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ABSTRACT 

Formulas for the error probabilities of non-orthogonal M-ary signals 

under optimum phase-coherent and phase-incoherent reception are derived 

in the form of previously untabulated single and double integrals. 

Two modes of reception are considered. In the first, one of M equal 

energy équiprobable signals is known to be transmitted during a baud of T 

seconds and subjected to additive white Gaussian noise. There is no fading 

and only one path is available for communication (no multipath). The re¬ 

ceiver is assumed to be synchronized in time and frequency; that is, the 

delay and doppler shift of the transmitted signals are known. Furthermore, 

reception is on a per-baud basis; that is, decision-making on the part of 

the receiver is based only on the waveform received during the past baud, 

and not at all cn the other bauds. The optimum receiver in this situation 

makes its decision about which signal was transmitted by crossoorrelating 

the received waveform with M stored references and choosing that signal 

corresponding to the largest correlation value. The signal set is not neces¬ 

sarily an orthogonal one; the only restriction is that the crosscorrelation 

coefficients between all the signals be equal. The probability of correct 

decision in both phase-coherent and phase-incoherent reception is derived 

exactly, as a function of the signal-to-noise ratio, the common crosscorrela- 

tion coefficient, and the size of the signal set, M. 

In the second mode of reception, the only difference is that a threshold is 

incorporated in the receiver. If the largest correlation value is less than 

the threshold, a decision is made that no signal was transmitted; if the largest 
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correlation value exceeds the threshold, the signal corresponding to that 

particular correlation value is decided to have been transmitted. Again 

the signal set is not necessarily orthogonal, but has a common correlation 

coefficient. The probability of false detection and the probability of detection 

and correct decision are derived exactly for both phase-coherent and phase- 

incoherent reception as a function of the signal-to-noise ratio, the common 

crosscorrelation coefficient, the size of the signal set, M, and.the thres¬ 

hold level. 
• • 

Tabulation of the single integral encountered in phase-poherent operation 

is presented herein for selected values of signal-to-noise ratio, common cross 

correlation coefficient, the size of the signal set, M, and threshold level. The 
/ 

corresponding double integral for phase-incoherent operation is going to be 

tabulated, but no results are currently available. 
• • 

Applicability of the results to related problems and non-white and non¬ 

stationary noise is discussed, and bounds on performance in such situations 

are pointed out. In addition, limiting behavior of the M-ary systems, both 

phase-coherent and phase-incoherent, are derived for large M under a 

constant information rate constraint. • 
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1. INTRODUCTION 

Tke performance of communications systems employing M-ary signaling 

alphabets in a noisy environment is of paramount importance. Their high 
•• 

capability for information transfer - one of M possibilities - makes them 
% • 

attractive to any potential user of such a communication link. At the same 

•time, however, the immunity of the M-ary communication system to noise, 

the required bandwidth and baud duration of the signals, and the required 

signal-to-noise ratio for adequate performance, measured, say, in terms 

of error probability, must be answered before a decision on their desirability 
*•• • • 

can be made. To complicate the situation, the equipment complexity, and 

the sensitivity of the M-ary system to network tolerances and to unexpected 

changes in noise statistics must be ascertained. The results of this report 

constitute a step towards a solution of these problems. 

Specifically, if during a time interval of T seconds, called a baud, one 

of M equal energy équiprobable signals is transmitted, and subjected to 

additive white Gaussian noise, the error probability of the optimum phase- 

coherent and phase-incoherent receivers for non-orthogonal equally cross- 

correlated signals is derived exactly, as a function of the signal-to-noise 

ratio, the common crosscorrelation coefficient, the size of the signal set, 

M, and the threshold level (if present as in null-zone reception). The condi¬ 

tions assumed are that there is no fading (or at least a slow rate of fading 

compared with a baud duration), one path exists betwèen transmitter and 

r’eceiver-(no multipath) , the recei.ver_is ._synchr_onized_in time and frequency 

with the incoming'signal (the delay and doppler shift of the transmitted signal 

are known to the receiver), and per-baud receiver operation is assumed (all 
« 

information derivable from other bauds is ignored). Despite these assumptions 

the mathematical problem is by no means trivial, due mainly fo the non-ortho¬ 

gonality of the signal set, and although solved approximately for very large 
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signal-to-noise ratios, had never been solved exactly before fbr all 

values of signal-to-noise ratio and signal set size M. 

* • • 

f ' " 

As an application of the results of this report, consider *a situation where 

phase-coherent reception is taking place. Then the optimum crosscorrelatioi^ ^ 
t y X 

coefficient for minimum error probability for an M-size signal set is - ; - , 

This value result’s in lower error probability than orthogonal signals (if all 

other quantities are unchanged). The precise amount of gain in using opti¬ 

mally decorrelated signals rather than orthogonal signals is shown in the pre- 
. , M 

sent report to be merely a scaling of the signal-to-noise ratio by ^ ^ • 

This gain is small for large M, in fact less than 1 db for M > 5. Thus there 

is little point in trying to design optimally decorrelated signals for large M; 

orthogonal signals will perform about as well. 

A more important application comes with respect to the effect of network 

tolerances on M-ary system performance. Although an orthogonal signal set 

is desirable (in fact optimum in phase-incoherent Reception), in practice, 

this is difficult to attain for large M. Thus the crajsscorrelation coefficients 

of the signal set, 'U • .1 . defined (for phase-coherejnt operation) as 

\..= 
ij 

^ si(t) s. .(t) dt 
i 

where E is the common signal energy, will very likely be non-zero and uneqial 

for i / j. However, if all the coefficients for i / j are approximately equal, 

(perhaps by judicious adjustments of the experimental equipment), we may 

put an upper bound on the error probability by pretending that the signals 
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• \ 

’"1 
\ 

are equally crosscorrelated withja coefficient equal to the maximum of the 

set: 

•‘N 

\ = max Í ^ .. 1 
.,. L 1JJ 
1/J 

I 

• \ 
\ • 
« 

.Thus the sensitivity of the system performance to network tolerances shows 

up in the variation of the error probability with \ . We shall in this report 

derive explicitly this relationship involving \ for both phase-coherent and 

phase-«incoherent reception, \yith and without nulKzone reception. (The 

definition of \ in tîie phaseri*icohereyit reception mode differs from that 

above for the phase-coherent mode. ) 

Yet another important application occurs when the bandwidth alloted to 

the communicators is not large enough to support M orthogonal signals, but 
• * 

rather M correlated signals. It still may be beneficial in tertns of error 

rate to increase M, thereby increasing \ for a given fixed bandwidth. To 

answer this question, the minimum crosscorrelation of M signals restricted 

to a given bandwidth must be obtained, after which the present results may be 

applied. Some related comments and results are given in section 8. ^ .. 

\ When the competing noise spectrum is not white, the derivation of the 

error probability becomes unwieldy. However, by an approach analogous 

to that described in the above paragraph, we deduce a bound on performance 

depending on the degree of non-whiteness of the noise. This topic, in addition 

to applications of lhe present results to different problems under more general 

situations, is discussed further in sectiqn 8. There, for example, the effects 
î 

of non-stationary noise, and the minimum tiiœve-bandwidth product for an M 

size signal set are discussed. 

\ 
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The results of this report are due mainly to one artifice, namely 

the elimination of cross product terms in a Gaussian form by an integral 

transform. This technique, commencing with eq./(2. 31) of section 2 might 
t , i 

be fruitfully^àpplied to other problefms involving Gaussian noise where the 

usual technique":of using a linear transformation of the original variables 
• T 

has failed, either by inadequacy of the method, or inability to "guess" 

\ the most general form. 

—In section 2, the error probability for a phase-coherent receiver under '* 

the conditions assumed above is derived. The analysis is carried out in 

detail in that section in order to demonstrate the teclinique which is used to 
m 

derive the rest of the results in this report. Sections 2 and 3 and Appendix 

A are the only places in th.e report where the complete mathematical deriva¬ 

tions for phase-coherent and phase-incoherent reception are carried through. 

The derivations in other sections, being heavily based on these, are in¬ 

complete, for the sake of brevity. Reference to sections 2 and 3 and 

Appendix A may be necessary in some cases. 

In section 3 (and Appendix A) is given the error probability for the phase- 

incoherent receiver. The result is given in terms of a double integral which 

has not yet been tabulated, but which is about to be undertaken. 

t 

In section 4, some comments and heuristic results are presented on the 

. effects of the angles of the correlation coefficients which appear in the phase- 

• ^ncoherent“reception mode. Although these angles have no counterpart in the 

phase-coherent mode of reception, they do affect performance in phase- 

incoherent operation. 



Sections 5 and6 are generalizations, respectively, of sections 2 

and 3, where null-zone reception takes place - a threshold is incorporated 

in the receiver. The results of these sections are in the form of previously 

untabulated single and double integrals. The single integral is tabulated 

in the present report and appears in Appendix D. The double integral is 

a slight generalization of the one appearing in section 3, and is about to 

be tabulated. 

In section 7 (and Appendix C), limiting behavior of M-ary reception 

under a constant information rate constraint is derived as M—>oc. A 
3 

generalization of a result of Turin's is obtained; namely as M-»oc, the error 

probability of both phase-coherent and phase-incoherent receptiorTfriodes app¬ 

roaches zero if the source information rate is less than the continuous channel 

capacity (Ref. 4, p. 324,„eq^(6.multiplied by 1 - X. , where \ is the 

common crosscorrelation coefficient. If the source information rate is greater 

than this amount, the error probability approachès unity. 

** • 

Finally, in Appendix B, bounds on the error of approximating the infinite 

double integrals of sections 3, 4, and 6 by finite double integrals are derived. 

These results are not related to any system performance derivations, and 

nçed not be read except for purposes of numerical computation of the double 

integrals. Bounds of the sort given in this appendix are necessary for any 

numerical work. 

-Although the various sections are titled "Error probabilities, etc. " the 

derivations and equations are actually for the probability of correct decision, 

Pc< These two probabilités are used interchangeably, and are related by 

their sum always being unity. In using the results of these sections, then, 

t 
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I 
the fact must be kept in mind that the error probability is obtained by taking 

1 minus'thê equation given, which is the probability of correct decision. 

One break with-this rule is Appendix D where the title is "Probability of 

Detection and Correct Decision, etc. "»—and the numbers listed are actually 

the probabilities of correct decision. . 

Before getting into the main body of the report, we summarize 
4 

previous work on problems directlyTelated to the present results". Ana¬ 

lysis of binary communication and detection»—beth phase-coherent and phase- 
4-25 

incoherent, has received wide attention , including derivations of error 
• • 

probcilSil’t’ies under fading conditioñ’s, random multipath, and non-white noise. 

Two special results in this group which are intimately related to the present 

work are papers by Helstropi11 and Turin21* where binary phase-ccherent 

and phase-incoherent reception with non-orthogonal signals are considered. 

• For M-ary communication, a number of results for orthogonal signals 
: 3726-29 

are available ’ ’ , whereas for the case of M equal to 4, and special 

• non-orthogonality conditions on the signals, another group of results 
30-33 

exists . And for phase-coherent M-ary communication with the optimum 
1, 2 

crosscorrelation coefficient , some approximate results for the error 

probabilities have been derived^ ^ . However, nowhere has the exact 

derivation of-the error probability for M-ary communication with non- 

ortjiogonal crosscorrelated signals and all signal-to-noise ratios appeared. 
37 

A cursory review of the main problems in this field is given by Turin 

There is no comparison made in the present report between M-ary 

communication systems and binary systems functioning under similar 

conditions. Rather, the derivations of the error probabilities alone áre presented; 

comparisons are reserved for a later study. 

I 
i 
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2. ERROR PROBABILITY FOR PHASE-COHERENT RECEPTION 
« r - ~m tmm- * 

The situation is ás follows: during a baud of duration T seconds, one 
• •• • .. — .* •—. w 

of M equal energy équiprobable signals is known to be transmitted. Before 

reception, the transmitted signal is subjected to additive white Gaussian 

noise. There is no fading (or at least little change in the signal strength 

during the time T; then the present-results hold if the signal-to-noise 

ratio is interpreted as the lotal or current signal strength to nois’e ratio). 

There is no multipath, and the»receiver is synchronized in time and 

frequency. In fact, the synchronization is so exact that one of the receiver's 

M stored replicas of the transmitted signal set is precisely like the incoming 

signal except for amplitude. Even the carrier phases of the received signal 

and one of the stored replicas are equal. (This may be achieved by using a 

phase-locked loop in the receiver). We restrict the receiver to make a de¬ 

cision at tl c end of the baud, based only on the received waveform over the 

past baud (the past T seconds); that is, we consider only per-baud operation. 

The optimum receiver ^ in this symmetric situation makes its decision 

about which signal was transmitted by crosscorrelating the received wave¬ 

form with all M stored references, and choosing that signal corresponding 

to the largest crosscorrelation value. Mathematically, if^t)], k = 1, 2,. . . ,M, 

is the set of signals used for transmission, and n(t) is the additive noise, 

the received waveform is 

Sj(t) + n(t) ’ (2. 1) 

.th . ’ • * 
if the j. signal of the set were sent. Let us assume that signal no. 1 was 

sent. The receiver then computes 

\= j sk(t) [Sl(t) + n(t)]dt, k = 1, 2,. . . , M. (2.2) 

All integrals without limits are understood to be over the range of non¬ 
zero integrand. = Since the set of signals, ^s^it)^ 7'is of finite'duration, the-inte- 
grals are over finite ranges. Wherever it is possible to drop the limits 
without ambiguity, it will be done. * 

- 7 - 
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(The attenuation ç>f the transmission path has not been neglected in the 

above formulation. If the. stored replicas do not have the same amplitude 

factor as the received signals, the quantity will be icaled by the same 

quantity for all k. Since, however, we shall only compare the x^, the-scaling 

does not matter. The attenuation enters the problem through the signal- 

to-noise ratio of the incoming waveform. ) The optimum receiver decides 

that signal j was senfc if 

X. = max (Xj, x^, (2.3) 
J \ 

\ 

Since we have assumed that signal no. 1 was transmitted (without any loss 

of generality), due to the symmetry of the situation, tke probability of correctly 

deciding that signal no. 1 was indeed sent, P , is the probability that 
c 

X, x_, . .. ,x Mathematically, we express this as 
I ¿ M • 

(2.4) 

Now we shall assume that the signal set has equal crosscorrelation coefficients: 

’ E 
(2.5) 

where E is the common signal energy, 

k = 1,2.M. (2.6) 

(If X. = 0, we have an orthogonal signal set. ) 



We imn^ediately have a restriction on the value of X : 

since 

M _ 2 MM 

- dt Í 4 
L k=l 

sk(t) ri I i 
k=1 n=1 

■' \ 

s. (t)s (t)dt 
k n 

= M E• + (M - M)X E > 0, (2.7) 

we must have 

. X >. - 
M - 1 

(2.8) 

1,2 
The upper limit is unity. This lower limit is in fact the optimum value 

for the set of coefficients ig to have for minimum error probability, 

and given M. For general X (still satisfying eq. (2.8) however), eq. (2.2) 

becomes, upon use of eq. (2. 5)-, . 

*i = Etyr 

X, = \ E + y , k = 2, 3.M, • (2.9) 

where we have defined 

y^ = ^8^(0 n(t)dt, k= 1,2,..., M. (2.10) 

Substituting eq. (2.9) into eq. (2.4), 

Pc = Pr(E+y1? VEty2.^ E + yM) , (2.11) 

- 9 - 



• • 

which can be written as 

pc = pr (E(i"-\ ) + Yj >y2.V- (2. 12) 

• MMM*n UMtllllllM *M «Mf«** ■ 

In terms of the joint p. d. f. (probability density function) ply^ y2,. 

of the variables ^y^jwhen signal no. 1 is sent, 

■V 

E(1 -\)+y 
'1 

pc= I dyl i'-'J dV- ayM P(yl'y2.yMK (2'13) 
- 00 

. # -00 

But since the input noise n(t) is Gaussian, the variables must also be 

Gaussian, since eq. (2. 10) is a linear operation. Then if n(t) has a zero mean, 

the|y^ have zero means, and 

-M/2 -- 1 T -1 

p(yl> "-½) = (2ff) ^ exP(-2)C ~ X)- (2.14) 

where y is a column matrix: 

I 

I 

! 
I 

I 

I 

1 = 

M 

i ^ its transpose, M is the matrix of crosscorrelation coefficients 

M =[y y ] , 
~ i J 

* 

(2.15) 

(2. 16) 
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I 
I 
I 
I 

V — 

Mm Ht MMt M •••■<» 

l . 

M ^ its inverse matrix, and M its determinant. The superscript bar in 

eq. (2. 16) is a statistical average over the noise. 

/ 

Before we begin the explicit evaluation of equation (2. 14), a word about 

notation is in order. The autocorrelation function of the noise process is 

defined as • 

R(t) = n(t)n(t+T) 

and the power density spectrum^ as 

(2.17) 

>(£)= £ S(f) = \R(t) e'l2lTfTdT. (2. 18) 

The spectrum then is an even function in frequency f, and the average power 

in the process is obtained by integrating over all frequencies, positive and 

negative: 

R(0) = n2(t) = J S(f) df. (2. 19) 

We shall deal with this double-sided spectrum, rather than the single-sided 

spectrum obtained by "folding" the negative frequencies over the positive 

frequencies. Then if the noise is white of level N watts per cycle per second 

for all frequencies, the correlation function is 

R(t) = Nd 6(t) , (2. 20) 

This integral, being over the range of non-zero integrand, is over the 
range (-00,00) in general. 

See eq. (6. 64) of Ref. 45. 

See Example 6-6. 2 of Ref. 45; 
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where 6(r) is the Dirac delta function. The subscript "d" on is to 

explicitly indicate that a double-sided power density spectrum notation 

is being used, and to distinguish it from the single-sided spectrum level 
$ 

N or N used by other authors. The relation between these quantities is 
o 

M N 

n = íL = -£ 
d 2 2 

(2.21) 

Now we are in a position to evaluate eq. (2. 14). From eqs. (2. 10), 

(2. 17), (2. 20) and (2.5), we have 

y.Yj = 8j(.l) n(t) n(T) d* 

= îî8i(t) sj 

= N Vs.(t) s. 
d J i j 

(r) N 6 (t-r) dt dr 
d 

.(t) dt 

r NE, i'= j 
a 

( 
Then 

\NdE, i/j \. 

1 \ 

\ 1 

M=N ,E 
~ d 

(2. 22) 

(2. 23) 

See, for example, eq. (12) of Ref. 11, eq. (4.10) of Ref. 25, or eq. 
(4) et seq* of Ref.* 3. 
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It then follows that 

M (2. 24) 

and the cofactors are given by 

M 
(XdE)M~\l-\)M’Z[\ +(M-2) \ ], p = s 

ps 
-(N E)M-1(1-\)M"2\ 

d P ^ (2.25) 

Substituting eqs. (2. 24) and (2.25) into eq. (2. 14), we obtain, after 

regrouping, 

1/2 

p(y1>y2.yM) = [2irNdE(i-\) ] 

M 

-M/2r i.x 

1+(M -1) X 

M 

exp 
l 

2NdE(l-x>(k=i 
1+(M-1) X 1 yk 

k= 1 

,2^1 

Substituting eq. (2.26) into eq. (2. 13), and defining 

(2. 26) 

u. 
/Ñ E (i.\) 

(2.27) 

we obtain— . ~ E(l-X ) 

00 
N. 

+u. 

V d“i Í - Í 
-oo ••oo 

-M/2 

dV-'duM 
1-X 

1+(M-1) X 

1/2 

ejp 

M 

-'1 I u* 
k=l 

(2. 28) 

13 



We now define a "signal-to-noise ratio" pas 

N 
(2.29) 

This is the ratio of received signal energy over the baud T to the double¬ 

sided spectrum level N^. 

At this point in the derivation, the usual method of completing the 

square, say in u^, and integrating leads us to intractable integrals on 

u ,u , .. . ,uw ,. Our tack instead is to notice that the bád feature of 
1 2 M-l 

eq. (2. 28) is the very presence of the cross-product terms in the exponent, 

and attempt to eliminate them right off! The cross-product terms come 
M 

from the factor 

M \2 

u. (2. 30) 

k= 1 

in the exponent. But we may notice that the square in eq. (2. 30) may be 

eliminated by an integral transform. For example, 

1 2,2 
- 2 0 + ijjy 2a‘ 

h tt' 

dy. (2.31) 

and the in the exponent on the left becomes a ^ in the exponent on the 

right. Thus, 

exp 
1 
2 1 +(M-1) \ 

\fz 
[1 + (M-l) \ ] 

£ 1 = ^ exp [ r^£y] exp G-^l+(M-l)^jy2]dy 

(2. 32) 

- 14 - 
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Notice that this equation holds true, even if \ is less than zero but 

greater than -l/(M-l')/> which has already seen to be mandatory from 

eq. (2. 8). The fact that might be imaginary is no limitation 

eq. (2.32). Now interpreting v 
on 

\ 

M 

k= 1 

^ • 
\ 

\ \ 
• N 

\ (2. 33) 

and employing eq. (2. 32), the exponential terms of eq. (2. 28), along with the 

factor [ 1+(M-1) \] " * , beet :ome 

' M 

Iexp [ ■ i[1 +(M_1) xjy2] JJ exp [-iuk2^uky^dy- (2-34) 
k= 1 

Substituting eq. (2.34) into eq. (2.28), and now completing the square in 

u^, all k, in the exponent, we have 

JpO-M+Uj .. 
00 00 

V í dul f- ■ ■ í du <!u (2,)-M/2^T § 
-00 - 00 ___£.00 

dy 

(2tt) exp [- I y2(l-\)] 

M 

k=l 

exp [- -J (uk- [V y)2]. (2.35) 

We have temporarily "backtracked" to M+l integrals instead of M (eq.( 2. 13)), 

but upon rearrangement of these integrals, eq. (2. 35) becomes 

15 
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00 ■ 00 

V I ^v/^F^PÍ -|y2(l-M] j dUj p; expI-^Uj -s¡Vy)Z] 
-oo -¡»Hr-- N Zn 

/p(l - ^ )1 +UJ 

í. ̂ 4 eXPt y)2ldu2 

M-l 

(2.36) 

and M-l of these integrals can immediately be performed: define 

, , V 1 - x2/2 
<t> (x) = — e 

2it 
(2.37) 

and 

*(x) = \ tf(y)dy. 
- oc 

Eq. (2. 36) then becomes 

00 

(2. 38) 

00 

Pc = ^ dyn| 1 - 0 (y ^1 - \') f du^ if) (u^ - siVy) 
-00 - 00 

fprnTT +vl 

<t>(u2 - í^y) du2 

M-l 

(2.39) 

Allowing for 'the fact thatJX1 may be imaginary, we manipulate the integrals 

on and by defining a new variable of integration 

x = - vT^1 y. dx = du^ . (2.40) 

- 16 - 
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to bring them into the form / y 

\ 

• oo 

J du1 0(u1 -\JT y) C 
- 00 L “ °0» 

ipii-vV+u^-iXV 

<j) (x) dx 

M-l 

(2.41) 

But it may be shown that the lower limit on the integral on x may be changed 

to -oo without any change in the value of the integral. This is due to the fact 

that ^ (x) decays to zero "rapidly enough" as x-£+ oo. Equation (2.41) then 

becomes 

00 

[ dUj ^(Uj-JTy) \ )' + u, J - /Vy). (2.42) 
-oo 

Letting 
V = Uj - JT y, dv = du^, (2.43) 

eq. (2. 42) becomes 

oo-íYy 

T dv 0 (v) ^ (v p( 1 - M) 
-oo-jV y 

00 

= \ dv^(v) $ (v + J p( 1 - \)'), (2.44) 
-Joo 

where once-again it may be shown that the decay of <£ (y)-to'zero for large v 

is sufficient to allow the change in limits. Substituting eq. (2. 44) into eq. 

(2. 39), interchanging integrals, and noticing that the integral on y is unity, 

« - 17 - 



there results 

pc = (v) ®M_1(v ) dv. 

Recalling eq. (2.29), this is 

= (v) v + 
N 

E(l-\) 
N. 

dv. 

(2.45) 

(2.46) 

From this equation, we notice the very interesting feature that the performance 

of an M-ary signal set with crosscorrelation coefficient X. is equal to the 
• • 
performance of an orthogonal M-ary signal set with energy E(l-X) . The 

non-zero crosscorrelation coefficient appears merely as a scaling by 

l-\ ! This has been known to-be true for binary communication, and it is 

now shown to be true for M-ary communication. 

Urbano^ has tabulated the integral 

^(a) =’^(v) \v+a) dv (2.47) 

for M = 1, 2, 3,. . . , 18, 19, 20, 25, 30, ; . . ,95, and for a = 0(. 01)0. 1, 

0.1(0.1)3, 3(0.5)5, 5(1)8. Therefore we have, in Urbano's notation 

P = P , 
c M \ \ 

E(l-M 
N. 

(2.48) 

I 

In using eq. (2.48), we must remember eq. (2.8). Thus 

P (max) = P 
c M Nl 

E 
N , 

(2.49) 

A discussion of.this result, eq. (2.46), with T. G. Birdsall of the Umv. of 
Michigan prompted him to construct a different proof utilizing a linear trans¬ 

formation. This method appears in Cooley Electronics Laboratory Internal 
Memorandum No. 50, "Use of TR97 'Tables of d' of M-Orthogtmal Signals 
for the M-Symmetric Case", Project‘03674, May 31, 1961. 

18 - 
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As cheçks on eq. (2. 46), we have the following: for M =2, we have a 

binary situation. Eq. (2*. 46) then becomes (using more explicit notation) 

c2 
Nd 

(2. 50) 

Expressing $ in.integral form according to eq. (2. 38), rotating the coordinates 
o * 

45 , and integrating, eq. (2.50) becomes (see eqs. (5. 51)-(5. 53) ) 

I 

(2.51) 

11 
This results agrees with Helstrom , eq. (13), if we recall eq. (2. 21), and 

note that Helstrom's $ is the error function integral, whereas ours is related 
47 

to the normal probability function 

P(x) 
§ v[2tT ' 
-X 

a 

do 

In fact, from eq. (2. 38), we see that 

1 
$(x) = - [ 1+ P(x) ] 

If E = 0, from eq. (2. 46), 

= j <j> (v) \v)dv = 

and if E = oo, we get 

1 oo 

$ (v) 

M 
M ’ 

- 00 

M- 1 
Pc*= \ 0(v) $ (m) dv = 1, 

(2.52) 

(2.53) 

(2. 54) 

(2.55) 

- 19 - 
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both obvious relations. Also, from eq. (2.46), if 

• • • • • 

BMI» ,r (2. 56) 

?c=K 

= j*(-V 

v) ¢^- 1 I V + 
E(l-\) 

N 

1 - ¢1 - v pIi-M1 
' J N 

> d 

M-l 
dv 

, .1 1 - $ I X - 

i 

«Í <^(x) 

\x'\N 
L. 

d / 

M-l 

1 - (M-l) 9 
E(l-\) 

N. 

i\ 1 

/J 

dx 

dx , (2. 57) 

k+1 
where we use the evenness of and the fact that ® x “ 

E(l-\) 
N 

is 

much smaller than 4> x - for XA/O, which is the only region of 
Nd 

nonnegligible integrand. Using equations (2. 50) and (2. 51), eq. (2. 57) may then 

be written 

P - 1 - (M-l) 9 
c 

'E(l-X. ) 
2N 

d ; 

30 
This result agrees with Helstrom , eq. (19), for \ = 0. 

(2. 58) 

- 20 - 



If the optimum crosscorrelation coefficient is realized, eq. (2. 8), eq. 

(2. 58) becomes . - 

36 

N. 
>> 1, (2.59) 

a result that agrees with Lerner , eq. (15), under a redefinition of symbol?. 

(It appears that ln M in Lerner's eq. (15) should be log^M. ) 

We have seen that P , eq. (2. 46), has been tabulated for selected values 

of M and 
E(l-\) 

N. 
46 by Urbano . However, for M = 2, eq. (2.51) enables _s_fõ 

evaluate P more accurately through the use of normal probability function 
A 7 

tables . Similarly, for M = 3, we may show that (see eqs. (5.66)-(5.69)) 
c2 

P = 2 $ 
c3 

E(l-\) 
2N 

-1 + L 
E(l-\~r /E(l-\]‘ 

2N • V 2Nd 
(2.60) 

where the L function is defined by 

oo oo 

L(h, k, r) = j- == T dx V dy exp 
2 fn? • •. ___ 

, 2X 2 9 1 X -t y -2rxy 
2 . 2 

1 - r 
, (2.61) 

48 
and is very well tabulated. Thus for M = 2 and 3, we may evaluate the 

• C’..' «*• • 

probability of error very accurately. " “ 

26 
- - it is interesting to note that Lawson and Uhlenbeck (p. 173, eq. (58c)) 

derive an approximate expression from the probability of correct decisión for 

orthogonal signals and phase-incoherent reception, and arrive at a form identical 

with our eq. (2. 46). In thé next section, we shaíí~derive-an-exact-expression for 
» 

this probability of correct decision in phase-incoherent operation. 

. - - * %. " - 21 - 



% 

„ 3. ERROR PROBABILITY FOR PHASE-INCOHERENT RECEPTION 

t 
• 

The only cjifference in the situation to be considered in this section from 

that in the previous section is that the carrier phase of the narrowband incoming 

signal is not known, or no attempt is made to track the carrier phase. Except 

for this carrier phase, however, the exact shape of the signal component of the 

incoming wave is known (except of course, for amplitude, which is not important, 

as in the previous section). Again, one of M equal energy équiprobable messages 

is known to be transmitted for a time duration of T seconds; the receiver, on the 

basis of the received waveform for the past T seconds (synchronized) is required 

to make a decision as to which signal was transmitted. 

Before getting into the optimum receiver structure, we introduce complex 
40, 25 

notation which will prove to be extremely.useful. A complex narrowband 

signal 4/(t) is constructed from a real narrowband deterministic signal s(t) 

by deleting the negative frequency components of s(t) and doubling the magnitude 
$ 

of the positive frequency components. Then • '* 

s(t) = Re [*(t)j . (3.1) 

where Re j ^ denotes the real part of | . Since ^(t) has a single-sided 

spectrum (by construction) centered, say, at f^, we express 

i|/(t) = £(t)e 
iZirf t 

o 
(3.2) 

* 
Ref. 25, p. 12, eqs. (3. 2) and (3. 4). A definition differing by a factor 

of 2 is used here. 

. • 
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where i (t) then has a spectrum centered at zero frequency. Substitution 
>s 

of eq. (3. 2) into eq. (3. 1) yields 

s(t) = Re Ê(t)e 
iZirf t 

o (3.3) 

In a similar way, ^ it is possible to construct a complex noise process r|(t) 

from the real noise process n(t) such that the power density spectrum of T)(t) 

is confined to positive frequencies. (Here we truly have a single-sided 

spectrum. ) Again, if the spectrum of Tl(t) is centered at f^, we express 

iZirf t 

Tl(t) = V (t) e (3.4) 

to obtain a power density spectrum for v(t) which is centered at zero frequency. 

_ ** 
Then 

n(t) = Re ^ V (t) e 
i2irf t 

o (3.5) 

Now let us assume that signal no. 1 was transmitted (without loss of 

generality). The received waveform in the absence.of noise is then 

RM £ ^)6 
i(2irf t + 0) 

o (3.6) 

where 0 is an unknown angle (carrier phase), with a p. d. f. (probability density 
• 43. 

function) uniformly distributed over a Ztt interval. The optimum receiver in 

*Ref. 49,’eq. (4). 

Ref. 25, p. 52, eq. (5.7). 

• ......... 
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this symmetric situation is then one which computes the quantities '/ 

¡jíOe^i v(t)J 11 21 • • • i (3.7) 

and decides on that signal corresponding to the largest as having been 

sent. The quantity z is proportional to a sample of the envelope of the out- 
K jij 

put of a filter matched to the signal, àt the end of the baud. Since we have 

assumed signal no. 1 transmitted, the probability of correctly deciding that 

signal no. 1 was in fact sent, P^, is the probability that z^z^, . 

Mathematically, this is 

pc = Pr(zl,r Z2.V 

dzMpi(zr z2' 
(3.8) 

where p^ is the p.d.f. of the set of random variables w^en signal no- ^ 

is sent. 

In order to evaluate this probability, we note from eq. (3. 7) that the complex 

Gaussian noise v (t) undergoes a linear tTansformation. Therefore the real and 

imaginary partè of the transformed quantities must be Gaussian, and it remains 

to evaluate the matrix of correlatiorl coefficients of these transformed quantities 

to determine their p.d.f;, and relate it-to-p. of eq. (3.-8). 

*Ref. 25, p. 149, eq. (2. 18) et seq. 
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To this aim we first express eq. (3. 7) as 

(379) 

At this point, we make an assumption about the signal set, namely that 

(3. 10) \.2E, j / k, X. real and non-negative. 

If \ = 0, we have an orthogonal signal set. Eq. (3. 10) is rather a restrictive 

assumption since it tacitly assumes that the angles of the complex quantities 

(3. 11) 

are all equal to zero. However, we shall discuss this item more fully in 

section 4, and give a heuristic argument (not a proof) that, for a given 

magnitude of the quantities in eq. (3. 11), this assumption realizes the 

minimum error probability, over all possible angles. In addition, the 

maximum, error probability is also derived, for a given magnitude of the 

quantities in eq. (3. 11), and over all possible angles-. Further relevant 

comments on this topic are made in section 4. 

In eq. (3. 10), 

(3. 12) 

Also 

(3. 13) 

Ref. 25, p. 12, eq. (3. 5) and p. 15, eq. (3.9) 
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If n(t) is white Gaussian noise of ïêveÎ’N watts per cycle per second 
4 U 

for.,^11 frequencies, we have that 

^:-vtEr= o, 

and 

v(t) v(t - t) = 0, 

v(t)v U-t) = 4N 6(r). 
U 

(3. 14) 

Then in eq. (3. 9), we express the transformed process v (t) as 

£ (t) V (t) e l9dt = xk + iyk» k = 1, 2, . .., M, (3. 15) 

where |and are real Gaussian variables (see section 4, eq. (4.8) 

et.seq.). 

Using eqs. (3. 14) and (3. 10), .we obtain 

xk ;.7k =.. °: 

X? = yj = 4N E, 
k k d 

X y = 0, k = 1, 2, . . . , M, 
lx 1C 

(3.16) 

and 

X, X 
k m Vm = 4NdEV' k ^ m' 

yVXrY, = XVyr^ = 0’ k ^ m* Km km 
(3. 17) 

See eq. (2. 17) et seq. of section 2 for an interrelation of this definition 
with previous definitions. 

>!<* 
Ref. 25, p. 55. 
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But eqs. (3. 16) and (3. 17) indicate that all the xk's are independent of all the 

yk's. Therefore the joint p. d. f. p2 of the variables |xk j and jyk j is 

p2(x., x2,..., xM, y 1( y2, ..., yM) = V ‘ ‘ ‘ ’ XM) P4(y 1’ y2.V’ (3' 18) 

where p^ and p4 are respectively the joint p. d.f. 's of the random variables 

^xk and ^yk j . But from eqs. (3. 16) and (3. 17), the statistics of 

and ■ Yjç I are identical. Therefore 

.V = p3(yi,y2’•••,yM): 
(3.19) 

in words, if the p. d.f. p3 of |xkj has been obtained, the p. d.f. p4 of 

is immediately obtained by replacing ^y ^yk ^ 

comparison 

. But a 

of eqs. (3. 16) and (3.\7) Wlth ecl- (2-22) indicates that the p. d. f. 

P3 ca-n be written down immediately, using eq. (2.26) as a guide: 

P3(x1,x2, ...,xM)= [ 2ir 4N¿ E (1 - X. ) ] 

-M/2 1 - \ 

1 +(M-1)\_ 

1/2 

exp 

M 

1 

2 • 4N E (1 - X. ) ] ¿ k 1 +(M-1) \ 

d 1 k=i 

VI 
:, V 

J -J 

(3.20) 

Now we are prepared to relate eqs. (3. 18), (3. 19), and (3. 20) to eq. (3. 8). 

From eqs. (3. 9), (3. 10), (3. 13) and (3. 15), 

= (2E + x^2 +• y2 , 

z = (\ 2E + X ) 4 y , k = 2, 3, . . . , M. 
k k k 

( 3*. 21 ) 
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Defining 

we have 

zf = uf + yf . k = 1, 2,..., M 
k k k 

Uj = 2E+ Xj, 

u = \ 2E + X, , k = 2, 3,..., M ,• 
k k 

(3.22) 

Therefore since the 

(3.23) 

i 

•|u^ are independent of the j * eq* (3. 8) becomes 

PC = Pr<zi>z2."m1 

00 

' .ÍÍ dUldyl J.) • " J dU2dy2 • • • duMdyM p5(ul'u2.UM)p4(yl'y2.yMK 
-co C C ' 

(3.24) 

where is the joint p. d.f. f. of ’ ant^ ^ ^^uk^k ^°r ^ ^ ^ denotes 

/2 2^ 
yuj +y^ centered 

at the origin. But from eqs. (3. 19) and (3.22), we may write this as 

a double integral in u , y space within a circle of radius 
In In 

oo 

ViTdUldyl i.f ••• [Kdy2-duMdyMP3<V2- U2A2E.UM'V2E) 
-00 

P3(y1.y2.---.yM). (3.25) 

where p^ is given by eq. (3.20). Substituting eq (3.20) into eq. (3.25) and 

simplifying the exponent, we obtain 
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/ 
/ P = 1 - \ -M 

c 1 + (M-l ) \ [2^4NdE(l - \ ) J exp(-E/2Nd)'. 

N 

eo 

1 ídUldyl lí' • • ,îi du2dy2- ' ' duMdyM 
exp 

-oo C 

r m 

2' 4N E(l- \ ) 
d 

Z . 
k=l 

V 

(3.26) 

In Appendix A, this multiple integral is reduced to the following double integral: 

oo oo *''*1 

Pc = (1-\) exp (-E/2Nd) J j'r s exp(- |(r2 + s2) ) ^j • 

M-l 
rs ) [1 - Q (J% s, r) J dr ds, __— ——. (3r27) 

where Iq is the zero-th order modified Bessel function of the first kind, and 

oo 
■ r 12 2 
Q (a,3) = J X exp (- - (x + a ) ) lQ(ax)dx (3.28) 

0 

is the-Q-function bf Marcum5, 6 and is’tabulated. 50, 51 Eq. (3.27) is the desired 

result. (It is interesting to compare the form of eq. (3.27) with one obtained by- 

Rice for a different problem. ) 
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Before checking eq. (3. 27) against known cases, it would perhaps be • 

well to discuss the utility of this forqjjjf solution. AlthougJb*.eq. (3. 27) has 

a menacing appearance and has ^apparently not been tabulated, it is fairly 

well suited to numerical computations: given a value of \ and E/N^, it is 

possible to compute simultaneously by means of a double sum, the values of 

P for M = 2, 3, 4, 5, etc. * Since [ 1 - Q( VT1 s, r) ] must be computed for 
c 

M= 2, the other powers of [l - Q( s, r)J can just as easily be computed, 

and simultaneous sums carried for all desired M= 2, 3, 4, 5, etc. This is in 

fact the way in which the tabulation will be carried out; the appearance of M 

only as a power in the expression makes this simplification possible. Contrast 

tne use of eq. (3. 27) with a tabulation of by means of eq. (3. 26), where a 

2M-fold integration is required. To calculate by means of eq. (3.26) is. 

impossible for any reasonably large M where another double integral must 

be added when M increases by one, whereas eq. (3.27) merely requires 

using additional powers while computing the quantity for lower values of M. 

Whereas the analogous result in section 2, eq. (2.46), for phase-coherent 
E 

reception was a function only of rr— (1-X. ), such is not the case here. This 
Nd 

is most easily seen with reference to M = 2, which will be discussed below. 

We will now make several checks on eq. (3.27). For X = 0, the integral 

on s is unity, yielding 

P = exp ( 
c 

oo 

-E/2Nd) jr exp(-r2/2) ijÆ M-1 
rI [ 1 - exp (-r /2) ] dr 

M-1 • oo 

= exp (-E/2Nd) exP(" 

' k=0 ' '0 

k + 1 2. 
-7~r ) I K-) dr 

Í 
The answer for M=2.and any \ and E/N^ is known (Ref. 11, eq. .37); the 

reason for. adding it to the list is as a check on the computations. 
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. exp (-E/2N ) 
M 

M I1-1’’1"1 n ) e?>(E/2nNd)' 
(3.29) 

n=l 

63 28 
which agrees with Turin ,eq. (18),and with Reiger , eq. (9). 

If on the other hand \ / 0, but M = 2, we use the result derived in 

Appendix A, commencing with eq. (A. 12), namely 

oo 

fs exp(- (s2 + c2) ) Io(c s) Q(a s, b) d s 

= Q 
a c 

\fT7 /l + a2' 

in eq. (3. 27) to obtain (using more explicit notation) 

(3. 30) 

oo 

c2 
= (1 - \ ) exp (-E/2Nd) ^ r exp(- I-2(1 - ^) )^| 

(E(UM 
N. 

[ 1 - Q(\ X, x)] dx, (3.31) 

-31- 

4 



N ••• 

11 
which agrees with Helstrom , eq. (49). (Helstrom later integrates this 

expression to obtain 

Pc2 3 1 

+ I exp (-E/4N ) I (\ E/4N ). 
n do 

(3.32) 

However we do not use this result right now since we are looking for checks.) 

. If E = 0, eq. (3. 27) becomes 

oo oo 

v(uu.Ç.Î rs exp (-~ (r +s ))1 (/^* rs) [ 1 - Q( \/ ^1 Sir)] drds. • 

0 0 (3. 33) 

But from eq. (3.28), 

-^-(1-0(/^ s, r)] = r exp (- - (r + X. s ) ) I (/k* rs). 
dr ¿o 

(3.34) 

Therefore 

oo f M 

Pc = <.-X, fds s exp(.i,?(l-X)) S'r>J- 

[ 00 

00 

= ^ Ís e,Ip(-l s2<‘-x> >ds = ií ' 
(3. 35) 

which is obviously true. 

-32- 
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In order tõ find lim P , 'for fixed M, -we-not-e-t-hat-s-i-ne-e— 
E-+-00 C 

1 (1 _ z) ’ > 1 - (M-l) z for 0 ¿ z S. 1, (3. 36) 

00 00 

P^O-Mexpl-E/ZNj) xy exp (- j (x^ + y )) I£ 

0 0 

**>• 

[ I - (M-l) Q( ¡V y, x)] dx dy 

= 1 - (M-l) (1 - P J. 
CL 

(3. 37) 

But P —*»1 as E-^oo11. Therefore 
c2 

lim P ^ 1. 
E—oc C 

(3. 38) 

or p —rf-1 as E—*-oc, an obvious relation. 
c . . . 

One further advantage .of eq. (3.27) merits comment: from eq. (3.27), 

we are able to derive the limiting behavior of M-ary phase-incoherent 

communication systems under a constant information rate constraint. This 

is not possible from the general relation, eq. (3.8), where as M-*-oo, the 

number of integrals does also. This limiting behavior is dealt with in 

section 7. 

Since no numericaTcomputation of the double integral of eq. (3. 27) can - 

extend all the way to infinity, it is desirable to know the error realized by 

integrating only over a finite portion of the r, s plane. In Appendix B, a 

bound on this erro” is derived. 



4. EFFECT QF CORRELATION COEFFICIENT ANGLES 
IN PHASE-INCOHERENT RECEPTION 

' In section 3, eq. (3. 10), a seemingly restrictive assumption about the 

angles of the complex crosscorrelation coefficients 

(4. 1) 

was made, namely that they all be zero. It is believed however that this 

assumption about the angles is a most reasonable one to make in that it 

inimum of the error probability for a given E/N^, \ , and M, leads to a 

over all possible angles, and should be studied first. We cannot prove this 

contention about the error probability; we have only some partial results 

fringing on this rather knotty problem. (The situation here is related 

to one encountered by Turin, Ref. 15, pp. 57-62.) 

To begin, let us assume that the complex signals |lk(t)j have complex 

crosscorrelation coefficients:_ 

\ 2E* exp (i0., ). j / k, (4.2) 

where X. is real and non-negative: Notice that the magnitude of the left-hand 

side of eq. (4.2) is the same for all j ^ k, namely X. 2E. Also, the angles 

• • 

\2E exp (-i6.k) = ^*(t) lk(t)dt = ^lk(t)6*(t) dt = \ 2E exp (16^). .(4.3) 
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• \ 
Therefore, •/ 

9., = - 0,.» jy k. 
jk kj 

(4.4) 

In addition, from eq. (3.13), 

9kk = °- 
. (4. 5) 

Now let us return to the place where the angles of the crosscorrelation 

coefficients first appeared to plague us, eq. (3. 7): 

Zk = j^k ^ ^ 1^ dt exp + Ü^k^^ V ^ dt (4. 6) 

Using equation (4. 2), this is 

Zk = 

. 

\2E exp (1 9lk + 1 0) + (t)v(t) dt 

\ 2E + ^k(t)v(t) dt exP ^”ieik" * 
, k = 2, 3,., M. (4. 7) 

Also, 

Zl = 
2E + ^ ^ jit) v (t) dt exp (- i0) (4. 8) 

Now define a new random process v (t) = v (t) exp (-i0) . if we write v(t) 

in terms of a magnitude and angle, 

v(t) = E(t) e 
i<t>(t) (4.9) 
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the actual noise process n(t) is, from eq. (3. 5), 

n(t) = E(t ) cos [ ltd t + <Kt) ] . (4.10) 

But 4>(t) is uniformly distributed over a 2ir interval (Ref. 4, eqs. (9. lb) 

and(9. 26)-). Since 9 is also uniformly distributed, the angle of v (t), 
• • 1 

<t>(t) - 9, is uniformly distributed, and v (t) has identically the same 

statistics as v(t). Thus, v^t) is Gaussian. The integrals in eqs. (4.7) 

and (4. 8) can then be expressed as 

Í (t) v^tjdt exP ("i9lk) = ^ + k = 1, 2,... ,M, (4.11) 

using eq. (4. 5), where jx^ and jy^ are real Gaussian random variable 

Using eqs. (3. 14), (4.2), and (4. 4), we have 

s. 

\ = yk = °‘ 

\ - \ - 4NdE* 

Vk 
0, k = 1,2,. . . ,M, ' — (4. 12)- 

and 

X. X = y, y = 4N E \ cos (9 + 0^,)f k / m, 
k m k m d 1m mk kl 

y X = -X, y = 4N E \ sin(9 + 9 + 9 ), k / m, 
;k m k;m d 1m mk kl 

k,m = 1,2 , . . . ,M. (4. 13) 
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Then since 

2E +x1 +iy^ 

WE + Viyk 
k = 2i 3,.. > M, (4. 14) 

the quantities in eq. (4. 12) and (4. 13) suffice to determine the p. d. f. Pj 

of eq. (3. 8); But the only way that the crosscorrelation coefficient angles 

appear is in the cyclic sum 

1m + 9 u + 91,1 mk kl mk’ 
k,m = 11 2, . M. (4.15) 

These angles^ ^ are the fundamental angles (the only angles) upon which 

the probability of correct decision depends. Notice that we have, using 

eqs. (4. 4) and (4. 5), 

and 

a, s-è k, m=l, 2,..., M.. 
Tkm mk 

With the definition of eq. (4. 15), eq. (4. 13) becomes 

(4. 16) 



..J 

./ 
•T/' 

For M.= 2, from eq, (4;., 16)', 

(4. 18) 

and performance in this case must be independent of 0 -. Substitution of 
1 Cá 

eq. (4. 18) into eq. (4. 17) leads to eq. (3. 17); therefore the results of 

section 3 are always applicable to the caçe M = 2; eq. (3. 10) is no 
11 • 

assumption in this case. Of course, this is known , but we are able 

to demonstrate it without carrying out the detailed evaluation of the 

probability of error for M = 2. 

For M = 3, fr win eqs. (4. 15) and (4. 16;, 

" ^22 " *33 

= e + e 
23 4>. (4. 19) 

Therefore (using explicit notation) can depend only on the cyclic 

sum of eq. (4. 19). However the question remains as to the explicit dependence 

on <(>. We are not able to determine this dependence except for 4> = 0 and ir. 

However we believe these two angles are the two most important values to 

consider, because they lead, respectively, to the minimum and maximum 

error probabilities for any given E/N , \ , and M = 3. Although we cannot 
d 

prove this conjecture, we have three related results (for general M) which 

indicate such is the case. In order to obtain the first result, consider the 

quantity 

d =^1 " Z2^ ^Z1 ‘ Z3^' ^4, 2°) 
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Whenever z is larger than z_ and z , a correct decision is made about 
''1 2 3 0 

which signal was transmitted that particular baud; at the same time, 

(z? - z?) (z? - z?) is positive. However, when either z^ or z, is larger 
12 13 c i . 

than z^, an incorrect decision is made; (z^ 
1 

2 2 2 
Z2^Z1 ” ne8a^ve 

both these instances. When both z^ and z^ are larger than z^ an incorrect 

. . - 2 2 " 2 * "2’ " * * . . , 
decision is made; at such times, (z^ - z^) (z^ - z^) is positive. Ignoring 

the last case for the moment, we see that there is a direct correspondence 
-- -- 2 2 2 2 
between correct decision and positiveness of (z^ - z2^zi " ®ut 8ince 

d is the "average positiveness" of this quantity, the larger d is,the larger 
2 2 2 2 

the quantities z - z and z - z are, on the average. But this latter trend 
1 £ 1 J 

would seem indicative of.an increased proportion of correct decisions, be¬ 

cause the possibility of z or z exceeding z is made less likely. Therefore we 
Ct D A 

are led to believe that maximizing d will lead to maximum probability of 

correct decision. As mentioned abbve, there is one anomolous case where 

increased d can be realized by both z^ and z^ being larger than z^, and 

being made more so. However, the likelihood of this case is e^remely 

small for useful probabilities of correct decision (the probability of this 
-4 . . 

case may be 10 times as large as the probability of correct decision 

in a realistic situation of P , = 0.99). Furthermore, when this unusual 
c3 

case occurs, the amounts by which z^ and z^ exceed z^ will not be large in 

comparison to the amounts by which z^ normally exceeds z^ and Zy and the 

contribution to d is relatively small. Therefore we conclude that the contri- 

bution of thfe anomolous case to d is negligible, and we proceed to maximize 
*• . . . 

d by choice of 4>, in high hopes that maximum probability of correct decision 

.will result. (This paragraph constitutes no proof; it leads to a conjecture 

which should be studied further. ) *, 
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(There is nothing magic about the quantity in eq. (4. 20). It was chosen 

for consideration here because it is-the simplest and most tractable average 

quantity involving both the signals and the noise that depends pn tfr that the 

author could conjure up. The quantity!- z^) (z^ - more difficult 

- — ~2~2 
to deal with mathematically, and quantities like z¡ ~ Z2 ant* z¡ " z2 are 

independent of 4>. ) 

Using eq. (4. 14), we have 

d = [4EZ(1-K 2) t 4E(x[ - * x2) + X2 + y2 - X2 - y^ ]i 

[4E2(1-X.2) +4EIXJ - X.x3) +x2+y2-X2 - y2], ' (4.21) 

where the average is over the product of the two bracket quantities. Using 

the facts that (ref. 4, eq. (7.28) ) 

WjWjWj = 0, 
« • 

and 

W1W2W3W4 = W1W2 W3W4 + W1W3 W2W4 + W1W4 W2W3 ’ 
(4.22) 

if are zero mean Gaussian processes, and eqs. (4. 12), (4. 17), and 

(4. 19), eq. (4.21) becomes, after (tedious but simple) manipulations, 

d = (4ENd)2 [3+4\? + 4 (l-2\2) +• + 4 \3 cos<t>].. 
1 d \ d / d 

(4.23) 
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This is obviously maximized by the choice ¢ = 0. Therefore we 

expect that ¢ = 0 corresponds to maximum probability of correct decision 

for M = 3. . * 

Furthermore, d is minimized by the choice ¢ = ^ (plus and minus 

ir are the same angle). Therefore we expect that minimum probability 

of correct decision for M = 3 is realized when ¢ = ^ (for a given E/N^ 

and \). 

Before we discuss this case further, we wish to generalize eq. (4. 20) 

to larger values of M. A simple generalization is 

M M _ 
õ Õ Ö ~ ** 

(4. 24) 
Si= I I (z' ‘ ^ ' z'-]- 1 m l 

m=2 k=3 
m<k 

By an argument similar to that below eq. (4. 20), we are led to expect 

that maximum (minimum) d^ corresponds to maximum (minimum) probability 

of correct decision.. Using eqs. (4.12), (4.16), (4. 17),and (4. 22), we find 

M M 

= a + b ^ ^ cos ¢^ 
^ " mk 

(4. 25) 

m=2 k=3 
m<k 

where a and b are independent of » ant^ b is a positive constant. But d^ 

is obviously maximized by the choice 

¢ =0 m^k, •m,k>2, 
mk 

(4. 26) 
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and minimized by the choice 

è = it, m / k, m, k> 2. 
mk 

(4.27) 

We are therefofe led,in the general case, to anticipate the following. 

Case 1 

<b , = 0, all m, k 
mk 

minimum error probability. (4. 28) 

Case 2 

<t> =Tr, m/k.m/l.k^l - maximum error probability. (4.29) 
mk 

Let us consider these cases separately. We see from eq. (4. 15) that 

0., = 0, all j, k, (4. 30) 

results in eq. (4. 28), or case 1. But eq. (4. 30) substituted in eq. (4. 2) 

yields eq. (3. 10). (Equivalently, eq. (4. 28) substituted in eq. (4. 17) yields 

eq (3. 17)). Therefore the results of section 3 apply directly to case 1, 

since the probability of correct decision depends only on * and not 

°nienikJ throuSh Knk] )l Thus, eq. (4. 30) is really too stringent 

a condition for the results of section 3 to apply. Equation (3. 27) is actually 

applicable to all cases for which, using eq. (4. 15), 

0 + 9 ,. + 6, , = 0 (mod'2Tr). 
1m mk kl 

(4.31) 

• V 
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Next consider that 

V ^ (4. 32) 

(Plus and minus it are the same angle). Substituting eq. (4. 32) into 

eq. (4. 15), we obtain eq. (4. 29), or case 2. But for this special case, 

as with eq. (4. 30), we can in fact derive the error probability. Specifically, 

if eq. (4. 32) is substituted into eq. (4. 2), we obtain 

* I .(t) £, (t) dt = - \ 2E, j ^ k, \ real, non-negative. 
J K 

(4. 33) 

But this differs from eq. (3. 10) only in the sign of \ , and a study of eqs. 

(3. 11)- (3. 26) and Appendix A shows that eq. (3. 27) is also applicable 

to this case, if in eq. (3. 27), \ is everywhere replaced by - K , and the 

functions suitably interpreted. Explicitly, we obtain 

0C 00 

p' = (1+ \) exp(-E/2N ) W rs exp ( --kr2+s2) ) I 
d J0J 0 2 c 

M-l 

rs) |l - qi^s.rjj dr ds, 

E( l + \ ) 
N. 

(4. 34) 

where the prime on Pc is to indicate that it applies solely for eq. (4. 33), 

case 2. (Absence of the prime means the usual result of eq. (3.27) based 

on eq (3. 10). ) In 

the first kind, and 

on eq (3.10). ) In eq. (4.34), J is the'zero-th order Bessel function of 
o 

ß 

1 - q(a,ß) = ^ X exp (-x2/2) exp (at2/2) 3J(ax) dx 

= 1 - 0(-^ , /3). (4. 35) 
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(As noted by Marcum ’ with respect to Q, q is related to Lommel's 

function of two variables 
52 

l-q(a,j3) = exp (|(o2 - ]3Z) ) iU^-ijS2,a(3) - U2(-ij32, aß ) (4. 36) 

However, we have not used this result. ) 

A bound on the allowable range of \ in eq. (4. 34) obtains, namely 

0< \< 
1 

M-l (4. 37) 

This may be seen in two ways: first the determinant of a matrix of cross¬ 

correlation coefficients must be non-negative (to be elaborated on later) and 

secondly, by an approach analogous to that in eqs. (2. 7) and (2. 8): 

2 

dt = M2E+(M2-M)(-\ 2E) > 0, (4.38) 

where we have used eq. (4. 33). The upper limit in eq. (4. 37) follows 

immediately. 

From the arguments above, and from one to follow later in this section, 

we therefore expect that eqs. (3. 27) and (4. 34) form upper and lower bounds 

respectively on the probability of correct decision: for a given E/N , X. , and M. 
d 
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i 
To partially corroborate this conjecture, P and P were computed 

/ c c 
numerically for E/N^ = 4, \ = l/4, and several values of M, by 

means of eqs. (3. 27) and (4. 34). The results are 

M P 
c 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

1.00000 
.80724 
! 70633 
.63929 

.. 58989 
.55125 
.51982 
.49352 
.47105 
.45153 
.37117 
.27245 
. 19566 
.13783 
.09546 
.06514 

1.00000 
.80724 
.70481 
.63567 
.58385 

(4. 39) 

(The results for M - 1 and 2 can be checked and are correct to five places. ) 

From these numbers (for M > 3) we see that the probability of correct 

decision does indeed depend on the correlation coefficient angles; the 

effect of the angles does not disappear in the error probability, as it 

did for M = 2 .( Notice that eq. (4. 37) must be satisfied. That is the 
! 

reason tabulation of P^ stops at M - 5. ) These results are in the expected 
f w 

order, P > P (this constitutes the second result alluded to above eo. 
c c n 

(4. 20)) . The results for M = 2 are always equal; this may be seen either 

from eq. (3. 32), where it is obvious that the sign of \ is immaterial, or 

from the discussion following eq. (4. 18). 
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There is very* little difference in the probabilities P and P * 
c c 

in eq. (4. 39),occurring only in the third place. The question then 

arises as to the magnitude of the discrepancy between the two proba¬ 

bilities, and its dependence on E/N, \ , and M. A related result 
a 

may be obtained from eq. (4. 23) which becomes, for the above choice 

of values (for M = 3) 

(501 + 4 cos ($>). (4.40) 

Thus only a + 0. 8 d/o variation in d results for changes in ¢, and 

we would expect very little difference between P and p' for M = 3 
c c 

In fact, the percentage difference in the probabilities is 0. 2 d/o from 

eq. (4.39). 

As X—► 1 in eq. (4. 23), 

d^ (4ENd) (7 - 4 jf' + 4 cos <i>). (4.41) 
d d 

It might appear from this result that a great deal of variation in d results 

when <|> changes. However, not all values of 4> are allowed now. Indeed, 

<j) = 0 is the only range allowed. (This result is demonstrated later in this 

section in eq. (4. 84). ) Thus the amount of variation in d may still be 
t 

small, and P^_ and P^ may still be almost equal; we have not investigated 

this behavior any further however. 

(It is appropriate to note here that due to their extreme similarity, 

eqs. (3. 27) and (4. 34) should probably be computed simultaneously for 

a given E/N^, ^ , and M, at least initially, until the magnitude of the 



discrepancy between P and P can be ascertained. The work involved 

in computing P forms such a large part of that involved in computing 
i c 

Pc that excessive duplication of effort would result If the two results 

were carried out at different times. This mode of operation was used 

above in calculations of the results of eq. (4. 39). For purposes of 
f 

numerical computation, a bound on the error in approximating P^ by 

a finite double integral is given in Appendix B. ) 

Now let us determine'explicitly how the fundamental angles appear in 

the probability of correct decision,, eq. (3.8). We use more explicit 

notation now, e9- (4.14), 

= (2E f Xj)2 + y2 , 

zk =(X2E txk)2 +V k = 2,3,...,M. 

Letting 

u1 = 2E + Xj, 

(4. 42) 

(4.43) 

(4. 44) 

u = X. 2E + x^, k=2,3.M, 

eq. (3.8) can be written 

oc 

Pc{*mkV jj duldyl ij ••• ijdU2dy ,. . . du%, dy.4 / 
2 M 

P6<U1’ YV UZ' y2.UM' V' 

(4. 45) 

(4.46) 

where p^ is the joint p. d. f. of the random variables > and 

^ j du^dy^ for k > 2 denotes a double integral in u^, y^ space within a circle 
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t • 

2 . 2 
of radius ]Ju1 + centered at the origin. But if is the joint p. d. f. 

of the random variables | , | , we have from eq^.:. (.4. 44) and (4. 45) 

P6(ur yr U2’ y2.UM’ yM) = p7(ul - 2E,yi,u2-^E,y2.¿M- X 2E, yM). 

(4. 47) 

Accordingly we must determine the p. d.f. p . To this aim, let z be a 
7 ~ 

column matrix 

z = 

M 

(4.48) 

and M be the matrix of crosscorrelation coefficients 

M = 

ylXl ylyl ylX2 yiy2 

XMX1 XMyl XMX2 XMy2 ' .* ’ XMXM xMyM 

L 

X1X1 • Xlyl X1X2 Xly2 • X1XM XlyM 

ylXM ylyM 

yMXl yMyl yMX2 yMy2 * ‘ ‘ yMXM yMyM 

(4.49) 

- 48- 



U 

Then since [\]and iyk] are Gaussian variables with zero means, 

P7(z) = (2tt) 
-M 

M 
-1/2 . 1 T -1 

exP(“2- ~ Z), 
(4. 50) 

-1 
where |mJ is the determinant of M, M is the inverse matrix of M, and 

T z is the transpose matrix of z. Define a general rotation matrix 

R 1 ~mk 

cos 4> 
mk 

sin <j> 
mk 

-sin 4> 
mk 

cos 4> 
mk 

Then using eqs. (4.12) and (4. 17), we obtain 

(4.51) 

M = 4N, E 
~ d 

1 X ~ —12 

\ROI I -21 ~ 

k Rx., k R..« ~M1 M2 

~1M 

k R 
2M 

I 

ä“NdEAM, (4.52) 

where-^is the two-by-two identity matrix. We note that 
* • 

~lk= -kl= ¿ ’ 
(4.53) 

since <|> = è , = 0 by eq. (4.16 ). In order to obtain p_(z), we must invert 
Ik kl < ~ 

M or A... We have not been able to do this in the general case. However, for 

M = 1,2, 3, we have inverted them: 

A"1 = I , .(4.54) 

- 49 - 



A1 = - 
1 - \ 

A 7 ~ 3 
1 - \ 

2 3 
1-3X. +2\ cos<t> 

-\I 

-U 

I 

I 

(4. 55) 

-TT(I~X&» 
l-\ l-\ 

? <5rxi) 
?.x2 ^ ^ 

X TXT 
— (I- X RA) —(R -XI) 

1-X 1-X 
2 ~ 

where we have used eqs. (4. 19) and (4. 53), and defined R = R . (If eq 
Lé J 

(4. 53) were not true, the general inverse of would be 

-1 1-X 

1 -3X 2 + 2X ^cos4> 

-^(r'/.xr'/r J 
2 ~ 12 ~13~23 

1 - \ 

-X .„-1 x„-ln-l. 
-5”(R 17"X^ 2 ~ 13 ^12 ^-23 

1-X 

' V '8,2-< 83,' -X 

1-X 1-X 
■r (R, - XR, R ) 
2 ~13 . ~12~23 

’S >Ï23:X5'U,^ 
1-X 

1-X 
R,,) 2 ~ 2 3 ~ 13 ~ 12 

(We have not needed this fact however. ) 

(4. 56) 

(4. 57) 
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We also have 

= (1-0 

and 

|^| = (1 - 3X. ^ + 2\ ^ cos <|>) 

which are required for eq. (4. 50). In general it appears that 

(4. 58) 

(4. 59) 

1/2 

'M 

1 

\ 

\ 

-it 
X. e 

23 

, "1^2M . 
\e X e 

i<t>. 
, . 23 . 2M 
1 X e ... X e 

i<|> 

1 ... X e 
3M 

(4. 60) 

but this has not been proven. In any event, we do not use eq. (4. 60) for 

M > 3. 

We shall not deal with M = 2 any further because, as discussed in eq. 

(4.18) et seq., the results of section 3 hold regardless of the correlation 
r 'j 

coefficient angles. However, for M > 3, the angles are important 

and do affect the probability of correct decision.. For M = 3, employing 

eqs. (4. 48), (4. 52), and (4. 56), 

T -1 -IT -1 
î/ M z, = (4NdE) z A 3 

1-X 
r 

4N E 
d 1-3X^+2X^ cos 4> 

2 2 2 2 2 2 
X1 + yl + X2 + y2 + X3 + y3 
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2\ (1 - \ cos <t>) 

1 - \ 
(xlx2 + 

2 V (cos <j> - X. ) 

{XZX3 + V}) 

2\ sin <)> , 

“Tz 2yl ' Xly2 + Xiy3' Vl1 

2 X sin <(> 

<X2y3 
(4.61) 

If 4> B 0, this reduces, after regrouping, to 

which agrees with the appropriate parts of the exponent of eq. (3.20). Thus 

the results in section 3 for M = 3 are applicable to the situation where <j> = 0 

(or Í n2ir), and not just to the situation where all the are zero. 

Rather, it is required only that 

e!2+ e23 + 031 0 l°rtn2”l (4.63) 

for the earlier result to hold. (This is a special case of eq. (4. 31). ) 



Using eqs. (4.. 50), (4.52), and (4. 59), p? becomes 

P7(xr V x2’y2’ X3>y3,= 

(2n4N E) 3 (1 - 3\2 + 2\3cos ¢) sxp(- * zTA~1 z), 
2-4N E ~ ~3 - 

d 
(4. 64) 

T . -1 
where z A 3 z is given in eq. (4.61). Substituting into eq. (4.46), and using 

eq. (4.47), we have 

oo 

= jlduldyl If .ff du2dy2 d“3dy3 ,2” ' 4NdE)'3 COS <t>) 

■00 C C 

exp 1 l-X’T 22 2 
2-4N.E . .,2,,.3 f )(ul‘2E) +y1+(u2-\2E) 

d 1- 3X. +2\ cos 4> 

+ y2 + (u3 - \ 2E)2 + y2 

Z\ (1- \ cos <j>) , . 
---( (Uj - 2E)(u2 - \ 2E) + yiy2 + (Uj - 2E)(u3 - \ 2E) + yiy3)) 

1 - \ 

2\ (cos <(> - \ L . _ 
-I-'((u2 - \2E)(u3 - \2E) +y2y3) 

1 — \ 

2\ sin 
+ -- \2E) - y2(Ul - 2E) + y3(Ul - 2E) - y^ - \ 2E)) 

2 \ sin <t> , , 
2~ y3^U2 " 2E^ " y2^U3 " ^ 2E^ ^ 1 " \ w 

(4.65) 

53 - e 
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We have nol: been able to integrate this and reduce it to a form similar 

to eq. (3. 27) except when <j) = 0 or it. However we can show from eq. 

(4. 65) that <j> = 0 and it are local maxima or minima for First, 

is evenlibout <(> = 0; that is 

P ,(-4») = P ,(<!>). (4-66) c 5 CJ 

This may be easily seen by substituting -<|> for (j> everywhere in eq. 

(4. 65) to obtain P ,(-$), and then noting that a change of variable 
c3 

wk = - yk, k = 1,2, 3, (4. 67) 

returns the equation to identically the same form as eq. (4.65). Thus 

eq. (4. 66) is true, and 4» = 0 is either a local maximum or local minimum 

for ?-(<(>)• 
C3 

But P ^(40 is also even about 4» = ir: 

P ,("-4>) = P ,(-* - <t>) = P ,(* + 4>). (4. 68) c3 c3 c3 

the first equality resulting from the periodic character of P^i^)« an(^ 

second equality from eq. (4.66). Therefore 4> = ir is also either a local 

maximum or local minimum for P _(4>). (This is the third result mentioned 
c3 

above eq. 4. 20.) Thus P .(0) and P _(ir) are local bounds, and by the arguments 
c3 c3 

given earlier» we suspect they are actually bounds: 

Pt3 = Pc3(,rKPc3W£Pc3(0)5Pc3' 14'6,l- 
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Not any value of X is allowed in eq. (4. 65). For a given 4>, 

satisfy the following relation: 

2 3 
1 - 3\ + 2\ cos«)) > 0. 

This and more general relations may be easily seen as follows: 

M 
r 

I 
k=l 

< ^(t) dt. 

Then 0 for all [ak^ . But 

M M 

ß = j 2 y i -W dt 
k= 1 n=1 

>|e # 

k n k n 

M M 

= I I \ \nan ’ 
k=l n=1 

where 

_ _ 7 kn 

Then M M 

n 
k=l n=l 

a 7 a > 0 for all 
k kn n ~ fak] 

Defining matrices 

T 
= [a^ a2,...,aM] , 

X = [\n]’ 

\ rpust 

(4. 70) 

consider 

(4.71) 

(4.72) 

(4.73) 

• (4.74) 
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we see that ^is a Hermitian matrix , and ß is its associated Hermitian form. 
r 

But since the Hermitian form is non-negative for all a^, the Hermitian matrix 

7 is non-negative definite. Therefore the principal minors of 7 are all non- 

negative, and in particular, the determinant of 7 must be non-negative: 

'kn 
> 0. (4.75) 

Thus a matrix of crosscorrelation coefficients has a non-negative determinant. 

In our problem, from eqs. (3. 13) and (4. 2), 

? i* =2E’ 

ie 
kn 

7, = 2E X. e , k n. 
kn T (4.76) 

Therefore we must always have 

-iG 
X e 

12 

-i0 
X. e 

1M 

ie 
X e 

12 
ie 

X e 
1M 

> 0. (4.77) 

For M = 3, eq. (4. 70) results, where 4> is defined in eq. (4. 19). Thus, if 

<t> = 0, eq. (4. 70) becomes 

(1-X) ( 1+2 X ) > 0, (4.78) 
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which is always satisfied for 0<. X. £ 1. However, for = tt, we require 

(l + \)2 (l-2\) > 0, (4. 79) 

and therefore wo must have 

2 ' 

(4. 80) 

This corroborates eq. (4. 37) for M = 3, And if 4> = ir/2, we must have 

\ £ 1//T. (4.81) 

So, depending on <J>, X can take on different ranges of allowed values; 

conversely, for a given magnitude of crosscorrelation coefficient, only 

certain <J> are attainable, namely 

cos <t> 
3\ 2-l 

2X3 

Thus if X = 1 - £ , where e - 0, we find 

(4. 82) 

x s . 3 2 
COS 4> > 1 - — £ (4. 83) 

and an extremely small range of 4> is allowed, namely 

4> I <ß £ . (4. 84) 

This result used in eq. (4. 41) indicates that d can indeed change very 

slightly even though X = 1. Roughly speaking, the more alike the signals are 

to each other, as measured by X , the less variation there is allowed on the 

"angle between them'.'. 

tu» • 
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The cases ¢=0 and ¢ = it are actually both attainable in practice, 

and the minimum and maximum error probabilities respectively can be 

realized. To see this, suppose we had at our disposal a set of complex 

orthonormal functions ^f^(tj| defined over an interval of length T. If 

we wanted a set of functions £ ^(t), Ê3M such that 

I e^t) e2(t) dt =. \ 2E, 

j IjIOIjU) dt = \ 2E, 

1 e2(t)e3(t)dt = \ze, (4. 85) 

which corresponds to ()> = 0, we can choose 

e^t) = /2Ë1 fjU), 

e jt) = jï£(\ f,(t) + /i-\2 ut) ), 

e3(t) = /2ë(\ fl(t) + \ f2(t) + y 1 + , -3 
u\ f(l-\) ( 1+2 X. ) 

Ut))_(4.86) 

Alternately, if we desired a set ^¿ich that 

Í eL(t) e2(t) dt = - X2E, 

I « i'11 « * 
i 

(t) dt-= - X 2E, 

e2(t)e3(t) dt= -X2E, (4.87) 
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which corresponds to <(> = tt, we could choose 

S^Os/zEf^t), 

5 it) = fjit) + /)-^7 f2(t) ), 

43(t) -IzSi-x fl(t) - V f2(t) + -S11) >• (4'88) 

if in the last equation *• < -7, which has already seen to be mandatory from 
2 1 

eq. (4.80)7 It is impossible to construct a set for 4> = it if K > 

If M> 3, it is possible, in a manner analagous to eq. (4. 86), to construct 

a set [ £k(t)] which satisfies eq. (4. 28). And it is possible to construct 

a different set which Satisfies eq. (4. 29) if j^TT' 

Therefore the angles ^4> ^ are important quantities in M-ary communi¬ 

cation for M > 3. As witnessed by eq. ‘(4. 39), performance quality varies with 

them. However, we believe we have the bounds on performance (in eq. (4. 39) 

itself for a very special case) and in general, in eqs. (3. 27) and (4. 34), namely 

P < P 
c~ c M-<pc' aUW- (4. 89) 
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5. ERROR PROBABILITY FOR PHASE-COHERENT 

RECEPTION WITH A THRESHOLD 

The mode of operation to be considered here is identical to that of section 

2 except that the receiver is not certain that a signal was transmitted at all. 

However, if a signal was transmitted, it was one of M equal energy équiprobable 

signals. The receiver is prepared to declare one of two situations: either 

there was no signal transmitted, or signal no. j was transmitted. Thus the 

receiver is required not only to detect tha.t a signal was transmitted but also 

to decide which one it was. 

There is another important mode of operation which we shall not investigate 

here, namely where the receiver is not interested in which signal was transmitted, 

but simply in the presence or absence of a signal. Some approximate results 
, 54,55 

on this "interval detection" problem are given elsewhere 

The optimum receiver under the present conditions is one which computes 

the quantities 
43 

k - 1, 2, . . . , M, (5. 1) 

where y(t) is the received waveform and decides 

max 
k 

A 

max 
k 

z < A : r.o signal present 
j 

(5.2) 



X is a threshold, the value of which may be adjusted to minimize the com- 
• * • 

bined cost of the two types of errors, false dismissal of a signal actually 

present, and false detection of a signal not present. To make this choice, 

the costs of each type of error and the a priori probability of signal presence.. 

or absence must be known. We shall not attempt to relate the optimum 

choice of A. to these quantities; rather we will evaluate the probability of 

false detection, P , and the probability of detection and correct decision, P , 
if c 

as a function of _A. , and leave it to the reader to eliminate Á. in his parti¬ 

cular application. From the present results, for example, could be drawn 
10 i 

up a set of Receiver Operating Characteristics , in which ./L would not appear 

Of course, in addition to the parameter p (signal-to-noise ratio), theye are 

now two additional parameters, \ and M. 

Let us proceed first with the evaluation of P_. If p (z,. z_,.. ., z..) is 
r o 1 4 M 

the p. d. f. of the Gaussian random variables jz^j when no signal component 

is present in y(t), (no signal transmitted), the probability of false detection is 

given by 

A 
PF=1- Po(YY--'’2M|dVV-d2M- (5'3) 

-00 

In order to evaluate p^, we use the fact that no signal is present to express 

z^ = ^n(t) s^t) dt, k = 1,2.M, (5. 4) 

where n(t ) is the received white Gaussian noise of level N watts per cycle 
d 

per second for all frequencies (see eq. (2. 17) et seq. ). Then 
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z = 0, 
k 

\ = NdE' 

and 

ZiZk = ^ ^ k’ J 
(5.5) 

where we have used eq. (2. 5). But eq. (5. 5) is identical to eq. (2. 22). 

Using eq. (2. 26) then, we can immediately write 

P0(VZ2.ZU] = l2irNdE(1'M] 
■M/2 1 - \ 

exp 
2N E(l- \ ) 

d 

1 +(M- 1) \ 

/M 

1/2 

1+(M-1) X. 
k= 1 

/ L* 
\k=l 

(5.6) 

Substitution of eq. (5.6) into eq. (5. 3) leads to.an M-fold integral for Pp. By 

means of the method developed in detail in section 2, it is very easy to reduce the 

M-fold integral to the following: 

1 - P. 4>(x) * 
M 

X + 
A 

dx, (5.7) 

where <J) and i are defined in eqs. (2. 37) and (2. 38). This integral is more 

general than Urbano’s , and we do not know of its tabulation. As checks on 
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eq (5. 7), we have 

_/V—00, 1-PF—1, PF—0, 

A^-». i - Pp—> o, Pp-^1- 

*1, 1 - PF—>® 

^ * o, 1 - p — ®M(A/jÑ^), 

all of which are obvious checks. 

(5.8) 

For \ < 0 (but always \ - * ■. ), the argument of ® is complex and 
j M. -1 

® becomes complex. However eq. (5. 7) is still well defined and is in fact still 

real as it must be: the most general argument of Í is a + ibx where a and b are 

real and independent of x. But 

a+ibx 

i(a +ibx) = 4(a) + ^ <{>(y) dy 
a 
bx 

4(a) + i \ —— exp ( - — (a^-u^+ i2u) ) du 
J0 2 

by a change of variable y = a + iu. Then 

bx 

(5.9) 

4(a + ibx) = 4(a) + ^ ^ exp ( - + u2) (sin au + i cos au) du 
0 \ 2ir 

= 4(a) + E(x) + i O(x), (5. 10) 

where E and 0 are real functions, respectively even and odd yi their arguments. 
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Therefore 
v/' 

Re {$(a + ibx)| is even in x, 

Im {$(a + ibx)j is odd in x, (5.11) 

where Im { j denotes the imaginary part of ♦ Therefore it follows that 

j^^(a + ibx)| Re (a + ibx) ( is even in x, 

Im |$^(a + ibx^j is odd in x. 

But since the integral in (5. 7) is from -oo to + oo. and <|>(x) is even, the 

imaginary part is of no consequence. 

(5.12) 

It is curious to note that if X = l/2, eq. (5. 7) becomes 

1 - P. = j*(x) iM / x t 

'/lNdE 

dx = P ! A 
M+l ë 

(5.13) 

\V2NdE 

46 
in Urbano's notation. Thus for X =-1/2, we can look up the answer in 

existing tables. 

Now let us consider thè situation where a signal is present, and without loss 

of generality, let it be signal no. 1. Then from eq. (5. 1) 

z1 = E + \ s j(t) n(t) dt, 

, z, = X E + \ s, (t) n(t) dt, k = 2, 3, ... ,M. 
Í k J k 

(5. 14) 
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Define 

I 

I 
I 
I 
I 
I 
I 
« 
I 

I 

= J sk(t) n(t) dt, k = 1.2,.. . , M. (5.15) 

P The probability of detection and correct decision P is then given by 

Pc = Pr(z1>z2)...,zM; z¡ >A) 

00 z 

j dzl j j\_ iJ.KJ dVdzM Pl(zl'z2.V' (5. 16) 

where is the p. d. f. of the Gaussian random variables z^j . Using eqs. 

(5. 14) and (5. 15), this may be written 

pc = Pr(E+yi> \E + y2. ^ E + yM; 

= Pr(E(l- \) + Yi > y2.yM; y^A-E) 

» E( 1 - \) +Yl 

= J dyl (5-17) 

- A-e -« _ 

I 
I 
I 
I 
8 

where p2 is the p. d. f. of the Gaussian random variables jy/1 , But if we notice 
L *\ ’ 

that eq. (5. 15) is identical to eq. (2. 10), we may immediately write down p2 from 

eq. (2. 26). Substitution of this result into eq. (5. 17), and defining a new variable 

y, 

Uk = 
Vn. E(l. \) 

, k = 1,2,. . . ,M, (5. 18) 

.,...65 - 

I 



yields 

P = 
c - 

00 

1 

E( 1 - X.) 
N, +U1 

du. 

A- E 
í-í 

-00 

l/z 

du. 
duM(2ir) 

-M/2 1 - \ 

1 f (M-l) \ 

exp (5.19) 

Application of the method of section 2 then leads easily to 

00 00 

du p = (1 -M 
c 

1/2 
1 

A-e 
Í d A 
-00 

1 2 
__, exp ( -- y (1- X. ) )• 
¡Zir 

NdE(l- X.) 

1 . i L rr \2 \ _M-1 / / E(l-X.) ' exp ( - ÿu1 -/V y) ) ® 1 ' 
/ 2^ 

- F y + ui). (5-2°) 

Defining a new variable 

V = Uj - 'Ik y, (5.21) 

if X. > 0, and interchanging integrals, there follows, after manipulations, 

E - A 
/ÛTe 

dv. (5.22) 
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This is the desired result. (It may be verified that eq. (5. 22) also holds 

for £ = 0 (\-M)+). It does not apparently hold true when \< 0; however the 

double integral of eq. (5. 20) does hold true for \ < 0). As checks on 

eq. (5. 22), we have the following: 

$ 
M-1 

V + 
e(i-\)|N 

N 
dv, 

which is eq (2.46), as it should be. 

(5.23) 

E —► oe, P —»• 1, 
c 

= —■ Pr(one signal > threshold), 

\-^0, 
„ r 1(, M-1 
?c—4>(v) * 

A- E 

(5.24) 

These are all obvious checks except perhaps for the last one, which is easily 

derived for X. = 0 in a separate derivation. 
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Since the threshold A is arbitrary, as are all absolute levels in this 

report, we define a new threshold * 

(5.Z5) 

to put the two main results of this section, eqs. (5. 7) and (5. 22), into 

th'e form 

yr v + r \ 

/nr J 
dv, (5. 26) 

E(l-M 
N , 9 

/ÜT y - r + yE/Nd' 

IV 
dv, (5.27) 

the latter result for X. ■>. 0. 

It may appear that these two results would have to be tabulated separately , 
M 

since each result has its own special features: the coefficient of v in ® in 

eq (5. 26) is not unity, while eq. (5. 27) has an extra Í function. However, such 

is not the case; both may be obtained from one tabulation. To see this, define a 

function - - 

Ck(or ,/3, 7 Í 4>(x) 
_k. . 
9 (x+a) 4>(/3x -7)dx, (5. 28) 

where a ,ß, and Tare all real. Then immediately 

P 
c 

C 
M-l 

/EO-M’ 

if \>0. Furthermore 

(5. 29) 
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(5.30) 

Ck(0, ß,y) X -7) (|>(x)$ (x) dx 

by an integration by parts, if /3>0. Therefore 

j4>(y) ®k+1 (|- + y) dy = 1 - (k+1) Ck(0,i3 ,7), ß>0. 

Or 

PF= MCM-1(0’ °<X<1- 

(5.31) 

(5.32) 

(Equation (5. 32) may also be shown to be applicable to the range 0 5 X. 5 1, 

in fact, provided the limits are appropriately interpreted. ) Thus both P 
r 

and P can be obtained from the tabulation of one function. If we define a 
c 

signal-to-noise- ratio 

P = E/Nd, (5.33) 

eq. (5.27) becomes, using moré explicit notation, 

dv, (5. 34) 

for \ > 0. Then using eqs. (5. 32), (5. 29) and (5. 34) in that order, we may write 

PcM(>' X ' r> = j 
<Mv) 'a*1'1 (v + (/pd-Mj* 

d -V V - r+Jï 
\ \f\ 

PFM(X’r) = M PcM(°, \ , n for \>0. (5.35) 

* t 
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(This is actually obvious from the physical problem.) Equations (5. 34) and 

(5. 35) are the desired final forms. We have only to tabulate eq. (5. 34) versus 

p; X. , F, a*nd M, being sure to include p = 0 as one of the values.. Tabulation 

of the single integral of eq. (5. 34) is given in Appendix D for p =0, 1,4, 9, 

16, 25, 32; \~ 0(0. 2)0. 8; F = 0(0. 5)8 (in selected cases); and M = 1,2,... ,9, 

10, 16, 32, ..., 512. No values for \< 0 have been tabulated; considering eq. (2. 8) 

however, this is not much loss, at least for large M. 

Now let us consider special cases of eqs. (5. 34) and (5. 35), other than 

eqs. (5. 8), (5. 23) and (5. 24), to obtain what we can in closed form.- These 

results can also serve as checks on the tabulation of eq. (5. 34) in Appendix D. 

As a first case, consider F = 0 in eq. (5. 26). Then 

.M i 1 - PF = \ ct>(v) Í 
ÜT VJ dv - gm(m' 

(5. 36) 

Letting 

rr- a = ta¬ is. 37) 

we write 

*(av) = + f(av), (5.38) 

where f(av) is an odd function in v: 

av 

f(av) = \ 4>(y) dy. (5.39) 

We then immediately have 

0^)= ^(v) v] dv = \ (5.40) 
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i 
I 

Also, 

g2(M = j<t>(v) + f(av) 

= j^v) 

7 
dv 

f (a’v) "dv , (5.41) 

using the evenness of <)>. Also, using eq. (5. 39), 

oo av av 

G2iX)= !+ Ídv^ 

-» 
00 av av 

= ï+21dv *{v) liT I d)ri 1 “P( - Í <vi+ y- 
'0 * "0 

av y oo av 

= ï + 4i dv*,v) 77 Í 1 dy2 «*p( - +y2)) 

oo ^/4 
av 

cos6 

= ï + 4 ^ dV ^ TiT Í d 9 I dr r exp (- r2/2) 

oo ir/4 

T + 4 Í dv *<v> T* £ de — (-i 
^ COS 

oo " ^/4“ 

^ + ^^dv¿"exp("v2/2ll d9exp("t 

2 2 
a y 

2q i cos 0 /• 

1 2 
1/2 

2 ’ 3/2 ir 0 0 

tt/4 » 

■k1 dv exp 1 2 /, X a 
•Iv (1+— 

cos 0 _ 

*/ 4 
1 1 f cos 0 d0 
2 ’ TT J „ ll 2 ' 

■0 ya + cos 0 (5.42) 
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Letting u = sin0, 

G2(1)= ä 

1//2 

i J dU 
o 

1 L . -1 
-- — sin 
Z ir 

1 
-i/a 

_2(l+a ).1, 

Recalling eq. (5. 37), this is 

G2(M- J -- sm I — 

Letting 
. -i nrr 

ß=sm _ 

cos 2ß = 1-2 sin /3 = X , or 0 = ^ cos ^ X = T " 8in ^ 

Then 

G2(X) = j *(v)t2^/_L- v) dvi i + ¿- sin’1 X. 

where 

- — < sin \ — 
2 2 

is the allowed range. 

Continuing, 

G3( = fj 4>(v) + f(av)j 3 dv = ^ + | f2(av) dv 

= 4(g,<M-±) 8 2 V 2' 

= i+ir sin’‘x !, 
using eqs. (5.41) and (5.46), 

dv , 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

(5.47)- 

(5.48) 
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Attempting to push this technique to M = 4 leads to the integral 

oo 

j <|>(v) f^(av) dv. (5.49) 

Proceeding'in a manner analogous to eq.' (5. 42), we obtain, as the analogue 

of eq. (5. 43), 
* 

b b 

11 
/ . £. . ¿ Z 

(5. 50) 
/,. 2 2. 2 

» (1-v )( 1 -w ) -c 

We have not been able to simplify this double integrad. Thus we cannot 

evaluate G (\). (Notice that if G (X ) can be evaluated, so also can G (X ) 
4 2n - 2n+l 

by using the oddness property of f.*) An alternate method of deriving 
• 

eqs.. (5. 46) and (5. 48) is given by Urbano . However it too runs into 

insurmountable integrals for M >4. 

As the next special case, consider M = 1 in either eqs. (5. 26) or 

(5. 27). The basic integral to be dealt with is then 

4 f(a, b) = \ <}>(x)_i (ax_+ b) dx 

00 

-1 
ax+b 

dx . exp ( -x^/2) \ dy exp (-y^/2). 
2tt ‘■i» -oo • 

(5.51) 

Letting V = y - ax, w = ay +x, we obtain 
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b 00 -1 / 
f(a, b) = J dv J dw(l+a2) exp U j 

-00 - 00 \ 

b//l+a2 oo 

17 I dy I ^ exp (- Í(x2ty21) • 

w2+v2 

1+a2 

or 

^>(x) ®(ax +b) dx = ¢/ 
1+a 

(5. 52) 

(5.53) 

(This is a generalization of eqs. (2. 50) and (2. 51).) Thus f(a,b) is not 

a function of a and b separately, but just of the ratio b/ J\+aF. Using 

eq (5. 53) in eqs. (5. 34) and (5. 35), there results 

Pcl(p, \ ,D = 9 [fp'-D (5. 54) 

and 

pf1 (\,n = *( - n = i - *(n. (5.55) 

Actually these results are obvious, and can be derived directly from' the phy¬ 

sical problem with M = 1. 

A somewhat more difficult integral is encountered when we let M = 2 

in eq. (5.26). The basic integral is 

g(a, b) = ^<t>(x)i2(ax +b) dx. (5. 56) 
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We now employ a method of Urbano 
46 

3g(a,b) 
8b = j fix: ) 2 $ (ax +b) 4> (ax + b) dx 

®(ax +b) exp 1 í U* X ab 

'n4 

, ,1b 
dx exp - - 

2 l+a¿ 

4>(y) dy 

(5.57) 

after manipulating, and using eqs. (5. 51) and (5. 53). Then since 

. g(a, - oo) = 0, 

nb 

(5.58) 

g(a,b)= r 
xJ ' W _-«_ 

1 X 

exp|^ ^ 
$ 

ÆIZ_ dx 
1+a ./1 +2a -/ 

/1 '+ aZ 

Í = 2 \ <J)(y) ¢1 

-oo 

dy. (5. 59) 

Now define ß 

h(a , ß) = jj 4>(x) ¢( ax) dx. (5.60) 

-00 

I 

Í 
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Then 

(5.61) 9h(g ,ß) 
da 2n 

exp ( l+a ^)) 

1 + O' 

and since 
1 

h(0,j3) - - ¢(^), (5.62) 

h(a,ß) = j ¢(/3) - 
exp (-/3 /2) 

2it 

O' 

Í 
/ 1 .2 2 

exp ( p X ) 

1 + X 

Collecting eqs. (5. 56), (5. 59), and (5. 63) together, we have 

dx. (5.63) 

00 

-00 

b//l 1+a 
T 

<|>(x) Í^íax + b)dx r- 2 \ 4>(x) ¢/ J=j 
-oo \/l+2a / 

1 
(l + 2a2)'^ 4> 

= ¢1^=^-1 - 24> 

dx 

\/l + a 

1 + X 

dx. (5. 64) 

The most general related integral Gröbner and Hofreiter have is (ref. 56, 

p. 66, .eq. (8a) ) 

Í 
1 i 1 exp ( - - cu ) 

du = ir exp (c/2) $(/?) ¢( - /c) (5.65) 

0 1 u 

in our notation. But for us to use eq. (5. 65), we would require a = 0, a case 

which is immediately integrable from eq. (5.64). Therefore it is doubtful that 

any of the related forms of eq. (5. 64) can be integrated in closed form. However 
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we can relate eq. (5. 64) to an already tabulated integral. The Bureau of 
48 \ 

Standards has tabulated 

00 00 2. 2 

L(h,k, r) = 
2ir fï~-r 

V 
j dx j dyexpf-i xy-) . (5.66) 

h .... k . 
1 - r 

V » 

Eliminating the crossproduct term by means of the device in eq. (2. 31) et seq., 

we obtain 

L(h, k, r) = 1 - 9(h) - $(k) 

Wttt) (5.67) 

But if h = k, there follows 

j <l>(y) $2(/T~- '7' y + /TT r' ) dy = L(k.- k, r) - 1 + 2 *(k). • (5. 68) 

Employing eq. (5.68) in eq. (5.64), there results 

r- 2 -/—b— - b- 
\ 4>(x) 9 (ax -I- b) dx = L , ==ÿ~ . » 
J /1 + a¿ • /1 + a + a 

(569> 

This is a generalization of eq. (2.60). Finally using eq. (5.26), we have 

p_(M=2) = 2 [1 - «(r)] - M r, r, \ ) 
r 

(5.70) 
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s Another special case may be obtained: comparing eqs. (5. 34) and 

(5. 67), we have, for M " 2, \ = — > 
% 2 

pc2(p. j. r) - Ujfp', /p-r, |) -i +« (l/p1) +«(^-n. (5.71) 

The last (very) special case is,using eq. (5.34), 

PcM(P' 7' " J't'('')*M(v + yi72)dv=PM+1(1/i72'). (5.72) 

Due to the mass of details, we summarize here the important results 

and special cases of this section. From eq. (5. 34), the probability of detection 

and correct decision is 

cM 
(p,\ ,r) = J 4>(v) «M'\ V + filTTl) $ & ~-r "j dv, \>0,(5. 73) 

where p = E/N^ is the "signal-to-noise ratio", and F is a threshold.’ The 

probability of false detection is, from eq. (5. 35), 

pFMu.n = MpcM(0. >.r>. xio. (5. 74) 

Tabulation of the integral of eq. (5. 73) for selected values of p,K, F and M 

is given in Appendix D. 

From eqs. (5. 13) and (5. 25), 

pfm<7'rl= (5.75) 
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t • 

From eqs. (5. 36), (5. 40), (5. 46) and (5. 48), 
•* • % 

1 -PF2(X’0>= Sin'‘ X’ 

1 - P ( \ ,0) = 7 + sin 1 K . 
F3 8 ..4ir 

(5.76) 

From eqs. (5. 54) and (5. 55), 

pc1(p. ^ ,r) = ¢( /p1- n, 

p„.(k,d = i - tin. 
FI 

(5.77) 

From eq. (5. 70), 

pr,-(^,r)= 2 [1 - $(r)] - L(r,r, \). (5.78) 
r L 

From eq . (5. 71), 

pc2(p4n - L( j/?, /p - r, |) -1 +4 (|/p0 +«(jp*- D (5.79) 

From eq. (5. 72), 

PcM'f’ ? I1?' : PMh' p/2 i' 
(5.80) 



?.. 

The function 

Va>= 1(x+a)dx (5. 8.1) *' 

u , ,46 . , , . 48 
is tabulated , as is the function 

L(h, k, r) = 

oo oo 

{“i dy exp Í - -J 

2, 2 
X 4 y 

1 - r 

:ir xy] 
2 (5.82) 

47 
4> and ® are defined in eqs. (2. 37) and (2. 38), and are tabulated . 

Quite apart from probability calculations, some general interesting useful 

results are given in eqs. (5.40), (5.46), (5. 48), (5.53), (5.64), (5.67). 

and (5.69). Some related results are given by Middleton (Ref. 4, pp. 1071-1073). 
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6, ERROR PROBABILITY FOR PHASE-INCOHERENT 
RECEPTION WITH A THRESHOLD 

I Conditions here are identical to those of the previous section except 

that the receiver mikes no attempt to use the carrier phase (see section 
• • 

3). The optimum procedure, if signal no 1 is transmitted, i's computa¬ 

tion of 

y ^ f ^ i(t) e + dt , k = 1,2,. .,M, 

and declare 

(6.1) 

maxjz j = z > _A_ : signal no. j present 
k L J J 

(zk] = z. < A : no signal present max 
k 

(6.2) 

Again, as in the previous section, there are two probabilities of interest, 

the probability of false detection, and the probability of detection and correct 

decision. We first derive the probability of false detection P . If 
F 

Po (zr Z2’— ’ zM)~is~the P-d f-of the random variables ^z~V when 

input signal is present, we have 

no 

A 
PF * ‘ ' J' • Í Po(zrz2"- ’zM)dzl dz2 ' dzM' 

(6.3) 

-oo 

But in this case, from eq. (6 1), 

f £*(t) V (t) dt 
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/ 

= X, + iy , k = 1, 2, ... , M, t 
Ik k 

(6.4) 

where [x^J and [y^ are Gaussian random variables. If we impose 

the requirement of eq. (3. 10), we can use the results of eqs. (3. 14) - 

(3.20) to write immediately 

1 - PF = U" • 4NdE(. - . >]-M fÇdx1dyr . . ^MdyM. 

exp 

M M \ 2 

2 • 4NJE(1- \ ) } ^ (xk+yk)" lf(M-l)\l ¿Xkj"l+(M-1)\ 
k=1 \ k=1 

I 
/M \2 

Ty' 

\k=i / j 
(6.5) 

where J jdx^dy^ denotes a double integral in x^, y^ space within a circle 

C 
of radius J\- centered at the origin. Following an approach completely 

analogous to that of section 3, namely eliminating the cross products and 

interchanging integrals, we arrive at 

oc 

1 -Pr = J- (T exp (-i'(v2 + w2)) 1 -imi 2721 
V + w , 

7L S 

-00 

M 
dvdw. 

(6.6) 

Changing to polar coordinates, eliminating the angle variable, and defining 

a new threshold F = _A_//4EN ', we obtain the final form 

00 

1 - P. = j1 r exp (- -i r2) 1-Q 
l-\ 

r, 
J l-\ 

M 
dr. (6.7) 
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(It is interesting to compare this equation with its counterpart in section 5, 

eq. (5.26).) As obvious checks on eq. (6.7), we have 

r —*• co, 1 - P F 

(6.8) 0. o. i - pf-^ r —*• 

Now if M = 1, using eq. (A. 12), we have 

2 
1 - P = 1 - Q (0, T) = 1 - exp (~r /2). 

F 
(6.9) 

We use this relation to check eq. (6. 7) further: 

0 

\_^o, i - p^—► [ i - Q(o* r)]M = (1- exp(-r2/2)]M. 
r 

(6. 10) 

In order to compute the probability of detection and correct decision, we 

assume that signal no. 1 was transmitted. Again assuming eq. (3. TO) to 

hold true, this probability is given by equation (3.26) with one difference: the 

first pair of integrals must be performed only outside of a circle of radius 

A in the u , yl plane. (This guarantees that the threshold is exceeded.) A 

study of eqs. (A. 1) - (A. 10) shows that the only change is to make 
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where p = and F = _A_//4EN^. This double integral is more general than 

its analogue, eq. (3.27) of section 3. However it is no more difficult to 

tabulate; partial sums on r can be printed out while computation of eq. (3. 27) 

proceeds. 

Notice from eq. (6. 11) that if p = 0, the integral on r may be carried out, 

yielding 

exp (\ 2, [1-0(/^ s, r)]M 
' ] M 

00 

r//ux: 

~PmS/2) {»-[>-s. r/^)]M), (6.12) 

Substituting eq. (6. 12) into eq. (6. 11) and simplifying, there results 

oo 

PcM,()' ^ r)'4i I x«p(-x2/2) {i -[i-Q(/^Tx,r//TrX)]M}dl(. 

(6. 13) 

Comparison of eq. (6. 13) with eq. (6. 7) yields, using more explicit notation, 

the obvious relation, 

^ (6- 14) 

Analogous to section 5, the general tabulation of P ., (p, \ , r) will suffice 
CM 

to evaluate , F). 
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As checks on eq. (6. 11), we have 

F —i-oo, P—-0, 
C _ t 

T-^0, Pc—^eq. (3.27), (6.15) 

and 
» V 

00 

P-^exp(-p/2) J r exp (-r2/2) Io (/p’r) [ 1 - expi-r2^)]^'1 dr. 

r 
(6.-16) 

which is an obvious generalization of the first line of eq. (3. 29). ‘ 

In summary, the important equations of this section are eq. (6. 11) for 

the probability of detection and correct decision, and eq. (6. 14) (or eq. (6/7)) 

for the probability of false detection. 
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7. LIMITING BEHAVIOR OF M-ARY RECEPTION 

3 
Turin has shown that for a phase-incoherent system where one of 

M equal energy équiprobable orthogonal signals is transmitted each baud 

through a channel perturbed by stationary white additive Gaussian noise, 

and the received waveform is processed by a bank of M matched filters, 

one for each of the possible transmitted waveforms, the outputs of which 

are envelope detected, sampled, and compared, that the error probability 

approaches zero as M approaches infinity provided the source information 

rate is less than the capacity of the continuous channel operating in all 

frequencies (Ref. 4, eq. (6. 95)). 

The purpose of this appendix is to generalize this result, for both' 

phase-coherent and phase-incoherent reception modes (without null zone), 

to the case where the signals are not pairwise orthogonal, but are pairwise 

correlated to a degree which does not vanish as M approaches infinity. 

Specifically, it will be shown,for both reception modes, that the error 

probability approaches zero as M approaches infinity provided that the 

ratio of source information rate to the continuous channel capacity is less 

than 1 - \ , where \ is the common correlation coefficient between the M 

signal waveforms (appropriately defined in each mode of reception). For 

X. equal zero, we have Turin's result. 

The importance of this result is that if the signal set cannot be kept 

orthogonal as M increases, due perhaps to limited bandwidth, network 

tolerances, or equipment complexity, the performance of the system does 
9 

not deteriorate completely. Rather, the source information rate need 

simply be slowed down by the factor 1 - \ in order to get ideal performance 
57 

in the limit M—»-co. 
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To be more specific, let T be the time duration of a baud during which 
\ 

one of M equal energy équiprobable signals is transmitted. The source 

information rate is, in nits/sec, 

ln M 

T 
(7. 1) 

The capacity of the continuous channel operating over all frequencies is 

lim 

W-*-oo 

W In (1 + jj-,) 
o 

S _ S 

N -S—2N, 
o d 

nits/sec, (7.2) 

where N and N are respectively the single-sided and double-sided noise 
o d 

density spectrum levels (see eqs. (2. 17) - (2.21)) and S is the average 

received signal power. The reason the capacity for the entire frequency 

scale is utilized as a comparison is that, in the limit, the bandwidth of the 

58 
M-size signal set must approach infinity. Specifically it can be shown 

that the minimum Gabor bandwidth for M orthogonal signals confined to 

a time interval T is 

W (M) 
g T 

cycles per second, (7. 3) 

with an accuracy better than 1 percent for all M. Now if the source informa 

tion rate H1 is kept constant as M increases, we have from eq. (7. 1) that T 

must vary with M according to 

T = 
ln M 

H' 
(7.4) 

Substituting eq. (7. 4) in eq. (7. 3), the minimum Gabor bandwidth for fixed 
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source information rate must be 

W (M) = 
g z/T 

M + 7 4 
ln M (7.5) 

which tends to infinity as M does. Therefore the required frequency extent 

approaches infinity (irregardless of what reasonable definition of band¬ 

width is used). The same conclusion holds true if the signal set is not an 

orthogonal one, although the rate of increase is less than that in eq. (7. 5). 

We start with the phase-coherent situation; from eq. (2.46), the 

probability of correct decision is 

Now 

P 
c 

E _ S T _ S , w - 2 ln M 

N_, ~ ~ Nj H' ln M ~ r d d d 

where we have defined 

(7.6) 

(7. 7) 

r= S/2N (7,8) 
d 

and used eq. (7.4), since H' is to be kept constant, r will be recognized 

as the ratio of source information rate to the capacity of the "infinite" 

continuous channel, eq. (7.2). Substituting eq. (7. 7) into eq. (7.6), we have 
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(7.9) Pc = (x +/^-- ln M ) dx. 

i 

where r is independent Now 

lim Pc= J <|>(x) lim j ¢^1 (x+ /¿^‘ ln~M) dx, (7.10) 

M-»oo M-*oo L ^ J 

interchanging the operations of integration and limit. But in Appendix: C, 

it is shown that 

Urn .M-‘ (xWiü^i 1„ M) = 

M—M . r 

, all x. (7. 11) 

Using eq. (7. 11) in eq. (7. 10), we have 

lim 

M—*oo (7.12) 

Thus, the error probability of a phase-coherent receiver approaches zero as 

M approaches infinity provided the ratio of source information rate to the 

capacity of the infinite continuous channel is less than 1 - X.. ( \ is defined 

in eq. (2. 5) ). Notice that in eq. (7. 12), X can never be negative. This is 

obvious by using eq. (2. 8); X less than zero is impossible in the limit. 
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For phase-incoherent operation, the relevant equation is eq. (3.27): 

oo oo __ 

Pc = U-M exp (- E/2Nd) j'x y exp (- j (x2 + 

oo °V c 

X|I0(/T 

M. 1 
[ 1 - Q ( /T y, x)] dx dy. 

Substituting eq. (7. 7) in eq. (7.13), 

00 00 

V TTTr I lxy exp (- 2(x2+y2,) ln Mx) 'o'^ xy)' 
0 0 

M- 1 
[ 1 - Qi/V y, x)] dx dy, 

where r is independent of M. Let us now define some new functions to 

simplify notation: 

c = (independent of M), 

y*. y) 
j 1 ^ xyexpl-j (x2 +y2)) IQ (c yin M x) H xy),J 

\ x, y > 0 I 

0, otherwise J 

M-l 

gM(x. y) 
i[ 1 - Q( /V y, x)] , x, y > 0 

0, otherwise 

xy)' 

(7.13) 

(7. 14) 

(7.15) 

(7. 16) 

(7. 17) 

• • 
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I 
I 
I 
I 

Then ' 

oo 

= JJ £M(x’),l8M(x’y,dxd’r- 
(7.18) 

-00 

Now we let 

I z = X - ~-y /In m! , 

u = y - Ç ^ /ln M . (7. 19) 

Eq. (7. 18) then become« 

(z. u) g M 
(z, u) dz du, 

-00 

(7.20) 

where 

£m(z> u) = £m(z + TTk u + 
/r c 
i - \ 

,^1^), (7.21) 

and similarly for g' . 
• M 

Therefore 

lim P = 
M-*- oo 

f' (z, u) g' (z, u) dz du, 
oo oo 

-oo 

(7.22) 
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interchanging the operations of integration and limit, and 

(7.23) 

and similarly for g . In Appendix C, it is shown however that 
oo 

(7.24) 

and 

0,. r > 1 - X' 

1, r<1 - \ 
J 

, all z, u. (7.25) 

Substituting eqs. (7. 24) and (7.25) into eq. (7.22), and noting that the 

area under f is unity, we have 
00 

r 0, r > 1 - \ 
lim P = < 

M—*-oo C 1, (7.26) 

Thus the error probability of a phase-incoherent receiver approaches zero 

as M approaches infinity provided the ratio of source information rate to the 

capacity of the infinite continuous channel is less than 1 - X . ( X is defined 

for this case by eq. (3. 10) ). 

The rate of approach of to 1 has not been investigated. Some results 

on this topic in the form of bounds for the phase-coherent receiver are 
35, 59 

available ’ . Similar results for the phase-incoherent receiver could 

probably be derived from eqs. (3. 27) or (7. 14). 
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A more conclusive result would be obtained if we could show that the 

above result holds if is replaced by . Since P^ is thought to be 

a lower bound on the probability of correct decision! for all correlation 
— a 

coefficient angled, its approach to unity for r< 1 - \ would demonstrate, 

that, regardless of the correlation coefficient angles, the error probability 

of a phase-incoherent receiver approaches zero as M approaches infinity, 

provided only that the ratio of source information rate to the capacity of 

the infinite continuous channel is less than 1 - X. . We have not studied 

this topic.. 



8. DISCUSSION 

All the results of the previous sections have been consistently phrased 

in communication language. However, they are applicable, either exactly 

or approximately, to a wider class of problems. Asan example, consider 

a radar (or sonar) which is echo-ranging; that is, the radar is transmitting a 

signal towards a (stationary) target known to be present, and estimating the 

range of the target by measuring the delay of the echo. In particular, 

measurement of the delay is accomplished by crosscorrelating the echo 

waveform with several (M) delayed stored replicas of the transmitted signal, 

and picking the largest correlation value as corresponding to the range 
40 

of the target . The total range uncertainty is divided into M cells of 

equal size, and the k^ stored replica corresponds to the signal which would 

have been reflected from the k^ cell if the target had been in that position. 

(This is not exactly true; however,if the individual cell size is chosen small 

enough that the time taken for the signal wavefront to traverse a cell is 

less than the reciprocal signal bandwidth, the approximation is a good one. 

In effect, all signals returned from anywhere in one particular cell are almost 

identical.) Mathematically, if s(t) is transmitted, and the target is in the 

k^1 cell, the received waveform is 

(8. 1) s(t-rk) + n(t), 

where n(.t) is additive white Gaussian noise, and we neglect all unimportant 

scalars (see se'ction 2). Without loss of generality, let the target be in the 

first cell. The (phase-coherent) receiver then computes the quantities 

k = 1,2,..., M. (8. 2) 
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i 
I 

I 

I 

If we let Rg(T) be the autocorrelation function of the signal, then 

yk = WV + "k' 

where 

xk= J n(t) s(t-rk) dt, k = 1, 2,... , M. 

(8. 3) 

(8.4) 

The probability of correctly deciding that the target is in cell no. 1 is 

*2.V- (8. 5) 

Since the signal s(t) is under the control of the radar, it may be shaped 

so as to give desirable features in the autocorrelation function R (r) 
s 

In particular, s(t) may be chosen so as to yield a single large peak in 

Rg(r) at the origin* and (approximately) uniform height in R (t) elsewhere64,65. 
s 

Then eq. (8. 3) becomes 

yj = £ + *,. 

^ XEtV k = 2’3.M' (8. 6) 

where we have assumed the uniform height of R (r) to be X times as 
s 

large as the peak. (This is an approximation to what can be actually 

attained in practice. However, if the side lobes or residues of R (t) are 
■ s 

only approximately equal, we can put a bound on performance by letting 

\ E represent the maximum side lobe value attained. ) 
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Since Jt is obtained by a linear operation on Gaussian noise, 

it is a Gaussian random variable with 

\ - NdE- 
(Ò. 7) 

In addition, 

xj*k"K NdE' ^ k- 
(8. 8) 

But now the similarity to the problem of section 2 is complete, and the 

result of eq. (2.46) may be taken immediately as representing the pro¬ 

bability of correctly determining the target range on one echo. \ now 

represents the relative height of the side lobes to the main peak of the 

autocorrelation function of the sounding signal. 

If the target is moving with any radial component with respect to the 

radar, the received waveform can not be represented as simply as that 

in eq. (8.1 ). Rathèr, there will be a simultaneous time delay and doppler 

shift of the transmitted signal. The catalogue of stored replicas must then 

include delayed and shifted versions of the transmitted signal, which are used 

for crosscorrelation with the echo waveform. Instead of the autocorrelation 

function of the signal being the important quantity to shape, it may be 

shown that the function 

(8.9) 

-96- 



is now the quantity to consider. Good performancei in terms of range 

and doppler estimation is realized by having the quantity of eq. (8. 9) small 

everywhere in the t, f plane except at the origin. Letting \ be the maxi¬ 

mum relative size of the side lobes off this function to the peak, and M the 

number of cells in r, f space (each of area equal to the reciprocal signal 

bandwidth times reciprocal signal duration), the result of section 2 may be 

applied as a bound on performance. 
i 

If no attempt is made to use the phase information of the received 

signal, the results of sections 3 and 4 may be used to evaluate a bound on 

the performance of a phase-incoherent range- and doppler-estimating radar, 

if X is interpreted now at the maximum relative size of the side lobes of 
40,66-69 

the ambiguity function of the transmitted signal 

(8.10) 

M is again equal to the total number of cells in range-doppler space. 

When the presence of a target is not known a priori, incorporation of 

a threshold into the receiver may be desirable, as mentioned in section 5. 

Once again, the results of sections 5 and 6 are applicable respectively to 

phase-coherent and phase-incoherent range- and doppler-estimating radars 

with a threshold. X is interpreted as above. 

The results of this report cannot be applied directly to the case where 

the competing noise is non-white, but can be used as approxinaations. 

Specifically, consider a communications situation where a phase-coherent • 

receiver is to determine which of M orthogonal signals was transmitted, 
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I 

while additive non-white noise is being received. Suppose signal no. 1 were 

transmitted, and the^fnbn-optimum) receiver bases its decision upon the 

quantities 

yi = E + ^ s j (t) n(t) dt, 

= ^ s^(t) n(t) dt, k = 2, 3, .. . , M, (8.11) 

where n(t) is the additive noise. The probability of correct decision is then 

given by 

V Pr<yl>y2.yMK 
(8. 12) 

If the noise is Gaussian, the quantities 

X, = V 8, (t) n(t) dt, 
k J k 

k = 1, 2, . . ., M, (8. 13) 

are all Gaussian, and we have merely to determine the set of cross- 

correlation coefficients in order to be able to determine P . We have 
c 

X = 0, 
k 

= f S(f) V (f) k 
df, 

(8. 14) 

(8. 15) 

where S(f) is the noise power density spectrum, and V (f) is the Fourier 
th 

transform of the k signal of the set. Now it is possible to design a signal 

is the "same for all k; that is, all the signals have the 

am. (This is a reasonable situation - the signals 

occupy the same spectrum, at least approximately, regardless of which 

set such that V (f) 
! k 

same magnitude spectrum. (This is a reasonable situation - the signals 
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particular signal wàs transmitted. Frequency shift keying signals are 
2 . . 

outlawed. ) In this cas*, is independent of k. At the same time, 

ÿk = j S(f) vk(f) vj (f) df = j S<f) Re (vf) vj (f)] df- (8- 16) 

These quantities will be dependent on j and k. However, if they are 

reasonably alike (if the noise is fairly broad band, but not white), we 

may define \ to be the maximum value of 

j / k, (8.17) 

and put a bound on-performance. Specifically, if the maximum of 

eq. (8. 17) is realized for k = 1, j = 2, we find the probability of 

correct decision P is bounded by 

P > 
c 

-M-1 . x . 1 
w (x + a) dx, (8. 18) 

where 

(8. 19) 

-99- 



If 

S(f) =: N,, all f, (8. 20) 
d 

using the orthogonality-of the signals, we find 

which agrees with eq. (2.46). 

The situation is much the same for non-stationary noise. Suppose the 

signals are orthogonal, and the (non-optimum) receiver bases its decision 
i 

on the quantities of eq. (8. 11). Eqs. (8. 15) and (8. 16) are then replaced by 

x.x, 
J k 

dt^, all j, k, (8.22) 

where R(t ,t ) is the autocorrelation function 
X Lt 

of the noise: 

R(t1,t2) = n(tj) n(t2) . (8.23) 

The quantities in eq. (8. 22) will vary as j and k change. However we expect 

that a bound on performance may be obtained by considering the two 

quantities 

(8. 24) 
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(8. 25) 

and 

J j/k 
ft 

max \ x.x ( = X X (say) 
1 2 

These are respectively the maximum variance and maximum covariance 

of the variables fy^ upon which the receiver makes its decision. Then 

analogous to eq. (8. 18), we expect (but have not proven) 

> j <t>(x) * (x + b) dx, (8.26) 

where 

/¾ h(ti|,i(t2) - dtl dt;: 

(8.27) 

The results from eqs. (8. 11) on may be easily generalized to situations 

where the signals are not orthogonal, where phase-incoherent reception 

takes place, and where a threshold is incorporated in the receiver, by using 

the appropriate equations of sections 3,4, 5 and 6. However, only bounds 

are attainable, not exact solutions'in these cases. 

Another situation to which the results of this report may be applied is 

the case where the (orthogonal) signals undergo distortion during transmission, 

such as multipath. If the distortion is known, and compensated for at the 
70 

receiver , the degradation in performance may be evaluated as a function 

of thè crosscorrelation of the distorted signal set. 
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Throughout this entire report, the set of crosscorrelation coefficients 

were assumed to be equal - eq. (2. 5) for phase-coherent reception, and 

eq. (3. 10) (or more generally, eq. (4. 2) ) for phase-incoherent operation. 

It would be very worthwhile generalizing these results to additional 

situations. One particularly interesting and useful case occurs when 

s.(t) s (t) dt = J-’“1*1 E, j,k = 1,2,...,M. (8.28) 
J k 

This situation might arise, for example, in echo-ranging, where s^(t) 

would be the signal returned from the closest range cell, s^t) from 

the second closest cell, etc. , and the signals are less correlated, the 

more they are separated. The matrix of these crosscorrelation coefficients 

is readily inverted, and possesses zero elements everywhere except along 

the main diagonal and the super- and sub-diagonals. We have not looked 

at this case in any detail to see whether a generalization of the artifice in 

eq. (2. 31) et seq. could yield a solution. 

Another case of interest occurs when 

s.2(t) dt = E, 
k 

j sk(t) “k+i1”dt = x E' 

s.(t) s (t) dt = 0, otherwise. (8. 29) 
J K 
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This ^ase too could arise very reasonably in echo-ranging. The matrix 

of crosscorrelation coefficients possesses non-zero elements only along 

the main diagonal and the super- ^nd sub-diagonals. Its inverse is thep.—, 

given by a form like eq. (8. 28), where the constants have to be modi¬ 

fied. These two cases, eqs. (8. 28) and(8. 29). are "duals"; however, the 

determination of the error probabilities probably requires diffe^qnt ^ 

(and new) methods of eliminating cross-products-(if at all possible). Both 

these cases merit further study. 

Another very important problem is the following: although a given 

bandwidth may only support N orthogonal signals of a given duration, it 

may be desirable to put M(>N) non-orthogonal signals in that bandwidth. 

The question then arises as to the difference in error rates for the two choices 

of signal set size, under, say,a constant source information rate constraint. 

To be specific, consider that in a given time duration Tj and allowed 

bandwidth W , N is the maximum number of orthogonal signals which may 
8 

be accomodated. If the probability of correct decision for this baud 

duration is P %T, the error rate is 
cN 

1 - PcN(VNd> 
(8. 30) 

where is the received signal energy in time T^, and is the level 

of a white background noise. For comparison, if messages are transmitted 

in bauds of twice this duration, and the source information rate is kept 

-constant, we must have the number of messages M in the new set given by 

(8.31) M =N2 . 



Since the new set of messages can no longer be kept orthogonal, (in the 

same given bandwidth, Wg), the error rate (for phase-coherent operation) 

will be - - 

1 -PcN2(2El(1-X>/Nd> 
2T" “ (8. 32) 

where \ is the degree of crosscorrelation of the N2 messages in alloted 

duration 21^ and bandwidth Wg. Now which error rate is the smaller, and by 
how much ? 

In order to answer this question, we need to find the minimum cross¬ 

correlation coefficient, \ , possible for M signals in an aUbted time 

duration T and bandwidth Wg. Or conversely, for a given M, T, and \ , 

what is the minimum required Wg? We have not been able to solve 

this problem except for \ = 0. However, for \ = 0, defining bandwidth 

in the Gabor sense, we find that 

Wg(mi„, = 

+ j) (M+l) 

cps 

2.T 

M + - 
4 

/T 
cps. (8.33) 

The Gabor bandwidth of a signal s(t) with Fourier transform V(f) 

(centered at the origin) is defined as 

W = 
g 

/ jf2 JV(f)| 2 df \ 1/2 

j |v(f)| df 
(8. 34) 

/ 



(We choose this definition of bandwidth because of its tractability). 

In the orthogonal signal situation discussed above, 

Ni/? 2T,W - I ' (8.35) 

Therefore we may evaluate the first error rate of eq (8. 30). However, 

we are unable to evaluate the other error rate of eq. (8. 32) and make a 

comparison because.we cannot evaluate \ . Further study on this topic 

is suggested, due to its importance. 

As many, if not more, problems have been raised by the present 

report as solved. There is the perplexing problem of the angles of the 

crosscorrelation coefficients occurring in phase-incoherent reception, 

and their precise effect on the error probability. There is a most 

important problem related to obtaining a better bound on the error prob¬ 

ability by replacing the set of correlation coefficients not by the maximum 

one, but by a smaller quantity, perhaps the average correlation coefficient, 

and using the present results. Of course, the ultimate problem is to solve 

for the error probability explicitly as a function of the complete set of 

correlation coefficients; until such a solution can be attained however, a 

step-by-step procedure solving special cases similar to the one in this 

report and the ones discussed earlier in this section is in order. These 

special cases and better bounds on performance should probably be the 

next topics to consider. 
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APPENDIX A 

DERIVATION OF ERROR PROBABILITY FOR PHASE-INCOHERENT RECEPTION. 

Our starting point is eq. (3. 26) of section 3. By performing a changer 

of variable 

uk= ^EU-M V 

y =|4N E(l-M' 

k = 1,2, . . . ,M, (A. 1) 

w. 

eq. (3. 26) becomes 

V nki-U (2’) M «p (-E/2Nd>- 
oo 

íídvidwiíí"íí 
-00 r*, r. 

dv.dw,, 
2 2 

dvwdww exp 
M M 

C C 

M 

-ÎU 
/ 2i 
(\ +Wk> 

k=l 

1+(M-1) \ 

M 

I k / \ ¿j 7 k 
k=1 / k=l 

M X ^ 

exp r 
N N vi I, «A-2» 

-»J 

where ^vk^wk ^or ^ ^ denotes a double integral in v^, space within 

C 
ri—r1 

a circle of radius \|v1+w1 centered at the origin. At this point, we use the 

artifice introduced in eq. (2. 31) in the form 
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I 

I 

I 

00 M M 

— [l+(M-1) \ ] (x^+y^) +^1 x ^ Vjç +{R V ^ w. 

k=l 
k 

k= 1 -J 

dxdy. 

(A 3) 

The substitution of eq. (A. 3) in eq. (A. 2) eliminates all cross-product terms 

such as vjvjt> j/ k*' Substituting eq. (A. 3) into eq. (A. 2), and interchanging 

integrals, there results, using eq. (2. 29) for the "signal-to-noise ratio" p, 

oo oo 

Pc = < l-MIZ,)-"-1 «p (-p/2) jjdx dy gdv1dw1 jj. ! . jjdv2dw2... dvMdwM. 

expij"p(l- \ ) ' Vl - |[l+(M-l) >. ]lx2+y2) 

M U \ 

'7 I(vk + Wkl+ ^ I 
k=l k=l ) 

c c 

(A. 4) 

But now the multiple integrals on v , w ,. .. ,v , w can be separated, a 
“ 2 2 M M 

typical one being 

í Í exp [" 7 (vk+ w5 + ^ xvu yw,. dvkdwk’ k = 2* 3> • • • »M- (A. 5) 
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Changing to polar coordinates-and-rememher-ing the radius of the 
2 T1 

V1 + Wf , eq. (A. 5) becomes 

\l vi' +wi ' 2tt 

I dr Í d0 r exp 

0 0 

T~~T 

1 2 
j r +\/T rx cos 6 tã1 ry sin 0 

T 2 , 2* 
Vi +wi 

S 
= 2ir \ r e 

1 2 
" 2 r 

I '|xZ+y 2 ' r) dr 

2ir exp (j \ (x2+y2) ) -Q (/JpT1. ^ + wf) (A. 6) 

where Iq is the zero order modified Be ssel function of the first kind, and 

oc 

Q(a ,0)- y X exp ( - j (x2 + or2) ) Io(ax) dx (A. 7) 

0 

is the Q-function of Marcum and is tabulated"^’Substituting eq. (A. 6) 

into eq. (A. 4),and simplifying, we obtain 

X X 

Pc = (1-M (2ir) 2 exp (-p/2) fj'dx dy Çjdv^Wj 

■X -oo 

exp ^p(l-\ )' vi " J + w2) xvj yw1 - j (x2+y2)| (A. 8) 

Changing to polar coordinates again, according to 

X = s cos ¢, = r cos© 

y = s sin <j>, w1 = t sip 0, (A. 9) 

i-Q<tfJxv:/2 
vi+wf > 

M-l 
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integrating first on ÿ and then on 9, we obtain 

00 00 

Pc = (1«M exp ( -p/2) ^^1,8 exp ^ ‘ ^r2+8^ ^ ^ (Vp(l-MIo(/V rs). 

1 - Q(>TT s, r) 
"M-1 

dr ds, (A. 10) • 

which is the desired result, remembering 

P = Nd . 

In eq. (3. 30), we used the relation 

(A. 11) 

T s exp ( - i<sV) ) 1 (cs) Q(as»b)ds = q[7===7^ 
Jo 2 0 \n +a¿ 

(A. 12) 

Wc now proceed to derive it: first eliminate Q on the left side of eq. (A. 12) 
60 

by use of the relation 

00 

Q(as,b) = 1 - b y exp ( - x2/2) J^asx) Jjibx) dx (A. 13) 

to obtain 
00 00 

1 - b C dx exp (- x2/2) J^bx) ( ds s exp ( - ^■(s2+c2) )Io(cs)Jo(asx) (A. 14) 
J0 ^0 

00 

= 1 - b Ç exp ( - x2/2) J^bx) exp ( - a2x2/2)Jo(acx)dx (A. 15) 

*+> I"!» 



The transition from eq. (A. 14) to eq. (A. 15) is by means of Magnus 
61 9 

and OberHettinger ; that fromeqs. (A. 16) to (A. }7) is by reapplication of 

eq. (A. 13). Some interesting formulas related Cp eq. (A. 12), although not in 
62 • . • 

this notation, are given by Maximon 
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APPENDIX B 

BOUNDS ON THE ERROR IN APPROXIMATING THE 

ERROR PROBABILITY IN-PHA!SE-INCOHERENT RECEPTION 

We have.from eq. (3.27). 

00 00 

Pc = (1- \) exp ( - p/2) j' ^ xy exp ( - -^x^+y2) ) lQ(yJp(\- X)’ x) I^xy)* 

- QiA’y.x)] 
M-l 

0 0 

dx dy 

00 00 

= ^ dx ^ dy f(x, y), 

(B. I) 

(B. 2) 

0 t) 

where p = E/N ,. Now we approximate P by 
d c 

a b 

Çdx ^ dy f(x,y) 

0 0 
t 

and choose a and b large enough so that the discrepancy between eqs. 

(B. 2) and (B. 3) is less than some specified amount. The discrepancy 

or error E is defined as 
M 

(B. 3) 

oo « 

U U f(x, y) - C dx f dy f(x,y), 
vn vn «-A 

(B. 4) 

'0 "0 

and is always non-negative since f(x,y)¿ 0 always (at least for X^O). 

Now certainly 
00 00 00 00 

E 
M 

C dx ^ dy f(x, y) + Ç dy C dx f(x,y) 
Ja ^b J0 

(B. 5) 
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because we have deliberately "double-counted" a region of the x, y 

plane. This has been necessary in order to be able to evaluate the double 
.... ... t 

integrals. This does not excessively weaken the bound because f(x,y) 

is extremely small over that region. Also, since 

M-l 

[ 1 - Q i/V y, x) ] 1, (B. 6) 

■oo —-00- oo 

r dx \ dy f(x,y)<:(l-\) exp (-p/2) (dx x exp(-x2/2)I ( JpO-^Tx )' 
Ja J0 Ja 

oo 

^ dy y exp (-y2/Z)Io(^xy) (B. 7) 

oo 

(1-M exp (-p/2) f dx x exp (- ^x2(l-^) ) I (nIpO-M’ x) 
{ 2 o 

(B. 8) 

= Q({p, av^TT), (B. 9) 

Transition from eq. (B. 7) to eq. (B. 8) was made by use of Magnus and 
. 61 

Oberhettinger . By a completely analogous approach, we also show that 

oo oo 

• V dy V dx f(x, y) és Qíí^pl b 'Tl -í). (B. 10) 
Jb J 0 

Therefore, substituting into eq. (B. 5), 

Ex ¿Q(^p: aJITT) + Q(J17, b>TîTX), 
M 

(B. 11) 
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I 
I 
! 
I 

and we have the desired result. If now, an error Euless than c were 

specified, for a given p and \ , we could choose a and b such that 

Qifp',- avTuX ) ^ y , 

Qí/T?, b/TT )4y . (B. 12) 

These equations can be numerically solved separately for a(p, \ ) and b(p, \ ) by 

means of tables^’ ^^if « is not extremely small. If € is extremely small 

however, we can use some asymptotic formulas for Q(Ref. 25, p. 154, 

eq. (3. 16) ) to obtain a and b. The approximation to Pc then proceeds 

according to eq. (B. 3). 

Now let us consider a bound on the error in approximating Pc . F rom 

eq. (4.34) 

«o oo 

P^ = (1 + M exp(-p/2) ^ J xy exp (- - (x2+ y2)) Iq ( Jp(\ + \)'x)Jo(jrxy)- 

0 0 

r—) M-l 
[ 1 - q (J\ y, x)] dx dy 

oo oo 

= f dx dy g (x, y), 

oo - 

where p = E/N . We approximate P by 

(B, 13) 

Ç dx ^ dy g(x, y), (B. 14) 
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with an error • 

oo oo 

E = 
M 

a b 

^ dx ^ dy g(x, y) - J dx ^ dy g(x, y) 

0 0 0 0 

oo b oo oo 

Í dX j* dy g (x, y) + ^ dx Ç dy g(x, y) 

a 0- 

oo b 

0 b 

00 00 

¡y dx ^ dy |g(x,y)| + Cdx f dy |g(x,y) 

a 0 0 b 

Now 

1 - q Æ"1 y, x) ^ u exp (- j (u^ - X y^) ) y u) du 

u exp (- j u2) du exp ( j \ y2) 

= exp ( J X y2) (1 - exp (-j x2) ) ^ exp ( ^ Xy2). 

Therefore 

|g(x, y) I S U + X ) exp(-p/2) xy exp (- ~ (x2 + y2) ) IQ(\/p (1 + X ) ' 

exp ( j (M-l)Xy2) = g1(x)g2(y), 

a separable bound function. Substituting in eq. (B. 16), 

(B. 15) 

(B, 16) 

(B. 17) 

x). 

(B. 18) 
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I - b « 

g2(y)dy + J 

o 

These integrals are easily carried out and yield 

EM£i giWd!I Í 
a 0 

gj(x)dx 
Í 

g2(y)dy- (B. 19) 

E .¿ J-tl— exp (V p/2) jQ</p(m>: a) [ 1 - exp(-j b2(l-(M-l)X. ) ) I 
M 1 -(M-l)X. / 

+ exp(-|b2(l-(M-m))j ; tB-20) 

if < l/(M- 1). Since both terms are positive, they must each be small in 

order for the error to be small. Therefore b2(l-(M-1)\ ) ^>1, and we have 

as a good approximation (and still an upper bound), 

„ 1 + \ /x 

EM- MMli eXp(K 
(B. 21) 

A more accurate bound may be obtained if the last inequality in eq. (B. 17) 

is not used. A sum of terms involving Q functions appears instead of eq. 

(B. 20). 

If again E ^ « is required for a given p, and M, thé two parts of 
• M 

eq. (B. 21) may both be set less than c /2 and solved separately for a and b. 

The alternating character of has been suppressed twice in the derivation 

above. Therefore, the bound of eq. (B. 21) may be quite weak. 
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APPENDIX C 

DERIVATION OF LIMITING BEHAVIOR OF M-ARY RECEPTION 
• 5 

We wisK to investigate»from eq. (7. 10), 

lim 9 I (x + /SCH in m' ) = lim f(x). (C. 1) 

To this aim, we notice that 

In f(x) = 

In 9(x + J ■— ln M ) 

M-l 

0 
0 

(C. 2) 

as M—Applying L'Hospital's rule, eq. (C. 2) becomes, after regrouping, 

fr) «P (-1 - J^r1^ (M-l) 
M 

1 

M 

l-\ 
r 

1/2 A ' , / 2(l-\ ) ’ 
(C. 3) 

(2 ln M) ' 9 (x + ¡m ln M ) 

which approaches 

Thatt'is, 

/-* 
lim In f(x) = s 

M-»oo 0 

r > 1. - \ 

r < 1 - \ 

(C. 4) 

(C. 5) 
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-r-*- -. • (o,_..r > 1 - O 

lim f(x) = { [ ^ 
M-X» r < 1 - J , 

which is the desired relation^—(A-< 0 is impossible in eq. (C. 6) as mentioned 

in section 7. ) 

For phase-incoherent reception, we must study the functions and 

of eqs. (7.21) and (7. 16). We have 

fM(*’ U) 
h* (2+ ^/lSTtf)(u+ iLí-JÜTR)- 

T 

exp 
C2 ln M 

(1- K )2 

2 c z /ln M* , 2 . X. c 
+ —:—?- + u + - 

l-\ 
ln M + 

2/^ c u \/ln KÍ 

(1-X) 
1-X 

I (c /In Kf z + 
ç2 ln M 

l-\ 
z + 

jv c 
u\ 

/In 
yx c 
i-\ 

z > - y~\ /1° ^ u > 
yy c 
i-\ 

/In M . (C. 7) 

As M—»oo, the arguments of the functions tend to infinity, but using the 

• fact that 
% • 

! w ï SÏRW. Corlarse*; . ' ' . . . ' (C. 8) 

0 -,. 
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in eq. (C. 7), we see that, for large M, 

f^(z,u) 5? M'l/r 
ln M 

Ztl-X') 
o 

2w 
exp j (z^ + - 2 A1 zu ) 

z > - /1° u > - —Y7jT ^ln M • 

kr> • • «•«> 

Eliminating c by eq. (7. 15), and allowing M to approach infinity, we have 

(C. 9) 

* , /TT 
f (z, u) = -r— exp 
00 ¿IT 

(z^ + - 2 /v* zu) , all z, u. (C. 10) 

Also, we have 

gM(z,u) = f1 - Q</T u+. TX/1™- z+yã^m)] 

z > - YY /ln u > - 7111 • 

M-1 
(C. 11) 

(C. 12) 

Now 

Q(a, 8) - h 

a . exp (- y (8 - a)2) 

3 - cr 
(C. 13) 

if 3» «» '1 (Ref. 25, p. 154,eq. (3.16)). Therefore 

4 (z’u) = 

exp [ - j (z - iT u + c /ln M')2]"1 

/2 ir \ c yin M' 

M-l 

for large M', 
(C. 14) 
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subject to eq. (C. 12)j and 

IngJ^Iz.u) = -M 
exp[ - j(z-^Tu+c yin M')^] 

{¿it c /ln M1 

_ M exp [ - j (z - yV u)2 - c yin M (z - /T u)] 

j^c2/2 yZn c Jin m' 
, for large M, 

subject to eq. (C. 12). Using eq.. (7. 15), we obtain finally 

lim 
M-*-ao 

In g^(z. u) all z,u. 

or 

g' (z.vi) 
00 

r > 1 - X. 

r < 1 - 
all z, u. 

(C. 15) 

(C.16) 

(C. 17) 

- 126 - 



APPENDIX D 

TABLE OF PROBABILITY-OF DE-TECT.ION,AND CORRECT 

DECISION FOR PHASE-COHERENT- RECEPTION WITH A THRESHOLD 

In this appendix is tabulated the function of eq. (5. 34): 

pcM(p. k.F)= ^(x)*M ^(x + /p( 1 -^() * ^ dx (D. 1) 

for p = 0, 1, 4, 9, 16, 25, 32; \ = 0 (0. 2)0. 8; F = 0(0. 5)8 (in selected cases); 

and M = 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 32, 64, 128, 256, 512. 

(For \ = 0, a more useful form of eq. (D. 1) is 

oo 

PcM(p.°,r)= j (j>(x)»M 1 (x+/7) dx. ) (D.2) 

r-Zp1 

This table was prepared by calculating pcM with an accuracy of approxi¬ 

mately + 5*10 and rounding off to five places. Therefore an occasional error 

of one unit in the fifth place occurs. Numerous checks, using the special relations 

derived at the end of section 5, showed less than 10 percent of the numbers 

listed here to be wrong by one unit in the fifth place. 

V 

Supplementary values to this table may be obtained from eqs. (5. 73) - 

(5.82), particularly for \ = l/2. 

« 
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M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

M 

1 
2 
3 

' 4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

X. = 0. 0 p = 0 

r .o.o 0-5 

.50000 

.37500 

.29167 

.23438 

. 19375' 

.16406 
.14174 
.12451 

.11089 

.09990 

.06250 

.03125 

.01563. 

.00781 

.00390 

.00195 

.30853 

.26094 

.22313 

. 19285 

. 16839 

.14845 

.13206 

.11847 

. 10709 

.09750 

.06232 

.03125 

.01562 

.00781 

.00390 

.00195 

r 

\ = o. o p •= i 

0.0 o, 5 

.84135 

.70966 
-.61496 

.54456 

.49059 

.44803 
^41363 
.38522 
. 36131' 

, .34088 
* .26060 

. 17157 
. 11051 
-.06992 
.04357 
.02681 

.69147 

.61919 

.55990 

.51079 

.46971 

.43503 

.40548 

.38008 

.35805 

.33880 

.26045 

.17157 

.11052 

.06992 

.04357 

.02682 

. 1.0 

.15865 

.14606 

.13481 

.12473 

.11568 

.10755 

.10023 

.09362 

.08764 

.08223 

.05856 

.03112 

.01562 

.00781 

.00390 

.00195 

. 1.0 

.50000 

.47126 

.44525 

.42166 

.40023 

. 38070 

.36288 
.34659 
.33165 
.31793 
.25511 
.17137 
.11052 
.06992 
.04358 
.02681 
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M 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

M 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
16 

. 32 
64 

128 
256 
512 

0.0 1.0 0.^- 2. 0 

.97725 .93319 

.91307 .88613 

.86248 .84588 

.82143 .81112 

.78725 > .78081 

.75819 ’ .75414 

.73304 .73047 
-:71095 .70931 . 

.69129 .69024 

.67363 .67296 

.59486 .59480 

.48285 .48285 

.38130 .38129 

.29378 .29377 

.22144 . 22143 

.16370 .16371 

\ = 0.0 

0.0 0. 5 

.99865 .99379 

.98252 .97951 

.96857 .96670 

.95628 .95510 

.94527 .94452 

.93528 .93481 

.92614 .92584 

.91769 .91750 

.90983 .90971 

.90249 .90240 

. 86607 .86606 

. 80228 . 80228 

.72875 .72875 

.64896 .64896 

.56676 .56676 

.48577 .48579 

.84135 .69147 

.81461 .68049 

.79002 .66991 
• .76737 .65971 

.74644 .64986 
,72707.. .64036. 

.70910 .63119 

.69239 .62233 

.67682 .61377 

.66228 .6.0550 

.59197 .56122 

.48274 .47605 

.38129 .38085 

.29377 .29377 

.22144 .22145 

.16371 .16369 

P = 9 

1.0 . 1.5 

.97725 .93319 

.96653 .92695 

.95649 .92089 

.94704 .91501 

.93815 .90930 

.92976 . ..90376 

.92182 .89837 

.91430 .89313 

.90715 .88803 

.90036 .88308 

.86550 .85594 

.80226 .80008 

.72876 .78260 

.64896. .64896 

.56676 .56676 

.48580 .48578 

.50000 

.49691 

.49385 

.49084 

.48786 

.48492 

.48202 

.47916 

.47633 

.47354 
.45749 
.41999 
.36279 
.29131 
.22136 
.16370 

2.0 2.5 

.84135 .69147 

.83872 .69071 

.83613 .68996 

.83356 .68921 

.83103 .68846 

.82852 .68772 

.82603 .68697 

.82358 .68623 

.82115 .68549 

.81874 .68476 

.80485 .68039 

.77176 .66915 

.71908 ‘ .64827 

.64758 .61204 

. 5667.1 . 55624 
.48577 .48448 

3.0 

.50000 

.49986 

.49971 

.49957 

.49943 

.49928 

.49914 

.49900 

.49885 

.49871 

.49785 

.49559 

.49115 

.48256 

.46652. 

.43838 
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\ = 0. o P = 16 

r o.o 0. 5 1.0 1.5 

M 

1 
2_ 

3 
4 
5 

-6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

.99997 .99976 

.99765 .99752 

.99549 .99541 

.99347 .99341 

.99156 .99152 

. 98974 .98972 

.98801 . .98799 

.98635' .98634 

.98476 .98475 

.98322 .98321 

.97498 .97498 

.95796 .95796 

.93407 .93407 

.90247 .90247 

.86292 .86291 

.81577 .81577 

.99865 .99379 
^99664 .99225 
.99471 .99075 
.99286 . .98929 
.99108 .98785 
.98937 ^98644 
.98771 .98507 
.98611 .98372 
.98457 .98240 
.98307 .98110 
.97494 .97383 
.95796 .95770 
.93407 .93405 
.90247 .90247 
.86291 .86292 
.81577 .81577 

F 2.0 2.5 3.0 3.5 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

.97725 

.97634 

.97543 

.97454 

.97365 

.97277 

.97190 

.97104 

.97018 

.96934 

.96439 

.95234 

.93218 

.90219 

.86291 

.81577 

.93319 

.93280 

.93241 

.93202 

.93164 

.93125 

.93087 

.93048 

.93010 

.92972 

.92745 

.92159 

.91056 

.89099 

.85945 

.81531 

.84135 .69147 

.84123 .69144 

.84112 .69142 

.84101 .69140 

.84089 .69138 

.84078 .69136 

.84066 .69133 

.84055 .69131 

.84044 .69129 

.84032 .69127 

.83964 .69114 

.83785 .69078 

.83430 .69008 

.82743 . .68867 

.81449 .68593 

.79139 .68053 

• • 

4.0 

.50000 

.50000 

.49999 

.49999 

.49999 

.49999 

.49998 

.49998 

.49998 

.49997 

.49996 

.49991 

.49983 

.49965 

.49930 

.49859 
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M 

1 
2- 

3 
4 
5 
6 
7 
8 

9 
10 
16 
32 
64 

128 
256 
512 

M 

1 
2 
3 
4 
5 

• 6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

\ = 0.0 . p = 25 

r o. o 0.5 1.0 1.5 2. 0 

1.00000 i.ooòoo 
, 99979 .99979 
.99960, .99960 
.99941 . .99941 

.99922 . .99922 

.99903 • .99904 

.99886 .99886 

.99868 .99868 

.99851 .99851 

.99834 .99834 

.99738 .99738 

.99516 .99516 

.99152 .99152 

.98588 .98588 

.97756 .97756 

.96584 .96584 

.99997 .99976 

.99977 .99959 

.99958 .99941 

.99939 .99924 

.99921 .99907 

.99903 .99890 

.99885 .99874 

.99868 .99857 

.99851 .99841 

.99834 .99825 

.99738 .99733 

.99516 .99514 

.99152 .99152 

.98588 .98588 

.97756 .97756 

.96584 .96584 

.99865 

.99851 

.99837 

.99324 

.99810 

.99797 

.99784 

.99771 

.99758 

.99745 

.99668 

.99476 

.99138 

.98586 

.97756 

.96584 

F 2. 5 3.0 3. 5 4.0 4. 5 

.99379 

.99371 

.99362 

.99354 

.99346 

.99338 

.99330 

.99321 

.99313 

.99305 

.99257 

.99131 

.98891 

.98455 

.97714 

.96578 

.97725 

.97721 

.97718 

.97714 

.97711 

.97707 

.97703 

.97700 

.97696 

.97693 

.97671 

.97615 

.97503 

.97285 

.96870 

.96115 

.93319 

.93318 

.'•93317 

. 93316. 

.93315 

.93314 

.93313 

.93312 

.93311 

.93310 

.93303 

.93286 

.93252 

.93185 

.93051 

.92790 

.84135 

.84134 

.84134 

.84134 

.84134 
-.84134 
.84133 
.84133 
.84133 
.84133 

..84132 
.84128 
.84122 
.84108 
.84082 
.84028 

.69147 

.69147 

.69147 

.69146 

.69146 

.69146 

.69146 

.69146 

.69146 

.69146 

.69146 

.69146 

.69145 

.69143 

.69140 

.69133 

5.0 

.50000 

.50000 

.50000 

.50000 

.50000 

.50000 

.50000 

.50000 

.50000 

.50000 

.50000 

.50000 

.50000 

.50000 

.49999 

.49999 
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M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

F .1.0 

1.00000 
. 99996 
. 99993 
. 99990 
. 99987 
.99984 ’ 
.99981 
.99978 
.99976 
.99973 
. 99956 
.99915 
. 99844 
.99723 
.99528 
.99227 

• T 3.5 

. 98449 

.98448 

. 98448 

.98448 

.98447 

. 98447 

.98446 

.98446 

.98446 

.98445 

.98443 

.98437 

.98424 

.98399 

.98349 

.98250 

\ = 0.0 p = 32 

1.5 2.0 2.5 

.99998 

.99995 

.99992 

.99989 

.99986 

.99983 

.99981 

.99978 

.99975 

.99972 

.99956 

.99915 

.99844 

.99723 

.99528 

.99228 

.99987 

.99985 

.99982 

. 99979 

.99977 

.99974 

. 99972. 

.99969 

.99967 

.99964 

.99949 

.99911 

.99842 

.99723 

.99529 

. 99228 

.99920 

.99918 

.99916 

.99914 

.99912 

.99910 

.99909 • 

.99907 
'.99905 

.99903 

.99892 

.99863 

.99807 

.99704 

.99522 

.99226 

4. 0 4. 5 5.0 

.95122 

.95122 

.95122 

.95122 

.95122 

.95122 

.95122 

.95122 

.95122 

.95122 

.95121 

.95119 

.95116 
’ .95109 

.95096 
••.95070 . 

.87633 

.87633 

.87633 

.87633 

.87633 

.87633 

.87633 

.87633 

.87633 

.87633 

.87633 

.87633 

.87632 

.87631 

.87629 

.87624 

.77436 

.77436 

.77436 

.77436 

.77436 

.77436 

.77436 

.77436 

.77436 

.77436 

.77436 
,77436 
.77436 
.77436 
.77436 
.77435 

3. 0 

.99605 

.99604 
.99603 
.99602 

. .99601 
.99600 
..99599 
.99598 
.99597 
.99596 
.99590 
.99574 
.99541 
.99478 
.99357 
.99134 

5.5 . 

.56232 

.56232 

.56232 

.56232 

.56232 

.56232 

.56232 

.56232 

.56232 

.56232 

.56232 

.56232 

.56232 

.56232 

.56232 

. 56232 
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\ = 0.0 p = 64 

M r = 3.5 

1 
2 
3 
4 
5 
6 

‘ 7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

1.00000 
. 1.00000" 

1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
.99999 
.99999 
.99999 

For T > 4, thf values for all 
M up to 512 are identical 

r 

4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 

.99997 . 

.99976 

. 99865 

.99379 

.97725 

.93319 

.84135. 

.69147 

.50000 
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\ = 0. 2 P = o 

r . o. o 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

.50000 

.35898 

.27564 

.22175 

.18452 

.15748 

.13708 

.12119 

.10851 

.09816 

.06215 

.03122 

.01562 

.00781 

.00390 

.00195 

0.5 

.30854 

.24818 

.20627 

.17570 

.15255 

.13448 

.12004 

.10826 

.09849 

.09026 

.05968 

.03088 

.01559 

.00781 

.00390 

.00195 

\ = 0.2 = 1 

0.0 0. 5 

M 

1 
2 
3 
4 
5 
6 

• 7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

.84134 

.68160 

.57830 

.50586 

.45207 
-.-4,1-039- 
.37703 
. 34964 
.32669 
.30713 
.23092 
. 14820 
.09315 
.05758 
.03510 
.02115 

.69146 

.59388 

.52287 

.46880 

.42618 

.39166 

.36309 

.33901 

.31842 

.30059 

.22884 

.14790 

.09311 

.05757 

.03510 

.02115 

1.0 

.15865 

. 13962 

.12456 

.11235 

.10226 

.09378 

.08655 

.08033 

.07492 

.07017 

.05062 

.02869 

.01517 

.00774 

.00390 

.00195 

1.0 

. 50000 

.45414 

.41702 

. 38627 

. 36034 

.33814 

.-31890 

.30203 

.28711 

. 27382 

.21662 
. 14488 
.09253 
.05748 
.03509 
.02115 
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\ = 0. 2 P = 4 

r 0.0 0.5 1.0 1.5 2. o 

M 

1 . .97725 ‘ .93319 
2 .88827 .86220 
3 .82374 . 80712 
4 .77390 .76271 
5 .73371 . .72584 
6 . 70027 . 69455 
7 .67180 .66753 
8 .64712 .64384 
9 .62540 .62284 

10 .60607 .60404 
16 .52188 . 52123-. 
32 .40781 .40772 
64 .30998 .30997 

128 .22998 .22998 
256 .16704 . 16704 
512 .11910 .11910 

.84134 .69146 .50000 

.79466 .66762 .49096 

.75564 .64633 .48249 

.72235 .62716 .47452 

.69350 .60975 .46700 

.66815 .59384 .45988 

.64565 .57921 .45313 
. .62547 .56570 .44670 

.60725 .55316 .44058 

.59066 .54148 .43474 

.51504 .48488 .40441 

.40616 .39412 .34827 

.30967 .30583 .28407 

.22993 .22893 .22029 

.16703 .16681 .16390 

.1 1910 .11906 .11821 

\ = 0.2 p = 9 

F 0.0 0.5 1.0 1.5 2.0 2.5 

M 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
16 
32 

•64 
128. 
256 
512 

.99865 .99379 .97725 .93319 

.97055 .96765 .95540 .91788 

.94760 .94574 .93634 .90394 
/92812 .92686 .91946 .89114 
.91115 .91026 .90430 .87931 
.89609 .89544 .89055 .86831 
.88253 .88204 .87798 .85805 
.87019 .86982 .86640 .84842 
.85887 .85857 .85566 .83936 
.84839 .84816 .84566 .83080 
.79806 .79799 .79682 .78762 
. 71516 .71515 .71485 -.71112 
.62619 .62619 .62613 .62492 
.53614 .53614 .53613 .53581 
.44940 .44940 .44939 .44932 
. 36932 . 36932 . 36932 .36931 

.84134 .69146 

.83292 . 68799 

.82495 .68463 

.81739 .68136 

.81020 .67818 

.80335 .67508 

.79679 .67207 

.79052 .66912 

.78450 .66625 

.77871 .66345 

. 74807 . 64787 

.68831 .61400 

.61395 .56556 

.53139 .50405 

.44781 .43443 

.36886 .36316 

3.0 

.50000 

.49897 

.49796 

.49696 

.49597 

.49499 

.49403 

.49308 

.49215 

.49122 

.48588 

.47319 

.45244 

.42165 

.38068 

.33189 
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M 

1 

2 

3 
4 
5 
6 
n 
I 

8 
9 

10 
16 
32 
64 

128 
256 
512 

M 

1 
2 
3 
4 
5 

•6 
7 

-8 
9 

10' 

16 
32 
64 

128 
256 
512 

\ = 0.2 p = 16 

r .0.0 0.5' 1.0 1.5 

.99997 

.99428. 

.98918 

.98451 

.98021 

.97619 

.97241 

.96884 

.96546 

.96223 

.94544 

.91291 

.87066 

.81904 

.75933 

.69348 

.99^77 

.99416 

.98910 
’ . 98446 

.98017 

.97616 

.97239 

.96883 

.96544 

.96222 

.94544 

.91291 

.87066 

.81904 

.75933 

.69348 

.99865 

.99332 

. 98845 

.98395 

.97976 

.97582 

.97211 

.96859 

.96524 

.96205 

.94535 

.91289 

.87066 

.81904 

.75933 

.69348 

.99379 

.98917 

.98485 

.98079 

.97696 
-.9733-2 — 

.96986 

.96656 

.96340 

.96036 

.94430 

.91246 

.87052 

.81900- 

.75932 

.69348 

F 2.0 2.5 3. 0 3.5 4.0 

.97725 

.97383 

.97056 

.96742 

.96441 

.9^150 

.95870 

.95599 

.95337 

.95083 

.93701 

.90821 

.86844 

.81816 

.'75903 

.69339 

.93319 

.93118 

.92921 

.92729 

.92542 

.92359 

.92180 

.92004 

.91832 

.91664 

.90716. 

.88588 

.85376 

.80977 

.75487 

.69160 

.84134 

.84045 

.83957 

.83869 

.83783 

.83698 
• .83613 

.83530 

. 8.3448 
- .-8-3366. 
• .82894 

.81755 

.79848 

.76914 

.72809 

.67587 

.69146 

.69117 

.69089 

.69060 

.69032 

.69004 

.68976 

.68948 

.68920 

.68892 

.68729 

.68315 

.67562 

.66266 

.64198 

.61169 

-. 50000 
.49993 
.49987 
.49980 
.49974 
.49967 
.49961 
.49954 
.49948 
.49941 
.49903 
.49803 
.49610 
.49252 
.48615 
.47550 
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M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

# 

M 

1 
2 
3 
4 
5 

' 6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

F 0,0 0.5 1.0 1.5 2.0 

1.00000 
.99921 

. .99847 
.99776 
.99708 
.99642 
.99578 
.99516 
.99456 
.99398 
.99074 
.98365 
.97289 
.95746 
.93651 
.90939 

.99999 .99997 

.99921 .99919 

.99847 .99845 

.99776 .99775 

.99708 ' .99707 

.99642* .99641 

.99578 .99577 

.99516 .99515 

.99456 .99455 

.99398 .99397 

.99074 .99074 

.98365 -.98365 

.97289 .97289 

.95746 . .95746 

.93651 .93651 

.90939 .90939 

.99977 — .99865- 

.99902 .99798 

.99830 .99733 

.99761 .99671 

.99695 .99609 

.99630 .99550 

.99568 .99491 

.99507 .99435 

.99448 .99379 

.99390 .99325 

.99070 .99019 

. 98363 . 98333 

.97288 .97273 

.95746 .95740 

.*3651 . .93648 

.90939 .90939 

F 2.5 3.0 3.5 4.0 4. 5 

.99379 

.99327 

.99276 

.99226 

.99177 

.99129 

.99082 

..99035 

.98989 

.98944 

.98^86 

.98082 

.97106 

.95644 

.93600 

.90918 

.97725 

.97692- 

.97660 

.97628 

.97597 

.97566 

.97535 

.'97504 

.97474 . 

.97444 

.97268 

.96838' 

.96093 

.94893 

.93101 

.90621 

.93319 

.93304 

.93288. 

. 93273 

.93258 

.93242 

. 93227 

.93212 

.93197 
]93182 
.93094 
.92868 
.92451 
.91720 
.90517 
.88681 

.84134 

.84129 

.84124 

.84118 

.84113 

.84107 

.84102 

.84097 

.84091 

.84086 

.84054 

. 83971 

.83811 

.81511 

.82972 

.82052 

.691-46 

.69145 

.69143 

.69142 

.69141 

.69139 

.69138 

.69137 

.69135 

.69134 

.69126 

.69105 

.69064 

.68983 

.68829 

.68543 

5. 0 

.50000 

.50000 

.49999 

.49999 

.49999 

.49999 

.49999 
* 49998 
.49998 
.49998 
.49996^ 

.49993- 

.49986 

.49971 

.49943 

.49888 
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f 

\ = 0.2 ^ p = 32 

r o. o 0.5 1.0 1.5 2.0 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

1.00000 
.99982 
.99966 
.99949 
.99933 
.99918 
.99902 
.99887 
.99872 

-.99858 
.99775 
.99582 
.99265 
.98768 
.98029 
.96978 

1.00000 
.99982 
.99966 
.99949 
.99933 
.99918 
.999Q2 
.99887 
.99872 

..99858 
.99775 
.99582 
.99265 
.98768 
.98029 
.96978 

.99999 

.99982 

.99965 . 

.99949 

. 99933“ 

.99918 

.99902 

.99887 

.99872 . 

.99858 

.99775 

.99582 

.99265 

.98768 

.98029 

.96978 

.99998 

.99981 

.99964 

.99948 

.99932 

.99917 

.99902 

.99887 

.99872 

.99857 

.99775 

.99582 

.99265 

.98768 

.98029 

.96978 

.99987 

.99971 

.99955 

.99939 

.99924 

.99909 

.99894 

.99879 

.99865 

.99851 

.99770 

.99579 

.99263 

.98768 

.98029 

.96978 

/ 

3. 5 4. 0 4. 5 •5.0 

M 

1 
2 
3 
4 
.5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

.99606 

.99595 

.99584 

. 99574 

.99563 

.99553 

.99542 

.99532 

. 99522 

.99512 

.99453 

.99306 

.99045 

.98609 

.97925 

.96917 

.98449 

.98443 

.98436 
-.98430 
.98423 
.98417 
.98411 
.98405 
.98398 
.98392 
.98355 
.98260 
.98084 
.97769 
.97238 
.96399 

.95122 

.95120 

.95117 

.95114 

.95111 

.95108 

.95105 

.95102 

.95099- 

.95097 

.95079 ' 

.95035 

.94948 

.94785 

.94489 

.93976 

. i . .¿3 
.87632 
.87631 

.. 87630 
.87630 
.87629 
.87628 
.87627 
.87626 
.87625 
.87619 
.87604 
.87575 
.87517 
.87407 
.87202 

.74436 
74436 
74436 

.74435 

.74435 
f 74435 
.74435 
.74435 
.74434 
.74434 
.74433 
.74429 
.74422 
.74409 

. .74382 
.74329 

2. 5 

.99920 

.99906 

.99892 

.99878 

.99864 

.99851 

.99837 

.99824 

.99811 • 

.99798 

.99724 

.99544 

.99240- 

.98754 

.98022 

.96975 

5. 5 

. 56232 

.56232 

.56232 

.56232 

.56232 

. 56232 

.56232 

.56232 

.56232 

. 56232 

.56231 

.56231 

.56230 

.56227 

.56223 

.56214 
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M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

M 

1 
2 
3 
4 
5 
6 

* 

• 7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

\ = 0,4 p = 0 
i 

r ' o. o o. 5__ 
..i. ... ..... • 

.50000 

.34225 

.25892 

.20771 

.17316 

.14834 

. 12966 
“711511 

.10347 

.09395 

.06040 

.03083 

.01554 

.00780 

.00390 

.00195 

\ = 0.4 p = 1 

t>/% ** ’* ’ 

0.0 

.84134 

.64902 

.53694 

.46246 

.40884 

.36812 

.33596 

.30982 

.28809 

.26969 

.19897 

.12417 

.07592 

.04570 

.02717 

.01598 

.30854 

.23438 

.18932 

.15893 

.13702 

.12045 

.10748 

.09704 

.08846 

.08127 

.05467 

.02921 

.01512 

.00769 

.00388 

.00194 

0. 5 

.69146 

.56378 

.48158 

.42347 

.37984 

.34567 

.31806 

.29520 

.27592 

.25939 

.19427 

.12283 

.07557 

.04561 

.02715 

.01597 

1.0 

. 15865 

.13187 

. M342 

.09982 

.08932 

.08094 

.07407 

.06834 

.06347-• _ 

.05928 

.04268 

.02477 

.01362 

.00722 

.00374 

.00190 

1.0 

.50000 

.43192 

. 38347 

.34675 

.31773 

.29408 
.27434 
.25756 
.24309 
.23045 
. 17838 
.11688 
.07354 
.04497 
.02695 
‘.01592 
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--T-0>-4 ^ p _ 4 

r • • • • 

r o.o 0.5 i.o 

M 

1 .97725 
2 .85409 
3 _ .,.77232 
4 .71233 
5 .66559 
6 .- .62768 
7 .59603 
8 .56903 
9 .54561 

10 .52500 
.16 .43791 

32 .32645 
64 .23686 

128 .16791 
256 . 11669 
512 .07969 

.93319 .84134 

.82880 .76511 

.75580 .70817 

.70064 .66325 

.65686 .62650 
--. 62090 - .-59561 

. 59061 .56914 

. 56459 . 54607 
• . 54190 . 52572 

. 52187 . 50758 
:43647 .42857 
.3260*3 ’ •."32 3a5 
. 23674 ..23572 
. 16788 . 16755 
.11668 .11658 
.07969 .07966 

\ = 0. 4 p = S 

r 0.0 

M 

1 .99865 
2 .94925 
3 .91159 
4 .88104 
5 .85532 

•6 . 83309 
7 .81353 
8 . 79605 
9 .78028 

10 .76590 
16 .69940 
32 .59775 
64 -.49769 

128 .40446 
256 • .32151 
512 . .25049 

0.5 1.0 

.99379 .97725 

.94643 .93489 

.90974 .90106 

.87973 .87290 

.85434 .84877 

.83233 .82768 

.81291 .80896 

.79555 .79213 

.77986 .77687 

.76555 .76290 
»69923 .69776 
.59771 .59714 
.497.68 . .49748 
.40446 .40440 
. 32151 . 32149 
.25049 .25049 

1.5 \ 2.0 
t 

' , ('9146 ,50000 
.64592 .47864 
.60948 .46046 
.57928 .44464 
.55361 .43066 
.53137 -.-41815 
.51182 .40685 
.49444 .39655 
.47883 .38710 
.46469 .37838 
.40078 .33702 
.30976 .2-7243 
.22996 .21011 
.16525 .15554 
.11572 .11130 
.07936 .07747 

1.5 2.0 

.93319 .84134 

.89969 .8Í919 

.87181 .79992 

.84794 .78284 

.82705 .76750 

.80850 » 75357 

.79181 .74082 

.77667 .72905 

.76280 .71813 

.75002 .70795 

.68937 .65813 

.59310 .57467 

.49572 .48584 

.40368 .39882 

.32122 .31899 

.25039 .24943 

2. 5 

.69146 

.67978 

.66920 

.65951 

.65056 

.64224 

.63446 

.62716 

.62027 

.61375 

.58060 

.52065 

.45133 

.37847 

.30783 
•.24369 

3. 0 

.50000 

.49526 

.49082 

.48665 

.48269 

.47894 

.4-7536 

.47194 

.46866 

.46552 

.44886 

.41605 

.37401 

.32526 

.27362 

.22305 
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M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

M 

1 
2 

3 
4 
5 
6 
7 

• 8 
9 

10 

16 
32 
64- 

128 
256 
512 

.99996 

.98575 

.97364 

.96299 

.95344 • 

.94474 

.93675 

.92934 

.92242 

.91593 

.88348 

.82559 

.75742 

.68187 

.60244 

.52265 

.97725 

.96641 

.95670 

.94787 

.93976 

.93225 
92523 
91866 
91246 

.90659 

.87668 
82168 

.75536 
68087 

.60198 

.52246 

= 0,4 p = 16 

0.5 1.0 

.99976 

.98564 

.97356 

.96294 

.95339 

.94471 

.93672 

.92932 

.92241 

.91592 

.88347 

.82559 

.75742 

.68187 

.60244 

.52265 

.99865 

. 98485 

.97297 
96247 

.95301 

.94439 

.93645 
92908 

.92220 

.91573 

.88337 
• .82555 

.75740 

.68186 
I.60243 
¡.52265 

2. 5 3.Tr" 

.93319 

.92536 

.91814 

.91144 

.90518 
89928 

.89371 

.88843 

.88340 

.87860 

.85356 

.80547 

.74494 

.67469 

.59857 

.52069 

.84134 

.83674 

.83240 

.82828 

.82435 

.82060 

.81700 

.81355 

.81022 

.80701 

.78976 

.75457 

.70711 

.64850 

.58164 

.51041 

1. 5 

.99379 

.98095 

.96972 
95968 

.95059 

.94224 

.93453 

.92735 

.92062 

.91428 

.88242 

.82509 

.75720 

.68178 

.60240 
52264 

3. 5 

.69Í46 

.68936 

.68733 

. 685*7 — 

.68347 

.68163 

.67985 

.67811 

. 67642 

.67477 

.66564 

.64576 

.61660 

.57742 

.52900 

.47362 

4. O 

.50000 

.49927 

.49856 
/4^736 
.49718 
.49651 
.49585 
.49520 
.49457 
.49394 
.49040 
.48218 
.46909 
.44980 
.42359 
.39068 
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■ M 

1 
2 

,V'. 3. 

4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

M 

1 
2 
3 
4 

• -5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

0.0 ; 

.1.00000 „ 
.99691 
.99408 
.99145 
.98898 
.98665 
.98444 
. 98232 
.98030 
.97836 
.96802 
.94706 
.91828 
.88110 
. 83562' 
. 78265 

= 0.4 p 

0. 5 

.99999_ 

.99691 
, .99408 

.99145 
.. 98898 
.68665 
.98444 

98232 
.98030 
.97836 

96802 
.94706 
.91828 
.88110 

. .83562 
.78265 

= 25 

I 

.99996 
* .99689 

.99407 

.99144 

.98897 

.98664 

.98443 

.98232 

.98029 

.97835 

.96802 

.94706 

.91828 

.88110 

.83562 

.78265 

1.5 2.0 

.99976 

.99673 

.99393 

.99132 

.98887 

.98655 

.98435 

.98224 

.98023 

.97829 

.96798 

.94704 
• .91827 
.88110 
.83562 
.78265 

.99865 
7’ . 99574 

.99305 

.99052 

.98813 

.98587 

.98371 

.98165 

.97967 

.97776 

.96758 

.94680 

.91815 

.88104 

.83559 
78264 

2. 5 - 

99379 
99121 

.98878 
•. 98648 
.98430 
. 9822.1 
.98021 
.97829 
.97643 
.97465 
.96500 
.94498 
.9J697 
.88033 
.83520 
.78243 

3. 0 

.97725 

.97523 

.97331 

. 97146 

. 96969' 

.96798 

.96633 

.96473 

.96318 

.96167 

.95340 

.93569 

.91003 

.87550 

.83206 

.78052 

3. 5 

.93319 

.93189 

.93062 

.92939 

.92820 

.92703 

.92590 

.92479 

.92371 

.92265 

.91672 

.90342 

.88308 

.85424 

.81624 

.76940 

4. 0 

.84134 

.84067 

.84002 

.83937 

.83874 

.83812 

.83751 

.83691 

.83631 

.83573 

.83240 

.82456 

.81177 

.79233 

.76490 

.72883 

.4. 5 

.69146 

.69120 

.69094 

.69068 

.69043 

.69018 

.68993 

.68968 

.68944 

.68920 

.68780 

.68435 

.67838 

.66862 

.65371 

.63243 

5. 0 

.50000 

.49992 

.49985 

.49977 

.49969 

.49962 

.49955 

.49947 

.49940 

.49932 

.49889 

.49780 

.49581 

.49233 

.48659 

.47767 
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r 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

\ = 0.4 p = 32 

0.0 0.5 1.0 2. 0 . 

1.00000 1.00000 
.99902 .99902 
.99810 .99810 
.99723 .99723 
.99639 .99639 
„ 99558 .99558 
.99480 .99480 
.99404 .99404 
.99331 99331 
.99260 .99260 

.98869 .98869 

.98020 .98020 

.96750 .96750 

.94957 • .94957 

.92557 .92557 

.89499 •89499 

.99999 .99998 

.99902 99901 

.99810 .99809 

.99723 .99722 

.99639 .99638 

.99558 .99557 

.99480 _..99479 

.99404 .99404 

.99331 .99331 
..99260 .99260 

.98869 .98869 

.98020 .98020 

.96750 ' .96750 

.94957 .94957 

.92557 .92557 

. 89499 . 89499 

.99987 

.99891 

.99801 

.99714 

.99631 

.99550 
". 99473 
.99398 
.99325 
.99254 
.98865 
.98018 
.96749 
.94956 
.92556 
.89499 

F 3.0 3. 5 4. 0 4. 5 5. 0 

M 

1 
2 
3 
4 

7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

.99605 

.99525 

.99447 

.99372 

.99299 

.99228 

.99159 

.99092 

.99027 

.98963 

.98607 

.97814 

.96599 

.94853 

.92490 

.89458 

.98449 

.98387 

.98326 

.98266 

.98208 

.98152 

.98096 

.98042 

.97989 

.97937 . 

.97641 

.96962 

.95886 

.94289 . 

.92069 

.89162 

.95122 

.95082 

.95043 

.95004 

.94966 

.94929 

.94892 

. 94 856 

.94820 

.94784 

.94581 

.94097 

.93290 

.92031 

.90191 

.87674 

.87633 

.87613 

.87593 

.87573 

.87554 

.87534 

.87515 
• .87496 

.87477 

.87458 
• .87349 

.87080 

.86607 

.85824 

.84603 

.82818 

.74436 

.74428 

.74421 

.74413 

.74405 

.74398 

.74390 

.74383 

.74375 
*.74368 
.74324 
.74212 
.74007 
.73647 
.73046 
.72101 

_ i 

2. 5 

.99920 

.-99829 

. 99742 

.99658 

.99577 

.99500 

.99424 

.99351 

.99280 

.99211 

.98829 

.97992 

.96732 

.94946 

.92551 

.89496 

5 5 

.56232 

.56230 

.56227 

.56225 

.56223 

.56221 

.56219 

. 5621-6 

.56214 

.56212 

.56199 

.56165 

.56102 

.55984 

.55775 

.55422 
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X = 0.6 

M 

1 
2 
3 
4 
5 « 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
•512 ' 

p = 0 

.50000 

.32379 

..24046 

. 19164 

.15948 

.13667 

. 11962 

.10640 

.09583 

.08719 

.05669 

.02945 

.01507 
*. 00TO4- 
.00385 
.00193 

0. 5 

.30854 

.21876 
. 17117 
.14130 
.12067 
.10550 
.09385 
.08460 
.07706 
.07081 
.04789 
.02606 
. 0138"0" 
.00718 
.00369 
.00188 

M 

r 
X =0.6 p = 1 ~ 

0.0 0.5’ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

.84134 

.60924 

.48812 

.41199 

.35900 

.31967 

.28915 

.26466 

. 24451- 

.22760 

. 16391 

.09891 

.05857 

.03418 

.01972 

.01128 

.69146 

.52640 

.43323 

.37198 

.32808 

.29479 

.26854 

.24720 

.22947 

.21445 
. 15682 
.09616 
. 0575.3 
.03380 
.01959 
.01123 

1.0 

.15865 

. 122 39 

.10095 

.08652 

.07603 

.06802 

.06167 

.05649 

.05219 
.. 04854 
.03456 
.02009 
.01124 
.00612 
.00326 
.00170 

1.0 

.50000 

.40257 

.34265 

.30112 

.27022 

.24612 

.22669 

.21061 

. 19703 

.18539 

.13935 

.08830 

.05414 

.03238 

.01901 

.01100 
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M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 
28 

56 
12 

M 

' 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

\ = 0. 6 

r 0.0 0.5 

.97725 .93319 

.80473 .78020 

.70158 .68525 

.63033 .61840 

.57708 . 56784 

.53522 .52777 

.50113 .49495 

.47265 .46740 

.44836 .44383 

.42732 .42336 

.34166 .33951 

.23958 .23874 

.16381 .16350 

. 10967 . 10956 

.07213 .07209 

.04672 .04670 

\ = 0. 

F 0.0 0.5 

.99865 .99379 

.90954 .90682 

.84778 .84596 

. 80069 . 79936 

.76280 .76176 

.73121 .73037 

.70422 .70352 

.68071 .68012 

.65995 .65944 

.64140 .64095 

.55965 .55941 

.44615 .44605 

.34596 .34593 

.26178 .26176 

. 19384 . 19384 

.14083 .14083 

P ^ 4 

1.0 1.5 

.84134 .69146 

.72045 .61013 

.64138 .55358 

.58399 .51089 

.53968 .47700 

.50404 .44915 

.47452 .42569 

.44951 .40554 

.42796 .38798 

.40913 .37247 

.33092 .30654 

.23485 .22218 

.16181 .15556 

. 10885 . 10588 

.07180 .07044 

.04659 04598 

6 p = 9 

1.0 1.5 

.97725 .93319 

. 89600 . 86342 

.83799 .81199 

.79309 .77139 

.75662 .73798 

.72603 .70969 

.69978 .68522 

.67684 .66372 

.65653 .64458 

.63833 .62737 

.55782 .55051 

.44533 *.44151 

.34561 .34372 

.26163 .26073 

. 19378 . 19337 

.14081 .14062 

2. 0 

.50000 

.45518 

.42199 

.39583 

.37438 

.35631 

.34077 

.32718 

.31516 

.30441 

.25720 

. 19313 

. 13938 

.09727 

.06603 

.04379 

2.0 2.5 

.84134 .69146 
. 78884 . 65833 
.74849 .63170 
.71577 .60941 
.68831 ..59024 
.66469- .57343 
. 64402 . 55848 
.62566 .54503 
.60919 .53282 
.50426 .52164 
.52643 .46951 
.42726 .38962 
. 33574 -—31-222 
.25647 .24246 
.19117 .18318 
.13953 . 13512 

.50000 

.48309 

.46888 

.45660 

.44577 

.43607 

.42729 

.41927 

.41188 

.40504 

.37214 

.31860 

.26320 

.21025 

.16290 
. 12284 
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M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

M 

1 
2 
3 
4 
5 
6 
7 
8 
o 
/ 

10 
16 
32 
64 

128 
256 
512 

F 0.0 

\ = 0. 6 p - 16 

0.5 1.0 1. 5 

.99996 

.96317 

.93429 

.91034 

.88981 

.87181 

.85576 

.84128 

.82808 

.81595 

.75859 

.66703 

.57226 

.47963 

. 39335 

.31618 

.99976 

.96305 

.93421 

.91029 

.88977 

.87177 

.85574 

.84126 

.82806 

.81593 

.75858 

.66702 

.57226 

.47963 

.39335 

.31618 

2 5 

.99865 

.96232 

.93367 

.90986 

.88942 

.87148 
.85548 
. 84103 
.82786 
.81575 
.75847 
.66697 
.57224 
.47962 
.39334 
.31617 

3. 0 

.99379 

.95871 

.93078 

.90744 

.88734 

.86965 

.85385 
. 83956 
.82652 
.81453 
.75765 
.66654 
.57202 
.47952 
. 39329 
.31615 

3. 5 

.97725 .93319 

.94523 .90678 

.91928 .88481 

.89735 .86591 

.87831 .84929 
\ 86147 .83443 

.84635 .82099. 

.83263 .80870 
.82007 .79739 
.80848 .78690 
.75324 .73628 
.66392 .65266 
.57055 .56348 
.47873 .47450 
.39289 .39046 
.31595 ' .31461 

.84134 

.82256 
.80646 
. 79230 
.77964 
.76815 
.75764 
.74794 
.73892 
.73051 
.68907 
.61809 
.53953 
.45870 
.38048 
.30854 

.69146 

.68043 

.67068 

.66190 

.65389 

.64651 

.63967 

.63328 

.62728 

.62162 

.59308 

.54177 

.48181 

.41707 

.35172 

.28942 

4.0 

. 50000 

. 49482 

.49011 
. 48577 
.48173 
. 47796 
.47441 
.47105 
.46787 
.46484 
.44911 
.41922 
.38196 
. 33913 
. 29333 
. 24732 
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M 

1 
2 
3 
4 
5 
ó 
7 
8 
9 

10 
lb 
32 
64 

128 
256 
512 

M 

1 
2 ‘ 

3 
4 
5 

6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

\ = 0. 6 p = 25 

0. 0 .0.5 i.o 1.5 .2.0 

1.00000 
.98732 
.97645 
.96683 
.95817 
.95026 
.94297 
.93619 
.92984 
.92388 
.89387 
.83973 
.77509 
. 70249 
. 62516 
. 54647 

'2. 5 

.99379 

.98199 

.97171 

.96255 

.95424 

.94662 

.93956 

.93298 

.92681 

.92100 

. 89164 

. 83827 

. 77419 

.70195 

. 62485 

. 54631 

.99999 

.98732 

.97645 

.96683 

.95817 

.95026 

.94297 

.93619 

.92984 

.92387 

. 89387 

.83973 

.77509 

.70249 

.62516 

.54647 

3. 0 

.97725 

.96680 

.95756 

.94924 

.94163 

.93461 

.92808 

.92196 

.91621 

.91076 

.88305 

.83196 

.76980 

.69905 

.62301 

.54518 

.99996 

.98730 

.97643 

.96682 

.95816 

.95025 

.94296 

.93618 

.92984 

.92387 

.89387 

.83973 

.77509 

.70249 

.62516 

.54647 

3. 5 

.93319 

.92497 

.91757 

.91080 

.90454 

.89871 

.89324 

.88809 

.88321 

.87857 

.85461 

.80927 

.75259 

.68659 

.61437 

.53942 

.99976 

.98715 

.97631 

.96672 

.95808 

.95018 

.94289 

.93612 

.92978 

.92382 

.89383 

.83971 

.77508 

.70249 

.62516 

.54647 

4.0 

. 84134 

.83587 

.83083 

.82615 

.82176 

.81763 

.81372 

.81000 

.80644 

.80304 

.78516 

.75001 

.70416 

.64868 

.58588 

.51881 

.99865 

.98624 

.97553 

.96603 

.95746 

.94962 

.94238 

.93564 

.92934 

.92341 

. 89353 

. 83953 

.77498 

.70243 

.62513 

.54646 

4. 5 

.69146 

.68849 

.68570 

.68306 

.68056 

.67818 

.67590 

.67371 

.67160 

.66956 

.65864 

.63618 

.60529 

.56591 

.51909 

.46682 

\ 

5.0 

.50000 

. 49872 

.49750 

.49633 

.49521 

.49413 

.49308 

.49207 

.49109 

.49013 

.48489 

.47360 

.45715 

.43487 

.40677 

.37355 
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M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 
28 
:56 
12 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

\ = 0. 6 p - 32 

0.5 1.0 1.5 0. 0 

1.00000 
. 99429 
.98918 
.98452 
.98021 
.97619 
.97241 
.96884 
96546 

.96223 

.94544 

.91291 

.87066 

.81904 
75933 

.69348 

3. 0' 

.99605 

.99071 

.98587 

.98142 

.97729 

.97342 

.96977 

.96632 

.96303 

.95989 

.94350 

.91151 

.86970 

.81841 

.75893 

.69324 

1.00000 
.99429 
.98918 
.98452 
.98021 
.97619 
.97241 
.96884 
.96546 
.96223 
94544 

91291 
.87066 
.81904 
.75933 
.69348 

3. 5 

98449 
.97972 
.97536 
.97131 
.96753 
.96397 
.96060 
.95740 
.95434 
.95141 
.93600 
.90551 
.86514 
.81510 
.75663 
.69171 

.99999 

.99429 
98918 

.98452 

.98021 

.97619 
97241 
96884 
96546 
96223 

.94544 

.91291 
87066 

.81904 

.75933 

.69348 

4.0 

.95122 
94744 

.94392 
94062 

.93750 

.93455 

.9 3174 

.9 2905 

.92647 

.92399 

.91075 

. 88393 

.84747 

.80125 

.74620 

.68414 

.99998 

.99428 

.98917 

.98451 

.98020 

.97618 

.97240 

.96884 

.96545 
96223 

.94544 

.91291 

.87066 

.81904 

. 75933 

.69348 

4. 5 

. 87633 
.87377 
.87136 
.86907 
.86688 
.86479 
.86278 
.86085 
85898 

.85717 

.84738 

.82685 

.79782 

.75961 

.71254 

.65789 

2. 0 

.99987 

.99419 

.98909 

.98444 

.98014 

.97612 

.97235 

.96879 

.96541 

.96219 

.94541 

.91289 

.87065 

.81904 
. 75932 
.69348 

5. 0 

.74436 

.74295 

.74160 

.74030 

.73905 

.73784 

.73667 

.73554 

.73443 

.73336 

.72743 

.71451 

.69533 

.66883 

.63461 

.59308 

2.5 

.99920 

.99360 

.98857 

.98396 

.97969 

.97571 

.97196 

.96842 

.96506 

.96185 

.94514 

.91272 

.87054 

.81897 

.75928 

.69346 

5. 5 

.56232 

.56170 

.56110 

.56052 

.53996 

.55941 

.55887 

.55835 

.55784 

.55733 

.55451 

.54811 

.53812 

.52352 

.50360 

.47806 
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M 

1 
2 
3 
4 
5 
6 

• 7 
8 
9 

10 
16 

32 
64 

128 
256 
512 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

\ = 0. 8 p = 0 

0.0 O-5 

.50000 

.30121 

.21787 

.17150 

.14180 

.12108 

.10576 

.09397 

.08460 

.07696 

.050 18 

.02633 

.01365 

.00702 

.00358 

.00182 

.30854 

. 19926 

.14959 

.12067 

. 10157 

.08794 

.07769 

.06969 

.06324 

.05794 

.03889 

.02118 

.01132 

.00598 

.00312 

.00162 

. 15865 

. 10984 

.08575 

.07104 

.06099 

.05365 

.04801 

.04354 

.03988 

.03684 

.02561 

.01460 

.00813 

.00445 

.00240 

.00128 

\ = 0. 8 p = 1 

0.0 O-5 

.84134 

.55562 

.42514 
.34843 
.29726 
.26040 
.23244 
.21041 
. 19256 
. 1777o 

' í 
J 

.07119 

.04038 

.02264 

.01258 

.00694 

.69146 

.47540 

.37126 

. 30825 

.26542 

.23414 
.21017 
. 19113 
.17559 
.16264 
.11463 
.06707 
.03852 
.02180 
.01220 
.00677 

.50000 

.36066 

.28914 

.24429 

.21306 
•. 18985 

. 17180 

. 15730 

.14535 

. 13531 
.09738 
.05851 
.03434 
.01980 
.01125 
.00632 
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\ = 0. 8 P “ 4 

r o.o 0.5 1.0 1.5 2.0 

M 

1 .97725 
2 . 72620 
3 .59645 
4 . 51400 
5 .45582 
6 .41203 
7 .37758 
8 .34962 
9 .32635 

10 .30662 
16 23032 
32 . 14789 
64 .09301 

128 .05752 
256 .03508 
512 .02114 

.93319 .84134 

.70250 .64721 

.58048 .54082 

.50208 .47113 

.44636 .42099 

.4.0421 .'38273 
37095 .35233 

.34387 .32744 

.32129 .30659 
30211 .28882 
22763 .21922 

.14665 .14246 
09245 .09041 
05727 05628 
03496 .03449 
02109 02087 

.69146 .50000 

.54780 .40985 

.46536 .35534 

.40992 .31750 

.36932 .28917 

.33791 .26688 
31270 .24875 

.29188 23361 

.27433 .22072 

.25927 .20958 

. 19945 .16445 
13183 .11159 

.08483 .07347 
05342 .04719 
03304 .02970 
02015 .01837 

\ r 0. 8 p = 9 

r o.o 0.5' 10 1.5 2.0 2.5 

M 
1 
2 
3 
'4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

.99865 .99379 

.82798 .82536 

.72665 72488 

.65650 .65517 

.60385 .60280 

.56229 .56142 

.52831 .52757 

.49981 .49917 

.47543 .47487 

.45425 .45375 

.36727 .36697 

.26184 .26171- 

.18197 .18191 

.12375 .12373 

.08262 .08261 

.05431 05430 

.97725 93319 

.81536 .78603 

.71769 .69538 

.64955 .63143 

.59819 .58287 

.55751 54421 

.52418 .51241 

.49618 48561 

.47219 .46259 

.45132 44253 
. 36543 .35954 
.26094 .25776 
.18153 .17986 
.12354 .12268 
.08253 .08209 
.05426 .05404 

.84134 .69146 

.71964 .60353 

. 64232 54548 

. 58680 . 50279 

.54413 .46943 

.50985 .44229 

.48145 .41958 

.45738 .40017 

.43661 .38330 

.41844 .36844 

.34253 .30549 

.24789 .22489 

.17431 .16049 

.11963 .11156 

.08044 .07584 

.05317 .05059 

3.0 

.50000 
. 44643 
.40952 
.38163 
.35938 
.34101 
.32544 
.31200 
.30020 
.28974 
.24453 
.18453 
.13472 
.09560 
.06619 
.04488 
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\ = 0. 8 p = 16 

r o. o 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

.99996 

.89703 

.82785 

.77608 

.73497 

.70105 

.67230 

.64745 

.62563 

.60623 

.52191 

.40782 

.30998 

.22998 

. 16704 

. 11910 

r 2.0 

0. 5 

.99976 

.89692 

.82778 

.77602 

.73492 

.70101 

.67227 

.64743 

.62561 

.60621 

.52190 

.40781 

.30998 

.22998 

. 16704 

. 11910 

2.5 

1. 0 

.99865 

.89625 

.82729 

.79564 

.73461 

.70075 

.67204 

.64722 

.6 2 543 

.60605 

.52180 

.40776 

.30995 

.22997 

.16703 

. mío 
3.0 

1.5 

.99379 

.89300 

.82481 

.77363 

.73290 

.69926 

.67073 

.64604 

.62436 

. 60 507 

.52114 

.40740 

.30977 

. 22987 

.16698 

. 11907 

3. 5 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

.97725 

.88101 

.81521 

.76554 

.72588 

.69303 

.66511 

.64091 

.61963 

.60068 

.51804 

.40560 

.30875 

.22931 
. 16668 
.11891 

.93319 

.84679 

.78662 

.74071 

.70378 

.67303 

.64678 

. 62395 

.60382 

.58585 

.50703 

.39874 

.30462 

.22689 

. 16529 

.11814 

.84134 

.77126 

.72117 

.68232 

.65070 

.62414 

.60131 

.58135 

.56365 

.54779 

.47749 

.37914 

. 29207 

.21910 

. 16058 

.11534 

.69146 

.64213 

.60574 

.57692 

.55311 

.53288 

.51532 

.49984 

.48602 

.47356 

.41751 

. 33689 

. 26342 

.20027 

. 14855 

.10783 

4.0 

.50000 

.47089 

.44866 

.43065 

. * ir 50 

.40245 

. 39100 

.38080 

.37162 

.36328 

.32508 

.26813 

.21417 

. 16616 

.12559 

.09276 
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M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
16 
32 
64 

128 
256 
512 

\ = 0. 8 p = 25 

r o. o 0.5 1.0 1.5 2. 0 

1.00000 
.94308 
.90078 
.86697 
.83879 
.81462 
.79347 
.77469 
.75781 
. 74249 
.67230 
.56709 
.46576 
. 37329 
.29262 
. 22487 

.99999 

.94307 

.90078' 

.86697 

.83878 

.81462 

.79347 

. 77469 

. 75781 

. 74249 

.67230 

.56709 

.46576 

.37329 

.29262 

.22487 

3.0 

.99996 

.94306 

.90076 

.86696 

.83878 

.81461 

.79347 

. 77469 

.75781 

. 74248 

.67230 

.56708 

.46575 

.37329 

.29262 

.22487 

3. 5 

.99976 

.94292 

.90066 

.86688 

.83871 

.81455 

.79341 

.77464 

.75776 

.74244 

.67227 

.56707 

.46575 

.37329 

. 29262 

.22487 

4. 0 

.99865 
,94211 
.90001 
.86633 
.83823 
.81412 
.79303 
.77429 
.75744 
.74214 
.67206 
.56695 
.46568 
.37325 
.29260 
.22486 

4. 5 5.0 

.99379 

.93833 

.89684 

.86357 

.83578 

.81190 

.79099 
77240 

.75568 

.74049 

.67083 

.56618 

.46521 

. 37298 

.29244 

.22477 

.97725 

.92470 

.88502 

.85301 

.82617 

.80305 

.78275 

.76468 

.74839 

.73358 

.66546 

.56261 

.46292 

.37155 

.29158 

.22425 

.93319 

.88667 

.85099 

.82191 

.79735 

.77608 

.75733 

.74057 

.72543 

.71162 

.64768 

.55006 

.45439 

. 36593 

.28798 

.22200 

.84134 

.80441 

.77545 

.75152 

.73109 

.71325 

.69741 

.68318 

.67025 

.65841 

.60302 

.51676 

.43049 

.34934 

.27679 

.21464 

.69146 

.66618 

.64586 

.62876 

.61396 

.60091 

. 58922 

.57863 

.56895 

.56003 

.51771 

.44993 

.38006 

.31254 

.25072 

. 19665 

.50000 

.48557 

.47366 

.46344 

.45447 

.44646 

.43921 

.43258 

.42648 

.42083 

. 39349 

.34820 

.29967 

.25107 

.20511 

. 16369 
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