
SMASH- SOFTWARE DEFINED MEMORY FOR OPTIMIZING
APPLICATIONS ON ADVANCED ARCHITECTURES

UNIVERSITY OF SOUTHERN CALIFORNIA

MARCH 2022

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2022-041

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2022-041 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
BARBARA A. FILMER
Work Unit Manager

GREGORY J. HADYNSKI
Assistant Technical Advisor
Computing and Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE

1. REPORT DATE

MARCH 2022

2. REPORT TYPE

FINAL TECHNICAL REPORT

3. DATES COVERED

START DATE

SEPTEMBER 2018

END DATE

SEPTEMBER 2021
4. TITLE AND SUBTITLE

SMASH- SOFTWARE DEFINED MEMORY FOR OPTIMIZING APPLICATIONS ON ADVANCED ARCHITECTURES

5a. CONTRACT NUMBER

FA8750-18-2-0034
5b. GRANT NUMBER

N/A

5c. PROGRAM ELEMENT NUMBER

63662D

5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER

R2L4
6. AUTHOR(S)

Viktor Prasanna and Rajgopal Kannan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Southern California, Dept. of Contracts and Grants
3720 S Flower Street, Third Floor
Los Angeles CA 90007

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S
ACRONYM(S)

11. SPONSOR/MONITOR'S
REPORT NUMBER(S)

AFRL-RI-RS-TR-2022-041

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 The focus of this work was to develop a Field Programmable Gate Array (FPGA) based memory controller to support shared
memory access in a distributed and heterogeneous environment. The FPGA acts as an intermediate buffer between the
accelerators and the shared memory. We used the internal memory of the FPGA to buffer data and reduce the memory
access latency. We adopted Direct Memory Access (DMA) techniques and caching methods to optimize the memory
accesses. This lightweight and reconfigurable memory controller supports a common Flow Control Unit (FLIT) to
communicate with different hardware. We investigated different types of FPGAs from various vendors to identify potential
candidates. We considered the number of I/O banks, Dynamic Random-Access Memory (DRAM) technologies, support for
Universal Serial Bus (USB), average power consumption, and FPGA on-chip memory while selecting the FPGA. We also
evaluated various DRAM technologies and DRAMs to identify possible candidates to use as shared memory. In evaluating the
DRAMs to choose from, we mainly considered the support for different FPGA technologies, latency, bandwidth, and power
consumption. We developed a performance model to verify that our overall system meets the intended performance
requirements. Finally, we developed our memory controller using Verilog Hardware Description Language and Xilinx tools.
We simulated the design using Xilinx’s memory simulation environment to verify its correctness and performance.

15. SUBJECT TERMS

Software Defined Memory, Field Programmable Gate Array (FPGA), Direct Memory Access (DMA), Signal Processing
Accelerators, Flow Control Unit (FLIT), Dynamic Random-Access Memory (DRAM)
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

SAR

18. NUMBER OF PAGES

a. REPORT

U
b. ABSTRACT

U
C. THIS PAGE

U
19a. NAME OF RESPONSIBLE PERSON

BARBARA A. FILMER
19b. PHONE NUMBER (Include area code)

NA
Page 1 of 2 PREVIOUS EDITION IS OBSOLETE. STANDARD FORM 298 (REV. 5/2020)

 Prescribed by ANSI Std. Z39.18

31

RI

i

TABLE OF CONTENTS

Section Page

LIST OF FIGURES .. ii

LIST OF TABLES ... iii

1.0 SUMMARY ... 1

2.0 INTRODUCTION ... 2

3.0 METHODS, ASSUMPTIONS, AND PROCEDURE ... 4

3.1 Functional Requirements ... 4

3.2 Device Selection .. 5

3.3 Performance Modeling and Analysis .. 13

3.4 Implementation .. 16

4.0 RESULTS AND DISCUSSION .. 20

4.1 Results ... 20

4.2 Deliverables ... 22

5.0 CONCLUSION .. 23

6.0 REFERENCES .. 24

7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 25

ii

 LIST OF FIGURES

Figure Page

Figure 1. Conceptual design ... 3
Figure 2. Top level model of FPGA design .. 4
Figure 3. Memory design using 32 x 2 GB DRAM chips .. 6
Figure 4. Memory design using 16 x 4 GB DRAM chips .. 7
Figure 5. Memory design using 16 x 4 GB DRAM chips .. 8
Figure 6. Power Consumption - LPDDR3 .. 12
Figure 7. Internal structure of selected DDR4 SO-DIMMs .. 13
Figure 8. Conceptual design of the FPGA memory controller ... 14
Figure 9. Overview of the memory controller .. 16
Figure 10. Overall architecture of DMA engine ... 17
Figure 11. Memory Routing Pipeline ... 18
Figure 12. Xilinx UltraScale Architecture-Based FPGA Memory Signal Interface Core 19
Figure 13. Power consumption ... 21

iii

LIST OF TABLES

Table Page

Table 1. FPGAs Selected for Analysis ... 5
Table 2. Comparison between DDR4 and LPDDR3 memory technologies 10
Table 3. DDR4 SO-DIMM choices .. 13
Table 4. Resource utilization of memory controller ... 21
Table 5. Performance of the memory controller ... 22

Approved for Public Release; Distribution Unlimited.
1

1.0 SUMMARY

The focus of this work was to develop a Field Programmable Gate Array (FPGA) based memory
controller to support shared memory access in a distributed and heterogeneous environment. The
FPGA acts as an intermediate buffer between the accelerators and the shared memory. We used
the internal memory of the FPGA to buffer data and reduce the memory access latency. We
adopted Direct Memory Access (DMA) techniques and caching methods to optimize the memory
accesses. This lightweight and re-configurable memory controller supports a common Flow
Control Unit (FLIT) to communicate with different hardware.

We investigated different types of FPGAs from various vendors to identify potential candidates.
We considered the number of I/O banks, Dynamic Random-Access Memory (DRAM)
technologies, support for Universal Serial Bus (USB), average power consumption, and FPGA on-
chip memory while selecting the FPGA. We also evaluated various DRAM technologies and
DRAMs to identify possible candidates to use as shared memory. In evaluating the DRAMs to
choose from, we mainly considered the support for different FPGA technologies, latency,
bandwidth, and power consumption.

We developed a performance model to verify that our overall system met the intended performance
requirements. Finally, we developed our memory controller using Verilog Hardware Description
Language and Xilinx tools. We simulated the design using Xilinx’s memory simulation
environment to verify its correctness and performance.

Approved for Public Release; Distribution Unlimited.
2

2.0 INTRODUCTION

Even with generational improvements in DRAM technology, memory access latency still remains
the major bottleneck for application accelerators, primarily due to limitations in memory interface
IPs which cannot fully account for variations in target applications, the algorithms used, and
accelerator architectures. There have been several techniques proposed to overcome the access
latency [1]. Caches [2] are very productive in this regard if the required data fits in the cache and
the data have spatial and temporal locality [3]. The ongoing approach for solving long memory
access delays is to use onboard Block Random-Access Memory (BRAM) in the FPGA as a data
cache and facilitate data retrieval. An alternative solution is to look at multiple memory requests
as bulk memory transfers [4]. These techniques contribute to reducing the overall latency while
maintaining high sustained bandwidth.

Accessing the shared memory of heterogeneous and distributed systems has become a challenge
due to the following reasons.

I. Modern workloads require low latency memory accesses.
II. Prioritization of different workloads from different hardware

III. Different hardware (E.g., CPU, GPU, ASICs) has different types of I/Os to communicate
with external memory.

IV. High bandwidth is required to satisfy the compute power of each accelerator

To satisfy the above conditions we want intermediate hardware with the following properties.

a) Support multiple communication protocols.
b) Many I/O banks that can run on a high frequency.
c) Fast limited memory to support intermediate caching techniques

Field Programmable Gate Array (FPGA) is an ideal solution that satisfies all the above properties.
Here, we propose a multi-faceted approach that helps in obtaining low latency as well as high
bandwidth. Our work also motivates to cumulate memory requests over time (i.e., forming a batch)
and schedule them while exploring their locality in space before accessing the memory. The
parallelism of FPGAs is leveraged to reorder the requests in a batch, faster and more efficiently.
In the meantime, the memory controller also aims to fulfill the traditional memory hierarchy by
introducing an inbuilt memory routing pipeline that serves to quickly service requests from the
connected accelerators. Depending on the external memory configuration and data traffic to the
FPGA, the memory controller can be modified to support batches of varying sizes. The
programmability of our design allows the controller to be customized based on application
requirements and performance objectives. It also facilitates the creation and modification of
accelerator-specific control policies.

We develop a unified reconfigurable memory controller template that can be shared among
hardware accelerators. The memory controller can be configured depending on the FPGA
platform, available resources, and functional requirements of the overall system.

Approved for Public Release; Distribution Unlimited.
3

Figure 1 summarizes the conceptual design of our work. In our work, a GOTS accelerator and
Xavier work as accelerators with shared memory. The two accelerators are connected to the FPGA
using a direct I/O connection and Ethernet, respectively.

Figure 1. Conceptual design

Approved for Public Release; Distribution Unlimited.
4

3.0 METHODS, ASSUMPTIONS, AND PROCEDURE

3.1 Functional Requirements

The functional requirements are listed below.

I. The FPGA should have enough input and output pins to support multiple communication
protocols (E.g., Ethernet, USB 3.1)

II. The memory system inside the FPGA should support the cache miss requests and DMA
requests that come from accelerators

III. A unified packet structure to communicate with different types of accelerators.
IV. The memory space divide into private and public memory spaces. All the accelerators

connect to the FPGA can access the public memory space. Meanwhile, private memory
spaces have unique owners, and other accelerators cannot access them.

V. Accelerators can access the memory or communicate with each other through the FPGA.
Therefore, FPGA should route the packets accordingly.

VI. FPGA should perform startup tests with memory and other connected devices and verify
they work properly.

The top-level FPGA design to satisfy the above requirements is shown in Figure 2.

Figure 2. Top level model of FPGA design

GOTS
Accelerator

Approved for Public Release; Distribution Unlimited.
5

3.2 Device Selection

3.2.1 Selection the FPGA. We chose the FPGAs shown in Table 1 for our analysis. Each of the
FPGAs selected for analysis had a price less than $5050. Each of the FPGAs represented in this
table has an I/O resources count in the 650 range. We referred to Digikey website to create Table
1.

According to third-party USB vendor, Corigine USB, the transceivers provided in the Xilinx
FGPG Virtex series 6 (and below) are not fast enough to support USB 3.1, as implementation
would typically require approximately 70K – 100K Look Up Tables (LUTs), depending on the
function (host vs. device), and the number of endpoints. Table 1 shows a summary of the
supportability of each FPGA series to USB 3.1 and DRAM technologies (refer to last 2 columns).

Table 1. FPGAs Selected for Analysis

FPGA I/O
resource
count

Unit
Price

Logic
Element
count

Total
RAM
(MB)

Max
clock
freq.
(MHz)

DRAM
tech.
used

USB
3.1
B/W

Intel Arria V GX
5AGXBB1D6F40C6G

704 $917 300000 2.06 625 DDR3 5 Gbps

Intel Arria V GX
5AGXBB3D6F40C6G

704 $1,170 362000 2.36 625 DDR3 5 Gbps

Xilinx Kintex
Ultrascale XCKU085-

1FLVB1760C

676 $3,806 1088325 6.95 630 DDR4 10
Gbps

Xilinx Kintex
Ultrascale XCKU095-

1FFVB1760C

702 $5,027 1176000 7.21 630 DDR4 10
Gbps

Intel Arria 10 GX
10AX057K4F40E3SG

696 $2,425 570000 5.02 800 DDR4 10
Gbps

Xilinx Kintex
Ultrascale

XCKU060-
1FFVA1517C

624 $2,652 726000 4.6 630 DDR4 10
Gbps

Dual In-line Memory Modules (DIMMs) with higher capacities (>= 32 GB) come in an x72
configuration, which requires about 140 pins. Therefore, DIMM is not a desirable choice for a
design with I/O pin constraints.

Approved for Public Release; Distribution Unlimited.
6

In the following, we consider 3 designs with different DRAM technologies and various single chip
memory capacities as example implementations and evaluate their pin count (estimated) and
performance metrics (bandwidth/latency). Here, Latency is dominated by address decoding and
Row Address Strobe / Column Address Strobe (RAS/CAS) time. The device options that we
found, cost less than $2000 and support more than 650 I/O resources, support DDR3 only (DDR4
and Low-Power Double Data Rate options (LPDDR3 and LPDDR4) are not supported). Choosing
different Double Data Rate (DDR) technologies can make a significant impact on the bandwidth
and the maximum capacity of a single DRAM chip. The maximum data width and the maximum
size of current available DDR3 chips are 16 bits and 2 GB (16 Gb), respectively. Meanwhile,
DDR4 supports and 4 GB and 8 GB memory capacities (single chip).

We consider three scenarios. In Scenario 1, we use Xilinx Virtex-6 LXT with DDR3 chips
(IS43TR16K01S2A-125KBL). In Scenario 2, we use Xilinx Kintex UltraScale/ Intel Arria 10
(Cost $3800/$2425) with DDR4 (Micron MT40A2G16SKL-062E: B). This analysis provides an
insight into the trade-offs in using various DDR technologies. Further, Intel Arria 10 and Xilinx
Ultra-scale FPGAs consist of a large BRAM count, which allows implementation of caches and
pre-fetching techniques on the FPGA. Finally, in Scenario 3, we use Xilinx Kintex UltraScale with
DDR4 (Micron MT40A16G4WPF-062H: B) for the analysis. The lead time of this DDR4 chip is
not available online. But using this device, we can reduce the number of chips needed by half (8
chips) comparing to Scenario 2.

3.2.2 Scenario 1: Design 64 GB memory using 16 Gb (1 G x 16) DDR3

 Selected chip: IS43TR16K01S2A-125KBL
 Technology: Synchronous Dynamic Random-Access Memory (SDRAM) – DDR3
 Capacity of a chip: 2 GB
 Data bus width: 16 x 2
 Required number of chips to implement the design: 32

Figure 3. Memory design using 32 x 2 GB DRAM chips

Approved for Public Release; Distribution Unlimited.
7

Total pin requirement calculation:

Assuming memory address decoding is done externally,

Total number of address pins = 36

Total number of data pins = 32

Other Pins (CKE, CSn, CK, CK#) = 6 - 12

Total required pins = 74 – 80

 Optional Hardware pins (dqs_c, dqs_t, etc) = 18 – 24

3.2.3 Scenario 2: Design 64 GB memory using 32 Gb (2 G x 16) DDR4 chips

 Selected chip: Micron MT40A2G16SKL-062E: B (Our suggestions, Lead time: 6 Weeks)
 Technology: SDRAM – DDR4
 Capacity of a chip: 4 GB
 Data bus width: 16 x 2
 Required number of chips to implement the design: 16

Figure 4. Memory design using 16 x 4 GB DRAM chips

Approved for Public Release; Distribution Unlimited.
8

Total pin requirement calculation:

Assuming external memory address decoding,

Total number of address pins = 36

Total number of data pins = 32

Other Pins (CKE, CSn, CK, CK#) = 6 - 12

Total required pins = 74 – 80

Optional Hardware pins (dqs_c, dqs_t, etc) = 18 – 24

3.2.4 Scenario 3: Design 64 GB memory using 64 Gb (16 G x 4) DDR4 chips

 Selected chip: Micron MT40A16G4WPF-062H: B (Lead time unknown)
 Technology: SDRAM – DDR4
 Capacity of a chip: 8 GB
 Data bus width: 4 x 8
 Required number of chips to implement the design: 8

Total pin requirement calculation:

Total number of address pins = 36

Total number of data pins = 32

Other Pins (CKE, CSn, CK, CK#) = 6 - 12

Total required pins = 74 – 80

Optional Hardware pins (dqs_c, dqs_t, etc) = 18 – 24

Figure 5. Memory design using 16 x 4 GB DRAM chips

Approved for Public Release; Distribution Unlimited.
9

3.2.5 FPGA power consumption. The actual FPGA power consumption will depend heavily on
the resource utilization of the implemented design. However, Xilinx provides “Xilinx Power
Estimator (XPE)” to accurately estimate worst-case power consumption.

We chose Xilinx Kintex Ultrascale XCKU085-1F FPGA (One of the suggested FPGAs) for the
analysis. Further, we made the following assumptions regarding the design.

 Resource Utilization: LUT - 82.4%, FF – 80.3%, BRAM – 83.3% and DSP – 62.5%
 Clock Frequency: 300 MHz
 Memory Controller: 32-bit LPDDR3 with 5.22 GB/s data rate
 The worst-case total power consumption of such a design is 8.5W.

Given the same resource utilization, the power consumption of recent FPGA devices such as Xilinx
UltraScale is less than the older FPGAs. The main reason behind this is the latest advancements in
Application-Specific Integrated Circuit (ASIC) design technology. Xilinx UltraScale FPGAs are
made of 20 nm technology, while the rest of the proposed Xilinx FPGAs are made of 45 nm or
older technology.

The power consumption of 30W mentioned in the previous report was a generic value obtained
from the User Guide of an FPGA Development Board and includes the power consumed by all
board peripherals. The proposed board use case scenario is more accurately represented by the
XPE evaluation described above.

Considering the budget and the requirements we chose Xilinx Kintex Ultrascale (060/085) as the
candidates for this work.

3.2.6 Selecting DRAM. The observations on different DDR technologies are as follows:

 For a given I/O data width, the package size of LPDDR3 chips is smaller than DDR4. In
our case, even though the data width of the selected LPDDR3 chip is 4 times greater than
the DDR4 chip, the size of the LPDDR3 and DDR4 packages are similar.

 The power consumption of LPDDR3 is less than DDR4 in Active State. Further, LPDDR3
consumes significantly less energy in Idle State. LPDDR3 also has new power-saving
strategies such as Deep power-down mode and Active power-down mode.

 The Latency values (Row Hit/Miss Latency, Row Conflict Latency, etc.) of LPDDR3 is
higher than the DDR4.

In this project we are focusing on DDR4 and LPDDR3 technologies. A comparison between these
2 technologies is shown in Table 2.

Approved for Public Release; Distribution Unlimited.
10

Table 2. Comparison between DDR4 and LPDDR3 memory technologies

Parameter DDR4
(MT40A2G16SKL-
062E: B) [5]

LPDDR3
(MT52L512M64D4GN-107
WT: B) [6]

Cycle Time (ns) 0.625 ns 1.071 ns
Data Width of a chip 16-bits 64-bits
Operating Voltage (VDD) 1.2 V 1.2 V
Packaging 10.5mm x 13 mm (96-ball

FBGA)
14 mm x 14 mm (256 FBGA)

Operating Frequency 1.6 GHz 933 MHz
Row Buffer size of single
chip*

256 bits 1024 bits

Maximum Bandwidth
(70% efficiency)

4.48 GB/s 10.45 GB/s (64-bit I/O bus width)
/ 8.96 GB/s (32-bit I/O bus
width**)

No. of Dies 2 (Twin Dies) 4
Bank Configuration
(No. of rows X No. Columns)

128 Meg X 16 32 Meg X 32

Total Number of Banks 16 32
No. of Channels 1 2
I/O (bits) 32 64
Row hit/miss latency*^ (ns) 16.7 / 30.0 [7][8] 21.6 / 40.3 [7][8]
Minimum row conflict
latency# (ns)

43.3 [7][8] 59.1 [7][8]

Typical power consumption in
active state [9][10][11] (mW)

~ 323.8 ~ 229.46

Typical power consumption in
idle state [9][10][11] (mW)

~ 85.5 ~ 11.35

* Row Buffer Size per chip = Column width of a bank X # of banks

* FBGA (Fine-Pitch Ball Grid Array): A surface-mount IC packaging type

** We can implement a 32-bit bus between DDR Memory and the FPGA (even though the bit
width of the chip is 64) with extra Mux/Demux on the DDR side

*^ Row hit latency: The time takes when the incoming read request data is in the active row buffer

*^ Row miss latency: The time takes when the row buffer is closed (Chip is in Idle state), and read
request comes to the chip

Minimum row conflict latency: The time takes when the incoming read/write request data cannot
be found in the active row buffer

Approved for Public Release; Distribution Unlimited.
11

3.2.7 Analysis of DDR4 and LPDDR3 chips. The LPDDR3 chips that we found with 32-bit data
width is in Micron EDFB232A1MA-JD chip series. According to the Micron website, the lead
time of the above chips is unknown, and they are under the “Contact Factory” production category.
But using the Micron MT52L512M64D4GN-107 module (64-bit data width and lead time of 8
weeks) with Muxer/Demuxer on the DDR side, we can implement a 32-bit bus between DDR
Memory and the FPGA.

3.2.8 Latency. Assume the FPGA is working in 300 MHz clock rate. According to Table 2,

The minimum row conflict latency of LPDDR3 = 59.1 ns

The minimum row conflict latency of DDR4 = 43.3 ns

Estimated FPGA clock cycles for logics in memory controller without memory access time
= ~ 35 cycles (Included in previous reports)

Number of FPGA clock cycles spent on a row conflict with LPDDR3 = (59.1 ns X 300 MHz)
= ~ 18 cycles

Number of FPGA clock cycles spent on a row conflict with DDR4 = (43.3 ns X 300 MHz)
= ~ 13 cycles

3.2.9 Bandwidth. Assume that the FPGA logic runs in 300 MHz with a 32-bit memory interface.
According to the literature, a typical FPGA Memory Controller works at 70% efficiency.

Expected Memory Bandwidth = data width (bits) × data transfer rate (1/s) × efficiency

Bandwidth using LPDDR3 (16 x 4GB – 32-bit wide data bus) = 2 × 32 bits × 933 MHz × 70% =
5.22 GB/s

Bandwidth using DDR4 (16 x 4GB – 32-bit wide data bus) = 2 × 32 bits × 1.6 GHz MHz × 70%
= 8.96 GB/s

The bit width of a selected LPDDR3 chip is 64-bit. If we use 64-bit data I/O pins with LPDDR3,
we can achieve a bandwidth of 10.45 GB/s.

3.2.10 Power. Assume that a DRAM chip is in the Active state 80% of the time, and the rest of
the time in Idle state. Further, all the chips have uniform access the entire time.

Total power consumption = Active state power X Time period in Active state + Idle state power
X Time period in Idle state

Total power consumption while using 16 of LPDDR3 chips = 16 X (229.46 X 0.8 + 11.35 X 0.2)
mW = 2.97 W

Total power consumption while using 16 of DDR4 chips = 16 X (323.8 X 0.8 + 85.5 X 0.2) mW
= 4.4 W

Approved for Public Release; Distribution Unlimited.
12

Typical power consumption of an Ultra Scale FPGA = 30 W

3.2.11 DRAM Selection. Depending on the budget and device compatibility, we chose DDR4
technology for our implementation. We found several So-DIMMS which are compatible with
Xilinx Kintex devices (see Table 3). The internal structure of DDR4 SO-DIMMs are shown in
figure 7.

Figure 6. Power Consumption - LPDDR3 vs DDR4 Figure 6. Power Consumption - LPDDR3

Approved for Public Release; Distribution Unlimited.
13

Table 3. DDR4 SO-DIMM choices

Manufacturer Model Size
Kingston HX429S17IB/32 32GB
Kingston HX426S16IB/32 32GB
Axiom APL2666SB32-AX 32GB
OWC OWC2666DDR4S64P 32GB
Crucial CT32G4SFD832A 32GB

3.3 Performance Modeling and Analysis

In this section we compute maximum achievable bandwidths of the Small Outline Dual In-line
Memory Module (SODIMM) and FPGA interface. We also consider the following example
scenarios.

Case 1: 16 KB DMA read transfers

Case 2.1: 64B cache line restore (read)

Case 2.2: cache line store (write)

The data paths are shown in Figure 8.

Figure 7. Internal structure of selected DDR4 SO-DIMMs

Approved for Public Release; Distribution Unlimited.
14

Figure 8. Conceptual design of the FPGA memory controller

3.3.1 Peak bandwidth of SODIMM (B1)

Bandwidth impact factor due to SODIMM to Memory interface IP latency

= SODIMM to Memory interface IP latency (per access) x FPGA frequency

 = 25.6 ns x 0.2 GHz = 6

Peak bandwidth between SODIMM and memory interface (B1) = (2400 Mb/s x 64)/6 = 3.2 GB/s

3.3.2 Peak bandwidth of DRAM interface IP (B1)

Peak bandwidth from memory interface to memory controller (B2)

= min (DRAM interface width x FPGA clock rate, B1)

= min (64B x 0.2 GHz, 3.2 GB/s) = 3.2 GB/s

3.3.3. Example Scenarios

Case 1: 16 KB DMA read transfer

Memory controller design supports up to 16 KB DMA transfers. Therefore, we select 16 KB
(maximum transfer size of DMA) to analyze DMA transfers. We assume the cache line pipeline is
empty in case 1.

Time taken from the input interface to the DMA (from 1 to 2) = 4 cycles // see Figure 9

Time taken from DMA to memory (from 2 to 3) = 3 cycles

Approved for Public Release; Distribution Unlimited.
15

Time taken to access the DRAM memory

= first access latency + (no. subsequent accesses) x subsequent access latency

= 8 + 6 x (16K/64 -1) = 1538 cycles

Time taken to store all 16 KB requests from memory on DMA (from 3 to 4 and back to 2)

= 1538 + 4 = 1542 cycles

Time taken from DMA to output interface (from 2 to 5) = 3 + 16K/64 -1= 258 cycles

Total access time = 4 + 3 + 1542 + 258 = 1807 cycles

Effective bandwidth to read 16 KB (B3) = min (memory controller to Int-core output width x
operating frequency, (total data)/ (no. cycles))

= min (64B x 0.2 GHz, (16KB/1807) x 0.2 GHz) = 1.81 GB/s

Case 2.1: 64B cache line restore (read) – best case

It also supports cache line transfers, with each FLIT having a 64 B payload. So, we select 64 B to
analyze cache line transfers. We assume that there are no queue delays due to other requests, and
the DMA pipeline is empty in case 2.1 and case 2.2.

Time taken from input interface to the memory = 5 cycles

Time taken from memory to input interface (return path) = 7 cycles

Time taken to access the DRAM memory = 8 cycles

Total round-trip time taken by a cache line read request to return the data from memory to input
interface (no queue delays due to other requests) = 5 + 7 + 8 = 20 cycles

Case 2.2: 64B cache line store (write) – best case

Time taken from input interface to the memory = 5 cycles

Time taken to access the DRAM memory = 8 cycles

Total time taken by a cache line write request from input interface to memory (no queue delays
due to other requests) = 5 + 8 = 13 cycles

Approved for Public Release; Distribution Unlimited.
16

3.4 Implementation

Figure 9. Overview of the memory controller

As the figure suggests, there are 2 main components that reside in the Memory Controller V0.5.
They are,

1. Memory Routing Pipeline (MRP)
2. DMA

When a new FLIT reaches the Command Decoder, depending on the type of message, it is routed
to either MRP or DMA. If a FLIT belongs to the DMA type, it is forwarded to the DMA; otherwise,
the FLIT is forwarded to the MRP.

FLITs routed to the MRP are assumed to have highest priority; FLITs that reach the DMA will be
processed less urgently. Therefore, DMA transactions occur whenever the Memory Path Selection
module is idle. However, the DMA module has an internal timer. Whenever a DMA transaction
cannot be completed within the time limit, the DMA transaction becomes the highest priority,
stalling the MRP path. The timer length is dependent on the expected maximum latency for a DMA
transaction.

3.4.1 DMA Engine. The DMA engine processes bulk transfers coming from the accelerators. A
DMA engine can have several DMA buffers inside. Therefore, it can support several bulk transfer
requests in parallel. The number of DMA buffers is a reconfigurable parameter. A DMA request
can contain one or more FLITs. When the first FLIT of a bulk transfer reaches the DMA engine,
it passes onto one of the DMA buffer controllers. The corresponding DMA controller updates its
status registers to occupy and shares the PE ID of origin with the DMA Request Mapper. When

Approved for Public Release; Distribution Unlimited.
17

another FLIT with the same ID comes to the memory controller, it routes to the same DMA buffer.
DMA buffer controllers wait until all the FLITs of the bulk transfer are available before starting
the external memory access. Figure 10 shows the overall architecture of the DMA engine.

The main advantages of having a DMA engine are:

a) DMA requests can request more than one element at once, unlike the memory routing
pipeline, and reduce the input traffic of the memory controller.

b) Using a DMA engine to access data with less spatial or temporal locality prevents cache
pollution.

c) DMA transfers can utilize the memory bandwidth better for bulk transfers.

Figure 10. Overall architecture of DMA engine

3.4.1 Memory Routing Pipeline. We implemented the Memory Routing Pipeline of the proposed
memory controller using Verilog Hardware Description Language. As shown in Figure 11, the
initial layout consists of an instruction decoder, a data forwarding unit, a simple first-in-first-out
memory scheduler, and a DDR4 memory interface.

Approved for Public Release; Distribution Unlimited.
18

Figure 11. Memory Routing Pipeline

3.4.1 Memory signal interface. The memory signal interface IP handles communication between
FPGA and DRAM Controller Circuitry while receiving memory read and write requests from the
internal logic (memory routing pipeline). The Xilinx IP catalogue contains a memory signal
interface IP for LPDDR3 SDRAMs. The basic IP is freely available to the University of Southern
California (USC) team through the Xilinx academic program. It has a low I/O pin count, thereby
satisfying memory signalling requirements. Figure 12 shows the complete signalling interface.

 The signal interface IP consists of three main components.

1. User Interface Block - Communicates with the FPGA internal logic while using FIFO
interfaces for input data, output data, and address.

2. DRAM State Handler - Generates low-level SDRAM signals such as pre-charge, row
open, row close, refresh, read request, write request, etc. We can eliminate external
DRAM Controller Circuitry because the DRAM State Handler within the IP generates
all the low-level signals to control the DRAM chips.

3. Physical Layer - Connects with the physical layer of SDRAMs. The I/O pins required
to interact with SDRAMs are shown in Figure 12. 120 FPGA I/O pins are required to
support a total of 32 GB memory with a 64-bit data bus.

Approved for Public Release; Distribution Unlimited.
19

Figure 12. Xilinx UltraScale Architecture-Based FPGA Memory Signal Interface Core

Approved for Public Release; Distribution Unlimited.
20

4.0 RESULTS AND DISCUSSION

4.1 Results

We used Xilinx default DDR4 simulation environment to simulate our design with an external
DDR4 chip. The Xilinx default simulation environment provides 8 GB DDR4 chip
(MTA8ATF1G64HZ-2G3) with an operating frequency of 1.60 GHz. We simulated our FPGA
design while maintaining a FPGA clock frequency of 200 MHz. Table 4 shows a summary of
resource utilization. The total power consumption of the design is around 2.2 W. A detailed
analysis of power consumption is shown in Figure 13. Further, performance values of the design
in simulation are shown in the Table 5 as well.

Approved for Public Release; Distribution Unlimited.
21

Table 4. Resource utilization of memory controller

Resource Consumption

LUTs 4%

Registers 6%

BRAM 10%

Figure 13. Power consumption

Approved for Public Release; Distribution Unlimited.
22

Table 5. Performance of the memory controller

4.2 Deliverables

We delivered a completed Verilog code the memory controller. It consists of the Memory Routing
Pipeline and DMA Engine as described in section 3.4. It supports the FLIT structure designed by
the Air Force Research Laboratory (AFRL) / Computing & Communications Division (RIT).

Maximum bandwidth achieved 3.0 GB/s

Maximum Clock Frequency 200 MHz

Average time to process read request Worst: 72 Cycles
Best: 26 Cycles

Average time to process write request Worst: 54 Cycles
Best: 8 Cycles

Approved for Public Release; Distribution Unlimited.
23

5.0 CONCLUSION

In this work, we developed a multifaceted FPGA-based memory controller with shared memory.
The main memory is shared with multiple accelerators connected to the FPGA. Since the design
is lightweight, the FPGA can be shared with computation tasks as well. The memory controller
can be configured depending on the FPGA platform, available resources, and functional
requirements of the overall system.

Approved for Public Release; Distribution Unlimited.
24

6.0 REFERENCES

[1] Sally A. McKee, "Reflections on the memory wall," In Proceedings of the 1st conference on
Computing frontiers, New York, NY, USA, (2004).

[2] A. D. S. Gil, J. I. B. Benitez, M. H. Calvino and E. H. Gómez, "Reconfigurable Cache
Implemented on an FPGA," 2010 International Conference on Reconfigurable Computing and
FPGAs, (2010).

[3] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf, “The cache performance and
optimizations of blocked algorithms”, SIGPLAN Notes, Vol 26, No. 4, pp 63–74, 1991.

[4] Xiaoyu Ma, Dan Zhang, and Derek Chiou, “FPGA-Accelerated Transactional Execution of
Graph Workloads,” In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA '17), New York, NY, USA, (2017).

[5] Micron, "Specification of MT40A2G16SKL-062E: B device", URL:
https://www.micron.com/products/dram/ddr4-sdram/part-catalog/mt40a2g16skl-062e, last
modifiend 2021. accessed September 7, 2021.

[6] Micron, "Specification of MT52L512M64D4GN-107 WT device", URL:
https://www.micron.com/products/dram/lpdram/part-catalog/mt52l512m64d4gn-107-wt, last
modifiend 2021. accessed September 7, 2021.

[7] I. Bhati, M. Chang, Z. Chishti, S. Lu and B. Jacob, "DRAM Refresh Mechanisms, Penalties,
and Trade-Offs," in IEEE Transactions on Computers, vol. 65, no. 1, pp. 108-121, 1 Jan. 2016.

[8] Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali and Onur Mutlu,
"Understanding the Interactions of Workloads and DRAM Types: A Comprehensive Experimental
Study", CoRR, Vol abs/1902.07609, 2019.

[9] Micron, "DDR4 power estimates", URL: https://www.micron.com/-
/media/client/global/documents/products/technical-
note/dram/tn4007_ddr4_power_calculation.pdf, last modified 2020. accessed August 12, 2020.

[10] Micron, "DDR3 power estimates", URL: https://www.micron.com/-
/media/Documents/Products/Technical%20Note/DRAM/TN41_01DDR3_Power.Pdf, last
modified 2020. accessed August 12, 2020.

[11] Micron, "LPDDR3 vs DDR3 power estimates", URL:
https://blogs.synopsys.com/committedtomemory/2014/01/10/when-is-lpddr3-not-lpddr3-when-
its-ddr3l, last modified 2020. accessed August 12, 2020.

[12] Xilinx, "Xilinx UltraScale Memory Interface IP", URL:
https://www.xilinx.com/support/documentation/ip_documentation/ultrascale_memory_ip/v1_4/p
g150-ultrascale-memory-ip.pdf, last modified 2021. accessed September 7, 2021.

Approved for Public Release; Distribution Unlimited.
25

7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

Acronym/Abbreviation Meaning
ASIC Application-Specific Integrated Circuit
AFRL Air Force Research Laboratory
BRAM Block Random-Access Memory
CK Clock
CKE Clock Enable
CPU Central Processing Unit
CSn Chip Select – n referring to the chip #
DDR Double Data Rate
DDR# Double Data Rate #
DIMM Dual In-line Memory Module
DMA Direct Memory Access
DRAM Dynamic Random-Access Memory
FBGA Fine-Pitch Ball Grid Array
FIFO First In First Out
FLIT Flow Control Unit
FPGA Field Programmable Gate Array
GB Gigabyte
GOTS Government Off-The-Shelf
GPU Graphics Processing Unit
I/O Input/Output
IP Internet Protocol
KB Kilobyte
LPDDR# Low-Power Double Data Rate #
LUT Look Up Table
MRP Memory Routing Pipeline
RAM Random-Access Memory
RAS/CAS Row Address Strobe / Column Address Strobe
SDRAM Synchronous Dynamic Random-Access Memory
SODIMM Small Outline Dual In-line Memory Module
USB Universal Serial Bus
USC University of Southern California
XPE Xilinx Power Estimator

