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1. INTRODUCTION:  

 
 
 

2. KEYWORDS: 

 

3. ACCOMPLISHMENTS:  

What were the major goals of the project? 

What was accomplished under these goals? 

The overall goals of this study are to improve the methodology for diagnosis of IC and 
progression of disease and to develop new insight into the underlying mechanisms that 
trigger this condition. In this project, we will determine if urine-based DNA methylation and 
gene expression signatures associates with pain severity, health-related quality of life, and 
other comorbid conditions in IC patients. 

Approved SOW (by 12months) 
Milestone(s) Achieved:  
Quantification of epigenetic and genetic biomarker candidates 

Subtask 1. Quantification of DNA methylation 
 1.1. Sample preparation and protocol optimization 

     1.2. Targeted DNA methylation analysis 
Subtask 2. Quantification of gene expression 

 1.1. Sample preparation and protocol optimization 
 1.2. High throughput gene expression analysis     

Subtask 3. Pipeline establishment for computational analysis to test a statistical model 

In this funding year, we have focused on (1) identification on baseline of urine collection, (2) 
expansion of database for better urine biomarker discovery, and (3) technology application to 
further identify the DNA methylation markers associated with IC. 

The goal of this study is to determine the biosignature consisting of DNA methylation and 
gene expression status detected in urine from interstitial cystitis/painful bladder syndrome (IC) 
patients will stratify IC patients from healthy controls. 

interstitial cystitis, DNA methylation, biosignature, gene expression 
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(1) Major activities

o The subject protocol (version dated 12/03/2019) was approved by the
Cedars-Sinai Institutional Review Board (IRB) on 12/3/19.

o The U.S. Army Medical Research and Development Command
(USAMRDC),Office of Research Protections (ORP), Human Research
Protection Office (HRPO) reviewed the protocol and found that it complies
with applicable DOD, U.S. Army, and USAMRDC human subjects protection
requirements.

o We got an Approval Memorandum (Proposal Number PR180579, Award
Number W81XWH-19-1-0109) in March 4, 2020.

o Trained personnel who will perform biochemical analyses for this project.

(2) Significant results or key outcomes

o We made significant key scientific outcomes since the previous funding
period. Several full research papers and review articles were published in this
funding period. Please refer to  the APPENDICES.

o After March 4, 2020 when we got an approval from DoD, we started to
establish a laboratory-based protocol and assembled a cohort for this
particular study.

o Due to this delay on HPRO approval, we were able to initiate actual lab work
a little later than we originally expected.

o Urine samples from IC and healthy controls were pre-processed by the
trained lab personnel.

o We optimized the DNA extraction protocols using human urine samples.

o We performed the gene expression analysis using urine samples as planned.

o We were able to optimize the DNA methylation and gene expression assays,
which were designed for high-throughput screening (HTS). They include CNR2
as planned in the proposed study.

o To perform a pilot study for the MethyLight assay optimization (Dr. Kim).

o Using this optimized assay system, we found that CNR2 DNA methylation is
significantly altered in IC patients compared to controls.

o Our pilot study began with evaluating the top five genes (CNR2, PR2Y14,
GRM6, F2R and CHRM3), for which MethyLight assays have already been
designed.

o Our ultimate goal is to evaluate the DNA methylation levels of the 20 most
hypomethylated genes from preliminary work.

o
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o Our project is conducted through a close collaboration with core facilities in
University of Southern California and Genomics Core at CSMC.

o We initiated a contract with NanoString Research team for this particular
study. NanoString gene expression analysis is a novel digital technology that
is based on direct multiplexed quantification of nucleic acids and offers high
levels of precision and sensitivity, in this proposal. NanoString technology
employs molecular “barcodes” and single molecule imaging to detect and
count target gene expression in a single reaction.

o Unfortunately, due to the current COVID-19 pandemic, we were not able to
submit our pro-processed samples to facilities which will perform the HTP
analysis.

o Many of my lab personnel were not able to come to work since our lab facility
is closed due to the California’s statewide lockdown order.

o Facilities, clinical research center, and all other laboratories were closed or
minimally maintained since late March, leading to a project hold.

o We have established new collaboration with a big biomarker discovery group at
our own institute for further validation of target candidates. While our preliminary
are based on small numbers and require validation in a large dataset, they
nonetheless demonstrate the feasibility of the current study and provide strong
support to the fact that we are likely to identify many clinically and biological
important linkages with IC and the various IC phenotypes within this study.

o Luckily, we were able to publish a series of papers relevant to this proposed
study. Our recent review paper summarized the underlying mechanisms that
induce the chronic pain associated with IC and vulvodynia and explain why
these two conditions often coexist. We also developed a statistical model to
determine whether the biosignatures to be enhanced by additional systemic
changes, such as widespread pain or associated clinical depression.

o We are sorry that this project may be a little bit delayed to complete. It’s
because that we got the HRPO approval later than we originally expected and
the COVID-19 pandemic hold the necessary lab work.

o Starting from April 2021, we were able to maintain 50% of full activity in
laboratory setting. Slowly but surely the research activity is recovering.

o We were able to ship the samples to facility for analysis. Due to the high volume
of COVID-19 samples, it is anticipated to experience the delay.

o We have worked on the validation of biomarker signatures of IC and found
additional urinary biomarkers.

o In the following sections, we will update our progress in detail for your reference.
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ACHIEVEMENT 1: 
Advances in Urinary Biomarker Discovery in Urological Research 

OBJECTIVES 
• Identify urine metabolites driving IC disease status.
• Identify urine metabolites affected by gender and/or year of collection.

Deliverables 
• A report summarizing the methods and results supporting this project.

INTRODUCTION & METHODS 
This report summarizes the Interstitial Cystitis (IC) analyses to identify IC biomarkers 
by analyzing urine metabolites for a cohort of 300 (case and control) IC patients. An initial pilot 
investigation of 39 (20 control and 19 cases) female subjects from this cohort identified 4 
biomarkers of interest; purine, phenylalanine, 5-oxoproline and 5-hydroxyindole acetic acid 
(Figure 1A). 

Figure 1: A) 4 Biomarkers identified from the panel of case/control female subjects in the pilot 
study. Top panel shows the statistics from the Metabolomics analysis. The bottom panel depicts 
the abundance of each metabolite between case (IC) and control (NC) subjects. 

Subsequently, we were able to replicate findings for 5-hydroxyindole acetic acid 
when analyzing the entire population (n= 300) (Figure 2A). Furthermore, the Omics team 
showed evidence of a gender effect on a subset of metabolite abundances Figure 2C. Omics had 
a concern for the accuracy of these results given the known degradation of some metabolites in 
urine over time. The urine collection times for these samples range over a period of 5 years. 
Importantly, the Omics team’s analysis tools did not provide the option to adjust their process for 
the impact of confounding variables (collection age or gender) on their differential results. 
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Described in this report are results of a bAIcis analysis investigating drivers of IC status. With 
these bAIcis results and results from several additional regression approaches, described below, 
we aim to 1) explore/validate further the relationship of the 4 biomarkers with IC Status and 2) to 
potentially identify additional drivers of disease status. 

Figure 2: A) Differential abundance results from Metaboanalyst between IC and Control 
groups (n = 300). Note only 5-hydroxyindole acetic acid repicates from pilot study. B) 
Distribution of 4 pilot biomarkers in the total population (n = 300). C) Differential abundance 
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results from Metaboanalyst between Male and Female groups (n = 300). 

In addition, we have performed a differential abundance analysis using a method that allows us 
to adjust the regression model for the potentially confounding variables of gender and year of 
collection (YOC). By accounting for the effect of these variables on metabolite abundance we 
aim to produce a clear view of those features relating to IC Status for which Omics has shown 
evidence for concern.  

Results and Discussion 

QC analysis 
After filtering and normalization of Omics data no batch effect or outliers were detected. Figure 3 shows 
summary stats on clinical and demographic features. Note, a majority of the clinical data was composed 
of qualitative questionnaire tables. There were only 11 traditional demographic and clinical features 
available after filtering in this study (Figure 3A). Clinical data was assessed for missingness.  
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Figure 3B shows a missingness heatmap for the Demographics table where 0s (in blue) indicate a 
missing value and 1s (in red) indicate a present value for each feature on the Y-axis. Not shown, are 
additional heatmaps for the clinical questionnaire tables. All clinical features showing more than 30% 
missingness were removed from subsequent analysis.  

Figure 3C shows a PCA of all filtered and normalized urine metabolomics samples. Table 1 lists all 
features used in analyses after filtering and normalization. In total, a combined 587 clinical and Omics 
features remained after processing. 

Figure 3: A) Summary stats of demographic features considered in this analysis. Not shown are 
additional questionnaire summary data. B) PCA of filtered and normalized metabolite samples. 
C) An example missingness heatmap of the Demographics table showing the degree of missing
values across patients.
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bAIcis 
Using the filtered clinical data a clinical bAIcis network was run to identify those feature driving IC status 
outcome (Figure 4A). One node, “Problem Pain” showed a first-degree connection to IC Status (Figure 
4B). A list of all nodes within 2 degrees is provided in Table 2. Subsequently, an IC bAIcis network was 
created using all 587 features, both Clinical and Omics features to identify which ones may be driving 
the IC status outcome. Similar to the clinical only network, only one feature, “Problem Pain” was shown 
to connect to IC status (Figure 4C). No Omics feature showed connection with the IC status outcome. 
Furthermore, no Omics feature was found in the 2nd-degree connections (Figure 4C). None of the 4 
biomarkers initially identified in the pilot study were identified by bAIcis. 

Figure 4: A) A hairball representation of the clinical network. B) A blown up section of the 
clinical network showing connections to CohortID up to 2-degrees out. C) A blown up section 
of the clinical and Omics network showing connections to CohortID up to 2-degrees out. 
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Univariate regression analyses 
A univariate regression was run assessing each metabolite and clinical feature for association with IC 
status. After FDR correction for multiple testing 133 clinical and metabolomic features showed 
significance having a qvalue < 0.05 (Table 3).  
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A second univariate regression was run assessing only Omics features for association with IC status. 
After FDR correction for multiple testing 24 metabolomic features showed significance having a qvalue 
< 0.05 (Table 4). 

After correction for multiple testing in both clinical and Omics and Omics alone the 5- 
hydroxyindole acetic candidate biomarker showed significant association with IC status. The other 3 
biomarkers of interest showed no association with IC status. 

Multivariate regression analyses 
Results from the stepForward multivariate regression analysis is shown in Figure 5. Note, this analysis 
took the top 24 metabolites surpassing FDR correction from the univariate approach. It subsequently 
used this to build a multivariate model best predicting IC status. Eight of the 24 metabolites input from 
the univariate results, when combined, were shown to differentiate IC status (Figure 5A). Figure 5B 
shows the AUC curve for these predictors.  

The panel underneath provides the AUC statistic for this result. Note, that 5-hydroxyindole acetic acid is 
included in the variables best predicting IC status outcome. 

We next ran the stepForward analysis with both the clinical and omics data using the top 133 metabolites 
surpassing FDR correction from the univariate approach (Table 3). Figure 6A shows the ten features 
when combined best predict IC status. The corresponding AUC plot using these features is shown in 
Figure 6B. Note, there were many more significant linical features than omic in this list resulting in the 
list skewing towards clinical features. 
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Figure 5: A) 8 metabolites, when combined, best predict the difference between IC status. B) 
AUC plot using these 8 metabolites. The second panel provides the AUC statistics. C) Boxplots 
of metabolites in controls (0) and cases (1) for the metabolites in the order of 
X5.HYDROXYINDOLEACETIC.ACID, GLUCOSYLGALACTOSYLHYDROXYLYSINE, 
HOMOCYSTEIC.ACID, SUCCINYLADENOSINE, GAMMA.GLU.GLN, 
X5.AMINO.3.OXOHEXANOIC.ACID and AMP. 

Differential expression analyses 
Due to the concerns discovered and raised by the Omics team, a differential abundance analysis was 
performed to identify metabolites different between IC and control groups. Importantly, to address the 
potential confounding effects of YOC and gender on this analysis these variables were adjusted for in 
the regression model to account for their effect. The results of the LimmaDE regression results adjusted 
for YOC and gender are shown in Supplementary Table 1. Results from this analysis identified 34 
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metabolites significantly different (Qvalue < 0.05), between IC and Control groups. Note that no L2FC 
threshold was used here. 

Supplementary Table 1. 

Figure 6 shows a volcano plot of these results using a Qvalue threshold of < 0.05 and a L2FC <0.5. Note, 
that the top hit here is the biomarker candidate 5-hydroxyindole acetic acid. 

Figure 6: A) 10 metabolite and 
clinical features, when 
combined, best predict the 
difference 
between IC status. B) AUC plot 
using these 10 features. The 
second panel provides the AUC 
statistics. 
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Supplementary Table 1 contains 2 additional columns of information for the effect of YOC and gender. 
For each, a column exists describing the P value and another the L2FC of each 
metabolite between case and control in this analysis. These columns inform us if the metabolite is 
significantly different across YOC or between genders (p value) and how large the difference is (L2FC). 
To determine which metabolomic features are significantly upregulated in males compared to females 
we filter Supplementary Table 1 on gender P value with < 0.05 and sorted the results by gender L2FC 
by ascending. This filtering identifies 76 metabolites significantly more abundant in males compared to 
females (Table 5, Figure 7B). The remaining 76 metabolites, with a “-“ L2FC, are shown to be less 
abundant in males compared to females (Table 6, Figure 7C). To determine which metabolomic features 
are significantly less abundant in samples as years progress we filter. 

Supplementary Table 1 
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Supplementary Table 1 on Year P value with < 0.05 threshold and selected those L2FC values with a 
negative value. This resulted in 15 metabolites showing significant degradation over YOC time (Table 
7). We also provide Supplementary Table 2 to show the base DE regression model in which no 
metabolites were adjusted for gender or YOC. 

Figure 7: A) Volcano plot of adjusted DE. A Qvalue of < 0.05 and a L2FC threshold of < 0.5 
were used. B) Top 20 metabolites having significantly greater abundance in males than females. 
C) Top 20 metabolites having significantly greater abundance in females than males.

Overall the provided clinical data for this study was well represented among patients. While we 
had 108 clinical features available in > 70% of subjects 97 of these features were derived from 
self-reported patient questionnaires. There are 11 more traditional clinical features described in 
Figure 3A. 

We were able to replicate one biomarker identified in the pilot study, 5-hydroxyindole acetic 
acid, as differentiating IC case vs control in the larger cohort of 300 subjects. Furthermore, 5- 
hydroxyindole acetic acid was significant in all three of our regression-based tests, but not found 
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in our bAIcis analysis. It is worth noting that 5-Oxyproline appears to have a modest gender 
effect in the Limma analysis where 5-Oxyproline level are more abundant in Females. However, 
5-Oxyproline is not significantly different in either Males or Females as independent cohorts.
We must consider the limited power of the pilot study with an n =39. In this analysis utilizing an
n =300, nearly 8x greater, 5-Oxyproline is not significant. Neither of the remaining two
candidates, purine and phenylalanine, showed a significance in any analyses using the cohort of
300 subjects (Summary Table 1). It is noteworthy that we identified metabolites of interest
(Tables 4-7) that appear to be influenced by gender and/or YOC. These metabolites may be of
interest for future studies.

There were 33 biomarkers, in addition to 5-hydroxyindole acetic acid, identified using the 
differential abundance analysis adjusting for gender and YOC (Supplementary Table 1). These 
may be filtered down to a more conservative subset by introducing a L2FC threshold. These 
candidates may be of interested as additional biomarkers. 

Overall, the provided clinical data for this study was well represented among patients. While we 
had 108 clinical features available in > 70% of subjects 97 of these features were derived from 
self-reported patient questionnaires. There are 11 more traditional clinical features described in 
Figure 3A. 

We were able to replicate one biomarker identified in the pilot study, 5-hydroxyindole acetic 
acid, as differentiating IC case vs control in the larger cohort of 300 subjects. Furthermore, 5- 
hydroxyindole acetic acid was significant in all three of our regression-based tests, but not found 
in our bAIcis analysis. It is worth noting that 5-Oxyproline appears to have a modest gender 
effect in the Limma analysis where 5-Oxyproline level are more abundant in Females. However, 
5-Oxyproline is not significantly different in either Males or Females as independent cohorts.
We must consider the limited power of the pilot study with an n =39. In this analysis utilizing an
n =300, nearly 8x greater, 5-Oxyproline is not significant. Neither of the remaining two
candidates, purine and phenylalanine, showed a significance in any analyses using the cohort of 300
subjects (Summary Table 1).

It is noteworthy that we identified metabolites of interest 
(Tables 4-7) that appear to be influenced by gender and/or YOC. These metabolites may be of 
interest for future studies. 

There were 33 biomarkers, in addition to 5-hydroxyindole acetic acid, identified using the 
differential abundance analysis adjusting for gender and YOC (Supplementary Table 1). These 
may be filtered down to a more conservative subset by introducing a L2FC threshold. These 
candidates may be of interested as additional biomarkers. 
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ACHIEVEMENT 2: 
PATHOPHYSIOLOGY AND CLINICAL BIOMARKERS IN INTERSTITIAL CYSTITIS 

Synopsis  
IC/BPS is a poorly understood yet prevalent condition accounting for a significant proportion of urology 
office visits. Identification of reliable biomarkers for disease remains and important yet challenging area 
of research given the heterogeneity of disease presentation and pathophysiology. Our review of the 
literature revealed a handful of original investigations which revealed promising biomarkers within 
various physiologic processes or organ systems including immunity, inflammation, neural pathways, 
urothelial integrity, and anesthetic bladder capacity. While no perfect biomarker has yet been identified 
for IC/BPS, research in this area has greatly expanded our understanding of disease. 

Key words: Interstitial cystitis, bladder pain syndrome, biomarkers, autoimmune, inflammation. 

Key points: 
1. IC/BPS is a heterogenous disease both in presentation and pathophysiology, making

characterization and reliable biomarker identification challenging.
2. The emergence of omics research and collaboration by the MAPP Network has allowed for

rapid expansion of our understanding of IC/BPS pathophysiology and introduced numerous
candidate biomarkers of disease.

3. There still exists no perfect biomarker for diagnosis of IC/BPS or response to treatment.

ABSTRACT 
Interstitial cystitis/ bladder pain syndrome (IC/BPS) is a poorly understood chronic pain condition that 
affects 2.5 – 6.7% of American women and accounts for roughly 2.5% of urology office visits. Patients 
present with pain, pressure, or discomfort of the urinary bladder with associated lower urinary tract 
symptoms (LUTS) for more than six weeks without an identifiable cause. IC/BPS is highly comorbid 
with other chronic pain conditions suggesting a common pathophysiology. Due to the heterogenous 
nature of disease, identification of a reliable biomarker in IC/BPS has been a challenging and active 
area of research. Candidate biomarkers include abnormally expressed bladder epithelial proteins, mast 
cells, neurotransmitters, and inflammatory proteins, among others. As our understanding of IC/BPS 
pathophysiology continues to expand, so too does the search for the ideal biomarker.  

INTRODUCTION 
Interstitial cystitis/ bladder pain syndrome (IC/BPS) is a poorly understood yet prevalent disease that 
urologists face in daily practice. Prevalence estimates range from 2.5 – 6.7% of American women, with 
lower estimates among men [1 2]. Approximately 2.5% of urologist visits are related to IC/BPS, and its 
detrimental impact on patient quality of life leading to missed work, depression, and impaired sexual 
function is well-studied in the literature [3-7]. IC/BPS symptoms are wide-ranging and often overlap 
with other conditions; symptoms include bladder/ pelvic pain and associated urinary frequency, 
urgency, nocturia, dyspareunia, in the setting of sterile urine [8-10]. Patients can experience chronic 
symptoms every day for years, intermittent symptoms with periods of acquiescence, or a combination 
of acute-on-chronic symptoms flares [9 10].  

Given the heterogenous presentation and manifestations of disease, identifying the true IC/BPS 
population has been a challenge, placing increased importance on ruling out other symptom etiologies 
[10]. Common conditions that can often masquerade as IC/BPS include endometriosis, non-infectious 
cystitis, vulvodynia, pudendal nerve entrapment, pelvic floor dysfunction, and prostatitis in men [10]. 
Perhaps the most important and difficult condition to distinguish from IC/BPS is overactive bladder 
(OAB), as nearly all IC/BPS patients present with urinary urgency and frequency [11]. As knowledge of 
IC/BPS has evolved and become more nuanced, we now understand that IC/BPS patients void 
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frequently to avoid pain from overdistention, whereas OAB patients tend to void frequently to avoid 
incontinence [11]. IC/BPS was once considered to be a disease of the bladder alone – on the spectrum 
of OAB – but is now considered to be a chronic pain syndrome with pelvic manifestations [8-10]. 

The Society for Urodynamics and Female Urology (SUFU) officially defines IC/BPS as an unpleasant 
sensation (pain, pressure, discomfort) perceived to be related to the urinary bladder, associated with 
lower urinary tract symptoms (LUTS) of more than six weeks duration, in the absence of infection or 
other identifiable causes [12]. This definition is the product of much refinement as understanding of 
IC/BPS has expanded through research and more accurately captures the true IC/BPS population [1 
12 13]. It also acknowledges that IC/BPS may not be a primary bladder or urinary tract disorder, 
despite presenting symptoms being urologic in nature.  

There is high concordance with IC/BPS and other idiopathic medical conditions such as fibromyalgia, 
irritable bowel syndrome, chronic fatigue syndrome, and chronic headaches [9 14 15] which suggests 
that there may be a unified underlying abnormality in certain patient groups. Thus, unsurprisingly, the 
pathophysiology of IC/BPS is poorly understood and remains an active area of research [8-10]. Several 
etiologic mechanisms have been proposed including intrinsic dysfunction of the protective GAG layer of 
the urothelial surface, mast-cell infiltration of urothelium, infection, neural changes causing 
hypersensitivity, and chronic inflammation due to autoimmune processes [16-20].  

Identification of useful biomarkers for IC/BPS has been a challenging area of research given the 
heterogenous and likely multifactorial nature of disease. However as our understanding of IC/BPS 
continues to expand and as gene sequencing technology has improved leading to the emergence of 
omics research, candidate biomarkers are being frequently identified [21]. As with all disease 
processes, the ideal biomarker in IC/BPS would not only identify IC/BPS patients with suitable 
sensitivity and specificity but would also reflect response to treatment or disease progression [9]. 
Additionally, IC/BPS biomarkers would ideally be obtained via urine or blood specimen rather than 
tissue biopsy [9]. With these parameters in mind, herein we review the current literature pertaining to 
IC/BPS biomarker discovery with emphasis on recent, novel findings.  

METHODS 
We performed a search of original articles available on PubMed using the search terms “IC/BPS” and 
“biomarker”. To capture the most current trends in biomarker research and application, we limited the 
search to articles published within the past 10 years. Only articles originally published in English were 
included in the initial screening. We excluded review articles and editorial comments. Finally, we 
excluded animal model studies and cadaver studies. (Figure 1)  

RESULTS 
Prior to 2008, much of the research and understanding of IC/BPS pathophysiology was focused on 
bladder-centric processes [22]. Leading theories included “leaky epithelium,” mast cell activation, 
neurogenic inflammation, or some combination of these, among others [22]. The urothelium of IC/BPS 
patients has been shown to produce lower concentrations of glycosaminoglycans (GAGs) – which 
serve as a protective, impermeable barrier to noxious stimuli in urine – compared to controls [23]. This 
GAG deficiency causes a “leaky epithelium” and increases bladder susceptibility to infection and 
inflammatory proteins [24-26]. Mast cells are proinflammatory cells that excrete primarily histamine 
among other compounds when activated [27]. They are primarily involved allergic and acute 
inflammatory responses but have also been shown to infiltrate the urothelium of IC/BPS patients [27 
28]. While unlikely the root cause of IC/BPS, mast cells are thought to serve as the final common 
pathway through which IC/BPS symptoms are mediated [27-29]. Increased sympathetic nervous 
system activity has been demonstrated in IC/BPS along with increased sensory nerve fiber density in 
the suburothelium [30 31]. This increased sympathetic tone within the bladder is thought to create a 
hypersensitive bladder mucosa and contribute to mast cell degranulation [30 31]. Each of these 
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theories helped elucidate features of IC/BPS that were previously unrecognized, however none provide 
a satisfactory explanation for the etiology of IC/BPS. Additionally, features of these mechanisms are 
implicated in other chronic pain syndromes such as irritable bowel syndrome and fibromyalgia – which 
commonly co-occur with IC/BPS – suggesting that there may a shared, systemic mechanism of 
disease [32].   

These insights have shifted the focus of IC/BPS research beyond the bladder alone. In 2008 the 
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) established the 
Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network. The network 
consists of six different research centers across the United States and a single Data Coordinating 
Center which manages and stores clinical data, and a Tissue and Technology Center to centrally 
process, store, and disburse clinical samples [33]. MAPP investigators represent a wide array of 
medical disciplines working together with the shared goal of improving our understanding of IC/BPS 
and its relationship to other pain conditions [33]. In this shared resource model, large-scale basic 
science and clinical research studies can be conducted in an efficient manner allowing for rapid 
advancement of our IC/BPS knowledge.  

The MAPP Network has made significant strides in advancing our understanding of IC/BPS symptoms 
and pain. Studies have shown that approximately three-quarters of IC/BPS experience pain at other 
sites beyond the pelvis, one-third experience pain at more than three nonpelvic sites, and that only 
one-quarter of IC/BPS patients experience pain only in the pelvis [33-35]. Patients with widespread 
extra-pelvic pain are reported to have more severe pelvic pain symptoms and more psychosocial 
difficulties and depression [34]. MAPP investigators have also established the importance of 
differentiating IC/BPS symptoms and pelvic pain from urinary symptoms. IC/BPS symptoms, but not 
urinary symptoms, are associated with depression suggesting that urologic pain versus urinary 
symptoms differ in their overall impact on patient quality of life [33 36]. These findings encourage 
practitioners to assess IC/BPS symptoms and urinary symptoms with separate measurement tools and 
measure response to therapy separately [36-38].  The significant impact of non-pelvic and non-urinary 
symptoms on the lives of IC/BPS further support hypothesis that the pathophysiology of IC/BPS is 
likely more far-reaching than the bladder itself [33 39]. Some of the leading theories to explain the high 
prevalence of extra-vesical pain in IC/BPS include central sensitization and pelvic visceral organ cross-
sensitization [33]. The central sensitization theory is based on evidence that nociceptive pathways in 
the brain and spinal cord have been shown to be tonically upregulated in IC/BPS patients [33 40].  
Pelvic visceral organ cross-sensitization describes stimuli from one organ inducing physiological 
changes in other organs with shared sensory pathways, these changes can persist even after 
withdrawal of painful stimuli [33 41].    

Also important in understanding IC/BPS symptoms is the role of flare symptoms – the acute worsening 
or intensifying of symptoms on top of a patient’s chronic or steady-state symptom profile.  Some of the 
early MAPP Network efforts sought to systematically study symptom flares and the influence of flares 
on patients as investigators performed both multicenter and single site focus groups of patients with 
IC/BPS to better elucidate the role of flare symptoms [42-44]. These studies revealed a heterogenous 
mix of IC/BPS flare symptoms in terms of frequency, character, physical location, and intensity but did 
reveal a consistent negative impact on patient quality of life. Investigators found that anticipation and 
avoidance of flare symptoms are a significant source of stress for IC/BPS patients and even leads to 
social anxiety. Given the significant impact of flare symptoms on patient quality of life, identification of 
flare symptom triggers has naturally garnered the attention of IC/BPS investigators.  

One the more significant triggers of IC/BPS symptom flares identified in the literature is diet [33 45].  
Diet modification is often among the earliest and simplest interventions recommended to IC/BPS 
patients with bothersome symptoms. Acidic foods are commonly reported to cause IC/BPS symptom 
exacerbation among survey studies despite evidence that acidic urinary pH alone does not appear to 
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cause symptom flares [46 47]. Caffeine and alcohol are also frequently reported to exacerbate IC/BPS 
symptoms. Several prospective studies on healthy subject have identified caffeine as a bladder irritant, 
causing de novo urinary frequency and in one study, urinary incontinence, however these effects are 
generally mild and wash out as patients develop caffeine tolerance [45 48 49]. In a survey of 535 
IC/BPS patients, 94% reported exacerbation of bladder symptoms when consuming alcohol [45]. In 
other large survey studies directed towards IC/BPS patients, citrus fruits, tomatoes, vitamin C, coffee, 
tea, and alcoholic beverages continue to be common culprits for IC/BPS symptom exacerbation [50 
51]. Based on findings such as these, practitioners frequently recommend that IC/BPS patients perform 
an elimination diet, in which patients carefully record their dietary intake and bladder symptoms, and 
iteratively remove then reintroduce triggering foods [45]. Dietary modification serves as simple, 
inexpensive, and potentially efficacious method of limiting IC/BPS symptom flare and quality of life. 

Diet has also been implicated in the etiology of IC/BPS and explored as a potential therapy. 

MAPP Network studies have contributed to the identification of several candidate biomarkers for 
IC/BPS including matrix metalloproteinase 2 (MMP2), MMP9, neutrophil gelatinase-associated lipocalin 
(NGAL), the MMP9-NGAL complex, vascular endothelial growth factor (VEGF) and VEGF receptor 1 
(VEGFR), toll-like receptor 2 (TLR2), TLR4 and etiocholan-3α-ol-17-one sulfate (Etio-S) [33 52-54]. 
Studies designed to identify candidate biomarkers for IB/BPS typically involve sampling bladder tissue 
or urine from IC/BPS patients and comparing its features to that of unaffected control patients. This 
paradigm has evolved over time from comparing urothelial histology under a light microscope and 
culturing urine specimens to performing genome sequencing on bladder biopsy, urine, serum, and 
saliva samples [33 55 56]. Both as part of the MAPP Network and within individual research centers, 
biomarker investigation has moved beyond the bladder to the realms of genomics, epigenomics, 
proteomics, and metabolomics [33 53 57 58]. 

One example of this paradigm shift is the evolution of our understanding of anti-proliferative factor 
(APF). While not quite pathognomonic for IC/BPS, urinary APF is generally considered the most 
promising biomarker for disease with reported sensitivity and specificity of 94% and 95% respectively 
for IC/BPS urine versus control urine [9 59]. First described in 1996 via urine culture, APF is present in 
the urine of IC/BPS patients and is associated with inhibition of urothelial cell proliferation; thereby 
contributing to the “leaky epithelium” mechanism of IC/BPS [60]. Further study has precisely 
characterized the structure of APF as a Frizzled-8 protein-related sialoglycopeptide and is secreted by 
bladder epithelial cells from patients with interstitial cystitis [60-62]. Taking a step further, proteomic 
analysis of urothelial cells exposed to APF compared to APF-naïve controls found approximately 100 
differentially regulated proteins which formed a protein network involved in cell adhesion substantially 
altered by APF [63 64]. These findings help elucidate the mechanism of APF-induced urothelial 
damage on the cellular level. 

In addition to bioinformatics techniques, given the neurological implications of IC/BPS, functional 
magnetic resonance imaging (fMRI) has also gained popularity as a methodology of interest in IC/BPS 
research and introduces the possibility of fMRI findings as biomarkers of disease [65 66]. MAPP 
Network investigators have identified fMRI alterations in IC/BPS patients compared to controls [65 66]. 
One study identified altered resting functional connectivity within centers related to pain; sensory, 
motor, and emotion regulation processes; reward; and higher executive functioning [65]. The authors 
also described “decoupling” of two brain regions from the brain’s resting network, which regulates 
undisturbed, task-free, introspective thought [65]. These findings suggest that while experiencing 
symptoms, IC/BPS patient are unable to focus on anything other than their symptoms and have 
diminished ability to regulate their neurological resting state [65].  

We report examples of many of these techniques which have proposed candidate biomarkers. Results 
of our literature search yielded 43 articles, 20 of which were excluded based on our criteria: there were 
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two duplicate study results, 13 review articles, five animal studies, one editorial, one cadaver study, 
and one bench study of human bladder cells. The 20 studies included in our analysis reported on 
original clinical data proposing candidate biomarkers for IC/BPS (Table 1). We also report sensitivity 
and specificity of biomarkers for which these data were either reported or calculable (Table 2).  

DISCUSSION 

Clinical biomarkers – anesthetic bladder capacity 

One of the cardinal symptoms thought to be specific for IC/BPS - especially when differentiating 
between IC/BPS and OAB - is pain associated with bladder filling or bladder distention [67].  Urinary 
urgency and frequency associated with IC/BPS is believed to be the result of fear of a full bladder 
rather than intrinsic detrusor overactivity [11]. Along these lines, IC/BPS patients are thought to have a 
lower bladder capacity than patients without IC/BPS. Several studies have explored this hypothesis by 
comparing anesthetic bladder capacity between IC/BPS patients and controls [68-70]. Plair, et al 
reported their findings from a retrospective case series of 257 women with a diagnosis of IC/BPS who 
underwent bladder hydrodistension at their center [69]. The authors found on multiple regression 
analysis that patients with normal bladder capacities were more likely to carry a concomitant diagnosis 
of pelvic pain syndrome, endometriosis, or one of several neurologic, autoimmune, system pain 
diagnoses [69]. Meanwhile, patients with low bladder capacity were more likely to have bladder-specific 
and voiding symptoms, suggesting that decreased bladder capacity provides specificity for the 
diagnosis of bladder-centric IC/BPS rather than diagnosing pain syndromes with associated pelvic 
symptoms [69]. 

Schachar, et al built upon this hypothesis and sought to provide histological supporting evidence for 
low bladder capacity as a biomarker for bladder-centric IC/BPS [70]. The authors performed a 
retrospective review of bladder biopsy pathology slides from 41 patients with IC/BPS and anesthetic 
bladder capacity below 400cc compared to 41 IC/BPS patients with anesthetic bladder capacity above 
400cc. Pathology review was performed by a single, blinded pathologist using a standardized, 
predefined grading scale. The authors found that the low bladder capacity group demonstrated more 
severe acute inflammation, more serve chronic inflammation, and more erosion than the normal 
capacity cohort [70]. They also noted that mast cell counts between the two groups were roughly 
equal. The authors concluded that these findings lend further support to the hypothesis that low 
bladder capacity serves as a reliable biomarker for differentiation bladder-centric IC/BPS from IC/BPS 
as a manifestation of a systemic pain syndrome [70]. 

Colaco, et al explored this hypothesis on an even more basic level by searching for differential gene 
expression in the bladder tissue of IC/BPS with low bladder capacity (<400 ml) compared to IC/BPS 
patients with normal bladder capacity (>400 ml) and control subjects with normal bladder capacity  [68]. 
The authors performed RNA extraction and microarray assay to determine differentially expressed 
RNA transcripts (DETs) between the groups [68]. In all, 193 DETs were identified between the low 
bladder capacity IC/BPS and control group, and fewer DETs between the normal bladder capacity 
IC/BPS and control groups. Most of the up-regulated transcripts were involved in inflammatory cell 
signaling while most down-regulated transcripts were involved in epithelial integrity proteins such as 
uroplakin [68]. Choi, et al performed Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) 
analysis of biopsy specimen from 25 IC/BPS patients and 5 controls [71]. Their goal was to assess 
expression of WNT family genes, which when downregulated, are associated with fibrotic changes. 
The authors found silencing of WNT11, WNT 2B, WNT 5A, and WNT 10A in IC/BPS patients 
compared to controls [71]. These findings support that the epithelium of IC/BPS is more prone to 
fibrosis than that of healthy controls, perhaps contributing to decreased bladder capacity and improper 
response to mucosal injury or irritation [71]. Taken together, these data support the hypothesis that 
anesthetic bladder capacity is not only different between IC/BPS patients and controls, but is may also 
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represent distinct disease phenotypes within IC/BPS. Based on these findings low anesthetic bladder 
capacity offers promise as a biomarker for bladder-centric IC/BPS and more accurate stratification of 
patients along the IC/BPS spectrum of disease. 

Given the longstanding “leaky epithelium” hypothesis of IC/BPS pathogenesis, it is unsurprising that 
alterations in proteins related to urothelial structural integrity and permeability have become attractive 
biomarkers of disease. While our literature review did not necessarily reveal novel urothelial barrier 
biomarkers, the studies included in our review highlight unique clinical scenarios or modalities of 
assessing for these biomarkers. Cho, et al sought to compare urothelial uroplakin expression in IC/BPS 
patients who had were scheduled to undergo augmentation ileocystoplasty, an indication of severe 
disease [72]. Uroplakin is a urothelial protein that helps for an impermeable plaque on the surface of 
healthy urothelium [73]. Bladder tissue samples were collected from 19 subjects with ulcerative 
subtype IC/BPS and five controls; tissue was specifically collected from non-ulcerated urothelium from 
study subject. Presence of uroplakin was assessed by immunofluorescence staining and degree of 
uroplakin expression was measure by Western blot. The authors found that uroplakin expression was 
elevated in study subjects compared to controls [72]. This finding is contrary to the prior reports of 
uroplakin as a biomarker for IC/BPS; in which uroplakin is decreased leading to hyperpermeable 
urothelium [74-76]. The authors hypothesize that this may be the result of a positive feedback loop 
between the diseased, ulcerated tissue and the surrounding healthy tissue in which uroplakin is 
compensatorily upregulated [77]. As such, this finding would provide some specificity in differentiating 
between ulcerative and non-ulcerative subtypes of IC/BPS beyond cystoscopic inspection and biopsy.   

Lui et al, sought to measure differential expression of different biomarkers of varying physiologic origins 
in the bladder tissue of IC/BPS patients. In this study the authors compared 17 IC/BPS subjects not 
only to 10 healthy controls, but to 15 bladder outlet obstruction (BOO), 13 ketamine cystitis (KC), 12 
spinal cord injury (SCI), and 12 recurrent urinary tract infection (UTI) patients as well [78]. Bladder 
biopsy specimens were analyzed for expression of E-cadherin, a urothelial junction protein, as well as 
mast cell activation and presence of apoptotic cells, measures of inflammation [79 80]. IC/BPS patients 
were found to have significantly decreased E-cadherin expression compared to controls, again 
supporting the hypothesis of structurally deficient urothelium in these patients. KC and UTI patients 
also demonstrated decreased E-cadherin expression, implying that there may be a shared 
pathogenesis between these conditions and IC/BPS [78]. All subjects with lower urinary tract pathology 
demonstrated greater mast cell activity and greater presence of apoptotic cells compared to healthy 
controls, highlighting the sensitive, but not specific role of inflammation within the urothelium in these 
disease processes [78].  

Inflammatory biomarkers 

The pathophysiology of IC/BPS is characterized by chronic inflammation and urothelial dysfunction. 
During states of inflammation, detrusor smooth muscle cells and urothelial cells produce chemokines, 
which are measurable in the urine. Early studies have demonstrated an elevation of inflammatory 
proteins in patients with IC/BPS. Inflammatory biomarkers therefore represent an important area of 
investigation. Tonyali et. al demonstrated elevated levels of urinary nerve growth factor (NGF) in 
patients with IC/BPS compared to controls. Furthermore, normalized NGF levels were significantly 
correlated with more severe symptoms in those with IC/PBS [81]. Similarly, Jiang et. al analyzed the 
urinary specimens of 127 patients with IC/BPS compared to controls, testing 31 candidate cytokines 
[82]. The authors found five urinary cytokines with high diagnostic value, including eotaxin-1, CXCL10, 
RANTES, and MCP-1. Identifying urinary biomarkers with high sensitivity and specificity carries 
important diagnostic value. Equally important is identifying which inflammatory biomarkers are 
differentially expressed, as this provides better insight into the specific pathophysiology of IC/BPS. For 
instance, eotaxin is a chemoattractant for eosinophils and its differential expression in patients with 
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IC/BPS suggests an immune response to allergy-related inflammation. Elevated NGF identified in 
Tonyali et al points to the role of peripheral nerve proliferation in IC/BPS and may explain persistent 
hyperalgesia in the absence of inflammation. 

Perhaps even more clinically important is the ability to distinguish between IC/BPS and conditions with 
similar symptomatic presentation. In a subsequent study, Jiang, et. al identified urinary macrophage 
inflammatory protein 1β (MIP-1β) as having high sensitivity for distinguishing between patients with 
IC/BPS and health controls [83]. Furthermore, the authors identified several urinary cytokines as 
differentially expressed in IC/BPS samples compared to samples from patients with OAB, including 
three cytokines identified in their prior study: CXCL10, eotaxin, and RANTES. The authors proposed a 
diagnostic algorithm wherein MIP-1β is used in initial screening and the latter three are used in 
confirmatory testing. Subsequent validation of this and similar diagnostic algorithms could generate a 
series of accepted urinary assays for diagnosis that would avoid more invasive diagnostic testing. Ma, 
et al similarly identified serum MIP-1β as a promising biomarker for IC/BPS, among others [84]. The 
authors also identified serum interleukin-4 (IL-4), tumor necrosis factor alpha (TNF-a), Tie2, and serum 
amyloid A (SAA) as promising biomarkers, with SAA demonstrating the greatest area under curve 
(AUC) on receiver-operator characteristic (ROC) of 0.85 [84]. All of these proteins represent 
inflammatory cytokines or chemokines [84]. Vera et. al identified a urinary biomarker, macrophage 
migration inhibitory factor (MIF) that not only is significantly elevated in patients with IC/BPS compared 
to controls but is also differentially elevated in patients with IC/BPS with Hunner’s lesions, compared to 
IC/BPS patients without Hunner’s lesions [85]. Although OAB and IC/BPS share similar symptoms, 
their pathophysiology and treatment are different. Identification of IC/BPS biomarkers distinct from OAB 
can help avoid misdiagnosis and inappropriate or delayed treatment. 
Neurogenic/ neurologic biomarkers 

As previously discussed, neurogenic or neurologic alterations in IC/BPS patients have garnered 
interest in the realm of biomarker discovery. Given the heterogenous presentation of IC/BPS pain 
which often extends beyond the bladder or pelvis and can often persist after elimination of stimuli, 
there is almost certainly a neurologic component of IC/ BPS pain. Our literature search yielded one 
study by Pang, et al that described a novel technique to assess abnormalities of functional connectivity 
within the prefrontal cortex (PFC) of patients with IC/BPS [86]. Rather than resting state fMRI, the 
authors utilized resting state functional near-infrared spectroscopy (rs-fNIRS). fNIRS is a noninvasive, 
portable, optic-based functional brain imaging technology with few physical movement restrictions that 
detects changes in oxyhemoglobin signals in areas of the brain [86 87]. Comparison studies between 
fMRI and fNIRS have demonstrated the reliably of fNIRS and thus suitability for use in studying IC/BPS 
patients [86-89]. In their study, ten IC/BPS patients and 15 age and gender-matched controls were 
asked to empty their bladder prior to initiation of rs-fNIRS data collection to collect “empty bladder” PFC 
activity. Next, subjects were asked to drink water until the felt a strong urge to void at which point, they 
were assess for urinary incontinence and PFC activity was recorded. Finally, subjects were allowed to 
void. In both the empty bladder and urge to void states, IC/BPS patients demonstrated significantly 
decrease functional connectivity in the dorsolateral prefrontal cortex, frontopolar area, and the pars 
triangularis regions of the PFC compared to controls [86]. These areas are intimately involved in 
sensory integration, motivational drive, mood-control, cognitive processing, and decision-making [86]. 
With regards to lower urinary tract activity, they contribute to integration and regulation of the urge to 
void; one the urge is sensed, the PFC can either encourage or discourage voiding based on other 
sensory inputs [86]. Decreased FC in these regions was also demonstrated in similar fNIRS studies in 
patients with OAB and UUI but not IC/BPS [86 90 91]. These findings are not only illustrative of the 
central nervous system’s role in IC/BPS, but also demonstrate the feasibility of a new technology in the 
investigation of IC/BPS [86]. 

Genomic, proteomic, metabolomic biomarkers 
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IC/BPS research has benefited greatly from the emergence of bioinformatics and omics research. 
Made possible by the large-scale storage and distribution of tissue and urine samples by the MAPP 
Network, sequencing and identification of differentially expressed genes, proteins, and metabolites as 
candidate biomarkers for IC/BPS has helped elucidate IC/BPS pathophysiology. Our review of the 
literature revealed several such studies both at single centers and as part of the MAPP Network using 
both urothelial biopsy tissue and urine samples from IC/BPS patients.  

Parker, et al applied mass spectrometry-based global metabolite profiling to urine specimens from 40 
female IC/BPS supplied by the MAPP Network and 40 age-matched controls [53]. Among multiple 
metabolites that discriminated IC/BPS subjects from controls, etiocholan-3α-ol-17-one sulfate (Etio-S), 
a sulfo-conjugated 5-β reduced isomer of testosterone, demonstrated better than 90% specificity for 
IC/BPS [53]. This is the first study to identify Etio-S as a urinary biomarker in IC/BPS and its 
mechanistic implications are unclear. The authors assert that high concentrations of Etio-S may 
stimulate acute phase reactants and local inflammatory effects; alternatively, they cite evidence that 
changes in Etio-S may have a GABA-ergic effects manifested as acute stress, depression, or 
nociception [53 92 93]. Further research is needed to elucidate the mechanism of Etio-S in IC/BPS but 
its specificity for disease is promising.   

Saha, et al completed a bioinformatics study in which preexisting Gene Expression Omnibus (GEO) 
datasets were mined for IC/BPS-associated genes [94]. One dataset contained cell lines treated with 
and without APF as well as bladder tissue samples from IC/BPS patients and normal controls. Two 
datasets contained gene expression profiles of bladder biopsy tissues from IC/BPS patients and 
normal controls. One dataset contained the gene expression profiles of urine sediment from IC/BPS 
patients and normal controls. Differentially expressed genes (DEGs) that were significantly different 
between IC/BPS patients and controls were retrieved from all datasets and included for analysis; these 
were: CD5, CD38, ITGAL, IL7R, KRLB1, and PSMB9 [94]. After identification of significant DEGs, the 
authors then performed Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) analysis for 
these DEGs on newly obtained tissue from IC/BPS patients and controls. RT-qPCR results showed 
that all six genes were over-expressed in IC/BPS patients compared to controls. PSMB9, ITGAL, and 
KLRB1 were most significantly overexpressed in IC/BPS patients compared to controls making them 
the most promising candidate biomarkers among DEGs [94]. According to the authors, these genes are 
commonly, albeit nonspecifically, associated with autoimmune processes [94 95]. Autoimmunity is one 
of the many proposed pathophysiological etiologies for IC/BPS, supported by relatively strong 
association between IC/BPS and autoimmune conditions like Sjögren’s syndrome [94]. There is some 
evidence to suggest that autoantibodies to the muscarinic M3 receptor are contributory to Sjögren’s 
syndrome; the M3 receptor happens to also be expressed in detrusor cells of the bladder [94 96]. Wu, 
et al performed a similar GEO-based study in which they analyzed a database containing five IC/BPS 
patients and six controls for DEGs [97]. In all the authors identified 483 DEGs between IC/BPS patients 
and controls: 216 up-regulated and 276 down-regulated genes, however at conclusion of their analysis 
only three genes were considered possible core IC/BPS-related genes: CXCL8, CXCL1, and IL-6 [97]. 
All three of these genes produce chemokine or cytokine proteins involved in the inflammatory 
response, furthering the concept of dysregulated lower urinary tract inflammation in IC/BPS [97 98].  

Finally, Bradley, et al performed an epigenomic study of voided urine samples to identify differentially 
methylated genes in IC/BPS [57]. Much like DEGs, differences in methylation, usually caused by 
environmental exposures, can both shed light on IC/BPS pathophysiology and potentially serve as a 
noninvasive biomarker. Urine samples from eight female IC/BPS patients and eight female age-
matched controls were included for analysis. Genes were analyzed for addition of a methyl group to the 
5’ carbon of a cytosine moiety, generating 5-methylcytosine (5-mC), which occurs predominantly in the 
context of cytosines that precede guanine (5′-CpG-3′) dinucleotides, or CpGs [57 99]. In all, over 1000 
differentially methylated CpG sites between IC/BPS patients and controls were identified, however the 
most prominent pathway enriched for genes with differential methylation was the mitogen-activated 
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protein kinase (MAPK) pathway, which contained 22 differentially methylated sites. Additionally, one of 
the MAPK pathway genes, MDS1 and EVI1 complex locus (MECOM), contained multiple differentially 
methylated sites, increasing the likelihood of its significance. While not classically associated with 
IC/BPS, MAPK is associated with inhibition of cell growth, inflammation, and regulation of apoptosis [57 
100]. The findings of Bradley, et al not only implicate MAPK signaling in the pathophysiology of 
IC/BPS, but they also support the idea that environmental exposures can cause fundamental 
epigenetic changes in IC/BPS patients. For example, changes secondary to chronic UTI have been 
thought to contribute to IC/BPS symptoms and altered epigenetic expression may be the mechanism 
by which these changes manifest [57 101]. 

Biomarkers in response to therapy 
Another area in which biomarkers prove useful is in assessing response to treatment. Numerous 
treatment modalities are available for IC/BPS. For patients who fail conventional therapies, several 
non-standard treatments have been explored. These treatments have had mixed success, and their 
mechanisms for improving symptoms associated with IC/BPS are still poorly understood. Studies on 
biomarker changes in response to novel therapies help improve our understanding of the therapeutic 
mechanisms. 

Jiang et. al tested urinary biomarkers of 40 patients with IC/BPS symptoms refractory to conventional 
therapy who received four intravesical injections of autologous platelet-rich plasma (PRP) [102]. The 
authors found significant decreases in urinary levels of VEGF, NGF, and matrix metalloproteinase-13 
alongside symptomatic improvement. These results suggest that the therapeutic effects of PRP are 
likely due to its ability to alleviate inflammation and reduce atypical angiogenesis [102]. Similarly, Peng 
et. al tested urinary markers of 21 patients with IC/BPS who had failed conventional therapy and went 
on to receive treatment with intravesical onabotulinumtoxinA injections every 6 months for 4 total 
treatments [103].  They too found a significant decrease in the expression of VEGF following treatment. 
Although these patients also experienced symptomatic improvement, clinical improvement dd not 
directly correlate with VEGF expression [103]. Shen et. al also found a significant difference in VEGF 
as well as urinary chemokines IL-4 and IL-6 in 13 patients treated with extracorporeal shockwave for 
IC/BPS [104].   

Finally, Peters et. al tested urinary markers in patients who experienced successful sacral 
neuromodulator device implant for refractory urinary symptoms associated with IC/BPS [105]. In this 
study, success was defined as 50% symptomatic improvement on the Interstitial Cystitis Symptom and 
Problem Index (ICSPI). The authors found a positive correlation between urinary levels of CXCL-1 and 
Soluble interleukin-1 receptor antagonist (sIL-1ra) and ICSPI and pain score, suggesting the ability of 
these markers to reflect severity of disease [105]. Furthermore, the authors demonstrated a reduction 
in urinary levels of MCP-1 and sIL-1ra after treatment, which was significantly associated with 
symptomatic response. sIL-1ra elevation in serum has been associated with pain and stiffness in 
fibromyalgia patients and MCP-1 is a potent chemotactic protein that helps maintain an inflammatory 
state in tissue [105]. Unlike in prior studies, these authors did not see a significant decrease in urinary 
levels of VEGF, suggesting that the mechanism by which sacral neuromodulation improves IC/BPS 
symptoms may differ from the therapeutic mechanisms of ESWL, PRP, and intravesical 
onabotulinumtoxin A. Changes in biomarkers following treatment are evidence to change in the actual 
bladder microenvironment, beyond subjective symptomatic improvement. In the future, biomarkers also 
have the potential to provide objective measures of improvement.  

CONCULSIONS 
IC/BPS remains a challenging disease for clinicians, researchers, and patients. The heterogeneity of 
disease presentation and the absence of reliable biomarkers of disease make patient counseling and 
disease management difficult. Impressively, the coordination of resources within the MAPP Network 
has expanded our understanding of IC/BPS over a relatively short period of time and has benefited 
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IC/BPS investigators both within the MAPP Network and at individual centers. Our review of literature 
highlighted several novel biomarkers for IC/BPS as well as cutting-edge methodologies for biomarkers 
identification. Identification of PFC changes supports the hypothesis that there is a central nervous 
system component to IC/BPS while omics work help elucidate differences between IC/BPS patients 
and controls at the genome level and beyond. While there remains no perfect biomarker for IC/BPS 
that is: non-invasive, sensitive and specific, and serves as a measure of disease progression/ 
remission, there is reason for optimism as research in this area continues to meaningfully progress. 

Figure 1. Flow diagram for literature review and study inclusion. 
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Table 1. Studies included from literature review with description of biomarkers. 

Biomarker Mechanism Sample Change Reference 

1 
Anesthetic bladder 
capacity 

clinical 
bladder 
capacity 

decreased 
Plair A, et al. 2021 
[69]. 

2 
Histology/ bladder 
capacity 

clinical 
bladder 
tissue 

different 
Schachar JS, et al. 
2019 [70]. 

3 
Gene expression/ 
bladder capacity 

clinical 
bladder 
tissue 

increased 
Colaco M, et al. 
2014 [68]. 

4 WNT11 genomic 
bladder 
tissue 

decreased 
Choi D, et al. 2018 
[71]. 

5 
MCP-1, CXCL10, 
eotaxin-1, RANTES 

inflammatory urine increased 
Jiang YH, et al. 
2020 [82]. 

6 
MIP-1β, eotaxin, 
CXCL10, and 
RANTES 

inflammatory 
bladder 
tissue/ urine 

increased 
Jiang YH, et al. Sci 
Rep. 2021 [83]. 

7 MIF inflammatory urine elevated 
Vera PL, et al. 2018 
[85]. 

8 Apoptotic cells inflammatory 
bladder 
tissue 

increased 
Liu HT, et al. 2015 
[78]. 

9 NGF, MMP-13, VEGF inflammatory urine 
decreased 
s/p PRP 

Jiang YH, et al. 
2020 [102]. 

10 Uroplakin 
urothelial 
barrier 

urine elevated 
Cho KJ, et al. 2020 
[72]. 

11 
Prefrontal cortex 
changes 

neurogenic brain different 
Pang D, et al. 2021 
[86]. 

12 NGF neurogenic urine increased 
Tonyali S, et al. 
2018 [81]. 

13 Etio-S metabolomic urine increased 
Parker KS, et al. 
2016 [53]. 

14 
CD38, ITGAL, IL7R, 
KLRB1, and IL7R 

inflammatory 
bladder 
tissue/ urine 

differently 
expressed 

Saha SK, et al. 
2020 [94]. 

15 CXCL8, CXCL1, IL6 inflammatory 
bladder 
tissue/ urine 

differently 
expressed 

Wu H, et al. 2021 
[97]. 

16 
IL-4, TNF-α, MIP-1β, 
AAA, Tie2 

inflammatory urine increased 
Ma E, et al. 2016 
[84]. 

17 MAPK pathway genomic urine 
differentially 
methylated 

Bradley MS, et al. 
2018 [57]. 

18 IL-4, VEGF, IL-9 inflammatory urine 
decreased 
s/p LI-
ESWT 

Shen YC, et al. 
2021 [104]. 

19 VEGF inflammatory 
bladder 
tissue 

decrased 
s/p botox 

Peng CH, et al. 
2013 [103]. 

20 MCP-1 inflammatory urine 
decreased 
s/p 
interstim 

Peters KM, et al. 
2015 [105]. 
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Table 2. Reported Areas under the Curve, Sensitivity, and Specificity of Inflammatory Biomarkers 

Biomarker AUC Sensitivity Specificity 

IL-7 0.756 71.1 67.9 

MCP-1 0.753 60.3 72.4 

eotaxin-1 0.720 52.2 85.7 

MIF 0.718 74.4 61.8 

IL-4 0.703 54.4 86.2 

CXCL10 0.685 66.2 65.5 

MIP-1β 0.674 92.2 44.8 

RANTES 0.666 53.8 75.9 

IL-10 0.637 38.9 92.9 

IL-6 0.631 50.0 79.3 

eotaxin 0.604 40.3 80.0 

TNF-α 0.527 41.1 71.4 
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ACHIEVEMENT 3: 
Urobiome: An Outlook on the Metagenome of Urological Diseases 

The urinary tract likely plays a role in the development of various urinary diseases due to the recently 
recognized notion that urine is not sterile. In this mini review, we summarize the current literature 
regarding the urinary microbiome and mycobiome and its relationship to various urinary diseases. It has 
been recently discovered that the healthy urinary tract contains a host of microorganisms, creating a 
urinary microbiome. The relative abundance and type of bacteria varies, but generally, deviations in the 
standard microbiome are observed in individuals with urologic diseases, such as bladder cancer, benign 
prostatic hyperplasia, urgency urinary incontinence, overactive bladder syndrome, interstitial cystitis, 
bladder pain syndrome, and urinary tract infections. However, whether this change is causative, or 
correlative has yet to be determined. In summary, the urinary tract hosts a complex microbiome. 
Changes in this microbiome may be indicative of urologic diseases and can be tracked to predict, prevent, 
and treat them in individuals. However, current analytical and sampling collection methods may present 
limitations to the development in the understanding of the urinary microbiome and its relationship with 
various urinary diseases. Further research on the differences between healthy and diseased 
microbiomes, the long-term effects of antibiotic treatments on the urobiome, and the effect of the urinary 
mycobiome on general health will be important in developing a comprehensive understanding of the 
urinary microbiome and its relationship to the human body.  

INTRODUCTION: WHY UROBIOME? 

Although it was previously believed that urine was a sterile substance, new research indicates that it 
contains a host of microorganisms. This has left the urinary microbiome relatively unstudied, as it was 
not a part of the Human Microbiome Project which aimed to identify and categorize the microbiomes of 
the human body in healthy individuals. [1] However, research suggests that the urinary microbiome is 
extremely diverse and may play a role in a host of urinary diseases. [2-4, PMID: 32665990] While 
research remains relatively inconclusive, studies have indicated an association between certain bacterial 
and fungal species and various urinary diseases using new technologies like next-generation sequencing 
(NGS) and expanded quantitative urinary cultures (EQUC) that help identify a majority of the bacteria 
found in urinary microbiomes. [5] This review aims to provide a comprehensive understanding of select 
bladder diseases and their respectively identified bacterial signatures using NGS- and EQUC-based 
analysis from data compiled through previous studies and reviews surrounding the subject.  

Human Genome, Microbiome, and Mycobiome 

The human genome is complex and, although efforts have been made to fully sequence it, remains 
relatively unexplained regarding its mechanistic function. After the Human Genome Project, it was 
discovered that there was much left to understand regarding the human body, the relationship between 
DNA and protein function, and the interaction between these elements and the various microbiomes in 
the human body. [6] For urinary diseases specifically, the lack of research on the urinary microbiome 
has left much to be understood about its relationship with the human body. The microbiome, consisting 
of the microorganisms and their respective genomes that exist within a region of a host body, as well as 
their individual activity and formed micro-ecosystems, have been indicated to significantly affect the 
health of the host as changes occur due to situational and environmental factors.[7] Another factor to 
consider is the region’s mycobiome, which is the fungal microbiota within an area . This also can 
significantly impact host health, as well as the microbiome of the region, making it important to investigate 
in combination with the bacterial microbiome. [8]  

Although the urinary microbiome and mycobiome remain relatively unstudied, there is significant 
evidence indicating that the microbiome and mycobiome of other regions, like the lungs and gut, heavily 



32 

affect the overall health of the human body. [9] Evidence has linked lung and gut microbiome and 
mycobiome health to a host of issues, including asthma, colorectal cancer, alcoholic liver disease, cystic 
fibrosis, and hypoglycemia. [9-12, PMID: 34329692] This type of linkage between microbial health and 
host health indicates that the urinary microbiome and mycobiome play a similarly important role in the 
overall health of the human body.  

The Gastrointestinal Microbiome and Indication of Urobiome Significance 

Traditionally, research has focused on the gut microbiota and its relationship to various disease. With its 
expansive surface area and constant processing of food, symbiosis of the gut microbiota have long been 
recognized as an important step in disease prevention. [13] Important for diseases related to diet and 
obesity, as well as atherosclerosis, Crohn’s disease, ulcerative colitis, and autism, research has indicated 
that the balance of the gut microbiota is extremely significant to host health. [13, 14, PMID: 29093639] 
Studies have begun to indicate a similar importance for the health of an individual’s urinary microbiota. 
With connections to prostate, gut, and renal health, dysbiosis of the urinary microbiota has indicated 
increased risk of various lower urinary tract diseases, prostate cancer, kidney disease, and increased 
risk of gastrointestinal dysbiosis as well. [15-19] Research of the urinary microbiome is thus extremely 
important in understanding these inter-system relationships and their effect on overall host health.  

Urobiome, Microbiome and Mycobiome in Urine 

With the discovery of bacteria in urine, research into its relation to urological diseases began. 
Consequently, the urinary microbiome has become increasingly important, although it has been shown 
to vary significantly between individuals. This environment, consisting of all the bacterial microorganisms 
contained within the bladder, as well as the proteins and metabolites they produce, their genetic material, 
and the host proteins and metabolites within the region, has been shown to be increasingly more complex 
than previously believed. [20, 21] Together, with the urinary mycobiome, which is all the fungal microbiota 
and its subsequent genetic material, proteins, and metabolites within the bladder, evidence suggests 
that the balance of a healthy individual’s urinary biome is important to prevent and protect against many 
urinary diseases. [22]  

NGS Method and Culture-Based Validation of Urobiome 

The urinary microbiome is most effectively determined using a combination of next-generation gene 
sequencing and expanded quantitative urine culture. Because whole genome sequencing can be 
performed as a form of next-generation sequencing (NGS), DNA NGS is generally performed using PCR 
amplification and 16S rRNA gene high-throughput sequencing, which allows the entire genome to be 
sequenced. Although this process is much better than standard diagnostic methods of urine analysis, 
there are still several limitations. [5] This includes an inability to distinguish closely related bacterial taxa, 
confirm bacterial viability, and link the genotypic resistance to a specific organism. [5] In addition, 
bacterial abundance can be determined by 16S rRNA sequencing, but not precisely. [5] 

EQUC is also important because it can detect bacterial growth as low as 10 CFU/ml by plating a urine 
sample on various media at different temperatures and under various atmospheric conditions for a longer 
period, resulting in detection of up to 92% of bacteria species not otherwise detected on a standard urine 
culture. This contrasts with the standard urine culture, which was designed to grow specific E. coli 
pathogens and can only detect about 33% of bacterial growth. [5, 23]  

Both EQUC and NGS are important analysis techniques because they each provide data that the other 
one may not. [2, 24] Although sequencing allows for the bacterial populations to be studied, more specific 
technology must be used to determine the functional ability of these microbes, indicating that the specific 
metabolites, and not the species of microbe, are what will drive future research and therapies. [16] 
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Microbial Diversity in Human Urine 

There is substantial variation in an individual’s microbial diversity, and the way subjects are grouped in 
studies may greatly affect the analysis of the results. For some populations, an increase in microbial 
diversity may be beneficial, and for others it may be harmful, which is why factors such as age and 
gender must be accounted for when organizing studies.[25-28] For example, studies have indicated that 
menopause causes a significant alteration in the female urinary microbiome. Although the Lactobacillus 
species is the most prevalent bacteria in pre-menopausal women, post-menopausal women have more 
significant levels of Mobiluncus and a general decrease in overall microbial diversity. [1, 29] This change 
in the microbiome of a healthy female can greatly affect studies when age is not accounted for. Similarly, 
the female microbiome is very different than that of a male, which has a high amount of the species 
Corynebacterium in most control groups. [2, 24, 30] Overall, the most common bacterial species found 
in sampled urine include Lactobacillus and Streptococcus, with Gardnerella, Staphylococcus, and 
Corynebacterium following closely and Alloscardovia, Burkholderia, Jonquetella, Klebsiella, 
Saccharofermentans, Rhodanobacter, Prevotella, and Veillonella also noted as prevalent.  

In patients over seventy years old, one study indicated that there was again a change in the microbiome, 
detecting Proteiniphilum, Saccharofermentans, and Parvimonas in the microbiome, which are species 
not commonly found in samples from younger individuals. [2, 5, 24, 30-33]  Table 1 shows a compiled 
list of these bacterial species commonly found in the healthy human urinary microbiome. Similarly, Table 
2 is a list of the bacterial (and certain fungal) species commonly found in the urinary microbiome of 
individuals with the urinary diseases discussed in this article and is organized accordingly.  

The sampling method also tends to affect the microbial diversity observed in urinary samples. Since 
there is not yet a standard method of collection and analysis for urine samples, it is often difficult to 
compare studies.[5, 34] Urine has a very low concentration of microbes within each sample, resulting in 
a high potential for contaminant amplification that leads to significant error rates and confounders. [34] 
This can be combated by larger volume samples, stricter lysis conditions, and new sequencing 
techniques with higher fidelity. For women it is difficult to collect urine samples without vaginal 
contamination. Several studies aimed at determining the optimal sampling method have been performed. 
Results indicated that collecting female urine via a transurethral catheter most closely resembled 
samples obtained via suprapubic aspiration, suggesting that this may be a better collection method than 
midstream voided urine. [34-36] For men, a subsequent study indicated that the male bladder, like the 
female bladder, is a low biomass environment, making catheterization a preferred urine sample collection 
method. [34] Another study also concluded that suprapubic aspiration and transurethral catheterization 
are the two best forms of sample collection because they avoid contamination from the genitals. [2] Trials 
have also indicated that, in males specifically, there is a difference in the beta microbial diversity when 
comparing voided and catheterized samples. It was hypothesized that this was likely due to the difference 
in urethra length between males and females, which likely allows for a greater difference between the 
bladder and the urethra microbiome in males than in females. This difference between collection 
methods in males raises the question of which would act as a stronger diagnostic method for diseases 
like bladder cancer because, while one may better represent the urinary microbiome, this may not be the 
best functional representation of urological microbes for therapeutic purposes. And voided urine has 
been served for initial identification of diagnostic, prognostic, and non-invasive biomarkers for diseases 
primarily at the microbe-urothelial interface.[25, 37, 38]  

Microbial Diversity in Bladder Cancer 

The taxa Fusobacterium, Sphingobacterium, and Enterococcus are present in schistosomiasis-induced 
bladder cancer patients.  [16, 39] This type of bladder cancer is also more prevalent in individuals with 
strains of bacteria that can mediate the formation of N-nitrosamines. Chronic UTIs are hypothesized to 
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leave an individual predisposed to developing bladder cancer, but there is conflicting epidemiological 
evidence surrounding this. It has not been determined whether the presence of these microbes is a result 
of or a cause for bladder cancer. One hypothesis is that the extracellular matrix is influenced by the 
urinary microbiome, which may either help prevent or induce cancer depending on the microbes present. 
This would be similar to the influence of microbiomes in intestinal cancer. However, studies have 
conflicting support for this hypothesis. Biofilms may be a cause for chronic inflammation in the 
genitourinary system, among other places, which has been indicated to correlate with a higher risk of 
developing cancer due to their interactions with epithelial cells. There is also evidence to suggest that 
the urinary tract’s microbiome hosts commensal microorganisms, and the interaction between these 
microbes and bladder cancer cells may affect tumorigenesis. [40, 41] The presence of some species, 
like Lactobacillus, have been indicated to help aid in the prevention of disease in some women, 
dissuading from the growth of other, more commonly harmful species. However, the growth of too much 
of a commensal organism, like Lactobacillus, can become harmful to the surrounding environment by 
decreasing the overall microbial diversity, which has been indicated to promote tumorigenesis. [2] 

Although bladder cancer is much more common in men, it is much more deadly in women. [40, 42] While 
this is likely affected by factors related to social inequality, it may also be due to the microbial differences 
between male and female urinary tracts. For bladder cancer, the genetic difference between male and 
female patients remains unknown. One specific example is the activity of glutathione-S-transferase M1, 
which affects the metabolizing of carcinogens. Studies also indicated that increased age, parity, 
premenopausal status, and use of estrogen and progestin are all associated with a lower risk of 
developing bladder cancer. In females, the Lactobacillus species is extremely common in the urinary 
microbiome, while in males Corynebacterium is most prevalent. Additionally, one study indicated that 
females with bladder cancer had higher levels of Klebsiella in urine samples than healthy women, and 
an increase in Burkholderia for bladder cancer patients was observed regardless of gender. [40, 43]   

It has been suggested that 20-30% of cancers, like gastric cancer, liver cancer, urinary bladder cancer, 
cholangiocelular neoplasia, and cervical cancer are related to recurring microbial infections. [40, 44] 
Evidence has also indicated that abnormal microbiomes have been correlated with a higher risk of cancer, 
but it is unclear what the “normal” microbiome of the urinary tract is specifically. Various bacteria have 
been indicated to play a role in the relationship between bladder cancer and the urinary microbiome, but 
studies vary in the specific species associated. In one, it was an increase in Streptococcus in cancerous 
patients. In another, it was Fusobacterium nucleatum, which has known associations with carcinogenesis. 
[40, 41] This bacterium is gram-negative and anaerobic and is known to induce a chronic inflammatory 
response by promoting the beta-catenin pathway. There are several geneses also associated with 
bladder cancer, with one of significance being Acinetobacter, which consists of several gram-negative, 
anaerobic species that are indicated to impair immune response to bovine papillomavirus type 2 and 
thus increase susceptibility to carcinogenesis.  

The microbiome has a promising predictive ability for urinary cancer, with dysbiosis showing evidence of 
a relationship to anticancer therapy and a potential to predict Bacillus Calmette-Guerin (BCG) therapy 
response. Lactobacillus iners, which is more prevalent in females, may also play a role in BCG efficacy 
due to the competition between them for fibronectin binding. [40, 45] One notable difference in the urinary 
microbiome of individuals with urothelial cell carcinoma was an increase in Streptococcus. Associations 
between bladder cancer and Mycobacterium tuberculosis from the BCG vaccine have also been made, 
but the mechanistic reason for its success in bladder cancer inhibition remains unsure. [2, 46, 47]  

BCG is used for bladder cancer treatment via direct insertion, but the induced immune response may be 
due to the interaction of BCG with urinary bacteria, and BCG may be competing with other bacteria, like 
Lactobacillus iners, for fibronectin-binding positions, potentially reducing its treatment efficacy (Figure 
1). [16, 45, 48] BCG has been regularly used to deter cancer progression, and studies before treatment 
indicate that patients with bladder cancer were more likely to have increased levels of Fusobacterium. 
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[25, 41] Healthy women generally have higher levels of Mycobacteria and other Actinomycetes, which 
are suspected to help impede cancer progression, and some studies suggest that certain urinary 
microbial profiles may leave an individual predisposed to malignancies and affect treatment response. 
[25, 49] Additionally, Lactobacillus casei was previously believed to reduce the recurrence of bladder 
cancer, but human studies were stalled due to complications. [16, 50, 51] However, with new technology 
in the microbiome field, these studies should be reinvestigated because of their promising potential, and 
the L. casei strain Shirota may be a viable for non-muscle-invasive bladder tumors. [16, 50, 51] 

Antibiotic treatments of patients with bladder cancer reduced the progression-free and overall survival of 
immunotherapy-treated patients, indicating that an alteration of the patient’s microbiome may lead to a 
better therapeutic result. [16] The presence of certain bacteria (species of Mycoplasma and 
Proteobacteria) can metabolize the chemotherapy drug gemcitabine, rendering it ineffective. Other 
bacteria can reactivate irinotecan, causing drug toxicity. There is also evidence that certain bacteria can 
affect the efficacy of immunotherapy. [16, 52]  

Microbial Diversity in Benign Prostatic Hyperplasia (BPH) 

BPH may be correlated to an increase in Escherichia coli in prostatic secretion, a decrease in Escherichia 
coli in urine, and an increase in Enterococcus in the seminal fluids, but it is unknown whether these 
changes in the microbiome are the cause for BPH or are a result of prostate cancer treatment. [53, 54] 
Several studies have indicated a correlation between chronic prostate inflammation and BPH, implicating 
that the urinary microbiota may play a role in its development due to the increase in proinflammatory 
cytokines observed in the urinary microbiome of individuals diagnosed with BPH. [55, PMID: 33858430] 
Additionally, this study suggested that inflammasomes may have a role in BPH development due to their 
involvement with activation of the immune system’s inflammatory response. [55, 56] Factors such as 

oxidative stress, DNA damage, and signaling involving nuclear factor-B (NF-B) and cyclooxygenase-
2 (COX2) have also been indicated to play a role in BPH onset and development. [53, 57-59] The species 
Staphylococcus, E. coli, Micrococcus, Enterococcus, Serratia spp., Pseudomonas aureginosa, and 
Pantoea spp. were all identified in 22% to 2.8% of BPH samples from a study of 36 individuals, with the 
relatively high rate of 11.1% for E. coli matching the findings of previous studies, making this the most 
common bacteria associated with benign prostatic hyperplasia. [53, 57]  

Although more individuals are being diagnosed with BPH, its overall severity has decreased with the 
usage of oral medication, leading to a reduction of surgical cases. [53] This combination therapy using 
an alpha-blocker and a 5-alpha-reductase inhibitor help reduce inflammation of the prostate to relax the 
organ and minimize BPH symptoms. [60, 61]  This management of the chronic inflammation associated 
with BPH further indicates its importance in the disease pathology, suggesting that inflammation is not 
only a correlated factor, but possibly a causative factor as well. [60, 62]  

Microbial Diversity in Urgency Urinary Incontinence (UUI) 

Although UUI is the most frequently studied bladder disease, there is little consistency or overlap 
between results. One study suggested that increased prevalence of Actinomyces, Corynebacterium, and 
Streptococcus correlated with better responses to medication. Another study suggested that the 
Lactobacillus species dominates the urinary microbiome in healthy controls, while diseased groups are 
more likely to have Lactobacilli within a diverse microbiome. [5, 63] This is especially interesting because 
Lactobacillus species are more common in the female urinary system, and young women tend to have 
less diverse urinary microbes, while older women tend to have more diverse ones. [25] Another study 
showed evidence that patients with evidence of bacterial DNA in their urine had fewer episodes of 
urgency urinary incontinence on a daily basis than those with no reported urinary bacterial DNA. In this 
study, Actinobaculum, Actinomyces, Areococcus, Arthrobacter, Corynebacterium, Gardnerella, Oligella, 
Staphylococcus, and Streptococcus were more prevalent in those experiencing UUI, and Lactobacillus 
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was once again present in decreased amounts. However, the use of either NGS or EQUC altered 
whether there was a significant overall difference in microbial diversity of the urinary system for those 
experiencing UUI and healthy individuals, although evidence suggests that there is some type of 
microbial component to UUI. [5, 25, 30, 63]   

In the studies regarding UUI, women generally tended to have lower Lactobacillus and higher 
Gardnerella counts when experiencing this disease. Research concluded that there was a correlation 
between UUI symptom severity and decreased urinary microbial diversity, and one study additionally 
suggested that the use of solifenacin to treat UUIs was more effective when women had a lower microbial 
diversity in the urinary system. [2, 24] 

Microbial Diversity in Overactive Bladder Syndrome (OAB) 
OAB, characterized by frequent urination, urinary urgency, and difficulty controlling bladder contractions, 
is a syndrome with a multitude of possible pathologies.[64] Sampling has indicated that in at least some 
cases, the urinary microbiome may play a role in overactive bladder syndrome. In one study analyzing 
the urinary microbiome in females, the most prevalent bacteria found in both healthy and OAB urinary 
microbiomes were Staphylococcus, Streptococcus, Corynebacterium, and Lactobacillus. There was also 
a statistically significant difference in the prevalence of Lactobacillus and Proteus between the control 
and the OAB samples, with Lactobacillus being much more prevalent in healthy individuals and Proteus 
in OAB samples. [64]  

It is hypothesized that the presence of Lactobacillus bacteria in the urinary tract, especially in women, 
may help prevent overactive bladder syndrome because it promotes a more acidic environment that 
prevents more virulent bacteria from growing there. [2] Although the specific role of the microbiome is 
not yet known in relation to OAB, preliminary trials for several antimuscarinics and intradetrusor 
botulinum toxin injections have indicated that patients who respond to these treatments usually have a 
reduced microbial diversity in their urinary tract. [65] Furthermore, there is a possibility that the urinary 
microbiome is related to brain function, similar to the gut microbiome, which may affect neurotransmitter 
release and immune system stimulation to affect an individual’s risk of experiencing overactive bladder 
syndrome.[65] 

Microbial Diversity in Interstitial Cystitis and Bladder Pain Syndrome (IC/BPS) 

Not much is fully understood about the role microbes play in IC/BPS. Studies suggest that there is a 
decrease in diversity for the urinary microbiome in individuals suffering from IC/BPS, but an increase in 
levels of the Lactobacillus species. [2] One study also suggests that the level of inflammatory cytokines 
is increased in those affected with IC/BPS. However, there is not enough conclusive evidence to show 
that bacteria play a role in IC/BPS development, and some studies have even concluded that no 
significant role for the urinary microbiome can be determined for IC/BPS susceptibility. [1, 5] On the other 
hand, there may be an overall decrease in the urinary microbiome diversity for individuals suffering from 
IC/BPS, but an increase in levels of the Lactobacillus species, as well as the level of inflammatory 
cytokines in those affected with IC/BPS, with one study additionally concluding that an increase in 
Lactobacillus levels was associated with an increase in IC/BPS severity. [5, 32]  

Some studies have also indicated that increased amounts of fungi in the bladder may influence IC/BPS. 
[2, 32] Although there was no significant difference in bacterial species composition when comparing 
patients with IC/BPS to healthy individuals, symptom flares indicated increased levels of the fungal 
species Candida and Saccharomyces, but subsequent studies did not observe a similar conclusion. 
Testing for IC/BPS is unfortunately extremely limited because 16S NGS is unable to detect eukaryotic 
microbes, and EQUC cannot identify several types of fungi, resulting in many negative tests using the 
current diagnostic standards due to culture testing inconsistency. [5, 32]  
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Microbial Diversity in Chronic Urinary Tract Infections (UTI) 

Although acute urinary tract infections are primarily caused by E. coli, when UTI is chronic and persistent, 
it is likely caused by a different microbe, which is why standard urine culture often misses this as a 
diagnosis. [5, 25, 66] Chronic lower urinary tract symptoms are likely caused by the formation of biofilms, 
which protect harmful bacteria from helpful immune mechanisms while simultaneously promoting 
mutations. It has been indicated that chronic UTIs can be perpetuated by treatment through antibiotics 
because the formation of biofilms can aid in increased resistance as well. [5, 35, 67, PMID: 34044483] It 
was previously believed that bacteriuria caused urinary tract infections, but evidence suggests that 
asymptomatic bacteriuria may help prevent chronic urinary tract infections by inhibiting the growth of 
certain Escherichia coli, especially those which are shown to be antibiotic resistant. Current diagnostic 
methods for urinary tract infections are effective, and further specification for diagnosis is unnecessary 
and would likely result in overtreatment. [25]  

No longitudinal studies regarding the urinary microbiome and antibiotics have been performed. However, 
a general decrease in Lactobacillus, Finegoldia, Gardnerella, Atopobium, and Sneathia species were 
observed from various studies. [25, 68] One study in particular saw that after treatment from 
metronidazole, Lactobacillus crispatus was completely undetectable in urinary samples, despite being 
one of the most prevalent bacteria in the urinary samples of healthy young females. [1] The lack of 
Lactobacilli likely increased post-menopausal susceptibility to recurrent urinary tract infections. [1, 69]   

Although antibiotic treatment is a popular method to combat UTIs, it has been associated with long-term 
problems by promoting antibiotic resistance. Probiotics, prebiotics, and diet alterations have been 
proposed as alternative preventative and general treatment methods to avoid this problem. This includes 
administration of the L. rhamnosus GR-1, L. fermentum RC-12, and L. reuteri B-54 for UTIs. [2, 16] The 
risk of recurrent urinary tract infections can be reduced using estrogen replacement treatment, which 
increases the Lactobacillus population in the vagina and likely the urinary tract as well. [1, 70, 71] 
Although certain Lactobacillus species may aid in UUI treatment, the presence of the specific L. 
delbrueckii and L. gasseri are indicated to be associated with increased UTI and urgency urinary 
incontinence severity. [2, 35] Another treatment method that has been investigated to replace antibiotic 
treatment is the consumption of cranberry juice supplements, although studies indicated that supplement 
use showed no significant decrease in UTI risk. However, intake of higher doses of D-mannose, which 
is found in cranberries, may be effective in UTI risk reduction. [2, 24]   

Microbiome Can be Altered by Procedures and Medications 

There are several current potential procedures aimed at altering the urinary microbiome of individuals 
with urinary disease. For bladder cancer, Mycobacterium tuberculosis from the BCG vaccine has shown 
success in inhibiting the spread of bladder cancer despite the mechanistic understanding of this process 
remaining unknown.[2, 46, 47] Additionally, Lactobacillus casei, specifically the Shirota strain, has had 
promising results in preliminary testing regarding its ability to reduce the recurrence of non-muscular 
invasive bladder tumors.[16, 50, 51] In benign prostatic hyperplasia, relative success has come from a 
combination therapy treatment using alpha-blockers and 5-alpha-reductase inhibitors, but 12.6% of 
patients that receive this therapy still observe clinical progression and 5% still require surgery.[60, 61] 
Urgency urinary incontinence has most often been treated using solifenacin, a bladder relaxant, but its 
success has been indicated to be tied with the patient’s relative urinary microbial diversity.[2, 24, PMID: 
31119104] Similarly, treatment for overactive bladder syndrome has been indicated to depend on the 
patient’s urobiome diversity, with preliminary trials using antimuscarinics and intradetrusor botulinum 
toxin injections showing potential primarily in individuals with reduced diversity.[65] Widespread clinical 
procedures and drug treatments for those with interstitial cystitis/bladder pain syndrome have been 
difficult to identify. A distinct pattern connecting the urinary microbiome to these diseases remains 
unknown, making the development of an effective treatment difficult as well.[1] For urinary tract infections, 
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a common treatment method involves the administration of antibiotics, but studies indicate that treatment 
using the L. rhamnosus GR-1, L. fermentum RC-12, and L. reuteri B-54 may be better options. [2, 16] 
Estrogen replacement therapies and D-mannose supplements have also shown potential in reducing the 
risk of recurrent urinary tract infections.[1, 2, 24, 70, 71]  

CONCLUSIONS 

As research about the urinary microbiome and mycobiome continue, evidence regarding its 
relationship to urinary disease will expand and improve. Methods like NGS and EQUC remain relatively 
limiting in their ability to analyze microorganisms present within the bladder microbiome, but they are still 
much improved from previous techniques. The use of antibacterial treatments for various bladder 
diseases and their effects on the balance of bacteria in a healthy bladder must be researched further to 
help elucidate whether changes in the urinary microbiome are primarily causative or correlative with 
bladder disease.  

CURRENT LIMITATIONS AND FUTURE PLANS 

The potential benefits of understanding the urinary microbiome are numerous. Despite the current 
limitations due to lack of previous research, difficulties in standardizing sampling techniques and analysis 
methods, and problems with defining the scope of the urinary microbiome, much progress has already 
begun in the field. New challenges in this field include to develop the better identification methodologies 
of microbiome and to understand the pathological function of micro- and mycobiome include multi-omics-
based and host-microbe interaction (Figure 2). [7] With further research and technological development, 
the relationship between the urinary microbiome and mycobiome health and the health of the human 
body will be understood, allowing for more specific clinical treatment of a variety of urinary diseases and 
a potential connection to diseases not directly associated with the urinary environment. It can also 
provide a stronger understanding regarding the use of antibiotics and their effects on the microbiomes 
of the body, as well as the potential efficacy of other treatments, including the use of probiotics and 
dietary supplements, in regard to various urinary diseases.  
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ACHIEVEMENT 4: 
Machine Learning Approaches to Predict the Immune Phenotypes in Bladder 

To develop a biosignature of immunotherapy-based responses using gene expression data, Deep 
Neural Networks (DNN), Support Vector Machines (SVM) together with boosting and feature selection 
methods were applied. DNN yielded the highest area under the curve (AUC) with receiver operating 
characteristic (ROC) curves and precision and recall (PR) curves for each phenotype (0.711 ± 0.092 

and 0.86 ± 0.039 respectively). Our results suggest significant potential to further develop and utilize 
machine learning algorithms for analysis of bladder cancer and its precaution.  

INTRODUCTION 
Globally, bladder cancer (BC) is the ninth most common malignant tumor. BC also accounts for 4% of 
all cancer-related deaths in the United States, ranking it the fifth most deadly cancer [1]. According to 
the American Cancer Society, there will be approximately 83,730 new cases of BC (about 64,280 in men 
and 19,450 in women) and about 17,200 BC-related deaths (about 12,260 in men and 4,940 in women) 
in the United States, alone, in 2021. If your paper is intended for a conference, please contact your 
conference editor concerning acceptable word processor formats for your particular conference. 

Based on the degree of bladder muscle wall infiltration, BC can be classified as either non-muscle invasive 
(NMIBC) or muscle invasive (MIBC). About 70% of BC patients have NMIBC, while the other 30% have 
MIBC or metastatic disease [2]. Treatment for NMIBC includes endoscopic resection of the tumor followed 
by adjuvant intravesical treatment to reduce the possibility of recurrence or progression. The risk of 
recurrence and progression is affected by many factors, including tumor grade, size, staging, multiplicity, 
recurrence rate, and the presence of carcinoma in situ (CIS). BC requires a lifetime of close monitoring 
and repeated treatments, which places an immensely heavy burden on patients and the social economy. 
MIBC treatment options include chemotherapy and radical cystectomy. The 5-year and 10-year survival 
rates of MIBC are approximately 50% and 36%, respectively. However, the 5-year survival rate of 
metastatic BC is only 15%, and the median overall survival (OS) is about 15 months following platinum-
based chemotherapy.  

Immunotherapies against BC have shown encouraging results. The first immunotherapy against BC was 
reported in 1976, when Alvaro Morales reported 9 cases of BC that were successfully treated with Bacillus 
Calmette-Guerin (BCG), demonstrating the immunogenicity of BC [3]. Immune checkpoint inhibitors (CPIs) 
are leading the field of immunotherapies against BC. It includes anti-cytotoxic T lymphocyte antigen 4 
(CTLA4), anti-programmed cell death 1 (PD-1), and anti-programmed cell death 1 ligand 1 (PD-L1) 

Machine 
Learning 

Bladder 
Cancer 

Prediction of Immune 
Phenotypes 
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antibodies. Anti-CTLA4, anti-PD-1, and anti-PD-L1 CPIs can improve anti-tumor immune response by 
restoring T-lymphocyte activation [4]. With the rapid advancement of new immunotherapy drugs, the 
development and validation of biomarkers will be important. Established biomarkers can help clinicians 
predict whether treatments will be effective. Varying subtypes of BC may also have definitive biological 
differences, which can result in variable sensitivity to Immunotherapies. In order to fully optimize the 
benefits of immunotherapy in future treatments and to further improve its impacts, supplemental biomarkers 
capable of monitoring response should be integrated. 

Despite the initial success of cancer immunotherapies[5], approximately 70% of patients with advanced 
urethral cancer are considered unresponsive to anti-PD-1 or anti-PD-L1 antibodies[6, 7].  

Recent studies have employed a variety of biomarkers such as PD-L1 hyperexpression and tumor 
mutation burden (TMB) to distinguish the potential immunotherapy responders from non-responders[5]. 
There seems to exist a link between these biomarkers and immunotherapy outcomes, but neither PD-
L1 expression nor TMB was sufficient to distinguish immunotherapy responder from non-responders[8, 
9]. For example, the epithelial PD-L1 expression in BC has been shown to be unrelated to 
immunotherapy responses[10]. In addition, there has been difficulty predicting responses using TMB as 
a single marker[11], although increased TMB has been linked to improved clinical outcomes of 
immunotherapy in bladder cancer[12]. These previous works indicate the unmet needs to identify more 
reliable biomarkers for the stratification of immunotherapy responders from non-responders. 

IMvigor210 was an open multicenter, single-arm phase 2 clinical study designed to study whether 
atezolizumab could become the standard treatment for advanced urothelial cancer. This study suggested 
that for patients with first-line platinum-based refractory metastatic urothelial carcinoma (mUC) 
checkpoint inhibitors seem to be more attractive than chemotherapy[13].  

Atezolizumab is now suggested to prescribe for many patients who are ineligible for cisplatin
therapy. In our study we used the publicly available IMvigor210 data. Previously, IMvigor210 
data has been used to test the prognostic power of gene expression signatures for basal and 
luminal/differentiated BC subtypes [14]. Overall survival, prognosis and response to immunotherapy 
were also studies in the IMvigor 210 cohort [15]. A consensus molecular classification system for MIBC 
was suggested by analyzing the 1,750 MIBC transcriptomic profiles from datasets including IMvigor 
dataset, providing a tool for testing and validation of potential predictive MIBC biomarkers [16]. 

Big data-based ML has been increasingly used and successfully applied to preventive medicine, image 
recognition, diagnosis, personalized medicine, and clinical decision-making. Application of machine 
learning (ML) algorithms to determine the cancer-specific classifiers have been tried in a series of studies. 
To determine the multi-variate classifiers predicting response to paclitaxel-therapy, methylome and 
miRNome were used [16]. Not only in vivo multi-omics profiles [17] but also in vivo cancer molecular 
profiles were able to predict the drug-sensitive tumors using ML modeling approach [18]. 

Clinical application of conventional ML approaches has been performed for the more accurate clinical 
decision, which was benefited by an increased computational power and accumulated digital health data 
from patients [19, 20]. However, we are aware the limitations due to the complicated data processing 
(feature engineering) including knowledge-based training [21, 22]. ML algorithms derived from not-so-
relevant data resources, low volume of patients, data with high sparsity and poor could significantly diminish 
enthusiasm and reduce the efficacy of ML approach [23]. 

Although ML is widely used in the context of BC, there are still limitations, including difficulties in 
quantitatively analyzing observed endpoints and the inapplicability of generalizability across data sets. 
Therefore, further verification is needed to improve the accuracy and versatility of ML in BC. Therefore, in 
this study, we aimed to search for the potential of using ML algorithms to investigate relationships between 
gene expression features with immunotherapies specific to BC and identify potentials to develop and use 
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ML algorithms for such studies. For this, we have adopted five different traditional but powerful ML 
classification methods (i.e., Random Forest, Deep Neural Network, Support Vector Machine, Adaboost 
and XGBoost) to predict BC immune phenotypes using high-dimensional gene features. With efforts to 
avoid pitfalls of these algorithms, e.g., overfitting, we managed to get successful classification performance 
identifying phenotype-specific gene features (see Section IV for detailed clinical and technical discussions). 
We see great possibility to further develop more sophisticated and task-specific ML algorithm for analyzing 
BC with gene data to provide diagnostic tool for individuals and identify BC in their early stages, or possibly 
even prevent the disease.  

II. MATERIALS AND METHODS

A. ETHICS STATEMENT
For this paper, we used deposited datasets derived from previously published studies. Use of publicly
deposited data does not require IRB approval.

B. DESCRIPTION OF THE DATASET
For this study, we have used the Imvigor210 data that can be found in previous report [24] and the
associated resource web site provided by Dorothee Nickles, Yasin Senbabaoglu, Daniel Sheinson at
http://research-pub.gene.com/IMvigor210CoreBiologies/. The raw data are available at the European
Genome-phenome archive (EGA) under the accession number EGAS00001002556. The
IMvigor210CoreBiologies package can be downloaded at http://research-
pub.gene.com/IMvigor210CoreBiologies/IMvigor210CoreBiologies.tar.gz. Code for data processing,
analysis and plotting and the R script are available from this IMvigor210CoreBiologies package.

The IMvigor210 study was a phase 2, multicenter, single-arm, open-label, and 2 cohort trial that assessed 
atezolizumab as a treatment for metastatic urothelial cancer in cisplatin-ineligible patients [25]. Clinical data 
for the first-line cisplatin-ineligible IMvigor210 cohort was collected from 47 academic medical centers and 
community oncology practices across 7 countries in North America and Europe. All participants in the study 
consented.  

The IMvigor210 dataset includes recorded responses to immune checkpoint blockade. This Illumina HiSeq 
2500-based dataset contains 348 subjects (76 female and 272 male) with 17,692 gene expression 
biomarkers (i.e., features), which were derived from genes using Entrez gene ID and gene symbol. Archival 
tumor tissues were collected for biomarker assessments, and gene expression was designed to be 
quantified for a T-effector gene signature (consisting of CD8A, GZMA, GZMB, PRF1, INFG, and TBX21) 
[5]. The feature values of gene information were normalized using the trimmed mean of M-values (TMM) 
method. Each sample includes corresponding clinical labels, such as age, sex, PD-L1 status of immune 
cells, prior tobacco use, metastatic disease, best confirmed overall survival, overall response, Response 
Evaluation Criteria in Solid Tumor (RECIST), immune phenotype, and The Cancer Genome Atlas (TCGA) 
subtype. For this study, three specific immune phenotypes were investigated: immune deserts, immune-
excluded, and inflamed. 

All types of human cancers, including BC, can be categorized into three immune phenotypes. These 
phenotypes are distinguished by the strength and relationship of the immune response of T-cells acting on 
the tumors, and different treatments should be applied based on the individual immunological biology of 
each phenotype. The IMvigor210 dataset consists of 76, 134, and 74 samples of immune deserts, immune-
excluded, and inflamed phenotypes, respectively. The immune desert subtype is absent of immune cells, 
with total lack of an immune response against the tumor. The immune-excluded subtype has an immune 
response with only peripheral invasion of T-cells that cannot completely overwhelm the tumor. The inflamed 
subtype involves an active immune response where inflammatory myeloid cells and activated CD8+ T-cells 
exist in the tumor [26, 27]. Since the remaining 64 samples in the dataset did not provide any information 
on immune phenotypes, they were disregarded for this study. 

http://research-pub.gene.com/IMvigor210CoreBiologies/
http://research-pub.gene.com/IMvigor210CoreBiologies/packageVersions
http://research-pub.gene.com/IMvigor210CoreBiologies/packageVersions
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C. CLASSIFICATION METHOD
Five powerful ML-based classification algorithms, i.e., Support Vector Machine (SVM), Random Forest,
XGBoost, AdaBoost and deep neural network (DNN) were adopted to investigate immune phenotypes
using gene expression features [28-32]. We performed a supervised learning task, where each data
sample consists of a feature vector and class label. In our experiment, the algorithms were trained to learn
optimized mapping between the features (i.e., gene expression) and target labels (i.e., immune
phenotypes).

SVM is a well-known supervised classification algorithm that can learn a decision boundary, either linear 
or non-linear, in a feature space. Given data samples forming individual clusters in the feature space 
according to class labels, SVM learns a decision boundary that maximizes the margin of distance between 
the decision boundary and other clusters [33]. Such a criteria intuitively makes sense as the distance 
between individual clusters and the learned decision boundary will be balanced. To train a linear model 
when the data are not linearly separable, the model requires a regularizer with a user parameter (i.e., slack 
variable) that controls the margin and tolerable error within the margin. Training a non-linear model requires 
a kernel function (e.g., Gaussian and polynomial kernels) that can map the data onto a high-dimensional 
space where the data can become linearly separable. Taking the trained decision boundary back to the 
original space will then yield an optimized non-linear decision boundary [34].  

Random Forest is one of the ensemble methods for classification and regression tasks. A sole Decision 
Tree can perform the same tasks on supervised learning problems by asking a series of questions 
regarding to the characteristics of input variables. To avoid overfitting with large trees [35, 36],  Random 
Forest incorporates multiple Decision Trees and casts a majority vote from the results classified from each 
tree. This ensemble technique is known as Bagging [37], which is an abbreviation of Bootstrap Aggregation. 
It is a method of extracting samples multiple times (Bootstrapping [38]) and training each model to 
aggregate the results. Although some trees created by Random Forest can be overfitted, an overwhelming 
majority can suppress the flaw from having a significant impact on prediction of class labels, i.e., 
classification.  

In addition, we adopted another ensemble method, Boosting algorithm [39], based on the Decision Tree 
architecture. Unlike to Bagging where each tree makes independent decisions, Boosting has a sequential 
prediction process in which one model influences the decision of the next tree. In this process, Boosting 
repeats multiple steps to create a new classification criterion by improving weights on misclassified data. 
Finally, it creates a strong classifier gathering weak classifiers altogether to result in the ensembled output. 
In this paper, we used XGBoost [40] and Adaptive Boost (AdaBoost) [41, 42].  The difference of two 
methods is the way to deliver information of misclassified data from previous models. For example, 
AdaBoost updates subsequent classifiers based on the weight values of the former models. However, the 
update of XGBoost is based on gradient descent with a greedy algorithm.  

Lastly, for the deep learning (DL) approach, we used a DNN algorithm with multiple hidden layers [30]. 
This consisted of an input layer for the original data, output layer for prediction outcome (e.g., pseudo-
probability for each class), and a varying number of hidden layers where the input data can be transformed 
and model parameters are trained to minimize prediction error, usually defined by cross-entropy. While the 
input and output layers contain nodes according to the input dimension and the number of class labels 
respectively, each hidden layer is composed of hidden nodes determined by a user. At each hidden node, 
the node from its previous layer becomes the input, which is connected to the hidden node via edges with 
corresponding edge weights. The input values and edge weights at each hidden node are first linearly 
combined and then fed into a non-linear activation function (e.g., sigmoid or rectified linear unit (ReLU)) to 
yield an output that goes into the following layer as an input. At the output layer, the outcome values from 
each node are normalized to yield a pseudo-probability that tells which class label is the most likely for a 
given data sample. The l1- and l2-regularizers were applied onto the model parameters for sparsity as in 
least absolute shrinkage and selection operator (LASSO [43, 44], depicting important features only by 
suppressing weights of unimportant features to 0) and to make the model stable [28].  
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D. MODEL TRAINING
In order to obtain unbiased results, we used 10-fold cross validation (CV) to conduct experiments with the
two five classification algorithms [45]. For the SVM, we utilized both linear and non-linear models. An RBF
kernel was used for the non-linear classifier. The slack variable C was varied from 0.01 to 1000 to find the
best performance. For Decision Tree-based models, such as Random Forest, XGBoost and AdaBoost, the
number of trees per fold was kept to the same rate for comparing all results under unbiased conditions.
The number of Decision Trees per fold was set to 100 and all Decision Trees were generated by allowing
random sampling with replacement. The final classification was decided by majority voting incorporating
outputs from every single classifier. The number of Decision Trees in all Boosting methods was set to 100.
As for learning rates, XGBoost and AdaBoost were set to 0.1 and 1.0 respectively, with the highest test
accuracy score for each classifier.  For the DNN, we tried multiple settings by adjusting the number of
hidden layers, nodes, and regularizers. The number of hidden layers varied from 0 to 3, and the number
of hidden nodes in each layer varied between 16 and 1,024. A drop rate ranging from 0.1 to 0.5 was
applied. To measure the error of the model, cross-entropy was used. For the activation function, ReLU was
used and Softmax was applied at the output layer to obtain the likelihood for each class. The overall model
was trained by backpropagating the error from cross-entropy with gradient descent using the Adaptive
Moment Estimation (Adam) optimizer [46].

E. FEATURE SELECTION
Since the data is compiled in a very high-dimensional space, statistical hypothesis tests were used to select
effective features for distinguishing different groups. Statistical group analysis for each pair of phenotypes
was applied on each feature, and resultant p-values were corrected for multiple comparisons using
Bonferroni correction at the 0.05 confidence level. The feature selection process was applied only at the
training stages (i.e., excluding test data) across each fold in CV where the phenotype labels were available;
hence, avoiding circular analysis.

F. EVALUATION
To evaluate the performance of our classification results, we measured accuracy, precision, and recall.
Accuracy was computed as the ratio of the number of correct predictions out of the total number of samples
in a testing dataset. Precision and recall were considered for binary classification (i.e., positive vs.
negative); precision measures how precise the prediction is for the positive class, while recall measures
how much of the positive samples in the training dataset are correctly covered by the prediction. While
accuracy is an intuitive and important measure for evaluation, precision and recall are also important for
evaluating data with imbalanced class labels. Since precision and recall are computed for binary
classification tasks, we computed them in a one-versus-all manner; out of the three immune phenotype
classes, one of them is selected as positive. The other two were combined and considered the negative
class. This is iterated for all the three classes as positive, yielding three individual results. We also plotted
receiver operating characteristic (ROC) and precision and recall (PR) curves. The area under the curve
(AUC) was computed for evaluation (higher AUC denotes better performance). To understand the
effectiveness of a classifier on an imbalanced dataset, the AUC scores of both curves were used as
quantified summaries of the model performance as well as Mathews Correlation Coefficient (MCC) at a
threshold of 0.5 to determine positive and negative labels. These values ranged between 0.0 to 1.0, with
larger scores suggesting that a model is more robust.

G. IMPLEMENTATION ENVIRONMENT
All experiments were implemented in Python on a Nvidia GeForce RTX 2070 SUPER graphic card. DNN
was designed based on Keras and scikit-learn machine learning libraries were utilized for the other
methods. As for statistical tests, scipy library was used to derive p-values.

III. RESULTS
Classification results on Immune Phenotypes of BC using the five classification methods are demonstrated
in this section.
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A. CLASSIFICATION OF IMMUNE PHENOTYPES WITH SVM
Immune phenotyping of BC from the Imvigor210 dataset resulted in three subtypes, inflamed, immune-
excluded, and immune desert; all of which are characterized by distinct T lymphocyte infiltration patterns.
Immune desert tumors have

TABLE I 

COMPARISON OF REPRESENTATIVE RESULTS IN DIFFERENT SETTINGS 

Classifier 
Mean Train 

Acc 
Mean 

Test Acc 

MCC 
(Threshold: 

0.5) 

Mean 
Precision 

(std) 

Mean 
Recall 
(std) 

Mean AUC of 
PR 

(std) 

Mean AUC of 
ROC 
(std) 

SVM (Linear) 1 0.655 0.457 0.667 
(0.036) 

0.645 
(0.048) 

0.674 
(0.031) 

0.799 
(0.083) 

SVM (RBF) 1 0.655 0.456 0.655 
(0.018) 

0.644 
(0.048) 

0.678 
(0.034) 

0.798 
(0.083) 

SVM (RBF) (feature 
selection) 

0.963 0.68 0.495 0.701 
(0.035) 

0.663 
(0.118) 

0.688 
(0.034) 

0.822 
(0.066) 

Random Forest 1 0.496 0.344 0.752 
(0.099) 

0.473 
(0.104) 

0.670 
(0.045) 

0.795 
(0.086) 

Random Forest (feature 
selection) 

1 0.570 0.404 0.737 
(0.089) 

0.558 
(0.051) 

0.691 
(0.051) 

0.817 
(0.077) 

XGBoost 1 0.623 0.406 0.647 
(0.043) 

0.606 
(0.103) 

0.646 
(0.073) 

0.793 
(0.081) 

XGBoost (feature selection) 1 0.605 0.380 0.623 
(0.029) 

0.598 
(0.059) 

0.616 
(0.055) 

0.770 
(0.089) 

AdaBoost 0.821 0.613 0.386 0.714 
(0.144) 

0.547 
(0.287) 

0.649 
(0.094) 

0.776 
(0.135) 

AdaBoost (feature 
selection) 

0.810 0.577 0.314 0.632 
(0.116) 

0.528 
(0.239) 

0.576 
(0.110) 

0.726 
(0.163) 

DNN (feature selection) 0.715 0.641 0.473 0.679 
(0.045) 

0.626 
(0.101) 

0.755 
(0.099) 

0.875 
(0.054) 

DNN (l1 regularizer) 0.834 0.616 0.412 0.685 
(0.069) 

0.590 
(0.109) 

0.771 
(0.118) 

0.870 
(0.027) 

DNN (feature selection, l1 
regularizer) 

0.719 0.666 0.488 0.722  
(0.084) 

0.635  
(0.134) 

0.771 
(0.092) 

0.860 
(0.039) 

Evaluation measures were averaged across 10-fold. These values range between 0 and 1, with values closer to 1 indicating better performance. The 
area under the curve (AUC) of precision and recall (PR) curves accounts for the class imbalance in performance evaluation 

Figure 1. Receiver operator characteristic (ROC) and precision and 
recall (PR) curves for each class using support vector machine (SVM). 
Top: linear SVM, mid: SVM (RBF), bottom: SVM (RBF) with feature selection. 

Higher AUCs, closer to 1, indicate better performance. High AUCs with ROC 
curves for each phenotype indicate the model is predicting the phenotypes 
with low false positives. PR curves show that classification performance for 
the immune-excluded class is enhanced (green line) by feature selection. 
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poor infiltration of immune cells (absence of pre-existing antitumor immunity), immune-excluded 
tumors only exhibit retention of T lymphocytes in the reactive stroma, and inflamed tumors show 
infiltrated T lymphocytes [47, 48]. The overall results are summarized in Table I. 

The classification process using an SVM-based system was implemented with two types of kernel 
functions (i.e., linear kernel and radical basis function (RBF)). As shown in Table 1, the best 
accuracy scores of both SVM experiments without feature selection were 0.655 while their training 
accuracies were 1. This indicates that there was a serious overfitting (i.e., the model worked 
perfectly on the training data but significantly failed to do so for testing data). The slack variable 
utilized in the two cases were 100. When statistical feature selection was applied to the input data 
of SVM with RBF kernel, the average test accuracy across CV scored the highest (0.68) throughout 
all experiments, which suggests that feature selection based on statistical group tests was effective. 
For slack variables, the score reached a peak at 10 and decreased slightly as the variables 
changed. On the other hand, linear SVM with feature selection yielded poor results. The accuracy 
was 0.588 regardless of the slack variable. 

In Figure 1, PR and ROC curves for the three SVM experiments are described for the 3 classes, 
which are marked in blue (immune desert), orange (inflamed), and green (immune-excluded). 
Among the results with various SVMs, similar to the results of the test accuracy, SVM with RBF 
kernel and feature selection resulted in the highest average AUC scores for both metrics among 
SVM results; 0.688 and 0.812 for the PR and ROC curves, respectively. Accordingly, MCC of 0.495 
for this case was the highest as well. Notably, all of the averaged AUC scores of the PR and ROC 
curves across SVM classes were recorded slightly smaller than the results from DNN models.  

B. CLASSIFICATION OF IMMUNE PHENOTYPES WITH RANDOM FOREST
Test accuracy of Random Forest scored the lowest throughout all experiments regardless of
feature selection. Similar to SVM, training accuracies of Random Forest were 1, denoting that this
algorithm has also overfitted to the input data and yielded poor test accuracy and MCC. But
interestingly, we can see that mean precision recorded the highest score among all models as
shown in Table 1, whether feature selection is applied or not. This highest precision value
indicates that Random Forest was able to produce the lowest number of false positive samples.
Notably, applying Bonferroni correction reduced the gap between precision and recall, so that the
AUC scores of all classes in PR and ROC plot outperformed to those of non-feature selected
Random Forest.

C. CLASSIFICATION OF IMMUNE PHENOTYPES WITH XGBOOST AND ADABOOST

Figure 2. Receiver operator characteristic (ROC) and 
precision and recall (PR) curves for each class using 
XGBoost and AdaBoost. Top: XGBoost without feature 

selection, second row: XGBoost with feature selection, 
third row: AdaBoost without feature selection, bottom: 
AdaBoost with feature selection. Higher AUCs, closer to 
1, indicate better performance. High AUCs with ROC 
curves for each phenotype indicate the model is 

predicting the phenotypes with low false positives. 
Almost all classes of both Boosting algorithms without 
feature selection shows better AUCs of PR and ROC 
curves than feature selected models. 
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For Boosting methods, the most representative Boosting algorithms, AdaBoost and XGBoost 
were employed. As shown in Table 1, the overall test accuracy and MCC of both Boosting 
algorithms scored higher than Random Forest but lower than SVM and DNN. Although XGBoost 
was overfitted for training data, on the contrary to AdaBoost, the test accuracy of XGBoost was 
slightly higher than for AdaBoost’s. Also, applying feature selection to Boosting classifiers resulted 
a worse performance for all metrics compared to models without Bonferroni correction.  

Therefore, we can see that the feature selection was invalid in respect of Boosting algorithms that 
focus weights on misclassified samples for improving accuracies. In other words, the eliminated 
features from Bonferroni correction have had a substantial influence on decision-making 
processes in Boosting models, especially for identifying the attributes of incorrectly classified 
dataset.  

Figure 3. Receiver operator characteristic (ROC) and precision and recall (PR) curves for each class using Random Forest. Top: Random 
Forest without feature selection, bottom: Random Forest with feature selection. Higher AUCs, closer to 1, indicate better performance. High AUCs 
with ROC curves for each phenotype indicate the model is predicting the phenotypes with low false positives. ROC curves show that classification 

performance for the immune-excluded class is enhanced (green line) by feature selection. Likewise, comparing two PR curve plots illustrates that 
performance of all classes with feature selection has outperformed. 
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D. CLASSIFICATION OF IMMUNE PHENOTYPES WITH DNN

Various classification experiments using DNN were performed with the settings described in the 
Methods section. Representative results are summarized in Table 1. With a very naïve DNN model 
without any regularizers or techniques to make the model robust (i.e., dropout, batch normalization, 
and feature selection), the resultant accuracy averaged across all 10 folds was 0.549. Considering 
the baselines with random guess (0.33) and prediction as the dominant class (0.472), the model 
was properly learning to predict BC immune phenotypes. However, it suffered from overfitting and 
relatively low accuracy compared to the SVM-based models. Applying a dropout rate of 0.3, 
statistical feature selection, and l1-regularizer (with hyper parameters 0.01 and 0.08 for each layer) 
on two hidden layers with 32 hidden nodes, the accuracy increased to 0.666 with averaged 
respective precision and recall of 0.722 and 0.635 across different class labels.  

Figure 4. Change of training / testing accuracy with respect to epoch in DNN training. Top: DNN (feature selection), middle: DNN (L1-norm 
penalty), Bottom: DNN (L1-norm penalty and feature selection). Similar training (blue) and testing (orange) accuracies indicate better generalization of 
the trained model to unseen testing data. As seen in the middle panel, significant overfitting (large differences between tra ining and testing accuracies) 

occurs without feature selection. 
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Figure 5. ROC and PR curves (for each class) using deep neural network (DNN). Top: 
DNN (feature selection), mid: DNN (L1-normpenalty), bottom: DNN (L1-norm penalty and 
feature selection). Higher AUC (closer to 1) indicates better performance. High AUCs with ROC 
curves for each phenotype indicate the model is predicting the phenotypes with low false 
positives. Overall AUCs of both ROC and PR curves are higher than those from SVM analysis. 

The ROC and PR curves for individual experiments are shown in Fig. 4, where the curves for each 
class are given in blue (immune desert), orange (inflamed), and green (immune-excluded). All the 
ROC curves in the left column of Fig. 4 rapidly converged close to 1 in their true positive rate 
(TPR). Simultaneously, the PR curves in the right column of Fig. 4 maintained precision with 
respect to recall as much as possible. The respective AUCs of 0.77 and 0.87 for the PR and ROC 
curves demonstrated the model’s feasibility in classifying different stages of immune phenotypes. 
The training and testing accuracies for different DNN settings are shown in Fig. 5, which 
demonstrates that both training (blue) and testing (orange) accuracies increase as the training 
progresses. After the model convergences, the middle subfigure (with l1-penalty) shows a large 
difference between the training and testing accuracies as opposed to the other two subfigures. 
These differences were due to the application of statistical feature selection using a t-test. For 
each fold, statistical testing at each gene feature on the training data with Bonferroni correction 
at 0.05 yielded 900~1300 significant features. Given the high dimensionality of the data, without 
feature selection for dimension reduction, the issue of overfitting was easily seen. Although not 
presented in these results, we also observed overfitting occurring with an increase in hidden 
layers or nodes. This overfitting behavior explains the differences in MCC. As seen in Table 1, 
the DNN with l1-penalty only showed the lowest MCC as it was highly overfitted. On the other 
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hand, the DNN with both l1-penalty and feature selection did not overfit and demonstrated the 
highest MCC of 0.488.     

With the l1-regularizer at imposing sparsity at the input layer, many of the weights associated with 
each feature were suppressed to a value of or close to 0. From the DNN model with regularizer and 
feature selection, which yielded the highest accuracy and AUC for PR curves, the top 20 highest 
weighted gene features across all 10 folds were identified. Among them, 13 common features 
existed across all folds. These were named TMEM156 (Transmembrane Protein 156), TOX 
(Thymocyte Selection-associated High-mobility Group Box Protein), XAF1 (X-linked Inhibitor of 
Apoptosis-associated Factor-1), SPATC1 (Spermatogenesis and Centriole Associated 1), FOXP3 
(Forehead Box P3), ARRB2 (Arestin Beta 2), TNFRSF9 (TNF Receptor Superfamily RNASE6 
(Ribonuclease A Family Member K6), DBH-AS1 (DBH Antisense RNA 1), TENT5C (Terminal 
Nucleotidyltransferase 5C), ID3 (DNA-binding Protein Inhibitor), APOE (Apolipoprotein E), and 
LAX1 (Lymphocyte Transmembrane Adaptor 1).  

IV. DISCUSSION
In recent years, immunotherapy has come to play an increasingly important role in oncology.
Immunotherapy in cancer treatment involves modifying or adding defense mechanisms to the
patient's immune system. Immunotherapy is often used as a supplement to conventional cancer
treatment methods, such as surgery, chemotherapy, and radiation therapy. For some specific types
of lung and colorectal cancer, immunotherapy is used as the first line of treatment [49]. In urological
oncology specifically, immunotherapy is used as a supplemental treatment in addition to standard
of care [50]. Immunotherapy in cancer treatment involves modifying or adding defense mechanisms
to the patient's immune system. Currently, immunotherapy can be divided into several types,
including immune CPIs, T cell transfer therapy, monoclonal antibodies, therapeutic vaccines, and
immune system modulators [51].

Based on current research on BC therapies, immunotherapy seems to be the most promising. 
Because there are multiple regimens for immunotherapy, patients respond differently depending on 
the therapy. Currently, the US FDA has approved five anti-programmed death-1/ligand 1 (PD-1/L1) 
checkpoint inhibitors: atezolizumab, avelumab, durvalumab, nivolumab, and pembrolizumab [52]. 
Among them, atezolizumab was the first to pass approval. This approval was made based on the 
research results of IMvigor210. IMvigor210 was an open multicenter, single-arm phase II clinical 
study designed to study whether atezolizumab could become the standard treatment for advanced 
urothelial cancer. This study suggested that for patients with platinum-based refractory metastatic 
urothelial carcinoma (mUC), checkpoint inhibitors seem to be more attractive than chemotherapy 
[13]. Atezolizumab has shown encouraging long-term response rates, survival rates, and tolerability, 
supporting its therapeutic use in untreated mUC [53]. Based on the results of the study, the FDA 
approved atezolizumab as the first-line drug for the treatment of patients with advanced urothelial 
cancer who are not suitable for cisplatin chemotherapy.  

Regarding Boosting methods, the key hyperparameters were the number of trees and learning 
rates. The number of estimators designates the scale of Random Forest. As more individual trees 
were included, the classification performance became better, but the whole model took longer time 
to be trained. A learning rate of Boosting algorithms denotes a coefficient applied to the weak 
classifiers when calibrating the error values sequentially. Since the learning rate directly affects the 
variation in the weight update, the difference in decision boundaries of multiple trees changed 
proportionally to the learning rate. However, it requires a large number of trees with a time-
consuming ensemble process at the same time. Thus, the number of trees and learning rate has a 
trade-off relationship and coordinating the ratio between the two parameters was crucial to the 
performance of classification. Therefore, we had to manage the number of estimators at the same 
rate for fair comparison of the results. 

In our study, Decision Tree based methods mostly tended to overfit as the training accuracies 
reached 1, and testing cases underperformed compared to SVM and DNN. Comparing the top-2 
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algorithms, although the accuracies with our DNN model were lower than that of our SVM model, 
the AUCs of evaluation curves (ROC and PR) were better. Specifically, the AUCs of PR curves in 
the DNN model were larger by 0.083 compared to the best of both models, which demonstrates 
that the DNN did better with imbalanced class labels. This is because the latent space for group 
separation found by DNN is better than SVM; while SVM with RBF kernel maps the data onto a 
higher dimensional space to find a linear decision boundary in that space, the DNN model mapped 
data onto a lower-dimensional space where group separation can be more effective and robust. 
The accuracy may be better in the high-dimensional space found by SVM with RBF kernel, but the 
actual separation of the three immune phenotypes was more effective with DNN. This was also 
seen in the overfitting trend of both models. Both SVM and DNN suffered from overfitting; it was 
more serious for the SVM model while the DNN model was able to mitigate this issue with common 
techniques, such as dropout and regularizers, and this behavior was observed in MCC of individual 
models. As a result, there was a trade-off between training accuracy and other measures. Although 
SVM achieved slightly better test accuracy and MCC than those from DNNs, the precision and 
AUCs were significantly higher in DNN models, which we believe are more important.  

Regarding the effective biomarkers found by the DNN model, downstream statistical group tests 
across each phenotype pairs yielded many significant p-values. As the phenotype profiles are 
ordered by severity, all 13 features showed very low p-values (<1e-6) for immune desert vs. 
inflamed and mostly effective (i.e., <0.05) for other group pairs. Perhaps this was expected as our 
feature selection process selected important features with statistical tests at the training stage, but 
it was still worth analyzing them over the entire data to confirm if these biomarkers are really 
statistically meaningful for group comparisons.   

We further investigated the 13 significant features associated with immunotherapy responsiveness 
in BC. FOXP3 is widely known as a key regulatory transcription factor of regulatory T cells, 
contributing to immune system responses [27, 54, 55]. Expression of FOXP3 in BC has been 
reported to negatively associated with survival of patients [56]. Recent studies have reported that 
FOXP3 acts as a transcriptional regulator of HIF-1α gene expression in BC, suggesting the potential 
contribution of the FOXP3/HIF-1α pathway in poorer survival [57]. APOE, an apolipoprotein related 
to lipoprotein-mediated lipid transport, was also found in the immunotherapy responsive molecular 
features. The LXR (liver X receptor)/APOE axis has been reported to regulate innate immune 
suppression and activation. Since this axis blocks innate immune suppression in many cancer 
types, it has been suggested as a therapeutic target to allow better efficacy of immunotherapy for 
cancer patients [58]. TOX has been found to regulate innate immunity and the tumor 
microenvironment. TOX expression significantly increases immune infiltration levels and is 
downregulated in most cancer types. Lower expression of TOX is correlated with poorer prognoses, 
suggesting that TOX expression can be used for stratification of non-responders to immunotherapy 
[59, 60].  

Findings from this study suggest that the experiment we designed using ML algorithms are effective 
in classifying immune phenotypes of BC with gene expressions and identifying associations 
between specific gene expressions and the phenotypes. It also demonstrates the potential of our 
DNN model after improving overfitting via utilization of more samples. In addition, this study found 
13 features associated with response to immunotherapy, which may all be biologically relevant. 
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ACHIEVEMENT 5: 
Classification of the Urinary Metabolome Using Machine Learning and Potential 
Applications to Diagnose Interstitial Cystitis 

Summary 
With the advent of artificial intelligence (AI) in biostatistical analysis and modeling, machine 
learning can potentially be applied into developing diagnostic models for interstitial cystitis (IC). 
In the current clinical setting, urologists are dependent on cystoscopy and questionnaire-based 
decisions to diagnose IC. This is a result of a lack of objective diagnostic molecular biomarkers. 
The purpose of this study was to develop a machine learning-based method for diagnosing IC 
and assess its performance using metabolomics profiles obtained from a prior study. To develop 
the machine learning algorithm, two classification methods, support vector machine (SVM) and 
logistic regression (LR), set at various parameters, were applied to 43 IC patients and 16 healthy 
controls. There were 3 measures used in this study: accuracy, precision (positive predictive 
value), and recall (sensitivity). Individual precision and recall (PR) curves were drafted. Since the 
sample size was relatively small, complicated deep learning could not be done. We achieved a 
76-86% accuracy with cross validation depending on the method and parameters set. The highest 
accuracy achieved was 86.4% using SVM with a polynomial kernel degree set to 5, but a larger 
area under the curve (AUC) from the PR curve was achieved using LR with a 𝑙1-norm regularizer. 
The AUC was greater than 0.9 in its ability to discriminate IC patients from controls, suggesting 
that the algorithm works well in identifying IC, even when there is a class distribution imbalance 
between the IC and control samples. This finding provides further insight into utilizing previously 
identified urinary metabolic biomarkers in developing machine learning algorithms that can be 
applied in the clinical setting.  

Interstitial cystitis (IC), also known as painful bladder syndrome or bladder pain syndrome, is a 
chronic visceral pain syndrome of unknown etiology that presents itself as a constellation of 
symptoms, including bladder pain, urinary frequency, urgency, and small voided volumes, in the 
absence of other identifiable diseases100-102. Urine is in direct contact with the bladder epithelial 
cells that could be giving rise to IC; as a result, metabolites released from bladder cells may be 
enriched in urine103.  

The urinary metabolome was previously investigated by our group for potential IC diagnostic 
biomarkers 104-106. We attempted to identify IC-associated metabolites from urine specimens 
obtained from IC patients and controls using nuclear magnetic resonance (NMR). Our findings 
provided preliminary evidence that metabolomics analysis of urine can potentially segregate IC 
patients from controls. We sought to capture the most differentially detected NMR peaks and 
discern if there was a significant difference in the peak distribution between IC and control 
specimens. Based on multivariate statistical analysis, principal component analysis (PCA) 
suggested that the urinary metabolome of IC patients and controls were clearly different; 140 
NMR peaks were significantly altered in IC patients (FDR < 0.05) compared to controls 104.  

Machine learning (ML), originally described as a program that learns to perform a task or make 
decisions based on data, is a valuable and increasingly necessary tool for modern healthcare 107. 
However, this definition is broad and could cover nearly any form of data-driven needs. ML is not 
a magical approach that can turn data in immediate benefits, even though many news outlets 
imply that it can. Rather, it is natural extension to traditional statistical approaches. In our present 
study, we utilized ML and automated performance metrics to evaluate the clinical value of our 140 
identified NMR peaks. We used ML algorithms examine the relationship between metabolic 
expression and disease. We applied logistic regression (LR) 108 and support vector machine 
(SVM) 109,110, which are traditionally known to work well even with small sample sizes, to our 
metabolomics signatures and used this data together with patient clinicopathological features to 
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diagnose IC. We used our dataset of 59 cases to train, test, and validate the model. The results 
showed that our ML-based algorithms were able to successfully identify IC patients from healthy 
subjects.  

This study aimed to address the question of, “Does utilizing metabolic data in ML play a role in 
diagnosing IC?”. ML is a form of artificial intelligence (AI) and learns from past data in order to 
predict the future. Our NMR-based ML algorithm was able to collectively distinguish the IC patient 
urinary profile from that of controls.  

MATERIALS AND METHODS 
Ethics Statement 
For this paper, we used the deposited dataset derived from the published data. This study used 
the publicly deposited data, which does not need IRB approval. 

Dataset 
There are 59 samples in total in the IC dataset. In order to acquire IC-associated metabolites, 
urine samples were collected from 43 IC patient group and 16 healthy control group. Each urine 
specimen was analyzed using nuclear magnetic resonance (NMR) and biomarkers were 
identified with 140 NMR peaks. The 140 NMR peak feature was utilized to apply the dataset to 
ML algorithms for classification of IC patients in this paper 104.  

Machine Learning 

Method. 
Due to limited sample size, we adopted two machine learning algorithms, i.e., Support Vector 
Machine (SVM) 109,110 and Logistic Regression (LR)108, that are traditional but work well even with 
small number of samples. These are supervised learning algorithms, where each data sample is 
represented by a number of features and comes with a label that tells which group the sample 
belongs to.  

When data is represented as scattered data points in a feature space that consists of two clusters 
representing individual groups, SVM finds a decision boundary (either linear or non-linear) that 
separates the different groups. Training an SVM optimizes the decision boundary to maximize 
the margin between the clusters, and it requires a kernel function train a kernel SVM that learns 
a non-linear decision boundary, i.e., a non-linear classifier 111. The model contains a user 
parameter known as ‘slack variable’ that controls the width of the margin.   

LR is also a classifier that learns via a linear model. By feeding a set of training samples with a 
number of features, it learns specific weights associated with features. When a data sample is 
input into to a LR model, a classification is made by a linear combination between the weights 
and the data; together with a sigmoid function, the combined value is mapped to a probability 
between 0 and 1. The predicted label is assigned according to the probability, and by minimizing 
the classification error (usually formulated using cross-entropy) in the training dataset, the weights 
are learned. One can add additional regularization terms in the model, such as 𝑙1 or 𝑙2-norm of 

the weights, where 𝑙1-norm controls the sparsity of the weights 112, which will select the most
important features, while 𝑙2-norm controls the smoothness of the weights to make the model more 

robust 112,113.  

Both SVM and LR were implemented using the sklearn package in Python. 

Training.  
Because the sample size was very small, the leave-one-out cross validation (CV) 114 method 
was utilized to make full use of the data set and to obtain unbiased result from the classifiers. 
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With leave-one-out, we picked one sample as a testing set while using the rest of samples as a 
training set to train and test the model. The same process was iterated for every sample in the 
dataset. An illustration of the leave-one-out CV workflow is given in the Figure 1.  

For SVM, we performed a set of experiments with a linear model, radial basis function (RBF) 
kernel, polynomial kernel with degree being 3, 5, 7. The slack variable was set to 1 for all cases. 
For LR, we tried  𝑙1 and 𝑙2 penalties with different strengths; i.e. the inverse of regularization 
strength C was set to 1, 5, and 10.  

Evaluation. 
After repeating training and testing the model 59 times with leave-one-out CV, each sample was 
assigned a predicted label. By comparing these 59 predicted labels with the true labels, we 
constructed a confusion matrix by counting numbers of True Positive (TP), True Negative (TN), 
False Positive (FP) and False Negative (FN). From these numbers, accuracy, precision and recall 
were calculated to evaluate the performances of the models. Receiver operating characteristic 
(ROC) curve and precision-recall (PR) curve are plotted, and their area under the curve (AUC) 
are reported in the result section. Especially when the distribution of labels in the dataset is 
skewed, the AUC of the PR curve is a suitable measure for evaluating to account for the 
imbalance.  

Figure 1. IC classification experimental scheme with leave-one-out cross validation 

RESULTS 

Classification of IC Samples with SVM. 
SVM was applied to the IC dataset with the leave-one-out CV scheme to classify IC samples from 
controls. The result varied depending on user parameters (i.e., kernel type and kernel parameters) 
as shown in Figure 2 and Table 1. Comparing the numbers, it was found that SVM with 
polynomial kernel resulted in the best performance when the degree of the polynomial kernel was 
3 with 86.4% accuracy, 0.88 AUC of PR curve, and 0.85 AUC of ROC curve. Although the 
accuracy was the highest when the degree was 5, the AUCs of ROC and PR curves with degrees 
set to 3 was the highest. Moreover, the degree equal to 3 has less chance of overfitting than a 
degree of 5.  

Here, the usage of linear kernel did not perform well. It may be because the data were not linearly 
separable or simply the sample size (N=59) was too small compared to the dimension of the data 
(i.e., 140 features). Performance of RBF kernel was also poor; looking at the accuracy using RBF 
kernel with SVM shown in Table 1 (i.e., 72.9%), it was the same as the proportion of IC samples 
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in the dataset (i.e., 43 IC subjects out of 59 subjects) and its recall was 1. This means that the 
classifier was simply predicting that all the samples belong to IC group and was not able to handle 
the class distribution imbalance problem.  

Figure 2. Classification result evaluation curves using SVM. (a) the Precision-Recall curve, (b) 
ROC curve. The values of AUC are calculated for each curve and larger values indicate better 
performance. 

(a)  (b) 

Table 1. The comparison of results from SVM with different set of parameters. TP: True 
Positive, TN: True Negative, FP: False Positive, and FN: False Negative.  

Parameters TP TN FP FN Accuracy Precision Recall AUC 

of PR 

AUC of 

ROC 

kernel=linear 36 9 7 7 0.763 0.837 0.837 0.82 0.76 

kernel=poly, 

degree=3 

39 11 5 4 0.847 0.886 0.907 0.88 0.85 

kernel=poly, 

degree=5 

39 12 4 4 0.864 0.907 0.907 0.88 0.84 

kernel=poly, 

degree=7 

39 11 5 4 0.847 0.886 0.907 0.87 0.83 

kernel=rbf 43 0 16 0 0.729 0.729 1.000 0.36 0.00 
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Classification of IC Samples with LR.  
In addition to SVM experiment, LR was used to classify IC samples and the results are shown in 
Figure 3 and Table 2 with different user parameter settings. LR with 𝑙1-penalty yielded the best 

performance when its penalty parameter was set to 10 with 84.7% accuracy, 0.91 for AUC of 
PR curve and 0.86 for the AUC of ROC curve, which was slight better than the results from 
SVM. These numbers are the best among several trials because of its randomness with the 
initial weights being trained, and the results from other trials did not differ much from those 
reported in Figure 3 and Table 2. 

Table 2. The comparison of results from LR with different set of parameters. TP: True 
Positive, TN: True Negative, FP: False Positive, and FN: False Negative.  

It was observed that LR worked well despite being a linear model. Notice that the performance of 
linear SVM was poor in Table 1; this is because of the 𝑙1-norm penalty applied to the trained 
parameter imposing sparsity and behaving as a natural feature selector. When we checked the 
trained weight of features, most of the weights converged to 0 (a very small number on average 
of absolute values across the leave-one-out process). When the penalty parameter was 10, the 
average weights of 133 features was less than or equal to 0.1. This means that we only need a 
few critical features to predict correct label. In our experiment, feature id = 73, 4, 129, and 35 were 
the most dominant features with the highest weights regardless of the random initialization. In 
other words, they were the four most useful NMR features. We have performed further statistical 
group analysis on these four NMR peaks using two-sample t-test, which resulted in p-values of 
0.003, 0.001, 0.057, and 0.036 respectively.  It was interesting to see that there were many other 
NMR peaks with even lower p-values and the peak ID=129 had a p-value greater than 0.05. While 
these statistical tests are performed independently, our classification results were derived by 
taking all the peaks at the same time for the analysis and it demonstrates that a linear combination 
of the features can be more powerful to distinguish IC from controls. 

LR TP TN FP FN Accuracy Precision Recall AUC of PR AUC of 

ROC 

penalty=l1, C=1 39 9 7 4 0.814 0.848 0.907 0.82 0.75 

penalty=l1, 

C=5 

39 10 6 4 0.831 0.867 0.907 0.88 0.84 

penalty=l1, 

C=10 

38 12 4 5 0.847 0.905 0.884 0.91 0.86 

penalty=l2, C=5 38 7 9 5 0.763 0.809 0.884 0.82 0.75 

penalty=l2, 

C=10 

38 7 9 5 0.763 0.809 0.884 0.82 0.75 
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The 𝑙2-norm constraint did not contribute much in these experiments. This is because the model 
can robustly operate even without the 𝑙2-norm regularizer, which typically degrades performance 

of models in exchange for model robustness. Especially with the 𝑙1-norm regularizer significantly 
lowering the dimension of the data (with 133 redundant features), the sample size (N=59) was 
sufficient to make robust and correct predictions for IC samples.  

Figure 3. Classification result evaluation curves using LR. (a) the Precision-Recall curve, (b) ROC 
curve. The values of AUC are calculated for each curve and larger values indicate better 
performance.  

(a) 

(b)
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DISCUSSION 

It comes with no surprise that medicine is awash with claims that ML applications into big 
healthcare data will create extraordinary revolutions107,115,116. Recent examples have 
demonstrated how big data and ML can create algorithms that can perform on par with human 
physicians. AI is one ML approach without prerequisites. Various AI techniques already exist, and 
successful metabolomics analysis has been reported in previous studies117-119. Conventional 
statistical analysis and AI-based methods were used to assess the discrimination capability of 
quantified metabolites. A multiple logistic regression (MLR) model, alternative decision tree 
(ADTree), neurofuzzy modelling (NFM), artificial neural network (ANN), and SVM machine 
learning methods were used120,121.  

Modern advancements in computational and data science, with its most popular implementation 
in ML, has facilitated novel complex data-driven research approaches. Combined with 
biostatistics, ML aims at learning from data. It accomplishes this by optimizing the performance 
of algorithms with immediate previous knowledge. ML can be applied in either a supervised or 
unsupervised fashion. Supervised learning entails monitoring of the algorithm while it is being 
trained to learn a correct class assignment from a set of parameters, such as how to make a 
correct diagnosis from clinical and laboratory information117.  

Current biomarkers for IC diagnosis and prognosis are insufficiently robust for clinical practice 
using AI. Instead, we used AI to identify IC-related metabolites in an NMR metabolomics dataset 
from our previous study 104, which was able to collectively distinguish IC patient urinary profiles 
from that of healthy controls. The development of diagnostic tools using ML may be useful for 
more accurately identifying IC patients. AI has the potential to manage the imprecision and 
uncertainty that is common in clinical and biological data. AI or ML-based algorithms can take 
several different forms. The icons in the presented figures in this paper represent typical ML 
methods. These include multilayer neuronal networks, decision tree-based algorithms, SVM, and 
related algorithms that separate classes by placing hyperplanes between them, and prototype-
based algorithms, such as k-nearest neighbors that compare feature vectors carried by a case 
with those carried by other cases and assign classes based on similarities. ML-based algorithms 
are not being actively applied to IC research. Such applications could lead to a better 
understanding and deeper knowledge of metabolomics data, which would then provide insights 
into biomarker discovery.  

Although this is out of scope for this study, AI algorithms can be used to predict IC progression or 
therapeutic responses, too122,123. Patient clinicopathological features are commonly used to train 
AI algorithms to predict patient outcomes in other diseases, such as cancer124-126. For instance, 
Wong et al. developed a prostate cancer patient-specific ML algorithm based on 
clinicopathological data to predict early biochemical recurrence after prostatectomy 127. The 
resulting 3 ML algorithms were trained using 338 patients and achieved an accuracy of 95-98% 
and AUC of 0.9-0.94. When compared to traditional Cox regression analysis, the 3 ML algorithms 
had superior prediction performance. This study demonstrated how AI algorithms, trained with 
clinicopathological data, imaging radiomic features, and genomic profiling, outperformed the 
prediction accuracy of D’Amico risk stratification, single clinicopathological features, and multiple 
discriminant analysis, a type of conventional multivariate statistics 127. There is also a role for AI 
in selecting effective drugs for cancer treatment128. Using an ML-based algorithm, Saeed et al. 
quantified the phenotypes of castration-resistant prostate cancer cells and tested their response 
to over 300 emerging and established clinical cancer drugs 129.  

We are aware that one of the limitations of this study includes the novelty of using crowdsourcing 
in medical biomarker development. To our knowledge, there is no previous reference for 
comparison. Additionally, this study was limited to participants in South Korea and to a 1-time 
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point collection. A major problem associated with medical datasets is a small sample size104. 
Given that sufficiently large datasets are important when creating classification schemes for 
disease modeling, a relatively larger dataset can result in reasonable validation due to sufficient 
partitioning of training and testing sets. On the contrary, a smaller training dataset can lead to 
misclassifications and may result in unstable or biased models. For our study, a major problem 
was the small sample size. However, the reason for this is that it takes an immense amount of 
time, effort, and cost to collect a larger amount of medical research data. Furthermore, medical 
research data is often inconsistent, incomplete, or noisy in nature; thereby, reducing sample sizes 
even more. Such small sample size for high-dimensional data often leads to ‘curse of 
dimensionality’, i.e., failing to properly estimate necessary parameters due to lack of samples, 
which we also faced with only 59 samples for 140 NMR features. In this work, we have used SVM 
and LR as classifiers. For SVM, when casting its objective function as a dual form using 
Lagrangian multiplier, the optimization problem seeks for a sparse solution that identifies a few 
‘support vectors’ and thus greatly reduces the dimension of problem. For the LR, we used two 
different regularizers on the parameters to estimate, i.e., L1 and L2-norms, to avoid curse of 
dimensionality and obtain feasible solutions. As demonstrated in the results, as L1-norm 
constraint behaved as a data-driven feature selector reducing the dimension of the problem, the 
classifier avoided the curse of dimensionality. Although we were able to stay away from the curse 
of dimensionality in this study, poor analysis may lead to data overfitting and irreproducible results. 
ML-based algorithms may be manipulated by datasets containing dominant but irrelevant features 
when the sample number is limited. Also, AI cannot be used as an end-all solution to any question. 
There are instances where traditional statistics has outperformed AI or where additional AI does 
not improve results.  

In summary, we have found that ML-based algorithms can be applied to developing diagnostic 
models for IC patients. In the current clinical setting, urologists are generally dependent on 
cystoscopy and questionnaire-based decisions to diagnose IC due to a lack of objective molecular 
biomarkers. The purpose of this study was to develop machine learning methods for diagnosing 
IC and assess their performance using metabolomics data. Considering how ML techniques for 
analyzing omics data can play a role in predicting the diagnosis and prognosis of diseases, future 
studies should integrate use of a larger multidimensional and heterogenous dataset, application 
of more accurate validation results, and use of different techniques for classifying and selecting 
features to pave a promising way toward clinical applications. 
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ACHIEVEMENT 6: 
BRINGING MACHINE LEARNING TO PICK OUT HIDDEN CLINICAL VALUES 
FROM BIG DATA IN UROLOGY 

Suppose you are asked to select one the most important information technology revolution of our 
time that can give your decision-making processes a massive upgrade. Many of us will choose 
machine learning (ML). A definition of ML is “gives computers the ability to learn without being 
explicitly programmed.” The main premise of ML is to introduce algorithms that ingest input data, 
apply computer analysis to predict output values within an acceptable range of accuracy, identify 
patterns and trends within the data and finally learn from previous experience. ML is often applied 
to complicated, poorly understood phenomena in nature, such as complex biological systems, 
climate change, astronomy, or particle physics. 

Let us tell you the mathematics and methodological of ML. The two major pathways in machine 
learning are supervised learning and unsupervised learning. In supervised learning, an algorithm 
is often provided with data X𝑁×𝑃 (N samples with P features) related to the learning objective and 

a desired target measure y. The goal is to train a classifier (i.e., learn a decision function) 𝑓 that 
can perform prediction on the target y for unseen data X, i.e., 𝑓(X) = y, and identify links between 

the features and the target measures. Supervised learning primarily deals with classification and 
regression problems. In unsupervised learning, an algorithm is provided with data X without any 

class label / annotation to find any latent patterns, sometimes producing both answers and 
questions that may not have been conceived by the investigators. Unsupervised learning typically 
deals with clustering and dimensionality reduction problems. The patterns identified in 
unsupervised learning often need to be evaluated for utility either by human interrogation or via 
application within a supervised learning task. 

While validation of unsupervised algorithm can only be performed based on a dataset with ground 
truth that is hidden during the training process, the performance of a supervised learning algorithm 
can be evaluated by various metrics based on the objective of a task. For supervised learning 
algorithms, a dataset is typically divided into two independent sets, i.e., training set and testing 
set, where training of an algorithm is performed using the training set and then the trained model 
is evaluated using the testing set. In order to remove any bias that may have been introduced in 
a single division of training and testing sets, Cross Validation (CV) is often used to evaluate a 
supervised learning algorithm. CV divides a dataset into k subsets, also known as k-folds, and 
iterates through k number of training and testing phases that use i-th subset as a testing set and 

the rest of subsets for training. Such iterations yields k different results with different training-
testing set pairs and aggregating the results let us avoid those cases that may have performed 
successfully or poorly by bias or coincidence.  

The performance of a supervised learning algorithm is often measure by accuracy, precision and 
recall. While accuracy being the main measure of interest, it does not consider class distribution 
imbalance in a dataset which is quite common in many biomedical studies. For example, when a 
dataset consists of two class, e.g., positive and negative, where the number of normal subjects 
dominates, then simply predicting all samples in a testing set as normal will yield high accuracy 
with significant false-positives. That is why one needs to consider precision and recall together, 
where precision measures how precise the prediction made by a trained model is and recall 
measures how much of the total positive examples in the testing set the trained model can predict 
as true positive. F1-score is also a common measure, which accounts for both precision and recall 
simultaneously.   

How ML is applied to develop precision medicine for us? 
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Many of us may agree with this statement - "big data will transform medicine". In recent years, a 
large amount of data has been accumulated in big omics studies of genomes, epigenomes, 
transcriptomes, proteomes, metabolomes and other sources. This big data needs to be analyzed, 
interpreted and manipulated to provide the biological meaning.  Where ML shines is in handling 
enormous numbers of predictors. ML has become ubiquitous and indispensable for solving 
complex problems in most sciences. ML will become an indispensable tool for clinicians seeking 
to truly understand their patients. Yet, we are aware that ML has shortcomings in dealing with big 
data130. First, algorithms might “overfit” predictions to spurious correlations in the data; 
multicollinear, correlated predictors could produce unstable estimates. Second, ML algorithms 
often require millions of observations to reach acceptable performance levels. Third, biases in 
data collection can substantially affect both performance and generalizability. Finally, ML does 
not solve any of the fundamental problems of causal inference in observational data sets. 

Precision medicine is one of the important developments in current medicine. It helps doctors with 
early intervention by using advanced diagnostic procedures and customizes reasonable and 
better personalized treatment methods for patients. Many scientists and physicians are convinced 
by the importance of information technology and ML for the implementation of precision medicine, 
which includes data storage and analysis for determining the association between disease 
outcome, identification of patient characteristics and optimal treatment. Utilizing ML approaches 
for pattern recognition and development of statistical models, creating a knowledge base of all 
existing phenotype categories and disease, organization of clinical datasets of population size 
and open software platform development for statistical analysis of high-dimensional healthcare 
and multi-omics data are crucial for practical realization of precision medicine. 

As you can imagine, ML will have a huge impact in disease (especially cancer) diagnostics and 
prognostics, specifically on the development of novel computational tools for stratification, grading, 
and prognostication of patients with the goal of improving patient care. There are many different 
ML techniques and algorithms, which have been widely used in disease prediction, diagnosis and 
prognosis. A series of studies show how ML could improve diagnostic performance and prediction 
accuracy in clinically relevant patient cohorts131. A study demonstrates how ML can improve well 
established standards such as the Gleason, thus yielding to more precise prognostication. 
Another study developed a ML system to predict Microsatellite instability (MSI) in patients with 
gastrointestinal cancer and endometrial cancers, both accuracies are higher than the prediction 
of molecular markers. Some studies have shown that ML can get higher accuracy of drug 
response prediction. ML methods have become a popular tool for medical researchers, which is 
able to effectively predict future outcomes of disease. 

So how ML is involved in current clinical research? For digitalized pathology field, various 
applications incorporating ML are being developed to assist the process of pathologic diagnosis. 
Major applications that have been studied so far include detection of specific objects such as 
cancer cells, cell nuclei, cell divisions, ducts, and blood vessels, classification and grading of 
tumors, and quantitative evaluation of immunostaining. The major obstacle facing ML of 
pathological images is inadequate image dataset annotation. At present, many technologies have 
been developed 132. For example, generative adversarial networks (GAN), the techniques for 
learning and generating color tones using “generative model” technology, is used for pathological 
data analysis to automatically prepare image datasets necessary for subsequent DL. Pathologists 
are looking forward to a gold standard technology to process pathological images. 

Ml applications in radiology are designed to help computers identify medical imaging data and 
support diagnosis by associating with clinical data, such as treatment or outcome. These 
radiomics techniques can predict diseases with higher accuracy than human eyes. Using ML to 
recognize and analyze image data will fundamentally change our understanding of disease risk 
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and treatment. ML can also use the image information that human eyes can't recognize, so as to 
find new disease patterns and predictive markers. 

At present, it is very popular to find cancer biomarkers through omics research. Because of the 
large data set, people need to use advanced information technology (such as machine learning 
technology) to analyze and understand the data. ML has been applied to mass spectrometry (MS) 
data from different biological disciplines, particularly for various cancers. ML can be useful in 
determining which proteins, from MS data, could be used as biomarkers to differentiate between 
samples of different classes. Metabolomics can also be considered as a method complementary 
to proteomics. ML is the most useful for the interpretation of large genomic data sets and has 
been used to annotate a wide variety of genomic sequence elements, in the process, to identify 
potentially valuable disease biomarkers.  

Then, how about ML application in urological research? 

For prostate cancer (PC) many technology platforms for diagnosis, prognosis, and treatment 
demonstrated the potential benefits of ML. In diagnostic imaging, ML can read cross-sectional 
radiographic images reproducibly and rapidly to make a diagnosis. The ML methods described 
for diagnostic imaging can be extended to treatment planning and interventions by augmenting 
the surgeon’s display with information such as cancer localization and other image-guided 
interventions.  Computer-assisted diagnosis of PC in histopathological slides could be achieved 
by ML in order to optimize accuracy. ML method is also used in genomics research. By identifying 
specific genes or genes, we can develop diagnostic and risk stratification tools, determine the 
best individualized treatment methods and generate targeted drug treatment schemes. 

ML can read radiological / pathological images of bladder cancer to provide diagnostic, treatment 
and prognostic information. Some studies have shown that by using ML model to analyze MRI 
data of bladder cancer, low-grade and high-grade bladder cancer can be identified before 
operation, with an accuracy of 83%. ML-based methods have been further applied to accurately 
quantify tumor buds from immunofluorescence-labeled slides of muscle-invasive bladder cancer 
(MIBC) patients. ML algorithms have been employed to create recurrence and survival predictive 
models from imaging and operative data. ML algorithms used to identify genes at initial 
presentation that are most predictive of recurrence can be applied as molecular signatures to 
predict the risk of recurrence within 5 years after TURB133. 

More and more ML technology has been used to analyze the clinical and imaging data of renal 
cell carcinoma to provide doctors with disease diagnosis, prognosis information and help to make 
treatment plans. Previous studies have shown that ML model can accurately distinguish high-
grade and low-grade renal clear cell carcinoma by analyzing CT image features 133. In recent 
years, identifying biomarkers and multiple gene expression-based signatures by ML have been 
developed to predict survival and disease prognosis in ccRCC. Moreover, some studies have 
demonstrated that noninvasive ML and DL models constructed from radionics features have 
comparable performance to percutaneous renal biopsy in predicting the International Society of 
Urological Pathology (ISUP) grading. 

ML has been also applied in various modalities of urinary stone therapy. Computer-assisted 
detection using image features can support radiologists in identifying stones. With multiple layers 
on large datasets, artificial neural networks (ANN) can predict outcomes after various forms of 
endourologic intervention.  ANN has been used to differentiate ureteral stones from phleboliths in 
thin slice CT volumes due to their similarity in shape and intensity. ANN also can be used for the 
early detection of kidney stone type and most influential parameters to provide a decision-support 
system. The model resulted in 97.1% accuracy for predicting kidney stone type. Recently, ML 
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algorithms have been used to predict treatment success after a single-session shock wave 
lithotripsy (SWL) in ureteral stone patients. 

Furthermore, ML can be applied to benign bladder diseases, such as overactive bladder (OAB) 
syndrome134. A ML model using a random forest-based algorithm was studied to identify patients 
for whom anticholinergic medications are likely to fail. A validated ML prediction model can predict 
the treatment failure of a 3 months standard anticholinergic treatment experiment, and the 
accurate rate is more than 80%. 

How ML will be evolved in tomorrow’s urology? 

In today’s fast-moving technologically enhanced world, ML is still in its evolution. The steps 
needed to integrate ML into the clinic are still unknown. How the new algorithms will influence the 
diagnosis and management of our patients remains our decision. Future research should focus 
on the construction of larger medical databases and further development of AI techniques. The 
predictive precision of ML will continue to provide and enhance personalized medicine with the 
further inclusion of data and model retraining. There are limitless future applications for artificial 
intelligence in the field of urology. 
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ACHIEVEMENT 7: 
Research Progress of Urine Biomarkers  
in the Diagnosis, Treatment, and Prognosis of Bladder Cancer 

1 Introduction  

1.1 Bladder cancer (BC) incidence, epidemiology, and risk factors 

Bladder cancer (BC) is the fourth most common cancer in the U.S. and the second most common 
cancer of the urinary system, accounting for 7% of all new cancer cases. It also accounts for 4% 
of all cancer-related deaths in the U.S., ranking it the fifth deadliest cancer. The male to female 

ratio of morbidity and mortality was about 3:1[1]. Risk factors are related to the environment, diet, 

and lifestyle, especially smoking, exposure to aromatic amines, and genetic factors[2-4]. Other 

known risk factors include the ingestion of high levels of arsenic or significant usage of pain 

relievers containing finazepine[4, 5]. 

1.2 Economic burden of BC 

The European Organization for Research and Treatment of Cancer (EORTC) has established 
recommended plans for low to moderate-risk BC patients. This involves a cystoscopy every three 
months during the first two years, every four months during the following two years, and once a 

year thereafter[6]. Because BC treatment is continuous, the lifetime cost of treatment and 

monitoring increases with time. Studies have shown that the cumulative cost of health insurance 

for long-term survivors (those over 16 years) is $172,426[7]. As a result of this need for lifelong 

monitoring, the cost per patient when treating BC is the highest of all other cancers[8]. 

1.3 Classical Classification of BC 

Based on the degree of invasion in the bladder muscle wall, BC is divided into either non-muscle 

invasive BC (NMIBC) or muscle invasive BC (MIBC)[9]. There may be different genetic variation 

underlying the difference between the two types of BC[10]. When histologically subtyping BC, 

there are several types. Transitional cell carcinoma (TCC), also known as urothelial carcinoma, 
accounts for about 90% of all BC. Squamous cell carcinoma (SCC) and adenocarcinoma account 

for about 10%[11]. There are various other rare types of BC as well[12].BC can also be divided 

pathologically into low-grade (LG) and high-grade (HG) tumors. LG tumors are usually well-

differentiated, while HG tumors are poorly differentiated[13]. 

1.4 Molecular phenotyping of BC 

Recent genome mRNA expression analysis demonstrated that BC can be classified into 
molecular subtypes. These different subtypes of BC have distinct progression patterns, biological 
and clinical properties, and response to chemotherapies. There are currently five published 
classification methods; these include guidelines from the University of North Carolina (UNC), MD 
Anderson Cancer Center (MDA), The Cancer Genome Atlas (TCGA), Lund University (Lund), and 
Broad Institute of Massachusetts Institute of Technology and Harvard University (Broad)(Table1) 

The classifications by UNC define two molecular subtypes of high-grade BC, “luminal” and “basal”, 

with molecular features reflecting different stages of urothelial differentiation[14]. Luminal BC 

expresses terminal urothelial differentiation markers, such as those seen in umbrella cells 
(UPK1B, UPK2, UPK3A, and KRT20), whereas basal BC expresses high levels of genes that are 
typical in urothelial basal cells (KRT14, KRT5, and KRT5B). The UNC study created a gene 
signature, BASE47, that accurately discriminates intrinsic bladder subtypes. Identified basal 
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tumors had significantly decreased disease-specific and overall survival. In addition, among the 
clinicopathological features available in the MSKCC dataset, only subtypes identified by BASE47 
were found to be significant in disease-specific survival by univariate analysis. This study also 
found that females have an increased incidence of basal-like BC, which is associated with a worse 
prognosis. 

The classification system by MDA identified three molecular subtypes of MIBC: “basal”, “luminal”, 

and “P53-like” [15]. Basal MIBC was associated with shorter disease-specific and overall survival, 

presumably because these patients tend to have more invasive and metastatic disease at 
presentation.  Transcription factor P63 plays a central role in controlling basal gene signatures 
and preliminary data suggests that EGFR, Stat-3, NFκB, and Hif-1α are also involved. Luminal 
MIBC displays active ER/TRIM24 pathway gene expression and were enriched for FOXA1, 
GATA3, ERBB2, and ERBB3. Luminal MIBC contains active PPAR gene expression and 
activating FGFR3 mutations; thereby, PPARγ- and FGFR-3-targeted agents may be active in this 
subtype. Because luminal MIBC responds well to neoadjuvant chemotherapy (NAC), targeted 
therapies should be combined with conventional chemotherapy for maximum efficacy. The P53-
like MIBC responded very poorly to NAC and were consistently resistant to frontline neoadjuvant 
cisplatin-based combination chemotherapy. Additionally, comparative analysis of matches gene 
expression profiles before and after chemotherapy revealed that all resistant tumors expressed 
wild-type P53 gene expression signatures. These results indicate that “P53-ness” may play a 
central role in BC chemoresistance. 

The classification by TCGA identified four clusters (clusters I–IV) by analyzing RNA-seq data from 

129 tumors[16]. Cluster I (papillary-like) is enriched in tumors with papillary morphology, FGFR3 

mutations, FGFR3 copy number gain, and elevated FGFR3 expression. Cluster I samples also 
had significantly lower expression of miR-99a, miR-100, miR-145 and miR-125b. Tumors with 
FGFR3 alterations and those that share similar cluster I expression profiles may respond well to 
inhibitors of FGFR and its downstream targets. Clusters I and II express high levels of GATA3 
and FOXA1. Markers of urothelial differentiation, such as uroplakins, epithelial marker E-cadherin, 
and members of miR-200 miRNAs are also highly expressed in clusters I and II. Clusters I and II 
express high HER2 levels and an elevated estrogen receptor beta signaling signature, which 
suggests potential targets for hormone therapies, such as tamoxifen or raloxifene. Cluster III 
(basal/squamous-like) express characteristic epithelial lineage genes, including KRT14, KRT5, 
KRT6A, and EGFR. Many of the samples in cluster III express cytokeratins (KRT14 and KRT5). 
Integrated expression profiling analysis of cluster III revealed a urothelial carcinoma subtype with 
cancer stem-cell expression features, perhaps providing another avenue for therapeutic targeting. 

The Lund classification system defines five major urothelial carcinoma subtypes: urobasal A, 
genomically unstable, urobasal B, squamous cell carcinoma-like (SCC-like), and infiltrated tumor 

class[17]. This was established using gene expression profiles from 308 tumor cases. These 

different molecular subtypes show significantly different prognosis. The best prognosis is the 
urobasal A, and the worst prognosis are urobasal B and SCC-like. The prognosis of genomically 
unstable and infiltrated class are between them. Urobasal A tumors were characterized by 
elevated expression of FGFR3, CCND1, TP63, as well as expression of KRT5 in cells at the 
tumor–stroma interface. The majority of urobasal A tumors were non-muscle invasive and of low 
pathologic grade. The genomically unstable subtype was characterized by expression of ERBB2 
and CCNE, low expression of cytokeratin, and frequent mutations of TP53. Genomically unstable 
cases represented a high-risk group, as close to 40% were MIBC. This subtype also showed low 
PTEN expression. The SCC-like subtype was characterized by high expression of basal keratins, 
which are normally not expressed in the urothelium; these include KRT4, KRT6A, KRT6B, KRT6C, 
KRT14, and KRT16. SCC-like tumors also had markedly bad prognoses. Furthermore, this group 
showed a comparatively different proportion of female/male patients, reminiscent of the 1:1 
proportion seen in patients diagnosed with bladder SCC, suggesting that females are more likely 
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to develop urothelial carcinomas with a keratinized/squamous phenotype, which is associated 
with an adverse prognosis. Urobasal B tumors showed several similarities to urobasal A tumors, 
such as a high FGFR3 mutation frequency, elevated FGFR3, CCND1, and TP63 levels, and 
expression of the FGFR3 gene signature. However, this group also showed frequent TP53 
mutations and expression of several keratins specific for the SCC-like subtype. Additionally, 50% 
of the cases were MIBC; including 5of 9 FGFR3 mutated cases. The infiltrated subtype 
demonstrated a pronounced immunologic and extracellular membrane (ECM) signal, indicating 
the presence of immunologic and myofibroblast cells. This subtype most likely represents a 
heterogeneous class of tumors; immunohistochemistry (IHC) revealed the presence of tumors 
with genomically unstable, urobasal B, and SCC-like protein expression patterns in this group. 

The Broad classification identified four different subtypes: luminal, immune undifferentiated, 

luminal immune, and basal[18]. Approximately 41% of invasive BC was in the luminal subtype, 

with high expression of KRT20 and UPKs 2/1A/1B/3A as well as moderate to high expression of 
multiple pertinent transcription factors (KLF5, PPARG, and GRHL5). The luminal subtype was 
enriched for in male patients, papillary histology, and stage II tumors. A third (29%) of invasive 
BC was in the basal subtype, with high expression of KRT14, KRT5, KRT6A/B, and KRT16, and 
low expression of uroplakins, which is consistent with basal or undifferentiated cytokeratin 
expression patterns. Consistent with prior studies, the basal subtype expressed TP63, TP73, 
MYC, EGFR, TGM1, and SCEL, which is indicative of some degree of squamous differentiation. 
The basal subtype was enriched in female patients and tumors with nonpapillary histology. The 
basal subtype also expressed many immune genes at intermediate and somewhat variable levels. 
These genes include CTLA4 and CD274, which encodes for PD-L1, suggesting that there may 
be immune cell infiltration of tumors. A smaller percentage of cancers (11%) were grouped into a 
novel subtype called immune undifferentiated. These cancers showed very low expression of 
luminal markers, variable expression of basal cytokeratins, and relatively high expression of 
immune genes, including CTLA4 and CD274, which further suggests significant immune cell 
infiltration and possible immune evasion. Lastly, the luminal immune subtype group constitutes 
about 18% of all cases and is characterized by the expression of luminal genes (cytokeratins and 
uroplakins) and intermediate expression of immune genes. This group was notably enriched for 
stage N+ tumors. The luminal subtype was enriched for in cancers with FGFR3 mutations and 
amplification events involving PVRL4 and YWHAZ. The basal subtype was enriched for NFE2L2 
mutations. Both the luminal immune and immune undifferentiated subtypes had high expression 
levels of ZEB1, ZEB2, and TWIST1, which is characteristic of epithelial-mesenchymal transition 
(EMT). 

Gottfrid et al. proposed five major tumor-cell phenotypes in advanced BC: urothelial-like, 
genomically unstable (GU), basal/SCC-like, mesenchymal-like, and small-cell/neuroendocrine-

like[19]. Urothelial-like tumors express FGFR3 and CCND1 and frequently demonstrate a loss of 

9p21 (CDKN2A). GU tumors express FOXM1, but not KRT5, and frequently show loss of RB1. 
Basal/SCC-like tumors were found to express KRT5 and KRT14, but not FOXA1 and GATA3. 
The mesenchymal-like BC is a new subtype that shows a tumor-cell phenotype that starkly 
contrasts with previously defined subtypes and is biologically different from the basal/SCC-like 
cases that they are clustered with. The tumor cells are mesenchymal-like and express typical 
mesenchymal genes, such as ZEB2 and VIM. The tumor cells were themselves mesenchymal-
like and expressed the typical mesenchymal genes ZEB2 and VIM. The consensus cluster Sc/NE-
like turned out to harbor two very distinct tumor-cell phenotypes. One-half of these tumors 
expressed markers that are typical for neuroendocrine differentiation. This part of the Sc/NE 
consensus cluster also showed an absence of PPARG, FOXA1, and GATA3 expression, as well 
as of uroplakin and KRT20 expression. 

Kardos et al. reported the discovery of a claudin-low molecular subtype of high-grade BC that 

shares characteristics with the homonymous subtype of breast cancer[20]. Although there has 
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been much work done on the molecular phenotyping of BC, the different emphases of different 
classification methods have made it difficult to consolidate a widely accepted classification 
method. As a result, the molecular phenotyping of BC remains to be further studied. The claudin-
low subtype can be considered a subpopulation of the basal-like subtype (UNC classification 
system). Claudin-low bladder tumors are rich in a variety of genetic characteristics, including 
increased mutation rates of RB1, EP300, and NCOR1, increased the frequency of EGFR 
amplification, decreased mutation rates of FGFR3, ELF3, and KDM6A, and decreased the 
frequency of PPARG amplification. These characteristics define a molecular subtype of BC with 
distinct molecular features and an immunological profile that is theoretically primed for an 
immunotherapeutic response.  

Figure 1 summarizes the classification of BC. 

Table 1. Different classifications of BC based on molecular phenotyping. This table does 
not contain classifications based on Gottfrid’s research. 

UNC MDA Lund TCGA Broad 

Basal Basal UroA Cluster I Basal 

Luminal Luminal UroB Cluster II Luminal 

P53-like GU Cluster III Luminal immune 

SCCL Cluster IV immune undifferentiated 

Infiltrated 

2 Biomarker Discovery in BC 

More than 75% of patients are diagnosed and treated for NMIBC. At the time of initial evaluation, 

its recurrence rate can be as high as 70%[21]. Currently, the standard and most important 

examination method for BC is cystoscopy, However, this procedure is invasive, uncomfortable, 

and expensive[22]. Furthermore, cystoscopy may miss certain lesions, particularly smaller areas 

of carcinoma in situ[23]. Molecular biosignatures indicative of altered cellular landscapes and 

functions have been casually linked to pathological conditions, suggesting the promise of BC-
specific biomarkers. However, a noninvasive biomarker that is as sensitive and specific as 
standard cystoscopy has yet to be discovered. As we progress through the 21st century, we now 
have access to a number of ways to analyze diagnostic markers in-depth. The evolution of omics 
platforms and bioinformatics to allow for analysis of the genome, epigenome, transcriptome, 
proteome, lipidome, metabolome et al. enables the development of more sensitive biomarkers. 
These discoveries will broaden understanding of the complex biology and pathophysiology of 
bladder diseases, which can then be clinically translated. Biomarkers of interest can be detected 
in different types of samples, including serum, tissue, and urine. Urinary biomarkers are 
particularly attractive due to cost, time, and minimal effort. As a result, studies on urinary BC 
biomarkers continue to expand. 

Figure 2 shows the overview of the multi-OMICS strategies for urine-based biomarker discovery 
and translational application. 
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2.1 Proteomics-based BC biomarkers 

In patients with hematuria, aurora A kinase (AURKA) can discriminate low-grade BC patients vs. 

normal patients [24]. After adjusting for patients, clinical features, and treatment with Bacillus 

Calmette-Guerin, the activated leukocyte cell adhesion molecule (ALCAM) is positively correlated 

with tumor stage and overall survival (OS)[25]. Nicotinamide N-methyltransferase has been 

shown to be elevated in BC patients and is correlated with histological grade[26]. 
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE/Ref-1) levels are higher in BC, with 
respect to non-BC, and is correlated with tumor grade and stage; moreover, it has been shown to 

be significantly increased in patients with historical BC recurrence[27]. The urinary cytokeratin-

20 (CK20) RT-PCR assay shows that the sensitivity of urothelial BC detection was 78-87%, and 

the specificity was 56-80%. , with improved diagnostic accuracy in tumor progression[28]. 
However, its performance is relatively poor in low-grade tumors. Higher urinary levels of CK8 and 

CK18 have been detected via UBC Rapid Test in high vs. low-grade BC[29]. 

There are multiple markers that can potentially be used for BC detection; increased urinary levels 
of apolipoproteins, A1, A2, B, C2, C3, and E (APOA1, APOA2, APOB, APOC2, APOC3, APOE) 

were found in BC compared to healthy controls[30, 31]. A signature of 4 urinary fragments of 

uromodulin, collagen α-1 (I), collagen α-1 (III), and membrane-associated progesterone receptor 

component 1 may be able to discriminate MIBC from NMIBC[32]. Other panels employ IL-8, 

MMP-9/10, ANG, APOE, SDC-1, α1AT, PAI-1, VEGFA, and CA9 to indicate BC from urine 
samples. The advantage of these multi-urinary protein biomarkers is evident in high and low-

grade and high and low-stage diseases[33]. Combined with urine markers, including midkine 

(MDK), MDK, synuclein G, CEACAM1, ZAG2 [34], clusterin (CLU) and angiogenin (ANG), the 

sensitivity and specificity of NMIBC diagnosis can be improved through immunoassay and urine 

cytology [35]. CK20 and insulin-like growth factor II (IGF-II) levels were found to be increased in 

the urine sediments of NMIBC patients compared to controls[36]. Increased levels of urinary HAI-

1 and epithelial cell adhesion molecule (EpCAM) are prognostic biomarkers in high-risk NMIBC 

patients[37]. Urine survivin have been proved by chemiluminescence enzyme immunoassay that 

it is a potential biomarker for BC, which has been shown to be related to tumor stage, lymph node 

metastasis, and distant metastasis.[38]. Snail overexpression represents an independent 

prognostic factor for tumor recurrence in NMIBC[39]. CD44 in urine was found to be elevated in 

high-grade MIBC by glycan-affinity glycoproteomics nanoplatforms. [40]. 

Proteomics-based BC biomarkers were summarized in Table 2. 

2.2 Metabolomics-based BC biomarkers 

Urinary metabolomics signature may be useful in detecting early stage BC. Jin X et al. analyzed 
urinary metabolites by high-performance liquid chromatography-quadrupole time-of-flight mass 

spectrometry (HPLC-QTOFMS), and found 12 metabolites that help to identify BC.[41]. Zhou Y 

et al. developed a urinary pseudotargeted method based on gas chromatography-mass 

spectrometry (GC-MS) which has been validated by a BC metabolomics study[42]. Using binary 

logistic regression analysis, a four-biomarker panel was defined for the diagnosis of BC. The 
results revealed that the urinary four-biomarker panel can be used to diagnose NMIBC or low-
grade BC. Among the four metabolites, cholesterol levels were significantly increased in the BC 
group, while 5-hydroxyvaleric acid, 3-phosphoglyceric acid, and glycolic acid levels were 
markedly decreased in the BC group.  

X. Cheng et al. carried out a study based on metabolomics with liquid chromatography-high
resolution mass spectrometry (LC-HRMS) to discover novel biomarkers for detecting early-stage
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BC. [43]. A total of 284 subjects were enrolled in the study including 117 healthy adults and 167 

BC patients. Metabolite panels are known to have more predictive power than a single metabolite 

[44]. A metabolite panel consisting of dopamine 4-sulfate, MG00/1846Z,9Z,12Z,15Z/00, aspartyl-

histidine, and tyrosyl-methionine was found to have the best predictive accuracy in diagnosing 
NMIBC.  

Table 2. Summary of proteomics-based BC biomarkers 

Sample
s 

Proteins Reference
s 

urine AURKA 24 

ALCAM 25 

Nicotinamide N-methyltransferase 26 

APE/Ref-1 27 

CK20 28 

CK8, CK18 29 

APOA1, APOA2, APOB, APOC2, APOC3, APOE 30,31 

uromodulin, collagen α-1 (I), collagen α-1 (III), and membrane-
associated progesterone receptor component 1 

32 

IL-8, MMP-9/10, ANG, APOE, SDC-1, α1AT, PAI-1, VEGFA, and 
CA9 

33 

midkine (MDK), synuclein G or MDK, ZAG2, CEACAM1 adn 
angiogenin, clusterin  

34,35 

CK20, IGFII 36 

HAI-1, Epcam 37 

survivin 38 

Snail 39 

CD44 40 

A study by Yumba Mpanga A et al. developed and validated an analytical method for the 
simultaneous quantitative determination of metabolites using reversed phase high-performance 
liquid chromatography coupled with triple quadrupole mass spectrometry (RP-HPLC-

QQQ/MS)[45]. The optimized and validated method was applied to urine samples from 40 BC 

patients and 40 healthy matched controls. Statistical analysis was done using the Student's t-test 
or U-Mann Whitney test. This identified 10 compounds that participate in different metabolic 
pathways, such as gut flora metabolism, RNA degradation, purine metabolism, etc., as being 
significantly different in urine between BC and control groups (p<0.05). These 10 compounds 
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include acetyllysine, N-acetylneuraminic acid, pseudouridine, uridine, xanthine, 7-methylguanine, 
gluconic acid, glucuronic acid, 1,7 dimethylxanthine, and hippuric acid. Moreover, acid trehalose, 
nicotinic acid, and AspAspGlyTrp peptide were upregulated; inosinic acid, ureidosuccinic acid, 

and GlyCysAlaLys peptide were downregulated in BC, but not in healthy controls[46]. 

Metabolomics-based BC biomarkers were summarized in Table 3. 

Table 3. Summary of metabolomics-based BC biomarkers 

Metabolites Alteration References 

Succinate ↑ 41 

Pyruvated ↑ 

Oxoglutarated ↑ 

Carnitine ↑ 

Phosphoenolpyruvate ↑ 

Trimethyllysine ↑ 

Melatonin ↓ 

Isovalerylcarnitine ↑ 

Glutarylcarnitine ↓ 

Octenoylcarnitine ↑ 

Decanoylcarnitine ↑ 

Acetyl-CoA ↑ 

Cholesterol ↑ 42 

5-hydroxyvaleric acid ↓ 

3-phosphoglyceric acid ↓ 

glycolic acid ↓ 

dopamine 4-sulfate ↑ 43 

MG00/1846Z,9Z,12Z,15Z/00 ↓ 

aspartyl-histidine 

tyrosyl-methionine 

acetyllysine ↑ 45 

N-acetylneuraminic acid ↑ 

pseudouridine ↑ 

uridine ↑ 

xanthine ↑ 

7-methylguanine ↑ 

gluconic acid ↑ 

glucuronic acid ↑ 

1,7 dimethylxanthine ↓ 

hippuric acid ↓ 

acid trehalose ↑ 46 

nicotinuric acid ↑ 

AspAspGlyTrp peptide ↑ 
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inosinic acid ↓ 

ureidosuccinic acid ↓ 

GlyCysAlaLys peptide ↓ 

2.3 Genomics-based BC biomarkers 

2.3.1 DNA methylation 

Using urine sediments from BC patients, Sun and her group demonstrated that SOX-1, IRAK3, 
and Li-MET gene methylation status have higher recurrence predictivity than urine cytology and 

cystoscopy (80 vs. 35 vs. 15%, respectively) [47]. Methylated genes, such as those for APC and 

cyclin D2, were found to be significantly prevalent in the urine from malignant vs. benign 

cases[48]. Hypermethylation of the GSTP1 and RARβ2 and APC genes have been identified in 

the urine of BC patients[49]. Evaluation of Twist Family BHLH Transcription Factor 1 (TWIST1) 

and NID2 genes methylation status in urine has been shown to differentiate primary BC patients 

from controls with 90% sensitivity and 93% specificity[50]. Additionally, evaluation of the 

methylation status of NID2, TWIST1, CFTR, SALL3, and TWIST1 genes in urinary cells in 
combination with urine cytology has been found to increase sensitivity and have high negative 

predictive value in BC patients[51, 52]. Urinary methylation levels of POU4F2 and PCDH17 is 

able to distinguish BC from normal controls with 90% sensitivity and 94% specificity[53]. 
Promoter hypermethylation of HS3ST2, SEPTIN9, and SLIT2 combined with FGFR3 mutation 
showed 97.6% sensitivity and 84.8% specificity in the diagnosis, surveillance, and risk 

stratification of low- and high-risk NMIBC patients[54]. Lastly, the methylation status of p14ARF, 

p16INK4A, RASSf1A, DAPK, and APC has been found to be correlated with BC grade and 

stage[55]. 

2.3.2 miRNAs 

Urinary levels of miR-146a-5p are significantly increased in high-grade BC[56]. MiR-126 urinary 

levels were found to be elevated in BC compared to healthy controls [57]. Low miR-200c 

expression has been shown to be correlated with tumor progression in NMIBC[58]. Chen et al. 

detected 74 miRNAs, of which 33 were upregulated and 41 were downregulated in BC compared 
to healthy patients; the most notable of these include  let-7miR, mir-1268, miR-196a, miR-1, miR-

100, miR-101, and miR-143[59]. By screening patients with negative cystoscopy, Eissa et al. 

identified miR-96 and miR-210 as being associated with BC[60]. MiR-125b, miR-30b, miR-204, 

miR-99a, and miR-532-3p were downregulated in the urine supernatant of BC patients[61]. MiR-

9, miR-182, and miR-200b have been shown to be correlated with MIBC aggressiveness, 

recurrence-free, and overall survival (OS)[62]. MiR-145 distinguishes NMIBC from non-BC[63]. 
MiR-144-5p inhibits BC proliferation, affecting CCNE1, CCNE2, CDC25A, and PKMYT1 target 

genes[64]. Cell-free urinary miR-99a and miRNA-125b were found to be downregulated in the 

urine supernatants of BC patients (sensitivity 86.7%; specificity 81.1%)[65]. Urinary levels of miR-

618 and miR-1255b-5p were increased in MIBC patients compared to healthy controls[66]. 
Whole genome analysis determined increased miR-31-5p, miR-191-5p and miR-93-5p levels in 

the urine of BC patients compared to controls[67]. 

Genomics-based BC biomarkers were shown in Table 4. 
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Table 4. Summary of genomics-based BC biomarkers 

Biomarkers Alteration References 

DNA 
Methylation 

SOX-1, IRAK3, and Li-MET 47 

APC and cyclin D2 48 

GSTP1 and RARβ2 and APC 49 

TWIST1 and NID2 50 

NID2 and TWIST1 or CFTR, SALL3 and 
TWIST1 

51,52 

POU4F2 and PCDH17 53 

HS3ST2, SEPTIN9 and SLIT2 54 

p14ARF, p16INK4A, RASSF1A, DAPK, and 
APC tumor suppressor 

55 

miRNAs miR-146a-5p ↑ 56 

MiR-126 ↑ 57 

miR-200c ↓ 58 

let-7miR, mir-1268, miR-196a, miR-1, miR-
100, miR-101, and miR-143 

59 

miR-96 and miR-210 60 

MiR-125b, miR-30b, miR-204, miR-99a, and 
miR-532-3p 

↓ 61 

MiR-9, miR-182 and miR-200b 62 

MiR-145 63 

MiR-144-5p 64 

miR-99a and miRNA-125b ↓ 65 

miR-618 and miR-1255b-5p ↑ 66 

miR-31-5p, miR-191-5p and miR-93-5p ↑ 67 

Metabolomics and metabolic phenotypes of BC 

In biological research, the omics approach includes genomics, proteomics, and metabolomics. It 
probes physiological and malignant processes at the cellular and molecular levels; thereby, 
characterizing the global molecular quantity, structure, function, and dynamic changes within an 
organism. Although genomics and proteomics have helped subtype many cancers based on gene 
mutation or receptor status, considerable heterogeneity is observed in tumor behavior and patient 
outcome, even within a genomic subtype. This is due to the unique cellular processes and 

metabolic profiles that can only be elucidated through metabolomics[68]. Metabolomic analysis 

is less complex compared to genomics, transcriptomics, and proteomics due to fewer endpoints. 
Metabolomics measures the entire set of small molecule products of metabolic processes in a 
biological system. By focusing on the downstream products of genomic and proteomic processes, 
metabolomics summarizes the effects of other omics methods and most closely represents a 

system’s phenotype[69]. 

Metabolomic studies are either untargeted, aiming to comprehensively include all measurable 
analytes without a prior hypothesis, or targeted, measuring only select predefined groups of 

metabolites[70]. Although untargeted studies deal with large complex data sets and carry the risk 
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of false positives due to multiple testing of variables, the advantage is that they are free from 
assumptions. Targeted studies, on the other hand, are hypothesis-driven and offer measurements 
of high precision and accuracy. In metabolomic biomarker research, targeted studies are often 

used to validate findings from prior untargeted studies [71]. 

The field of blood-based genomic and proteomic cancer biomarkers are more developed than 
that of urine-based metabolomics because blood is considered to be an active participant in 
biological processes unlike urine, which is a contrast to waste product. With the advancement of 
urine analysis technology, urinalysis techniques have improved considerably. There are a number 
of methods that now enable in-depth analysis of diagnostic markers. In particular, NMR and MS-
based identification of urinary metabolites are powerful techniques that can potentially diagnose 
a number of conditions. At present, urine metabolomic biomarker studies are being primarily 
conducted by either NMR or MS. Both of these tools have their strengths and limitations. The 
major advantage of MS is its accuracy and specificity in regard to metabolite detection. MS is 
more accurate compared to NMR spectrometry; however, the analytes need to be separated for 
detection and assimilation. In contrast, NMR-based spectrometry is more expensive and has 
lower sensitivity, generally limited to less than 100 analytes in biological fluids. Furthermore, NMR 
does not require the segregation of analytes for detection. The major advantage of NMR is that 

samples are not destroyed and can actually be reused[72-74]. 

BC has profound metabolic abnormalities. Several altered metabolic pathways play a role in 
bladder tumorigenesis. As a result, metabolomics can contribute substantially to understanding 
the relevant alterations of catabolic and anabolic metabolic processes impaired in cancer through 
the identification of tumor-specific metabolic biomarkers with potential diagnostic, prognostic, or 

predictive value [75]. Metabolomic studies have already identified various metabolites of diverse 

pathways (glucose, lipid, amino acid, nucleotide metabolites) as probable BC biomarkers[76]. 

However, caution must be applied; clinical metabolic phenotypes (metabotypes) may be altered 
due to age, gender, diet, race, lifestyle, surgical intervention, and underlying pathophysiological 

conditions[77].In the context of BC metabolomics, baseline characteristics, such as tumor stage 

and grade, hematuria (gross or micro), surgical interventions, and smoking habit should 

additionally be taken into consideration [78]. 

4. Metabolomic Platforms

Contrary to the genome or proteome, the human metabolome composition is still not fully defined. 
There are few research approaches, all of which have emerged in metabolome analysis; these 

include metabolic profiling, metabolic fingerprinting and metabolic footprinting[79]. 

Metabolic profiling is an example of a targeted approach, focusing on identifying and quantifying 
predetermined groups of metabolites with similar physicochemical properties (e.g., carbohydrates, 
amino acids, organic acids, nucleosides) or under the same biochemical pathway (e.g., glycolysis, 

gluconeogenesis, β-oxidation or citric acid cycle)[80]. Metabolic profiling is considered to be an 

extension of metabolite targeted analysis, which relies on analyzing a single compound or small 
subset of metabolites to determine the influence of the specific stimuli on metabolism. Metabolic 
fingerprinting is an untargeted approach that is not driven by any preliminary assumption and 
aims to define changes in the whole metabolome, which occurs at a specific state in the cell, 
tissue or organism. Therefore, the main purpose of metabolic fingerprinting is to identify and 
qualify as many possible metabolites in samples. Metabolic fingerprinting is frequently used in a 
comparative analysis of two subject groups (i.e., healthy vs disease, one disease vs another 
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disease), which makes it a promising tool in studies focused on disease diagnosis and 

prognosis[81]. Metabolic footprinting is often applied in microbiological or biotechnological 

studies. Compared to the other methods, this approach does not concern intracellular metabolites 
but focuses on compounds that are secreted or failed to be used by cells in specific media. Due 
to the close relationship between intracellular and extracellular metabolism, metabolic footprinting 

can provide an integrative interpretation of the metabolic network in a specific living system[82]. 

Due to both the physicochemical diversity of the metabolome and complexity of the biological 
systems, no single analytical platform is able to determine all metabolites present in complex 
biofluids. Therefore, numerous analytical platforms are commonly used in both targeted and 

untargeted metabolomic studies [83]. NMR or MS coupled with different separation techniques 

currently dominates in metabolomics. There are at least four major analytical platforms with 

proven utility for metabolomic applications: NMR, GC-MS, LC-MS, and LCECA [84]. Each of 

these platforms has specific advantages and disadvantages (Table 5).  

Modern NMR makes it possible to perform rigorous structural analysis of many metabolites in 
crude extracts, cell suspensions, intact tissues, or whole organisms. Structural determination of 
known metabolites using various one-dimensional (1D) or 2D NMR methods is straight forward; 
in fact, de novo structural analysis of unanticipated or even unknown metabolites is also feasible. 
NMR has high throughput capability and is particularly capable of determining the structure of 
metabolites, including the location of isotope labeled atoms in different isotopes produced during 

stable isotope tracing studies [85-88]. As a result, metabolic pathways can now be systematically 

mapped by NMR with unprecedented speed. In summary, NMR offers essentially universal 
detection, excellent quantitative precision, and the potential for high-throughput (>100 
samples/day is possible). NMR is an unbiased, robust, reproducible, non-destructive and 
selective analytical platform. In NMR analysis almost no sample pretreatment is required. 
However, the main disadvantages of this technique include low sensitivity and lack of analyte 
separation. Another disadvantage is its high initial cost; NMR instruments can cost well over a 
million dollars. 

MS represents a universal, sensitive tool that can be used to characterize, identify, and quantify 
a large number of compounds in biological samples where metabolite concentrations may 

constitute a broad range[89]. Liquid chromatography coupled with mass spectrometry (LC–MS), 

gas chromatography coupled with mass spectrometry (GC–MS) or capillary electrophoresis 
coupled with mass spectrometry (CE–MS) has a significantly wider application in metabolome 

analysis[83]. 

GC, which employs high-resolution capillary columns and is combined with MS detection, is a 
powerful platform for determining the metabolome. GC–MS often employs either an electron 
impact (EI) or chemical ionization (CI) mode, which provides putative identification based on the 
highly reproducible mass spectra of metabolites and availability of universal structural and mass 

spectral libraries[90]. GC-MS can provide structural information (more informative if the 

compounds are present in existing libraries), reasonable quantitative precision, and high-
throughput (>100 samples/day is possible). Sensitivity is at least 2 orders of magnitude higher 
than NMR. One limitation of GC-MS is its inability to study molecules that cannot be readily 
volatilized. Another limitation is its relatively low mass accuracy (unit resolution). GC-MS is a 
technique of choice for volatile and thermally stable analytes. Therefore, complex and time-
consuming sample derivation is necessary; however, this can lead to undesirable metabolite loss. 
The recent development of multidimensional GC (GC x GC) has improved resolution, robustness, 
and sensitivity compared to conventional GC-MS. 
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LC–MS is the most suitable technique for analyzing non-volatile, thermally unstable, high or low-
molecular-weight compounds with a wide polarity range. most compounds can be analyzed by 
LC-MS. LC–MS is commonly used in the metabolomic analysis of various biofluids (urine, blood 

or tissue extracts)[91, 92]. One limitation of LC-MS is its relative difficulty in obtaining consistent 

quantitative precision. The development of the LC–NMR-MS systems combines the high-

throughput capability of NMR with the high sensitivity and resolution of LC–MS[93, 94]. To 

improve the sensitivity of conventional LC–MS technique, nanoLC–MS was implemented in 

metabolomics studies[95, 96].  

Compared to LC–MS or GC–MS, CE–MS is rarely applied in metabolomic studies. However, 
recent significant improvements have opened CE-MS application in metabolomics. This 
technique is particularly useful in analyzing highly polar ionogenic metabolites in biological fluids 

[97]. CE-MS is a suitable method for urinary metabolomic analysis, which can be performed with 

relatively minimal sample preparation. However, extensive research is also being conducted in 

applying CE-MS to serum metabolomics [98]. CE-MS is a technique dedicated to water-soluble 

and charged molecules, which makes it a highly complementary platform to other separation 
methods, like LC-MS or GC-MS. The main advantages of CE-MS include high resolution power 
and small sample or reagent requirements. Its main limitation is the unstable electroosmotic flow 

phenomenon, which can result in notable migration time shifts during analyses[99]. 

LCECA is ideal for studies on the tryptophan and tyrosine pathways that lead to monoamine 
neurotransmitters because many metabolites within these two pathways can be measured 
quantitatively with LCECA. The robust nature of this platform, its reproducibility, and sensitivity 

have been well described in a series of peer-reviewed publications[100-104]. Preliminary 

experiments described later in this review demonstrate the power and promise of 
electrochemistry-based platforms for metabolomics analysis in defining signatures for central 
nervous system (CNS) disorders and treatments. The LCECA system is extremely sensitive, 
perhaps 2–3 orders of magnitude higher than that of GC-MS, and displays strong run-to-run 
precision over long periods of time. The disadvantages include the lack of structural information 
and low throughput (12 samples/day is the most commonly used metabolomic configuration). The 
system can detect molecules, such as tyrosine and tryptophan metabolites, as well as 
antioxidants and oxidative damage products, but it is “blind” to other molecules, such as glucose, 
ketoglutarate, and most fatty acids. 

Table 5 shows the advantages and limitations of different metabolomics platforms. 

Table 5. Summary of the advantages and limitations of different metabolomics platforms 

STRENGTHS DRAWBACKS 

NMR Rapid Lack of sensitivity 

reproducible Multiplicity of the resonance 

Nondestructive Difficulty of quantification-chemical noise and 
signal overlapping 

High-throughput lack of an analyte separation component 

Minimal sample high instrument cost (over one million dollars) 

manipulation 

Possible tissue analysis 

MS High sensitivity Low quantitation 

Wide detection range Low reproducibility 

Easy metabolite Destructive 
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identification-databases 
availability 

High sample volume requirements 

Possibility to couple with 
separation techniques 

GC-MS reasonable quantitative precision Can't study nonvolatile molecules 

high throughput low mass accuracy (often unit resolution) 

low instrumentation costs ($100–
$300,000) 

undesirable metabolite losses 

High sensitivity 

volatile and thermally stable 
analytes 

LC-MS high flexibility high instruments cost($100,000-over one 
million dollars) 

tailor separations to the 
compounds 

difficulty in obtaining consistent quantitative 
precision 

enable low, medium, or high mass 
accuracy 
Can trade off sensitivity for 
throughput 
Can determine the exact 
molecular composition 
various biofluids analytes 

CE–MS highly polar ionogenic metabolites 
analytes 

notable migration time shift during analyses 

minimal sample preparation 

high resolution power 

LCECA extremely sensitive lack of structural information 

strong run-to-run precision low throughput 

high specificity (tryptophan and 
tyrosine pathways) 

low cost (under $100,000) 
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5. Metabolomics in BC Diagnosis and Prognosis and Predicting Response to
Therapies

BC has profound metabolic anomalies that play central roles in tumor progression[105]. 
Metabolic pathways, such as the tricarboxylic acid (TCA) cycle, lipid synthesis, amino acid 
synthesis, nucleotide synthesis, and glycolysis pathway, are known to be increased in BC tissue 

compared to adjacent benign tissue[106]. 

a. Tricarboxylic acid cycle

A significant decrease in citrate concentration was consistently observed in the urine and serum 

of BC patients[107]. One possible explanation for this is the active uptake of citrate from the 

extracellular medium into the tumor cell [108]. Citrate is important for lipid biosynthesis, which is 

crucial for tumor proliferation[109]. Therefore, the decrease in citrate levels in the urine or serum 

may illustrate the increased utilization of citrate in lipogenesis for the rapid proliferation of tumor 

cells[2]. 

b. Lipid metabolism

Up or downregulation of carnitine species, including carnitine, carnitine C8:1, carnitine C9:0, 
carnitine C9:1, carnitine C10:1, carnitine C10:3, isobutyryl carnitine, acetylcarnitine, 2,6-
dimethylheptanoylcarnitine, isovalerylcarnitine, glutarylcarnitine, and decanoylcarnitine, has been 

reported in BC[41, 110, 111]. The carnitine system plays a central role in lipid metabolism; it 

facilitates the entry of long-chain fatty acids into the mitochondria for utilization in energy-
generating processes and removes short-chain and medium-chain fatty acids that accumulate as 

a byproduct[112]. It has been postulated that the dysregulation of lipid metabolism provides an 

environment that is beneficial to the development of BC. Additionally, altered fatty acid 
transportation, fatty acid β-oxidation, or energy metabolism might partially explain why BC 

patients are prone to lethargy[2]. 

c. Amino acid metabolism

i. Glutathione metabolism

Elevated glutathione (GSH) level was reported in BC tissues and cell lines via metabonomic 

studies [2]. Oxidative stress results in elevated  GSH and overexpression of antioxidant enzymes, 

such as glutathione peroxidase, glutathione reductase, and glutathione-S transferase[113]. 
While GSH is involved in the detoxification of carcinogens, its elevation in tumors may promote 
chemotherapy resistance in cancer cells via conjugation with pharmacologically active drugs or 

metabolites[114]. 

ii. Tryptophan metabolism

Upregulation of tryptophan metabolism in BC was observed with increased levels of anthranilic 

acid, N-acetylanthranilic acid, kynurenine, 3-hydroxykynurenine, and malonate[115-117]. The 

proposed underlying mechanisms include autoxidation and interaction with nitrite or transition 
metals to form reactive intermediates, binding as ligands to aryl hydrocarbon receptor (AHR) that 

plays a role in carcinogenesis[118]. Notably, Opitz et al. demonstrated that tryptophan-2,3-

dioxygenase (TDO)-derived kynurenine suppresses antitumor immune responses and promotes 
tumor-cell survival through AHR, which in turn suggests TDO as a potential cancer therapeutic 

target[119]. 
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iii. Hippuric acid &taurine metabolism

Downregulation of hippuric acid was generally observed in BC patients and taurine was found to 

be elevated in BC patients compared to benign and healthy controls [107]. Taurine inactivates 

hypochlorous acid, which is a strong oxidant and cytotoxic agent, by forming stable taurine 
chloramine (Tau-Cl). In turn, Tau-Cl downregulates immunological responses via production of 

proinflammatory cytokines, leading to tumor progression[120]. 

iv. Nucleotide metabolism

Purine and pyrimidine metabolism has been found to be perturbed in BC, leading to upregulation 
of guanine, hypoxanthine, cytidine monophosphate, thymine, uracil, uridine, and 

pseudouridine[111, 115]. Nucleosides, particularly modified nucleosides (e.g., pseudouridine), 

are elevated and suggested as potential biomarkers in various cancers[121]. Such elevation 

nucleoside levels have been postulated to be the result of increased DNA synthesis associated 

with enhanced cell cycle activity in cancer[122]. Modified nucleosides are excreted in urine 

because they cannot be recycled as nucleosides[123]. Thus, levels of modified nucleosides in 

urine reflect oxidative DNA damage and RNA turnover in the body. 

v. Glycolysis

Lactate, an important end product of glycolysis, was found to be elevated in BC tissue and urine 

[115, 124], indicating an increased rate of glycolysis rate. The upregulation of glycolysis, resulting 

in increased glucose consumption, is a universal phenomenon in cancer and is termed the 

“Warburg effect” [125, 126]. Gatenby and Gillies proposed that the upregulation of glycolysis is 

an adaptation of premalignant lesions to intermittent hypoxia, but requires evolution to the 
resultant proliferative and invasive phenotypes where resistance to acid-induced cell toxicity is 

also observed[125]. 

Diagnosis and prognosis of various diseases are enhanced by the identification of biomarkers, 
which can differentiate individuals with the disease from those without. Ideal markers are easily 
detectable in tissue, serum, and urine, and have a high sensitivity and specificity. There are 
several potential applications of metabolomics in BC and other cancers; this includes improving 
detection, providing prognostic information, and impacting treatment. 

6. Clinically applicable BC biomarkers-based tools

At present, the FDA has approved six tests for detecting or monitoringBC. NMP22, NMP22 
BladderChek, and UroVysion have FDA approval for BC diagnosis and surveillance; 
Immunocytology (uCyt+), BTA-TRAK, and BTA-STAT have been approved only for surveillance 

[127-131]. There are also many metabolites that can be considered as potential tumor 

biomarkers for BC. 

By ultra-performance liquid chromatography time-of-flight mass spectrometry, imidazole-acetic 

acid was evidenced in BC[132]. A metabolite panel consisting of indolylacryloylglycine, N2-

galacturonyl-L-lysine, and aspartyl-glutamate can discriminate high- vs. low-grade BC[133]. In 

addition, alterations in the metabolisms of phenylalanine, arginine, proline, and tryptophan were 

evidenced by UPLC-MS in NMBIC[134]. Jin X et al. confirmed through their study that carnitine 
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acyltransferase and pyruvate dehydrogenase complex expressions are significantly altered in 

cancer[41]. Alberice JV et al. propose that metabolites related to the tryptophan metabolism 

pathway, such as kynurenine and tryptophan, are potential urinary biomarkers and therapeutic 

targets of BC therapy[116]. Wittmann et al. performed unbiased metabolomics on a set of urine 

samples from BC patients, revealing nearly 1000 distinct metabolic signatures, of which 587 have 

a chemical identity[135]. The authors chose a set of 25 potential biomarkers from this group and 

tested this panel on a second independent cohort to validate its predictive power. A new group of 
metabolites, including lactate, adenosine, succinate, and palmitoyl sphingomyelin, were proposed 
as urinary biomarkers; thus, showing the involvement of lipid metabolism in BC progression. 

7. Conclusions and Perspectives

At present, there is much research on biomarkers of BC. Biomarkers can be identified in tissue, 
blood, urine, etc. and include genes, proteins, metabolites, etc. In this paper, we summarized the 
research progress of BC biomarkers in recent years. Due to the advantages of urine collection, 
including non-invasive procedures, simplicity, easy storage, low-cost, and direct contact with 
bladder cancer tissue, we focused particularly on urinary biomarker research progress. Compared 
to genomics and proteomics, metabonomics of BC is still in its early stages. However, because 
of the great progress in metabonomics research in BC using NMR, GC-MS, and LC-MS, 
metabonomics has been widely used to propose new biomarkers. These may be applied to 
screening, diagnosing, treating, evaluating, and monitoring BC. Although the potential of 
metabonomics to improve detection and treatment of BC may be great, the main limitation is the 
lack of reliable validation for a large population. Current research has so far been limited to smaller 
samples without validation and metabolites can be easily affected by various factors. For future 
metabonomics research, experimental design and analysis methods need to be standardized to 
eliminate the systemic influence of confounding variables on the measurement of metabolites, 
make results more comparable, verify potential biomarkers, and assist in clinical applications 
against BC.  
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Figure 1. Schematic illustration of molecular subtypes of bladder cancer. Based on Whole-
genome mRNA expression profiling, several molecular subtypes of muscle-invasive bladder 
cancer (MIBC) have been identified. Molecular subtypes of MIBC might have important 
implications for patient prognosis and response to conventional chemotherapy and targeted 
agents. Four groups have shown great similarities among tumor subtype. Lund, University of Lund; 
MDA, MD Anderson Cancer Center; TCGA, The Cancer Genome Atlas; UNC, University of North 
Carolina. 

Figure 2. Overview of the multi-OMICS strategies for urinary bladder cancer biomarker 
discovery and their clinical implication. A typical integrated multi-omic technologies workflow 
showing to probe the complexity of bladder cancer biology. Integration of several of omics data 
sources use systems biology approach build biomarker discovery.  
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If the project was not intended to provide training and professional development opportunities or 
there is nothing significant to report during this reporting period, state “Nothing to Report.” 

 

How were the results disseminated to communities of interest?    

What do you plan to do during the next reporting period to accomplish the goals?   

 
 

4. IMPACT: 

What was the impact on the development of the principal discipline(s) of the project?  

Nothing to Report 

Nothing to Report 

In coming funding period, we will focus on quantification of levels of DNA methylation and gene 
expression for the IC diagnostic marker panel. We will further analyze patients’ outcomes and 
construct a statistical model predicting the IC-associated pain severity and to evaluate its 
association with co-morbid conditions, patient-reported outcomes, and health-related quality 
of life.  

To quantify target gene expression in urine samples from IC cases and controls:
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What was the impact on other disciplines?    

 

What was the impact on technology transfer?    
 

Nothing to Report 

o State-of-the-art technologies emerging from recent omics studies of urine specimens of
IC, including the innovative concept that the urine plays an active role modulating
bladder microenvironment as a reliable diagnostic biofluid, providing epigenetic resource
associated with bladder pain.

o A robust statistical and machine learning model to obtain comprehensive mechanistic
insights into the IC etiology

o Translating omics biomarkers into routine clinical diagnostics for IC risk will be aided by
developing automatic quality controls and absolute quantifications for biomarkers in
these panels by working with an industry partner who is committed to commercial
development and clinical implementation of molecular tests.

Nothing to Report 
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What was the impact on society beyond science and technology? 

5. CHANGES/PROBLEMS:  

Changes in approach and reasons for change  

Actual or anticipated problems or delays and actions or plans to resolve them 

Changes that had a significant impact on expenditures 

Nothing to Report 

Nothing to Report 

Nothing to Report 

Nothing to Report 
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Significant changes in use or care of human subjects, vertebrate animals, biohazards, 
and/or select agents 

Significant changes in use or care of human subjects 

 

Significant changes in use or care of vertebrate animals 

Significant changes in use of biohazards and/or select agents 

6. PRODUCTS:  

Nothing to Report 

Nothing to Report 

• Publications, conference papers, and presentations

Journal publications. 

o Publications since last funding period
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Abstract 

Objectives: Bisphosphonates (BPs) are powerful inhibitors of osteoclastogenesis and are used to 
prevent osteoporotic bone loss and reduce the risk of osteoporotic fracture in patients suffering from 
postmenopausal osteoporosis. Patients with breast cancer or gynecological malignancies being treated 
with BPs or those receiving bone-targeted therapy for metastatic prostate cancer are at increased risk of 
bisphosphonate-related osteonecrosis of the jaw (BRONJ). Although BPs markedly ameliorate 
osteoporosis, their adverse effects largely limit the clinical application of these drugs. This study focused 
on providing a deeper understanding of one of the most popular BPs, the alendronate (ALN)-induced 
perturbation of the bone proteome and microenvironmental pathophysiology. 
Methods: To understand the molecular mechanisms underlying ALN-induced side-effects, an unbiased 
and global proteomics approach combined with big data bioinformatics was applied. This was followed by 
biochemical and functional analyses to determine the clinicopathological mechanisms affected by ALN. 
Results: The findings from this proteomics study suggest that the RIPK3/Wnt/GSK3/β-catenin signaling 
pathway is significantly perturbed upon ALN treatment, resulting in abnormal angiogenesis, inflammation, 
anabolism, remodeling, and mineralization in bone cells in an in vitro cell culture system. 
Conclusion: Our investigation into potential key signaling mechanisms in response to ALN provides a 
rational basis for suppressing BP-induced adverse effect and presents various therapeutic strategies. 

Key words: Osteonecrosis of the jaw; bisphosphonate; GSK signaling; clinical cone beam computed tomography; bone mineral 
density; proteomics; biomarker 

Introduction 
Bone tissue undergoes continuous cycles of bone 

resorption by osteoclasts and bone formation by 
osteoblasts, which were orchestrated by osteocytes[1]. 
Bone tissue is also highly vascularized providing O2, 
nutrients, and precursor cells for bone remodeling 
and serving as routes for blood and immune cells into 
bone tissue. Regulatory interactions between cells of 
these hematopoietic, immune, and skeletal (bone) 
systems closely regulate bone remodeling and repair 
processes via secreted factors such as VEGF, M-CSF, 

RANKL, Wnt3a, and Osteoprotegerin, etc. and their 
cell surface receptors.  

Several key signal pathway has been shown to 
play pivotal roles in bone remodeling/repair 
processes, enhancing osteoblast differentiation and 
angiogenesis and modulating immune cell 
functions[2]. Specifically, Wnt pathway activation via 
GSK3 inactivation leads to osteoblast differentiation 
and stimulates bone anabolism while GSK3 
gain-of-function promotes osteogenesis of adipose- 
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derived stromal cells, making GSK3 as a possible 
therapeutic target for bone diseases [3-5]. Mice 
expressing constitutively active GSK3β (GSK3β S9A) 
mutant, exhibited a marked increase in osteogenesis, 
whereas ones with catalytically inactive GSK3β 
(GSK3β K85A) showed decreased osteogenic 
differentiation by regulating β-catenin[5]. Wnt/ 
GSK3/β-catenin pathway also plays important roles 
in angiogenesis and vasculogenesis, supporting 
wound healing and regeneration of oral mucosa and 
jaw tissue [6]. Wnt signaling activation by Wnt1, 
VEGF, or CHIR99021 (GSK3β inhibitor) enhanced, 
while its inactivation by JW67 (targeting 
APC/GSK3/β-catenin complex) or β-catenin kinase 
dead form suppressed, vascular differentiation of 
mesenchymal stem cells (MSCs) derived from dental 
pulp [7]. GSK3β regulates β-catenin level in 
endothelial cells. Expression of β-catenin in HUVEC 
cells increases VEGF-A and -C level and induces 
capillary formation [8].  

Bisphosphonates (BPs) have been suggested to 
modulate the proliferation and differentiation rates of 
osteoblasts and trigger survival signaling leading to 
bone homeostasis and antiresorptive effect [9-11]. 
First approved by the FDA in 1995, alendronate 
(ALN) is currently one of the most used BPs in the 
medical field[12]. ALN has been used successfully for 
the treatment of osteoporosis [13]. Several pieces of 
evidence indicate that there is a strong association 
between ALN and lower risk of bone metastases in 
postmenopausal women with early breast cancer [14, 
15].  Cancer patients undergoing BPs-based 
treatments are at a 10-fold greater risk of developing 
bisphosphonate-related osteonecrosis of the jaw 
(BRONJ) [16], which is suggested to be a result of 
osteoclast inhibition and apoptosis[17]. Due to the 
prevalent usage of BPs in many bone-related diseases, 
more understanding on underlying mechanisms of 
adverse effect caused by BPs is crucial in providing 
better care and improving patient quality of life [18]. 
In oncology patients, incidence of BRONJ has been 
estimated to be as high as 18.6%[19], and risk of 
developing BRONJ increases with longer duration or 
higher dosages of BPs-based therapy[20]. 

This study sought to understand the 
pathogenesis of BP-associated adverse effects by 
looking into proteome perturbation and potential 
molecular biomarkers and mechanisms using an in 
vitro cell culture system. 

Materials and Methods 
Reagents and cell culture 

Several cell lines, including MG-63, SCC-9, 
SCC-15, and HUVEC cells, were obtained from the 

American Type Culture Collection (ATCC) 
(Manassas, VA). Culture condition, antibodies and 
reagents used for this study are available in 
Supplementary Materials. 

Quantitative proteomics 
Sample preparation methods for this study are 

available in Supplementary Materials. For protein 
quantification and statistical analysis, mapDIA was 
used. Data was analyzed based on the established 
workflows previously described [21, 22]. Briefly, 
peptides were identified using the openSWATH 
workflow [23], searched against the pan human 
library [24] with decoy sequences appended for false 
discovery rate calculation using the pyprophet 
algorithm [25]. Peptides with no greater than 5% 
identified false discovery rate (FDR) across all 
samples were compiled into the final experimental 
results using the TRIC alignment algorithm [26]. 
Following removal of non-proteotypic peptides (e.g., 
sequences matching more than one gene product from 
the Pan Human Library), the final aligned results 
were analyzed using mapDIA to select only 
high-quality performing fragments for quantification 
and to compile fragment level data into peptide and 
protein level abundance estimates [27]. The mapDIA 
software was also used to perform pairwise 
comparisons between ALN and control groups, 
including adjustment for multiple testing effects to 
produce a comparison FDR, which filtered proteins 
with significant or non-significant differential 
abundance in response to ALN treatment. The MS 
proteomics data has been deposited to the 
PRIDE repository with the dataset identifier, 
PXD024585.  

Identification of differentially expressed 
proteins (DEPs) 

Proteins with more than 3 nonredundant 
peptides in each sample were selected. Further 
selection of proteins detected in at least 2 samples in 
the same group was performed for statistical testing. 
A median difference test and Welch’s t-test were 
performed separately, and the resulting two p-values 
were combined to compute adjusted p-values using 
Stouffer’s method. The DEPs were identified based on 
an adjusted p-values<0.05 and absolute log2 
fold-change (FC) ≧0.58. 

VEGF ELISA assay 
To determine vascular endothelial growth factor 

(VEGF-A) levels of conditioned medium from MG-63 
cells incubated with ALN, supernatants from cell 
cultures were analyzed using the Human VEGF 
Quantikine ELISA Kit (R&D Systems, Minneapolis, 
Mass).  
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Cytokine array 
Cell lysates and conditioned media from RAW 

264.7 macrophages were collected and analyzed using 
a cytokine array, per standard provided protocols 
(R&D Systems, Minneapolis, MN, USA). ImageJ was 
used to measure the signal intensities. 

Mineralization assay using Alizarin Red-S 
staining 

The formation of calcium phosphate was 
quantified in MG-63 bone cells via Alizarin Red-S 
mineralization assay. Optical density was detected at 
an absorbance of 562 nm. 

Statistical analysis  
Most of the experiments were repeated at least 

six (6) times with independent treatments, while all 
the cases were repeated at least three times. Each of 
the experiments did not show significantly different 
results across replications.  Statistical analyses were 
conducted using GraphPad Prism, version 7.03 
(GraphPad Software Inc., La Jolla, CA). Mean values 
from technical replicates were used for statistical 
analyses, and all data were presented as the mean ± 
standard deviation (SD). A one-way analysis of 
variance (ANOVA) or Student’s t-test was conducted 
to compare the groups of data. Differences were 
considered statistically significant when P < 0.05.   

Results 
Comprehensive analysis with large unbiased 
global proteomic assays suggested perturbed 
proteins in response to BP in bone cells 

Mass spectrometry (MS) has several important 
attributes that make it amenable to providing 
reproducible and accurate assays for proteins and 
metabolites. It provides a scalable number of analytes 
quantified in a single assay and absolute 
quantification, which leads to a standardized path 
from assay development to validation of new 
candidate biomarkers applicable in any clinical 
chemistry laboratory. To understand the molecular 
mechanisms underlying specific diseases, an unbiased 
and global omics approach combined with big data 
analysis using bioinformatics is critical.  

As described in the Materials and Methods, a 
proteomics approach was implemented (Fig 1A). The 
top 10 most abundant protein classes are shown in Fig 
1B. Global proteomics analysis identified a highly 
confident and comprehensive list of perturbed 
proteins in MG-63 bone cells treated with ALN. 
Protein quantification and statistical analysis using 
mapDIA identified perturbed proteins in MG-63 cells 
treated with 10 µM ALN. A total of 2,865 proteins 

with UniProtKB IDs were identified. Further analysis 
with the PANTHER Protein Classification Tool 
revealed that the most abundant top 10 proteins 
classes included extracellular matrix, metabolite 
interconversion, nucleic acid metabolism, protein 
modification, translational regulation, cytoskeletal, 
transporter, protein-binding activity modulator, 
membrane traffic, and scaffold/adaptor[28]. To 
identify DEPs, the integrated hypothesis testing 
method was applied. Briefly, the median difference 
test and Welch’s t-test was performed on high 
confidence proteins, which in the case of this 
experiment, were proteins detected with more than 3 
non-redundant peptides encompassing at least 2 
samples in the same group. The median test p-value 
and Welch’s t-test p-value were then combined to 
adjust for multiple testing errors. Finally, 27 up- and 
31 downregulated DEPs were selected for based on 
adjusted p-values < 0.05 and log2 FC ≧0.58. 
Significant expression was assessed using a volcano 
plot (Fig 1C and Fig 1D) and heatmap (Fig 1E). The 
DEPs are listed in Table 1. 

Angiogenesis alteration in response to ALN 
treatment 

When verifying proteins associated with 
angiogenesis-related Gene Ontology Biological 
Processes (GOBPs), several proteins were identified, 
including ETS proto-oncogene 1 (ETS1) (log2 FC, 
1.1566), integrin subunit alpha 5 (ITGA5) (log2 FC, 
0.6102), and milk fat globule-EGF factor 8 (MFGE8) 
(log2 FC, -0.7468) (Table 1). To further investigate 
these findings, the effects of ALN on several 
well-known angiogenic factors were investigated. 
Secretion of VEGF-A, a potent angiogenic factor, was 
examined in bone cells after stimulation with ALN. 
Consistent with similarly designed work from 
previous trials [29], treatment of MG-63 cells with 
ALN led to a statistically significant but modest 
decrease (approximately 30%) of VEGF secretion into 
the conditioned medium compared to control (Fig 
2A). Furthermore, HUVEC stimulation in the 
collected culture medium also exhibited modest but 
meaningful suppression of proliferation (Fig 2B). 
Collectively, the reduction of VEGF secretion and 
HUVEC proliferation by ALN strongly implies 
angiogenic signals to vessel cells from bone cells. This 
finding suggests the potential microenvironment- 
level regulation of bone remodeling in ONJ. For 
proteomics profiling, necrotic and apoptotic 
conditions were avoided to fully investigate the 
effects of ALN on bone cells. Additional analysis 
confirmed that there was no induced cell death with 
ALN treatment in MG-63 cells.  Cell viability and 
proliferation rates, which were determined using 
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MTT (Fig 2C) and crystal violet staining assays (Fig 2D), showed no cytotoxicity.  
 

Table 1. List of differentially expressed proteins (DEPs) with corresponding statistics. 

Uniprot ID Gene Symbol Full Name Log2 FC 
(ALN/ 
Ctrl) 

Median 
P-Value 

T Test P- 
Value 

Adj. P 

Q86VN1 VPS36 Vacuolar protein-sorting-associated protein 36  2.3697 0.0191 0.3002 0.0332 
Q9BXR6 CFHR5 Complement factor H-related protein 5  1.5412 0.0306 0.0824 0.0106 
Q8N350 CBARP Voltage-dependent calcium channel beta subunit-associated 

regulatory protein 
1.23 0.0776 0.0415 0.0129 

P48163 ME1 NADP-dependent malic enzyme  1.2145 0.1359 0.0149 0.0103 
Q9ULH7 MRTFB Myocardin-related transcription factor B  1.1752 0.1301 0.0877 0.0397 
P14921 ETS1 Protein C-ets-1  1.1566 0.1653 0.0497 0.0319 
Q9H0V9 LMAN2L VIP36-like protein  1.1446 0.013 0.1852 0.0136 
Q15427 SF3B4 Splicing factor 3B subunit 4  1.0902 0.3234 0.0296 0.0487 
Q9H223 EHD4 EH domain-containing protein 4  0.8995 0.113 0.1213 0.0463 
Q07021 C1QBP Complement component 1 Q subcomponent-binding protein, 

mitochondrial  
0.8848 0.1071 0.1049 0.0388 

Q9UJW2 TINAG Tubulointerstitial nephritis antigen  0.8833 0.0976 0.1428 0.0474 
P56192 MARS1 Methionine--tRNA ligase, cytoplasmic  0.8772 0.0039 0.1283 0.0037 
P08579 SNRPB2 U2 small nuclear ribonucleoprotein B  0.8721 0.0322 0.2438 0.0361 
Q9H4B7 TUBB1 Tubulin beta-1 chain 0.8644 0.0467 0.0944 0.0172 
Q9H2H8 PPIL3 Peptidyl-prolyl cis-trans isomerase-like 3 (PPIase)  0.8257 0.1129 0.1055 0.0408 
P00439 PAH Phenylalanine-4-hydroxylase (PAH)  0.8024 0.0475 0.1114 0.0206 
Q5JTZ9 AARS2 Alanine--tRNA ligase, mitochondrial  0.7071 0.0877 0.0325 0.0118 
Q9UKN8 GTF3C4 General transcription factor 3C polypeptide 4  0.6861 0.0038 0.1761 0.0055 
Q92747 ARPC1A Actin-related protein 2/3 complex subunit 1A (SOP2-like 

protein) 
0.6813 0.1877 0.0156 0.0158 

P99999 CYCS Cytochrome c 0.664 0.0456 0.1572 0.0283 
Q7Z2W4 ZC3HAV1 Zinc finger CCCH-type antiviral protein 1 0.6468 0.1397 0.0465 0.0254 
Q9Y5M8 SRPRB Signal recognition particle receptor subunit beta  0.645 0.0983 0.1459 0.0486 
P62191 PSMC1 26S proteasome regulatory subunit 4  0.6447 0.1717 0.0328 0.0243 
P43251 BTD Biotinidase (Biotinase)  0.6273 0.1495 0.0734 0.0392 
P08648 ITGA5 Integrin alpha-5  0.6102 0.0891 0.1285 0.0398 
Q07955 SRSF1 Serine/arginine-rich splicing factor 1  0.6084 0.0123 0.0315 0.0018 
P18754 RCC1 Regulator of chromosome condensation  0.5984 0.1047 0.008 0.0048 
P62140 PPP1CB Serine/threonine-protein phosphatase PP1-beta catalytic 

subunit  
-0.6001 0.1545 0.0111 0.0097 

Q9NX40 OCIAD1 OCIA domain-containing protein 1  -0.601 0.0912 0.1301 0.041 
Q14244 MAP7 Microtubule-associated protein 7 -0.6115 0.0198 0.1806 0.0178 
Q9Y572 RIPK3 Receptor-interacting serine/threonine-protein kinase 3  -0.6157 0.0717 0.0554 0.0153 
Q06187 BTK Bruton tyrosine kinase -0.6434 0.2767 0.0165 0.027 
Q8IW35 CEP97 Centrosomal protein of 97 kDa  -0.6669 0.0989 0.1153 0.0394 
Q969G5 CAVIN3 Caveolae-associated protein 3  -0.6891 0.0308 0.0337 0.0045 
O96033 MOCS2 Molybdopterin synthase sulfur carrier subunit  -0.6914 0.0731 0.0987 0.0262 
P13798 APEH Acyl-peptide hydrolase -0.6929 0.0508 0.239 0.0485 
Q9H3H3 C11orf68 UPF0696 protein C11orf68  -0.7029 0.0819 0.1651 0.0471 
Q08431 MFGE8 Milk fat globule-EGF factor 8 -0.7468 0.1464 0.0932 0.0466 
Q9NYJ8 TAB2 TGF-beta-activated kinase 1  -0.7572 0.1619 0.0095 0.0092 
O95218 ZRANB2 Zinc finger Ran-binding domain-containing protein 2  -0.8387 0.1273 0.054 0.0261 
Q93074 MED12 Mediator of RNA polymerase II transcription subunit 12  -0.91 0.0239 0.2422 0.0291 
Q15047 SETDB1 Histone-lysine N-methyltransferase SETDB1  -0.9105 0.2702 0.0382 0.0459 
P33241 LSP1 Lymphocyte-specific protein 1  -0.9375 0.0021 0.242 0.0058 
Q9H3M7 TXNIP Thioredoxin-interacting protein  -0.9387 0.0348 0.086 0.0123 
P22307 SCP2 Sterol carrier protein X -1.0061 0.1877 0.0682 0.0465 
Q96A49 SYAP1 Synapse-associated protein 1  -1.0203 0.0638 0.0634 0.0155 
Q5T1M5 FKBP15 FK506-binding protein 15  -1.0953 0.0796 0.135 0.0379 
Q9NR77 PXMP2 Peroxisomal membrane protein 2  -1.1041 0.397 0.0075 0.0284 
Q6P4R8 NFRKB Nuclear factor related to kappa-B-binding protein  -1.131 0.0431 0.1973 0.0347 
A6ND91 ASPDH Aspartate dehydrogenase domain-containing protein -1.2357 0.0503 0.2253 0.0451 
Q9Y320 TMX2 Thioredoxin-related transmembrane protein 2  -1.3223 0.1468 0.0342 0.0211 
Q9BRK0 REEP2 Receptor expression-enhancing protein 2 -1.3431 0.0303 0.0738 0.0094 
Q9UHK6 AMACR Alpha-methylacyl-CoA racemase  -1.3986 0.0022 0.2013 0.0046 
P49407 ARRB1 Beta-arrestin-1 (Arrestin beta-1)  -1.4064 0.1261 0.016 0.01 
Q92630 DYRK2 Dual specificity tyrosine-phosphorylation-regulated kinase 2  -1.4443 0.0139 0.0418 0.0027 
Q9BRU9 UTP23 rRNA-processing protein UTP23 homolog -1.8162 0.0833 0.0247 0.009 
O14617 AP3D1 AP-3 complex subunit delta-1  -1.9901 0.0471 0.0127 0.0029 
Q9C073 FAM117A Protein FAM117A (C/EBP-induced protein) -3.5266 0.0051 0.308 0.015 
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Figure 1. Proteomics profiling revealing alendronate (ALN)-induced protein alteration in the global proteome of MG-63 bone cells. (A) Experimental mass 
spectrometry (MS) workflow for this study. (B) Top 10 most abundant protein classes. (C) Volcano plot shows DEPs. (D) Heatmap depicts the differential expression patterns 
of proteins in response to ALN. Red and blue dots represent upregulated and downregulated proteins, respectively. Per row z-score of protein intensity is calculated. Each dot 
represents one protein. Proteins used are identical with those in the volcano plot. Experiments were done in triplicate.  

 
Figure 2. Angiogenic pathways may be upregulated by ALN treatment. (A) Secretion of VEGF in MG-63 bone cells treated with ALN. Effect of ALN treatment on the 
secreted VEGF levels into conditioned medium by MG-63 cells. Values (mean and standard deviation (SD)) are expressed as fold-changes compared to untreated cells (Ctrl, 
control). (B) Proliferation of HUVEC in the collected media of MG-63 cells. **p < 0.001, compared to control (Student’s t-test). (C-D) No apoptosis was observed within the 
treatment period of 6 h. (C). Cell viability of MG-63 cells. MTT assay revealed no viability changes by ALN treatment. (D) Crystal violet staining assay showed no cell mass 
changes in response to varying concentration of ALN for 6 days. Experiments were done 6 times. Representative images were shown. 
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Figure 3. The RIPK3/arrestin/GSK3β/ β-catenin/VEGF pathway is altered by ALN treatment. (A-B). Quantification results showed that arrestin β and RIPK3 are 
significantly suppressed with ALN treatment. (A) Data from proteomics profiling. DEP levels obtained from proteomics analysis are shown in Table 1. (B) Western blot analysis 
to measure the expression levels of arrestin β and RIPK3 proteins in the presence or absence of ALN. β-actin was used as the loading control. (C) ALN-induced phosphorylation 
of GSK3β (S9) and β-catenin (S45) led to stabilization of β-catenin in MG-63 cells. (D) Comparison of phosphorylation of GSK3β and expression of β-catenin, arrestin β, and 
RIPK3 in MG-63, SCC-15, and SCC-9 cells after treatment with ALN. (E) Effects of several BPs (ZLN and CLN) on β-catenin, arrestin β, and RIPK3 in MG-63 cells. After 
stimulation with 10 µM of ALN, ZLN, or CLN at various times, cells were harvested for protein extraction and western blot analysis. Representative western blot images were 
selected after experiments were repeated 6 times.  

 

Receptor-interacting protein kinase 3 (RIPK3), 
a necroptosis factor, is altered in the 
ALN-treated proteome 

Among the DEPs regulated by ANL treatment, 
proteins involved in angiogenesis, inflammation, and 
necrosis were of particular interest due to their 
relevance in ONJ. Proteomics profiling revealed 
downregulation of RIPK3 in MG63 cells treated with 
ANL (Fig 3A). RIPK3 has recently been reported as a 
mediator of necroptosis, programmed non-apoptotic 
cell death, and necroinflammation in response to 
immune signaling and cytokines, such as TNF-α [30]. 
The inhibition of RIPK3 activity suppressed 
Enterococcus faecalis infection-induced cell death in 
MG-63 cells[31]. RIPK3 expression is inhibited by 
hypoxia, which contributes to angiogenesis [32]. Loss 
of RIPK3 leads to the activation of the Wnt/β-catenin 
signaling pathway in the ripk3-/- colon cancer mouse 
model, and enhances inflammation, immune cell 
infiltration, and angiogenesis [33]. 

Western blot analysis was able to validate that 
the protein expression levels of arrestin β1 (ARRB1) 
was significantly diminished by ALN treatment (Fig 
3B), which was consistent with proteomics analysis. 
Given that ARRB1 is reported as a necessary 

component for Wnt/β-catenin signaling and as a 
regulator of GSK-3β activation/inactivation [34], the 
effects of ALN and ARRB1 on the Wnt/GSK3/β- 
catenin signaling cascades were another point of 
interest. Proteomics profiling and biochemical 
analysis revealed the downregulation of RIPK3 and 
ARRB1 by ALN treatment, which suggests that the 
effects of ALN on MG-63 cells are likely to be 
mediated by the Wnt/GSK3/β-catenin signaling 
pathway. 

The glycogen synthase kinase 3 (GSK3) 
network is an ALN regulatory signaling 
pathway 

To understand the activation of signaling 
cascades in response to BP treatment in bone cells, the 
phosphorylation of important signaling proteins in 
MG-63 cells treated with ALN was assessed. The 
involvement of Wnt/GSK3/β-catenin signaling 
aberration was first determined, and the downstream 
secreted effectors of the Wnt pathway were evaluated 
as a part of the ALN signaling pathway.  

Based on previous findings in literature, the 
Wnt/GSK3/β-catenin pathway has been shown to 
play a pivotal role in bone remodeling/repair 
processes, enhancement of osteoblast differentiation, 
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angiogenesis, and modulation of immune cell 
functions[2]. This evaluation further suggests that the 
Wnt/GSK3/β-catenin pathway may play a key role in 
the biological effects of response to ALN treatment in 
MG-63 cells.  

After treatment with ALN at varying incubation 
times (0, 20, 30, 60, 90, and 120 min), the 
phospohorylation status of a series of crucial signaling 
molecules was evaluated using western blot analysis. 
The phospohorylation of GSK-3β (S9) increased with 
ALN treatment (Fig 3C). GSK-3, a serine/threonine 
protein kinase that phosphorylates and inactivates 
glycogen synthase, is a key downstream regulator of 
the PI3K/Akt pathway. GSK-3 signaling is inactivated 
by phosphorylation of Ser9 in GSK-3β. Since the 
phospohorylation of GSK-3β (S9) increased, this 
suggests that ALN treatment inactivates GSK-3 
signaling in MG-63 cells.  

As an important downstream effector of the Wnt 
signaling pathway, β-catenin is phosphorylated at S45 
by a complex of axin and casein kinase I (CKI), which 
initiates the β-catenin phosphorylation–degradation 
cascade [35]. While the phospohorylation of GSK-3β 
(S9) increased with ALN treatment, phosphorylation 
of β-catenin (S45) and EGFR (Y1068) decreased (Fig 
3C). The decreased phosphorylation of β-catenin may 
increase protein stability and protein expression (Fig 

3B). Increased phosphorylation of GSK-3β (S9) was 
consistently observed in other cells, including SCC-9 
and SCC-15, with ALN, zoledronic acid (ZLN), or 
clodronate (CLN) treatment (Fig 3D and Fig 3E). 
These results suggest that ANL suppresses ARRB1, 
inactivates GSK-3β, and stabilizes β-catenin. The 
RIPK3/arrestin/Wnt/GSK/β-catenin network may 
be a potential molecular regulatory network whose 
activation is altered upon ALN therapy. 

Cytokine production and secretion in RAW 
264.7 macrophages may be enhanced by ALN 
treatment 

To test the effects of ALN on the immune system, 
a commercially available cytokine array was used to 
screen for potentially stimulated cytokines. RAW 
264.7 macrophages were incubated with ALN both 
with and without the presence of lipopolysaccharides 
(LPS) (100 ng/ml) for 24 h. As shown in figure 4A, the 
production of tumor necrosis factor alpha (TNF-α) 
was stimulated by LPS and the levels of TNF-α were 
significantly increased with ALN. Western blot 
analysis also supported these findings (Fig 4B). The 
secretion of IL-6 also greatly increased with ALN (Fig 
4C). However, there were no dramatic additional 
effects across other cytokines. 

 

 
Figure 4. Pro-inflammatory cytokines are produced and secreted in response to ALN treatment in RAW 264.7 macrophage cells. (A-B) Cytokine array was 
conducted as described in Materials and Methods. Production of TNF-α (A) and secretion of IL-6 (B) increased with ALN treatment. (C) Western blot analysis for further 
validation. ***p < 0.001 and **p < 0.001, compared to control (Student’s t-test). Representative images are shown. (D) ALN treatment impaired homeostasis in bone 
mineralization. Quantification of mineral deposition by Alizarin Red-S staining shown as a graph. Data represent average±SD (n= 6). Statistical analysis was compared between 
ALN and vehicle only (ctrl) (p-value<0.05). 
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Abnormalities in calcium phosphate formation 
in bone cells and bone mineral density (BMD) 
distribution in ONJ-associated osteonecrosis  

ALN is regularly used to help osteoporosis 
patients with bone mineralization loss. To test the 
effects of ANL on the quantification of mineral 
deposition, Alizarin Red-S staining assays were used 
to further assess mineralization levels after treatment. 
MG-63 cells were incubated with ALN or vehicle 
control (0, 1, 5, 10, and 25 µM) for 2 days. Incubation 
of cells with ALN led to a marked increase in 
mineralization (to ~1.6 fold) compared to controls (Fig 
4D). 

Discussion 
Our proteomics profiling revealed the 

downregulation of RIPK3 in response to ALN 
treatment in MG-63 bone cells. RIPK3 has been 
reported to play a fundamental role in inhibiting 
inflammation and mediating necroptosis and 
necroinflammation through the RIPK3-MLKL (mixed 
lineage kinase domain-like protein) pathway [30]. 
Inhibitors of RIPK3 and MLKL suppressed cell death 
from Enterococcus faecalis infection in MG-63 cells[31]. 
Although not encompassed in the current study, the 
role, and mechanisms of RIPK3 and its downstream 
signaling cascades in ALN-induced bone biology are 
under further investigation by our group. In addition, 
this study showed that the presence of ALN enhanced 
production or secretion of inflammatory cytokines in 
LPS-activated macrophage cells. A previous study 
found that ZLN, a potent BP, stimulated and 
increased inflammatory osteoclastic mediators [36]. 
Furthermore, ZLN was found to suppress 
proliferation and migration of vascular endothelial 
cells [37]. Expression of VEGF receptor 2 in vascular 
endothelial cells was also reported in response to 
treatment with ZLN[38]. In our experimental system, 
we observed modest decreases in VEGF secretion in 
response to ALN treatment.  

The experimental data further suggested the 
potential role of the Wnt/GSK3/β-catenin signaling 
pathway in the BP-perturbated proteome and its 
effects on bone homeostasis. This study demonstrated 
that the Wnt/GSK3/β-catenin signaling pathways 
may play a fundamental role in bone metabolism, 
homeostasis, and remodeling. Multifaceted roles of 
GSK3 under each cellular context have been reported. 
In cytotoxic T lymphocytes (CTL), GSK3 inhibition 
blocks programmed cell death protein-1 (PD-1) 
transcription; thereby, enhancing CTL functioning 
[39]. GSK3 is a serine/threonine kinase that regulates 
Wnt/β-catenin, PI3K/PTEN/AKT, RAS/RAF/ 
MAPK, hedgehog, Notch, and other signaling 

pathways and has been implicated in multiple 
diseases [40, 41]. Phosphorylation of GSK-3α/β at 
multiple serine and threonine sites inactivates the 
kinase, while Tyr279/216 phosphorylation (pY) 
activates the kinase. GSK3 is reported to have both 
tumor promoting (glioblastoma, pancreatic, ovarian, 
and blood cancers) and tumor suppressive (breast and 
skin cancers) roles[42]. GSK3 stabilizes anti-apoptotic 
Bcl2, Bcl2L12A, c-Myb, Mcl-1, and VEGF, promoting 
tumors. On the other hand, GSK3 phosphorylates and 
destabilizes β-catenin leading to the downregulation 
of c-Myc and cyclin D1. GSK3 also phosphorylates 
T286 on cyclin D1, leading to its nuclear export and 
degradation[43]. Consistent with this study, previous 
findings have suggested an important role for the 
Wnt/GSK-3 signaling pathway in osteogenesis; 
inhibition of Wnt/GSK-3 activity induced osteoblast 
differentiation and significantly increased BMD in an 
ovariectomized rat model [44]. 

Experimental observation from this study 
suggests that a systematic overview of changes in the 
microenvironmental landscape is important for 
understanding ALN-induced pathophysiology in 
bone cells (Fig 4E). Treatment with ALN also leads to 
alterations in bone mineralization, which may further 
impair bone biology. In ONJ patients, our previous 
studies quantifying bone density and mineralization 
found that cone-beam computed tomography (CBCT) 
and micro-computed tomography image-based 
histomorphometric evaluation may be an efficient 
method to check bone health[45]. Abnormal BMD 
distribution in ONJ-associated osteonecrosis was 
observed by clinical CBCT imaging[46]. It would be 
worthwhile to determine if the patterns and severity 
of abnormal mineralization densities within jaw-bone 
biopsy samples can be implemented in ONJ patient 
care.  

Collectively, the main innovative deliverables 
from this study are expected to lead to a better 
understanding of the mechanisms underlying 
ALN-induced pathological effects on bone and 
immune cells. The findings in this paper are 
promising but have several limitations; (1) the effects 
of BPs on osteoblast function are throughout the 
skeleton, and (2) ALN targets osteoclasts, not 
osteoblasts. In conjunction with standard diagnostic 
procedures, the more mechanistic data related to the 
adverse effects of ALN can also act as an applicable 
supplement for clinical judgment. 

Supplementary Material  
Supplementary methods.  
http://www.medsci.org/v18p3261s1.pdf  
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INTRODUCTION

Bladder trabeculation refers to morphological changes of the 
bladder detrusor, including smooth muscle hypertrophy and 
increased collagen deposition in the detrusor extracellular ma-
trix (ECM), resulting in fibrosis of the bladder [1,2]. These 
morphological changes of the bladder can be observed in pa-
tients with various voiding problems, such as neurogenic blad-
der and bladder outlet obstruction (BOO) [3-6]. Lower urinary 
tract symptoms (LUTS) in the men with benign prostatic hy-
perplasia (BPH) are associated with BOO, and the increased 
intravesical pressure that occurs in men with BOO induces hy-
pertrophy of the bladder detrusor to overcome BOO. If BOO is 

not relieved, irreversible morphological changes of the bladder, 
such as increased collagen accumulation and fibrosis of the 
bladder, occur. Fibrosis of the bladder causes the loss of normal 
detrusor contractility; and therefore, affected patients cannot 
urinate by themselves [6]. In addition to BOO associated with 
BPH, many other conditions are associated with fibrotic chang-
es of the bladder, such as dementia, stroke, cerebral hemor-
rhage, spinal cord injury, diabetes mellitus, and aging [7].

Common LUTS associated with bladder fibrosis are a weak 
urinary stream, intermittency, increased residual urine sensa-
tion, and abdominal straining during urination because the fi-
brotic bladder loses normal contractility for expelling urine 
from the bladder. Medical therapies using parasympathomi-
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Underactive bladder and impaired bladder compliance are irreversible problems associated with bladder fibrosis. Remodeling 
of the extracellular matrix is regarded as an important mechanism associated with bladder fibrosis. However, various risk fac-
tors and conditions contribute to the functional impairment of the bladder associated with fibrosis, and there is limited knowl-
edge about bladder fibrosis-associated problems in the field of neurourology. Further studies are thus necessary to elucidate 
the underlying mechanism of bladder fibrosis and to identify effective treatment. 
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metics and alpha blockers have been attempted to help urina-
tion; however, inconsistent results have been reported regarding 
the effects of these treatments, and there is no clear evidence 
that they improve bladder contractility [8-11]. Some patients 
showed improvement of LUTS and the ability to urinate by 
themselves, but most patients continue to need indwelling ure-
thral and suprapubic catheters to expel urine from their bladder 
due to an irreversible loss of bladder contractility [12-15].

At present, no effective treatment methods are available to 
prevent bladder fibrosis and to recover the impaired bladder 
contractility associated with bladder fibrosis. Thus, this review 
deals with the pathophysiology of bladder fibrosis and upcom-
ing treatment based on a literature review.

LUTS AND DECREASED CONTRACTILITY AND 
COMPLIANCE OF THE BLADDER DETRUSOR 
ASSOCIATED WITH BLADDER FIBROSIS

Underactive bladder (UAB) is a LUTS complex characterized 
by incomplete bladder emptying with a decreased urinary flow 
rate and increased postvoid residual urine volume [15]. UAB is 
associated with detrusor underactivity (DU) or acontractile de-
trusor observed in a urodynamic study. Morphological changes 
such as bladder fibrosis induced by increased collagen deposi-
tion in the detrusor ECM can induce DU and impairment of 
bladder contractility. According to a study reporting urody-
namic results in UAB patients, detrusor hyperreflexia with im-
paired detrusor contractility (DHIC) was observed, as well as 
DU or acontractile detrusor [16]. Patients with DHIC experi-
enced storage symptoms such as incontinence or urgency with 
accompanying symptoms induced by incomplete emptying 
[17]. These findings suggest that contractile changes associated 
with bladder fibrosis constitute a complicated process that re-
sults in impaired bladder contractility with or without detrusor 
overactivity. Furthermore, the process of a coexistent voiding 
problem that is not associated with bladder fibrosis (e.g., stress 
urinary incontinence) can be a factor that induces incontinence 
[18-20]. Moreover, Uren et al. [21] reported that patients diag-
nosed with DU using a urodynamic study showed nocturia, 
frequent daytime urination, urgency, and incontinence, as well 
as a weak urinary stream, hesitancy, and abdominal straining 
during urination. However, Uren et al. [21] did not investigate 
the etiology of DU, making it impossible to know whether the 
patients with storage LUTS had other voiding problems unre-
lated to DU.

Decreased bladder compliance is a change associated with 
bladder fibrosis. Bladder compliance can be conceptualized as 
the relationship between a change in bladder volume and a 
change in detrusor pressure. In general, bladder compliance is 
expressed as an increase in bladder volume per increment of 
intravesical pressure [22]. Thus, bladder compliance reflects the 
flexibility of the bladder. Fibrotic changes of the bladder reduce 
its flexibility and induce stiffness of the bladder and low bladder 
compliance. As a result, the intravesical pressure of a stiff blad-
der with low compliance is increased, and prolonged high in-
travesical pressure adversely affects renal function [23-26]. 
Therefore, it is important to improve bladder compliance and 
reduce the intravesical pressure of the bladder to prevent im-
pairment of renal function. Patients with impaired bladder 
compliance show urge urinary incontinence [27].

Both UAB and impaired bladder compliance are associated 
with bladder fibrosis. However, it is unclear about why the con-
sequences of bladder fibrosis sometimes appear as UAB or im-
paired bladder compliance. Previous studies have suggested 
that there may be a difference in the subtype of collagen deposi-
tion between UAB and impaired bladder compliance, and that 
increased proteoglycan deposition in the ECM may also be re-
lated factor (Fig. 1) [28-31].

UNDERLYING MECHANISM ASSOCIATED 
WITH BLADDER FIBROSIS

Remodeling of the ECM and increased levels of transforming 
growth factor-β1 (TGF-β1) are regarded as the mechanism un-
derlying bladder fibrosis [32]. The ECM of the bladder consists 
of collagen, elastin, fibronectins, and proteoglycans. Collagen is 
the major fibrous protein of the ECM and plays a role in pro-
viding tensile strength to the bladder. Collagen types I and III 
are the most important subtypes of collagen in the ECM [33-
35]. Unlike collagen, elastin induces recoil of the ECM after 
stretching during urination. Conditions such as BOO and neu-
rogenic bladder associated with mechanical or chemical stresses 
induce fibroblastic and inflammatory responses in the ECM. 
These responses dysregulate fibroblast secretion of matrix me-
talloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) 
and increase ECM deposition. Prolonged ECM deposition in-
creases the production of TIMPs which are associated with fi-
brosis and fibrotic changes of the bladder occur [36-38]. More-
over, increased levels of TGF-β1 induce fibrosis by stimulating 
collagen production through binding to serine/threonine ki-
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nase receptors on the cell surface, cause the phosphorylation of 
intracellular Smad2/3 transcription factors [39,40].

Chronic bladder ischemia may be a factor associated with 
bladder fibrosis. Previous studies have suggested that cardiovas-
cular and metabolic diseases related to endothelial dysfunction 
decrease blood flow to the bladder. In turn, chronic ischemia of 
the bladder was found to increase oxidative stress and inflam-
matory cytokine levels, which might be associated with bladder 
fibrosis induced by nerve damage [41].

UPCOMING THERAPEUTIC METHODS TO 
PREVENT AND TREAT BLADDER FIBROSIS

There is currently no effective treatment for LUTS associated 
with bladder fibrosis. Conventional medical treatment fails in 
most patients with voiding problems induced by bladder fibro-
sis, and these patients require catheterization to expel urine 
from the bladder. Therefore, studies have aimed to prevent and 
restore bladder fibrosis using antifibrotic agent such as relaxin. 
Ikeda et al. [42] showed that human relaxin-2 reversed fibrosis, 
decreased collagen deposition, and increased bladder compli-
ance and detrusor contractility in patients with radiation-in-
duced bladder fibrosis. A recent study reported that relaxin re-
ceptors were present in the dome and trigone of the human 

bladder and that in vitro relaxin stimulation upregulated MMP-
2 and decreased TGF-β1 [43].

Efforts have been made to apply stem cell and gene therapy 
to improve UAB associated with bladder fibrosis [20]. Several 
preclinical studies used various types of stem cells and showed 
improvements in detrusor contractility. A pilot study by Leva-
novich et al. [44] showed enhanced urination and a reduced 
need for clean intermittent catheterization in a patient with 
UAB after an intradetrusor injection of autologous muscle-de-
rived stem cells.

CONCLUSIONS

Bladder fibrosis is an irreversible change of the bladder that is 
associated with UAB and impaired bladder compliance. Al-
though bladder fibrosis is a serious problem, it has been diffi-
cult to elucidate its exact underlying mechanism and risk fac-
tors. Moreover, the progression of voiding problems associated 
with bladder fibrosis cannot be predicted due to the unknown 
characteristics of conditions associated with bladder fibrosis. 
There problematic characteristics are also obstacles to the pre-
vention and treatment of bladder fibrosis. Therefore, further 
studies are essential to elucidate the underlying mechanism of 
bladder fibrosis and to identify effective treatments.
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Fig. 1. Potential theoretical mechanism of bladder fibrosis-asso-
ciated voiding problems. ECM, extracelluar matrix; TGF-β1, 
transforming growth factor-β1; UAB, underactive bladder.
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Artificial intelligence (AI) has been introduced in urology research and 
practice. Application of AI leads to better accuracy of disease diagno-
sis and predictive model for monitoring of responses to medical treat-
ments. This mini-review article aims to summarize current applications 
and development of AI in urology setting, in particular for diagnosis and 
treatment of urological diseases. This review will introduce that ma-

chine learning algorithm-based models will enhance the prediction ac-
curacy for various bladder diseases including interstitial cystitis, blad-
der cancer, and reproductive urology.

Keywords: Artificial intelligence, Machine learning, Urology, Urological 
diseases

INTRODUCTION

The advent of artificial intelligence (AI) marked one of the great-
est advancements in technology. From smartphones to surgical ro-
botics, AI has changed society in monumental ways. As AI tech-
nology continues to improve and advance, its applications in med-
icine will only expand even more (Mao and Vinson, 2018). AI in 
medicine can be divided into two classes: virtual and physical. Vir-
tual AI includes informatics and systems-based learning, such as 
deep learning management of symptoms to guide treatment deci-
sions. On the other hand, physical AI includes robots and nanotech-
nology for enhanced drug delivery (Hamet and Tremblay, 2017). 
Both branches of AI can contribute to incredible improvements in 
both patient care and healthcare management. These new tools 
and capabilities are particularly bound to make much-needed im-
pacts in the field of urology.

Applications of AI would be beneficial across all relevant uro-
logical subdivisions, including benign urology and cancer. This 
reigns especially certain for analyzing massive amounts of perti-
nent data for diagnostics and prognostics. Machine learning (ML) 

is a discipline of AI that integrates statistics with algorithms to 
find relationships from data (O’Mahony et al., 2014). Such a tool 
can be applied to clinical data and creates robust risk models and 
redefines classifications of diseases. As medicine advances to an era 
of “big data” with an increasing amount of complex healthcare 
data, ML can be a powerful resource in navigating, elucidating, 
and applying information (Checcucci et al., 2020). This present 
review paper will provide an overview of the current state of AI in 
urology as well as future prospective and limitations.

APPLICATION OF ARTIFICIAL 
INTELLIGENCE IN UROLOGICAL SETTING

AI in urine analysis
Urine can provide a wealth of information for a variety of dis-

eases and conditions, including interstitial cystitis and urolithia-
sis. Cytology of the urine can even detect high-grade malignancies 
of the urinary tract (McIntire et al., 2019). However, the lack of 
standardized screening and poor accuracy due to manual observa-
tion can lead to unreliable and variable results (McCroskey et al., 
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2015). Noting this discrepancy and need, Sanghvi et al. (2019) 
successfully developed an AI algorithm capable of accurately ana-
lyzing urine samples for high-grade urothelial carcinoma. Urinal-
ysis is also particularly important for addressing urinary tract in-
fections (UTIs), the most common outpatient infections in the 
United States (Medina and Edgardo, 2019). Accurate and quick 
identification of the microbes underlying the infection is essential 
for providing the right antibiotics. However, culturing of the urine 
can take a prolonged period of time. A study developed a new strat-
egy for urinalysis of UTI by integrating mass spectrometry with 
ML, which allowed for accurate bacterial identification in less than 
4 hours (Florence et al., 2019).

AI in benign urological conditions and diseases
In addition to urinalysis, AI can integrate into how other benign 

urological conditions and diseases are treated. For instance, Kadlec 
et al. (2014) developed an artificial neural network (ANN) that 
predicted patient outcomes after endourologic interventions for 
kidney stones. A separate study by Aminsharifi et al. (2017) de-
veloped a different ANN-based model that predicted outcomes 
for patients after percutaneous nephrolithotomy. Beyond predicting 
outcomes, various groups have also used AI to support physicians 
in diagnostics and treatment decisions. One study by Längkvist et 
al. (2018) created a deep convolutional neural network to help 
differentiate kidney stones from phleboliths in computed tomog-
raphy (CT) scans.

Big data-based ML application in urological cancers
Big data-based ML is a subfield of AI, which involves the de-

velopment and deployment of dynamic algorithms to analyze data 
and facilitate complex pattern recognition. The basic prediction 
models of ML include adaptive boosted trees (AdaBoost), gradient 
boosted trees, k-nearest neighbor, support vector machines (SVMs), 
bagged SVM, and random forest. In the field of healthcare, ML 
has been increasingly successfully applied to preventive medicine, 
image recognition, diagnosis, personalized medicine, and clinical 
decision-making. In predicting urological cancers, ML has many 
applications, such as assisting in diagnosis, judging the stage and 
grade, providing reliable prognosis, predicting the incidence of 
postoperative complications, and evaluating the responses in indi-
vidual therapy.

When compared with traditional statistical methods, AI appli-
cation showed significantly better accuracy, suggesting that AI 
might assist the decision-making process of urologists (Catto et 
al., 2003). Authors found that the predictive capacities of relapse 

accuracy using ANN or Neuro-fuzzy modeling were much better 
(88% and 95%, respectively) than traditional statistical methods 
(71%–77%). Xu et al. (2017) used a ML model to analyze the 
3-dimensional bladder wall texture features based on CT/magnet-
ic resonance imaging (MRI) images, which can accurately distin-
guish tumor and normal bladder wall tissue. This method can re-
duce the number of invasive examinations, such as cystoscopy and 
pathology. Kouznetsova et al. (2019) established a ML model to 
predict early and late stages bladder cancer (BC) by identifying 
metabolites that characterize different stages of BC. Other groups 
have used a ML model to predict the BC stage and grade before 
operation combined with CT or MRI technology (Wang et al., 
2019). Song et al. (2020) developed a computational model that 
can use population-based BC data to predict 10-year overall sur-
vival without considering tumor grade.

ML algorithms can create recurrence and survival prediction 
models based on imaging and surgical data to evaluate the recur-
rence and survival rates of patients following 1, 3, and 5 years af-
ter cystectomy (Hasnain et al., 2019). Klén et al. (2019) created a 
ML model to assess potential risk factors for postoperative and sur-
gical related mortality by analyzing patients at high risk of early 
death after radical cystectomy. Congestive heart failure and chronic 
lung disease were added to previously known independent prog-
nostic risk factors for early death after cystectomy. This method 
only used preoperative data and can be used before surgery. Com-
puter evaluation was evaluated on radiology information extracted 
from CT images of BC patients, and established a ML model to 
evaluate whether patients are sensitive to chemotherapy. This meth-
od significantly improves the diagnostic accuracy, helps reduce 
unnecessary complications, improves quality of life, and reduces 
costs.

Although ML is widely used in BC, there are still some limita-
tions, such as the difficulty in quantitative analysis of observed 
endpoints or the inapplicability of generalizability in other data 
sets. Therefore, we need further verification to improve its accura-
cy and versatility. In this study, we aimed to identify the potential 
predictive features to immunotherapy specific to BC.

AI in bladder diary
To manage patients with voiding dysfunction, hospitals have 

used various tools for patient management assistance, such as void-
ing charts. The void chart is one of the methods for doctors to ob-
jectively monitor the subjective symptoms of patients with void-
ing dysfunction. Since the diagnosis or treatment proceeds after 
doctors objectively patients’ symptoms, the void chart is the start-
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ing point of studies on voiding dysfunction, thereby being one of 
the most important diagnostic methods.

Many studies show that even if patients write the charts after 
being well educated, these data are inaccurate (Jarvis et al., 1980; 
Kim et al., 2014; Webb et al., 1992). There are many variables 
that can be monitored in the voiding charts, but it is clinically 
impossible to apply this method to all patients. In other words, 
there are many variables in voiding charts due to the issue of hand-
writing by patients with various abilities, so it is difficult to man-
age through accurate voiding charts. If accurate sensing technology 
based on AI technology and monitoring function to manage the 
voiding charts are implemented, systematic and efficient manage-
ment of patient urination will be possible. If patients can carry their 
voiding charts like a watch or beeper and automatically record uri-
nation, it will be helpful in studying symptoms and mechanisms 
that have not been revealed in many patients.

Most of study based on AI, it proposes a technology to recognize 
the movement of urination by analyzing the data of acceleration 
signals and gyro signals collected from smart bands. Various meth-
ods and learning algorithms for motion recognition have been 
proposed. Most studies have used static algorithms such as ANNs 
(Karmonik et al., 2019; Kim et al., 2020; Nikkola et al., 2020; 
Prabhakar et al., 2019) and K-means clustering (Baser et al., 2020; 
Fraley and Raftery, 2002; Moon and Cho, 2021), or dynamic time 
warping (Powar and Chemmangat, 2019) in combination with 
algorithms. However, a time series algorithm should be used to 
predict or classify dynamically changing time series data. Typical 

time series algorithms include dynamic Bayesian networks (Ka-
malabad and Grzegorczyk, 2020), hidden Markov models (HMMs) 
(Sonnhammer et al., 1998), and recurrent neural networks (RNNs) 
(LeCun et al., 2015). The HMM and RNN methods have been 
widely used for time series data. However, HMMs are not appro-
priate for learning sequential data because each step is only influ-
enced by the previous one. In concerned, it applied an RNN-based 
long short-term memory (Hochreiter and Schmidhuber,1997) 
method to process patient urination recognition. It aims to improve 
the recognition rate of the user’s urination and efficiently solve the 
existing issues such as the problem of not applying the past data. 
Thus, it developing an analytical technique for high accuracy while 
solving the limitation of existing studies.

The presented recognition technology of the patients’ urination 
is an extension of the existing pattern recognition technology based 
on signal processing. This technology is similar to the technology 
of recognizing specific motions in the smart home care service. The 
proposed technology also recognizes the signal pattern of urination 
and measures the frequency and time of urination to automatically 
record the urination information of the patients. This study based 
on AI aims to develop a technology for recognizing patients’ uri-
nation by collecting and analyzing sensed movement (acceleration 
and tilt angle) information in the patients’ smart bands. This de-
velopment is expected to lead to the implementation of the end- 
user’s urination management monitoring system (Eun et al., 2021). 
Fig. 1 shows an example of a urination management monitoring 
system.

Fig. 1. The example of urination management monitoring system.
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AI applications in reproductive urology
The possibility of AI in medicine has been widely theorized over 

the past decades (Chung et al., 2019; Myung et al., 2019). Repro-
ductive urology is a subfield where AI can contribute greatly be-
cause it has several limitations in the current predictive model and 
subjectivity within the field. Early AI application in reproductive 
urology focused on predicting semen parameters based on ques-
tionnaires identifying potential environmental factors and/or life-
style influencing male fertility rates. AI has shown that genetic 
testing for anhydrosis has succeeded in predicting the number of 
patients most likely to need. With the recent development of im-
age processing, automated sperm detection is a reality. The semen 
analysis, once a laboratory-only diagnostic test, has shifted to health 
consumer families with the emergence of AI. The prospects for AI 
in medicine are significant and have strong potential for AI in re-
productive urology. Research identifying factors that may affect 
reproductive success by natural or assisted reproduction is of utmost 
importance to advance this field.

CONCLUSIONS

This mini-review article aims to summarize the current appli-
cation and development of AI, especially in the urology environ-
ment for the diagnosis and treatment of urology diseases. The 
emergence of AI marked one of the biggest advances in technolo-
gy. From smartphones to surgical robotics, AI has transformed so-
ciety in a monumental way. As AI technology continues to devel-
op and develop, its applications in the medical field will expand 
even further. AI in medicine can be divided into two types: virtual 
and physical. Virtual AI includes informatics and system-based 
learning, such as in-depth learning management of symptoms that 
guide treatment decisions. On the other hand, physical AI includes 
robots and nanotechnology to strengthen drug delivery. Both areas 
of AI can contribute to remarkable improvements in both patient 
care and medical care. These new tools and functions are bound to 
have a very necessary impact, especially on the urology field. The 
application of AI will be beneficial across all relevant urology fields, 
including benign urology and cancer. These tools can be applied 
to clinical data, creating a robust risk model and redefining dis-
ease classification. As medicine develops into an era of “big data” 
and “artificial intelligence” where the amount of complex medical 
data increases, it can be a powerful resource in the search, explana-
tion, and application of information.
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ABSTRACT Bladder cancer (BC) is the most common urinary malignancy; however accurate diagnosis
and prediction of recurrence after therapies remain elusive. This study aimed to develop a biosignature of
immunotherapy-based responses using gene expression data. Publicly available BC datasets were collected,
and machine learning (ML) approaches were applied to identify a novel biosignature to differentiate patient
subgroups. Immune phenotyping of BC in the IMvigor210 dataset included three subtypes: inflamed,
excluded, and desert immune. Immune phenotypes were analyzed with gene expressions using traditional
but powerful classification methods such as random forests, Deep Neural Networks (DNN), Support Vector
Machines (SVM) together with boosting and feature selection methods. Specifically, DNN yielded the
highest area under the curve (AUC) with precision and recall (PR) curves and receiver operating charac-
teristic (ROC) curves for each phenotype (0.711 ± 0.092 and 0.86 ± 0.039, respectively) resulting in the
identification of gene expression features useful for immune phenotype classification. Our results suggest
significant potential to further develop and utilize machine learning algorithms for analysis of BC and
its precaution. In conclusion, the findings from this study present a novel gene expression assay that can
accurately discriminate BC patients from controls. Upon further validation in independent cohorts, this gene
signature could be developed into a predictive test that can support clinical evaluation and patient care.

INDEX TERMS Artificial algorithm, biomarker, bladder cancer, gene expression, immunotherapy, machine
learning.

IMPACT STATEMENT Machine Learning Approaches to Predict the Immune Phenotypes in Bladder
Cancer Patients: To develop a biosignature of immunotherapy-based responses using gene expression
data, Deep Neural Networks (DNN), Support Vector Machines (SVM) together with boosting and feature
selection methods were applied. DNN yielded the highest area under the curve (AUC) with receiver operating
characteristic (ROC) curves and precision and recall (PR) curves for each phenotype (0.711 ± 0.092 and 0.86
± 0.039 respectively). Our results suggest significant potential to further develop and utilize machine learning
algorithms for analysis of bladder cancer and its precaution.
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I. INTRODUCTION
Globally, bladder cancer (BC) is the ninth most common ma-
lignant tumor. BC also accounts for 4% of all cancer-related
deaths in the United States, ranking it the fifth most deadly
cancer [1]. According to the American Cancer Society, there
will be approximately 83730 new cases of BC (about 64280 in
men and 19450 in women) and about 17200 BC-related deaths
(about 12260 in men and 4940 in women) in the United States,
alone, in 2021. If your paper is intended for a conference,
please contact your conference editor concerning acceptable
word processor formats for your particular conference.

Based on the degree of bladder muscle wall infiltration,
BC can be classified as either non-muscle invasive (NMIBC)
or muscle invasive (MIBC). About 70% of BC patients have
NMIBC, while the other 30% have MIBC or metastatic dis-
ease [2]. Treatment for NMIBC includes endoscopic resection
of the tumor followed by adjuvant intravesical treatment to
reduce the possibility of recurrence or progression. The risk
of recurrence and progression is affected by many factors,
including tumor grade, size, staging, multiplicity, recurrence
rate, and the presence of carcinoma in situ (CIS). BC requires
a lifetime of close monitoring and repeated treatments, which
places an immensely heavy burden on patients and the social
economy. MIBC treatment options include chemotherapy and
radical cystectomy. The 5-year and 10-year survival rates of
MIBC are approximately 50% and 36%, respectively. How-
ever, the 5-year survival rate of metastatic BC is only 15%,
and the median overall survival (OS) is about 15 months
following platinum-based chemotherapy.

Immunotherapies against BC have shown encouraging re-
sults. The first immunotherapy against BC was reported in
1976, when Alvaro Morales reported 9 cases of BC that were
successfully treated with Bacillus Calmette-Guerin (BCG),
demonstrating the immunogenicity of BC [3]. Immune check-
point inhibitors (CPIs) are leading the field of immunother-
apies against BC. It includes anti-cytotoxic T lymphocyte
antigen 4 (CTLA4), anti-programmed cell death 1 (PD-1), and
anti-programmed cell death 1 ligand 1 (PD-L1) antibodies.
Anti-CTLA4, anti-PD-1, and anti-PD-L1 CPIs can improve
anti-tumor immune response by restoring T-lymphocyte acti-
vation [4]. With the rapid advancement of new immunother-
apy drugs, the development and validation of biomarkers will
be important. Established biomarkers can help clinicians pre-
dict whether treatments will be effective. Varying subtypes
of BC may also have definitive biological differences, which
can result in variable sensitivity to Immunotherapies. In order
to fully optimize the benefits of immunotherapy in future
treatments and to further improve its impacts, supplemental
biomarkers capable of monitoring response should be inte-
grated.

Despite the initial success of cancer immunotherapies [5],
approximately 70% of patients with advanced urethral cancer
are considered unresponsive to anti-PD-1 or anti-PD-L1 anti-
bodies [6], [7].

Recent studies have employed a variety of biomarkers such
as PD-L1 hyperexpression and tumor mutation burden (TMB)

to distinguish the potential immunotherapy responders from
non-responders [5]. There seems to exist a link between these
biomarkers and immunotherapy outcomes, but neither PD-
L1 expression nor TMB was sufficient to distinguish im-
munotherapy responder from non-responders [8], [9]. For ex-
ample, the epithelial PD-L1 expression in BC has been shown
to be unrelated to immunotherapy responses [10]. In addition,
there has been difficulty predicting responses using TMB as a
single marker [11], although increased TMB has been linked
to improved clinical outcomes of immunotherapy in bladder
cancer [12]. These previous works indicate the unmet needs
to identify more reliable biomarkers for the stratification of
immunotherapy responders from non-responders.

IMvigor210 was an open multicenter, single-arm phase
2 clinical study designed to study whether atezolizumab
could become the standard treatment for advanced urothe-
lial cancer. This study suggested that for patients with first-
line platinum-based refractory metastatic urothelial carci-
noma (mUC) checkpoint inhibitors seem to be more attrac-
tive than chemotherapy [13]. Atezolizumab is now suggested
to prescribe for many patients who are ineligible for cis-
platin therapy. In our study we used the publicly available
IMvigor210 data. Previously, IMvigor210 data has been used
to test the prognostic power of gene expression signatures
for basal and luminal/differentiated BC subtypes [14]. Overall
survival, prognosis and response to immunotherapy were also
studies in the IMvigor 210 cohort [15]. A consensus molecular
classification system for MIBC was suggested by analyzing
the 1750 MIBC transcriptomic profiles from datasets includ-
ing IMvigor dataset, providing a tool for testing and validation
of potential predictive MIBC biomarkers [16].

Big data-based ML has been increasingly used and success-
fully applied to preventive medicine, image recognition, diag-
nosis, personalized medicine, and clinical decision-making.
Application of machine learning (ML) algorithms to deter-
mine the cancer-specific classifiers have been tried in a series
of studies. To determine the multi-variate classifiers predict-
ing response to paclitaxel-therapy, methylome and miRNome
were used [16]. Not only in vivo multi-omics profiles [17] but
also in vivo cancer molecular profiles were able to predict the
drug-sensitive tumors using ML modeling approach [18].

Clinical application of conventional ML approaches has
been performed for the more accurate clinical decision, which
was benefited by an increased computational power and ac-
cumulated digital health data from patients [19], [20]. How-
ever, we are aware the limitations due to the complicated
data processing (feature engineering) including knowledge-
based training [21], [22]. ML algorithms derived from not-so-
relevant data resources, low volume of patients, data with high
sparsity and poor could significantly diminish enthusiasm and
reduce the efficacy of ML approach [23].

Although ML is widely used in the context of BC, there
are still limitations, including difficulties in quantitatively an-
alyzing observed endpoints and the inapplicability of gener-
alizability across data sets. Therefore, further verification is
needed to improve the accuracy and versatility of ML in BC.
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Therefore, in this study, we aimed to search for the potential
of using ML algorithms to investigate relationships between
gene expression features with immunotherapies specific to BC
and identify potentials to develop and use ML algorithms for
such studies. For this, we have adopted five different tradi-
tional but powerful ML classification methods (i.e., Random
Forest, Deep Neural Network, Support Vector Machine, Ad-
aboost and XGBoost) to predict BC immune phenotypes us-
ing high-dimensional gene features. With efforts to avoid pit-
falls of these algorithms, e.g., overfitting, we managed to get
successful classification performance identifying phenotype-
specific gene features (see Section IV for detailed clinical
and technical discussions). We see great possibility to further
develop more sophisticated and task-specific ML algorithm
for analyzing BC with gene data to provide diagnostic tool for
individuals and identify BC in their early stages, or possibly
even prevent the disease.

II. MATERIALS AND METHODS
A. ETHICS STATEMENT
For this paper, we used deposited datasets derived from previ-
ously published studies. Use of publicly deposited data does
not require IRB approval.

B. DESCRIPTION OF THE DATASET
For this study, we have used the Imvigor210 data that
can be found in previous report [24] and the associated
resource web site provided by Dorothee Nickles,
Yasin Senbabaoglu, Daniel Sheinson at http://research-
pub.gene.com/IMvigor210CoreBiologies/. The raw data
are available at the European Genome-phenome archive
(EGA) under the accession number EGAS00001002556.
The IMvigor210CoreBiologies package can be downloaded
at http://research-pub.gene.com/IMvigor210CoreBiologies/
IMvigor210CoreBiologies.tar.gz. Code for data processing,
analysis and plotting and the R script are available from this
IMvigor210CoreBiologies package.

The IMvigor210 study was a phase 2, multicenter, single-
arm, open-label, and 2 cohort trial that assessed ate-
zolizumab as a treatment for metastatic urothelial cancer in
cisplatin-ineligible patients [25]. Clinical data for the first-line
cisplatin-ineligible IMvigor210 cohort was collected from 47
academic medical centers and community oncology practices
across 7 countries in North America and Europe. All partici-
pants in the study consented.

The IMvigor210 dataset includes recorded responses to im-
mune checkpoint blockade. This Illumina HiSeq 2500-based
dataset contains 348 subjects (76 female and 272 male) with
17692 gene expression biomarkers (i.e., features), which were
derived from genes using Entrez gene ID and gene symbol.
Archival tumor tissues were collected for biomarker assess-
ments, and gene expression was designed to be quantified
for a T-effector gene signature (consisting of CD8A, GZMA,
GZMB, PRF1, INFG, and TBX21) [5]. The feature values of
gene information were normalized using the trimmed mean

of M-values (TMM) method. Each sample includes corre-
sponding clinical labels, such as age, sex, PD-L1 status of
immune cells, prior tobacco use, metastatic disease, best con-
firmed overall survival, overall response, Response Evaluation
Criteria in Solid Tumor (RECIST), immune phenotype, and
The Cancer Genome Atlas (TCGA) subtype. For this study,
three specific immune phenotypes were investigated: immune
deserts, immune-excluded, and inflamed.

All types of human cancers, including BC, can be catego-
rized into three immune phenotypes. These phenotypes are
distinguished by the strength and relationship of the immune
response of T-cells acting on the tumors, and different treat-
ments should be applied based on the individual immunolog-
ical biology of each phenotype. The IMvigor210 dataset con-
sists of 76, 134, and 74 samples of immune deserts, immune-
excluded, and inflamed phenotypes, respectively. The immune
desert subtype is absent of immune cells, with total lack of an
immune response against the tumor. The immune-excluded
subtype has an immune response with only peripheral inva-
sion of T-cells that cannot completely overwhelm the tumor.
The inflamed subtype involves an active immune response
where inflammatory myeloid cells and activated CD8+ T-
cells exist in the tumor [26], [27]. Since the remaining 64
samples in the dataset did not provide any information on
immune phenotypes, they were disregarded for this study.

C. CLASSIFICATION METHOD
Five powerful ML-based classification algorithms, i.e., Sup-
port Vector Machine (SVM), Random Forest, XGBoost, Ad-
aBoost and deep neural network (DNN) were adopted to in-
vestigate immune phenotypes using gene expression features
[28]–[32]. We performed a supervised learning task, where
each data sample consists of a feature vector and class label.
In our experiment, the algorithms were trained to learn op-
timized mapping between the features (i.e., gene expression)
and target labels (i.e., immune phenotypes).

SVM is a well-known supervised classification algorithm
that can learn a decision boundary, either linear or non-linear,
in a feature space. Given data samples forming individual
clusters in the feature space according to class labels, SVM
learns a decision boundary that maximizes the margin of
distance between the decision boundary and other clusters
[33]. Such a criteria intuitively makes sense as the distance
between individual clusters and the learned decision boundary
will be balanced. To train a linear model when the data are
not linearly separable, the model requires a regularizer with
a user parameter (i.e., slack variable) that controls the margin
and tolerable error within the margin. Training a non-linear
model requires a kernel function (e.g., Gaussian and polyno-
mial kernels) that can map the data onto a high-dimensional
space where the data can become linearly separable. Taking
the trained decision boundary back to the original space will
then yield an optimized non-linear decision boundary [34].

Random Forest is one of the ensemble methods for classifi-
cation and regression tasks. A sole Decision Tree can perform
the same tasks on supervised learning problems by asking a
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series of questions regarding to the characteristics of input
variables. To avoid overfitting with large trees [35], [36], Ran-
dom Forest incorporates multiple Decision Trees and casts
a majority vote from the results classified from each tree.
This ensemble technique is known as Bagging [37], which
is an abbreviation of Bootstrap Aggregation. It is a method
of extracting samples multiple times (Bootstrapping [38]) and
training each model to aggregate the results. Although some
trees created by Random Forest can be overfitted, an over-
whelming majority can suppress the flaw from having a signif-
icant impact on prediction of class labels, i.e., classification.

In addition, we adopted another ensemble method,
Boosting algorithm [39], based on the Decision Tree
architecture. Unlike to Bagging where each tree makes
independent decisions, Boosting has a sequential prediction
process in which one model influences the decision of
the next tree. In this process, Boosting repeats multiple
steps to create a new classification criterion by improving
weights on misclassified data. Finally, it creates a strong
classifier gathering weak classifiers altogether to result in the
ensembled output. In this paper, we used XGBoost [40] and
Adaptive Boost (AdaBoost) [41], [42]. The difference of two
methods is the way to deliver information of misclassified
data from previous models. For example, AdaBoost updates
subsequent classifiers based on the weight values of the
former models. However, the update of XGBoost is based on
gradient descent with a greedy algorithm.

Lastly, for the deep learning (DL) approach, we used a
DNN algorithm with multiple hidden layers [30]. This con-
sisted of an input layer for the original data, output layer for
prediction outcome (e.g., pseudo-probability for each class),
and a varying number of hidden layers where the input data
can be transformed and model parameters are trained to mini-
mize prediction error, usually defined by cross-entropy. While
the input and output layers contain nodes according to the
input dimension and the number of class labels respectively,
each hidden layer is composed of hidden nodes determined by
a user. At each hidden node, the node from its previous layer
becomes the input, which is connected to the hidden node via
edges with corresponding edge weights. The input values and
edge weights at each hidden node are first linearly combined
and then fed into a non-linear activation function (e.g., sig-
moid or rectified linear unit (ReLU)) to yield an output that
goes into the following layer as an input. At the output layer,
the outcome values from each node are normalized to yield
a pseudo-probability that tells which class label is the most
likely for a given data sample. The l1- and l2-regularizers
were applied onto the model parameters for sparsity as in least
absolute shrinkage and selection operator (LASSO [43], [44],
depicting important features only by suppressing weights of
unimportant features to 0) and to make the model stable [28].

D. MODEL TRAINING
In order to obtain unbiased results, we used 10-fold cross
validation (CV) to conduct experiments with the two five
classification algorithms [45]. For the SVM, we utilized both

linear and non-linear models. An RBF kernel was used for
the non-linear classifier. The slack variable C was varied
from 0.01 to 1000 to find the best performance. For Decision
Tree-based models, such as Random Forest, XGBoost and
AdaBoost, the number of trees per fold was kept to the same
rate for comparing all results under unbiased conditions. The
number of Decision Trees per fold was set to 100 and all Deci-
sion Trees were generated by allowing random sampling with
replacement. The final classification was decided by majority
voting incorporating outputs from every single classifier. The
number of Decision Trees in all Boosting methods was set to
100. As for learning rates, XGBoost and AdaBoost were set to
0.1 and 1.0 respectively, with the highest test accuracy score
for each classifier. For the DNN, we tried multiple settings
by adjusting the number of hidden layers, nodes, and regular-
izers. The number of hidden layers varied from 0 to 3, and
the number of hidden nodes in each layer varied between 16
and 1024. A drop rate ranging from 0.1 to 0.5 was applied.
To measure the error of the model, cross-entropy was used.
For the activation function, ReLU was used and Softmax
was applied at the output layer to obtain the likelihood for
each class. The overall model was trained by backpropagating
the error from cross-entropy with gradient descent using the
Adaptive Moment Estimation (Adam) optimizer [46].

E. FEATURE SELECTION
Since the data is compiled in a very high-dimensional space,
statistical hypothesis tests were used to select effective fea-
tures for distinguishing different groups. Statistical group
analysis for each pair of phenotypes was applied on each
feature, and resultant p-values were corrected for multiple
comparisons using Bonferroni correction at the 0.05 confi-
dence level. The feature selection process was applied only
at the training stages (i.e., excluding test data) across each
fold in CV where the phenotype labels were available; hence,
avoiding circular analysis.

F. EVALUATION
To evaluate the performance of our classification results, we
measured accuracy, precision, and recall. Accuracy was com-
puted as the ratio of the number of correct predictions out of
the total number of samples in a testing dataset. Precision and
recall were considered for binary classification (i.e., positive
vs. negative); precision measures how precise the prediction is
for the positive class, while recall measures how much of the
positive samples in the training dataset are correctly covered
by the prediction. While accuracy is an intuitive and important
measure for evaluation, precision and recall are also important
for evaluating data with imbalanced class labels. Since pre-
cision and recall are computed for binary classification tasks,
we computed them in a one-versus-all manner; out of the three
immune phenotype classes, one of them is selected as positive.
The other two were combined and considered the negative
class. This is iterated for all the three classes as positive, yield-
ing three individual results. We also plotted receiver operating
characteristic (ROC) and precision and recall (PR) curves.
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TABLE 1. Comparison of Representative Results in Different Settings

The area under the curve (AUC) was computed for evaluation
(higher AUC denotes better performance). To understand the
effectiveness of a classifier on an imbalanced dataset, the AUC
scores of both curves were used as quantified summaries of
the model performance as well as Mathews Correlation Coef-
ficient (MCC) at a threshold of 0.5 to determine positive and
negative labels. These values ranged between 0.0 to 1.0, with
larger scores suggesting that a model is more robust.

G. IMPLEMENTATION ENVIRONMENT
All experiments were implemented in Python on a Nvidia
GeForce RTX 2070 SUPER graphic card. DNN was designed
based on Keras and scikit-learn machine learning libraries
were utilized for the other methods. As for statistical tests,
scipy library was used to derive p-values.

III. RESULTS
Classification results on Immune Phenotypes of BC using the
five classification methods are demonstrated in this section.

A. CLASSIFICATION OF IMMUNE PHENOTYPES WITH SVM
Immune phenotyping of BC from the Imvigor210 dataset
resulted in three subtypes, inflamed, immune-excluded, and
immune desert; all of which are characterized by distinct T
lymphocyte infiltration patterns. Immune desert tumors have

Evaluation measures were averaged across 10-fold. These
values range between 0 and 1, with values closer to 1
indicating better performance. The area under the curve
(AUC) of precision and recall (PR) curves accounts for the
class imbalance in performance evaluation poor infiltration of
immune cells (absence of pre-existing antitumor immunity),

immune-excluded tumors only exhibit retention of T
lymphocytes in the reactive stroma, and inflamed tumors
show infiltrated T lymphocytes [47], [48]. The overall results
are summarized in Table 1.

The classification process using an SVM-based system was
implemented with two types of kernel functions (i.e., linear
kernel and radical basis function (RBF)). As shown in Table 1,
the best accuracy scores of both SVM experiments without
feature selection were 0.655 while their training accuracies
were 1. This indicates that there was a serious overfitting (i.e.,
the model worked perfectly on the training data but signif-
icantly failed to do so for testing data). The slack variable
utilized in the two cases were 100. When statistical feature
selection was applied to the input data of SVM with RBF
kernel, the average test accuracy across CV scored the highest
(0.68) throughout all experiments, which suggests that feature
selection based on statistical group tests was effective. For
slack variables, the score reached a peak at 10 and decreased
slightly as the variables changed. On the other hand, linear
SVM with feature selection yielded poor results. The accuracy
was 0.588 regardless of the slack variable.

In Fig. 1, PR and ROC curves for the three SVM exper-
iments are described for the 3 classes, which are marked in
blue (immune desert), orange (inflamed), and green (immune-
excluded). Among the results with various SVMs, similar to
the results of the test accuracy, SVM with RBF kernel and
feature selection resulted in the highest average

AUC scores for both metrics among SVM results; 0.688
and 0.812 for the PR and ROC curves, respectively.
Accordingly, MCC of 0.495 for this case was the highest
as well. Notably, all of the averaged AUC scores of the PR
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FIGURE 1. Receiver operator characteristic (ROC) and precision and
recall (PR) curves for each class using support vector machine (SVM).
Top: Linear SVM, mid: SVM (RBF), bottom: SVM (RBF) with feature
selection. Higher AUCs, closer to 1, indicate better performance. High AUCs
with ROC curves for each phenotype indicate the model is predicting the
phenotypes with low false positives. PR curves show that classification
performance for the immune-excluded class is enhanced (green line) by
feature selection.

and ROC curves across SVM classes were recorded slightly
smaller than the results from DNN models.

B. CLASSIFICATION OF IMMUNE PHENOTYPES WITH
RANDOM FOREST
Test accuracy of Random Forest scored the lowest through-
out all experiments regardless of feature selection. Similar to
SVM, training accuracies of Random Forest were 1, denoting
that this algorithm has also overfitted to the input data and
yielded poor test accuracy and MCC. But interestingly, we
can see that mean precision recorded the highest score among
all models as shown in Table 1, whether feature selection
is applied or not. This highest precision value indicates that
Random Forest was able to produce the lowest number of false
positive samples. Notably, applying Bonferroni correction re-
duced the gap between precision and recall, so that the AUC
scores of all classes in PR and ROC plot (shown in Fig. 2)
outperformed to those of non-feature selected Random Forest.

C. CLASSIFICATION OF IMMUNE PHENOTYPES WITH
XGBOOST AND ADABOOST
For Boosting methods, the most representative Boosting
algorithms, AdaBoost and XGBoost were employed and
their performance curves are shown in Fig. 3. As shown in
Table 1, the overall test accuracy and MCC of both Boosting

FIGURE 2. Receiver operator characteristic (ROC) and precision and
recall (PR) curves for each class using Random Forest. Top: Random
Forest without feature selection, bottom: Random Forest with feature
selection. Higher AUCs, closer to 1, indicate better performance. High AUCs
with ROC curves for each phenotype indicate the model is predicting the
phenotypes with low false positives. ROC curves show that classification
performance for the immune-excluded class is enhanced (green line) by
feature selection. Likewise, comparing two PR curve plots illustrates that
performance of all classes with feature selection has outperformed.

algorithms scored higher than Random Forest but lower
than SVM and DNN. Although XGBoost was overfitted for
training data, on the contrary to AdaBoost, the test accuracy
of XGBoost was slightly higher than for AdaBoost’s. Also,
applying feature selection to Boosting classifiers resulted
a worse performance for all metrics compared to models
without Bonferroni correction.

Therefore, we can see that the feature selection was in-
valid in respect of Boosting algorithms that focus weights
on misclassified samples for improving accuracies. In other
words, the eliminated features from Bonferroni correction
have had a substantial influence on decision-making processes
in Boosting models, especially for identifying the attributes of
incorrectly classified dataset.

D. CLASSIFICATION OF IMMUNE PHENOTYPES WITH DNN
Various classification experiments using DNN were per-
formed with the settings described in the Methods section.
Representative results are summarized in Table 1. With a
very naïve DNN model without any regularizers or techniques
to make the model robust (i.e., dropout, batch normaliza-
tion, and feature selection), the resultant accuracy averaged
across all 10 folds was 0.549. Considering the baselines with
random guess (0.33) and prediction as the dominant class
(0.472), the model was properly learning to predict BC im-
mune phenotypes. However, it suffered from overfitting and
relatively low accuracy compared to the SVM-based models.
Applying a dropout rate of 0.3, statistical feature selection,
and l1-regularizer (with hyper parameters 0.01 and 0.08 for
each layer) on two hidden layers with 32 hidden nodes, the
accuracy increased to 0.666 with averaged respective preci-
sion and recall of 0.722 and 0.635 across different class labels.
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FIGURE 3. Receiver operator characteristic (ROC) and precision and
recall (PR) curves for each class using XGBoost and AdaBoost. Top:
XGBoost without feature selection, second row: XGBoost with feature
selection, third row: AdaBoost without feature selection, bottom:
AdaBoost with feature selection. Higher AUCs, closer to 1, indicate better
performance. High AUCs with ROC curves for each phenotype indicate the
model is predicting the phenotypes with low false positives. Almost all
classes of both Boosting algorithms without feature selection shows better
AUCs of PR and ROC curves than feature selected models.

The ROC and PR curves for individual experiments are
shown in Fig. 4, where the curves for each class are given in
blue (immune desert), orange (inflamed), and green (immune-
excluded). All the ROC curves in the left column of Fig. 4
rapidly converged close to 1 in their true positive rate (TPR).
Simultaneously, the PR curves in the right column of Fig. 4
maintained precision with respect to recall as much as pos-
sible. The respective AUCs of 0.77 and 0.87 for the PR and
ROC curves demonstrated the model’s feasibility in classi-
fying different stages of immune phenotypes. The training
and testing accuracies for different DNN settings are shown
in Fig. 5, which demonstrates that both training (blue) and
testing (orange) accuracies increase as the training progresses.
After the model convergences, the middle subfigure (with
l1-penalty) shows a large difference between the training and
testing accuracies as opposed to the other two subfigures.
These differences were due to the application of statistical
feature selection using a t-test. For each fold, statistical testing

FIGURE 4. Change of training / testing accuracy with respect to epoch in
DNN training. Top: DNN (feature selection), middle: DNN (L1-norm
penalty), Bottom: DNN (L1-norm penalty and feature selection). Similar
training (blue) and testing (orange) accuracies indicate better
generalization of the trained model to unseen testing data. As seen in the
middle panel, significant overfitting (large differences between training
and testing accuracies) occurs without feature selection.

at each gene feature on the training data with Bonferroni cor-
rection at 0.05 yielded 900∼1300 significant features. Given
the high dimensionality of the data, without feature selection
for dimension reduction, the issue of overfitting was easily
seen. Although not presented in these results, we also ob-
served overfitting occurring with an increase in hidden layers
or nodes. This overfitting behavior explains the differences
in MCC. As seen in Table 1, the DNN with l1-penalty only
showed the lowest MCC as it was highly overfitted. On the
other hand, the DNN with both l1-penalty and feature se-
lection did not overfit and demonstrated the highest MCC of
0.488.

With the l1-regularizer at imposing sparsity at the input
layer, many of the weights associated with each feature were
suppressed to a value of or close to 0. From the DNN
model with regularizer and feature selection, which yielded
the highest accuracy and AUC for PR curves, the top 20
highest weighted gene features across all 10 folds were iden-
tified. Among them, 13 common features existed across all
folds. These were named TMEM156 (Transmembrane Protein
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FIGURE 5. ROC and PR curves (for each class) using deep neural
network (DNN). Top: DNN (feature selection), mid: DNN (L1-normpenalty),
bottom: DNN (L1-norm penalty and feature selection). Higher AUC (closer
to 1) indicates better performance. High AUCs with ROC curves for each
phenotype indicate the model is predicting the phenotypes with low false
positives. Overall AUCs of both ROC and PR curves are higher than those
from SVM analysis.

156), TOX (Thymocyte Selection-associated High-mobility
Group Box Protein), XAF1 (X-linked Inhibitor of Apoptosis-
associated Factor-1), SPATC1 (Spermatogenesis and Cen-
triole Associated 1), FOXP3 (Forehead Box P3), ARRB2
(Arestin Beta 2), TNFRSF9 (TNF Receptor Superfamily
RNASE6 (Ribonuclease A Family Member K6), DBH-AS1
(DBH Antisense RNA 1), TENT5C (Terminal Nucleotidyl-
transferase 5C), ID3 (DNA-binding Protein Inhibitor), APOE
(Apolipoprotein E), and LAX1 (Lymphocyte Transmembrane
Adaptor 1).

IV. DISCUSSION
In recent years, immunotherapy has come to play an increas-
ingly important role in oncology. Immunotherapy in can-
cer treatment involves modifying or adding defense mech-
anisms to the patient’s immune system. Immunotherapy is
often used as a supplement to conventional cancer treatment
methods, such as surgery, chemotherapy, and radiation ther-
apy. For some specific types of lung and colorectal cancer,
immunotherapy is used as the first line of treatment [49]. In
urological oncology specifically, immunotherapy is used as a
supplemental treatment in addition to standard of care [50].
Immunotherapy in cancer treatment involves modifying or
adding defense mechanisms to the patient’s immune system.
Currently, immunotherapy can be divided into several types,

including immune CPIs, T cell transfer therapy, monoclonal
antibodies, therapeutic vaccines, and immune system modu-
lators [51].

Based on current research on BC therapies, immunotherapy
seems to be the most promising. Because there are multiple
regimens for immunotherapy, patients respond differently de-
pending on the therapy. Currently, the US FDA has approved
five anti-programmed death-1/ligand 1 (PD-1/L1) checkpoint
inhibitors: atezolizumab, avelumab, durvalumab, nivolumab,
and pembrolizumab [52]. Among them, atezolizumab was
the first to pass approval. This approval was made based
on the research results of IMvigor210. IMvigor210 was an
open multicenter, single-arm phase II clinical study designed
to study whether atezolizumab could become the standard
treatment for advanced urothelial cancer. This study suggested
that for patients with platinum-based refractory metastatic
urothelial carcinoma (mUC), checkpoint inhibitors seem to
be more attractive than chemotherapy [13]. Atezolizumab has
shown encouraging long-term response rates, survival rates,
and tolerability, supporting its therapeutic use in untreated
mUC [53]. Based on the results of the study, the FDA ap-
proved atezolizumab as the first-line drug for the treatment of
patients with advanced urothelial cancer who are not suitable
for cisplatin chemotherapy.

Regarding Boosting methods, the key hyperparameters
were the number of trees and learning rates. The number of
estimators designates the scale of Random Forest. As more
individual trees were included, the classification performance
became better, but the whole model took longer time to be
trained. A learning rate of Boosting algorithms denotes a
coefficient applied to the weak classifiers when calibrating
the error values sequentially. Since the learning rate directly
affects the variation in the weight update, the difference in
decision boundaries of multiple trees changed proportionally
to the learning rate. However, it requires a large number of
trees with a time-consuming ensemble process at the same
time. Thus, the number of trees and learning rate has a trade-
off relationship and coordinating the ratio between the two
parameters was crucial to the performance of classification.
Therefore, we had to manage the number of estimators at the
same rate for fair comparison of the results.

In our study, Decision Tree based methods mostly tended to
overfit as the training accuracies reached 1, and testing cases
underperformed compared to SVM and DNN. Comparing
the top-2 algorithms, although the accuracies with our DNN
model were lower than that of our SVM model, the AUCs
of evaluation curves (ROC and PR) were better. Specifically,
the AUCs of PR curves in the DNN model were larger by
0.083 compared to the best of both models, which demon-
strates that the DNN did better with imbalanced class labels.
This is because the latent space for group separation found
by DNN is better than SVM; while SVM with RBF kernel
maps the data onto a higher dimensional space to find a linear
decision boundary in that space, the DNN model mapped data
onto a lower-dimensional space where group separation can
be more effective and robust. The accuracy may be better in
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the high-dimensional space found by SVM with RBF kernel,
but the actual separation of the three immune phenotypes was
more effective with DNN. This was also seen in the overfitting
trend of both models. Both SVM and DNN suffered from
overfitting; it was more serious for the SVM model while
the DNN model was able to mitigate this issue with com-
mon techniques, such as dropout and regularizers, and this
behavior was observed in MCC of individual models. As a
result, there was a trade-off between training accuracy and
other measures. Although SVM achieved slightly better test
accuracy and MCC than those from DNNs, the precision and
AUCs were significantly higher in DNN models, which we
believe are more important.

Regarding the effective biomarkers found by the DNN
model, downstream statistical group tests across each pheno-
type pairs yielded many significant p-values. As the pheno-
type profiles are ordered by severity, all 13 features showed
very low p-values (<1e-6) for immune desert vs. inflamed and
mostly effective (i.e., <0.05) for other group pairs. Perhaps
this was expected as our feature selection process selected
important features with statistical tests at the training stage,
but it was still worth analyzing them over the entire data to
confirm if these biomarkers are really statistically meaningful
for group comparisons.

We further investigated the 13 significant features asso-
ciated with immunotherapy responsiveness in BC. FOXP3
is widely known as a key regulatory transcription factor of
regulatory T cells, contributing to immune system responses
[27], [54], [55]. Expression of FOXP3 in BC has been re-
ported to negatively associated with survival of patients [56].
Recent studies have reported that FOXP3 acts as a transcrip-
tional regulator of HIF-1α gene expression in BC, suggest-
ing the potential contribution of the FOXP3/HIF-1α pathway
in poorer survival [57]. APOE, an apolipoprotein related to
lipoprotein-mediated lipid transport, was also found in the im-
munotherapy responsive molecular features. The LXR (liver
X receptor)/APOE axis has been reported to regulate innate
immune suppression and activation. Since this axis blocks
innate immune suppression in many cancer types, it has been
suggested as a therapeutic target to allow better efficacy of
immunotherapy for cancer patients [58]. TOX has been found
to regulate innate immunity and the tumor microenvironment.
TOX expression significantly increases immune infiltration
levels and is downregulated in most cancer types. Lower ex-
pression of TOX is correlated with poorer prognoses, sug-
gesting that TOX expression can be used for stratification of
non-responders to immunotherapy [59], [60].

Findings from this study suggest that the experiment we
designed using ML algorithms are effective in classifying
immune phenotypes of BC with gene expressions and identi-
fying associations between specific gene expressions and the
phenotypes. It also demonstrates the potential of our DNN
model after improving overfitting via utilization of more sam-
ples. In addition, this study found 13 features associated with
response to immunotherapy, which may all be biologically
relevant.
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ABSTRACT

Asian Americans are the only racial/ethnic group in the
U.S. for whom cancer is the leading cause of death in men
and women, unlike heart disease for all other groups.
Asian Americans face a confluence of cancer risks, with
high rates of cancers endemic to their countries of origin
due to infectious and cultural reasons, as well as increas-
ing rates of “Western” cancers that are due in part to
assimilation to the American diet and lifestyle. Despite
the clear mortality risk, Asian Americans are screened for
cancers at lower rates than the majority of Americans.
Solutions to eliminate the disparity in cancer care are
complicated by language and cultural concerns of this

very heterogeneous group. This review addresses the dis-
parities in cancer screening, the historical causes, the
potential contribution of racism, the importance of cul-
tural perceptions of health care, and potential strategies
to address a very complicated problem. Noting that the
health care disparities faced by Asian Americans may
be less conspicuous than the structural racism that has
inflicted significant damage to the health of Black Americans
over more than four centuries, this review is meant to raise
awareness and to compel the medical establishment to rec-
ognize the urgent need to eliminate health disparities
for all. The Oncologist 2021;26:453–460

Implications for Practice: Cancer is the leading cause of death in Asian Americans, who face cancers endemic to their native
countries, perhaps because of infectious and cultural factors, as well as those faced by all Americans, perhaps because of
“Westernization” in terms of diet and lifestyle. Despite the mortality rates, Asian Americans have less cancer screening than
other Americans. This review highlights the need to educate Asian Americans to improve cancer literacy and health care
providers to understand the important cancer risks of the fastest-growing racial/ethnic group in the U.S. Eliminating dispar-
ities is critical to achieving an equitable society for all Americans.

INTRODUCTION

In 2020, the confluence of the COVID-19 pandemic and the
outrage about the disproportionate number of deaths of
Black Americans in police custody—among other egregious
affronts to Black lives—exposed critical disparities in health
care and structural racism faced by Black and Latinx Ameri-
cans. In support of eliminating health disparities for all
Americans, this review examines disparities in the delivery
of cancer care for Asian Americans.

The broad brushstrokes illustrate the need to evaluate
disparities in this population. Asian Americans are the
fastest-growing racial/ethnic group in the U.S. Unlike every
other group, for whom heart disease leads the way, cancer

is the leading cause of death in male and female Asian
Americans [1, 2]. By some measures, Asian Americans have
greater exposures to environmental carcinogens [3].
Despite these risks, Asian Americans have lower cancer
screening rates than other groups [1, 4–7]. Taken together,
there is a clear need to ensure equitable access to screen-
ing and cancer care in this vulnerable population.

THE ASIAN AMERICAN POPULATION

Who are Asian Americans? In the broad terms “people of
color” and “underrepresented minority,” Asian Americans
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are not typically included. Asian Americans comprise 6% of
the U.S. population but are not a monolith. By the current
definition used by the U.S. Census Bureau (established in
1997 by the Office of Management and Budget [https://
www.census.gov/topics/population/race/about.html]), the
term “Asian” includes people who can trace their origin to
more than 20 countries in East Asia (e.g., China, Japan,
Korea), Southeast Asia (e.g., Cambodia, Philippines,
Thailand, Vietnam), and the Indian subcontinent
(e.g., Bangladesh, India, Pakistan) [5, 8]. As of 2015, of the
more than 20 million Asian Americans, 23% were from
China, 19% from India, 18% from the Philippines, 9% from
Vietnam and Korea, and 7% from Japan, with the remaining
15% from all other countries [8]. Asian Americans are some-
times grouped with people with roots in the Pacific Islands
(e.g., native to Hawaii, Marshall Islands). The number of
countries belies the significant ethnic diversity in this het-
erogeneous group, with 200 languages or dialects. As such,
aggregate data of “Asian Americans” often fail to capture
the broad range of experience in this group.

Asian Americans are the fastest-growing racial/ethnic
group in the U.S., with 72% growth between 2000 and
2015, compared with 60% for the second-fastest-growing
population (Latinx Americans). Most Asian Americans (59%)
were born in another country. Since 1965, one-fourth of all
immigrants to the U.S. have come from Asia. Asian immi-
grants comprise 13% of the 11.1 million undocumented
immigrants in the U.S. [8].

Social determinants of health are defined by the Centers
for Disease Control and Prevention as “conditions in the
places where people live, learn, work, and play” that “affect
a wide range of health risks and outcomes” [9]. Asian Amer-
icans frequently settle in either central city locations or
near cities [3]. Overall, the home ownership rate among
Asian Americans is lower than for the U.S. overall (57%
compared with 63%), with only Vietnamese and Japanese
households at or above the U.S. rate [8]. More Asian Ameri-
cans live in multigenerational households (26%) compared
with all U.S. households (19%) [8].

Aggregate data indicate that Asian Americans fare well
based on measures of economic well-being, including
median household income ($73,600 compared with
$53,600 for all U.S. households) and poverty rates (12.1%
compared with 15.1%) [8]. However, disaggregated data
describe a broad range among subgroups, including highest
compared with lowest median household incomes
($100,000 for Indian compared with $36,000 for Burmese)
and lowest compared with highest poverty rates (7.5% for
Filipino and Indian groups compared with 35% for
Burmese). In terms of education, 51% of Asian Americans
over age 25 have a bachelor’s degree, compared with 30%
of all Americans; however, there is a wide range among
subgroups, from 9% among Bhutanese to 72% among
Indians [8].

Notably, the demographics and data indicate that Asian
Americans and other minority groups face different chal-
lenges related to disparities, and therefore any proposed
solutions for minority groups are necessarily population
specific. In addition to the wealth and poverty rates above,
other measures of social inequities favor Asian Americans

over White, Black, Latinx, and Native/Indigenous Americans,
including incarceration rates, health insurance rates, infant
mortality, and diabetes- and heart disease–related mortality
[10]. Self-reported issues such as discrimination and stress
are subject to reporting bias and are less readily compara-
ble. In terms of representation in medicine, Asians are an
overrepresented minority, comprising 11.2% of U.S. primary
care physicians (PCPs), compared with 6.8% Black and 5.9%
Latinx PCPs [11]. By comparison, the entire U.S. population
is 6% Asian, 13% Black, and 18% Latinx. Of all active
U.S. physicians, 17.1% identify as Asian, with 5.0% Black
and 5.8% Latinx [12]. Similar trends exist in other areas of
health care requiring advanced degrees, including pharma-
cists (17.9% vs. 5.9% vs 3.7%, for Asian, Black, and Latinx,
respectively), dentists (14.3% vs. 3.0% vs. 6.1%), and
optometrists (13.7% vs. 1.8% vs. 3.9%) [13].

THE “MODEL MINORITY” MYTH

Given their relatively small fraction of the U.S. population,
why are Asian Americans not typically clustered with other
minority populations, and how does this affect their health
care? In part, this may relate to the aforementioned metrics
of economic well-being, in that populations that are doing
well in aggregate may receive less attention. In part, this
may also relate to Asians being labeled a “model minority,”
a label that has impacts that may be considered positive
and negative.

The U.S. has a long history of anti-Asian discrimination,
including the Chinese Exclusion Act of 1882 (which was
extended in 1892 as the Geary Act and then made perma-
nent in 1902), the Immigration Act of 1917 (the Barred
Zone Act), the Johnson-Reed Act (1924), and the Japanese
American internment under Executive Order 9066 during
World War II. The Immigration and Naturalization Act of
1965 significantly shifted the immigration barriers from Asia
posed by the prior acts by lifting a national-origins quota
system and allowing immigrants who were relatives of
U.S. citizens or permanent residents, or those with skills
that were considered useful (with a preference for those
with professional degrees), or refugees of unrest. This act
led to hundreds of thousands of Asians immigrating to
America, with a high concentration of highly skilled and
educated professionals from India and the Philippines [14].
As such, this wave of immigrants included a significant pro-
portion fluent in English who were poised for success in
the U.S.

Around the same time, the “model minority” term was
coined in 1966, in two lay articles about Japanese and Chi-
nese Americans achieving success despite the long history
of anti-Asian discrimination [15, 16]. During the Civil Rights
era, the portrayal of Asians as a successful minority group
was used in stark contrast with the portrayal of Black Amer-
icans. The articles described how these Asian Americans
overcame the above immigration policies and racism to
achieve success and avoid delinquency, positing that Asian
attributes such as work ethic, emphasis on education, fam-
ily stability, and assimilation overcame language and other
cultural barriers [3, 14]. The corollary, then, is that failures
of other non-Asian minority groups are due to their lack of
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such positive attributes. It was asserted that Asians histori-
cally faced even greater prejudice than Black Americans
[16]. The argument as illustrated by the model minority ste-
reotype is that opportunities are equally available and that
success is achievable by anyone. Furthermore, acceptance
of this stereotype undermined the perceived need to assist
disadvantaged minority populations [3].

This argument must be considered a myth, given the
known reinforcing structural disadvantages placed over
400 years to hinder Black American success. The Immigra-
tion Act of 1965 may have had benign motives, but the
increase in skilled or professional workers with English flu-
ency from Asia added to the established population touted
as the model minority, allowing policymakers to accept a
myth that America is a nonracist society and ignore the
needs of Black Americans.

What are the consequences of Asian American success
and this model minority stereotype? In society in general,
Asian Americans are not generally considered “threaten-
ing.” In the labor market, given their high numbers in pro-
fessional occupations, Asian job-seekers are not considered
minority applicants. In higher education, Asian applicants
for college/university are not considered an underrepre-
sented minority and in fact may face admission quotas at
certain schools. It is arguable whether this represents pro-
gress, and at its worst, this may drive a wedge between
Asian Americans and other minority groups.

There are clear health care consequences from combin-
ing this model minority myth with aggregate assumptions
of Asian Americans. Given economic indicators of success
relative to the overall population, Asian Americans may be
assumed to have similar disease risk profiles to the majority
White American population. By aggregating Asian Ameri-
cans in population studies, the heterogeneity of subpopula-
tions with genetic and cultural contributions to disease risk
can be masked [3]. By acceptance of the advantages of the
model minority label, Asian Americans may be reluctant to
disclose, or may not advocate for, their own physical or
mental health concerns and needs [6]. Taken together, the
consequences of this myth may lead to poor understanding
of significant medical issues faced by Asian Americans and
misguided policies. Poor understanding or inattention to
the fastest-growing racial/ethnic group in the U.S. must be
remedied to avert a significant number of cancer deaths.

CANCER IS THE LEADING CAUSE OF DEATH FOR ASIAN

AMERICANS

There is no question that cancer should be a significant con-
cern for Asian Americans and their primary care providers.
Cancer has been the leading cause of death for Asian Amer-
icans since 2000, with most recent data from 2017 [1, 2]. In
contrast, heart disease (including coronary artery disease,
arrhythmias, congestive heart failure, valvular heart dis-
ease) is the leading cause of death for all other groups in
the U.S. In a study that aggregated Asian Americans, native
Hawai’ians, and Pacific Islanders (AANHPIs), the leading can-
cer causes of death in men were lung (27%), liver (14%),
and colorectum (11%), and in women, they were lung
(21%), breast (14%), and colorectum (11%). By comparison,

the leading causes of cancer death in all Americans in the
same year were lung (27%), prostate (8%), and colorectum
(8%) in men and lung (26%), breast (14%), and colorectum
(8%) in women [17]. The 5-year cancer-specific survival for
AANHPI men was lower compared with non-Latinx White
American men (62% compared with 68%, respectively),
whereas rates were similar for women (70% compared with
68%) [1]. These statistics persist despite Asian Americans
having higher median household income and education
levels compared with other groups [8], arguing that social
determinants of health do not fully explain this disparity in
the most critical outcome of survival but that it may result
from the high incidence of specific malignancies in this pop-
ulation, such as liver and stomach cancers.

CANCER PROPENSITY IN ASIAN AMERICANS

Although some of the leading cancer causes of death
among Asian Americans are shared with the overall
American population, understanding different cancer
propensities may help eliminate disparities in outcomes.

Infectious Etiologies
Asian Americans have higher rates than most racial/ethnic
group for cancers with infectious etiologies, including liver
(hepatitis B virus [HBV]), uterine cervix (human papillomavi-
rus [HPV]), nasopharynx (Epstein-Barr virus [EBV]), and
stomach (Helicobacter pylori) [1, 5]. For liver cancer, chronic
HBV infection among Asian Americans can be attributed to
high HBV prevalence in country of origin, recent immigra-
tion, and vertical transmission [1]. The HBV infection and
cancer rates vary among Asian American subpopulations.
Liver cancer rates were highest among Vietnamese men
and Korean women [5]. By contrast, the rising liver cancer
incidence among other Americans is attributed to hepatitis
C and nonalcoholic fatty liver disease [1, 18].

The cervical cancer incidence rate is slightly lower
among Asian American women overall compared with non-
Latinx White Americans, although rates among Cambodian
Americans and Vietnamese Americans are 40%–87% higher
[1]. These rates may reflect HPV prevalence in country of
origin, recent immigration, and less screening with the
Papanicolaou test, which may relate to health insurance
status, access to care, and awareness.

Although rates of nasopharyngeal carcinoma are low in
the U.S., the incidence among AANHPIs is five- to sixfold
higher than among non-Latinx White Americans. Risk fac-
tors that may account for higher rates include EBV infection
(with 98% of cases related to EBV), habits such as smoking,
and culture-specific carcinogen exposures such as the high
nitrosamine content in Cantonese salted fish [1].

Stomach cancer is the sixth and seventh leading cancer
causes of death in Asian American men and women, respec-
tively, but does not reach the top ten for Americans overall
[1, 17]. Asian American men had the highest incidence and
mortality from stomach cancer in the U.S. from 2010 to
2014 [18]. Incidence among Asian subpopulations is highest
among Koreans followed by Japanese and Vietnamese,
reflecting in part that worldwide stomach cancer rates are
highest in Korea [1]. Risk factors for stomach cancer include
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H. pylori infection, smoking, and ingestion of salt-preserved
foods [1, 19]. The prevalence of H. pylori infection is higher
in Asia and South America than the U.S. An estimated 89%
of stomach cancers that originate outside of the gastric car-
dia are attributed to H. pylori. A study assessing racial/eth-
nic differences found that 35.6% of cases in White
Americans originate in the cardia, as opposed to 10% for
Asian Americans, 15% for Latinx Americans, and 11% for
Black Americans. Most cases in Asian Americans (31.4%)
occurred in the pyloric antrum, compared with 19.6% for all
patients [20]. Consistent with the possibility that endemic
infection and cultural factors contribute to risk, several
studies have shown that migration from high- to low-
incidence regions such as from Japan to the U.S. is associ-
ated with decreased risk of developing stomach cancer
[19, 20].

Carcinogen Exposure
Lung cancer is the leading cause of cancer-specific death in
Asian Americans [1]. Although smoking is the primary risk
factor for developing lung cancer, Asian Americans’ ciga-
rette use rates from 2010 to 2013 were lower (10.9%) com-
pared with those of White Americans (24.9%), Black
Americans (24.9%), and Latinx Americans (19.9%) [21].
Among Asian subpopulations, the range was broad, from
Chinese and Indian Americans (7.6%) to Koreans (20.0%)
[21]. That tobacco use is not more prevalent despite the
increased lung cancer risk is perhaps not surprising.
Whereas in the U.S., approximately 10% of patients with
lung cancer are never-smokers, in Asia, >30% of patients
are never-smokers, including more than half of female
patients with lung cancer [22]. In this case, the biology of
the disease clearly differs, with a markedly increased rate
of epidermal growth factor receptor–mutant lung cancer in
Asian female nonsmokers. Nonetheless, tobacco cessation
remains an important recommendation to diminish cancer
risk. Among smokers, only one-third of Asian Americans
reported being counseled to quit smoking, compared with
half of all other Americans [5].

Environmental hazards pose important, underreported
health risks (e.g., heart disease, stroke, respiratory disease,
cancer), most commonly for low-income and minority
populations, including Asian Americans. In a national study
of carcinogenic hazardous air pollutants (HAPs) based on
census tracts and other available epidemiological data,
Asian Americans ranked second after Black Americans for
mean excess cancer incidence attributed to ambient HAP
exposure, with Latinx Americans in third place [3]. When
disaggregated by subpopulations, Chinese and Korean
Americans had greater risks than Black Americans. Nonrace
factors associated with higher cancer incidence included
population density, urban setting, and renter-occupancy sta-
tus (as opposed to home ownership). The byproduct of the
model minority label, the authors state, is that Asian Ameri-
cans are less often included in studies of environmental
health disparities “based on the conventional presumption
that they would have similar risk profiles to Whites.” Bio-
logic factors may also play a role, as population differences
in CYP gene expression, which affects activation of

carcinogens and metabolism of drugs, could contribute to
cancer risk [23].

Changing Risks with Migration and Westernization
As described above for stomach cancers, migration can
affect cancer risk. Asian Americans cancer rates align with
national rates within 10 years of immigration [24]. Cancer
incidence patterns have been demonstrated to change
among immigrants from China, Japan, Korea, and the Philip-
pines. For example, for Korean immigrants in the U.S., inci-
dence rates of prostate, breast, and colorectal cancers have
risen compared with native South Koreans, whereas rates
of stomach, liver, and gallbladder cancers have declined
[25]. Rates of infection with cancer-associated viruses (HBV,
HPV, EBV) or bacteria (H. pylori) change as a result of migra-
tion, vaccination availability and practices, health insurance
availability, cancer screening, and cultural changes such as
diet and lifestyle. Dietary changes (e.g., red meat consump-
tion), more sedentary lifestyle, and consequent body com-
position changes (rates of overweight and obesity) may
contribute to the rising rates of colorectal cancer [5]. Breast
cancer incidence rates have risen fastest for Asian Ameri-
cans among racial/ethnic groups, at 1.5% per year between
2012 to 2016 [26]. An understanding of the changing nature
of cancer risk among Asian Americans is critical for delivery
of appropriate cancer screening and care.

CANCER SCREENING DISPARITIES AND SOLUTIONS
President Barack Obama signed Executive Order 13515 in
October 2009, to address issues concerning the Asian Amer-
ican and Pacific Islander community, including strategies to
reduce health disparities and improve the health of this
community. Despite more than a decade since that order,
significant disparities persist.

With cancer as the leading cause of death for Asian
Americans, screening is of paramount importance to iden-
tify cancer cases at early, curable stages. However, screen-
ing occurs at lower rates for Asian Americans, the only
racial/ethnic group for which cancer screening disparities
compared with White Americans is not well explained by
socioeconomic factors such as income, education, and
access to health care [4]. This disparity holds true for each
Asian subpopulation; not one group is expected to reach
the national screening targets such as those in Healthy Peo-
ple 2020 [4].

Studies of different databases describe similar screening
disparity trends [1, 5–7]. Compared with Americans overall,
Asian American screening rates are lower for cervical cancer
(75.4% vs. 83.0%), breast cancer (64.1% vs. 72.4%), and
colorectal cancer (46.9% vs. 58.6%) [6]. These results are
consistent with racial minorities receiving less provider rec-
ommendation for colon cancer screening [27]. In examining
colorectal cancer screening rates among Asians in California
(where approximately one-third of Asian Americans live)
compared with White Americans, disparities have narrowed
over time but have not been eliminated [28].

Inadequate screening is not limited to cancer. Diabetes
prevalence among Asian Americans is 21%, nearly double
that of White Americans, despite a lower mean body mass
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index. In a survey study from 2012 to 2014, Asian Ameri-
cans had a 34% lower adjusted odds of receiving the rec-
ommended diabetes screening compared with White
Americans (adjusted odds ratio [AOR], 0.66; 95% confidence
interval [CI], 0.60–0.73), a difference that persisted despite
age and body mass index cutoffs. In perhaps a rare example
of minority groups receiving more screening, the adjusted
odds of receiving appropriate diabetes screening was signif-
icantly higher for Black Americans (AOR, 1.20; 95% CI,
1.16–1.25) and Latinx Americans (AOR, 1.36; 95% CI,
1.29–1.44) compared with White Americans [29].

The disparity in screening for diseases like cancer and
diabetes and the fact that fewer Asians are counseled to
quit smoking raise important questions about potential bar-
riers to eliminating disparities and improving cancer sur-
vival. In contrast to Black and Latinx Americans, it is clear
that workforce disparities are not at issue, given the over-
representation of Asian Americans in medicine compared
with the overall population, as described above [11, 12].

The challenges of evaluating Asians in aggregate are
obvious: there are differences among subpopulations in lan-
guage, culture, education, income, insurance, and health-
seeking behaviors, to name a few. Although some barriers
are similar to other racial/ethnic groups, a barrier such as
language may be more readily overcome for Latinx Ameri-
cans given the common Spanish language (dialects notwith-
standing), whereas interpreters and translated documents
may be required for each language among the many coun-
tries of origin for Asian Americans. Asian Americans in
aggregate may be less information-seeking than other
groups [4]. They may be less forthcoming about symptoms
or concerns, including mental health concerns, and less
accepting of screening for disease given absence of symp-
toms. Indeed, statistics indicate that they are least likely
among all racial/ethnic groups to have seen a physician in
the prior 12 months [5].

Numerous studies have evaluated interventions that
may increase acceptance and performance of screening.
Importantly, the heterogeneity of the Asian American popu-
lation makes a single strategy unlikely to address the
unique cancer burden of this population and fix the dispar-
ity issue, and necessitates culturally appropriate interven-
tions to target subpopulations or communities [24]. For
example, a randomized study of a community-based
approach involving Korean church-based organizations in
the Philadelphia–New Jersey region increased colorectal
cancer screening from 16% in the control group (n = 455) to
69% in the intervention group (n = 470) [7]. The multiface-
ted intervention included educational resources, health sys-
tem navigation, and fecal immunochemical tests. Similarly,
a study of Korean Americans identified through local com-
munity outreach in the Los Angeles Koreatown area ran-
domized participants (n = 100) to educational brochures in
Korean and English about colorectal cancer (control group)
or the same brochures coupled with a short educational
seminar (intervention group) [30]. The outcome was aware-
ness of colorectal cancer screening assessed by question-
naire, with the intervention group having significantly
greater awareness of screening methods. Importantly, the
intervention group was also more willing to undergo

screening in the following 6 months (88% vs. 8%). These
specific studies highlight the importance of targeted inter-
vention: colorectal cancer is now the most common cancer
among Korean Americans, yet Korean Americans over age
50 have the lowest rate of colorectal cancer screening com-
pared with other Asian American groups [31, 32].

Care navigation can significantly improve cancer screen-
ing rates. A randomized controlled trial employing lay navi-
gators was performed in Moloka’i, Hawai’i, to address
knowledge gaps about cancer, educate about the benefits
of screening, secure insurance, facilitate health care man-
agement, provide transportation to appointments, and
encourage self-advocacy [33]. The population included 45%
native Hawai’ian, 35% Filipino, 11% Japanese, and 8% other.
Compared with the control group (n = 246), the interven-
tion group (n = 242) had significantly increased cervical can-
cer screening (57.0% vs. 26.4%), breast cancer screening
(61.7% vs. 42.4%), prostate cancer screening (by prostate-
specific antigen testing; 54.5% vs. 36.0%), and colorectal
cancer screening (43.0% vs. 27.2%).

The absence of national guidelines for screening certain
cancers that occur at higher rates in Asian Americans is a
barrier to improving outcomes. Liver and stomach cancers
clearly occur at higher rates in this population, with signifi-
cant mortality consequences as described above. Although
Asians are only 6% of the total U.S. population, an under-
standing of these cancer risks by primary care providers will
be important for appropriate recommendations regarding
smoking cessation, HBV vaccination, H. pylori testing and
eradication, and referrals for screening of high-risk individ-
uals [34].

CULTURAL PERCEPTIONS OF MEDICAL CARE

An important variation among Asian Americans and in con-
trast with other American cultures is the general attitude
toward health care. Such cultural perceptions may drive
patient health care decisions more than American providers
realize. For example, the simple term “cancer” has been
found to carry a stigma in many Asian cultures. Some of
these negative associations are derived from the belief that
cancer is possibly attributable to some form of fortune
(e.g., luck, transgressions in a previous lifetime, or the will
of a supreme power). Therefore, it is not surprising that in
a survey of 94 doctors in Singapore used euphemisms for
cancer such as “lump” or “growth” [35, 36]. These findings
highlight that clinicians in the U.S. may need to better
understand the cultural perceptions of cancer before they
can even broach the subject of screening.

Even among first-generation Asian Americans from
China, a study of 45 women from varied socioeconomic
backgrounds and professions demonstrated common
culture-based perceptions that influenced breast screening.
Although these women largely understood the significant
health care implications of breast cancer, there was com-
mon sentiment among the women that because they were
Chinese, the risks were low. Other barriers to screening
included a fatalistic view toward a cancer diagnosis and
faith in traditional Chinese remedies [37]. Specific barriers
to cancer screening for pelvic and breast malignancies may
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be influenced by cultural perceptions of modesty among
women. A parallel problem exists for Asian men faced with
concerns about prostate cancer and colon cancer screening
that is interlaced with concerns about preserving masculin-
ity and sexual function.

Another key difference between western medicine and
the Asian culture is the focus of the health care discussions
once a diagnosis has been made. As opposed to a western
emphasis on patient-centric care, many Asian cultures pre-
fer a family-centric model where health care decisions must
often be discussed with the family before decisions can be
made. These attitudes often persist generations after migra-
tion to western societies [38]. It is also common for Asians
who have migrated to the west to choose to shield their
older relatives from a cancer diagnosis with a poor progno-
sis, perhaps related to cultural beliefs that the stress could
lead to worse outcomes [39]. For these reasons, extra time
may be required to accommodate the scheduling of multi-
ple family members with the patient and implement a plan
of care that is in keeping with their expectations while also
appropriate for the patient.

For Asian Americans who do not choose a family-centric
model, cultural stoicism and a desire to limit cost expendi-
tures on health care may lead to patients deferring care or
not sharing a cancer diagnosis (or poor prognosis) with fam-
ily, perhaps contributing to poor outcomes [35, 37]. It is
possible that even end-of-life care is affected by these cul-
tural perceptions. Hospice use among Asian Americans has
been found to be less than among other subpopulations
and is possibly influenced by a combination of patient atti-
tudes and perceptions that are not adequately addressed
by hospice care as it is generally implemented [40, 41].

CONCLUSION

Asian Americans face a unique cancer challenge. As the
fastest-growing racial/ethnic group in the U.S. and the only
group with cancer as the leading cause of death, there is an
urgent need to improve cancer screening for the Asian
American population. To do so, health care providers will
need to be aware of these facts, including the profile of
cancer risks among different Asian subpopulations, and
have the necessary tools to communicate cancer risks and
benefits of screening. Asian Americans will need to be edu-
cated and encouraged to be advocates for their health,
which includes improving access to insurance and health
care resources.

Is This Racism?
The health care disparities faced by Asian Americans are
not remotely comparable to the structural racism faced by
Black Americans forged over more than four centuries [10].
By no means should this call to action imply that the needs
of Asian Americans supersede those of any other group.
However, disparities do exist for Asian Americans, and this
may be surprising to health care providers. Therefore, the
reason to raise awareness is to compel the medical estab-
lishment to recognize the urgent need to eliminate health
disparities for all.

When evaluating Asian Americans in aggregate, the
measures of economic and educational status, the numbers
of Asian health professionals in the U.S., and the model
minority label contribute to the implicit bias that Asian
Americans have similar disease risk profiles to the majority
White American population. Acceptance of the advantages
of the model minority label (e.g., less discrimination com-
pared with other racial/ethnic groups) may cause some
Asian Americans to embody the myth of the docile, hard-
working citizen who will not complain or “rock the boat”—
which, when applied to health care, may lead to less
information- or care-seeking for physical and mental health
care needs. This acceptance by patients and providers of a
stereotype leads to less advocacy, less understanding of dif-
fering disease risk profiles whether diabetes mellitus or
mental health or cancer, and less screening. Hence, the dis-
advantages of the model minority myth, conceived in the
Civil Rights era to drive a wedge between Asians and other
racial/ethnic groups, do implicate racism as an indirect con-
tributor to contemporary cancer disparities for Asian
Americans.

Self-advocacy will be an important antidote to dispar-
ities. Past and contemporary history point to the fickle
nature of public opinion and politics with respect to Asian
Americans’ standing in U.S. society. For over 150 years,
Asians faced discrimination in laws and immigration prac-
tice as the “Yellow Peril,” culminating in the ignominious
internment of Japanese Americans during World War
II. Only with the Civil Rights era, as an affront to Black
Americans, were Asian Americans dubbed a “model minor-
ity.” The death of Vincent Chin in 1982 and the Los Angeles
riots of 1992 made clear that this label indeed was a myth.
Even the 9/11 terrorist attacks by Al-Qaeda turned South
Asian Americans, by virtue of the color of their skin and for
some, their religion, into perceived threats. Finally, the
COVID-19 pandemic’s emergence in China and increase in
racially motivated hate crimes against Asian Americans
point to the potential for political rhetoric to unearth deep-
seated racism [42].

Recommendations
Elimination of cancer disparities for all racial/ethnic groups
involves (a) education for patients and providers of the exis-
tence of the disparity and (b) improved access to care [4].
For Asian Americans, perhaps more so than other groups,
the many languages spoken by the subpopulations necessi-
tate the availability of cancer information and screening in
all languages. Medical interpreter services are critical for
accurate information delivery, as opposed to translation by
a family member or friend, given the complexity of medical
terminology and description of risk, as well as potential cul-
tural barriers to using terms such as “cancer.” Given the
time pressures of contemporary medical practice, the addi-
tional time and effort of employing medical interpreter ser-
vices may contribute to fewer recommendations for
appropriate screening. Therefore, it is important that pro-
viders receive education about the specific cancer risks
faced by Asian Americans, including higher mortality, to
spend the time to appropriately discuss cancer screening,
smoking cessation, and vaccination for HBV and HPV.
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Educational campaigns reaching Asian Americans in their
communities (grocery stores, places of worship, community
centers, print media, direct mail, Internet) have proven
effective [24]. Engagement of English-proficient community
members such as younger generations may help steer older
Asian Americans to advocate for cancer screening.

Improved access to care is a straightforward recommen-
dation with difficult implementation. Culturally appropriate,
community-based interventions that meet the Asian Ameri-
can populations where they live are likely to be the most
effective at improving access to and education about health
care [24]. Lay navigators can significantly improve aware-
ness of cancer issues, access to care, and cancer screening
in a culturally sensitive and impactful fashion [33]. Access
to care and encouragement for self-advocacy can normalize
seeing primary care providers for routine care and screen-
ing, in a population that is least likely to have seen a physi-
cian in the prior year [5]. Partnership of major cancer
centers with community health centers will align the goals
of seamlessly moving patients from screening and diagnosis
to appropriate oncology care and access to clinical trials. At
the national level, governmental funding to focus on and
eliminate disparities among Asian Americans should be

expanded [43]. Improving cancer literacy and access to care
will contribute to narrowing cancer disparities and improv-
ing cancer care for Asian Americans.
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Abstract 41 
 42 
Bladder cancer (BC) is one of the most common tumor with high incidence. Relative to other 43 
cancers, BC has a high rate of recurrence, which results in increased mortality. As a result, early 44 
diagnosis and life-long monitoring are clinically significant for improving the long-term survival rate 45 
of BC patients. At present, the main methods of BC detection are cystoscopy and biopsy; 46 
however, these procedures can be invasive and expensive. This can lead to patient refusal and 47 
reluctance for monitoring. There are several BC biomarkers that have been approved by the FDA, 48 
but their sensitivity, specificity, and diagnostic accuracy are not ideal. More research is needed to 49 
identify suitable biomarkers that can be used for early detection, evaluation, and observation. 50 
There has been heavy research in the proteomics and genomics of BC and many potential 51 
biomarkers have been found. Although the advent of metabonomics came late, with the recent 52 
development of advanced analytical technology and bioinformatics, metabonomics has become 53 
a widely used diagnostic tool in clinical and biomedical research. It should be emphasized that 54 
despite progress in new biomarkers for BC diagnosis, there remains challenges and limitations in 55 
metabonomics research that affects its translation into clinical practice. In this chapter, the latest 56 
literature on BC biomarkers was reviewed. 57 
 58 
 59 
  60 



1 Introduction  61 
 62 
1.1 Bladder cancer (BC) incidence, epidemiology, and risk factors 63 

 64 
Bladder cancer (BC) is the fourth most common cancer in the U.S. and the second most common 65 
cancer of the urinary system, accounting for 7% of all new cancer cases. It also accounts for 4% 66 
of all cancer-related deaths in the U.S., ranking it the fifth deadliest cancer. The male to female 67 
ratio of morbidity and mortality was about 3:1[1]. Risk factors are related to the environment, diet, 68 
and lifestyle, especially smoking, exposure to aromatic amines, and genetic factors[2-4]. Other 69 
known risk factors include the ingestion of high levels of arsenic or significant usage of pain 70 
relievers containing finazepine[4, 5]. 71 
 72 
1.2 Economic burden of BC 73 

 74 
The European Organization for Research and Treatment of Cancer (EORTC) has established 75 
recommended plans for low to moderate-risk BC patients. This involves a cystoscopy every three 76 
months during the first two years, every four months during the following two years, and once a 77 
year thereafter[6]. Because BC treatment is continuous, the lifetime cost of treatment and 78 
monitoring increases with time. Studies have shown that the cumulative cost of health insurance 79 
for long-term survivors (those over 16 years) is $172,426[7]. As a result of this need for lifelong 80 
monitoring, the cost per patient when treating BC is the highest of all other cancers[8]. 81 
 82 
1.3 Classical Classification of BC 83 

 84 
Based on the degree of invasion in the bladder muscle wall, BC is divided into either non-muscle 85 
invasive BC (NMIBC) or muscle invasive BC (MIBC)[9]. There may be different genetic variation 86 
underlying the difference between the two types of BC[10]. When histologically subtyping BC, 87 
there are several types. Transitional cell carcinoma (TCC), also known as urothelial carcinoma, 88 
accounts for about 90% of all BC. Squamous cell carcinoma (SCC) and adenocarcinoma account 89 
for about 10%[11]. There are various other rare types of BC as well[12].BC can also be divided 90 
pathologically into low-grade (LG) and high-grade (HG) tumors. LG tumors are usually well-91 
differentiated, while HG tumors are poorly differentiated[13]. 92 
 93 
1.4 Molecular phenotyping of BC 94 

 95 
Recent genome mRNA expression analysis demonstrated that BC can be classified into 96 
molecular subtypes. These different subtypes of BC have distinct progression patterns, biological 97 
and clinical properties, and response to chemotherapies. There are currently five published 98 
classification methods; these include guidelines from the University of North Carolina (UNC), MD 99 
Anderson Cancer Center (MDA), The Cancer Genome Atlas (TCGA), Lund University (Lund), and 100 
Broad Institute of Massachusetts Institute of Technology and Harvard University (Broad)(Table1) 101 
 102 
The classifications by UNC define two molecular subtypes of high-grade BC, “luminal” and 103 
“basal”, with molecular features reflecting different stages of urothelial differentiation[14]. Luminal 104 
BC expresses terminal urothelial differentiation markers, such as those seen in umbrella cells 105 
(UPK1B, UPK2, UPK3A, and KRT20), whereas basal BC expresses high levels of genes that are 106 
typical in urothelial basal cells (KRT14, KRT5, and KRT5B). The UNC study created a gene 107 
signature, BASE47, that accurately discriminates intrinsic bladder subtypes. Identified basal 108 
tumors had significantly decreased disease-specific and overall survival. In addition, among the 109 



clinicopathological features available in the MSKCC dataset, only subtypes identified by BASE47 110 
were found to be significant in disease-specific survival by univariate analysis. This study also 111 
found that females have an increased incidence of basal-like BC, which is associated with a worse 112 
prognosis. 113 
 114 
The classification system by MDA identified three molecular subtypes of MIBC: “basal”, “luminal”, 115 
and “P53-like” [15]. Basal MIBC was associated with shorter disease-specific and overall survival, 116 
presumably because these patients tend to have more invasive and metastatic disease at 117 
presentation.  Transcription factor P63 plays a central role in controlling basal gene signatures 118 
and preliminary data suggests that EGFR, Stat-3, NFκB, and Hif-1α are also involved. Luminal 119 
MIBC displays active ER/TRIM24 pathway gene expression and were enriched for FOXA1, 120 
GATA3, ERBB2, and ERBB3. Luminal MIBC contains active PPAR gene expression and 121 
activating FGFR3 mutations; thereby, PPARγ- and FGFR-3-targeted agents may be active in this 122 
subtype. Because luminal MIBC responds well to neoadjuvant chemotherapy (NAC), targeted 123 
therapies should be combined with conventional chemotherapy for maximum efficacy. The P53-124 
like MIBC responded very poorly to NAC and were consistently resistant to frontline neoadjuvant 125 
cisplatin-based combination chemotherapy. Additionally, comparative analysis of matches gene 126 
expression profiles before and after chemotherapy revealed that all resistant tumors expressed 127 
wild-type P53 gene expression signatures. These results indicate that “P53-ness” may play a 128 
central role in BC chemoresistance. 129 
 130 
The classification by TCGA identified four clusters (clusters I–IV) by analyzing RNA-seq data from 131 
129 tumors[16]. Cluster I (papillary-like) is enriched in tumors with papillary morphology, FGFR3 132 
mutations, FGFR3 copy number gain, and elevated FGFR3 expression. Cluster I samples also 133 
had significantly lower expression of miR-99a, miR-100, miR-145 and miR-125b. Tumors with 134 
FGFR3 alterations and those that share similar cluster I expression profiles may respond well to 135 
inhibitors of FGFR and its downstream targets. Clusters I and II express high levels of GATA3 136 
and FOXA1. Markers of urothelial differentiation, such as uroplakins, epithelial marker E-cadherin, 137 
and members of miR-200 miRNAs are also highly expressed in clusters I and II. Clusters I and II 138 
express high HER2 levels and an elevated estrogen receptor beta signaling signature, which 139 
suggests potential targets for hormone therapies, such as tamoxifen or raloxifene. Cluster III 140 
(basal/squamous-like) express characteristic epithelial lineage genes, including KRT14, KRT5, 141 
KRT6A, and EGFR. Many of the samples in cluster III express cytokeratins (KRT14 and KRT5). 142 
Integrated expression profiling analysis of cluster III revealed a urothelial carcinoma subtype with 143 
cancer stem-cell expression features, perhaps providing another avenue for therapeutic targeting. 144 
 145 
The Lund classification system defines five major urothelial carcinoma subtypes: urobasal A, 146 
genomically unstable, urobasal B, squamous cell carcinoma-like (SCC-like), and infiltrated tumor 147 
class[17]. This was established using gene expression profiles from 308 tumor cases. These 148 
different molecular subtypes show significantly different prognosis. The best prognosis is the 149 
urobasal A, and the worst prognosis are urobasal B and SCC-like. The prognosis of genomically 150 
unstable and infiltrated class are between them. Urobasal A tumors were characterized by 151 
elevated expression of FGFR3, CCND1, TP63, as well as expression of KRT5 in cells at the 152 
tumor–stroma interface. The majority of urobasal A tumors were non-muscle invasive and of low 153 
pathologic grade. The genomically unstable subtype was characterized by expression of ERBB2 154 
and CCNE, low expression of cytokeratin, and frequent mutations of TP53. Genomically unstable 155 
cases represented a high-risk group, as close to 40% were MIBC. This subtype also showed low 156 
PTEN expression. The SCC-like subtype was characterized by high expression of basal keratins, 157 
which are normally not expressed in the urothelium; these include KRT4, KRT6A, KRT6B, KRT6C, 158 
KRT14, and KRT16. SCC-like tumors also had markedly bad prognoses. Furthermore, this group 159 



showed a comparatively different proportion of female/male patients, reminiscent of the 1:1 160 
proportion seen in patients diagnosed with bladder SCC, suggesting that females are more likely 161 
to develop urothelial carcinomas with a keratinized/squamous phenotype, which is associated 162 
with an adverse prognosis. Urobasal B tumors showed several similarities to urobasal A tumors, 163 
such as a high FGFR3 mutation frequency, elevated FGFR3, CCND1, and TP63 levels, and 164 
expression of the FGFR3 gene signature. However, this group also showed frequent TP53 165 
mutations and expression of several keratins specific for the SCC-like subtype. Additionally, 50% 166 
of the cases were MIBC; including 5of 9 FGFR3 mutated cases. The infiltrated subtype 167 
demonstrated a pronounced immunologic and extracellular membrane (ECM) signal, indicating 168 
the presence of immunologic and myofibroblast cells. This subtype most likely represents a 169 
heterogeneous class of tumors; immunohistochemistry (IHC) revealed the presence of tumors 170 
with genomically unstable, urobasal B, and SCC-like protein expression patterns in this group. 171 
 172 
The Broad classification identified four different subtypes: luminal, immune undifferentiated, 173 
luminal immune, and basal[18]. Approximately 41% of invasive BC was in the luminal subtype, 174 
with high expression of KRT20 and UPKs 2/1A/1B/3A as well as moderate to high expression of 175 
multiple pertinent transcription factors (KLF5, PPARG, and GRHL5). The luminal subtype was 176 
enriched for in male patients, papillary histology, and stage II tumors. A third (29%) of invasive 177 
BC was in the basal subtype, with high expression of KRT14, KRT5, KRT6A/B, and KRT16, and 178 
low expression of uroplakins, which is consistent with basal or undifferentiated cytokeratin 179 
expression patterns. Consistent with prior studies, the basal subtype expressed TP63, TP73, 180 
MYC, EGFR, TGM1, and SCEL, which is indicative of some degree of squamous differentiation. 181 
The basal subtype was enriched in female patients and tumors with nonpapillary histology. The 182 
basal subtype also expressed many immune genes at intermediate and somewhat variable levels. 183 
These genes include CTLA4 and CD274, which encodes for PD-L1, suggesting that there may 184 
be immune cell infiltration of tumors. A smaller percentage of cancers (11%) were grouped into a 185 
novel subtype called immune undifferentiated. These cancers showed very low expression of 186 
luminal markers, variable expression of basal cytokeratins, and relatively high expression of 187 
immune genes, including CTLA4 and CD274, which further suggests significant immune cell 188 
infiltration and possible immune evasion. Lastly, the luminal immune subtype group constitutes 189 
about 18% of all cases and is characterized by the expression of luminal genes (cytokeratins and 190 
uroplakins) and intermediate expression of immune genes. This group was notably enriched for 191 
stage N+ tumors. The luminal subtype was enriched for in cancers with FGFR3 mutations and 192 
amplification events involving PVRL4 and YWHAZ. The basal subtype was enriched for NFE2L2 193 
mutations. Both the luminal immune and immune undifferentiated subtypes had high expression 194 
levels of ZEB1, ZEB2, and TWIST1, which is characteristic of epithelial-mesenchymal transition 195 
(EMT). 196 
 197 
Gottfrid et al. proposed five major tumor-cell phenotypes in advanced BC: urothelial-like, 198 
genomically unstable (GU), basal/SCC-like, mesenchymal-like, and small-cell/neuroendocrine-199 
like[19]. Urothelial-like tumors express FGFR3 and CCND1 and frequently demonstrate a loss of 200 
9p21 (CDKN2A). GU tumors express FOXM1, but not KRT5, and frequently show loss of RB1. 201 
Basal/SCC-like tumors were found to express KRT5 and KRT14, but not FOXA1 and GATA3. 202 
The mesenchymal-like BC is a new subtype that shows a tumor-cell phenotype that starkly 203 
contrasts with previously defined subtypes and is biologically different from the basal/SCC-like 204 
cases that they are clustered with. The tumor cells are mesenchymal-like and express typical 205 
mesenchymal genes, such as ZEB2 and VIM. The tumor cells were themselves mesenchymal-206 
like and expressed the typical mesenchymal genes ZEB2 and VIM. The consensus cluster Sc/NE-207 
like turned out to harbor two very distinct tumor-cell phenotypes. One-half of these tumors 208 
expressed markers that are typical for neuroendocrine differentiation. This part of the Sc/NE 209 



consensus cluster also showed an absence of PPARG, FOXA1, and GATA3 expression, as well 210 
as of uroplakin and KRT20 expression. 211 
 212 
Kardos et al. reported the discovery of a claudin-low molecular subtype of high-grade BC that 213 
shares characteristics with the homonymous subtype of breast cancer[20]. Although there has 214 
been much work done on the molecular phenotyping of BC, the different emphases of different 215 
classification methods have made it difficult to consolidate a widely accepted classification 216 
method. As a result, the molecular phenotyping of BC remains to be further studied. The claudin-217 
low subtype can be considered a subpopulation of the basal-like subtype (UNC classification 218 
system). Claudin-low bladder tumors are rich in a variety of genetic characteristics, including 219 
increased mutation rates of RB1, EP300, and NCOR1, increased the frequency of EGFR 220 
amplification, decreased mutation rates of FGFR3, ELF3, and KDM6A, and decreased the 221 
frequency of PPARG amplification. These characteristics define a molecular subtype of BC with 222 
distinct molecular features and an immunological profile that is theoretically primed for an 223 
immunotherapeutic response.  224 
 225 
Figure 1 summarizes the classification of BC.  226 
 227 
 228 
 229 
2 Biomarker Discovery in BC 230 

 231 
More than 75% of patients are diagnosed and treated for NMIBC. At the time of initial evaluation, 232 
its recurrence rate can be as high as 70%[21]. Currently, the standard and most important 233 
examination method for BC is cystoscopy, However, this procedure is invasive, uncomfortable, 234 
and expensive[22]. Furthermore, cystoscopy may miss certain lesions, particularly smaller areas 235 
of carcinoma in situ[23]. Molecular biosignatures indicative of altered cellular landscapes and 236 
functions have been casually linked to pathological conditions, suggesting the promise of BC-237 
specific biomarkers. However, a noninvasive biomarker that is as sensitive and specific as 238 
standard cystoscopy has yet to be discovered. As we progress through the 21st century, we now 239 
have access to a number of ways to analyze diagnostic markers in-depth. The evolution of omics 240 
platforms and bioinformatics to allow for analysis of the genome, epigenome, transcriptome, 241 
proteome, lipidome, metabolome et al. enables the development of more sensitive biomarkers. 242 
These discoveries will broaden understanding of the complex biology and pathophysiology of 243 
bladder diseases, which can then be clinically translated. Biomarkers of interest can be detected 244 
in different types of samples, including serum, tissue, and urine. Urinary biomarkers are 245 
particularly attractive due to cost, time, and minimal effort. As a result, studies on urinary BC 246 
biomarkers continue to expand. 247 
 248 
Figure 2 shows the overview of the multi-OMICS strategies for urine-based biomarker discovery 249 
and translational application. 250 
 251 
2.1 Proteomics-based BC biomarkers  252 

 253 
In patients with hematuria, aurora A kinase (AURKA) can discriminate low-grade BC patients vs. 254 
normal patients [24]. After adjusting for patients, clinical features, and treatment with Bacillus 255 
Calmette-Guerin, the activated leukocyte cell adhesion molecule (ALCAM) is positively correlated 256 
with tumor stage and overall survival (OS)[25]. Nicotinamide N-methyltransferase has been 257 
shown to be elevated in BC patients and is correlated with histological grade[26]. 258 
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE/Ref-1) levels are higher in BC, with 259 



respect to non-BC, and is correlated with tumor grade and stage; moreover, it has been shown to 260 
be significantly increased in patients with historical BC recurrence[27]. The urinary cytokeratin-261 
20 (CK20) RT-PCR assay shows that the sensitivity of urothelial BC detection was 78-87%, and 262 
the specificity was 56-80%. , with improved diagnostic accuracy in tumor progression[28]. 263 
However, its performance is relatively poor in low-grade tumors. Higher urinary levels of CK8 and 264 
CK18 have been detected via UBC Rapid Test in high vs. low-grade BC[29]. 265 
 266 
There are multiple markers that can potentially be used for BC detection; increased urinary levels 267 
of apolipoproteins, A1, A2, B, C2, C3, and E (APOA1, APOA2, APOB, APOC2, APOC3, APOE) 268 
were found in BC compared to healthy controls[30, 31]. A signature of 4 urinary fragments of 269 
uromodulin, collagen α-1 (I), collagen α-1 (III), and membrane-associated progesterone receptor 270 
component 1 may be able to discriminate MIBC from NMIBC[32]. Other panels employ IL-8, 271 
MMP-9/10, ANG, APOE, SDC-1, α1AT, PAI-1, VEGFA, and CA9 to indicate BC from urine 272 
samples. The advantage of these multi-urinary protein biomarkers is evident in high and low-273 
grade and high and low-stage diseases[33]. Combined with urine markers, including midkine 274 
(MDK), MDK, synuclein G, CEACAM1, ZAG2 [34], clusterin (CLU) and angiogenin (ANG), the 275 
sensitivity and specificity of NMIBC diagnosis can be improved through immunoassay and urine 276 
cytology [35]. CK20 and insulin-like growth factor II (IGF-II) levels were found to be increased in 277 
the urine sediments of NMIBC patients compared to controls[36]. Increased levels of urinary HAI-278 
1 and epithelial cell adhesion molecule (EpCAM) are prognostic biomarkers in high-risk NMIBC 279 
patients[37]. Urine survivin have been proved by chemiluminescence enzyme immunoassay that  280 
it is a potential biomarker for BC, which has been shown to be related to tumor stage, lymph node 281 
metastasis, and distant metastasis.[38]. Snail overexpression represents an independent 282 
prognostic factor for tumor recurrence in NMIBC[39]. CD44 in urine was found to be elevated in 283 
high-grade MIBC by glycan-affinity glycoproteomics nanoplatforms. [40]. 284 
 285 
Proteomics-based BC biomarkers were summarized in Table 2. 286 
 287 
2.2 Metabolomics-based BC biomarkers  288 

 289 
Urinary metabolomics signature may be useful in detecting early stage BC. Jin X et al. analyzed 290 
urinary metabolites by high-performance liquid chromatography-quadrupole time-of-flight mass 291 
spectrometry (HPLC-QTOFMS), and found 12 metabolites that help to identify BC.[41]. Zhou Y 292 
et al. developed a urinary pseudotargeted method based on gas chromatography-mass 293 
spectrometry (GC-MS) which has been validated by a BC metabolomics study[42]. Using binary 294 
logistic regression analysis, a four-biomarker panel was defined for the diagnosis of BC. The 295 
results revealed that the urinary four-biomarker panel can be used to diagnose NMIBC or low-296 
grade BC. Among the four metabolites, cholesterol levels were significantly increased in the BC 297 
group, while 5-hydroxyvaleric acid, 3-phosphoglyceric acid, and glycolic acid levels were 298 
markedly decreased in the BC group.  299 
 300 
X. Cheng et al. carried out a study based on metabolomics with liquid chromatography-high 301 
resolution mass spectrometry (LC-HRMS) to discover novel biomarkers for detecting early-stage 302 
BC. [43]. A total of 284 subjects were enrolled in the study including 117 healthy adults and 167 303 
BC patients. Metabolite panels are known to have more predictive power than a single metabolite 304 
[44]. A metabolite panel consisting of dopamine 4-sulfate, MG00/1846Z,9Z,12Z,15Z/00, aspartyl-305 
histidine, and tyrosyl-methionine was found to have the best predictive accuracy in diagnosing 306 
NMIBC.  307 



 308 
A study by Yumba Mpanga A et al. developed and validated an analytical method for the 309 
simultaneous quantitative determination of metabolites using reversed phase high-performance 310 
liquid chromatography coupled with triple quadrupole mass spectrometry (RP-HPLC-311 
QQQ/MS)[45]. The optimized and validated method was applied to urine samples from 40 BC 312 
patients and 40 healthy matched controls. Statistical analysis was done using the Student's t-test 313 
or U-Mann Whitney test. This identified 10 compounds that participate in different metabolic 314 
pathways, such as gut flora metabolism, RNA degradation, purine metabolism, etc., as being 315 
significantly different in urine between BC and control groups (p<0.05). These 10 compounds 316 
include acetyllysine, N-acetylneuraminic acid, pseudouridine, uridine, xanthine, 7-methylguanine, 317 
gluconic acid, glucuronic acid, 1,7 dimethylxanthine, and hippuric acid. Moreover, acid trehalose, 318 
nicotinic acid, and AspAspGlyTrp peptide were upregulated; inosinic acid, ureidosuccinic acid, 319 
and GlyCysAlaLys peptide were downregulated in BC, but not in healthy controls[46]. 320 
 321 
Metabolomics-based BC biomarkers were summarized in Table 3. 322 
 323 
2.3 Genomics-based BC biomarkers  324 
 325 
2.3.1 DNA methylation 326 
 327 
Using urine sediments from BC patients, Sun and her group demonstrated that SOX-1, IRAK3, 328 
and Li-MET gene methylation status have higher recurrence predictivity than urine cytology and 329 
cystoscopy (80 vs. 35 vs. 15%, respectively) [47]. Methylated genes, such as those for APC and 330 
cyclin D2, were found to be significantly prevalent in the urine from malignant vs. benign cases[48]. 331 
Hypermethylation of the GSTP1 and RARβ2 and APC genes have been identified in the urine of 332 
BC patients[49]. Evaluation of Twist Family BHLH Transcription Factor 1 (TWIST1) and NID2 333 
genes methylation status in urine has been shown to differentiate primary BC patients from 334 
controls with 90% sensitivity and 93% specificity[50]. Additionally, evaluation of the methylation 335 
status of NID2, TWIST1, CFTR, SALL3, and TWIST1 genes in urinary cells in combination with 336 
urine cytology has been found to increase sensitivity and have high negative predictive value in 337 
BC patients[51, 52]. Urinary methylation levels of POU4F2 and PCDH17 is able to distinguish BC 338 
from normal controls with 90% sensitivity and 94% specificity[53]. Promoter hypermethylation of 339 
HS3ST2, SEPTIN9, and SLIT2 combined with FGFR3 mutation showed 97.6% sensitivity and 340 
84.8% specificity in the diagnosis, surveillance, and risk stratification of low- and high-risk NMIBC 341 
patients[54]. Lastly, the methylation status of p14ARF, p16INK4A, RASSf1A, DAPK, and APC 342 
has been found to be correlated with BC grade and stage[55]. 343 
 344 
2.3.2 miRNAs 345 
 346 
Urinary levels of miR-146a-5p are significantly increased in high-grade BC[56]. MiR-126 urinary 347 
levels were found to be elevated in BC compared to healthy controls [57]. Low miR-200c 348 
expression has been shown to be correlated with tumor progression in NMIBC[58]. Chen et al. 349 
detected 74 miRNAs, of which 33 were upregulated and 41 were downregulated in BC compared 350 
to healthy patients; the most notable of these include  let-7miR, mir-1268, miR-196a, miR-1, miR-351 
100, miR-101, and miR-143[59]. By screening patients with negative cystoscopy, Eissa et al. 352 
identified miR-96 and miR-210 as being associated with BC[60]. MiR-125b, miR-30b, miR-204, 353 
miR-99a, and miR-532-3p were downregulated in the urine supernatant of BC patients[61]. MiR-354 
9, miR-182, and miR-200b have been shown to be correlated with MIBC aggressiveness, 355 



recurrence-free, and overall survival (OS)[62]. MiR-145 distinguishes NMIBC from non-BC[63]. 356 
MiR-144-5p inhibits BC proliferation, affecting CCNE1, CCNE2, CDC25A, and PKMYT1 target 357 
genes[64]. Cell-free urinary miR-99a and miRNA-125b were found to be downregulated in the 358 
urine supernatants of BC patients (sensitivity 86.7%; specificity 81.1%)[65]. Urinary levels of miR-359 
618 and miR-1255b-5p were increased in MIBC patients compared to healthy controls[66]. Whole 360 
genome analysis determined increased miR-31-5p, miR-191-5p and miR-93-5p levels in the urine 361 
of BC patients compared to controls[67]. 362 
 363 
Genomics-based BC biomarkers were shown in Table 4. 364 
 365 
 366 
3 Metabolomics and metabolic phenotypes of BC 367 

 368 
In biological research, the omics approach includes genomics, proteomics, and metabolomics. It 369 
probes physiological and malignant processes at the cellular and molecular levels; thereby, 370 
characterizing the global molecular quantity, structure, function, and dynamic changes within an 371 
organism. Although genomics and proteomics have helped subtype many cancers based on gene 372 
mutation or receptor status, considerable heterogeneity is observed in tumor behavior and patient 373 
outcome, even within a genomic subtype. This is due to the unique cellular processes and 374 
metabolic profiles that can only be elucidated through metabolomics[68]. Metabolomic analysis 375 
is less complex compared to genomics, transcriptomics, and proteomics due to fewer endpoints. 376 
Metabolomics measures the entire set of small molecule products of metabolic processes in a 377 
biological system. By focusing on the downstream products of genomic and proteomic processes, 378 
metabolomics summarizes the effects of other omics methods and most closely represents a 379 
system’s phenotype[69]. 380 
 381 
Metabolomic studies are either untargeted, aiming to comprehensively include all measurable 382 
analytes without a prior hypothesis, or targeted, measuring only select predefined groups of 383 
metabolites[70]. Although untargeted studies deal with large complex data sets and carry the risk 384 
of false positives due to multiple testing of variables, the advantage is that they are free from 385 
assumptions. Targeted studies, on the other hand, are hypothesis-driven and offer measurements 386 
of high precision and accuracy. In metabolomic biomarker research, targeted studies are often 387 
used to validate findings from prior untargeted studies [71]. 388 
 389 
The field of blood-based genomic and proteomic cancer biomarkers are more developed than 390 
that of urine-based metabolomics because blood is considered to be an active participant in 391 
biological processes unlike urine, which is a contrast to waste product. With the advancement of 392 
urine analysis technology, urinalysis techniques have improved considerably. There are a number 393 
of methods that now enable in-depth analysis of diagnostic markers. In particular, NMR and MS-394 
based identification of urinary metabolites are powerful techniques that can potentially diagnose 395 
a number of conditions. At present, urine metabolomic biomarker studies are being primarily 396 
conducted by either NMR or MS. Both of these tools have their strengths and limitations. The 397 
major advantage of MS is its accuracy and specificity in regard to metabolite detection. MS is 398 
more accurate compared to NMR spectrometry; however, the analytes need to be separated for 399 
detection and assimilation. In contrast, NMR-based spectrometry is more expensive and has 400 
lower sensitivity, generally limited to less than 100 analytes in biological fluids. Furthermore, NMR 401 
does not require the segregation of analytes for detection. The major advantage of NMR is that 402 
samples are not destroyed and can actually be reused[72-74]. 403 
 404 



BC has profound metabolic abnormalities. Several altered metabolic pathways play a role in 405 
bladder tumorigenesis. As a result, metabolomics can contribute substantially to understanding 406 
the relevant alterations of catabolic and anabolic metabolic processes impaired in cancer through 407 
the identification of tumor-specific metabolic biomarkers with potential diagnostic, prognostic, or 408 
predictive value [75]. Metabolomic studies have already identified various metabolites of diverse 409 
pathways (glucose, lipid, amino acid, nucleotide metabolites) as probable BC biomarkers[76]. 410 
 411 
However, caution must be applied; clinical metabolic phenotypes (metabotypes) may be altered 412 
due to age, gender, diet, race, lifestyle, surgical intervention, and underlying pathophysiological 413 
conditions[77].In the context of BC metabolomics, baseline characteristics, such as tumor stage 414 
and grade, hematuria (gross or micro), surgical interventions, and smoking habit should 415 
additionally be taken into consideration [78]. 416 
 417 
4 Metabolomic Platforms 418 

  419 
Contrary to the genome or proteome, the human metabolome composition is still not fully defined. 420 
There are few research approaches, all of which have emerged in metabolome analysis; these 421 
include metabolic profiling, metabolic fingerprinting and metabolic footprinting[79]. 422 
 423 
Metabolic profiling is an example of a targeted approach, focusing on identifying and quantifying 424 
predetermined groups of metabolites with similar physicochemical properties (e.g., carbohydrates, 425 
amino acids, organic acids, nucleosides) or under the same biochemical pathway (e.g., glycolysis, 426 
gluconeogenesis, β-oxidation or citric acid cycle)[80]. Metabolic profiling is considered to be an 427 
extension of metabolite targeted analysis, which relies on analyzing a single compound or small 428 
subset of metabolites to determine the influence of the specific stimuli on metabolism. Metabolic 429 
fingerprinting is an untargeted approach that is not driven by any preliminary assumption and 430 
aims to define changes in the whole metabolome, which occurs at a specific state in the cell, 431 
tissue or organism. Therefore, the main purpose of metabolic fingerprinting is to identify and 432 
qualify as many possible metabolites in samples. Metabolic fingerprinting is frequently used in a 433 
comparative analysis of two subject groups (i.e., healthy vs disease, one disease vs another 434 
disease), which makes it a promising tool in studies focused on disease diagnosis and 435 
prognosis[81]. Metabolic footprinting is often applied in microbiological or biotechnological studies. 436 
Compared to the other methods, this approach does not concern intracellular metabolites but 437 
focuses on compounds that are secreted or failed to be used by cells in specific media. Due to 438 
the close relationship between intracellular and extracellular metabolism, metabolic footprinting 439 
can provide an integrative interpretation of the metabolic network in a specific living system[82]. 440 
 441 
Due to both the physicochemical diversity of the metabolome and complexity of the biological 442 
systems, no single analytical platform is able to determine all metabolites present in complex 443 
biofluids. Therefore, numerous analytical platforms are commonly used in both targeted and 444 
untargeted metabolomic studies [83]. NMR or MS coupled with different separation techniques 445 
currently dominates in metabolomics. There are at least four major analytical platforms with 446 
proven utility for metabolomic applications: NMR, GC-MS, LC-MS, and LCECA [84]. Each of 447 
these platforms has specific advantages and disadvantages (Table 5).  448 
 449 
Modern NMR makes it possible to perform rigorous structural analysis of many metabolites in 450 
crude extracts, cell suspensions, intact tissues, or whole organisms. Structural determination of 451 
known metabolites using various one-dimensional (1D) or 2D NMR methods is straight forward; 452 
in fact, de novo structural analysis of unanticipated or even unknown metabolites is also feasible. 453 



NMR has high throughput capability and is particularly capable of determining the structure of 454 
metabolites, including the location of isotope labeled atoms in different isotopes produced during 455 
stable isotope tracing studies [85-88]. As a result, metabolic pathways can now be systematically 456 
mapped by NMR with unprecedented speed. In summary, NMR offers essentially universal 457 
detection, excellent quantitative precision, and the potential for high-throughput (>100 458 
samples/day is possible). NMR is an unbiased, robust, reproducible, non-destructive and 459 
selective analytical platform. In NMR analysis almost no sample pretreatment is required. 460 
However, the main disadvantages of this technique include low sensitivity and lack of analyte 461 
separation. Another disadvantage is its high initial cost; NMR instruments can cost well over a 462 
million dollars. 463 
 464 
MS represents a universal, sensitive tool that can be used to characterize, identify, and quantify 465 
a large number of compounds in biological samples where metabolite concentrations may 466 
constitute a broad range[89]. Liquid chromatography coupled with mass spectrometry (LC–MS), 467 
gas chromatography coupled with mass spectrometry (GC–MS) or capillary electrophoresis 468 
coupled with mass spectrometry (CE–MS) has a significantly wider application in metabolome 469 
analysis[83]. 470 
 471 
GC, which employs high-resolution capillary columns and is combined with MS detection, is a 472 
powerful platform for determining the metabolome. GC–MS often employs either an electron 473 
impact (EI) or chemical ionization (CI) mode, which provides putative identification based on the 474 
highly reproducible mass spectra of metabolites and availability of universal structural and mass 475 
spectral libraries[90]. GC-MS can provide structural information (more informative if the 476 
compounds are present in existing libraries), reasonable quantitative precision, and high-477 
throughput (>100 samples/day is possible). Sensitivity is at least 2 orders of magnitude higher 478 
than NMR. One limitation of GC-MS is its inability to study molecules that cannot be readily 479 
volatilized. Another limitation is its relatively low mass accuracy (unit resolution). GC-MS is a 480 
technique of choice for volatile and thermally stable analytes. Therefore, complex and time-481 
consuming sample derivation is necessary; however, this can lead to undesirable metabolite loss. 482 
The recent development of multidimensional GC (GC x GC) has improved resolution, robustness, 483 
and sensitivity compared to conventional GC-MS. 484 
 485 
LC–MS is the most suitable technique for analyzing non-volatile, thermally unstable, high or low-486 
molecular-weight compounds with a wide polarity range. most compounds can be analyzed by 487 
LC-MS. LC–MS is commonly used in the metabolomic analysis of various biofluids (urine, blood 488 
or tissue extracts)[91, 92]. One limitation of LC-MS is its relative difficulty in obtaining consistent 489 
quantitative precision. The development of the LC–NMR-MS systems combines the high-490 
throughput capability of NMR with the high sensitivity and resolution of LC–MS[93, 94]. To 491 
improve the sensitivity of conventional LC–MS technique, nanoLC–MS was implemented in 492 
metabolomics studies[95, 96].  493 
 494 
Compared to LC–MS or GC–MS, CE–MS is rarely applied in metabolomic studies. However, 495 
recent significant improvements have opened CE-MS application in metabolomics. This 496 
technique is particularly useful in analyzing highly polar ionogenic metabolites in biological fluids 497 
[97]. CE-MS is a suitable method for urinary metabolomic analysis, which can be performed with 498 
relatively minimal sample preparation. However, extensive research is also being conducted in 499 
applying CE-MS to serum metabolomics [98]. CE-MS is a technique dedicated to water-soluble 500 
and charged molecules, which makes it a highly complementary platform to other separation 501 
methods, like LC-MS or GC-MS. The main advantages of CE-MS include high resolution power 502 



and small sample or reagent requirements. Its main limitation is the unstable electroosmotic flow 503 
phenomenon, which can result in notable migration time shifts during analyses[99]. 504 
 505 
LCECA is ideal for studies on the tryptophan and tyrosine pathways that lead to monoamine 506 
neurotransmitters because many metabolites within these two pathways can be measured 507 
quantitatively with LCECA. The robust nature of this platform, its reproducibility, and sensitivity 508 
have been well described in a series of peer-reviewed publications[100-104]. Preliminary 509 
experiments described later in this review demonstrate the power and promise of 510 
electrochemistry-based platforms for metabolomics analysis in defining signatures for central 511 
nervous system (CNS) disorders and treatments. The LCECA system is extremely sensitive, 512 
perhaps 2–3 orders of magnitude higher than that of GC-MS, and displays strong run-to-run 513 
precision over long periods of time. The disadvantages include the lack of structural information 514 
and low throughput (12 samples/day is the most commonly used metabolomic configuration). The 515 
system can detect molecules, such as tyrosine and tryptophan metabolites, as well as 516 
antioxidants and oxidative damage products, but it is “blind” to other molecules, such as glucose, 517 
ketoglutarate, and most fatty acids. 518 
 519 
Table 5 shows the advantages and limitations of different metabolomics platforms. 520 
 521 
 522 
5 Metabolomics in BC Diagnosis and Prognosis and Predicting Response to Therapies 523 

 524 
BC has profound metabolic anomalies that play central roles in tumor progression[105]. Metabolic 525 
pathways, such as the tricarboxylic acid (TCA) cycle, lipid synthesis, amino acid synthesis, 526 
nucleotide synthesis, and glycolysis pathway, are known to be increased in BC tissue compared 527 
to adjacent benign tissue[106]. 528 
 529 
5.1 Tricarboxylic acid cycle 530 

 531 
A significant decrease in citrate concentration was consistently observed in the urine and serum 532 
of BC patients[107]. One possible explanation for this is the active uptake of citrate from the 533 
extracellular medium into the tumor cell [108]. Citrate is important for lipid biosynthesis, which is 534 
crucial for tumor proliferation[109]. Therefore, the decrease in citrate levels in the urine or serum 535 
may illustrate the increased utilization of citrate in lipogenesis for the rapid proliferation of tumor 536 
cells[2]. 537 
 538 
5.2 Lipid metabolism 539 

 540 
Up or downregulation of carnitine species, including carnitine, carnitine C8:1, carnitine C9:0, 541 
carnitine C9:1, carnitine C10:1, carnitine C10:3, isobutyryl carnitine, acetylcarnitine, 2,6-542 
dimethylheptanoylcarnitine, isovalerylcarnitine, glutarylcarnitine, and decanoylcarnitine, has been 543 
reported in BC[41, 110, 111]. The carnitine system plays a central role in lipid metabolism; it 544 
facilitates the entry of long-chain fatty acids into the mitochondria for utilization in energy-545 
generating processes and removes short-chain and medium-chain fatty acids that accumulate as 546 
a byproduct[112]. It has been postulated that the dysregulation of lipid metabolism provides an 547 
environment that is beneficial to the development of BC. Additionally, altered fatty acid 548 
transportation, fatty acid β-oxidation, or energy metabolism might partially explain why BC 549 
patients are prone to lethargy[2]. 550 
 551 



5.3 Amino acid metabolism 552 
 553 

5.3.1 Glutathione metabolism 554 
 555 

Elevated glutathione (GSH) level was reported in BC tissues and cell lines via metabonomic 556 
studies [2]. Oxidative stress results in elevated  GSH and overexpression of antioxidant enzymes, 557 
such as glutathione peroxidase, glutathione reductase, and glutathione-S transferase[113]. While 558 
GSH is involved in the detoxification of carcinogens, its elevation in tumors may promote 559 
chemotherapy resistance in cancer cells via conjugation with pharmacologically active drugs or 560 
metabolites[114]. 561 
 562 
5.3.2 Tryptophan metabolism 563 

 564 
Upregulation of tryptophan metabolism in BC was observed with increased levels of anthranilic 565 
acid, N-acetylanthranilic acid, kynurenine, 3-hydroxykynurenine, and malonate[115-117]. The 566 
proposed underlying mechanisms include autoxidation and interaction with nitrite or transition 567 
metals to form reactive intermediates, binding as ligands to aryl hydrocarbon receptor (AHR) that 568 
plays a role in carcinogenesis[118]. Notably, Opitz et al. demonstrated that tryptophan-2,3-569 
dioxygenase (TDO)-derived kynurenine suppresses antitumor immune responses and promotes 570 
tumor-cell survival through AHR, which in turn suggests TDO as a potential cancer therapeutic 571 
target[119]. 572 
 573 
5.3.3 Hippuric acid &taurine metabolism 574 

 575 
Downregulation of hippuric acid was generally observed in BC patients and taurine was found to 576 
be elevated in BC patients compared to benign and healthy controls [107]. Taurine inactivates 577 
hypochlorous acid, which is a strong oxidant and cytotoxic agent, by forming stable taurine 578 
chloramine (Tau-Cl). In turn, Tau-Cl downregulates immunological responses via production of 579 
proinflammatory cytokines, leading to tumor progression[120]. 580 
 581 
5.3.4 Nucleotide metabolism 582 

 583 
Purine and pyrimidine metabolism has been found to be perturbed in BC, leading to upregulation 584 
of guanine, hypoxanthine, cytidine monophosphate, thymine, uracil, uridine, and 585 
pseudouridine[111, 115]. Nucleosides, particularly modified nucleosides (e.g., pseudouridine), 586 
are elevated and suggested as potential biomarkers in various cancers[121]. Such elevation 587 
nucleoside levels have been postulated to be the result of increased DNA synthesis associated 588 
with enhanced cell cycle activity in cancer[122]. Modified nucleosides are excreted in urine 589 
because they cannot be recycled as nucleosides[123]. Thus, levels of modified nucleosides in 590 
urine reflect oxidative DNA damage and RNA turnover in the body. 591 
 592 
5.3.5 Glycolysis 593 

 594 
Lactate, an important end product of glycolysis, was found to be elevated in BC tissue and urine 595 
[115, 124], indicating an increased rate of glycolysis rate. The upregulation of glycolysis, resulting 596 
in increased glucose consumption, is a universal phenomenon in cancer and is termed the 597 
“Warburg effect” [125, 126]. Gatenby and Gillies proposed that the upregulation of glycolysis is 598 
an adaptation of premalignant lesions to intermittent hypoxia, but requires evolution to the 599 



resultant proliferative and invasive phenotypes where resistance to acid-induced cell toxicity is 600 
also observed[125]. 601 
 602 
Diagnosis and prognosis of various diseases are enhanced by the identification of biomarkers, 603 
which can differentiate individuals with the disease from those without. Ideal markers are easily 604 
detectable in tissue, serum, and urine, and have a high sensitivity and specificity. There are 605 
several potential applications of metabolomics in BC and other cancers; this includes improving 606 
detection, providing prognostic information, and impacting treatment. 607 
 608 
 609 
 610 
6 Clinically applicable BC biomarkers-based tools  611 

 612 
At present, the FDA has approved six tests for detecting or monitoringBC. NMP22, NMP22 613 
BladderChek, and UroVysion have FDA approval for BC diagnosis and surveillance; 614 
Immunocytology (uCyt+), BTA-TRAK, and BTA-STAT have been approved only for surveillance 615 
[127-131]. There are also many metabolites that can be considered as potential tumor biomarkers 616 
for BC. 617 
 618 
By ultra-performance liquid chromatography time-of-flight mass spectrometry, imidazole-acetic 619 
acid was evidenced in BC[132]. A metabolite panel consisting of indolylacryloylglycine, N2-620 
galacturonyl-L-lysine, and aspartyl-glutamate can discriminate high- vs. low-grade BC[133]. In 621 
addition, alterations in the metabolisms of phenylalanine, arginine, proline, and tryptophan were 622 
evidenced by UPLC-MS in NMBIC[134]. Jin X et al. confirmed through their study that carnitine 623 
acyltransferase and pyruvate dehydrogenase complex expressions are significantly altered in 624 
cancer[41]. Alberice JV et al. propose that metabolites related to the tryptophan metabolism 625 
pathway, such as kynurenine and tryptophan, are potential urinary biomarkers and therapeutic 626 
targets of BC therapy[116]. Wittmann et al. performed unbiased metabolomics on a set of urine 627 
samples from BC patients, revealing nearly 1000 distinct metabolic signatures, of which 587 have 628 
a chemical identity[135]. The authors chose a set of 25 potential biomarkers from this group and 629 
tested this panel on a second independent cohort to validate its predictive power. A new group of 630 
metabolites, including lactate, adenosine, succinate, and palmitoyl sphingomyelin, were proposed 631 
as urinary biomarkers; thus, showing the involvement of lipid metabolism in BC progression. 632 
 633 
 634 
 635 
7 Conclusions and Perspectives  636 

 637 
At present, there is much research on biomarkers of BC. Biomarkers can be identified in tissue, 638 
blood, urine, etc. and include genes, proteins, metabolites, etc. In this paper, we summarized the 639 
research progress of BC biomarkers in recent years. Due to the advantages of urine collection, 640 
including non-invasive procedures, simplicity, easy storage, low-cost, and direct contact with 641 
bladder cancer tissue, we focused particularly on urinary biomarker research progress. Compared 642 
to genomics and proteomics, metabonomics of BC is still in its early stages. However, because 643 
of the great progress in metabonomics research in BC using NMR, GC-MS, and LC-MS, 644 
metabonomics has been widely used to propose new biomarkers. These may be applied to 645 
screening, diagnosing, treating, evaluating, and monitoring BC. Although the potential of 646 
metabonomics to improve detection and treatment of BC may be great, the main limitation is the 647 
lack of reliable validation for a large population. Current research has so far been limited to smaller 648 



samples without validation and metabolites can be easily affected by various factors. For future 649 
metabonomics research, experimental design and analysis methods need to be standardized to 650 
eliminate the systemic influence of confounding variables on the measurement of metabolites, 651 
make results more comparable, verify potential biomarkers, and assist in clinical applications 652 
against BC.  653 
 654 
  655 



Table 1. Different classifications of BC based on molecular phenotyping. This table does 656 
not contain classifications based on Gottfrid’s research. 657 
 658 
 659 

UNC MDA Lund TCGA Broad 
Basal Basal UroA Cluster I Basal      

Luminal Luminal UroB Cluster II Luminal      
 

P53-like GU Cluster III Luminal immune      
  

SCCL Cluster IV immune undifferentiated      
  

Infiltrated 
  

 660 
  661 



Table 2. Summary of proteomics-based BC biomarkers 662 
 663 
 664 

Sample
s 

Proteins Reference
s 

urine AURKA 24 
ALCAM 25 
Nicotinamide N-methyltransferase 26 
APE/Ref-1 27 
CK20 28 
CK8, CK18 29 
APOA1, APOA2, APOB, APOC2, APOC3, APOE 30,31 

uromodulin, collagen α-1 (I), collagen α-1 (III), and membrane-
associated progesterone receptor component 1 

32 

IL-8, MMP-9/10, ANG, APOE, SDC-1, α1AT, PAI-1, VEGFA, and 
CA9 

33 

midkine (MDK), synuclein G or MDK, ZAG2, CEACAM1 adn 
angiogenin, clusterin  

34,35 

CK20, IGFII 36 
HAI-1, Epcam 37 
survivin 38 
Snail 39 
CD44 40 

 665 
 666 
 667 
 668 
 669 
 670 
 671 
 672 
 673 
 674 
 675 
 676 
 677 
 678 
 679 
 680 
  681 



Table 3. Summary of metabolomics-based BC biomarkers 682 
 683 
 684 

Metabolites Alteration References 
Succinate  ↑  41 
Pyruvated  ↑  

Oxoglutarated  ↑  
Carnitine  ↑  

Phosphoenolpyruvate   ↑  
Trimethyllysine  ↑  

Melatonin  ↓  
Isovalerylcarnitine  ↑  

Glutarylcarnitine  ↓  
Octenoylcarnitine  ↑  
Decanoylcarnitine  ↑  

Acetyl-CoA  ↑  
Cholesterol  ↑  42 

5-hydroxyvaleric acid  ↓  
3-phosphoglyceric acid  ↓  

glycolic acid  ↓  
dopamine 4-sulfate  ↑  43 

MG00/1846Z,9Z,12Z,15Z/00  ↓  
aspartyl-histidine   

tyrosyl-methionine   
acetyllysine  ↑  45 

N-acetylneuraminic acid  ↑  
pseudouridine  ↑  

uridine  ↑  
xanthine  ↑  

7-methylguanine  ↑  
gluconic acid ↑  

glucuronic acid  ↑  
1,7 dimethylxanthine  ↓  

hippuric acid  ↓  
acid trehalose ↑  46 

nicotinuric acid ↑  
AspAspGlyTrp peptide ↑  

inosinic acid ↓  
ureidosuccinic acid ↓  

GlyCysAlaLys peptide ↓  
 685 



Table 4. Summary of genomics-based BC biomarkers 686 
 687 
  Biomarkers Alteration References 

DNA 
Methylation 

SOX-1, IRAK3, and Li-MET   47 
APC and cyclin D2   48 
GSTP1 and RARβ2 and APC   49 
TWIST1 and NID2   50 

NID2 and TWIST1 or CFTR, SALL3 and 
TWIST1  

  51,52 

POU4F2 and PCDH17   53 
HS3ST2, SEPTIN9 and SLIT2   54 
p14ARF, p16INK4A, RASSF1A, DAPK, and 
APC tumor suppressor 

  55 

miRNAs miR-146a-5p ↑  56 
MiR-126 ↑  57 
miR-200c ↓  58 
let-7miR, mir-1268, miR-196a, miR-1, miR-
100, miR-101, and miR-143 

  59 

miR-96 and miR-210   60 
MiR-125b, miR-30b, miR-204, miR-99a, and 
miR-532-3p 

↓  61 

MiR-9, miR-182 and miR-200b   62 
MiR-145   63 
MiR-144-5p   64 
miR-99a and miRNA-125b ↓  65 
miR-618 and miR-1255b-5p ↑  66 
miR-31-5p, miR-191-5p and miR-93-5p ↑  67 

 688 
689 



Table 5. Summary of the advantages and limitations of different metabolomics platforms 690 
 691 
 692 
  STRENGTHS DRAWBACKS 
NMR Rapid Lack of sensitivity 
  reproducible Multiplicity of the resonance 
  Nondestructive Difficulty of quantification-chemical noise and 

signal overlapping 
  High-throughput lack of an analyte separation component 
  Minimal sample high instrument cost (over one million dollars) 
  manipulation   
  Possible tissue analysis   
MS High sensitivity Low quantitation 
  Wide detection range Low reproducibility 
  Easy metabolite Destructive 
  identification-databases 

availability 
High sample volume requirements 

  Possibility to couple with 
separation techniques 

  

GC-MS reasonable quantitative precision Can't study nonvolatile molecules 
  high throughput low mass accuracy (often unit resolution)  
  low instrumentation costs ($100–

$300,000) 
undesirable metabolite losses 

  High sensitivity   
  volatile and thermally stable 

analytes 
  

LC-MS high flexibility high instruments cost($100,000-over one 
million dollars) 

  tailor separations to the 
compounds 

difficulty in obtaining consistent quantitative 
precision 

  enable low, medium, or high mass 
accuracy 

  

  Can trade off sensitivity for 
throughput 

  

  Can determine the exact 
molecular composition 

  

  various biofluids analytes   
CE–MS highly polar ionogenic metabolites 

analytes 
notable migration time shift during analyses 

  minimal sample preparation   
  high resolution power    
LCECA extremely sensitive lack of structural information 
  strong run-to-run precision low throughput 
  high specificity (tryptophan and 

tyrosine pathways) 
low cost (under $100,000) 

 693 
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Figure Legends 695 
 696 
Figure 1. Schematic illustration of molecular subtypes of bladder cancer. Based on Whole-697 
genome mRNA expression profiling, several molecular subtypes of muscle-invasive bladder 698 
cancer (MIBC) have been identified. Molecular subtypes of MIBC might have important 699 
implications for patient prognosis and response to conventional chemotherapy and targeted 700 
agents. Four groups have shown great similarities among tumor subtype. Lund, University of 701 
Lund; MDA, MD Anderson Cancer Center; TCGA, The Cancer Genome Atlas; UNC, University 702 
of North Carolina. 703 
 704 
Figure 2. Overview of the multi-OMICS strategies for urinary bladder cancer biomarker 705 
discovery and their clinical implication. A typical integrated multi-omic technologies workflow 706 
showing to probe the complexity of bladder cancer biology. Integration of several of omics data 707 
sources use systems biology approach build biomarker discovery.  708 
  709 
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Abstract 

Stress granules (SGs) are cytoplasmic aggregates to 

reprogram gene expression in response to cellular stimulus. 

Here, we show that while SGs are being assembled in 

response to clotrimazole, an antifungal medication 

heterogeneous nuclear ribonucleoprotein (hnRNP) K, an 

RNA-binding protein that mediates translational silencing 

of mRNAs, is rapidly accumulated in SGs in U-2OS 

osteosarcoma cells. Forced expression of hnRNP K induces 

resistance to clotrimazole-induced apoptosis. Erk/MAPK is 

transiently activated in response to clotrimazole, and 

pharmacological suppression of the Erk/MAPK pathway 

sensitizes the cells to apoptosis. Inhibition of the 

Erk/MAPK pathway promotes the assembly of SGs. These 

results suggest that dynamic cytoplasmic formation of SGs 

and hnRNP K relocation to SGs may be defensive 

mechanisms against clotrimazole–induced apoptosis in U-

2OS osteosarcoma cells. 

jay
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1. Introduction  

Heterogeneous nuclear ribonucleoproteins (hnRNPs) play 

important roles both in DNA-related functions, such as 

transcription, recombination, and regulation of telomere 

length, and in RNA-related functions, such as regulation of 

splicing, pre-mRNA 3’-end processing, export of mRNA 

from the nucleus, translation, transport of mature mRNA, 

and mRNA turnover [1, 2]. There are approximately 20 

major hnRNPs (hnRNP A1 to hnRNP U), and the location 

and function of each member in various cell types are 

distinctive [3-5]. Some hnRNPs, such as hnRNP A, hnRNP 

D, hnRNP E, hnRNP I, hnRNP K, and hnRNP L, shuttle 

between the nucleus and cytoplasm, while others mostly 

exist in the nucleus [6-8]. 

 

HnRNP K is an abundant and ubiquitous protein that 

interacts with a diverse group of molecules [2, 9]. The 

function of hnRNP K is modified in response to cytokines, 

growth factors, oxidative stress, etc. [10]. HnRNP K is also 

involved in multiple processes that control gene expression 

[11, 12]. Previous reports demonstrated altered expression 

and localization of hnRNP K in human tumors, including 

myelogenous leukemia [13] and colorectal cancer [14, 15], 

suggesting the importance of mRNA metabolism regulated 

at the (post) translational level in cancer cells. 

Overexpression of hnRNP K is associated with increased 

transcriptional activity of oncogene c-myc and poorer 

survival outcomes [12], suggesting that it may have an 

important role in tumorigenesis. HnRNP K not only interacts 

with RNA, DNA, and other proteins; it also binds to factors 

involved in signal transduction, including mitogen activated 

protein kinases (MAPKs) [16]. Erk/MAPK-dependent 

hnRNP K phosphorylation is needed for translocation from 

the nucleus to cytoplasm, leading to the translational 

inhibition of 15-lipoxygenase. Although localization of 

hnRNP K is dependent on cell types, it should be noted that 

it may have unique motifs for nuclear/cytoplasmic 

shuttling. This shuttling activity of hnRNP K may be 

essential for biological responses that control cellular 

differentiation, proliferation, and survival [9, 17-20]. 

Electron microscopic examination revealed that hnRNP K 

exists in the nucleus, cytoplasm, mitochondria, and within 

the vicinity of the plasma membrane [21]. Interestingly, 

nucleus-residing hnRNP K in colon cancer cells was found 

to be associated with increased survival rates [22]. 

 

Post-transcriptional regulation of gene expression upon 

various stimuli, such as heat shock, oxidative stress, viral 

infection, is vital for cell survival [23]. Stress granules 

(SGs) are cytoplasmic sites in which translationally stalled 

mRNAs and numerous RNA binding proteins are nucleated 

upon stresses [24], and this event allows cell to reprogram 

gene expression [25]. SGs are signaling platforms that 

contribute to the coordination of cellular processes. The 

core constituents of SGs are small ribosomal subunits, 

translation initiation factors (e.g., eIF4E, eIF3, eIF4G, and 

PABP), and various RNA binding proteins that regulate 

translation or mRNA decay [26]. It has been suggested that 
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SGs are the sites where mRNA triage takes place to direct 

RNAs to be degraded or re-translated. A recent study 

showed that SGs also contain micro-RNA machinery, 

suggesting a possible link between these two pathways 

[27]. The SG components that contribute to the cellular 

responses to stress stimuli remain elusive despite recent 

advances in purification and molecular profiling techno-

logies [28, 29]. In this study, we tested the hypothesis that 

hnRNP K is recruited to SGs in response to apoptotic 

stimuli, which is an essential survival mechanism. We 

induced apoptosis of the U-2OS osteosarcoma cells by acute 

treatment with clotrimazole, a broad- spectrum antimycotic 

drug mainly used for the treatment of fungal infections. 

We further tried to understand the key signaling pathways 

required for defense mechanism against clotrimazole-

induced apoptosis. 

 

2. Materials and Methods 

2.1 Antibodies and reagents 

The antibodies used in this study include the following: 

anti-hnRNP K (sc-28380) and anti-EIF3α (sc-376651) 

(Santa Cruz Biotechnology, Santa Cruz, CA), anti-

phospho- Erk/MAPK (9101), anti-Erk/MAPK (9102), anti-

HA-Tag (3724), anti-GAPDH (5174), anti- β-Tubulin 

(2146), and anti-Lamin A/C (4777) (Cell Signaling 

Technology, Beverly, MA). A specific MEK1 inhibitor, 

PD98059 (513000), and p38MAPK inhibitor, SB203580 

(559389), were purchased from Sigma-Aldrich (St. Louis, 

MO). All other chemicals, including clotrimazole, were 

obtained from Sigma-Aldrich. 

 

2.2 Cell culture and transfections 

The U-2OS osteosarcoma cell line was procured through 

American Type Culture Collection and was maintained in 

Dulbecco’s modified Eagle’s medium (DMEM) (high 

glucose), 10% fetal bovine serum, 100μg streptomycin, and 

100 units/ml penicillin (Invitrogen, Carlsbad, CA) at a 

humidified atmosphere of 5% CO2 at 37oC. U-2OS cells in 

150 mm dishes at ~80% confluence were applied to 

electroporation with an empty vector or a hnRNPK 

expressing plasmid using nucleofector (Amaxa Inc., 

Gaithersburg, MD) followed by instructions supplied by the 

company. For siRNA transfection, cells were cultured in 6-

well plates at a density of 1x105cells/mL. After 24 h, cells at 

~80% confluence were transiently transfected with 5-nM 

small interfering RNAs (siRNAs) of hnRNPK (Sigma-

Aldrich) or negative control siRNA (siCTL) (Ambion, 

Austin, TX, USA), by using Lipofectamine RNAiMAX 

(Thermo Fisher Scientific Inc., Carlsbad, CA, USA), 

according to the manufacturer’s instructions. As 

transfection controls, empty vector or NON- TARGET 

control siRNAs were used. Mock cells were treated with 

RNAiMAX and cultured in Opti‐MEM for 6 hrs, but 

without siRNA. 

 

2.3 Preparation of whole cell lysates and immunoblot 

analysis 

Treated cells were washed twice in ice-cold phosphate-

buffered saline (PBS) and lysed in a minimum volume of 

1X cell lysis buffer [1% Nonidet P-40; 50 mM Tris pH 7.4; 

10 mM NaCl; 1 mM NaF; 5 mM MgCl2; 0.1 mM EDTA; 1 

mM PMSF; and COMPLETETM protease inhibitor cocktail 

tablet (Roche Diagnostocs Corp.)]. Protein content was 

determined using the Micro BCA Protein Assay Kit 

(Thermo Scientific, Rockford, IL). Cell extracts (10 

μg/lane) were resolved by 4-12% gradient SDS-

polyacrylamide gel electrophoresis (Bio-Rad, Hercules, 

CA) and electro-transferred onto nitrocellulose membranes. 

Following the transfer, membranes were stained with 

Ponceau S to confirm equal protein loading. Membranes 

https://www.sigmaaldrich.com/US/en/product/mm/559389?context=product
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were blocked with PBS/0.1% Tween-20 (PBST) and 10% 

skim milk and incubated with antibodies in PBST overnight 

at 4oC. Following incubation with species-specific 

horseradish peroxidase (HRP)-conjugated secondary 

antibodies, signals were detected using the SuperSignal 

Chemiluminescent Reagent (Pierce Chemical Co., 

Rockford, IL) with exposure of blots onto X-ray films.  

 

2.4 Cell proliferation assay and apoptosis analysis 

The proliferation rate was determined by counting cell 

numbers under the indicated conditions. Fluorescence-

activated cell sorting (FACS) analysis was performed to 

verify the apoptotic cell population by measuring the sub-

Go population. After harvesting at the indicated conditions, 

cells were stained with propidium iodide, and visualized by 

flow cytometry. Cell proliferation assays using 3-(4, 5-

dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide 

(MTT), and cell viability assays using crystal violet 

staining were performed to determine cell numbers. All 

experiments were performed in 6 biological replicates and 

mean values were calculated. TUNEL assay was performed 

to compare apoptotic levels in response to clotrimazole with 

or without PD98059, a MEK1 inhibitor, or SB203580, a 

p38MAPK pathway inhibitor. Cells in the cover slip were 

incubated in PD98059-containing medium for 1 h, followed 

by treatment with 20 μM clotrimazole for an additional 30 

min. 

 

2.5 Immunofluorescence microscopy 

For imaging experiments, 1 x 103 cells were plated on glass 

cover slides (VWR, West Chester, PA) 24 h before drug 

treatment. Cells with 80% confluency were used for the 

following experiments. Pre-incubation of cells with 50 μM 

PD98059 for 1 h was followed by treatment with 20 μM of 

clotrimazole in serum-free medium. Immunostaining was 

done using the following primary antibodies after 

clotrimazole treatment: anti-EIF3α pAb (SGs marker), or 

anti-hnRNP K mAb at dilutions of 1:100, 1: 50, and 1:100, 

respectively. Cells were fixed with 4% PFA formaldehyde 

for 15 min followed by ice-cold methanol for 5 min. Cells 

were then washed once with ice-cold PBS, and non-specific 

binding sites were blocked in PBS/0.1% BSA for 1 h at 

room temperature prior to incubation with primary 

antibodies. The immune reaction for each primary antibody 

was detected by Cy5 (blue; for EIF3α), or FITC-(green; for 

hnRNPK) conjugated secondary antibodies (1:250) for 30 

min at room temperature. Slides were mounted in 

Vectashield medium-containing DAPI (Vector 

Laboratories, Inc., Burlingame, CA) and analyzed using 

AxioVision under a microscope (Carl Zeiss Inc.).  

 

2.6 Statistical analysis 

All experiments were repeated in 6 biological duplicates for 

statistical analysis. The data were expressed as mean  ± 

 standard deviation (SD) for continuous variables while 

frequencies (%) for categorical variables. Students’ t test 

and one-way ANOVA post-hoc Tukey’s test were used to 

compare the data from different groups. P < 0.05 was 

considered statistically significant. 

 

3. Results 

3.1 Clotrimazole treatment induced formation of SGs 

and apoptosis in U-2OS sarcoma cells 

Tight control of translation is fundamental in cellular 

homeostasis for eukaryotic cells, and deregulation of 

proteins contributes to numerous human diseases. SGs and 

processing bodies (PBs) are the main intracellular 

compartments for regulating and controlling mRNA 

degradation, stability, and translation, which are involved in 

many biological responses including cell proliferation, 
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differentiation, apoptosis, and development [26, 30, 31]. We 

sought to examine in this study whether apoptosis induced 

by clotrimazole is linked to the functional formation of 

SGs, and whether hnRNPK, a potential translational 

regulator, is modulated during granule assembly. 

Clotrimazole, an antifungal drug that dissociates Hex II 

from the mitochondria [32], significantly induces apoptosis 

in U-2OS osteosarcoma cells. FACS analysis revealed that 

about 21.8% of cells went into the apoptotic phase 6 h after 

treatment with 20 μM clotrimazole (Figure 1A). MTT 

assays showed a significant, dose-dependent reduction of 

cellular proliferation with clotrimazole (Figure 1B). 

TUNEL assays demonstrated increased numbers of 

apoptotic (green) cells detected in a dose-dependent manner 

(Figure 1C). When cell proliferation was measured via 

crystal violet staining, proliferation dramatically decreased 

in a time- dependent fashion, particularly with treatment 

with 20 μM clotrimazole for 4 h (Figure 1D). 

 

3.2 HnRNP K is necessary as a defensive mechanism 

against clotrimazole-induced apoptosis 

U-2OS cells formed RNA granules, such as SGs, within 30 

min of being treated with clotrimazole. This was observed 

with immunofluorescence (IF) staining of EIF3α, which 

indicates SGs. Representative stained images of normal and 

clotrimazole- stimulated conditions are shown in Figure 1E. 

This data demonstrated that SGs are rapidly translocated 

specifically to the cytoplasmic foci. 

 

In addition, we found that cells harboring ectopic hnRNP K 

were more resistant to the clotrimazole-induced apoptosis, 

compared to cells transfected with vector plasmid (Figure 

2A). In control condition, clotrimazole treatment increased 

apoptosis approximately 6-fold. Overexpression of hnRNP 

K made U-2OS cells approximately 35% more resistant to 

the apoptosis induced by clotrimazole. The efficient 

overexpression of hnRNP K were confirmed, which was 

shown by Western blot analysis using anti-HA tag and anti-

hnRNP K (Figure 2A, right panels). When hnRNP K 

expression was silenced with siRNA transfection, cells 

were approximately 140% more sensitized to clotrimazole 

treatment compared to control (Figure 2B). The knockdown 

of hnRNP K by siRNA transfection was confirmed using 

Western blot analysis with anti-hnRNP K (Figure 2B, right 

panels). 

 

3.3 HnRNP K is recruited to cytoplasmic SGs in 

response to clotrimazole 

Examination of SGs in apoptotic human sarcoma cells 

showed that hnRNP K, which is predominantly localized to 

the nucleus normally, exhibited translocation upon clotrim-

azole treatment (Figure 3A). SGs are rapidly assembled and 

accumulated as cytoplasmic foci in response to clotrima-

zole (blue) (Figure 3A, right). These findings may suggest 

that translocation of hnRNP K to SGs in the cytosol could be 

related to the function of hnRNP K in the regulation of 

general translation under stress conditions. To further test 

the translocation of hnRNP K from the nucleus to cytosol in 

response to clotrimazole, cells were treated with clotrima-

zole and the expression of nuclear and cytoplasmic hnRNP 

K was examined. Subcellular fractionation and Western 

blot analysis showed that some part of endogenous hnRNP K 

(approximately 25%) moved from the nucleus to cytoplasm 

(Figure 3B, left). Quantitative data showing the expression 

% of hnRNP K in nuclear vs cytoplasmic fractions were 

shown in the graph (Figure 3B, right). 

 

3.4 Suppression of Erk/MAPK sensitizes clotrimazole-

induced apoptosis 

To investigate signal transduction pathways involved in the 
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assembly of SGs after treatment with clotrimazole, several 

signal pathways were examined. Western blot analysis 

using anti-phospho-Erk/MAPK antibodies demonstrated 

that Erk/MAPK is activated transiently 15 min after 

clotrimazole treatment (Figure 4A), while p38MAPK was 

not activated (Figure 4A). Protein levels of Erk/MAPK were 

not affected by clotrimazole (Figure 4A). Activation of the 

Erk/MAPK pathway has been linked to enhanced 

proliferation and anti- apoptosis of tumor cells [33]. 

 

In experiments aimed at manipulating this pathway, we 

used a selective inhibitor of MEK1, PD098059, and 

assessed the involvement of the Erk/MAPK pathway in 

increased apoptosis after clotrimazole treatment. Phospho-

rylation levels of Erk/MAPK were diminished in the 

presence of PD098059 (Figure 4B). Efficacy of the 

inhibitor was monitored by its ability to block phosphory-

lation of Erk/MAPK, while levels of total Erk/MAPK were 

not changed (Figure 4B). Both TUNEL assays (Figure 4C) 

and cell viability analysis (Figure 4D) showed that 

suppression of the Erk/MAPK pathway enhanced apoptosis 

induced by clotrimazole. These results suggest that 

activated Erk/MAPK plays as a survival mechanism for 

cells against clotrimazole-induced apoptosis. 

 

In contrast to apoptosis induction, further examination 

using IF staining analysis revealed that hnRNP K 

localization to SGs corresponded to Erk/MAPK activation 

(Figure 4E). The hnRNP K accumulation to foci was 

stimulated in response to clotrimazole treatment (CZ), 

which was significantly enhanced when Erk/MAPK was 

inhibited (CZ+PD) (Figure 4E). There was no significant 

change in PD98059 (PD) only, compared to control (Con). 

Inhibition of the p38MAPK pathway by a specific inhibitor, 

SB203580, had no effect on hnRNP K accumulation to foci 

(Figure 4E). Taken together, these experiments suggest the 

role of the Erk/MAPK pathway as a main mediator of 

clotrimazole-stimulated cell apoptosis and the formation/ 

accumulation of SGs, but not for the formation/ 

accumulation of PBs in U-2OS cells. 
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Figure 1: Clotrimazole treatment-induced assembly of stress granules (SGs), followed by apoptosis in U-2OS osteosarcoma 

cells. (A) U-2OS cells were incubated in serum-free medium containing 20 μM clotrimazole for 6 h. To measure apoptotic cell 

population, FACS analysis was performed after fixation and staining of cells; (B and C). (B) MTT-based proliferation assay 24 

h after treatment of cells with 20 μM clotrimazole and (C) TUNEL assay were done to determine proliferation and apoptosis in 

response to clotrimazole (Green in Figure 1C, apoptotic cells). Bar graph representing the percentage of apoptotic cells. Error 

bars indicate standard errors. (n=6). *P<0.01. (D) U-2OS cells pretreated with 20 μM clotrimazole for indicated time points (0, 

1, 2, 4, 6, 8, 10, and 12 h) and crystal violet staining was performed. (E) Immunofluorescence (IF) staining analysis using 

marker proteins for SGs was performed 30 min after 20 μM clotrimazole treatment in serum-free medium, which was further 

processed for IF microscopy. The fold change of the % of accumulation into foci was shown. Scale bar, 10 μm. 
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Figure 2: HnRNP K suppressed clotrimazole-induced apoptosis of U-2OS cells. (A) Ectopic expression of hnRNP K 

overexpressing construct or vector only in U-2OS cells was followed by clotrimazole treatment. The expression of HA-HnRNP 

K constructs were assessed by Western blot analysis using anti-HA or anti-HnRNP K antibodies. (B) U-2OS cells transiently 

transfected with control siRNA or si hnRNP K were treated with clotrimazole. For A and B, FACS analysis using 6 biological 

replicates was performed to determine apoptosis level at the indicated conditions. Error bars indicate standard derivation. 

*P<0.01. 
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Figure 3: HnRNP K translocated into SGs with clotrimazole treatment. (A) Cells were incubated in serum-free medium in 

presence of 20 μM clotrimazole for 30 min. After cell fixation with 4% PFA solution and methanol, cells were stained using 

various antibodies, as described in Materials and Methods (Gray/Green, hnRNP K; Blue, EIF3α). Scale bar, 10 μm. (B) 

Cytosol accumulation of hnRNP K. U-2OS cells were treated with clotrimazole for 2 h. Western blot analysis using anti-Lamin 

A/C and anti--Tubulin was performed and the successful subcellular fractionation for nuclear and cytoplasmic fractions was 

confirmed, respectively. Same concentration of proteins were used for the following Western blot analysis to measure the 

protein expression levels of hnRNP K in cytoplasmic vs nuclear fractions. ImageJ software was used to quantify the band 

intensities to determine the ratio of nuclear vs cytoplasmic hnRNP K (right). 
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Figure 4: Erk/MAPK activation by clotrimazole treatment suppressed apoptosis, but not trafficking of hnRNP K. (A) Cells were 

treated with 20 μM clotrimazole for the indicated times. Western blot analysis was performed to assess phosphorylation status of 

Erk/MAPK and p38MAPK in response to clotrimazole. The protein expression level of total Erk/MAPK and p38MAPK was also 

determined. (B) Inhibition of MEK1, an upstream molecule of Erk/MAPK, with PD98059 suppressed Erk/MAPK 

phosphorylation after treatment with clotrimazole. Cells were pretreated with 10 μM PD098059 for 30 min and stimulated with 

clotrimazole for 15 min. (C) Blockage of Erk/MAPK by PD98059 increased cell apoptosis by clotrimazole. TUNEL assay was 

used for determination of apoptosis. Green spots indicate apoptotic cells. Representative images were shown. (D) To observe 

the increased apoptosis by inhibition of Erk/MAPK or p38MAPK, cells were seeded with the same density 1 day before 

clotrimazole treatment. Cells were pretreated with 10 μM PD098059 or 10 μM SB203580 for 30 min and stimulated with 

clotrimazole for 2 h. Cells were stained by crystal violet solution after fixation and stained cells in purple were counted as 

viable. (E) Cells were pretreated with 10 μM PD98059 or 10 μM SB203580 for 30 min, followed by incubation with 20 μM 

clotrimazole for 15 min. Stained images of hnRNP K were analyzed under microscopy as described in Materials and Methods. 

Scale bar, 10 μm. 
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4. Discussion 

Herein, we provide evidence that hnRNP K is translocated 

to cytoplasmic SGs in response to apoptotic stress induced 

by clotrimazole in U-2OS sarcoma cells, and that the 

Erk/MAPK signal pathway is activated but not required for 

this phenomenon. Our study is the first to address the 

potential role of SGs in trafficking hnRNP K in human 

cancer cells. SGs harbor various RNA-binding proteins and 

mRNAs, which play vital roles in alternative splicing. SGs 

are a platform of mRNA trafficking to processing bodies 

(PBs), where mRNA decay occurs. Our results showed that 

hnRNP K is present in SGs, suggesting that (1) hnRNP K 

binds to mRNAs to be degraded or protected from mRNA 

degradation upon stress stimuli, and (2) mRNA turnover 

can be regulated by foci formation. Microscopic 

examination revealed that hnRNP K accumulates 

dramatically and rapidly, within 30 min, to RNA granules. 

Being a transient phenomenon, this was consistent with 

previous observations that once stress is relieved, SGs 

disassemble [24, 34, 35]. This also supports the idea that 

formation of RNA granules is important in tight regulation 

of gene expression in response to stress. However, the 

complete mechanism of how these cytoplasmic foci is 

assembled is unknown. Our microscopic images also 

showed that many SGs overlap or, at the very least, 

assemble. Since the functions of SGs are known to be 

distinct, we speculated that hnRNP K in SGs would move to 

PBs under specific conditions via tight communication 

between SGs and PBs. 

 

Cells respond to stress stimuli by activating defensive 

survival mechanisms to prevent damage to some extent, 

and, when necessary, activate apoptosis. Among the MAPK 

pathways, the JNK/SAPK and p38MAPK pathways are 

considered to play major roles during apoptosis in response 

to stress stimuli. The activation of signaling pathways 

regulate the subcellular distribution of RNA-binding 

proteins and mRNA decay. The hnRNP A1, a 

nucleocytoplasmic shuttling protein, is translocated into 

SGs depending on p38MAPK and Mnk1/2-involved 

phosphorylation [36]. Phosphorylation of hnRNP K at 

serine 284 and 353 by serum-induced Erk/MAPK 

activation results in enhanced cytoplasmic translocation of 

hnRNP K and suppressed mRNA translation [16]. Our data 

showed that clotrimazole treatment activates Erk/MAPK, 

but not p38MAPK. Inhibition of Erk/MAPK or p38MAPK 

affect the accumulation of hnRNP K into cytoplasmic foci 

upon treatment with clotrimazole. However, we cannot rule 

out the possibility that clotrimazole may stimulate other 

signaling pathways resulting in the accumulation of hnRNP 

K into RNA granules. 

 

Furthermore, our study found that cytoplasmic 

accumulation of hnRNP K is crucial for its role in 

metastasis by functional interference screening. Our data 

showed that forced expression of hnRNP K suppressed 

apoptosis that is induced in response to clotrimazole 

treatment, suggesting that hnRNP K plays an important role 

in stress-induced survival pathways. This observation is 

consistent with the previous report suggesting hnRNP K as a 

potential target to halt cancer progression. Although the 

specific role of hnRNP K sequestering to these foci is not 

clearly understood, it is possible that recruitment of hnRNP 

K to SGs may be of wider significance, considering it 

modulates gene expression and translation metabolism. 
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