 3 of 3 : EB0916564 : URS AUSTRALIA PTY LTD : 42907100

Analytical Results								
Sub-Matrix: SOIL		Clie	nt sample ID	Client sample ID SC17_0.0_0.35_25/9/0 SC33_0.0_0.35_25/9/0 9 9 9 9 EB0915494-8	SC33_0.0_0.35_25/9/0 9 EB0915494-8	SC13_24/9/09 EB0915496-32	SC55_0.0_0.30_24/9/0 9 EB0915496-54	SC5_24/9/09 EB0915496-57
	Oli	ent samplin	Client sampling date / time	25-SEP-2009 15:00	25-SEP-2009 15:00	24-SEP-2009 15:00	25-SEP-2009 15:00	25-SEP-2009 15:00
Compound	CAS Number	LOR	Unit	EB0916564-001	EB0916564-002	EB0916564-003	EB0916564-004	EB0916564-005
Radionucleides / Activity								
Gross alpha	-	200	Bq/kg DW	<500	<500	<500	<200	<500
Gross beta	1	200	Bq/kg DW	<500	<500	<500	<200	200

This page is intentionally blank
This page is intentionally blank

Wheatstone Project Appendix Q5 - Sediment Quality Assessment - Wheatstone Dredging Program

This page is intentionally bla	nk

Wheatstone Project Appendix Q5 - Sediment Quality Assessment - Wheatstone Dredging Program

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Amendment Client Contact Address	: 1 : URS AUSTRALIA PTY LTD : MR ADAM PHARAOH : LEVEL 3, HYATT CENTRE 20 TERRACE RD 20 TERRACE RD	Laboratory Confact Address	: Environmental Division Sydney : Charlie Pierce : 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail Telephone Facsimile	: adam_pharaoh@urscorp.com : +61 08 9326 0100 : +61 08 9221 1639	E-mail Telephone Facsimile	: charlie.pierce@alsenviro.com : +61-2-8784 8555 : +61-2-8784 8500
Project Order number	: 42907100 REBATCH OF EB0915491 EB0915494 & EB0915496	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
C-O-C number		Date Samples Received	: 13-OCT-2009
	: EH, SI : WHEATSTONE	Issue Date	21-00-1-2009
Quote number	: EN-001-09	No. of samples received No. of samples analysed	: 37 : 37

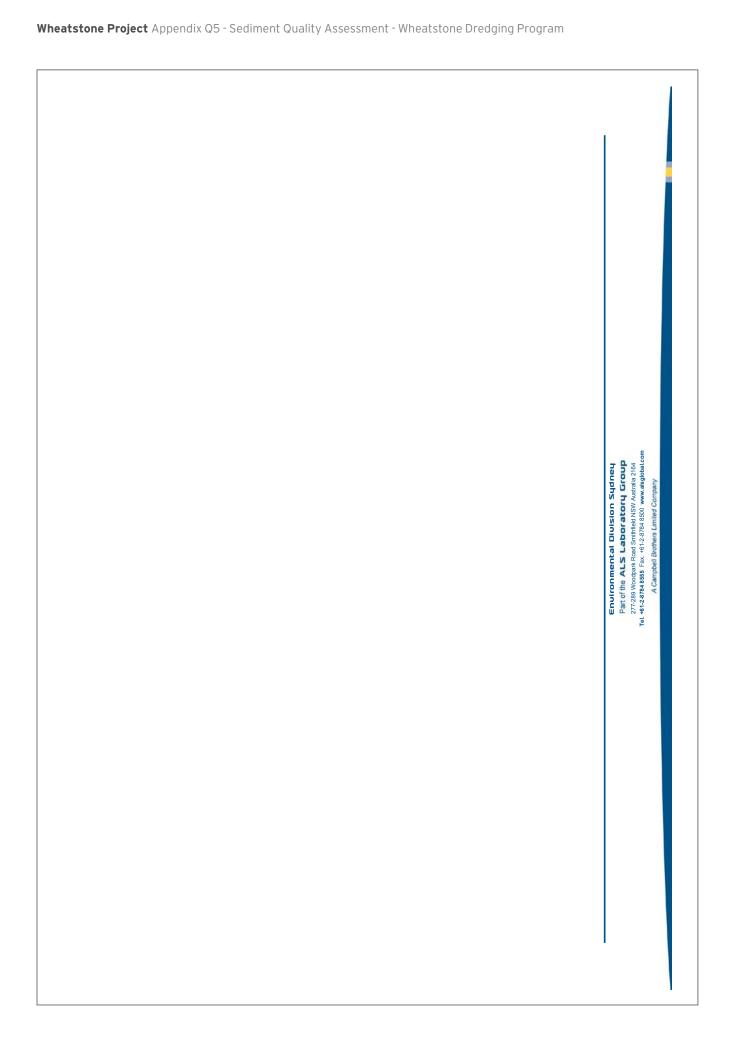
This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information: General Comments

Analytical Results

NATA Accredited Laboratory 825 This document is issued in

Accredited for compliance with accreditation requirements. accordance with NATA


ISO/IEC 17025.

This document has been electronically signed by the authorized signatories indicated below. Electronic signing Accreditation Category carried out in compliance with procedures specified in 21 CFR Part 11. Signatories

peen has

> Spectroscopist Business Manager - NSW Celine Conceicao Victor Kedicioglu Signatories

Inorganics Inorganics

Page Work Order Project Client

3 of 11 ES0915525 Amendment 1 URS AUSTRALIA PTY LTD 42907100 REBATCH OF EB0915491 EB0915494 & EB0915496

General Comments

as those published by the USEPA, APHA, AS and NEPM. In house The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0.00 the information was not provided by client.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Key:

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

A Campbell Brothers Limited Company

SC37_0.0-0.11_27/9/0 27-SEP-2009 15:00 ES0915525-005 | 7 SC57_0.0-0.15_26/9/0 26-SEP-2009 15:00 ES0915525-004 24.4 | 4 SC1_0.0-0.27_26/9/09 26-SEP-2009 15:00 ES0915525-003 22.1 1 6. SC11_0.0-0.15_26/9/0 26-SEP-2009 15:00 ES0915525-002 28.2 1.6 SC62_0.0-0.10_26/9/0 26-SEP-2009 15:00 ES0915525-001 21.1 1 6.0 Client sample ID Client sampling date / time mg/kg mg/kg Unit % LOR 1.0 0.10. 7440-47-3 7440-02-0 CAS Number EG005-SDH: 1M HCI-Extractable Metals by ICPAES ^ Moisture Content (dried @ 103°C) EA055: Moisture Content Analytical Results Sub-Matrix: SOIL Chromium Nickel

876 | Chevron Australia Pty Ltd

Project Client

4 of 11 ES0915625 Amendment 1 URS AUSTRALIA PTY LTD : 42907100 REBATCH OF EB0915491 EB0915494 & EB0915496

Page Work Order

5 of 11 ES0915525 Amendment 1 URS AUSTRALIA PTY LTD 42907100 REBATCH OF EB0915491 EB0915494 & EB0915496

Page Work Order

Project Client

SC17_0.0-0.35_25/9/0 25-SEP-2009 15:00 ES0915525-010 22.0 5. SC55_0.0-0.25_25/9/0 25-SEP-2009 15:00 ES0915525-009 26.8 6. SC20_0.0-0.20_27/9/0 27-SEP-2009 15:00 ES0915525-008 27.6 | 7: SC29_0.0-0.20_27/9/0 27-SEP-2009 15:00 ES0915525-007 26.4 1 5. SC61_0.0-0.18_27/9/0 27-SEP-2009 15:00 ES0915525-006 28.2 1 6. Client sample ID Client sampling date / time mg/kg mg/kg Unit % LOR 0.10 1.0 7440-38-2 7440-02-0 CAS Number EG005-SDH: 1M HCI-Extractable Metals by ICPAES ^ Moisture Content (dried @ 103°C) EA055: Moisture Content Analytical Results Sub-Matrix: SOIL

Arsenic Nickel

A Campbell Brothers Limited Company

SC34_0.0-0.25_25/9/0 25-SEP-2009 15:00 ES0915525-015 25.5 د. SC23_0.0-0.25_25/9/0 25-SEP-2009 15:00 ES0915525-014 4 26.2 SC18_0.0-0.30_25/9/0 25-SEP-2009 15:00 ES0915525-013 23.5 4. SC8_0.0-0.30_25/9/09 25-SEP-2009 15:00 ES0915525-012 24.8 9. SC59_0.0-0.23_25/9/0 25-SEP-2009 15:00 ES0915525-011 24.3 1.7 Client sample ID Client sampling date / time mg/kg Unit % LOR 1.0 1.0 7440-38-2 CAS Number EG005-SDH: 1M HCI-Extractable Metals by ICPAES ^ Moisture Content (dried @ 103°C) EA055: Moisture Content Sub-Matrix: SOIL Compound

878	Chevron	Australia	Ptv I to

Project Client

Analytical Results

6 of 11 ES0915525 Amendment 1 URS AUSTRALIA PTY LTD 42907100 REBATCH OF EB0915491 EB0915494 & EB0915496

Page Work Order

Page Work Order Client Project

: 7 of 11 : ES0915525 Amendment 1 : URS AUSTRALIA PTY LTD : 42907100 REBATCH OF EB0915491 EB0915494 & EB0915496

:	Sults
	sal Re
•	Ans

Sub-Matrix: SOIL		Clie	ent sample ID	SC67_0.0-0.15_25/9/0	Client sample ID SC67_0.0-0.15_25/9/0 SC40_0.0-0.31_25/9/0 SC50_0.0-0.23_25/9/0 SC47_0.0-0.25_25/9/0 SC9_0.0-0.20_25/9/09	SC50_0.0-0.23_25/9/0	SC47_0.0-0.25_25/9/0	SC9_0.0-0.20_25/9/09
	ll'O	ent samplir	Client sampling date / time	25-SEP-2009 15:00	25-SEP-2009 15:00	25-SEP-2009 15:00	25-SEP-2009 15:00	25-SEP-2009 15:00
Compound	CAS Number LOR	LOR	Unit	ES0915525-016	ES0915525-017	ES0915525-018	ES0915525-019	ES0915525-020
EA055: Moisture Content								
^ Moisture Content (dried @ 103°C)	-	1.0	%	22.1	24.6	27.7	21.4	30.8
EG005-SDH: 1M HCI-Extractable Metals by ICPAES	by ICPAES							
Arsenic	7440-38-2 1.0	1.0	mg/kg	2.5	1.4	1.5	1.8	1.8

Project	42907100 REBATCH OF EB0915491 EB0915494 &	EB091549	4 & EB0915496					(ALS)
Analytical Results	ılts							
Sub-Matrix: SOIL		Olie	Client sample ID	SC72_25/9/09	SC71_25/9/09	SC7_0.0-0.10_23/9/09	SC35_0.0-0.15_23/9/0 9	SC54_0.0-0.20_23/9/0 9
	C	ient samplii	Client sampling date / time	25-SEP-2009 15:00	25-SEP-2009 15:00	23-SEP-2009 15:00	23-SEP-2009 15:00	23-SEP-2009 15:00
Compound	CAS Number LOR	LOR	Unit	ES0915525-021	ES0915525-022	ES0915525-023	ES0915525-024	ES0915525-025
EA055: Moisture Content	ntent							
^ Moisture Content (dried @ 103°C)	ied @ 103°C)	1.0	%	26.7	28.4	22.7	21.6	31.7
EG005-SDH: 1M HCI	EG005-SDH: 1M HCI-Extractable Metals by ICPAES							
Arsenic	7440-38-2	1.0	mg/kg	2.2	2.0	1.7	1.9	1.5

8 of 11 ES0915525 Amendment 1 URS AUSTRALIA PTY LTD 42907100 REBATCH OF EB0915491 EB0915494 & EB0915496

Page Work Order Client

: 9 of 11 : ES0915525 Amendment 1 : URS AUSTRALIA PTY LTD : 42907100 REBATCH OF EB0915491 EB0915494 & EB0915496

Page Work Order

Analytical Results

Project Client

Sub-Matrix: SOIL		Clien		sample ID SC58_0.0-0.15_23/9/0	SC13_24/9/09	QC105_24/9/09	QC106_24/9/09	QC107_24/9/09
	CI	Client sampling	ng date / time	23-SEP-2009 15:00	24-SEP-2009 15:00	24-SEP-2009 15:00	24-SEP-2009 15:00	24-SEP-2009 15:00
Compound	CAS Number LOR	LOR	Unit	ES0915525-026	ES0915525-027	ES0915525-028	ES0915525-029	ES0915525-030
EA055: Moisture Content								
^ Moisture Content (dried @ 103°C)	-	1.0	%	22.6	31.8	29.9	24.3	24.4
EG005-SDH: 1M HCI-Extractable Metals by ICPAES	by ICPAES							
Arsenic	7440-38-2	1.0	mg/kg	1.8	3.0	3.0	1.9	2.0

Project	42907100 REBATCH OF EB0915491 EB0915494 & I	EB091548	14 & EB0915496					(ALS)
Analytical Results	ults							
Sub-Matrix: SOIL		Clic	Client sample ID	SC51_24/9/09	SC65_24/9/09	SC66_24/9/09	SC16_24/9/09	SC5_24/9/09
	Cli	ient sampli	Client sampling date / time	24-SEP-2009 15:00				
Compound	CAS Number LOR	LOR	Unit	ES0915525-031	ES0915525-032	ES0915525-033	ES0915525-034	ES0915525-035
EA055: Moisture Content	ontent							
^ Moisture Content (dried @ 103°C)	dried @ 103°C)	1.0	%	27.3	29.3	25.2	23.0	39.7
EG005-SDH: 1M H0	EG005-SDH: 1M HCI-Extractable Metals by ICPAES							
Arsenic	7440-38-2 1.0	1.0	mg/kg	3.1	2.8	2.9	1.9	2.7

: 10 of 11 : ES0915525 Amendment 1 : URS AUSTRALIA PTY LTD : 42907100 REBATCH OF EB0915491 EB0915494 & EB0915496

Page Work Order Client

: 11 of 11 : ES0915525 Amendment 1 : URS AUSTRALIA PTY LTD : 42907100 REBATCH OF EB0915491 EB0915494 & EB0915496

Analytical Results

Project Client

Page Work Order

Sub-Matrix: SOIL		Clie	ant sample ID	Client sample ID SC31_0.0-0.20_24/9/0 SC39_0.0-0.10_24/9/0	SC39_0.0-0.10_24/9/0	-	1	-
				6	6			
	Clir	ent samplir	Client sampling date / time	24-SEP-2009 15:00	24-SEP-2009 15:00		-	-
Compound	CAS Number LOR	LOR	Unit	ES0915525-036	ES0915525-037	1	1	!
EA055: Moisture Content								
^ Moisture Content (dried @ 103°C)	-	1.0	%	23.7	26.7	1	-	1
EG005-SDH: 1M HCI-Extractable Metals by ICPAES	by ICPAES							
Arsenic	7440-38-2 1.0	1.0	mg/kg	2.1	2.0			

URS Australia Pty Ltd Level 3, 20 Terrace Road East Perth WA 6004 Australia T: 61 8 9326 0100 F: 61 8 9326 0296

www.ap.urscorp.com

Chevron Australia Pty Ltd ABN 29 086 197 757

250 St Georges Terrace Perth WA 6000 Australia

Tel: + 61 8 9216 4000 Fax: +61 8 9216 4444 Email: ask@chevron.com www.chevronaustralia.com