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A network of transcriptionally coordinated
functional modules in Saccharomyces cerevisiae
Allegra A. Petti1 and George M. Church1

Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA

Recent computational and experimental work suggests that functional modules underlie much of cellular physiology
and are a useful unit of cellular organization from the perspective of systems biology. Because interactions among
modules can give rise to higher-level properties that are essential to cellular function, a complete knowledge of these
interactions is necessary for future work in systems biology, including in silico modeling and metabolic engineering.
Here we present a computational method for the systematic identification and analysis of functional modules whose
activity is coordinated at the level of transcription. We applied this method, Search for Pairwise Interactions (SPIN),
to obtain a global view of functional module connectivity in Saccharomyces cerevisiae and to provide insight into the
biological mechanisms underlying this coordination. We also examined this global network at higher resolution to
obtain detailed information about the interactions of particular module pairs. For instance, our results reveal
possible transcriptional coordination of glycolysis and lipid metabolism by the transcription factor Gcr1p, and
further suggest that glycolysis and phosphoinositide signaling may regulate each other reciprocally.

[Supplemental material is available online at www.genome.org.]

The phenotype of a unicellular organism is determined by an
integrated network of genes, proteins, and metabolites that par-
ticipate in reciprocal regulatory relationships. Creating a quanti-
tative description of this network—a goal that has recently en-
gendered the dedicated discipline of systems biology—is essential
to understanding, predicting, and manipulating cellular behav-
ior. A first step toward this goal is deciphering the connectivity of
the network, that is, the pattern of interactions among its com-
ponents. Given the complexity of this undertaking, the inte-
grated network is often treated as a group of superimposed sub-
networks, including the gene regulatory, protein, and metabolic
networks. A corollary task is to determine whether the network’s
topology reflects its organizational principles. Using biological
networks with relatively well-characterized connectivity, quanti-
tative analyses of network topology have revealed that these net-
works are modular—they can be clustered into nodes that are
more densely connected to each other than to nodes in other
clusters (Ravasz et al. 2002; Barabasi and Oltvai 2004; Yook et al.
2004).

In both natural and man-made systems, modularity is a fun-
damental design principle whereby components are partitioned
according to common physical, regulatory, or functional prop-
erties. In biology, the exact meaning of modularity depends on
the network under consideration. For example, modules in the
protein network often have a straightforward physical interpre-
tation as a static molecular complex (such as the ribosome) or a
dynamic signaling pathway (such as a MAP kinase cascade)
(Schwikowski et al. 2000; Spirin and Mirny 2003). Gene regula-
tory networks, in contrast, tend to display regulatory modules, in
which every gene is controlled by the same transcription factors
(TFs) under the same environmental conditions (Tavazoie et al.
1999; Segal et al. 2003). Both networks exhibit functional modu-

larity. Defined as groups of genes, proteins, and other molecules
involved in a common subcellular process, functional modules
transcend the heuristic subdivision of the integrated network
into gene regulatory, protein, and metabolic networks. It has
been proposed that the functional module is the most relevant
organizational unit of a cell from the perspective of systems bi-
ology (Hartwell et al. 1999), and a growing body of work supports
the idea that such modules underlie much of cellular physiology.

For natural and man-made systems, the relative indepen-
dence of modules has significant implications for system engi-
neering (by evolution or by man): A module can be selectively
altered without perturbing the behavior of the rest of the system.
However, higher-level properties that emerge from intermodule
coordination are often critical to the behavior of the system as a
whole (Hartwell et al. 1999). This need for module integration is
balanced with the benefits of module independence by ensuring
that only a few components in each module interface with other
modules. With respect to (biological) functional modularity,
modules are partially isolated from each other by the biochemi-
cal specificity of protein–protein and protein–DNA interactions.
They contain a large number of internal components that do not
interact with other modules, and a small number of input and/or
output components that do (Alon 2003).

Most investigations of functional modularity have sought to
define the modules’ components (Rives and Galitski 2003; Spirin
and Mirny 2003; Han et al. 2004; Ma et al. 2004; Pereira-Leal et al.
2004), and several databases use published literature to categorize
every gene in Saccharomyces cerevisiae according to its cellular
function (Ashburner et al. 2000; Mewes et al. 2002). However,
several studies have found examples of physical and regulatory
interactions between modules (Ihmels et al. 2002, 2004; Snel et
al. 2002; Danial et al. 2003; Rives and Galitski 2003; Segal et al.
2003; Han et al. 2004; Segre et al. 2005). For instance, Gal4p, a
well-characterized transcription factor traditionally associated
with galactose metabolism, was also found to regulate genes as-
sociated with uracil metabolism, such as the uracil transporter
gene FUR4, thereby facilitating the addition of uridine 5�-
diphosphate to galactose (Ren et al. 2000).
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A more global understanding of functional module interac-
tions is essential to several endeavors of systems biology, such as
predicting cellular-level phenotypes arising from, for example,
genetic manipulation of microorganisms, and creating accurate
mathematical models of cellular function (Kholodenko et al.
2002). This understanding will also help answer broader ques-
tions about how intermodule regulatory connections are distrib-
uted across the cell. One possibility is that most cellular functions
are coordinated by a central organizing module; another, that
the connections are uniformly distributed among modules.

These considerations motivated us to automate the identi-
fication of potentially coregulated functional module pairs in S.
cerevisiae. Such coregulation can be achieved through a variety of
mechanisms, including enzymatic reactions, shared metabolites,
and coordinated transcription. We focus on transcription,
which, by promoting the coexistence of biochemical compo-
nents necessary for coordination by other mechanisms, may rep-
resent the most fundamental level of coregulation. Drawing on
experimental evidence that a transcription factor can coordinate
the activity of two pathways by regulating genes in both path-
ways (Ren et al. 2000; Iyer et al. 2001; Lieb et al. 2001), we de-
veloped an algorithm, SPIN (Search for Pairwise INteractions),
that examines genes from a pair of functional modules, and uses
expression data to assess the possibility that a given TF(s) tran-
scriptionally coregulates genes in both modules. To obtain a
comprehensive view of module coordination at a desired level of
functional resolution, we applied SPIN to all pairwise combina-
tions of 72 functional modules (Supplemental Fig. S1), which we
defined according to the second-tier functional categories of the
MIPS database (Mewes et al. 2002). For each module pair, the
extent of transcriptional coregulation was determined with re-
spect to four microarray expression data sets and each of 175 TFs.
The results suggest extensive coregulation among functional
modules, and afford a high-level view of interprocess coordina-
tion consistent with biological knowledge. SPIN also identifies
previously unknown functional interactions and the TFs that
mediate them, thereby providing novel insight into the overall
functional and regulatory organization of S. cerevisiae.

Results

Single-TF analysis

SPIN accepts as input four data sets, including one set of tran-
scription factor binding site (TFBS) data (for several TFs), one set
of gene expression data, and two gene sets, each representing a
predefined functional module. For each TF, SPIN determines
whether the TF binds to genes in both modules. If so, it uses gene
expression data to determine whether the TF confers upon these
target genes an expression profile that is coherent and distinct
from the expression profiles that characterize the functional cat-
egories (Fig. 1A). The output of SPIN is a list of statistically sig-
nificant “triplets,” that is, sets of two functional modules and one
TF that appears to coordinate the modules’ activity by coregulat-
ing genes in each. We consider only triplets in which each mod-
ule contains at least four target genes.

To generate the results reported below, we used several com-
binations of TFBS and gene expression data. TFBS information for
a total of 175 TFs was taken from two pre-existing data sets: One
set, referred to as MSA (Multiple Sequence Alignment), was ob-
tained using the sequence-alignment algorithm AlignACE (Roth
et al. 1998) and the pattern-matching algorithm ScanACE to
identify TF-binding motifs and their genomic locations, respec-

tively, as described in Pilpel et al. (2001) and Hughes et al. (2000);
the second data set, referred to as Chip2, was obtained using
ChIP-chip technology, and therefore constitutes direct physical
evidence of in vivo TF binding (Lee et al. 2002). Because each
DNA-binding motif in the MSA set is assumed to represent a
binding site for a cognate TF, “TF” or “TFBS” will henceforth also
refer to DNA motifs. Four microarray data sets, which measure
mRNA expression profiles during the cell cycle, diauxic shift,
response to environmental stress, and perturbations of the MAPK
signaling pathways, were used. Functional modules were defined
according to the second-tier functional categories in the MIPS
database (in which published, largely experimental, evidence is
manually curated in order to assign gene function). (Supplemen-
tal Fig. S1). However, SPIN can be used with any scheme of func-
tional categorization. This is essential, because module defini-
tions will inevitably coevolve with the annotation of the yeast
genome.

To obtain a global view of module coordination at this level
of functional resolution, we applied SPIN to all pairs of MIPS
functional modules, using each TFBS data set and each expres-
sion data set. Table 1 summarizes these data for each data set

Figure 1. (A) General approach. (B) Global module interaction network
(MSA TFs). Each node represents a functional module in the second-
highest level of the MIPS hierarchy, and its color corresponds to the
highest-level MIPS category of which the node is a member (see Fig. 3
legend). Each edge represents one or more MSA TFs that coordinate the
transcription of genes in both modules in a statistically significant man-
ner. Edge color represents the expression data set from which the inter-
action was inferred: (purple) cell cycle, (gray) diauxic shift, (turquoise)
environmental stress, (green) MAPK. Supplemental Figure S4 is a more
fully annotated version of this figure. This graph and others like it were
drawn using Pajek (Batagelj and Mrvar 1998).
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combination (complete results in Supplemental Figs. S2, S3). Re-
sults from the MSA TFs reveal extensive coordination among
modules: 34 TFs were found to mediate 316 pairwise interactions
involving 55 functional modules. Many module pairs are coor-
dinated by more than one TF and/or in more than one set of
expression data. Those coregulated by at least one TF under at
least one set of expression data are shown in Figure 1B (anno-
tated version in Supplemental Fig. S4). Results obtained using the
Chip2 data set include 102 pairwise interactions among 36 cat-
egories, mediated by 25 TFs. A substantial portion (48%) of these
interactions was also found using the MSA results (Supplemental
Fig. S5). Overall, these results comprise a rich data set with which
intermodule coregulation can be studied at different levels of
detail, as we discuss below.

At low resolution, the results afford a global view of module
connectivity that reveals the extent to which control of cellular
activity is centralized, and the conditions under which each
module is active. For both TFBS sets, the distribution of module
connectivity, defined as the number of other modules with
which a given module is coregulated, is not uniform (Fig. 2A).
Those related to storage and transmission of genetic information,
such as the mRNA, Cell cycle, tRNA, Nucleotides, Differentiation,
and DNA modules, are among the most highly connected (see
Table 2 for module abbreviations). Although there is no evidence
that a single module acts as a cellular “central processing unit,”
these modules appear to have a particularly strong influence on
the organization of cellular behavior. This is consistent with data
on physical interaction modules in the protein–protein interac-
tion network (Schwikowski et al. 2000; Tucker et al. 2001; Rives
and Galitski 2003; Han et al. 2004). The functional module con-
nectivity distributions show general (but imperfect) correlation
between module size and number of partner modules (Pearson
correlation coefficients = 0.87 [Chip2] and 0.64 [MSA]). A general
correlation is expected, since central cellular processes may (1)
involve many molecules, and (2) interface with numerous other
processes. Connectivity distributions broken down by expression
data set (Supplemental Fig. S6A–C) reveal that fewer interactions
were deemed significant using the environmental stress expres-
sion data. The conditions in that data set elicit a broad transcrip-
tional response known as the environmental stress response
(ESR) (Gasch et al. 2000), but may affect few functional modules
in a manner that is distinct from the ESR.

From a TF-centric perspective, the global view reveals a non-
uniform distribution of TF connectivity (the number of pairwise
interactions that a given TF mediates) analogous to the distribu-
tion of module connectivity (Fig. 2B). This supports the notion
that some TFs (such as mRRPE, PAC, and SFF) are relatively gen-
eral and are therefore involved in many processes, whereas others
are more specific (Cliften et al. 2003). The module pairs coregu-

lated by each TF, and the conditions under which the coregula-
tion was inferred, are largely consistent with known TF activities.
For example, MCB, whose target genes are active during the G1

phase of the cell cycle, was found to coregulate many modules
related to cell cycle progression and transcription, all of which
were identified using cell cycle expression data. Moreover, TFs
that are known to act synergistically are often found to mediate
the same pairwise interaction. For instance, many interactions
mediated by mRRPE3 and PAC, which are thought to coopera-
tively regulate the expression of rRNA transcription and process-
ing genes (Sudarsanam et al. 2002), involve one or more of the
modules rRNA, tRNA, and Amino-acyl tRNA synthetases, and were
inferred using diauxic shift expression data (Supplemental Fig.
S6C). This may reflect the decrease in ribosome biogenesis that
accompanies the diauxic shift (DeRisi et al. 1997).

Although the complete network is too large and highly con-
nected to be informative about the details of transcriptional co-
ordination, subnetworks of interest can be extracted and exam-
ined in increasing levels of detail. For instance, all modules that
are coregulated with Cell cycle by MSA TFs are shown in Supple-
mental Figure S7; specific module pairs are discussed below.

Intersection of MSA and Chip2 results

To identify a small subset of the most biologically significant
results, we selected statistically significant pairwise interactions
that were identified using both binding site data sets (regardless
of the identity of the motifs mediating the interaction). The re-
sulting filtered data set contains 29 pairwise interactions among
22 modules, mediated by 39 motifs (Fig. 3; Supplemental Fig. S8).
Many of these interactions and the TFs that mediate them are
biologically well-grounded, but several less predictable relation-
ships were also discovered. With respect to the former, there is a
clique consisting of the Cell cycle, DNA, mRNA, and Differentiation
modules. Every interaction within the clique is mediated by
MBP1 (Chip2) and MCB (MSA), both of which correspond to the
TF Mbfp. (MBP1 and SWI6 interact to form the Mbfp complex,
which binds to the MCB DNA motif and regulates passage
through START during the cell cycle [Horak et al. 2002].)

Other foreseeable relationships include the interactions of
Assembly of protein complexes with Ionic homeostasis and Mitochon-
drial transport. The TFs HAP4 (Chip2) and HAP2/3/4 (MSA)
(which represents a complex composed of HAP2, HAP3, and
HAP4) mediate all of these interactions. They, along with HAP5,
form a transcription factor complex that regulates genes encod-
ing components of the TCA cycle and the electron transport
chain (which are included in all four of these categories) under
nonfermentative conditions. ABF1 (MSA) and HAP2/3/4 (MSA),
which were found to coordinate Assembly of protein complexes
with Ionic homeostasis, are another example of synergistic TFs
that mediate the same interaction.

One of the more novel relationships is the coordination of
Cell cycle with Carbon, which is mediated by several TFs including
SWI5, CIN5, NDD1, NRG1 (all Chip2), and mMERE11 (MSA) (dis-
cussed further in Supplemental materials item S9).

TF pairs

A growing body of evidence shows that the activity and specific-
ity of many TFs are increased by their acting in conjunction with
other TFs (Pilpel et al. 2001; Sudarsanam et al. 2002). The single-
TF approach to functional module coordination was therefore
extended to identify pairs of TFs that act synergistically to coor-
dinate the activity of functional modules. Analogous to the

Table 1. Number of significant triplets identified by SPIN, using
stringent criteria

TFBS data set

MSA Chip2

Total triplets passing size threshold 13,378 1154
Cell cycle 111 130
Diauxic shift 281 0
Environmental stress 29 0
MAPK 181 69
Unique category pairs across all expression sets 316 102
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single-TF analysis, coordination between all module pairs was
analyzed by SPIN for all TF pairs in the MSA data set and all
expression data sets. Using stringent filtering criteria, 26 TF pairs,
comprised of 13 individual TFs, mediate 32 pairwise interactions
among 23 different modules (Supplemental Fig. S10). This global
TF-pair interaction network contains a few additional module
interactions that were not identified by the single-TF analysis.
The most highly connected modules (Supplemental Fig. S11) dif-
fer slightly from those identified using single TFs, and include
Carbon, mRNA, Cell cycle, Cell Sensing and Response, and Differen-
tiation. Of the 26 different TF pairs found to mediate the module
interactions, 11 of them have been previously documented as
synergistic (Pilpel et al. 2001). Most of the TF combinations
(Supplemental Fig. S12) involve one of the TFs SFF, SFFp (an SFF
variant), or MCM1-short (an MCM1 variant). Our requirement
that each module contain a number of genes that are targets of
both TFs (see Methods) may have biased our results toward these
TFs, which have large numbers of targets. SFF pairs with the
greatest number of additional motifs (Supplemental Fig. S13),
which may explain why it was found to coordinate many module
pairs in the single-TF analysis.

Analysis of module coregulation with respect to individual
transcription factors

In addition to the global study, we investigated the regulatory
relationships between several pairs of functional modules in de-
tail. It is this level of analysis that yields the greatest number of
practical biological insights: SPIN efficiently reproduces results
from numerous previous studies, and provides new information
that allows us to synthesize known and novel results into revised,
more complete, biological hypotheses. Here, we discuss the co-
ordination of “Carbon compound and carbohydrate metabo-
lism” (Carbon) with “Lipid, fatty-acid, and isoprenoid metabo-
lism” (Lipids).

The metabolic relationship between glucose and lipid me-
tabolism—that each process generates intermediates of the
other—is well-established (Berg et al. 2002; Kanehisa et al. 2004).
However, recently identified physical and signaling interactions
between glycolysis and lipid metabolism imply that these pro-
cesses are further coordinated by more elaborate, multilevel regu-
latory mechanisms that are not fully understood. In order to
study this coordination at the level of transcription, our algo-

Figure 2. (A) Functional module connectivity histogram. For each module, the number of partner modules with which it is coordinated by at least
one TF in at least one expression data set is shown. (Purple columns) MSA TFs, (green columns) Chip2 TFs, (pink line) module size. (B) TF utilization
histogram. The number of pairwise module interactions mediated by each TF is shown on the left-hand axis. The right-hand axis shows the number of
genome-wide promoter targets for each TF. (Purple column) MSA TFs, (pink column) Chip2 TFs, (pink line) promoter targets per TF.
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rithm was applied to the functional module pairs Carbon and
Lipids, and Glycolysis and Lipids.

Using stringent and lenient filtering criteria (see Methods),
we found that the activity of Carbon and Lipids is coordinated by
a variety of TFs using a variety of expression data sets. It appears
that different TFs coordinate different subsets of genes in each
process in a condition-specific manner. Using MAPK expression
data, for instance, SWI4 (Chip2) was found to coordinate genes
in each process that are associated with cell wall biosynthesis.
Using cell cycle data, however, GCR1 (MSA) was found to coor-
dinate the Carbon–Lipids interaction. We focus on this result be-
cause, compared to the other TFs that mediate this interaction,
GCR1 is more specific to the glycolytic genes.

GCR1 is the primary transcriptional activator of the glyco-
lytic enzymes (Lopez and Baker 2000), but has not been previ-
ously implicated in the metabolism of lipids, fatty acids, or iso-
prenoids. Here, however, GCR1 was associated with the expres-
sion of six genes associated with Lipids (Fig. 4). These genes are
involved in biosynthesis of inositol and phosphoinositides, such
as the signaling molecule PI(4,5)P2 (MSS4 and INM1), fatty acid
biosynthesis (ELO1), ergosterol biosynthesis (FPS1), glycerol im-
port (ERG20), and inositol-dependent transcriptional regulation
of other phospholipid biosynthetic genes (UME6) (Elkhaimi et al.
2000; Christie et al. 2004).

These results draw together several recent studies, each of
which reports on a different aspect of the relationship between
glycolysis and lipid metabolism. Using a yeast proteome chip,

some glycolytic enzymes and glucose transporters were observed
to bind phosphoinositides (Zhu et al. 2001), consistent with in-
dependent reports that most glycolytic enzymes are localized to
the cell wall (in addition to the cytoplasm) (Hubbard et al. 1994;
Lesage et al. 1994; Delgado et al. 2001; Honigberg and Purnapatre
2003; Willis et al. 2003; Young et al. 2003). Other work has
shown that glucose stimulates cleavage and subsequent signal
transduction by the phosphoinositide PI(4,5)P2, as well as tran-
scription of INM1 [which encodes a PI(4,5)P2 biosynthetic en-
zyme] (Murray and Greenberg 2000).

Taken together, these data suggest that phosphoinositides
may couple glycolysis with PI(4,5)P2 synthesis and glucose-
induced PI(4,5)P2 signaling. This raises the possibility that phos-
phoinositides or phosphoinositide-mediated signal transduction
regulate the activity of glycolytic enzymes in a feedback loop.
Our evidence for transcriptional coordination of glucose and
lipid metabolism suggests that joint transcription by GCR1 en-
ables components of both processes to coexist.

Discussion
Recent computational and experimental work has yielded in-
creasing evidence that the cell is organized into functional mod-
ules—groups of genes, proteins, and other molecules that serve a
particular cellular function. Although each module acts in rela-
tive isolation from the rest of the cell, higher-level properties that
emerge from the coordination of and interactions among func-
tional modules may be essential to cellular survival. Future work
in systems biology may necessitate a more complete knowledge
of these interactions than we currently possess. SPIN facilitates
the identification of functional modules whose activity is tran-
scriptionally coordinated, and yields qualitative information
about the relationships between those modules. We analyzed
several module interactions in detail, and discuss that between
Carbon and Lipids.

Published experimental results point to various interactions
between these functional modules, but their relationship has not
been studied systematically. Our results indicate the TFs likely
responsible for the coordination, the environmental conditions
under which the TFs effect the coordination, and the genes that
act at the interface of the modules, all of which suggest a mecha-
nism and/or rationale for the interaction. For example, the analy-

Table 2. Commonly used abbreviations

Category name Abbreviation

Carbon compound and carbohydrate metabolism Carbon
Cell differentiation Differentiation
DNA processing DNA
Glycolysis and gluconeogenesis Glycolysis
Lipid, fatty acid, and isoprenoid metabolism Lipids
Metabolism of energy reserves Reserves
mRNA transcription mRNA
Nucleotide metabolism Nucleotides
rRNA transcription rRNA
Stress response Stress
tRNA transcription tRNA

Figure 3. Duplicated interactions. Each pairwise interaction was identified using at least one MSA TF and at least one Chip2 TF. Each node represents
a functional module in the second-highest level of the MIPS hierarchy, and the node color corresponds to the highest-level MIPS category of which the
node is a member. In Supplemental Figure S8, each edge is labeled with the corresponding TFs.
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sis of the interaction between carbon and lipid metabolism cor-
roborates and integrates previous evidence that glycolysis can
occur at the cell wall, and that glycolysis may regulate (or be
regulated by) phosphoinositide signaling. Further experimental
directions may be to determine whether phospholipids activate
or inhibit glycolytic enzymes; if PI(4,5)P2 signaling influences
glycolysis; and whether glycolysis (or glucose alone) is necessary
for the observed effect of glucose on PI(4,5)P2 signaling.

In addition to this analysis, we performed a global analysis
of module coordination in order to understand, at a particular
functional resolution, how regulatory control is distributed
across the cell. SPIN was applied to all pairwise combinations of
72 functional modules, and revealed extensive coordination
among 55 of these modules, many of which are coordinated with
more than one partner module, by more than one TF, and/or in
more than one experimental condition. The distribution of mod-
ule connectivity is not uniform. Although a single master regu-
lator module was not identified, processes related to storage and
transmission of genetic information, such as mRNA, Cell cycle,
tRNA, Nucleotides, Differentiation, and DNA are most highly con-
nected. (However, the observed distribution of connectivity may
be different if different sets of expression data are used.) This
suggests a control hierarchy in which these basic processes are
central to the orchestration of cellular behavior. In related work,
however, it has been shown that many functional modules that
are coexpressed in S. cerevisiae are not coexpressed in other organ-
isms (Ihmels et al. 2004). Extending the genome-wide analysis of
module coordination to additional organisms might shed light on
the evolution of interactions within complex cellular networks.

Methods

Overview
SPIN was motivated by experimental evidence that functional
modules can be coordinately regulated via a TF that induces the

coexpression of a subset of genes associated with each module.
Given two gene sets (each corresponding to a functional mod-
ule), one TFBS data set, and one microarray expression data set,
the algorithm loops through each TF to identify genes in each
module that contain a corresponding TFBS. These “target genes”
are scored using expression data to assess the evidence that the TF
influences their expression. Two modules are said to be coordi-
nately regulated by a particular TF if its target genes in each
module (at least four) are coexpressed more coherently than, and
in a pattern that is distinct from, non-target genes in those mod-
ules. The input data sets, scoring metrics, and methods of assess-
ing statistical significance are discussed in detail below.

Functional module definitions
Each functional module is defined as the set of genes assigned to
a particular functional category in the MIPS (Munich Informa-
tion Center for Protein Sequences) S. cerevisiae database (Mewes
et al. 2002; Supplemental Fig. S1). Using published information,
MIPS assigns genes to functional categories in a hierarchical fash-
ion, and each gene can be assigned to multiple functional cat-
egories. SPIN is designed to analyze pairs of functional categories
that are from the same level of the hierarchy. Although any level
can be used, we present results obtained using categories in the
second-highest level of the hierarchy that correspond to defined
physiological processes (e.g., cell cycle, ribosome biogenesis, the
TCA cycle, and intracellular signal transduction). Category
names are italicized, and Table 2 lists abbreviations for some
commonly used ones.

Genome sequence data
Upstream region sequence data were downloaded from the
AlignACE Web site (http://atlas.med.harvard.edu/download/
index.html) (Roth et al. 1998; Hughes et al. 2000) and the Sac-
charomyces Genome Database (SGD) (Christie et al. 2004). These
data contain 5018 upstream sequences, representing 6186 non-
mitochondrial genes.

Transcription factor binding data
We used two different transcription factor (TF) binding data sets,
each being a matrix in which the value of element (i, j) is 1 if the
promoter of gene i contains a binding site for transcription factor
j and 0 if not. The “MSA” set (Multiple Sequence Alignment)
(Supplemental Figs. S14, S15) contains data for 62 TF DNA-
binding motifs, represented as position-specific weight matrices
(PSWMs), that were generated using the literature and the mul-
tiple sequence alignment program AlignACE (Roth et al. 1998) as
described in Hughes et al. (2000), Pilpel et al. (2001), and Roth et
al. (1998). The location of each motif in each promoter was de-
termined using the pattern-matching program ScanACE (Hughes
et al. 2000), which identifies and scores close matches to each
consensus motif. A motif was considered present in a promoter if
its match in the promoter scored equal to or better than one
standard deviation below the mean score of the sequences con-
stituting the PSWM (results obtained using a different score
threshold are similar [data not shown]). For comparison, TF-
binding data generated by an independent method were also
used; the “Chip2” data set (Supplemental Figs. S16, S17) contains
location data for 113 TFs, whose binding sites in 6270 promoters
were determined using combined chromatin immunoprecipita-
tion microarray hybridization (ChIP-chip) technology (Lee et al.
2002). Every pair of modules was analyzed twice—once with each
TFBS data set. Results from the two sets are compared and con-
sidered together to create a composite view of intermodule coor-
dination.

Figure 4. Interaction between Lipid, fatty-acid, and isoprenoid metabo-
lism and Carbon compound and carbohydrate metabolism. The two mod-
ules (colored ovals) are coregulated by the MSA TF GCR1 (purple edge)
using the cell cycle expression data set. GCR1 targets in each module are
shown below the modules in purple or green type; those associated with
glycolysis are organized according to the superimposed chart of glycoly-
sis. Gene names preceded by a blue diamond were shown to bind phos-
phoinositides using proteome chips in Zhu et al. (2001).
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Expression data sets
For each TFBS data set, SPIN was run on four microarray expres-
sion data sets: a cell cycle time series across 15 time points (data
points at 90 and 100 min were omitted because of experimental
error) (Cho et al. 1998); a diauxic shift time series across seven
time points (DeRisi et al. 1997); 42 environmental conditions
pertaining to pH, oxidative, saline, and osmotic stress (Causton
et al. 2001); and 56 conditions probing the MAPK signal trans-
duction pathways (Roberts et al. 2000).

Scoring metric terminology and rationale
Given a pair of functional modules, a TFBS data set, and an ex-
pression data set, SPIN loops through each TF to identify genes in
each functional category that contain a cognate binding site.
These genes are referred to as “target genes,” whereas genes that
do not contain the TFBS are referred to as “non-target genes.”
Any combination of two functional categories and one TFBS is
referred to as a “triplet.” “Aggregate target (non-target) genes”
refers to the union of target (non-target) genes from two func-
tional categories, and “disjoint target (non-target) genes” refers
to non-overlapping sets of target (non-target) genes from two
functional categories.

Because the presence of a TFBS in a promoter does not guar-
antee that the TF regulates the downstream gene(s), triplets in
which both modules contain target genes for a particular TF are
scored to assess the potential biological significance of that TF’s
binding. We assume that if a TF influences the expression of its
target genes, their expression profile will differ from that of non-
target genes in the same functional module. This is consistent
with biological reasoning that target genes, unlike non-target
genes, may interact with other modules. We use two expression-
based metrics to accommodate different possible types of coor-
dination within a pair of modules. On one hand, there may be
conditions in which the aggregate target genes (input/output
nodes) are tightly coexpressed between the modules, but in
which the aggregate non-target genes (internal nodes), partici-
pating in module-specific processes, are not significantly coex-
pressed between the modules (Fig. 5A); the “Expression Profile
Convergence” score (C) determines whether the aggregate target
genes are more highly coexpressed than the aggregate non-target
genes. On the other hand, the aggregate non-target genes might
also be coexpressed, but in a pattern that is different from that of
the aggregate target genes (Fig. 5B); the “Expression Profile Dis-
tinctness” score (D) measures the extent to which the expression
profile of the target genes differs from the expression profile of
the non-target genes. (We have not observed any modules in
which all genes are regulated by the same TF.)

Both scoring metrics are based on two simpler metrics that
measure the coherence of a set of expression profiles: the “Ex-
pression Coherence Within” (Ew) and the “Expression Coherence
Between” (Eb) scores. Given a group of genes N, Ew is the fraction
of all pairwise expression profile correlation coefficients that ex-
ceed a data set-specific correlation threshold, and is designated
by Ew(N). It measures how tightly a group of genes is coexpressed.
Given two groups of genes N and M, Eb(N, M) is the fraction of
|N| * |M| pairwise expression profile correlation coefficients that
exceed a data set-specific correlation threshold, where correla-
tion coefficients are computed between genes from different
groups only. It measures how tightly two groups of genes are
coexpressed. For a particular expression data set, the correlation
threshold is the value of the correlation coefficient at the 95th
percentile (Pilpel et al. 2001; Sudarsanam et al. 2002; Zhu et al.
2002) of all pairwise correlation coefficients for that data set.

The Expression Profile Convergence score, C, determines

whether the coherence between the disjoint target genes (gene
sets m1 and m2) is greater than that between the disjoint non-
target genes (gene sets M1 and M2) (Fig. 5C; Supplemental Fig.
S18):

C = Eb �m1,m2� (1)

The significance of the C score is ensured by controlling the False
Discovery Rate (FDR); q-values were computed from p-values us-
ing the Q-value software (Storey and Tibshirani 2003). To obtain
p-values for the C score, the Eb score of the disjoint target genes
is compared to the Eb score of two randomly selected, disjoint
gene sets (of sizes |m1| and |m2|) from the same functional catego-
ries (Fig. 5C):

Crand = Eb �r|m1| �M1� ∪ m1�, r|m2| �M2� ∪ m2�� (2)

For a TFBS data set containing data for Q TFs, random partition-
ing is repeated (3 � Q/0.05) � 1 times (Edgington 1995) to en-
sure that a p-value of 0.05, corrected for multiple hypotheses by
the Bonferroni correction, can be obtained (although significant
results are ultimately chosen by controlling the FDR, as men-

Figure 5. Coherence of target gene expression profiles. (A) Distinctness
of target gene expression profiles. The cube represents a three-
dimensional expression space. Each dot represents a gene from func-
tional module 1 (blue) or functional module 2 (red), and the location of
the gene on an axis represents the expression level of the gene at the time
point or condition represented by the axis. The distance that separates
two genes is inversely proportional to the “coherence” of their expression
profiles. Target genes are shown as regulated by the TF (arrow). This
distribution of genes represents a hypothetical scenario in which the
intermodule coherence between target genes is higher than that be-
tween non-target genes. (B) Notation as in A. This distribution of genes
represents a hypothetical scenario in which target genes and non-target
genes have very different expression profiles, even though the intermod-
ule coherence between target genes is similar to that of non-target genes.
(C) Triplet scoring notation. M1 = genes in module 1; T = genes in ge-
nome containing binding site for TF T; m1 = genes in M1 containing
binding site for T (“target genes”); M1� = genes in M1 that do not contain
a binding site for T (“non-target genes”); r|x|(M1�) = x randomly selected
genes from M1�; M2, m2, M2�, r|x|(M2�) defined analogously. Aggregate
target genes = (m1 ∪ m2) or (m1 ∪ m2 ∪ IT); aggregate non-target genes
= (M1� ∪ M2�) or (M1� ∪ I ∪ M2�); I and IT represent non-target and target
genes, respectively, that are present in both modules. (D) Quartet scoring
notation. Variables are analogous to those in C, but here there are two
TFs, X and Y. Tx = genes in genome containing binding site for X; Ty =
genes in genome containing binding site for Y. B, X, Y, and N represent
module components that are targets of both X and Y, X only, Y only, or
neither TF, respectively: B = (m1

xy ∪ IT
xy ∪ m2

xy), X = (m1
x ∪ IT

x ∪ m2
x ),

Y = (m1
y ∪ IT

y ∪ m2
y), N = (M1� ∪ IT ∪ M2�).
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tioned above); the factor 3 is used to increase the power of the
test.

The Expression Profile Distinctness score, D, compares the
coherence within the target genes (the numerator) to that be-
tween the target genes and non-target genes (the denominator)
(Fig. 5B,C; Supplemental Fig. S19). Note that it incorporates
genes that are assigned to both functional categories (sets I and IT
for non-target and target genes, respectively, with dual assign-
ments). Referring to Figure 5C, it is the ratio:

D =
Ew �m1 ∪ IT ∪ m2�

Eb �m1 ∪ IT ∪ m2, M1� ∪ I ∪ M2��
(3)

As for the C score, the statistical significance of the D score is
ensured by controlling the FDR. To obtain p-values for the D
score, all genes in the two modules are randomly partitioned into
sets of the same sizes as m1 ∪ IT ∪ m2 and M1� ∪ I ∪ M2� and D is
recomputed, that is:

Drand =
Ew �r|m1 ∪ IT ∪ m2| �M1 ∪ M2��

Eb �r|m1 ∪ IT ∪ m2| �M1 ∪ M2�, r|M1� ∪ I ∪ M2�| �M1 ∪ M2�� (4)

Given Q TFs, the randomization procedure is repeated (3 � Q/
0.05) � 1 times.

Motif combinations
A “quartet” is defined, in analogy to the triplet, as one pair of
modules and one pair of motifs. For every quartet, the intersec-
tions among the gene sets were determined. As above, Conver-
gence (Cquartet) and Distinctness (Dquartet) scores were defined and
used to compare the expression coherence of double-target genes
(that is, genes that are targets of both TFs, represented by gene set
B) to that of non-target genes (set N) and single-target genes (set
X or Y) in the same category (Fig. 5D):

Cquartet = Eb �m1
xy, m2

xy� (5)

Cquartet
rand = Eb �r|m1

xy| �m1
xy ∪ m1

x ∪ m1
y�, r|m2

xy| �m2
xy ∪ m2

x ∪ m2
y�� (6)

Dquartet =
Ew�B�

Eb �B,�X ∪ Y ∪ N��
(7)

Dquartet
rand =

Ew �r|B| �B ∪ X ∪ Y��

Eb �r|B| �B ∪ X ∪ Y�, r|X∪Y| �B ∪ X ∪ Y� ∪ N� (8)

A key distinction between these scores and their single-motif
counterparts is that for motif pairs, randomizations are done
only within the set of target genes, and exclude non-target genes.
This modification is necessary in order to determine whether the
expression profile conferred by the motif pair is significantly dif-
ferent from the expression profiles conferred by each motif indi-
vidually.

Selecting significant coordinately regulated modules

Stringent criteria
A pair of modules is said to be coregulated by a particular TFBS or
TFBS pair if the q-value (Storey and Tibshirani 2003) for both the
D and C scores is at most 0.15. Because the significance of the two
scores can be combined in a manner that accounts for their de-
pendence, the overall q-value is lower than 0.15.

Lenient criteria
The above criteria are highly conservative in that (1) they require
two different scores to be statistically significant, (2) the signifi-

cance of those scores was calculated using conservative random-
ization procedures, and (3) each triplet was required to have at
least four target genes in each module. Because biological signifi-
cance may not always manifest itself as statistical significance, it
is possible that the high stringency of the conservative criteria
results in false negatives. In several analyses (where noted) above,
therefore, we also consider some triplets or quartets for which
one score has a q-value �0.15, and the other score has a p-value
�0.05 (not corrected for multiple hypotheses by controlling the
FDR). Results obtained using these lenient criteria are labeled as
such in the complete list of results in Supplemental Figures S2, S3
(triplets), and S10 (quartets).
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