BLANK PAGE

No.
 209 of 215 copies, Series A
 Operation TEAPOT

 NEVADA TEST SITEFebruary - May 1955 Classification cancelled

Project 1.2

SHOCK WAVE PHOTOGRAPHY
THIS REPORT HAS BEEN APPROVED FOR OPEN PUBLICATION,

Issuance Date: May 15, 1958

......
This material eoctains Information allecte

HEADQUARTERS FIELD COMMAND, ARMED FORCES SPECIAL WEAPONS PROJECT SANDIA BASE, ALBUOUEROJE, NEW MEXICO DRDCF@QING GOBY

Derkelal Claseification of this resort ie UNCLASSIFIED although the original classification may net have been removed from all pages. exeselfentton changed by, eurthority al

UNCLASSIFIED
 CONFIDENTIAL

BLANK PAGE

UNCLASSIFILU CONFDDENTIAE

WT-1102
OPERATION TEAPOT-PROJECT 1.2
Report to the Test Director

SHOCK WAVE PHOTOGRAPHY

J. F. Moulton, Jr.
E. R. Walthall
U. S. Naval Ordnance Laboratory White Oak, Silver Spring, Maryland

SUMOMARY OF BHOT DATA, OPERATION TEAPOT

8bot	Code Name	Date	Time*	Area	Type	Latitude and Longitude of Zero Polnt
1	Wasp	18 Yebruary	1200	T-7-4	182-ft Alr	$\begin{array}{cll} 37^{\circ} & 01^{\prime} & 11.60 \mu^{\prime \prime} \\ 110^{\circ} & 01^{\prime} & 18.941^{\prime \prime} \end{array}$
2	Motb	22 February	0845	T-3	300-ft Tower	
3	Toela	1 March	0530	T-9b	300-ft Tower	
4	Turk	7 March	0520	T-2	600-ft Tower	
6	Hornet	12 March	0520	T-3a	300-tt Tower	
6	Boo	22 3sarch	0505	T-7-12	600-8 Tower	
1	E88	23 March	1230	T-10a	67-ft Underground	$\begin{array}{ccc} 14^{\circ} & 11^{\prime} & \text { w. } 1 \times 33^{\prime \prime} \\ 14^{\circ} & n^{\prime} & 81.010^{\prime \prime} \end{array}$
8	Apple	29 March	0455	T-4	300-f Tower	
9	Wasp'	29 March	1000	T-7-4i	740-ft Alr	
10	HA	6 Aprll	1000	T-61	36,620-ft MSL Alr	
11	Poat	9 April	0430	T-9c	300-ft Tower	
12	MET	25 Aprll	1115	FF	400-ft Tower	
13	Apple 2	5 May	0510	T-1	500-8 Tower	
14	Zuechinl	15 May	0500	T-7-12	500-ft Tower	

[^0]
ABSTRACT

Project 1.2 was responsible for (1) determining the peak shock overpressure as a function of distance on Shot 10 , the high-altitude shot; (2) studying the effects of the surface and the heating of the air near the surface on precursor formation, growth, and shock inter. action for a number of yields and heights of burst over natural and artificial surfaces; and (3) ascertalaing, prior to Shot 12, whether coalescence of the incident and reflected shocks could be expected to occur directiy above the burst and, if so, determining the peak overpressures at given distances on that shot.

The military importance of the first two objectives is obvious. The last objective vas directed tovard providing basic information on shock phenomena from a tover burst in support of the drone aircraft project (Project 5.1, Dasaging Loads on Alrcraft in Flight) which vas given major emphais in the Military Effects Test Program. Both maokegrid photography and direct-shock photography, vechniques aimilar to those used on previous tests, ware employed in the successful accomplishment of these major object:lves.

On Ehot 10, pressures of from 800 to 8 psi were deternined, coverins a range of from 200 to 1,10) ft from the burnt. (Taken together vith the overlapping data of Priject 1.1, the pressure-distance curve for this shot extends froa 800 jusi down to 0.14 pol over a range of approximately 11,300 ft from the burst.) These dats, combined with the yield results, seem to indi:ate that sachs scaling techniques for pressure, distance, and time ma; be applied up to altitudes of the order of $40,000 \mathrm{ft}$; however, some reaurvations are mentioned in the text.

The APSWP-HOL precursor-prediction criteria were found to be more reliable than other existing prodiction methods. Hovever, as a reoult of the information gained during Operation TEAPOT, the AFSWP-NOL criteria bave been modified to take into account the different thermal absorptivities of various surfaces. It is believed by the authors that precursors will not form over a water surface, hovever, natural water surfaces should not be considered as "ideal" in this regard because vater-loading of the blast wave along the surface can occur and can lead to nonideal values of blast parameters, such as "excessive" dynamic pressures, for example.

Further evidence was obtained which indicates that thermal layers affect the rate of growth of the therwal Mach wave at close-in distances; but in spite of this, the triple point followe a reasoncbly predictable (± 10 percent) course beyond the point where it would be normally expected to rise above the upper level of the thermal layer.

A modification of the theory for calculating temperatures in the thermal layer from the ancle made by the precursor with the ground is
proposed in the text, but cannot yet be fully verified. Use of the theory teads to bring the calculated temperatures in closor agreement vith measured values obtained bj both direct and indirect methods.

Coalescence of the incident and rerlected shock vaves vertically above the burst was observed on Shots 4 and 12 at $2,550 \mathrm{ft}(12 \mathrm{psi}$ level) and $2,600 \mathrm{ft}$ (7 poi level) from the burst points, respectively. On Shot 4, the measurements indicated that the peak pressure is enhanced slightly following coalescence. Observed pressures vere approximately equivalent to those that would have been obtained from a veapon yield 1.2 times larger than that fired. The predictions desired by Project 5.1 for Shot 12 were based on this result. On Shot 12, hovever, no such enhancement in pressure vas observed after coalescence. Some possible explanations for ithis behavior are presented in the text.

FOREWORD

This report presents the final results of one of the 56 projects comprioing the Military Effocts Program of operation Teapot, which included u_{4} test detonations ai the Nevada Test Site in 1955.

For overall Teapot military-effects information, the reader is reforred to "Sumary Report of the Technical Director, Military Effects Program," WT-1153, which includes the following: (1) a description of each detonation inoluding yield, zero-point environment, type of devioe, ambient atmospheric conditions, etc.; (2) a diecussion of project results; (3) a summary of the objectives and results of each project; ard (4) a listing of project reports for the Military Effects Program.

PREFACE

Project planning at the Naval Ordnance Laboratory vas completed With the assistance of G. K. Hartmann, Paul M. Fye, J. E. Ablard, W. E. Morris, J. F. Moulton, Jr., J. Petes, E. R. Walthall, and C. J. Aronson.

For administrative and logistic support the Naval Ordnance Laboratory is indebted to the Bureau of Ordnance, the Armed Porcen Special Weapons Project and in particular to E. B. Doll, Technical Director, to his staff, and to Cdr. W. M. Mclellon, USN, and Maj. H. T. Bingham, USAF, Director and Assistant Director of Programs 1 and 3 , respectively.

Sincere appreciation is expressed to the firm of Edgerton, Germeshasen, and Grier, Inc. for obtaining the excellent aotion-picture records, without which Project 1.2 could not have met its objectives successfully. Appreciation is also expressed for the development and establishment of jet aircraft smoke trall.s by the 4925th Test Group (Atomic) of the Special Weapons Center, Kirtland Air Force Bace.

Those who served in the fleld operations at the Nevada Test Site vere: J. F. Moulton, Jr., Project Officer; E. R. Walthall, Deputy Project Officer; C. L. Karmel, Administration and Analysis; B. M. Loring; E. G. Nacke; R. L. Varwig; J. A. Martin, A/2c USAF; and W. R. Rogers, A/2c USAF. G. S. Rielley served as supply officer at the home station and in the pield.

This WT report also carries the Neval Ordnance laboratory number MOIA 1210.

CONTENTS

ABSTRICT 5
TOREWORD 7
PREPACE 7
CHAPTER 1 INTRODOCTIOM
15
15
1.1 Mothods and Objectives
15
15
1.2 Background and Tbeory
16
16 18
1.3 Test Characteristics
1.3 Test Characteristics
CHAPTER 2 INSTRMENTATION 19
2.1 Rocket-Smoke-Grid Pbotography
19
19
2.2 High-Mlitude Smoke Grid
2.2 High-Mlitude Smoke Grid
24
24 28
2.3 Diroet Shock Photography
2.3 Diroet Shock Photography
CHLTER 3 RESULTS
31
31
3.1 Shot
31
31
3.2 Shot
3.2 Shot
31
31
3.3 Sbot 4
34
34
3.4 Shot 6
3.4 Shot 6
47
47
3.5 Shot 8
3.5 Shot 8
55
55
3.6 Sbot 9
3.6 Sbot 9
64
64
3.7 Sbot 10
3.7 Sbot 10
66
66
3.8 Sbot 12
3.8 Sbot 12
7
7
3.8.1 7ree-Air Data
3.8.1 7ree-Air Data
7
7
3.8,2 Direct Shook Photography Date Niear the Surface
'9
'9
3.9 locuracy of Result. 93
CHAPTER 4 DISCUSSION 94
4.1 Preo-Alr Shock Pbenomena
94
94
4.1.1 Sbock-Wave Conlesonnoe, AFrivel-Tim Date
94
94
4.1.2 Shook-Wave Coalesconoe, Caloulated Pressures
4.1.2 Shook-Wave Coalesconoe, Caloulated Pressures
95
95
4.1.3 Comparison of Presaure-Distadee Data with
4.1.3 Comparison of Presaure-Distadee Data with
thi Standard Pree-dir Curvo
9
9
4.1.4 High-Mlititude Scaliag Effects
102
102
4.2 Surface Pbonomena
203
203
4.1.1 Thermal Effoct on Mach-Stom Grouth
203
203
4.2.2 Precursor Formation over the Water Area on Sbot 12
105
105
4.2.3 Precursor Critoria
105
105
4.2.4 Temperature Calculations from Shock Contours 106
CHAPTER 5 CONCLUSIONS AND RECOMENDATIONS
109
109
5.1 Instrumentation
5.1 Instrumentation
109
109 109
5.2 Pressure veraus Distance in M1r
5.2 Pressure veraus Distance in M1r
5.3 Coaloacence of the Inoldent and Refleoted Shock

5.4 Procursors 210
references 111 123
TABLES
1.1 Summary Data for Teapot
$2 i$
$2 i$
2.1 Camera Coverage for Smoke Rooket and Direct
2.1 Camera Coverage for Smoke Rooket and Direct
Shock Photography
20
2.2 Film Calibration Constante 21
3.1 Shot 1, Tiw of Arrival of the Initial Disturbance Along the Ground 32
3.2 Shot 4, Absolute Time of Arrival of Incident Shock
in Pree dir 37
3.3 Shot 4, Pressure, Volocity, Distance Data in Free Air
3.4 Sbot 4, Absolute Time of Arrival of Reflected Shook in Pree 1 Ir
3.5 Shot 4, Kappon Yiold Obtalded from Proe-dir Data 42 42
3.6 Shot 4, Time of Arrival of Procursor llong Ground
Southeast of Ground 2050
48
48
3.7 Shot 4, Hoight of tis Tripic Point as a Punction
3.7 Shot 4, Hoight of tis Tripic Point as a Punction of Ground Range Morthwest and Southoast of Ground 2aro
3.8 Shot 6, Time of Arrival of the Initial Diaturbance Along the Ground
3.9 Shot 6, Angle of the Precursor as a Function of
Ground Range over Asphalt and Dosert Areac 3.10 Shot 6, Boight of the Triple Point as a Funcion 54
of Ground Range Ovor the Doseert Area 56
3.11 Shot 8, Time of Arrival of Incident Froe-dir Shook
3.12 Shot 8, Pressure, Sbook Velocity, Distance Data 58
in Proe Air ...
3.13 Shot 8, Time of Arrival of Precursor Along the 61
Ground North of Ground 2050 62
3.14 Shot 8, Hoight of Triplo Point as a Function of Ground Range
3.15 Shot 9, Arrival Time of Precuraor Nlong the Ground Northeast and Southwent of Ground 2010 -
65
3.16 Shot 10, Iim of Arrival of Free-dir Shook 67
3.27 Sbot 10, Pressure, Velocity, Distance Date iniroe dir
67
3.18 Sbot 10, Hoapor Yield Versue distabrie 67
3.19 Shot 12, Tin of drrival of Inaidont Shoak inirve ile in Vertioal Dinestion dbove
 3.20 Shot 12, Preasure, Volocity, Distance rata in Free Aur 74
3.21 Shot 12, Time of Arrival of Roflactod Shock in Free Als 82
3.22 Sbot 12, Weapon Yiold Versus Distance 81
3.23 Shot 12, Time of Arrival of the Initial Misturbance Nlong the Ground (Asphalt Area) 81
3.24 Sbot 12, Angle of the Precursor as a Funstion of Ground Range over Asphalt and Desart Areas 83
3.25 Sbot 12, Temperature of Thormal Layer Calculated from Angle of the Precuranr over Asphalt and Desert Areas 85
3.26 Shot 12, Height of the Triple Point as a Function of Groind Range 87
3.27 Shot 22, Time of Arrival of the Initial Disturbance Along the Ground (Water Area) 88
3.28 Sbot 1.2, Time of Arrival of the Initial Disturbance Aloag the Cround (Dosert Area) 90
3.29 Projoct 1.2-Shook Pbotography Films 92
4.1 Shot 4, Scalod Froe-hir Pressuro-Distance Data 98
4.2 Shot 8, Scaled Free-ALr Prosaure-Distance Data 98
4.3 Shot 12, Scaled Froe-hir Pressure-Distance Data 99
4.4 Shot 10, Scalod Froe-Lir Preesure-Distance Data 99
4.5 Shot 6, Temperature Calculations Using the Angle of the Precursor Front 207
FIGURES
2.1 Rockat photografhy layout, Shots 4 (T-2) and 8 (T-4) 22
2.2 Rocket and direct shock photography layout for Shot 12 22
2.3 Rooket lino firing circuit 23
2.4 Smoke rooket grid for Shots 4,8 , and 12 23
2.5 Doployment of amoke grid NC, Shot 10 24
2.6 Smoles grid photography layout, Shots 10 and 10 dry \min (Area 5)
25
25
2.7 Shot 1 , idrect shook photography layout 26
2.8 Shot 3, camora plan layout for dinect shock photography 28
2.9 Shot 6, direct shock photcgraphy layout 29
2.10 Shot 9, camara plan layout for direct shock photography
30
30
3.1 Shot 1 , plane of measurement for direct shock photograpby, Film 28880 32
3.2 Sbot 1, comparison of arrival o!. incident shock along the cround northeast and southwest of ground zero 33
3.3 Shot 1, shock photography taken from Film 28881,
Prame 44 34
3.4 Shot 3, pbotographs taken from F13m 28681 35
3.5 Shot 4, planes of masurement for amoks rockot pbotography 36
3.6 Shot 4, time of arrival of free-air shock in vertical direction 38
3.7 Shot 4, fireball redius veraus time
39
39
3.8 Shot 4, free-air shock velocity versus distance
40
40
3.9 Shot 4, sound velocity and ambient pressure versus altitude 42
3.10 Shot 4, free-air poak ahock overpressure versus
3.10 Shot 4, free-air poak ahock overpressure versus 43
3.11 Incident and reflected wave contours
3.12 Sbot 4, pbotograph of froe-air inoldent ahock $2,290 \mathrm{ft}$ from air 2050 at $t=0.757 \mathrm{sec}$ (Film 28184) 44 44 44
3.13 Shot 4, weapon yiold as a function of diatance
from burst point
from burst point 46 46
3.14 Sbot 4, tim of arrival of procursor at ground
lovel (aoutheast of ground sero)
lovel (aoutheast of ground sero) 49 49
3.15 Shot 4, holght of the triple point as a funotion of ground range (northwest and aouthoast of ground saso) 50
3.16 Shot 6, plene of murement for direot abock photography F1工os 28089 and 28084
51
51
3.17 Sbot 6, photographe of blast phanompa (Film 28081) 51
3.18 Sbot 6, tive of arrival of fireball jote
52
52
3.19 Shot 6, time of arrival of preoursor alons the
ground over asphalt and decert areas
ground over asphalt and decert areas 3.20 Shot 6, angle of the procureor veraus ground 53 53
range - - -
range - - - range range 3.21 Shot 6 , beipht of the triple point as a funotion of e ound range (dosert area) 55 55
3.22 Shot 8, plapes of manuromint for amolee rockot 56
photography Filma 28282, 28284 57
3.23 Shot 8, fireball radius wreus idive
58
58
3.24 Shot 8, time of arrival of incident froe-adr:
3.24 Shot 8, time of arrival of incident froe-adr: book in vertical direction
59
59
3.25 Shot 8, froe-air shock velocity versua distance
60
60
3.26 Shot 8, free-air peak shook overpressure vereus
3.26 Shot 8, free-air peak shook overpressure vereus distance
61
61
3.27 Sbot 8, plase of masuroment for direct shock photography Pilm 28280 and 28283 52
3.28 Shot 8, tim of arrive? of precursor along the ground north of ground 2010
63
63
3.29 Skot 8, beight of the triple point as a function of ground range
64
64
3.30 Shat 9, time of arrival of precursor northoast and southwest of ground sero along the ground
65
65
3.31 Shot i0, time of axrival of froe-alr shock
66
66
3.32 Shot 10, photographs of froe-air ahonk taken from Films 29980 and 28982
68
68
3.33 Shot 10 , peak shock overpressure as a funotion of distance
69
69
3.34 Shot 10 , weapon yield as a function or distance
3.34 Shot 10 , weapon yield as a function or distance obtained from free-air pressure-distance data 70
3.35 Shot 12, pootograph of free-air ahock $2,330 \mathrm{ft}$
from alr zoro at $t=0.946$ sec (Film 28389) —— 71
3.36 Shot 22 , time of arrival of free-air incident
and reflected shocks 73
3.37 Shot 12 , fireball radius veraus time 74
3.38 Sbot 12 , froe-alr sbock velocity versus diatance 75
3.39 Shoi 12 , sound velocity and ambient pressure versus altitude 76
3.40 Sbot 12 , free-air peak shock overpressure vers 28 distance 77
3.41 Shot 12 , weapon yield as a function of distance from burst point 78
3.42 Shot 12, planes of meavirement for direct shock photography 79
3.43 Shot 12, photograph of shook along asphalt $1,430 \mathrm{ft}$ from ground zero at $t=0.213 \mathrm{sec}$ (F11m 28391) 80
3.44 Shot 12, time of arrival of initial dietrubance along the ground (asphalt and desert areas) 82
3.45 Shot 12, angle of the procursor as a function of ground range 83
3.46 Shot 12, calculated temperature of the tharmal layer as a function of ground range 84
3.47 Shot 12, beight of the triple point as a function of ground range over asphalt, watar and desert areas 86
3.48 Shot 12, photograph of shock along water $1,000 \mathrm{ft}$ from ground $2 e r 0$ at $t=0.164 \mathrm{sec}$ (Film 28381) 88
3.49 Shot 12, time of arrival of the initial diaturbance along the ground (wator arec) 89
3.50 Shot 12, photograph of shock along desert $1,750 \mathrm{ft}$ from ground zero at $t=0.332$ sec (Film 28387) 91
4.1 Shot 4, pressure versus distanco reduced to 1 kt (RC) at cos lovel 100
4.2 Shot 8, jressure versus diotance reduoed to 1 kt (RC) at sea lovel 200
4.3 Shot 12, prossure versus distance reduced to 1 kt (TC) at sea lovel 101
4.4 Sbot 10 , prossure vertus distance reduced to 1 kt (IC) at sea lovel 101
4.5 Teapot shots plotted on procursor chart from Reference 24 104

BLANK PÂGE

CONFIDENTIAL

Chapter

INTRODUCTION

1.1 METHODS AND OBJECTIVES

Shock-wave photography, as it has come to be known in connection with atomic tests, includes two closely related techniques designed to detect and locate in space and time the various ahock phenomena associated with nuclear bursts. The simpler and slightly less accurate of the two has been termed "direct shock photography" for it involves only the use of high-speed, high-resolution cameras. "Rocket-smoke-grid photography", the more-accurate technique, requires the estadishment of a grid of smoke trails situated behind the burst. Shock waves which are otherwise unobservable can be detected when photographed against such a grid. Both of these techniques are described in more detail in Chapter 2.

On many previous atomic teste, shock-wave photography has produced a vealth of rellable data (References 1 through 7). These have been used to establish the standard curve of free-alr pressure versus distance down to the 10 psi level for atomic weapons (Reference 6) and they provide the basis for detailed knovledge of the development and grovth of the Mach shock and triple point, the precursor phenomenon, and many other blast effects of atomic burete.

During Operation TEAPOT, Project 1.2 vas called upon to employ these techniques to determine: (1) free-air peak pressure versus distance on the high-altitude shot; (2) the position of the incident and reflected shocks as a function of time vertically above the burst position on Shots 4, 8, and 12, and if coalescence occurred, the peak pressure of the coalesced shocks as a function of distance above the burst; and (3) the effects of the surface and the heating of the air near the surface on precursor formation, growth, and shock wave interaction on Shots 1, 3, 4, 6, 8, 9, and 12.

In addition to the above, photographic records vere obtained on Shot 7, the underground shot, to study the grovth of the base-surge cloud and to determine its role in the spread of radioactive contaminants. The project was concerned with tinls task only to the extent of assuring procorement of the desired records. The analysis and resuits will be published under an AFS.iP-sponemred task at the Naval Ordnance Laboratory (Reference 8).

These objectives vere established for the purposes of (1) providing blast attenuation data and determining the amount of energy that goes into blast when a nuclear device is burst under rarified atmospheric 15

conditions; (2) determining whether the incident and reflected shocks coalesce at some distance above tover burst and, if 80 , what the resultant pressure is as a function of distance; and (3) gathering precursor data for a number of shots varying in yield and height of burst over or near various surfaces, so improved methods can be formulated for predicting precursor effects on ideal blast and on diffractionand drag-type targets.

1.2 BACKCROUND ARD THEORY

While Objectives 1 and 3 vere almed tovard increasing the knowlodge of the military effects to be expected from veapons burst under previously untested enviromental conditions, Objective 2 was directed toward providing basic information on rhock phenomena from a tover burst in support of the drone-aircraft program, which was established to determine the damaging effects of gust loading on alrcraft in flight. To facilitate this study, it was desired that the drone aircraft, to be tested on shot 12, be subjected to but one shock. Promising, though inconclusive, data obtained by shock photography during operation UPSHOT-KNOTHOLE (Shots 1 and 11) indicated that in the region alrectly above the burst the reflected wave might overtake the incident wave, provided the explosion vere big enough and low enough. If such vere the case, the coalesced shocks should thereafter proceed as one. Thus, it was intended that sufficient data be obtained by Project 1.2 prior to Shot 12 to verify shock coalescence and determine the shock pressure as a function of distance beyond the point of coalescence. The position of the drones above the burst could then be established at the desired level of gust-loading input.

From photographic records, two basic quantities associated with the shock vave can be measured: relative distance and relative time. Absolute values of these parameters can be determined by correlating the relative measurements with highiy accurate engineering survey data and early fireball measurements. To determine the peak pressure of the incident shock in free air from such data, the instantaneous shock velocity is determined first by fitting the arrival-time data with a smooth curve which is expressed in closed mathematical form. Differentiation of the empirical equation for this curve yields velocity as a function of distance. In the region just beyord the fireball and in the free-air region the fitting function for the arrival-time data is

$$
\begin{equation*}
t=\frac{R}{a}-\frac{1}{a} \int_{R_{0}}^{R} \frac{b^{1.5}}{b^{1.5}+R^{1.5}} d R+c \tag{1.1}
\end{equation*}
$$

```
where t = time
    R=distance from burst zero
    a,b,c=constants
```

Equation 1.1 is fitted to the data by the method of least squares on IBM couputer equipment. Upon differentiation, the following equation

TABELE 2.2 - Bumary date for Tmapot*

	2not 1	Sbot 2	ghot 3	sbot 4	5 5ot 5	shot 6
Code Reme	WASP	MOTM	TES4A	Trx		
Date	18 Peb	22 700	2 mm	7 ma	moment	Br.
location (Area)	T-7-4	22 7.3	1. Mar	7 mar	12 Mar	22 Mmr
Eleretion of Ground zero (fi)	4198	4026	7-9-b	T-2	T-3a	T-7-14
Oround zero - Relative to Alming	4261			4	+006	4245
Yreld (KT) Pelat (ft)	168					
Yield (KT) ${ }_{\text {Sctuel }}$	1.16:0.03	$2.39+c .1$	6.85 ± 0.34	43.2	3,61*0.1	1.76*0.?
	761 A1r	300 70v	300 zov	500 Tow	300 704	500 xov
Atmospberle Preature						30 Nor
	880	880	076	868	88.	876
		12.77	12.71 8.88	12.60	12.78	12.71
	$\begin{gathered} 846 \\ 12.28 \end{gathered}$	871 12.64	868 12.60	960.5	872.8	871
Alr Temperature (Drgree Cent.)			12.60	12.60	12.67	12.64
Ground zero - Toc						
Durst fulcht - ToI	-6.6	-4.2	3.9 3.3	3.83	-1.0 7.0	1.0 5.0
Scaled Aleicht of Burat - ESg (LKT see Level)	683.0	213.4	150.1	135.5	186.2	
Blest seellag Pactors						240.2
$\begin{aligned} & \text { Dis ance scaling to } 1 \text { KT } \\ & \text { fee Level }\left(S_{\mathrm{g}}\right) \cdot\left(\mathrm{Pof}^{1 / 14 . T W}\right)^{1 / 3} \\ & \hline \end{aligned}$	0.0963	0.742	0.5002	0.2714	0.6208	0.480 m
$\begin{aligned} & \text { Time scaling to } 1 \text { KT see Levod }]^{1 / 2} \\ & \left(\mathrm{~s}_{t}\right)-8 \mathrm{~d}\left[\left(\mathrm{I}_{\text {of }}+273\right) / 293\right]^{2 / 2} \end{aligned}$	0,854?	0.6812	0.4857	0.2645	0.6068	0.4678
Prosoure scallag to see Level $\left(s_{p}\right)=16.7 / 7_{\text {oil }}$	1.197	1.163	2.167	1.166	1.160	2.263

Code Mean	Brot 1	Suot 8	8not 9	Sbot 10	3bot 21	8hot 12
Code Mate	E38	APTIS	Masp	8	POBT	MET
bocation (Arce)	23 Mar	29 Mar	29 Mr	6 Apr	6 Apr	15 dpr
Llevition of Oround zero (ft)	T-100	7-4	P-7.4	7-5	T-9-c	\cdots
	4288	4309	4194	4038	4235	3077
Potr: (et)			$\begin{aligned} & 624 \\ & 981 \end{aligned}$	$\begin{gathered} 377504 \\ 36 \$ 308 \end{gathered}$		
Y(eld (KT) $\mathrm{PC}_{\text {c }}$	1.2	14.250 .5	3.16:7.16	3.340.4	1.45.0.07	22.0\%
Actuad Ifelcht of Durst (ft) -8	$(-) 67$	500 Tov	739 Alr	$\begin{aligned} & 32,508: \\ & 100 \text { A1r } \end{aligned}$	300 Tov	400 Tov
	$\begin{aligned} & 870.9 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 867 \\ & 12.58 \\ & 854.1 \\ & 12.39 \end{aligned}$	$\begin{array}{r} 87 \\ 12.64 \\ 849 \\ 12.32 \end{array}$	$\begin{gathered} 880 \\ 22.80 \\ 222 \\ 3.22 \end{gathered}$	$\begin{gathered} 874 \\ 12.69 \\ 862.5 \\ 12.51 \end{gathered}$	$\begin{gathered} 908 \\ 13.18 \\ 095.1 \\ 12.98 \end{gathered}$
$\begin{aligned} & \text { Air Touperature (Decree Cent.) } \\ & \text { oruund zero - To } \\ & \text { Durot Eelght - Toll } \\ & \hline \end{aligned}$	16.3	$\begin{array}{r} 9.1 \\ 11.2 \\ \hline \end{array}$	13.4 2.6	10.3 -47.7	$\begin{gathered} 1.0 \\ 10.28 \end{gathered}$	12.90 18.5
8saled Eulemt of Durst - Its (1 KT 8een Level)	-	198,0	475.2	13,192	251.2	237.0
shat Sealine Pector" Distance Benling to 1 KT	-	0.3901	0.6430	0.4049	0.8373	0.3424
$\begin{aligned} & \text { Time scallss to } 1 \text { KT see Lorel } \\ & \left(s_{t}\right)-8_{d}\left[\left(\mathrm{r}_{\text {oH }}+273\right) / 293\right]^{1 / 2} \end{aligned}$	-	0.3842	0.6348	0.3550	0.0233	0.3427
Precsure seeline to jee Lavel $\left(s_{0}\right)-14.7 / P_{0}$	-	1.206	1.293	7.563	1.274	2.132

[^1]1s obtained for the instantaneous shock velocity, U :

$$
\begin{equation*}
U=a\left[1+\left(\frac{b}{R}\right)^{1.5}\right] \tag{1.2}
\end{equation*}
$$

A complete explamation of the equation and mechod of fitting may be found in Reference 5.

The peak pressure of the shock wave can be calculated for values of the instantaneous shock velocity by using the Rankine-Eugoniot relation:

$$
\begin{equation*}
P_{s}=\frac{2 \gamma P_{0}}{\gamma+1} \quad\left[\left(\frac{U}{c_{0}}\right)^{2} \cdot 1\right] \tag{1.3}
\end{equation*}
$$

where P_{s} - peak shock overpressure, psi
P_{0} a ambient pressure abead of the shock, psi
$\gamma=$ ratio of specific heata for air $=2.40$
U - shock velocity, ft/sec
c_{0} - speed of sound ahead of the shock $=1089 \sqrt{1+T_{0,}^{\prime 2} 273}$, ft/sec
$T_{0}=$ ambient air taperature ahead of the shock, ${ }^{\circ} \mathrm{C}$.
For those region where shock pressures exceed 100 psi the RankineEugoniot relation, Equation 1.3, becomes less reliable because of a gradual change in the applicable equation of state for air from which the relation is derived. In the pressure region from 100 to 500 psi, peak pressures are obtained by use of the Birschfelder-Curtiss tables (Reference 9), which are baced on the thernodynanic properties of alr under these more extrene conditions. The tables give ($P_{B}+P_{0}$)/ P_{0} as a function of $\mathrm{U} / \mathrm{C}_{0}$ with all the necessary corrections for the change In tate accounted for (Reference 10).

1.3 TEST CBARACTERISTICS

A detailed list of test characteristics required for the various analyses is given in Table 1.1. Yields, meteorological data, acaling factors, and other pertinent data are presented.

Chapter 2
 INSTRUMENTATION

2.1 ROCKET-SMOKE-GRID PHOTOGRAPHY

The experimental technique consists of establishing a moke-trail gric behind the burst and taking relatively high-speed (100 to 500 frames $/ \mathrm{sec}$), high-resolution, timed motion-picture photographs of the burst. The film records show the locus of the shock front as a function of time. Reflected light from the smoke trails is refracted when the shock front intersects the light path from the grid to the camera, causing tbat portion of the trail behind the shock to appear displaced from its original position. Each smoke trail in the grid thus affected has the appearance of being broken or hooked. The only purpose of the smoke grid is to make the detection of the shock front easier and the measurement of the si rek radius more accurete; therefore, knowledge of the exact location of the grid is not required.

The smoke trails which formed the background grid on Shots 4, 8, and 12 vere generated by firing sixteen $5-1 n c h$ spin-stabilized rockets on Shot 4 and 20 rockets on Shots 8 and 12. Plan views of the rocketiline layouts for the smoke-grid experiments on these shots are shown in Figs. 2.1 and 2.2. Each rocket consisted of a 5 -inch Mark 3 Mod 4 electric-piring rocket motor and a modified 5-inch Mark 10 rocket head loaded with 10 pounds of FS chenical smoke mix. The heads vere modified by drilling thru-holes 120° apart, located a fev inches above the base, through the wall into the cavity. An insert, called a scoop, vas velded into each hole. As soon as the rocket motor was ignited, the entire missile vas caused to spin and the external nipples of the inserts vere sheared off by the rails in the launcher tule, allowing the FS to escape into the air to form a dense, white smoke.

The launcher used on this operation consisted of a 5 -inch Mark 50 launching tube mounted on a rugged base made of 2 -inch steel plpe. The tube was suspended from the pipe framevork by means of a plllow block bolted to a plate which was welded to the tube at the center of gravity (vhen loaded). Hith this type of construction the tube vas easily elevated to any desired angle.

Power was supplied to each rocket launcher by a step-down transformer (110 volts primary to 6.3 volts secondary) located at each rocket station. The primary of each transformer was connected in parallel to the main power line, which extended from a centrally located power siation to each end of the rocket line. Firing of the rockets was completed automatically from the central power station by a delay timer at approximately $\mathrm{H}-8$ seconds. The delay timer was initiated by a -15 -second hard-wire timing signal provided by Edgerton, Germeshausen and Grier, Inc. (EGBC). After

THLL 2.1 - Casore Coverage for amoke Mocket and Dire-b ock Fbotography

Sbot	Cuse te 8とation	Typ of Cumery	trfective rocal Lengts (m)	Total moris. Cover(8) (ft)	Vertical Coverage above Oround ($8 t$)	canore opeed (foc)	Ancle 0 : Llevet10n (Degreen)	Alming PCIb	Camern Location	Aemart:
1	$\begin{aligned} & 7-35 \\ & 7-360 \\ & 7-360 \end{aligned}$	$\text { Mitebe } 11$	$\begin{aligned} & 100.2 \\ & 100.3 \\ & 99.57 \end{aligned}$	$\begin{aligned} & 2,500 \\ & 3,400 \\ & 3,400 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 3025 \\ & 0,00^{\prime} \\ & 000 \end{aligned}$	$\begin{aligned} & 08 \\ & 2000 \text { ' } 202 \\ & 2000^{\prime} 202 \end{aligned}$	$\begin{aligned} & 853,104 x \\ & 68,0608 \\ & 845,216 \pi \\ & 701,1698 \end{aligned}$	Direct Photo.
3	$\begin{aligned} & 7-357 \\ & 7-357 \\ & 7-357 \end{aligned}$	Netctals	$\begin{aligned} & 100.1 \\ & 152.2 \\ & 52.3 \end{aligned}$	$\begin{aligned} & 3,000 \\ & 2,000 \\ & 2,000 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 4^{\circ} 0^{\prime} \\ & 2^{\circ} 45^{\prime} \\ & 2^{\circ} 4 \mathrm{~g}^{\prime} \end{aligned}$	$\begin{aligned} & 02 \\ & 2^{2520} 1202 \\ & 2^{0} 20 \text { ' } 102 \end{aligned}$	$\begin{aligned} & 853,1261 n \\ & 676,006) 8 \end{aligned}$	Direct Photo.
1	$\begin{aligned} & 6.357 \\ & 4-357 \\ & 4.357 \\ & 4-357 \end{aligned}$	Natebol	$\begin{aligned} & 34.16 \\ & 50.04 \\ & 50.19 \\ & 74.03 \end{aligned}$	$\begin{array}{r} 12,500 \\ 8,800 \\ 8,800 \\ 5,800 \end{array}$	$\begin{array}{r} 3,500 \\ 5,500 \\ 4,500 \\ 3,500 \end{array}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 2^{0} 3 \mathrm{Cl}^{\prime} \\ & 5^{0} 40^{\prime} \\ & 2^{\circ} 45^{\prime} \\ & 3^{\circ} 15^{\prime} \end{aligned}$	$\begin{aligned} & 02 \\ & 02 \\ & 02 \\ & 02 \end{aligned}$	$\begin{aligned} & 853,306 n \\ & 651,0331 \pi \end{aligned}$	Rockete
6	$\begin{aligned} & 7 \cdot 357 \\ & 7 \cdot 357 \\ & 7 \cdot 357 \\ & 7-357 \end{aligned}$	MSteholl	$\begin{aligned} & 100.3 \\ & 74.83 \\ & 74.90 \\ & 75.26 \end{aligned}$	$\begin{aligned} & 2,300 \\ & 3,050 \\ & 3,050 \\ & 3,050 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & 0,0 \\ & 0^{\prime} \\ & 0^{\circ} \end{aligned}$	$\begin{aligned} & 02 \\ & 02 \\ & 7050 \text { ' } \mathrm{RO2} \\ & 7^{\circ} 50 \cdot \mathrm{LOz} \end{aligned}$	$\begin{aligned} & 853,12 i, ~ \\ & 678,000 \mathrm{z} \end{aligned}$	Direct Proto.
8	$\begin{aligned} & 4.357 \\ & 4.357 \\ & 4.357 \\ & 4.357 \end{aligned}$	$\text { Kıtch } s 11$	$\begin{aligned} & 34.46 \\ & 50.22 \\ & 50.19 \\ & 74.83 \end{aligned}$	$\begin{aligned} & 9,700 \\ & 6,700 \\ & 6,700 \\ & 4,500 \end{aligned}$	$\begin{aligned} & 5,500 \\ & 5,200 \\ & 3,500 \\ & 3,500 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 5^{0} 50^{\prime} \\ & 9000 \\ & 7^{0} 30^{\prime} \\ & 5^{2} 20^{\prime} \end{aligned}$	$\begin{aligned} & 02 \\ & 02 \\ & 02 \\ & 02 \end{aligned}$	$\begin{aligned} & 833,306 n \\ & 651,0332 \end{aligned}$	Rockets
9	$\begin{aligned} & 7-357 \\ & 7-357 \\ & 7-357 \end{aligned}$	Miteboll	$\begin{aligned} & 74.90 \\ & 100.3 \\ & 200.0 \end{aligned}$	$\begin{aligned} & 3,300 \\ & 2,450 \\ & 2,450 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 5^{\circ} 20^{\prime} \\ & 4^{\circ} 00 \\ & 3^{\circ} 25^{\prime} \end{aligned}$	$\begin{aligned} & 02 \\ & 02 \\ & 02 \end{aligned}$	$\begin{aligned} & 853,124 \pi \\ & 678,000 \mathrm{t} \end{aligned}$	Direct Prato.
$\begin{array}{cc} 20 & \text { and } \\ 20 & \text { dry } \\ \text { rum } \end{array}$	$\begin{array}{r} 1-355 \\ 1-355 \\ 372 \\ 372 \end{array}$	Paetax Mateboll Mitchell MAtcholl	$\begin{aligned} & 251.6 \\ & 252.3 \\ & 251.9 \\ & 583.4 \end{aligned}$	$\begin{aligned} & 3,500 \\ & 3,200 \\ & 7,300 \\ & 1,900 \end{aligned}$	$\begin{aligned} & 2,400 \\ & 4,200 \\ & 5,800 \\ & 1,500 \end{aligned}$	$\begin{aligned} & 500 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$81^{\circ} 081$ $82^{\circ} 08^{\prime}$ $42^{\circ} 25^{\prime}$ 420251	Bowb zero	$\begin{aligned} & 831,63511 \\ & 672,338 \mathrm{~L} \\ & 795,9621 \\ & 674,980 \mathrm{z} \end{aligned}$	$\begin{aligned} & \text { Saoke } \\ & \text { Oric } \end{aligned}$
12	$\begin{array}{r} 372 \\ 377 \\ 372 \\ r-362 \\ 7-362 \\ 7-360 \\ 9.282 \\ 9.122 \\ 9.151 \\ 9.181 \\ \hline 9.123 \end{array}$	Mitchell Mitche 1 Pastar Mitchell	$\begin{array}{r} 151.9 \\ 249.6 \\ 583.4 \\ 152.1 \\ 100.1 \\ 99.1 \\ 99.31 \\ 152.3 \\ 100.0 \\ 152.3 \\ 99.2 \end{array}$	$\begin{aligned} & 1,900 \\ & 2,900 \\ & 1,900 \\ & 2,400 \\ & 1,600 \\ & 2,400 \\ & 1,600 \\ & 1,900 \end{aligned}$	$\begin{aligned} & 5,700 \\ & 4,100 \\ & 3,300 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 500 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	00000^{\prime} 0090 . $00^{\circ} 00^{\prime}$ $00^{\circ} 00^{\prime}$ $00^{\circ} 00^{\prime}$ $00^{\circ} 00^{\circ}$ 00000^{\prime} $00^{\circ} 00^{\prime}$ $00^{\circ} 00^{\prime}$ $00^{\circ} 00 \cdot$ $0^{\circ} 00^{\prime}$		$\begin{gathered} 795,9621 \\ 674,980 \mathrm{E} \\ 6 \\ 745,844 \pi \\ 703,9521 \\ 738,3431 \\ 713,0272 \\ 744,2621 \\ 705,9802 \\ 748,2501 \\ 705,9972 \\ 736,257 \pi \\ 715,9992 \end{gathered}$	Rocket: Direct Pboto.

a delay of approximately 7 seconds, the delay timer completed the circuit to the main power line, causing 110 volts to be applied to the primary of each transformer. The rockets vere fired simultaneousiy in this manner. Fig. 2.3 shows the rocket-1ine firing circuit.

The principal region of interest on Shots 4,8 , and 12 was the freeair region directly above the burst point. For this reason the smoke
grid was cone intrated in that vicinity. This was accomplished by firing the smoke rockets in a criss-cross pattern, such that the trails appeared to intersect in a vertical plane directly above the burst point (see Fig. 2.4). The camers itations vere installed and operated by ECla according to NOL specifications. Table 2.1 lists the photographic detaile for all shots in which Project 1.2 participeted.

The photographic records obtained in conjunction with the smoke grids were enlarged on a direct projection Recordak. Breaks or books in the smoke trails indicated the position of the shock front on each irame. Knoving the effective focal length of the camera lens and the distance to the plane of measurement, the distance scaling factor was
tafie 2.2 - Film Calibration Conetante

$\begin{gathered} \text { Shot } \\ \text { Mo. } \end{gathered}$	Fila No.	Dratage to Place of Mensurement: (ft)	Diotance scalling on Tracine (Image Magniflod 29 Tinoc)	speed of Camerc (tpe)	Tine Por Prase (ase)	Establletment of Abeolute TIm
1	28881	9,846	$2 \mathrm{~m}=6.874 \mathrm{ft}$	100	-**	---
4	$\begin{aligned} & 28183 \\ & 28284 \end{aligned}$	$\begin{aligned} & 18,690 \\ & 18,690 \end{aligned}$	$\begin{aligned} & \mathrm{Lm}=23.104 \mathrm{ft} \\ & \mathrm{~L}=19.492 \mathrm{ft} \end{aligned}$	$\begin{array}{r} 101.03 \\ 99.01 \end{array}$	$\begin{aligned} & 0.009798 \\ & 0.010100 \end{aligned}$	lot Prase - 2.50 m lot Prame - 9.95 =
5	$\begin{aligned} & 28013 \\ & 28081 \end{aligned}$	$\begin{aligned} & 9,572 \\ & 9,572 \end{aligned}$	$\begin{aligned} & \mathrm{Lmm}-6.689 \mathrm{ft} \\ & \mathrm{~L}=5.006 \mathrm{ft} \end{aligned}$	$\begin{array}{r} 100.91 \\ 99.70 \end{array}$	$\begin{aligned} & 0.00991 \\ & 0.01003 \end{aligned}$	lat Pruee - 8.40 m let trame - $8.00=$
8	$\begin{aligned} & 28282 \\ & 28284 \end{aligned}$	$\begin{aligned} & 13,216 \\ & 23,320 \end{aligned}$	$\begin{aligned} & 1=23.74 \mathrm{ft} \\ & \mathrm{~L}=-9.313 \mathrm{ft} \end{aligned}$	$\begin{aligned} & 100.81 \\ & 101.11 \end{aligned}$	$\begin{aligned} & 0.00998 \\ & 0.00989 \end{aligned}$	$\begin{aligned} & \text { 2nd frame }-10.70=0 \\ & 200 \text { Frame }-11.25= \end{aligned}$
9	29384	10,228	$2 \mathrm{ma}=5312 \mathrm{ft}$	101.32	0.00907	10t Prase - 9.32 m
10	28980	32,934	Lu- -6.056 ft	650	*	10t Frase - 1.55 me
12	$\begin{aligned} & 28381 \\ & 28389 \\ & 20283 \\ & 28307 \\ & 28309 \\ & 28390 \end{aligned}$	$\begin{array}{r} 12,056 \\ 7,914 \\ 10,000 \\ 9,943 \\ 64,451 \\ 64,451 \end{array}$		101.95 103.09 102.86 9.76 101.42 101.01	0.00980 0.00970 0.0972 0.01078 0.00926 0.00990 0.00990	10t Prave - 7.3? mo -60 1st frase - 1.00 m let rraw - 5.15 m lut Trane - 7.42 me

Abolute Tise Obtaised by Comparison vith Fila 28309.

* Tim betveen Pravea varled over Rogion of Intervet.

determined. Also recorded on the film vas a 200 -cycle timing signal, so the time for each frame was deterninod. (Table 2.2 lists the calibration constants for all films fron which data vere obtained.) Shock-wave time-of-arrival data vere then measured for each frams; from these data the instantaneous shock velocities vere determined and peak overpressures calculated as a function of distance (see Section 1.2).

Instrumentation for the smoke-rocket experiments on Shots 4,8 , and 12 operated successfully. of a total number of 72 expected trails, only three fallures were encountered. (The 72 expected trails include a premature firing of all 16 rockets on Shot 4 as a result of a spurious signal delivered to the rocket line firing circuit at approximately 2 hours before zero time. However, the shot vas posiponed, because of adverse weatber conditions, and the rocket inne vas reloaded and fired again on shot day at the proper time.) One of the fallures mes attributed

eprienmanetal

Figure 2.1 Rocket ptotography layout, Shots $4(T-2)$ and $8(T-4)$.

Figure 2.2 Rocket ard direct shock photography layout for Shot 12.

Mgure 2.3 Roclont line s.iring oirout.

Figure 2,4 Smoke rochet grid for Shots 4, 8, and 12.
23
to a defective rocket motor, which failed to fire. The other two rockets fired but failed to smoke, probably because che launcter rails did not shear off the exterial nipples. Two of the three failures occurred on Shot 4; the other on Shot 12. However, the grids produced on these shots vere adequate. All of the caneras operated, and excellent photographs were obtained on all three shots.

2.2 HIGR-ALTITUDE SMOKB GRID

The high altitude shot, Shot 10 , introduced the problem of how to form a background smoke grid for the free alr shock photography experi-

ALL SMOKE GRIO A/E SHOULO AIPrIVE AT THE VERTICAL PLANE CONTAINING BJMB ZERO IPPROXIMATELY 17 SEC PRIOR

Figure 2.5 Doployment of smoke grid $N C$, Shot 10.
ment. Since the standard smoke rockets normally used could not reach the desired altitude, it was necessary to employ some other means to produce the grid. A reviev of the problem indicated that two types of grids could be used. Either the grid could be vertical, in vilch case the smoke trails could be formed by dropping smoking missiles from aircraft at a higher altitade than the burst, or it could be horizontal, as formed by horizontally-flying aircraft releasing a smoke-producing agent (similar to skywritiag techniques) to make a borizontal grid above the
bomb burst. The latter method vas decided to be the mot reliable from the techaical standpoint in viev of the uncertainty of burst position.

The grid was to be similar in form to those generated by moke rockets on past atomic tests, i.e., a struight line grid. The propoced grid innes vere to be spaced at 400-ft intervals. To estabileh the grid, the alrcraft vere to riy into the wind (vind expected from $290^{\circ}+$ 15°) at an altitude that vas ixed 8,000 it below the "drop" aircraft. (The bomb was to be burst at an altitude $10,000 \mathrm{ft}$ below the drop altitude, thus fixing the swoke grid 2,000 ft above the burst.) Each smoke aircraft was to generate a moke trail along a horirontal line of

Figure 2.6 Smoloe grid photograpky layout, Shots 10 and 10 dry sun (Aree 5).
flight for approximately 50 sec , beginning at H-83 sec and continuing to akout H-35 sec. The smoke trils would then extend about $10,000 \mathrm{ft}$ to each side of air zero. Fig. 2.5 shows the intended position of the smoke grit at bomb-release time. Caneras located on the ground vere to be aimed vertically upvard, and high-apeed motion pictures of the burat vere to be taken. (Fig. 2.6 show the canera plan layout for shot 10 and the Shot 10 dry run.)

The responsibility for developing and testing suitable sare generators, installing thee in suitable aircraft, training perconnel for the Operation, and establishing the denired moke grid during the Operation was assigned to the 4925 th Test Oroup (Atomic) of the Air Force Special Weapons Center, Kirtland Air Force Base, Mev Mexico. Specifications as to length, density, and perisiatency of the smoke

trails vere supplied to the 492Sth Test Group by the Naval Ordnance Laboratory.

Two systems for producing smoke vere developed, tested, and made amilable for une during the Operation. (Reference 22 is a detalled report of these developments.) In one, atomized Corvis oil is injected into the jet exhaust of each alrcraft to produce the trail. (The oil, first vaporized by the hot gases in the jet, freezes shortly thereafter to forn bluish-white amoke.) This technique was to be used whether condeceation trails vere being formed naturally or not to assure a positive, durable trail. As a beck-up to the oil-injection apparatus, each aircraft was equipped with a commercial smoke generator produced by the Del Mar Corporation of San Francisco. These generators used charges of titanium tetrachloride in capsule form, each capsule capable of generating moke for 6 sec. Bnough charges could be inserted to generate a continuous trall for 30 sec .

During the Operatioa, eight aircraft vere used to produce the smoke grid. One B-47 was used as a master gulde or reference point upon which the remaining seven aircraft ($\mathrm{F}-84^{\prime} \mathrm{s}$ and $\mathrm{P}-86^{\prime} \mathrm{s}$) based their position.

On the Shot 10 dry run, condeasation trails vere very evident and a good set of persistent trails was produced. Hovever, an error in the Judgment of the aircraft pilots spaced the trails at too wide intervals (from 2000 to 3000 ft).

On Shot 10 the spacing between grid trails was considerably better, ranging from 200 to 600 ft , but in most cases was excessive. The ambient conditions at the altitude of the smoke grid vere such that gnod condensation trails were not produced. The grid was not satisfactory and was of essentially no use in the acalysis of the films. The saoke trails made by the aircraft appeared as a series of very light, discontinuous puffs of smoke (see Fig. 3.32). No books, breaks or discontinuities, such as those observed when the shock front propagates in front of a rocket smoke grid could be distinguished from the natural breaks in the trail. Undoubtedly these natural breaks occurred because of the method used to deploy the smoke.

Most of the analysis of Shot 10 records was done by direct shociphotography, and because of the lack of contrast on the films, it was extremely difficult to detect the shock front. A slight modification in the method normally used for the analysis of the films was necessary. Instead of observing the nrojected images of the iflm (magnified approximately 20 times) by use of the Recordak and tracing the shock front frame by frame, profection prints vere made of each frame of the film, the magnification being approximately six timea. By varying the anount of light and the exposure times, it was possible to obtain better contrast than could be obtained in the Recordak. On those frames where the shock front was detectable outside of the fireball region, the diameter of the shock was measured and the growth of the shock front as a function of

Figure 2.8 Shot 3, oamara plan layoct for direot sbock photography.
time vas obtained. The rest of the analysis followed the procedure outlined in section 1.2.

2.3 DIRECT SHOCK PHOTOGRAPHY

Thin project also instrumented five shots with direct sbock photography, including Shots $1,3,6,9$, and 12 . The instrumentation for the direct shock photography included a number of high-speed 35-min Mitchell cameras operating at 100 frames/sec and a fev 35-m Fastax cameras operating at approximately 500 frames/sec. Each camera vas equipped

Figure 2.9 Sbot 6, diroot shock photography Layout.
With the necessary apparatus to provide timing marks on the film. The cameras were located and aimed so that full coverage over the regions of greatest interest was obtained. The camere aintions again vere installed and operated by EG\&G according to ROL specifications. Figures 2.2, 2.7, $2.8,2.9$, and 2.10 show the plac layout for the direct photographic coverage for the various shots. Photographic detalls for each shot are given in Table 2.1.

Tracinge of the shock contour near the surface vere made by direct projection in the Recordak. With timing and distance scales obtained

Pigure 2.10 Shot 9, camora plan layout for direct shock photography.
from the films, measurements of the space-time history of the incident, reflected, and Mach shocks vere made directly from the tracings. The path of the triple point and precursor formation and growth were also meacured in the same manner.

Some of the photographic records were lont or partially impalred either because of overexposure of the filn, as on ghots 3 and 12, or because of the fallure of the timing apparatus on the cameras, as on Shot 1. Much useful information vas obtained, hovever, and in the opinion of the authors, the objectives vere met successfully.

Chapter 3 RESULTS

The photographic results obtained by this project are reported shot by shot. In general, excellent results; both in the free-alr region and along the surface, were realized on most shots. Those cases in which cameras or timing instrumentation failed were at a minimum and the successful accomplishment of the experimental objectives was not impaired. Table 3.29 lists the films obtained on each shot and gives an indication of the data extracted from each.

3.1 SHOT 1

Excellent direct shock photography along the ground was obtained on this shot. Hovever, fallure of the timing equipaent resulted in the loss of all timing data on the films and all other data can only be given with corresponding approximate relative times.

Arrival-time data of the incident shock along the ground northeast and southvest of ground zero vere neasured on Film 28881. Figure 3.1 shows the plane of measurement for this film. A comparison of these arrival-time data to both sides of ground zero is shown in Fig. 3.2. The distance data plotted in this graph are listed in Table 3.1 and are given as a function of frame number instead of time. Since the speed of the camera was approximately 100 frames/sec, the time between frames was approximately 10 msec . Thus an approximate time for each frame was obtained by multiplying the frame number by the factor 10 . The accuracy of the time measured in thif manner is difficult to determine but is probably better than ± 5 percent.

It is apparent from Fig. 3.2 that the arrival of the initial disturbance at a given distance to the northeast of ground zero vas earlier than to the southwest of ground zero over a ground range from 400 to $1,000 \mathrm{ft}$. This is attributed to a slight thermal effect obserred to occur to the northeast of ground zero (see Fig. 3.3 for an actual photograph of the shock taken from Fila 2888i). This thermal effect, observed on one side of ground zero but not the other, was probably caused by the presence of a sufficiently beated layer of air over an extensive surface of asphalt in the $\mathrm{T}-7$ area to the northeast side of ground zero. The more-highly reflective area to the other side of ground zero was apparently incapable of csusing the air above it to heat up sufficiently to produce the effect.

3.2 SHOT 3

Because of the unexpected high yleld of the Shot 3 device, all of the direct shock photography films vere heavily overexposed, and few

Figure 3.1 Shot 1, Plane of Measurement for Direct Shock :.....: Photography, Filn 28881.
!...: :
.......
Tasic 3.1 - Ehot 1 - Tim of arrival of the Initial Dieturbance Nin te the Cround

Frase No.	Mortheast Distape Froe az (ft)	Southiveat Distance Froe az (ft)	Frase No.	Mortheest Distance From 02 (ft)	Southvest Distance Fros az (rt)
		Fila 28881			
30	250.9	264.0	58	968.5	965.8
31	316.2	301.1	59	983.7	902.3
32	356.1	370.5	60	1,005.0	998.8
33	393.9	394.6	61	1,025.6	1,014,0
34	426.2	439.9	62	1,041.4	1,038.0
35	459.2	473.6	63	1,055.2	1,055.2
36	484.6	49e.6	64	1,071.7	1,073.7
37	516.9	522.4	65	1,090.2	1,007.5
38	534.0	543.0	66	1,108,1	1,203,3
39	569.2	586.4	67	1,12k,6	1,218,4
40	591.9	611.8	68	1,146.6	1,132.8
41	618.7	631.7	69	1,152.8	
42	643.4	657.2	70	1,177. 5	
43	666.8	676.5	71	1,194.0	1,175.5
44	687.6	708.0	72	1,213.3	1,203.0
45	701.8	T29.3	73	1,221.5	
46	728.6	752.0	74	1,243.5	
47	752.7	767.1	75	1,269.6	
48	776.8	787.1	76	1,276.5	1,251.2
49	791.9	818.0	77	1,297.1	
50	813.2	835.9	78	1,308.1	
51	835.2	849.6	79	1,321.2	
52	855.1	870.0	80	1,345.9	
53	875.7	800,0	81	1,361.1	
54	898.2	907.4	A2	1,363.1	
55	908.7	923.2	83	1,366.5	
56	931.4	930.1	84	1,411.9	
57	952.0	952.0	85	1,428,4	
			36	1,440.1	

data could be obtained, because of the lack of contrast and resolution. As a result, only qualitative statements can be made concerning the shock-wave phenomena on this shot.

Figure 3.4 shows a frame taken from F1lm 28681. The fireball was asymmetrical, and there was athermal disturbance of the shock along the ground on both sides of ground zero.

3.3 SHOT 4

The arrival-time data for the free-air incident shock vere measured on Films 28183 and 28184 (see Fig. 3.5 for the planes of measurement) over

Figure 3.3 Shot 1, Shock Photography taken from Film 28881, Frame 44.
a range of from 200 to $3,000 \mathrm{ft}$ directly above the burst point. These data are given in Table 3.2 and plotted in Fig. 3.6. The absolute time for each film was determined by plotting the earliest dati point from NOL films on the curve representing fireball-growth data supplied by EG\&G (see Fig. 3.7). These arrival-time data were fitted to Equation 1.1,

Figure 3.4 Shot 3, Photographs taken from F1lm 28681.

VERTICAL LAYOUT

Figure 3.5 Shot 4, Planes of Measurment for saoke Rocket Photography.

 	20
 	20 ${ }^{\text {g }}$
	最最
	雚

Figure 3.7 Shot 4, Firebell Radius versus Time.

$$
\begin{aligned}
& a=1,090.365 \\
& b=1,507.918 \\
& c=0,004585
\end{aligned}
$$

These constants are valid over the entire range of from 600 to $3,000 \mathrm{ft}$.
The instantaneous phock relocities were then obtained by substitution of the constants a and b into Equation 1.2 and the velocities vere calcu-

$$
\begin{equation*}
U=1090.9\left[J+\left(\frac{1507.9}{R}\right)^{1.5}\right] \tag{3.1}
\end{equation*}
$$

where R is given in feet and U is given in ft/sec. Pigure 3.8 is a plot of the velocities as a function of distance. By substitution of these velocities in the Rankine-Hugoniot equation, Bquation 1.3, the peak shock overpressures vere calculated as a function of distance.

Since the free-air arrival-time data vere measured in the vertical direction only, it was necessary to use the varying anblent atmospheric
conditions ahead of the shock for each radius at which pressures were calculated. Measurements of P_{O} and T_{O} (amblent pressure and temperature) were made at verious altitudes. C_{0}, the cound velocity, vas calculated by substituting the value of T_{0} in the equation for the sound velocity given in Section 1.2 following Equation 1.3. Fig. 3.9 is a plot of P_{0} and C_{0} as a function of altitude and the ambient conditions ahead of the shock vere deterained from this plot. The peak overpressures, instan-

Figure 3.8 Shot 4, Free-Air Shock Velocity versus Distance.
taneous shock velocities, distances, and the ambient conditions (P_{0} and Co), for Sbot 4 are given in Table 3.3. Fig. 3. 20 is a plot of the peak shock overpressures as a function of distance from the weapon.

One project objective on Shot 4, it will be recalled, vac. to determine whether the incident and reflected shock waves coalesced above the burst. While the records vere being exanined to obtain the incident
iABLE 3.3 Sbor 4 - Pressure, Velocity, Dlatasce Date in froe dr

Distance R (rt)	shock velocity U(fi/sec)	Sound Velocity C_{o} (rt/eec)	Anblent Presaur. $P_{0}(p a 1)$	tbock overPrenoure $\mathrm{Pa}_{\mathrm{g}}(\mathrm{p} 01)$
600	5,437.1	1,099.8	12.10	
700	4,539.8	1,099.6	12.07	347.3 2×6.6
800	3,913.8	1,099.4	12.02	26.6 168.3
900 1.000	3,456.6	1,099.2	11.98	127.0
1,000 1,200	3,110.8	1,099.0	11.94	99.1
1,200	2,641.7	1,098.8	21.89	79.7
1,300	2,453.6	1,098.5	11.85 11.80	66.4
1,400	2,310.3	1,098.3	21.76	55.5 46.9
1,500	2,190.4	1,098.1	11.72	40.8
1,600 1,700	2,088.9	1,098.0	21.67	35.7
1,700 1,800	2,008.2	1,097.8	11.63	31.6
1,900	1,987.3	1,097.6	11.59	28.1
2,000	1,005.0	1,097.5	12.55	25.3
2,100	1,754.6	1,097.2	12.51	23.0
2,200	1,709.9	1,097.0	11.42	20.9 19.1
2,300	1,670.0	1,096.9	11.39	19.1
2,400	1,634.1	1,096.7	12.35	17.5 16.2
2,500 2,000	1, c01.9	1,096.6	11.31	14.9
2,700	1,572.7	1,096.5	11.27	13.9
2,000	1,522.0	1,096.3	11.23	13.0
2,900	1,500.0	1,096.0	11.19	12.1
3.000	1,479.6	1,095.9	11.16	11.3 10.6

shock data, the position of the reflected vave vas sought without success. Notice of a elight jog in the iucident vave arrival-time curve at approximately $2,550 \mathrm{ft}$ finally led to the detection of what is thought to have been the reflected vavo. Arrival-time data for thise wave vere obtained over the range irom 1,800 to $2,525 \mathrm{ft}$ vertically

Diatance Tran Burst (ft)	(\lim)
1,836.249 1,862.930 1,9e9.711 1,988.187 2,036.917 2,007.596 2,134.377 2,173.361 2,214.295 2,259.126 2,294.212 2,333.196 2,374. 229 2,424.009 2,459,894 2,491.081 2,524.218	0.757350 0.767450 0.777550 0.707650 0.797750 0.807850 0.817950 0.820050 0.838150 0.848250 0.058350 0.868450 0.078550 0.886650 0.090750 0.908850 0.918950

above the burst. These data are given in Table 3.4 and are plotted in Fig. 3.6. Somewhere between 2,525 and $2,550 \mathrm{ft}$, the incident and reflected waves apparently coalesced over a horizontal range of approximately 750 it to either side of the vertical through the burst point. Beyond the $2,525 \mathrm{ft}$ distance, only one vave could be detected.

Although it was difficult to detect the reflected wave above the ilreball, the lover portions in the vicinity of the triple point could be scen distinctly. It was found possible to trace nearly the eatire outiline of the reflected wave from the triple point on one side of the burst to that on the other. (The rocket smoke grid proved to be c little use in locating the wave in the region above the burst.) The contour of the reflected wave is shown in Fig. 3.11 as it appeared at

Figure 3.9 shot 4, Sound Velocity and Amblent Pressure versus Altitude.
the tim of coalescence. Fig. 3.12 shows a frame of the film record. Only the incident shock is outlined clearly by the smoke grid.

A perplexing observation that must be reported is that the reflected wave was found to travel with a velocity of from 3,500 to $4,000 \mathrm{ft} / \mathrm{sec}$ in overtaking the incident shock. A shock traveling with this velocity in the mediun believed to exist behind the incident shock vould be expected to have a peak overpreseure in excess of 100 pel , according to theory. Yet all other evidence indicates that such a strong sbock was not present. For examle, Do definlte hooks or breaks vere observed in the amoke grid other than those caused by the incident vave. Also, at the distance corresponding to that at which coalsscence is indicated, the incident shock pressure was only about 12 psi. The

Figure 3.10 Shot 4, Free-Air Peak Shock Overpressure versus
Distance.
overtaking of such a comparatively weak shock by one about eight times as ntrong would have resulted in a marked increase in the velocity of the coalesced front, but no such radical jump that would indicate a large velocity increase eppeared in the arrival-time data. Finaily, only weak reflected vave pressures were recorded by the canistor gages of Project 1.1 (Air Force Cambridge Research Center). The fact that these measurements vere made where the incident shock was of the order

Figure 3.11 Incident and Reflected Wave Contours.

Figure 3.12 Shot 4, Photograph of Free-Air Incident Shock $2,290 \mathrm{ft}$ from Air Zero at $\mathrm{t}=0.757 \mathrm{sec}(\mathrm{F} 11 \mathrm{~m} 28184$).

of 9 psi and below, as well as being located off to the aide of the burst rather than directly above it, has little bearing on the argument.

No solution to this apparent paradox has been found to date. All that can be said is that if the reflected wave front observed optically was real, for which the evidence is strong, then the assumptions made conceraing the conditions believed to exist behind the incident shock vere in error. There is no other source of error which would account for the difference between the calculations and the observations. For practical purposes it must be concluded that the calculated reflected wave pressures are in error.

The second purpose of the project was to determine the value of the peak overpressure in the coalesced vave; and further, to predict what the peak overpressure in the coalesced wave would be on the sinilarly oriented shot 12. The incident shock pressures beyond the 2,550 ft distance, presented above, are to be considered as those for the coalesced vave.

To predict what pressures one aight expect, following coalescence, for another angy yield, such as for that of 8 hot 12 , it was decided to deternine what increase in the yleld of Shot 4 would have been required to give the same incident ahock arrival times and pressures as those observed on Shot 4 after coalescence. An average value for this supposed Field vas obtained by comparing the Shot 4 arrival-time and pressure-distance data point by point, vith those of the corresponding composite free-air curves (Ref. 6) for a $1-K T$ device at sea level and averaging the results.

Pirst, the Shot 4 arrival-tine data were scaled down from assumed fields batween 45 and 50 KT until the composite arrival-time data vere bracketed. Then by extrapolation and a series of approximations, the apparent yield of the Shot 4 weapon was obtained for various distances from air zero. Table 3.5 lists the yields obtained in this maner.

The pressure-distance date vere scaled to sea level and compared with the composite pressure-distance curve in a similar fashion. D1stances for the same pressure level, from Shot 4 and the composite pressure-distance curve vere found, and with the relation

$$
\frac{W_{2}}{W_{1}}=\left(\frac{R_{2}}{R_{1}}\right)^{3}
$$

where,
$W_{1}=1 \mathrm{KT}$,
$R_{1}=$ distance read from composite curve for a given pressure
$W_{2}=y l e l d$ for the Shot 4 veapon at that pressure level
$R_{2}=$ distance read from the Shot 4 pressure-distance curve, same pressure level
the apparent yield for Shot 4 was found. These data are also given in Table 3.5. Pigure 3.13 is a plot of the ylelds obtained by both wethods. From this analysis it vas concluded that after ccolescence o:curred, the

That 3.5 - gbot h - Weapon Yield Obtu ined
Irom Free-Alr Data

Yield Obtalned From Preenure-Distance Data		Yield Oblaiaed Prom Timo-of-Arrival Deta	
Diotance From turst (ft)	Weapom Yield (kt)	Dietance Fron Burset (ft)	Weapon Yield (kt)
610 688 810 1,095 1,205 1,390 2,690 2,450 2,900	39.4 40.6 13.6 45.8 46.9 4.0 49.8 52.0 34.2	507 606 1,068 1,123 1,500 1,906 2,202 2,300 2,512 2,696 2,793 2,904 2,99	$\begin{aligned} & 42 \\ & 46 \\ & 50 \\ & 46 \\ & 46 \\ & 44 \\ & 44 \\ & 45 \\ & 45 \\ & 46 \\ & 46 \\ & 46 \\ & 46 \\ & 45 \end{aligned}$

Figure 3.13 ghot 4, Weapon Yield as a Function of Distance from burst Point.
conlesced wave corresponded to that which would have been produced normally at the same distance from a yield of 1.16 W , i.e., from a veapon yield of $1.16 \times 43=49.9 \mathrm{KT}$, prior to coalescence.

Mensuremersts of the shock phenomena occurring near the ground were also made to a limited extent. These data contained a much larger uncertainty thau is generally realized when the photo-optical technique of direct sbock photography is planned for in advance. On Shot 4 the experiment was designed primarily to obtain free-air data. Furthermore, a rise in the foreground between the camera and ground zero obstructed the viev of the area in the vicinity of ground zero on both sides, particularly to the northwest side of ground zero (see Fig. 3.12). As a result, all measurements made at ground level had to be extrapolated to that surface.

The time of arrival of the precursor formed on Shot 4 was measured to the southeast of ground zero. These date are given in Table 3.6 and plotted in Fig. 3.14. Only fragmentary precursor data could be obtained on the northwest side of ground zero, because of the obstructicn in the foreground.

The beight of the triple point as a function of ground range is given in Table 3.7 and plotted in Fig. 3.15. Measurements were made on both aldes of ground zero and extended out to a ground range of approx:metely $2,800 \mathrm{ft}$ on the northwest side of ground zero and $1,800 \mathrm{ft}$ on the southeast side. The smoke grid produced for 'ihe free-air measurements formed a background grid in the fleld of viev of two cameras aimed from Station 372 and extended the userul field of view in which the triple point could be detected by approximately $1,000 \mathrm{ft}$ on the northwest side of ground zero. All measurements of the triple point trajectory have been assigned an uncertainty of ± 5 percent.

3.4 SHOT 6

Excellent results vere obtained from the direct shock photography films on this shot. Along with the shock phenomena occurring noar the ground, a high-speed jet was observed to blow out of opposite sides of the fireball. Figure $3.17(\mathrm{a})$ shows this jet just after its appearance. The velocity of the jet was extremely high (faster than the shock just after breakaway) and ranged from approximately 12,000 to $5,000 \mathrm{ft} / \mathrm{sec}$ $0 \cdot r e r$ a distance of from 500 to 900 ft from the center of burst. Figure 3.18 is a plot of the arrival time of the most-extended portion of the jet and the front of the inmense cloud of gases, both of which vere propagating faster than the free-air shock. Since the jet was symmetrical about the center of the Shot 6 detonation, it was attributed to the internal geometry and method of detonation of the weapon.

A precursor was formed over the desert and asphalt areas, and arrival-time data vere measured from Films 28081 and 28084. Figure 3.16 shows the plane of measurement for both filus. These data are given in Table 3.8 and plotted in Fig. 3.19. The precursor over the asphalt area was wirkedly different from that formed over the desert area. figure
(Continued on Page 52)

IABLL 3.6 - 3 bot 4 - IIve of ArTival of Precureor Hong Ground Southeast of Ground Zoro

Ground Range (r)	$\begin{aligned} & \text { Tise } \\ & (\mathrm{Sec}) \end{aligned}$	Cround Range (f)	$\begin{aligned} & \text { T100 } \\ & (3 \times c) \end{aligned}$	Ground Range (f)	$\begin{aligned} & 71 \mathrm{mex} \\ & (\mathrm{Sec}) \end{aligned}$	Ground Range (fi)	1100 (Sec)
		Fill 28183	188			F1lm $2 \times 0 \mathrm{CL}$	
1399	. 240088	1943	. 40048	2319 2359		1442	. 222805
1422 14.83	. 25008	1952	. .418828	2359 299	.59658 .60648	1388 1608	.25235 .27255
14.63 1472	. 25999	1993	. 431818	2407	. 61638	1606	. 27255
1474	. 27998	2064	. 44808	2396	. 62628	1742	. 32305
1614	.28968	2076	. 4.47988	2403	. 63618	1784	. 35335
1601	.299: ℓ	2072	. 47778	2474	. 64.608	1881	. 37355
1603	. 3094	2123	. 4 H768	2407	. 65598	1885	. 40385
1667	. 3193	2169	. 49758	24,\%	. .67578	2066	. 42405
1638 1776	. 37928	216.	. 5074	2503	. 60568	2113 2154	. 45435
2748	. 39918	2188	. 51738	2562	. 69598	2202	. 50485
1739	. 35898	2201	.52728 .53718	2597	. 70548	2244	. 52505
1785	. 36888	2254	. .54708	2587 2654	. 77538	2339	. 55535
1815	. 37878	2267	. 55698	2694	.74508	2382	. 57595
1869 1908	. 38888	2268	. 56688	2652	.75498 .76488	2417 2485	. 605 e 5
	. 39858	2284	. 57688	2728	. 79658	2557	. 65635

TABLE 3.7 - Sbot 4- Eeleht of the Triple point at a Function of Ground Range Morid-
$\because \cdots: \cdots: \cdots \cdots: \quad \because: \cdots$ vest and Southeat of Oround zero

Orourd Range (ft)	$\begin{aligned} & \text { Eelight } \\ & \text { (ft) } \end{aligned}$	Cround Range (ft)	Belgtc (ft)
Morthvest		Boutbeast	
805	43.6		
852	53.1	1,068	80.4 138.5
${ }^{901}$	76.5	1,104	176.2
1,091	132.9	1,246	224.2
1,140	231.8	1,	201.7
1,280	214.0	1,409	386.4
1,283	244.7	1,498	397.5
1,288	246.7	1,659 1,672	528.9
1,317	259.0	1,012	505.2
1,334	248.0		581.6
1,357	297.6		
1,522	336.3		
1,524	399.4		
1,635	406.3		
1,696	440.5		
1,708	503.2		
2,093	767.6		
2,252	877.7		
2,473	942.2		
2,633	1,066.5		
2,803	1,172.9		

Figure 3.16 Shot 6, Plane of Measurement for Direct Shock Photography Filas 28081 and 28084.

a) RADIUS OF FREE-AIR SHOCK $=486 \mathrm{FT} ; \mathrm{t}=0.058 \mathrm{SE}$

b) $t=0.197 \mathrm{SBC}$

Figure 3.17 Sthot 6s Photographs of Blast Phenomena (File 28081). 51

3.17(b) show3 the precursor formed over both areas. The angle which the front of the desert precursor made with the surface was greater and its velocity along the ground less than the corresponding values for the precursor over the ssphalt. This difference in velocity of the precursor fronts is readily observable in the arrival-time curves shown in Fig.

Figure 3.18 Shot 6, Time of Arrival of Fireball Jets.
3.19. The angle that the precursor front made with the surface over both areas vas also measured and is plotted as a function of ground range in Fig. 3.20 and given in Table 3.9.

The triple-point t.ajectory could only be measured over the desert area to height of 250 ft . The dust rising behind the precursor over

Pans 3.8 - Shot 6, Time of Arrinal of the Initial Disturtence Alose the Oround

Asphalt Oround Range (ft)	Desert Oround Rajege (rt)	$\underset{(* a c)}{\text { Time }}$	Aaphalt Oround Range (ft)	Desert Oround Range (ft)	$\begin{gathered} \text { Time } \\ \text { (see) } \end{gathered}$
Fila 20082					
230.1	*	0.0771	1,426.1	**	
299.7	**	0.08765	-*.	1,329.1	0,40464
390.6	\cdots	0.09755	**	$1,349.8$	0,61655
553.5	438.1	0.10746	1,536.	1,371.2	0,42645
524.4 571.9	548.5 588.6	0.11737 0.12727	1,534.4	-	0,44k26
571.9 635.4	580.6 638.8	0.12727 0.13728		1,426,8	$0.4, \div 7$
699.0	678.9	0.24708			
711.0	698.3	0.15699		PLu	
754.5	729.6	0.16690	111.1	125.2	0.06920
198.0	770.6	0.17680	253.8	249.3	0.07924
848.2 883.6	308. 0	0.18671	326.9	342.4	0.00997
883.6	830.8	0.19661	406.0	424.5	0.09932
916.4 956.5	864.9	0.20652	473.6	479.1	0.10934
956.5	896.3	0.21643	531.6	550.7	0.11937
1,015.4	916.4 939.8	0.22633	593.2	606.7	0.12961
1,040.1	989.8 960.0	0.23624 0.24614	641.3	630.8	0.13944
1,064.9	1,008.0	0.25605	727.9	675.8 700.8	0.14948 0.15951
1,103,7	1,034.1	0.26596	776.9	733.4	0.16954
1,133.6	1,066.9	0.27586	816.0	768.4	0.17958
1,155.9	1,066.3	0.26577	856.0	807.0	0.18961
1,185,3	1,111.0	0.29567	897.6	837.5	0.19965
1,212,0	2,134,4	0.30558	P25.6	870.5	0.20968
1,231.4	1,143.8	0.31549	968.7	901.1	0.2197
$1,254.2$ $1,207.6$	$1,162.6$ $1,196.0$	0.32539	995.2	932.1	0.22975
1,207.6	1,196.0	0.33530	1,026.2	965.2	0.23976
1,317.1	1,224.8	0.34520	1,059.3	978.7	0.2496
1,355.9	1,229.4	0.35511	1,093.8	1,020.7	0.25563
1,361.2	1,250,8	0.36508	1,107.8	1,044.2	0.26988
1,407,4	$1,203,0$ $1,314,4$	0.37498 0.36483	1,154,4	1,068,8	0.27992

:....:
…...
(... . . .

TaRL 3.9 - Bhot 6, Angle of the Precureor as a Cunction of Oround Range Over Aephale and Desert Aress

Ground Range (ft)	$\begin{gathered} \text { Angle } \\ \text { (Degrees) } \end{gathered}$	Oround Range (ft)	Angle (Degress)
Desert Aree		Asphalt Ares	
438.1	32.7	453.5	21.9
548.5	17.0	526,4	15.7
588.6	24.3	572.9	19.0
638.8	22.2	635.4	17.2
678.9	22.3	699.0	14.0
698.3	24.3	711.0	27.3
729.8	26.0	754.5	24.0
770.6	29.0	798.0	25.2
308.0	27.1	848.2	21.0
630,0	28.5	883.6	20.5
89\%. 9	29.8	916.4	21.3
896.3	29.2	986.5	22.0
916.4	30.8	988.0	23.0
939.8	34.3	1,025,4	24.0
900.0	30.6	1,040.1	25.5
1,008,0	32.0	1,064,9	26.6
1,034.1	33.6	1,103.7	27.0
1,066.9	34.3	1,133.8	27.8
$1,006.3$	34.3	1,155.9	28.4
1,111.0	37.1	1,185.3	28.6
1,134.	38.6	1,212.0	29.8
$1,163,8$	63.9	1,231.4	30.9
1,189.6	30,4	1,254.2	32.5
1,196.0	4.5	1,207.6	31.5
1,224.8	39.0	1,317.1	31.3
1,229.4	46.0	1,355.9	30.3
1,250,8	53.6	1,361.2	32.5
1,263.0	46.8	1,407.4	32.8
1,326,4	40.5	1,426.1	35.0
1,329.1	56.5	1,534.4	50.5
1,369.8	57.0	-,530.	+5
1,371.2	51.3		

54
the asphalt area obscured all shock formations near the ground. Figare 3.21 is a plot of the beight of the triple point as a function of ground range over the desert, and these data are listed in Table 3.10.

3.5 SHOT 8

The arrival-time data for the free-air incident shock for this shot were measured in the vertical direction on Films 28282 and 28284. (See F1g. 3.22 for the planes of measurement for these filas.) The photographic details for these films may be found in Table 2.2. Absolute time for the film records was again determined by plotting the first data point from the NOL films on the curve representing ilreball-growth data supplied by EGsG (see Fig. 3.23). The arrival-tise data are plotted in Fig. 3.24 and listed in Table 3.11. The statistical fit to the arrival-

Figure 3.20 Shot 6, Angle of the Precursor versus Ground Range.
time equation over the range from 300 to $2,500 \mathrm{ft}$ was found by the method described in Section 1.2, and the resulting constants are:

$$
\begin{aligned}
& a=980.185 \\
& b=1,171.669 \\
& c=-0.005927
\end{aligned}
$$

TAuL 3.20-bbot 6, Eupht of the Triple Foiut at a Muction
of Oround Rasge Over the Deeert Aree

Ground Range (ft)	Belght $(f t)$	Ground Range (ft)	Beight (ft)
F11. 26081		File 2606	
555.2	28.7	507.1	7.5
616.0	46.8	560.7	27.0
645.5	56.2	580.2	4.0
700.3	60.2	595.2	40.0
781.9	74.9	643.3	56.6
601.3	72.2	669.8	67.6
822. 7	83.6	693.8	77.6
862.9	89.6	760.9	65.1
881.6	99.0	799.9	70.1
911.0	115.7	823.5	75.1
931.1	108.4	84.0	84.1
971.2	117.1	868.0	91.6
998.7	132.4	O77.0	110.6
1,018.7	135.1	92.6	101.6
$1,039.5$	154.5	936.1	117.1
1,085.0	143.1		
1,097.7	182.6		
1,125.1	186.0		
1,145,8	190.6		
1,197.3	235.4		
1,212,0	232.8		
1,235.4	246.2		

BLANK PAGE

HORIZONTAL LAYOUT

Figure 3.22 Shot 8, Planes of Measurement for Smoke Rocket Photography F1lms 28282, 28284.

:.....:
:...:.:
Figure 3.23 Shot 8, Fireball Radius versus Tine.

TABLE 3.11 - Sthot 8 - Tume of Arrival of Incident Free-Air Sbock ia Verticel Direction frow Air zemo

Distance (ft)	$\begin{aligned} & \text { Tive } \\ & (\sec) \end{aligned}$	Distance (ft)	$\begin{aligned} & \text { Time } \\ & (s e c) \end{aligned}$
P11. 26284		Fila 2 2ete	
289.6	0.01125	283.7	0.01070
372.5 450.7	0.02116	370.5	0.02062
450.7 498.2	0.03103	1,354.0	0.30747
498.2	0.04098	1,428.4	0.63704
538.3	0.05081	1,508.2	0,48662
719.0	0.10025	1,579.9	0.53620
833.5	0.13961	1,663.9	0.58577
+952.7	0.18985	1,745.2	0.63534
1,055.2	0.23070	1,811.3	0.6849
1,163.2	0.26814	1,805.7	0.73450
1,253.5	0.33759	1,960.0	0.78407
1,342.9	0.30703	2,031.7	0.03364
1,427.7	0.43648	2,097.8	0.88322
1,513.4	0,40598	2,173.5	0.93280
1,595.3	0.53537	2,239.6	0.4 ± 237
1,674.5	0.50461	2,307.1	1.0319 N
		2,370,5	1.08152
		2,443.5	1.13110
		2,512,4	1.18067

atmospheric conditions (P_{0} and C_{0}) existing at burst height (see Table 1.1 for values of P_{0} and T_{0}). These data are given in Table 3.12 and plotted in Fig. 3.26. The change in slope of the pressure-distance curve below the $15-\mathrm{psi}$ level $1 . \mathrm{s}$ not thought to be real but is thought to de the result of the fitting function. (This is discussed in Sections 3.9 and 4.1.3).

Shot 8, like Shot 4, was instrumented with rocket-smoke photography to obtain data on the reflected wave in free-air and to determine the point of catch up of the reflected wave with the incident shock. Hovever,

Pigure 3.25 Shot 8, Pree-Air shock Velocity versus Distance.
the shot 8 device detonated at a lower yield than was expected; because of its high effective height of burst, the desired data could not be obtrined. Moreover no reflected wave could be detected above the fireball on the films.

Shock phenomena occurring near the ground vere measured to the north side of ground zero on Shot 8 from Films 28280 and 28283 (See Fig. 3.27 for the plaries of meacurement). South of ground zero a rise in the foreground linited the measurements along the ground that could be made. A precursor was formed on this shot and was observed on both sides of ground zero. Its arrival time along the ground vas measured

Figure 3.26 Shot 8, Free-Air Peak Shock Overpressure versus Distance.

TABLE 3.12 - Shat 8, Presoure, shock Volocity, Dletance data in Pree Air

$\begin{gathered} \text { Drotance } \\ \text { R } \\ (f t) \end{gathered}$	$\begin{gathered} \text { Sbock } \\ \text { Velocity } \\ \text { U (ft/uec) } \end{gathered}$	Sbock Overpreasure $P(p \& 1)$
400	5,894.1	425.1
500	4,4,96.3	231.7
600	3,695.0	165.0
700	3,20e. 8	100.4
800	2,717.5	72.0
900	2,436.2	55.1
1,000	2,223.3	43.4
1,100	2,057.7	35.1
1,200	1,925.9	28.9
1,300	1,818.9	24.3
1,400	1,730.6	20.7
1,500	1,656.9	17.6
1,600	1,594,4	15.3
1,700	1,5h1.0	23.3
1,000	1,494.9	21.7
1,900	1,454.8	10.3
2,000	1,419.7	9.2
2,100	1,388.7	8.1
2,200	1,361.1	7.2
2,300 2,400	1,336.6	6.5
2,400	1,314.5	5.8
2,500	1,294.7	5.2

Figuro 3.27 Shot 8, Plane of Mossuronent for Direct Sbook Pbotography Filas 28280 and 28283.
north of ground zero. These data are listed in Table 3.13 and plotted in Fig. 3.2E. No attempt has been made to moasure the angle that the precursor front made with the surface, since such date would have contained a large uncertainty.

The beight of the Mach stem as a function of ground range was also measured on Shot 8 on the north side of ground zero. These measurements

TABE 3.1.3 - Ebot 8 - Tixe of Artimi of frecurnor None the Ground North of Orownd zero

Oround Range (ft)	$\begin{aligned} & \mathrm{Tive} \\ & (\mathrm{sec}) \end{aligned}$	Oround Renge (ft)	$\begin{aligned} & \text { Tive } \\ & \text { (oec) } \end{aligned}$
711. 28283		Film 26280	
702.8	0.14950	361.6	0.07823
, 817.1	0.19988	433.9	0.08813
$1,009.2$ $1,170,4$	0.25005	474.0	0.09003
1,170,4	0.30062	518.6	0.20003
1,420.8	0.35100	561.5	0.11803
1,523.1	0.45175	603.4	0.12793
1,618.6	0.50212	690.0	0.23803
1,709.9	0.55250	730.5	6.14773 0.15763
1,026.1	0.60268	765.5	0.15763 0.1674
1, 000.8	0.65325	794.5	0.1772
		8×9.1	0.10723
		856.7	0.19733
		893.6	0.20663
		925.8	0.21683
		957.6	0.22673
		979.2	0.23663
		1,006.9	0.24643

GROUND RANGE (FT)

TABLE 3.14 - sbot 8 - Height of Triple Point
as a Puaction of Oround Renge

Ground Reage (ft)	IVeIght of Triple Point (ft)
345.4	2.8
459.7	10.6
509.0	15.2
550.4	22.6
590.5	21.6
622.7	27.2
655.0	35.5
684.0	39.6
719.0	45.1
752.6	49.3
798.2	57.6
825.8	65.4
859.5	68.2
884.4	65.9
912.4	69.1
947.4	75.5
981.1	83.8

vere obtalined over a ground range of from 300 to $1,000 \mathrm{ft}$ and are plotted in Fig. 3.29 and given in Table 3.14.

3.6 SHOT 9

The results of Shot 9 vere similar to those of Shot 1 ; however, a precursor vas observed to form on both sides of ground zero at approxi-

Figure 3.29 Shot 8, Height of the Triple Point as a Function of Ground Range.
mately 300 ft ground range. Measurements of the time of arrival of the precursor to the southvest (out to $1,150 \mathrm{ft}$) and to the northeast (out to $1,000 \mathrm{ft}$) of ground zero vere made on Film 29384. These data are presented in Table 3.15 and plotted in Fig. 3.30. As on Shot 1, the propagation of the precursor to the northeast side of ground zero over

$$
64
$$

TABLE 3.15 Sbot 9 - ATrival IIm of Procursor Llooy tbe Ground Martheant and Southmest of Ground zero

	Hortheast	southvest
$\begin{aligned} & \text { Time } \\ & (10 e c) \end{aligned}$	Ground Range (r2)	Oround Rance ($\mathrm{f} t$)
0.21663 0.22650 0.23638 0.24625 0.25612 0.26599 0.27586 0.28574 0.29561 0.30548 0.31535 0.32522 0.33510 0.34497 0.35484 0.36672 0.37458 0.38446 0.39433 0.40420 0.41407 0.42394 0.43302 0.44369 0.65336 0.46343 0.47330 0.48318 0.49305 0.50292 0.51279 0.52266 0.53254 0.54241 0,55228 0.56215 0.57202 0.58190	$\begin{aligned} & 317.6 \\ & 390.4 \\ & 439.8 \\ & 472.8 \\ & 515.3 \\ & 556.7 \\ & 594.9 \\ & 630.5 \\ & 668.2 \\ & 706.5 \\ & 740.0 \\ & 768.6 \\ & 79.9 \\ & 885.5 \\ & 857.9 \\ & 882.8 \\ & 909.4 \\ & 94.3 \\ & 965.7 \\ & 972.1 \\ & 995.5 \end{aligned}$	190.2 232.7 302.8 377.2 426.6 460.6 495.1 536.0 562.0 596.0 633.2 662.9 690.6 708.6 738. 761.7 786.2 810.1 823.4 851.0 867.4 809.8 905.2 919.0 937.6 953.0 975.8 989.6 996.0 1,024.2 1,034.8 1,057.1 1,081.0 1,085.8 1,107.6 2,118.2 1,142.1 1,158.0

Figure 3.30 Shot 9, Time of Arrival of Precursor Northeast and Southvest of Ground zero along the Ground.
the asphalt surface vas faster than to the southwest, where there was only the natural desert surface. Other than this asymmetry, no unusual phenomena vere observed. The reflected vave data that could be obtained vere linited to the point of insignificance.

3.7 SHOT 10

Arrival-time data vere measured on Film 28980 taken by the highspeed (500 frames/sec) Fastax camera (see Table 2.2 for the film calibration constants). These data are presented in Table 3.16 and plotted in Fig. j.31. A comparison of these data with the arrival-time data measured by the two nearest AFCRC canisters (Project l.1) shows good

Figure 3.31 Shot 10 - Time of Arrival of Free-Air Shock.
agreement; however, the accuracy of the canister positions is given as $\pm 45 \mathrm{It}$, reference 23. Figure 3.32 shows actual photographs taken from Films 28980 and 28982.

The arrival-time data vere fitted to Equation l.1, as described in Section 1.2 , and the constants obtained are:

$$
\begin{aligned}
& a=763.736 \\
& b=1,277.816 \\
& c=0.000043
\end{aligned}
$$

These constants are valid over the entire range of from 200 to $1,050 \mathrm{ft}$. Substitution of the constants a and b into Equation 1.2,

TAFLE 3.16 - Ebot 10 - Time of Arrival of Free Air shock

Radius $(f t)$	Time (oec)
123.400	0.001550
157.700	0.003150
188.500	0.004750
215.300	0.006400
235.200	0.007950
267.400	0.011050
295.916	0.012590
318.365	0.017290
372.446	0.026940
467.343	0.050440
496.935	0.058240
520.404	0.064490
551.016	0.073890
581.628	0.081890
609.179	0.089540
646.934	0.097390
671.423	0.111290
690.811	0.119090
749.934	0.128440
770.400	0.134590
785.708	0.151590
810.198	0.159290
842.850	0.172340
861.218	0.188740
914.218 981.625	0.219440
1,044.890	0.251440 0.280940
1,04.090	0.280940

TABLS $3.17-\operatorname{Shot} 10-$ Pressure, Volocity,
Distance Data in Free Alr

Rediue $(f t)$	Sbock velocity $(f t / m o c)$	Peak Overpreseure (ped)
200	13,038	712
300	1,478	225
400	5,124	104
500	3,884	55.7
600	3,137	34.5
700	2,647	23.5
800	2,306	16.8
900	2,056	12.7
1,000	1,867	9.8
1,100	1,720	7.7

sable 3.18 - Bhot 10 - Veapon Yleld Yersue Distance

Redius $(f t)$	rield $(k t)$
407	3.51
447	3.51
505	3.51
615	3.51
719	3.44
767	3.36
884	3.24
950	3.18
1,046	3.11
1,211	3.11

a) $\begin{aligned} \mathrm{t} & =0.096 \mathrm{SBC} \\ \mathrm{R} & =645 \mathrm{FT}\end{aligned}$
:.....:
!....:
.......
......:
......

b) $\begin{aligned} \mathrm{t} & =0.142 \mathrm{SEC} \\ \mathrm{B} & =770 \mathrm{FT}\end{aligned}$

Figure 3.32 Shot 10, Photographs of Free-Air Shock Taken from F11ms 28980 and 28982.

Pigure 3.33 Shot 10 - Peak Shock Overpressure as a Function of Distance.

Section 1.2, gives the instantaneous velocities as a function of distance. Thic equation is

$$
\begin{equation*}
U=763.7\left[1+\left(\frac{1277.8}{R}\right)^{1.5}\right] \tag{3.3}
\end{equation*}
$$

where R is given in feet and U is given in $\mathrm{ft} / \mathrm{sec}$.
By substitution of the instantaneous velocities into the RankineHugoniot equation (Equation 1.3) the peak shock overpressures vere calculated. Table 3.17 11sts the peak overpressures and velocities as
a function of distance. The ambient atmospheric conditions abead of the shock were taken as those at burst height (see Table 1.1). Figure 3.33 is a plot of the peak shock overpressures as a function of distance. Also plotted in Fig. 3.33 are the pressure-distance data obtained by the AFCRC canisters (from Reference 23), and there is excellent agreement between the two sets of data. The veapon yield as a function of

Figure 3.34 Sbot 10 - Weapon Yield as a Function of
Distance Obtained from Free-Alr Pressure-Distance De -e .
distance was calculated in the same manner as on Shot 4 (see Section 3.3) and the results are presented in Table 3.18 and plotted in Fig. 3.34.

It is difficult to determine a pigure of accuracy for the data obtained by the method used on this shot. Hovever, it is thought that the distances measured are vithin $\pm 10 \mathrm{ft}$ and the timing is accurate to about 0.1 percent. Although the dispersion of the arrival-time data about the fitted curve is greater than usual, a calculation of the
accuracy of the pressure-distance curve indicates that the pressures may be in error by as much as 2 to 3 percent from 400 psi to 8 psi.

3.8 SHOT 12

3.8.1 Free-Air Data

Arrival-time data for the incident free-air shock were measured in the vertical direction directly above air zero on Films 28389 and 28390 over a range of from 250 to $3,000 \mathrm{ft}$ (see Fig. 3.35

Figure 3.35 Shot 12, Photograph of Free-A1r Shock $2,330 \mathrm{ft}$ from Air Zero at $\mathrm{t}=0.946 \mathrm{Sec}$ (Film 28389).
for actual photographs of the free-air shock). These data are listed in Table 3.19 and plotted in Fig. 3.36. Distance and time scaling factors were determined as explained in Section 2.2, and the pilm calibration constants for these films are listed in Table 2.2. The absolute time for each film was found by plotting the first data point from the NOL films on the data supplied by EGsof for fireball radius
2.

品

Figure 3.37 Sbot 12, Pireball Radius versus Time.

TASLE 3.20 - Sbot 12 - Preosure, Velocity, Dfotance Data in Free Alr

$\begin{aligned} & \text { Dfotance } \\ & R(f t) \end{aligned}$	$\begin{aligned} & \text { shock } \\ & \text { velocity } \\ & \text { U (ft/00e) } \end{aligned}$	Bound Velocity $C_{0}(5 t / s e c)$	Andsent Precour. P_{0} ($\mathrm{p}=1$)	\qquad
600	4508.2	1116.1	12.07	223.3
700	3777.1	1215.	12.01	150.4
800	3266.9	124.8	11.98	109.0
900	2894.3	112 h .1	21.96	81.2
1,000	2612.5	1223.5	21.89	63.6
1,100	2393.2	112.8	11.05	50.2
1,200	2218.6	112.2	11.80	12.0
1,300	2076.9	111.5	11.76	34.2
1,400	1960.1	1110.9	11.72	28.9
1,500	1862.4	1110.2	11.68	24.8
1,600	1779.7	1109.6	11.63	21.4
1,700	1709.0	1109.0	11.59	18.6
1,800	1646.0	1108.3	11.55	16.3
1,900	1594.9	1107.7	11.51	14.4
2,000	2548.6	1107.0	11.46	12.8
2,200	1507.3	1106.4	11.42	11.4
2,200	1470.8	1105.8	11.38	10.2
2,300	2438.3	1205. l	11.34	9.2
2,400	1409.1	1104.5	11.30	8.3
2,500 2,600	2382.8	1103.9	11.25	7.5
2,600 2,700	1359.0	1103.2	11.21	6.8
2,700 2,800	1337.4	2102.6	11.17	6.1
2,800	1317.7	1202.7	11.13	5.6
2,900 3,000	1299.7	1201.4	21.09	5.1
3,000	1283.2	1200.6	31.04	4.6

Figure 3.38 Shot 12, Free-Air Shock Velocity versus Distance.
versus time (see Fig. 3.37). The arrival-time data were then fitted to Equation 1.1, Section 1.2, and the constants obtained by this fitting procese are:

$$
\begin{aligned}
& a=966.374 \\
& b=1426.296 \\
& c=0.010475
\end{aligned}
$$

The constants are valid over the entire range of from 600 to $3,000 \mathrm{ft}$.
Substitution of the constants a and b into Equation 1.2, Section 1.2, gives the instantaneous shock velocities as a function of distance. This equation is

$$
\begin{equation*}
U=966.4\left[1+\left(\frac{1426.3}{R}\right)^{1.5}\right] \tag{3.4}
\end{equation*}
$$

where R is given in feet and U is given in ft/sec. The velocities obtained from Equation 3.4 are reported in Table 3.20 and plotted in Fig. 3.38 as a function of distance. Using Equation 1.3, the peak
shock overpressures were then calculated. The ambleat atmospheric conditions ahead of the shock (P_{0} and C_{0}) were decermined by the same method used on Shot 4, Section 3.3. The ambient pressure, P_{0}, and sound velocity, C_{0}, used to calculate the peak overpressure at each distance are given in Table 3.20 and plotted in Fig. 3.39. Peak shock overpreseures as a function of distance for Shot 12 are listed in Table 3.20 , and Fig. 3.40 is a plot of pressure versus distance for the free-air incident shock.

The pressure-distance curve changes curvature at the lower pressure levels (below 10 psi); 1.e., the pressure appears to have decayed at a

Figure 3.39 Shot 12, Sound Velocity and Ambient Pressure
versus Altitude.
greater rate at the lover pressure levels, as was the case on Shot 8, Section 3.5. This is contradictory to what one might expect, since the incident shock should be reinforced by the coalescence of the reflected shock at these pressure levels. It hes been noted in the past (Reference 6) that the fitting funciion could cause such an inflection to occur and is probably the cause in this case (see Sections 3.9 and 4.1.4).

Also meseured on Film 28389 were the arrival-time data for the reflected wave. Hooks and breaks were observed in the traile on Shot 12, indicating the position of the reflected wave. These data are
given in Table 3.21 and plotted in Fig. 3.36. The arrival-time data for the reflected wave were measured over a range from $1,350 \mathrm{ft}$ to $2,600 \mathrm{ft}$, where coalescence of the incident and reflected shocks was observed. The reflected wave on Shot 12 vas similar to that on Shot 4, although it was slower. The average velocity of the observed reflected

Figure 3.40 Shot 12, Pree-Air Peak Shock Overpressure versus Distance.
wave as it approached the incident wave and just prior to coalescence was approximately 2,500 to $3,000 \mathrm{ft} / \mathrm{sec}$. The center portion was greatly accelerated while passing thiough the region containing the hot gases from the fireball. The shock front contours at the poinc of catch up are shown in Fig. 3.1. Coalescence occurred over a radius of approximately $1,000 \mathrm{ft}$ horizontaily to either side of the vertical.

The reflected wave beneath the fireball was not observed directly, except near the triple point and near the ground just after the incident
shock wave had reached the ground. Just prior to striking the ground, the incident shock appeared to be very flat, almost assuming the shape of a horizontal plane wave in the vicinity of ground zero. Based on past experience, it is impossible to believe that the observed distortion was due to an optical effect elone. This flatness of the incident shock of course affected the reflected wave but to what extent

Figure 3.41 Shot 12, Weapon Yield as a Function of Distance from Burst Point.
cannot be determined. Furthermore, how this may have affected shock coalescence above the fireball is equally uncertain.

Closure of the reflected and incident shocks took place at approximately $2,600 \mathrm{ft}$ from air zero (7 -psi level). As was noted above, no indication of a reinforcement of the incident shock pressure was observed in this region; therefore, to effective increase in yield, such as that on Shot 4, can be justified for Shot 12. However, the effertive yield of the Shot 12 device was determined by the same method
employed on Shot 4 (see Section 3.3) and these results are presented in Table 3.22 and plotted in Fig. 3.41.

3.8.2 Direct Shock Photography Data Near the Surface

Measurements of the shock phenomena occurring near the surface were made over all three areas -.- desert, water, and asphalt. These F-214
$746,250 \mathrm{~N}$ 716,000E

Figure 3.42 Shot 12, Planes of Measurement for Diject Shock Photography.
data were obtained from Films 28381, 28382, 28383, and 28387. The planes of measurement for these films can be found in Fig. 3.42. The results obtained for each area are presented below.

Asphalt Area. A precursor formed over the asphalt area at a ground range of approximately 300 ft and persisted well bejond $3,000 \mathrm{ft}$

Figure 3.43 Shot 12, Photograph of Shock Along Asphalt $1,430 \mathrm{ft}$ from Ground Zero at $\mathrm{t}=0.213 \mathrm{sec}$ (Film 28381).
from ground zero. It was visible on Film 28381 out to a ground range of approximately $1,600 \mathrm{ft}$ and is plainly evident in the photograph taken from this iflm (Fig. 3.43). Table 2.2 gives the calibration constants, for this f1lm. The precursor was also observed from 1,200 to $2,900 \mathrm{ft}$ on Film 28383, although not as clearly as on Film 28381. A dark streak across each frame of Film 28383 masked out all of the wave fronts near the surface; however, the propagation of the dust or smoke following the precursor front was readily observable. This dense cloud of material was lifted and carried by the flow behind the precursor, and its makeup was quite different from that over the desert and water areas. A comparison showed that the data for the arrival time of the initial disturbance, as indicated by the SRI gages (Project 1.10), agreed closely with the data for the arrival time for the dust, as determined from the photographs, i.e., the respective arrival-time curves were nearly identical. Thus the arrival-time data for the precursor along the surface over the asphalt area are given as a continuous set of data from 300 ft to $2,900 \mathrm{ft}$ in Table 3.23 and plotted in Fig. 3.44. In some cases, where structures or other obstructions prevented observation of the precursor or dust front to ground level, the fronts were extrapolated to that level. This was necessary in only a few frames of the film record, and the data are considered highly reliable. Also shown in Fig. 3.44 is the arrival time of the initial disturbance over the esphalt, as messured by Profects 1.10 and 1.12 , and there is good agreement for all sets of data (less than 5 percent difference at the maximum).

Measurements of the angle that the precursor front made with the asphalt surface were also obtained, and these data are given in Table 3.24 and plotted in Fig. 3.45. A method for determining the temperature

TABLE 3.21 - Bbot 22 . The of Arrivel of
Reflected Sbock in Pree Alr

Radius (ft)	$\begin{gathered} \text { Time } \\ (\mathrm{sec}) \end{gathered}$
Film 28309	
1,352.760	
1,409.677	0.647620
1,576.455	0.696640
1,667.786	0.745870
1,781.619	0.795100
1,850.499	0.844330
2,035.758	0.893560
2,213.126	0.942790
2,307.847	0.992080
2,448.734	1.042250
2,512.269	1.090480
2,593.011	1.139710

TABLE 3.22 - Ebot 12 - Weapon IfelC Versua Distance

Yield Obtalaed From Preseure - Distance Data		Tield Obtalsed Pram Tiee of Arrival Data	
Distance trom Burst (fi)	weapoa Yield (xt)	Dlstance from Burat (ft)	Weepon Ileld ($\mathbf{K t}$)
684 768 905 995 1,216 1,334 1,840 2,102 2,603 2,733	$\begin{aligned} & 24.6 \\ & 24.6 \\ & 24.7 \\ & 24.8 \\ & 24.3 \\ & 24.3 \\ & 22.8 \\ & 22.2 \\ & 22.9 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1200 \\ & 1500 \\ & 1800 \\ & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 21.0 \\ & 22.0 \\ & 22.0 \\ & 22.0 \\ & 21.5 \\ & 20.5 \end{aligned}$

TABLE 3.23 - 5bot 12 - Tine of Arrival of the Initial Disturbence Along the Oround (Aspbelt Aree)

Oround Range (tt)	(tec)	Oround Renge (ft)	$\operatorname{TINe⿻}_{(100)}$
	Pila 28381 and 28383		
285.6	0.03675	1,304.9	0.18388
491.7	0.05637	1,345.9	0.19369
586.3	0.06617	1,385.0	0.20350
570.7 766.6	0.07598	1,431.0	0.21331
812.6	0.09560	$1,470.1$ $1,507.9$	0.22312
843.5	0.10541	1,507.9	0.23293 0.24274
877.8	0.10789	1,586.2	0.26336
895.2	0.21522	1,736.2	0.3419
930.1 952.5	0.21760	1,864.3	0.36053
952.5 988.6	0.12503	2,080.1	0.40911
1,015.6	0.12738	2,115.8	0.45770
1,043.0	0.13704	2,215.6	0.50628
1,087.4	0.14465	2,413.5	0.55487 0.60345
1,084.3	0.14676	2,486.6	0.60345 0.65204
1,143.5	0.25446	2,559.3	0.70062
1,109.9	0.25647	2,636.2	
1,188.3	0.16426	2,696.4	0.79719
1,167.9	0.16619	2,779.4	0.79719 0.84638
1,225.:	0.17407	2,819.7	0.89496
1,209.1	0.17691	2,891.3	0.94355

81
nor.e.

28

TABLE 3.24 - Shot 12 - ancle of the Precureor an E Tunction of Ground lange over dephals and Desert areas

Degert		Asphalt	
Angle of Precurnor (degreee)	Oround Range (ft)	Ancle of Precurnor (degreet)	Oround Range ($f t$)
26.0	545		
26.5	679	24.0	764
22.0	852	23.6	942
23.0	963	22.0	1,067
27.8	1,095	24.4	1,210
27.2	1,188	25.0	1,304
29.5	1,306	23.6	1,635
27.9 29.6	1,390	26.5	1,19
29.6 28.2	1,494 1,575	27.9	1,634
30.5	1,575	29.0	1664
31.0	1,700		
36.0	1,766		
39.1	1,808		
38.5	1,807		
41.5	1,924		
40.5	1,967		
49.5	2,01 2,049		
30.0	2,084		
54.5 57.5	2,143		
57.5	2,11		

of the thermal layer from the angle of the precursor was given in Reference 6. The temperature vas calculated from the following equations:

$$
\begin{equation*}
\sin \theta=\frac{C_{0}}{C_{1}} \tag{3.5}
\end{equation*}
$$

Pigure 3.45 Shot 12 - Angle of the Precursor as a Punction of Ground Range.

Figure 3.46 shot 12 - Calculated Temperature of the Thermal Layer as a Punction of Ground Range.
C_{0} and C_{1} are ambient sound velocities existing in the nonheated and heated mediums, respectively. Since,

$$
\begin{equation*}
c_{1}=c_{0}\left(1+\frac{T_{1}}{273}\right)^{1 / 2} \tag{3.6}
\end{equation*}
$$

then T_{1} may be calculated by the use of Equations 3.5 and 3.6. This was done, and the resulting temperatures as a function of ground range over the asphalt area are presented in Table 3.25 and plotted in Fig. 3.46 . It should be pointed out here that, although ths experiments conducted by Projects 8.4 and 1.5 to measure temperature and sound velocities over the three areas on Shot 12 were not conclusive, the differences between the temperatures and sound velocities measured by these projects and those obtained by calculations from the project 1.2 measurements of
the angle of the precursor are extremely large (the calculated temperatures are from four to five times those measured). This may indicate a necessary revision of the method for caiculating temperatures from the angle of the precursor.

The triple-point trajectory over the asphalt area was observed over a ground range of from 650 to $1,900 \mathrm{ft}$. The extension of the triplepoint measurements was greatly aided by the rocket emoke grid in the field of view of Film 28383. The height of the Mach stem could be

Talle 3.25 - Ebot 22 - Theperature of Thermal Layer Culeulated Tioo Aaghe of the Precursor Over Aophalt and Deeert dreat

Decert		Aspbelt	
Ground Rape (ft)	THep of Thermal Leyer (${ }^{\circ} \mathrm{C}$)	Omund Range (tt)	Temp of therml Layar $\left({ }^{\circ} \mathrm{C}\right)$
600	1,1\%\%	650	
690	1,186	700	1,581
700	1,238	750	1,537
750	1,365	800	1,495
000	1,581	850	1,495
850	1,814	900	1,509
900	1,811	1,000	1,643
1,000	1,442	1,100	1,776
1,100	1,246	1,200	1,495
1,200	1,054	1,305	1,377
1,300	1,020	1,400	1,305
1,400	1,003	1,500	1,206
1,500	971	1,600	1,081
1,600	883	1,700	-933
1,700	763		
1,800	607		
1,900	453		
2,000	325		
2,100	199		
2,150	161		

measured to over 900 ft , because of this fact. These data are plotted in Fig. 3.47 and ilsted in Table 3.26

Water Area. Within the fleld of Film 28381, the shock propagating over the water area could not be observed all the way to surface level. The precursor and the dust cloud over the desert area obscured the shock over the water area to the extent that it vas impossible to determine from the photographs alone whether a precursor formed over the water surface or not. The Mach stem which developed over the water area was clearly visible, and behind it a column 0 : material was observed to reach a height of approximately 200 ft .

The photographs of this material indicate that it was definitely not associated with the desert area (see Fig. 3.48 for an actual photograph taken from Film 28381). The column appears to be composed of a fairly dense material (although not as dense as the dust along the desert line) such as water droplets or smoke. This column lagged farther and farther behind the Mach front as it propagated outward from ground zero. Since the dust obscured the lover part of the Mach front,
over a ground range from 500 to 750 ft , that portion of the Mach stem which was visible was extrapplated to the surface. Beyond 750 ft a precursor vas observed to precede the Mach stem. This precursor front was then extrapolated to the surface level over a ground range of from 750 ft to $1,350 \mathrm{ft}$. It is not certain whether this precursor formed over the water or was forced in from adjacent desert arcas (unfortunate-

Figure 3.47 shot 12 - Beight of the Triple Point as a Punction of Oround Range Over Asphalt, Water and Desert Areas.

Iy the aerial films taken for this project were not able to resolve this uncertainty), but the extrapolated arrival-time data for the precursor observed are in good agreement with the measurements made by Project 1.10.

The arrival-time data of the initial disturbance along the water surface are given in Table 3.27 and plotted in Fig. 3.49 (this includes the extrapolated Mach wave from 500 to 750 ft and the extrapolated pre-

Taste 3.26 - Sbot 12 . Helght of the Triple Point an Pumetion of Ground Range

Desert		Auphalt		Vneter	
Ground Range (TL)	MeLet (P)	Ground Piange (ft)	aletht (ft)	Ground Range (ft)	Melcht (rt)
729.9 775.5 812.9 857.0 881.1 914.1 547.9 $\$ 6.9$ 1,010.2 1,039.3 1,058.5 1,096. 4 1,108.4 1,158.3 1,174.9 1,180.6 1,220.6 1,233.6 1,277.7 1,292.8 1,303.2 1,342.6 2,354.1 1,384.2 1,400.8 1,413.8 1,464.7 1,466.3 1,493.3 1,500.5	$\begin{array}{r} 68.6 \\ 87.3 \\ 106.5 \\ 114.3 \\ 149.6 \\ 151.7 \\ 161.0 \\ 172.4 \\ 182.3 \\ 207.8 \\ 236.8 \\ 23.2 \\ 244.7 \\ 249.3 \\ 271.6 \\ 301.2 \\ 298.6 \\ 333.4 \\ 319.4 \\ 349.6 \\ 341.8 \\ 351.6 \\ 385.4 \\ 370.3 \\ 391.1 \\ 383.3 \end{array}$	648.1 696.6 77.5 809.4 840.3 872.5 893.3 937.4 866.4 996.7 1,021.9 1,050.2 1,076.7 1,103.6 1,129.0 1,254.3 1,270.2 1,200.7 1,229.3 1,250.7 1.521.9 1,537.6 1,554.3 1,563.7 1,590.4 1,602.9 1,614.4 1,625.4 1,633.8 1,556.8 1,673.0 1,686.6 1,696.0 $1,719.5$ 1,728.9 $1,743.0$ 1,757.1 1,772.3 1,786.9 1,802.1 1,809.4 1,025.2 1,839.8 1,873.7 1,887.3 1,896.7 1,912.9	$\begin{array}{r} 75.6 \\ 86.4 \\ 109.7 \\ 121.0 \\ 138.7 \\ 160.1 \\ 174.6 \\ 202.4 \\ 220.0 \\ 245.2 \\ 260.4 \\ 267.3 \\ 273.6 \\ 291.9 \\ 308.9 \\ 318.4 \\ 330.2 \\ 34 . .7 \\ 349.2 \\ 362.5 \\ 580.0 \\ 561.0 \\ 584.5 \\ 6.17 .4 \\ 616.9 \\ 635.2 \\ 650.4 \\ 673.4 \\ 691.7 \\ 684.9 \\ 658.7 \\ 712.6 \\ 729.3 \\ 729.3 \\ 745.0 \\ 763.3 \\ 776.9 \\ 786.8 \\ 791.0 \\ 809.3 \\ 828.6 \\ 846.4 \\ 857.4 \\ 878.3 \end{array}$	$\begin{array}{r} 459.6 \\ 504.3 \\ 540.3 \\ 578.1 \\ 849.8 \\ 885.1 \\ 1,009.3 \\ 1,049.6 \\ 1,168.8 \\ 1,180.1 \\ 1,269.0 \end{array}$	$\begin{array}{r} 17.6 \\ 25.2 \\ 31.5 \\ 42.9 \\ 95.2 \\ 111.0 \\ 180.9 \\ 171.5 \\ 239.6 \\ 222.5 \\ 200.5 \end{array}$

cursor front irom 750 to $1,350 \mathrm{ft}$). The photographic arrival-time data and tionse from Project 1.10 agree to within better than 5 percent.

The trajectory of the triple point over the water area was measured over a ground range of from 450 ft to $1,300 \mathrm{ft}$, and these data are presented in Table 3.26 and shown in Fig. 3.47.

Beyond a ground raise of $1,350 \mathrm{ft}$, no data were obtained over the water surface. The film which vas aesigned to cover this area was badly

TARCE 3.27 - Shot 12 - Time of Arrival of the Initial Disturbance Along the Ground (Vater Area)

Ground Range (ft)	$\begin{gathered} \text { Time } \\ \text { (sec) } \end{gathered}$	Ground Range (ft)	$\begin{gathered} \text { Time } \\ (\mathrm{sec}) \end{gathered}$
	F112 28381		
475.3	0.05637	997.9	0.16426
507.5	0.06617	1,038.9	0.17407
604.6	0.08579	1,070.4	0.16368
684.0	0.09560	1,096.3	0.19369
690.3	0.10541	1,131,6	0.20350
733.8	0.11522	1,178.8	0.21331
784.8	0.12503	1,200.9	0.23293
865.5	0.13484	1,257.0	0.24274
914.1	0.14465	1,298.6	0.25255
958.2	0.15446	1,328.3	0.26235
		1,369.3	0.27216

streaked with light over the regions of interest. The overexposure masked out all the shock phenomens occurring near the surface.

Desert Area. Propagation of the shock near the ground over the desert area was observed on Films 28387 and 28382 (see Table 2.2 for the film calibration constants). As was expected, a precursor formed over this area that resembled the precursor formed during Shot 10 of Operation UPSHOT-KNOTHOLE to a remarkable degree (see reference 6). The precursor over this area was first observed from approximately 500 ft ; it persisted out to a ground range well beyond $3,000 \mathrm{ft}$. It was markedly different from that formed over the asphalt area. Figure

Figure 3.48 Shot 12, Photograph of Shock Along Water 1,000 ft from Ground Zero at $t=0.164 \mathrm{sec}$ (F1lm 28381).
3.50 shovs an actual pbotograph (taken from Film 28387) of the precursor propagating over the desert area. The front of the precursor over the desert area was steeper and its propagation along the ground slover than the precursor over the asphalt area (lagging by approximately 35 msec at $1,500 \mathrm{ft}$). The arrival-time data of the initial disturbance along the desert surface over a range of from 500 to 3,350 ft are presented in Table 3.28 and plotted in Fig. 3.44. On P1lm 28382 it was impossible to detect the shock front from a ground range of 2,450 to $3,100 \mathrm{ft}$. At $3,100 \mathrm{ft}$ this shock front passed a smoking blast-line pole and wan again detectable out to $3,350 \mathrm{ft}$ ground range. The arrival-tine curve

Figure 3.49 Shot 12, Time of Arrival of the Initial Disturbance Along the Ground (Water Area).
shown in Fig. 3.44 was extrapolated over the interval where the shock front could not be detected. Also plotted in Fig. 3.44 are the arrivaltime data of the initial disturbance over the desert area, as measured by Projects 1.10 and 1.12. Out to a ground range of $2,500 \mathrm{ft}$ the agreement is exceptionally good (less than 5 percent differeace in all cases). However, beyond this region the agreement, though not as good, is within the rauge of difference that could possibly be accounted for by the asymetry of the precursor observed throughout the region. Following the precursor, a dust cloud rose to height of approximately 250 ft and was apparentiy coincident with the arrival time of the precursor out to a ground range of $1,800 \mathrm{ft}$. Beyond this ground range, the dust cloud began to lag behind the precursor front, and it ceaned to propagate
horizontally at about $3,100 \mathrm{ft}$. A plot of the dust arrival-time data beyond 1,900 ft is presented in F 1 s . 3.44.

The angle that the precursor frint made with the surface over this ax ct was also measured, and these data are presented in Table 3.24 and plotted in Fig. 3.45. Temperatures calculated from these data in the

Table 3.28- Shot 12 - Time of Arrival of the Initial Dinturbance Along the Cround (Desert Area)

Ground Range (ft)	$\begin{gathered} \text { Time } \\ (\mathrm{sec}) \end{gathered}$	Ground Range (t)	$\begin{aligned} & \text { TIme } \\ & (\mathrm{ecc}) \end{aligned}$
Pila 28397			
531.6	0.06707	1,889.0	0.40061
607.7	0.07739	1,912.4	$\begin{aligned} & 0.40001 \\ & 0.41201 \end{aligned}$
675.2	0.08735	1,927.0	0.42341
732.4	0.09731	1,950.3	0.43481
784.3 852.8	0.10727	1,972.2	0.44621
924.5	0.11723	1,985.7	0.45620
924.7	0.12717	2,007.5	0.46619
1,023.2	0.14711	2,019.4	0.47618
1,075.2	0.15707	2,037.1	0.48617
2,106.3	0.16703	2,055.	0.49616
2,155.7	0.17622	2,091.6	0.50615
1,206.6	0.18542	2,106.2	0.51614
1,251.8	0.19460	2,128.5	0.52613
1,295.9	0.20379	2,151.9	0.54611
1,334.3	0.21298	2,159.1	0.55610
$1,366.0$	0.22217	2,177.3	0.56609
1,390.4	0.23136	2,183,6	0.57608
1,441.3	0.24055	2,190.8	0.58607
1,485.5	0.24974	2,228.2	0.60605
1,495.9	0.25893		-.6060
2,558.2	0.26809		
1,590.9	0.27725		
1,616.	0.28641	2,104.3	0.52 .00
1,654.3	0.29557	2,192.8	0.57048
1,653.2	0.30473	2,269.7	0.61856
1,702.1	0.31389	2,336.2	0.66744
1,729.1	0.32305	2,437.1	0.7159
1,749.3	0.33221	3,136.6	1.24980
1.774.8	0.34361	3.193 .9	1.34616
1,799.2	0.35501	3,247.9	1.44312
1,815.3	0.36641	3.298 .6	1.54008
$1,828.3$ $1,864.6$	0.37781	3,347.6	1.63704

same manner as described for the asphalt area results are listied in Table 3.25 and shown in Fig. 3.46.

The beight of the Mach stem as a function of ground range over the desert area was also obtained. Table 3.26 11sts these data, and Fig. 3.47 shows a plot of the trajectory of the triple point over this area.

Comparison of Resuits of Asphalt, Desert, and hater Areas. Ove?: the asphalt and desert area, a precursor was observeत to form at approximately 300 and 500 ft , respectively. Since the watis area was obscured by the dust along the desert, it cannot be ascertained whether the observed precursor formed over this area or was the result of feed-in effects. A more complete discussion of this is presented in Chapter 4.

Figure 3.50 Shot 12, Fhotograph of Shock Along Desert $1,750 \mathrm{ft}$ from Ground Zero at $\mathrm{t}=0.332 \mathrm{sec}$ (Film 28387).

The precursor formed over the desert propagated at a slower velocity along the ground and at a steeper angle than over the asphalt area. In all three areas near the ground, the blast was loaded with some material raised by the passage of the shock or precursor along the surface. Over the desert area this cloud was apparently composed of sand and dust particles. Although the water area could not be observed at ground level, it appears on the 111 m that water particles rose to a considerable height behind the Mach stem; however, the extent of the water column is extremely small, compared to the dust cloud raised over the desert area. Over the asphalt area the cloud of material immediately behind the precursor appeared to be entirely aifferent from that over either of the other two areas. Presumably, it was composed of a mixture of particles of smoke and dust. Temperatures calculated from the angle of the precursor show that the maximum temperatures over the asphalt and desert arees were approximately the same; however, for corresponaing ground ranges, the temperatures were higher along the asphalt than along the desert, line. Comparison of the path of the triple point over the three areas indicates that the Mach stem grew much faster over the asphalt area than over the other two areas.

The path of the triple point over the desert area, when plotted graphically, fell between those for the water and asphalt areas. The

Thele 3.29 - Project 1.2 - Shock Photography Pilme

Shot	P12	
1	28881 28882 20883 26884 28885 28886 28887	No ining on any fils. Precuraor measurements mede on Fila 28881. Very good fllae showing aboek phenomena bear the ground. Mo free-alr dala can be obtained. Film 28085 and 28086 thov cloud rlue but do otocke can be observed.
3	$\begin{aligned} & 26881 \\ & 28682 \\ & 28683 \\ & 28684 \end{aligned}$	All films vere bealy overexposed. Only qualleative information can be obtained from thene filme.
4	$\begin{aligned} & 28180 \\ & 28181 \\ & 28180 \\ & 28183 \\ & 28184 \\ & 28185 \\ & 28186 \\ & 28187 \end{aligned}$	Pree-air date obtalned from 28183 and 28134. Replected vave observed on F1la 28184. Measuremente elong the ground obtained from 28183 and 28184. Files 28185, 28186, and 28107 hov good detall of bock phenomen bear ground zero. Fila 28187 blowe triple point out to and of rocket grid. Excellent film.
6	$\begin{aligned} & 28000 \\ & 20081 \\ & 28082 \\ & 20083 \\ & 28084 \\ & 22085 \\ & 28086 \\ & 28087 \end{aligned}$	Precursor measuremeat: moe on Filas 20081 and 20004. Pree-alr date in the pireball atage and the early stages of the abock after breakamy vere obtained from fila 28080 although the apeed of this film doef not remin constant. Exposures of files 2800 and 28083 ver too heary to obtalo seasuresent.
8	$\begin{aligned} & 28280 \\ & 22881 \\ & 28282 \\ & 28283 \\ & 28284 \\ & 28887 \end{aligned}$	Shock phenowene in free-alir ad along the ground seasured on Filas 26282 and 26284 . Film 28280 ahow early abock formition in free-air and good dotall of obock phenomece neer the ground 10 tso vicinity of ground zero.
9	$\begin{aligned} & 29382 \\ & 29383 \\ & 29384 \\ & 29385 \\ & 29386 \end{aligned}$	Shock phenowena neer the ground vere measured on Film 29384. All fila vere llightly overexposed but good detall of the sbock near the ground could be observed. Filma 29385 and 29386 show the early notion of the cloud.
10	28980 28981 2898 28985 28986 28987	Lack of contrant on 11 pllas make the cotection of the shock front very diffleult. Film 20980 and 20902 are the bent. All measureaents vere made frow File 20980.
12	28360 28361 28382 28383 28384 28385 28385 28307 28388 28389 28390 28391	Free-nis mensuremente vere mide from filme 28389 and 28390. Fi2a 28390 shove free-air shoek best. Oround meavurement. mide from Fila: 28381, 28382, 28383 and 28381 . Film 28381 thov: propagation of abock over asphalt and miter arens. Fila 28383 hove propagation of ahock over asphalt, hovever a dark streak acrons ceater of frase obliterates most of obock fronte. Filua 28387 and 28382 ohow shock propageting alone the desert. Pilm 28307 appenre to be ellghtly out of focut.

cause for these differences is not fully understood. Most likely, the differences in reflection coefficients for the three different surfaces and the large differences in the thermal layers above them gave rise to the differences in formation of the thermal Mach waves and their subsequent growth.

3.9 ACCURACY OF RESULTS

Th: sources of possible errors and the procedures for computing their magnitudes in the methods employed to find pressure as a function of distance by the smoke rocket shock velocity technique bave been covered extensively in References 1 and 2.

The six major sources of error stem from (1) the static and dynamic resolution uncertainties associated with film measurements under optimum conditions, (2) failing to correct for foreshortening in the image plane, (3) improper scaling of distance on the film, (4) improper time calibration, (5) improper curve fitting, and (6) use of improper values of the atmospheric pressure, P_{0}, and sound velocity, C_{0}, for the region in front of the shock in pressure computations.

Throughout the analyses of the free-air data, care vas taken to hold the above-listed errori to a minimum. Except for Shot 10, the distance measurementa fell within a maximum uncertainty of ± 2.0 ft and measirements of time per frame to within a maximum uncertainty of $\pm 0.00005 \mathrm{sec}$. In the case of Shot 10 , a different method had to be used to detect and measure the locus of the shock front, a method wich leads inherently to greater uncertainties in the values of the time-ofarrival data than the method used for the other shots. The uncertainties associated with the shot 10 data vere estimated in Section 3.7.

The calculated pressures for all shots reported are considered to be accurate to 3 percent down to the 15 -pel level. Below the 15-pal level, the pressure for Shot 4 is considered to be good to 5 percent. Pressures on Shots 8 and 12 below the 15 psi level may ve in greater error but are estimated to be accurate to within 10 percent. (Note the diecussion in Section 4.1.3.)

Uncertainties in the direct-shock-photography data are of the same order of magnitude as those for the free-air smoke-rocket data, except for the measurements of triple-point height and the me surements of the angle of the precursor. The uncertainty associated with these data is probably of the order of ± 5 percent.

Chapter 4 DISCUSSION

4.1 PREE-AIR SEOCK PHENOMENA

4.1.1 Shock-Wave Coalescence, Arrival-Tjme Data

Concerning the study of the coalescence of the reflected shock with the incident shock vertically above the burst, it was pointed out in Chapter 3 that on Shots 4 and 12 the reflected wave overtook the incident wave, but on Shot 8 the reflected wave was not observed above the fireball, because of the low quality of the film records (1mproper exposure because of the unexpectedly low yield of the Shot 8 device). A careful analysis of the vertical arrival-time data has shown that only on Shot 4 was there a distinct increase in the shock velocity following coalescence at approximately $2,550 \mathrm{ft}$ from the burst point. On Shot 12, coalescence was clearly observed st approximately 2,600 it from the burst point, but no corresponding increase in velocity could be detected. If at all, the change in velocity was negative. Similarly, on Shot 8 , no distinct increase in velocity was observed out to the limit of the data at $2,520 \mathrm{ft}$. It is plausible to assume for Shot 8, however, that coalescence had not yet occurred, since it did not take place for the more-favorable conditions of Shot 12 (larger yield and lower burst height) until the distance of about $2,600 \mathrm{ft}$ was reached.

In the analysis of the arrival-time data for these three shots, it was observed that, when the data were scaled to a common yield basis for comparison the Shot 4 data beyond the fireball region were consistently slightly higher than those for Shots 8 and 12 , between which there was an apparent but insignificant difference. A small percentage differewce between the actual yield and the stated yield would account for this. Bowever, following the point of coalescence, the Shot 4 arrival-time data became markedly higher. Assuming the stated yields to be accurate and taking the extreme values for data uncertainty into consideration, the increased velocity of the coalesced wave on Shot 4 was found to be significant and is believed to be real. Why a similar increase was not detected in the Shot 12 data is difficult to understand, unless an actual increase that may have occurred was so small that it fell within the experimental eiror and could not be recognized.

Another fact to be considered In connection with the observed shock coalescence on Shots 4 and 12 is that, prior to coalescence, the reflected wave velocities ranged from 2,500 to $4,000 \mathrm{ft} / \mathrm{sec}$. At coalescence on Shot 4, the velocity of the reflected wave was significantiy greater than that of the incident wave, while on Shot 12 the respective velocities were approximately the same. This information is consistent
with the remarks made above and may serve, in part, to explain the existence and nonexistence of the velocity increase in the respective cases of shock coalescence (see also Section 4.2.2).

A primary aignificant difference between these shots, and one which must certainly affect the behavior of the reflected wave, is that on Shot 4 the irebali intersected the ground plane, whereas this did not occur on Shots 8 or 12. Relatively little can be said quarititatively about shock transmission through the intensely heated ilirebail region. Hovever, it is certain that the shock front accelerates upon entering this region*, and by this mechanism it is sometimes enabled to overtake the incident wave vertically above the burst. Therefore the initial conditions for the occurrence of coalescence must depend markedly, but not solely, on the scaled height of burst.

4.1.2 Shock-Wave Coalescence, Calculated Pressures

The foregoing remarks have been limited to a discussion of arrival-time and shock-velocity date for Shots 4, 8, and 12. These data are the fundamental results of the experiment and provide the basis for the calculation of the shock pressures as a function of distance. It was pointed out that the velocity of the reflected wave front is accelerated in passing through the intensely heated firebail region, but nothing was said about the pressure in the wave. Laboratory, field, and theoretical studies (References 6, 11, 12) have shown that, when a sock wave enters a region in wbich the local sound speed is equal to or greater than the shock velocity, the shock deteriorates; that is, the rise to peak pressure is no longer instantaneous but, rather, the rise tine is increased and the pressure-time representation of the wave appears rounded. The wave front accelerates rapidly to acclimate itself, as it were, to its new surroundings. Shock-tube studies (Reference 12) have shows that weak shocks, upon passing into a region of heated gas, lose their ability to refract light to suish an extent that they cannot be detected photographically. Pressure-gage records lend further aupport to the observation of vave-froat deterioration described above.

Direct bhock photography on full-scale nuclear teste has shown that the reflected wave is sufficiently atrong to distort the apherical s^{2} ape of the fireball, causing the lover porition to become concave

[^2]

Invard with respect to the spherical surfece (Reference 13). In the light of these observations, it is difficult to understand why the uppermoct portion of the fireball is not also pushed out of shape as the reflected shock leaves the fireball region; yet little, if any such distortion has ever been detected on any atonic burst. It would appear as though the particle motion bekind the reflected vave were almost completely attenuated during its passage through the fireball. The accelerated central portion of the wave front has been observed well vithin the ifreball by direct shock photography, but it disappears before reaching the firoball center and is not detected again until it has passed vell beyond the uppernost portion of the fireball. It has been detected in this latter region only with the aid of the rocket moke trails, and even then the observed refraction of the smoke grid is extreasely weak by comparison with that produced by the incident vave. In other words, the high-velocity front apparently is not accompanied by a correspondingly high pressure.

From these argunents it is possible to hypothesize that the reflected shock wave, although very strong at its origin, is rapidiy distorted and veakened during its passage through the intensely heated fireball region, while at the same time its velocity is increased. Because the local sonic speed within the fireball exceeds the speed of the shock enteriag it, the "shock" cannot be considered to be more than a rapidiy attenuated, slov-rising pressure pulse while it traverses this region. The pressure wave is confronted by new conditions an it leaves the ilreball, and these are such as to cause it to "shock up" again, although slowly, since its peak pressure has decayed somewhat and the alr through which it jusses appears cooler to it gradually. Whether the vave becomes a shock before it overtakes the incident shock or not, $s 0$ long as it is sufficiently positive with respect to P_{0} : the ambient atmospheric pressure, an increase in pressure in the coalesced shocks should result.

On Shot 4 the calculnted pressures of the shock vave follovIng coalescence vere noticeably larger than those taken from the standard, composite frec-air pressure-distance curve. This vould follov logically from the observed velocity increase upon shock coalescence referred to In the previous section. On Shot 12 , hovever, the reflected wave was observed to overtake the incident wave very gradually, and the difference in their respective velocities vas negligible. Nevertheless, if the presaure in the reflected wave bad been oufficiently greater than P_{0}, a net increase in the coalesced wave should have been detected. since no Jump in velocity was observed on Shot 12 , it must be concluded that the pressure in the reflected wave was very low, i.e., almost atmospheric. (See also the remarks in the following section.)

4.1.3 Comparison of Pressure-Distance Data with the Standard

The pressure-distance data for Shots 4, 8, and 12 have been scaled to $1 \mathrm{KT}(R C)$ at sea level (see Table 1.1 for the scaling factors) and are given in Tables $4.1,4.2$, and 4.3 , respectively. Figures 4.1,
4.2 , and 4.3 compare these scaled data with the composite free-air curve, (Reference 6).

It can be scen in Fig. 4.1 that Shot 4 exbibited the same effect that has been observed on certain previous tower shots such as UPSHOT-KNOTHOLE Shot 1, Reference 6, and GREENHOUSE ERBy, Reference 1, namely, the appearance of above-average pressures at the larger distances. (The average pressure is taken as that indicated by the composite freeair pressure-distance curve.) On the other hand, Shots 8 and 12 exhibited below-average pressures at the larger distances, as shown in Figs. 4.2 and 4.3, respectively. Similar "low" results vere also observed on Operation UPSHOT-KNOTHOLE. In Reference 6, these deviations from the composite curve - which, it should be noted, ie based only on air-drop shots and not tower shots - vere attributed to the statistical method used in fitting the basic shock-arrival-time data. Renewed examination of this problem has led to a reversel of opinion.

As Reference 6 points out, the shock velocity, taken as a function of distance, should approach a constant value asymptotically at the larger diatances. This limiting value should be nearly that of the ambient speed of sound. In Equation 1.2 , the constant a is the asymptote of the velocity function derived from the basic fitting function, Equation 1.1, and should tbacefore closely approximate the sonic speed value. At one time, several attempts were made to hold the value of a fixed and equal to the observed sonic speed, but it was found that when this was done, a good statistical it to the basic arrival-time data could not be obtained. Since that time, the value of a, along with the values of \underline{b} and \underline{c}, all constants of the fitting function, has been allowed to vary to obtain the function best representing the measured data.

The point to be stressed here is that the value of a is controlled by the data, but when its value is about equal to or higher than the observed sonic speed, the shock velocities at large distances, and hence the shock pressures, are usually found to be higher than the average. Similarly, when a is somewhat Zower than sonic speed, the resulting computed pressurēs are usually lover than average at the larger distances.

The values for a for Shois 4, 8, and 12 are given in Sections $3.3,3.5$, and 3.8 , respectively. Compared to the ambient sonic speeds which obtained at the time of burst, these values are found to differ as follows: Shot $4-0.8$ percent low; Shot $8-12$ percent low; and Shot $12-14$ percent low. If it is accepted that a difference between the value of a and that of the sunic speed of less than 1 percent is negligible, then the pattern outlined above is maintained*.

The reasons why various shots behave as they do in this manner is not understood. The question as to whether incident and reflected

[^3]| Deta Scaled io Sea Level | | Data Scaled to 1 kt et Sea Level | |
| :---: | :---: | :---: | :---: |
| Distance （rt） | $\begin{gathered} \text { Peak } \\ \text { overpreanure } \\ (\mathrm{pa1} 1) \end{gathered}$ | $\begin{gathered} \text { Distunce } \\ (\text { (ii) } \end{gathered}$ | $\begin{gathered} \text { Peak } \\ \text { overpreasure } \\ (p a 1) \end{gathered}$ |
| 562 665 7748 841 193 1,024 1,126 1,208 1,299 1,390 1,482 1,671 1,661 1,752 1,942 2,032 2,131 2,201 2,290 2,379 2,468 2,556 2,645 2,730 | $\begin{aligned} & 421.9 \\ & 288.1 \\ & 205.6 \\ & 1155.8 \\ & 128.1 \\ & 98.4 \\ & 82.3 \\ & 69.0 \\ & 58.6 \\ & 51.6 \\ & 44.9 \\ & 40.0 \\ & 35.7 \\ & 32.7 \\ & 29.3 \\ & 26.3 \\ & 24.8 \\ & 24.5 \\ & 20.6 \\ & 19.4 \\ & 18.4 \\ & 17.0 \\ & 16.0 \\ & 14.9 \\ & 14.9 \end{aligned}$ | 160 187 214 239 266 293 3318 344 3712 3428 449 473 500 526 550 576 603 629 652 679 705 728 754 780 | $\begin{aligned} & 421.9 \\ & 28.9 \\ & 20.6 \\ & 155.6 \\ & 122.8 \\ & 98.4 \\ & 82.3 \\ & 69.0 \\ & 58.6 \\ & 51.2 \\ & 40.9 \\ & 40.0 \\ & 35.7 \\ & 32.2 \\ & 29.3 \\ & 26.8 \\ & 24.5 \\ & 22.6 \\ & 19.9 \\ & 19.4 \\ & 18.2 \\ & 17.0 \\ & 16.0 \\ & 14.9 \end{aligned}$ |

209	2＇S26	$2 \cdot 9$	S．LSE＇ट
$\stackrel{8}{8 \cdot}$	2．966	$8 \cdot 9$	でغqu＇ट
$9 \cdot 8$	2．058	$9 \cdot 8$	${ }^{6.997}$
$9 \cdot 6$	$2 \cdot 678$	$9 \cdot 6$	$\varepsilon^{\circ} 096{ }^{\circ} \mathrm{T}$
$0^{\circ} \cdot{ }^{\circ} \mathrm{\pi}$	でos	${ }^{\circ} \mathrm{O}$	0.990^{\prime}
$6 \cdot \varepsilon \tau$	c． 201	${ }_{6} \cdot \underline{\varepsilon}$	－ $2.16 L^{\circ} \mathrm{T}$
$\stackrel{L}{ }{ }^{\text {ST }}$	2•¢99	$\mathrm{L}^{\cdot} \mathrm{ST}$	－₹09＇τ
2．gr	2：129	己•¢t	$8 \cdot 80{ }^{\prime}$ T
6．02	2．585	$6^{6.02}$	
8.92	t－LOS	$8 \cdot 8$	C＇0z＇t
$\varepsilon \cdot \underline{ }$	t＇899	$\varepsilon \cdot \%$	
$L^{\circ} \mathrm{T}$	${ }^{1} 687$	L．T1	£．180＇
	T－T¢06	\％－s\％	$0^{\circ} \mathrm{E}$ ¢＊$\%$
－ 5_{8}	T－टाE	\％－98	－${ }^{-1.48}$
［6\％	T－ELZ	r6\％	T－099
$0^{\circ} \mathrm{O} \cdot \mathrm{LLT}$	「．4E己	$0 \cdot \mathrm{LT}$	$8^{\circ} \mathrm{S9}$
${ }^{8.8 \%}$	$\bigcirc 0.56 T$	$\stackrel{8.422}{8.0}$	
			$\begin{gathered} (25) \\ \text { ovtrisid } \end{gathered}$
Toant ves 7＊21 T of poteos nta		tanat mes os potoos mad	

00π

τ

peak shock overpressune（psi）

peak overpressure（psi）
shock wave coalescence is involved cannot be answered with certainty. Whether it can be attributed to some form of "mass effect"* is equally uncertain. Whatever the reasons, it is believed that the pressure anomalies observed are real and are not introduced through a quirk in the mathematics employed. Further investigation is obviousiy warranted.

4.1 .4

High-Altitude Scaling Effects

The pressure-distance data obtained by Projects 1.1 (AFCRC) and 1.2 (MOL) on the high-alititude shot, Shot 10, are in good agreement (see Fig. 3.33). The NOL data have been scaled to 1 KT (RC) at sea level by the Sachs scaling technique (see Table 1.1 for the scaling factors) and are presented in Table 4.4. Figure 4.4 shows a comparison of the scaled Shot 10 data with the composite free-air curve (Reference 6). The good agreement noted in this figure appears to indicate that the useful range over which Sachs scaling techniques are applicable may be extended to at least 36,600 ft MSL with reliability. This result lends strong support to the blast prognostications of Shelton, Reference 14, who predicted that Sachs scaling techniques would be applicable under the Shot 10 burst conditions to within an accuracy of a few percent. This would imply that essentially the same distribution of energy among the forms of blast, thermal radiation, ani nuclear radiation would hold for bursts at altitudes of the order of $35,000 \mathrm{ft} \mathrm{MSL}$ as for those at much lower altitudes. The small deviations from the composite curve at the data extremes, Fig. 4.4, do not exceed 6 percent, which is well within the experimental error of 10 percent assigned to the data. Thus the data do not provide a rigorous proof of Shelton's arguments, but they do appear to uphold them to a reasonable extent.

….	r amont of entrary to these results, it is worth
:....:	a greater amount of energy in the form of thermal radiation eacaped the
	fireball prior to shock breakavay on shot 10 than on 8hot 9**, the com-
.	involving the burst of an identical veapon at about $5,000 \mathrm{ft}$
	normalized total
	for shot 10 than fara exposure, was about 50 percent greater (uncorrected)
,	th

[^4]same conclusion, namely, that less energy vas available during the period of shock formation and developnent on Shot 10 than on Shot 9 .

In viav of the good agrement between the scaled blast pressuredistance measurements and the composite free-air curve it can only be said that if the partition of energy on shot 10 vas different, the difference was less than a few percent. If the avaliable energy on shot 10 vere much less than that for lower burst heights, it would have produced noticeably lover pressures at the larger distances. Since such low pressures vere not observed, it can only be concluded thet energy losses to the shock vere amall and that the distribution of energy was about the same as for bursts of lover altitudes.

4.2 SURPACE PHENOMETA

4.2.1 Thernal Effect on Mach-8ten Growth

It was noted in References 4 and 6 that the existence of the thermal layer near the surface affected the normal point of inception and subsequent growth of the Mach stem, and hence, the trajectory of the triple point. On Shot 9 of Operation UPBEOT-KNOTHOLS (Reference 6) the Mach stem became established at a closer distance to ground zero than would bave been predicted, assuming the absence of a thermal layer. Reference 6 also suggested that whenever a precursor formed, a "thermal Mach" wave was produced prior to formation of the precursor.

On each or the ahote of Operation TRAPOT for which triplepoint (Mach stem beight) data vere obtained (Shots 4, 6, 8, and 12), procursors vere observed and the effect on the early growth of the Mach sten was again observed as on previous tests. Particular attention mas given to the data obtained over the three areas, water, asphalt, and desert, on Shot 12, where considurable differences in the triple-point trajectories were observed (see Fig. 3.47).

The rate of growth of the Mach stem over the asphalt area ves much more rapid than over the other two areas, and the rate of grovth over the desert vas faster than that over the vater. The maximu helghts of the precursors observed over these areas folloved the same relative pattern. Since the sbock wave reflection coefficienta for these three surfaces are but silghtly different, it is believed that the radical differences in the precursors and triple-point trajectories resulted directly and solely from the differences in the corresponding thermal layers. Some laboratory work done at NOL which supports this contention is given in Reference 12. The rapid formation of a thermal Mach vave in the presence of a thermal layer and the subsequent amoothing out of the path of the triple-point above the layer is clearly demonstrated.

To the observed data for Shot 12 shown in Fig. 3.47 there has been added the semi-empirical, "ideti" path of the triple-point based on the method derived by Hesse and Kelso (Reference 16). As can be seen

In the figiure, the "desert" data fit this curve best. Most of the data used in the construction of the "ideal" curve vere obtained over desert surfaces and the agreement noted in Fig. 3.47 is deemed significant. However, Reference 16 states that the ideal prediction curves exclude thermal effects. It would appear from Fig. 3.47 that such is not strictly the case inasmuch as the Mach stem over the water surface, for which thermal effects were minimal, rose less rapidiy than when strong thermal effects prevailed.

Prior to TEAPOT, a precursor had never been observed over a vater surface, so this surface was considered to be "ideal", 1.e., since precursors were not observed it was assumed that a thermal layer did not

Figure 4.5 TEAPOT S'wots Plotted on Precursor Chart from Reference 24.
form over a water surface and therefore did not give rise to the formation of nonideal shock phenomena. Now a precursor was not observed to form over the water surface on Shot 12 (an will be discussed further in section 4.2.2), so the path of the triple point over this surface might vell be considered to be more nearly that for the "ideal" case than that observed over the desert surface.

Since strong precursor and thermal Mach effects were observed over both the asphalt and desert surfaces and the calculated path of the triple point corresponds to that for the desert surface, it is ougsested that thermal effects are included to at least a mall extent in the rather elegant Hesse-Kelso prediction method for the height of the Mach wave.

The question of whether a precursor formed over the water surface on Shot 12 or was simply the result ot feed-in effects cannot be fully resolved from the film records obtained for Project 1.2. The aerial films were particularly disappointing, having been obtained from an aircraft loceted in the mrong quadrant to show the desired detail.

The net results of an examination of (1) the arrival-time data of SRI, Project 1.10, and similar NOL data, Project 1.12; (2) the pressure-time data of BRL, Project l.14b; (3) the flow-direction data of WADC, Project 5.5; and (4) the triple-point-trajectory data of this project, Project 1.2, lead to the conclusion that the precursor effects observed over the water area were predominantly the result of feed-in from the adjacent desert areas.

It should in no way be inferred from this conclusion that the blast wave over this area was ideal, for it will be noted, Reference 15, that water loading and associated nonideal dynamic pressures vere observed. Rather, it $i s$ to be concluded on the basis of all available data, that a sufficiently intense thermal layer for precursor formation over the water aree itself did not develop; the rounded pressure waveforms resulted from Resi-in effecta and water-loading of the shock presumably would have occurred even if the water area had been of infinite extent.

4.2.3 Precursor Criteria

Of the several shots chosen for precursor studies by direct shock photography, Shots $1,3,4,6,8,9$, and 12 , the ones which shed the most light or existing precursor criteria were Shots $1,2,5,6$, 11, and 12. Photographic records vere not obtained specifically for Project 1.2 on Shots 2, 5, and 11, but it was ascertalaed that precursors were formed by eximination of the cloud study films of Project 9.4 and the pressure-time records of Project 1.146.

Figure 4.5 shows the superposition of two charts used for predicting precursors. (These tro charts were first presented in this manner for purposes of comririson in Reference 24.) The shaded portion of the chart represents the prediction criterion proposed by shelton (Reference 17) and was derived from empirical information and a theoretical analysis. According to this prediction method only those shots ialling in the shaded area should produce a precursior. The AFSWPNOL precursor-prediction scheme, developed shortly after operation TUMBLER, (References 18 and 19), is the entire area bounded by the lines representing: (1) $\mathrm{W} / \mathrm{h}^{2}=5$ (W is the yield in KT and h is the actual height of burst in thousands of feet); (2) shock arrival time at ground zero $=0.5 \mathrm{sec}$; and (3) A-scaled height of burst $=50 \mathrm{ft}$ for ylelds up to 20 kt . TEAPOT Shots 1 through 12 , Shots 7 and 10 excepted, have been spotted in Fig. 4.5 for comparison.

As noted above, precursors were observed on Shots 2, 5, and 11, "n keeping with the AFSWP-NOL prediction, whereas all the other
precursor-producing shots were covered by both methods, with one aignificant omission. Neither chart predicted the precursor which was observed to occur during Shot 1 .

Shot 1 , a relatively bigh burst of a low-yleld device, produced a very weak precursor over an asphalt area in the vicinity to one side of ground zero (see Fig. 3.3). On the other side of grourd zero, over the desert surface, no precursor was observed. On s rots 6 and 12 , where asphalt surfaces vere also involved, much larger precursors wore obeerved over the asphalt than over the desert area. Presumably, a emaller thermal input is required over a more-absorbing surface, such e.s asphalt, than over the more-reflecting desert surface to produce a sufficientiy intense thermal layer for precursor formation.

Based on this information an extension of the AFSWP-NOL chart has been made. Since the Sbot 1 precursor over the asphalt was so weak, it is considered reasonable to use this point as a lover inimit on the prediction chart, for it corresponds to minimum-energy-input conditions over a bielily absortins un fur ouable of cuusing the formation of a sufficiently intense thermal layer for precursor development. Thus it 1s proposed that the area bounded by lines representing $\mathrm{W} / \mathrm{h}^{2}=2$ and shock-arrival time $=0.5 \mathrm{sec}$ be added to the AFSWP-NOL chart as in Fig. 4.5 to take into account the relative thermal absorptivities of various solid ourfaces.

4.2.4 Temperature Calculations from Shock Contours

Calculations of the temperatures in the thermal lajer, based on the angle of the precursor front, are generally high when compared to actual thermal and sonic speed measuremcints (References 20 and 21). These calculations are basei on the equation (Reference 6):

$$
\begin{equation*}
\sin \theta=\frac{c_{1}}{c_{2}} \tag{4.1}
\end{equation*}
$$

where θ if the angle between the precursor iront and the surface and c_{1} and c_{2} are the ambient sonic speeds of the unheated and heated regions, respectively.

Hovever, this pre-supposes that the thermal layer contains no temperature gradient with respect to height above the ground and that the transmitted wave front referred to as the thermal Mach in Reference 6 is propagated normal to the boundary separating the heated and unheated regions. This is probably not the case, since it is thought that the thermal layer contains a fairly large gradient in temperature. Thur the transmitted wave front should not remain normal to this boundar, but should form an acute angle with it. Therefore, when the transisitied vave propagates across the boundary, it should be refracted; aud if one measures the angle of this refracted front and applies Equation 4.1, then the temperstures calculated would be in error.

If the acute angle that the trananitted wave front makes with the boundary is celled ϕ and the acute angle that the precursor front makes with the boundary is called 0 and all other assumptions listed in Reference 6 are the ame, then application of Suell's lav acrose the boundary gives:

$$
\begin{equation*}
\frac{u_{2}}{\sin \phi}-\frac{u_{1}}{\sin \theta} \tag{4.2}
\end{equation*}
$$

where U_{2} is the velocity of the trananitted wave in the heated region and U_{1} is the velocity of the precursor front in the unheated region.

TAIL 4.: - Bhot 6 - Inqpernture calculationc valad

Oround Renge (ft)	$\stackrel{\ominus}{(\operatorname{dogroes})}$	(sogrees)	Calculatione mole uelag E0. 4.1		Culeulationa mode uslog 24. 4.4		
			$\left({ }^{\circ} \mathrm{c}\right)$	Bound Vel. (rt/eec)	(${ }^{\circ} \mathrm{C}$)	Bound Vel. ($8 t / 50 c$)	
$\begin{array}{r} 532 \\ 77 \\ 969 \\ 1,108 \end{array}$	$\begin{aligned} & 13.4 \\ & 19.4 \\ & 21.2 \\ & 26.4 \end{aligned}$	Atmuat surace		$\begin{aligned} & 4699 \\ & 3278 \\ & 3011 \\ & 2449 \end{aligned}$	$\begin{aligned} & 591 \\ & 653 \\ & 03 \\ & 361 \end{aligned}$	$\begin{aligned} & 1934 \\ & 2785 \\ & 2833 \\ & 2658 \end{aligned}$	
		$\begin{aligned} & 24.3 \\ & 33.0 \\ & 37.5 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 40 e 9 \\ & 2211 \\ & 1002 \\ & 1113 \end{aligned}$				
$\begin{array}{r} 551 \\ 733 \\ 901 \\ 1,044 \end{array}$	$\begin{aligned} & 17.8 \\ & 25.8 \\ & 28.1 \\ & 31.5 \end{aligned}$	Dratert survace		$\begin{aligned} & 3562 \\ & 2500 \\ & 2312 \\ & 208 \end{aligned}$	$\begin{aligned} & 163 \\ & 170 \\ & 119 \\ & 164 \end{aligned}$	$\begin{aligned} & 1377 \\ & 1307 \\ & 2304 \\ & 1378 \end{aligned}$	
		$\begin{array}{l\|l} 22.7 & 2659 \\ 33.6 & 2173 \\ 34.3 & 962 \\ 42.3 & 731 \end{array}$					

Also from Reference 6 we have

$$
\begin{equation*}
\frac{U_{1}}{c_{1}}=\frac{U_{2}}{c_{2}} . \tag{4.3}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\frac{\sin \theta}{\sin \phi}=\frac{c_{1}}{c_{2}} . \tag{4.4}
\end{equation*}
$$

It is evident that Equation 4.4 vill lead to lover cRlculated temperatures
On Shot 6 this difference in the angles 0 and ϕ could be
observed to some extent. Bowever, the height of the thermal layer was
observed to le from 3 to 5 ft , which made it difficult to detect the changs in angle. For this reason, the data in support of the argument are not conclusive. Temperatures calculated by the use of Equation 4.4 over both the asphalt and desert surfaces vere obtained at several distances. Table 4.5 presents the measured angles θ and \varnothing and the terperatures calculated by both Equations 4.1 and 4.4. Also listed in Table 4.5 are the sound speeds of the thermal layer calculated from Equations 4.1 and 4.4.

Unfortunately, these data cannot be compared directly with any measured data. The results of Project 8.4e (Reference 21) ana 1.5 (Reference 20) on Shot 12 are inconclusive at this time. Therefore, it is impossible to conclude that Equation 4.4 would lead to the proper temperature calculations because of tbe lack of actual temperature data, the limited amount of θ and \emptyset data, and the relatively poor accuracy of these angle measurements. Hovever, it is suggested that the large differences observed between the shock-calculated and indirectly ceasurcu umperatures on Shot 12 may be at least partially accounted for by this argument.

Chapter 5
 CONCLUSIONS and RECOMMENDATIONS

5.1 INSTRUMENTATION

The rocket-smoke-grid instrumentation used on Shots 4, 8, and i2 operated successfully and made possible the detection of the locus of the incident and reflected shock waves in free air and the shock phenomena along the surface. On Shot 12 the grid was of particular value in faciliteting the measurement of the precursor where it was difficult to distinguish it from the dust front. The crise-crose grid form, used for the first time on this operation, was found more useful than the vertical or fan grid form used on previous tests in the close inspection of that area directly above the burst.

The smoke grid produced by jet aircraft on Shot 10 , including one B-47 guide plane and seven jet-fighter craft of the $\mathrm{F}-84, \mathrm{~F}-86$ class, was of little or no value for the purposes of the project. Their use in any future high-altitude test is not recommended unless significant improvements can be made. Fin-stabilized rockets of the Deacon variety, launched from aircraft suitably spaced, would appear to be more feasible according to present thinking.

The photographic instrumentation for amoke-grid and direct shock photography was operated in excellent fashion and produced useful and reliable data. This technique is recomended for use in future tests where free air peak pressures, incident- and reflected-wave-coalescence studies, and surface shock-precursor phenomens observations are desired.

5.2 PRESSURE VERSUS DISTANCE IN AIR

Peak sbock overpressure versus distance vertically above the burst was obtained on Shots 4, 8, and 12. On Shots 4 and 12 , one of the primary objectives of the project was met in determining the value of the peak pressure subsequent to coalescence of the incident and reflerted shock waves. On shot 4, tine pressure vas apparently inereased following coalescence at $2,550 \mathrm{ft}(12-\mathrm{psi}$ level), while on Shot 12 no pressure enhancement was detected when coalescence occurred at $2,600 \mathrm{ft}$ (7-psi level). It must be concluded that, when the reflected shock traverses the fireball region, it encounters conditions which cause its velocity to increase greatly and its pressure and associated mass motion to decrease markedly. Its ability to "shock-up" beyond this region appears to depend critically on the extent of pressure attenuation experienced and the ambient conditiona of the medium into which it propagates. $A l l$ of these factors depend predominantly on yield and

height of burst, the more extreme conditions resulting from large yield and low burst heights, malnly tover shot conditions.

When these observations are correlated with measurements made on previous tover shots wherein pressures have been found to deviate from the atandard composite free-air curve (which is based solely on air-drop data), It is suggested that these deviations may have resulted from reflected shock coalescence with the incident wave, accompanied by pressure ewhancement or deterioration. For military purposes the etandard composite iree-air curve, as published in Reference 6, should not be altered in any respect as a result of new information gained on this operation; bowever, it is recommended that in a handbook such as the "Capabilities of Atomic Weapons", Reference 25, it should be pointed out that pressure enhancement or deterioration may occur directly above the burst of medium to large-yield weapons detonated near the surface. Further investigation of the problem is required before more-specific information can be given.

For weapons burst at altitudes up to approximately 40,000 ft MSL, Sachs scaling of shock pressures has been found to be reasonably justified. Shock pressures of from 8 to 800 psi determined on Shot 10 scale well with the standard composite free-air curve. A small uncertainty in the use of the Sachs scaling may be said to exist at the upper extremes of this $40,000 \mathrm{ft}$ range, however, because of the peculiarities observed in connection with the comparative thermal and nuclear measurements of Shots 9 and 10 (see Section 4.1.4).

Further attempts to modify the fitting function employed in the determination of pressure versus distance from shock-arrival-time data should be made in an effort to obtain an equation which will fit the data and, at the same time, contain constants which can be interpreted in the light of prevailing ambient conditions

Unexpectedly high blast effects along the surface were measured on Shot 7, the underground shot, and no attempt was made to instrument the test to obtain airblast-pressure-distance measurements. An effort will be made to obtain such information from existing films, but it is questionple whether such data will be sufficient to establish blast predicicion criteria for underground bursts. Such data are considered to be vital from the standioint of saifety in weapon delivery, and where high accuracy is demanded. It is recomsended that free-air pressures be obtained on any future uncierground burst until such criteria are established or the groposed delivery procedures are modified significantly in this respect.

5.3 COALESCENCE OF THE INCIDENT AND REFLECTED SHOCK WAVES

The requirements of Project 5.1 (Destructive Loads on Alrcraft in Flight) included the ascertainment of whether coalescence of the incident and reflected shock waves could be expected on Shot 12 and a prediction of the pressure in the coalesced shock. The information provided Project 5.1 by Project 1.2 was based solely on the results of

Shot 4 and some rather incomplete but indicative data obtained during Operation UPSHOT-KNOTBOLE. Shot 8 was instrumented to obtain additional data, but the unexpectedly low yield of the device defeated this attempt. On the strength of the Shot 4 results principally, coalescence vas predicted for Shot 12 and an increase in pressure equivalent to a yield of 1.2 times the expected yield of Shot 12 was predicted. Coalescence vas observed on Shot 12 but no pressure enhancement vas detected. All that can be said generally and with reasonable certainty is that coaleacence occurs under suitable conditions of yield and burst beight and that it is reasonably extensive, the horizontal radius of the coalesced wave being equal. rougily to 1 to 2 fireball radil. Pressed for an opinion as to whether pressure enhanceaent would or would not occur upon coalescence on a given shot, the reply vould be affirmative only if the fireball were expected to intersect the ground, such as on shot 4. On the basis of existing knowledge, it would be impossible to estimate the magnitude of the pressure difference in terns of an "equivalent velght" of charge.

5.4 PRECURSORS

A more-extensive and faster precursor vave will form over a blackasphalt (thernally absorbing) surface than over a desert (thermally reflacting) surface. Over a vater surface it is belleved that a precursor will not form. The precursor-like effects observed over the vater surface on Shot 12 are belleved to have resulted solely from feed-in from adjacent areas.

Although it is belleved that a precursor will not form over vater, a natural water ourface should not be considered as "Ideal" from the standpoint of blast effects calong the surface. Knovledge gained during Operations CASTLE and TEAPOT indicates that water-loading of the blast vave will occur, leading to nonideal vaiues of dynamic pressure and other paraneters.

When thermal layers a: produced over surfaces conducive to precursor formation, the Mach shock will form earlier and grow at a morerapid rate to the height of the thermal layer than when no thermal layer is present. The triple poiat will remain at a more or lese constant height above the ground (height of the thermal layer) until it reaches the range at which it would normally be expected rise above that elevation in the absence of a thermal layer. From that position onward, the triple point resumes its normal course and can be predicted with sufficient accuracy (± 10 percent) for military purposes.

The AFSWP-NOL precursor-prediction criteria should be adopted for general use with the addition of the new limit described (Section 4.2.3) to take into acrjunt the relative thermal absorptivities of various surfaces.

A change in the method of calculating gross temperatures from the angle made by the precursor front with the ground may be varranted. The change in uhe theory, based on the recognition of the existence of a
temperature gradient n the thermal layer, would lead to lover calculated temperatures more in agreement with temperatures actually recorded, both directly and indirectiy. At present there are insuffient data upon which to reach a sound decision in this regard. Since this problem seems to be primarily of academic interest, it is recommended that suitable decisive data be obtained only as a possible bonus from future atomic test data.

REFERENCES

1. Moulton and Simonds, Peak Pressure va Distance in the Free-Air and Mach Regions Uaing Smoke-Rocket Photography, Operation GREENHOUSE, WT-54, July 1951, SRD.
2. Hartmann, Lampson and Aronson, Blast Measurements Sumary Report, Operation GRELNHOUSE, WT-64, May 1952, SRD.
3. Moulton, Walthall and Hanlon, Poak Pressure ve Distance in Free-Air Using Smoke-Rocket Photography, Operation JANGLE, WT-389, June 1952, SRD.
4. Aronson, et al, Free-Air and Ground Level Pressure Measurements, Operation TLNBLER, WT-513, November 1952, SRD.
5. Moulton and Hanlon, Peak Overpressure ve Distance in Free-Air, Operation IVY, WT-613, March 1953, SRD.
6. Norris, ot al, Air Blast Meacurements, Operation UPgHOTMNOTHOLE, WT-710, August 1955, 8RD.
7. Banlon, et al, Blast Pressures and Shock Phenomena Measurements by Photography, Operation CASTLE, WT-902, september 1955, BRD.
8. Milligan and Young, Operation TEAPOT - Underground Bhot - Base Surge Analyeis, AFEWP-876 (MAVORD 4253), 31 January 1956, SRD.
9. EIrschfelder and Curtiss, Thermodymanic Propertiee of Air, Vol. II, University of Wisconsin (NRC), 2 December 1948, Unclassified.
10. Rudiln, Notes on the Variation of the Mach Nunber - Shock Si:rength Relation with Ambient Conditions, RAVORD 4029, 19\%\%, Unclassified.
11. Griffith and Bleakney, Diffusion Analogy for Shocks Interacting vith Thermal Boundary Layers, Abstract of Fluid Dynamics, American Physical Society and paper presented at meeting of 22-24 fovember 1954. To be published in Journal of Aero. Sc1., Unclassified.
12. Varwig and Zemel, The Interaction of Shock Waves with a Thermal Laynr, MAVORD 4021 (AFSWP-266), 18 July 1955, Unclassified.
13. Richardson, Fireball Radi1 and Beight of Burat, SC-3627(1R), 16 August 1955, SRD.
14. Shelton, Phenomenology of a High-Altitude Atomic Explosion, SC-3363(TR), 28 April 1954, SRD.
15. Doll and Gilbert, Prelininary Report - Summary Report of the Technical Director, Programs i-9, Operation TEAPOT, ITR-1153, June 1955, SRD.
16. Hesse and Kelso, Mach Shock Forsation from a Nuclear Detonation, AFSWP-510, 10 March 1955, SRD.
17. Shelton, The Precursor - Its Formation, Prediction and Effects, SC-2850(TR), 27 Juy 1953, SRD.
18. Aronson, Moulton, Hartmann and McClendon, NOL Reports Presented at TMMBLER Symposium, NAVORD 2801, 16 April 1953, SRD.

Scoville, et al, Final Sumary Report - Operation TUMBLER, WT-514, May 1953, SRD.
20. McLoughlin, Preshock Sound Velocities Wear the Ground in the Vicinity of an Atomic Explosion, Operation TEAFOT, ITR-1104, May 1955, CRD.
21. Inn, Air Temperature Measurements Over Seversl Surfaces, Operation TEAPOT, ITR-1j.49, May 1955, CRD.
22. Bartalsky, Airborne Smoke Trail Generators, AFSWC-TN-55-12, 15 September 1955, Unclassilied.
23. Private commanication to authors !'rom Dr. N. A. Haskell, Project Officer, Project 1.1, Operation TEAPOT, of 18 Augast 1955, SRD.
24. Doll, et al, Summary Report of the Technical Director Operation UPSBOT-KMOTHOLB, WT-782, March 1955, SRD.
25. Capabilititi of Atomic Weapons, prepared by the Armed Forces Special Weapons Project, TM 23-200, 1 June 1955, SRD.

BLANK PAGE

[^0]: - Approximate local time, PBT prior to 24 April, PDT after 24 Aprill.
 - Actual 29 ro point 38 feet north, 426 feet weat of T-7-4.

 1 Actual zero polat 94 feet north, 82 feet weat of T-7-4.
 8 Actual zoro pelat 36 feet south, 397 feet went of T-8.

[^1]: The ytelde civen are the fimal radiochomiotry veluee taken from the Report of the teut Director
 LA-1965, october 2959 .

[^2]: * Direct shock photography of many near-surface atomic burste has shown that the reflected wave loses its normal sphericity in the region directly beneath the firebail and that this portion of the wive is accelerated upward. Rate of acceleration and nonsphericity increases as the burst height decreases. Acceleration of the central portion of the wave has been observed to start in many instances well below the actual fireball, indicating that sufficient radiation is absorbed by the air to cause it to heat up with a corresponding increase in iocal sonic speed. Such heating of the air is the only plausible explanation for the photographic evidence of reflected shock acceleration in this region vell outside of the fireball.

[^3]: No explanation can be given for the fact that on Shct 10 , the scaled pressures agreed well with those of the composite free-air curve despite the fact that a was 30 percent lover than sonic speed at altitude.

[^4]: * The "mass effect" is an effect which bas been recognized to account for variations observed in the rate of growth of the shock wave early in the history of a nuclear explosion, chiefly during the fireball phase. These variations are observed when large masses of metal and other materials are present in the vicinity of the exploding bomb. In certain respects it can be likened to the "case effect" in HE explosions. One of the predoninant features of such explooions is that they produce higher-than-average pressures at larger distances as compared to barecharge explosions.
 ** Doduced fron prelindnary information reported in Reforence 25.
 ** Stated in Reforence 15.

