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Preface 

This l>ook is meant to be a "cooklKxik" of Level II BASIC rou
tines for the Hndio Shack TRS-80 Model I Computer. If you have 
questions al>out the ways in which you can output graphics to the 
display, Programming Techniquex for l^evel II BASIC can help you 
out. If you want to know al>out efficient sorting and searching, this 
book will show you how. If you wont some concrete examples of 
how to interface to machine-language routines in BASIC, you can 
find the information and examples here. Programming Techniques 
for l^evel II BASIC is meant to supplement the Ixtvel II BASIC 
Hcference Manual; it provides practical examples of common BA
SIC oj>erations that you will want to try. 

What do you need to know before using this book? You should 
have at least a nodding acquaintance with I>cvel II BASIC. You 
should bo somewhat familiar with simple BASIC program structure 
and Level II BASIC operations. But, if you don't know all of the 
details in Level II, don't be afraid to plunge right into the exam
ples in this book. The best way to learn is by practical example, 
and we have attempted to provide plenty of them. You don't need 
a degree in computer science or mathematics, cither. Most opera
tions described here use simple straightforward logic; Level II 
BASIC is capable of providing advanced mathematical processing, 
but we have kept math discussion to an absolute minimum. 

Most of all, you need to have an interest in using the power of 
TRS-80 Level II BASIC. We all have a tendency to become jaded 
as we are exposed to better and better small computer systems, but 
the BASIC operations provided in Level II are extremely powerful. 
This book will show you how to use them, whether your goal is 



accounting, games, inventory, programmed instruction, ham radio, 
self-education, or almost any other application. 

Chapter 1 provides a review of Level II BASIC statements and 
commands. We'll discuss the four modes of Level II—command, 
execution, edit, and monitor—and the commands associated with 
each. 

Chapter 2 discusses the types of variables provided in Level II 
BASIC, binary representation, and logical functions. 

"Strings and Things" are discussed in Chapter 3. String formats, 
ASCII data, string operations, cursor control, and text editing are 
a few of the subjects presented. 

Display of reports, columnating data, PRINT USING, line 
printer format, and other topics related to displaying or printing 
data in alphanumeric form are covered in Chapter 4. 

Chapter 5 discusses the approaches to displaying graphics data 
on the TRS-80 video screen. We'll describe four techniques that 
range from display of graphs to high-speed animation. 

"Tables, Chessboards, and the Fourth Dimension" (Chapter 6) 
discusses lists, tables, arrays, and other ways to organize data 
within BASIC programs. 

One of the most critical areas in BASIC programming is that 
of searching and sorting data. Chapter 7 discusses the various 
methods that can be used to perform these functions. 

Chapter 8 describes the built-in precision, numeric, random 
number, and trigonometric functions available in Level II BASIC. 

Cassette tape operations are discussed in Chapter 9. Tape for
mats and methods for "blocking" data are described, along with 
file operations. 

Chapter 10 discusses general problems in "debugging" BASIC 
programs, the error functions in BASIC, and error processing. 

Level II BASIC has the ability to interface to assembly-language 
coding; Chapter 11 describes how you can do this to utilize the 
high speed of assembly language for operations that must be 
very efficient. 

The last chapter describes the structure of Level II BASIC in 
regard to ROM subroutines, tokens, variable storage, and other "in
ternals" that are not normally available to the BASIC programmer. 

WILLIAM BARDEN, JR. 
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CHAPTER 1 

A Good BASIC Foundation 

This book is applications oriented. It is not meant to be a refer
ence manual—the Level II BASIC Reference Manual is ideal for 
that. Here's what Programming Techniques for Level II BASIC will 
do for you: 

• Provide further explanation of how Level II Commands op
erate in practical applications 

• Show you various approaches to solving applications problems 
such as searching for data, high-speed graphics, and string 
manipulation 

• Give some insight into the "internals" of Level II BASIC so 
you can speed up your programs and make them more effi
cient 

• Reveal some useful programming tricks for Level II BASIC, 
such as assembly-language embedded in BASIC strings and 
repeat keys for keyboard input 

The book is meant to be both a tutorial manual and a collection 
of modules; you can sit down and read it straight through (we are 
in no way assuming liability for optical damage for this feat) or 
you can leave it on the shelf and refer to it for various applications 
problems as they crop up. 

All right . . . Do you have the TRS-80 plugged in and warmed 
up? Have you sandpapered your finger tips for optimizing your key
board input? 

In this chapter we'll present some BASIC basics. Feel free to 
skip the chapter if you're well-versed in aspects of Level II BA
SIC . . . such as program flow, statement types, variables, and the 
Editor. (We will, however, have an armed guard who will peri-

9 



' Au. you BASIC ao«*3 wvf Mow / 7X>^ 
HIM SOUmtH-UVtL BASIC ... 7»/J « * 7WrA *' 

rdically l>c visiting our readers and testing them on the aspects 
>f BASIC applications. Forewarned is forearmed ) 

I'd like to Make a Statement 

All BASIC program* .re made up of BASIC Uoe. «£ csmtahj 
statements. A statement is simply a command that tells the 111* 
oS some action in the high-level BASIC language. A BA-

interpreter translates each BASIC statement Into instract on' 
that itTTmlcroprocessor in the TBS-SO c^ und^tand. One 
BASIC statement may generate hundreds of 7 
cunee instructions. Since the machine-language instnic ions ope 
ate in millionths of a second, each BASIC statement is n erpre 
by the BASIC interpreter very rapidly. 

Every BASIC statement line has a statement number. 1 he e 
assigned by the programmer (that's you) and may be any 
from 0 to £>529 The remainder of the statement line^has tert that 
defines the BASIC statements in the statement line. A typical pro
gram is shown below. This program asks for your name and then 
prints a greeting and a question. 

COMMENTS 
in in*V/T ^ potMT •HI 'IAI ff 
3M IMfMT -ARC YOU ENJOYING TMIB »O0»<* y#t • M ir n«.->* YES* GOTO 3M •• " *°* 
• M l  PRINT *THAT*« FINE. *IA« '"•Mr 

It 



program shows the power of the computer in altering pub
lic opinion, as it will not accept no for an answer. (Programs such 
as this have been instrumental in creating survey data for the au
thor's book promotions.) 

There are five BASIC statement lines in this short program. Pro
gram execution starts at line number 100 where the BASIC state
ment INPUT "NAME ";A$ is encountered. The BASIC interpreter, 
which is a machine-language program in ROM (Read-Only-Mem
ory) translates the "INPUT" statement into a display of NAME? 
and then waits for you to type in your name. 

After you type your name and press "ENTER", the string of 
characters making up the name is assigned the variable name A$ 
Future references to A$ will refer to that string of characters 
"ut >frnnXt st?\ement ,ine executed is line 200, which displays 
HI followed by your name (variable A$). 

Next, line 300 causes the BASIC interpreter to print "ARE YOU 
B°°K?" and Wait f0r the answer" Yo" then tyPe 

YES , NO , "SOMEWHAT", or another string of characters fol
lowed by ENTER . This string of characters is assigned the 
name B$. 

Next statement 400 tests the string of characters (variable B$) 
to see if it is YES . If it is not (<>), the program GOes TO state
ment line 300 again where the question is again typed and waits 

? nHe an;Ter is "YES"' statement line 500 prints 
THAT S FINE, followed by your name. 

Program Flow 

^ort Program illustrates some important aspects about 
BASIC (and many other programming languages). Programs flow 
rom beginning to end with each statement line numbered in as

cending order (200 follows 100, 300 follows 200, and so forth). 
Program flow may be altered bv testing conditions within the pro
gram. The program tested for the "YES" response and altered the 
How either back to statement line 300 or allowed the program to 
drop through to line 500. In a typical program, there may be 

dozens of these tests and the program paths will be altered accord
ing to the results of the tests to create a type of tree structure shown 
m Figure 1-1. 

Let's discuss the statement format again. The line numbers in 
the above program are in increments of 100. They could just as 
Too ?scending sequence of numbers such as 101, 102, 
222, 535, 65500 or 110, 120, 130, 140, 150. A common technique is 
to use increments of 10 (110, 120, 130, and so forth). Statement 
lines are then added between existing statement lines by entering 

11 



FiRurc 1*1- Program tree tlructurc. 

. new line with . number fZTjZZ 

i:r„^Tndm7^c,a!:,Ie. we could type 
„N PDIKIT "I'M A IIBRA" '»»*80 •««»»* *>• «" O*"®1*®* NU' 

Statement line 250 would then ^' state. 
The remainder of the s . Level 11 RAS1C Reference 

Khnual' ̂ wZfcZrdT '), multiple statement* may be put into 
one line. We could say 
,00 INPUT "NAME "|A$«PWN! "Ml ";AJ 

.̂larjBWirJSa'wAS 
12 



of this format are that it saves space in memory (data associated 
with the line number takes up four bytes of RAM memory) and 
it saves time (each, new statement line is referenced by the preced
ing line and must be found in a list of statement lines). The dis
advantage is that crowded lines make a program very difficult to 
read or follow. This code 

1030 FL=1:GOSUB100:M$ =HBEACPSS":FORI=lT07:IFINt=MID$(M*, 1,1) T H E N M = I  
1035 I=7:NEXT:GOTO1037ELSENEXT:PRINTCHR*(B> ! :Gr>TO1030 
1037 IF M>lANDF=0ANDM<>7THENGOSUB9500:IFIN*="a"THEN1000 

is almost incomprehensible to anyone not skilled in codes and ci
phers. To avoid confusing you, we'll be using single statement lines 
in our code, with blanks and remarks. The code below shows this 
technique. The brackets indicate levels of loops (we'll cover this 
aspect of coding shortly); the single quote marks the beginning of 
a comment. Most of our lines will be commented to help you fol
low the program flow. When you enter the programs, disregard re
marks, since they will slow down the programs and create some 
differences between measured times in the book and actual times. 
(The effect of using a quote for a comment is to actually create a 
new statement of the form :REM!) You can also leave out blanks. 

1000 PRINT CHRt(28)!CHRt(31)i 
1100 PRINT CHRt(2B);CHRt<1 A)! 
1200 H=63 
1300 V=14 
1400 FOR 1=1 TO H 
1500 PRINT CHRt(25 ) ! 
1600 NEXT I 
1700 FOR 1=1 TO V 
1800 PRINT CHRt(26)* 
1900 NEXT I 
2000 V=V-1 
2100 H=H-1 
2200 FOR 1=1 TO H 
2300 PRINT CHRt(24) i 
2400 NEXT I 
2500 FOR 1=1 TO V 
2600 PRINT CHRt(27)! 
2700 NEXT I 
2B00 V=V-1 
2900 H=H—1 
3000 GOTO 1400 

Pick a Statement, Any Statement 

Now that we know the statement line format, the only other thing 
required to construct a program is to choose the right combinations 
of statement types. Not as easy as it sounds, is it? However, to help 
in this task we've attempted to categorize all of the Level II RASIC 

OUTER 
LOOP 

REMARKS:  DO 
NOT ENTER 

r * > 
' h o m e  a n d  c l e a r -  s c r e e n  
' h o m e  a n d  t u r n  o n  c u r s o r  
' i n i t i a l  h o r i z o n t a l  
' i n i t i a l  v e r t i c a l  

' u p p e r  
' m o v e  t o  r i g h t  
loop 
r^ 

'  m o v e  
*  I  O O P  

a d j u s t  v e r t i c a l  
a d j u s t  h o r i z o n t a l  

b o t t o m  
move^Jt-o-^Tef t 

O P  
' l e f t  s i d e  
' m o v e  U P  
'  1  O O P  

a d j u s t  v e r t i c a l  
a d j u s t  h o r i z o n t a l  

' l o o p  f o r  n e x t  s p i r a l  / 

INNER 
LOOPS 
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^e^-stas&ssxssi 
review. , nrn(rram i)V either a condi-

BRANCHes alter the sequence o fa Ipr h > ^conditionally 
Hon„, „r unconditional branches transfer 
transfer control to staten.e.d Oa Con mi s,a|cfnent ,ine 
control if the conditions are met, otherwise, 

'TcreTJe S d̂itio,,.! branch in Uvel 11 BASIC, the 
COTO It transfers control to the named statement number 
,00 GOTO 200 wndlllooolly i«"P lo J°° 

r a the 

THEN is met. 

i s :  s o . .  
The first THEN above " «• 

variable A is equal to 1. I he second11IEN ttw ^ 
statement line 300 if the string > j jp . THEN ac-

The second type of conditional branch is tne ir 
tion, such as 
,00 ir a-tJl r«N ratm -in- >•'- " 

The third type of ct.ndlticaial bran^ is t ie ^^ ̂  „ In 
ELSE This «"«y transfer control to another 

l00 „ A-0 THEM 200 USE 300 ^OO 

or it may cause other actions as in 
,00 ,f A-0 THEM MINT 'V EISE MINT "0" - "MOT C 

"NOT 0" m a ft a 
Which prints "V if variable A equal. 0 or "NOT 0" If variable A 

does not equal 0. . ,.nN COTO. . . . This 
The last type of conditional branch, is ON . < d 

statement type transfer, con rol to, apecrfied 
ing to the condition lreforc the (.OTO. 
,0, OH A ooto Ioo.wo,roo >-ej. »• • 

Un* rt »»©"• 

lh:,Xo A Ro-dl not'branch 

if A is other than 1, 2 or 3 , fl f BaSIC programs 
Another type of statement that^st^ c0„veniently 

is the subroutine-type statement. A subroutine 
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Table 1-1. Level II BASIC Statements and Commands 
LEVEL II BASIC STATEMENTS 

Branches 
GOTO n 
IF : THEN n 
IF : THEN . . 
IF : THEN : ELSE . . 
ON : GOTO l,m,n, . . . 

Cassatta Taps 
INPUT #-l,list 
PRINT #-1,list 

Commands 
AUTO n,v 
CLEAR k 
CLOAD "string" 
CLOAD? "string" 
CONT 
CSAVE "string" 
DELETE l-m 
EDIT n 
LIST l-m 
NEW 
RUN n 
SYSTEM 
TROFF 
TRON 

Data Tables and Arrays 
DATA list 
DIM name (diml,dim2, 
READ list 
RESTORE 

Define Variable Type 
DEFDBL letter range 
DEFINT letter range 
DEFSNG letter range 
DEFSTR letter range 

Error Functions 
ERL 
ERR/2 +1 
ERROR code 
ON ERROR GOTO n 
RESUME n 

Functions 

.dimk) 

Branch to line n 
Conditional branch 
Conditional action 

Computed GOTO 

Read list 
Write list 

Auto line # at n with v increments 
Clear k bytes 
Load cassette file "string" 
Check file "string" 
Continue 
Write cassette file "string" 
Delete lines I thru m 
Invoke EDIT mode for line n 
List lines I thru m 
Clear program 
Begin execution at line n 
Invoke MONITOR mode 
Turn off trace 
Turn on trace 

Establish data table 
Establish array 
Read from data 
Reset data pointer 

Double precision 
Integer 
Single precision 
String 

Get error line # 
Get error code 
Simulate error 
Error trap 
Resume execution 

ABS(e) Absolute value 
ATN(e) Arc tangent 
CDBL(e) Double precision 
CINT(e) Integer (small) 
COS(e) Cosine 
CSNG(e) Single precision 

15 
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Functions—cont. 
EXP(e) 
FIX(e) 
INT(e) 
LOG(e) 
RANDOM 
RND(e) 
SGN(e) 
SIN(e) 
SQR(e) 
TAN(e) 

Graphics 
CIS 
POINT(K.y) 
POS(O) 
RESET(x.y) 
SET(x.y) 

Input 
INPUT list 
INPUT "string";!!*' 
INP(porl) 
INKEYft 

Loop Control 
FOR noms-s TO o STEPo 
NEXT noma 

Machine longuago 
PfEK(oddross) 
POKE oddress. v 
USR(0) 
VARPTR(vorloblo) 

Miscellaneous 
END 
LET s-s 
MEM 
REM 
STOP 

Operators 
•.-.V 
t 

AND.OR.NOT 
+ 

Output 
OUT port.v 
• .lallltn rrinTin| 
PRINT list 
PRINT TAB(k). . 
PRINT 0, .  .  

Natural exponential 
Truncation 
Integer (large) 
Natural log 
Reseed generator 
Pseudo-random I 
Sign (-1.0. + 1) 
Sine 
Square root 
Tongent 

Clear screen 
Get - 1 If on. 0 H oH 
Gel cursor position 
Clear point 
Set point 

Input Us' ol Hems 
Print ft Input 
Input value ol port 
Gel one-char string 

Define loop 
Continue ond terminate loop 

Get value a» oddress 
Store v In address 
Coll subroutine 
Get oddress ol vorioble 

End execution 
Assignment 
Get t ol unused bytes 
Remark 
Stop execution (breok) 
Multiple statements/In 

Arithmetic 
Exponentiation 
Relational ond string 
logicol 
String concatenation 

Output v to port 

Print list ol Hems 
Tob 
Print at 



Table 1-1 cont. Level II BASIC Statements and Commands 

Printing—cont. 
PRINT USING $, list 

String 
ASC("string") 
CHR$(e) 
FRE($) 
LEN($) 
LEFT$($,v) 
MID$($,p,v) 
RIGHT$($,v) 
STR$(e) 
STRING$(v,"char") 
VAL("string") 

Subroutines 
GOSUB n 
ON e GOSUB !,m,n, . . . 
RETURN 

Variables 
A-Z 
Ax-Zx where x is A-Z or 0-9 
$ 
% 
I 
# 
D 

Key: 

k,v,w 
"string" 
l-m 
list 
name 
letter ranqe 
(x.y) 
$ 
"char" 
e 
l,m,n, . . . 

Formatted print 
No tab 
Tab 

Get ASCII code 
Get one-character string 
Get amount of space 
Get length of string 
Get first v characters 
Get length v, start p 
Return last v characters 
Convert numeric to string 
Get string of v chr 
Convert string to num 

Subroutine call 
Computed subroutine call 
Subroutine return 

String suffix 
Integer suffix 
Single-precision suffix 
Double-precision suffix 
Scientific notation suffix 

(double precision) 
Scientific notation suffix 

(single precision) 

Relational expression 
Line number 
Other action or n 
Constant 
Text string 
Lines l-m 
Item list 
Var name 
Initial letter from a-d,e 
Graphics x = 0 to 127, y=0 to 47 or e 
String variable 
1-chr str 
Expression, variable, or constant 
Line numbers 

LEVEL II BASIC MONITOR MODE (SYSTEM) 

SYSTEM 
*? name 
*?/address 
*?/ 

Invokes monitor mode 
Loads object file "name" 
Execute at address (dec) 
Execute at default addr 

17 



fable 11 cent. Level II BASIC Statement, and Command^ 

n*~ 
shlftf 
nspoce 

UVIl II BASIC !MO« CODM 

rc 9 

11VII  I I  BASIC IDTT MODI  
Enter EDIT mode lor line n 
Cancel change, already mode 
Change n choroclers 
Delete n cKorocten lo right 
End edit. »ove changes 
Delete remainder of line & 
Insert 
Delete oil choroclers till nltt 

occurrence of cKorocter c 
list remainder of line 
End edit and cancel all chngs 
Search lor nth occurrence of c 
Display remainder, move end 
BocVspoce n spoces 
Escape from edit subcommand 
Move n characters to right 

Subscript out ol range 
Can't continue 
Redlmensloned array 
Illegal function coll 
Bod HI* do»o 
Illegal direct 
Disk BASIC 
String too long 
Missing operond 
NEXT without IO« 
No RESUME 
Out of data 
Out of memory 
Out of string space 
Overflow 
Return without GOSU6 
RESUME without error 
Synto« error 
String formula too comple» 
Type mismatch 
Unprintable error 
Undefined line 
Division by reto 

, of ,rom 1 to hundreds ol BASIC statements. A call is 
STto a subroutine by a COSUB statement, as in 

100 A-1 'set A te 1 
?00 GOSU1 10000 '»• »«• ^ 
300 *™A r.r» vo «• ° f 1Q000. The GOSUB's 

SSi L'TdentoTtT-fcOTOe^p. "ha. the return point ol 300 i, 

100 
700 
300 
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recorded by the BASIC interpreter. At the end of the subroutine a 
RETURN statement causes a return to the statement following the 
GOSUB. Let's see how this works. Suppose that we have a subrou
tine to skip 3 lines. 
100 PRINT "LINE 1" 
200 GOSUB 1000 
300 PRINT "LINE 5" 

'now on line 1 
'skip 3 lines 
'now on line 5 

oents. A call is 

. The GOSUB's 
point of 300 is 

1000 PRINT 
1010 PRINT 
1020 PRINT 
1030 RETURN 

'skip line 
'skip line 
'skip line 
'relurn after GOSUB 

(The squiggly line in the above code does not mean the artist is 
nervous. It stands for other BASIC code that has been left out.) 
First statement 100 is executed. Next, the "GOSUB 1000" causes the 
four lines of subroutine 1000 to be executed. The last line returns 
control to statement 300. 

Subroutines are generally used to save memory. If, for example, a 
program needs to skip three lines in a number of places, it would 
make sense to have the code for skipping three lines at one spot 
rather than dozens of places in the program. 

The statement type ON . . . GOSUB operates exactly the same 
as the ON . . . GOTO except that control is returned to the state
ment following the one calling the subroutine. 

Loops in BASIC allow a program to repeat operations, rather 
than coding the operations as a long repetitious list of BASIC state
ments. Suppose, for example, that it is necessary to fill the video 
display with asterisks. One way to do this would be to print an 
asterisk 1024 times, one for each video display position. 
100 PRINT 

200 PRINT 
300 PRINT 

etc. 

'print at current 
'location 
'another 
'and another and another 

An easier way would be to create a loop of 1024 repetitions that 
would accomplish the action in a very short piece of BASIC code. 

100 FOR 1=1 TO 1024 STEP 1 p'loop 1024 times 
200 PRINT 'each time print 
300 NEXT •—'continue loop 

The loop is initialized by the FOR . . . TO . . . STEP . . . state
ment which tells the BASIC interpreter to repeat the action from 1 
to 1024 times using variable "I" to count the number of times 
through the loop. The NEXT statement marks the end of the loop 
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.1 mn TO STEP statement 
and causes control to return t" . ® Within the loop between the 
(or ,he ne,t repetition o Hto Ig* W. m nis loop vir. 
F O R  . . .  l O  . . .  S I  1 -  .  " S T E P "  i s  n o t  u s e d .  a n  

jiTK a'™modmwo've included STEP in .his example lo, 

"Sc - - J--SR!R.R 
ables. Constants are exactly ha Security num-
example. 3.14159 for pi «"d «<»r^ ^ ̂  pf 

her. Variables can change and arc l subtotals, and 
sets aside for holding such thing* ^ ̂ ^7£ or two (or 
character strings. \ ariablc nam . ^ a, ha. 
mure) alphanumeric eh.rarter, te firs. ol w. s « - "• "j • *• 
•"!£„ M;1 a. 
arc denoted by variables with a ^ Seven decimal 
Single-precision variables a ow ""x" , jo. »• (wide enough 
digits (l.mw X HP ) and SinglcprciT 
to accommodala subatomic ^ |t| A2t or 7J2!, or simply 

r cstfistiaJSS 
Iwma'^Wd'.oH 112^3434343434 X 10") and are denoted 
by „ Sttlllx as in A2# or All. ^ ^ ̂  n,.-FINK VAIU-

ABLLTVVE^MLNDS0.̂  define a range o. alphabetic name. 
that specify an appropriate J*? (| v„rl„,,le types 

There are certain rules for theJ»e oHhej J e^^ 2 n,„n(t 

in BASIC programming. Then ar am) Information 
with the binary number-
relating to precision. Chapter L a» ^ and NOT. 
ing system and the logical opera ors uaiujje strings of charac-

STRING statements allow^a STn'rFT LEVEL 11" You 
lers such as TRS-HO" or ..id he I.EFTS. MIDS, of 
can manipulate portions of strings convert be-
RIGHTS statements. With other STRS. VAI.). 
tween strings and numeric j J ,hc same character re-
STRINGS generates a string •com| p(ltt3 ,he length of 
peated a '"^J^^l^Thc remaining space available in 
a given string, while 1 - ctrin„ arc one of the most powerful 
HAM for s,rinKs o a t) ^s. S .NĴ |  ̂̂  ̂  ( F 3 
features Clf Level I BASI •. »^ ^ ^ (o ,)l0 display. 
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PRINT LIST prints one or more items including variables or char
acter strings. 
100 PRINT "A EQUALS ";A 'print value of A 

for example, prints "A EQUALSb" followed by the value of variable 
A. The PRINT TAB function allows a program to "tab over" to a 
specified column before printing another item. 
100 PRINT TAB(50);A 'tab and print A 

for example, moves the display cursor to tab position 50 and then 
prints the value of variable A. 

PRINT @ prints at any given character position (out of 1024) on 
the video display. 
100 PRINT @512, "THIS IS LINE 8" 'print at line 8 

prints the message at line 8 of the 16 lines of the screen, starting 
at the extreme left. 

PRINT USING $ is a somewhat complicated and powerful state
ment that allows you to format printing in regard to leading zeroes, 
decimal points, and a bunch of other goodies. We'll talk about it 
in detail along with the other PRINT statements in Chapter 4. 

GRAPHICS statements are for those of you who want to display 
graphics data on the video display. Graphics means "non-character" 
data. The Display is divided up into a matrix of 128 by 48 elements, 
each one of which can be turned on (SET), off (RESET), or tested 
(POINT). Other graphics statements clear the entire screen (CLS) 
or find the current cursor position (POS). There are many tech
niques for displaying both character and graphics data on the video 
display, and we'll get to those in Chapter 5. 

DATA TABLES and ARRAY-type statements define data lists 
(DATA) or arrays of data (DIM). Data lists are lists of constants 
that may be read sequentially using READ and RESTORE state
ments. Arrays are ordered lists of data in one or more dimensions 
that can be accessed in random fashion. Data lists and arrays are 
covered in Chapter 6. Searching and sorting data in lists and arrays, 
a very important topic, is covered in Chapter 7. 

TRS-80 Level II BASIC includes a set of built-in FUNCTIONS. 
These functions are statements that perform specialized functions 
rather than general-purpose actions. Trigonometric functions in 
Level II BASIC include SIN (sine of an angle), COS (cosine of an 
angle), TAN (tangent of an angle), and ATN (arc tangent). Num
erical and mathematical functions include ABS (absolute value), 
CDBL (double-precision), CINT (integer), CSNG (single-preci
sion), EXP (natural exponential, or antilog), FIX (truncation), 
INT (whole number), LOG (natural log), SGN (sign of a num
ber), and SQR (square root). RANDOM and RND allow genera-
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ti„„ of random numbers for simulation. Rames, and 
lions Functions and their use In various applications are described 

nAsic'nUows cassette tape o,orations using two statement 
, ' f INPUT #-1 and PRINT #1. INPUT #1 inputs . «f"Sl« 

cations of cassette tape. R A C I P  nllow for error A number of statements and functions in BASIC allow 

When errors do occur, Level II IJAMC provuit* 
to unravel the error and take corrective action. 

ERROR lets you simulate an error i.-RR/2+l 
error-handling portion of your BASIC code LRL «and I. « -
return the line number at which the error occurred and the error 
dumber, respectively. ON ERROR COTO set^p the hue 
number  o f  t h e  e r ro r -p rocea s ing  ro u t i n e ,  wh i l e  I  I S l  ML 
sumes  p rog ram execu t i on  a f t e r  an  e r ro r  o c c u r s  E r ro r s  a r e  r ea l  
in Chapter 10 (if you start making too many of them, may >e > 
should skip right to that chapter). iltc|1-lv in the 

While most programmers want to program «Mvely i.the 
high-level BASIC language, there are provisions in.the .^ 
t„ interface BASIC programs with machinecade The 
are execution speeds of up to several hundred times the BASK 
interpretation speed and added versatility. . 

FLICK and POKE allow you to look at or ^ ̂  
lions in BOM or BAM to change the action of the BASKL in 
meter or just (or your own enlightenment A special USB call 
allows BASIC to pass control to an assembly-language routu 
V ARPTR find* the' address of a BASIC variable for the purpose 
of passing parameters or for direct examination or modification. 

Chapter 11 discusses how assembly language routines can be 
m, tl in BASIC. Chapter 12 uses PEEK* POKE* and other state-
ments to reveal some of the deep, dark secrets of the internals 
of the BASIC interpreter and the organization of memory. 

Number Cninchies, tbc New Computer Energy Food 

We've described most of the BASIC statements available in 
TBS-80 Level II BASIC, but we haven't really talked a ^ de 
about -number-crunching" operators the P^'"; that BASK 
c«m perform Of course, BASIC can add ( + ), subtract ( -), multi 
ply (•) and divide (/) variables and constants, but the impres-
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sive thing is that BASIC does it while automatically adjusting the 
number of digits and range of the number. You (the programmer) 
are relieved of the responsibility of remembering number ranges 
and decimal-point position (unlike early computers . . . may not 
sound like a big deal, but believe me, it is . . .). Exponentiation 
(|) is also easily accomplished. Typical examples of sequences of 
processing operations are shown below 

100 4/3*PI*Rf3 'find volume of sphere 

200 ST—GR*(100 — DS) 'gross times discounted price 
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We've glossed over another operator, the or equivalence 
operator. An equals sign, of course, sets a variable on the left of 
th(. equation equal to an expression, constant, or variable onthe 
right of the equation. The forgotten statement type LLI maybe 
used in conjunction with an equals sign as in 
100 IET A» 1.233 I W lb* «— • 
but the LET really only remains as an anachronism lor compati
bility with previous BASICS. There is really no reason to use it. and 
we will not in this book. 

Not only can BASIC perform arithmetic and exponentiation 
functions, but it can also ,>erfor,n comparisons. Compariscauo 
less than (<). greater than <», less than or equal {<-). groster 
than or ei|ual (>=). ecptal ( = ). and not equal (<>) ar«i easily 
nciformed on all types of variables including string variables. A 
unique string concatenation operator ( + ) allows two or more 
strings to be joined together. 
100 AS-"NOW IS"+" THE TIME" + " EO« . . •" 

Command Performance 

Up to (his point In our monograph on I cvcl 11 BASIC, weve 
been talking about BASIC program operation As wm know from 
the be eelII BASICBe/erence Manual, however there arc really 
four modes of operation-Command. Execution, Edit, and Monitor. 

The Command mode la essentially a supervising mode tin«t con
trols the loading of a BASIC program, some cursory editing. Uc 

TbTsIcV^S" "» cassette tape loaded by the command 
CI AMI) and can be checked for accuracy with a program in HA 1 
bv the CLOAD? command. Another cassette-related commaiu . 
CSAVE, saves the HAS1C program in HAM memory on cassette 

l i The three other modes of operation are invoked by the ,hree 
commands HUN (execute), EDIT (edit mode), and SYS I EM 
(monitor). HUN causes the current BASIC program in HA ! • 
well .... run. starting at the first line number, if none is specified 
or at a specified line number. (HUN 10000 starts execuHon at ILine 
10000.) Of course, you can stop any program that is runni g 

•"edit !nvokc"'thckcdit .node, which well discuss in . moment 
(However the Command mode allows some limitedI editing.) 
I ines can be deleted by typing the line number followed by 
ENTER. Lines can l>e modified simply by retyping the line num-
Urr with the new contents. Lines can be inserted using the tcch-
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nique we spoke of in an earlier example—using a line number in 
the interval between two existing line numbers. Another delete 
command (strangely enough designated DELETE) deletes a range 
of lines (DELETE 10000-10999 deletes all program lines from 
10000 to 10999). The last editing-type command is AUTO, which 
provides automatic line numbering, starting at a given line num
ber and incrementing by a given value. (AUTO 100,20, for ex
ample, starts at line 100 and increments by 20 for each new line.) 

The command CLEAR clears a given area for strings. Since the 
string area is at the top of RAM memory, the BASIC interpreter 
must know where the string area ends and everything else begins. 
(We'll discuss this topic in Chapter 3.) 

The CONT command continues after a STOP statement. The 
STOP statement can be used to stop execution at any point, after 
which you can examine variables and other data to your heart's 
content (and then CONTinue on). 

Two other commands related to debugging, TRON and TROFF 
(trace on and trace off), turn the trace capability on or off. The 
trace function displays each line number on the screen as it is exe
cuted, so you can see the program flow. The STOP statement and 
CONT, TRON, and TROFF commands are discussed in Chapter 
10 in a general discussion of debugging, a nasty job of getting rid 
of 8-bit and other species of program bugs. 

NEW is a doomsday command that wipes out the current BASIC 
program in RAM memory and initializes all BASIC interpreter pa
rameters. (Use it carefully!) 

The LIST command lists the current BASIC program on the 
screen; LLIST performs the same function on a system line printer. 

The SYSTEM command invokes the monitor mode, used to load 
machine-language tapes into the system and to transfer control to 
machine-language routines that have been loaded. These topics are 
covered in Chapter 11. 

Editors Are Not So Hard Bitten After All 

The Edit Mode in Level II BASIC is invoked by the EDIT com
mand. The Edit actions are well  documented in the Level II BASIC 
Reference Manual, but we'll provide a recap here. Basically, the 
Edit Mode allows an edit of an individual line. The cursor may be 
positioned one position to the right on the line by typing "space" 
or n positions to the right by typing n space (20 "space" moves 
the cursor 20 positions to the right). The cursor may be moved to 
the left one position by typing or n spaces by typing "n 

Once the cursor is positioned to the proper point on the line, you 
can delete characters by typing "D" (or several characters can be 
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deleted by typing /nD") You ean oh.ngechar.ctm * 
followed by the character to l>e used in place K 
aeter (or hy "nC." followed by the ^ptg " " Wlowed 
for the change). Characters can be inserted by typ g 

""e^nr^ Edi. and save, the changer made, 

"The""'command Hacks off the line from the eurrent cursor po-£fe tsa rswssttSK 
end of the line for the insert. . .jfWl character 

t£ZZ7$SL UP ""he n,^}^^^owi?nir 

p^rt^n^ofH^OwlsTHETIMEFORALLGOODPROCRAMMERS* 

W1'Idre SCcommand<enables you jo Search for a given 
or the nth occurrence of the character A command of 2ST. lor 
example, would position the cursor as follows: 
now is the iime rot au oooo r*oo*AMMf*s 

Have vou memorized the list? (Guard . . .find** a d d r e s s  °[ 
render in Pes Moine. Mi 

he chapter, to follow You'll be able to learn the use of some of 
the more e.otlc statements hy practical esamplc. » *mtbe too 
dismayed if you don't understand all of the coinma.u 
applications. That's what were here for. 
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CHAPTER 2 

To Be Precise . . . 

We'll be considering the subjects of binary numbers, BASIC va
riables, number ranges, and precision in this chapter. These are not 
as stuffy as they sound and are easier to understand than you might 
think. Dont let the subjects scare you off . . . (Guard! Stop that 
reader from turning the page . . . ) You will be amply rewarded with 
BASIC programs that are faster and use up less memory, and in the 
bargain you may get to see some of the internal workings of BASIC. 

A Long Time Ago in a Computer System Far, Far Away 

Let's digress for a moment and talk about the Zzarth race of the 
Sirius star system. As we all know, Zzarthians have 8 hands with 
one finger on each hand. (Baseball umpires there have a heck of a 
time with signals. . . .) Back in Zzarthian antiquity when the frog
like Zzarthian speech was first developing, some of the more astute 
members of the tribe used fingers to denote the number of znab-
beasts that were seen in the hunt. One finger meant one znabbeast, 
two meant two, and so forth. The limit of this was, of course, 8 
znabbeasts, represented by eight arms with 8 fingers held high as 
shown in Figure 2-1. 

Since the number of znabbeasts in a qwany varied from several 
to well over a hundred, this description left something to be desired. 
One day, however, a strange monolith appeared with the markings 
"A registered trademark of TANDY Corporation" in the lower-right 
hand corner. . . . The following day, one of the younger Zzarthians 
(by the name of Ed, if you must know) approached the elders' 
council and declared, "I've just invented a new system to report on 
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ALL YOU REAPERS WHO IURRED THE PAU ARE OUT // 
» »  

„M,easts' Naturally reluctant, .. arc alll eMen 
r radicals, the elders soon became excited as the advantages 

J,ropier f o r  or ro rec/l l,c able ,o understood It « l«k belter. 

f» rhinf. bin Ary, 
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Table 2-1. Binary Representation 
Arm 

7  6  5  4  3  2  1  
o o o o o o o  
0  0  0  0  0  0  0  
0  0 0  0  0  0  1 
0  0  0  0  0  0  1 
0  0  0  0  0  10  
0 0  0  0  0  10  
0 0  0  0  0  1 1  
0  0 0  0  0  1 1  
0  0  0  0  10  0 
0  0  0  0  1  0  0  
0  0  0  0  10  1 
0  0 0  0  1 0 1 
0  0  0  0  1 10  
0 0  0  0  1 10  
0 0  0  0  1 1  1  
0  0  0  0  1  1  1  
0  0  0  1 0  0  0  
o o o i o o o  
0 0 0 1 0 0 1 
0  0  0  1 0  0  1  

0 0 1 0 0 0 0 

0 10  0 0  10  

1 0  0  0  1  1  1  

=  0 Znabbeas t s  
=  1 Znabbeas t  
=  2 Znabbeas t s  
=  3 Znabbeas t s  
=  4 Znabbeas t s  
=  5 Znabbeas t s  
=  6 Znabbeas t s  
=  7 Znabbeas t s  
=  8 Znabbeas t s  
=  9  Znabbeas t s  
=  10 Znabbeas t s  
=  11 Znabbeas t s  
=  12 Znabbeas t s  
=  13 Znabbeas t s  
=  14 Znabbeas t s  
=  15 Znabbeas t s  
=  16 Znabbeas t s  
=  17 Znabbeas t s  
=  18 Znabbeas t s  
=  19 Znabbeas t s  

— 33  Znabbeas t s  

— 69  Znabbeas t s  

— 143  Znabbeas t s  

0  
0  
1  
0  
1  
0  
1  
0  
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

1 

1  

1  

' 1 1 1 1 1 1 1  — 255  Znabbeas t s  
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It is exactly equivalent m the system used ^^ts^ 
day. Each collection of 8.um arm in effect 

^eUs?pSw« of two jus', as our decimal system represents a 

^ Thcsmallest tiumlierls 

Z^.+or Y Any her hum .1 ^ be 

scute,1 by zeros and ones in the apj.rr.pr.aU^ I«^t.o„s^ ^ 
This scheme of positional nolat» „„mber, 

more bytes. When this is dune or wo byaa^muchla.^ (^ 

i-r; :•>- - "-e °",y 15 bi" 
(15-0) instead of 16. We ll see why later. 

Table 2-2. TwO-Byle Binary Representation 
~ | D*<lmol 

Binary 

,9 U U It 11 • 7 4 9 4 9 3 10 
o - o o o o o o o o o o o  
0  0 0 0 0 0 0 0 0 0 0 1  

o o o o o o o  
J °o I I I °0 °o °0 0 0 0 0 0 0 . 

0 o 1 0 o 0 0 0 0 0 0 0 0 0 0 0 8192 

o o o o o o o  
I ; ! °o °o °o 0 °o 0 0 0 0 0 0 0 . 

24576 
24577 

0  1  1  1  i  0 1 0 1 0 1 1 1 0 ' '  

1 1 1 1 1 1 1 1 ' ' ' ' 1 

31419 

32767 
0 1 1 

Integer Variables 

n» a t-w »».«-•i~" r™ r«SrT«S* 
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32,767 ( 01111111/11111111). Let's look at the two-byte storage for
mat in BASIC. It's called integer format and is defined by a variable 
with a % sign after it, such as A%, AA%, or Zl%. 

First of all, let's verify that we can indeed store 0 through 32,767. 
The program below stores the input value but gives an OV (over
flow) error for values greater than 32,767. 
100 INPUT A% 'input an integer value 
200 GOTO 100 'loop on input 

By adding a VARPTR statement and some PEEK statements, we 
can see where in RAM memory the A% variable is stored and what 
it looks like. The VARPTR returns the RAM address where A% is 
stored. RAM, as you know, occupies from 16,384 to 32,767 (16K 
System), 49,150 (32K System), or 65,535 (48K System), each lo
cation containing one byte (8-arms worth) of data. Each RAM 
location is "addressed" by reference to an address value of 16,384 
through 32,767 (16K), 49,150 (32K), or 65,535 ( 48K). PEEK re
trieves the value of each byte, which is 0-255. 

100 INPUT A7. 
200 B=VARPTR(A'/.> 
300 PRINT B 
400 PRINT PEEK<B) 
500 PRINT PEEK(B+1 ) 
600 GOTO 100 

~ 'Set integer variable 
"find address 
'print it 
'print Is bvte 
'print ms byte 

— '  1OOP for next 

The first number printed in this program is the address of A%. 
The next two numbers printed are the contents of the two bytes 
that make up the variable. Try inputs from 0-32767 (or above) 
and see what happens. 

If you tried values for A% between 0 and 255, you saw that the 
first byte (Is, or least significant byte) was used to store the value, 
and the second was zero. For example, a value of 10 results in 

10 (first byte) 
0 (second byte) 

and a value of 255 results in 

255 (first byte) 
0 (second byte) 

If you tried values larger than 255, you saw that both the second 
and first bytes were used. For example, a value of 257 results in 

1 (first byte) 
1 (second byte) 

and a value of 1000 results in 

232 (first byte) 
3 (second byte) 
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LOWEST 
MEMORY 
ADDRESS 

HIGHEST 
MEMORY 
ADDRESS 

/ 

0 1 0 1 1 1 0 1 

0 0 1 1 0 1 1 1 

"LOW ORDER" BYTE 

"HIGH ORDER" BYTE 

ADDRESS SHOWN ABOVE IS 
0 0 1 1 0  1 1 1 0  1 0  1 1 1 0  1 =  1 4 I J J  

HIGH ORDER 
BYTE 

LOW ORDER 
BYTE 

Figure 2-2. Two-byte itorage. 

The first byte Is .he "h. ta.*~^b£ 
high-order byte. 1 his f . vahics VVc can sec 
THS-80 and is shown in I igure*2 torvw the input 

this better if we use some additional 
value from the two bytes at which weve 1 LLKed. 

•<>•» |MP»el 
•rn»4 •<»<»'•** 
'SUM It 
•print l» *•*• 
• pr i nt •! !»»•• 
• | S < n »Suls |r«p«jt 
<li<4 Mint It 

• •  I POP tor I»«*t 

»» !« •  

TO INfUl A* 
1100 B-VABP'tlAXt 
I -OB MINI B 
I 1MB MINI rtlKIBl 
,400 MINI PtfNIBOl 
I -.MM C-»t tK«B*l ••^A ,r£EK'B 

l/OO MINI C 
i ;mb GOIO i wo 

The 1500 ***** verifiesSd!ng 

esscnU.»y «"»" ,w° 8b" b>"" ,n'° 

3 Multiplyleg 3 by 256 is 76S. plus 232 equals 1000. 

A% = 1000 

PEEK (B)= 232 

P E E K  ( B - H )  =  p y  

3 • 256 + 2^2 = 1000 -
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What about that 15th bit? The 15th bit is used for a sign bit. 
Not only can we store 0 to +32767 in two bytes, but we can store 
-1 to -32768. Run the program above with negative input values 
and let's see what we get. 

This time we displayed mysterious data. Inputting —111, for ex
ample, displays 

? —  1 1 1  
145 
255 
65425 

The first two values are the contents of the two bytes for variable 
A%, but the next value is certainly not —111. The answer here is 
that negative numbers are stored in a form called two's comple
ment in binary. In this form, negative numbers are stored by find
ing the positive equivalent in binary and then changing all zero 
bits to one, all one bits to zero, and adding one. This simplifies 
hardware design and is used in almost all digital computers. To 
find the equivalent negative number for A%, check the value C = 
PEEK(B+1) 0 256 + PEEK(B). If it is over 32767, perform the 
computation 65536 C, and you will have the equivalent negative 
number stored. 

1600 IF C>32767 THEN PRINT " —";65536-C ELSE PRINT C 

The integer format is good for expressing the range of numbers 
from —32768 through 0 to +32767. It always requires two bytes 
and will never approximate the number, but will hold the precise 
number. If you attempt to use an integer format with a result 
greater than +32767 or less than -32768, an OV (overflow) error 
will result, since the BASIC interpreter does not know how to 
handle an integer number that requires more than two bytes. 

Murphy's Rule Number 32K 

At this point, we had better mention another rule which is re
lated to the computation of negative numbers. When PEEKs and 
POKES are used in this book, they will work fine if the address 
argument is 32767 or less. For example, 

100 FOR 1 = 0 to 32767 'peek at memory loop 
200 PRINT PEEK (I) 'i see you 
300 NEXT I 'loop here 

will print out all address locations from 0 through 32767. However, 
if the address is 32768 or more, the value used in the PEEK or 
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POKE must be (ADDBESS-65536). The reason lor t h.s « tha 
PEEK and POKE look lor an integer limit of +32787. Niurn 
over that limit are treated an invalid numbers. PEEK and IPOl . 
must therefore be fooled into accepting addresses in the range ot 
32768-65535. An example of this is 
100 FOR 1 = 0 TO 65533 ot "•••"•Of 
200 IF l< 32768 PRINT PEEK(I) USE PRINT PEEK (1-65536) 

300 NEXT I 'loop K»ro 

Most of the examples in this book use the lower 32K for 
ing values or in PEEKing at data. However, if an address m th 
upper 32K is involved, an OV error will result unless the computa-

specifies integer format, but this format may also 
be specified by a define variable type statement such as 
100 DEFINT A-B 'oil trorloblw A B will bo Inloflor 

The above example makes all variables in the range A through II 
automatic integer variables. 

Single-Precision Variables 

Obviously, we would have some difficulty in dealing only with 
integer variables. It would not even allow reasonable calculations 
on checking accounts (although the ability to express negative 
numbers might conceivably help in dealing with my cbecktag ac-
count). One ol the most valuable features of BASK, is that it a 
lows us to operate with very large and very small numlx rs a 
rnatically. unlike machine language, the "Tiny- languages, or other 
less povverful languages. We are able to do this with single-pred-
sion and double-precision numbers. 

Let's use the following cx.de to define the number range, and 
precision for this type ol number. By the way this format is the 
"default" format for variables in the system, although a sufhx 
T may also be used. 

'Inailt |IMI#-W«CHIW 
;-BB0 INPUT a v«lw«« 
?IBB A-A/2 'rrlM 
77M £R'*T * _ L*l«os> for •»•** 
."•30G GOTO 21 BP 

In inputting various values of A we can see that the smallest 
number that can be held in this format »s 1.XXXI.-38 use 
"SHI FT(ST  t o  s t op  t h e  d i sp l ay  a t  an y  t i me ) .  By  c ha ng ing  s  a e -
mf.nl 2100 to A = A*2 we see also that the largest number is about 
» (Vh^E format simply means that the followmg num
ber is a power of 10. E-38 means 10~M, and E+38 means 10*".) 

34 



is that 
lumbers 
1 POKE 

r^of rai 

•r POKE-
ss in the 
computa-

may also 

through B 

nly with 
culations 
negative 

eking ac-
;lvg. it al-
i^^auto-
, or other 
lgle-preci-

anges and 
nat is the 
a suffix of 

The complete range of single-precision variables, then, is about 76 
powers of It), providing the capability to express subatomic dis
tances to the number of atoms in the universe! 

The precision, however, is a different story. This format allows 
only seven decimal digits of precision. (BASIC will print only six 
of these.) Digits beyond that range are rounded off. When we mul
tiply 123456 by 33 we should get 4,074,048, but actually get 
4,074,050. Once again, the reason for this is limitations on variable 
storage. Single-precision variables take up four bytes of storage in 
RAM. About 3 bytes of that is devoted to the significant-digit part, 
or mantissa, of the number representation, while one byte is de
voted to the exponent, as shown in Figure 2-3. The 3-byte integer 
provides 24 bits (one bit is always 1) to allow a range of numbers 

BYTE 0 BYTE 1 BYTE 2 BYTE 3 

LEAST SIG BYTE NEXT SIG BYTE MOST SIG BYTE EXPONENT 

1 SIGN 
1 = NEGATIVE 
0 = POSITIVE 

EXPONENT 
IS POWER 
0E TWO 

Figure 2-3. Single-precision storage. 

from about —16,777,216 to +16,777,215 to be expressed without 
loss of digits. (The exponent is a power of two allowing about 
2-128 to 2+127 t0 handled, or roughly 10"37 to 10+37.) Up to a 
certain point, a number is held as straight binary in the 24 bits, 
while beyond this point the integer holds only the most significant 
portion of the number. 

You may (if you have masochistic tendencies) care to further 
explore the wonderful world of floating-point formats by using 
the VARPTI1 command to retrieve and display the storage of data 
in a single-precision variable, as shown below (see Figure 2-4). 

3000 INPUT A 
3100 B=VARPTR(A) 
3200 PRINT PEEK(B > t PEEK < B+1)t 
3300 PRINT PEEK(B+2)iPEEK(B+3> 
3400 GOTO 3000 

' i n p u t  s i n 9 l p - p r e c i s i  o n  
' f i n d  l o c a t i o n  
' p r i n t  f i r s t  2  b y t e s  
' p r i n t  n e x t  2  b y t e s  
'  1  o o p  f o r  n e x t  

Double or Nothing 

Because seven decimal digits are not quite precision enough for 
some calculations (imagine trying to compute federal budgets in 
six figures), Level II BASIC provides for a double-precision for
mat. As the astute reader .may have surmised, double-precision 
doubles (or more than doubles) the amount of precision available 
in BASIC. As a matter of fact, it allows for 17 significant deci-
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VARIABLE IN MEMORY 
DECIMAL 
NUMBER 
ENTERED 

1 0 1 0 221 | ° 1 

0 0 0 129 | 

1 0 1 0 0 1 130 | 

0 0 64 130 

1 0 80 80 1 140 1 

1 0 53 2 ,44 | 

I 160 j 194 34 M 

ALWAYS A 
ONE BIT \ I 

80 
L_ 

80 
J 

140 
140 - 128 

1 

2 

3 

3333 

33333 

333333 

12 BITS IN INTEGER 

0 (1)101 0000 0101 0000 0000 0000 

+ 3333 
NUMBER IN 12 BITS 

Figure 2 4. Single precision storage examples. 

u,l digU,(now were finally .pproaAlng ^ r^ o' some of 
ie smaller government agencies). Only 16 digits 

To olifain this precision, the integer portion. of the Boating point 
ariahle is increased in size from 3 bytes (24 hits) to 7 hytes, as 
hown In Figure 2-5. Seven bytes allow .56 bits of Prccis,°"' 
proximately to 36.000.000.000.000,000. Note that the range o 
he number 'expresseil is still limited by the exponent portion of 

H Double-precision variables are represented by a # suffix, as in 
A#" or "Z2#". When the double precision is used in scientif 
rotation, a "D" replaces the "E" for the exponent, as, for example. 
„ -1 23-1.56780D+ IS". 
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BYTE 0  BYTE 1 BYTE 2  BYTE 3  

LEAST SIG BYTE NEXT LST SIG BYTE — 

BYTE 4  BYTE 5  BYTE 6  BYTE 7  

— NEXT MOST SIG BYTE MOST SIG BYTE EXPONENT 
1 

1 SIGN 
1 = NEGATIVE 
0 = POSITIVE 

Figure 2-5. Double-precision storage. 

As in the case of integers and single-precision variables, double-
precision variables may be deBned by a DEFDBL statement that 
specifies a variable range. 

1 0 0  D E F D B L  A - B  ' a l l  v a r i a b l e s  A - B  w i l l  b e  d o u b l e  p r e c i s i o n  

specifies that all variables starting with A or B will be double-
precision variables. 

If you're still harboring latent masochistic tendencies (evidenced 
by listening to CSAVE tapes on your 150-watt stereo), you can in
vestigate double-precision formats and storage by 

1 0 0  I N P U T  A #  _ , i r „ „ .  .  .  ,  
2 0 0  B = V A R P  T R <  A # )  r  d o u b l e - P r e c i s i o n  
7 0 0  F O R  1 = 0  T O  7  r  ' - f  T  1 0 "  i  
4 0 0  P R I N T  P E E K < B + I > ,  T ' r r i n t  b v t e  F  

5 0 0  N E X T  L \  .  
6 0 0  G O T O  1 0 0  - ' l o r l 0 ^  / r l r , t  

l o o p  b « . V ,  t o  n x t  i n p u t  

Vlien should integers be used? When should single-precision 
variables be used? And when should double-precision variables be 
used? Fortunately, the great French mathematician Blaise Pascal 
gave us the answer in 

A Treatise on the Use of Numbers Great and Small 
With Special Reference to the TRS-80 

In the old days of computers, three years ago, memory was very 
dear. Today, one can buy a bit of memory (pun intended) for a 
penny or so a bit. The point is that even a parsimonious (Editor's 
note: Stay away from polysyllabic words!) programmer can afford 
to use single-precision (default) variables and not be very con
cerned about memory requirements. Double-precision can be used 
when required, but shouldn't be used for all variables, because, in 
addition to memory storage requirements, the computation speed 
is less efficient. The exception to the use of single-precision over 
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ucssawSMBS. »•»'. >-•»- -'"""' a^«5»s»rtss»srs 
nal secrets to other personal-computer users. 

Table 2-3. Variable Ranges, Precision, and Storage 

Variable 
Tyy 

I n t e g e r  

S i n g l e  
p recU l o n  

Double-
precltlon 

Range 

- 32768 to 
+ 32767 

About I X 10* 
to 1 X 10"" 

About 1 X lOf 
to 1 X 10 - »  

Precltlon Storage 

5 integer 2 byte* 
decimal dlgltt 

7 declmol 4 byte* 
digit* 

17 8 byte* 
decimol digit* 

Once More Unto the Breach 

I II he. vet thought wc were done with discussions of binary 

z:X ^Ze\txzp̂ T.!e-« E 
• Jptê tê no 

What's more they'll enable you to manipulate data down to the SSsiKc£sSff=»!5 

hire. We will call the end rend, of the J ™J 
VISIT = 1, we will go on the journey, if NISI I 
The expression I usually work with is: 

rrAS IN CAR) AND (NOT WEEKDAY) AND (NOT BEHIND 
E^nSSVSUl AND ,NO. TOO HOI. AND ffttUNO 

OK) AND (HAVE ENOUGH MONEY) 

VISIT 
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This expression says that if we have gas AND if it is not a weekday 
AND so forth . . . then we can perform the visit. By equating each 
of these expressions to a 1 (true) or 0 (false), then we see that 
1  =  1  A N D  1  A N D  1  A N D  1  A N D  1  A N D  1  

VISIT will equal 1 (true) if and only if all of the conditions are 
true. 

Another logical expression might be one relating to one called 
OVERDRAWN. OVERDRAWN is true (1) or false (0) as fol
lows: 

O V E R D R A W N  =  ( W I F E  M A K E S  C H E C K I N G  A C C T  E R R O R )  O R  ( H U S B A N D  M A K E S  

C H E C K I N G  A C C T  E R R O R )  O R  ( U N E X P E C T E D  B I L L )  O R  ( E X P E C T E D  B I L L )  

As we can see, OVERDRAWN is almost always true (1) because 
one OR the other condition is probably true. 

A third type of logical expression that will illustrate logical oper
ators is 
S O L V E N T  =  N O T  ( O V E R D R A W N )  

This is easy to understand. 
There is nothing magical, therefore, about logical operators or 

expressions. They were developed by Plato, George Boole (a 19th 
century mathematician), Claude Shannon (a 20th century research 
engineer), and others. They are really an attempt to define real-
world conditions in convenient symbolic form. 

The AND function, as we have seen, states that a result condition 
is true if one condition AND another (AND others) are true. If either 
of the conditions is false, the result condition is false. If we are 
working with two conditions, we can diagram this as: 
1 S T  C O N D I T I O N  0  0  1 1  
2 N D  C O N D I T I O N  0  1 0  1  

R E S U L T  0  0  0  1  

The OR function states that a result condition is true if either one 
OR another (OR others) is true. We can state this as: 
1 S T  C O N D I T I O N  0  0  1 1  
2 N D  C O N D I T I O N  0  1 0  1  

R E S U L T  0  1  7 1  

The NOT function states that the result condition is true if the 
input condition is false and false if the input condition is true 
I N P U T  C O N D I T I O N  0  1  

R E S U L T  1  0  

For the most part, we spend a great deal of time in BASIC pro
grams writing down logical conditions, most of which are em
bedded in IF statements 
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110 CLS 'cld«r jcr 
120 INPUT 'VALUE l- 'IA 'Inrut v«lu« I  
130 IF A>«0 AND A<256 GOTO 1*0 ELSE GOTO 120 
1*0 INPUT 'VALUE 2-'IB 'Input vtlut 2 
150 IF B>«0 AND A<256 GOTO 160 ELSE GOTO 1*0 
160 INPUT 'AND. OR. OR NOT"'IA» 'Input • rrr 
170 IF Af<>* AND" AND AtO'OR* AND At O'NOT' GOTO 160 
180 PRINT 'VALUE I  IN DECIMAL IS ' lAI'IN BINARY IS'I 
200 C-A 'for lubrcutir.* 
210 GOSUB 10000 'c#nv»rt •« bintrr 
220 PRINT 'VALUE 2 IN DECIMAL IS 'IBI'IN BINARY IS'I 
230 C-B 'for subroutine 
2*0 60SUB 10000 * convprt to binary 
260 IF At-'AND' THEN CpA AND B 'f ind tnd result 
263 IF At-'OR* TUTN C"A OR B ' f ind or result 
265 IF At-'NOT' THEN C-NOI B 'f ind not result 
270 PRINT 'RE5WT IN DECIMAL IB ' iCl'IN BINARY IS'I 
280 GOSUB 10000 'convert to binary 
290 II INKEYt"" GOTO 290 El BE GOTO 110 
10000 B0-C-INTIC/2t»2 'f ind bit 0 
10010 C-INTIC/21 '»t«l nuotlent 
100.0 0l»C-INT<C/2l*2 
10030 C-INIIC/21 
100*0 B2-C-INTIC/21*2 
10050 C«INTIC/21 
10060 B3-C-INIIC/21*2 
100/0 C-INTIC/2) 
10080 B*-C-INT(C/2>o2 
10090 C»INT IC/21 
10100 B5»C-INT(C/2)o2 
10110 C"INTIC/21 
10120 B6-C-INfIC/2I*2 
10130 C—INT IC/21 
101*0 B7«C-INTIC/21*? 
I0I5B PRINT 07tBAi05iB*i03i02t0ll0® 'print binary 
10160 RETURN 'roturn to ctl l lnt prof 

Figure 2-6. Binary exerciser program. 

100 IE (A-0 AND 0-0) GOTO 1000 

200 IF <A<3 AND A>0) GOTO 1113 

1000 IF (A-1 OR A-2) A-A + T7 

2000 IF (AS — "ED" OR A$ -"JIM") THEN B$»"ANIMAl" EISE Bf — "MINERAl'' 

However, logical operators can also be used with binary values. 
Let's sec how this works by constructing a binary exercise program. 
This program will illustrate binary operations by allowing you to 
input two 8-bit values. The values will be displayed in decimal and 
binary, and then you can specify an AND. on, or NOT function to 
observe how the binary functions work. See Figure 2-0. 

The key to this program is the decimal-to-binary conversion sub
routine at HXXX). It implements a conversion from decimal to binary 
called "divide and save remainders." To see how this works, let's 
convert a decimal number to binary on paper, as shown in Figure 
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2-7. We divide the decimal number by 2 and save remainders. The 
remainders in reverse order are the binary number. This method 
always works for any size of decimal number, although it does get 
tedious for numbers over 3 trillion. In the program, BO is the first 
remainder, B1 the next, up to B7 for the last. The "INT" function 
finds the integer (quotient without remainder) of the divide Mul
tiplying the quotient by two and subtracting it from the current 
number gives the remainder. At the end of the subroutine, the re
mainders are printed in reverse order. 

This program could have been made much shorter by using ar
rays and other clever coding, but the important thing here is to see 
VAT tip 0 -^ 0pejators  Work" Ente"ng VALUE 1 = 255 and 
VALUE 2 - 15, and specifying an "and", for example, results in 
an and of 255 and 15. The value of 255 in binary is 

i i i i  1 1 1 1  
— i 
— 2 
— 4 
— 8 

- 16 
- 32 
- 64 
- 128 

255 

while the value of 15 is 

o o o o  1 1 1 1  

15 

When these two values are ANoed, each bit position of the eight 
is ANoed separately and does not affect any other bit position. 

1 1 1 1 1 1 1 , 
ANDO ANDO AND 0 AND 0 AND 1 AND 1 AND 1 AND 1 

1 1 1 

We know from the rules of logical operators that 0 and 0 is 0 
Xand 0 ,s 0, 0 AND 1 is 0, and 1 AND 1 is 1, and the result reflects' 

these :teseiarermPle' °R 17° 112' 
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0  R l -
2rr RI 
2fT" RO 
2 r 6 RO 

2HT RO 
2 fir RO 
2 ns RO 
21 96 Rl 

2l 193 RO 
21 386 RO 
21 772 RO 

2 Qffi Rl 21 3089 RO 
21 61/8 Rl" 

21 12357 

1 1 0 0 0 0 0 1 0 0 0 1 0 1  =  1 2 3 5 7  

Figure 2-7. Fcncil-«ndp«per decim«l-to-biiwry conversion. 

10 10 10 10 0 1 1 1 0 0 0 0 

1 
— J 
— S 
— 32 
• 1 2 8  

170 

I L • 1 6  
•32 
• 64 
112 

,s in ,hc case o( Aiming. each bit is considered separately 
1 0 1 

OH 0 OR 1 OT 1 
0 1 

OR 1 OR 0 
0 1 0 

O R  0  O R O  O R O  

1 1 1 1 1 1 

Ve know from the rules oi oaing that 0 on 0 is 0. 1 on 0 is 1, 0 on 
is 1 and 1 on 1 is 1. and this is shown in the result 
The third example is the NOT. The NOT in this program takes the 

,OT function of VALUE II as the result I the input vahje is i . 
hen the NOT looks at each bit and takes the complement, h s is 
list a two-dollar word lor the opposite state. If a bit is a 0. then 
he result bit is a 1. If a bit is a 1. then the result bit is a 0. 

1 o 1 0 1 o ' 0 

NOT NOT NOT NOT NOT NOT NOT NOT 

1 1 1 1 

At this point, you're probably saying. "Fine, xve AND 255 ami1 1 5  
irui get 15, we on 170 and 112 and net 250 and we NOT 1<0 and 
,et 85—what's the practical applicationr (Aha . . >ou ,t^rTm 
ng that!) The AND, OR, and NOT are not used as frequently as com-
non BASIC operators, but they can be very valuable at tun. 

The AND and OR arc used primarily to do hit 
individual bits in HAM, turning specified bits on or oB.. c 1,1 .ee 
some examples of applications later in the book (\Ne promise!). 
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CHAPTER 3 

Strings and Things 
(Subtitle: Never the Twine Shall Meet) 

In the last chapter we talked about the use and storage of nu
meric variables. In this chapter, we'll talk about another type of 
variable, the string variable. String variables are simply strings of 
alphabetic, numeric, and special characters that usually represent 
meaningful text data. Since there are operations that occur again 
and again in text processing, such as searching for given characters 
*suc a^a name) or comparing one string with another, Level II 
BAMC has a number of string functions built into it to make the 
job of processing string data easier. This chapter will describe what 
string variables are, how they are stored, and what types of opera
tions can be done with the built-in BASIC string commands. 



ASCII Strings 

In general, all strings are made up of ASCII characters. At least 
that was the original intent of strings, to provide a means to group 
keyboard or displayable characters, such as "YES", "NO", "12345P", 
"TRS-80", or under a single variable name. By clever 
(some would say devious) means, the string definition can also 
include non-alphabetic, numeric, or special characters. (We'll look 
at those a little bit later in the chapter.) 

Legitimate names for string variables include any names that 
would ordinarily be used for any variables, suffixed by a "$". An 
alternate way to define a range of string variables is by a DEFSTR 
command which defines all variables in the given range to be 
strings. DEFSTR A-B would automatically define variables such 
as A A, AB, and BB as string variables, and they would be synony
mous with AA$, AB$, and BBS. 

The first question that comes to mind is "What is an ASCII 
character?" ASCII stands for American Standard Code for Infor
mation Interchange. A "standards" society has established certain 
standards for computers. It's certainly desirable to have all com
puters speaking the same language. In fact, many computers do 
speak the same language when it comes to common printable 
characters. That language is ASCII codes. 

ASCII is basically a seven-bit code. As we know from our com
prehensive and diligent study of Chapter 2 (Guard! Arrest that 
reader . . .), seven bits of data can define 128 different codes, from 
000 0000 to 111 1111. In ASCII, those 128 codes are used to repre
sent alphabetic, numeric, and special characters, and control codes, 
as shown in Table 3-1. The control-codes portion of ASCII from 0 
to 31 are somewhat non-standard from computer to computer. The 
15-code used in the TRS-80 to turn off the cursor, for example, is 
used in another computer to shift to upper case. 

The displayable portions of the ASCII codes used on the TRS-80 
are from code 32 through 127. as shown in the table. These arc 
basically grouped into special characters (space) through (/), nu
merics (0-9), special characters (:) through (@), upper case 
(A-Z), cursor controls (f through ), and lower case (a-7. and 
others). The standard TRS-80 has no provision for displaying 
lower-case characters. Lower-case characters, however, are still 
usable when output to a TRS-80 system printer such as the Quick 
Printer I or II. They simply can't be stored in the video display 
memory. 

The program shown below uses the INKEYI function to get a 
onc-character string from the keyboard and then display the key 
pressed in displayable form and its ASCII equivalent. Note that 
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Table 3-1. ASCII Codes 

Codo Character Code Character Code 
0 32 Space 64 
1 33 1 65 
2 34 • 66 
3 35 tt 67 
4 36 $ 68 
5 37 % 69 
6 38 & 70 
7 39 / 71 
8 Backspace/erase 40 ( 72 
9 41 ) 73 

10 Carriage return 42 * 74 
11 Carriage return 43 + 75 
12 Carriage return 44 76 
13 Carriage return 45 — 77 
14 Cursor on 46 78 
15 Cursor off 47 / 79 
16 48 0 80 
17 49 1 81 
18 50 2 82 
19 51 3 83 
20 52 4 84 
21 53 5 85 
22 54 6 86 
23 32 character mode 55 7 87 
24 "-cursor 56 8 88 
25 -"cursor 57 9 89 
26 tcursor 58 90 
27 tcursor 59 . 91 
28 Home cursor 60 < 92 
29 Cursor to line start 61 — 93 
30 Erase to end 62 > 94 

of line 
94 

31 Clear to end 63 ? 95 
of frame 

95 

Character 

@ 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 

tor[ 
lor] 

Code Character 

96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
1 1 1  
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 

127 

@ 
a 
b 
c 
d 
e 
f 
g 
h 

k 
I 
m 
n 
o 
P 
q 
r 
s 
t 
u 
v 
w 
X 

y 

Control Codes Special/Numerics Upper Case Lower Case 

the lower-case characters are read from the keyboard and appear 
in the proper ASCII code when the shift key is used (118 for 
ower-case v, for example, versus 86 for upper-case V), but that 
the video display can only display an upper-case V. 

100 CLS 
200 A$=INKEY* 
300 IF A$=" • GOTO 200 
400 PRINT 3 534iA*.ASC(AS) 
500 GOTO 200 

[ 
' c l e a r  s c r e e n  
' i n p u t  c h a r a c t e r  
' b a c k  i f  n o  k e y  i n p u t  
' p r i n t  k e v »  a s c i i  
' l o o p  b a c k  f o r  n e x t  c h r  

From One to Hundreds 

The INKEY$ function created a one-character string when a ke 
was pressed. Level II BASIC allows us to handle up to 255 char 
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LOCATION 

16384 

TOP OF 
MEMORY 

SYSTEM VARIABLES* 

PROGRAM 
STORAGE 

AREA 

SIMPLE VARIABLE 
STORAGE AREA 

T 
ARRAY 

STORAGE 
AREA 

_J 

FREE 
MEMORY 

— | 
STRING 

STORAGE 
AREA 

STACK AREA 
AREA RESERVEO BY 

MEMORY SIZE? INPUT* 

BUILOS 
•  UP 

4 BUILDS 
I DOWN 

•CONSTANT 
SIZE 

Figure 3-1. Siring storage area. 

acters In a string. Many of the strings we'll l>c working with will 
l>e less than 64 characters, since that size will conveniently fit on 
one display line. 

String variables are stored in HAM memory below the stack, as 
shown in Figure 3-1. As a matter of fact, they are up above every 
other type of storage in the THS-80. Because the BASIC' inter
preter must know how much storage is required tor strings, a 
CLEAR statement should be one of the first things that a BASIC 
program specifics when strings are to be used. Performing a 
C L E A R  2 0 0 0 ,  f o r  e x a m p l e ,  c l e a r s  2 0 0 0  b y t e s  a t  t h e  t o p  o f  H A M  
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memory, just below any storage reserved by the MEMORY SIZE? 
input. If no CLEAR statement is specified, the BASIC interpreter, 
being a somewhat paranoid sort, goes ahead on the assumption 
you may throw in some strings anyway and reserves 50 bytes. 

Each string variable occupies one byte for each character of the 
string, plus an additional six bytes-3 for the string name (AZ$, 
AA$) and 3 for the length of the string and address. As in the 
case of simple variables (no slur intended on their mental abili
ties), the VARPTR command can be used to sneak a look at the 
variable in RAM. When VARPTR is used with a string variable, 
it returns an address that points to a block containing the infor
mation shown in Figure 3-2. 

A$ = "NOW IS THE TIME. .  " 
A = VARPTR (AS) 
A POINTS TO 

Figure 3-2. VARPTR use with strings. 

You might gain some insight into string storage by running the 
program below, which prints out the location of the string as it 
is input. 

1000 CLEAR 500 
1100 INPUT A$ 
1200 B=VARPTR(A») 
1300 C=PEEK(B> 
1400 D=PEEK(B+1) 
1500 E=PEEK<B+2) 
1600 PRINT "1ength=";C 
1700 PRINT "LOCATION=""E*256+D 
1800 GOTO 1100 

'clear string space 
"' input string 

'f ind location 
'get length 
'1s address byte 
'ms address byte 
'print length 
'print location 

'- ' loop to next input 
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Note how the location in RAM memory where the string is stored 
starts off at the top of memory and decrements down for each new 
input of A$. RASIC uses up all available string storage space (the 
CLEARed area) until it does not have more available, and then 
goes back to "clean up" and reshuffle the string data into the 
CLEARed area. 

This accounts for those mysterious delays that sometimes occur 
when one is working with large programs with many strings. The 
program has used up the string storage space, and the interpreter 
must reallocate string space to create new room. 

You can check the amount of free space that is available for 
strings by another RASIC string function, FRE$. It reports on the 
number of bytes available in the CLEARed area at any given time. 
W CIEAR 50 'dtor tiring tpoc* 

100 PRINT FRE(A)) 'print omounl of Tree tiring tpoc* 
110 INPUT A$ Input a tiring 
120 GOTO 100 'loop bock to print 

The variable used in ERE is any legitimate string variable name, 
used or unused. It is a "dummy" variable name and has no bearing 
on the report on the amount of all string space available. In the 
above case, the initial amount of string space available is 50 bytes. 
This 50 bytes is reduced by the length of the A$ entered. 

String Operations: Comparison and Concatenation 

Unlike numeric variables, string variables cannot l>c added, sub
tracted. multiplied, divided. ANDed, oned, or have any of the other 
operations performed on them that we can normally do with inte
ger or single- or double-precision variables. Of course, the reason 
for this is that such operations are meaningless when we are con
sidering a string of ASCII values representing character data. The 
common operations that can be performed, however, are compari
sons and concatenation. Say what? Yes, the last term is another one 
of those terms of computer jargon whose definition is really very 
simple. 

Concatenation means to link together, as in a chain. (As a matter 
of fact, a hanging chain or other line forms a curve known as a 
catenary, hence the derivation—just thought you'd want to know.) 
Two separate string variables can be linked together by the string 
concatenation operator to form a single string variable. This may 
occur as many times as necessary (see Figure 3-3). 

A good example of concatenation uses the INKEY$ function to 
construct an ever-lengthening string variable. We used the INKEY$ 
variable earlier in the chapter, but let's discuss it a little more. 
INKEY$ looks at the keyboard for one instant in time. What in-
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100 A$ = "THIS IS A MN" 
200 B$ = "EMONIC DEV" 
300 C$ = "ICE TO REME" 
400 D$ = "MBER CONCA" 
500 E$ = "TENATION!" 
600 E$ =  A$ B$ -I- C$ T D$ T E$ 

F$ BUTCHER 
SHOP 

Figure 3-3. String concatenation. 

stant? We can see approximately how often INKEY$ scans the 
keyboard by the program below. This code continuously uses 
INKEY$ to look at the keyboard. If no key is pressed, a null string 
(0 length) is returned. A null string corresponds to " ". If a key 
is pressed, a one-character string made up of the keyboard char
acter is created. RUN the program and wait about ten seconds 
before pressing a key. The count of I is about 790, signifying about 
79 scans per second. This means that 79 times per second, the 
BASIC interpreter looks at the keyboard, at least for this code. 
Naturally, the statements I = 1+1 and IF A$:=" " GOTO take some 
time to process, and the BASIC interpreter is not looking at the 
keyboard the entire time—perhaps it is looking at the keyboard Vi 
of the time, as shown in Figure 3-4. However, the scanning rate 
is quite high and fast enough even for a prize-winning typist at 
150 words per minute (13 characters per second). 

2*000 1=0 
2100 1=1+1 
2200 At=INKEYt 
2300 IF A*="" GOTO 2100 
2400 PRINT A*,I 

' r e t  c o u n t  t o  0  

C ' s t a r t  o f  l o o p  
' 9 o t  c h a r a c t e r  
' l o o p  u n t i l  c h r c t r  

' p r i n t  c h a r  i  c o u n t  

In any event, let's get back to the INKEY$ concatenation (Edi
tor's note: Try not to digress—these readers' attention spans are as 
short as my Uncle Harry who . . .). We can do a continuous con
catenation as fast as you can type using the following code, which 
prints the length of the string and the string while concatenating a 
new one-character string from the keyboard. 
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H LINE LINE LINE •J 2100 2200 2300 
1 (INKEYS) 

G LINE LINE LINE 
2100 2200 2300 

(INKEYS) 

LINE LINE LINE 1 
2100 2200 2300 [ 

(INKEYS) 1 h 
TOTAL TIME 
FOR LINES 

2100. 2200. AND 2300 

J TIME FOR I 
| LINE 2200 I" 

Figure 3-4. INKEYf scan rale. 

' e l • • r  i t r l n g  i m < «  
» « r  l o g  l e n g t h  

3000 CLEAR ?60 
3 1 0 0  A » L E N < A t )  ,  
3?00 A«»At»tNKEV« [•.,«,« . 7  
3300 IF LEN«A«>-A GOTO 37*00 ELBE PRINT LENtA^^ *# ,*M'" 

Initially, 200 bytes are CLEARed for string space to permit a 
maximum string length of 255 bytes to be created. Variable A is 
set equal to the length of the A.» string, which is initially 0 (The 
Ne,7 h"C!wvi-v.'T CUrrCn' 'Cng,h of " 'P«i6ed string.) 
N St. the INKEY» function is used to concatenate any keyboard 
INKFYt' '"P . n°"C L inp'"' A$ b ,hc *"mc •» More the 
INKI*,Y$ operation, as is the LENgth. The new length of A$ is 
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then compared to the old length A. If they are equal, no new 
character has been input, and a return is made back to the INKEY$ 
function. If they are unequal, a new character has been added, and 
the new length and string are printed with a GOTO to the state
ment to set A equal to the new length for the next comparison. 

Strings may be compared just as numeric variables may be com
pared. The same relational operators of < (less than), > (greater 
than), = (equal), <> (unequal), <= (less than or equal), or 
>= (greater than or equal) are used. 

It's easy to see how one string can be equal to or not equal to 
another, but what is the meaning of "less than," "greater than," 
and the others? The answer lies in ASCII codes. Comparisons are 
made on the basis of ASCII codes and their binary equivalents. 
From Table 3-1, we can see that a space is the "lowest-valued" 
ASCII character, while the lower-case characters are the highest. 
A string of "A C" (with A, space, C) will be "less than" "AAC," 
and a string of "?A" will be "greater than" "=A'. In a case where 
strings are of unequal length but otherwise identical, the shorter 
string is less than the longer string. "AA" is less than "AA5", for 
example. The code below will let you investigate the comparisons 
of two strings. 

1 0 0  C L E A R  5 0 0  
2 0 0  I N P U T  A t ,  
3 0 0  I F  A t < B t  P R I N T  A * ; - < * ; B «  
4 0 0  I F  A t = B t  P R I N T  A t ; " = " ; B $  
5 0 0  I F  A t > B t  P R I N T  A $ ; " > " ! B t  
6 0 0  G O T O  2 0 0  

'clear string space 
""'input two strings 
'print if less than 
'print if equal 
'print if greater than 
*  1  O O P  for input 

Printing the Unprintable 

No, this is not an excursion into "blue" books, although some of 
you had better watch your exclamations while running some of the 
routines presented here. We have seen how to convert from a single 
printable character into the equivalent ASCII code by the ASC 
("A") command, but how do we convert the other way, from a 
code to a character? The CHR$ lets us do just that. CHR$ is ex
tremely powerful since it lets us embed all kinds of unusual char
acters in a character string, characters that simply can't be input 
from the keyboard! The argument of CHR$ is a numeric value from 
0 to 255, or an expression that is equivalent to those values. The 
code below displays all characters from 32 to 191. The ASCII codes 
from 192 to 255 are not printed, as they are tabs for 0 to 63 spaces 
and scroll the display off the screen. The codes from 0 to 31 are 
also not displayed, as some of them cause screen clearing, line 
clearing, and so forth. 
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1000 CLS 
1100 FOR 1-32 TO 191 
1200 PR1NJ CHRtdll 
1300 NEXT I 
1400 GOTO 1400 

* c l»«r icr **n 
['•sell codes 

>1 lot chgi«c t*r 
•  Iooe  tor  nex t  

•looe here Tor diselav 

1 he interesting thing about the display is that not only are char
acters displayed that can't he generated from the keyboard (such 
as i, and -»), but the graphics character codes are also displayed. 
It is possible, then, to incorporate graphics character codes from 
128-191 into a character string! This is an exciting concept because 
strings are printed very rapidly, and we may be able to use this to 
advantage to get high-speed graphics. We'll discuss this concept 
further in Chapter 5. 

rhe CHR$ function can !>e used to compare any non-printable 
character in the program. A backspace, for example, does not re
sult in a displayable but rather is converted into a code of 8. 
We can look for that code using a CI 111$ (8) function: 

2000 P»-INKrv» 
2100 ir P*-** GOTO 2000 
2200 IF P«OCHR*<8> GOTO 2500 
2300 PRINT 'PACKSPACE" 
2400 GOTO 2000 
2100 A«-A««P* 
2600 PRINT A* 
2700 GOTO 2000 

character 
•trv again if null 
'•o If n»l t>« 
'backtrace found 
'get ne*t character 
'concatenate 
'rrlnt current ttrlng 

"'get newt character 

Left, Right, Left, Right, Mid, Right . . . 

We're allowed to link or concatenate two strings, but arc not al
lowed to truncate a string into a shorter string directly. How do we 
then access parts of strings? There are several approaches to a 
problem such as this. The ways in which I^evel II BASIC ap
proaches it are from the right, from the left, and from the middle. 
(/ know, / know ... I just couhlnt resist.) The three methods are 
implemented by the LEFT!, RIGHTS, and MII)$ functions. They 
allow all or a portion of a string variable to be accessed starting 
from the right or left, or by taking a portion out of the middle, as 
shown in Figure 3-5. 

CHARACTER CHARACTER 
1 40 
I I 

AS = *fJ0W IS THE) TIME f OR All) GOOD PROGRAMMERS 
T 

LEFTS (AS. 10) 
GETS LEFT 10 
CHARACTERS 

T 
MIOS (AS 17.7) 
GETS MIDDLE 

7 CHARACTERS 
STARTING WITH 
CHARACTER 17 

Figure 3-5. Accessing strings 

RIGHTS (AS 9) 
GETS RIGHT 

9 CHARACTERS 
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The LEFT$ function gets the first n characters from the left of 
the string variable. 13$ = LEFT$("A MAN A PLAN A CANAL 
PANAMA",5) would set B$ equal to "A MAN". 

The RIGHT$ function gets the last n characters from the right 
of the string variable. B$ = RIGIIT$("A MAN A PLAN A CANAL 
PANAMA",5) would set B$ equal to "ANAMA". The following rou
tine shows how this can be used to retrieve characters from the 
right or left. 

3000 A*="A MAN A PLAN A CANAL PANAMA" 'palindrome' 
3100 FOR 1=1 TO LEN(A$) p'outer loop 
3200 PRINT LEFT *(AtiI) 'print from left 
3300 FOR J=0 TO 50 f inner lr,0P 
3400 NEXT J L'for delay 
3500 NEXT I ^-'larger and larger 
3600 FOR 1 = 1 TO LEN(At) r - 'outer loop 
3700 PRINT T AB(LEN(A* >-1)!RIGHT*(AtII) 'print from right 
3800 FOR J=0 TO 50 p'inner loop 
3900 NEXT J for- delay 
4000 NEXT I ^'larger and larger-

The MID$ function is used to take a portion of a string out of 
the middle. MID$ specifies a string variable, a starting location 
(from the left), and the number of characters to be retrieved. B$ 
= MID$("A MAN A PLAN A CANAL PANAMA",10,5) would 
create B$ = "LAN A". The following code creates two strings, one 
made by concatenating single characters starting from the left, and 
the other made by concatenating single characters starting from the 
right; both use the MID$ function. 

50 CLEAR 400 'clear string space 
100 A*="A MAN A PLAN A CANAL PANAMA" 'read it sdrauikcab 
200 FOR 1=1 TO LENIA*) 

One of the remaining string functions that we haven't mentioned 
yet is the STRING$ function. With STRING$, you can create a 
string of identical characters. The format of STRING$ is STRING$ 
(n,"c"), where n is a value from 0 to 255 and "c" is either a string 
or value (or expression). The character or value represented will 
be replicated n number of times. For example, PRINT STRING$ 
(20,"#") prints 20 pound signs and PRINT STRING$( 32,63) prints 
32 question marks (63 is the ASCII code for "?"). 

The value in STRING$ may be any value from 0 to 255, includ
ing graphics characters. (The graphics potential for STRING$ is 
discussed in Chapter 5.) STRING$ is especially handy for printing 
headings, filling in display fields with fill characters, or filling in 
strings with fill characters. 

300 B$=MID$(A$ih1)+B$ 
400 C$=MID$(A$»LEN(A*)-I+1,1>+C$ 
500 NEXT I 
600 PRINT B$ 
700 PRINT C* 

print left string 
print right string 

The STRING$ String 
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Numeric to Strings and Back Again 

We have two more string functions to investigate before trying 
our hand at a generalized input routine, cursor control, text edit
ing, and some other functions. If you'll bear with us (Cuard, tbuit 
gun is not necessary . . .), we'll complete this discussion of string 
functions by looking at two powerful functions, STK$ and VAL. 

STH$ converts a given numeric value or expression into a string. 
1 he string can then easily be edited and processed for printing or 
display. 

PRINT STR$(12.34) 

for example, converts the single-precision variable 12.34 into the 
string variable " 12.34", six characters long, and 

PRINT STR$(1E — 06) 

converts the single-precision variable IxlO*0 into the string vari
able IE—06 , six characters long. A leading blank appears before 
the numeric value in the string to allow for a possible minus sign 
as in 

PRINT STRK-9999) 

which would generate "—9999", five characters long. 
VAL operates in reverse fashion from STR$; it converts a string 

variable or expression into a numeric vahie-eVALuates it. The 
string variable must be either numeric characters, a decimal point, 
or exponent (E or I)). Evaluation stops on the first (non-E or D) 
alphabetic or special character encountered. 

Eiprattlon Rotuh 
VAt("12.34") 12.34 
VAl("12E —06") 1.2E-05 
VAl("9999.9m') 9999 9999 
VAl("120 — 06") I 2D — 05 
VAl("TEXT100") 0 
VAl("100TEXT") 100 

Note that if the string starts with a non-numeric character, it 
evaluates as zero. 

VAL can be used to convert a string of numeric data to a more 
compact numeric variable form. This saves memory for large 
amounts of numeric data, but more importantly, it drastically re
duces the amount of processing time required. 

A Thousand Cursors Upon You, Effendi! 

Knowing what we now know about the manipulation of strings, 
large and small, it should be a simple matter to produce some use
ful general-purpose text-handling routines. Some of the things we'll 
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be discussing in the remainder of this chapter will be cursor con
trol, generalized string inputs, and text editing. 

Just how do we manipulate the cursor? If we look at Table 3-1 
again we see that there are indeed cursor control characters that 
can be output to the screen. These are backspace cursor (24), ad
vance cursor (25), down cursor (26), up cursor (27), home cursor 
to character position 0, line 0 (28), and move to beginning of line 
(29). In addition to these, we can turn the cursor on (14), and off 
(15). 

As an example of how we can implement these cursor codes, look 
at the routine below. It moves the cursor to the home position 
(CHR$(28)), clears the screen (CHR$(31)), moves back to home 
(CHR$(28)), and turns on the cursor (CHR$(14)). The cursor is 
then moved in spiral fashion until it retreats to the screen center. 

1000 PRINT CHR*(28>iCHR«(31)i 
1100 PRINT CHR*(2B>;CHR*(14)i 
1200 H=63 
1300 V=14 
1400 FOR 1=1 TO H 
1500 PRINT CHR*(25); 
1600 NEXT I 
1700 FOR 1=1 TO V 
1800 PRINT CHR*(26>; 
1900 NEXT I 
2000 V=V-1 
2100 H=H-1 
2200 FOR 1=1 TO H 
2300 PRINT CHR*(24); 
2400 NEXT I 
2500 FOR 1=1 TO V 
2600 PRINT CHR*(27)1 
2700 NEXT I 
2800 V=V-1 
2900 H=H-1 
3000 GOTO 1400 

' h o m e  a n d  c l e a r  s c r e e n  
' h o m e  a n d  t u r n  o n  c u r s o r  
' i n i t i a l  h o r i z o n t a l  
*  i n i t i a l  v e r t i c a l  

~  r ' u p p e r  
I  ' m o v e  t o  r i g h t  
^ ' 1  O O P  

t ' r i g h t  s i d e  
' m o v e  d o w n  
*  1  O O P  

' a d j u s t  v e r t i c a l  
' a d j u s t  h o r i z o n t a l  

[*  b o t t o m  
' m o v e  t o  l e f t  
* loop 

[' l e f t  s i d e  
' m o v e  U P  
*  1  O O P  

' a d j u s t  v e r t i c a l  
' a d j u s t  h o r i z o n t a l  
' l o o p  f o r  n e x t  s p i r a l  

The above code is more than a little showy and not too useful 
(unless you're a spiral freak). However, it does show that we have 
complete control over the cursor and related screen control char
acters in our RASIC programming. We can use this fact to advan
tage in writing a good generalized input routine. 

The Universal Gee Whiz Input 

This routine is meant to exercise our string capabilities, but also 
to provide a general-purpose keyboard input routine. On input, it 
is desirable to have a routine that will accept string input from any 
of the 1024 input positions. A "fill" string of blanks or an existing 
character string such as "MM/DD/YY" should be available to ini
tialize the input area. Another nicety is the ability to move the cur
sor within the field to any position to permit modification of previ-
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CURSOR READY FIELDS CONIROLLEO 

fSEE CHAPTER 5) 

Figure 3-6. Form fill-in. 

ously input or existing text. Also, control characters that might 
create ambiguous conditions, such as down cursor, must he ignored. 

A generalized input routine such as this allows easy form fill-in 
ns shown in Figure 3-0. 1 he form is made up of several fields, each 
of which may be controlled by the input routine. Another example 
would be modification of existing strings under cursor control 
rather than by retyping the entire string. 

I he program shown in Figure 3-7 provides all of these features. 
The subroutine is CALLed with string variable ZA$ containing the 
fill string to be used. The "(*)" location for the string is contained 
in variable ZC (0-1023). When the subroutine is CALLed, the fill 
field will be printed at the spot designated, and data may then be 
entered from the keyboard. The fill field must he all on one line 
for proper operation. The cursor may be moved without destroying 
the data by *- and . The cursor may not be moved past the 
start of the field or past the end of the field. When the data has 
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40 REM CLEAR SCREEN AND CALL SUBROUTINE 
50 CLS 
100 ZA$="****»*«»***»**" 
200 ZC=512 
300 GOSUB 20000 
400 PRINT ZA$ 
500 GOTO 40 
19000 REM PRINT FILL FIELD AND BACKSPACE CURSOR TO START 
20000 PRINT azc.ZAt:CHR*(14)! 
20010 FOR ZF=1 TO LEN(ZAt) 
20020 PRINT CHR$(24)! 
20030 NEXT ZF 
20035 REM SET CURSOR POSITION TO 1 AND GET KEY PRESS 
20040 ZG=1 
20050 ZH*=INKEY* 
20060 IF ZH$="" GOTO 20050 
20065 REM TEST FOR LFT CURSOR.RT CURSOR.ENTER. AND VALID CHAR 
20070 IF ZH$=CHR*(B> OR ZH«=CHR$<9> OR ZH$=CHR*(13> GOTO 20080 
20075 IF ZM*<CHR*<32> GOTO 20050 
20080 IF ZHtOCHRt(B) GOTO 20120 
20085 REM LEFT CURSOR ROUTINE. DONT GO PAST START 
20090 IF ZG=1 GOTO 20050 ELSE PRINT CHR*<24>; 
20100 ZG=ZG-1 
20110 GOTO 20050 
20120 IF ZH»OCHR*<9> GOTO 20160 
20125 REM RIGHT CURSOR ROUTINE. DONT GO PAST END 
20130 IF ZG>=LEN(ZA*) GOTO 20050 ELSE PRINT CHR*<25>! 
20140 ZG=ZG+1 
20150 GOTO 20050 
20160 IF ZH*OCHR*< 13) GOTO 20190 
20165 REM ENTER ROUTINE. PRINT FINAL STRING AND RETURN 
20170 PRINT 9ZC.CHR*<15)!ZA* 
20180 RETURN 
20185 REM VALID CHARACTER ROUTINE. PRINT CHARACTER, ADJUST CURSOR 
20190 ZG=ZG+1 
20200 IF ZG>LEN(ZA*>+1 PRINT CHR*(24)I 
20210 IF ZG>LEN(ZA*)+1 ZG=ZG-1 
20220 PRINT ZH*i 
20230 ZA*=LEFT*(ZA*.(ZG-2)>+ZH*+RIGHT*<ZA*,LEN<ZA*)-ZG+1) 
20240 GOTO 20050 

Figure 3-7. Universal Gee Whiz Input. 

been properly input, the "ENTER" key causes a return to the call
ing program. The subroutine is shown with a short driver program 
illustrating its use. For maximum input speed, this code should be 
compressed by removing REMark statements, using multiple state
ment lines, and locating it with "low-valued" line numbers. 

Within the subroutine, ZG is used to mark the current cursor po
sition within the field. ZG will always contain a value of 1 to LEN 
(ZA$). ZG is adjusted for left cursor (8), right cursor (9), or for 
any new character. Control characters other than 8, 9, or ENTER 
(13) are ignored. Whenever a new character is entered, the sub
routine finds the portion of the field string left of the cursor, con
catenates the input character ZH$, and concatenates the portion of 
the field string right of the cursor to create a new string equivalent 
to the display on the screen. This string is passed back to the call
ing code as the updated string and is also left on the screen after 
the cursor is turned off and the display restored. 

In spite of the heading, this input routine does not contain all 
the "bells and whistles" that could be put in. However, it should 
suffice for many applications. 
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Text Editing 

Strings are a natural format for text editing applications pro
grams. Text editing is also called word processing. Text editing 
allows a user to manipulate text for manuscripts, letters, and other 
appearance-oriented printing. A comprehensive text editor provides 
for deletion and insertion of characters, words, paragraphs, and 
blocks, automatically justifies (creates an even margin), counts the 
words in a block, and performs other sophisticated functions. We 
can't create a complete text editor in this chapter, but we can illus
trate some of the ways a BASIC text-editing program could be im
plemented. 

Three common operations in text editing are searching, deleting, 
and inserting. Most text editors allow a user to search a string for 
a given string contained within it. We can make full use of the 
comparison capabilities for string variables to implement a search. 
The code in Figure 3-8 inputs a string of text that creates a text 

IBB0 cts 'titti icrtt* 
1010  CLEAR 1000  ' c l a a r  i t r i r t q  IMC«  
1020  INPUT 'T EXT PAST1  *  I  A t  ' l r > Pu l  « . , »  t o  . . a r ch  
10  1 0  INPUT 'SEARCH STRING'  IB*  ' IAPU*  » t r l u»  t o  f i nd  
10*0  CL 8  ' c l #o«  f t r oon  
1010  PR INT R  31  J t  A *  ' p r i n t  t t rmo  to  bo  ooo rcbod  
1060  F OR l - l  T O  LENT A O I - IEN(SO)  •  |  r - ' . a l u P  loop  fo r  . . a r ch  
10 /0  IF  Ml  DO(AO. | ,LENTBO)I»B0  GOTO 1101  I f  o t r l no  found  
1 0 t» 0  NEXT I  ^ " ' con t l nuo  ooo rcb  
I0V0  PR INT no t '  N O T  FOUND'  ' o t r l no  n o t  f ound  ho ro  
1100  G O TO 1100  ' | oop  ho r o  
• ! f 2  i " ' " '  -  ' odJ uo t  f o r  c oa rg to t l on  
I I IR  PRI N T CHROIIOI tCHROi re i t  ' t u rn  on  cu ro o r  and  hoa*  
1120  F OR J»0  T O  7* INT 11 /601  f - ' oo t u r  l oon  t o  f i nd  l i no  
1130  PRINT CHRO < ? 0 I  I  •  e u r f < , r  

1100  NEXT J  L ' c on t l nuo  t i l l  l i no  fnd  
1101  IF  I - INT< I /60 I •60*0  GOTO 1100  ' 00  I f  cha r ac t . r  pos i t i on  0  
1110  FOR J " l  T O  I - INT<1 /60  I* 6 0  r - ' t . t up  loon  t o  f i nd  ch a r  
1160  PRINT CH RO I  21H  ' advanco  cu r . o r  
1170  N EX T J  ^ - ' con t i nue  t i l l  ch a r  f nd  
I IB0  GOTO I I R 0  ' l oon  ho r o  a t  and  

Figure 3-8. String search operations. 

base and then inputs a search string to be found within the text 
base. Obviously, the search string must be shorter than the text 
base. If the string is found, the cursor is moved to the position of 
the string. The cursor movement portion of the program has to con
sider the number of lines to move down (7 to get to @ 512 plus 
INT(I/64) to get to the proper text line [there are 64 characters to 
a line]) and the number of positions to the right after the proper 
line is found (I-INT(I/64)). 

Deletions of characters within text normally cause the remaining 
text to "snake up" into the space left by the deleted characters, as 
shown in Figure 3-9. BASIC code to implement the delete function 
(not shown) might reconfigure the string with the current cursor 

58 



CURSOR POSITION 
FDR nFI FTION DELETIONS OF CHARACTERS WITHIN 
LU.K UtLM IUn^ TEXT_NORMALLY CAUSE THE REMAIN 

ING TEXT TO SNAKE UP' INTO TH 

DELETIONS OF CHARACTERS WITHIN 
TEXT ORMALLY CAUSE THE REMAINI 
NG TEXT TO SNAKE UP' INTO THE 

DELETIONS OF CHARACTERS WITHIN 
TEXT RMALLY CAUSE THE REMAININ 
G TEXT TO SNAKE UP INTO THE 

Figure 3-9. Deleting characters in text. 

character deleted and print it at the same screen position. The code 
could insert by reconfiguring the string with an insert character 
inserted at the current cursor position and "snaking" the string 
down as characters are inserted. These operations are shown in 
Figure 3-10. 

1. INITIAL TEXT 

THIS IS A SAMPLE OF TEXT 
"\ 
CURSOR 

FIRST DELETION 

SECOND DELETION 

THIRD DELETION 

2. PRESSING DELETES AT CURRENT CURSOR 
POSITION. A NEW STRING IS CONSTRUCTED FROM 
THE RIGHT AND LEFT PORTIONS OF TEXT. 

THIS ISf~ASAMPLE OF TEXT 
X 1 

LEFTS CHARACTER RIGHTS NEW STRING = 
PORTION TO BE DELETED PORTION LEFTS + RIGHTS 

THIS l_A SAMPLE OF TEXT 

3. PRESSING A NON-CONTROL KEY INSERTS THE 
CHARACTER AT CURRENT CURSOR POSITION + 1 
SO THAT "TEXT" FLOWS TO LEFT. 

[THIS IS A SIMPLE OF TEXT 
X / / 

LEFTS CURSOR RIGHTS 
PORTION PORTION 

NEW STRING = 
LEFTS + CHARACTER 

FOR INSERT + RIGHTS 

THIS IS A SAMPLE OF TEXT 

Figure 3-10. Text editing deletes and inserts. 

59 



This code might perform two functions-delete and insert along 
with cursor positioning. The and keys would position the 
cursor anywhere along the text string. Pressing T would delete 
the character at the current cursor position and snake the remain
ing text up. Pressing any non-control key would insert text at the 
current cursor position and snake the text down. 

1 he biggest problem in this application is cursor positioning. The 
cursor must be referenced to a known starting point and adjusted 
not only right or left, but up and down as well for line starts and 
ends. For each delete, a new string might be constructed from the 
left and right portions of the current string with the character re
moved at the current cursor position. For each insert, a new string 
might be constructed from the left and right portions of the current 
string with the character at the current cursor position embedded 
between the two strings; the cursor could then be moved over one 
position to the right so that the text is built from left to right 

The implementation of the text editing application above used 
strings to handle insertions, deletions, and other text-editing func-

Another Approach 

START OF RAM 
TEXT AREA Q O I U J F J D I A I K D  

MELP I AM BEING MEID 
PRISONER IN RAM EL 
J K F D I A I S K D I E U R P  

SCROLL 
UP TEXT 

VIOEO 
DISPLAY 

"WINDOW 

THIS IS TEXT WSPTAYE 
0 ON SCREEN JKSOPX 
Z A B I N O Q S V H K O J  
SUE OWIE JDJOISKD 

I 
SCROLL 
DOWN 
TEXT 

J K F K F K F K F K F K F K  
A WOMAN IS A WOMAN 
BUT A IRS 80 IS A EIW 
EIWOEIFJDKSISIDKFJ 

END OF RAM 
TEXT AREA 

Figure 3-11. Text editing using display memory. 
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tions. Another approach to the problem is to treat the entire video 
display memory as several huge strings. The screen is actually a 
memory that will store displayable (and graphics) characters, so 
it is an excellent way to implement such an application. Insertions 
of characters can be handled by moving blocks of screen memory 
down from the current cursor position to the end of screen memory 
(163S3). Deletions can be handled by moving a block of screen 
memory up. The screen represents a "window" of a much larger 
text area in this case, with the window scrolling up and down to 
allow display and text editing functions on various portions of the 
text (see Figure 3-11). We'll discuss display applications more fully 
in Chapter 5, and the reader may be able to get a better picture 
(pun intended) of the types of things that can be done in working 
with the display memory. 
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CHAPTER 4 

Our Latest Report Indicates 

In this chapter, we'll provide some information about printing 
reports on the screen and on the system line printer. We'll also dis
cuss in detail the use of PHINT USING, a powerful statement for 
formatting string and numeric values. 

Why do we want to format reports? First, there's the aesthetic 
aspect. Nobody likes to sec sloppy, uncolumnated reports coming 
out of a powerful computer system. The processing involved may 
he spectacular, but the effect of a cluttered report may lie disas
trous. (Or vice versa. I once saw several vice presidents of an air
craft manufacturer literally enthralled by meaningless data nicely 
printed on a system they had ordered that wasn't quite ready.) 
Secondly, to produce useful reports, displays, and other graphics, 
the programmer is forced to define some format for the report to 
follow with pagination (new pages), columnization (putting data 
in proper columns), and menus (lists of choices to prompt the 
user). 

One Proin Column A and One From Column B 

The PRINT statement is easy to understand. A PRINT statement 
with a single item and no comma or semicolon at the end prints 
the item at the start of the next line on the screen and then moves 
the cursor position to the start of the next line as shown in Fig
ure 4-1. 

100 PRINT 4.55 'prlnl 4.55 and movt »o n*xt tin* 
200 GOTO 200 loop K.r* 
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Figure 4-1. Simple print action. 

CURSOR 
POSITIONED 
HERE AETER 
PRINT OF 
4.55 

The data printed in this first case is -fe4.55b; because the number 
was a positive number, a blank is printed in place of a "+" sign. 
If the number is a negative number, such as —8.95, then the nega
tive sign is printed, followed by the magnitude of the number. In 
both cases, the number also has a trailing blank in addition to the 
leading blank or negative sign. You can see this by the code below, 
which uses a semicolon to specify that the cursor is not moved to 
the next line, but remains where it is after the print. The cursor in this 
case normally must be imagined, as it is not active during execution 
of the program unless we turn it on in the program. We've turned 
it on before doing the PRINT, using the cursor-on code (14) that 
we discussed in Chapter 3 (see Figure 4-2). 

100 PRINT CHR$(14) 'turn on cursor 
200 PRINT — 4.5;4.5; 'print two values 
300 GOTO 300 'loop here 

Notice that the format is —4.5bb4.5; each print is five character po
sitions on the screen, one for the sign, three for the "4.5," and a 
trailing blank. 

The unfortunate thing about printing in this fashion is that vari
ables are not fixed-length. When variables are printed, leading and 
trailing zeroes are always suppressed as in the display from this 
code 

100 FOR 1 = 0 TO 1000 

How do we go about columnating data in this simple case? One 
way to do it, of course, is by using a comma instead of a semicolon 
to tab to the next print zone. The print zones on the video display 
are positions 0, 16, 32, and 48, and using a comma after each print 
item will print data in four nice, neat little columns. 

100 FOR 1 = 0 TO 1000 
200 PRINT Ifl.l, 'use tab on prints 
300 NEXT 

200 PRINT If 1.1; 
300 NEXT 

power 
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CURSOR POSITION 
AFTER PRINT 

Figure 4-2. Variable printing. 

This is definitely an improvement, but there are still problems 
with the appearance of the data—namely, the decimal points don't 
line up. There are other problems with this type of columnization, 
also. 1 he world is not always a four-column world, as evidenced 
by the new tax-return formats. Sometimes, we would like to 
squeeze eight columns of data onto the screen, especially if we 
know that the variables will be limited to six digits plus sign and 
trailing blank. And how about the case of dollars and cents data? 
We would like to see the .(X) cents displayed instead of l>eing sup
pressed in cases when we re dealing with the almighty dollar. 
1 he first problem of additional columns may be partially solved 

by a PRINT TAR statement. PRINT TAR moves the cursor posi
tion to a specified character position along the line from 1 to 84. 
PRINI TAR may be used to produce a display of more than the 
four print-zone columns by tabbing over to the next column after 
printing a data item. This works, providing the length of the data 
item is known to be less than the width of the column plus 2. 
Suppose, for example, the data items to be printed are three digits. 
Adding one trailing blank and one leading blank defines a column 

04 



of five characters and a total of 12 columns, as shown in the code 
below and in Figure 4-3. 
1 0 0  F O R  1 = 1  T O  6 0  S T E P  5  
2 0 0  P R I N T  T A B < I ) ; 1 2 3 i  
3 0 0  N E X T  I  
4 0 0  P R I N T  
5 0 0  G O T O  1 0 0  

t'  t a b  5 i  1 0 t  1 5 i  .  .  .  
' p r i n t  d u m m y  v a l u e  
'  l o o p  

l i n e  f e e d  
'  n e x t  r e  t  

Here we've "dummied up" the value to guarantee that we have 
three digits each time. When we use values that may be any num
ber of digits from 1 to 4, we get the same problem as previously: 
columns that are not right justified, as shown in Figure 4-4. 
1 0 0 0  F O R  1 = 1  T O  6 0  S T E P  5  
1 1 0 0  P R I N T  T A B ! I ) ! R N D ( 9 9 ? ) s  
1 2 0 0  N E X T  I  
1 3 0 0  P R I N T  
1 4 0 0  G O T O  1 0 0 0  

r  ' t a b  5 i 1 0 . 1 5 i . . .  
' p r i n t  t a b  a n d  1 - 3  c h a r s  
' l o o p  

l i n e  f e e d  
u ' n e x t  s e t  

t)123ft 

f t  =  TRAILING OR LEADING SPACE 

Figure 4-3. Columnating example 1. 
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• 1 4 1 101 41? Hi 41 ? • tl ? 114 t 4 ?lt 
• 90 111 lit lit 1 t tt 114 ? ? ? t 111 t 1  t i l  
» ?? 404 l i t  110 t i l  Hi ? II I I I  t  • II • 141 
111 ( J 4 114 It 1 111 411 14 t l i t  1  1 1 1 1 ? 1 ?? 
• 01 • t 1 414 11? • 1 t i t  It ? t 1 ? 4 14? 4 1 lit 
( 1 1 It t 10 411 11 1 It It 1 10? 1 111 1 ?  I l l  
III 1 It 111 111 it I I I  111 • 41 t t i t  t  1 II 
1 1 4 t l ?  I t s  t i t  i l l  1 1 4 l i t  t  HI t 1  l i t  
111 • 0 l i t  l i t  lot 111 4 I ? • It 1 101 4 4 400 
11 l i t  11 111 I t ?  • ?! t i l  l i t  ?  I 11 t 1 4 11 
1 4 1 to 114 l i t  I l l  I t t  l i t  • 01 1 ?0I ? ? HI 
• > 1 t t t  t t o  t t t  111 4 ?• ? 11 111 1 I l l  4  • 11 1 

• *1 41 It 1 l i t  41 !?• l i t  • 40 1 • 41 1 1 110 
1 • 11 t i l  4 
1 ' '' I I I  411 111 l i t  1 14 141 4 1? 1 HI 1 1  I I I  

MANY COLUMNS CONTAIN 
ENTRIES THAT ARE NOT 

•RIGHT JUSTIFIED'  

URurc  4-4 .  Columnat infc  example  2 .  

There's No Justification for This ... 

How do we solve the problem of justifying data? Since we can't 
predict the number of digits in a variable beforehand, we must 
somehow find the length before printing. For string data, this pa
rameter is easy to find as we have the LEN function. But wait! 
Don't we have the ability to convert numeric data to string data? 
(You really should have read Chapter 3. Guard, get that name and 
address . . .) Yes, the STR$ function converts a numeric variable 
or constant to a string. If we convert to a string and then use the 
LEN function to find the string length, we can handle justification 
of columns. Let's see how it works. 
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2000 INPUT "JUSTIFY Y/N" »A$ ' input Justify action 
2100 FOR 1=1 TO 55 STEP 6 r 'tab 1I7i13i 
2200 A=RND<9999)- |  rfigjt, 
2300 IF At="N" THEN PRINI TAB<I);Ai ELSF SOT" 2500 
2400 GOTO 2800 
2500 B$=STR$<A) 
2600 C=LEN(B«> 
2700 PRINT TAB(I+5-C);B$; 
2800 NEXT I  
2900 PRINT 

Tor next loop 
convert to str in'l 
f ind length 
tab and print 
loop 

3000 GOTO 2100 'again 
'Ret next l ine 

The program above first asks for a decision on justification. If the 
answer is "N", then ten columns of 1-4 digits are printed as we have 
been doing-each variable is printed with a leading blank (for 
sign) and a trailing blank plus 1 to 4 digits, making a column entry 
three to six digits. If the answer is a "Y", then the 1 to 4 digit value 
from RND(9999) is converted to a string by STR$(A). Note that 
STR$ converts the numeric value with a leading blank for positive 
values (or a minus sign) and no trailing blank. The length of the 
string is therefore 2 to 5 digits. The tab position to be used is the 
extreme left of the column for a five-character string 

TAB=I+5-5=I, 

three positions over for a string of 2 digits 

TAB=I+5-2=I+3, 

or intermediate positions for strings of four or three characters (see 
Figure 4-5). Our display in this case definitely gets an "A" for 
neatness. 

Dollars and Cents 

Changing a numeric to a string by means of STR$ may be done 
for all types of numeric data so that the length of the field may be 
computed before printing. When the numeric data includes a deci
mal point, the decimal point will also be converted. 

100 PRINT STR$(111.77) 'convert and print 

will print "111.77". However, we still have the same problem with 
the decimal point! If the variable is 111.5000, it will be printed as 
111.5" rather than a dollars and cents value of 111.50. Also, 111.00 

will be printed as "111" and 111.234 will be printed as "lil.234"! 
I low do we make cents out of such a value? One way to accomplish 
this is to scan the resulting string variable after the STR$ conver
sion for the decimal point and to add a decimal point and trailing 
zeioes as required. The following subroutine takes an input vari
able ZZ and converts it to a dollars and cents format in string va
riable ZZS. 
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> 0 0 0 0  Z Z » = S 1 R « < Z 7 >  
1 0 0 1 0  F O R  I = |  T O  L E N t Z Z t )  

. 1 0 0 2 0  I F  M I D » <  Z Z « .  I t  1  >  =  •  .  •  6 0 T 0  1 0 0 6 0  
1 0 0 3 0  N E X T  I  
1 0 0 4 0  Z Z t - Z 2 * + " . 0 0 "  
1 0 0 5 0  R E T U R N  
1 0 0 6 0  I F  I = L E N < Z 7 » > - 2  R E T U R N  
1 0 0 7 0  I F  I O L E N <  Z  Z  •  >  -  I  6 0 T 0  1 0 1 0 0  
1 0 0 0 0  Z Z « = Z Z » * - 0 -
1 0 0 7 0  R E T U R N  
1 0 1 0 0  Z Z » = L E F T « ( Z Z « . 1 * 2 1  
1 0 1 1 0  R E T U R N  

There are five cases in the above subroutine. ZZ may be con
verted to a string of the form ##, with no decimal point and no 
characters for the cents. In this case, the search for the decimal 
point using M1D$ is not successful, and a new ZZ$ is created by 
adding .00 to the original string. The second case occurs when 

EVERY ENTRY IS  
RIGHT JUSTIFIED 

Figure 4-5. Use of STR$ function for columnating. 

' c o n v e r t  t o  s t r i n g  

['  I o o k  f o r  d e c  p n t  
" 9 o  I f  f o u n d  'loop 

n o t  f n d - e d d  c e n t s  
r e t u r n  t o  c e l l i n g  p r o g  
r e t u r n  i f  « * . • «  
9 o  i f  n o t  « » . «  
c o n v e r t  t o  
r e t u r n  t o  c e l l i n g  p r o g  
u s e  o n l y  2  c e n t s  d i g i t s  
r e t u r n  t o  c e l l i n g  p r o 9  
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ZZ$="##.##", a string with a decimal point and two cents char
acters. In this case (I=LEN(ZZ$)—2), nothing must be done and 
a RETURN is made. The third case occurs when ZZ$="##.#". 
In this case (I=LEN(ZZ$)—1), only a "0" needs to be added. 
The fourth case occurs when ZZ$="##.###. a string of more 
than two cents digits. In this case, we must shorten the string by 
taking only the first two cents digits and taking the left-hand side 
of the string up to the decimal point plus two digits. Three notes 
on the technique used above: 

1. The case never occurs because the decimal point would 
always be deleted. 

2. The technique of truncating the digits to the right is not neces
sarily the best way to handle the fractional cents. Millionaire 
programmers have been produced when such fractional cents 
have gone into other checking accounts. 

3. The code above could be replaced by two statements. (Extra! 
Extra! Writer Mobbed by Angry Readers!) 

All right! I know that you're angry with me for going through the 
code above when it could have been replaced by two instructions. 
However, I just wanted to show you how powerful that one instruc
tion was. The instruction is . . . (may I have the envelope please?) 

PRINT USING! 

The entire code above could have been replaced by 
10000 P R I N T  U S I N G  " # # # # . # # " ; Z Z  'print d o l l a r s ,  c e n l s  
10010 RETURN 'return 

In the PRINT USING statement above, the "#" characters de
fined a digit position for a numeric field, and the decimal point 
defined the decimal point location within the field. If the value in 
ZZ had more than two digits to the right of the decimal point, they 
would have been "rounded off" to produce only two digits; if the 
ZZ value had fewer than two digits to the right of the decimal 
point, then the remaining digit positions would have been filled 
with zeroes. If the numeric value had fewer than four digits to the 
left of the decimal point, the remaining positions would have been 
filled with spaces. Neat, eh? 

Let's look at some of the other capabilities of the PRINT USING 
statement. Another "field specifier" character that may be added in 
the definition string is a comma. Since the PRINT USING is used 
primarily for accounting-type applications, an obvious use of a 
comma is to provide the comma for large dollar amounts. 
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50 INPUT A 'provide input 
'define firing 
'print ufing A) tiring 
'return to input 

.100 A$ = "###.###.## 

200 PRINT USING AS;A 
300 GOTO 50 

The PRINT USING statement above should handle many of the 
reader's weekly paychecks and provide a printout of such amounts 
as 1,232.77, 66,327.00, and 121,067.99. The comma and decimal 
points may l>e inserted anywhere within the string, but such string 
field specifiers as #.#,.## are not too meaningful and may confuse 
the BASIC interpreter. 

How about dollar signs? I'm glad you asked. One dollar sign 
used as a field specifier will cause a dollar sign to be printed at the 
left with intervening print positions filled with spaces. PRINT 
USING $####.##" will enable printouts such as $1000 00, 
$M5M.23, and $W>77.79, $bW>0.36. Two dollar signs used as field 
specifiers will float the dollar sign and put it directly before the 
first digit printed. PRINT USING "$$####.##" produces print
outs such as $1111.77, $13.24, $1.77, and $0.34. Note that dollar 
amounts less than one dollar are printed with a leading 0 for the 
dollar amount in both the floating and non-floating dollar-sign case. 

Have any of you ever altered your paychecks to increase your 
weekly wage-no, of course not (Guard, let's get those names . . .). 
One safeguard against such action is the use of asterisk characters 
before the printing of the dollar amount. When a **$ field specifier 
is used in PRINT USING, asterisks will occupy all field positions 
before a floating dollar sign. PRINT USING "*•$#### ##", for 
example, will produce amounts such as •*••$11.11, ••$1(KK).99, 
*$10000.10, and $I(HMX)0 (H). Note that the maximum amount that 

$####.## can hold is $999999.99 with seven characters in
cluding $ to the left of the decimal point. 

Accounting type information sometimes uses a trailing minus 
sign after the amount. When the field specifier is used at the 
end of a field, a minus will be printed if the amount is negative. 
100 AS = "#####.##-» 'define tiring 
200 PRINT USING AS.A 'print using AS 

prints 22.23- when A is negative or 22.23 when A is positive. 
When an initial + or — sign is required, a + sign placed at the 

beginning of the field results in a "+" character for positive num
bers or a " character for negative numbers. PRINT USING 
+ ##.## produces +12.22, +1.22, +0.22, -12.22, -1.22, or -0.22. 

The % and 1 field specifiers are used to denote string fields that 
must be printed. When the first character of a string must be 
printed, "I is used. 
100 A$ = "1234" 'tiring 
200 PRINT USING "t";AS 'print first cHaroct.r 
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Table 4-1. PRINT USING Field Specifiers 
-

PRINT USING A$;N 

Specifier Description A $ N Result 

Numeric field m 13 •613 
2 6fc2 

-2 6-2 
Decimal point 1.2 61.20 

position tttt.HMt 1.2 61.200 
MM* -1.2 -1.200 

+  Leading or trailing +  # . #  -1.123 -1.1 
sign +  # . #  1.123 + 1.1 

# . #  +  -1.123 1.1 -
#J +  1.123 1.1 + 

— Trailing sign # . * - -1.123 1.1 -
if negative # . # - 1.123 1.16 

** Leading asterisks 23.53 *23.53 
2.53 **2.53 

$$ Floating dollar $$M.M 123.53 $123.53 
sign 12.53 6$12.53 

1.25 66$1.25 
**$ Leading blanks, 123.53 *$123.53 

floating dollar 12.35 **$12.35 
1.23 ***$1.23 

tttt Exponential format tttt 51235 0.51E+05 
(scientific notation) M.iWtttt 51235 65.12E + 04 

1 Single character 1 "1234" 1 
of string 1 "ABCD" A 

% %  First two characters 
of string 

% %  "ABCD" AB 

First two + spaces 
of string 

"ABCDEFG" ABCDE 

for example prints "1". The % field specifier prints either the first 
two left characters of a string, as in 
100 A$ = "1234" 'string 
200 PRINT USING "%%";A$ 'print first two characters 

which prints "12", or two plus the number of spaces between the 
% characters, as in 
100 A$--"1234" 
200 PRINT USING "% %";A$ 

which prints "1234". 
Table 4-1 shows all PRINT USING field specifiers and examples 

of their use. 
When more than one variable is to be printed, then each variable 

of the list uses the same field specifiers. 
1 0 0  A S = " # # . # # "  ' u s i n g  s t r i n g  
2 0 0  A = 1 1 . 1 1  *  d u m m y  
3 0 0  B = 2 . 2 2  ' a n o t h e r -
4 0 0  C = . 3 3  ' a n d  a n o t h e r  
5 0 0  D = 4 . 4 4  ' s t i l l  a n o t h e r  
6 0 0  P R I N T  U S I N G  A * ; A i B , C » D  ' p r i n t  a l l  f o u r  
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will print ll.ll-62.2260.33h4.44 . Note that even though a comma 
was specified, the form of the printout used a five-character field 
with no leading or trailing blanks or tabs; four characters were the 
# field specifiers and one was the decimal point. When the string 
field specifiers % and "!" are used, then it is possible to construct 
complex formats for printing, such as the code below which takes 
the first two characters of string A$ and prints them, prints a 
and then prints the first three characters of string B$. 

1000 A«-«I23A* .... .  
1100 B»'-367B" • .  I  
1.00 PRINT USING 'XX.x X*IA«.B« 'print PORTIONS OF BOTH 

In this example, the field specifiers were used one at a time in con
junction with the variable list to define the printing. A weird oper
ation? Yes, but we will never say that such operations will not find 
widespread use for fear of letters from Boise, Idaho, that start out 
"I don't sec how you can say that multiple string field specifiers are 
not used often! I use them all the time in my hog breeding programl 
Furthermore, your gross humor is irritating and . . ." 

I BIN I USING can be used with double-precision variables to 
provide formatted printing of variables to 14 digits of dollar 
amounts and two cents digits, which should handle receivables 
for most of the current THS-80 business applications. 

THIN I USING provides a very convenient means to produce 
formatted printing of variables and saves a great deal of special 
coding to accomplish this formatting, as we saw earlier in the 
chapter. Conservative estimates by recent industry experts indi
cate about 1(X),737 lines of code annually saved as a direct result 
of the I BIN I USING statement. And there are those who say 
BASIC is not very powerful! 

$4.50 for a Slice of Cheesecake? 

Menus are used not only in posh restaurants, but in posh com
puter software. Motive seen menus on Radio Shack software, but 
lets illustrate the use of them to jog your memory. Suppose that we 
have written an applications program to process weather data. 

hen the program is first loaded, it may display a menu of func
tions that may be selected, as shown in Figure 4-6. If entry 4 is 
desired, then the user types a "4", and a new menu of items related 
to annual weather data" is displayed for further selection. This 
type o implementation is termed "menu-driven." Menus provide an 
easy-to-use format that is very descriptive. This section should defi
nitely be interpreted as a plug for menu use. (I have a brother-in-
law in the menu-printing business.) Menu printing is easy, of 
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t h u A  
i n ™  

uct 
tkes 

1  E N T E R  N E W . W E A T H E R  D A T A  

2  M O D I F Y  W E A T H E R  D A T A  

3  C H A N G E  W E A T H E R  D A T A  

«  A N N U A L  W E A T H E R  O A T A  

5  S A V E  W E A T H E R  D A T A  

6  L O A D  W E A T H E R  D A T A  

E N T E R  S E L E C T I O N  

Figure 4-6. Menu use. 

course, and may be implemented by a series of TABs and text, 
followed by a PRINT @ and INKEY$ input as shown below. 

1 5 0 0  C L S  ' c l e a r  s c r e e n  
1 5 1 0  P R I N T  T A B ( 1 5 ) t " 1  E N T E R  N E W  W E A T H E R  D A T A "  
1 5 2 0  P R I N T  T A B ( 1 5 ) i " 2  M O D I F Y  W E A T H E R  D A T A "  
1 5 3 0  P R I N T  T A B ( 1 5 ) * " 3  C H A N G E  W E A T H E R  D A T A "  
1 5 4 0  P R I N T  T A B ( 1 5 ) T " A  A N N U A L  W E A T H E R  D A T A "  
1 5 5 0  P R I N T  T A B ( 1 5 ) T " 5  S A V E  W E A T H E R  D A T A "  
1 5 6 0  P R I N T  T  A B  ( 1 5  )  !  "  6  L O A D  W E A T H E R  D A T A "  
1 5 7 0  P R I N T  3  6 5 6 , " E N T E R  S E L E C T I O N "  
1 5 B 0  A = V A L ( I N K E Y t )  v a l u e  
1 5 9 0  I F  A = 0  O R  A > 6  G O T O  1 5 7 0  E L S E  O N  A  G O T O  2 0 0 0 , 3 0 ( 1 0 , 4 0 0 0 , 5 0 0 0 , 6 0 0 0 , 7 0 0 0  

The code above first clears the screen and then prints the menu 
selections. A TAB is done for each selection to center the selection. 
After the selections are displayed, the prompt message "ENTER 
SELECT ION" is displayed at a convenient place beyond the menu 
selections. The input choice is detected by an INKEY$ statement 
which will return a one-character string of the key pressed or a null 
if no keys are pressed. If no keys are pressed or if no numeric key 
is pressed, VAL(INKEY$) will equal 0, and a GOTO back to the 
PRINT @ is made to display the selection message and to look for 
the next input. In some respects, this procedure is very bad. It does 
not inform an inexperienced operator that he has pressed the wrong 
key—it simply ignores it. Oh, I know—what idiot would choose any-
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thing but the right key? Still, it is always best to attempt to make 
things idiot proof, to avoid "cuteness," and to be as informative 
as possible for this type of interactive input. (Sad to say, I was once 
jailed for damage to capital equipment when attempting to use a 
program with a bug that ignored my correct input and kept repeat
ing "DUMMY! CANT YOU HEAD? NOW ENTER AGAIN AND 
DO 11 CORRECT! [sic].") A better response might be 

I3B0 CIS 'clear icr*»n 
1310 PRINT TAB(13)1*1 ENTER NEW WEATHER DATA-
IS;^ PRINT TAP<13)1*2 HoDIF V W! Aim R DATA" 
13.10 PRINT TAB! 13) I  "3 CHANGE UEATHER DATA' 
13*0 PRINI 1 AB ( 13 ) t  * 4 ANNUAL WfATHfR DATA' 
1330 PRINT T AB(13 >I * 3 HAVE WEAIHER DA I A* 
1360 PRINT T AB < 13 > I  * A LOAD WfATHfR DATA* 
13'0 PRINT a 636. 'ENTER SELECTION* 
13B0 A»»INKEV« r'9*t character 
I3V0 IF A* "  GOTO 13H0 ELSE A VAl <A«i 
1000 IF A< 0 AND A< 7 GOTO 1000 
1010 PRINT 3 7IB. 'INCORRECT RESPONSE' 
lOL'B FOR |> |  TO :-00 
10 .10 NfXI I  
IOA0 PRINT a 718.* 
1030 GOTO 1380 

!'̂ 2 *C0RRECT WSPONSF' 'acllorrje, correct ineuT EN0 'additional cod* haro 

'convert  If  not null  
'Oo If  correct  
'notlf* u»er 
r  * delav lone 
u  ' loor 

'hlar. l  error kit  
L ' t r* ana in 

More work? Sure, but much more responsive to inexperienced oper
ators. (When made into a subroutine, it really does not create a 
great deal of additional work or code, either.) 



All the Data That's Fit to Print 
(And Some That Isn't) 

If you've made it through the above sermon, you're about to 
be rewarded with some interesting material about line printers. 
Level II BASIC has built-in provisions for printing to line printers, 
of course. 

The two commands that are used to print to a line printer are the 
command LLIST and the statement LPRINT. LLIST is normally 
used to list a BASIC program on the system line printer, while 
LPRINT is used within a BASIC program to print data in much 
the same way as a standard PRINT is used. Operation of the LLIST 
is very straightforward—the format is identical to the LIST com
mand for screen display. 

LLIST 100-300 

for example, would list program lines 100 to 300 on the system line 
printer. 

LPRINT may be used in similar fashion to PRINT, but you 
should consider the characteristics of the system line printer. The 
number of tab positions on the display is 64, but the number of tab 
positions on some line printers is limited, either physically or under 
software control, to fewer than 64 (20 or 40). In this case, existing 
code that specifies tabs greater than line-printer print positions will 
have to be modified for proper columnization and report printing. 
Conversely, some printers allow more than 6-4 print positions on a 
line, and you may use the expanded line to include more informa
tion on reports. TABs are produced by "padding" text with enough 
spaces to move to the proper tab position. 

One of the differences between PRINT data on the display and 
LPRINTing on the system line printer is that the display is al
ways ready," but the line printer may not be in a ready condition 
due to being out of paper or being "off-line." When this "not ready" 
condition exists, the BASIC interpreter will continuously monitor 
the state of the line printer until it becomes ready. The ready state 
of the line printer may be determined by the following code 
100 IF PEEK(14312)<>63 THEN PRINT "NOT READY" ELSE PRINT "READY" 

The code above looks at the line printer by addressing location 
14312. This system address is not memory, but is the line-printer 
address (37E8 in hexadecimal). The PEEK effectively reads a byte 
of status from the line printer. If the line printer is not connected 
in the system, this status will be 11111111; otherwise, the status bits 
will be as shown in Figure 4-7. Although you could detect each bit 
by ANDing values and comparing the results, it is sufficient to simply 
make the test above and print out an appropriate error message to 
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r i 

7 6 5 4 3 2 1 0 

1 1 1 1 

ALWAYS 1 

•— 1 = FAULT "NORMALLY" 1 
1 = UNIT SELECT "NORMALLY" 1 
1 = OUT OF PAPER "NORMALLY" 0 
1 = BUSY "NORMALLY" 0 

Figure 4-7. Line-printer status bits. 

the system user. Here again, this error message may he used to in
form an inexperienced operator of the line-printer condition. 

Another difference between the display and line printer concerns 
pagination. I he display lines scroll off the screen as new lines are 
printed, and this is adequate for many applications where hard 
copy is not required. The line printer operates in identical fashion 
to the display except, of course, that all printed lines are saved on 
the continuous scroll of line-printer paper. If the material covers 
more than one page, it is not conveniently spaced for reproduction 
or for bursting" the pages for notebooks. The solution to pagina
tion is built into Level II BASIC at memory locations 16-124 and 
16125. HAM location 16124 holds the number of lines per page, 
while 16-125 holds a current line count. The number of lines per 
page is initialized to 67, and the line count is initialized to 0. As 
each line is printed, the line count is increased by 1. If the line count 
equals the number of lines per page, then the line count is reset to 0. 
You can see this by the following code, which displays the line num
ber after each line is printed. 
100 IPRINT "IPTEST" T 'print tin. 
200 PRINT PEEK(16425) 'ditploy line number 
300 GOTO 100 L loop bock 

On many printers, the number of vertical lines per inch is six. 
If the print area is to be 10 inches, we II have 60 lines per page and 
a margin of three lines (Vfc inch) on the top and three lines on the 
bottom. The code below is in the form of a subroutine that looks at 
the current line number and skips six lines if the line number is 60, 
to provide a suitable margin for top and bottom. To use the sub
routine for printing, set the current line count to 0 before using the 
line printer by 

100 POKE 16425,0 'reset current line count 

At the same time, adjust the line printer to "top of form" by posi
tioning the paper to three lines down from the top. Every time an 
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LPRINT is performed, call the subroutine so that the "top of form" 
may be implemented at the 60th line. A typical call would be 
1200 LPRINT "VALUE = ";ZZ 
1210 GOSUB 10000 
1220 GOTO 1200 

The code follows 

10000 ZZ=PEEK<16425) 
10010 IF ZZO60 RETURN 
10020 FOR ZI=1 TO 6 
10030 LPRINT " " '  
10040 NEXT ZI 
10050 POKE 16425,0 
10060 RETURN return to call ing pro9 

c1 ear 1ine count 

get l ine count 
return if not time 

C*loop for 6 l ines 
'print l ine (UITH BLK) 
'  loop 

[ 

Another difference between the line printer and display is that 
the character sets of each are different. In most cases, the characters 
from ASCII 32 to ASCII 127 are identical, or very similar. This 
range defines special characters, numerics, special characters, upper 
case, special characters, and lower case, in that order (refer to Ta
ble 3-1). The codes 128 through 191 are graphics codes and tab 
codes that will probably not be accepted by the line printer, or will 
cause printing of (somewhat) unpredictable line-printer charac
ters. The codes from 0 to 31 will vary with the line printer. Some 
line printers have programmable character and line widths, and 
others have programmable line spacing and things such as the BEL 
code. (The BEL [bell] codes are used on teletypewriters to attract 
the operator's attention for such things as important wire-service 
news stories.) Here, I will give standard writing ploy number 127— 
refer to your system line printer operating manual for specific in
structions. 

We'll be looking at some of the other aspects of using the line 
printer in Chapter 12 ("POKEing Around in Memory") when we 
discuss the video display and line-printer device control blocks 
(DCBs). 
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CHAPTER 5 

Graphic Examples 

We 1! he discussing one of the most interesting features of Level 
II BASIC in this chapter, the ability to create displays of graphics 
data. The graphics character set allows us selectively to turn on and 
off 6144 picture elements on the screen of the THS-80. Graphics 
allows us to create graphs, forms, and nnimated pictures. There are 
several techniques for using graphics, and we'll he discussing each, 
including a technique of high-speed graphics using strings. 

Back to the Books . . . 

Before we discuss the techniques, however, let's discuss the me
chanics of how graphics are implemented on the THS-80. (Guard, 
stop that reader from sneaking off. . . .) We know from previous 
chapters that there are 1024 print positions on the display screen, 
as shown in Figure 5-1. Each of the 1024 print positions is repre
sented by one byte in video-display memory as shown in the figure. 
I lie electronics in the 'I BS-80 automatically and continuously cy
cles through each of the 1024 video display memory bytes 30 times 
per second. If a byte holds a value of less than 128 (less than 
100000(X) in binary), then the logic in the video display electronics 
says, Aha, I detect a displayable character!" It then converts the 
character code into a displayable character of 5 by 7 dots as shown 
in Figure 5-2 (the top row is always blank). The dots are config
ured to represent the ASCII character set shown in Table 3-1. 

However, if the video-display memory byte for any print posi
tion of the 1024 is greater than 127, the logic in the video-display 
electronics says, "Another one of those darn graphics characters— 
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'COMB BACK!.. .  HE SA/D IMPLEMENT... NOT EXECUTE/'  

troublemakers, every one. Let's see now, how does that scheme 
work again?" The scheme that befuddles the logic also befuddles 
many BASIC programmers. If the code in video-display memory is 
greater than or equal to 128, the first two bits are ignored, as shown 

PRINT 
POSITION 0 

(15360) 

PRINT 
POSITION 63 

(15423) 
PRINT 

POSITION 
64 

(15424) 

THESE ARE THE PRINT POSITIONS 
•ON THE TRS-80 SCREEN EIEOWO-

KDJFLSLKDJFJKDEIWOEIURTQPQOI 

PRINT 
POSITION 

960 
- EIQOPURJKLJFSKDJFIE WITH 1024 -

PRINT 
POSITION 

1023 
(16383) 

(XXXXX) = VIDEO DISPLAY MEMORY BYTE 

Figure 5-1. Screen print positions. 
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5 DOTS 
t \ 
••••• ALWAYS BLANK 

• •••• Figure 5-2. Character matrix. 

• •••• 7 DOTS • •••• • •••• • •••• 
SIX SEGMENTS OF A 

CHARACTER POSITION 
IN GRAPHICS MODE 

BIT 
0 

(1) 

BIT 
1 

(2) 
BIT 

O 
BIT 
3 

(8) (4) 

BIT 
3 

(8) 
BIT 
4 

(16) 

BIT 
5 

(32) 

ALWAYS A ONE IGNORED 
FOR GRAPHICS 

Figure 5-3. TRS-80 graphic* format. 

in Figure 5-3. The next six bits represent the on/off condition of six 
segments of the character position, as shown in the figure. 

The logic here is readily understood by the binary code in the 
six bits. The first bit (bit 0) defines the on/off status of the upper 
left segment, bit 1 defines the upper right, bit 2 defines the middle 
left, bit 3 the middle right, bit 4 the lower left, and bit 5 the lower 
right. The graphics codes for all of the possible combinations from 
128 through 191 are shown in Figure 5-4. To construct any com
bination, though, all you have to do is sketch the six segments, indi
cate the on/off condition, and then add the binary weights to 128 
to get the corresponding graphics code for the character, as shown 
in Figure 5-5. The example in the figure produces the code 128+1 
(upper left) +8 (middle right) + 10 (lower left) = 153. 

1 0 X X X X X X 
/ \ 

VIDEO DISPLAY 
MEMORY BYTE 
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f Ij 
I • 
t 128 129 130 131 132 133 134 135 • isafflffliHB 

136 137 138 139 140 141 142 143 

:  fflHiassn 
144 145 146 147 148 149 150 151 : EEfflEEEII 
152 153 154 155 156 157 158 159 

160 161 162 163 164 165 166 167 • HSfflfflfflSHH 
168 169 170 171 172 173 174 175 SBiSBSBI 
176 177 178 179 180 181 182 183 

n 184 185 186 187 188 189 190 191 

i 99991111 
Figure 5-4. TRS-80 graphics characters. 

I 
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Figure 5-5. Constructing 
combinations of graphics. 

153= GRAPHICS CODE 

SETting Good Examples 

Now that we know the mechanics of the graphics characters, let's 
use the simplest technique of graphics programming to SET some 
good examples. The SET, RESET, and POINT commands allow us 
to selectively set any of the 6144 picture elements. (Hereafter, we'll 
use the term pixel for picture clement, an abbreviation coined from 
the name of an early graphics pioneer, Max von Pixel.) The ar
rangement we now have for the 0144 pixels is shown in Figure 5-0. 
There are 128 across (2 per character position) and 48 down (3 per 

PIXEL 0 128 PIXELS PIXEL 127 
(X=O.Y=0) 

PIXEL 128 
(X=0.Y=1) 

PIXEL 6016 
(X=O.Y=47) 

:  127.Y=0) 

48 PIXELS 

.  PIXEL 6143 
(X=127.Y=47) 

Figure 5-6. Display pixels. 
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character position) for a total of 128 X 48 = 6144. Numbering is 
from left to right with a range of 0 through 127, and from top to 
bottom with a range of 0 through 47. The format of the SET, 
RESET, and POINT command is 

SET(x,y) 
RESET(x,y) 
POINT(x,y) 

SET and RESET, of course, set or reset the specified pixel. 
POINT returns the value of the pixel, 0 for off, or 1 for on. Is 
POINT useful? Does the TRS-80 sleep in the woods? (Wait a min
ute, how did sleeping in the woods get into the act . . . ?) Since the 
video display is a memory, it stores the current on/off status of each 
point. This can be very useful in determining the point status with
out referring to another memory location. More on that later. 

One of the more common things that is done to the display is to 
'white it out." The following code whites out the display by two 
nested loops that use the SET statement. Run the program, but 
before you do, get out that old trusty stopwatch you were using in 
your jogging program (you've just got to do something about that 
paunch . . .). Record the time it takes to white out the screen and 
save it for comparison with some high-speed techniques we'll be 
using later. 

' c l e a r  s c r e e n  
" ' o u t e r  l o o p  

[' i n n e r  l o o p  
*  s e t  p o i n t  
' 9 o  d o w n  c o l u m n s  

a n d  t h e n  a c r o s s  
' f o r  n i c e  s c r e e n  d i s p l a y  

Got it? I have about 49 seconds. (Some of the later techniques will 
cut down on that time by a factor of 100!) 

Plotting Along With SET/RESET 

The SET/RESET technique of graphics is a slow method for dis
playing patterns, but it does lend itself very well to plotting graphs. 
As a matter of fact, it is probably the fastest method for displaying 
graphs of any we'll be discussing. 

If you recall those happy days of high-school algebra, you may 
remember that the standard convention for graphs was as shown 
in Figure 5-7. X is along the horizontal axis, and y is along the ver
tical axis. X increases toward the right, and y increases toward the 
top. We have a somewhat different situation with the x,y coordi
nates for the TRS-80 display. X increases to the right, but the x 
axis is at the top and the y axis increases toward the bottom. Prob-

100 CLS 
110 FOR X=0 TO 127 
120 FOR Y=0 TO 47 
130 SET (X.Y) 
140 NEXT Y 
150 NEXT X 
160 SOTO 160 
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+ y  

— X 

^ORIGIN 
x = * 0 
y = 0 

- y  
I-igure 5-7. "Standard" graphing. 

lem: How do we translate from the standard graph to the TRS-80 
display? Let's plot a simple function to see how we can do this. 

Guns Versus Butter 

Suppose that we take a classic problem of Guns versus Butter. In 
this example, we will attempt to solve the economic problems that 
have been perplexing our country for some time. To make the prob
lem more visible, we'll graph it on the ol* TRS-80. 

Guns cost $40 each, while butter costs $4 per pound. If we have 
$200 to spend, we may divide it up between guns and butter. First 
of all, lets define the limits of the graph. If we buy 5 guns, then 
we ve used up our $200, and we have 0 pounds of butter. If we buy 
50 pounds of butter, then we can't afTord guns. It looks suspiciously, 
then, as though the number of guns ranges from 0 through 5 and 
the number of pounds of butter ranges from 0 through 50 We can 
now set up the layout of the graph we'd like to draw on the video 
display (see Figure 5-8). 

ROOM FOR 0 
TO 5 GUNS 

ROOM FOR 50 POUNDS 
OF BUTTER (GRADE A) 

Figure 5-8. Graph skeleton example. 
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Like most graphing problems of this type, we can divide the work 
into two parts, drawing the skeleton of the graph, and drawing the 
points themselves, or plotting. 

The skeleton of the graph can be drawn by drawing one horizon
tal line and one vertical line. The vertical line runs from y=0 
through 47, and we can draw it by 

2 0 0  F O R  Y = 0  T O  4 7  p ' s e t u p  l o o p  
3 0 0  S E T  ( 0 » Y )  I  ' d r a w  c o l u m n  
4 0 0  N E X T  Y  ^ ' c o n t i n u e  

The horizontal line runs from x=0 through 127 on line 47, and 
we can draw it by 

5 0 0  F O R  X = 0  T O  1 2 7  r ' s * t u p  l o o p  
6 0 0  S E T ( X » 4 7 )  I  »  d r a u i  r o w  
7 0 0  N E X T  X  L ' c o n t i n u e  

To complete the skeleton, we need some way of marking the in
crements of guns and butter and some labels. We'll use a blank spot 
every 2 points for butter, and a blank spot every 9 points for guns. 
(We chose these increments because the maximum value of 50 
pounds of butter would be at x=100 and the maximum value of 5 
guns would be at y=45; neither value would cause illegitimate x 
or y values.) 

The following code would clear the tick marks and label each 
of the axes. 

8 0 0  F O R  X - 2  T O  1 0 0  S T E P  2  
9 0 0  R E S E T  ( X . 4 7 )  
1 0 0 0  N E X T  X  
1 1 0 0  F O R  Y = 4 7  T O  2  S T E P  - 9  
1 2 0 0  R E S E T  ( 0 . Y )  
1 3 0 0  N E X T  Y  
1 4 0 0  P R I N T  3  5 , " G U N S " !  
1 5 0 0  P R I N T  a  9 3 6 i " B U T T E R " !  

E' s e t u p  t i c k  l o o p  
' b l a n k  t i c k  m a r k  
' c o n t i n u e  

C' s e t u p  t i c k  1 O O P  
' b l a n k  t i c k  m a  r  k  
' c o n t i n u e  

' v e r t i c a l  t i t l e  
' h o r i z o n t a 1  t i t l e  

The skeleton we have now looks like Figure 5-9. All we need to do 
at this point to solve the world's economic problems is to do some 
meaningful plotting. The problem resolves into 

# GUNS * $40 + # LBS BUTTER * $4 = $200 

One way of implementing this problem is to step the number of 
guns from 0 through 5, since we know that this is the range of the 
number of guns. The code below does this and computes the num
ber of pounds of butter for each quantity of guns. 

1 6 0 0  F O R  G = 0  T O  5  
1 7 0 0  B = < 2 0 0 - G « 4 0 > / 4  
1 8 0 0  N E X T  G  [' s e t u p  c o m p u t a t i o n  

' c o m p u t e  b u t t e r  
' c o n t i n u e  
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| GUNS 

I 
Figure 5-9. Partial skeleton. 

I 

BUTTER 

The only remaining thing to do is to plot the points for each set 
of guns and butter. The horizontal distance or displacement for the 
x value defining the number of pounds of butter is found by taking 
B, the number of pounds of butter, and multiplying it by 2 (there 
are two increments for every pound of butter). The vertical dis
tance for the y value defining the number of guns is found by mul
tiplying G, the number of guns, by 9 (there are 9 increments for 
every gun). Putting this calculation in the above code produces 

1 6 0 0  F O R  G - 0  T O  3  
I  7 0 0  B " ( ; ' 0 0 - G o 4 B > / 4  
I  7 . • 0  X - B » 2  
1 7 * 0  Y - 4 7 - G « 9  
1 7 6 0  B E T  I X i Y I  
I B B 0  N E X T  G  

- ' k e t u r  c a » i > u t * t  i o n  
' C o m r u t o  b u t  I o r  
' *  d l  t o  I  a c o a e n t  
* Y  d  I  »  r  I  4 C  » n » f .  *  
• » O t  p o i n t  
' C o n t I n u o  

With the addition of a screen clear at the beginning, the com
pleted program looks like this 

1 0 0  C L S  
r - B O  K ' R  Y  0  T O  4  7  
. ' 0 0  S E T  I P i V I  
' . 0 0  N F X T  Y  
' . 0 0  F O R  X - B  T O  1 2 7  
6 0 0  S t  M X .  4 / 1  
7 0 0  N F X T  X  
0 0 0  F O R  X « 2  T O  1 0 0  3 T F P  2  
V 0 0  R E S E T  ( X . 4 7 )  
1 0 0 0  N l  X T  X  
1 ) 0 0  F O R  Y " 4 7  T O  ?  S T I  P  - 9  
1 2 0 0  H I  S I  T  < 0 . Y )  
I 1 ' 0 0  N T  X T  Y  
1 4 0 0  P R I N T  a  3 . ' G U N S ' )  
l * i B P  P R I N I  a  9 3 6 i  ' B U I  T F R *  I  
1 6 0 0  F O R  G  0  T O  3  
1  7 0 0  B «  < 2 0 0  G * 4 0 1 / 4  
1 7 2 0  X  ' B » 2  
I  7 4 0  Y r - 4 7 -  G * 9  
I 760 SI: T ( X • Y ) 
1 0 0 0  N E X T  G  
1 7 0 0  G O T O  1 9 0 0  

• c l e a r  f c r e e n  

C' j O t M P  l o o p  
' d r a w  c o l u m n  

i n u o  

[" t o t u p  l o o p  
*  d r « « >  i  o «  
'  e o i . t  t n u o  

[' s e t u p  t l e i  
' M o n k  l u i  
' c o n t l n u »  

E* » e l u p  t i c k  
' b l a n k  t i c k  
' c o n t l n u »  

' v e r t i c a l  t l t l o  
• h o r i r o n t a l  t l t l o  

[' f e t u e  c o m p u t a t i o n  
' c o o i P u t o  b u t t e r  
' k  d l f o l t C M M t  
' r  d i s p l a c e m e n t  
• * 0 t  p o i n t  
' c o n t I n u o  

* I O O P  h e r e  f o r  d i t p l a v  

I  O O P  
M l  k  

l o o p  
i r k  

The most important point (no pun intended) in the above pro
gram is that the usual graphic y value must be converted to the 
screen graph y system by subtraction from 47. This must always 
be done for a graph with y coordinate at the bottom of the display. 

1740 Y = 47 — G*9 ' y  displacement 
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The Guns and Butter graph illustrates the general approach that 
you should take in graphing a particular function, or set of points 
that define a graphical relationship. 

1. Determine the appropriate ranges of both the x and y vari
ables. 

2. Draw the skeleton of the graph and mark off the horizontal 
and vertical axes with appropriate tick marks to cover the 
range. Numeric values, of course, may be put on or near the 
axes. 

3. Compute the function and get x,y values. 
4. Convert the x,y values to the TRS-80 video coordinates by us

ing the same x value, but by finding a new y value by subtract
ing the old value from 47. 

5. Plot the point by a SET. 
6. Repeat for all points. 

In the above example, we used values for x and y that were some
what contrived. X and y turned out to be integer values only; that 
is, none of the x and y values were mixed numbers containing inte
gers and fractions. What happens if we do use mixed numbers for 
x and yp If we attempt to set, say, x—12.7 and y^lS.S, the x,y values 
are truncated to x=12 and y=13. This means that x and y can be 
computed without worrying about invalid values, unless x is less 
than 0, x is greater than or equal to 128, or y is greater than or equal 
to 48. 

A Moving Experience 

The SET and RESET commands can be used together to give 
the illusion of motion for dots, lines, starships, flying rolling pins, 
and other items. Let s take the simplest case first, a moving dot. 
To make a dot appear to move, the dot must be SET in one posi
tion, RESET in that position, and then SET in the next position. 
The timing should be such that the motion appears fluid (see Fig
ure 5-10). 

The simplest code for this is shown below. The speed of the 
single dot moving across line 24 is about IV2 seconds per crossing. 

Figure 5-10. Simple animation. 
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I I  

'71 

This is about the maximum speed for a SET/RESET approach. 
1 he dot can be slowed, down by inserting "time wasters" at state
ment 350. Try various "time wasters" such as 350 REM or 350 A=0 
or 350 A=l°2 to see how they affect the speed of the dot. 

> 0 0  C L S  
. ' 0 0  F O R  X  =  0  T O  1 2 7  
3 0 0  S E T  < X , 2 4 >  
4 0 0  R E S E T  I X . 2 4 I  
5 0 0  N E X T  X  

' c l e a r  i c r t t n  
r  ' a n i m a t i o n  l o o p  
I  " t u r n  d o t  o n  
I  *  t u r n  d o t  o f f  

' c o n t i n u e  

I he same principle of animation may be applied to more complex 
figures. The more complex the figures, of course, the more difficult 
it is to know which dots to turn on and ofT. We'll show some more 
examples of animation later in this chapter when we discuss some of 
the faster graphics methods. 

Good Points to Consider 

What the heck is the purpose of the POINT command? Beats me 
—let s go on to the next subject. . . . 

But seriously, folks . . . the POINT command is a way of check
ing each of the 6144 pixels on the video display to see whether they 
arc turned on or off. But don't we know at all times whether or not 
the pixels are on or off? Not necessarily. We could keep track of all 
pixels that are on in a long table, and then search that table to find 
out the state of the pixel in question. But why not use the POINT 
command to check the pixel without spending a lot of time search
ing through a table of values? After all, each pixel is really a one-
bit (0 or 1) memory in itself. The POINT command makes it pos
sible to check the state of any one of the 6144 bits that represent the 
pixels on the screen. 

I here are times when it's very convenient to use the POINT 
command in place of keeping a long list of turned-on pixels. Sup
pose that we have turned on points at random and now wish to 
check whether a pixel is on. The code below shows a simple exam-
pic of the approach. It searches the video memory by a POINT 
command to find the one pixel that has been turned on by a random 
selection. 1 he random selection was made by the RND command 
which we 11 talk about a little later on. 

1 0 0 0  C L S  
1 1 0 0  X " R N D ( 1 2 7 1  
1 2 0 0  Y ' R N D < 4 7 >  
1 . 1 0 0  S E T  ( X . Y )  
1 * 0 0  F O R  X - 0  T O  1 2 7  
1 5 0 0  F O R  Y - 0  T O  4 7  
lf>00 I F  P O I N T  ( X . Y | e - |  P R I N T  X . Y  
1 7 0 0  N E X T  Y  
IR00 N E X T  X  

' c l e a r  t c r e e n  
' f i n d  r a n d o m  x  I  t o  1 2 7  
• f i n d  r a n d o m  y  I  t o  4 7  
• t u r n  o n  e o i n t  

[• * e t « m  o u t o r  l o o m  
r  ' l e t u e  i n n o r  l o o n  

' e r l n t  I f  e o i n t  
' c o n t i n u e  I t t r c h  

' c o n t i n u e  m l t h  o u t e r  

o n  
is f 
dis 
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iroach. 
state-

0 

Notice that a —1 was returned for the POINT in only one case, 
the case in which the pixel was found to be ON. All other pixels 
caused the POINT to return a zero, indicating that they were OFF. 

1 

1 
1 

| 
The POKE Graphics Method 

mplex 
ifficult 
more 

-me of 

The second approach to graphics that can be used is the POKE 
method. We know that video-display memory is exactly that, a set 
of 1024 memory locations. The addresses of the 1024 locations range 
from 15360 to 16383. This area is in the first 16K (16 X 1024) loca
tions of the TRS-80 memory address range. The video-display mem
ory shares this memory along with Level II BASIC and some dedi
cated addresses for the line printer and other devices (see Fig
ure 5-11). 

LOCATION 

its me 
0 

•heck-
r they 
or not 
of all 
0 find 
)1M| 

1 one-
t pos-
nt the 

TINT 
Sup-

sh to 

12287 

BASIC 
:  INTERPRETER ;  

IN ROM 

•heck-
r they 
or not 
of all 
0 find 
)1M| 

1 one-
t pos-
nt the 

TINT 
Sup-

sh to 

12288 

15359 

DEDICATED 
ADDRESSES 

(LINE PRINTER. ETC.) 

FIRST 16K (16384) 
LOCATIONS IN MEMORY 

'xam-
)INT 
ndom 

15360 

16383 

1024 LOCATIONS 
VIDEO DISPLAY 

MEMORY 
nand, 

I 

16384 
START 0E 

RAM 

1 
Figure 5-11. Video-display addresses. 

f 
j 
f 

To address any of the 1024 print positions, all that we must do 
is find the displacement of the print position from the start of video-
display memory as shown in Figure 5-12. Since there are 64 char-

• 
j 
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LOCATION i 
DEDICATED 
ADDRESSES 

(START) 15360 
15424 — 
15488 

16320 
(LINE 15. CP 0) 

— 

— 

VIDEO 
DISPLAY 
MEMORY 

n F 

15423 (LINE 0. CHARACTER 
15487 POSITION 63) 

(LINE 1. CP 63) 

16383 (LINE 15. CP 63) 

START OF 
RAM 

Figure 5-12. Finding the print-position displacement. 

acters per line and 16 lines per display, the video-display memory 
address for any character position is 15360 + (line number *64) + 
(character position in line). To address line 8, character position 
10, for example, we find 

15360 + 64 • 8 + 10 = 15882 

Here, we were using 0 as the first line number and first character 
position on line. Referring to our ASCII codes of Table 3-1, 
we can store a "1" on that character position on the screen by 
100 CIS 
200 POKE 15882,49 
300 GOTO 300 

'for »et 
'let pixel 
'loop here 

The POKE method is very useful when we must fill the same 
graphics character across an entire line or portion of a line. Did you 
save the timing of the SET/RESET "white-out"? Lets compare it 
with one using the POKE method. The following code whites out 
the display by POKEing a 191 (10111111) into each of the 1024 
character positions of the video display. The value 191 represents 
all ones for the six pixels and a one bit to signify graphics. For the 
fastest speed, don't enter the comments! 

1 Pt CL s 
2-0 FOR X>13360 TO 16383 
30 POKE X.191 
«0 NEXT X 
30 GOTO 30 

*  c I s c r o o n  
I  • I I  6  x l x t l l  o n  

'continuo 
'looks nlco 
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Seven and a half seconds! Quite a difference between the POKE 
and SET/RESET methods! 

Of course, any of the 64 patterns shown in Figure 5-4 may be 
output as a line or portion of a line using the POKE technique. 
The following code draws a stop light using the POKE method. 
When the areas involved are small, the method is fast enough that 
you can at least think about animation techniques. 

9 0  D A T A  
9 2  D A T A  
9 4  D A T A  
1 0 0  C L S  
1 1 0  F O R  
1 2 0  F O R  

1 9 1 , 1 3 1 , 1 3 1 , 1 9 1 , 1 9 1 , 1 3 1 , 1 3 1 , 1 9 1  
1 9 1 , 1 3 1 . 1 3 1 1 1 9 1 . 1 3 1 . 1 7 1 . 1 3 1 . 1 3 1  
1 2 8 , 1 7 0 , 1 4 9 , 1 2 8  

1 = 0  T O  4  
J = 0  T O  3  

1 3 0  R E A D  A  
1 4 0  P O K E  1 5 3 6 0 + 3 5 0 + J + I * 6 4 »  A  
1 5 0  N E X T  J  
1 6 0  N E X T  I  
1 7 0  F O R  1 = 0  T O  2  
1 8 0  P O K E  1 5 3 6 0 4 - 3 5 1  +  1 * 6 4 *  1 6 7  
1 9 0  P O K E  1  5 3 6 0 +  3 5 2 - 4  I  * 6 4  *  1  6 7  
1 9 5  I F  1 = 1  T H E N  K = 3 0 0  E L S E  K = 1 0 0 0  
2 0 0  F O R  J = 0  T O  K  
2 1 0  N E X T  J  
2 2 0  P O K E  1 5 3 6 0 + 3 5 1 + 1 * 6 4 * 1 3 1  
2 3 0  P O K E  1 5 3 6 0 + 3 5 2 + 1 * 6 4 * 1 3 1  
2 4 0  N E X T  I  
2 5 0  G O T O  1 7 0  

clear sc r 
• ' s e t u p  

t'  s e t  ' g e t  
'  p o k  
' go 

'go for 
p ' s e t u p  

'flash 
'  i  r *  t w o  
' u s e  s  h  
r  '  t  i  m  
'  f o r  

' n o w  t u  
' i n  t w o  
'  c  o  n  t  i  n  

loop for 

e e n  
r o w  l o o p  
U P  c o l u m n  l o o p  
g r a p h i c s  v a l u e  

e  i n t o  r o w * c o l u m n  
f o r  n e x t  c o l u m n  

n e x t  r o w  
l i g h t  o u t p u t  
1 ight 

p e s i t i o n s  
o r  t  v a 1 u e  f o r  v e 1  
i  n  g  l o o p  

1  i g h t  
r n  o f f  l i g h t  

p o s i t  i o n s  
u e  
n e x t  c y c l e  

How about addressing the 6144 pixels randomly using the POKE 
technique? I was afraid you'd ask. . . . While it's easy to compute 
the address of a character position for the POKE, it's rather difficult 
to compute the address of a pixel. Furthermore, computing the 
pixel address and performing a POKE for the pixel bit actually 
takes longer than the equivalent SET/RESET. For those masoch
istic programmers out there who wish to try it anyway. . . . 

To find the POKE address for a given x,y, perform the follow
ing steps. 

1. Divide x by 2 and save the quotient as XQ. XQ=INT(X/2) 
2. Save the remainder as XR. XR=X—(XQ62) 
3. Divide y by 3 and save the quotient as YQ. YQ=INT(Y/3) 
4. Save the remainder as YR. YR^Y— (YQ°3) 
5. The POKE address is given by A=15360+YQ°64+XQ. 

To SET a bit using POKE, 

1. Get the value at the POKE address by B=PEEK(A). 
2. On in a bit value as follows: B=B OR 2f(YR'2+XR). 
3. Make certain the most significant bit is set by crning in 128. 

B=B OR 128 
4. POKE the value back in the address. POKE A,B 
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To RESET a bit using POKE, change the value in step 2 to 
255—2f( YR#2+XR) and AND instead of ORing. 

B=B AND (255—2t(Yll#2+XR)) 

String Graphics and the Chattanooga TRS-80 

Do you still have that stop watch available? Execute the follow-
ing program to "white-out" the screen, and time its duration. 

100 CLEAR 500 208 CLS ?00 A*=STRJ NGt(6A •CHR$(191)) 
<•00 FOR l"l TO 16 
500 PRINT At I 
600 NEXT 1 
700 GOTO 700 

' c l » t r  s t r  i f .Q  t r t c t  
' c l « r  sc r een  
*9et graphics *trir.« 
[' s e t u i "  l o o p  

' p r i n t  l i ne  
•  l oop  
• f o r  d11p I«v  

This time the screen white-out took less than a second! Obvi
ously, this method is the fastest of any so far—75 times as fast as 
the SET/RESET method and 10 times faster than the POKE imple
mentation. This method uses one of several methods to establish a 
string variable. Once the string has been established, it can be 
PRINTed very rapidly because it requires no computation; the 
string values are just simply printed as they appear! 

To see another example of this method, let's establish a display 
other than a continuous string of the same pattern. We'll use an 
old-time locomotive as the pattern we want, as shown in Figure 5-
13. 1 lie choo-choo is made up of 36 character positions with 6 pixels 
in each character position, as shown in the figure. 

CP0CP1 CP2 CP3CP4 CP5CP6 CP7 CPS CP9 CP 10 CP 11 

TOP 
R OW 

MID DLE 
R OW 

BOTT OM 
ROW  

F igu re  5 -13 .  Choo -choo  pa t t e rn .  
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We must take each of the 36 character positions and translate 
them into a proper graphics code by referring to Figure 5-4. When 
we do this, the codes are 

TOP ROW 188,188,140,140,172,128,128,128,139,191,135,128 
MIDDLE ROW 186,191,188,188,190,191,191,191,191,191,191,157 
BOTTOM ROW 130,139,191,191,135,131,131,139,191,191,135,129 

Just to be certain that we have the proper codes, let's draw the 
figure in the center of the screen. We'll use three strings, one for 
each row in the figure. 

1 0 0  C L E A R  1 0 0 0  ' c l e a r  ; t r i r i 9  s r a c *  
i S 2  < " L S  ' c l e a r -  s c r e e n  
3 0 0  A * = C H R $ ( 1 B 0 >  +  C H R * (  I B B > f C H R $ ( l A 0 1 4 C H R * <  l A B M C H R * !  1 7 2 > « C H R t <  ! 2 B l e C H R * (  1 2 B ) « C H R » <  I I  A00 B*=CHR»<I86>»CHR«(191)*CHR»(109)ACHH*(18B)*CHR«(190>eCHR*<191)+ CHR*(191)*CHRS(14 
6 00 C*=CHR»<130>«CHRt(139)+CHR*(191>eCHR»(191)<CHR*(I35)«CHRi<131>*CHR«<131MCHR»(K 
6 0 0  P R I N T  3  5 3 H . A S I  ' p r i n t  f i r s t  r o w  700 PRINT 3 602.B*1 'print second row 
0 0 0  P R I N T  3  6 6 6 . C » l  ' p r i n t  t h i r d  r o w  
9 0 0  G O T O  9 0 0  ' l o o p  h e r e  f o r  d i s p l a r  

To make the choo-choo move, we'll move it a character position 
at a time. If we add leading blanks to the strings, we will get an 
automatic erase of the old image. With the addition of some smoke, 
we've completed the animation 

840 IF RND(3)=1 GOTO 850 ELSE PRINT @ l-54,"0"; 

1 0 0  C L E A R  1 0 0 0  ' c l e a r  s t r i n g  s p a c e  
' c l e a r  s c r e e n  

3 0 0  A » x  ' • C H R « (  l B B M C H R » ( l B 8 > e C H R S ( l A 0 ) « C H R * <  1 A 0 ) « C H R » (  1 7 2 ) + C H R * (  l 2 B ) t C H R » <  I 2 8 ) « C H I  
• • C H R » ( 1 0 6 ) + C H R S ( 1 9 1 ) e C H R S ( 1  S B ) » C H R * ( 1 8 B > * C H R * < ! 9 0 > e C H R t < 1 9 1  > e C H R « < 1 9 1  ) * C H I  
• * ^ R * ( J 3 0 ^ C H R * < , 3 9 ) e C H R « ( 1 9 I  M C H R * (  1 9 1  > ' C H R * < 1 3 5 > • C H R » ( 1 3 1 > e C H R » < 1 3 1  l + C H I  

" ' s p t u p  l o o r  f o r  m o v e m e n t  
• p r i n t  f i r s t  r o w  
*  p r i n t  s  e c o n d  r  o w  
' p r i n t  t h i r d  r o w  

^ ' d e l a v  f o r  o f f s e t  

4 0 0  P f  
5 0 0  C S  
6 0 0  F O R  1 = 5 1 2  T O  5 6 3  
6 5 0  P R I N T  d  I t  A t ;  
7 0 0  P R I N T  3  I * 6 4 t  B t ;  
P 0 0  P R I N T  d  I • 1 2 8 1  C t I  
8 2 5  F O R  J = I  T O  2 0  

'  1  OOP 8 3 0  N E X T  J  
0 4 0  I F  R N D ( 3 ) = 1  G O T O  8 5 0  E L S E  P R I N T  a'l- 5 A . " 0 - t  
8 5 0  N E X T  I  |  ' t o v t  t o  t h «  r i 9 h t  
9 0 0  G O T O  9 0 0  L L  1  OOP h e r e  f o r  d i s p l a y  

Note that in the above code, we used a timing loop (FOR J=1 
TO 20: NEXT J) to actually slow down the animation! We're mak
ing progress in speeding up our graphics! Another trick we could 
have used would be to add cursor characters in the string so that A$, 
B$, and C$ would be concatenated into one super string. Adding 
STRING$ (13,CHR$(24)) and CHR$(26) would move the cur
sor left 13 positions and down one position, in preparation for the 
next row. You might like to work that out on your own (reviewing 
cursor positioning in Chapter 3 will help refresh your memory about 
cursor movement). 
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String Graphics Using Dummy Strings 

There is an additional technique that we can use to implement 
string graphics, the technique of "dummy strings." For this method, 
we use a dummy string equal in length to the desired string and then 
fill in the graphics characters required. When a number of strings 
are used for graphics, this technique saves on string initialization 
and string storage requirements, and is easier to use. We'll see how 
this works using one large string with cursor control movements. 

1000 
I I (MS 
i aaa 
I .".0 I K«0 
i no 
MOO 
i3«o 
1600 
i M it-mi 
I 900 
.000 
2100 
2.00 
2J00 
2*00 
2*10 ;">oe 

CIS 'cl**r fcr«*n' 
AM* THIS IS A DUMMY STRING TO O F  FIU.FD WITH GRAPHICS AND CURSOR CHARS1 
DATA I »*0i IBB. IBB. |40. MO. I 72. 120. I 28. 128. 13?. 191.133. 128 DA IA 26.24,24.24.24,24,24.24.74.24.24. 
DATA 128.ID6. I9|.IBB. 108. I 90, |9I.|9|. |9|.191.191.|9|.197 
DA IA 26.7*. 24. 24«24.24.24.24. 74. 24. 24.24.24. 2* 
DATA I 28.130.139.|9|,|9|.133.131.131.139.I9I.I9I.I3S.129 0aVARPTR(A9l 
C«PCEK<B*2M2SA*rCCK(B«|> 'Flhd 
F O R  l»C TO C»66 p t.iu, Rf AD A 
POKE I. A 
NE*T I -
FOR l»S12 TO 368 r 'fptuP Ioor to PRINT • |.A«I 
FOR J*I TO .18 
NFXT J 
II RNDI 31 * I GOTO 2380 El If PRINT 8 i S4.'0*l 

u '»»»# to r IOl.t GOTO 2608 «4o r.itin 4MP I4v 

'  » 6 0  4 C T U 4  I  » * < 3 T  O F T  r *totwp loop to fill 
*9ot or.* !>.<» voluo 
•POFO into 11rino L 'tooo 

r '••I M P  I O O P  to o«v. ' p r i n t  o h o  l o n o  t t r l  
r ' do Io* For oFFoct |  u , l o o r  

• tr mi 

69 

Unlike the other string graphics mode, no CLEAR is necessary, 
since the BASIC interpreter will use the string text in the A$ state
ment for I'lUNIing the string. The dummy string is established hy 
using any text string that is equal to the number of graphics char
acters to he printed. Next, the graphics characters themselves are 
constructed using a IM I A statement. The first two rows have the 
cursor control characters 20 (down cursor) and 24 (left cursor) ap
pended to move the cursor back to the beginning of the next row. 

We know from Chapter 3 that the VARPTR function will find the 
address of the string variable parameters for A$ in the following 
order: 

(B) = AS length 
(H + l) = Least significant byte of A$ address 
(R+2) = Most significant byte of A$ address 

C is computed to contain the nddrcss of A$. This address, unlike a 
string that has been constructed from CI IRS or concatenation, is the 
address of the string within the AS statement itself. The READ loop 
reads each of the DATA values and puts them into the dummy 
string. Now we have a string for AS made up of the actual graphics 
characters we require. This is used in the PRINT® statement in the 
same fashion as the other string graphics mode, except that we now 
have one large string. 
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The speed of this graphics method is about the same or slightly 
faster than the previous string method, once the dummy string has 
been filled with the proper characters. The program below "whites 
out" the screen using this method. 

. < 0 0 0  A $ = "  *  6 4  s p a c e s  h e r e *  
3 1 0 0  B = V A R P T R ( A $ )  ' g e t  s t r i n g  b l o c k  l o c n  
3 2 0 0  A = P E E K ( R + 2 ) * 2 5 6 + P E E K ( B + l )  ' g e t  a d d r e s s  o f  s t r i n g  
3 3 0 0  F O R  I  =  A  T O  A + 6 3  r - * s e t  f i l l  l o o p  
3 4 0 0  P O K E  I » 1 9 1  I  '  f  i  1 1  u t i  t h  a  1  1  o n  c h r s  
3 5 0 0  N E X T  I  L  » l o o p  

3 6 0 0  C L S  ' c l e a r  s c r e e n  
3 7 0 0  F O R  1 = 1  T O  1 6  p ' s e t u p  l o o p  f o r  l i n e s  
3 8 0 0  P R I N T  A $ ?  ' f i l l  l i n e  
3 9 0 0  N E X T  I  L ' l o o p  
4 0 0 0  G O T O  4 0 0 0  ' l o o p  f o r  a p p e a r a n c e  

One important point about this method: Do not attempt to edit the 
lines after they have been initialized! 

Graphics Review 

We've discussed four graphics methods: the SET/RESET method, 
the POKE method, the string method, and the dummy string method. 

Let's just recap how to apply these methods: Use SET/RESET for 
plotting graphs and random data. This method is useful any time 
points must be displayed that are not in the same area, or that do 
not have a similar pattern. The POKE method is used as a simple, 
direct way to draw horizontal or vertical line segments that have 
an identical pattern or for drawing blocks of patterns (and it's much 
faster than the SET/RESET method). The string methods are used 
when animation is to be performed. They're extremely fast but re
quire a great deal of work in translating the graphics patterns to 
be output into corresponding data values. The dummy string method 
is perhaps the easiest for setting up a large number of graphics data, 
but it does require a means to move the data into the dummy string. 

Is there a faster graphics method? Yes, there is a method that is 
even a hundred times faster than the string method. The kicker is 
that this method uses machine language. YVe'll be describing some 
of the interfacing techniques to machine-language subroutines in a 
later chapter, but we cannot cover the subject in less than another 
book! Take a look at our TRS-80 Assembly-Language Programming 
(62-2006) if you're interested in learning how to create machine-
language programs. 

How to Draw a Straight Line 

Drawing a straight line on the video display is not always easy 
to do. The TRS-80 video screen is divided into 128 by 48 picture ele
ments, as we have seen. Now, the more pixels that there are on a 
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display, the finer the resolution of the display, and the straighter the 
lines that can be drawn. Compare the line drawn on a portion of a 
screen that has 100 pixels (10 by 10) with one that has 400 ( 20 bv 
20) (see Figure 5-14). V 7 

Figure 5-14. Drawing straight Unei. 

In attempting to draw a straight line between two points, a cer
tain amount of "jagged ness" has crept in. This jaggedness is unavoid
able, and the 0144 pixels on the TRS-80 represent a good compro
mise between a reasonable resolution and a manageable number of 
points. (Hemcml>er, each point takes a discrete amount of time to 
process, and painting a white screen with 128 by 128 pixels would 
take about 2% times as long as 0144 pixels.) 

Mow can we draw a reasonably straight line between two points? 
One way this could be done, of course, would be to work with the 
wpiation of a straight line for a graph. Everyone knows that this is 
Y-MX C. Or is it Y=MX/C . .. ? Or, wait a minute . . . I've got it 
here in my notes. .. . 

On second thought, let s look at a way that is just as efficient 
(probably more so) and that takes very little math and no analytic 
geometry. Suppose that we have two points that must be connected 
by a straight line. We've shown the number of points between the 
two points in Figure 5-15. 

The following code draws a straight line between the two points 
by determining the minimum number of points to fill every pixel 
between the two points. The code tries to minimize SETting the 
same pixel ON more than once, since this is an obvious waste of 
time. On the other hand, it makes certain that every pixel of the 
jagged line between the two points is SET that must be SET. Of 
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TT 

•I 

he 
F a 
by. 

X2-X1 IN THE x  OR HORIZONTAL DIRECTION 
Y2-Y1 IN THE y OR VERTICAL DIRECTION 

X2-X1 

Y2-Y1 

THESE PIXELS MUST BE FILLED 

X2.Y2 

Figure 5-15. Connecting two points. 

course the code is a subroutine and must be called using something 
such as: 
100 INPUT XI, Yl, X2, Y2 
110 GOSUB 10000 
120 GOTO 100 u 2 points 

call line subroutine 
loop 

10000 IF ABS(X2—X1)<ABS(Y2-Y1) 
10005 DY=(Y2-Y1)/ABS(X2-Xl) 
10010 IF X2> X1 GOTO 10070 
10020 FOR I = X1 TO X2 STEP -1 
10030 SET (I.Yl> 
10040 Y1=Y1+DY 
10045 IF Y1<0 THEN Y1=0 
10050 NEXT I 
10060 RETURN 
10070 FOR I=X1 TO X2 
10080 SET (I.Yl) 
10070 Y1=Y1+DY 
10095 IF Y1<0 THEN Y1=0 
10100 NEXT I 
10110 RETURN 
10200 DX=(X2-X1)/ABS(Y2-Y1) 
10205 IF Y2>Y1 GOTO 10300 
10210 FOR I=Y1 TO Y2 STEP -1 
10220 SET (XI. I ) 
10230 X1=X1+DX 
10235 IF X1<0 THEN X1=0 
10240 NEXT I 
10250 RETURN 
10300 FOR I=Y1 TO Y2 
10310 SET (XI. I) 
10320 XI=X1+DX 
10325 IF X1<0 THEN X1=0 
10330 NEXT I 
10340 RETURN 

GOTO 10200 
'get delta y 
'<3o if x2 TO RIGHT 
T'x2 to left 

set point 
add delta Y 
may happen once 

* continue loop 
return to calling prod 
"*x2 to r ight 

* set point 
'add delta y 
'may happen once 

L" ' cont i nue 1  O O P  
return to calling prog 
find delta x 
go if y2 below 

Y2 above 
set point 
add de1ta x 
may happen once 
continue loop 

return to calling prog 
y2 above 
set point 
add delta x 

'may happen once 
'continue loop 
return 

• go 

[ 
' re 

[ 
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The code above functions as follows: It compares the distance in 
the y direction with the distance in the x direction. If the x distance 
is greater, then the code will step x in increments of 1 from XI to 
X2. For each x step, a "delta" value of y is added to the current Y1 
value. The DY value is derived from the y distance divided by the 
number of steps in x. If the x distance is less than the y distance, 
then the code will step y in increments of 1 from Y1 to Y2 and vary 
XI by adding a delta x. In the process of adding DX or DY, it is 
possible to go over Yl=47 or Xl=127. However, as we saw earlier, 
an x or y value that is fractionally over is truncated. Given sufficient 
precision, XI and Y1 will never be equal to or greater than 128 or 
48, respectively. 

A different situation exists when the value of XI or Y1 decreases, 
because the delta is fractional, XI or Y1 may become very small 
negative numbers, because of this, a check is made for negative XI 
or ^ 1, and the variable is set to 0 if a negative value has been com
puted. The negative value will only occur on the last point to be 
S E T  a n d  o n l y  o n  t h e  e x t r e m e  t o p  ( Y )  o r  l e f t  ( X ) .  

A test driver for the subroutine in the code Irelow will allow you 
to input XI, Yl, X2, Y2 values to exercise the subroutine. 

The subroutine may be used as the lines are required, or it may 
be used to draw an initial pattern by setting up values in a DATA 
statement or array and by READing the values with n call to the 
subroutine for each set of four as shown below. A convenient way 
to detect the end of the data is by an illegal set of points such as 

i n o  d a t a  2 0 . 2 0 . 3 0 . 2 0  
200 DATA 30. 20. 10.30 
300 DATA 30.30.20.30 
400 DATA 20.30.20.20 
300 DATA 20.20.30.30 
600 DATA 20.30.30.20 
700 DATA -Ii-J.-!.-I 

1. "I 

730 CLS 
000 READ X1.VI.X2.Y2 
700 IF XI--1 GOTO 900 
1000 GOSUB 10000 
1100 GOTO 000 
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CHAPTER 6 

Tables, Chessboards, and the 
Fourth Dimension 

In this chapter and the next, we'll be talking about how to orga
nize data. In the jargon of computer science, organization of data 
is treated under the name data structures. The three data structures 
we'll discuss in this chapter are lists, tables, and arrays. In the next 
chapter, we'll talk about how to maintain the order of tables and 
arrays, and about a third type of data structure called a linked list. 
We 11 limit our discussion to those data structures used commonly 
in BASIC programs and forget about such esoteric structures as the 
Flying Buttress Array, the Catenary String, and the Starboard List, 
all of which cause computer science students many sleepless mid
term nights. 

1 he simplest form of a data structure is a list of items. A list rep
resents a set of data that is probably related in some fashion. An ex
ample might be a shopping list for the grocery store: 

1 lb butter 
1 qt milk 
3 sm tomatoes 
1 can orange juice 
1 qt oil 
1 can peas 

All the items are related except one. Which one? Exactly-the 3 sm 
tomatoes are the only items that are not packaged! This only points 
to the fact that lists can include any number of related or non-related 
items at the user's discretion. 
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BASIC DATA Lists 

We have a built-in provision in Level II BASIC for creating a list. 
I ho DA IA statement allows us to build a list as long as the memory 
we have available. The DATA statements below build our list. 

10 DATA *1 LB. BUTTER* 
12 DATA * 1 or MII K* 
1A DATA *3 SM TOMATOES* 
16 DATA *1 CAN ORANGE JUICE* 
18 DATA *1 OT OIL* 
20 DATA * t CAN PEAS* 

We can read the list by performing a READ command. The code 
shown below continuously READs the list we established in state
ments 10-20 until it runs out of data. At that point, the BASIC inter
preter, having looked throughout the current BASIC program un
successfully for more DATA statements, prints the message "OD 

100 



ITEM 1 
2 
3 

Figure 6-1. Example of DATA list. 4 
5 
6 
7 

ERROR IN 1000". In the case of this list, each string (such as "1 LB 
BUTTER") was one item in the list. Every time a READ was per
formed, the next item from the list was read. 
1000 READ A$ 
1010 GOTO 1000 

We can have any number of items in the DATA list as long as we 
either have a data statement for each one or separate the items by 
commas. The types of items in the list can also be mixed—we can 
intersperse strings with numeric data of several types. BASIC auto
matically makes each entry a separate item. The statements 
100 DATA "1 LB BUTTER",5,3.7,"1 QT OIL" 
110 DATA 377258,.005,2 

would create a list of 7 items arranged as shown in Figure 6-1. 
Every time a READ was performed, the next item in the list would 
be read. Of course, we could not have tried reading a string with a 
"100 READ A". If we had, an error would have resulted. 

We mentioned earlier that the list could be as long as the mem
ory available. When using DATA statements, there is only one list. 
And that list includes every DATA statement in the current program, 
the same way that the Lord High Executioner's list in the Mikado 
included all of his enemies. 

DATA "PEOPLE WHO HAVE FLABBY HANDS AND IRRITATING LAUGHS" 
DATA "PERSONS WHO IN SHAKING HANDS WITH YOU SHAKE HANDS 

WITH YOU LIKE THAT" 
DATA "THE BANJO SERENADER AND THE OTHERS OF HIS RACE" 

When we have three DATA statements in a 2000 statement pro
gram, one at the beginning, one at the middle, and one at the end, 
such as 
100 DATA 0,1,1,2,3,5,8 

1200 DATA 13,21,34,55 

2000 DATA 89,144,233 

"1 LB BUTTER" 
5 

3.7 
"1 QT OIL" 

377258 
.005 
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100 CLS 'clear screen 
110 PRINT "height vi weight" 'print t it le 
120 INPUT "input height in inches"SIH ' input height 
130 IF IH<50 OR IHV72 GOTO 120 ' try again i f  o f f  scale 
l ' i0 RESTORE ' r e s e t  P o i n t e r  
150 READ HT.WT 'read htrwt from l ist 
160 IF HT«IH PRINT "FOR HEIGHT OF"1HTI"MEIGUT SHOULD PE'iWT ELSE GOTO 150 
170 GOTO 120 "go for nevt ht 
100 DATA 50.65.51,67.52,75.53.88.55,95,56.101.57.106.58,111 
190 DATA 59.120.60.125.61.131.62.136,63,146.66,148.65.156,66.161 
200 DATA 67.167.68, 172.69,180,70, 184.71.253.72. 197 

Figure C-2. DATA list program. 

then we've created a fourteen-element list of items. The data state
ments can be put anywhere; the BASIC interpreter will skip over 
them in the normal flow of execution and simply note where they 
are and that they constitute the one and only data list. 

READs and RESTORES 

Every time a READ is executed, another item in the data list is 
read, and an imaginary pointer is adjusted to point to the next 
DATA item. Actually, the pointer is not so imaginary. There is a 
pointer used in the BASIC interpreter, but it is not accessible to 
John Q. Programmer, except via the RESTORE statement. The 
RESTORE resets the pointer to the beginning of the DATA list. 
Any time we want to start at the beginning of the DATA list, we 
can take advantage of the RESTORE. 

A good example is shown in Figure 6-2, where we have a program 
to access the DATA list to find the average weight for a given height. 
In this case, the data is arranged in groups of two, height (in inches) 
followed by average weight (in pounds). Every READ reads two 
items, height into HT and weight into WT. When the height matches 
a given input height, then the weight is printed. A RESTORE then 
resets the pointer in preparation for the next input. Note that a mul
tiple READ has been done with two variables. We can read as many 
variables as we can pack into each READ statement. 

Mixing It Up 

Having one huge DATA list of mixed variables is a mixed blessing. 
It's a convenient way to establish a long list of constant data, but it 
does not allow an easy way to set up independent data lists. If we 
read three different sets of data, as in this example, 
100 REM LIST OF TELEPHONE NUMOFRS 
110 DATA "555-1212"."999-8000-."999-1234" 

1200 REM LIST OF DISTANCES IN MILES 
1210 DATA 1. 2,3.6,5.7,9.2,11.8 

t 
1030 REM LIST OF LISTS 
1040 DATA "STARBOARD"."PORT"."BOTTOMS UP" 
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then we wind up with one integrated list of 11 items. How do we 
locate each group conveniently? We could be aware of the number 
of items in each group. That way, to get to the third group, the list 
of lists, we could execute 

' reset pointer 
r - 's e t  u P for f irst group 
I  'read and throw away 

*  1  O O P  

E'  setup for 2nd 9 R O U R  
' read and throw away 
'  loop 

2000 RESTORE 
2100 FOR 1=0 TO 2 
2200 READ A* 
2300 NEXT 
2400 FOR 1=0 TO 4 
2500 READ A 
2600 NEXT 
2700 REM WHEW FINALLY MADE I f  

This code bypasses the first two groups by READing and discarding 
DATA items. Two separate READs must be made because the first 
group is a string list while the second group is a numeric list. 

Another way to find the proper group is to insert a unique code at 
the beginning of each group and then search for that code to set the 
pointer to the proper data. This technique is shown in Figure 6-3, 

1000 DATA -1 
1010 DATA 23.5.6.78. 1 15.5.4.6.£39. 101 
1020 DATA -2 
1030 DATA 5» 6i7» 45» 666177189»17*3 
1040 DATA —3 
1050 DATA 3i4i5.6i7.8»3.01i5 
1060 RESTORE 'reset data pointer 
1070 READ A 'search for -2 
1080 IF AO—2 GOTO 1070 'read again i f  not —2 
1090 REM NOW POSITIONED AT SECOND LIST 

Figure 6-3. Using multiple DATA sets. 

where a search is made for —2, which is the second group of data. 
When —2 is found, the data in the second group can be accessed. 
Obviously, a —2 cannot be a DATA item anywhere in the DATA 
list, nor can any of the other values that are used for codes that mark 
the position. Clearly, we have reached the end of our list in noting 
the usefulness of the DATA, READ, and RESTORE commands. 
Let's move on to more useful data structures, but remember the 
DATA list as a powerful data structure for short programs, and, as 
we shall see, a means for initializing data in another data structure 
called an array. 

Array of Hope 

One of the more powerful data structures we have in Level II 
BASIC is the array. What's an array? Thought you'd never ask . . . 
an array is an ordered list. The list may be one-dimensional, two-
dimensional, three-dimensional, or many-dimensional. The number 
of dimensions relates to how data in the list is accessed or obtained. 
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One-Dimensional Arrays 

A good example of a one-dimensional array is a shopping list. 
Wait a minute ... didn't we go through this some other time? I have 
a feeling of deja vu. . . . Actually, the shopping list presented earlier 
under DATA statements is a one-dimensional array, as are the other 
examples of DATA statements. The primary differences, however, 
are that the DATA statement produced a list of constant data that 
could not be modified and could not be easily accessed except in 
sequential fashion, starting from the beginning. A one-dimensional 
array, on the other hand, may be easily modified and accessed. 

As an illustration of a one-dimensional array, let's set up an array 
called A(. (AGe) that will hold the ages of 100 people. The equiva
lent DATA statement approach would be 

100 DATA 33,50,12,2,7,105,969 

where the ages are known beforehand. (We have included Methu
selah s age for contrast.) Using a one-dimensional array, though, we 
reserve space for the 100 ages by a DIMension statement. 

100 DIM AG(99) 

Note that the DIM statement specified an upper limit of 99. The 
number of items, or elements, in the array is 0-99 or 100. The num
ber specified in the DIMension statement is always one less than 
the number of elements in the array. 

When the BASIC interpreter encounters a DIM statement such 
as the one above, it reserves, or allocates, an area in BAM memory 
for anay AC. made up of 100 elements. What is in the elements? 
Initially, zeroes. It is up to the programmer to fill it with meaningful 
data. ( I hats usually the hardest part of programming.) 

The array is represented in Figure 6-4. It is stored in BAM mem
ory as a contiguous (consecutive) block, with the first clement (0) 
at the start (lowest BAM) location, and the last element at the 
highest BAM location. Now lets fill in those elements with mean
ingful data. . . . 

I o access any element in the array, we simply give the name of 
the array, AG, and a number from 0 to 99 representing the array 
element. Of course, the number may be represented by a variable 
or expression, also. To INPUT a number of ages and fill in the array, 
for example, we can execute the code shown below. 
3000 CIS 
.11 HO I 0 
3 . 0 0  I N P U T  T N T C R  A G E * ( A  
3 3 0 0  A G < I ) » A  
34P0 I.J+I 
3*>00 GiTO 370(1 

rl*«r icr ».r, 
ind*> '0 
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LOWEST 
RAM ADDRESS AG(0) 

AG(1) 
AG(2) 

HIGHEST 
RAM ADDRESS AG(99) 

. 100 ELEMENTS 
OF AG(e) ARRAY 

Figure 6-4. Example of one-dimensional array. 

This code will fill array AG forever, especially since there is no 
provision for ending the INPUT process. Initially, I is set to 0, and 
the first entry is made by AG(0)=A after A has been set equal to 
the INPUT value. Each time through the loop, I is incremented by 
one to point to the next element of the array. If more than 100 en
tries are made, a "BS ERROR" or "bad subscript" results. 

To access any element of the array, all that's necessary is to specify 
AG(n), where n is any value 0 to 99. To find the 50th age, for exam
ple, we may say 

100 B —AG(49) 'get 50th age 

Look It Up in the Index 

Arrays group similar items of data, and the elements of one-dimen
sional data are accessed using an index value. In the case of the age 
array above, the index of 0-99 represented the number of the age 
entry. The first entry was at AG(0), the next at AG(1), and so forth. 
This positional index is always maintained in arrays and makes them 
much more powerful than DATA lists, where data is accessed in se
quential fashion from beginning to end. In the age array above, we 
stoied the ages in sequential fashion as they were received. In many 
cases, however, the position in the array is related to other than 
chronological order. Suppose that we had a 100-element one-dimen
sional array representing ages from 0 to 99 years-DIM AG (99) 
(you old-timers don t get riled up, now!). We could tabulate a count 
of ages by incrementing the proper array element (corresponding to 
an age) quite easily as shown below. 
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4000 CIS *cle«r fcreen 
4100 INPUT "ENTER AGE"«A r'input «9p 
4200 AG(A)=AG(A)•1 I 'increment a9e count 
4300 GOTO 4100 1oop 

Here again, no check is made for a terminating condition. Also, no 
check is made for an out-of-range subscript, although the BASIC 
interpreter will give us a "BS" error if one is input. 

The idea of indexing is a very useful one, indeed. It allows re
lated data to be retrieved from a number of different arrays. Sup
pose, for example, that we have several one-dimensional arrays rep
resenting mailing-list data. An array called LN$ holds the last names, 
one called FR$ holds the first names, one called SA$ holds the street 
addresses, one called CT$ holds the cities, one called ST$ repre
sents the states, and one called ZP$ holds the zip codes. This arrange
ment is shown in Figure 6-5. If we require room for 100 names in the 
mailing list, we can allocate space by the statements 

3000 CLEAR 3000 'elm for strin9« 
9100 DIM IN«<99> * I«St «rrit 
J20B DIM rRt<99> "fir it n«»e *rr«r 
9300 DIM BA41991 'street eddreif trrtv 
9400 DIM CT • <99> 'city address array 
3900 DIM BT»<99> 'stata address arrav 3A00 DIM ZP4 (99) ' m t .  r |p arrav 

By splitting up the data on each entry in the mailing list, we've 
accomplished several things. First of all, we've made it easier to 
access each element of an entry in the mailing list. If we want to 
obtain the city, for example, we don't have to search a large string 
such as "PASCAL,BLAISE,123SORBONNE,PARIS,FRANCE,1823" 
to find "PARIS". Instead, we can simply pick up "PARIS" from the 
CT$ array with the proper index such as CT$(52). Secondly, we've 
made the speed of access faster. String manipulation is one of the 
slowest parts of any software. To anyone who has spent hours watch
ing a mailing-list sort only to have the line power go off about 3.2 
seconds from the end of the task, this is a large benefit. To print the 
mailing-list label, we can do 

6000 I PRINT fRKIM" " U N4 ( I > 'print flrstrlast near# 
A100 ll'RINT SA»<I> 'pRIftt llrtrl address 
6200 LPRINT CT»1I)I" "ISTtllH* "I7P4III 'print e11vr»tate.f i P 

Tables and the Boarding House Reach 

This is probably a good time to talk about tables. Tables are an
other type of data structure closely related to one-dimensional ar
rays. A good example of a table is a shopping list. (What? You say 
we've used this example eight times already?!) A table is, like a 
one-dimensional array, a collection of data arranged in convenient 
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Figure G-5. Related one-dimensional arrays. 
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form. While we tend to think of arrays as being a list of very similar 
data (such as "states"), a table may have sub-groupings of data for 
each entry, and a master key. 

Let's take the mailing-list example and build a table to hold mail
ing-list entries. (Excuse me while I get a programmer's plane and 
some binary glue. . . .) All right, a typical table is shown in Fig
ure 6-6. Each table is made up of entries. An entry is usually a fixed 
length—so many characters or bytes. Each entry may be broken 

TABLE 

CHARACTER 0 

CHARACTER 16 

CHARACTER 24 

CHARACTER 40 

CHARACTER 56 

FIRST TABLE ENTRY 
SECOND TABLE ENTRY 

THIRD TABLE ENTRY 

LAST TABLE ENTRY 

TYPICAL ENTRY 

LAST NAME 
(16 CHARACTERS) 

FIRST NAME 
(8 CHARACTERS) 

STREET 
(16 CHARACTERS) 

CITY 
(16 CHARACTERS) 

STATE 
(2) 

ZIP 
(5 CHARACTERS) 

FIELD 1 

FIELD 2 

FIELD 3 

FIELD 4 

FIELDS 5.6 

72 BYTES/ 
CHARACTERS/ 

ENTRY 

/ \ 
UNUSED(l) CHARACTER 60 

Figure 6-6. Table structure. 
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down into fields, each field representing a piece of data associated 
with the entry. One (or more) of the fields may be a key, which is 
the data item that is searched for. In this mailing-list example, the 
obvious key is last name, and related fields are first name, street, 
city, state, and zip code. Each field keeps the same relative position 
in the entry. 

One way to build the table is to use an array. Each element of 
the array will hold one entry, and the entire array will comprise the 
table. The array may be "initialized" to the standard length of 72 
bytes per entry (element) by a loop that sets up each element with 
dummy characters. 

90 CLEAR 8000 
100 DIM A$(99) '100 entries 
110 FOR 1 = 0 TO 99 r~ • set up loop 
120 A$(l) = STRING$(72,"*") ' fill with dummy characters 
130 NEXT I |_ ' |oop 

Now we can use the string operators (LEFT$, MID$, etc.) to access 
the fields within each entry. If, for example, we wanted to change 
the street for the 13th entry in the table, we could perform the fol
lowing code 

1000 A$(12) = LEFTS (A$(12). 24) + "NEW STREET **•*•*» + MID$ (A$(12MU2) 

Note that every field must be padded out so that the entry remains 
at a length of 72 bytes to simplify access of fields in the general case. 

Tables may be fixed length or variable length. Fixed-length tables 
have a constant number of entries,- while variable-length tables have 
an open-ended number of entries. To find the start of any entry, we 
compute the entry number times the length of each entry to find a 
displacement, which is then used as a starting point to access the 
fields. Suppose that we have a fixed entry length of 72 characters 
per entry, and that 16 characters have been allocated to the last-
name field, as shown in Figure 6-7. To find the location of the first 
name of the 51st entry, we would find the displacement of the en
try by 

50 X 72 = 3600 

and then add 16 to point to the first name. 
Cumbersome? Yes, and it's more difficult to work with tables in 

BASIC than other software levels such as assembly level since it's 
hard to keep things a fixed length. Bear in mind, though, that this 
type of data structure can be used when each entry can be made to 
be a fixed length and may prove to be useful some cold, dark night 
when you're bored with arrays and DATA lists. 
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ENTRY 0 
ENTRY 1 

ENTRY 50 

ENTRY LAST — 1 
LAST ENTRY 

DISPLACEMENT = 50 ENTRIES* 
72 CHARACTERS/ENTRY = 3600 

LAST NAME 
(16) 

FIRST NAME 
(8) 

STREET 
(16) 

CITY 
(16) 

STATE 
(2) 1 ZIP 

(5) 

ADD 16 TO 
POINT TO FIRST 

NAME = 3616 

Figure 6-7. Table use. 

Two Dimensions and Beyond 

One-dimensional arrays are pretty easy to visualize. So are two-
dimensional arrays such as a chess or checkerboard, as Alice found 
out in Through the Looking Glass (Figure 6-8): 

. . and a most curious country it was. There were a number of 
tiny brooks running straight across it from side to side, and the 
ground between was divided up into squares by a number of 
little green hedges, that reached from brook to brook. . . 
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Figure 6-8. A two-dimensional array. 

Two-dimensional arrays can be used to represent any two-dimen
sional condition, such as chessboards, a matrix of a screen or printer 
display, or a point on a graph. 

Taking the case of a chessboard, for example, we have a square 
configuration of 8 by 8 positions, for a total of 64 squares. We could 
use a one-dimensional array of 64 elements, numbered 0 through 63, 
each one corresponding to one of the 64 squares. However, in this 
case it is much simpler to relate a two-dimensional array to the 
chessboard as shown in Figure 6-9. 

Each of the squares is referenced by two values, representing the 
row and column, as shown in the figure. As the first element of the 
array is always numbered 0," the first square of the chessboard will 
be row 0 and column 0. We could use an order of "row, column" or 
column, row ; the choice is completely arbitrary. Whichever one 

we use, of course, must be maintained for any reference to the ar
ray. We will use a row, column orientation so that the upper left 
square is designated row 0, column 0, the next square (knight) is 
row 0, column 1, and so forth. 

Any time we want to refer to a particular position on the chess
board, we can find its row, column notation and then use the two 
values to reference a two-dimensional array. 

The array in this case is defined by 
100 DIM A$(7,7) 

Don t forget that in defining the array the value in the parentheses 
repi esents the maximum value of the array and not the number of 
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ROW 0 
COLUMN 0 

ROW 0 
COLUMN 1 

\ . 0 
COLUMNS 
3 4 

ROW 0 
COLUMN 7 

7 

c/> 
o 

E ft Jt# •A % H 
± 1 11 11 ± i 

ft ft ft ft ft ft ft 1 
S & A# a 

ROW 7 
COLUMN 0 

Figure 6-9. Two-dimensional array for chessboard. 

ROW 7 
COLUMN 7 

elements. In this case, the array is 8 by 8, but the "last" element is 
referenced by (7,7). 

Having defined the chessboard array, we can now reference any 
position by two values, row and column. To "initialize" the array 
to starting chess positions, we can use chess notation. 

200 DIM A$(0,0) = "BQR" 
210 DIM A$(0,1) = "BQKT" 
220 DIM A$(0.2) = "BQB" 

I 
I 
I 
I 
\ 

etc. 

'block queen's rook 
'block queen's knight 
'block queen's bishop 
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ir> 
rv CT> 

Q ̂  '  J  I I I  % m 
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Figure 6-10. Two-dimensional array for inventory. 



Of course, a two-dimensional or other size array does not need to 
have a "physical" counterpart such as a chessboard. We can use 
arrays to represent more abstract variables. Suppose that we have 
an inventory of 100 parts, each with a part number of 0 through 99. 
We can use a two-dimensional array to order the parts based on part 
number and status. Well let the second dimension he three values 
representing number on hand, number on order, and number re
quested, as shown in Figure 6-10. 1 he DlNlcnsion statement for this 
array is 
100 DIM A(99,2) 

where 99 represents the 100 parts and 2 represents the three "status" 
indices of 0 for number on hand, 1 for number on order, and 2 for 
number requested. 

To find the number on hand for part number 55 (a left-hand-
threaded blidgit), we'd use 

0 1 2 3 4 5 6 7 
20 COLUMNS (X) 

9 
on 1.0 19.0 
0.1 

— — 

019 1919 

2 
3 

4 

5 

6 

7 

e 9 
£ 110 
s 11 

12 
13 
14 

15 

16 
17 

18 

19 

Figure 6-11. Life two-dimensional array. 
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200 B —A(55,0) 'find number on hand 

while 

210 B = A(55,1) 'find number on order 

would find the number on order, and 

220 B = A(55,2) 'find number requested 

would find the number requested. 
One of the more fascinating numerical games to appear in recent 

years is the game of Life. Life is very simple in concept but (as they 
say, ominously) has far-reaching implications. Life is played on an 
infinite two-dimensional array checkerboard. Since it's rather hard 
to fit an infinite array into a finite space (even in 48K), we'll limit 
it to an array about 20 by 20. Each cell of the array can be defined 
by a row and a column, as shown in Figure 6-11. 

The rules of the game of Life are: We start off with some arbi
trary pattern on the array, such as the one shown in Figure 6-12. 

INITIAL 
PATTERN 

Z_ 
"DEAD" CELLS 

ARE BLANK 

"LIVING' 
CELLS 

Figure 6-12. Life example. 

Each cell is living (on) or dead (off). On the next generation, 
whether a cell lives or dies depends on its neighbors. If it has fewer 
than two neighbors, the cell dies from loneliness. If it has 4, 5, 6, 7, 
or 8 neighbors, the cell dies from overcrowded conditions. If a cell 
has 2 or 3 neighbors, it survives to the next generation. In addition, 
if any cell is dead and the number of neighbors is 3, then a new cell 
is born on the next generation. These rules are shown in Figure 6-13. 

The game proceeds from generation to generation, and it's fasci
nating to watch whole colonies appear, die, spawn new patterns—in 
general to watch a process analogous to . . . well . . . life! (Based on 
its interest, since 1975 Life has probably burned up hundreds of 
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EXAMPLE 

•  •  •  •  •  •  
•  • •  • •  • •  •  •  

• • • • • 
GENERATION ! GENERATION 2 GENERATION 3 GENERATION 4 

RULES 

(0) 
• EVERY CELL WITH NO NEIGHBORS DIES ON NEXT GENERATION FROM LONELINESS 

(1) (1) 
• • EVERY CELL WITH ONLY ONE NEIGHBOR DIES 

(2) (21 
• • 

(2) A CELL WITH TWO NEIGHBORS SURVIVES. 

(3) (3) 
• • 
(3) (3) A CELL WITH THREE NEIGHBORS SURVIVES 
• • 

(3) (5) (3) 
• • • 
(5) (7| (4| 
• • • A CELL WITH FOUR OR MORE NEIGHBORS DIES FROM OVERCROWDING 
(3) (4) 
• • 
(1) (2) (1) 
• • • 

(3) 
O 

AN EMPTY CELL WITH EXACTLY THREE NEIGHBORS IS A BIRTH CELL 
A NEW BIRTH OCCURS ON THE NEXT GENERATION 

Figure 6-13. Life rules. 

millions of dollars worth of computer time on expensive computers.) 
If you're interested in finding out more about Life (and there are 
many subtleties), you can find material in hobbyist computer maga
zines and back issues of Scientific American. 

To set up our Life game, we'll use two arrays, one for the current 
generation, and one for the next. This is a slow way to implement 
the game, but it will allow us to do some manipulation of two-dimen
sional arrays. The program is shown in Figure 6-14. (How 'bout an 
exercise for you: Speed up the operation 100-fold.) 

The arrays are called A and B and are defined by the DIMension 
statements DIM A(21,21) and DIM B( 19,19). A is an array of 484 
elements, 22 on a side, while B is an array of 400 elements, 20 on a 
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1 0  C L S  
2 0  D I M  A ( 2 1 »  2 1 )  
3 0  D I M  B < 1 9 * 1 9 )  
4 0  G E = 1  
1 0 0  I N P U T  X *  Y  
1 1 0  I F  X = - l  G O T O  5 0 0  
1 2 0  B ( X i Y ) = 1  
1 3 0  G O T O  1 0 0  
2 0 0  F O R  X = 0  T O  1 9  
2 1 0  F O R  Y = 0  T O  1 9  
2 2 0  A ( X + l i Y + l ) = B ( X . Y )  
2 3 0  B ( X i Y ) = 0  
2 4 0  N E X T  Y  
2 5 0  N E X T  X  
3 0 0  F O R  X ^ 0  T O  1 9  
3 1 0  F O R  Y = 0  T O  1 9  
3 2 0  N O = 0  
3 3 0  I F  A < X i Y ) = l  N O = N O + l  
3 4 0  I F  A ( X + 1 . Y ) = 1  N O = N O + l  
3 5 0  I F  A ( X + 2 *  Y )  =  1  N O = N O + 1  
3 6 0  I F  A ( X . Y + 1 ) = 1  N O = N O + l  
3 7 0  I F  A  <  X  + 2 1 Y  + 1 >  N O = N O + l  
3 8 0  I F  A ( X * Y + 2 ) = 1  N O - N O + 1  
3 9 0  I F  A ( X  +  l »  Y + 2 )  =  1  N O = N O + l  
4 0 0  I F  A ( X + 2 i Y + 2 ) = 1  N O = N O + l  
4 1 0  I F  N O = 0  O R  N O = l  B ( X , Y ) = 0  
4 2 0  I F  N O = 4  O R  N O = 5  O R  N O = 6  O R  N O  
4 3 0  I F  N 0 = 2  B ( X »  Y ) - A  < X  +  1 * Y + 1 )  
4 4 0  I F  N O = 3  B ( X . Y ) = 1  
4 5 0  N E X T  Y  
4 6 0  N E X T  X  
5 0 0  P R I N T  3  B 9 6 . " G E N E R A T I O N " ! G E  
5 1 0  F O R  X = 0  T O  1 9  
5 2 0  F O R  Y = 0  T O  1 9  
5 3 0  I F  B ( X . Y > = 1  S E T  ( X + 5 4 . Y + 1 4 )  E L  
5 4 0  N E X T  Y  
5 5 0  N E X T  X  
5 6 0  G E = 6 E + 1  
5 7 0  G O T O  2 0 0  

[ 

' c l e a r  s c r e e n  
' s e t u p  l a r g e  a r r a y  
' s e t u p  w o r k i n g  a r r a y  
' i n i t i a l i z e  g e n e r a t i o n  

' i n p u t  i n i t i a l  p a t t e r n  
' g o  i f  i n p u t  f i n i s h e d  
' s e t  c e l l  
' g o  f o r  n e x t  i n p u t  
' h o r i z o n t a l  l o o p  
r  ' v e r t i c a l  l o o p  

' a d j u s t  f o r  a r r a y  s i z e s  
I  ' z e r o  w o r k i n g  a r r a y  

' loop 
' l o o p  _ _ _ _ _ _ _  
' l o o p  f o r  c o m p u t a t i o n  

" " ' h o r i z  a n d  v e r t  
i n  i t  #  o f  n e i g h b o r s  

PART 1 
PART 2 

PART 3 

= 7  O R  N O - 8  B ( X *  Y ) = 0  

L , L  1  O O P  • ' l o o p  

r' s e t u p  f o r  d i s p l a y  
f ' t w o  n e s t e d  1  C O P S  

S E  R E S E T  < X + 5 4 t Y + 1 4 )  
' loop 

' c o n t i n u e  w i t h  l o o p  
I  ' b u m p  9 e n e r a t i o N  c o u n t  

' c o n t i n u e  w i t h  n e x t  9 e n  

PART 4 

PART 5 

Figure 6-14. Life program. 

side. The periphery of A is never used and always contains zeroes. 
A always contains the current generation, while B contains the next 
generation. The program is made up of five parts. Part 1 initializes 
the two arrays and sets variable GE to 1. GE is the "generation" 
counter and increments by 1 for each generation. 

Part 2 allows the user to input an initial pattern. A good one to 
try is the "R pentomino" pattern of 10,11; 11,10; 11,11; 11,12; 12,10. 
The form of the input is x,y, where x is the horizontal coordinate 
for the array of 0 to 19, and y is the vertical coordinate of 0 to 19. 
Inputting a —1,0 terminates the input. After inputting the initial 
data, array B has been set to a one for every cell specified. A GOTO 
part 5 prints array B by displaying it in the center of the screen. As 
the screen center is at x=64 and y=24, the upper left-hand corner of 
the array area will be at x=54, y=14. The cells in the B array are 
converted to screen coordinates by the SET and RESET commands 
which look at every element of the B array and either set or reset 
a screen point. 

Normally, the flow is part 3, part 4, part 5, and back to part 3 
again. Part 3 transfers the last generation in the B array to the A 
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' NO = NUMBER OF NEIGHBORS ' 

• 

® 
CIRCLED CELL HAS NEIGHBOR 

• ® 
• 

CIRCLED CELL HAS 2 NEIGHBORS 

• • 

® • 
CIRCLED CELL HAS 3 NEIGHBORS 

• • • 

• ® 
CIRCLED CELL HAS 4 NEIGHBORS 

• • • 

• ® • 
CIRCLED CELL HAS 5 NEIGHBORS 

• • • 

• ® 
• 

• CIRCLED CELL HAS 6 NEIGHBORS 

• • • 

• ® • CIRCLED CELL HAS 7 NEIGHBORS 

• • 

• • • 

• ® • CIRCLED CELL HAS 8 NEIGHBORS (MAXIMUM) 

• • • 

Figure 6-15. Life computation. 
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array. The boundary of the A array is not used, so the A array really 
starts at x=I, y=l. 

Part 4 is the heart of the program that computes the next gener
ation. Every cell in the A array now contains the last generation. 
The program looks at every cell in the active area of A and computes 
the number of neighboring cells (NO), as shown in Figure 6-15. 
Each cell in B is set according to the number of neighbors in the 
corresponding A cell, according to the Life rules. If NO is 2, the 
B cell is set to the same value as the A cell. If NO is 3, a "birth" 
occurs in the B cell. At the end of the computation in part 4, part 5 
is entered so that the B array can be printed. Parts 3 through 5 are 
then repeated for the next generation. 

The Life program is a good exercise in array manipulations. We 
actually translated one array (B) to a new position in the A array. 
In addition, we converted the B array to a third two-dimensional ar-
ray, the screen. Note that the screen display is really a "hardware" 
array of 128 by 48 points when we are in the graphics mode. 

This version of Life could be speeded up considerably by using 
only one array and by scanning for empty "horizontal" and "vertical" 
lines. (Oops—didn't mean to give away any secrets for your exercise. 

We ve seen one-dimensional arrays and two-dimensional arrays, 
but how about three dimensions and above? Level II BASIC permits 
any dimension of array, and in fact multi-dimensional arrays can 
easily be used for mathematical problems such as computing three-
dimensional vectors. For non-mathematical processing, however, it 
does get rather hard to visualize arrays above three dimensions. The 
physical appearance of one-, two-, and three-dimensional arrays is 
shown in Figure 6-16, along with their corresponding DIMension 
statements. 

About the only restriction on the use of arrays is their size. Large 
areas will gobble up a great deal of memory in a very short time, 
especially if the array variables are types that occupy a large number 
of bytes. A three-dimensional array that is 20 by 20 by 20 and uses 
integer variables DIM A% (19, 19, 19), for example, will use 20°20<> 

20°2 or 16000 bytes for the body of the array plus 12 more for pa
rameters to describe the array. The same array using single-precision 
variables (the default variable type) would be twice as large—32,012 
bytes! ^ou might want to investigate the storage requirements of ar
rays by changing the DIMension statement in the program below 
and RUNning the program with various DIMensions. 

100 A = MEM 

110 DIM A%(19,19,19) 
120 PRINT "ARRAY USED ";A-MEM;" BYTES" 
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DIM A(8) 9 9 ELEMENTS 

ONE DIMENSIONAL 

DIM A(3.6) 4 28 ELEMENTS 

TWO DIMENSIONAL 

DIM A(4,6.1) 

5 

//////A 
70 ELEMENTS 

7 
THREE DIMENSIONAL 

higure 6-16. Three common array models. 

Initializing Arrays 

Early in this chapter, we mentioned that arrays could be initialize 
by using data from I)A I A lists. This is an excellent usage of bot 
DATA statements and arrays and is quite common. The DATA stat< 
ments are used to hold all of the initial data for program arrays i 
any convenient order. One massive HEAD operation at the beginnin 
of the program goes through the DATA list and initializes all array 
in the program that require a starting set of values. Since this is don 
only at the beginning of the program, the initialization process ma 
be as complicated as required; thereafter, the arrays hold the prope 
data and may be accessed in their normal "random-access" fashior 
Many programs from this point on will illustrate this procedure. 
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CHAPTER 7 

The Search for Better Data 
and Sorting It All Out 

In this chapter, we'll continue the saga of the "Data Structure 
Conspiracy. When ice last left Ernie List (mild-mannered pro
grammer known only to a select few as -ADATAMANS), he was 
fighting his way out of a diabolical matrix constructed by his arch 
enemy, Dr. Dimension. 

In today s episode we'll follow the adventures of Dataman as he 
s e a r c h e s  f o r  t h e  m i s s i n g  d a t a  a n d  t h e n  a t t e m p t s  t o  s o r t  i t  a l l  o u t .  .  .  

Although sometimes one wishes there was a real Dataman to or
ganize and search for data, the techniques discussed in this chapter 
should help define the ways in which data is organized and accessed. 

Unordered Data—No Order At All 

One way to order data, of course, is to not order it at all. The data 
is simply dumped into an array as it comes in. There are certain 
advantages to this if the number of data elements is small or if the 
data is actually ordered on the basis of appearance. If the number 
of data elements is large, however, it takes quite a length of time 
to find a particular data element. To illustrate data ordering, search
ing, sorting, and merging (sounds like a stock brokerage, eh?), we'll 
use the Standard data list shown in Table 7-1. This is simply a 
typical list of data that must be processed. Because much of the 
processing of this type involves alphanumeric data, we've made the 
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data string data, although numeric data could just as easily have 
been used. 

The order in Table 7-1 appears to be unordered, but there is a 
definite order—that of size. If we were working with a list according 
to size, then this indeed would be an ordered list. From the stand
point of an alphabetical list, however, the standard list is unordered. 

Table 7-1. "Standard" Data List Unordered 
ELECTRON (PART OF OUTPUT TO CASSETTE) 
LA SMOG (PARTICULATE MATTER) 
DIAMOND (20 POINTS) 
PEA (FROM 1971 POLITICAL FUND RAISING DINNER) 
MARBLE (SHOOTER) 
#3 BALL BEARING (FROM SANTE FE REEFER CAR) 
FABERGE EGG (FROM HERMITAGE) 
BASEBALL (PETE ROSE AUTOGRAPH) 
ORANGE (ONE OF THREE) 
BOWLING BALL (USED FOR PERFECT 150 GAME) 
BALLOON (WITH THE WORDS "THE TRS-80 IS A GAS") 
BALL OF STRING (IN BEDROOM) 
747 TIRE (SOUVENIR OF HAWAII TRIP) 
DOUGHNUT (SIGN AT DRIVE-IN) 
GOODYEAR BLIMP (WITH ANIMATED SIGN) 
PERISPHERE (AT 1939 WORLD'S FAIR) 
RAMA (IN CLARKE ORBIT) 
PHOBOS (ONE OF TWO) 
MARS (A PLUG FOR FUNDING) 
EARTH (IS THERE INTELLIGENT LIFE HERE?) 

Much of the time, we will be working with alphabetically ordered 
lists in data processing on the TRS-80, although, as we see from the 
example, the order may be based on parameters such as employee 
number, zip code, disk track and sector number, or others. 

In this chapter, we'll be comparing some of the different tech
niques used to find data and to order it, so it will be convenient for 
us to have a standard way of timing the techniques. Another word 
for the techniques or approaches to a problem is "Algorithm" (de
rived, believe it or not, from Al Khwarizm, a ninth century Arabic 
mathematician). Searching and sorting are some of the slowest pro
cesses in BASIC and other types of programming since the amount 
of data to be searched is usually very large and the search involves 
time-consuming (string) comparisons. With a standard list of 20 
items, however, the searches can't take too long. . . . 

The code below slows down the search or sort by a one-second 
delay between comparisons and displays the current item in the 
list being investigated. It is in the form of a subroutine which we'll 
call for different searching algorithms. 
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1 0 0  C L S  ' c l e a r  s c r e e n  
J ' ®  ' a r r a y  f o r  d a t a  
1 2 0  F O R  1 - 0  T O  1 9  p ' s e t u p  f o r  d a t a  t o  a r r a y  
1 3 0  R E A D  B t  I  ' r e a d  d a t a  i t e m  
1 4 0  A $ ( I ) = B $  I  ' m o v e  t o  a r r a y  
1 5 0  N E X T  I  ' c o n t i n u e  t i l  d o n e  
1 6 0  I N P U T  I T E M  F O R  S E A R C H " » C $  ' i n p u t  i t e m  t o  h e  f o u n d  
1 7 0  C L S  ' c l e a r  s c r e e n  
1 B 0  F O R  1 - 0  T O  9  ( - ' s e t u p  l o o p  f o r  d i s p l a y  
1 9 0  P R I N T  T A B ( 5 ) S l ! A « ( I M T A B ( A 0 ) S l + t 0 i A * ( I + 1 0 )  
2 0 0  N E X T  I  L . , o o p  
2 1 0  F O R  1 - 0  T O  1 9  p ' s e t u p  l o o p  f o r  s e a r c h  
2 2 0  6 0 S U B  2 0 0 0 0  
2 3 0  I F  C t = A t ( I >  G O T O  2 7 0  
2 4 0  N E X T  I  
2 5 0  P R I N T  3 8 9 6 i " I T E M  N O T  F O U N D  
2 6 0  G O T O  2 6 0  *  l o o p  h e r e  
2 7 0  P R I N T  3  8 9 6 , " I T E M  F O U N D  A T  " ! I : •  
2 0 0  G O T O  2 8 0  ' l o o p  h e r e  a f t e r -  f i n d  
3 0 0  D A T A  " E L E C T R O N " , " L A  S M O G " , " D I A M O N D " , " P E A " , " M A R B L E "  
3 1 0  D A T A  " 1 1 3  P A L L  B E A R I N G " , " F A B E R G E  E G G "  , " B A S E B A L L " ,  " O R A N G E " , "  P O W L  I N G  B A L L "  
3 2 0  D A T A  " B A L L O O N " , " B A L L  O F  S T R I N G " , " 7 4 7  T I  R E " , " D O U G H N U T " , " G O O D Y E A R  B L I M P "  
3 3 0  D A T A  " P E R I S P H E R E " , " R A M A " , " P H O B O S " , " M A R S " , " E A R T H "  
2 0 0 0 0  P R I N T  3  8 9 6 , " T E S T I N G  E N T R Y  It " ; I  ' p r i n t  t e s t  a c t i o n  
2 0 0 1 0  F O R  J ^ 0  T O  1 0 0  ' d e l a y  l o o p  
2 0 0 2 0  N E X T  J  , , 0 C l P  

2 0 0 3 0  R E T U R N  ' r e t u r n  t o  c a l l i n g  p r o g r a m  

Figure 7-1. Sequential search of unordered list. 

I O O P  

[' s e t u p  l o o p  f o r -  s e a  
' p r i n t  a c t i o n  
' g o  i f  f o u n d  
' n o t  f o u n d v c o n t i n u c  

20000 REM A HAS ENTRY # ' f o r  display 
20010 PRINT @ 896,"TESTING ENTRY # ";A 'message 
20020 FOR 1 = 0 TO 100 r 'timing loop 
20030 NEXT I |_ -conlinue 

20040 RETURN >return 

The time required to search for a given entry in an unordered list 
varies. At best, the sought entry is the first entry; at worst, it is the 
last entry of the list. The .average number of comparisons that must 
be made in an unordered list is Vz the number of entries in the list. 
In the case of our standard list, the average search would involve 
testing about ten entries. 

The code in Figure 7-1 initializes a string array A$ with the twenty 
string items (without comments) and then illustrates the searching 
process for an unordered list. 

The search time to find a particular data item is quite short for 
this; we even had to slow it down for a reasonable display. If the 
timing loop in the 20000 subroutine is taken out, however, you can 
see that about one second is required to search the entire unordered 
list for a data item that is not in the list. If the list is hundreds of 
items long, it is easy to extrapolate and calculate that a linear search 
of an unordered list may take several minutes. If we have a great 
deal of repetitive searching to be done, say searching for items in an 
inventory, the entire task could become very time-consuming. 

Ordered Lists 

It behooves us, then, to try to reduce the search time. The first 
step in doing this is to order the list we have to search. In the case 
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of much data that we process in TRS-80 BASIC, this order will be 
alphanumeric. Well, that's easy enough—we'll just alphabetize every
thing. But what about the "#" character and digits such as "7"? 

There is a definite order to all string data in Level II BASIC. Its 
order is defined by the ASCII character set used by Level II BASIC. 
The character set for character codes 32 through 127 is shown in 
Table 3-1. In an extraterrestial telephone directory ordered accord
ing to these codes, a plasma drive mechanic with the last name of 
%ZZK will appear before a Zarful-dog trainer by the name of 
&ANDEB-SON. Names prefixed by lower-case letters such as an 
itinerant Welshman by the name of "apRoberts" appear after "ZZZ 
Tailors." Blanks or spaces, when used, will appear before just about 
anything else; ROBERTS ED will come before ROBERTS,ED. It's 
somewhat important to know the order of things so that there are 
no unpleasant surprises when the computer generates a list based 
on the weights of the ASCII codes used. 

When data is according to lower-valued items first, it is ordered 
in ascending order. There is no reason that we cannot have other 
orders, such as descending order, but we'll use ascending order in 
all of the examples here. Table 7-2 gives our standard list in ascend
ing order. 

Table 7-2. "Standard" Data List Ordered 
#3 BALI BEARING 
747 TIRE 
BALL OF STRING 
BALLOON 
BASEBALL 
BOWLING BALL 
DIAMOND 
DOUGHNUT 
EARTH 
ELECTRON 
FABERGE EGG 
GOODYEAR BLIMP 
LA SMOG 
MARBLE 
MARS 
ORANGE 
PEA 
PERISPHERE 
PHOBOS 
RAMA 

Now that all is in order, how do we efficiently search an ordered 
list? Right away we're in better shape than with the unordered list 
when we're dealing with data items that are not in the list. In the 
case of the unordered list, we had to search the entire list to deter-
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mine that a data item was not in the list. For a twenty-item list this 
meant twenty comparisons. When we have an ordered list, we only 
need to search forward in the list until we find an item whose weight 
is greater than the item for which we are searching! This amounts 
to comparing the input string with the string from the list and end
ing the search if the list string < input string. 

The average search for an equal distribution of items in the list 
and items not in the list will be a search of about ten items. The 
average search through an unordered list will be about fifteen items. 
This linear search of an ordered list is shown in Figure 7-2. 

100 CLS 
ltd DIM A$<20) 
120 FOR 1=0 TO 19 (-'setup for data to array 
130 READ B* 
140 A*(1)=B* 
150 NEXT I  
160 INPUT "ITEM FOR SEARCH"!C* ' input item to he found 
170 CLS 'clear screen 
180 FOR 1=0 TO 9 ("'setup loop for display 
190 PRINT TAB(5>5l!A*<I)lTAB(40)SI+10?A*(I+10) 

'clear screen 
'array for data 

['setup for data t 
'read data item 
'move to array 
'continue t i l  don 

GOTO 270 
GOTO 250 

'ITEM NOT FOUND 

'- ' loop 
-'setup loop for search 

print action 
9o i f found 
9o i f past logical 

'- 'not foundi continue 

'1oop here 

point 

200 NEXT I  
210 FOR 1=0 TO 19 
220 GOSUP. 20000 
230 IF C*=A$(I) 
235 IF C*<A*(I> 
240 NEXT I  
250 PRINT 8896!1 

260 GOTO 260 
270 PRINT S 896!"ITEM FOUND AT "1 I  1" 
280 GOTO 280 ' loop here after find 
300 DATA '#3 BALL BEARING" i  "747 T1RE"i"BALL OF STRING"i"BALLOON"i"BASEBALL' 
310 DATA "BOWLING BALL" i  " DIAMOND"i"DOUGHNUT"i"EARTH"i"ELECTRON" 
320 DATA "FABERGE EGG" i  "GOODYEAR P.LIMP"i"LA SMOG" !  "MARBLE" !  "MARS" 
330 DATA "ORANGE"!"PEA" i  "PERISPHERE"!"PHOBOS"i"RAMA" 
20000 PRINT 3 896i"TESTING ENTRY « ";1 'print test action 
20010 FOR J=0 TO 100 'delay loop 
20020 NEXT J ' loop 
2:0030 RETURN 'return to call ing program 

Figure 7-2. Sequential search of ordered list. 

We could extend the idea of testing whether a list item is greater 
than the search item further by taking every, say, fifth item and 
doing a comparison on the list item and sought item. We could 
then find out in a series of four steps in which general area of the 
list it was. Then we could do a sequential search of that subgroup. 
This would save considerable time on a long list. What is the ulti
mate extension of this idea? Take olf your shoes, light your pipe, 
and 111 recount a tale of adventure and intrigue I learned in the 
Mediterranean. ... 

The Binary Search Mystery 

Do you remember the paradox of Zeno and the Tortoise ... or 
was it Aristotle and the Hare? In any event, if you start off traveling 
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toward your front stoop from the sidewalk, and once each second 
you go Vz the remaining distance, how long will it take you to ar
rive at the stoop? Well, to make a long story short, although each 
second the distance is decreased by one-half, you will never arrive, 
as you take shorter and shorter steps. With luck, our search does 
arrive, but the idea is somewhat the same. In the binary search, the 
range to be searched is halved for each step, or iteration, of the 
search. 

Let's see how this works. Suppose that we take our "standard list" 
and search for "MARBLE" as shown in Figure 7-3. We know the 

INPUT ITEM = "MARBLE" 

1 
2 
3 
4 
5  
6 
7 
8 
9  

10 
1 1  
1 ?  
13 
1 4  
1 5  
16 
1 /  
1 8  
1 9  
20 

#3 BALL BEARING 
747 TIRE 
BALL OF STRING 
BALLOON 
BASEBALL 
BOW! ING BALL 
DIAMOND 
DOUGHNUT 
EARTH 
ELECTRON 
FABERGE EGG 
GOODYEAR BLIMP 
LA SMOG 
MARBLE 
MARS 
ORANGE 
PEA 
PERISPHERE 
PHOBOS 
RAMA 

©FIRST COMPARISON AT ITEM 10. 
"ELECTRON" < "MARBLE." SO NEW RANGE IS 1119. 

©SECOND COMPARISON AT ITEM (19 — 11)72 + 11 = 15. 
"MARS" > "MARBLE." SO NEW RANGE IS 11-14. 

©THIRD COMPARISON AT ITEM (14-1R/2 + 11 = 12. 
"GOODYEAR BLIMP" < "MARBLE." SO NEW RANGE IS 13-14. 

©FOURTH COMPARISON AT ITEM (14 —13)72 + 13 = 13. 
"LA SMOG" < "MARBLE." SO ITEM MUST BE AT 14 (OR NOT IN LIST). 

Figure 7-3. Binary search algorithm. 
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list is twenty items long. We'll search first midrange at item 10 and 
compare the input item with the list item. The list item is less than 
the input item, so we know that the item must be in the upper V2 
of the list, items 11-19. We'll split that range at 15 and compare 
again. This time item 15 is greater than the input item, so we know 
that the sought item is in the V\ of the list from 11-14. The next 
comparison is made at 12, where the list item is less than the input 
item, making the next range 13 to 14. At 13, the list item is still less 
than the input item. The list item is therefore at item 14 (or is not 
there at all!). 

This search is called a binary search and is one of the most effi
cient searches for long lists of ordered data. The maximum number 
of comparisons (or iterations) that must be performed is represented 
by the power of 2 that results in a number greater than the number 

100 CIS 
110 DIM A$<20> 120 FOR 1=0 TO 19 
130 RFAD Bt 140 A*< I )=P.« 
150 NEXT I 
160 INPUT "ITEM FOR SEARCH" :< * 
170 CLS 1B0 FOR 1=0 TO 9 
190 PRINT TAB(5)iI;A*(I)S TAB< 40)! 
200 NEXT I 
202 HI=20 
204 LO=0 
206 I=10 
208 FOR IC=0 TO 4 
209 GOSUB 20000 
210 IF A*(I)=C« GOTO 270 
212 IF AtdKC* THEN LO= I  ELSE HI 214 I=INT(<HI-L0)/2)+L0 
216 NEXT IC 
750 PRINT 3B96i"lTEM NOT FOUND 260 GOTO 260 
270 PRINT S> 8961 "ITEM FOUND AT "? 
280 GOTO 280 . 
300 DATA "#3 PALI BEARING"»"747 T 
3 10 DATA " BOWl. ING BALL " » " DIAMOND " 
320 DATA "EABFRGE EGG" »"GOODYEAR 
330 DATA "ORANGE"*"PEA"t"PLRISPHE 
20000 PRINT a 096,"TESTING ENTRY 
20010 FOR J=0 TO 100 
20020 Nf XT J 
20030 RETURN 

* c 1 ear scr een 
' a r r a y  f o r  d a t a  

[' setur f o r  data to array 'read data item 
'move to array 
'continue til done 

'input item to t«e found 
'clear screen p'setup loop for display I+10TA$(1+10) 

L ' loop 
'initialize hi itern 
'initialize 1o itern 
'initialize middle item 

"'item must be fnd in 6 
display action 
9o if found 

I 'pick 1/2 remaining 
find now midpoint u'continue loop 

'1OOP here 
It" 

'loop here after find 
I RE","BALL OF 8 T RING","BALLOON"»1 
*"DOUGHNUT"i"EARTH","ELECTRON" 
PI IMP","LA SMOG"•"MARBLE","MARS" 
RE","PMOBOS","RAMA" 
•* ";I 'rrint test action 

'delay loop 
'  1 O O P  

'return to calling program 

BASEBALL" 

Figure 7-4. Binary search. 

of items in the list. For example, if a list has 150 items, then 28 is 
the next power of 2 larger than 150 (28 = 256). The power of two 
is 8; therefore, a binary search will take 8 iterations to find out where 
the item is in the ordered list, compared to an average of 75 for a 
sequential search! The binary search is therefore quite powerful and 
very efficient. 

Let's see how this works in a practical example. Figure 7-4 shows 
a binary search for our standard list. The number of iterations here 
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is determined by 2", which is 32, the next power of two greater than 
the size of the list, 20. The number of iterations is therefore 5. We've 
set up a loop to go through 5 iterations at the end of which the input 
string has not been found in the list. If the string is found, then the 
loop is exited. Running the program in Figure 7-4 illustrates the 
approximate speed of the binary search. For small lists, the "over
head" of the additional string comparison is significant, but you will 
find that as lists become longer and longer, it becomes less and less 
of a factor. 

There are other searching algorithms (as a matter of fact, there 
are literally books full of them), but the sequential search and bi
nary search are two of the most common techniques employed in 
BASIC programming. 

Algorithms of a Different Sort 

In the previous discussion, we've assumed that our list of items 
to be searched was ordered. How do we order the list in the first 
place? In the next few pages, we'll compare the ways in which data 
can be sorted. Here, as in searching, there is enough descriptive 
material on sorting to fill the national archives, but we'll consider the 
most common techniques for BASIC. 

Suppose that we go back to our standard unordered list from 
Table 7-1, and order it by several methods. The first method that 
comes to mind is to sort the list using two arrays. We could go 
through the first array (the list) and look for the smallest item. 
After scanning the entire list, we now have the smallest item, which 
can be put into the next clement of the second array. Next, we would 
look for the second smallest item, and so forth, until all of the items 
from the unordered array have been moved to the sorted array. This 
process is shown in Figure 7-5. 

The code for this sort is shown in Figure 7-6. This is a demon
stration program that displays the data in both arrays as the sort 
occurs. The main loop in the program starts off with the first entry 
in the list array A$. This loop first looks for a "non-blanked" entry. 
(As each entry is moved from the first array to the second array, it 
is blanked by a string of •*•••••**.) If it cannot find the next (0 to 
19) non-blanked entry, the sort is done. If it does find a non-blank 
entry, then it scans the remainder of the array for a data item smaller 
than the current data item. If one is found, then the new item be
comes the smallest. At the end of the scan, the smallest item remain
ing is transferred to the second array and then blanked in the first 
array. This process continues until all items have been transferred. 
This "two-buffer" sort is perhaps the slowest of all sorts, but it is 
direct and easy to code. 
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ELECTRON 
LA SMOG 
DIAMOND 
PEA 
MARBLE 
#3 BALL BEARING 
FABERGE EGG 
BASEBALL 
ORANGE 
BOWLING BALL 
BALLOON 
BALL OF STRING 
747 TIRE 
DOUGHNUT 
GOODYEAR BLIMP 
PERISPHERE 
RAMA 
PHOBOS 
MARS 
EARTH 

BUFFER 1 (ARRAY 1) 
(UNSORTED) 

BUFFER 2 (ARRAY 2) 
(BUILT UP FROM 
BUFFER 1 DATA) 

Figure 7-5. Two-buffer-sort algorithm. 

9 0  C L E A R  1 0 0 0  
1 0 0  D I M  A *  < 1 9 )  
2 0 0  D I M  B * ( 1 9 )  
3 0 0  F O R  1 = 0  T O  1 9  
4 0 0  R E A D  C «  
5 0 0  A * ( I ) = C *  
6 0 0  B * ( I > = • « * # » •  
7 0 0  N E X T  I  
1000 K=0 
1 1 0 0  F O R  1 = 0  T O  1 9  
1 7 0 0  I F  A « ( I ) = " » * « # •  G O T O  2 5 0 0  
1 8 0 0  F O R  J = I  T O  1 9  
1 9 0 0  I F  A * < G O T O  2 1 0 0  
2 0 0 0  I F  A K J X A J ( I )  T H E N  I = J  
2 1 0 0  N E X T  J  
2 2 0 0  B $ ( K ) = A * ( I )  
2 3 0 0  A * < I > = " « • # » •  
2 4 0 0  K = K + 1  

' a l l o c a t e  s t r i n g  s t o r a g e E  
' a l l o c a t e  u n s o r t e d  a r r a y  
' a l l o c a t e  w o r k i n g  a r r a y  

' s e t u p  l o o p  f o r  i n i t i a l i z a t i o n  
' r e a d  d a t a  i t e m  
' s t o r e  i n  a r r a y  
' m a r k  b $  a r r a y  e n t r y  u n u s e d  
' l o o p  

' i n i t i a l i z e  t < *  i n d e x  
- ' o u t e r  l o o p  f o r  n x t  e n t r y  

' g o  i f  u n u s e d  
• ' l o o p  f o r  s m a l l e s t  

u s e d  ['  1 OOP f o r  s m a  1 
' g o  i f  u n u s e d  
*  n e w  s m a l l e s t  
'  l o o p  1  0 0 1  

' m a k e  e n t r y  i n  
' m a r k  u n u s e d  
' b u m p  b <  i n d e x  
' c l e a r -  s c r e e n  

b *  

C'  l o o  
'  p r i  
'  1  o o  

l o o p  f o r  d i s p l a y  
n t  c o n t e n t s  o f  a r r a y s  

2 4 0 5  C L S  t I e a  

2 4 1 0  P R I N T  T A B ( 5 ) . " A *  A R R A Y " . T A B < 4 0 ) , " B «  A R R A Y "  
2 4 1 5  F O R  L = 0  T O  1 9  
2 4 2 0  P R I N T  T A B ( 5 ) . A * < L > . T A B < 4 0 ) , B * < L >  
2 4 2 5  N E X T  L  

I = _ 1  ' s t a r t  f r o m  b e g i n n i n g  
2 5 0 0  N E X T  I  * 9 o  f o r  n e x t  e n t r y  
2 6 0 0  P R I N T  " S O R T  D O N E "  ' e n d  m e s s a g e  
3 0 0 0  D A T A  " E L E C T R O N " . " L A  S M O G " . " D I A M O N D " i " P E A " . " M A R B L E "  
3 1 0 0  D A T A  " # 3  B A L L  B E A R I N G " i " F A B E R G E  E G G " i " B A S E B A L L " . " O R A N G E " i " B O W L I N G  B A L I  
3 ^ : 0 0  D A T A  " B A L L O O N "  i  " B A L L  O F  S T R I N G "  i  " 7 4 7  T I  R E "  i  "  D O U G H N U T " .  " G O O D Y E A R  B L I M P "  
3 3 0 0  D A T A  " P E R I S P H E R E " . " R A M A " . " P H O B O S " . " M A R S " . " E A R T H "  

Figure 7-6. Two-buffer sort. 
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Rising With the Tide 

Another of the disadvantages of the two-buffer sort is that a great 
deal of memory is required—twice that of the unsorted list. The sort 
we'll talk about here—the bubble sort—requires only the memory for 
the unsorted list itself. The separate elements of the list are moved 
around within the list until they are ordered from beginning to end. 
Because the lower-weighted or "lighter" elements "bubble" to the 
top, the name "bubble-sort" is very descriptive. The algorithm works 
as shown in Figure 7-7. Starting from the beginning of the list, each 
item (I) is compared with the next item (1+1). If the next item is 
of lower weight, the two items are swapped so that the lower-

One Pass Through a Bubble Sort of 9 Data Items 

5:9 5:9 8:9 4:9 After First Pass 
3 3 3 3 3 
7 7 7 7 7 
1 1 1 1 1 
2^ 2 2 2 2 
g^SWAP 
5 
8 
4 

6 
g^) SWAP 
8 
4 

6 
5 

SWAP 
4 

6 
5 
8 
g^) SWAP 

6 
5 
8 
4 
9 

N:M "N compared to M" 
Figure 7-7. Bubble-sort algorithm. 

weighted item rises to the top. This process continues until the end 
of the list is reached. The program then goes back to the beginning 
of the list and repeats the process. All items in the list have been 
sorted when a complete pass is made through the list without any 
swap of items having occurred. 

Figure 7-8 shows a bubble sort implemented in our usual grand
stand display mode. (People tend to watch anything on a screen in 
these days of multiple-tv households.) This program shows the ac
tual bubble sort, with, of course, a built-in display. (There is enough 
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"overhead" to dispense with a timing loop.) The sort routine itself 
first resets the "swap flag" SW. If a pass is made through the list 
without SW being set, then the list is sorted. 

Next, the first element of the array is compared to the next. If 
A$(I) > A$(I+1), then the two elements are swapped and SW is 
set to 1. Otherwise, no swap is made. At the end of the loop, SW is 
tested. If it equals one, at least one swap was made in the pass, and 
the process is repeated once more; otherwise, the sort has been 
completed. 

[!! 
G 

100 CLS 
110 DIM A*<20> 
120 FOR 1=0 TO 1? 
130 READ B* 
140 A*(I)=B« 
150 NEXT I 
155 FOR 1=0 TO 18 STEP 2 
160 GOSUB 20000 
165 NEXT I 
170 SW=0 
175 P=P+1 
180 FOR 1=0 TO 18 
190 IF A$<I)<=A*<1+1) GOTO 240 
200 B$=At(I) 
210 At(I>=At(1 + 1) 
220 A$(I+l)=Bt 
230 SW=1 
235 GOSUB 20000 
240 NEXT I 
245 PRINT 3896,"PASS"IP; 
250 IF SW=1 GOTO 170 
260 PRINT 3 896. "SORT DONE" 
270 GOTO 270 
300 DATA "ELECTRON"."LA SMOG"."DIAMOND","PEA","MARBLE" 
310 DATA "#3 BALL BEARING"."FABERGE EGG"."BASEBALL","ORANGE","BOWLING BALL" 
320 DATA "BALLOON"."BALL OF STRING","747 TI RE","DOUGHNUT","GOODYEAR BLIMP" 
330 DATA "PERISPHERE","RAMA","PHOBOS","MARS","EARTH" 
20000 C$=" " 

IF I<1B PRINT 3(I*64+5),At(I>sCt;ELSE PRINT S(I-10)*64+35,At(I)ICt t 
20020 1 = 1 + 1 
20030 IF I<10 PRINT 3<1*64+5),At<I)SCtiELSE PRINT 3(I-10>*64+35.A*<1)IC*I 
20040 1=1—1 
20050 RETURN 

clear screen 
array for data 
'setup for data to array 
read data item 
move to arr ay 
continue til done 

•loop for array display 
display array 
loop 

'set change flag 
•hump pass count 

"•setup loop for sort 
*9o if sorted (2 items) 
'temporary storage 
'move item U P  
'move item douin 
'set change flag 
'display change 
'continue with loop 
'print pass count 
'go again if change 

• done 

Figure 7-8. Bubble sort. 

The worst-case time for this type of sort occurs when the list is 
ordered in reverse order. Then a swap must be made for each set 
of elements except for those not ordered at the bottom from previous 
passes. For a twenty-item list, this worst case is 19+18+17+ . . . 
+2+1=190 swaps and nineteen passes, quite time consuming for a 
sort! (You may want to reorder the list in worst-case fashion and note 
the increased time.) The bubble sort becomes increasingly longer as 
the list grows in size. One list twice as long as another may take ten 
or twenty times the time to sort. Clearly, what we need is a faster 
sort than the bubble sort, if we are ever going to get our mailing list 
sorted and printed out. 
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The (New) Shell Game 

One sort that is quite a bit faster than the bubble or double-buffer 
sort is the Shell-Metzner sort, named after the originator, Shell, and 
a modifier, Metzner. The Shell-Metzner sort divides up the sorting 
task into several internal sorts as shown in Figure 7-9. The 16 ele
ments shown in this example are divided first into eight groups of 
two. The items for each set are sorted. Next the fist is divided into 

BEFORE FIRST 
PASS 

I  - i  
12 —i 

3 -Hi  
13 
5  
6 

16 
2 

1 1 J  

10 
4 — 
8 
7 
9 

14 
15 

AFTER 
SORT 1  

1-1 
10 
3 

AFTER 
SORT 2  

8  LISTS 
OF 2  
ENTRIES 

5  — 
6-

14-
2-

11 — 
1 2 -

4-
13 

7  — 
9 • 

16 
15 

1-
6-
3-
2-
5-
9-
4-
8 -
7-

10-
14-
13-
1 1 -
1 2 -
1 6 -
15-

AFTER 
SORT 3  

1 — 
2 — 
3 — 
6  —  
4 — 

4 LISTS 
OF 4  
ENTRIES 

2  LISTS 
OF 8  
ENTRIES 

5-
9-
7-

10-
11-
12-
14-
13-
1 6 -
15-

1 LIST 
OF 16 
ENTRIES 

AFTER 
SORT 4  

1 
2 
3 
4 
5  
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

A SORTED 
(SIC)  MESS 

Figure 7-9. Shell-Metzner sort algorithm. 

four groups of four, and these elements are sorted in a manner remi
niscent of the bubble sort. Then the list is divided into two groups 
of eight with another bubble-like sort occurring. Finally, a sort of 
one group of 16 is performed to end the sort. The entire sort has 
been implemented in a maximum of 8+12+14+16=50 swaps in four 
passes, whereas the maximum for the bubble sort would have been 
15+14+13+ . .. +2+1=120 swaps and 15 passes. 

1 he Shell-Metzner sort for our standard list is shown in Figure 
7-10. It displays in similar fashion to the bubble sort discussed ear
lier. The Shell-Metzner sort executes quite a bit more rapidly than 
the bubble sort even for such a small list, and it will operate at 
speeds hundreds of times faster for longer lists. 

Toward a Faster Sort 

Is the Shell-Metzner sort the ultimate sort? There are faster sorts, 
such as Hoare's Quicksort, but the Shell-Metzner is a good solid 
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100 CLS 
110 DIM A* ( 20) 
120 FOR 1=0 TO 19-
130 READ B* 
140 A$(I>=B$ 
150 NEXT I 
155 FOR 1=0 TO 18 STEP 2 
157 J=I+1 
160 GOSUB 20000 
165 NEXT I 
166 P=0 
170 M=20 
175 M=INT<M/2) 
180 IF M=0 GOTO 270 
182 P=P+1 
184 PRINT 3896."PASS="IP 
185 FOR ST=0 TO M-l 
190 I=ST 
195 J=ST+M 
200 SW=0 
205 IF A*(I>< =A*(J) GOTO 235 
210 SW=1 
215 B*=A$(I) 
220 A*(I>=A*<J) 
225 A*(J)=B'6 
230 GOSUB 20000 
235 I=J 
240 J=J+M 
245 IF J<20 GOTO 205 
250 IF SW=0 GOTO 260 
255 GOTO 1^0 
260 NEXT ST 
265 GOTO 175 
270 PRINT 3 896."SORT DONE" 
280 GOTO 280 

d o r i t  t h a t  b e a t  a l l  
l o o p  h e r e  f o r  a p p e a r a n c e  

l o o p  
s e t  p a s s  c o u n t  t o  0  
s e t  #  o f  l i s t s  t o  a r r a y  s z  

t* s e t u p  f o r  d a t a  t o  a r r a y  
' r e a d  d a t a  i t e m  
' m o v e  t o  a r r a y  
' c o n t i n u e  t i l  d o n e  

I - ' l o o p  f o r  a r r a y  d i s p l a y  

[ 
[ 

' 9 o  f o r  n e x t  s e t  o f  l i s t s  

' p r o c e s s i n g  l o o p  o n e  
' g o  i f  d o n e  

- ' i f  o r d e r e d . c o n t i n u e  
' n o t  o r d e r e d . s w a p  
' t e m p o r a r y  s t o r a g e  
' m o v e  u p  
' m o v e  d o w n  
' p r i n t  c h a n g e  
'look for next tuio 
' e n t r i e s  
' 9 o  i f  s t i l l  t h i s  l i s t  
' g o  i f  t h i s  l i s t  s o r t e d  
' t h i s  l i s t  s t i l l  u n o r d e r e d  

— ' g o  f o r  n e x t  l i s t  

' s e t  c h a n g e  s w i t c h  t o  0  

p r o c e s s i n g  l o o p  t w o  
s t a r t  o f  a  l i s t  

300 DATA "ELECTRON"."LA SMOG"."DIAMOND"."PEA"."MARBLE" 
310 DATA "«3 BALL BEARING","FABERGE EGG"."BASEBALL"."ORANGE"."BOWLING BALL" 
320 DATA "BALLOON"."BALL OF STRING","747 TI RE","DOUGHNUT","GOODYEAR BLIMP" 
330 DATA "PERISPHERE"."RAMA","PHOBOS"."MARS","EARTH" 
20000 C*=" 
20010 IF I<10 PRINT 3<I«64+5>,A*<I>!C*tELSE PRINT 3(I-10)«64+35,A$(I);C$i 
20030 IF J<10 PRINT 3<J*64+5),A*(J)1C%;ELSE PRINT 3(J-10)#64+35,A*(J);C*i 
20050 RETURN 

sort that is still understandable to the BASIC user (and the author) 
and can therefore be adapted to a variety of data structures. 

How about another exercise? Find faster and faster sorts until 
(in a relative way) you are able to sort your data even prior to load
ing it into the machine! 

We ve now talked about searches and sorts. Are you ready for 
merges? (Wait! Come back!) Merges are another common opera
tion in data processing. A merge takes (generally) sorted data from 
one list and merges it into sorted data in a second list. Business data 
processors call this creating a new master file from an old master 
file and a transaction file. The transaction file contains the current 
data, while the old master contains the previously ordered data base. 

Merging, in the case of BASIC lists, involves obtaining a data item 
to be merged and then searching a list for the point at which the 

Figure 7-10. Shell-Metzner sort. 

Mergers Are Big Business 
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data item should be inserted, as shown in Figure 7-11. The data a f t e r  
the insertion point is then moved down, and the data item is inserted 
in the "gap." The search technique can be any of the search types 
we have discussed in this chapter. 

Commonly, we would like to be able not only to search for and 
insert data, but also to delete items from lists and modify existing 
items in lists. These operations have a wide variety of uses from up
dating inventories to maintaining directories of disk files. 

OPERATION: MERGE "MACKEREL" INTO LIST 

1. FIND INSERTION POINT 2. INSERT 

Figure 7-11. Merging algorithm. 

The deletion is the reverse of the insert, as shown in Figure 7-12. 
The item to be deleted is located by a binary or other type of search 
and then deleted by moving the remainder of the data in the list up 
over the item to delete it. The last data item is then zeroed or blanked 
to create a new "gap" at the end of the list. The process of moving 
data in both the insert and delete functions can be very time con
suming, as shown in this code that moves 200 elements of an array 
up one block to simulate a deletion. 

134 



OPERATION: DELETE "EARTH" FROM LIST 

1. FIND ITEM 2. DELETE 

§3 BALL BEARING 
747 TIRE 
BALL OF STRING 
BALLOON 
BASEBALL 
BOWLING BALL 
DIAMOND 
DOUGHNUT 
EARTH 
ELECTRON 
FABERGE EGG 
GOODYEAR BLIMP 
LA SMOG 
MARBLE 
MARS 
ORANGE 
PEA 
PERISPHERE 
PHOBOS 
RAMA 

Figure 7-12. Deletion algorithm. 

100 DIM A(2000) 'establish array 
110 For 1 = 0 TO 1998 (-'start of loop 
120 A(l) = A(l + 1) I 'move up 
130 NEXT I L'loop 

The above code takes about 26 seconds. If many block moves are 
to be done for merge operations, might not there be a faster way to 
maintain ordered lists? Ah yes, my friends ... I have here a little 
gem-dandy device called the . . . 

EXCELLO 
LINKED LIST * Mr 72 K l=T * * 

Cures slow-speed merges, dandrulf, loss of weight. . . . The price, 
you ask? . . . Well, my friend, only a little more complex data struc
ture. ... 

Linked lists are worth mentioning here because they are an effi
cient data structure. The expense is a more complicated data struc-
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HD 

A(0) 27 12 

All) 479 -1 

A(2| 450 1 

A(3) 13 0 

A(4) 400 2 

A(5| 399 4 

A(6) 1 3 

A<7) 195 8 

A(8) 257 9 

A(9) 320 10 

A<10) 365 5 

A(ll) 111 7 

A(12) 65 11 

DATA POINTER 
ITEM TO NEXT 

IN ITFM IN 
LINKED LIST 

LIST LAST - -1 

POINTER TO 
"HEAD" OE 

LIST 

r> 
§ 
ZD 

ZD 
Z) 

ZD 

ZD 

FiRure 7-13. Linkcd-list structure. 

ture, together with larger storage requirements for data. A linked 
list is shown in Figure 7-13. 

The linked list is made up of data items which are linked to each 
other by pointers. Because each element points to the next, the data 
elements do not have to physically follow one another, as shown in 
the figure. What is the advantage of this? Because a link may be 
broken at any spot, a data item may easily be inserted or deleted. 
Figure 7-14 shows an insert operation, for example. The item 345 
is to be inserted in its proper place in the list Starting from the head 
of the list, a search is made for the insertion point, which is after 
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OPERATION: INSERT 345 IN LINKED LIST 
1. FIND INSERTION POINT 2. CHANGE POINTERS 

A(0) 

All) 

A(2) 

A(3) 

A(4) 

A(5) 

A(6) 

A(7) 

A(8) 

A(9) 

A(10) 

A(ll) 

A(12) 

NEW ITEM A(13) 

27 12 

479 -1 

450 1 

13 0 

400 2 

399 4 

1 3 

195 8 

257 9 

320 10 

365 5 

111 7 

65 11 

D 

INSERTION 
POINT 

345 

27 12 

479 -1 

450 1 

13 0 

400 2 

399 4 

1 3 

195 8 

257 9 

320 13* 

365 5 

111 7 

65 11 

D 

345 10* 

•CHANGED 
••ADDED 

Figure 7-14. Insertion using linked list. 

320 and before 365. The pointer at item 320 points to 365. This 
pointer is changed to point to 13 (the number of the new item), and 
the pointer associated with the new item is initialized to point to 
item 10. The new item has been inserted in the list without moving 
a large block of data. 

Deletion of an item in a linked list is shown in Figure 7-15. Item 
257 is to be deleted from the list. Item 195 points to item 257, which 
points to item 320. Item 257 is removed by changing the pointer in 
item 195 to point to 320. The storage associated with item 257 is 
released back to a storage pool by blanking item 257 in some fashion 
such as putting in an invalid item number. 

Insertions and deletions of linked-list items can be done very rap
idly once the insertion or deletion point is found. Because of the 
pointer structure, however, the search to find the insertion or dele
tion point is essentially a sequential search that starts from the head 

137 



OPERATION: DELETE 257 IN LINKED LIST 

1. FIND ITEM TO BE DELETED 2. CHANGE POINTERS 

A(0) 27 12 A(0) 27 12 

A(l) 479 -1 A(l) 479 -1 

A(2) 450 1 A(2) 450 1 

A(3) 13 0 A(3) 13 0 

A(4) 400 2 A(4) 400 2 

A(5) 399 4 A(5) 399 4 A(5) 399 4 
* \ 

A(5) 

A(6) 1 3 A(6) 1 3 

A(7) 195 8 nnnl 
A(7) 195 9* 

A(8) 257 9 

nnnl 
A(8) * * * * • • * * . . . .  

A(9) 320 10 

nnnl A(9) 320 10 

A(10) 365 5 

nnnl A(10) 365 5 A(10) 365 5 A(10) 

A(11) 111 7 A(ll) 111 7 

A(12) 65 11 A(12) 65 11 

•CHANGED 
••••MARKED AS "UNUSED" 

Figure 7-15. Deletion using linked list. 

of the list; like all sequential searches, it is rather time consuming. 
Let's take a look at a practical example of the linked list concept 

in BASIC. Figure 7-16 shows a linked-list structure for a list of alpha
betic data, our standard Chapter 7 list of odds and ends. The struc
ture has two arrays. Array A contains the pointers, while array A$ 
contains the items of the list. The pointers are actually the indices 
to the elements of array A$. The last pointer is a —1 to signify that 
there are no more items in the linked list. 

Initially, the items in the linked list are ordered by initializing 
the pointer array as shown in Figure 7-16. In this case, the items 
are ordered physically as well as ordered in the linked list. 

138 



HD 

A(0) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1  

12 

13 

14 

15 

16 

17 

18 

19 

20 

29 

10 

1 1  

12 

13 

14 

15 

16 

17 

18 

19 

- 1  

P 
P 
P 
P 

13 

33 

P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
b 

- 2  

UNUSED 

- 2  

A$(0) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

2 

3 

4 

5 

20 

29 

#3 BALL BEARING 

747 TIRE 

BALL OF STRING 

BALLOON 

BASEBALL 

BOWLING BALL 

DIAMOND 

DOUGHNUT 

EARTH 

ELECTRON 

FABERGE EGG 

GOODYEAR BLIMP 

LA SMOG 

MARBLE 

MARS 

ORANGE 

PEA 

PERISPHERE 

PHOBOS 

RAMA 

UNUSED 

Figure 7-16. Example of linked list. 
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T 

z 

1 

I B  

1 0 ( 9  C L S  
1 1 0  C L E A R  1 0 0 0  
1 2 0  D I M  A < 2 9 )  
1 3 0  D I M  A « < 2 9 >  
1 4 0  F O R  1 - 0  T O  
1 5 0  A d  > - I M  
1 6 0  R E A D  B *  
1 7 0  A « < I > = B «  
1 B 0  N E X T  1  
1 9 0  A < 1 9 ) = - 1  
1 9 5  R E A D  B *  
2 0 0  A t <  I  > = B *  
2 1 0  F O R  1 = 2 0  T O  2 9  
2 2 0  A ( 1 ) = - 2  
2 3 0  A » < 1 > = " • # • # "  
2 4 0  N E X T  I  
2 5 0  H D = 0  
4 0 0  C L S  
4 1 0  P R I N T  " H D = " i H D  
4 2 0  F O R  1 = 0  T O  2 9  
4 3 0  P R I N T  T A B < 5 > « I i A < I > » A « < I )  
4 4 0  F O R  J = 0  T O  1 0  
4 5 0  N E X T  J  
4 6 0  N E X T  I  
5 0 0  I N P U T  " D E L E T E  ( D )  O R  I N S E R T  U ) " t B «  
5 1 0  I F  B « < > " D "  A N D  B « < > " 1 "  G O T O  5 0 0  
5 2 0  I F  B 9 = " D "  G O T O  2 0 0 0  
1 0 0 0  F O R  Z C » 0  T O  2 9  
1 0 1 0  I F  A < 7 C > —  2  G O T O  1 0 5 0  
1 0 2 0  N E X T  Z C  
1 0 3 0  P R I N T  " N O  F R E E  I T F M S "  
1 0 4 0  G O T O  5 0 0  
1 0 5 0  I N P U T  " S T R I N G  T O  I N S E R T " » B 9  
1 0 6 0  A 9 ( Z C ) - B 9  

G O T O  1 1 1 0  

' c l e a r  s c r e e n  
' c l e a r  s t r i n 9  s t o r a g e  
' p o i n t e r  a r r a y  
' 1  t e r n  a r r a y  

' l o o p  T o r  f i r s t  1 9  ['  l o o p  f o r  f i r s t  l  
' s e t u p  p n t r s  
' r e a d  f r o m  d a t a  1  
' a n d  s t o r e  i n  a r r  
' l o o p  t i l  d o n e  

i s t  
a y  

• l a s t  e n t r  =  - 1  
' 9 e t  l a s t  d a t a  i t e m  
' a n d  p u t  i n  a r r a y  

l o o p  f o r  u n u s e d  e n t r i e s  
u n u s e d  

t e r n  u n u s e d  f o r  d i s p  

' a n d  p u t  i n  a r  

t' l o o p  f o r  i i  
' m a r k  p n t r  
' m a r k  i t e m  
'  l o o p  

' s e t  h e a d  t o  f i r s t  i t e m  
' c l e a r  s c r e e n  
' h e a d  t i t l e  

1 I oop f o r  t t e r n s  •  ' l o o p  r o r  n e m s  
' p r i n t  i t e m s  

i -  ' t i m i n Q  f o r  d i s p  
L  ' l o o p  
'  Ioop f o r  p r i n t  

•  ' p r o m p t  u s e r  

til 

1 0 7 0  I F  M O O - 1  
1 0 1 1 0  H D - Z C  
1 0 7 0  A ( 7 C > — I  
1 1 0 0  G O T O  4 0 0  
1 1 1 0  Z l  = M D  
1 1 2 0  Z N = A ( Z L )  
1 1 3 0  I F  Z N O - 1  
1 1 4 0  A ( Z L ) = Z C  
I  1 5 0  A ( Z C >  — 1  
1 1 6 0  G O T O  4 0 0  

G O T O  I  1 7 0  

' t e s t  r e s p o n s e  
* 9 o  i f  d e l e t e  

' l o o p  f o r  u n u s e d  i t e m  
' 9 o  i f  u n u s e d  
' n o  u n u s e d  f o u n d  y e t  

' n o  f r e e  i t e m s  
' b a c k  t o  c o m m a n d  m o d e  
' i n p u t  i n s e r t  s t r i n q  
' f i l l  i n t o  a r r a y  
* 9 o  i f  i t e m *  i n  l i s t  
• h e a d  n o w  c u r r e n t  
• c u r r e n t  n o w  l a s t  
' b a c k  t o  c o m m a n d  
' l a s t  i t e m  
' n e x t  i t e m  
' q o  i f  n o t  e n d  o f  l i s t  
' c h a n g e  p o i n t e r  
' n e w  e n d  o f  l i s t  
' b a c k  f o r  n e w  c o m m a n d  

1 1 7 0  I F  B 9 > = A » ( 7 l >  A N D  B 9 < A « ( Z N )  G O T O  1 2 1 0  ' c h e c k  f o r  i n s e r t  p o i n t  
I 1 B 0  / l . = Z N  
1 1 9 0  Z N = A ( Z N >  
1 2 0 0  G O T O  1 1 3 0  
1 2 1 0  A ( Z L  >  =  Z C  
1 2 2 0  A <  Z C >  =  Z N  
1 2 3 0  G O T O  4 0 0  
2 0 0 0  I F  M O O - I  G O T O  2 0 3 0  
2 0 1 0  P R I N T  " S T R I N G  N O T  F O U N D "  
2 0 2 0  G O T O  5 0 0  
2 0 3 0  I N P U T  " S T R I N G  T O  D E L E T E " « B 9  
2 0 4 0  Z L = - 1  
2 0 5 0  Z C = H D  

Z N = A ( Z C >  
I F  A « < Z C ) = B »  G O T O  2 1 2 0  
I f  A ( Z C ) = - 1  ( W T O  2 0 1 0  
Z L = Z C  
Z C = A <  Z C )  

2 1 1 0  G O T O  2 0 6 0  
2 1 2 0  I F  Z L = - I  H D = Z N  E L S E  A ( Z L >  
2 1 3 0  A ( Z C > = - 2  
2 1 3 5  A 9 ( Z C ) = " • • • » "  

a n d  
i  t e r n s  

2060 
2 0 7 0  
2 0 B 0  
2 0 9 0  
2100 

Z N  

• n o t  f n d - e o n t l n u e  
' n e w  n e x t  
' k e e p  l o o k i n q  
'  f o u n d - c h a n q e  p n t r  
' c u r r e n t  t o  n e x t  
• b a c k  f o r  n e x t  c o m  
• d e l e t e  h e r e - 9 o  i f  
• n o  I t e m s  i n  l i s t  
" b a c k  t o  c o m m a n d  
" i n r u t  d e l e t e  s t r i n q  
*  i n i t i a l i z e  l a s t  
' i n i t i a l i z e  c u r r e n t  
*  n e x t  
• q o  i f  f o u n d  
' 9 o  i f  e n d  o f  l i s t  
• n o t  t h i s  e n t r y  
* 9 e t  n e x t  
• k e e p  s e a r c h i n g  
• f o u n d - c h a n q e  p n t r s  
' m a r k  u n u s e d  
• m a r k  e n t r y  f o r  d i s p l a y  
' b a c k  t o  c o m m a n d  i n p u t  2 1 4 0  G O T O  4 0 0  

• • 3  P A L L  B E A R I N G " . " 7 4 7  T I R F " . " B A L L  O F  S T R I N G "  
• p A t  L O O N " . " B A S E B A L L " . " B O W L I N G  B A L L " • " D I A M O N D "  
" D O U G H N U T " . " E A R T H " . " E L E C T R O N " . " F A B E R G E  E G G " . " G O O D Y E A R  B L I M P "  
" L A  S M O G " . " M A R B L E " . " M A R S " . " O R A N G E " . " P E A " .  " P E R I S P H E R E "  
" P H O B O S " . " R A M A "  

3 0 0 0  D A T A  
3 0 0 5  D A T A  
3 0 1 0  D A T A  
3 0 2 0  D A T A  
3 0 3 0  D A T A  

Figure 7-17. Linked-list code. 
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The code shown in Figure 7-17 allows us to delete or insert items 
in the linked list. The contents of the list are displayed on the screen 
in the form 

{ POINTER I ITEM |  

so that you can see what is actually happening in the insertions and 
deletions. Each deletion is handled by searching the A$ array by 
using the pointers, starting with HD, a variable which points to the 
first item of the linked list. When the item to be deleted is found, 
the previous pointer is changed to the pointer value for the deleted 
item, and the pointer element in A is marked as unused by setting 
it to -2. Each insertion finds an unused position by searching the A 
array for —2 and then searches the A$ array for the insertion point. 
When it is found, the previous pointer is changed to the new loca
tion, and the pointer for the new location is changed to the value 
found in the previous location. 

Naturally, we have provisions for deleting all items in the list 
and for overflow of the size of the arrays. (A favorite trick for com
puter science students is trying to "crash" the time-sharing system; 
it s human nature to look for loopholes, but we must warn you that 
all programs in this book are perfect and that any such attempts will 
result in confiscation of your TRS-80 monitor!) 

That completes our discussion of data structures, sorting search
ing, and merging. We hope that this chapter will provide some alter
natives in the way you arrange your data and maintain it in orderly 
fashion There is no optimum data arrangement or sorting technique 

at will work for all cases. The "correct" techniques must be related 
to the type, size, and speed requirements of the program and data 
involved. 
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CHAPTER 8 

The TRS-80 Functions Perfectly 

In this chapter, we'll cover the built-in TRS-80 functions. Func
tions are "built-in" operations to process specific things, rather than 
general-purpose statements. Naturally, the specific things that the 
functions process are commonly used operations, such as finding the 
sine of an angle or generating a random number. Functions in Level 
II BASIC can be divided into four different types—precision func
tions, numeric functions, random-number functions, and trigonomet
ric functions. We'll discuss all four and the applications of each. 

We know, we covered precision in Chapter 2. The statements in 
Chapter 2, however, defined a variable as an integer, single-preci
sion, or double-precision variable. The variables defined by the pre
cision statements and suffixes remained that precision for the entire 
program. The two functions presented here, CDBL and CSNG, allow 
the user to force a double-precision or single-precision operation 
without having to define the variables as double or single precision. 
CSNG forces a single-precision result. If, for instance, we have two 
double-precision variables, A# and B#, the results of any operations 
would normally be carried out to 17 digits as in the code 

IM CLS '  d*»r 
200 INPUT "A»=-*tA* 

Inputting A# = 1.22222222222222 and B# = 2.33333333333333 
would result in an answer of 2.851851851851843. However, if we 

What? More Precision Operations? 

300 INPUT *B»="lB« 
400 PRINT 
S00 GOTO 200 
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forced the answer to single precision, using the CSNG function, the 
answer would be 2.85185, a single-precision number. 

1 0 0 0  C L S  ' c l e a r  s c r e e n  
1 1 0 0  I N P U T  • A «  =  - i A t t  r ' i n p u t  1 s t  d p  v a l u e  
1 2 0 0  I N P U T  " B # = " ; B #  ' i n p u t  2 n d  d p  v a l u e  
1 3 0 0  P R I N T  " A # * B # = " 1 C S N G < A # * B # >  ' p r i n t  p r o d u c t  s p  
1 4 0 0  G O T O  1 1 0 0  L ' 9 o  f o r  n e x t  s e t  

The CSNG function is a means of limiting results to single-preci
sion accuracy without having to introduce a single-precision variable 
as in 

2 0 0 0  C L S  
2 1 0 0  I N P U T  " A t M - l A #  
2 2 0 0  I N P U T  " B # = " 1 B #  
2 3 0 0  C = A t t * B t t  
2 4 0 0  P R I N T  " A # * B # = * ! C  
2 5 0 0  G O T O  2 1 0 0  

c l e a r  s c r e e n  
r '  i n p u t  1 s t  d p  v a l u e  

i n p u t  2 n d  d p  v a l u e  
c o n v e r t  p r o d u c t  t o  
p r i n t  S P  p r o d u c t  

u , 9 o  f o r  n e x t  s e t  

which would give the same result as the CSNG function above. 
When the CSNG function converts a double-precision function to 
single precision, it rounds off, rather than truncating, the least sig
nificant digits. 

The CDBL function operates in similar fashion to CSNG, except 
that it forces a double-precision operation. CDBL performs the same 
operation as the generation of the double-precision value C# from 
A and B 

3000 C L S  ' c l e a r  s c r e e n  
3 1 0 0  I N P U T  " A = " ! A  [ - ' i n p u t  1 s t  S P  n u m b e r  
3200 I N P U T  " B = ' ! B  I  ' i n p u t  2' n d  SP n u m b e r  
3300 C # = A » B  |  ' c o n v e r t  t o  d p  
3 4 0 0  P R I N T  " C #  =  " i C # i  " C D B L ( A « B )  =  " S  C D B l  ( A « B  >  
3500 G O T O  3100 L ' 9 o  •  Fo r  n e x t  s e t  

Converting to the double-precision format, by the way, cannot 
"restore" accuracy to a number. If operations have been performed 
in single precision in a program, then only seven digits of precision 
are maintained (six are printed). Double-precision format must be 
used continuously to guarantee 17 digits of accuracy! 

Converting from single to double precision also has its pitfalls. 
Converting the single-precision number 1.999995 should result in 
1.9999950000000000, shouldn't it? In fact, converting this number, 
as in 

100 PRINT CDBl(l.999995) 

results in "1.999994874000549"! Similar conversions also produce 
extraneous digits at the end. 

A better method of converting from single to double precision is 
to use the approach 
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100 A#=VAL(STR$(AI)) 

which converts the single-precision value of A! into a string value 
and then converts the string into a double-precision numeric value. 
(See Chapter 3 for a discussion of STR$ and VAL.) When this 
method is used with 1.999995, a "rounded-off" value of "2" results, 
without extraneous digits. We'll say more about truncation and 
roundoff shortly. 

Are You Good at Fractions? 

There are several numerical functions in Level II BASIC that 
help us in dealing with integers. They are CINT, INT, and FIX. 

CI NT returns an integer value in the range —32768 through 
+32767. This is a comparable function to the CSNG and CDBL 
functions we have just discussed. The CINT function is equivalent 
to creating an integer value such as A% rather than forcing a con
version to integer form with a function. 

100 CLS 'eliir Screen 
200 INPUT "A»'lA F" 'Input 1st SP number 
;<00 INPUT *B»'«B I 'input 2nd SP number 
400 CX=A*B | 'find integer value 
?00 PRINT *CX*'ICX>'CINT<A«B>>*ICINT<A«B) 
600 GOTO 200 *-'90 for next set 

Because of the way negative numbers are held in two's comple
ment form (see Chapter 2) and the truncation method of conversion, 
CINT converts a negative fractional number to the next lowest in
teger value. CINT will convert the following values as shown 

Mors After 
CINT CINT 

-1.1 -2 
-1.9 -2 
-12.001 -13 
-32767.1 -32768 

Positive fractions are converted to the integer portion of the number. 
The fractional part is truncated, or chopped off. 

Mors After 
CINT CINT 

1.1 1 
1.9 1 
12.001 12 
32767.1 32767 

CINT is very similar to another integer function, "INT." CINT is 
a high-speed version of the more general INT. INT will work with 
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numbers greater than +32767 and less than -32768. Because INT 
is more general, it is almost always used in BASIC programming in 
preference to CINT. 

CINT is commonly used in operations to find the remainders of 
numbers. This type of operation comes up frequently in number 
conversions and rounding operations. Decimal numbers can be con
verted to binary or hexadecimal numbers by a common method 
known as "divide and save remainders." It's a good application to 
show the use of CINT. 

Before we look at the code, let's see the "pencil and paper" oper
ation. Suppose we have a decimal number that we want to convert 
to binary. We start by dividing by 2 and save the remainder at each 
division, as shown in Figure 8-1. The remainders in reverse order 
are the binary-number equivalent of the decimal number we started 
with. This method works for any number base—binary, octal (8), or 
hexadecimal (16). 

0 R1 
2 i~r  RO 
2 rT R1 
2 f T  R1 

2 1 11 RO 
2 1 22 RO 
2  1 4 4  RO 
2 l~88 RO 

2 1 176 R1 
2 1 353 
Figure 8-1. Decimal-to-binary conversion. 

For those of you interested in assembly-language coding and for 
anyone interested in binary representation, we present the following 
subroutine to convert any given decimal number from 0 to 255 into 
binary form. The number is in variable ZN, and the result is put in 
array ZZ defined by a previous DIM ZZ(7). 

1 0 0 0 0  F O R  Z I  ~7 T O  0  S T E P  - 1  
1 0 0 1 0  Z Z ( Z I ) = Z N — I N T ( Z N / 2  >  * 2  
1 0 0 2 0  Z N = I N T < Z N / 2 )  
1 0 0 3 0  N E X T  Z I  
1 0 0 4 0  R E T U R N  

[' s e t u p  B  t i m e  l o o p  
' f i n d  r e m a i n d e r  
' f i n d  q u o t i e n t  
' c o n t i n u e  

' r e t u r n  t o  c a l 1 i n 9  p r  o 9  

The subroutine does not check for a number outside the proper 
range of 0 through 255. If a number greater than 255 is to be con
verted, you'll get an incorrect answer. (Eight divisions will only re
solve numbers that are 255 or less. You might like to try 16 divisions 
with a 16-element array for use with numbers of 65535 or less.) The 
number to be converted is in variable ZN. A one-dimensional array, 
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7̂-1 

ZZ, must have been defined previously. (Defining it in the subrou
tine would result in a DD error for subsequent calls.) For eight 
iterations through the loop, the number is divided by two to give 
some quotient. I his quotient will probably be a fractional number. 
To find the integer portion of the quotient, INT is used. INT(ZN/2) 
will give the integer quotient value. If this quotient is multiplied 
by 2, and the result subtracted from the original number, we can find 
the remainder. The remainder is calculated this way and stored in 
the array in reverse order. An example might make this more lucid 
(I'm even confused at this point). 

Suppose we want to convert 213 to binary form. If we did it with 
paper and pencil, we would have the calculation shown in Fig
ure 8-2. 

0 Rl 
2 f T  RI 
2 ry R0 
2 IT Rl 

2 nr R0 
2 nr Rl 
2 n>3 R0 

2 nor Rl 
2 r213 

1 
1 1 0 1 0 1 0 1 = 213 

J 
I' igure 8-2. Example of dccimal-to-binary conversion. 

When we do the same conversion using the subroutine, we get 
the calculations shown in Figure 8-3. 

We can use the subroutine above to practice our binary opera
tions (don't forget those ANDS and ons) or to PEFK at memory lo-

INT(ZN/2)«2 ZN-INT(ZNJ2)*2 
ZN 

213 
106 
53 
26 
13 
6 
3 
1 

ZN/2 

1065 
53 

26 5 
13 
65 

3 
1.5 
0 5 

INKZN/2) (ZN1 (ZZ) 

0 R1 
2 r 1 R1 
2 IT R0 
2 nr RI 

2 m R0 
2 R?F RI 
2 fl3 R0 

2 H06 RI 
2 f 213 

Figure 8-3. Decimal-to-binary conversion algorithm. 
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cations for assembly-language work. To convert any number from 
0 to 255, use the following code. 

1 0 0 0  D I M  Z Z ( 7 )  
1 1 0 0  P R I N T  
1 2 0 0  I N P U T  " D E C I M A L  
1 3 0 0  I F  Z N > 2 5 5  O R  Z N < 0  G O T O  1 2 0 0  
1 4 0 0  G O S U B  1 0 0 0 0  
1 5 0 0  P R I N T  " B I N A R Y  E Q U I V  I S  " )  
1 6 0 0  F O R  1 = 0  T O  7  
1 7 0 0  P R I N T  Z Z ( I )  i  
1 B 0 0  N E X T  
1 9 0 0  G O T O  1 1 0 0  

' a l l o c a t e  S  d i m  a r r a y  
r ' o e i u  l i n e  

T O  B E  C O N V E R T E D " ! Z N  
' c h e e p  f o r  r a n g e  0 - 2 5 5  
' c o n v e r t  

p r i n t  r e s u l t  m s g  
1 O O P  f o r  d i g i t S  
p r i n t  d i g i t  
c o n t i n u e  

' g o  f o r  n e x t  n u m b e r  
0: 

To convert a given range of ROM or RAM memory locations, use 
this code. 

2 0 0 0  D I M  Z Z ( 7 )  
2 1 0 0  I N P U T  " S T A R T  L O C A T I O N " ! A  
2 2 0 0  I N P U T  " E N D  L O C A T I O N " ! B  
2 3 0 0  F O R  I = A  T O  B  
2 4 0 0  Z N = P E E K ( I )  
2 5 0 0  G O S U B  1 0 0 0 0  
2 6 0 0  P R I N T  " L O C A T I O N = " I I S " C O N T E N T S = " I  
2 7 0 0  F O R  J = 0  T O  7  
2 8 0 0  P R I N T  Z Z ( J ) S  
2 9 0 0  N E X T  J  
3 0 0 0  P R I N T  
3 1 0 0  N E X T  I  
3 2 0 0  E N D  

' a l l o c a t e  8  d i m  a r r a y  
' i n p u t  s t a r t i n g  l o c a t i o n  
' i n p u t  e n d i n g  l o c a t i o n  

• ' o u t e r  l o o p  f o r  l o e n s  
' g e t  n e x t  l o c a t i o n  
' c o n v e r t  b y t e  

1  o c a t i o n  m s g  
• ' i n n e r  l o o p  f o r  d i g i t s  
' p r i n t  d i g i t s  
' c o n t i n u e  f o r  8  

' n e w  1 i n e  
'  g e t  n e x t  l o c a t i o n  

! :• 

A second use of INT is to test whether a number is divisible by 
another number. Many times, it's convenient to test whether this is 
the seventh or tenth time through a loop, for example. If we are 
displaying 16 lines of characters on the video display, we can pause 
while the user scans the current page by keeping a count of the 
number of lines and testing for multiples of 16. This code is not a 
working program, but illustrates how the test may be integrated 
in a program. A$ represents the ENTER response to the pause at 
the 16th line. GOT O 800 is the branch to "other" processing. 

1 0 0 0  P R I N T  A , e  
1 0 1 0  C T = C T + 1  
1 0 2 0  I F  I N T ( C T / 1 6 ) = C T / 1 6  T H E N  I N P U T  A *  
1 0 3 0  G O T O  8 0 0  

Another use of INT is to test whether a number is an integer value 
(not a fraction). A convenient way to do this uses INT: 

l t P V k i - r A  r ' l i t P ' . c  t e s t  n u m b e r  
2 0 0  I F  I N T ( A ) = A  P R I N T  " A  I S  I N T E G E R "  E L S E  P R I N T  " A  N O T  I N T E G E R "  
3 0 0  G O T O  1 0 0  I — ' c o n t i n u e  f o r  n e x t  

The fractional portion of any positive number can be found by 
100 FR = A —INT(A) 

Since INT converts to the next lowest negative integer for negative 
numbers, A-INT(A) will not give the correct result for A < 0. 
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However, still another function, FIX, will give the fractional por
tion of a negative number or positive number correctly. 

FIX truncates all fractional digits. Some examples are 

B«for* 
FIX 

1 .2  
13.1 
13.99 
128.123 

-1.1 
-3.3 
-128.99 
-99999.9 

After 
FIX 

1 
13 
13 
128 
-1 
-3 
-128 
-99999 

Why are there so many ways to derive similar things? What is 
truth? What is beauty? Some of the functions described above are 
very similar, and it's hard to know when to use one or the other, 
but please don't complain—the alternative might be a BASIC 
stripped of all these niceties. It's better to have too much than too 
little (Guard—take down the name of that reader threatening to 
go back to his hand calculator!). 

A word should be said here about truncation and roundoff. We 
have seen how INT and FIX truncate values. For small numbers 
such as 1.9 or 2.7, the error resulting from truncation is quite large. 
A roundoff scheme may be used to reduce this error for individual 
numbers. In roundoff, we make some arbitrary judgment as to 
whether the number should be rounded "up" to the next larger 
integer or rounded "down" to the next smaller integer. (This scheme 
can also be used for fractional numbers.) The following code rounds 
up if the fraction is 0.5 or greater and rounds down if the fraction 
is less than 0.5. 
100 INPUT A P'input test number 
200 B = FIX(A) | 'truncate fraction 
300 IF ABS(A-B)> = .5 B = B + 1 
400 PRINT A,B I 'print input and result 
500 GOTO 100 ('continue for next 

A Sign Function—Absolutely! 

The SGN function is used to test for a negative, zero, or positive 
result. Here again, we could do this by other means such as 
100 IF A<0 GOTO 1000 ELSE IF A = 0 GOTO 2000 ELSE GOTO 3000 

The SGN function makes the job somewhat easier, however, 
100 ON SGN(A) + 2 GOTO 1000,2000,3000 

The SGN returns —1 if the argument is less than 0, 0 if the number 
is equal to 0, and 1 if the argument is greater than 0. In the state-
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ment above, the result of —1, 0, or 1 is converted to 1, 2, or 3 by the 
SGN(A) + 2 to cause a "computed" GOTO, transferring control 
to 1000 for negative numbers, 2000 for numbers equal to 0, and 
3000 for positive numbers. 

Another simple-minded function is the absolute value. (Sorry, we 
didnt mean to shim the absolute value—we mean it's easy to under
stand.) The absolute value, as we know from Algebra One, returns 
A if A is positive or zero, and returns —A if A is negative. All this 
says is that the magnitude of the number is returned. A = ABS(-32) 
returns 32 for A, A = ABS(+32) returns 32 for A, and A = ABS(0) 
returns 0 for 0. A zero value, by the way, is treated as a positive num
ber in the TRS-80 hardware and software (and in virtually all other 
computing systems). The absolute value function is used extensively 
in many mathematical calculations, as, for example, to find the dis
placement along the X axis for two points on a graph 

100 DX = ABS(X2-X1) 

Another mathematical function that is built into Level II BASIC 
is the square root function, SQR. We know that we can find the 
power of any number by using the exponentiation operator t. SQR 
simply duplicates the exponentiation function for A f .5 and is some
what faster. Of course, square roots are common operations in mathe
matical routines, and it's convenient to have a built-in SQR function. 

We won t say much more about the EXP and LOG functions ex
cept that EXP(A) is the exponential function eA and that LOG(A) 
teturns the natural logarithm of A. Natural logarithms are used ex
tensively in higher mathematics. 

Pick a Number, Any Number 

Chances are the number you pick won't be a random number, es
pecially if you keep selecting numbers for some time. The computer 
can be used (and has been used) for a number of years for simu
lation of various real-world events. One of the powerful uses a 
computer can be put to is to produce "pseudo-random" numbers 
for use in simulations. 

What are pseudo-random numbers and how do they differ from 
random numbers? Truly random numbers can be produced by flip
ping a coin. We cannot predict whether the next flip will be heads 
or tails (assuming the coin is perfectly balanced and we are not 
introducing any "tricks" in the flip). If we recorded the heads and 
tails and equated them to ones and zeroes, we would have a long 
list of binary numbers which could be broken up into bytes (see 
Figure 8-4). The bytes would now represent a list of 8-bit binary 
numbers ranging in value from 0 through 255. The distribution of 
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HEADS = 1 
TAILS = 0 

1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1  

/  /  I  
l O O l ^ O O ^ U l H O O .  1  1  0 0  1  0 0  1 .  0 0 1  1  0 0  1  1 . .  

156. 120, 20^5lTt*^/' 
I'igure 8-4. Random binary numbers. 
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Isn't there a more convenient method to generate random num
bers? I'm glad you asked, son. Step over here and let me show you 
this little gadget called the RND number generator. . . . 

RND does not generate random numbers, but pseudo-random 
numbers. Pseudo-random numbers are predictable in that if one 
starts with the same seed number, the same sequence of numbers 
will be generated each time. The numbers generated still have a 
good distribution of values. Generating numbers from 0 to 255 would 
result in about l/256th of numbers equal to 0, 1 /256th equal to 1, 
and so forth, if done over long periods of time. The fact that the 
series is predictable is not necessarily bad. We would like to be 
able to repeat experiments and simulations from the same point, 
after all, and working with truly random numbers does not provide 
that capability. 

Let's look at a sequence of random numbers generated by the 
RND function. The code below prints random numbers from 1 to 
255. The format of the RND function is RND(A). If A is 0. a single-
precision value between 0 and 1 is generated. If A is 1 to 32767. a 
pseudo-random value between 1 and the argument is printed. In 
this case, the argument is 255 to generate a value from 1 to 255. 

100 CIS 
200 PRINT RND(255);" 
300 GOTO 200 

Did you see any repeats? (Well, it is somewhat fast.) The RAN
DOM function reseeds the random-number generator. If RANDOM 
is not used, then turning off the computer, turning it on, and exe
cuting 

100 PRINT RND(10000) 'or other range 

will produce the same number for each power-up. RANDOM en
sures that a new sequence will be started more than 99 times out of 
100. Power down again, power up, and execute 

100 RANDOM 'randomize 
200 PRINT RND( 10000) 'print starting number 

several times. You will see different starting values essentially gen
erated by the same process of taking a count from a register as we 
performed with our random program. 

What is the provision for starting over from the same seed? Since 
we cannot specify a starting seed value in RANDOM, we must do 
some POKEing in memory. If we have a seed from 0 through 65535 
in variable SD, we can reinitialize the seed by 
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100  FOR J=1  TO 5  
2 0 0  S D =12345  
300  POKE 16554 . 0  
400  POKE 16556* INT(5D/256 )  
500  POKE 16555 . SD- I  NT(SD/256>«256  
600  FOR 1= 1  TO 8  
700  PR INT RND<10000) .  
800  NEXT I  
900  PR INT 
1000  NEXT J  
1100  GOTO 1100  

*  l e t up  fo r  5  1 ine i  
'  seed  
' 0  t o  f i r s t  s eed  t -v t e  
'ms  by t e  t o  t h i r d  s eed  bv t e  

I s  bv t e  t o  s e c ond  s eed  bv t e  
' s e t up  f o r  8  va l ue s  

' r andom *  f rom 1 - 1 0 0 00  
' 9 e t  n ex t  number  

' s k ip  l i ne  
' 9 e t  nex t  s e t  o f  8  
' l oop  fo r  compa r i son  

[ 

The seed for any random generation is contained in the three 
bytes of 16554 through 16556. We have arbitrarily zeroed the first 
byte and put the value of SD into the next two. Any scheme such 
as this could be used as long as tbe three bytes are always initialized 
to the same value for the start of each new pseudo-random number 
cycle. 

RND can be used as a simulation tool for any number of real-
world events. Suppose, for example, that we want to simulate a 
dice roll. Each die has a face value of one through six, and there 
are two dice. We can easily simulate the roll of each die by using 
I1ND(6), which will generate pseudo random values of 1 through 6. 

2000  CLS  • c l e a r  s c r een  
2100  R-0  • 0  t o t a l  •  o f  r o t  t  s  
2200  DIM N0(12 )  • s e tup  a r r ay  f o r  t o t a l s  
2300  F OR 1=0  TO 50  p ' r o t t  t he  d i ce  
2400  PRINT 9330 .RND<6>  1  ' 9 e t  va lue  o f  1 -6  
2500  PR INT 95 5 0 .RND( 6 )  1  ' 9 e t  va lue  f  1 -6  
2600  N EX T I  kee p  o n  r o t l l r . 9  
2700  R -R e1  >ump  f t  o f  r o l l s  
2000  A=PEEK(15360*531 ) -48  * 9e f  cu r r en t  d i e  va lue  
2900  B-PEEM15360 .551 ) -48  * f r om s c r een  pos i t i ons  
3000  N O < A * B)"NO(AeB) •1  • I nc r emen t  t o t a l  f o r  po i n t  
3100  PRINT 9  850 .*  t o t*1  *  o f  r o t I s -*  I R  
3200  PRINT 9  9 0 8 . "  2 34567  8 9  10  11  12"  
3300  PR INT 8972 .  " I  
3400  FOR 1 -2  TO 12  r - •  l oop  f o r  t o t a l s  
3500  PRINT USI NG •»#»" |N0<I ) I  • p r i n t  t o t a l s  
3600 NEXT • l oop  
3700  F OR 1=0  TO 50  ' p ause  be fo r e  nex t  r n l l  
3800 NEXT I *- '  1  OOP 
3900 GOTO 2300 ^ - ' 90  t o  r o t  t  ada tn  

The program continuously rolls the dice and prints out the totals 
for each of the points 2 through 12. Let the program run for a while 
to see how the totals compare to the odds of "making" 2 through 12. 
The odds are given below in percentage of times a point will 
come up. 

Point  Po int  
2 .8% 9  11 .1% 
5 .6% 10  8 .3% 
8 .3% 11  5 .6% 

11 .1% 12  2 .8% 
13 .9% 
16 .7% 
13 .9% 
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Another example of how RND may be used is in a simulation of 
a fortune teller. In the program below, YES/NO questions are an
swered by the MYSTIFYING ORACLE program. RND is used to 
generate a value of 1 through 10. This value is then used to obtain 
one of ten strings from string array A$ to answer the question. This 
concept can be used in many similar cases to obtain random answers, 
events, or conditions. 
1 4 0  D I M  A t < 1 0 >  ' s t r i n g  a r r a y  
1 * 5 0  A t <  1  ) = » N O "  
1 6 0  A t ( 2 ) = " Y E S "  
1 7 0  A t ( 3 ) = " M A Y B E "  
1 8 0  A $  (  4 ) = " Y O U  6 0 T I A  B E  K I D D I N G "  
1 9 0  A t ( 5 ) = " P L E A S E  R E P H R A S E "  
2 0 0  A t ( 6 ) = " P O S S I B L Y "  
2 1 0  A t ( 7 ) = " E X C U S E  M E ,  I  H A V E  A N O T H E R  C A L 1  "  
2 2 0  A t ( 8 ) = " N O P E "  
2 3 0  A t ( 9  >  =  " N E G A T O R Y ,  G O O D  B U D D Y "  
7 4 0  A t (  1 0 )  =  " S U R E ,  W H Y  N O T "  
2 5 0  C L S  ' c l e a r  s c r e e n  
. 6 0  P R I N T  " M Y S T I F Y I N G  O R A C L E "  ' t i t l e  m e n a g e  
2 7 0  I N P U T  " Y E S " ! A t  
2 6 0  P R I N T  A t ( R N D ( 1 0 ) ) ; "  
2 9 0  G O T O  2 7 0  

90° 

45° 

/ a 

SINE = i  
c 

Figure 8-5. Sine function. 
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The distribution of answers in this program will be spread quite 
evenly among A$( 1) through A$( 10) if a very large number of cases 
are tried. If we want to "load" the program to bias it toward certain 
responses, the same response could be used as many times as de
sired. 

Another technique used quite often in game programs is to gen
erate that "random" catastrophic effect—the plague that strikes dur
ing Hammurabi or the loss of photo torpedoes during Space War. 
This can be accomplished "n times out of 100" by using a code 
such as 
1000 IF RND(100)= 100 THEN .... 

or 
1000 IF RND(100)>96 THEN .... 

The first example would be true one time out of 100 when RND 
(100)=100, and the second example would be true four times out 
of 100 when RND(100)=97, 98, 99, or 100. 

TRIGONOMETRY |  
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Trigonometric (Say What?) Functions 

The last group of functions we 11 talk about are the trigonometric 
functions, pronounced "Trig-oh-no-mef-ric" if you are a purist. The 
trigonometric functions, as you might guess, are those arch enemies 
of high school and college students—sines, cosines, and tangents. 

We 11 present a short review here, but feel free to peruse other 
material, too, if you feel you need a better understanding of these 
mathematical functions. (If you don't feel that ambitious, just stick 
around here.) 

For any right triangle (a triangle with one right angle), the ratio 
of the opposite side over the hypotenuse is called the sine, as shown 
in Figure 8-5. Opposite to what? To a large eye that we've included 
in the figure. When this angle is very small, the ratio a/c is very 
small. If side c is kept at a constant size, as the angle increases, side 
a increases in size. Close to 90 degrees, the sides are about equal, 
and at 90 degrees, the sides are equal. 

If we continue through 90 degrees to 180 degrees, the ratio of 
side a to c decreases down to 0 again. We can carry this through 
360 degrees, as shown in Figure 8-6. Notice that for angles greater 
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- 1 - 1  

90° 180° 270° 360° 

Figure 8-7. Plotted sine function. 

than 180 degrees, the sine is negative. This is true if we assume that 
the triangles are constructed on an x-y graph with the points lo
cated by standard x-y "rectangular" coordinates. 

If we now graph the sine values for various angles from 0 through 
360 degrees, we get the plot shown in Figure 8-7. The value of the 
sine increases from 0 to 1 from 0 to 90 degrees, decreases from 1 to 
0 from 90 to 180 degrees, decreases to —1 from 180 to 270 degrees, 
and increases from —1 to 0 from 270 to 360 degrees. 

CIRCUMFERENCE = 2*R 

Figure 8-8. Radian measure. 
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The sine function, expressed by the graph, is used extensively in 
mathematics and physics. Many physical events operate on a peri
odic basis that follows the sine function. 

Does everyone know the formula for the circumference of a cir
cle? (Let's see, I have it here somewhere. . . .) It's 2 times pi times 
the radius of the circle, as shown in Figure 8-8. The circumference 
of a circle with radius of three feet is 2 0 3.14159 * 3, or 18.8496. 
Because the circumference is 27rr, a convenient unit known as a 
radian was invented. A radian represents an angle of 360/27T, or 
about 57.296 degrees. It's the angle represented by laying the radius 
of a circle along the circumference as shown in the figure. 

Trigonometric functions are often expressed in terms of radians 
because they easily express critical angles around the circle, such as 
45 (IT14 radians), 90 (n/2 radians), 180 (IR radians), 270 (3TT/4 ra
dians), and 360 degrees (27r radians). If you would rather not worry 
about radians, simply divide the angle you're using by 57.29578 to 
convert from degrees to radians and forget about any mystery in
volved. 

Let's display various values for the sine function from 0 to 360 
degrees. 

I R Q  C L S  ' c l e a r  t h a t  s c r e e n  
<.'00 FOR 1 = 1 TO 360 r~ 'avoid /0 error 
30P SET (( I/360)*127i <24--23« <SIN( 1/57.29578) )) ) 
4 0 0  N E X T  I  L ' c o n t i n u e  f o r  3 6 0  d e g r e e s  
500 GOTO 500 'loop here for display 

0 DEGREES 45 DEGREES 90 DEGREES 

c a 

b b = 0 

COSINE = -
b c 

+ 1 

0  

-1 
0° 90° 180° 270° 360° 

Figure 8-9. Cosine function. 
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b 

0 DEGREES 45 DEGREES 

c „ y|a 

- b - a = 0  b  

This plot uses the TRS-80 x coordinates from 0 to 127 and the 
y coordinates from 1 to 23 to avoid problems with going over the 
y—0 and x—127 boundaries. (We could also have explicitly checked 
for y<0 or x>=128.) The plot shows the sine values from 1 to 360 
degrees (0 to 2n radians) with the top of the screen representing 1 
and the bottom representing -1, identical to the plot shown in 
Figure 8-7. 

he cosine function is similar to the sine function. It expresses 
the ratio of side b divided by side c. As we can see from Figure 8-9, 
the cosine graph starts off at 1 for an angle of 0 degrees, goes to 0 
for an angle of 90 degrees, goes to —1 for 180 degrees, goes to 0 for 
270 degrees, and returns to 1 for 360 degrees. The cosine function 
also figures in a great many physical and mathematical relationships. 
The format of the cosine function is identical to SIN, with the argu
ment in radians. 

T h e  t a n g e n t  f u n c t i o n  i s  t h e  t h i r d  c o m m o n  t r i g o n o m e t r i c  f u n c t i o n  
represented in the I RS-80. It expresses the ratio of side a to b, as 
shown in Figure 8-10. It's easy to see that for angles near 90 degrees, 
the tangent increases to infinity, and for this reason it's hard (if not 
impossible) to graph. The format of the tangent is identical to SIN 
using radians for the argument. Whereas TAN(A) gives the tangent 

CLOSE TO 
70 DEGREES 90 DEGREES 

'&• 4 
b b (very small) 
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ratio for a known angle, ATN (A) does the inverse. ATN (A) gives 
the angle from the ratio. Both are used often in higher mathematics. 
(That's what tall math profs play with.) 

I O B 0  F O R  1 = 0  T O  B 9  
1 1 0 0  A = T A N <  1 / 5 7 .  2 9 5 7 8 )  
1 2 0 0  B = A T N <  A )  
1 3 0 0  P R I N T  1 / 5 7 . 2 9 5 7 8 , 8  
1 4 0 0  N E X T  I  

f o r -  0  t o  8 9  d e g r e e s  
f i n d  t a n g e n t  
f i n d  a n g l e  f r o m  t a n g e n t  
p r i n t  r a d i a n s , a r c t a n ( r a d )  

' c o n t i n u e  f o r  B 9  d e g r e e s  
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CHAPTER 9 

How to Get It All on Tape 

Cassette tape is a fairly recent innovation for computer systems. 
Previous systems used much more complicated digital magnetic tape 
recorders that were (and are) very expensive. In this chapter, we'll 
discuss the CSAVE, CLOAD, CLOAD?, INPUT#, and PRINT# 
commands, tape data formats and speeds, blocking of records, files, 
error recovery, and tape backups. 

Tape Commands 

There are three cassette tape commands in Level II BASIC— 
CSAVE, CLOAD, and CLOAD?. The use of these is very straight
forward. To save a BASIC program, set the cassette recorder level 
to the proper setting, rewind the tape to the beginning (or a known 
point using the cassette counter), set the tape recorder controls to 
Record, and type in CSAVE "name". The BASIC program will be 
written out to cassette tape in roughly the same fashion that it is 
stored in memory. 

To reload the program or any other program stored on cassette, 
reposition the recorder to the beginning of tape (or the counter po
sition), set the recorder control to Playback, and type in CLOAD 
or CLOAD "name". The BASIC program will be read into RAM. 

Simple and foolproof . . . What could go wrong? Well, a couple 
of things. First of all, make certain that you are past the leader (the 
non-magnetic material at the beginning of the tape) on the cassette. 
Many tape recorders have trouble recording data on the leader 
(thats a joke, son!). Secondly, make certain that the level setting 
on the tape recorder is at the recommended value for the type of 
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recorder you're using. It may take some experimentation to find the 
optimum level for consistently good writes and reads. Thirdly, not 
only must you be clear of the leader on the tape, but it's a good 
idea to erase a portion of the tape to "bracket" the starting point, 
as shown in Figure 9-1. The reason for this third point is to be 
found in the general tape format that's used for Level II tape op
erations. 

LEADER HEAD BYPASS LEADER 

LEADER HEAD 

! 
. i 

l__J 

ERASE TAPE 

LEADER HEAD START IN MIDDLE 
OF ERASED AREA 

ERASED 

Figure 9-1. "Bracketing" tape writes. 

Follow the Leader 

All tape operations write data to the cassette by first writing 
255 bytes of zeroes and by then writing a single byte of a value 
of 165, as shown in Figure 9-2. The remainder of the write contains 
the BASIC program or data to be written. On a subsequent read 
(CLOAD), the tape read routine expects to find zeroes initially, fol
lowed by the 165 value. As a matter of fact, it uses the 165 byte as 
a "synchronization byte" or "sync byte" so that it knows where the 
data starts. 

Data is written on the cassette serially as a long string of binary 
data. (There's that darn hinarxj again!) The 255 bytes of zeroes and 
the one byte of 165 result in 2048 bits of "leader," as shown in 
Figure 9-2. When the CLOAD is performed (or when any tape 
read is performed), the read goes something like this: 

1. A bit is read. 
2. The tape input routine moves this bit left into an 8-bit value. 
3. The value is compared to 10100101 (165). 
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"165" 
SYNCHRONIZATION 

BYTE 

O O O O O O O O O O O O O  0 0 0 0 0 0  1 0 1 0 0 1 0 1  

255 BYTES 
OF ZEROES <P 

TAPE MOVEMENT 

I 
DATA 

STARTS 

Figure 9-2. Tape format. 

4. If the value is not equal to 10100101, step 1 is again performed. 
If the value is 10100101, step 5 is performed. 

5. Tape input routine prepares to read data. 

You can think of this entire operation as moving an 8-bit "window" 
along the string of leader hits until the 165 "sync byte" is found, as 
shown in Figure 9-3. I he tape input routines then know exactly 
where the data is on the tape. The obvious reason for this is that 
the tape cannot be accurately positioned manually because each bit 
occupies about 1/250 inch on the tape and the tape must also be 
"brought up to speed." 

I o get back to our original discussion on erasing the tape to 
bracket the starting point . . . What if we started in the middle of 
"garbage" data before reading the tape? This could occur if we had 
previously recorded data on the tape and repositioned the tape 
sometime before the actual start of the new* leader, as shown in 
Figure 9-4. Now, if the data included any 8 bits of data in the se
ries 10100101, the tape input routine would be fooled into thinking 
that this was a legitimate sync byte and woidd then start reading 
data, which would be garbage. The chances of this happening are 
about one in 1 inch of tape. So . . . please follow our advice about 
bracketing the starting point on writes, or at least reposition the 
counter slightly past the point at which writing started. (We'll be 

ZERO BITS 
OF LEADER 

\ 1 0 1 0 0 1 0 1  

I 0 0 0 0 0 

START OF 
DATA 

/ 
0 0 1 0 1 ^  

TAPE MOVEMENT 

V 
8 BIT WINDOW 

LOOKS FOR 1 0 1 0 0 1 0 1 
"SYNC" BYTE 

Figure 9-3. Synchronization operation. 
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ERRONEOUS 
START OF DATA 

"GARBAGE" DATA 10 10 0 10 1 

3 1 0  1 1 0  1 1 1 1  10 10 0 10 1 1 0  0  1  

<? 
TAPE MOVEMENT 

ERRONEOUS 
SYNC BYTE 

Figure 9-4. Synchronization problems. 

sending around our armed guard soon to RND (users) to remind 
y o u . . . )  

Returning to the CSAVE and CLOAD commands, let's write out 
a short program. The shortest program I know of is 
100 REM 

CSAVE this under "SHORT" and then CLOAD it in. Time the op
eration. The entire operation took about 5 seconds. Most of the time 
in this case is devoted to writing out the 255 bytes of zeroes. It s 
easy to figure out the time involved in writing out any known length 
of data. We know from diligent study of our Radio Shack manuals 
that Level II records at 500 baud and that 500 baud (in this case) 
is about 500 bits per second. The amount of data per second, then, 
is roughly 500/8 bytes, or 62.5 bytes per second. The leader of 255 
bytes would therefore take about 255/62.5 or about 4 seconds to 
write. We'll be using the 62.5 bytes per second in later discussion, 
so it might behoove you to take this constant and have it engraved 
on a wall plaque for reference in later reading . . . (we'll wait while 
y o u  d o  . .  . ) .  

Why Is There a Question Mark After CLOAD?? 

We'll be discussing this subject shortly, after we give a definitive 
statement about truth and beauty. The question mark marks this 
CLOAD as a "check" CLOAD. As you know from some late-hour 
CLOADS, one of the things that always seems to occur (especially 
at the end of the day) is to finish debugging a BASIC program, 
CSAVE it on tape, CLOAD it in again, and have it give an error 
part way through the load. 

Unfortunately, at this point the program cannot be recovered, 
and you don't have an old copy. Ah yes, the trials of a programmer. 
. . . The CLOAD? is a well-thought-out command to enable you to 
compare what you have CSAVED with the program currently in 
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RAM (without destroying the program in RAM). Using CLOAD? 
wi l l  result  in many extra hours of sleep ( I ' l l  go for that!) .  

While we're on the subject, let's pass on some more quick advice. 
One can never have too many backups. Many times, I've been work
ing late evening hours in a computer installation and seen the com
puter systematically eat up the current program and many of the 
backups. If you're making a CSAVE, it's a good idea to make two 
copies on the same cassette or even on another cassette. Your TRS-80 
may be hungry. 

What's That (Blinking) Asterisk? 

On a CLOAD or CLOAD? (and on other inputs), two asterisks 
are used. One of them blinks on and off for every line of BASIC 
program read. If you have excellent reflexes, you may be able to 
verify that the number of program lines read in is correct during 
a CLOAD operation. 

Using PRINT# and INPUT# 

CSAVE and the CLOAD commands are fairly easy to use and 
understand. The cassette data is made up of the BASIC program 
lines; all data is of about the same format on tape. 

The PRINT# and INPUT# statements, though, are more general-
purpose. They are used to output variable-length data records to 
the cassette and to input the records into the BASIC interpreter for 
processing. Try the following: 

1 0 0  I N P U T  " R E A D Y  T A P E * I  A t  
2 0 0  P R I N T  » - | « * t h i s  i J  *  t « s t "  
3 0 0  I N P U T  " r e a d *  t » p » " t A *  
1 0 0  I N P U T  N - i  « E J »  
5 0 0  C L S  
6 0 0  P R I N T  9  5 3 0 . B «  
7 0 0  G O T O  7 0 0  

' w a i t  f o r  p o s i t i o n  
' o u t p u t  o n *  r p r o r d  
' w a i t  f o r  t a r *  p o s i t i o n i n g  
' i n p u t  o n «  r p c o r d  
' < l « - a r  j c r » * n  
' p r i n t  i n p u t  r t c o r d  

' f o r  d i s p l a v  

1 his code shows the basic format for outputting and inputting 
cassette data from a BASIC program. The "#" marks the PRINT 
statement as cassette output and the INPUT statement as cassette 
input. 'I he —1 is used to refer to cassette tape unit number 1. (If you 
have an Expansion Interface, i t  is possible to wri te to ei ther of two 
cassettes, and allowable numbers in the PRINT and INPUT state
ments are —1 and —2.) 

The operation above writes one record, made up of the string 
1IIIS IS A TEST" and the usual leader of 255 bytes of zeroes and 

a sync byte, to the cassette. The record appears as shown in Fig
ure 9-6. As you can see, most of the space in the record is made up 
of leader and very little of data. 

164 



Rewind the tape and run the following program. 

1000 INPUT "READY TAPE";At w a i t  f o r  t a p e  p o s i t i o n i n g  
1100 PRINT #-1»111.33» 737»"THIS 15 A TES7",lE-05 
1200 GOTO 1100 c o n t i n u a l l y  o u t p u t  r e c o r d  

Let the program run for several minutes. After accumulating sev
eral minutes worth of data on the tape, key in the following program, 
and run it after first rewinding the tape. 

1000 DATA 175«205> 18,2, 205, 150,2, 205,53. 2« 183» 32, 7 
2100 DATA 62.10,205.51,0.2412405205.51.0.24.238 
2200 At="THIS IS A DUMMY FOR FILL!" 
2300 A=VARPTR(A$) "Ret a d d r e s s  o f  blo<~L 
2 4 0 0  B=PEEK(A+ 1 >+PEEK<A+2>*256 'get a d d r e s s  o f  s t r i r . 9  
2500 FOR I=B TO B+24 

The program above reads data files on cassette and displays the 
data on the screen by using a short machine-language program filled 
into the dummy string A$. (We'll learn more about this technique in 
the next chapter.) Every new record is displayed on a new line. 
This program can be used for any data tape. As we can see from 
the data on the display, the format of the data on the tape is as 
shown in Figure 9-5. Each numeric value in the string for the 
PRINT#—1 was written onto the tape in ASCII with one leading 
and one trailing blank, and a comma between data items. The string 
value was written out without a leading or trailing blank. 

The PRINT#, therefore, is really very similar to a print on the 
display or line printer in that it writes out ASCII data rather than 
binary values. This makes the data easy to read for a routine such 
as the one above, but it makes the data storage somewhat inefficient. 
(A binary value of 32767 would take 2 bytes instead of 5 bytes in 
ASCII, for example.) 

PRINT# will output any number of variables or constants that 
can be contained within a line in the above format. Each list of 
variables for the PRINT will be contained within one record, with 
255 leading zeroes and the sync byte. A record is simply a some
what arbitrary collection of variables, logically grouped into a sin
gle area. A file of data consists of a number of records of related 
data. If your TRS-80 was used to record time and temperature in 
each record, for example, the Tuesday, September 25, 1979 tempera
ture file might contain 48 records, one for every V2 hour temperature 
reading. 

The INPUT# statement is similar in action to a normal INPUT 
statement. It reads the next record from cassette after first discard-

2600 READ C 
2700 POKE I.C 
2800 NEXT I 
2900 POKE 16526,(PEEK(A+1)) 
3000 POKE 16527,(PEEK(A+2)) 
3100 CLS 
3200 A=USR(0> 

s t o r e  I s  b y t e  o f  a d d r e s s  
s t o r e  m s  b v t e  o f  a d d r e s s  
t h a t  o l  c l e a r  s c r e e n  
c a l l  t o  n e v e r  r e t u r n  
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ll 

LEADER (255 BYTES OF ZEROES. SYNC BYTE) 

LEADER 
i 1 

6  1 1 1 . 3 3 5 ,  5 7 3 7 5 .  T H I S  I S A  T E S T .  t >  ]  E - 0 5 t (  

J / 

RECORD 1 

RECORD 2 

ETC. 
Figure 9-5. Tape data formats. 
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i number of data items in the record does not 
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out inter-record gaps of zeroes and a sync byte. If we want to find 
out how much record data can be put on the cassette, that's another 
story. We must really figure that out for each individual program 
that writes to cassette. Let's see how we do it in a sample case. 

Suppose, to use the weather analogy again (it's always fair 
weather when good data gets together) . . . Let's say that we have 
the following PRINT# statement for weather data 
100 PRINT #-l,MO,DA,YR,TM,WS (BP,WD 

The variables are MO for month, DA for day, YR for year, TM 
for temperature, WS for wind speed, RP for barometric pressure, 
and WD for wind direction. If we assume 2 digits for month, day, 
and year, and four digits plus decimal point for TM, WS, BP, and 

— - 0 0 0 0 0 0 0  o |  
t) M 0t>. t> D At> . ftYRfr , t) 
T M  .  T M t )  .  t ) W S  .  W S t )  . f t  
B P  .  B P t )  . f t W D .  W D j & O O  

256 BYTES 
OF LEADER. 
SYNC 

-SYNC 

48 BYTES 
OF DATA 

Figure 9-6. Example of record format. 

WD, then we have records that look like Figure 9-6. Each record 
will contain about 48 ASCII bytes of data plus 256 bytes of leader 
(zeroes and sync byte) for a grand total of 304 bytes. Now, how 
many of these records can we get on a single side of a C60 cassette? 
Easy . . . 
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^ = 370 records 
304 

Of course, in actual practice the number of ASCII characters per 
variable may vary, trailing zeroes will be discarded, and so forth. 
Still, we can get a pretty good idea of the number of records the 
tape will actually hold by doing this type of analysis. Another ap
proximate way to calculate the number of records is to assume that 
each record is about 5V4 seconds long. Using this approximation and 
knowing that there are 30 X 60 = 1800 seconds per side of a C60 
cassette, we can approximate 340 records. This is not too far off; 
the smaller the number of variables in the record, the more accurate 
this method is, of course. 

Now, just for fun, let's try packing data. Packie Data . . . wasn't 
he Hoy Autrey's sidekick? No, we said packing data, another data-
processing buzzword. When data is packed or blocked, more than 
one logical record is put in each physical record. We can put two 
weather readings into each record very easily using arrays, by a 
statement such as 
100 PRINT # - l,MO(l),DA(l),YP.(l),TM(l),WS(l),BP(l),WD(l),MO(l + 1),DA(I + 1),YR(I + 1), 

TM(I + 1),WS(I + 1),BP(I + 1),WD(I + 1) 

This writes the first group of variables followed immediately by a 
second group of variables. How much data storage have we gained 
by this approach? The size of each record is now 256+48+48 bytes, 
or 352 bytes, and the number of records is 

= 320 records 

However, since each record holds 2 sets of data, we have the equiva
lent of 640 records, 170% of the number in the first case! 

The practical limit is determined by two factors. The first is the 
maximum size of the statement line (240 characters); the second is 
the maximum record length (240 data characters or 596 total bytes). 
The equivalent number of records for various blocking factors is 
shown in Table 9-1. For example, in the case of records blocked 
6 sets of variables to one record, we can squeeze 1242 sets of vari
ables onto one side of a C60 cassette. Quite an improvement over 
370 for an unblocked record! Of course, the smaller the size and 
number of variables, the greater the blocking factor can be, up to 
the limit of the statement line length or maximum record length. 

We can say some interesting things about speed when records are 
blocked. There is a direct relation between the blocking factor and 
speed of access of any record; the more blocking employed, the 
faster we will be able to read in the data. Using a blocking factor 
of 6, for example, the 370th set of variables is about 30% "down 
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Table 9-1. Blocking Factor Versus Data, Sample Case 

Blocking 
Factor 

Number of 
Bytes /Record 

Maximum Number of 
Records, One Side 

of C60 

Number of Records 
Times Blocking Factor 
(Equivalent Number 

of Variable Sets) 

1 304 370 370 
2 352 320 640 
3 400 281 843 
4 448 251 1004 
5 496 227 1135 
6 544 207 1242 

Hie tape" or about 9 minutes, while it is at the end (30 minutes) 
of an unblocked tape. 

Sequential Cassette Files 

Is it practical to use cassette tape to hold data files for processing? 
It all depends on the type of data file. If we want to process the 
weather data we were discussing previously and have to find rec
ords at random, then it is impractical to store the records on cassette 
tape, because each time we require a new record we have to inter
vene manually and rewind the tape to the beginning of the cassette 
before the search. An example of this access of random records 
would be a user requesting the weather data for July 27 at 12:30 pm, 
then the data for June 10 at 10:00 am, then the data for March 11 
at 5:00 am. The records are ordered on the tape in sequential fash
ion based on the date and time. Each search for a random record 
takes between no time and 30 minutes, with an average of 15 min
utes (assuming one side of a cassette completely filled with data). 
Fifteen minutes to access a record is intolerable, even for patient 
TRS-80 programmers, and the manual intervention is also a nuisance. 

If, however, we want to compile a list of all times when the tem
perature was below —30 degrees and a second list of all times when 
the wind speed was above 20 miles per hour, this is a relatively easy 
and practical problem. One pass through the cassette could yield 
two lists with the required data in about 30 minutes, not an unrea
sonable time, especially when the manual intervention of rewinding 
is not required. 

The second type of processing is sequential in nature. Cassette 
data files lend themselves fairly well to sequential processes, but 
not at all to random processes. Cassette data files can efficiently 
hold any data that can be ordered and processed sequentially. 

It's easy to see how sequential files can be generated. An initial 
set of records is input into memory, blocked, and then output to 

169 



the cassette in ordered fashion. How are new records merged or old 
records modified or deleted? 

If your system has only one cassette recorder, then the size of the 
file is limited by the amount of data that can be held in memory 
and processed. Assuming that about half of the record is data and 
half is leader (512-byte record), then we have about 45,000 bytes 
maximum that we could put on one side of a C60 cassette. That 
would stretch the limits of a 48K Level II BASIC system, since we 
have about 48,340 bytes initially without a program to process the 
data, but it gives some clue as to the maximum amount of data we 
can handle with one cassette. In this case, all of the data records on 
the cassette would have to be read into memory, the data processed 
by adding new records, modifying old records, and deleting old rec
ords, and a new cassette rewritten after the processing was done. 

I hear a strident voice protesting (Guard! Confiscate his CGO cas
settes—leave only the CVzs!). No, data cannot be rewritten over rec
ords on the tape, for two reasons. First of all, there is that manual 
intervention again to reposition the cassette to the start of the record 
to be modified by rewriting. Secondly, although there are expensive 
incremental tape recorders for computer use, an audio cassette can
not be repositioned accurately enough to guarantee that a new rec
ord exactly overwrites the old. (Remember the possible erroneous 
sync byte problem we discussed earlier?) The only way to update 
an old file with new data is to rewrite all of the records after they've 
been modified. 

Two Cassettes Are Better Than One 

Having two cassettes simplifies the file update problem consider
ably. Of course, an Expansion Interface is necessary for operation of 
the second cassette. One cassette is cassette number —1, and the 
second is cassette number —2. The current transactions, whether 
they are deletions, modifications, or additions, are input to the sys
tem from the keyboard (or from a third cassette). Now the records 
from the old master file (—1) are read one at a time and rewritten 
to the new master file (—2). If a record is to be modified, it is modi
fied after it is read into memory, and rewritten to the new master 
file. If a record is to be deleted, it is not written to the new master. 
If a record is to be added, it is added between the two records of 
the old master file. 

The time involved to update an old master file into a new master 
file on the second cassette is twice that of working with one cassette, 
but the entire operation can go very smoothly and is fairly efficient 
for sequential files. 
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CHAPTER 10 

To Err Is Human 

We re certain you, like the author, hardly ever make mistakes. . . . 
In spite of that, we'll be discussing some of the common errors in 
Level II BASIC programs in this chapter. We'll also talk about some 
very handy features in BASIC that allow the computer to handle 
errors automatically. Why is this important? Suppose you've devel
oped a sophisticated BASIC program that does everything but tuck 
you in at night. You have self-prompting messages, menus, and a 
number of other things. In the course of running the program, how
ever, let's say you enter some invalid data which results in total 
sales being divided by a number-of-months variable that is equal 
to 0. Suddenly the program spits out "/0 EBBOB IN 1088," and 
you sit there dumbfounded. (Or at least sit there for about 20 milli
seconds before starting to scream.) 

BASIC has a built-in automatic error-handling provision that can 
avoid problems such as this. It also provides the ability to simulate 
the errors to check out the error logic itself. 

We'll also give you some homespun advice in this chapter on 
general debugging philosophy, and we'll talk about some of the 
built-in aids to debugging—such as the trace capability. 

Unprintable Errors and Other Types 

Our favorite error type is "unprintable error"; that's exactly the 
way we feel about all errors! The unprintable error and all of the 
other types are listed in Table 10-1. Let's discuss each of them and 
see how they are generated. 
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Table 10-1. Level II BASIC Error Codes 
Error 
Codo Error Doscrlptlon 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

NF NEXT without FOR 
SN Syntax error 
RG Return without GOSUB 
OD Out of data 
FC Illegal function call 
OV Overflow 
OM Out of memory 
UL Undefined line 
BS Subscript out of range (bad subscript) 
DD Redimensioned array 
/0 Division by zero 
ID Illegal direct 
TM Type mismatch 
OS Out of string space 
LS String too long 
ST String formula too complex 
CN Can't continue 
NR No RESUME 
RW RESUME without error 
UE Unprintable error 
MO Missing operand 
FD Bad file data 
13 Disk BASIC only 

line" error Thfc „ S,raiR'"forward " the UL, or "undefin. 
aTne Zf , V Anient line reference is made 
a line that doesn t exist anywhere in the program. 
1000 GOTO 2000 <go to 2000 

1010 A = 2*3.2 +ZZ 'ge, tofa, 
3000 PRINT "TOTAL = ',A <pri„, it 

' ̂ C°dceMabOVe' forexamP,e> wo"M result in "UL ERROR IN 1(XK) 
CT 1° A ' °r S^ntax error» 's another easy type of error to undei 
tocmrecrTl '"1 7'" 7"" Whe" lh° format of a Element line i 

orrect. Many times llns occurs if the number and type of paren 
Ureses are mcorrect. This ranges from simple statements such a 
100 X = A(5/B 

to complex giants such as 
100 ZZ = (RIGHT(2B$,(A —2)*3)) 

Ther number of right parentheses must always match the numbe, 
t l ™ " Sr°0d idei> '° gCt into the habit °f count 

g and comparing parentheses in long, complex statement lines 
It s easy miss an internal parenthesis. Syntax errors are also caused 
by other errors in format such as 
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100 A= B//C 
or 
100 A$ = LEFT$(B$) 

Syntax errors are a kind of catchall for every type of statement for
mat error. 

rncTmNEXT without FOR error> NF> and RETURN without 
UUSUB, RG, are two program-format errors that are also obvious. 

occurs when a loop is improperly set up without a FOR state
ment, or the program branches to a point where a NEXT is to be 
executed without being currently in a loop. An example of this is 
100 GOTO 300 'goto 300 
200 FOR 1=1 TO 300 ["'start of loop 
300 PRINT I 'print index 
400 NEXT _ 'continue 

The RG is similar; a RET URN is to be executed without currently 
having called a subroutine. 

OD, out of data, occurs when READ statements have read data 
values until the end of all data has been reached. As you know from 
previous chapters, all DATA statements anywhere in the program 
constitute one table of DATA values. When a RESTORE is done 
a pointer is set back to the beginning of the DATA. Subsequent 
reads read one data value for every item in the read list. An easy 
7°/ iS ,t0 haVC a dummy terminating value to mark the end 
o the DATA values and then not put in enough "dummies" to com
plete the READS for multiple items. For example, suppose we are 
reading three DATA values at a time and using a -1 to mark the 
end of the values. 

1 0 0  R F . A D  A . B . C  
1 5 0  I F  A = - l  E N D  
1 0 0  P R I N T  " A = " S A i " B = " : B i " C = * S C  
2 5 0  G O T O  1 0 0  
.500 DATA 1,2.3. A. 5.6. 7i8. 9,-1 

r ~  *  t  f a d  3  d a t a  v a l u e , .  
I  ' t e r m i n a t o r  i s  - l  

' p r i n t  v a l u e ,  
' 9 o  f o r -  n e x t  s e t  

The logic of the above program is flawed, since the last READ at
tempts to read the next three values and can find only one An OD 
error results. 

An illegal function call error, FC, occurs when you're using the 
UAblG functions and specifying invalid arguments. For example 
what is the square root of a negative number? The code 
100 A = SQR( —23) 

will produce an FC error. Another type of invalid argument pro
ducing the same results is a graphics related 
100 SET(223^5) 

or a matrix related 
100 B = A( —1,0) 
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The OV error, overflow, results when a data value is too large for 
the variable involved. As we saw in an earlier chapter, all variable 
types have their limits, beyond which they will not be pushed. 
Trying to INPUT a value greater than +32767 or less than —32768 
will result in an OV error for 
1 0 0  I N P U T  A %  

as will attempting to input 1.1E127 for A or A#. 
Choose one from the following: "OM, out of memory" occurs when 

A. The HAM chips are pulled from their sockets. 
11. Hornstein takes a vacation. 
C. The stack builds down into the text/variable/array area. 
D. The program expands and the text/variable/array area moves 

into the stack. 
E. A new simple variable expands the text/variable/array area 

into the stack. 
F. An array is dimensioned and the text/variable/array area ex

pands into the stack. 
G. A CLEAR is performed that expands the string/stack space 

into the text/variable/array area. 
II. 1 forgot the question. 

If you chose any of the above, you are probably right. Any time 
the free memory between the text/variable/array area and the stack/ 
string area is small, the action of running the program may dimen
sion arrays, clear string space, add new variables, or perform other 
actions to use up the last available memory (see Figure 10-1). 

Anticipating that some users might be prolific coders, the design
ers of Level II BASIC were faced with two alternatives: 

1. Let the program gobble itself up, or 
2. Print an OM error. 

They chose the latter. To see how much memory is still left under 
various conditions, you may include a "PRINT MEM at any point 
in the program. Doing a rough estimate on the amount of storage 
required by arrays also is a help. If you do run out of memory, pos
sible alternatives are: 

Reduce the program size by deleting REMarks and blanks, and 
building multiple statement lines. 

Make single-precision variables into integer variables when pos
sible, especially for arrays. 

Reduce the string area defined by CLEAR. 
Segment the program into two or more sections. 
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An OS (out of string space) error related to OM occurs when the 
string space allocated by a CLEAR statement is too small to handle 
string manipulations. The string area may be made as large as re-

GENERALLY 
USES MUCH 

MEMORY 

GENERALLY 
USES LITTLE 

MEMORY 

GENERALLY 
USES MUCH 

MEMORY 

GENERALLY 
USES LITTLE 

MEMORY 
GENERALLY 

USES MODERATE 
AMOUNT OF 

MEMORY 

PROGRAM 

1 
SIMPLE 

VARIABLES 
I 

ARRAYS 

1 
FREE MEMORY 

t 
STACK 

STRING 
STORAGE* 

BUILDS 
t  "UP" 

i  BUILDS 
I "DOWN" 

•CONSTANT 

i i 
i i 
i i 

Figure 10-1. Free memory area. 

quired, subject to other storage, so don't hesitate to throw caution 
to the winds and say 
100 CLEAR 20000 

if required. This also eliminates or reduces dynamic string allocation 
in the middle of execution. (You know, the interminable pauses that 
make you think that it's time to visit the repair tenter.) 

The BS, or subscript out of range, error occurs when an array sub
script is greater than the dimension value specified in the DIM state
ment or is otherwise incompatible. Arrays are specified by DIM val
ues that represent the maximum value for the dimension. For ex
ample, the statement DIM A(5,5,5) specifies an array that is six by 
six by six with values for each dimension of from 0 through 5. 
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Another array-related error is DD, a redimensioned array. Arrays 
can be dimensioned once and once only, and cannot be redimen
sioned. A DIM statement at the beginning of the program sets up 
the array in the array storage area of memory by allocating memory 
space for the array based on the variable type and the size of the 
array. It is not permitted to redefine the array later in the program, 
and, as a matter of fact, that's just gosh-darn bad programming 
practice. 

We've probably all heard our math instructor say that division 
by 0 is not possible or at least "undefined." When the computer at
tempts to divide by 0, the answer is the largest possible number 
that can be held in the variable type. This is clearly wrong as the 
answer for the integer calculation 333/0 is not 32767! Just as our 
math instructor did not know what to do when he attempted to di
vide a number by 0, neither does the BASIC interpreter, and it pro
duces a /0 error. 

The ID, or illegal direct, occurs when INPUT is entered as a 
direct command. INPUT A,B is meaningless if not associated with 
a statement line. 

There are three error types associated with strings, TM, LS, and 
ST. TM, type mismatch, occurs when the program attempts to de
fine a string variable, a numeric value, or vice versa. 

100 A$= 12.34 
200 A = "STRING" 

will both produce TM errors. The LS, or string too long, error will 
occur if a string value exceeds 255 characters in length as in 

1 0 0 0  C L E A R  1 0 1 1 0  
1 1 0 0  A * * * 1 4  C H A R A C T E R S '  
1 7 - 0 0  P «  =  B « + A *  
1 3 0 0  P R I N T  P . *  
1 4 0 0  G O T O  1 2 0 0  

[ 
' c l e a r  s t r i n 9  s t o r a l e  
1 4  c l > a r  i t r  i r i f l  
c o n c a t e n a t e  
p r i n t  c o n c a t e n a t e d  f t r i n o  
P e e p  o n  t l o 9 9 1 n 9  

The ST error, or string formula too complex, occurs when the BASIC 
interpreter just cannot handle the machinations of the programmer. 
I have never experienced the ST error (which may say something 
about the sophistication of my coding!). We'll leave it up to you to 
produce samples of string statements that produce this error. 

The CN error, can't continue, occurs when the program has 
reached a logical end and a CONTinue statement is meaningless. 
It is the interpreter's way of saying "THINK AGAIN, HAMMU-
BABI!" 

The NR, RW, and UE errors will be discussed shortly when we 
discuss the error functions. 

The MO, or missing operand, error occurs for cases where an op
eration is specified but no operand exists. The code 
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100 A=(5 + 32)/ 

will produce an MO error. 
Bad file data, FD, occurs when a cassette read operation is taking 

place and invalid data is read in as a result of bad data on the tape, 
or "glitches" in reading the cassette. Errors such as this are classed 
as recoverable or non-recoverable. A recoverable error means that 
the same data may be reread and recovered. Unrecoverable gener
ally means that three (or more) retries were unsuccessful in recov
ering the data. 

The last error code, L3, is displayed when a Disk BASIC command 
is attempted without disk. An example of this would be an attempt 
to execute a KILL command to kill a file or a non-existent disk. An 
L3 error would result. 

Trapping the Wild Error 

As we're all aware, the BASIC interpreter stops program execu
tion after encountering an error, prints the two-letter error type, 
and returns to a READY condition. This is a reasonable action to 
take in the general case. If you can anticipate the errors that may 
occur, however, you can utilize the Level II Error functions to pro
cess the errors and either correct the condition or prompt yourself 
into correcting the condition. The error functions that you have 
at your disposal are the "ON ERROR GOTO" trap (which trans
fers to a given statement number for any error), a RESUME state
ment (which acts as a type of CONTinue after the error), the ERL 
and LRR/2+1 (which return an error line number and error code 
number, respectively), and an error simulate, the ERROR function. 
Before we discuss how we can trap errors, let's talk briefly about 
what errors we want to trap. 

We could conceivably set up a program to trap (process) all er
rors. However, some errors, such as SN, NF, and RG, are clearly 
program logic errors. In other words, the program has not been suffi
ciently debugged when these errors occurI It does not make sense to 
process such errors that are involved with program logic. It does 
make sense to process errors that are a result of incorrect data input 
by the user, overflow conditions on input, division by 0, type mis
match on input, or bad file data. The error trapping ability is meant 
primarily as a means to make a program "idiot-proof" in the kindest 
sense of the word—to anticipate the normal types of errors that oc
cur primarily as a result of operator errors in inputting data. 

Now that we know what errors we want to trap, let's see how we 
go about processing them. First, we'd better take a close look at the 
ON ERROR GOTO statement. This statement defines an error-

processing routine for the interpreter. Henceforth, any error condi-
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tion will result not in a printout of the error type, but a transfer to 
the line that begins the error processing routine. 
100 ON ERROR GOTO 10000 

\ni?£?S tlle »lterPreter that the error processing routine is at line 
10000 and that any errors that occur should cause an automatic 
transfer to that line. 

^wrRnn^rll-?010 function may be disabled by executing 
an ON EHbO J GOTO () statement at any time. By alternating be
tween ON ERROR GOTO n and ON ERROR GOTO 0 statements 
error trapping may be turned on and olT depending upon the section 
of the program that is currently being executed. If, for example, the 
program only handles error processing for bad cassette data, then 
any time cassette data is not being INPUT an ON ERROR GOTO 0 
may be executed to disable the trap. 
1 lie RESUME statement is used to resume normal operation after 

RESUME 8 'aken P'aCe' There arC three forma,s for ,he 

1. RESUME or RESUME 0 causes a return to the statement where 
the error occurred. 

2. RESUME n causes a transfer of control to a specified line num
ber n. 

3- ?E?VMr NE,XT,causes a transfer of control to the line imme
diately after the line at which the error occurred. 

S' ,u°7Me*a™?Lcs for a" ",ree "si"8 ">e infamous /0 error type, 
first, the RESUME case. 

2000 ON ERROR GOTO 
2100 A-2/0 
2200 PRINT 
2300 PRINT 
2100 END 
2*300 PRINT 
2600 RESUME 

*300 

"t INE 2200" 
"LINE 2300" 

"error trap" 

'retur error trap loco 
'cant divide bv 0' 
'rr in I  I i  ne tt 
'print l ine » 
' tbit i t  the end 
'error trap location 
'rerume processing 3 2200 

Execution of this program causes the error-processing routine line 
number to be stored by the interpreter as "2500." A divide by 0 er
ror results at line 2100, causing the interpreter to transfer control to 
TIT AEP'.°r"PI°LESSING r°Utine at Hne 250°- This routine prints "ERROR 
i l* oVnn i'1 <Jxecutes a RESUME, which transfers control back 
o hne 2100, which causes a divide-by-0 error, which transfers con-
tiol to the error-processing routine at line 2500 which Well 
anyway, you get the idea. 
3000 ON ERROR GOTO 3500 
3100 A =-'2/0 
3200 PRINT "I INE 3200" 
3300 PRINT "LINE 3300" 
3100 END 
3500 PRINT "f RROR TRAP" 
3600 RESUME 1300 

'seluu error trap locn 
'cant divide bv 0' 
*Ptint 1ine # 
'print l ine # 
' this is the end 
'error trap location 
'resume processing 3 3300 

EI 
10 
oul| 
Tr 
roi 

100 
200 
300 
100 
500 
600 

100I 
I 10( 
I 20( 
I30I 
1101 
1501 
1601 
1701 
I80C 
1901 

1 
err< 
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Execution of this version causes an error trap to line 3500, print
out of "ERROR TRAP", and a transfer of control to line 3300 with 
termination of the error condition. 

4 0 0 0  O N  E R R O R  G O T O  ' > 5 0 0  
4 1 0 0  A = 2 / 0  
4 2 0 0  P R I N T  " L I N E  4 2 0 0 "  
4 3 0 0  P R I N T  " L I N E  4 3 0 0 "  
4 4 0 0  E N D  
4 5 0 0  P R I N T  " E R R O R  T R A P "  
4 6 0 0  R E S U M E  N E X T  

" s e t u p  e r r o r  t r a r  l o c n  
' c a n t  d i v i d e  b v  0 !  
' p r i n t  l i n e  #  
'  p r  i  n t  l i n e  1 1  
" t h i s  i s  t h e  e n d  
' e r r o r -  t r a p  l o c a t i o n  
" r e s u m e  n e x t  l i n e  

Execution of this version causes an error trap to line 4500, printout 
of "ERROR TRAP", and a transfer of control to the line immedi
ately following the line causing the error condition, line 4200. 

Error Processing 

Error processing involves three steps: identifying the error, cor
recting the error, and RESUMEing at a logical point. We'll talk about 
the first two, since the third is dependent upon the success in solv
ing the error condition. 

There are two statements that we can use to identify the error, 
ERL and ERR/2+1. ERR/2+1 provides the error code (see Table 
10-1), while ERL provides the line number. The code below prints 
out the error code and line number on which the error occurred. 
Try running this code not only with the /0 error, but with other er
roneous code at statement 200. 

1 0 0  O N  E R R O R  G O T O  5 0 0  ' s e t u p  e r r o r  t r a p  l o c n  
* 0 0  A = 2 / 0  *  n a u g h t y « n a u g h t y 1  

3 0 0  P R I N T  " L I N E  3 0 0 "  ' p r i n t  l i n e  #  
• ' • 0 0  E N D  ' e n d  p r o g r a m  
C P 0  P R I N T  " E R R O R # = " ? E R R / 2 + l * " E R R O R  L I N E = " » E R L  
6 0 0  R E S U M E  N E X T  ' r e s u m e  a t  n e x t  I i n e  

If we only wish to process certain types of errors in our error pro
cessing routine, we can easily eliminate the catastrophic errors such 
as NEXT without FOR, syntax, and others by comparison of the 
error type. 

1 0 0 0  O N  E R R O R  G O T O  1 4 0 0  ' s e t u p  e r r o r  t r a p  l o c n  
1 1 0 0  A = 2 / 0  ' a g a i n 7 •  
1 / 0 0  P R I N T  " L I N E  1 2 0 0 "  ' p r i n t  l i n e  #  
1 3 0 0  E N D  ' e n d  p r o g r a m  
1 4 0 0  A = E R R / 2 + l  ' g e t  e r r o r -  c o d e  
1 5 0 0  I F  A O  1 1  A N D  A O  1 3  A N D  A < > 2 2  G O T O  1 0 0 0  
1 6 0 0  P R I N T  " / 0  O R  T M  O R  F D  E R R O R "  ' w a s  o n e  o f  t h e  t h r e e  
1 7 0 0  R E S U M E  N E X T  ' r e s u m e  a t  n e x t  l i n e  
1 8 0 0  O N  E R R O R  G O T O  0  ' r e s e t  e r r o r  t r a p  
1 9 0 0  R E S U M E  ' r e s u m e  a t  e r r o r  l i n e  

The above code processes only a /0, type mismatch, or bad data 
error by testing the error code ERR/2+1. If one of these three er-
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rors occurs, a message is printed, and the program resumes at the 
next line following the error. If none of these errors occurs, the error 
trapping is reset by ON ERROR GOTO 0, and a RESUME causes 
line 1100 to be re-executed resulting in the "normal" error type print
out and the READY prompt by RASIC. 

Having identified the errors we wish to process, how can we cor
rect the conditions causing the error? I his is really an unanswerable 
question, since it depends so much upon the type of program. If the 
error occurred because of overflow or type mismatch during data 
entry, then it is relatively simple to output an error message that 
prompts the user to re-enter the data. In word-processing applica
tions, an out-of-mcmory error could result, and suitable action, such 
as "flushing" the text onto cassette, could be taken. Divide-by-zero 
problems may be solved by re-entering the data, also. (Truthfully, 
though, many divide-by-zero problems should be handled earlier by 
checking the data for validity and proper range.) 

An ED error, bad file data, may be hard to handle for cassette. 
A floppy-disk may be easily reread, but cassette file errors call 
for repositioning. A step-by-step procedure may be implemented to 
help the operator reposition the tape for a new try at reading. After 
three tries or so, some other action must be taken to replace the lost 
data, or the program may have to be terminated. 

Simulating Errors 

The last error function is the ERROR statement, which simulates 
an error code. This is a handy feature for debugging the error trap
ping functions. (The question, "What do we use to debug the debug 
of the error trapping functions?" arises, but since we see an endless 
loop appearing, we'll continue.) ERROR n produces a simulated 
error. In the code above, we could have made line 1100 

1100 ERROR 11 

which would have the same effect as a /0 error. 
The code below causes simulated errors for error codes 1 through 

23. Each code is printed, and the error trap routine then causes exe
cution at the NEXT line following the error line. 

1 0 0 0  O N  E R R O R  G O T O  2 4 0 0  
2 1 0 0  F O R  1 = 1  T O  2 3  
2 2 0 0  E R R O R  I  
2 3 0 0  N E X T  
2 3 5 0  E N D  
2 4 0 0  P R I N T  E R R / 2 - *  1  i  
2 5 0 0  R E S U M E  N E X T  

' s e t u p  e r r o r  t r a p  

E' I O O P  f o r  e r r o r  c o d e s  
'  «  1  i t i u l  a t e  e r r  o r  
' c o n t i n u e  

' e r r o r  p r o c e s s i n g  p r i n t  
' r e s u m e  n e x t  l i n e  

Now for those three missing error codes, RW, NR, and UE. 
All three are associated with error trapping or simulation. RW is 
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RESUME without error and occurs when a RESUME is encoun
tered without a previous ON ERROR GOTO statement. NR is NO 
RESUME and occurs when program end is reached while still in 
an error trapping mode. The last, that !!!$#"!! unprintable error, 
UE, is caused by attempting to simulate an error with an invalid 
error code, as in 
100 ERROR 87 '!ll$#*!l 

Debugging 

In the old computer days ten years or so ago when computer time 
was at a premium, the process of debugging a program was com
pletely different than it is now on the TRS-80. The procedure then 
(and now at larger computer installations) was to do a great deal 
of "desk checking" of programs before "getting on" the machine. 
Getting on amounted to submitting the program as one of fifty "jobs" 
to be run on the computer installation. When its turn came, the 
program would run, exercise some test data, and "blow up." The 
programmer would then retrieve the new listing and test data and 
try to piece together what had happened in the program. The luxury 
of having a computer to oneself was only infrequently possible, and 
programmers were forced to adapt to this type of debugging. 

In the 

* • ! J55 ! % /if ** 
however, and in most personal computer systems, the debugging is 
interactive. A programmer can monopolize the whole system (and 
why not!) and debug his program until his program runs perfectly. 
Some programmers, ingrained with the procedures of the computer 
dark ages, may sneer at this method of debugging, but it is ex
tremely efficient, fast, and with the tools in Level II BASIC, very 
powerful. 

The first step in efficient debugging, however, is good design. 
The program does not have to be written, but flowcharting or list
ing the steps may help in the on-line program editing. Breaking up 
the program into separate modules performing well-defined func
tions also helps for long programs. Generally, the more thought 
given to good design, the less trouble there will be in debugging. 

The next step, of course, is entering the program via the edit 
mode. The AUTO feature of the editor may be used to sequence 
line numbers automatically with increments of 10 to allow addi
tions of statement lines during debugging. Give some thought also 
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to segmenting the functions of the program. A mailing-list program, 
for example, that has add, delete, modify, read from cassette, and 
write to cassette may be conveniently segmented into 

Command Interpreter and Menus Lines 10-999 
ADD 
DELETE 
MODIFY 
READ 
WRITE 

Lines 1000-1999 
Lines 2000-2999 
Lines 3000-3999 
Lines 4000-4999 
Lines 5000-5999 

As sections of code are entered, there is no reason not to debug 
on the spot with a RUN after setting up the proper values. If the 
code segment at 1000-1999 is the add function, for instance, perform 
a RUN 1000 to execute and debug the add function as a separate 
entity. Breaking down the program into small portions for debugging 
purposes will speed up the overall debugging process. 

When the program blows up at a line and an error message of 
"BS ERROR AT LINE 3250" is displayed, don't scratch your head 
and look at the listing. Don't forget tfiat the data causing the blowup 
is still in RAM. Enter a series of PRINT statements in the command 
mode to print out the current values of the variables causing the 
blow-up. 

This method of dumping the variables at the occurrence of the bug 
may be done as much as required. 

If the bug is still present, put a STOP statement anywhere in the 
program before the line at which the error occurs, and repeat the 
process of displaying the variables to see where the error is intro
duced. A type of "binary search" may be used to converge on the 
statements causing the error; if things are all right up to a certain 
point, halve the portion of the program remaining, STOP, and dis
play the variables. CONTinue until the bug is found and squished. 

The Trace option may also be used to help in debugging. Trace 
may be turned on by TRON and off by TROFF. A trace on any 
computer system traces the flow of the program by printing loca
tions or line numbers that the program follows. I he trace capability 
on the TRS-80 is very fast because line numbers are displayed on the 
screen, which is an efficient input/output device. TRON/TROFF 
may be temporarily embedded in the program to trace only at the 
point at which problems arise. It may also be used to flag the pro
grammer that a certain section of the program has been erroneously 

A "snapshot" capability may also be used in TRS-80 debugging. 
Snapshots differ from traces in that they selectively display loca-

> P R I N T  U , ( A * 2  + 1 7 )  

entered. 
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'gram, 
e, and 

< 9 8 4 2  > <  9 8 3 0  > <  9 8 4 0  > <  9 8 4 ! > S N A P  A  =  .  2 0  1 =  8  

< 9 8 4 2 X 9 8 3 0 X 9 8 4 0  > <  9 8 4 1 > S N A P  :  . 4 = .  7  1 =  .  7  .  

< 9 8 4 2  > <  9 8 3 0 > <  9 8 4 0  > <  9 8 4 1 > S N A P  . A = . 2 3  I = . 1 2  

\e 

in the 
-at the 

; intro-
on the 
certain 
id dis-
lished. 
Trace 

Figure 10-2. Example of snapshot. 

tions or variables at different parts of the program. Suppose that 
you are having problems with a section of code at line 9830. You 
may invoke the Trace mode to print out the line and PRINT out 
the troublesome variables directly after, and then turn off the trace. 
Every time the program sequences through that portion of the pro
gram, you will get a snapshot of the variables at that point, as shown 
in Figure 10-2. 

982'5 TRON 
9830 A=A+1 
9 8 * 0  I = L E N ( A * >  
90*1 PRINT "SNAP: A=" IA. " I=* » I 
98* 2 TROFF 

After you have found the last error in your program, it's time to 
start debugging in earnest! Not exactly debugging, but exercising, 
actually. Run the program, and try as many combinations of inputs 
and data as possible. Be like playful computer-science students at 
time-sharing terminals who try to "crash" the system! If the pro
gram is to be sold or even supplied free to friends, the users won't 
appreciate unexpected crashes of a "completely debugged" program! 
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CHAPTER 11 

Son of BASIC Meets the 
Machine Code Monster 

Machine language, like English or French, has gone through many 
changes since its inception. During the building of the pyramids, 
machine language consisted mainly of groans and sighs. Later, dur
ing the industrial revolution, clicks and whirs replaced the earlier 
grunts. Still later, machine language made a transition to a silent 
stream of ones and zeroes fed into a computer. The term machine 
language is somewhat confusing to many BASIC programmers. 
What is it? How can I use it? Why are we asking so many rhetori
cal questions? These and other aspects of machine language will be 
revealed in this chapter as we present 

What we'll attempt in this chapter is to present the very rudiments 
of machine-language or assembly-language programming and how 

• 5» 2 ' 

184 



to interface to assembly-language code using BASIC. For a more 
thorough treatment, see Radio Shack's TRS-80 Assembly-Language 
Programming (62-2006). 

Hello, Mr. Chips 

The TRS-80 is constructed around a microprocessor called the 
Z-80. The Z-80 semiconductor chip is almost a complete micro
computer in a piece of silicon material measuring a fraction of an 
inch on each side. The semiconductor material is etched and pro
cessed to contain miniature electronic components-tens of thousands 
of them. 

T he Z-80, like its predecessors, has a built-in instruction set or 
instruction repertoire. In the early days of computing when elec
tronics were expensive, the amount of circuitry was limited and in 
turn limited the number of instructions that could be implemented. 
The actual instructions that the computer understood were such 
simple primitives as add two 16-bit numbers, subtract two numbers 
compare two numbers, jump to a new location, and the like. Later,' 
as circuitry became less and less expensive, more instructions were 
added. However, the number and types of instructions had a prac
tical limit dictated by their generality. After all, specific instructions 
such as If this number is 512 or greater, subtract 23" have limited 
application. 

1 he instruction set in the Z-80 consists of hundreds of instructions. 
At first, the sheer number of instructions seems overpowering, but 
the instructions can be grouped into several dozen different cate
gories. Within each category, the instructions are very similar in 
many cases. 

Within the Z-80 are a set of internal registers. The registers may 
he thought of as additional memory locations similar to RAM mem
ory. The registers accessible to the programmer are shown in Fig
ure 11-1. Instructions within the Z-80 operate between the Z-80 
registers or between registers and memory. Typical instructions 
would be ones such as 

ID A,(1234) L0ad register A with the contents of memory location 1234. 
1 J ,7000) 'A S,ore  ,he  «n»ents of register A into memory location 17000. 
ADD A,B Add register A and B and put results in A. 
JP 1700 to memory location 1700. 

The instruction length varies from one byte for an instruction 
s u c h  a s  A D D  A , B  t o  f o u r  b y t e s  f o r  a n  i n s t r u c t i o n  s u c h  a s  L D  A , ( I X ) ,  
which loads the A register with the memory location pointed to by 
the IX register. The average instruction is about two bytes long. 

uaeh instruction is represented by an operation code (opcode) 
and operands within the instruction. For example, the 8-bit code 
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TWO BYTES 

|—ONE BYTE — 

~A REGISTER 
E REGISTER 
H REGISTER* 
L REGISTER* 
B REGISTER** 
C REGISTER** 
D REGISTER*** 
E REGISTER*** 
A'REGISTER 
F'REGISTER 
H'REGISTER* 
L' REGISTER* 
B REGISTER** 
C'REGISTER* * 
D'REGISTER*** 
E'REGISTER**7  

IX REGISTER 
IY REGISTER 

SP REGISTER 
PC REGISTER 

TREGISTER I R REGISTER 

*. **. or *** 
DENOTES REGISTERS 
USED TOGETHER AS 
"REGISTER PAIRS" 

Figure 11-1. Z-80 registers. 

10000001 represents the instruction "Add the A register and C regis
ter and put the result in the A register." To make instructions such 
as this easier to write down, every instruction has a mnemonic form, 
such as "ADD A,C." The number of bits for each instruction, then, 
varies from 8 for a one-byte instruction to 32 for a four-byte instruc
tion. The binary code for each instruction is called the machine-
language version of the instruction. 

One could code a program in machine language. The stream of 
ones and zeroes could then be fed into TRS-80 RAM by POKEs 
and would execute as a machine-language program if properly called 
by BASIC or by a SYSTEM command. 

You can always recognize programmers who worked in the 1950s 
by their eyeglass or contact-lens prescriptions. Coding in ones and 
zeroes is somewhat tedious, to say the least. Machine-language 
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GENERAL 
REGISTERS 
NORMALLY 
USED 

GENERAL 
REGISTERS 
NOT NORMALLY 
USED 

INDEX 
REGISTERS 
STACK POINTER 
PROGRAM COUNTER 
INTERRUPT REGISTER. 
REFRESH REGISTER 
NOT NORMALLY USED 
BY PROGRAMMER 



coding was quickly replaced by a form of coding called assembly-
language coding. In this scheme, instructions are still coded from 
a table, but the table is referenced by an assembler program rather 
than a programmer. The programmer supplies text mnemonics such 
as ADD A,B," and the assembler program automatically assembles 
them into the proper machine-language form. 

The TRS-80, being a sophisticated computer, has quite a nice 
interactive Assembler/Editor which can be used to assemble ma
chine-language programs of several instructions to thousands. The 
resulting machine-language code can then be manually POKEd into 
RAM or be input by means of a SYSTEM or T-BUG tape. We'll be 
discussing both the use of SYSTEM tapes and the POKE method 
in this chapter. But first . . . 

TRS-80 Memory Layout 

Before we use any machine-language routines, we must get an 
idea of the memory layout of the TRS-80. That way we will not be 
(to use a technical term) clobbering any machine-language program 
with which we are interfacing. Figure 11-2 shows the BASIC mem
ory layout. 

The first 12K b>4es of the 64K bytes (remember, K=1024) of mem
ory locations available to the TRS-80 are dedicated to the ROM 
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LOCATION 
0 

12287 
12288 

16384 

65535 

12K 
ROM 

LEVEL II BASIC 
INTERPRETER* 

IK VIDEO MEMORY* 
WORKING STORAGE" 

BASIC PROGRAM 
TEXT 

SIMPLE 
VARIABLES 

t 

ARRAYS 
• 

FREE 
MEMORY 

STACK 

r~ 
STRING 

STORAGE 
AREA** 

MACHINE LANGUAGE 
RESERVED AREA" 

16K 
ROM 
MEMORY. 
RESERVED 
ADDRESSES. 
VIDEO MEMORY 

16K RAM 

16K RAM 

I BUILDS 
\ "UP" 

f BUILDS 
I "DOWN" 

•FIXED 
•FIXED UNDER 

USER CONTROL 

16K RAM 

Figure 11-2. BASIC memory layout. 
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containing the Level II BASIC interpreter. ROM, of course, is 
Read-Only Memory and can't be changed. The next 4K is a mix
ture of video display memory, which is IK bytes long and located 
at the end of the 4K segment, and dedicated memory addresses. 
The dedicated memory addresses do not exist as memory but are 
detected by such system devices as printer logic and the RS-232 
interface. 

The next 4K to 48K of memory is RAM, or Random Access Mem
ory.  RAM can be read from and written into (Editors Note:  Never 
use a preposition to end a sentence with!). It can be loaded with 
programs or data or can be altered by POKEs. Depending upon the 
size of your system, you may have 4K, 16K, 32K, or 48K of RAM. 
1 he memory location of RAM starts at 16384 and continues to 65535 
fora48K (RAM) system. 

During the use of Level II BASIC, certain areas of the RAM are 
used by the interpreter, as shown in Figure 11-2. The first portion 
of RAM contains "Working Storage," followed by BASIC program 
text, simple variables, and arrays. As a BASIC program is created, 
this area expands as new variables and statements are added; it is 
not static, but "grows" toward high memory addresses. 

At the same time the text, variables, and arrays are using up low 
RAM, the string space and stack are using high memory. A CLEAR 
statement clears a fixed area at the top of RAM for use as string 
working storage. Immediately below the string space is the stack 
area. The stack area is expanding and contracting as the BASIC in
terpreter is run, but uses only several dozen bytes of memory or so 
at any given time. 

The area between the stack and arrays is free memory. The figure 
is somewhat misleading, as free memory usually constitutes a major 
portion of available memory, dependent upon the system memory 
and program size. 

The area of memory immediately at the end of RAM may be re
served for use of machine-language code or any other use. When the 
bevel II interpreter asks (in its inimitable fashion) 

MEMORY SIZE? 

and patiently waits for your answer, it takes the value specified and 
reserves the RAM area from "top of memory" to the specified value. 
Specifying 63000 in a 48K system, for example, would reserve RAM 
locations 63000-65535. These locations would never be used for 
string or stack storage, or for any other interpreter use. If no value 
is entered, no area is reserved. 

How much memory can be reserved by the use of MEMORY 
SIZE?—any reasonable amount. The BASIC interpreter must have 
some memory available for program storage, variables, arrays, stack, 
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and string space, but as long as it has enough to cover every condi
tion during BASIC program execution, the reserved area may be as 
large as necessary. 

SYSTEM Tapes 

Now that we have a little knowledge about the TRS-80 memory 
layout and machine code, let's disregard the homily and do a dan
gerous thing . . . create and use our first system tape. For this exer
cise, we'll create a short assembly-language program to white out 
the screen (do you have those stop watches ready?). 

Our first step is to hand assemble the program using a table of 
opcodes or to use the Radio Shack Editor/Assembler to create the 
desired program. 

The process of designing, coding, and debugging in assembly 
language may be quite involved, and we can t explain how to do 
it in this one chapter. The end result of the designing, coding, and 
debugging effort is shown in Figure 11-3. It is an assembly-language 
listing representing the assembly-language program to perform the 
screen white-out. 

We will explain this one program fully to help you understand 
assembly language a little better; well bypass complete explanations 
of other assembly-language programs presented in the chapter. You 
may ignore the actual assembly-language code and concentrate on 
the techniques of interfacing to assembly-language subroutines, if 
you wish. 

The left-hand column of Figure 11-3 represents the memory loca
tions where the program resides. These hexadecimal values are the 
locations for the machine-language code found in the next column. 
MEMORY LOCATIONS 
FOR INSTRUCTIONS 

MACHINE LANGUAGE 
INSTRUCTIONS 

47tP0 
4 A00 
4ap:.s 
4A06 
4 ABB 
4A09 
4A0A 
4A0B 
4A0C 
4A0D 
4A0F 
0000 
00000 

LOOP 
WHITE 

LINE NUMBERS SOURCE CODE 

2100.1c 
11000A 
•ILBF 
77 
.">3 
IB 
/A 
B3 
20F; 
C9 

TOTAL E 

4A06 
A A00 

I 00100 001 10 
001 ;B 
001.10 
PPl A0 
001-50 
001 AO 
001 70 
001 H0 
00190 
00. 00 
00. 10 

RRORS 

WHITE 

LOOP 

ORG 
I D 
1 D 
in 
in 
INC 
PEC 
LD 
OR 
JR 
RFT 
FND 

I B9AA 
lilt 1S360 
DEt1024 
At 191 
(III ) t A 
HE 
DE 
A.P 
F 
NZ t LOOP 

?START OF SCREEN 
11024 CHARACTER POSITIONS 
SAIL ON 
SSTORE AIL ON 
S INCREMENT DISPLAY ADORES'". 
SDECREMENT » OF BYTES 
SGET MOST SIGNIFICANT 
?MERGE LEAST SIGNIFICANT 
SLOOP IF NOT 1024 
SRETURN IF DONE 

LABELS 
COLUMN 

MNEMONICS OPERANDS 
COLUMN COLUMN 

REMARKS 
COLUMN 

Figure 11-3. Assembly-language screen white-out. 
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The machine-language code consists of two, four, six, or eight hexa-
decimal digits representing one to four bytes of a machine-language 
instruction. The next (third) column is a line number, identical to 
BASIC line numbers. The remainder of the listing in the figure repre
sents the source code of the program. 

The assembly-language source code consists of four parts. The 
oiuth (extreme right) column has the comments of the program. 

This column is optional. The second column of the source code has 
the actual Z-80 mnemonic form of the instruction. This is a shorthand 
representation of the instruction just as in BASIC statement types. 
An instruction may have several operands, and these are contained 
in the next column. The left-hand column of the source code holds 
optional labels which are used in place of line numbers for jumps 
(equivalent to GOTOs). 

Now for the actual program to white out the screen 
Line 100 loads a CPU register (HL) with 15360, the address of 
uV1,Z uP,ay Start A Second CPU re8ister (DE) is then loaded 

with 1024, the number of characters on the screen. HL will be used 
iViPOinter t0 15360-16383 throughout the program loop just as a 
BASIC variable I1L might be used for a POKE IIL value. DE will 
ie used as a count of the number of screen positions actually whit
ened, just as in the BASIC statement "FOR DE = 1024 TO 0 STEP 

Lines 120 through 180 constitute a program loop. The loop is 
performed 1024 times. Each time through the loop, the following 
actions occur. 

1. The CI U A register is loaded with 191, a value representing a 
graphics "all ON" (line 120). 

2. The contents of A (191) are stored into the video memory lo
cation pointed to by HL (line 130). 

3. The pointer in HL is incremented by 1 to point to the next 
video memory location (line 140). 

4. The count in DE is decremented by 1 (line 150). (When it 
reaches 0, the loop will terminate.) 

5. The count in DE is tested for 0 (lines 160 and 170). 
6. If the count in DE is not zero, another loop is made back to 

label LOOP. If the count is zero, the next instruction at line 
190 is executed. (Line 180.) 

7. When the count is zero after 1024 times through a loop, a 
RLTurn instruction is executed to return to the BASIC pro
gram. 

Where do we want this program to reside in RAM? To handle 
the case of every reader (unless someone out there has one of the 
early 3.3K TRS-80 systems), we'll plan on putting this program at 
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RAM location 20300, which is close to the top of a 4K RAM system. 
The starting location for machine-language routines is important, be
cause the codes for the instruction operands vary according to where 
the instructions are placed in memory. Unlike BASIC, machine 
language references are to absolute memory locations, rather than 
line numbers of statements. As an interesting point, though, it just 
so happens that this particular assembly-language routine is relocat
able to any part of RAM; it does not have to be reassembled. All of 
the machine-language routines in this book are relocatable in this 
fashion. 

There are two alternatives to using an assembly-language pro
gram after it has been properly assembled, loading a SYSTEM tape 
created by the Radio Shack Editor/Assembler or using the listing 
values after assembly by POKEing them into memory. These two 
alternatives will hold true for all programs in this chapter. We'll 
explain how to use both methods for this program to white out 
the screen. 

The first alternative is assembling and loading a SYSTEM tape. 
If we take the source program from Figure 11-3 and key it into the 
Radio Shack Editor/Assembler, not only will we get the listing of 
Figure 11-3, but the Editor/Assembler will generate a file on cas
sette called the SYSTEM (object) file that can be loaded by a 
SYS I EM command. To load the SYSTEM tape, type the following 
after initializing BASIC: 

MEMORY SIZE? 18944 
RADIO SIIACK LEVEL II BASIC 
READY 
>SYSTEM 
*?(Name of tape) 

I he SYSTEM tape created by the Editor/Assembler will now load 
under the name specified to the Editor/Assembler (or "NONAME" 
if none was specified). To get back to BASIC, hit BREAK after the 
tape has loaded. 

T h e  s e c o n d  a l t e r n a t i v e  i s  t o  P O K E  t h e  m a c h i n e - l a n g u a g e  v a l u e s  
from the assembly listing. After the assemble, we have two columns 
on the assembly listing that represent the locations for the machine-
language code (starting at 18944) and the machine-language code 
itself. 

In this program, the following machine-language code was gen
erated by assembly: 

4A00 (18944) 
4A01 

Location 
Hoxadodmal 

(From Fig. 11-3) 
21 
00 

Doclmal 
33 
0 
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4A02 3C 60 
4A03 11 17 
4A04 00 0 
4A05 04 4 
4A06 3E 62 
4A07 BF 191 
4A08 77 1 1 9  
4A09 23 35 
4A0A IB 27 
4A0B 7A 122 
4A0C B3 179 
4A0D 20 32 
4A0E F7 247 
4A0F C9 201 

We have converted the hexadecimal code to decimal for POKEing, 
as Level II BASIC will only accept decimal values. The hexadecimal 
values may be converted by reference to a hexadecimal-decimal con
version table such as the one that can be found in the Editor/Assem
bler manual. 

The 16 locations may be loaded by POKEing by simply perform
ing a POKE 18944,xx in the command mode or by using the short 
program below to input the starting address and the POKE values. 

1 0 0  I N P U T  " S T A R T  A D D R E S S "  ? A  
2 0 0  I N P U T  " V A L U E "  : B  
3 0 0  I F  B = - l  S T O P  
A 0 0  P O K E  A . B  
5 0 0  A = A + 1  
6 0 0  G O T O  2 0 0  

' s t a r t  a d d r e s s  f o r  p o k e s  
" ' i n p u t  v a l u e  P I - 2 5 5  

' t e r m i n a t e  o n  - 1  
' p o k e  t o  n e x t  a d d r e s s  
' i n c r e m e n t  n e x t  a d d r e s s  
*  9  o  f o r  n e x t  v a l u e  

Using the USR( O )  Call 

The 16 bytes of data comprising the short machine-language sub
routine are now in RAM from 18944 to 18959. IIow do we get to 
the subroutine from BASIC? A relevant question . . . 

The USR(x) function causes a transfer to an address somewhere 
in RAM (or ROM). The address to be used in the call must have 
been placed in locations 16526 and 16527 previous to the USR call. 
In our case, we're using a machine-language program starting at 
18944. Using standard address format, we must POKE the two bytes 
of address value 18944 into locations 16526 and 16527. Standard ad
dress format, as you may recall, is least significant byte followed by 
most significant byte. The code for POKEing 18944 into 16526 and 
16527 is 

1 P O 0  M S = I N T ( 1 8 9 4 4 / 2 5 6 )  ' c a l c u l a t e  m s  b y t e  o f  a d d r e s s  
1 1 0 0  L S = 1 8 ? 4 4 - M S * 2 5 6  ' c a l c u l a t e  I s  b y t e  o f  a d d r e s s  
1 2 0 0  P O K E  1 6 5 2 6 * L B  ' s e t u p  I s  b y t e  f o r  u s r  
1 3 0 0  P O K E  1 6 5 2 7 * M S  ' s e t u p  m s  b y t e  f o r  u s r  
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The statement for MS finds the upper (most significant) 8 bits 
of the address, and the code for LS finds the lower (least significant) 
8 bits of the address. I his scheme can be performed for any ad
dress value. 

The next step is actually to call the subroutine using a USR(O) 
call. If all goes well, we should call the machine-language code, 
white out the screen, and return to the next BASIC statement. 

1 0 0 0  M S = I N T ( 1 8 9 4 4 / 2 5 6 )  
t l 0 0  L f i =  1 H 9 4 4 - M S * 2 5 6  
1 2 0 0  P O K E  1 6 5 2 6 .  L S  
i : ? 0 0  P O K E  1 6 5 2 7 .  M S  
1 4 0 0  A = U S R < 0 )  
1 5 0 0  C L S  
1 6 0 0  P R I N T  " H O O R A Y "  

' c a l c u l a t e  m s  b y t e  o f  a d d r e s s  
' c a l c u l a t e  I s  b y t e  o f  a d d r e s s  
' s e t u s  I s  b y t e  f o r -  u s r  
' s e t u p  m s  b y t e  f o r  u s r  
' c a l l  n i a c  t .  i  n e - 1  a r . 9 u a 9 e  
" c l e a r  s c r e e n  
' c h e e r  s  

Did it work? (Guard, get the name of that reader who never rum 
these routines. Better use a Uirger pad of paper . . .) If you speci
fied a memory size of 18944, POKEd the data correctly (or loaded 
a SYSTEM tape), and then used the program above, you will have 
seen a rapid flash of white before your eyes similar to the one you 
saw after writing out a check for a TRS-80 system. Did you time it? 
The time to white out the screen in this case was about 1/25 of a 
second, about 20 times faster than the fastest string graphics method! 

Any Arguments? 

I he format of the USH(O) call set a variable (A) equal to the 
USB call. The 0 within the function was a dummy argument. The 
USR call provides for use of a real argument if the user desires. The 
value or variable within the parentheses will then be passed to the 
machine-language subroutine. Upon return, an argument will be 
passed back by setting the specified variable (in this case, A) equal 
to the argument to be returned. 

What is the purpose of passing arguments back and forth? The 
obvious answer is that machine-language subroutines may require 
operands just as BASIC subroutines require operands. Let's illustrate 
how an argument is passed to a machine-language subroutine. Sup
pose that we require a subroutine to delete a character on the screen 
for word processing, sometimes called "text editing." Word process
ing enables us to construct text representing form letters, book manu
scripts, or other text-related material. The deletion will cause the re
maining text to "snake up." The character position (0-1023) of the 
character to be deleted will be passed to the machine-language sub
routine, which will delete the character and snake up the remaining 
text on the screen. The code for this machine-language function is 
shown below. 
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0000 CD7F0A 00100 DELETE CALL 2687 5GET CURSOR POSITION 
0003 E5 00110 PUSH HL IFOR TRANSFER 
0004 D1 00120 POP DE SNOW IN DE 
0005 210004 00130 LD HL.1024 5FOR IK SCREEN 
0008 87 00140 OR A SCLEAR CARRY 
0009 ED52 00150 SBC HL.DE S1024-POSITION 
0008 E5 00160 PUSH HL 5 TRANSFER 
000C CI 00170 POP PC STO BC 
000D 21003C 00180 LD HLi15360 S SCREEN START 
0010 19 00190 ADD HL * DE •FIND POSITION 
0011 E5 00200 PUSH HL S FOR TRANSFER 
0012 D1 00210 POP DE SNOW IN DE 
0013 23 00220 INC HL S FOR SOURCE 
0014 EDB0 00230 LDIR (BLOCK MOVE 
0016 3E20 00240 LD Ai 32 S BLANK 
0018 32FF3F 00250 LD (16383).A (STORE IN LAST POSITION 
0018 C9 00260 RET (RETURN TO BASIC 
0000 00270 END 
00000 TOTAL ERRORS 
34754 TEXT AREA BYTES LEFT 

DELETE 0000 00100 

The code above first calls a subroutine at location 2687 in ROM. 
This subroutine loads the IIL register with the argument. If we 
had said 

100 A = USR(1011) 

1011 would have been the argument passed to DELETE in IIL 
after we had CALLed the 2687 subroutine. Every time an argument 
is to be passed to a machine-language subroutine, the "CALL 2687" 
must be executed to load the argument into the HL registers. This is 
simply the way chosen to pass an argument between BASIC and a 
machine-language subroutine in the TRS-80. There is nothing pro
found about it. 

With the argument of 0-1023 representing the character position 
in HL, a PUSH and POP are performed to also transfer the argument 
to the DE registers. Next, the argument is subtracted from 1024 to 
give the number of bytes between the character position specified 
and the end of the screen. IIL is then loaded with the actual ad
dress of the screen memory location by adding 15360, the start of 
the screen memory, to the character position. This value is trans
ferred to DE. One is then added to HL. All of this manipulation 
was necessary to set up the IIL, DE, and RC registers properly so 
that a "Move Block" LDIR instruction could be executed. The LDIR 
moves all memory locations in video memory from the character po
sition plus one down one location to effectively delete the character 
at the specified character position and "snake up" the text. As the 
last location in the video memory had nothing to fill it, a blank is 
used for the last screen character. The machine-code data after 
assembly for this machine code is given below. It is also relocat
able code that could be placed anywhere in memory. 
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Hexadecima' CD,7F,0A,E5,D1,21,00,04, B7, ED, 52,E5,C 1,21,00, 
3C,19,E5,D1,23,ED,B0,3E,20,32,FF,3F,C9 

Decimal r— 205,127,10,229,209,33,0,4,183,237,82,229,193,33, 
0,60,25,229,209,35,237,176,62.32,50,255,63,201 , 

18944 18971 

POKE the machine code above from 18944 through 18971 us
ing the POKE program shown previously. Of course, once again, 
MEMORY must have been set to 18944 before the POKEs. You can 
optionally assemble this code and load a SYS I EM tape. If you do, 
enter the following source line before assembly: 

We now have the machine-language program in RAM ready to 
be called by a RASIC "driver." For the driver, we'll use a routine 
to fill the screen with simulated text. The routine will then ask for 
the character position to be deleted, and delete the indicated char
acter. 

The driver first clears the screen and asks for the character po
sition for the delete. After a valid character position is input, the 
screen memory is filled with random text characters including spaces 
to simulate actual text. (A space is generated every five characters 
or so by the A = RND(6) logic.) After the screen is filled, the stan
dard POKE of the machine-language subroutine is made at 16526 
and 16527. At the next key depression, the machine-language sub
routine at 18944 is called by A = USR(B). B is the character posi
tion previously input (0-1023). For every subsequent key depres
sion, another character at the same character position is deleted as 
the text snakes up. The important points in this example are: 

1. An argument was passed to the machine-language subroutine 
b y  U S R ( B ) .  

2. The machine-language subroutine picked up the argument by 
a "CALL 2687." 

00090 ORG 18944 

2 0 0 0  C L 9  
2 0 1 0  I N P U T  " C H A R A C T E R  P O S I T I O N " * I B  
2 0 2 0  I F  B < 0  O R  B > 1 0 2 3  G O T O  2 0 1 0  
2 0 : 1 0  F O R  1  =  1 5 3 6 0  T O  1 6 3 8 3  
2 0 4 0  A = R N D <  6 )  
2 0 5 0  I F  A O  1  G O T O  2 0 0 0  
2 0 6 0  A = 3 2  
2 0 7 0  G O T O  2 1 0 0  
2 0 8 0  A = R N O  <  9 0 )  
2 0 V 0  i r  A < 6 5  G O T O  2 0 0 0  
2 1 0 0  P O K E  I . A  
2 1 1 0  N E X T  I  
2 1 2 0  M S - I N T < 1 H 9 4 4 / 2 5 6 1  
2 1 3 0  L S = 1 8 9 4 4 - M S * 2 5 6  
2 1 4 0  P O K E  1 6 5 2 6 U . S  
2 1 5 0  P O K E  1 6 5 2 7 , M S  
2 1 6 0  A $ = I N K F Y *  
2 1 7 0  I F  A i = " "  G O T O  2 1 6 0  
2 1 0 0  A = U R R < » >  
2 1 0 0  G O T O  2 1 6 0  

' c l e a r  s c r e e n  
' i n p u t  p o s i t i o n  f o r  d e l e t e  
' t e s t  f o r  v a l i d  p o s i t i o n  

- * s e t u p  l o o p  f o r  s c r e e n  m e m o r y  
' r a n d o m *  f o r  s p a c e  
' 9 0  i f  n o t  s p a c e  
' p u t  w o r d  s p a c e  e v e r y  6 t h  
• 9 o  t o  f i l l  s c r e e n  
' 9 e t  a l p h a  c h a r a c t e r  
'throw out less than a 
' s t o r e  i n  s c r e e n  
'  l o o p  f o r  l k  

' 9 e t  m s  a d d r e s s  b y t e  
' 9 e t  I s  a d d r e s s  b y t e  
' s t o r e  I s  f o r  u s r  c a l l  
' s t o r e  m s  f o r  u s r  c o l l  
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Before we get on to a clever way to embed machine code in 
BASIC statements, let's cover two more topics about argument pass
ing—passing arguments from the machine-language subroutine back 
to the BASIC program and passing multiple arguments. 

Getting an Argument Back 

Suppose that we continue with our word-processing analogy and 
create a machine-language subroutine to count the number of words 
on the screen. If a word is defined as a string of characters bracketed 
by spaces, we can easily count the words by counting the number 
of spaces. The machine-language routine will scan video-display 
memory and count the spaces, returning the word count as a vari
able. The assembly-language code for this is below. 

0000 1 1003C 00100 COUNT LD DE.15360 
0003 010004 001 10 LD BC.1024 
P00& 210000 00120 LD HL. 0 
0009 1 A 00130 LOOP LD A.(DE) 
0P0A FE20 001 40 CP 32 
000C 2001 00150 JR NZ.CONT 
0P0E 23 00160 INC HL 
000F 0B 001 70 CONT DEC BC 
0010 13 001B0 INC DE 
001 1 79 00190 LP A.C 
0012 B0 00200 OR B 
0013 20F4 00210 JR NZ.LOOP 
0015 C39A0A 00220 JP 2714 
0P0P 00230 END 

SSTART OF SCREEN 
;IK CHARACTERS ON SCREEN 
UNITIALIZE SPACE COUNT 
!GET CHARACTER 
!TEST FOR SPACE 
tGO IF NOT SPACE 
"BUMP SPACE COUNT 
iDECREMENT LOOP COUNTER 
SBUMP LOCATION POINTER 
'GFT LS OF LOOP COUNT 
SMERGE MS OF LOOP CNT 
160 IF NOT IK 
!DONE. RETURN TO BASIC PROG 

O00B0 TOTAL ERRORS 
34749 TEXT AREA BYTES LEFT 

CONT 000F 00170 00150 
C< »UN1 0000 00100 
LOOP 0009 00130 00210 

The code above first loads the DE register with the start of the 
screen memory and the BC register with 1024, the number of lo
cations to scan. HL is initialized to zero for the count. The code 
loops through "LOOP" to "JR NZ,LOOP" comparing each video 
display memory character with a space, ASCII 32. If a space is 
found, the count in HL is bumped by one. Each time through the 
loop, the address of the next memory location is incremented by 
one (INC DE), and the number of locations left is decremented by 
one (DEC BC). If the number of locations left in BC is not zero, 
another pass through the loop is made. At the end of the loop, IIL 
contains the count of the number of spaces or words. The last action 
is to execute a jump (JP) to location 2714. This transfers the count 
in IIL to the variable in the USR call. This is the "standard" way 
to pass an argument back to a BASIC routine in the TRS-80. Note 
that a "Return" (RET) instruction is not done in this case. 
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The machine code for this subroutine is shown below. POKE the 
values after first setting memory size to 18944. This code, as were 
the other two routines, is relocatable and can be placed anywhere in 
memory. Optionally, you can assemble this code with the Editor/ 
Assembler and load the resulting SYSTEM tape. If you do, add the 
following source line before assembly: 

00090 ORG 18944 

Hexadecimal 11,00,3C,01,00,04,21,00,00,1A,FE,20,20,01,23, 
0B,13,79,B0,20,F4,C3,9A,0A 

Decimal r— 17,0,60,1,0,4,33,0,0,26,254,32,32,1.35,11,19, 
| 121,176,32,244,195,154,10 

18944 

The BASIC driver for this subroutine fills the screen with simu
lated text characters as before, except that it ensures that only one 
space at a time is used. The number of spaces (words) is returned 
in variable A and printed. 

3000 CLS 
3010 FOR 1=15360 TO 1 63B3 
3020 A=RND(6) 
3030 IF A01 GOTO 3070 
3040 POKE It32 
3050 1=1+1 
3060 IF 1=16384 GOTO 3110 
3070 A=RND(90) 
3080 IF A<65 GOTO 3070 
3090 POKE 11 A 
3100 NFXT I 
3110 MS=1NT(18944/236) 
3120 LS=1B944-Mn»256 
3130 POKE 16326t LS 
3140 POKE 16327,MS 
3150 A=USR<0> 
3160 CLS 
3170 PRINT "NUMBER OF WORDS IS "IA 
3180 IF INKEY»="" GOTO 3180 ELSE GOTO 3000 

Handling Two-Way Passing and Multiple Arguments 

The above example showed the mechanism for passing arguments 
back to the BASIC routine, and the example previous to that illus
trated passing an argument to the machine-language routine. In 
some cases, it is necessary to both pass an argument to the machine-
language routine and pass one back from the machine-language sub
routine. An example of this might be a machine-language routine 
that scanned the display memory for a given character and then 
returned the character position of the character. In this case (we 
wont write the code), the call might be 
100 A = USR(ASC(A$)) 

where A$ was the one-character string variable and A was the re
turned character position 0-1023, or —1 if the character was not 
found. In the corresponding machine-language code, the first in-

•clear screen 
- * s etur 1oop for screen 
•get * for space 
*if not space continue 
•poke space 
'bump char »ct+f position 
* go if screen fill done 
'get non-space character 
'ignore control codes 
'poke alphabetic 

-'loop to fill screen 
'get m! of address 
'get Is of address 
'poke for usr call 
•poke for usr call 
•call word count routine 
'clear screen 
•print number 
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struction would "CALL 2687" to load the HL register with ASC(A$), 
and the last instruction would be a "JP 2714" to take the character 
position in HL and store it in variable A. 

SEARCH CALL 2687 ;get argument 

(other code) 

JP 2714 ;return argument 

We know from the above examples how single arguments can be 
passed between a BASIC program and a machine-language sub
routine, but how about multiple arguments? The I1L register in the 
Z-80 is 16 bits wide and can therefore hold an integer variable. All 
arguments passed between BASIC and a machine-language subrou
tine must be integer variables of 16 bits or less. (We used single-
precision arguments above that were converted by the 2687 routine 
to integer values. We also took the integer argument from the sub
routine and converted it to a single-precision form. As long as the 
argument is between 32768 and +32(67, this technique is valid, 
although it is probably wise to use integer variables such as A% 
or B% when setting up USR calls.) 

If multiple arguments are required, it is possible to pack them 
into a 16-bit integer variable. An example of this would be use of 
a machine-language subroutine that drew a line from a given x,y 
point to another x,y point. The four arguments could be packed as 
shown in Figure 11-4. 

4 BITS 4 BITS 

1 1 1 1 1 
BYTE 0 XI 

1 i . 
Yl 

BYTE 1 X2 
I \ \ 

Y2 
1 1 1 1 1 1 

2 BYTE 
INTEGER 

VARIABLE 
XY% 

Figure 11-4. Packing arguments. 

1 he subroutine, of course, would have to unpack them into four 
separate arguments. The packing code is shown below and assumes 
variables XI, Yl, X2, and \2 are the appropriate x,y values. The 
packed lesult passed to the machine-language subroutine is in inte
ger variable XY. 
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100 XY% = X1 *4096 + Y1 *256 + X2* 16 +Y2 
2 0 0  A  =  U S R (XY%)  
300 

Another method of passing as many arguments as required is 
simply to make multiple calls to the machine-language subroutine. 
On the first call, the subroutine starts counting the number of argu
ments and does not process the arguments until all the necessary 
arguments have been received. Typical code for this is shown below 
100 A = USR(B%) 
200 A = USR(C%) 
300 A = USR(D%) 
400 A=USR(E%) 
500 PRINT A 

'first argument 
'second 
'third 
'fourth and gol 
'done 

A final method for passing a number of arguments is to store the 
arguments in a string. As in other examples we have seen, the string 
is a "dummy" string whose only purpose is to be filled with argu
ments for the machine-language subroutine. Suppose that we have 
four integer arguments to pass to the machine-language subroutine. 
We know that each integer argument requires two bytes and that 
we need, therefore, eight bytes to hold the arguments. The code 
below establishes a dummy string of eight bytes, finds the location 
of the string by VARPTR, fills in four arguments of 1000, 2000, 3000, 
and 4000, and then calls the machine-language subroutine with the 
address of the dummy string. Arguments can also be passed back 
to a BASIC program via the dummy string. 

(IS, MS are precomputed addresi of subroutine.) 

<.ri00 A'/.= 1000 
6010 B7.-2000 
6020 07-3000 
6030 D7.-6000 
6040 A*—"1234567B" 
6030 B-VARPTR < A*) 
6060 C=PEEK<B + 2)»256*Pt.EK(R'l ) 
6070 POKE C*AX 
60B0 POKE C + 2.B7. 
6290 POKE 0*4. C7. 
6100 POKE C+6.D7. 
6110 POKE 16326*LS 
6120 POKE 16527.MS 
6130 A=USR(C> 

' f i r s t  a r g u m e n t  
' s e c o n d  a r g u m e n t  
' t h i r  d  a r  9 u m « n t  
' f o u r t h  a r g u m e n t  
' d u m m y  s t r i n g  
' a d d r e s s  o f  p a r a m e t e r  b l k  
' a d d r e s s  o f  s t r i n g  
' s t o r e  f i r s t  a r 9  
' s  t o r  e  s e c o n d  a r 9  
' s t o r e  t h i r d  a r R  
' s t o r e  f o u r t h  a r  9  
' s e t u p  a d d r e s s  
'  f o r  c a l l  
• c a l l  m a c h i n e  l a n g u a g e  

Handling Multiple Machine-Language Subroutines 

Is there any reason for not having multiple machine-language sub
routines? None whatsoever. Just remember to POKE the address of 
the location of each new subroutine into 16526 and 16527 before the 
USR call is executed. If machine-language subroutine 1 was at 18900 
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and subroutine 2 was at 18950, for example, the code to call the two 
consecutively would be 

100 POKE 16526,1B900-INT1lB900/256>«256 
200 POKE 16527,INTI18900/256) 
K00 A-USR(0) 
400 POKE 16526,18950-INT(18950/2561*256 
500 POKE 16527,INT<18950/256) 
600 B=USR<0) 

Arguments to each subroutine could be handled by the same meth
ods as we discussed above. 

A Neat Method for Embedding Machine-Language 
Subroutines in BASIC Code 

Now let's take a look at an extremely good method for using 
machine-language subroutines in BASIC programs. The idea is to 
construct a string variable by using the CHR$ function to embed 
machine-language values in the string. Then the location of the string 
is found by the VARPTR, the location is POKEd into locations 16526 
and 16527, and a USR call is executed to perform the subroutine. 
The advantage of this method is that no separate set of POKEs or 
loading of a SYSTEM tape has to be done. 

Let's use a fourth example of machine-language code to see how 
this technique works. First, we must assemble the subroutine as be
fore. This particular subroutine contains two subroutines, one to 
write the contents of the video display to cassette tape and the 
second to read the cassette tape back and restore the display. The 
subroutines may be called from any BASIC program that contains 
them, so it is possible to save the appearance of the screen for game 
displays, business reports, or error conditions and restore the dis
play at any later time. The subroutines use the machine-language 
cassette routines in Level II BASIC, so the entire process is very fast. 

The machine-language code is presented below. The ROM rou
tines CALLed are 212II (212 hexadecimal) (Define Cassette), 296H 
(Find Leader and Sync Byte), 235II (Read Byte), 1F8H (Turn Off 
Cassette), 287II (Write Leader and Sync Byte), and 26411 (Write 
Byte). "IN" reads 1024 bytes from cassette to restore the display, 
while "OUT" writes out 1024 bytes from display memory. We can't 
go into detail on the cassette functions in this chapter, but we'll 
cover some of the code in the next chapter, "POKEing Around in 
Memory." 

0000 AF 001 00 IN XOR 
0001 CD1202 00110 CALL 
0004 CD9602 00120 CALL 
0007 21003C 00130 LD 
000A 010004 00140 LD 
000D CD3502 00150 IN10 CALL 

A 10 FOR CASSETTE 1 
212H !ST ART CASSETTE 
296H 'FIND LEADER, SYNC BYTE 
HL, 3C00H i START OF SCREEN 
EC,1024 ilK BYTES IN SCREEN 
235H ;READ ONE BYTE 
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tit 

0010 77 00160 LD < HL >.A 1 STORE IN SCREEN MEMORY 
0011 23 00170 INC HI- 1 POINT TO NEXT LOCATION 
0012 0B 001 80 DEC EC 1 DECREMENT BYTE COUNT 
001 3 78 00190 LD A I B 1 GET MS BYTE OF COUNT 
001A B1 00200 OR C 1 MERGE LS BYTE 
0015 20F6 00210 JP NZIIN10 1 GO IF NOT IK 
0017 CDF 801 00220 CALL 1FBH 1 TURN OFF CASSETTE 
001A C9 00230 RE R !RETURN 
00 IB AF 002A0 OUT XOR A 10 TO A 
001C CD1202 00250 CALL 212H "START CASSETTE 
00 IF CDB702 00260 CALL 287H "WRITE LEADER ON TAPE 
0022 21003C 002 70 LD HL.3C00H ISTART OF SCREEN MEMORY 
0025 01000A 00280 LD BC.102A 1 BYTE CNT = IK 
0028 7E 00290 OUT 10 LD A.(HL) IGET BYTE 
0029 CD6A02 00300 CALL 26AH 1WRITE ONE BYTE 
002C 23 00310 INC HL ••POINT TO NEXT 
002D 0B 00320 DEC BC !DECREMENT BYTE COUNT 
002E 78 00330 LD A<B 1 GET MS BYTE OF COUNT 
002F B1 003A0 OR C 1 MERGE LS BYTE 
0030 20F6 00350 JR NZIOUT 10 1GO IF NOT IK 
0032 CDFB01 00360 CALL 1F8H ITURN OFF CASSETTE 
0035 C9 00370 RET 1 RETURN 
0000 00380 END 
00000 TOTAL ERRORS 
3A33A TEXT AREA BYTES LEFT 

IN 0000 00100 
IN10 000D 00150 00210 
OUT 00IB 002AO 
OUT 10 002B 00290 00350 

The machine code for the subroutines is presented below in deci
mal form. It's relocatable and can be used anywhere in RAM mem
ory. The "IN" portion starts at the first byte, and the OUT portion 
starts at the 28th byte. 

175,205,18,2,205,150,2,33,0,60,1,0,4, 
205,53,2,119,35,11,120,177,32,246,205, 
248,1,201,175,205,18,2,205,135,2,33,0, 
60,1,0,4,126,205,100,2,35,11,120,177,32,246, 
205,248,1,201,255 

The machine code above is converted to a string by one of two 
methods. The first uses CHR$ to assemble a string of the codes 
above. 

100 ZA$ = CHR$(175) + CHR$(18)+... 

This method works fine, but there is a limit on the number of char
acters per statement line, and it's necessary to break up the string 
into several separate strings and then concatenate to get an entire 
contiguous string. 

We'll use the second method, which assembles a string by moving 
DATA values into a dummy string, similar to the graphics method 
explored earlier in the book. 

ZAT="THLS IS A DUMMY STRING THAT WILL BE FILLED WITH CHARACT" 100 
200 ZA=VARPTR(ZA«) 
300 ZB=PEEK(ZA+1>+PEEK<ZA+2>»256 
A00 ZC=ZB+27 
500 FOR Z I = ZB TO ( ZB-RLEN< ZA* )-1 ) 
600 READ ZZ 
6 5 0  P O K E  Z I . Z Z  
700 NEXT ZI 
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' f i n d  a d d r e s s  o f  b l o c k  
f i n d  s t r i n g  a d d r e s s  

' f i n d  2 n d  r o u t i n e  a d d r e s s  

t'setup l o o r  f o r  Pokein9 
*9et bvte o f  m l  
'poke ml bvte 
'1oop tiI done 

800 D 
900 D 
1000 
1100 

Tl 
ues 
subr 

1900 
2000 
2100 

To c 

2400 
2500 
2600 

Tl 
dom 
then 

100 i 
200 2 
300 2 
A00 2 
5 0 0  F  
600 I 
6 5 0  f  
7 0 0  f  
B 0 0  I  
9 0 0  i  ;  
1000 
1100 
1200 
1 2 5 0  
1 3 0 0  
1408 
1 5 0 0  
1600 
1 7 0 0  
1 9 0 0  
2000 
2100 
2200 
2 3 0 0  
2 A 0 0  ;  

2500 
2600 
2 7 0 0  
2 B 0 0  

Tl 
intei 
that 
rout 
as d 
ing 
the • 
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8 0 0  D A T A  1 7 5 , 2 0 5 , 1 8 , 2 , 2 0 5 , 1 5 0 , 2 , 3 3 , 0 , 6 0 , 1 , 0 , 4 , 2 0 5 , 5 3  
9 0 0  D A T A  2 , 1 1 9 , 3 5 , 1 1 , 1 2 0 , 1 7 7 , 3 2 , 2 4 6 , 2 0 5 , 2 4 8 , 1 , 2 0 1 , 1 7 5  
1 0 0 0  D A T A  2 0 5 , 1 8 , 2 , 2 0 5 , 1 3 5 , 2 , 3 3 , 0 , 6 0 , 1 , 0 , 4 , 1 2 6 , 2 0 5 , 1 0 0  
1 1 0 0  D A T A  2 , 3 5 , 1 1 , 1 2 0 , 1 7 7 , 3 2 , 2 4 6 , 2 0 5 , 2 4 8 , 1 , 2 0 1 , 2 5 5  

The above code initializes the string to the machine-language val
ues from the DAT A statement. To call the OUT machine-language 
subroutine, use the following code 

1900 POKE 16526,(ZC-(INT(ZC/256))+256 
2000 POKE 16527,(INT(ZC/256)) 
2100 A=USR(0) 

To call the IN machine-language subroutine, use the following code 

2400 POKE 16526.ZB — (INT(ZB/256))*256 
2500 POKE 16527,(INT(ZB/256)) 
2600 A=USR(0) 

The complete "driver" is shown below. It fills the screen with ran
dom data, dumps the screen to cassette tape, clears the screen, and 
then restores the previous screen contents. 

1 2 2  ^ * r . " T H , S  I S  A  D U M M Y  S T R I N G  T H A T  W I L L  B E  F I L L E D  W I T H  C H A R A C T "  
. . 0 0  Z A  V A R P T R ( Z A $ )  '  f i n d  a d d r e s s  o f  b l o c k  
3 0 0  Z B = P E E K < Z A - » 1  1 +  P E E K 1  Z A - » 2 >  « 2 5 6  - f i n d  s t r i n g  a d d r e s s  
s 2 2  '  ' f i n d  2 n d  r o u t i n e  a d d r e s s  
5 0 0  F O R  Z I  =  7 B  T O  (  7 B + L E N 1  Z A *  )  - 1  )  p ' r e t u p  l o o p  f o r  P o k e i n g  
6 0 0  R E A D  Z Z  ' g e t  b v t e  o f  m l  
6 5 0  P O K E  Z l . Z Z  m ,  b Y t < >  

T B 0 N E X T 7 I  L .  , o o p  t i l  d o n e  
8 0 0  D A T A  1 7 5 , 2 0 5 , 1 8 . 2 ,  2 0 5 , 1 5 0 , 2 , 3 3 , 0 , 6 0 ,  1 , 0 , 4 , 2 0 5 , 5 3  
9 0 0  D A T A  2 , 1 1 9 , 3 5 , 1 1 , 1 2 0 , 1 7 7 , 3 2 . 2 4 6 , 2 0 5 , 2 4 8 . 1 , 2 0 1 , 1 7 5  
1 0 0 0  D A T A  2 0 5 , 1 8 , 2 , 2 0 5 , 1 3 5 , 2 , 3 3 , 0 , 6 0 , 1 , 0 , 4 , 1 2 6 , 2 0 5 , 1 0 0  
1 1 0 0  D A T A  2 , 3 5 , 1 1 , 1 2 0 , 1 7 7 , 3 2 , 2 4 6 , 2 0 5 , 2 4 8 , 1 , 2 0 1 . 2 5 5  
1 ^ 0 0  C L S  ' c l e a r -  s c r e e n  
1 2 5 0  I N P U T  " R E A D Y  C A S S E T T E ,  P R E S S  F N T E R " ; A t  
1 3 0 0  F O R  1  =  1 5 3 6 0  T O  1 6 3 8 3  r - ' s e t u e  f o r  s c ,  e e r ,  f i l l  
1 4 0 0  A = R N D ( 1 9 1 )  ' g e t  c h a r a c t e r  1 - 1 9 1  
1 . 0 0  I F  A < 3 2  G O T O  1 4 0 0  I  ' i g n o r e  c o n t r o l  c o d e s  
1 6 0 0  P O K E  I . A  ' f i l l  s c r e e n  
1 7 0 0  N E X T  1  L ' I OOP t i l  d o n e  
1 9 0 0  P O K E  1 6 5 2 6 , Z C - ( I N T ( Z C / 2 5 6 1 ) • 2 5 6  ' s e t u p  a d d r e = s  
7 0 0 0  P O K E  1 6 5 2 7 , < I N T ( Z C / 2 5 6 ' >  ' s e c o n d  b v t e  
2 1 0 0  A = U S R ( 0 )  ' c a l l  r o u t i n e  t o  d u m p  s c r e e n  
7 7 0 0  I N P U T  " R E A D Y  C A S S E T T E ,  P R E S S  E N T E R "  ; A *  
2 3 0 0  C L S  ' c l e a r  s c r e e n  
7 4 0 0  P O K E  1 6 5 2 6 , 7 P - ( I N T ( Z B / 2 5 6 ) ) < 2 5 6  ' s e t u p  a d d r e s s  
2 5 0 0  P O K E  1 6 5 2 7 . ( I N T C Z B / 2 5 6 ) >  ' s e c o n d  b v t e  
. 6 0 0  A = U S R < 0 )  ' c a l l  r o u t i n e  t o  r e a d  s c r e e n  
2 7 0 0  I N P U T  " A G A I N " S A t  ' c o n t i n u e  i f  d e s i r e d  
2 B 0 0  G O T O  1 2 0 0  ' l o o p  

This concludes our discussion of assembly and machine-language 
interfacing. We hope you haven't been frightened away, but rather 
that you see the potential for interfacing short machine-language 
routines in your BASIC programs for time-critical" processing such 
as display work and cassette use. In the next chapter, we'll be look-
ing at further machine-language topics when we discover some of 
the deep, dark secrets of Level II BASIC in ROM. 
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<5 
CHAPTER 12 

POKEing Around in Memory 

r 
tor 

Are you one of those people who likes to find out how things work? 
Do you like to take apart grandfather clocks, threshing machines, 
and Boeing 747s? If so, you may be able to make BIG MONEY in 
Level II Computer Programming. Since we cant put this advertise
ment on a matchbook cover, we'll have to include it here, a logical 
place, since this chapter will reveal how (to a certain extent) Level 
II BASIC functions. Although we can't provide a complete theory of 
operation even in several pages, we can at least point out some of 
the high points, such as statement format, variable and string stor
age, device control blocks ( DCBs), keyboard and cassette operation, 
and some RDM assembly-language calls. Some of these items may 
be used to great advantage in doing interesting things; others are 
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merely tutorial. We must caution you, however—if you tamper with 
the "internals" of a system such as Level II, you must be prepared 
to take the consequences if your experimentation doesn't turn out. 
Ready, Dr. Frankenstein? . . . 

First of all, we know that Level II BASIC is written in Z-80 ma-
machine code and that it occupies roughly ROM locations 0 through 
12287, the first 12K of the 16K addresses dedicated to ROM and 
system addresses (see Figure 11-2). If we know Z-80 assembly lan
guage, one way to decode how the interpreter works would be to 
PEEK at locations 0 on up and convert the data found there into 
the equivalent Z-80 instructions. We could then sit down at our 
leisure and follow these instructions to outline Level II BASIC 
operation. To do this, however, we must be fairly adept at "read
ing code." At times, even experienced programmers have trouble 
reading their own programs six months after they've written them. 

The above approach is possible, however, and certainly has been 
performed. Rather than hand translating each value found, various 
Z-80 disassemblers are available that will automatically disassemble 
values into the corresponding Z-80 mnemonics. As a matter of fact, 
such a disassembler may be constructed using a BASIC program. 
The approach here is to get a value from memory, decode the "op
eration code" and operands, and print out the memory location, 
op code mnemonic, and operands. A typical printout of such a dis
assembler is shown in Figure 12-1. 

We'll assume that you're not as conversant with Z-80 assembly 
language as you could be and take another approach. Interspersed 
with the assembly-language instructions in BASIC are sets of 
ASCII data. Error messages and other types of messages are in 
ASCII code, for example. Another ASCII-encoded set of data con
sists of the BASIC program statements themselves. If we PEEK and 
display in ASCII, we should be able to see all kinds of interesting 
things appear on the display as we scan through memory, ROM and 
RAM. Let s give it a try. 1 he following program scans memory start
ing at a given location and continuing for 32K locations. 
1 P 0  T - 0  ' i n i t i a l i z e  f l a g  

An Approach to PEEKing 

1 1 0  C L S  
1 2 0  I N P U T  - S T A R T  A D D R E S S " S B  
1 3 0  I N P U T  " A S C I I  O N L Y  Y / N " ; C *  
1 4 0  F O R  I = B  T O  3 2 7 6 7  
1 5 0  A = P E E K < I  1  
1 6 0  I F  A < 3 2  O R  A > 9 0  G O T O  2 1 0  
1 7 0  I F  T = 0  P R I N T  I  !  "  /  "  ; C H R f c ( A  
1 8 0  T ~ 1  
1 9 0  N E X T  I  
7 0 0  S T O P  
2 1 0  I F  T = 1  P R I N T  
7 2 0  T = 0  
2 3 0  I F  C t = " N "  P R I N T  I I " / " ; A  
7 4 0  N E X T  1  

C H R t ( A ) - . E L S E  P R I N T  C H R « ( A )  
I 'J6t 10 
' Q A r.a 

c l e a r  s c r e e n  
i n p u t  s t a r t  a d d r e s s  
g i v e  c h o i c e  o f  d a t a  

^ ' g e t  n e x t  l o c a t i o n  

' g e t  n e x t  l o c a t i o n  
s t o p  a t  e n d  o f  s c a n  
I  ' i f  n u m e r i r *  i f  
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0000 F3 DI 
0001 AF XOR A 
0002 C37406 JP 0674H 
0005 C30040 JP 4000H 
000B C30040 JP 4000H 
000B EL POP HL 
000C E9 JP (HL) 
000D C39F06 JP 069FH 
0010 C30340 JP 4003H 
0013 C5 PUSH BC 
0014 0601 LD B T 01H 
0016 182E JR 0046H 
0018 C30640 JP 4006H 
00 IB C5 PUSH BC 
001C 0602 LD B.02H 
001E 1826 JR 0046H 
0020 C30940 JP 4009H 
0023 C5 PUSH BC 
0024 0604 LD BT 04H 
0026 181E JR 0046H 
0028 C30C40 JP 400CH 
002B 111540 LD DE.4015H 
002E 18E3 JR 0013H 
0030 C30F40 JP 400FH 
0033 111D40 LD DEI401DH 
0036 1BE3 JR 001BH 
0036 C31240 JP 4012H 
003B 112540 LD DE.4025H 
003E 1BDB JR 001BH 
0040 C3D905 JP 05D9H 
0043 C9 RET 
0044 00 NOP 
0045 00 NOP 
0046 C3C203 JP 03C2H 
0049 CD2B00 CALL 002BH 
004C B7 OR A 
004D C0 RET NZ 
004E 18F9 JR 0049H 
0050 0D DEC C 
0051 0D DEC C 
0052 IF RRA 
0053 IF RRA 
0054 01015B LD BC.5B01H 
0057 IB DEC DE 
0058 0A LD A.(BC) 
0059 1A LD A.(DE) 
005A 08 EX AF T AF * 
005B 1809 JR 0066H 
005D 19 ADD HL. DE 
005E 2020 JR NZ.00Q0H 
0060 0061 91 PEDC BC AT B 
0062 B1 OR C 
0063 20FB JR NZI0060H 
0065 C9 RET 
0066 310006 LD SP.0600H 
0069 3AEC37 LD AT(37ECH 
006C 30 INC A 
006D FE02 CP 02H 
006F D20000 JP NCT 0000H 

Figure 12-1. Typical disassembly 
of a BASIC interpreter. 

The code on page 205 displays numeric and ASCII data or only 
ASCII data as requested by the user. Let's use it to display ASCII 
data only, starting at location 0. Use the SHIFT @ keys to stop 
the display at any time; continue by hitting any key. 

Some of the first ASCII data displayed consists of single and 
other characters. This simply means that some of the values stored 
in ROM as instructions are also valid ASCII characters. Location 
102, for example, is an ASCII "1" (49) which is also the operation 
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code for an "LD SP" assembly-language instruction. The point is that 
even though data displays as an ASCII character, we can't be cer
tain that it doesn't represent other data. We can be (fairly) certain, 
however, that the string of ASCII at locations 261, "MEMORY 
SIZE , and 273, RADIO SIIACK LEVEL II BASIC" are the mes
sages printed out at the start of Level II BASIC. Let's continue . . . 

The next interesting display starts at location 5713. The ASCII 
data here is shown in Figure 12-2 and looks suspiciously like BASIC 
statement words without the first letter. Let's record that location 
as an interesting spot and continue. 

Figure 12-2. ASCII dala in memory. 

The next group of meaningful data is at location 6345. The string 
is NFSNRGODFCOVO . . . DL3". These are the Level II error 
codes arranged in order of their code numbers. Continuing, location 
6441 has the "READY" message, and 8568 has the "?REDO" mes
sage among others. The area from 12288 to 16383 may be skipped, 
as this is the area dedicated to device addresses (no memory) or 
video-display memory. 

From 16384, we start to get very interesting displays. They seem to 
contain portions of our program statements, but are not intact For 
example, ""INPUT START ADDRESS";B" is stored as ""START 
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ADDRESS";B." Other lines are stored in similar fashion. Let s stop 
at this point and investigate what's happening to our nice text input. 

BASIC Statement Format 

Let's take a look at the statement "120 INPUT'START AD
DRESS"^ " First, find the start of " "START ADDRESS ;B. It 
should be close to 17129. Having found it, run the program starting 
from about 5 locations before, listing both ASCII and numeric data. 
For example, if" "START ADDRESS";B" was at 17148,list 17143 on. 
A typical display of this line would look like 

17143/21 
17144/C 
17145/120 
17146/0 
17147/137 
17148/"START ADDRESS";B 

What is the format of the line here? " "START ADDRESS ;B 
is recognizable, but where is the "INPUT" portion? By experimen
tation, one could soon find the format of BASIC statement lines. 
We'll save you the midnight hours, though, and let you refer to 
Figure 12-3, which shows the format. 

BASIC statement lines start at location 17129. Each BASIC state
ment line is made up of a line pointer to the next line (2 bytes), the 
line number of the BASIC statement line, the text of the line in 
ASCII and token format, and a 0 to mark the end of the line, (l'or 

1 
BYTE 

2 . 3 LAST 

NEXT LINE 
POINTER 

THIS LINE 
NUMBER 

TEXT IN ASCII AND TOKENS 

Figure 12-3. BASIC line format. 

NEXT 
LINE 
PNTR 

THIS 
LINE 

NUMBER 
17500 I 17900 1 100" TEXT FOR LINE 100 

18000 I 18040 | 120 TEXT FOR LINE 120 

17900 I 18000 I no" TEXT FOR LINE 110 

18040 I 18200 I 130T TEXT FOR LINE 130 

Figure 12-4. Linked BASIC lines. 
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those who read Chapter 7, this format is known as a "single-ended 
linked list.") This means that a BASIC program may consist of 
lines that are not in physical order, as shown in Figure 12-4. This 
arrangement permits easy editing of BASIC programs. 

To see how a BASIC program is stored, we'll use a BASIC pro
gram to track itself. The program below lists the line formats of 
itself by following the "thread" of the linked lines starting with the 
line at location 17129. 

1 0 0 0  C L S  ' c l e a r  s c r e e n  
1 1 0 0  N L = 1 7 1 2 9  ' s e t  t o  f i r s t  B A S I C  l i n e  
1 2 0 0  P R I N T  S P R I N T  ' s k i p  t w o  l i n e s  
1 3 0 0  P R I N T  - L I N E  A T  " ; N L  5 " »  "  ' p r i n t  l o c a t i o n  
1 4 0 0  P R I N T  " N L  P O I N T E R = " 5  P E E K ( N L > + P E E K < N l  + 1 1 * 2 5 6  
1 5 0 0  I F  P E E K  < N L ) + P E E K ( N L - U  > * 2 5 6 = 0  G O T O  2 4 0 0  
1 6 0 0  P R I N T  " L I N E  #  =  " 5  P E E K < N L + 2 ) + P F E K < N L + 3 > * 2 5 6  
1 7 0 0  P R I N T  " T E X T  F O L L O W S "  
1 0 0 0  F O R  I = N L + 4  T O  N L + 2 5 5  r ' s e t u p  l o o p  f o r  c h a r s  
1 7 0 0  I F  P E E K ( I ) = 0  G O I O  2 2 0 0  |  ' g o  i f  l i n e  e n d  
2 0 0 0  I F  P E E K ( 1 ) < 3 2  O R  P E E K < 1 > > 9 0  P R I N T  " / " ; P E E K ( I ) ! " / " I E L S E  P R I N T  C H R t ( P E E K < 1 1 1 !  
2 1 0 0  N E X T  I  L .  , o o p  

* 2 0 0  N L = P E F . K ( N L )  + P E E K ( N L  + 1  ) * 2 5 6  ' g e t  n e x t  l i n e  a d d r e s s  
2 3 0 0  I F  I N K E Y * = " "  G O T O  2 3 0 0  E L S E  G O T O  1 2 0 0  
2 4 0 0  P R I N T  " E N D  O F  P R O G R A M "  ' e n d  

Run the above program, and observe how the lines are linked 
and the content of each of the lines. Numeric data is bracketed 
by slashes ("/"), while ASCII data is simply printed out. The last 
line of any program is a dummy line whose next line pointer is 
equal to 0. 

Within the text of every line are numeric values called tokens 
that represent statement types. Why is this done? Using tokens 
drastically shortens the storage of program lines. Storing a 178 value 
in place of a "PRINT," for example, saves four bytes. Since many 
lines have multiple statements, it is easy to see how a 25% reduc
tion or more in storage requirements could result. 

The token codes may be listed easily if we recall that one of the 
mysterious areas that we saw earlier in our ASCII display was at 
5713. The area from 5712 on is a table of tokens that can be listed 
by the following code. 

1 0 0  C L S  ' c l e a r  s c r e e n  
2 0 0  N = 1 2 8  ' i n i t i a l i z e  t o k e n  #  
3 0 0  F O R  1 = 5 7 1 2  T O  6 1 7 5  ( " ' s e t u p  l o o p  f o r -  t a b l e  
4 0 0  A = P E E K ( I )  |  ' g e t  v a l u e  f r o m  t a b l e  
5 0 0  I F  A > 1 2 7  P R I N T  C H R * ( 1 0 ) S N i "  " i C H R * ( A  A N D  1 2 7 ) 5  E L S E  P R I N T  C H R t ( A ) i  
6 0 0  I F  A > 1 2 7  T H E N  N = N + 1  I  ' b u m p  5 1  i f  s t a r t  
7 0 0  N E X T  I  l o o p  f o r  n e x t  t o k e n  

For your convenience, the tokens are also listed in Table 12-1. 
The first character of every token in the table has the most signifi
cant bit set to delimit each statement character string from the next, 
since they are "variable length." This table also includes Disk BASIC 
tokens that are not accessible in Level II BASIC. The token table 
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Table 12-1. Level II BASIC Tokens 
120 END 169 NAME 210 AND 
129 FOR 170 KILL 211 OR 
130 RESET 171 LSET 212 > 
131 SET 172 RSET 213 = 
132 CLS 173 SAVE 214 < 
133 CMD 174 SYSTEM 215 SGN 
134 RANDOM 175 LPRINT 216 INT 
135 NEXT 176 DEF 217 ABS 
136 DATA 177 POKE 218 FRE 
137 INPUT 178 PRINT 219 INP 
138 DIM 179 CONT 220 POS 
139 READ 180 LIST 221 SQR 
140 LET 181 LLIST 222 RND 
141 GOTO 182 DELETE 223 LOG 
142 RUN 183 AUTO 224 EXP 
143 IF 184 CLEAR 225 COS 
144 RESTORE 185 CLOAD 226 SIN 
145 GOSUB 186 CSAVE 227 TAN 
146 RETURN 187 NEW 228 ATN 
147 REM 108 TAB( 229 PEEK 
148 STOP 189 TO 230 CVI 
149 ELSE 190 FN 231 CVS 
150 TRON 191 USING 232 CVD 
151 TROFF 192 VARPTR 233 EOF 
152 DEFSTR 193 USR 234 LOC 
153 DEFINT 194 ERL 235 LOF 
154 DEFSNG 195 ERR 236 MKI$ 
155 DEFDBL 196 STRING} 237 MKSS 
156 LINE 197 INSTR 238 MKDS 
157 EDIT 198 POINT 239 CINT 
158 ERROR 199 TIMES 240 CSNG 
159 RESUME 200 MEM 241 CDBL 
160 OUT 201 INKEYS 242 FIX 
161 ON 202 THEN 243 LEN 
162 OPEN 203 NOT 244 STR$ 
163 FIELD 204 STEP 245 VAL 
164 GET 205 + 246 ASC 
165 PUT 206 - 247 CHR$ 
166 CLOSE 207 * 248 LEFTS 
167 LOAD 200 / 249 RIGHTS 
168 MERGE 209 t 250 MID$ 

is used in conjunction with a table of routine addresses starting at 
6178. This table has a two-byte address for each processing routine, 
arranged in the same order as the token table. The address for FOR, 
for example, would be found at the second location in the table 
(6180/6181). The addresses may be found by the usual PEEK(N) 
+PEEK( N+l) °256. 

Knowing the structure of BASIC statement lines can be very help
ful when you're designing programs to process BASIC programs 
themselves. Such things as appending two programs, merging two 
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or more programs, compiling lists of the variables used in a program, 
renumbering programs, and other utility functions are all possible 
when we know the structure of Level II BASIC operations. 

Suppose that we want to detect all occurrences of the REM state
ment in a program, for example. We may wish to leave REMarks 
in while we're debugging a program, but to delete all REMarks 
automatically after the final version of the program has been pro
duced. (If there ever is a final version!). The first step in this pro
cess would be to scan each statement line for REM tokens. The 
code below does exactly that and lists all line numbers containing 
a REM token. 

1 0 0 0  C L S  
1 0 1 0  P R I N T  - R E M A R K S  A T  L I N E S : "  
1 0 2 0  N L = 1 7 1 2 9  
1 0 3 0  R E M  F I N D  N E X T  L I N E  *  
1 0 4 0  A = P E E K < N L > + P E E K ( N L + 1 1 * 2 5 6  
1 0 5 0  R E M  F I N D  S T A T E M E N T  L I N E  «  
1 0 6 0  B = P E E K ( N L + 2 ) + P E E K < N L + 3 > * 2 5 6  
1 0 7 0  R E M  I F  N E X T  L I N E  I S  Z E R O .  D O N E  
1 0 8 0  I F  A = 0  G O T O  1 2 0 0  
1 0 9 0  R E M  B Y P A S S  N X T  L I N E . S T  #  
1 1 0 0  N L = N L + 4  
1 1 1 0  C = P E E K ( N L 1  
1 1 2 0  R E M  I F  C = 0  E N D  O F  L I N E  
1 1 3 0  I F  C = 0  G O T O  1 1 8 0  
1 1 4 0  I F  C = 1 4 7  P R I N T  B  
1 1 5 0  N L = N L + 1  
1 1 6 0  G O T O  1 1 1 0  
1 1 7 0  R E M  G E T  N E X T  L I N E  *  
1 1 8 0  N L = A  
1 1 9 0  G O T O  1 0 4 0  
1 2 0 0  P R I N T  " D O N E "  

* c l « a r  s c r e e n  
• t i t l e  
• f i r s t  B A S I C  1 i n e  
• r e m a r k  f o r  t e s t  

~  • f i n d  a d d r e s s  o f  n e x t  l i n e  
' a n o t h e r  r e m  f o r  t e s t  
' g e t  c u r r e n t  l i n e  #  
• t h i r d  r e m a r k  
* g . o  i f  e n d  o f  p r o g r a m  

' p o i n t  t o  t e x t  a n d  t o k e n s  
- • g e t  t e x t  b r t e  

• a  r e m a r k a b l e  p r o g r a m  
•  g o  i f  e n d  o f  l i n e  
• i f  r e m a r k  t o k e n  p r  l i n e  #  
• p o i n t  t o  n e x t  t e x t  b y t e  

L ' p e e k  a t  n e x t  l i n e  
• l a s t  r e m a r k  
• f r o m  s t a r t  o f  l i n e  p r o c e s s i n g  
go t o  p r o c e s s  l i n e  

' m u s t  b e  d o n e  

The Search for Variables 

Continuing with our investigative analysis of Level II . . . We've 
seen how BASIC lines are stored, and we've looked at the token 
format. Let's next see if we can deduce something about variables 
and arrays. We know from our work with VARPTR that we can 
easily find the location of a simple variable. If we have two variables, 
A and B, for example, we can print their locations by 

2 0 0 0  C L S  
2 1 0 0  A 7 . = 3 3 3  
2 2 0 0  B 7 . = 6 6 6  
2 3 0 0  L A = V A R P T R ( A 7 . )  
2 4 0 0  L B = O A R P T R (  B 7 . )  
2 5 0 0  P R I N T  " L O C A T I O N  O F  A = " ; L A . "  
2 6 0 0  P R I N T  " L O C A T I O N  O F  B = " ; L B . "  

• c l f - a r  s c r e e n  
• d u m m y  v a r i a b l e  
' a n o t h e r  d u m m y  
• g e t  f i r s t  l o c a t i o n  
' g e t  s e c o n d  l o c a t i o n  

O F  A = "  »  (  P E E K ( L . A )  e P E E K ( L A + 1  )  * 2 5 6 )  
O F  B = " ? ( P E E K ( L B ) +  P E E K ( L B + 1 > * 2 5 6 )  

Using a technique such as the above, we can easily trace simple 
variables as they are assembled in RAM. We can also use the same 
technique on array variables. VARPTR will also find the location 
of the elements of an array, as shown in the code below, which 
prints out all 34 locations of A(0) through A(33). It can be seen 
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that all array locations are contiguous—that is, in a block—and the 
first element is first in the block followed by the second, 

and so forth (Guard, arrest that reader for making that snide remark 
about simple writers!). 

What is the layout for multi-dimensional arrays? By means simi
lar to the above, we can find out that multi-dimensional arrays build 
data as shown in Figure 12-5. The code to illustrate the memory 
arrangement for two dimensions is shown below. 

4000 DEFINT A 'define integer 
A100 DIM A(2t2> 'establish 2-d array 
4200 FOR J=0 TO 2 I- floop for one dimension 
4300 FOR 1=0 TO 2 I f-'loop for second 
4400 PRINT "I.J="iIS"iJ."VARPTR="i(VARPTR*A<Ii J))) 
4500 NEXT I I w "continue 

Arrays are built directly below simple variables. Knowing the 
array structure makes possible such things as creating machine-
language subroutines to perform a "super-fast" sort or search of 
data in arrays or to perform high-speed matrix conversions. 

String variables have been discussed in Chapter 3. VARPTR can 
be used to find the location of any string. The argument returned 
for VARPTR ("string") points to a three-byte block containing the 
string length and the two bytes of the string location. Strings are 
located in one of two areas, either the string space area above the 
stack but below the MEMORY SIZE? reserved area, or in the 
BASIC statement line itself. As we saw in the graphics chapter, a 
simple string of the form A$="TIIIS IS A STRING" will have an 
address equal to its statement line location. A string assembled from 
concatenation, CHR$, or other methods will be in the "dynamic" 
string area. 

Ah, acronyms and abbreviations! Would any computer system be 
a true system without them? A DCB is a Device Control Block, and 
any TRS-80 BASIC programmer subsequently caught using the full 
name will be stripped of his number 2 pencils and display work
sheets. In many computer systems, it is convenient to group param
eters relating to an input/output device in a single block. One of 

3000 DIM A (34 ) 
3100 FOR 1=0 TO 33 
3200 B=VARPTR< A(I)) 
3300 PRINT B 
3400 NEXT I 

4600 NEXT J continue for first 

Houston, We're Going to Change the DCBs on 
Our TRS-80 Before the EVA . . . 
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the reasons for this is to enable a logical device to be easily changed 
to a physical device. Suppose that in our TRS-80 system we normally 
print out on the logical PR device or printer output device. The ac
tual physical device associated with the logical printing function 
may be a Quick Printer I. If our installation also has Baudot tele-

TWO DIMENSIONAL 
DIM A(3,3) 

INCREASING 
MEMORY 

LOCATIONS 

0.0 
1.0 
2.0 
3.0 
0.1 
1,1 
2,1 
3.1 
0.2 
1.2 
2 2  
3.2 
0,3 
1.3 

11 
3.3 

INCREASING 
MEMORY 

LOCATIONS 

THREE DIMENSIONAL 
DIM A(2,2,2) 

0.0.0 
1.0.0 
2.0,0 
0.1.0 
1,1,0 
2,1,0 
0,2,0 
1,2,0 
2.2.0 
0.0.1 
1,0,1 
2,0,1 
0,1,1 
1.1.1 
2,1,1 
0.2.1 

1.2,1 
2.2,1 
0.0.2 
1.0.2 
2,0,2 
0.1.2 
1,1,2 
2,1,2 
0,2,2 
1,2,2 
2.2,2 

MULTIDIMENSIONAL 
ARRAYS 

DIM A0J.K.L..  ,R) 

\ ^ /  \  THIS DIMENSION CHANGES 
/  \  LEAST RAPIDLY 

/  THIS DIMENSION CHANGES 
I  NEXT FASTEST 

THIS DIMENSION CHANGES 
"FASTEST" IN RESPECT TO 
INCREASING MEMORY LOCATIONS 

Figure 12-5. Multi-dimensional array formats. 

typewriter, we can quickly substitute this device for the Quick 
Printer I by changing some variables in the PR DCB. The alterna
tive to this would be to change all instructions associated with print
ing within the ROM instructions themselves. Since this would in-
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volve "burning in" a new ROM, you can see that the DCB method 
is much to be preferred. 

There are three DCBs in Level II BASIC associated with the key
board input, video display, and line printing logical functions. The 
DCBs themselves are located in RAM at the locations shown in Fig
ure 12-6. Data to initialize the DCBs is moved from constants within 

16405 
KEYBOARD 

DCB 

16413 
VIDEO 

DISPLAY 
DCB 

16421 
LINE PRINTER 

DCB 

1 
227 
3 
0 
0 
0 

"K" 

7 
88 
4 
0 

60 
0 

"D" 
" 0 "  

6 
141 

5 
67 
0 
0 "p » 

"R" 

DCB TYPE = 1 
} DRIVER ADDRESS = 995 

DCB TYPE = 7 
} DRIVER ADDRESS = 1112 

} CURSOR POSITION 

DCB TYPE = 6 
j  DRIVER ADDRESS = 1421 

LINES/PAGE 
LINE COUNTER 

Figure 12-6. DCBs. 

the ROM code on power-up (data for the DCBs starts at ROM lo
cation 1767). We can easily substitute a new keyboard input routine 
by POKEing the proper address values into locations 16406 and 
16407. Of course, the catch is that the new keyboard routine has to 
be coded in machine language and stored in RAM at the specified 
address. Similarly, we can "vector off" the video display and line 
printer functions into new routines by changing their addresses. 
Other parameters within the DCBs may be interrogated during 
BASIC program execution. We have seen one example of this in 
Chapter 4 when we examined and modified the running line count 
in the line printer DCB to effect a "top of form" action. As a fur
ther example of DCB use, let's change the driver address in the 
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video display DCB to enable a printout of the data on the screen. 
The following code will perform this action. 

5 0 0 0  A — P E E K ( 1 6 4 1 4 )  '  9 e t  d i s p l a y  b v t e  
5 1 0 0  B = P E E K ( 1 6 4 1 5 )  * 9 e t  s e c o n d  d i s p l a y  b y t e  
5 2 0 0  C = P E E K ( 1 6 4 2 2 )  *  9 e t  p r i n t e r  b v t e  
5 3 0 0  D = P E E K ( 1 6 4 2 3 )  *  9 e t  s e c o n d  p r i n t e r  b y t e  
5 4 0 0  P O K E  1 6 4 2 2 * A s P O K E  1 6 4 2 3 * B  ' p u t  d i s  d r v r  a d d r e s s  t o  1 p  
5 5 0 0  P O K E  1 6 4 1 4 * C " P O K E  1 6 4 1 5 * D  *  p u t  1 p  d r v r  a d d r  e s s  t o  d i S P  

After this change is made, any LIST or PRINT action will go to 
the system line printer rather than the display. A possible applica
tion for this is to switch between screen and line printer for pro
gram output without having to add "LS" for "LPRINT". The sys
tem can be returned to the normal configuration by swapping the 
two sets of addresses once more. Some characters that are valid 
for the display will not be valid for a line printer, so you may make 
the above changes at your own risk. (You can apply for ACME 
Data/Program Insurance to protect your programs and data from 
such catastrophic risks. Insurance void in those states with stringent 
fraud laws.) 

Keyboard Kapers 

One very interesting subject that we should discuss because of its 
potential use is the keyboard operation in Level II BASIC. As you 
know, the INKEY$ function returns the string value of the keyboard 
key that has been pressed. It is possible to bypass the routine that 
does the decoding and read the keys directly. This is best done by 
a machine-language routine, but there are several interesting BASIC 
applications. Let's see how the keyboard functions. 

Figure 12-7 shows a simplified diagram of the keyboard. A row of 
keys may be read by addressing 14337, 14338, 14340, 14344, 14352, 
14368, 14400, or 14464. The value returned is dependent upon the 
column of the key pressed. Table 12-2 shows the values returned for 
addresses of various columns. Suppose we address location 14344. 
Possible values we can get back are 1 for x, 2 for y, and 4 for z. 
If more than one key is pressed simultaneously, we may also get a 
merge of several values. If we press x, y, and z together, we get a 7. 
The following code detects key press in the x, y, z row. 

1 0 0  C L S  *  c l e a r  s c r e e n  
2 0 0  A = P E E K ( 1 4 3 4 4 )  p ' t e s t  x t v t z  l e v s  
3 0 0  I F  A = 0  G O T O  2 0 0  '  l o o r  i f  n o t h i n 9  
4 0 0  I F  A = 1  P R I N T  " X "  E L S E  I F  A = 2  P R I N T  " Y "  E L S E  I F  A ^ = 4  P R I N T  " Z "  
5 0 0  G O T O  2 0 0  ' g o  f o r  n e x t  L e v  

Try quickly pressing a key and holding the key down for some 
time. With a quick key press, it is possible for the BASIC routine 
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ROW ADDRESS = 14337 00000©©© 
M 3 3 » @  ©  0 © 0 © 0 0  

u34°© © © © O © 0 © 
14344 © o © 
,43s! 0©0©©©©O 
14368 

14400 PTER) (CLEAR BREAK) (ill PACE 

14464 SHIFT 
COLUMN VALUE: 

8 16 1 2 4 8 16 32 

Figure 12-7. Keyboard operation. 

Table 12-2. Keyboard Decoding 

64 128 

14337 @/l A/2 B/4 C/8 D/16 E/32 F/64 G/128 
14338 H/l 1/2 J/4 K/8 1/16 AA/32 N/64 0/128 
14340 P/l Q/2 R/4 S/8 T/16 U/32 V/64 W/128 
14344 X/1 Y/2 Z/4 
14352* 0/1 1/2 2/4 3/8 4/16 5/32 6/64 7/128 
14368* 8/1 9/2 :/4 ;/8 ,/16 -/32 ./64 //128 
14400* ENT/1 CLR/2 BRK/4 t/8 1/16 «-/32 —/64 SP/128 
14464* SHFT/1 

•Lower cose shown only 

to miss a key; it simply is not fast enough to detect a key that is 
held down for perhaps l/50th of a second. When the opposite condi
tion is tried, it appears to the routine that the key has been continu
ously pressed. Because of these limitations, "scanning" of the key
board is best done at a machine-language level. However, this de
coding scheme may be used for such things as fast game control 
where a key is simulating a real-time control, to produce a "repeat" 
function for certain keys such as cursor movement keys, or to assign 
"function" keys to keys that are not normally translated, such as 
the "SHIFT' key (the shift key produces a 1 if pressed when address 
14464 is read). 
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Another easy way to obtain a repeat key function is to zero the 
RAM buffer used for the keys. The buffer is made up of seven loca
tions, each location corresponding to a keyboard row, as shown in 
Figure 12-8. If the location corresponding to the row in question is 
zeroed after detecting a non-null string for the INKEY$ function, 
INKEY$ will return another character if the key is still being pressed. 
Normally, INKEY$ will not return another character until the key 
is released and repressed. The code below circumvents this prob
lem for the x, y, and z keys, but the scheme will work for any row 
of keys by zeroing the proper buffer location. 
1 0  A $ = I N K E Y $  ' g e t  c h a r a c t e r  
2 0  I F  A $ = " "  G O T O  1 0  * 1 OOP i f  n u l l  
3 0  P R I N T  A $  ' p r i n t  i n p u t  c h a r  
4 0  P O K E  1 6 4 4 1 * 0  ' r e s e t  b u f f e r  
5 0  G O T O  1 0  ' l o o p  

Cassette Operations 

We saw in the last chapter how we could interface to some of the 
machine-language cassette routines. The cassette reads and writes 
data at rates of 500 baud, which represents byte (character) data 
rates of 62.5 bytes per second. Data is transferred between the Z-80 
and cassette a bit at a time; subroutines in Level II BASIC ROM 
read a bit at a time and assemble 8 bits into a byte or take a given 
byte and convert it to a stream of 8 bits for output. The byte data 
rates of 62.5 bytes per second are marginal for BASIC operation, 
and interface to the cassette routines should be done in machine 
language. The addresses for the machine-language routines for cas
sette operation are located as shown in Table 12-3. 

Tape operation is controlled at the most basic level by three bits, 
as shown in Figure 12-9. Two of the bits control the actual signal 
level sent to the AUX jack of the cassette tape recorder. The third 

Table 12-3. Machine-Language Cassette Routines 
Location Routino Action 

530 Define Cassette Defines cassette number and turns on 
cassette. Cassette number, 0 or 1, must 
be in A register before entry. 

662 Find Leader/Sync Bypasses zero leader and finds sync 
byte in preparation for read. 

565 Read Bytes Reads one byte from cassette. A 
register holds byte on exit. 

504 Turn Off Cassette Turns off current cassette. 

647 Write Leader/Sync Write zero leader and sync byte. 

612 Write Byte Write byte to cassette. Byte must be in 
A register before entry. 
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16438 
16439 
16440 
16441 
16442 
16443 
16444 

@ - G 
H - 0 
P - W 
X - Z 
0 - 7 
8 - / 
ENTER-SPACE 

Figure 12-8. Keyboard buffer. 

bit controls the REM(ote) jack on the cassette tape recorder. A 
fourth bit not connected with tape operation controls the 32/64 
character mode of the display. All of the four bits are controlled by 
a BASIC OUT statement. Executing an OUT with an "address" of 
255 will address the four bits of the cassette/mode select "latch." 

To see how this works, try the following code. It will turn on the 
cassette and then turn it off after a 10-second delay. 

2000 OUT 255.4 
2100 FOR 1=0 TO 4600 
2200 NE XT 1 
2300 OUT 235.0 

'turn ori cassette 
r ' for a uih i 1 e 

* 1OOP for de1av 
'turn off casset te 

The code above sets the third bit in the cassette/mode select latch. 
This bit controls closure of the cassette relay. 

The two bits normally used for audio output to the AUX input to 
the tape recorder can also operate under BASIC control. The se
quence to write out a pulse during machine-language operation is 
to write a 1 (01), write a 2 (10), and then restore a "0" level by 
writing a 0 (00). We can write out to the cassette under BASIC by 
"toggling" these two bits after first turning on the recorder. 

3000 OUT 255.4 
3100 FOR 1=0 TO 5000 
3200 OUT 255.5 
3300 OUT 255.6 
3400 NEXT I 
3500 OUT 255.0 

'turn on cassette 
["'record for a while 

'output one level 
'and now the other 

L ' cont i r«ue 
' t u r n  o f f  c a s s e t t e  

OUT 255. VALUE 
V A L U E  =  0 - 1 5  

5 4 3 2 1 0 

T_ SIGNAL 1 
SIGNAL 2 
REMOTE 
32/64 MODE 

Figure 12-9. Tape operation. 
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Although we could make a somewhat "tighter" loop by multi-
statement lines, this is about the most efficient we can get. The re
sulting pulses make up a square-wave tone as shown in Figure 12-10. 
The best we can do under BASIC timing constraints is a low-pitched 
tone that sounds similar to a buzz saw. The same technique can be 
used with machine-language code to produce much higher-pitched 
tones. 

to CO in CO 
in in to in Lr> in in to 
CM CM CM CM 
b— y— b— •— 
ZD ZD ZD ZD O o O O 

Figure 12-10. "Square-wave" output. 

The code above illustrates an important point. We had to set the 
REM bit (value=4) on, and we had to keep it on when we output 
values to the other two bits. Consequently, we output a 5 instead 
o f  a  1  ( 1  o r  4 )  a n d  a  6  i n s t e a d  o f  a  2  ( 2  o r  4 ) .  

The resvdting tone produced by the code above could be fed into 
an external audio amplifier for signalling purposes. (When you hear 
the buzz saw, change the printer paper . . . .) 

There's one bit left in the cassette/mode select latch, the mode 
select. Turning on this bit with a 1 sets the 32-character mode, while 
turning it off sets the 64-character mode. The normal method for 
setting this mode is to execute a PRINT CHR$(23), "set 32-char
acter mode." Unless this method is used, the (software) display 
driver will get confused about the mode and only every other char
acter will be displayed. It is not recommended to turn on the mode 
select bit alone in BASIC. (If you must, PEEK at location 16445, 
OR in an 8 value, and POKE the result back to 16445 after an 
OUT 255,8.) 

Further Investigation Shows . . . 

Would you like to investigate Level II BASIC further? The first 
action to take would be to invest some time in a study of Z-80 as
sembly language using the Radio Shack Editor/Assembler and TRS-
80 Assembly-Language Programming. Then, follow the clues to the 
assembly-language routines such as the DCB driver address, the ad
dresses of the statement processing routines in the 6180 table, and 
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Table 12-4. Level II Processing Routine Addresses 

Location 

Doclmal Hoxadoclmal Processing 

43 002B Get character from keyboard. Do not wait for 
input. On exit (A) = character or 0 if no key 
press. 

51 0033 Display ASCII byte. On entry (A) = ASCII byte. 

59 003B Output byte to line printer. On entry (A) = ASCII 
byte. 

73 0049 Get character from keyboard. Wait for input. 
On exit (A) = character in ASCII. 

96 0060 Timing Loop in 14.66 mi 
On entry (BC) = Delay N. 

lisecond increments. 

102 0066 Reset system. 

457 01C9 Clear screen, home cursor. 

Table 12-5. Communication Area Addresses 

Location 
Numbor 

of 
Bytos Doscrlption Doclmal Hoxadoclmal 

Numbor 
of 

Bytos Doscrlption 

i 6405 4015 8 Keyboard DCB 
16413 401D 8 Display DCB 
16421 4025 8 Printer DCB 
16438 4036 7 Keyboard Buffer 
16445 403D 1 Out FF Status 
16544 40A0 2 Start of String Data Pointer 
16546 40 A 2 2 Last Executed Line Pointer 
16551 40A7 2 Input Buffer Pointer 
16554 40AA 3 Random Number Seed 
16607 40DF 2 Default Entry Point for SYSTEM/ 
16633 40F9 2 Start of Simple Variables/End of 

Program Pointer 
16635 40FB 2 Start of Arrays Pointer 
16637 40FD 2 Start of Free Memory Pointer 

others. Without detailed explanation, we'll provide some hints in 
Table 12-4 for some Level II processing routines that may be called 
in assembly language or simply in BASIC. In addition, Table 12-5 
supplies some of the interesting "Communication Area" variables 
that may be accessed for BASIC operations. 
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Index 

A 
Absolute 

memory locations, 192 
value, 149 

Address value, 31 
Algorithm(s), 122 

sort, 128 
Allocates, 104 
AND 

function, 39 
operation, 41 

Argument(s), 51, 194-197 
getting back, 197-198 
multiple, handling, 198-200 
packing, 199 
unpacking, 199 

Arrays, 21, 99, 103 
initializing, 120 
one-dimensional, 104-105 
size of, 119 
two-dimensional, 111-119 

ASCII, 44 
strings, 44-45 

Assembly-language 
coding, 187 
listing, 190 

Asterisk, blinking, 164 
ATN, 159 
AUTO command, 25 
Axes, graph, 83-84 

B 
Base, data, 133 
BASIC 

code, embedding machine-language 
subroutines in, 201-203 

DATA lists, 100-102 
statement format, 208-211 

Binary 
search, 125-128 
system, 28-30 

Bit, 30 
manipulation, 42 
sign, 33 

Blocked data, 168 
Branches, 14 
Bubble sort, 130-131 
Byte, 30 

high-order, 32 
low-order, 32 
synchronization, 161, 162 

C 
Call, 18 
Cassette(s) 

capacity, 166-169 
files, sequential, 169-170 
operations, 217-220 
two, 170 

Catenary, 48 
CDBL, 143 
Character sets, 77 
Chessboard, 111-112 
Chips, 185-187 
CHR$ function, 51-52 
CINT, 144-145 
CLEAR command, 25 
CLOAD, 24, 160, 163 
CLOAD?, 24, 163-164 
CN, 176 
Code(s) 

control, 44 
machine-language, 190-191 
source, 191 

Columnating data, 63-65 
Columns, 62-65 
Commands, 24-25 

edit, 25-26 
tape, 160-161 

Comments, 191 
Comparison!s), 24, 48-51 
Complement, 42 

two's, 33 
Concatenation, 48-51 
Constants, 20 
CONT command, 25 
Contiguous block, 104 
Control codes, 44 
Conversion, decimal-to-binary, 40-41 
Cosine, 158 
CSAVE, 24, 160, 163 
CSNG, 142-143 
Cursor(s), 54-55 

positioning, 60 

D 
Data 

base, 133 
lists, 21 

BASIC, 100-102 
print, 75-77 
structures, 99 
unordered, 121-123 

DCBs, 212-215 



DD, 176 
Debugging, 25, 181-183 
Decimal-to-binary conversion, 40-41, 

145-147 
DELETE command, 25 
Deletion, 134, 137 
Delimit, 209 
Delta value, 98 
Device control block, 212 
Dimensions, 110-119 

three or more, 119 
Disassemblers, 205 
Displacement, 86, 109 
Distribution, 149-150, 154 
Dollar(s) 

and cents, 67-72 
signs, 70 

Double-precision variables, 20, 35-37 
Driver, BASIC, 196 
Dummy strings, string graphics using, 

94-95 

E 
EDIT 

command, 24 
mode, 25-26 

Editing, text, 58-61 
Elements, 104 
Entries, 108 
Equivalence operator, 24 
Error(s), 171-177 

bad file data, 177 
can't continue, 176 
data, out of, 173 
Disk BASIC command, 177 
divide by zero, 176 
illegal 

direct, 176 
function call, 173 

missing operand, 176-177 
NEXT without FOR, 173 
overflow, 174 
processing, 179-180 
redimensioned array, 176 
RETURN without GOSUB, 173 
simulating, 180-181 
string 

formula too complex, 176 
space, out of, 175 
too long, 176 

subscript out of range, 175 
syntax, 172-173 
trapping the, 177-179 
type mismatch, 176 
undefined, 172 

Exercising, 183 
EXP, 149 
Expansion Interface, 170 
Exponent, 35 

F 
FC, 173 
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FD, 177 
Field(s), 109 

specifiers, PRINT USING, 71-72 
File(s), 165 

cassette, sequential, 169-170 
Fill characters, 53 
FIX, 148 
Floating point variable, 36 
Flow, program, 11-13 
Format, statement, 11-13 
Fractions, 144-148 
Functions, 21-22, 142 

trigonometric, 155-159 

G 
GOTO, 14 
Graphics 

mechanics of, 78-80 
method, POKE, 89-92 
review, 95 
statements, 21 
string, 92-93 

dummy strings, using, 94-95 
Graphing, general approach to, 87 
Guns versus butter, 84-87 

II 
Hypotenuse, 155 

I 
ID, 176 
Index 105-106 
Initializing arrays, 120 
INKEY$ function, 48-51, 215 
Input, "Universal Gee Whiz," 55-57 
INPUT#, using, 164-166 
Insert, 133-134 
Insertion, 136-137 
Instruction( s), 185-186 

repertoire, 185 
set, 185 

INT, 146, 147 
Integer variables, 20, 30-33 
Interfacing, 190 
Interpreter, BASIC, 11 
Iteration, 126 

J 
Justification, 66-67 

K 
K, 187 
Key. 108 
Keyooard, 215-217 

L 
Labels, 191 
Leader, 161-163 
LEFTS function, 52-53 
Length 

fixed,109 
variable, 109 



Life, game of, 115-119 
Line 

printer(s), 75-77 
character set, 77 

straight, how to draw, 95-98 
Linked list, 99, 135-141 
List(s), 99 

BASIC DATA, 100-102 
linked, 99, 135-141 
ordered, 123-125 

LIST command, 25 
Listing, assembly-language, 190 
LLIST command, 25, 75 
Locomotive pattern, 92-93 
LOG, 149 
Logical operators, 38-42 
Loops, 13, 19-20 
LPRINT command, 75 
LS, 176 
L3, 177 

M 
Machine language, 186 

code, 190-191 
instructions, 10 
subroutines 

embedding in BASIC code, 
201-203 

multiple, 200-201 
Mantissa, 35 
Margin, top and bottom, 76 
Memory 

layout, TRS-80, 187-190 
locations, absolute, 192 

Menus, 72-74 
Merges, 133-141 
Microprocessor, 185 
MID$ function, 52-53 
Mixed variables, 102-103 
MO, 176-177 
Modes of operation, 24 
Moving, 87-88 

N 
NEW command, 25 
NF, 173 
NOT 

function, 39 
operation, 42 

Numbcr(s) 
crunchies, 22-24 
great and small, 37-38 
pseudo-random, 149-150, 151 
random, 149-154 
seed, 151 
statement, 10 

Numeric to strings, 54 

O 
OD, 173 
One-dimensional arrays, 104-105 

Opcode, 185 
Operands, 20 
Operators, logical, 38-42 
On 

function, 39 
operation, 41-42 

Order 
ascending, 124 
descending, 124 

Ordered lists, 123-125 
OS, 175 
OV, 174 
Overflow, 141 

P 
Packing, 166-169 
Pagination, 76 
Parentheses, number of, 172 
PEEK(s), 22 

address limits for, 33-34 
PEEKing, 205-208 
Pixel(s), 82, 88-89 
Plotting, 83-87 
POINT command, 82-83, 88-89 
Pointers, 136 
POKE(s), 22 

address, 91 
limits for, 33-34 

graphics method, 89-92 
Positional notation, 30 
Precision 

double, 142-144 
operations, 142-144 
single, 142-144 

Print 
data, 75-77 
statements, 20-21 

PRINT USING 
field specifiers, 71-72 
statement, 69-72 

Printers, line, 75-77 
PRINT#, using, 164-166 
Program flow, 11-13 
Prompt message, 73 
Pseudo-random numbers, 149-150, 151 

R 
Radian, 157 
RAM, 189 
Random numbers, 149-154 
READs, 102 
Records, 164 
Registers, internal, 185 
Relocatable routine, 192 
RESET command, 82-83, 87-88 
Resolution, 96 
RESTORES, 102 
RESUME statement, 178 
RG, 173 
RIGI1T$ function, 52-53 
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RND, 152-153 
number generator, 151 

ROM, 11, 189 
Roundoff,148 
RUN command, 24 

SD, 151-152 
Search 

binary, 125-128 
for variables, 211-212 

Seed number, 151 
Segmenting, 182 
Sequential cassette files, 169-170 
SET command, 82-83, 87-88 
Setting examples, 82-83 
SGN function, 148-149 
Shell-Metzner sort, 132 
Sign(s), 70 

bit, 33 
function, 148-149 

Simulating errors, 180-181 
Simulation, 149 
Sine, 155-158 
Single-precision variables, 20, 34-35 
Skeleton, graph, 85 
SN, 172 
Snapshot, 182-183 
Sort(s) 

algorithms, 128 
bubble, 130-131 
faster, 132-133 
Shell-Metzner, 132 
two-buffer, 128 

Source code, 191 
Space, 166-169 
Speed, 166-169 
SQR, 149 
Square root function, 149 
ST, 176 
Statement(s), 10-11, 13-22 

format, 11-13 
BASIC, 20&-211 

number, 10 
Storage of string variables, 46-48 
Straight line, how to draw, 95-98 
String(s) 

ASCII, 44-45 
comparison of, 51 
concatenation operator, 24 
dummy, string graphics using, 94-95 
graphics, 92-93 

dummy strings, using, 94-95 
numeric to, 54 
operations, 48-51 
statements, 20 
variables, storage of, 46-48 

STRING$ function, 53 
Structures, data, 99 

Subroutine( s), 14-19 
machine-language 

embedding in BASIC code, 
201-203 

multiple, 200-201 
Synchronization byte, 161, 162 
SYSTEM 

command, 24 
tapes, 190-193 

Tables, 99, 106-109 
TAN, 158 
Tangent, 158-159 
Tape(s) 

commands, 160-161 
SYSTEM, 190-193 

Text editing, 58-61, 194 
"Time wasters," 88 
TM, 176 
Tokens, 209 
Top of form, 76-77 
Trace option, 182 
Trapping the error, 177-179 
Trigonometric functions, 155-159 
TROFF command, 25 
TRON command, 25 
Truncated values, 87 
Truncation, 148 
Two(s) 

-buffer sort, 128 
complement, 33 
-dimensional arrays, 111-119 
-way passing, handling, 198-200 

U 
UL, 172 
"Universal Gee Whiz" input, 55-57 
Unordered data, 121-123 
USR(0) call, 193-194 

Value, index, 105 
Variable!s), 20 

double-precision, 35-37 
name, 11 
search for, 211-212 
single-precision, 34-35 

VARPTR, 22 
W 

Weights, 124 
Word processing, 58, 194 

Z-80, 185-186 
Zero, divide by, 176 
Zzarthians, 27-28 
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