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ABSTRACT

Newtonian gravity has successfully explained various observed astrophysical
phenomenona. It is known that, in the weak field, non-relativistic limit, the
General theory of Relativity reduces to Newtonian gravity. A new theory
of gravity was recently proposed by Banados and Ferreira. This theory is
equivalent to General Relativity in vacuum, but it differs from it in the
presence of matter. Under weak field approximation, the new theory reduces
to a modified Newtonian gravity where an extra term κ

4
∇2ρ appears on the

R .H. S in addition to the usual 4πGρ. κ is a new constant which controls
the effects of the new term, ρ is the mass density.
In the first part of this report, we elaborate on our study of the collapse of
spherically symmetric dust in the modified theory of gravity. We have found
that, for a negative κ, results there is an impact on the collapse of dust. For
positive κ > 0 we find that the collapse does not lead to singularities.
In the second part of this report, using the modified Poisson’s equation,
we have worked on finding the mass density distribution of a galaxy from
known rotation curves. After finding our solution, we have seen that, a
favourable solution exists only for κ > 0. There is a limiting value of κ below
which, the solution approaches the Newtonian one. Comparing our results
with observations, we are able to constrain the possible range of κ to be
0 < κ < 0.2234 G kpc2.
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Chapter 1

The Modified Newtonian
Theory

1.1 Introduction

Poisson’s equation for Newtonian gravity is given as,

∇2Φ = 4πGρ (1.1)

Where Φ is the gravitational potential, G is the universal gravitational con-
stant and ρ is the matter density. Newton’s law of gravitation was successful
in explaining the motion of the moon, planets, orbit of Uranus, existence of
Neptune, precession of perihelion of orbits of planets. But in the 20th century
it faced some serious difficulties after publication of Einstein’s special theory
of relativity(1905). Few of them are

• Instantaneous gravitational interaction between two bodies .

• Mass energy equivalence E = mc2 leads to coupling between matter
and gravitational energy.

In general theory of relativity, Einstein described gravity as the curvature of
spacetime and introduced the concept of geodesics as free-fall trajectories in
a curved four dimensional space-time continuum. Einstein’s field equation
(including the effect of cosmological constant Λ and assuming 8πG = 1 = c),
takes the following form

Gij + Λgij = Tij (1.2)
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where, Gij = Rij − 1
2
gijR , Gij is the well-known Einstein tensor, Tij is the

energy momentum tensor and Rij, R are the Ricci tensor and Ricci scalar. In
the weak-field, non-relativistic, time-independent case, Einstein’s field equa-
tion reduces to Poisson’s equation (1.1).

An alternative formulation of the gravitational action was proposed by Ed-
dington in 1924. He suggested that in de Sitter space, the action can be
defined as,

S = SEddington = 2κ

∫
d4x
√
|R| (1.3)

where κ is a constant with inverse dimension to that of Λ. Eddington’s for-
mulation of gravity is incomplete since it does not include coupling between
matter and gravity. Recently, Banados and Ferreira have proposed a way
to couple matter thereby leading to a theory different from Einstein’s Gen-
eral relativity in presence of matter. The Banados–Ferreira proposal is of a
Born–Infeld type of action, written as

SBorn−Infeld =
2

κ

∫
d4x

[√
|gij + κRij| − λ

√
|g|
]

+ SMatter (1.4)

The beauty of this action is that, it satisfies SEinstein−Hilbert equation(1.2) for
small κR with Λ = λ−1

κ
. On the other hand for large κR the action reduces

to SEddington. In the weak-field, non-relativistic limit, we find a modified
Newtonian gravity governed by

∇2Φ =
1

2
ρ+

κ

4
∇2ρ (1.5)

In S.I. unit
∇2Φ = 4πGρ+

κ

4
∇2ρ (1.6)

This equation is known as the Modified Poisson’s equation. Here Φ is grav-
itational potential, ρ = matter density, κ is a new parameter characterising
the modified theory of gravity.

1.2 Novelties of the Modified Newtonian Grav-

ity

The new term in the modified Poisson’s equation (1.6) is the main reason
behind some novel effects. Some of them are given below.
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Considering spherical symmetry, the hydrostatic equilibrium equation for
pressure is given by.

dp

dr
= −Gm(r)ρ

r2
− κ

4
ρρ′ = −Geff (r)

m(r)ρ

r2
(1.7)

i.e. rate of change of pressure with respect to radial distance within matter
either increases or decreases depending upon the sign of κ . Here Geff (r) =

G+ κ
4
r2ρ′

m(r)
is effective gravitational constant. Depending upon sign of κ mag-

nitude of effective gravitational force increases or decreases for main sequence
stars in hydrostatic equilibrium. This effects the central density, core temper-
ature and evolution of stars. Thus, the modified Poisson’s equation changes
the standard Newtonian gravity results. For example, in Newtonian gravity,
whether stars end their life by collapse or not is determined by the Chan-
drasekhar limit. In modified Newtonian gravity the Chandrasekhar limit is
also different. The observed rotation curve of spiral galaxies cannot be ex-
plained in Newtonian theory. One can try to see if the modified theory can
explain the flattening of the rotation curves observed in spiral galaxies.

1.3 Overview of work done

Our first interest is to study gravitational collapse of spherically symmetric
pressure less matter (dust) in Newtonian and modified Newtonian gravity.
Thereafter, addressing the problem of flattening of rotation curves of spiral
galaxies, we have tried to find out solutions of the modified Poisson equation
with spatially varying density without using dark matter. We also tried to
use these solutions to constrain the value of κ.

——————–
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Chapter 2

Gravitational collapse

2.1 Gravitational collapse in Newtonian grav-

ity

2.1.1 Theory

Consider a spherically symmetric mass of incoherent, pressure-less matter
(dust) influenced by its gravitational force. Let, at time t = 0, the radius
of the dust cloud be ‘a’. We assume that the dust remains spherically sym-
metric for all t ≥ 0 and the only force is gravitational. In order to study
the dynamics of such pressure-less matter, we consider spherical polar coor-
dinates (r, θ, φ) with origin at the center of the dust. The basic equations
governing the motion of the dust cloud are

∂ρ

∂t
+ ~∇.(ρ~u) = 0 (2.1)

d~u

dt
= −GM(r, t)

r2
r̂ (2.2)

where ρ = ρ(r, t) is the matter density , ~u = u(r, t)r̂ is radial velocity ,
M(r, t) = 4π

∫ r
0
ρ(r, t)r2dr is the mass of dust inside the sphere of radius r.

2.1.2 Solution

In order to solve equation (2.1) & (2.2) simultaneously, we assumed that
ρ(r, t) = ρ(t).
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So at t = 0, total mass of the dust is

M = M(a, 0) =
4

3
πρ0a

3 (2.3)

where ρ0 = ρ(0) = constant . Now from equation (2.1) we get

∂ρ(t)

∂t
+

1

r2

∂(r2ρ(t)u(r, t))

∂r
= 0

1

r2

∂(r2u(r, t))

∂r
= −d(lnρ)

dt
∂(r2u(r, t))

∂r
= −r2dR(t)

dt

where R(t) = Logeρ(t) = lnρ(t) . Integrating the above equation we get

u(r, t) = −1

3
r
dR(t)

dt
+

1

r2
g(t)

To avoid diverging solution at r = 0 , we put g(t) = 0 for all t. Thus we get

u(r, t) = −1

3
r
dR

dt
(2.4)

From equation(2.2)

∂u(r, t)

∂t
+ u

∂u(r, t)

∂r
= −GM(r, t)

r2
= −4

3
πGρ(t)r (2.5)

Combining equation(2.4) & (2.5) we get

d2R

dt2
− 1

3

(
dR

dt

)2

= 4πGeR (2.6)

Substituting dR
dt

= y in equation (2.6) we get

dy

dR
− 1

3
y = 4πGeRy−1 (2.7)

Let z = y2 , then equation (2.7) takes the following form

dz

dR
− 2

3
z = 8πGeR (2.8)
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Solving and putting initial condition R(t = 0) = lnρ0 i.e.
(
dR
dt

)
|t=0 = 0

z = 24πG
(
eR − e

1
3

(R0+2R)
)

which gives (
dR

dt

)
=

√
24πG

(
eR − e 1

3
(R0+2R)

)
Now, to know densityρ(t) for t > 0 , we have to integrate the above equation.
Thus we get,

t =
1√

24πG

∫ ρ

ρ0

dρ

ρ
4
3

√
ρ

1
3 − ρ

1
3
0

(2.9)

Here ρ = ρ(t) denotes the density of dust at time t > 0. To solve equation
(2.9) we put ρ = ρ0 cos−6 ψ

2
, and solving we get

ρ = ρ0

(
2

1 + cosψ

)3

(2.10)

t =
3

2
√

24πGρ0

[ψ + sinψ] (2.11)

Dependence of ρ on time can be obtained by a parametric plot of equation
(2.10) & (2.11) (see figure 2.1).

2.1.3 Result

Thus we have seen that density ρ is increasing with time. After a certain finite
time it goes to very high value. The time at which density became almost
infinity (i.e.volume→ 0) is called the collapse time TNC , the subscript ‘NC’
denotes Newtonian collapse time. The collapse time TNC can be obtained by
taking ρ→∞ i.e. by putting ψ = π in equation (2.10). Thus

TNC =
3π

2
√

24πGρ0

=
π

2

√
a3

2MG
(2.12)

Therefore, spherically symmetric mass of incoherent pressure less matter
(dust), finally collapses in finite time under the influence of its own grav-
itational field.
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Figure 2.1: Variation of density ρ with time t. Here magnitude of G and ρ0 is taken as
one.

2.2 Gravitational collapse in modified New-

tonian gravity

2.2.1 Theory

In this section we study the collapse of incoherent matter (dust) under modi-
fied Poisson’s equation (1.9). Following previous discussions, the basic equa-
tion of motion of matter is given below as

∂ρ

∂t
+ ~∇.(ρ~u) = 0 (2.13)

du

dt
= −GM(r, t)

r2
− κ

4

∂ρ

∂r
(2.14)

The equation (2.14) is slightly different from the equation (2.2) due to the
introduction of the ‘κ’ term. For constant density, the coupling term is
insignificant. For that reason, we assume that near the centre, the density
profile ρ(r, t) and radial velocity u(r, t) follows a series expansion as given
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below.
ρ(r, t) =

∑
n=0

ρn(t)rn (2.15)

u(r, t) =
∑
n=0

un(t)rn (2.16)

These series expansions simplify our calculation in solving the equation (2.13)
& (2.14) simultaneously. Taking partial derivatives of ρ(r, t) with respect to
r & t respectively we get

∂ρ(r, t)

∂r
=
∑
n=0

nρn(t)rn−1 (2.17)

∂ρ(r, t)

∂t
=
∑
n=0

dρn(t)

dt
rn (2.18)

Similarly for u(r, t), taking partial derivatives with respect to r & t respec-
tively, we get

∂u(r, t)

∂r
=
∑
n=0

nun(t)rn−1 (2.19)

∂u(r, t)

∂t
=
∑
n=0

dun(t)

dt
rn (2.20)

Now putting these in equations (2.13) & (2.14) we get following equations:
Equation for ρ :

∂ρ(r, t)

∂t
+

1

r2

∂(r2ρu)

∂r
= 0

∂ρ(r, t)

∂t
+ ρ(r, t)

∂u(r, t)

∂r
+ u(r, t)

∂ρ(r, t)

∂r
+

2

r
ρ(r, t)u(r, t) = 0

∑
n

dρn
dt

rn +

(∑
n

ρnr
n

)(∑
n

nunr
n−1

)
+

(∑
n

unr
n

)(∑
n

nρnr
n−1

)
+

2

r

(∑
n

ρnr
n

)(∑
n

unr
n

)
= 0

(2.21)

Equation for u :

∂u(r, t)

∂t
+ u

∂u(r, t)

∂r
= −GM(r, t)

r2
− κ

4

∂ρ(r, t)

∂r

= −G
r2

∫ r

0

ρ(r, t)4πr2dr − κ

4

∂ρ(r, t)

∂r
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∑
n

∂un
∂t

rn+

(∑
n

unr
n

)(∑
n

nunr
n−1

)
= −4πG

r2

∑
n

∫ r

0

ρn(t)rn+2dr−κ
4

∑
n

nrn−1ρn(t)

(2.22)
Equating nth order coefficients of r we get

ORDER EQUATION FOR ρ EQUATION FOR u

0th dρ0
dt

+ 3 (ρ1u0 + ρ0u1) = 0 du0
dt

+ u0u1 = −κ
4
ρ1

1st dρ1
dt

+ 4 (ρ2u0 + ρ1u1 + ρ0u2) = 0 du1
dt + u2

1 + 2u0u2 = −4
3πGρ0 −

κ
4 2ρ2

2nd dρ2
dt

+ 5 (ρ3u0 + ρ2u1 + ρ1u2 + ρ0u3) = 0 du2
dt

+ 3 (u2u1 + u0u3) =
−4

4
πGρ1 − κ

4
3ρ3

3rd dρ3
dt

+ 6 (ρ4u0 + ρ3u1 + ρ2u2 + ρ1u3 + ρ0u4) = 0 du3

dt + 2u22 + 4 (u4u0 + u1u3) =
− 4

5πGρ2 −
κ
4 4ρ4

4th dρ4
dt + 7 (ρ5u0 + ρ4u1 + ρ3u2 + ρ2u3 + ρ1u4 + ρ0u5) = 0 du4

dt + 5 (u5u0 + u4u1 + u3u2) =
− 4

6πGρ3 −
κ
4 5ρ5

Table 2.1: nth order equation for density ρ and velocity u upto n = 4
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2.2.2 Solution

For finding the solution, we have to solve the equations listed in the table
(2.1) simultaneously, up to a certain order. Now the question is up to what
order we should consider. We can truncate the series on the basis of the
initial condition.
From table (2.1) we can rewrite the equation for u combining 0th, 1st & 2nd as

u2×(0th order equation of u)+u1×(1st order equation of u)- u0×(2nd order equation of u)

⇒
u2 ×

(
du0
dt

+ u0u1
)

+ u1 ×
(
du1
dt

+ u21 + 2u0u2
)
− u0 ×

(
du2
dt

+ 3 (u2u1 + u0u3)
)

= u2 ×
(
−κ

4
ρ1

)
+ u1 ×

(
− 4

3
πGρ0 − κ

4
2ρ2

)
− u0 ×

(
− 4

4
πGρ1 − κ

4
3ρ3

)
This gives

du1

dt
+u21−

3u20u3

u1
+

1

u1

(
u2
du0

dt
− u0

du2

dt

)
= −πG

(
4ρ0

3
−
u0ρ1

u1

)
+
κ

4

(
3ρ3u0

u1
− 2ρ2 −

ρ1u2

u1

)
(2.23)

Now we see that, for finding solution for u1, we need to include the equations
for u0, u2. When we put the equations for u0, u2, then the solution of ρ is
also required. Therefore, to solve the equation it is required to know the
solution of other variables, and in this way we could never reach the actual
goal. Therefore we have to consider an approximation. We found that, if we
put u0 = 0 = u2 & ρ1 = 0 = ρ3 then the equation is truncated at the first
order.

Series up to 1st order : As we already discussed, this can be done by
imposing condition u0 = u2 = 0 = ρ1. Then from the 0th order equation of u
we get,

u1 = − 1

3ρ0

dρ0

dt
(2.24)

From Table 2.1 combining 1st & 2nd order equation of ρ by putting u0 = u2 =
0 = ρ1 we get

1

ρ2

dρ2

dt
− 5

3ρ0

dρ0

dt
= −5

ρ0u3

ρ2

(2.25)

Considering ρ0u3 � ρ2, we get a relation between ρ2 and ρ0

ρ2 = ηρ
5
3
0 (2.26)
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Where η is a constant independent of ρ2 and ρ0 and η < 0 . With the same
condition, and substituting equation (2.24) in 1st order equation for u we get

ρ̈0

ρ0

− 4

3

(
ρ̇0

ρ0

)2

= 4πGρ0 +
3

2
κρ2 (2.27)

Now let R(t) = lnρ0(t) then the above equation takes following form

d2R

dt2
− 1

3

(
dR

dt

)2

= 4πGeR +
3

2
κηe

5
3
R (2.28)

Thus, if we put κ = 0 then equation (2.28) reduces to equation (2.6). Now
substituting dR

dt
= y in equation(2.28) and then putting z = y2 we get re-

spectively

dy

dR
− 1

3
y =

(
4πGeR +

3kη

2
e

5
3
R

)
y−1

dz

dR
− 2

3
z = 8πGeR + 3κηe

5
3
R (2.29)

Solving and putting initial condition
(
dR
dt

)
|t=0 = 0 and R(t = 0) = Ri, we

get

z = 24πG
(
eR − e

1
3

(Ri+2R)
)

+ 3κη
(
e

5
3
R − e(Ri+

2
3
R)
)

This gives(
dR

dt

)
=

√
24πG

(
eR − e 1

3
(Ri+2R)

)
+ 3κη

(
e

5
3
R − e(Ri+

2
3
R)
)

Now to know the density ρ(t) for t > 0, we have to integrate above equation.
Thus we get

t(ρ0)− t(ρi) =
1√

24πG

∫ ρ0

ρi

dρ

ρ
4
3

√
ρ

1
3 − ρ

1
3
i + κn

8πG
(ρ− ρi)

(2.30)

Here ρi shows initial density and ρ0 is final central density. Our study is
focused mainly on ρ0, because it gives the knowledge of the central density
i.e. r = 0. If we put κ = 0 in equation (2.30), then it reduces to equation
(2.9), i.e. matter dust has collapsed. However for non-zero value of coupling
constant κ 6= 0, it is not easy to solve equation (2.30) analytically. Therefore,
we used numerical methods to analyse the results of the equation (2.28). The
codes for solving equation (2.28) is given in Appendix A.
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Figure 2.2: Plot of collapse time (Tc) as a function of (κη). Tc is scaled in Newtonian
collapse time TNC . Red line shows fitted curve. Fitted equation is TC

TNC
= 1.0225 −

0.1838Loge(κη + 1.0434)

2.2.3 Result

1. For κ = 0 variation of central density with time is shown in figure (2.1).

2. For κη > 0(i.e. κ < 0) numerical solution gives that ρ is an increasing
function of time and it takes on a very high value after a some time.
Thus κη > 0 corresponds to collapse of dust.

3. The time of collapse is reduced with increasing value of κη. The figure
(2.2) visualizes our statement.

4. For κη < 0(i.e. κ > 0) matter field behaves in an oscillatory manner.
Figure (2.3) shows that, ρ0, ρ2 & u1 are periodic function of time.

5. Time period of oscillation changes with κη ( see figure 2.4 ).

6. Amplitude of ρ0 & ρ2 also depends on kη (see figure 2.5 & 2.6).

7. Figure (2.7) shows density as a function of radial distance over a time
period. Black dark line shows the density profile at t = 0. We observed
that, for −8 < κη < 0 amplitude of oscillation is above the initial value
and for κη < −8 amplitude of oscillation is below the initial value.
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Figure 2.3: Plot of central density ρ0,ρ2 and velocity u as a function of time t for κη = −5

Figure 2.4: Plot of time period of oscillation T as a function of κη for κη < 0 . Red
line shows fitted curve. Fitted equation is T

TNC
= 2.25060 + 0.10307|κη|+ 0.00581|κη|2 +

0.00084|κη|3 + 0.00001|κη|4
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Figure 2.5: Plot of ρ0 as a function of κη for κη < 0. Red line shows fitted curve .

Fitted equation is ρ0 = e4.689−1.2461|κη|+0.0584|κη|2

Figure 2.6: Plot of ρ2 as a function of κη for κη < 0.Fitted equation is ρ2 = −659.45 +
336.99|κη| − 67.94|κη|2 + 6.73|κη|3
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Figure 2.7: Variation of central density (left side) and corresponding velocity (right side)
with distance from centre over a period for three different values of κη(< 0).
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2.2.4 Higher order correction

As we already discussed that, one could terminate the series upto 1st order by
putting u0 = u2 = 0 = ρ1. To check, whether the result of solution is valid or
not, we have to consider higher order equations. To get solution that involve
higher order terms, we have used ‘Mathematica’ NDSolve programming tool.
Equations used for finding solution upto 1st order:

dρ0

dt
+ 3 (ρ0u1) = 0

dρ2

dt
+ 5 (ρ2u1) = 0

du1

dt
+ u21 = −

4

3
πGρ0 −

k

4
2ρ2

Equations used for finding solution upto 2nd order: We can extend
series upto 2nd order by setting ρi = ui = 0 for i > 2.

dρ0

dt
+ 3 (ρ1u0 + ρ0u1) = 0

dρ1

dt
+ 4 (ρ2u0 + ρ1u1 + ρ0u2) = 0

dρ2

dt
+ 5 (ρ2u1 + ρ1u2) = 0

du0

dt
+ u0u1 = −

k

4
ρ1

du1

dt
+ u21 + 2u0u2 = −

4

3
πGρ0 −

κ

4
2ρ2

du2

dt
+ 3 (u2u1 + u0u3) = −

4

4
πGρ1

Equations used for finding solution upto 3rd order: We can extend
series upto 3rd order by setting ρi = ui = 0 for i > 3.

dρ0

dt
+ 3 (ρ1u0 + ρ0u1) = 0

dρ1

dt
+ 4 (ρ2u0 + ρ1u1 + ρ0u2) = 0

dρ2

dt
+ 5 (ρ3u0 + ρ2u1 + ρ1u2 + ρ0u3) = 0

dρ3

dt
+ 6 (ρ3u1 + ρ2u2 + ρ1u3) = 0

du0

dt
+ u0u1 = −

κ

4
ρ1

du1

dt
+ u21 + 2u0u2 = −

4

3
πGρ0 −

κ

4
2ρ2

du2

dt
+ 3 (u2u1 + u0u3) = −

4

4
πGρ1 −

κ

4
3ρ3

du3

dt
+ 2u22 + 4 (u4u0 + u1u3) = −

4

5
πGρ2
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Equations used for finding solution upto 4th order: We can extend
series up to 4th order by setting ρi = ui = 0 for i > 4.

dρ0

dt
+ 3 (ρ1u0 + ρ0u1) = 0

dρ1

dt
+ 4 (ρ2u0 + ρ1u1 + ρ0u2) = 0

dρ2

dt
+ 5 (ρ3u0 + ρ2u1 + ρ1u2 + ρ0u3) = 0

dρ3

dt
+ 6 (ρ4u0 + ρ3u1 + ρ2u2 + ρ1u3 + ρ0u4) = 0

dρ4

dt
+ 7 (ρ4u1 + ρ3u2 + ρ2u3 + ρ1u4) = 0

du0

dt
+ u0u1 = −

κ

4
ρ1

du1

dt
+ u21 + 2u0u2 = −

4

3
πGρ0 −

κ

4
2ρ2

du2

dt
+ 3 (u2u1 + u0u3) = −

4

4
πGρ1 −

κ

4
3ρ3

du3

dt
+ 2u22 + 4 (u4u0 + u1u3) = −

4

5
πGρ2 −

κ

4
4ρ4

du4

dt
+ 5 (u4u1 + u3u2) = −

4

6
πGρ3

Plot of surface density at different instants of time gives the information
about the variation of density profile. Now, from figure (2.8), we see that if we
include higher order terms in order to study collapse under modified theory,
then nature of the curve remains same, whereas amplitude and time period of
oscillation slightly changes. Figure (2.9) shows the variation of density(ρi’s)
and velocity(ui’s) as a function of time for series up to 4th order. Therefore,
higher order corrections also shows that for κ > 0(i.e.κη < 0) matter density
periodically changes with time.
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Figure 2.8: Plot of density profile near the centre for different instants of time
t(κη = −5). Here t is scaled in TNC . Figure(A) shows the density profile based on our ap-
proximation (i.e. except ρ0,ρ2,u1 all other terms zero for all values of t ).Figure(B),(C),(D)
shows density profile for 2nd,3rd,4th order approximation respectively. Initial conditions
are so chosen that introduction of higher order ρ’s do not affect on the density profile
at t = 0. Since we assumed that the dust particles are initially at rest, for all cases
ui(t = 0) = 0.
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Figure 2.9: Plot of density [Left] and velocity [Right] as function of time t/TNC
. Specification of colors being used are, ρ0 − Black,ρ1 − Blue, ρ2 − red(dashed),
ρ3 − Green,ρ4 − Orange; u0,u1,u2,u3,u4 are denoted by same color respectively. Ini-
tial conditions are ρ0 = 1.0,ρ1 = −0.1, ρ2 = −5.0, ρ3 = −0.001 , ρ4 = −0.1. ui(0) are zero
and κ = +1 24



2.3 Numerical stability

The solutions for finding collapse time (Tc), time period of oscillation (T ),
amplitudes of oscillation etc. are based on Runge-Kutta 4th order method
for solving 2nd order differential equation. Therefore, it is necessary to verify
the stability of finding solution for various values of κη. In order to do that
we plot a contour Y (t) Vs R(t) using following equation,

dR

dt
= Y (2.31)

dY

dt
=

1

3
Y 2 + 4πGeR +

3

2
κηe

5
3
R (2.32)

For periodically varying function, contour should be closed. But here we see
that after one period, starting point is slightly shifted. There may be two
reasons

1. The periodically varying function is not truly periodic.

2. There may be numerical error in each steps of iteration.

It was observed that if we decrease the step size, then the later reduces. So
that for better result, we must use as smaller a step size as possible.
We also found that, for smaller value of |κη| numerical calculation is too
unstable. This is due to fact that as |κη| reduces i.e. goes towards zero, the
equation make a transition from modified theory to Newtonian theory.

We also tried to connect the contours for different κη , because that could give
us approximate form of analytic expression for density profile as a function of
time. But we did not get any simple relation that connects various contours.
Figure (2.9) & (2.10) illustrates our analysis.
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Figure 2.10: Parametric plot of ‘Y(t) Vs R(t)’ to verify numerical stability for various
κη’s

Figure 2.11: Zoom view of parametric plot of ‘Y(t) Vs R(t)’ for κη = −1 (Left side),κη =
−5 (right side).This figure shows that smaller value of |κη| numerical calculation is very
much unstable. 26



2.4 Conclusion

Finally we are reached at end of our discussion. The concluding remarks
are:

1. Newtonian theory of gravity shows that spherically symmetric mass
of incoherent pressure less dust always collapses under influence of
gravitational field.

2. The modified theory of gravity shows that

• For κ < 0 (i.e. for κη > 0) matter collapses under influence of its
gravitational field. However as κ becomes more and more negative
collapse time reduces. Thus for a negative coupling constant (i.e.
κ < 0) results shows a dramatic impact on the collapse of dust.

• For κ > 0 (i.e. for κη < 0) matter field behaves in an oscillatory
way, with time. Time period of oscillation depends on κη. Higher
value of κ, increases time period. Amplitude of oscillation also
depends on κη and it increases as κ reduces.

Thus modified gravity yields a singularity free solution for κ > 0.

27



Chapter 3

Mass distribution of a galaxy

3.1 Introduction

The mass distribution of a galaxy is mainly determined by dynamical method
and photometric method. In photometric method, mass distribution is mea-
sured by luminosity analysis from various points of a galaxy. The dynamical
method is based on data analysis, such as measurement of rotation velocities,
velocity dispersions etc.. In this chapter, we mainly focus on the rotational
velocity, to find density distribution of a galaxy.

3.2 Rotational velocity

Observations for finding the rotational velocity of a galaxy is itself a very
tough job. The only observable quantity for a star are the spectral lines of
light coming from it. The stars are orbiting around the center of the galaxy
and therefore some stars are moving away from us and some are moving
towards us. As a result of this, light reaching us shows Doppler shifts. If ∆ν
denotes the Doppler shift , then we can measure the approaching or receding
speed of a star with respect to us by using the following relation.

Vrad = ±C∆ν

ν0

(3.1)

Here C is the velocity light in vacuum and ν0 is the mean frequency of light
coming from the stars. But, Vrad is not same as the rotational speed of the
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Figure 3.1: Distance of the Sun from the center of our galaxy is denoted by Rsun and
its rotational velocity about the center of the galaxy is Vsun. [Left] Rotation curve inside
the solar circle (r < Rsun) is obtained by measuring the terminal radial velocity Vrad−max
at the tangent point, where the distance is given by r = Rsun sin(l). [Right] Rotation
velocity at any point in the galactic plane outside of the solar circle.

star, because Vrad also depends on the galactic longitude(l). To understand
it more clearly, let us see the figures(3.1). From figure(3.1 [Right]) we get

Vrad = V (r) sin(δ)− Vsun sin(l)

= V (r)
Rsun

r
sin(l)− Vsun sin(l)

V (r) =
r

Rsun

(
Vrad

sin(l)
+ Vsun

)
When Vrad = Vrad−max , then r

Rsun
= sin(l). So that,

V (r) = Vrad−max + Vsun sin(l) (3.2)

This expression is valid only when observer located within the galaxy. For
most of the cases, observer is located outside the galaxy. So, for this if we
want to find the rotational velocity from doppler shift, then we have to use
following procedure (see figure 3.2 [left] ).

Let i be the angle of inclination of the galaxy i.e. if i = 0, then the galaxy
is in face-on position and if i = 90, then it is in the edge-on position. Let n̂
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Figure 3.2: [Left] Geometrical approach for finding V (r) for external galaxies .[Right]
Blue shift and red shift when stars are approaching and proceeding from us.

be normal to the plane of the galaxy. Then from figure(3.2 [left] ), we get
n̂ = {0,− sin(i), cos(i)}.
From this figure, we also have ~V (r) = {−V (r) sin(α), V (r) cos(α), 0}. Thus
the radial component of the velocity being observed is,

Vrad = −V (r) sin(i) cos(α)

Thus, the rotational speed of a external galaxy can be obtained using follow-
ing relation

V (r) =
Vrad

sin(i) cos(α)
(3.3)

3.3 The observed rotation curve

The plot of rotational velocity as a function of the distance from the center of
a galaxy is called the galaxy rotation curve or simply rotation curve. Figure
(3.3) shows the rotation curves in nearby spiral galaxies, which have been
obtained mainly by the terminal-velocity methods from optical, CO and HI
line data. Thus closer to center, rotational velocity rapidly increases with
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Figure 3.3: Plot of rotational velocity of various galaxies as a function of distance from
the center in ‘kiloparsec’

increase of the distance from center. But after a certain distance, it becomes
almost constant. This is called flattening of rotation curves. In this chapter,
first we have derived a general solution to find density distribution from the
rotational velocity and after that considering a guess velocity curve, we have
tried to explain the mass density distribution of a galaxy.

3.4 Density distribution using Newtonian grav-

ity

3.4.1 Theory

Motion of the stars and gas in a galaxy are approximately circular. Let us
define the circular velocity at radius r in the galaxy as v(r). Acceleration
of the star moving in a circular orbit must be provided by a net inward
gravitational force. Therefore we have,

v2(r)

r
r̂ = −~ar(r) (3.4)
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Now for a conservative force field, force can be written as a gradient of the
potential energy. Thus, acceleration can be defined by force per unit mass
F (r)
m

= −∇Φ. Here Φ is the gravitational potential. Thus, from equation(3.4)
we get

v2

r
= ∇rΦ

v2 = r
∂Φ

∂r

From Poisson’s equation we have,

∇2Φ = 4πGρ (3.5)

Considering spherically symmetric case, we have

~∇.
(
v2(r)r̂

r

)
−→ 1

r2

d

dr

(
rv2(r)

)

~∇.
(
v2(r)r̂

r

)
=

1

r2

d

dr

(
rv2(r)

)
= 4πGρ

Thus density distribution:

ρ =
1

4πG

1

r2

d

dr

(
rv2(r)

)
(3.6)

3.5 Density distribution using modified grav-

ity

3.5.1 Theory

As we already discussed in chapter : 1, in the modified theory of gravity,
Poisson’s equation can be written as

∇2Φ = 4πGρ+
κ

4
∇2ρ (3.7)

Here κ is coupling constant. Using v2 = r ∂Φ
∂r

from equation (3.7) we get

~∇.
(
v2(r)r̂

r

)
= 4πGρ+

κ

4
∇2ρ (3.8)
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Since we considered a spherically symmetric mass distribution, we can use

~∇.
(
v2(r)r̂

r

)
−→ 1

r2

d

dr

(
rv2(r)

)
∇2ρ −→ 1

r2

d

dr

(
r2dρ

dr

)

Thus we get

r2d
2ρ

dr2
+ 2r

dρ

dr
+

16πG

κ
ρr2 =

4

κ

d

dr

(
rv2(r)

)
(3.9)

Now if the expression of rotational velocity of galaxy is known, then density
distribution of a galaxy can be found by solving above equation.

3.5.2 Scaling of the variables of the differential equa-
tion

The nature of the solution of the differential equation(3.9) can be controlled
by two ways. One is by changing the rotational velocity and another is by
changing the sign-magnitude of the parameter ‘κ’. But since the observation
is based on the rotational velocity we have no control on it. So, we can
control only the parameter ‘κ’. Before proceeding further, let us first scale
the variables in such a way that, differential equation becomes dimensionless.
Let,

r −→ r = roŕ

v(r) −→ v(r) = Vov́(ŕ)

ρ(r) −→ ρ(r) = ρoρ́(ŕ)

(3.10)

Here ro ,Vo and ρo are in dimension of length, velocity and density respectively
and ŕ , v́ , ρ́ are the corresponding dimensionless quantities. Using this
transformation, from equation(3.9) we get

ρo

(
ŕ2d

2ρ́

dŕ2
+ 2ŕ

dρ́

dŕ
+

16πGr2
o

κ
ρ́ŕ2

)
=

4

κ
V 2
o

d

dŕ

(
ŕv́2(ŕ)

)
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Instead of ‘κ’, we define a new variable α as

α =
16πGr2

o

κ
(3.11)

This gives

ρo

(
ŕ2d

2ρ́

dŕ2
+ 2ŕ

dρ́

dŕ
+ αρ́ŕ2

)
=

α

4πGr2
o

V 2
o

d

dŕ

(
ŕv́2(ŕ)

)
By choosing ρo = V 2

o

4πGr2o
we get,

ŕ2d
2ρ́

dŕ2
+ 2ŕ

dρ́

dŕ
+ αρ́ŕ2 = α

d

dŕ

(
ŕv́2(ŕ)

)
Now we can drop out the primes because it does not give any new feature of
the solution. Thus, we get a dimensionless differential equation

r2d
2ρ

dr2
+ 2r

dρ

dr
+ αρr2 = α

d

dr

(
rv2(r)

)
(3.12)

The solution of this equation depends only on the initial conditions and
the parameter α, and nature of solution is independent of the size, central
density of the galaxy. Thus solving this, one could know about the density
distribution, size and mass of a galaxy.

3.5.3 Solution

To solve the differential equation we assume that

ρ(r) = rnP (r) (3.13)

Putting this, from above differential equation we get,

rn+2d
2P (r)

dr2
+rn+1(2+2n)

dP (r)

dr
+rnP (r)

[
n(n− 1) + 2n+ r2α

]
= α

d

dr

(
rv2(r)

)
(3.14)

To simply our calculation we set the coefficient of dP (r)
dr

equal to zero. This
gives the value of n = −1.

r1d
2P (r)

dr2
+ r−1P (r)

(
r2α
)

= α
d

dr

(
rv2(r)

)
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d2P (r)

dr2
+ αP (r) = α

1

r

d

dr

(
rv2(r)

)
d2P (r)

dr2
+ αP (r) = αQ(r) (3.15)

where

Q(r) =
1

r

d

dr

(
rv2(r)

)
(3.16)

Thus we have to solve the above differential equation to find P (r). After
finding the solution of P(r), the dimensionless density can be obtained by

using ρ(r) = P (r)
r

.

CASE 1 : α > 0 i.e. κ > 0 . Let α = ν2

We have
d2P (r)

dr2
+ ν2P (r) = ν2Q(r) (3.17)

Let PH be the complementary solution of this differential equation i.e.

d2PH(r)

dr2
+ ν2PH(r) = 0

Solving we get,

PH = C1 sin(νr) + C2 cos(νr) = C1PH1 + C2PH2 (3.18)

In order to find a complete solution, we have used variational method. Let
the general solution can be written in the form :

P (r) = u1PH1 + u2PH2

Differentiating with respect to r we get

P ′(r) = u1P
′
H1 + u′1PH1 + u2P

′
H2 + u′2PH2

Assuming
u′1PH1 + u′2PH2 = 0 (3.19)

Therefore,

P ′(r) = u1P
′
H1 + u2P

′
H2
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Differentiating with respect to r we get

P ′′(r) = u1P
′′
H1 + u2P

′′
H2 + u′1P

′
H1 + u′2P

′
H2

Putting this in equation 3.17, we get

(u1P
′′
H1 + u2P

′′
H2 + u′1P

′
H1 + u′2P

′
H2) + ν2 (u1PH1 + u2PH2) = ν2Q(r)

u1

(
P ′′H1 + ν2PH1

)
+ u2

(
P ′′H2 + ν2PH2

)
+ (u′1P

′
H1 + u′2P

′
H2) = ν2Q(r)

This gives
(u′1P

′
H1 + u′2P

′
H2) = ν2Q(r) (3.20)

Solving equations (3.19) & (3.20) we get

u′1(r) = −ν2PH2(r)Q(r)

W

u′2(r) = +ν2PH1(r)Q(r)

W

Here W is

W =

∣∣∣∣ PH1 PH2

P ′H1 P ′H2

∣∣∣∣ =

∣∣∣∣ sin(νr) cos(νr)
ν cos(νr) −ν sin(νr)

∣∣∣∣ = −ν

Thus

u1(r) = +ν

∫
PH2(r)Q(r)dr + C1

u2(r) = −ν
∫
PH1(r)Q(r)dr + C2

P (r) = u1PH1 + u2PH2

P (r) =

(
+ν

∫
PH2(r)Q(r)dr + C1

)
PH1 +

(
−ν
∫
PH1(r)Q(r)dr + C2

)
PH2

P (r) = C1 sin(νr) + C2 cos(νr)

+ν

(
sin(νr)

∫
cos(νr){1

r

d

dr

(
rv2(r)

)
}dr − cos(νr) cos(νr)

∫
sin(νr){1

r

d

dr

(
rv2(r)

)
}dr
)

(3.21)
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CASE 2 : α < 0 i.e. κ < 0 . Let α = −γ2

We have
d2P (r)

dr2
− γ2P (r) = −γ2Q(r) (3.22)

Let PH be the complementary solution of this differential equation.

d2PH(r)

dr2
− γ2PH(r) = 0

PH = C1e
γr + C2e

−γr = C1PH1 + C2PH2 (3.23)

In order to find complete solution we use the same procedure and finally
obtain,

u′1(r) = +γ2PH2(r)Q(r)

W

u′2(r) = −γ2PH1(r)Q(r)

W

Here W is

W =

∣∣∣∣ PH1 PH2

P ′H1 P ′H2

∣∣∣∣ =

∣∣∣∣ eγr e−γr

γeγr −γe−γr
∣∣∣∣

W = −2γ

Thus

u1(r) = −γ
2

∫
PH2(r)Q(r)dr + C1

u2(r) = +
γ

2

∫
PH1(r)Q(r)dr + C2

P (r) = u1PH1 + u2PH2

P (r) =

(
−γ

2

∫
PH2(r)Q(r)dr + C1

)
PH1 +

(
+
γ

2

∫
PH1(r)Q(r)dr + C2

)
PH2

P (r) = C1e
γr + C2e

−γr

+
γ

2

(
e−γr

∫
eγr{1

r

d

dr

(
rv2(r)

)
}dr − eγr

∫
e−γr{1

r

d

dr

(
rv2(r)

)
}dr
)

(3.24)
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Finally we get,

1. CASE 1 : κ > 0 i.e k = 16πGr2o
ν2

ρ(r) = 1
r
[C1 sin(νr) + C2 cos(νr)

+ν
(
sin(νr)

∫
cos(νr){1

r
d
dr

(rv2(r))}dr − cos(νr)
∫

sin(νr){1
r
d
dr

(rv2(r))}dr
)
]

2. CASE 2 : κ < 0 i.e. k = −16πGr2o
γ2

ρ(r) = 1
r
[C1e

γr + C2e
−γr

+γ
2

(
e−γr

∫
eγr{1

r
d
dr

(rv2(r))}dr − eγr
∫
e−γr{1

r
d
dr

(rv2(r))}dr
)
]

3. CASE 3 : κ = 0 ( Newtonian solution)

ρ =
1

r2

d

dr

(
rv2(r)

)
(3.25)

3.6 Results

Now to obtain a complete solution of density distribution, we have to
consider an expression for the rotational velocity. But, unfortunately there
is no standard relation between rotational velocity and distance from the
center of a galaxy which is available to us and which can be fit with all types
of galaxy rotational curves. Further we know that a curve could be fitted
in varieties of ways. To find density distribution, we have used a simplified
model to fit the observed data. We assumed that rotational velocity can be
fitted by the following equation.

v(r) =
m∑
n=1

anr
n (3.26)

Where m is integer number, called the order of fitting.

38



3.6.1 Initial condition:

To find solution of the differential equation, we used ρ(r) = P (r)
r

. But
such type of transformation shows a singularity unless we use following initial
conditions :

P (r) = 0, r −→ 0

dP (r)

dr
= 1, r −→ 0

This choice allows us to scale the density distribution in terms of central
density, because the above boundary condition basically gives,

lim
r−→0

ρ(r) = 1

Considering this initial condition, we also found that polynomial of order
m > 4 fitted very well with the observed data. Therefore, we fixed the
minimum value of m = 5. In later sections, we have elaborated our discussion
for m = 5, m = 6 and m = 7. To find the particular integral part and the
constants C1 & C2, one can use initial conditions. Here, to find this we used
‘Mathematica’ software (see Appendix B).

3.6.2 Guess velocity curve and fitting coefficients

To obtain the density distribution it is required to start with a given velocity
function. Without loss of any generality, we used data for the rotational
velocity (see figure 3.4). Then we used ‘Mathematica’ software to find the
coefficients ai’s. Value of the coefficients depend on the order ‘m’ and they
are given below.

SET:I m = 5

a1 = +0.5103427866655019, a2 = 0.08494519330627633, a3 = +0.006116936269042256 ,
a4 = −0.00019737550711519553 , a5 = +0.000002343484592807845

SET:II m = 6

a1 = +0.6251047988387206, a2 = −0.1394846016442028 , a3 = +0.014507964117148962,
a4 = −0.0007609406441321287 , a5 = +0.000019529309009183644 ,
a6 = −1.949233064861065 X 10−7
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Figure 3.4: Plot of rotational velocity as a function of distance from the center. Blue−
dotted , black − dashed & Red lines corresponding to the m = 5,m = 6 & m = 7 order
fitting respectively.

SET:III m = 7

a1 = +0.7396738482934138, a2 = −0.2123620099164611, a3 = +0.030067227602466995,

a4 = −0.0022965990004775983, a5 = +0.00009640684792484779 ,

a6 = −0.000002091496923398132 , a7 = +1.830996046408461x10−8

Using these cofficients, the nature of the density distribution is given be-
low. Further, we have defined a cut off radius where ρ(r) becomes negative
i.e. once ρ(r) negative, no further solution exists beyond that distance. Cut
off radius depends on the value of α.
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3.6.3 Case I : κ > 0

Recalling the solution ‘1’ and using the coefficients ai’s we get following plots
for respective values of m.

SET I : m = 5

Figure 3.5: Top figure shows the fitted velocity curve. Lower[Left] figure shows the
density distribution, which was obtained by plotting the analytical solution (Black line)
and by solving differential equation 3.17 numerically (Green line). This figure confirms that
our analytical solution is correct. [Right] Figure shows corresponding mass distribution.
The dashed red− dotted vertical line denotes cut off radius of our solution.
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SET II(m=6) and SET III(m=7)

Figure 3.6: [Left] panel for m = 6 and [right] panel for m = 7. Top figures shows the
fitted velocity curve. Middle figures shows the density distribution, which was obtained by
plotting analytical solution (Black line) and by solving differential equation 3.17 numer-
ically (Green line). This figure confirms that our analytical solution is correct. Bottom
figure shows corresponding mass distribution. The dashed red−dotted vertical line denotes
cut-off radius of our solution.
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Dependence of density distribution on ‘ν’(i.e. on ‘κ’)

While finding the density distribution we noted that the pattern of the
distribution and cut-off radius varied with the value of ‘ν’. Following figures
shows the density distributions for different ‘ν’.

continue...
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Figure 3.7: [Left panel]Plot of density distribution as a function of distance from the
center of the galaxy . [Right panel]Plot of mass distribution as a function of distance from
the center for corresponding density distribution.
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3.6.4 Case II :κ < 0

While finding the solution for κ < 0 (i.e. α = −γ2), we noted that the
density distribution is not only very much sensitive to a slight change in γ
(∆γ ∼ 10−10) but also, a valid solution exists within a very small range of
γ. Further, we have seen that, the cut-off radius is much smaller than the
given range of the velocity distribution. For example, if the given velocity
distribution is upto r = 30, but cut-off shows at r = 9, it decreases with
increase of γ. Therefore, we conclude that, for κ < 0 no solution exists.

Figure 3.8: [Left panel]Plot of density distribution as a function of distance from the
center .[Right panel]Plot of mass distribution as a function of distance from the center
for corresponding density distribution. Same pattern is obtained by solving differential
equation 3.22 numerically.
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3.6.5 Case III : κ = 0

Now we discuss a very interesting fact that arose during calculation. When
we began a comparison between the solutions for κ 6= 0(i.e. Modified
solution) and κ = 0(i.e. Newtonian solution), we saw that κ > 0 solution
approaches the Newtonian solution. The figure below shows that our
proposal for valid solution for κ > 0 is a good approximation.

Figure 3.9: Plot of density distribution as a function of distance from the center. Blue
line shows Newtonian solution and black line shows solution for κ > 0.
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3.7 Rescaling of the variables

Finally, to obtain the numerical value of the central density and total mass of
a galaxy, it is required to rescale the variables which we have scaled earlier.
From section 3.5.2 we have

ρ(r) −→ ρ(r) =
V 2
o

4πGr2
o

ρ(r)

Now V (r) is measured in the unit Km/sec and is the order of 100. Thus,

V 2
0

4πG
=

(100× 103)2m2.sec−2

4π × 6.673× 10−11kg−1.m3.sec−2

= 1.19× 1019kg.m−1

= 1.19× 1019 × 3.0857× 1019

1.9891× 1030
Msun.kpc

−1

= 0.185× 109Msun.kpc
−1

The radial distance ‘ro’ (i.e. distance from the center of the galaxy) is usually
measured in kiloparsec . Thus , ro = 1kpc gives

ρo =
V 2
o

4πG
× 1

r2
0

= 0.185× 109Msun.kpc
−3

Thus, the value of central density is

ρo = v02 × 0.185× 109Msun.kpc
−3 (3.27)

where v0 is the maximum value of the velocity in the unit of km/sec to order
of 100(i.e.if maximum velocity is 200km/s then v0 = 2).

3.8 Value of coupling constant

In this section, we have tried to fit our model of density distribution
with the observed rotational velocity data of a galaxy. The table given below,
summarises our result.
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SL.
NO.

Name of
Galaxy

νmin κmax = 16πGr2o
ν2min

(G.kpc2)

Cut off
radius
(kpc)

MASS
(1011Msun)

1 MILKY WAY 21 0.1139 18.5 1.106

2 ES00840411 25 0.0804 11.2 0.161

3 ES02060140 20 0.1257 11.5 0.317

4 ES03020120 28 0.0641 11.0 0.224

5 ES04250180 16 0.1963 14.8 0.552

6 F563-1 18 0.1551 15.5 0.430

7 F568-3 24 0.0873 11.5 0.262

8 F571-8 15 0.2234 13.0 0.634

9 F579-V1 30 0.0558 14.0 0.408

10 F730-V1 22 0.1038 12.0 0.468

Table 3.1: Possible value κmax , mass of various galaxies. To see the source of rotational
velocity data look at the reference [1]

Our results show that, there is a minimum value of ν for which density dis-
tribution, obtained from modified Poisson’s equation, approaches the New-
tonian solution. Thus, by fitting the density distribution, one could pa-
rameterize the value of νmin and hence maximum value of κ. Further, we
already excluded the possibility of κ < 0. Therefore possible range of cou-
pling constant κ (considering only the above table) is 0 < κ < 0.2234 G.kpc2.
However, to set the range of ‘κ’ it is necessary to analyse the data of large
number of galaxies.
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3.9 Conclusions

Finally we wish to end our discussion by highlighting some important results.

1. Using modified theory of gravity, it is possible to find analytical solu-
tions of the differential equation which describes the density distribu-
tion of a galaxy.

2. Solution of density distribution depends on sign and magnitude of cou-
pling constant ‘κ’:

• For κ < 0 (i.e. α = −γ2) no fixed solution is possible.

• For κ > 0 (i.e. α = ν2) there is a possible solution if the value of
κ is below a critical value.

3. It is expected that a galaxy with a particular rotation curve will have
a particular value of mass and radius. In our results, we have seen that
the scaling velocity vo is different for different galaxies, hence central
density and mass distribution are different.

4. Cut off radius and total mass depends on the coupling parameter κ.
Magnitude of κ depends on galaxy rotation curve. The possible range
of coupling constant is 0 < κ < 0.2234 G.kpc2.

5. Since density distribution quite similar to the Newtonian solution, or-
der of magnitude of total mass is same. Therefore modified theory of
gravity fails to solve dark matter problem.
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Chapter 4

Summary and future work

In this chapter, we present a summary of the main results and some directions
for future work.

4.1 Summary

We have seen that, within non-relativistic limit, the modified Poisson’s equa-
tion introduces a new interesting phenomenology over the old Newtonian
theory of gravity. The coupling term κ is the parameter of this theory and
gives different conclusions under the choice of its sign and magnitude.

1. In the first part of this report, we have seen that, for a negative value
of the coupling constant (i.e. κ < 0), pressure less matter (dust) col-
lapses under influence of gravitational force as in the case of Newtonian
theory. For positive value of coupling constant (κ > 0), dust produces
a nonsingular state in which matter density periodically changes with
time.

2. In the second part of this report, we tried to find out the solution of den-
sity distribution of a galaxy from the observe galaxy rotation curve. In
this case, we have seen that favourable solution exists only for κ > 0,
but there is an upper limit below which the solution approaches the
Newtonian solution. Comparing the predictions from modified galaxy
model with observations, we constrain possible range of coupling pa-
rameter for galaxies, which is 0 < κ < 0.2234 G kpc2.
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4.2 Future work

• Pressure less matter (dust) is a very theoretical concept. So one could
try to solve a problem considering matter influenced by both gravita-
tional force and pressure force. In this case, following equation may be
useful

du(r, t)

dt
= −1

ρ

dP

dr
− Gm(r)

r2
− κ

4

∂ρ

∂r
(4.1)

Here we may use polytropic relation between the pressure(P ) and
density(ρ) i.e. P = koρ

n , n is the polytropic index and ko is a constant.

• Hydrostatic equilibrium equation is now different from the Newtonian
theory. So, one could try to find out the solution from the equation
given below.

dP

dr
= −Gm(r)ρ

r2
− κ

4
ρ
∂ρ

∂r
(4.2)

• Lowest energy state is favourable to all objects. Since, modified Pois-
son’s equation introduces a coupling parameter ‘κ’, the gravitational
energy is also depends on the value of κ . Therefore condition for
minimum energy may be different from Newtonian gravity.

• Instead of considering a spherically symmetric model of a galaxy, one
may use a more realistic model to find density distribution of a galaxy.
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Appendix A

Programming codes in C

 

//STUDY OF COLLAPSE OF DUST PARTICLES IN MODIFIED GRAVITY////////////////////// 

#include<stdio.h> 

#include <math.h> 

#include<conio.h> 

double F(double x, double y,double z,double kn) 

{  double f;  f=z;   return(f);   } 

double G(double x, double y,double z,double kn) 

{  double g;  g=0.33334*z*z+4*(22/7)*exp(y)+1.5*kn*exp(1.666667*y); return(g);} 

main() 

{   int i,j,a,b,s1,s2,m,n,p,q,u,yy,c,cc,end,ll,dim=10000; 

    double y0,x0,z0,y1,z1,h,t,kn;   double k1,k2,k3,k4,l1,l2,l3,l4; 

    double p0[20000],p2[20000],u1[20000],pr[dim],ur[dim]; 

    float x[dim],y[dim],y2[dim],z[100],w[100],t1[1000],t2[1000],r[dim]; 

    float rr,T,T1,T2,Tnc=0.556,top,botom,top2,botom2,test,amp,amp2,tt,ts,ss; 

    float Tc[dim],TIMP[dim],AMP1[dim],AMP2[dim]; 

    printf("put the initial value of kn (`kn =-16' for -ve or `kn=1 for +ve : "); 

    scanf("%e", & ss); printf("\n\t-------------S T A R T -------------\n");   

    FILE*  fp;   

    rr=0.2;ll=80; 

    for(cc=0;cc<ll;cc++) 

  { kn=ss+cc*rr;     x0=0;y0=0;z0=0;     h=0.001;n=10;p=10000;   

   i=0; while(x0<n) 

    {      

      k1 = h*F(x0,y0,z0,kn);                  l1 = h*G(x0,y0,z0,kn); 

      k2 = h*F(x0+h*.5,y0+k1*.5,z0+l1*.5,kn); l2 = h*G(x0+h*.5,y0+k1*.5,z0+l1*.5,kn); 

      k3 = h*F(x0+h*.5,y0+k2*.5,z0+l2*.5,kn); l3 = h*G(x0+h*.5,y0+k2*.5,z0+l2*.5,kn);  

      k4 = h*F(x0+h*.5,y0+k2*.5,z0+l3*.5,kn); l4 = h*G(x0+h*.5,y0+k2*.5,z0+l3*.5,kn); 

                       y1 = y0 + ( k1 + 2*k2 + 2*k3 + k4)/6;  

                       z1 = z0 + ( l1 + 2*l2 + 2*l3 + l4 )/6;      

      p0[i]=exp(y1);   p2[i]=-5*pow(p0[i],1.66667);     u1[i]=-0.33334*z1;        

    if(p0[i]>pow(10,10))  {Tc[cc]=i*h;  printf("\n%0.2f\t%f",kn,Tc[cc]/Tnc); break;}            

        y0=y1; z0=z1;     x0=x0+h;i=i+1;    end=i;          

    } 

    fp=fopen("pp0.txt","w"); 

       for(i=0;i<p;i++)    { t=i*(h/Tnc);fprintf(fp,"\n%e\t%e",t,p0[i]);}  

    fp=fopen("pp2.txt","w"); 

       for(i=0;i<p;i++)    { t=i*(h/Tnc);fprintf(fp,"\n%e\t%e",t,p2[i]);}    

    fp=fopen("pu1.txt","w"); 

       for(i=0;i<p;i++)    { t=i*(h/Tnc);fprintf(fp,"\n%e\t%e",t,u1[i]);}       

    fp=fopen("pp0p2.txt","w"); 

       for(i=0;i<p;i++)    { t=i*(h/Tnc);fprintf(fp,"\n%e\t%e\t%e",t,p0[i],p2[i]);}   

    fp=fopen("all.txt","w"); fprintf(fp,"\n  Time(t/Tnc)\t\tp0\t\t\p2\t\tu1\n"); 

       for(i=0;i<p;i++) 

    {t=i*(h/Tnc);if(t<10){fprintf(fp,"\n%e\t%e\t%e\t%e",t,p0[i],p2[i],u1[i]);}else break;}            

 //--------------------S T A R T   C A L C U L A T I O N -------------------------------------- 

    if( p0[end]< pow(10,10) )  

{ //STEP 1: read data ///////////////////////////////////////////////////////////////////////  

    fp=fopen("pp0p2.txt","r");  m=0;test=1.0; 

    while(test > 0) {test=fscanf(fp,"%f%f%f",&x[m],&y[m],&y2[m]);m++;}m=m-1;//No.of data points 

//STEP 2: peak detection//////////////////////////////////////////////////////// 

    a=0;b=0;top=0;botom=0;top2=0;botom2=0; 

    for(i=0;i<m-1;i++) 

     {   if(  (y[i-1]< y[i] && y[i]>y[i+1] )||(  y[i-2]< y[i] && y[i]>y[i+2]) ) 

         {z[a]=x[i]; top=top+y[i]; top2=top2+y2[i];a++;}//to detect top 

         if(  (y[i-1]>y[i] && y[i]<y[i+1] )||(  y[i-2]> y[i] && y[i]<y[i+2]) ) 

         {w[b]=x[i];  botom=botom+y[i]; botom2=botom2+y2[i]; b++;}//to detect botom     

     }  q=a-1;u=b-1; 

//STEP 3:  Time periode calculation/////////////////////////////////////////////////////////// 

     s1=0;s2=0;T=0;T1=0;T2=0;TIMP[cc]=0;AMP1[cc]=0;AMP2[cc]=0; 

     for(j=0;j< q ;j++) //Time periode calculation considering top side 

     { t1[j]=z[j+1]-z[j]; if(t1[j]> 1 ){T1=T1+t1[j];s1++;}}        

     for(j=0;j< u ;j++)//Time periode calculation considering bottom side 

     { t2[j]=w[j+1]-w[j]; if(t2[j]> 1 ) {T2=T2+t2[j];s2++;}} 

            T=(T1/s1+T2/s2)*0.5;TIMP[cc]=T;// AVERAGETIME PERIODE  

//STEP 4: amplitude calculation/////////////////////////////////////////////////////////////// 

  amp=(top/a-botom/b)*0.5;AMP1[cc]=amp;     //AMPLITUDE p0  

  amp2=(top2/a-botom2/b)*0.5;AMP2[cc]=amp2; //AMPLITUDE p2    

  printf("\n%0.2f\t%f\t%f\t%f\t",kn,TIMP[cc],AMP1[cc],AMP2[cc]);}  

} 

//STEP 8: TO PLOT VARIATIONS WITH KN////////////////////////////////////////////////////////// 

FILE*  ffp; 

  ffp=fopen("difkn.txt","w");// for negative kn this loop runs automatically 

fprintf(ffp,"\nkn\t\tTIMP\t\tamp of P1  \tamp of P2\t\n",-kn,TIMP[cc],AMP1[cc],AMP2[cc]); 

for(cc=0;cc<ll;cc++){kn=ss+cc*rr;fprintf(ffp,"\n%f\t%f\t%f\t%f\t",-kn,TIMP[cc],AMP1[cc],AMP2[cc]);} 

  ffp=fopen("tc.txt","w");  // for positive kn this loop runs automatically 

for(cc=0;cc<ll;cc++){kn=ss+cc*rr;  fprintf(ffp,"\n%f\t%f\t",kn,Tc[cc]/Tnc);} 

 //--------------------E N D   C A L C U L A T I O N ---------------------------    

printf("\n\t-------------END-------------\n");getch(); 

} 
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Appendix B

Mathematica Codes

 

Input codes for finding density distribution are given below. 

 

 

; ;  
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