BLANK PAGE

BLANK PAGE

UNCLASSIFILD CONFIDENTIAL

WT-1102

OPERATION TEAPOT ____PROJECT 1.2

Report to the Test Director

SHOCK WAVE PHOTOGRAPHY

J. F. Moulton, Jr. E. R. Walthall

U. S. Naval Ordnance Laboratory White Oak, Silver Spring, Maryland

.....

.....

	Shot	Code Name	Date	Time•	Area	Туре	Latitude and Longitude of Zero Point		
-	1	Waap	18 February	1200	T-7-41	762-ft Air	97 [°] 08 [°] 11.088 116 [°] 01 [°] 18.736		
	2	Moth	22 February	0545	T-3	300-ft Tower	37 [°] 92 [°] 53.285 316 [°] 91 [°] 15.696		
	3	Teala	1 March	0530	T-9b	300-ft Tower	57° 07' 31.575 116° 02' 51.007		
	4	Turk	7 March	0520	T-2	500-ft Tower	31 [°] 68 [°] 38.494 336 [°] 61 [°] 63.367		
	6	Hornet	12 March	0520	T-34	300-ft Tower	37 [°] 62 [°] 35.494 316 [°] 61 [°] 31.367		
	6	Bee	22 March	0505	T-7-11	500-ft Tower	31° 65' 41.388 136° 91' 25.647		
	7	E85	23 March	1230	T-10a	67-ft Underground	37° 10 [°] 04.130 138° 02 [°] 37.701		
	8	Apple	29 March	0455	T-4	500-ft Tower	37° 06° 43.820 118° 06° 09.004		
	9	Wasp'	29 March	1000	T-7-41	740-ft Air	97 [°] 95 [°] 11.481 116 [°] 93 [°] 18.734		
•••	10	HA	6 April	1000	T-51	36,620-ft MSL Air	27° 01 [°] 43.34 114° 03 [°] 28.24		
•••	11	Post	9 April	0430	T-9c	300-ft Tower	37° 07' 19.690 116° 02' 03.864		
	12	MET	15 April	1115	FF	400-ft Tower	56 47 52.680 115 56 44.100		
	13	Apple 2	5 May	0510	T-1	500-ft Tower	34 [°] 03 [°] 11.30 136 [°] 05 [°] 09.40		
***	14	Zucchini	15 May	0500	T-7-1a	500-ft Tower	27 [°] 05 [°] 41.28 116 [°] 01 [°] 25.54		

SUMMARY OF SHOT DATA, OPERATION TEAPOT

Approximate local time, PST prior to 24 April, PDT after 24 April. .

Actual zero point 36 feet north, 426 feet west of T-7-4. 1

1 Actual zero point 94 feet north, 62 feet west of T-7-4.

\$ Actual zero point 36 feet south, 397 feet west of T-5.

ABSTRACT

Project 1.2 was responsible for (1) determining the peak shock overpressure as a function of distance on Shot 10, the high-altitude shot; (2) studying the effects of the surface and the heating of the air near the surface on precursor formation, growth, and shock interaction for a number of yields and heights of burst over natural and artificial surfaces; and (3) ascertaining, prior to Shot 12, whether coalescence of the incident and reflected shocks could be expected to occur directly above the burst and, if so, determining the peak overpressures at given distances on that shot.

The military importance of the first two objectives is obvious. The last objective was directed toward providing basic information on shock phenomena from a tower burst in support of the drone aircraft project (Project 5.1, Damaging Loads on Aircraft in Flight) which was given major emphasis in the Military Effects Test Program. Both smokegrid photography and direct-shock photography, techniques similar to those used on previous tests, were employed in the successful accomplishment of these major objectives.

On Shot 10, pressures of from 800 to 8 psi were determined, covering a range of from 200 to 1,100 ft from the burst. (Taken together with the overlapping data of Project 1.1, the pressure-distance curve for this shot extends from 800 psi down to 0.14 psi over a range of approximately 11,300 ft from the burst.) These data, combined with the yield results, seem to indicate that Sachs scaling techniques for pressure, distance, and time may be applied up to altitudes of the order of 40,000 ft; however, some reservations are mentioned in the text.

.....

. . . .

.....

.

•••••

.....

....

.

The AFSWP-NOL precursor-prediction criteria were found to be more reliable than other existing prediction methods. However, as a result of the information gained during Operation TEAPOT, the AFSWP-NOL criteria have been modified to take into account the different thermal absorptivities of various surfaces. It is believed by the authors that precursors will not form over a water surface, however, natural water surfaces should not be considered as "ideal" in this regard because water-loading of the blast wave along the surface can occur and can lead to nonideal values of blast parameters, such as "excessive" dynamic pressures, for example.

Further evidence was obtained which indicates that thermal layers affect the rate of growth of the thermal Mach wave at close-in distances; but in spite of this, the triple point follows a reasonably predictable (± 10 percent) course beyond the point where it would be normally expected to rise above the upper level of the thermal layer.

A modification of the theory for calculating temperatures in the thermal layer from the angle made by the precursor with the ground is

proposed in the text, but cannot yet be fully verified. Use of the theory tends to bring the calculated temperatures in closur agreement with measured values obtained by both direct and indirect methods.

Coalescence of the incident and reflected shock waves vertically above the burst was observed on Shots 4 and 12 at 2,550 ft (12 psi level) and 2,600 ft (7 psi level) from the burst points, respectively. On Shot 4, the measurements indicated that the peak pressure is enhanced slightly following coalescence. Observed pressures were approximately equivalent to those that would have been obtained from a weapon yield 1.2 times larger than that fired. The predictions desired by Project 5.1 for Shot 12 were based on this result. On Shot 12, however, no such enhancement in pressure was observed after coalescence. Some possible explanations for this behavior are presented in the text.

6

.....

.....

FOREWORD

This report presents the final results of one of the 56 projects comprising the Military Effects Program of Operation Teapot, which included 14 test detonations at the Nevada Test Site in 1955.

For overall Teapot military-effects information, the reader is referred to "Summary Report of the Technical Director, Military Effects Program," WT-1153, which includes the following: (1) a description of each detonation including yield, zero-point environment, type of device, ambient atmospheric conditions, etc.; (2) a discussion of project results; (3) a summary of the objectives and results of each project; and (4) a listing of project reports for the Military Effects Program.

PREFACE

.....

.

•.•••:

11111

....

.

.....

Project planning at the Naval Ordnance Laboratory was completed with the assistance of G. K. Hartmann, Paul M. Fye, J. E. Ablard, W. E. Morris, J. F. Moulton, Jr., J. Petes, E. R. Walthall, and C. J. Aronson.

For administrative and logistic support the Naval Ordnance Laboratory is indebted to the Bureau of Ordnance, the Armed Forces Special Weapons Project and in particular to E. B. Doll, Technical Director, to his staff, and to Cdr. W. M. McLellon, USN, and Maj. H. T. Bingham, USAF, Director and Assistant Director of Programs 1 and 3, respectively.

Sincere appreciation is expressed to the firm of Edgerton, Germeshausen, and Grier, Inc. for obtaining the excellent motion-picture records, without which Project 1.2 could not have met its objectives successfully. Appreciation is also expressed for the development and establishment of jet aircraft smoke trails by the 4925th Test Group (Atomic) of the Special Weapons Center, Kirtland Air Force Base.

Those who served in the field operations at the Nevada Test Site were: J. F. Moulton, Jr., Project Officer; E. R. Walthall, Deputy Project Officer; C. L. Karmel, Administration and Analysis; B. M. Loring; E. G. Nacke; R. L. Varwig; J. A. Martin, A/2c USAF; and W. R. Rogers, A/2c USAF. G. S. Rielley served as supply officer at the home station and in the field.

This WT report also carries the Naval Ordnance Laboratory number NOLR 1210.

CONTENTS

ABSTRACT		5
FOREWORD		7
TALFAUL		7
CHAPTER]		20
1,1	Methods and Objectives	15
1.2	Background and Theory	
1.3	Test Characteristics	18
CHAPTER 2		
2.1	Rocket-Smoke-Grid Photography	19
2.2	High-Altitude Smoke Grid	19
2.3		24
CHATTER 3	RESULTS	
3.1	Shot 1	31
3.2	Shot 3	31
3.3		
3.4		34
3.5		47
3.6	Shot 9	55
3.7	Shot 10	64
3.8	Shot 12 mm and a second	66
	3 8 7 Presention Data	71
	3 8 2 Dimont Charle Distance to Distance t	71
3.9		'79 93
CHAPTER A	DISCUSSION	
4.1	Presetty Shock Dheneman	94
	411 Shockelland Contactor to the second second	94
		94
	4.1.2 Shock-Wave Coalescence, Calculated Pressures	95
	4.1.3 Comparison of Pressure-Distance Data with the Standard Free-Air Curve	
	A L A Highmaldelende Contany Dee 1	96
4.2	Stirface Phenomena -	02
	4.2.1 Thermal Effect on Mach Char of the	03
	4.2.2 Precursor Formation and the trowth	03
	4.2.2 Precursor Formation over the Water Area on Shot 12 1	
	123 Procurson Criticato	05
	4.2 / Temperature Calculations and a second	05
	4.2.4 Temperature Calculations from Shock Contours 10	
CHAPTER 5	CONCLUSIONS AND RECOMMENDATIONS 10	10
5.1		-
5.2	Pressing morena Distance in it.	9
	1000 versus Distance in Air 10	19

ELDEALTI

5.3	Coalescence of the Incident and Reflected Shock	
51	Waves	110
	Precursors	111
	ES	113
TABLES		
1,1	Summary Data for Teapot	
2,1	Camera Coverage for Smoke Rocket and Direct Shock Photography	17
2.2	Film Calibration Constants	20
3.1	Shot 1, Time of Arrival of the Initial Disturbance	21
3.2	A A A A A A A A A A A A A A A A A A A	32
3.3	The second of th	37
3.4	Free Air	41
2 6	Shock in Free Air	41
3.7	Shot 4, Weapon Yield Obtained from Free-Air Data	46
2.0	Southeast of Ground Zero	
3.7	of Ground Range Northwest and Southeast of	48
3.8	Ground Zero	48
3.9	Along the Ground	54
3.10	Ground Range over Asphalt and Desert Areas Shot 6, Height of the Triple Point as a Function	54
3.11	of Ground Range Over the Desert Area	56
3.12	Shot S, Pressure. Shock Velocity. Distance Date	58
3.13	The stat of Fraguraor along the	61
3.14	Ground North of Ground Zero	62
3.15	of Ground Range Shot 9, Arrival Time of Precursor Along the Ground Northeast and Southwest of Ground Zero	64
3.16	Shot 10. Time of Americal of D	65
3.17	Shot 10, Time of Arrival of Free-Air Shock	67
		67
3.10	Shot LU, Weapon Yield Versus Distance	67
3.19	Free Air in Vertical Direction Above	
2 20	Air Zero	72
3.20	Shot 12, Pressure, Velocity, Distance Fata in Free Air	74

10

Constantials

*

.

3.21	
• • • •	in Free Air 81
3.22	
3.23	
2 2/	Along the Ground (Asphalt Area) 81
3.24	
2 25	Ground Range over Asphalt and Desert Areas 83
3.25	A CONTRACT OF THE
	from Angle of the Precursor over Asphalt
2 0/	and Desert Areas 85
3.20	Shot 12, Height of the Triple Point as a Function
	of Ground Range 87
3.21	Shot 12, Time of Arrival of the Initial Disturbance
	Along the Ground (Water Area) 88
3.28	
	Along the Ground (Desert Area) 90
	Project 1.2 - Shock Photography Films 92
4.1	
4.2	Shot 8, Scaled Free-Air Pressure-Distance Data 98
4.3	Shot 12, Scaled Free-Air Pressure-Distance Data 99
4.4	Shot 10, Scaled Free-Air Pressure-Distance Data 99
4.5	Shot 6. Temperature Calculations Using the
	Angle of the Precursor Front 107
URES	
2,1	Rockst photography layout, Shots 4 (T-2) and 8 (T-4)
2.2	
	Shot 12 22
2.3	Devil 4 Directory of the second
2.4	
2.5	Deall and the state of the second state of the
2.6	Smoke grid photography layout, Shots 10 and
~	
2.7	10 dry rum (Area 5) 25
2.8	
~.0	
2.9	
2.10	Shot 9, camera plan layout for direct shock
2.1	photography 30
2.1	Shot 1, plane of measurement for direct shock
2 2	photography, Film 28881 32
3.2	Shot 1, comparison of arrival of incident shock
	along the ground northeast and southwest
	of ground zero 33
3.3	Shot 1, shock photography taken from Film 28881,
	Frame 44 34
3.4	Shot 3, photographs taken from Film 28681 35
3.5	Shot 4, planes of measurement for smoke rocket
	photography 36
3.6	Shot 4, time of arrival of free-air shock in
	vertical direction 38

11

3.7 Shot 4, fireball radius versus time -----39 3.8 Shot 4, free-air shock velocity versus distance - - - -40 3.9 Shot 4, sound velocity and ambient pressure versus altitude -----42 3.10 Shot 4, free-air peak shock overpressure versus 43 3.11 Incident and reflected wave contours - - - - - - -44 3.12 Shot 4, photograph of free-air incident shock 2,290 ft from air sere at t = 0.757 see 44 3.13 Shot 4, weapon yield as a function of distance 46 Shot 4, time of arrival of precursor at ground 3.14 level (southeast of ground sero) - - - - - - -49 Shot 4, height of the triple point as a function 3.15 of ground range (northwest and southeast of ground sero) -----50 3.16 Shot 6, plane of measurement for direct shock photography Films 28081 and 28084 - - - - - -51 Shot 6, photographs of blast phonomena (Film 28081) - -3.17 51 3.18 Shot 6, time of arrival of fireball jets - - - - - -52 Shot 6, time of arrival of precursor along the 3.19 ground over asphalt and desert areas - - - - -53 Shot 6, angle of the precursor versus ground 3,20 55 Shot 6, beight of the triple point as a function 3.21 of goound range (desert area) -----56 Shot 8, planes of measurement for smoke rocket 3.22 57 3.23 Shot 8, fireball radius versus time - - - - - - - - -58 3.24 Shot 8, time of arrival of incident free-air shock in vertical direction ------59 3.25 Shot 8, free-air shock velocity versus distance - - - -60 Shot 8, free-air peak shock overpressure versus 3.26 61 3,27 Shot 8, plane of measurement for direct shock photography Films 28280 and 28283 - - - - - -62 Shot 8, time of arrival of precursor along the 3,28 ground north of ground zero ------63 Shot 8, height of the triple point as a function 3.29 of ground range ------64 3.30 Shot 9, time of arrival of precursor northeast and southwest of ground zero along the 65 3.31 Shot 10, time of arrival of free-air shock - - - - -66 Shot 10, photographs of free-air shork taken 3.32 68 Shot 10, peak shock overpressure as a function 3.33 69 3.34 Shot 10, weapon yield as a function of distance obtained from free-air pressure-distance 70

•••••

.....

.....

. . . .

. . .

4 . . .

.....

12

CONFIDENTIAL

3.35	Shot 12, pnotograph of free-air shock 2,330 ft	~
3.36	from air zero at t = 0.946 sec (Film 28389) Shot 12, time of arrival of free-air incident	71
2424	and reflected shocks	73
3.37	Shot 12, fireball radius versus time	74
3.38	Shot 12, free-air shock velocity versus distance	75
3.39	Shot 12, sound velocity and ambient pressure	71
3.40	versus altitude	76
2.40	distance	77
3.41	Shot 12, weapon yield as a function of distance	
	from burst point	78
3.42	Shot 12, planes of measurement for direct shock	-
2 /2	photography	79
3.43	Shot 12, photograph of shock along asphalt	
	1,430 ft from ground zero at t = 0.213 sec (Film 28391)	80
3.44	Shot 12, time of arrival of initial distrubance	~
2177	along the ground (asphalt and desert areas)	82
3.45		
	of ground range	83
3.46	Shot 12, calculated temperature of the thermal	84
3.47	layer as a function of ground range Shot 12, height of the triple point as a function	04
2.41	of ground range over asphalt, water and	
	desert areas	86
3.48		
	from ground zero at t = 0.164 sec (Film	
	28381)	88
3.49		80
2 50	along the ground (water area)	89
1.20	from ground zero at t = 0.332 sec (Film	
	28387)	91
4.1	Shot 4, pressure versus distance reduced to 1 kt	
	(RC) at sea level	100
4.2	Shot 8, pressure versus distance reduced to 1 kt	100
12	(RC) at sea level sea level Shot 12, pressure versus distance reduced to 1 kt	100
4.3	(RC) at sea level	101
4.4	Shot 10, pressure versus distance reduced to 1 kt	
	(RC) at sea level	101
4.5	Teapot shots plotted on precursor chart from	
	Reference 24	104

.

.

.

•

.

÷

13-14

Υ.

1

•••••

•••••

BLANK PÁGE

CONFIDENTIAL

Chapter I

1.1 METHODS AND OBJECTIVES

Shock-wave photography, as it has come to be known in connection with atomic tests, includes two closely related techniques designed to detect and locate in space and time the various shock phenomena associated with nuclear bursts. The simpler and slightly less accurate of the two has been termed "direct shock photography" for it involves only the use of high-speed, high-resolution cameras. "Rocket-smoke-grid photography", the more-accurate technique, requires the establishment of a grid of smoke trails situated behind the burst. Shock waves which are otherwise unobservable can be detected when photographed against such a grid. Both of these techniques are described in more detail in Chapter 2.

On many previous atomic tests, shock-wave photography has produced a wealth of reliable data (References 1 through 7). These have been used to establish the standard curve of free-air pressure versus distance down to the 10 psi level for atomic weapons (Reference 6) and they provide the basis for detailed knowledge of the development and growth of the Mach shock and triple point, the precursor phenomenon, and many other blast effects of atomic bursts.

.

.

.....

.

. . .

*

During Operation TEAPOT, Project 1.2 was called upon to employ these techniques to determine: (1) free-air peak pressure versus distance on the high-altitude shot; (2) the position of the incident and reflected shocks as a function of time vertically above the burst position on Shots 4, 8, and 12, and if coalescence occurred, the peak pressure of the coalesced shocks as a function of distance above the burst; and (3) the effects of the surface and the heating of the air near the surface on precursor formation, growth, and shock wave interaction on Shots 1, 3, 4, 6, 8, 9, and 12.

In addition to the above, photographic records were obtained on Shot 7, the underground shot, to study the growth of the base-surge cloud and to determine its role in the spread of radioactive contaminants. The project was concerned with this task only to the extent of assuring procurement of the desired records. The analysis and results will be published under an AFSMP-sponsored task at the Naval Ordnance Laboratory (Reference 8).

These objectives were established for the purposes of (1) providing blast attenuation data and determining the amount of energy that goes into blast when a nuclear device is burst under rarified atmospheric

conditions; (2) determining whether the incident and reflected shocks coalesce at some distance above a tower burst and, if so, what the resultant pressure is as a function of distance; and (3) gathering precursor data for a number of shots varying in yield and height of burst over or near various surfaces, so improved methods can be formulated for predicting precursor effects on ideal blast and on diffractionand drag-type targets.

1.2 BACKGROUND AND THEORY

While Objectives 1 and 3 were aimed toward increasing the knowledge of the military effects to be expected from weapons burst under previously untested environmental conditions, Objective 2 was directed toward providing basic information on shock phenomena from a tower burst in support of the drone-aircraft program, which was established to determine the damaging effects of gust loading on aircraft in flight. To facilitate this study, it was desired that the drone aircraft, to be tested on Shot 12, be subjected to but one shock. Promising, though inconclusive, data obtained by shock photography during Operation UPSHOT-KNOTHOLE (Shots 1 and 11) indicated that in the region directly above the burst the reflected wave might overtake the incident wave, provided the explosion were big enough and low enough. If such were the case, the coalesced shocks should thereafter proceed as one. Thus, it was intended that sufficient data be obtained by Project 1.2 prior to Shot 12 to verify shock coalescence and determine the shock pressure as a function of distance beyond the point of coalescence. The position of the drones above the burst could then be established at the desired level of gust-loading input.

From photographic records, two basic quantities associated with the shock wave can be measured: relative distance and relative time. Absolute values of these parameters can be determined by correlating the relative measurements with highly accurate engineering survey data and early fireball measurements. To determine the peak pressure of the incident shock in free air from such data, the instantaneous shock velocity is determined first by fitting the arrival-time data with a smooth curve which is expressed in closed mathematical form. Differentiation of the empirical equation for this curve yields velocity as a function of distance. In the region just beyond the fireball and in the free-air region the fitting function for the arrival-time data is

$$t = \frac{R}{a} - \frac{1}{a} \int_{R_0}^{R} \frac{b^{1.5}}{b^{1.5} + R^{1.5}} dR + c$$
 (1.1)

where t = time

.....

:...:

.....

•••••

.....

.....

***** 6 **

.....

8 6 8 8

R = distance from burst zero a, b, c = constants

Equation 1.1 is fitted to the data by the method of least squares on IBM computer equipment. Upon differentiation, the following equation

16" CONFIDE

	Shot 1	Shot 2	Shot 3	Shot 4	Shot 5	Shot 6
Code Name	WASP	HOTH	TESLA	TURK	BORNET	BEZ
Date	18 7eb	22 Peb) Mar	7 Har	12 Mar	22 Mar
Location (Area)	T-7-4	T-3	7-9-5	7-2	7-30	-
Elevation of Ground Zero (ft)	4195	4026	4021	4491	4006	1-7-10 4245
Ground Zero - Relative to Aiming Point (ft)	426W 36W					- 3692
Yield (KT)RC	1.16:0.03	2.39 0.1	6.8520.34	43:2	3,61:0,1	7.76-0.2
Actual Eeight of Burst (ft) -H	761 A1r	300 Tov	300 Tov	500 Toy	300 Toy	500 Tor
Atmospheric Pressure Ground Zero (mb) Pog (pei) Burst Height (mb) PoH (pei)	880 12.77 846 12.28	880 12.77 871 12.64	876 12.71 868 12.60	868 12.60 568.5 12.60	881 12.78 872.8 12.67	876 12.71 871 12.64
Air Temperature (Degree Cent.) Ground Zero - T _O G Burst Height - T _O H	-3.0 -6.6	-7.8	-3.9	5.2	-1.0	1.0
Scaled Height of Burst - ESd (1KT Sea Level)	683.0	213.4	150.1	135.5	186.2	240.2
Blast Scaling Factors Distance Scaling to 1 KT Ees Level $(S_d) = (P_{OB}/1h_{*}, 7v)^{1/3}$	0.8963	0.7112	0.5002	0.2711	0.6208	0.4804
Time Scaling to 1 KT Sea Level $(S_t) = S_d [(T_{OH} + 273)/293]^{1/2}$	0.8547	0.6812	0.4857	0.2645	0.6068	0.4678
Pressure Scaling to See Level (Sp) = 14.7/Poll	1.197	1.163	1.167	1,166	1.160	1.163

TABLE 1.1 - Summary Data for Teapot*

Code Name	Ellot 7	Shot 8	Shot 9	Shot 10	Shot 11	Shot 12
Date	138	APTLE	WASP'	BA	POST	HET
	23 Mar	29 Har	29 Har	6 Apr	6 Apr	15 Apr
Location (Area)	T-10	7-4	2-7-4	T-5	T-9-c	77
Elevation of Ground Zero (ft)	4288	4309	4194	4038	4235	3077
Ground Zero - Relative to Aiming Point (ft)			62V 951	397150W 361508		2011
Yield (KT) _{RC}	1.2	14.2:0.5	3.16:0.16	3.320.4	1.45 0.07	22.01
Actual Height of Durst (ft) -H	(-) 67	500 Tow	739 Air	32,582. 100 A1r	300 Tow	400 Tov
Atmospheric Pressure Ground Zero (mb) P _{OQ} (pel) Burst Reight (mb) P _{OE} (pel)	870.9 12.64	867 12.58 854.1 12.39	871 12.64 849 12.32	882 12.80 222 3.22	874 12.69 862.5 12.51	908 13.18 895.1 12.98
Air Temperature (Degree Cent.) Ground Zero - T _{OC} Burst Height - T _{OH}	16.3	9.1 11.2	13.4	10.3	1.0	19.5
Scaled Height of Burst - HSd (1 KT Sea Level)	-	195.0	475,2	13,192	251.2	137.0
Blast Scaling Factors Distance Scaling to 1 KT	-	0.3901	0.6430	0.4049	0.8373	0.3424
Time Scaling to 1 KT See Level (S_t) = $S_d [(T_{OH} + 273)/293] 1/2$		0,3842	0.6348	0.3550	0.8233	0.3417
(Sp) = 14.7/Pog	-	1.186	1.193	4.563	1.174	1.132

"The yields given are the final radiochemistry values taken from the Report of the Test Director LA-1966, October 1955.

LELDEALT.

.....

is obtained for the instantaneous shock velocity, U:

$$U = a \left[1 + \left(\frac{b}{R}\right)^{1.5} \right]$$
(1.2)

A complete explanation of the equation and method of fitting may be found in Reference 5.

The peak pressure of the shock wave can be calculated for values of the instantaneous shock velocity by using the Rankine-Hugoniot relation:

$$P_{g} = \frac{2 \Upsilon P_{0}}{\Upsilon + 1} \left[\left(\frac{U}{c_{0}} \right)^{2} - 1 \right]$$
(1.3)

where P_s = peak shock overpressure, psi

 P_0 = ambient pressure ahead of the shock, psi

Y = ratio of specific heats for air = 1.40

U = shock velocity, ft/sec

 c_0 = speed of sound ahead of the shock = 1089 $\sqrt{1 + T_0/273}$, ft/sec

 T_{o} = ambient air temperature ahead of the shock, °C.

For those regions where shock pressures exceed 100 psi the Rankine-Rugoniot relation, Equation 1.3, becomes less reliable because of a gradual change in the applicable equation of state for air from which the relation is derived. In the pressure region from 100 to 500 psi, peak pressures are obtained by use of the Hirschfelder-Curtiss tables (Reference 9), which are based on the thermodynamic properties of air under these more extreme conditions. The tables give $(P_{\rm g} + P_{\rm o})/P_{\rm o}$ as a function of U/c_o with all the necessary corrections for the change in state accounted for (Reference 10).

1.3 TEST CHARACTERISTICS

.....

·....

••••••

.....

.....

> A detailed list of test characteristics required for the various analyses is given in Table 1.1. Yields, meteorological data, scaling factors, and other pertinent data are presented.

18

ALTRI ATLANC.

Chapter 2 INSTRUMENTATION

2.1 ROCKET-SMOKE-GRID PHOTOGRAPHY

The experimental technique consists of establishing a smoke-trail grid behind the burst and taking relatively high-speed (100 to 500 frames/sec), high-resolution, timed motion-picture photographs of the burst. The film records show the locus of the shock front as a function of time. Reflected light from the smoke trails is refracted when the shock front intersects the light path from the grid to the camera, causing that portion of the trail behind the shock to appear displaced from its original position. Each smoke trail in the grid thus affected has the appearance of being broken or hooked. The only purpose of the smoke grid is to make the detection of the shock front easier and the measurement of the shock radius more accurate; therefore, knowledge of the exact location of the grid is not required.

The smoke trails which formed the background grid on Shots 4, 8, and 12 were generated by firing sixteen 5-inch spin-stabilized rockets on Shot 4 and 20 rockets on Shots 8 and 12. Plan views of the rocketline layouts for the smoke-grid experiments on these shots are shown in Figs. 2.1 and 2.2. Each rocket consisted of a 5-inch Mark 3 Mod 4 electric-firing rocket motor and a modified 5-inch Mark 10 rocket head loaded with 10 pounds of FS chemical smoke mix. The heads were modified by drilling thru-holes 120° apart, located a few inches above the base, through the wall into the cavity. An insert, called a scoop, was welded into each hole. As soon as the rocket motor was ignited, the entire missile was caused to spin and the external nipples of the inserts were sheared off by the rails in the launcher tube, allowing the FS to escape into the air to form a dense, white smoke.

.....

. . .

.....

.....

•.•••

1.2.

.....

The launcher used on this operation consisted of a 5-inch Mark 50 launching tube mounted on a rugged base made of 2-inch steel pipe. The tube was suspended from the pipe framework by means of a pillow block bolted to a plate which was welded to the tube at the center of gravity (when loaded). With this type of construction the tube was easily elevated to any desired angle.

Power was supplied to each rocket launcher by a step-down transformer (110 volts primary to 6.3 volts secondary) located at each rocket station. The primary of each transformer was connected in parallel to the main power line, which extended from a centrally located power station to each end of the rocket line. Firing of the rockets was completed automatically from the central power station by a delay timer at approximately H-8 seconds. The delay timer was initiated by a -15-second hard-wire timing signal provided by Edgerton, Germeshausen and Grier, Inc. (EG&C). After

ONCHORNELL

Shot	Chaeva Station	Type of Camera	Effec- tive Focal Length (mm)	Total Horiz. Cover- age (ft)	Vertical Coverage Above Oround (ft)	Camera Speed (fpe)	Angle of flevs- tion (Degrees)	Aiming Point	Camera Location	Remarks
1	7-357	Mitchell	100.1	2,500		100	3025'	30	853,1248	
	7-360		100.3	3,400		100	0000	2000' ROZ	678.0002 845,216m	Direct
	7-360		99.97	3,400		100	00001	2000'LOZ	701,1692	Photo.
3	7-357	Nitchell	100.1	3,000		100	1000 ·	OZ	853,1248 678,0002	
	7-357 7-357	н н	152.2 152.3	2,000 2,000		100	20451 20451	5050,102	"	Direct Photo.
4	4-357	Mitchell	34.46	12,500	5,500	100	1,30,	30	853, 306m	
	4-357		50.04	8,800	5,500	100	50401	OZ	651,033R	Rocket
	4-357	н	50.19	8,800	4,500	100	2045	02	h	
	4-357		74.83	5,800	3,500	100	30151	02	88	
6	7-357	Hitchell	100.3	2,300		100	00001	02	853,124.N 678,000E	
	7-357	н	74.83	3,050		100	0000	02	hour	Direct
	7-357		74.90	3,050		100	00001	7050 'ROZ		Photo.
	7-357	я	75.26	3,050		100	0000	7050'LOZ		
8	4-357	Mitchell	34.46	9,600	5,500	100	5050'	02	853,306H 651,033E	
	4-357		50.22	6,700	5,200	100	9000	OZ	6.000	Rocket
	4-357		50.19	6,700	4,500	100	7030'	02		
	4-357		74.83	4,500	3,500	100	5,50.	OZ		
9	7-357	Mitchell	74.90	3,300		100	5 ⁰ 10'	oz	853,124N	
	7-357		100.3	2,450		100	4º001	GZ	678,000E	Direct
	7-357		100.0	2,450		100	30251	02		Photo.
LO and	1-355	Fastar	251.6	3,500	2,400	500	81008'	Bomb Zero		
1110	1-355	Mitchell	152.3	5,200	4,100	100	81°08'		672,338E	Smoke
	372	Hitchell	151.9	7,300	5,800	100	42025'	н	795,9621	Orid
	372	Mitchell	583.4	1,900	1,500	190	420251		674,980E	
12	372	Mitchell	151.9		5,700	100	000001	OZ	705 0608	
-					31100	100		02	795,9628 674,9808	Rockets
	372	Hitchell	249.6		4,100	100	' 00°00	GZ		
	372		583.4		3,300	100	00000	0Z	-	
	P-362	Tastax	152.1	1,900		500	00000	GZ	745,844# 703,951E	
	7-362	Mitchell	100.1	2,900		100	00000	0Z	-	
	7-360	H	99.1	1,900		100	00000	20045'LGZ	738, 34 3M	
	0.1=		00.01						713.027E	
	9.1EZ		99.31	2,400		100	00000	11°20'RGZ	744,2621	Direct
	9.1EZ		152.3	1 600		100	000001	1 Pantan	705,980E	Photo.
	9.1E1		100.0	1,600 2,400		100 100	000001	1700' MGZ		
			20010	a, 100		100		17050.FQS		
							1 million 100 mill		705,9972	
	9.1E1		152.3	1,600		100	000001	170001107		
	9.1E1 F9.1E3	N	152.3 99.2	1,600 1,900		100 100	000001	17000 LOZ	736,257N	

* * * * *

TABLE 2.1 - Camera Coverage for Smoke Rocket and Direct Lock Photography

a delay of approximately 7 seconds, the delay timer completed the circuit to the main power line, causing 110 volts to be applied to the primary of each transformer. The rockets were fired simultaneously in this manner. Fig. 2.3 shows the rocket-line firing circuit.

The principal region of interest on Shots 4, 8, and 12 was the freeair region directly above the burst point. For this reason the smoke

20

COMPORTING

grid was concentrated in that vicinity. This was accomplished by firing the smoke rockets in a criss-cross pattern, such that the trails appeared to intersect in a vertical plane directly above the burst point (see Fig. 2.4). The camera stations were installed and operated by EG&G according to NOL specifications. Table 2.1 lists the photographic details for all shots in which Project 1.2 participated.

The photographic records obtained in conjunction with the smoke grids were enlarged on a direct projection Recordak. Breaks or hooks in the smoke trails indicated the position of the shock front on each frame. Knowing the effective focal length of the camera lens and the distance to the plane of measurement, the distance scaling factor was

Shot No.	Film No.	Distance to Place of Measurement (ft)	Distance Scaling on Tracing (Image Magnified 19 Times)	Speed of Camerc (fps)	Time Per Prune (sec)	Establishment of Absolute Time
1	28881	9,846	1 - 6.874 ft	100		•••
4	28183 28184	18,690 18,690	lum = 13.104 ft lum = 19.492 ft	101.03 99.01	0.009898	lst Prame - 2.58 me lst Prame - 9.95 me
5	28081 28084	9,572 9,572	lmm = 6.689 ft lmm = 5.006 ft	100.91 99.70	0.00991 0.01003	lat Prame - 8.40 mm lat Prame - 8.00 mm
8	28282 28284	13,216 13,320	1mm = 13.774 ft 1mm = 9.313 ft	100.81	0.00992	2nd Frame - 10.70 mm 2nd Frame - 11.25 mm
9	29384	10,228	1mm = 5 312 ft	101.32	0.00987	let Frame - 9.32 mo
10	28980	32,934	1 - 6.856 ft	650	**	let Frame - 1.55 ms
12	28381 28382 28283 28387 28389 28399 28390	12,056 7,914 10,020 9,943 64,451 64,451	lmm = 5.797 ft lmm = 4.15k ft lmm = 5.228 ft lmm = 5.178 ft lmm = 13.236 ft lmm = 5.797 ft	101.95 103.09 102.88 92.76 101.42 101.01	0.00980 0.00970 0.00972 0.01078 0.00986 0.00990	let Prase - 7.3? me eee let Prase - 1.00 me let Prase - 5.15 me let Prase - 7.42 me

.....

......

i Tani

TABLE 2.2 - Film Calibration Constants

· Absolute Time Obtained by Comparison with Film 28389.

** Time between Frames varied over Region of Interest.

ere Absolute Time Obtained by Comparison with Film 28387.

determined. Also recorded on the film was a 200-cycle timing signal, so the time for each frame was determined. (Table 2.2 lists the calibration constants for all films from which data were obtained.) Shock-wave time-of-arrival data were then measured for each frame; from these data the instantaneous shock velocities were determined and peak overpressures calculated as a function of distance (see Section 1.2).

Instrumentation for the smoke-rocket experiments on Shots 4, 8, and 12 operated successfully. Of a total number of 72 expected trails, only three failures were encountered. (The 72 expected trails include a premature firing of all 16 rockets on Shot 4 as a result of a spurious signal delivered to the rocket line firing circuit at approximately 2 hours before zero time. However, the shot was postponed, because of adverse weather conditions, and the rocket line was reloaded and fired again on shot day at the proper time.) One of the failures was attributed

21

CALCUD CALTUAL

Figure 2.2 Rocket and direct shock photography layout for Shot 12.

to a defective rocket motor, which failed to fire. The other two rockets fired but failed to smoke, probably because the launcher rails did not shear off the external nipples. Two of the three failures occurred on Shot 4; the other on Shot 12. However, the grids produced on these shots were adequate. All of the cameras operated, and excellent photographs were obtained on all three shots.

2.2 HIGH-ALTITUDE SMOKE GRID

The high altitude shot, Shot 10, introduced the problem of how to form a background smoke grid for the free air shock photography experi-

ment. Since the standard smoke rockets normally used could not reach the desired altitude, it was necessary to employ some other means to produce the grid. A review of the problem indicated that two types of grids could be used. Either the grid could be vertical, in which case the smoke trails could be formed by dropping smoking missiles from aircraft at a higher altitude than the burst, or it could be horizontal, as formed by horizontally-flying aircraft releasing a smoke-producing agent (similar to skywriting techniques) to make a horizontal grid above the

24

COMPRESSION OF

bomb burst. The latter method was decided to be the most reliable from the technical standpoint in view of the uncertainty of burst position.

The grid was to be similar in form to those generated by smoke rockets on past atomic tests, i.e., a struight line grid. The proposed grid lines were to be spaced at 400-ft intervals. To establish the grid, the aircraft were to fly into the wind (wind expected from $290^{\circ} \pm 15^{\circ}$) at an altitude that was fixed 8,000 ft below the "drop" aircraft. (The bomb was to be burst at an altitude 10,000 ft below the drop altitude, thus fixing the smoke grid 2,000 ft above the burst.) Each smoke aircraft was to generate a smoke trail along a horizontal line of

Figure 2.6 Smoke grid photography layout, Shots 10 and 10 dry run (Area 5).

.....

.....

:....

•••••• •••••• •••••

.

.

CAMERA

STATION

372

795,953 N

674,972E

4,785 EL

flight for approximately 50 sec, beginning at H-83 sec and continuing to about H-35 sec. The smoke trails would then extend about 10,000 ft to each side of air zero. Fig. 2.5 shows the intended position of the smoke grid at bomb-release time. Cameras located on the ground were to be aimed vertically upward, and high-speed motion pictures of the burst were to be taken. (Fig. 2.6 shows the camera plan layout for Shot 10 and the Shot 10 dry run.)

The responsibility for developing and testing suitable smoke generators, installing them in suitable aircraft, training personnel for the Operation, and establishing the desired smoke grid during the Operation was assigned to the 4925th Test Group (Atomic) of the Air Force Special Weapons Center, Kirtland Air Force Base, New Mexico. Specifications as to length, density, and persistency of the smoke

Laps.

trails were supplied to the 4925th Test Group by the Naval Ordnance Laboratory.

Two systems for producing smoke were developed, tested, and made available for use during the Operation. (Reference 22 is a detailed report of these developments.) In one, atomized Corvis oil is injected into the jet exhaust of each aircraft to produce the trail. (The oil, first vaporized by the hot gases in the jet, freezes shortly thereafter to form a bluish-white smoke.) This technique was to be used whether condensation trails were being formed naturally or not to assure a positive, durable trail. As a back-up to the oil-injection apparatus, each aircraft was equipped with a commercial smoke generator produced by the Del Mar Corporation of San Francisco. These generators used charges of titanium tetrachloride in capsule form, each capsule capable of generating smoke for 6 sec. Enough charges could be inserted to generate a continuous trail for 30 sec.

During the Operation, eight aircraft were used to produce the smoke grid. One B-47 was used as a master guide or reference point upon which the remaining seven aircraft (F-84's and F-86's) based their position.

•••

•••

.:

:

••

...

......

.

On the Shot 10 dry run, condensation trails were very evident and a good set of persistent trails was produced. However, an error in the judgment of the aircraft pilots spaced the trails at too wide intervals (from 2000 to 3000 ft).

.....

.....

:....

.....

÷.•**;

:.··;

1 0 0 0 0 0 1 0 0 0 0 0

......

On Shot 10 the spacing between grid trails was considerably better, ranging from 200 to 600 ft, but in most cases was excessive. The ambient conditions at the altitude of the smoke grid were such that good condensation trails were not produced. The grid was not satisfactory and was of essentially no use in the analysis of the films. The smoke trails made by the aircraft appeared as a series of very light, discontinuous puffs of smoke (see Fig. 3.32). No hooks, breaks or discontinuities, such as those observed when the shock front propagates in front of a rocket smoke grid could be distinguished from the natural breaks in the trail. Undoubtedly these natural breaks occurred because of the method used to deploy the smoke.

Most of the analysis of Shot 10 records was done by direct shock photography, and because of the lack of contrast on the films, it was extremely difficult to detect the shock front. A slight modification in the method normally used for the analysis of the films was necessary. Instead of observing the projected images of the film (magnified approximately 20 times) by use of the Recordak and tracing the shock front frame by frame, projection prints were made of each frame of the film, the magnification being approximately six times. By varying the amount of light and the exposure times, it was possible to obtain better contrast than could be obtained in the Recordak. On those frames where the shock front was detectable outside of the fireball region, the diameter of the shock was measured and the growth of the shock front as a function of

STATION T-98 865.221 N 608,306 E N EFFECTIVE CAMERA FOCAL LENGTH AIMING PT I. 152 MM 500' EGZ 2 152 MM 500' WGZ **** CAMERA STATION 7-357 853,109 N 677,969E Figure 2.8 Shot 3, camera plan layout for direct shock photography. time was obtained. The rest of the analysis followed the procedure out-

2.3 DIRECT SHOCK PHOTOGRAPHY

lined in Section 1.2.

This project also instrumented five shots with direct shock photography, including Shots 1, 3, 6, 9, and 12. The instrumentation for the direct shock photography included a number of high-speed 35-mm Mitchell cameras operating at 100 frames/sec and a few 35-mm Fastax cameras operating at approximately 500 frames/sec. Each camera was equipped

Figure 2.9 Shot 6, direct shock photography layout.

with the necessary apparatus to provide timing marks on the film. The cameras were located and aimed so that full coverage over the regions of greatest interest was obtained. The camere stations again were installed and operated by EG&G according to NOL specifications. Figures 2.2, 2.7, 2.8, 2.9, and 2.10 show the plan layout for the direct photographic coverage for the various shots. Photographic details for each shot are given in Table 2.1.

Tracings of the shock contours near the surface were made by direct projection in the Recordak. With timing and distance scales obtained

29

CALL I

853100N 677,990E

Figure 2.10 Shot 9, camera plan layout for direct shock photography.

.....

.....

. . .

**. :

......

.....

R 139 H 139 H 139

from the films, measurements of the space-time history of the incident, reflected, and Mach shocks were made directly from the tracings. The path of the triple point and precursor formation and growth were also measured in the same manner.

Some of the photographic records were lost or partially impaired either because of overexposure of the film, as on Shots 3 and 12, or because of the failure of the timing apparatus on the cameras, as on Shot 1. Much useful information was obtained, however, and in the opinion of the authors, the objectives were met successfully.

30

......

Chapter 3 RESULTS

The photographic results obtained by this project are reported shot by shot. In general, excellent results, both in the free-air region and along the surface, were realized on most shots. Those cases in which cameras or timing instrumentation failed were at a minimum and the successful accomplishment of the experimental objectives was not impaired. Table 3.29 lists the films obtained on each shot and gives an indication of the data extracted from each.

3.1 SHOT 1

Excellent direct shock photography along the ground was obtained on this shot. However, failure of the timing equipment resulted in the loss of all timing data on the films and all other data can only be given with corresponding approximate relative times.

Arrival-time data of the incident shock along the ground northeast and southwest of ground zero were measured on Film 28881. Figure 3.1 shows the plane of measurement for this film. A comparison of these arrival-time data to both sides of ground zero is shown in Fig. 3.2. The distance data plotted in this graph are listed in Table 3.1 and are given as a function of frame number instead of time. Since the speed of the camera was approximately 100 frames/sec, the time between frames was approximately 10 msec. Thus an approximate time for each frame was obtained by multiplying the frame number by the factor 10. The accuracy of the time measured in this manner is difficult to determine but is probably better than ± 5 percent.

.....

.....

.....

.....

.....

÷......

÷.•*•.

.....

.

It is apparent from Fig. 3.2 that the arrival of the initial disturbance at a given distance to the northeast of ground zero was earlier than to the southwest of ground zero over a ground range from 400 to 1,000 ft. This is attributed to a slight thermal effect observed to occur to the northeast of ground zero (see Fig. 3.3 for an actual photograph of the shock taken from Film 28881). This thermal effect, observed on one side of ground zero but not the other, was probably caused by the presence of a sufficiently heated layer of air over an extensive surface of asphalt in the T-7 area to the northeast side of ground zero. The more-highly reflective area to the other side of ground zero was apparently incapable of causing the air above it to heat up sufficiently to produce the effect.

3.2 SHOT 3

Because of the unexpected high yield of the Shot 3 device, all of the direct shock photography films were heavily overexposed, and few

Figure 3.1 Shot 1, Plane of Measurement for Direct Shock Photography, Film 28881.

No.	Northeast Distance From GL (ft)	Southwest Distance From GZ (ft)	France No.	Northeast Distance From GZ (ft)	Southwest Distance From GZ (ft)
		P11.	28881		
30	250.9	264.0	58	968.5	965.8
31	316.2	301.1	59	983.7	982.3
32	356.1	370.5	60	1,005.0	998.8
33	393.9	394.6	61	1,025.6	1,014.0
34	426.2	439.9	62	1,041.4	1,038.0
35	459.2	473.6	63	1,055.2	1,055.2
36	484.6	492.6	64	1,071.7	1,073.7
37 38	516.9	522.4	65	1,090.2	1,087.5
38	534.0	543.0	66	1,108.1	1,103.3
39	569.2	586.4	67 68	1,124.6	1,118.4
41	591.9	611.8	60	1,146.6	1,132.8
42	618.7 643.4	631.7 657.2	69 70	1,152.8	1.
	666.8	678.5	71	1,177.5	1,175.5
13	687.4	708.0	72	1,213.3	1,203.0
	701.8	729.3	73	1,221.5	4,005.0
45	728.6	752.0	73 74	1,243.5	
47	752.7	767.1	75	1,269.6	
47	776.0	787.1	75 76	1,276.5	1,251.2
49	791.9	818.0	77	1,297.1	
50	813.2	835.9	77 78	1,308.1	
51	835.2	849.6	79 80	1,321.2	
52	855.1	870.0	80	1,345.9	
53 54	875.7	880.0	81	1,361.1	
54	892.2	907.4	82	1,363.1	
55	908.7	923.2	83 84	1,386.5	
55 56 57	931.4	930.1	84	1,411.9	
57	952.0	952.0	85 86	1,428.4	
S			86	1,440.1	

TABLE 3.1 - Shot 1 - Time of Arrival of the Initial Disturbance Along the Ground

32

.

.

data could be obtained, because of the lack of contrast and resolution. As a result, only qualitative statements can be made concerning the shock-wave phenomena on this shot.

Figure 3.4 shows a frame taken from Film 28681. The fireball was asymmetrical, and there was a thermal disturbance of the shock along the ground on both sides of ground zero.

3.3 SHOT 4

The arrival-time data for the free-air incident shock were measured on Films 28183 and 28184 (see Fig. 3.5 for the planes of measurement) over

Figure 3.3 Shot 1, Shock Photography taken from Film 28881, Frame 44.

a range of from 200 to 3,000 ft directly above the burst point. These data are given in Table 3.2 and plotted in Fig. 3.6. The absolute time for each film was determined by plotting the earliest data point from NOL films on the curve representing fireball-growth data supplied by EG&G (see Fig. 3.7). These arrival-time data were fitted to Equation 1.1,

Continued on Page 39

34

COMELDENT

Figure 3.4 Shot 3, Photographs taken from Film 28681.

35

CAN

Figure 3.5 Shot 4, Planes of Measurement for Smoke Rocket Photography.

36

22

Durst (ft)	(Sec)	Burst (ft)	(Sec)	Burst (Tt)
		F11= 28183	3	
182.698	.02580	1357.574	. 279780	1926.288
347.256	0124.80	1379.851	- 269680	1944.634
11.605	022380	1400.01	.299580	1956.1.77
511.056	.072280	11.27.026	-3094.00	1976.083
SAT WY	04, 21, 80	14,51.923	319300	1994.,127
632.973	052080	11.74.200	.329280	2014 045
677.477	061960	1489.925	. 339160	2031.120
724.651	.onesc	1512.202	.349000	2052.086
770.515	.061780	1533.164	-358980	2067.811
NOR. 517	091600	1556.755	- 360000	2083.536
R51 760	101580	1576.411	.378780	2103.192
849.762	.1114.90	1596.067	- 388680	21.20.277
914.659	-121360	1614-413	. 398580	21 79.863
951.350	-131280	1634.069	004004	2154-296
986.731	.11180	1645.035	.418360	2145.717
1016.670	151050	1674.591	.1.28280	2217.197
104.7.320	-160980	1695.658	-4360.00	2251.267
1078-159	170680	1711.382	1000011	2284.027
1109.909	100780	1731.038	006457	2318.098
1141-356	1,0680	1752.005	. 167600	2357.410
1166.236	200560	1772.971	.477780	2300.997
1184.533	2104.60	1793.934	.107600	24,09.626
1213.430	.220360	1016.214	.197580	24.1.275
1238.328	230280	1429.314	- 5074.80	2175.346
1259.294	-21,01.80	1848.994	-517300	2509.416
1204.192	250093	1849.942	.577280	2539.555
1302-538	259980	1889.597	- 5377 80	2567.07:
301-111	.269830	1906.632	-547080	2601.111
				2629.977

1222.733 1222.733 1222.733 1222.733 1222.733 1222.733 1222.733 1222.733 1223.745 1223.745 1223.745 1223.745 1223.745 1223.745 1223.745 1223.745 1223.745 1223.745 1223.745 1223.745 1223.745 1223.745 1223.745 1233.845 1235.8555 1235.8555 1235.8555 1235.8555 1235.85555 1235.8555555 10	.0099950 .020050 .030050 .030050 .0300550 .0300550 .0300550 .1000650 .1000650 .1100650 .100650 .100650 .100650 .100650 .100750 .100650 .100500 .10050000000000	F11= 261.64 1760.1390 17797.165 16936.096 19937.000 2093.070 2095.070 2005.070 2005.070 2005.070 2005.070 2005.070 2005.070 2005.070 2005.0700 2005.0700 2005.0700 2005.0700 2005.07000 2005.070000000000	84 9499250 9499250 9499250 9499250 9499250 9499250 9499250 9499250 9499250 9499250 9496500 9496500 9496500 94965	2695.746 27152.021 27152.021 2992.021 2992.021 2992.021 2992.021 2992.021	1.009850 1.030050 1.030050 1.130050 1.131050 1.131050 1.131050 1.131050 1.131050 1.131050
			84		
			22		
			2		
			2		
			2		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1 2722 814	A DOOL OF
321.618	.009950	1760.130	-1644.50	2695.748	1.00965
124-175	-020050	1797.165	_LRL650	1 2726.975	1.03005
500. 793	05 TO LO	1838.098	- 504,850	2762.021	1.05025
600.069	0604,50	1880-981	525050	2797.200	1.0704.5
129.002	000550	1010 045	\$1.5250	The yak	1.09065
	of Color	4747.70)	- 14/4/2		
783.580	.080650	1957.000	- 5454.50	284.7.776	1.11085
195 60	090750	1984 187	585650	2015-011	1.110%
	- Annother		Constant of	CLE NOR	
Olt OLT	- tong	A10.7607	or score	ATCHINES	4+47467
092.735	.LI0950	2062.257	626050	2935.500	1.174.5
975-617	121050	2099.298	64.6250	2962.789	1.19165
970.707	031111	2778.276	66445	2003.027	1-21-859
1007 84.0	111250	27.69.163	646650		
Juny any	OSLISI	2000 1000	TOKASO		
1068-163	1614.50	2277.645	727050		
1122 711	181650	771 1720	71.7250		
1100 014	201850	2000 060	7671 50		
1211 45	222060	211 200	227650		
120 576	21.2250	244 100	NO NO		
au our	2621.50	24.00 - 4.10	Course		
		2126 500			
		26 213			
	Scano.		-000		
14.11. 394	. 323030	24.63.283	064219		
1520.378	343250	2512.523	05/164		
1559.362	363450	2532.015	908850		
1600.296	303650	2563.202	929050		
いいい	103850	2596,338	949250		
*****	121050	2671.424	0691 50		
1642.162		264A 150	029980		

TABLE 3.2 Shot 4 - Absolute Time of Arrival of Insident Shock in Pres Air





Figure 3.7 Shot 4, Fireball Radius versus Time.

.....

.....i

.....

•••••••

·.··:

.....

P = 20 a a

* * * * * *

۹.

and the resulting constants to be substituted into this equation were found to be as follows:

a = 1,090.865
b = 1,507.918
c = 0,004585

.....

.....

.....

.....

These constants are valid over the entire range of from 600 to 3,000 ft.

The instantaneous shock velocities were then obtained by substitution of the constants a and b into Equation 1.2 and the velocities were calculated from

 $U = 1090.9 \left[ 1 + \left(\frac{1507.9}{R}\right)^{1.5} \right]$ (3.1)

where R is given in feet and U is given in ft/sec. Figure 3.8 is a plot of the velocities as a function of distance. By substitution of these velocities in the Rankine-Hugoniot equation, Equation 1.3, the peak shock overpressures were calculated as a function of distance.

Since the free-air arrival-time data were measured in the vertical direction only, it was necessary to use the varying ambient atmospheric

39

conditions ahead of the shock for each radius at which pressures were calculated. Measurements of  $P_0$  and  $T_0$  (ambient pressure and temperature) were made at various altitudes.  $C_0$ , the sound velocity, was calculated by substituting the value of  $T_0$  in the equation for the sound velocity given in Section 1.2 following Equation 1.3. Fig. 3.9 is a plot of  $P_0$  and  $C_0$  as a function of altitude and the ambient conditions ahead of the shock were determined from this plot. The peak overpressures, instan-



Figure 3.8 Shot 4, Free-Air Shock Velocity versus Distance.

taneous shock velocities, distances, and the ambient conditions ( $P_0$  and  $C_0$ ), for Shot 4 are given in Table 3.3. Fig. 3.10 is a plot of the peak shock overpressures as a function of distance from the weapon.

One project objective on Shot 4, it will be recalled, was to determine whether the incident and reflected shock waves coalesced above the burst. While the records were being examined to obtain the incident

40

ALBORT AND AND A

Distance R (ft)	Shock Velocity U(ft/sec)	Sound Velocity C ₀ (ft/sec)	Ambient Pressure P ₀ (pei)	Block Over- Pressure Pa(pe1)
600	5,437.1	1,099.8	12.10	347.3
700	4,539.8	1,099.6	12.07	236.6
800	3,913.8	1,099.4	12.02	168.3
900	3,456.6	1,099.2	11.98	127.0
1,000	3,110.8	1,099.0	11.94	99.1
1,100	2,841.7	1,098.8	11.89	79.7
1,200	2,621.5	1,098.6	11.85	66.4
1,300	2,453.6	1,098.5	11.80	55.5
1,400	2,310.3	1,098.3	11.76	46.9
1,500	2,190.4	1,098.1	11.72	40.8
1,600	2,088.9	1,098.0	11.67	35.7
1,700	2,002.2	1,097.8	11.63	31.6
1,800	1,927.3	1,097.6	11.59	28.1
1,900	1,862.1	1,097.5	11.55	25.3
2,000	1,805.0	1,097.3	11.51	23.0
2,100	1,754.6	1,097.2	11.47	20.9
2,200	1,709.9	1,097.0	11.42	19.1
2,300	1,670.0	1,096.9	11.39	17.5
2,400	1,634.1	1,096.7	11.35	16.2
2,500	1,001,9	1,096.6	11.31	14.9
2,600	1,572.7	1,096.5	11.27	13.9
2,700	1,546.2	1,096.3	11.23	13.0
2,800	1,522.0	1,096.2	11.19	12.1
2,900	1,500.0	1,096.0	11.16	11.3
3,000	1,479.6	1,095.9	11.12	10.6

TABLE 3.3 Shot 4 - Pressure, Velocity, Distance Data in Pres Air

shock data, the position of the reflected wave was sought without success. Notice of a slight jog in the incident wave arrival-time curve at approximately 2,550 ft finally led to the detection of what is thought to have been the reflected wave. Arrival-time data for this wave were obtained over the range from 1,800 to 2,525 ft vertically

.....

.....

·····

••••••

......

Distance From Burst (ft)	Time (sec)
Film 2	8184
1,836.149	0.757350
1,882.930	0.767450
1,929.711	0.777550
1,988.187	0.787650
2,036.917	0.797750
2,087.596	0.807850
2,134.377	0.817950
2,173.361	0.828050
2,214.295	0.838150
2,259.126	0.848250
2,294.212	0.858350
2,333.196	0,868450
2,374.129	0.878550
2,424.809	0.888650
2,459.894	0.898750
2,491.081	0,908850
2,524.218	0.918950

TABLE 3.4 - Shot 4 - Absolute Time of Arrival of Reflected Shock in Pres Air

above the burst. These data are given in Table 3.4 and are plotted in Fig. 3.6. Somewhere between 2,525 and 2,550 ft, the incident and reflected waves apparently coalesced over a horizontal range of approximately 750 ft to either side of the vertical through the burst point. Beyond the 2,525 ft distance, only one wave could be detected.

41

E.E. * 4 *** A

Although it was difficult to detect the reflected wave above the fireball, the lower portions in the vicinity of the triple point could be seen distinctly. It was found possible to trace nearly the entire outline of the reflected wave from the triple point on one side of the burst to that on the other. (The rocket smoke grid proved to be  $\varepsilon$  little use in locating the wave in the region above the burst.) The contour of the reflected wave is shown in Fig. 3.11 as it appeared at



.....

.....

** . .

•••••

*****

* ******* * * * *

Figure 3.9 Shot 4, Sound Velocity and Ambient Pressure versus Altitude.

the time of coalescence. Fig. 3.12 shows a frame of the film record. Only the incident shock is outlined clearly by the smoke grid.

A perplexing observation that must be reported is that the reflected wave was found to travel with a velocity of from 3,500 to 4,000 ft/sec in overtaking the incident shock. A shock traveling with this velocity in the medium believed to exist behind the incident shock would be expected to have a peak overpressure in excess of 100 psi, according to theory. Yet all other evidence indicates that such a strong shock was not present. For example, no definite hooks or breaks were observed in the smoke grid other than those caused by the incident wave. Also, at the distance corresponding to that at which coalescence is indicated, the incident shock pressure was only about 12 psi. The

42

.....



.

.....

.....

•.•••

*****

.....

Figure 3.10 Shot 4, Free-Air Peak Shock Overpressure versus Distance.

overtaking of such a comparatively weak shock by one about eight times as strong would have resulted in a marked increase in the velocity of the coalesced front, but no such radical jump that would indicate a large velocity increase appeared in the arrival-time data. Finally, only weak reflected wave pressures were recorded by the canister gages of Project 1.1 (Air Force Cambridge Research Center). The fact that these measurements were made where the incident shock was of the order



Figure 3.11 Incident and Reflected Wave Contours.



Figure 3.12 Shot 4, Photograph of Free-Air Incident Shock 2,290 ft from Air Zero at t = 0.757 sec (Film 28184).

44

CONFIDENTIAL







of 9 psi and below, as well as being located off to the side of the burst rather than directly above it, has little bearing on the argument.

No solution to this apparent paradox has been found to date. All that can be said is that if the reflected wave front observed optically was real, for which the evidence is strong, then the assumptions made concerning the conditions believed to exist behind the incident shock were in error. There is no other source of error which would account for the difference between the calculations and the observations. For practical purposes it must be concluded that the calculated reflected wave pressures are in error.

The second purpose of the project was to determine the value of the peak overpressure in the coalesced wave; and further, to predict what the peak overpressure in the coalesced wave would be on the similarly oriented Shot 12. The incident shock pressures beyond the 2,550 ft distance, presented above, are to be considered as those for the coalesced wave.

To predict what pressures one might expect, following coalescence, for another energy yield, such as for that of Shot 12, it was decided to determine what increase in the yield of Shot 4 would have been required to give the same incident shock arrival times and pressures as those observed on Shot 4 after coalescence. An average value for this supposed yield was obtained by comparing the Shot 4 arrival-time and pressure-distance data point by point, with those of the corresponding composite free-air curves (Ref. 6) for a 1-KT device at sea level and averaging the results.

First, the Shot 4 arrival-time data were scaled down from assumed yields between 45 and 50 KT until the composite arrival-time data were bracketed. Then by extrapolation and a series of approximations, the apparent yield of the Shot 4 weapon was obtained for various distances from air zero. Table 3.5 lists the yields obtained in this manner.

The pressure-distance data were scaled to sea level and compared with the composite pressure-distance curve in a similar fashion. Distances for the same pressure level, from Shot 4 and the composite pressure-distance curve were found, and with the relation

$$\frac{W_2}{W_1} = \left(\frac{R_2}{R_1}\right)^3$$

where,

••••

:**:

....

•...:

•...:

....

****

....

- $W_1 = 1 \text{ KT},$
- R₁ = distance read from composite curve for a given pressure
- $W_2$  = yield for the Shot 4 weapon at that pressure level

.....

. . . . . .

• • • • •

* * * * * * * * * * *

R₂ = distance read from the Shot 4 pressure-distance curve, same pressure level

the apparent yield for Shot 4 was found. These data are also given in Table 3.5. Figure 3.13 is a plot of the yields obtained by both methods. From this analysis it was concluded that after coelescence occurred, the

Yield Obtai	ned From	Yield Obta	
Pressure-Dis	tance Data	Time-of-Arr	
Distance	Vespon	Distance	Vespon
From Burst	Yield	From Burst	Yield
(ft)	(kt)	(ft)	(kt)
610 688 810 1,095 1,205 1,390 1,690 2,450 2,900	39.4 40.6 43.6 45.8 46.9 48.0 49.8 52.0 54.2	507 688 729 1,068 1,123 1,500 1,988 2,202 2,300 2,512 2,696 2,793 2,992	42 50 46 44 45 55 46 46 45 46 46 46 46

TABLE 3.5 - Shot 5 - Weapon Yield Obtained From Free-Air Data



:....:

i...:

* * * * * *

.....

* * * * *

> Figure 3.13 Shot 4, Weapon Yield as a Function of Distance from Burst Point.

conlesced wave corresponded to that which would have been produced normally at the same distance from a yield of 1.16 W, i.e., from a weapon yield of 1.16 x 43 = 49.9 KT, prior to coalescence.

Measurements of the shock phenomena occurring near the ground were also made to a limited extent. These data contained a much larger uncertainty than is generally realized when the photo-optical technique of direct shock photography is planned for in advance. On Shot 4 the experiment was designed primarily to obtain free-air data. Furthermore, a rise in the foreground between the camera and ground zero obstructed the view of the area in the vicinity of ground zero on both sides, particularly to the northwest side of ground zero (see Fig. 3.12). As a result, all measurements made at ground level had to be extrapolated to that surface.

The time of arrival of the precursor formed on Shot 4 was measured to the southeast of ground zero. These data are given in Table 3.6 and plotted in Fig. 3.14. Only fragmentary precursor data could be obtained on the northwest side of ground zero, because of the obstruction in the foreground.

The height of the triple point as a function of ground range is given in Table 3.7 and plotted in Fig. 3.15. Measurements were made on both sides of ground zero and extended out to a ground range of approximately 2,800 ft on the northwest side of ground zero and 1,800 ft on the southeast side. The smoke grid produced for the free-air measurements formed a background grid in the field of view of two cameras aimed from Station 372 and extended the useful field of view in which the triple point could be detected by approximately 1,000 ft on the northwest side of ground zero. All measurements of the triple point trajectory have been assigned an uncertainty of  $\pm 5$  percent.

### 3.4 SHOT 6

Excellent results were obtained from the direct shock photography films on this shot. Along with the shock phenomena occurring near the ground, a high-speed jet was observed to blow out of opposite sides of the fireball. Figure 3.17(a) shows this jet just after its appearance. The velocity of the jet was extremely high (faster than the shock just after breakaway) and ranged from approximately 12,000 to 5,000 ft/sec over a distance of from 500 to 900 ft from the center of burst. Figure 3.18 is a plot of the arrival time of the most-extended portion of the jet and the front of the immense cloud of gases, both of which were propagating faster than the free-air shock. Since the jet was symmetrical about the center of the Shot 6 detonation, it was attributed to the internal geometry and method of detonation of the weapon.

A precursor was formed over the desert and asphalt areas, and arrival-time data were measured from Films 28081 and 28084. Figure 3.16 shows the plane of measurement for both films. These data are given in Table 3.8 and plotted in Fig. 3.19. The precursor over the asphalt area was murkedly different from that formed over the desert area. Figure

47

LAITIA

(Continued on Page 52)

:...:

. . . . . .

. . . . . .

•••••

•.•**• •.•*•

.....

Cround Range (ft)	Time (Sec)	Ground Range (ft)	Time (Sec)	Ground Range (ft)	Time (Sec)	Ground Range (ft)	Time (Sec)
1055	24000	Pilm :				Film	RIAL .
1339 1422 1463 1472 1474 1614 1601 1603 1667 1638 1776 1748 1739 1785 1815	.16098 .24018 .25008 .25998 .26998 .27978 .28968 .29958 .3094P .31935 .32928 .34908 .35898 .36888 .37878	1943 1935 1952 1952 2052 2076 2072 2123 2169 2169 2169 2169 2169 2169 2169 2169	.40848 .41838 .42828 .43818 .4408 .45798 .46788 .47778 .48768 .49758 .50748 .51738 .52728 .53718 .54708 .55698	2319 2359 2399 2407 2398 2403 2474 2521 2474 2521 2496 2503 2562 2567 2567 2567 2567 2564 2565	.58668 .59658 .60648 .61638 .62628 .63618 .64608 .65598 .66588 .67578 .68568 .67578 .68568 .69558 .70548 .71538 .74508 .75498	1422 1388 1608 1686 1742 1784 1881 1885 2066 2113 2154 2202 2244 2339 2382	. 22205 . 25235 . 27255 . 30285 . 32305 . 35335 . 37355 . 40385 . 42405 . 45435 . 47455 . 50485 . 52505 . 55535 . 57555
1869 1908	-38868 -39858	2268 2284	.56688 .57688	2652 2728	.76488	2417 2485 2557	.60585 .62605 .65635

TABLE 3.6 - Shot 4 - Time of Arrival of Precursor Along Ground Southeast of Ground Zero

### TABLE 3.7 - Shot 4 - Height of the Triple Point as a Function of Ground Range Northvest and Southeast of Ground Zero

4

.

Range (ft)	Height (ft)	Ground Range (ft)	Height (ft)
North	west	Bout	beast
805 852 961 1,071 1,097 1,140 1,280 1,283 1,288 1,317 1,334 1,357 1,522 1,524 1,635 1,696 1,708 2,093 2,252 2,473 2,633 2,803	43.6 53.1 76.5 132.9 131.8 140.9 211.0 244.7 259.0 248.0 297.6 336.3 399.4 406.3 440.5 503.2 767.6 877.7 942.2 1,066.5 1,171.9	951 1,068 1,104 1,246 1,07 1,402 1,498 1,659 1,672 1,811	80.4 138.5 176.2 224.2 201.7 386.4 397.5 528.9 505.2 581.6

·····

.....

-

48



Figure 3.16 Shot 6, Plane of Measurement for Direct Shock Photography Films 28081 and 28084.



3.17(b) shows the precursor formed over both areas. The angle which the front of the desert precursor made with the surface was greater and its velocity along the ground less than the corresponding values for the precursor over the asphalt. This difference in velocity of the precursor fronts is readily observable in the arrival-time curves shown in Fig.



:....:

.....

.....

. . . .

*****

.....

.....

Figure 3.18 Shot 6, Time of Arrival of Fireball Jets.

3.19. The angle that the precursor front made with the surface over both areas was also measured and is plotted as a function of ground range in Fig. 3.20 and given in Table 3.9.

The triple-point trajectory could only be measured over the desert area to a height of 250 ft. The dust rising behind the precursor over 52

Figure 3.19 Shot 6, Time of Arrival of Precursor along the Ground over Asphalt and Desert Areas.



.

Asphalt Ground Range (ft)	Desert Ground Range (ft)	Time (**c)	Asphalt Ground Range (ft)	Desert Ground Range (ft)	Time (sec)
	File 28081				
230.1 299.7 390.6 453.5 524.4 571.9 635.4	 438.1 548.5 588.6 638.8	0.07774 0.08765 0.09755 0.10746 0.11737 0.12727 0.13718	1,426.1  1,534.4	1,329.1 1,349.8 1,371.2 1,426.8	0.39473 0.40464 0.41455 0.42445 0.42445 0.42445
699.0 711.0 754.5 792.0 843.2 863.6 916.4 956.5 968.0 1,015.4 1,040.1 1,064.9 1,103.7 1,133.6 1,215.9 1,205.3 1,212.0 1,214.4 1,254.2 1,255.9 1,265.3 1,215.9 1,255.9 1,265.3 1,215.9 1,255.9 1,265.3 1,215.9 1,255.9 1,265.3 1,215.9 1,255.9 1,255.9 1,255.9 1,361.2 1,361.2 1,361.2	678.9 678.9 698.3 7729.8 770.6 808.0 830.8 864.9 939.8 964.0 1,034.1 1,066.9 1,086.3 1,111.0 1,086.3 1,111.0 1,134.4 1,182.6 1,229.4 1,229.4 1,229.4 1,229.4 1,229.4	0.137108 0.13699 0.16690 0.17680 0.136671 0.20652 0.21643 0.22633 0.23624 0.24614 0.25605 0.26596 0.27586 0.26596 0.26596 0.26596 0.26596 0.30558 0.31549 0.32539 0.33530 0.31549 0.33530 0.35511 0.36502 0.37592	111.1 253.8 328.9 408.0 473.6 593.2 641.3 708.8 727.9 776.9 816.0 856.0 897.6 985.6 995.2 1,024.2 1,059.3 1,023.8 1,107.8 1,154.4	P11= 280% 125.2 248.3 342.4 424.5 479.1 550.7 606.7 630.8 675.8 703.8 703.4 768.4 807.0 837.5 870.5 901.1 965.2 978.7 1,024.2 1,068.8	0.06920 0.07924 0.09931 0.10934 0.11937 0.12941 0.13944 0.15951 0.16954 0.15951 0.16954 0.15951 0.16954 0.15951 0.20968 0.21971 0.22975 0.23978 0.24982 0.25985 0.26988 0.27992

# TABLE 3.8 - Shot 6, Time of Arrival of the Initial

1..... 

1..... ..... TABLE 3.9 - Shot 6, Angle of the Precursor as a Function of Ground Range Over Asphalt and Desert Areas

Ground Range (ft)	Angle (Degrees)	Ground Range (ft)	Angle (Degrees)
Deser	t Ares	Aspha	It Ares
438.1 548.5 568.6 638.8 678.9 698.3 729.8 770.6 808.0 830.8 864.9 8964.0 1,008.0 1,008.0 1,008.0 1,008.1 1,066.9 1,086.3 1,111.0 1,134.4 1,182.6 1,224.8 1,250.8 1,229.4 1,349.8 1,371.2	32.7 24.3 22.3 29.1 29.2 29.2 29.2 29.2 29.2 29.2 29.2	453.5 524.4 571.9 635.4 699.0 711.0 754.5 792.0 848.2 883.6 916.4 956.5 988.0 1,015.4 1,040.1 1,064.9 1,103.7 1,133.8 1,255.9 1,185.3 1,212.0 1,231.4 1,254.2 1,267.6 1,317.1 1,355.9 1,361.2 1,407.4 1,426.1 1,534.4	21.9 15.7 19.0 27.3 24.0 25.2 21.0 20.5 21.3 22.0 24.0 25.5 26.6 27.8 28.6 29.8 30.9 32.5 31.3 30.3 32.5 31.3 30.3 32.5 35.0 5

the asphalt area obscured all shock formations near the ground. Figure 3.21 is a plot of the height of the triple point as a function of ground range over the desert, and these data are listed in Table 3.10.

### 3.5 SHOT 8

The arrival-time data for the free-air incident shock for this shot were measured in the vertical direction on Films 28282 and 28284. (See Fig. 3.22 for the planes of measurement for these films.) The photographic details for these films may be found in Table 2.2. Absolute time for the film records was again determined by plotting the first data point from the NOL films on the curve representing fireball-growth data supplied by EG&G (see Fig. 3.23). The arrival-time data are plotted in Fig. 3.24 and listed in Table 3.11. The statistical fit to the arrival-





time equation over the range from 300 to 2,500 ft was found by the method described in Section 1.2, and the resulting constants are:

$$a = 980.185$$
  
 $b = 1,171.669$   
 $c = -0.005927$ 

For the free-air shock the instantaneous shock velocity equation is thus

$$U = 980.2 \left[ 1 + \left( \frac{1171.7}{R} \right)^{1.5} \right]$$
 (3.2)

Figure 3.25 is a plot of these shock velocities as . function of distance.

The peak shock overpressures at various distancer were calculated using the shock velocities obtained from Equation 3.2 and the ambient 55

(Continued on Page 60)

..... •••••

. .

.....

..... ****

....:





Ground Range (ft)	Beight (ft)	Ground Range (ft)	Seight (ft)
711.	28081	Film 2	6084
555.2 616.0 645.5 700.3 781.9 801.3 802.7 862.9 881.6 911.0 931.1 971.2 998.7 1,018.7 1,018.7 1,018.7 1,019.5 1,085.0 1,097.7 1,125.1 1,145.8 1,197.3 1,212.0 1,235.4	28.7 46.8 56.2 60.2 74.9 72.2 83.6 99.0 115.7 108.4 117.1 132.4 135.1 154.5 143.1 154.5 143.1 154.5 143.1 156.0 190.6 235.4 235.8 246.2	507.1 560.7 580.2 595.2 643.3 669.8 693.8 760.9 789.9 803.5 844.0 868.0 877.0 922.6 936.1	7.5 27.0 44.0 56.6 67.6 67.6 65.1 70.1 75.1 84.1 91.6 100.6 101.6 117.1

TABLE 3.10 - Shot 6, Height of the Triple Poiut as a Function of Ground Range Over the Desert Area

# **BLANK PAGE**









:....:

i....i ..... .....

: .: ...... .....

..... •....• :...i :....: TABLE 3.11 - Shot 8 - Time of Arrival of Incident Free-Air Shock in Vertical Direction from Air Zero

(ft)	Time (sec)	Distance (ft)	Time (sec)
711.	28284	Film	28282
289.6 372.5 450.7 498.2 538.3 719.0 833.5 952.7 1,055.2 1,163.2 1,253.5 1,342.9 1,427.7 1,513.4 1,595.3 1,674.5	0.01125 0.02114 0.03103 0.04092 0.05081 0.10025 0.13981 0.18925 0.23870 0.28814 0.33759 0.38703 0.43648 0.48592 0.53537 0.58481	283.7 370.5 1,354.0 1,428.4 1,508.2 1,579.9 1,663.9 1,745.2 1,811.3 1,885.7 1,960.0 2,031.7 2,097.8 2,173.5 2,239.6 2,307.1 2,370.5 2,443.5 2,512.4	0.01070 0.02052 0.38747 0.43704 0.43662 0.53620 0.58577 0.63534 0.68492 0.73450 0.73450 0.78407 0.63364 0.88322 0.93280 0.93280 0.932837 1.03194 1.03152 1.1310 1.13067

58



.

65

here

atmospheric conditions ( $P_0$  and  $C_0$ ) existing at burst height (see Table 1.1 for values of  $P_0$  and  $T_0$ ). These data are given in Table 3.12 and plotted in Fig. 3.26. The change in slope of the pressure-distance curve below the 15-psi level is not thought to be real but is thought to be the result of the fitting function. (This is discussed in Sections 3.9 and 4.1.3).

Shot 8, like Shot 4, was instrumented with rocket-smoke photography to obtain data on the reflected wave in free-air and to determine the point of catch up of the reflected wave with the incident shock. However,



.....

•••••

•••••

****

.....

я с_с

Figure 3.25 Shot 8, Free-Air Shock Velocity versus Distance.

the Shot 8 device detonated at a lower yield than was expected; because of its high effective height of burst, the desired data could not be obtained. Moreover no reflected wave could be detected above the fireball on the films.

Shock phenomena occurring near the ground were measured to the north side of ground zero on Shot 8 from Films 28280 and 28283 (See Fig. 3.27 for the planes of measurement). South of ground zero a rise in the foreground limited the measurements along the ground that could be made. A precursor was formed on this shot and was observed on both sides of ground zero. Its arrival time along the ground was measured







••••

· · · · · ·

*****

1

R (ft)	Shock Velocity U (ft/wec)	Shock Overpressure P(ps1)
100	5,894.1	415.1
500	4,496.3	231.7
600	3,655.0	145.0
700	3, 202.8	100.4
800	2,717.5	72.0
900	2,436.2	55.1
1,000	2,223.3	43.4
1,100	2,057.7	35.1
1,200	1,925.9	28.9
1,300	1,818.9	24.3
1,400	1,730.6	20.7
1,500	1,656.9	17.6
1,600	1,594.4	15.3
1,700	1,541.0	13.3
1,800	1,494.9	11.7
1,900	1,454.8	10.3
2,000	1,419.7	9.2
2,100	1,388.7	8.1
2,200	1,361.1	7.2
2,300	1,336.6	6.5
2,400	1,314.5	5.8
2,500	1,294.7	5.2

TABLE 3.12 - Shot 8, Pressure, Shock Velocity, Distance Data in Free Air

61



## Figure 3.27 Shot 8, Plane of Measurement for Direct Shock Photography Films 28280 and 28283.

north of ground zero. These data are listed in Table 3.13 and plotted in Fig. 3.20. No attempt has been made to measure the angle that the precursor front made with the surface, since such data would have contained a large uncertainty.

.....

•••••

.....

....

----

The height of the Mach stem as a function of ground range was also measured on Shot 8 on the north side of ground zero. These measurements

Oround Range (ft)	Time (sec)	Oround Range (ft)	Time (sec)
711m 2	8283	Film :	28590
702.8 877.1 1,029.2 1,170.4 1,294.9 1,420.8 1,523.1 1,618.6 1,709.9 1,826.1 1,00.8	0.14950 0.19988 0.25025 0.30062 0.40138 0.40138 0.45175 0.50212 0.55250 0.60288 0.65325	361.6 433.9 474.0 518.6 561.5 603.4 642.1 690.0 730.5 765.5 794.5 829.1 856.7 893.6 925.8 957.6 979.2 1,006.9	0.07823 0.08613 0.09803 0.10803 0.11803 0.12793 0.13803 0.12773 0.13803 0.12773 0.13763 0.15763 0.16743 0.17723 0.18773 0.18773 0.20683 0.22663 0.22663 0.22664

### TABLE 3.13 - Shot 8 - Time of Arrival of Precursor Along the Ground North of Ground Zero

Figure 3.28 Shot 8, Time of Arrival of Precursor along the Ground North of Ground Zaro.



Ground Range (ft)	Neight of Triple Point (ft)
345.4	2.8
459.7	10.6
509.0	15.2
550.4	22.6
590.5	21.6
622.7	27.2
655.0	35.5
684.0	39.6
719.0	45.1
752.6	49.3
792.2	57.6
825.8	65.4
859.5	68.2
884.4	65.9
912.4	69.1
947-4	75.5
981.1	83.8

TABLE 3.14 - Shot 8 - Height of Triple Point as a Function of Ground Range

were obtained over a ground range of from 300 to 1,000 ft and are plotted in Fig. 3.29 and given in Table 3.14.

### 3.6 SHOT 9

The results of Shot 9 were similar to those of Shot 1; however, a precursor was observed to form on both sides of ground zero at approxi-





mately 300 ft ground range. Measurements of the time of arrival of the precursor to the southwest (out to 1,150 ft) and to the northeast (out to 1,000 ft) of ground zero were made on Film 29384. These data are presented in Table 3.15 and plotted in Fig. 3.30. As on Shot 1, the propagation of the precursor to the northeast side of ground zero over



.....

......

.....

•••••

1.0

.....

****

*

0.6

TABLE 3.15 Shot 9 - Arrival Time of Precursor Aloog the Ground Northeast and Southwest of Ground Zero

.

(FT)

RANGE

GROUND

0.2

0.3



TIME (SEC)

ALLE.

0.4

0.5

65

+ ---

the asphalt surface was faster than to the southwest, where there was only the natural desert surface. Other than this asymmetry, no unusual phenomena were observed. The reflected wave data that could be obtained were limited to the point of insignificance.

### 3.7 SHOT 10

....

.....

......

1.1

10

225

4

-----

Arrival-time data were measured on Film 28980 taken by the highspeed (500 frames/sec) Fastax camera (see Table 2.2 for the film calibration constants). These data are presented in Table 3.16 and plotted in Fig. 3.31. A comparison of these data with the arrival-time data measured by the two nearest AFCRC canisters (Project 1.1) shows good



Figure 3.31 Shot 10 - Time of Arrival of Free-Air Shock.

agreement; however, the accuracy of the canister positions is given as ± 45 ft, reference 23. Figure 3.32 shows actual photographs taken from Films 28980 and 28982.

The arrival-time data were fitted to Equation 1.1, as described in Section 1.2, and the constants obtained are:

- **a** = 763.736
- b = 1,277.816
- c = 0.000043

These constants are valid over the entire range of from 200 to 1,050 ft. Substitution of the constants a and b into Equation 1.2,



Radius (ft)	Time (sec)	
123.400	0.001550	
157.700	0.003150	
188,500	0.004750	
215.300	0,006400	
235.200	0.007950	
267.400	0.011050	
295.916	0.012590	
318.365	0.017290	
372.446	0.026940	
467.343	0.050440	
496.935	0.058240	
520.404	0.064490	
551.016	0.073890	
581.628	0.081890	
609.179	0.089540	
646.934		
671.423	0.097390 0.111290	
690.811		
725.504	0.119090 0.128440	
749.994		
770.402	0.134590	
785.708	0.143890	
810,198	0.151590	
842.850	0.159290	
861.218	0.172340	
914.278	0.188740	
981.625	0.219440	
1,044.890	0.251440	
A,000,000	0.280940	

.

.

TABLE 3.16 - Whot 10 - Time of Arrival of Free Air Shock

TABLE 3.17 - Shot 10 - Pressure, Velocity, Distance Data in Free Air

Radius (ft)	Shock Velocity (ft/sec)	Peak Overpressure (psl)
200	13,098	712
300	7,478	225
400	5,124	104
500	3,884	55.7
600	3,137	34.5
700	2,647	23.5
800	2,306	16.8
900	2,056	12.7
,000	1,867	9.8
,100	1,720	7.7

TABLE 3.18 - Shot 10 - Weapon Yield Versus Distance

Radius (ft)	Yield (kt)
407	3 51
447 505 615	3.51 3.51
505	3.51
615	3.51
719	
787	3.38
787 884	3.24
950	3.18
950 1,046 1,111	3.11
1,111	3.11



-

٩

.....

::::::







.....

•••••

• • • • • • •

·....

.....



Section 1.2, gives the instantaneous velocities as a function of distance. This equation is

$$U = 763.7 \left[ 1 + \left( \frac{1277.8}{R} \right)^{1.5} \right]$$
(3.3)

where R is given in feet and U is given in ft/sec,

By substitution of the instantaneous velocities into the Rankine-Hugoniot equation (Equation 1.3) the peak shock overpressures were calculated. Table 3.17 lists the peak overpressures and velocities as

69

a function of distance. The ambient atmospheric conditions ahead of the shock were taken as those at burst height (see Table 1.1). Figure 3.33 is a plot of the peak shock overpressures as a function of distance. Also plotted in Fig. 3.33 are the pressure-distance data obtained by the AFCRC canisters (from Reference 23), and there is excellent agreement between the two sets of data. The weapon yield as a function of



.....

.....

4



distance was calculated in the same manner as on Shot 4 (see Section 3.3) and the results are presented in Table 3.18 and plotted in Fig. 3.34.

It is difficult to determine a figure of accuracy for the data obtained by the method used on this shot. However, it is thought that the distances measured are within 10 ft and the timing is accurate to about 0.1 percent. Although the dispersion of the arrival-time data about the fitted curve is greater than usual, a calculation of the

accuracy of the pressure-distance curve indicates that the pressures may be in error by as much as 2 to 3 percent from 400 psi to 8 psi.

#### 3.8 SHOT 12

#### 3.8.1 Free-Air Data

Arrival-time data for the incident free-air shock were measured in the vertical direction directly above air zero on Films 28389 and 28390 over a range of from 250 to 3,000 ft (see Fig. 3.35



. . . . . .

Figure 3.35 Shot 12, Photograph of Free-Air Shock 2,330 ft from Air Zero at t = 0.946 Sec (Film 28389).

for actual photographs of the free-air shock). These data are listed in Table 3.19 and plotted in Fig. 3.36. Distance and time scaling factors were determined as explained in Section 2.2, and the film calibration constants for these films are listed in Table 2.2. The absolute time for each film was found by plotting the first data point from the NOL films on the data supplied by EG&G for fireball radius

DISCOULT 1 A

																2.	4																			
										2.013.256	1 978 842	1.941.780	1.910.012	1.879.569	1.847.801	1.817.358	1.786.914	1 747 205	1,733.968	1 684 .994	1.657.197	1,622,783	1,006.899	1.580.426	1,568.513	1.555.277	1.524.833	1 490 419	1.475.859	1.461.298	1.446.738	361.354	26:.728		(11)	Radius
										0.726178	0.706.86	0.686794	0.667102	0.647410	0.627718	0.608026	0.588334	0.568642	0.548950	0.529258	0.509566	0.489874	0.480028	0.470.82	0.460336	0.450490	0.430798	0.420952	0.411106	0.401260	0.391414	0.017266	0.007420	711-	(sec)	Time
										2.955.688	2 902 742	2 867.004	2.766.408	2 706 844	2 623 454	2.587.716	2.571.822	2 520 210	2 495.065	2 461.970	2 448 734	2 409.025	2.403.730	2.375.934	2.329.606	2 303 134	2 222 300	2 187.977	2 162 828	2 131.060	2.099.293	2.074.144	2.035.758	F11= 28389	(11)	Radius
										128616	1. 370416	1. 341045	280056	231726	1.143112	123420	1.103728	96.0480	1.064 344	1.044652	1.024960	1.005268	0.985576	0.965884	201940.0	800130.0	0.864022	OFF MAR. O	0.824618	0.804946	0.785254	0.765562	0.745870		(sec)	Time
	406.304	360,509	1, 336.162	321.670	1,302.341	281.672	263.123	239.356	212.691	194.720	176.750	156.462	1,134.434	109.508	006, 300	1.067.771	1.044,583	1 014,440	986.615	961.109	934.444	900.016	885.171	858.506	828.942	797.060	760.540	72+.600	690.979	649.242	603.447				(3.2)	Radius
	0.374420	0.354630	0.344735	0.334840	0.324945	0.315050	0.305156	0.295260	0.265365	0.275470	0.265575	0.255680	0.245785	0,235890	0.225995	0.216100	0.206205	0.196310	0.186415	0.176520	0.166625	0.156730	0.146835	0.136940	0.127045	0.117150	0.107255	0.097360	0.087465	0.077570	0.067675		FUs		(sec)	Time
	2,124.527	2,059.603	2,023.663	1,998.157	1,965.695	1,929.175	1,898.452	1,864.251	1,827.731	1,795.269	1,776.139	1,762.227	1,746.576	1,730.345	1,717.012	1,699.042	1,678.174	1,664.261	1,644.552	1,626.582	1,609.771	1,509.403	1,573.831	1,556.441	1,538.471	1, 521.060	1,502.531	1,481.662	1,461.953	1,444.563	1,427.172		P11= 28390		(33)	Radius
	0.790010	0.750430	0.730640	0.710850	0.691060	0.671270	0.651480	0.631690	0.611900	0.592110	0.502215	0.572320	0.562425	0.552530	0, 542635	0.532740	0.522845	0.512950	0.503055	0.493160	0.483265	0.473370	0.463475	0.453580	0.443685	0.433790	0.423895	0.414000	0.404105	0.394210	0.384315				(sec)	Time
_	-	-	_	_	-		-	_		_	_	_		_	_	_	_	_	_	-	-	_		_	-	-	-	_		_	_	_	_	1	_	_

TABLE 3.19 - Shot 12 - Time of Arrival of Incident Shock in Free Air in Vertical Direction Above Air Zero ZL

1 YLINAGLU



.



Figure 3.37 Shot 12, Fireball Radius versus Time.

TABLE	3.20	•	Shot	12	- Pr		Velocity,	Distance
			Data	in	Tree	Air		

.....

.....

•••••

Distance R (ft)	Shock Velocity U (ft/sec)	Bound Velocity C ₀ (ft/sec)	Ambient Pressure P ₀ (pei)	Shock Overpressure (pe1)
600	4508.2	1116.1	12.07	223.3
700	3777.1	1115.4	12.03	150.4
800	3266.9	1114.8	11.98	109.0
900	2894.3	1114.1	11.94	81.2
1,000	2612.5	1113.5	11.89	63.6
1,100	2393.2	1112.8	11.05	50.2
1,200	2218.6	1112.2	11.80	41.0
1,300	2076.9	1111.5	11.76	34.2
1,400	1960.1	1110.9	11.72	28.9
1,500	1862.4	1110.2	11.68	24.8
1,600	1779.7	1109.6	11.63	21.4
1,700	1709.0	1109.0	11.59	18.6
1,800	1648.0	1108.3	11.55	16.3
1,900	1594.9	1107.7	11.51	14.4
2,000	1548.4	1107.0	11.46	12.8
2,100	1507.3	1106.4	11.42	11.4
2,200	1470.8	1105.8	11.38	10.2
2,300	1438.3	1105.1	11.34	9.2
2,400	1409.1	1104.5	11,30	8.3
2,500	1382.8	1103.9	11.25	7.5
2,600	1359.0	1103.2	11.21	6.8
2,700	1337.4	1102.6	11.17	6.1
2,800	1317.7	1102.7	11.13	5.6
2,900	1299.7	1101.4	11.09	5.1
3,000	1283.2	1100.5	11.04	4.6

74

CALIFORNIA CONTINUES





versus time (see Fig. 3.37). The arrival-time data were then fitted to Equation 1.1, Section 1.2, and the constants obtained by this fitting process are:

a = 966.374

b = 1420.296

c = 0.010475

The constants are valid over the entire range of from 600 to 3,000 ft.

Substitution of the constants a and b into Equation 1.2, Section 1.2, gives the instantaneous shock velocities as a function of distance. This equation is

$$U = 966.4 \left[ 1 + \left( \frac{1426.3}{R} \right)^{1.5} \right]$$
(3.4)

where R is given in feet and U is given in ft/sec. The velocities obtained from Equation 3.4 are reported in Table 3.20 and plotted in Fig. 3.38 as a function of distance. Using Equation 1.3, the peak

75

.....

......

.....

. . . . . . . .

• • • • • •

.....

shock overpressures were then calculated. The ambient atmospheric conditions ahead of the shock ( $P_0$  and  $C_0$ ) were determined by the same method used on Shot 4, Section 3.3. The ambient pressure,  $P_0$ , and sound velocity,  $C_0$ , used to calculate the peak overpressure at each distance are given in Table 3.20 and plotted in Fig. 3.39. Peak shock overpressures as a function of distance for Shot 12 are listed in Table 3.20, and Fig. 3.40 is a plot of pressure versus distance for the free-air incident shock.

The pressure-distance curve changes curvature at the lower pressure levels (below 10 psi); i.e., the pressure appears to have decayed at a



.....

.....

•••••

Figure 3.39 Shot 12, Sound Velocity and Ambient Pressure versus Altitude.

greater rate at the lower pressure levels, as was the case on Shot 8, Section 3.5. This is contradictory to what one might expect, since the incident shock should be reinforced by the coalescence of the reflected shock at these pressure levels. It has been noted in the past (Reference 6) that the fitting function could cause such an inflection to occur and is probably the cause in this case (see Sections 3.9 and 4.1.4).

Also measured on Film 28389 were the arrival-time data for the reflected wave. Hooks and breaks were observed in the trails on Shot 12, indicating the position of the reflected wave. These data are

11 m 0.1

given in Table 3.21 and plotted in Fig. 3.36. The arrival-time data for the reflected wave were measured over a range from 1,350 ft to 2,600 ft, where coalescence of the incident and reflected shocks was observed. The reflected wave on Shot 12 was similar to that on Shot 4, although it was slower. The average velocity of the observed reflected



.....

• • •

.....

• • • • • • • •

* * * * * *

. . . . .



wave as it approached the incident wave and just prior to coalescence was approximately 2,500 to 3,000 ft/sec. The center portion was greatly accelerated while passing through the region containing the hot gases from the fireball. The shock front contours at the point of catch up are shown in Fig. 3.11. Coalescence occurred over a radius of approximately 1,000 ft horizontally to either side of the vertical.

The reflected wave beneath the fireball was not observed directly, except near the triple point and near the ground just after the incident



shock wave had reached the ground. Just prior to striking the ground, the incident shock appeared to be very flat, almost assuming the shape of a horizontal plane wave in the vicinity of ground zero. Based on past experience, it is impossible to believe that the observed distortion was due to an optical effect alone. This flatness of the incident shock of course affected the reflected wave but to what extent



.....

.....



cannot be determined. Furthermore, how this may have affected shock coalescence above the fireball is equally uncertain.

Closure of the reflected and incident shocks took place at approximately 2,600 ft from air zero (7-psi level). As was noted above, no indication of a reinforcement of the incident shock pressure was observed in this region; therefore, no effective increase in yield, such as that on Shot 4, can be justified for Shot 12. However, the effective yield of the Shot 12 device was determined by the same method

employed on Shot 4 (see Section 3.3) and these results are presented in Table 3.22 and plotted in Fig. 3.41.

3.8.2 Direct Shock Photography Data Near the Surface

F-214

Measurements of the shock phenomena occurring near the surface were made over all three areas --- desert, water, and asphalt. These



Figure 3.42 Shot 12, Planes of Measurement for Direct Shock Photography.

data were obtained from Films 28381, 28382, 28383, and 28387. The planes of measurement for these films can be found in Fig. 3.42. The results obtained for each area are presented below.

Asphalt Area. A precursor formed over the asphalt area at a ground range of approximately 300 ft and persisted well beyond 3,000 ft

79

LENDEALTI



Figure 3.43 Shot 12, Photograph of Shock Along Asphalt 1,430 ft from Ground Zero at t = 0.213 sec (Film 28381).

:....:

:..::

from ground zero. It was visible on Film 28381 out to a ground range of approximately 1,600 ft and is plainly evident in the photograph taken from this film (Fig. 3.43). Table 2.2 gives the calibration constants for this film. The precursor was also observed from 1,200 to 2,900 ft on Film 28383, although not as clearly as on Film 28381. A dark streak across each frame of Film 28383 masked out all of the wave fronts near the surface; however, the propagation of the dust or smoke following the precursor front was readily observable. This dense cloud of material was lifted and carried by the flow behind the precursor, and its makeup was quite different from that over the desert and water areas. A comparison showed that the data for the arrival time of the initial disturbance, as indicated by the SRI gages (Project 1.10), agreed closely with the data for the arrival time for the dust, as determined from the photographs, i.e., the respective arrival-time curves were nearly identical. Thus the arrival-time data for the precursor along the surface over the asphalt area are given as a continuous set of data from 300 ft to 2,900 ft in Table 3.23 and plotted in Fig. 3.44. In some cases, where structures or other obstructions prevented observation of the precursor or dust front to ground level, the fronts were extrapolated to that level. This was necessary in only a few frames of the film record, and the data are considered highly reliable. Also shown in Fig. 3.44 is the arrival time of the initial disturbance over the asphalt, as measured by Projects 1.10 and 1.12, and there is good agreement for all sets of data (less than 5 percent difference at the maximum).

Measurements of the angle that the precursor front made with the asphalt surface were also obtained, and these data are given in Table 3.24 and plotted in Fig. 3.45. A method for determining the temperature

Radius	Time					
(ft)	(sec)					
Film 28389						
1,352.760	0.598180					
1,409.677	0.647410					
1,576.455	0.696640					
1,667.786	0.745870					
1,781.619	0.795100					
1,850.499	0.844330					
2,035.758	0.893560					
2,213.126	0.942790					
2,387.847	0.992020					
2,448.734	1.041250					
2,512.269	1.090480					
2,593.011	1.139710					

## TABLE 3.21 - Shot 12 - Time of Arrival of Reflected Shock in Free Air

# TABLE 3.22 - Shot 12 - Weapon Yield Versus Distance

Yield Obtai Pressure - Di		Yield Obtained From Time of Arrival Data				
Distance from Burst (ft)	Weapon Yield (Kt)	Distance from Burst (ft)	Weapon Yield (Kt)			
684 768 905 995 1,116 1,334 1,840 2,102 2,603 2,733	24.6 24.6 24.7 24.8 24.3 24.3 24.3 22.8 22.8 22.2 22.9 18.5	1000 1200 1500 1800 2000 2500 3000	19.0 21.0 22.0 22.0 22.0 21.5 20.5			

****

• • • • • • •

* * * * * * * * *

## TABLE 3.23 - Shot 12 - Time of Arrival of the Initial Disturbance Along the Ground (Asphalt Area)

	Time (sec)	Ground Range (ft)	Time (sec)	Range (ft)
		81 and 28383	Films 2838	
	0.18388	1,304.9	0.03675	285.6
1	0.19369	1,345.9	0.05637	491.7
	0.20350	1,385.0	0.06617	586.3
1	0.21331	1,431.0	0.07598	570.7
	0.22312	1,470.1	0.08579	766.6
	0.23293	1,507.9	0.09560	812.6
	0.24274	1,555.2	0,10541	843.5
	0.26336	1,586.2	0.10789	877.8
	0.31194	1,736.2	0.11522	895.2
	0.36053	1,864.3	0.11760	930.1
	0.40911	2,020.1	0.12503	952.5 988.6
	0.45770	2,115.8	0.12732	1,015.6
	0.50628	2,215.6	0.13484	1,043.0
	0.55487	2,331.4	0.13704	1,087.4
	0.60345	2,413.5	0.14465	1,084.3
	n.65204	2,486.6	0.14676	1,143.5
	0.70062	2,559.3	0.15446	1,109.9
	0.74921	2,636.2	0.15647	1,188.3
	0.79779	2,698.4	0.16619	1,167.9
	0.84638	2,779.4	0.17407	1,225.5
	0.89496 0.94355	2,819.7 2,891.3	0.17691	1,209.1



An over he as 1 1 2

Des	iert	Asphalt				
Angle of Precursor (degrees)	Ground Range (ft)	Angle of Precursor (degrees)	Ground Range (ft)			
26.0 26.5 22.0 23.0 27.8 27.2 29.5 27.9 29.6 28.2 30.5 31.0 36.5 31.0 36.5 38.5 41.5 40.5 43.8 49.5 50.0 54.5 57.5	545 679 852 963 1,095 1,188 1,306 1,390 1,494 1,575 1,647 1,700 1,766 1,608 1,808 1,807 1,924 1,967 2,001 2,049 2,084 2,143 2,1(	23.0 24.0 23.6 22.0 24.4 25.0 25.6 26.5 27.9 29.0	646 764 942 1,067 1,210 1,304 1,435 1,519 1,634 1 664			

TABLE 3.24 - Shot 12 - Angle of the Precursor as a Function of Ground Bange over Asphalt and Desert Areas

of the thermal layer from the angle of the precursor was given in Reference 6. The temperature was calculated from the following equations:

 $\sin \Theta = \frac{C_0}{C_1}$ 

....

. . . . .

......

(3.5)

where  $\Theta$  is the angle formed by the precursor front and the surface, and



Figure 3.45 Shot 12 - Angle of the Precursor as a Function of Ground Range.

83

-





 $C_0$  and  $C_1$  are ambient sound velocities existing in the nonheated and heated mediums, respectively. Since,

****

·····

.....

. . .

. . . . . .

*

$$C_1 = C_0 \left(1 + \frac{T_1}{273}\right)^{1/2}$$
 (3.6)

then  $T_1$  may be calculated by the use of Equations 3.5 and 3.6. This was done, and the resulting temperatures as a function of ground range over the asphalt area are presented in Table 3.25 and plotted in Fig. 3.46. It should be pointed out here that, although the experiments conducted by Projects 8.4e and 1.5 to measure temperature and sound velocities over the three areas on Shot 12 were not conclusive, the differences between the temperatures and sound velocities measured by these projects and those obtained by calculations from the Project 1.2 measurements of

the angle of the precursor are extremely large (the calculated temperatures are from four to five times those measured). This may indicate a necessary revision of the method for calculating temperatures from the angle of the precursor.

The triple-point trajectory over the asphalt area was observed over a ground range of from 650 to 1,900 ft. The extension of the triplepoint measurements was greatly aided by the rocket smoke grid in the field of view of Film 28383. The height of the Mach stem could be

De	sert	As	phalt
Ground Range (ft)	femp of Thermal Layer (°C)	Ground Range (ft)	Temp of Thermal Layer (°C)
600 650 750 800 850 900 ,000 ,100 ,200 ,300 ,400 ,500 ,600 ,700 ,800 ,900 ,000 ,100 ,150	1,186 $1,238$ $1,365$ $1,581$ $1,811$ $1,811$ $1,441$ $1,146$ $1,054$ $1,020$ $1,003$ $971$ $883$ $763$ $607$ $453$ $325$ $199$ $161$	650 700 750 800 850 900 1,000 1,100 1,200 1,303 1,400 1,500 1,600 1,700	1,643 1,581 1,537 1,495 1,599 1,643 1,776 1,776 1,776 1,305 1,305 1,206 1,081 933

. * *

TABLE 3.25 - Shot 12 - Temperature of Thermal Layer Calculated From Angle of the Precursor Over Asphalt and Desert Areas

measured to over 900 ft, because of this fact. These data are plotted in Fig. 3.47 and listed in Table 3.25.

Water Area. Within the field of Film 28381, the shock propagating over the water area could not be observed all the way to surface level. The precursor and the dust cloud over the desert area obscured the shock over the water area to the extent that it was impossible to determine from the photographs alone whether a precursor formed over the water surface or not. The Mach stem which developed over the water area was clearly visible, and behind it a column of material was observed to reach a height of approximately 200 ft.

The photographs of this material indicate that it was definitely not associated with the desert area (see Fig. 3.48 for an actual photograph taken from Film 28381). The column appears to be composed of a fairly dense material (although not as dense as the dust along the desert line) such as water droplets or smoke. This column lagged farther and farther behind the Mach front as it propagated outward from ground zero. Since the dust obscured the lower part of the Mach front,

85

NUCLISTA TANKS

over a ground range from 500 to 750 ft, that portion of the Mach stem which was visible was extrapolated to the surface. Beyond 750 ft a precursor was observed to precede the Mach stem. This precursor front was then extrapolated to the surface level over a ground range of from 750 ft to 1,350 ft. It is not certain whether this precursor formed over the water or was forced in from adjacent desert areas (unfortunate-



.....

. . . .

. . . . . .

.....

* * * * * *

......

. . . .



ly the aerial films taken for this project were not able to resolve this uncertainty), but the extrapolated arrival-time data for the precursor observed are in good agreement with the measurements made by Project 1.10.

The arrival-time data of the initial disturbance along the water surface are given in Table 3.27 and plotted in Fig. 3.49 (this includes the extrapolated Mach wave from 500 to 750 ft and the extrapolated pre-

86

	eert	Asp	alt	Vater			
Ground Range (ft)	Height (ft)	Ground Range (ft)	Seight (ft)	Ground Range (ft)	Height (ft)		
729.9 775.5 812.9 857.0 881.4 914.1 547.9 966.9 1,010.2 1,039.8 1,058.5 1,096.4 1,108.4 1,108.4 1,108.4 1,108.4 1,158.3 1,174.9 1,180.6 1,220.6 1,233.6 1,277.7 1,292.8 1,303.2 1,303.2 1,322.6 1,354.1 1,384.2 1,400.8 1,413.8 1,454.7 1,466.3 1,493.3 1,500.5	68.6 87.3 106.5 114.3 149.6 151.7 161.0 172.4 182.3 207.8 236.8 232.2 245.7 249.3 271.6 301.2 298.6 333.4 319.4 349.6 341.8 351.6 385.4 370.3 391.1 383.3 405.1 441.5 436.3 142.5	648.1 696.6 773.5 809.4 840.3 872.5 893.3 937.4 996.7 1,021.9 1,050.2 1,076.7 1,076.7 1,103.8 1,129.0 1,154.3 1,178.2 1,200.9 1,229.3 1,250.7 1,521.9 1,537.6 1,554.3 1,563.7 1,590.4 1,602.9 1,614.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.4 1,625.7 1,728.9 1,728.9 1,727.1 1,727.1 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.4 1,809.6 1,912.9	75.6 86.4 109.7 121.0 138.7 160.1 174.6 202.4 220.0 245.2 260.4 267.3 273.6 291.9 308.9 318.4 330.2 341.7 349.2 362.5 550.0 561.0 584.5 617.4 616.9 636.2 650.4 673.4 691.7 684.9 692.7 712.6 729.3 729.3 745.0 763.3 776.9 786.8 791.0 809.3 828.6 846.4 877.4 878.3 890.8 914.9 914.9	459.6 504.3 540.3 578.1 849.8 885.1 1,009.3 1,049.6 1,168.8 1,180.1 1,269.0	17.6 25.2 31.5 42.9 95.2 111.0 180.9 171.5 239.6 222.5 280.5		

#### TABLE 3.26 - Shot 12 - Height of the Triple Point as a Function of Ground Range

cursor front from 750 to 1,350 ft). The photographic arrival-time data and those from Project 1.10 agree to within better than 5 percent.

The trajectory of the triple point over the water area was measured over a ground range of from 450 ft to 1,300 ft, and these data are presented in Table 3.26 and shown in Fig. 3.47.

Beyond a ground range of 1,350 ft, no data were obtained over the water surface. The film which was designed to cover this area was badly

87

. . . . .

Ground Range (ft)	Time (sec)	Ground Range (ft)	Time (sec)
	Film	28381	
475.3 507.5 604.6 684.0 690.3 733.8 784.8 865.5 914.1 958.2	0.05637 0.06617 0.08579 0.09560 0.10541 0.11522 0.12503 0.13484 0.14465 0.15446	997.9 1,038.9 1,070.4 1,096.3 1,131.6 1,178.6 1,200.9 1,257.0 1,298.6 1,328.3 1,362.3	0.16426 0.17407 0.18388 0.19369 0.20350 0.21331 0.23293 0.24274 0.25255 0.26235 0.26235 0.27216

TABLE 3.27 - Shot 12 - Time of Arrival of the Initial Disturbance Along the Ground (Water Area)

streaked with light over the regions of interest. The overexposure masked out all the shock phenomena occurring near the surface.

Desert Area. Propagation of the shock near the ground over the desert area was observed on Films 28387 and 28382 (see Table 2.2 for the film calibration constants). As was expected, a precursor formed over this area that resembled the precursor formed during Shot 10 of Operation UPSHOT-KNOTHOLE to a remarkable degree (see reference 6). The precursor over this area was first observed from approximately 500 ft; it persisted out to a ground range well beyond 3,000 ft. It was markedly different from that formed over the asphalt area. Figure



Figure 3.48 Shot 12, Photograph of Shock Along Water 1,000 ft from Ground Zero at t = 0.164 sec (Film 28381).

88

3.50 shows an actual photograph (taken from Film 28387) of the precursor propagating over the desert area. The front of the precursor over the desert area was steeper and its propagation along the ground slower than the precursor over the asphalt area (lagging by approximately 35 msec at 1,500 ft). The arrival-time data of the initial disturbance along the desert surface over a range of from 500 to 3,350 ft are presented in Table 3.28 and plotted in Fig. 3.44. On Film 28382 it was impossible to detect the shock front from a ground range of 2,450 to 3,100 ft. At 3,100 ft the shock front passed a smoking blast-line pole and was again detectable out to 3,350 ft ground range. The arrival-time curve



.....

. . . . .

. . . . . .

Figure 3.49 Shot 12, Time of Arrival of the Initial Disturbance Along the Ground (Water Area).

shown in Fig. 3.44 was extrapolated over the interval where the shock front could not be detected. Also plotted in Fig. 3.44 are the arrivaltime data of the initial disturbance over the desert area, as measured by Projects 1.10 and 1.12. Out to a ground range of 2,500 ft the agreement is exceptionally good (less than 5 percent difference in all cases). However, beyond this region the agreement, though not as good, is within the range of difference that could possibly be accounted for by the asymmetry of the precursor observed throughout the region. Following the precursor, a dust cloud rose to a height of approximately 250 ft and was apparently coincident with the arrival time of the precursor out to a ground range of 1,500 ft. Beyond this ground range, the dust cloud began to lag behind the precursor front, and it ceased to propagate

horizontally at about 3,100 ft. A plot of the dust arrival-time data beyond 1,900 ft is presented in Fig. 3.44.

The angle that the precursor front made with the surface over this area was also measured, and these data are presented in Table 3.24 and plotted in Fig. 3.45. Temperatures calculated from these data in the

Ground Range (ft)	Time (sec)	Ground Range (ft)	Time (sec)
F11	28387		
531.6	0.06707	1,889.0	0.40061
607.7	0.07739	1,912,4	0.41201
675.2	0.08735	1,927.0	0.42341
732.4	0.09731	1,950.3	0.43481
784.3	0.10727	1.972.2	0.44621
852.8	0.11723	1,985.7	0.45620
924.5	0.12717	2,007.5	0.46619
956.7	0.13715	2,019,4	0.47618
1,023.2	0,14711	2,037.1	0.48617
1,075.2	0.15707	2.055.8	0.49616
1,106.3	0.16703	2.072.4	0.50615
,155.7	0.17622	2,091.6	0.51614
,206.6	0.18541	2,106.2	0.52613
,251.8	0.19460	2,128.5	0.53612
,295.9	0.20379	2,151.9	0.54611
, 334.3	0.21298	2,159.1	0.55610
,366.0	0.22217	2,177.3	0.56609
,390.4	0.23136	2,183.6	0.57608
,441.3	0.24055	2,190.8	0.58607
,485.5	0.24974	2,228.2	0.60605
,495.9	0.25893		
,558.2	0.26809	Film	28382
,590.9	0.27725		
,616.4	0.28641	2,104.3	0.52:00
,654.3	0.29557	2,192.8	0.57018
,653.2	0.30473	2,269.7	0.61896
,702.1	0.31389	2,336.2	0.66744
,729.1	0.32305	2,437.1	0.71592
,749.3	0.33221	3,136.6	1.24920
,774.8	0.34361	3,193.9	1.34616
,799.2	0.35501	3,247.9	1.44312
815.3	0.36641	3,298.6	1.54008
,828.3 ,864.6	0.37781	3, 347.6	1.63704
,004.0	0.38921		

* * * * *

TABLE 3.28 - Shot 12 - Time of Arrival of the Initial Disturbance Along the Ground (Desert Area)

same manner as described for the asphalt area results are listed in Table 3.25 and shown in Fig. 3.46.

The height of the Mach stem as a function of ground range over the desert area was also obtained. Table 3.26 lists these data, and Fig. 3.47 shows a plot of the trajectory of the triple point over this area.

Comparison of Results of Asphalt, Desert, and Water Areas. Over the asphalt and desert area, a precursor was observed to form at approximately 300 and 500 ft, respectively. Since the water area was obscured by the dust along the desert, it cannot be ascertained whether the observed precursor formed over this area or was the result of feed-in effects. A more complete discussion of this is presented in Chapter 4.

90



Figure 3.50 Shot 12, Fhotograph of Shock Along Desert 1,750 ft from Ground Zero at t = 0.332 sec (Film 28387). .....

The precursor formed over the desert propagated at a slower velocity along the ground and at a steeper angle than over the asphalt area. In all three areas near the ground, the blast was loaded with some material raised by the passage of the shock or precursor along the surface. Over the desert area this cloud was apparently composed of sand and dust particles. Although the water area could not be observed at ground level, it appears on the film that water particles rose to a considerable height behind the Mach stem; however, the extent of the water column is extremely small, compared to the dust cloud raised over the desert area. Over the asphalt area the cloud of material immediately behind the precursor appeared to be entirely different from that over either of the other two areas. Presumably, it was composed of a mixture of particles of smoke and dust. Temperatures calculated from the angle of the precursor show that the maximum temperatures over the asphalt and desert areas were approximately the same; however, for corresponding ground ranges, the temperatures were higher along the asphalt than along the desert line. Comparison of the path of the triple point over the three areas indicates that the Mach stem grew much faster over the asphalt area than over the other two areas.

The path of the triple point over the desert area, when plotted graphically, fell between those for the water and asphalt areas. The



## TABLE 3.29 - Project 1.2 - Shock Photography Films

Shot	Film	
1	28881 28882 28883 28884 28885 28885 28886 28887	No timing on any films. Precursor measurements mad on Film 28881. Very good films showing shock phenomena near the ground. No free-air data can be obtained. Films 28885 and 28886 show cloud rise but no shocks can be observed.
3	28681 28682 28683 28684	All films were badly overexposed. Only qualitative information can be obtained from these films.
à.	28180 28181 28182 28183 28184 28185 28185 28186 28187	Free-air data obtained from 28183 and 28184. Reflected wave observed on Film 28184. Measure- ments along the ground obtained from 28183 and 28184. Films 28185, 28186, and 28187 show good detail of shock phenomena near ground zero. Film 28187 shows triple point out to end of rocket grid. Excellent films.
6	28080 28081 28082 28083 28084 28085 28086 28086 28087	Precursor measurements made on Films 28081 and 28084. Pree-air data in the fireball stage and the early stages of the shock after breakaway were obtained from Film 28080 although the speed of this film does not remain constant. Exposures of films 28082 and 28083 were too heavy to obtain measure- ments.
8	28280 28281 28282 28283 28284 28284 28287	Shock phenomena in free-air and along the ground measured on Films 28282 and 28284. Film 28280 shows early shock formation in free-air and good detail of shock phenomena near the ground in the vicinity of ground zero.
9	29382 29383 29384 29385 29385 29386	Shock phenomena near the ground were measured on Film 29384. All films were slightly overexposed but good detail of the shock near the ground could be observed. Films 29385 and 29386 show the early motion of the cloud.
10	28980 28981 28982 28985 28986 28987	Lack of contrast on all films makes the detection of the shock front very difficult. Films 28980 and 28982 are the best. All measurements were made from Film 28980.
12	28380 28381 28382 28383 28384 28385 28385 28385 28385 28385 28385 28385 28385 28389 28390 28390 28391	Free-air measurements were made from Films 28389 and 28390. Film 28390 shows free-air shock best. Ground measurements made from Films 28381, 28382, 28383 and 28387. Film 28381 shows propagation of shock over asphalt and water areas. Film 28383 shows propagation of shock over asphalt, however a dark streak across center of frame obliterates most of shock fronts. Films 28387 and 28382 show shock propagating along the desert. Film 28387 appears to be slightly out of focus.

1 3 1 5 1 1

PALTI

cause for these differences is not fully understood. Most likely, the differences in reflection coefficients for the three different surfaces and the large differences in the thermal layers above them gave rise to the differences in formation of the thermal Mach waves and their subsequent growth.

## 3.9 ACCURACY OF RESULTS

The sources of possible errors and the procedures for computing their magnitudes in the methods employed to find pressure as a function of distance by the smoke rocket shock velocity technique have been covered extensively in References 1 and 2.

The six major sources of error stem from (1) the static and dynamic resolution uncertainties associated with film measurements under optimum conditions, (2) failing to correct for foreshortening in the image plane, (3) improper scaling of distance on the film, (4) improper time calibration, (5) improper curve fitting, and (6) use of improper values of the atmospheric pressure,  $P_0$ , and sound velocity,  $C_0$ , for the region in front of the shock in pressure computations.

Throughout the analyses of the free-air data, care was taken to hold the above-listed errors to a minimum. Except for Shot 10, the distance measurements fell within a maximum uncertainty of  $\pm 2.0$  ft and measurements of time per frame to within a maximum uncertainty of  $\pm 0.00005$  sec. In the case of Shot 10, a different method bad to be used to detect and measure the locus of the shock front, a method which leads inherently to greater uncertainties in the values of the time-ofarrival data than the method used for the other shots. The uncertainties associated with the Shot 10 data were estimated in Section 3.7.

.....

.....

. .

1.00

.....

. . . .

. . . . . .

****

The calculated pressures for all shots reported are considered to be accurate to 3 percent down to the 15-psi level. Below the 15-psi level, the pressure for Shot 4 is considered to be good to 5 percent. Pressures on Shots 8 and 12 below the 15 psi level may be in greater error but are estimated to be accurate to within 10 percent. (Note the discussion in Section 4.1.3.)

Uncertainties in the direct-shock-photography data are of the same order of magnitude as those for the free-air smoke-rocket data, except for the measurements of triple-point height and the mersurements of the angle of the precursor. The uncertainty associated with these data is probably of the order of  $\pm 5$  percent.



# Chapter 4 DISCUSSION

## 4.1 FREE-AIR SHOCK PHENOMENA

......

·····

.....

••••••

101

• • • • •

· ·

1.1.

.....

## 4.1.1 Shock-Wave Coalescence, Arrival-Time Data

Concerning the study of the coalescence of the reflected shock with the incident shock vertically above the burst, it was pointed out in Chapter 3 that on Shots 4 and 12 the reflected wave overtook the incident wave, but on Shot 8 the reflected wave was not observed above the fireball, because of the low quality of the film records (improper exposure because of the unexpectedly low yield of the Shot 8 device). A careful analysis of the vertical arrival-time data has shown that only on Shot 4 was there a distinct increase in the shock velocity following coalescence at approximately 2,550 ft from the burst point. On Shot 12, coalescence was clearly observed at approximately 2,600 ft from the burst point, but no corresponding increase in velocity could be detected. If at all, the change in velocity was negative. Similarly, on Shot 8, no distinct increase in velocity was observed out to the limit of the data at 2,520 ft. It is plausible to assume for Shot 8, however, that coalescence had not yet occurred, since it did not take place for the more-favorable conditions of Shot 12 (larger yield and lower burst height) until the distance of about 2,600 ft was reached.

In the analysis of the arrival-time data for these three shots, it was observed that, when the data were scaled to a common yield basis for comparison the Shot 4 data beyond the fireball region were consistently slightly higher than those for Shots 8 and 12, between which there was an apparent but insignificant difference. A small percentage difference between the actual yield and the stated yield would account for this. However, following the point of coalescence, the Shot 4 arrival-time data became markedly higher. Assuming the stated yields to be accurate and taking the extreme values for data uncertainty into consideration, the increased velocity of the coalesced wave on Shot 4 was found to be significant and is believed to be real. Why a similar increase was not detected in the Shot 12 data is difficult to understand, unless an actual increase that may have occurred was so small that it fell within the experimental error and could not be recognized.

Another fact to be considered in connection with the observed shock coalescence on Shots 4 and 12 is that, prior to coalescence, the reflected wave velocities ranged from 2,500 to 4,000 ft/sec. At coalescence on Shot 4, the velocity of the reflected wave was significantly greater than that of the incident wave, while on Shot 12 the respective velocities were approximately the same. This information is consistent

94

with the remarks made above and may serve, in part, to explain the existence and nonexistence of the velocity increase in the respective cases of shock coalescence (see also Section 4.1.2).

A primary significant difference between these shots, and one which must certainly affect the behavior of the reflected wave, is that on Shot 4 the fireball intersected the ground plane, whereas this did not occur on Shots 8 or 12. Relatively little can be said quantitatively about shock transmission through the intensely heated fireball region. However, it is certain that the shock front accelerates upon entering this region*, and by this mechanism it is sometimes enabled to overtake the incident wave vertically above the burst. Therefore the initial conditions for the occurrence of coalescence must depend markedly, but not solely, on the scaled height of burst.

## 4.1.2 Shock-Wave Coalescence, Calculated Pressures

The foregoing remarks have been limited to a discussion of arrival-time and shock-velocity data for Shots 4, 8, and 12. These data are the fundamental results of the experiment and provide the basis for the calculation of the shock pressures as a function of distance. It was pointed out that the velocity of the reflected wave front is accelerated in passing through the intensely heated fireball region, but nothing was said about the pressure in the wave. Laboratory, field, and theoretical studies (References 6, 11, 12) have shown that, when a shock wave enters a region in which the local sound speed is equal to or greater than the shock velocity, the shock deteriorates; that is, the rise to peak pressure is no longer instantaneous but, rather, the rise time is increased and the pressure-time representation of the wave appears rounded. The wave front accelerates rapidly to acclimate itself, as it were, to its new surroundings. Shock-tube studies (Reference 12) have shows that weak shocks, upon passing into a region of heated gas, lose their ability to refract light to such an extent that they cannot be detected photographically. Pressure-gage records lend further support to the observation of wave-front deterioration described above.

.....

.....

.....

. . . . . . .

.....

i.t.

****

Direct shock photography on full-scale nuclear tests has shown that the reflected wave is sufficiently strong to distort the spherical shape of the fireball, causing the lower portion to become concave

* Direct shock photography of many near-surface atomic bursts has shown that the reflected wave loses its normal sphericity in the region directly beneath the fireball and that this portion of the wave is accelerated upward. Rate of acceleration and nonsphericity increases as the burst height decreases. Acceleration of the central portion of the wave has been observed to start in many instances well below the actual fireball, indicating that sufficient radiation is absorbed by the air to cause it to heat up with a corresponding increase in local sonic speed. Such heating of the air is the only plausible explanation for the photographic evidence of reflected shock acceleration in this region well outside of the fireball.

95

inward with respect to the spherical surface (Reference 13). In the light of these observations, it is difficult to understand why the uppermost portion of the fireball is not also pushed out of shape as the reflected shock leaves the fireball region; yet little, if any such distortion has ever been detected on any atomic burst. It would appear as though the particle motion behind the reflected wave were almost completely attenuated during its passage through the fireball. The accelerated central portion of the wave front has been observed well within the fireball by direct shock photography, but it disappears before reaching the fireball center and is not detected again until it has passed well beyond the uppermost portion of the fireball. It has been detected in this latter region only with the aid of the rocket smoke trails, and even then the observed refraction of the smoke grid is extremely weak by comparison with that produced by the incident wave. In other words, the high-velocity front apparently is not accompanied by a correspondingly high pressure.

From these arguments it is possible to hypothesize that the reflected shock wave, although very strong at its origin, is rapidly distorted and weakened during its passage through the intensely heated fireball region, while at the same time its velocity is increased. Because the local sonic speed within the fireball exceeds the speed of the shock entering it, the "shock" cannot be considered to be more than a rapidly attenuated, slow-rising pressure pulse while it traverses this region. The pressure wave is confronted by new conditions as it leaves the fireball, and these are such as to cause it to "shock up" again, although slowly, since its peak pressure has decayed somewhat and the air through which it passes appears cooler to it gradually. Whether the wave becomes a shock before it overtakes the incident shock or not, so long as it is sufficiently positive with respect to  $P_0$ , the ambient atmospheric pressure, an increase in pressure in the coalesced shocks should result.

......

.....

•••••

•••••

4 4 4 4 4 4 4 4 4 4

. . . . .

On Shot 4 the calculated pressures of the shock wave following coalescence were noticeably larger than those taken from the standard, composite free-air pressure-distance curve. This would follow logically from the observed velocity increase upon shock coalescence referred to in the previous section. On Shot 12, however, the reflected wave was observed to overtake the incident wave very gradually, and the difference in their respective velocities was negligible. Nevertheless, if the pressure in the reflected wave had been sufficiently greater than P₀, a net increase in the coalesced wave should have been detected. Since no jump in velocity was observed on Shot 12, it must be concluded that the pressure in the reflected wave was very low, i.e., almost atmospheric. (See also the remarks in the following section.)

## 4.1.3 Comparison of Pressure-Distance Data with the Standard Free-Air Curve

The pressure-distance data for Shots 4, 8, and 12 have been scaled to 1 KT (RC) at sea level (see Table 1.1 for the scaling factors) and are given in Tables 4.1, 4.2, and 4.3, respectively. Figures 4.1,

4.2, and 4.3 compare these scaled data with the composite free-air curve, (Reference 6).

It can be seen in Fig. 4.1 that Shot 4 exhibited the same effect that has been observed on certain previous tower shots such as UPSHOT-KNOTHOLE Shot 1, Reference 6, and GREENHOUSE Easy, Reference 1, namely, the appearance of above-average pressures at the larger distances. (The average pressure is taken as that indicated by the composite freeair pressure-distance curve.) On the other hand, Shots 8 and 12 exhibited below-average pressures at the larger distances, as shown in Figs. 4.2 and 4.3, respectively. Similar "low" results were also observed on Operation UPSHOT-KNOTHOLE. In Reference 6, these deviations from the composite curve - which, it should be noted, is based only on air-drop shots and not tower shots - were attributed to the statistical method used in fitting the basic shock-arrival-time data. Renewed examination of this problem has led to a reversal of opinion.

As Reference 6 points out, the shock velocity, taken as a function of distance, should approach a constant value asymptotically at the larger distances. This limiting value should be nearly that of the ambient speed of sound. In Equation 1.2, the constant a is the asymptote of the velocity function derived from the basic fitting function, Equation 1.1, and should therefore closely approximate the sonic speed value. At one time, several attempts were made to hold the value of a fixed and equal to the observed sonic speed, but it was found that when this was done, a good statistical fit to the basic arrival-time data could not be obtained. Since that time, the value of a, along with the values of b and c, all constants of the fitting function, has been allowed to vary to obtain the function best representing the measured data.

The point to be stressed here is that the value of a is controlled by the data, but when its value is about equal to or higher than the observed sonic speed, the shock velocities at large distances, and hence the shock pressures, are usually found to be higher than the average. Similarly, when a is somewhat lower than sonic speed, the resulting computed pressures are usually lower than average at the larger distances.

The values for a for Shots 4, 8, and 12 are given in Sections 3.3, 3.5, and 3.8, respectively. Compared to the ambient sonic speeds which obtained at the time of burst, these values are found to differ as follows: Shot 4 - 0.8 percent low; Shot 8 - 12 percent low; and Shot 12 - 14 percent low. If it is accepted that a difference between the value of a and that of the sonic speed of less than 1 percent is negligible, then the pattern outlined above is maintained*.

The reasons why various shots behave as they do in this manner is not understood. The question as to whether incident and reflected

No explanation can be given for the fact that on Shot 10, the scaled pressures agreed well with those of the composite free-air curve despite the fact that <u>a</u> was 30 percent lower than sonic speed at altitude.

97

(Continued on Page 102)

.....

.....

.....

. . . . . . .

.....

* * * * *

.....

.....

. . .

•••••

 
 Inta Scaled to Sea Level
 Peak (rt.)
 Peak (rt.)
 Data Scaled to 1 kt at Sea Level

 Size (rt.)
 Peak (rt.)
 Peak (rt.)
 Distance (rt.)
 Peak (rt.)
 Distance (rt.)
 Peak (rt.)
 Distance (rt.)
 Peak (rt.)

 1,202
 1,203
 125.8
 239
 126
 288.1.9

 1,203
 285.6
 371
 214
 205.6
 288.1.9

 1,204
 1,204
 125.8
 205.6
 371
 205.6
 288.1.9

 1,204
 1,204
 125.8
 205.6
 371
 205.6
 289.1

 1,204
 1,204
 125.8
 205.6
 371
 205.6
 289.1

 1,204
 1,204
 125.8
 205.6
 371
 205.6
 299.2
 205.6
 299.2
 299.2
 299.2
 299.2
 299.2
 299.2
 299.2
 299.2
 299.2
 299.2
 299.2</

Data Scaled	Distance (rt)	377.2	\$60.1 1.08	8-8.7	943.0	1,037-3	1,131.6	1,320.2	1,414.5	1,603.1	1,697.4	1,791.7	1,960.3	2.071.6	2,263.2	2,357.5
Scaled to Sea Level	Peak Overpressure (pei)	492.3	1.611	65.4	51.4	41.7	20.0	24.5	20.9	15.7	13.9	12.2		8.6	6.8	6.2
Data Scaled Sea L	Distance (rt)	156.0	273-1	312.1	390.1	129.1	503.1	1.945	585.2	63.2	702.2	761.2	819.2	858.2	2.160	975.2
ed to 1 Kt at Level	Peak Overpressure (pe1)	492.3 274.8	172.0	85.	51.4	41.7	200	24.0	20.9	15.7	13.9	12.2	0.0	8.6	7.7	6.2

.

TABLE 4.2 - Shot 8, Scaled Free-Air Pressure-Distance Data

TABLE 4.1 - Shot 4 - Scaled Free-Air Pressure-Distance Data

8	See Level
Distance (rt)	Peak Overpressure (pe1)
5°těř	1,027.1
202.4	254.3
242.9	157.5
283.4	107.3
323.9	76.7
364.4	58.0
45.4	35.2
	(nt) 323.9 263.4 263.4 263.4 263.4 263.4 263.4 263.4 263.4 263.4 263.4 263.4 263.4 263.4 263.4 263.4 263.4 263.4 263.4 263.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.4 2

TABLE 4.4 - Shot 10 - Scaled Free-Air Pressure-Distance Data

TABLE
*:3
1
Shot
5
Scaled
Tres-Alir
Pressure-Distance
Data

Ş.,

.

.

.

.

Data Scaled to Sea	Distance (ft)	561.8 654.8 747.3 839.7	1,206.8	000	1,661.0	1,840.8	2,109.3	2,206.8	2,375.4	2,551.9	2,727.0
d to See Level	Peak Overpreseure (pei)	272.0 183.8 133.7 100.0	12.8 12.8	27.0	18.4	16.4	5.9	9.8	8.9	7.4	6.2
Data Scale	Distance (ft)	200.5 233.7 265.7 299.7	365.3 398.0	\$28.2 \$60.5	592.7	657.0	752.8	816.0	847.9	910.8	973.2
Ter I It at	Overpreseure (pel)	272.0 193.6 133.7	\$2.8 8	27.0	18.1	16.4	11.9	9.8	8.9	7.4	6.2



******

1

.... ....

·····



Figure 4.1 Shot 4, Pressure versus Distance Reduced to 1 KT (HC) at Sea Level.

•

,

74 0



ø

8

1000

-MILLING τστ

.

•

O SHCT IO

ł

CURVE

shock wave coalescence is involved cannot be answered with certainty. Whether it can be attributed to some form of "mass effect"* is equally uncertain. Whatever the reasons, it is believed that the pressure anomalies observed are real and are not introduced through a quirk in the mathematics employed. Further investigation is obviously warranted.

## 4.1.4 High-Altitude Scaling Effects

The pressure-distance data obtained by Projects 1.1 (AFCRC) and 1.2 (NOL) on the high-altitude shot, Shot 10, are in good agreement (see Fig. 3.33). The NOL data have been scaled to 1 KT (RC) at sea level by the Sachs scaling technique (see Table 1.1 for the scaling factors) and are presented in Table 4.4. Figure 4.4 shows a comparison of the scaled Shot 10 data with the composite free-air curve (Reference 6). The good agreement noted in this figure appears to indicate that the useful range over which Sachs scaling techniques are applicable may be extended to at least 36,600 ft MSL with reliability. This result lends strong support to the blast prognostications of Shelton, Reference 14, who predicted that Sachs scaling techniques would be applicable under the Shot 10 burst conditions to within an accuracy of a few percent. This would imply that essentially the same distribution of energy among the forms of blast, thermal radiation, and nuclear radiation would hold for bursts at altitudes of the order of 35,000 ft MSL as for those at much lower altitudes. The small deviations from the composite curve at the data extremes, Fig. 4.4, do not exceed 6 percent, which is well within the experimental error of 10 percent assigned to the data. Thus the data do not provide a rigorous proof of Shelton's arguments, but they do appear to uphold them to a reasonable extent.

Somewhat contrary to these results, it is worth noting that a greater amount of energy in the form of thermal radiation escaped the fireball prior to shock breakaway on Shot 10 than on Shot 9**, the companion shot involving the burst of an identical weapon at about 5,000 ft MSL. Furthermore, the initial nuclear radiation, or more exactly - the normalized total (saws exposure, was about 50 percent greater (uncorrected) for Shot 10 than for Shot 9***. Both of these observations tend toward the

HE Deduced from preliminary information reported in Reference 15.

*** Stated in Reference 15.

.....

:..:

.....

.....

.....

···.:

•••••

......

. . .

1 + + 7 + + + 1 + + + + +

****

MAN PROS

^{*} The "mass effect" is an effect which has been recognized to account for variations observed in the rate of growth of the shock wave early in the history of a nuclear explosion, chiefly during the fireball phase. These variations are observed when large masses of metal and other materials are present in the vicinity of the exploding bomb. In certain respects it can be likened to the "case effect" in HE explosions. One of the predominant features of such explosions is that they produce higher-than-average pressures at larger distances as compared to barecharge explosions.

same conclusion, namely, that less energy was available during the period of shock formation and development on Shot 10 than on Shot 9.

In view of the good agreement between the scaled blast pressuredistance measurements and the composite free-air curve it can only be said that if the partition of energy on Shot 10 was different, the difference was less than a few percent. If the available energy on Shot 10 were much less than that for lower burst heights, it would have produced noticeably lower pressures at the larger distances. Since such low pressures were not observed, it can only be concluded that energy losses to the shock were small and that the distribution of energy was about the same as for bursts of lower altitudes.

#### 4.2 SURFACE PHENOMENA

## 4.2.1 Thermal Effect on Mach-Stem Growth

It was noted in References 4 and 6 that the existence of the thermal layer near the surface affected the normal point of inception and subsequent growth of the Mach stem, and hence, the trajectory of the triple point. On Shot 9 of Operation UPSBOT-KNOTHOLE (Reference 6) the Mach stem became established at a closer distance to ground zero than would have been predicted, assuming the absence of a thermal layer. Reference 6 also suggested that whenever a precursor formed, a "thermal Mach" wave was produced prior to formation of the precursor.

On each of the shots of Operation TEAPOT for which triplepoint (Mach stem height) data were obtained (Shots 4, 6, 8, and 12), procursors were observed and the effect on the early growth of the Mach stem was again observed as on previous tests. Particular attention was given to the data obtained over the three areas, water, asphalt, and desert, on Shot 12, where considurable differences in the triple-point trajectories were observed (see Fig. 3.47).

******

• • • •

.....

. .

•••••

. . . . .

•

.....

The rate of growth of the Mach stem over the asphalt area was much more rapid than over the other two areas, and the rate of growth over the desert was faster than that over the water. The maximum heights of the precursors observed over these areas followed the same relative pattern. Since the shock wave reflection coefficients for these three surfaces are but slightly different, it is believed that the radical differences in the precursors and triple-point trajectories resulted directly and solely from the differences in the corresponding thermal layers. Some laboratory work done at NOL which supports this contention is given in Reference 12. The rapid formation of a thermal Mach wave in the presence of a thermal layer and the subsequent smoothing out of the path of the triple-point above the layer is clearly demonstrated.

To the observed data for Shot 12 shown in Fig. 3.47 there has been added the semi-empirical, "ideal" path of the triple-point based on the method derived by Hesse and Kelso (Reference 16). As can be seen

103

in the figure, the "desert" data fit this curve best. Most of the data used in the construction of the "ideal" curve were obtained over desert surfaces and the agreement noted in Fig. 3.47 is deemed significant. However, Reference 16 states that the ideal prediction curves exclude thermal effects. It would appear from Fig. 3.47 that such is not strictly the case inasmuch as the Mach stem over the water surface, for which thermal effects were minimal, rose less rapidly than when strong thermal effects prevailed.

Prior to TEAPOT, a precursor had never been observed over a water surface, so this surface was considered to be "ideal", i.e., since precursors were not observed it was assumed that a thermal layer did not



Figure 4.5 TEAPOT Shots Plotted on Precursor Chart from Reference 24.

form over a water surface and therefore did not give rise to the formation of nonideal shock phenomena. Now a precursor was not observed to form over the water surface on Shot 12 (as will be discussed further in Section 4.2.2), so the path of the triple point over this surface might well be considered to be more nearly that for the "ideal" case than that observed over the desert surface.

Since strong precursor and thermal Mach effects were observed over both the asphalt and desert surfaces and the calculated path of the triple point corresponds to that for the desert surface, it is suggested that thermal effects are included to at least a small extent in the rather elegant Hesse-Kelso prediction method for the height of the Mach wave.

# 4.2.2 Precursor Formation over the Water Area on Shot 12

The question of whether a precursor formed over the water surface on Shot 12 or was simply the result of feed-in effects cannot be fully resolved from the film records obtained for Project 1.2. The aerial films were particularly disappointing, having been obtained from an aircraft located in the wrong quadrant to show the desired detail.

The net results of an examination of (1) the arrival-time data of SRI, Project 1.10, and similar NOL data, Project 1.12; (2) the pressure-time data of BRL, Project 1.14b; (3) the flow-direction data of WADC, Project 5.5; and (4) the triple-point-trajectory data of this project, Project 1.2, lead to the conclusion that the precursor effects observed over the water area were predominantly the result of feed-in from the adjacent desert areas.

It should in no way be inferred from this conclusion that the blast wave over this area was ideal, for it will be noted, Reference 15, that water loading and associated nonideal dynamic pressures were observed. Rather, it is to be concluded on the basis of all available data, that a sufficiently intense thermal layer for precursor formation over the water area itself did not develop; the rounded pressure waveforms resulted from feed-in effects and water-loading of the shock presumably would have occurred even if the water area had been of infinite extent.

## 4.2.3 Precursor Criteria

Of the several shots chosen for precursor studies by direct shock photography, Shots 1, 3, 4, 6, 8, 9, and 12, the ones which shed the most light on existing precursor criteria were Shots 1, 2, 5, 6, 11, and 12. Photographic records were not obtained specifically for Project 1.2 on Shots 2, 5, and 11, but it was ascertained that precursors were formed by examination of the cloud study films of Project 9.4 and the pressure-time records of Project 1.14b.

.....

.....

.....

.......

barren et el el

Figure 4.5 shows the superposition of two charts used for predicting precursors. (These two charts were first presented in this manner for purposes of comparison in Reference 24.) The shaded portion of the chart represents the prediction criterion proposed by Shelton (Reference 17) and was derived from empirical information and a theoretical analysis. According to this prediction method only those shots falling in the shaded area should produce a precursor. The AFSWP-NOL precursor-prediction scheme, developed shortly after Operation TUMBLER, (References 18 and 19), is the entire area bounded by the lines representing: (1)  $W/h^2 = 5$  (W is the yield in KT and h is the actual height of burst in thousands of feet); (2) shock arrival time at ground zero = 0.5 sec; and (3) A-scaled height of burst = 50 ft for yields up to 20 kt. TEAPOT Shots 1 through 12, Shots 7 and 10 excepted, have been spotted in Fig. 4.5 for comparison.

As noted above, precursors were observed on Shots 2, 5, and 11, 'n keeping with the AFSWP-NOL prediction, whereas all the other

precursor-producing shots were covered by both methods, with one significant omission. Neither chart predicted the precursor which was observed to occur during Shot 1.

Shot 1, a relatively high burst of a low-yield device, produced a very weak precursor over an asphalt area in the vicinity to one side of ground zero (see Fig. 3.3). On the other side of ground zero, over the desert surface, no precursor was observed. On (nots 6 and 12, where asphalt surfaces were also involved, much larger precursors were observed over the asphalt than over the desert area. Presumably, a smaller thermal input is required over a more-absorbing surface, such as asphalt, than over the more-reflecting desert surface to produce a sufficiently intense thermal layer for precursor formation.

Based on this information an extension of the AFSWP-NOL chart has been made. Since the Shot 1 precursor over the asphalt was so weak, it is considered reasonable to use this point as a lower limit on the prediction chart, for it corresponds to minimum-energy-input conditions over a highly absorbing surface capable of clusing the formation of a sufficiently intense thermal layer for precursor development. Thus it is proposed that the area bounded by lines representing  $W/h^2 = 2$  and shock-arrival time = 0.5 sec be added to the AFSWP-NOL chart as in Fig. 4.5 to take into account the relative thermal absorptivities of various solid surfaces.

# 4.2.4 Temperature Calculations from Shock Contours

.....

· . . :

.....

1.00000

11.5

Calculations of the temperatures in the thermal layer, based on the angle of the precursor front, are generally high when compared to actual thermal and sonic speed measurements (References 20 and 21). These calculations are based on the equation (Reference 6):

 $\sin \Theta = \frac{c_1}{c_2} \tag{4.1}$ 

where  $\Theta$  is the angle between the precursor front and the surface and  $c_1$  and  $c_2$  are the ambient sonic speeds of the unheated and heated regions, respectively.

However, this pre-supposes that the thermal layer contains no temperature gradient with respect to height above the ground and that the transmitted wave front referred to as the thermal Mach in Reference 6 is propagated normal to the boundary separating the heated and unheated regions. This is probably not the case, since it is thought that the thermal layer contains a fairly large gradient in temperature. Thus, the transmitted wave front should not remain normal to this boundar, but should form an acute angle with it. Therefore, when the transmitted wave propagates across the boundary, it should be refracted; and if one measures the angle of this refracted front and applies Equation 4.1, then the temperatures calculated would be in error.

Cull CT

If the acute angle that the transmitted wave front makes with the boundary is called  $\emptyset$  and the acute angle that the precursor front makes with the boundary is called  $\theta$  and all other assumptions listed in Reference 6 are the same, then application of Snell's law across the boundary gives:

$$\frac{U_2}{\sin\phi} = \frac{U_1}{\sin\phi}$$

where  $U_2$  is the velocity of the transmitted wave in the heated region and  $U_1$  is the velocity of the precursor front in the unheated region.

Ground Range (ft)	0 (degrees)	(degrees)	Calen mde Eq. 1	using	Calculatio mde using Eq. 4.4	
(10)			7000. (°C)	Sound Yel. (ft/sec)	1. (°c)	Sound Vel. (ft/sec
		ASPIALT SU	RTACE			
532 777 969 1,108	13.4 19.4 21.2 26.4	24.3 33.0 37.5 42.6	4829 2211 1822 1113	4699 3278 3011 2449	591 463 503 361	1934 1785 1833 1658
		DESERT SURF	ACE			
551 733 901 1,044	17.8 25.8 28.1 31.5	22.7 33.6 34.3 41.3	2659 1173 962 731	3562 2502 2312 2084	163 170 119 164	1377 1387 1304 1378

TABLE 4.5 - Shot 6 - Temperature Calculations Using the Angle of the Precursor Front

Also from Reference 6 we have

$$\frac{v_1}{c_1} - \frac{v_2}{c_2}$$
. (4.3)

Therefore,

$$\frac{\sin \varphi}{\sin \varphi} = \frac{c_1}{c_2}.$$
 (4.4)

It is evident that Equation 4.4 will lead to lower calculated temperatures provided  $\varphi < \phi$ .

On Shot 6 this difference in the angles 9 and  $\emptyset$  could be observed to some extent. However, the height of the thermal layer was

107

CALEADINA DEPART

*

(4.2)

observed to be from 3 to 5 ft, which made it difficult to detect the change in angle. For this reason, the data in support of the argument are not conclusive. Temperatures calculated by the use of Equation 4.4 over both the asphalt and desert surfaces were obtained at several distances. Table 4.5 presents the measured angles  $\Theta$  and  $\emptyset$  and the temperatures calculated by both Equations 4.1 and 4.4. Also listed in Table 4.5 are the sound speeds of the thermal layer calculated from Equations 4.1 and 4.4.

Unfortunately, these data cannot be compared directly with any measured data. The results of Project 8.4e (Reference 21) and 1.5 (Reference 20) on Shot 12 are inconclusive at this time. Therefore, it is impossible to conclude that Equation 4.4 would lead to the proper temperature calculations because of the lack of actual temperature data, the limited amount of  $\Theta$  and  $\emptyset$  data, and the relatively poor accuracy of these angle measurements. However, it is suggested that the large differences observed between the shock-calculated and indirectly measured temperatures on Shot 12 may be at least partially accounted for by this argument.





# Chapter 5 CONCLUSIONS and RECOMMENDATIONS

#### 5.1 INSTRUMENTATION

The rocket-smoke-grid instrumentation used on Shots 4, 8, and 12 operated successfully and made possible the detection of the locus of the incident and reflected shock waves in free air and the shock phenomena along the surface. On Shot 12 the grid was of particular value in facilitating the measurement of the precursor where it was difficult to distinguish it from the dust front. The criss-cross grid form, used for the first time on this operation, was found more useful than the vertical or fan grid form used on previous tests in the close inspection of that area directly above the burst.

The smoke grid produced by jet aircraft on Shot 10, including one B-47 guide plane and seven jet-fighter craft of the F-84, F-86 class, was of little or no value for the purposes of the project. Their use in any future high-altitude test is not recommended unless significant improvements can be made. Fin-stabilized rockets of the Deacon variety, launched from aircraft suitably spaced, would appear to be more feasible according to present thinking.

The photographic instrumentation for smoke-grid and direct shock photography was operated in excellent fashion and produced useful and reliable data. This technique is recommended for use in future tests where free air peak pressures, incident- and reflected-wave-coalescence studies, and surface shock-precursor phenomena observations are desired. .....

•

. The second

. . . . .

8 8 8 8 1 1

## 5.2 PRESSURE VERSUS DISTANCE IN AIR

Peak shock overpressure versus distance vertically above the burst was obtained on Shots 4, 8, and 12. On Shots 4 and 12, one of the primary objectives of the project was met in determining the value of the peak pressure subsequent to coalescence of the incident and reflected shock waves. On Shot 4, the pressure was apparently increased following coalescence at 2,550 ft (12-psi level), while on Shot 12 no pressure enhancement was detected when coalescence occurred at 2,600 ft (7-psi level). It must be concluded that, when the reflected shock traverses the fireball region, it encounters conditions which cause its velocity to increase greatly and its pressure and associated mass motion to decrease markedly. Its ability to "shock-up" beyond this region appears to depend critically on the extent of pressure attenuation experienced and the ambient conditions of the medium into which it propagates. All of these factors depend predominantly on yield and



height of burst, the more extreme conditions resulting from large yield and low burst heights, mainly tower shot conditions.

When these observations are correlated with measurements made on previous tower shots wherein pressures have been found to deviate from the standard composite free-air curve (which is based solely on air-drop data), it is suggested that these deviations may have resulted from reflected shock coalescence with the incident wave, accompanied by pressure enhancement or deterioration. For military purposes the standard composite free-air curve, as published in Reference 6, should not be altered in any respect as a result of new information gained on this operation; however, it is recommended that in a handbook such as the "Capabilities of Atomic Weapons", Reference 25, it should be pointed out that pressure enhancement or deterioration may occur directly above the burst of medium to large-yield weapons detonated near the surface. Further investigation of the problem is required before more-specific information can be given.

For weapons burst at altitudes up to approximately 40,000 ft MSL, Sachs scaling of shock pressures has been found to be reasonably justified. Shock pressures of from 8 to 800 psi determined on Shot 10 scale well with the standard composite free-air curve. A small uncertainty in the use of the Sachs scaling may be said to exist at the upper extremes of this 40,000 ft range, however, because of the peculiarities observed in connection with the comparative thermal and nuclear measurements of Shots 9 and 10 (see Section 4.1.4).

Further attempts to modify the fitting function employed in the determination of pressure versus distance from shock-arrival-time data should be made in an effort to obtain an equation which will fit the data and, at the same time, contain constants which can be interpreted in the light of prevailing ambient conditions

.....

.....

* *

*****

.....

Unexpectedly high blast effects along the surface were measured on Shot 7, the underground shot, and no attempt was made to instrument the test to obtain airblast-pressure-distance measurements. An effort will be made to obtain such information from existing films, but it is questionable whether such data will be sufficient to establish blast prediction criteria for underground bursts. Such data are considered to be vital from the standpoint of safety in weapon delivery, and where high accuracy is demanded. It is recommended that free-air pressures be obtained on any future underground burst until such criteria are established or the proposed delivery procedures are modified significantly in this respect.

## 5.3 COALESCENCE OF THE INCIDENT AND REFLECTED SHOCK WAVES

The requirements of Project 5.1 (Destructive Loads on Aircraft in Flight) included the ascertainment of whether coalescence of the incident and reflected shock waves could be expected on Shot 12 and a prediction of the pressure in the coalesced shock. The information provided Project 5.1 by Project 1.2 was based solely on the results of



Shot 4 and some rather incomplete but indicative data obtained during Operation UPSHOT-KNOTHOLE. Shot 8 was instrumented to obtain additional data, but the unexpectedly low yield of the device defeated this attempt. On the strength of the Shot 4 results principally, coalescence was predicted for Shot 12 and an increase in pressure equivalent to a yield of 1.2 times the expected yield of Shot 12 was predicted. Coalescence was observed on Shot 12 but no pressure enhancement was detected. All that can be said generally and with reasonable certainty is that coalescence occurs under suitable conditions of yield and burst height and that it is reasonably extensive, the horizontal radius of the coalesced wave being equal roughly to 1 to 2 fireball radii. Pressed for an opinion as to whether pressure enhancement would or would not occur upon coalescence on a given shot, the reply would be affirmative only if the fireball were expected to intersect the ground, such as on Shot 4. On the basis of existing knowledge, it would be impossible to estimate the magnitude of the pressure difference in terms of an "equivalent weight" of charge.

## 5.4 PRECURSORS

A more-extensive and faster precursor wave will form over a blackasphalt (thermally absorbing) surface than over a desert (thermally reflecting) surface. Over a water surface it is believed that a precursor will not form. The precursor-like effects observed over the water surface on Shot 12 are believed to have resulted solely from feed-in from adjacent areas.

Although it is believed that a precursor will not form over water, a natural water surface should not be considered as "ideal" from the standpoint of blast effects along the surface. Knowledge gained during Operations CASTLE and TEAPOT indicates that water-loading of the blast wave will occur, leading to nonideal values of dynamic pressure and other parameters.

******

. . . . . .

.....

****

When thermal layers as a produced over surfaces conducive to precursor formation, the Mach shock will form earlier and grow at a morerapid rate to the height of the thermal layer than when no thermal layer is present. The triple point will remain at a more or less constant height above the ground (height of the thermal layer) until it reaches the range at which it would normally be expected rise above that elevation in the absence of a thermal layer. From that position onward, the triple point resumes its normal course and can be predicted with sufficient accuracy (± 10 percent) for military purposes.

The AFSWP-NOL precursor-prediction criteria should be adopted for general use with the addition of the new limit described (Section 4.2.3) to take into account the relative thermal absorptivities of various surfaces.

A change in the method of calculating gross temperatures from the angle made by the precursor front with the ground may be warranted. The change in the theory, based on the recognition of the existence of a

111

UNFIDENTIA

temperature gradient n the thermal layer, would lead to lower calculated temperatures more in agreement with temperatures actually recorded, both directly and indirectly. At present there are insuffient data upon which to reach a sound decision in this regard. Since this problem seems to be primarily of academic interest, it is recommended that suitable decisive data be obtained only as a possible bonus from future atomic test data.



# REFERENCES

1. Moulton and Simonds, Peak Pressure vs Distance in the Free-Air and Mach Regions Using Smoke-Rocket Photography, Operation GREENHOUSE, WT-54, July 1951, SRD.

2. Hartmann, Lampson and Aronson, Blast Measurements Summary Report, Operation GREENHOUSE, WT-64, May 1952, SRD.

3. Moulton, Walthall and Hanlon, Peak Pressure vs Distance in Free-Air Using Smoke-Rocket Photography, Operation JANGLE, WT-389, June 1952, SRD.

4. Aronson, et al, Free-Air and Ground Level Pressure Measurements, Operation TUMBLER, WT-513, November 1952, SRD.

5. Moulton and Hanlon, Peak Overpressure vs Distance in Free-Air, Operation IVY, WT-613, March 1953, SRD.

6. Morris, et al, Air Blast Measurements, Operation UPSHOT-KNOTHOLE, WT-710, August 1955, SRD.

7. Hanlon, et al, Blast Pressures and Shock Phenomena Measurements by Photography, Operation CASTLE, WT-902, September 1955, SRD.

8. Milligan and Young, Operation TEAPOT - Underground Shot - Base Surge Analysis, AFSWP-876 (NAVORD 4153), 31 January 1956, SRD.

9. Hirschfelder and Curtiss, Thermodynamic Properties of Air, Vol. II, University of Wisconsin (NRL), 2 December 1948, Unclassified.

10. Rudlin, Notes on the Variation of the Mach Number - Shock Surength Relation with Ambient Conditions, NAVORD 4029, 1955, Unclassified.

11. Griffith and Bleakney, Diffusion Analogy for Shocks Interacting with Thermal Boundary Layers, Abstract of Fluid Dynamics, American Physical Society and paper presented at meeting of 22-24 Kovember 1954. To be published in Journal of Aero. Sci., Unclassified.

12. Varvig and Zemel, The Interaction of Shock Waves with a Thermal Layer, NAVORD 4021 (AFSWP-266), 18 July 1955, Unclassified.

13. Richardson, Fireball Radii and Height of Burst, SC-3627(TR), 16 August 1955, SRD.

14. Shelton, Phenomenology of a High-Altitude Atomic Explosion, SC-3363(TR), 28 April 1954, SRD.

113

.....

* * *

•••••

1.1.1

* * * * * * * *

i....i

.....

15. Doll and Gilbert, Preliminary Report - Summary Report of the Technical Director, Programs &-9, Operation TEAPOT, ITR-1153, June 1955, SRD.

16. Hesse and Kelso, Mach Shock Formation from a Nuclear Detonation, AFSWP-510, 10 March 1955, SRD.

17. Shelton, The Precursor - Its Formation, Prediction and Effects, SC-2850(TR), 27 July 1953, SRD.

13. Aronson, Moulton, Hartmann and McClendon, NOL Reports Presented at TUMBLER Symposium, NAVORD 2801, 16 April 1953, SRD.

Scoville, et al, Final Summary Report - Operation TUMBLER, WT-514, May 1953, SRD.

20. McLoughlin, Preshock Sound Velocities Near the Ground in the Vicinity of an Atomic Explosion, Operation TEAFOT, ITR-1104, May 1955, CRD.

21. Inn, Air Temperature Measurements Over Several Surfaces, Operation TEAPOT, ITR-1349, May 1955, CRD.

22. Bartalsky, Airborne Smoke Trail Generators, AFSWC-TN-55-12, 15 September 1955, Unclassified.

23. Private communication to authors from Dr. N. A. Haskell, Project Officer, Project 1.1, Operation TEAPOT, of 18 August 1955, SRD.

24. Doll, et al, Summary Report of the Technical Director -Operation UPSHOT-XNOTHOLE, WT-782, March 1955, SRD.

.....

:...:

.....

. . .

. . . . .

 25. Capabilities of Atomic Weapons, prepared by the Armed Forces Special Weapons Project, TM 23-200, 1 June 1955, SRD.



# **BLANK PAGE**