For assistance in accessing this document, please send an

Water

\%EPA

NATIONAL STUDY OF CHEMICAL RESIDUES IN FISH

Volume I

National Study of Chemical Residues in Fish
 Volume I

Office of Sclence and Technology Standards and Applied Sclence Division U.S. Environmental Protection Agency 401 M Street, SW
Washington, DC 20460

Note

This is the third printing (September 1993) of the National Study of Chemical Residues in Fish. All revisions listed on the errata sheet from the first printing have been incorporated into the text of Volumes I and II where appropriate.

Table of Contents

Chaoter Page

VOLUME I

LIST OF FIGURES vii
LIST OF TABLES xi
ACKNOWLEDGMENTS xiii
EXECUTIVE SUMMARY XV
1 INTRODUCTION 1
BACKGROUND 1
GENERAL APPROACH 1
2 STUDY DESIGN AND APPROACH 3
POLLUTANT SELECTION SCREENTNG PROCESS 3
FIELD SAMPLING PROCEDURES 4
Sample Collection 4
Sample Handling/Picparation 6
Fish Length and Weight Data 6
ANALYTICAL PROTOCOLS 6
Dioxins/Furans 7
Other Xenobiotic Chemicals 10
Mercury 12
Quality Assurance/Quality Control (QANQC) 12
SITE SELECTION 15
3 DIOXIN AND FURAN RESULTS AND ANALYSIS 21
PREV ALENCE AND CONCENIRATION SUMMARY 21
Toxicity Equivalency Concentration (TEC) 24
Comparison of TCDD and other Dioxin/Furan Compounds 30
GEOGRAPHICAL DISTRIBUTION 30
SOURCE CORRELATION ANALYSIS 30
Sources Located Near Highest Concentrions 30
Concentration Comparison Between Site Calegoriea 39
4 OTHER XENOBIOTIC COMPOUND RESULTS AND ANALYSIS 53
PREVALENCE AND CONCENIRATION SUMMMARY 53
COMPOUNDS DETECIED AT MORE THAN 50 PERCENT OF THE STTES 57
Total PCBs 57
Biphenyl 60
Mernry 64
Pentachloramisole 67
1,2,3 and 1,2,4 Trich orobenzene 70
Pesticides/Herbicides 73

Table of Contents (Cont.)

Chnoter Page
COMPOUNDS DETECTED AT BETNEEN 10 AND 50 PERCENT OF THE STTES 91
Hexachlorobenzene 91
Pentachlorobenzene 96
1.3.5 Trichlorobenzene 100
Tetrachlorobenzenes 100
Pesticides/Herbicides 107
COMPOUNDS DEIECIED AT LESS THAN 10 PERCENT OF THE STIES 122
Octachlorostyrene 122
Hexachlorobutadiene 122
Diphenyl Disulfide 122
Pesuicides/Herbicides 125
COMPARISON WITH NATIONAL CONTAMINANT BIOMONTTORING PROGRAM 129
5 FISH SPECIES SUMMARY AND ANALYSLS 131
SUMMARY OF FISH SPECIES SAMP ED 131
PREVALENCE AND AVERAGE CONCENIRATION OF CHEMICALS BY SPECIES 137
HABITAT AND FEEDING STRATEGY OF MOST FREQUENILY SAMPLED SPECIES 137
6 ESTIMATE OF POTENTIAL HUMAN EFBALTE RISKS 147
MEIHOD OF ESTIMATING RISKS 148
Dose-Respoase Assescment 148
Exposure Assescment 148
Risk Characterization 150
CARCINOGENIC RISK ESTIMATES 151
NONCARCINOGENIC RISKS 156
REFERENCES 161
GLOSSARY 165
APPENDICES
A LABORATORY QAQC PROCEDURES AND RESULTS
A-1 Analysis of Labmancy QAQC Dam
A-2 Analytical Procedires end Qualiry Assurine Pinn for the Dearmination ofPCDD/PDCF in Fish
A-3 Analytical Procedures and Quality Aesurner Ping for the Detarminacion of Xenobiotic Chemical Conomine is in Fish
B ADDITIONAL DATA ANALYSES
B-1 Nomographs for Estionming Concer Rirls
B-2 Nomographs for Escimeting Norc din wis Herond Indices
B-3 Site Descripion Mnirir (also puvided in Volome II, Appeadir D)
B-4 Dioxins/Furans: Episode Numbers Used in Smorerical Teases (also providedin Volume II. Appantix D)
B-5 Xenobiocics: Episode Numbers Used in Statisical Teats (also provided inVolume II, Appendix D)

Table of Contents (Cont.)

VOLUME II

C PROFILES OF BIOACCUMULATION STUDY CHEMICALS Dioxins/Furans:

Dioxin: 2,3,7,8 Tetrachlorodibenzo-p-dioxin
1,2,3,7.8 Pentachlorodibensodioxin
Hexachlorodibenzodioxins
Furans
Qther Xenobiolics:
Biphenyl
Cblordane
Chlorpyrifos
p. p^{\prime}-DDE

Dicofol
Dieldrin
Diphenyl Disulfide
Endrin
Heptachlor
Heptachlor Epoxide
Hexachlorobenzene
Alpha-BHC (α - Hexactiforocycloterene)
Iscpropalin
Gamms-BHC (γ-Hexachlorocycloberane)
Mercury
Methox: chlor
Mirex
Nitrofen
Nonactlor
Octachlorosyurene
Oxychlondane
Pentachloroanisole
Pentachlorobenzene
Pentachloronitrobeazene
Pentachlorophenol
Perchane
Polychlorinated Bipheayls (PCBs)
1,2,3,4 and $1,2,3,5$ Tean anturnere:
1,2,4,5 Tedactionot anars
1,2,3 Trichlosobenzene
1,2,4 Trichlisubenzere
1,3,5 Trichlorobenzene
Trifluralin

Table of Contents (Cont.)

VOLUME II (Cont.)

D DATA TABLES
D-1 Site Description Matrix (also provided in Volume I, Appendix B)
D-2 Dioxins/Furans: Episode Numbers Used in Statistical Tests (also providedin Volume I. Appendix B)
D-3 Xenobiovics: Episode Numbers Used in Statistical Tests (also provided
in Volume I, Appendix B)
D-4 Dioxin/Furan Data by Episode Number
Concentration And Detection Limits
D-5 Xenobiocic Data by Episode Number
Set I Chemicals
Set 2 Chemicals
Set 3 Chemicals
D-6 Information on Fish Samples

- Percent Lipid
Sample Wet Weight
- Number of Fish in Composite Sample
- Sampling Date
D-7 List of Confirmation Samples
D-8 List of Duplicare Samples
D-9 Comments Regarding Sample Analyses from EPA Duluth Laboratory
D-10 Risk Information for Sites Having Composite Fillet Samples with Xenobiotic Data

List of Figures

Eipure Pare
2-1 Schematic of laboratory procedures for dioxins and furans 8
2-2 Schematic of laboratory analytical procedure for other xenobiotic chemicals 11
2-3 Schematic of laboratory analytical procedure for mencury 13
2-4 Location of bioaccumulation study sampling sites 16
2-5 Location of targeted sites 17
2-6 Location of sites representing background conditions 18
2-7 Location of sites selected from a subset of the USGS NASQAN networt 19
3-1 Summary of dioxins/furans detected in fish uissue 23
3-2 Cumulative frequency diagrams of concentrations of six dioxin congeners in fish tiswe 25
3-3 Cumulative frequency diagrams of concentrations of six furan congeners in fish tissure 26
3-4 Cumulative frequency distribution of maximum calculated TEC values in fish tissue by percentike of sites 28
3-5 Toxicity equivalency concentrations (TEC) based on Barnes et al., 1989 method 29
3-6 Map showing geographical distribution of various conceotration ranges of 2,3,7,8 TCDD in fish tissue 31
3-7 Map showing geographical distribution of various coocentarion ranges of 2,3,7,8 TCDF in fish tissue 32
3-8 Map showing geographical distribution of various concencration ranges of TEC in fish tissue 33
3-9 Example box plot with explanations of fealures 41
3-10 Box and whisker plot for 2,3,7,8 TCDD concentrations in fish dissue 42
3-11 Box and whisker plot for TEC concentrations in fish tissue 45
3-12 Box and whisker plot for 2,3,7,8 TCDF concentrations in fish cissue 46
3-13 Box and whisker plot for 1,2,3,7,8 PeCDD concentrations in fish oissue 47
3-14 Box and whisker plot for $1,2,3,7,8$ PeCDF concentrations in fish tisewe 48
3-15 Box and whisker plot for 2,3,4,7,8 PeCDF concentrations in fish ieswe 49
3-16 Box and whisker plot for total HxCDDs concentrations in fish tissue 50
3-17 Box and whisker plot for total HxCDFs coocentrations in fish tiseue 51
4-1 Summary of other xenobiotic compounds detected in fish tissue 55
4-2 Total PCBs: a) cumulative frequency distribution and b) map of geoprephical distribution of various concentration ranges in fish tissue 58
4-3 Box and whisker plot for total PCBs in fish tissue 61
4-4 Biphenyl: a) cumulative frequency distribution and b) mep of geograptial dienitucion of various concentration ranges in fish tissue 63
4-5 Box and whisker plot for biphenyl in fish tissue 65
4-6 Mercury: a) cumulative frequency distribution and b) mep of geogrphicy diserluwion of various concentration ranges in fish tissue 66
4-7 Box and whisker plot for mercury in fish tissue 68

List of Figures (Cont.)

Eigure Page
4-8 Pentachloroanisole: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue 69
4-9 Box and whisker plot for pentachloroanisole in fish tissue 71
4-10 Cumulative frequency distribution of a) 1,2,3 trichlorobenzene and b) 1,2,4 trichloro- benzene in fish tissue 72
4-In Map of geographical distribution of various concentration ranges for a) 1,2,3 urichloro- benzene and b) 1,2,4 trichlorobenzene in fish tissue 74
4-12 Box and whisker plot for 1.2,3 trichlorobenzene in fish tissue 75
4-13 Box and whisker plot for 1,2.4 trichlorobenzene in fish tissue 76
4-14 p.p' -DDE: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue 77
4-15 Box and whisker plot for p.p' -DDE in fish tissue 79
4-16 Cumulative frequency distribution of a) total chlordane, b) cis-chlordane, c) trans-chlordane, and d) oxychlordane in fish ussue 81
4-17 Cumulative frequency distribution of a) trans-nonachlor b) cis-nonachlor and c) total nonachlor in fish tissue 82
4-18 Map of geographical distribution of various concentration ranges for a) total chlordane and b) total nonachlor in fish tissue 83
4-19 Box and whisker plot for total chlordane in fish tissue 85
4-20 Box and whisker plot for total nonachlor in fish tissue 87
4-21 Box and whisker plot for oxychlordane in fish tissue 88
4-22 Dieldrin: a) cumulative frequency distribution and b) map of geographical distribution of various concentrations in fish tissue 89
4-23 Box and whisker plot for dieldrin in fish tissue 90
4-24 Cumulative frequency distribution of a) alpha-BHC and b) gamma-BHC (lindane) in fish tissue 92
4-25 Box and whisker plot for alpha-BHC in fish tissue 93
4-26 Box and whisker plot for gamma-BHC in fish tissue 94
4-27 Map of geographical distribution of various concentration ranges for a) gamma-BHC (lindane) and b) alpha-BHC in fish tissue 95
4-28 Hexachlorobenzene: a) map of geographical distirbution of various concentration ranges and b) cumulative frequency distribution in fish tissue 97
4-29 Box and whisker plot for hexachlorobenzene in fish tissue 98
4-30 Pentachlorobenzene: a) map of geographical distribution of various concentration ranges and b) cumulative frequency disfribution in fish tissue. c) Cumulative frequency distribution of 1,3.5 trichlorobenzene in fish tissue 99
4-31 Box and whisker plot for pentachlorobenzene in fish tissue 101
4-32 Box and whisker plot for 1,3,5 trichlorobenzene in fish tissue 102

List of Figures (Cont.)

Eipure Page
4-33 Cumulative frequency distribution of a) 1,2,3,4 tetrachlorobenzene, b) 1,2,3.5 tetrachlorobenzene, and c) 1.2.4.5 teurachlorobenzene in fish tissue 103
4-34 Map of geographical distribution of various concentration ranges for a) 1,2,3,4 tetrachlorobenzene, b) 1,2,3,5 tetrachlorobenzene, and c) 1,2,4,5 tetrachlorobenzene in fish tissue 105
4-35 Box and whisker plot for $1,2,3,4$ tetrachlorobenzene in fish tissue 106
4-36 Cumulative frequency distribution of a) mirex and b) chlorpyrifos in fish tissue 108
4-37 Box and whisker plot for mirex in fish tissue 109
4-38 Map of geographical distribution of various concentration ranges for cblorpyrifos in 110 fish tissue4-39 Box and whisker plot for chlorpyrifos in fish tissue112
4-40 Cumulative frequency distribution of a) dicofol (kelthane), b) methoxychlor, and c) perthane in fish tissue 113
4-41 Map of geographical distribution of various concentration ranges for a) dicofol and b) methoxychlor in fish tissue 114
4-42 Box and whisker plot for dicofol in fish tissue 115
4-43 Cumulative frequency distribution of a) trifluralin and b) isopropalin in fish tissue 117
4-44 Map of geographical distribution of various concentration ranges for a) trifluralin and b) isopropalin in fish tissue 118
4-45 Box and whisker plot for trifluralin in fish tissue 119
4-46 Box and whisker plot for isopropalin in fish tissue 120
4-47 Endrin: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue 121
4-48 Box and whisker plot for endrin in fish tissue 123
4-49 Cumulative frequency distribution of a) octachlorostyrene, b) hexachlorobutadiene, c) diphenyl disulfide, and d) nitrofen in fish tissue 124
4-50 Cumulative frequency distribution of a) heptachlor and b) heptachlor epoxide in fish tissue 126
4-51 Map of geographical distribution of various concentration ranges for a) beptachlor and b) heptachlor epoxide in fish tissue 127
4-52 Box and whisker plot for heptachlor epoxide in fish tissue 128
4-53 Pentachloronitrobenzene: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue 130
6-1 Graphical tool for estimating upper-bound cancer risk of p.p'-DDE or equivalents for different fish consumption rates 158
6-2 Graphical tool for estimating upper-bound noncarcinogenic hazard index of $p, p^{\prime}-D D E$ for different fish consumption rates 160

List of Tables

Table Pags
2-1 List of Target Analytes 5
2-2 Internal Standard Solutions Used for PCDD/PCDF Analyses and Xenobiotic Analyses 9
3-1 Summary of Dioxins/Furans Detected in Fish Tissue 22
3-2 1989 Toxicity Equivalency Factors 27
3-3 Location of Maximum Measured HxCDD and HpCDD Concentraions in Fisb Tissue 37
3-4 Location of Maximum Measured HxCDF and HpCDF Concentrions in Fish Tissue 38
3-5 Mann-Whitney U Test Results for DioxinsFunns Comparing Selected Source Calegories 43
4-1 Summary of Xenobiotic Compounds in Fish Tissue 54
4-2 Summary of PCBs in Fish Tissue 59
4-3 Results of Statistical Tests for Selected Xenobiotics and Mercury 62
4-4 Results of Statistical Tests for Selected Xenobiotics (Pesticidea/Herbicides) 80
4-5 Sites with Highest Concentrations of Cblondane-Related Coupounds 84
5-1 Distribution and Feeding Stralegy for Fish Species Collected 132
5-2 Average Fish Tissue Concentrations of Dioxins and Furnas for Major Species 138
5-3 Detailed Summary of Occurrence of Prevalent Dioxins/Furans by Fish Species 139
54 Average Fish Tissue Concentrations of Xenobiotics for Major Species 140
5-5 Detailed Summary of Occurrence of Prevalent Xenobiotics by Fish Species 141
6-1 Dose-Response Variables Used in Risk Aseessment 149
6-2 Estimates of Potential Upper-Bound Cancer Rists a Targeted Sites Based on Fillet Samples 152
6-3 Estimates of Potential Upper-Bound Cancer Risks at Background Sites Based on Fillet Samples 153
64 Fisb Tissue Concentrations Used to Estimnte Cancer Ristes 154
6-5 Number of Sites with Estimated Upper-Bound Risks 155
6-6 Estimated Upper-Bound Risks at Three Fish Concumption Rates Based on Fillet Samples 157
6-7 Noncarcinogenic Hazard Index Values at Targeted and Beckground Sites Based on Fillet Samples 159

Acknowledgments

This report was prepared under EPA Contract No. 68-C9-0013. EPA Work Assignment Managers for the National Study of Chemical Residues in Fish (NSCRF) were Ruth Yender, Stephen Kroner, Richard Healy, Rod Frederick, Elizabeth Southerland, and Ryan Childs. This study required extensive effort and coordination of many people from EPA Headquarters, EPA Regions, and States. Planning and continuing oversight of the study were provided by the National Bioaccumulation Work Group identified below. EPA staff involved in the planning and initial phase of the study included Martin Brossman, Stephen Kroner, Alec McBride, and Charles Delos.

Samples were collected by staff from EPA Regions and State agencies. The tissue preparation and chemical analyses were performed by staff, identified below, at EPA's laboratory in Duluth, Minnesota. This work was done under the direction of Nelson Thomas and Brian Butterworth. Assistance in methods selection and QA review was provided by Robert Kleopfer and Douglas Kuehl of EPA. Staff from the EPA Duluth laboratory also provided material for the methods section and QA/QC sections of the report. Data evaluations and preparation of the report were accomplished by the NBS Work Group, and their contractors. In addition, staff from other offices within EPA provided information for the chemical profiles, in particular, the Office of Pesticide Programs, Office of Toxic Substances, and Office of Drinking Water. Stafffrom these and other EPA offices reviewed the report and provided valuable comments, which have been incorporated into the report.

NSCRF Work Group
Daniel Granz
Darvene Adams
Gery McKenna
Bob Donaghy
Jery Stober
Pete Redmon
Car1 Young
Bruce Iattell
Tim Osag
Doug Ebertardt
Bruee Cleland
Dave Terpening
Evan Hornig
Elizabetb Soutberland
Stepben Kroner
Martin Brossman
Ruth Yender

NSCRF Laboratory Start

U.S.OPA

Brian Butterworth
Dougles Kuehl
University of Wisconsin - Superior, Center for Lake Superior Enviroamental Studies

Executive Summary

This study, previously referred to as the National Bioaccumulation Study, or NBS, is a one-time screening investigation to determine the prevalence of selected bioaccumulative pollutants in tish and to identify correlations with sources of these pollutants. In addition, estimates were made of human health risks for those pollutants studied for which cancer potency factors and/or reference doses have been established. Human health risks were not estimated for dioxins and furans since the potency of these pollutants is the subject of an EPA review.

The study began in 1986 as an outgrowth of the U.S. Environmental Protection Agency's (EPA's) National Dioxin Study, a nationwide investigation of 2,3,7,8 tetrachlorodibenzo-p-dioxin (2,3,7,8 TCDD) contamination of soil, water, sediment, air, and fish. Some of the highest concentrations of 2,3,7,8 TCDD in the National Dioxin Study were detected in fish. EPA's concem that there may be other toxic pollutants bioaccumulating in fish was the primary reason for initiating the National Study of Chemical Residues in Fish. Additionally, this study is considered to be part of a response to a petition from the Environmental Defense Fund and the National Wildlife Federation in which EPA committed to conducting an aquatic monitoring survey of the occurrence of chlorinated dibenzodioxins and chlorinated dibenzofurans. Aquatic biota are being used frequently to determine whether substances are bioaccumulating, to detect acutely toxic conditions, and to detect stresses such as sublethal toxicity, particularly due to interactions among chemicals.

STUDY DESIGN AND APPROACH

The study design and approach for the National Study of Chemical Residues in Fish (NSCRF) focused on pollutant selection, field sampling procedures, analytical protocols (including Quality Assurance/Quality Control), and site selection. Chemicals were selected for analysis based on the potential of the compound to bioaccumulate in fish, the potential for human health effects, the persistence of the chemical in the environment, and the ability to detect the compound in fish tissue. An initial list of 403 pollutants was screened, resulting in a final list of 60 compounds for analysis. These compounds included 15 dioxins and furans, 10 polychlorinated biphenyls (PCBs), 21 pesticides/herbicides, mercury, biphenyl, and 12 other organic compounds.

Field sampling protocols called for the collection of three to five adult fish of the same species and of similar size at each site. Information about the samples was recorded, including the number of samples per composite and sampling date. Age and sex of the fish were not determined. Weight of the sample used for analysis and percent lipid were determined in the laboratory. Lengths and weights of the individual fish were not usually available. Sampling was not conducted during spawning or seasonal migration runs.

At most locations, both a composite sample of a bottom-feeding fish species and a composite sample of a game fish species were collected. Although 119 species were collected, most of the fish samples belonged to 14 different species; carp were the most frequently collected bottom feeder and largemouth bass were the most frequently collected game fish (Table 1). In a few cases, shellfish were collected instead of fish.

TABLE 1
Most Frequently Collected Fish Species
Number of SitesSpeciesWhere Collected
Bottom Feeder Species
Carp 135
White Sucker 32
Channel Catfish 30
Redhorse Sucker 16
Spotted Sucker 10
Game Species
Largemouth Bass 83
Smallmouth Bass 26
Walleye 22
Brown Trout 10
White Bass 10
Northern Pike 8
Flathead Catfish 8
White Crappie 7
Bluefish 5

Fish samples were analyzed at EPA's Environmental Research Laboratory (ERL) in Duluth. Minnesota. In general, the bottom feeders were analyzed as whole-body samples to determine the occurrence of the study chemicals and the game fish were analyzed as fillets to indicate the potential for risks to human health from fish consumption. Selected bottom feeders of the type often used for human consumption were analyzed as fillets at a small number of sites and used to evaluate human health risks. To analyze fish for the 15 dioxins and furans, ERL-Duluth refined and expanded the method for dioxin (i.e., 2,3,7,8 TCDD) analysis developed as part of EPA's National Dioxin Study. For 44 of the remaining 45 compounds, ERL-Duluth developed an analytical method specif ically for this study. The remaining study compound, mercury, was analyzed using EPA's standard analytical techniques.

Sites were selected for the study by EPA Regional and State staff. Sites consisted of 314 locations thought to be influenced by a variety of point and nonpoint sources (referred to as largeted sites), 39 locations from the USGS National Stream Quality Accounting Network (NASQAN), and 35 sites representative of background levels (Figure 1). Targeted sites included locations near pulp and paper mills, refineries using the catalytic reforming process, Superfund sites, former wood preserving operations, other industrial sites, publicly owned treatment works (POTWs), and agricultural and urban areas. Because the study was initiated as a follow-up to the National Dioxin Study, many of the targeted sites selected were those thought to be producers of dioxins (e.g., pulp and paper mills using chlorine for bleaching).

RESULTS

Prevalence and Concentration

Many of the investigated pollutants were frequently detected in the fish samples from the targeted sites. Seven of the 15 dioxin/furan compounds and 15 of the other 45 compounds were detected at over 50 percent of the sites (Tables 2 and 3). The two most frequently detected dioxin and furan compounds were both found at 89 percent of the sites; these compounds are 1,2,3,4,6,7,8 heptachlorodibenzodioxin (HpCDD) and 2,3,7,8 tetrachlorodibenzofuran (TCDF). These compounds were also detected at the highest concentrations; HpCDD at 249 picograms per gram (pg / g) or 249 parts per trillion by wet weight (ppt) and TCDF at 404 parts per trillion (ppt). The average concentrations of these two compounds were substantially lower at 10.5 and 13.6 ppt , respectively. The dioxin compound considered to be the most toxic, 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), was found at 70 percent of the sites at a maximum concentration of 204 ppt and an average concentration of 6.89 ppt . Only two of the 15 dioxin/furan compounds analyzed were detected at fewer than 20 percent of the sites.

Toxicity equivalent concentrations (TECs) of dioxins/furans were calculated to facilitate comparison of fish tissue contamination among sites. TEC represents a toxicity weighted total concentration of all individual congeners using 2,3,7,8, TCDD as the reference compound. EPA's interim method was used to determine TEC (Barnes, et. al., 1989). This is referred to in the report as the Toxicity Equivalency Concentration (TEC) value, sometimes called TEQ (toxicity equivalents).

星

Figure 1. Location of bioaccumulation study sampling sites.

TABLE 2
Summary of Prevalence and Concentration for Dioxins and Furans

Chemical	Percent of Sites Detected	Concentration pg/g or ppt by wet welght		
		Max	Mean	Medlan
Diosing				
1,2,3,4,6,7,8 HpCDD	89	249	10.5	2.83
2,3,7,8 TCDD	70	204	6.89	1.38
1,2,3,6,7,8 HxCDD	69	101	4.30	1.32
1,2,3,7,8 PeCDD	54	54.0	2.38	0.93
1,2,3,7,8,9 HxCDD	38	24.8	1.16	0.69
1,2,3,4,7,8 HxCDD	32	37.6	1.67	1.24
Furans				
2,3,7,8 TCDF	89	404	13.6	2.97
2,3,4,7,8 PeCDF	64	56.4	3.06	0.75
1,2,3,4,6,7,8 HpCDF	54	58.3	1.91	0.72
1,2,3,7,8 PeCDF	47	120.0	1.71	0.45
1,2,3,4,7,8 HxCDF	42	45.3	2.35	1.42
2,3,4,6,7,8 HxCDF	32	19.3	1.24	0.98
1,2,3,6,7,8 HxCDF	21	30.9	1.74	1.42
1,2,3,4,7,8,9 HpCDF	4	2.57	1.24	1.30
1,2,3,7,8,9 HxCDF	1	0.96	1.22	1.38
TEC*	N/A	213	11.1	2.80

[^0]TABLE 3
Summary of Prevalence and Concentration for 45* Other Bioaccumulative Compounds

Chemical	Percent of Sltes Detected	Concentration ng/g or ppb by wet weight		
		Max	Mean	Median
DDE	99	14000	295	58.3
Mercury	92	1800	260	170
Biphenyl	94	131	2.7	0.64
Total PCBs	91	124000	1890	209
Nonachlor, trans	77	477	31.2	9.22
Chlordane, cis	64	378	21.0	3.66
Pentachloroanisole	64	647	10.8	0.92
Chlordane, trans	61	310	16.7	2.68
Dieldrin	60	450	28.1	4.16
Alpha-BHC	55	44.4	2.41	0.72
1,2,4 Trichlorobenzene	53	265	3.10	0.d4
Hexachlorobenzene	46	913	5.80	ND
Gamma-BHC	42	83.3	2.70	ND
1,2,3 Trichlorobenzene	43	69.0	1.27	ND
Mirex	38	225	3.86	ND
Nonachlor, cis	35	127	8.77	ND
Oxychlordane	27	243	4.75	ND
Chlorpyrifos	26	344	4.09	ND
Pentachlorobenzene	22	125	1.18	ND
Heptachlor Epoxide	16	63.2	2.19	ND
Dicofol	16	74.3	0.98	ND
1,2,3,4 Teurachlorobenzene	13	76.7	0.47	ND
Trifluralin	12	458	5.98	ND
1,3,5 Trichlorobenzene	11	14.9	0.12	ND
Endrin	11	162	1.69	ND
1,2,3,5 TECB	9	28.3	0.34	ND
Octachlorostyrene	9	138	1.71	ND
1,2,4,5 TECB	9	28.3	0.33	ND
Methoxychlor	7	393	1.32	ND
Isopropalin	4	37.5	0.46	ND
Nitrofen	3	17.9	0.17	ND
Hexachlorobutadiene	3	164	0.57	ND
Heptachlor	2	76.2	0.35	ND
Perthane	1	5.12	0.03	ND
Pentachloronitrobenzene	1	15.5	0.09	ND
Diphenyl Disulfide	1	3.24	0.02	ND

*The number of compounds shown here is 36; the difference is the result of grouping 3 individual PCB compounds with 1 to 10 chlorines. Five of the PCBs were found at concentrations above 50 percent; the remainder were found between 3 and 35 percent.

In general, the maximum and average concentrations for the other 45 compounds are 1,000 to 10.000 times greater than those for dioxins and furans (Table 3). Of these 45 compounds, the most frequendy detected pollutant was DDE, found at over 98 percent of all sites sampled. This compound is a metabolic breakdown product of DDT, which was a widely used pesticide and is extremely persistent in the environment. Other compounds detected at more than 90 percent of the sites were mercury, total PCBs, and biphenyl. The high prevalence of mercury results partly from its many industrial uses including use in batteries, vapor lamps, and thermostats; as a fungicide in some exterior water-based paints; and as a cathode in the electrolytic production of chlorine and caustics. Mercury also occurs in the natural environment in both inorganic and organic compounds and is discharged to the atmosphere from natural processes (e.g., degassing of volcanos) and from the burning of fossil fuels. As with DDT, PCBs are very persistent in the environment and, until 1977 when they were essentially banned, were widely used as dielectric fluids in transformers and capacitors. Total PCBs in this study refers to the sum of the concentrations of compounds with 1 to 10 chlorines. Concentrations of specific Aroclors or mono-ortho substituted compounds were not determined in this study. The high number of low-concentration biphenyl samples (88 percent below 2.5 ppb) most likely results from degradation of PCBs. The high-concentration samples appear to be associated with various industrial uses such as heat transfer fluid, dye carriers, and hydraulic fluid.

PCBs were detected at the highest concentration, with a maximum value of 124,000 nanograms per gram (ng / g) or 124,000 parts per billion by wet weight (ppb), and an average concentration of $1,890 \mathrm{ppb}$. The next highest compound was DDE, with a maximum and average concentration of $14,000 \mathrm{ppb}$ and 295 ppb , respectively. All of the remaining 34 compounds were found at much lower concentrations than DDE.

Prevalence was compared with the mostrecent (1984) results from the National Contaminant Biomonitoring Program (NCBP), which was formerly part of the National Pesticide Monitoring Program. The NCBP was initiated in 1964 to determine how organochlorine compound levels vary over geographic regions and change over time. In this program, fish were sampled at 112 sites throughout the United States and these samples were analyzed for 19 organochlorine chemicals and 7 metals. The NSCRF analyzed 15 of these 19 organochlorine compounds and mercury. In the NSCRF, 11 compounds were found at greater than 50 percent of the sites. Eight of these were also analyzed in the NCBP, and seven compounds were found at greater than 50 percent of the sites. The results from these two studies track closely for the common pollutants analyzed.

Source Correlation Analysis

Concentration comparisons between selected source categories were made using various statistical tools including a box and whisker plot. The categories used were background sites, sites selected from the USGS NASQAN network, sites near Superfund locationse, sites near pulp and paper mills that use chlorine for bleaching, sites near other types of pulp and paper mills, sites near former or existing wood preserving plants, sites near industrial or urban areas, sites near industrial areas that include refineries with catalytic reforming operations, sites that could be influenced by runoff from agricultural areas, and sites near POTWs. These categories were selected based on probable sources of pollutants. Background sites were selected to provide a comparison with areas
relatively free of point and nonpoint source pollution. Sites where multiple source categories could have affected fish contamination levels were not used for the box plots or other statistical tests. For example, sites in the chlorine paper mill category that were also near Superfund sites, other paper mills, or reetineries were not used for the dioxin/furan box plots.

Pulp and paper mills using chlorine to bleach pulp appeared to be the dominant source of 2,3,7,8 TCDD and 2,3,7,8 TCDF. Statistical comparison, using Kruskal-Wallis tests and MannWhitney U tests show that sites near pulp and paper mills using chlorine have significantly higher concentrations of $2,3,7,8$ TCDD than all other source categories. These statistical tests also show the same results for $2,3,7,8$ TCDF with the exception that fish contamination levels near sites in the Superfund category marginally met the statistical test criteria for being similar. Analysis of the five sites with the highest 2,3,7,8 TCDD and 2,3,7,8 TCDF concentrations also show that pulp and paper mills using chlorine are dominant sources of these compounds at four of these sites.

Statistical correlation analyses were less definitive for the other dioxins/furans in that results showed no dominant source for any of these chemicals (i.e., a source from which fish contamination levels were significantly higher than all other sources). A review of dioxin/furan data limited to median concentrations alone shows that Superfund sites are highest for penta-furans, paper mills using chlorine are highest for penta-and hexa-dioxins, and refinery/other industry sites are highest for hexa-furans.

Results for the other 45 chemicals studied also showed no single dominant source for any of these chemicals. Although these compounds showed no dominant source, a number of observations can be made from review of the data. Two such examples involve pesticides and PCBs. A comparison of 15 agricultural and 20 background sites for 10 of the pesticides evaluated showed no significant diff erences between these categories. This same comparison for four other pesticides (DDE, nonachlor, chlordane, and gamma-BHC (lindane)) showed that fish contamination levels were significantly higher at sites near agricultural sources. The median PCB concentration for the 20 background sites was below detection compared with values of 213 to 525 ppb for industria//urban sites, paper mills using chlorine, refinery/other industry sites, nonchlorine paper mills, and Superfund sites.

HUMA N HEALTH RISK ESTIMATES

Potential upper-bound human cancer risk from consumption of fish was estimated using fillet samples for 14 compounds for which cancer potency factors are available (Table 4). Human health risks were not calculated for dioxins/furans, due to the current review of the potency of these chemicals. Most of the fillets were game fish, but fillets from a few bottom feeders that are consumed by humans were also included. Fillet data were available at 182 sites for mercury and 106 sites for the remaining chemicals. The risk estimates were performed using standard EPA risk assessment procedures and assumed lifetime exposure. Upper-bound cancer potency factors, and fish consumption rates of $6.5,30$, and $140 \mathrm{~g} /$ day were used.

The highest estimated lifetime human cancer risk levels are associated with total PCBs. The cancer risk exceeded 10^{-4} at 42 sites for total PCBs for a fish consumption rate of $6.5 \mathrm{~g} / \mathrm{day}$ (Table 4). The second highest cancer risk was associated with dieldrın where six sites had estimated cancer risks greater than 10^{-4} for a $6.5-\mathrm{g} /$ day fish consumption rate

Potential noncarcinogenic effects on human health were estimated for the 21 compounds for which reference dose (RfD) values were available. Hazard indıces based on a fish consumption rate of $6.5 \mathrm{~g} / \mathrm{day}$ exceeded a value of 1 (meaning adverse health effects may occur) at a smali number of sites due to total PCBs, mirex, and combined chlordane when the maximum fillet concentrations were used in the analysis. No indices were exceeded when the mean or median concentrations were used. Combined chlordane is the sum of the concentrations of cis- and trans- chlordane, cis- and trans-nonachlor, and oxychlordane

STUDY LIMITA TIONS

The risks presented in this report represent a national screening assessment and not a detailed local assessment of risks to specific populations. Such detailed risk assessments would consider the number of people exposed and incorporate local consumption rates and patterns. Furthermore, a detailed assessment would require a greater number of fish samples per site than collected for this screening study. Additionally, this study does not address all the bioaccumulative pollutants that may be present in surface waters.

One of the original intents of the NSCRF was to further investigate dioxin/furan concentrations in fish; consequently, the selection of stes was biased toward sites where these compounds might be found. The intent of the source correlations was to identify potential sources, in addition to pulp and paper mills using chlorine, for either dioxins/furans or the other study compounds.

TABLES
Number of Sites with Estimated Upper-Bound Risks

TARGETED SIJES

Chemical	No. of Sites with Fillet Data	RISK LEVEL (Cumulative)			
		$\begin{gathered} 10-6 \\ (>1 \text { in } 1,000,000) \end{gathered}$	$\begin{gathered} 10.5 \\ (>1 \text { in } 100, \infty 00) \end{gathered}$	$\begin{gathered} 10-4 \\ (>1 \text { in } 10,000) \end{gathered}$	$\begin{gathered} 10-3 \\ (>1 \text { in } 1,000) \end{gathered}$
PCBs	106	89	79	42	10
Dieldrin	106	53	31	6	0
Combined Cblordane	106	44	10	0	0
DDE	106	40	10	0	0
Heptachlor Epoxide	106	9	2	0	0
Alpha-BHC	106	11	1	0	0
Mirex	106	8	2	0	0
HCB	106	5	0	0	0
Gamma-BHC	106	0	0	0	0
Heptachlor	106	0	0	0	0
Dicofol	106	0	0	0	0
Hexachlorobutadiene	106	0	0	0	0
Pentachloroanisole	106	0	0	0	0
Trifluralin	106	0	0	0	0

BACKGROUNDSIIES

	No. of Sites with Fillet	$10-6$	$10-5$	10.4
Chemical	Data	$(>1$ in $1,000,000)$	$(>1$ in 100,000$)$	$(>1$ in 10,000$)$

PCBs	4	1	1	0	0
DDE	4	1	0	0	0

Basis: 1) Used EPA (i.e., upper-bound) cancer potency factors.
2) Used consumption rate of 6.5 grams/day.
3) Used average fillet concentrations at the few sites with multiple samples.
Combined cblordane is the sum of cis- and trans-chlordane isomers, cis- and trans-nonachlor isomers, and oxychlordane.

Chapter 1 - Introduction

BACKGROUND

This report presents the results of the U.S. Environmental Protection Agency's (EPA's) National Study of Chemical Residues in Fish (NSCRF), previously referred to as the National Bioaccumulation Study (NBS). The study was initiated in 1986 as an outgrowth of EPA's National Dioxin Study. The National Dioxin Study was a 2-year, nationwide investigation of 2,3,7,8 tetrachlorodibenzo-p-dioxin (2,3,7,8 TCDD) contamination in soil, water, sediment, air, and fish. Some of the highest concentrations of 2,3,7,8 TCDD discovered in the environment during that effort were detected in fish. EPA's concern that there may be other pollutants with properties similar to $2,3,7,8$ TCDD bioaccumulating in fish was a primary reason for initiating the NSCRF. Additionally, in response to a petition from the Environmental Defense Fund and the National Wildlife Federation, EPA committed to conducting an aquatic monitoring survey of the occurrence of chlorinated dibenzodioxins and chlorinated dibenzofurans. Aquatic biota are frequently being used to determine whether substances are bioaccumulating, to detect acutely toxic conditions, and to detect stresses such as sublethal toxicity, particularly due to interactions among chemicals.

The objectives of this one-time screening investigation were to determine the prevalence of selected bioaccumulative pollutants in fish and to identify correlations with sources of these pollutants. In addition, estimates were made of human health risks for those pollutants studied for which cancer potency factors and/or reference doses have been established. Human health risks were not estimated for dioxins and furans since the potency of these pollutants is the subject of an EPA review.

Bioaccumulation is the uptake and retention of chemicals by living organisms. Aquatic organisms such as fish are exposed to pollutants through contaminated water, sediment, and food. A pollutant bioaccumulates if the rate of intake into the living organism is greater than the rate of excretion or metabolism. This results in an increase in the tissue concentration reiative to the exposure concentration in the ambient environment. Consequently, analysis of fish tissue can reveal the presence of pollutants in waterbodies that may escape detection through routine monitoring of water alone. Contaminants detected in fish not only indicate pollution impact on aquatic life and other wildlife (i.e., through biomagnification up the food chain), but also can represent a significant route of human exposure to toxic chemicals through consumption of fish and shellfish.

GENERAL APPROACH

Composite fish samples were collected primarily in 1987 at 388 locations nationwide and analyzed for concentrations of 60 contaminants by EPA's Environmental Research Laboratory (ERL) in Duluth, Minnesota. EPA's Office of Science and Technology personnel, Regional Coordinators, and State personnel selected the sampling sites. Locations selected included targeted sites near potential point and nonpoint pollution sources; background sites in areas relatively free of pollution sources; and a small subset of sites selected from the U.S. Geological Survey's (USGS)

National Stream Quality Accounting Network (NASQAN) for nationwide coverage. Targeted sites included areas near significant industrial, urban, or agricultural activities. Over 100 sampling sites near pulp and paper mills using chlorine to bleach pulp were added to the study after results of the National Dioxin Study indicated a correlation between 2,3,7,8 TCDD occurrence in fish and proximity to pulp and paper mill discharges. Some samples collected from the National Dioxin Study sites were reanalyzed as part of this study to obtain information on concentrations of pollutants other than $2,3,7,8$ TCDD.

EPA Regional Coordinators managed the collection of composite samples, accomplished primarily by State agencies. In general, a representative bottom-feeding species, whole-body composite sample was collected and analyzed for each site to determine general occurrence of each contaminant in any portion of the fish. A representative game fish fillet composite sample was analyzed at a limited number of the study sites, usually where whole-body concentrations were high, to indicate the potential risk to human health from consumption of the edible portion. A few bottom-feeding species composite samples were also analyzed as fillets and used to estimate human health risks.

Target analytes were selected on the basis of their potential to bioaccumulate, human toxicity, and analytical feasibility. Hundreds of potential chemicals of concern were screened for inclusion in the study. The final list of 60 contaminants included 15 chlorinated dibenzodioxins and dibenzofurans and 45 other xenobiotic chemicals, primarily polychlorinated biphenyls. and chlorinated organic pesticides. The final list did not represent a comprehensive list of all bioaccumulative pollutants of concern.

Three methods were employed for laboratory analyses. ERL-Duluth refined and expanded the method for dioxin analysis developed for the National Dioxin Study to include 14 polychlorinated dibenzodioxins and polychlorinated dibenzof urans in addition to 2,3,7,8 TCDD. ERL-Duluth developed a second method specifically for this study to measure concentrations of 44 of the other xenobiotic study analytes. Mercury was analyzed separately from the other study chemicals using EPA's standard a nalytical techniques.

Chapter 2 - Study Design and Approach

This chapter provides an overview of the development of the design and analytical approach for this national study of chemical residues in fish. Prior to undertaking the study, a Work/Quality Assurance Project Plan (U.S. EPA, 1986a) was prepared that described the overall goals for the study, the data quality objectives, and the Quality Assurance/Quality Control (QA/QC) procedures to meet the objectives. This study, to a large extent, built upon experience gained during the multimedia EPA National Dioxin Study (U.S. EPA, 1987b), which investigated contamination from 2,3,7,8 tetrachlorodibenzo-p-dioxin (2,3,7,8 TCDD). Unlike the National Dioxin Study, however, this study was intended to screen for a wider range of chemicals with high potential to bioaccumulate in fish (or shellfish) tissue. Consequently, new or modified analytical methods had to be developed. ERL-Duluth was responsible for developing and verifying the analytical methods, determining compliance with precision and accuracy targets, and achieving minimum detection limits to meet the objectives of the study.

POLLUTANT SELECTION SCREENING PROCESS

A screening process was undertaken by EPA to select the pollutants for the study. Four hundred and three chemicals were initially identified as candidate study compounds. Sources from which these chemicals were identified included:

1. List of priority pollutants. Priority pollutants are the 126 pollutants derived from the 65 classes of compounds listed in Clean Water Act section 307(a). Some of the priority pollutants were included on the screening list for this study based on their potential human health or aquatic life effects and exposure potential (Tobin, 1984).
2. Pesticides detected in effluents from pesticide manufacturing plants (Dorman, 1985).
3. The Carcinogen Assessment Group's (CAG's) List of Chemicals Having Substantial Evidence of Carcinogenicity (U.S. EPA, 1980b).
4. Semivolatile organic compounds identified by the Office of Toxic Substances in 1980 to be in human adipose tissue (U.S. EPA, 1980c).
5. Chemicals considered by the International Agency for Research on Cancer (IARC) to have substantial evidence of carcinogenicity (evaluated after CAG 1980 list was completed).
6. National Toxicology Program (NTP) chemicals classified as carcinogens in Annual Reports on Carcinogens (NTP, 1982a,b).

[^1]7. Clean Water Act 4(c) Program pollutants, other than priority pollutants, identified in industrial and POTW effluents as nonbiodegradable.
8. Additional suggestions from Agency experts.

The resulting list of candidate chemicals was first screened for bioaccumulation potential. Compounds with calculated or experimental Bioconcentration Factors (BCFs) greater than 300 were selected because they have greater potential to bioaccumulate and because the projected human exposure from fish consumption would be greater than the projected exposure from drinking water. The list of chemicals was further screened based on human toxicity, exposure potential, persistence in the aquatic environment, and biochemical fate in fish. For example, compounds that are quickly hydrolyzed or metabolized were identified and eliminated from further consideration. Finally, screening of the remaining chemicals was undertaken with regard to analytical feasibility by chemists at ERL-Duluth. Chemicals presenting significant analytical dif ficulties, such as not being amenable to generalized isolation procedures, were removed from the list. For example, low recovery from the silica gel column eliminated chlorbenzilate, triphenyl phosphate, and trichloronate. Kepone was deleted due to inconsistent mass spectral response.

A final list of 15 dioxin and furan congeners and 45 other xenobiotic chemicals resulted from the screening process (Table 2-1). The 2,3,7,8 substituted dioxins and furans were selected for analysis due to their toxicity. For these analytes, maximum target detection levels were determined based on potential fish tissue concentration levels of concem, i.e., those associated with a given level of toxicity (10^{-6} risk of cancer). The latter were derived following Agency guidelines (U.S. EPA, 1986a).

FIELD SAMPLING PROCEDURES

Sample Collection

The EPA Regional Offices were responsible for the collection of the fish samples and for transport to ERL-Duluth for analysis. Procedures for sample fish collection, handling, preservation, and transport were described in the Work/Quality Assurance Project Plan (U.S. EPA, 1986a, 1984) and are noted below. Two composite fish samples per site were collected, where possible:

1. A representative bottom-feeding fish composite to be analyzed whole, as an overall indication of pollutant levels at each site.
2. A representative game fish composite to be analyzed as a fillet to provide an indication of potential human health risk from consumption of fish.

Approximately three to five adult fish of similar size and from the same species were collected for each composite at a given site allowing for a minimum sample size of 500 grams. All fish in the composite sample were obtained from the same site. The fish species targeted for sampling were considered to be good bioaccumulators and/or were routinely consumed by humans. For bottom-feeding fish, target fish in order of preference were 1) carp, 2) channel catfish, and 3) white sucker. Suggested target species for game fish included 1) white bass, 2) northern pike, 3) walleye, 4) smallmouth bass, 5) largemouth bass, and 6) crappie. (A

TABLEQ-1
List of Target Analytes

DIOXINS

2,3,7,8 Tetrachlorodibenzodioxin (TCDD)
1,2,3,7,8 Pentachlorodibenzodioxin (PeCDD)
1,2,3,6,7,8 Hexachlorodibenzodioxin (HxCDD)
1,2,3,7,8,9 Hexachlorodibenzodioxin(HxCDD)
1,2,3,4,7,8 Hexachlorodibenzodioxin(HxCDD)
1,2,3,4,6,7,8 Heptachlorodibenzodioxin(HpCDD)

FURANS

2,3,7,8 Tetrachlorodibenzofuran (TCDF)
1,2,3,7,8 Pentachlorodibenzofuran (PeCDF)
2,3,4,7,8 Pentachlorodibenzofuran (PeCDF)
1,2,3,6,7,8 Hexachlorodibenzofuran (HxCDF)
1,2,3,7,8,9 Hexachlorodibenzofuran (HxCDF)
1,2,3,4,7,8 Hexachlorodibenzofuran (HxCDF)
2,3,4,6,7,8 Hexachlorodibenzofuran (HxCDF)
1,2,3,4,6,7,8 Heptachlorodibenzofuran (HpCDF)
1,2,3,4,7,8,9 Heptachlorodibenzofuran (HpCDF)
OTHER XENOBIOTICS

Biphenyl
Chlordane, cis
Chlordane, trans
Chlorpyrifos
p, p'-DDE
Dicofol
Dieldrin
Diphenyl Disulfide
Endrin
Heptachlor
Heptachlor epoxide
Hexachlorobenzene
Hexachlorobutadiene
alpha-BHC
gamma-BHC (lindane)
Isopropalin
Mercury
Methoxychlor

Mirex
Nitrofen
Nonachlor, cis
Nonachlor, trans
Octachlorostyrene
Oxychlordane
Pentachloroanisole
Pentachlorobenzene
Pentachloronitrobenzene
Perthane
Polychlorinated Biphenyls
(Mono-Decachlorinated)
1,2,4,5 Tetrachlorobenzene
1,2,3,4 Tetrachlorobenzene
1,2,3,5 Tetrachlorobenzene
1,2,3 Trichlorobenzene
1,2,4 Trichlorobenzene
1,3,5 Trichlorobenzene
Trifluralin
summary of the types of fish actually collected and analyzed and a comparison of the observed fish tissue concentrations detected are included in Chapter 5, "Fish Species Summary and Analysis.")

Sample Handling/Preparation
After collection, the fish were individually wrapped in aluminum foil, labeled, dry-iced, and shipped frozen to Duluth. Chain-of-custody procedures were followed for each sample using a centralized sample control system. (Ince fish samples were received by ERL-Duluth, the staff completed the chain-of-custody forms and placed the frozen samples in a freezer. Fish tissue was ground frozen and homogenized in a stainless steel meat grinder. For whole-fish samples (e.g., bottom feeders), the entire fish including organs and muscle tissue was ground. For game fish, fillets with the skin off were prepared and then ground. Most filleting (skin-off) was done at ERL-Duluth. All equipment and the stainless steel table were cleaned after each use. The ground tissue was stored at -208e until extracted.

Fish Length and Weight Data

Length and weight data for individual fish in the bioaccumulation data set were not usually available. Information on the number of samples per composite and sampling date was recorded, along with the weight of the sample and percent lipid (see Appendix D, Vol. II). Age and sex were not determined for this study. To minimize potential differences, fish were not collected during or soon after spawning or during seasonal migration. The dates of sample collection are included in Appendix D, Vol. II. In future studies, it is recommended that length and weight data be obtained for all samples and that enough samples be aged to develop age vs. length and weight relationships. In some cases, only mean lengths and weights were available for the fish from which fillet and whole-body samples were prepared for analysis. A preliminary review of the data indicated that some samples consisted of individual specimens with widely differing lengths and weights. This probably resulted from limited availability of fish. Assuming that length and weight are a reasonable indicator of age for most fish species, then the likely use of different age fish could bias some of the various bioaccumulation study analyses. In general, it may be assumed that older fish would have had a longer exposure to contaminants either through direct contact with substrates (e.g., demersal species) or as predators, having consumed large quantities of contaminated prey. Changes in metabolism related to age and other age-dependent factors may also affect tissue contaminant levels. In general, samples prepared for tissue analyses requiring multiple specimens should, to the extent possible, include only those fish which are essentially the same length and weight and, hence, approximate age.

ANALYTICAL PROTOCOLS

Three analytical procedures were employed during the laboratory analysis of the sample composites. The summaries that follow have been abstracted from U.S. EPA, 1990b, EPA/600/390/022 (PCDD/PCDF); U.S. EPA, 1990c, EPA/600/3-90/023 (xenobiotic chemical contaminants); and U.S. EPA, 1989a (mercurv).

Dioxins/Furans

A schematic of the analytical procedures used for the tissue extraction of polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDD/PCDF) is shown in Figure 2-1. Specific details of the analytical procedures used are provided in U.S. EPA, 1990b (included in Appendix A). After spiking a dry tissue sample with intemal standard solutions, the sample was extracted with a mixture of hexane and methylene chloride and the eluent was collected in a Kuderna-Danish (KD) apparatus. The internal standards added at this point consisted of 11 different ${ }^{13}$ E labeled compounds and four PCDD/PCDF compounds (see Solutions A and B in Table 2-2.). The KD apparatus was then placed in a 608 water bath under a dry carbon tiltered air flow. After the solvent had evaporated, the lower tube and contents were weighed. The lipid was then quantitatively transferred to an acid-celite macro-column, and the lower empty tube and contents were weighed. The percent lipid was calculated based on the difference in weights. The acid-celite column was eluted with benzene/hexane. Isooctane was added and the sample volume reduced for transfer to the activated florisil/sodium sulfate column. The column was eluted with methylene chloride and hexane and the eluate discarded. The column was then washed with methylene chloride, which flowed directly onto a carbon silica gel column for PCDD/PCDF isolation. Benzene/methylene chloride was added to the carbon column, and then the carbon column was inverted. The PCDD/PCDF were eluted with toluene and another internal standard. Solution C in Table 2-2, prior to gas chromatography/mass spectrometry (GC/MS) analysis.

During the course of this study, changes were made to the PCDD/PCDF methodology. In 1987, toluene was replaced with tridecane as the solvent for the standard PCDD/PCDF recovery and calibration solutions. The new standards included more compounds than the original set. In addition, the procedure for determining the minimum level of detection was modified to better reflect actual instrumental analysis. Consequently, results generated after July 1987 reflect a minimum level of detection (MLD) defined as the concentration predicted from the ratio of the baseline noise area to the labeled internal standard area plus three times the standard error of the estimate from the weighted initial calibration curve. Before this procedure, the MLD was determined according to the Analytical Procedures and Quality Assurance Plan for the Analysis of 2,3,7,8 TCDD in Tier 3-7 Samples of the U.S. Environmental Protection Agency National Dioxin Study (EPA/600/3-85-019).

Prior to the addition of the florisil column in July 1988, polychlorinated diphenylethers interfered with the quantification of some of the biosignificant furans (2,3,4,7,8 PeCDF; 1, 2,3,4,6,7 $\mathrm{HxCDF} ; 1,2,3,4,7,8 \mathrm{HxCDF}$; and $2,3,4,6,7,8 \mathrm{HxCDF}$). The reported values for these compounds may have been overestimated due to the interference. The samples with interferences were flagged in the data reports with a comment. In addition, a flag has been added to the data tables indicating that $1,2,3,4,7,8 \mathrm{HxCDF}$ coelutes with $1,2,3,4,6,7 \mathrm{HxCDF}$ on the GC column (DB5 30M).

All GC/MS analyses were done using high-resolution GC/high-resolution MS (HRGC/HRMS). Before the analyses, each sample was spiked with a standard solution and the sample volume adjusted to $20 \mu \mathrm{~L}$ with tridecane. Sample analyses were done in sets of twelve consisting of:

Figure 2-1. Schematic of laboratory procedures for dioxins and furans.

TABLE 2-2. Internal Standard Solutions Used for PCDD/PCDF Analyses

Compound	Concentration in Solution ($\mathrm{pg} / \mu \mathrm{L}$)	Concentra in tissue
Imemal Slandard Solumen A. (100uL)		
37CL+e2.3.7.8 TCDD	2.0	10.0
13C12 2,3,7.8 TCDD	5.0	25.0
13 CI 2 2,3.7,8 TCDF	5.0	25.0
13 C 12 1,2,3,7,8 PeCDD	5.0	25.0
13 C 12 1,2,3,7,8 PeCDF	5.0	25.0
13 C 12 1, 2, 3, 4, 7, 8 HxCDD	12.5	62.5
$13 \mathrm{Cl2}$ 1, $2,3,4,7,8 \mathrm{HxCDF}$	12.5	62.5
13C12 1,2,3,4,6.7,8 HpCDD	12.5	62.5
13C12 1,2,3,4,6,7,8 HpCDF	12.5	62.5
13C12 OCDD	25.0	125.0
37CL 2,3,7,8 TCDF	2.0	10.0
Internal Standard Solution B.		
1.2,3,4 TCDD	1.0	5.0
1,2,4,7,8 PeCDD	1.0	5.0
1,2,3,4 TCDF	1.0	5.0
1,2,3,6,7 PeCDF	1.0	5.0
Intemal Standard SolutionC.		
13C121,2,3,4 TCDD	50.0	50.0
*Assumes a 20-g sample. Reference: U.S.EPA, 1990 b .		
Surrogate Standard and Internal Standard Solutions Used for Other Xenobiotic Compound Analyses		
Compound	Concentration ($\mu \mathrm{g} / \mathrm{m}$	
Surogate Standard Solution A (25uL)		
Iodobenzene	125	
1-Iodonaphthalene	125	
4.4'-Diiodobiphenyl	125	
Intemal Standard Solution (loul)		
Biphenyl-D10	50	
Phenanthrene-D10	75	
Chrysene-D12	75	

1. One method blank;
2. One additional fortified matrix (blank) spiked with native analytes;
3. One detection limit verification sample-an environmental sample with a detectable amount of native analyte (determined from a previous analysis). spiked with native analytes, and analyzed with the next sample set (used for only the first three sample sets of a matrix type to establish that the calculated MLD was achievable);
4. One duplicate sample; and
5. Eight (if detection limit verification sample used) or nine environmental samples.

Quantification of analytes was accomplished by assigning isomer identification, integrating the area of mass-specific GC peaks, and calculating an analyte concentration based upon an ion relative response factor between the analyte and the appropriate standard. For the tetrachloro- to heptachloro-congeners/isomers of PCDD/PCDF, analytical results were reported as concentration in picograms per gram (pg / g) (ppt wet weight) for each GC peak in a congener class by making the assumption that the response for the molecular ion of all isomers in that class was equal to the response observed for the isomer for which ERL-Duluth had a standard. Target MLD are noted below:

TCDD, TCDF	$1 \mathrm{pg} / \mathrm{g}$
PeCDD, PeCDF	$2 \mathrm{pg} / \mathrm{g}$
$\mathrm{HxCDD}, \mathrm{HxCDF}$	$4 \mathrm{pg} / \mathrm{g}$
$\mathrm{HpCDD}, \mathrm{HpCDF}$	$10 \mathrm{pg} / \mathrm{g}$

The specific detection limits for each sample with concentrations below detection were recorded in the data base (see Appendix D. Volume II). The actual detection limits achieved were often lower than the above targeted values.

Other Xenobiotic Chemicals

A schematic of the analytical procedures used for the tissue extraction of the other xenobiotic chemicals is shown in Figure 2-2. More specific details are provided in U.S. EPA, 1990c, included in Appendix A. Before extraction, each sample was fortified with a surrogate standard solution (Table 2-2) to evaluate the recovery of target analytes. To isolate the xenobiotic chemical contaminants, a gel permeation chromatography (GPC) system was first used to remove fish lipid interferences. Then a Kontes column packed with silica gel was used to remove naturally occurring cholesterol and fatty acids. Finally, the samples were spiked with an internal standard solution, also listed in Table 2-2, used to quantify target analytes before GC/MS analysis.

In August 1988, two important changes were made in the xenobiotics methodology. The amount of silica gel used was doubled, and the maximum amount of lipid placed on the GPC system was decreased from 1.0 g to 0.8 g . These changes were made to obtain better recovery of the target analytes and to decrease interferences. The quantitative results (concentrations) obtained with the two methods were comparable.

Figure 2-2. Schematic of laboratory analytical procedure for other xenobiotic chemicals.

Samples were analyzed by GC/MS as referenced in U.S. EPA, 1990c. The positive identification of analytes using the MS was based upon a reverse library search threshold value and relative retention time: quantification was based on the response factors relative to one of three intemal standards. Sample analyses were done in sets of 12 consisting of:

1. One method blank,
2. One additional fortified matrix (blank) spiked with one of eight mixtures of the target analytes.
3. One duplicate sample, and
4. Nine environmental samples.

All target xenobiotic analytes were quantified as unique values ($\mathrm{ng} / \mathrm{g}-\mathrm{ppb}$ wet weight), except PCBs, which were reported by total congener at each degree of chlorination. Specific detection limits were not determined for individual samples so they have been operationally set at zero. Target quantitation limits for these analytes were:

Target Analytes (except PCBs)
Polychlorinated Biphenyls
Level of Chlorination:

	2.5	ng / g
$1-3$	1.25	ng / g
$4-6$	2.50	ng / g
$7-8$	3.75	ng / g
$9-10$	6.25	ng / g

Mercury

A schematic of the equipment arrangement for mercury analyses is shown in Figure 2-3. More specific details are provided in Olson et al., 1975; Horwitz, 1983; APHA, 1985; and Glass et al., 1990. The analytical procedure for mercury was based on a standard flameless atomic absorption method. Fish tissue samples were digested in a mixture of nitric acid, sulfuric acid, potassium permanganate, and potassium persulfate as the digestion reagent. The resulting solution was treated with a sodium chloride-hydroxylamine sulfate solution and aqueous stannous chloride. Liberated mercury was measured using an atomic absorption spectrophotometer equipped with a cold mercury vapor apparatus. Data for mercury are reported as microgram per gram ($\mu \mathrm{g} / \mathrm{g}$) (ppm wet weight). The detection limit for mercury was $0.05 \mu \mathrm{~g} / \mathrm{g}$ for samples analyzed prior to 1990 and $0.0013 \mu \mathrm{~g} / \mathrm{g}$ for the 195 samples analyzed in 1990. The sample size was decreased from 1.0 g to 0.2 g to obtain results within the instrument's calibration range established at the lower detection limit.

Quality Assurance/Quality Control (QA/QC)

Specific laboratory QA procedures were established by ERL-Duluth, and are summarized in Appendix A, Table A-1. The PCDD/PCDF QA requirements for accuracy, method efficiency, precision, and signal quality (signal-to-noise [S / N] ratio) are shown in Appendix A, Table A-2. Limits for recovery of standards were also set. Values that were below 40 percent recovery were

Figure 2-3. Schematic of laboratory analytical procedure for mercury.
flagged with a QR designation in the data base. These values represent minimum concentrations and are included with the data hut were not used in the data analyses.

Xenobiotic and mercury data QA requirements are listed in Appendix A. Table A-4 and Appendix A, Table A-7. If more than 20% of the analytes were outside the QA for accuracy and precision. the sample set was reanalyzed. QC chans were maintained by the laboratory for each analyte displaying quantitative bias and precision. Bias and precision were calculated at the completion of the study and are presented in Appendix A. For QA factors outside of the above criteria (Appendix A for xenobiotics), corrective actions were undertaken (e.g., adjust GC or MS parameters, flush/replace GC column. clean MS, reextract and reanalyze samples). An overall data completeness criterion of 80 percent was setfor the study. As discussed in Appendix A, this criterion was met.

General guidance for data quality including $\mathrm{QA} /(\mathrm{CC}$ requirements was provided in the Work/Quality Assurance Project Plan (U.S. EPA, 1986a). As stated in this Project Plan:
"The expected quality of the data will be specified in terms of precision, bias, and detection limits. In general, the bias requirements will be 30% (i.e., the reported values will be within 30% of the true values) and the precision requirement will be $50 \% \ldots$. The detection limit for fish will be based on consideration of levels of concern...."

The target for completeness of the data was originally set at 80 percent in the study workplan. This target was the minimum percent of verified data as a percent of total reported data. In fact, this target was exceeded. For the dioxin/furan analyses 96 percent of all analyses met QA/QC criteria. Those analyses which did not are flagged with "QR" in the database (Vol. II, Appendix D) and were not used for any data analyses. All other data met the QA/QC criteria, i.e., the percent of total reported data classified as valid.

Specific protocols were developed in this study for controlling data quality and ensuring data comparability, including:

1. Standardized written sampling and analytical procedures,
2. Standardized handling and shipping procedures,
3. The use of blanks (reagent and field),
4. The use of fortified samples to control accuracy and internal standards to quantify target analytes.
5. Specified calibration procedures to control accuracy and verify detection limits,
6. Replicate analyses to evaluate laboratory precision, and
7. Standardized data reduction and validation procedures.

Procedures for documentation, data reduction and validation, and reporting were specified in the Analytical Procedures and Quality Assurance Plan Manuals (U.S. EPA, 1990b, 1990c, 1989a).

SITE SELECTION

Fish collected from 388 unique sites were analyzed for this study (Figure 2-4). The types of sites sampled included targeted sites near potential point and nonpoint sources (shown separately in Figure 2-5), background sites (shown separately in Figure 2-6), and a subset of sites from the USGS NASQAN (shown separately in Figure 2-7):

Type of Site	Number Sampled
Targeted Sites	314
Background Sites	35
USGS NASQAN Sites (Subset)	$\underline{39}$
TOTAL	

A subset of samples that had been collected at 103 sites during the National Dioxin Study (U.S. EPA, 1987b), and that had been analyzed for 2,3,7,8 TCDD only, were reanalyzed for the other study dioxin/furan congeners and xenobiotic compounds. These sites have episode numbers from 1994 to 2776. The new sites have episode numbers beginning with 3000 .

Targeted sites were selected by EPA Regional and State staff based on proximity to potential sources (Figure 2-5). Fish and other aquatic biota were sampled near industrial dischargers, urban areas, or agricultural runoff areas. The number of sites was not allocated equally among types of sources. Some of the targeted sites were selected based on potential chlorinated dioxin and furan contamination, including areas near pulp and paper mills (mills that use chlorine to bleach pulp and other types of mills), wood preservers, users of such contaminated products as polychlorinated phenols and phenoxides, PCB dischargers, organic chemical and pesticide manufacturers, and combustion sources (sewage sludge incinerators, municipal incinerators). Two reasons for selecting these types of sites were:

1. The major sources of chlorinated dioxins and furans are suspected to be similar to the sources of $2,3,7,8$ TCDD investigated in the National Dioxin Study, and
2. Certain organic chemicals and pesticide compounds (primarily polychlorinated phenols and polychlorinated phenoxides) had been identified as having chlorinated dioxin or furan contamination. In addition, several PCB mixtures had been reported to contain furan contamination.

More sites with potential dioxin/furan contamination were selected than for other compound groups to follow up the results of the National Dioxin Study. Some targeted sites were also selected for sampling based on the potential for hexachlorobenzene (HCB) contamination. Potential sources of HCB include fugitive emissions from manufacturing plants, impurities in pesticides (e.g., pentachloronitrobenzene [PCNB], dacthal, chlorothalonil, picloram), and previous application of HCB as a fungicide. Production facilities for certain chemicals (e.g., chlorobenzenes, carbon tetrachloride, chlorine) are known to generate HCB as a contaminant (U.S. EPA, 1986a). The ten largest direct dischargers (by production volume) of the chemicals of concern were recommended

Figure 2-4. Location of bioaccumulation study sampling sites.

3

Figure 2-5. Locationff targeted sites.

Figure 2-6. Location of sites representing background conditions.

Figure 2-7. Lacation of sites selected from a subset of the USGS NASQAN Network.
for sampling. In addition, a site within each of the 10 U.S. counties with the highest combined applications of the pesticides PCNB, picloram, and chlorothalonil (Resources for the Future. 1986) were selected by the EPA Regions and targeted for sampling.

The following categories were used for targeted sites: background, paper mills using chlorine. other types of pulp and paper mills, wood preserving plants, refineries/other industries, Superfund sites, industry/urban, agriculture, and POTW. The two broad categories, industry/urban and retineries/other industries, were used to accommodate the sites having multiple point sources.

Background sites, shown in Figure 2-6, were selected by EPA Regional and State staff in areas generally free of influence from industrial releases, urban activities, or agricultural runoff. Results from these background sites were to be compared with concentrations of pollutants found in samples from the targeted, potentially more polluted sites.

A subset of sites were selected based upon hydrologic subdivision of major river basins, from the USGS NASQAN sites for nationwide coverage (Figure 2-7). The sampled sites were intended to represent a larger number of sites from the network.

Chapter 3 - Dioxin and Furan Results and Analysis

This chapter presents the results from analysis of fillet and whole-body samples for dioxin and furan compounds. The first section contains a summary of the prevalence and concentration of all dioxins and furans analyzed, as well as a summary of theToxicity Equivalency Concentration (i.e., a toxicity-weighted concentration of all dioxins and furans). Additional information presented in this chapter consists of a geographical distribution summary and a source correlation analysis. The latter analysis identifies point and nonpoint sources in the vicinity of the highest concentration fish samples and compares concentrations between various site categories.

Chemical profile data for dioxins and furans can be found in Appendix C. Volume II. These data include physical/chemical properties, sources, standards and criteria, and human health effects. The raw concentration data, specific detection limits for dioxin/furan congeners, and location information on the fish samples and other sampling data including sample weight, percent lipid, number of fish per composite, and date of sample collection are included in Appendix D, Volume II. The number of samples taken and analyzed by site can be determined by counting the samples for a given site (episode number) in the data tables (Appendix D, Volume II). The number of fish in each composite sample is provided in Appendix D-6 (Volume II). Other values for a given site can be reviewed by identifying the episode number for the site from the site matrix (Table B-3. Appendix B, in Volume I or Table D-1, Appendix D, in Volume II) and then looking at the data in the raw data tables (Appendix D, Volume II).

PREVALENCE AND CONCENTRATION SUMMARY

Six dioxin congeners and nine furan congeners were measured in the fish tissue and shellfish samples. Summary data regarding the prevalence and concentration of these 15 compounds can be found on Table 3-1 and Figure 3-1. Mean concentrations were calculated using one-half of the detection limit for tissue concentrations below detection. The total number of sites sampled and the percent of sites where at least one sample had a detected concentration are also shown. Each of the dioxin congeners was detected in samples ranging from 32 percent ($1,2,3,4,7,8 \mathrm{HxCDD}$) to 89 percent ($1,2,3,4,6,7,8 \mathrm{HpCDD}$) of the sites (Figure 3-1). The occurrence of furans by site showed more variability, ranging from 1 percent ($1,2,3,7,8,9 \mathrm{HxCDF}$) to 89 percent ($2,3,7,8$ TCDF). The dioxins and furans detected in samples from more than 50 percent of the sites included:

Compound

$1,2,3,4,6,7,8 \mathrm{HpCDD} 89$
2,3,7,8 TCDF
2,3,7,8\&CDD 70
1,2,3,6,7,8 HxCDD
2,3,4,7,8 PeCDF 64
$1,2,3,4,6,7,8 \mathrm{HpCDF} 54$
$1,2,3,7,8$ PeCDD 54

89 69
Percent of Sites Detected9

9

TABLE 3-1

Summary of Dioxins/Furans Detected in Fish Tissue

Chemical	Percentot Sites Where Detected	Max*	Mean*	Standard Deviation	Median*	Total Number of Sites	D
2378 ICDF	89.4	4030	13.61	40.11	2.97	388	7
1234678 HpCOD	8901	249.1	10.52	25.30	2.83	354	6
2378 TCDD	70.3	203.6	689	19.41	1.38	388	1
123678 HxCDD	68.8	100.9	430	925	1.32	375	4
23478 PeCDF	646	56.37	306	6.47	0.75	387	9
1234678 HpCDF	53.8	58.3	191	4.41	0.72	353	14
12378 PaCDD	53.5	53.95	2.38	4.34	0.93	385	2
12378 PoCDF	47.3	120.3	171	7.69	0.45	387	8
123478 HxCDF	42.0	45.33	2.35	4.53	1.42	379	10
123789 HxCDD	37.9	24.76	1.16	1.74	0.69	375	5
123478 HxCDD	32.3	37.56	1.67	2.39	1.24	375	3
234678 HxCDF	31.7	1980	1.24	1.51	0.98	379	13
123678 HxCDF	20.8	30.86	1.74	2.34	1.42	379	11
1234789 HPCDF	4.0	2.570°	1.24	0.33	1.3	353	15
123789 HxCDF	1.3	0.96**	1.22	0.41	1.38	379	12
TEC	N/A	213.05	11.08	23.77	2.8	388	

- Concentrations are pioggrams per gram ($\mathrm{\rho g} / \mathrm{g}$) or parts per 1rillion ($\rho \mathrm{\rho} \boldsymbol{\mathrm { t }}$) by wet weight. The mean, median, and standard deviation were calculated using one-half the detection limit for eamples which were Delow the detection limit. In cases where multiple samples were analyzed per site, the value used represents the highest concentration
**Detection limits were higher than the fow quantified values for $1,2,3,4,7,8,9 \mathrm{HPCDF}$ and $1,2,3,7,8,9 \mathrm{HxCDF}$. Maximum values listed are measured values.
TEC = Toxicity equivalency concentration based on method of Barnes ot al.، 1989.
Note: Dis designation of chemical on histogran (Figure 3-1) of the percent of sites with concontrations above detection.

Percent of Sites with Detected Levels

The maximum levels of the four most frequently detected compounds and $1,2,3,7,8 \mathrm{PeCDF}$ were greater than 100 ppte The highest mean and median concentrations were for 2,3,7,8 TCDF at 13.6 and 2.97 ppt, respectively.

The lower median value retlects the lognormal type distribution as shown in the cumulative frequency distributions for the six dioxins (Figure 3-2) and for selected furans (Figure 3-3). These graphs were prepared using the maximum detected value at each site. When the duplicate sample value was higher than the original sample, the duplicate value was used. In a similar manner, values for samples from duplicate sites (i.e., resampled locations) were compared and the maximum measured value used. The graphs show that the dioxins 2,3,7,8 TCDD and 1,2,3,4,6,7,8 HpCDD were present at higher concentrations than the other dioxin congeners. For 2,3,7,8 TCDD, 18 percent of the sites had measured concentrations greater than $7 \mathrm{pg} / \mathrm{g}$. A similar pattern was observed for the furans, although the maximum concentration for 2,3.7,8 TCDF was considerably higher than any of the other furan congeners, and this was the only furan congener with a median concentration greater than $2 \mathrm{pg} / \mathrm{g}$.

Toxicity Equivalency Concentration (TEC)

Toxicity equivalent concentrations (TECs) of dioxins/furans were calculated to facilitate comparison of fish tissue contamination among sites. TEC represents a toxicity weighted total concentration of all individual congeners using 2,3,7,8, TCDD as the reference compound. EPA's interim method was used to determine TEC (Bames, et. al., 1989). This is referred to as the Toxicity Equivalency Concentration (TEC) value, sometimes called TEQ (toxicity equivalents). The TEC method was developed under an intemational project and advocated by EPA. Under this method, 2,3,7,8 TCDD is used as the reference toxicity compound with all other dioxins and furans compared to this compound through the use of a Toxicity Equivalency Factor (TEF). The factors for determining the relative toxicities are shown in Table 3-2. Octa-dioxins and furans were not analyzed because at the time this study began in 1986, the TEFs were zero for these congeners. Under the 1989 interim method, the TEF was increased to 0.001 . Consequently, TEC values may be underreported for samples collected at sites with sources of octa-dioxins, e.g., wood preservers.

The largest TEF used to compute TEC is for 2,3,7,8 TCDD (a value of 1). The next largest factor is for the 2,3,7,8 PeCDDs (i.e., penta-dioxins that have a chlorine atom in each of the 2,3,7,8 molecular positions and the fifth chlorine atom is in any of the remaining positions) and 2,3,4,7,8 PeCDF (both 0.5). The compound $2,3,7,8$ TCDF has a TEF of 0.1 , but because it is frequently detected it is a significant contributor to the TEC values. The cumulative frequency distribution of TEC values shows that these values exceeded $1 \mathrm{pg} / \mathrm{g}$ in at least one sample at 70 percent of the sites (Figure 3-4). The proportion of the TEC contributed by 2,3,7,8 TCDD using the 1989 interim method is over 50 percent in 50 percent of the samples (Figure 3-5a). Four compounds (2,3,7,8 TCDD; 2,3,7,8 TCDF; 1,2,3,7,8 PeCDD; and 2,3,4,7,8 PeCDF) account for a little more than 80 percent of the TEC in three-fourths of the samples (Figure 3-5b). Levels of hepta- and hexa-dioxins, detected in a high percentage of study samples, have gained significance because the factors for these compounds, though low relative to the tetra- and penta-dioxins, have increased from 0.001 under the U.S. EPA's 1987 method to 0.01 for the $2,3,7,8 \mathrm{HpCDDs}$ under the 1989 method and from 0.04 to 0.1 for $2,3,7,8 \mathrm{HxCDD}$.

Figure 3-2. Cumulative frequency diagrams of concentrations of six dioxin congeners in fish tissue. Points display values above detection. The bars along the x axis indicate values below detection (ND). The total number of sites is also listed on the graph. Concentrations used are maximum values at each site.

Figure 3-3. Cumulative frequency diagrams of concentrations of six furan congeners in fish tissue. Points display values above detection. The bars along the x axis indicate values below detection (ND). The total number of sites is also listed on the graph. Concentrations used are maximum values at each site.

TABLEa3-2
1989 Toxicity Equivalency Factors
Compound TEEs/82
Mono-, Di-, and Tri-CDDs 0
2,3,7,8 TCDD 1
OthereTCDDs 0
2,3,7,8 PeCDD 0.5
Other PeCDDs 0
2,3,7,8 HxCDDs 0.1
Other HxCDDS 0
2,3,7,8 HpCDD 0.01
Other HpCDDs 0
OCDD 0.001
Mono-, Di-, and Tri-CDFs 0
2,3,7,8 TCDF 0.1
OthereTCDFs 0
1,2,3,7,8 PeCDF 0.05
2,3,4,7,8 PeCDF 0.5
Other PeCDFs 0
2,3,7,8 HxCDFs 0.1
Other HxCDFs 0
2,3,7,8 HpCDFs 0.01
Other HpCDFs 0
OCDF 0.001

[^2]

Figure 3-4. Cumulative frequency distribution of maximum calculated TEC values in fish tissue by percentile of sites. Bar on x -axis indicates sites where concentrations of PDCC/PCDF congeners were below detection for all samples from those sites.

Figure 3-5. Toxicity Equivalency Concentrations (TEC) based on Bames et al., 1989 method, a) the percent TEC contributed by $2,3,7,8$, TCDD, and b) the percent of TEC contributed by 2,3,7,8, TCDD; 2,3,7,8 TCDF: $1,2,3,7,8$ PeCDD and 1,2,3,7,8, PeCDF. (Values below the detection have been deleted from the plots.)

Comparison of TCDD and Other Dioxin/Furan Compounds

A comparison by site was made to determine whether any correlations existed between 2.3,7,8 TCDD and detectable levels of the other congeners. This comparison indicated that in most cases detected levels of other dioxin/furan isomers did not occur without detectable levels of 2,3,7,8 TCDD. The principal exception occurred for four congeners, penta-dioxins and furans and 2,3,7,8. TCDF, in less than 15 percent of the samples. Correlation plots of 2,3,7,8 TCDD versus 2,3,7,8 TCDF in the same sample were made to see whether there was a quantitative relationship between these congeners. No such predictive relationships were found based on linear or higher order regressions for these or the other congeners.

GEOGRAPHICAL DISTRIBUTION

The geographical distribution of dioxin and furan levels in fish tissue from the sites sampled is indicated on maps of the continental United States, Alaska, Hawaii, and Puerto Rico, showing the ranges of observed concentrations by site for $2,3,7,8$ TCDD, for $2,3,7,8$ TCDF, and for TEC. (Concentration ranges for these and all other maps were selected to identif y locations with the higher concentrations and for ease of presentation. The first concentration range usually represents values up to the limit of quantification.) The maps depict the maximum values measured at a given location among all species sampled. In most cases, this was a whole-body sample. The maximum fillet concentration was used where no whole-body concentrations were available or where the highest value at a site was a fillet value. The number of cases where fillet data were used as the maximum value is shown on the maps. The specific type of sample at a particular site can be determined using the episode number from the site matrix (Appendix B-3) and the data tables in Appendix D.

Comparison of the maps for 2,3,7,8 TCDD (Figure 3-6) and 2,3,7,8 TCDF (Figure 3-7) shows that both are detected at many of the same sites. For example. Ship Creek in Anchorage near a former salvage yard with PCB contamination, now a Superfund site, had a 2,3,7,8 TCDF concentration of $3.1 \mathrm{pg} / \mathrm{g}, 2,3,7,8$ TCDD of $0.51 \mathrm{pg} / \mathrm{g}$, and TEC of $0.91 \mathrm{pg} / \mathrm{g}$. However, 2,3,7,8 TCDF was detected at high concentrations at more sites. The percent of sites greater than $10 \mathrm{pg} / \mathrm{g}$ was 13 percent for 2,3,7,8 TCDD and 23 percent for 2,3,7,8 TCDF. Comparison of the map for 2,3,7,8 TCDD and TEC shows a similar pattern, and that there are some sites where the TEC value is greater than $1 \mathrm{pg} / \mathrm{g}$ due to the presence of additional congeners (Figure 3-8).

SOURCE CORRELA TION ANALYSIS

Sources Located Near Highest Concentrations

Information on the types of point and nonpoint sources in the vicinity of each site was obtained from the selection criteria in the original study workplan, from the sample collection forms, and from information provided by EPA Headquarters, Regional Coordinators, and State staff involved in collecting the samples. Using these descriptions, a site matrix was prepared showing whether the site had been designated as a targeted site or a background site, or was one of the sites that had been selected from the USGS NASQAN (Appendix B-3). For targeted sites, the matrix indicates the predominant types of sources present and other available information.

*Percent of siles in category

83

Figure 3-6. Map showing geographical distribution of various concentration ranges of 2,3,7,8 TCDD in fish tissue.

Maximum was Fillet: 30
-Percent of sites in category

()

Figure 3-7. Map showing geographical distribution of various concentration ranges of 2,3,7,8 TCDF in fish tissue.

Maximum was Fillet: 23

-Percent of sites in category

Co
Hawaí

Figure 3-8. Map showing geographical distribution of various concentration ranges of TEC in fish tissue.

Tetra-Dioxins/Furans

The sites with the top 10 percentile concentrations (39 out of 388) were identified for each of the dioxin and furan congeners studied. Sites near paper and pulp mills using chlorine for bleaching accounted for 28 out of the top 39 sites for $2,3,7,8$ TCDD and 31 out of the top 39 sites for $2,3,7,8$ TCDF. For both $2,3,7,8$ TCDD and $2,3,7,8$ TCDF, four of the top five sites are located near pulp and paper mills using chlorine. The fifth and highest concentration site (3078) for 2,3,7,8 TCDD is located near a Superfund site with known dioxin contamination. The fifth and highest concentration site (3162) for $2,3,7,8$ TCDF is located in a heavily industrialized area with a pulp and paper mill and a Superf und site in the vicinity. The top five sites for both compounds are shown below:

2,3,7,8 TCDD

Conc. $\mathrm{pg} / \mathrm{g}(\mathrm{ppt})$	Episode Number	Type of Sample	Location
203.6	3078	WB Sm Buffalo	Bayou Meto, Jacksonville, AR
160.4	3425	WB Carp	Wham Brake, Swartz, LA
143.3	3346	WB Creek Chubsucker	Roanoke R., Plymouth, NC
104.1	3348	WB Blue Catfish	Sampit R., Georgetown, SC
98.9	3340	WB Channel Catfish	Leaf R., New Augusta, MS

2,3,7,8 TCDF

Conc. $\mathrm{pg} / \mathrm{g}(\mathrm{ppt})$	Episode Number	Type of Sample	Location
403.9	3162	Hepatopancreas crab	Hylebos Waterway, Tacoma, WA
320.7	3221	WB Carp	Columbia R., Walla Walla, WA
273.8	3395	WB Redhorse Sucker	Neuse R., New Bem, NC
261.3	3087	WB Carp	Wham Brake, Swartz, LA
207.5	2721	WB Sucker	Androscoggin R., Tumer Falls, ME

The above sites with the highest $2,3,7,8$ TCDD concentrations also had the highest TEC values. Other sources near the remaining top 10 percentile sites included historical PCB contamination, chemical manufacturing plants, automobile manufacturing, a refinery, and an incinerator.

Penta-Dioxins/Furans

The sites with the highest 10 percentile concentrations for $1,2,3,7.8$ PeCDD were near a variety of sources. Sites near paper mills using chlorine for bleaching accounted for 13 out of the 39 sites. Sites near Superfund waste disposal areas accounted for 8 sites, 4 were former wood preserving plants, 2 had PCB contamination, 1 had dioxin contamination. and 1 was a former dump with an unknown mixture of chemicals. Six of the sites were located near chemical manufacturing plants. The top 5 out of 385 sites are listed below:

1,2,3,7,8 PeCDD

Conc. $\mathrm{pg} / \mathrm{g}(\mathrm{ppt})$	Episode Number	Type of Sample	Location
53.9	3355	WB Carp	
27.2	3098	WB White Sucker	Old Mormon Slough, Stockton, CA
22.4	3141	WB Carp	Milwaukee R., Milwaukee, WI
15.9	3162	Hepatopancreas Crab	Hylebos Waterway, Tacoma, WA
14.3	2290	WB Spotted Sucker	Savannah R., Augusta, GA

The highest concentration was from a site located on the San Joaquin River system near a former wood preserving plant, now a Superfund site. This site also had the highest concentrations of four other dioxin/furan congeners (1,2,3,4,7,8 HxCDD; 1,2,3,7,8,9 HxCDD; 1,2,3,4,6,7,8 HpCDD; and $1,2,3,4,7,8,9 \mathrm{HpCDF}$) and was one of the top five sites for three other congeners ($1,2,3,6,7,8 \mathrm{HxCDD} ; 1,2,3,6,7,8 \mathrm{HxCDF}$; and $1,2,3,4,6,7,8 \mathrm{HpCDF}$). Of the next four sites, one is near a dump, one is near a highly industrialized area with known PCB contamination, and two are near paper mills. High levels of other congeners were detected at these locations as well.

The top 10 percentile sites out of 387 for the PeCDFs included those near paper mills using chlorine for bleaching (19 out of 39 for 1,2,3,7,8 PeCDF and 9 out of 34 for 2,3,4,7,8 PeCDF), chemical/pesticide manufacturing plants, Superfund sites, and refineries (although other industries were often present). As shown below, three of the top five sites for both of these congeners are the same (3162, 3163, and 3085).

Con. $\mathrm{pg} / \mathrm{g}(\mathrm{ppt})$	Episode Number	Type of Sample	Location
120.3	3162	Hepatopancreas Crab	Hylebos Waterway, Tacoma, WA
68.4	3163	Hepatopancreas Crab	Commencement Bay, Tacoma, WA
54.3	3206	Craytish	Willamette R., Portland, OR
20.3	3085	PF Back Drum	Brazos R. Freeport, TX
17.2	2290	WB Spotted Sucker	Savannah R., Augusta, GA
2,3,4,7,8 PeCDF			
Conc. $\mathrm{pg} / \mathrm{g}(\mathrm{ppt})$	Episode Number	Type of Sample	Location
56.37	3162	Hepatopancreas Crab	Hylebos Waterway, Tacoma. WA
45.51	3085	WB Sea Catfish	Brazos River, Freeport, TX
42.58	3299	WB White Sucker	Niagara River, N. Tonawanda, NY
34.48	3163	Hepatopancreas Crab	Commencement Bay, Tacoma, WA
33.25	3086	WB Catish	Bayou D'Inde, Sulfur, LA

The two sites near Tacoma are in a heavily industrialized area with paper mills, refineries, and other industries that have been designated as one Superfund site. This site also had the highest concentration of $2,3,7,8$ TCDF and of two hexa-furans. The Brazos River site is close to the outfall of a pesticide manufacturing plant. The other two sites listed are also near chemical manufacturing plants.

Hexa- and Hepta-Dioxins/Furans

The major sources near the top 10 percentile sites for the hexa- and hepta-dioxins included wood preserving plants, paper mills, Superfund sites, and chemical manufacturing plants. Three of the top five sites (3355,3167 , and 3185) are near wood preserving plants or former plants, one is near multiple urban/industrial sources (3444) and the remainder are near paper mills (Table 3-3).

The major sources at the top 10 percentile sites for the hexa- and hepta-furans were similar to the he xa-dioxins, except that HCB contamination appears to be an important potential source for HxCDFs. Several of the sites had high levels of more than one congener. The top five sites out of 379 listed in Table 3-4 for 1,2,3,7,8,9 HxCDF were the only ones with detectable levels of this compound. Only 14 sites out of 353 had detectable levels of $1,2,3,4,7,8,9 \mathrm{HpCDF}$. The most common sources near the sites with detectable concentrations of HxCDFs and HpCDFs were paper mills using chlorine for bleaching, Superfund sites, and chemical manufacturing sites.

TABLES-3
Location of Maximum Measured HxCDD and HpCDD Concentrations in Fish Tissue

Compound	Maximum Concentration \qquad pg/g \qquad	Episode Number	Type of Fish	Location
123478 HxCDD				
(375 sites)*	37.6	3355	WB Carp	Old Mormon Slough, Stockton, CA
	14.3	3167	WP Bluegill	Medlins Pond. Morrisville, NC
	11.6	2304	WB Carp	Alabama R., Claibome, AL
	9.9	3092	WB Carp	Dugdemona R., Hodge, LA
	8.7	3444	WBrCarp	Nonconnah Creek, Memphis, TN
$123678 \mathrm{HxCDD}$				
	89.(3355	WB Carp	Old Mormon Slough. Stockton, CA
	50.8	3185	WB Cbannel Catfish	Bernard Bayou, Gulfport. MS
	47.3	3377	WB Carp	Chauahoochee R., Franklin, GA
	41.9	3376	WB Carp	Chatahoochee R., Whitesburg, GA
$123789 \mathrm{HxCDD}$				
	24.8 9.5	3185	WB Channel Caufish	Bemard Bayou, Gulfpor, MS
	8.5	3167	WP Bluegill	Medlins Pond, Morrisville, NC
	7.8	3377	WB Carp	Chatraboochee R., Franklin, GA
	6.8	3098	WB White Sucker	Red Clay Cr., Ashland, DE
$1234678 \mathrm{HpCDD}$				
(354 sites)	249.1	3355	WB Carp	Old Mormon Slough, Stockton, CA
	171.0	3377	WB Carp	Chatahoochee R., Franklin, GA
	150.8	3444	WBrCarp	Nonconnah Creek, Memphis, TN
	141.2	2290	WB Spotted Sucker	Savannah R., Augusta. GA
	138.1	3376	WB Carp	Chatahochee R., Whitesburg, GA

[^3]TABLEO-4
Location of Maximum Measured HxCDF and HpCDF Concentrations in Fish Tissue

Compound	Mardmur Concentration pels	Eplende Number	Type of Fish		Location
$\begin{aligned} & 123478 \mathrm{HxCDF} \\ & \text { (379 sites): } \end{aligned}$					
	45.3	3162		Hepatopancreas Crab	Hylebos Waterway, Tacoma, WA
	37.9	3297	WB	Carp	Niagara R., Niagara Falls, NY
	34.3	2410	WB	Cap	Rouge R., River Rouge, MI
	30.8	3299	WB	Wbite Sucker	Niagara R., N. Tonawanda, NY
	20.0	3086	WB	Catrish	Bayou D'Inde, Sulfur, LA
$\begin{aligned} & 123678 \mathrm{HxCDF} \\ & \text { (379 sites) } \end{aligned}$					
	30.9	3162		Hepatoprocreas Crab	Hylebos Waterway, Tacoma, WA
	16.2	3085	WB	Sea Catfish	Brazos R., Freeport, TX
	14.0	3301	WB	Cap	Eighteen Mile Cr., Olooth, NY
	13.8	3297	WB	Cap	Niagara R., Niagara Falls, NY
	13.1	3355	WB	Cap	Old Mormon Slough, Stockton, CA
$\begin{aligned} & 123789 \mathrm{HxCDF} \\ & \text { (} 377 \text { sites) } \end{aligned}$	0.96	3085	WB		
	0.96 0.51	3085 3150	WB	White Sucker	Otter R., Baldwinville, MA
	0.44	3112	WB	Cap	Mississippi R., Little Falls, MN
	0.41	3107	WB	Cap	Wisconsin R., Broksw, WI
	0.23	3206		Crayfish	Willamette R., Portand, OR
$\begin{aligned} & 234678 \mathrm{HxCDF} \\ & \text { (379 sites) } \end{aligned}$	193		WP		
	11.8	3185	WB	ChanolrCatfish	Bermand Bayou, Gulfport, MS
	9.6	2290	WB	Spotted Sucker	Sovennab R., Augusta GA
	8.4	2225	WB	Shorthead Redborse	James R., Glasgow, VA
	7.8	2383	WB	Cap	Des Plaines R., Loctport, IL
1234678 HpCDF (353 sites)					
	58.3	3167	WP	Bluegill	Medlins Pond, Morrisvilie, NC
	29.4	3185	WB	Channel Catfish	Bernard Bayou, Gulfport, MS
	25.7	3086	WB	Cathish	Bayou D'Inde, Sulfur, LA
	25.4	3355	WB	Carp	Oid Mormoo Slough, Sloction, CA
	16.4	3377	WB	Сар	Chatrahoochee R., Franklin, GA
$\begin{aligned} & 1234789 \text { HpCDF } \\ & \text { (353 sites) } \end{aligned}$					
	2.57	3355	WB	Cap	Old Mormon Slough, Stockton, CA
	1.76	3206		Crayfieb	Willamette R., Portand, OR
	1.26	3085	WB	Sea Catfish	Brams R., Freeport, TX
	0.97	3377	WB	Сор	Chamabooctiee R., Franklin, GA
	0.91	3376	WB	Cap	Onrabooctiee R., Whitosburg, GA

[^4]
Concentration Comparison Between Site Categories

Description of Categories

The point and nonpoint source categories used for the dioxin/furan comparisons were background sites (B); sites selected from the USGS NASQAN (NSQ); Superfund sites (NPL); sites near pulp and paper mills that use chlorine for bieaching (PPC); sites near other types of pulp and paper mills (PPNC); sites near former or existing wood preserving plants (WP); sites near industrial or urban areas (IND/URB); sites near industrial areas that include ref ineries with catalytic reforming operations (R/); sites that could be intluenced by runoff from agricultural areas (AGRI); and sites near publicly owned treatment works (POTWs). The two broad categories, industry/urban and refineriesiother industry, resulted from a substantial number of sites having multiple point sources. With the exception of background and NASQAN sites, categories were established based on probable sources of various pollutants including dioxins, furans, and pesticides. Background sites were selected to provide a comparison with areas relatively free of point and nonpoint source pollution; however, some background sites do have other source categories present. NASQAN sites were selected to evaluate the geographic extent and prevalence of fish contamination throughout the country rather than to identify specific sources of this contamination.

Sites would, in general, be included in statistical tests (described below) only if a single potential source of contamination existed at the site. The intent was to determine whether concentrations would differ at sites with different sources. Multiple sources were excluded so as not to infer a correlation with a given source when in fact the high contamination levels were due to the contribution of another type of source. The number of sites per category varied for dioxins/furans and other xenobiotics. Two categories (POTWs and agricultural areas) would not, as data on these sites confirm. be expected to significantly impact overall dioxin/furan contamination of fish. Accordingly, the presence of these categories would not preclude a site from being designated as a single category site for purposes of statistical analysis for dioxins/furans. For xenobiotics, no such "override" was included in the analysis of data.

Below is a listing of the number of sites included in each category for dioxins/furans. A similar table is presented in Chapter 4 for xenobiotics. Category data were not available for each site.

Category	Abbreviation	Number of Sites
Background	B	34
USGSNASQAN	NSQ	40
Paper Mills using Chlorine	PPC	78
Other Types of Pulp and Paper Mills	PPNC	27
Wood Preserving Plants	WP	11
Refineries/Other Industries	R/I	20
NPL (Superfund Sites)	NPL	7
Industry/Urban	IND/URB	106
Agriculture	AGRI	19
Publicly Owned Treatment Works (POTW)	POTW	11

Statistical Comparison Tests

To compare observed concentrations between site categories, box and whisker plots were prepared for the tetra- and penta-dioxins individually and for total hexa-dioxins and total hexa-furans and TEC values. A schematic box and whisker plot is shown in Figure 3-9. The box shows the spread of the data between the 25 th percentile and the 75 th percentile. The line inside the box represents the median concentration. The "whiskers" or lines extend down to the 10th percentile and up to the 90 th percentile. The circles above or below the line represent the extreme upper and lower 10 percent of the data. The maximum value of all samples at each site, including the duplicates, was used. For dioxins/furans, values below detection have been replaced by one-half the detection limit prior to determining the maximum value except for total HxCDDs and total HxCDFs. For these plots the values below detection were assigned a value of zero because detection limits were of ten high. The summary statistics for each category are shown beneath the plot.

Because the data sets consist of highly-skewed non-normal distributions, nonparametric statistical methods were used to test the significance of the results. The Kruskal-Wallis test is a one-way nonparametric analysis of variance used to determine whether concentrations from three or more categories are from different populations or whether the observed differences could be due to random variations of the parameters. The test is based on a comparison of ranks (order of the observations, i.e., highesta 1, next highest ≈ 2, etc.). The results are presented as an H statistic and a probability (p) that the sets of samples are from the same population (null hypothesis). This value p is then compared to a critical level. For this study a level of significance of 0.05 was used. If the p values for a comparison of categories are less than 0.05 , the two categories are considered to be significantly different. This test is analogous to the F test for parametric data, but less powerful. The Kruskal-Wallis test is preferred over a test using only the median, because it considers the distribution of the data as well as the median.

The Mann-Whitney U test is a nonparametric equivalent of the " t " test. The U test is also based on ranks. This statistic was used to test for significant differences in concentrations between two categories (e.g., background sites and agricultural sites). The U statistic is calculated and the probability that the two sets of samples are from the same population is tabulated. A critical level of 0.05 was used as the level of significance in this study. If the probability for a two-way comparison was less than 0.05 , the null hypothesis was rejected (i.e., the two categories being compared are significantly different).

Site Category Comparisons

Terra-Dioxins/Eurans

Pulp and paper mills using chlorine appear to be the dominant source of 2,3,7,8 TCDD. The paper mills using chlorine had the highest median concentration ($5.66 \mathrm{pg} / \mathrm{g}$) compared to $1.82 \mathrm{pg} / \mathrm{g}$ for refinery/other industry sites and $1.27 \mathrm{pg} / \mathrm{g}$ for Superfund sites (Figure 3-10). Statistical comparisons based on the Mann-Whitney U tests (Table 3-5) showed that pulp and paper mills using chlorine had significantly higher concentrations than other paper mills, wood preserving operations, Superfund sites, industry/urban sites, or refineries/other industries. As would be expected, the box

Box Plots for Column X_{1}

Figure 3-9. Example box plot with explanation of features.

Summary Table for 2,3,7,8 TCDD Box Plot

Site Category	n	Concentration Range pg/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	40	0.17-4.73	1.02	1.02	0.65
Background (B)	34	0.0602 .26	0.56	0.38	0.50
Paper Mills Using CI (PPC)	78	0.55-160.4	19.02	30.64	5.66
Other Paper Mills (PPNC)	27	0.48-7.15	2.17	2.21	1.09
Refinery/Other Industry (R/I)	20	0.50-21.55	4.38	5.88	1.82
Superiund Sites (NPL)	7	0.62-203.6	30.02	76.54	1.27
Wood Preservers (WP)	11	$0.21 \cdot 7.30$	1.40	2.08	0.56
Industria/Urban Sites (IND/URB)	105	0.10-56.34	4.04	8.05	1.40
POTW	8	0.18-2.24	0.90	0.76	0.63
Agricultural (AGRI)	17	0.20-1.78	0.75	0.39	0.58

$n=$ number of sites in category. Maximum value at each site was used. One-hall the detection limit was used for values below detection. Sites were assigned to only one category.

Figure 3-10. Box and whisker plot for 2,3,7,8 TCDD concentrations in fish tissue.

Table 3.5
Mann-Whitney U Test Results for Dioxins Furan Comparing Selected Source Categories

	Kruskul-Wallis		Mann-Whitney							
Chemical	All Groups Except NSQ	I NID/U R B B/RI, NPL, I'IC' PIPNC, WP	P1'C, ${ }^{\text {B }}$	P1PC, WP	PPC, IPPNC	PPC, R/I	Pl'C, NPI.	$\begin{gathered} \text { IPC, IND/ } \\ \text { URB } \\ \hline \end{gathered}$	$\begin{aligned} & \text { PPC } \\ & \text { POTW } \end{aligned}$	$\mathrm{Pr}^{\prime} \mathrm{C}_{2} \mathrm{AG}$
2,3,7,8-TCDD	. 0001	. 0001	(1)O)1	. 0001	. 0001	. 0032	. 0348	(1)())	(0)()1	. 0001
2,3,7,8-TCDF	. 0001	. 0001	.OO)1	. 0001	()001	. $000 \times$. 053.1	. 0001	(O)()1	. 0001
2,3,4,7,8-PcCDF	. 0001	. 0003	. 0001	. 00004	. 0099	. 0881	. 3538	.4096	()()02	. 0001
1,2,3,7,8-PeCDF	. 0001	. 0352	.000)	.()252	. 0779	. 3733	. 5650	. 2948	.0065	. 00005
1,2,3,7,8-PcCDD	. 0001	. 0871	.00)1	. 0274	. 1021	4890	. 9809	. 1389	. 0225	. 0025
HxCDDs	. 00011	. 3496	. 0001	. 1299	. 6976	. 7377	. 7311	. 0493	()00)3	. 0044
HxCDFs	. 0013	. 4981	. 0007	. 7553	. 1166	. 2724	. 8479	. 9612	()220)	.()249
TEC	. 0001	. 0001	. 0001	. 0003	. 0001	. 0400	. 1692	. 0001	.()O)1	. 0001
Mann-Whitney										
Chemical	WP ${ }_{2} \mathbf{B}^{\text {a }}$	WP, PPNC	WP, WI	WP1 ${ }_{2}$ NPL	$\begin{gathered} \text { WP, INIDI } \\ \text { URB } \\ \hline \end{gathered}$	$\begin{gathered} \text { WP, } \\ \text { POT W } \end{gathered}$	WP2, ${ }^{\text {AG }}$			
2,3,7,8-TCDD	. 0961	. 1567	. 0132	. 0515	. 0102	. 8365	. 8878			
2,3,7,8-TCDF	. 1956	. 0021	. 0118	. 0098	. 00022	. 4090	.. 1263			
2,3,4,7,8-PeCDF	. 1780	. 1303	. 0002	. 0032	. 0053	. 4328	. 6381			
1,2,3,7,8-PeCDF	. 3485	. 2337	. 0036	. 0236	. 0077	.283!	. 4517			
1,2,3,7,8-PeCDD	. 7760	. 2337	. 0219	. 1473	. 0846	. 283.1	. 9250			
HxCDDs	. 0617	. 3424	. 2477	. 2976	. 5406	. 0265	. 5885			
HxCDFs	.1.115	. 5302	. 4090	. 8919	. 7808	. 1604	2690			
TEC	. 1696	. 0974	. 0287	. 0774	. 0215	. 5633	. 9250			

Values shown are two tail probabilities that groups are different. The critical level way set at 0.05 . If p<0.05, the categonics were considered to be significanily different.

Site CalcRories;			
INDNURB	$=$	Industry and/or Usban	NSQ

plot for combined dioxins/furans based on TEC values (Figure 3-11) also shows that pulp and paper mills using chlorine have the highest median concentration.

The highest median concentration of 2,3,7,8 TCDF was $14.0 \mathrm{pg} / \mathrm{g}$ at pulp and paper mills using chlorine (Figure $3-12$). The next highest median values were $3.6 \mathrm{p} / \mathrm{g}$ for other pulp and paper mill sites and $3.5 \mathrm{pg} / \mathrm{g}$ for Superfund sites. Pulp and paper mills using chlorine also had a substantially higher me an concentration of 2,3,7,8 TCDF than any of the other categories, $39.2 \mathrm{pg} / \mathrm{g}$, compared to $7.2 \mathrm{pg} / \mathrm{g}$ for the next highest category, Superfund sites. The Mann-Whitney U tests showed that with the exception of Superfund sites, pulp and paper mills using chlorine had significantly higher concentrations of 2,3,7,8 TCDF than other categories. A Mann-Whitney U comparison of pulp and paper mills using chlorine with Superfund sites results in a value that only slightly exceeds the 0.05 critical value. The similarities between the categories are due in part to the fact that there are only a few (i.e., 7) Superfund sites used in the analysis.

Renta-Dioxins/Eurans

For $1,2,3,7,8$ pentachlorodibenzodioxin (1,2,3,7,8 PeCDD), there were several significant sources of contamination, including pulp and paper mills, Superfund sites, industry/urban sites, and refinery/other industry sites (Figure 3-13). The highest median was for paper mills using chlorine at $1.52 \mathrm{pg} / \mathrm{g}$; refinery/other industry had the next highest at $1.35 \mathrm{pg} / \mathrm{g}$ followed by $1.09 \mathrm{pg} / \mathrm{g}$ for industrial/urban. The highest concentration ($27.5 \mathrm{pg} / \mathrm{g}$) was found in the industrial/urban category with the highest mean ($3.3 \mathrm{pg} / \mathrm{g}$) found in the refinery/other industry category. Mann-Whitney U tests comparing pulp and paper mills using chlorine with Superfund sites, other paper mills, refinery/other industry sites, and industry/urban sites showed no significant differences (Table 3-5).

For both 1,2,3,7,8 and 2,3,4,7,8 penta-furans, the highest median concentration was found at Superfund sites (Figures 3-14 and 3-15). A review of the median values for other categories indicates that there is no dominant source for either of these penta-furan congeners. This observation is confirmed by the Kruskal-Wallis test for 1,2,3,7,8 PeCDF and by the Mann-Whitney U tests for 2,3,4,7,8 PeCDF (Table 3-5).

Hexa-Dioxias/Eurans

For hexa-dioxins the highest median concentration, $3.19 \mathrm{pg} / \mathrm{g}$, occurred at paper mills using chlorine. Median values (Figure 3-16) for the next two highest source categories (refinery/other industry and Superfund sites) were approximately the same at 1.97 and $1.94 \mathrm{pg} / \mathrm{g}$, respectively. A Kruskal-Wallis test (Table 3-5) for paper mills, refinery/other industry sties, industria/urban sites, Superfund sites, and wood preservers showed that none of the sources was significantly different from the others with regard to fish contamination. Values below detection were set at zero for the hexa-dioxin and hexa-furan box plots because the detection limits were often higher than the measured concentrations.

For hexa-furans, the source category with the highest median concentration is refinery/other industry (Figure 3-17). This category is followed by industrial/urban and Superfund sites. The Kruskal-Wallis test (Table 3-5) shows that no single category is significantly different from all others with regard to hexa-furan fish contamination.

Summary Table for TEC Box Plot

Site Category	n	Concentration Range pg/9	Mean	Stan. Dev.	Median
NASQAN (NSQ)	40	ND-7.18	1.12	1.87	0.16
Background (B)	34	ND-3.02	0.59	0.9	0.21
Paper Mills Using Cl (PPC)	78	0.4-184.24	25.84	36.90	10.62
Other Paper Mills (PPNC)	27	ND-28.9	5.70	7.50	2.39
Refinery/Other Industry(R/I)	20	ND-30.22	8.89	8.64	6.81
Supertund Sites (NPL)	7	0.13-213.05	33.86	79.06	4.36
Wood Preservers (WP)	11	0.01-24.84	4.34	8.36	0.43
Ind.ustrialUrban Sites (IND/URB)	105	ND-61a07	7.79	12.54	3.26
POTW	8	0.03-2.24	0.70	0.92	0.12
Agricultural (AGRI)	17	ND-4.44	1.02	1.19	0.79

$N D=T E C$ value not determined because all values below detection. Maximum value at each site was used. Sites were assigned to only one category.

Figure 3-11. Box and whisker plot for TEC concentrations in fish tissue.

Summary Table for 2,3,7,8 TCDF Box Plot

Site Category	n	Concentration Range pg / g	Mean	Stan. Dov.	Median
NASQAN (NSQ)	40	0.19-16.61	2.11	3.66	0.68
Background (B)	34	0.10-13.73	1.61	2.51	0.90
Paper Mills Using CI (PPC)	78	0.26-320.69	39.20	66.18	14.04
Other Paper Mills (PPNC)	27	$0.25 \cdot 55.75$	6.42	10.72	3.61
Refinery/Other Industry (RI)	20	$0.24 \cdot 23.36$	3.62	5.16	1.91
Superfund Sites (NPL)	7	0.56 - 21.23	7.23	8.62	3.48
Wood Preservers (WP)	10	$0.18 \cdot 8.84$	1.31	2.54	0.39
IndustrialWram Sites (IND/URB)	105	$0.24 \cdot 61.58$	5.93	9.49	2.90
POTW	8	0.24-2.00	0.94	0.72	0.79
Agricutural (AGRI)	17	0.19-19.28	2.21	4.52	0.84

$\mathrm{n}=$ number of sites in category. Maximum value at each site was used. Onehalf the detection limit was used for values below detection. Sites were assigned to only one category.

Figure 3-12. Box and whisker plot for 2,3,7,8 TCDF concentrations in fish tissue.

Summary Table for 1,2,3,7,8 PeCDD Box Plot

Site Category	n	Concentration Range pg/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	0.36-5.41	1.53	1.24	0.90
Background (B)	33	0.15-2.67	0.77	0.54	0.54
Paper Mills Using Cl (PPC)	78	0.25-12.48	2.37	2.72	1.52
Other Paper Mills (PPNC)	27	0.45-12.38	2.22	3.19	0.68
Refinery/Other Industry (R/I)	20	0.46-16.80	3.28	4.17	1.35
Superfund Sites (NPL)	7	0.46-12.62	3.01	4.34	1.00
Wood Preservers (WP)	11	0.28-18.50	2.01	3.51	0.52
IndustrialUrban Sites (IND/URB)	105	0.20-27.56	2.32	3.93	1.09
POTW	8	0.46-0.88	0.75	0.18s	0.84
Agricultural (AGRI)	17	0.46-3.54	0.92	0.84	0.62

$\mathrm{n}=$ number of sites in category. Maximum value at each site was used. One-half the detection limit was used for values below detection. Sites were assigned to only one category.

Figure 3-13. Box and whisker plot for $1,2,3,7,8$ PeCDD concentrations in fish tissue.

Summary Table for $1,2,3,7,8$ PeCDF Box Plot

Site Category	n	Concentration Range pola \qquad	Mean	Stan. Dev.	Median
NASQAN (NSQ)	40	0.16-1.69	0.48	0.33	0.39
Background (B)	34	0.10 - 1.90	0.43	0.31	0.39
Paper Mills Using CI (PPC)	78	0.30-9.08	1.43	1.88	0.58
Other Paper Mills (PPNC)	27	$0.22 \cdot 3.09$	0.80	0.83	0.40
Refinery/Other Industry (RI)	20	0.38-4.47	1.18	1.07	0.66
Superfund Sites (NPL)	7	0.39-2.96	1.18	0.97	0.71
Wood Preservers (WP)	10	$0.39-1.3$	0.51	0.28	0.39
Industria/Urban Sitos (IND/URB)	104	0.13-54.32	1.73	5.74	0.50
POTW	8	0.16.0.51	0.38	0.10	0.38
Agricultural (AGRI)	7	0.20-0.89	0.43	0.18	0.38

$n=$ number of sites in category. Maximum value at each site was used. One-half the detection limit was used for values below detection. Sites were assigned to only one category.

Figure 3-14. Box and whisker plot for $1,2,3,7,8$ PeCDF concentrations on fish tissue.

Surnmary Table for 2,3,4, 7.8 PeCDF Box Plot

Site Category	n	\qquad	Mean	Stan. Dov.	Median.
NASQAN (NSQ)	40	0.16-4.11	0.78	0.79	0.46
Background (B)	34	0.10-1.39	0.50	0.36	0.42
Paper Mills Using Cl (PPC)	78	$0.25 \cdot 20.14$	2.92	4.04	1.37
Other Paper Mills (PPNC)	27	$0.40 \cdot 10.21$	1.71	2.55	0.59
Refinery/Other Industry (RI)	20	0.42-33.25	5.44	7.86	2.32
Superfund Sites (NPL)	7	$0.48 \cdot 7.53$	2.93	2.37	2.73
Wood Presenvers (WP)	10	$0.42 \cdot 1.43$	0.63	0.40	0.42
IndustrialUman Sites (IND/NRB)	104	0.13 - 45.51	4.09	8.27	0.98
POTW	8	0.16 - 0.59	0.42	0.13	0.44
Agricutural (AGRI)	17	$0.15 \cdot 1.02$	0.53	0.26	0.42

[^5]Figure 3-15. Box and whisker plot for $\mathbf{2 , 3 , 4 , 7 , 8} \mathrm{PeCDF}$ concentrations in fish tissue.

Summary Table for Total HxCDDs Box Plot

Site Category	n	Concentration Range pg/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	37	ND -13.91	1.73	2.94	0.51
Background (B)	30	ND - 3.57	0.39	0.80	ND
Paper Mills Using Cl (PPC)	78	ND-42.98	4.68	6.66	3.09
Other Paper Mills (PPNC)	27	NDO 63.35	9.23	16.77	1.25
Refinery/Other Industry(R/I)	20	ND - 35.17	5.54	9.75	1.97
Superfund Sites (NPL)	7	ND - 9.07	2.96	2.99	1.94
Wood Preservers (WP)	11	ND -60.10	7.04	17.90	0.71
Industrial/Urban Sites (IND/URB)	100	NDO 28.4	3.60	5.49	1.14
POTW	7	ND	ND	ND	ND
Agricultural (AGRI)	17	ND - 13.79	9.63	3.38	0.44

$n=$ number of sites in category. Maximum value at each site was used. Sites were assigned to only one category. NDE limit of detection, here set at 0.0.

Figure 3-16. Box and whisker plot for rotal HxCDDs concentrations in fish tissue.

Summary Table for Total HxCDFs Box Plot

Site Category	n	Concentration Range pg/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	NDa 5.11	0.58	1.21	ND
Background (B)	29	NDa 2.59	0.22	0.66	ND
Paper Mills Using Cl (PPC)	78	NDa 16.75	1.74	3.11	0.34
Other Paper Mills (PPNC)	27	NDa 12.93	1.94	4.16	ND
Refinery/Other Industry(R)1)	20	NDa 22.46	3.69	5.76	1.05
Supertund Sites (NPL)	7	ND - 6.08	1.22	2.22	0.41
Wood Preservers (WP)	11	ND - 40.1	4.42	11.92	ND
Industrial/Uman Sites (IND/URB)	103	NDa 51.76	3.67	9.49	0.48
POTW	8	ND -0.35	0.04	0.12	ND
Agricultural (AGRI)	17	NDa 3.01	0.31	0.78	ND

[^6]Figure 3-17. Box and whisker plot for total HxCDFs concentrations in fish tissue.

Chapter 4 - Other Xenobiotic Compound Results and Analysis

This chapter presents results for all study compounds other than dioxins and furans. For ease of presentation these other study compounds are referred to as "other xenobiotics" or simply "xenobiotics." The term xenobiotic means a compound that does not naturally occur in living organisms, in this case, fish. In addition to an overall summary, the discussion of results for xenobiotic compounds is contained in three sections-xenobiotics detected in samples from greater than 50 percent of the sites, between 10 and 50 percent of the sites, and less than 10 percent of the sites. Within each of the three principal sections, information is provided, as appropriate, on high concentration sources, geographical distribution, and source correlation analysis.

Chemical profile data and information for all of the 45 xenobiotics is presented in Appendix C, Volume II. This information includes physical/chemical properties, standards and criteria, chemical uses, and health effects. Concentration data for individual fish samples, as well as information on where the samples were collected, can be found in Appendix D, Volume II. The number of samples taken and analyzed by site can be determined by counting the samples for a given site (episode number) in the data tables (Appendix D, Volume II). The number of fish in each composite sample is provided in Appendix D-6 (Volume II). Other values for a given site can be reviewed by identifying the episode number for the site from the site matrix (Table B-3, Appendix B, in Volume I or Table D-1, Appendix D, in Volume II) and then looking at the data in the raw data tables (Appendix D, Volume II).

PREVALENCE AND CONCENTRATION SUMMARY

A total of 45 compounds were measured in the fish tissue samples; these compounds include 34 organic compounds, PCBs with 1 to 10 substituted chlorines, and mercury. Summary data regarding the prevalence and concentration of these compounds can be found on Table 4-1 and Figure 4-1. Six pesticides, PCBs, three other industrial organic chemicals, and mercury were detected at more than 50 percent of the sites. All the compounds were detected in samples from at least one site. The compounds detected at more than 50 percent of the sites, at 10 to 50 percent of the sites, and at less than 10 percent of the sites are as follows:

TABLE 4
Summary of Xenobiotic Compounds in Fist Tissue

Chemical	flercent of Sites Where Detected	Max*	Mean ${ }^{\text {- }}$	Standard Oeviation	Median*	$\}$	Total Numbet of Sites	0
5				are ng/g)		1		
P, PDDE	88.5	14028	295.28	972.65	58.25	1	362	26
Mercury	92.2	1770	260	0.28	170	1	374	36
Toral PCBs	91.4	124192	1897.88	75.338	208.78	1	362	35
\% Biphony	93.9	131	2.71	10.4	0.84	1	362	7
INonachior, Trens	77.1	477	31.24	58.92	9.22	1	362	25
Conlordano, sis	64.1	378	21.05	42.76	3.66	1	362	24
Penfachiorosnisols	64.4	647	10.77	52.06	0.92	1	362	13
Chiordane, Trens	61.0	310	16.68	36.74	2.68	1	362	23
Oieldrin	60.2	450	28.14	58.37	4.16	1	362	27
\| Alphs-EHC	55.0	44.4	2.41	4.53	0.72	1	362	11
1124 Trichlorebenzene	53.3	264.8	3.10	1981	0.14	1	362	2
Hexachlorodenzens	45.9	813	5.80	4999	ND	1	362	12
Gamma-BHC	42.3	83.3	2.70	7.07	ND	1	362	14
123 Ysichlorobenzene	42.5	69	1.27	5.57	ND	1	362	3
Mirox	37.8	225	3.86	17.74	ND	1	362	34
Fronachior, cis	35.1	127	8.77	17.94	NO	1	362	31
Oxychlordane	27.3	243	4.75	17.76	NO	1	362	22
Chlorpytios	26.2	344	4.09	20.16	ND	1	362	18
Pantachtorobenzene	22.1	125	1.98	7.9	ND	1	362	9
Heptachlor Epoxide	15.7	63.2	2.19	7.36	ND	1	362	21
(Dicofor	15.5	74.3	0.98	5.36	ND	1	362	33
1234 Telrachlorobenzene	13.0	76.65	0.47	4.23	ND	1	362	8
Trifuralin	11.6	458	5.98	32.01	ND	1	362	10
135 Trichlorabenzene	11.0	14.9	0.12	0.95	NO	(382	1
Encorin	30.50	162	1.69	11.22	NO	1	362	29
1235 TECB	9.40	28.3	0.34	2.1	ND	1	362	6
Octachlorostvene	9.9	138	1.71	9.9	NO	1	362	20
1245 TECA	9.1	28.3	0.33	2.09	NO	1	362	5
Mothoxychior	7.2	393	1.32	20.68	NO	1	352	32
Ifopropalin	3.3	37.5	0.46	2.96	NO	1	362	19
INitoton	2.8	17.9	0.17	3422	NO	1	362	28
\% Hoxachlorobutadieno	2.8	164	0.57	8.72	NO	1	362	4
Heplacmor	2.21	36.2	0.35	4.2	ND	$)$	362	17
Perthante	1.4	5.12	0.03	0.35	NO	1	362	30
Pentachloronitrodenzene	1.1	15.5	0.09	1.1	ND	1	362	15
Dishorst Disulfide	0.6	3.24	0.02	0.22	ND	1	$3{ }^{3}$	16

Note: Dis designation of chermical on histogram (Figure 4-1)
In cases where muhtiple samples were analyzed per site, the value used repiesents the highest concentration

Percent of Sites with Detected Levels

More than 50 Percent of the Sites

Total PCBs
Biphenyl
Mercury
Pentachloroanisole
la2,4 Trichlorobenzene
Pesticides:
DDE
trans-Nonachlor
cis-Chlordane
trans-Chlordane
Dieldrin
alpha-BHC ${ }^{1}$

10 to 50 Percent of the Sites

Hexachlorobenzene
1,2,3 Trichlorobenzene
Pentachlorobenzene
1,2,3,4 Tetrachlorobenzene
1,3,5 Trichlorobenzene
Pesticides/Herbicides:
gamma-BHC
Mirex
cis-Nonachlor
Oxychlordane
Chlorpyrifos
Heptachlor Epoxide
Trifluralin
Dicofol
Endrin

Less Than 10 Percent of the Sites

Octachlorostyrene
la2,4,5 Tetrachlorobenzene
la2,3.5 Tetrachlorobenzene
Hexachlorobutadiene
Diphenyl Disulfide
Pesticides/Herbicides:
Methoxychlor
Isopropalin
Nitrofen
Heptachlor
Perthane
Pentachloronitrobenzene

Mean fish tissue concentrations were highest for total PCBs and p,p'-DDE at 1890 and 295 ng / g, respectively (Table 4-1). These two compounds were also detected at over 90 percent of the sampled sites. Mean concentrations of trans-nonachlor and dieldrin were the next highest at 31 and $28 \mathrm{ng} / \mathrm{g}$, respectively. These compounds were also found at a large number of sites, 77 and 60 percent of the sampled sites, respectively. Biphenyl was detected at a large percentage of sites (91 percent), but the levels at most sites were low. Only 12 percent of the sites had biphenyl concentrations above the quantitation level ($2.5 \mathrm{ng} / \mathrm{g}$).

As previously discussed in Chapter 3 for dioxins/furans, point and nonpoint sources were divided into nine categories plus NASQAN sites for geographic coverage throughout the country. Below is a listing of the number of sites included in each category for xenobiotics. The number of sites for xenobiotics will be different from the number of sites for dioxins/furans for reasons presented in Chapter 3, as well as the fact that not all xenobiotics were analyzed at all sites.

[^7]| Number
 Category | | Number
 of Sites |
| :--- | :--- | :---: |
| | | |
| Abbreviation | | |

COMPOUNDS DETECTED AT MORE THAN 50 PERCENT OF THE SITES ${ }^{2}$

Total PCBs

Total PCBs were detected at over 91 percent of the sites sampled with the median value of $208.78 \mathrm{ng} / \mathrm{g}$ (Figure $4-2 \mathrm{a}$). Twenty-six percent of the sites had fish tissue concentrations greater than $1000 \mathrm{ng} / \mathrm{g}$ (Figure 4-2b). A major use of PCBs has been as dielectric fluids in transformers, capacitors, and electromagnets. Prior to 1974, PCBs were also used as plasticizers, lubricants, ink carriers, and gasket seals. PCB production in the United States stopped after 1977, and uses since then have been limited mostly to small, totally enclosed electrical systems in restricted access areas. PCBs can reach water bodies by runoff from PCB spills or electrical equipment fires, or runoff/seepage from disposal sites containing PCB-contaminated soils and equipment.

Summary statistics for the PCB congeners with 1 to 10 substituted chlorines show that the median fish tissue concentration was highest for hexachlorobiphenyl followed by pentachlorobiphenyl (Table 4-2). Total PCBs in this study refers to the sum of the concentrations of compounds with 1 to 10 chlorines. Concentrations of specific Aroclor or mono-ortho substituted compounds were not determined in this study. PCBs were detected in all parts of the country with the highest levels detected in industrial regions. The prevalence of PCBs is consistent with their high bioaccumulation potential and persistence in the environment. The sites with the five highest concentrations are listed below:

[^8]

Total Sites: 374
Fillet Only Sikea: 28
Maximum was Whole Body: 7
 distribution of various concentration ranges in fish tisoue.

TABLE 4-2

Summary of PCBs in Fish Tissue

Chemical	Percent of Sites Where Detected	Max*	Mean*	Standard Deviation	Median*	Total Number ol\&ites
Total Hexachlorobiphenyl	88.7	8862	355.93	867.13	76.85	362
Total Pentachlorobiphenyl	86.7	29578	564.70	1993.521	72.4	362
Total Tetrachlorobiphenyl	72.4	60764	696.23	3647.97	23.09	362
Total Heptachlorobiphenyl	69.1	1850	96.71	209.98	16.85	362
Total Trichlorobiphenyl	57.5	18344	149.80	1024.59	2.09	362
Total Oclachlorobighenyl	34.8	593	17.37	52	ND	362
Total Dictiorobiphenyt	30.7	5072	21.43	267.74	ND	362
Total Monochlorobiphenyt	13.8	235	1.22	12.56	ND	362
Total Decachiorobiphenyl	3.3	29.5	0.44	3.08	ND	362
Totel Nonachlorobiphenyl	9.7	413	3.04	25	ND	362
Tolad PCBs	9194		1897.88	7557.8	208.78	362

${ }^{\bullet}$ Concentrations are nanograms per gram (ng/g) or parts per billion (ppb) by wet weight. In cases where multiple samples were analyzed per site, the value used represents the highest concentration.

PCBs

$\begin{array}{r} \text { Conc. } \\ \text { ng } / \mathrm{g} \end{array}$	Episode Number	Type of Eish	Lecation
124192	3259	WB Sucker	Hudson R., Fort Miller, NY
29130	2429	WB Carp	Fox R., Depere Dam, WI
25240	3134	WB Sucker	Manitowoc R., Chilton, WI
241 ld 8	3182	WB Carp	Mud R., Russellville, KY
23809	3142	WB Carp	Sheboygan R., Kohler, WI

PCB contamination from past spills occurred in the vicinity of the first two sites and the last site. Fish samples with the next three highest PCB concentrations were collected at locations near various industrial and other source categories. It is not apparent from available information which, if any, of these sources can be identified as the cause of each of the next three highest PCB concentrations. Sources in the vicinity of these samples include a metal plating shop, a rendering plant, an incinerator, a water softening plant, a window manufacturing facility with wood treatment operations, and agriculture croplands.

The top 10 percentile sites (36 out of 362) included three additional sites on the Fox River and one additional site on the Hudson River. Historical PCB contamination was present at 12 of the top 10 percentile sites including five Superfund sites. The remaining top 10 percentile sites were located near industrial facilities including chemical and automobile manufacturing plants, foundries, refineries, and paper mills. Two of the sites in the top 10 percentile were located near plants with PCB discharge limits in their NPDES permits (one on the Grass River in New York and one on the Raquette River in New York). The box plot confirms that high concentrations of PCBs were associated with paper mills, refinery/other industry sites, Superfund sites, and industrial/urban areas (Figure 4-3). The two highest median concentrations were $525 \mathrm{ng} / \mathrm{g}$ for Superfund sites and $349 \mathrm{ng} / \mathrm{g}$ for refinery/other industry sites. The Kruskal-Wallis test (Table 4-3) showed that no dominant source existed.

Biphenyl

Biphenyl was detected at a large percentage of the sites ($91 e 4$ percent), but the concentrations at most sites were low. Eighty-eight percent of the sites had concentrations below $2.5 \mathrm{ng} / \mathrm{g}$ (Figure $4-4 a$). Biphenyl is used in the manufacture of PCBs and is also a breakdown product of PCBs. Biphenyl is also produced during the manufacturing of benzene and has other industrial uses as well. The sites with the five highest concentrations are listed below:

Summary Table for Total PCBs Box Piot

Site Category	ก	$\begin{gathered} \text { Concentration } \\ \text { Range } \\ \text { pgig. } \\ \hline \end{gathered}$	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND - 7977	449.1	1408.9	24.8
Background (B)	20	ND. 480	46.9	108.7	ND
Paper Mills Using Cl (PPC)	39	ND - 17723	1247.0	31.47 .5	293.2
Other Paper Mills (PPNC)	17	ND.-6061	1225.1	1739.5	483.7
Refinery/Other Industry (RI)	5	ND.- 2974	833.5	1230.5	349.3
Superfund Sites (NPL)	6	$2.51 \cdot 1075$	49180	390.5	525.2
Wood Preservers (WP)	10	ND.-1804	260.6	561.4	38.6
IndustriaWかan Sites (IND/URB)	31	2.54-12027	1277.9	2374.9	213.2
POTW	6	ND - 1677	302.4	674.3	22.2
Agricultural (AGRI)	15	ND. 1064	97.4	274.1	8.6

$n=$ number of sites in category. ND's set at zero. Maximum concentrations at sites were used.

Figure 4-3. Box and whisker plot for total PCBs in fish tissue.

TABLE 4.3

Results of Statistical Tests for Selected Xenobiotics and Mercury

Values shown are two-tail probabilities that groups are different. The critical level was set at 0.05 . If $p<0.05$, the categories were considered to be significantly different.

SitaCategries:			
INDNRB =	Industry and/or Urban	NSO	National ambient slream quality monitoring network. (This designation is
AG	Agriculture		independent of source categories.)
B	Background	WP	Wood preserving related activities
NPL	National Priority List (Superfund site)	PPC	Paper and pulp mills using chlorine for bleaching
POTW	Publicly Owned Treatment Works (sewage)	PPNC =	Other paper and pulp mills including deinking plants
$\mathrm{R} / 1$ =	Refineries using catalytic reforming process	er industry	

Figure 4-4. Biphenyl: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue.

Biphenyl

Conc. nolg	Episode Number	Iype of Sample	
$13 \mathbf{d . 7}$	2654	WBaCarp	Toms River, NJ
75.6	3042	WB Carp	Missouri R., Omaha, NE
70.6	3403	WB River Carpsucker	Holston R., S. Fork, Kingsport, TN
70.2	3038	WB Carp	Des Moines R., Des Moines, IA
53.8	3115	PF Catfish	Mississippi R., E. St. Louis
			(Sauget), IL

These five sites are near chemical manufacturing plants as were 24 of the top 36 sites representing the highest 10 percentile. The remaining sites were near Superfund sites or paper mills. The overall geographic distribution of biphenyl concentrations and the cumulative frequency distribution show that high concentrations ($>50 \mathrm{ng} / \mathrm{g}$) were detected mostly in the Midwest and Northeast (Figure 4-4b).

A comparison of source categories for biphenyl (Figure 4-5) shows that Superfund sites had the highest median concentration, $0.76 \mathrm{ng} / \mathrm{g}$. A Kruskal-Wallis test for all categories except NASQAN and background showed that no significant differences between categories existed (Table 4-3).

Mercury

Mercury was detected in at least one sample from 92 percent of the sites. Mercury has been used in making batteries, lamps, thermostats, and other electrical devices and as a fungicide in latex and exterior water-based paints. Effective August 1990, mercury was banned from interior paint. Mercury is present in soil as a component of a number of minerals (e.g., cinnabar, HgS). It is also discharged to the atmosphere from natural degassing processes and from the burning of fossil fuels. Mercury compounds occur in both organic and inorganic forms. In fish tissue it is nearly all in the organic form, methylmercury. The measured mercury concentrations were usually higher in the fillet samples than in the whole-body samples. This is because, unlike the other organic chemicals studied, organic mercury compounds are taken up and stored in muscle tissue rather than the lipid. There were, however, 15 sites where the concentration in a whole-body sample was higher than that in a fillet sample from the same site. This disparity may have been due to a number of factors, including species variability, stomach content (which may include significant quantities of contaminated sediment ingested during feeding), and other variables.

The measured concentrations ranged up to $1.77 \mu \mathrm{~g} / \mathrm{g}$ with 2 percent of the sites greater than $1 \mu \mathrm{~g} / \mathrm{g}$ (Figure 4-6a); most of the higher concentrations were in the Northeast (Figure 4-6b). The highest concentration was on the Wisconsin River near B oom Bay at Rhinelander, Wisconsin. The sites with the five highest concentrations are given below:

Summary Table for Blphenyl Box Piot

Site Category	n	oncentration Range ng/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND-75.6	2.51	12.04	0.49
Background (B)	20	ND-1.04	0.42	0.30	0.38
Paper Mills Using Cl (PPC)	39	ND-70.6	3.18	11.36	0.54
Other Paper Mills (PPNC)	17	ND-3.35	0.87	0.87	0.61
Refineries/Other Industry (R/I)	5	ND-0.98	0.44	0.40	0.43
Supertund Sites (NPL)	6	ND-2.7	0.97	1.09	0.76
Wood Preservers (WP)	10	ND-1.5	0.60	0.60	0.45
IndustriaVUrban Sites (IND/URB)	31	ND-32.8	2.56	6.38	0.68
POTW	6	0.1-0.79	0.55	0.24	0.63
Agricultural (AGRI)	15	ND-1.11	0.48	0.31	0.53
$\mathrm{n}=$ number of sites in category. ND's set at 0 . Maximum concentrations at sites were used.					

Figure 4-5. Box and whisker plot for biphenyl in fish tissue.

b)

85

- Percent of sites in category cumulative

Figure 4-6. Mercury: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue.

Conc. Mg/g(ppm)	Episode Number	Type of Sam	Lecation
1.77	2397	PF Walleye	Wisc. R/Boom Bay, Rhinelander, WI
1.66	3259	PF Lm Bass	Hudson R., Fort Miller, NY
1.63	2027	PFaLm Bass	Kiamichi R., Big Cedar, OK
1.40	3122	WB Carp	Menominee R., Quinnesac, MI
1.13	2290	PFaLm Bass	Savannah R., Augusta, GA

The fish sample with the highest concentration was found at a site designated as background. The site with the third highest concentration was designated as background and agriculture. Additional investigation at these sites is needed to determine sources of mercury contamination. Industrial facilities located in the vicinity of the other three top five sites include pulp and paper mills, a pesticide manufacturing plant, and a textiles facility.

Ten of the sites with the highest 10 percentile concentrations were near paper mills. Four were near Superfund sites, and most of the remaining were from industrial areas. Sources could not be identified at all of these sites. Five sites considered to represent background conditions and six NASQAN sites were included in the top 10 percentile sites.

The box plot for mercury shows that the highest median concentration ($0.61 \mu \mathrm{~g} / \mathrm{g}$) was for POTWs (Figure 4-7). The remaining median values had a relatively small range with the lowest being background at $0.09 \mu \mathrm{~g} / \mathrm{g}$ and the highest being refinery/other industry at $0.24 \mu \mathrm{~g} / \mathrm{g}$.

Pentachloranisole

Pentachloroanisole was detected in at least one sample from 65 percent of the sites with the median concentration of the sites at $0.9 \mathrm{ng} / \mathrm{g}$ (Figure 4-8a). The majority of the higher concentration sites (greater than $2.5 \mathrm{ng} / \mathrm{g}$) are in the eastem part of the country (Figure 4-8b). This compound is a metabolic breakdown product of pentachlorophenol (PCP). PCA is retained in the fish and is therefore easier to measure. The primary uses of PCP are for treating telephone poles, fence posts, and railroad ties. This compound is also used as an antimicrobial agent in pulp and paper manufacturing, to control slimes in cooling towers, and to make anti-fouling paint. Prior to 1984, it was used in the production of the pesticide sodium pentachlorophenate and as a herbicide. The sites with the five highest concentrations out of 362 are listed below.

Summary Table for Mercury Box Plot

Site Category	n	Concentration Range $\mu \mathrm{g} / \mathrm{g}$	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND.- 0.98	0.29	0.25	0.23
Background (B)	21	ND.- 1.77	0.34	0.40	0.16
Paper Mills Using CI (PPC)	40	ND.- 1.4	0.26	0.33	0.12
Other Paper Mills (PPNC)	17	ND.- 0.46	0.16	0.15	0.09
Refinery/Other Industry (R/I)	5	0.08-0.49	0.29	0.16	0.24
Superfund Sites (NPL)	6	ND.- 0.89	0.28	0.32	0.22
Wood Preservers (WP)	11	0.06.- 0.88	0.31	0.24	0.21
IndustrialUßan Sites (IND/URB)	33	ND.- 0.72	0.15	0.14	0.12
POTW	6	0.12. 0.98	0.59	0.30	0.61
Agricultural (AGRI)	15	ND.- 0.82	0.27	0.24	0.17

[^9]Figure 4-7. Box and whisker plot for mercury in fish tissue.

-Percent of sites in category
Total Sites: 362
Fillet Only Sites: 30
Maximum was Fillet: 8

Figure 4-8. Pentachloroanisole: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue.

Pentachloroanisole

Conc. nalg	Episode Number		
		Typeof_Eish	
647	3375	WBaCarp	
570	3185	WB Channel Catfish	Chattahoochee R., Austell, GA
334	3376	WBarnard Bayou, Gulfport. MS	
240	2618	WB Quillback	Chattahoochee R., Whitesburg, GA
187	3377	WB Carp	Hamilton Canal, Hamilton, OH
		Chattahoochee R., Franklin, GA	

A wood treatment plant and Superf und site with solvents present are located near the Bernard Bayou site. The Hamilton Canal site is near a paper mill and Superfund site. The other three top five sites are located near paper mill operations. Eight of the top 36 sites (highest 10 percentile) were located near Superfund sites of which four were related to wood preserving. Paper mills were located near 17 of the top 36 sites.

The box plot for pentachloroanisole shows that the highest median concentration was 1.7 ng/g for nonchlorine paper mills (Figure 4-9). The second highest median concentration was for sites near pulp and paper mills that use chlorine in the bleaching process ($0.8 \mathrm{ng} / \mathrm{g}$).

1,2,3 and 1,2,4 Trichlorobenzene

The compounds $1,2,3$ trichlorobenzene and $1,2,4$ trichlorobenzene (TCB) were detected in at least one sample at 42 percent and 53 percent of the sites, respectively. The median concentrations, however, were low (below detection for $1,2.3$ TCB and $0.14 \mathrm{ng} / \mathrm{g}$ for $1,2,4$ TCB) (Figure 410a,b). The two compounds are used in a variety of industrial applications including 1,2,4 TCB as a solvent and dielectric fluid and 1,2,3 TCB as a coolant in electrical installations, in the production of dyes, and in products to control termites. The sites with concentrations above $2.5 \mathrm{ng} / \mathrm{g}$ are located for the most part near industrial organic chemical manufacturing plants. The five sites with the highest concentrations out of 362 sites are as follows:

1,2,3 TCB

Conc.	Episode Number	Type of Fish	Lacation
69.0	2056	WBaCarp	Ohio R., West Point, KY
54.9	3097	PF Brown Bullhead	Red Lion Cr., Tybouts Comer, DE
30.2	3164	WBaCarp	Haw R., Saxapahaw, NC
26.8	3376	W BCarp	Chattahoochee R., Whitesburg, GA
24.8	2341	WB Carpsucker	Ohio R., Markland, KY

Summary Table for Pentachloroanisole Box Plot

Site Category	n	Concentration Range ng/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND - 46.8	3.75	8.48	0.33
Background (B)	20	ND - 3.33	0.59	1.14	ND
Paper Mills Using Cl (PPC)	39	ND - 85.1	5.46	14.32	0.77
Other Paper Mills (PPNC)	17	ND - 334	33.10	89.53	1.67
Refinery/Other Industry (R/l)	5	ND - 13.2	4.21	5.97	0.32
Superfund Sites (NPL)	6	ND - 2.99	1.00	1.39	0.22
Wood Preservers (WP)	10	ND - 4.47	0.86	1.46	ND
Industria//Urban Sites (IND/URB)	31	ND - 13	2.44	3.88	0.42
POTW	6	ND. 24.20	4.42	9.72	0.16
Agricultural (AGRI)	15	ND - 7.31	1.18	2.34	ND

$n=$ number of sites in category. ND's set at 0 . Maximum concentrations at sites were used.

Figure 4-9. Box and whisker plot for pentachloroanisole in fish tissue.

Figure 4-10. Cumulative frequency distributions of a) 1,2,3 trichlorobenzene and b) 1,2,4 trichlorobenzene in fish tissue. (Maximum concentration at each site was used. The bar along the x-axis indicated values below the detection.)

1,2,4 TCB

$\begin{array}{r} \text { Conc. } \\ \quad \mathrm{n} / \mathrm{g} / \mathrm{g} \end{array}$	Episode Number	Type of Eish	Location
264.8	2654	WBEarp	Toms R., NJ
191	2056	WB Carp	Ohio R., West Point, KY
104	2290	WB Spotted Sucker	Savannah R., Augusta, GA
103.8	3097	PF Brown Bullhead	Red Lion Cr., Tybouts Comer, DE
80.4	3410	WB Redhorse Sucker	Rochester Embayment Rochester, NY

Two of the sites are the same for both $1,2,3$, TCB and $1,2,4$ TCB. Of the other eight sites shown above, three are near Superfund sites with chlorobenzene contamination (3181,3097, 2654). Two sites are near paper mills (3376,2290), one is near a chemical manuf acturing plant (3418) , and the remaining two are near agricultural/rural areas. For $1,2,4$ TCB, nine of the highest 36 sites were near Superf und sites. Chemical manufacturing facilities are near 12 of the sites and paper mills near another six sites. Distribution of $1,2,3$ TCB and $1,2,4$ TCB is shown in Figures $4-11 \mathrm{a}, \mathrm{b}$. The highest mean concentration for $1,2,3 \mathrm{TCB}$ is $2.2 \mathrm{ng} / \mathrm{g}$ from nonchlorine paper mills and for $1.2,4$ TCB is $3.2 \mathrm{ng} / \mathrm{g}$ for sites in the industrial/urban category (Figures 4-12 and 4-13).

Pesticides/Herbicides

DDE

The most frequently detected xenobiotic compound was $\mathrm{p}, \mathrm{p}^{\prime}$-DDE at 98.6 percent of the sampled sites (Figure 4-14a). DDE is a metabolic breakdown product of the widely-used pesticide DDT. The geographic distribution of fish tissue concentrations (Figure 4-14b) shows the widespread occurrence of DDE, which is consistent with historic pesticide use patterns of DDT (see protile in Appendix C). The prevalence of DDE at a large number of sites. even though use of DDT was banned in 1972, is consistent with its persistence in the aquatic environment and its high bioaccumulation potential. The concentrations of DDE found at the top 5 out of 362 sites sampled are listed below:

$$
\mathrm{p}, \mathrm{p}^{\prime}-\mathrm{DDE}
$$

Conc. ng/g	Episode Number	Type of Eish	_ocation___
14028	3315	WB Carp	Union Canal, Lebanon, PA
8708	3282	WB Carp	Alamo R., Calipatria, CA
3221	3084	WB Channel Catfish	Arroyo Colorado, Harlingen, TX
3214	3212	WB\&arp	Owyhee R., Owyhee, OR
2493	3231	WB Carp	Yakima R., Richland, W A

a)

b)

Figure 4-11. Map of geographical distribution of various concentration ranges for a) 1,2,3 trichlorobenzene and b) $1,2,4$ trichlorobenzene in fish tissue.

Summary Table for 1,2,3-Trichlorobenzene Box Plot

Site Category	n	Concentration Range pg/g	Mean	Stan. Dev.	Median
NASQAN (NSO)	39	ND - 2.6	0.39	0.67	ND
Background (B)	20	ND - 0.69	0.14	0.22	ND
Paper Mills Using CI (PPC)	39	ND - 3.92	0.42	0.98	ND
Other Paper Mills (PPNC)	17	ND-26.8	2.25	6.46	0.16
Refinery/Other Industry (RI)	5	ND - 0.51	0.10	0.23	ND
Supertund Sites (NPL)	6	ND. 5.34	1.13	2.11	0.16
Wood Preservers (WP)	10	ND - 0.29	0.03	0.09	ND
Industria/Ußban Sites (IND/URB)	31	ND - 4.77	0.43	1.12	ND
POTW	6	ND. 2.60	0.83	1.05	0.51
Agricultural (AGRI)	15	ND.-1.71	0.21	0.45	ND
$\mathrm{n}=$ number of sites in category. ND's set at 0 . Maximum concentrations at sites were used.					

Figure 4-12. Box and whisker plot for $\mathbf{1 , 2 , 3}$ tricholorbenzene in fish tissue.

Summary Table for 1,2,4-Trichiorobenzene Box Plot

Site Category	n	Concentration Range pg / g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND. - 1.97	0.36	0.55	ND
Background (B)	20	ND. - 0.47	0.17	0.19	0.08
Paper Mills Using CI (PPC)	39	ND. 7.58	0.33	1.26	ND
Other Paper Mills (PPNC)	17	ND. - 16.1	1.44	3.86	0.24
Refinery/Other Industry (R/I)	5	ND. - 1.36	0.44	0.56	0.22
Superfund Sites (NPL)	6	ND. - 3.12	0.70	1.23	0.12
Wood Preservers (WP)	10	ND - 0.42	0.07	0.14	ND
Industria\Utaan Sites (IND/URB)	31	ND. - 80.4	3.24	14.36	0.20
POTW	6	ND. 1.97	0.64	0.73	0.54
Agricultural (AGRI)	15	ND. 2.46	0.28	0.62	0.09

$\mathrm{n}=$ number of sites in category. ND's set at 0 . Maximum concentrations at sites were used.

Figure 4-13. Box and whisker plot for $\mathbf{1 , 2 , 4}$ trichlorobenzene in fish tissue.

Figure 4-14. p,p'-DDE: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue.

The maximum DDE concentration was found in a whole-body carp sample from Union Canal at Lebanon. Pennsylvania. near pesticide manufacturing plants. The other four sites are located in agricultural areas.

Six of the highest 10 percentile sites (36 out of 362 sites) were also located in agricultural areas without industrial activities. Five of the sites were near Superfund sites. Most of the remaining sites were located in industrial areas. The box plot (Figure 4-15) shows that the highest median concentration was $201 \mathrm{ng} / \mathrm{g}$ for agricultural areas. Kruskal-Wallis tests (Table 4-4) comparing agricultural sites with Superf und and industrial/urban sites showed no significant differences with regard to fish contamination levels.

Chlordane and Related Compounds (Nonachlor and Oxychlordane)

The next most firequently detected pesticides were chlordane and the compounds related to chlordane. Chlordane, itself, is a chlorinated hydrocarbon that occurs in two forms-cis and trans. The cis-isomer was detected at about 3 percent more sites than the trans-isomer (Figure 4-16 a,b, c). Prior to 1987, this compound was widely used for termite and ant control and for agricultural uses such as dipping nonfood roots and tops. Also, prior to 1980 it was used to control insects on a variety of crops including corn, grapes, and strawberries. At present, it can be used only for subsurface termite control. Related compounds are cis- and trans-nonachlor and oxychlordane. Nonachlor is a component of chlordane (trans can be 7 to 10 percent in technical-grade chlordane (Takamiya, 1987)) as well as an impurity of heptachlor. Trans-nonachlor was detected at 77 percent of the sites, whereas cis-nonachlor was detected at only 35 percent of the sites (Figure 4-17 a,b, c). Oxychlordane is a metabolic breakdown product of chlordane. Oxychlordane was detected at 27 percent of the sites (Figure 4-16d). Nonachlor and chlordane have a high potential for bioaccumulation, while oxychlordane has a lower potential. The total chlordane and total nonachlor concentrations were compared for the same sample and found to be correlated based on a linear function (r^{2} $=0.7$) but not as strongly as cis- versus trans-chlordane ($r^{2}=0.89$). Total chlordane is the sum of the cis- and trans-chlordane isomer concentrations measured in the same sample. Total nonachlor is the sum of the cis- and trans-nonachlor isomers. The correlations are consistent with the multiple sources of nonachlor. Comparing the geographic distribution of the two compounds (Figure $4-18 \mathrm{a}, \mathrm{b}$) shows that most of the sites with high levels of total nonachlor (greater than $100 \mathrm{ng} / \mathrm{g}$) also have a high level of chlordane.

The maximum concentrations at the top five sites foreach of these compounds were detected near industrial areas and Superfund sites (Table 4-5). The Monongahela River at Clairton, Pennsylvania, an industrial area with manufacturing plants of inorganic chemicals and pesticides, had the highest concentrations of total, cis-, and trans-chlordane and total and trans- nonachlor. This site also had high concentrations of oxychlordane and cis-nonachlor. The highest concentrations of cis-nonachlor and oxychlordane were also in industrial areas, Lake Michigan at Waukegan, Illinois, and Peshtigo River Harbor, Peshtigo, Wisconsin, respectively. The remaining sites were located near various industrial areas involving the production of inorganic and organic chemicals, and pesticides. Sources for the top 10 percentile sites were predominantly industrial areas near chemical manufacturing plants (17 out of 36). Superfund sites were near 10 of the 36 sites. All of these sites were located in areas with nearby industrial activities. The highest median concentrations for chlordane were near Superfund sites and industry/urban areas (Figure 4-19). For total nonachlor

Summary Table for p.p'DDE Box Plot

Site Category	ก	Concentration Range pg/g__	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	1.09-1223	136.18	226.21	46.90
Background (B)	20	ND. 384	56.28	93.42	11.68
Paper Mills Using Cl (PPC)	39	1.0-895	87.27	167.67	22.20
Other Paper Mills (PPNC)	17	0.9-1157	161.94	306.58	42.50
Refinery/Other Industry (RI)	5	5.9-2329	586.87	1000.14	41.50
Superfund Sites (NPL)	6	1.5-805	200.17	300.35	97.95
Wood Preservers (WP)	10	1.65-91.5	33.13	32.7	16.85
IndustriaVUban Sites (IND/URB)	31	7.23-14028	602.34	2499.49	78.80
POTW	6	2.49 - 516	98.16	204.84	17.40
Agricultural (AGRI)	15	13.1 - 8708	1526.89	2313.13	201.00
$\mathrm{n}=$ number of sites in category. ND's set at 0 . Maximum concentrations at sites were used.					

Figure 4-15. Box and whisker plot for p,p'-DDE in fish tissue.

Table 4.4

Results of Statistical Tests for Selected Xenobiotics (Pesticides/Herbicides)

	Kruskal-Wallis		Mann-Whitney				
Chemical	All Groups Except NSQ	IndNRB NPL, AG	B,PPC,PPNC WP,POTW	$\begin{aligned} & \text { AG } \\ & \text { IND, URB } \end{aligned}$	AG, NPL	AG, 8 B	IND, B
Total Nonactior	. 0071	. 7565	. 1946	. 5346	. 5593	. 0183	. 0013
Trifluralin	. 4822	. 1363	. 9870	. 0809	. 1021	. 0956	. 8926
Mirex	. 6451	. 8643	. 3180	. 6477	. 6128	. 4334	7212
Heptachlor Epoxide	. 9599	. 7704	. 9899	. 6144	. 8153	. 8415	. 7576
Dieldrin	. 0891	. 6856	. 4053	. 5269	. 4835	. 3861	. 0176
Endrin	. 8983	. 5777	. 7063	. 6732	. 5858	. 8415	. 8020
Chlorpyrifos	. 4019	. 5426	. 4757	. 6990	. 4835	. 5938	. 2242
Alpha-BHC	. 0905	. 4388	. 1437	. 3989	. 2129	. 1880	. 0087
Isopropalin	. 9951	. 7358	. 9920	. 4821	1.000	1.000	. 4403
Total Chlordane	. 0047	. 6774	. 2289	. 6144	. 3185	. 0164	. 0036
p, p' DDE	. 0001	. 1074	. 5430	. 0403	. 1857	. 0002	. 0017
Gamma BHC	. 0417	. 3614	. 0184	. 2657	. 6404	. 1615	. 0056
Dicofol	. 6233	. 2085	. 8068	. 0893	. 2429	. 2861	. 4635
Oxychfordane	. 2994	. 7081	. 9567	. 4748	1.000	. 6892	. 1708

[^10]

Figure 4-16. Cumulative frequency distribution of a) total chlordane, b) cis-chlordane, c) trans-chlordane and d) oxychlordane. (Maximum concentration at each site was used. The bar along the x -axis indicated values below the detection.)

Figure 4-17. Cumulative frequency distribution of a) trans-nonachlor b) cis-nonachlor, and c) total nonachlor. (Maximum concentration at each site was used. Bar at x-axis represents sites with levels below detection.)

Figure 4-18. Map of geographical distribution of various concentration ranges for a) total chlordane and b) total nonachlor in fish tissue.

TABLE 4-5
Sites With Highest Concentrations Of Chlordane Related Compounds

Chemical	Maximum Concentration ng.g \qquad	Episode Number	Type of Fish	Location
Total Chlordane				
	688	2215	WB Carp	Monongahela, Clairton, PA
	384	3045	WBoCarp	Missouri R., Kansas City, MO
	379	3435	WB Bigmouth Buffalo	Mississippi R., Natchez, MS
	376	3376	WB Carp	Chattahoochee R., Whitesburg, GA
	369	3048	WBoCarp	Mississippi R., West Alton, MO
cis-Chlordane				
	378	2215	WB Carp	Monongahela R., Clairton, PA
	200	3048	WBoCarp	Mississippi R., West Alton, MO
	196	3045	WBoCarp	Missouri R., Kansas City, MO
	185	3376	WB Carp	Chattahoochee R., Whitesburg, GA
	179	2383	WB Carp	Des Plaines R., Lockport, IL
trans-Chlordane				
	310	2215	WB Carp	Monongahela R., Clairton, PA
	206	3435	WB Bigmouth Buffalo	Mississippi R., Natchez, MS
	191	3376	WB Carp	Chattahoochee R., Whitesburg, GA
	188	3045	WB Carp	Missouri R., Kansas City, MO
	182	2190	WB Carp	Nishnabotoa R., Hamburg, IA
Oxychlordane				
	243	2427	WB Carp	Peshtigo R. Harbor, Peshtigo, WI
	96.2	2618	WB Carp	Hamilton Canal, Hamilton, OH
	91.4	2215	WBoCarp	Monongahela R., Clairton, PA
	87.2	3117	PF Lake Trout	Lake Michigan, Waukegan, IL
	77	2439	WB Carp	Great Miami R., New B altimore, OH
Total Nonachlor				
	601	2215	WB Carp	Monongahela R., Clairton, PA
	521	3377	WB6Carp	Chattahoochee R., Franklin, GA
	477	3117	PF Lake Trout	Lake Michigan, Waukegan, IL
	340.9	2394	WB Carp	Great Miami R., Franklin, OH
	299	3181	WB Carp	Ohio R., West Point, KY
cis-Nonachlor				
	127	3117	PF Lake Trout	Lake Michigan, Waukegan, IL
	124	2215	WB6Carp	Monongahela R., Clairton, PA
	123	3377	WB Carp	Chattahoochee R., Franklin,GA
	83.2	3285	Stingray	Colorado Lagoon, Long Beach, CA
	65.7	2383	WB6Carp	Des Moines R., Lockport, IL
trans-Nonachlor				
	477	2215	WB Carp	Monongahela R., Clairton, PA
	398	3377	WBeCarp	Chattahoochee R., Franklin, GA
	350	3117	PF Lake Trout	Lake Michigan, Waukegan, IL
	279	2394	WB Carp	Great Miami R., Franklin, OH
	242	3181	WB Carp	Ohio R., West Point, KY

[^11]

Summary Table for Total Chlordane Box Plot

Site Category	ก	Concentration Range pog	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND - 251.7	31.80	64.97	3.66
Background (B)	20	ND - 38.3	5.20	10.30	ND
Paper Mills Using Cl (PPC)	39	ND - 379	20.54	63.90	ND
Other Paper Mills (PPNC)	17	ND - 376	48.73	116.27	4.52
Refinery/Other Industry (RI)	5	ND - 131.5	35.45	55.00	11.2
Supertund Sites (NPL)	6	ND - 76.60	23.25	27.53	13.42
Wood Preservers (WP)	10	ND - 14.23	3.0	4.69	0.62
IndustriaVUrban Sites (IND/URB)	31	ND - 384	32.80	73.25	11.29
POTW	6	ND - 4.86	1.42	1.95	0.63
Agricultural (AGRI)	15	ND - 120.4	17.20	30.68	7.85

$\mathrm{n}=$ number of sites in category. ND's set at 0 . Maximum concentrations at sites were used.

Figure 4-19. Box and whisker plot for total chlordane in fish tissue.
(Figure 4-20) the highest median concentrations were near refinery/other industry sites and industry/urban sites. The only median concentration above the detection limit for oxychlordane was near refinery/other industry sites (Figure 4-21). A single dominant source was not observed for either compound based on Kruskal-Wallis tests (Table 4-4).

Dieldrin

Dieldrin, an organochlorine pesticide widely used prior to 1974, was detected at 60 percent of the 362 sites, (Figure 4-22a). The cumulative frequency distribution shows 9 percent of the sites with a concentration above $100 \mathrm{ng} / \mathrm{g}$ (Figure 4-22b). The top 5 out of 362 sites for dieldrin are listed below:

Dieldrin

Conc. ـg	Episode Number	Type of Eish.	Location
450	3161	WB Sucker	Cobbs Cr., Philadelphia, PA
405	3117	PF Lake Trout	Lake Michigan, Waukegan, IL
323	3036	WB Carp	Nishnabotna R., Hamburg, IA
312	2199	WB Bigmouth Buffalo	Missouri R., Lexington, MO
260	3272	WB White Surfperch	Lauritzen Canal, Richmond, CA

The first two sites are near Superfund sites in industrial areas. The next two sites are located in agricultural areas. The fifth site is located at a former pesticide packaging plant.

The highest median for dieldrin ($13.0 \mathrm{ng} / \mathrm{g}$) was for locations near Superfund sites and the next highest for sites near industrial/urban areas ($9.9 \mathrm{ng} / \mathrm{g}$) (Figure 4-23).

alpha/gamma-BHC

Prior to 1977, alpha-BHC was a component of technical grade gamma-BHC, or lindane. Lindane is an insecticidefacaricide which has been used to treat seeds, hardwood lumber, and livestock and also to control soil pests for tobacco, fruit, and vegetable crops. The five sites with the highest concentrations of 362 sites for alpha- and gamma-BHC are listed below.

Summary Table for Total Nonachlor Box Plot

Site Category	n	Concentration Range pg/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND - 221.3	26.26	49.28	7.07
Background (B)	20	ND. - 30.4	5.68	9.84	ND
Paper Mills Using CI (PPC)	39	ND. - 159.3	17.70	36.10	2.29
Other Paper Mills (PPNC)	17	ND. - 521	54.00	130.03	6.59
Refinery/Other Industry (R/I)	5	ND - 166.6	46.48	68.47	28.76
Superfund Sites (NPL)	6	ND. - 132.9	32.35	49.92	14.7
Wood Preservers (WP)	10	ND. 22.52	5.07	7.15	2.01
IndustriaVUitan Sites (IND/URB)	31	ND. 245	32.45	50.08	11.3
POTW	6	ND - 78.2	16.49	30.77	2.72
Agricultural (AGRI)	15	ND - 105.0	19.88	27.75	7.87
$\mathrm{n}=$ number of sites in category. ND's set at 0 . Maximum concentrations at sites were used					

Figure 4-20. Box and whisker plot for total nonachlor in fish tissue.

Summary Table for Oxychlordane Box Piot

Site Category	n	Concentration Range ng/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND.- 77.0	4.67	14.1.1	ND
Background (B)	20	ND.- 4.64	0.50	1.34	ND
Paper Mills Using Cl (PPC)	39	ND - 14.4	0.73	2.59	ND
Other Paper Mills (PPNC)	17	ND - 3.48	0.34	0.92	ND
Refinery/Other Industry (R/I)	5	ND.- 11.7	3.87	4.52	2.62
Supertund Sites (NPL)	6	ND - 14.3	2.38	5.84	ND
Wood Preservers (WP)	10	ND	ND	ND	ND
IndustriaVUtan Sites (INDIURB)	31	ND.- 42.3	3.34	8.25	ND
POTW	6	ND.-17.9	2.98	7.31	ND
Agricultural (AGRI)	15	ND - 6.75	2.62	0.68	ND

[^12]Figure 4-21. Box and whisker plot for oxychlordane in fish tissue.

Figure 4-22. Dieldrin: a) cumulative frequency distribution and b) map of geographical distribution of various concentrations in fish tissue.

Summary Table for Dieldrin Box Plot

Site Category	\underline{n}	Concentration Range pgig \qquad	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND - 323	35.46	71.16	NO
Background (B)	20	ND - 136	14.31	35.45	ND
Paper Mills Using CI (PPC)	39	ND - 236	14.86	41.18	1.40
Other Paper Mills (PPNC)	17	ND.- 41.5	4.90	9.94	1.84
Refinery/Other Industry (PI)	5	ND. - 64.9	16.64	27.40	4.18
Superfund Sites (NPL)	6	ND. 260	54.55	101..77	13.05
Wood Preservers (WP)	10	ND. 7.73	0.97	2.45	ND
IndustriaVUntan Sites (INDNRB)	31	ND. 116	18.48	29.71	9.96
POTW	6	NDa 38.2	7.86	15.16	0.64
Agricultural (AGRI)	15	ND - 188	43.94	69.37	ND

$n=$ number of sites in category. ND's set at 0 . Maximum concentrations at sites were used.

Figure 4-23. Box and whisker plot for dieldrin in tish tissue.

alpha-BHC

$\begin{gathered} \text { Conc. } \\ \ldots \\ \hline \end{gathered}$	Episode Number	Type of Eish	Location.
44.4	3098	WB White Sucker	Red Clay Cr., Ashland. DE
29.0	2427	WB Carp	Peshtigo R. Harbor. Peshtigo, WI
20.8	2410	WB Carp	Rouge R., River Rouge, MI
19.3	2383	WB Carp	Des Plaines R., Lockport, IL
18.6	2056	WX\&arp	Ohio R., West Point, KY
gamma-BHC (Lindane)			
$\begin{gathered} \text { Conc. } \\ \ldots \\ \hline \end{gathered}$	Episode Number	Type of Fish________ocation	
83.3	3042	WB Carp	Missouri R., Omaha, NE
44.5	2416	WB Carp	Cuyahoga R., Cleveland, OH
38.8	3098	PF American Ee!	Red Clay Cr., Ashland, DE
27.4	2439	WB Carp	Great Miami R., New Baltimore, OH
25.7	3342	WB Spotted Sucker	Lumber R., Lumberton, NC

Five of these sites are near chemical manufacturing plants (2383, 2410, 2416, 3042, and 3181). Paper mills were located near three of the sites (2427,2439 , and 3342). The remaining site is in an agricultural area where mushroom farming is done, which uses large quantities of pesticides.

Fifty-five percent of these sites were above detection for alpha-BHC, while only 42 percent of the sites were above detection for gamma-BHC (Figure 4-24a,b). The box plots for alpha-BHC and gamma-BHC are shown in Figures 4-25 and 4-26, respectively. A geographical distribution of various concentration ranges of alpha- and gamma-BHC is shown in Figure 4-27a,b.

COMPOUNDS DETECTED AT BETWEEN 10 AND 50 PERCENT OF THE SITES ${ }^{3}$

Hexachlorobenzene

Hexachlorobenzene (HCB) was one of the original targeted compounds because it may contain dioxin and is toxic itself. HCB can be produced in a number of ways: as a by-product of chlorinated solvent manufacturing; from incineration of municipal waste; from chlorination of wastewater; and as a breakdown product of lindane. It is also an impurity in other currently registered pesticides, (e.g., pentachloronitrobenzene (PCNB)) and in pentachlorophenol (see profile

[^13]

Figure 4-24. Cumulative frequency distribution of a) alpha-BHC and b) gamma-BHC (lindane) in fish tissue.

Summary Table for Alpha-BHC Box Plot

Site Category	n	Concentration Range pa/g \qquad	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND - 12.30	1.98	2.98	0.93
Background (B)	20	ND - 9.08	0.72	2.09	ND
Paper Mills Using Cl (PPC)	39	ND. 11.30	1.74	2.75	ND
Other Paper Mills (PPNC)	17	ND - 2.77	0.99	0.99	0.85
Refinery/Other Industry (RI)	5	ND.-4.97	1.92	2.1.1	0.96
Superfund Sites (NPL)	6	ND - 8.43	2.49	3.18	1.26
Wood Preservers (WP)	10	ND. - 1.08	0.21	0.44	ND
IndustriaVUrban Sites (IND/URB)	31	ND - 17.48	2.20	4.11	0.91
POTW	6	ND - 3.98	1.41	1.82	0.56
Agricultural (AGRI)	15	ND - 7.56	1.32	2.19	ND
$\mathrm{n}=$ number of sites in category. ND's set at zero. Maximum concentrations at sites were used.					

Figure 4-25. Box and whisker plot for alpha-BHC in fish tissue.

Summary Table for Gamma-BHC Box Plot

Site Category	n	Concentration Range ng/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND.-83.3	3.25	13.91	ND
Background (B)	20	ND-2.97	0.15	0.66	ND
Paper Mills Using Cl (PPC)	39	ND.- 25.7	2.66	5.85	ND
Other Paper Mills (PPNC)	17	ND.- 21.9	3.33	6.60	0.63
Retinery/Other Industry (R/I)	5	ND - 3.1	1.49	1.21	1.41
Superfund Sites (NPL)	6	ND - 7.8	1.30	3.18	ND
Wood Preservers (WP)	10	ND - 3.3	0.57	1.09	ND
IndustriaVUrban Sites (IND/URB)	31	NDa 10.5	1.99	2.97	0.37
POTW	6	ND. 0.58	0.10	0.24	ND
Agricultural (AGRI)	15	ND - 9.6	1.15	2.52	ND

$\mathrm{n}=$ number of sites in category. ND's set at 0 . Maximum concentrations at sites were used.

Figure 4-26. Box and whisker plot for gamma-BHC in fish tissue.

Figure 4-27. Map of geographical distribution of various concentration ranges for a) gamma-BHC (lindane) and b) alpha-BHC in fish tissue.
in Appendix C). The compound is not readily affected by transformation processes (e.g., hydrolysis) and has a high potential for bioaccumulation. Given this variety of sources, it is not surprising that the compound was found at sites located in nearly all parts of the country (Figure 4-28a). HCB was detected at 46 percent of the sites (Figure 4-28b). though the median concentration was below the detection limit. Pentachlorobenzene is also an impurity in PCNB and was found in detectable quantities at some of the same locations as discussed later in this chapter. Sites with the five highest concentrations out of 362 sites are listed below:

Hexachlorobenzene

Conc.	Episode Number	Typeot Sample	Location
913	3085	WB Sea Catfish	Brazos R., Freeport, TX
202	3086	WB Catfish	Bayou D'Inde, Sulfur, LA
93.7	2532	W B Carp	Mississippi R., St. Francisville, LA
85.5	2376	WB White Sucker	Quinipiac R., North Haven, CT
75	3063	WB Sea Catfish	Calcasieu R., Moss Lake, LA

The first two sites are near pesticide manufacturing plants and the remaining sites are near manufacturing plants for other types of chemicals. At the Quinipiac River site, there is also a Superfund site known to have solvent contamination. The predominant sources tor the top 10 percentile sites (36 out of 362) were pesticide/chemical manufacturing plants and Superfund sites. Six sites originally selected because of organic chemical manufacturing plants were included in the top 10 percentile sites. Two agricultural sites where pesticides are extensively used were included in the top 10 percentile sites (one at Calipatria. California, and one at Gila Bend. Arizona). A statistical comparison (Kruskal-Wallis test. Table 4-3) of all the various source categories (Figure 4-29) shows that no significant differences exist between any of the categories regarding fish contamination levels.

Pentachlorobenzene

Pentachlorobenzene is an impurity in pentachloronitrobenzene and the sites with the highest concentrations of pentachlorobenzene are mostly in Texas and Louisiana (Figure 4-30a). It was detected at 22 percent of the sites (Figure 4-30b). The top five sites are listed below.

Figure 4-28. Hexachlorobenzene: a) map of geographical distribution of various concentration ranges and b) cumulative frequency distribution in fish tissue.

Summary Table for Hexachlorobenzene Box Plot

Site Category	n	Concentration Range $n g / g$	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND.- 6.49	0.63	1.35	ND
Background (B)	20	ND.- 6.88	0.60	1.59	ND
Paper Mills Using Cl (PPC)	39	ND.-93.7	3.90	16.35	ND
Other Paper Mills (PPNC)	17	ND-2.7	0.54	0.77	ND
Refinery/Other Industry (RI)	5	ND.- 75	15.39	33.33	0.73
Superiund Sites (NPL)	6	ND.-12.5	2.89	5.09	ND
Wood Preservers (WP)	10	ND - 1.89	0.24	0.60	ND
IndustriaV/Urban Sites (IND/URB)	31	ND -913	31.56	163.6	0.33
POTW	6	ND-1.76	0.29	0.72	ND
Agricultural (AGRI)	15	ND-15.6	2.08	4.26	0.09

$n=$ number of sites in category. ND's set at 0 . Maximum concentrations at sites were used.

Figure 4-29. Box and whisker plot for hexachlorobenzene in fish tissue.

- Percent of sites in category

Maximum was Fillet: 6

Figure 4-30. Pentachlorobenzene: a) map of geographical distribution of various concentration ranges and b) cumulative frequency distribution in fish tissue. c) Cumulative frequency distribution of $1,3,5$ trichlorobenzene in fish tissue.

Pentachlorobenzene

Conc. ng/g	Episode Number	Type oli Sample	Location
125	3086	WB Cautish	Bayou D'Inde, Sulfur, LA
51 at	3063	PF Spotted Sea Trout	Calcasieu R., Moss Lake, LA
46.3	3097	WBxCarp	Red Lion Cr., Tybouts Comer. DE
42.6	3085	WB Sea Catfish	Brazos R., Freeport, TX
9.6	2532	W B Carp	Mississippi R., St. Francisville, LA

Four of these sites are near chemical manufacturing plants and the other site (3097) is a Superfund site with HCB contamination. In the top 10 percentile of the sites, 22 of the 36 sites out of 362 were near chemical manufacturing plants and nine were near Superfund sites of which four had HCB contamination. The box plot (Figure 4-31) shows that none of the source categories have median concentrations above detection.

1,3.5 Trichlorobenzene

The compound 1,3,5 trichlorobenzene (TCB) is used as a solvent for dyes and in the manufacturing of other organic compounds. Though detected at 11 percent of the sites, the compound $1,3.5$ trichlorobenzene was detected above the quantitation limit at only three sites (Figure 4-30c). These sites are listed below:

1,3,5 TCB
Conc. Episode
nols_ Number Type of Samole Location

14.9	3403	WB River Carpsucker	So. Fork of Holston R., Kingsport. TN
9.2	2290	WB Spotted Sucker	Savannah River, Augusta, GA
2.77	2056	WBaCarp	Ohio River, West Point, KY

Sites 3403 and 2290 are near paper mills. The latter site also has other industriaV/urban sources nearby. Site 2056 is near a Superf und site known to be contaminated with PCBs, dioxins, furans, and solvents. The median concentration of all source categories was below detection (Figure 4-32).

Tetrachlorobenzenes

Cumulative frequency distributions of the tetrachlorobenzenes (TECB) show that these compounds were detected at less than 15 percent of the sites (Figure 4-33a,b,c). The tetrachlorobenzenes are moderately to highly volatile and, as a result, may be higher than reported because the analytical procedures for this study included an evaporation step. The chemical $1,2,4,5$ tetrachlorobenzene is used in the manufacturing of 2,4.5 T (2,4.5 trichlorophenoxyacetic acid), a

Summary Table for Pentachbrobenzene Box Plot

Site Category	n	Concentration Range ng/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND - 1.26	0.03	0.20	ND
Background (B)	20	ND.- 0.6	0.03	0.13	ND
Paper Mills Using Cl (PPC)	39	ND.- 9.61	0.38	1.71	ND
Other Paper Mills (PPNC)	17	ND - 0.57	0.08	0.17	ND
Refinery/Other Industry (R/I)	5	ND.-5104	11.36	22.50	ND
Superfund Sites (NPL)	6	ND.- 46.3	7.72	18.90	ND
Wood Preservers (WP)	10	ND	ND	ND	ND
Industrial/Urban Sites (IND/URB)	31	ND.- 42.6	1.84	7.68	ND
POTW	6	ND	ND	ND	ND
Agricultural (AGRI)	15	NDs 0.75	0.07	0.20	NC.
$\mathrm{n}=$ number of sites in category. ND's set at 0 . Maximum concentrations at sites were used.					

Figure 4-31. Box and whisker plot for pentachlorobenzene in fish tissue.

Summary Table tor. 1,3,5-Trichlorobenzene Box Plot

Site Category	n	Concentration Range ng/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND - 0.06	0.002	0.01	ND
Background (B)	20	ND - 0.24	0.02	0.06	ND
Paper Mills Using Cl (PPC)	39	ND - 14.9	0.40	2.38	ND
Other Paper Mills (PPNC)	17	ND - 2.35	0.16	0.57	ND
Refineries (RFNY)	5	ND - 0.54	0.11	0.24	ND
Supertund Sites (NPL)	6	ND.- 0.55	0.09	0.22	ND
Wood Preservers (WP)	10	ND	ND	ND	ND
IndustrialUnan Sites (IND/URB)	31	ND - 1.20	0.13	0.32	ND
POTW	6	ND	ND	ND	ND
Agricultural (AGRI)	15	ND	ND	ND	ND

Figure 4-32. Box and whisker plot for 1,3,5 trichlorobenzene in fish tissue.

Figure 4-33. Cumulative frequency distribution of a) $1,2,3,4$ tetrachlorobenzene, b) $1,2,3,5$ tetrachlorobenzene and c) $1,2,4,5$ tetrachlorobenzene in fish tissue.
primary component of the defoliant Agent Orange used in Vietnam. It has also been used as a precursor for the manufacture of other organic chemicals and in the dye industry. The 1,2,3,4 isomer is a component of dielectric fluids, and was the most commonly detected of the three isomers (13 percent of the sites versus 9.4 percent for $1,2,3.5$ TECB and 9.1 percent for 1,2,4,5 TECB). Median concentrations were below detection for all three of these compounds. Geographic distributions of TECB concentrations are shown in Figure 4-34a,b,c.

The sites with the top five concentrations out of 362 were the same for $1,2,3,5$ and 1,2,4,5 TECB as follows:

1,2,3,5 and 1,2,4,5 TECB

Conc. $n g / \mathrm{g}$	Episode Number	Type of Sample	Location
28.3	3097	PF Brown Bullhead	Red Lion Creek, Tybouts Comer, DE
15.3	2056	WB Carp	Ohio River, West Point, KY
12.9	2341	WB Carpsucker	Ohio River, Markland, KY
12.0	2290	WB Spotted Sucker	Savannah River, Augusta, GA
10.7	3086	PF Red Drum	Bayou D'Inde, Sulfur, LA

The first two sampling locations are near Superf und sites, and the others are near chemical plants (2341 and 3086) and paper mills (2290).

The top five sites for $1,2,3,4$ TECB are shown below. The first three are the same as described above for $1,2,3,5$ and $1,2,4,5$ TECB. Site 3096 is located near a refinery, industrial chemical facilities, and a POTW. Site 3094 is near chemical manufacturing plants and a POTW. Median values from all source categories were below detection (Figure 4-35).

1,2,3,4 TECB

Conc. ng/g	Episode Number	Type of Sample	Location
76.65	3097	PF Brown Bullhead	Red Lion Creek, Tybouts Comer, DE
11.50	2056	WBCarp	Ohio River, West Point, KY
11.3	2341	WB Carpsucker	Ohio River, Markland, KY
10.6	3096	WB Channel Catfish	Delaware River, Eddystone, PA 10.4
	3094	BF Channel Catfish	Delaware River, Torresdale, PA

-Percent of sites in category

-Percent of sites in category

-Percent of sites in category

Figure 4-34. Map of geographical distribution of various concentration ranges for a) 1, , , 3, 4 tetrachlorobenzene, b) 1,2,3,5 tetrachloroberzene, and c) 1,2,4,5 tetrachlorobenzene in fish tissue.

Summary Table for 1,2,3,4-Tetrachlorobenzene Box Plot

Site Category	n	Concentration Range ng/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND	ND	ND	ND
Background (B)	20	ND - 0.25	0.03	0.08	ND
Paper Mills Using Cl (PPC)	39	ND.- 0.88	0.03	0.14	ND
Other Paper Mills (PPNC)	17	ND - 0.11	0.02	0.03	ND
Refinery/Other Industry (RI)	5	ND - 5.21	1.74	2.46	ND
Superlund Sites (NPL)	6	ND.-20.92	3.49	8.54	ND
Wood Preservers (WP)	10	ND - 1.01	0.10	0.32	ND
IndustriaVUriban Sites (IND/URB)	31	ND - 0.76	0.04	0.14	ND
POTW	6	ND	ND	ND	ND
Agricultural (AGRI)	15	ND	ND	ND	ND
$n=$ number of sites in category. ND's set at 0. Maximum concentrations at sites were used.					

Figure 4-35. Box and whisker plot for $1,2,3,4$ tetrachlorobenzene in fish tissue.

Pesticides/Herbicides

Mirex, Chlorpyrifos, Dicofol, Methoxychlor, and Perthane

Mirex was used primarily to control fire ants in the Southeast between 1962 and 1975 (NAS, 1978). Mirex has also been used on pineapple mealy bugs in Hawaii and as a fire retardant in plastics and other products. Mirex was detected at 38 percent of the sites primarily in the Southeast and the Great Lakes region (Figure 4-36a). The chemical was produced at plants located along the Niagara River, and it occurred at high levels in this area as shown below:

Mirex

Conc. ng	Episode Number	Type of Sample	Location
225	2328	PF Chinook Salmon	Lake Ontario, Olcott, NY
137	3305	WB Channel Cattish	Racquette R., Massena. NY
131	2329	PF Brown Trout	Lake Ontario, Rochester, NY
85.4	3412	WB Carp	Oswego Harbor, Oswego, NY
73.7	3301	W B Carp	Eighteen Mile Cr., Olcott, NY

The box and whisker plot (Figure 4-37) shows that the highest concentration was found in the industrial/urban category. The only median value above detection was for sites in the ref inery/other industry category.

Chlorpyrifos, an organophosphate insecticide, was originally developed in the 1960's to replace organochlorine pesticides such as DDT. It is used on cotton, peanuts, sorghum, and a variety of fruits and vegetables, as well as for control of termites and household pests. For chlorpyrifos, over 70 percent of fish concentrations at all sites were below detection (Figure 4-36b). The geographic distribution map shows that the few sites with relatively high concentrations (above 50 ng / g) are scattered throughout the East and Midwest and in California (Figure 4-38). The highest concentrations were observed at sites near agricultural facilities. The top 5 out of 362 sites are listed below:

Figure 4-36. Cumulative frequency distribution of a) mirex and b) chlorpyrifos in fish tissue.

Summary Table for Mirex Box Plot

Site Category	n	Concentration Range ng / g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND-23.1	1.6	5.0	ND
Background (B)	20	ND-11.3	0.7	2.5	ND
Paper Mills Using Cl (PPC)	39	ND-21a6	1.6	4.0	ND
Other Paper Mills (PPNC)	17	ND-35.5	4.9	9.6	ND
Refineries/Other Industry (R/I)	5	ND-2.0	0.8	0.9	0.7
Supertund Sites (NPL)	6	ND-0.8	0.2	0.3	ND
Wood Preservers (WP)	10	ND-0.5	0.1	0.2	ND
Industria//Urban Sites (IND/URB)	31	ND-85.4	3.9	15.6	ND
POTW	6	ND-2.6	0.6	1.1	ND
Agricultural (AGRI)	15	ND-10.4	1.3	3.0	ND
$n=$ number of sites in category. ND's set at 0 . Maximum concentrations at each site were used.					

Figure 4-37. Box and whisker plot for mirex in fish tissue.

Figure 4-38. Map of geographical distribution of various concentration ranges for chlorpyrifos in fish tissue.

Chlorpyrifos

Conc. ng $/ \mathrm{g}$	Episode Number		
344	3282	WB Carp of Sample	Location__
64.5	3375	WB Carp	Alamo R., Calipatria, CA
63.7	3071	WB Carp	Chattahoochee R., Austell, GA
62.7	3141	PF Northern Pike	San Antonio R., Elmendorf, TX
61.7	3283	WB Carp	Milwaukee R., Milwaukee, WI
		New R., Westmoreland, CA	

Three of the sites are located in agricultural areas, while the remaining sites (3071 and $314 \times$) are located in urban areas with a variety of nearby industrial sources. The box and whisker plot also shows that the highest mean concentration was for sites in the agricultural category (Figure 4-39).

Dicofol, methoxychlor, and perthane are pesticides similar in structure to DDT, but less persistent Dicofol and methoxychlor are active ingredients of currently registered pesticides. These three pesticides were detected at less than 16 percent of the sites versus 99 percent of the sites for DDE, the metabolic breakdown product of DDT (Figure 4-40a,b,c). Dicofol is primarily used to control mites on cotton and citrus crops. Other crops to which it has been applied include apples, pears, apricots, cherries, and vegetables. It is also used on turf and shade trees. Methoxychlor, also similar to DDT, has not been widely used since 1982. Prior to that time, it had been applied to a wide variety of fruit, vegetable, and forage crops and had been used to control mosquitos and flies in homes and businesses. Methoxychlor has a lower bioaccumulation factor than dicofol and was detected at fewer sites (7 percent versus 15.5 percent). Dicofol and methoxychlor concentrations were greater than the quantification limit of $2.5 \mathrm{ng} / \mathrm{g}$ in samples from 7 and 5 percent of the sites, respectively (see Figure 4-4la,b). Most of the sites appear to be in agricultural areas where citrus and other fruits and vegetables are grown. The box plot for dicofol is shown in Figure 4-42. The highest mean concentration of all the categories was for sites near agricultural areas ($2.7 \mathrm{ng} / \mathrm{g}$).

The highest five concentrations of dicofol and methoxychlor are listed below:

Dicofol

Conc. O $/ \mathrm{g}$	Episode Number		
74.3	3355	WB Carp of Sample	Location
36.0	3252	WB Sucker	Old Mormon Slough, Stockton, CA
21.1	3198	WB Sucker	Boise River, Parma, ID
18.4	3208	WB Sucker	South Plate River, Denver, C O
14.9	3117	PF Lake Trout	Malheur River, Ontario, OR
			Lake Michigan, Waukegan, IL

Summary Table for Chlorpyrifos Box Plot

Site Category	n	Concentration Range ng / g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND-40.8	2.34	7.43	ND
Background (B)	20	ND-5.13	0.40	1.29	ND
Paper Mills Using Cl (PPC)	39	ND-22.6	1.15	5.02	ND
Other Paper Mills (PPNC)	17	ND-45.6	4.71	11.98	ND
Refineries/Other Industry (R/I)	5	ND-19.4	4.40	8.43	0.48
Supertund Sites (NPL)	6	ND	ND	ND	ND
Wood Preservers (WP)	10	ND-2.51	0.25	0.79	ND
IndustriaVUrban Sites (IND/URB)	31	ND-61.7	3.89	11.50	ND
POTW	6	ND	ND	ND	ND
Agricultural (AGRI)	15	ND-344	24.46	88.56	ND
$n=$ number of sites in category. ND's set at 0 . Maximum value at each site was used.					

Figure 4-39. Box and whisker plot for chlorpyrifos in fish tissue.

Figure 4-40. Cumulative frequency distribution of a) dicofol (kelthane), b) methoxychlor, and c) perthane in fish tissue.

Figure 4-41. Map of geographical distribution of various concentration ranges for a) dicofol and b) methoxychlor in fish tissue.

Summary Table for Dicofol Box Plot

Site Category	n	Concentration Range ng / g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND-5.37	0.54	1.44	ND
Background (B)	20	ND-2.29	0.27	0.70	ND
Paper Mills Using Cl (PPC)	39	ND-4.53	0.14	0.74	ND
Other Paper Mills (PPNC)	17	ND-2.44	0.28	0.65	ND
Refineries/Other Industry (R/I)	5	ND-3.69	1.02	1.61	ND
Superfund Sites (NPL)	6	ND	ND	ND	ND
Wood Preservers (WP)	10	ND	ND	ND	ND
Industria/Urban Sites (IND/URB)	31	ND-0.50	0.02	0.09	ND
POTW	6	ND-4.09	0.68	1.67	ND
Agricultural (AGRI)	15	ND-18.40	2.66	5.41	ND
$\mathrm{n}=$ number of sites in category. ND's set at 0 . Maximum concentrations at sites were used.					

Figure 4-42. Box and whisker plot for dicofol in fish tissue.

Conc. ng $/ \mathrm{g}$	Episode Number		
393.	3195	WB Chub of Sample	
17.9	3375	WB Carp	Jordan River, Salt Lake City, UT
8.22	2056	WB Carp	Chattahoochee River, Austell, GA
$8 . 巴 5$	3172	WB Carp	Ohio River, West Point, KY
7.7 C	3144	WB Carp	Coosa River, AUGA State Line
		Fox River, Portage, WI	

The two highest concentrations (3355 and 3195) were found near Superfund sites. The Stockton, California, site is also influenced by agricultural runoff. Two additional locations were near Superfund sources which could be identified as the cause for the high concentrations. Agricultural areas and pesticide manufacturing plants were also near sites in the top 10 percentile.

Perthane was detected above the quantitation limit in only one sample-a whole body caffish from the Delaware River at Torresdale, Pennsylvania (3094) where this compound was manufactured. Prior to 1980, perthane was used as an insecticide on fruit and vegetable crops and to protect woolens against moths and beetles.

Trifluralin and Isopropalin

Trifluralin and isopropalin, both currently registered dinitroaniline herbicides, were found above the quantitation limit at 11 and 3 percent of the sites, respectively (Figure 4-43a,b). The largest quantities of trifluralin are used primarily on soybeans, cotton, peanuts, wheat, and barley. The States with the highest uses are Arkansas, Ilinois, Iowa, Minnesota, Missouri, North Dakota, South Carolina, Tennessee, and Texas (Resources for the Future, 1986). With a few exceptions, the sites with the highest concentrations were located in these States. Three of the sites on the Missouri River in Nebraska and Kansas were located near pesticide manufacturing plants (Figure 4-44a,b). Trifluralin has a low leaching potential from soils due to its strong capacity for sorption. Isopropalin is less persistent in the aquatic environment due to its greater volatility. Isopropalin was also used on fewer crops, primarily tobacco, peppers, and tomatoes, and therefore would be expected to be less prevalent. At present, the only currently registered use is for tobacco. Box plots for trifluralin and isopropalin show that all median values for the categories were below detection (Figures 4-45 and 4-46, respectively).

Endrin

Endrin is an organochlorine pesticide and a contaminant of dieldrin. Endrin was detected in at least one sample from 10.5 percent of the sites (Figure 4-47a). Endrin is less persistent in the environment than dieldrin and has a lower bioconcentration factor. Endrin was used on tobacco crops prior to cancellation of this use in 1964. Unill 1979 it was used mostly to control bollworms on cotton in the Southeast. Other past uses included controlling termites, mice, and rodents, and treatment for a variety of grains and other crops. In 1984, all registered uses of endrin were

Figure 4-43. Cumulative frequency distribution of a) trifluralin and b) isopropalin in fish tissue.

Figure 4-44. Map of geographical distribution of various concentration ranges for a) trifluralin and b) isopropalin in fish tissue.

Summary Table for Trifluralin Box Plot

Site Category	n	Concentration Range ng / g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND-458	20.92	77.01	ND
Background (B)	20	ND-163	10.80	37.73	ND
Paper Mills Using Cl (PPC)	39	ND-23.1	0.59	3.70	ND
Other Paper Mills (PPNC)	17	ND-3.4	0.20	0.82	ND
Refineries (RFNY)	5	ND.-2.9	0.58	1.30	ND
Superfund Sites (NPL)	6	ND	ND	ND	ND
Wood Preservers (WP)	10	ND	ND	ND	ND
IndustriaVUrban Sites (IND/URB)	31	ND-82.8	6.37	18.83	ND
POTW	6	ND	ND	ND	ND
Agricultural (AGRI)	15	ND-153	23.35	46.52	ND
$n=$ number of sites in category. ND's set at 0 . Maximum concentrations at sites were used.					

Figure 4-45. Box and whisker plot for trifluralin in fish tissue.

Summary Table for Isopropalin Box Pbot

Site Category	n	Concentration Range ng/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND-25.9	1.27	4.89	ND
Background (B)	20	ND	ND	ND	ND
Paper Mills Using CI (PPC)	39	ND	ND	ND	ND
Other Paper Mills (PPNC)	17	ND	ND	ND	ND
Refinery/Other Industry(R/l)	5	ND	ND	ND	ND
Superiund Sites (NPL)	6	ND	ND	ND	ND
Wood Preservers (WP)	10	ND-10. 2	1.02	3.23	ND
IndustriaVUrban Sites (IND/URB)	31	ND-37.5	1.83	6.98	ND
POTW	6	ND	ND	ND	ND
Agricutlural (AGRI)	15	ND	ND	ND	ND
$\mathrm{n}=$ number of sites in category. ND's set at 0. Maximum concentrations at siles were used.					

Figure 4-46. Box and whisker plot for isopropalin in fish tissue.

Figure 4-47. Endrin: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue.
voluntarily canceled. The geographic distribution of sites is shown in Figure 4-47b. The box plot (Figure 4-48) shows that median concentrations for all source categories were below detection.

COMPOUNDS DETECTED AT LESS THAN 10 PERCENT OF THE SITES ${ }^{\boldsymbol{+}}$

Octachlorostyrene

Octachlorostyrene is not intentionally produced. It can be formed as a by-product of the electrolytic production of chlorine using graphite anodes and coal tar pitch and the electrolytic production of magnesium. The sites where it occurred at levels above quantification ($2.5 \mathrm{ng} / \mathrm{g}$) are located in areas where industrial organic chemicals are manufactured. It was detected at only 9 percent of the sites (Figure 4-49a).

Hexachlorobutadiene

Hexachlorobutadiene is a by-product of the carbon disulfide process for the manufacture of the solvent carbon tetrachloride. It was detected in at least one sample from three percent of the sites (Figure $4-49 \mathrm{~b}$). Concentrations were above $2.5 \mathrm{ng} / \mathrm{g}$ at only four sites. The top five sites (all of which are near organic chemical manufacturing plants) are listed below:

Hexachlorobutadiene
Conc. Episode
nglg___ Number Type of Sample_________Cation

164.00	3063	WB Sea Catfish	Calcasieu R., Moss Lake, LA
23.00	3085	WB Sea Caffish	Brazos R., Freeport, TX
10.50	3115	PF Catfish	Mississippi R., E. St. Louis (Sauget), IL
2.54	3065	WB Flathead Caffish	Mississippi R., Baton Rouge, LA
2.37	3086	WB Catfish	Bayou D'Inde, Sulfur, LA

Diphenyl Disulfide

Diphenyl disulfide was detected at only two sites (Figure 4-49c). This compound is used in small amounts in the pharmaceutical industry, in the vulcanizing of rubber, and as a flavoring agent.

[^14]

Summary Table for Endrin Box Plot

Site Category	n	Concentration Range ng/g	Mean	Stan. Dev.	Median
NASOAN (NSO)	39	ND-7.5	0.53	1.65	ND
Background (B)	20	ND-26.5	2.00	6.50	ND
Paper Mills Using Cl (PPC)	39	ND-162	5.22	25.90	ND
Other Paper Mills (PPNC)	17	ND	ND	ND	ND
Refinery/Other industry(R/I)	5	ND	ND	ND	ND
Superfund Sites (NPL)	6	ND-15.2	3.64	6.55	ND
Wood Preservers (WP)	10	ND	ND	ND	ND
Industrial/Urban Sites (IND/URB)	31	ND-7.37	0.32	1.38	ND
POTW	6	ND	ND	ND	ND
Agricultural (AGRI)	15	ND-45.4	4.23	12.30	ND

[^15]Figure 4-48. Box and whisker plot for endrin in fish tissue.

Figure 4-49. Cumulative frequency distribution of a) octachlorostyrene, b) hexachlorobutadiene, c) diphenyl disulfide, and d) nitrofen in fish tissue.

Pesticides/Herbicides

Nitrofen

Nitrof en is a selective herbicide that has not been used in the United States since 1984. Prior to that time it was used to control weeds in vegetables including sugar beets, rice, and on cereal grains. It can biodegrade and undergo photolysis so this chemical is less persistent than a compound such as DDT, and was detected at only 2.8 percent of the sites (Figure 4-49d). This compound was above the quantitation limit at the following sites:

Nitrofen

Conc. nelg	Episode Number	Type of Sample	
17.9	3354	WBaCarp	New Mormon Slough, Stockton, CA
12.8	3300	WB White Sucker	Niagara River Delta, Porter, NY
10.4	2654	WB Carp	Toms River, NJ
10.6	3302	WB White Sucker	Niagara River, Lewiston, NY
3.95	3288	PF Squawfish	Blanco Drain, Salinas, CA

The site with the highest concentration is located near a Superfund site, as is the Toms River, New Jersey, site. The Stockton, Califomia, site is also influenced by agricultural runoff. The Niagara River sites are near chemical manufacturing facilities and agricultural areas. The Blanco Drain is located in an agricultural irrigated area where pesticides are used extensively.

Heptachlor and Heptachlor Epoxdde

Heptachlor is an insecticide that has been used to control fire ants in southem States and soil insects on com. Its uses were limited in 1983 to subsurface termite control and dipping of nonfood roots and tops. Massachusetts, Minnesota, and New York allow no uses. It is also a contaminant of chlordane, which is widely used for termite control, especially in urban areas. Heptachlor is moderately volatile and can also be transformed by other environmental processes including hydrolysis and photolysis. It is metabolically converted to heptachlor epoxide, which bioaccumulates to a greater extent than heptachlor and is less affected by transformation processes. Heptachlor epoxide was detected in samples from more sites and, in general, at higher concentrations than heptachlor (Figure 4-50a,b). Thirteen percent of the sites had maximum concentrations over $2.5 \mathrm{ng} / \mathrm{g}$ for heptachlor epoxide, but only 3 percent for heptachlor. Heptachlor epoxide was found at higher concentrations in the Midwest, particularly in the Mississippi River system (Figure 4-51). The box plot for heptachlor epoxide shows that median concentrations for all categories were below detection (Figure 4-52).

Figure 4-50. Cumulative frequency distribution of a) heptachlor and b) heptachlor epoxide in fish tissue. (Maximum concentration at each site was used. Bar on x-axis represents sites below detection.)

Figure 4-51. Map of geographical distribution of various concentration ranges for a) heptachlor and b) heptachlor epoxide in fish tissue.

Summary Table for Heptachlor Epoxide Box Plot

Site Categon	n	\qquad	Mean	Stan. Dev.	Median
NASQAN (NSO)	39	ND.- 63.2	3.3	11.2	ND
Background (B)	20	ND.-19.9	1.6	5.0	ND
Paper Mills Using Cl (PPC)	39	ND.- 28.7	1.1	5.0	ND
Other Paper Mills (PPNC)	17	ND.- 2.9	0.2	0.7	ND
Refinery/Other Industry (RI)	5	ND.- 2.3	0.5	1	ND
Superfund Sites (NPL)	6	ND	ND	ND	ND
Wood Preservers (WP)	10	ND	ND	ND	ND
IndustriaVUßan Sites (IND/URB)	31	ND.- 24.1	1.3	4.7	ND
POTW	6	ND	ND	ND	ND
Agricultural (AGRI)	15	ND - 9.3	0.6	2.4	ND

$\mathrm{n}=$ number of sites in category. ND's set at 0 . Maximum concentrations at sites were used.

Figure 4-52. Box and whisker plot for heptachlor epoxide in ©ish tissue.

Pentachloronitrobenzene

Pentachloronitrobenzene (PCNB) is used as a soil fungicide, a seed dressing agent for peanuts, to control stem and root rot on flowers and vegetables, and to minimize mold growth on cotton and turf. PCNB was detected at four sites (Figure 4-53a,b). The highest concentration of PCNB was found in a whole-body carp sample from the Missouri River at St. Joseph (3044) located near an agricultural chemical manufacturing plant. and the next highest was a whole-body carp sample from the Scioto River at Chillicothe, Ohio (3132) near pesticide and inorganic chemical manufacturing plants and a Superfund site.

COMPARISON WITH NATIONAL CONTAMINANT BIOMONITORING PROGRAM

The National Contaminant Biomonitoring Program (NCBP), formerly part of the National Pesticide Monitoring Program, is an ongoing study begun in 1964 to determine how organochlorine pollutant levels vary over geographic regions and change over time. Fish have been monitored since 1967 and the latest analyses were performed in 1984 for 19 organochlorine compounds and 7 metals (cadmium, lead, mercury, arsenic, copper, selenium, and zinc). Fifteen of the organochlorine compounds and mercury were also analyzed in the NSCRF.

The 1984 NCBP sampled 112 sites for organic chemicals and 109 sites for metals. The monitoring sites were selected to represent watersheds, and included all of the major river basins in the continental United States. Only 11 sites were common to both the NCBP and NSCRF studies. Composite samples consisted of five fish and were collected at each site for three fish species-two bottom feeder species and one predator species.

A total of 15 organic compounds and mercury were measured in both studies. In the NSCRF, 11 compounds were found at greater than 50 percent of the sites. Eight of these compounds were analyzed in the NCBP: p,p'-DDE, PCBs, dieldrin, cis- and trans-chlordane, pentachloroanisole, trans-nonachlor and alpha-BHC. All of these compounds, except alpha-BHC, were found at greater than 50 percent of the sites in the NCBP. Several other pesticides were found at higher concentrations in the NCBP including dieldrin, endrin, gamma-BHC, and chlordane-related compounds. This is consistent with the larger proportion of sites near agricultural areas in the NCBP. Additionally, the percent occurrence for P.p'-DDE and PCBs in both studies is very close. The percent occurrences for DDE were 99 in the NSCRF and 98 in the NCBP, and 91 for PCBs in both studies. Mercury was similar, found in samples from 92 percent of the sites in the NSCRF and 100 percent of the sites in the NCBP. These results highlight the ubiquitous extent of these three compounds.

-Percent of sites in category

Figure 4-53. Pentachloronitrobenzene: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue.

Chapter 5 - Fish Species Summary and Analysis

This chapter provides biological information on the various fish species sampled as well as a summary of average fish tissue concentration data by type of fish species. At most of the sampled sites, few, if any, different types of species were collected. As a consequence, only limited bioaccumulation or other comparions can be made between fish species for a given sampling site. Nevertheless, the tables showing the concentration of chemicals by fish species may provide a good basis for follow-up studies or as a supplement to other fish contamination studies. Additionally, the information on fish feeding strategies may prove useful in developing future source correlation studies.

SUMMARY OF FISH SPECIES SAMPLED

Though protocols were established to minimize fish sample variables among sites, over 119 different species representing 33 taxonomic families of fish were collected for this study. Freshwater, estuarine, and marine samples were included. Table 5-1 lists the species by scientific and common name and shows the number of sites at which they were sampled. This table also shows feeding strategy and indicates whether the fish is found in a freshwater and/or marine environment. Sampling locations were shown earlier in Figure 2-4. Tissue concentrations have been measured in catadromous species (e.g., American eel, Anguilla rostrata): anadromous species (e.g., salmon, Onchorhynchus); and freshwater, estuarine, and marine species, in addition to exotic introduced species such as Tilapia. In addition, 17 samples of shellfish were collected, which are described at the end of this section.

The 14 most frequently sampled species were as follows:
Bottom Feeder Species Number of Sites Where Samoled
Carp 135
White Sucker 32
Channel Catfish 30
Redhorse Sucker 16
Spotted Sucker 10
Game SpeciesNumber of Sites.WhereSamoled
Largemouth Bass 83
Smallmouth Bass 26
Walleye 22
Brown Trout 10
White Bass 10
Northern Pike 8
Flathead Catfish 8
White Crappie 7
Bluefish 5

TABLE 5-1
Distribution and Feeding Strategy for Fish Species Collected

Scientific Name	Common Name	Range ${ }^{1}$	Feeding Strategy	$\begin{aligned} & \text { No. of } \\ & \text { Sites }^{3} \end{aligned}$
Class - Chondrichthyes				
Order - Squaliformes				
Family - Carcharhinidae				
Iriakis semifasciata	Leopard Sherk	M	P	1
Order - Rajifiorues				
Family - Rajidae				
Baia binocrulata	Big Skate	M	B	1
Family - Dasyatidae				
Dasyatis (species undnown)	Stingray	M	P	1
Order - Chimaeriformes Family - Chimaeridae				
Hydrolaquscollici	Spoced Ratrish	M	P	1
Class - Osteichehyes				
Order - Acipenseniormes				
Acipenser transmopranus	Whice Sturgeon	Both	P	4
Order - Semionoofarmes				
Lepisosteus ossems	Lonpoose Ger	F	P	1
Lepisosteus platosionms	Shormose Ger	F	P	1
Family.- Amiidae				
Amia.calva	Bowfin	F	P (Pisc.)	2
Order - Anquilliformes Family - Anquillidae				
Anguillamstrata	American Eel	Both	P	1
Order - Clupeiformes Family - Clupeidse				
Alosa sapidissims	American Shad	Both	P	1
Docosoma cemediapum	Gizond Shad	Both	$\begin{gathered} P \\ \text { (Filter Feeder) } \end{gathered}$,

${ }^{3}$ Number of sices whers fich wero collected and malymed
SOURCE: AFS. 1980
Pisc. $=$ Piscivaros: Omai $=$ Ounivero

TABLE 5-1 (CONT.)

Scientific Name	Common Name	Range ${ }^{1}$	Feeding Strategy	$\begin{aligned} & \text { No. of } \\ & \text { Sites }{ }^{3} \\ & \hline \end{aligned}$
Order - Osteoglossitormes				
Family - Hiodonudae Hiodon alosordes Goldeye F P				
Order - Salmoniformes				
Family - Salmonidae				
Coregonus clupeafomis	Lake Wbitefisb	Both	P	1
Oacorbynchus gorbuscha	Pink Salmon	Both	P	1
Oncorbymchus kisulesh	Coho Salmon	Both	P (Pisc.)	1
Qncorbymetus.mykiss.	Rainbow Trout	Both	P (Fish. Insects, Algae)	7
Qncorbymchus is hawy ischa	Chinook Salmon	Both	P (Pisc.)	1
Prosopum williamsoni	Mountain Whitefish	F	P (Aq. Insects)	1
Salmo clarki	Cuthroat Trout	Both	P	1
Salmoraalar	Adantic Salmon	Both	P (Pisc.)	2
Satmetura	Brown Trout	Both[I]	P (Pisc.)	10
Salvetinus fiontimalis	Brook Trout	Both	P	2
Salyelinus malma	Dolly Varden	Both	P	2
Salveldnus_amaycush	Lake Trous	F	P (Pisc.)	1
Family - Osmeridae				
Hypomesus pretiosus	Surf Smelt	Both	B	1
Family - Esocidae				
Esoxlucius	Northern Pike	F	P (Pisc.)	8
Esosprizer	Chain Pickeret	F	P	4
Esos spp.	Pickerel; Pike	F	P	1
Order-Cypriniformes Famuly - Cyprinidae				
Acrocheilus alutaceus.	Chiselmouth	F	B	1
Carassius aurams.	Goldfish	$\mathrm{FIT}]$	B	1
Cienopharmgodonidella	Grass Carp	F[]	B	,
Cурпinus camo	Common Carp	$\mathrm{F}[1]$	B (Omni.)	135
Gilarspp.	Chub	F	B	1
Orthodonmicrolepidous	Sacramento Blackfish	F	B	1
Prychocheilus	Squawfish	F	B (Pisc.)	9
Family - Catostomidae				
Camiodes camio	River Carpsucker	F	B	4
Camiodes syprinus	Quillback	F	B	1
Catostomus catosiomus.	Longnose Sucker	F	B	2
Catostomus columbianus	Bridgelip Sucker	F	B	3
Catostomus commersoni	White Sucker	F	B (Omni.)	32
Catostomus.macrocheilus	Largescate Sucker	F	B	2
Catostomus ocsidentalis.	Sacramento Sucker	F	B	3
	Sucker (unspecified)	.	.	32

[^16]
SOURCE: AFS. 1980

TABLE 5-1 (CONT.)

Scientific Name	Common Name	Range ${ }^{1}$	Feeding Strategy ${ }^{2}$	$\begin{aligned} & \text { No. of } \\ & \text { Sites }{ }^{3} \end{aligned}$
Erimyzoneblongus	Creek Cbubsucker	F	B	1
Enimyzonsucena	Lake Cbubsucker	F	B	1
Hypentehumgiericans	Northem Hog Sucker	F	B	1
Istiobus bubalus	Smallmouth Buffalo	F	B	5
istotussypanedus.	Bigmouth Buffalo	F	B	4
			(Zooplankton \& Crust.)	
Istiobus niger	Black Buffalo	F	B	1
Minytremamelanops	Spoted Sucker	F	B (Zooplankton Insect Larvae/Plants)	10
Moxostoma anisurum	Silver Redhorse	F	B (Aq. Insects)	1
Moxostomacongestum	Gray Redborse	F	B (Aq. Insects)	1
Moxostoma duguesnei	Black Redhorse	F	B (Aq. Insects)	1
Moxosiomaerythrumm	Golden Redhorse	F	B (Aq. Insects)	1
Moxostomamacrolepidoum.	Sborthead Redhorse	F	B (Aq. Insects)	1
Moxosioma poecilurum	Blacktail Redhorse	F	B (Aq. Insects)	1
Moxosioma	Redhorse Sucker	F	B (Aq. Insects)	16
Order - Sillunformes Family - Ictaluridae				
Istalurus cams	White Catrish	F	B	4
Etaturisfuratus	Blue Catish	F	B (Omni.)	6
Ictalurus melas.	Black Bullhead	F	B (Omni.)	2
tctaturesmatatis.	Yellow Bullhead	F	B (Omni.)	1
tctaturusmebutosus	Brown Bullhead	F	B (Omni.)	4
Ictalumspumstatus	Channel Catish	F	B (Omni.)	30
Pxiodicrisoliyaris	Flathead Catfish	F	P (Pisc.)	8
	Catish (unspecified)	-	(11
Family - Anidae				
Ariusfelis	Hardhead Catfish	Both	B	7
Family - Gadidae				
Gadus morbua	Adlantic Cod	M	P	1
Order - Perciformes Famuly - Percichthyidae				
Moroneamericana	White Perch	Both	P	4
Morone.chrosops	White Bass	F	P	10
			(Fish \& Insects)	
Morone saxatilis	Striped Bass	Both	P	1
	Bass (unspecified)	-	-	3

[^17]SOURCE: AFS. 1980
Pisc. $=$ Piscivorous: Omni. = Omnivarous

TABLE 5-1 (CONT.)

Scientific Name	Common Name	Range ${ }^{1}$	Feeding Strategy ${ }^{2}$	No. of Sites
Family - Centrarchidae				
Ambloplites rupestios.	Rock Bass	F	P	t
Lemomis auras	Redbreast Sunfish	F	P	2
Lepomascyaneilus	Green Sunfish	F	P	2
Lepomis gibbosus.	Pumpkinseed	F	P	1
Lepomis gulosus	Warmouth	F	P	1
Lepomis macrochious	Bluegill	F	P (Insects)	4
Lepomismegaloris	Longear Sunfish	F	P	1
Lepomis microlophus	Redear Sunfish	F	P (Mollusks)	1
Microderus ceosae.	Redeye Bass	F	P	1
Microplerus delomusui	Smallmouth Bass	F	P (Pisc.)	26
Microplerus notuиs	Suwannee Bass	F	P	1
Micropeerus punctulaus	Spoted Bass	F	P	3
Microdterus salmoides	Largemouth Bass	F	P	83
Romoxisannulans	Wbite Crapple	F	P (Pisc.)	7
Romoxis_nigromaculaus	Black Crappie	F	P (Pisc.)	4
	Crapple (unspecified)	.	-	3
Family - Percidae				
Perca fayescens	Yellow Perch	F	P	1
Stizostedioncamadense	Sauger	F	P	3
Stizostedion yureum.				
уimeum	Walleye	F	P (Pisc.)	22
Family - Pomatomidae				
Romatomus saltarix	Bluefish	M	P (Pisc.)	5
Family - Carangidae				
Caranx barcholomaej	Yellow Jack	M	P	1
Caranx hiopos	Crevalle Jack	M	P	1
Caranxignoblis	Papio	M	P	,
Family - Lutjanidae				
Lutianus campechanus	Red Snapper	M	P	2
Family - Sparidae				
Archosargus probato				
Family - Sciaenidae				
Aplodinolus.gunniens	Fresbwater Drum	F	P (Mollusks \& Fish)	3
Cynoscion nebulosus	Spoted Seatrout	Both	P	3
Cynoscion regalis	Weakfish	M	P	3
Equeluspunctams	Spotted Drum	M	P	
Leiostomus xanthuris.	Spor	Both	P	3

${ }^{1}$ Esamaioe/Maride: $M=$ Marive: $F=$ Freshwater: $[\mathrm{I}]=$ Incroduced
${ }^{2} \mathrm{P}=$ Predator: $\mathrm{B}=$ Boaom Feede
${ }^{3}$ Number of sites where fish were collected and analyzed
SOURCE: AFS. 1980
Pisc. $=$ Piscivoraus: Omai. $=$ Omnivoraus

TABLE 5-1 (CONT.)

Scientific Name	Common Name	Range ${ }^{1}$	Feeding Strategy	$\begin{aligned} & \text { No. of } \\ & \text { Sites }{ }^{3} \end{aligned}$
Micronorontas undulatus	Allanuc Croaker	Both	P	3
Pogomascromis	Black Drum	M	P	3
Sciaemons ncellatus	Red Drum	Both	P	3
Family - Cichlidae				
Tilapia (species uncertan)		-	B	1
Tilapia zilli	Redbelly Tilapia	F(I)	B	1
Family - Embiotocidae				
Pbanerodonfurcamus	WDite Sufperch	M	B	1
Famuly - Mugilidae				
Musilcephalus	Striped Mullet	Both	P	3
Family - Scorpaenidae				
Sebastes aucculamus	Brown Rockfish	M	P	1
Sebastes.caurinus	Copper Rockfish	M	P	1
Sepastesmativer	Quillback Rockfisb	M	P	1
Sebastes paucispinis	Bocaccio	M	P	1
Sebastes procieer	Redstripe Rockfish	M	P	1
Family - Cotudae				
Corms (species unknown)	Sculpin	-	B	4
Comusaleuticus.	Coastrange Sculpin	Both	B (Plants \& Insects)	
Order - Pleuronecuformes Family - Bothidae				
Paralichthys dentarus.	Summer Flounder	M	P	1
Paralichihus lethostioma	Southern Floumder	Both	P	2
Family - Pleuronectidae				
Hinooplossoides elassodon	Fathead Sole	M	P	2
Hymsodsena eutulata.	Diamond Turbot	M	P	1
Platichthys stellams	Starry Floumder	Both	P	5
Pleumonichthys yerticalis	Homyhead Turbot	M	P	1
Pseudopleuronectes				
americanus	Winter Floumder	M	P	4

[^18]SOURCE: AFS. 1980
Pisc. $=$ Piscivorous: Omaj. $=$ Omaivarous

PREVALENCE AND AVERA GE CONCENTRATION OF CHEMICALS BY SPECIES

Table 5-2 shows average fish tissue concentrations for each of the dioxin/furan compounds in the 14 most commonly sampled fish species at targeted sites. With the exception of four congeners (1,2,3,4.7,8.9 HpCDF; 1,2,3,4,7,8 HxCDD; 1,2,3,6,7,8. HxCDF; 1,2,3,7,8,9 HxCDF), whole-body samples from bottom-feeding species have higher dioxin/furan concentrations than fillet samples from game fish. Average concentrations were the highest in carp for four of the six dioxins, and three of the nine furans. The highest concentrations of the other congeners were found in spotted and redhorse suckers and channel catfish for the bottom-feeding species. For game fish species, the highest concentrations were found in white crappie for two of the six dioxins, four of nine furans, and TEC. Brown trout had the highest average concentration for one dioxin and two furans. The highest concentrations of the other congeners were found in largemouth bass, white bass, northem pike, and bluefish. The occurrence of pollutants in the most frequently sampled fish species varied by chemical. Some pollutants (i.e., $2,3,7,8$ TCDF and $1,2,3,4,6,7,8 \mathrm{HpCDD}$) were found in the majority of samples (Table 5-3). Two furans, $1,2,3,7,8,9 \mathrm{HxCDF}$ and $1,2,3,4,7,8,9$ HpCDF , were not found in quantities above detection in any of the game fish fillets, but were detected in a small number of the bottom feeder whole-body samples.

Table 5-4 shows the average fish tissue concentration of selected xenobiotics for the 14 most commonly sampled species at targeted sites. Average mercury concentrations are higher in game fish analyzed as fillets than bottom feeders analyzed as whole-body samples. As discussed in Chapter 4, this result would be expected because mercury is stored in the muscle tissue rather than the lipid and would, therefore, exhibit higher concentrations in fillets than in whole-body samples. Ten xenobiotics are detected in whole-body samples of bottom feeders and in fillet samples of game fish at roughly the same average concentrations. These compounds are biphenyl, chlorpyrifos, dicofol, dieldrin, endrin, mirex, oxychlordane, PCBs, DDE, and trifluralin. Twelve compounds have higher average concentrations in whole-body samples of bottom feeders than in fillet samples of game fish: alpha and gamma-BHC; heptachlor epoxide; pentachloroanisole; pentachlorobenzene; chlordane; nonachlor; three trichlorobenzenes; 1,2,3,4 tetrachlorobenzene; and hexachlorobenzene. Biphenyl, mercury, PCBs, and DDE were found in a majority of both whole-body and fillet samples with concentrations above detection (Table 5-5). Endrin, 1,3,5 trichlorobenzene and trifluralin were found in quantities above detection in only a few of the game fish fillet samples collected.

HA BITAT AND FEEDING STRATEGY OF MOST FREQUENTLY SAMPLED SPECIES

Common Carp

The common carp (Cyprinus carpio) is distributed widely throughout most parts of the country. It prefers the shallows of warm streams, lakes, and ponds containing an abundance of vegetation. It is not normally found in clear, cold waters or streams of high gradients.

The spawning period for this species can last from April to August, but generally spawning occurs in late May and June. Shallow and weedy areas of lakes, ponds, tributaries, streams, swamps, floodplains, and marshes are suitable spawning grounds. The young carp consume zooplankton as

TABLE 5-2
Average Fish Tissue Concentrations of Dioxins and Furans for Major Species

Fish Soecies	$\begin{aligned} & 2378 \\ & \mathrm{TCDD} \end{aligned}$	$\begin{gathered} 12378 \\ \text { PeCDD } \end{gathered}$	$\begin{aligned} & 123478 \\ & \mathrm{HxCDD} \\ & \hline \end{aligned}$	$\begin{aligned} & 123678 \\ & \mathrm{HxCDD} \\ & \hline \end{aligned}$	$\begin{aligned} & 123789 \\ & \mathrm{HxCDD} \end{aligned}$	$\begin{array}{\|c\|} 1234678 \\ \mathrm{HoCDD} \end{array}$	$\begin{aligned} & 2378 \\ & \text { TCDF } \\ & \hline \end{aligned}$	$\begin{gathered} 12378 \\ \mathrm{PeCDF}^{2} \\ \hline \end{gathered}$	$\begin{gathered} 23478 \\ \text { PeCDF } \\ \hline \end{gathered}$	123478 HxCDF	123678 HxCDF	123789 HxCDF	$\begin{aligned} & 234678 \\ & \mathrm{H} \times \mathrm{CDF} \\ & \hline \end{aligned}$	1234678 HoCDF	$\begin{gathered} 1234789 \\ \mathrm{HpCDF} \\ \hline \end{gathered}$	TEC
Bottom Feeders																
Carp	7.76	3.63	2.16	6.81	1.54	22.29	10.15	1.31	4.01	2.54	1.91	1.16	1.20	2.49	11.22	13.06
White Sucker	8.08	2.05	1.03	1.96	0.88	3.72	22.89	1.10	2.64	2.21	1.29	1.06	1.09	1.23	1113	12.79
Channel Cattish	11.56	2.37	1.61	5.62	1.29	9.40	2.22	0.52	2.91	2.41	1.41	1.381	1.62	2.55	1126	14.80
Redhorse Sucker	4.65	1.50	1.40	2.36	0.84	4.94	30.09	0.75	11.28	2.10	1.16	1.197	1.50	1.57	1.361	9.22
Spotted Sucker	1.73	2.34	1.70	12.08	1.14	17.48	7.49	2.12	2.06	2.22	1.79	1.28°	1.78	1.77	1108	6.23
Game Fish																
Laroemouth Bass	1.73	0.59	1.12	1.28	0.64	2.48	2.18	0.37	0.47	1.24	1.23	$1.21{ }^{\circ}$	0.88	0.821	1.21°	1191
Smallmouth Bass	0.72	$0.50{ }^{\circ}$	1.13°	0.79	$0.64{ }^{\circ}$	0.67	1.93	$0.36{ }^{\circ}$	0.51	1128	1.23	$1.26{ }^{\circ}$	0.89*	0.69	1.30°	$0.65{ }^{\circ}$
Walleve	0.88	$0.54{ }^{\circ}$	$0.99{ }^{\circ}$	0.73	$0.62{ }^{\circ}$	0.88	1.83	0.351	0.38	1.04	1.09*	$1.07{ }^{\circ}$	0.75	0.74	1121°	0.79°
Brown Trout	2.52	1.01	$1.07{ }^{\circ}$	0.98	$0.68{ }^{\circ}$	1.18	3.74	0.60	1.36	1.47	1.12°	1.09*	0.94*	0.67^{*}	$1.16{ }^{*}$	3.31
White Bass	3.00	0.66	1.05°	0.78	$0.61{ }^{\circ}$	1.01	5.07	0.40	0.49	1.04	$1.16{ }^{\circ}$	1.13*	$0.81{ }^{\circ}$	0.63	1.17°	3.44
Northem Pike	0.77	$0.46{ }^{\circ}$	$1.23{ }^{\circ}$	0.91	$0.69{ }^{\circ}$	0.73	1.01	0.44	0.66	1.41°	1.42°	1.381	$0.98{ }^{\circ}$	0.56	1.30°	0.66
Flathead Catfish	0.78	0.43	0.90	1.06	0.50	1.67	1.63	0.40	0.56	1.05	1.20*	1.17°	$0.61{ }^{\circ}$	0.56	1.10^{*}	0.99
White Craoole	2.13	0.60	$1.29{ }^{\circ}$	1.03°	$0.83{ }^{\circ}$	1.33	10.46	0.54	0.67	1.33°	1.33°	$1.30{ }^{\circ}$	$0.95{ }^{\circ}$	0.961	1.34*	3.80
Bluefish	0.85	0.56	$1.23{ }^{\circ}$	$0.98{ }^{\circ}$	0.69*	0.65	2.11	0.41	0.59	1.42°	1.42°	1.391	$0.98{ }^{\circ}$	$0.72{ }^{\circ}$	1.31°	1.41

Values calculated using whole body samples for bottom feeding species and fillet samples for Game Fish (predators).
Values below detection have been replaced by one-hall detection limit for the given sample. Asterisk indicates all values below detection.
Unitse pg / g.

TABLE 5-3
Detailed Summary of Occurrence of Prevalent Dioxins/Furans by Fish Species

Fish Soecies	$\begin{aligned} & 2378 \\ & \text { TCDD } \end{aligned}$	$\begin{gathered} 12378 \\ \mathrm{PeCDD} \end{gathered}$	123478 HxCDD	123678 HxCDD	123789 HxCDD	$\begin{aligned} & 1234678 \\ & \mathrm{HpCDD} \end{aligned}$	2378 TCDF	12378 PeCDF	$\begin{aligned} & 23478 \\ & \text { PeCDF } \end{aligned}$	123478 HxCDF	$\begin{aligned} & 123678 \\ & H \times C D F \end{aligned}$	123789 HxCDF	$\begin{aligned} & 234678 \\ & \mathrm{H} \times \mathrm{CDF} \\ & \hline \end{aligned}$	$\begin{gathered} 1234678 \\ \mathrm{H} C \mathrm{CDF} \end{gathered}$	1234789 HpCDF
Bottom Feeders															
Carp	106/135	89/133	73/125	102/125	71/125	103/108	124/135	83/134	96/134	79/126	45/126	2/126	63/126	84/109	6/109
White Sucker	28/37	20/36	7134	20/34	7134	28/31	35/37	19/37	$27 / 37$	14/34	$4 / 34$	$1 / 34$	8/34	16/31	2131
Channel Catish	12/19	13/17	6/18	16/18	12/18	18/18	16/19	9/19	15/19	9/18	5/18	0/18	8/18	10/18	1/18
Redhorse Sucker	9/15	7/15	1/14	9/14	3/14	$12 / 13$	14/15	6/15	11/15	5/15	1/15	$0 / 15$	3/15	5/13	$0 / 13$
Spotted Sucker	6/10	5/10	4/10	7/10	6/10	10/10	9/10	$2 / 10$	6/10	$2 / 10$	1/10	$0 / 10$	1/10	$5 / 10$	1/10
Game Fish															
Largemouth Bass	$34 / 75$	$10 / 73$	2172	$18 / 72$	5172	$37 / 67$	42175	6174	$12 / 74$	$10 / 73$	2173	0173	6173	13/67	$0 / 67$
Smallmouth Bass	9/22	0/21	$0 / 20$	2/19	0120	10/18	16/22	$0 / 22$	5122	1/20	$1 / 20$	$0 / 20$	0/20	1/18	0/18
Walleye	5/18	$0 / 18$	0/16	1/16	0/16	9/16	$12 / 18$	0/18	3/18	1/16	0/16	0/16	1/16	2/16	$0 / 16$
Brown Trout	218	$3 / 7$	017	$1 / 7$	017	216	$6 / 8$	218	418	217	$0 / 7$	017	017	016	016
White Bass	5/10	2/10	0/10	$2 / 10$	0110	8/9	10/10	4/10	4/10	1/10	$0 / 10$	$0 / 10$	$0 / 10$	1/9	$0 / 9$
Northern Pike	$4 / 7$	$0 / 6$	017	617	017	217	4/6	$1 / 7$	$1 / 7$	$0 / 7$	017	017	017	$1 / 7$	017
Flathead Catfish	$3 / 6$	3/6	$1 / 6$	$4 / 6$	1/6	5/6	216	1/6	216	216	016	016	216	3/6	016
White Crappie	$1 / 8$	$1 / 8$	$0 / 7$	$0 / 7$	$0 / 7$	217	318	$1 / 8$	$1 / 8$	$0 / 6$	$0 / 7$	017	017	017	$0 / 7$
Bluetish	$3 / 4$	$1 / 4$	$0 / 4$	$0 / 4$	$0 / 4$	1/4	$4 / 4$	1/4	4/4	$0 / 4$	$0 / 4$	014	$0 / 4$	014	$0 / 4$

Values were delermined using whole body samples for bottom-feeding species and fillet samples for game species.
First number indicates number of samples where detected; second number indicates total number of samples at different sites for given species analyzed.
It more than one fillet or whole body sample of the same species at a site was analyzed, only the highest value was used.

TABLE 5-4
Average Fish Tissue Concentrations of Xenobiotics for Major Species

Fish Soecies	Alpha-BHC	Gamma-BHC	Biphenyl	Chiorpyritos	Dicoiol	Dieldrin	Endrin	Heptachlor Epoxide	Mercury ($\mu \mathrm{q} / \mathrm{q}$)	Mirex	Oxychlordane	PCBs
Botlom Feoders												
Carp	3.10	4.34	4.38	8.23	0.88	44.75	1.40	400	011	3.20	820	2941.13
White Sucker	3.31	1.66	1.28	1.75	0.48	22.75	024	109	0.11	435	3.10	169781
Channet Cat	2.87	3.17	1.24	697	059	15.44	9.07	050	009	14.59	641	130052
frechorse Sucker	0.82	0.41	1.25	0.35	ND	5.35	097	ND	0.27	057	237	487.72
SpottedSuucker	1.45	2.63	3.35	0.56	0.05	5.52	ND	ND	0.12	179	005	13390
Game Fish												
Largermouth Bass	0.15	0.07	0.38	0.23	0.20	5.01	ND	0.30	0.46	0.21	047	23226
Smallmouth Bass	0.36	0.15	0.33	008	ND	2.34	ND	0.07	0.34	1.99	054	49622
Walleye	ND	ND	0.40	0.04	ND	3.73	ND	0.21	0.51	008	1.11	368.65
Brown Trout	1.59	ND	0.81	ND	0.94	20.13	ND	2.08	0.14	4398	538	2434.07
White Bass	0.34	0.79	0.62	1.32	ND	9.35	ND	140	0.35	0.21	084	28835
Northern Pike	0.55	ND	0.59	11.43	0.31	9.04	ND	ND	0.34	2.39	400	788.40
Flathead Cat	0.92	0.58	0.60	2257	1.28	37.38	3.45	0.57	027	ND	063	521.19
White Crappie	0.23	ND	0.21	ND	ND	ND	ND	ND	0.22	ND	ND	2234
Bluefish	0.38	0.12	0.20	ND	ND	2.87	ND	ND	0.22	0.13	ND	368206

Fish Species	Pentachloroanisole	Pentachloro benzene	DDE	Total Chlordane	Total Nonachlor	123 TCB	124 TCB	135 TCB	1234 TECB	Trituralin	Hexachlorobenzene
Botlom Feoders											
Carp	16.50	1.04	415.43	67.15	63.15	1.54	4.77	008	0.30	12.55	3.58
Whita Sucker	9.06	0.39	78.39	1842	20.83	0.16	0.30	0.14	0.15	ND	3.62
Channel Cat	39.60	1.32	627.77	54.39	66.28	0.14	0.37	ND	0.88	1.00	2.36
Recthorse Sucker	2.87	0.02	87.25	16.48	30.73	0.55	6.48	008	0.09	ND	0.58
Spotted Sucker	17.68	0.02	75.31	12.33	15.00	3.34	12.00	1.00	0.09	ND	0.02
Game Fish											
Largemouth Bass	0.57	0.02	55.72	289	4.21	0.22	0.19	0.03	0.01	ND	0.20
Smallmouth Bass	0.23	0.02	33.63	4.01	782	0.70	0.59	0.04	0.04	ND	0.36
Walloye	0.76	ND	34.00	3.62	8.04	0.29	038	ND	0.004	ND	0.11
Brown Trour	0.09	0.60	158.90	7.25	32.60	1.10	0.98	ND	0.09	ND	3.06
White Bass	0.93	ND	17.44	1087	16.00	0.21	0.10	ND	0.01	ND	0.83
Northern Pike	1.51	0.09	59.50	5.45	13.88	0.30	0.23	ND	0.01	ND	0.20
Flathead Cat	0.31	ND	755.18	16.07	14.04	0.10	0.18	ND	ND	44.37	085
Whito Crapoie	0.33	ND	10.04	0.34	0.28	0.08	0.08	ND	ND	ND	ND
Bluefish	0.05	ND	29.23	7.74	7.56	6.25	466	057	ND	ND	ND

Values catculated using whole body samples for bonom leeding species and fillet samples for Game Fish (predators). Values below detection have been set at zero.
Units = ng'g. unless noted.

TABLE 5-5
Detailed Summary of Occurrence of Prevalent Xenobiotics by Fish Species

Fish Species	Aloha-BHC	Gamma-BHC	Biphonyl	Chworpyrios	Dicotol	Dieldrin	Endrin	Heptactior Epoxide	Mercury	Mirex	Oxychlordane	PCBs
Bottom Foeders												
Carp	77/128	571128	124128	46/128	12128	91/128	16/128	33/128	111/133	55/128	36/128	122/128
Write Sucker	$24 / 35$	1835	33/35	7135	7135	$24 / 35$	3/35	2135	$29 / 34$	$9 / 35$	9/35	32/35
Chemel Cat	7116	$7 / 16$	$16 / 16$	9/16	$4 / 16$	11/16	$2 / 16$	$2 / 16$	$16 / 17$	7116	6/16	15/16
Rechorso Sucker	6/14	$4 / 14$	$14 / 14$	3/14	0/14	$8 / 14$	214	$0 / 14$	$14 / 15$	6/14	5/14	14/14
Spoltod Sucker	3/10	$2 / 10$	10110	1/10	1/10	5/10	$0 / 10$	$0 / 10$	9/10	$6 / 10$	1/10	9/10
Game.Fish												
Largemouth Bass	5/31	$3 / 31$	29/31	4/31	7131	9/31	031	$2 / 31$	65/66	$6 / 31$	4/31	26131
Smalimouth Bass	4115	215	15/15	1/15	0/15	$8 / 15$	$0 / 15$	1/15	$20 / 20$	$6 / 15$	3/15	$14 / 15$
Walleve	Or	0/8	$8 / 8$	$1 / 8$	018	$3 / 8$	$0 / 8$	28	19/19	218	2/8	818
Brown Trout	1/3	$0 \cdot 3$	$3 / 3$	$0 / 3$	1/3	23	0/3	23	718	213	$2 / 3$	3/3
White Bass	$3 / 5$	$4 / 5$	$5 / 5$	$3 / 5$	$0 / 5$	$5 \sqrt{5}$	1/5	215	$6 / 6$	3/5	215	5/5
Northern Pike	$1 / 6$	06	66	36	26	$3 / 6$	016	06	77	3/6	$1 / 6$	5/6
FlatheadCat	2/4	$1 / 4$	4/4	3/4	$1 / 4$	$4 / 4$	$1 / 4$	$1 / 4$	$6 / 6$	0/4	1/4	$4 / 4$
White Crapole	114	0/4	$4 / 4$	$0 / 4$	$0 / 4$	0/4	$0 / 4$	$0 / 4$	$5 / 7$	$0 / 4$	$0 / 4$	3/4
Bluefish	1/3	1/3	23	$0 / 3$	$0 / 3$	23	$0 / 3$	$0 / 3$	$3 / 3$	1/3	$0 / 2$	3/3

Fish Species	Pentachtoroanisole	Pentachlorobenzene	ODE	Total Chiordane	Total Nonachior	123 TCB	124 TCB	135 TCB	1234 TECB	Trituralin	Hexachlorobenzene
Bottom Foeders											
Carp	103/128	42/128	$126 / 128$	109/128	1141128	35/128	$60 / 128$	14/128	16/128	31/128	72/128
White Sucker	25/35	7135	34/35	24/35	24/35	9/35	18/35	2135	$5 / 35$	0135	16/35
Channot Cat	11/16	4/16	$16 / 16$	12/16	14/16	3/16	7116	$0 / 16$	2/16	1/16	$6 / 16$
Redhorse Sucker	$11 / 14$	$1 / 14$	$14 / 14$	$7 / 14$	$10 / 14$	$6 / 14$	$6 / 14$	$2 / 14$	$2 / 14$	0/14	$4 / 14$
Spolted Sucker	7110	1/10	9/10	7/10	8/10	$7 / 10$	8/10	210	1/10	0/10	2/10
Game Fish											
Largemouth Bass	6/31	1/31	31/31	1231	18/31	17/31	17131	3/31	1/31	0/31	6/31
Smallmouth Bass	4115	1/15	15/15	8/15	9/15	9/15	8/15	1/15	3/15	0/15	5/14
Walleye	618	0/8	8/8	4/8	3/8	$3 / 8$	3/8	$0 / 8$	1/8	$0 / 8$	2/8
Brown Trout	1/3	23	$3 / 3$	$2 / 3$	213	$3 / 3$	$3 / 3$	$0 / 3$	$1 / 3$	0/3	2/3
White Bass	$5 / 5$	$0 / 5$	5/5	4/5	5/5	4/5	3/5	$0 / 5$	1/5	$1 / 5$	3/5
Northern Pike	216	$1 / 6$	$6 / 6$	$3 / 6$	$4 / 6$	3/6	$2 / 6$	$0 / 6$	$1 / 6$	0/6	$1 / 6$
Flathead Cat	$2 / 4$	0/4	$4 / 4$	3/4	$4 / 4$	$1 / 4$	214	014	$0 / 4$	3/4	214
WhiteGCrappie	$1 / 4$	$0 / 4$	$4 / 4$	$1 / 4$	1/4	$1 / 4$	$2 / 4$	$0 / 4$	$0 / 4$	$0 / 4$	$0 / 4$
Bluelish	$1 / 3$	0/3	$2 / 3$	3/3	3/3	$3 / 3$	$3 / 3$	1/3	$0 / 3$	$0 / 3$	0/3

Values were determined using whole bod y sampies for bottom-teeding species and fillet samples for predator soecies.
Frst number indicates number of samples where detected; second number indicates total number of samples at ditterent sites tor given species analyzedX
If more than one fillet or whole body sample of the same species at a stie was analyzed. Onty the highest value was used.
their major food source. Adults consume tish, snails, plants, bottom ooze, insect larvae, insects, crustaceans, mollusks, and fish eggs.

White Sucker

The white sucker (Catostomuscommersoni) is found in the northeastern, central, and eastern regions of the country. It is a common inhabitant of the most highly polluted and turbid waters. It tolerates a wide range of environments and stream gradients. However, it is found most often in lakes or reservoirs with clear to slightly turbid waters and a bottom consisting of gravel or sand with sparse vegetation.

Spawning generally occurs in mid-April to early May in swift water or rapids over gravel bottoms. The young feed on algae, zooplankton. and blood worms, and the adults consume fish, fish eggs, mud, plants, algae, insects, mollusks, and zooplankton.

Channel Catfish

The channel catfish (Ictalurus punctatus) is found throughout the central part of the country and into parts of the westem and eastem United States. It prefers clear, rocky, well-oxygenated streams, lakes, and reservoirs, but can adapt to slow-moving, silty streams.

The spawning period generally occurs from May to July in inlet streams or tributaries. The spawning nest is located in a crevice, under a bank, rock, or log, and can be constructed on several types of bottom substrate. The young consume aquatic insects and zooplankton, while the adults take any food available to them. This can include fish, plants, frogs, crayf ish, clams, worms, algae, and decaying or dead matter.

Spotted Sucker

The spotted sucker (Minytrema melanops) is found in the central and southeastern regions of the United States. It prefers large rivers and their sloughs and reservoirs that are slow moving with a soft bottom of muck or sand with vegetation. It is intolerant of turbid waters, various industrial pollutants, and bottoms covered with flocculent clay silts.

Spawning occurs throughout the month of May in pool-like areas near riffle over a rubble bottom. The young and adult spotted suckers both feed on zooplankton, insect larvae, crustaceans, algae, and higher plant material.

Redhorse Sucker

Redhorse suckers are most commonly found in the central and eastem parts of the country. Redhorse suckers generally prefer swiftly flowing sections of small to medium-sized streams with clear water and a gravel, bedrock, or sand bottom. They are intolerant of siltation and pollution in their habitat.

Spawning generally occurs during the month of April in shallower areas with a proper bottom substrate. Redhorse suckers are highly selective when it comes to choosing a spawning area. The water depth (0.5-2.0 ft) and the bottom substrate (approximately 70 percent fine rubble. 10 percent coarse rubble, and 20 percent sand and gravel) are the most important factors for a proper spawn. The young feed principally on phytoplankton, and the adults feed primarily on aquatic insects. For the data analyses in this report, all species of redhorse sampled were grouped under the name redhorse sucker.

Largemouth Bass

The largemouth bass (Micropterussalmoides) is found in most parts of the country. It prefers medium to large rivers, lakes, sloughs, ponds, and backwaters with clear to slightly turbid waters. It is usually found in shallower areas with dense to sparse vegetation.

The spawning period generally occurs from late April to early June. They tend to spawn a little earlier than the smallmouth bass. The fish spawn in quiet bays with emergent vegetation on a sand, gravel, or, occasionally, mud bottom. The young feed on algae, zooplankton, and insect larvae, while the adults feed on fish, craytish, mammals, large insects, and amphibians.

Smallmouth Bass

The smallmouth bass (Microptens dolomieui) is found mostly in the northeastern and central parts of the country, but can be found in limited areas of other parts of the country. It prefers medium to large streams, rivers ,and lakes with clear water, rocky or sandy bottoms, aquatic vegetation, and clean gravel shores.

Spawning generally occurs during late May and throughout June. The spawning nest is built on a gravel bottom beside a large boulder, log, stump, or foreign object in the shallows. The young consume insect larvae, zooplankton, and small insects, and the adults consume mostly fish but will also eat crayfish, insects, mammals, and amphibians.

Walleye

The walleye (Stizostedion yitreum vitreum) is found in most parts of the country except for the most western and southern areas. It prefers large clearwater rivers and lakes with sand and gravel bottoms. It is usually found in quiet backwaters and sloughs of these rivers and lakes.

Spawning generally occurs between mid-April and early May in wave-washed shallows or up inlet streams with gravel bottoms. This species prepares no spawning nest so the eggs are scattered over the gravel bottom of the area. The young consume zooplankton, insect larvae, and fry of other fish species, and the adults consume mostly fish, but will also eat insects, crayfish, and lamprey eels.

White Bass

The white bass (Morone chrysops) is found throughout the country, but is most heavily concentrated in the central United States. It prefers large, open rivers and lakes with clear to turbid waters and moderate currents.

The spawning period runs from late April into early June over most of its range. The spawning grounds consist of a firm bottom of sand, gravel, rubble, or rock in the shallows. This species builds no spawning nest, so the eggs are scattered over the bottom of the spawning area. The young white bass consume algae and zooplankton, and the adults consume fish, insect larvae, insects, and zooplankton.

Brown Trout

The brown trout (Salmotruta) is most heavily concentrated in the northeastern and western parts of the country. It prefers coldwater streams and lakes, but can tolerate warmer water than other species of trout. In streams, it can be found in deeper and slower moving pools, and in the Great Lakes, it is found close to the shore.

The spawning period generally occurs from October to December in waters ranging in size from large streams to small spring-fed tributaries. The spawning nest is made on a gravel bottom in the shallower sections of the stream. The young feed primarily on zooplankton and insect larvae, and the adults eat mostly fish but will also consume larval insects, insects, leeches, snails, crayfish, freshwater shrimp, and worms. The brown trout is known to eat more fish than the other species of trout.

Flathead Catfish

The flathead catfish (Pylodictisolivaris) is generally found in the central parts of the country. It prefers large, rocky rivers with deep pools, plenty of cover, and swiftly moving waters.

The spawning period generally occurs in the months of June and July. The spawning nest is built in a secluded dark shelter over a gravel bottom. The young consume aquatic insect larvae, and the adults consume mostly fish but will occasionally feed on crayfish.

Northem Pike

The northern pike (Esox lucius) is found in the northeastern and north central parts of the country. It prefers cool to moderately warm weedy lakes, ponds, and slow-moving rivers. It can be found in areas of light to dense aquatic vegetation with clear to slightly turbid waters.

The spawning period generally occurs in late March or early April in shallow flooded marshes or inlet streams. Grasses, sedges, or rushes with fine leaves are most suitable for egg deposition. The young feed on phytoplankton, zooplankton, and insects, and the adults consume mainly fish but will also consume crayfish, mammals, and frogs.

White Crappie

The white crappie (Romoxis anoularis) is found mostly in the central part of the country, but can be found in limited areas in other regions. It prefers sloughs, backwaters, landlocked pools and lakes. and pools in moderate-sized to large streams with slightly turbid to turbid waters. It is found in the shallow and warm areas with sparse vegetation over a variety of substrates.

The spawning period generally occurs in the months of May and June. The spawning nests are made in colonies near vegetation over a hard clay or gravel bottom in the shallows. The young consume zooplankton and small insects, and the adults consume mostly fish but will occasionally feed on insects.

Blue Fish

The bluefish (Pomatomus saltatrix) is an ocean predator found in the tropical and temperate waters of the world with the exception of the central and eastem Pacific. It lives around large shoals in open water and moves in toward coastal waters to feed. This movement inward, as well as other migrations, is correlated with the movement of prey species of fish. It will attack fish almost as long as itself and will kill prey that it does not eat. The bluefish is the only ocean fish included in the 14 most frequently sampled species for this study.

Shellfish
There were 17 shellfish samples analyzed in the study. These included 4 dungeness crabs, 2 hepatopancreas organs of crabs, 3 crayfish, 3 soft shell clams, 2 pacific oysters, 1 unidentified oyster, 1 unidentified mussel, and 1 unidentified shellfish. The different species of shellfish exhibited a wide range of chemical concentrations. This could be autributed to differences in habitat and food sources between species. Varying chemical concentrations within each type of species are most likely related to the location of capture.

The dungeness crabs, on average, were found to have the highest chemical concentrations of all the shellfish analyzed. The chemicals accumulate in the hepatopancreas organ of the crab in very high concentrations. The high concentrations of chemicals in these crabs may relate to the large amount of fish consumed as part of their diet. The crayfish consumes a smaller proportion of fish in its diet than the dungeness crabs. It also consumes other types of food including some plant material. This may account for the differences in chemical concentrations between the two species.

The oysters, mussels, and clams analyzed for some of the study sites are filter feeders and consume similar types of food. The soft shell clams show higher chemical concentrations than the other species of filter feeders. This may be explained by differences in habitat among these species. The clams prefer a muddy or sandy bottom, and the oysters and mussels prefer a rocky bottom. A muddy and soft bottom will tend to accumulate more contaminants than a rocky bottom, so this would most likely have a direct effect on the clams. Overall, the filter feeders showed lower chemical concentrations than the crabs and crayfish.

Chapter 6 - Estimate of Potential Human Health Risks

This chapter presents risk estimates to human health based on tillet concentration data shown in Appendix D. Most of the fillets were from game fish, but a few were from bottom feeders likely to be consumed by humans. Carcinogenic risks were estimated for 14 of the xenobiotic compounds for which cancer potency factors were available. Noncarcinogenic risks were estimated for the 21 compounds for which risk values (i.e., reference doses) were available. Human health risks were not calculated for dioxins/furans due to the current review of the potency of these chemicals. The estimated risks presented in the report are intended as a screening assessment. A detailed sitespecific risk assessment would require additional samples and would incorporate loc al consumption rates and patterns, and the actual number of people exposed. Information on the specific health effects of the study compounds and aquatic or wildlife effects, where available, are included in the chemical protiles. Appendix C.

Potential upper-bound human cancer risks from consumption of fish were estimated using fillet samples for selected analytes. Fillet data were available at 182 sites for mercury and 106 sites for the xenobiotic compounds, excluding dioxins and furans. Risks were calculated using the average fillet concentration at each site for the few places where more than one fillet concentration sample was available. The calculations were based on standard EPA risk assessment procedures for lifetime exposure with upper-bound cancer potency factors and three fish consumption rates of $6.5,30$, and $140 \mathrm{~g} / \mathrm{day}$. The reasons for setting these rates are discussed in the section on Exposure Assessment.

The compounds evaluated were those for which cancer potency factors and/or reference doses have been established. These compounds are listed below:

- Biphenyl
- alpha-BHC
- gamma-BHC (Lindane)
- Chlordane
- Chlorpyrifos
- p.p'-DDE
- Dicofol
- Dieldrin
- Endrin
- Heptachlor
- Heptachlor epoxide
- Hexachlorobenzene
- Hexachlorobutadiene
- Isopropalin
- Mercury
- Mirex
- Pentachloroanisole
- Pentachlorobenzene
- Pentachloronitrobenzene
- Polychlorinated biphenyls (PCBs)
- 1,2,4,5 Tetrachlorobenzene
- 1,2,4 Trichlorobenzene
- Trifluralin

METHOD OF ESTLMATING RISKS

Dose-Response Assessment

In developing risk assessment methods, EPA has recognized that fundamental differences exist between carcinogenic dose-response variables and noncarcinogenic dose-response variables that could be used to estimate risks. Because of these differences, human health risk characterization is conducted separately for potential carcinogenic and noncarcinogenic effects. However, carcinogenic chemicals may also cause noncarcinogenic effects (i.e., a variety of toxic endpoints other than cancer may be associated with exposure to carcinogens). Consequently, reference dose (RfD) values have been established for many carcinogens and are used in the evaluation of potential noncarcinogenic effects.

Key dose-response variables used in quantitative risk estimates are cancer potency factors (CPFs) for carcinogens and RID values for noncarcinogens. The carcinogenic potency factor (expressed in units of ($\mathrm{mg} / \mathrm{kg} / \mathrm{day})^{-1}$) is typically determined by the upper 95 percent confidence limit of the slope of the linearized multistage model that expresses excess cancer risk as a function of dose. The RfD (expressed in units of $\mathrm{mg} / \mathrm{kg} / \mathrm{day}$) is an estimated single daily chemical intake rate that appears to be without risk if ingested over a lifetime.

Available dose-response information for quantitative risk assessment is summarized in Table 6-1 for the chemicals investigated. Potency factors and reference dose values were collated primarily from the Integrated Risk Information System database (IRIS, 1989), and supplemented where necessary by information from other sources such as the Public Health Risk Evaluation Database (PHRED, 1988). As shown in Table 6-1, substances with the highest carcinogenic potency (i.e., those with the highest carcinogenic potency factors) are dieldrin, heptachlor epoxide, and PCBs. Substances with the highest noncarcinogenic potency toxicity (i.e., those with the lowest RfD values) are mirex, heptachlor epoxide, and dieldrin.

Human health risks due to PCBs were estimated based on the total of all the congeners present. EPA has developed a CPF only for total PCBs. While recent research (Smith et al., 1990) indicates that toxicity varies depending on the number of chlorines present and their position. EPA has not adopted this type of approach. Smith's research also indicates that certain PCBs can induce similar changes in enzymatic activity as dioxins and furans. At present the approved EPA approach is to estimate risks due to PCBs and dioxins/furans separately. The specific PCBs thought to induce enzyme changes (coplanar PCBs and mono-ortho analogues) were not quantified separately in this study. The risks due to chlordane were estimated using the CPF for chlordane and the sum of the concentrations of cis- and trans- chlordane, cis- and trans-nonachlor, and oxychlordane measured in the same fillet sample. This sum is referred to as combined chlordane. Heptachlor and heptachlor epoxide have separate CPF and RiD values that are different from chlordane.

Exposure Assessment

The exposure assessment for consumption of chemically contaminated fish and shellfish consisted of:

TABLE 6-1
Dose-Response Variables Used in Risk Assessment

Analyte	Cancer Potency Factor (CPF) (mg/kg/day) ${ }^{-1}$	EPA Cancer Evidence Rating ${ }^{\text {a }}$	Reference (RID) (mg/kg/day)
Biphenyl	-	NA	$5.00 \times 10^{-2 \mathrm{~b}}$
Chlordane	$1.30 \times 10^{0 c}$	B2	$6.00 \times 10^{-5 \mathrm{c}}$
Chlorpyrifos	-	NA	$3.00 \times 10^{-3 \mathrm{c}}$
DDE (p,p-)	$3.40 \times 10^{-1 \mathrm{c}, \mathrm{d}}$	B2	$5.00 \times 10^{-4 c, d}$
Dicofol (Kelthane)	$4.40 \times 10^{-1 \mathrm{lb}}$	C	- 5
Dieldrin	$1.60 \times 10^{\text {lc }}$	B2	$5.00 \times 10^{-5 \mathrm{c}}$
Endrin	-	D	$3.00 \times \mathrm{d} 0^{-4 \mathrm{c}}$
Heptachlor	$4.50 \times 10^{0 \mathrm{c}}$	B2	$5.00 \times 10^{-\frac{10}{5 c}}$
Heptachlor epoxide	$9.10 \times 10^{0 c}$	B2	$1.30 \times 10^{-5 \mathrm{c}}$
Hexachlorobenzene	$1.70 \times 10^{-2 \mathrm{c}}$	B2	$8.00 \times 10^{-4 \mathrm{c}}$
Hexachlorobutadiene	$7.8 \times 10^{-2 \mathrm{c}}$	C	$2.00 \times 10^{-3 \mathrm{c}}$
Isopropalin	-	NA	$1.50 \times 10^{-2 \mathrm{c}}$
α-Hexachlorocyclohexane	$6.30 \times 10^{0 \mathrm{c}}$	B2	
γ-Hexachlorocyclohexane	$1.30 \times 10^{0 f}$	B2	$3.00 \times 10^{-4 e}$
Mercury	-	D	$3.00 \times 10^{-4 \mathrm{e}}$
Mirex	$1.80 \times 10^{0 f}$	R	$2.00 \times 10^{-6 \mathrm{c}}$
Pentachloroanisole	$1.60 \times 10^{-2 g}$	D, R	$3.00 \times 10^{-2 e . f}$
Pentachlorobenzene	-	D	$8.00 \times 10^{-4 \mathrm{c}}$
Pentachloronitrobenzene	$\overline{7} 70 \times 10^{0 \mathrm{c}}$	pending	$3.00 \times 10^{-3 \mathrm{c}}$
Polychlorinated biphenyls	$7.70 \times 10^{0 c}$	B2	$1.00 \times 10^{-4 \mathrm{~h}}$
1,2,4,5 Tetrachlorobenzene	-	D	$3.00 \times 10^{-1 \mathrm{c}}$
1,2,4 Trichlorobenzene	-	D	$2.00 \times 10^{-2 \mathrm{c}}$
Trifluralin	$7.70 \times 10^{-3 \mathrm{c}}$	C	$7.50 \times 10^{-3 \mathrm{c}}$

a Designations are (IRIS, 1989): NA = not evaluated, $\mathrm{B} 2=$ probable human carcinogen, $\mathrm{C}=$ possible human carcinogen, $\mathrm{D}=$ not classified, $\mathrm{R}=$ under review by EPA.
b Value from PHRED (1988).
c Value from IRIS 1989 (data current as ofri9/89).
d Value is for DDT. DDE is assumed to have similar toxic propenies.
e Value from ATSDR (1987).
f Value from HEAST (U.S. EPA, 1989c).
g Value fromEPA Region X toxicologist
h RID for Arochlor 1016.

- Defining chemical concentrations to be used,
- Selecting consumption rates for various segments of the population, and
- Estimating chemical doses.

The detected fillet concentration at each site was used to estimate risks. If more than one fillet sample, excluding duplicates, was available, the average concentration was used, even if the fish species were different. Multiple fillets were available at four sites that represented 4 percent of the sites with xenobiotic data. Fillet composite samples consisting of fewer than three fish were not used for the risk assessment. Three consumption rates were used to estimate exposure

- $6.5 \mathrm{~g} / \mathrm{day}$, which is the average fish consumption rate of freshwater and estuarıne fish across the United States (U.S EPA, 1980a);
- $30 \mathrm{~g} / \mathrm{day}$, which is representative of the average fish consumption rate by average sport fishermen (U.S. EPA, 1989b); and
- $140 \mathrm{~g} / \mathrm{day}$, which is representative of the consumption rate for the 95 th percentile of sport fishermen and is appropriate for subsistence consumers (U.S. EPA, 1989b).

Risks for consumption rates of $6.5 \mathrm{~g} /$ day, $30 \mathrm{~g} / \mathrm{day}$, and $140 \mathrm{~g} /$ day can be read directly from the nomographs in A ppendix B. The nomographs can be used to estimate risks at consumption rates between 1 and $1000 \mathrm{~g} /$ day.

The consumption rate was combined with the chemical concentration data to estimate a range of daily doses over a lifetime associated with each chemical and location. For xenobiotics, a concentration of zero was used for individual samples in which the analyte was not detected. (Specific sample detection limits for xenobiotics were not available.)

Standard EPA methods were used to estimate exposure and risk due to ingestion of fish (U.S. EPA, 1986b, 1989d). Exposure doses were determined using an equation that assumes a constant daily fish ingestion rate over a lifetime (70 years).

$$
D_{i j}=\left(\begin{array}{lll}
C_{i} & x & I_{j}
\end{array}\right) / W
$$

where

D_{ij}	$=$
C_{i}	$=$ estimated dose $(\mathrm{mg} / \mathrm{kg} /$ day $)$ for chemical i at ingestion rate j
I_{j}	$=\quad$ concentration of chemical i in fish or shell fish
W	$=\quad$ assestion rate for the jth percentile of the population
W	assumed human body weight $(70 \mathrm{~kg})$.

Risk Characterization

Potential upper-bound risks associated with each carcinogen were estimated as the probability of excess cancer using the equation:

$$
R_{i j}=1-\exp \left(-D_{i j} \quad x \quad P_{i} \mathrm{a}\right)
$$

where:
$\mathrm{R}_{\mathrm{ij}} \quad=\quad$ Risk associated with chemical i at consumption rate j
$\mathrm{P}_{\mathrm{i}}=$ Carcinogenic potency factor for chemical $\mathrm{i}(\mathrm{mg} / \mathrm{kg} / \text { day })^{-1}$
$\mathrm{D}_{\mathrm{ij}}=$ Dose of chemical i at consumption rate j ($\mathrm{mg} / \mathrm{kg} /$ day).
The carcinogenic potency factors used and methods of dose estimation are as described above (see Dose Response Assessment and Exposure Assessment sections).

Potential hazards associated with noncarcinogenic toxic effects of the various chemicals were expressed as a ratio:

$$
H_{i j}=D_{i j} / R f \mathcal{D}_{i}
$$

where:
$\mathrm{H}_{\mathrm{ij}} \quad=\quad$ Hazard index of chemical i at consumption rate j
$\mathrm{D}_{\mathrm{ij}}=\quad$ Dose of chemical i at consumption rate j ($\mathrm{mg} / \mathrm{kg} /$ day)
$\mathrm{RfD}_{\mathrm{j}}=\quad$ Reference dose for chemical $\mathrm{i}(\mathrm{mg} / \mathrm{kg} /$ day $)$.
The hazard index is a ratio of a dose of a chemical to the level at which noncarcinogenic effects are not expected to occur (i.e., reference dose, RfD). If the value of the hazard index is less than 1.0, it follows that toxic effects are not expected to occur. The methods of dose estimation are as described above.

CARCINOGENIC RISK ESTIMATES

Potential upper-bound human carcinogenic risks were estimated for targeted and background sites using the maximum, mean, and median concentrations for all chemicals with CPF values (Tables 6-2 and 6-3). The fish tissue concentrations associated with these estimated cancer risks are given in Table 6-4. Table 6-5 presents a summary of the fish samples that exceed risk levels of 10^{-6} to 10^{-3} for each of the chemicals with CPF values. The highest lifetime risk levels are associated with total PCBs. The cancer risk exceeded 10^{-4} at 42 of 106 sites for total PCBs, for a fish consumption rate of $6.5 \mathrm{~g} / \mathrm{day}$. PCBs also exceeded 10^{-3} risks at 10 sites. A complete list of sites is presented in Appendix D-10.

Risks for chlordane were estimated for the sum of the cis- and trans-chlordane isomers, cisand trans-nonachlor isomers, and oxychlordane (referred to as combined chlordane). The CPF factor for chlordane is used since separate cancer potency factors are not available for nonachlor and oxychlordane. This method is consistent with the EPA's Office of Pesticide Programs, which also combines the concentrations of the cis- and trans- isomers of chlordane and nonachlor with oxychlordane and the four chlordene isomers (referred to as TTR-Total Toxic Residue). The four chlordene isomers were not measured for this study. Heptachlor and heptachlor epoxide have different CPF and RID values from those for chlordane, so were not added.

TABLE 6-2

Estimates of Potential Upper-Bound Cancer Risks
 at Targeted Sites Based on Fillet Samples ${ }^{\text {a,b }}$ a

			No. of Sites with	
Chemical	Maximum	Mean $^{\text {d }}$	Median	
FCBs	3.7×10^{-3}	3.4×10^{-4}	6.0×10^{-5}	106
DDE	8.9×10^{-5}	4.8×10^{-6}	4.6×10^{-7}	106
Combined Chlordane				

TABLET6-3

Estimates of Potential Upper-Bound Cancer Risks at Background ${ }^{\text {d }}$ Sites Based on Fillet Samples

Chemical	Maximum ${ }^{\text {a }}$	Mean ${ }^{\text {b }}$	Median ${ }^{\text {c }}$	No. of Sites with Fillet Data
PCBs	3.2×10^{-5}	8.0×10^{-6}	-	4
DDE	1.4×10^{-6}	4.1×10^{-7}	1.4×10^{-7}	4
Dash indicates median fillet concentraton was below detection. ${ }^{\text {a. b.c }}$ Risk shown is associated with maximum, mean, and median fillet concentration at background sites. Values below quanification were set at zero.				
${ }^{d}$ It is impor indicated in and do not Note: All fillet con hexachlorob pentacbloroa	and risks are esti und samples wer as completely f d sites were bel achlor epoxide.	from a small ome cases, s m point and ection for di trifluralin, did	samples. A purposes of urces of pol rdane, alpha chlorobutad	on amma-BHC, d

TABLE 6-4
Fish Tissue Concentrations Used to Estimate Cancer Risks

TARGETED SITES

Chemical	Maximum	Mean	Median	No. of Sites with Fillet Data
PCBs	5148.1	477.4	84.5	106
DDE	2820	130.6	14.6	106
Combined Chlordane	770	29.6	4.6	106
Dieldrin	405	15.1	0.8	106
α-Hexachlorocyclohexane	17.5	0.75	ND	106
γ-Hexachlorocyclohexane	6.68	0.30	ND	106
Hexachlorobenzene	50.7	1.6	ND	106
Heptachlor	0.28	0.003	ND	106
Heptachlor Epoxide	40.7	1.0	ND	106
Mirex	225	4.42	ND	106
Trifluralin	116.0	2.35	ND	106
Dicofol	14.9	0.68	ND	106
Hexachlorobutadiene	88.3	0.98	ND	106
Pentachloroanisole	48.6	1.3	ND	106

Units are ng/g unless noted.

BACKGROUND SITES

Chemical	Maximum	Mean	No.Sff Sites with Fillet Data	
PCBs	44.8	11.2	Median	4
DDE	43.0	13.0	4.4	4

[^19]TABLE 6.5
Number of Sites with Estimated Upper-Bound Risks
TARGETEDSITES

Chemical	No. of Sites with Fillet Data	RISK LEYEL (Cumulatiye)			
		$\begin{gathered} >10^{-6} \\ (>1 \text { in } 1.000,000) \end{gathered}$	$\begin{gathered} >10^{-5} \\ S>1 \text { in } 100,00) \end{gathered}$	$\begin{gathered} >10^{-4} \\ \gg 1 \text { in } 10.000) \end{gathered}$	$\begin{gathered} 10^{-3} \\ (>1 \text { in } 1,000) \\ \hline \end{gathered}$
PCBs	106	89	79	42	10
Dieldrin	106	53	31	6	0
Combined Cblordane	106	44	10	0	0
DDE	106	40	10	0	0
Heptachlor Epoxide	106	9	2	0	0
Alpba-BHC	106	11	1	0	0
Mirex	106	8	2	0	0
HCB	106	5	0	0	0
Gamma-BHC	106	0	0	0	0
Heptachlor	106	0	0	0	0
Dicofol	106	0	0	0	0
Hexachlorobutadiene	106	0	0	0	0
Pentachloroanisole	106	0	0	0	0
Trifluralin	106	0	0	0	0

BACKGROUND SITES

RISK LEYEL (Cumulative)

No. of Sites with Fillet	$>10^{-6}$	$>10^{-5}$	$>10^{-4}$	
Data	(>1 in $1.000,000$)	(>1 in 100,000)	$(>1$ in 10,000$)$	(>1 in 1,000)

| Chemical | Data | $(>1$ in $\mathbf{1 . 0 0 0 , 0 0 0)}(>1$ in $\mathbf{1 0 0 , 0 0 0)}(>1$ in $\mathbf{1 0 , 0 0 0)})$ | $(>1$ in 1,0 |
| :--- | :---: | :---: | :---: | :---: | :---: |

Basis: 1) Used EPA (i.e., upper bound) cancer potency factors.
2) Used consumption rate of $6.5 \mathrm{grams} /$ day.
3) Used average fillet concentrations at the few sites with multiple samples.

Combined chlordane is the sum of cis- and trans-cblordane isomers, cis- and trans-nonachlor isomers, and oxycblordane.

The mean. median, and maximum risks using $30 \mathrm{~g} / \mathrm{day}$ and $140 \mathrm{~g} /$ day are compared to the risks using $6.5 \mathrm{~g} /$ day in Table 6-6. For the median fillet concentrations at targeted sites, estimated risks equal or exceed 10^{-5} for PCBs at $6.5 \mathrm{~g} /$ day and $30 \mathrm{~g} / \mathrm{day}$. At the higher consumption rate of $140 \mathrm{~g} /$ day, estimated risks due to combined chlordane and dieldrin were also above 10^{-5}.

As a final step in the risk characterization, a graphical tool was developed for estimating potential health risks at consumption rates from 1 to $1,000 \mathrm{~g} /$ day for all chemicals that exceeded a 10^{-6} risk level. These nomographs are included in Appendix B. As an example, the graph for estimating the carcinogenic risks from p.p'-DDE is shown in Figure 6-1. In each graph, the methods and assumptions outlined above were used to plot potential health risks for three consumption rates (i.e., $6.5 \mathrm{~g} / \mathrm{day}, 30 \mathrm{~g} / \mathrm{day}$, and $140 \mathrm{~g} / \mathrm{day}$). In addition to the consumption rates shown, a scale is provided on each graph so that health risks can be estimated for any consumption rate in the range of 1 to $1,000 \mathrm{~g} / \mathrm{day}$. This is an important feature because potential health risks may vary with regional. cultural, or ethnic differences in species of fish eaten and consumption rates. Hence, using the nomographs provided herein, it is possible to evaluate potential health risks associated with specific consumption rates at a given site.

NONCARCINOGENIC RISKS

Noncarcinogenic hazard indices were summarized for targeted and background sites for the chemicals with reference dose values available (Table 6-7). Based on a fish consumption rate of $6.5 \mathrm{~g} / \mathrm{day}$, the hazard index, defined previously, exceeded 1 (meaning adverse effects may occur) at only a few targeted sites for PCBs, mirex, and combined chlordane. The hazard indices associated with the mean and median concentrations for these same chemicals were less than 1.0. The hazard indices for all chemicals at background sites were also less than 1.0.

Graphs for estimating noncarcinogenic hazard index values at various consumption rates were prepared for most of the compounds evaluated. Using these graphs, one can determine whether the hazard index would exceed a value of 1 at consumption rates between 1 and $1,000 \mathrm{~g} / \mathrm{day}$. For example, using the maximum DDE concentration at targeted sites ($2,819 \mathrm{ng} / \mathrm{g}$), a hazard index value of 0.52 was estimated for a $6.5-\mathrm{g} /$ day consumption rate, while for a $30-\mathrm{g} /$ day rate it was about 2 (Figure 6-2). The graphs for the other compounds are included in Appendix B following those for estimating carcinogenic risks.

TABLE\&
Estimated Upper-Bound Risks at Three Fish Consumption Rates Based on Fillet Samples

	Maximum			Mcan					Median		
Background	6.5	30	140	Background	6.5	30	140	Backseround	6.5	30	140
PCBs	3.2×10^{-5}	1.5×80^{-4}	6.9×10^{-4}	PCBs	8.0×10^{6}	3.7×10^{-5}	$1.7 \times \pm 00^{-4}$	PCBs	- 7		
DDE	1.4×10^{-6}	6.4×10^{-6}	$3.0 \times 10{ }^{-5}$	DIDE	$4.1 \times 10{ }^{-7}$	1.9×10^{-6}	$8.8 \times \pm 0^{-6}$	DDE	104×10^{-7}	6.4×10^{-7}	30.1010^{-6}
Tapueted	6.5	30	140	Targeted	6.5	30	140	Tacueted	6.5	30	1412
PCBs	3.7×10^{-3}	1.7×10^{-2}	7.6×10^{-2}	PCHs	3.4×10^{-4}	1.6×10^{-3}	7.3×10^{-3}	PCBS	6.0×10^{-5}	2.8×80	$1.3 \times 10{ }^{-3}$
IDE	8.9×10^{-5}	4.1×10^{-4}	le9x10 ${ }^{-3}$	DIDE	4.1×40^{-6}	le9 $\times 10^{-5}$	8.9×10^{-5}	DDE	4.6×10^{-7}	2.3×10^{-6}	9.9×10^{6}
Combined Chlordane	9.3×10^{-5}	4.3×10^{-4}	2.0×10^{-3}	Combined Chlordane	$3.6 \times 80{ }^{-6}$	1.6×800^{-5}	$7.7 \times \pm 0{ }^{-5}$	Combined Chlordane	$5.6 \times 8)^{-7}$	$2.6 \times 10{ }^{-6}$	1.2×10^{5}
Dicofol	6.1×10^{-7}	2.8×40^{-6}	1.3×10^{-5}	Dicofol	2.8×10^{-8}	1.3×10^{-7}	6.0×10^{-7}	I icefol	-	-	- 5
Dieldrin	6.0×10^{-4}	2.8×10^{-3}	1.3×10^{-2}	Dieldrin	2.2×40^{-5}	1.0×80^{-4}	48×10^{-4}	Dieldrin	1.2×10^{-6}	5.5×100^{-6}	$2.6 \times 40{ }^{5}$
α-Hexachlorocyclohexane	1.0×10^{-5}	4.6×10^{-5}	2.2×10^{-4}	α-Hexachlorocyclohexane	4.4×10^{-7}	2.0×10^{-6}	$9.4 \times 80{ }^{-6}$	$\boldsymbol{\alpha}$-Hexachlorocycluhexane	-	-	-
$\boldsymbol{\gamma}$-Hexachlonocyclohexane	8.1×10^{-7}	3.7×10^{-6}	1.7×10^{-5}	γ-Hexachlorocyclohexane	3.6×10^{-8}	$1.7 \times \pm 0^{-7}$	7.8×10^{-6}	γ-1lexachlorocyclohexane	-	-	-
Hexachlorobenzene	8.0×10^{-6}	3.7×10^{-5}	1.7×10^{-4}	Hexachlorobenzene	2.5×10^{-7}	1.2×10^{-6}	5.4×10^{-6}	Ilexachlorobenzene	-	-	-
1 lexachlorobutadiene	6.4×10^{-7}	3.0×10^{-6}	1.4×10^{-5}	Hexachlorobuladiene	7.1×10^{-9}	3.3×10^{8}	1.5×10^{-7}	Ilexachlorobutadiene	-	-	-
$1 l e p t a c h l o r ~$	1.2×10^{-7}	5.4×40^{-6}	2.5×10^{-5}	Ileptachlor	*	*	*	Ileptachlor	-	-	-
1 leplachior				Heptachlor				1 leptachlor	-	-	-
Epoxide	3.4×10^{-5}	1.6×10^{-4}	7.3×10^{-4}	Epoxide	$8.4 \times()^{-7}$	3.9×10^{-6}	1.8×10^{-5}	Epoxide	-	-	-
Mirex	3.8×10^{-5}	1.8×10^{-4}	8.2×10^{-4}	Mirex	7.4×10^{-7}	3.4×10^{-6}	1.6×10^{-5}	Mirex	-	-	-
Pentachloroanisole	7.2×10^{8}	3.3×10^{-7}	1.6×10^{-6}	Pentachloro anisole	1.9×80^{-9}	8.9×10^{-8}	4.2×80^{-8}	Pentachloroanisole	-	-	-
Trifluralin	8.3×10^{-8}	3.8×10^{-7}	1.8×10^{-6}	Trifluralin	1.7×10^{-9}	7.8×10^{-9}	3.6×10^{-8}	Trifluralin	-	-	-

[^20]

Figure 6-1. Graphical tool for estimating upper-bound cancer risk of p,p'-DDE or equivalents for different fish consumption rates.

TABLE 6-7
Noncarcinogenic Hazard Index Values at Targeted and Background Sites Based on Fillet Samples

TARGETED

No. of Sites with Fillet Data

Chemical	Maximum	Mean	Median	Fillet Data

Biphenyl	9.8×10^{-5}	2.0×10^{-6}	3.5×10^{-7}	106
Combined Chlordane	1.2×10^{-9}	4.6×10^{-2}	7.1×10^{-3}	106
Chloropyrifos	2.4×10^{-3}	6.4×10^{-5}	ND	106
DDE	5.2×10^{-1}	2.4×10^{-2}	2.7×10^{-3}	106
Dieldrın	7.5×10^{-1}	2.8×10^{-2}	1.5×10^{-3}	106
Endrin	4.3×10^{-3}	9.6×10^{-5}	ND	106
γ-Hexachlorocyclohexane	2.1×10^{-3}	9.3×10^{-5}	ND	106
Hexachlorobenzene	5.9×10^{-3}	1.9×10^{-4}	ND	106
Heptachlor	5.2×10^{-5}	5.6×10^{-9}	ND	106
Heptachlor Epoxide	2.9×10^{-1}	71×10^{-3}	ND	106
Hexachlorobutadiene	4.1×10^{-3}	4.6×10^{-5}	ND	106
lsopropalin	ND	ND	ND	106
Mercury	5.1×10^{-1}	9.0×10^{-2}	7.1×10^{-2}	182
Mirex	10.45	ND	106	
Pentachloronitrobenzene	2.7×10^{-5}	2.1×10^{-1}	ND	106
Pentachlorobenzene	6.0×10^{-3}	2.5×10^{-7}	ND	106
Pentachloroanisole	1.5×10^{-4}	1.3×10^{-4}	ND	106
PCBs	40×10^{-6}	ND	106	
$1,2,4,5$ Tetrachlorobenzene	8.78×10^{-3}	4.4×10^{-1}	7.8×10^{-2}	106
$1,2,4$ Trichlorobenzene	4.8×10^{-4}	1.2×10^{-4}	ND	106
Trifluralin	7.2×10^{-6}	6.5×10^{-9}	106	
	1.4×10^{-3}	2.9×10^{-5}	ND	106

BACKGROUND

Chemical	Maximum	Mean	Median	No. of Sites with Fillet Data
	3.7×10^{-7}	2.2×10^{-7}	2.5×10^{-7}	4
Biphenyl	5.0×10^{-3}	1.0×10^{-3}	ND	4
Combined Chlordane	$5.5 \times 10^{-\frac{1}{2}}$	1.5×10^{-1}	1.2×10^{-1}	4
Mercury	3.3×10^{-6}	1.6×10^{-6}	1.5×10^{-6}	4
$1,2,4$ Trichlorobenzene	4.2×10^{-2}	1.0×10^{-2}	ND	4
PCBs	8.0×10^{-3}	2.0×10^{-3}	1.0×10^{-3}	4

(All other chemicals were not detected in background samples)
Consumption rate of fish at at $6.5 \mathrm{~g} /$ day. RfD values used are given in Table 6-2.
ND, not detected.
Combined chlordane is the sum of cis- and trans-chlordane isomers, cis- and trans-nonachlor isomers, and oxychlordane.

p,p'-DDE NONCARCINOGENIC EFFECTS

Figure 6-2. Graphical tool for estimating upper-bound noncarcinogenic hazard index of p, p '-DDE for different fish consumption rates.

References

APHA (American Public Health Association). 1985. Standard Methods for Analysis of Water and Wastewater. 16th ed. APHA.

ATSDR (Agency for Toxic Substances and Disease Registry). 1987. Draft Toxicological Profile for 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. ATSDR, U.S. Public Health Service, Oak Ridge National Laboratory, Oak Ridge, TN.

Barnes, D.G., and J.S. Bellin. 1989. Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-Dioxins and -Dibenzofurans (CDDs and CDFs). U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, DC.

Brown, J.F., Jr., B.L. Bedard, M.J. Brennan, J.C. Carnahan, H. Feng, and R.E. Wagner. 1987. Polychlorintated Biphenyl. Dechlorination in Aquatic Sediments. Science 236:709-712.

Dorman, M. 1985. Memo to R. Frederick at U.S. Enivronmental Protection Agency from M. Dorman of Versar, Inc. Toxic Weighting Factors, February 12, 1985, as referenced in U.S. EPA, 1986a.

Glass, G.E., J.A. Sorensen, K.W. Schmidt, and G.R. Rapp. 1990. New Source Identification of Mercury Contamination in the Great Lakes. ES\&T 24 (7): 1059-1069.

Horwitz, W., ed. 1983. Official Methods of Analysis of the Association of Official Analytical Chemists. 13th ed., pp. 404-406.

IRIS. 1988. Integrated Risk Information System. U.S. Environmental Protection Agency, Washington, DC.

IRIS. 1989. Integrated Risk Information System. U.S. Environmental Protection Agency, Washington, DC.

Merhle, P.M., D.R. Buckler, E.E. Little, L.M. Smith, J.D. Petty, P.H. Peterson, D.L. Stalling, G.M. Degaeve, J.J. Goyle, and W.L. Adams. 1988. Toxicity and Bioconcentration of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and 2,3,7,8-Tetrachlorodibenzofuran in Rainbow Trout. Environ. Toxic. Chem. 7(1):47-62.

NAS (National Academy of Sciences). 1978. Kepone/Mirex/Hexachlorocyclopentadiene: An Environmental Assessment. National Academy of Sciences, National Research Council, Washington, DC. NTIS PB 280289.

NTP (National Toxicological Program). 1982a. Bioassay of 2,3,7,8-Tetrachloro-dibenzo-p-dioxin for Possible Carcinogenicity (Gavage Study). DHHS Publ. No. (NIH) 82-1765. Carcinogenesis Testing Program, NCL, NIH, Bethesda, MD; National Toxicology Program, Research Triangle Park, NC.

NTP (National Toxicological Program). 1982b. Bioassay of 2,3,7,8-Tetrachloro-dibenzo-p-dioxin for Possible Carcinogenicity (Dermal Study). DHHS Publ. No. (NIH) 82-1757. Carcinogenesis Testing Program, NCI, NIH, Bethesda, MD; National Toxicology Program, Research Triangle Park, NC.

Olson, G.F., D.I. Mount, V.M. Snarski, and T.W. Thorslund. 1975. Mercury Residues in Fathead Minnows, Pimephales promelos Rafinesque, Chronically Exposed to Methylmercury in Water. Bull. Env. Cont. Tox. 14:129-134.

Palmer, F.H., R.A. Sapudar, J.A. Heath, N.J. Richard, and G.W. Bowes. 1988. Chlorinated Dibenzo-p-Dioxin and Dibenzofuran Contamination in California from Chlorophenol Wood Preservative Use. California State Water Resources Control Board, Report No. 88-SWQ.

PHRED. 1988. Public Health Risk Evaluation Database. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC.

Rappe, C., H.R. Buser, and H.P. Bosshardt. 1979. Environmental Science and Technology 18(3):78A-90A.

Resources for the Future. 1986. A National Pesticide Usage Data Base. February 1986.
Robins, C.R., et al. 1980. A List of Common and Scientific Names of Fishes from the United States and Canada. 4th ed. American Fisheries Society. Special Publication No. 12.

Scott, W.B., and E.J. Crossman. 1973. Freshwater Fishes of Canada. Fisheries Research Board of Canada. Bulletin 184.

Smith, P.W. 1979. The Fishes of Illinois. University of Illinois Press, Chicago, IL
Smith, LM., T.R. Schwartz, K. Feltz, and T.J. Kubiak. 1990. Determination and Occurrence of AHH-Active Polychlorinated Biphenyls, 2,3,7,8-Tetrachloro-p-dioxin and 2,3,7,8Tetrachlorodibenzofuran in Lake Michigan Sediment and Biota. The Question of Their Relative Toxicological Significance. Chemosphere 21(9): 1063-1085.

Takamiya, K. 1987. Residual Levels of Plasma Oxychlordane and Trans-nonachlor in Pest Control Operators and Some Characteristics of These Accumulations. Bull. Environ. Contam. Toxicol. 39: 750-755.

Tobin, P.M. 1984. Memo to S. Schatzow of U.S. Environmental Protection Agency, Office of Water Regulations and Standards. Priority pollutant ranking system, May 29, 1984, as referenced in U.S. EPA, 1986a.

Trautman, M.B. 1957. The Fishes of Ohio. Ohio State University Press, Columbus, OH.
U.S. EPA. 1972. Water Quality Criteria, 1972 (the Blue Book, NAS/NAE, 1972). U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, DC. EPA R3-73-033.
U.S. EPA. 1980a. Ambient Water Quality Criteria Documents (various). U.S. Environmental Protection Agency, Office of Water Regulations and Standards. EPA 440/5-80 Series.
U.S. EPA. 1980b. List of Chemicals Having Substantial Evidence of Carcinogenicity. U.S. Environmental Protection Agency, Carcinogen Assessment Group, Washington, DC.
U.S. EPA. 1980c. Exposure-Based Candidates for Existing Chemical Review, U.S. Environmental Protection Agency, Office of Toxic Substances memo from J.J. Merenda to M.P. Halper, as referenced in U.S. EPA, 1986a.
U.S. EPA. 1984. Sampling Guidance Manual for the National Dioxin Study. U.S. Environmental Protection Agency, Washington, DC.
U.S. EPA. 1985a. Ambient Water Quality Criteria Documents (various). U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, DC. EPA 440/5-85 Series.
U.S. EPA. 1985b. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses. U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, DC. PB85-227049.
U.S. EPA. 1986a. Work/Quality Assurance Project Plan for the Bioaccumulation Study. U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Monitoring and Data Support Division, Washington, DC. July 1986.
U.S. EPA. 1986b. Superfund Public Health Evaluation Manual. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC. EPA 540/1-86/060.
U.S. EPA. 1987a. Ambient Water Quality Criteria Documents (various). U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, DC. EPA 440/587 Series.
U.S. EPA. 1987b. The National Dioxin Study. U.S. Environmental Protection Agency, Washington, DC. EPA 440/4-87-003.
U.S. EPA. 1987c. Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-dioxins and -Dibenzofurans (CDDs and CDFs). U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, DC. EPA/625/3-87/012.
U.S. EPA. 1989a. Analytical Procedures and Quality Assurance Plan for the Determination of Mercury in Fish. U.S. Environmental Protection Agency, Environmental Research Laboratory, Duluth, MN. April 1989.
U.S. EPA. 1989b. Exposure Factors Handbook. U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Exposure Assessment Group, Washington, DC. EPA/600/8-89/043.
U.S. EPA. 1989c. Health Effects Assessment Summary Tables (HEAST). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.
U.S. EPA. 1989d. Risk Assessment Guidance for Superfund: Human Health Evaluation Manual. Part A. Interim final. U.S. Environmental Protection Agency, Washington, DC. Report No. 05-230.
U.S. EPA. 1990a. Aquatic Toxicity Information Retrieval (AQUIRE) Data Base. U.S. Environmental Protection Agency, Environmental Research Laboratory, Duluth, MN.
U.S. EPA. 1990b. Analytical Procedures and Quality Assurance Plan for the Determination of PCDD/PCDF in Fish. U.S. Environmental Protection Agency, Washington, DC. EPA/600/390/022.
U.S. EPA. 1990c. Analytical Procedures and Quality Assurance Plan for the Determination of Xenobiotic Chemical Contaminants in Fish. U.S. Environmental Protection Agency, Washington, DC. EPA/600/3-90/023.

Wydoski, R.S., and R.R. Whitney. 1979. Inland Fishes of Washington. University of Washington Press, Seattle, WA.

Additional specific references for the study compounds are included in the chemical profiles, Appendix C. These references include physical/chemical properties, standards and criteria, major compound uses, health effects, aquatic life effects where available, and factors used to estimate risks (e.g., CPF, RfD, BCF).

Glossary

Bioaccumulation	The net accumulation of a chemical from combined exposure to water, food, and sediment by an organism. This may be further defined as accumulation under a non-steady-state or equilibrium condition of exposure.
BCF	The bioconcentration factor (BCF) is the partition coefficient for the distribution of chemical between water and an organism exposed only through water. $B C F=C_{t} / C_{w}$, where $C_{t} ⿷$ concentration of a chemical in wet tissue (either whole organism or specified tissue) and $\mathrm{C}_{\mathrm{w}}=$ concentration of a chemcial in water. The higher the BCF value, the greater the potential for high concentrations of a chemical to occur in fish tissue samples. BCF values given in the chemical profiles in Volume II are based on water and fish tissue concentrations.
CPF	Cancer potency factor expressed in units of ($\mathrm{mg} / \mathrm{kg} / \mathrm{day})^{-1}$ based on experiments to determine whether a chemical causes cancer. The method used by EPA to derive this value is to set the CPF equal to the upper 95 percentile of the slope of the linearized multustage model for extrapolation of cancer from high to low doses. Cancer risks derived using this approach are referred to as upper-bound risks.
Combined Chlordane	Combined chlordane is the sum of cis- and trans-chlordane isomers, cis- and trans-nonchlor isomers, and oxychlordane.
Congeners	Related chemical compounds with same basic structure but different number of substitutions (e.g., chlorine). Examples of congeners investigated in this project include the chlorinated dibenzo-p-dioxins (e.g., 2,3,7,8 TCDD with four chlorines and $1,2,3,7,8 \mathrm{PeCDD}$ with five chlorines). Such congeners are sometimes referred to as homologs.
GC/MS	Gas chromatography/mass spectrometry, a laboratory analytical method used in this study for PCDDs, PCDFs, and other xenobiotic compounds.
Hazard Index	Ratio of dose of a chemical to the level at which noncarcinogenic effects are not expected to occur (reference dose or RfD). If the value of the hazard index is less than 1 , no toxic effects should occur from the dose tested (e.g., ingestion of fish at a given consumption rate with a specified contaminant concentration).

Isomers	Related chemical compounds that have the same molecular formula but are structurally different. An example of isomers investigated during this study include cis- and trans-chlordane.
NPL	Waste disposal sites included on the National Priority List for clean-up under CERCLASARA, also referred to as Superfund sites.
PCDDs	Polychlorinated dibenzodioxins
PCDFs	Polychlorinated dibenzofurans
RiD	Reference dose expressed in units of $\mathrm{mg} / \mathrm{kg} /$ day. The RFD is the estimated single daily chemical intake rate that appears to be without toxic effects if ingested over a lifetime.
TEC	Toxicity equivalency concentration for dioxins and furans. This represents a toxicity-weighted total concentration of all individual congeners using 2.3,7,8 TCDD as the reference compound. The 1989 interim method advocated by EPA was used for this study (Bames et al., 1989).
TEF	Toxicity equivalency factors for dioxins and furans. These factors express the relative toxicity of the $2,3,7,8$-substituted congeners. The values used in this study were from the 1989 interim method (Bames et al., 1989).
TEQ	Toxicity equivalents for dioxins and furans (Barnes et al., 1989). This term has the same meaning as TEC.
Total Chlordane	Total chlordane refers to the sum of the measured concentration of cis- and trans-isomers of chlordane measured in the same sample.
TTR	Total toxic residue equals the combined concentration of cis- and trans-chlordane, cis- and trans-nonachlor, oxychlordane, and the four chlordene isomers. This combined concentration is used by EPA's Office of Pesticide Programs.
Xenobiotic	Compounds that do not naturally occur in living organisms.

APPENDIX A

Laboratory QA/QC Procedures and Results

APPENDIX A-1

Analysis of Laboratory QA/QC Data

Appendix A-1 - Analysis of Laboratory QA/QC Data

The QA/QC procedures, as mentioned in Chapter 2 and listed in Table A-1, included analysis of reference fish spiked with the chemicals being studied, analysis of method blanks and duplicate tissue samples, and confirmation sampling using a second GC column. The total number of QA/QC samples of each type is listed below:

Numberof Analyses

Reference Fish 142
Method Blanks 135
Duplicate Samples 117
Confirmation Samples 41

These data were used by the EPA Duluth laboratory to estimate analytical precision and bias.

BIAS

Bias is a systematic error resulting in values that are too high or too low. It can be measured using spiked samples and is defined as follows:

$$
B=(100(C a-C b) / T)-100
$$

where:
B $=$ percent bias
$\mathrm{C}_{\mathrm{a}} \quad=$ measured concentration of analyte after spiking
$\mathrm{C}_{\mathrm{b}}=$ original concentration in sample
$\mathrm{T}=$ amount of spike added to sample.
Reference fish, not containing dioxin/furan, were used in this study to determine bias. The QA/QC criteria, listed in Table A-2, specify that the bias be ± 50 percent for tetra- and pentadioxin/furan congeners, ± 100 percent for hexa- and hepta-dioxins and hexa-furans, and $\& 200$ percent for hepta-furans. Method bias achieved is reported in Table A-3 for PCDD/PCDF analysis. The reported values are for standard solutions in tridecane solvent and represent the three spiking levels indicated in the Analytical Procedures and Quality Assurance Plan for the Determination of Mercury in Fish (U.S. EPA, 1989a). Method bias prior to the use of the tridecane solvent was, in general, lower. Mean recovery for the dioxins/furans ranged from 94 percent to 109 percent. The percent bias ranged from +9 percent to -6 percent. Thus, the above criteria for bias were met.

The bias QA/QC criteria for xenobiotics were defined interms of individual analyte recovery and total analyte recovery. The bias for specific analytes must be between +50 percent and +130 percent, except for the following compounds:

TABLE A-1
Laboratory Quality Assurance Procedures

1. All instrument maintenance schedules maintained according to the manufacturer's recommendations
2. Gas Chromatography (GC) performance
a) Xenobiotics
3. Column resolution (number of theoretical plates of resolution must not decrease by more than 20%)
4. Relative retention times (3\%) of intemal standards
b) $\mathrm{PCDD} / \mathrm{PCDE}$
5. Resolution of $1,2,3,4$ TCDD from 2,3,7,8 TCDD must be 0.75
6. The R^{2} value of the regression of the relative retention time of all biosignificant PCDD/PCDF to the library relative retention should not be <0.995
7. Elution of all PCDD/PCDF during analysis from a GC window defining solutions of select PCDD/PCDF congener groups (first eluted/last eluted)
8. Mass Spectrometry (MS) performance
a) Xenobiotics
9. Sensitivity (signal-to-noise ratio, 3.0 for $\mathrm{m} / \mathrm{z} 198$ from injection of 10.0 ng decafluorotriphenylphosphine [DFTPP])
10. Spectral quality (intensity of ions in the spectrum of DFTPP must meet specified criteria)
b) $\mathrm{PCDD} / \mathrm{PCDE}$
11. Sensitivity and linearity were evaluated using calibration standards (in $\mathrm{pg} / \mu \mathrm{l}$ tridecane) which varied in concentration
12. Mass resolution was a minimum of 5,000 (10% valley definition)
13. Percent relative standard deviations for the mean response factors were $<20 \%$
14. Gel Permeation Chromatography (GPC) performance
a) Xenobiotics
15. Column flow rate (not vary by more than 0.2 mV min)
16. Column resolution (daily injection of performance solution)
17. Collection cycle (start and end of the collect cycle must not deviate by more than 2 ml)
18. Silica Gel Chromatography performance
a) Xenobiotics
19. Evaluated by its ability to resolve cholesterol from a select model target analyte, dieldrin

TABLE A-2

Quality Assurance Parameters for Dioxins and Furans

	Ion Ratio	Method $^{\text {a }}$ Efficiency	Accuracy $^{\text {a }}$ at 10 $\mathbf{p g} / \mathbf{g}$	Precision $^{\mathbf{b}}$ at $\mathbf{1 0} \mathbf{~ p g / g}$	S/N Minimum
TCDD	$0.76 \pm 15 \%$	$>40 \%,<120 \%$	$\pm 50 \%$	$\pm 50 \%$	3.0
PCDD	$0.61 \pm 15 \%$	$>40 \%,<120 \%$	$\pm 50 \%$	$\pm 50 \%$	3.0
HxCDD	$1.23 \pm 15 \%$	$>40 \%,<120 \%$	$\pm 100 \%$	$\pm 100 \%$	3.0
HpCDD	$1.02 \pm 15 \%$	$>40 \%,<120 \%$	$\pm 100 \%$	$\pm 100 \%$	3.0
TCDF	$0.76 \pm 15 \%$	$>40 \%,<120 \%$	$\pm 50 \%$	$\pm 50 \%$	3.0
PCDF	$1.53 \pm 15 \%$	$>40 \%,<120 \%$	$\pm 50 \%$	$\pm 50 \%$	3.0
HxCDF	$1.23 \pm 15 \%$	$>40 \%,<120 \%$	$\pm 100 \%$	$\pm 100 \%$	3.0
HpCDF	$1.02 \pm 15 \%$	$>40 \%,<120 \%$	200%	200%	3.0

Variance of measured value from actual.
b Variance of difference of duplicates from mean.

TABLE A-3
Bias Analysis for PCDDs/PCDFs

Chemical	Mean Recovery	Stan. Dev.	\% Bias
2,3,7,8 TCDF	109	16	9
2,3,7,8 TCDD	102	13	2
1,2,3,7,8 PeCDF	104	14	4
2,3,4,7,8 PeCDF	104	12	4
$1,2,3,7,8$ PeCDD	100	13	0
1,2,3,4,7,8 HxCDF	95	10	-5
$1,2,3,6,7,8 \mathrm{HxCDF}$	104	17	4
2,3,4,6,7,8 HxCDF	96	11	-4
$1,2,3,7,8,9 \mathrm{HxCDF}$	94	12	-1
$1,2,3,4,7,8 \mathrm{HxCDD}$	99	24	8
$1,2,3,6,7,8 \mathrm{HxCDD}$	108	13	-4
$1,2,3,7,8,9 \mathrm{HxCDD}$	96	11	-1
$1,2,3,4,6,7,8 \mathrm{HpCDF}$	99	11	4
$1,2,3,4,7,8,9 \mathrm{HpCDF}$	104	14	3
$1,2,3,4,6,7,8 \mathrm{HpCDD}$	103	12	4

- Trichlorobenzenes (1,3,5-; 1,2,4-; and 1,2,3-);
- Tetrachlorobenzenes (1,2,4,5-; 1,2,3,5-: and 1,2,3,4-);
- Pentachlorobenzene; and
- Biphenyl.

The recovery for these analytes is low due to some losses during the evaporation steps. The average analyte recovery for the spiked analytes was then determined for these analytes. The QA/QC criteria specified that this value be greater than 35 percent and less than 130 percent (Table A-4).

The bias results are shown in Table A-5 for PCBs and Table A-6 for the remaining xenobiotics, excluding mercury. Mean recoveries for PCBs were estimated using data for PCBs with 3 to 7 chlorines with the recoveries ranging between 58 and 101 percent. The recoveries were higher for the more heavily chlorinated compounds. Bias for the above PCBs ranged between +8 and - 37 percent and thus met the criteria.

Method bias values for xenobiotics were determined from two spiking levels (Analytical Procedures and Quality Assurance Plan, U.S. EPA, 1989a). Method bias for xenobiotic analytes varies considerably compared to PCDD/PCDF analysis. As expected, low recoveries are exhibited by the chlorinated benzenes and other semivolatile compounds due to the concentration steps in the analytical procedure. The percent bias for the analytes other than chlorinated benzenes and biphenyl ranged from -45 to +14 . The average analyte recovery was 73.8 , well within the overall QA/QC criteria.

The QA/QC criteria for mercury are listed in Table A-7. The amount of tissue analyzed decreased from 1.0 g to 0.2 g in 1990 to obtain results within the instrument calibration range established at a lower detection limit. The detection limit for samples analyzed in 1990 was 0.0013 $\mu \mathrm{g} / \mathrm{g}$ tissue. Analysis and EPA reference fish (mean value $2.52 \mu \mathrm{~g} / \mathrm{g}$, standard deviation $(\mathrm{s})=0.64$) throughout the study gave a mean mercury value of $2.87 \mu \mathrm{~g} / \mathrm{g}(\mathrm{s}=0.08)$. This gives a bias of a+ 14 percent for mercury.

PRECISION

Precision (P) measures the reproducibility of the analyses. It can be determined as follows:

$$
P=\frac{\text { difference between duplicate samples }}{\text { mean of duplicate }} \times 100
$$

The precision criteria for dioxin/furan congeners are the same as those listed earlier for method bias. Specific precision criteria for the individual xenobiotics were not listed in the Analytical Procedures and Quality Assurance Plan (U.S. EPA, 1989a). The original Work Plan for the study (U.S. EPA, 1986a) listed a general criterion for precision of ± 50 percent.

Estimates of intralaboratory precision expressed as the standard deviation for replicate pairs are presented in Table A-8 for dioxins/furans and in Table A-9 for selected xenobiotics. The

TABLEA-4

QA/QC Criteria for Xenobiotics Analyses

1. GC relative retention time for the target analytes could not deviate by more than $+3 \%$ from calibration curve values.
2. Analyte identification criteria - reverse search identification of an analyte must have an FIT value of 800 .
3. Signal-to-noise ratio - quantification ion must have a ratio of 3.0.
4. Relative response factor for each analyte quantification ion relative to the appropriate internal standard quantification ion must not deviate by 20% from the previous day's value, and must be within 50% of the mean value from the calibration curve.
5. Percent recovery of each surrogate standard must be determined and must be within 25 and 130 percent for iodonaphthalene and 50 and 130 percent for $4,4^{\prime}$-diiodobiphenyl.
6. Average analyte recovery for all target analytes must be greater than 35% but less than 130%, and for the fortified analytes (except several chlorobenzenes, biphenyl, and hexachlorobutadiene) recovery must be within a range of 50 to 130 percent.

TABLE A-5
Bias Analysis for Polychlorinated Biphenyls

Chemical	Mean Recovery	Stan. Dev.	\% Blas
Tetrachlorobiphenyl	63	16.5	-37
Pentachlorobiphenyl	90	12	-10
Hexachlorobiphenyl	108	11	8
Heptachlorobiphenyl	99	23	-1

TABLE A-6 Bias Analysis for Xenobiotics

Chemical	Mean Recovery	Stan. Dev.	\% Bias
1,3,5 Trichlorobenzene	25	7	-75
1,2,4 Trichlorobenzene	25	11	75
1,2,3 Trichlorobenzene	21	11	-79
1,2,4,5 Tetrachlorobenzene	32	16	-68
1,2,3,5 Tetrachlorobenzene	39	12	-61
Biphenyl	27	10	-73
1\$,3,4 Teurachlorobenzene	33	15	-67
Pentachlorobenzene	43	16	-57
Trifluralin	86	25	-14
alpha-BHC	67	18	-33
Hexachlorobenzene	58	16	-42
Pentachloroanisole	67	18	-33
gamma-BHC (Lindane)	64	16	-36
Pentachloronitrobenzene	71	19	-29
Diphenyl disulfide	82	26	-18
Heptachlor	68	18	-22
Chlorpyrifos	106	16	6
Isopropalin	84	49	-16
Octachlorostyrene	96	24	- 4
Heptachlor epoxide	88	11	-12
Oxychlordane	76	14	-24
Chlordane, trans	92	15	-8
Chlordane, cis	97	24	-3
Nonachlor, trans	96	22	-4
p, ${ }^{\prime}$-DDE	95	23	-5
Dieldrin	100	14	0
Nitrofen	114	20	14
Endrin	102	14	2
Perthane	78	32	-22
Nonachlor, cis	99	22	-1
Methoxychlor	55	27	-45
Dicofol	96	27	-4
Mirex	90	20	-10

TABLE A- 7

QA/QC Criteria for Mercury Analyses

1. Samples are analyzed in batches of 20 to 25 , with at least 20% additional reagent blank and duplicate samples per batch.
2. The detection limit for a batch analysis is not to exceed 50% above the detection limit of $0.050 \mu \mathrm{~g} / \mathrm{g}$ tissue, or samples are reanalyzed.
3. Complete reagent blanks are to produce a mercury signal equivalent to less than 0.15 $\mu \mathrm{g} / \mathrm{g}$ tissue.
4. Signal response to the standards is not to drop below 50% of the optimum value. The instrument is reoptimized if this criterion is not met.
5. The standard deviation for batch duplicates is not to exceed two times the standard deviation for the optimum determined value. Samples outside this range are reanalyzed.
6. Analysis of EPA reference samples for mercury in fish is used to assess accuracy.

TABLE A-8
Intralaboratory Precision Measurements for Replicate Pairs for PCDD/PCDF Analysis

Chemical	$\begin{gathered} \text { \# of } \\ \text { Observations } \end{gathered}$	Precision ${ }^{\text {a }}$ (pg / g)	Concentration Range (pg / g)
2,3,7,8 TCDF	51	$s=0.07 \mathrm{X}$	1 to 100
2,3,6,7 TCDF	13	$\mathrm{s}=0.08 \mathrm{X}$	1 to 30
2,3,7,8 TCDD	41	$\mathrm{s}=0.08 \mathrm{X}$	1 to 120
1,2,3,7,8 PeCDF	14	$\mathrm{s}=0.21$	1 to 10
2,3,4,7,8 PeCDF	29	$s=0.09 \mathrm{X}$	1 to 50
1,2,3,7,8 PeCDD	25	$\mathrm{s}=0.91$	1 to 30
1,2,3,4.7,8 HxCDF	18	$s=1.37$	1 to 50
1,2,3,6.7,8 HxCDF	9	$s=0.11 \mathrm{X}$	1 to 30
2,3,4,6,7,8 HxCDF	11	$s=0.17 \mathrm{X}$	1 to 5
1,2,3,4,7,8 HxCDD	11	$s=0.83 \mathrm{X}$	1 to 10
1,2,3,6,7,8 HxCDD	29	$s=0.11 \mathrm{X}$	1 to 35
1,2,3,7,8,9 HxCDD	8	$s=0.11 \mathrm{X}$	1 to 10
1,2,3,4,6,7,8 HpCDF	11	$\mathrm{s}=0.77$	1 to 15
1,2,3,4,6,7,8 HpCDD	33	$\mathrm{s}=0.08 \mathrm{X}$	2 to 150
$\begin{aligned} { }^{\mathrm{a}} \mathrm{X} & =\text { concentration } \\ \mathrm{s} & =\text { standard deviation } \end{aligned}$			

TABLE A-9
Intralaboratory Precision Measurements for Replicate Pairs for Xenobiotic Analysis

Chemical	Number of Observations	Concentration Precision ${ }^{\text {a }}$ (ng / g)	Range (ng / g)
1,3,5 Trichlorobenzene	5	$s=13.05$	40 to 100
1,2,4 Trichlorobenzene	5	$\mathrm{s}=0.28 \mathrm{X}$	8 to 120
1,2,3 Trichlorobenzene	5	$\mathrm{s}=5.39$	15 to 120
Hexachlorobutadene	6	$\mathrm{s}=0.39 \mathrm{X}$	30 to 150
Biphenyl	5	$s=0.19 \mathrm{X}$	4 to 110
192,3,4 Tetrachlorobenzene	6	$s=0.35 \mathrm{X}$	30 to 150
Pentachlorobenzene	5	$s=0.04 \mathrm{X}+5.04$	50 to 200
Trifluralin	6	$\mathrm{s}=0.19 \mathrm{X}$	2.5 to 150
alpha-BHC	7	$s=0.05 \mathrm{X}+1.70$	2.5 to 250
Pentachloroanisole	10	$s=0.25 \mathrm{X}$	2.5 to 240
gamma-BHC (Lindane)	8	$s=0.12 \mathrm{X}$	3 to 240
Pentachloronitrobenzene	5	$\mathrm{s}=38.81$	70 to 280
Heptachlor	6	$s=7.44$	50 to 250
Chlorpyrifos	8	$s=0.05 \mathrm{X}+8.09$	4 to 300
Isopropalin	7	$\mathrm{s}=38.43$	10 to 500
Heptachlor epoxide	6	$s=0.13 \mathrm{X}$	15 to 260
Oxychlordane	11	$s=0.12 \mathrm{X}$	4 to 300
Chlordane, trans	14	$s=0.10 \mathrm{X}$	3 to 300
Chlordane, cis	13	$s=0.10 \mathrm{X}$	3 to 200
Nonachlor, trans	21	$s=0.16 \mathrm{X}$	4 to 400
p.p'-DDE	29	$s=0.17 \mathrm{X}$	10 to 400
Dieldrin	17	$s=0.10 \mathrm{X}$	3 to 400
Endrin	5	$s=0.10 \mathrm{X}$	100 to 500
Nonachlor, cis	13	$\mathrm{s}=0.13 \mathrm{X}$	5 to 300
Dicofol	5	$s=0.03 \mathrm{X}+5.66$	20 to 300
Mirex	5	$s=0.07 \mathrm{X}$	4 to 300
Tetrachlorobiphenyl	14	$s=0.17 \mathrm{X}$	10 to 280
Pentachlorobiphenyl	26	$s=0.16 \mathrm{X}$	7 to 1000
Hexachlorobiphenyl	28	$\mathrm{s}=0.14 \mathrm{X}$	8 to 1000
Heptachlorobiphenyl	21	$s=8.33$	7 to 120
Octachlorobiphenyl	6	$s=0.15 \mathrm{X}+1.41$	6 to 100
Hexachlorobenzene	4	N/A	2 to 36
$\begin{aligned} & { }^{a} \mathrm{X}=\text { concentration } \\ & \mathrm{s}=\text { standard deviation } \end{aligned}$			

standard deviation, s, and coefficient of variation (CV) for each duplicate pair were determined and then plotted against the mean concentration. For most analytes, s increased as the mean increased and CV appeared constant. For these analytes the average CV was used as the precision summary. The precision is reported asa $=($ average CV$) \mathrm{X}$, where X is the mean concentration of the duplicate pair. The pooled standard deviation value was used as the precision summary for $1,2,3,7,8 \mathrm{PeCDF}$: 1,2,3,4,7,8 PeCDD; 1,2,3,4,7,8 HxCDF: 1,2,3,4,6,7,8 HpCDF: 1,3,5 and 1,2,3 trichlorobenzene: pentachloronitrobenzene; and isopropalin.

CV decreased with increasing concentration, and s appeared constant over the concentration range for these analytes. For pentachlorobenzene, alpha-BHC, chlorpyrifos, dicofol, and octachlorostyrene, precision was determined by a least-squares linear regression since s increased with concentration and CV decreased with concentration. Precision is not reported for some analytes since not enough data were collected to make any conclusions.

Mercury precision for replicate pairs was estimated as $s=0.047 \mu \mathrm{~g} / \mathrm{g}$ in the concentration range of $0.08 \mu \mathrm{~g} / \mathrm{g}$ to $1.79 \mu \mathrm{~g} / \mathrm{g}$ for 20 samples.

DATA COMPLETENESS

The original work plan (U.S. EPA, 1986a) specified a target for data completeness of 80 percent. This was to be based on verified data as a percentage of all reported data. For the dioxins and furans, 4 percent of all values did not meet the QA/QC criteria and are reported as "QR" in the data base. The xenobiotic data were tested throughout the study and if a run did not meet the 80 percent completeness criteria, the set of samples was rerun. No "QR" values were reported for xenobiotics. Thus, the criterion of 80 percent valid data was met.

APPENDIX A-2

Analytical Procedures and Quality Assurance Plan for the Determination of PCDD/PCDF in Fish

Mesearen and Develooment

ิEPA

Analytical

Procedures and Quality Assurance Plan for the Determination of PCDD/PCDF in Fish

 for pheoterminetion ot coorpcof in isn

Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency Duluth, MN 55804

```
tne infopgetion in thls docueent hos been lunded uholity or in porp by fhe u.s.
Envirenmentel Protection Ae0ncy, li hes betereviemed pechnleglly end
```



```
consgftust ondorgeteng or recomementilon por ust.
```

Yen Enyiconengal prosesifin Aency.
Brion C. iuteryoren
Oouglea V. Kuenl

Asel corpergiton.
phillip d. merquia
merie b. bersen
Lerpy G. Molland
Chriseine E. soderberg
jonnifor A. Jonnson
Kevin b. wogtelde
ynjyersfsy ef Hisegngin-superiof.
Ellzabeen A. bundmark
oentel M. pramgen
sondra mauman
Muprey weckere
Kene donnson
Merver O. Corbin, dr. Dr. Rer b. Menson

Wrighs, gense yniversisy,
or. inomes piernen
or. Micheol poylor

```
Oipected by Congressional mondate, the U.S. Environmentel protection Agency
```



```
seares. Resules of this seudy are published in ehe merional dioxin seudy:
riers 3.5.0, and 7, EPA 600/6-82.003. inis laboratory, ehe Environmental
Researcin laborecory- Dulurh, wes responsible for one pare of the study, the
analysis of fish samples. The most significant findings of these enalyses wes
the observation ther fish coneaminetion wet more widespread ehen previously
thought, and enat a primary source of iCDO was discharge from pulp and paper
produciion using chlorine.
A second more detailed characterizerion of enthropogeniceorganicechemicel
coneaminants in fish wes conducted in subeequent analysea during wher is now
called phase ll of the merional Dioxin seudy. init document describes ehe
analyeical methods used for the determinetion of therlevel of conteminerion of
fifteen biosignificent polychlorinered dibenzo-podioxine and dibenzofurans in
fish. A companion document (EPA / 600/3-90/023) deacribea che enelyeical methods
used for ene dererminarion of levels of conemmination of polyehlorinered
biphenyls, pesticides, and industrial compounds in ehose some fish.
```


TABLE OF COMTEMTS

OISCLAJMER i i
ACKMONLEDGEMENTS i i i
FOREWORO $i v$
!. Introduction 1
11. Samplepreporstion
A. Grinding 3
8. Extraction 3
C. Percent bipid Determination 3
D. Anthropogenic Chemical lsoletion 5
E. Florisil Chronatography 5
F. PCDO/PCDF lsoletion 5
l!le Reagents end standerds 6
A. Reagents 6
B. Standerds 7
IV. lnstrumental Parameters 12
v. Quality Assuranelouelity Control 13
A. General Procedures of Operetion 13
B. Instrumental Ouality Control 20
c. Evaluation of Data. 21

1. Accuracy 21
2. Precision 23
3. Signal Quality Assurance Requifements 23
4. Poler Ges Chromerographic Confirmation Analysis 23
D. Oualicy Assurance Probleme and Corrective Actions 26
vi. Ouentification Procedures 25
A. Initiol andoaily Calibration of ene mems 25
D. Sínal Ouelity 27
C. Ou®ntificationop PCDD/PCDF 29
O. Mernod Efficiency
.. 30

Assuranca . B 31

TARES

 1
reble 2 -. minimum bevel of oerecion binit 82
rable 3.. Inernel seanderd solutions 6
rable 6 . Calibration standerde 9
 10
reble 6 .. Relative Retention pimes 6.8 PCOF isomers 11
roble 7 .. HRGC/HRMS Operering peramerers 12
Pable -. Mative PCOO/PCDF soiking solution 16
rable -. Codes for ine sce mumer end merfix iype 19
roble 10.. GC Columa performance ouelityconerol 20
rable 1.. GCElution tindor oefining solutions for ot-s Coluan 21
 22
Figures
 17
 26


```
1. LA!pgquc;ion
```



```
for fetractloro- to octachloror congeners/isomersof oolychlorinateg g:venzos
p-diox\cdotns and dibenzofurans (DCOD/PCOf), iablei.
```

2378.TC=F	51207-3129
2367.TCOF	
3667-TCOF	
2378.1600	1766.01.6
12378-PCCOF	57117.61.6
$23678 . \mathrm{PeCOF}$	57127.3126
23667-PeCDF	70668.29.9
12378.PeCOO	60321276.6
$123667 . \mathrm{HxCOF}$	
$123678 \cdot \mathrm{HxCOF}$	70668.26.9
$123678 \cdot \mathrm{HCCOF}$	57127.66.9
$236678 . \mathrm{NXCOF}$	60851.36 .5
123789.HxCDF	72918.2129
$123678.4 \times C O D$	32598-23-3
$123678 . \mathrm{MxCOO}$	57753.85.7
$123789.4 \times C O O$	19608.76.3
$1236678 . \mathrm{HDCOF}$	67562.39.6
$1236789 \cdot \mathrm{HDCDF}$	55673.89.2
1236678-hpCDO	37871200.6


```
specificity may bo derermined using specielly developed seanderds. Analyeleal
```



```
enrometogrephy (GC) pesk in e congenor clast by moking the sesumption that
therosponse for inomolocular ion of all isomers in ther cless is equal to
theresponse observed for ine isomer for which ERL•O does have a seanderg.
The carget minimum lovel of detection (mlo) for specific pCDO/PCDf isomers is
given in rable z bolow. inis documene is meone ro be only g guideline for
analyses and moy be modified as neoded to sarigfacrorily analyze any sample.
```


rerger minimua
- - - - Q QQLQEQ:


```
YCOO, FCOF
POCOO, POCOF
N&COO, N&CDF
MDCDO, NDCOF 10 pO/g
```

```
A. Geinginge frozen fish urapoed in aluminum foil are senf io
```



```
    or filletj, is dependent on the sotcits. sotton fetderg are groung
    whole and predetors are fllleted with the skin offt. pish tisgue is
    ground frozen inge stainless steel pouer meat grinder. Each
    semple is processed through the grinder three times whigh
    homosenizes it phorgughly. pho ground eissue is seored at
    -20
    ploseiclids.
0. Enfregeign: ifssue (20 g) is blended with enough entrydrous
```



```
    is pleced ints gless soxhler ehimble, spiked uith lOO ul of each standarg
    solution A and (iable 3) and then the remainder of the sample
    is sdded to the thtmble. rhe somple is extraceedet leagt imelve
    hours withe l:i mixeure of hexene ond methylene chloride in e
    SOxhlet extractor. ihe somple is quantitetively transferped eo
    a SOO ml Kuderne-0inish oppoparus and prsueshed boiling chips
    are added.
C. pgregnf. fela Refefmingrign: Tho somple exereceod in
section l.b. of semple preparation is used eo derermine percent
IIPid. After somple concentretion, fhe KO louer eube is placed in a
```



```
0ip. After eny remeining solvent hoe been evepopated, the louer
```

```
tube und contents tre weighad. int lipid is then quantitetuvely
trongterred co phe mecro column as described in section l.J. of
somptepreparation. After fransfer, the empty louer iube ana
boiling ch.os aremelgned. The peremet lipid is calculated fogm
thewignt oifforences.
```


${ }^{37} 6142,3,7,8 \cdot 1000$	2.0	10.0
C, 2 2,3,7,8-TCOO	5.0	25.0
C, 2, 3,7,8•TCOF	5.0	25.0
$C_{12} 1,2,3,7,8 \cdot P$ COD	5.0	25.0
C,2 1, 2, 3, 7, 8-P COF	5.0	25.0
C, $2,2,3,6,7,8 \cdot H \times C O D$	12.5	62.5
C, $21,2,3,6,7,8 \cdot H \times C D$	12.5	62.5
C,2 1, 2, 3,6,6,7,8-HDCOO	12.5	62.5
C, $1,2,3,6,6,7,8 \cdot \mathrm{HDCOF}$	12.5	62.5
C, 20000	25.0	125.0
Cl6 2,3,7,8-TCOF	2.0	10.0

largengl senderd solysion. L

o. Anthropogtate ghtmigal lsotepion: ine somplexeract is

 iog celitolsulfuric acid and 2 g sodiut sulfate, and previousty

 (1.0 mi) is added, the volume is reduced end inen iransteredeothe florisil solumn.
 column firted withe 100 mb reservoir is packedwith plug of gless
 sodium sulfate. ine florisil is activatedet 1200° e for 24 nours. The column is weshed with 20 mb metnylene chlopide followed by iomis hexene. sample and two mimexane pinses ere quantitatively epolied in satilnglugs*. ine column is eluetuith 20 mb 2\% methylene chlopidelhexene and ehe luate disearded. inis uash is folloued by so mbernytone chloride which flous dipecty onto the micpocerbonfsile gel column or PCODPCDF isolarion.

 rinsed with 10 mi coluene folloued by 10 mitmethylene chloride. phocoluan is fizted with solvent reservoip. After the semple
 is voened tuice with 2 mb 25 g benzenelmothylene chloplde ond the


```
methylene chloride. rne column ls invereed on thereservoig and
BHe PCOD/PCOF ere eluredwith ioluene(25mb). ine coluene
praction s collected in a pear sneped (lesk (25m() and reduced
in volume:0 0. mb in a bog C weter boen under a genege
seream of ary carbon fileteredeir. ine somple is erensterredeo
smicrovial using toluenteg rinse the flsmk. prior eo GG/MS
onolysis, the somple is ellowed ro eveporere Ro drynessemd is
spiked with 20 ul of stenderd solutionc(ioble 3).
```


1: 1 . pesenis and finndards:

A. Rengents:

1. Solvents: Only pesticide grede distilledinglese solvents areused. ihey are: hexene, isooctene, methylene chloride, benzene, roluene, acerone, and methenol (iupdick and jockson, fischer Scienticic).
2. Sodiym sylfore: sodium sulfore (Baker Chemicol Compony reagent grede ennydrous) is boted er 650 ige in furnoce por 26 nours. cooled, and seored in en empty hexene solvent botele.
 exerecead ight hours with mothonole ploced on solvent rinsed foit. -ir dried for i 2 hours, and vocuum oven dried (i25ic) for 26 hours. le is stored in on empty hexene solvent botele. prior eo use it is activated er iose G for 26 hours.
3. Sulfyric Acidicelife: Sulfuric acid (Baker Chealcel compony,
 (Baker) (10 g).
4. Pgsegsiym silicgse: migh purity dotassium mydraxide (Aldridge Chemicel (ompany) (56 g) is dissolvedin metnonol (300mb).
 60 ©). inemixture is cooled and the solvent is remored using - Buchner funnel. phe potassium silicate is pinsedemeturn 100 ml of methanol and onee with iot ml of methylene chloride. Phe solids are pieced on aluminum foil ine fume hood and allowed
 oren end dried orernight at iose ${ }^{\circ} \mathrm{C}$. ine peagent is placedine ringed beaxer and seored (activered) at i $200^{\circ} \mathrm{C}$ untiluse.
5. Silict Gel/egrpen: silice Gel. 60 (100 g) (Merek-0ermsede) is Soxhlet extrected with methenol (200 ml) por 26 hours, air dried in hood, and further dried in vocuum oven por 26 hours. AMOCO Px-21 Carbon (s g) is aded and then blended untiluniform in color. Phe silica Gel/Garbon is storedinaclosed jer at room remperatureuntiluse.

76 Florisil: florisil 60-100 mesh (Baker Anelyzed) is soxhlet exeracead with methanol por 26 hours, placed on solvene rinsed foil, air dried and stored in en empty hexane botele. prior to use it is ectivered er $1200^{\circ} \mathrm{C}$ por 26 hours.
8. semederds:

1. Andysicil sfinderd soiking selusion.

Pable 3 provides derails of the spiking solutions. ine surpogate enalyesere used by the dere reviewer to insure that calculated MLO values are reasonable.
 by Upighe seate University. ine concentration of 2, 3, 7, 8-icoo was


```
Uureeu ef seonderds. A table of the concenerations of efech isomer
In osen standerd is fiven in iobleb.
```



```
enalytisel tianderds, one eontsiningell 7S goo's and all 13s
```



```
of municipol incinorotor fly osh ond processing ehe exposed pign
for PCOO/PCOP. These standerds will be used so essish
sfPuerupos for isoaor sooclfíconolysos.
```



```
koposene (P&&) {s usod for fhe iniflel aose colibpetion of phe
```



```
dereraining mese resolurion on a/z 392.9761.
```

Concenerations in Calibration solueions in pg/ul ipidecane

Solobration signdgra	\underline{H}	42	43	46	U5	46	67	40
2,3,7,8-1000	200	100	50	25	10	5	2.5	1
2,3,7,8- ${ }^{\text {2, }}$ COP	200	100	50	25	10	5	2.5	1
1,2,3,7,8-P.COO	200	100	50	25	10	5	2.5	1
1,2,3,7,8-PoCOF	200	100	50	25	10	5	2.5	1
2,3,6,7,8-PACOP	200	100	50	25	10	5	2.5	1
1,2,3,6,7,8-MxCOD	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,6,7,8-4xCOD	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,7,8,9-nxCOD	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,6,7,8-nxCOF	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,6,7,8-MxCDF	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,7,8,8-HxCOF	500	250	123	62.5	25	12.5	6.25	2.5
2,3,6,6,7,8- HxCOP	500	250	123	62.5	25	12.5	6.25	2.5
1,2,3,6,6,7,8-MDCDD	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,6,6,7,8-HPCOF	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,6,7,8,9-HPCOF	500	250	125	62.5	25	12.5	6.25	2.5
OCOO	1000	500	250	125	50	25	12.5	5
OCDP	1000	500	250	125	50	25	12.5	5
${ }_{13}{ }^{13} c_{12} 2,3,7,8-$ C00	50	50	50	50	50	50	50	50
${ }_{13}^{13} \mathrm{C}_{12} 2,3,7,8$ - COP	50	50	50	50	50	50	50	so
${ }^{13} C_{12}{ }_{12}, 2,3,7,8 \cdot \mathrm{PaCOD}$	50	50	50	50	50	50	50	50
${ }_{13}^{13} c_{12}$ 1,2,3,7,8-Pacop	50	50	50	50	50	50	50	50
${ }_{13}^{13} C_{12}{ }_{12}$ 1, 2,3,6,7,8-nacoo	123	125	123	125	125	125	125	125
${ }_{13}^{13} C_{12} 1,2,3,6,7,8 \cdot$ nacop	125	125	125	125	125	125	125	125
	125	125	125	125	125	125	125	125
${ }^{13} C_{12} 12,2,3,6,6,7,8 \cdot$ HDCD	125	125	125	8.25	125	125	125	125
${ }_{37}^{13} C_{12} 0600$	250	250	250	250	250	250	250	250
${ }_{37} \mathrm{Cl}_{6} 2,3,7,8 \cdot \mathrm{TCOO}$	20	20	20	20	20	20	20	20
. $378162,3,7,8-\mathrm{TCOF}$	20	20	20	20	20	20	20	20
${ }^{13} \mathrm{c}_{12}{ }^{1,2,3,6-\mathrm{COD}}$	50	50	50	50	50	50	50	so

Compound	$\begin{aligned} & \text { RRT } \\ & \text { OBS } \end{aligned}$	$\begin{gathered} \text { RRT } \\ \text { SD } 2330 \end{gathered}$	Compound	$\begin{aligned} & \text { RRT } \\ & \text { O\&S } \end{aligned}$	$\begin{aligned} & \text { RRT } \\ & \text { SD2330 } \end{aligned}$
-6-8.e-s.	- 0.0	- 0.0 - ${ }^{\text {c }}$	= = = =	: $1.38=$	
1368	0.816	0.826	12379	1.320	1.209
1379	0.838	0.871	12369	1.368	1.307
1369	0.861	0.968	12667	1.368	1.321
1378	0.912	0.916	12689	1.368	1.321
1669	0.912	1.072	12367	1.360	1.268
1267	0.912	0.968	12366	1.368	1.352
1268	0.912	0.968	12378	1.600	1.288
1266	0.921	1.016	12367	1.615	1.363
1269	0.921	1.016	12389	1.663	1.663
1268	0.936	0.972			
1678	0.960	0.990	126679	1.620	1.673
1279	0.960	1.027	126689	1.620	1.673
1236	0.985	1.016	123668	1.673	1.673
1236	0.985	1.027	123679	1.700	1.366
1269	0.985	1.105	123689	1.700	1.566
1237	0.993	1.016	123669	1.700	1.681
1238	0.993	1.016	123678	1.766	1.606
2378	1.000	1.000	123678	1.775	1.618
1239	1.009	1.088	123667	1.802	1.789
1278	1.028	1.072	123789	1.802	1.721
1267	1.068	1.130			
1289	1.079	1.216	1236679	1.976	2.135 2.297
			1236678	2.823	2.297
12668	1.226	1.111			
12679	1.226	1.111	12366789	2.236	3.225
12669	1.265	1.268			
12368	1.293	1.168			
12678	1.308	1.100			

Compound	$\begin{aligned} & \text { RAT } \\ & \text { OAS } \end{aligned}$	RRT	RRT		RRT
		SP2330	compound	005	SP2330
	-	- 0 - =		- 0.80	- $0 \cdot 0$
1368	0.730	0.777	13678	1.202	1.083
1668	0.752	0.875	13679	1.217	1.103
2668	0.763	0.989	23669	1.217	1.173
1267	0.782	0.885	12679	1.233	1.162
1367	0.782	0.865	13669	1.253	1.206
1378	0.782	0.853	23668	1.253	1.278
1366	0.782	0.919	12669	1.253	1.278
2368	0.782	1.071	12367	1.253	1.173
1367	0.801	0.881	12366	1.253	1.231
1368	0.801	0.900	12368	1.280	1.216
1379	0.801	0.853	12378	1.280	1.216
1268	0.835	0.963	12367	1.295	1.252
1268	0.835	0.919	23689	1.309	1.388
1667	0.853	0.989	12379	1.309	1.237
1678	0.853	0.963	23678	1.359	1.557
1369	0.863	0.963	12689	1.359	1.666
1237	0.863	0.963	13689	1.359	1.350
2667	0.863	1.109	12369	1.359	1.373
1236	0.880	0.977	23667	1.371	1.612
2369	0.880	0.977	12369	1.392	1.620
1236	0.880	0.989	12389	1.666	1.590
1669	0.880	1.061			
1238	0.880	0.989	123668	1.556	1.336
1278	0.902	1.017	136678	1.570	1.370
1369	0.920	1.013	126678	1.570	1.368
1267	0.920	1.069	136679	1.570	1.368
2378	0.939	1.169	126679	1.602	1.628
2368	0.939	1.175	126689	1.621	1.521
2367	0.939	1.160	123667	1.663	1.533
2366	0.939	1.193	123678	1.663	1.689
1266	0.939	0.960	123678	1.676	1.502
1269	0.939	1.079	123679	1.676	1.689
1279	0.939	1.069	123669	1.712	1.668
2367	0.973	1.206	123679	1.730	1.562
1239	0.988	1.160	123689	1.9766	1.668
1269	0.988	1.162	236678	1.766	2.012
3667	0.988	1.266	123789	1.827	1.871
1289	1.071	1.361	123689	1.827	1.960
13668	1.180	1.008	1236678	1.956	1.936
12668	1.920	1.028	1236679	1.979	2.001
23679	1.190	1.065	1236689	2.026	2.161
12368	1.202	1.103	1236789	2.063	2.663
12678	1.202	1.121			
13667	1.202	1.162	12366789	2.260	3.163
12667	1.202	1.160			

A. Generil procedures qi gpergion

1e. Anglysiz. gemples: samples are analyzed in sets of twelve consisting of:

- Lenk: method blank (extraction aporatua) is oreoarea in the laboratory and subjected to ine some somple preoaration procedures es envigronmental somples. The method ianx is used in every sampleser.
 are aded to otank sample matrix. ine levels of fortif. cerion of nerive enalytes in ehe matrix spike will be adove the terget derection limit to provide en estimete ot the methods sensitivity, and for determination of pereent aceuracy of quantification. inis samplemay be substifured
 three eimes and mean value of contamination nes been -stablished.
c. Resecsion, himis verificepion sengle: An environmental
semple with nondetectable emounts of native analyie (determinet
from a previous onalysis) will be spiked wien native analyes
(Table B) and analyzed with the next sampleset. ine addition
of ine oaloc somple will be done for only ine firse infee
sample setg of any matix typero establish inat ine
caleulated MLD is echievable. If analytical resules show
difficuley in obegining the mbo. enen enis oaloc somple muse
be in cest set. lif no problem lexperienced, then this
OA/OC semple mer be dropped.

Compound	Concenerotion		
	(O (ubl iridecene)		
2,3,7,8-TCOO	0.50	1.00	1. 30
2,3,7,8-TCOF	0.50	1.00	1.30
1,2,3.7.8-PQCOO	0.50	1.00	1.50
$1,2,3,7,8 \cdot \operatorname{COF}$	0.50	1.00	1. 30
2,3,6,7,8-PQCOF	0.50	1.00	1.50
$1,2,3,6,7,8-N \times C O O$	1.25	2.50	3.75
$1,2,3,6,7,8 \cdot M \times C O$	1.25	2.50	3.75
1,2,3,7,8, $0 \cdot M \times C O$	1.25	2.50	3.75
1,2,3,6,7,8- $\mathrm{H} \times \mathrm{COF}$	1.25	2. 50	3.75
1,2,3,6,7,8-M×COF	1.25	2.50	3.75
2,3,6,6,7,8- MxCOF	1.25	2.50	3.75
1,2,3,7,8,9•M×COF	1.25	2.50	3.75
1,2,3,6,6,7,8-MDCOO	1.25	2.50	3.75
1, 2, 3, 6, 6, 7, 8- MDCOF	1.25	2.50	3.75
$0 C 00$	2.50	5.00	7.50
_-2COF	3.50	5.00	7.50

d. Qyplifisc sinple: two seporote portions of the some environmental somple ore processed and onelvied.

- Environmental samples: ine total number of environmental semples enelyzed is eight if the oerection bimit verificetion sample ls used; otheruise nine somples ere enelyzed.

2. semple Irgeking, end hepolng of sopples:

- Logring dncoming simples: ERLO comoletes ene choin of custody forms ond informs the somple Control center (SCC) thet eemples orfived sefely or informs sce of ony probleas wish che samples. Eech samelereceived by ERLO hed previously been essigned two numbers by the semple conerol
 number. ine sCCE number ls unique por ech somplond provides

```
    -metns for tracking g given gemple foroughout i :g anglvgis
    and its permanent seorege at ine locker plant. ing samotes
    0ra placed into freczer A upon arrival ar ERb.ouluen,
    homogenized, (ste (l.A.), and an aliauot (100.500g) is D(teed
```



```
    into freezer G. lf ell che deta meets 0A reguirements after
    mass speceral analysis and quantification, fhe samplas are
    eransferred co a locker plant for permenene seorege (. 20% E).
b. begging, end bebeling semgles Qyring.prepgrgsign: a laboratory
    ideneification code(lab lo) is randomly essigned io each
sample in set Of twelve at the start of semplepreoarotion.
The code consists of leteer, A through b, date of
exeraction, and evo initials of the semple preparation
chemist, (e.g. No915s7mb). Thls code is used to idencify ita
sample ehroughout the onolysis period. ine sces, lablo.
sampla description, weight of samplo, and amount of amalytical
siandards added ro each semple are recorded in the sample
preparafion log book at ene seare of extraction. inelat
10 is writeten on labeling tope which is eransforrad prom
bo@kar bo flosk during somple preparation. inelablo is
wriften into inems log book along mith ene meses specera
onalysis numbar.
3. URE sygsem semple Trgeking: ERL- hes developed the mational
Oloxin SEudy (MOS) Phese ll, Dioaceumulasive Dollutanes in fish:
sample iracking Darabasero facilitaterecord kemping and
```



```
(0igical Equipment corporatian). For each samplo, including oa
semples, informetion pereinent to each semple is entered ineo ine


```

uploedec po the database once all oa criteria nove beten met.
figure, is on example of she wos dotobose.
fhe firstevo leteers of the SCE number indicstematerer
fhe ssmple is an Environmentsl, method or merpix Blsnk,
Ouplicere Somple or m mess sooctpol confirmotion snolysis of
0n environmeneal somole. All environmentol semoles begin
vith ehe leteer 0, or s if it is qagmeses spectral confirmetion
onelysis of a previously snolyzed environmentel semple.
The Blenk and Ouplicere samples begin vith inelereer o
followed byEa O or ongl for duplicere or reference fish
somplo, respoctively. iableg lists ine possiblecodes
for ene SCC numbor, and motrix pyoo. Episode numbers for
Blonks and fortified metrix semples ere enteredes 0000.

```
```

MOS shase il: BioaceumulatXve polxurants in fism:
Sampl: iracking Systen ERL.O loc:2S
EDISOJE: OOOO SCC: 0NO71486
samplinglnformer:on:
SamolXng Office:
Statel Eity:
Sampling Coneace:
Oare sampred: 0/ 0/ 0
site bocarion:
berixude: m 0 J' 0" bongitiude: vo or 0^
Analrsis bab: J Date Received: 0/ 0/ O
Mefrix iype: ?

```

```

 Extracelon Oare: 7/16/80 0/ 0/ 0
 GC/MS 10: MAT80826
 LAB 10: K0796866N
 W0ignt: 20.00 0.00
 * bipid: 5.2
 Mass bigid on GPC: 0.00
 Commenss: Referencefish 80

```
\(\qquad\)
mos phesell: diouccumulative polintontsinfish

    sce nuaber firse leter opeions:
```

 0 .. Environmeneal soaples
 O .. OA samples
 s .. ms confirmation anolysis
 Second lereer opriong for Environmeneal samples
 A - Region 1 G - Region `
 B - Region 2 N - Region &
 C - Region 3 Y - Region P
 O.Negion 6 J. Region io
 E Region s i - All regionel dere
 F - legion b
    ```
second leteor options for on somples:
        e Method or metrix blank
        O - babrotory duplicate
        R P Reference fisn or foreified metix
Merpix iype:
    pp - Prederor filler
    UB - Unole Dorion
    WP - Whole Peoderor
    BF - Dotem filler
    - Deference
    \(y\) - Blank
    b baboritory oupldcare
-. Lospruansel gunlisy Eengrol
1. Gn shcongsargen
- Qegestion and meintenenge: Operation end maintenance of the gas chromstograpn will be done aceording to manutaciurerg recommenderions.
b. Eelumn performoneg: GC column performonce will be evoluered by:
1. Resolution of 1,2,3,6.iCOO from 2,3.7.8.icoo
(rable 10).
if. ine \({ }^{2}\) value of ene regreseion of the semple reletiveretention time of ell bloaignificent pCodocop. to ene librery reterive retention ghould not be less than 0.095.
lli. Elueion of all pCodipcop during enalysis frome ge windou defining solution of select pCOD/PCDF (iable ll).
 \(\qquad\)
Resolueion of 1,2,3,6.TCOD from 2,3,7,8-TCOD will be used eo evaluate general colume performence. Resolueion (R) muet be 0.75 or greater.


\begin{tabular}{|c|c|c|}
\hline YCOO & - 3, 6, 8 & 1,2,8,9 \\
\hline PCOF & 1,3,6.8 & 1, 2, 8, 9 \\
\hline P COD & :, 2, 6, 7, 9 / , 2, 6, 6, 8 & 1, 2, 3, 8, 9 \\
\hline - COF & : 3, i. 6.8 & 1, 2, 7, 8, 9 \\
\hline \(\cdots \times 0\) & 1,2,4,6,7,9, 1,2,6,6,8,9 & 1, 2, 3, 6, 6, 7 \\
\hline \(\mathrm{M} \times \mathrm{CJ}\) & 1,2,3,6, 0, 8 & 1, 2, 3, 6, 8, 9 \\
\hline MOCOD & 1, : 3, L, 6, +, 9 & 1, 2, 3, 6, 6, 7, 8 \\
\hline MOCDF & 1, 2, 3, 6, 6, 2, 3 & 12 \(2,3,6,7,3,9\) \\
\hline
\end{tabular}
2. Mass Soter-al Derbormance: ine porformance of ine mass spectrometer is evaluated for resolution, sensitivity and linearity. phemass resolution used for inese analyses is set at a minimum of 5000 (loz valley defintion). inemass soectometer is tunedeach day to the requipedresolution ecerding to the procadures estableshed by the instrument manufacturer. sensterer and linearipy is evaluated by the use of calibrapion seandaras vorying in concentretion (fable bl. a cetibretion curve is established for each standerd. ine curvemusp be linear orer ine range of concentrations used in the catibration standeras. ine percant relative seandard deviations for themear responsa factars must betoss ehan 20 percant.
C. Exabunion of gera:
1. Ageypacy: Aecuracy, eho degree to which ene analyeieal
messurement reflects therpulevel present, will be eveluetedin two ways for ech sample ser. inese are: the difterence of messurement of PCOD/PCOF isomer adodro blank merix, or difference of mesurement of a pCOOPCDf fromenelevel in an established reference metertali and ine efficiency for recovery
```

 of ene infernal standerd added for each congener group. - ne oa
 requiremenes por aceuracy and meenod efficiency are provideo in
 rable 12. Percene Aceuracy and Percene method Efficieney
 ere defgned as followse
    ```
        * aceuracy: measured value \(\quad\) m 100
    amounc native isomer
    added to blank macrix

        rablefiz:, - oualiey Assuranceparamerers

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TCOO & 0.76: & 15\% & >60\%, & \(<120 \%\) & \(\pm 50 \%\) & \(\pm 50 x\) & 3.3 \\
\hline PCOO & 0.61 : & \(15 \%\) & 360\%. & < \(120 \%\) & \(\pm 508\) & \(\pm 50 \%\) & 3.0 \\
\hline \(\cdots \times C O\) & 1.23士 & \(15 \%\) & >60\%. & < \(120 \%\) & \(=100 \%\) & \(=100 \%\) & 3.0 \\
\hline NDCOD & 1.02 - & \(15 \%\) & >60\%. & < 1208 & \(=100 \%\) & \(=1008\) & 3.0 \\
\hline 0600 & 0.88\% & 15x & > \(60 \%\), & < \(120 \%\) & \(=2008\) & \(=100 \%\) & 3.0 \\
\hline PCDF & 0.76\% & \(15 \%\) & >60\%. & <120\% & \(\pm 50 \%\) & \(\pm 50 \%\) & 3.0 \\
\hline PCOF & 1.53* & \(13 \%\) & 260\%. & c \(120 \%\) & \(\pm 50 \%\) & \(\pm 50 \%\) & 3.0 \\
\hline W X COF & \(1.23 \pm\) & \(15 \%\) & >60\%, & -120\% & \(=100 \%\) & \(=100 \%\) & 3.0 \\
\hline * 0 COP & 1.02: & 15\% & >60\%, & < \(120 \%\) & -2008 & \(-200 \%\) & 3.0 \\
\hline OCOF & 1.53\% & \(15 \%\) & 260\%. & < \(120 \%\) & \(\pm 200 \%\) & \(\pm 2008\) & 3.0 \\
\hline
\end{tabular}
2. Precicion: precision, meature of mutuel ofetment amone individuel metsurements of the sate pollutant in peolicete
 the difference of duplicere values to their moten value rable 12 provides 0 A poquiroments for procision. pecision is determined only when both volues are obovernedection limit.
```

Precision is defined es follous

```
difference betuen dupliceresomples

mean volue for the duplicetes
3. signgl ouslipy: ino quality of the ases spectral gignalg uged for quolitotive ond quentitative onolysis is eveluoted using tuo poremeters: the ion intonsipy retio for thermo ions monitored in ect congener oroup, ond the signol to noiso(s/m) retio. poble iz provides on requireaents por signol queliey. In oddition, qualitetive identifleation will be besed on coolution with the stoble isotopo lobolod compound, or reletive potontion tíme corpolotion (robles 5 ond 6).
4. Polnr gat Enronnegraphig Eonfirmerion andysiz: ion


\section*{o. Qualipy almupance poglens and copregiye agions:}
\begin{tabular}{|c|c|}
\hline ms performence ourside OA & Adjust ms peremeters for resolution. rerun inieial curve end reanalyze semple(s). \\
\hline GC column pertormonce ourside OA. & Re日nolyze seenderds and semplss on modified or eleornere colume. \\
\hline Methodefficioncy outside of OA. & 1f 2378-TCOO methodefliciency <60\%, reanelyze sempleser. lifmethod efficiency <60\& for enelyese other ehen 2378-TCOD. fles end pepore dees. \\
\hline Aecuracy outside of on for spiked merix. precision of oupliceres ourside OA. & lf more then 208 of the onalyee ore ourside of of for oceuracy ond pré cision, reonelyzo ehe sempleser. \\
\hline Derection of anolyee in blonk for 2,3,7,8-TCDO, 2,3,7,8-TCDF ond 1, 2,3,7,B-DCDO & Rexterectend peonelyzell ionples for which the level of conesminetion, ormbo, is < \(2.5 x\) blent levele \\
\hline for orner analyese in blank & lecord blank concentretion in comment fieldof semples. \\
\hline Analye exceeds celibration standerdrange. & Mesure mernodefficiency. oiluee semple 100: f pespike wien eech stenderd soluiton (A end ©), adjust volume end reanslyze. \\
\hline methodeffleiency for blenk outside of of or blank lose & Reexerece end reanelyze ll posifives in ser. \\
\hline
\end{tabular}

 che dere by echemist is osentiol. Responsibility por ehe evoluetion of dete is thet of the samplepeperation chemist and the mess spectomerer operetor. leviey of the deto, including oh, ond pesolution of dere qualify problem it the pesponsibility of therineipal investigetorfprogram meneger Resolution of dete questions moy pequipereanolysis op semples to include the eddition of conflpmetopy ione op enelysis on different types of GC columis.
VI. Ouncticteign onoceduegs
```

Ouantification of analyese is aceomplgsmod by assigning isomer
identification, ingegrating ene aroa of mass spocificeqG porks.gand
calculating an analyea concentration baseduypon an ion palative
response facisp betwecn ine analyte and siandarde.

```

```

 Of phe insprument will be porformod os noeded. fnistuill ineluct
 making threa replicate injoctions of oreh calibration standard
 (fable b). yeigheod least-squares linear pespession is used ro
    ```

```

 is inversely proportional ro tho varionea among phereplicare
 injections of eachealibrationstrandard. rhe slopergeneregresion
line is the response factor used to quantify ine analyea. Aleleast
two calibration standards are injoctod daily to insura bhat any
pesponse factors used for quantification and pocovery caleulations
do not deviate from the initial calibration by morernan 20 00reant.
lf fhe daily calibration generates values outside ehis marging and

```

```

of initial calibration curves is generated and ene old response
facor libraries discarded. An example of a typical calibration

```


Figure 2
2,3,7,8-TCDD
weighted calibration curve


\section*{B. signal Oyiliey}
1. Minimum bevel of gecection (mbl : Minimum berel of oecection is defined as the concentration predicted iromeneratio of baseline noise area to labeled seandera area, plus enree times the standerderpor of thestimete derived fromene initial calibration curve for the analyte of ineerest.

Initial Calipration gased mernog of mlo: mLD is estimated from the retio of the notsereato ine isotopicaliy labetea
 ©stimate (SE) for ene argeratio, or r-sxis, of ene initial calibration curve. ine r-ineercape (imi) is suberaced fromen:s quentiey, in keeping with the nopmat pormalism for winverse prediciton" of poine on ene \(x\), or concentration pario axis, from - poine on ene r, or signal ratio axis. ine se eerm is derived from an analysis of variance (amoval performed during ene weighea least squares fit of ene initial calibration curve. inis term represents the random erpor in ene replicate injections used to generate ene calibration curve, the erpor not aceunted for by tie lineer modele ine weigheing is necessary because of ene reletion often observed in instrumeneal analysis, of increasing variance vien increasing conceneration. who, eceording eotis seneme. is defined below:
\[
\left(\left(N_{A} / 1336\right) \cdot(3 \times \text { SE) - } 1 \text { Ni } \times 6336\right.
\]

RF(M/1336) x K
```

vNOre: *
- noise fres in the windoy for ino mojor ion
Of the netive on@lyte.
1334 e labeled internal seanderd petr erea in the
s0mple.
Imf s ene reaxis ineercepe on ene initial calibrerion
curve.
E336 viseled internal seanderd conceneretion,
R
c constent Po edjust for somple size and final
volume.
Rf(M/{336) : response foctor for mojor notive ion to
i3e,2 1,2,3,6-TCOO ion, the slope of the
inifial calibration curve.
SE
c seanderd error of the estimete of the initisl
calibrarion curve.

```



\section*{S/N \\ Analyte Signal Poak Area Noise Slanal Peak Area}
```

 Anolyeg Signal Doat Areo
    ```

```

 Moise signal poak Area
    ```
```

Thenoise arte is caleulated by integriting over t peak wioth
equivalent so tne anolyte signol. typicalty ibout io seconds.

```

```

PCOD/PCO\& is deformined by caleulatingeresponse foctor detueen
PCOO/PCOF and the stable itotope labeled PCOO/PCDF \&op the congener
group. Colgulationo are porformodea follows:

```
standerd:
QP(N/L) • \(\quad\)\begin{tabular}{c}
\(A_{M} \times C_{L}\) \\
\(A_{L} \times C_{m}\)
\end{tabular}

Somple:
\[
v_{n} \quad \therefore \quad \begin{gathered}
A_{m} \times S_{L} \\
A_{b} \times \ldots \in(N / L)
\end{gathered}
\]

An e pett ereenetive.
A. a poek aree laboled.
Cn concentration of netive standerd.
C. a concontreiton of labeled seanderd,
s. s leteledspiking level in semple.
\(v_{m}\) level op netive enelye in semple.
```

0. meshod fifigiency: ine methodefficiency for ine recovery of seable
isorope leooled compounds ig dotorminod oy colculgeing ine omount of
gquble isoroot lsbeled compound in the tinel erteact und diviaing or
the omount spiked into the somple er the seart of the cleanup
procedure. inis is done oy derermining the releriverosponse foctor
```

```

and ene stable isorope labeled internel standerd (Solurion A).

```
Oetermine osponse fector:
```

 R& & A..........
 A15 A CL
 where: RF: response foctor,
 AL a ereo of seable isotopo labeled
 internel seanderd, (solution A).
 A!s=0recol 13C12 1,2,3,6,TCOO,
 Cl a concentretion of seable isotope labeled
 ineernal seanderd, (solueion A).
 Cig a concontration of 13C12 1.2,3,6-1COO.
 The response fector is then used in celculoting ene concenererion
of the ineernel seanderd in the final solueion,

```

```

uhere: Cl a concentretion of stable isotope lobeled
inearnel seanderd. (solurion A).

```
```

Tho concentretion in the finol solution times the fonel volume
equals the sotal amount present. fmag method efficioncy is then
coleulored by:

```
    Cb ound
z Recovery
\(\cdots \cdots \cdots \cdots \cdot \cdots \times 100\)
Cbspiked

OA peremeters for methodefficiency, ion retios, retention itme
corrolerions, signel/noise retio, eceuracy and precision are
monitored with the aid of softwere either developed inehouse, or
modified fromexisting programs includod with eho nims dere systom.
kem dets is sorted ond edited using rhemess spectronereris dedicered
detesystam, transferred to the DEC.VAX system and processedusing
software programs RFACPOR end DFOUAMP fFigure 3.). Dere is reviewed
by the Project Director before entering intornemos dote bese.

Figure 3

\section*{DATA REDUCTION FOR PCDD/PCDF NATIONAL DIOXIN STUDY}


\section*{APPENDIX A-3}

\section*{Analytical Procedures and Quality Assurance Plan for the Determination of Xenobiotic Chemical Contaminants in Fish}
arsearcr and Cevercomen：
Analytical Procedures and Quality Assurance
Plan for the
Determination of
Xenobiotic Chemical
Contaminants in Fish


\title{
U.S. ENVIROMMEMPAL DROPECTIOM AGEMCY MATIONAL OIOXIM SIUOY PHASEII
}

\footnotetext{
Anolytect procedures and ouality Assuranceplan for the Oetermination of xenotiotic chemical contaminants in fisn.
}

 administratively. mention of trade nameo of comercial products does not constitute endorgement or recommenderion for use.
```

rechnical contributiong ro thig researeh were made br:

```
```

U.s. Environmentol proteceiongdgency
Brian C. swetermoren
OOuglas *. Kuehl
AScl_corporacion
Pnilllip d. Marquis
Marie b. barsen
barry G. Holland
Christine E. Soderberg
denniger A. Johnson
KOvin b. Mogfelde
A!On E.MOzOl
Univergifey of uieconsin-superior
Elizabern A. bunamerk
Deniel m. fremgen
Sandra waumann
Murrey weckete
kene jonnson
Harvey O. Corbin, jr.
Dr. Raymond b. Nanson
Jonn Dargan

```
Wrighe seate universityy
    Dr. inomes riernan
    Dr. michal ioylor

\section*{FOREYORO}
```

Directed by Congressional mandete, the U.S. Environmentel Protection Agency
during iq83 initiated the wational oioxin study, e surver of environmental
confaminetion by 2,3,7,8-retrachlorodibenzo-p-dioxin (rCoo) in the United
stateg. Regults of this study ere published in the wetionel Dioxin study:
riers 3,5,6, and 7, EPA 600/6.82-003, inis loboratory, ghe Environmental
Researci laboratory - Duluth, wos responsible for one pere of the study, the
analysis of fisn samoles. ine mose significane findinga of ehese analyseg wes
:qe observation ehat fish contamination wes more widespread ehan previously
thought, and that a primary source of rCOD wes discharge from pulp ond peper
produceion using chlorine.
A second more detailed charactergzation of anthropogenie organice chemical
contaminants in fishwas conducted in subsequent analyaes during what is now
called phaseli of the mationel Dioxin study. init documene describes ine
analyeical methods used for the determinetion of the level of contamination of
polychlorinated biphenyls, pesticides, ond industrial compounds in fish. A
componion document (EPA / 600/3-90/022) describes the anelytical methods used
for the determination of levels of contamination of fitfteen biosignificent
polycnlorinated dibenzo-prdioxins and dibenzofurana in thoae same fish.

```
1. introduction ..... 1
ll. Preparation of Sample Extract ..... 6
A. Sample Handing methodology ..... 6
1. Shipment of Samples to ERL•Duluth ..... 6
2. Sample Logging and Coding procedures ..... 6
3. rissue preparation and storage procedures.. ..... 6
E. Extraction of fissue samples ..... 7
1. Soxhlet Extraction ..... 7
2. Fortification with surpogate standerds ..... 9
3. Fortificetion with rerget Anelyees ..... 9
C. dsoletion of xenobiotic Chemical Contaminants...ly
1. Gel Permetion Chrometography ..... 11
2. Silica Gel Chrometography ..... 11
3. Fortification with lnternal standards ..... 11
lit. Seandards and leagents ..... 12
IV. Analysis of Extracts ..... 13
A. Ges Chrometographic Operating parameters ..... 13
t. Mess Spectrometric Operating parameters ..... 13
V. Ouality Asourancelouality Control procedures ..... 16
A. General Procedures of Operation ..... 16
1. Sample Analysis set ..... 16
2. Sample Tracking ..... 16
3. Dete Storage ..... 16
6. Dete Reviem ..... 16
B. Drocedures for Analyeical Oualiey Assurance. ..... 16
1. Ges Chrometography-mess Spectrometry
- Inserument meineenence ..... 16
b. Ges Chromerogrephy ..... 16
1. Column Resolueion ..... 17
2. Relarivereteneion itme. ..... 17
c. Mass Spectrometry. ..... 17
1. Sensitiviey ..... 17
2. Speceral oualiey ..... 17
2. Gel permeation Chromarography ..... 18
a. GPC Column flow Rąe. ..... 18
b. GPC Column Resolution ..... 18
c. Colleciton Cycle. ..... 18
3. Silico Gel Chromerography ..... 18
 ..... 18
1. Ges Chromerogrephicelarive Retention time ..... 18
2. Anelye ldentificetion Criterie ..... 19
3. Signel ro moiso ..... 19
4. Relerive Response paceor ..... 19
5. Surrogete seanderd recovery ..... 19
6. Potal Analye Recovery ..... 19
o. Oualiey Conerol ..... 20
1. Coneinuel tiss Assessment ..... 21
2. Continuel precision Assessment ..... 21
3. Oueliey Conerol Chare ..... 21
Vi. ouantification of target Analytes. ..... 22
A. Ouentificerion procedures. ..... 22
8. Determinerion of kinimum bevel of ouaneitication ..... 23
```

Tables
rable 1 \cdots bist of iarger Anolytes, Internal
siandards, and surrogate compounds andineir ouantitation lons.e.......e2

```
rable 2 . Codes tor che sec wumber and
Matrix iype.......... . ..... \& . . . . . . ?
```table 3 .. Surrogate sianaardandInternal standara solutions.e......... 6
```


 ..... 10
rable 5 -. Gas Chronatograony / mass
Spectrometry operating parameters. ..... 16


```Concentrations offull-ange oara Acquisition..e............. 15
```

「able •. - iarget Anelvies witn low recoveries

```for enis method20
```

gures
figure i … Biouccumulative Pollutant study
 ..... 5
figure 2 .. Schematic of matytical proctodres...s

```
1. IMPORUCIIOM
rmis document, developed for Phese ll of the U.S.EPA metional Dioxin studv,
descrioes ene enalyeical procedures and qualifey a|oupance plan for ine
decermination of xenobloticechemical coneaminenes in fish. ine enelreitel
0pproecn includec:
 - simple sample preparation methodology ehat produces e single
```



```
 * procedure thol is cost effecive in terms of men power,
 cnemical pe0e|nts, ond instrumentetion,
```



```
 chemical coneaminones.
 - an icentiflegtion of unknown contaginants by gefetening the deta.
```



```
butwere nop limiped eo, hlspopy (deta from previoue monipoping effores),
soxicology. persisfence, bioavailabilify potaneíl, eofal yearly produceion, ang
```




```
 rarger Analyees
 2.5 pob
 {QECQPE fOP PCES}
 Polychlorinered ciphenylg
 bevel of Chlorinegion: 1.} i.2S pob
 6.6 2.50 ppb
 7Ed 3.75 pob
 0.10 6.25 p\rhoD
fish were provided by fhe U.S. EPA Degionol labs working uifh sforg
environmene&l ogencies.
```

Pable 1. LIST OF TARGET AMALYTES, IMTERMAL STAMOAROS, AMO


AMALYTE --.-.------------ EAS NUMBER		ouami	
		On	
---- biphenyl-d+o-sineornal siandarda			
(odotenzene (surfogate)		206	3.300
1,3,5-trientorooenzene	128703	: 80	0.661
:, 2, 6-r-ienlorooenzene	.120821	180	3. 5.8
1, 2,3-trichlorooenzene	87616	180	0. 625
mexachlorobueadiene	87683	225	0.529
1,2,6,5-terrachlorobenzene	05956	2:5	2.871
1,2,3,5-terrachlorodenzene	636902	215	こ.99:
Biphenyl	92526	156	1. $\cdot 5$
1,2,3,6-resrachiorobenzene	636602	2:0	1. $3: 5$
Pensachlorodenzene	608935	236	1.378
9. loconephenalene (surpogate)		127	0.763
rrifluralin	1582098	306	0. 855
alphasame	319866	219	3.890
hexachlorobenzene	118761	286	0.912
Pentechloroenigole	1825216	280	0.926
Gammeranc (bindane)	58890	219	0.979
Pentechtoronicrobenzene	82688	295	0.776
Oipnenyl diguldeide	882337	218	-. 376
wepeechlor	76668	272	i. 185
chlorgyrifos	2921882	197	1.308
lsopropalin	33820530	280	1.382
Ocesentoroseyrene	29082766	380	1.305
Heptechlor Epoxide	1026573	353	1.606
oxychlordane	27306138	185	1.410
chlordane, reans.	5103762	373	1.677
cheordene, efis: 5103790-0.-.-. 373			
monachlor, irans.	39765805	609	0.170
OOE, P, P'.	72559	266	0.855
Oiclarin	60571	277	0.307
Mieropen	1836755	233	0.336
Endrin	72208	317	0.360
perenane	72560	223	0.866
wonechlor, Cls	5103731	609	0.875
6, 6.-0ioodobiphenyl (suprogate)		606	0.876
meenoxyentor	72635	227	1.017
oicofol (kelenone)	115322	139	i. 017
mirex	2385855	272	1.079


A. Smple Mencting Meshodology

Offices are responsitle tor the collection of the fish samples.
 laboratory.
2. Semple bogging, and cgging prosegures: ine sample
 when samoles have been shipped. Upon arrivalg ine samples are checked to make sure eney are in good condition and the shipment
 custody forms and inen notifies SCC inat samples arpived safely or if eherewere eny problems with ene semples fexemple: e nislabeled sampled, no spectes identificetionse

Samples are initially alacedin lerge walkein freezer.
 are transterred to laboratory freter A. Exipected samples are stored in laboratory freezer B. Completed semples ererakeneod locker plant for long erm seorage. A locker plant log is kepe according to EDisode and sCC numbers.

A computerized deta base wes devaloped for semplerecking and date storage. ine episode number, sCC number, date sample was received, matrix eype, latifude, longifude, deseription of sampling sife, and sere from which ine samplecame are enterey

rhe first iwo leters of the scc number indicate whether fhe sample is an Environmental, method or matris blank, or ouplicate Sample. Allenvironmental somples begin withenelerer o. ine slenk and ouplicate samples begin with theletere followed by a O or an for duplicate or reference fish semple, respectively. roble 2 lists the possible codes for the sCC number, and matrix type. Episode numbers for Blonks and fortified merta samples are entered es 0000 .
3. ilspys prepergion end seprge presegures: pish tissue is
 E日G semple is processed ehrough ene grinder infee eimes which homogenizes it enoroughly.formolefish somples, ene entirefish Including organs and fillets are ground. ine ground eissue is
 plosticlids.


```
 MO& PMASE II: DIOACCUMULATIVE POLGUTAMYS JMFISM
 semele irocking Syeten ERL.D b0G.: 1236
EPISOOE S: 6$66 SCEEE: ODO22030
 Sampling informerion:
 Sampling office: ERlOuluth
 Segee Ciry: mM Ouluth
 Sompling Coneace: Rogionol Coordinoror
 O-8e sempled: 8/23/87
```




```
 Analysis lab: D OQe0 leceived: 8/31/87
 M0trin Pype: f pf seeelneed Soecies Code: AZ
 Samole Composire:S
```




```
xenobioric oefinirions:
 OA Flass:
 E - exceods highese calibration seanderd
 O - bolou limis of quaneiferion
 Limites of Quoneicerton:
 Pesticides - 2.50 ppo
 PCBE: 1.S ChlOPO - 11.25 pob
 4-6 chloro - 2.50 poo
 7.8 chioro - 3.7S ppb
 0.10 chloro. 6. 25 pob
```


$\qquad$
first botere:
0
second Leter: A .. Region l
B .. Region 2
C .. Region 3
O .. Region 6
E .. Region 5
p .. Region 6
c .. Region?
n .. Region 8
r .. Region
J...Region 10

```
Matrix Code
 F .. Fisn
 L .. Lab duplicere
 R .. Reterence fish
 r .. Mernod Blenk
```

Motrix iype
UB .. whole bortom
BF .- Doteon filler
pf -- prederor fillet
up .. unole predetor

## E. Exsracsion et ilisue somplet.

figure 2 io seneageic of ehe onolyeleol procedures.

1. Soghles Exprespion: Gpoundeffen pisoue (20 o) is blended with anhydroue sodium eulfore (iOO g) inea 250 mb beaker eo

 spiked with surpogetestenderdsolution A (25 ul), iable 3. Also,



 somple io extreted for er leerit houra with hexenelmernylene chloride (i: $1, ~ y: v)$. ihe extrectis then quentitetively



 lipidereweighed. iwo 0.60 elíquesereprepered for Gel
 empey semple eube is dried ond revelohed rodetermine the percent lipid.

## Figure 2. Schematic of Analytical Procedures




```
 Each somolo is foritified uith Surrogete standard Solutionea (zs
 ub) prior io soxhler extrection. ine sienderds in inis soluc:en
```



```
 in ine lise of iarger anelyegs, and ore used io eraljace ine
 recovery of earger analyege in cloanoduup onvironmoneal samotes.
```


Surpogate standard solution A (2s ub)
Gompoung $\quad$ goncenteleion_fyg(m!
lodobenzone ..... 125
1-lodonephenalene ..... 125
6.6.-0iiodobipnonyl ..... 125
Ineernal seandard solution (10 ute
compound 
siphonyleoso ..... 50
Phonanenrene-o, o ..... 75
Chryseno-0, 2 ..... 75
3. Borpitigasion wiph iarges Anglyege: A biank
 forifification solutions (2s ub), iable 6, to ovaluete ine
 merpix sompleg uill be porified uith enegseme solueion once in erery five (20x) semplesers eo evoluate precision.


```
Solueion A: Aroclor 1256 0t SOO uglml (A.1) and 1000 ug/ml
 (A.2) in roluene.
```



```
 (8-1. C.1, 0-1) and 250 ug/ml (8.2, c.2, 0.2).
```

Solysignte
1,2,3-Trichlorobenzene
1,2,6,5-perrachlorobenzene
diphenyl
Alphatinc
chlordence cig
oleofol
Endrin
Oiphenyl disulifide
nexechlorobenzene
mirex
Octechloroserrene
Ponesentorobenzeno Perenene
solygion_s_
1,2,6-trichiorobenzene
1,2,3, 6-rerechlorobenzene Ganma-anc (bindene)
chtordene, erans.
DOE, D, D.
Mierofen
hepeachlor
lsopropolin
monachlor, cis
oxyentordena
Ponegenloronisrooonzone
Prifluralin
Hexechlorobueadene
sotyeign_g
1,3,5-irichlorobonzono
1, 2, 3, sererechlorobenzene
mernoxyentor
chlorpyrifos
oieldrin
hepeachlor Epoxide
wonachlor, erans-
poneschloroonisoto

1. Gel permestion chrompeographyi. A GPC systen is used eo

$$
\begin{aligned}
& \text { isolete xenooiotic chemical coneminenes from biological molecuies } \\
& \text { (fish lipid). ine GPC column (2.s } \quad \text { SO Cm) (ACE Glass Company) is } \\
& \text { pecked with previousty suelled siobead sx-3. ine Gpe injection } \\
& \text { pore velve is fieted wien a } 0.075 \mathrm{~mm} \text { stainless steet screen fiter } \\
& \text { to remove particulates. ine solvent is oumped at } 5 \mathrm{mb/min} \text {. ine } \\
& \text { absorbance of ene eftuent is monifored wien a } 256 \text { nm uv decector } \\
& \text { (Varien Aerogreph). Each aliquot of expect is diluted ien } 2 \mathrm{mb} \\
& \text { of elueion solvens. ine supernatane is quantitatively eransferead } \\
& \text { ineo sample loop of a } 26 \text { pore aueosampler with incee addietonal } \\
& \text { l mb washes of ine sample vial. ine loops of ine autosampler are } \\
& \text { loaded sequentially oneo ene Gpe column under compuier conerole a } \\
& \text { GPC performance standard solution (sec. (v.e.l) is run io } \\
& \text { derermine ene collection period. inis sample is run prior to each } \\
& \text { sample set. xenobiotic chemical coneminanes wich eluet b }
\end{aligned}
$$

and 1.7 itmes the elution volume between the epox of OEMP and
Pyrene are collecedine ko. Each sample (emoloops) are
collected in aingle ko. mexane ( 10 mb ) is added io ine ko and
ene sample is reduced in volume (s mb) on ateam baen using a 3 .
ball snyder column. The sample is furener reduced in volume to
gel enrometogrepny.
2. silicg Gel chrometography: A xonees column packed with freshly prepared, pareially deaceivated silicagel is used eo romove naturally oceuring cholesterol and fatey acide. ine column ( 9 mm x 19 cm plus a 50 ml reservoir) is packed witn glass wool, antydrous sodium sulfate (0.5 cm), silicagel (2.1 g aboue 7 cm ), and annydrous sodium sulfate ( 0.5 cm ). ine column is pre-elueed with 50 mb of hexane and ene sample is quantitatively erensferred eo ene column with incee 0.5 mb methylene chloridefnexane (isx, v:v) washes. ine column is enen eluederien an additional 58.5 mb of ene same solvene. ioluene (i m() is added eo ine collection vial as "keeper". ine sample is reduced
 quaneieatively eransferped wien eoluene eo e eapered vial (imb).
3. Eorgificesion wien lineerngl segnderds. ine samples are reduced 80 go ub and foreified wien 10 ub of ineernal seandard solueion (rable 3) and seored in microvial for Gefms analysis.

## a. Resents

1. Solvents: Only oesticide grade distilledingises solvents are used. phey are: hexene, metnylene chloride, toluene, acerone. and cyleopentane (Burdick and dackson and fischer scioneific).
2. Sodium sulfate: sodium sulfareciater chemical company reagene grade annydrous) is baked at osolitin turnace for 26 hours, cooled, and seoredin en empey nexane solvent oot: :
 swollon in tne elution solvont, cyeloponeanolmetnylene eator je (1:1.v:v).

 weter (itw:y) and shaten at high speod por pour hours to disperse ene weter. ine mikeure is tlowed po equilibrate fer eighe nours.

- Standaras

All pesticide seandards are made from pure standardmaterials.

1. GPC performance Check solution: prepare solution of

2. Ms perpormance check solution: prepare singlul solution of decalluorotriphenylphosphine (DFPPP) in eolueno.
3. Silica-Gel performence check solution: prepere solueion containing 2 mglmi dieldrin and iomglmi cholesterol in an oppropriatesolvent.
 biphenyledio are used es internal standards. iablei indicates whict internal standardenerergetantresere referenced to in quantitation. pable 6 indicates the concentration of ehe ineernal seandards in ene calibration solutions and in ehe solution used eodedene ineperal standards to ene samples just prior eo ms analysis.
4. surpogate Compounds: lodobenzene, i. lodonsphenelene, and 6, f'rediodobiphenyl are used es surpogate compounds. Egen are present et 125 uglmi (rable 3 ) in the samplespiting solution. ieble indicates the concentration present in the five calibration solueions.
```
6. Deseicides und pes Stenderds: A stock solurion isg made
 conesining the pesticides liseed in ioble l and ehe pC|
 congeners liseted in reble 6. Five colibretion solutions
 0re mede et ene concentretions liseed in iobleb.
7. Fortificetion Solutions: ine pesticides ere divided into
```



```
 (roble 6). Aroclor 1256 is used es ene pet portificerion
 solurion er the concentretions listed in robleb.
```

lv. Anturis of extricis


```
with SUPERIMCOS softwere and supplementel public domein softwere(1, 2)
provided by fhe U.S.EPA loboratories in Clncinneti, OM. All ierger
Anelyees will be quentified individually and ene resules reporeed es unigue
```



```
degree of chlorination. An onolysis sor includes on onelysis of emess
```



```
standard, en unfortified solvant (instrument blants), and tuelve prepered
semples. The GC/ms operetor revievs thems performencesolution,
analyeical seanderd, ond instrument blank defe before stareing ene enelysis
Of somples.
```

A. GHe chremesegrepis opergeing pergmesergi A finnigan-mar
 capillary column (d sefentific) ond operated in e emperature
 ionizer. injections eremede in splifless mode. specific opereting peremeters ere provided in iobles.

model 6500 mess speceronerer is used in ene eloceron impace mode. specific opereting poremeters are providedin iobles. ine positive identification of rerget analyeas is based upon pererse library searen enfeshold value and raletive petention time (rki).
 (Rf) reletive to one of the three internel seanderds listedin iable l.
 geonderd used in quentificetion. RRts ond RFs ore initially deterained using dete prom triplicete enelysis of éch of five repget onelyeg quentificetion solutions (iable 6).

GC poroneters:
Injecior remo.g $2500^{\circ} \mathrm{C}$ lnieisl remp.: $: 00^{\circ}$ c neld for $\begin{aligned} & \text { min. }\end{aligned}$


ms poramerers:
Cyele time: l.j second Acquisition eime: 0.95 second sean rete: 1.0 second scan Renge: 95 - 550 amu Electron volege: 70 ev Emission Current: 0.30 ma Menifold remp.: 95 C tonizer remp.: $1500^{\circ} \mathrm{C}$
rranster leine remp. : _- $280^{\circ}$ c

## V. ouplisy Assyrenceloyeligey conergl soa/os).

A. General procequess of gopestion.

1. Semple Anglysis. sefi Analysis of somples is done in sets of ewelve consiteing of:
-. Blenk: A METMOD BLAMK Cblank exeraceion apperatus) is enelyzed with each ser.
b. Boreified Maprix: A blank matrix somple is foreified with one of eighe different mixeures of rarget Analyese (iable b) and onalyzed with each set.
c. Duplicase: Each onalysis sot conesins
one duplicare somple. In four of five ( 80 of of ine semple sets ine duplicate is on environ. meneal somple previously chosen for onatysie in ehat ser. in one of five (20x) of ine samplesers ene duplicate is a blank metrix semple eher has been foritifed with ene some
 sample. inis edditional eype of duplicate insures that sufficient deta is oraileble at ene end of ehe study to evaluete precision on all earget onalyes.
```
iable b. Composition ond Approximete concentrgeions of calibration
```



Analyedine. sed.l

pCs Cal. Congeners

Cl, $2 \cdot$	0.25	0.50	1.25	2.50	5.00
$\mathrm{Cl}_{2} 2.3$.	0.25	0.50	1.25	2.50	5.00
$\mathrm{Cl}_{3} 2.6 .5$.	0.25	0.50	1.25	2.50	5.00
$\mathrm{Cl}_{6} 2.2106 .6$.	0.50	1.00	2.50	5.00	10.00
C6, 2, 2',3.6.5..	0.50	1.00	2.50	5.00	10.00
	0.50	1.00	2.50	5.00	10.00
C19,2,2, 3, 6, 5, 6, 6.	0.75	1.50	3.75	7.50	15.00
cis $2,21,3,31,6,5,61$.	0.75	1.50	3.75	7.50	15.00
Cl10	1.25	2.50	6.25	12.50	25.00

All parger Analyeas
other enan pess liseed
in ioble $10.50 \quad 1.00 \quad 2.50 \quad 5.00 \quad 10.00$

Ineornal seandords

chrysene-d,	7.50	7.50	7.50	7.50	7.50
pnenenenrene-dio	7.50	7.50	7.50	7.50	7.50
eiphenylodpo	5.00	5.00	5.00	5.00	5.00

Surrogote Compounds

lodobenzene	0.50	1.00	2.50	5.00	10.00
1.10 denephenglene	0.50	1.00	2.50	5.00	10.00

ledonaphenalene 0.50 $\quad 1.00 \quad 2.50 \quad 5.00 \quad 10.00$


```
 d. Enviponmenegl samplegi. wine Enviponmeneal
 samples are analyzed wign each serg
 :. Sgmoleg macking: sampletracking and logging
 system ls used to assure tnat no samoles are
 lose (see section (.A).
3. Jata seoraze: Jata poljers consisting of all
 hard copy guepur is maineained for each sample.
 In addieion, all rav GC/ms data, ls seored on
 megnetic eape.
6. Sate leviey: GE/mg deta is inititlly reviewed
 during sample set acquisition Dy the GC/ms operator
 to essure that all instrumental OA paramererg are being
 met. final reviem and release of ene dete is ine
 responsibility of the project mancger. Once the qualety
 assurance criteria nave Deen met, the quaneification
 informetion is entered ineo ene doeabese. oualiey
 assured dara is enen eransferred eo BlOACG/STOREf
 for availability co ine EPA Regions. Beforerelease
 to the Dublic, all eransferred dete is verified for
 complereness Dy the darabase mancoger.
```



1. Gas EMromitograghy-miss socetromerry syspeni

```
 12. Eglumn legolygion: ine numoer of
 eneoreticel pletes of resolution, w, is
 derermined ar ine ifme ine calibration curve
 ig genereted using chrysenerd,o and monitored
 mith each sample set. ine vilua of m snall not
 decrecse by more enan zox. ine tquation for w
 is giveness pollovs:
 * - 16 (01/tw)
 wnere, Rit zereneion ifme of
 Chrysene-d,o in seconds
 * - Deak widen of
 Chrysene.d,o in seconds.
 2. Relgeive Refengion rimg: Relerive
 perention times of the internal seandardes
 shall not deviate by more inan ele 3 z from
 ene values celeulared at ene eime the
 calibrerion curvewos generered.
6. Moss speciromerryi ino porformance of ina
mess speciromerer will be eveluered for both
sensitiviey and speceral qualitey.
1. Sengipivifyi. ine signal ro noise value must be er lease 3.0 or greater formpziog from an injection of io.o ng decefluorotri. pheny(phospnine (DFTPD).
2. Spestral oyslisyi. ine ineonsity of ions in ene soectrum of offPp must meet ine cricerielisted below:
```



``` \(12730.60 \%\) mess 198 197 < 18 mess 198 198 base peok
 199 5.9% mess 198
 662 >60% n488 198
-663------17:33x_n912_663_-
```

2. Gel permengion Ghrometegtephyi ine GPC is maineained when neededeas derermined by visual inspection (column discoloration, leaks, cracks, erc) metsurement of flow rate, and routine measurement of coneamination of ingerument blanks.
 GPC is measured enree itmes during an analysis: 1) Defore the GPC resolution solution, 2) afterall samples are loaded but before analysis and 3) afer all samples have been enelyzed. flow rete shoula not vary by more than $1 / 0.2$ mb/min.
b. GPE colymn Regolysion: A 350 wl injectionof a performence solution conteining Dacinal (5mglmb).
 daily to evaluete column resolution, and eo determine analye stariting and ending collecion volume.
c. Colleciton Gxele: proper operation of ene

GPC will also be evelueted by recording the ime during en analysig cyele enar ene collectiontwaste valve is in the collect position. inis is accomplished mose easily by recording ene valve poeition on the second pen of dual den recorder. ine seare and end of the collect cyele must not deviate by more chane•l. 2 mb.
3. Silics Gel chromspographyi. ine silice gel column will be evaluated by ies ability to pesolve choleserol prome selecemodel earger analyee, Dieldrin. A solution (i. ombleontaining oieldrin (2.5 mg/mbs and cholesterol (10 mg/mb) is spitedoneo e silice gel column andeluetedmith methylene chloridelhexene (i5\%, viv, 60 mb). ine luane. analyzed by fleme ionization derectorfges chromerography ( $F$ ( $0 / G$ ) must not coneain more enan ioz of the cholesterol while ar leest ot of the oieldrin must berecovered.
C. Eriperis. for ousngipgrive Anslysig:. All of ene
following qualify essurance criterio must be mer before o quentiective value may bereporeed for an analye.

1. Ges chremsegrephic Relgsiveresengion fine: Relativeretention eimes of therarget analyees shall not deviate by more thangele 3 z promene values established during ene generation of ene calibration curve fse table for RRT dere).
```
2. Anglyse logngipiggeign Griserigi. Reverse setren
 identification of on onolyef (SEAR) must hove anfli
 velue of 800 or grearer.
3. figned. &e Mgise: The quentiticerion ion muse heve
 0 signal to noise value of at lease 3.0.
68. Relepive Response facgori. ine releriveresponse
 factor for each analyte quentification ion relative to
 ene appropriete internal seanderd quantificerion ion
 must not deviate dy more ehan 20& from ine value
 derermined on ene previous dey (within e 26 hour period)
 and within soz of the mean value from ine calibrerion
 curve. ine earger analyees Endrin, oicofol, and oeca-
 chtorodiphenyl must not deviete by more than soz from
 ene previous dey.
 A conirol chare is moineminad on the deity response
 faceors for each earger analyee.
5. Surrogese seangarg Receveryi ine pereent pecovery
```



``` for all somples, estovn oelous
XRs: 100 (CO/COR
 where zRs a surrogere percent recovery
 Cor= observed concentration of
 surrogate
 Caz actual concentration of
 surrogate added to ine semple.
 The percent recovery must be within 25 and 130
 pereent for iodonephenalene end so end i 30 pereene
 &or 6, f'.dijodobiphenyl. ine recovery of iodobenzene
 quelirerively indiceres ene extent of eveporerive
 losses eher ehe enalyees liseed in rable f mey experience.
6. IqPAl Anglype Refgrery:. Phe overabl oceurecy of
 quanelficetion of all cerget analyees is evaluated
 by the analysis of e subset of terget onelyees
 fortified into 0 metrix blenk. Recovery of the
 foriffied enalyees must fall vithin eherange of SO ro
 130% except for inoselisted in reble 7. ine enelyees
```

```
ioble 7. rorget Anolyeos with lom rocoverios for
```



```
 1,3.5. Trichlorobenzene
 1,2,6. reichlorooonzene
 1,2,3. irichlorouenzeno
 1,2,6,5-rerrochlorobenzene
 1,2,3,5- PORPOChlorobonzono
 1,2,3,6-10trochlorobenzeno
 00ne\mp@code{chlorobonzono}
 MOxOchloroburedione
liseed in roble f show recoverioo enot fall in enerengo
Of 20 <O 30% for inig method. An OVOrege onelveo
```



```
0nd muse be greoter then 35% but lese then 130%.
A conerol chort for total onolyeo rocovory and onolyeo
recovery is meine0ined for eoch epiking solution.
Po derormino total enolyte recovery firse colculete
tho percent recovery (zR) for ooch foreifleotion onolyeo
using.
```


where zet onelyeopercent recovery
Ai soesured onolyeo concentretion in
portificerion somplofer
onelysts.
di noturol onolye conconerotion in
sonplobefore fortificetion.
Pi stomn erue conconerotion of
enolyee fortificerion level.

Phencolculore zar oy.

```
 KAR E (SUMmBE{ON OP &RO) /M
 where M E number of foreifícoelon
 onolyees in spiking solueion.
```

D. gyadisy censpoli oueliey conepol cheres displeying

 Corporetion. porcent bies ond percent precision will be

 precision er ehe completion of ehe project.

1. Songinuel. ines arsimeng.
$z 1=(100(C 0 \cdot C b) / i) \cdot 100$
```
where Co zotermined concentration eferenalysis Ca seoncentration present before spike added, f known value of ine spike.
```

2. Gonginual prefision Asersment:
precision of quaneification of each eargat onalyeg will be assessed sepergety for duplicete environmeneal somples and duplicate forified metrix somples.

where ci e conceneration of analyes in spike somple 1.
Cz a conconeration of onalyeg in spite somple 2.

Ce Actual conceneration of anatye for foreified merpix somple or mean of duplicate onvironmentel somples.
3. Quality contrgl chersi


```
 OFTPP sonsirivity and/or reiunoms
 ion ratios
 cloon MS
 Relative nesentian ilme
 Melarive lesponse tacsors
 Ragovary of surpogara seandards
 verify MS data
 ropoat samplo oxtraction
```



```
 earger enalyees not lisead
 in rable l meers criferio
 proceed wifthealculetions.
```


A. ousngipiseston prosedurgs.

```
Response faceors are derermined for each earger anatyee and surrogate
compound reletive to one of ine enree ineernal standerde. ine
response facrors are derermined by:
```



```
#nere Ax a peak area of quantitation ion for a earget anatyee
 or a surrogare compound,
A&̧g " De日k 0reg of quaneitation ion for either
```



```
 Cis z inieceed quaneity of the ineernal seanderd,
 Cx = injeceed aumenity of ene eorger enelyee or
 surrogate compound.
```

Public domain sotemare was provided by ene EPA office of
Researen and Development, Environmental Monitoring ond
Support baboratory for the automated identification and
quantification of ine earger analyes. ine data reduction
soferare uses ene following formule to calculate earget
anatyee concentrations:

Where oA a concentration es calculated using ene
response faceor from ene deily seanderd,

ORV z Quen Repore volume (0.100 m(),
ViA volume ineernal seandard added eo (0.100 m().
fest efinal effective sample volume,
StzE semplesize (g).
The fest eerm oceounes for ene toeal lipid presone in ene
semple ond the emount injeceed on the GPC. thefesvis
celculared by:

```
FESV : final volume (ml) ((Tofal bipid (g) / bipid on GPC (g))
```

```
Coleulerions for derermining surpogere spikes and foreified
emouneg ue0 ehe following equerion:
 CONC:(SACFESV)/ (FSRVESIZE)
whore SA spike omount,
 FSRV E Final Effective Surpogete volume,
 FESV, S!2& some os 0bove.
```



```
of ererger snelyee is denoted in ehe final repore if ie
exceeds ine celibrerion renge, ('E, fleg), or is belou the
queneiferion limite, ('0' f(eg).
```

s. Determination of ginimun beyel of quangificarion

 Oefinition end procedure for the Oeterminetion of themerhod oerection

 onelysis of the colibration solutions a minimum level of quentificetion was
 reflects ehe instrumentel derection limits.

## APPENDIX B

## ADDITIONAL DATA ANALYSES

## APPENDIX B-1

Nomographs for Estimating Cancer Risks

CHLORDANE




## HEPTACHLOR



## HEPTACHLOR EPOXIDE



## HEXACHLOROBENZENE


alpha-HEXACHLOROCYCLOHEXANE


## gamma-HEXACHLOROCYCLOHEXANE



## MIREX




TRIFLURALIN


## APPENDIX B-2

Nomographs for Estimating Noncarcinogenic Hazard Indices

## BIPHENYL NONCARCINOGENIC EFFECTS



## CHLORDANE NONCARCINOGENIC EFFECTS



## CHLORPYRIFOS NONCARCINOGENIC EFFECTS



## p,p'-DDE NONCARCINOGENIC EFFECTS



## DIELDRIN NONCARCINOGENIC EFFECTS



HEPTACHLOR NONCARCINOGENIC EFFECTS


HEPTACHLOR EPOXIDE NONCARCINOGENIC EFFECTS


HEXACHLOROBENZENE NONCARCINOGENIC EFFECTS


## gamma-HEXACHLOROCYLOHEXANE <br> NONCARCINOGENIC EFFECTS

Consumption Rate (grams/day)


ISOPROPALIN NONCARCINOGENIC EFFECTS


## MERCURY NONCARCINOGENIC EFFECTS



## MIREX NONCARCINOGENIC EFFECTS



PCB (AROCLOR 1016) NONCARCINOGENIC EFFECTS


## TRIFLURALIN NONCARCINOGENIC EFFECTS



## APPENDIX B-3

## Site Description Matrix

## Key to Table B-3 <br> Matrix of Episodes and Site Descriptions

COL	UMN HEADING	DESCRIPTION
1.	EPA REGION	The U.S. Environmental Protection Agency Region which includes the sample location.
2.	EPISODE	The EPA Episode Number which is specific to each sampling location.
3.	LATITUDE	The latitude of the sample site in degrees, minutes and seconds.
4.	LONGITUDE	The longitude of the sample site in degrees, minutes and seconds.
5.	STATE	The state where the sample was collected.
6.	WATERBODY	Name of the water body where the sample was collected.
7.	LOCATION	The nearest town, road or county to the sample location.
8.	NSO	Sample site from the USGS NASQAN monitoring network.
9.	B	Background site as selected for study.
	POINT SOUR	Point sources include the following six categories:
10.	PPC	Site near paper and pulp mill using chlorine for bleaching (includes mills using the sulfite process).
11.	PPNC	Site near paper and pulp mill not using chlorine for bleaching.
12.	REFINERY	Site near refinery using the catalytic reforming process.
13.	NPLesite	Site near an EPA National Priority List Site (Superfund site).
14.	OTHER INDUSTRY	Site near industrial facility other than a paper mill, refinery, or wood preserver.
15.	POTW	Site near discharge of a Publicly Owned Treatment Works (POTW).
16.	WP	Site near active or former wood preserving activity.
NONPOINT: Nonpoint sources include the following two categories:		
17.	URBAN	Site near urban runoff.
18.	AGRICULTURE	Site near agricultural area.

TABLErB-3
Matrix of Episodes and Site Descriptions

$\begin{aligned} & \text { EPA } \\ & \text { Eneo } \end{aligned}$	spione	Lelunde	1-nemt	Blate	Watertat	Lecalioa	Nso	E	POINT SOURCES							NOSNPOINT	Navineal Sive Descriplise  
									PFC	PPNC	WP	R(ay	NPI. Bine	ceser Ind	ROTW	Uramen 소나	
1	2376	41:22:00N	072:52:40W	CT	Ouinipiac River	North Haven							X	X	X		Industry. chemical \& pesticides; electronics; plastics; metals; Suprofuad site (solvents)
I	2375	41:36:47N	071:58:26W	CT	Quinnebaug River	Jewell City							X	X	X		Ind.: organic chem. \& pest, texiles; Superfund site (Furans)
I	2369	42:37:25N	071:23:10W	MA	Merrimack River	Tynge Island							$\mathbf{x}$	X	X		Ind.: chem. \& pest., induslrial WWTP; P\&P mill on Nashua R. (trib.); Superfuad site (solvents)
I	3151	42:35:22N	072:21:08W	MA	Millers River	Erving			X								Ervihg Puper Mills; wooded area; Ag.: croplands and grazihg fields
1	3150	42:35:46N	072:03:27W	MA	Otter River	Baldwinville			X							X	Erving Paper Mills; wooded area; Ag.: croplands and graing fields
1	2356	44:06:10N	070:13:58W	ME	Androscoggin $R$.	Lewiston			X					X	X	X	Internution al Paper, Boise Cascade, James River; Ind.: textiles
I	2721	44:15:20N	070:10:50W	ME	Androscoggin R.	Turner Falls			X								International Paper Co. in Jay
1	2725	44:30:U9N	070:15:00W	ME	Androscoggin $R$.	Riley Dam			X								Buise Cascude in Rumford; rural;wooded area
1	3026	44:10:20N	070:20:25W	ME	Androscngein $R$.	Auburn			X	X				X		X	Ind.: texiles; townstream of paper mills
1	3028	45:04:48N	067:19:25W	ME	Bearce Lake	Barring		X									
1	2358	44:36:30N	067:55:30W	ME	Narraguagus R.	Cherryfield										X	Two blueberry processing plants; blueberry lields (pes licules)
1	3022	44:32:30N	070:07:15W	ME	North Pond	Cbesterville		X									No industry; wouded and swampy area
1	2355	44:49:20N	068:42:30W	ME	Penobscot R.	Eddington			X						X	X	James River Corporation on Old Town
1	2722	43:34:35N	070:33:45W	ME	Saco River	Union Falls		X							X		Same as 3027; POTW on upstream trib. yet is Background site
1	3027	43:34:25N	070:33:55W	ME	SacolR iver	Union Falls		X							X		Same as 2722; POTW on upstream trib. yet is Bacikground site
I	3023	44:54:30N	069:55:05W	ME	Sandy Pond	North Anson		X									
1	3024	44:54:00N	069:15:15W	ME	Sebasticook E. Br.	Newport								X	X		Industrial WWTP
I	3025	44:49:40N	069:24:00W	ME	Sebasticook W. Br.	West Palmyra								X	X	X	Industrial WWTP
I	3152	44:24:42N	071:11:29W	NH	Androsenggin R .	Berlin			$\mathbf{x}$								Janes River Corporalion
11	3426	40:35:45N	074:12:20W	NJ	Arthur Kill	Carteret								X			GAF Corp. (chem. manufacturing)
11	3429	39:34:30N	075:31.00W	NJ	Delaware River	Salem						X	X	X		$\mathrm{X} \quad \mathrm{X}$	Superfund site (several sites; metals \& org. chemicals)
11	3430	39:18:00N	074:37:30W	NJ	Greal Egg Harbor			X							X	X	Backyround even though has agricultural area and POTW nearby
11	2651	39:36:00N	074:35:00W	NJ	Mullica River	Green Bank		X									Wooded area
H	3427	40:39:15N	074:09:16W	NJ	Newark Bay	Elizabeth							X	X		X	Landfill
11	2653	40:S4:30N	074:12:00W	NJ	Passaic River	Paterson				X			$x$	X	X	$x$	Marcal Paper and P\&P mill on rrib; Ind.: metals, chem. \& pess:; Superfund site (solvents)
11	3428	40:43:15N	074:07:15W	NJ	PassaiclRiver	Newark								X		$\mathbf{X}$	80 Lisler Ave.: chem. manufacturing
11	3433	40:28:24N	074:03:40W	NJ	Raritan Bay							X	X	X	X		P\&P mill eflluent into bay; Exaun Co.; Ind:: chem.; Superfund site (several sites; metals \& urg. chem.)
II	3434	40:27:00N	074:03:00W	NJ	Sandy Hook							X		X	X	X	Exion Cu.
11	2654	39:57:30N	074:12:30W	NJ	Toms River								$x$	X	X	$x$	Ind.: chemical; Superfund site (chlorobenzenc; $\mathbf{H g}_{\text {) }}$ )
11	3304	43:59.30N	076:04:30W	NY	Blact River Delta	Dexter				X				X	X	X	Five puper mills (PPNC); Air Brake Co; hydro-power; dairy fielde
11	3296	42:51:45N	078:52:00W	NY	Buffalo Harbor	Buffislo								X		X	Ind.: chemical, seel, peirochemical; landfils
II	3298	42:52.00N	078:52:30W	NY	Buff alo River	Buffalo								X		X	Allied Chemical (maufacturer of HCB); landfills
II	3301	43:20:20N	078:43:00W	NY	Eighreen Mile Creek	Olcot								X		X	Ind.: Harrisoo Redictor; chem. (HCB); Ag.: orcharde and cooplant
II	2320	42:13:00N	078:01:00W	NY	Genessee River	Belmoal		X							X		Same as 3309. Sampled below Belmont Dam. Superfuad site is approsimately 10 mikes upstream (heavy metals, hydrocartons)
11	3309	42:13:30N	778.02:00W	NY	GenesseelRiver	Belmona		X							X		Same as 2.326

TARLEEN (Cone $)$

$\begin{aligned} & \text { EPA } \\ & \text { Ent } \\ & \hline \end{aligned}$		1 Leviner		Heno	W\%rath	Lercote	Nop		nomit councis							MONPOUNT		 
								-	PrC	PPNC	WP	nlos	$\begin{aligned} & \text { NTI } \\ & \mathrm{gn}^{2} \end{aligned}$	$\begin{aligned} & \text { Oin' } \\ & \text { ind } \end{aligned}$	Potw	urimen	NㅔN	
11	3306	44:57:30N	074:4900W	NY	GraceRiver	Marsena								X				Sampled below ALCOA'S ouifall (PCB concern); (iM $\&$ Reynolds (2 miles below mouth of river)
II	3319	40:40:00N	073:2000W	NY	Great South Bay	Babyloe		X							X		X	Sume as 3320
11	3320	40:40:45N	073: 19:00W	NY	Great Soult Bay	Batyloo		$\mathbf{X}$							X		X	Same as 3319
II	2709	41:16:30N	073:57:00W	NY	Hudsoo River	Peetestill							X	X	X			Sume as 3409; Ind.: chem.; P\&P mill 150 river miles upstream; Superfund site (PCB)
11	3259	43.08.00N	073:36:30W	NY	Hudsoo River	Fort Miller			X					X				Fert Miller Pulp and Paper (Finch, Pyrugn \& Co.)
II	3409	41:20:00N	073:57:30W	NY	Hudsoo River	Peetestill							X	X	X			Same as 2709; Ind.: chem.; P\&P mill 150 river miles upstream; Superfund site (PCB)
II	3321	40:38:40N	073:50:40W	NY	Jamaica Bay	New York								X	X	$\mathbf{x}$		Jod.: chem.; airport; landfill
11	3322	40:37:45N	073:47:00W	NY	Jamnica Bay	New York								X	X	X		Ind.: chem.; airpori; landfill
II	3260	43:51:30N	073:2000W	NY	Lake Cbamplain	Ticooderoga			x									Interaational Paper Co.
II	2328	43:20:25N	078:43:14W	NY	Lake Ontario	Olcolt								X			X	Ag:: apple orchards and croplands
II	2329	43:14:05N	071:32:03W	NY	Lake Ontario	Rochester								X			X	Ind.: chem (Kodak); Sitcht the mouth of genesee River
II	3323	40:48:00N	073:45:00W	NY	Liutie Neck Bay	Loag Is. Sound								$x$	$x$	$x$	X	Sumetres324
II	3324	40:47:00N	073:45:00W	NY	Litte Nect Bay	Loog is.cound								X	X	X	X	Samets 8323
II	3325	40:49.00N	073:40:00W	NY	Manharcellfilay	Loag ls. Sound								X	X		X	Same an 3326
II	3326	40:50.10N	073:40:15W	NY	Manhassett Bay	Loag is. Sound								X	$\underline{x}$	X	X	Same as 3325
II	3300	43:15:30N	07903:45W	NY	Nigara R. Deka	Porter								X	X	X	X	Ind.: chem.; Olin, Dupont, (sidental (HCB); Ag: orchards; landfill
II	3297	43:03:00N	078:58:55W	NY	Nigara River	Nizagra Falls								X	X	$\mathbf{X}$		Ind.: chem.; Olin, Dupont, Oxidental Chem. (HCB), (companies downstream of site)
II	3299	43:02.00N	078:53:45W	NY	Niagara River	N. Tonewande								X	$x$	X		Ind.: chemical
11	3302	43:10:30N	079:03:40W	NY	Ningara River	Lewisloa								$\mathbf{X}$	X		$x$	Ind.: chem.; Olin, Dupont, Oxidental (HCB); Ag:: orchards
II	3303	44:12:30N	075:00.00W	NY	Oswagatchic River	Newhoa Falls			X									Newron Pals Paper Mill (defunct since ()etuber 1984)
II	3412	43:28.00N	076:31:00W	NY	Oswego Hartor	Osuego								X				Ind.: Chemical
11	3305	44:58:30N	074:40:00W	NY	Requette River	Maciena				X					X			Possdnan Paper and Norfolk Paper (PPNC); ALCOA, GM, Reyoolds (upericam of moulh)
II	2322	44:59:00N	073:21:00W	NY	Ricbelieu River	Rouses P1.	X								X			
I1	3308	45:00.00N	073:21.00W	NY	Richelieu River	Rouses Pt.	X								X			
II	3411	43:11:18N	077:31:30W	NY	Rochester Embay.	Rochemer								X				Ind.: chemical
13	3307	44:42:30N	075:28:30W	NY	St. Lawreace River	Ogdensburg								X				Pondeross Fibers (out of business more than 4 years); Dow chemical in Canada
11	3327	40:38:20N	074:02:15W	NY	Upper Bay	New York								X	X	X		Sampled at 6rth Strect Pier
11	3432	17:59:40N	066:46:25W	PR	Guayanilla Bay										X			
11	3431	18:26:40N	066:06:30W	PR	Sao Juan Harbor	San Juna						X			X			Caribbewn Gulf Refining Corn.; Iandill
111	2210	38:52:20N	07:02:15W	DC	E. Potomac River	DC								$x$	X		X	
III	3147	38:52:30N	0770230W	DC	Potonic River Park	N. of Wisoo Br,									X		X	
III	3099	38:35:00N	075:12:00W	DE	Indino River	Rosednle Besci:											X	Escuary
III	3098	39:48:00N	075:39:44W	DE	Red Clay Creek	Asblaod								X			X	Ind.: metal plating mining; illegal dump (landin); Afg: mulbroom farmine
111	3097	39:35:40N	075:37:50W	DE	Red Lioo Creek	Tybouts Corser							X					Chemical spill (HCB concern); Superfund site (HCB)
III	3149	39.43:58N	075:45:37W	DE	White Chay Creek	Thuropsoo								X				
111	3100	39.15:36N	076:31:30W	MD	Baltimore Hurbor	Baltimore									X	$\mathbf{X}$		
III	3317	39:28:00N	079.01:00W	MD	Polomer R.N. Br.	Westernport			X						X			Westvaco (indirect); rural

TABLEE E3 (comet)

$\begin{aligned} & \text { EPA } \\ & \text { Res } \\ & \hline \end{aligned}$	Spleate	Lrance	Lendeme	Seme	W	$\underline{\sim}$	$1 \times 0$	$\square$				NT 80	cus			NOWMYNT		
									Fre.	NTMC	WP	Rer	NRL $m$	O4	Hotw	Uneen.	and	
III	2231	39:39:31N	076:10:28W	MD	Susquehanana River	Conowiago								X	X			Sameas 8103
III	3103	39:38:00N	076:10:00W	MD	Sucquehanos River	Concuriogo								X	X			Sameas 2231
111	3316	41:25:20N	078:44:10W	PA	Clarion River	Riderway			X									Pentech Papers in Johmeooburg: rural; acid mine dr einge
111	3161	39:56:30N	075:14:35W	jPA	CubbsdCreek	Philadelphin							X	X		X		OUd PCP plant (defunct for more than 5 years); thatill
III	3420	39:53:42N	076:49.09W	PA	Codorus Creek	Spring Grove			X									P.H. Gledefielder in Spriag Grove
III	3094	40:02:24N	074:54:20W	PA	Deloware River	Torresdile								$x$	$x$	X		
III	3095	39:53:00N	075:11:46W	PA	Delaware River	Schwyltid Joct.						X		X	$x$	X		Cunstal Eagle Point Oil Co. in NJ ; Ioorganic chem.
III	30\%	39:51:36N	075:18:40W	PA	Delaware River	Eddyplose						X		X	X		X	Mubil Oil in NJ ; Ind.: chem; multiple sources; Ag: croplands (tructing of vegelables)
III	3318	40:23:20N	078:24:20W	PA	Franksowo Branch	Klodder Simion			X									Appletion Paper oo the Junima River (Holter Creek)
III	3419	42:09:25N	080:02:57W	PA	Lake Erie	Eric			X					X	X	X		Hammernill Paper (indirect); ruilyard; fuod processing plam
III	3310	40:39:40N	075:14:35W	PA	Lehigh River	Esatoo								$x$	X	X		Steel industry
III	3101	40:03:40N	075:28:23W	PA	Litlie Valley Creek	Paol								X			X	Pauli Railyard (hisloric PCB problems)
III	2215	40:17:30N	079:52:33W	PA	Moooagabela River	Chirton								X	X	X		Ind.: inorgnoic chem. and pess.
III	2212	39:58:00N	075:11:20W	PA	Schuyltrill River	Philocelphin	X					X	X	X	X	X		Same as 3104; two refineries; Ind.: org. chem. \& peal.; P\&P mill; Superfuod site (PCP)
III	3104	39:58:2N	075:11:33W	PA	Schuyltill River	Philadelphin	X					X	x	X	X	x		Same as 2212; two refiocries; Ind.: ore cheas. \& peah; P\&P nill; Superfuad site (PCP)
III	3415	41:23:30N	075:48.00W	PA	Susquehmana N.Br.	Raneore							X					Superfund side (beavy metals)
111	2211	40:03:00N	076:30:00W	PA	Susquehanae River	Columbia			X					X	X			Gladifielder (bleachlyaft) 20 miles upureand on frituray
III	3414	41:18:50N	075:48:45W	PA	Susquehanor River	Piutstoo							X					Superfund sixe (benyy metals); acid mioc drainge
III	3315	40:21:00N	076:23.00W	PA	UnionCanal	Lebason								X				Pesticide coocern
III	2216	41:33:22N	077:41:28W	PA	Young Womeas Cr.	Redowo		X										
III	3422	36:33:10N	076:54:57W	VA	Blackwater River	Riverdale			$x$									Union Camp Corporation in Frunklin
III	3421	37:47:15N	080.00:06W	VA	Jackson River	Coviagon			X									Wearnco Corporation
III	225	37:35:00N	079:25.00W	VA	James River	Glargow								X	X		X	Lighe ajiculure; rural
III	2088	37:40:15N	078:05:10W	VA	James River	Cartersville	X		X	X					X		X	Wearvaco (PPC); Vireinia Fibers and Nekcone Edwards (PPNC)
III	222	36:46:13N	07109.59W	VA	Nottoway River	Sebrell								X	K			Unioa Camp is 20 ailes dowertrean of compling sice
III	220	37:46:03N	07:19:57W	VA	Pamunkey River	Hamover	X							X	X			Upaream from the Cheasepeake Corporatioa
III	3423	37:31:55N	076:48:40W	VA	Pamunkey River	Westepoin			X									Cheasepeake Copporation (upareao of site)
III	3424	37:32:01N	076:50:38W	VA	Pamuniey River	Weat Point			X									Cbeascpeake Corporation (duwnelrean of site)
III	3193	37:01:45N	078:55:40W	VA	Roanoke River	Brookneal											X	Rural
III	3258	36:49:48N	076:17:30W	VA	S.Br.Elizabeth R.	Norfolk								X		X		
III	2500	38:27:00N	081:4900W	WV	Krasutas River	Nilio								X	X	X	X	Ied: pesicider, trichbropbesol, aed orgaic charnichen (Dow end Moenno); rural
III	3314	38:31:30N	081:54:37W	WV	Kanamen River	Winfield								$x$	$x$	$x$	X	Ind: perticites (Mamano); rmal
III	3311	39:40.00N	080.51:52W	WV	Ohio River	Nw. Martinate								X	X	X		
III	3312	40:09:10N	000.42:25W	WV	Ohio River	Wheeling						X		$x$	$x$	$x$		Ouaker Stale Oil Refiaing sleel industries; witen reanf
III	3313	39:31:10N	077:52:30W	WV	Opequon Creek	Bedingtos								X		X	X	Ae: orchards; rural
IV	2304	31:32:48N	089.30.45W	AL	Alabama River	Eliborne			X						X			Alsbama River Pulp Corepagy
IV	2309	32:24:41N	086:24:30W	AL	Alabama River	Monyomery	X							X	X	X	X	Incl.: orgenic chem. \& pest.; Fence-poen coapery, Ag: cropland

## TABLE E3 ( $\infty$ omen)

												NT MOM	ces			NONP	OnNT	
$\begin{aligned} & \text { LPA } \\ & \text { 至 } \\ & \hline \end{aligned}$	$1$	Leluch		Sund	W\#prex	Lerathes	N8O	$\square$	PRC	PRNC	WP	8 n			NOTW	Urben		namean sin theoternor  
IV	3360	32:07:55N	085:03:43W	AL	Challaboochee	Collonton				X								Alsham Krafi in AL (gues into (iA water but on AL sibe)
IV	3170	31:29:40N	085:22:06W	AL	Choalawhatchee R.	Heary:Co.											$\mathbf{x}$	
IV	2302	31:04:01N	087:02:40W	AL	Conecuh River	E. Bremon			$\mathbf{x}$									Coolainer Corporatioa
IV	3172	31:25:07N	088:26:45W	AL	Coosa River	ALIGA Siele L.								$\mathbf{x}$				
IV	3328	33:17:24N	086:21:42W	AL	Cooss River	Cooss Pioes			X								$\mathbf{x}$	Kimberly Clart; wooded area; Af:: croplands and graring fields
IV	3171	31:01:02N	085:13:24W	AL	Cowarts Creek	Houstoa:Co.											X	
IV	3169	33:50:15N	086:31:46W	AL	Inland Lake	Blown Co.		X										
IV	3168	30:52:30N	087:57:48W	AL	Mubite River	near Cold Cr.								X	X		X	Several chem. \& pest. plants; Hydru-power
IV	3331	30:30:00N	087:20:15W	FL	11 Mile Creek	Cenomaner			$\mathbf{X}$								X	Champion International Curp. in Cantonment; rural; swampland; Af: crophads
IV	3332	30:38:52N	081:29:28W	FL	Amelia River	Fernandina Bcbl			X									ITT Rayonier, Inc.
IV	2151	30:23:04N	085:33:24W	FL	Econfina Creek	Panama Ciny	$\mathbf{x}$											
IV	3329	30:01000	083:46:00W	FL	Fenbolloway River	Perry			$\mathbf{x}$								X	Buckeye Cellulose; rural; swampland; Ag.: grazing fields
IV	3334	29:50:31N	085:17:5yW	FL	Gulf Co. Canal	SI. Joe			X						X	$\mathbf{X}$		S. Joe Paper (iodirea)
IV	3174	27:12:18N	080:47:28W	FL	Lake Okeechobec	Okeechobee								X				
IV	2148	27:38:54N	080:24:10W	FL	Main Canal	Vero:Beach	$\mathbf{x}$									$\mathbf{X}$		Collected below sulining structure
IV	3333	30:07:38N	085:39:25W	FL	St. Addrew Bay	Panmasiciy			X						X			Southwesk Forcat lod., Inc. (indirea) (Stone Coatainer Corp.)
IV	2142	29:38:48N	081:37:32W	FL	St. Johas River	Palaka			$\mathbf{X}$						X		X	Georgia Pacific Corporation
IV	3173	30:00:00N	081:40.00W	FL	St. Johas River	Greea Cv.Spr					X					X		Wood trestmedr plant
IV	2152	30:21:30N	082:04:54W	FL	St. Mary's River	Maceleany	$\mathbf{x}$								X			
IV	3330	30:28:00N	083:15:00W	FL	Witllecruche River	Blue Spring				X								
IV	3337	31:39:10N	081:49.00W	GA	Alcamats River	Jesup			$\mathbf{X}$								$x$	ITT Rayoaier, Inc.: swampland; Af.: croplaods
IV	317	34:26:00N	083:40:30W	GA	Chatlabooctiee R.	Gainesville		X						X	x		$\mathbf{x}$	Town of Scheville: beavy metals, woud products; Ag.: chicken farme and orchards
IV	3375	33:39:24N	080:40:25W	GA	Challaboochee R.	Austell				X					X			Box Board oo Hwy 92
IV	3376	33:28:37N	084:54:04W	GA	Chaltaboochee R.	Whitesburg				X								
IV	3377	33:16:45N	085:06:00W	GA	Chattahoochee R.	Franalin				X								
IV	3378	31:08:00N	085:04:00W	GA	Chaltahouchee $R$.	Doonldeonville				X					X			Grea Southera Pucific Paper Company
IV	3178	34:55:00N	083:10:00W	GA	Chatlooga River	Claytoo		X										
IV	3179	34:27:00N	083:57:30W	GA	Chestatee River	above:L.:Lanier		X							X		X	Miniag: gold, sand, and gravel; Ag: orchards, dairy farms \& chicties bouses
IV	229	32:01:20N	083:56:30W	GA	Flint River	L. Blackshear			$\mathbf{X}$									Procter \& Gamble (Buckeye Cellulose)
IV	3176	30:52:00N	084:36:00W	GA	Lake Seminule					X				X			X	Great Sowhern Pacific Puper Company
IV	3336	30:43:37N	081:32:00W	GA	North River (momb)	Si. Mary			X									Gidmon Paper Cumpany
IV	2290	33:22:25N	081:56:35W	GA	Savnnab River	Auguesa			X					X		X		Federal Paperboard in Puod, Georgia Pacific; Ind.: pess.
IV	3175 3338	32:10:30N	091.08:50W	GA	Savanamh River	Savraanb			$\mathbf{x}$			X			$\mathbf{x}$	X		Rort Hownd Paper (PPC), Unin Cenp and Slame Cootminer Coup. (PPNC); Nuclear pover
IV	3338	33:22:00N	081:56.00W	GA	Savanabh River	Augusia				X					X	X		Pooderose Fibera (indirea)
IV	3180	31:18:00N	084:45:00W	GA	Spring Creek	Early County											X	
IV	3335	31:08:15N	081:31:35W	GA	Turte R. (mouth)	S. Brunswict R.			$\mathbf{x}$									Brunswick Puper \& Pulp on the Turile R.; marshland; wooded ares; A8. grazing ficlds

TABLE R-3 (coner)

$\begin{aligned} & \text { Eral } \\ & \text { Ren } \end{aligned}$	kiven	Latlicie	1andent	Sine	Weortay	Larane	NSO	-	PUINT Souncilis							NONPOMT		 
									PRC	PPNC	WP	R(ing		owr	NOTW	Urbee	A-ril	
IV	3183	38:24:22N	082:35:52W	KY	BigSandyR.	Cattetsburg						X		X	X			Ashland Oil lac.; Ind.: chem, iron and steel; coal mining, timber
IV	3339	36:55:41N	089:05:52W	KY	Miscinsippi River	Wictliffe			X								X	Westvaco Corporation; Ag.: croplands
IV	3182	36:55:27N	086:52:47W	KY	Mud River	Ruscellville								X	X		X	Ind.: metal plating; readering plant; Ag.: croplands
IV	2056	38:00:30N	085:56:30W	KY	Ohio River	West Point							X	X	X	$\mathbf{x}$	X	Same as 3181; Ind.: chem. \& pest, refinery, Ag.: crops; Superfund site (PCB's; solvents; dioxins \& furans)
IV	2341	38:46:29N	084:57:52W	KY	Ohio River	Markland			$\mathbf{x}$						X	x	X	Williamette ladustries; muliple sources; rural
IV	3181	38:00:30N	085:56:30W	KY	ObioXRiver	Westpoiat							X	$\mathbf{X}$	X		X	Same as 2056; Ind.: chem. \& pest., refinery; Ag.: crops; Superfund site (PCB's; solvents; diwains \& furans)
IV	3446	38:24:22N	082:35:52W	KY	Bias SandyR.	Cavietstourg						X		X				Ashland Oil refinery; coal mining
IV	3185	30:25:00N	089:04:00W	MS	Bernard Bayou	Gulfport							X	X		X		Ind.: chem.; woud treatment; (gas recovery) refinery; rural; Superfund sile (solvents)
IV	2126	32:20:41N	090:51:48W	MS	Big Black River	Bovias	X								X		X	Ag.: soybeans and colion
IV	3445	30:19:32N	088:31:00W	MS	Chevion Effluent	Pascagoula			X			X		X		X		Chevron refinery, Jolernational Paper; shipyard; fertilizer company
IV	3341	30:25:20N	088:31:10W	MS	Escalawpa River	MossPPoint			X									Internatioal Paper Company
IV	3340	31:13:28N	059:02:50W	MS	Leaf River	New Augusta			X									Leaf River Forest Products
IV	3435	31:25:00N	091:30:00W	MS	Mississippi River	Natchez			X									Internatioasl Paper Company
IV	2133	32:29:14N	090:49:02W	MS	Yazoo River	Redwood				X							X	Same as 3184; lad.: paper; fertilizer plant
IV	3184	32:28:00N	090:49.00W	MS	Yazoo River	Redwood				X							X	Same as 2133; lnd.: paper; ferilizer plant
IV	3344	34:23:50N	078:10:30W	NC	Cape Fear River	Riegelwood			$\mathbf{X}$						X		X	Federal Paper Board; rural; swampland; wooded area; Ag.: cropleods
IV	2139	35:40:02N	093.04:23W	NC	Cattaloochee Creek	Cattahochee		X										Champive Paper (PPC-iodired source); wooded area
IV	3165	34:43:50N	079:39:24W	NC	Deep River	Ramseur Dam								X		X	X	
IV	3345	35:X5:06N	082:40:45W	NC	French Broad River	Pisgah\%orest			X						X		X	Ecusta (sulfite mill using chinrine); rusal; woocted area; Ag.: croplands
IV	3164	35:56:45N	079:19:20W	NC	Haw River	Saxapahaw								X	X		X	Ind.: texides; rural; Ag.: croplands
IV	3342	34:36:30N	078:59:00W	NC	Lumber River	Lumberton			X									AlphaCellulose (sulfite mill using chlorine)
IV	3167	35:50:35N	078:50:20W	NC	Medlins Pood	Morrisville					X							Koppers Company (mood treat.); Superfund sieeX wood Ireat. (PCP)
IV	3166	35:08:00N	083:38:15W	NC	Nanthalia River	Macon Co.		X										
IV	2138	35:15:29N	071:35:09W	NC	Neuse River	Kinston			X									Weyerhaeuser Company
IV	3395	35:11:56N	07.06:45W	NC	Neuse River	NewBern			X									Weyerhaeuser Company
IV	3343	35:32:05N	082:54:40W	NC	Pigeon River	Clyde			X						X		X	Champion International in Canton; rural; wooded area; Ag.: crophads
IV	3346	35:51:55N	076:45:40W	NC	Roanoke River	Plymouth			X								X	Weyerhaeuser Company on Welch Creek; rural; mooded area; Ag.: croplands
IV	3385	35:59:25N	081:31:32W	NC	Yadkin River	Patterson				X				X				Sealed Air Corporation (makes absortiant paper for meal (rays)
IV	3347	34:42:30N	00:51:50W	SC	Catawba River	Calawba			X								X	Buwater Carolina; rural; wooded area; Ag.: croplaods
IV	3186	32:45:50N	079:53:10W	SC	Charlestoo Harbor	Charleston			X	X				$x$		$\mathbf{x}$		Westraco Puper and Pulp; A mucu chemicial plane
IV	3348	33:21:24N	078:18:34W	SC	Sampit River	Georgetowo			X									Internaioal Paper Cumpany; rural; wooded area; Ag: croplands
IV	3187	32:29:46N	000:31:33W	SC	St. Helena Sound			X									X	
IV	3309	33:51.08N	080.37:32W	SC	Wateree River	Eaciover			X								X	Union Camp Corporation; rural; mooded ares; Ag.: croplende
IV	2301	35:29:45N	087:49:58W	TN	Buffio River	Flarwoods		X									X	
IV	3189	35:55:37N	084:58:18W	TN	Fi. Loudoo Res.									X		X		Ind.: aluminum
IV	2298	35:X6:31N	088:58:36W	TN	Hatchic River	Bolivar	$\mathbf{x}$											
IV	3350	35:19:08N	084:48:33W	TN	Hiwasee River	Calboun			x								X	Bowater South Paper Cumpuny; rural; munded area; Ag.; cruplants
IV	2297	36:00:56N	083:49.5AW	TN	Holston River	Koorville			X					X	X			Industry: metals

TABLE B-3 (Comen)

$\begin{aligned} & \text { TPA } \\ & \text { Ren } \\ & \hline \end{aligned}$		1enter	L-a	Scor	Whataly	Leate	Noo	-	Powtsousce							MANOET		Acread 9n Dermen  
									mc	NTNC	WP	Pan	$\overline{\mathrm{NL}}$	$0$	notw	Unte	Ag	
IV	3403	36:33:02N	082:35:00W	TN	Hotseon R., S. Fort	Kagroor			X									Moxd Corpontion (Crlorisc: Diuxile pruciss)
IV	3444	35:05:15N	090.05:30W	TN	Miscresippl River	Noncommat Cr .						X		X	X	X		Mapcu. Exion. Union refoertis; cement faclury; wybran proceasing
IV	3188	35:03:54N	085:20.28W	TN	Nictajact Reservoir									X	X	X		Ind., cluem.; cute; rendering; mily ants; bountil
IV	3404	36:01:20N	083:12:00W	TN	Pigeon River	Newpont			X								X	Crampion Incemationd in Nunh Canslina
IV	3351	35:56:24N	083:10:52W	TN	Pigeon River	Newpon			X								X	Champion Incemational in Nunth Carulina
IV	3190	35:50.15N	084.04:13W	TN	Tennenmer River	Kno.x vile								X		X		
IV	3401	35:03:54N	086:16:39W	TN	Tennaver Rives	Herdin Co.				X								Tenserce River Pulp and Puper in Counce, $\mathbf{T N}$
V	2379	37:37:31N	089:25:42W	IL	Big Muddy River	Grund Tower		X							X		X	
V	2383	41:35:47N	088:04.07W	IL	Des Pialnes River	Usctpon						X		X	$x$	X		Ind.: organic cheme \& pest; Refinerics (downsuram); sed: incinerator
V	3113	41:52:13N	088:18:31W	IL	Fox River	Cenen								X	X		X	
V	2380	41:19:40N	088:45:10W	IL	Illinois River	Mancilles						X		X	X	X	$x$	Lnd.; chern, ep pesal Union oll, Texmeo, Mobil; Ammunkioo plan
v	3114	39:43:00N	091:31:04W	IL	Misciselppl River	Quincy				X					$x$		X	Celorex Coporainn (deinsing)
$v$	3115	38:32:30N	090.15:00W	IL	Monsuno Effluent	Eaxt St. Lowis								X	X			Six ctemical/phamaceutical plants (paralictlurubeazene)
$v$	3117	42:21:10N	087:49:40W	IL	Lake Michigen	Waunegan							X	X		$\underline{x}$		Open line marple; Superfuad sive (PCB) at Waukegan Hatior
$v$	2059	41:37:10N	087:29:15W	IN	Indiana Hartor Can.	Ear Chicifo						X	X	X	X	X		Seme as 3356; Annco Oil; Ind.: primarily sucel; wertewter: Superfund sive (PCB)
v	3356	41:37:10N	087:29:15W	IN	Indiana Hartor Can.	Esar Chicaso						X	X	X	X	X		Sant as 2059, Annoco Cil; Ind.: primerily slail; waskwater; Superfund aini (PCB)
v	2000	38:07:50N	087:56:20W	IN	Wabesh River	New:Herindey								$\underset{X}{X}$	X		X	Ind. chern. \& pess.; coad nining; (sile at the mowh or the Wabeah R.)
$v$	2057	38:30.45N	087:17:30W	IN	Whice River	Prersomis								X	X	X	X	Hydropowne, coal mining
$v$	3119	42:33:00N	085:54:00W	MI	Allegan:Lahe	Allegn				X			X					Htisarical PCB conmaminatin trom peper deinking: Superfied sike (PCB)
$v$	31:18	45:50:00N	087.05:00W	MI	Escancte River	Escanata			X									Mead Copportion (hiswortal PCB comaminution)
$v$	1994	43:03:00N	083:48:45W	MI	Fint River	Flushing								X	X	X		Automobile manu(scuring (heavy metals and oils)
$v$	3120	42:39:00N	082:10.00W	MI	Kalerazco River	Saugmact								X				Hiearical PCB contamination sine is downsuream of Kitmmen
$v$	3122	45:47:00N	087:59:00W	MI	Menminine River	Quinosec			X									Chancion International Corporalion
V	1998	43:15:05N	086:14:55W	MI	Munkegoo:Lake	Muntegoo			X				X	X	X		X	Soot Paper (indirect); Power \& chem. planx; Ag.: orch.; ane as 3148; Supermod ane (PCB)
V	3148	43:15:05N	086:14:55W	MI	Munkegon:Lake	Matrego			X				X	X	X		X	Scoa Paper (indirect); Power \& chen. plank; Ag.: orch.; ane as Iy\%s; Suproftuad are (PCB)
v	2432	43:19:57N	086.08:42W	MI	Muskegon River	Bridgron	$\mathbf{x}$								$x$			Fer uputern of bleactitral (Sooe PaperCompany)
$v$	2410	42:16:45N	083.07:20W	MI	Rouge River	RiverRouge								X	X	X		Ind.: heavy ared; chem.; aroonobite (PCB's in elthena)
V	2431	46:29.45N	084:22:25W	MI	St Marys Rives	Saul SL Merie	X			X					X			Si Mary's Paper: Algorna Smed; dredging
$v$	2430	46:34:30N	085:15:10W	MI	Tahquameron $R$.	Pandice												
V	2435	47:55:23N	089.08:42W	MI	Washington Creek	halo Royule		X										Canedian Bleath Kral P\&P millabout 30 miles upmad in Truader Bay. OnL
v	2387	44:16:08N	093:21.05W	MN	Cannon Lake	Fuirtaun		$x$							X		X	
$v$	2437	44:41:33N	093:38:35W	MN	Minnesols River	Jordan	X								X		$x$	
$v$	3112	45:58:17N	094:22:05W	MN	Mississippl River	Linte Falls				X								Henmepin Paper
$v$	3125	44:33:34N	092:25:47W	MN	Mississippl River	Red Wine						X		X	X	X	X	Ashland OilK uch Refining: urtan nunorf; historical PCB comserimation
V	2385	48:36:29N	093:24:13W	MN	Rainy River	Lruera'l Fals			X						X	X		Boise Cascade on boith sides of the river
$v$	3001	48:35:29N	092:53:34W	MN	Rainy River	Intern'l Falls		X							X			Site is above the dam. Boise Casuade outtill is below dam.
$v$	2416	41:29:50N	081:42:10W	OH	Cuyaloga River	Cleveland								X	X	X		Lnd.: ctrem.; vil.
$v$	2394	39:33:44N	084:18:19W	OH	Great Miami River	Pructin				X				X	X			Applaion Pupers and Miani Papers (deinking): Inct: mevels undethers
$v$	2439	39.15:53N	084:40:30W	OH	Great Miami River	Nw.:Behimore	X			X			X		X		X	Surg P\&P mill (deinking); Pructur und Gantiki Ag. nuouf; Supersued xtci

TABLE B-3 (cont)

$\begin{gathered} \text { EPA } \\ \text { Reg } \\ \hline \end{gathered}$	Pipecte	Lathent	Lenemet	Sene	worex	Leale	nso	-	POINT BOURCM							NONPONT		
									PFC	Prnc	WP	Rew	NPL	In	POTw	Urap	A	
V	26148	39:24:40N	084:33:14W	OH	Hamiton Canal	Hamitoo				X			X				X	Canal of G. Miami R.; Appletoo Paper; Aviation plant; steel; bydro-power;Superfuad site
V	3132	39:17:30N	082:55:48w	OH	Sciolo River	Chillicotbe			$\mathbf{x}$				$\dot{\mathbf{x}}$	x				Mead Corporation oa Paint Creek; Ind.: inorg. chem. \&' pest.; Superfund site
V	3135	44:49:39N	091:30:38W	WI	Chippewa River	Eau Claire				X								Pope and Talhot (deinking)
$v$	3136	45:24:05N	091:13:18W	WI	Flambesu River	E.ILadysmitb				X								Pope and Talbot (deinking)
$v$	3137	45:55:00N	090:26:41W	WI	Flambeau River	Park Falls				X					X		X	Flambeau Paper; Ag.: croplands and grazing fields
V	2429	44:27:39N	088:03:30W	WI	Fox River	DePere Dam			$\mathbf{x}$					$\mathbf{x}$	$x$	X		Fort Howard, James River, Green Bay Pkg, Nicotet Paper, Champion
$v$	3138	44:16:10N	088:22:18W	WI	Fox River	Appleton				X					$\mathbf{x}$			Kerwin Paper Company (deinking), Gladtfelder, WI Tissue, Kimberly Clark
$v$	3140	44:13:24N	088:27:34W	WI	Fox River	Lk ButteD.Morts				X								Gladtfelder, WI Tissue Mills, Kerwin Paper (historical PCB contamination)
$v$	3143	44:00:43N	088:31:00W	WI	Fox River	Oshasosh				X								Pondeross (deinking)
$v$	3144	43:32:17N	089:27:36W	WI	Fox River, upper	Portage								X	$\mathbf{X}$		X	Historical PCB contamination
$v$	2422	46:36:21N	090:52:30W	W1	Lake Superior	Ashland			X									James River-Disie Northern (deinking); rural
$v$	3134	44:01:58N	088.08:45W	WI	MasitowocdRiver	Chiton								X	X		X	Incinerator; H2O sofiener plant; Ag.: croplands
$v$	3141	43:03:26N	087:53:54W	WI	Mitwakee River	Milwauke								X	X	$\mathbf{x}$		Ind.: metals (historical PCB contamination); 300-400 Industrial discharges
$v$	2427	45:03:16N	087:44:50W	WI	Peshtigo R. Harbor	Peshtigo			X						X			Badger Paper Mills, (indirea)
$v$	3142	43:43:51N	087:47:04W	WI	Sheboygan River	Kohler							X	X				Superfund site (historical PCB cootamination)
$v$	3110	49:58:00N	092:46:00W	WI	St Croix River	Hudsoo												Anderson Windowr; wood treatment plant
$v$	2397	45:37:2TN	089:25:14W	WI	Wisc. A/Boom Lake	Rhinclander		X										Uparream of paper mills
$v$	2608	44:16:00N	089:53.00W	WI	Wisconsio River	U. Pentervell FI			X					X	$\mathbf{x}$		X	Nekoona, Font Edwards, Consolidated Krafi; Vulcan mat. (rubber \& phatic); same es 3106
$v$	3106	44:16:00N	089:53:00W	WI	Wisconsin River	U. Pemenwell FI			X					$\mathbf{X}$	X		X	Nekoose, Font Edwards, Consolidated Krafi; Vulcan mat. (rubher \& platic); cunc as 2608
$v$	3107	45:01:20N	089:39:09W	WI	Wiscoosin River	Brokaw			$\mathbf{x}$									Wausau Paper (sulfite mill)
$v$	3108	45:10:31N	089:40.00W	W1	Wisconsio River	Merrill				$\mathbf{x}$								Ward Paper (deinking)
$v$	3109	44:56:5TN	089:37:45W	W1	Wisconsio River	Wausau								X				Wood treatmeet plant site is between paper mills.
$v$	3145	43:26:17N	089:43:56W	WI	Wisconsin River	Mobownkin				X								Rhinelander Paper Company
$v$	3146	44:52:57N	089:38:17W	WI	Wisconsio River	Rothechild			X								X	Weyerbseuser, half dozen small mils; Ag.: croplands
VI	2023	35:20:56N	094:17:54W	AR	Arkansas River	Van Buren	X								X			
VI	3060	34:26:41N	092:06:38W	AR	Arkances River	Linte Rock								X	X		X	
Vi	3062	34:10:09N	091:43:56W	AR	Arkansas River	Pine Bluff			X						X		X	Interamiocal Paper Company, wooded area; Ag.: croplands
VI	3061	33:10:18N	092:39:00W	AR	Bayou DeLoutre	El Dorado						$\mathbf{X}$		X		X		Lion Oil Company
VI	31078	34:50:39N	092:07 20W	AR	Bayou Meto	Jacksonville							X					Superfund site (dioxins); rural; wooded area
VI	3443	34:09.00N	091:31.00W	AR	Bayou Meto	Reydell								$x$	X		X	Downstream about 30 miles of the Jacksonville site (3078)
VI	2015	33:33:27N	091:14:15W	AR	Mircimsippi River	Astanasciny	$x$		X								X	Potasts Corporaiva; Ag: ©oplams
VI	2018	35:59:43N	092:12:45W	AR	N. Sylamore Creek	Fifiy Six		$x$										Same as 3073
VI	307	35:56:33N	092:07:05w	AR	N. Sylamore Creek	Fify Six		X										Same as 2018
VI	2016	33:33:07N	094:02:28W	AR	Red River	ladex	X		X						X		X	Nekoos Edwerds Paper Company
V1	3452	33:34:15N	094:06:00W	AR	Red River	Index			$\mathbf{X}$					X			X	Nekoosa Paper; lime and grovel mines; Ag.: crop and graving leads
VI	307	33:57:17N	094:21:49W	AR	Rolling Pork River	De Queen											X	Wood treatment plant on Bear Creek
VI	2017	33:14:32N	093:59:58W	AR	Sulphur River	Texarkana	$\mathbf{x}$		X									International Paper Company in Texas
VI	Y/10x	31:53:00N	093:25:00W	IA	Anacoco Bayus	Deridder			X								X	Buise Suurhern Co. (Buise Cascade); rural; Ag.: cropland
VI	3013	32:40:00)	091:43:00W	LA	Bayou Bonne Idee	Oak Ridge											X	HCB use in agriculture

TABLE B-3 (cool)

												NT Son	ces			Monf		
$\begin{aligned} & \text { EPA } \\ & \text { ene } \end{aligned}$	10	Lama	Laxay	Sne	(1)	Lexar	NSG	-	PrC	PRN.	Wr	Qus	NFL Smo	onir	RuTw	INam	A-900	
VI	3046	30.12.00N	093:17.00W	LA	Bayou D'Inde	Sulfur						X					X	Cingo Petrolema Corporation; Ind.: chem.
VI	342	30:02:36N	090:22:27W	LA	Bayoud_abarche	Norco						X		X				Sbell and Norco Refineries; Siell chemical plant
VI	3353	32:31.00N	091:58:00W	LA	Bayuw LaFourche	Bastrop			X						$x$		X	Indersexivad Paper Compaoy, rural
VI	3063	30:06.00N	093:20:00W	LA	Calcaricu River	Moas Lake						X		X	X	X		Cueoco, Isc.; Ind.: chem.
VI	3092	32:05:00N	092:47:00W	LA	Dugderman River	Hodge				X							$\mathbf{x}$	
VI	3352	32:33:00N	091:51:00W	LA	Lakedruia	Slart											X	Above Bayou LaFourche. This dammed water feeds Wham Brake.
VI	3164	30:02:00N	090.02.00w	LA	Lake Ponschartrian	NewOrleans									X	X		
VI	3082	32:41:00N	091:11.00W	LA	Lake Providence												X	HCB use in agriculure
VI	2532	30.45:30N	091:23:45W	LA	Misciscippi River,	St. Prencisville			$x$									Crown Zeltertech
VI	3065	30:27:00N	091:13.00w	LA	Misciscippi River	Baton Rouge			X			X				X		Georgia Pacific Corporation, Crawa Zellerbach; iwu reftaeries
VI	3066	30.06.00N	091:01.00W	LA	Miscinsippi River	Uaioa								X			X	Ind: muliple sources; As.: crophed aed graving
VI	3418	30.39.00N	091:17.00w	LA	Misrasippi River	Zectrey			X									Georgia Pacific aed Jemea Madisoo Paper; rural; wooded area
VI	3416	33.00.00N	092:04.00w	LA	Ounctida River	Stertingion			X									Georgia Pacific aod Internatinad Paper; rural; mooded area
VI	3080	32:27.00N	092:07.00W	LA	Ouschida River	Moarac			X						X		X	Georgia Pacific in Artmens; Ag.: crop aod graring laeds
VI	2544	30.30:23N	090.21:42W	LA	Tangipaboe River	Robert	X								X			
VI	3087	32:35:00N	091:56:00W	LA	Wham Brake	Swartz			$x$									Sance a 3425; Ialeramivonal Paper Co. (dischnrges to B. LaFourche)
VI	3425	32:33:00N	091:55:00W	LA	Wham Brake	Swartz			X									Same as 3087; İxernetioal Paper Co. (discharges to B. LaFourche)
VI	3074	35:46:38N	105:39.27W	NM	Rio Mora	Terreso		X										
VI	3105	35:83:42N	058:31:35W	OK	Fiort Cobb Reservoir	Fort Cobb											X	Af.: croplands; golf course near the site
$v$	3090	36:04:00N	095:16:00W	OK	Fort Gibsoo Res.	Pyrer Creck				X								Robed Timec Mil.
$V 1$	3074	36:52.00N	096:56.00W	OK	Kaw Reserweir									X				Vulcan Pland in Wichia, Kanses (cberuical procescing plant)
VI	2027	34:38:18N	090:36:45w	OK	Kiamichi River	Big Cedar		$\mathbf{x}$									X	Heavily wooded area; Af.: carle
VI	3076	33:57:00N	090:35.00w	OK	Lituediver	Gooduder					$X$							Wood ir eatment: Thampson Lumber, Hulfman Preserver, Nisoo Bros. Preserver-
VI	3091	33.56:00N	095.07.00W	OK	Red River					X								Weyertmemer Company
VI	2028	34:14:03N	096:58:32W	OK	Washina River	Durwoed	X					x			X			Kerr MoGee Refiniag Corpormiva, Total Petroleum, lac.
VI	3089	35:41:00N	095:14.00W	OK	Webbersfeall	Muskogee				X					X			Fort Houad Paper Company
VI	3034	26:1 1:42N	097:36:06W	TX	Arroyo Colorado	Harlinges											X	HCBuse
VI	3085	28:58:59N	095:23:41W	TX	Brazos River	Freeport								X				At Dow Oremical oufall
VI	3068	29.40.48N	098:58:50W	TX	Houstor Ship Chal	Morgan Poider			X			X		X	x	X		Chmpion Internstional aod Simpsoa Paper; four refineries; Ag.; cruplands
VI	3069	27:51:30N	097:30:20W	TX	Inaer Hartor	Corpus Christi						X		X	$x$	X		Foar refinerics
VI	3081	31:25:58N	094:33:56W	TX	Lake Sam Raybura	Luktin			X						X			Crampiva Interantional Corporstion on the Angelina River
VI	2280	28:57:35N	096:41:13W	TX	Lovaca River	Edna											X	
VI	3075	28.03.00N	096:52.00W	TX	Merquide Bay			x										
VI	3093	31.18.00N	094:48:39W	TX	Necties Rives	Ditod				X					X			Temple-Esmer, Isc in Diboll and Borden (hemical (resia)
VI	3070	29:59.30N	093:54:00W	TX	Mectes River (tidel)	Port Arther			X			X		X				
$v$	3072	31:05.00N	105:36.00W	TX	Rio Gr ande River	E] Pmo						X		X		X		Clevion USA, lec., El P mor Refining Compay
V 1	3071	2.14:15N	098:21:43W	TX	San Artosio River	Blacetord						X		X	X		X	Houcll Hetuceties
VI	2293	30:55:25N	098:02:12W	TX	So. Fort Rocty Cr.	Bries		X										Background site
VII	3035	42:03:50N	091:47:48W	14	Cedar River	Palo								X			X	Abrua 50 mites dowastream or Wimerko
VII	3037	41:40.5TN	093:40.08w	IA	Des Moines River	Des Moines		X										Upesream ahoul 10 miles froma a P()TW
VII	3038	41:33.02N	093:31:29W	IA	Des Moides River	Des Moines									X	$x$		Below P()TW (pretreatment plam)
VII	3034	41:34:53N	090:23:23W	IA	Mixciscippi River	Iectaine								X			X	Upistrcam of hick and dam a Davenporet (atrove dam)

## TABLE B-3 (cont.)

$\begin{aligned} & \text { EPA } \\ & \text { Reg } \end{aligned}$	Splote	Lnluen	1 1-atum	Stak	Weneres	1208000	NSO	.	POINT SOURCUS							N(SNPOINT		Aduluopel Stices Dearripilon  
									PFC	PPNE:	WP	Riny	$\begin{aligned} & \hline \text { NPL } \\ & \text { SWE } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ONT} \\ & \text { lod } \end{aligned}$	POTW	Uirbea	Acr	
VII	2191	41:15:32N	095:55:20W		MissowriRiver	Counal Blufts	X							X	X	X		Ind.: chem. and pest.; metals; bydro-power; same as 3042-opposive sides of river
VII	2190	40:36:07N	095:38:40W	IA	Nishasbotas River	Hamburs	X								X		X	Same asl3036
VII	3036	40:36:07N	095:38:40W	IA	Niehnmbotas River	Hamburs	$\mathbf{X}$								X		X	Same as 2190
VII	2194	37:32:34N	097:16:29W	KS	Artanese River	Derby								X	X	X		Same as 3039. Below Wichita
VII	3039	37:32:35N	097:16:29W	KS	Artances River	Derby								X	X	X		Same as 2194. Below Wichita
VII	2201	36:02:30N	090.07:30W	MO	Litule River Ditch 81	Horsersville								X	X		X	Same as 3040. Rice growing region
VII	3040	36:02:30N	090.07:30W	MO	Little River Ditch 81	Horcersville								X	X		X	Same as 2201. Rice growing region; heavy pesticide use
VII	3047	39:42:36N	091:21:06W	MO	Miecincippi River	Hanaibel								X	X	X	X	Fish collected near downtown area.
VII	3048	38:52:33N	050:10:26W	MO	Misarsippi River	Westailoa								X	X	X		Ind.: chem. ; heavy metak; heavy shipping traffic
VII	3049	37:17:46N	089:30:56W	MO	Miariacippi Rives	Cape Giredeau								X	X	X	X	Collecied al POTW outfall. Procior \& Gamble paper products, Ag croplands
VII	3045	39:07:52N	094:27:58W	MO	MiseourilRiver	Kances Cidy								X		X		
VII	2199	39:11:14N	093:53:45W	MO	Miseouri River	Lesingioa								X	X		X	Same as 3046
VII	3044	39:44:32N	094:51:36W	MO	Miseour River	St Joseph								X				
VII	3046	39:11:14N	093:53:45W	MO	Missour River	Leringioa								X	X	X	X	Same as 2199
VII	3050	37:59:15N	093:48:45W	MO	Onge River	Rascos	X										X	Ag.: croplands
VII	3042	41:15:32N	095:55:20W	NE	Miseour River	Onaha	X							X	X	X		Ind.: chem. and pest.; metals; hydro power; same as 2191 - opposine cides of river
VII	3043	41:08:18N	095:52:40W	NE	Minouri River	Bellevic								X		X		
VII	3041	41:45:42N	103:25:02W	NE	North Plauc River	Mapew	X								X		$\mathbf{X}$	
VII	2205	40:59:48N	0\%:01:18W	NE	Platte River	Louisville	X								X		X	
VIII	3197	38:33:00N	106:01:00W	CO	Arkmeses River	Salids												Defunct mood treatment plast
VIII	3198	39:48:10N	104:57:30W	CO	Sowht Plate River	Deaver								X	X	X		
VIII	3200	40:10:30N	109:59:00W	CO	St. Vrian River	Longmal		X										
VIII	3236	46:10:00N	112:46:26W	MT	Clart Port River	Warmisprino								X				
VIII	3237	47:01:05N	114:21:20W	MT	Clart Port River	Husco			X									Stode Container Corporation
VIII	3235	45:45:35N	111.05804W	MT	Eas Oallatia River	Baceno								X				
VIII	3234	47:56:14N	114:11.04W	MT	Goore Bay	Leteride								X				
VIII	212	45:47:48N	108:28:12W	MT	YellowerocelRiver	Billings	$x$								X			
VIII	2105	47:35:25N	103:15.05W	ND	Litle Miscowi R.	Waforlliciky	X											
VIII	2100	49:00.00N	097:13:45W	ND	Red River	Peabian								X	X		X	Sugar beet processing plant; croplands; Same as 3111
VIII	3111	49:00:00N	097: 13:45W	ND	Red River	Peorbia								X	X		X	Sugar beet processing plant; cruplands; Same as $\mathbf{2 1 0 0}$
VIII	2109	42.49.42N	0\%:33:45W	SD	Bieg Siour River	Akron								X	X	X	X	Same as 3199
VIII	3199	42:49.45N	096:33:15W	SD	Big Siour River	Akron	X							X	X	X	X	Sance as 12109
VIII	2110	40:00.49N	103:49:48W	SD	CuntelCroek	Hill Cidy		X										
VIII	3195	40.45:10N	111:55:15W	UT	JordealRiver	Saln Late Ciry							X	X		X	X	Ind.: pesticides; Superfuad site (chlor obeazeacs)
VIII	3196	41:20:40N	105:35:45W	WY	Lanaie River	Larmie												Reilrued tie treating plact (defunc)
VIII	2098	42:34:27N	106:41:31W	WY	North Platie River	Aloov	$\mathbf{X}$											
IX	3266	33:05:00N	113.02-00W	AZ	Gila River	Gila Bead								X	$\mathbf{x}$	X	x	Corton growing region (Near Phoenix)
IX	3282	33:12:00N	115:37.00W	CA	AlamolRiver	Calipatria											X	HCB use in agriculture
IX	3288	36:41:00N	121:40:00W	CA	BlaccolDrain	Salians								X			X	Multiple sources
IX	3285	33:46:00N	118.00:00W	CA	Culorado 4 aroos	Long Beach								X		X		Muhiple sources

TABLE E3 (conal)

												T80U	CEs			NTN		
$\begin{aligned} & \text { EPA } \\ & \text { Rest } \end{aligned}$	epoet	1sment	1-20.en	Heno	Wropren	Lenme	nso	E	PAC.	Prive	Wr	Rep	MAL	Nur	NUTW	lome	\|	
IX	3273	41:45:00N	12A:11.00W	CA	Elk Creek	Crescent Ciny					X							McNamara el Peepe (timarical PCPP side)
IX	3286	33:47:15N	118:17:33W	CA	Harbor Park Lake	Hartor Cily								X		X		Muliple sources
IX	3271	40:34:00N	123:11:00W	CA	Hayliork Creek	Hayfort					X							Sierra Pacific (historical PCP site)
IX	3272	37:55:00N	12:21:00W	CA	Lauritzen Canal	Richmond							X					Unined Hectmbora: pearicide peckeping plan in 60's (PCB's, DDT, Pb)
IX	3275	40:54:00N	124.00.00W	CA	Mad River	Arcata								X				Mollala-Arcata
IX	3276	40:52:00N	124:00:00W	CA	Mad River Sloupd	Arcala								X				Sierra Pacific
IX	3289	36:48:00N	121:46.00W	CA	Moss Landing Dm.	Moss Landing								X				Mukiple cources
IX	3451	34:01:45N	118:40:45W	CA	Mouth of Malibu Cr.	Matibu									X			POTW: Tapis Creet; eraring laod (borses)
IX	3354	37:57:00N	121:18:00W	CA	New Mordion Sligh	Stockion							X	X			X	McCormickeod Barrer (\%ood preservers); Superfued sile (colvents)
IX	3283	33:06:00N	115:40:00W	CA	NewRRiver	Westmoreland								X				Mukiple sources (HCB use)
IX	3355	37:56:00N	121:19:00W	CA	Old Mormoa Skugh	Stockton							X	X			x	McCormict \& Baster (mood preservers); Ag.: cruplands a orch.; Superfund site (colvents)
IX	3290	37:57:00N	121:20:00W	CA	Port of Stockton	Stockton								X				McCormick at Barler (wond preservers); Superiuod sie (sotvents)
IX	3274	41:55:00N	124.07.00W	CA	Rowdy Creek	Smikh River					X							Arcata Lumber Company (bistarical PCP sive)
IX	3357	38:05:00N	12104:00W	CA	Sacramento Deha	Antioch			X					X			X	Gaytord Comminer Conp.; Ied.: chem.; refisery, puwer plana; Ag.: orcherds asd oroplacts
IX	3267	40:27:00N	122:11:00W	CA	Sacramento River	Andersoo			X									Simpeon Paper Company, wooded area
IX	3270	40:09:00N	122:11:00W	CA	Sacramento River	Red Bluff				X							X	Dismod International (regeled peper); Ag: croplaods, aod graving
IX	3287	33:46:00N	118:06:00W	CA	San Gabricl River	Long Beach				X								Simproa Paper Comary, Pacific Coast Paper
IX	2748	34:24:00N	119:30.00W	CA	Santa Clara River	Sama Paula	X											Same asaz81
IX	3281	34:20:00N	119:04:00W	CA	Sama Clara River	Sama Paula	X											Sewe as 2748
IX	3264	33:54:27N	118:31:28W	CA	Santa Monica Bay	Los Angeles						X		X	X	X		El Seguado Refieery, Hyperion POTW ounfall; muhiple sources
IX	3450	33:55:00N	118:28:00W	CA	Short Bank (Pac. O.)	Los Angeles									X			PUTW: Hyp-rics outed.
IX	3269	37:43:00N	121:09:00W	CA	Stanislaus River	Ripon								X				Muliple sources
IX	3278	39:24:00N	123.06:00W	CA	Upper Eel River	Potier Valley					X							Louisizal, Pacific (hiatorical PCP sike)
IX	2037	19:46:15N	155:05:33W	HI	Honoli Stream	Hilo		X									X	Ag: sug case frowing (perticidea)
IX	3261	21:18:00N	157:59.00W	HI	Pearl Harbor	Midalle Loch							X					Cheobrtion courcer Superfund ine (entrents)
IX	3262	22:04:30N	159:22:30W	HI	Wailua Paelekas St.	Kauai												Ageat Orase test site (cot a dexignmed superfinadisie)
IX	2776	35:40:00N	114:40:00W	NV	Culorado River	Blw Hoover Dn:												
X	3238	60:58:30N	149:27:35W	AK	Bird Creek	Bird		X										
X	3241	61:13:20N	149:51:21W	AK	Ship Creck	Aachorage							X	X		X		Salvage yard with ruoofl of PCB; Superfund sine; Leoditl
X	3246	57:03:00N	133:14:00W	AK	Sitver Bay	Sitka			X									Alesta Pulp Corepony
X	2070	61:32:42N	151:30:45W	AK	Susinna River	Susitna	X											
$X$	3244	58:41:00N	134:03:00W	AK	Vanderbilt Creek	Junesu								X		X		
X	3245	55:23:45N	131:44:20W	AK	Ward Cove	Ketchikas			X									Lomisianal Pacific Corp. (zulfixe nid); Ketchitan Pup and Paper
X	3252	43:48:29N	117:00:15W	ID	Boiec River	Parma								X			X	
X	3250	47:38.05N	116:43:15W	ID	Cocur d'Aleac Lake	Coeur d'Aleac								X			X	Isd.: situes mining
X	3249	47:33:07N	116:22:06W	ID	Coeur d'Alene River	Coeur d'Alene:								X			X	Mining
X	3158	42:37:25N	114:31:58W	ID	Rock Creek	Twis Falls											X	
X	2478	43:00:08N	115:12:06W	ID	Snake River	Kingeshill	X										X	
X	3256	46:25:45N	117:02:04W	ID	Snake River	Lewisloa			X								X	Pulatch Corporation
X	3248	47:19:08N	116:33:35W	ID	St. Joc River St	St. Marie		x										
X	3203	45:37:19N	122:45:20W	OR	Columbia River P	Portasd								X		x		

TABLE B-3 (Cont.)

		Iatande	1 loagtude	State.	Watertindy			B	PPP:	POINT SOURCFS						NONPOINT		Additional Site Desertpton   (fierlltive to the vinh ky of he rampl!ng athe)		
											NP.	Other								
Reg	+							PPNT		WP	Reny	Stie	Ind	POTW	Irtan	Agr				
X	3216		45:51:53N	122:47:39W	()R	Columbia River	St. Helens				X					X	X	X	X	Boise Cascade (indirect)
X	3218	46:09:21N	123.24:(0)W	OR	Columbia River	Wauna				X								x	James River Corporation in Clatskanic	
X	3219	45:39:10N	120.56 (O)W	()R	Columbia River	Dalles								X	X		X	Hydro-power (PCB's generated): food processing plant: Ag.: orch. \& croplands		
x	3201	45:36:06N	122:43:57W	OR	Columbia Skough	Porland			X					X		x		Five paper mills using C! hleach, two paper mills nox using Cl bleach; shipyard		
X	3208	44:03:30N	116:57:0)W	OR	Matheur River	Ontario											x			
X	3212	43:46:59N	117:03:09W	OR	Owyhee River	Owyhee											X			
X	3205	45:26:33N	123:14:07W	OR	Tualatin River	Cherry Grove		X												
X	3215	45:23:40N	122:45:30W	OR	Tualatin River	Cuok Park								X	X		x	Minor industrics; Ag.: croplands		
X	3206	45:34:53N	122:44:39W	OR	Willametie River	Portand								X	X	x	X	Ind. chem.: smelters; shipyards; timber		
X	3217	44:23:16N	123 14:03W	OR	Willamelte River	Hallsey			x								X	Hallsey Puls Company (Pope and Talhot); Ag.: creplands		
X	3213	45:17:47N	122:5R()3W	OR	Willamette River	Newhurgh Pool			X						X		X	Deinking plant; other pulp mills upstream: Ag.: croplands		
X	$4^{3} 437$	45:17:38N	122:46:08W	OR	Willamelte River	Wilsonville											X			
X	3226	47:23:30N	122:37:38W	WA	Buricy Lagoon	Purdy							X					Below transformer and scrap metal salvage yard: below Superfund site (PCB)		
X	3438	46:45:36N	123:57:57W	WA	Columbia R (lower)	Estuary								X						
X	3220	46:07:50N	122:59:27W	WA	Columbia Raver	L.ongricw			X									Weyemacuser and Longview Fiber Company; Ag.: croplands \& grazing fields		
X	3224	46:06:00N	118:55:00W	wa	Columbia River	Tri Citics			x								X	Boise Cascade: Ag.: cmplands \& grazing fields		
X	3222	45:34:08N	122:24:42W	WA	Columbia River	Camas			X									Crown Zeliemach (James River Curporation)		
X	3439	46:15:06N	123.33:32W	WA	Columbia River	Wordy Island			X					X		X		Boise Cascade and Weycrhaucser, Langview Fiher downsiream		
X	3440	46:00:33N	122:51:04W	WA	Columbia River	Kalama			x					X		X		Boise Cascade and Weyerhaueser. Longview Fiher downstream		
X	3441	45:58:05N	122:49:19W	WA	Columbia River	Deer Island			x					X		X		Boise Cascade and Weyerthauser, Longview Fither downstream		
X	316.3	47:16:12N	122:25:50W	WA	Commencoment Bay	Tacoma			X			X	X	X	X	X		Simpson Tacoma Krafi, US Oil and Refining: heavily indusirialized: Superfund ste (Commencement Bay)		
X	3191	46:58:00N	123:53.0)W	14 NA	Grays Hartor	Hoquiam				X								IT Rayonier, Inc. (sulfite mill, nonchlorine)		
X	3192	46:57:13N	123:51:15W	WA	Grays Hartor	Cosmopolis			X									Weyenthacuser Company (sulfite mill. chlorine)		
X	411624	47:17:05N	122:24:28W	WA	Hylehos Walerway	Tacoma			X				X	X		x		Champion Paper Company; heavily industralized: Superfund site		
X	3227	47:14:20N	123:02:40W	WA	Oakland Bay	Shelton								X			X	Simpson Putp Mill (word overlay producis)		
X	3295	48:08:00N	123:24:45W	WA	Port Angeles Harbor	Port Angeles			X					X				ITT Rayomer, Inc.		
X	3294	48:06:30N	122:45:30W	WA	Port Townsend	Por Townsend				X							1			
X	2247	47:12:52N	122:20:25W	\|wa	Puyallup River	Puyallup	x								x		x	Simpson Paper Company (downstram)		
X	2246	47:49:52N	122:02:50W	WA	Snohomish	Monme	X								X		X	Light agriculture, timber		
X	3223	48:01:52N	122:13:00W	WA	Steamboat Slough	Everelt	$i$		x				X					We) . . tacuser Company and Scote Paper Company; Superfund site (solvents)		
X	3224	48:45:01N	122:29:02W	WA	Whatcom Waterway	Bellingham			X									Georgia Pacific (sulfite process)		
X	3231	46:22:42N	119:25:29W	WA	Yakima River	Richland								X		X	x			
X	3230	47:11:10N	120:02:30W	WA	Yakima River	Cle Elum		X												

## APPENDIX B-4

## Dioxins/Furans: Episode Numbers Used in Statistical Tests (By Category)

TABLE B-4
Dioxins/Furans: Episode Numbers Used in Statistical Tests (By Category)

NASQAN (NSQ)		3042	NE		3261	HI
Episode	State	3050	MO	I	3272	CA
2015	AR	3104	PA		3414	PA
2016	AR	3199	SD		3415	PA
2017	AR	3281	CA		Total	7
2023	AR	3308	NY			
2026	OK	Total	40		POTW	
2070	AK				Episode	State
2098	WY	AGRICLLTUR			2122	MT
2105	ND	Episode	State		2152	FL
2122	MT	2280	TX		2322	NY
2126	MS	2358	ME		2432	MI
2148	FL	2478	ID		2544	LA
2151	FL	3050	MO		3308	NY
2152	FL	3082	LA		3450	CA
2191	IA	3083	LA		3451	CA
2205	NE	3084	TX		Total	8
2220	VA	3099*	DE			
2228	VA	3105	OK		BACKGROUN	
2246	WA	3158*	ID		Episode	State
2247	WA	3170	AL		2027	OK
2280	TX	3171	AL		2037	HI
2298	TN	3180	GA		2110	SD
2309	AL	3193	VA		2139	NC
2322	NY	3208	OR		2216	PA
2358	ME	3212	OR		2283	TX
2430	MI	3282	CA		2301	TN
2431	MI	3352	LA		2379	IL
2432	MI	3437	OR		2387	MN
2437	MN	Total	19		2397	WI
2439	OH				2435	MI
2478	ID	SUPERFUND			2651	NJ
2544	LA	Episode	State		3001	MN
2776	NV	3078	AR		3022	ME
3036	IA	3097	DE		3023	ME
3041	NE	3226	WA		3027	ME

[^21]TABLE B-4 (Cont.)

3028	ME	3080	LA	3341	MS
3037	IA	3081	TX	3342	NC
3073	AR	3088	LA	3343	NC
3074	NM	3107	WI	3344	NC
3075	TX	3118	MI	3345	NC
3166	NC	3122	MI	3346	NC
3169	AL	3146	WI	3347	SC
3178	GA	3150	MA	3348	SC
3179	GA	3151	MA	3349	SC
3187	SC	3152	NH	3350	TN
3200	CO	3192	WA	3351	TN
3205	OR	3217	OR	3353	LA
3238	AK	3218	OR	3395	NC
3248	ID	3220	WA	3403	TN
3309	NY	3221	WA	3404	TN
3320	NY	3222	WA	3416	LA
3430	NJ	3224	WA	3418	LA
Total	33	3237	MT	3420	PA
		3245	AK	3421	VA
PULP \& PAPER		3246	AK	3422	VA
(Chlorine) (PPC)		3256	ID	3423	VA
Episode	State	3260	NY	3424	VA
2015	AR	3267	CA	3425	LA
2016	AR	3303	NY	3435	MS
2017	AR	3316	PA	3452	AR
2138	NC	3317	MD	Total	78
2142	FL	3318	PA		
2294	GA	3328	AL	INDUSTRY/URBAN (IND/URB)	
2302	AL	3329	FL		
2304	AL	3331	FL	Episode	State
2355	ME	3332	FL	1994	MI
2385	MN	3333	FL	2023	AR
2422	WI	3335	GA	2057	IN
2427	WI	3336	GA	2060	IN
2532	LA	3337	GA	2191	IA
2721	ME	3339	KY	2210	DC
2725	ME	3340	MS	2215	PA
3062	AR			2220	VA

[^22]TABLE B-4 (Cont.)

2220	VA	3134	WI	3297	NY
2225	VA	3141	WI	3298	NY
2227	VA	3144	WI	3299	NY
2309	AL	3147	DC	3300	NY
2328	NY	3149	DE	3301	NY
2329	NY	3164	NC	3302	NY
2410	MI	3165	NC	3306	NY
2416	OH	3168	AL	3307	NY
2500	WV	3172	AL	3310	PA
3024	ME	3174	FL	3311	WV
3025	ME	3182	KY	3313	WV
3034	IA	3188	TN	3314	WV
3035	LA	3189	TN	3315	PA
3038	IA	3190	TN	3321	NY
3039	KS	3198	CO	3322	NY
3040	MO	3199	SD	3324	NY
3042	NE	3203	OR	3326	NY
3043	NE	3206	OR	3327	NY
3044	MO	3219	OR	3411	NY
3045	MO	3227	WA	3412	NY
3046	MO	3231	WA	3426	NJ
3047	MO	3234	MT	3428	NJ
3048	MO	3235	MT	3432	PR
3049	MO	3236	MT	3438	WA
3060	AR	3244	AK	3443*	AR
3064	LA	3249	ID	Total	106
3066	LA	3250	ID	PULP \& PAPER   (No Chlorine) (PPNC)	
3079	OK	3252	ID		
3085	TX	3258	VA		
3094	PA	3269	CA	Episode	State
3100	MD	3275	CA	3089	OK
3101	PA	3276	CA	3090	OK
3103	MD	3283	CA	3091	OK
3111	ND	3285	CA	3092	LA
3113	IL	3286	CA	3093	TX
3115	IL	3289	CA	3108	WI
3120	MI	3296	NY	3112	MN
				3114	IL

No data available for dioxins/furans. Number of data values varies by chemical.

TABLE B-4 (Cont.)


[^23]
## APPENDIX B-5

## Xenobiotics: Episode Numbers Used in Statistical Tests (By Category)

TABLE B-5
Other Xenobiotics: Episode Numbers Used in Statistical Tests (By Category)

NASQAN (NSQ)		3041	NE	3261	HI
Episode	State	3042	NE	3272	CA
2015	AR	3050	MO	3414	PA
2016	AR	3104	PA	3415	PA
2017	AR	3199	SD	Total	6
2023	AR	3281	CA	PO	
2026	OK	3308	NY	POTW	
2070	AK	Total	40	Episode	State
2098	WY			2122	MT
2105	ND	AGRICULTUR		2152	FL
2122	MT	Episode	State	2322	NY
2126	MS	2280	TX	2432	MI
2148	FL	2358*	ME	2544	LA
2151	FL	2478	ID	3308	NY
2152	FL	3050	MO	3450*	CA
2191	IA	3082	LA	3451*	CA
2205	NE	3083	LA	Total	8
2220	VA	3084	TX		
2228	VA	3099	DE	BACKGROUN	
2246	WA	3105	OK	Episode	State
2247	WA	3158	ID	2110	SD
2280	TX	3170	AL	2139	NC
2298	TN	3171	AL	2216	PA
2309	AL	3180	GA	2283	TX
2322	NY	3193	VA	2397	WI
2358*	ME	3208	OR	2435	MI
2430	MI	3212	OR	2651	NJ
2431	MI	3282	CA	3022	ME
2432	MI	3352	LA	3023	ME
2437	MN	3437*	OR	3028	ME
2439	OH	Total	19	3037	LA
2478	ID			3073	AR
2544	LA	SUPERFUND		3074	NM
2776	NV	Episode	State	3075**	TX
3036	IA	3097	DE	3166	NC
		3226	WA	3169	AL

[^24]TABLE B-5 (Cont.)

3178	GA	3340	MS	3258	VA
3200	CO	3341	MS	$3269^{*}$	CA
3205	OR	3342	NC	$3275^{* *}$	CA
3238	AK	3348	SC	3276	CA
3248	ID	3395	NC	3283	CA
Total	21	3403	TN	3285	CA
PULP \& PAPER		$3416^{*}$	LA	3286	CA
(Chlorine) (PPC)		$3418^{*}$	LA	3289	CA
Episode	State	3420	PA	3296	NY
2017	AR	3421	VA	3298	NY
$2138^{* *}$	NC	3422	VA	3306	NY
2294	GA	3423	VA	3307	NY
2302	AL	3424	VA	3315	PA
2422	WI	3425	LA	3411	NY
2532	LA	3435	MS	3412	NY
2721	ME	Total	42	3426	NJ
2725	ME	INDUSTRY/URBAN	3428	NJ	
3107	WI	(IND/URB)		$3438^{*}$	WA
3118	MI	Episode	State	Total	35
3122	MI	3043	NE	PULP\& PAPER	
3151	MA	3044	MO	(No Chlorine) (PPNC)	
3152	NH	3045	MO	Episode	State
3192	WA	3079	OK	3090	OK
3222	WA	3085	TX	3091	OK
3224	WA	3101	PA	3108	WI
3237	MT	3120	MI	3112	MN
3245	AK	3149	DE	3135	WI
3246	AK	3172	AL	3136	WI
3260	NY	3174	FL	3140	WI
3267	CA	3189	TN	3143	WI
3303	NY	3190	TN	3145	WI
3316	PA	3203	OR	3191	WA
3318	PA	3234	MT	3287	CA
3332	FL	3235	MT	3294	WA
3335	GA	3236	MT	3330	FL
3336	GA	$3244 * *$	AK	3360	AL

[^25]TABLE B-5 (Cont.)

3360	AL
3376	GA
3377	GA
3401	TN
Total	17
WOOD PRESERVERS (WP)	
Episode	State
3076	OK
3077	AR
3110	WI
3167	NC
3173	FL
3196	WY
3197**	CO
3271	CA
3273	CA
3274	CA
3278	CA
Total	11
REFINERY/OTHER INDUSTRY (R/I)	
Episode	State
3061	AR
3063	LA
3072	TX
3095	PA
3446	KY
Total	

[^26]B-5-4

United States
Environmental Protection Agency
(WH-551)
Washington. DC 20460
Official Business
Penalty for Private Use \$300


[^0]:    * TEC represents the sum of toxicity-weighted concentrations of all dioxins and furans relative to 2,3,7,8 TCDD

[^1]:    ${ }^{1}$ Specific pollutants are listed in 44 FR 34393 (1979), as amended by 46 FR 2266 (1981), and 46 FR 10723 (1981).

[^2]:    Reference: Barnes et al., 1989.

[^3]:    * Number shown is total number of sites.

    WB = whole-body bottom-feeding composite sample.
    $\mathrm{PF}=$ predator fillet composite sample.
    WP = whole-body predator composite sample.

[^4]:    * Number shown is cotal number of sites.

    WB $=$ whole-body bouom-ficeding couposite sample.
    $\mathrm{PF}=$ predator fillet composite sample.
    WP $=$ whole-body predator composite sample.

[^5]:    $n=$ number of sites in category. Maximum value at each site was used. One-hall the detection limit was used for values below derection.

[^6]:    $n=$ number of sites in category. Maximum value at each site was used. Sites were assigned to only one category. ND $=$ limit of detection, here set at 0.0 .

[^7]:    ${ }^{1}$ Alpba-BHC and gamma-BHC (or Limdane) are fornally known as $\alpha$-bexachlorocyclobexane and $\gamma$-bexachlorocyclobexane, respectively. The former chemical designations are used in this document.

[^8]:    ${ }^{2}$ Four chemicals found at less than 50 percent of the sites are presented in this section to facilitate their discussion. These are gamma-BHC; 1,2.3 trichlorobenzene; cis-nonachlor; and oxychlordane.

[^9]:    $n=$ number of sites in category. ND's set at 0 .
    Maximum concentrations at sites were used.

[^10]:    Values shown are two-tail probabilities that groups are different. The critical level was set at 0.05 . If $p<0.05$, the categories were considered to be significantly different.
    Site Cateqories:
    NDIURB $=$ industry and/or urban
    AG $=$ Agriculture
    B $=$ Background
    NPL $\quad=\quad$ National Priority List (Superfund site)
    POTW = Publicly Owned Treatment Works (sewage)
    RA $\quad=\quad$ Refines using catalytic reforming process and
    other industry

    NSO = National Ambient Stream Quality monitoring network. (This designation is independen of source categones.)
    WP = Wood preserving related activities
    PPC = Paper and pulp mills using chlorine for bleachung
    PPNC $=$ Other paper and pulp milis including deinking planks

[^11]:    Total number of sites for each chemical was 362 .

[^12]:    $n=$ number of sites in category. ND's set at 0 .
    Maximum concentrations at sites were used.

[^13]:    ${ }^{3}$ Five chemicals found at less than 10 percent of the sites are presented here for ease of discussion. These are 1,2,3,5 and 1,2,4,5 trichlorobenzene; methoxychlor; isopropalin; and perthane. One chemical, heptachlor epoxide. found at 16 percent of the sites, is presented in the next section with heptachlor.

[^14]:    ${ }^{4}$ Some chemicals found at less than 10 percent were presented elsewhere for ease of discussion. See footnotes 2, page 57, and 3, page 91.

[^15]:    $n=$ number of sites in category. ND's set at 0 .
    Maximum concentrations at sites were used.

[^16]:    ${ }^{1}$ Estuarine/Maribe: $\mathrm{M}=$ Manine: $\mathrm{F}=$ Freshwater: (l] $=$ lnuroduced
    ${ }_{3}^{2} \mathrm{P}=$ Predelor: $\mathrm{B}=$ Bortom Feeder
    ${ }^{3}$ Number of sites where fish were collected and analyzed

[^17]:    ${ }^{1}$ Estumnde/Marine: $M=$ Marine: $F=$ Freshwater: $[I]=$ Ibroduced
    ${ }_{3}^{2} P=$ Predator: $B=$ Botaom Feedar
    ${ }^{3}$ Number of sites where fish were collected and analy yred

[^18]:    'Erunnme Marine: $M=$ Manise: $F=$ Freshwater: $(I)=$ Incroducod
    ${ }_{2} \mathrm{P}=$ Predulor: $\mathrm{B}=$ Bonom Feeder
    ${ }^{3}$.Vumber of sites where fish were collected and analyzed

[^19]:    All fillet concentrations at backgroumd sites were below detection for dieldrin, chlordane, alpha-BHC, gamma-BHC, Hexachlorobenzene, heptachlor, heptachlor epoxide, mirex, urfluralin, dicofol, hexachlorobutadiene, and pentachloranisole.

    Combined chlordane is the sum of cis- and trans-chlordane isomers, cis- and trans-nonachlor isomers, and oxycblordane.

[^20]:    Basis: Used upper-buond CPFs Clable 6.2) fish consumption rates of 6.5. 30, and $140 \mathrm{~g} / \mathrm{day}$
    Dash indicates concentration was reported as nut detected.
    Only one value was above detection, surisk not computed
    Combined chlordane is the sum of cis- and trans-chlordane isomers. cis- and trans-nonachlor isomers, and oxychlorane.

[^21]:    No data available for dioxins/furans. Number of data values varies by chemical.

[^22]:    No data availabie for dioxins/furans. Number of data values varies by chemical.

[^23]:    * No data available for dioxins/furans. Number of data values varies by chemical.

[^24]:    - No data available for other xenobiotics. Number of data values varies by chemical.
    ** Data available for mercury only.

[^25]:    * No data available for other xenobiotics. Number of data values varies by chemical.
    ** Data available for mercury only.

[^26]:    * No data available for other xenobiotics. Number of data values varies by chemical.
    ** Data available for mercury only.

