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1.0 SUMMARY 

The focus of this work was to develop a Field Programmable Gate Array (FPGA) based memory 
controller to support shared memory access in a distributed and heterogeneous environment. The 
FPGA acts as an intermediate buffer between the accelerators and the shared memory. We used 
the internal memory of the FPGA to buffer data and reduce the memory access latency. We 
adopted Direct Memory Access (DMA) techniques and caching methods to optimize the memory 
accesses. This lightweight and re-configurable memory controller supports a common Flow 
Control Unit (FLIT) to communicate with different hardware.   

We investigated different types of FPGAs from various vendors to identify potential candidates. 
We considered the number of I/O banks, Dynamic Random-Access Memory (DRAM) 
technologies, support for Universal Serial Bus (USB), average power consumption, and FPGA on-
chip memory while selecting the FPGA. We also evaluated various DRAM technologies and 
DRAMs to identify possible candidates to use as shared memory. In evaluating the DRAMs to 
choose from, we mainly considered the support for different FPGA technologies, latency, 
bandwidth, and power consumption. 

We developed a performance model to verify that our overall system met the intended performance 
requirements. Finally, we developed our memory controller using Verilog Hardware Description 
Language and Xilinx tools. We simulated the design using Xilinx’s memory simulation 
environment to verify its correctness and performance.  
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2.0 INTRODUCTION 

Even with generational improvements in DRAM technology, memory access latency still remains 
the major bottleneck for application accelerators, primarily due to limitations in memory interface 
IPs which cannot fully account for variations in target applications, the algorithms used, and 
accelerator architectures. There have been several techniques proposed to overcome the access 
latency [1]. Caches [2] are very productive in this regard if the required data fits in the cache and 
the data have spatial and temporal locality [3]. The ongoing approach for solving long memory 
access delays is to use onboard Block Random-Access Memory (BRAM) in the FPGA as a data 
cache and facilitate data retrieval. An alternative solution is to look at multiple memory requests 
as bulk memory transfers [4]. These techniques contribute to reducing the overall latency while 
maintaining high sustained bandwidth.  

Accessing the shared memory of heterogeneous and distributed systems has become a challenge 
due to the following reasons. 

I. Modern workloads require low latency memory accesses. 
II. Prioritization of different workloads from different hardware 

III. Different hardware (E.g., CPU, GPU, ASICs) has different types of I/Os to communicate 
with external memory. 

IV.  High bandwidth is required to satisfy the compute power of each accelerator 

To satisfy the above conditions we want intermediate hardware with the following properties. 

a) Support multiple communication protocols. 
b) Many I/O banks that can run on a high frequency. 
c) Fast limited memory to support intermediate caching techniques 

Field Programmable Gate Array (FPGA) is an ideal solution that satisfies all the above properties. 
Here, we propose a multi-faceted approach that helps in obtaining low latency as well as high 
bandwidth. Our work also motivates to cumulate memory requests over time (i.e., forming a batch) 
and schedule them while exploring their locality in space before accessing the memory. The 
parallelism of FPGAs is leveraged to reorder the requests in a batch, faster and more efficiently. 
In the meantime, the memory controller also aims to fulfill the traditional memory hierarchy by 
introducing an inbuilt memory routing pipeline that serves to quickly service requests from the 
connected accelerators. Depending on the external memory configuration and data traffic to the 
FPGA, the memory controller can be modified to support batches of varying sizes. The 
programmability of our design allows the controller to be customized based on application 
requirements and performance objectives. It also facilitates the creation and modification of 
accelerator-specific control policies.  

We develop a unified reconfigurable memory controller template that can be shared among 
hardware accelerators. The memory controller can be configured depending on the FPGA 
platform, available resources, and functional requirements of the overall system.  
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Figure 1 summarizes the conceptual design of our work. In our work, a GOTS accelerator and 
Xavier work as accelerators with shared memory. The two accelerators are connected to the FPGA 
using a direct I/O connection and Ethernet, respectively. 

Figure 1. Conceptual design 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURE 

3.1 Functional Requirements 

The functional requirements are listed below. 

I. The FPGA should have enough input and output pins to support multiple communication
protocols (E.g., Ethernet, USB 3.1)

II. The memory system inside the FPGA should support the cache miss requests and DMA
requests that come from accelerators

III. A unified packet structure to communicate with different types of accelerators.
IV. The memory space divide into private and public memory spaces. All the accelerators

connect to the FPGA can access the public memory space. Meanwhile, private memory
spaces have unique owners, and other accelerators cannot access them.

V. Accelerators can access the memory or communicate with each other through the FPGA.
Therefore, FPGA should route the packets accordingly.

VI. FPGA should perform startup tests with memory and other connected devices and verify
they work properly.

The top-level FPGA design to satisfy the above requirements is shown in Figure 2. 

Figure 2. Top level model of FPGA design 

GOTS 
Accelerator 
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3.2 Device Selection 

3.2.1 Selection the FPGA. We chose the FPGAs shown in Table 1 for our analysis. Each of the 
FPGAs selected for analysis had a price less than $5050. Each of the FPGAs represented in this 
table has an I/O resources count in the 650 range. We referred to Digikey website to create Table 
1. 

According to third-party USB vendor, Corigine USB, the transceivers provided in the Xilinx 
FGPG Virtex series 6 (and below) are not fast enough to support USB 3.1, as implementation 
would typically require approximately 70K – 100K Look Up Tables (LUTs), depending on the 
function (host vs. device), and the number of endpoints. Table 1 shows a summary of the 
supportability of each FPGA series to USB 3.1 and DRAM technologies (refer to last 2 columns). 

Table 1. FPGAs Selected for Analysis 

FPGA I/O 
resource 
count 

Unit 
Price 

Logic 
Element 
count 

Total 
RAM 
(MB) 

Max 
clock 
freq. 
(MHz) 

DRAM 
tech. 
used 

USB 
3.1 
B/W 

Intel Arria V GX  
5AGXBB1D6F40C6G 

704 $917 300000 2.06 625 DDR3 5 Gbps 

Intel Arria V GX  
5AGXBB3D6F40C6G 

704 $1,170 362000 2.36 625 DDR3 5 Gbps 

Xilinx Kintex 
Ultrascale XCKU085-

1FLVB1760C 

676 $3,806 1088325 6.95 630 DDR4 10 
Gbps 

Xilinx Kintex 
Ultrascale XCKU095-

1FFVB1760C 

702 $5,027 1176000 7.21 630 DDR4 10 
Gbps 

Intel Arria 10 GX 
10AX057K4F40E3SG 

696 $2,425 570000 5.02 800 DDR4 10 
Gbps 

Xilinx Kintex 
Ultrascale 

XCKU060-
1FFVA1517C 

624 $2,652 726000 4.6 630 DDR4 10 
Gbps 

Dual In-line Memory Modules (DIMMs) with higher capacities (>= 32 GB) come in an x72 
configuration, which requires about 140 pins. Therefore, DIMM is not a desirable choice for a 
design with I/O pin constraints. 
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In the following, we consider 3 designs with different DRAM technologies and various single chip 
memory capacities as example implementations and evaluate their pin count (estimated) and 
performance metrics (bandwidth/latency). Here, Latency is dominated by address decoding and 
Row Address Strobe / Column Address Strobe (RAS/CAS) time. The device options that we 
found, cost less than $2000 and support more than 650 I/O resources, support DDR3 only (DDR4 
and Low-Power Double Data Rate options (LPDDR3 and LPDDR4) are not supported). Choosing 
different Double Data Rate (DDR) technologies can make a significant impact on the bandwidth 
and the maximum capacity of a single DRAM chip. The maximum data width and the maximum 
size of current available DDR3 chips are 16 bits and 2 GB (16 Gb), respectively. Meanwhile, 
DDR4 supports and 4 GB and 8 GB memory capacities (single chip).  

We consider three scenarios. In Scenario 1, we use Xilinx Virtex-6 LXT with DDR3 chips 
(IS43TR16K01S2A-125KBL). In Scenario 2, we use Xilinx Kintex UltraScale/ Intel Arria 10 
(Cost $3800/$2425) with DDR4 (Micron MT40A2G16SKL-062E: B). This analysis provides an 
insight into the trade-offs in using various DDR technologies. Further, Intel Arria 10 and Xilinx 
Ultra-scale FPGAs consist of a large BRAM count, which allows implementation of caches and 
pre-fetching techniques on the FPGA. Finally, in Scenario 3, we use Xilinx Kintex UltraScale with 
DDR4 (Micron MT40A16G4WPF-062H: B) for the analysis. The lead time of this DDR4 chip is 
not available online. But using this device, we can reduce the number of chips needed by half (8 
chips) comparing to Scenario 2. 

3.2.2 Scenario 1: Design 64 GB memory using 16 Gb (1 G x 16) DDR3 

 Selected chip: IS43TR16K01S2A-125KBL
 Technology: Synchronous Dynamic Random-Access Memory (SDRAM) – DDR3
 Capacity of a chip: 2 GB
 Data bus width: 16 x 2
 Required number of chips to implement the design: 32

Figure 3. Memory design using 32 x 2 GB DRAM chips 
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Total pin requirement calculation: 

Assuming memory address decoding is done externally, 

Total number of address pins  = 36 

Total number of data pins        = 32 

Other Pins (CKE, CSn, CK, CK#)          = 6 - 12 

Total required pins = 74 – 80 

 Optional Hardware pins (dqs_c, dqs_t, etc)  = 18 – 24 

3.2.3 Scenario 2: Design 64 GB memory using 32 Gb (2 G x 16) DDR4 chips 

 Selected chip: Micron MT40A2G16SKL-062E: B (Our suggestions, Lead time: 6 Weeks)
 Technology: SDRAM – DDR4
 Capacity of a chip: 4 GB
 Data bus width: 16 x 2
 Required number of chips to implement the design: 16

Figure 4. Memory design using 16 x 4 GB DRAM chips 
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Total pin requirement calculation: 

Assuming external memory address decoding, 

Total number of address pins  = 36 

Total number of data pins        = 32 

Other Pins (CKE, CSn, CK, CK#)    = 6 - 12 

Total required pins = 74 – 80 

Optional Hardware pins (dqs_c, dqs_t, etc)  = 18 – 24 

3.2.4 Scenario 3: Design 64 GB memory using 64 Gb (16 G x 4) DDR4 chips 

 Selected chip: Micron MT40A16G4WPF-062H: B (Lead time unknown)
 Technology: SDRAM – DDR4
 Capacity of a chip: 8 GB
 Data bus width: 4 x 8
 Required number of chips to implement the design: 8

Total pin requirement calculation: 

Total number of address pins  = 36 

Total number of data pins        = 32 

Other Pins (CKE, CSn, CK, CK#)    = 6 - 12 

Total required pins = 74 – 80 

Optional Hardware pins (dqs_c, dqs_t, etc)  = 18 – 24 

Figure 5. Memory design using 16 x 4 GB DRAM chips 
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3.2.5 FPGA power consumption. The actual FPGA power consumption will depend heavily on 
the resource utilization of the implemented design. However, Xilinx provides “Xilinx Power 
Estimator (XPE)” to accurately estimate worst-case power consumption.   

We chose Xilinx Kintex Ultrascale XCKU085-1F FPGA (One of the suggested FPGAs) for the 
analysis. Further, we made the following assumptions regarding the design. 

 Resource Utilization:  LUT - 82.4%, FF – 80.3%, BRAM – 83.3% and DSP – 62.5%
 Clock Frequency: 300 MHz
 Memory Controller: 32-bit LPDDR3 with 5.22 GB/s data rate
 The worst-case total power consumption of such a design is 8.5W.

Given the same resource utilization, the power consumption of recent FPGA devices such as Xilinx 
UltraScale is less than the older FPGAs. The main reason behind this is the latest advancements in 
Application-Specific Integrated Circuit (ASIC) design technology. Xilinx UltraScale FPGAs are 
made of 20 nm technology, while the rest of the proposed Xilinx FPGAs are made of 45 nm or 
older technology. 

The power consumption of 30W mentioned in the previous report was a generic value obtained 
from the User Guide of an FPGA Development Board and includes the power consumed by all 
board peripherals. The proposed board use case scenario is more accurately represented by the 
XPE evaluation described above. 

Considering the budget and the requirements we chose Xilinx Kintex Ultrascale (060/085) as the 
candidates for this work. 

3.2.6 Selecting DRAM. The observations on different DDR technologies are as follows: 

 For a given I/O data width, the package size of LPDDR3 chips is smaller than DDR4. In
our case, even though the data width of the selected LPDDR3 chip is 4 times greater than
the DDR4 chip, the size of the LPDDR3 and DDR4 packages are similar.

 The power consumption of LPDDR3 is less than DDR4 in Active State. Further, LPDDR3
consumes significantly less energy in Idle State. LPDDR3 also has new power-saving
strategies such as Deep power-down mode and Active power-down mode.

 The Latency values (Row Hit/Miss Latency, Row Conflict Latency, etc.) of LPDDR3 is
higher than the DDR4.

In this project we are focusing on DDR4 and LPDDR3 technologies. A comparison between these 
2 technologies is shown in Table 2. 
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Table 2. Comparison between DDR4 and LPDDR3 memory technologies 

Parameter DDR4
(MT40A2G16SKL-
062E: B) [5] 

LPDDR3 
(MT52L512M64D4GN-107 
WT: B) [6] 

Cycle Time (ns) 0.625 ns 1.071 ns 
Data Width of a chip 16-bits 64-bits
Operating Voltage (VDD) 1.2 V 1.2 V 
Packaging 10.5mm x 13 mm (96-ball 

FBGA) 
14 mm x 14 mm (256 FBGA) 

Operating Frequency 1.6 GHz 933 MHz 
Row Buffer size of single 
chip* 

256 bits 1024 bits 

Maximum Bandwidth 
(70% efficiency) 

4.48 GB/s 10.45 GB/s (64-bit I/O bus width) 
/ 8.96 GB/s (32-bit I/O bus 
width**) 

No. of Dies 2 (Twin Dies) 4 
Bank Configuration 
(No. of rows X No. Columns) 

128 Meg X 16 32 Meg X 32 

Total Number of Banks 16 32 
No. of Channels 1 2 
I/O (bits) 32 64 
Row hit/miss latency*^ (ns) 16.7 / 30.0 [7][8] 21.6 / 40.3 [7][8] 
Minimum row conflict 
latency# (ns) 

43.3 [7][8] 59.1 [7][8] 

Typical power consumption in 
active state [9][10][11] (mW) 

~ 323.8 ~ 229.46 

Typical power consumption in 
idle state [9][10][11] (mW) 

~ 85.5 ~ 11.35 

* Row Buffer Size per chip = Column width of a bank X # of banks

* FBGA (Fine-Pitch Ball Grid Array): A surface-mount IC packaging type

** We can implement a 32-bit bus between DDR Memory and the FPGA (even though the bit 
width of the chip is 64)  with extra Mux/Demux on the DDR side 

*^ Row hit latency: The time takes when the incoming read request data is in the active row buffer 

*^ Row miss latency: The time takes when the row buffer is closed (Chip is in Idle state), and read 
request comes to the chip 

#  Minimum row conflict latency: The time takes when the incoming read/write request data cannot 
be found in the active row buffer 
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3.2.7 Analysis of DDR4 and LPDDR3 chips. The LPDDR3 chips that we found with 32-bit data 
width is in Micron EDFB232A1MA-JD chip series. According to the Micron website, the lead 
time of the above chips is unknown, and they are under the “Contact Factory” production category. 
But using the Micron MT52L512M64D4GN-107 module (64-bit data width and lead time of 8 
weeks) with Muxer/Demuxer on the DDR side, we can implement a 32-bit bus between DDR 
Memory and the FPGA. 

3.2.8 Latency. Assume the FPGA is working in 300 MHz clock rate. According to Table 2,  

The minimum row conflict latency of LPDDR3 = 59.1 ns 

The minimum row conflict latency of DDR4     = 43.3 ns 

Estimated FPGA clock cycles for logics in memory controller without memory access time
= ~ 35 cycles (Included in previous reports) 

Number of FPGA clock cycles spent on a row conflict with LPDDR3 = (59.1 ns X 300 MHz)               
= ~ 18 cycles 

Number of FPGA clock cycles spent on a row conflict with DDR4 = (43.3 ns X 300 MHz)
= ~ 13 cycles 

3.2.9 Bandwidth. Assume that the FPGA logic runs in 300 MHz with a 32-bit memory interface. 
According to the literature, a typical FPGA Memory Controller works at 70% efficiency.  

Expected Memory Bandwidth = data width (bits) × data transfer rate (1/s) × efficiency 

Bandwidth using LPDDR3 (16 x 4GB – 32-bit wide data bus) = 2 × 32 bits × 933 MHz × 70%    = 
5.22 GB/s 

Bandwidth using DDR4 (16 x 4GB – 32-bit wide data bus) = 2 × 32 bits × 1.6 GHz MHz × 70% 
= 8.96 GB/s 

The bit width of a selected LPDDR3 chip is 64-bit. If we use 64-bit data I/O pins with LPDDR3, 
we can achieve a bandwidth of 10.45 GB/s. 

3.2.10 Power. Assume that a DRAM chip is in the Active state 80% of the time, and the rest of 
the time in Idle state. Further, all the chips have uniform access the entire time. 

Total power consumption = Active state power X Time period in Active state + Idle state power 
X Time period in Idle state 

Total power consumption while using 16 of LPDDR3 chips = 16 X (229.46 X 0.8 + 11.35 X 0.2) 
mW = 2.97 W 

Total power consumption while using 16 of DDR4 chips     = 16 X (323.8 X 0.8 + 85.5 X 0.2) mW 
= 4.4 W 
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Typical power consumption of an Ultra Scale FPGA          = 30 W 

3.2.11 DRAM Selection. Depending on the budget and device compatibility, we chose DDR4 
technology for our implementation. We found several So-DIMMS which are compatible with 
Xilinx Kintex devices (see Table 3). The internal structure of DDR4 SO-DIMMs are shown in 
figure 7. 

Figure 6. Power Consumption - LPDDR3 vs DDR4 Figure 6. Power Consumption - LPDDR3 



Approved for Public Release; Distribution Unlimited. 
13 

Table 3. DDR4 SO-DIMM choices 

Manufacturer Model Size 
Kingston HX429S17IB/32 32GB
Kingston HX426S16IB/32 32GB
Axiom APL2666SB32-AX 32GB
OWC OWC2666DDR4S64P 32GB
Crucial CT32G4SFD832A 32GB

3.3 Performance Modeling and Analysis 

In this section we compute maximum achievable bandwidths of the Small Outline Dual In-line 
Memory Module (SODIMM) and FPGA interface. We also consider the following example 
scenarios. 

Case 1:  16 KB DMA read transfers 

Case 2.1:  64B cache line restore (read) 

Case 2.2:  cache line store (write) 

The data paths are shown in Figure 8. 

Figure 7. Internal structure of selected DDR4 SO-DIMMs 
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Figure 8. Conceptual design of the FPGA memory controller 

3.3.1 Peak bandwidth of SODIMM (B1) 

Bandwidth impact factor due to SODIMM to Memory interface IP latency 

= SODIMM to Memory interface IP latency (per access) x FPGA frequency 

  = 25.6 ns x 0.2 GHz = 6 

Peak bandwidth between SODIMM and memory interface (B1) = (2400 Mb/s x 64)/6 = 3.2 GB/s 

3.3.2 Peak bandwidth of DRAM interface IP (B1) 

Peak bandwidth from memory interface to memory controller (B2)  

= min (DRAM interface width x FPGA clock rate, B1) 

= min (64B x 0.2 GHz, 3.2 GB/s) = 3.2 GB/s 

3.3.3. Example Scenarios 

Case 1: 16 KB DMA read transfer  

Memory controller design supports up to 16 KB DMA transfers. Therefore, we select 16 KB 
(maximum transfer size of DMA) to analyze DMA transfers. We assume the cache line pipeline is 
empty in case 1. 

Time taken from the input interface to the DMA (from 1 to 2) = 4 cycles     // see Figure 9 

Time taken from DMA to memory (from 2 to 3) = 3 cycles 
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Time taken to access the DRAM memory 

= first access latency + (no. subsequent accesses) x subsequent access latency               

= 8 + 6 x (16K/64 -1) = 1538 cycles 

Time taken to store all 16 KB requests from memory on DMA (from 3 to 4 and back to 2)  

= 1538 + 4 = 1542 cycles 

Time taken from DMA to output interface (from 2 to 5) = 3 + 16K/64 -1= 258 cycles 

Total access time = 4 + 3 + 1542 + 258 = 1807 cycles 

Effective bandwidth to read 16 KB (B3) = min (memory controller to Int-core output width x 
operating frequency, (total data)/ (no. cycles))  

= min (64B x 0.2 GHz, (16KB/1807) x 0.2 GHz) = 1.81 GB/s 

Case 2.1: 64B cache line restore (read) – best case 

It also supports cache line transfers, with each FLIT having a 64 B payload. So, we select 64 B to 
analyze cache line transfers. We assume that there are no queue delays due to other requests, and 
the DMA pipeline is empty in case 2.1 and case 2.2. 

Time taken from input interface to the memory = 5 cycles 

Time taken from memory to input interface (return path) = 7 cycles 

Time taken to access the DRAM memory = 8 cycles 

Total round-trip time taken by a cache line read request to return the data from memory to input 
interface (no queue delays due to other requests) = 5 + 7 + 8 = 20 cycles 

Case 2.2: 64B cache line store (write) – best case  

Time taken from input interface to the memory = 5 cycles 

Time taken to access the DRAM memory = 8 cycles 

Total time taken by a cache line write request from input interface to memory (no queue delays 
due to other requests) = 5 + 8 = 13 cycles 
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3.4 Implementation 

Figure 9. Overview of the memory controller 

As the figure suggests, there are 2 main components that reside in the Memory Controller V0.5. 
They are, 

1. Memory Routing Pipeline (MRP)
2. DMA

When a new FLIT reaches the Command Decoder, depending on the type of message, it is routed 
to either MRP or DMA. If a FLIT belongs to the DMA type, it is forwarded to the DMA; otherwise, 
the FLIT is forwarded to the MRP. 

FLITs routed to the MRP are assumed to have highest priority; FLITs that reach the DMA will be 
processed less urgently. Therefore, DMA transactions occur whenever the Memory Path Selection 
module is idle. However, the DMA module has an internal timer. Whenever a DMA transaction 
cannot be completed within the time limit, the DMA transaction becomes the highest priority, 
stalling the MRP path. The timer length is dependent on the expected maximum latency for a DMA 
transaction. 

3.4.1 DMA Engine. The DMA engine processes bulk transfers coming from the accelerators. A 
DMA engine can have several DMA buffers inside. Therefore, it can support several bulk transfer 
requests in parallel. The number of DMA buffers is a reconfigurable parameter. A DMA request 
can contain one or more FLITs. When the first FLIT of a bulk transfer reaches the DMA engine, 
it passes onto one of the DMA buffer controllers. The corresponding DMA controller updates its 
status registers to occupy and shares the PE ID of origin with the DMA Request Mapper. When 
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another FLIT with the same ID comes to the memory controller, it routes to the same DMA buffer. 
DMA buffer controllers wait until all the FLITs of the bulk transfer are available before starting 
the external memory access. Figure 10 shows the overall architecture of the DMA engine. 

The main advantages of having a DMA engine are:  

a) DMA requests can request more than one element at once, unlike the memory routing
pipeline, and reduce the input traffic of the memory controller.

b) Using a DMA engine to access data with less spatial or temporal locality prevents cache
pollution.

c) DMA transfers can utilize the memory bandwidth better for bulk transfers.

Figure 10. Overall architecture of DMA engine 

3.4.1 Memory Routing Pipeline. We implemented the Memory Routing Pipeline of the proposed 
memory controller using Verilog Hardware Description Language. As shown in Figure 11, the 
initial layout consists of an instruction decoder, a data forwarding unit, a simple first-in-first-out 
memory scheduler, and a DDR4 memory interface. 



Approved for Public Release; Distribution Unlimited. 
18 

Figure 11. Memory Routing Pipeline 

3.4.1 Memory signal interface. The memory signal interface IP handles communication between 
FPGA and DRAM Controller Circuitry while receiving memory read and write requests from the 
internal logic (memory routing pipeline). The Xilinx IP catalogue contains a memory signal 
interface IP for LPDDR3 SDRAMs. The basic IP is freely available to the University of Southern 
California (USC) team through the Xilinx academic program. It has a low I/O pin count, thereby 
satisfying memory signalling requirements. Figure 12 shows the complete signalling interface. 

 The signal interface IP consists of three main components.  

1. User Interface Block - Communicates with the FPGA internal logic while using FIFO
interfaces for input data, output data, and address.

2. DRAM State Handler - Generates low-level SDRAM signals such as pre-charge, row
open, row close, refresh, read request, write request, etc. We can eliminate external
DRAM Controller Circuitry because the DRAM State Handler within the IP generates
all the low-level signals to control the DRAM chips.

3. Physical Layer - Connects with the physical layer of SDRAMs. The I/O pins required
to interact with SDRAMs are shown in Figure 12. 120 FPGA I/O pins are required to
support a total of 32 GB memory with a 64-bit data bus.
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Figure 12. Xilinx UltraScale Architecture-Based FPGA Memory Signal Interface Core 
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4.0 RESULTS AND DISCUSSION  

4.1 Results 

We used Xilinx default DDR4 simulation environment to simulate our design with an external 
DDR4 chip. The Xilinx default simulation environment provides 8 GB DDR4 chip 
(MTA8ATF1G64HZ-2G3) with an operating frequency of 1.60 GHz. We simulated our FPGA 
design while maintaining a FPGA clock frequency of 200 MHz. Table 4 shows a summary of 
resource utilization. The total power consumption of the design is around 2.2 W. A detailed 
analysis of power consumption is shown in Figure 13. Further, performance values of the design 
in simulation are shown in the Table 5 as well. 
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Table 4. Resource utilization of memory controller 

Resource Consumption

LUTs 4%

Registers 6%

BRAM 10%

Figure 13. Power consumption 



Approved for Public Release; Distribution Unlimited. 
22 

Table 5. Performance of the memory controller 

4.2 Deliverables 

We delivered a completed Verilog code the memory controller. It consists of the Memory Routing 
Pipeline and DMA Engine as described in section 3.4. It supports the FLIT structure designed by 
the Air Force Research Laboratory (AFRL) / Computing & Communications Division (RIT). 

Maximum bandwidth achieved 3.0 GB/s 

Maximum Clock Frequency 200 MHz 

Average time to process read request Worst: 72 Cycles 
Best: 26 Cycles 

Average time to process write request Worst: 54 Cycles 
Best: 8 Cycles 
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5.0 CONCLUSION 

In this work, we developed a multifaceted FPGA-based memory controller with shared memory. 
The main memory is shared with multiple accelerators connected to the FPGA. Since the design 
is lightweight, the FPGA can be shared with computation tasks as well. The memory controller 
can be configured depending on the FPGA platform, available resources, and functional 
requirements of the overall system. 
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7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

Acronym/Abbreviation Meaning
ASIC Application-Specific Integrated Circuit 
AFRL Air Force Research Laboratory 
BRAM Block Random-Access Memory 
CK Clock
CKE Clock Enable
CPU Central Processing Unit 
CSn Chip Select – n referring to the chip # 
DDR Double Data Rate 
DDR# Double Data Rate # 
DIMM Dual In-line Memory Module 
DMA Direct Memory Access 
DRAM Dynamic Random-Access Memory 
FBGA Fine-Pitch Ball Grid Array 
FIFO First In First Out 
FLIT Flow Control Unit 
FPGA Field Programmable Gate Array 
GB Gigabyte
GOTS Government Off-The-Shelf
GPU Graphics Processing Unit 
I/O Input/Output
IP Internet Protocol
KB Kilobyte
LPDDR# Low-Power Double Data Rate # 
LUT Look Up Table 
MRP Memory Routing Pipeline 
RAM Random-Access Memory
RAS/CAS Row Address Strobe / Column Address Strobe 
SDRAM Synchronous Dynamic Random-Access Memory 
SODIMM Small Outline Dual In-line Memory Module 
USB Universal Serial Bus 
USC University of Southern California 
XPE Xilinx Power Estimator 




