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Abstract
Glioblastoma (GBM) is the most prevalent form of primary brain cancer. In the therapeutic therapy of
GBM, there are still several ambiguities. GBM patients urgently need further research to �nd signi�cant
prognostic markers and more effective treatment choices. However, current stage-based clinical
approaches still need to be improved for predicting survival and making decisions. This research
intended to develop a new GBM risk assessment model based on glycolysis, immunology, and epithelial-
mesenchymal transition (EMT) gene signatures. In this analysis, the cohort was constructed using TCGA-
GBM data. Leveraging bioinformatics and machine algorithms, we developed a risk model based on
glycolysis, immunological, and EMT gene signatures, which was then employed to classify patients into
high and low-risk categories. Subsequently, we evaluated whether the risk score was associated with the
immunological microenvironment, immunotherapy response, and numerous anticancer drug sensitivity.
The unique risk model based on glycolysis, immunological, and EMT gene signatures could assist in
predicting clinical prognosis and directing therapy decisions for GBM patients.

1. Introduction
Glioblastoma (GBM), central nervous system tumors, develop quickly and are responsible for anywhere
from half to eighty percent of all invasive cancers in the nervous system. High morbidity, high mortality,
strong invasiveness, and a bad prognosis of GBM are growing health problems that worsen yearly 1. Due
to the invasive growth features of GBM, surgical treatment is ineffective, and the majority of GBMs are
resistant to radiation and chemotherapy. Therefore these therapies can only slightly postpone the
recurrence period for GBM patients2. Discovering reliable molecular biological markers for glioma is
essential at this point 3.

Researchers have found that GBM cells could quickly make enough energy for tumor growth through
glycolysis, even when there was much oxygen around. Aerobic glycolysis, often known as the Warburg
effect, is rewiring this metabolic process4. Lactic acid builds up when glycolysis happens, which makes
the acidic environment around a tumor even worse. On the other hand, tumor cell development requires a
great deal of energy, which might leave the tumor immune microenvironment hypoxic and short on
energy. The low-oxygen, low-energy profoundly impact the human immune system and low-pH milieu that
may in�uence T-cell function, enhance the immunological escape of tumor cells and accelerate tumor cell
occurrence, growth, and metastasis5,6. The epithelial mesenchymal transition (EMT), an early indicator of
tumor invasion and metastasis, is the process by which polarized epithelial cells become active
mesenchymal cells with the capacity for invasion and migration7. Glycolysis and epithelial-mesenchymal
plasticity are two essential ways cancer cells change to deal with the environmental stress caused by fast
growth and spreading. Optimal tactics for targeting GBM must understand the dynamic changes in the
epithelial and glycolysis phases throughout the metastatic process8,9. Numerous recent investigations
have also demonstrated that EMT is connected with immunosuppressive action against tumors. Immune
cells in the tumor microenvironment cause EMT in tumor cells. More research needs to be done on the
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two-way regulation between EMT and antitumor immunosuppressive action since this malignant cross-
talk may worsen tumor invasion and metastasis10.

However, reliable prognostic pro�les based on the fundamental combination of glycolysis, immunity, and
EMT gene signatures still need to be developed despite these �ndings. So, this study's goal was to create
a new way to predict the risk of GBM by putting together information about genes involved in glycolysis,
immunology, and EMT. This research was conducted with the hope that it hastened the development of
new, superior approaches to clinical practice.

2. Methods
2.1 Comparative study of variable gene expression

The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/)11, the OMIM database
(https://www.omic.org/)12, and GeneCards (https://www.genecards.org/)13 were utilized to obtain gene
expression data, clinical survival data, and gene mutation data from GBM patients. Glycolysis- and EMT-
related genes were retrieved from the hallmark gene set in the Molecular Signatures Database
v7.0(MSigDB, www.gsea-msigdb.org)14, which consists of 200 glycolysis genes and 200 EMT-related
genes; 2,493 immune-related genes were obtained from the ImmPort (http://import.org)15. The GBM
database contains information about the expression of 200 Glycolysis-, 2,493 immune-, and 200 EMT-
related genes. The Wilcoxon test was then employed to identify differentially expressed genes (DEGs) in
GBM and normal brain tissue using the criteria |Log2FC| > 1 and p<0.05. The discovered DEG mutations
were examined with cBioPortal (www.cbioportal.org)16.

2.2 An Investigation into the Function of DEGs

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis were carried out with the help of an R software package (clusterpro�ler, version 3.12). Those
indicators with false discovery rate (FDR)-corrected p values lower than 0.05 were considered signi�cant
when using Fisher's exact test.

2.3 Networks and routes for the interaction of the protein with protein

Utilizing the STRING database (found at https://www.string-db.org)17 in conjunction with GeneMANIA,
novel PPI modules had the potential to be predicted. The GeneMANIA website (http://genemania.org)18 is
a �exible and user-friendly resource that may be used to make hypotheses about the function of genes,
evaluate gene lists, and rank genes in order of priority for functional testing. In addition to this, we
determined the functional correlations by comparing the associated PPI values.

2.4 Prognostic model construction 
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First, the TCGA-GBM datasets were looked at to see if the expression of genes involved in glycolysis,
immunology, and EMT was different or correlated. Therefore, we screened for predictive genes involved in
glycolysis, immunity, and EMT using univariate and multivariate Cox analysis of overall survival (OS),
disease-speci�c survival (DSS), and progression-free interval (PFI). The R package "glmnet" was then
used for a LASSO regression with 10-fold cross-validation and 1,000 iterations. A total of 1,000 random
simulations were run for each cycle. A risk formula was developed, and the optimum gene for building the
model was chosen based on the optimal lambda value. Using the following equation, we determined the
risk scores based on the expression levels of each gene and their associated regression coe�cients. Risk

sore =   . Patients were divided into high- and low-risk groups according to the
appropriate cutoff value, which was determined using the "surv_cutpoint" function in the "survminer" R
package. The receiver operating characteristic curves were plotted using the "survivalROC" R package to
gauge the formula's predicted sensitivity. The same coe�cients and cutoff values used in the training set
were applied to the validation set to assess the model's performance. We next used multiple regression
analysis to determine whether the risk score formula had independent prognostic signi�cance when
added to other clinical factors.

2.5 Construction of the nomogram

The "RMS" package of the R program was used to generate the nomogram, which was then used to
determine the chance of survival for each patient. This procedure was carried out using R.

2.6 Subgroup Analyses

The TCGA dataset was used to get the RNA-sequencing expression pro�les and accompanying clinical
data for GBM. Consistency analysis using the ConsensusClusterPlus R package (v1.54.0), with a
maximum of six clusters and 80 percent of the entire sample drawn 100 times, clusterAlg = "hc" and
innerLinkage = "ward.D2." Use the pheatmap (v1.0.12) R software tool for clustering heatmaps. The
heatmap of gene expression keeps genes with SD > 0.1. R version 4.0.3 was used to implement all
analytic techniques and R packages.

2.7 The scores for immune in�ltration

From the TCGA dataset, TRNA-sequencing expression pro�les and related clinical information for GBM
were retrieved. The R software packages ggstatsplot and pheatmap were used to visualize the
correlations between gene expression and immunological score and multi-gene correlation, respectively.
Spearman's correlation analysis was used to characterize the correlation between non-normally
distributed quantitative data. P values below 0.05 were considered statistically signi�cant (*P<0.05). R
version was used to implement all the analytic techniques and packages.
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Cell type Identi�cation by Estimating Relative Subsets of RNA Transcripts (CIBERSORT)
(https://cibersort.stanford.edu/index.php) is an online site where we submitted normalized gene
expression data with standard annotation �les and estimated the percentages of 22 immune cell types
using 1,000 permutations and the LM22 gene signature. To further verify the tumor microenvironment
(TME) immune cell types, we used the CIBERSORT deconvolution technique to estimate the overall
immune in�ltration in each sample and the subgroups of immune cells. Individual immune cell fractions
were �ltered (p-value for Pearson correlation coe�cient < 0.05) and then subjected to CIBERSORT.

2.8 Methods for assessing drug sensitivity

An essential resource in pharmacogenomics, the Connectivity Map (CMap) links disorders to the
medications used to treat them (https://portals.broadinstitute.org/cmap/)19. The expression levels of
genes involved in glycolysis, immunology, and EMT were mapped using CMap to determine their
associations with various inhibitors. Learn the steps you need to take to use this online resource to
identify and eliminate inhibitors.

3. Results
3.1 Variations in the Expression of Genes Involved in glycolysis, immunity, and EMT

Between GBM and neighboring normal tissues, 52 glycolysis-related genes, 324 immune-related genes,
and 79 EMT-related genes were differently expressed (Fig.1A, E, I). Twenty-three glycolysis-related genes,
121 immune-related genes, and 44 EMT-related genes were elevated, whereas nine glycolysis-related
genes, 51 immune-related genes, and 10 EMT-related genes were downregulated (Fig.1B, F, J). The GO
enrichment analysis discovered the top nine GO categories with signi�cantly enriched glycolysis,
immunity, or EMT-related genes (Figures 1C, G, and K). The top 10 KEGG categories with substantial
enrichment of glycolysis-, immune-, and EMT-related genes were then discovered using KEGG analysis
(Fig.1D, H, L). 

3.2 The establishment of a diagnostic paradigm based on glycolysis, immunity, and EMT-related DEGs

The glycolysis, immunity, and EMT-related DEGs with P values more than 0.05 were eliminated from
further consideration using univariate Cox regression analysis of OS, DSS, or PFI (Fig.2A, Fig.S3A, and
Fig.S4A). The univariate Cox regression was then used as a foundation for LASSO regression analysis
(Fig.2C, D, Fig.S3C, D, and Fig.S4C, D). Afterward, we used LASSO regression on the data to develop a
predictive model based on glycolysis, immunity, and EMT-related DEGs. Finally, using a multivariate Cox
regression analysis (Fig.2B, Fig.S3B, and Fig.S4B).

For each GBM sample assigned a Risk score, we created an independent prognostic index (OS, DSS, and
PFI). To test whether the glycolysis, immunity, and EMT-related model could adequately predict the
prognosis of patients with GBM, we divided the patients into two groups, one with high risk and one with
low risk, based on the threshold of the median risk score (Fig.3A, S5A, and S6A). More signi�cant
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mortality and a shorter median survival time were seen in the high-risk group compared to the low-risk
group. Higher scores were associated with a poorer prognosis (OS, DSS, and PFI) for patients diagnosed
with GBM. Kaplan Meier curves (P<0.05, Fig.3B, S5B, and S6B) showed that the difference in prognosis
between the high-risk and low-risk groups was statistically signi�cant. A timeROC analysis that took into
account how much time had passed showed that the prognostic accuracy of OS was 0.751 at one year
(95% CI: 67.2-83.0), 0.812 at three years (95% CI: 68.3-94.0), and 0.920 at �ve years (95% CI: 81.7-102.2).
(Fig.3C). DSS's prognosis accuracy was calculated to be 0.770 at one year (95% CI: 68.7-85.2), 0.844 at
three years (95% CI: 72.8-96.0), and 0.927 at �ve years (95% CI: 83.4-101.9) using a receiver operating
characteristic (ROC) curve analysis that took into account time (Fig.S5C). Based on a receiver operating
characteristic (ROC) analysis that took into account how long the patient was followed, PFI had a
prognosis accuracy of 0.756 at one year (95% CI: 67.1-84.1), and 0.873 at three years (95% CI: 74.1-
100.5) (Fig.S6C). The results of this study suggested that including the glycolysis, immunity, and EMT-
related signature in our model for GBM prognosis prediction might be helpful, and the model we
developed did have some predictive success for this population.

3.3 Construction of the nomogram

To provide clinicians with a further accurate quantitative method of predicting a GBM patient's OS(Fig.4),
DSS(Fig.S7), and PFI(Fig.S8), we developed the nomogram that takes into account a patient's age,
gender, IDH status,  glycolysis, immunity, and EMT related DEGs, and risk ratings. The nomogram
provided evidence that the risk score was a signi�cant predictor in conjunction with several clinical
factors.

3.4 The glycolysis, immunity, and EMT-related DEGs in the development of prognostic model

We initially used the data from TCGA, concentrating on tissues for which expression data is also
available in healthy control samples from GTEx and matched TCGA controls. The two datasets collected
and detected the glycolysis, immunity, and EMT-related DEGs with P values below 0.05. CD70, PTX3,
FCGR2B, TNFRSF10C, FMOD, IL15, SOCS1, MMP9, MMP2, OSMR, MDK, EMP3, TNFRSF12A, IGFBP2,
PLOD3, CD81, SPARC, RARA, BMPR1A and SH3BP2 has a sigini�cantly increase expression in cancer
tissues. While HRAS, PAK6, MPO, SLIT2, RGS4, THY1, DEFB119, VEGFD, INSL3, ACKR1, TNFRSF25, and
FURIN were highly expressed in the normal tissues. There is no signi�cant difference between GBM and
normal tissues in TFR2 and UGP2 expression(Fig.5, Fig.S9, and Fig.S10). 

3.5 The PPI network and enrichment analysis

Given the abundance of tumor variations, we searched for glycolysis, immunity, and EMT-related DEGs in
GBM in the cBioPortal for Cancer Genomics (Fig.6A, Fig.S11A, and Fig.S12A). The glycolysis, immunity,
and EMT-related DEG PPIs were built using GERMANIA and the STING database. The discovery of
these glycolysis, immunity and EMT-related DEGs might lead to a new line of inquiry into GBM and
improve diagnostic and treatment methods (Fig.6B, C, Fig.S11B, C and Fig.S12B, C). GO function and
KEGG pathway enrichment analyses were undertaken to assess the performance of DEGs associated
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with glycolysis, immunity, and EMT. Figures Fig.6D, Fig.S11D, and Fig.S12D show the top nine biological
process (BP), cellular component (CC), and molecular function (MF) phrases. In this module, 23
substantially enriched KEGG pathways were discovered. B cell receptor signaling pathway, Cytokine-
cytokine receptor interaction, JAK-STAT signaling pathway, Malaria, and Axon guidance Metabolic
pathways were the �ve most essential KEGG pathways in cancer (Fig.6E, Fig.S11E and Fig.S12E). 

3.6 Analyses by Subgroup

Clustering cumulative distribution function (CDF) and relative change in the CDF's area under the curve.
The relative change in the area under the CDF curves as the number of clusters varies from k-1 to k. The
abscissa denotes category k, while the ordinate shows the area's relative change. The consistency of the
heatmap of clustering �ndings (k = 6) samples is represented by rows and columns, while the various
colors indicate distinct categories. And in the expression heatmap of the glycolysis, immunity, and EMT-
related DEGs among multiple subgroups, red indicates high expression, and blue indicates low
expression. The Kaplan-Meier survival analysis of the distinct groups of samples from the TCGA dataset,
including log-rank test comparisons across groups. The HR(95%Cl), as well as the median survival time
(LT50), for each of the various categories(Fig.7E, Fig.S13E, and Fig.S14E). 

3.7 Relationships between gene expression and immunological status

Spearman was used to examining the associations between gene expression and immunological score.
The gene expression or score distribution is shown on the abscissa, while the immunological score
distribution is shown on the ordinate. The right-hand density curve shows how the immunological score
is distributed over time, whereas the curve at the top shows how the gene expression or score evolves.
The top number indicates the p-value for the correlation, followed by the correlation coe�cient and the
technique used to calculate the correlation(Fig.8, Fig.S15, and Fig.S16).

3.8 Potentially therapeutic agents screening

CMAP analysis was used to identify prospective small-molecule medicines that target glycolysis,
immunity, and EMT-related DEGs. We uploaded the most signi�cant changes in DEGs to the CMAP
database. We selected the top 10 relevant medicines (Fig.9, Table.1, and Table.2)20-29. Vorinostat,
romidepsin, panobinostat, belinostat, JNJ-26481585, sunitinib, TG-101348, PCI-24781, tramadol, and
enzastaurin were substantially negatively linked with DEGs expression, suggesting that they may have
therapeutic potential for GBM.

4. Discussion
There is an immediate need to build a more accurate strategy for assessing prognosis and directing
therapy in patients with GBM, particularly in the age of precision medicine30,31. Glycolysis, the
immunological microenvironment, and EMT profoundly in�uence tumorigenesis, development, and
treatment resistance in GBM32. According to much research, a glycolysis zone is a hallmark of GBM
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development33. GBM cells' abnormal glucose metabolism leads to an abundance of lactic acid in the
peritumoral space, creating a tumor microenvironment characterized by hypoxia, low pH, and a de�ciency
of nutrients21,34. Increasing the expression of glycolysis genes has been demonstrated to boost
metabolism in GBM cells, which is consistent with the fact that glycolysis aids in cancer spreading and
shortens the lifespan of GBM patients35. 

Simultaneously, GBM creates an immunosuppressive milieu by aerobic glycolysis, which in turn limits
immune response, increases immune escape, and creates circumstances for the formation, growth,
invasion, and metastasis of tumors36. According to further research, the rising death rate among GBM
patients may be explained by the microenvironment affecting tumor treatment e�cacy and immune
checkpoint inhibitors37. EMT occurs when polarized epithelial cells change into active mesenchymal
cells, which may indicate tumor invasion and metastasis38. In individuals with GBM, glycolysis can
contribute to EMT39. In addition, the genesis and advancement of cancerous tumors are inextricably
linked to the immune system's participation. Immunotherapy is an innovative treatment for GBM that has
produced several successful and positive outcomes40. Furthermore, EMT in GBM cells has been shown to
facilitate tumor spread, facilitate immune evasion, and increase treatment resistance41. By putting
together gene signatures related to glycolysis, immunity, and EMT, these results made it possible to
predict the risk of GBM. This research is the �rst to utilize a combination of these gene signatures to
predict the prognosis of patients with GBM. 

Fifty-two glycolysis-related genes, 324 immune-related genes, and 79 EMT-related genes showed
differential expression between GBM and adjacent normal tissues. The LASSO Cox algorithm was used
for this set of genes to determine the most robust biomarkers and create a new risk score. The risk
calculation for glioblastoma multiforme (GBM) comprised 34 associated genes. We used this to
categorize GBM patients into high- and low-risk categories. The formula showed AUCs of 0.751, 0.812,
and 0.920 for predicting 1-, 3-, and 5-year OS, respectively, demonstrating good accuracy and reliability.
The high-risk group had a far lower OS than the low-risk group. In the risk model for the GBM DSS
prognosis, 35 genes were accounted for. We divided GBM patients into high- and low-risk categories
using this approach. The formula's AUCs for predicting 1-, 3-, and 5-year DSS were 0.770, 0.844, and
0.927, respectively, suggesting excellent accuracy and dependability. In addition, the high-risk group had a
much lower DSS than the low-risk group. In the risk model for GBM PFI prognosis, 25 associated genes
were considered. We divided GBM patients into high- and low-risk groups using this algorithm. The
formula has excellent accuracy and dependability, with AUCs of 0.756 and 0.873 for 1- and 3-year PFI,
respectively. High-risk patients had a lower PFI than low-risk patients. Subgroup analyses by gender, age,
and IDH status showed the formula's strong predictive accuracy. High-risk individuals exhibited poorer
OS, DSS, and PFI than low-risk patients, independent of illness stage, highlighting the necessity for a
gene-based clinical categorization. 

Functional comparison between each group found considerable connections between the OS group's
high-risk score and genes associated with the immune response, collagen-containing extracellular matrix,
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and cytokine-cytokine receptor interaction. According to functional analyses across groups, genes
involved in the immune response, collagen-containing extracellular matrix, cytokine-cytokine receptor
interaction, and growth factor binding were strongly associated with a high-risk score in the DSS group.
The PFI group with the highest risk score was shown to have substantial connections with genes related
to the immune response, regulation of in�ammatory response, collagen-containing extracellular matrix,
and signaling pathways regulating pluripotency of stem cells. All of these factors have a strong
relationship with the antitumor response, the spread of tumor metastases, the development of drug
resistance, and the progression of tumors42-44.

The presence of immune cells in the TME has been linked to cancer development. There was a strong
relationship between immune microenvironment indicators and our risk formula. Studies have shown
that their immunological microenvironment may predict GBM patients’ susceptibility to immune
checkpoint inhibitor therapy45,46. Patients in the low-risk group in this research had a more robust
immune function. Hence, the low-risk score may thus serve as a signal for GBM immunotherapy. 

Patients with GBM may bene�t from the glycolysis-related signature, as described by Wang et al. 47,
which may help predict OS. Several other researchers have tried to develop a prognostic model for GBM
by using immune- or EMT-related gene signatures48. We sought to build a unique prognostic model based
on integrating various gene pro�les in GBM because of the complex interplay between glycolysis,
immunological responses, and EMT activity. Based on the results of our research, the prognostic formula
created in this study is accurate for predicting sensitivity to immunotherapy in both early and advanced
stages of GBM. 

There are currently just a few ways to assess tumor susceptibility to molecular drugs49. Drug sensitivity
was positively correlated with the risk score for the following medicines: Vorinostat, romidepsin,
panobinostat, belinostat, JNJ-26481585, sunitinib, TG-101348, PCI-24781, tramadol, and enzastaurin.
These results meant that the risk score could be used to decide if someone with GBM needs
chemotherapy, which could help doctors make more personalized treatment plans. While there were
several caveats to this research, exploration using real-world prospective cohorts is necessary to verify
the risk score algorithm since this work relied on data from publicly available sources. This formula may
need to be revised since the a�liates used in this research all used different sequencing methodologies.

In summation, a unique genetic predictive risk score for GBM was created in this work. Patients with GBM
had an independent association between the risk score with OS, DSS, and PFI, in addition to functional
analysis, tumor subgroup, immune microenvironment, and therapeutic responsiveness. And also, in
subgroups de�ned by age, sex, and IDH status, it reliably predicted prognosis. These data demonstrate
molecular risk classi�cation for GBM patients, which may help predict prognosis and guide therapy.
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Table.1 CMap analysis reveals 10 compounds with potential as GBM treatments
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CMap name Dose Cell Mechanism of actions (MOA) Clinical
Status

Ref

vorinostat 10
uM

SKL HDAC inhibitor Phase 3 Puduvalli
VK et al1

romidepsin 0.04
uM

HA1E HDAC inhibitor Phase 3 Nguyen
TTT2

panobinostat 1.11
uM

U2OS HDAC inhibitor Phase 2 Nguyen
TTT3

belinostat 10
uM

HFL1 HDAC inhibitor Launched Xu K4

JNJ-
26481585

0.12
uM

U2OS HDAC inhibitor Launched Mathilde
Bouché5

sunitinib 0.37
uM

ASC FLT3 inhibitor|KIT inhibitor|PDGFR
inhibitor|RET inhibitor|VEGFR
inhibitor

Launched van Linde
ME6

TG-101348 3.33
uM

P1A82 JAK inhibitor|FLT3 inhibitor Phase 3 Saeedeh
Ghiasvand7

PCI-24781 10
uM

HA1E HDAC inhibitor Preclinical Vengoji R8

trametinib 10
uM

MCF7 MEK inhibitor Launched Szklener K9

enzastaurin 0.04
uM

NALM6 PKC inhibitor Launched Geribaldi-
Doldán N10

Figures
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Figure 1

Examining glycolysis, immunology, and EMT-related genes for differential expression

(A)There is a graphic representation of the overlap glycolysis-genes between the models in the form of a
Venn diagram; (B) The DEGs associated with glycolysis is shown as a volcano; (C) Enrichment of
glycolysis-related DEGs in GO terms; (D) Glycolysis-related DEGs' KEGG pathways. To illustrate the
immune-related DEGs, we present them in a Venn diagram and volcano plots (E, F); (G) Enrichment of
immune-related DEGs in GO terms;(H) Immune-related DEGs in KEGG pathways; (I, J) The Venn diagram
and the volcano plot of the DEGs associated with the EMT; (K) Enrichment of GO terms for DEGs involved
in the EMT; (L) EMT-related DEGs' KEGG pathways.
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Figure 2

Predictive risk model creation for OS analysis

(A)Univariate Cox regression analysis was performed on the glycolysis, immunology, and EMT-related
DEGs. Statistical signi�cance was set at P<0.05; (B) a multivariate Cox regression analysis was
performed on the genes retrieved from the univariate Cox regression analysis; (C) regression of the �ve
OS-related genes using LASSO; and (D) cross-validation was used to �ne-tune the LASSO regression
parameter selection.
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Figure 3

Using the TCGA-GBM cohort to construct a risk model

(A) The patients were divided randomly into groups of similar size, with the cutoff point being the median
risk score. A heatmap depicting the glycolysis, immunology, and EMT-related DEGs expression; (B)
Kaplan-Meier survival curves showing overall survival rates for people categorized as high risk or low risk;
and (C) the ROC curve was used to evaluate the risk score's ability to predict future events correctly.
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Figure 4

The nomogram to determine the likelihood of the patient surviving their GBM

(A)A Nomogram that takes into account both the risk score and the clinical information; (B)Calibration
plots for estimating the 1-, 2-, and 3-year overall survival of patients; (C)The curves of the receiver
operating characteristic for the prediction of survival based on the risk score and other factors (age and
time)
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Figure 5

Analysis of RNA-seq data from both TCGA and GTEx

The expression patterns of genes associated with glycolysis, immunology, and EMT that were found to
be differentially expressed are shown as a heatmap and boxplot, respectively.
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Figure 6

Evaluation of DEGs involved in glycolysis, immunity, and EMT for their function

(A)A mutational analysis of TCGA cohort DEGs involved in glycolysis, immunity, and EMT; (B)A protein-
protein interaction (PPI) network demonstrating the interaction of these DEGs (interaction score = 0.4);
(C)A plot depicting this network, which was created to investigate potential pathways through which
these DEGs contributed to cancer progression; (D)A bubble diagram depicting GO enrichment (a giant
bubble indicates a higher number of enriched genes; a deeper color indicates that the differences are
more pronounced; q-value: the adjusted p-value); (E)a review of KEGG enrichment for glycolysis-,
immunology-, and EMT-related DEGs.
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Figure 7

Analysis of Data Based on Subgroups

Clustering cumulative distribution function (CDF) and change in the area under the curve of the CDF.
Variation in the CDF area as the number of clusters varies from k-1 to k. The abscissa represents category
k, whereas the ordinate represents the relative change in the area. Rows and columns represent the
consistency of the heatmap of clustering results (k = 6) samples, while the different colors re�ect
separate groups. In the expression heatmap of glycolysis, immunity, and EMT-related DEGs across
distinct subgroups, red represents high expression, and blue represents low expression. The Kaplan-Meier
analysis of survival for the various groups of TCGA samples, including log-rank test comparisons across
groups. The HR (95%Cl) and the median survival time (LT50) for every category.
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Figure 8

Analysis of the tumor's microenvironment and immune cell in�ltration

A heatmap illustrating the relationship between many genes or models and the immunological score. The
abscissa and ordinate represent genes, whereas the different hues represent varied association
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coe�cients (blue for positive and red for negative correlation). The stronger the association, the darker
the color. Asterisks (*) designate for signi�cance levels, ** for p < 0.01, * for p < 0.05.

Figure 9

The evaluated medications for the treatment of GBM

The related three-dimensional structures are shown in (A)vorinostat, (B)romidepsin, (C)panobinostat,
(D)belinostat, (E)JNJ-26481585, (F)sunitinib, (G)TG-101348, (H)PCI-24781, (I)tramadol, and
(J)enzastaurin, respectively.
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