UNCLASSIFIED

AD 261182

Repraduced
by the

armeb services technical inforuation agency arlingTon hall station ARLINGTON I2, VIRGINIA

$\mathbb{U} \mathbb{N} \mathbb{L} A S S \mathbb{I} \mathbb{I} \mathbb{E} \mathbb{D}$

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or penmission to manufacture, use or sell any patented invention that may in any way be related thereto.

LITTON SYSTEMS, INC. $\left.\right|_{\text {nownice deflioneier ubinatrory }}$
221 CRESCENT STREET, WALTHAM 54, MASSACHUSETTS

$$
\begin{aligned}
& n 61-4-2 \\
& \text { XEROX }
\end{aligned}
$$

Technical Report TR-61-1-BF

Error Probabilities for Non-Orthogonal M-ary Signals under Phase-Coherent and Phase-Incoherent Reception

June 15, 1961
by

Albert H. Nuttall

Litton Systems, Inc.
Advanced Development Laboratory
221 Crescent Street
Waltham 54, Massachusetts

This technical report covers work performed on the Acoustic Signal Processing Study with the Office of Naval Research, Contract No. Nonr 3320(00).
"Reproduction in whole or in part is permitted for any pulrpose of the United States Government. "

ABSTRACT

Formulas for the error probabilities of non-orthogonal M-ary signals under optimum phase-coherent and phase-incoherent reception are derived in the form of previously untabulated single and double integrals.

Two modes of reception are considered. In the first, one of M equal energy equiprobable signals is known to be transmitted during a baud of T seconds and subjected to additive white Gaussian noise. There is no fading and on!y one path is available for communication (no multipath). The receiver is assumed to be synchronized in time and frequency; that is, the delay and doppler shift of the transmitted signals are known. Furthermore, reception is on a per-baud basis; that is, decision-making on the part of the receiver is based only on the waveform received during the past baud, and not at all on the other bauds. The optimum receiver in this situation makes its decision ibout which signal was transmitted by crosscorrelating the received waveform with M stored references and choosing that signal corresponding th the largest correlation value. The signal set is not necessarily an orthogonal one; the only restriction is that the crosscorrelation coefficients between all the signals be equal. The probability of correct decision in both phase-coherent and phase-incoherent reception is derived exactly, as a function of the signal-to-noise ratio, the common crosscorrelation coefficient, ard the size of the signal set, M.

In the second mode of reception, the only difference is that a threshold is incorporated in the receiver. If the largest correlation value is less than the threshold, a decision is made that no signal was transmitted; if the largest
correlation value exceeds the threshold, the signal corresponding to that particular correlation value is decided to have been transmitted. Again the signal set is not necessarily orthogonal, but has a common correlation coefficient. The probability of false detection and the probability of detection and correct decision are derived exactly for both phase-coherent and phaseincoherent reception as a function of the signal-to-noise ratio, the common crosscorrelation coefficient, the size of the signal set, M, and the threshold level.

Tabulation of the single integral encountered in phase-coherent operation is presented herein for selected values of signal-to-noise ratio, common crosscorrelation coefficient, the size of the signal set, M, and threshold level. The corresponding double integral for phase-incoherent operation is going to be tabulated, but no results are currently available.

Applicability of the results to related problems and non-white and nonstationary noise is discussed, and bounds on performance in such situations are pointed out. In addition, limiting behavior of the M -ary systems, both phase-coherent and phase-incoherent, are derived for large M under a constant information rate constraint.

The author is indebted to his colleague, Mr. William B. Floyd, who willingly gave his time and took part in numerous discussions which were extremely beneficial. Thanks are also due Dr. David Van Meter who served as an excellent sounding board for many ideas and conjectures.. .

TABLE OF CONTENTS

M

λ
t
T
$s_{k}(t)$
$\psi(t)$
$\xi_{k}(t)$
E
S
1
1
1

S(f)
1.

$y(t)$
ρ
number of possible signals
set of correlation coefficients
common correlation coefficient
time
time duration of a signal; baud
$k^{\text {th }}$ signal
complex signal with single-sided spectrum
$k^{\text {ch }}$ complex low-pass signal
received signal energy
average received signal power (over a baud)
additive noise (double-sided spectrum)
complex noise with single-sided spectrum
complex low-pass noise
correlation function
frequency
power density spectrum
noise power density level fur all frequencies, positive
and negative (see eqs. (2.17)-(2.21)).
received wavefo:m
"signal-to-noise ratio" ($\equiv \mathrm{E} / \mathrm{N}_{\mathrm{d}}$)
-

fundamental angle for $M=3$
i; measures of performance (see eqs. (4:20) and (4.24)) :
d, ${ }^{\text {d }}{ }_{M}$
H^{\prime}
r
c.
w
Λ, r
E_{M}
$\because \quad \epsilon$
δ
$\phi(x)$
$\Phi(\mathrm{x})$
$\mathrm{P}_{\mu}(\mathrm{a})$
-
$L(h, k, r)$
$Q(\alpha, \beta)$
J_{0}
I_{0}
$q(\alpha, \beta)$
$\mathrm{U}_{1}, \mathrm{U}_{2}$
$\left\{f_{k}(t)\right\}$
source information rate $!_{\text {in }}^{\prime}$
$2 \mathrm{H}^{\prime} \mathrm{N}_{\mathrm{d}} / \mathrm{S}$ (see eq. $\left.(7.8)\right)$
$\sqrt{\frac{2(1-\lambda)}{\mathrm{r}}}$ (see eq. (7.15))
Gabor bandwidth
thresholds
error.
allowed error

- Dirac delta function
no'rmal probability density function $\left(=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2} / 2\right)\right)$ normal cumulative probability $\left(=\int_{1}^{x} \phi(y) d y\right) \quad ;$ $-\infty$
function tabulated by Urbano. (eq. (2.47))
function tabulated by Bureau of Standards. (eq. (2.61i)
Q-function of Marcum
zero-th order Bessel function of first kind
zero-th order modified Bessel function of first kind modified form of Q-function (eq. (4.35))

Lommel's functions of two variables
set of complex orthonormal functions
$\mathrm{E}(\mathrm{x}), \mathrm{O}(\mathrm{x})$
$C_{k}(\alpha, \beta, \gamma)$
$G_{M}^{(\lambda)}$
$f(a v)$
$\mathrm{f}(\mathrm{a}, \mathrm{b})$.$g(a, b)$

- $h\left(\alpha^{\prime}, B\right)$
${ }^{f}{ }_{M}(x, y), f_{M}^{\prime}(x, y)$
$\ldots g_{M}(x, y), . g_{M}^{\prime}(x, y)$ $\mathrm{f}(\mathrm{x})$
$f_{\infty}^{\prime}(x, y)$
$g_{\infty}^{\prime}(x, y)$
j, k, m, n, p, s
$r, s, u, x, y, v, w, \phi, \theta$
C, C^{\prime}
a, b, c, B
$\equiv \quad$ defined $a!$
\geq
\leq
$\max (1)$
see eq. (C. 1)
integers
. constants
real, even and odd functions, respectively, of x see eq. (5.'28)
see eq. (5.36)
see eq. (5.39)
see eq. (5.51)
see eq. (5.56)
see.eq. (5.60)
see eqs. (7.16), (7.21)
see eqs. (7.17), (7.21)
limit of $f^{\prime} M^{(x, y)}$, (see eq. (7.23))
limit of $\mathrm{g}_{\mathrm{M}}^{\prime}(\mathrm{x}, \mathrm{y})$, (see eq. (7.23))
variables of integration
circles within which integration is performed
greater than or equal ${ }^{\text {º }}$
less than or equal to
maximum of ()

1. INTRODUCTION

The performance of communications systems employing M-ary signaling alphabets in a noisy environment is of paramount importance. Their high capability for information transfer - one of M possibilities - makes them . attractive to any potential user of such a communication link. At the same time, however, the immunity of the \bar{M}-ary communication system to noise, the required bandwidth and baud duration of the signals, and the required signal-to-noise ratio for adequate performance, measured, say, in terms of error probability, must be answered before a decision on their desirability can be made. To complicate the situation, the equipment complexity, and the sensitivity of the M-ary system to network tolerances and to unexpected changes in noise statistics must be ascertained. The results of this report constitute a step towards a solution of these problems.

Specifically, if during a time interval of T seconds, called a baud, one of M equal energy equiprobable signals is transmitted, and subjected to additive white Gaussian noise, the error probability of the optimum phasecoherent and phase-incoherent receivers for non-orthogonal equally crosscorrelated signals is derived exactly, as a function of the signal-to-noise ratio, the common crosscorrelation coefficient, the size of the signal set, M, and the threshold level (if present as in null-zone reception). The conditions assumed are that there is no fading (or at least a slow rate of fading compared with a baud duration), one path exists between transmitter and receiver_(no multipath), the receiver_is_synchronized_in time and frequency with the incoming'signal (the delay and doppler shift of the transmitted signal are known to the receiver), and per-baud receiver operation is assumed (all information derivable from other bauds is ignored). Despite the se assumptions, the mathematical problem is by no means trivial, due mainly to the non-orthogonality of the signal set, and although solved approximately for very large
signal-to-noise ratios, had never been solved exactly before for all values of signal-to-noise ratio and signal set size M.
-
As an application of the results of this report, consider a situation where phase-coherent reception is taking place. Then the optimum crosscorrelation, 2 coefficient for minimum error probability for an $M-s i z e$ signal set is $-\frac{1}{M-1}, 2$.

This value results in lower error probability than orthogonal signals (if all other quantities are unchanged). The precise amount of gain in using optimally decorrelated signals rather than orthogonal signals is shown in the present report to be merely a scaling of the signal-to-noise ratio by $\frac{M}{M-1}$. This gain is small for large M, in fact less than 1 db for $\mathrm{M} \geq 5$. Thus there is little point in trying to design optimally decorrelated signals for large M; orthogonal signals will perform about as well.

A more important application comes with respect to the effect of network tolerances on M-ary system performance. Although an orthogonal signal set is desirable (in fact optimum in phase-incoherent reception), in practice, this is difficult to attain for large M. Thus the crosscorrelation coefficients of the signal set, $\left\{\lambda_{i j}\right\}$, defined (for phase-coherent operation) as

$$
\lambda_{i j}=\frac{\int_{I} s_{i}(t) s_{i}(t) d t}{E}
$$

where E is the common signal energy, will very likely be non-zero and unequal for $i \neq j$. However, if all the coefficients for $i \neq j$ are approximately equal, (perhaps by judicious adjustments of the experimental equipment), we may put an upper bound on the error probability by pretending that the signals
are equally crosscorrelated with : coefficient equal to the maximum of the set:

$$
\lambda=\max _{i \neq j}\left\{\lambda_{i j}\right\} \quad \cdots \quad \mid
$$

-Thus the sensitivity of the system performance to network tolerances shows up in the variation of the error probability with λ. We shall in this report derive explicitly this relationship involving λ for both phase-coherent and phase-incoherent reception,-with-and without null-zone reception. - (The definition of $\dot{\lambda}$ in the phase-incoherent reception mode differs from that above for the phase-coherent mode.)

Yet another important application occurs when the bandwidth alloted to the communicators is not large enough to support M orthogonal signals, but rather M correlated signals. It still may be beneficial in terms of error rate to increase M, thereby increasing λ for a given fixed bandwidth. To answer this question, the minimum crosscorrelation of M signals restricted to a given bandwidth musit be obtained, after which the present results may be applied. Some related comments and results are given in section 8 .
: When the competing noise spectrum is not white, the derivation of the error probability becomes unwieldy. However, by an approach analogous to that described in the above paragraph, we deduce a bound on performance depending on the degree of non-whiteness of the noise. This topic, in addition to applications of the present results to different problems under more general situations, is discussed further in sectiqn 8 . There, for example, the effects of non-stationary noise, and the minimum time-bandwidth product for an M size signal set are discussed.

The results of this repdrt are due mainly to one artifice, namely the elimination of cross product terms in a Gaussian form by an integral transform. This technique, commencing with eq, (2.31) of section 2 might be fruitfully 'pplied to other problems involving Gaussian noise where the usual technique of using a linear transformation of the original variables has failed, either by inadequacy of the method, or inability to "guess" the most general form.

In section 2, the error probability for a phase- © oherent reçeiver under the conditions assumed above is derived. The analysis is carried out in detail in that section in order to demonstrate the technique which is used to derive the rest of the results in this report. Sections 2 and 3 and Appendix A are the only places in the report where the complete mathematical derivations for phase-coherent and phase-incoherent reception are carried through. The derivations in other sections, being heavily based on these, are incomplete, for the sake of brevity. Reference to sections 2 and 3 and Appendix A may be necessary in some cases.

In section 3 (and Appendix A) is given the error probability for the phaseincoherent receiver. The result is given in terms of a double integral which has not yet been tabulated, but which is about to be undertaken.

In section 4, some comments and heuristic results are presented on the . effects of the angles of the correlation coefficients which appear in the phase-incoherent-reception mode. Although these angles hàve no counterpart in the phase-coherent mode of reception, they do affect performance in phaseincoherent operation.

Sections 5 and. 6 are generalizations, respectively, of sections 2 and 3, where null-zone reception takes place - a threshold is incorporated in the receiver. The results of these sections are in the form of previously untabulated single and double integrals. The single integral is tabulated in the present report and appears in Appendix D. The double integral is a slight generalization of the one appearing in section 3, and is about to be tabulated.

In section 7 (and Appendix C), limiting behavior of M-ary reception under a constant information rate constraint is derived as $M \rightarrow \infty$; A generalization of a result of Turin's ${ }^{3}$ is obtained; namely as $M \rightarrow \infty$. the error probability of both phase-coherent and phase-incoherent recept:orrmodes approaches zero if the source information rate is less than the continuous channel capacity (Ref. 4, p. 324,_eq-(6.9.54) multiplied by $1-\lambda$, where λ is the common crosscorrelation coefficient. If the source information rate is greater than this amount, the error probability approaches unity.

Finally, in Appendix B, bounds on the error of approximating the infinite double integrals of sections 3,4 , and 6 by finite double integrals are derived. These results are not related to any system performance derivations, and need not be read except for purposes of numerical computation of the double integrals: ${ }^{\text {B }}$ Bounds of the sort given in this appendix are necessary for any numerical work.

Although the various sections are titled "Error probabilities, etc." the derivations and equations are actually for the probability of correct decision, P_{c}. These two probabilites are used interchangeably, and are related by their sum always being unity. In using the results of these sections, then,
the fact must be kept in mind that the error probability is obtained by taking 1 minus the equation given, which is the probability of correct decision. One break with-this rule is Appendix D where the title is "Probability of Detection and Correct Decision, etc. "mand the numbers listed are actually the probabilities of correct decision.

Before getting into the main body of the report, we summarize previous work on problems directly related to the present results. Ana= lysis of binary cómmunication and detection moth phase-coherent and phaseincoherent, has received wide attention ${ }^{4-25}$, including derivations of error probảbilities under fading conditioñs, random multipath, and non-white noise. Two special results in this group which are intimately related to the present work are papers by Helstrom ${ }^{11}$ and Turin ${ }^{21}$, where binary phase-ccherent and phase-incoherent reception with non-orthogonal signals are considered.

For M-ary communication, a number of results for orthogonal signals are available ${ }^{3,7,26-29}$, whereas for the case of M equal to 4 , and special non-orthogonality conditions on the signals, another group of results exists ${ }^{30-33}$. And for phase-coherent M-ary communication with the optimum crosscorrelation coefficient ${ }^{1,2}$, some approximate results for the error probabilities have been derived ${ }^{34-36}$. However, nowhere has the exact derivation of the error probability for M-ary communication with nonorthogonal crosscorrelated signals and all signal-to-noise ratios appeared. A cursory review of the main problem's in this field is given by Turin ${ }^{37}$.

There is no comparison made in the present report between M -ary communication systems and binary systems functioning under similar conditions. Rather, the derivations of the error probabilities alone are presented; comparisons are reserved for a later study.

The situation is as follows: during a baud of duration T seconds, one of M equal energy equiprobable signals is known to be transmitted. Before reception, the transmitted signal is subjected to additive white Gaussian noise. There is no fading (or at least little change in the signal strength during the-time- T;-then-the-present-results hold if the signal-to-noise ratio is interpreted as the lotal or current signal strength to noisë ratio). There is no multipath, and the.receiver is synchronized in time and frequency. In fact, the synchronization is so exact that one of the receiver's M stored replicas of the transmitted signal set is precisely like the incoming signal except for amplitude. Even the carrier phases of the received signal and one of the stored replicas are equal. (This may be achieved by using a phase-locked loop in the receiver). We restrict the receiver to make a decision at the end of the baud, based only on the received waveform over the past baud (the past T seconds); that is, we consider only per-baud operation. The optimum receiver ${ }^{38-44}$ in this symmetric situation makes its decision about which signal was transmitted by crosscorrelating the received waveform with all M stored references, and choosing that signal corresponding to the largest crosscorrelation value. Mathematically, if $\left\{s_{k}(t)\right\}, k=1,2, \ldots, M$, is the set of signals used for transmission, and $n(t)$ is the additive noise, the received waveform is

$$
\begin{equation*}
s_{j}(t)+n(t) \tag{2.1}
\end{equation*}
$$

if the j. th signal of the set were sent. Let us assume that signal no. 1 was sent. The receiver then computes*

$$
\begin{equation*}
\dot{x}_{k}=\int s_{k}(t)\left[s_{1}(t)+n(t)\right] d t, \quad k=1,2, \ldots, M \tag{2.2}
\end{equation*}
$$

[^0](The attenuation of the transmission path has not been neglected in the above formulation. If the stored replicas do not have the same amplitude factor as the received signals, the quantity x_{k} will be scaled by the same quantity for all k. Since, however, we shall only compare the x_{k}, the scaling does not matter. The attenuation enters the problem through the signal-to-noise ratio of the incoming waveform.) The optimum receiver decides that signal j was sent if
\[

$$
\begin{equation*}
x_{j}=\max \left(x_{1}, x_{2}, \ldots, x_{M}\right) \tag{2.3}
\end{equation*}
$$

\]

Since we have assumed that signal no. 1 was transmitted (without any loss of generality), due to the symmetry of the situation, the probability of correctly deciding that signal no. 1 was indeed sent, P_{c}, is the probability that $x_{1}>x_{2}, \ldots, x_{M}$. Mathematically, we express this as

$$
\begin{equation*}
P_{c}=P r_{-}\left(x_{1}>x_{2}, \cdot+x_{1 f}\right) \tag{2.4}
\end{equation*}
$$

Now we shall assume that the signal set has equal crosscorrelation coefficients:

$$
\begin{equation*}
\frac{\int s_{i}(t) s_{j}(t) d t}{E}=, \lambda_{i j}=\lambda, \quad i \neq j \tag{2.5}
\end{equation*}
$$

where E is the common signal energy,

$$
\begin{equation*}
E=\int s_{k}^{2}(t) d t, \quad k=1,2, \ldots, M \tag{2.6}
\end{equation*}
$$

(If $\lambda=0$, we have an orthogonal signal set.)

We immediately have a restriction on the value of λ :
since
$\int\left[\sum_{k=1}^{M} s_{k}(t)\right]^{2} d t=\sum_{k=1}^{M} \sum_{n=1}^{M} \int s_{k}(t) s_{n}(t) d t$

$$
\begin{equation*}
=M E+\left(M^{2}-M\right) \lambda E \geq 0, \tag{2,7}
\end{equation*}
$$

we must have
$-\cdots \cdots, \quad, \quad \lambda \geq-\frac{1}{M-1}$
The upper limit is unity. This lower limit is in fact the optimum value ${ }^{1,2}$ for the set of coefficients $\left\{\lambda_{i j}\right\}$ to have for minimum error probability, and given M. For general λ (still satisfying eq. (2.8) however), eq. (2.2) becomes, upon use of eq. (2.5);

$$
\begin{align*}
& x_{1}=E+y_{1}, \\
& x_{k}=\lambda E+y_{k}, \quad-\quad k=2,3, \ldots, M \tag{2.9}
\end{align*}
$$

where we have defined

$$
\begin{equation*}
y_{k}=\int s_{k}(t) n(t) d t, \quad k=1,2, \ldots, M \tag{2.10}
\end{equation*}
$$

Substituting eq. (2.9) into eq. (2.4),

$$
\begin{equation*}
P_{c}=\operatorname{Pr}\left(E+y_{1}>\lambda E+y_{2}, \ldots, \lambda \dot{E}+y_{M}\right), \tag{2.11}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
P_{c}=\operatorname{Pr}\left(E\left(l^{\bullet}-\lambda\right)+y_{1}>y_{2}, \ldots, y_{M}\right) . \tag{2.12}
\end{equation*}
$$

In terms of the joint p.d.f. (probability density function) $p\left(y_{1}, y_{2}, \ldots, y_{M}\right)$ of the variables $\left\{y_{k}\right\}$ when signal no. 1 is sent,

$$
\begin{equation*}
P_{c}=\int_{-\infty}^{\infty} d y_{1} \int_{-\infty}^{E(1-\lambda)+y_{1}} \ldots \int_{2} d y_{2} \ldots d y_{M} p\left(y_{1}, y_{2}, \ldots, y_{M}\right) \tag{2.13}
\end{equation*}
$$

But since the input noise $n(t)$ is Gaussian, the variables $\left\{y_{k}\right\}$ must also be Gaussian, since eq. (2.10) is a linear operation. Then if $n(t)$ has a zero mean, the $\left\{y_{k}\right\}$ have zero means, and

$$
\begin{equation*}
p\left(y_{1}, \ldots, y_{M}\right)=(2 \pi)^{-M / 2}|\underset{\sim}{M}|^{-\frac{1}{2}} \exp \left(-\frac{1}{2} y^{T}{\underset{\sim}{M}}^{-1} y\right), \tag{2.14}
\end{equation*}
$$

where \mathcal{X} is a column matrix:

$$
\left[\begin{array}{c}
y_{1} \tag{2.15}\\
y_{2} \\
\vdots \\
y_{M}
\end{array}\right],
$$

$$
\begin{equation*}
\underset{\sim}{M}=\left[\overline{y_{i} y_{j}}\right], \tag{2.16}
\end{equation*}
$$

${\underset{\sim}{M}}^{-1}$ its inverse matrix, and $|\underset{\sim}{\mathbb{M}}|$ its determinant. The superscript bar in eq. (2.16) is a statistical average over the noise.

Before we begin the explicit evaluation of equation (2.14); a word about notation is in order. The autocorrelation function of the noise process is defined as

$$
\begin{equation*}
R(\tau)=\overline{n(t) n(t+\tau)} \tag{2.17}
\end{equation*}
$$

and the power density spectrum ${ }^{45}$ as

$$
\begin{equation*}
\dot{S}(f)=\int R(\tau) e^{-i 2 \pi f \tau} d \tau \tag{2.18}
\end{equation*}
$$

The spectrum ther is an even function in frequency f, and the average power in the process is obtained by integrating over all frequencies, positive and negative:**

$$
\begin{equation*}
R(0)=\overline{n^{2}(t)}=\int S(f) d f \tag{2.19}
\end{equation*}
$$

We shall deal with this double-sided spectrum, rather than the single-sided spectrum obtained by "folding" the negative frequencies over the positive frequencies. Then if the noise is white of level $N_{* * \neq}$ watts per cycle per second for all frequencies, the correlation function is

$$
\begin{equation*}
\mathrm{R}(\tau)=\mathrm{N}_{\mathrm{d}} \delta(\tau) \tag{2.20}
\end{equation*}
$$

[^1]where $\delta(\tau)$ is the Dirac delta function. The subscript "d" on N_{d} is to explicitly indicate that a double-sided power density spectrum notation is being used, and to distinguish it from the single-sided spectrum level N or N_{o} used by other authors.* The relation between these quantities is
\[

$$
\begin{equation*}
\mathrm{N}_{\mathrm{d}}=\frac{\mathrm{N}}{2}=\frac{\mathrm{N}_{\mathrm{o}}}{2} \tag{2.21}
\end{equation*}
$$

\]

Now we are in a position to evaluate eq. (2.14). From eqs. (2.10), (2.17), (2.20) and (2.5), we have

$$
\begin{align*}
{\overline{y_{i}}{ }_{j}} & =\iint s_{i}(t) s_{j}(\tau) \overline{n(t) n(\tau)} d t d \tau \\
& =\iint s_{i}(t) s_{j}(\tau) N_{d} \delta(t-\tau) d t d \tau \\
& =N_{d} \int s_{i}(t) s_{j}(t) d t \\
& =\left\{\begin{array}{ll}
N_{d} E, & i=j \\
\lambda N_{d} E, & i \neq j
\end{array}\right\} . \tag{2.22}
\end{align*}
$$

Then
$\underset{\sim}{M}=N_{d} E \quad\left[\begin{array}{ccccc}1 & \lambda & . & & \lambda \\ \lambda & 1 & & & \\ \cdot & & \cdot & & \\ \cdot & & \cdot & & \\ \cdot & & & \cdot & \\ \lambda & & & & 1\end{array}\right]$.

See, for example, eq. (12) of Ref. 11, eq. (4.10) of Ref. 25, or eq. (4) et seq; of Ref.' 3.

It then follows that

$$
\begin{equation*}
|\underset{\sim}{M}|=({\underset{d}{d}} E)^{M}(1-\lambda)^{M-1}[1+(\mathbb{M}-1) \lambda] \tag{2.24}
\end{equation*}
$$

and the cofactors are given by.
$\dot{M}_{p s}=\left\{\begin{array}{ll}\left(N_{d} E\right)^{M-1}(1-\lambda)^{M-2}[1+(M-2) \lambda], & p=s \\ -\left(N_{d} E\right)^{M-1}(1-\lambda)^{M-2} \lambda & p \neq s\end{array}\right\}$.
Substituting eqs. (2.24) and (2.25) into eq. (2.14), we obtain, after regrouping,

$$
\begin{gather*}
p\left(y_{1}, y_{2}, \ldots, y_{M}\right)=\left[2 \pi N_{d} E(1-\lambda)\right]^{-M / 2}\left[\frac{1-\lambda}{1+(M-1) \lambda}\right]^{1 / 2} \\
\exp \left[-\frac{1}{2 N_{d} E(1-\lambda)}\left\{\sum_{k=1}^{M} y_{k}^{2}-\frac{\lambda}{1+(M-1) \lambda}\left(\sum_{k=1}^{M} y_{k}\right)^{2}\right)\right] . \tag{2.26}
\end{gather*}
$$

Substituting eq. (2.26) into eq. (2.13), and defining

$$
\begin{equation*}
u_{k}=\frac{y_{k}}{\sqrt{N_{d} E(1-\lambda)}} \tag{2.27}
\end{equation*}
$$

$$
\begin{equation*}
\exp \left[-\frac{1}{2}\left\{\sum_{k=1}^{M} u_{k}^{2}-\frac{\lambda \cdots}{1+(M-1) \lambda}\left(\sum_{k=1}^{M} \cdot u_{k}\right)^{2}\right\}\right] \tag{2.28}
\end{equation*}
$$

We now define a "signal-to-noise ratio" ρ as

$$
\begin{equation*}
\rho=\frac{E}{N_{d}} \tag{2.29}
\end{equation*}
$$

This is the ratio of received signal energy over the baud T to the doublesided spectrum level N_{d}.

At this point in the derivation, the usual method of completing the square, say in u_{M}, and integrating leads us to intractable integrals on $u_{1}, u_{2}, \ldots, u_{M-1}$. Our tack instead is to notice that the bad feature of eq. (2.28) is the very presence of the cross-product terms in the exponent, and attempt to eliminate them right off! The cross-product terms come from the factor

$$
\begin{equation*}
\left(\sum_{k=1}^{M} u_{k}\right)^{2} \tag{2.30}
\end{equation*}
$$

in the exponent. But we may notice that the square in eq. (2.30) may be eliminated by an integral transform. For example,

$$
\begin{equation*}
e^{-\frac{1}{2} \sigma^{2} \psi^{2}}=\int e^{i \psi y} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{y^{2}}{2 \sigma^{2}}} d y \tag{2.31}
\end{equation*}
$$

and the ψ^{2} in the exponent on the left becomes a ψ in the exponent on the right. Thus,

Notice that this equation holds true even if λ is less than zero but greater than $-1 \%(M-1)$, which has already seen to be mandatory from eq. (2.8). The fact that $\sqrt{\lambda}$ might be imaginary is no limitation on eq. (2.32). Now interpreting

$$
\begin{equation*}
\xi=\sum_{k=1}^{M} u_{k} \tag{2.33}
\end{equation*}
$$

and employing eq. (2.32), the exponential terms of eq. (2.28), along with the factor $[1+(M-1) \lambda]^{-1 / 2}$, become

$$
\begin{equation*}
\int \frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{1}{2}\{1+(M-1) \lambda\} y^{2}\right] \prod_{k=1}^{M} \exp \left[-\frac{1}{2} u_{k}^{2}+\sqrt{\lambda} u_{k} y\right] d y \tag{2.34}
\end{equation*}
$$

Substituting eq. (2.34) into eq. (2.28), and now completing the square in u_{k}, all k, in the exponent, we have

$$
\begin{align*}
& P_{G}=\int_{-\infty}^{\infty} d u_{1} \int_{-\infty}^{\sqrt{\rho(1-\lambda)}+u_{1}} \cdots \int_{2} d u_{2} \ldots d u_{M}(2 \pi)^{-M / 2} \sqrt{1-\lambda} \int_{-\infty}^{\infty} d y \\
& (2 \pi)^{-1 / 2} \exp \left[-\frac{1}{2} y^{2}(1-\lambda)\right] \prod_{k=1}^{M} \cdot \exp \left[-\frac{1}{2}\left(u_{k}-\sqrt{\lambda} y\right)^{2}\right] .
\end{align*}
$$

We have temporarily "backtracked" to $\mathrm{M}+1$ 'integrals instead of M (eq.(2.13)), - but upon rearrangement of these integrals, eq. (2.35) becomes

$$
P_{c}=\int_{-\infty}^{\infty} d y \sqrt{\frac{1-\lambda}{2 \pi}} \exp \left[-\frac{1}{2} y^{2}(1-\lambda)\right] \int_{-\infty}^{\infty} \operatorname{du}_{1} \frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(u_{1}-\sqrt{\lambda} y\right)^{2}\right]
$$

$$
\left[\begin{array}{cc}
\sqrt{\rho(1-\lambda)}+u_{1} & \cdots \tag{2.36}\\
\int_{-\infty} \frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(u_{2}-\sqrt{\lambda} y\right)^{2}\right] d u_{2}
\end{array}\right] \mathrm{M}-1
$$

and M-1 of these integrals can immediately be performed: define

$$
\begin{equation*}
\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \tag{2.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi(\mathrm{x})=\int_{-\infty}^{\mathrm{x}} \phi(\mathrm{y}) \mathrm{dy} \tag{2.38}
\end{equation*}
$$

Eq. (2.36) then becomes

$$
\begin{align*}
& P_{c}= \int_{-\infty}^{\infty} d y \sqrt{1-\lambda} \phi(y \sqrt{1-\lambda}) \int_{-\infty}^{\infty} d u_{1} \phi\left(u_{1}-\sqrt{\lambda} y\right) . \\
& {\left[\begin{array}{c}
\sqrt{p(1-\lambda)}+v_{1} \\
\int_{-\infty} \phi\left(u_{2}-\sqrt{\lambda} y\right) d u_{2}
\end{array}\right]^{M-1} . } \tag{2.39}
\end{align*}
$$

Allowing for the fact that $\sqrt{\lambda}$ may be imaginary, we manipulate the integrals on u_{1} and u_{2} by defining a new variable of integration

$$
\begin{equation*}
x=u_{2}-\sqrt{\lambda} y, \quad d x=d u_{2} \tag{2.40}
\end{equation*}
$$

to bring them into the form

But it may be shown that the lower limit on the integral on x may be changed to $-\infty$ without any change in the value of the integral. This is due to the fact that $\phi(x)$ decays to zero "rapidly enough" as $x \rightarrow \pm \infty$. Equation (2.41) then becomes

$$
\begin{equation*}
\int_{-\infty}^{\infty} d u_{1} \phi\left(u_{1}-\sqrt{\lambda} y\right) \Phi_{1}^{M-1}\left(\sqrt{\rho(1-\lambda)}+u_{1}-\sqrt{\lambda} y\right) \tag{2.42}
\end{equation*}
$$

Let ting

$$
\begin{equation*}
v=u_{1}-\sqrt{\lambda} y, \quad d v=d u_{1 .} \tag{2.43}
\end{equation*}
$$

eq. (2.42) becomes

$$
\int_{-\infty}^{\infty-\sqrt{\lambda} y} d v \phi(v) \Phi^{M-1}(v+\sqrt{\rho(1-\lambda)})
$$

$$
\begin{equation*}
=\quad \int_{-\infty}^{\infty} d v \phi(v) \Phi^{M-1}(v+\sqrt{\rho(1-\lambda)}), \tag{2.44}
\end{equation*}
$$

where onceagain it may be shown that the decay of $\phi(v)$-to"zero for large v is sufficient to allow the change in limits. Substituting eq. (2.44) into eq. (2.39), interchanging integrals, and noticing that the integral on y is unity,
there results

$$
\begin{equation*}
P_{c}=\int \zeta(v) \Phi^{M-1}(v+\sqrt{\rho(1-\lambda)}) d v . \tag{2.45}
\end{equation*}
$$

Recalling eq. (2.29), this is

$$
\begin{equation*}
P_{c}=\int \phi(v) \dot{\Phi}^{M-1}\left(v+\sqrt{\frac{E(1-\lambda)}{N_{d}}}\right) d v \tag{2.46}
\end{equation*}
$$

From this equation, we notice the very interesting feature that the performance of an M-ary signal set with crosscorrelation coefficient λ is equal to the performance of an orthogonal M-ary signal set with energy $E(l-\lambda)$. The non-zero crosscorrelation-coefficient appears merely as a scaling by
$1-\lambda$! This has been known to be true for binary communication, and it is now shown to be true for M-ary communication.

Urbano ${ }^{46}$ has tabulated the integral

$$
\begin{equation*}
P_{\mu}(a)=\cdot \int \phi(v) \Phi^{\mu-1}(v+a) d v \tag{2.47}
\end{equation*}
$$

for $\mu=1,2,3, \ldots, 18,19,20,25,30, \ldots, 95$, and for $a=0(.01) 0.1$,
$0.1(0.1) 3,3(0.5) 5,5(1) 8$. Therefore we have, in Urbano's notation

$$
\begin{equation*}
P_{c}=P_{M}\left(\sqrt{\frac{E(1-\lambda)}{N_{d}}}\right) \tag{2.48}
\end{equation*}
$$

In using eq. (2.48), we must remember eq. (2.8). Thus

$$
\begin{equation*}
P_{c}(\max)=P_{M}\left(\sqrt{\frac{E}{N_{d}} \quad \frac{M}{M-1}}\right) . \tag{2.49}
\end{equation*}
$$

[^2]As cheçks on eq. (2.46), we have the following: for $M=2$, we have a binary situation. Eq. (2. 46) then becomes (using more explicit notation)

$$
\begin{equation*}
P_{c 2}=\int \phi(v) \Phi\left(v+\sqrt{\frac{E(1-\lambda)}{N_{d}}}\right) d v \tag{2.50}
\end{equation*}
$$

E.spressing . ${ }^{\Phi}$ in.integral form according to eq. (2.38), rotating the coordinates 45°, and integrating, eq. (2.50) becomes (see eqs. (5.51)-(5.53))

$$
\begin{equation*}
P_{c 2}=\Phi\left(\sqrt{\frac{E(1-\lambda)}{2 N_{d}}}\right) \tag{2.51}
\end{equation*}
$$

This results agrees with Helstrom ${ }^{11}$, eq. (13), if we recall eq. (2.21), and note that Helstrom's Φ is the error function integral, whereas ours is related to the normal probability function ${ }^{47}$

$$
\begin{equation*}
P(x)=\int_{-x}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\alpha^{2}}{2}} d \alpha \tag{2.52}
\end{equation*}
$$

In fact, from eq. (2.38), we see that

$$
\begin{equation*}
\Phi(\mathrm{x})=\frac{1}{2}[1+\mathrm{P}(\mathrm{x})] \tag{2,53}
\end{equation*}
$$

If $E=0$, from eq. (2. 46),

$$
\begin{equation*}
P_{c}=\int \phi(v) \Phi^{M-1}(v) d v=\left[\frac{\Phi^{M}(v)}{M}\right]_{-\infty}^{\infty}=\frac{1}{M} \tag{2.54}
\end{equation*}
$$

and if $E=\infty$, we get

$$
\begin{equation*}
P_{c} \cdot=\int \phi(v) \Phi^{M-1}(\infty) d v=1 \tag{2.55}
\end{equation*}
$$

both cbvious relations. Also, from eq. (2.46), if
$T-\frac{E(1-\lambda)}{N_{d}} \gg 1$,

$$
P_{. c}=\int \phi(-v) \Phi^{M-1}\left(v+\sqrt{\frac{E(1-\lambda)}{N_{d}}}\right) d v
$$

$$
=\int \phi(-v)\left[1-\Phi\left(-v-\sqrt{\frac{E(1-\lambda)}{N_{d}}}\right)^{M-1} d v\right.
$$

$$
=\int \phi(x)\left[1-\Phi\left(x-\sqrt{\frac{E(1-\lambda)}{N_{d}}}\right)\right]^{M-1} d x
$$

$$
\begin{equation*}
\cong \int \phi(x)\left[1-(M-1) \Phi\left(x-\sqrt{\frac{E(1-\lambda)}{N_{d}}}\right)\right] d x \tag{2.57}
\end{equation*}
$$

where we use the evenness of \Leftrightarrow, and the fact that $\Phi^{k+1}\left(x-\sqrt{\frac{E(1-\lambda)}{N_{d}}}\right)$ is.-. much smaller than $\Phi^{k}\left(x-\sqrt{\frac{E(1-\lambda)}{N_{d}}}\right)$ for $x \sim 0$, which is the only region of nonnegligible integrand. Using equations (2.50) and (2.51), eq. (2.57) may then be written

$$
\begin{equation*}
P_{c} \cong 1-(M-1) \Phi\left(-\sqrt{\frac{E(1-\lambda)}{2 N_{d}}}\right), \quad \frac{E(1-\lambda)}{N_{d}} \gg 1 . \tag{2.58}
\end{equation*}
$$

This result agrees with Helstrom ${ }^{30}$, eq. (19), for $\lambda=0$.

If the optimum crosscorrelation coefficient is realized, eq. (2.8), eq. (2.58) becomes

$$
\begin{equation*}
P_{c} \cong 1-(M-1) \Phi\left(-\sqrt{\frac{E}{2 N_{d}}}: \frac{M}{M-1}\right), \frac{E}{N_{d}} \gg 1 \tag{2.59}
\end{equation*}
$$

a result that agrees with Lerner ${ }^{36}$, eq. (15), under a redefinition of symbols. (It appears that $\ln \mathrm{M}$ in Lerner's eq. (15) should be $\log _{2} \mathrm{M}$.)

We have seen that P_{c}, eq. (2.46), has been tabulated for selected values of M and $\frac{E(1-\lambda)}{N_{d}}$ by Urbano ${ }^{46}$. However, for $M=2$, eq. (2.51) enables -sto evaluate $P_{c 2}$ more accurately through the use of normal probability function tables ${ }^{47}$. Similarly, for $M=3$, we may show that (see eqs. (5.66)-(5.69))

$$
\begin{equation*}
P_{c 3}=2 \Phi\left(\sqrt{\frac{E(1-\lambda)}{2 N_{d}}}\right)-1+L\left(\sqrt{\frac{E(1-\lambda)}{2 N_{d}}}, \sqrt{\frac{E(1-\lambda)}{2 N_{d}}}, \frac{1}{2}\right) \tag{2.60}
\end{equation*}
$$

where the L function is defined by

and is very well tabulated. 48 probability of error very accurately.

It is interesting to note that Lawson and Uhlenbeck ${ }^{26}$ (p. 173, eq. (58c)) derive an approximate expression from the probability of correct decision for orthogonal signals and phase-incoherent reception, and arrive at a form identical with our eq. (2.46). In the next section, we shali-derive an-exact-expression for this probability of correct decision in phase-incoherent operation.

3. ERROR PROBABILITY FOR PHASE-INCOHERENT RECEPTION

The only difference in the situation to be considered in this section from that in the previous section is that the carrier phase of the narrowband incoming signal is not known, or no attempt is made to track the carrier phase. Except for this carrier phase, however, the exact shape of the signal component of the incoming wave is known (except of course, for amplitude, which is not important, as in the previous section). Again, one of M equal energy equiprobable messages is known to be transmitted for a time duration of T seconds; the receiver, on the basis of the received waveform for the past T seconds (synchronized) is required to make a decision as to which signal was transmitted.

Before getting into the optimum receiver structure, we introduce complex notation ${ }^{40,25}$ which will prove to be extremely.useful. A complex narrowband signal $\psi(t)$ is constructed from a real narrowband deterministic signal $s(t)$ by deleting the negative frequency components of $s(t)$ and doubling the magnitude of the positive frequency components. Then *

$$
\begin{equation*}
s(t)=\operatorname{Re}\{\psi(t)\}, \tag{3.1}
\end{equation*}
$$

where $\operatorname{Re}\}$ denotes the real part of $\}$. Since $\psi(t)$ has a single-sided spectrum (by construction) centered, say, at f_{o}, we express

$$
\begin{equation*}
\psi(t)=\xi(t) e^{i 2 \pi f_{o} t}, \tag{3.2}
\end{equation*}
$$

[^3]where $\xi(t)$ then has a spectrum centered at zero frequency. Substitution of eq. (3.2) into eq. (3.1) yields
\[

$$
\begin{equation*}
s(t)=\operatorname{Re}\left\{\xi(t) e^{i 2 \pi f_{o} t}\right\} . \tag{3,3}
\end{equation*}
$$

\]

In a similar way, ${ }^{49}$ it is possible to construct a complex noise process $\eta(t)$ from the real noise process $n(t)$ such that the power density spectrum of $\eta(t)$ is confined to positive frequencies. * (Here we truly have a single-sided spectrum.) Again, if the spectrum of $\eta(t)$ is centered at f_{0}, we express

$$
\begin{equation*}
\eta(t)=v(t) e^{i 2 \pi f_{0} t} \tag{3.4}
\end{equation*}
$$

to obtain a power density spectrum for $v(t)$ which is centered at zero frequency. Then **

$$
\begin{equation*}
n(t)=\operatorname{Re}\left\{\nu(t) e^{i 2 \pi f_{0} t}\right\} \tag{3.5}
\end{equation*}
$$

Now let us assume that signal no. 1 was transmitted (without loss of generality). The received waveform in the absence of noise is then

$$
\begin{equation*}
\operatorname{Re}\left\{\xi_{1}(t) e^{i\left(2 \pi f_{o} t+\theta\right)}\right\} \tag{3.6}
\end{equation*}
$$

where θ is an unknown angle (carrier phase), with a p.d.f. (probability density function) uniformly distributed over a 2π interval. The optimum receiver ${ }^{43}$ in

[^4]this symmetric situation is then one which computes the quantities
\[

$$
\begin{equation*}
z_{k}=\left|\int_{k}^{*}(t)\left[\xi_{l}(t) e^{i \theta}+v(t)\right] d t\right|, k=1,2, \ldots, M \tag{3.7}
\end{equation*}
$$

\]

and decides on that signal corresponding to the largest z_{k} as having been sent. The quantity z_{k} is proportional to a sample of the envelope of the output of a filter matched to the $k^{\text {th }}$ signal, at the end of the baud." Since we have assumed signal no. 1 transmitted, the probability of correctly deciding that \cdot signal no. 1 was in fact sent, P_{c}, is the probability that $z_{1}>z_{2}, \ldots, z_{M}$ Mathematically, this is

$$
\begin{align*}
& P_{c}=\operatorname{Pr}\left(z_{1}>z_{2}, \ldots, z_{M}\right) \\
& =\int_{0}^{\infty} d z_{1} \int \cdots \int_{0}^{z_{1}} d z_{2}, \ldots d z_{M} P_{1}\left(z_{1}, z_{2}, \ldots, z_{M}\right), \tag{3.8}
\end{align*}
$$

where p_{1} is the p.d.f. of the set of random variables. $\left\{z_{k}\right\}$ when signal no. 1 is sent.

In order to evaluate this probability, we note from eq. (3.7) that the complex Gaussian noise $v(t)$ undergoes a linear transformation. Therefore the real and imaginary parts of the transformed quantities must be Gaussian, and it remains to evaluate the matrix of correlation coefficients of these transformed quantities to determine their p. d. f. , and relate it to $-p_{1}$ of eq. (3.8).

[^5]To this aim we first express eq. (3.7) as

$$
\begin{equation*}
z_{k}=\left|\int \xi_{k}^{*}(t) \xi_{1}(t) d t+\int \xi_{k}^{*}(t) v(t) e^{-i \theta} d t\right| \tag{3.9}
\end{equation*}
$$

At this point, we make an assumption about the signal set, namely that

$$
\begin{equation*}
\int \xi_{j}(t) \xi_{k}^{*}(t) d t=\lambda 2 E, j \neq k, \lambda \text { real and non-negative. } \tag{3.10}
\end{equation*}
$$

If $\lambda=0$, we have an orthogonal signal set. Eq. (3.10) is rather a restrictive assumption since it tacitly assumes that the angles of the complex quantities

$$
\begin{equation*}
\int \xi_{j}(t) \xi_{k}^{*}(t) d t, \quad j \neq k \tag{3.11}
\end{equation*}
$$

are all equal to zero. However, we shall discuss this item more fully in section 4, and give a heuristic argument (not a proof) that, for a given magnitude of the quantities in eq. (3.11), this assumption realizes the minimum error probability, over all possible angles. In addition, the maximum.error probability is also derived, for a given magnitude of the quantities in eq. (3.11), and over all possible angles: Further relevant comments on this topic are made in section 4.

$$
\text { In eq. }(3,10) \text {, }
$$

$$
\begin{equation*}
\lambda \leq 1 . \tag{3.12}
\end{equation*}
$$

Also*

$$
\int\left|\xi_{\mathrm{k}}(\mathrm{t})\right|^{2} \mathrm{dt}=2 \mathrm{E}, \mathrm{k}=1,2, \ldots, \mathrm{M} .
$$

[^6]If $n(t)$ is white Gaussian noise of level N_{d} watts per cycle per second for.all frequencies,* we have that ${ }^{* *}$
$\because \cdot \bar{v}(t)=0$,

$$
\overline{v(t) v(t-\tau)}=0,
$$

and

$$
\begin{equation*}
\overline{v(t) v^{*}(t-\tau)}=4 N_{d} \delta(\tau) . \tag{3.14}
\end{equation*}
$$

Then in eq. (3.9), we express the transformed process $v(t)$ as

$$
\begin{equation*}
\int_{0} \xi_{k}^{*}(t) v(t) e^{-i \theta} d t=x_{k}+i y_{k^{\prime}} k=1,2, \ldots, M \tag{3.15}
\end{equation*}
$$

where $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are real Gaussian variables (see section 4, eq. (4.8) et.seq.).

Using eqs. (3.14) and (3.10), we obtain

$$
\begin{align*}
& \bar{x}_{x_{1}}=\overline{y_{k}^{\prime}}=0, \\
& \overline{x_{k}^{2}}=\overline{y_{k}^{2}}=4 N_{d} E, \\
& \overline{x_{k} y_{k}}=0, \quad k=1,2, \ldots, M, \tag{3.16}
\end{align*}
$$

and

$$
\begin{align*}
& \overline{x_{k} x_{m}}=\overline{y_{k} y_{m}}=4 N_{d} E \lambda, \quad k \neq m, \\
& \overline{y_{k} x_{m}}=\overline{x_{k} y_{m}}=0, \quad k \neq m . \tag{3.17}
\end{align*}
$$

[^7]$$
\text { ** Ref. 25, p. } 55 .
$$

But eqs. $(3,16)$ and (3.17) indicate that all the x_{k} 's are independent of all the y_{k}^{\prime} s. Therefore the joint p.d.f. p_{2} of the variables $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ is $p_{2}\left(x_{1}, x_{2}, \ldots, x_{M}, y_{1}, y_{2}, \ldots, y_{M}\right)=p_{3}\left(x_{1}, x_{2}, \ldots, x_{M}\right) p_{4}\left(y_{1}, y_{2}, \ldots, y_{M}\right)$,
where p_{3} and p_{4} are respectively the joint p.d.f.'s of the random variables $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$. But from eqs. (3.16) and (3.17), the statistics of $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are identical. Therefore

$$
\begin{equation*}
p_{4}\left(y_{1}, y_{2}, \ldots, y_{M}\right)=p_{3}\left(y_{1}, y_{2}, \ldots, y_{M}\right) ; \tag{3.19}
\end{equation*}
$$

in words, if the p.d.f. p_{3} of $\left\{x_{k}\right\}$ has been obtained, the p.d.f. p_{4} of $\left\{y_{k}\right\}$ is immediately obtained by replacing $\left\{x_{k}\right\}$ in p_{3} by $\left\{y_{k}\right\}$. But a comparison of eqs. (3.16) and (3.17) with eq. (2.22) indicates that the p.d.f. p_{3} can be written down immediately, using eq. (2.26) as a guide:

$$
\begin{align*}
& p_{3}\left(x_{1}, x_{2}, \ldots, x_{M}\right)=\left[2 \pi 4 N_{d} E(1-\lambda)\right]^{-M / 2}\left[\frac{1-\lambda}{1+(M-1) \lambda}\right]^{1 / 2}: \\
& \exp \left[\frac{1}{2 \cdot 4 N_{d} E(1-\lambda)}\left\{\sum_{k=1}^{M} x_{k}^{2}-\frac{\lambda}{1+(M-1) \lambda}\left(\sum_{k=1}^{M} x_{k}\right)^{2}\right\}\right] \tag{3.20}
\end{align*}
$$

Now we are prepared to relate eqs. (3.18), (3.19), and (3.20) to eq. (3.8). From eqs. (3.9), (3.10), (3.13) and (3.15),

$$
\begin{align*}
& z_{l_{z}}^{2}=\left(2 E+x_{1}\right)^{2}+\cdot y_{1}^{2} \\
& z_{k}^{2}=\left(\lambda 2 E+x_{k}\right)^{2}+y_{k}^{2}, \quad k=2,3, \ldots, M .
\end{align*}
$$

Defining

$$
\begin{align*}
& u_{1}=2 E+x_{1} \\
& u_{k}=\lambda 2 E+x_{k}, \quad k=2,3, \ldots, M, \tag{3.22}
\end{align*}
$$

we have

$$
\begin{equation*}
z_{k}^{2}=u_{k}^{2}+y_{k}^{2}, \quad k=1,2, \ldots, M \tag{3.23}
\end{equation*}
$$

Therefore since the $\left\{u_{k}\right\}$ are independent of the $\left\{y_{k}\right\}$, eq. (3.8) becomes

$$
\begin{align*}
& P_{c}=\operatorname{Pr}\left(z_{1}>z_{2}, \ldots, z_{M}\right) \\
= & \int_{-\infty}^{\infty} \int_{-\infty} d u_{1} d y_{1} \iint_{C} \ldots \int_{C} \int_{C} d u_{2} d y_{2} \ldots d u_{M} d y_{M} p_{5}\left(u_{1}, u_{2}, \ldots, u_{M}\right) p_{4}\left(y_{1}, y_{2}, \ldots, y_{M}\right), \tag{3.24}
\end{align*}
$$

where p_{5} is the joint p.d.f. of $\left\{u_{k}\right\}$, and $\iint_{C} d u_{k} d y_{k}$ for $k \geq 2$ denotes a double integral in u_{k}, y_{k} space within a circle of radius $\sqrt{u_{1}^{2}+y_{l}^{2}}$ centered at the origin. But from eqs. (3.19) and (3.22), we may write this as

$$
\begin{align*}
P_{c}= & \int_{-\infty}^{\infty} \int_{-\infty} d u_{1} d y_{1} \iint_{C} \ldots \int_{C} \int_{C} d u_{2} d y_{2} \ldots d u_{M} d y_{M} p_{3}\left(u_{1}-2 E, u_{2}-\lambda 2 E, \ldots, u_{M}-\lambda 2 E\right) \\
& p_{3}\left(y_{1}, y_{2}, \ldots, y_{M}\right) \tag{3.25}
\end{align*}
$$

where p_{3} is given by eq. (3.20). Substituting eq (3.20) into eq. (3.25) and simplifying the exponent, we obtain

$$
\begin{align*}
& \int_{P_{c}}=\frac{1-\lambda}{1+(M-1) \lambda}\left[2 \pi 4 N_{d} E(1-\lambda)\right]^{-M} \exp \left(-E / 2 N_{d}\right): \\
& \int_{-\infty}^{\infty} d u_{1} d y_{1} \iint_{C} \ldots \int_{C} \int_{C} d u_{2} d y_{2} \ldots d u_{M}^{d y_{M}} \exp \left[-\frac{1}{2 \cdot 4 N_{d} E(1-\lambda)}\left\{\sum_{k=1}^{M}\left(u_{k}^{2}+y_{k}^{2}\right) .\right.\right. \\
& \left.\left.-\frac{\lambda}{1+(M-1) \lambda}\left[\left(\sum_{k=1}^{M} u_{k}\right)^{2}+\left(\sum_{k=1}^{M} y_{k}\right)^{2}\right]\right\}\right] \exp \left(u_{1} / 2 N_{d}\right) . \tag{3.26}
\end{align*}
$$

In Appendix A, this multiple integral is reduced to the following double integral:

$$
\begin{align*}
& P_{c}=(1-\lambda) \exp \left(-E / 2 N_{d}\right) \int_{0}^{\infty} \int_{0}^{\infty} r s \exp \left(-\frac{1}{2}\left(r^{2}+s^{2}\right)\right) I_{o}\left(\sqrt{\frac{E(1-\lambda)}{N_{d}} r}\right) . \\
& I_{0}(\sqrt{\lambda} r s)[1-Q(\sqrt{\lambda} s, r)] \quad \mathrm{dr} d s, \tag{3.27}
\end{align*}
$$

where I_{0} is the zero-th order modified Bessel function of the first kind, and

$$
\begin{equation*}
Q(\alpha, \beta)=\int_{\beta}^{\infty} x \exp \left(-\frac{1}{2}\left(x^{2}+\alpha^{2}\right)\right) I_{0}(a x) d x \tag{3.28}
\end{equation*}
$$

is the $\cdot Q$-function of Marcum ${ }^{5,6}$ and is tabulated. ${ }^{50,51} \mathrm{Eq}$. (3.27) is the desired result. (It is interesting to compare the form of eq. (3.27) with one obtained by Rice ${ }^{27}$ for a different problem.)

Z
Before checking eq. (3.27) against known cases, it would perhaps be . well to discuss the utility of this formof solution. Althougheeq. (3.27) has a menacing appearance and has apparently not been-tabulated, it is fairly well suited to numerical computations: given a value of λ and E / N_{d}, it is possible to compute simultaneously by means of a double sum, the values of P_{c} for $M=2,3,4,5$, etc. * Since $[1-Q(\sqrt{\lambda} \mathrm{~s}, r)]$ must be computed for $M=2$, the other powers of $[1-Q(\sqrt{\lambda} s, r)]$ can just as easily be computed, and simultaneous sums carried for all desired $M=2,3,4,5$, etc. This is in fact the way in which the tabulation will be carried out; the appearance of M only as a power in the expression makes this simplification possible. Contrast tne use of eq. (3.27) with a tabulation of P_{c} by means of eq. (3.26), where a 2 M -fold integration is required. To calculate by means of eq. (3.26) is. impossible for any reasonably large M where another double integral must be added when M increases by one, whereas eq. (3.27) merely requires using additional powers while computing the quantity for lower values of M .

Whereas the analogous result in section 2 , eq. (2.46), for phase-coherent reception was a function only of $\frac{E}{N_{d}}(1-\lambda)$, such is not the case here. This is most easily seen with reference to $M=2$, which will be discussed below.

We will now make several checks on eq. (3.27). For $\lambda=0$, the integral on s is unity, yielding

$$
\begin{aligned}
& P_{c}=\exp \left(-E / 2 N_{d}\right) \int_{0}^{\infty} r \exp \left(-r^{2} / 2\right) I_{o}\left({\left.\sqrt{\frac{E}{N_{d}}} r\right)\left[1-\exp \left(-r^{2} / 2\right)\right]^{M-1} d r}^{=\exp \left(-E / 2 N_{d}\right) \cdot \sum_{k=0}^{M-1}(-1)^{k}\binom{M-1}{k} \int_{0}^{\infty} r \exp \left(-\frac{k+1}{2} r^{2}\right) I_{o}\left(\sqrt{\frac{E}{N_{d}}} r\right) d r} .\right.
\end{aligned}
$$

[^8]\[

$$
\begin{equation*}
=\frac{\exp \left(-E / 2 N_{d}\right)}{M} \cdot \sum_{n=1}^{M}(-1)^{n-1}\binom{M}{n} \exp \left(E / 2 n N_{d}\right) \tag{3.29}
\end{equation*}
$$

\]

which agrees with Turin ${ }^{63}$,eq. (18), and with Reiger ${ }^{28}$, eq. (9).

If on the other hand $\lambda \neq 0$, but $M=2$, we use the result derived in Appendix A, commencing with eq. (A.12), namely

$$
\begin{gather*}
\int_{0}^{\infty} s \exp \left(-\frac{1}{2}\left(s^{2}+c^{2}\right)\right) I_{0}(c s) Q(a s, b) d s \\
=Q\left(\frac{a c}{\sqrt{1+a^{2}}}, \frac{b}{\sqrt{1+a^{2}}}\right) \tag{3.30}
\end{gather*}
$$

in eq. (3.27) to obtain (using more explicit notation)

$$
\begin{aligned}
& \quad P_{c 2}=(1-\lambda) \exp \left(-E / 2 N_{d}\right) \int_{0}^{\infty} r \exp \left(-\frac{1}{2} r^{2}(1-\lambda) I_{o}\left(\sqrt{\frac{E(1-\lambda)}{N_{d}}} r\right) .\right. \\
& {\left[1-Q\left(\frac{\lambda r}{\sqrt{1+\lambda}}, \frac{r}{\sqrt{1+\lambda}}\right)\right] d r} \\
& =\left(1-\lambda^{2}\right) \exp \left(-E / 2 N_{d}\right) \int_{0}^{\infty} x \exp \left(-\frac{1}{2} x^{2}\left(1-\lambda^{2}\right)\right) I_{o}\left(\sqrt{\frac{E\left(1-\lambda^{2}\right)}{N_{d}}} x\right) .
\end{aligned}
$$

$$
\begin{equation*}
[1-Q(\lambda x, x)] d x, \tag{3.31}
\end{equation*}
$$

which agrees with Helstrom ${ }^{11}$, eq. (49). (Helstrom later integrates this expression to obtain

$$
\begin{align*}
& P_{c 2}=1-Q\left(\frac{1}{2} \sqrt{\frac{E}{N_{d}}\left(1-\sqrt{1-\lambda^{2}}\right)}, \frac{1}{2} \sqrt{\frac{E}{N_{d}}\left(1+\sqrt{1-\lambda^{2}}\right)}\right) \\
& +\frac{1}{2} \exp \left(-E / 4 N_{d}\right) I_{0}\left(\lambda E / 4 N_{d}\right) . \tag{3.32}
\end{align*}
$$

However we do not use this result right now since we are looking for checks.)

$$
\begin{gathered}
\text { If } E=0 \text {, eq. (3.27) becomes } \\
P_{c}=(1-\lambda) \int_{0}^{\infty} \int_{0}^{\infty} r s \exp \left(-\frac{1}{2}\left(r^{2}+s^{2}\right)\right) I_{0}(\sqrt{\lambda} r s)[1-Q(\sqrt{\lambda} s, r)]^{M-1} d r \text { ás. }
\end{gathered}
$$

But from eq. (3.28),

$$
\begin{equation*}
\frac{d}{d r}[1-Q(\sqrt{\lambda} s, r)]=r \exp \left(-\frac{1}{2}\left(r^{2}+\lambda s^{2}\right)\right) I_{0}(\sqrt{\lambda} r s) . \tag{3.34}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& P_{c}=(1-\lambda) \int_{0}^{\infty} d s s \exp \left(-\frac{1}{2} s^{2} \cdot(1-\lambda)\right)\left\{\frac{[1-Q(\sqrt{\lambda} s, r)]^{M}}{M}\right\}_{0}^{\infty} \\
& =\frac{1-\lambda}{M} \int_{0}^{\infty} s \exp \left(-\frac{1}{2} s^{2}(1-\lambda)\right) d s=\frac{1}{M}, \tag{3.35}
\end{align*}
$$

which is obviously true.

In order to find $\lim _{E \rightarrow \infty} P_{c}$, for fixed-M--we-note-that-since-

$$
\begin{align*}
& (1-z)^{M-1} \geq 1-(M-1) z \text { for } 0 \leq z \leq 1, \tag{3.36}\\
& P_{c} \geq(1-\lambda) \exp \left(-E / 2 N_{d}\right) \int_{0}^{\infty} \int_{0}^{\infty} x y \exp \left(-\frac{1}{2}\left(x^{2}+y^{2}\right)\right) I_{0}\left(\sqrt{\frac{E(1-\lambda)}{N_{d}}} x\right) I_{o}(\sqrt{\lambda} x y) \\
& \quad[1-(M-1) Q(\sqrt{\lambda} y, x)] d x d y \\
& \quad=1-(M-1)\left(1-P_{c 2}\right) \tag{3.37}
\end{align*}
$$

But $P_{c 2} \rightarrow 1$ as $E \rightarrow \infty^{11}$. Therefore

$$
\begin{equation*}
\lim _{E \rightarrow \infty} P_{c} \geq 1 \tag{3.38}
\end{equation*}
$$

or $P_{c} \rightarrow 1$ as $E \rightarrow \infty$, an obvious relation.

One further advantage of eq. (3.27) merits comment: from eq. (3.27), we are able to derive the limiting behavior of M-ary phase-incoherent communication systems under a constant information rate constraint. This is not possible from the general relation, eq. (3.8), where as $M \rightarrow \infty$, the number of integrals does also. This limiting behavior is dealt with in section 7.

Since no numerical computation of the double integral of eq. (3:27) can extend all the way to infinity, it is desirable to know the error realized by integrating only over a finite portion of the r, splane. In Appendix B, a bound on this error is derived.

4. EFFECT QF CORRELATION COEFFICIENT ANGLES IN PHASE-INCOHERENT RECEPTION

- In section 3, eq. (3.10), a seemingly restrictive assumption about the angles of the complex crosscorrelation coefficients

$$
\begin{equation*}
\frac{1}{2 E} \int \xi_{j}(t) \xi_{k}^{*}(t) d t \tag{4.1}
\end{equation*}
$$

was made, namely that they all be zero. It is believed however that this as sumption about the angles is a most reasonable one to make in that it leads to a in imum of the error probability for a given $E / N_{d}, \lambda$, and M, over all possible angles, and should be studied first. We cannot prove this contention about the error probability; we have only some partial results fringing on this rather knotty problem. (The situation here is related to one encountered by Turin, Ref. 15, pp. 57-62.)

To begin, let us assume that the complex signals $\left\{\xi_{k}(t)\right\}$ have complex crosscorrelation coefficients:

$$
\begin{equation*}
\int \xi_{j}(t) \xi_{k}^{*}(t) d t=\lambda 2 \dot{E} \exp \left(i \theta_{j k}\right), \quad j \neq k \tag{4.2}
\end{equation*}
$$

where λ is real and non-negative.: Notice that the magnitude of the left-hand side of eq. (4.2) is the same for all $j \neq k$, namely $\lambda 2 E$. Also, the angles $\left\{\theta_{j k}\right\}$ satisfy a special relation: conjugating eq. (4.2),

$$
\begin{equation*}
\lambda 2 E \exp \left(-i \theta_{j k}\right)=\int \xi_{j}^{*}(t) \xi_{k}(t) d t=\int \xi_{k}(t) \xi_{j}^{*}(t) d t=\lambda 2 E \exp \left(i \theta_{k j}\right) \tag{4.3}
\end{equation*}
$$

Therefore, ${ }^{\prime}$

$$
\begin{equation*}
\theta_{\mathrm{jk}}=-\theta_{\mathrm{kj}}, \quad \mathrm{j}_{\mathrm{i}} \neq \mathrm{k} . \tag{4.4}
\end{equation*}
$$

In addition, from eq. (3.13),

$$
\begin{equation*}
\theta_{k k}=0 . \tag{4.5}
\end{equation*}
$$

Now let us return to the place where the angles of the crosscorrelation coefficients first appeared to plague us, eq. (3.7):

$$
\begin{equation*}
z_{k}=\left|\int \xi_{k}^{*}(t) \xi_{1}(t) d t \exp (i \theta)+\int \xi_{k}^{*}(t) v(t) d t\right| \tag{4.6}
\end{equation*}
$$

Using equation (4.2), this is

$$
\begin{align*}
& z_{k}=\left|\lambda 2 E \exp \left(i \theta_{l k}+i \theta\right)+\int \xi_{k}^{*}(t) v(t) d t\right| \\
& =\left|\lambda-2 E+\int \xi_{k}^{*}(t) v(t) d t \exp \left(-i \theta_{1 k}-i \theta\right)\right|, \quad k=2,3, \ldots, M . \tag{4.7}
\end{align*}
$$

Also,

$$
\begin{equation*}
z_{1}=\left|2 E+\int \xi_{1}^{*}(t) v(t) d t \exp (-i \theta)\right| . \tag{4.8}
\end{equation*}
$$

Now define a new random process $v^{1}(t)=v(t) \exp (-i \theta)$. If we write $v(t)$ in terms of a magnitude and angle,

$$
\begin{equation*}
v(t)=E(t) e^{i \phi(t)} \tag{4.9}
\end{equation*}
$$

the actual noise process $n(t)$ is, from eq. (3.5),

$$
n(t)=E(t) \cos \left[2 \pi f_{0} t+\phi(t)\right] .
$$

But $\phi(t)$ is uniformly distributed over a 2π interval (Ref. 4, eqs. (9. 1b) and(9.26).). Since θ is also uniformly distributed, the angle of $v^{1}(t)$, $\phi(t)-\theta$, is uniformly distributed, and $v^{l}(t)$ has identically the same statistics as $v(t)$. Thus, $\nu^{l}(\mathrm{t})$ is Gaussian. The integrals in eqs. (4.7) and (4.8) can then be expressed as

$$
\begin{equation*}
\int f_{k}^{*}(t) v^{l}(t) d t \exp \left(-i \theta_{1 k}\right)=x_{k}+i y_{k}, \quad k=1,2, \ldots, M \tag{4.11}
\end{equation*}
$$

using eq. (4.5), where $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are real Gaussian random variables. Using eçs. (3.14), (4.2), and (4.4), we have

$$
\begin{align*}
& \overline{x_{k}}=\overline{y_{k}}=0, \\
& \overline{x_{k}^{2}}=\overline{y_{k}^{2}}=4 N_{d} E, \\
& \overline{x_{k} y_{k}}=0, k=1,2, \ldots, M, \ldots \tag{4.12}
\end{align*}
$$

and

$$
\overline{x_{k} x_{m}}=\overline{y_{k} y_{m}}=4 N_{d} E \lambda \cos \left(\theta_{1 m}+\theta_{m k}+\theta_{k l}\right), \quad k \neq m,
$$

$$
\overline{y_{k} x_{m}}=\overline{-x_{k} y_{m}}=4 N_{d} E \lambda \sin \left(\theta_{l m}+\theta_{m k}+\theta_{k l}\right), k \neq m
$$

$$
\begin{equation*}
\mathrm{k}, \mathrm{~m}=1,2, \ldots, \mathrm{M} \tag{4.13}
\end{equation*}
$$

Then since

$$
\begin{align*}
& z_{1}=\left|2 E+x_{1}+i y_{1}\right| \\
& z_{k}=\left|\lambda 2 E+x_{k}+i y_{k}\right| \quad, \quad k=2,3^{\prime}, \ldots, M \tag{4.14}
\end{align*}
$$

the quantities in eq. (4.12) and (4.13) suffice to determine the p.d.f. p_{1} of eq. (3.8): But the only way that the crosscorrelation coefficient angles appear is in the cyclic sum

$$
\begin{equation*}
\theta_{\mathrm{lm}}+\theta_{\mathrm{mk}}+\theta_{\mathrm{kl}} \equiv \phi_{\mathrm{mk}} \quad \mathrm{k}, \mathrm{~m}=1,2, \ldots, \mathrm{M} \tag{4.15}
\end{equation*}
$$

These angles $\left\{\phi_{m k}\right\}$ are the fundanental angles (the only angles) upon which the probability of correct decision depends. Notice that we have, using eqs. (4.4) and (4.5),

$$
\begin{aligned}
& \phi_{k k}=0, \\
& \phi_{1 k}=\phi_{k l}=0 .
\end{aligned}
$$

ard

$$
\begin{equation*}
\phi_{\mathrm{km}}=-\phi_{\mathrm{mk}}, \mathrm{k}, \mathrm{~m}=1,2, \ldots, \mathrm{M} . \tag{4.16}
\end{equation*}
$$

With the definition of eq. (4.15), eq. (4.13) becomes

$$
\begin{align*}
& \overline{x_{k} x_{m}}=\overline{y_{k} y_{m}}=4 N_{d} E \lambda \cos \phi_{m k}, k \neq m \\
& \overline{y_{k} x_{m}}=\overline{-x_{k} y_{m}}=4 N_{d} E \lambda \sin \phi_{m k}, k \neq m, k, m=1,2, \ldots, M \tag{4.17}
\end{align*}
$$

- 1

For $M=2$, from eq, (4..16);

$$
\begin{equation*}
\phi_{11}=\phi_{22}=\phi_{12}=0 \tag{4.18}
\end{equation*}
$$

and performance in this case must be independent of θ_{12}. Substitution of eq. (4.18) into eq. (4.17) leads to eq. (3.17); therefore the results of section 3 are always applicable to the case $M=2$; eq. (3.10) is no assumption in this case. Of course, this is known ${ }^{11}$, but we are able to demonstrate it without carrying out the detailed evaluation of the probability of error for $M=2$.

For $M=3$, frum eqs. (4.15) and (4.16),

$$
\begin{align*}
& \phi_{11}=\phi_{22}=\phi_{33}=\phi_{12}=\phi_{13}=0, \\
& \phi_{23}=\theta_{12}+\theta_{23}+\theta_{31} \equiv \phi . \tag{4.19}
\end{align*}
$$

Therefore (using explicit notation) $P_{c 3}(\phi)$ can depend only on the cyclic sum of eq. (4.19). However the question remains as to the explicit dependence on ϕ. We are not able to determine this dependence except for $\phi=0$ and π. However we believe these two angles are the two most important values to consider, because they lead, respectively, to the minimum and maximum error probabilities for any given $E / N_{d^{\prime}}, \lambda$, and $M=3$. Although we cannot prove this conjecture, we have three related results (for general M) which indicate such is the case. In order to obtain the first result, consider the quantity

$$
\begin{equation*}
d=\overline{\left(z_{1}^{2}-z_{2}^{2}\right)\left(z_{1}^{2}-z_{3}^{2}\right)} \tag{4.20}
\end{equation*}
$$

Whenever z_{1} is larger than z_{2} and z_{3}, a correct decision is made about which signal was transmitted that particular baud; at the same time, $\left(z_{1}^{20}-z_{2}^{2}\right)\left(z_{1}^{2}-z_{3}^{2}\right)$ is positive. However, when either z_{2} or z_{3} is larger than z_{1}, an incorrect decision is made; $\left(z_{1}^{2}-z_{2}^{2}\right)\left(z_{1}^{2}-z_{3}^{2}\right)$ is negative in both these instances. When both z_{2} and z_{3} are larger than z_{1}, an incorrect decision is made; at such times, $\left(z_{1}^{2}-z_{2}^{2}\right)\left(z_{1}^{2}-z_{3}^{2}\right)$ is positive. Ignoring the last case for the moment, we see that there is a direct correspondence between correct decision and positiveness of $\left(z_{1}^{2}-z_{2}^{2}\right)\left(z_{1}^{2}-z_{3}^{2}\right)$. But since d is the "average positiveness" of this quantity, the larger d is, the larger the quantities $z_{1}^{2}-z_{2}^{2}$ and $z_{1}^{2}-z_{3}^{2}$ are, on the average. But this latter trend would seem indicative of an increased proportion of correct decisions, because the possibil.ty of z_{2} or z_{3} exceeding z_{1} is made less likely. Therefore we are led to believe that maximizing d will lead to maximum probability of correct decision. As mentioned above, there is one anomolous case where increased d can be realized by both z_{2} and z_{3} being larger than z_{1}, and being made more so. However, the likelihood of this case is extremely small for useful probabilities of correct decision, (the probability of this case may be 10^{-4} times as large as the probability of correct decision in a realistic situation of $P_{c 3}=0.99$). Furthermore, when this unusual case occurs, the amounts by which z_{2} and z_{3} exceed z_{1} will not be large in comparison to the amounts by which z_{1} normally exceeds z_{2} and z_{3}, and the contribution to d is relatively small. Therefore we conclude that the contribution of the anomolous case to d is negligible, and we proceed to maximize d by choice of ϕ, in high hopes that maximum probability of correct decision .will result. (This paragraph constitutes no proof; it leads to a conjecture which should be studied further:)
(There is nothing magic about the quantity in eq. (4.20). It was chosen for consideration here because it.is the simplest and most tractable average quantity involving both the signals and the noise that depends on ϕ that the author could conjure up. The quantity $\overline{\left(z_{1}-z_{2}\right)\left(z_{1}-z_{3}\right)}$ is more difficult to deal with mathematically, and quantities like $\bar{z}_{1}-\bar{z}_{\cdot 2}$ and $\overline{z_{1}^{2}}-\overline{z_{2}^{2}}$ are independent of ϕ.)

Using eq. (4.14), we have

$$
d=\frac{\overline{\left[4 E^{2}\left(1-\lambda^{2}\right)+4 E\left(x_{1}-\lambda x_{2}\right)+x_{1}^{2}+y_{1}^{2}-x_{2}^{2}-y_{2}^{2}\right]}}{\sqrt{\left[4 E^{2}\left(1-\lambda^{2}\right)+4 E\left(x_{1}-\lambda x_{3}\right)+x_{1}^{2}+y_{1}^{2}-x_{3}^{2}-y_{3}^{2}\right]}}
$$

where the average is over the product of the two bracket quantities. Using the facts that (ref. 4, eq. (7.28))

$$
\overline{w_{1} w_{2} w_{3}}=0,
$$

and

$$
\begin{equation*}
\overline{w_{1} w_{2} w_{3} w_{4}}=\overline{w_{1} w_{2}} \overline{w_{3} w_{4}}+\overline{w_{1} w_{3}} \overline{w_{2} w_{4}}+\overline{w_{1} w_{4}} \overline{w_{2} w_{3}}, \tag{4.22}
\end{equation*}
$$

if $\left\{w_{k}\right\}$ are zero mean Gaussian processes, and eqs. (4.12), (4.17), and (4.19), eq. (4.21) becomes, after (tedious but simple) manipulations,

$$
\begin{equation*}
d=\left(4 E N_{d}\right)^{2}\left[3+4 \lambda_{0}^{2}+4 \frac{E}{N_{d}}\left(1-2 \lambda^{2}\right)+\cdot\left(\frac{E\left(1-\lambda^{2}\right)}{N_{d}}\right)^{2}+4 \frac{E}{N_{d}} \lambda^{3} \cos \phi\right] \tag{4.23}
\end{equation*}
$$

This is obviously maximized by the choice $\phi=0$. Therefore we expect that $\phi=0$ corresponds to maximum probability of correct decision for $M=3$.

Furthermore, d is minimized by the choice $\phi=\pi$ (plus and minus π are the same angle). Therefore we expect that minimum probability of correct decision for $M=3$ is realized when $\phi=\pi$ (for a given E / N_{d}. and $\lambda)$.

Before we discuss this case further, we wish to generalize eq. (4.20) to larger values of M. A simple generalization is

$$
\begin{equation*}
d_{M}=\sum_{\substack{m=2 \\ m<k}}^{M} \sum_{\substack{M=3}}^{\left(z_{l}^{2}-z_{m}^{2}\right)\left(z_{l}^{2}-z_{k}^{2}\right)} . \tag{4.24}
\end{equation*}
$$

By an argument similar to that below eq. (4.20), we are led to expect that maximum (minimum) d_{M} corresponds to maximum (minimum) probability of correct decision. Using eqs. (4.12), (4.16), (4.17), and (4.22), we find

$$
\begin{equation*}
d_{M}=a+b \sum_{\substack{m=2 \\ m<k}}^{M} \sum_{\substack{\mathrm{m}=3}}^{M} \cos \phi_{m k} \tag{4.25}
\end{equation*}
$$

where a and b are independent of $\left\{\phi_{\text {mbl }}\right\}$, and b is a positive constant. But d_{M} is obviously maximized by the choice

$$
\begin{equation*}
\phi_{\mathrm{mk}}=0 \quad m \neq k, \quad m, k \geq 2 \tag{4.26}
\end{equation*}
$$

and minimized by the choice

$$
\begin{equation*}
\phi_{m k}=\pi, \quad m \neq k, \quad m, k \geq 2 \tag{4.27}
\end{equation*}
$$

We are thereforie led, in the general case, to anticipate the following:

Case 1

$$
\begin{equation*}
\phi_{\mathrm{mk}}=0, \text { all } \mathrm{m}, \mathrm{k} \quad-\quad \text { minimum error probability. } \tag{4.28}
\end{equation*}
$$

Case 2

$$
\begin{equation*}
\phi_{m k}=\pi, m \neq k, m \neq 1, k \neq 1 \text { - maximum error probability. } \tag{4.29}
\end{equation*}
$$

Let us consider these cases separately. We see from eq. (4.15) that

$$
\begin{equation*}
\theta_{j k}=0, \quad \text { all } \quad j, k, \tag{4.30}
\end{equation*}
$$

results in eq. (4.28), or case 1. But eq. (4.30) substituted in eq. (4.2) yields eq. (3. 10). (Equivalently, eq. (4.28) substituted in eq. (4. 17) yields eq (3.17)). Therefore the results of section 3 apply directly to case 1 , since the probability of correct decision depends only on $\left\{\phi_{\mathrm{mk}}\right\}$, and not on $\left\{\theta_{\mathrm{mk}}\right\}$ (except through $\left\{\phi_{\mathrm{mk}}\right\}$). Thus, eq. (4.30) is really too stringent a condition for the results of section 3 to apply. Equation (3.27) is actually applicable to all cases for which, using eq. (4.15),

$$
\begin{equation*}
\theta_{\mathrm{lm}}+\theta_{\mathrm{mk}}+\theta_{\mathrm{kl}}=0 \quad(\bmod 2 \pi) \tag{4.31}
\end{equation*}
$$

Next consider that

$$
\begin{equation*}
\theta_{j k}=\pi \rho \quad j \neq k . \tag{4,32}
\end{equation*}
$$

(Plus and minus π are the same angle). Substituting eq. (4.32) into eq. (4.15), we obtain eq. (4.29), or case 2. But for this special case, as with eq. (4.30), we can in fact derive the error probability. Specifically, if eq. (4.32) is substituted into eq. (4.2), we obtain

$$
\begin{equation*}
\int \xi_{j}(t) \xi_{k}^{*}(t) d t=-\lambda 2 E, j \neq k, \lambda \text { real, non-negative. } \tag{4.33}
\end{equation*}
$$

But this differs from eq. (3.10) only in the sign of λ, and a study of eqs. (3.11) - (3.26) and Appendix A shows that eq. (3.27) is also applicable to this case, if in eq. (3.27), λ is everywhere replaced by $-\lambda$, and the functions suitably interpreted. Explicitly, we obtain

$$
\begin{align*}
P_{c}^{\prime}= & (1+\lambda) \exp \left(-E / 2 N_{d}\right) \int_{0}^{\infty} \int_{0}^{\infty} r s \exp \left(-\frac{1}{2}\left(r^{2}+s^{2}\right)\right) I_{o}\left(\sqrt{\frac{E(1+\lambda)}{N_{d}}} r\right) \\
& J_{0}(\sqrt{\lambda} r s)[1-q(\sqrt{\lambda} s, r)]^{M-1} d r d s, \tag{4.34}
\end{align*}
$$

where the prime on P_{c} is to indicate that it applies solely for eq. (4.33), case 2. (Absence of the prime means the usual result of eq. (3.27) based on ec_{F} (3.10).) In eq. (4.34), J_{o} is the zero-th order Bessel function of the first kind, and

$$
\begin{align*}
1-q(\alpha, \beta) & =\int_{0}^{\beta} x \exp \left(-x^{2} / 2\right) \exp \left(\alpha^{2} / 2\right) J_{o}(\alpha x) d x \\
& =1-Q(-i \alpha, \beta) \tag{4.35}
\end{align*}
$$

(As noted by Marcum ${ }^{5,6}$ with respect to Q, q is related to Lommel's function of two variables ${ }^{52}$

$$
\begin{equation*}
1-q(\alpha, \beta)=\exp \left(\frac{1}{2}\left(\alpha^{2}-\beta^{2}\right)\right)\left[i U_{1}\left(-i \beta^{2}, \alpha \beta\right)-U_{2}\left(-i \beta^{2}, \alpha \beta\right)\right] . \tag{4,36}
\end{equation*}
$$

However, we have not used this result.)

A bound on the allowable range of λ in eq. (4.34) obtains, namely

$$
\begin{equation*}
0 \leq \lambda \leq \frac{1}{M-1} . \tag{4.37}
\end{equation*}
$$

This may be seen in two ways: first the determinant of a matrix of crosscorrelation coefficients must be non-negative (to be elaborated on later) and secondly, by an approach analogous to that in eqs. (2.7) and (2.8):

$$
\begin{equation*}
\int\left|\sum_{k=1}^{M} \xi_{k}(t)\right|^{2} \cdot d t=M 2 E+\left(M^{2}-M\right)(-\lambda 2 E) \geq 0 \tag{4.38}
\end{equation*}
$$

where we have used eq. (4.33). The upper limit in eq. (4.37) follows immediately.

From the arguments above, and from one to follow later in this section, we therefore expect that eqs. (3.27) and (4.34) form upper and lower bounds respectively on the probability of correct decision for a given $_{\mathrm{E}}^{\mathrm{L}} \mathrm{N}_{\mathrm{d}}, \lambda$, and M .

To partially corroborate this conjecture, P_{c} and P_{c}^{\prime} were computed numerically for $E / N_{d}=4, \lambda=1 / 4$, and several values of M, by means of eqs. (3.27) and (4.34). The results are

M	P_{c}	P_{c}^{\prime}	-	
1	1.00000	1.00000		
2	. 80724	. 80724		
3	: 70633	. 70481		
4	. 63929	$\therefore .63567$		
5	.. 58989	. 58385		
6	. 55125	--		
7	. 51982	--		(4.39)
8	. 49352	--		
9	. 47105	--		
10	. 45153	--		
16	. 37117	--		
32	. 27245	--		
64	. 19566	--		-
128	. 13783	--		
256	. 09546	--	-	
512	. 06514	--		

(The results for $M=1$ and 2 can be checked and are correct to five places.) From these numbers (for $M \geq 3$) we see that the probability of correct decision does indeed depend on the correlation coefficient angles; the effect of the angles does not disappear in the error probability, as it did for $M=2^{11}$. (Notice that eq. (4.37) must be satisfied. That is the reason tabulation of P_{i}^{\prime} stops at $M=5$.) These results are in the expected order, $P_{c} \geq P_{c}^{\prime}$ (this constitutes the second result alluded to above eq. (4.20)). The results for $M=2$ are always equal; this may be seen either from eq. (3.32), where it is obvious that the sign of λ.is immaterial, or from the discussion following eq. (4.18).

There is very ${ }^{\circ}$ little difference in the probabilities P_{c} and P_{c}^{\prime} in eq. (4.39), occurring only in the third place. The question then arises as to the magnitude of the discrepancy between the two probabilities, and its dependence on $E / N_{d}, \lambda$, and M. A related result may be obtained from eq. (4.23) which becomes, for the above choice of values (for $M=3$)

$$
\begin{equation*}
d=\left(\frac{E}{2}\right)^{2} \quad(501+4 \cos \phi) \tag{4.40}
\end{equation*}
$$

Thus only a $\pm 0.86 / 0$ variation in d results for changes in ϕ, and we would expect very little difference between P_{c} and P_{c}^{\prime} for $M=3$. In fact, the percentage difference in the probabilities is 0.20% frorn eq. (4. 39).

As $\lambda \rightarrow 1$ in eq. (4.23),

$$
\begin{equation*}
d \cong\left(4 E N_{d}\right)^{2}\left(7-4 \frac{E}{N_{d}}+4 \frac{E}{N_{d}} \cos \phi\right) \tag{4.41}
\end{equation*}
$$

It might appear from this result that a great deal of variation in d results when ϕ changes. However, nōt all values of ϕ a:e allowed now. Indeed, $\phi \cong 0$ is the only range allowed. (This result is demonstrated later in this section in eq. (4.84).) Thus the amount of variation in d may still be small, and P_{c} and P_{c}^{\prime} may still be almost equal; we have not investigated this behavicr any further however.
(It is appropriate to note here that due to their extreme similarity, eqs. (3.27) and (4.34) should probably be computed simultaneously for a given $E / N_{d}, \lambda$, and M, at least initially, until the magnitude of the
discrepancy between P_{c} and P_{c}^{\prime} can be ascertained. The work involved in computing P_{c} forms such a large part of that involved in computing P_{c}^{\prime} that excessive duplication of effort would result if the two results. were carried out at different times. This mode of operation was used above in calculations of the results of eq. (4.39). For purposes of numerical computation, a bound on the error in approximating P_{c}^{\prime} by a finite double integral is given in Appendix B.)

Now let us determine explicitly how the fundamental angles appear in the probability of correct decision, eq. (3.8). We use more explicit notation now, $P_{c}\left\{\phi_{\mathrm{m} k}\right\}$. From eq. (4.14),

$$
\begin{align*}
& z_{1}^{2}=\left(2 E+x_{1}\right)^{2}+y_{1}^{2} \tag{4.42}\\
& z_{k}^{2}=\left(\lambda 2 E+x_{k}\right)^{2}+y_{k}^{2}, \quad k=2,3, \ldots, M \tag{4.43}
\end{align*}
$$

Letting

$$
\begin{align*}
& u_{1}=2 E+x_{1} \tag{4.44}\\
& u_{k}=\lambda 2 E+x_{k}, \quad k=2,3, \ldots, M \tag{4,45}
\end{align*}
$$

eq. (3.8) can be written

$$
\begin{gather*}
P_{c}\left\{\phi_{m k}\right\}=\iint_{-\infty}^{\infty} \int_{1} d u_{1} d y_{1} \iint \ldots \iint_{C} d u_{2} d y_{2} \ldots d u_{M} d y_{M} . \\
p_{6}\left(u_{1}, y_{1}, u_{2}, y_{2}, \ldots, u_{M}, y_{M}\right), \tag{4.46}
\end{gather*}
$$

where p_{6} is the joint p.d.f. of the random variables $\left\{u_{k}\right\} .,\left\{y_{k}\right\}$, and $\iint_{C} d u_{k} d y_{k}$ for $k \geq 2$ denotes a double integral in $u_{.}, y_{k}$ space within a circle
of radius $\sqrt{u_{1}^{2}+y_{1}^{2}}$ centered at the origin. But if p_{7} is the joint p.d.f. of the random variables $\left\{x_{k}\right\},\left\{y_{k}\right\}$, we have from eqs. (4.4.4) and (4.45)

$$
\begin{equation*}
p_{6}\left(u_{1}, y_{1}, u_{2}, y_{2}, \ldots, u_{M^{\prime}} y_{M}\right)=p_{7}\left(u_{1}-2 E, y_{1}, u_{2}-\lambda 2 E, y_{2}, \ldots, \dot{u}_{M^{-\lambda 2}} 2 E, y_{M^{\prime}}\right) . \tag{4.47}
\end{equation*}
$$

Accordingly we must determine the p.d.f. p_{7}. To this aim, let $\underset{\sim}{ }$ be a column matrix

$$
\underset{\sim}{z}=\left[\begin{array}{c}
x_{1} \tag{4.48}\\
y_{1} \\
x_{2} \\
y_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{M} \\
y_{M}
\end{array}\right]
$$

and \mathbb{M} be the matrix of crosscorrelation coefficients

Then since $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are Gaussian variables with zero means,

$$
\begin{equation*}
p_{7}(z)=(2 \pi)^{-M}|\underset{\sim}{M}|^{-1 / 2} \exp \left(-\frac{1}{2}{\underset{\sim}{z}}^{T}{\underset{\sim}{M}}^{-1} z\right) \tag{4.50}
\end{equation*}
$$

where $|M|$ is the determinant of $\underset{\sim}{M},{\underset{\sim}{M}}^{-1}$ is the inverse matrix of $\underset{\sim}{M}$, and z_{\sim}^{T} is the transpose matrix of z. Define a general rotation matrix

$$
{\underset{\mathrm{R}}{\mathrm{mk}}}^{\mathrm{R}^{2}}=\left[\begin{array}{cc}
\cos \phi_{\mathrm{mk}} & \sin \phi_{\mathrm{mk}} \tag{4.51}\\
-\sin \phi_{\mathrm{mk}} & \cos \phi_{\mathrm{mk}}
\end{array}\right] .
$$

Then using eqs. (4.12) and (4.17), we obtain

where-I is the two-by-two identity matrix. We note that

$$
\begin{equation*}
\mathrm{R}_{1 \mathrm{k}}=\mathrm{R}_{\mathrm{kl}}=\mathrm{I}, \tag{4.53}
\end{equation*}
$$

since $\phi_{1 k}=\phi_{k l}=0$ by eq. (4.16). In order to obtain $p_{7}(\underset{\sim}{z})$, we must invert $\underset{\sim}{M}$ or $\underset{M^{*}}{A}$ We have not been able to do this in the general case. However, for $. \dot{M}=1,2,3$, we have inverted them:

$$
\begin{equation*}
{\underset{\sim}{1}}_{-1}^{-1}=\underset{\sim}{I}, \tag{4.54}
\end{equation*}
$$

$$
\begin{align*}
& {\underset{\sim}{A}}_{2}^{-1}=\frac{1}{1-\lambda^{2}} \quad\left[\begin{array}{cc}
\underset{\sim}{I} & -\lambda \underset{\sim}{I} \\
-\lambda & \underset{\sim}{I}
\end{array}\right], \tag{4.55}\\
& I \quad \frac{-\lambda}{1-\lambda^{2}}\left(\underset{\sim}{I}-\lambda{\underset{\sim}{R}}^{T}\right) \frac{-\lambda}{1-\lambda^{2}}(\underset{\sim}{I}-\lambda \underset{\sim}{R}) \\
& {\underset{\sim}{A}}_{-1}^{-1}=\frac{1-\lambda^{2}}{1-3 \lambda^{2}+2 \lambda^{3} \operatorname{cos\phi }} \quad \frac{-\lambda}{1-\lambda^{2}}(\underline{I}-\lambda \underset{\sim}{R}) \quad \underset{\sim}{I} \quad \frac{-\lambda}{1-\lambda^{2}}(\underset{\sim}{R}-\lambda I) \tag{4.56}\\
& \frac{-\lambda}{1-\lambda^{2}}\left(\underset{\sim}{I}-\lambda{\underset{\sim}{R}}^{T}\right) \frac{-\lambda}{1-\lambda^{2}}\left({\underset{\sim}{R}}^{T}-\lambda I\right) \quad \underset{\sim}{I}
\end{align*}
$$

where we have used eqs. (4.19) and (4.53), and defined $\underset{\sim}{\mathbb{R}} \equiv{\underset{\sim}{2}}_{23}$. (If eq.
(4.53) were not true, the general inverse of ${\underset{\sim}{A}}_{3}$ would be

$$
{\underset{A}{3}}_{-1}^{=}=\frac{1-\lambda^{2}}{1-3 \lambda^{2}+2 \lambda^{3} \cos \phi}
$$

(We have not needed this fact however.)

We also have

$$
\begin{equation*}
-\left|A_{2}\right|=\left(1-\lambda^{2}\right)^{2} \tag{4.58}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{3}\right|=\left(1-3 \lambda^{2}+2 \lambda^{3} \cos \phi\right)^{2} \tag{4.59}
\end{equation*}
$$

which are required for eq. (4.50). In general it appears that

$$
\left|A_{M}\right|^{1 / 2}=\left|\begin{array}{ccccc}
1 & \lambda & \lambda & \ldots & \lambda \tag{4.60}\\
\lambda & 1 & \lambda e^{i \phi_{23}} & \ldots & \lambda e^{i \phi_{2 M}} \\
\lambda & \lambda e^{-i \phi_{23}} & 1 & \ldots & \lambda e^{i \phi_{3 M}} \\
\cdot & & & & \\
\cdot & & & & \\
\lambda & \lambda e^{-i \phi_{2 M}} & \lambda e^{-i \phi_{3 M}} \ldots & 1
\end{array}\right|
$$

but this has not been proven. In any event, we do not use eq. (4.60) for $\mathrm{M}>3$.

We shall not deal with $M=2$ any further because, as discussed in eq. (4.18) et seq., the results of section 3 hold regardless of the correlation coefficient angles. However, for $M \geq 3$, the angles $\left\{\phi_{m k}\right\}$ are important and do affect the probability of correct decision. For $M=3$, employing eqs. (4.48), (4.52), and (4.56),

$$
\begin{aligned}
& z^{T}{\underset{\sim}{M}}_{z}^{-1}=\left(4 N_{d} E\right)^{-1}{\underset{z}{z}}_{T}^{A_{i}^{-1}} \underset{\sim}{z} . \\
& =\frac{1}{4 N_{d} E} \cdot \frac{1-\lambda^{2}}{1-3 \lambda^{2}+2 \lambda^{3} \cos \phi}\left\{x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}+x_{3}^{2}+y_{3}^{2}\right.
\end{aligned}
$$

$$
\begin{align*}
& -\frac{2 \lambda(1-\lambda \cos \phi)}{1-\lambda^{2}}\left(x_{1} x_{2}+y_{1} y_{2}+x_{1} x_{3}+y_{1} y_{3}\right) \\
& -\frac{2 \lambda^{\prime}(\cos \phi-\lambda)}{1-\lambda^{2}}\left(x_{2} x_{3}+y_{2} y_{3}\right) \\
& +\frac{2 \lambda^{2} \sin \phi}{1-\lambda^{2}}\left(x_{2} y_{1}-x_{1} y_{2}+x_{1} y_{3}-x_{3} y_{1}\right) \\
& \left.-\frac{2 \lambda \sin \phi}{1-\lambda^{2}}\left(x_{2} y_{3}-x_{3} y_{2}\right)\right\} \tag{4.61}
\end{align*}
$$

If $\phi=0$, this reduces, after regrouping, to

$$
\begin{equation*}
\frac{1}{4 N_{d} E(1-\lambda)}\left\{\sum_{k=1}^{3}\left(x_{k}^{2}+y_{k}^{2}\right)-\frac{\lambda}{1+2 \lambda}\left(\sum_{k=1}^{3} x_{k}\right)^{2}-\frac{\lambda}{1+2 \lambda}\left(\sum_{k=1}^{3} y_{k}\right)^{2}\right\} \tag{4.62}
\end{equation*}
$$

which agrees with the appropriate parts of the exponent of eq. (3.20). Thus the results in section 3 for $M=3$ are applicable to the situation where $\phi=0$ (or $\pm n 2 \pi$), and not just to the situation where all the $\left\{\theta_{j k}\right\}$ are zero. Rather, it is required only that

$$
\begin{equation*}
\left.\theta_{12}+\theta_{23}+\theta_{31}=0 \text { (or } \pm \mathrm{n} 2 \pi\right) \tag{4.63}
\end{equation*}
$$

for the earlier result to hold. (This is a special case of eq. (4.31).)

Using eqs. $(4,50),(4.52)$, and (4.59), p_{7} becomes

$$
\begin{gather*}
\dot{p}_{7}\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)= \\
\left(2 \pi 4 N_{d} E\right)^{-3}\left(1-3 \lambda^{2}+2 \lambda^{3} \cos \phi\right)^{-1} \exp \left(-\frac{1}{2 \cdot 4 N_{d} E}{\underset{z}{ }}_{T}^{A_{\sim}^{-1}} \underset{\sim}{z}\right) \tag{4.64}
\end{gather*}
$$

where $\underset{\sim}{z}{ }_{\sim}^{T} A_{3}^{-1} \underset{\sim}{z}$ is given in eq. (4.61). Substituting into eq. (4.46), and using eq. (4.47), we have

$$
\begin{align*}
& P_{c 3}(\phi)=\iint_{-\infty}^{\infty} d u_{1} d y_{1} \iint_{C} \iint_{C} d u_{2} d_{2} d u_{3} d y_{3}\left(2 \pi-4 N_{d} E\right)^{-3}\left(1-3 \lambda^{2}+2 \lambda^{3} \cos \phi\right)^{-1} \\
& \exp \left[-\frac{1}{2 \cdot 4 N_{d} E} \frac{1-\lambda^{2}}{1-3 \lambda^{2}+2 \lambda^{3} \cos \phi}\left\{\left(u_{1}-2 E\right)^{2}+y_{1}^{2}+\left(u_{2}-\lambda 2 E\right)^{2}\right.\right. \\
& +y_{2}^{2}+\left(u_{3}-\lambda 2 E\right)^{2}+y_{3}^{2} \\
& \cdot \\
& \left.-\frac{2 \lambda(1-\lambda \cos \phi)}{1-\lambda^{2}}\left(\left(u_{1}-2 E\right)\left(u_{2}-\lambda 2 E\right)+y_{1} y_{2}+\left(u_{1}-2 E\right)\left(u_{3}-\lambda 2 E\right)+y_{1} y_{3}\right)\right) \\
& -\frac{2 \lambda(\cos \phi-\lambda)}{1-\lambda^{2}}\left(\left(u_{2}-\lambda 2 E\right)\left(u_{3}-\lambda 2 E\right)+y_{2} y_{3}\right) \\
& +\frac{2 \lambda^{2} \sin \phi}{1-\lambda^{2}}\left(y_{1}\left(u_{2}-\lambda 2 E\right)-y_{2}\left(u_{1}-2 E\right)+y_{3}\left(u_{1}-2 E\right)-y_{1}\left(u_{3}-\lambda 2 E\right)\right) \tag{4.65}\\
& \left.\left.-\frac{2 \lambda \sin \phi}{1-\lambda^{2}}\left(y_{3}\left(u_{2}-\lambda 2 E\right)-y_{2}\left(u_{3}-\lambda 2 E\right)\right)\right\}\right] .
\end{align*}
$$

We have not been able to integrate this and reduce it to form similar to eq. (3.27) except when $\phi=0$ or π. However we can show from eq. (4.65) that $\phi=0$ and π are local maxima or minima for $P_{c 3}(\phi)$. First, $P_{c 3}(\phi)$ is even about $\bar{\phi}=0$; that is

$$
\begin{equation*}
P_{c 3}(-\phi)=P_{c 3}(\phi) \tag{4.66}
\end{equation*}
$$

This may be easily seen by substituting $-\phi$ for ϕ everywhere in eq. (4.65) to obtain $P_{c 3}(-\phi)$, and then noting that a change of variable

$$
\begin{equation*}
w_{k}=-y_{k}, \quad k=1,2,3 \tag{4.67}
\end{equation*}
$$

returns the equation to identically the same form as eq. (4.65). Thus eq. (4.66) is true, and $\phi=0$ is either a local maximum or local minimum for $P_{c 3}(\phi)$.

$$
\begin{align*}
& \text { But } P_{c 3}(\phi) \text { is also even about } \phi=\pi \text { : } \\
& P_{c 3}(\pi-\phi)=P_{c 3}(-\pi-\phi)=P_{c 3}(\pi+\phi) \tag{4.68}
\end{align*}
$$

the first equality resulting from the periodic character of $P_{c 3}(\phi)$, and the second equality from eq. (4.66). Therefore $\phi=\pi$ is also either a local maximum or local minimum for $P_{c 3}(\phi)$. (This is the third result mentioned above eq. 4.20.) This $P_{c 3}(0)$ and $P_{c 3}(\pi)$ are local bounds, and by the arguments given earlier; we suspect they are actually bounds:

$$
\begin{equation*}
P_{c 3}^{\prime} \equiv P_{c 3}(\pi) \leq P_{c 3}(\phi) \leq P_{c 3}(0) \equiv P_{c 3} \text { any } \phi \tag{4.69}
\end{equation*}
$$

Not any value of λ is allowed in eq. (4.65). For a given $\phi, \dot{\lambda}$ must satisfy the following relation:

$$
\begin{equation*}
1-3 \lambda^{2}+2 \lambda^{3} \cos \phi \geq 0 \tag{4.70}
\end{equation*}
$$

This and more general relations may be easily seen as follows: consider

$$
\begin{equation*}
\beta=\int\left|\sum_{k=1}^{M} a_{k}^{*} \xi_{k}(t)\right|^{2} d t \tag{4.71}
\end{equation*}
$$

Then $\beta \geq 0$ for all $\left\{a_{k}\right\}$. But

$$
\begin{align*}
\beta & =\int \sum_{k=1}^{M} \sum_{n=1}^{M} a_{k}^{*} a_{n} \xi_{k}(t) \xi_{n}^{*}(t) d t \\
& =\sum_{k=1}^{M} \sum_{n=1}^{M} a_{k}^{*} \gamma_{k n} a_{n}, \tag{4.72}
\end{align*}
$$

where

$$
\gamma_{k n}=\int \xi_{k}(t) \xi_{n}^{*}(t) d t .
$$

Then

$$
\begin{equation*}
\sum_{k=1}^{M} \sum_{n=1}^{M} a_{k}^{*} \gamma_{k n} a_{n} \geq 0 \text { for all }\left\{a_{k}\right\} \tag{4.73}
\end{equation*}
$$

Defining matrices

$$
\begin{align*}
& {\underset{a}{T}}^{T}=\left[a_{1}, a_{2}, \ldots, a_{M}\right] \\
& \dot{\chi}=\left[\gamma_{k n}\right] \tag{4.74}
\end{align*}
$$

we see that $\mathcal{X}^{\text {ris a Hermitian matrix }}{ }^{53}$, and β is its associated Hermitian form. But since the Hermitian form is non-negative for all $\underset{\sim}{a}$, the Hermitian matrix $\underset{\sim}{\gamma}$ is non-negative definite. Therefore the principal minors of $\underset{\sim}{\gamma}$ are all nonnegative, and in particular, the determinant of $\underset{\sim}{\gamma}$ must be non-negative:

$$
\begin{equation*}
\left|\gamma_{\mathrm{kn}}\right| \geq 0 \tag{4.75}
\end{equation*}
$$

Thus a matrix of crosscorrelation coefficients has a non-negative determinant. In our problem, from eqs. (3.13) and (4.2),

$$
\begin{align*}
& \gamma_{k k}=2 E, \\
& \gamma_{k n}=2 E \lambda e^{i \theta_{k n}}, \quad k \neq n \tag{4.76}
\end{align*}
$$

Therefore we must always have

For $M=3$, eq. (4.70) results, where ϕ is defined in eq. (4.19). Thus, if $\phi=0$, eq. (4, 70) becomes

$$
\begin{equation*}
(1-\lambda)^{2}(1+2 \lambda) \geq 0 \tag{4.78}
\end{equation*}
$$

which is always satisfied for $0 \leq \lambda \leq 1$. However, for $\phi=\pi$, we require

$$
\begin{equation*}
(1+\lambda)^{2}(1-2 \lambda) \geq 0 \tag{4.79}
\end{equation*}
$$

and therefore we must have

$$
\begin{equation*}
\lambda \leq \frac{1}{2} \tag{4.80}
\end{equation*}
$$

This corroborates eq. (4.37) for $M=3$. And if $\phi=\pi / 2$, we must have

$$
\begin{equation*}
\lambda \leq 1 / \sqrt{3} \tag{4.81}
\end{equation*}
$$

So, depending on ϕ, λ can take on different ranges of allowed values; conversely, for a given magnitude of crosscorrelation coefficient, only certain ϕ are attainable, namely

$$
\begin{equation*}
\cos \phi \geq \frac{3 \lambda^{2}-1}{2 \lambda^{3}} \tag{4.82}
\end{equation*}
$$

Thus if $\lambda=1-\varepsilon$, where $\varepsilon \cong 0$, we find

$$
\begin{equation*}
\cos \phi \geq 1-\frac{3}{2} \varepsilon^{2} \tag{4.83}
\end{equation*}
$$

and an extremely small range of ϕ is allowed, namely

$$
\begin{equation*}
|\phi| \leq \sqrt{3} \varepsilon \tag{4.84}
\end{equation*}
$$

This result used in eq. (4.41) indicates that d can indeed change very slightly even though $\lambda \cong 1$. Roughly speaking, the more alike the signals are to each other, as measured by λ, the less variation there is allowed on the "angle between them!'.

The cases $\phi=0$ and $\phi=\pi$ are actually both attainable in practice, and the minimum and maximum error probabilities respectively can be realized. To see this, suppose we had at our disposal a set of complex orthonormal functions $\left\{f_{k}(t)\right\}$ defined over an interval of length T. If we wanted a set of functions $\xi_{1}(t), \xi_{2}(t), \xi_{3}(t)$ such that

$$
\begin{align*}
& \int \xi_{1}(t) \xi_{2}^{*}(t) d t=\lambda 2 E, \\
& \int \xi_{1}(t) \xi_{3}^{*}(t) d t=\lambda 2 E, \\
& \int \xi_{2}(t) \xi_{3}^{*}(t) d t=\lambda 2 E, \tag{4.85}
\end{align*}
$$

which corresponds to $\phi=0$, we can choose

$$
\begin{align*}
& \xi_{1}(t)=\sqrt{2 E} f_{1}(t) \\
& \xi_{2}(t)=\sqrt{2 E}\left(\lambda f_{1}(t)+\sqrt{1-\lambda^{2}} f_{2}(t)\right) \\
& \xi_{3}(t)=\sqrt{2 E-\left(\lambda-f_{1}(t)+\lambda \sqrt{\frac{1-\lambda}{1+\lambda}} f_{2}(t)+\sqrt{\frac{(1-\lambda)(1+2 \lambda)}{1+\lambda}} f_{3}(t)-\cdots\right.} . \tag{4.86}
\end{align*}
$$

Alternately, if we desired a set mech that .

$$
\begin{align*}
& \int \xi_{1}(t) \xi_{2}^{*}(t) d t=-\lambda 2 E, \\
& \int \xi_{1}(t) \xi_{3}^{*}(t) d t=-\lambda 2 E \\
& \int \xi_{2}(t) \xi_{3}^{*}(t) d t=-\lambda 2 E, \tag{4.87}
\end{align*}
$$

which corresponds to $\phi=\pi$, we could choose

$$
\begin{align*}
& \xi_{1}(t)=\sqrt{2 E} f_{1}(t), \\
& \xi_{2}(t)=\sqrt{2 E}\left(-\lambda f_{1}(t)+\sqrt{1-\lambda^{2}} f_{2}(t)\right), \\
& \xi_{3}(t)=\sqrt{2 E}\left(-\lambda f_{1}(t)-\lambda \sqrt{\frac{1+\lambda}{1-\lambda}} f_{2}(t)+\sqrt{\frac{(1+\lambda)(1-2 \lambda)}{1-\lambda}} f_{3}(t)\right), \tag{4.88}
\end{align*}
$$

if in the last equation $\lambda \leq \frac{1}{2}$, which has already seen to be mandatory from eq. (4.80): It is impossible to construct a set for $\phi=\pi$ if $\lambda>\frac{1}{2}$.

If $M>3$, it is possible, in a manner analagous to eq. (4.86), to construct a set $\left\{\xi_{k}(t)\right\}$ which satisfies eq. (4.28). And it is possible to construct a different set which satisfies eq. (4.29) if $\lambda \leq \frac{1}{M-1}$.

Therefore the angles $\left\{\phi_{\mathrm{mk}}\right\}$ are important quantities in M -ary communication for $M \geq 3$: As witnessed by eq. ${ }^{\circ}(4.39)$, performance quality varies with them. However, we believe we have the bounds on performance (in eq. (4. 39) itself for a very special case) and in general, in eqs. (3.27) and (4.34), namely

$$
\begin{equation*}
P_{c}^{\prime} \leq P_{c}\left\{\phi_{m k}\right\} \leq P_{c}, \quad \text { all }\left\{\phi_{m k}\right\} . \tag{4.89}
\end{equation*}
$$

5. ERROR PROBABILITY FOR PHASE -COHERENT

RECEPTION WITH A THRESHOLD

The mode of operation to be considered here is identical to that of section 2 except that the receiver is not certain that a signal was transmitted at all. However, if a signal was transmitted, it was one of M equal energy equiprobable signals. The receiver is prepared to declare one of iwo situations: either there was no signal transmitted, or signal no. j was transmitted. Thus the receiver is required not only to detect that a signal was transmitted but also to decide which one it was.

There is another important mode of operation which we shall not investigate here, namely where the receiver is not interested in which signal was transmitted, but simply in the presence or absence of a signal. Some approximate results on this "interval detection" problem are given elsewhere 54, 55

The optimum receiver under the present conditions is one which computes the quantities

$$
\begin{equation*}
z_{k}=\int y(t) s_{k}(t) d t, \quad k=1: 2, \ldots, M \tag{5.1}
\end{equation*}
$$

where $y^{(!)}$($)$is the received waveform and decides

$$
\left.\begin{array}{l}
\max _{k}\left\{z_{k}\right\}=z_{j}>\Lambda: \text { signal no. j present } \tag{5.2}\\
\max _{k}\left\{z_{k}\right\}-z_{j}<\Lambda: \text { no signal present }
\end{array}\right\}
$$

Λ is a threshold, the value of which may be adjusted to minimize the combined cost of the two types of errors, false dismissal of a signal actually present, and false detection of a signal not present. To make this choice, the costs of each type of error and the a priori probability of signal presence or absence must be known. We shall not attempt to relate the optimum choice of Λ to these quantities; rather we will evaluate the probability of false detection, P_{F}, and the probability of detection and correct decision, P_{c}, as a function of Λ, and leave it to the reader to eliminate Λ in his particular application. From the present results, for example, could be drawn up a set of Receiver Operating Characteristics ${ }^{10}$, in which Λ would not appear. Of course, in addition to the parameter p (signal-to-noise ratio), there are now two additional parameters, λ and M.

Let us proceed first with the evaluation of P_{F}. If $p_{0}\left(z_{1}, z_{2}, \ldots, z_{M}\right)$ is the p.d.f. of the Gaussian random variables $\left\{z_{k}\right\}$ when no signal component is present in $y(t)$, (no signal transmịtted), the probability of false detection is given by

$$
\begin{equation*}
P_{F}=1-\int_{-\infty}^{\Lambda} \ldots \int_{0}\left(z_{1}, z_{2}, \ldots, z_{M}\right) d z_{1} d z_{2} \ldots d z_{M} \tag{5.3}
\end{equation*}
$$

In order to evaluate p_{0}, we use the fact that no signal is present to express

$$
\begin{equation*}
z_{k}=\int n(t) s_{k}(t) d t, \quad k=1,2, \ldots, M \tag{5,4}
\end{equation*}
$$

where $n(t)$ is the received white Gaussian noise of level N_{d} watts per cycle per second for all frequencies (see eq. (2.17) et seq.). Then

$$
\begin{aligned}
& \overline{z_{k}}=0, \\
& \overline{z_{k}^{2}}=N_{d} E,
\end{aligned}
$$

and

$$
\begin{equation*}
\overline{z_{j} z_{k}}=\lambda N_{d} E, \quad j \neq k, \tag{5.5}
\end{equation*}
$$

where we have used eq. (2.5). But eq. (5.5) is identical to eq. (2.22). Using eq. (2.26) then, we can immediately write.

$$
\begin{align*}
& p_{o}\left(z_{1}, z_{2}, \ldots, z_{M}\right)=\left[2 \pi N_{d} E(1-\lambda)\right]^{-M / 2}\left[\frac{1-\lambda}{1+(M-1) \lambda}\right]^{1 / 2} \\
& \quad \exp \left[-\frac{1}{2 N_{d} E(1-\lambda)}\left\{\sum_{k=1}^{M} z_{k}^{2}-\frac{\lambda}{1+(M-1) \lambda}-\left(\sum_{k=1}^{M} z_{k}\right)^{2}\right\}\right] . \tag{5.6}
\end{align*}
$$

Substitution of eq. (5.6) into eq. (5.3) leads to.an M-fold integral for P_{F}. By means of the method developed in detail in section 2 , it is very easy to reduce the M -fold integral to the following:

$$
\begin{equation*}
1-P_{F}=\int \phi(x) \Phi^{M}\left(\sqrt{\frac{\lambda}{1-\lambda}} \quad x+\frac{\Lambda}{\sqrt{N_{d}^{E(1-\lambda)}}}\right) d x \tag{5.7}
\end{equation*}
$$

where ϕ and Φ are defined in eqs. (2.37) and (2.38). This integral is more general than Urbano's ${ }^{46}$, and we do not know of its tabulation. As checks on

- eq (5.7), we have

$$
\Lambda \rightarrow \infty, \quad 1-P_{F} \rightarrow 1, \quad P_{F} \rightarrow 0,
$$

$$
\left.\right|_{\cdots}
$$

$$
\lambda \longrightarrow 1, \quad 1-P_{F} \longrightarrow \Phi\left(\Lambda / \sqrt{N_{d} E}\right)
$$

$$
\begin{equation*}
\lambda \longrightarrow 0, \tag{5.8}
\end{equation*}
$$

$$
1-P_{F} \longrightarrow \Phi^{M}\left(\Lambda / \sqrt{N_{d} E}\right)
$$

all of which are obvious checks.

For $\lambda<0$ (but always $\lambda \geq,-\frac{1}{M-1}$), the argument of Φ is complex and Φ becomes complex. However eq. (5.7) is still well defined and is in fact still real as it must be: the most general argument of Φ is $a+i b x$ where a and b are real and independent of x. But

$$
\begin{align*}
& \Phi(a+i b x)=\Phi(a)+\int_{a}^{a+i b x} \phi(y) d y \\
& \quad=\Phi(a)+i \int_{0}^{b x} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(a^{2}-u^{2}+i 2 u\right)\right) d u \tag{5.9}
\end{align*}
$$

by a change of variable $y=a+i u$. Then

$$
\begin{align*}
\Phi(a+i b x) & =\Phi(a)+\int_{0}^{b x} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} a^{2}+\frac{1}{2} u^{2}\right)(\sin a u+i \cos a u) d u \\
& =\Phi(a)+E(x)+i O(x) \tag{5,10}
\end{align*}
$$

where E and O are real functions, respectively even and odd in their arguments.

Therefore

$$
\begin{array}{ll}
\operatorname{Re}\{\Phi(a+i b x)\} & \text { is even in } x \\
\operatorname{Im}\{\Phi(a+i b x)\} & \text { is odd in } x \tag{5.11}
\end{array}
$$

where $\operatorname{Im}\}$ denotes the imaginary part of $\}$. Therefore it follows that

$$
\begin{align*}
& \operatorname{Re}\left\{\Phi^{M}(a+i b x)\right\} \text { is even in } x \\
& \operatorname{Im}\left\{\Phi^{M}(a+i b x)\right\} \text { is odd in } x . \tag{5.12}
\end{align*}
$$

But since the integral in (5.7) is from $-\infty$ to $+\infty$, and $\phi(x)$ is even, the imaginary part is of no consequence.

It is curious to note that if $\lambda=1 / 2$, eq. (5.7) becomes

$$
\begin{equation*}
1-P_{F}=\int \phi(x) \Phi^{M}\left(x+\frac{\Lambda}{\sqrt{\frac{1}{2} N_{d} E}}\right) d x=P_{M+1}\left(\frac{\Lambda}{\sqrt{\frac{1}{2} N_{d} E}}\right) \tag{5.13}
\end{equation*}
$$

in Urbano's ${ }^{46}$ notation. Thus for $\lambda=\cdot 1 / 2$, we can look up the answer in existing tables.

Now let us consider the situation where a signal is present, and without loss of generality, let it be signal no. 1. Then from eq. (5.1)

$$
\begin{align*}
z_{1} & =E+\int s_{1}(t) n(t) d t \\
z_{k} & =\lambda E+\int s_{k}(t) n(t) d t, \quad k=2,3, \ldots, M \tag{5.14}
\end{align*}
$$

Define

$$
\begin{equation*}
y_{k}=\int s_{k}(t) n(t) d t, \quad k=1,2, \ldots, M \tag{5.15}
\end{equation*}
$$

The probability of detection and correct decision P_{c} is then given by

$$
\begin{align*}
& P_{c}=\operatorname{Pr}\left(z_{1}>z_{2}, \ldots, z_{M} ; z_{1}>\Lambda\right) \\
= & \int_{\Lambda}^{\infty} d z_{1} \iint_{-\infty}^{z_{1}} \ldots \int d z_{2} \ldots d z_{M} \quad P_{1}\left(z_{1}, z_{2}, \ldots, z_{M}\right), \tag{5.16}
\end{align*}
$$

where p_{1} is the p.d.f. of the Gaussian random variables $\left\{z_{k}\right\}$. Using eqs. (5.14) and (5.15), this may be written

$$
\begin{align*}
P_{c} & =\operatorname{Pr}\left(E+y_{1}>\lambda E+y_{2}, \ldots, \lambda E+y_{M} ; E+y_{1}>\Lambda\right) \\
& =\operatorname{Pr}\left(E(1-\lambda)+y_{1}>y_{2}, \ldots, y_{M} ; y_{1}>\Lambda-E\right) \\
= & \int_{-E}^{\infty} d y_{1} \int_{-\infty}^{E(1-\lambda)+y_{1}} d y_{2} \ldots d y_{M} P_{2}\left(y_{1}, y_{2}, \ldots y_{M}\right), \tag{5.17}
\end{align*}
$$

where p_{2} is the p.d.f. of the Gaussian random variables $\left\{y_{k}\right\}$. But if we notice that eq. (5.15) is identical to eq. (2.10), we may immediately write down p_{2} from eq. (2.26). Substitution of this result into eq. (5.17), and defining a new variable

$$
\begin{equation*}
u_{k}=\frac{y_{k}}{\sqrt{N_{d} E(1-\lambda)}} \quad, \quad k=1,2, \ldots, M \tag{5,18}
\end{equation*}
$$

yields

$$
\begin{align*}
& \cos _{\infty} \sqrt{\frac{E(1-\lambda)}{N_{d}}}+u_{1} \quad \cdot 1 / 2 \\
& P_{c}=\int_{\Lambda_{-}}^{\infty} d u_{1} \int_{-\infty}^{d} \ldots \int \quad d u_{2} \ldots d u_{M^{(2 \pi}}{ }^{-M / 2} \cdot\left[\frac{1-\lambda}{1+(M-1) \lambda}\right] . \\
& \frac{\Lambda-E}{\sqrt{N_{d} E(1-\lambda)}}- \\
& \exp \left[-\frac{1}{2}\left\{\sum_{k=1}^{M} u_{k}^{2}-\frac{\lambda}{1+(M-1) \lambda}\left(\sum_{k=1}^{M} u_{k}\right)^{2}\right\}\right] . \tag{5.19}
\end{align*}
$$

Application of the method of section 2 then leads easily to

$$
\begin{align*}
& P_{c}=(1-\lambda)^{1 / 2} \int_{\frac{\Lambda_{-E}}{\sqrt{N_{d} E(1-\lambda)}}}^{\infty} d u_{1} \int_{-\infty}^{\infty} d y \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y^{2}(1-\lambda)\right) \\
& \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(u_{1}-\sqrt{\lambda} y\right)^{2}\right) \quad \Phi^{M-1}\left(\sqrt{\frac{E(1-\lambda)}{N_{d}}}-\sqrt{\lambda} y+u_{1}\right) \tag{5.20}
\end{align*}
$$

Defining a new variable

$$
\begin{equation*}
v=u_{1}-\sqrt{\lambda} y \tag{5.21}
\end{equation*}
$$

if $\lambda>0$, and interchanging integrals, there follows, after manipulations,

$$
\begin{equation*}
P_{c}=\int \phi(v) \Phi^{M-1}\left(v+\sqrt{\frac{E(1-\lambda)}{N_{d}}}\right) \Phi\left(\sqrt{\frac{1-\lambda}{\lambda}} v+\frac{E-\Lambda}{\sqrt{\lambda N_{d} E}}\right) d v \tag{5.22}
\end{equation*}
$$

This is the desired result. (It may be verified that eq. (5.22) also holds for $\lambda=0(\lambda \rightarrow 0+)$. It does not apparently hold true when $\lambda<0$; however the double integral of eq. (5.20) does hold true for $\lambda<0$). As checks on eq. (5.22), we have the following:

$$
\begin{equation*}
\Lambda \rightarrow-\infty, \quad P_{c} \longrightarrow \int \phi(v) \Phi^{M-1} \cdot\left(v+\sqrt{\frac{E(1-\lambda)}{N_{d}}}\right) d v \tag{5.23}
\end{equation*}
$$

which is eq (2.46), as it should be.

$$
\begin{align*}
& \Lambda \rightarrow \infty, \quad \mathrm{P}_{\mathrm{c}} \longrightarrow 0, \\
& \mathrm{E} \rightarrow \infty, \quad \mathrm{P}_{\mathrm{c}} \longrightarrow 1, \\
& \lambda \rightarrow 1, \quad P_{\ddot{\mathrm{c}}}-\int \phi(v) \Phi^{\mathrm{M}-1}(\mathrm{v}) \Phi\left(\sqrt{\frac{\mathrm{E}}{\mathrm{~N}_{\mathrm{d}}}}-\frac{\Lambda}{\sqrt{\mathrm{N}_{\mathrm{d}}}}\right) \mathrm{dv} \\
& =\frac{1}{M} \Phi\left(\frac{E-\Lambda}{\sqrt{N_{d} E}}\right) \\
& =\frac{1}{\mathrm{M}} \operatorname{Pr} \text { (one signal }>\text { threshold } \text {), } \\
& \lambda \rightarrow 0, \quad P_{c} \longrightarrow \int_{\Lambda-E}^{\infty} \phi(v) \Phi^{M-1}\left(v+\sqrt{\frac{E}{N_{d}}}\right) d v . \tag{5.24}
\end{align*}
$$

These are all obvious checks except perhaps for the last one, which is easily derived for $\lambda=0$ in a separate derivation.

Since the threshold Λ is arbitrary, as are all absolute levels in this report, we define a new threshold

$$
\begin{equation*}
\Gamma=\frac{\Lambda}{\sqrt{N_{d} E}} \tag{5.25}
\end{equation*}
$$

to put the two main results of this section, eqs. (5.7) and (5.22), into the form

$$
\begin{align*}
& 1-P_{F}=\int \phi(v) \Phi_{\Phi}^{M}\left(\frac{\sqrt{\lambda} v+\Gamma}{\sqrt{1-\lambda}}\right) d v \tag{5.26}\\
& P_{c}=\int \phi(v) \Phi^{M-1}\left(v+\sqrt{\frac{E(1-\lambda)}{N_{d}}}\right) \Phi\left(\frac{\sqrt{1-\lambda} v-\Gamma+\sqrt{E / N_{d}}}{\sqrt{\lambda}}\right) d v \tag{5.27}
\end{align*}
$$

the latter result for $\lambda \geq 0$.

It may appear that these two results would have to be tabulated separately, since each result has its own special features: the coefficient of v in Φ^{M} in eq (5.26) is not unity, while eq. (5.27) has an extra Φ function. However, such is not the case; both may be obtained from one tabulation. To see this, define a function

$$
\begin{equation*}
C_{k}(\alpha, \beta, \gamma)=\int \phi(x) \Phi^{k}(x+\alpha) \Phi(\beta x-\gamma) d x \tag{5.28}
\end{equation*}
$$

where α, β, and γ are all real. Then immediately

$$
\begin{equation*}
P_{c}=C_{M-1}\left(\sqrt{\frac{E(1-\lambda)}{N_{d}}}, \sqrt{\frac{1-\lambda}{\lambda}}, \frac{\Gamma-\sqrt{E / N_{d}}}{\sqrt{\lambda}}\right) \tag{5.29}
\end{equation*}
$$

if $\lambda \geq 0$. Furthermore

$$
\begin{align*}
& C_{k}(0, \beta, \gamma)=\int_{\because} \Phi(\beta x-\gamma) \phi(x) \Phi^{k}(x) d x \\
\cdots & \frac{1}{k+1-}\left\{1-\int \phi(y) \Phi^{k+1} \frac{y+\gamma}{\beta}\right) d y \tag{5.30}
\end{align*}
$$

by an integration by parts, if $\beta>0$. Therefore

Or

$$
\begin{equation*}
P_{F}=M C_{M-1}\left(0, \sqrt{\frac{1-\lambda}{\lambda}}, \frac{\Gamma}{\sqrt{\lambda}}\right), 0<\lambda<1 . \tag{5.32}
\end{equation*}
$$

(Equation (5.32) may also be shown to be applicable to the range $0 \leq \lambda \leq 1$, in fact, provided the limits are appropriately interpreted.) Thiss both P_{F} and P_{c} can be obtained from the tabulation of one function. If we define a signal-to-noise ratio

$$
\begin{equation*}
\rho=E / N_{d^{\prime}} \tag{5.33}
\end{equation*}
$$

eq. (5.27) becomes, using more explicit notation,

$$
\begin{equation*}
P_{c M}(\rho, \lambda, \Gamma)=\int \phi(v) \Phi^{M-1}(v+\sqrt{\rho(1-\lambda)}) \Phi\left(\frac{\sqrt{1-\lambda} v-\Gamma+\sqrt{\rho}}{\sqrt{\lambda}}\right) d v \tag{5.34}
\end{equation*}
$$

for $\lambda \geq 0$. Then using eqs. (5.32), (5.29) and (5.34) in that order, we may write

$$
\begin{equation*}
P_{F M}(\lambda, \Gamma)=M P_{c M}(0, \lambda, \Gamma) \text { for } \lambda \geq 0 \tag{5.35}
\end{equation*}
$$

(This is actually obvious from the physical problem.) Equations (5.34) and (5.35) are the desired final forms. We have only to tabulate eq. (5.34) versus $\rho ; \lambda, \Gamma$, and M, being sure to include $\rho=0$ as one of the values. Tabulation of the single integral of eq. (5.34) is given in Appendix D for $p=0,1,4, ?$, $16,25,32 ; \lambda=0(0.2) 0.8 ; \Gamma=0(0.5) 8$ (in selected cases); and $M=1,2, \ldots, 9$, $10,16,32, \ldots, 512$. No values for $\lambda<0$ have been tabulated; considering eq. (2.8) however, this is not much loss, at least for large M.

Now let us consider special cases of eqs. (5.34) and (5.35), other than eqs. (5.8), (5.23) and (5.24), to obtain what we can in closed form. These results can also serve as checks on the tatulation of eq. (5.34) in Appendix D.

As a first case, consider $\Gamma=0$ in eq. (5.26). Then

$$
\begin{equation*}
1-P_{F}=\int \phi(v) \Phi^{M}\left(\sqrt{\frac{\lambda}{1-\lambda}} v\right) d v \equiv G_{M}(\lambda) \tag{5.36}
\end{equation*}
$$

Letting

$$
\begin{equation*}
a=\sqrt{\frac{\lambda}{1-\lambda}}, \tag{5.37}
\end{equation*}
$$

we write

$$
\begin{equation*}
\Phi(a v)=\frac{1}{2}+f(a v) \tag{5.38}
\end{equation*}
$$

where $f(a v)$ is an odd function in v :

$$
\begin{equation*}
f(a v)=\int_{0}^{a v} \phi(y) d y . \tag{5.39}
\end{equation*}
$$

We then immediately have

$$
\begin{equation*}
G_{1}(\lambda)=\int \phi(v) \Phi\left(\sqrt{\frac{\lambda}{1-\lambda}} v\right) d v=\frac{1}{2} \tag{5,40}
\end{equation*}
$$

Also,

$$
\begin{align*}
G_{2}(\lambda) & =\int \phi(v)\left[\frac{1}{2}+f(a v)\right]^{" 2} d v \\
& =\frac{1}{4}+\int \phi(v) f^{2}(a \dot{v}) " d v \tag{5.41}
\end{align*}
$$

using the evenness of ϕ. Also, using eq. (5.39),

$$
\begin{align*}
& G_{2}(\lambda)=\frac{1}{4}+\int_{-\infty}^{\infty} d v \phi(v) \int_{0}^{a v} d y_{1} \phi\left(y_{1}\right) \int_{0}^{a v} d y_{2} \phi\left(y_{2}\right) \\
& =\frac{1}{4}+2 \int_{0}^{\infty} d v \phi(v) \frac{1}{2 \pi} \int_{0}^{a v} d y_{1} \int_{0}^{a v} d y_{2} \exp \left(-\frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}\right)\right) \\
& =\frac{1}{4}+4 \int_{0}^{\infty} d v \phi(v) \frac{1}{2 \pi} \int_{0}^{a v} d y_{1} \int_{0}^{y} d y_{2} \exp \left(-\frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}\right)\right) \\
& =\frac{1}{4}+4 \int_{0}^{\infty} d v \phi(v) \frac{1}{2 \pi} \int_{0}^{\pi / 4} d \theta \int_{0}^{\frac{a v}{\cos \theta}} d r \quad r \exp \left(-r^{2} / 2\right) \\
& =\frac{1}{4}+4 \int_{0}^{\infty} d v \phi(v) \frac{1}{2 \pi} \int_{0}^{\pi / 4} d \theta\left[1-\exp \left(-\frac{1}{2} \frac{a^{2} v^{2}}{\cos ^{2} \theta}\right)\right] \\
& =\frac{1}{4}+\frac{1}{4}-\frac{2}{\pi} \int_{0}^{\infty} d v \frac{1}{\sqrt{2 \pi}} \exp \left(-v^{2} / 2\right) \int_{0}^{\pi / 4} d \theta \exp \left(-\frac{1}{2} \frac{a^{2} v^{2}}{\cos ^{2} \theta}\right) . \\
& =\frac{1}{2}-\frac{2^{1 / 2}}{\pi^{3 / 2}} \int_{0}^{\pi / 4} d \theta \int_{0}^{\infty} d v \exp \left[-\frac{1}{2} v^{2}\left(1+\frac{a^{2}}{\cos ^{2} \theta}\right)\right] \\
& =\frac{1}{2}-\frac{1}{\pi} \int_{0}^{\pi / 4} \frac{\cos \theta d \theta}{\sqrt{a^{2}+\cos ^{2} \theta}} \text {. } \tag{5,42}
\end{align*}
$$

Letting $u=\sin \theta$,

$$
\begin{equation*}
G_{2}(\lambda)=\frac{1}{2}-\frac{1}{\pi} \int_{0}^{1 / \sqrt{2}} \frac{d u}{\sqrt{1+a^{2}-u^{2}}}=\frac{1}{2}-\frac{1}{\pi} \sin ^{-1}\left[\frac{1}{2\left(1+a^{2}\right)}\right]^{1 / 2} \tag{5.43}
\end{equation*}
$$

Recalling eq. (5.37), this is

$$
\begin{equation*}
G_{2}(\lambda)=\frac{1}{2}-\frac{1}{\pi} \sin ^{-1} \sqrt{\frac{1-\lambda}{2}} . \tag{5.44}
\end{equation*}
$$

Letting

$$
\beta=\sin ^{-1} \sqrt{\frac{1-\lambda}{2}},
$$

$\cos 2 \beta=1-2 \sin ^{2} \beta=\lambda$, or $\beta=\frac{1}{2} \cos ^{-1} \lambda=\frac{1}{2}\left(\frac{\pi}{2}-\sin ^{-1} \lambda\right)$.
Then

$$
\begin{equation*}
G_{2}(\lambda)=\int \phi(v) \Phi^{2}\left(\sqrt{\frac{\lambda}{1-\lambda}} v\right) d v=\frac{1}{4}+\frac{1}{2 \pi} \sin ^{-1} \lambda, \tag{5.46}
\end{equation*}
$$

where

$$
\begin{equation*}
-\frac{\pi}{2} \leq \sin ^{-1} \lambda \leq \frac{\pi}{2} \tag{5.47}
\end{equation*}
$$

is the allowed range.

Continuing,

$$
\left.\begin{array}{rl}
G_{3}(\lambda) & =\int \phi(v)\left[\frac{1}{2}+f(a v)\right]^{3} d v=\frac{1}{8}+\frac{3}{2} \int \phi(v) f^{2}(a v) d v \\
& =\frac{1}{8}+\frac{3}{2}\left(G_{2}(\lambda)-\frac{1}{4}\right) \\
& =\frac{1}{8}+\frac{3}{4 \pi} \sin ^{-1} \lambda=\int \phi(v) \Phi^{3}\left(\sqrt{\frac{\lambda}{1-\lambda}}\right. \tag{5.48}\\
-
\end{array}\right) d v, .
$$

using eqs. (5.41) and (5.46).

Attempting to push this technique to $M=4$ leads to the integral

$$
\begin{equation*}
\int_{0}^{\infty} \phi(v) f^{4}(a v) d v . \tag{5.49}
\end{equation*}
$$

..-... Proceeding in manner analogous to eq.' (5.42), we obtain as the analogue of eq. (5.43),

$$
\int_{0}^{b} \int_{0}^{b} \frac{d v d w}{\sqrt{\left(1-v^{2}\right)\left(1-w^{2}\right)-c^{2}}}
$$

$$
\begin{equation*}
\because \quad: \tag{5.50}
\end{equation*}
$$

We have not been able to simplify this double integrall. Thus we cannot evaluate $G_{4}(\lambda)$. (Notice that if $G_{2 n}(\lambda)$ can be evaluated, so also can $G_{2 n+1}(\lambda)$ by using the oddness property of f.) An alternate method of deriving eqs. (5.46) and (5.48) is given by Urbano ${ }^{46}$. Ho wever it too runs into insurmountable integrals for $M \geq 4$.

As the next special case, consider $M=1$ in either eqs. (5.26) or (5.27). The basic integral to be dealt with is then

$$
\begin{align*}
f(a, b) & =\int \phi(x) \Phi(a x+b) d x \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} d x \cdot \exp \left(-x^{2} / 2\right) \int_{-\infty}^{a x+b} d y \exp \left(-y^{2} / 2\right) \tag{5.51}
\end{align*}
$$

Letting $v=y-a x, w=a y+x$, we obtain

$$
\begin{align*}
& f(a, b)=\frac{1}{2 \pi} \int_{-\infty}^{b} d v \int_{-\infty}^{\infty} d w\left(1+a^{2}\right)^{-1} \exp \left(-\frac{1}{2} \frac{w^{2}+v^{2}}{1+a^{2}}\right) \\
& =\frac{1}{2 \pi} \int_{-\infty}^{b / \sqrt{1+a^{2}}} d y \int_{-\infty}^{\infty} d x \exp \left(-\frac{1}{2}\left(x^{2}+y^{2}\right)\right), \tag{5.52}
\end{align*}
$$

or

$$
\begin{equation*}
\int \phi(\mathrm{x}) \Phi(\mathrm{ax}+\mathrm{b}) \mathrm{dx}=\Phi\left(\frac{\mathrm{b}}{\sqrt{1+\mathrm{a}^{2}}}\right) \tag{5.53}
\end{equation*}
$$

(This is a generalization of eqs. (2.50) and (2.51).) Thus $f(a, b)$ is not a function of a and b separately, but just of the ratio $b / \sqrt{1+a^{2}}$. Using eq (5.53) in eqs. (5.34) and (5.35), there results

$$
\begin{equation*}
P_{c l}(\rho, \lambda, \Gamma)=\Phi(\sqrt{\rho}-\Gamma) \tag{5.54}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{F l}(\lambda, \Gamma)=\Phi(-\Gamma)=1-\Phi(\Gamma) . \tag{5.55}
\end{equation*}
$$

Actually these results are obvious, and can be derived directly from the physical prublem with $M=1$.

A somewhat more difficult integral is encountered when we let $M=2$ in eq. (5.26). The basic integral is

$$
\begin{equation*}
g(a, b)=\int \phi(x) \Phi^{2}(a x+b) d x \tag{5.56}
\end{equation*}
$$

We now employ a method of Urbano ${ }^{46}:$

$$
\begin{align*}
\frac{\partial g(a, b)}{\partial \mathrm{b}} & =\int \phi(\mathrm{x}) 2 \Phi(\mathrm{ax}+\mathrm{b}) \phi(\mathrm{ax}+\mathrm{b}) \mathrm{dx} \\
& =\frac{1}{\pi} \int \Phi(\mathrm{ax}+\mathrm{b}) \exp \left[-\frac{1}{2}\left(x \sqrt{1+\mathrm{a}^{2}}+\frac{\mathrm{ab}}{\sqrt{1+\mathrm{a}^{2}}}\right)^{2}\right] \mathrm{dx} \exp \left(-\frac{1}{2} \frac{\mathrm{~b}^{2}}{1+\mathrm{a}^{2}}\right) \\
& =\sqrt{\frac{2}{\pi}} \frac{\exp \left(-\frac{1}{2} \frac{\mathrm{~b}^{2}}{1+\mathrm{a}^{2}}\right)}{\sqrt{1+\mathrm{a}^{2}}} \int \Phi\left(\frac{\mathrm{a}}{\sqrt{1+\mathrm{a}^{2}}} \mathrm{y}+\frac{\mathrm{b}}{1+\mathrm{a}^{2}}\right) \phi(\mathrm{y}) \mathrm{dy} \\
& =\sqrt{\frac{2}{\pi}} \frac{\exp \left(-\frac{1}{2} \frac{\mathrm{~b}^{2}}{1+\mathrm{a}^{2}}\right.}{\sqrt{1+\mathrm{a}^{2}}} \Phi\left(\frac{\mathrm{~b}}{\left.\sqrt{1+\mathrm{a}^{2}} \sqrt{1+2 \mathrm{a}^{2}}\right)}\right. \tag{5.57}
\end{align*}
$$

after manipulating, and using eqs. (5.51) and (5.53). Then since

$$
\begin{gather*}
g(a,-\infty)=0, \dot{\operatorname{g}(a, b)}=\int_{-\infty}^{b} \sqrt{\frac{2}{\pi}} \frac{\exp \left(-\frac{1}{2} \frac{x^{2}}{1+a^{2}}\right)}{\sqrt{1+a^{2}}} \Phi\left(\frac{x}{\sqrt{1+a^{2}} \sqrt{1+2 a^{2}}}\right) \quad d x \tag{5.58}
\end{gather*}
$$

$$
=2 \int_{-\infty}^{\frac{b}{\sqrt{1+a^{2}}}} \phi(y) \Phi\left(\frac{y}{\sqrt{1+2 a^{2}}}\right) d y
$$

Now define

$$
\begin{equation*}
h(\alpha, \beta)=\int_{-\infty}^{\beta} \phi(x) \Phi(\alpha x) d x \tag{5.60}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\partial h(\alpha, \beta)}{\partial \alpha}=-\frac{1}{2 \pi} \quad \frac{\exp \left(-\frac{1}{2} \beta^{2}\left(1+\alpha^{2}\right)\right)}{1+\alpha^{2}} \tag{5.61}
\end{equation*}
$$

and since

$$
\begin{align*}
& h(0, \beta)=\frac{1}{2} \Phi(\beta) \tag{5.62}\\
& h(\alpha, \beta)=\frac{1}{2} \Phi(\beta)-\frac{\exp \left(-\beta^{2} / 2\right)}{2 \pi} \int_{0}^{\alpha} \frac{\exp \left(-\frac{1}{2} \beta^{2} x^{2}\right)}{1+x^{2}} d x . \tag{5.63}
\end{align*}
$$

Collecting eqs. $(5.56),(5.59)$, and (5.63) together, we have

$$
\begin{align*}
& \int_{-\infty}^{\infty} \phi(x) \Phi^{2}(a x+b) d x=2 \int_{-\infty}^{b / \sqrt{1+a^{2}}} \phi(x) \Phi\left(\frac{x}{\sqrt{1+2 a^{2}}}\right) d x . \\
& =\Phi\left(\frac{b}{\sqrt{1+a^{2}}}\right)-2 \phi\left(\frac{b}{\sqrt{1+a^{2}}}\right) \int_{0}^{\frac{1}{\left(1+2 a^{2}\right)^{1 / 2}}} \tag{5.64}\\
& \left.\frac{\phi\left(\frac{b}{\sqrt{1+a^{2}}}\right.}{1+x^{2}} \mathrm{x}\right) \mathrm{dx} .
\end{align*}
$$

The most general related integral Gröbner and Hofreiter have is (ref. 56, p. 66, eq. (8a))

$$
\begin{equation*}
\int_{0}^{1} \frac{\exp \left(-\frac{1}{2} c u^{2}\right)}{1+u^{2}} d u=\pi \exp (c / 2) \Phi(\sqrt{c}) \Phi(-\sqrt{c}), \tag{5.65}
\end{equation*}
$$

in our notation. But for us to use eq. (5.65), we would require a $=0$, a case which is immediately integrable from eq. (5.64). Therefore it is doubtful that any of the related forms of eq. (5.64) can be integrated in closed form. However
we can relate eq. (5.64) to an already tapulated integral. The Bureau of Standards has tabulated ${ }^{48}$

$$
\begin{equation*}
L(h, k, r)=\frac{1}{2 \pi \sqrt{1-r^{2}}} \int_{h}^{\infty} d x \int_{k}^{\infty} d y \exp \left(-\frac{1}{2} \frac{x^{2}+y^{2}-2 r x y}{1-r^{2}}\right) . \tag{5.66}
\end{equation*}
$$

Eliminating the crossproduct term by means of the device in eq. (2.31) et seq., we obtain

$$
\begin{align*}
L(h, k, r) & =1-\Phi(h)-\Phi(k) \\
+ & \int \phi(y) \Phi\left(\frac{\sqrt{r} y+h}{\sqrt{1-r}}\right) \Phi\left(\frac{\sqrt{r} y+k}{\sqrt{1-r}}\right) d y \tag{5.67}
\end{align*}
$$

But if $h=k$, there follows

$$
\begin{equation*}
\int \phi(y) \Phi^{2}\left(\sqrt{\frac{r}{1-r}} y+\frac{k}{\sqrt{1-r}}\right) d y=L(k, k, r)-1+2 \Phi(k) \tag{5.68}
\end{equation*}
$$

Employing eq. (5.68) in eq. (5.64), there results

$$
\begin{equation*}
\int \phi(\mathrm{x}) \Phi^{2}(\mathrm{ax}+\mathrm{b}) \mathrm{dx}=\mathrm{L}\left(\frac{\mathrm{~b}}{\sqrt{1+\mathrm{a}^{2}}}, \frac{\mathrm{~b}}{\sqrt{1+\mathrm{a}^{2}}}, \frac{\mathrm{a}^{2}}{1+\mathrm{a}^{2}}\right)-1+2 \Phi\left(\frac{\mathrm{~b}}{\sqrt{1+\mathrm{a}^{2}}}\right) . \tag{5.69}
\end{equation*}
$$

This is a generalization of eq. (2.60). Finally using eq. (5.26), we have

$$
\begin{equation*}
P_{F}(M=2)=2[1-\Phi(\Gamma)]-L(\Gamma, \Gamma, \lambda) \tag{5.70}
\end{equation*}
$$

Another special case may be obtained comparing eqs. (5.34) and (5.67), we have, for $M=2, \lambda=\frac{1}{2}$,

$$
\begin{equation*}
P_{c 2}\left(\rho, \frac{1}{2}, \Gamma\right)=L\left(\frac{1}{2} \sqrt{\rho}, \sqrt{\rho}-\Gamma, \frac{1}{2}\right)-1+\Phi\left(\frac{1}{2} \sqrt{\rho}\right)+\Phi(\sqrt{\rho}-\Gamma) . \tag{5.71}
\end{equation*}
$$

The last (very) special case is, using eq. (5.34),

$$
\begin{equation*}
P_{C M}\left(\rho, \frac{1}{2}, \frac{1}{2} \sqrt{\rho}\right)=\int \phi(v) \Phi^{M}(v+\sqrt{\rho / 2}) d v=P_{M+1}(\sqrt{\rho / 2}) . \tag{5.72}
\end{equation*}
$$

Due to the mass of details, we summarize here the important results and special cases of this section. From eq. (5.34), the probability of detection and correct decision is

$$
\begin{equation*}
P_{c M}(\rho, \lambda, \Gamma)=\int \phi(v) \Phi^{M-1}(v+\sqrt{\rho(1-\lambda)}) \Phi\left(\frac{\sqrt{1-\lambda} v+\sqrt{\rho}-\Gamma}{\sqrt{\lambda}}\right) d v, \lambda \geq 0 \tag{5,73}
\end{equation*}
$$

where $\rho=E / N_{d}$ is the "signal-to-noise ratio", and Γ is a threshold.' The probability of false detection is, from eq. (5.35),

$$
\begin{equation*}
P_{F M}(\bar{\lambda}, \Gamma)=M P_{c M}(0, \lambda \Gamma), \quad \lambda \geq 0 \tag{5.74}
\end{equation*}
$$

Tabulation of the integral of eq. (5.73) for selected values of ρ, λ, Γ and M is given in Appendix D.

From eqs. (5.13) and (5.25),

$$
\begin{equation*}
P_{F M}\left(\frac{1}{2}, \Gamma\right)=1-P_{M+1}(\sqrt{2} \Gamma) \tag{5.75}
\end{equation*}
$$

From eqs. $(5: 36),(5: 40),(5.46)$ and (5.48),

$$
\begin{align*}
& 1-P_{F 1}(\lambda, 0)=\frac{1}{2} \\
& 1-P_{F 2}(\lambda, 0)=\frac{1}{4}+\frac{1}{2 \pi} \sin ^{-1} \lambda \\
& 1-P_{F 3}(\lambda, 0)=\frac{1}{8}+\frac{3}{4 \pi} \sin ^{-1} \lambda \tag{5.76}
\end{align*}
$$

From eqs. (5.54) and (5.55),

$$
\begin{align*}
& P_{c l}(\rho, \lambda, \Gamma)=\Phi(\sqrt{\rho}-\Gamma) \\
& P_{F 1}(\lambda, \Gamma)=1-\Phi(\Gamma) \tag{5.77}
\end{align*}
$$

From eq. (5.70),

$$
\begin{equation*}
P_{F 2}(\lambda, \Gamma)=2[1-\Phi(\Gamma)]-L(\Gamma, \Gamma, \lambda) \tag{5.78}
\end{equation*}
$$

From eq. (5.71),

$$
\begin{equation*}
P_{c 2}\left(\rho, \frac{1}{2}, \Gamma\right)=L\left(\frac{1}{2} \sqrt{\rho}, \sqrt{\rho}-\Gamma, \frac{1}{2}\right)-1+\Phi\left(\frac{1}{2} \sqrt{\rho}\right)+\Phi\left(\sqrt{\rho^{\prime}}-\Gamma\right) . \tag{5.79}
\end{equation*}
$$

From eq. (5.72),
$P_{c M}\left(\rho, \frac{1}{2}, \frac{1}{2} \sqrt{\rho}\right)=P_{M+1}(\tilde{\rho} / 2)$.

The function

$$
\begin{equation*}
P_{\dot{\mu}}(\mathrm{a})=\int \phi(\mathrm{x}) \Phi^{\mu-1}(\mathrm{x}+\mathrm{a} .) \mathrm{dx} \tag{5.8,1}
\end{equation*}
$$

is tabulated ${ }^{46}$, as is the function 48
$L(h, k, r)=\frac{1}{2 \pi \sqrt{1-r^{2}}} \int_{h}^{\infty} d x \int_{k}^{\infty} d y \exp \left(-\frac{1}{2} \frac{x^{2}+y^{2}-2 r x y}{1-r^{2}}\right)$.
ϕ and Φ are defined in eqs. (2.37) and (2.38), and are tabulated ${ }^{47}$.

Quite apart from probability calculations, some general interesting useful results are given in eqs. (5.40), (5.46), (5.48), (5.53), (5.64), (5.67), and (5.69). Some related results are given by Middleton (Ref. 4, pp. 1071-1073).

6. ERROR PROBABILITY FOR PHASE-INCOHERENT RECEPTION WITH A THRESHOLD

Conditions here are identical to those of the previous section except that the receiver mākes no attempt to use the carrier phase (see section 3). The optimum procedure, if signal no 1 is transmitted, is computation of

$$
\begin{equation*}
z_{k}=\left|\int \xi_{k}^{*}(t)\left[\xi_{1}(t) e^{\prime}+v(t)\right] d t\right|, k=1,2, \ldots, M, \tag{6.1}
\end{equation*}
$$

and declare

$$
\left.\begin{array}{l}
\max _{k}\left\{z_{k}\right\} \equiv z_{j}>\Lambda: \text { signal no. j present } \tag{6.2}\\
\max _{k}\left\{z_{k}\right\} \equiv z_{j}<\Lambda: \text { no signal present }
\end{array}\right\}
$$

Again, as in the previous section, there are two probabilities of interest, the probability of false detection, and the probability of detection and correct decision. We first derive the probability of false detection P_{F}. If $-p_{0}\left(z_{1}, z_{2}, \cdots, \cdots, z_{M}\right)$-is-the p d. f.- of the random variables $\left\{z_{k}\right\}$ when no input signal is present, we have

$$
\begin{equation*}
P_{F}=1-\int \ldots \int_{0} p_{o}\left(z_{1}, z_{2}, \ldots, z_{M}\right) d z_{1} d z_{2} \ldots d z_{M} . \tag{6.3}
\end{equation*}
$$

But in this case, from eq. (6.1),

$$
z_{k}=\left|\int \xi_{k}^{*}(t) v(t) d t\right|
$$

$$
\begin{equation*}
\equiv\left|x_{k}+i y_{k}\right|, \quad k=1,2, \ldots, M \tag{6.4}
\end{equation*}
$$

where $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are Gaussian random variables. If we impose the requirement of eq. (3.10), we can use the results of eqs. (3.14)(3.20) to write immediately

$$
\begin{gather*}
1-P_{F}=\left[2 \pi \cdot 4 N_{d} E(1-\lambda)\right]^{-M} \frac{l-\lambda}{1+(M-1) \lambda} \iint_{C} d x_{1} d_{1} \ldots \iint_{C} d x_{M} d y_{M} \\
\exp \left[-\frac{1}{2 \cdot 4 N_{d} E(1-\lambda)}\left\{\sum_{k=1}^{M}\left(x_{k}^{2}+y_{k}^{2}\right)-\frac{1}{1+(M-1) \lambda}\left(\sum_{k=1}^{M} x_{k}\right)^{2}-\frac{\lambda}{1+(M-1) \lambda}\left(\sum_{k=1}^{M} y_{k}\right)^{2}\right]\right] \tag{6.5}
\end{gather*}
$$

where $\iiint_{\mathrm{d}} \mathrm{x}_{\mathrm{k}} \mathrm{dy} \mathrm{k}_{\mathrm{k}}$ denotes a double integral in $\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}$ space within a circle C
of radius Λ centered at the origin. Following an approach completely analogous to that of section 3, namely eliminating the cross products and interchanging integrals, we arrive at

$$
\begin{equation*}
1-P_{F}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty} \exp \left(-\frac{1}{2}\left(v^{2}+w^{2} ;\right)\left[1-Q\left(\sqrt{\frac{\lambda}{1-\lambda}} \sqrt{v^{2}+w^{2}}, \frac{\Lambda}{\sqrt{4 N_{d} E(1-\lambda)}}\right)\right]\right]_{(6.6)}^{\dot{M}} d v d w \tag{6.6}
\end{equation*}
$$

Changing to polar coordinates, eliminating the angle variable, and defining a new threshold $\Gamma=\Lambda / \sqrt{4 \mathrm{EN}_{\mathrm{d}}}$, we obtain the final form

$$
\begin{equation*}
1-P_{F}=\int_{0}^{\infty} r \exp \left(-\frac{1}{2} r^{2}\right)\left[1-Q\left(\sqrt{\frac{\lambda}{1-\lambda}} r, \frac{\Gamma}{\sqrt{1-\lambda}}\right)\right]^{M} \mathrm{dr} \tag{6.7}
\end{equation*}
$$

(It is interesting to compare this equation with its counterpart in section 5, eq. (5.26).) As obvious checks on eq. (6.7), we have

$$
\begin{align*}
& \Gamma \rightarrow \infty, 1-P_{F} \rightarrow 1 \\
& \Gamma \rightarrow 0,1-P_{F} \rightarrow 0 \tag{6,8}
\end{align*}
$$

Now if $M=1$, using eq." (A. 12), we have

$$
\begin{equation*}
1-P_{F}=1-Q(0, \Gamma)=1-\exp \left(-\Gamma^{2} / 2\right) \tag{6.9}
\end{equation*}
$$

We use this relation to check eq. (6.7) further:

$$
\begin{align*}
& \lambda \rightarrow 1, \quad 1-P_{F} \rightarrow \int_{0}^{\Gamma} r \exp \left(-r^{2} / 2\right) d r=1-\exp \left(-\Gamma^{2} / 2\right)(\text { for all } M), \\
& \lambda \rightarrow 0, \quad 1-P_{F} \rightarrow[1-Q(0, \Gamma)]^{M}=\left[1-\exp \left(-\Gamma^{2} / 2\right)\right]^{M} . \tag{6.10}
\end{align*}
$$

In order to compute the probability of detection and correct decision, we as sume that signal no. l was transmitted. Again assuming eq. ($\overline{3} .10$) to hold true, this probability is given by equation (3.26) with one difference: the first pair of integrals must be performed only outside of a circle of radius Λ in the u_{1}, y_{1} plane. (This guarantees that the threshold is exceeded.) A study of eqs. (A. 1) - (A.10) shows that the only change is to make

$$
\begin{gather*}
P_{c M}(\rho, \lambda, \Gamma)=(1-\lambda) \exp (-\rho / 2) \int_{0}^{\infty} d s \int_{\Gamma / \sqrt{1-\lambda}}^{\infty} d r r s \exp \left(-\frac{1}{2}\left(r^{2}+s^{2}\right)\right) I_{0}(\sqrt{\rho(1-\lambda)} r) ; \\
\cdot \tag{6.11}\\
I_{0}(\sqrt{\lambda} r s)[1-Q(\sqrt{\lambda} s, r)]^{M-1},
\end{gather*}
$$

where $\rho=E / N_{d}$ and $\Gamma=\Lambda / \sqrt{4 E N_{d}}$. This double integral is more general than its analogue, eq. (3.27) of section 3. However it is no more difficult to tabulate; partial sums on r can be printed out while computation of eq. (3.27) proceeds.

Notice from eq. (6.11) that if $\rho=0$, the integral on r may be carried out, yielding

$$
\begin{align*}
& {\left[\exp \left(\lambda s^{2} / 2\right) \frac{[1-Q(\sqrt{\lambda} s, r)]^{M}}{M}\right]_{\Gamma / \sqrt{1-\lambda}}^{\infty}} \\
& =\frac{\exp \left(\lambda s^{2} / 2\right)}{M}\left\{1-[1-Q(\sqrt{\lambda} s, \Gamma / \sqrt{1-\lambda})]^{M}\right\} \tag{6.12}
\end{align*}
$$

Substituting eq. (6.12) into eq. (6.11) and simplifying, there results

$$
\begin{equation*}
P_{c M}(0, \lambda, \Gamma)=\frac{1}{M} \int^{\infty} x \exp \left(-x^{2} / 2\right)\left\{1-\left[1-Q\left(\sqrt{\frac{\lambda}{1-\lambda}} x, \Gamma / \sqrt{1-\lambda}\right)\right]^{M}\right\} d x \tag{6.13}
\end{equation*}
$$

Comparison of eq. (6.13) with eq. (6.7) yields, using more explicit notation, the obvious relation,

$$
\begin{equation*}
P_{F M}(\lambda, \Gamma)=M P_{c M}(0, \lambda, \Gamma) \tag{6.14}
\end{equation*}
$$

Analogous to section 5, the general tabulation of $P_{c M}(\rho, \lambda, \Gamma)$ will suffice to evaluate $P_{F M}(\lambda, \Gamma)$.

As checks on eq. (6.11), we have

$$
\begin{align*}
& \quad \Gamma \rightarrow \infty, \quad P_{c} \rightarrow 0, \\
& \text { and } \tag{6,15}\\
& \quad \Gamma \rightarrow 0, \quad P_{c} \rightarrow \text { eq. (3.27), } \\
& \lambda \rightarrow 0, P_{c} \rightarrow \exp (-p / 2) \int_{\Gamma}^{\infty} r \exp \left(-r^{2} / 2\right) I_{0}(\sqrt{p} r)\left[1-\exp \left(-r^{2} / 2\right)\right]_{1}^{M-1} d r, \tag{6:16}
\end{align*}
$$

In summary, the important equations of this section are eq. (6.11) for the probability of detection and correct decision, and eq. (6.14) (or eq. (6.7)) for the probability of false detection.

7. LIMITING BEHAVIOR OF M-ARY RECEPTION

Turin ${ }^{3}$ has shown that for a phase-incoherent system where one of M equal energy equiprobable orthogonal signals is transmitted each baud through a channel perturbed by stationary white additive Gaussian noise, and the received waveform is processed by a bank of M matched filters, one for each of the possible transmitted waveforms, the outputs of which are envelope detected, sampled, and compared, that the error probability approaches zero as M approaches infinity provided the source information rate is less than the capacity of the continuous channel operating in all frequencies (Ref. 4, eq. (6.95)).

The purpose of this appendix is to generalize this result, for both phase-coherent and phase-incoherent reception modes (without null zone), to the case where the signals are not pairwise orthogonal, but are pairwise correlated to a degree which does not vanish as M approaches infinity. Specifically, it will be shown, for both reception modes, that the error probability approaches zero as M approaches infinity provided that the ratio of source information rate to the continuous channel capacity is less than 1- λ, where λ is the common correlation coefficient between the M signal waveforms (appropriately defined in each mode of reception). For λ equal zero, we have Turin's result.

The importance of this result is that if the signal set cannot be kept orthogonal as M increases, due perhaps to limited bandwidth, network tolerances, or equipment complexity, the performance of the system does not deteriorate completely. Rather, the source information rate need simply be slowed down by the factor $1-\lambda$ in order to get ideal performance in the limit $M \rightarrow \infty^{57}$

To be more specific, let T be the time duration of a baud during which one of M equal energy equiprobable signals is transmitted. The source information rate is, in nits/sec;

$$
\begin{equation*}
H^{\prime}=\frac{\ln M}{T} . \tag{7.1}
\end{equation*}
$$

The capacity of the continuous channel operating over all frequencies is

$$
\begin{equation*}
\lim _{W \rightarrow \infty} W \ln \left(1+\frac{S}{N_{0} W}\right)=\frac{S}{N_{0}}=\frac{S}{2 N_{d}} \text { nits } / \mathrm{sec} \tag{7.2}
\end{equation*}
$$

where N_{o} and N_{d} are respectively the single-sided and double-sided noise density spectrum levels (see eqs. (2.17) - (2.21)) and S is the average received signal power. The reason the capacity for the entire frequency scale is utilized as a comparison is that, in the limit, the bandwidth of the M-size signal set must approach infinity. Specifically it can be shown ${ }^{58}$ that the minimum Gabor bandwidth for M orthogonal signals confined to a time interval T is

$$
\begin{equation*}
W_{g}(M) \cong \frac{1}{T} \frac{M+-\frac{3}{4}}{2 \sqrt{3}} \text { cycles per second } \tag{7.3}
\end{equation*}
$$

with an accuracy better than 1 percent for all M. Now if the source information rate H^{\prime} is kept constant as M increases, we have from eq. (7. 1) that T must vary with M according to

$$
\begin{equation*}
T=\frac{\ln M}{\mathrm{H}^{\prime}} \tag{7,4}
\end{equation*}
$$

Substituting eq. (7.4) in eq. (7. 3), the minimum Gabor bandwidth for fixed
source information rate must be

$$
\begin{equation*}
W_{g}(M) \cong \frac{H^{\prime}}{2 \sqrt{3}} \frac{M+\frac{3}{4}}{\ln M}, \tag{7.5}
\end{equation*}
$$

which tends to infinity as M does. Therefore the required frequency extent approaches infinity (irregardless of what reasonable definition of bandwidth is used). The same conclusion holds true if the signal set is not an orthogonal one, although the rate of increase is less than that in eq. (7.5).

We start with the phase-coherent situation; from eq. (2.46), the probability of correct decision is

$$
\begin{equation*}
P_{c}=\int \phi(x) \Phi^{M-1}\left(x+\sqrt{\frac{E(1-\lambda)}{N_{d}}}\right) d x \tag{7.6}
\end{equation*}
$$

Now

$$
\begin{equation*}
\frac{E}{N_{d}}=\frac{S T}{N_{d}}=\frac{S}{N_{d} H^{\prime}} \ln M \equiv \frac{2 \ln M}{r}, \tag{7.7}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
r=\frac{\mathrm{H}^{\prime}}{\mathrm{S} / 2 \mathrm{~N}_{\mathrm{d}}} \tag{7.8}
\end{equation*}
$$

and used eq. (7.4), since H^{\prime} is to be kept constant. r will be recognized as the ratio of source information rate to the capacity of the "infinite" continuous channel, eq. (7.2). Substituting eq. (7.7) into eq. (7.6), we have

$$
\begin{equation*}
P_{c}=\int \phi(x) \Phi^{M-1}\left(x+\sqrt{\frac{2(1-\lambda)}{r} \ln M}\right) d x \tag{7.9}
\end{equation*}
$$

where r is independent of M. Now

$$
\begin{equation*}
\lim _{M \rightarrow \infty} P_{c}=\int \phi(x) \lim _{M \rightarrow \infty}\left\{\Phi^{M-1}\left(x+\sqrt{\frac{2(1-\lambda)}{r} \ln M}\right)\right\} d x \tag{7.10}
\end{equation*}
$$

interchanging the operations of integration and limit. But in Appendix. C, it is shown that

$$
\lim _{M \rightarrow \infty} \Phi^{M-1}\left(x+\sqrt{\frac{2(1-\lambda)}{r} \ln M}\right)=\left\{\begin{array}{ll}
0, r>1-\lambda \tag{7.11}\\
1, r<1-\lambda
\end{array}\right\}, \text { all } x .
$$

Using eq. (7.11) in eq. (7.10), we have

$$
\lim _{M \rightarrow \infty} \quad P_{c}=\left\{\begin{array}{ll}
0, & r>1-\lambda \tag{7.12}\\
1, & r<1-\lambda
\end{array}\right\} .
$$

Thus, the error probability of a phase-coherent receiver approaches zero as M approaches infinity provided the ratio of source information rate to the capacity of the infinite continuous channel is less than $1-\lambda .(\lambda$ is defined in eq. (2.5)). Notice that in eq. (7.12), λ can never be negative. This is obvious by using eq. (2.8); λ less than zero is impossible in the limit.

$$
\begin{gather*}
P_{c}=(1-\lambda) \exp \left(-E / 2 N_{d}\right) \int_{0}^{\infty} \int_{0}^{\infty} x y \exp \left(-\frac{1}{2}\left(x^{2}+y^{2}\right)\right) I_{0}\left(\sqrt{\frac{E(1-\lambda)}{N_{d}}} x\right) I_{o}(\sqrt{\lambda} x y): \\
 \tag{7.13}\\
{[1-Q(\sqrt{\lambda} y, x)]^{M-1} d x d y .}
\end{gather*}
$$

Substituting eq. (7.7) in eq. (7.13),

$$
P_{c}=\frac{1-\lambda}{M^{1 / r}} \int_{0}^{\infty} \int_{0}^{\infty} x y \exp \left(-\frac{1}{2}\left(x^{2}+y^{2}\right)\right) I_{0}\left(\sqrt{\frac{2(1-\lambda)}{r} \ln M} x\right) I_{o}(\sqrt{\lambda} x y):
$$

$$
\begin{equation*}
[1-Q(\sqrt{\lambda} y, x)]^{M-1} d x d y \tag{7.14}
\end{equation*}
$$

where r is independent of M. Let us now define some new functions to simplify notation:

$$
\begin{align*}
& c=\sqrt{\frac{2(1-\lambda)}{r}} \text { (independent of } M \text {), } \tag{7.15}\\
& f_{M}(x, y)=\left\{\begin{array}{c}
\frac{1-\lambda}{M^{l / r}} x y \exp \left(-\frac{1}{2}\left(x^{2}+y^{2}\right)\right) I_{0}(c \sqrt{\ln M} x) I_{o}(\sqrt{\lambda} x y), \\
x, y>0
\end{array}\right\}, \tag{7.16}\\
& g_{M}(x, y)=\left\{\begin{array}{l}
{[1-Q(\sqrt{\lambda} y, x)]^{M-1}, x, y>0} \\
0, \text { otherwise }
\end{array}\right\} . \tag{7.17}
\end{align*}
$$

Then

$$
\begin{equation*}
P_{c}=\int_{-\infty}^{\infty} \int_{M} f_{M}(x, y) g_{M}(x, y) d x d y \tag{7.18}
\end{equation*}
$$

Now we let

$$
\begin{align*}
& z=x-\frac{c}{1-\lambda} \sqrt{\ln M}, \\
& u=y-\frac{\sqrt{\lambda} c}{1-\lambda} \sqrt{\ln M} . \tag{7.19}
\end{align*}
$$

Eq. (7.18) then becomes

$$
\begin{equation*}
P_{c}=\int_{-\infty}^{\infty} \int_{M} f_{M}^{\prime}(z, u) g_{M}^{\prime}(z, u) d z d u \tag{7.20}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{M}^{\prime}(z, u)=f_{M}\left(z+\frac{c}{1-\lambda} \sqrt{\ln M}, u+\frac{\sqrt{\lambda} c}{1-\lambda} \sqrt{\ln M}\right) \tag{7.21}
\end{equation*}
$$

and similarly for g_{M}^{\prime}. Therefore

$$
\begin{equation*}
\lim _{M \rightarrow \infty} P_{c}=\int_{-\infty}^{\infty} \int_{-\infty} f_{\infty}^{\prime}(z, u) g_{\infty}^{\prime}(z, u) d z d u \tag{7.22}
\end{equation*}
$$

interchanging the operations of integration and limit, and

$$
\begin{equation*}
f_{\infty}^{\prime}(z, u) \equiv \lim _{M \rightarrow \infty} f_{M}^{\prime}(z, u), \tag{7.23}
\end{equation*}
$$

and similarly for g_{∞}^{\prime}. In Appendix C, it is shown however that

$$
\begin{equation*}
f_{\infty}^{\prime}(z, u)=\frac{\sqrt{1-\lambda}}{2 \pi} \exp \left[-\frac{1}{2}\left(z^{2}+u^{2}-2 \sqrt{\lambda} z u\right)\right], \text { all } z, u \text {, } \tag{7.24}
\end{equation*}
$$

and

$$
g_{\infty}^{\prime}(z, u)=\left\{\begin{array}{c}
0, r>1-\lambda \tag{7.25}\\
1, r<1-\lambda
\end{array}\right\}, \quad \text { all } z, u .
$$

Substituting eqs. (7.24) and (7.25) into eq. (7.22), and noting that the area under f_{∞}^{\prime} is unity, we have

$$
\lim _{M \rightarrow \infty} P_{c}=\left\{\begin{array}{ll}
0, & r>1-\lambda \tag{7.26}\\
1, & r<1-\lambda
\end{array}\right\} .
$$

Thus the error probability of a phase-incoherent receiver approaches zero as M approaches infinity provided the ratio of source information rate to the capacity of the infinite continuous channel is less than $1-\lambda$. (λ is defined for this case by eq. (3.10)).

The rate of approach of P_{c} to 1 has not been investigated. Some results on this topic in the form of bounds for the phase-coherent receiver are available ${ }^{35,59}$. Similar results for the phase-incoherent receiver could probably be derived from eqs. (3.27) or (7.14).

A more conclusive result would be obtained if we could show that the above result holds if P_{c} is replaced by P_{c}^{\prime}. Since P_{c}^{\prime} is thought to be a. lower bound on the probability of correct decision for all correlation coefficient angles, its approach to unity for r<1- λ would demonstrate. that, regardless of the correlation coefficient angles, the error probability of a phase-incoherent receiver approaches zero as M approaches infinity, provided only that the ratio of source information rate to the capacity of the infinite continuous channel is less than $1-\lambda$. We have not studied this topic.

8. DISCUSSION

All the results of the previous sections have been consistently phrased in communication language. However, they are applicable, either exactly or approximately, to a wider class of problems. As an example, consider a radar (or sonar) which is echo-ranging; that is, the radar is transmitting a signal towards a (stationary) target known to be present, and estimating the range of the target by measuring the delay of the echo. In particular, measurement of the delay is accomplished by crosscorrelating the echo waveform with several (M) delayed stored replicas of the transmitted signal, and picking the largest correlation value as corresponding to the range of the target ${ }^{40}$. The total range uncertainty is divided into M cells of equal size, and the $k^{\text {th }}$ stored replica corresponds to the signal which would have been reflected from the $k^{\text {th }}$ cell if the target had been in that position. (This is not exactly true; however, if the individual cell size is chosen small enough that the time taken for the signal wavefront to traverse a cell is less than the reciprocal signal bandwidth, the approximation is a good one. In effect, all signals retúrned from anywhere in one particular cell are almost identical.) Mathematically, if $s(t)$ is transmitted, and the target is in the $k^{\text {th }}$ cell, the received waveform is

$$
\begin{equation*}
s\left(t-\tau_{k}\right)+n(t) \tag{8.1}
\end{equation*}
$$

where $n(t)$ is additive white Gaussian noise, and we neglect all unimportant scalars (see séction 2). Without loss of generality, let the target be in the first cell. The (phase-coherent) receiver then computes the quantities

$$
\begin{equation*}
y_{k}=\int s\left(t-\tau_{k}\right)\left[s\left(t-\tau_{1}\right)+n(t)\right] d t, \quad k=1,2, \ldots, M . \tag{8.2}
\end{equation*}
$$

If we let $R_{s}(\tau)$ be the autocorrelation function of the signal, then

$$
\begin{equation*}
y_{k}=R_{s}\left(\tau_{k}-\tau_{1}\right)+x_{k} \tag{8.3}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{k}=\int n(t) s\left(t-\tau_{k}\right) d t, \quad k=1,2, \ldots, M \tag{8,4}
\end{equation*}
$$

The probability of correctly deciding that the target is in cell no. 1 is

$$
\begin{equation*}
\left.P_{c}=\operatorname{Pr}_{\mathrm{r}\left(\mathrm{y}_{1}\right.}>\mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{M}}\right) \tag{8.5}
\end{equation*}
$$

Since the signal $s(t)$ is under the control of the radar, it may be shaped so as to give desirable features in the autocorrelation function $R_{s}(\tau)$. In particular, $s(t)$ may be chosen so as to yield a single large peak in $R_{s}(\tau)$ at the origin, and (approximately) uniform height in $R_{s}(\tau)$ elsewhere ${ }^{64,65}$. Then eq. (8.3) becomes

$$
\begin{align*}
& y_{1}=E+x_{1} \\
& y_{k}=\lambda E+x_{k}, \quad k=2,3, \ldots, M \tag{8.6}
\end{align*}
$$

where we have assumed the uniform height of $R_{s}(\tau)$ to be λ times as large as the peak. (This is an approximation to what can be actually attained in practice. However, if the side lobes or residues of $R_{s}(\tau)$ are only approximately equal, we can put a bound on performance by letting $\lambda \dot{\mathrm{E}}$ represent the maximum side lobe value attained.)

Since x_{k} is obtained by a linear operation on Gaussian noise, it is a Gaussian random variable with

$$
\begin{align*}
& \overline{x_{k}}=0, \\
& \overline{x_{k}^{2}}=N_{d} E . \tag{8.7}
\end{align*}
$$

In addition,

$$
\begin{equation*}
{\overline{x_{j}}}_{j}=\lambda N_{d} E, j \neq k . \tag{8.8}
\end{equation*}
$$

But now the similarity to the problem of section 2 is complete, and the result of eq. (2.46) may be taken immediately as representing the probability of correctly determining the target range on one echo. λ now represents the relative height of the side lobes to the main peak of the autocorrelation function of the sounding signal.

If the target is moving with any radial component with respect to the radar, the received waveform can not be represented as simply as that in eq. (8.1). Rather, there will be a simultaneous time delay and doppler shift of the transmitted signal. The catalogue of stored replicas must then include delayed and shifted versions of the transmitted signal, which are used for crosscorrelation with the echo waveform. Instead of the autocorrelation function of the signal being the important quantity to shape, it may be shown that the function

$$
\begin{equation*}
\int \xi(\mathrm{t}) \xi^{*}(\mathrm{t}-\tau) \exp (\mathrm{i} 2 \pi \mathrm{ft}) \mathrm{dt} \tag{8.9}
\end{equation*}
$$

is now the quantity to consider. Good performance, in terms of range and doppler estimation is realized by having the quantity of eq. (8.9) small everywhere in the τ, f plane except at the origin. Letting λ be the maximum relative size of the side lobes of this function to the peak, and M the number of cells in τ, f space (each of area equal to the reciprocal signal bandwidth times reciprocal signal duration), the result of section 2 may be applied as a bound on performance.

If no attempt is made to use the phase information of the received signal, the results of sections 3 and 4 may be used to evaluate a bound on the performance of a phase-incoherent range- and doppler-estimating radar, if λ is interpreted now at the maximum relative size of the side lobes of the ambiguity function of the transmitted signal ${ }^{40,66-69}$:

$$
\begin{equation*}
\left|\int \xi(t) \xi^{*}(t-\tau) \exp (i 2 \pi f t) d t\right| \tag{8,10}
\end{equation*}
$$

M is again equal to the total number of cells in range-doppler space.

When the presence of a target is not known a priori, incorporation of a threshold into the receiver may be desirable, as mentioned in section 5 . Once again, the results of sections 5 and 6 are applicable respectively to phase-coherent and phase-incoherent range- and doppler-estimating radars with a threshold. λ is interpreted as above.

The results of this report cannot be applied directly to the case where the competing noise is non-white, but can be used as approximations. Specifically, consider a communications situation where a phase-coherent receiver is to determine which of M orthogonal signals was transmitted,
while additive non-white noise is being received. Suppose signal no. 1 were transmitted, and the (non-optimum) receiver bases its decision upon the quantities

$$
\begin{align*}
& y_{1}=E+\int s_{1}(t) n(t) d t \\
& y_{k}=\int s_{k}(t) n(t) d t, \quad k=2,3, \ldots, M, \tag{8.11}
\end{align*}
$$

where $n(t)$ is the additive noise. The probability of correct decision is then given by

$$
\begin{equation*}
P_{c}=\operatorname{Pr}\left(y_{1}>y_{2}, \ldots, y_{M}\right) . \tag{8.12}
\end{equation*}
$$

If the noise is Gaussian, the quantities

$$
\begin{equation*}
x_{k}=\int_{0} s_{k}(t) n(t) d t, \quad k=1,2, \ldots, M \tag{8.13}
\end{equation*}
$$

are all Gaussian, and we have merely to determine the set of crosscorrelation coefficients in order to be able to determine P_{c}. We have

$$
\begin{align*}
& \overline{x_{k}}=0, \tag{8.14}\\
& \overline{x_{k}^{2}}=\int_{0} S(f)\left|v_{k}(f)\right|^{2} d f, \tag{8.15}
\end{align*}
$$

where $S(f)$ is the noise power density spectrum, and $V_{k}(f)$ is the Fourier transform of the $k^{\text {th }}$ signal of the set. Now it is possible to design a signal set such that $\left|V_{k}(f)\right| \quad$ is the same for all k; that is, all the signals have the same magnitude spectrum. (This is a reasonable situation - the signals occupy the same spectrum, at least approximately, regardless of which
particular signal wàs transmitted. Frequency shift keying signals are outlawed.) In this case, $\overline{x_{k}^{2}}$ is independent of k. At the same time,

$$
\begin{equation*}
\overline{x_{j} x_{k}}=\int S(f) V_{k}(f) V_{j}^{*}(f) d f=\int S(f) \operatorname{Re}\left\{V_{k}(f) \dot{V}_{j}^{*}(f)\right\} d f \tag{8.16}
\end{equation*}
$$

These quantities will be dependent on j and k. However, if they are reasonably alike (if the noise is fairly broad band, but not white), we may define λ to be the maximum value of

$$
\begin{equation*}
\frac{\overline{x_{j} x_{k}}}{\overline{x_{k}^{2}}}, \quad j \neq k \tag{8.17}
\end{equation*}
$$

and put a bound on performance. Specifically, if the maximum of eq. (8.17) is realized for $k=1, j=2$, we find the probability of correct decision P_{c} is bounded by

$$
\begin{equation*}
P_{c} \geq \int \phi(x) \Phi^{M-1}(x+a) d x \tag{8.18}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{E}{\sqrt{\int S(f)\left[\left|V_{1}(f)\right|^{2}-\operatorname{Re}\left\{V_{1}(f) V_{2}^{*}(f)\right\}\right] d f}} \tag{8.19}
\end{equation*}
$$

If
using the orthogonality of the signals, we find

$$
\begin{equation*}
a=\sqrt{\frac{E}{N_{d}}}, \tag{8,21}
\end{equation*}
$$

which agrees with eq. (2.46).

The situation is much the same for non-stationary noise. Suppose the signals are orthogonal, and the (non-optimum) receiver bases its decision on the quantities of eq. (8.11). Eqs. (8.15) and (8.16) are then replaced by

$$
\begin{equation*}
\overline{x_{j} x_{k}}=\iint s_{j}\left(t_{1}\right) s_{k}\left(t_{2}\right) R\left(t_{1}, t_{2}\right) d t_{1} d t_{2}, \text { all } j, k, \tag{8.22}
\end{equation*}
$$

where $R\left(t_{1}, t_{2}\right)$ is the autocorrelation function of the noise:

$$
\begin{equation*}
R\left(t_{1}, t_{2}\right)=\overline{n\left(t_{1}\right)} n\left(t_{2}\right) . \tag{8.23}
\end{equation*}
$$

The quantities in eq. (8.22) will vary as'j and k change. However we expect that a bound on performance may be obtained by considering the two quantities

$$
\begin{equation*}
\max _{k}\left\{\overline{x_{k}^{2}}\right\}=\overline{x_{1}^{2}} \quad \text { (say) } \tag{8.24}
\end{equation*}
$$

and

$$
\max _{j \neq k}\left\{\overline{x_{j} x_{k}}\right\}=\overline{x_{1} x_{2}} \text { (say) }
$$

These are respectively the maximum variance and maximum covariance of the variables $\left\{y_{k}\right\}$ upon which the receiver makes its decision. Then analogous to eq. (8.18), we expect (but have not proven)

$$
\begin{equation*}
P_{c} \geq \int \phi(x) \Phi^{M-1}(x+b) d x \tag{8.26}
\end{equation*}
$$

where

The results from eqs. (8.11) on may be easily generalized to situations where the signals are not orthogonal, where phase-incoherent reception takes place, and where a threshold is incorporated in the receiver, by using the appropriate equations of sections 3,4,5 and 6. However, only bounds are attainable, not exact solutions in these cases.

Another situation to which the results of this report may be applied is the case where the (orthogonal) signals undergo distortion during transmission, such as multipath. If the distortion is known, and compensated for at the receiver ${ }^{70}$, the degradation in performance may be evaluated as a function of the crosscorrelation of the distorted signal set.

Throughout this entire report, the set of crosscorrelation coefficients were assumed to be equal - eq. (2.5) for phase-coherent reception, and eq. (3.10) (or more generally, eq. (4.2)) for phase-incoherent operation. It would be very worthwhile generalizing these results to additional situations. One particularly interesting and useful case occurs when

$$
\begin{equation*}
\int s_{j}(t) s_{k}(t) d t=\lambda^{|j-k|} E, \quad j, k=1,2, \ldots, M \tag{8.28}
\end{equation*}
$$

This situation might arise, for example, in echo-ranging, where $s_{1}(t)$ would be the signal returne drom the closest range cell, $s_{2}(t)$ from the second closest cell, etc., and the signals are less correlated. the more they are separated. The matrix of these crosscorrelation coefficients is readily inverted, and possesses zero elements everywhere except along the main diagonal and the super-and sub-diagonals. We have not looked at this case in any detail to see whether a generalization of the artifice in eq. (2.31) et seq. could yield a solution.

Another case of interest occurs when

$$
\begin{align*}
& \int s_{k}^{2}(t) d t=E \\
& \int s_{k}(t) s_{k+1}(t) d t=\lambda E \\
& \int s_{j}(t) s_{k}(t) d t=0, \text { otherwise. } \tag{8.29}
\end{align*}
$$

This $:$ fase too could arise very reasonably in echo-ranging. The matrix
of crosscorrelation coefficients possesses non-zero elements only along of crosscorrelation coefficients possesses non-zero elements only along the main diagonal and the super-and sub-diagonals. Its inverse is then-. given by a form like eq. (8.28), where the constants have to be modified. These two cases. eqs. (8.28) and (8.29), are "duals"; however, the determination of the error probabilities probably requires differept (and new) methods of eliminating cross-products ${ }^{-}$(if at all possible). Both these cases merit further study.

Another very important problem is the following: although a given bandwidth may only support N orthogonal signals of a given duration, it rnay be desirable to put $M(>N)$ non-orthogonal signals in that bandwidth. The question then arises as to the difference in error rates for the two choices. of signal set size, under, say, a constant source information rate constraint. To be specific, consider that in a given time duration T_{1} and allowed bandwidth $\mathrm{W}_{\mathrm{g}}, \mathrm{N}$ is the maximum number of orthogonal signals which may be accomodated. If the probability of correct decision for this baud• duration is P_{cN}, the error rate is

$$
\begin{equation*}
\frac{1-P_{c N}\left(E_{1} / N_{d}\right)}{T_{1}} \tag{8.30}
\end{equation*}
$$

where E_{1} is the received signal energy in time T_{1}, and N_{d} is the level of a white background noise. For comparison, if messages are transmitted in bauds of twice this duration, and the source information rate is kept -constant, we must have the number of messages M in the new set given by

$$
\begin{equation*}
\mathrm{M}=\mathrm{N}^{2} \tag{8.31}
\end{equation*}
$$

Since the new set of messages can no longer be kept orthogonal, (in the same given bandwidth, W_{g}), the error rate (for phase-coherent operation) will be

$$
\begin{equation*}
\frac{1-P_{c N} 2\left(2 E_{1}(1-\lambda) / N_{d}\right)}{2 T_{1}} \tag{8.32}
\end{equation*}
$$

where λ is the degree of crosscorrelation of the N^{2} messages in alloted duration $2 \mathrm{~T}_{1}$ and bandwidth W_{g}. Now which error rate is the smaller, and by how much?

In order to answer this question, we need to find the minimum crosscorrelation coefficient, λ, possible for M signals in an allotèd timè duration T and bandwidth W_{g}. Or conversely, for a given M, T, and λ, what is the minimum required W_{g} ? We have not been able to solve this problem except for $\lambda=0$. However, for $\lambda=0$, defining bandwidth in the Gabor sense, we find that 58

$$
\begin{align*}
W_{g}(\min) & =\frac{1}{2 T} \sqrt{\frac{\left(M+\frac{1}{2}\right)(M+1)}{3}} \mathrm{cps} \\
& \cong \frac{1}{2 T} \frac{M+\frac{3}{4}}{\sqrt{3}} \ldots \mathrm{cps} . \tag{8.33}
\end{align*}
$$

The Gabor bandwidth of a signal $s(t)$ with Fourier transform $V(f)$ (centered at the origin) is defined as

$$
\begin{equation*}
w_{g}=\left(\frac{\int f^{2}|v(f)|^{2} d f}{\int|v(f)|^{2} d f}\right)^{1 / 2} \tag{8.34}
\end{equation*}
$$

(We choose this definition of bandwidth because of its tractability).
In the orthogonal signal situation discussed above,

$$
\begin{equation*}
\mathrm{N} \leq \sqrt{3} \quad 2 \mathrm{~T}_{1} \mathrm{~W}_{\mathrm{g}}-\frac{3}{4} \tag{8.35}
\end{equation*}
$$

Therefore we may evaluate the first error rate of eq (8.30). However, we are unable to evaluate the other error rate of eq. (8.32) and make a comparison because .we cannot evaluate λ. Further study on this topic is suggested, due to its importance.

As many, if not more, problems have been raised by the present report as solved. There is the perplexing problem of the angles of the crosscorrelation coefficients occurring in phase-incoherent reception, and their precise effect on the error probability. There is a most important problem related to obtaining a better bound on the error probability by replacing the set of correlation coefficients not by the maximum one, but by a smaller quantity, perhaps the average correlation coefficient, and using the present results. Of course, the ultimate problem is to solve for the error probability explicitly as a function of the complete set of correlation coefficients; until such a solution can be attained however, a step-by-step procedure solving special cases similar to the one in this report and the ones discussed earlier in this section is in order. These special cases and better bounds on performance should probably be the next topics to consider.

1. A. V. Balakrishnan, "Estimation and Detection-Theory for Multiple Stochastic Processes", Journal of Mathematical Analysis and Applications, Vol. 1, No. 3, 4, pp. 386-410; Dec., 1960.
2. A. V. Balakrishnan, "A Contribution to the Sphere-Packing Problemof Communication Theory", to be published in the Journal of Mathematical Analysis and Applications.
3. G. L. Turin, "The Asymptotic Behavior of Ideal M-ary Systems", Proc. of the IRE, Vol. 47, No. 1, pp. 93-94; Jan., 1959.
4. D. Middleton, Introduction to Statistical Communication Theory, McGraw-Hill Book Co, , Inc., New York, N. Y.; 1960.
5. J. I. Marcum, "A Statistical Theory of Target Detection by Pulsed Radar'", Rand Corp. Report RM-754; Dec. 1, 1947; and IRE Trans. on Info. Th. Vol. IT-6, No. 2, pp. 59-144; April, 1960.
6. J. I. Marcum, "A Statistical Theory of Target Detection by Pulsed Radar: Mathematical Appendix'", Rand Corp. Report RM-753; July 1, 1948, reissued April 25, 1952; and IRE Trans. on Info. Th., Vol. IT-6, No. 2, pp. 145-267; April, 1960.
7. R. M. Fano, "Communication in the Presence of Additive Gaussian Noise", Communication Theory, W. Jackson, Editor, Academic Press, Inc., New York, pp. 169-183; 1953.
8. S. Reiger, "Error Probabilities of Binary Data Transmission Systems in the Presence of Random Noise", IRE Conv. Record, Pt. 8, pp. 72-79; March, 1953.
9. G. F. Montgomery, "A Comparison of Amplitude and Angle Modulation for Narrow-Band Communication of Binary-Coded Messages in Fluctuation Noise", Proc. of the IRE, Vol. 42, No. 2, pp. 447-454; Feb., 1954.
10.- W. W. Peterson, T. G. Birdsall, and W. C. Fox, "The Theory of Signal Detectability", Trans. of the IRE, Prof. Group on Info. Th., PGIT-4, pp. 171-212; Sept., 1954.
10. C. W. Helstrom, "The Resolution of Signals in White, Gaussian Noise", Proc. of the IRE, Vol. 43, No. 9, pp. 1111-1118; Sept., 1955.
11. R. Price, "Error Probabilities for the Ideal Detection of Signals Perturbed by Scatter and Noise", Group Report 34-40, Lincoln Laboratory, M.I. T.; Oct. 3, 1955, reissued March 20, 1959.
12. J. J. Bussgang and D. Middleton, "Optimum Sequential Detection of Signals in Noise", IRE Trans. on Info. Th., Vol. IT-1, No. 3, pp. 5-18; Dec., 1955.
13. G. L. Turin, "Communication Through Noisy, Random-Multipath Channels", IRE Conv. Record, Vol. 4, Pt. IV, pp. 154-166; 1956.
14. G. L. Turin, "Communication Through Noisy, Random-Multipath Channels", Group 34, TR No. 116, Lincoln Laboratory, M.I. T.; May 14, 1956.
15. C. W. Helstrom, "The Resolution of Pulsed Signals", Westinghouse Research Report 8-1259-R6, Westinghouse Research Laboratories; July 18, 1957.
16. Collins Radio Co., "Performance of Predicted Wave Systems in the Presence of Additive, White, Gaussian Noise", Report No. CERW592, Cedar Rapids, Iowa; Jan. 29, 1958.
17. J. T. Fleck, "Alternate Derivation of the Error Rate of a Differentially Coherent PSK System' ${ }^{\prime}$, Cornell Aero. Lab. Mema; June 9, 1958.
18. J. N. Pierce, "Theoretical Diversity Improvement in FrequencyShift Keying", Proc. of the IRE, Vol. 46, No. 5, pp. 903-910; May, 1958.
19. J. G. Lawton, "Comparison of Binary Data Transmission Systems", Proc. Second National Conference on Mil. Elec., pp. 54-61; 1958.
20. G. L. Turin, "Error Probabilities for Binary Symmetric Ideal Reception through Nonselective Slow Fading and Noise", Proc. of the IRE., Vol. 46; No. 9, pp. 1603-1619;-Sept., 1958.
21. G. L. Turin, "Some Computations of Error Rates for Selectively Fading Multipath Channels", Proc. 1959 Nat. Elec. Conf., pp. 431440.
22. P. Swerling, "Probability of Detection for Fiuctuating Targets", IRE Trans. on Info. Th., IT -6, No. 2, pp. 269-308; April, 1960.
23. B. B. Barrow, "Error Probabilities for Telegraph Signals Transmitted on a Fading FM Carrier", Proc. of the IRE, Vol. 48, No.9, pp. 1613-1629; Sept., 1960.
24. C. W. Helstrom, Statistical Theory of Signal Detection, Pergamon Press, Ltd., London; 1960.
25. J. L. Lawson and G. E. Uhlenbeck, Threshold Signals, McGraw-Hill Book Co., N. Y.; 1950.
26. S. O. Rice, "Communication in the Presence of Noise", Bell System Technical Journal, Vol. 29, pp. 60-93; Jan., 1950.
27. S. Reiger, "Error Rates in Data Transmission", Proc. of the IRE, Vol. 46, No. 5, pp. 919-920; May, 1958.
28. C. W. Helstrom, "The Comparison of Digital Communications Systems", Westinghouse Scientific Paper 412FF471-P2, Westinghouse Research Laboratories; Dec. 2, 1959; and IRE Trans. on Comm. Systems, Vol. CS-8, No. 3, pp. 141-150; Sept., 1960.
29. J. G. Lawton, "Theoretical Error Rates of 'Differentially Coherent' Binary and 'Kineplex' Data Transmission Systems', Proc. of the IRE, Vol. 47, No. 2, pp. 333-334; February, 1959.
30. C. R. Cahn, "Performance of Digital Phase-Modulation Communication Systems", IRE Trans. on Comm. Systems, Vol. CS-7, No. 1, pp. 3-6; May, 1959.
31. C. R. Cahn, "Comparison of Coherent and Phase-Comparison Detection of a Four-Phase Digital Signal", Proc. of the IRE, Vol. 47, No. 9, p. 1662; Sept., 1959.
32. C. R. Cahn, "Combined Digital Phase and Amplitude Modulation Communication Systems", IRE Trans, on Comm. Systems, Vol. CS-8, No. 3, pp. 150-155; Sept., 1960.
33. C. A. Stutt, "Regular Polyhedron Codes", Report No. 59-RL-2202, General Electric Research Laboratory, Schenectady, N.Y.; March, 1959.
34. C. E. Shannon, "Probability of Error for Optimal Codes in a Gaussian Channel", Bell System Technical Journal, Vol. 38, No. 3, pp. 611-656; May, 1959.
35. R. M. Lerner, Lectures on Communication System Theory, Edited by E. J. Baghdady, McGraw-Hill Book Co., Inc., New York, N. Y., pp. 248-254; 1961.
36. G. L. Turin, "A Review of Statistical Multipath-Communication Theory", Hughes Research Report No. 104, Hughes Research Laboratories, Culver City, California; April, 1959.
37. P. M. Woodward and I. L. Davies, "Information Theory and Inverse Probability in Telecommunication", Proc. IEE, Vol. 99, Part III, pp. 37-44; March, 1952.
38. I. L. Davies, "On Determining the Presence of Signals in Noise", Proc. IEE, Vol. 99, Part III, pp. 45-51; March, 1952.
39. P. M. Woodward, Probability and Information Theory, with Applications to Radar, McGraw-Hill, New York; 1953.
40. D. Van Meter and D. Middleton, "Modern Approaches to Reception in Communication Theory", Trans. of the IRE, Prof. Group on Info. Th., PGIT-4, pp. 119-145; Sept., 1954.
41. R. Price, "Notes on Ideal Receivers for Scatter Mültipath", Group Report 34-39, Lincoln Laboratory, M.I. T.; May 12, 1955.
42. D. Middleton and D. Van Meter, "On Optimum Multiple-Alternative Detection of Signals in Noise', IRE Trans. on Info. Th., Vol. IT-1, No. 2, pp. 1-9; Sept., 1955.
43. D. Middleton and D. Van Meter, "Detection and Extraction of Signals in Noise from the Point of View of Statistical Decision Theory", J. Soc. Ind. Appl. Math., Vol. 3, Part I, pp. 192-253; December, 1955; Vol. 4, Part II, pp. 86-119; June, 1956.
44. W. B. Davenport and W. L. Root, Random Signals and Noise, McGrawHill Book Co., Inc., New York, N. Y., Ch. 6; 1958.
45. R. H. Urbano, "Analysis and Tabulation of the M-Positions Experiment Integral and Related Error Function Integrals', AFCRC-TR-55-100, Electronics Research Directorate, Air Force Cambridge Research Center, Cambridge, Mass.; April, 1955.
46. U. S. National Bureau of Standards, Tables of Normal Probability Functions, Appl. Math. Series No. 23, U. S. Govt. Printing Office, Washington; 1953.
47. U. S. National Bureau of Standards, Tables of the Bivariate Normal Distribution Function and Related Functions, Appl. Math. Series No. 50, U. S. Govt. Printing Office, Washington; 1959.
48. M. Zakai, "Second-Order Properties of the Pre-Envelope and Envelope Processes", IRE Trans. on Info. Th., Vol. IT-6, No. 5, pp. 556-557, Dec., 1960.
49. J. I. Marcum, "Table of Q.Functions", Rand Corp. Report RM-339, Jan. 1, 1950.
50. Bell Aircraft Corporation, "Table of Circular Normal Probabilties", Report No. 02-949-106, June, 1956.
51. G. N. Watson, Theory of Bessel Functions, Cambridge University Press, p. 540, eqs. (1) and (2); 1958.
52. F. B. Hildebrand, Methods of Applied Mathematics, Prentice-Hall, Inc., New York, pp. 42-51; August, 1954.
53. A. H. Benner and R. F. Drenick, "On the Problem of Optimum Detection of Pulsed Signals in Noise", RCA Review, Vol XVI, No. 3; Sept., 1955.
54. Melpar, Inc., "Sonar System Criteria Study", Final Report on ONR Contract No. Nonr-2154(00), pp. 74-85; Aug. 31, 1957.
55. W. Geöbner and N. Hofreiter, Integraltafel, Part II, Definite Integrals, Springer-Verlag; 1957.
56. C. E. Shannon, A Mathematical Theory of Communication, University of Illinois Press, Urbana, IMlinois; 1949.
57. A. H. Nuttall, "Minimum Gabor Bandwidth of M Orthogonal Signals", Technical Report TR-61-3-BF, Litton Systems, Inc., Waltham, Maes.; July, 1961.

59: R. M. Fano, Transmission of Information, M.I. T. Press and John Wiley and Sons, Inc., New York, N. Y. , p. 202; 1960.
60. E. H. Smith and D. E. Stone, "A Note on the Expected Coverage of One Circle by Another, the Case of Offset Aim", SIAM Review, Vol. 3, No. 1, pp. 51-53; Jan., 1961.
61. W. Magnus and F. Oberhettinger, Functions of Mathematical Physicis, Chelsea Publishing Co., New York, N. Y. , p.--1.32; 1-954.
62. L. C. Maximon, "On the Representation of Indefinite Integrals Containing Bessel Functions by Simple Neumann Series"; Lincoln Laboratory Group Report 34-37, M. I. T.; March 22, 1955.
63. G. L. Turin, Lincoln Laboratory Technical Report 57, M.I.T.; Jan. 18, 1954 (SECRET).
64. R. N. Barker, "Group Synchronizing of Binary Digital Systems", in Communication Theory, W. Jackson, Ed., Butterworths Scientific Publications, London, England; 1953.
65. J. E. Storer and R. Turyn, "Optimum Finite Code Groups", Proc. IRE, Vol. 46, p. 1649; Sept., 1958.
66. W. M. Siebert, "A Radar Detection Philosophy", IRE Trans. on Info. Th., Vol. IT-2, No. 3, pp. 204-221; Sept., 1956.
67. R. M. Lerner, "Signals with Uniform Ambiguity Functions", IRE National Conv. Record, Part 4, pp. 27-36; March, 1958.
68. W. M. Siebert, "Studies of Woodward's Uncertainty Function", M.I. T. R.L. E. Quarterly Progress Report No. 49, pp. 90-94; April, 1958.
69. C. H. Wilcox, "The Synthesis Problem for Radar Ambiguity Functions", Math. Res. Center Tech. Summary Report No. 157, University of Wisconsin, Madison, Wisconsin; April, 1960.
70. T. Kailath, "Correlation Detection of Signals Perturbed by a Random Channel", IRE Trans. on Info. Th., Vol.IT-6, No. 3, pp. 361-366; June, 1960.
. -

Our starting point is eq. (3.26) of section 3. By performing a change of variable

$$
\left.\begin{array}{l}
u_{k}=\sqrt{4 N_{d} E(1-\lambda)} \tag{A.1}\\
v_{k} \\
y_{k}=\sqrt{4 N_{d} E(1-\lambda)} \\
w_{k}
\end{array}\right\} k=1,2, \ldots, M
$$

eq. (3.26) becomes

$$
\begin{align*}
& P_{c}=\frac{1-\lambda}{1+(M-1) \lambda}(2 \pi)^{-M} \exp \left(-E / 2 N_{d}\right) . \\
& \int_{-\infty}^{\infty} \int_{C^{\prime}}^{\infty} d v_{1} d w_{1} \int_{C^{\prime}} \ldots \iint_{2} d v_{2} d w_{2} \ldots d v_{M} d w_{M} \exp \left[-\frac{1}{2}\left\{\sum_{k=1}^{M}\left(v_{k}^{2}+w_{k}^{2}\right)\right.\right. \\
& \left.-\frac{\lambda}{1+(M-1) \lambda}\left[\left(\sum_{k=1}^{M} u_{k}\right)^{2}+\left(\sum_{k=1}^{M} y_{k}\right)\right]\right\} \exp \left(\sqrt{\frac{E(1-\lambda)}{N_{d}}} v_{1}\right), \tag{A.2}
\end{align*}
$$

where $\iint_{C^{\prime}} d v_{k} d w_{k}$ for $k \geq 2$ denotes a double integral in v_{k}, w_{k} space within a circle of radius $\sqrt{v_{l}^{2}+w_{1}^{2}}$ centered at the origin. At this point, we use the artifice introduced in eq. (2.31) in the form

$$
\begin{align*}
& \quad \cdot \exp \left[\frac{1}{2} \frac{\lambda \cdot}{1+(M-1) \lambda}\left\{\left(\sum_{k=1}^{M} v_{k}\right)^{2}+\left(\sum_{k=1}^{M} w_{k}\right)^{2}\right\}\right] \\
& =\frac{1+(M-1) \lambda}{2 \pi} \int_{-\infty}^{\infty} \exp \left[-\frac{1}{2}[1+(M-1) \lambda]\left(x^{2}+y^{2}\right)+\sqrt{\lambda} x \sum_{k=1}^{M} v_{k}+\sqrt{\lambda} y \sum_{k=1}^{M} w_{k}\right] d x d y \tag{A.3}
\end{align*}
$$

The substitution of eq. (A. 3) in eq. (A. 2) eliminates all cross-product terms such as $v_{j} \dot{v}_{k}, j \neq k$! Substituting eq. (A. 3) into eq. (A. 2), and interchanging integrals, there results, using eq. (2.29) for the "signal-to-noise ratio" p,

$$
\begin{align*}
& P_{c}=(1-\lambda)(2 \pi)^{-M-1} \exp (-\rho / 2) \quad \int_{-\infty}^{\infty} \int_{\infty} d x d y \int_{-\infty}^{\infty} \int_{D^{\prime}}^{\infty} d v_{1} d w_{1} \iint_{C^{\prime}} \therefore \iint_{C^{\prime}} d v_{2} d w_{2} \ldots d v_{M^{\prime}} d w_{M^{\prime}} \\
& \exp \left\{\sqrt{\rho(1-\lambda)} v_{1}-\frac{1}{2}[1+(M-1) \lambda]\left(x^{2}+y^{2}\right)\right. \\
& \left.-\frac{1}{2} \sum_{k=1}^{M}\left(v_{k}^{2}+w_{k}^{2}\right)+\sqrt{\lambda} \sum_{k=1}^{M}\left(x v_{k}+y w_{k}\right)\right\} \tag{A.4}
\end{align*}
$$

But now the multiple integrals on $v_{2}, w_{2}, \ldots, v_{M}, w_{M}$ can be separated, a typical one being

$$
\begin{equation*}
\int_{C^{\prime}} \int \exp \left[-\frac{1}{2}\left(v_{k}^{2}+w_{k}^{2}\right)+\sqrt{\lambda} x v_{k}+\sqrt{\lambda} y w_{k}\right] d v_{k} d w_{k}, \quad k=2,3, \ldots, M \tag{A.5}
\end{equation*}
$$

Changing to polar coordinates-and remembering the radius of the circle $C^{\prime} \mid i s \sqrt{v_{1}^{2}+w_{1}^{2}}$, eq. (A.5) becomes

$$
\begin{align*}
& \sqrt{v_{1}^{2}+w_{1}^{2}} \\
& \int_{0}^{2 \pi} d r \int_{0}^{2 \pi} d \theta r \exp \left[-\frac{1}{2} r^{2}+\sqrt{\lambda} r x \cos \theta+\sqrt{\lambda} r y \sin \theta\right] \\
& \quad{\sqrt{v_{1}^{2}+w_{1}^{2}}}=2 \pi \int_{0} r e^{-\frac{1}{2} r^{2}} I_{0}\left(\sqrt{\lambda} \sqrt{x^{2}+y^{2}} r\right) d r \\
& \quad=2 \pi \exp \left(\frac{1}{2} \lambda\left(x^{2}+y^{2}\right)\right)\left[1-Q\left(\sqrt{\lambda} \sqrt{x^{2}+y^{2}}, \sqrt{v_{1}^{2}+w_{1}^{2}}\right)\right] \tag{A.6}
\end{align*}
$$

where I_{0} is the zero ${ }^{\text {th }}$ o:der modified Bessel function of the first kind, and

$$
\begin{equation*}
Q(\alpha, \beta)=\int_{\beta}^{\infty} x \exp \left(-\frac{1}{2}\left(x^{2}+\alpha^{2}\right)\right) I_{0}(\alpha x) d x \tag{A.7}
\end{equation*}
$$

is the Q-function of Marcum ${ }^{5,6}$, and is tabulated ${ }^{50,51}$. Substituting eq. (A.6) into eq. (A. 4), and simplifying, we obtain

$$
\begin{align*}
& P_{c}=(1-\lambda)(2 \pi)^{-2} \exp (-\rho / 2) \int_{-\infty}^{\infty} \int_{-\infty} d x d y \int_{-\infty}^{\infty} \int_{1} d v_{1} d w_{1}\left[1-\Omega\left(\sqrt{\lambda} \sqrt{x^{2}+y^{2}} \cdot \sqrt{v_{1}^{2}+w_{1}^{2}}\right)\right]^{M-1} . \\
& \exp \left\{\sqrt{\rho(1-\lambda)} v_{1}-\frac{1}{2}\left(v_{1}^{2}+w_{1}^{2}\right)+\sqrt{\lambda} x_{1}+\sqrt{\lambda} y w_{1}-\frac{1}{2}\left(x^{2}+y^{2}\right)\right\} . \tag{A.8}
\end{align*}
$$

Changing to polar coordinates again, according to

$$
\begin{align*}
& x=s \cos \phi, v_{1}=r \cos \theta \\
& y=s \sin \phi, w_{1}=r \sin \theta, \tag{A.9}
\end{align*}
$$

integrating first on ϕ and then on $\bar{\theta}$, we obtain

$$
\begin{align*}
P_{c}=(1-\lambda) \exp (-\rho / 2) \quad \int_{0}^{\infty} \int_{0}^{\infty} r s \exp \left(-\frac{1}{2}\left(r^{2}+s^{2}\right)\right) I_{0}\left(\sqrt{\rho(1-\lambda r) I_{0}(\sqrt{\lambda} r s)}\right. \\
{[1-Q(\sqrt{\lambda} s, r)]^{M-1} \quad d r d s, } \tag{A.10}
\end{align*}
$$

which is the desired result, remembering

$$
\begin{equation*}
\rho=\frac{E}{N_{d}} \tag{A.11}
\end{equation*}
$$

In eq. (3.30), we used the relation

$$
\begin{equation*}
\int_{0}^{\infty} s \exp \left(-\frac{1}{2}\left(s^{2}+c^{2}\right)\right) I_{0}(c s) Q(a s, b) d s=Q\left(\frac{a c}{\sqrt{1+a^{2}}}, \frac{b}{\sqrt{1+a^{2}}}\right) \tag{A.12}
\end{equation*}
$$

We now proceed to derive it: first eliminate Q on the left side of eq. (A. 12) by use of the relation 60

$$
\begin{equation*}
Q(a s, b)=1-b \int_{0}^{\infty} \exp \left(-x^{2} / 2\right) J_{0}(a s x) J_{1}(b x) d x \tag{A.13}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
1-b \int_{0}^{\infty} d x \exp \left(-x^{2} / 2\right) J_{1}(b x) \int_{0}^{\infty} d s s \exp \left(-\frac{1}{2}\left(s^{2}+c^{2}\right)\right) I_{0}(c s) J_{0}(a s x) \tag{A.14}
\end{equation*}
$$

$=1-b \int_{0}^{\infty} \exp \left(-x^{2} / 2\right) J_{1}(b x) \exp \left(-a^{2} x^{2} / 2\right) J_{0}(a c x) d x$
$=1-\frac{b}{\sqrt{1+a^{2}}} \int_{0}^{\infty} \exp \left(-u^{2} / 2\right) J_{0}\left(\frac{a c}{\sqrt{1+a^{2}}} u\right) J_{1}\left(\frac{b}{\sqrt{1+a^{2}}} u\right) d u$
$=Q\left(\frac{a c}{\sqrt{1+a^{2}}}, \frac{b}{\sqrt{1+a^{2}}}\right)$.

The transition from eq. (A. 14) to eq. (A. 15) is by means of Magnus and Oberhettinger ; that from eqs. (A. 16) to (A. 17) is by reapplication of eq. (A. 13). Some interesting formulas related to eq. (A. 12), although not in this notation, are given by Maximon ${ }^{62}$.

APPENDIX B

BOUNDS ON THE ERROR IN APPROXIMATING THE ERROR PROBABILFTY IN PHASE-INCOHERENT RECEPTION

We have, from eq. (3.27),

$$
\begin{align*}
P_{c}= & (1-\lambda) \exp (-\rho / 2) \int_{0}^{\infty} \int_{0}^{\infty} x y \exp \left(-\frac{1}{2}\left(x^{2}+y^{2}\right)\right) I_{0}(\sqrt{\rho(1-\lambda)} x) I_{0}(\sqrt{\lambda x y}) \\
& {[1-Q(\sqrt{\lambda} y, x)]^{M-1} d x d y } \tag{B.1}\\
& \equiv \int_{0}^{\infty} d x \int_{0}^{\infty} d y f(x, y) \tag{B.2}
\end{align*}
$$

where $\rho=E / N_{d}$. Now we approximate P_{c} by

$$
\begin{equation*}
\int_{0}^{a} d x \int_{0}^{b} d y f(x, y) \tag{B.3}
\end{equation*}
$$

and choose a and b large enough so that the discrepancy between eqs. (B. 2) and (B.3) is less than some specified amount. The discrepancy or error $E_{M}{ }^{i s}$ defined as

$$
\begin{equation*}
E_{M}=\int_{0}^{\infty} d x \int_{0}^{\infty} d y f(x, y)-\int_{0}^{a} d x \int_{0}^{b} d y f(x, y) \tag{B.4}
\end{equation*}
$$

and is always non-negative since $f(x, y) \geq 0$ always (at least for $\lambda \geq 0$).
Now certainly

$$
\begin{equation*}
E_{M} \leq \int_{a}^{\infty} d x \int_{0}^{\infty} d y f(x, y)+\int_{b}^{\infty} d y \int_{0}^{\infty} d x f(x, y) \tag{B.5}
\end{equation*}
$$

because we have deliberately "double-counted" a region of the x, y plane. This has been necessary in order to be able to evaluate the double integrals. This does not excessively weaken the bound because $f(x, y)$ is extremely small over that region. Also, since

$$
[1-Q(\sqrt{\lambda} y, x)]^{M-1} \leq 1
$$

$$
\int_{a}^{\infty} d x \int_{0}^{\infty} d y f(x, y) \leq(1-\lambda) \exp (-\rho / 2) \int_{a}^{\infty} d \bar{x} x \exp \left(-x^{2} / 2\right) I_{0}(\sqrt{\rho(1-\lambda)} x)
$$

$$
\begin{align*}
& \int_{0}^{\infty} d y y \exp \left(-y^{2} / 2\right) I_{o}(\sqrt{\lambda} x y) \tag{B.7}\\
= & (1-\lambda) \exp (-\rho / 2) \int_{a}^{\infty} d x x \exp \left(-\frac{1}{2} x^{2}(1-\lambda)\right) I_{0}(\sqrt{\rho(1-\lambda)} x) \tag{B.8}\\
= & Q(\sqrt{p}, a \sqrt{1-\lambda}) . \tag{B.9}
\end{align*}
$$

Transition from eq. (B. 7) to eq. (B. 8) was made by use of Magnus and Oberhettinger ${ }^{61}$. By a completely analogous approach, we also show that

$$
\begin{equation*}
\int_{b}^{\infty} d y \int_{0}^{\infty} d x f(x, y) \leq Q(\sqrt{\lambda \rho}, b \sqrt{1-\lambda}) \tag{B.10}
\end{equation*}
$$

Therefore, substituting into eq. (B. 5),

$$
\begin{equation*}
E_{M}^{s} Q(\sqrt{\rho}, a \sqrt{1-\lambda})+Q(\sqrt{\lambda \rho}, b \sqrt{1-\lambda}) \tag{B.11}
\end{equation*}
$$

and we have the desired result. If now, an error $E_{M} l e s s$ than \in were specified, for a given ρ and λ, we could choose a and b such that

$$
\begin{align*}
& Q(\sqrt{p} ; a \sqrt{1-\lambda}) \leq \frac{\epsilon}{2}, \\
& Q(\sqrt{\lambda p}, b \sqrt{1-\lambda}) \leq \frac{\epsilon}{2} . \tag{B.12}
\end{align*}
$$

These equations can be numerically solved separately for $a(p, \lambda)$ and $b(p, \lambda)$ by means of tables ${ }^{50,51}$ if \in is not extremely small. If e is extremely small however, we can use some asymptotic formulas for Q(Ref. 25, p. 154, eq. (3.16)) to obtain a and b. The approximation to P_{c} then proceeds according to eq. (B. 3).

Now let us consider a bound on the error in approximating P_{c}^{\prime}. From eq. (4.34),

$$
P_{c}^{\prime}=(1+\lambda) \exp (-\rho / 2) \int_{0}^{\infty} \int_{0}^{\infty} x y \exp \left(-\frac{1}{2}\left(x^{2}+y^{2}\right)\right) I_{0}(\sqrt{\rho(1+\lambda)} x) J_{0}(\sqrt{\lambda} x y)
$$

$$
[1-q(\sqrt{\lambda} y, x)]^{M-1} d x d y
$$

$$
\begin{equation*}
\equiv \int_{0}^{\infty} d x \int_{0}^{\infty} d y g(x, y) \tag{B,13}
\end{equation*}
$$

where $\rho=E / N_{d}$. We approximate P_{c}^{\prime} by

$$
\begin{equation*}
\int_{0}^{a} d x \int_{0}^{b} d y g(x, y) \tag{B.14}
\end{equation*}
$$

with an error .

$$
\begin{align*}
& E_{M}=\left|\int_{0}^{\infty} d x \int_{0}^{\infty} d y g(x, y)-\int_{0}^{a} d x \int_{0}^{b} d y g(x, y)\right| \tag{B.15}\\
& =\left|\int_{a}^{\infty} d x \int_{0}^{b} d y g(x, y)+\int_{0}^{\infty} d x \int_{b}^{\infty} d y g(x, y)\right| \\
& \leq \int_{a}^{\infty} d x \int_{0}^{\infty} d y|g(x, y)|+\int_{0}^{\infty} d x \int_{b}^{\infty} d y|g(x, y)| . \tag{B,16}
\end{align*}
$$

Now

$$
\begin{align*}
& |1-q(\sqrt{\lambda} y, x)|=\left|\int_{0}^{x} u \exp \left(-\frac{1}{2}\left(u^{2}-\lambda y^{2}\right)\right) J_{o}(\sqrt{\lambda} y u) d u\right| \\
& \quad \leq \int_{0}^{x} u \exp \left(-\frac{1}{2} u^{2}\right) d u \exp \left(\frac{1}{2} \lambda y^{2}\right) \\
& \quad=\exp \left(\frac{1}{2} \lambda y^{2}\right)\left(1-\exp \left(-\frac{1}{2} x^{2}\right)\right) \leq \exp \left(\frac{1}{2} \lambda y^{2}\right) \tag{B.17}
\end{align*}
$$

Therefore

$$
\begin{align*}
& |g(x, y)| \leq(1+\lambda) \exp (-p / 2) x y \exp \left(-\frac{1}{2}\left(x^{2}+y^{2}\right)\right) I_{0}(\sqrt{\rho(1+\lambda)} x) \\
& \quad \exp \left(\frac{1}{2}(M-1) \lambda y^{2}\right)=g_{1}(x) g_{2}(y) \tag{B.18}
\end{align*}
$$

a separable bound function. Substituting in eq. (B. 16),

$$
\begin{equation*}
E_{M} \leq \int_{a}^{\infty} g_{1}(x) d x \int_{0}^{b} g_{2}(y) d y+\int_{0}^{\infty} g_{1}(x) d x \int_{b}^{\infty} g_{2}(y) d y \tag{B.19}
\end{equation*}
$$

These integrals are easily carried out and yield

$$
\begin{align*}
& E_{M} \leq \frac{1+\lambda}{1-(M-1) \lambda} \exp (\lambda \rho / 2)\left\{Q(\sqrt{\rho(1+\lambda)}, a)\left[1-\exp \left(-\frac{1}{2} b^{2}(1-(M-1) \lambda)\right)\right]\right. \\
& \left.\quad+\exp \left(-\frac{1}{2} b^{2}(1-(M-1) \lambda)\right)\right\} ; \tag{B.20}
\end{align*}
$$

if $\lambda<1 /(M-1)$. Since both terms are positive, they must each be small in order for the error to be small. Therefore $b^{2}(1-(\dot{M}-1) \lambda) \gg 1$, and we have as a good approximation (and still an upper bound),

$$
\begin{equation*}
E_{M} \leq \frac{1+\lambda}{1-(M-1) \lambda} \exp (\lambda \rho / 2)\left\{Q(\sqrt{\rho(1+\lambda)}, a)+\exp \left(-\frac{1}{2} b^{2}(1-(M-1) \lambda)\right)\right\} . \tag{B.21}
\end{equation*}
$$

A more accurate bound may be obtained if the last inequality in eq. (B. 17) is not used. A sum of terms involving Q functions appears instead of eq. (B. 20).

If again $E_{M} \leq \epsilon$ is required for a given ρ, λ, and M, the two parts of eq. (B. 21) may both be set less than $\epsilon / 2$ and solved separately for a and b.

The alternating character of J_{0} has been suppressed twice in the derivation above. Therefore, the bound of eq. (B. 21) may be quite weak.

APPENDIX C

DERIVATION OF LIMITING BEHAVIOR OF MARY RECEPTION

We wish to investigate, from eq. (7. 10),

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \Phi^{M-1}\left(x+\sqrt{\frac{2(1-\lambda)}{r} \ln M}\right) \equiv \lim _{M \rightarrow \infty} f(x) . \tag{C.1}
\end{equation*}
$$

To this aim, we notice that

$$
\ln f(x)=\frac{\ln \Phi\left(x+\sqrt{\left.\frac{2(1-\lambda)}{r} \ln M\right)}\right.}{\frac{1}{M-1}} \rightarrow \frac{0}{0}
$$

as $M \rightarrow \infty$. Applying L'Hospital's rule, eq. (C. 2) becomes, after regrouping,

$$
\begin{equation*}
-\frac{(M-1)^{2}}{M} \frac{1}{M^{\frac{1-\lambda}{r}}} \frac{\left(\frac{1-\lambda}{r}\right)^{1 / 2} \exp \left(-\frac{1}{2} x^{2}-\sqrt{\frac{2(1-\lambda)}{r} \ln M} x\right)}{(2 \ln M)^{1 / 2} \Phi\left(x+\sqrt{\frac{2(1-\lambda)}{r} \ln M}\right)}, \tag{C.3}
\end{equation*}
$$

which approaches

$$
\left\{\begin{array}{ccc}
-\infty & \text { if } & r>1-\lambda \tag{C.4}\\
0 & \text { if } & r<1-\lambda
\end{array}\right\}
$$

That'is,

$$
\lim _{M \rightarrow \infty} \ln f(x)=\left\{\begin{align*}
-\infty, & r>1-\lambda \tag{C.5}\\
0, & r<1-\lambda
\end{align*}\right\},
$$

$$
\quad \underset{M \rightarrow \infty}{ }=\left\{\begin{array}{ll}
0, & r>1-\lambda \tag{C.6}\\
\lim _{M}(x) & r<1-\lambda
\end{array}\right\},
$$

which is the desired relation. $(\lambda<0$ is impossible in eq. (C.6) as mentioned in section 7.)

For phase-incoherent reception, we must study the functions f_{M}^{\prime} and g_{M}^{\prime} of eqs. (7.21) and (7.16). We have

$$
\begin{align*}
& f_{M}^{\prime}(z, u)=\frac{1-\lambda}{M^{1 / r}}\left(z+\frac{c}{1-\lambda} \sqrt{\ln M}\right)\left(u+\frac{\sqrt{\lambda} c}{1-\lambda} \sqrt{\ln M}\right) \cdot \\
& \exp \left[-\frac{1}{2}\left\{z^{2}+\frac{c^{2} \ln M}{(1-\lambda)^{2}}+\frac{2 c z \sqrt{\ln M}}{1-\lambda}+u^{2}+\frac{\lambda c^{2}}{(1-\lambda)^{2}} \ln M+\frac{2 \sqrt{\lambda} c u \sqrt{\ln M}}{1-\lambda}\right\}\right] \\
& I_{0}\left(c \sqrt{\ln M} z+\frac{c^{2} \ln M}{1-\lambda}\right) I_{o}\left[\left(\sqrt{\lambda} z+\frac{\sqrt{\lambda} c}{1-\lambda} \sqrt{\ln M}\right)\left(u+\frac{\sqrt{\lambda} c}{1-\lambda} \sqrt{\ln M}\right)\right] \\
& z>-\frac{c}{1-\lambda} \sqrt{\ln M}, u>-\frac{\sqrt{\lambda} c}{1-\lambda} \sqrt{\ln M} . \tag{C.7}
\end{align*}
$$

As $M \rightarrow \infty$, the arguments of the I_{0} functions tend to infinity, but using the . fact that

$$
\begin{equation*}
I_{0}(x) \cong \frac{\exp (x)}{\sqrt{2 \pi x}} \text { for large } x^{\prime} \tag{C.8}
\end{equation*}
$$

in eq. (C. 7), we see that, for large M,

$$
\begin{align*}
& f_{M}^{\prime}(z, u) \cong M^{-1 / r} \exp \left[\frac{c^{2} \ln M}{2\left(1^{\prime}-\lambda^{-\prime}\right)}\right] \frac{\sqrt{1-\lambda}}{2 \pi} \exp \left[-\frac{1}{2}\left(z^{2}+u^{2}-2 \sqrt{\lambda} z u\right)\right] \\
& \quad z>-\frac{c}{1-\lambda} \sqrt{\ln M}, u>-\frac{\sqrt{\lambda} c}{1-\lambda} \sqrt{\ln M} . \tag{C.9}
\end{align*}
$$

Eliminating c by eq. (7.15), and allowing M to approach infinity, we have

$$
\begin{equation*}
f_{\infty}^{\prime}(z, u)=\frac{\sqrt{1-\lambda}}{2 \pi} \exp \left[-\frac{1}{2}\left(z^{2}+u^{2}-2 \sqrt{\lambda} z u\right)\right], \text { all } z, u . \tag{C.10}
\end{equation*}
$$

Also, we have.

$$
\begin{align*}
& g_{M}^{\prime}(z, u)=\left[1-Q\left(\sqrt{\lambda} u+\frac{\lambda c}{1-\lambda} \sqrt{\ln M}, z+\frac{c}{1-\lambda} \sqrt{\ln M}\right)\right]^{M-1}, \tag{C.11}\\
& \quad z>-\frac{c}{1-\lambda} \sqrt{\ln M}, \quad u>-\frac{\sqrt{\lambda} c}{1-\lambda} \sqrt{\ln M} . \tag{C.12}
\end{align*}
$$

Now

$$
\begin{equation*}
Q(\alpha, \beta) \cong \sqrt{\frac{\beta}{2 \pi \alpha}} \frac{\exp \left(-\frac{1}{2}(B-\alpha)^{2}\right)}{B-\alpha} \tag{C.13}
\end{equation*}
$$

if $\beta \gg \dot{a} \gg 1$ (Ref. 25, p. 154, eq. (3.16)). Therefore

$$
g_{M}^{\prime}(z, u) \cong\left[1-\frac{\exp \left[-\frac{1}{2}(z-\sqrt{\lambda} u+c \sqrt{\ln M})^{2}\right]}{\sqrt{2 \pi \lambda} c \sqrt{\ln M}}\right]^{M-1} \quad \text { for large } M
$$

subject to eq. (C. 12), and

$$
\begin{gather*}
\ln g_{M}^{\prime}(z, u) \cong-M \frac{\exp \left[-\frac{1}{2}\left(z-\sqrt{\lambda} u+c \sqrt{\ln M^{\prime}}\right)^{2}\right]}{\sqrt{2 \pi \lambda} c \sqrt{\ln M}} \\
\cong \frac{-M}{M^{c^{2} / 2}} \frac{\exp \left[-\frac{1}{2}(z-\sqrt{\lambda} u)^{2}-c \sqrt{\ln M}(z-\sqrt{\lambda} u)\right]}{\sqrt{2 \pi \lambda} c \sqrt{\ln M}}, \text { for large } M, \tag{C.15}
\end{gather*}
$$

subject to eq. (C. 12). Using eq. . (7.15), we obtain finally

$$
\lim _{M \rightarrow \infty} \ln g_{M}^{\prime}(z, u)=\left\{\begin{array}{ll}
-\infty, & r>1-\lambda \tag{C.16}\\
0, & r<1-\lambda
\end{array}\right\} \text { all } z, u
$$

or

$$
g_{\infty}^{\prime}(z, u)=\left\{\begin{array}{ll}
0, & r>1-\lambda \tag{C.17}\\
1, & r<1-\lambda
\end{array}\right\}, \quad \text { all } z, u
$$

TABLE OF PROBABILITY OF DETECTION AND CORRECT DECISION FOR PHASE-COHERENT-RECEPTION WITH A THRESHOLD

In this appendix is tabulated the function of eq. (5.34):

$$
\begin{equation*}
P_{c M}(\rho, \lambda, \Gamma)=\int \phi(x) \Phi^{M-1}\left(x+\sqrt{\rho(1-\lambda)} \Phi\left(\frac{\sqrt{1-\lambda} x+\sqrt{\rho}-\Gamma}{\sqrt{\lambda}}\right) d x\right. \tag{D.1}
\end{equation*}
$$

for $\rho=0,1,4,9,16,25,32 ; \lambda=0(0.2) 0.8 ; \Gamma=0(0.5) 8$ (in selected cases); and $M=1,2,3,4,5,6,7,8,9,10,16,32,64,128,256,512$.

$$
\text { (For } \lambda=0 \text {, a more useful form of eq. (D. 1) is }
$$

$$
\begin{equation*}
\left.P_{c M}(\rho, 0, \Gamma)=\int_{\Gamma-\sqrt{\rho}}^{\infty} \phi(x) \Phi \Phi^{M-1}(x+\sqrt{\rho}) d x .\right) \tag{D.2}
\end{equation*}
$$

Thls table was prepared by calculating $P_{c M}$ with an accuracy of approximately $\pm 5 \cdot 10^{-6}$, and rounding off to five places. Therefore an occasional error of one unit in the fifth place occurs. Numerous checks, using the special relations derived at the end of section 5 , showed less than 10 percent of the numbers listed here to be wrong by one unit in the fifth place.

Supplementary values to this table may be obtained from eqs. (5.73) (5. 82), particularly for $\lambda=1 / 2$.

$$
\lambda=0.0 \quad \rho=0
$$

	Γ	. 0.0	. 0.5	1.0
M		.		
1		. 50000	. 30853	. 15865
2		. 37500	. 26094	. 14606
3		. 29167	22313	. 13481
4		. 23438	. 19285	. 12473
5		. 19375°	. 16839	. 11568
6		. 16406	. 14845	. 10755
7		. 14174	. 13206	. 10023
8		. 12451	. 11847	. 09362
9		. 11089	. 10709	. 08764
10		. 09990	. 09750	. 08223
16		. 06250	. 06232	. 05856
32		. 03125	. 03125	. 03112
64		. 01563 .	. 01562	. 01562
128		. 00781	. 00781	. 00781
256		. 00390	. 00390	. 00390
512		. 00195	. 00195	. 00195

$$
\lambda=0.0 \quad \rho=1
$$

$$
\bar{\lambda}=0.0 \quad \rho=4
$$

$\Gamma \quad 0.0$
0.5°
1.0
1.5
2.0

$$
\lambda=0.0 \quad \rho=16
$$

$$
\lambda=0.0 . \rho=25
$$

Γ
0.5
1.0
1.5
2.0

-M				.	
1	1.00000	1.00000	.99997	.99976	.99865
-2	.99979	.99979	.99977	.99959	.99851
3	.99960	.99960	.99958	.99941	.99837
4	.99941	.99941	.99939	.99924	.99324
5	.99922	.99922	.99921	.99907	.99810
6	.99903	.99904	.99903	.99890	.99797
7	.99886	.99886	.99885	.99874	.99784
8	.99868	.99868	.99868	.99857	.99771
9	.99851	.99851	.99851	.99841	.99758
10	.99834	.99834	.99834	.99825	.99745
16	.99738	.99738	.99738	.99733	.99668
32	.99516	.99516	.99516	.99514	.99476
64	.99152	.99152	.99152	.99152	.99138
128	.98588	.98588	.98588	.98588	.98586
256	.97756	.97756	.97756	.97756	.97756
512	.96584	.96584	.96584	.96584	.96584

Γ
2.5
3.0
3.5
4.0
4. 5
5.0

M						
1	.99379	.97725	.93319	.84135	.69147	.50000
2	.99371	.97721	.93318	.84134	.69147	.50000
3	.99362	.97718	.93317	.84134	.69147	.50000
4	.99354	.97714	.93316	.84134	.69146	.50000
5	.99346	.97711	.93315	.84134	.69146	.50000
6	.99338	.97707	.93314	.84134	.69146	.50000
7	.99330	.97703	.93313	.84133	.69146	.50000
8	.99321	.97700	.93312	.84133	.69146	.50000
9	.99313	.97696	.93311	.8413 .3	.69146	.50000
10	.99305	.97693	.93310	.84133	.69146	.50000
16	.99 .257	.97671	.93303	.84132	.69146	.50000
32	.99131	.97615	.93286	.84128	.69146	.50000
64	.98891	.97503	.93252	.84122	. .69145	.50000
128	.98455	.97285	.93185	.84108	.69143	.50000
256	.97714	.96870	.93051	.84082	.69140	.49999
512	.96578	.96115	.92790	.84028	.69133	.49999

$$
\lambda=0.0 \quad \rho=32
$$

$$
\lambda=0.0 . \quad \rho=64
$$

$$
\Gamma^{*}=3.5
$$

1. 00000
1.00000
2. 00000
1.00000
1.00000
3. 00000
4. 00000
1.00000
1.00000
1.00000
1.00000
5. 00000
6. 00000
. 99999
. 99999
.99999

For $\Gamma \geq 4$, the values for all Mup to 512 are identical
Γ
4.0
.99997
4.5
. 99976
5.0 . 99865
5.5
. 99379
6.0
.97725
6.5
.93319
7.0
.84135
7.5
.69147
8.0 . 50000

$$
\lambda=0.2 \quad \rho=0
$$

Γ
0.0
0.5
1.0

M

. 50000	. 30854		. 15865
. 35898	. 24818		. 13962
- 27564	. 20627		. 12456
. 22175	. 17570		. 11235
. 18452	. 15255		. 10226
. 15748	. 13448		. 09378
. 13708	. 12004		. 08655
. 12119	. 10826		. 08033
. 10851	. 09849		. 07492
. 09816	. 09026		. 07017
. 06215	. 05968		. 05062
. 03122	. 03088		. 02869
. 01562	. 01559		. 01517
. 00781	. 00781		. 00774
. 00390	. 00390		. 00390
. 00195	. 00195		. 00195

$$
\lambda=0.2 \quad \rho=1
$$

Γ
0.0
0.5
1.0

M
1
2
3
4
5
6
-7
8
9
10
16
32
64
128
256
512

.84134	.69146	.50000
.68160	.59388	.45414
.57830	.52287	.41702
.50586	.46880	.38627
.45207	.42618	.36034
.44039	.39166	.33814
.37703	.36309	.31890
.34964	.33901	.30203
.32669	.31842	.28711
.30713	.30059	.27382
.23092	.22884	.21662
.14820	.14790	.14488
.09315	.09311	.09253
.05758	.05757	.05748
.03510	.03510	.03509
.02115	.02115	.02115

$$
\lambda=0.2 \quad \rho=4
$$

		Γ	0.0	0.5	1.0	1.5	2.0		
1	M				-				
	1		. 97725	. 93319	. 84134	. 69146	. 50000		
I	2		. 88827	. 86220	. 79466	. 66762	. 49096		
	3		. 82374	. 80712	. 75564	. 64633	. 48249		
	4		. 77390	. 76271	. 72235	. 62716	. 47452		
	5		. 73371	. 72584	. 69350	. 60975	. 46700		
	6		. 70027	. 69455	. 66815	. 59384	. 45988		
	7		. 67180	. 66753	. 64565	. 57921	. 45313		
I	8		. 64712	. 64384	. 62547	. 56570	. 44670		
	9		. 62540	. 62284	. 60725	. 55316	. 44058		
	10		. 60607	. 60404	. 59066	. 54148	. 43474		
-	16		. 52188	. 52123.3	. 51504	. 48488	. 40441		
	32		. 40781	. 40772	. 40616	. 39412	. 34827		
	64		. 30998	. 30997	. 30967	. 30583	. 28407		
1	128		. 22998	. 22998	. 22993	. 22893	. 22029		
	256		. 16704	. 16704	. 16703	. 15681	. 16390		
1	512		. 11910	. 11910	. 11910	. 11906	. 11821		
				$\lambda=0.2$	$p=9$				
		Γ	0.0	0.5	1.0	1.5	2.0	2.5	3.0
	M								
	1		. 99865	. 99379	. 97725	. 93319	. 84134	. 69146	. 50000
	2		. 97055	. 96765	. 95540	. 91788	. 83292	. 68799	. 49897
	3		. 94760	. 94574	. 93634	. 90394	. 82495	. 68463	. 49796
	4		. 92812	. 92686	. 91946	. 89114	. 81739	. 68136	. 49696
	5		. 91115	. 91026	. 90430	. 87931	. 81020	. 67818	. 49597
	6		. 89609	. 89544	. 89055	. 86831	. 80335	. 67508	. 49499
	7		. 88253	. 88204	. 87798	. 85805	. 79679	. 67207	. 49403
	8		. 87019	. 86982	. 86640	. 84842	. 79052	. 66912	. 49308
	9		. 85887	. 85857	. 85566	. 83936	. 78450	. 66625	. 49215
	10		. 84839	. 84816	. 84566	. 83080	. 77871	. 66345	. 49122
	16		. 79806	. 79799	. 79682	. 78762	. 74807	. 64787	. 48588
	32		. 71516	. 71515	. 71485	. 71112	. 68831	. 61400	. 47319
	.64		. 62619	. 62619	. 62613	. 62492	. 61395	. 56556	. 45244
	128.		. 53614	. 53614	. 53613	. 53581	. 53139	. 50405	. 42165
	256		. 44940	. 44940	- 44939	. 44932	. 44781	. 43443	. 38068
	512		. 36932	. 36932 .	. 36932	. 36931	. 36886	. 36316	. 33189

$$
\lambda=0.2 \quad \rho=16
$$

Γ
.0. 0
0.5°
1.0
1.5

M

1	.99997	.99977	.99865	-.99379
2	.99428	.99416	.99332	.98917
3	.98918	.98910	.98845	.98485
4	.98451	.98446	.98395	.98079
5	.98021	.98017	.97976	.97696
6	.97619	.97616	.97582	$.97332-$
7	.97241	.97239	.97211	.96986
8	.96884	.96883	.96859	.96656
9	.96546	.96544	.96524	.96340
10	.96223	.96222	.96205	.96036
16	.94544	.94544	.94535	.94430
32	.91291	.91291	.91289	.91246
64	.87066	.87066	.87066	.87052
128	.81904	.81904	.81904	.81900
256	.75933	.75933	.75933	.75932
512	.69348	.69348	.69348	.69348

$\Gamma \quad 2.0$
2.5
3.0
3.5
4.0

M

1	.. 97725	. 93319	. 84134	. 69146	$\cdots .50000$
2	. 97383	. 93118	. 84045	. 69117	. 49993
3	. 97056	. 92921	. 83957	. 69089	. 49987
4	. 96742	. 92729	. 83869	. 69060	. 49980
5	. 96441	. 92542	. 83783	. 69032	. 49974
. 6	. 96150	. 92359	. 83698	. 69004	. 49967
7	. 95870	. 92180	. 83613	. 68976	. 49961
. 8	. 95599	. 92004	. 83530	. 68948	. 49954
9	. 95337	.91832	. 8.3448	. 68920	. 49948
10°	. 95083	. 91664	--- -8.8366	. 68892	. 49941
16	. 93701	. 90716.	. 82894	. 68729	. 49903
32	. 90821	. 88588	. 817.55	. 68315	. 49803
64	. 86844	. 85376	. 79848	. 67562	. 49610
128	. 81816	. 80977	. 76914	. 66266	. 49252
256	. 75903.	. 75487	. 72809	. 64198	. 48615
512	. 69339°	. 69160	. 67587	. 61169	. 47550

$$
\lambda=0.2 \quad \rho=25
$$

Γ
2.5
3.0
3.5
4.0
4.5
5.0

M

1	. 99379	. 97725	. 93319	. 84134	. 691.46	. 50000
2	. 99327	. 97692 .	. 93304	. 84129	. 69145	50000
3	. 99276	. 97060	. 93288.	. 84124	. 69143	. 49999
4	. 99226	. 97628	. 93273	. 84118	. 69142	. 49999
5	. 99177	. 97597	. 93258	. 84113	. 69141	. 49999
6	. 99129	. 97.566	. 93242	. 84107	. 69139	. 49999
7	. 99082	. 977535	. 93227	. 84102	. 69138	: 49999
$\cdots 8$. 99035	. 97504	. 93212	.84097	. 69137	. 49998
- 9	. 98989	. 97474 .	: 93197	. 84091	. 69135	. 49998
- 10	. 98944	. 97444	. 93182	. 84086	. 69134	. 49998
16	. 98686	.97268	. 93094	. 84054	. 6912.6	. 49996
32	. 98082	. 96838	. 92868	. 83971	.69105	. 499.93
64	. 97106	. 96093	. 92451	. 83811	. 69064	. 49986
128	. 95644	. 94893	. 91720	. 83511	.68983	. 49971
256	. 93600	. 93101	. 90517	. 82972	. 68829	. 49943
512	. 90918	. 90621	. 88681	. 82052	. 68543	. 49888

$$
\lambda=0.2-\rho=32
$$

$$
\lambda=0.4 \quad \rho=16
$$

	Γ	0.0	0.5	1.0	1.5	
M				-	-	- ..
1		. 99996	. 99976	. 99865	. 99379	
2		. 98575	. 98564	. 98485	. 98095	
3		. 97364	. 97356	. 97297	. 96972	
4		. 96299	. 96294	96247	. 95968	
5		. 95344	. 95339	. 95301	. 95059	
6		. 94474	. 94471	. 94439	. 94224	
7		. 93675	. 93672	. 93645	. 93453	
8		. 92934	. 92932	. 92908	. 92735	
9	-	. 92242	. 92241	. 92220	. 92062	
10		. 91593	. 91592	. 91573	. 91428	
16		. 88348	. 88347	. 88337	. 88242	
32		. 82559	. 82559 .	-. 82555	. 82509	
64		. 75742	. $75742{ }^{\text { }}$. 757.40	. 75720	
128		. 68187	. 68187	. 68186	. 68178	
256		. 60244	. 60244	. 60243	. 60240	
512		. 52265	. 52265	. 52265	52264	
	*			1		
	Γ	2.0	2.5	- $3.0^{\text {amem }}$	3.5	4.0
M						
1		. 97725	. 93319	. 84134	. 69146	. 50000
2		. 96641	. 92536	. 83674	. 68936	. 49927
3		. 95670	. 91814	. 83240	. 68733	. 49856
-4		. 94787	. 91144	. 82828	. $685737-$. 49786
5		. 93976	. 90518	. 82435	. 68347	. 49718
6		. 93225	. 89928	. 82060	. 68163	. 49651
7		92523	. 89371	. 81700	. 67985	. 49585
8		91866	. 88843	. 81355	. 67811	. 49520
9		91246	. 88340	. 81022	. 67642	. 49457
10		. 90659	. 87860	. 80701	. 67477	. 49394
16		. 87668	. 85356	. 78976	. 66564	. 49040
32		82168	. 80547	. 75457	. 64576	. 48218
64°		. 75536	. 74494	. 70711	. 61660	. 46909
128		68087	. 67469	. 64850	. 57742	. 44980
256		60198	. 59857	. 58164	. 52900	. 42359
512		52246	. 52069	. 51041	. 47362	- 39068

$$
\lambda=0.4 \quad \rho=25
$$

$\Gamma \quad 0.0$

M

1	1. 00000 .	. 99999	. 99996	. 99976 99865
$\cdots 2$. $.99691{ }^{*}$. 99691	. 99689	. 99673	-. .99574
+ arcor 3	. 99408	. . 99408	. 99407	. 99393	99305
4	. 99145	. 99145	. 99144	. 99132	99052
5	. 98898	.. 98898	. 98897	. 98887	98813
6	. 98665	. 98665	. 98664	. 98655	. 98587
7	. 98444	. 98444	. 98443	. 98435	98371
8	. 98232	98232	. 98232	. 98224	98165
9	. 98030	. 98030	. 98029	. 98023	. 97967
10	. 97836	. 97836	. 97835	. 97829	. 97776
16	. 96802	96802	. 96802	96798	. 96758
32	94706	. 94706	. 94706	. 94704	. 94680
64	. 91828	. 91828	. 91828	-. 91827	. 91815
128	. 88110	. 88110	. 88110	. 88110	88104
256	. 83562°	. 83562	. 83562	. 83562	. 83559
512	. 78265	. 78265	. 78265	. 78265	78264

Γ
2.5
3. 0
3.5
4.0
4.5
5.0

$\mathrm{M}:$.	
1	.99379	.97725	.93319	.84134	.69146	.50000
2	.99121	.97523	.93189	.84067	.69120	.49992
3	.98878	.97331	.93062	.84002	.69094	.49985
4	.98648	.97146	.92939	.83937	.69068	.49977
5	.98430	.96969	.92820	.83874	.69043	.49969
6	.98221	.96798	.92703	.83812	.69018	.49962
7	.98021	.96633	.92590	.83751	.68993	.49955
8	.97829	.96473	.92479	.83691	.68968	.49947
9	.97643	.96318	.92371	.83631	.68944	.49940
10	.97465	.96167	.92265	.83573	.68920	.49932
16	.96500	.95340	.91672	.83240	.68780	.49889
32	.94498	.93569	.90342	.82456	.68435	.49780
64	.91697	.91003	.88308	.81177	.67838	.49581
128	.88033	.87550	.85424	.79233	.66862	.49233
256	.83520	.83206	.81624	.76490	.65371	.48659
512	.78243	.78052	.76940	.72883	.63243	.47767

$$
\lambda=0.4 \quad \rho=32
$$

Γ
0.0
0.5
1.0
1.5
2. 0
2.5

M

$$
\lambda=0.6 \quad \rho=0
$$

$\begin{array}{llll}\Gamma & 0.0 & 0.5 & 1.0\end{array}$

1		. 50000	. 30854	. 15865
2		. 32379	. 21876	. 12239
3		. 24046	. 17117	. 10095
4		. 19164	. 14130	. 08652
5	,	. 15948	. 12067	. 07603
6		. 13667	. 10550	. 06802
7		. 11962	. 09385	. 06167
8		. 10640	. 08460	. 05649
9		. 09583	. 07706	. 05219
10		. 08719	. 07081	.. 04854
16		. 05669	. 04789	. 03456
32		. 02945	. 02606	. 02009
64		. 01507	. $013 \overline{380}$	01124
128		- $00764{ }^{\text {. }}$. 00718	. 00612
256		. 00385	. 00369	. 00326
. 512		. 00193	. 00188	. 00170

$\lambda=0.6 \quad \rho=1 m$
Γ
0.0
0.5
1.0

M

1	. 84134	. 69146	50000
2	-. 60924	52640	. 40257
3	. 48812	. . 43323	- 34265
4	41199	. 37198	. 30112
5	. 35900	. 32808	. 27022
6	. 31967	. 29479	. 24612
7	. 28915	. 26854	. 22669
8	. 26466	24720	. 21061
9	. 24451.	22947	. 19703
10	. 22760.	. 21445	. 18539
16	. 16391	. 15682	. 13935
32	. 09891	. 09616	. 08830
64	. 05857	. 0575.3	. 05414
128	. 03418	. 03380	. 03238
256	. 01972	. 01959	. 01901
512	. 01128	. 01123	. 01100

$$
\lambda=0.6 \quad \rho=4
$$

Γ
0.0
0.5
1.0
1.5
2.0
-- M

1	.97725	.93319	.84134	.69146	.50000
2	.80473	.78020	.72045	.61013	.45518
3	.70158	.68525	.64138	.55358	.42199
4	.63033	.61840	.58399	.51089	.39583
5	.57708	.56784	.53968	.47700	.37438
6	.53522	.52777	.50404	.44915	.35631
7	.50113	.49495	.47452	.42569	.34077
8	.47265	.46740	.44951	.40554	.32718
9	.44836	.44383	.42796	.38798	.31516
10	.42732	.42336	.40913	.37247	.30441
16	.34166	.33951	.33092	.30654	.25720
32	.23958	.23874	.23485	.22218	.19313
-64	.16381	.16350	.16181	.15556	.13938
128	.10967	.10956	.10885	.10588	.09727
256	.07213	.07209	.07180	.07044	.06603
512	.04672	.04670	.04659	04598	.04379

Γ
0.0
0.5
1.0

1. 5
2.0
2.5 \qquad 3.0

1	.99865	.99379	.97725	.93319	.84134	.69146	.50000
2	.90954	.90682	.89600	.86342	.78884	.65833	.48309
3	.84778	.84596	.83799	.81199	.74849	.63170	.46888
4	.80069	.79936	.79309	.77139	.71577	.60941	.45660
5	.76280	.76176	.75662	.73798	.68831	.59024	.44577
6	.73121	.73037	.72603	.70969	.66469	.57343	.43607
7	.70422	.70352	.69978	.68522	.64402	.55848	.42729
8	.68071	.68012	.67684	.66372	.62566	.54503	.41927
9	.65995	.65944	.65653	.64458	.60919	.53282	.41188
10	.64140	.64095	.63833	.62737	.50426	.52164	.40504
16	.55965	.55941	.55782	.55051	.52643	.46951	.37214
32	.44615	.44605	.44533	.44151	.42726	.38962	.31860
64	.34596	.34593	.34561	.34372	$.33574-$.31222	.26320
128	. .26178	.26176	.26163	.26073	.25647	.24246	.21025
256	.19384	.19384	.19378	.19337	.19117	.18318	.16290
512	.14083	.14083	.14081	.14062	.13953	.13512	.12284

$$
\lambda=0.6 . \quad \rho=16
$$

$$
\lambda=0.6 \quad \rho=25
$$

Γ
0.0
0.5
1.0
1.5
2.0

M					
.				.	
1	1.00000	.99999	.99996	.99976	.99865
2	.98732	.98732	.98730	.98715	.98624
3	.97645	.97645	.97643	.97631	.97553
4	.96683	.96683	.96682	.96672	.96603
5	.95817	.95817	.95816	.95808	.95746
6	.95026	.95026	.95025	.95018	.94962
7	.94297	.94297	.94296	.94289	.94238
8	.93619	.93619	.93618	.93612	.93564
9	.92984	.92984	.92984	.92978	.92934
10	.92388	.92387	.92387	.92382	.92341
16	.89387	.89387	.89387	.89383	.89353
32	.83973	.83973	.83973	.83971	.83953
64	.77509	.77509	.77509	.77508	.77498
128	.70249	.70249	.70249	.70249	.70243
256	.62516	.62516	.62516	.62516	.62513
512	.54647	.54647	.54647	.54647	.54646

Γ

2.5
3.0
3.5
4.0
4. 5
5.0

M

1	.99379	.97725	.93319	.84134	.69146	.50000
2	.98199	.96680	.92497	.83587	.68849	.49872
3	.97171	.95756	.91757	.83083	.68570	.49750
4	.96255	.94924	.91080	.82615	.68306	.49633
5	.95424	.94163	.90454	.82176	.68056	.49521
6	.94662	.93461	.89871	.81763	.67818	.49413
7	.93956	.92808	.89324	.81372	.67590	.49308
8	.93298	.92196	.88809	.81000	.67371	.49207
9	.92681	.91621	.88321	.80644	.67160	.49109
10	.92100	.91076	.87857	.80304	.66956	.49013
16	.89164	.88305	.85461	.78516	.65864	.48489
32	.83827	.83196	.80927	.75001	.63618	.47360
64	.77419	.76980	.75259	.70416	.60529	.45715
128	.70195	.69905	.68659	.64868	.56591	.43487
256	.62485	.62301	.61437	.58588	.51909	.40677
512	.54631	.54518	.53942	.51881	.46682	.37355

$$
\lambda=0.6 \quad \rho=32
$$

Γ
0.0
0.5
1.0
1.5
2. 0
2. 5

M

		.			.9998	.99920
1	1.00000	1.00000	.99999	.99998	.99987	.99360
2	.99429	.99429	.99429	.99428	.99419	.98857
3	.98918	.98918	.98918	.98917	.98909	.98396
4	.98452	.98452	.98452	.98451	.98444	.97969
5	.98021	.98021	.98021	.98020	.98014	.97612
6	.97619	.97619	.97619	.97618	.9762751	
7	.97241	.97241	.97241	.97240	.97235	.97196
8	.96884	.96884	.96884	.96884	.96879	.96842
9	.96546	.96546	.96546	.96545	.96541	.96506
10	.96223	.96223	.96223	.96223	.96219	.96185
16	.94544	.94544	.94544	.94544	.94541	.94514
32	.91291	91291	.91291	.91291	.91289	.91272
64	.87066	.87066	.87066	.87066	.87055	.87054
128	.81904	.81904	.81904	.81904	.81904	.81897
256	.75933	.75933	.75933	.75933	.75932	.75928
512	.69348	.69348	.69348	.69348	.69348	.69346
	Γ	3.0	3.5	4.0	4.5	5.0
5						

M						
				.		
1	.99605	.98449	.95122	.87633	.74436	.56232
2	.99071	.97972	.94744	.87377	.74295	.56170
3	.98587	.97536	.94392	.87136	.74160	.56110
4	.98142	.97131	.94062	.86907	.74030	.56052
5	.97729	.96753	.93750	.86688	.73905	.55996
6	.97342	.96397	.93455	.86479	.73784	.55941
7	.96977	.96060	.93174	.86278	.73667	.55887
8	.96632	.95740	.92905	.86085	.73554	.55835
9	.96303	.95434	.92647	.85898	.73443	.55784
10	.95989	.95141	.92399	.85717	.73336	.55733
16	.94350	.93600	.91075	.84738	.72743	.55451
32	.91151	.90551	.88393	.82685	.71451	.54811
64	.86970	.86514	.84747	.79782	.69533	.53812
128	.81841	.81510	.80125	.75961	.66883	.52352
256	.75893	.75663	.74620	.71254	.63461	.50360
512	.69324	.69171	.68414	.65789	.59308	.47806

$$
\lambda=0.8 \quad \rho=0
$$

0.0
0.5
1.0

$$
\lambda=0.8 \quad \rho=4
$$

$$
\lambda=0.8 \quad \rho=16
$$

Γ

M

$$
\lambda=0.8 \quad \rho=25
$$

Γ
0.0
0.5
1.0
1.5
2.0

M

1
2
3
4
5
6
7
8
9
10
16
32
64
128
256
512

M

1	. 99379	. 97725	. 93319	84134	. 69146	. 50000
2	. 93833	. 92470	. 88667	. 80441	. 66618	. 48557
3	. 89684	. 88502	. 85099	. 77545	. 64586	. 47366
4	. 86357	. 85301	. 82191	. 75152	. 62876	. 46344
5	. 83578	. 82617	. 79735	. 73109	. 61396	. 45447
6	. 81190	. 80305	. 77608	. 71325	. 60091	. 44646
7	- 79097	. 782.75	. 75733	. 69741	58922	. 43921
8	. 77240	. 76468	. 74057	. 68318	. 57863	. 43258
9	. 75568	. 74839	. 72543	. 67025	56895	. 42648
10	. 74049	. 73358	. 71162	. 65841	. 56003	. 42083
16	. 67083	. 66546	. 64768	. 60302	. 51771	. 39349
32	. 56618	. 56261	. 55006	. 51676	. 44993	. 34820
64	. 46521	. 46292	. 45439	. 43049	. 38006	. 29967
128	. 37298	. 37155	. 36593	. 34934	. 31254	. 25107
256	. 29244	29158	. 28798	. 27679	. 25072	. 20511
512	22477	. 22425	. 22200	21464	. 19665	. 16369

1.00000	.99999	.99996	.99976	.99865
.94308	.94307	.94306	.94292	.94211
.90078	.90078	.90076	.90066	.90001
.86697	.86697	.86696	.86688	.86633
.83879	.83878	.83878	.83871	.83823
.81462	.81462	.81461	.81455	.81412
.79347	.79347	.79347	.79341	.79303
.77469	.77469	.77469	.77464	.77429
.75781	.75781	.75781	.75776	.75744
.74249	.74249	.74248	.74244	.74214
.67230	.67230	.67230	.67227	.67206
.56709	.56709	.56708	.56707	.56695
.46576	.46576	.46575	.46575	.46568
.37329	.37329	.37329	.37329	.37325
.29262	.29262	.29262	.29262	.29260
.22487	.22487	.22487	.22487	.22486

Γ
2. 5
3.0
3.5
4.0
4. 5
5.0

LITTON SYSTEMS, INC. $\left.\right|_{\text {nownice deflioneier ubinatrory }}$
221 CRESCENT STREET, WALTHAM 54, MASSACHUSETTS

$$
\begin{aligned}
& n 61-4-2 \\
& \text { XEROX }
\end{aligned}
$$

UNCLASSIFIED

UNCLASSIFIED

[^0]: All integrals without limits are understood to be over the range of nonzero integrand. Since the set of signals, $\left\{s_{k}(t)\right\}$, is of finite duration, the-integrals are over finite ranges. Wherever it is possible to drop the limits without ambiguity, it will be done.

[^1]: ${ }^{*}$ This integral, being over the range of non-zero integrand, is over the range $(-\infty, \infty)$ in general.
 ${ }_{* * *}^{* *}$ See eq. (6.64) of Ref. 45.
 See Example 6-6. 2 of Ref. 45:

[^2]: *A discussion of.this result, eq. (2.46), with T. G. Birdsall of the Univ. of Michigan prompted him to construct a different proof utilizing a linear transformation. This riethod appears in Cooley Electronics Laboratory Internal Memorandum No. 50 , "Use of TR97 'Tables of d' of M-Orthogonal Signals for the M-Symmetric Case'", Project'03674, May 31, 1961.

[^3]: * \quad.

 Ref. 25, p. 12, eqs. (3.2) and (3.4). A definition differing by a factor of 2 is used here.

[^4]: ${ }^{*}$ Ref. 49, ${ }^{\circ}$ ëq. (4).
 ${ }^{* *}$ Ref. 25, p. 52, eq. (5.7).

[^5]: * Ref. 25, p. 149, eq. (2.18) et seq.

[^6]: Ref. 25, p. 12, eq. (3.5) and p. 15, eq. (3.9).

[^7]: * See eq. (2.17) et seq. of section 2 for an interrelation of this definition with previous definitions.

[^8]: *The answer for $M=2$ and any λ and E / N_{d} is known (Ref. 11, eq. 37); the reason for adding it to the list is as a check on the computations.

