N

$4

[jou

Formerly the

————

[DS !

» Part 3: Learning Assembly Language
. aaabs *

p+ The Electronic InBaskel®

» LDOS dnd SuperSCRIPT

» Moreon ‘C’’

: OGICAL
SYSTEMS
INC.
OO

ANTHOLOGY ONE

SIX ISSUES TOGETHER AT LAST!

Now Available — Volume One of the LDOS Quar-
terlies. Including the July 1981 through October 1982 ﬁ
issues. Over 325 pages of information sure to benefit

all LDOS users.
OGICAL ony $19.00
SYSTEMS Plus $4.00 Shipping and Handling
INC.
OO

LOGICAL SYSTEMS 8970 N. 55th Street / P.O. Box 23956 / Milwaukee, WI 53223 / (414) 355-5454

———

The Next Generation

SUPERLOG

ADVANCED ELECTRONIC NOTEBOOK
BY KSoft

Over
the past two years, LOG Electronic Notebook has quietly been creating a revolution in personal information management. Designed

to emulate a famili i -
e iar pencil and notebook, LOG Electronic Notebook can do for random information what a spreadsheet program does

N ,eV'elllhebeslllas mll !w i stem curren 'y
ow, ""”w” s M o announce SU' E' le. "'Q next wl°l ation O t

LBASIC, LSCRIPT, E ; activated it may be accessed from practically any foreground task including LDOS Utilities,
versatile! B v V@ return 1o the foreground program Nom information mn;oome':g program is this

Writeorwl'bday!WﬂlbegladlotdlyouabmnSUPERLOGmwhmncandoioryou!

SUPERLOG Specify Model | or Il $11995
LDOS&13.48K.MO20nmmmrod
(Mode! N.vomon 10 be offered soon

e LOG TRSDOS versions, Models, 1, msww).u.

318 Lamssgom (601) 992:2.3:0 !
Brandon, 39042 Mastercar: isa accepted.
(TRSDOSisatrademarko(‘rm : Add $5.00 for shipping and handling.
Corporation) (LDOS is a trademark of Logical Systems Inc.)

B —

THE LSI JOURNAL October 1983 Volume 2, Number 4

CONTENTS

INTRODUCTION FROM LSI:

ARTICLE SUBMISSION POLICY sisssccscssssssososssssnssssnnsssssoassssonsssss Page
VIEW FROM THE. BOTTOM FLOOR ‘sasiscisinassnedsvanins ssnnsssssssssssssessssaeess Page
A CASE OF: MIS<ALLOCATION! «s'siisisia)oisis's/sisia/sio/a/aio’sioiale sialeiatois/a’s:sle/s/sie'e/slsie's's s /s ewieios Page
NEW. PRODUCT ANNOUNCEMENTS! o's/sialara olvin's ula o sioroinis slaaje;osloa s olaintotn n siseiale o aTate’s s aio"ale Page

FROM OUR USERS:

The ETeCTronic INBaSKelilcs viss coasis sialaias s sa slataie:s aeleiaiaaias e shiesnioleis e siviels/s Page
FAst Braphics for (LG e s cshnsainniaisis sanle siaarers s slaiaialalaiata’a ss axe o e ele dleleTela o 1ot /8 Page
Using Interrupts and SVCs in FORTRAN ..cvcecesosocscccessssosacccscsncnsne Page

REGULAR USER COLUMNS:

o O ... Earle Robinson At 1arge cecccesocoascccosssscssssccssssssssassss Page
* PARTITY =.0DD ‘* Tim:Danel ik o cisio/eiclnicalaiola's olos oie o sloeio'eloiais/slaia sIoisialolelo si0/ele s Page
'C' What's Happening - Ear]l TerWwilliger ..c.ceeeeecececsncncscsscacanncnnns Page

FROM THE LDOS SUPPORT STAFF:

Items of General Interest ...oseececececessecsasscccssssnssasssssasssncsnns Page
updates, patches and clarifications
LET US ASSEMBLE - Rich learns yet more assemblercceeeeecccccnancans Page
LDOS: HOW IT WORKS - Using non-relocatable codecccvvvunnnniccnnnecnns Page
"Foreign" machine code, and other stuff in high memory discussed

THE JCL CORNER - by Chuck (SOrt of) seeieeercecccennccccnnncennecncnennens Page

Automatic Chaining with JCL .eevveenenrrenncnnnnceenenecneccnnsnnnnnnes Page
Letters from the Customer Service Mailbag ..ceceveeervcnnenrocennenncnanans Page
LDOS and SuperSCRIPSIT siiiveseesssssasasascassssssnssssssscsssssnacansans Page
MAX-80 MEMOTY MAp tveeveeeeesensanssnsssssansannsssssssassosssssssnsnnnnns Page
Performing DATE Conversions in BASIC ...ceviinnvnnnininniinniinnncinnnnnnss Page
LES INFORMATION - by Les Mikesell .ivevvunnrecennnssanncsnsosnnnncnsnnnnns Page
View From Below the Bottom F10Or ..eeeeeeceeacacncncasonncssscsccnnasannan Page

Copyright © 1983 by Logical Systems, Incorporated
8970 N. 55th Street P.0. Box 23956
Milwaukee, Wisconsin 53223
Main switchboard: (414) 355-5454
LDOS Hotline: (414) 355-4463

Page 1

S oowrn

15
19

28

31
34

38

The LSI Journal policy on the submission and payment for articles is as follows:

Articles sent for consideration must be submitted in the following format: ‘)

1. A cover letter, summarizing the content and intent of the grtide
2. A printed hardcopy (lineprinted or typewrigten) of the article. Desired
print effects and formatting should be indicated where necessary.

A diskette with--

3. A 'plain vanilla' ASCII text file containing the article. The text
should be free-form, but if any tables or other structured data is
present, the file should be formatted as 87 characters per line, and
62 lines per page, with no headers or footers. Do NOT send SuperSCRIF
or Newscript files. Also, please do not embed print effects.

4. If the article involves assembly language programs, include both
the source code and the object code.

5. Any other necessary files or patches should also be supplied in
machine readable form.

P]ea§e do_ not send in printed text without a diskette, as it will NOT be consides for
pubhgatlon. Payment will be made in the form of an LSI product, or $40 per pubiished

page in the current LSI Journal format. The size of the article will determine the

value of the LSI product available as payment.

Plea§e jnc]ud.e your name, address, telephone number and LDOS serial number with your
sut?m_ltssmn, firmly attached to your hardcopy printout, and affixed to the disk: you

submit.

LSI is extremely interested in seeing submissions from our users, and | to .)

suggestions on any ideas for the LSI Journal.

Submissions should be sent to:

The LSI Journal Editor
c/o Logical Systems, Inc.
8970 N. 55th Street

; P.0. Box 23956
Milwaukee, Wisconsin 53223

UNIX'.I§ a trademark of Bell Laboratories
pcmoé§§a 1S a trademark of LOBO Systems, Inc.
TRSBOS"' iand IBM-PC™ are trademarks of 18;1 Corp.
i andsXENIt;idemark of Radio Shack/Tandy Corp.
IS are trademarks of Microsoft, Corp.
WL ép rade&ark of MicroPro International Corp
. > /M-86™ are trademarks of Digital Researc'.l. Inc.

The LSI Journal is co i : I)
~ pPyright i :
duplicated in whole orying ed in its entirety. No material contained herein may be

: part for commerci ‘ . . .
express. written consent of Logical Systems, Izc‘::\dorthg‘::::??;‘on D:;DOS“ ikt
: 's author.

Page 2

Yes, there is now an LDOS 5.1.4!

0K, what did LSI do to 5.1.3 to make it 5.1.4? From the standpoint of the DOS itself,
5.1.4 is simply a needed change in the version number after a dozen or so patches.
This means that 5.1.4 contains all patches to date, some are VERY IMPORTANT, others are
less important, and some that are just plain arbitrary. New functions have been added
that make this a very valuable update for our LDOS users and a must for Model 4 users.

A BIG FEATURE OF LDOS 5.1.4 IS THAT THE ORIGINAL FED (LSI FILE ZAPPER) IS NOW INCLUDED
WITH THE LDOS 5.1.4, AT NO EXTRA CHARGE!!!

FED is the famous LSI utility that allows simple maintenance and updating of all
LDOS-type files. FED originally sold for $40 and was recently reduced to $19 with the
introduction of FED-II. Sure, there is an ulterior motive. First, I would Tike all of
our users to have the power of a FED-type program, and then again there is FED-II. I
believe that when our users find out how handy FED is, they will become purchasers of
our FED-II product. I may be wrong, but in any case, the LDOS user benefits.

A NEW HIGH SPEED BACKUP UTILITY (QFB) COMES WITH LDOS 5.1.4

I have often been asked if LSI could provide a FASTER method of creating a
"“mirror-image" duplicate of an LDOS-type disk. Well, 5.1.4 has this feature in a new
program called "QFB" (for Quick Format and Backup). This new utility will duplicate a
disk in about half (or less) of the time that a FORMAT/BACKUP sequence takes. QFB and
its documentation are provided at no additional charge with a 5.1.4 update. Please note
that QFB is for mirror-image backups of standard LDOS-formatted diskettes only.

IMPORTANT NOTE :

The cost to update to 5.1.4 is just $10 ($5 with ESA). This is an important and
valuable update, so please send in your master disk (disks in the case of Model 1) and
let LSI update your system. The official date of 5.1.4 is September 1, 1983. There are
still many 5.1.3 systems available from LSI dealers and from Radio Shack and these can
and should be purchased without worry that they are not 5.1.4 versions. ANYONE WHO
PURCHASES THE FULL LDOS 5.1.3 SYSTEM AFTER AUGUST 1, 1983 IS ENTITLED TO A FREE 5.1.4
UPDATE AT ANY TIME! Note: Proof of purchase date is required and must accompany master
disks sent to LSI for this "FREE" update.

Another item worthy of comment is the NEW name for the LDOS Quarterly. It is now
called the "LSI JOURNAL". The name change was necessary, because our publication will
be addressing many wide and varied topics in the future. For the present, LDOS and its
related products will be the main thrust of this publication but in the future many
other topics and products will be discussed. The new name more aptly describes the
future route of our publication. For those perceptive folks, you may realize that the
removal of the word QUARTERLY from the publication could mean that a more frequent rate
of publication may be in the offing. You never can tell

More "news" is that the cost to receive the LSI JOURNAL has been reduced. Effective
immediately, a four issue subscription is just $14.95! Subscriptions to the LSI JOURNAL
are now available to ANYONE. That's right, there is no requirement to be a registered
owner of any LSI product. LSI will continue to bring you this publication, full of
straight forward technical and user information, from professionals, and with very

little advertising material.

Page 3

existing ESA agreements will be HONORED

The ESA program is no longer available but all
T0 THE LETTER until expiration.

We have opened up the LDOS SIG (Special Interest Group) on microNET/CompuServe to the
public so that all LDOS and TRSDOS 6.x users, Or anyone else for that matter, can now
access this bulletin board service. Note: You must be a current member of CompuServe to

use this service.

Occasionally, I get a letter from an LSI customer, who complains about LSI Off..-rlng a
new generation of a product or a drop in the price of an existing product. | would like
to address this issue.

First of all, let's discuss purchased products and updates. Updates are just that. They
are intended to correct defects or oversights in a released product. When we enhance a
product, it is not the same thing. For some reason, some software purchasers have

placed the software industry in a category previously unknown in a capitalistic
economy. An industry where a purchase by a customer creates a permanent respons ity
to provide future enhancements or version changes at little or no cost to that
customer. I can't think of another industry that is ever expected to provide t! Lype
of customer support or service. There is no way that a non-cottage industry pany
could function on this basis. Witness the many, many software companies that are no
longer in business due to their attempts to satisfy these unrealistic expectation

To bring the issue very close to home, look at the TRS-80 software industiry. |
guarantee you that as you look through the software you have purchased over the past
two years, you will find that over half of the providers of those products are no
longer around to provide any type of support, enhancements, or upgrades. Tough infustry
to stay afloat in-- don't you think?

Now look elsewhere in the industry. I have purchased many printers for LSI, often to
find that within months (in one case days) that the manufacturer dropped the price,
enhanced the product, or in most cases did BOTH at the same time. Was | upset or did |
feel used or abused? Of course not, things change, markets change, competition changes,
productlon'cost.s and techniques change, and on and on. | want to see things progress
and I am quite willing to pay the price for that progress. The advancements in computer

g:&?{are and software have to be paid for and the companies involved must make 2

About nominal .cos.t gpgrade to new versions of a product I can only say... HOW! Some
letters I receive indicate that an upgraded or enhanced version of a product should be
provided for free or at nominal cost because the customer supported the original effort
ggvgu;ﬂ:smg t'f:e product. COME ON NOW! I purchased an MX-8J when it first came out.
sl cg;‘;rcﬁ:edaii "‘éa,", detector, pocket calculators, digital watches, 35mm
S R ! conditioners, new cars, FM personal radios, VCRs and dozens of
Cie hosins eveor J:ma te"f they were introduced for consumption. Within a year or so of
MONEY | Why? SinoT eeeyer ,these items, I could have bought a BETTER VERSION, FOR LESS
i o;figinal prodﬂct iause the manufacturer was able to continue to upgrade and enhance
Ltshiind ibe Sl 0 create better, cheaper, more desirable versions of the product.

C gar 'y noted that NOT ONE of the companies that manufactured or sold me

:gssgugggg:ctosf og‘eerieg ?)nryi gtgr')'ea‘of TRADE-IN, UPGRADE, WDATE, or even a token discount
expected one. version. Nor would I have been so naive as to have

I beli : 3

e a§v$tt::: ‘Ijeg?;nzgatfl paid for with every one of these products. 1 bought the
forced me to buy the first, secons o usC,2S Mrked. No one held a gun to my head or
buy was MY choice, Yes. g ?ett:ond or third generation of a product. When and what to
less, but I had the use of’ the aiter generation of a product is usually better and costs
became available. I certainly :?df?,rtthe ensuing time period until that next version
VCR or SLR camera at a nominal upd Ol expect the company to let me trade up to 2 new

at
the one I had :n;eegb” I wanted the newer model, I sold, gave

that did not function

UGHT the NEW version. However, whenever I
as I was lead to believe, I insisted that

it be repaired, replaced, upgraded or as a last resort that I be allowed to return it
for a full refund. In all fairness though, I would only expect these options within a
reasonable time frame.

[f one is not willing to accept progress in technology as the "way of things" then, it
would be safest to never buy anything, unless it has been out of production for ten or
more years. In that case, you probably won't ever have a new version of the product to
feel bad about.

Which brings me to another point. The customer who decides to purchase a new, probably
incompatible computer. I own a VHS format video tape recorder. If I decide to go out
and buy a BETA recorder, knowing full well that these two formats are incompatible, I
certainly can't tell the stores were I bought my "VIDEO SOFTWARE" (tapes) that they
should or have to give me BETA-type copies of the movies at a nominal charge. I'd be
thrown out of the store. Alternatively, if for some strange reason the store did do
this type of thing, it would soon be bankrupt.

In spite of this, some of our customers think LSI should "GIVE" them Model 4 versions
of our products. Why? Well, because they once bought the Model-III version. Now I ask
you, did Radio Shack "GIVE" you a Model 4 computer on the basis that you have one
coming because two years ago you were nice to them and bought a Model-III? I doubt it.

Yet, with all this as common knowledge to ALL of the American consumers, there is still
a strange perception about software suppliers. It's almost as though some of our
customers think that writing software is a very simple process and, therefore, is worth
very little. It is very expensive to design, write, test, debug, document, publish,
advertise, and support GOOD computer software! Many of the software suppliers have not
made the financial grade and are no longer around for disgruntled customers to complain
to. Maybe they should not have used as much of their resources providing upgrades to
working products, each of which lost them money.

It is your choice to buy a MAX-8J or a Model 4, or any other computer that LSI is
supporting or is going to support in the future. It is your choice to get CP/M or any
other 0S, and yes, some of our products are coming out on CP/M, XENIX and MS-DOS. We do
not intend to offer upgrades or updates or trade-ins under these circumstances. LSI
policy will be to update ONLY the same product title, same product series for the same
computer and operating system. These updates will be for ERROR corrections only.
Enhanced or second generation products and the same product for a different
environment, must be purchased.

I often hear from customers and other people in the micro industry how terribly
profitable the software industry is. That is plain ignorance speaking (or maybe too
much belief in what Wayne Green has said in 8@-Micro). If this industry was all a "bed
of roses" then I ask you, why is the failure rate of young software companies SO high?
It is not common for companies that are making high profits to go out of business, with
many unpaid debts. Watch the magazines. Watch the software companies come and go.
Better yet, if you are one of the people who thinks this industry is so easy to make
money in, you should take the Great American Alternative and start your own sof tware
company, or try to make a living as a independent software author. The odds are very
much against success, but some will succeed and become financially strong. These are
the ones with FIRM, FAIR and PROFITABLE policies regarding their goods and services.

Take FED and FED-II as examples. FED is one of LSI's most popular utilities. The
original FED sold hundreds of copies but has not yet even paid for its development.
FED-II cost over twice as much to develop. We priced the original FED at $40, when we
introduced FED-II we dropped the price of FED to $19 and offered the new version
FED-II, at the $40 price. Yes, a better product for the same money! Now we have
included the original FED on LDOS 5.1.4 for (almost) FREE. Well and good, but all this
does not change the fact that FED and many of our other products are efforts to support
our operating systems and are not Tikely to become profitable products to LSI. Saome
day, with our ongoing enhancements to FED and rewriting it in "C", for use on other
machines, LSI may break even on the product, or possibly even make some profit on it,

but I doubt it.
Page 5

LSI has in the past and will in the future, invest tens
; oduct lines. Some of these will
f thousands of dollars on support items for our pr : . b
gecover their costs, some will make a profit, but alas, most will be “losers" as stand
alone products. Many LSI products are slated as non-profit products when they are
started. They are created to support our products and our most valued asset, our

The FED example is not unique.

customers.

Software economics and the profitability of a software company is hard to understand
and/or control. Most software companies and customers have very close personal ties to
the computer industry in one fashion or another. Most are programmers and computer
enthusiasts first and business people second. Not a good ordering of things if the

company is going to be here some years from now.

LSI intends to be in this industry for a long time to come. We will be fgir with our
policies, but not to the overall detriment of LSI. That would be a detriment 'o our
customers as well. The ULTIMATE in bad support is having the company you buy a product

from go out of business. We doubt that this will happen at LSI, because w) not
intend to give away our products. Many software companies have failed for this reason,
and this reason alone.

I should make one thing very clear-- I do not believe that a defective product i< the
responsibility of the customer. The software provider has a responsibility to provide
updates, at a modest handling cost, to repair defects found in any version of a
product. The customer has the right to expect that. But if the product is purchaced by
the customer and it functions as advertised and documented at the time of purchase,
then the customer has gotten what he agreed to pay for at the time of purchs = and
should not expect more.

I have had many questions about our software protection plans for the LSI 6.x products.
First of all, I must say that we have no intention of changing our stated RIGHT TO
PROTECT OUR PROPERTY. Those who disagree and feel that by purchasing an LSI product
ghey should have complete ownership rights to that product, with the right to duplicate
it whenever and for whomever they like, are morally, legally, and ethically incorrect.
Secondly, we do NOT have the intention at this time of protecting more than a s ted
few of our products. We will be protecting products that we have found to be the most
likely to be pirated. We do get calls daily from thieves, some of them openly adnit to

having pirated copies of our products, and Justify this, with some assinine reason wh
THEY have the right to STEAL FROM US. I for oneyan ju;t plain sick of it. Most .the‘:
companies in this industry are taking a similar stand and with good reason. VISICORP,
MICROSOFT, TANDY and many others are now protecting at least SOME of their products
from illegal duplication. So whether users like it or not, they will have to get used

to it. Even the much acclaimed and probabl ity | 1R
: : y the most owned utility in the TRS-80
industry is FULLY BACKUP PROTECTED. This is of course SUPER UTlLITYufran gouersof'.

In the last issue I spoke of our plans to

(6.x 0S) on disks that onl provide SOME of our products for the Model 4

y allow a limited number of backups. This is certainly our

Th We are under no obligation to
- The number of backups that can be made
2‘“63pit2ai2ddependl?9 on the nature of the product and
to indi : ; copy of my own software. We are not going
0 indicate when and if a product will be protected or the type of protection thatgwill

: : tect ¢ - .
without breaking the package seal) inedgcgtriondUCtS will carry a clear warning (visible

be made from the master. If this 9 the number of backups, if any, that can

1S unacceptable t c
not been opened, the product may be returned for an igm;:'i?aggsf_:?:;a and the product has

At this time, .

Future LSI produgrtlgy(f’c:gd:l]l ;yirr%g::nttss)',}‘;] ge subject to Timited backup protection.

elect i : x y be provided - ia. If we
ect to take this step, we will provide two or three H\STERmcog?E:u:ifrrmoz:c:eg;gkd'l}e-

Page 6

When you buy a computer, YOU GET ONE! At LSI we have many products which we purchase
for use on XENIX, CP/M, MS-DOS and LDOS, some of which are provided on backup-proof
rped1a. Ng have no problem with this concept or the use of these products. We feel this
is the right of the software producer. Of course, it is the right of the customer not
to buy the product. If you enter the world of the IBM-PC, you will find that programs
on protected media are very common.

One deg:ision that we are quite sure of is that LSI WILL BE SUPPORTING MS-DOS, CP/M and
XENIX with future products. This is a market of the future and LSI will be there.

We feel that many of our products and our superior after sale support make many LSI
products good bargains.

In the interest of fairness to our customers, we wish to do something that most
retailers would never do, tell them well in advance of planned price increases.
Effective with our January 1984 catalog, you will see rises in the retail price of MOST
of our products. The increases will vary from little or nothing to as much as several
times the present price. You have plenty of time to take advantage of our present
pricing and acquire the items that are of interest to you. I recommend that you do so
now, because as of the first of next year, you can expect to pay more for those items.

LSI IS NOW LICENSING THE LDOS 6.x SYSTEM TO THIRD PARTY IMPLEMENTORS

As of September 1983, LSI began making available FULL Ticenses to the LDOS 6.x system!
LSI will provide COMPLETE LDOS 6.x SOURCE CODE to outside companies so that the LDOS
6.x system may be quickly made available on many diverse machines. Our licensing terms
are much more liberal than those of other 0S licensing companies, and a lot less
expensive. There are many, many details involved in these licenses and it would not be
appropriate to go into them at this time. But, if there is a computer that you think
the LDOS system "should" be on, let the manufacturer of that machine, and LSI know.

These implementations will all be media and software compatible with other LDOS 6.x
systems within the 1imits of the hardware. For instance, almost any Radio Shack Model 4
software should run on these other machine implementations, without change!

This is, of course, due to the nature of the 6.x SVC system. Any programmer writing for
the 6.x version need only use the SVC structure in the documented manner, and the
software will run on other systems with no problems. The beauty of the 6.x architecture
is that there are NO HARD ADDRESSES, STORAGE LOCATIONS or VECTORS, at all!

There are several 0EMs and some well known OS implementors either considering this
program or already in it. In the next issue of the LSI JOURNAL, I will be announcing
some of the machines being supported and the companies who are doing the
implementations. Many of our customers will be very pleasantly surprised.

A M W T nd I

By the time that you read this, you should be able to run down to your nearest Radio
Shack store and pick up a copy of the MODEL 4 TECHNICAL MANUAL, Catalog Number
26-2110. This is without a doubt one of the best manuals ever published by Radio Shack.
We have heard many negative comments about the superficial nature of the Model 4 user's
manual. The "USER'S" manual was intended as just that. No programming or system
interface information was provided (or intended). The release of this technical manual
should clear up all questions regarding the 6.x system and its functions. This document
is the ONLY TRSDOS 6.x (LDOS 6.x) official specification.

Every effort will be made to maintain full upward compatibility to this spec as the 6.x

system is expanded. Any use of the system in ANY WAY that is not stated in this spec
will cause program compatibility problems. There will be other publications that may

Page 7

i i i i i i have every intention of
rovide incorrect information regarding things that we
ghanging. So, beware! DO NOT USE ANY FUNCTION or SVC THAT IS NOT DOCUMENTED DIR&;_ILV
BY LSI or RADIO SHACK. There are many chang.esf planr_ted f%'l;:? éu:ure of our 6.x
duct. Don't become the victim of unofficial information. THINK:® Gel a copy of the
gpf)igial Model 4 Tech Spec from Radio Shack and treat it as the “BIBLE TO 6.x". You'll

be happier in the long run.

Now how about a year end special just for Model 4 owners? We have LS-FEQII at $49,
LS-FM at $49, and LS-QFB/COMP at $39, for a total of $137. But from now until December
31, 1983, you can get all three for just $98. That's right, for the price of LS-FM and
LS-FEDII alone, you get the LS-QFB/COMP package thrown in. Don't pass this one up. Beat
the price increases. The savings amount to OVER 28X OFF the combined retail prices,
When ordering this special offer specify the “LSI MODEL 4, TOOLKIT SPECIAL"™ and you
will get all three products for just $98 plus $5 shipping and handling.

CP/M for your Model 4 is now available. CP/M 2.2 has been adapted to your Model 4 by a
company called MONTEZUMA MICRO. We have a copy here for review and it seems to br fully
functional. For complete information or ordering this product, contact MONTL 7UMA
MICRO, CP/M group, P.0. Box 32027, Dallas, TX 75232 or call (214) 339-5104 and ask for

John, John or John (I think you must be named JOHN to work for these people). Wit! is
package your Model 4 will be able to function as a true CP/M machine. Why wait, and
wait, and wait, and wait... You can have CP/M now (if you need it).

The number one TRS-8J author, BILL BARDEN has outdone himself once again and produced a
book entitled, "HOW TO DO IT ON THE TRS-8J". This is the ultimate in TRS-80 refercnce
material and covers the MODs 1,2,3,CoCo,etc. No TRS-8J owner, whether user, programmer,
or novice should be without this fantastic book. To this end, LSI has purchased a fair
quantity of these "fellers" and is making a special offer to our LDOS users. The ok
normally sells for $29.95, but while supplies last (and we gots, lots) you can get this
great and USEFUL book for just $25 plus $4 shipping and handling if ordered alone, or

$20 plus §$2 if ordered with more than fifty dollars worth of other LSI products. | am
so confident that you will agree that this book is the most valuable reference guide in

your library, that if you don't agree, SEND IT BACK and we will cheerfully refund your
money.

5y the :nd of 1233 LS]I hopes to have released several of our products on PC/MS-D0S. We
ave made a rather large commitment to enter and support the IBM-PC and MS5-DOS
environment. We will bring to those products the quality and support that you have come
to expect from LSI products. We want to stress however, that we intend to continue our

support of the Z-8J market as we move into the 8088 63000 Joir
to try very hard to continue in both the 8 and lﬁa'git/g:c:?ges. . R |

A F - T
by Bill Schroeder

gﬁtg;gga:i:”eso:tto ; qiSkEtte is not a simple process. Let's take a closer look. When
g system is asked to create a file, it must first g0 to the directory and

establish a “"directory entry". This i i i
information into the directorz. " e Placing the filaspec sad ‘other dasorted

Now that i i § ;

To write tgh: nf;:,}e g’;;s::dlr;.the directory, data will probably be written to the file.
area on the disky(a ;ranu}:ge)’ :zew"ﬁierzt""g system must now find a piece of storage
far... well, maybe not. Ch to start writing the data. Sounds simple SO

: . ich an o -
file. I will describe and discuss apigt“)'f’gt:y“eﬂ can select just where to start this

5.1.3 and before. ém, starting with the method used in LDOS

Page 8

This'method is to randomly select a cylinder on the disk in a fairly balanced pattern
ranging from the first cylinder on the disk (#@) through the highest numbered cylinder
on the disk. The first granule on the selected cylinder is examined. If the granule is
found to be in use or flawed, the system will begin to move upward through the
cylinders and through each cylinder's set of granules (e.g. toward the inner tracks).
The system will check each granule on the way, looking for a vacant usable one. As soon
as an acceptable granule is found, it will be assigned in the GAT and in the file's
directory entry as the first granule of that file.

Other variations on the above theme usually involve some type of weighted selection of
where to start looking for space on the disk. I will now refer to the random allocation
methods as the "RANDOM" method. The algorithm used to select this random location can
be written to force the selection to be a number, below the directory, above the
directory, on the Tower 1/3 or 1/4 of the disk, and on and on. In the case of LDOS
5.1.3, the algorithm attempts to select a cylinder randomly from the entire disk.

Another method of selecting file space is very simple. I will call this method the
"CONTROLLED" allocation method. This method simply starts to search at a given spot on
the disk and progresses upward through the cylinder numbers until an acceptable space
is found. Usually the search will start at cylinder #@ or #1. Space will then be
allocated solidly from the low numbered cylinders (e.g. the outer tracks) to the high
numbered cylinders.

Now, some "systems analysts" have taken sides on exactly which method of space
allocation is most efficient and reliable for micro floppy disk usage. I must first
state that when I started to check out the "real world" implications to the user, I did
not think that it could make much of a difference one way or another. But after some
experimentation, significant results were obtained. Programs were written, and the
results were obtained from actual testing. It became quite apparent that one side of
this argument is totally wrong! One method is far superior to the other in all tested

cases.

Listed below are the main points that were posed to LSI in a letter from a prominent
systems programmer. He is very much in favor of RANDOM allocation techniques. His
opinions have been very highly regarded by the TRS-8J user's community. These points
were brought to LSI's attention as a result of our decision to alter the methods of
allocation used in current and future LSI operating system products. No supportive
facts, mathematical analysis, or test results were provided to support this

individual's position.

1) Random allocation provides more uniform wear of the media surface.

2) Random allocation minimizes the average access time across the media.

3) Random allocation minimizes the number of extents more so than most other methods

4) Random allocation will cause the use of less directory records. Since the number of
extents that can be retained in each directory record is finite (four), a new
directory record (extended directory entry) must be used when the primary directory
entry is filled. In LDOS this happens when a file contains five or more extents.

The letter went on to strongly protest even the consideration of such a radical idea as
no longer having RANDOM allocation in LDOS 0S products. It even stated this RANDOM
technique to be the HEART of the LDOS file handling system. After testing, analysis,
and careful consideration of these claims and assumptions, I now believe them to be

totally inaccurate.

Now let us review each of these claims for the RANDOM methods:

POINT #1, makes no sense at all. The reason is very simple. A1l operating systems that
do not retain the entire disk directory in memory MUST make frequent directory accesses
to locate, OPEN, CLOSE and access records in files. Also, with an overlay based system

Page 9

like LDOS, the operating system itself must go to the d\reﬁt(t)ry]fvia{ time :t is
necessary to change the overlay which is currently in memory. What a & 3 ?an \ to
is simple. The directory cylinder will fail from wear long before :ny other cy \nd,»,’ on
the disk wears out. To validate this statement, tests were performed to make ar“Aga]
counts of the accesses of each cylinder on a disk ur)der varying c1rc'umstances.v‘uwse
tests proved that under all uses of the LDOS operating system the directory cylinder
was accessed five to fifty times more often than any other cylinder.

It is also known that the use of higher cylinder numbers (inner tracks) is much more
likely to cause disk faults such as parity or CRC errors. This is because the bits of
data are packed much closer together on the inner cylinders. The data density the

inner tracks approaches the maximum reliable resolution that current floppy systems
can attain.

POINT #2. The concept of RANDOM placement has little bearing on file access timing. If
the file starts at a RANDOM cylinder on the disk it has the same probabilitly of
starting at cylinder @, as say, cylinder 39. It does not sound like faster access ~ould
be attained on these files.

That's just the beginning of the problem. If a file should start on one of ths per
cylinder numbers (say above 35 on a 4J track disk), it will have a very good chance of
wrapping around to a low numbered cylinder. This results in the file being broken and
another extent created. A similar action will occur every time a file needs to acquire
another gran and the next physical gran on the disk is unavailable. If FANDOM
allocation is beginning to sound a little silly, well hang on, IT GETS WORSE.

Because most user's diskettes are between 60 and 80 percent filled with files, st
assume that any allocation technique other than full RANDOM is better for rapid Se
A pure RANDOM technique has the possibility of using both extremes on a d nd
nothing near the directory. CONTROLLED allocation will progress toward the directory

until the disk is half full, then it will continue on the other side of the dir:

Y.
;p]e] gwo extremes (cylinders @ and 39 used) cannot occur until the disk is almost [@0%
illed.

It i§ very important that an operating system tries to keep a file as contiguous as
possible. Based on our actual testing, I have found that this could be a valid reason

to have RANDOM allocation... if there is only one file on a disk, and the file is not
very large, and the RANDOM starting granule is near the directory. § :

Just to verify these statements, I created files usin

th th
RANDOM and CONTROLLED methods. Then I OPENed. READ and Gty ool oy, 5!0g both the

| net and CLOSEd the files in a manner
which assured that a sm!ﬂar number of files were accessed and the same number of
records were read. Surprise! Here too, CONTROLLED access l

. - . ,"' - ‘n
general, the disk access time was about 15-20 percent faster PRV SELERELY Tt

POINT #3, a real bummer here. My actual t ' i ']
average number of file extents ests were quite conclusive in this regard. The

: generated by the RANDOM method tc DOr
file. The average f 0d was about 2.§ extents pe
file. ge Trom the controlled method was much better at about 1.3 extents per

a finite number of extents. In the cace s o Cir!1€r, a directory entry can only hold

! 0 In the case of |
a fifth extent it must use an FXDE (extendedmfji?-éi

an additional directory slot, and extend i

s ed di
the sys.tem,_ under all conditions. Therefor;ec§og
stored with five or more extents during the test’ting :

» this is four. If the system needs
tory entry). This entry will use up
entries are very time consuming to
nted the number of files that were

Again

mﬁthoa.tﬂﬁeﬁeiisﬁgesaﬂéosn A locat) Contention that RANDOM allocation is not the best
ocation, nineteen files (or more than 15%) required five

On method, on the other hand, produced only one

or more extents. The CONTROLLED allocaiim

file with five extents.

In the spir_it of fairness, I would like to point out one condition under which the
RANDOM tephmque may be a better method. This is during a period of alternate extension
of two files that are open at the same time (or opened alternately). If this case
should arise with CONTROLLED allocation, the two files will occupy alternate granules
as they expand. This would be a very inefficient file layout. If a program does extend
files alternately, the RANDOM technique would serve this type of program better than
the CONTROLLED method. However, most programs that use multiple large files tend to
capture large blocks of space at a time. "Space capture" techniques that are used by
well written applications tend to eliminate this problem. This concept is generally
referred to as file pre-allocation. LDOS does make provision for pre-allocating files
(see the "CREATE" Tibrary command in your LDOS manual).

I do not find this point to be serious for three reasons. First, there are very few
programs that use a file creation procedure that would induce this problem. Second, if
this situation does occur, it is very easy to correct the space usage under CONTROLLED
allocation by a simple BACKUP $:S :D. This will cause any fragmented files to become
contiguous, providing the backup is to an empty disk. Last is the reliability factor. I
strongly believe that not utilizing the inner tracks on a floppy disk for as long as
possible is far more important than this benefit of RANDOM allocation.

If a disk full of files has become badly fragmented, it can easily be put "back in
order" under CONTROLLED allocation. With a RANDOM system, good luck. Every time files
are written (backup by class and copy are no exceptions) the RANDOM technique is used.
Therefore, the disk will almost always have fragmented files no matter what is done.
With the CONTROLLED type of system, a simple backup by class will place all the files
on the disk into a minimum fragmentation state (the most efficient).

How many times does a PARITY ERROR or DATA RECORD NOT FOUND ERROR occur? In most cases,
this is the fault of the hardware, and is most likely to occur on the inner disk
cylinders. While is the fault of the hardware or media, the operating system could
help! If the 0S uses CONTROLLED allocation starting at the low numbered cylinders and
proceeds inward, the use of the most error prone areas of a floppy disk is avoided. The
inner cylinders will be used only as the disk is almost full. If you have a drive that
is slightly out of alignment or a head with Tow output, it is possible not to fill the
disks over 3/4. This would keep all the files below track 3@¢. This type of control is
not available in a RANDOM system. Since we have begun using CONTROLLED allocation
(starting at track #1), we have had a marked decrease in the occurrence of disk faults!
This in itself is a perfectly valid reason for the change.

I have included my test results in chart format. For those of you who are ambitious, I
am making the test program itself available. If you are a die-hard believer in RANDOM,
don't take my word for it. Examine the test program and run it yourself. I have the
results and will never again allow the use a RANDOM allocation scheme in any LSI

operating system.

At LSI we try to do things correctly and pride ourselves in the technical accuracy of
our products. If we make a mistake, we will admit it and we will fix it. On the very
important concept of allocation, however, it seems that we did not take as much care in
deciding on a method as we should have. We fell for the hype that the RANDOM concept
was the greatest thing since the Z-8J. For this oversight, I sincerely apologize. I
will make every effort to see to it that any future design decisions are made purely on
facts, and not on heresay or personal opinions or "guesses".

A11 5.1.x MASTER duplication disks at LSI will be altered to incorporate the CONTROLLED
allocation method as of disks with FILE DATES of September 1, 1983. NOTE: See VIEW FROM
THE BOTTOM FLOOR for complete UPDATE details.

In TRSDOS 6.1 and any future LDOS 6.x or LDOS 5.x operating system, all allocation
searching will begin at track number 1. The patch to allocate from track number 1, on

all LDOS 5.1 products, is as follows:

.PATCH TO ALLOCATE STARTING AT CYLINDER #1
. apply to SYS8/SYS.SYSTEM on LDOS 5.1.x

Page 11

DPg,FE=2E @1 90 09 90 00

. EOP
This can be applied as a command line patch by entering the following at LDOS Ready:

PATCH SYS8/SYS.SYSTEM:@ (D@J,FE=2E @1 &J & B0 D) <ENTER>

The '@1' in the above patches is the track number at which all allocation searches will
begin.

If you have any intention of changing back and forth between allocqtion schemes (1
can't see any reason for RANDOM, however) or might want to be changing the st ng
track number that your system will use, then JCL is what you need. JCL will t you
create custom commands for your system. This one is fairly simple but shows the bLasic
ability of JCL. This JCL file will create a command that has the following synt ‘D0
TK (RND)' or 'DO TK (TK=nn)' or just 'DO TK'. The 'nn' is of course, a user selectable

track (TK) number.

. ALLOCATION SETTING JCL - FOR USE WITH LDOS 5.1 - @6/01/83
. Set SYS8/SYS to Allocate from track TK.
. If TK is not specified it will be set to @1

JIIF =T
//ASSIGN TK=p1
//END IF

. If RANDOM (RND) not requested then patch in CONTROLLED

//IF -RND

PATCH SYS8/SYS.SYSTEM:@ (D@J,FE=2E #TK# 0J 90 o0 &0)
//EXIT

//END IF

. If RND is specified, Allocation will be set to RANDOM.

F.’ATCH SYS8/SYS.SYSTEM:@ (D@J,FE=D5 CD 4E 44
//EXIT L

A test program was created to
create files as a user might and
though, as long as the same pro
program's creation, deletion and
wide variance of actual system
stick by which the two allocatio
program accurately represents ANY par

perform.the test. The function of the program was to
then kill them. The program is not really important
gram is used to test each mode of allocation. The
access activities are not intended to duplicate the
usage. Instead, they are intended to provide a yard
n methods can be compared. | DO NOT claim that this
ticular type of actual disk usage.

; - ¢ € operating system set for RANDOM and then
CSmputar a5 s Seock Radie. Snoek ‘piaty” 150V TAGUED (STSE properly aitered); T
g e . h i LDOS 5.1.3

é¢6/10/83). Scotch diskettes were used. The step rate §f°252°§'"? ;y;tem was ‘?)',“6;5
or speed I SYSRESed overlays 2,3,8,10. est drive was sel atl .

gg:?;i:gaksssasuo;etht:%g SY?? is patched to the desired test method before SYSRESing it!
It is also NOT advisable to svenes LiceM that is already resident in high memory.
because this will a]terer:(;uslyszsinsyie If the ACCESS SPEED test is to be performed
extents and, therefore, additional sser o he RANDOM mode. This is because more

RANDOM mode. accesses to SYS8 are likely to be required by the

Speaking of using the SYSRE i ;
=iy S command, here is g simple /JCL to handle myltiple SYSRESes

Page 12

' . RES/JCL - P6/01/83 - Simple MULTI-SYSRES command
. To USE ENTER "DO RES (1,2,3...)<ENTER>"
. 1,2,3...etc. are the SYS modules to be "RESed"
//if 1
system (sysres=1)
//end if
J/if 2
system (sysres=2)
//end if
//if 3
system (sysres=3)
//end if
//if 4
system (sysres=4)
//end if
J/if 5
system (sysres=5)
//end if
//if 8
system (sysres=8)
//end if
//if 9
system (sysres=9)
//end if
//if 10
system (sysres=1(0)
//end if
//if 11

‘ system (sysres=11)
//end if
//if 12

system (sysres=12)
//end if

Now back to the subject at hand. The maximum file size was set to 600 records for all
runs. Each run was done THREE times. The runs with the Towest and highest average
ratios were discarded. This, in effect, tends to remove the extremes. The remaining

"median" runs are tabulated below.

I A T R T
TEST AVERAGE NUMBER OF EXTENTS PER FILE AT COMPLETION
RUN# RANDOM ALC. CONTROLLED ALC.
1 1.818 1.397
2 1.945 1.367
3 1.794 1.342
4 2.145 1.275
5 1.950 1.315
6 1.867 1.262
7 2.975 1.288
8 2.347 1.386
9 1.895 1.365
10 2.212 1.325
Q Overall Average 2.905 1.333

Due to space constraints, the program listings are not included in this issue. Copies
of the listings may be obtained for no charge by sending a LARGE self-addressed
stamped envelope (6 by 9, with postage for two ounces).

Page 13

Many people have requested a high level HOST/TERMINAL environment to use with the 6.x
system. We have created such an program, called FourTALK, which will be available

shortly. This package includes a complete HOST system that works in conjunction with
the TERMINAL portion of the package. The TERMINAL portion 1s set up look like a Radio
Shack DT-1, emulating an ADDS-25 terminal. Full cursor positioning, reverse video, etc,
are supported. Another feature of this program is the availability of qll the features
of "COMM", to make the emulation of the ADDS much more powerful than just a terminal,
Full upload and download are available for file transfer as well as spooled pr er
support and all the other high level functions of COMM while maintaining an A -25
protocol for the handling of the video and keyboard.

The HOST will allow you to remotely operate your Model 4, with full cursor posit ng
in the ADDS-25 mode. With this package you can use a DT-1 as a remote work station to
your Model 4 or another Model 4 as an ADDS-25 terminal, for use with the Mode! 16

under XENIX, or as a terminal to a Model 4 running the HOST portion of the packags

The ever popular WordStar word processing system is now available for use on LD l.
It is supplied on smal-LDOS, and is available for the Models 1 and 3 (or 4, i y 3

mode). The special introductory price of just $249 plus $5 shipping and hand)ir |
be in effect until December 31, 1983. The regular price will be $395. If you s
wanted the power of WordStar on your TRS-8J, then NOW IS THE TIME. Order W-37-¢.0 for
Model 1, and W-37-p20 for Model 3 and MAX-8J. We are working on the popular Ma je

option, and it should be available shortly.

The LDOS QUARTERLY ANTHOLOGY, LSI Catalog Number L-49-11¢, which contains all of me

#1 of the LDOS QUARTERLY is now available for just $19 plus $3 for shippi and
hat]dl.mg. This is a complete reprint of all the issues in volume #1, just as they were
originally sent to our LDOS users. The anthology is provided “"three hole dr 1",

ready for placement in any standard three ring binder.

LS-TBA, LS-FEDII, LS-FM and LS-HELP for the Model 4 running under TRSDOS 6.x (
are now being shipped.

LIX . X)

01§kDISl§ is a brand-new package that we should be be shipping by the time you read
this. With thjs pacl_cage, you can create a file on a disk that appears to the system to
be an?‘thgrddﬁk drive! That's right, if you have a double-sided 40 or 80 track drive,
or a har rive, you can create "logical drive partitions® fi he physical
dm_ve. ALL system functions are available as thou:: this me":ereliz :2155 gr-.',~_-;al
drive. Now you can have a disk within a disk., These DiskDISKs can be used as though
they are just another disk drive. Even mirror-image backups function in a norma”)- :

This concept is much more vers§tile and powerful than the use of "partitioned data set"
:i‘/pe files. There are no restrictions on reading and writing to these DiskDISK files as
f]§re azsimth %E_her concepts. You can now partition your hard drive as "logical®
naintenance s breeze, DISKDISK 16, Just 399 ghun by st oenne”3,ond Mkes backup and flle
. is jus Enat : . ,
Catalog Number L-35-211 js fo;‘] % g.Dlus $3 shipping and handling. DiskDISK, LSI

1 > "
LDOS/TRSDOS 6.x. For hard drive users this is :yELE’;?'HKCg"L?EZ:\SkDISK L Rl R

Specn nQuice FAGE for the Mode] 4 6.x system is LS-GFB/CONP 6.x. This s the new high
ackup Ut1]lty and our popular disk and file compare utility

Eﬁﬁﬁéﬂe@d J:;o Folnfﬁgac::giwfgro{%sxts”a?rdp]?Si n$d3 shipping and hand1ing. With COMP you can
between the two. Output is proyid ik abou(t)pfvi/g;:’?;tsot;gﬁrdcgfisnzgﬁ ma:i:
€ duplicates in about half the time that format and
This neat

QFB you can create byte for byt
backup would do the same Jjob.

pleasant to use. Order LSI Catalog Number L-32-package FINL Sskegpiv Motel A xev it mng
backup limited or protected disks.

P10. NOTE: QFB will NOT create copies of

P)

THE ELECTRONIC INBASKET

by Gordon B. Thonp§on, 5 Bay Hill Ridge, Stittsville, Ontario, Canada K@A 3G@
Telephones: Voice (613) 836-3554 and Electronic Inbasket (613) 836-5578

The Electronic Inbasket is a simple BASIC program that makes a Model I or IIT act as a
message collector. It sits there, on the end of a modem, and waits for any incoming
calls. Upon the detection of carrier by the modem, the program responds with a suitable
banner, and then collects the message and displays it on the screen, character by
character. When the caller disconnects and the carrier vanishes, the message is
appended to a disk file, all formatted for printing out in your favourite word
processor.

This program makes use of the REFLEX filter, which appeared in "The Communicating
Micro" in the LDOS Quarterly for October 1982. With REFLEX, the INKEY$ instruction can
capture the data coming in over the modem. For this service, input must be character by
character with a check for carrier between each character to make the program safe from
hanging due to not receiving a carriage return character or logoff from the caller.

The use of REFLEX also allows the keyboard of the TRS-8J dedicated to this service to
be used while a message is being received, should one wish to communicate with the
sender in real time. No command is necessary, just start typing, and the local machine
running this program will act just lTike a half duplex terminal. The characters typed
this way are sent to the distant party by the REFLEX filter. The Electronic Inbasket
operates in half duplex, and does not echo the incoming data stream. If it were to echo
the incoming stream, characters entered at the local keyboard would get sent twice,
once by REFLEX and once by the echo routine. The disk routine can be activated from the
local keyboard by typing a "EOM" or CONTROL D, <SHIFT DWN ARROW><D>. This will not
cause the communications link to sever, however, as no break signal is sent to the
caller's modem.

DQutput to the communication line makes use of the device independent features of LDOS.
An OPEN statement is used to open the file "*SI", and all outgoing data is sent via the
PRINT # command to that "file". These two tricks, the use of REFLEX for incoming data,
and the OPEN"0",Q,"*SI" statement, greatly simplify the handling of the communications
line in this particular case.

Because of differing screen formats, and other vagaries, the program is designed to put
its major output onto a disk along with the requisite print control statements so the
output can be formatted by a word processing package. My favourite word processor is
NEWSCRIPT, so the ELECTRONIC INBASKET contains NEWSCRIPT's control words. Other word
processors, like SCRIPSIT, would require other control sequences.

For stability purposes, the program only opens the disk file at the end of a message,
and then immediately closes it again, clears all variables, and returns to its waiting
state with a clean slate. Not all messages are short, or simple.

In normal use, a second telephone line is needed to run this service. A Model I, a
single disk drive and an auto-answer modem complete the hardware requirements. The
communication specification will be 300 baud, even parity and half duplex if the RS232

driver is set as indicated.

The new Model 1@@ is simply great at sending messages to the older Models I or III
running this ELECTRONIC INBASKET program, and the 10@'s TELECOM specification should be
set to M7E1D for this purpose. However, not until we learn how to make the Model 10¢
detect the presence of carrier, as opposed to mere incoming data, and how to receive
that data character by character with an interleaving carrier detect routine, can the
100 replace its older brothers in this Electronic Inbasket service.

19¢ * * * * Electronic Inbasket * * *

119 ' Note: . ' _
120 * Requires LDOS with the following configuration:

Page 15

SET *KI KI(TYPE)
%zg SET *SI RS232R(DTR=Y,RTS=Y) for Model I, or
150 SET *SI RS232T(DTR=Y,RTS=Y) for Model II.

)
1
160 ' FILTER *KI REFLEX/FQT. : "
17¢ ' * * * Communications Specification: **

]

1

1

180 390 Baud, Even Parity, Half Duplex.

190 ' ‘ :
200 REFLEX/FLT uses different locations for storing its
210 flag in Models I and III. This routine determines

220 ' which model, and then sets the REFLEX flag to on.
230 M=PEEK(&H125):' See if it is a Model I or III.

240 1FM=73 POKE&H4413,1:60T027@:' It's a three.

250 POKE&H4Q1A,1:' It's a one.

260 ' Setup routine.

27@ CLS:CLEAR 50@@:DIM C$(100):PRINT"Started at “+TIMES
280 PRINT"Waiting...":0PEN"0",1,"*SI":"' Reentry point.
29¢ ! Main or Waiting Routine.

300 POKE&H3FFF,32:FORN=1TO5@: NEXT:GOSUB46(: IFB=pGOTO330
310 POKE &H3FFF,&H2A:FORN=1TO5@:NEXT:GOTO300

320 ! Opening Banner Routine. v :
330 FORN=1TOS@:NEXTN:PRINT#1,CHRS(13)+CHRS(1@)+"* * THE ELECTRONIC INBASH *
*"+CHR$(10)

340 PRINT#1,"Date and time are: "+TIME$S+CHRS(1Q):PRINT#1,"Please leave your message and
then disconnect."+CHR$(10)

350 PRINTTIMES$:' Screen print of message arrival time.
360 PRINT#1,CHRS(13)+CHRS(10)+">";:PRINT">";

379 ! Get Character Routine.

380 ' With REFLEX on, it can come from either *KI or *SI.
390 A$=INKEY$:G0SUB46@: IFBXOPTHENGOTO4BPEL SEIFAS=""G0T0390
400 PRINTAS;:B$=BS+AS:L=LEN(BS):IFA$=CHRS(8)BS=LEFTS(BS,L-2)
410 IFA$=CHR$(P4)GOTO48PELSEIFAS<>CHRS(13)G0T039¢

429 ' Line End Routine.

430 C$(K)=B$+CHRS(13) :K=K+1

440 A$="":B$="":60T0360:' Go back for next message line.
450 ! Modem Carrier Detect Subroutine.

460 A=INP (&HE8) :B=AAND(&H20) :RETURN

479 ' End of Message and Disk Routine.

480 OPEN"E",2,"MESSAGE /TXT":PRINT#2,TIMES

490 Word Processor commands are for

500 ' Prosoft's NEWSCRIPT. Change them to suit.

510 PRINT#2,".br":' NEWSCRIPT control word.

520 FORL=@TOK:PRINT#2,C$(L);:NEXTL

530 PRINT#2,".sk 2":' NEWSCRIPT Control Word.

540 PRINT:' Insert a blank line on screen display.

550 CLOSE :CLEARSQ(QQ:DIMCS(100) :60T028¢

EAST GRAPHICS FOR 'Le

by Scott A. Loomer, 315 Palomino Lane Madison, WI 53795
(608)-233-7739 or MNet [70075.10333 i

One of the fine features of the 'L(C*
to the set, reset and test functions
box and circle drawing.
Karl is to be commended

is its library of graphics routines. In addition
5 s familiar in BASIC, there are routines for line,
ese routines are primarily the work of Karl Hessinger and

for a fine job. The line drawi
i i : : awing (and cons tly the box
routine) is very fast, but the circle routine is slouedgby its useeg:ezal{s to the

floating point routines in ROM. This article introduces a circle routine which replaced

the LC Tibrary circle routine in i i i i i
times faster than the current on;?r51m11.1. P atiee s et

A Note that there are no floatin int math or
EEZ?C?Zdﬁﬁﬁi}nﬁé‘ﬂi?'°Es used. Also presented is a routine that will $i11 in an area
y Dounded. The FILL routine is non-recursive which means that it

Page 16

does not use calls to itself. It is very regular in the manner in which it fills an
area and is, therefore, more pleasing than the typical recursive approach.

These routines were adapted from algorithms presented in the book "Fundamentals of
Interactive Computer Graphics" by Foley and Van Dam (published by Addison Wesley,
1982). This book is a must for anyone interested in computer graphics. Most algorithms
in the book are demonstrated in Pascal which is easy to convert to 'C'.

The new graphics functions that are listed here may be added to a user library by
following the instructions in the LC manual.

Circle Routine

/* CIRCLE - fast circle plotting by Scott A. Loomer
Adapted from Fundamentals of Interactive Computer Graphics by Foley and Van Dam
This routine will plot circles using a fast, non-floating point algorithm. Syntax
and return codes are identical to the circle function in the LC IN/LIB.

*/

#option INLIB

circle(funcod,xl,yl,rl)
int funcod,xl,yl,rl;
{ int d,dx,dy;
if (funcod > 1 || funcod < @) return(-3);
dx=0;
dy=rl;
d=3-2*dy;
while (dx<dy)
{ circlepoints(funcod,xl,yl,dx,dy);
if (d<@) d=d+4*dx+6;

else
{ d=d+4*(dx-dy)+10;
dy--;

)

dx++;
}
if (dx==dy) circlepoints(funcod,xl,yl,dx,dy);
d=rl/2;

if (((x1+r1)>127) || ((x1-r1)<@) || ((yl+d)>47)]|| ((yl-d)<@))
return(-1);
else return(funcod);
}

circlepoints(funcod,x,y,dx,dy)

int funcod,x,y,dx,dy;

{ int tdy,ty;
tdy=dy/2;
pixel (funcod, x+dx, y+tdy) ;
pixel (funcod, x+dx,y-tdy) ;
pixel (funcod, x-dx,y-tdy);
pixel (funcod, x-dx, y+tdy) ;
tdy=dx/2;
pixel (funcod, x+dy, y+tdy) ;
pixel (funcod, x+dy, y-tdy) ;
pixel (funcod, x-dy,y-tdy);
pixel (funcod, x-dy,y+tdy);
return;

Non-recursive Fill Routine
/* Non-recursive Fill Algorithm - by Scott A. Loomer

Adapted from Fundamentals of Interactive Computer Graphjcs by Foley and Van Dam
When given an x,y coordinate in an area bounded by contiguous border or the screen

Page 17

change all internal pixels to the border value.

edge, this algorithm will
calling syntax: fill(funcod,x,y) where: _
funcod - is the value of the fill character, which must
also be the value of the border character, # = reset,
1 = set I
X,y - is a coordinate in the area (must not be equa
to border char)

x/
#option INLIB
int top,sx[1281,sy[128];

fi11(funcod,x,y)
char funcod;

int x,y;

{ int idx,max,min,x1,yl;
top=1;
while (test(funcod,++x,y))
{3}

push(--x,y);
while (pop(&x,&y))
{ max=x;
do pixel(funcod,x,y);
while (test(funcod,--x,y));
min=x++;
for (idx=1;idx>=-1;idx-=2)
{ yl=y+idx;
x1=max;
while (x1 > min)
{ if (test(funcod,xl,yl))
{ while(test(funcod,++x1,yl))
{;}
push(--x1,y1);
while(test(funcod,--x1,yl))
£33
}
--x1;
}
}
}
return;

}

test(bord_char,x,y)

char bord_char;

int x,y;

{ int ret;
return(((ret=point(x,y))!=bord_char)&&(ret!=-1));

push(x,y)

int x,y;

{ sx[topl=x;
sy[top++]=y;

pop(x,y)

int *x,*y;

{ *x=sx[--top]l;
*y=syltop];
return(top);

}

Page 18

)

Test Program

/* Test of the new CIRCLE and FILL routines

: Assumes that CIRCLE and FILL have been placed in a library called USER/LIB
#option INLIB

#option USERLIB

main()

{ int x,y;
pmode(1);
fi11(1,0,0);
Circ]e(ﬂ,ﬂ,ﬂ, 24);
fi11(9,5,5);
circle(9,96,24,24);
circle(9,9,24,12);
fi11(9,96,1
box (9, 24,24
fil11(90,0,4
fi11(1,0,4

exit(@);

9%
,36,36);
74)3

7);

ing INTERRUPT d in FORT

by J. Gary Bender, PO Box 773, Los Alamos, New Mexico 87544

“WHY?" Why would anyone want to write an interrupt routine in Fortran... after all,

interrupt level stuff is certainly the realm
my initial thoughts. On the other hand,

language is usually the more that I get done ...

of assembly language. Those were exactly
the more I can get done in a high Tevel
period. So I was motivated to try it.

By using SVC calls from Fortran, you can do many things that may surprise you. You can,

for example, avoid the FORLIB I/0 routines.

The subject of this article is how to have

the LDOS interrupt handler execute a Fortran subroutine. A few other examples of SVC

use from Fortran are included.

SVC's are not really required. A direct call to @ADTSK and @RMTSK would work just as

well . for the moment. With all the
time to make the SVC table a normal
get closer to the operating

compatible with the Model I, 111, or Max 80.

potential new LDOS machines on the horizon, it is
part of your system CONFIG. The SVC's allow you to
system than Fortran normally permits and still remain

There are occasions when you may need, or at least could use, an interrupt driven

subroutine in an application level program.

of the more useful, yet simple, capabilities.
can permit you to write programs with uncluttered logic.
program that dials and communicates with a remote host. Every time an
such as receiving a character,
the timer is included in the loop. If it counts down

message exchange
expected "event" occurs,
waiting for an event to occur,

The "dead man" timer in this example is one

Besides the timed input shown here, it
I use it in an automatic

the timer is reset. While

before something else happens, something went wrong and I can take some action to abort

the exchange. Most of the program
things that can go wrong during
loop.
deadman timer resets, stops,
technique would require the
program did not make an 8 hour
respond.

or

Page 19

does not have to be concerned with the multitude of
the exchange. Also, I am not confined to the primary
[can wander off and do anything I want and have control over whether or not the
continues to countdown. The conventional Fortran
use of do-loops -- all over the place -- to insure the
long distance phone call waiting for a crashed host to

i f an interrupt procedure
Let's look at how this works from Fortran. The three elenents.o .
are: the routine itself, a Task Control Block that points to the routine, and a
facility to install/remove the routine in the LDOS interrupt task table.

The routine that does "something" upon interrupt is a standard Fortran SUBROUTINE
ending with a RETURN statement. It can call other Fortran subprograms. It should NEVER
access any routines in the "mainline" program. (Remember, you do not know when it will
execute. If it were to change a local value in the mainline, there is no telling what
could happen.) The subroutine is included with your other subroutines, but "A is never
CALLed. It will execute independent of the mainline program, however, while it is
installed in the LDOS interrupt task table.

Since it is not directly called by the Fortran program, arguments cannot be used. That
means it must communicate with the rest of the program through COMMON. As long as the
routine is included with one of your Fortran source files, LINK-80 will load it, even
if it is not referenced. Actually, it is referenced as an EXTERNAL.

The TCB is easier to handle than may be apparent at first. All the TCB is is an

INTEGER*2 Fortran variable that contains the address of the interrupt subroutine. The
only problem is that you have no way of knowing where the subroutine will ultimately
reside in memory. Fear not, it is quite easy to determine the address of a subroutine
at runtime. Due to the calling conventions used by Microsoft FORTRAN-8J, a SUBRUUTINE

LOC (ARG) that does nothing but RETURN will return the address of the ARG argument
(regardless of ARG's type) if it is accessed as an INTEGER*2 FUNCTION.

Shall I try that one again? This is what happens: a function reference such as [ADDR =
LOC(DEADMN) puts the address of DEADMN in the HL register ... the first argument's
ADDRESS is always passed in the HL register by convention. LOC itself does nothing at

all, it just returns. Also by convention, INTEGER*2 functions return their VALLUE in the
HL register. Since the calling Fortran program thinks LOC is an integer function, it
uses the value in HL as the function value. The value in HL is the address the caller
just put there as the argument. It is a little roundabout, but it works.

To install and remove the interrupt subroutine, you need access to the BADTSK and
@RMTSK SVCs. The interlude routine must be written in assembler, since Fortran cannot

directly call the routines with the proper register settings.

The following program demonstrates two other SVC calls. @KBD, similar to the INKEYS
function rl'n Eas1fc, and h@DSP, twhict;_ displays one character on the screen. The example
program checks for a character from the keyboard, If i in about 16
seconds, it times out. The deadman counts down i“rv\ incren;ntzo;'f‘ 2gsxgzgzsb;2a::$ both
the Model I and Model III interrupts are very close to "even" if you count interrupts
for 4 seconds. The Model I has 20 “ticks" and the Model II1 has about 15. For most
qeadman type requirements you do not need exact timing, but if you tell the user there
is a 60 second timeout, don't zap him in 45 seconds just because he is on a Model 1.

A precaution must be observed when using interrupts: £
i pts: YOU MUST REMOVE THE TASK BEFORE
E:(‘iTég(:‘tT:ignFopR:’glg\r:a;Rgﬁ?]\M!ﬂY'ou_wll1 almost certainly have a system crash if you leave
: while the interrupt task is still running. If the Fortran program
bombs out without first removing the task, you should rg-boot tge (s)ys::m.pifgthe

program is susceptible to abnormal, uncont inati |
remove the interrupt task as needed. ToliGl eradnatiohy 00w Saels IegEall ¥

Let me briefly discuss the individual routi i
utin ‘ '
assembly language SVC interlude routines. You s SmEle Jott stact i t0. 08

routines in order to have a LINK-8J formatted relocYaot:lee’S;n:tsﬁemmo-w] ko el

gags }c;ag?sg]:;graoc::rdf‘rm il S variable into the C register and calls the @OSP
the Careor GVer onk tc air:g:ter at a time at the current cursor position and advances
returns more informagics)n]a;.oﬁqzztgor INKEYS) does a little more work since LDOS
information easy to use (or ignore) gt th1ve when writing KBDS was to make all the

; : . e Fortran level. Besi 1f,
which is normally all that is needed, the first 4 bits of tg:SIP:?S :?;;:‘g::‘rt;ﬁewu

Page 20

)

everything you are apt to want to know about the input character. KDB$ does not wait
fOr a key. If there was no key depressed, INFO and ICHAR will both be zero. The routine
is set up so you can call it as a subroutine, an INTEGER*1 function, or an INTEGER*2
function. Either of the function calls will return the character (or zero).

ADTSK$S and RMTSK$ are the routines that install or remove the interrupt driven
subroutine in LDOS' interrupt table. ADTSK$ needs the address of the subroutine to be
executed by the interrupt handler and the slot number to assign it to. See the LDOS
manual for slot assignments. The example uses slot @, a low priority slot that executes
5 times per second on the Model I. RMTSK$ only needs the slot number.

[he Fortran subroutines include a couple additional goodies. CLS clears the screen
using DSP$ and control characters. DISPL is a great time saver for me. It will display
2 string enclosed in any pair of delimiters. An array can be used for the string, but
it must still include the delimiters. When using a string constant to call DISPL, as in
the example, remember to enclose everything, including the string delimiters, between
single quote marks. The single quotes tell the compiler it is a string, they are not
part of the string itself.

TINPSR is the Timed INPut subroutine. The version I normally use returns a Ratfor
string, which is where the "$R" comes from. For this example there is no need to get
into an alternate string convention. TINP$R has six arguments which are documented
before the CALL in the Main program. The routine displays a non-blinking cursor and
loops calling KBD$. When KBD$ indicates that a character was depressed, TINP$R first
checks that it was not an ENTER or BREAK key, puts the character into the INBUF array,
echos the character to the screen, and moves the underscore cursor over.

In a non-timed routine, this would go on until the maximum characters were typed, or an
ENTER or BREAK. The timed routine adds the deadman counter. When TINP$R is called, it
starts the DEADMN interrupt routine by calling SETDM (.TRUE.,MAXSEC), i.e. turn the
deadman on and set it for MAXSEC. Each time through the loop it checks for a timeout.
Fach time a character is typed, the deadman counter is reset to MAXSEC. When the input
loop is exited for any reason, the deadman is shut off. This also removes the task,
which is safer than waiting until the program ends.

DEADMN is just sitting there in the middle of the program and is never called by the
mainline program. When installed as an interrupt task, however, it will execute about 5
times per second. All that it does is count down 2@ ticks (or 15) and then subtract 4
seconds from the main counter DMKONT. If everything gets counted down to zero, it stops
decrementing. It is up to the mainline program to check for a timeout by examining the

value in COMMON.

There is no reason that DEADMN cannot maintain several counters or call other
subroutines. Just avoid using any subroutines in the "other program." Think of the
DEADMN task as a separate program running concurrently with the mainline and sharing

some of its memory.

SETDM will install or remove the DEADMN task depending on the truth of the first
argument (.TRUE. == ON) and initializes/resets the counter to the number of seconds
specified. SETDM is part of the mainline program. It controls DEADMN by inserting
values into COMMON and by making the actual calls to add or remove the task. It does
not change the deadman counter when removing the task. That lets you remove the task
before you check for a timeout. Notice that all that is needed to get the address of
DEADMN are the statements EXTERNAL DEADMN and DMTCB = LOC (DEADMN). In a critical
application, it would be advisable to disable interrupts while SETDM is setting values
since a counter may be decremented midway through the setting process. For normal

applications it should not matter.

TIMEDO is an easy way to check for a timeout by using a logical function call. NTIMED
checks for a NOT timed out condition. It cheats a little by just returning .NOT.

TIMEDO.

Page 21

LOC is just what I promised before. A very handy "do-nothing" routine. I also use it to

have my Fortran programs use the @PARAM SVC --- command line options with LDOS doing

all the work!

A1l the Main program does is set up the demo, call TINPSR and tell you what happened.

Before using this program, you MUST have the SVC table installed: SYSTEM (SVC) is =zl
that is necessary. If you use the names TIMEDI/FOR and TIMESUBS/MAC for your source
code, then the following will compile/assemble the program:

F8J TIMEDI=TIMEDI
M8J TIMESUBS=TIMESUBS

Link the program with:
L8¢ TIMEDI,TIMESUBS,TIMEDI-N-E

Do not be concerned if you have $IOERR and/or SLUNTB show up as unsatisfied refere
after the link and load. The warning is extraneous and caused by FORLIB loading blocks
of code rather than individual routines.

Take a good look at the size of the program ... about 1600 bytes! You've written a
Fortran program that does I/0 and used less than 6K! Maybe there IS something
worthwhile in using SVCs from Fortran

When typing the following listing, do not include the “/*" comments. F8J does not
permit that style of comment.

TIMEDI/FOR Demonstrate Interrupt driven timed input
JG Bender 24 Jul 83

PROGRAM TIMEDI

() OoOOO0O

INTEGER*2 ACTCHR

BYTE SCRATC(64)
LOGICAL BROKE, TIMOUT
LOGICAL TINPS$R

INTEGER*2 DMKONT, DMTPSS, DMSECS, DMTICS
COMMON /DEADCM/ DMKONT, DMTPSS, DMSECS, DMTICS

DATA DMKONT/@/, DMSECS/4/, DMTICS/@/

set the DeadMan increment counter (low priority tick
(for a Model III, set DMTPSS =15) y ticks / 4 secs)

DMTPSS = 20

Announce the program

OO0 OO0 o

CALL CLS
CALL DSP$ (x'@D') /* a carriage return
CALL DISPL ('/ You have 16 seconds to type something: /')

In the following TINPSR call:
%CRATC <; buffer to receive input characters
=> maximum number of char
16 => number of seconds to w:gters i
ACTCHR <= number of characters returned
BROKE <= .TRUE. if user hit .,BREAK. key
TIMOUT <= .TRUE. if user timeout during input

OOOOOOO0

Page 22

OO OO OO OO0

e Re

OO0

OO0

CALL TINPSR (SCRATC,1,16,ACTCHR, BROKE,TIMOUT)
IF (TIMOUT) GOTO 7¢@
IF (BROKE) GOTO 8¢¢

CALL DSP$ (Xx'@D')
CALL DISPL ('/You made it!/')
GOTO 990

CALL DSP$ (X'@D')
CALL DISPL ('/You took too long !/')
GOTO 999

CALL DSP$ (x'@¢D')
CALL DISPL ('/You QUIT/')

GOTO 990
CONTINUE
END
SUBROUTINES
Contents:
CLS Clear screen
DISPL Display a delimited string, no .CR.
TINP$R Timed input
DEADMN Dead Man countdown timer
SETDM Set DeadMan counter ON, and initialize count
TIMEDO Check if deadman counted down to @
NTIMED Check if deadman DID NOT timeout(== TIMEDO-)
CLS Clear Screen

SUBROUTINE CLS
Assume Model I/III control chars

CALL DSP$ (x'lC') /* home cursor
CALL DSP$ (X'1F') /* clear to end-of-frame
RETURN
END
DISPL Display a delimited string on screen

SUBROUTINE DISPL (DSTRNG)

all strings will be <= 127 chars
no carriage return for this routine

BYTE DSTRNG(1), DELIM
INTEGER*1 I

the first character of the string is the delimiter

DELIM = DSTRNG(1)
the following is a 'FOR' loop in RATFOR

Page 23

a0

OO0

C
23905

I = X'g2'

IF (DSTRNG(I) .EQ. DELIM .OR. I .GE. X'7E') GOTO 23002 Q
CALL DSP$ (DSTRNG(I))
I=1+X'01"
GOTO 23000

CONTINUE
RETURN

LOGICAL FUNCTION TINPSR (INBUF,MAXCHR,MAXSEC,ACTCHR,BROKE, TIMOUT)

.TRUE. if input recvd, .FALSE. if timed out w/ no data

BYTE INBUF (1), ICHAR
LOGICAL BROKE, TIMOUT, NTIMED, TIMEDO
BYTE KBLANK, KBSPAC

INTEGER*1 MAXCHR, I, IONE, 1126, IMAX
INTEGER*2 MAXSEC, ACTCHR, INFO

DATA IONE/X'@1'/, 1126/X'7E'/
DATA KBLANK/X'2@'/, KBSPAC/X'18'/

install the deadman interrupt routine
CALL SETDM (.TRUE.,MAXSEC)

BROKE = .FALSE.
TINPSR = .FALSE.
TIMOUT = .FALSE.

range check

IMAX = MAXCHR
IF (MAXCHR .LT. IONE) IMAX = I126

display an underscore and a backspace

CALL DSP$ (' ')
CALL DSP$ (KBSPAC)

I = X090
IF (TIMEDO(®) .OR. (I .GE. IMAX T *
CALL KBDS$ (ICHAR,INFO) i apend ooy
IF (INFO .EQ. @) GOTO 230309 /* no char --> loop
TINPSR = .TRUE.
IF (ICHAR .EQ. X'@D' .OR. ICHAR .EQ. X'@1') &OTO 23006

A8 o TONE .CR. .BREAK.

= /* next char in string
INBUF (I) = ICHAR /* put the chr i i
GOTO 23008 /* --> loop iy i

IF (ICHAR .EQ. X'@1') BROKE = .TRUE.
GOTO 23¢10 /* end looping -->

reset deadman and display the character j
CALL SETOM (.TRUE.,MAXSEC) TREpe

CALL DSP$ (ICHAR) .

CALL DSPS$ (* ') ()]
CALL DSP$ (KBSPAC) i

bottom of loop

GOTO 23005

Page 24

C exit loop to here

23010 CALL SETDM (.FALSE.,MAXSEC) /* kill the deadman
IF (TIMEDO(@)) TIMOUT = .TRUE.
ACTCHR = 1
CALL DSP$ (KBLANK) /* remove the cursor
CALL DSP$ (KBSPAC)
RETURN
END ‘

- - - - e - - - -

SUBROUTINE DEADMN
ONLY called by the Interrupt driver
A1l set/reset of values must be done by
calling routine
Install in a low-priority task slot

OO0 OO0

INTEGER*2 DMKONT /* number of seconds to countdown
INTEGER*2 DMTPSS /* nr ticks before need decrement DMKONT
INTEGER*2 DMSECS /* nr seconds per DMTPSS ticks

INTEGER*2 DMTICS /* current tick countdown

G

COMMON /DEADCM/ DMKONT, DMTPSS, DMSECS, DMTICS
C
C countdown a tick for each call

DMTICS = DMTICS - 1

IF (DMTICS .GT. @) GOTO 23¢14 /* still counting ticks -->
C reset local countdown

DMTICS = DMTPSS
IF (DMKONT .LE. DMSECS) GOTO 23012 /* TIMED OUT -->
C decrement a chunk of seconds from timer
DMKONT = DMKONT - DMSECS
GOTO 23014

C
23012 DMKONT = @
C
23014 CONTINUE

RETURN

END
C
c =='—'===
C SETDM Set up DeadMan counter
UL S Rnsne oS R s G e e S = e = s S S
(i

SUBROUTINE SETDM (ONOFF,SECS)
C # Install/remove D/M in slot @
C

INTEGER*2 SECS, LOC

INTEGER*2 DMTCB /* Task Control Block for DeadMan

INTEGER*1 ISLOT /* task slot to use

LOGICAL ONOFF /* caller instruction to turn
C the deadman ON or OFF

LOGICAL DMISON /* flag if DeadMan IS ON
C
c it is necessary that this routine have the following EXTERNAL:

Q EXTERNAL DEADMN

C

INTEGER*2 DMKONT, DMTPSS, DMSECS, DMTICS

COMMON /DEADCM/ DMKONT, DMTPSS, DMSECS, DMTICS

DATA DMISON/.FALSE./, ISLOT/X'@@"/
Page 25

23015

C
C
C
C
C
2

3016 IF (.NOT.(DMISON)) GOTO 23018 ‘
CALL RMTSK$ (ISLOT) /* yes, remove it

IF (.NOT.(ONOFF)) GOTO 23016 /* .T. == turn it on

reset counters
DMKONT = SECS
DMTICS = DMTPSS

IF (DMISON) GOTO 23015 /* task already running ?

DMTCB = LOC (DEADMN) [* no, install it
CALL ADTSK$ (DMTCB,ISLOT)
DMISON = .TRUE.

GOTO 23018

ONOFF is .F., shutdown the deadman ...
DO NOT reset the DMKONT. A programmer may remove the

interrupt task before checking for a timeout.

DMISON = .FALSE.

C
23018 CONTINUE

RETURN
END

LOGICAL FUNCTION TIMEDO (IDUMMY)

INTEGER*2 DMKONT, DMTPSS, DMSECS, DMTICS
COMMON /DEADCM/ DMKONT, DMTPSS, DMSECS, DMTICS

TIMEDO = .FALSE.

IF (DMKONT .LE. @) TIMEDO = .TRUE.
RETURN

END

LOGICAL FUNCTION NTIMED (IDUMMY)

LOGICAL TIMEDO

NTIMED = (.NOT. TIMEDO (IDUMMY))
RETURN

END

SUBROUTINE LOC
RETURN
END

C this is the end of the Fortran code.

; File: TIMESUBS/mac

************************************ttt*t

Page 26

/* is it running ?

DSP$/mac
JGB 25 Feb 83

V. C EQ X'28' ; RST vector for SVC call
P " EQU 2 ; @DSP SVC

T W1we we we we

FORTRAN usage:
CALL DSP$ (char)

char => FORTRAN variable with character to
send in low-order byte.

C)we we we we we we e we

SP$ LD C, (HL)
LD A,DSP_
RST SV C
RET
Z hhkhkhkhkhhhkhkhkkhhkhkhkhkkkkhkhkhkkkhkkkkkkkhkkkkkhkkkkk
: KBD$/mac
;: JGB 14 Feb 83
KBD_ EQU 8 ; @KBD SVC
: FORTRAN usage: (BYTE function)
: (may be typed BYTE or INTEGER*2)
@ ; CALL KBD$ (ICHAR,INFO) INKEY$ == synonym
- -or- JCHAR = INKEY$ (ICHAR,INFO)
- (byte) {HL} {DE}

Returns K/B char WITHOUT waiting.
(byte) ICHAR <= @ or byte from K/B -- FORTRAN variable

- (I*2) INFO <= @ if no key pressed -- FORTRAN variable
: bit: @ if key pressed
: bit: 1 if Control-key also down
’ bit: 2 if CLEAR key also down
3 bit: 3 if char == BREAK
R Note high bit of ICHAR will be on if CLEAR key was
> also down
KBD$:: NOP ; see LDOS manual for @KBD
INKEYS:: ; synonym
PUSH DE ; ->info
PUSH HL ; ->char variable
LD A,KBD _
RST SVC_E
POP HC —
LD (HL),A ; return char in Low byte of arg.
POP HL 3 =>INFO
LD (HL),@ ; clear the INFO byte
JR Z,KBD4 ; there was NO character -->
SET @, (HL)
JR NC,KBD2 ; no Shift-Down-Arrow -
SET 1,(HL)
@ KBD2: OR A : clear flags
, BIT 7,A
JR Z,KBD3 ; no CLEAR key
SET 2,(HL)
KBD3: CP X'gl’ ; == BREAK key ?
JR NZ,KBD4

Page 27

%4———

SET 3, (HL)

KBD4: INC HL ; ->high order byte of info
LD (HL),9)
LD H,@ ; return in {A} and {HL}
LD L,A ; [byte] [Int*2]
RET
: *hkhkhkkhkhkhkkhkhkkhkkhkhkrhhkhkkhkhkkhhkhkhhhhhhhhhhik
; ADTSK$/mac
; JGB 25 Feb 83
ADTSK_ EQU 29 ; @ADTSK SVC
: FORTRAN usage:
; Call ADTSK$ (task_tcb, slot_no)
; task_tcb => FORTRAN INTEGER*2 variable containing
s the ADDRESS of the subroutine to install
3 in the LDOS interrupt task handler.
: slot_no => task slot number to use
ADTSKS::
EX DEHL: 50 tchiin DE
LD C,(HL) ; slot number in C
LD A,ADTSK
RST SVC
RET
; kkkkkkkkhkhkhkkhkhkhkhkkkhkkkhkkhkhkhhkhkhkhhhkkhkkhkhhdkhk
Z RMTSK$/mac
; JGB 26 Feb 83
RMTSK_ EQU 3¢ ; ORMTSK SVC
: FORTRAN usage:
; CALL RMTSKS (slot_no)
H slot_no => FORTRAN INTEGER*1 or INTEGER*?2 variable
s containing slot number to remove the
5 task from.
éMTSKS::
LD C,(HL) ; slot number into C
LD A, RMTSK
RST SVC
RET
END

A§ promised last time, here are some remarks about the 'in'
Since there appear to be articles, and new books appearin
fully explain UNIX, except to very briefly tell you what it i

....ER....

by Earle Robinson, 308 Grenola, Pacific Palisades, CA 99272

S.

Page 28

operating system, UNIX.
g every day, I won't try to

UNIX is a multi-user and multi-task operating system which was originally developed for
the D]g1ta1 _Eqmpment PDP-7 by Bell Labs engineers. Written in assembly, it was later
re-written in a low level von Neumann language called C so it became somewhat more
portable betyegn different machines than it had been. The origins of UNIX, in 1969, are
reflected in .'ItS somewhat difficult syntax. Remember that in those days teletypes were
ised as terminals and every letter was precious in a command. Consequently, to get a
.‘.ir.e]c;?ry listing of files, you type '1s' plus any of the various switches which are
wvailable.

Most o;her commands are equally confusing to the new user. And, if you think the LDOS
anual is long, try the 2 volume UNIX Programmers' manuals! They total over 1000 pages!

‘he UNIX system itself is noteworthy for three main characteristics: a hierarchical
file structure, 1/0 redirection and Pipes. Under UNIX, the directory structure is like
.n upside down tree with branches. From the so-called root directory you may create one
.+ more sub-directories, and each of these may have sub-directories, and each of those,
tc. etc. As you can imagine, this will permit you to have as many files in your
torage medium as memory will permit. Thus, with a hard drive, you are not obliged to
Lartition at all; the sub-directories provide their own dynamic partition. As for 1/0
sdirection, all LDOS users should be reasonably familiar with this feature; it is one
" the bases of the operating system. The device concept as implemented by the author
f LDOS' precursor, VT0S, further refined and developed by LSI, was undoubtedly drawn
~om UNIX itself. However, where UNIX really excels is in the use of pipes and filters.
nis permits the concurrent processing of several tasks. For example, you could have a
file sorted, written to another file and finally printed out on your printer with a
single command line expression. UNIX makes full use of memory and creates temporary
“iles, erased at the end of the task processing, to accomplish this. As you can
sagine, such intensive I/0 using poor little 5 1/4" disk drives would be painfully
low. And, even with the use of hard disk, things can be slowed down a great deal,
-pecially if there are several users accessing the drive at the same time. Further,
‘he maximum memory on most 8 bit machines, 64 K, limits their ability to effectively
se UNIX.

One further constraint with UNIX is that it requires several megabytes, that is several
million bytes of accessible disk storage to use it and the many utilities which
sccompany it. As you may begin to imagine, UNIX is not a system that you are likely to
ever run on your Model I, III, MAX-8J, or even the Model 4. These machines just do not
Lave sufficient RAM to handle such a bulky system. Whatever computer you may use, a
nard disk of at least 10 megabytes should be enployed. Also, a minimum of 192 K of RAM
is required; in fact, most systems need at least 512 K.

Most of us are also confused when UNIX is discussed because of the myriad versions and
forms it may take. To begin with, would you imagine that System V was introduced after
Version 7, and that there are still implementations using Version 6 and System III,
which itself appeared after Version 77 And, then there is the quarrel about whether one
should be using a true UNIX or a UNIX-compatible system. The latter are often cheaper
for the user because there are no license fees collected by Bell and can be better
supported with further extensions. Most implementations are for multi-user systems

though some single-users ones are of fered, too.

The final problem with UNIX in the micro world is that it is even less user-friendly
than CP/M, LDOS or any other known system. For this reason, a ‘shell' is often put
around the operating system so that the user is faced with menus and sub-menus until he
reaches the application he intends to run. UNIX may be a programmer's dehgh'g, bqt end
users will require a full scale shell implementation to use computers erqp]oymg it. At
present, the Bourne shell appears the most widely used, though it still is confusing to

many unsophisticated users.

Whatever its strengths and weaknesses, you are likely to hear: and see a lot gbout UNIX
in the next few years. And, if good enough shells are used, it may wel! survive as the
standard operating environment on 16 bit machines. Whatever the system is, however, one
thing is quite certain: operating systems, and most utilities, will be written in 'C
or another high level language. Assembly language will be less and Tess used except for

Page 29

narrow uses where speed must be improved. This is because maintenance of programs will
be easier and portability obtained, not to mention the lower cost for software houses Q
in writing and debugging.)

I have been having a wonderful time with the new version of FED, called FED II. It has
many new features and is faster. I only regret that I don't have such a program for my
IBM PC, too. I have also had a great deal of fun_usmg the 1ates§ version of Sugn--
Utility Plus V.3 on my MAX-8@. This is a terrifically useful utility program. Th
manual is well-written and quite clear. But, I suppose that most of you have
already.

Speaking of the IBM, you may be interested in some initial comments abqut the machine
which is sweeping most of the competition into Chapter XI, or at least into some steerp
operating losses. Hardware-wise, the PC is superbly built. There were a few desi
flaws, however. There are too few slots in the mother board and the power suppl:
barely adequate. The XT version, which contains a hard drive, has rectified thi
problems. The keyboard is controversial. You either like it or detest it. As for 1
monochrome monitor, it is a beauty, the easiest to read and use that I have seen ¢
micro.

Software? Well, that is another story. Let's begin with the 2 principal operat

systems offered, PC-DOS and CP/M-86. The former, called MS-DOS on IBM compatli

machines, is a creation of Microsoft, and was originally very close to CP/M (ugh!). '

latest version, 2.§, is already a big improvement and is approaching Xenix, little

little. There are hierarchical directories, I/0 redirection, and Pipes and Filters.

is not as fast as LDOS, and in some ways more cumbersome. As for CP/M-86, it appears

have lost out in this market, partly because IBM pushed the Microsoft DOS more. Mari

studies show that DOS has over 95% of the market. CP/M-86 has some nice features, bu

it is more cumbersome to use, perhaps because it is still so much like CP/M,

antecedent. It was also reported to be full of bugs, at least in the initial releases. Q

Most of the original software offered for the PC was merely CP/M stuff which was cr
compiled to the 8088 microprocessor used in the IBM machines and its copies. Alas, t!
meant that the code was far from optimized and ran even slower than on 8 bit machin
However, since the market has grown so much, virtually everyone is rushing to introduce
products. There are now literally dozens of word processing packages, several spread
sheet programs, and much more. When you see the massive advertising for some of thesec
programs you can understand that the stakes are high in the IBM world, and that larae
capital is required to obtain a market share. The two major magazines, PC Magazine, and

PC World, are the thickness of a large city's telephone book. They are so full of ads
that it is hard to find the editorial matter.

In the realm of utilities for the PC, there is still surprising little, certainly
nothing like the products offered by LSI and others for the Radio Shack line. On the
other hand, there is a wonderful choice in programming languages, nearly a dozen full
implementations of C, a couple of Pascals, Lisp, Modula 2, and others.

I‘.dan}.' people criticize the Intel chip used in the IBM and its so-called clones because
it is not as powerful as the 16 bit offered by Motorola or National Semiconductor. They
cite the need to use segmented addressing and the fact that IBM uses the 8088 rather
than the 8086 and that the former uses only an 8 bit data bus which slows everything
down. Naturally, the Tandy 16 & the Fortune 16/32 are faster and more elegant machines.
But, there are probably a million or more IBM's and its clones already out there while
I doubt that more than 100,090 of all the Motorola based machines have been sold. What
the IBM lacks today is multiuser and multitasking capabilities. This will come,

probably when IBM uses a newer version than the 8088 f ix or
IBM's in house operating system is finally put on the l?grkettom e e

You may not know it yet, but you can now have a telex n i Q
: : umber and send and receive
telexes without getting one of those awful teletypes, and without any outlay at

all........if you already have a modem and half wa i :

: 4 -way decent communications program. In
fact, Lcomm will serve very nicely. Here's how. RCA will be glad fo give you a telex
number which will permit sending telexes direct to either RCA or Western Union

Page 30

0

terminals, send overseas telexes and telegrams. It is not necessary have a line and a
computer tied up either. You have incoming messages routed to RCA's store and forward
memory bank. Then, you merely have to dial an 8@¢ number to retrieve messages whenever
you wish. And, you send telexes from your computer using an 800 number, too. I do not
recorpmend tying up a line & computer for another reason than the obvious one. To
receive messages directly on-line your program must be designed to respond to a Ctrl-E
sent from RCA (and Western Union uses the same), i.e. the ASCII ENQ character. You have
one (1) second to return the answer back when requested by the Ctr1-E. Otherwise, the
line]'s dropped immediately. I also find that it is very economical to compose messages
off-line, using Scripsit, LED, or another text editing program of your choice, then to
upload it when the recipient's terminal replies. If any of you are interested in
further details, drop me a line.

" cm_;plg of people at LSI have made a bet whether I would ever do an article without
mentioning printers or word-processing programs. So, I shall NOT mention I recently
heard that Harv Pennington has written (himself!!) an IBM PC version of Electric
Pencil. I shall also NOT mention that............

cvsx Parity = Odd ++

by Tim Daneluik, 4927 N. Rockwell St., Chicago, IL 6@625
© 1983 T&R Communications Associates

RUMORS DEPT.

“all is upon us, and as always I have more products to look at than time to do it in!
Not only is there more new software coming out every week, but a whole host of new
yachines are expected to be announced this quarter. Herewith is a list of completely
INSUBSTANTIATED rumors that I've heard, but my sources are impeccable (I know a janitor
it the Tandy towers!):

AUMOR #1 - The IBM "PEANUT" is supposed to be using an INTEL IAPX 186 (80186) as its
main processor. This processor is a real power-house with built in
programmable timers, DMA controller, and has true 16 bit capability. The
rumor mill also has it that the PEANUT will come with 64 K of memory, 1
floppy drive, and a keyboard for under $8@0! If all this comes true, you can
bet that PC sales will fall off, since about the only thing the older
machine will offer is more expandability (i.e. the PC-XT for example).
Personally, I hope IBM builds a little performance into the PEANUT, because
the PC is way too slow to justify its $3000+ price tag. They certainly have
the processor it takes to do this. The 8086 family of machines isn't as
elegant perhaps as a 68000 or one of its derivatives, but the Intel machines
are plenty powerful in their own right. The poor performance of the PC is
more a function of the "hurry up and get it done" mentality of its
designers, than it is the basic choice of processor.

RUMOR #2

Tandy is supposedly working on a version of the Model 4 with a built-in 5
Meg. hard disk. That's no big surprise, and makes a lot of sense for the
market the 4 is directed at. Given today's pricing structure, the machine
ought to sell for about $3000 - $35@@. I've been playing with a Model 4 on
and off, and with a hard disk in it, I may even buy one myself!

RUMOR #3 - This one isn't so much rumor as it is a not yet released product. A
replacement printed circuit board for the TRS-8J Model I will shortly be
available which turns your trusty old 'I' into a Model III! EVERYTHING is
built into this board including the disk controller and expansion edges, so
you don't even need an expansion interface! The whole business fits inside
the Model I keyboard housing, and uses the Model I power supply and video
display. I've gotten a Took at the thing, and it is VERY well built -
probably better than the original Tandy Model III electronics. Hopefully, by
the time the next issue of this magazine appears, I will have one here for

Page 31

review, and will be able to tell you more about it. The company producing
this appears to be a real business, not a “maw and paw" garage operation, so
it looks like this might be a big seller. By the way, the price should be

under $400 retail for this goodie!

LOBO, THE LX-8J, AND WHY YOU CAN'T RUN ALL YOUR SOF TWARE

The Model I is apparently far from dead! I've gotten several letters from people asking
me to devote a whole column to the LX-80. Unfortunately, there weren't THAT many
letters. However, a few comments are in order. LOBO, the people who build the LX-8@,
have always taken the position that their designs should outperform the Tandy hardware
they replace. The MAX-8(computer, for example, has no rivals in performance or
reliability in the 8-bit line of Radio Shack machines. (For that matter, the MAX-80 has
NO 8-bit peers that I've found under about $400¢-35000!)

For those of you new to the TRS-8J, the LX-8J is a high performance interface unit
designed for the Model I computer as a replacement for the infamous Expansior
Interface. In many ways, the LX-8J had a lot to do with LDOS coming into being. LOBO
designed the interface to have many features not normally present in a standard El.
They included double-density, 5" and 8" drive interfaces, two RS-232C ports, and 2
built-in power supply. In short, the LX-8J overcame every deficiency ever present |

the Radio Shack interface. Unfortunately, the price paid in the design, was that ti

LX-8F was not hardware compatible with the EI. This meant that many of the devic:
dependent portions of the operating system for the Model I had to be rewritten. LOB
decided to also offer a new DOS for their interface, and contracted someone to write
LDOS. Unfortunately, that someone never finished the job....so, LOBO came to Galactic
Software (now LSI) and contracted them to finish the job. In the process, LSI came into
being, and eventually ended up owning LDOS. The rest, most of you know. Bill Schroede:
and his bunch of "not-ready-for-prime-time programmers" went hog-wild and wrote LDOS
not just for the LX-8J, but for the Model I and the new Model III as well!

The net result of all this is that the LX-8J/Model I system runs LDOS just fine, bu!
some existing pieces of software won't work. This software falls into three genera!
categories:

1) The software is "self-booting" and uses no operating system.

2) The software is written specifically for a DOS other than LDOS.

3) The software ignores the DOS and tries to do physical I/0 (Input/QOutput) !
the hardware itself.

Software jn_the first category usually consists of things like games, utilities
(Super-Utility, for example), and almost all forms of protected media. The LX-8§ has
its own special "boot ROM" (Read Only Memory) that is used to initially load the
operating systecp. This ROM is substantially different than the ROM used when booting 2
"sta(ldarq" Radio Shac!t interface. This is because the LX-8J supports things like
booting in do_ub]e—dens1ty, booting from an 8" disk, or even booting from a hard disk,
and these special procedures have to be implemented in the boot ROM. Self-booting media
expects to use a standard boot procedure, and invariably fails to work when used in an
LX-8@ environment. Even if you could get the program to boot on the LOBO interface, it
probably still wouldn't work. These programs typically use no operating system, and
access the hardware directly. Since the "innards" of an LX-8J are different than the
EI, many self-booting programs, especially those involving disk 1/0, CRASH on an LX-80.

Little needs to be said about programs in the second cate ifi

i ory. Programs specific to
another DOS usually can be modified to run under L[X)S? a:d thegefore ghe LX-80.
However, this requires some ability on your part, and is not always a simple thing to

do. Now that LDOS is an accepted standard within Radio i i
software will cease to be written (or at least purchased!).ShaCk’ ISpetai e K

Those of you who read this column regular)
some time ago on software which does its
EVER should applications software deal with

y (all four of you) will remember my soapbox
own physical 1/0. To repeat, very rarely if
the hardware itself. The LX-8 is a perfect

Page 32

example.of why. So long as software uses LDOS to "talk" to hardware, the operating
system is able to accommodate differences in the hardware itself. Once the application
bypasses the DOS, there is no guarantee that it will be able to run on other TRS-8(
compatible systems. For example, the printer port on the LX-8 returns slightly
different status bits than a regular EI does, even though the printer interface on the
L %x-80 is still mapped to X'37E8'. An application which uses LDOS calls to print data
works just fine on the LX-8J. An application which goes directly to X'37E8' may or may
not work. Again, some patching may get this kind of software to work, but it is usually
more trouble than it is worth.

jere then, is a short and by no means complete listing of software which will/will not
work on the LX-80:

WILL NOT WORK

Any DOS other than LDOS
Stand-Alone Machine Language Monitors
Almost all self-booting disks
Disk-drive timing programs
Disk-drive diagnostic programs

WILL WORK
NAPP Extended BASIC SCRIPSIT w/LSI patches
Microsoft EDTASM+ for disk MACRO-8@ " "
POSTMAN FORTRAN-8G " "
discatER BASCOM " "
ALCOR PASCAL ZCAT
MACRO-MON (mostly, some minor problems) POWER-MAIL
.51 and MYSOSIS utilities/languages LDOS TOOL BOX

_AZY-WRITER (mostly, some functions like directories, and RS232 won't work) ;
FLECTRIC-PENCIL 2.9 (mostly, some functions don't work right, like getting directories)

One final thing, you cannot "Un-Repair® an LDOS disk on an LX-80 so that the disk will
he readable under TRS-DOS 2.3. This is because of the Floppy Disk Controller chip used
'n the interface. If any of you LX-8J owners out there have patches for software to
make it LDOS/LX-80 compatible, please send it to me. I'11 publish them here, for
everyone's benefit - besides, you get your name in print that way!

MODEL 4 / TRSDOS 6.9 CORNER

Although the Model 4 is relatively new, several pieces of software are already
available for it. Logical Systems has both FM and FED in 6.9 formats. (Dgn't forget
LS-Technical Help 6.x! ed.) FM is a sophisticated file backup and purge utility which
will be of special interest to those of you with hard disks (whenever Tar]dy gets around
to putting the hard disk on the Model 4!). FEDII is the latest iteration of the most
useful utility a machine language programmer can have. It 1s_made to edit any sector,
or any file on an LDOS disk directly. You can make changes in ASCII or hex, and many
search features are also supported. FEDII lets you step through /CMD files by load
module (forward and backward), and has an in71ine disa_issembler l?ujlt in. You can
disassemble byte-by-byte, or an instruction at a time. As with the original FED, FEDII
has on-line help in the form of a command menu. Be aware of the fact that many LSI
products for the 6.Xx operating systems are wlimited backup masters". This means that
there is a limit to the number of copies of the product you can ge{: from 'ghe
distribution diskette. The products I have seen provide for 25 total copies, which

seems adequate for almost everyone.

Misosys has also released many of their products to run under TRSDOS/LDOS 6.0. So far,
['ve seen 6.9 versions of EDAS, DSMBLR III, PDS, MEMDIR, PARMDIR, and DOCONFIG. The
last three are included in one package similar to the MSP-P1 package for LDOS 5.1.3. A
new program, SWAP, is included in this package. SWAP allows you interchange any two

Page 33

logical drives in the system. For example, SWAP :1 :2 exchanges the DCT (Drive Code
Table) information for logical drives 1 and 2. Q

PowerSoft in Dallas is also introducing several products for the Model 4. Power-Mail,
which is just about the best mailing list program I've ever used, is available now, and
other products will follow.

As you've probably noticed, all these products are versions of existing LDOS 5.1
software packages. This means, that for the first time, a generally popular persona’
computer is being supported with mature second-generation software. Even though LDOS
has gone through a major new implementation, the general design and concept of the
system survives! If I were betting on the market, I'd say Tandy is gonna sell a LOT of
Model 4s, and that this machine is going to have some of the best and most compatibi«
software ever seen in this industry. If this does happen, it will be in no sma)
measure because Tandy chose to adopt the most powerful DOS in the 8-bit market as thei:
new standard.......

o 9 Part
by Earl 'C' Terwilliger Jr. 647 N. Hawkins Ave. Akron, Ohio 44313

Hello! Nice to 'C' you again! The topic for PART IV is logic, control and flow. The
specific C language vocabulary words that will be used in this part are:

for while if else

switch break continue do goto
In previous parts, statements and blocks were mentioned. In conjunction with the aboy :
logic, control and flow vocabulary words, statements and blocks of statemen! Q)

accomplish the tasks designed into a C program. Let's take a look at these C vocabulary
words and their use in a C program.

But first, a quick reminder about (expressions) statements and blocks! Remember, a |
statement is an expression followed by a semicolon. For examples:

a=24;
c = getchar();
printf("%d \n";e-18);

These are all examples of C statements. Fach expression is ended with a semicolon. It
is used in C as a statement terminator rather than a separator. (You might also note in
the above example with the printf() function a general rule in C. Wherever it is
permlttgd to use the value of some type of variable, it is also permitted to use an
expression of that type. Hence the e-18 expression is used instead of having to assign
it to some intermediate variable. You can save a lot of coding using this rule, but be
careful! You can also make your program confusing!)

Whenever it is necessary to group statements (declarations, etc.) and treat them as
one, they can be enclosed in braces {}. This creates a "block" or "compound statement".
This block enclosed by the {} braces is not followed by a semicolon even though the

as K&R does with the if statement?
The general format (syntax) of the if statement is:

if (expression) statement 1 J)
else statement 2 4

(You will note the importance of diff

! ; erentiating bet
expression!) The if-else statement = akidus et o ent HAag Al

is used to make decisions. The expression is

Page 34

evaluated. If it is true (i.e., has a non-zero value) then statement 1 is executed. The
else is optional. If it is present and the expression is false (i.e., has a zero value)
then statement 2 is executed. Since the else is optional and can be omitted, you could
be confused by the following:

if (a = 2)
if (c = 2)
d = 2;
else
d = 4;

The rule in C is that the else is associated with the closest previous else-less if.
The way the above compound if statement is indented you may be led to falsely believe
that the else should be paired with the if it is aligned with. Another jmportant point
to mention here deals with indentation. It is generally practiced to have the else
aligned with the if to which it belongs. Thus the following is more readable:

if (a = 2)
if (c = 2)
d = 2;
else
d = 4;

[f the else was in actuality to be paired with the first if, then the {} can be used to
force the proper association as follows:

if (a=2) {
tf(c=2)
d=2;
}
else
d = 4;

The else is thus paired with the first if. The second if is contained in a "block" and
is the statement 1 referenced in the general format of the if statement. Of some note
also is the placement or "style" of placing the {} and their alignment in the above if
slse statement. Each C programmer develops a way of placing and or aligning if-else,
else-if and the {} braces. Consider the following two examples:

/* EXAMPLE 1 */
if (expression) statement
else if (expression) statement
else if (expression) statement
else statement

/* EXAMPLE 2 */
if (expression)
statement
else if (expression)
statement
else if (expression)
statement
else
statement

Both examples work the same but are of different sty]es. Perhaps the most popular or
common style (used in the K&R book) is represented via thg second example. Example 1
may look nice too, but consider how long the actual expressions and statements may be.
If they are quite long, the style of example 2 may appear nicer. Whichever style
(method) you choose, it is a good rule to be consistent.

If you noticed, the above two examples demonstrate a generalized way of writing a
multi-way decision. If any expression is true, its associate statement is executed and

Page 35

i in i i then the
the whole else-if chain is ended. If none of the expressynm are true.
statement after the last else is executed. This represents the “default case". Any of !
the statements can be a block of statements in the {} braces. The last else could also
be missing and there would be no default statement executed.

Another way of making a multi-decision in C is with the switch statement. The syntax
for the switch statement is:

switch (expression) {
case constant:
statement
break;
case constant:
case constant:
statement
break;
case constant:
statement
break;
default:
statement
break;
}

(Notice again the style used to place the {} braces!) The switch statement is follow
by an integer expression and a block enclosed in braces. The logic of the switci
statement is to evaluate the integer expression and compare its value to the const
case values. Each case is "labeled" by a constant expression (usually an integer
character constant). If a case matches the value of the expression, that case beg
the execution. Statements after that case are then executed. If a break statemen! X
encountered the switch statement (block within {} braces) is exited. If no cases mal C
the expression then the default case begins the execution. The default case
optional. The cases and default can occur in any order, but the cases must all be
different. If no cases match and no default case is present, nothing happens at a
(Nothing happening at all has been described as "the sound of one hand clapping").
is good programming practice to put the break statement at the end of a case. |
break is not present, execution "falls through" to the statements which follow. T!
may not be the desired action! An example of the switch statement follows:

switch (answer) {

case 'y':

case: "Y¥s
printf("The answer was YES!");
break;

case 'n':

case 'N':
printf("The answer was NO! ");
break;

default:
printf("Enter only Y or N! ");
break;

}

The above switch statement could possibly be used to test for a Y<es> or N<o> reply.

Note that it uses a case for the upper or lower case ‘
2 : possible responses. Y are no
doubt asking what happens if the default case is executed and you wang to a]]°3uanother
Redpenss until Y or N is entered? Well, you could use the C statements which allow
looping! Looping (executing a statement or groups of statements a given number of "\\

times) can be accomplished in C via four basic ways: for, while, do-while and goto.

The syntax of the while statement is:

while (expression) {

Page 36

statement
}

If the expression after evaluation is true, the statement is executed. The expression
is then re-evaluated and if true statement is executed again. This process is repeated
until expression is false (zero).

The syntax of the for statement is:

for (expression 1; expression_2; expression_3) {
statement
}

Expression_1 and expression_3 are typically assignments or function calls and
expression_2 is an expression to be evaluated as true or false (a relational
expression).

Another way to write the for statement using while is shown as follows:

expression_1;

while (expression_2) {
statement
expression_3;

)

“rom the explanation of the while, you can see how the for statement works. In the for
tatement the expressions could be multiple expressions separated by commas. For

xample:

for (i=0,J
5 2O
}

Wwhether you use the while or the for statement is just a matter of choice. Typically
the for is used for simple initialization and re-initialization. It is analogous to the

FORTRAN DO loop or BASIC for-next statements.

2;
[i

(s(il 1= @); ++i) {
']::'

3 a') ++j;

The syntax of the do-while is :

do
statement
while (expression);

The difference between the do-while and while is a subt!e one. With the do-while, the
statement is always executed at least once. The expression is evaluated at the bottom

of the loop instead of at the top.

Remember the break statement from the switch? It can also be used in the for, while or
do-while to exit. Another statement, the continue statement is related to breqk. It
does not exit from a for, while or do-while statement but causes the next iteration of

the enclosing loop to happen. An il1lustration for you to ponder:

for (i=P,j=0; (s[il); ++i) {

if (sCi] - 'a') continue; /* Skip this character */
if (s[i] == '\n') break; /* Exit for if new line */
s

}

ways for it to end are if s[i] equals @ or the new

t, the onl :
In the above for statement, y 0 el a[i] 1= §) but it can be and is

line character. Note that the relational expressio
shortened in this example to (s[il).

Page 37

With the above new C language commands, you can perform various logic patterns, and

control the flow of a C program. Another flow control C statement is the goto. The
object of the goto is a label. A label has the same form as a variable name but is)

followed by a full colon. The goto and the label to go to must be in the same function.
The use of the goto is not recommended, except for possibly branching out of some

heavily nested logic.

Next time, in PART V, the topic will be initialization, more on blocks, pointers and
arrays. C you next time!

It has been reported that the "Active Variable Analyzer" in the last issue works as
listed only with the old "Memory Size" Model 1 ROMs. Mr. C. E. Clayes reports that
the 9B at the 21st row down, and the 18th column across in the BINHEX listing
changed to a 7C, the resulting program will work on the new “MEM SIZE"™ ROMs. Anoth
LDOS user reports that a change to 6F should work on both ROM types.

Some people have been reporting difficulties with the Radio Shack Double Dens
adapter. Remember-- the RS DDen unit requires at least LDOS 5.1.3,and will not funct
with any earlier releases. Also, the proper driver to use is RDUBL, not PDU
Lastly, this adapter should only be installed by a competent computer technician, as
requires alignment when it is installed. If you just "plug it in", it may seem to wo:
but reliability of disk I/0 will be questionable.

In regards to "Fix that SOLE GAT error" in the April '83 LDOS Quarterly, Mr. R.
Greet reports that there is an easier method. He has supplied the following patch:

. Patch for SOLE2/CMD @'
. This patch modifies SOLE2 so that Directory 'fix' programs

. do not generate a GAT error for track @ on DDen boot disks

X'5305'=CD CB 57

X'57CB'=3C 32 17 58 3A @1 58 CB FF 32 @1 58 C9

. END OF PATCH

Mr. Greet has a Percom-type DDen adapter. This patch may work with the RS-type also.
He also has supplied the following patch to correct existing directories. If you pat
DIR/SYS, you must use REPAIR :d (ALIEN) or the extended debugger to re-write the syst
DAM on the directory track. Do NOT work on a disk in drive .

PATCH DIR/SYS.SYSTEM (D@2,@2=8@:D02,17=02)

The following are mandatory patches to LSI products:

In 5.1.4, the Date and Time prompts were changed to accept a wide range of delimiters
between digits, rather than just "/" and ":". However, the Time prompt will now NOT
accept a colon (oops). To remedy that, apply the following patch to SYS@:

. Patch SYS@/SYS.SYSTEM - MOD 3 ONLY! . Patch SYS@/SYS.SYST 5
DPE,A5=38 00E 63-38 / SYSTEM - MODEL 1 ONLY!
. EOP . EOP

. FMA/FIX - §7/14/83

blgt’\ggzgg.t‘ch is to the 5.1 version of FM to correct problems in moving system files ‘.’\\
DP1,09=11 80 58 C3 DE 66

DPE, 3C=CD C8 59

DP1,PF=11 47 58 7E E6 50 FE 50 C@ F1 C3 7D SE

D@5,B2=CD CE 59

Page 38

pP1,1C=CD 90 5A 36 22 C9
7 D27,A3=C3 DB 59
. EOP

. TBAS1B/FIX - @7/22/83
. This patch is to the LDOS 5.1 version of The BASIC Answer
_ It fixes the local variable DC problem.
@6 ,B@=EB 1A CD 6E 6C BE 20 P4 23 C3 C6
%6 ,CF=13 19 DF 22 41 SF C3 B3 5F
005,64=p4 48 7E CD @7 5E 10 FA
195,95=C3 PE 5E CD 6E 6C 12 23 13 C9
i ” 90=u bu
EOP

The following are optional patches

. MAXPR - Auto LF patch to SYS@
This patch is for SYS@/SYS on the MAX-8J. It provides for permanent
linefeed after carriage return for use with printers that need this,
~ and eliminates the need to set the PR/FLT (ADDLF).
' @4g1'=CD 99 01
3139'=DD 34 @5 FE @D C@ CD 22 @4 20 FB 3E QA 32 E8 37 C9
-0P

'he following patch has been requested. This patch will "back-of f" the patch to Model 3

'0S that allows use of the faster clock rate of the Model 4. This should only be used

1 - Model 3 machines with speed-up kits. The resulting configuration will match the
b nformation published in the Jan '83 article on speed-up kits.

heverse of Mod 4/3 mode clock patch. This patch is for Model 3 LDOS ONLY!.
Satch SYS7/SYS and also apply the SYS@/SYS patch.

$0,A2=3A AP 42 F6 Q1

20,AE=3A AQ 42 E6 FE 32 AP 42 D3 FE
end of patch

_ Reverse of Mod 4/3 mode clock patch. This patch is for Model 3 LDOS ONLY!.
_ Patch SYS@/SYS and also apply the SYS7/SYS patch.

DPF,66=FE @1 21 AQ

. end of patch

The following patch was supplied by Mr. W. Fields

High/Fix - This modification to the HIGH utility from Utility Disk #1 causes HIGH to

pause at the end of each screen and prompt the user to press any key to cgntinue. This
will prevent the information from scrolling off the screen if more than six modqles are
in high memory. This patch will also correct a bug in the display of "UNKNOWN's".

. HIGH/FIX

. This fix is for the version of HIGH
. that has a modification date of

. 16-FEB-83. (Version 1.p.1 in output
. headings)

‘ . William Fields
. Post Office Box 1120
. Glendale Heights, 111 60137

. First we patch each significant call
. to @dsply to go instead to the patch

Page 39

B —

. area code first.

X'5207'=9D 53
X'521F'=Al 53
X'5233'=A5 53
X'528C'=A5 53
X'52B1'=D@ 53

: Now free up a byte for a counter.
X'5312'=1¢ @4 DD E1 C9 00

: Patch area code here.

: The following code creates the screen pauses

X'539D'=3E @4 18

X'53A0'=@6 3E @2 18 @2 3E @1 F5 CD 6
X'53B@'=FE @E 30 @4 32 17 53 C9 21 D
X'53C@'=@g CD C9 @1 21 4A 53 3E @9 3
X'5309'=CD 33 @¢ 3E @1 18 D5
X'53D7'="Press any key to continue."
X'53F@'=@3

7 44 F1 21 17 53 86
7 53 CD 67 44 CD 49
2 17 53 CD 9D 53 C9

. The following code corrects the address display for “UNKNOWN's"
x'5283'=C3 F2 53

x'53F2'=E5 2B EB CD E5 52 C3 88 52

.END OF PATCH

—LET US ASSEMBLE

by Rich Hilliard

Welcome back! Last time we discussed various cutesy screen displays of famous ¢

While no criticism from you was apparent, we may have moved too quickly into the d
of nod. Keep in mind that the purpose of this column is to be of assistance to you, the
viewer. Therefore, if you want something specific discussed, please write in and tell
me and we will work on it. So far, we have had a very interesting suggestion from Mr.
Woodson of Atlanta, which is an assembler program to compute moving averages. This type

of program takes a long time in BASIC. We will st imi "
project next time. art the preliminary work or

By the way, this is exactly the type of subject which is ideal for learning assembler.

If you have a BASIC program of your own which lasts ker
SR ot SUBSTE. §6% as long as an an all day sucker

And now on to the tgsk at hand, number base conversion. Oh no! Not number base
conversion ... anything but base conversion ..., please, please get I.JS out of ihu"'
Holy bovine fecal matter, batman, calm down. Conversions are our friends (just ‘ké
dogs and fire, {lowever, they can do us harm if abused). Actuall they are ngltj Dd""‘dt
all. Amaze your friends, write a conversion program for LDOS. o 4 \

Numbert' base con¥ersion is often present in assembler programming because the stupid
computer can only calculate in binary. Meaningful numbers (decimal) must be obtained

from the ten-digit monkey running the machi i igi
computer can deal with it, and theg the regu}'t‘e’ Gierted ek ut-theistild BHCIE

!) converted back to monkey. The three most
used nunber bases in our Tittle corer o the universe are | in metdburicel order)

¥, T » and hexadecimal which are respectively the , E
method of looking at the computer's, y computer's, ours, and ou

Page 40

/N

Base conversion is very simple in itself but we have (of course) a further problem to
deql with. The computer is quite content to honk along without ever telling us what is
going on. Furthermore, it has no use whatsoever for English. After all we made all that
up in order to get fed (and keep from being a meal). Since most computers do not eat,

they have no use.for our language. The need does exist for us to know what our little
inventions are doing, anq from time to time, to send this information to other devices
or computers. To do this, a standard (ho, ho, ho) code was established called ASCII.

| ike every other standard that I know of in this industry, it isn't.

The purpose behind ASCII is so that when a byte (in English) is sent to a printer or
snother machine, the character sent is understood at the other end. Where this breaks
down is as follows: ASCII only accounts for seven bits out of the eight bits in a byte.
‘his means that while the values @ through 127 are more or less accounted for, the
aumbers 128 through 255 are up for grabs. In fact, even within a single manufacturers
sroduct line, that manufacturer seldom is sooth (this last for D & D fans) regarding
their purpose. As an example, in a Model [11, 128-191 are used for graphics, and 192 to
255 are space compression codes. An "alternate set" can be switched in which wipes out
space compression and gives you the greek alphabet and other assorted junk. (On the Mod
4, reverse video occupies these codes as yet a third alternative.)

This puts an additional conversion sequence into any code because the number "3" when
typed at the keyboard is not represented by the value @@0@ 9911, but by the value
%711 9011 (ASCII). (Can you guess what must be done to convert it?)

want you to understand that these conversions are standard in every applications
program written in assembler that obtains input. Therefore, let us establish a series
~f subroutines necessary to convert all this stuff. BASIC handles much of this
sutomatically (see "&H"), especially the ASCII conversion. But consider, when the
statement INPUT A is encountered, BASIC already knows that the information coming from
‘he keyboard will be ASCII decimal numbers only (English - you see), and it rejects any
non-decimal characters. A better appreciation of our problem is seen by the statement

INEINPUT A$. Now BASIC merely accepts a character stream until the <ENTER> key is

sressed or 255 characters have been received.

In assembler, all of our keyboard inputs are exactly like that. We have no idea what
characters are coming in, so we must examine every character for its relevance and act
accordingly. Most of the needed conversion routines can be found in a program which
takes in a number of any of the mentioned bases, and displays the converted results in

all three bases.
Let's define the program in English:
1. Take in an ASCII binary, decimal, or hexadecimal number .
A. A number with suffix "B" is binary
B. A number with suffix "H" is hex
C. A number with no suffix or suffix "D" is decimal
2. Convert the input from ASCII to binary.
A. ASCII-binary to binary
B. ASCII-decimal to binary
C. ASCII-hex to binary
3. Display the ASCII representations.
A. Binary to ASCII-binary
B. Binary to ASCII-decimal
C. Binary to ASCII-hex

IC, I will simply include it in the comments.

nd suffixes for the declared number. I do NOT
before we decathalon.

Rather than duplicate this process in BAS

To make 1ife easy on us, we will dema
recommend doing things "the easy way", but we must walk

It can be seen that we need a main line program which takes a number from the keyboard
and whips it to one of three subroutines to get it into binary. We could then write
code which determines which was input and not convert it, but why bother? The resu]ts
are calculated so quickly that little (if any) time will be lost. Therefore, we will
simply convert the number through all three wpack to ASCII™ routines, one of which,

Page 41

admittedly, need not have been done. We are going to use system vectors @KEYIN, BEXIT,
and @DSPLY. So the first lines of code are as follows:

P0100 @EXIT EQU p402DH ;Normal Exit vector
P@110 @DSPLY EQU @4467H sPRINT subrouthe
Pd12@ GKEYIN EQU P004gH sLINEINPUT routine
P0139 ORG @520@H ;start code at X'5200'

The @KEYIN system vector requires the HL register pair point to a spot in memory where
the input from the keyboard will be stored (be sure to look up @KEYIN in your LDOS
manual that you may know what secrets are written therem?. This buffer will be of a
maximum length as determined by the contents of the B register plus one. Let's sel a
perfectly arbitrary limit to the size of the converted number to be two bytes long. If
this were entered in binary it would be sixteen characters_in length. Finally we need a
suffix of one character, so the buffer length required is eighteen.

By the way, it is good to write (communication - what a concept!) dovgn things thaL need
to be done later in the program so that they are not forgotten. Right now write down
that we need to define an input buffer of 18 characters named NBUFFER.

Now, the stupid computer won't tell us what is going on - so we better inform the user
what he is in and what to do about it. To do that, we print the message labeled
"SIGNON" to the video. This routine will be labeled because we will come here unti]
told to leave or if an erroneous input is detected. Write down that we need to compose
SIGNON. Remember lesson 1 and code the message printing as follows:

PJ140 START LD HL , STGNON ;greet the masses
P@150 CALL @DSPLY ;print it
Since the program is quick, dirty and user hostile, our complete “"documentation® 1is
contained in the message we just printed and we can now take in the desired input:
20160 LD B,17 smaximum chars allowed
P3170 LD HL , NBUFFER ;stick them in memory
3180 CALL @KEYIN ;GOSUB LINEINPUT

@KEYIN does not come back until either the <BREAK> or the <ENTER> key is pressed. [f
the maximum number of characters is reached, @KEYIN will not allow any other keys to
worls except <BREAK>, <ENTER> or the backspace. When control comes back to us, the B
register contains the number of characters received and if <BREAK> was pressed the C
flag of the F register is set. <BREAK> will be our signal to stop executing. This is
somewhat of a PROBLEM because if the user has set SYSTEM (BREAK=N) or CMD“B","OFF" from
LBASIC, then we '_simp’ly never leave our program. A way to prevent the hang-up would be
to alter our routine to examine for some other key, or to make certain that the system
does_handle <BREAK> by checking in the SFLAGS vector, but as I said this is user
hgstﬂe. I_\nyway, you can glways blame the user because running with the <BREAK> key
disabled in ALL software is not a good plan. Anyway, we check C flag and jump to
@EXIT. One other thing-- some putz will always press the <ENTER> key by itself so we

will check that the B register contains a not-zero val ' i j
to the prompt if this happens. RS K 460 S bact

%%gg ‘1]:(; C,@EXIT ;leave if <BREAK> pressed
99219 DEC . s TEST for zero characters

22 B ;1f B was zero this sets I
bo229 R Z,START e Sret pra

Okay- we got something in the input buffer! W i i

: ! We must det
conversion SUBS to CALL. Remember that we needed an "H*, -sg,e::"-'S-':Zc'{hgfeﬁ:roéhzﬁf
'"9‘]‘%‘ We are also assuming that if no "H" or “B" is present that "D* is assumed. HL iS
Crow. tha Tength o the dirimy ond' Mechipicter string we called IGIFFER, Well sir, ve

where it starts so all we have to do i int H at

the last character, load it into A and do i 8 g

. a mess of compares. find the
equivalent of MID$(NBUFFER,LEN(NBUFFER)-I,I). Then we looz fgvs' t:: Zﬁggi:? I1fnit is

Eggza:?nmui;ea}so lzp it off before going to the subroutines. This is done by
] g ength by one. We will point HL to the proper location by placing the
ength of NBUFFER (from B) into the DE pair and 3 b c

we could add B directly but such Tuck is not with ua?ding it to H. It would be slick if

99230 LD os

pg249 LD S’g ;but B contents into DE pr
09250 DEC E ;note the order

99260 PUSH HL ;adjust for zero

;save first char

Page 42

33270 ADD HL, DE ;HL => last char

0280 LD A, (HL) ;put pointed to in A
00290 RES 5,A ;Convert to upper
P0300 cp ‘B! ;Binary suffix?
(3310 JR NZ, TESTH ;GOTO TESTH line if <
00320 DEC B ;ELSE drop the "B"
0330 POP HL ;update pointer
P0340 CALL ASCBIN ;GOSUB ASCBIN
?3350 JR PRINTEM ;and GOTO PRINTEM
@369 TESTH CcP s sHex suffix?
P@379 JR NZ, TESTD 3GOTO TESTD if <& "H"
Pa380 DEC B ;1oose the "H"
P3390 POP HL ;update pointer
Pa4a0 CALL ASCHEX ;GOSUB ASCHEX
P3410 JR PRINTEM ;and GOTO PRINTEM
Pg42@ TESTD cP 'D! ;decimal suffix?
P3430 JR NZ,TESTD1 ;remove 'D' if present
00440 DEC B
P@45@ TESTD1 POP HL ;update pointer
3460 CALL ASCDEC ;GOSUB ASCDEC

Wwell that certainly was a boatload. You can see that it only gets to one of the three

ASCII to binary subroutines. Actually, there is no reason to have three different subs
in this instance, but if we stay universal, the same three subs can be used again and
gain. Save them as separate modules and then merge them into any program. In line 290,
notice the RES instruction. This resets bit 5 of the A register. The reason for this
manipulation is that the suffix received may be in lower case. Observe bit 5 in the
!Towing chart:

Character Upper case ASCII Lower case ASCII
B ¢100 9910 p110 9910
D @109 9100 p119 9100
H @100 1000 p110 1900

{ou will note that the bit pattern for upper and lower case is identical except for bit
5. which is set for lower case alphabetic characters. Therefore, to force upper case
RES bit 5, or to force lower case SET bit 5 of the byte in question. Our program
converts any lower case character in the A register to upper case. Otherwise, to be
user friendly, we would have had to make six compares instead of three. If any of "BDH"
‘s the last character of the string note that the length of the string is decreased so
that there is no interpretation of the last character. The subroutines will have to be
written to detect characters outside the allowable range for the type of conversion
being done. If such an illicit character is encountered, we will print an error and
start over. The purpose of saving HL with PUSH and then POPping it back is so that the
leftmost character of the string is pointed to by HL when entering each subroutine. The
ASCII-binary to binary routine allows two characters 48 (X'3¢' or 9911 9@OY or @) and
49 (X'31' or @@11 @g@l or 1). Remember where HL is? Thanks to judicious forethought it
is pointing at the first character of the string because when we decreased the Tength
we remembered the pointer. What if some wise quy punghed Bz D, or H as Fhe only thing?
Don't worry, we will blow him away with range checking! First let's write the rest of

the main body of the program.

P@47@ PRINTEM LD HL, (NBUFFER) ;get binary number
23480 CALL BINASC ;convert Binary to ASCII
33490 CALL HEXASC ;convert hex.

Pas500 CALL DECASC ;convert decimal
23510 LD HL, PBUFFER ;show results to video
Pa520 CALL @DSPLY

#9530 JR START ;& back to the top

Well, if you've been writing notes correctly, you know that we must define two buffer
areas, write six subroutines, and compose a message - imagine trying to remember g]]
that! Since all that follows will be subroutines, why not finish the this section with
our messages and buffers and headers (lions and tigers and bears, oh my) .

§0540 ERROR LD HL , ERRMESS ;say bad job
Pa550 CALL @DSPLY
99560 JR START

@@57@ SIGNON DB @AH, 'Itty Bitty Base Converter ', PAH
Page 43

§a580 DB 'Enter number to convert - end hex in H - binary in B',QAH

#5909 DB vand decimal in D - - press <BREAK> to quit',13

@d600 ERRMESS DB @AH, 'Number out of correct Range',13

610 NBUFFER DS 18 .

%628 PBUFFER DB PAH, ! Binary Hex Decimal',@AH

P063¢ BBUFFER DB G000 0000 9000 9000 '

@g640 HBUFFER DB '0000 ;

P@65¢ DBUFFER DB ' 00000 '513 : -
We will jump to ERROR (54¢) whenever an input or out of range error OCCurs. This simply
prints the string ERRMESS to the video and starts over. DS is an EDAS psuedo-op which
merely defines an 18 byte gap in the code. This means that whatever was in memory at
that location will not be overwritten by loading our program. Strange stuff can occur
if you rely on default strings coming from areas created by DS. Tha_t is why
[BHDIBUFFERs are defined as ASCII zeros and spaces. Defining the buffer in this mannc
allows us to use these buffers for the conversion back to ASCII, and then by pointing
to the string PBUFFER include all four strings (lines 620-650) with one CALL to @DSPLY.
This is a quick way to format the output. Remember that tabs are not recognized by
either @DSP or @DSPLY. We must either format our own spaces our write a tab generator.
For small stuff like this program, it is cheaper codewise to imbed the spaces within
the program code as above. Obviously, for variable text formatting or long outputs this
would be the ultimate in tacky (not including the IRS). Well, you may cross out a few
things from your 1list. Now we need the six conversion subroutines. Here is the code for
the ASCII-binary to binary conversion which we have named ASCBIN:

(d660 ASCBIN LD DE,P :DE will hold the binary
#0673 ABLOOP LD A, (HL) ;char into A

99680 cp 30H :is A < ASCII @7

3690 JP C,ERROR ;IF yes THEN GOTO ERROR
03709 JP Z,AGAIN ;1f A=@ THEN GOTO Again
03710 cP 31H ;= ASCII 17

20720 JpP NZ,ERROR ;see 520

#9730 LD c,1 ;store 1 the one in C

The byte values in NBUFFER must be either 30H or 31H, which are ASCII "@" and "l"
respectively. HL is pointing to NBUFFER. We will use the DE pair to hold our binary
number. We will examine the string in NBUFFER one character at a time until the string
is exhausted. The maximum width of NBUFFER when we get here is 16 characters.
Therefore, it is impossible to enter a binary value beyond our two byte limit. lo
effectively trap errors, we need only check that the digits are either zero or one. The
accumulator is loaded with an NBUFFER character in 67@. We test for a "@" in 680. If
the character found is LESS than "@", we GOTO ERROR and quit (tsk, tsk, tsk - more on
this later). If it equals "@" we do nothing with it. Why? Remember that all 16 bits in
the DE pair are already zero (line 66@). There is no need to convert a “zero" to a
real zero, that is the default. If the byte is not “P" then it MUST BE a "1" or
somebody typed a "B" suffix by accident. Therefore, error city. Now that we know we
mus.tijgn)tg aW b111:: stovtr:ew]he;e in DE, which bit do we flip? We will manipulate the bit
position in C. We start by loading it with one and :

00749 i 9 AB process thusly:

pa750 DEC A gggﬁsn:me placeholder
gg;gg Sll; 8 sydetermine high or low byte
0a780 PUSH g(’;mmE ;if A <= 8 then E register
93799 SuB 8 ;save the counter in B
90800 JR 7. K ijreset bit position
po81g LD B A it ;do not rotate last bit

2 ;set up inner loop
R e ¢ ;shift C left, B times
pg830 DINZ ABLOOP1 ’

: g ;fo i

ThetB register contains the count. Whatever B's valye is therb?ttxg?tion in DE which
r:)usB b?]s]etb;olgni. ;iote that bits are numbered 15-p (left to right) and that the count
A'with B (743) and then DECA (AeALL). Nox tng voyrer Just by Subtracting one. We load
want to set to 1. We cannot deal with.t I ayvee fn A is the bit position which we

. : he DE pair on a bit level ith
either D or E on a bit level. We must determine which register ihgu;e‘;?r(e:gnb?:a]"sw:"‘

gsz7;; }12'::2;?:2%?1!&8 deat]h with D. If A is 7 through @, we deal with E. Lines 760
path. Obviously, the D register alone does not have a bit

Page 44

)

S

°

greater than 7. We adjust for this by subtracting 8. A special case arises if the
re§n11t.of the subtraction is zero. We do not wish to adjust the C register at all so we
skip right to the "stuff the bit in D" gizmo located at SKIP1. Otherwise we get the bit

info gh?A correct relative position by shifting it left, for the number of times of the
value in A.

A neat little one byte loop is possible in Z-8J code. It involves looping by the number
contained in the B register. We are going to use it a lot. Put the desired number of
loops in B, and set up the junk to do between it by establishing a label where you want
the the routine to repeat. This is akin to the first BASIC statement after a FOR ... T0
ine. The NEXT equivalent is the mnemonic DINZ (Decrement and Jump-relative if Not
Jero). In this case line 820 will repeat until B is zero. SLA (Shift Left Arithmetic)
noves all bits in the named register 1 position to the left and then puts a zero into
the rightmost bit. (Anything dropping off bit 7 is lost.) For example, the contents of
it the start are always @990 @@1. If A were 4, the result in C would be 001 9@0G0.
We now have the bit in the desired position (bit 4, you will note). A1l that remains is
to get it into D or E, fetch the next byte from memory and process for as long as there
are characters.

fo get C into D or E we cannot use the load instructions. This is because we are in the
process of flipping bits one at a time. A LD in this case would simply wipe out the
orevious work. To flip the correct bit we use boolean algebra - WAIT! Don't throw up.
I'm sorry I used that term. Besides you use it all the time in BASIC. It's just that
nobody ever buzzed you with it before. (For those who are interested - it was named
sfter George Boole.) (Buzz off, George. [hate people who name things after
themselves). In BASIC, it is sometimes called Hilliardian algebra (but not by many). In
BASIC such statements as:

IF A=@ AND B=1 THEN GOTO BLAZES ... and

IF A=@ OR B=1 THEN GOSUB MARINE
are really balgebra (stick it, George) statements. In assembler, these operations are
often used to alter the register contents one bit at a time according to the following
tables:

AND OR XOR
91 91 g1
0: 0|0 9: 9| 1 g: 9 | 1
1: 9| 1 1l 11 V@

5o to set D or E with the bit in C we will OR D,C. It would be nice, but balgebra works
ONLY with A. So we xfer C into A and then OR away. Here is the rest of ASCBIN:

Pg84g SKIP1 LD A,C ;place bit into A

P@850¢ OR D ;merge with current D
0860 LD D,A ;update D

20870 popP BC srecover count from 780
P88y JR AGAIN ;& goto AGAIN .
P@9¢@ INTOE PUSH BC ;save the counter in B
P890 cP 9 ;1f bit zero, skip
@910 JR Z,SKIP2 ;it and do another
Pa920 LD B,A ;set up inner loop
?793@ ABLOOP2 SLA C ;Shift C.1eft

3940 DJINZ ABLOOP2 ;for B times

PJ950 SKIP2 LD A,C ;bit is in A

#9960 OR E ;merge with E

P0970 LD E,A ;update E

(@980 POP BC srecover count from 900
(PJ99@ AGAIN INC HL ;point to next char
P1000 DJINZ ABLOOP ;and do it again

P1p10 LD (NBUFFER),DE ;store conversion

21020 RET ;exit subroutine

i i . id we need the C
Now th tive out there are probably asking themselves, "why did

regi stg} %irgf:%“ We didn't. We could have loaded A with 1 after determining whether to
use D or E, and loading the bit count into B. It would have saved us another step 1in

Page 45

lines 84@ and 95@. I simply thought that the method we did use was l_ess confusing. Note
that we end the loop by reloading NBUFFER with the converted binary value and then

RETurning.

This program is interesting to watch under DEBUG. Set the display to 52F3 and single
step with various values. To watch the output conversion, set the display to 5332. By
the way, when the PC points to CD 40 @J, do a C (not an I) and enter the number you
wish to convert. I suggest we finish the program first, however.

With the ASCHEX subroutine we also start with the leftmost character anq again store
the converted result in DE. Our binary input could only deal with a bit at a time.
Every hex digit, however, represents 4 bits (called a nibble - which is half a byte).
This means that four operations on D and E will convert the whole mess. We do have
another problem. Hex digits are comprised of the arabic numerals @-9 (ASCII 30H to 39H)
and the letters A-F (ASCII 41H to 46H). Note that they are not contiguous. This means
we have to check two ranges for valid characters. Also, the values represented by A-F
hex are not reached by simply ignoring the high nibble (sounds like the leader of some
rubber-chicken club) as we can do for the digits @-9. A common way to convert the
decimal numbers is to subtract 3@H from their ASCII value. The A-F's are converted by
subtracting 37H. Since we are learning balgebra, we will use AND to strip off the high
nibble. Now here is ASCHEX:

P1030 ASCHEX LD DE, P ;reset DE
91040 LD A,B ;test for >= 5 digits
91950 cpP 5
91060 JP NC,ERROR ;too many
91979 (1 ') ;test for @
91080 JP Z,ERROR
@139@ AHLOOP LD A, (HL) ;get character
91100 cP 30H A <P
91110 JpP C,ERROR
91120 cp 3AH A <9
91130 JR NC , CONAF sconvert if <= 9
911490 JR STUFFIN
@115¢0 CONAF RES 5,A sconvert to upper
P1160 cp 'A' ; A <657
91170 JP C,ERROR
#1180 cp 'G! ;s A >= G2
91190 JP NC,ERROR
RS Y =
;mask high nibbl

1220 LD C,A ;save va?uen :
91230 LD A,B ;determine which nibble
p1240 cP 3 ; 44 3g0inD
1250 JR C,INTE
g1260 PUSH BC ;save iteration
p1270¢ BIT 9,A 3if zero lsn
p1280 JR NZ,LOWN ;else msn
o1290 LD B, 4
P1300 AHLOOP1 SLA ¢ sshift C left 1 bit
91310 DINZ AHLOOP1 : ¢ \
91320 LOWN LD A,C jror few. tiuss
91330 OR D : :
g%ggg LD D.A sput into D

POP BC .
giggg NG g srestore count

DJINZ AHLOOP .
o3 WTE AU B ave. Haretion

g,A “if
91499 JR NZ, LOWN] REal
g}gg LD B,4 :
AHLOOP?2 SLA C achit :

g1439 DINZ AHLOOP? ke 2 S LIS
g144g LOWN1 LD A,C : i e

Page 46

91450 OR E sput into D

01460 LD E,A

91470 POP BC srestore count
(#1480 INC HL

01490 DINZ AHLOOP ;get another
91500 LD (NBUFFER) ,DE ;store result
P1510 RET

No new concepts are in ASCHEX. Note that the BIT tests in lines 1270 and 1390 are used
+n determine whether A is odd or even. This will deal with the high nibbles if even or
low nibbles if odd. Note the use of AND in line 121@. Since 1 AND 0 results in zero,
this type of maneuver is called a mask. The byte @FH looks like this @9@¢ 1111. The
~ontents of A are altered. Anything that WAS in bits 7-4 of A is reset to zero (1 AND @

#). If the bits 3-P were one, they remain one and if they were zero they remain zero.
You can see that the high nibble was "masked" off. What is left in the low nibble
(after adjusting for A-F) is the value of the ASCII representation.

ASCDEC presents us with much of the same approach but we have more math to do. Since
both binary and hex are conducive to shifting and shafting we could zip around in nib
fashion slipping and sliding bits and nibbles about with a certain audacity and flair
indicative of a bon vivant attitude. This is not a big surprise. Multiplying and
dividing by 10 in a decimal system involves slipping and sliding the decimal point
around in exactly the same fashion. Now, however, we not only convert from ASCII to a
real value, but from base ten to base two.

We will do this by starting from the left of the string, converting the ASCII value to
binary. If there is another decimal number, we first multiply the old number by 14,

.cause we know that its value is ten times the next number. Then we add the old number
(how old is it?) to the value of the new number so that the last digit read is always
the least significant (which reminds me of this explanation). For example, say that the
string in NBUFFER is "2345". We will store the transient numbers in IX which has an
initial value of zero. OK, here goes ; multiply IX by ten [10 * @ = @] ; add the first
value (2) to IX which now equals 2 (P010). If the string were only one character long
we would be finished. Since there is another character we loop through the routine
sgain. Multiply IX by ten [10 * 2 = 201 ; then add the 3, IX now equals 23. Note that
the 2 became the “"tens" digit. (IX is really @gg1 P111). There is another digit.
Multiply IX by ten [10 * 23 = 23¢] ; then add the 4, IX now equals 234 (1110 10140).
There is another digit. (You are in a maze of twisty passages, all alike). Multiply IX
by 10 [1@ * 234 = 2340] ; then add the 5, IX now equals 2345 (P00@ 1001 9019 1001).
Wallah! As you can see, the process can be carried through all 16 bits of IX.

Two really minor problems. (I knew it.) The Z-8J has r_to.mu1tip1y function. Wait!
There's more. Multiplication is actually only shorthand addition. The A,_ HL, !X anq IY
registers are the ones capable of math. A can do it all, but is only eight b1§s wu}e.
HL can add and subtract but can do nothing else. IX and IY can 9n1y gdd. HL is being
used to fetch our string, so that leaves IX and IY for the 16 bit arithmetic. Ten is
not a very handy binary number, but two is. Can we think of a good method of using two
in succession to exploit the power of two and still be ten? b}ould I bother writing all
of this broohaha if there weren't? When we add a number to itself, we get that number
doubled (X + X =2 * X). We now have multiply by two. Remember that. Add the result
to itself and we have 4 * X. Add that result to itself and we haye Q% X, (A]most
there!) Add that to itself and we've gone too far but - I say but - if we "memorized"
the first doubling (2 * X) we can add it to the third doubling (8 * X) and we have TEN
times the original number! We did it! (the crowd roars)

Here is the uncensored text for ASCDEC:

@152@ ASCDEC LD . ;reset DE

#1530 LD IX,0 ;reset IX

1540 LD A,B ;test for >= 6 characters
91550 CcP 6

P1560 JP NC,ERROR :

91570 cP 1) ;test for zero char

91580 JP Z,ERROR il

$159¢ ADLOOP LD A, (HL) ;get char

page 47

S

P1600 CcP 30H ;test for < P

91610 JpP C,ERROR il
91620 CcP 3AH ; stest >= =3

NC,ERRO |
gigig g:D @FH ;mask high nibble
#1650 ADD IX,IX smultiply IX by two
#1660 JP C,ERROR
#1670 PUSH IX ;save product
1680 ADD IX,IX JIX = IX*2 (4 * start)
P1690 JP C,ERROR
1799 ADD EXSTX ;IX = IX*2 (8 * start)
91710 JP C,ERROR 3265535
01720 POP DE ;retrieve doubled IX
91730 ADD IX,DE ;IX = IX * 10 from start
01740 JP C,ERROR 1265535
91750 LD D,0 ;put amt into IX
@1760 LD E,A ;picked up digit into IX
P1770 ADD IX,DE ;add into buffer
1780 JP C,ERROR ;265535
91790 INC HL
091800 DJINZ ADLOOP :do another if necessary
91810 LD (NBUFFER),IX ;stuff in buffer
91820 RET

Notice all the jumps to ERROR. This is because the carry flag is set if a bit falls off
bit 15 of IX. Since this can happen in so many places, there are many checks. It means
that the decimal number entered was greater than 65535. The other error traps involve
range checking for the digits @-9. Actually, nothing fatal happens if all the JP
C,ERROR statements from 1660 on, are removed. Entry of numbers 65536 through 99999 will
return a modulo 65535 result.

Well, where are we? We now have any number input from the keyboard into NBUFFER in a
binary state. Using NBUFFER we now convert back to ASCII for each of the three bases.
No new concepts. Here is the rest of the code in subroutines DECASC, HEXASC, and

BINASC:
$183@ DECASC PUSH HL ;save for next one
$1840 LD DE, DBUFFER ;point to decimal in mem
91850 LD BC, 10000 ;# of ten-thousands
91860 CALL DECASC1 ;GOSUB find decascl
9187¢ LD BC, 1000 ;# of thousands
(1880 CALL DECASC1
91890 LD BC,100 ;# of hundreds
giggg CALL DECASC1
LD BC, 10 ;# of
$1920 CALL DECASC1 Sateps
91930 LD BC,1 ;# of ones
g%ggg ggtL DECASC1
HL N
01960 T ecover nbuffer
#1973 DECASC1 XOR A

;cheap way to 1d a,@

(#1980 ALOOP OR A ;clear carry flag

91990 SBC HL, BC ;find how many times BC is

ggggg g:c g,ADD ;in hl, if neg put it back
:pl i

95020 . o place count in accumulator

@2@3@ ADD ADD HL, BC ;restore the one too far

p2040 ADD A, 30H ;make it ASCII

ggggg %Rc [()lElE),A iput digit in buffer

32070 oE spoint to next place

We simply take the number in HL (NBUFFER) and subtract th
ten that could be in it. We set BC to 10000 and subtract

a positive number (NC), we subtract a .
too far, so we ADD back the last minuend

e highest possible multiple of
) If the subtraction results in
gain. When the result is negative, we have gone

to restore the positive value. We also counted

Page 48

the number of successful subtracts in A. The number in A is then the number of
ten-thousands that was in the original number. To convert this value to an ASCII
number, ADD 3@H or OR 30H. You know that we can print the contents of A to the video
through @DSP. Here is the best illustration of our problem. Assume A has 6. If we
CALLed @DSP with 6 in A, NOTHING would print because the ASCII value for 6 is an
unprintable (not obscene) character used to ACKnowledge in serial communications. To
get the number "6" to print on the video, we must first modify it to 36H.

in DECASC, we use DBUFFER to build the string of ASCII characters one byte at a time.
Returning from the sub DECASC1, we try each diminutive power of ten until the number is
@. At that time, DECASC returns to the main body which calls HEXASC:

P2@80 HEXASC PUSH HL ;save count

#2090 LD DE ,HBUFFER ;point to buffer with DE
92109 LD A, H ;convert high half of H
#2110 AND @F PH smask off bits 3-0
92120 CALL SHIFT ;shift it down to lsnibble
$92130 CALL CONASC ;make it ASCII

92140 LD AH ;convert low nibble of H
p2150 AND PFH ;mask off 7-4

92160 CALL CONASC

@2170 LD A,L ;convert L as we did H
(#2180 AND @F@H

92190 CALL SHIFT

02200 CALL CONASC

p2210 LD A,L

92220 AND @FH

92230 CALL CONASC

02249 POP HL

#2250 RET

(2260 SHIFT LD B,4 ;loop 4 times

$2270@ SHLOOP SRL A ;shift right 1 bit
(2280 DJINZ SHLOOP

@2290 RET ;

$2300 CONASC ADD A, 30H ;make it an ASCII .
92310 cpP 3AH ;does it surpass arabic
02320 JR C,0K1 ;IF no THEN okl ELSE
92330 ADD A7 ;offset for A-F range
@2340 0K1 LD (DE),A ;stuff in buffer
92350 INC DE ;point to next position
$2360 RET

This is the easiest because it just involves adding 30H to the values ¢-9.and 37H.to
the values A-F (1@-15) for each of the four nibbles.'The_sub SHIFT moves information
obtained from the high nibble to the low nibble that it might undergo the services of
CONASC which adds 3@H. If the sum is greater than 39H ("9") then another 7 is added.
The string is concantenated in HBUFFER and HEXASC returns control to the main body

which calls BINASC.

@237@ BINASC PUSH HL ;save HL
$2380 EX DE ,HL 0 Dg <==> HL
92390 LD HL, BBUFFER ;point to buffer
92400 LD B,2 ;establish loop of 2 bytes
@241@ BLOOP LD A, 8H ;set gptblt marker in A
HL) ,30H ;set bit to zero

ggzgg Gt tBSH AF) ;save bit position
2440 AND D ;see if posi@ioq is set
P2450 JR Z,ZEROD ;if not - sklp"1§
$2460 LD (HL),31H ;ELSE put a "1 "IQ Euffer
@247@ ZEROD INC HL ;point to qext bit
p2480 POP AF srestore bit position
§2499 SRL A jshift it right

AF ;save it
3322% g??H 3,A ;test for nibble's end
g . N ;skip over space
#2530 INC HL 3SK1p OV P

(#2543 NOSKIP POP AF ;restore bit position

@2550 JR NZ, BLOOP2 ;go'til nibble is depleted
#2560 INC HL ;skip space between_bytes
(32570 LD D,E ;place E's pattern in D
@2580 DJINZ BLOOP :do the other byte

#2590 POP HL

2600 RET

?2610 END 5200H

This routine tests each bit to see if it is on or off. It always writes an ASCII "@" to
the string in BBUFFER. Then it tests for 1 and if it is a onme, writes 31H to the
string. It writes the zero first to alter the contents of any residual string left from
a prior conversion. Also, this procedure skips a space every 5'th.character to bust up
the 16 character string into 4 four character segments for readability.

Notice the error trapping in the last three subroutines is non-existent. This is
because the information is coming from the computer, and is not subject to an error

which the program can deal with. (You try to program around a dead RAM bank or a power
glitch.) Extensive error work is mandatory whenever getting information from a monkey
(Monkeys like to type between the keys). Always remember that most operators are merely

incompetent or inadequate but be prepared to deal with the sadistic.

Start by assuming that whatever instructions you provide will be ignored excep! in
crisis. Then be prepared to be the object of abuse because your instructions simply
tell the operator what to do and not every possible combination of what NOT to do.

Above all else a friendly program must not rely on written instructions in lieu of
error traps because if you tell somebody that such and such a thing will produce bad
results, then that is EXACTLY what they are going to proceed to do in order to observe
the disastrous results. (It's kind of like saying, "Whatever you do, don't ever press
that red button".)

The problem with the error traps employed in the six routines above is that eventuaily
a system crash would occur if enough errors were repeatedly made. Why? All of the orror
traps are in subroutines. A CALL instruction PUSHes the return address onto the stack.

A RET POPs the address back into the PC. You can see that we JP out of a sub back to
the start of code. This leaves an address on the stack which is in deplorable taste. If
enough litter was dumped on the stack (which continues to build down in memory’, it
eventuaH_y starts overwriting things it shouldn't because it has finite space to
operate in. These kinds of problems are really up to the programmer to solve. It would
be unlikely, in fact, it would almost have to be deliberate (see sadist) for this to be
encountered, but....

The JP to @EXIT by the way, restores the stack to its correct level, so if we make it
back to LDOS Ready we're OK. And now for the LET US ASSEMBLE CONTEST: correct the stack
probien mentioned: (nint : s 1t LD S,AL and LD (sa),% can elp) Secondly, renrte
: o eliminate use of the C register. Thre 1 i ive a FREE
Technical HELP package, for correct replies. = BBptaNLL) Pace e

N LS IT WAIASDhDI]

MEAYFFIERI\AILERIE LA¥i\™

Configuring with non-relocatable code on floppy and hard disk discussed
or--- What's up there anyway?
by Joseph J. Kyle-DiPietropaolo

;ggnwggwgsg:atwgt i,gatem uses high memory for many different reasons. That does not
e l’n’gh Skl ab : S]always uses high memory. The "base" LDOS system does not use
2y e e)c/;]uf also does not allow the use of special LDOS features. Many of
high memory.pEachaiteiatz;(tes (the KI/OVR, Hard Disk operation, KSM, ...), do use some
of REah mesory Unfort uses high memory can relocate itself to any available area

Y- ortunately, many programs that are not distributed by LSI were not

written to these standards. Thes
: ' . € programs require i o8
available, and this may not be the case for any giveg stacﬁ;:;;:azzgﬁ o

Page 50

©

@ Does this mean thqt such a program can't be used on LDOS? Not necessarily-- if the
program is otherwise compatible with LDOS, the solution is relatively simple. Within
LD0S, there is provision to tell the system not to use a specified area of memory. This

area can then be used by whatever program requires it.

st's look at a specific example. Suppose you have a program that requires the memory

]_,

from x)-Ema- to the top of memory (you may insert the appropriate address from your
program).

1) Boot up your system with the <clear> key held down. This will prevent any

existing configuration file from loading.

Use the MEMORY command to protect the area to be used by your program. In this
example, you would type "MEMORY (HIGH=X'E7@¢')". LDOS will now "avoid" this area.

Add any LDOS features you may wish to use at this time (KI/DVR, PDUBL, RDUBL,
vesi)e

4 Use the "SYSTEM (SYSGEN)" command to save this configuration on disk. It will
automatically load each time you boot up this diskette.

you are running a hard-disk system, things are a bit more difficult. At this point,
nust set-up your hard disk drivers. This example will show how to set-up the RS 5
Mey hard disk, but the principles will be the same for any system.

Use the SYSTEM (DRIVE=n,DRIVER,... command to set up the system.
To do so, remember the following facts:

O a) The primary disk drive is 1/0 select #1
b) Logical drives @-3 will be heads 1-4

3) Type the following "SYSTEM (DRIVE=1,DRIVER,DISABLE)". The driver is “TRSHD3", and
the 1/0 select is 1. There are 153 cylinders on this drive. Number of heads for
the partition is 1, and starting head number is 2.

4) same, but DRIVE=2. Starting head number is 3.

5) same, but DRIVE=3. Starting head number is 4.

6) same, but DRIVE=4. Starting head number is 1. The'hard_dl:sk is now set-up, but
drive @ is still the floppy. The following sequence will finish things up.

7) Enter "SYSTEM (SYSTEM=4)". Floppy disk #0 will now be logical drive #4, and the
hard disk is drives @-3. If you have two floppies, use the follgwmg_command to
set-up the second drive. wSYSTEM (DRIVE=5,DRIVER)", and the driver is MOD3 (or

MOD1). Physical 1/0 drive select is #2.
8) Use SYSTEM (SYSGEN) to store this set-up on the hard c_irive, and COPY
CONFIG/SYS.CCC:@ :4 to move this configuration from the hard disk to the boot-up

flo 2
PPy Errata:

In the last issue, this column indicated that 14 + 9 = 25. Please note that 14 + 9
actually equals 23, not 25. I'm sure that nobody is interested in the long and twisted

chain of events that led to this error.

Q i i i i DOSes. Super
. In the April '83 Quarterly, the LDOS topic was moving files between LY
Utility 3?:,5 vers?on 3.x w{f} move files between various different operating systems

. / ; ; i have a lot of files to
With little or no trouble (on single-sided diskettes). 1f you ¢
move, the savings in effort alone could easily be worth $79, not counting future use of

the program.
Page 51

B

by Chuck (sort of)

This month's Corner will be a bit different than most, in that I'm not going to write
it (except for this part, of course). Instead, a guest author will be presented. Ban;
first, here is the correct answer to, and the delayed announcement of the winners of
the last JCL contest, held in the April issue.

The point that the JCL question was trying to make is that a label will be fand even
if it is in the middle of a false //IF conditional block. There are sever;al different
things that can be done to correct it, but they all boil down to putting the label
somewhere else. The three winners drawn out of the bag were Byron Nate of Albert
Robert Wright of Georgia, and Mark Vasoll of Oklahoma. Congrats on the Tuck of the
draw!

Ever hear the phrase "only limited by your imagination"? Well, to show that this
truly the case with JCL, read the following article by Jim Kyle. By the way, 1'd like
to see more articles of this kind for inclusion here, so if you have a favorite JC
procedure, send it in now! If worse comes to worse, I may even someday include our
(sort of) procedure used to build SYS@ for the MAX-80.

TOMAT WIT

by Jim Kyle, 12191 Western View, Oklahoma City, OK 73132
CIS 73105,1650 (495) 728-3312

LDOS JCL has uses limited only by your imagination. Here's one more way to use
Perform the same editing operations on a whole set of files with only one line
keyboard entry.

The task which spawned this idea was to convert a number of rather large files into
EDAS-compatible source language. The files themselves were generated by a mix
Fortran, Macro-8J, and EDAS modules, and variables were not named consistently in the
original source programs. Therefore I used DSMBLR-III to disassemble each of the large
files into a set of EDAS source files -- but this lost the mnemonic names completely.

To restore the mnemonic names, and at the same time introduce total consistency of
names across the whole set of file sets, I created a simple JCL file which took as its
input argument the name of the file to be edited, then invoked EDAS, loaded the file,
g]ol?al_ly changed each of the desired references, wrote the file back in its original
position, and //EXITed. It worked perfectly, but when one original file expanded to 6
or more *GET files during disassembly it required constant attention to invoke the JCL
for the next file in sequence. Enter the brainstorm.

Years.ago, I was working with an interpreter which passed arguments from function to
funct1_on, and developed a means of passing a set of arguments one at a time: If the
function actually worked with ARGl, I made it accept a sequence such as "ARG1, ARGZ,
ARG3,... ARGN", then ended it with a call back to itself which passed only"'ARGZ.
ARG3,... ARGN". At the entry, it checked for ARG1="", and if no ARGl was present,
assumed the job was complete and therefore quit. The effect was that by typing the
whole set of arguments on the first call, they were processed one at a time and each
one that had not yet been processed moved over one place on the next call. (You'll see

a resemblance to normal recursive-calling techni : i
i g ques here; that's what led to the idea

The same thing works with LDOS JCL. The
filter which determines how many arguments wer is i i
| € e passed to this invocation. When the
;;l;s;tggtgcgg Egathzlx argt/:gg[lt; v]vere passed to DO this time forvinstance it then
Same i e, passin - bt
the new DO (the first one has already begn u Lt Fivter the s g T

‘ ' . sed by now and is no lon ired). The
filter is created by nesting another IF-ELSE-END construct inside %:; Efgén;?at):se of

/ITF - J/ELSE - //END construct provides a

Page 52

)

this one; you wind up, for a 7-arqument filter, with a string of 7 //END statements in
@ a row just before the //EXIT statement.

Here's my EDIT/JCL file as the example. The items in angle brackets are comments and

<hould not be included in your JCL. Note that I also use the //INCLUDE statement to get [
the actual editing commands for EDAS. This makes the outer shell JCL work unchanged for '
any editing sequence; I just pass the name of the file to be INCLUDEd as one more (|
arqument. It does, however, require a second filter to remove the INCLUDE file name. 1

lo start the sequence, just type: ‘
FDIT (INCL=editfile,FI=filename,A=a,B=b,.....G=g)

and stand back. It's fully automatic from there until the set of 8 files has been

edited. If you have more than 8 files in your set, this JCL will do only 8 at a time.

For the 9th and later ones, type:

00 EDIT (FI=filename,FS=H,A=1,B=d,..... G=0)

.re's no need for the INCL since you won't need to copy the edit sequence again, and
cluding the FS argument keeps the first file from being processed again.

velcome comments and/or constructive criticism. You can find me on the LDOS SIG of

most any night; if I'm not there, leave a message
« FiMane

//. EDIT/JCL - July 12, 1983

[/if =-fi <error check for filename>
O /. Must define base file name Fl=

J7auit

//end

//if incl <then copy new INCLUDE file>

copy #incl#/edt incl/edt)

//if g <and repeat DO without INCL>

do edit (Fi=#fi#,a=faf,b=#b# c=hc#,d=#d#, e=tef,f=#f#, g=#of)

//else

//if £

do edit (fi=#fi#,a=#a#,b=#b#,c=#c#,d=#d#,e=#e#,f=#f#)

//else

//if e

do edit (fi=#fi#,a=#a#,b=#b#,c=#c#,d=#d#,e=#e#)

//else

//if d

do edit (fi=#fi#,a=#a#,b=#b#,c=#c#,d=#d#)

//else

//if ¢

do edit (fi=#fi#,a=#a#,b=#b#,c=#c#)

//else

//if b

do edit (fi=#fi#,a=#a#,b=#bF)

//else

//if a

do edit (fi=#fi#,a=#af)

//else '

77e§g‘t g iy ¢these unwind the first nested filter>
Q //end <of //if b>

//end <of //if ¢

//end <of //if &

//end <of //if e

//end <of //if > ;

//end <of //if g, and filter>

Page 53

B

//exit <never reached because DO redoes SYSTEM/JCL>

//end <of //IF incl nesting>

edas (jcl,abort)

//if fs ‘ _ .
L #fig#fs# <concatenate FilenameSuffix to Filename>
//else

L #fi# <use Filename only>

//end

//include incl/edt <enables any sequence to be used>
//if fs .

W #fig#fs# <{same as when Loading>

//else

W #fi#

//end

b <get out of EDAS>

//if g {start of shift-over filter>

do edit (fi=#fi#,fs=#a#,a=#b#,b=Fc#, c=#d#, d=Fef, e=#f#, f=#gf)
//else

LTt

do edit (fi=#fi#,fs=Fa#,a=#b#,b=fc#,c=F#d#, d=#ef, e=#f#)
//else

//if e

do edit (fi=#fi#,fs=Fa#,a=#b#, b=#c#,c=#d#,d=#ef)

//else

//if d

do edit (fi=#fi#,fs=F#a#,a=#b#,b=Fc#,c=#d#)

//else

J/if ©

do edit (fi=#fi#,fs=#a#,a=#b#,b=#c#)

//else

//if b

do edit (fi=#fi#,fs=#a#,a=#b#)

//else

//if a

do edit (fi=#fi#,fs=#a#)

//else

. EDIT RUN COMPLETE

//end <begin unwinding the filter>
//end

//end

//end

//end

//end

//enq <of //if g, as before>
//exit <at completion of stacked jobs>

tters from th tomer Service Mail

A new feature here in the LSI Journal, Letters from the Customer Service Mailbag will

present some of the most frequently pose
to all LDOS owners.

Q: I just got SuperScripsit from Radio Shack. How can I use it under LDOS?

A: The latest version of SuperScripsi i i
comes with a disk file ca11ez "HARDD?SK;JE[ST el o L
the necessary LDOS patches. If this file is not on
Model 1 version, contact your vendor to
Also, see the article on SuperSCRIPSIT later in this issue.

Page 54

d questions, and questions of topical interest

This version
Performing this “DO™ file will apply
your diskette, or you have the
get the proper version and/or complain.

Q: I want to use my (Scripsit) or Microsoft (FORTRAN) or (MACRO-8F) or (BASCOM) on
LDOS, but I can't find the version that matches the patches on your "FIX Disk".

A: Send us your original master program diskette for proof of purchase. This would be
the diskette from Microsoft or Radio Shack, with their original label. Also
include $10@, or a blank diskette and $5. We will send back your original diskette
unaltergd, and also send back a diskette containing a LDOS-compatible copy of the
appkrop;‘1ate package. Remember, that's $10 or a blank diskette and $5 (per program
package).

I want to use Profile 3+ on LDOS. What should I do?

A: The original version of Profile 3+ will not function under LDOS. You must get the

"Hard Disk Profile 3+" from Radio Shack, Cat. # 26-1593. For existing owners, Cat.
#700-6203 1is available as an update.

['m trying to run my Profile 3+ with JCL, and it's not working right. What's the
deal here?

\: Profile 3+ uses a combination of input systems, and most of these inputs will not
accept data from JCL files. We have had some success here using "TYPEIN", a
utility on our Utility Disk #1. Utility Disk #1 is available directly from LSI for
$39, plus $3 shipping and handling.

When I do a LINK *DO *PR to get output on both the video and printer, my printer
starts underlining/(insert appropriate print effect here). What's wrong with LDOS?

Well, there's nothing really wrong with LDOS, it's just that your printer is
responding to the normal video display control codes. One solution is use the
PR/FLT, with a parameter of XLATE=X'GF@@'. This will effectively remove the
control code that causes the problem. If you have an application requiring more
sophisticated and/or multiple translations, see our Filter Disks #1 and #2. The
Filter disks are available for $29 each plus $3 shipping and handling per disk.

nd rSCRIPSI
by Joseph J. Kyle-DiPietropaolo

LDOS and SuperScripsit is a powerful combination, but some preparation is necessary to
ensure success. First, make sure that you have the latest version of SuperScripsit
(henceforth known as "SS"). As of #9/10/83, this was version @1.02.8J. For the Model 3,
this version includes the LDOS patches for SS in a file called HARDDISK/JCL. DOmg this
JCL file will apply the patches to SS. As of #9/10/83, Radio Shack has not issued
patches for the Model 1 version of SS. Some testing has_been c_iong, and it seems to work
pretty well as-is on the Model 1 under LDOS. The first listing below is a patch-to
allow directory query from inside SS when running on LDOS. Please don't call asking
about use of the Model 3 Dictionary, because LSI is not working on it. Contact Radio

Shack with any other questions regarding Model 1 usage.

Th isti re for the use of Model 3 SS on the MAX-80. The§e patches w1:11
..pg,-:i’.(.t tf,?:r Slsls;:.nignst:r driver to the proper MAX-8J address, and provide for special
character usage. The last two listings are for the modification of the DW2 driver to
allow the limited use of LDOS drivers and filters on the *PR dev3ce. including the
RS232 driver. Similar patches could be made to any other driver, based on the
information given here. These patches should work on both Mod 1 and 3 SS, but they have

only been tested on the Mod 3 version.

Page 55

i i function, and
One last note-- if you are attempting to use the ASCII to SS convert 5
can't seem to get S% to read your file, try adding a HEX @DPP sequence to the end of
your file. If you don't have any sort of file editor, use BUILD with the HEX and
APPEND parameters to add these two bytes to your text file.

. SCR17M1/FIX

. PATCH for SuperSCRIPSIT version §1.02.90 MODEL 1 ONLY!!

. This patch will provide directory query from the main SS

. menu, as option <D>. This will not, however, appear On the
. menu, as there is no room.

. patch SCR17/CTL
DP@,36=38

DPP,3C=D6 3@ 4F P96 00
DP@,42=63

D@@,DP=37
D@2,4C="LDOS "

D@2 ,A2=44 50 8D

. end of patch

. SSFIXES/JCL
. PATCHES TO CORRECT SUPERSCRIPSIT PRINTER DRIVERS @1.02.00
. FOR MAX-8@ ONLY!!
PATCH DMP21@@/CTL (D@1,P6=32 E8 37)
PATCH DMP21@@/CTL (D@2,95=3A E8 37)
PATCH DW2/CTL (D@2,21=32 E8 37)
PATCH DW2/CTL (DP3,35=32 E8 37)
PATCH DW2/CTL (DP2,@3=3A E8 37)
PATCH DWP41@/CTL (D@3,11=32 E8 37)
PATCH DWP41@/CTL (D@3,25=32 E8 37)
PATCH DWP41@/CTL (D@1,F3=3A E8 37)
PATCH LP4/CTL (D@@,DP=32 E8 37)
PATCH LP4/CTL (D@1,C4=3A E8 37)
PATCH LP8/CTL USING LP8/FIX
PATCH DMP4@@/CTL USING DMP4Q@/FIX
all 32 E8 37 sequences are replacing D3 F8 99
3A E8 37 DB F8 90

. LP8/FIX
. Patch for LP8/CTL SuperSCRIPSIT printer driver 91.02.00
. TO RUN ON MAX-8@ ONLY!!!!

. CORRECT FOR NEW TOP OF DRIVER POINTER
DP@,A4=22 BE

. PATCH IN VECTOR TO OUTPUT DATA
DP@,EF=C3 1E BE

. ALTER STATUS INPUT TO PROPER LOCATION
DP1,E6=3A E8 37

. ADD NEW OUTPUT CODE

X'BE1E'=32 E8 37 (9

. DMP4@@/FIX

. Patch for DMP4@@/CTL SuperSCRIPSIT printer dri
. TO RUN ON MAX-8@ ONLY!!!! river P1.92.90

. CORRECT FOR NEW TOP OF DRIVER POINTER
D@J,A4=46 BE
. PATCH IN VECTOR TO OUTPUT DATA

Page 56

B

DP@,FD=C3 1E BE

. ALTER STATUS INPUT TO PROPER LOCATION
D@P1,F4=3A E8 37

. ADD NEW OUTPUT CODE

X'BE42'=32 E8 37 C9

. Patch to MAX-80 SYS@/SYS for 5.1

., This patch will change certain graphic characters to the

. special characters used by Mod 3 SuperSCRIPSIT. These graphic
_ characters will no longer be available for normal use, so only
. patch a special disk for use with SuperSCRIPSIT.

insert "delta"

0p6,9F=00 90 @98 14 22 7F 00 00
DP8,A4=00 00 00 00 00 00 90 00
: “copyright"

0p6,EF=3C 42 9D Al Al 9D 42 3C
DP8.F7=00 90 00 00 93 90 00 00
- “paragraph"

D06 FF=3E 4A 4A 3A QA PA QA DA
0p9,07=00 ¢? ?0 P 00 90 90 09
{ ll_ ? "

n@7,58=FF E3 DD F3 F7 FF F7 FF
%9,63=00 00 90 90 00 00 09 00

. ROM/JCL

_ This JCL will create an additional driver that uses the
. *PR DCB vector to allow limited use of LDOS DRIVERS and
. FILTERS. Main use is to capture a "PRINTER IMAGE FILE".
. Invoke with "DO ROM".

COPY DW2/CTL TO ROM/CTL

PATCH ROM/CTL USING ROM/FIX

//EXIT

. ROM/FIX

. Patches to SuperScripsit 1.2 DW2 printer driver
. these changes make the DW2 driver use the system
. printer driver call to provide the 'hooks' into
. the system.

Correct for new top of driver, as SuperScripsit
. maintains this pointer at load address X'BB73'
D@g,80=3D BF

previous contents were 35 BF

Ignore printer ready check, as system driver will yajt
on printer not ready, and we don't want mass quantities
of zeros in disk files. This will cause the system

to hang on *PR device not ready

0g2,03=3¢ 30 99
previous contents were DB F8)

Insert calls to patch area. This driver happens to have
. two output sequences.
DP3,21=CD 35 BF
DP3,35=CD 35 BF .
. previous contents were D3 F8 @d (in both cases)

Now let's add the call to @PRT. This is an X-PATCH so
. that it extends the file. The address will depend on
. the value found in the pointer at X'BB73', here is the

Page 57

correct address for the DW2/CTL driver.

X'BF35'=D5 F5 CD 38 9@ F1 D1 C9
. end of patch

To create a disk file of ASCII output---

ROUTE *PR to FILESPEC/EXT

enter SuperScripsit... i
print the document (proportional will function, but if used
the destination printer must also be a DW2, and the file
will be inordinately large.)

Now, you may exit to LDOS and RESET *PR

This patched driver could be in place at all times, but Fhen the system would hang on
printer not ready. Don't forget to "block-adjust" if changing drivers.

X-8@ MEMORY MAP - b
or "Hey... where'd that go??"

The primary design criteria of LDOS for the MAX-B8J was to emulate a Model III running
LDOS. Therefore, all of the documented system entry points and storage areas HAD to
remain in the same place as on the Model III. This included the places in the Model Il
ROM, even though that area is RAM on the MAX-8. Many of you have asked where we put
things, and if there are "safe" areas of memory still unused by the system and
available to the user. This article should describe where things are, where they
aren't, and where there is nothing.

To make things easier, let's define a couple of terms to indicate the different areas
of memory on the MAX. LOWROM will mean the area of memory from @JUUH to 2FFFH. This is
the area normally occupied by the I/0 drivers and the BASIC code on a Model I or !
HIROM will mean 3000H to 3BFFH. On a Model III, this is used for various things. On a
Model I, this area was partially unused, with certain memory mapped addresses defined
here and there. VIDRAM is the area from 3CAJH to 3FFFH, and represents the memory
mapped video on both the TRS8J's and the MAX-8J (more on this later). SYSRES will refer
to the area from 4000H to 4DFFH.

To start things off, hardly anything was changed in LOWROM from @7¢8H to 2FFBH, as this
area contained the BASIC code licensed from Microsoft. The only thing done was to
change the cassette I/0 entry points to provide an immediate return. However, the area
from_WWH to 707H (containing all the I/0 drivers, SET and RESET, and some oiher small
routines) was radically changed, because this area in the Models I and IIl ROM is

copyrighted by Tandy. Suffice it to say that we put the n Ight
places to make the machine work like a Model III. i R R e

Currently, there are scattered areas in the LOWROM

area that are not used by the
system. However, these cannot be documented because they are the most likely aregs to
be changed from version to version, and were during the development that produced the

current 1 X _
crazy. 93/91/83 master. Anyone (other than us) that attempts to use these areas 1S

The interesting part of the MAX-80 is the HIROM

: () area.
abogt keeping anything in any particular place, there 525
available for us to play around with. Ecstas
RAM?? Well, here is what came about.
3000H-30FFH
This area contains all the routines to i
Near the very beginning is a short vectgf‘cizs it ane clock/onendar - da, th M.

. b1 ;
driver, ATE and @TINE. The LBASIC TIMES code is at the vecy ned nr ise o ine keyboard

Since we didn't need to worry
s & almost 2.5k of useable memory
y! Wild dreaming! What to do with all that

Page 58

3100H-31FFH .
This area contaln.s about half of the floppy disk driver. The other half is up in the
normal place, starting around 4585H, just like on a Model III. The code does not go all

the way to the end, but it come so close that there is not really any spare RAM that
should be considered available for users.

3200¢H-35FFH

Here lives the keyboa(d Qriver, the type-ahead and the JKL screen print, plus the
.T;'Ei":’-ahead buffer. This is why no extra memory is used when KI/DVR is set on the
MAX-80. There ‘is spare memory near the end of this block. The type-ahead buffer stops
wwound 35BFH. This leaves approximately 64 bytes available.

36U0H-36FFH
Tnis is an area that is unused by the system, except for two bytes at 36FEH and 36FFH.
s normal RAM, available for the user up to 36FDH.

JIH-37FFH
is "slow" RAM, and contains the memory mapped 1/0 locations as documented in the
'-80 technical manual. None of the non-I/0 locations in this area are used by the
tem.

H-38FFH

defined in the MAX-8J technical manual, this area represents the keyboard matrix,
, is used as such. This area is the same as the Models I and III, except for the
iditional keys provided on the MAX-80.

3900H-3A6CH, 3A6DH-3BFFH
first part of this area is sort of strange. It is used during booting, but can
er be used as regular RAM. It is not used by the system once the boot has finished.
second half starting at 3A6DH holds the driver for the LOBO hard disk controller.

. appears that the safe spare areas still available for the user are from around 35C@H
36FDH, and from 390@H to 3A6CH. However, be cautioned that if any patches to the
tines in the HIROM area need to be done, any patch code that has to be added will go
this free area. Also, there have already been some utilities written by MAX-8¢
ners that use this region, such as MEMDISK programs. If you are using one of these

utilities, check with the author before putting your own code in this region.

Now comes the large gray area referred to as SYSRES. This is an all encompassing area
that contains the LDOS resident system and areas used by BASIC and LBASIC. Very little
had to be changed in this area on the MAX-8f. Most of what is different deals with the
interrupt handling. Like the Models I and III, there is NO free space 1n this area.

One special area on the MAX-8@ is the first area of HIROM, from 3000H to 33FFH.
Although this is normal RAM under 5.1.3, it is also the same location that the second
half of video memory occupies. This video memory is not used in LDOS, because the 16x64
format of the screen only requires 1K of video RAM, and 3C¢(_JH to :?FFFH can be used.
When using an 80x24 video driver, the real RAM must be temporarily swytched out ar]d the
extra video memory switched in to access the screen. From the earher‘dgscnpt!on of
what normally is kept there by LDOS, you can see the conflict. Those writing their own

drivers should take this into consideration.

”
 ————————————
 e—————————

Page 59

Performing DATE conversions in
by Dick Konop

There have been several requests to discuss date conversions]'n BASIC. In particular,
converting a date in the form MM/DD/YY to its correspondv.ng day of the year. The
following routine will accomplish this type of date conversion. It will also take a
julian date (in the form -YY/DDD) and convert it to the corresponding date in the form
MM/DD/YY.

The routine is relatively straight-forward, and the Remark statements serve as
documentation. For those of you who are not interested in a full blown date conversion
process, consider lines 210 and 220. These two lines will determine the day of the year
using the RAM Storage assignment of DAY$. Note that this date determination process is
only valid on LDOS-5.1, while the other date routine can be used with any version of
LDOS.

10 ‘This is the init routine. It must be run prior to using the date subroutine.

20 !

30 DIM D(12):D(@)=P:D(1)=31:D(2)=28:D(3)=31:D(4)=30:D(5)=31:0D(6)=30
ggaD(7)=31:D(8)=31:D(9)=30:D(10)=31:D(11)=30:D(12)=31

200 'Routine to compute current julian date; DC=day of the year. This date is taken
202 'directly from the system. Note that Model I owners should use the addresses 203 '
X'4047' and X'4048'

204 '

210 IF (PEEK(&H4418) AND 1) THEN DC=256 ELSE DC=0

220 DC=DC+PEEK(&H4417)

230 !

232 'The following routine replaces the ever popular CMD"J" command. The source value
236 'is passed in the variable JD$. It may be in the form "mm/dd/yy", in which case the
238 ‘day of the year will be passed back from the subroutine. It may also assume the
240 ‘form "-yy/ddd", in which case the subroutine will pass back the date in the form
242 'MM/DD/YY. Note that the value passed to the subroutine must adhere to the syntax
244 ‘rules, otherwise the subroutine will return the string "*".

ggi :The value of the subroutine (or error value) will be returned in the variable JCI
262 'To use this subroutine, the following sequence of commands can be used:

265 '

270 LINEINPUT"Enter date string (either MM/DD/YY or -yy/ddd) ";J0$

275 GOSUB 300

280 PRINT JCS$:END

285 !

300 'The first thing that is needed is to determine the t i d
39000 (3 26 mn/ a3 Sor - yy/dad) ype of value being processed
305 LY=P 'reset leap year to "off"

gig IF LEFT$(JD$,1)<O"-" THEN 500 'goto 500 if mm/dd/yy

312 'Lines 320 - 370 check to see that a valid date string was passed to the

g%g 'subroutine, and return an asterisk (*) if a proper date string is not passed.
320 IF MID$(JD$,4,1)<>"/" THEN JC$="*":RETURN

325 IF LEN(JD$)<5 THEN JC$="*":RETURN

330 YR$=MID$(JD$,2,2):CK$=YR$:GOSUB 1000

34¢ IF CK=-1 THEN JC$="*":RETURN

350 DY$=MID$(JD$,5):CK$=DY$:GOSUB 1000

36@ IF CK=-1 THEN JC$="*":RETURN

365 IF INT(VAL(YRS)/4)=VAL(YRS)/4 THEN LY=1

g;g {F VAL (DY$)=0 OR VAL(DY$)>365+LY THEN JC$="*":RETURN

72 'LY=1 i . ;
375 'L if leap year. February (D(2)) must be adjusted accordingly

Page 60

375 D(2)=D(2)+LY

380 DY=VAL(DYS$)
381 °*

382 'DY contains the day of the year passed to the subroutine. The month is determined

383 'by subtracting the number of days in each month from this value until it is less

385 'than or equal to the number of days in the next month. DY will contain the day of

386 'the month, while L represents the month.

387 °

389 FOR L=1 TO 12

399 IF DY<=D(L) THEN 400 |
395 DY=DY-D(L):NEXT L
L;f) |
797 'Lines 400-450 form the date string given the year (YR$), the month (L), and the
198 'day of the month (DY).

199 ¢

:ud Jcszn / / "

g5 MIDS$(JCS,7)=YRS

410 VT$=MIDS(STR$(L),2):IF LEN(VT$)=1 THEN VT$="@"+VT$

420 MID$(JCS,1)=VT$

130 VT$=MIDS(STR$(DY),2):IF LEN(VT$)=1 THEN VT$="0"+VT$

g MID$(JCS,4)=VTS

145 D(2)=28

A5 RETURN

150 'Lines 500-630 determine the day of the year given the date in the form MM/DD/YY.

‘Lines 500-600 perform a check to see that a valid date string was passed to the
, '‘subroutine, and return an asterisk (*) if an improper date value was passed.
O 100 1F LEN(JD$) <8 THEN JC$="*":RETURN
. 510 FOR L=3 TO 6 STEP 3:IF MID$(JDS,L,1)<>"/" THEN JC$="*":RETURN
520 NEXT L
530 Wﬂ$=MID$(JDS,l,2):DD$=MID$(JD$.4,2):YY$=MID$(JD$,7)
} CK$=MM$:G0SUB1QQQ: IF CK=-1 THEN JC$="*":RETURN

50 MM=VAL (MM$):1F MM<1 OR MM>12 THEN JC$="*":RETURN
560 CK$=YY$:60SUB1@QQ: IF CK=-1 THEN JC$="*":RETURN
570 1F INT(VAL(YYS)/4)=VAL(YY$)/4 THEN LY=1
580 D(2)=D(2)+LY
590 (K $=DD$:G0SUB1GYY: IF CK=-1 THEN D(2)=D(2)-LY:JC$="*":RETURN
603 DD=VAL (DD$):IF DD<1 OR DD>D(MM) THEN D(2)=D(2)-LY:JC$="*":RETURN
(_"j:’f - .
603 'After checking is done, day of the year is calculated, and returned in var JC$
605 °
61@ JC=@:FOR L= TO MM-1:JC=JC+D(L) :NEXT L
62¢ JC=JC+DD:JC$=MIDS(STR$(JIC),2)
630 D(2)=D(2)-LY:RETURN
899 ! ; .
9%¢ 'This routine checks to see if all characters in a string are numeric, and returns
91¢0 'a -1 in CK if non-numeric characters are found.
1G9 CK=@:FOR LL=1 TO LEN(CKS)
1010 A=ASC(MID$(CKS$,LL,1)):IF A<48 OR A>57 THEN CK=-1:RETURN
102@ NEXT LL:RETURN

.

' i ion between LDOS 5.1 and
Thi i1 r the differences the @PARAM function ;
TRSSOE?l]_ll)jgg '6“x :z;ealso explain a few details about how the system accesses a disk

drive the first time when the system is powered up.

14y

by Les Mikesell

Page 61

¥——-————_

typically from the command line, and _store the parsed value of each input at a
specified location. The use of the function is as follows:

Under LDOS 5.1, the system parameter scanner (@PARAM) will read a list of input values, .

HL => opening parenthesis of input list
DE => table of parameters

CALL @PARAM
The Z flag will be set if successful.

The input 1list is in the familiar syntax of all LDOS command parameters, the parameter
name optionally followed by an 'equals’ sign and a value. Numeric values may either be
decimal numbers or hex values using the X' notation. The values ON, Y, YES, (or the
name with no value specified) return an X'FFFF or TRUE for the response. OFF, N, or NO
will return X'000¢ as the response. String values enclosed in quotes return the address
of the first character of the string. If a parameter is not given, the value stored for
the response is unchanged.

The table of parameters is arranged in the following manner:

Parameter name (Uppercase and padded to 6 characters with spaces)
Address to store response value (2 bytes)

....repeat for all parameters...

X'0@ at end of list

TRSDOS/LDOS 6.x versions will also support an identical type of @PARAM using the
functions.

HL => inputs

DE => table 0
LD A,@PARAM

RST 28H

The 6.x version can g]so use a different type of parameter table structure which car
more compact and gives more information about the type of input. If the first byt
the parameter table is X'8@, the alternate structure is used:

X'8J indicate alternate structure

Type and length byte:

bits 5-7 indicate type of response desired
bit 4 if set, accept abbreviated response
bits @-3 indicate length of parameter name

parameter name follows (uppercase)

Response byte - filled by parameter scanner

Bit 7 set indicates numeric value found

Bit 6 set indicates flag parameter found (yes/no/on/off)
Bit 5 set indicates string parameter found

Bits @#-4 = length of parameter found

2 byte address to store the parameter value
repeat for all parameters
X'@@ to indicate end of list

The setting of bits 5-7 in the type and 1 i i a
Wvors Nypelar Thpmt s aiens yp ength byte will not cause an error if the

but does form a i
after the @PARAM SVC is exe convenient mask to test the response byte

cuted. Using the newer t
: : ; ype of parameter table allows the
program to determine the type of input given at "U"-time? which meag? ih:t 2:meric

values of X'00G and X'FFFF can be distinguished from the 'flag' type of response, and

Page 62

a program can be made to har_\dle string or numeric inputs for the same parameter. The

(‘ vaccept abbreviation' bit in the type byte means that the entry does not have to be
repeated to allow an abbreviated form of the same entry, and the 'length' field avoids
the wasted space of padding the entries to a fixed number of characters. The bit fields
of the type and length byte are easily constructed using the logical 'OR' function of
an assembler to merge the fields.

For example, to accept a numeric value for a parameter called SIZE, and allow
abbreviation, the assembler listing could be:

ABB EQU 10H ; define bit 4 for abbreviation

NUM EQU 80H ; define bit 7 for numeric input

TABLE DB 80H ; <=indicate start of table
DB NUM.OR.ABB.OR.4 ;construct type & length byte
DM 'SIZE"

SRESP DB ") ; <=response type byte
DW SPARM ; <= address to store response value
DB) ; <=indicate end of table

SPARM DW /) : <=response value will be placed here

The above syntax is for the EDAS assembler; others may use different notation for the
b function. After using the @PARAM SVC, the program can check the contents of SRESP.
1f bit 7 is set (indicating a numeric response), then SPARM will contain the value that
siven. If anything other than the parameter SIZE (or an abbreviation) and its value
found in the input list, an error will be generated and the function will return
th the Z flag reset.

£ X

(. Careful observers may note that the first access to a disk drive (other than drive
zevo) is generally much slower than subsequent accesses. The reason for this effect
lies in the fact that the disk controller must be told the current head position as

well as the desired destination track in order to position the head for a read or
write. The head position for each drive is one of the values stored in the system drive
cod~ table (DCT). However, on the first access to a drive after the system has been
re-booted, there is no way to determine the current head location. Thus, the controller
will generally be given the wrong information, and will not find the requested sector
on the first attempt.

When this occurs, the disk driver will automatically issue a RESTORE command to the
disk controller, which will force the head to go to track zero, regardless of the
current position. Then, once the actual position is established, the controller 1is able
to calculate the correct number of steps to reach the desired track on.the_next try. An
addition complication is introduced by the auto-density recognition built into the disk
drivers. This is accomplished by performing re-tries after an error in alternating
densities. Thus, the first attempt after establishing the head position may be done in
the wrong density, and another re-try will be required. The correct settings are logged

into the DCT, so subsequent accesses will be correct.

The TRSDOS 6.P system attempts to avoid this problem by issujng the RESTORE corpmand ’Fo
each drive that is enabled when the system is booted. (Th1s may be made optmnq] in
later releases.) This ensures that the current head position 1s known at all times.
However, the RESTORE command takes a significant amount of time to comple?e if it is
issued for a drive that is not actually connected. Since the defaglt setting for the
system is to have 4 drives enabled, and most machines are only equ1pped with 2, th?c;e
is a very noticeable delay as the system is booted. This is easily avoided by U?‘"QTh e
SYSTEM (drive=d,disable) command to disable the drives which are not available. ?111
Q SYSGEN this setting (along with any other dgsired_conflguratlon), am]i go?t;:gr\z;es
occur without the delay. Disabling the unused drives will also speed up globa
where a drive number is not specified for a file.

Page 63

T ——

i r th tt loor

Since we did not write the TRSDOS 6.x manual ourselves, it turns out that there are
several undocumented features that users may be interested in. He'l! throwing in some
other optional patches to the newer TRSDOS 6.1 release at the same time. Also, a patch
for the 5.1.4 disk driver, as explained later.

To start things off, 6.x has a built-in Repeat Last DOS Command. <CTRL><R> will reissue
the last DOS command. This is only valid at the DOS Ready prompt.

Want to do a directory display of more than one drive, but not all drives? With 6.x,
try the syntax:

DIR :2- Show all drives 2 or higher.
DIR :1-:3 Show drives 1, 2, and 3.
DIR -:1 Show drives @ and 1.

Here is a patch to the FDC driver for both 6.1 and 5.1.4 that will help alleviate !
3¢¢ RPM sync problem, and give smoother disk 1/0. However, it disables the interrup
longer, so things like type-ahead, LCOMM, and the spooler will not work quite the san
during disk 1/0. For TRSDOS 6.1 ONLY, NOT for the original 6.9 release!

. Patch BOOT/SYS.LSIDOS

DPC,7D=F3 DB F@ A3 28 FB ED A4
F@C,7D=DB F@ A3 28 FB ED A2 F3
DPD,D1=F3 DB FP A3 28 FB ED A3
F@D,D1=DB F@ A3 28 FB ED A3 F3

. EOP ‘!’

For 5.1.4 for the Model III, use the following:

. Patch SYS@/SYS.SYSTEM
D@5,5B=F3
. EOP

This patch will correct the FREE map display for TRSDOS 6.x when viewing a hard drive:

. Patch SYS7/SYS.LSIDOS
D@5,38=C5 CD 4F 26
F@5,38=CD 4F 26 C5

This_ patcr} to TRSDOS_6.1 will lengthen the drive check timing to be sure of finding a
specified file on the first pass of a drive:

. Patch SYS2/SYS.LSIDOS
DPg ,E6=1F
F@9 ,E6=15

For those of you who would like TRSDOS 6.1 to normally disp] i i
allocation (wide) format, use the following patch to SYSG:y A Al Lo

. Patch SYS6/SYS.LSIDOS
D@4, BP=FF FF
F@4,80=00 00

And last but not Teast... We have had man

Library command back to the old familiar KILLy R 0 O phtohi e changathEPEIE a\

. For all you do, this patch's for you:
. Patch SYS1/SYS.LSIDOS
DP1,CB=4B 49 4C 4C 20 20
F@1,CB=52 45 4D 4F 56 45

Page 64

THE WAIT IS OVER

CP/M

EXCLUSIVELY FOR THE

- Model 4

Now. for the first time, unleash the powerful features resident in your Model 4 computer. Open up the vast
store of CP/M software such as WordStar*, dBASE Il and Multiplan™, along with thousands of others.

Includes INTERCHANGE ™, a utility that allows reading, « Includes MODEM 7, a powerful public domain communica-
writing and copying 20 different manufacturers’ disk tions program for file transfer and remote data base access
formats such as IBM, KAYPRO, OSBORNE, XEROX, etc. such as CompuServ and the Source.

Includes MEMLINK™, a unique feature that uses the « Supports 80 x 24 video, reverse video, direct cursor

optional 64K RAM memory as a fast disk drive. addressing and more.

« Complete with all these CP/M utilities; ASM, DDT, DUMP, « Utilizes the Model 4 function keys and allows user defined
ED, LOAD, PIP, STAT and SYSGEN. keys.

« Operates at the 4Mhz clock in the standard Model 4 mode. « Auto Execute command for turnkey applications.

* NO HARDWARE MODIFICATIONS. Just insert the disk and « FORMAT utility permits up to 52 disk formats to be con-
boot. structed, all menu driven.

* NO COPY PROTECTION. Backups may be made for your « Fast backup routine with verify for mirror image copies.

own use and protection. ‘
« All support programs are menu driven for ease of use.

The CONFIGURATION program supports a full range of : oo
5-1/4" disk drives: 35, 40, 77 and 80 tracks, single and dual + Ready to run in the standard 64K Model 4. The additional,

sided in any combination as well as the standard Model 4 extra cost, 64K RAM upgrade not required.
drives. - Complete with over 250 pages of comprehensive user
documentation.

AVAILABLE NOW FOR IMMEDIATE SHIPMENTccoconemmmmmsensssssssenenes § 199.95

The full line of MicroPro software is now available formatted for the Model 4 using our CP/M Each disk is already configured and ready to run. Just install
the printer of your choice and go

WordStar* Fast memory mapped version $250 InfoStar™ Advanced DBMS i - 5 vreenen 9250
alMerge* Multi-purpose file merging program. 125 ReportStar™ Report generator & file manipulator FrsiaLs 175
SpeliStar® 20,000 word proofreader on a disk ... 125 DataStar™ Data entry and retrieval package A |
Starindex™ Creates index and table of contents 95 SuperSort* Fastand flexible sorting is yours : 125
WordStar Professional. All the above for only 450 CalcStar™ Advanced electronic spreadsheet.... s orsiese)
ORDER INFORMATION 128K MEMORY UPGRADE

ORDER NOW . .. TOLL FREE

Cail now and your order will be shipped at once from our Owr upgrade includes B4K of 150nsec RAM. genuine

Dallas warehouse. We accept American Express,
MasterCard, Visa, mmtmmlmnoﬁp:vmn
known to man. Credit cards are not charged until your
order is shipped. Add $4 UPS surface shipping and
handiing on orders within the 48 States. No State Sales
;::.:"h:’"“'“' of shipments delivered outside of
Rosoy refunds Defective tems are replaced upon

CPM is a Track of Digitad R

800-527-0347
800-442-1310

The Toll Free ines are for orders only
Specifications subject 10 change without notice.

1, Inc.; Interchange and Memiink are Trademarks of Montezuma Micro, TRS80isa Tr
Starindex, InfoStar, ReportStar, DataStar, SuperSort and CaicStar are Trademarks of MicroPTo intemational Corporation. Multiplan s

P&'WNMWM This kit will
mmmmammmmumd
our MEMLINK and TRSDOS 6.x MEMDISK. Comes

with a full 1 yoar Quarantee.
ABARGAIN AT ONLY $99.95

© Copyright Montezuma Micro 1983

ademark of the Tandy Corporation; WordStar, MaiMerge. SpeliStar,
a Trademark of Microsoft

NTEZUMNA

g

L3

2 2143985104 i Hi“
P.0. Box 32027 ~an

Dalas, Texas 75232
""WE KEEP YOU RUNNING" E 0- l

4

Volume 2, Number 5

y
N

4

Sm

allware.

Our software is making a name for itself.

Smallware. That's what we've named our unique soft-
ware designed for microcomputers. Smallware offers
much more than ordinary software: high quality, custom-
er support and a complete product line. You can buy
software anywhere. But for the special features of
Smallware, The Small Computer Company is your one
and only source.

The Small Computer Company is known to many

as the company who developed the filing system soft-
ware Profile Ill Plus—LDOS and TRSDOS versions —
for Radio Shack.

Now, whether you're a microcomputer end-user, dealer
or manufacturer, you can order our Smallware directly
from us.

Here are just some of the enhancements we offer to
Model Ill LDOS and TRSDOS users:

FORMS: If you prepare forms that require several lines of data,
from invoices to shipping instructions, Forms is invaluable. It
allows you to print individual forms (up to 13" x 11%) with
graphics, trademarks, logos, underlining, subscript and
superscriptfunctions.c000nunnn. $125

@) The Small Computer Company; Inc.

230 West 41st Street, Suite 1200, New York, New York 10036

Smalware, Propack, Quikback and SlePro are trademarks of The Small Computer Company, Inc
CPM s a registerad trademark of Digital Research, Inc. Profile is a registered trademark of Racdko Shack

ARCHIVE: Lets you maintain up-to-the-minute, clean files by
inactive

removing records and transferring them to a pre-deter-
mined list or file; split an ex

data base into any number of
specialized files; free substan

disk storage space $150

PROPACK™: A tool that lets BASIC programmers more easily
customize Profile ems. The resulting rams are shorter,
easier to write and er running. Propack also gives the BASIC
program indexed access to Profiledata §75

We also have other enhancements for the TRSDOS
version of Profile Ill Plus and for Profile Plus, which
runs on the Models Il and 12. Call or write for our com-
plete product line brochure.

The Small Computer Company does more than create
award-winning Smallware. Our commitment to the
customer extends to custom design as well as system
consultation.

To order any of these products, call our toll-free sales
number, 1-800-847-4740 (in New York state, call
1-212-398-9290).

le of tent
INTRODUCTION FROM LSI:
ARTICLE SUBMISSION POLICY sevuvvvevnvens O K T T R E RR T IR S0 e oKIC Page
VIEW FROM THE BOTTOM FLOOR G0 L Eievita Bisials SIn nia 0o aTs B ale ale mim(areelels Page
NEW PRODUCT ANNOUNCEMENTS suvivessncssonsanssnssnssacavcasacscanns el S ve Page
FROM OUR USERS:
EZEDIT/FLT - The LDOS command 1ine editor ...ecececceccncessscsanencncnnnns Page
PRPARM - Change those PR/FLT parametersceeeeevccassccccnnssnnncnnss Page
SYNONYM - The LDOS command Synonym ProCeSSOr «.eessssessssssssssannssansss Page
Mod 3 RTC Interrupts - discussed and modifiedcevevennnnnnnncnnncnnss Page
Profile One Plus - A special treat for Mod 1 uSersceeevvsnvnnncccnns Page
REGULAR USER COLUMNS:
*xkx PARITY = ODD *** - Tim Dan€liuK .vvevevereesocsannnnscscsnsscnancnonns Page
. 'C' What's Happening - Ear] Terwilligerccceeiiincncaninnnnnenens sesenyiPage
FROM THE LDOS SUPPORT STAFF:
ITEMS OF GENERAL INTEREST .evecvevsnsnnvnnnn e s s s e ¥ su e sieielnie boABEvioY Page
updates and clarifications
LDOS: HOW IT WORKS - The BACKUP utility .cceeeveccecccnencnannnannnnnccnce Page
Who, what, where, why, when (and how) discussed
Sending Printer codes - A special application ..cevevnncnnens Be R AL Y Page
THE JCL CORNER - by Chuck Sloiama/ainie e S S S OO G ares/eiainis ««s. Page

Special Feature:

The LSI Journal and LDOS Quarterly Indexceceevvecsnccnncces SaTelelalé uaiere s dln Page
by Scott Loomer

Copyright © 1983/1984 by Logical Systems, Incorporated
897@ N. 55th Street P.0. Box 23956

Q Milwaukee, Wisconsin 53223
Main switchboard: (414) 355-5454

Page 1

S w N

13
14
22
26

28
31

35

36

38
39

The LDOS Quarterly policy on the submission and payment for articles is as follows:
Articles sent for consideration must be submitted in the following format:

1. A cover letter, summarizing the content and iqtent of the article.
2. A printed hardcopy of the article. Desired print effects and formatting
should be indicated where necessary.

A diskette with--

3. A 'plain vanilla' ASCII text file containing the article. The text
should be free-form (without "hard" carriage returns), but any tables or
other structured data should be formatted as 87 characters per line.
Do NOT send SuperSCRIPSIT or Newscript files. Also, please do not
embed print effects.

4. If the article involves assembly language programs, include both the source
code, and the object code.

5. Any other necessary files or patches should also be supplied in machine
readable form.

Please do not send in printed text without a diskette, as it will NOT be considered |
publication. Payment will be made in the form of an LSI product, or $48 per published
page in the current Quarterly format. The size of the article will determine the value
of the LSI product available as payment.

Please include your name, address, telephone number and LDOS serial number with you

sugnqission, firmly attached to your hardcopy printout, and affixed to the diskette you
submt.

LSI is_extremely interested in seeing submissions from our users, and is open !
suggestions on any ideas for the Quarterly.

Submissions should be sent to:

The LDOS Quarterly Editor
c/o Logical Systems, Inc.
8970 N. 55th Street
P.0. Box 23956
Milwaukee, Wisconsin 53223

UNIX™ is a trademark of Bell Labor i
MAX-89™ is a trademark of LOBO Sy:t:;gr1?:c
PC-DOS™ and IBM-PC™ are trademarks of IBM Corp
TRSDQS' 1s a trademark of Radio Shack/Tandy C0r5
MS-DOS naqd XENIX™ are trademarks of Microsoft Co;p
cEe CgordStgr is a tradeTark of MicroPro Internatioaal Co;p
» CP/M-80™, and CP/M-86™ are trademarks of Digital Researcﬁ. Inc

The LDOS Quarterly is copyrighted in it i §
duplicated in whole or in part for Zo:;:lz?:y' e Al coutafned ESIN S

express written consent of Logical Systems, Inc. aldozhgi:::::?:iznaptgposes without the
uthor.

Page 2

Yl EN. FROMN -THE BOTTON. Fil0QgR
by Bill Schroeder

Well, another year has come to an end, and I thank you all once again for being
supporters of LSI, and the LSI product line. With your support LSI has made it through
yet another year.

1984 will be a year of rapid and massive change in the microcomputer industry. Here are
a few of my quickie predictions for the year ahead:

Tandy will try their hand at competing with IBM (no easy task there).

AT&T will enter the market place with a whole new concept

Commodore will continue to dominate the low end market.

Digital Research will increase its presence in the systems software arena.
The REAL "Peanut" will be introduced by IBM.

TeleVideo will become a major force in the market

Removable cartridge hard drives will become more prevalent.

Microsoft will fall slightly from its present lofty position.

Apple will begin to have serious trouble.

Over one hundred small computer product manufactures will go out of business.
The Coleco ADAM will prove to be a failure

Over one-half of the TRS-80 software suppliers will falter or fail.

Over 25 microcomputer publications will fail.

It is quite probable that none of the above events will take place, but they are
interesting possibilities - - -

Now, on to what I know will be changing at LSI in 1984:

LSI will not be publishing the LSI Journal, but the people at BASIC COMPUTING will be!
That's right, starting with the April issue of BASIC COMPUTING, the LSI Journal will be
incorporated as a special section in that magazine. This arrangement with these folks
was made so that LSI could get out of the business of publishing a "magazine". All the
same authors will be writing for us, and we will be providing the material to BASIC
COMPUTING for publication, on at least a quarterly basis. A1l existing subscribers will
have their subscriptions filled by BASIC COMPUTING. If you already subscribe to BASIC
COMPUTING, your subscription will be extended the proper number of issues. For those
who are not subscribers to either publication, a subscription order card is included in

this issue.

This means that this is the final issue of the LSI Journal published by LSI. The major
bulk of technical and other information will now be imparted through BASIC COMPUTING .
But--- there will be a new publication from LSI. This will be the "LSI Newsletter". It
will be published for the purpose of announcing new products, special offers and the
like to our valued customers. A1l registered LSI customers will receive this newsletter
at NO CHARGE. It will be published on an as required basis, but we expect at least
several times per year. It will contain little, if any, technical information.

Page 3

i i lack of interest. There have
The LSI Hotline phone number has been disconnected due to ck of in
been very few pt‘:one calls, far less than we expected. I can't Just1fyfthe cost of the
phone line, the answering equipment and the creation of the content for such a small
audience. This service was discontinued effective January lst. To those out there who

called and appreciated the LSI Hotline, my apologies.

PER A A

DEAL #1: While our supplies last, any product LSI has in stock that is not
manufactured or published by LSI will be sold-out for 49% OFF.of the suggested retail
price. Don't miss this chance. LSI will no longer be selling §oftware.that is not
published and/or manufactured by LSI. We are liquidating our inventories of these
products, to your benefit. All <IN STOCK> products from MISOSYS, MICROPRO,_ POWERSOFT,
MOLIMERX, ... are to be sold at 4@% off of suggested retail. We will NOT fill
backorders or give rain checks for these products. We have dozens of some items, and
only a few of others. These will be shipped on a first-come, first-served basis, and
any orders for items that are already sold-out will be promptly returned/refunded. To
take advantage of this offer, you must indicate that you are taking advantage of Deal
#1 on your order or over the phone. Please note that the special introductory of fer for
WordStar and MailMerge is over, and that they have returned to their regular price of
$395 and $249, respectively.

Products we have that are not listed in the LSI catalog:

PowerMail Plus, Model 1/3 version by PowerSoftevvienninniennnnns Sugg. retail $150
PowerMail Plus, Model 4 version by PowerSoft ...cevevvevevnrnnncnnans Sugg. retail $159
ZSHELL, for LDOS 5.1 from MISOSYS ...civeveieaes S N A O T Sugg. retail § 49

The 6.x versions of EDAS (PRO-CREATE).;nd‘DSMBLR I11 (PRO-DUCE)

For the most part, these and all the other discontinued products are fine products from
excellent companies. Our decision to discontinue, marketing, promotion, support,
endorsing, etc. of non-LSI products should in no way reflect on the gquality of these
products or companies.

DEAL #2: Special LSI 30% discount. For orders postmarked between March lst, 1984 and
March 15, 1984, take a 3@% discount on any LSI-manufactured product. This includes
LDOS, FED II, LED and all our other excellent LDOS support products (don't forget
diskDISK). This offer is not good in conjunction with any other offer, but you may have
both Deal #1 and Deal #2 items on the same order. This offer is also good on phone

orders placed in this period, but again you must indicate Deal #2 over the phone (or on
your order).

DEAL #35 FREE LSI Journal Issues. With any order totaling $50 or more (net amount
after dlsgoupt), get the previous Volume 2 LSI Journal/LDOS Quarterly issues at no
charge. This includes Volume 2, numbers 1 through 4. Number 4 is in short suppl s‘; if
we run out, you will get only numbers 1 through 3. Take advantage of this orderyc}ui:'kTv

if you need all four. Again, you must note this i
A £ s special off { !
the phone). This offer is good until we run out of bazk issugs.er o e ity

DEAL #4: How about the full LDOS 5.1.4 operating system at 1/2 price? That's right,

FULL LDOS 5.1.4 for just $64.5Q. This speci i i

4.50. pecial offer i RTS \
both NEWDOS and DQSPLUS. Now is the time for all your ;ri:n;:allable 20 CONVE'.J‘ - (r(:(r-
of LDOS. Here's how it works: ook i i

: i11 provide th 1 S 5.1.4
system for the price of $64.50, plus $5.99 shippi will p ; e complete LDOS 5.1.
: : < . PPing and handling, t
in their NEWDOS-89 or DOSPLUS 3.4/3.5/4 operating system. To ta:ea:‘x::t:;:to:r:g?:
: MANUAL to LSI a)
we will rush a fresh LDOS 5.1.4 operatin h along with $69.5@, and
8 : : R g system right out. Thi i
fgggugct;onlmth any other offer. Don't forget togmarkuyOth;idOffer Ao o y:n
: rade-In offer. Oh, one more thing... I will S R
in trade! even take our own LDOS 5.9 systems

Page 4

)

DEAL #5: We have several extra Radio Shack Hard Disk systems. These are in good,
used condition, but are being sold on an as-is basis due to the fact that we do not
have any of the manuals or cables (other than the power cable). Because of this, we
recommend these to experienced users who already own a RS HD system. The price, you
ask? Well, these are a steal at $995 for a primary or $695 for a secondary, plus
shipping and handling. None of the above discounts apply, but we will throw in Deal #3.

A1l these "Deals" are good only directly from LSI, and not from any of our dealers.

In the future, LSI will again market software not created by LSI, hopefully by the
middle of 1984. When we do, these will be very carefully selected products that are
manufactured and supported by LSI, even though originally written outside. We will no
longer offer products that do not bear the LSI name.

We had originally planned a new catalog for January '84, but due to needed product line
changes, including the changes outlined above, we have decided to wait until June of
1984 to publish our new catalog. This will be sent to all registered LSI customers at
no charge. We think our new catalog will be well worth the wait. At that time we will
be implementing many new policies and pricing changes along with the revamped product
line. For the time being, (the first half of '84) all LSI prices and policies will
remain as stated in out current catalog.

Here's an interesting thought: "Beware of pre-release software". When a software
company sends out BETA test (the second test phase) copies of software, they sometimes
appear on the "Underground Software Exchange" overnight. Beware-- if anyone of fers you
a test copy of a new or updated product, you may be getting a free time bomb. That
product is in BETA testing because the producing company is still in the process of
locating and correcting errors. I know of one incidence of a fellow that received a
clandestine copy of an update to a popular spread-sheet program. He was very excited
about this find because this was the product he used everyday in his business, and now
he had "THE HOT NEW VERSION". (Note: Apparently he never purchased the original version
in the first place.)

After about three days of playing with it, he had managed to destroy all of his
existing data files (several hundreds of hours of work). He called the company and they
very nicely told him to go to hell. He was not a legitimate owner of their product in
the first place, had no right to have the BETA product he obtained, and found out that
the product was expected to destroy his files. After all, it was a BETA TEST version
and not a released product. So beware, it may not be a good idea to be the first on
your block with a neat, new product, if that is before it is even released.

For those who are interested, the current version of the TRSDOS 6.x system for the
Model 4 and 4P is P6.p1.91, and should be available from your local RS store. I think
its a freebie. They should also have the hard disk drivers and formatter for TRSDOS 6.X
(it is available of f-the-shelf in the Midwest Computer Centers, anyway). The latest
version of LDOS for the Model 1, 3 and MAX-8@ is 5.1.4 with file dates of 19/91/83.

The Model 2/12 version of TRSDOS 6.x is complete (and in final testing) as of this
writing. This will be known as LS-D0S 6.2.9 (or TRSDOS if purchased throggh Tandy). The
pricing and public availability of this product are still in question. If you are
interested in this product, please contact LSI in March of 1984 for complete and final
details. Whatever the final decisions may be, you WILL be able to purchase this product

in April of 1984.

This new product will allow for complete transportability of software between the
Models 4/4P and 2/12, along with any other machine that has 6.x implemented for it. A
bit of caution here--- Yyou MUST have used ONLY the official information contained in
the Model 4 technical manual (26-211¢) from Tandy, or information distributed by LSI

Page 5

2 - : i ibility. Use of any other
when interfacing to the 6.x system to achieve this compatxbih.

source of inforl?lation on the 6.x system will most likely result in current or future
incompatibilities. At this time, LSI and Tandy are the only official sources regarding
technical specification for the TRSDOS 6.x and LS-DOS 6.x systems.

New Product Announcements

Remember LED, the LDOS EDitor? This is the official LDOS 5.1 Text gditor, and is used
here at LSI for program source code maintenance, KSM fi.le editing, and many other
editing needs. Well, LED has been vastly enhanced and is now one of the best full
screen editors available for your TRS-88 Model 4/4P (and in the future 2/12). LED is
available now for $99 plus $3 shipping and handling as LS-LED for the 6.X operating
system ONLY. We will NOT be doing a Model III version of this product (there just isn't
enough room). If you use your Model 4 for programming, you will love this powerful text
editor.

Note that LS-LED is not a word processor, but is a flexible, easy to use screen
oriented text editor. LS-LED is capable of doing most word processor type functions,
but there are no print formatting facilities, or indeed any printing capabilities (Of
course, the DOS library command LIST with the “print" parameter can be used for
hardcopy, if desired). Two major features that have been added to LS-LED are: writing a
marked block to disk, and the insertion of the contents of a disk file at the current
cursor position. With these two commands, the production and maintenance of subroutine
libraries and other forms of "boiler-plate" operations become a snap.

0f course, the original version of LED for LDOS 5.1 is still available for $29 plus $3
shipping and handling.

LSI is now shipping LS-Host/Term, a comprehensive communications utility for the 6.1
operating system. This package allows a Model 4 running under 6.x to emulate an ADDS-75
terminal, and provides for error-free file transfer between 6.x systems, or other
systems supporting the Modem7 protocol. The host system may be unattended during the
trang,fer_‘. Speaking of hosting, the host capabilities of this package are very
sgph1st1cated, and include password protection and remote cursor positioning using twe
different protocols. LS-Host/Term is only $199 plus $3 shipping and handling. :

FED, the most popular "zapping" program around for the LDOS s b
d ystem will be available
;ggc:hei%?Mbe(%rg‘gany]MS-ggS r2':>(,_PC cugp:tible) machine in March or April of 1984. Tn:
W , plus shipping and handling. This is
serious user of an MS-DOS machine. - el b

LSI will also introduce the most versatile data handli
available for the PC-DOS (and MS-DOS) world. This product willn
1984, and more details will be available at that time.

g and management system
be announced in June of

I_Qui int
Question: How can I move a file from LDOS 5.1 or TRSDOS 6.x to TRSDOS 1.3?

Quite simple, actually. Here is the procedure: Fi
: : ; : Fir
:grmgt a féve.;nch diskette as thirty-five track, on:tgiggde';ih[’?s 3'1 o TRSDOS 6.x,
e desired fi ﬁ to thls special q1skette. You may now "e:bootg ga en?ny. Now, copy
the TRSDOS 1.3 "CONVERT" utility will read this disk jyct i TRSNOS 1. 4y ahc
TRSDOS 2.3 diskette. Just as though it were a Model 1

ﬂﬁﬁeé?ﬁ"e Citc: St v ? Sugeion type of controller board
| not format properly in single-density wi controi ier board,
6.95 This probles was “hypssced® 1n Sogtwarg?sny with LDOS 5.1.3 or before, or TRSDOS

with LDOS 5.1.4 and TRSDOS 96.91.01. and these machines will format correctly

Page 6

T/FLT - lin it utilit
by Graham M Brown, 2@ Paddock Close, Castle Donnington, Derby DE7 2JW, England

How many times have you typed in a long command line from DOS, only to find that you
spelled a parameter incorrectly, and DOS asks you to do it all again? Well certainly I
have done it enough times, and it is a nuisance. So EZ-Edit was born. Imagine typing:

FILTER *PR PR(M=10,1=19,C=80,L*6@,P=66,F,T)

There is an error in the "L" parameter. With EZ-Edit, just type in <SHIFT><CLEAR><0>
and your command comes back on the screen - position the flashing cursor over the
character in error, correct it, press <ENTER>, and bingo!

EZ-Edit is a keyboard filter which intercepts a <SHIFT><CLEAR><0> and allows you to
edit the previously entered command line. The left and right arrows move through the
line, and extend it if required. Any other key will overtype existing text. <ENTER>
will cancel editing, and process the command as shown. <SHIFT><CLEAR> will delete the
command from the cursor to the right, and then execute the remainder. <BREAK> will
return to DOS ready. In the above example, if the cursor was over the first open
bracket, pressing <SHFT><CLR> would result in the command FILTER *PR PR.

Just as KSM does not work properly with MINIDOS (see LDOS Quarterly, Jan '83), EZ-Edit
has a similar effect on the "R" command of MINIDOS. I have developed a similar patch
for MINIDOS when EZ-Edit is running. EZ-Edit will perform this alteration as a
temporary patch in memory when it loads. This program will, of course, work without
MINIDOS. EZ-Edit takes less than 256 bytes when relocated in high memory.

EZ-Edit requires KI/DVR to be present and active. This program should work under all
5.1 releases of LDOS, but has only been tested on 5.1.3 and 5.1.4. Originally, the
program was written to accept <clear><shift><E>, but this was changed to prevent a
conflict with KSMPLUS. If desired, the value on line 2340 may be changed to any other
valid character. The value (EF) is also underlined in this BINHEX listing.

P5P6 4544 4954 2020 P192 PP52 DSDD E13A 25@1 FE49 2048 2111 4422 A252 22AA 5221 2B44
2290 5222 E152 2125 4222 F253 228F 5422 9F54 22F6 5221 BE42 2298 5222 FP52 2199 4222
A254 2189 4222 6252 218A 4222 1253 2105 @P22 7852 212@ @122 7F52 2115 4PAF ED52 C217
5321 1C53 CD67 4421 1F44 CB66 CAPE 53CB 6E28 1E21 AC53 CD67 442A FA4D E511 D9@P 1936
12E1 1124 §119 EB21 9453 P1@A PPED BPED 5B16 4@3A PF43 CB6F 28@4 EDSB BE43 ED53 D953
PIEL PP2A 4949 5054 AFED 4222 4949 23E5 ED53 CE53 1109 PP19 2208 5422 1754 221B 54E1
ES11 PAPP 1922 PD54 2232 54E1 E511 PBP@ 1922 1154 2214 54D1 D521 CC53 EDBP E1F3 3AQF
43CB 6F2¢ @8DD 75@1 DD74 218 @322 BE43 FBP6 3E21 1843 3E2Q 7723 1@FC 3EQD Q192 P@53
77C3 2040 2110 PPED 7AF9 E1C9 PP@@ 2175 53CD 7844 C33@ 4021 8D53 18F5 455A 2D45 4449
5420 2020 4C44 4F53 2063 6F6D 6D61 6E64 206C 696E 6520 6564 6974 6F72 2E2Q 5665 7273
696F 6E20 352E 310A 2863 2920 3139 3833 2062 7920 472E 4272 6F77 6E2E 2041 6C6C 2072
6967 6874 7320 7265 7365 7276 6564 PDPA 4B49 2F44 5652 2(6E 6F74 2069 6E73 7461 6C6C
6564 2021 PDPA 4669 6C74 6572 204F 4E4C 5920 7573 696E 6720 2A4B 4920 6465 7669 6365
210D PA4D 494E 4944 4F53 2064 6574 6563 7465 6420 2D2 7961 7463 6869 6E67 2E2E 2EQAD
180A PPP0 P445 6469 7400 PPP@ CDOP PPFE EFCH E5D5 C5DD ESED 5B20 4078 E6CH S5FED 5320
49D5 D521 1843 7EFE @PD28 P623 CD33 PP18 F53E PLAF P@54 PFCD 33@@ DI13E 5F32 D553 6FIA
3206 53AD 32D7 5321 D753 3AD5 53AE 32D5 5312 @15¢ P1D5 CD2B @@D1 B720 P5@B 78B1 2@F3
28E3 F53A D653 12F1 FEP8 2823 FEP9 2815 FEPD 2835 FELF 2821 FEPL 285A FE2Q 38B7 FE8§
3@B3 1278 E63F FE3F 3@@1 1318 A87B E63F FEP1 3801 1B18 9E3E 1EDS5 ED53 204¢ CD33 P@3E
fFCD 330@ D17B F63F 5F1A 1BFE 2@28 FA13 13ED 532¢ 4@7B E63F 4FP6 PPE1 1118 43ED B@3E
#D12 CD33 APDD E1C1 D1E1 2118 43C3 P544 EIDD EIC1 DIE1 C32D 4002 9209 52

20100 TITLE '<EZEDIT/FLT by: G M Brown>'

ﬂﬂllﬂ ;*:*:* .

PP12¢ ;Some code alteration is necessary in MINIDOS/FLT for
PP13@ ;the "R" command to function properly. So EZ-Edit
PP149 ;should be installed AFTER MINIDOS . Should MINIDOS be
PP15@ :installed after EZ-Edit, then the "R" command is not
PP16@ ;gquaranteed to work at all.

P0209 @KsD EQU P@2BH

Page 7

#9219 @DSP EQU P@33H

P@22¢ KIDVR EQU 4016H

P@23@ CURSOR EQU 4020H

PP249 @EXIT EQU 492DH

@250 @ABORT EQU 4030H .
PP260 HIGH1$ EQU 4(49H

PP279 HIGH3$ EQU 4411H

PP28¢ SFLAGLS EQU 430FH

pP299 SFLAG3$ EQU 442BH

P@30@ INBUF1$ EQU 4318H

P@31@ INBUF3$ EQU 4225H

P@320 KIJCL1S EQU 43BEH

P339 KIJCL3$ EQU 42BEH

P@34@ GCMNDI1 EQU 4405H

PP350 @CMNDI3 EQU 4299H

P@360 DFLAGL1S EQU 441FH

@379 DFLAG3$ EQU 4289H

p@38@ @DSPLY EQU 4467H

P3390 @LOGOT1 EQU 4478BH

PP4p3 @LOGOT3 EQU 428AH

PpP420 ;The first part of the coding loads an initial message
PP43@ ;checks that *KI has been referenced, and for KI/DVR
PP449 ;and MINIDOS being active.

Pp460 ORG 5200H ;A good place to start
00470 PUSH DE ;Put *KI DCB into
Ppa8y POP IX ;IX register for later
0500 ; This section of code corrects all model specific
#9510 ; references in the code.
P@530 LD A, (P125H)
09540 cP L1 sit's a 3 if true
P55 JR NZ, CONT :go if Mod 1
009560 LD HL,HIGH3$
98579 LD (M1),HL .)
p@580 LD (M2) ,HL
20590 LD HL, SFLAG3$
00600 LD (M3),HL
09610 LD (M4) ,HL
00620 LD HL, INBUF3$
P0630 LD (M5),HL
20640 LD (M6) ,HL
99650 LD (M7),HL
00660 LD (M15),HL
P06790 LD HL,KIJCL3$
090680 LD (M8) ,HL
99690 LD (M9) ,HL
09700 LD HL,@CMNDI3
P9710 LD (M1@) ,HL
00720 LD HL, DFLAG3$
0739 LD (M11),HL
Pa740 LD HL,@LOGOT 3
90750 LD (M12),HL
P0760 LD HL , PAD5H
pa779 LD (M13), HL
99780 LD HL, P120H
R on 1 0N
E HL, 4915H ;See if * ses
p@810 XOR A ;in the f?%t:geﬁlf]ed
%ggg SBC HL,DE S v
JpP NZ,WRONGDV serror if
pp84p LD HL , LOGMSG ;Point to ;2:;3 e
00859 CALL @DSPLY oand print §to
p0869 LD HL,DFLAGIS {Shsten Flag ara 9
pg870 M1 EQU $-2 J P

Page 8

P3880 BIT 4, (HL) ;Test for KI/DVR, and

P@89g JP Z,KINOTON serror if NOT set
20900 BIT 5, (HL) ;Test for MINIDOS, and
' 20910 JR Z,MDISOFF sbypass zapping if NOT there.

PP93@ ;If MINIDOS active, then it has to be zapped, otherwise
PP940 ;this bit is skipped over.

90960 LD HL , ZAPMSG ;Point to message....

PP979 CALL @DSPLY ;...and display it.

P@989 LD HL, (4DFAH) ;Get MINIDOS address

920990 PUSH HL ;and save

01009 LD DE , P@D9H ;0ffset for zap

1919 M13 EQU $-2 |
91020 ADD HL, DE ;get actual address, and |
P1030 LD (HL),12H szap MINIDOS

01040 POP HL srestore start address

91050 LD DE, P124H ;for next offset |
P1060 M14 EQU $-2

1079 ADD HL, DE ;get actual address, and

91080 EX DE,HL ;put in DE register pair

91090 LD HL,TABLE ;Point to zap table

01109 LD BC, PAH ;10 bytes to zap, so..

P1119 LDIR Seeedr TH 1

P113@ ;The next part of the code intercepts the *KI driver
01149 ;address, and stores EZ-Edit's start there. The old
P115@ ;contents are loaded into EZ-Edit for continuation.
P1179 ;High memory is also altered.

1199 ;EZ-Edit does not bother to indicate to the system (or
P120@ ;other programs) that it has loaded. Indeed, by finding
1219 ;the proper header, it would be possible to get EZ-Edit
1220 ;to locate itself at the same address after a *KI reset.
P123@ ;This has been left for you to do if you require.

#1250 MDISOFF LD DE, (KIDVR) ;Get *KI driver address
1260 LD A, (SFLAG1S) ;See if JCL is

P1279 M3 EQU $-2

91280 BIT 5,A ;active at present
91290 JR Z,N0_DO ;skip if not, else
P1300 LD DE, (KIJCL1$) ;change DE to KIJCL$
P1310 M8 EQU $-2

#1326 NO DO LD (VECTAD) , DE ;Store in EZ-Edit

p1339 LD BC,LAST-START ;Get length of filter
p1349 LD HL, (HIGH1$) ;HL = Present High Memory
P1350 M1 EQU $-2

P1360 LD £,k ;Put into register
P1370 LD D,H spair DE

P1380 XOR A ;Clear the carry

01390 SBC HL, BC ;get new High memory,
p1499 LD (HIGH1$) ,HL ;and set it.

P1410 M2 EQU $-2

1420 INC HL ;Point to EZ-Edit start
91430 PUSH HL ;and save it

91440 LD (OLDHI),DE ;Put old HIGH$ in filter
P1450 PAGE OFF

P1489 ;Relocate calls and jumps in the filter
P149@ ;Restore *KI DCB driver address, and relocate
P1509 ;EZ-Edit to below HIGH$

P1520 LD DE,ONOFF-START ;Get offset
P1530 ADD HL, DE ;add to new start
1540 LD (MODIFY2),HL ;and modify
91550 LD (MODIFY6),HL I
01560 LD (MODIFY7),HL
@ 91579 POP HL ;recover start |
01580 PUSH HL ;and keep going
P1599 LD DE, CONTENT -START ;
Page 9

R

ADD HL, DE

g%g?g LD (MODIFY3),HL

91620 LD (MODIFY8),HL

1630 gggH :t

31233 LD DE, XORVAL -START

01660 ADD HL,DE

01670 LD (HDDIFYd).:t
D%ggg bop éEODIFYS)' :DE = Start of EZ-Edit
317¢g PUSH DE ;save it. DE = To

91710 LD HL, START :and HL = From g
1720 LDIR ;BC = Count, so move it.!
g1730 POP HL ;recover EZ-Edit's start
31740 DI :Don't interrupt a minute
91759 LD A, (SFLAG1S) :Test for JCL again
1760 M4 E?g g-g

01760 R NL00 ON ;Skip if ACTIVE, else
91799 LD (IX+9TH),L sLoad KIDCB with address
01809 LD (IX+P2H) ,H :of EZ-Edit

91819 JR ouT

#1820 DO ON LD (KIJCL1S),HL ;JCL, so load KIJCLS
1830 M9 EQU $-2

£1849 OUT El ;Interrupts on, and
91850 LD B,62 show many spaces
01860 LD HL, INBUF1$;point to inbuf$
01879 M15 EQU $-2
p188p LD A, 20H ;space
$1890 HERE LD (HL),A ;store it
91909 INC HL ;point to next
p1919 DINZ HERE ;30 until done
91920 LD A, PDH :CR

91930 LD (HL),A sput at end of buffer
p1949 JP REXIT ; now back to DOS

P196@ ;Table of zaps for MINIDOS zapping routine

p198¢ TABLE DB 21H, 10H, OGH, PEDH, 7AH, DF 9H, PE 1H, PCOH, PRH, PO
P2009 ;Error if KI/OVR not established

#2029 KINOTON LD HL,KIOFFMS ;Point to message

P2039 GO OUT CALL @L0GOT1 ;LOG and DISPLAY

02049 M12 EQU $-2

02050 JP @ABORT ;Abnormal exit to DOS

92070 ;Error if *KI not referenced

§2099 WRONGDV LD HL, NOTK IMS ;Point to message

02109 JR G0 ouT ;Log, display, and DOS
p2129 ; Messages
$2149 LOGMSG DB 'EZ-EDIT - LDOS command line editor. Version 5.1',PAH, ‘(c) 1983
gglgéBrown. ATl rights reserved',poH
KIOFFMS DB PAH, 'KI/DVR not installed !*, poH
§216@ NOTKIMS DB PAH, 'Filter ONLY using *KI device!*,POH
p2179 ZAPMSG DB PAH, *MINIDOS detected - patching...',PDH

P2199 ;EZ-Edit : The actual relocated filter
P220B ;The filter conforms to the LDOS

stand

ggzgg START &R BEGIN il

240 OLDHI Dw PPPPH
02250 DB 4, 'Edit"
#2279 ;Local storage area
§2299 ONOFF DB @oH sFlash character store
$230@ CONTENT DB POH iThe contents of D before flash
$231@ XORVAL DB @0H

sThe XOR character for the
02320 BEGIN CALL pgggH -c e flash
P2330 VECTAD EQU §.p ° o' %0 KI/OWR, and MINIDOS

92340 cp PEFH ;5ee if SHIFT+CLEAR+0Q

Page 19

p2350
02390

O 92400
02419
p2429

02430
p2440
p2450
02460
024790
p2480
92499

NZ ;Ret if not
02370 ;Got a SHIFT+CLEAR+Q here

RET

PUSH HL

PUSH DE

PUSH BC

PUSH IX

LD DE, (CURSOR)
LD A,E

AND @COH

LD E,A

LD (CURSOR) , DE
PUSH DE

PUSH DE

;Save what we use

;Get the cursor location
;and make sure that

;its at the far left of
;the screen.

;Save the address of the
;1ine - TWICE

92519 ;Get the last command from INBUF$, and put on screen

P2520 ;Turn the cursor off afterwards.

02540
92550
02560
92579
02580
92590
02600
92610
02620
92630
92640
92650
02670
92680
92690
02700
92710
O 92720
02730
P2740
92750
02760
P2780
p2790
$2800
02810
92820
02830
92840
02850
02860
02870
92890
02990
92910
02920
92930
92940
02950
02960
92970
92980
92990
03000
03910

93020
® =
P3040

N R L R T

M5
GETLOOP

GOT_CR

EQU

PAGE

HL, INBUF1$
$-2

A, (HL)
@DH
Z,G0T_CR
HL

@DSP
GETLOOP
A, OFH
@DSP

DE

OFF

;Point to input buffer
;and get all characters
sup to but NOT including
;a CR, and put on the
;screen

;Cursor OFF now

;Restore line address

;Scan for an input, and flash the character with the
;cursor (CHR$(95)). Allowable inputs are:

backspace without erase

cursor right without erase

erase all from cursor to the right and
process the command to the left.

process the line as is. Characters to the
left and right of the cursor make up the

;LEFT ARROW
;RIGHT ARROW
; SHIFT+CLEAR
;ENTER
;s BREAK
FLASH LD
LD
MODIFY2 EQU
LD
LD
LD
MODIFY3 EQU
XOR
LD
MODIFY4 EQU
TEXTLP LD
MODIFY5 EQU
LD
MODIFY6 EQU
XOR
LD
MODIFY7 EQU
LD
LD
LOOP PUSH
CALL
POP
OR
JR
DEC
LD

command
Back to DOS
A, 5FH
(ONOFF),A
$-2

L,A

A, (DE)
(CONTENT) ,A
$-2

L
(XORVAL),A
$-2

HL, XORVAL
$-2

A, (ONOFF)
$-2

(HL)
(ONOFF),A
$-2

(DE) ,A
BC,150H

DE

©@KBD

DE

A

NZ, INPUT
BC

A,B

;Cursor character
;store it

;and save in L
;Get character in DE
;and save for later

;XOR to get flash value
;and save it.

;Point to store area
;Get one character

s XOR
;save back for flash

;and put on screen

;Timer for scanning

;save DE

;and look at the keyboard
;get DE again

sAny input 277?

sJdump if so, else....
;see if BC = @

Page 11

#3050
p3060
93079
#3080
#3099
03100
p3110
p3120
§3130
#3149
#3150
p3160
#3179
p3180
#3190
p3200
p3210
§3229
#3230
p3249
03250
p3260
p3279
p3280
§3299
#3300
93310
§3329
93330
$3350
p3379
03380
P3390
93400
p3410
93429
03430
P3449
p3450
P3460
p3479
p3480
93499
#3519
93529
p3549
p3550
P3560
p3579
93580
p3599
#3609
p3610
$3620
p3630
P3650
#3660
#3680
#3699
P3700
p3719
93720
93730

:Loop if not, else...
:no input = back to flash

;restore contents to
;original character

;recover input, and
;is it LEFT ARROW 27

;Is it ASCII 2H-7FH

;if so, then put on
;the screen. Test for
;extreme right, else
sincrement DE (type to

;Back for next input.
;Test for column 1

;If less, then cannot
ymove further left,

;Erase to end of line
;Save DE for a moment
stell the cursor where,
;and clear the line.

;Point DE to end of

;DE = space after command
and execute via
;6et column number into A

;Load length of the

OR C

JR NZ,LO00P
INPUT JR Z,TEXTLP .

PUSH AF ;save input

LD A, (CONTENT)
MODIFY8 EQU §-2

LD (DE),A

POP AF

cP P8H

JR Z,LARROW

P @9H ;RIGHT ARROW 77

JR Z,RARROW

cP @DH ;ENTER 77

JR Z,ENTPRES

JR Z,CLEARPR

P @1H ;BREAK 77

JR Z, BREAK

cpP 20H

JR C,FLASH

cP 8PH

JR NC,FLASH

LD (DE),A
RARROW LD A,E

AND 3FH

cP 3FH

JR NC,NOADD sthe right).

INC DE
NOADD JR FLASH
;Deal with the input. Editing allowed on one line only.
LARROW LD A,E

AND 3FH

cP 1

JR C,NODEC

DEC DE ;else DECrement
NODEC JR FLASH
CLEARPR LD A, 1EH

PUSH DE

LD (4020H) , DE

CALL @Dsp

LD A, PFH ;Cursor OFF

CALL @psp

POR DE ;and restore DE
;How long is the command ?? - go to right of line, and
;find first non blank character on the left.
ENTPRES LD A,E

OR 3FH sthe line

LD E,A
BKLOOP LD A, (DE) ;and 1

SEC e ook back....

CcP 20H

JR Z, BKLOOP

INC DE

INC DE ;DE =

LD (CURSOR), DE x
;Move the new command into INBUFiIoad o
;@CMNDI address.

LD A,E

AND 3FH

LD C,A

LD B,P : i

el Y scommand into BC

LD DE, INBUF1$

;Point HL to line start
;DE = Destination

Page 12

)

#3740 M6 EQU $-2

93750 LDIR ;Move the command
93760 LD A, PDH ;finish off with a CR
03770 LD (DE),A ;in the buffer, and....
93780 CALL @psp ;on the screen.

#3790 POP IX ;Restore original
#3800 POP BC sregister values
93810 POP DE

03820 POP HL

03830 LD HL, INBUF1$;Point to new command
#3840 M7 EQU $-2

03850 JP @CMNDI1 ;and execute it.
#3860 M1@ EQU $-2

#3879 BREAK POP HL ;Keep the stack tidy
03880 POP IX

03890 POP BC

93900 POP DE

#3919 POP HL

093920 JP GEXIT ;and exit to DOS
P393@ LAST EQU $

$3949 END 520@H

Mr. Brown also sent us the following program to alter PR/FLT parameters "on the fly".
Unfortunately, we don't have room to run the source code. If you desire a hardcopy of
the source, send us a request along with a self-addressed, stamped envelope (large,
with 37 cents postage).....

Although PR/FLT as supplied with LDOS is a very fine general purpose printer filter, I
have found it somewhat restricting in that there is no facility for changing any of the
parameters once set. In fact, should you wish to change the margin, it would be
necessary first to issue a RESET *PR, followed by re-filtering PR/FLT with your new
parameter values in the command line (as normal). This is all very well, but if you had
your printer output routed, or indeed had other printer filters installed, the RESET
would ruin everything. Certainly from my point of view, I needed a program that would
find where PR/FLT was in memory and then change any of the parameters that I wanted.

The program is called from DOS ready by entering the command:
PRPARM (parm,parm,parm,...)

where parameters are nearly the same as for PR/FLT:

MARGIN number of spaces for the left margin

INDENT -i- -:= indent on Tline wrap

CHARS number of characters per line

LINES number of printed lines per page required

PAGE page length in lines (at 6 lines per inch)

XLATE use the format XLATE=X'aabb' (see the PR/FLT documentation)
FF issue a form feed

Abbr: MARGIN=M, INDENT=I,CHARS=C,LINES=L,PAGE=P,XLATE=X
Example: PRPARM (M=3@,C=5@,FF)

Run PRPARM and reset the left margin to 3@ and only print 5@ characters on each line.
Issue a form feed character to the *PR device as well.

A typical display would be:

PRPARM - parameter modifier for PR/FLT. Version 5.1.3
Copyright (c) 1983 by Graham M Brown.

Page 13

The current PR/FLT parameters are :

MARGIN = P10 spaces

INDENT = @36 spaces

CHARS = §82 characters per line (§ = no count made.)
PAGE LENGTH = P66 lines

LINES/PAGE = P66 lines

@00 (dec) is being translated to P@P (dec).

By typing in PRPARM only, the current parameters as stored in PR/FLT are disglayed and
no alterations are done. A check is made for LDOS 5.1.x and also that PR/FLT is in fact
installed. The program is written for the Model 1 and 3. Here is the BINHEX code:

0506 5@52 5@41 524D P192 P52 E521 6353 CD67 443A 2501 FE49 2031 211F 4422 4952 2189
4222 4852 2154 4422 6C52 3EP1 32C8 5221 8A42 225E 533A FF52 3032 FF52 3287 523A P853
3032 9853 32BA 523A 349 FES1 C256 5321 1F44 CBSE CASA 53FD 2AF6 4DE1 7EFE PD28 P7FE
2020 PB23 18F4 3EPD 3297 55C3 CC52 1168 55CD 7644 (252 5300 2125 4921 FFFF CDIE 5328
@3FD 7717 21FF FFCD 1E53 2883 FD77 1921 FFFF CD1E 5328 P3FD 771A 21FF FFCD 1E53 2803
DD77 @521 FFFF CDIE 5328 30D 7783 21FF FF23 7CBS 2897 2BFD 746D FD75 7121 P@@Y 7CB5
289E 3EQC CD3B PA3E AIDD 7794 2609 FDGE 1711 AS54 CD2F 53FD 6E19 11BE 54CD 2F53 FDGE
1A11 8C54 CD2F 533A 2849 6F11 FE54 CD2F 533A 2A49 6F11 3055 CD2F 53FD 6E6D P12 PPS3
113F 55CD 2F53 FD6E 7111 6@55 CD2F 5321 5854 CD67 4421 1055 CD67 44C3 2049 2324 2520
2E7C B5C8 2B7D C964 PAPA A1 PADD 2129 53AF DD46 PIDD 4EPY B7ED 4238 P33C 18F9 PICH
3912 1379 FEQL C80D 2300 2318 E2E1 2197 540D 21C9 5300 21E7 53CD 7844 C330 4PPA 5052
5041 524D 202D 2079 6172 616D 6574 6572 206D 6F64 6966 6965 7229 666F 7220 552 246
4054 2620 5665 7273 696F 6E2P 352€ 312E 330A 8383 8383 8383 2020 2943 6F7@ 7972 6967
6874 2028 6329 2931 3938 3320 6279 2047 7261 6861 6029 4029 4272 6F77 GEZE POPA PASY
6C65 6173 6520 7573 6520 4C44 4F53 2035 2E31 2£33 206F GE6C 7926 POPA PASP 522F 464
5420 6973 206E 6F74 2079 6574 2069 6E73 7461 P192 PP54 6C6C 6564 2021 PDPA PAS 6172
616D 6574 6572 2065 7272 6F72 292D 2074 7279 2061 6761 696 2021 PA4l 6C6C 6F77 6162
6C65 2079 6172 616D 6574 6572 7329 6172 653A 204D 2C49 2043 2C4C 2C50 2C46 462C 616E
6420 584C 4154 450D PASA 6865 2063 7572 7265 6E74 2059 522F 464C 5429 7961 7261 6065
7465 7273 2061 7265 203A PAPA 2020 2020 204D 4152 4749 4E29 3029 5858 5829 7379 6163
6573 PA20 2020 2020 494E 4445 4ES4 203D 2058 5858 2073 7961 6365 730A 2029 2029 2043
4841 5253 2020 3020 5858 5820 6368 6172 6163 7465 7273 2079 6572 206C 696E 6529 2830
203D 206E 6F20 636F 756E 7420 6D61 6465 2629 PA2D 2020 2929 S@41 4745 2PAC 454F 4754
4820 3020 5858 P1D6 PP55 5820 6C69 6E6S 7320 2020 S44F 4620 6861 7320 6265 656E 2072
6573 6574 PD20 2020 202¢ 4C49 4E45 532F 5041 4745 2020 3029 5858 5829 6C69 6E65 730A
2020 2920 2058 5858 2028 6465 6329 2069 7320 6265 696E 6729 7472 616F 736C 6174 6564
2074 6F2) 5858 5820 2864 6563 292E PDAD 2029 2829 208C 524D 4152 4749 4ESC 5243 4841
5253 2081 5243 2020 2020 2081 5249 4E44 454F 5476 5249 2020 2029 2876 524C 494F 4553
2097 524C 2020 2020 2097 5250 4147 4520 20A2 5250 2029 2028 29A2 5246 4629 2029 29BC
5258 4C41 5445 20AD 5258 2020 2029 20AD 5209 9292 P@52

Y -~ T i Pr
By Henry Melton, 2511 Dovemea Drive, Austin, TX 78744

The wor]ﬂ of the professi_onal programmer can get positively confusing at times. In the
gg:;se of a s1ngle business day,_I am required to deal with a half-dozen or so
ifferent operating systems, some quite modern and some positively ancient. And then I
come home to work with my LDOS system . . . Not only do I have to constantly adjust to

differing keyboards and screen formats. b ifi

f . » but more significantly, I have to remember

;r]nﬁz gperf;:;Tng system command does what. Just to get a Iistingyof filzg r?iyrfingers

night type LIST, DIR, FILES, CAT, LISTC, or L. Some of the newer systems are helping us
y owing command synonyms to be used, so that more than one reserved word

might be used for the same function. 1 decided to add that same capability to my LDOS.

The SYNONYM utility is an additi i
extended flexibility in operoantgcr,' t:§t$;:0r or Pode) ites of LOOS that allows for

N s for Model I and Model -
[38212?)"3:%: oLrIl)OSanSd.l%SSY;?:(Y;?;N;gtl::te(s)nci;s?lfdigto high memory folléﬁn?ih?s:g:;?;
: oaded, it interc
gr:g;ziag]er;:;:ttfeq]frg keyboard or JCL command line inputs. Osgzst::yetﬁﬁaﬁ zglez(t)gzo
1le SYNONYM/TXT is read and the match-and-substitute record lines in ii

Page 14

)

0

are used to determing if the rejected command 1ine has a valid substitute. If so, the
reconstructed command line is placed in the command buffer and re-executed.

The result of SYNONYM processing is to add another level to the two existing levels of
command interpretation. Under LDOS, the first word of a command line is first checked
for an LDOS reserved word. If none of the reserved words match, then the word is
treated as the name of a command file to be executed. With SYNONYM, if the first two
levels fail, this third possibility for command information exists.

Like the JCL language, much of the utility of SYNONYM is up to the imagination of the
user. The synonym library file can be created and modified with any word-processor that
will produce a plain, un-numbered file of text lines.

Each record line in the file contains three items of information:

Thg first character of each line is a single numeric digit in the range of 1 through 9.
This is the minimum number of characters that must be the same to indicate a match.

The second item is a word that is allowed as a valid synonym.

The third item is the remaining text on the line. This is the text that will replace
the rejected command line. The special character '&' may be used to represent the text
of the original command line after the first word.

Here are some examples:

Command Tine SYNONYM record Resulting Command Tline
fi /vc 2 files dir & dir /vc

f 1 free free & free

calc 365/12 4 calc lbasic ?&:cmd"S" 1basic ?365/12:cmd"S"
cfl syn/mac 3 cPl copy &:9 :1 copy syn/mac:9 :1

dd 2 dp dir &:0 dir :0

dl sample 2 dl dir &:1 dir sample:1

bk work 2 bk copy & bk&:3 copy work bkwork:3

a syn 3 asm do it(@asm,name=&) do it(@asm,name=syn)
ban 3 banner 1basic run"banner" 1basic run"banner"

If there is no acceptable synonym, then the PROGRAM NOT FOUND error is displayed
normally. If the resulting synonym command is itself invalid, the whole process repeats
using the new command line as input.

Synonyms can be used within JCLs and synonyms may call JCLs. In fact, using a DO
command line as a synonym may easily be the most powerful use of this utility. My
personal JCL file (IT/JCL) is quite large, but remembering all the parameters and
syntax considerations has been my main trouble. When I want to invoke a function of the
system, I really don't want to puzzle over whether I am invoking a system function, a
/CMD program, a LBASIC program or a JCL -- I want type the word and have it done.

SYNONYM makes this a reality.

Another use of synonym is to execute one-liners from LBASIC. See CALC and REVTOF in the

sample SYNONYM file to see what I mean. LBASIC is powerful. The ability to use its
power at LDOS Ready is very handy at times. The limitations on this use is that the

function has to fit within LBASIC and :CMD"S, leaving only 5@ characters to get the job
done. Anything longer has to route through a JCL or use a real /BAS program file. To
keep screen clutter to a minimum, I patched LBASIC on my Model I system to eliminate

the sign-on banner when LBASIC is executed.

. Patch to remove the execution banner from LBASIC - Model 1
X'541E'=p0 P9 PP 09 PO 99

. Patch for Model 3
X'5446'=p0 00 P9 00 0P 90

Page 15

Rl e e i et it S B 1 e oo LI

Sample SYNONYM/TXT file -- Total line length should not exceed 80 characters.

resulting command line should not exceed 63 characters.

ooosA\Au-nmwwawwwhwmwwwwmwbwhwr\:mw-—ﬂwwNwmmt—ar—-o—n—-wwwwumN

Here is the BINHEX code for SYNONYM. If you wish the “processed" DOS command to be

dirt dir &

files dir &

asm do it(@asm,name=&)

debug debug (e

out debug (n

of f system (drive=3,disable)
onn system (drive=3,enable)
v dir /vc

d dir /aaa

bye do it(@back)

free free &

dl dir :1 &

dp dir :0 &

device device

looker 1basic run"looker
cPl copy &:0 :1

cP3 copy &:9 :3

hex 1ist & (H,LRL=256)
nosynonym memory (add=x'4@@d',word=X'4bcd"')
synoff nos

peek memory (add=x'&"')

zap purge & (S,I1,Q=N)

hide attrib & (inv)

unhide attrib & (vis)

calc 1basic ?&:cmd"S"

tof 1basic lprint chr$(12);:cmd"s"
revtof 1basic for i=P to 65:1print chr$(27)+chr$(13);:next i:cmd"S
jmp memory (go=X'&')

cls jmp 1C9

erase kill &

delete kill &

type list &

catalog dir &

page tof

num list & (num,A8

tab 1ist & (num,tab,A8

slow filter *do dospeed
fast reset *do

bPpl backup &:9 :1

bP3 backup &:9 :3

namef attrib :@ (name="&")
namel attrib :1 (name="&")
formatl format :1 (name="&",dden,abs,mpw="PASSWORD")
sysl system (system=1)
sysgen system (sysgen)
clonesys do it(@clonesys)

displayed on execution, replace the PP PP with CD67 44.

P506 5359 4EAF 4E59 P12 PP52 21AD 52CD 6744 3A2D 4QFE
3A25 PLFE 4920 2F21 1144 2251 5222 7952 2285 5221 gg42 gggg gggé ;ggg
5221 2542 229E 5322 7B54 2B22 F953 2199 4222 A453 DD21 2653 2A49 4922

The

CD67 44C3 2049
2322 9A52 22A8

ED52 444D 3E16 DD6E PADD 66@1 235E 2356 EBPY EB72 2873 DD23 D023 3029 9D 5649 4821

5656 @1FD P2ED BBED 5349 4@2A PD4P 2268 5321

E9ED 5849 4921

6453 220D 493A P34

ggg% gggﬁ g;gg 232& ‘gggs %;g gggg ggg 594E 4F4E 594D 220 ggzg 35?«2: 3‘223 %gg gggg
60

6967 6874 6564 2031 3938 332C 2048 656F 7253 Ts ooy G373 T3GF 7229 BAA3 6F79 7072

2076 616C 6964 2061 7420 4C44 4F53 2052 6561

Page 16

204D 656C 746F 6EPD 4F6E 6C79 P1@2 PP53
6479 202D 2969 6£73 7461 6C6C 6174 696F

)

)

6E20 6162 6F72 7465 6421 PAPD 8D52 8A52 8C54 9652 EP53 9C52 A452 8553 8A53 8F53 9653
9953 A653 A953 AC53 B553 B853 (D53 DP53 EB53 2954 7754 1808 PPPP @553 594F AFAE F5FE
8628 P4F1 C3p@ PP33 3333 33F1 FE5F 28p9 F53E 8638 3B3B 3B18 EA3B 3B3B 3B3B 3BCD A653
20DF CDCD 532@ DACD EB53 28@2 18F4 CD25 54CD 7754 F121 1843 C3 0544 CDB5 5321
C754 1195 5406 PPCD 2444 C921 C153 1195 5401 PCHP EDBP C953 4E 594D 2F54 5854
D21 9756 1195 54CD 13@@ CP77 FEPD CSFE 2¢38 F1E5 1157 56ED 52E1 28E8 2318 E521 P756
7ED6 3@47 237E FE2Q 28FA 1117 4313 1AFE 2028 @197 @54 FA1A AEE6 DFCP 2313 1@F7 1AFE
ADC8 FE2) C87E FE2Q 280D FEPD 28p9 1AAE EGDF CP23 1318 E7B7 C9DD E5D5 £521 C755 D11A
FE20 2803 1318 F813 1AFE 2¢28 FA77 FEPD 2833 FE26 28¢5 2313 1A18 F2DD E1DD E5DD 7EQQ
FE2) 2806 381A DD23 18F3 DD23 DD7E P@FE 2¢38 @D28 F577 230D 230D 7EPP FE2@ 30F5 2B18
D1D1 DDE1 C921 C755 1118 43@6 3F7E 12FE 2¢D8 2313 1@F7 3EPD 12C9 2164 5322 PDAP C9PP
PP@1 P557 5648 4A4D P2@2 PP52

PP11@ ; SYNONYM -- Command line synonym processor for LDOS

9129 ; Copyright 1983 by Henry Melton

PP140 ; The synonym processor resides in high memory and is linked into the error
PP150 ; reporting chain. When the error code 95 appears, indicating that a Program not
#9160 ; found error is to be flagged, SYNONYM reads the command buffer and uses the
Pg179 ; first word of the contents as a substitution key for an acceptable alternate

P18 ; command string. A file with the name SYNONYM/TXT is needed that contains the
#0199 ; substitution data.
@460 ; Synonym records are searched sequentially til either a match or EOF occurs. If

P§@47% ; the new command line fails, then the processor tries again with this new
PP480 ; input. When & substitution occurs, there is the possibility of the resulting
PP499 ; command line exceeding the 64 character command buffer. If so, the line will
PP500 ; be truncated to 64 characters.

PP53@ ECHO EQU 1 ;Display the generated command = 1

PP55@ @DSPLY EQU 4467H

PP560 @EXIT EQU 4(2DH

PP579 GGET EQU @#@13H

PP580 @OPEN EQU 4424H

#8599 ; Model 1 Equates

PP60@ HIGH1$ EQU 4p49H

PP61@¢ INBUF1$ EQU 4318H

P062@ GICNFG1 EQU 4303H

PP63@ GCMNDI1 EQU 44(5H

@649 ; Model 3 Equates

P9650 HIGH3% EQU 4411H

P0660 INBUF3$ EQU 4225H

PP679 @ICNFG3 EQU 421DH

PP680 @CMNDI3 EQU 4299H

Po699 ;

90700 ORG 520@H

P@710 START:: LD HL, BANNER ;Display the program name and copyright
9720 CALL @DSPLY

99730 LD A, (GEXIT)

PR740 cp @C3H ;is it a 'jump'?

00750 JR NZ, 0KGO ;if so, we aren't at LDOS Ready
0760 LD HL ,ABORTMS ;and can't install/modify the system
00779 CALL @DSPLY

@780 JP @EXIT

#0799 OKGO: LD A, (P125H) ;pick up type of machine flag

20809 cP L swill be "I" if Model 3

20819 JR NZ,MOD1 scontinue if Mod 1

70820 LD HL,HIGH3$;Pick up Mod 3 locations and

P@830 LD (MODCH1) ,HL ;adjust all references

20849 LD (MODCH2) ,HL

29850 LD (MODCH3) ,HL

9860 LD HL,@ICNFG3

Page 17

p@879
00889
P9899
Po900
Pp910
Pp920
P@930
Pa949
P0950
P@969
20979
p@980

p1p@@ ; all Mod

p1¢2¢ MOD1:
p1030

P1949 MODCH1
P1959

p1060

01070

p1080

p1090

P1100

p1110

P1129 PTLOOP:
p1130

p1149

p1150

01160

p1179

p1189

91199

91200

p1210

p1229

p1230

p1249

p1259

P1260

p1279

91299

p1309 MODCH2
p1319

91320

91330

91350

p136@0 MODCH3
p1379

P1380 RELD:
91390 REL1:
P1400

p1410

91429 MODCH4
P143@ RELX:
p1449

91450 MODCHS
P1460 RELY:
p1479

01489

$1499 MODCH6
P1500 RELZ:
p1519

§152¢ MODCH7
$1530

(MODCH4) ,HL
(MODCH6) ,HL
HL

(MODCH5) ,HL 0)
(MODCH7) ,HL
HL, INBUF3$
(MODCH8) ,HL
(MODCH11) ,HL
HL
(MODCH1@) ,HL
HL,@CMNDI3
(MODCH9) ,HL

conversion is done, let's get on with the good stuff...

;Using the relocation table and the
;High Memory location, patch the

IX,RELOTB
HL, (HIGH1$)
$-2
(STORE) ,HL
DE,LAST -1
A

HL, DE

B,H

c,L
A,ENTRYS

L, (IX+P@H)
H, (IX+P1H)
HL

£, (HL)

HL

D, (HL)

DE , HL

HL, BC

DE , HL \
(HL),D ‘En
HL £
(HL),E

IX

IX

A

NZ,PTLOOP

DE, (HIGH1$)
$-2

HL,LAST -1
BC,LAST-FIRST

;1oad module for operation in high
;memory.

;Move the module to its high memory

;location

(HIGH1$), DE
$-2

HL, (49@DH)
(VECTOR) , HL
HL, BEGIN
(400DH) , HL

A, (RICNFG1)
$-2

(CMD) ,A

HL, (RICNFG1+1)
$-2
(ADDRES) , HL

A, OC3H
(RICNFG1),A
$-2

HL, INIT
(RICNFG1+1) ,HL 0
$-2 '

BEXIT

;Put the new HIGHS value in storage

Plug the primary RST 49
vector with the SYN processor
address.,

Do the same for the CONFIG

W e e e

; initialization chain so the
; SYN processor can be SYSGENed

;end of the loading operation

Page 18

P1540 BANNER:
p1550
01560
P1579

01580 ABORTMS:

91599

01600

#1620 RELOTB:
P1630

91640

P1650

1660

91670

91680

91690

01700

P1710

p1720

P1730

p1749

91750

91760

P1770

P1780

91790

p1809

p1819

91829

#1830 TBLEND:
P1849 TBSIZE
P185@ ENTRYS
P1879 FIRST:
1880 STORE:
#1890 NAME :
91900 TEXT:
1910 BEGIN:
91920

$193¢

91949 QUIT:
#1950

#1960 VECTOR:
P197@ CHECK2:
91980

91990

P2000

p2919

02020

92030

p2049

92050

p2060

p2079

920980

p2099

92100

02129 INT:
92130

p2149

92150

p2160

92179

$218@ INTERCPT:

92190

ézﬁNONYM -- LDOS command Tine synonym processor '
'Copyrighted 1983, Henry Melton'
@DH

éOn]y valid at LDOS Ready - installation aborted!’
AH

(DH

REL1 ;Table of addresses to relocate to HIGH$
RELP

INIT

RELX

RELXX

RELY

RELZ

INTERCPT

LOOP1

REL2

PROCESS

REL3

OPENSYN

REL4

RELS

LOADFCB

REL7

READLN

LOOP 2

COMPARE

REL8

MOVELN
TBLEND-RELOTB+2
TBSIZE/2

BEGIN

1) ;to receive the old HIGH$ value
BEGIN-TEXT

'SYNON'

AF

86H ;A true error code has
Z,CHECK?2 ; an 86H here.

AF ; so if not, go about

@C3H ; your business.

SP

95 s A PROGRAM NOT FOUND
Z,INT ; error will have a 95
AF s here.

; make sure the stack
SP ; is ordered properly
SP ; to minimize side effects

SP
OPENSYN ; open SYNONYM/TXT

NZ,QuIT

Page 19

$220@ LOOP1: CALL READLN ; read in a line

02210 JR NZ,QUIT
92220 REL2: CALL COMPARE ; test for a match
92230 JR Z,PROCESS ; if so, process it
92249 JR LOOP1 ; or else loop 0)
92250 PROCESS: CALL BUILDLN ;build the replacement
02260 REL3: CALL MOVELN ; command]1ne and move
02270 POP AF ; it back into the
92280 LD HL, INBUF1$; command buffer and
92299 MODCHS8 EQU $-2)
02300 IF ECHO ; execute it.
923109 CALL @DSPLY
02320 ELSE
92330 NOP
92340 NOP
92350 NOP
#2360 ENDIF
923709 JP @CMNDI1
$238@ MODCH9 EQU $-2
92400 OPENSYN: CALL LOADFCB
#2410 RELA4: LD HL, DSKBUF
92429 RELS: LD DE,FCB
#2430 LD B,P
092449 CALL RBOPEN
02450 RET
92473 LOADFCB: LD HL, FILENAME
92480 REL7: LD DE,FCB
92490 LD BC,CR-FILENAME +1
p2500 LDIR
92519 RET
#2530 FILENAME : DEFM 'SYNONYM/TXT!
92540 CR: DEFB 13
P256@ READLN: LD HL,LINEBF ;Read a line of text into »
92579 LOOP2: LD DE,FCB ; a local buffer until 4
92580 CALL OGET ; a CR, skipping all nulls
ggggg E%T ?ﬁL) " s or other control characters.
92610 cP 13
92620 RET Z
92630 CcP 20H
P2640 JR C,LO0P2
92650 PUSH HL
§266@ RELXX: LD DE,LAST ; Make sure the text does
92679 SBC HL , DE ; not exceed the line
92680 POP HL ; buffer.
92690 JR Z,L00P2
92700 INC HL
92710 JR LOOP 2
§273@ COMPARE: LD HL,LINEBF :Get the match count
092740 LD A, (HL) s from the first
gg;gg EgB gﬂ: s character in the
N s Synon r r ine.
02770 LOOP3: INC HL el
92780 LD A, (HL) s Skip spac i
p2799 cp 20H 3 synpregorgS ~ R
92800 JR Z,L00P3
92810 LD DE, INBUF1$-1
92829 MODCH1@ EQU $-2
02830 LOOP4: INC DE
92840 LD A, (DE) ; skip leading spaces
p2850 cp 2PH ; in the original
p2860 R Z,L00P4 ; command line 0
92879 LOOP5: LD A, (DE)

p2880
p2890
$2900
92910
92920
$2930
$2940 LOOP5A:
p2950
p2960
p2979
p2980
92990
P3000
93010
93920
P3030
P3040
P3050
P3060
93070
p3080
93090
p3100

$3110 NOMATCH:

93120

$3149 BUILDLN:

p315@

p3160

p3179 RELS:
p3180

$3199 LOOP6:
P3200

p3210

P3220

93230

$3249 LOOP7:
p3250

#3260

03279

$3280 LOOP8:
93290

#3300

p3310

$3320

P3330 RETUR:
P3349

93350

p3360

$3380 SUBSTIT:

P3390

#3409 LOOP9:
93419

03420

93430

934490

#3450

93460 LOOP10@:
93479

93480

93490

93500

#3510 LOOP11:
93520

RET
PUSH
PUSH
PUSH
LD
POP
LD
cP

Z, NOMATCH
13

Z, NOMATCH
A, (DE)
(HL)

@DFH

NZ

HL

DE

LOOP5A

A

IX

DE

HL

HL , NEWLN
DE

A, (DE)
20H
Z,L00P7
DE
LOOP6
DE

A, (DE)
20H
Z,L00P7
(HL),A
13

Z, BLDEX

Z,SUBSTIT
HL

DE

A, (DE)
LOOP8

IX

IX

A, (IX)
20H
Z,L00P10
C,NOSUB

Z,L00P 10
(HL),A
HL

;compare loop.

; ignoring upper/lower
case distinctions,
compare for the full
match count, rejecting
for any mismatch.

Ve e e e

; After the count,
; if the original ends
; first, match is okay.

; But if the SYN key
; ends first, then the
; match is rejected.

;Save IX on general principles.

;Save the pointer into INBUF$

;Save the pointer into the SYN record
;Start at the beginning of the

; new line buffer,

; skip until a space

; skip spaces until replacement
; text is encountered.

; copy replacement text
; until EOL

; if '&' is in replacement
; text then substitute.

;Pick up the pointer to the
; remainder of the original
; command line, and copy it
; to the new command line.

; Skip leading spaces.
; If no no-space characters,
; then & vanishes.

Page 21

p3530 INC IX

093540 LD A, (IX)
93550 CP 20H
93560 JR NC,LOOP11
@357 NOSUB: DEC HL
93580 JR RETUR
$3590 BLDEX: POP DE
03600 POP IX
03610 RET
93620 MOVELN: LD HL, NEWLN
93630 LD DE, INBUF1$; copy up to 63 text
#3640 MODCHI11 EQU $-2
#3650 LD B,63 ; characters and one
03660 LOOP12: LD A, (HL) ; CR to the original
03670 LD (DE),A ; command buffer.
93680 cP 20H
03690 RET C
93700 INC HL
93710 INC DE
93720 DJINZ LOOP12
93730 LD A, 13
93749 LD (DE),A
P3750 RET
#3760 INIT: LD HL,BEGIN s This is the CONFIG
93779 LD (40@DH) , HL ; initialization routine.
93783 CMD: DEFB @C9H
$379@ ADDRES: DEFW [}
93800 FCB: DEFS 50
03810 DSKBUF: DEFS 256
093820 NEWLN: DEFS 64 ; Result line buffer
P3830 LINEBF: DEFS 80 ; Syn line buffer
03840 LAST: DEFM "HIM
93850 END START
Modifying the M Real-Time- k Interr

by Andrew Gransden, c/o 68 St Annes Grove, FAREHAM, Hampshire, England, UK TS15 9TB

This article is primarily aimed at those TRS-80 Model III owners, living outside North
America, with machines adapted to work with 5@ Hertz mains power. This is not to say
that other readers will not be interested in the experiences described below. (With
some modification, this approach could be used to correct the clock on a Model 4
running in the Model 3 mode under 5.1.4 at the 4MHz speed - ed.)

This all started by replacing my unreliable Mod I-type machine (Video Genie {UK}/PMC-80
{USA}) with a Mod 3 from Tandy. I stayed with the TRS-88 line only because I am hooked
on LDOS, and on the fact that I could use all my LDOS compatible software (with only
minor patching) and disks on my new machine. I was extremely pleased with my Mod 3
operating under LDOS apart from the annoying fact that the Real Time Clock (RTC) Tlost
19 seconds every minute. As I had always used the RTC in my programs, and with system
functions like JOBLOG, I set forth to find a means of correcting this problem.

The internal clock must run at the proper frequency to ensure that the display is not
affected by jitter or flickering. In the Mod 3, the internal clock frequency is divided
to yield a RTC interrupt frequency half that of the mains. In a 6@0Hz machine the RTC
interrupt occurs at 3@Hz, or every 33.33 milliseconds, while in the 50Hz machine it
occurs at about 25Hz (25.381Hz to be precise) or approximately every 49 milliseconds.
Unfortunately, TANDY did not compensate for this difference by replacing the System
ROMs. TRSDOS 1.3 can be patched, but under LDOS the clock management is left to the
ROM. This means that the RTC goes uncorrected when using LDOS.

Having established the cause of the problem, I now had to find a way of applying my own
correction. With reference to the Technical Information section of the LDOS Manual, the

Page 22

)

Model III Technical Reference Manual (Cat No. 26-2109) and the excellent reference
work 'ﬁode1 IIT ROM Commented' (a fully commented disassembly of the System ROMs) and
armed with EDAS 4.1, DSMBLRII and the LDOS DEBUGger, I set about my task.

One solution would have been to design, build, and install an additional crystal-driven
clock operating at 3@Hz. This would have been easy enough, but with the result that the
warranty on my Mod 3 would have been voided. Another solution would have been to order,
at some expense, an external battery-powered clock. The third, and the solution I chose
was to correct the clock error using software. The following is a description of the
Mod 3/LDOS RTC interrupt control chain, and how I solved the problem.

When the RTC pulse occurs, it interrupts the CPU and sets Bit 2 of the Interrupt Status
Port (X'EP') to zero. An image of this Status Port is kept by LDOS in INTIM$ (X'4473').
The jump vectors relevant to each Interrupt Status Bit are held in INTVCS (X'4475' -
X'4484'). In LDOS, the vector relating to Bit 2 of INTIM$ points to X'44A5' in SYSP,
which in turn jumps to X'3529' in ROM where the RTC routines can be found. This routine
decrements the system clock 'heartbeat' (X'4216') from 3@ (X'lE') down to zero. When
'heartbeat' reaches zero, the time is incremented and, if selected, displayed in the
corner of the screen. What I needed to do was to re-write this routine to operate
properly at the actual 25Hz interrupt rate instead of the expected 3@Hz. To totally
re-write the ROM routine would have used a lot of high memory, and would have
duplicated a lot of code. The solution was to write a relocatable routine which would
apply a correction to the clock count, and then hand control back to the ROM RTC
routine. Results from several experiments proved that I needed to apply a double
correction using 2 counters. The final affect is to stretch every 20th second by
approximately a third. The accuracy of the corrected RTC is within 3 seconds a day.

The program first loads into Tow memory; locates the current RTC interrupt vector and
saves it; modifies the internal references; installs the routine in high memory below
the current HIGHS$; and then reduces HIGH$ to protect the routine. The correction
routine uses only 87 bytes of high memory and obeys the 'front-end' protocol as defined
by LSI. The program carries out a series of checks to ensure that you are using a Mod 3
with LDOS (Version 5.1.x) and you have not previously applied the correction. The
program will abort with a suitable error message if any of these tests fail.

Once installed the routine can be SYSGENed to load every time your Model III is booted.
This is because SYSGEN saves all system vectors including those contained in INTVCS as
well as the high memory area above HIGH$. One word of warning: as should be the case
with all programs used with LDOS, HIGH$ should be respected, otherwise your system will
crash FASTER than ever before (within 25 ms of clobbering the correction routine).

Below is the BINHEX dump for those of you without an Editor/Assembler.

P5@6 5449 4D45 4249 P1g2 P@52 2196 52CD 6744 3A25 PIFE 49C2 1853 2A13 4@3E A5BD C21D
533E 448C C21D 532A 7944 3E4F BCDA 2253 2Al11 44DD 21C9 530D 75@1 DD74 20D 21CD 530D
75@¢1 DD74 P2DD 21D6 530D 75@1 DD74 P23t 1577 2BDD 21DE 53DD 75@1 DD74 $2DD 21E2 530D
751 DD74 §2DD 21EB 530D 75@1 DD74 P23E 2477 2A79 4422 PAS4 2A11 4422 B953 P157 POAF
ED42 2211 4423 F322 7944 EB21 B753 EDBP FB21 F752 CD8A 42C3 2049 5449 4D45 3530 202D
204C 444F 5320 5265 616C 2054 696D 6520 436C 6F63 6B2Q 3530 487A 2043 6F72 7265 6374
696F 6E2Q 5574 696C 6974 792@ 2D2@ 5665 722E 342E 31QA 436F 779 7269 6768 7429 2843
2920 3139 3833 2020 4120 5720 4772 616E 7364 656E PD54 494D 4535 3020 696E P1BB PP53
7374 616C 6C65 6420 616E 6420 6F7@ 6572 6174 696F 6E61 6CHD 2131 5318 P821 5053 1803
218A 53CD 8A42 21A7 53CD 8A42 330 4@46 6F72 2054 5253 2D38 3020 4D6F 6465 6C20 4949
4929 7573 6520 4FAE 4C59 21@D 436F 7272 6563 7469 6F6E 2077 7269 7474 656E 2074 6F2p
776F 7268 2075 6E64 6572 2P4C 444F 5320 5665 7273 696F 6E20 352E 312E 782f 4F4E 4C59
210D 436F 7272 6563 7469 6F6E 2@61 6C72 6561 6479 2B69 6E73 7461 6C6C 6564 PD54 494D
4535 3@29 4162 6F72 7465 6421 PD18 P9P1 53BB 53@6 5449 4D45 3530 3A16 42FE 1620 353A
@C54 3032 PC54 FEPP 2PPA 3E15 32@C 543E 1E32 1642 3APD 543D 320D 54FE PP2Q 153E 2432
@054 3EP1 5F3A 1642 93FE 9630 P23E P632 1642 3A16 42EE P620 P43C 3216 42C3 POPP 9202

p@s52

P0100 ;* TIMES@/ASM - Version 4.1 - 28 Oct 83
P9119 ;* TITLE: TIMES@ 5@Hz Real Time Clock Correction Routine
Page 23

20120 ;
9130 ;
p0149 ;
P0150 ;
0179 ;
p0190 ;
00200 ;
29210 ;
09220 ;
09230 ;
pP25@ ;*
90260 LF
P@27@¢ CR
P928@ SEC1
P3290 COR1
P3390 SEC2
P@319 COR2
P32 ROMCHK
PP330 INTVEC
P@340 GEXIT
PP350 @ABORT
PP36@ HBEATS
PP379 HIGHS
P@38p @DSPLY
P3390 @LOGOT
PP40@ RTCVEC
ppaze ;*
P0440

PP450 ENTRY
PP460

PR4a79

pp489

P@499

P0500

p@510

P9520

P@530

P@540

PB559

3560

Pa570

Pp580

PP590

PP690

PP610

00620

99630

99640

99650

99660

0679

99680

90690

o700

P0710

Pp720

00730

pa740

0750

PP760

P0779

P@780

00790

* % F F % F ¥ F * *

AUTHOR: Andrew W. Gransden

EQU PAH ;1inefeed

EQU PDH ;carriage return

EQU 21 ;coarse correction count

EQU 8 ;coarse correction value

EQU 36 ;fine correction count

EQU 1 ;fine correction value

EQU @125H ;ROM check for Model III

EQU 4012H ;interrupt vector

EQU 4@2DH ;LDOS return entry

EQU 4p3@H ;abnormal program exit to LDOS

EQU 4216H ;clock heartbeat counter

EQU 4411H ;highest useable memory

EQU 4467H ;display message

EQU 428AH ;display & log message

EQU 4479H ;jump vector to RTC routine

start of TIMES@ installing routine *

ORG 5200H

LD HL,MSG1 ;point to message 1

CALL @DSPLY ;and display it

LD A, (ROMCHK) ;test for Model III

cp 49H

JP NZ,ERROR ;go if not

LD HL, (INTVEC+1) ;load interrupt vector

LD A, PASH ;1oad A with known jump

cpP L ;and compare with HL

JP NZ,ERROR1 ;exiting if incorrect

tg 3,44H ;to error handing abort

JP NZ,ERROR1

LD HL, (RTCVEC) ;1oad RTC vector

tg S,AFH ;1oad max DOS area addr

JP C,ERROR2 ;go if greater

LD HL, (HIGHS) ;get current high mem loc

LD IX,P1 ;set pointer to allow

tg E%i*;;,h ;correct addressing of
+2), ;storage in hi

LD IX,P2 ’ Bhspmary

LD (IX+1),L

LD (IX+2),H

LD IX,P3

LD (IX+1),L

LD (IX+2),H

LD A,SEC1 ;set

D (L) A et count to ? seconds

DEC HL

LD IX,P4 ;set point

LD (Ik+1).L p er as above

LD (IX+2),H

LD IX,P5

LD (IX+1),L

LD (IX+2),H

c/o 68

St Annes Grove

FAREHAM, Hampshire

PO14 1JW England UK

Copyright (c) 1983 A W Gransden

TIMES@ routine corrects for errors in the
the TRS-89 Model III Real Time Clock
interrupt handling routine when operating
on a 5@Hz Version Machines under the

LDOS Disk Operating System Version 5.1.x.
Variable and Label Declarations

Page 24

P800 LD IX,P6
810 LD (IX+1),L
pe82¢ LD (IX+2),H
90830 LD A,SEC2
O pa84g LD (HL),A
) Pp850 LD HL, (RTCVEC) ;get present int vector
70860 LD (EXIT+1),HL sand save
pa879 LD HL, (HIGHS) ;reduce HIGH$ by
Pp889 LD (NXTMEM) ,HL ;store old high memory
(3890 LD BC,LAST-START ;length of routine
P@900 XOR A ;clear carry flag
79910 SBC HL, BC ;calculate new HIGH$
90929 LD (HIGHS) ,HL ;protect routine
20930 INC HL ;point to new start
! P40 DI ;disable interrupts
92950 LD (RTCVEC) ,HL ;break into Int chain
) PA960 EX DE,HL ;transfer new START to DE
' P3970 LD HL, START ;1oad address of routine
92980 LDIR ;move routine to high ram
P@990 EI senable interrupts
P1009 LD HL ,MSG2 ;point to message
P1910 CALL @LOGOT ;display & log
p1@20 JP @EXIT sreturn to LDOS
P1040 ;* Messages *
91060 MSG1 DB 'TIMES@ - LDOS Real Time Clock 5@Hz '
P1970 DB 'Correction Utility - Ver.4.1',LF
P1p80 DB '‘Copyright (C) 1983 A W Gransden',CR
P1@90 MSG2 DB 'TIMES@ installed and operational',CR
P111Q ;* error handling X
1130 ERROR LD HL , ERMSG ;point to message
P1149 JR EREXIT ;jump to error exit
#1150 ERROR1 LD HL,ERMSG1 ;point to error message
1160 JR EREXIT ;jump to error exit
O #1179 ERROR2 LD HL ,ERMSG2 ;point to error message
1189 EREXIT CALL @LOGOT ;display message
91190 LD HL ,ERMSG3 ;1oad abort message
p1290 CALL @LOGOT ;display & log
1210 JP @ABORT ;jump to abort routine
P1230 ;* error messages *
P125@0 ERMSG DB 'For TRS-8@ Model III use ONLY!'
91260 DB CR
P1270 ERMSG1 DB ‘Correction written to work under '
91280 DB 'LDOS Version 5.1.x ONLY!'
91290 DB CR
P130@ ERMSG2 DB ‘Correction already installed'
91319 DB CR
#1320 ERMSG3 DB 'TIMES@ Aborted!',CR
* P1349 ;* actual TIME5S@ routine to be placed in high ram *
| #1360 START EQU $
P1370 JR Jl ;skip protocol block
P138@ NXTMEM DS 2 ;high mem addr of next bk
91390 DB P6H ;6 bytes of protocol blk
P1490 DB 'TIMES@ ' ;routine title
1419 J1 EQU $
91429 LD A, (HBEATS) ;get heartbeat count
91430 cP 1EH-COR1 ;just reset?
91449 JR NZ,TEST2 ;g0 if not
P145¢ P1 LD A, (COUNT1$) ;get seconds count
P1460 DEC A ;decrease by one
P1479 P2 LD (COUNT1$),A ;save
91480 CcP PoH ;... seconds gone
O p1499 R NZP4 ;9o if not
91500 LD A,SEC1 ;reset seconds count
|
Page 25 ‘

1510 P3 (COUNT1$),A ;save reset count

01520 LD A, 1EH ;increase heartbeat
p1530 LD (HBEATS),A ;save reduced heartbeat
#1543 P4 LD A, (COUNT2%) jcarry out fine
p1550 DEC A ;correction ‘)))
P156@ P5 LD (SOUNT2$),A ;and save

157 CP H
ngBg JR zZ,TESTZ swhen COUNT 2§ reaches [}
91599 LD A,SEC2 ;reset correction count
P160@ P6 LD (COUNT2%),A
21610 LD A,COR2
01620 LD E,A
91630 LD A, (HBEATS) ;get heart beat count
91649 SuB E sremove correction
91650 cpP @6H ;finished?
91660 JdR NC,J2 ;go if less
P1670 LD A, P6H
91689 J2 LD (HBEATS),A
01699 TEST2 LD A, (HBEATS) ;get heartbeat count
P1700 XOR 96 : ;at new bottom?
p1710 JR NZ,EXIT 3go if not
P1720 INC A sheartbeat=1
01739 LD (HBEATS),A ;save reduced heartbeat
01749 EXIT EQU $
p1750 JpP POIRH ;jump to RTC routine
#1760 COUNT1$ DS 1 ;reserve 2 bytes

P177@ COUNT2$ DS 1
P178p LAST EQU $
91799 END ENTRY

;for correction counts

Profil

by E. R. Sturiale, SASSCO Microcomputer Services
133 Falmouth St., Rochester, NY 14615 (716) 865-1622 O)

Has Radio Shack forgotten about the Mod 1 user? If their marketing of Profile III+ is
any indication, they have. Fortunately, when they made the wise decision to use LDOS as
their hard disk operating system, the possibility arose to develop patches for Mod 1.
Since we run a small software consulting firm which uses both Mod 1's and 3's, it
became necessary to have compatibility between machines for Profile data bases.

As you can probably tell from the number of patches,
programs is not simple. Also, there are just e
machines to generate Excedrin headaches 256 throug
system were relatively easy to change after the requi
cross referencing to decode the Profile modules.

the conversion of machine language
nough hardware differences between
h 1023. The calls to the operating
red 896 pages of disassembling and

Applying the patches

1) The minimum requirements to install these patches and run Profile I+ are:
Double Density (any LDOS-supported form)
Two Disk Drives
PROFILE IIT+ HD (RS number 26-1593)

2) BACKUP your RS Profile I1I+ distribution diskette onto a working patch DATA disk.
This can be accomplished after formatting by using the LDOS Backup utility with
(X,VIS) or any other copy by file option. By all means leave th i t
tab on the distribution diskette. YETe Nrite. prates

Create a "CLEAN" LDOS system diskette with at least 50 K of free space.

'—'—<—

4) Type in all the FIX and JCL files using the BUILD command (or some ASCII text
€d1‘tor). Store them on the "CLEAN" LDOS system diskette and double check your
yping.

C 5) Place the Backup (working) PROFILE diskette in Drive 1 and the system disk with
the fix files in Drive 0.

6) NOTE : If your distribution diskette is labeled Version P1.§0.P1, or if you have
already applied the patches supplied by Radio Shack, then skip to Step 7.

Now type: DO RSPATCH

If the messages indicate all is 0.K., then continue else check your RSPATCH/JCL
file and then return to Step 2

7) This JCL will apply all the patches necessary for Profile 1 + to operate. The
procgdure may take as long as five minutes. Please watch the screen for errors in
patching. If one does occur, then check the FIX files and go back to Step 2.

To start the patch procedure, type: DO PROFIX

8) If you are going to use the system for Hard Disk operation, then copy all your
Profile /CMD programs from the working disk on Drive 1 to your HD and begin
hacking. If you want to use the system on floppy, then continue. This set of
patches will add prompts for diskette swaps.

Now type: DO PROMPT

9) At this point, create two more LDOS system diskettes and label the first "CREATION
DISKETTE" and the other "RUNTIME DISKETTE"

Copy the following patched files to the CREATION diskette:
O EFC1/CMD EFC2/CMD EFC3/CMD EFC4/CMD EFC5/CMD EFC6/CMD EFCE/CMD EFCM/CMD CM/CMD

Copy the following patched files to the RUNTIME diskette:
EFC7/CMD EFC8/CMD EFC9/CMD EFCA/CMD EFCB/CMD EFCC/CMD EFCD/CMD EFCF/CMD RM/CMD

If all goes well, you should be ready to dive into the manual and get started.

There are several differences in PROFILE I+ that I should mention.

formats on Drive f. When working with the floppy version, it is usually more
convenient to have these files somewhere else. The best way to do this is to use
the LDOS SYSTEM (DRIVE=P,WP=0ON). This forces the files to be written on the next
available drive and not your CREATION diskette.

|
1) The Profile I+ programs will try to write the working modules such as screen J
|
|

2) The cursor character on the DEFINE SCREENS option is different than standard. The
only problem that may occur is if you try to use the special character from the
<shift> @ display which is the same as the cursor. If the cursor passes over this ‘
character the special character will be erased. Since there are lots of other {
special characters that look like the cursor, you should not have any problems
selecting another one.

3) Part of the patching procedure disables the Model III scroll protect option since
the Model I does not have that feature. The easy way to do that was to change the
memory loads required to a place where they will not do any damage. I chose
location 3@@1H which is in non-existent memory in the Model I. If you are using a
memory side-car that resides in that area then either un-plug it, or change all
the patches in the FIX files that are "1 30" to a location that is not being
used. By the way, I have not noticed any difference in operation or screen

” presentation by eliminating the scroll protect feature. Other than some

Page 27

characters being different, due to the different character sets, all screen
presentations seem to be 0.K.

4) Using KI/DVR with the (TYPE) option is recommended. Use of Profile I+ with the
other drivers or filters (except the HD drivers, PDUBL and RDUBL) hag not been
evaluated. If you wish to try some others, experimentation may be required. When
using KI/DVR with Profile I+, any prompts that call for the <clear> key should be
replaced with <shift><clear>.

5) None of the other modules that are offered by Small Computer Ccmpany'have been
patched or tested with Profile I+. We have plans to purchase them so if patches
are necessary, you may see them in future LSI Journals.

6) After Profile I+ was working for awhile, we noticed that the programs gave
excessive PRINTER NOT READY messages when everything was in fact 0.K. Patches

were added to lengthen the delay time the programs wait for the printer to respond
to accommodate such functions as double striking or fast CPU's.

The patches are available in XAP of the LDOS SIG on CompuServe, and are presented here
starting on page 47.

*akxk PARITY = QDD *a#i
by Tim Daneliuk, T&R Communications Assoc., 4927 N. Rockwell St., Chicago IL 6625

Well, Winter is upon us. If that isn't bad enough, my friendly LSI Journal editor
decided that he needed TWO columns absolutely ASAP. He said "I need two
PARITY=RIDICULOUS columns by the deadline. Can you do it?" Well, I barely make it to
work on time. So friends, I had to get moving. Translated, this means that what you are
about to read is probably not up to the high journalistic standards you've come to
expect from me. I must be held blameless, as I simply cannot rush two columns out in 12
we:k]s and be expected to maintain the excellence and humility you've all come to know
and love...

CP/M and the TRS-80

Let's face it. CP/M is not a great operating system. It's not really even a GOOD
operating system. There are too many systems out there which use CP/M as the DOS (?) to
lgnore "Pa Kildall's" favorite product. Even the folks at Radio Shack have announced
their intention to bring out CP/M+ (aka CP/M 3.x) for the Mods 4, 4P and 12. So. as a
public service, let's discuss a few CP/M-80 related products. § -

In all fairness, I should point out that CP/M was FIRST! For i i i
product which served the 8-bit micro industry well. Much of thzspg;zialgt;agfae::—?;
microcomputers was partly due to the existence of CP/M. Since it was first, CP/M is
among the best outside vendor and user-supported operating system on the markét There
are products which ONLY run under CP/M, so it's a good idea to be familiar with ii

First, Tet's look at Montezuma Micro's (hereafter known
Tandy announced CP/M availability this spring, and to date ;:s":gtc‘;é: ig:‘e:;‘edn?ﬂe]Tzé
MM CP/M is a full blown CP/M 2.2 for the Mod 4. It incorporates all th v]'cp/n
commands (all 4 of 'em) and utilities, with extras. he folks at MM h edusua 1
nice job on this implementation. The BIOS (Basic Inpu o B i
emulate an ADM-3A. The keyboard driver allows you to i
2r:ce§ ”c’i b:“";kﬁts (], and backslash \) which are not n
eyboard. as gone as far as cleaning up those hi
after an error, you get the choice of retryiﬁg the ogegg‘t"i‘gncz':cﬁr:gr mgs::ges. i
letting CP/M handle the error, or rebooting the system. Instead of ::e e]esgg&
ERROR" message, the MM CP/M tells you things Tike "Record Not Found" and th: 'i'f::

Page 28

)

The highlight of this CP/M implementation is that it is chock full of useful utilities.
The most notable is INTERCHG.COM, a utility which reads "alien" disk formats. The only
“standard" CP/M format is eight inch, single-sided, single-density. As a result, there
is no "compatibility" of the CP/M system whenever you're using other types of media.
This isn't so bad with eight inch floppy disks because if you can write anything else,
you can almost always create single-density single-sided disks also.

With five inch CP/M, each manufacturer specifies the media format as they choose. This
has created a wonderful mess of incompatible five inch CP/M disks. INTERCHG reads over
20 popular five inch CP/M media formats, including Osborne, Xerox, Lobo, Zenith, and
NEC disks. I tested INTERCHG on Lobo and NEC PC-8@@1 five inch disks. I was able to
read both with no difficulty whatsoever.

MM has also included the popular public-domain MODEM.COM program. This gives you
communications ability under CP/M. MEMLINK.COM is a "RAMdrive" program which can use
the extra 64K memory bank as a logical drive, 1ike TRSDOS 6.x. The only thing missing
in this CP/M implementation is the ability to use the Shack's hard disks under CP/M. On
the other hand, why would anyone stop using LDOS and start using CP/M on a hard disk?

In the several months I've used the MM CP/M, it has run flawlessly with one exception.
When you do a lot of disk 1/0 among several different drives, you get Record Not Found
errors. ['ve detailed this bug to the manufacturer. By the way, if you're worried about
support, fear not! Montezuma Micro is run by the same people who run Aerocomp. Aerocomp
is one of the most reputable and helpful mail-order houses in the business. The Model 4
CP/M package comes with 36 pages of documentation about the implementation, as well as
Dave Cortesi's EXCELLENT book "INSIDE CP/M". The latter is a 5@@+ page discussion of
CP/M. MM CP/M costs $199 and is available from:

Montezuma Micro, P.0. Box 32027, Dallas, TX 75232 (214) 339-5104

Thanks to a local CP/M “guru", I have been introduced to a fabulous new product called
MPC. If you fiddle around in assembler, you've probably had the urge at some point to
write you're own operating system. No, you're not crazy! (Well, maybe a little
crazy...) Of course, such a project is a large undertaking, and would require more time
than the average individual has available. The next best thing would be to Took at the
source code for someone else's DOS. Unfortunately, most DOS authors frown on
distributing the source for their system, and quite understandably!

You may have noticed that MPC is CPM reversed, and that's exactly what this product
does. It "reverses" (disassembles) the code which makes up the CP/M kernel and produces
a FULLY COMMENTED source file. If you're interested in how the BDOS (Basic Disk
Operating System) or CCP (Console Command Processor) work, you can read and study this
file. The comments alone are worth their weight in gold and will give you great insight
as to how CP/M actually works. MPC costs only $35 and is available from:

CC Software, 2564 Walnut Blvd. #106, Walnut Creek, CA 94598, (415) 939-8153

THINGS FOR THE MAX-80

The folks at Powersoft are at it again! Apparently they really like the MAX-8@ 'cause
they keep bringing out new products for it. First, a "MAXed" version of SU+, and now
SETMAKER/SETWRITER. If you own a MAX, you already know that the video system on the MAX
is quite versatile. The character set is programmable - i.e. you can qlake gach
character look as you wish. Unfortunately, this is a messy proposition involving time,

effort, and assembly language.

SETMAKER allows you to create custom character fonts and graphics (.:haracters.on the
MAX-8@. These can be saved as on disk or they can be directly loaded into LDOS itself.

Page 29

You can boot the system with your own fonts and graphics in place. Powersoft has also
included several examples of customized character fonts and graphics.

SETWRITER is a companion product to SETMAKER, and allows you to print your custom fonts
and graphics on an Epson MX-8@ or FX-88, just as you see them on the screen! If you're
using an MX-8@ you must have GRAFTRAX. I was not able to test SETWRITER since I don't
have either of these printers. Judging from SETMAKER (which ran flawlessly), I don't
hesitate to recommend these programs. They're in machine language, and are abgut as
"bullet proof" as can be. There are plenty of on-line menus-- the documentation is
almost unnecessary.These are $29.95 each, or $5@ for both. They're from:

PowerSOFT, 11500 Stemmons Freeway Suite 125, Dallas, TX 75229 (214) 484-2976

MODEL 4 TOPICS

Speaking of Powersoft, they've also just released their LDOS utilities for TRSDOS 6.x
on the Model 4. It's the "Toolbelt for TRSDOS 6" and costs $49.95. Considering the
(more than 15) useful programs you get, this has got to be the best bargain in town. I
use versions of these utilities under LDOS 5.1 and TRSDOS 6, and find them to be
excellent products. Contact Powersoft for more details.

A new word processor from Anitek called “"LeScript" is available. One version runs on
Mod 3, 4, or MAX (the package also includes a Mod 1 version). It supports 8@ col on the
latter two, even when running the Mod 4 in Mod 3 mode! LeScript also uses the extended
memory available in the Mod 4 and MAX as text buffer. When you fire LeScript up on a
MAX, for example, you're greeted with the pleasant sight of around 8@K of text space.

LeScript also supports virtually every printer known! If you have a printer from RS,
Epson, NEC, C. Itoh, ... you'll find its features implemented in LeScript. For example,
I was able to use italics, underline, super- and sub-scripts on my MX-10@. LeScript
even lets me print in proportional mode by using the Epson's bit-image graphics.

One especially delightful aspect of LeScript's operation is that it runs just great
with LDOS 5.1 / TRSDOS 6. Although the program doesn't ordinarily use the system's DCBs
(ahem!) it DOES know enough to not interfere with operating system features. For
example, you can leave type-ahead on when you enter LeScript, and when you're done you
won't be greeted with lines of garbage.

For $129 yoy"ll be hard-pressed to find a better overall word processing product.
Though LeScr1p.t isn't virtual (the maximum text you can edit at any one time is limited
by memory), it should accommodate the vast majority of word processing chores you can

drean! up. If I sound enthusiastic, I am! You will be too when you see this product. For
more information, contact:

ANITEK Software Products, P.0. Box 361136, Melbourne, FL 32936 (3@5) 259-9397

MACHINE WARS

It never fails, almost invariably someone asks the uestion, "What sh

Model 4 or a MAX?" I've used both quite a bit and I'm regdy to give my irstfg:r}l(ejdlogliji;o:
- "It depends!" From a pure performance point of view, the MAX wins hands down. In some
cases, the MAX runs rings around much more expensive machines like the IBM-PC or the
TRS-8@ Mod 12. I also prefer the versatility of the MAX. It gives me two serial ports,

;ynks eight inch floppies, and can boot from any type of disk drive, including hard
isks.

There's another side to this story. It's clear that new TRS-89 soft i
LDOS/TRSDOS 6. LDOS 6.x is not now available for the MAX-8@, a?.g may :chr"w gﬁefg;
hardware conflicts. If you use your machine in a commercial application and need to be

compatible with the rest of the world, it seems that the MA
unless you intend to use CP/M. X 1s not a viable choice

Page 30

What abogt the Mod 4? Frankly, the Mod 4 never impressed me much. It has the same
sleazy video that Tandy is notorious for, has no 8" drive capability, and only one
R57232 port. Worse yet, early Mod 4s apparently had flakey disk controllers and used
wait states when accessing memory. The latter made this "4 MHz" machine run as much as
25% s]ovfer. (I am told that these problems have been resolved, and that current
production Mod 4s work just fine.) But ... just wait 'till you see the Mod 4P
(P=Portable)! It has great video, no wait states, and is built like no TRS-8p I've ever
seen, | spent a day with a 4P, and as jaded as I am, I was impressed! This is a
wonderful machine, and shows that Tandy IS paying attention to the market. I still miss
8" floppies because an 8" disk drive is an excellent compromise between price and
storage capability. Other than that, the 4P is a "dream" machine.

Another consideration is support. Though LOBO has one of the very best warranties, as a
mail-order operation they're not in the position to give instant help. Radio Shack, on
the other hand, can help you locally and is in a better position to answer questions.

A1l things considered, the bottom line is this: If you're a software "tinkerer" who is
reasonably knowledgeable and a performance hound, get a MAX. You'll love it! If you're
fairly non-technical, and need a lot of "hand-holding" and support, buy from Radio
Shack. What do I use? A MAX-8@! Though I enjoy using the Mod 4, I find the MAX a
consistently overall better performer. Still, the Mod 4P is really tempting! Mebbe if I
save my lunch money for a few years...

THE WRAP UP

That's it for now. Unfortunately, I've had to delay the review of the Model I to III
upgrade I mentioned in last time. Hopefully I'11 get another crack at it later in 1984.

Earl 'C' Terwilliger Jr., 647 N. Hawkins Ave., Akron, Ohio 44313

INITIALIZATION, BLOCKS, POINTERS, ARRAYS

As you can tell from the C commented title for Part V, the subjects for discussion are
blocks, pointers, how variables can be initialized and an introduction to arrays. Shall
we start with more on blocks? (Were you expecting a choice?)

Several computer languages are block-structured in the sense that they allow functions
to be defined within other functions. C does not allow this. In C, functions are always
“external" since they are not inside of other functions. I am alluding to the fact that
functions are blocks of C code. Remember from previous parts that a block is enclosed
via {}. These braces {} enclose functions and other blocks. After the { comes variable
definitions, if any. Variables in C, are thus defined in a block-structured manner.

Variables can be declared following the { that begins any compound statement. Also
after the { that begins a function, variables can be declared (defined). If more
variables need to be declared, later in the function, they can be, by declaring them
after the left brace which begins a block. These variables can even have the same name
as other variables. Their declarations "supersede" the identically named variables in
outer blocks. They exist only within the block in which they are declared. Don't forget
or confuse what you have learned previously about variable storage class and what you
are learning now. The above comments on variables declared within blocks hold true for
external variables too. Now can we look at how variables can be initialized? (No

freedom of choice, is there?)

If you would like to assign an initial value to a variable when it is defined, C will
allow it. As an interesting point, C does initialize certain variable classes for you.
If you do not specifically assign an initial value to an external or static variable, C
will initialize them to zero for you. However, automatic and register varllat.ﬂes are not
initialized automatically for you by C. So, don't count on them containing anything
worthwhile unless you specifically initialize or assign a v§1ue to them. An equals sign
and a constant expression are used to initialize simple variables. (Arrays and

Page 31

structures are initialized differently, as we shall C later.) Here are some examples of
simple initialization:

int a = 5;
intb=c=d=¢e=§;
char g = 'x', h, i ="'y';
char f = :

int d = 45 * 67;

As you can imply, this initialization saves "extra", sometimes unnecessary, assignment
statements which assign a value to a variable. K& call this shorthand for assignment
statements. Remember what was just learned about blocks and how variables can be
declared within them? Well, variables declared within these blocks (or functions) can
also be initialized. This initialization takes place each time the function or block is
"entered". External and static variables are initialized only once. (Are you wondering
why this is? External and static variables are of different storage class and scope
than automatic and register variables. Think about how and when these variables come
into existence and when they go out of existence (if they do)?) Also, for automatic and
register variables, the initialization can be done via any valid expression. This
initializer is not limited to a constant expression.

Before I discuss how arrays can be initialized, shouldn't I discuss what they are and
how they are declared (defined) ? For example:

int number[10];

This declares an array of size 1f. In essence, this is a "block" of 1§ integers
together. Likewise:

char name[12];

declares a block (an array) of 12 characters. Each member of the array is called an
element. Each element is numbered or indexed. In C the index starts at zero. In the
number array above, the elements can be referred to individually via number(@],
number(1], ..., thru number[9]. C also supports multi-dimensional arrays. For example:

int al101020];

This declares a two dimensional (rectangular) array. Elements of a multi-dimension
array are stored by rows. Viewing storage as linear, elements of the array are seen in
storage order if the right most index varies fastest. Now, how can arrays be
initialized?

Arrays are initialized differently than other variables. Only external and static
arrays can be initialized, automatic arrays can not be initialized. External and static
arrays are initialized as shown in this example:

static int numbers(10] = { 9,1,2,3,4,5,6,7,8,9 };

Remember, in the absence of explicit initialization, all elements of external and
static arrays are initialized automatically to zero.

In initializing external and static arrays, fewer initializers can be used than there
are elements. In this case, the remaining elements will be zero. C also disallows more
initializers than elements. Wouldn't it be nice to be able to repeat an initializer or
just to initialize specific elements and ignore others? Well, sorry, C does not provide
a means to do that.

Here is an example of a character array and its initialization:

: /* <...5...10...15...20...25 */
static char me[] = "Earl C. Terwilliger Jr.";

Page 32

Quick! How many elements does the array me have? (Use the comments ruler line to help
you count.) Did you guess correctly with 24? Each character between the quotes is an
e]ement plus the \0 which is added by the C compiler to terminate the string. Did you
notice §hat thq size of the array, i.e., the number within the [] was omitted? If you
do not include it, C will compute the size of the array for you based on the number of
initializers. Another way to initialize a character array is as follows:

char name[] = { 'E', 'A', 'R', 'L', '\@' };
Notice that it is so much easier to use:
char name[] = "EARL";

Are you thinking that the initialization of a character array is like a "string copy"?
[f so, be careful in your evaluation of the following statements:

static char msg[51];
msg = "TEST";

This is not a string copy! C does not provide any operator for string copying or
dealing with an entire string of characters as a single unit. Also, msg is the name of
an array, it is a constant. It is not an lvalue and the above expression using it as
such is ILLEGAL! How then can elements of an array be assigned values? The answer is by
individually assigning values to each element. To "blank out" a character array,
examine the C code which follows:

char message[20];

for (i=p, i<2@, +i) {
message[i]l = ' ';
}

Also, note that the message array does not necessarily have to be external or static.
It could be an automatic array!

Next, onward to pointers! A pointer is a C variable which contains the address of
another variable. I can hear you thinking! You are no doubt asking, how does the
pointer get the address? The unary operator & mentioned in an earlier part giyes the
address of its object. The & operator applies only to array elements and variables.

Consider the following:

char a;
char *ptr;

53
&a;

In the expression: ptr = &a, ptr is assigned the address of a. By the way, Fhere is no
such thing as Jjust a pointer. In C, pointers are always pointers to a particular data
type. As shown above ptr is a pointer to type character. Thg * operator denotgs
indirection, it treats its operand as an address. It accesses this address to obtain

the contents stored there. For example:

a:
ptr

n N

char *ptr, a, b;

b= "x';
ptr = &b;
a = *ptr;

In the above examples, b is assigned the value 'x'. ptr is assigned @he'a?dress of b. a
is assigned the value of the character pointed to by ptr, which is 'x'. *ptr is a c
mnemonic declared in this example to be a character. The combination of the * and ptr
denote a character just like the above variable b does. When a pointer is declared, the
type of data it points to is stated. The pointer is lTimited to point to data of that

Page 33

type. Also, pointers and pointer references are lvalues and can appear on the left side
of assignment statements. Above, the pointer ptr is seen appearing ?n the left of an
assignment statement. Below, *ptr is shown on the left of an assignment:

char *ptr, a, b;

b = lxl;
ptr = &a;
*ptr = b;

After the above statements are executed, a will contain the same value as b! *ptr is a
pointer reference. In the case above it actually references a. ptr contains the address
of a and *ptr references the character stored at the address in ptr.

Having the address of a variable is very useful. Remember from a previous part that C
passes copies of variables as arguments to a called function. This is "call by value".
The called function can not alter a variable in the calling function. (Actually, it
could if the variable used in both functions was an “external" variable.) Now that you
have learned about the & operand, you can use it to pass, as parameters to a function,
addresses of (pointers to) variables. The called function can declare the arguments
passed as pointers and alter the referenced data!

Looking back over the discussion on arrays, do you remember the problem of assigning
values to an array? Consider this, now that you are familiar with arrays and pointers:

char *myname;
myname = "Earl C. Terwilliger Jr.";

This also is not a string copy! But it is a valid expression. myname is a pointer and
it is assigned the address of the string! Comparing these two C statements with the
ones shown to illustrate arrays, you should be wondering about the relationship between
an array and a pointer. Actually an array name is a pointer expression. However, keep
in mind that a pointer is a variable but an array name is a constant. If an array name
is passed as an argument to a function, what is actually passed is the location
(address) of the beginning of the array. (Using the & operator on just an array name is
invalid. C does however, allow the & operator to take the address of an array element,
for example &myname[4]. The & operator applies only to variables and array elements!)

A called function, when passed an array name as an argument, can declare the argument
as a pointer and reference thru the elements of the array. Would you like an example?

main() {
static char myname[] = "Earl C. Terwilliger Jr.";
char a;
a="'1";
printf("%d\n", scount (myname,a));

scount (ptr,ch)
char *ptr, ch;

{
int c = §;
while (*ptr != '\@') {
if (*ptr++ == ch) ++c;
}
return (c);
}

The function scount will return the number of occurren i i
given' Gharacter iring (rray). The tuo parsmeters pasees 1y S s on oirece ot e
string to search and the character to search for. If you follow the logi a
particular interest to the *ptr++ expression. The value printed after the ab 4y C& piy
executed should be 3! (What? You don't believe me? Type in the cod d i taperd
your favorite C compiler.) e and try it out on

Page 34

)

Next timg, you will see more on pointers and arrays. Structures will be introduced and
[will point out some of the most common errors found in C programs.

Items of General Interest

Here are corrections and additional information regarding subjects raised last time:
Page 12:

The patch to restore "random" allocation should have been listed as for Model 3 and
MAX-8@, LDOS 5.1.x only. The correct patch for Model 1, LDOS 5.1.x is:

PATCH SYS8/SYS.SYSTEM:9 (DP@,FE=D5 CD C1 44 D1 6C)
Page 14:

The new name for the TRSDOS 6.x communications software package is LS-Host/Term,
Catalog number L-35-281, $199 plus $3 shipping and handling.

Page 55:

It has been reported that the following patch will correct a "@ left" error with Model
1 SuperSCRIPSIT, Version 01.02.90: PATCH SCRIPSIT/CMD (X'7E22'=FC)

Page 57:

Here is the equivalent of the ROM/CTL patch, but for the Model 1. Comments are the same
as the Model 3 patch:

. ROM/FIX

. Patches to the Model 1 SS 1.2 DW2/CTL driver for system DCB usage
0P@,91=3D BF

D92,PB=3E 30 09

DP3,2D=CD 35 BF

DP3,45=CD 35 BF

X'BF35'=D5 F5 CD 3B @@ F1 D1 C9

. End of patch

Page 64:

In the FDC driver patch, the first line should have ended ED A2, not ED A4. The
SYS2 patch for drive timing is already present on most release versions of 6.1. The
byte position of the SYS1 patch (for changing REMOVE back to KILL) should have been

C8, not CB.
Patches, patches, patches ...

The following patch to LBASIC (versions prior to §9/31/83) will correct the operation
of RUN"filespec",V for large programs:

. Patch to LBASIC/CMD (Model 1 ONLY!)
. corrects operation of RUN"",V

DPC, 58=5E 64

D13,89=ED 62 39 D9 CD 4D 1B D9 F9 C9
. End of patch

. Patch to LBASIC/CMD (Model 3 and MAX-8@ ONLY!)
. corrects operation of RUN"",V

DPC,6F=75 64

D13,AP=ED 62 39 D9 CD 4D 1B D9 F9 C9

.End of patch

Page 35

The following patch to FM will correct a problem with not moving certain files:

. Patch to FM 5.1 to correct not moving certain HIT positions ®
DDF’4E=”2

D19,62=62

. End of patch

. Patch to FM 6.x to correct not moving certain HIT positions
DPF, 67=p2

FOF,67=00

D19,C6=63

F19,C6=62

. End of patch

The following patch to QFB (all 5.1 versions) will provide for proper operation on
double-sided media, and prevent a conflict with READ4@ source drives:

. Patch QFB/CMD (5.1.x)

. corrects two-sided & READ4Q operation
DP2,26=p0 99 PP

X '5AAE '=CD C6 60

X'6@C6'=CD 96 5C FD CB @3 A6 C9

. End of patch

The following patch corrects a problem in the version of XMODEM provided with the
LS-Host/Term communications package:

. Patch to XMODEM from LS-Host/Term
. corrects problem with setting 8 bit word mode T
DP1,9E=C9 O
FP1,9E=28

. End of patch

The following patch corrects an error in the SVC table for Model 1 LDOS 5.1.3 and 5.1.4

. Patch to correct SVC table entries for Model 1 LDOS 5.1.3 & 5.1.4
. this patch is to SYS7/SYS

D11,88=44 30 44 33 44

. End of patch

: How i rks - P utility di
BACKUP functions and procedures discussed
or--- You can never have too many backups

by Joseph J. Kyle-DiPietropaolo

Long, long ago in a galaxy far, far away... oops- sorry. When the idea of a BACKUP
uti!ity was first implemented in a TRS-80 type DOS (Model 1 TRSDOS), the only
deglgnated purpose was to produce exact duplicates of existing diskettes. 'i’he BACKUP
utility on LDOS 5.1.x and TRSDOS 6.x, however, wears many hats to serve a variety of
purposes.

The first is, of course, to produce exact duplicates. One maj i i
mode of LDOS/TRSDOS 6.x BACKUP and the original variety is %g;tding;ggggogegwiegAézas
(henceforth known as BACKUP) requires that the destination diskette be FORMATtéd first
The reason for this is simple: LDOS can handle many different disk drive set BACKUP
can handle all of these, but only if the diskett P

e wa i)
usable by LDOS through the FORMAT utility. ¥as Breviously processed and made '\»

Page 36

To produce an exact duplicate of a diskette, several things must be true about both the
source and destination disks.

1) Both qrives must be tpe same type. That is, they must both be five inch or both
eight inch, the same density (single or double), and have the same number of sides.

?) Neither the source nor destination drive can be a hard disk system.

3) The destination drive must have an equal or greater number of cylinders than the
source drive. For most people, a cylinder is the same as a track, but double-sided
drives and hard disk systems actually have cylinders. A cylinder is a collection of
tracks grouped together as one logical unit.

4) 1f the destination diskette has flaws (indicated during the FORMAT process), they
cannot be on a cylinder that is occupied on the source drive. Generally, flawed
diskettes should be discarded in any case.

When these conditions are met, and none of the special BACKUP parameters are specified
(as described further on) BACKUP will be able to do what is called a "Mirror-image
BACKUP". This is a misnomer-- the data is not reversed, as it would be in a mirror, but
is copied identically from the source to the destination cylinder by cylinder.

This is the most common type of BACKUP. A1l other forms of BACKUP operations fall into
the category of “"BACKUP-by-class". If one or more of the above conditions are not met,
then the BACKUP is done by copying each file on the source drive to the destination
drive, one at a time. During this type of BACKUP, the BACKUP utility will display
messages to indicate the type of BACKUP. "Backup-by-class invoked" means that the
process was caused by a specification on the part of the user. "Backup-reconstruct
invoked" means that BACKUP detected that one of the above conditions was not true.

Well, you may ask, what is a "BACKUP-by-class" good for? For this we must dig a little
deeper into the parameters and specifications of BACKUP. One useful specification is
the "partspec". A partspec is a portion of a normal LDOS file specification. For
example, to move all files with the extension of /BAS, and that begin with "M". The
command "BACKUP M/BAS:@ :1" could be used. The special partspec of $ means "all files".

To move groups of files, parameters can be used. For instance, "BACKUP :@ :1 (MOD)"
would copy all files that had been modified since tr)ey were last baclfed up. In a DIR,
this modified condition is indicated by a "plus" (+) sign next to the file.

Other parameters are available to backup files based on dates, visit_ﬁli[:y stal':us,
protection level, and whether or not the file already exists on the destination drive.
With this introduction, all users should be able to use BACKUP more efficiently.

But what about frequency of backups? As a general rule, backups should be made at any
significant break in a data processing procedure. That means at 1e§st every day a
diskette is used. If a lot of processing is done, it wouldn't be a bad idea to perform
backups more often, perhaps at mid-day in addition to at the end of the working day.

And how many sets of diskettes? Three is considered the absolute minimum. The sets
should be used in a rotation system. For example, let's label the sets of disks A, B,
and C. On the first day, set A is used. At the end of the.day, set A is backed up onto
set B. The next day, set B is used for processing. Set B is tht_en backed up onto set C.
Set C is used the next day, and at the end of the day, set C is backed up onto set A,
and the cycle continues. In this manner, no set 1is used two days in a row, and new work

is always done on the backup to ensure its integrity.

e five sets, labeled Monday thrqugh F;‘idayl.(This tgelgs? pregen;
confusion as to what set is to be used, and provides additional backup protection. tac
set is used on its labeled day, then l’)acked up onto the next day's set. Six sets could

be used if work is to be done on Saturdays.

Many companies us

Page 37

What about re-formatting? Many people advocate periodically bulk-erasing and
re-formatting the destination disk before a backup. This is a good idea, as this would
be the only time that currently unused portions of the diskette would be checked for

potential flaws.

What about diskettes themselves? Diskettes should be labeled with the date they are put
into service. After a period of time, typically six months, they should be replaced
with new diskettes, even if no difficulties were noted in their operation. The cost of
even a premium diskette is trivial when compared to the value of the data it stores.

ndi haracters t Printer Via the K rd wit i r
by Dick Konop

An interesting customer service request prompted this article. The nature of the
dilemma goes something like this: How can one pass an um-teen character control
sequence to a printer directly from the keyboard with a single keystroke? One answer to
this problem can be found in the use of KSM and MINIDOS.

The MINIDOS filter has a command (<CLEAR><SHIFT><P>) which will allow a (two character)
hex byte to be entered from the keyboard. This byte is then sent to the printer. The
KSM filter allows multiple keystrokes to be defined as a single key (each of the
keystrokes <CLEAR><A> through <CLEAR><Z> can represent a different sequence of
characters). To attain our final goal, a KSM file can be created which will invoke the
MINIDOS filter, and pass it the hex control bytes.

The best way to illustrate this is by example. Let us assume that the bytes X'lB' and
X'@F' need to be sent to the printer to produce the desired result. First, create a KSM
file. One method of producing a KSM file is with the BUILD library command. If the
BUILD command is used, the HEX parameter must also be specified. For example:

BUILD MOOSE/KSM (HEX)

After 1:ssu1'ng the .BUILD command, the prompt A => will appear on the screen (if the
extension for the filespec was /KSM). Respond to this prompt by entering the following
characters (note that the spaces are for readability only, and must not be entered).

FP 31 42 3B FP 30 46 3B @D

Once the KSM file has been built, the KSM and MINIDOS filters must be appli 2

: : 2 pplied to the
keyboard. The order in which the filters are applied is important. The KSM filter must
be applied first, followed by the MINIDOS filter. For example:

FILTER *KI KSM MOOSE
FILTER *KI MINIDOS

After this has been done, depressing the <CLEAR><A> ke :
characters X'1B' and X'@F' to be sent to the printer. <l ke L

A total understanding of what is happening is not required to i i
important to note that for each byte sent to the printer, four :;:ezh;iec?z’e‘;:z;'i;tt;:
KSM file. The first byte will always be X'FP'. This is the character that will cause
the MINIDOS "P" funthn to be activated. The next two bytes in the KSM fil : th
hex values correlslpon‘fhng to each hex digit in the byte being sent to the rin:eire‘rhai
’1‘s“to say, the "31" and "42" are the hex representations for the charagters "1* and
qué';‘esgﬁgt}\a’glbﬂbﬂigsinfov;;:eths bytebtt;'at Will be sent to the printer (in this case
. our e ; P 20l
semicolon character, and is translated Jt;y xsfqe?n"t%"‘.jﬁ :%:‘;E;lw?%?ag? X'38'. This is a
must be a terminating X'@D' byte at the end of). Finally, there

: yLE 3 the KSM key assignment i
terminator for the KSM key definition. The X'@p’ gnment. This acts as a
to the <CLEAR><A> KSM key. e X'9D* marks the end of all assignments made

Page 38

)]

—+—

please note that when a KSM printer control key is pressed, the actual MINIDOS commands
will appear on the screen (just as if they had been typed in). This type of printer
(. control should be useable from within any program that allows use of KSM and MINIDOS.

For the last two years, I have attempted to use this column to shed some light on the
subject of Job Control Language. Through examples both of my own design and also those
of other readers, the many aspects of JCL have been examined and described. Rather than
rehash all of this material again, I would rather devote this space to answering
specific questions about the application of JCL procedures. J

One particular question about using JCL procedures keeps coming to the attention of our
customer service department. The question, "How can I use JCL to run (a particular }
program)?", can't always be answered with a simple set of instructions. Some programs

as written can be run and controlled via a JCL procedure, while others can't. There are

those that can be partially controlled, but still require some user keyboard input.

Future columns will attempt to deal with both previously mentioned subjects; answering
specific user questions, and explaining how existing programs can be controlled with a
JCL procedure. In addition, I will attempt to explain how a program can be designed to
allow a JCL procedure to control it from start to finish. If any of you have questions,
comments, or interesting uses for JCL, send them to LSI, attention "JCL Chuck".

t r) - t
“Active Variable Dump for LBASIC" - Alan Moyer v2n3pl5 v2n4p38
, “"Alcor Pascal" - Scott Loomer v2nlpl8
(0 Allocation, disk v2n4pp8
: AM Electronics, disk controller vln3pf3
"APL*PLUS/8@ - A System Overview" - Daniel Lofy & Lee Rice v2nlpf9
“Article, An" - Charlie Butler vlndp4p
"ASCII File Listing Utility for The BASIC Answer" - Jeffrey Brenton v2n3pl9
Assembly language basic concepts v2n2p58 v2n3pdb vZ2nlpad

vin6p38 v2nlpdb

Assembly language patching VIneole | winbpéA

Assembly language programming tips
“At Large" - Earl Terwilliger v1n6p5@
"Automatic Chaining with JCL" - Jim Kyle v2n4p52
"BASIC and File Structure - A Beginner's View" - Wes Goodnough vin6p20
“BASIC Concepts - The RUN,V Command" - Dick Konop v1in6p69

"Bet LDOS" - Tim Daneliuk vin3plé
Byfealjg“e"' I was an vin3p38 vlnGp76 v2n2p52
under LDOS 6.x 3522p?2
‘C' graphics 4 €
“iC' language, The" - Earl Terwilliger:
general introduction y :g:épég
functions, variables, constants, expressions V2n3p39
operators v2n4g34
logic, control & flow) v2n5p3l
initalization, blocks, pointers, arrays v2n2pl8
"iCard' Utility" - Paul Tonini v2n4pP8
"Case of Mis-Allocation, A" - Bill Schroeder vz“zgn
Case mode indicator vindpap
Changing operating systems Y ; vinlpl3
"Clock Speedup Kits with LDOS, Using™ - Tim Mann v1n6p32
Cobol 2n3p28
,Q "Color (_:ome§ to ghe TRS-B?'S" - Zcot%ht;m;g; v1n6p12 :2:1528
ECunnuqlcat1ng Micro, The" - Gordon P vin5p4@ v1ln6p83
ommunications v2nlp35

“Communication Host" - James Bruckart
Page 39

ive I t

"Confessions of a Machine Language Addict" - Ray Pelzer

Configuring with non-relocatable code

Customer service tips

Cylinder term explained

DAM's, old

“Data Address Marks" - Roy Soltoff

Date conversions

"Device I/0 and Independence, LDOS" - Roy Soltoff
Disk allocation schemes

Disk byte I/0

Disk controller, AM Electronics

Disk drive first access delay

"Disk Drive Control Linkages, LDOS" - Bob Bowker
Disk drives (8") on the Model III

Disk drives, non-Radio Shack

Disk drive poll

Disk drive select time hardware fix (Mod I)
"Disk I/0 in Assembler" - Doug Kennedy

Disk speed (30@ RPM delays)

“Double Sided Drives with LDOS" - Tim Mann & Roy Soltoff

"Easy LScript" - James Bruckart
"Easy VisiCalc" - James Bruckart
“EDAS IV 'Z' Command" - Earl Terwilliger
Editor, LDOS command line
Electric Webster with Newscript, LDOS and Sole
“"Electronic Inbasket, The" - Gordon Thompson
“ELSIE - The Contented Compiler" - Jim Frimmel
Epson MX-8@ tips
B e e, eaiera " - Earle Robinson:
assembly language efficiency
printers, TBA, UTILZAP
printers, word processors, MNet, 'C', LDOS 6.x
'C' book, SS drivers, Model 4, PROMPT/CMD
UNIX, IBM PC, Telex
Expansion interface
EZEDIT - The LDOS command line editor - Graham Brown
"Fast Graphics for 'LC'" - Scott Loomer
File listing utility for TBA
File structure, BASIC
Filter linkage
"Fortran, Cobol and LDOS JCL" - Glen Rathke
Fortran with interrupts and SVC's
“"Greek to Me, LDOS - It's" - Charles Knight
“"Hayes Smartmodem, LDOS and a" - John Mullin
High memory, avoiding memory conflicts
High memory module header
Host, communications
Index, LDOS Quarterly/LSI Journal - Scott Loomer
"Inside the Expansion Interface" - Earle Robinson
“Interrupts and SVC's in Fortran, Using" - J. Bender
JCL chaining
"JCL Corner" - Chuck Jensen:
clear screen
file copying
compilation macros
hex codes, more compilation macros
keyboard input
logical operators, keyboard filters, LScript patch
creating and defining JCL procedures
backups
JCL with FORTRAN and Cobol

Page 49

vln6p38
vZndpsS@
v2nlpP7
vinlpp4
vin5pl9
vinlpP5
vZ2ndp6P
vin3p38
vZ2n4pP8
v2n2p52
vin2pP3
vZn4p63
vin6pd3
vZ2n3pf8
v2n3p55
v2n2p27
vin3pl8
v2n2p55
vindpll
vin3p56
v2n2p22
v2n3p23
v2nlp37
vZ2n5ph7
vin6p55
vZndpls
vln3p2l
vin5pl8

vinbpb4
vZ2nlp39
v2n2p26
vZn3p33
vZ2ndp28
vindp39
v2n5pf7
vZndpl6
v2n3pl9
vin6p20
vin3pé7
vinbp32
vZndpl9
vin5pl5
vinép34
vindpl3
vin3pd6
v2nlp35
vZn5p39
vindp39
vZ2ndpl9
vZ2ndp52

vinlpf3
vin2p3@
vin3p51
vindpd6
vin5p34
vin6p72
vZ2nlp54
vZ2n2p49
vinbp32

0

LBASIC:
active variable dump
"CMD"0" implementation and possible uses" i
default extension patch
file structure
notes (items missing from 1st printing of the LDOS manual)
RUN,V command
USR routines (relocating to high memory)
LDOS 5.1.4, new features
LDOS 6.x
announced
licensing
technical manual
patches v2n5p35
"LDOS: How it Works" - Joe Kyle-DiPietropaolo:
PATCH utility
REPAIR, CONV and COPY23B utilities
non-Radio Shack disk drives
configuring with non-relocatable code
BACKUP utility
"Les Information" - Les Mikesell:
communications
RS232 drivers
SYSTEM (FAST) and (SLOW) commands
byte 1/0
byte I1/0 under LDOS 6.x, CTLP/FLT
@PARAM under LDOS 6.x
“Let Us Assemble" - Rich Hilliard:
the basics
using DEBUG, sorts
number base conversion
“Library, The" - Earle Robinson
Library commands:
LOAD documentation correction

SYSTEM (FAST) vinlpl3
SYSTEM (SLOW)
Limited backup policy explained - Bill Schroeder v2n3ppP4

“Linking to LDOS in Assembly" - Roy Soltoff

“LISP Implementations for the Z-8@" - Lee Rice & Daniel Lofy
Listing utility for TBA

LScript made easy

“LScript Patches to Add Versatility" - Scott Loomer vin6p45
Load module structure

Lower case lock T

LSI Journal submission and subscription policies

MAX-8@ LDOS described

"MAX-8@ Memory Map" - Chuck Jensen

Magazines e

Manual story, with corrections to 1lst edition

Memory map

Minimum configuration disk .

"Mixing Newscript, Electric Webster, LDOS and Sole" - Jerry Latham
Modifying Mod 3 RTC Interrupts - Andrew Grandsen

"My BASIC Answer" - E. Cheatham (TBA review)

“Newscript 7.9 and REFLEX" - Gordon Thompson

"Newscript and The BASIC Answer" - Jerry Latham

“New Version - EDAS IV, A" - Marc Leager

Number base conversion

01d DAM's

Parity errors

Page 41

v2n4p38
vlndpl5
vin5pl9
vinép20
vinlpP9
v1n6p69
vin3p47
vZ2ndpf3

vZ2n2p46
vZ2ndpp7
v2népp7
v2ndp64

v2nlp52
v2n2p44
v2n3p55
vZ2n4p50@
v2n5p36

vin5p4@
vin6p83
v2nlp58
v2n2p52
vZ2n3p56
v2né4p61l

v2n2p58
v2n3pd6
v2ndp4d
vln4p28

v2nlp47
v2nlp58
vZ2nlp58
v2n4pP6
vinlpl2
vlin6p26
v2n3pl9
v2n2p22
v2nlp47
vin4p4?2
vindpll
vZ2né4pp2
v2nlp5@
v2n4p58
v2n3p35
vinlpl6
v2nlp34
vin2p29
vin6p55
v2n5p22
v2n3pl7
v2nlp28
v2n2p20
vin6pP9
v2n4p4p
vln5pl9
vinlpp4

Cumylative Index to LOS Quarterly Volumes 1 and 2 - Subject

wkxx PARITY = ODD ***" - Tim Daneliuk:
introduction, DATAENTR 20@ & ISAM 209)
tips for better programming, DISCATER, Filter Disk e
BASF drives, drive poll, TAS, MODEM8@, HEXSPELL II, Utilities, HELP
Tandy, MAX-8@, AEROCOMP, Electric Webster, The BASIC Answer
disk drive poll, gold plugs, LX-80, Proofreader, Scripsit Dict.
magazines
rumors, LX-88 software compatibility, TRSDOS 6.x software
CP/M, LeScript, M4 vs. MAX-80
"Partitioned Data Sets, MISOSYS Announces" - Roy Soltoff
"Pascal 8@, LDOS and" - D. Hill
Passwords for LDOS 5.1.x
Patch, how to
"PDS - Standard and Other Types of Uses" - Scott Loomer vZnlp24
"Performing Date Conversions in BASIC" - Dick Konop
PR/FLT, changing parameters
Printer codes, sending
Printers
Profile III Plus with LDOS v2n4p55
Profile One Plus (Pro3+ on the Mod 1) - E. Sturiale
PRPARM - changing PR/FLT parameters - Graham Brown
Quarterly reader survey results
Radio Shack vZnlp42
Recursive
"Relocating Code for LBASIC USR Routines" - Chuck Jensen
Reviews:
Alternate Source (TAS) - Tim Daneliuk
APL*PLUS/8@ (STSC) - Daniel Lofy & Lee Rice
CHROMAtrs (South Shore Camputer Concepts) - Scott Loomer
DATAENTR20@ & ISAM20@ (Johnson Associates) - Tim Daneliuk
EDAS IV (MISOSYS) - Marc Leager
Electric Webster (Cornucopia) - Tim Daneliuk
HELP (MISOSYS) - Tim Daneliuk
HEXSPELL II (Hexagon) - Tim Daneliuk
LDOS Utilities (Powersoft) - Tim Daneliuk
LISP (Supersoft) - Lee Rice & Daniel Lofy
MAX-8@ (Lobo) - Tim Daneliuk
Microcomputer Math book (SAMS) - Earle Robinson
MODEM8@ (LSI) - Tim Daneliuk
Pascal (Alcor) - Scott Loomer
Pascal-88 (New Classics) - D. Hill
PDS (MISOSYS) - Scott Loomer
Printers - Earle Robinson
Profile III+ (Radio Shack) - Sam Goldberg
Proofreader (Aspen Software) - Tim Daneliuk
Scripsit Dictionary (Radio Shack) - Tim Daneliuk
Structured BASIC Translator (Acorn) - Sue Ratkowski
The BASIC Answer (LSI) - E. Cheatham
The BASIC Answer (LSI) - Tim Daneliuk
UOLISP (Far West) - Lee Rice & Daniel Lofy
Routing a device
"Roy's Technical Corner" - Roy Soltoff:
load module structure
task processor
Egggrshgndllng during byte 1/0, @CKDRV, KFLAGS, @ICNFG, @KITSK
RS-232 drivers
RTC Interrupt, Model 3
SZg:g;n%/g—Inch Drives on the Model III Under LDOS" - Peter Simon

Sending Printer codes

n5p2@

Page 42

vindpl7
vinSpll
vin6p59
vZnlp4?
vZn2p27
vZn3p35
vZndp3l
vZn5p28
vin3p23
vZnlp22
vinlpf3
vZnlp52
vZn3pds
vZndpbP
vZn5pl3
vZn5p38
vZ2nlp39
vZn5p26
vZn5p26
vZnSpl3
vZ2n2pP6
vZn3pP3
vZn5pd?2
vin3pd7

vin6p6P
vZ2nlpf9
v2n3p28
vindpl8
vin6pf9
vZnlpdb
vinbp63
vin6p6l
vin6p62
vin6p29
vZnlpé4
vin5pld
vin6p6@
vZnlpl8
v2nlp22
vZ2nlp24
vZ2nlp39
v2n3p25
v2n2p30
v2n2p30
vindp?2l
vZ2n3pl7
vZ2nlp46
vin6p30
vln3p38

vindpd2
vinép76
vinbp76
v2n2p46
vin6p83
v2n5p22
v2n3pP8
v2n2p55
v2n5p38

)

lati x t rter 1 nd 2 - Subject

“"SOLEFIX - Fix that GAT Error" - Erik Ruf v2n2pla
Speedup kits
SYNONYM - The LDOS command synonym processor - Henry Melton
Sysgen and type-ahead
Sysres, Quickly with JCL
System routines:
@ADTSK, @RMTSK, @KLTSK, @RPTSK - task proc. vlin5p3l v1n6p76
@CKDRV - determining 5.1.2 vs 5.1.3 for @CKDRV adjustment
@CKDRV - moved
@CMNDI - command interpreter
@CTL, GGET, @PUT - byte I/0
DAY$ - day of the week
@GET and @PUT under LDOS 6.x
@ICNFG - configuration interfacing
@KITSK - keyboard task
KFLAG$ - keyboard scanner
"@PARAM, Using" - Roy Soltoff
@PARAM under 6.x
"@PARAM, @DSPLY, REXIT and INBUF$ for Everyone" - David Vinzant
@RAMDIR documentation correction
SVC's and Fortran

Tandy v2nlp42
Task processor vin5p20
"T-Timer, LDOS Supports the" - Roy Soltoff vlindpl2 v1n5pl8
TRSDOS (Mod I) to LDOS (Mod III) transfer without REPAIR vindp58
TRSDOS 6.x (see also LDOS 6x.)

Update policy explained - Bill Schroeder vin2pp2

Upper case lock
Users group directory
Utilities:
CONV
COPY23B
PATCH
REPAIR
Version number explanation
VisiCalc made easy
"VisiCalc with LDOS, Using" - Roy Soltoff

i t r 1 and 2 - Progr

ADDLF/FLT - James Bruckart - add a line feed after carriage return

ALIVE/ASM - Earl Terwilliger - task processing demo

BEEP/FLT - Tim Mann - beep cassette port on each keystroke

BINHEX/BAS - Tim Mann - convert hex to binary vlnlp2l
Improved version with checksum

CARD/BAS - Paul Tonini - file utility ‘

CASE /CMD - Rick Tobias - Mod I case mode indicator

CIRCLE /CCC - Scott Loomer - fast graphic circle rqut1qe .

CLFLT/FLT - Les Mikesell - general purpose communications filter

CLS/CMD - clear screen command for use in JCL (very short!)

COM/BAS - Earl Terwilliger - short BASIC dumb terminal program

COMM1/ASM - Earl Terwilliger - machine language dumb terminal program

CONFIGB/CMD - Peter Simon - 8" drives on the.Mode] III

CTLP/FLT - Les Mikesell - link printer and display

DATE /BAS - Dick Konop - date conversions

OCAL/BAS - Tim Mann - disk drive speed-checg on Mod I

DELETE/CMD - Renato Reyes - multiple file killer)

DIRMAP/BAS - Dave McLaughlin - granule map of disk allocation

DISKMAP/BAS - Bill Fields - alphabetized dysk f1]e mapper

EZEDIT/FLT - Graham Brown - LDOS command line editor

Page 43

v2n4p38
vinlpl3
v2n5pld

vinlpp4
v2ndpl2

v2n4pl9
vin6p78
vin5pf6
vlinlpl2
vin3p38
vindpll
vZ2n3p56
vln6p8l
vin6p82
vlin6p78
vin2p3l
v2nép6l
v2n2p23
v2n2p39
v2n4pl9
v2n3pf3
vln6p76
v1in6p66
v2n2p44
v2n2p46
vZ2n4ppa
vindpll
v2nlpp6

v2n2p44
vZ2n2p44
v2nlp52
vZ2n2p4d
vin2pf2
vZ2n3p23
vin2p20

v2nlp36
vin6p53
vinlp22
v1ndp56
v2n2p42
v2n2pl8
vin2pll
v2n4pl6
vin6p87
vin6pb67
vin6p5@
vln6p51
v2n3pp8
v2n3p57
v2ndp6@
vinlp26
v1n4p56
vln2p4l
v1lndp5@
v2n5ph7

Cumylative Index to LDOS Quarterly Volunes 1 and 2 - Prograns

FAST/CMD - Tim Mann - fast clock on the LX-80

FASTSPL/ASM - fast despooling for Model I 5.8.3)
FILL/CCC - Scott Loomer - non-recursive graphic fill routine
INBASKET/BAS - Gordon Thompson - communications message collector
IOTA/FLT - Charles Knight - modification to SLASHP/FLT

KILL/CCC - Earl Terwilliger - multiple file killer

LBASIC/OV4 - Alan Moyer - active variable dump for Model I
LIST/TBA - Jeffrey Brenton - file lister for TBA

MINIDOS/FLT - Roy Soltoff - MiniDOS for 5.0.x Mod I users
MODCMD/CMD - John Mullin - send commands to a Hayes modem

MX8@/FLT - Ken Roser - block graphics on MX-8) w/o Graftrax
MX8@/FLT - improved version of above

NODAM/CMD - Chuck Jensen - read non-LDOS disks without REPAIR vlndp58
ONLINE/FLT - John Mullin - carrier detection filter

PASSWORD/BAS - James Bruckart - password check for host systems
PENCTL/FLT - Tim Mann - for Electric Pencil users

PDUBL/CMD - original Percom doubler driver (for illustration only)
PROMPT/CMD - Earle Robinson - change the 'LDOS Ready' prompt
PRPARM/CMD - Graham Brown - changing PR/FLT parameters

REFLEX/FLT - Gordon Thompson - communications program

RENAME /BAS - Charles Knight - BASIC file renamer

SALVAGE /BAS - transfer data from TRSDOS 2.3B disks vin2pl5
SLASH@/FLT - print slashed zeroes

SLOSTEP/DCT - Les Mikesell - head settling delay for some DS drives
SOLEFIX/ASM - Erik Ruf - fix SOLEd disk for compatibility
SYNONYM/CMD - Henry Melton - command synonym processor

TCHRON/ASM - Roy Soltoff - time board support routine

TERMINAL /BAS - dumb terminal program

TIMES@/CMD - Andrew Grandsen - modify M3 RTC processing (5@Hz)
TIMEDI/FOR - J. Bender - Fortran interrupt and SVC demo
UPCASE/FLT - Tim Mann - convert characters to upper case
UPDATE/BAS - Tim Mann- update system disks (replaced by BACKUP)
USRFREE /CMD - Chuck Jensen - LBASIC free memory command

ti X -

BASIC compiler (RS) patch

COBOL patch

DEBUG ASCII mode patch

DIRCHECK/CMD (LSI Utility Disk #1) patch for hard or DS drives
DTERM patch - Peter Trenholme

EDAS IV "Z" command patch - Earl Terwilliger

FED patch

File Manager patch for moving HIT entries

File Manager patch for moving system files

HIGH patch for screen full pause

1/0 bus disable for boot on Model III

KI/DVR patch to extend keyboard debounce time

LBASIC default extension patch

LBASIC remove execution banner

LBASIC RUN"",V fix

LED xlate parameter patch

Lower case driver forced on boot (Mod 1)

LScript patch to require filespecs for S or L

LScript JCL patch

LScriptX patches - Scott Loomer

MAP (LSI Utility Disk #1) ERGHD
MAX-8@ patch to prevent printer driver from i ' '
MAX-80 patch to set LF after CR stk Hhadiod it
Microsoft patches

Page 44

vinlp24
vin6p68
vZ2ndpl6
vZnédpls
vin5pl6
vZn2p39
v2n3pl5
vZ2n3pl9
vin2pédd
vinbp34
vinlp22
vindp59
vZn2pdd
vin6p37
vZ2nlp36
vinlp22
vinlp24
vZ2n3p35
vZn5pl3
vinbpl6
vin5p42
vindp62
vin2pdl
vZnlp6@d
v2n2pl4
vZn5pld
vin6p66
vinbp86
v2n5p22
vZ2ndp22
vinlp24
vinlp23
vinlp24

vindpb62
vindp62
vin5pd5
vZn2péd
vin5pl8
vZ2nlp37
vZnlpd7
vZn5p36
v2né4p38
vZ2ndp39
vZ2n3pdb
v2n3p45
vin5pl9
vZn5pl5
vZ2n5p35
v2nlp48
v2n3p46
v2nlp62
vin6p73
vZnlpd7
v2nlpd7
vZ2n2p39
v2ndp39
vin2plé

)

i t r 1 and 2 -

Mjcrosoft MACRO-89 patches - Richard Deglin

MiniDOS patch to allow installation before KSM

Mod 3 speedup patch

Newscript patch to use with REFLEX - Gordon Thompson
Password (master) disable patch

PDUBL patch to write old DAM

PR/FLT patch to disable chr$(6) trapping

Profile patches - Dick Yevich

Profile patch to fix buffer problem

Profile 3 Plus, HD version - for use on Mod 1 - E. Sturiale
PDUBL patch to write old DAM

OFB - Quick Format and Backup fix for READ4@® and DS drives
SOLE patch to allow use of Super Utility - Erik Ruf
SuperScripsit patch - Model 1 version §1.02.00
SuperScripsit patches - Dennis Brent & Renato Reyes
SuperScripsit patches - Joseph Kyle-DiPietropaolo
SYSTEM(SLOW) and (FAST) patch

TCHRON, TIMEDATESQ & TRSWATCH time & date boards patch vlndpl?2
The BASIC Answer patch for local variable DC
T-Timer patches vin4pl2 vln5pl8
TRSDOS patch to read REPAIRed LDOS disks on Mod I
VIDSAV/CMD (LSI Filter Disk #2) patch to allow JCL installation
VisiCalc patches vin2p2p
Mod III enhanced - Ray Pelzer vin5p43 v1ln6p38 v2nlpdd
RS232 transfer
WRTEST (LSI Utility Disk #1)
XMODEM - from LS-Host/Term - patch to fix 8-bit init
lati x t rt 1 2 - Author

Bender, J. - "Using Interrupts and SVC's in Fortran®

Bowker Bob - "LDOS Disk Drive Control Linkages"

Brent, Dennis - SuperScripsit Patches

Brenton, Jeffrey - "An ASCII File Listing Utility for TBA"

Brown, Graham - "EZEDIT - The LDOS command line editor
"PRPARM - Changing PR/FLT parameters"

Bruckart, James - “"Communication Host" (PASSWORD/BAS & ADDLF/FLT)

“"Easy LScript"

“"Easy VisiCalc"
Butler, Charlie - "An Article" (changing operating systems)
Cheatham, E. - "My BASIC Answer"
Daneliuk, Tim - "I was an LDOS Beta Tester"

wxkx PARITY = ODD ***": DATAENTR20@ & ISAM 200

wakk PARITY = ODD ***": Message to Hackers

wakx PARITY = ODD ***": TAS, HEXSPELL II, MODEM8@, HELP, Utilities
wakx PARITY = ODD ***": Tandy, MAX-80, Electric Webster, TBA

wxkx PARITY = ODD ***": disk drive poll & spelling checkers

wikkx PARITY = ODD ***": magazines

wikx PARITY = ODD ***": rumors, LX-88, TRSDOS 6.x software
wixx PARITY = ODD ***": CP/M, LeScript, M4 vs. MAX-80
Deglin, Richard - Microsoft MACRO-8@ patches
Fields, Bill - DISKMAP/BAS)
Frimmel, Jim - “ELSIE, The Contented Compiler"
Goldberg, Sam - "Review of profile III+ for LDOS" S
Goodnough, Wes - “"BASIC and File Structure - A Beginner's View
Hall, D. - "LDOS and Pascal-80" (New Classics review) ’
Knight, Charles - "LDOS, I[t's Greek to Me" (Greek translation)

RENAME /BAS -) .
Kyle, Jim - "Automatic Chaining with JCL

Latham, Jerry - "Mixing Newscript, Electric Webster, LDOS and Sole"

Page 45

vln6p96
v2nlp49
v2n4p39
v2nlp30
vin5pl9
vln5p19
v2nlp48
vindp59
v2nlp47
v2n5p26
vin5pl9
v2n5p36
vZ2n2plé
v2n5p35
vin6p92
v2n4p55
vZnlp58
v1ln6p66
v2n4p39
v1n6p66
vin2pl3
v2n2p43
vln5p43
v2n3p45
vln6pl9
v2nlp47
v2n5p36

v2n4pl9
vin6p43
vin6p92
v2n3pl9
v2n5pf7
v2n5pl3
v2nlp35
v2n2p22
v2n3p23
vlndp4d
v2n3pl7
vln3pl6
vindpl8
vin5pll
vln6p59
v2nlp42
v2n2p27
v2n3p35
v2ndp3l
v2n5p28
vinép96
vindp5@
vln3p2l
v2n3p25
vin6p20
vZnlp22
vln5pl5
vln5p42
v2n4p52
vin6p55

R 0, el e e et

ti t t n - Author

Latham, Jerry - "Newscript and The BASIC Answer"]
Leager, Marc - "A New Version - EDAS IV" (MISOSYS review)
Lofy, Daniel - “APL*PLUS/8@ - A System Overview" (STSC review) '
"LISP Implementations for the Z-80" (Supersoft & Far West reviews)
Loomer, Scott - "Alcor Pascal" (review)
"Color Comes to the TRS-88's" (CHROMAtrs review)
"Fast Graphics for 'LC'"
" Script Patches to Add Versatility" vin6pd5
"ppS - Standard and Other Types of Uses" (MISOSYS review)
Melton, Henry - "SYNONYM - LDOS command synonym processor”
McLaughlin, Dave - DIRMAP/BAS
Moyer, Alan - "Active Variable Dump for LBASIC"
Mullin, John - "LDOS and a Hayes SmartModem" (w/programs)
Pelzer, Ray - "Confessions of a Machine Language Addict" vin6p38
Ratkowski, Sue - Structured BASIC Translator review (Acorn)
Rathke, Glen - "Fortran, Cobol and LDOS JCL"
Reyes, Renato - DELETE/CMD
SuperScripsit patches
Rice, Lee - "APL*PLUS/8p - A System Overview" (STSC review)
" ISP Implementations for the Z-8@" (Supersoft & Far West reviews)
Robinson, Earle - "Inside the Expansion Interface"
“The Library"
"Review: Microcomputer Math" (Barden, SAMS)

Helela)ere e e e ": assembly language programming tips

vl end ey ". efficient assembly language programming

N eisie er <svep “: printers, word processors, MNet, 'C', LDOS 6.x
N A e el vses “. 'C' book, SS drivers, Model 4, PROMPT/CMD

B et OF “olo'sinie ". UNIX, IBM PC, Telex

Roser, Ken - MX8@/FLT

Ruf, Erik - "SOLEFIX - Fix that GAT Error"

Simon, Peter - "Running 8-Inch Drives on the Model III Under LDOS"
Sturiale, E. - "Profile One Plus"

Terwilliger, Earl - "At Large" (communications program & ALIVE)

"The 'C' Language" v2nlpl5 v2n2p35 v2n3p39 vZnd4p34
"Using the EDAS IV 'Z' Command"
Thompson, Gordon - "The Communicating Micro" (& REFLEX/FLT) vinépl2

"The Electronic Inbasket"
Tobias, Rick - CASE/CMD, a Mod I case mode indicator
Tonini, Paul - CARD/BAS, file utility
Vinzant, David - "@PARAM, @DSPLY, @EXIT and INBUF$ for Everyone"
Yevich, Dick - "Profile on LDOS"

Developing an index turns out to be a very subjective procedure.

vZ2n2p2@
vin6pP9
v2nlpf9
vin6p26
vZnlpl8
v2n3p28
vZ2ndpl6
vZ2nlpé47
vZnlp24
vZn5pl4
vin2pdl
v2n3pls
vinbp34
v2nlpd6
vindp2l
vinbp32
vlndp56
vin6p92
vZnlpP9
vinbp26
vindp39
vindp28
vin5pld
vin5pl4
vinbpbd
v2n2p26
v2n3p33
vZndp28
vinlp22
vZn2plé
vZ2n3pP8
v2n5p26
vin6p50
vZn5p3l
vZ2nlp37
vZnlp28
vZndpls
vZ2n2pll
vZ2n2pl8
vZ2n2p23
vindp59

- apologies are hereby offered to anyone that feels slighted through omission or

misstatement; it was unintentional -- Scott Loomer

LST Quick Hint #2

With LDOS 5.1.4, using the library command "DIR part
' 3 i $: S : i i
old-style "multiple-across" directory display without gny pggghgs(touihe

Page 46

will provide the
system.

L

®

.CPROMPT/FIX
X'75F8'=CC 3A

-RPROMPT/FIX

X'76BE'=p2 7D
X'7D92'=CD 5@
X'7D13'=p9 7E
X'7D24'=20 20
X'7035'=6F 75
X'7D46'=6B 65
X'7D57'=20 20
X'7D68'=54 45
X'7D79'=p3 AF

.RSPATCH/JCL

PATCH EFCM/CMD
PATCH EFCM/CMD
PATCH EFCM/CMD
PATCH EFCM/CMD
PATCH RM/CMD (

.PROFIX/JCL

. Auto patchin
.to operate on
.Be sure the p
.disk containi
//PAUSE Press

PATCH CM/CMD U
PATCH RM/CMD U
PATCH EFC1/CMD
PATCH EFC2/CMD
PATCH EFC3/CMD
PATCH EFC4/CMD
PATCH EFC5/CMD
PATCH EFC6/CMD
PATCH EFCM/CMD
PATCH EFCE/CMD
PATCH EFCF/CMD
PATCH EFC7/CMD
PATCH EFC8/CMD
PATCH EFC9/CMD
PATCH EFCA/CMD
PATCH EFCB/CMD
PATCH EFCC/CMD
PATCH EFCD/CMD

.PROMPT/JCL

.This patch al
PATCH CM/CMD U
PATCH RM/CMD U

7C CA 63 76 FE 6D CA 63 76

7C 21 2D 71 CD E5 7C 21 1C 7D 7E §2 23 CD 33
FE @3 28 61 C3 @E 7D @D @D @D 09 20 20 20 29
20 20 20 20 20 20 20 20 20 20 20 20 20 20 4D
6E 74 20 43 52 45 41 54 49 4F 4E 20 44 69 73
74 74 65 D 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 50 72 65 73 73 20 45 4E
52 20 54 6F 20 43 6F 6E 74 69 6E 75 65 20 20
CD 49 9@ FE 9D 20 F8 C9

(X'886A'=C3 84 86)

(x'883C'=CD 78 86)

(X'8684'=AF 32 14 42 C3 2D 49)

(X'8678'=3E 20 EB 2B BE CA 7B 86 23 36 @D C9)
X'716C'=31)

g for Profile + HD model III

the Model I with either floppy or HD.
atch disk is in drive @ and the

ng the profile modules is in drive 1
<ENTER> to Begin
SING CM/FIX
SING RM/FIX

USING EFC1/FIX

USING EFC2/FIX

USING EFC3/FIX

USING EFC4/FIX

USING EFC5/FIX

USING EFC6/FIX .CM/FIX
USING EFCM/FIX X'7BC2'=67 44
USING EFCE/FIX X'74B8'=18 43
USING EFCF/FIX X'7652'=18 43
USING EFC7/FIX X'765E'=18 43
USING EFC8/FIX X'74BB'=19 43
USING EFC9/FIX X'7661'=05 44
USING EFCA/FIX X'7832'=p5 44
USING EFCB/FIX X'761A'=49 40
USING EFCC/FIX X'761E'=49 40
USING EFCD/FIX X'7617'=p1 30
X'782C'=p1 30
X'7ABE '=p1 30
X'7B3F'=p1 30
lows FLOPPY usage X'7151'="0ONE"
SING CPROMPT/FIX X17172'=31
SING RPROMPT/FIX X'74F6'=63
Page 47

.EFC1/FIX

X'87FA'=67
X '846A'=05
X'8464'=p1
X'86F6'=01
X'8777'=01
X'8397'=C2
X'8980'=60

.EFC2/FIX

X'7E12'=67
X'7A82"'=@5
X'74BE '=22
X'70C3'=58
X'4@22"'=8F
X'4p23'=pp
X'7E90 =60

.EFC3/FIX

X'81¢9'=67
X'7079'=p5
X'7CA6'=C2
X'8187'=60

.EFC4/FIX

X'7FE9'=67
X'7C59'=p5
X'7C53'=p1
X'7EES' =Pl
X'7F66'=p1
X'8067'=60

.EFC5/FIX

X'7D66'=67
X'7906'=p5
X'7909'=p1
X'7C62'=p1
X'7CE3'=p1
X'81A1'=60

.EFC6/FIX

X'7AE8'=67
X'7758'=p5
X'7866'=60

.EFC7/FIX
X'6076'=67
X'5CE6'=P5

44
44
30
30
30

44
L)
40

44
L

44
44
30
30
30

44

30
30
30

44
a4

44
44

X'57D2'=5D 44

X'58@1'=5D
X'5825'=5D
X'5849'=5D
X'588E '=5D
X'590D'=5D
X'5AP3'=5D
X'60F4'=60

.EFC8/FIX

X'56F2'=67
X'543C'=01
X'5668'=01
X'56E9'=p1
X'7078'=p1
X'79AD'=p1
X '7BAF '=01
X'7BE7'=01
X '7BDE '=18
X'7BED'=18
X'8DE7'=18
X '8DFE '=18
X'8E51'=18
X'5442'=P5
X'7@D4'=@5
X'7BFP'=@5
X'80D9'=49
X'9730'=49
X'6DF8'=4C
X'6EP6'=4C
X'5764'=5A
X'564C'=5D
X'74C9'=60

.EFC9/FIX

X'E441'=67
X'BFA3'=70
X'E39C'=@5
X'7B7E'=18
X'C5F8'=5D
X'7874'=p@
X'E6B1'=60

.EFCA/FIX

X'7933'=67
X'6758'=70
X'6C9D'=p1
X'6F2F'=01
X'6FBQ'=p1
X'5B55'=18
X'5B73'=18
X'6CA3'=P5
X'6A7B'=60

44
44
44
44
44
44

30
30
30
30
30
30
30
43
43
43
43

44
44

EERESSE

44
a4
44
43
44
P9 99

44
44
30
30

43
43

Page 48

.EFCB/FIX

X'6681'=67
X'62F1'=p5
X '62EB ‘=Pl
X'657D'=p1
X '65FE '=p1
X'5£4B'=C1
X'5E46'=C4
X'56ED'=18
X'57¢8'=18
X '66FF '=60

.EFCC/FIX

X'56E7'=67
X'9625'=67
X'97E9'=67
X'9FFD'=67
X'AQ1F'=67
X'5650'=p1
X '56DE '=@1
X'7381'=p1
X'7305'=18
X'730D'=18
X'9228'=18
X'9248'=18
X'9298'=18
X'73ED'=P5
X'7406'=p5
X'9224'=49
X'5878'=60

.EFCD/FIX

X'5C40'=67
X'58AA"'=p1
X'5B3C'=p1
X'5BBD'=p1
X'8@5D'=18
X'8974'=18
X'8@82'=18
X'5880'=p5
X '5CBE '=60

EFCE/FIX

X'7089"'=67
X '79F"=p5
X'791D'=C2
X'79EA'=p1
X'7C7C'=p1
X'7CFD'=p1
X'81B7'=60

44

30

44
44
43
43

a4
44
44
a4
44
30
30
30
43
43
43
43
43

49

44
44

30
30
39

EFCF/FIX

X '88AB '=67
X'7ADC '=18
X'7AF3'=18
X'78p1'=18
X'8518'=p5
X'8p18'=49
X'8515'=p1
X'87A7'=01
X'8828"'=p1
X'82F3'=60

LEFCM/FIX

X '8CFF'=67
X'7379'=96
X'7601"'=p5
X'8843'=p5
X'8986'=p5
X'76EC'=C2
X'7423'=18
X'7502'=18
X'75FE'=18
X'8835'=18
X'8840'=18
X'8828"'=p1
X'8980 '=p1
X '8BFB '=p1
X'8C7C'=p1
X'8D7D"'=6@

RM/FIX

X'771A'=@5
X'7770'=@5
X'779C'=@5
X'7956'=p5
X'7598'=18
X'779F'=18
X'7717'=18
X'7765'=18
X'776D'=18
X'778E'=18
X'7796'=18
X'7598'=19
X'75EP'=63
X'7C63'=p1
X'7BE2'=01
X'7950'=p1
X'76CE '=p1

44
43
43
43
44
a9
30
39
30

a4
43
44

44

43
a3
43

43
30
30

44
a4
44
a4
43
43
43
43
43
43
43
43

30
30
30
30

X '7148'=“ME“

X'7CE6' =67

a4

SUPERSCRIPSIT PRINTER DRIVERS $49/559 (Dep. on printer)

With an ALPS printer driver, it is possible to attach non-Radio-Shack-suppor ted
printers to the powerful SuperSCRIPSIT Word Processing System. More than 30
different printers are now supported with customized drivers, which automatically
handle the interface to the printers. Each driver supports all the normal text
processing (margins, tabs, centering, etc.), plus whatever features the printer can

support., The printer driver is & software product, which s easy to install and use,
FOUR MODEL & UTILITIES (FOR MODEL 1l MODE) $19
e
With the following ALPS Utilities, you can easily access some of the Model &

hardware features while in Model (Il mode. The following utilities are designed to run
on & TRS-80 Model § disk system equipped with either 64K or 128K of RAM memory,
and executing in Model Ill mode. These utilities can be used on any operating system.

CPUFAST can be wed to speed up processing speed. It sets the CPU clock speed to &
Mz, This will cause programs to execute up to 30 percent faster than normal. The
CPUFAST command need only be typed once. The Model & will remain in high speed
mode until is s rebooted, or until the CPUSLOW command is executed. The CPUSLOW
program allows returning processing speed back to the normal 2.0 Mz, rate (Model 1l
compatible rate) without re-booting the system.

RAMTEST will test Model & memory by writing and reading data from each RAM
Jocation. It will continue endlessly until the BREAK key s presssed or until it
encounters a bad location. The lollowing areas of RAM are verified:

Std. RAM, ROM Overlay, First & Second 32K expansion bank (if 64K exp installed).

CLEARMEM will set all Model & memory (as described in RAMTEST above) to the
value specified in BYTE«'xx'. It no BYTE: parameter s specified, all memory is
initialized to zero. This routine is useful for system developers.

BEEP will cause a beeping sound to be generated by the Model & sound generator
circuitry. The optional LOUD parameter results in & harsher, louder beep. The optional
CYCLES: parameter specifies the number of times that the beep cycle i3 repeated.
Useful applications of BEEP are in /ICL files to signal an operator for keyboard input
or 1o audibly indicate when & job hag completed. BEEP can also easily be used from
within BASIC programs via the BEEPSUB callable subroutine. The tile BEEPTEST/BAS
s & sample program which contains an example of the required calling sequence.

BASIC PROGRAM SEARCH UTILITY $19

Search for any string within 3 BASIC program with an easy CMD command. Display all

occurrences on wreen. With this Search Utility, you can scan your program automa-

tically, rather than visually for greater accuracy. LDOS only, Model IVHI/A(I mode).
Great for all BASIC programmers!

For example:
"QC" in your BASIC program.

CMD "85S /QC/™ will reveal whether of not you have used the name
Great way to prevent duplicate variable names.

CMD "BS /AB/® will find all occurrences of the variable AB If you
Any missing lines that you know should be

For example:
want to change the name 10 another name.
listed wolld indecate a mistyped iine.

MEMDISK (MODEL 4 IN MODEL Il MODE) $39

Easy to use. (LDOS only). Use MEMDISK as your System Drive or loed other files into
memory for Instant Access. Use 80K of 128K memory. The MDISK utility creates a
RAM memory disk drive using 80K of expansion memocy avail- able in a Model &
equipped with the 128K upgrade option. It operates under LDOS Version 5.1 in Model
Il mode only. MDISK creates a single 80K logical drive which acts nearly identical to
a floppy disk but at greatly improved access speed. This should support all applications
which do not directly interface with the floppy disk controller hardware, or do not
depond on the 180K physical capacity of a tloppy disk.

CREATE option is used to define a single 30K MDISK logical drive. The logical drive
will be automatically formatted and can be used immediately after creating.

FLOPPY option is used to create a floppy disk logical drive. An existing MDISK drive
could be redefined to its original floppy configuration using this command.

LOAD:=... option is used to quickly build an MDISK from the contents of a file created
by & previous SAVE. Note that a Speed MDISK System Drive can be created.
MDISK :0 (LOAD="SYS0") will load an MDISK drive saved with Filespec name
"SYSO/MDK" directly into drive 0.

NULL option removes a logical drive completely from this system. An MDISK drive, if
NULLed, can be recovered using the WARM option.

SAVE«,.. option is used to quickly save, in the form a single file, an image of the
current MDISK drive. Only allocated cylinders ol the MDISK drive are written to disk
which greatly reduces the size of the generated file for MDISKs which are not full.

WARM option allows recovery of an MDISK drive when standard RAM memory has been
changed, but expansion memory remains unaltered. This command can be used alter a
system reboot 1o recover a pre-existing MDISK drive.

MEMORY DUMP UTILITY $2¢

HEX/ ASCIHl screen display of memory pages (Incl. exp. 68K, low & std. RAM, ROM)
with one easy command, For Model & (Mod 11l inode), any oper. sys. (80X26

LOADMAP UTILITY $19

Obtain a graphic screen display of object program load address ranges. One command.

Model 1l or Model & (Mod III mode), any operating system.

FRRZERRNRRRERRRRRRRRRNRIRRRRIIIINN QRORRRRRERRRRIIRRRRRRRIIINN
All of the above software products are immediately available with full documentation.
You may order either by telephone or mail. Mastercard and Visa are accepted. (For
UPS CQUy add $3). Orders are sent via First Class Mail, unless otherwise requested.

ALPS, 2) Angus Road, Warren, New Jersey 07060
201-647-7230
QRRRRRRRRRRRRIRRIRIRRRRIR AN

FIRJERRRRRIRRRIRRRRRRRIIIIIY

Networking ror raDIO sHACK _
MODELS Il & 4..NOW!! (=

TYPICAL CONFIGURATION:

FEATURES
® Protects existing software investment
® Data file sharing
¢ Compatible with LDOS 5.1.4

g%s/svems |
management,inc.

Radio Shack is a trademark of the TANDY CORP.

e Shared hard disk [5 to 20 megabytes]
e File/record lockout capability
e Used in active medical offices since 2/83.

PSM-W5: Model 4 w/64k RAM, 40trk DS Floppy, built-in 5 Mbyte hard disk, master network controller,
LDOS 5.1.4, Technical Manual. ..., ..ccouueeuronvomeananssssbbssaisnioesissnonsnna $4,975.00
PSM T/0: Model 4 w/64k RAM, boot PROM, satellite network controller, Tech Manual
PSM-Us: PSM upgrade of your Model 11174 w/64k RAM to PSM-WS5: incld’s 5Mb hard disk, hard disk
controller, master network controller, LDOS 5.1.4, power supplies, Tech Manual................ $2,625.00
PSM-UQ: PSM upgrade of your Model 11174 w/64k RAM to PSM T/0: incld’s boot PROM, satellite network
controller, Tech Manualccconvn. i T e s et A S ronTs $665.00
PSM-NM: Technical Manual: Incld’s complete description of PSM networking, and application
implementation Tech Manual purchase may be credited toward later hardware purchase.......... $20.00

All shipping and handling charges are the customers’ responsibility.
Technical consultation services available. Modification to Model 11174 to
implement networking will void the Tandy warranty.

3866 INDIAN RIPPLE RD., DAYTON, OH 45440 [513] 426-8644

HIGH SPEED SERIAL BUS (TWISTED PAIR)

After comprehensive field testing in medical offices, PSM, Inc. is releasing the technology necessary to expand the capabilities
of your Model 11174 to MULTI-USER, MULTI-PROCESSING, SHARED DATA APPLICATIONS using Winchester 5.25" hard
disks. Each workstation is a complete, independent computer which is tied to the hard disk through a high-speed serial bus.
Workstations DO NOT NEED ANY DISK DRIVES; they will boot up properly through the serial bus from the hard disk. It
will be running under LDOS as if the hard disk was its drive: 0 |

LDOS is a trademark of LOGICAL SYSTEMS. INC

§ ’
B dslivi

INC.
OO L=

8970 N. 55th Street
P. O. Box 23956
Milwaukee, WI 53223

In This issue:

e Revealed -
The Future of the LS| JOURNAL

e Change PR/FLT “on the fly”
o “C"-Partb

e EZ-EDIT -
LDOS Command Line Editor

e The LDOS QUARTERLY/
LSI JOURNAL Index

POSTMASTER: DATED MATERIAL DO NOT DELAY

BULK RATE
U.S. POSTAGE PAID
Permit No. 36
Mequon, WI 53092

Volume 2 Number 6

L

April 1984
L ISSN 0737-9161 J

Formerly the

A

OGICAL
SYSTEMS

INC.
OO

‘&\.
&

Nositalgia

!HH@@M

Chancery Medium

UTLINE

Rotunda LOMBHRDIAD
INCISED TRAJAN

S CHAUMAEEH O

@fde Emglssh
CLIMBING

ROMAN

Ml ARAEY & EE

Pretorian

celcic
Playb:ll

Rini Mubes
Small Boldface

his new, fast version of DOT-

WRITER is just what you need to
turn your dot-matrix printer into a ver-
satile typesetting machine. Written
entirely in “machine language,” our
latest release offers even more features
to help you produce beautiful, eye-
catching results.

What Is DOTWRITER?

DOTWRITER is a full-function text
printing program. It lets you print dis-
tinctive letterheads, brochures, flyers,
catalogs, invitations, or even a book.
It does superb right-justified propor-
tional printing, including “kerning”
(tucking small letters under big ones to
achieve a really professional result).
DOTWRITER handles type sizes from
Y to 1 inch, can magnify text until each
letter fills the page, intermixes type
styles, and even does reversals (white
on black).

After writing your text with any pop-
ular TRS-80 Word Processor, such as
NEWSCRIPT, just insert the necessary
layout commands, save it to disk, and
DOTWRITER will do the rest.

What’s Included?

DOTWRITER includes the printing
program and fourteen complete sets of
type faces (60 to 90 characters in each
set). The 60-page manual has a step-
by-step tutorial, a Table of Contents,
and an Index. And, of course, you will
have on-going support directly from
PROSOFT.

These are printed by DOTWRITER just as you see tl

See What You Can Do With
DOTWRITER 4.0!

Now available for the Model 4, too!

DOTWRITER Can Grow
With You

15 “Font disks,” each with 3-12 com-
plete typeface sets (60 to 95 characters
in each set), are available separately,
and three more will be
released soon. These
disks cost less than
$25.00 each, and
may be purchased
at any time. We'll be
happy to send you a
free sample of all our
typefaces on request.

Design Your Own
Typefaces

If you just want to use some of the
many typefaces we carry, then DOT-
WRITER is all you need. If you want to
be able to modify our typefaces oreven
design new ones, then you will also
want to order the “Letterset Design
System.” We offer it at a reduced price
when you order it along with

Supports Models I, III,
and 4

One version of DOTWRITER 4.0 is for
the TRS-80 Models I and III (also LNW
and MAX-80), and another is for the
TRS-80 Model 4 (yes. in native Model
4 mode). At least 48K and two disk
drives are needed.

The Letterset Design System works
only on Models I and III, but it can

run on a Model 4 in Model III mode.

Versions are available for the Epson
MX-80 with Graftrax, MX-100 with
Graftrax-Plus, RX-80, and FX-80; the C
ITOH 8510/1550; the Microline 84/92/24
and Radio Shack’s DMP series 200/400
500, and 2100. Please specify you
printer and computer when ordering

How to Order

Limited ad space allows us to shov
you only a few of the 120 DOTWRITL"
fonts, but free print samples are ava:l
able on request. If you want the best i
graphics printing, we suggest yo
order DOTWRITER today, toll-free.

DOTWRITER 4.0

(Models I, III) $79.95
DOTWRITER 4.0 ‘

(Model 4) 99.95 I
Letterset Desi

System (wgn 39.95
Special:

DOTWRITER and LDS

for Models 1, IIII 99.95

for Model 4

(Model 3 LDS) 119.95

Additional Fonts

(4-12 per disk) 17.95 and 24.95

ORDER NOW, TOLL-FREE
(800) 824-7888, oper. 577

PROX)ST,

Dept. C, Box 560. No. Hollywood. CA 91603
(818) 764-3131 Information and Same-Day Processing

TERMS: VISA. MC, checks, COD. Please add $3.00 shipping
inUS. orCanada, $15 00 overseas, sales tax in Ca
Most orders filled within one day

Small Bold Italics

The LSI Journal April 1984 Volume 2, Number 6

> | CONTENTS

INTRODUCTION FROM LSI:

LATE BREAKING NEWS' <scsicacesesssssssosssosssssssasssesosssssssnsessasne Page 2
NEW PRODUCTS ANNOUNCEMENTS «eveeeceececenesensavansonsssassncsssancane .. Page 3
ITEMS OF GENERAL INTEREST seveeecccacsscncssescansncnnsnnsasssssnssacnns Page 4

patches and update information

Profile. IIT Plus and LDOS: (revisited) sciiscicsescssscossavisissessasessas Page 7

LSI Journal/BASIC Computing Insert:

View from the BOLEOM | FIO0Y e uiss/sinis siesisisissieeis sisielsies eiamnisrs: sapisenissseneinsin Page 9

Locating high memory routines under LDOS/TRSDOS 6.X «ievevrevsnnennnsnss Page 11

REGULAR USER COLUMNS:

D *ick: PARITY = 0DD; *%%*: = “Tims DANCTAUKIGS st aleolors 015 ara na s 05 are si0/0,0:0:0 s 00 5,5 6:0/80;6 Page 12

‘'C' What's Happening (Part 6) - Ear]l Terwilliger .scceeeievscsnessecansens Page 14

FROM THE LDOS SUPPORT STAFF:

LDOS: HOW IT WORKS - an introduction to COMM and LCOMMcovvvennnanes Page 16
Les Information - Fast Machine Language Disk I/0 c.vevivrnnnnnnnncnnnnns Page 17
LSI Journal and LDOS Quarterly Index - by Scott Loomerveevevvess Page 22

(Please note that due to the lead times involved,
the index in Vol2, #5 is actually more complete.)

Copyright © 1983/1984 by Logical Systems, Incorporated
8970 N. 55th Street P.0. Box 23956
Milwaukee, Wisconsin 53223

Main Switchboard and Customer Service: (414) 355-5454
Toll Free Order Number (80¢) 248-3535

Page 1

LATE BREAKING INFORMATION

By Bill Schroeder

Yes ... this is the issue of the LSI Journal that was to have appeared in the pages of
the magazine BASIC Computing. Alas, it seems that this will never come to pass.

About the first week of March, I was informed that there would never be an April issue
of BASIC Computing. Citing ongoing and growing losses, Irv Schmidt informed me that
BASIC Computing was going to cease publication. At this writing, they have stated that
they are making arrangements to have another publication fufill their subscription
obligations as they are financially unable to do so. If you have any questions about
your subscription, contact BASIC Computing at 3838 S. Warner St., Tacoma, Washington,
98409 - (206) 475-2219.

On March 9th, 1984, the material that was to have been published in the April issue of
BASIC Computing was returned to us. We did a mad scramble to put the issue together
ourselves, and this is the result. Most of the material is presented as it would have
appeared in BASIC Computing. We are sending this issue to all registered LDOS owners to
explain the situation. We sincerly apologize for this development. Please understan

that we had NO KNOWLEDGE WHATSOEVER of the upcoming demise of BASIC Computing.

LSI ANNOUNCES TOLL FREE ORDER SERVICE

EESSSSSSSSSSSISESS=S=E=EE

(800) 248-3535

For your convenience, LSI has installed Tol1-Free phone service to our order desk. How
you can place orders with LSI "on our nickel". The number will be (80@) 248-3535 &nd
will go into service about March 30th, 1984. We hope you will enjoy the convienience of
this new service. Please remember that this number is for orders only. Customer Service
calls will continue to be taken at the main switchboard number of (414) 355-5454.

LSI "Such a Deal® Update

Here is the current status of the Deals offered in the last Journal:
DEAL #1:

For ghose of you that did not receive the previous issue of the Journal, LS! was
closing out all products not manufacturered by LSI. A1l of the non-LSI software
gone, except for MicroPro's MailMerge, Captain 747 from Molimerx and the I1JG book “How
to do it on the TRS-80", by William Barden.

For those who own the LDOS version of WordStar, now is the time to pick up a copy of
MailMerge. For details on the capabilities of MailMerge, see your WordStar manual (the
MailMerge documen;ation is included in it). There are less than twenty copies left, so
place your order right away. Under Deal #1, MailMerge is $149.40, plus $3 shipping and

handling. We also have a limited quantity of extra WordStar/MailM 1 ilable
for $20 each plus $4 shipping and handling (binder not inch/Jded).erge g gl

“How to do it on the TRS-80" by William Barden is an >

. excellent book for all TRS-80
owners and LDOS users. This book talks about both hardware and software (including
LDOS) in a very readable manner. Mr. Barden has always received great praise for his
books on microcomputers and assembly language programming, and has done it again with

this book. This is a must for all TRS-8F own i
N T - ers. W
discount, or pay full retail, don't boot up without i:. ol ies R R

The price, you ask? Well, Deal #1 was only for softw

' 3 - . . are products, but "Such deal we
h:ve];or you'% The normal retail price is $29.95, but order it fromuLSIS:gr ;ust $25 by
itself, or for $20 with any order over $50 in other merchandise. Enclose your check

with your order, and LSI will pick up the added shippi :
shipping in the United States. Now how many do youlzgazg HATges. O thertise,, SaliSal 8

Page 2

DEAL #2:

is over! Please note that the new LSI catalog will be available Real Soon Now. We will
probably start mailing it out by the beginning of June. Unfortunately, along with the
new catalog will come some price increases (except for LS-LED, which will go down to
$49). This makes *now* the time to place that order you've been holding off on. Orders
postmarked before June 1st, 1984, or placed by phone before that date will be honored
at the old prices.

DEAL #3:

continues! We said "until we run out" and we meant it (and still do!). With any order
totaling $50 or more, LSI will include a set of Volume 2 Journals/Quarterlies, Numbers
1 through 4 at no extra charge. There is still a reasonable supply left of all four
issues. Even if you already have all these issues, please take advantage of this offer
and give them to a less fortunate friend.

DEAL #4:

Speaking of that less fortunate friend, how many of your friends are not using LDOS on
their TRS-80? Tell them about Deal #4. They can take advantage of it and trade in that
“other" operating system. Until June 3@th, 1984, LSI will take either NEWDOS8@/v1/v2 or
DOSPLUS 3.4/3.5/4 in trade towards the purchase price of the LDOS 5.1 operating system.
Send your old MASTER diskette and MANUAL to LSI, and pay only $64.50 plus $5 shipping
and handling for a brand-new copy of the LDOS 5.1.4 operating system (specify model).
The only operating system/version other than those mentioned above that qualifies for
this Deal is 5.@ Model 1 LDOS. It may be traded in on LDOS 5.1.4 for the Model 1.

DEAL #5: Sorry, all the extra Radio Shack Hard Disk Systems are gone.

NEW PRODUCT ANNOUNCEMENTS

LSI Publishes DOS Source Code

Logical Systems, Inc. announces publication of the complete, commented, assembler
source code for the LS-DOS/TRSDOS 6.2 operating system. This may be the first time that
the complete source code for such a sophisticated operating system has been made
available to the public at a reasonable price.

The publication is entitled LS-DOS/TRSDOS 6.2 "THE SOURCE", and is published in three 8
and 1/2 by 11, soft bound volumes:

Volume #1 - THE SYSTEM L-60-011

Volume #2 - THE LIBRARIES L-60-@12
Volume #3 - THE UTILITIES L-60-013

Each volume is available for $99, or the complete set of three as L-60-@20 for $249.
Delivery of all volumes will begin in June of 1984.

New TRSDOS 6 BASIC Utilities

Logical Systems, the authors of the TRSDOS 6.x operating systems licensed to
Tandy/Radio Shack for the Model, 4 have announced a new product package for use by
BASIC programmers, called "BSORT/MOD324".

This package includes a very powerful SORT utility, called "BSORT", which is executed
from BASIC to sort arrays. BSORT is written entirely in assembler using advanced
sorting technics for super fast operation. Tag arrays, index arrays, string and numeric
arrays, mid-string sorts, accending and decending sorts and much, much more are
supported. BSORT requires TRSDOS 6.1.2 or 6.2.@ for proper operation. The TRSDOS 6.1.2
release includes a new version of BASIC, and should be available from Radio Shack by
the time you read this. Radio Shack's catalog number for TRSDOS 6.1.2 is 70@-2246.

Page 3

ASIC program conversion aid called MOD324 completes the package. Again, MOD324 is
Cr?tieg pto%al]yc in assembler for speed. This product will convert a.Model 3 BASIC
program to a Model 4-type format. MOD324 is even capable gf quust1ng pr!nt locations
on the screen ("PRINT @" and "PRINT TAB") as well as pglntlng out the lines that need
further attention after the convert. BSORT/MOD324 is available as L-32-210 for $49.

LSI Announces FED86

FED86 is the LSI all-purpose File and disk EDitor for the IBM-PC and PC-compatible
machines (*not* the Tandy 200¢) running under MS-DOS or PC-DOS (version 2.X required).

Any byte in any given file or disk can be displayed and/or altered. The display
information in file mode includes: 256 byte record display, file name and drive number,
record number and relative byte number within the current sector. In addition, the
value of the byte under the cursor is displayed in hex, decimal and binary. In disk
mode, the disk relative sector is displayed instead of the file name.

FED86 also includes commands for: searching for hex or ASCII strings. a
case-independent text search, sending a record or group of records to the printer and
modification of the displayed data (either in hex or ASCII).

A1l in all, FED86 is a tool that no MS-DOS user should be without. Even if these
operations sound difficult, FED86 makes them a snap!

LSI Announces the LS-Utiltiy Disk

The LS-Utility Disk can be considered as “"the best of 5.1 for 6.X". It includes the
majority of the most popular filters and utilities from our LDOS 5.1 Filter Disks #I]
and #2, and our Utility Disk #1, reconfigured for use under LDOS/TRSDOS 6. Projected
availability is June 1984, and the programs included with the LS-Utility Disk are
expected to be:

PRCODES/FLT On printers that will backspace, provides for easy control of boldface
and underlining, and also provides slashed zeros.

TRAP/FLT Traps and throws away any user-defined character.

MAXLATE/FLT A complete translation filter system for input or output devices.
Includes tables for EBCDIC and DVORAK translation. Custom tables are
easily built for any application, and a string of characters may bLe
specified to replace a "match".

CALC/FLT *KI filter - HEX/DEC/Binary conversion and HEX add/subtract.

KSMPLUS/FLT Same as KSM, but allows key re-definition “on-the-fly" from the
keyboard. Also includes “"command repeat" and more.

RDTEST/CMD Non-destructive forced read of an entire diskette.

READ4Q/CMD Allows read-only access to forty cylinder diskettes in a eighty
cylinder drive by double-stepping (96 TPI only). i

TYPEIN/CMD Combines the functions of JCL and KSM. Allows most programs that won't

normally accept JCL to be controlled automaticall if they honor
the device 1/0 structure of LDOS/TRSDOS 6. :. 1

Items of General Interest

The current release of LDOS for the TRS-80 Model i
with file dates of 10/¢1/83. : s dathe: LB L3 8245

The latest (known) release version of TRSDOS 6 is §6.01.02.
EXSIgperat}ngd ;ys;em changes from @6.01.01, but there is
supplied by Radio Shack. This version can be obtain i hack
Computer Center upon proof-of-purchase (of a Mode] 4 °$d4P;to$0uingldR;g1ga aﬂaio
@6.p1.01 DOS disk should serve. The Radio Shack stock number for this update s

700-2246. Given the heavy demand for this item it i
stock, but can order and/or reserve one for yoa.your Fomater sy B

In this release, there are
a new version of Microsoft

Page 4

Radio Shack Hard Disk Owners who have not yet received the hard disk drivers to allow
the use of the hard disk under TRSDOS 6 should get a copy of 700-2247. This 1is TRSDOS
96.01.01 along with the hard disk drivers (and formatter). You will also need to get
the above mentioned 700-2246 so that you have the new version of Microsoft BASIC.
Again, the Computer Center may not have a 700-2247 in stock for you, but can order it.

The following patches have been requested to alter the time/date prompts and commands
to accept a period instead of a colon or slash as a delimiter. This patch accepts a
period only (not almost any character as in 5.1.4). The first patch is for the boot-up
prompts, and should be applied to SYS@. The second is for the DATE and TIME commands,
and should be applied to SYS7.

.T611SYS@/FIX

. Patch to TRSDOS (6.01.@1 as distributed by Radio Shack
. Use the BUILD command or an editor to type in this patch
. as shown, and then PATCH SYS@/SYS.LSIDOS T611SYS@/FIX

. This patch forces boot-up date and time prompts to accept
. the period as a delimiter instead of the slash or colon

, This part changes the date prompt
DQE B3=2E
FOE, B3=2F

. This part changes the time prompt
D@F, 9E=2E
F@F, 9E=3A

. End of patch

. T611SYS7/FIX

. Patch to TRSDOS #6.01.01 as distributed by Radio Shack

. Use the BUILD command or an editor to type in this patch
. as shown, and then PATCH SYS7/SYS.LSIDOS T611SYS7/FIX

. This patch forces the DATE and TIME commands to accept
. the period as a delimiter instead of the slash or colon

This part changes the date command
DGl EB=2E
F@l1,EB=2F

. This part changes the time command
003) 05=2E

F@3,@5=3A

. End of patch

The Model 1 to Model 3 upgrade/replacement board mentioned previously by Tim Daneliuk
in his *** Parity = 0dd *** column is available from a company called Northern
Technology. They are located in E1k Grove Village, I11inois, and their phone number is
(312) 86(-1772. By now you may have already seen their ads in the TRS-8J magazines.

The following corrections to the article "Profile One Plus" in the January '84 LSI
Journal were prepared by Joseph J. Kyle-DiPietropaolo:

The patch files for RM, CM, EFC8, EFCC and EFCM needed correction. Using the new patch
files on the next page with the rest of the previously published patch files will
result in a properly operating version of Profile One Plus. Please note that these
patches are for (1.00.00 or 01.00.01 only. With version @1.01.00, all patches except
EFCM/FIX seem correct, but have not been tested extensively. With all versions, PR/FLT
should be installed with the SLINE=1 parameter to ensure proper report pagination:

FILTER *PR PR/FLT (SLINE=1)<enter>

Page 5

X'8DD9'=49 40

X'710C'=C4 44

.CM/FIX * X'7796'=18 43
X'7BC2'=67 44 X'7598'=19 43 X'973¢'=49 40 X'5878 ' =60
X'7488'=18 43 X'75E0'=63 XGRSO 8 " T
X'7652'=18 43 X'7063'=@1 30 X'6E@6'=C4 44 .EFCM/FIX *
X'765E'=18 43 X'7BE2' =@l 30 X'5764'=5A 44 X'8CFF '=67 44
X'74BB'=19 43 X'7950'=@1 30 X'564C'=50 44 X'7379'=96 43
X'7661'=05 44 X'76CE '=@1 30 X'8DD2'=DE 41 X'7601'=05 44
X'7832'=@5 44 X'714B'="0ONE" X'74C9'=60 X'8843'=05 44
X'761A'=49 40 X'7CEG'=67 44 = =mem=me==o==s X'8986'=@5 44
X'761E'=49 40 X'7591'=DE 41 EFCC/FIX * X'76EC '=C2
X'7617'=g1 30 X'7799'=DE 41 X'56E7'=67 44 X'7423'=18 43
RU782C =01 30 EE - R i X'9625'=67 44 X'75D02'=18 43
X'7ABE '=@1 30 .EFC8/FIX * X'97E9'=67 44 X'75FE '=18 43
X'7B3F'=@1 30 X'56F2'=67 44 X'9FFD'=67 44 X'8835'=18 43
X'7151'="0ONE" X'543C'=@1 30 X'AQLF'=67 44 X'8840'=18 43
X'73C5'=DE 41 X'5668'=@1 30 X'565D'=01 30 X'8828'=@l 3¢
X'74F6"' =63 X'56E9'=@g1 30 X'56DE ‘=01 30 X'8980'=@1 30
------------- X'7078'=@1 30 X'7381'=01 30 X'8BFB'=g1 30
RM/FIX * X'70AD'=@1 30 X'7305'=18 43 X'8C7C'=@1 3¢
X'771A'=g5 44 X'7BAF ‘=01 30 X'7300'=18 43 X'8772'=DE 41
X'7779'=@5 44 X'7BE7'=01 30 X'9228'=18 43 X'8070 ' =60
X'779C'=@5 44 X'7BDE '=18 43 X'9248'=18 43 2 = | | cmcemcmeeeea-
X'7956'=@5 44 X'7BED'=18 43 X'9298'=18 43
X'7598'=18 43 X'8DE7'=18 43 X'73EQ'=@5 44
X'770F '=18 43 X'8DFE '=18 43 X'7406'=05 44
X'7717'=18 43 X'8E51'=18 43 X'9225'=49 4g
X'7765'=18 43 X'5442'=05 44 X'5641'=5D 44
X'776D'=18 43 X'70D4'=g5 44 X'5759'=5A 44
X'778E'=18 43 X'78F@'=@5 44 X'7190'=C4 44

BUSINESS CHECK LEDGER +

ADVANCED BOOKKEEPING SYSTEM

Handles three banks with three series of checks numbers per
bank. Can split checks into nine different expense accounts.
List checks by check number, payee, of expense. Reconclies
bank balance by clearing checks and deposits. Requires
two disk drives, printer and 48K RAM, Integrates with RS disk
payroll 26-1556. Model |, il 4 or MAX80. Manual contains
step-by-step procedures for all features and entries

Data Stored in Business Check Ledger +

BANK FILE <Max 3 banks>
(1) Name of bank (2) address of bank (3) city, state. zip of
bank (4) balance (5) first check number entered in
computer (6) last check number entered in computer (7)
last check number cleared

CHECK FILE <Max 9 — three banks and three series each
bank>
(1) Check number (2) check ID <1=cument 2=clecred
3=split expense 4=void> (3) amount of check (4) payee
code <payee file number> (5) expense code <expense
file number> (6) date of check

$99.50

Checks ledger, expense accounts ledger. deposit accounts ledger, deposit iedger, occounts payable
ledger., payee ledger. bank file, add — edit — display — print for each file

FOR DETAILS WRITE

JAMES RUSSELL
110 Beechmont Dr., Carmel, IN 46032, (317) 846-8553

DEPOSIT ACCOUNT HLE <Max 100>~
(1) Deposit occount number (2) deposit nome (3
quarter o date <QTD> (4) year 10 date <YID

EXPENSE ACCOUNT FALE <Max 100
(1) Expense account number <general ledger accoun!
number> (2) expense nome (3) quarter 1o date <QTD
(4) year o date <YTD>

PAYEE FILE <Max 998>
(1) Poyee name (2) payee oddress (3) poyee city, state
Zp (4) expense account number nomally associated
with payee (5) quorter to date <QID> (6) yeor to date
.\j‘{ro;.

DEPOSIT ALE <No max>
(1) Deposit ID <1=uncleared 2=cleaed>> (2) depos!
amount (3) date of deposit (4) account deposited 10

ACCOUNT PAYABLE FILE
(1) Date due (2) amount due (3) poyee code (4)
expensa code

The following optional patch for LDOS 5.1.3 or 5.1.4 on the Model 1 will allow the
system time and date routines to utilize a hardware clock such as the Alpha Products
Newclock8@ or Timedate8(J, and most other clock devices that use the MSM5832 clock chip.
A similar patch is not possible on the Model 3 as the real-time-clock service routines
are in ROM. A new service routine could be written as a RTC Task, however.

This patch assumes that the clock is addressed as ports B@ through BF. If your
particular clock module is addressed differently, the underlined bytes may be changed.
For instance, if your clock uses ports C@ to CF, change the underlined B5 to C5, and
alter the rest of the underlined bytes in a similar manner.

. Patch to SYS@/SYS.SYSTEM to allow use of a clock device

. Fix the timer interrupt routine

D@4,@8=D2 45 ED 78 @D CD A6 47 ED 78 @D E6 @F 85 12 1B
D@4,18=C9 11 43 40 (@1 B5 @3 CD C3 45 10 FB

. Fix the date initialization on BOOT

D@D,58=21 46 40 @1 BA @1 CD C6 4E @6 @3 CD C6 4E @1 BC

D@D, 68=@F CD C6 4E EB D6 50 47 DB BB E6 @3 11 45 40 21 48 40 20
D@D, 7B=26 CB FE 18 22 ED 78 @D A@ @7 57 @7 @7 82 57 ED

D@D, 8B=78 @D E6 @F 82 77 2B C9

. End of patch

Using Profile 3 Plus under LDOS (revisited)

by Joseph J. Kyle-DiPietropaolo

Profile 3 Plus and LDOS are a very powerful combination. There are, however, several
things that can cause trouble if you are not careful. Let's take them one at a time.

First, what version should you buy? Well, the only version that will run under LDOS is
the "Hard Disk" version. Don't let that phrase scare you, as it works quite well on
floppy disk also. At least two double-density drives are required, and if you are going
to do any fancy sorting, three would be better. Double-sided and/or eighty cylinder
drives can be used if you have them.

The "Hard Disk" version is $10¢ more than the "floppy" version, but this is more than
offset by the fact that PROSORT is included. PROSORT is Small Computer Company's disk
virtual sort and enhanced selection module, which normally sells for $150 by itself. If
you already own the “floppy" version, Radio Shack will sell you an upgrade to the "Hard
Disk" version for $10@ and proof of purchase for the "floppy" version. Their catalog
number for the upgrade package is 700-6203.

In terms of actually running Profile 3 Plus, there are three things to keep in mind:

1) If you have the *KI driver installed, all references to the <clear> key in the
Profile documentation should be changed to <shift><clear>. If you are using math
fields, do not use type-ahead, as Profile does not seem to calculate properly if
¢shift><clear> is struck before the calculation is complete.

2) Profile checks the printer status by looking directly at the hardware. This means
that if you are using the spooler, the printing rate will not really improve much. This
can be corrected by searching through all the EFC programs (and RM/CM) for the byte
sequence 3A E8 37 and replace it with 3E 30 @0. This is a good excuse to learn how to
use FED (included with the LDOS 5.1.4 update). Making these changes will disable the
check of printer status. Since the system printer driver (which contains its own
"Printer *BUSY* test") is used to actually output the data, there will be no conflicts.
Also, you will be able to route printed reports to a disk file without having a printer
ready and on-line.

Page 7

3) Lastly, contrary to what the manual says, Profilg will *not* work with ?DO file§"
under LDOS. This is because of the way keyboard input is requested by Profile. This
difficulty is neatly fixed by using the TYPEIN utility from the LSI Utility Disk #1

(Order L-32-070, $39 direct from LSI).

When creating a file of commands to be used with TYPEIN‘and a Profile user menu, put
the entire command sequence in the data file. This 1nc1udes the EFC line. Build the
file by putting in the exact keystrokes you would type if performing the procedure by
hand. Then, invoke the procedure with TYPEIN. Do not attempt to pass thg name of a DO
file to the EFC module by placing it in parenthesis as stated in the Profile manual, as
it will not work.

For example, let's say that we want to be able to expand our existing data file by 10¢
records by pushing one key. First, create a user menu that has an entrg called "Expand
the MAIL file by 100 Records". Set up the user menu so that this entry is executed by
pushing "“E". When "E" is pushed, it should execute the command: TYPEIN EXP@ND/KYS. The
TYPEIN data file you would have to build (with the name EXPAND/KYS) is given below.
Note that <enter> means the depression of the key marked "ENTER".

Contents of the file EXPAND/KYS:

EFC7<enter>
MAIL<enter>
10@<enter>

LSI's LED, the LDOS text EDitor (L-30-020, $29) is an excellent tool for generating and
maintaining these keystroke files for TYPEIN. LED also has a special HEX mode that wi'
allow you to insert the <shift><clear> code (X'lF') directly into a TYPEIN keystroke
file. This character is needed to terminate "extended mode" functions. Without LED, i1
can be done but it is not easy.

If you must use BUILD, and you need to get a <shift><clear> keystroke into the TYPEIN
file, do the following: Make sure that KI/DVR is installed when doing the BUILD. When
you get to the point at which you need to insert the <shift><{clear> keystroke, actually
put a <clear><shift><enter> character there. That character is produced by pressing the
<clear> key, and while still holding is down, press the <shift> key, and while stil]
holding both of them, press the <enter> key and then release them all. A Plus/Minus
symbol (#) or square block on the Model 1 and MAX-80 will appear on the screen. Now
continue with the remainder of the key data. Whenever you need to execute this kind of
a TYPEIN procedure, use the following format: TYPEIN SELECT/KYS (X1=X'7F1F'). Each
<clear><shift><enter> will now be translated to the required <shift><clear> when
executing. This TYPEIN command can, of course, be placed in a user menu.

A1l prices mentioned above that pertain to LSI products are valid only through May
31st, 1984. Radio Shack pricing policies and product availability is subject to change.
Please contact your local Radio Shack Computer Center for more information.

LSI Quick Hint #3

Don't forget about the LDOS SIG (Special Interest Group) on CompuServe. If you are
already a CompuServe member, simply GO PCS-49. If are not a member, any Radio Shack
Computer Center can set you up with a membership kit (note: RS232 and modem required).
There are many useful public domain programs and utilities in the LDOS SIG databases,
and questions about LDOS and TRSDOS 6 will be answered promptly, often both by the LDOS
Support staff and experienced users. This is an excellent way to keep abreast of the
lﬁtis% ! t?? %DESCWOVIg- For mOSE Piogée. CompuServe is only a local call away, and
at local call plus CompuServe's modes er h i
distance call during the day to LSI. e our fee is a Tot less than a long

O

L

4

View from the bottom floor

Bill Schroeder, Logical Systems, Inc.

Hello to all LSI Journal
subscribers and readers of Basic
Computing. From this point
forward, the contents of the LSI
Journal will be presented in Basic
Computing. Wefeel that this will be

of great beng both our tens of
thousands %m&ﬁ'w the” almost moving b

existing fans"0f Basic COmputing
magazine. If you are a subscriber to
the LSI Journal, your subscription
will be fulfilled by Basic Computing,
which will contain this LSI
Journal section. Our subscribers
gain the additional information,
ads, and interesting articles from
the rest of the magazine, while Basic
Computing subscribers gain
technical inforr.nation and articles
of special interest concerning LDOS
5.1.x, TRSDOS 6.x, LSI products,
and last (and least), my ramblings.

Just so rumors don’t start to fly
... LSI was not bought out by
Basic Computing, nor were they
bought by LSI. There is NO
connection between our companies.
The name LSI Journal still belongs
to LSI, but Basic Computing has
been granted the right to use the
name as needed for promotional
purposes both in and outside of this
publication. LSI provides all the
editorial material in our corner of
Basic Computing magazine. No
money changed hands between the
folks at Basic Computing and us
here at LSI.

This arrangement is purely one of
convenience. LSI is a software
company, Basic Computing is a
magazine. Both companies are very
good at what they do best, and less
efficient at ‘“‘the other guy's
specialty”. So, Basic Computing will
be our publisher.

Mike Schmidt (the owner of Basic
Computing magazine) and I have
been discussing the possibility of
this arrangement for well over a

year now. Being from a conservative
German background, I tend to move
very slowly on this type of major
decision. To slow things down even
more, Mike comes from the same
conservative German background.

Between thextwo , we were
almost n r backwétrd. The final
result. is, from no , the LSI

Journal will be incorporated in
(about) every third issue of Basic
Computing (read that as at least
that often).

Should you have occasion to write
or call regarding information
presented in this area of the
magazine, please contact LSI
directly at: 8970 N. 55th St. PO Box
23956, Milwaukee, WI 53223 (414)
355-56454. Of course you can always
contact Basic Computing also, but I
would like to make it very clear that
LSI provides all of the material
contained in this section of Basic
Computing.

Now down to what's happening at
LSI. There have been many changes
at LSI as we prepare to enter the MS-
DOS world (IBM & compatibles). We
will not be providing an operating
system for this market. . . at this
time. Our first product will be a truly
“RELATIONAL" data base
manager. This product is very
dynamic in concept for a micro. It
will be easier to use than any
existing product of similar
capabilities, faster, more versatile
and will be very “friendly” to the
average user. The name and price
for this product remain undecided at
the time of this writing, but should
be known by the time you read this.
Please call for additional
information if you are interested.
Note: This product will be for use
with MS-DOS 2.x only.

Question: What is AT&T up to !?
Answer: Who knows?

Page 9

One thing is certain: with IBM
having sold about 850,000 PCs in
1983, and projecting about 2,500,000
(that’s right- 2.5 million!) to be sold
in 1984, it will take a very heavy
hitter to slow them down. If thereis a
company that can actually go head
to head against IBM in the small
business and professional market, it
is most certainly AT$T (whoops-
that $ must have been a slip). AT&T
is one of the largest and richest
companies in the world (much larger
than even IBM).

AT&T could have kept their anti-
trust case of the Seventies in court
for another 20 or 30 years if they
wanted to. But lo and behold, all of a
sudden they offer a settlement to the
U.S. government. What is most
amazing is the fact that the air-
heads in Washington, D.C. accepted
it. AT&T drew their own draft for a
break-up and re-organization of
their own operations. They would
agree to this “massive” break-up
only if they would be allowed to
enter “new markets”, that they had
(years earlier) agreed to stay out of.
One of those markets is, of course,
computers and other end-user DP
equipment and services.

For many years, the fellows up at
Bell Labs have been far ahead of
private industry in computer
technology. They have perfected
practical bubble memory, 32-bit
microprocessors and some of the
best concepts (and implementa-
tions) in the software industry. Now,
AT&T owns Bell Labs, and gets to
take the cost of operating it asa TAX
DEDUCTION (by a special Act of
Congress). Boy, I wish LSI could
write off our costs of software
development that way.

AT&T has more ready cash, a
larger manufacturing capability, a
larger support system, and a larger
marketing system than any

company in the microcomputer field
today. For that matter, make that
ANY company at all, in any field.

And now AT&T cometh

Let us imagine an AT&T
manufactured, marketed, and
supported microcomputer system.
The word ‘‘system’ is very
important here, and is going to
encompass a lot more than what
IBM, Apple or Tandy calls a
“gystem” today. Think more of
something like the United States
telephone “SYSTEM”. That, of
course, was the last AT&T-
controlled accomplishment. The
U.S. phone system (and other types
of communications associated with
this “system’’) are without a doubt a
major reason for the prosperity,
industrial growth and power of the
U.S.

1 believe that the next AT&T
system will begin to take shape in
1985, and be providing full services
to the top 50 U.S, population centers
by 1990, with full coverage of the
North American continent by 2000.
Let's take a look at what this next
“system”” might bring.

With the present cable,
microwave, satellite, and radio
network under the direct and
indirect control of AT&T, it is
possible today to communicate in
“full duplex” with almost every
residence and businessin the United
States, and many foreign countries.
Much of the capacity of this network
is already utilized for data
transmission, collection and
distribution. This usage is for many
different reasons, and by many
varied interests ranging from
Government activities to medical
education to airline pilot weather
data. Note: at present, the list of data
accumulation and distribution uses
for the AT&T system is growing at
an accelerating rate, faster than
ever before, and this rate will
continue to accelerate for along time
to come as the true potential of the
system, and the hunger for “DATA"
is exploited by our friends at AT&T.

I believe that AT&T is about to
introduce a new computer intended
for everyone, from the home user, to
the president of a large company, to
the bank around the corner. This
computer will become part of a
system of distributive processing

the likes of which the world has
never dreamed of. These machines
will be entirely “solid state” in that
they will contain no moving parts
(other than the keyboard system
until full voice control is perfected).

These machines will have a
megabyte or more of bubble
memory, and at least 256K of
regular RAM (bubble memory is
relatively slow). There will be a 9-or
12-inch monitor, with color and
graphics capability, and TV
interface options. A keyboard of 90-
plus keys will be provided and
initially a 1200 to 4800 baud
communication system. This will all
be available to the customer as
components, CPU, keyboard, and
monitor, with several options for
each component.

The systems will initially rent for
between $50 and $250 per month,
with all maintenance provided by
AT&T. By 1990, the price should fall
to around $25 to $75 (or the
equivalent at the time, adjusted for
inflation). The initial thrust of this
product will be aimed at the business
market place. As production
distribution and profits rise, they
will decrease the costs to truly enter
the “home” market at around the
cost of present phone service.

Now for the “magic"” — the
SOFTWARE system

The most expensive and the most
volatile part of any computer system
is the software. Not the operating
system itself, but the user
applications. The mass market for
“software” does not exist! But the
“mass use” potential of software
does exist. Think about it. Any
particular piece of music is enjoyed
by many more people than own the
recording. Movies are watched by
tens of thousands more than own a
legitimate copy of the movie.
Libraries are used by many more
people than own complete libraries,
or for that matter, those that even
own a significant number of books.

For the want of a better term, let’s
call this concept ‘“mass-use
software”. All the items mentioned
above are “authored”, “edited”,
“produced”, “published”, “stored on
media”, “reproduced” and then
“marketed”. Computer software is
handled in a similar manner until it
reaches the “marketed” stage. In

Page 10

LSl Joumnal

most cases you must buy or license a
physical copy of the reproduced
media to use the product. That would
be like having to buy a “print” of a
movie so you could watch it, or
marketing a book and NOT
allowing it to be added to libraries.

This is not efficient, and would
have greatly reduced the mass
acceptance of products from the
aforementioned industries. In the
early days of each of these
industries, the one to one marketing
concept was all that existed, just like
the handling of software today. |
believe AT&T is about to change
that, and bring computing in the
U.S. to a new age of maturity.

AT&T could easily provide fifty or
more supercomputers, properly
placed around the country. When
you turned on your own AT&T
computer, it would automatically
establish a link to the local
supercomputer. You would then
select the software you wished to use
for the day (or as long as your
machine stays on). The software
and all support files would be sent to
your machine. The host system
would automatically know who you
are and provide you with your
personal data files at the same time
It would then disconnect from your
computer. When you complete your
work and sign off at the end of the
day, your machine would
automatically call the host and send
back your updated data files, and
then shut itself off.

Initially, data transmission
speeds will be limited to 4800 bits per
second, or less. This will change
rapidly in the 1990s as fiber optic
cables are laid, and fiber optic links
enter most houses in the U.S. This
“optical cable" will carry your T.V.
as well as your phone and computer
services, at up to hundreds of times
faster than existing data
transmission speeds.

There are several very strong
points in favor of such a system.
First, software piracy is eliminated
(or made very difficult), as only the
host has your data, and you will not
have on-sight permanent storage.
Handling of diskettes, making
proper backups of data files and the
like would not be the user’s problem
(most users don't handle this job
correctly anyway).

Second, the customer would

LS| Journal

always have the most recent version
of the software to run. Then, if a bug
is reported to a vendor, he simply
corrects the bug and updates the
product on any one of the host
supercomputers. In the middle of the
night, the host machines exchange
updated files. The next morning, all
software is corrected for EVERY
user. The same concept applies to
documentation and updates.

Third, you will be able to send data
to anyone in the country in just
hours or maybe minutes. The postal
service would finally be dealt a long
deserved death blow.

Fourth would be the reduced cost
of such a system for the user. How
much software do you own that you
DO NOT USE? With this system,
you could select between dozens (or
hundreds) of word processors or
spreadsheet programs, and only pay
when you use them. The “Software
Usage Fee, For End Reception”
(“SUFFER"” for short) would
probably range from 25 cents to as
much as $25 per day for “rental”.
AT&T would keep a percentage of
this fee as a “distribution” charge
(20 to 30% seems reasonable). The

SUFFER charges would belevied on
your regular phone bill, along with:
your mail charges, T.V. usage, data
file storage charges, and of course
your charges for local equipment,
options and services. Sounds like
ATST will be getting a lot more out of
us than when they were “just the
phone company".

One last pointis that AT&T would
probably have little or nothing to do
with applications software (too
much trouble). They would accept
most professionally written
packages for installation on the
system. It would be up to the
developer to promote and advertise
the product to generate usage.
Programs with very limited use
would be removed from the system.
A good software product will make
millions for the authors under this
system. Users will get much better
quality software, as ““JUNK
MERCHANTS" will not be able to
survive under this type of system.
The computer owners would have to
use a product repeatedly to makeita
success.

One big negativeis that this whole
system will make 1984 (the “Big

Brother” syndrome) a reality, and
turn Orwell into 'a prophet. The
government will be able to get their
hands on ‘‘anything and
everything”, from payroll data to
the letter you write to your mother,
and how much you owe on your
house, directly through the system.
Tax collections should skyrocket.
This is the main reason why I feel
this overall concept will become
reality. The government will want
access to the tremendous database
created by this type of system.
Complete electronic banking will
become reality (there will be no cash
transactions to avoid taxes) and no
one will have any truly private
information.

The end of an era and the dawn of
the information revolution is upon
us. Whatever the outcome, our
civilization is about to undergo
radical change.

For all that the AT&T Mega-lith
has done for the American people in
the past, AT&T, we thank you. One
can only wish that the results of
your next accomplishment will be as
benevolent to the American people. I
hope so.

Locating high memory routines under
LDOS/TRSDOS 6.X

Richard Schulman, MagiComp

2710 W. Country CI

A short while after my Mod 4 came rolling in, I got the Listing 1
tech manual and turned to the SVC section to find out
how to convert my Mod 3 subroutines. One of the first START: LD
SVCs I looked for was the one to get USTORS - the LDOS Lo
8 byte storage area allocated to the user. I store the
addresses of my subroutines there so that I can find RST
them from LBASIC. Unfortunately, I never found the
SVC - because there isn’t one. So I plunged in to find out
how to locate my routines.

LSI has adopted a convention for a header to precede
high memory routines. Using this header allows an SVC FSPEC: . DEPM
to locate the routine for you. Listing 1 demonstrates the ’
technique by fetching the address of INKY4. DEFB

Page 11

ub Rd,, Philadelphia, PA 191341

DE,FSPEC sheader to find
A,83 ;6TMOD

28H

'INKYS!

P0H

DE is loaded with the address of the name of the
routine you want to find, and A with the number of the
SVC (in this case 83). The name must be in UPPER
CASE characters and terminated with a character

Listing 2

PUSH HL iSave the parameter address
LD E,(H) ;Lload the actual parameter
INC HL ;itself into DE

Lo D, (HL)

Lo HL,18

ADD HL, DE ;Add 18 to D€

EX DE HL ;Address of 'INKY4' to DE
Lo A,83 :SVC number

RST 28H

POP DE sRecover parameter location
EX DE ,HL iMove routine location to DE
Lo (HL),E iMove LSB to parameter

INC H

Lo (HL),0 ;Move MSB to parameter

RET

DEFM YINKYS!

DEFB POH

Listing 3

14 DIM US(11):FOR X=p TO 11:US(P)=P:NEXT X

15 DATA 24293,22051,4641,6499,16197,-4269,-5167, 9975,
-13966,29941, 22859, 3389

16 FOR X=@ TO 11:READ US(X):NEXT X:X=VARPTR(US(8))

17 CALL X(X):INKY4=X '** SAVE INKY4 ADDRESS **

20109 '** INKEY ROUTINE **

20195 CALL INKY4(2)

Listing 4

BEGIN: R START
DEFW LAST-1
DEFB 5
DEFM *INKY4*

MODOCB: OEFW $-§
DEFW @

START: PUSH HL

sHIGHEST MEMORY BYTE

;SAVE LOCATION OF PARAMETER

LSl Joumnal

whose code is in the range 0-31. After executing the SV (
with RST 28H, the starting address of INKY4 is in /]
and the Z flag is set (NZ if it wasn't found).

Of course, that doesn’t entirely solve the problem
how to get this address into BASIC so that you cis
CALL (or USR) the routine.

The method I chose involves passing a parametor 1
the routine, and sending the address back in o
parameter. The key to finding the routine is to kn:
where to find the name of the routine (so it can be load o
into DE). The program is shown in Listing 2. Th
parameter passed to this program is the ADDRESS ¢
the program itself.

That is the secret to finding the location of the name « /
the routine you wish to locate. The program is exactly 1+
bytes long. Therefore adding 18 to the address of 1),
program (the parameter we passed) gives us the locatio:
of the name of the routine we are searching for. That i«
the purpose of the LD HL,18 and ADD HL.DE
instructions. The 18 instructions can be loaded into un
integer array asshown in the BASIC program in Listing
3

On line 16, X is set to the location of X(0) in memory. 1t
is both the location of the routine CALLed in line 17 and
the parameter passed to it. The integer INKY4 is th
location of the high memory routine.

There is one more secret to success. You have to
translate the name of the high memory routine into
integers. The letters LN, K.Y and 4 are represented in
memory by the ASCII codes 73,78,7589 and 52
respectively. To find out what integers to use, let's look
at I and N. Those two letters make up one integer. Set
1%=0. Then poke the codes for the letters into 1%: POKE
VARPTR(1%),73:POKE VARPTR(I%)+1,78. Then
PRINT I% and you will find that [%=20041. The valus
for NK is 22859, and the value for 4 + carriage return
(code 13) is 3380. Those are the last three values in the
DATA statement at line 15.

If your routine name has an even number of
characters you can terminate the name with an integer
value of 0-31 (assuming an extra byte of value 0

:"olll::ring the terminating character). I just use 13 from
abi

High Memory Headers

None of this is possible without the proper header. My
headex_' for INKY4 is shown in Listing 4. The first two
bytes jump to the start of the actual routine. Next is a
two byte integer with the address of the highest byte of
memory occupied by the routine. Then one byte which
gives the length of the name of the routine, 5in this case -
INKY4. There follows two byte reserved for the address
of a Device Control Block if the routine is associated

with a device and two bytes that are reserved for [don't
know what.

Do it Again

You can reuse the routine in lines 14-17 in the same
program. Line 18 would reset US(9) to (11) or however
many elements after US(8) need to be changed. For
example, let's find the routine FLASH. Line 18 would be
}JS(9)=1952§:US(10)=21313:US(11)=72 (I terminated
FLASH' with a 00), followed by X=VARPTR(US(0)):

Page 12

LS| Joumnal

CALL X(X):FLASH=X. You can do it as many times as
you need in the same program. And since you can wipe
out arrays in BASIC under LDOS (TRSDOS) 6.x, you
can ERASE US when you're done to reclaim its space
and have the addresses of your routines in the integers
INKY4 and FLASH (and whatever else).

Be sure to put X=VARPTR(US(0)) before each CALL
X. BASIC moves things around dynamically and the

address of US(0) might change between calls to X. And
be absolutely certain that X is an integer. I can promise
you from experience that you will not like the results if X
in not an integer.

That's all there is to it. Simply MERGE lines 14-17
with your BASIC program, then remove the last three
integers and replace them with the name of the high
memory routine you are looking for.

Parity = Odd

Welcome to PARITY = ODD! This
may be the first time you've seen this
column, so introductions are in
order. PARITY = ODD originatedin
the early days of the LDOS
Quarterly. At the time, I was
reviewing TRS-80 related products
for several magazines, as well as
beta testing products for the LDOS
operating system. In talking with
Bill Schroeder of Logical Systems, it
became clear that LDOS was soon to
become a dominant force in the TRS-
80 industry. And what a force it is!
There are LDOS products for the
TRS-80 Models 1 and 3, and the
latest machines in that family (the
Models 4 and 4P) use a descendant of
LDOS 5.1 as their primary DOS. Yes
folks, TRSDOS 6 is a version of
LDOS. In fact, LDOS and TRSDOS
6 are so closely related in concept
that most of the major commands
work almost identically.

Originally, PARITY = ODD was
created as a forum for examining
topics of particular interest to the
LDOS user. In this column you’ll see
product reviews, discussions of
programming technique, solutions
to user’s problems, and almost
anything else that strikes my fancy.
If you have a particular question or
want to see a specific product
reviewed, let me know. Moreover,
feel free to bring up topics unrelated
to LDOS directly. In the coming
installments you'll probably see

© 4983, Tim Daneliuk, T& R Communications Associates

items concerning CP/M and MS-
DOS now that Tandy will be
distributing these operating
systems.

I can be contacted by mail and via
CompuServe. If you choose to write,
please send your letter to this
magazine and my attention. If you
want to “talk” by electronic mail,
you'll find me skulking about on the
LDOS Special Interest Group (SIG)
of Compuserve. My PPN # is
70745,1520. Either way, there are
some vital pieces of information you
should always include. First, please
include your name and address (a
telephone number is helpful too).
Second, always include a
description of the system you are
using. Please state explicitly which
TRS-80 or TRS-80 “work alike” you
are using as well as the types and
sizes of disks drives, controller, etc.,
you have. Finally, if you are
requesting help with a problem,
please try to describe the problem in
a logical, step-by-step manner. Be as
explicit as possible. I can’t much
with a problem like “It doesn’t work
right”.

Remember, this column reflects
my opinion. I try to responsibly
evaluate those products about which
I write, but errors can and will
happen. If you find such an error, let
me know.

Chips
Tandy recently unveiled their MS-

Page 13

DOS machine, the Tandy 2000. The
2000 is notable because it is one of
the first personal computers to use
the Intel 80186 microcomputer chip.
To understand the power of the '186
we need to take a quick look under
the hood of the modern microproces-
sor.

The much-touted IBM-PC uses the
Intel 8088 microprocessor. IBM will
tell you that this makes the PC a
“gixteen bit"” computer. Horse-
feathers! Internally, the 8088
contains data registers which are
indeed 16 bits wide. BUT --
externally (i.e. those places where
the 8088 “talks” to the rest of the
computer and the outside world)
data is transferred 8 bits at a time.
This is a situation which is much
like the 8 bit Z-80 microprocessor.
The Z-80 also has 16 bit internal
registers and it transfers data to the
rest of the system a byteata time. In
fact, the only significant advantage
that a 8088 hasis thatit can address
up to 1 Megabyte of memory directly
compared to the Z-80's 64K Byte
maximum. This 16 Bit internal/8
Bit external architecture is a large
part of the reason the IBM-PC is so
wretchedly slow! That's just my
opinion of course, but if you want an
eye-opening experience, try
benchmarking a program on a TRS-
80 Model 4 or LOBO MAX-80
against an IBM-PC. The PC will

generally be slightly faster, but not
enough in my judgement to justify
the 30-50 percent price difference
between these machines.

So, what's an 801867 It is an
enhanced version of the Intel 8086
microprocessor. The 8086 is a
processor which has the same
instruction set as the 8088, However,
the "86 not only has internal 16-bit
data paths, it also has EXTERNAL
16-bit data paths. For this reason
alone, it generally runs quite a bit
faster than the '88. The '186
enhances this further by including
almost an entire computer on one
chip, and offering a faster clock
speed. In addition to the 8086
microprocessor, the 80186 includes
such things as a DMA (Direct
Memory Access) controller, and
memory chip select logic all on one
piece of silicon. This makes the '186
a very cost effective part when
you're designing a complete
computing system. The 80186 also
has some new instructions which
the '88 and '86 don't have. The '186
also has the advantage of being
compatible with all the instructions
of the '88 and '86. This means that
programs written for the latter two
will also run on the 80186!

The bottom line is that you can
expect the Tandy 2000 to be quite a
performer. Though it does not
appear to be “compatible” with the
IBM-PC, most software which uses
the MS-DOS operating system for
1/0 (and doesn’t try to “talk” to the
hardware directly) ought to work
with the Tandy 2000. The one
potential weakness of the 2000 is
that is uses “quad density" (double-
sided, double-density eighty track)
disk drives. While this gives an
enormous amount of storage, it may
not be easy to move programs and
files to and from “normal” MS-DOS
forty track drives. I'm expecting a
review machine fairly soon - I'll let
you know what I find.

Disk, Disk, Disk . . .

If you've followed the evolution of
LDOS at all, you probably realize
that Logical Systems also publishes
many useful add-on products for
their operating system. The latest
such product is called diskDISK,
and will be especially useful for
those of you using LDOS on a hard
disk drive. To understand how

diskDISK can be used, we need to
step back and look at a hard disk
system.

By virtue of its tremendous
storage capacity, a hard disk can
contain literally hundreds of files.
While all that storage is great, it
becomes difficult to keep track of all
the files on the disk after a while.
One partial solution to this dilemma
is to use hard disk “partitions”. A
partition is simply part of the hard
disk treated as a separate logical
drive. For instance, if you had a disk
drive with four platters (storage
surfaces) each capable of storing 2
Megabytes, you could organize the
drive one of several ways. You could
have one eight Meg, two four Meg,
four two Meg or any combination of
the above which totals 8 Megabytes
of storage. By the way, partitioning
is only possible if the hard disk
driver program is written to do so.
The point is that one large hard disk
is made to “look” like several
smaller disk drives. The advantage
of this approach is that you break
the mass storage into smaller, more
easily managed ‘‘chunks’ of
storage.

Even with disk partitioning, there
are still times when you will be
limited by the large number of files
you have to manage on a hard disk.
It would be ideal to go even further
and sub-divide a given PARTITION
of a hard disk. The diskDISK utility
does just that. With diskDISK, you
can create a “logical” storage area
on a hard disk which has the
capacity of a 5 or 8 inch floppy. In
other words, diskDISK creates a file
which is large enough to store as
much as say, a single 5" floppy.
Then this FILE is installed in LDOS
as a logical disk drive,

For instance, I generally use a
LOBO 1850 hard disk as the
principal drive of my system. This
drive stores 8 Megabytes, and is
partitioned into two 2 Megabyte
partitions (Drives 0 and 1) and one 4
Megabyte partition (Drive 2). On
Drive 1, I have a file called C/DD.
This is a diskDISK file which
ordinarily looks just like any other
file to the system. If I issue the
command “DD :3 C/DD” from
LDOS Ready, this FILE is installed
as logical Drive 3. From then on, any
LDOS operation on Drive 3 (DIR,
FREE, KILL, etc) takes place

Page 14

LSl Journal

physically in the file C/DD. This is
entirely invisible to the user. The
diskDISK drivers make C/DD
“look” like a floppy disk drive, In the
case of this particular file, I used
diskDISK to “format” it to look like
a double-density, double-sided, 40
track disk drive. This gives me about
360K of storage on this logical drive,
more than enough to store a C
compiler and my current C program
source files.

You can create a different
diskDISK file for each major type of
file in your system to help organize
your files. For instance, I can have
one diskDISK set up for BASIC
programs, another for PROFILE,
and still another for utilities. There's
a hidden benefit in all this too. The
granule size for an LDOS hard disk
system is always at least 4K. Even if
your file only has 2 bytes of datain it
it will still occupy at least 4K of disk
space. When you save a file on a
diskDISK, the granule size is that of
the floppy disk you're emulating.
For instance, files stored on a SSDD
5" diskDISK use 1.5 K granules.
Your two byte file will occupy 1.5 K
instead of 4 K, for a net savings of 2.5
K of disk space. If you have many
small files, the savings are
tremendous, A special diskDISK
format (called type 1) uses 256 byte
granules for the most efficient
storage possible,

Another advantage is that a
diskDISK only occupies one
directory entry on the hard disk, no
matter how many files actually exist
inside. If you have a lot of small files
on a hard disk or 8 inch floppy, you
can easily run out of directory space
before you run out of disk space. Ina
sense, diskDISK gives LDOS the
capacity of having sub-directories
similar to MD-DOS 2.x and UNIX.

diskDISKs can be created on any
type of LDOS compatible media.
This product is available for either
the Model 4 running TRSDOS 6 or
the LDOS 5.1.x family of DOS
products. Either package costs $99
and is available from Logical
Systems Inc., 8970 N. 55th Street,
P.O. Box 23956, Milwaukee, WI
53223.

Random Items of Interest
Because of the volume of products

sent to me for review, it isn't always

possible to look at each onein depth.

@ ¢

LS| Journal

’ From time to time, you'll see mini-
reviews like these. First, if you're an
LDOS 5.1.x user and need a great
disk cataloging program, take a look
at ZCAT from MicroConsultants. It
is written entirely in assembly
language and is the best of its type
I've seen to date. It costs only $35
and is available from MicroConsul-
tants, 7509 Wellesley Drive, College
Park, MD 20740-3037 (301) 474-8486.

Model 4 owners may be interested
in the new “PRO-CESS" utility from
MISOSYS. This product is very
similar to the CMDFILE program
included with LDOS 5.1, except that

PROC-CESS runs under TRSDOS 6.
This product also has some nice new
twists, like being able to sort load
module records by address and
conversion of X-type patches to D
patches. PRO-CESS is $40 and can
be obtained from MISOSYS, P.O.
Box 4848, Alexandria, VA 22303-
0848, (703) 960-2998.

Finally, if you use SuperScripsit,
there are two sources of printer
drivers you should know about. One
is softERware, and the other is
PowerSOFT. I've used the
softERware product which seems to
work fine, but I've not seen the

PowerSOFT driver. Contact these
companies for more details:
PowerSOFT, 11500 Stemmons
Freeway, Suite 125, Dallas, TX
75229 (214) 484-2976, or softERware,
300 Grenola St., Pacific Palisades,
CA 90272 (213) 459-3414.

The Finishing Touches

That about wraps it up for this
installment of PARITY = ODD.
Hopefully the next time you read
this column, I'll have something to
report on the Tandy 2000, as well as
the usual collection TRS-80 reviews
and trivia! So long for now.

The “C” Language, part 6

Pointers, arrays, structures and common errors

Earl “C.” Terwilliger, 647 N. Hawkins Ave., Akron, Ohio 44313

Could you use some POINTERS on how to
STRUCTURE better C programs? In this part, Part VI,
structures will be introduced and the discussion on
pointers and arrays will continue. Oh? You thought
when you read the word POINTERS and the word
STRUCTURE that this part would really be discussing
techniques for improving your C code? Ha! Well, okay,
not to disappoint you, included in this part is a
discussion of the most common errors or “things” notto
do in a C program. Will that help?

First, let's continue on from the last part with pointers
and arrays.

In the last part, you saw an expression *ptr++. Were
you puzzled? Remember back when the ++ and -
operators were introduced? It was stated that ++ added
one to its operand and - subtracted one from its operand.
Be careful applying this to pointers. The “one” referred
to which is added to or subtracted from a pointer is
actually a scale factor. This scale factor is dependent on
the type the pointer points to. That means it is scaled by
a size equal to the data type length. This holds true for
all “pointer arithmetic”. (For example, in a Z80 based
machine the scale factors are 1 for char, 2 for int.)

There are some rules to follow when doing arithmetic
in C using pointers. It is legal to:

add an integer to or subtract an integer from a pointer

subtract a pointer from a pointer

compare a pointer to another pointer

All other conceivable arithmetic, including shifting or
masking is illegal. Note: a pointer containing NULL or

0 is a special case. The C language guarantees that if a
pointer points to valid data, it will not contain 0. The 0
value is usually used to indicate an error condition. An
example of this would be when a storage allocate
function is called. This function may have been
designed to return a non zero pointer to the beginning of
the allocated storage. If storage can not be allocated it
could return a NULL (zero) value indicating an error of
some type occurred. Consider the statements below for
the discussion following:

char *ptr;

static char a[5] = “test”;

ptr = a;

++ptr;

ptr is a pointer to type character. ptr is initially set to
the address of the array a. This is written as &a[0] or
simply a. Next, ptr is incremented to point to the next
element of the array. This is written as ptr++. (Other
possible ways to codeit, in this example, could have been
*ptr++, *++ptr, *(++ptr) or *(ptr++). Note that
(*ptr)++ would create a different undesired result than
*ptr++. The ++ and * operators are of equal precedence
and associate right to left.) From the above statements,
you can conclude that array subscripting can be done by
incrementing a pointer. You can also conclude that the
following two expressions are equivalent:

ptr = a;

ptr = &a[0];

(Note that, in effect, an array name is a pointer
expression. Note also that using pointers rather than

Page 15

e e e Al TR e sl

array subscripting usually results in more efficient
code.)

As general rules:

a[n] is equivalent to *(a-+n)

*(&a[n)) is equivalent to *(a-+n)

&a[n] is equivalent to &a[0]+n is equivalent to a+n

Perhaps if I spelled out how to “pronounce” some of
the expressions used in the general rules above, these
rules might become more clear?

3 means the address

e means the data at

aln] means element n of array a

daln] means the address of element n of array a

*(%aln)) means the data (element) at the address of
element n of array 2

This says the same thing as element n of

array a
*(a+n) means element n of array a
a+n means element n of array 2

Did the above help?

If you have been looking at some sample C programs,
you may have seen by now that sometimes an array
name is written as a[]or *a when used as parametersin a
function. Rather nice don't you think? The function,
when passed an array name, can treat it as an array, as
a pointer or both. If you have some doubt, look at the C
code in Listing 1.

The arguments arge and argv are not new to you, they
were described in Part I1. As you noted, argvistreated as
an array and as a pointer in the above program. Are you
curious about the argv[0][0] expression used in the printf
function? What will print is a single character, the first
character of the command line argument after the
program name. If the above program was called test, to
invoke it and pass it an argument, you might type:

test -l myfile/dat

If you compile it and try it using the above invocation,
you should see the - printed. (Try it with different
argument values and different numbers of arguments.)
Of what value is this? Well, actually this program might

Listing 1
main (argc, argv)

int argc,

char **argy;

if (argc < 2) {
printf(“Error - no parameter was given!®);
exit(l);

)

+argv;

printf(*Xc\n*, argv[PI(#]);

LS| Joumnal

be used as part of a larger program and the argv[0][0]
could be used to test for a “switch” such as + or-in front
of a parameter. In the example invocation above, I
included the myfile/dat parameter to suggest some
possibilities for you to ponder!

The argv function parameter, as mentioned in PartII,
is a pointer to an array of pointers. Here is a list of
possible ways or forms in which you might see it used:
argv, *argv, argv[n], *argv(0], (*argv)[0], argv{0][0].
Having some trouble ‘“visualizing” what each
represents? Look at a possible storage map (chart) of

argv:
|eemmmenen |

argv | address | ---e--e- |
Jrore=nnsa | |
|
[e |
argv(P) or *argv | address | -=--ces=eeee |
(e | | *argviP)
[| address | iR
| JrlasaE e | | argv(PI(P)
| | address | jo=cVenen]
1 |emmmeeens ! | string |
e G| ! I | data |
| string |
| data |

I hope the above map will be of some aid. Try to fit
into the above map all of the ways of using the function
argument argv. Enough of this for awhile! Let's switch
topics and introduce structures.

A nice feature for a language is the ability to group
variables of different types and treat them as one. This
grouping of variables, called a structure in C, is called a
record in other computer languages. Listing 2 is an
example of the declaration of a sample C structure.

The struct keyword is used to declare a structure, An
optional name or tag can follow the struct keyword. In
this example, I used the tag of payroll. The tag names
the structure and can be used as a shorthand method for
the complete structure declaration. For example, to
declare two more structures of type payroll, it might be
done as follows:

struct payroll personl, person2;

The variables declared in the structure are referred to
as members. Structure members or tags can have the
same name as other simple variables. The C compiler
can tell them apart due to the way they are used.
Members of a structure are referenced as follows:

structure-name.member

The “." is called the structure operator. It connects the
structure name to a member name. More will be said
about structures in the next part!

Now, as promised, Table 1 is a list of many of the most
common errors found in a C program. Keep these
“mistakes” in mind as you code in C. Looking out for
these pitfalls will help you design a more “bug

Page 16

’ LS| Jourmnal

free’ program.
As you read some of the above most frequent C coding

errors didn’t you say to yourself, “Yes, I have done that
before.”? If you did, you are not alone! Some of these
errors are caught by the C compiler, many are not.
Another program for detecting possible errors in C code
is called LINT. It typically better enforces the rules of C
and reports more possible errors than does the C
compiler.

In the next part, the C programming environment will
be discussed along with many functions which are part
of (or should be part of) the “standard” library.
Structures will also be covered in more detail. Practice
your C coding techniques until then!

Table 1 — C Language Pitfalls

Using = instead of == in an if statement
Thinking arrays start at index 1 instead of P
Unclosed braces or brackets

Forgetting a ;

Using / instead of \

*0ff by one" errors in looping or array indexing
declaring function arguments after the {
Forgetting the precedence of operators

Thinking C has built in string comparisons

Listing 2

struct payroll { char name[39];
int age;
char sex;
int pay;

|

Using ' instead of *

Using () instead of []

function arguments placed in the wrong order

Not reserving an array element for the terminal \@

Forgetting about “side effects*

LDOS: How it works — an introduction
to COMM and LCOMM

LCOMM (on LDOS 5.1.x) and
COMM (on TRSDOS 6.x) are both
very powerful communications
packages, but few people use them to
their full advantage. Admittedly,
the manual(s) are a bit terse in
regards to these packages, but with
a little help everyone should be able
to use these utilities. If you need any
help in regards to physically
connecting your modem to your
computer, contact your vendor for
the proper cables and instructions.

Getting started- First, type the
commands below at DOS ready:

Note that <enter> means to press
the “ENTER” key. If you have a
Model I, on the second line type:
“SET *CL RS232R<enter>"’
instead. Your system is now set up
for RS232 communication at 300
baud, the most common mode when
using a modem over the telephone
line. This setup should work for most
modems, including the Radio Shack
modems and their DC Modem II.

When you enter COMM/LCOMM
in this manner, you areimmediately
in the terminal mode. Anything you

Under TRSDOS 6.x:
SET *CL COM/DVR<enter>
SETCOM (DTR,W=8,P=N)<enter>
COMM *CL<enter>

Under LDOS 5.1.x:
SET *KI KI (T,J)<enter>
SET *CL RS232T (DTR,W=8,P=N)<enter>
LCOMM *CL<enter>

Page 17

Joseph J. Kyle-DiPietropaolo

type will be sent to the modem, and
whatever is received will be
displayed on your screen. If you use
a JCL (Job Control Language)
procedure to set this up automatical-
ly for you, don’t forget to add a line
reading “//STOP" as the last line of
the JCL file. If you don’t, control will
be returned to DOS if you attempt to
execute certain COMM/LCOMM
commands.

Now to actually communicate.
Let's take CompuServe as an
example. Dial the phone number for
your local CompuServe node. If you
have a “smart”-type modem, refer to
yvour operators manual for dialing
instructions. Once the phone
number has been dialed, put your
modem on-line. For most “dumb”
modems, this will mean flipping the
switch on, or placing the phone
handset into the acoustic cups. Most
“smart”-type modems automatical-
ly enter the on-line mode after
dialing.

When the “CD” or carrier detect

light comes on, type a <control>-C.
On the Models I and III, this is the
combination <Shift><Down
Arrow> (meaning “control”) and
(while still holding them down) then
a <C>. On the Model 4, you have a
<control> key. Depress this, then
(while still holding it down) type a
<C>. In either case, Compuserve
should respond with “User Id:".
This is your first prompt. Type in
your user number (provided in your
sign-up package - obtain from Radio
Shack). For example, the user
number for the people here at LSI is
76703,437. We would type in
“76703,437;".

The semi-colon is very important.
Until you tell CompuServe
otherwise, they assume that you are
using what is called a “Videotex-
compatible terminal”. When using
LCOMM or COMM, this will cause
all sorts of nasty things to appearon
your video display. The semi-colon
prevents this from happening. Once

you are logged on, if you change
your terminal type (tell CompuServe
that you have an “other"-type
terminal) this will not happen and
you may omit the semi-colon.

CompuServe will now respond
with “Password:"”. Type your
password from the sign-up package
and hit <enter>. After a few
seconds, CompuServe will respond
with its first menu. Congratula-
tions! You have successfully
communicated!

Now we know how to establish a
communications channel from our
computer, let's look at how we give
instructions to COMM/LCOMM.
All commands begin with a
<clear><keystroke> or <clear>
<shift><keystroke> sequence. For
instance, pressing <clear> and
holding it while you press <8> will
display the COMM/LCOMM
command menu. The <clear> key is
used as a second type of “control”
key, one that has special meaning to

LS| Joumdl

COMM/LCOMM (and many othe:
DOS utilities).

But- what does all this menu
information represent? Let's take o
look at an example. *PR stands fo:
the “logical” printer device, and the
word “ON" is relatively self
explanatory. If you hit <clear><2
and then <clear><:>, (thi
keystrokes that represent “*PR"
and "ON" respectively) the *PH
device will be “turned on". Typing
<clear><8> will re-display the
menu. Do you see the difference?
There is now a “*" below the *FPR
device, indicating that it is “ON"
Now, any characters received by
your computer will be sent to the
printer in addition to the vides
display.

So far, we have covered the initial
“set-up” phase of COMM/LCOMM
In future installments, we will cover
more advanced features of these
utilities, such as file uploading and
downloading.

Les information — faster file access

When accessing data files and devices in machine
language, there are many different techniques that can
be used. The operating system @GET and @PUT calls
(these are called the “Byte 170 calls” because they move
one byte at a time) are easy to use, and allow use of either
devices or files. See past issues of the LDOS Quarterly
(volume 2, numbers 2 and 3) for more information on this
method.

@GET and @PUT are convenient, but there is a speed
penalty as compared to full sector operations. The single
byte operations can only access one sector per disk
revolution, while full sector operations may be able to
handle an entire track in two or three revolutions
(depending on the disk type and the processing time
needed between sectors). Thus, it may be possible to
speed up disk operations considerably by buffering as
much as possible in memory using full sector disk 1/0.

One significant drawback to this approach is that the
program then becomes responsible for observing or
setting the proper end-of-file offset when the data file
does not end on a sector boundary.

Les Mikesell

The sector interleave on floppy disks is designed to
allow just enough time to move a sector of data in or out
of the file buffer before the next consecutive sector
passes ‘under the read/write head. Any additional
processing at this point will usually cause the next
sector to be missed, and necessitate a wait until the next
revolution of the disk. When using a hard drive or
MemDISK, the interleave factor is not critical, but
programs will still benefit from the reduced overhead of
full sector operations.

After opening a file, its size can be determined from
the contents of the open FCB (file control block). The
ending record number (ERN) is stored at FCB+12 & 13,
fmd the end of file offset (EOF) is at FCB+8. If the ERN
18 00, the file is empty. Otherwise, ERN-1 is the number
9f full sectors in the file, and EOF is the number of bytes
m.cluded in the ending sector (where 0 = 256). Thus EOF-
1is the offset of the last valid byte in the file buffer when
the lgst sector is read. This may be easier to remember by
keePnng in mind that these three bytes are always
maintained as a pointer to the next record to write to

Page 18

LS| Journal

extend the file.

For many operations, a file may be read into memory
until the DOS error 1CH (end of file) or 1DH (past end of
file) occurs, then the buffer pointer adjusted back to the
correct byte offset in the previous sector. However, it
may sometimes be necessary to determine if the current
sector contains any data past the end of file before
reading the next sector (which would return the EOF
error). In this case, the next record number (NRN) at
FCB+10 & 11 may be compared to the ERN after the
read, If the NRN is the same as the ERN, the sector just
read contains the end-of-file.

When writing sequential data using the full sector
operations, it is necessary to update the EOF byte before
closing the file. If @POSN has been used, itis necessary
to update the ERN, since the system will then consider
the file to be “random-access” and update the length
only if it has been extended. Moving the NRN into the
ERN in the FCB will set the current position as the end
of file even if the previous ERN was larger.

Listing 1, a program to either add line-feed characters
after carriage returns, or remove line-feeds,
demonstrates some of the techniques of handling byte
data with the DOS sector operations. Note that the input
routine simply moves the buffer pointer in the FCB for
each sector read rather than moving the data from the
file buffer.

The output routines are a little slower, and will miss
the disk interleave on a Model I or III with the standard
CPU speed. This could be avoided by processing the
data into a larger buffer space, then writing several
sectors at once. Pre-allocating the disk space before the
write would increase the speed also, by reducing the
number of times the system has to go to the disk
directory. This may be done simply by using @POSN
and @WRITE to write (anything) to the last sector of the
output file, then re-position to record 0.

This program may also be assembled for use with the
TRSDOS/LDOS 6.x system by deleting the beginning
lines between the asterisks, and including the standard
6.x header. For TRSDOS/LDOS 6.x operation, delete
lines 100 to 410 and insert the code from Listing 2.

Listing 1 LDOS 5.1 version

MW
119 ;This part i3 for LDOS 5.1

P0129 ;Operating system entry points:

139 MBRT EQU 4230

M4 KLOSE EQU 4284

M5 PoSPLY EQU 67T

169 MERROR EQU A4

M179 eEXIT EQU 2

9189 WFSPEC EQU 44104

W19 PINIT B a2

P20 MEYIN EQU e

#9219 SOPEN EQU 44244

PR228 WEAD EQU 44364

N239 MRITE EQU 44394

24D HIGHS EQU 411K iMode! 3
259 HIGH! EQU 4pa9H sMode) 1

90260 ;

o270 RG 52004

P28 ;Put file buffer first to force location
299 ;0n memory page boundary

P39 BUFFRY DS 26

$319 BUFFRZ2 DS 26

P9320 ;Machine specific code:

P9339 BEGIN: LD A, (126H) sCheck modl/3 ROM

o349 o’) b

20350 Lo WL, (HIGHS) iMod 3 location
0360 ®r 2,5ETHI ;60 {f mod 3

379 Lo WL, (MIGH1) $Mod 1 location
P9389 SETHI: LD (MYMEM) HL iStore correct value
L

M4M (End of LDOS 5.1 specific code

Wl

0429

P43 ;Special chars
Poaap £7x EQU [L]
P34sP R EQU oo
POs6R LF EQU L
ware

s ;

PO499 ;FCB of fset definitions
PP599 BUFRLO EQU 3
P9519 BUFRHI EQU 4
M520 ERNHI EQU 13
POSIP ERNLO EQU 12
549 EOF EQu 8
PO5S9 MNLO EQU »
POS69 MNHI EQU u

;Buffer address

iEnding record ¢

s0ffset of last byte

iNext record pointer

w570

P0589 START: LD HL,LOGON slog on

90590 CALL 9OSPLY

PO699 DISKIN: LD M MS61 iPrompt for input file
610 CALL INPFSP sGet answer

L Lo 0E,FCal §oOFCE

LU CALL WFSPEC iMove filename
Ll Lo 8,0 iLRL=P (256)
L Lo ML, BUFFR] s*2disk buffer
NEY CALL POPEN i0pen the file
679 R 1,60TING i60 1f successful
[CALL SHOERR ;E1se report error
20699 » DISKIN sAnd ask again

Lo a

719 ;File 1s open, check If it contains any records
9729 GOTINP: LD HL, (FCB14ERNLO)

wN Lo AM i1s ending record §#?
M7 | L

w5 » NZ,ASK ;60 1f file has data
n6e Lo ML, NODAT ;E1se report empty file
nn CALL S0SPLY

we » PABORT ;And quit

b

D089 ASK: Lo WL M562 sPrompt for output file

Page 19

LS| Joumnal

e CALL INFSP ;6et answer (5 [+ 14 . Btk @ to last ful) sector
ez Lo 0, FC82 nm o L Add n contents of last sector
s CALL ®FSPEC Move filensse "= [LS " 0T past ffer
s9sed w8 0
PoreT) w W, BUFFR2 BN FiniS: @2 LU iPointer to I
passl CALL fiNIT iCreate file e w KX, i 3 STARY OF DATA MIA
wnan N L,ASKIA ;Continue If good fiaft M
‘ Lt CALL SHoERR i€1se report error BI4N ; Memory 13 loaded, check for changes
#2399 » ASK JAnd re-prompt #1880 ; Keocurrent char, X woendel
Ll PIASP AOwR: LD A0 ils ThIL the end of D buffer?
WN9IP ;Set wp for add or remove LF's Ny o '
529 ASKIA: LD W MS63 Remove 1inefeeds? L » a.aTEw e i mt
w93 Lo € LF i flag] L0 AL P
N5 CALL SSETYN iPrompt, set flag new o [4
Nse R LAGAIN i1f yes, skip 2nd prospt L) > 2,08 0xn nd, chect for more inpet
poseR 1510 WOTEND: L0 A (N) 6ot & haracter ’
979 ASKIB: LD L) ;Add 1inefeeds? 8%) N = ; by poister
L Lo € ALF g " o 1] BRI
L CALL SGETYN iPrompt, et fag se » UL e Moot S
e R NZ,ASKIA iMust do one or the other nisse Lo A tRr) Removing Viee fends?
el ; s ™ A
B1929 :Read file Into memory - set (MORE)«BFFM 1f 1t doesn't fit wsn = o Nt removing line feeds
P1939 AGAIN: LD W, (WreEN) ;%%end of free space) R Ko g
e Lo 8C, BUFFER *oworking buffer start 01599 wTLr o o> ; carripge M)
plose = A LI = LIA L) jrite If st 0
1169 sac LY 4 s AL PUTTER Write &0
nan Lo LR it of sectors that will fit e Lo AKF) iASding line Teeds?
e Lo M, BUFFER iStart of buffer e = A Test
e Lo 0E,FC8l i*2input file buffer Pisep = 1,000 Ship 1 mot wantes
21199 RLOOP: LD (FTBI+BUFRLO) ML iSet load address #1659 0OLF: LD ALF Losd the line feed
flle CALL ®READ iGet 2 sector 0668 wAYT: AL wuTTER iWrite char to file
iz » NZ,OxEND sEnd or error nien » ADwa iLoop through buffer
i INC L] iBump ptr for next hléee ;
i OINZ RLOOP iStop 1f mesory 13 full RI6SD ;End of Duffer, 15 file dome?
BLISP ;Now check to see if the last sector contained the EOF 1799 OsECem: (D W NoRE iI5 thers more to resd?
PL169 ;To be sure all data loaded belongs in file "nn Lo A ilero 1 done
e PUSH ® iSave current posa wa Lo). iSet for sext time
flisg (€] K, (FCBISMRNLD) ;Check §f this (s Mnn » A St 1 1f done
Pl LD DE,(FCBISERNLO) ;The last sector " P NLAGAIN ioop t911 Patshed with fites
pl2ee ® A nsy
0219 SBC M, 0E i15 NSERN? PI76D ;Fintshed, close the outout file
pzxn POP L0 iGet end ptr num CALL LsTsEC SFluth boffer
L R Z, ISEOF 360 1f this Vs EOF nea Lo . Fonz sodoutput FC8
Aot SRR, sSet flag for more fnput ow U saose iClose outpet file
91259 L (RE)A Qe P xno0sm g
01269 xr FINIS sAnd start processing psly w oGS iElse report completion
n2m ; "y oL eoseLy
01289 CxEwD: o 104 ;E0F? sy » ®iy iAnd 90 back to 0OS
21299 B 2, 1SE0F Piseg
213 e 1 i0r past EOF? PLESH ;Set flag according 1o 'Y" response
1319 » N1, DOSERR Quit if other error P1869 SGETYN: Pysk % iSove Mg address
P1329 ISEOF: LD A, (FCB1+£0F) iGet EOF offset byte "nan oALL "Ly i153ve prompt
e OEC A iPoint to end byte #lissy L0 T A T/RD
1349 EC Y slese oL eosmy
M35 Lo 0.0 sDE=of fset of EOF dow L 8.1

Max 1nput wanted

Page 20

LSI Journal

flse CALL KEYIN
s AND SFH
LJEED) o e

s PoP L3

plsse RET L1

sy Lo (W), PFFH
9 RET

P1980 :Get & f\lename:
P1990 INPFSP: CALL P0SPLY
2 Lo 8,1FM4
82019 ;Get user Inpot

92029 KEYIN: LD ML, INBFR
2% CALL NEYIN
Lol » C, PABORT
p2es 4] A (R)
el RET

s ;

;6et | char answer
iForce upper case
s e vt

;Get flag address
sReturn 1f not *Y*

iSet flag \f “Y* response

:Display prompt
;Set max length

;*obuffer to receive input
iGet Input
;0uit If BREAK pressed

iE1se pick up 1st char

B2060 ;Add a byte to disk buffer/write if full

F2099 Note that disk buffer must end en XXFFH boundary

B2190 ;S0 the INC L will set the I flag when sector

2119 ;Buffer s full, (PUTPTR) I3 & pointer to the next char

#2129 ;Position In the sector buffer

#2109 PUTTER LD W, (PUTPTR)
Lt L () ,A
02150 INC L

p2ied Lo (PUTPTR) ML
n RET L1

P2189 ;urite a physical sector to disk

2199 WSEC: PUSH L3

e Lo DE,FCB2
e CALL NRITE
p2n POP [+ 3
2N RET 4
P2249 DOSERR: CALL SHOERR
pease » PABORT
p226d ;

P2279 SHOERR: OR (<]
s » PERROR
22N ;

;Point to buf pos
Move to buffer
iBump buffer ptr
iSave for next

311 pot full

s#FC8

Nrite

iThat was easy..

;Report any error

iAnd quit

iMask for short msg.,ret

B23W :Fi11 remainder of sector buffer with N's

P2319 ;Set the EOF offset, and flag DOS to reset the
$2329 ;File's ERN to the current sector

#2339 LSTSEC: LD ML, (PUTPTR)
p234p Lo AL

2350 [A

#2369 R 1,SETEOF
#2378 PUSH N

92369 xR A

#2399 FLSEC: LD () A
dm INC L

p2419 X NZ,FLSEC
p2az2 CALL WSEC

L) POP N

p2tap

$2459 SETEOF: LD (FCB2+8) A

i6et posn in buffer

;01d last write

sHIt sector end?
:Finished on sec boundary
;Save last char +1

iSet Asp

;Zero remaining buffer

;Pad sec w/nulls
iMrite the last sector

JEOF byte to A

iSet EOF offset

P246@ ;Note: this step Is actually not necessary unless PPOSN called

p2479 LD
p248g Lo
p24se RET
250 ;

25190 ;

HL, (FCB2+NRANLD) ;Put NEXT record no.

(FCB2+4ERNLO) HL ;Into ENDING record no.

92529 ;END OF PROGRAM AREA

92539 ;ASCIT DATA
#2540 LOGON: D8
92550 MS61:
92560 MS62:
92579 MS63:
22580 MSG4:
2599 MSG5:
92609 NODAT:
P2610 YNS:
02629 ;

LF, 'TEXT FILE PROCESSOR ' ,LF,(R

‘Input Filespec? ' ETX

‘Output Filespec? ', ETX

LF, 'Remove 1ine-feed characters' ETX

'Add 1ine-feed characters' ETX
LF,'File output completed ',CR

‘Input file is empty!* (R

LY/ 7 LETX

82639 ;BUFFERS & POINTERS

P264P RLF: DB
P2659 ALF:)
02660 MORE: DB
92679 EOFFLG: D8
D268 MYMEM: DN
22699 PUTPTR: DW
92799 GETPTR: MW
927190 FCB1: DS
P72 FCB2: DS
P2730 INBFR: DS
$2749 BUFFER EQU
p2750 END

BUFFR2
BUFFR1+255
R

2

“w

$

BEGIN

iRemove LF flag

sAdd LF flag

More Input flag

iLast sector flag

sHIGHS pointer

iPosn In output buffer
;Posn (=1) in input buffer
;File FCBs

sKB input buffer
; START OF DATA BUFFER

Listing 2 LDOS 6.x version

Mm

#9119 ; Header to convert programs with 5.1 CALLS to 6.x

Wi ;

Wi RG
PP149 BUFFR1: DS 256
PP159 BUFFR2: DS 256

M6 ;

#9170 BEGIN: DI
9180 LD
(38 PUSH
L Lo
M2 Lo
w22 RST
02N El
w2 Lo
pe2se Lo
0260 Lo
w270 RST
289 Lo
29 Lo
90309 RST
"3 PUSH
M3ze POP

Page 21

(STACK), SP
H

L &

A 193

@

.0

B,L

A 109

@
(MYMEM) HL
Al

@

144

0E

;put on page boundary

;save SP at entry
:Save ptr to CMD buffer

;Disable break vectoring

;get HIGHS
H

:store for later
sset up 1Y
;pointing to flag table

strans to 0

LSI Journa! |

SYSTEM(SLOW) varse PP “ -
Linfted backup policy explained - B111 Schroeder VNP V2N PPN (lane < Rott Lasear L_‘-.
“Linking to L0OS fn Assembly® - Ry Soltoff VINIPL2 Pascal -89 (New Classics) - 0. mil) N
"LISP Implesentations for the 2-89" - Lee Rice & Danfel Lofy Vingr2§ JERIE el = oatt Lasner i
Listing utflity for TBA Yaxrls Pristers - Earle Robinson i
LNt ande il x®n Profile 111+ (Radio Shack) - Sem Goldbery N
"LScript Patches to Add Versatility® - Scott Loomer VINGPSS vaniP@) Proofreader (Aspen Softeare) « Tim Damelish (FLF
Losd module structure VinPe Scripsit Dictionary (Radio Shach) « Tim Danelivk ol
Lower case lock viseelr - Stroctered BASIC Tramslator (Acorn) - Sem Rathowsh! i
LSI Journal subsission and subscription policies N The BASIC Amaer (LS1) - €. Chesthen =
MAX-50 LDOS described L] The BASIC Amswer (LS1) - Tim Duseliva yairs
*WAX-80 Memory Map® - Chuck Jessen VINPSS WOLISP (Far West) « Lee Rice & Dante! Lofy iwr w
Magazines (7533 Routing & device viaw -
Menwal story, with corrections to 1st edition VINIPlE Ray's Techaical Cornar® - Bay Solteff:

Nt s - load modele tructure visere
Minimum configuration disk Vixr2s SSS% BeRceasar T o
Mixing Mewscript, Electric Webster, LOOS and Sole® - Jerry Latham VINGPSS #rror handling during byte 1/0, WOUDRY, CFLAGS, PIOWFG, MITSK visg 1
"My BASIC Answer® - €. Cheathan (TEA reviev) VNP1 L0%3:6.8 ey
*Newscriot 7.8 and REFLEX™ - Gordon Thospson s R5-232 érivers Ve
*Newscript and The BASIC Amswer® - Jerry Lathes o hunking -1k Orives on the Model 111 Under LODS® - Peter Slees YINWM
"New Version - EDAS Iv, A" - Marc Leager vineP e Sacter 10 oo
Nenbier basa’ conversion e SSOUEFIN < Fis that GAT Lrror* - Drik L i Ywow
014 DAMs (see also Data Address Maris) vinsPlg Speedep dits Viapi
Parity errors viniepe Srigen and type-sheat VNP
*o%% PARITY = 000 *#* - Tim Danelfuk: usian reutionys

Introduct fon, DATAENTR 299 & ISAM 299 vine1? SADTSE, eI, eTSE, et . sk prec. VINSPYL vine s e ly

tips for better programing, DISCATER, Filter Disk vins 1 SXDR - determiniog $.1.2 vi. 5.1.3 for MADNY adjurtonet R

BASF drives, drive poll, TAS, NODENSS, NEXSPELL 11, Uti)itles, HELP YINGPSS SO0~ awed ey

Tandy, WAX-80, AEROCOWP, Electric Webster, The BASIC Answer vanipa PONO! - comans tnterproter R

disk erive poll, gold plugs, LI-89, Proofreader, Scrissit Dict. vaxwar PCIL, BT, T - byte 10 K

magezines oNrs DAYS -« day of the weet vinrll

rusors, LI-89 software compatibility, TRSOOS 6.9 software o LT and WUT under LOOS 6.9 r
*Partitioned Data Sets, MISOSYS Amnounces® - Roy Soltoff vixp2y VICHS - configuration Interfacing nwen
Pascal 89, LDOS and - D. i1} P2 PKITSE - beydourd task i
Passwords for LOOS 5.1.x s KFUGS - heyboard scomner nwen
Patch, how to vanies: TIPARMN, Ustag® - Rey Selteft N
TPOS - Standard and Other Types of Uses® - Scott Looser VINIPZE yoxIPUS OPARAR wnder 6.9 sl
“Perforaing Date Conversions fn BASIC® - Dick Konop vaNerEd TOPARAN, BUSPLY, BEXIT and INBUFS for Everyose® - David Vinzast ol
Printers NP WRANDIR documentation correction LLareg)
Profile 111 Plus with LDOS vaneess $WC's and Fortras Yerle
Quarterly reader survey results o Tanay PR e
Radio Shack NIPRZ vaNaeR3 Task processor VINSPD VIS
“Relocating Code for LBASIC USR Routines® - Chuck Jensen vinwer “T-Timer, LOOS Supports the* - Roy Soltefy VINPIZ VIPle vInePSs
Seviews: TRSO0S (Mod 1) to LDOS (Mod 111) transfer withost REPAIR vixrn

Alternate Source (TAS) - Tim Daneliuk VinGosp TRSDOS (L00S) 6.8 (see alse L00S 6.x) Ll

APLOPLUS/ER (STSC) - Danlel Lofy & Lee Rice N, Update policy explained - §11) Schroeder ViNFR vaverm
OROMALrs (South Shore Computer Comcepts) - Scott Loomer oNwa Upper case lock viserll
DATAENTR299 & 1SAM299 (Johnson Associates) - Tim Daneliuk viNePia Users grovp directory NIPBG
EDAS IV (MISOSYS) - Marc Leager VINGPDS Utilittes:

Electric Webster (Cornucopia) - Tim Danelfuk anres Cony VAP 4
KELP (MISOSYS) - Tim Daneliuk VINGPE3 coPY238 Vo
MEXSPELL 11 (Hexagon) - Tim Daneliuk VNP6 PATCH Vonips?
LD0S Uti1ities (Powersoft) - Tim Danelfuk viners2 REPAIR Vot
LISP (Supersoft) - Lee Rice & Dantel Lofy ViNGP29 Version nusber explamatfon iR
MAX-B9 (Lobo) - Tim Danelfuk vanipas VisiCalc made easy (7.8 23]
Wicrocomputer Math book (SAMS) - Earle Robinson vinselp

“VisiCalc with LOOS, Using® - Roy Soltoff visze

Page 24

USRS

Much Needed Software from PowerSOFT!

[For Users of LDOS™ and TRSDOS 6.x™

, TRSDOS 6.X™ or
LDOS™ Users ;op__’

-~

Our ToolBox for LDOS™ was rated FOUR STARS in the Oct. ‘83 B0-MICRO as a
package to “perfect the use of LDOS™. We now have it for the Mod 4 as well' These
new disk ulilities are intended for TRSDOS 6.x or LDOS 5.1.3/4 only! Unlike SU+
these will work on any combination of single/double sided drives and hard drives'
They will work with Mod 4, Mod | or 111, single or double density, ALL media formats
including 8 in drives on a MAX-B80. Also works with the Radwo Shack. or any hard
drive configured for use with LDOS or TRSDOS 6 x

Utilities include disk repair, disk check. exiensive 2apper for disk, memory, o files
verifiers, comparers, filters, 0 m, pa: 0.
mass file moving. mass file killing, erasing, exercising, searcivreplace, etc. Each
utility also contains a built-in "HELP” command, in case you get lost, Al utilities are
maching language, contain excellent documentation, and disk is unprolected
MODEL 4 ToolBelt™ (for TRSDOS 6.x only) $49.95

The ToolBox for LDOS™ (MOD 1111) $69.95

WANTED

Your BASIC

Impakit!

r' * * DO YOU USE DISK BASIC? WHAT DOS? TRSDOS? LDOS?

How'd you like with a single command from BASIC ta: search and/or replace a
PArticular keyword of siring. remove remarks, remove exiraneous Spaces. remove
exiranecus colons, remove GOTOS following THENS, compress a program, decom-
Press a program, renumber, irace a program withoul destroying the screen display -1
either by line number or by step, sel breakpoints in trace mode, join lines, copy lines
from one part of the program to another with automatic renumber, move dlocks of
lines, check lines for valisity, display memory usage stalistics for a given program,
decode packed string graphics, rescue programs 10s! by an inadvertant reboot or
NEW, y $ave and load programs from disk, ically convert upper-
case sirings 10 lower-case. and more! Whew! Get all those fancy Irick features in the
olher DOSes, pius 3 LOT more, and use your existing DOS!
What Super Utility Pius is lo disk utilities, IMPAKT! is to BASIC! This new seif
L) machine-language module D lurctions for
BASIC programmers. Unlike other BASIC extensions, it does not require special
formats, BASIC commands, ot any modification 10 BASIC/CMD or LBASIC/CMD,

therelore programs written under IMPAKT! will run under regular BASIC If you
t program heavily in BASIC you will appreciate the power that IMPAKT! gives you, plus
Jp———

the tremendous time it will save.

IMPAKT! You'll wonder how you ever got along without it! Compatible with most
current TRS-80 compatible DOSes. A definite BOOST to TRSDOS Mod | ot 1] and
LDOS in particular. Beef up those BASICS! (Not TRSDOS 2.700 or 6.x compalible)

IMPAKTI a disk . %

$38.95 with complete users manwal

US/Canada Please add $2.50 Shipping/Handling-Foreign
— $10. The above rams cannot be explained in this ad
space. Please write for complete cataiog with full details.

MOST WANTED
= LIST —

SUPER UTILITY PLUS 3.2 ~
“THE JAWS OF LIFE" rated FIVE STARS in the Oct 83 80-
MICRO' A MUST-HAVE program if you have disks, as reviewed by
all the TRS-80 magazines They all agree that SU* is a standardin
the industry. This new version is the ULTIMATE and features
better documentation Includes directions for use on the Mod 4

. s
PowsrMAIL PLUS O ===

The most powerful mailing/information system yet for the TRS-80
Runs under most current D0Ses as well as hard drives 100%
machine language for maximum speed Features 24 definable
“flags”, 10 level sort. mounting new data disks. and machine

compatible data files It aiso “converts” many other mailing

programs’ data o PowerMAIL* format Eliminates re-typng!
L———-_---‘-—____ Only $150 sach -
Please specify © = R
MOD v 1E

MOD 4 TRUE Mod 4 Mode'
MOD 11/12/16 (Comes on DP-Il Kernel System)

POWERDOT II

A GRAPHICS BREAKTHROUGH' The ULTIMATE in graphics
design This version is MUCH MORE POWERFUL than previous
versions and includes BETTER documentation as well New
features inciude AUTODRAW™ and CIRCLE commands Now
allows you 1o design your own character sels' Includes lots of
examples on disk Your screen is only a“picture window” 102 much
larger drawing area' You are only kmited by disk storage _not
memory' Works on EPSON Series (Graftrax of Graftrax* required)
or the C.Itoh 8510 (PROWRITER or NEC version) Coming soon for
DMP-2100, DMP-400, and LP-8

POWERDRAW

A full screen graphics/text editor Allows you 10 design your
Qraphics and merge them with your BASIC or assembly program in
SIX different formats. The files may be used alone o chained
together for animation effects. MANY programs being produced
commercially today incorporate POWERDRAW graphics' No
royalties 1o pay, and they're easy 10 do’ Has received EXCELLENT
feviews in many magazines

> —— $30.95

POWERDRIVERs R ——

—

for use with SuperScripsit™ =

Allows you 10 use ALL of SuperScripsif's™ features with your
EPSON, PROWRITER, or F-10 STARWRITER printers' Includes
patches for running SuperScripsit on LDOS with floppy or hard
drive. Now includes DISKFILE driver. Save formatted tex! 10 disk
now'

FP\e‘a_s—e_snecny

PowerDRIVER/P - C Itoh 8510 PROWRITER
PowerDRIVER/E - EPSON or GEMIN! Series
PowerDRIVER/F - Cltoh STARWRITER (Leading Edge)

| POWERNOF=

PRODUCTS FROM BREEZE/QSD. INC

11500 Stemmons Fwy.
Suite 125
Dallas, Texas 75229
(214) 484-2976 308

Only $29.95 sach

I

L
==

SuperScripsit 15 a Trademark of Tandy Corp
LOOS s a trademark of LS!

Mention the LS Quarterly in your order and deduct 13% from prices!

SYSTEMS BULK RATE
INC. U.S. POSTAGE PAID
OO L= Permit No. 36

= T Mequon, WI 53092
8970 N. 55th Street
P. O. Box 23956

Milwaukee, W1 53223

In This issue:

® The ‘C’ Language — Part 6
® Fast Machine — Language

® File 110
e An Introduction to COMM and LCOMM

POSTMASTER: DATED MATERIAL DO NOT DELAY

