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ABSTRACT 

A scalar equation for the power returned to a radio 

altimeter ia developed by probability methods to explain the 

scattering mechanism of the earth's surface at any altitude, 

including altitudes such that the sphericity of the earth 

becomes an important factor. The power return equation is 

resolved into a specular component plus a random or scatter 

component. The relative magnitudes of these components depend 

upon the surface roughness of the irradiated target. 

An analytic expression for the scattering cross-section is 

derived on the assumption that the surface may be reasonably 

described by a normal bivariate probability density function 

with a Gaussian correlation function. The scattering cross- 

section is found to be a function of the angle of incidence 

and the statistics of the rough surface. The result approaches 

the isotropic scatterer for extremely rough surfaces. 

An insignificant error in return power is incurred by 

neglecting the curvature of thi earth's surface at altitudes 

up to 400 miles. Here the error in the specular component is 

+ 1 db and that in the scatter component is + 0.5 db. 

It is not expected that the scattering cross-section will 

be independent of large changes in altitude in practical 

applications. The irradiated target area increases as the 

radar altitude increases, thus changing the statistical 

information available to the radar. 

i 



Table of Contents 

Chapter Page 

I Introduction 1 

II Resolution of the Return Field into 

Specular and Scatter Components 5 

III Specular Reflection from a Sphere H 

IV The Equation of Scatter Power Return 19 

V Total Power Return 24 

1. Total Power Return from a Rough Spherical 

Surface 24 

2. Total Power Return from a Rough Plane 25 

VI A Theoretical Model for the Scattering Cross- 

Section, a~c (öj) 28 

1. An Exact Integral Form 28 

2 Evaluation of er0 (©J by Approximate 

Integration 39 

VII Calculated Examples of Power Return 50 

VIII Conclusions 64 

Bibliography 67 

Appendices 

A Boundary Conditions for Fock s Development of an 

Arbitrary Wave Reflected from an Arbitrary Surface 72 

B An Approximate Scattering Cross-Section for a Rough 

Plane 76 

C Experimentally Determined Scattering Parameters 86 

ii 



CHAPTER I 

INTRODUCTION 

Since 1935 the University of New Mexico has been carrying 

on research and experimental data reduction on the scattering 

of radar return signals from earth at near-vertical incidence. 

The work to date has considered scattering at radar altitudes 

of 2,000 to 12,000 feet as a large quantity of data is 

available from an extensive experiment performed by the Sandia 

Corporation, Albuquerque, New Mexico.'1' Based on these previous 

studies, this paper is a theoretical study of radar terrain 

return at altitudes such that the sphericity of the earth must 

be considered. 

Much hos been written abcut a specular component (or 

specular highlight) being observed in power returned from 

scattering surfaces. R. K. Moore has proposed a scalar theory 

for separating the specular and random components of the field 
~> 

returned from such scattering surfaces.*' Here his technique 

has been applied to the high altitude problem. 

The definitions for the terms 'specular' and 'scatter' as 

used in this paper are as follows. A scattering surface is 

defined as an irregular surface irradiated by the radar. It is 

1 
Reports issued by the organisations involved in this 

experiment are listed in the Bibliography, Part B. 
1 
Moore, R. K., 'Resolution of Vertical Incidence Radar 

Return into Random and bpecular Components, ' Tech. Report 
EE-6, Univ of New Mexico Engr. Exp. Stet., July, 1957. 

1 
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assumed that the autocorrelation function of surface heights 

is invariant over the irradiated area. The specular signal is 

phase coherent with the transmitted signal, and is identical, 

except for magnitude, with the signal that would be received 

from a perfectly smooth surface. The resolved specular signal 

from a scattering surface is reduced by a multiplying factor 

that is a function of the surface roughness and does not fade 

as the radar antenna moves over the target area. The scatter 

component of return signai is not phase coherent with the 

transmitted signal and fades as the antenna moves over the 

target area. 

As the field returned from a scattering surface has been 

resolved into spéculai and random components, the power returned 

will also nave specular and random or scatter) components. 

Thus, it becomes necessary to obtain an expression for the 

specular power reflected from a smooth sphere. V. A. Fock 

has derived the eauatior.s for an arbitrary wave front reflected 
a, 

from an arbitrary surface. Here his results ate specialized 

to the case of a spherical wave front reflected from a 

spherical surface and expressed in terms of power. 

A scalar equation describing the manner in which power is 

reradiated from a rough surface has been derived by Moore and 

"ï" ” 

Fock, V. A., ’Generalization of the leflection Formulas 
to the Case of Reflection of an Arbitrary Wave from a Surface 
of Arbitrary Form," Zh eksp teen Fiz , Vol 20, pp 961-978, 
1950. Translation available in Astia Document No„ AD 117276. 



Williams. 
4 5 

The expression for specular plus scatter power 

returned to the radar is obtained by combining Moore and 

Williams equation with Moore’s method of resolving the return 

field into specular and random components. It is shown that 

as the altitude of the antenna above the surface of the sphere 

is decreased, the power returned from the rough sphere 

approaches a previously derived result, for the power returned 

6 
from a rough plane. 

Determining the scattering cross-section of * rough surface 

is one of the more difficult problems of radar terrain return 

studies. It is here assumed that a normal bivariate probability 

density function, with a Gaussian correlation function for 

height versus distance, will reasonably describe a rough surface 

This is essentially the approach taken by Davies to describe 

backscatter from the sea surface.i The assumption of a two- 

dimensional probability density function for surface roughness 

permits the calculation of an analytic average scattering cross- 

section per unit aica as a function of angle of incidence. The 

analytic scattering cress-section contains statistical surface 

4 

Moore, R. K., and Williams, C. S.., Jr., "Radar Terrain 
Return at Near-Vertical Incidence," PROC. I.R.E., Vol, 4¾ 
p. 228, 1957. 

5 
A similar result has been obtained with a different 

approach to the problem by Nelson, D., Hagn, G., Rorden, L., 
and Clark, N., "An Investigation of the Backscatter of High- 
Frequency Radio Waves from Land, Sea Water, and Ice," Final 
Report, Contrect Nonr 2917 (00). Stanford Research Institute, 
May, I960. 

6 
Moore, R. K., Op. Cit.,. Tech. Report, EE-6 

Davies, H., "Reflection of Electromagnetic Waves from a 
Rough Surface " Proc. Instn. Elect. Engrs. (London) Part IV 
Vol. 101, pp. 209-14, August 1954. 



roughness parameters which are difficult to determine 

numerically for a given target. 

The analytic scattering cross-section may be used to 

predict the average power returned to the radar provided the 

surface roughness parameters can be determined. By combining 

the predicted average power with the range of fading for the 

target, upper and lower bounds can be found for 90# of the 

individual returned pulses.® Several examples of median power 

return pulses have been calculated and the approximate range 

of fading is given for the scatter component. 

-5- 

.. . ,A" R-' "Radar Terrain Return Statistics at Near- 
Vertical Incidence,- Tech. Report EE-35, Univ ,.f New Mexico 
Engr. Exp. Stat., Oct. I960. 



CHAPTER II 

RESOLUTION OF THE RETURN FIELD INTO SPECULAR 

AND SCATTER COMPONENTS 

The field strength, Fn^< incident upon an area element, 

AA , a distance R from the source is, within a constant of 
n n 

proportionality, 

i ^ K. 

F . ^ (2.1) 

where k is the wave number Then the field strength 

reradiated back to the source by the area element is, within 

a different constant of proportionality, 

_ ■ 2k Kr 

r; 
A Ari 

Summing over all area elements, 
- ;¿k 

= " F =V ej_A A, h 
Rn 

(2.2) 

(2.3) 

The mean surface of the sphere is considered to be covered 

with scatterers which may cr may not be exactly the mean radius 

distance a from the center of the sphere. The deviation of a 

scatterer from the mean surface will be denoted by 6n, and the 

radar range to that scatterer by Rn in contrast to Ron for the 

radar range to the mean spherical surface as shown in Figure 2.1- 

Applying the law of cosines to the triangle RQn, Rn, Sn< 

RÍ = Ron ^ £>n “ 2SnRon COS ©I • (2.¾) 

5 
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Neglecting Lhe 8 term (aa it is assumed 8 R 
n n on 

Ron , ' ~ ¿ ccs e 
(2.b) 

R ün 
Expanding the square root by the binomial expansion and again 

neglecting all terms containing S^to powers greater than unity, 

Rn ^ Rcr, ■ Sncos ei • (2.6) 

Substituting the above expression into the expressions for the 

field strength reradiated back to the source, 

- ■ ¿k(Roln - Sn ccs ©;) 

F _A A„ 
'■ cose J 

_ _ • ¿k(R0r - cos©l ) 

E ^_AAn . .. .. 
2. •() 

k on 

It is assumed that variations due to the factor 6hcos ©i in 

the inverse square term are insignificant compared to the 

variations associated with the phase term. 

Rewriting Equation (2.7 and expanding part of the exponential 

into the cis form. 

_ ¡2kSn cosÕJ 

£ . e A A, 
ï 
on R 

_ : 2 k R 5-- - j ^ ^ ^ oh r 

_ lCO5(2kSnCOS0; ) r, p2 n L 

+ j S* ""1 (2kSn CCS 0,;)] (2.8) 
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(2.9) 

(2.10) 

Defining a new quantity as 

A (pn = ZkK COS , 

p~ y~ £ v ( c cs A (pn •*- j & m A <p^ ) A An 
r> 

D ¿ 1 'On 

Assuming a normal distrioution for Snresults in the 

fine term having a zero mean value and the cosine term having 

a finite mean value. Denoting the mean value of the cosine 

term by ccsaCÇv, , Equation (2.10) may be written 

! S A (Çn A^\n 

Ken 

£J¿kR°WlcOS A^n- COSA(pn . (2.11) 

7 p1- 
The normal^distribution for the deviation 6h from the 

mean surface is 

i ( s„) = 
*La~l 

(2.12) 

<y /zT 
where <5" is the standard deviation of the scatterers from 

the mean surface. The mean value of the cosine may be computed 

by 

rœ 
cesA qp^ co%(zuhrcosej- e_^cosUkSnCO*©;'>4Sn .(2.13) 

-oo o' y ¿TT 

From the integral tables. 

- Z(kc3- cos ©v) 

cos = e. 
(2.14) 
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Note that cos^9i appears as a multiplying factor in the mean 

value of the phase, where 9i is the angle of incidence made by 

a range vector from the source to the point in question. Since 

the mean value of the phase, cos A (Çn , varies slowly as a 

function of 9^, it is essentially the same for any set of area 

elements near the point of zero angle of incidence. This is 

shown graphically in Figure 2.2. If the field strength is to 

be resolved into specular and non-specular components, the 

specular component should not vary with 9^. For this reason 

cos 9i is set equal to unity and a new quantity, x, is defined as 

- ¿Oca-cos©J -Zk.tr 
x = |im cosA(pr - lim £, =■ €. (2.15) 

-• o 0 
Thus the field strength becomes 

„ _ rZkRon r— -¡cWR0n . 

F -Y. * £ J -IcosAcp*- X j sinn<pn) 
r, nZ n Q"*- 

K Or-, ^ On 

which may be written as 

rand (2.16) 

The physical significance of Equation (2.16) is that the 

field strength returned from a rough surface is made up of a 

fading and non-fading component. This combination of specular 

and random components is present all the time? however, Figure 

2.2 indicates that it may be difficult to find surfaces which 

will return measurable amounts of both components. 
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Figure 2.2 



CHAPTER III 

SPECULAR REFLECTIONS FROM A SPHERE 

In the preceding Chapter the field strength reflected 

from an arbitrary rough surface was separated into two 

components? a specular and a scatter component. This Chapter 

contains the derivation of th3 analytic form for the specular 

power reflected from a smooth sphere. 

V. A. Fock has derived the expressions for the case of the 

g 
reflection of an arbitrary wave from an arbitrary surface. 

Only the applicable results of Fock's development will be 

utilized here. Fock's boundary conditions are given in Appendix 

A for the interested reader. 

The geometry of the problem is shown in Figure ?.l. The 

origin cf the spherical coordinate system r , 9 , is at the 

center of the sphere of radius a. Let the source of energy be 

a small current element; located in the point r = b>a, 9 * 0°, 

with a wavelength A«a, and oriented so the axis of the current 

element is perpendicular to a line drswn from the center of the 

sphere through the mid-point of the current element. 

For the moment,a new coordinate system is required; it will 

soon be discarded. The new system is also spherical and 

9 
Fock, V. A., op. cit. 

11 
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Figure 3.1 
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denoted by r , 9 , 0 with its origin at the center of the 
s s s 

small current element. In terms of the new coordinate system 

the electric field of the linear current element is 

E - j Sin ^«5 Íkr' , (3.1) 

2 
where E is radiated field at distances such that r >> r , 

“ o S 

r is distance frcm the source, 
s 

<aj is angular frequency, 

I is current, 
o 

( is length of the element, 

is magnetic permeability, 

-c, is unit vector in the 9 direction, 
i s 

D is v/-| 

As it is more convenient to utilize Fock's work in terms of the 

coordinate system with the origin at the center of the sphere, 

the expression fer E is translated into that system. 

From the geometry of Figure 3»1> 

ri; ~ + b¿ - Z cos , (3.2) 

S m ©- - i' /¿1 /; +• b2" - Z r^b COs 

n b2- - 2ro,b COS0n - 

(3.3) 

y 6s - [ i a y - j.i- 2bcos ♦- bz ) - k ^b -1)] 

b1 - Z.^bcos©».-b^-Zcos ©j] (3.-1) 
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Substituting these expressions into Equation (3.1), 

r- T 0 2-^xlcCoSec)^ r 
E “ juuyLtlaA 6_[ ¿ X y 

4TT Va lo - Z r-xlo COS 00 l3/2- 

-¿(^+- Zrjo cos©a - h y (a-b)] . (3.5) 

The complex scalar magnitude of E is 

)4 

(3.£) 

I— T fi ( Ti I i, y-i L ä — ilcC^^b 2iáb cos^^) E = jI0i (rg - 2rglDcosQa - 1^) eJ 
^TT C bx - cos ©a) 

Denoting the incident field at the surface of the sphere 

by E . then at r = a. 
1 a 

A/ -, .. il -iWCa^b^iabcosÊ^) 
- ju^Ml0i(ax^b - Zabco&eQ.~y )^6 

4TT ( ax* b" - 2 cxb cos ©a) 

By Pock’s development, the magnitude of the field 

reflected to a probe a distance R’ from the surface of the 

sphere is 

-:kR 

,4 

(3.7) 

Ed = E: to Dcol 

DCf^) 

-.k»' 
> J (3.8) 

where E^ is the reflected field received by the probe, 

B^0 is the reflected field at the surface of the sphere, 

R is the range from the source to the point of incidence, 

R’ is the ran.^e from the point of incidence to the probe, 

D(0)/D{Ri) is Peek’s dispersion factor (specialized to the 

sphere) for the reflected wave with 

OCR') = (R+RWe^ ZRR' 
cx 

(R+R') + zRR cosQ- 
a 

(3.9) 
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is the angle of incidence„ 

The geometry of this situation is nhown in Figure 3.2. 

The vector Eio will be a very complicated expression as it 

contains which has already been complicated by a translation 

of coordinate systems and the polarization of E^ will be some 

combination of vertical and horizontal polarization. The exact 

form of E^o will be of no „se in the final result; hence, only 

Eio will be determined. 

The distance, R', from the point of incidence to the prcbe 

is given by 

R = q.cos©l t (az cosA0¿ - a1 ^ (3.10) 

As R1 > 0, 

(3.11) 

Now 

R‘ DCo) ^ Rl cot© (3.12) 

or 

O'O') — cos (3.13) 

Thus 

f 

a J L cArVr) 
(3.14) 
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I 

I 

Figure 3.2 
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Then 

- ;k(R+R') 
Ep- Et0 R eJ 

R R' 

COS ©1 

j ccs©¿ 4. Z RR' \ 4. 2. RR cosOi 

1 O.CR+R'). . cCRtR') J 

N'4 

(3-15) 
The power density, Sp, at the probe is 

Ëp'Ëp (3.16) 

where is the intrinsic impedance the medium and Ep is the 

complex conjugate of Ep . Hence 

Sp^rjlR1 
2 

/ 
_CO& Gl_ 

cos ©t Z RR 1 ZRR7 cosôj. 
ol(R* R')j a(.R‘Rf) 

(3. 

If the probe and the source are one and the same, the 

above expression may be simplified as 

R*R' =b-a=h , (3.18) 

and 

,o cos * cos 0 1 . (3.19) 

The remaining quantity needed is EiQ. The theory of 

reflection as deveJoped by Fock contains the Fresnel 

reflection coefficients which are depenedent on the angle of 

incidence and these also become simpler when * 0°. For 

this condition 

|E,J = IKIIEJ , (5.20) 
where K is the appropriate reflection coefficient and is 

the incident wave at the surface of the sphere. Thus 

^nCb-a) 
(3.21) 

17) 
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The power density reflected from the sphere to the point 

of the source is then 

Sp = (3.22) 

2 7 (4TT)2(2h1) (.a.+ h)^ 

This resu 4 may be put into a more useful form as follows. 

The transmitt i power density, ST,. is 

i r1- 
£>T - yUz uul 1-c ^ -sm 8S ■= G) sin^ôs ; (3.23) 

4TTRZ ^(<iTT)Z R1 

from which 

G — 00110 i 

2^(411) 

(3.24) 

where G is the maximum antenna gain and P is the transmitted 
T 

power. Thus the total received power, Pf, is 

i 2. 
R = sPAcH - (3.25) 

where 

A e*4 - G ^ 

4TT 
(3.26) 



CHAPTER IV 

THE EQUATION OF SCATTER POWER RETURN 

R„ K Moore and C. S. Williams have developed an expression 

for the scatter power returned from an arbitrary scattering 

IQ 
surface. ^ The result is restricted to surfaces which have 

mean radii of curvature that are many wavelengths long. 

In terms of the geometry of Figure 4.1,Moore and Williams' 

result is 

R/vd) - \ f RCd )Gi(S5i(p) g-o(0,,ff)dA 

(^TT)Ma R4 
where 

Cd) is the average received pulse of an ensemble of 

received pulses, 

pT(d-2%) is the transmitted power, 

0(6^9) is the antenna gain, 

a-* is the mean scattering cross-section per 

unit area, 

R is the radar range to an area element, 

A is the irradiated area, 

9 is the azimuth angle, 

9 is the antenna angle, 
s 

Gk is the angle of incidence. 

10, 

Moore and Williams, op. cit 

19 
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The antenna is oriented such that 

— Gima.« ' (4.2) 

The area element of the sphere of radius a is 

dA = a2 s i n dci (p . (4.3) 

At this point it is worthwhile to note that the actual area 

element is used in the above ntegral and not the effective area 

element as viewed from the antenna. In all the previous work 

on scattering done at the University of New Mexico, the 

multiplying factor, cos ©i, for converting the actual area 

element to an effective area element, has been included in 

f it will be left in 

remainder of this paper. 

From Figure 4.1 and the cosine law, 

^ = a?" i- b5" - 2. ab ce s 

Taking the differential, 

RdR- CxbsinG^dôa ^ 
from which 

d A - RdRd Cp . 

Thus the power return integral becomes 

pr(d) = AV f2"f 1 R.U-^JG'te^Çîa-.tei^JdRdlp 

UTT)3 \>i { ' R3 

- A^g r^f^d-^CCePcr.teJdR 
zwn)5 b \ R3 

throughout the 

(4.4) 

(4.5) 

(4.6) 
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assuming no variation with in G,(©S)(p) and <r-01©c. ;¢)), 

This result may be put into a different form by defining 

a radar delay time, T. 

The antenna is located at a distance h above the scattering 

surface as shown in Figure The elapsed time required for 

the altitude signal to return to the antenna after transmission 

is d -- ¿ Vc . Likewise, the elapsed time required for the 

range signal tc return to the antenna after tramsmission is 

(4.8) 

Let T = d/ - d be the delay time between the altitude signal and 

a 

« 

X 

Figure 4.2 



the range signal. Then 

T = (R-h), (4.9) 

or 

R * + h (4.10) 

fror which 

dR = -4-<3T . (4.11) 
i. 

Now the power return integral ray be written as 

_ rd_ 

Prld) ^ c ' PTCj-T- ^) GXôs) C6J dT (4.12) 

-3(«tivv!> U* ^)3 

Ncte that 9 and 9. are both f’-retiens of R, hence they are both 
S X 

functions cf T. 

Sir :e 

rXT)= o 

pm)*o 

the time argument of the integral may be charged tc a modified 

delay tire such that 

a S ^ , c 

¿ h c a 

(4.13) 

(4.14) 

R-(d+ ) - O, Û £ O , 

P^Cc)+ o<d. 

Hence 

(4.15) 

(4.16) 

P (^4^)= OU 
* Utt)2 b 

R-Cd-T) dT 
(h4<rp 

(4.17) 

o 



CHAPTER V 

TOTAL POWER RETURN 

1. Total Power Return from a Rough Spherical Surface 

In the previous chapters, expressions for specular power 

return from a smooth sphere and scatter power return from a 

rough sphere were developed. As it is desired to resolve the 

power return from near (and including) vertical incidence into 

two components, the two expressions for power return must be 

combined in some manner. 

It has been shown that the field strength may be separated 

into two components; a specular component reduced by x ^ 1, 

and a scatter component. If the specular field is reduced by 

2 
X, then the specular power must be reduced by x ; hence, the 

scatter power is reduced by (l-x~). Thus, the total power 

return may be written as 

P.. (d) oG) A4 ci- x M K T 
(4TT)Z 

+. c /\^q ^C>-xx)pP^(d-T>)C-1^e,)cr,.Ca)dT (5>1) 

Here the factor ß has been included to account for absorption 

and depolarization in an imperfect terrain. 

This equation for the power return has been developed for 

a spherical wave front irradiating a rough spherical surface. 

However, tnere is one other result of immediate interest which is 

easily derived from this equation? that of a spherical wave 

24 



2b 

irradiating a rough plane surface 

Note that both terms in the equation contain the factor 

a/b; the ratio of the mean radius of the sphere to the 

distance of the source from the center of the sphere. 

Recalling that b=a+h, where h is the height of the source 

above the mean surface cf the sphere, 

(5.2) 

Consideration of the case h/a«1 leads to the equations for 

a spherical wave irradiating a rough plane 

2 Total Power Return from a Rough Plane 

If h/a«!. then a/b ~ 1 An application of the law of 

sines to the geometry cf Figure 4 1 leads to 

sin©*, — s i n Q t 

Ov c*. h 

or 

sin = S m 0 L S: n ©• . (5.4) 

Wa 
Hence G(ö ) 0(0.). The equation of power return is then S 1 

= ¡^(d) GVnn/iKi1 
Í<1TT)Z (2h)1 

-+- c A7á ÇI - X* ) i RCd -T) G^CQ^) cTpCe:) dT .(5.^) 

4(417)2 0 (h^Ti)3 
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This equalion has been derived by Moore for the case of a 

spherical wave front scattered by a rough plane.11 

The maximum altitude at which this equation is valid 

depends upon the error that can be tolerated resulting 

from the approximations 

and 

Fcr example by considering the factor a/b at an altitude 

of 4CÛ miles above earth, tue specular power is reduced by 

(5.6) 

(5.7) 

20 log f I i- 4-00 ^ dfc = Q. 82 rib (b.Q) 
v 4000/ 

and the scatter power is reduced by 0.4l db.. Since the 

approximation affects only the antenna gain, it is 

more difficult to estimate the error in scatter power resulting 

from this approximation. However, increases more rapidly 

than ©B and this will tend to make the antenna pattern appear 

narrower than it actually -s This in turn will cause the 

computed scatter power tc be less in magnitude along the 

trailing edge of the return p^ise. A graph of © versus ©. 
s 1 

with h/a as a parameter is shown m Figure 5.1. 

11 
Moore, R. K„, cp. cit., Tech Report EE-6 
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Figur« r.1 



CHAPTER VI 

A THEORETICAL MODEL FOR THE SCATTERING CROSS 

SECTION, <ra(Qj 

1. An Exact Integral Form 

In the preceding Chapters it has been shown that 

(i) the power return from a rough surface may be 

separated into two ccmponents; a specular component 

and a scatter component 

(li) the specular power return from a rough surface is 

equal to the return from a smooth surface reduced 

by a multiplying factor which depends upon surface 

roughness. 

;ili) the scatter power return is obtained from a 

convolution integral containing a scattering cross- 

section, C-c which is an unknown analytic quantity 

at this point. 

An analytic form for the scattering cross-section ib desir¬ 

able for predicting the scatter power returned from a rough 

target. 

The only feasible way to approach this problem is in 

terms of the statistics of a rough target. It has been shown 

that the field strength returned from a rough target may be 

separated into two components with the assumption that the 

Gaussian or normal probability density function may be used to 

describe the scatters. A similar procedure will be followed 

in developing a theoretical scattering cross-section for the 

28 
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L2 1 "5 
rough target. Davies and Meore have attempted the same 

problem and the following work is similar to theirs; however, 

a tew departures are made from the procedures followed by them., 

The electric field received at a point in space due to 

the currents which flow cn a perfectly conducting surface as a 

result of irradiation by an elevated isotropic source is given 

by Huygen s - Kirchhcff integral as 

i r^z — ; 2. k R i . 
I 6 cos 0l dA , (6.1) 

ÍV^ttR" ÁR 

is the intensity of radiation on an area element, 

is the range to an area element 

is the impedance of the medium containing the 

source 

is wavelength, 

is the angle of incidence between the incident 

Poynting vector and the normal to the area 

element 

The integral as written above implies that the source and 

receiver are located in the same po*nt The power received at 

that point is given by 

p - J_ ^ Ar . 
rr Z ^ > (6.2) 

-n- 
Davies, H., op. cit» 

13 
Moore, R. K„, cp. cit., Tech Report EE-6 

EL ■ 

where 

R 

V 

X 

Ô. 
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where E is the cor jugate cf E and Ar is the effective area of 

the isotropic receiving antenna. 

The received power may be written in terms of the integral 

as , ___ _ , _ ¿ItR' 

Pr - A l /TÃ Ty eJ cos ©-L c)A i _ 

2 y -'A V ^1T AQZ AV 4TT ,\R'Z 

• cos Q\ d A' (6 3) 

where the primed quantities refer tc a different peint than the 

unprimed quantities s.nce the integrals must be talten 

separately This expressicn may be written in the form 

- JQ, Ar j ^ £J cos Glc.os0c alAdA . (6_4, 

BTTAxii R2- R'1 

It is now apparent that R and R' are statistically 

related in some manner in terms of the target roughness 

parameters 

In Chapter IT it was found that 

R = R0- Seos Õ- (6.5) 

and hence 

R - Rq - S' cos (6 

It is necessary to define the coordinates and some new 

variables for the integration; these are shown in Figure 6-1. 

The area element dA is located in peint A1 and dA1 is located 

in point B1- Point D is used only for the purpose of defining 
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R= CA'- CA" 

F:q-r? ï 1 
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the angles cp and rp’ ; the distance OD has no significance. The 

area O'A'B'O' is a portion of the spherical surface of radius 

a and the area QABO is the projection cf O'A'B'O’ on the 

xy-plane. 

The primed quantities may be associated with the unprimed 

quantities by defining the new variables of integration s, X, > 

and 7' as 

R¿ « Ro + s , (6.7) 

<P‘ « ? + » (€.8) 

(6.9) 
CL CL 

where s, ^ , and T represent, respectively, the charge in range, 

change in longitude, and change in co-latitude in going from A’ 

to B*. 

The area elements of integration are given by 

6 f\ — o} sin d d (p (6 -10) 

d A7 r a2 sinG<x. d0(xd (p . (^ ii) 

Prom the geometry of Figure 6.1 

R ^ - a2--»- b¿ - 2 a b co s 0a , (6 12) 

a/^b* - ¿cxb cos ö'o, . (e 13) 

Taking the differentials of these equations. 

R diR - a b sin d©^ ) (6• ^4) 

R'dR' - cxb sin G^d. '6.15) 
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Hence, the area elements can be expressed as 

d A = .a R dR d¿p , (6.16) 

olA a. RMR'dCp' . (6.17) 

b 
As the integration requires that the primed quantities be 

integrated while the unpr~med quantities are held constant, 

dR'r ck. , (6.18) 

d cp * = d + - d £ . (6.19^ 

Substituting these results into the expression fcr received 

power, 

, r r r firos©, 
Pr - Ar o2- I /1 / ÍR. £ cosemos©; dRd(Çdî 

(6 20) 

Additional information is required fcr the quantities 8 

rr , and c before the integration can be carried cut. It shouid 

be recalled that 'o and S are actual physical deviations of 

the surface of the sphere frcm the mean spherical surface 

The deviation S has already been described by the normal 

probability density function 
_ ZYZa-^ 

(6 2 V pLS)- e __ 
cry¿,TT 

in the process of separating specular and scatter field 

components. If it is assumed that some correlation exists 

between £ and & , and that these two variates are normally 

distributed, then it may be reasonable to assume that S 

and *0 can be described by the normal bivariate probability 
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density function 

_(S^ S/L) 

<6 ¿2) 

¿ n crVl -^z 

where is the correlation between Ç and S7 . With these 

assumptions, the mean cr expected value of 

US,S')- e'J 
- ¡¿k IS’ccs, ©V. - Sco&©;) 

'6.2 3) 

may be computed from the relationship 

t(g,S')= EÍHSS'Ü^J J fCS,^') pCS^'iciSdS' } ,f 24 
- CO -CO 

-- r'^r00 - ^kcs'ccse:-sc0i©,)-(&vs4) 
US^')= ej|_ 

-¿ao-J-œ ¿ n cr¿Vl 
Integrating on S , 

(6 25' 

- j2'c S c_os ©t — _V 
Zar'Li.l-^2) ^ ^ 

r  __i _ ..i; - J2 ^ S'co^ 2J<V‘( ! -^) co s? Qc (6.26) 
— yzn rry [-/o2- e ^ 

Integrating or. S', 

r. 

i' ^ *■ £'*• » 

d S 

-- _ L Cecos. 0 . COS 1 
—yzTT o- e 

Combining these results, 

-- - ¿k7'<r2 ( co 0. ~ 2^3 cos 0V cos ©' -» co s^ô' ) 
Us.ç') = e 

6 27) 

(6.28' 

In thr process of describing f ( &, S' by the mean value, 

f ( &, ^ the correlation coefficient, /o , has appveared in 

the final result and now requires a description. 
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Determining the proper correlation function for a 

statistical process seems tc be a problem of major difficulty. 

The correlation function 

rv) - 
«'O.H 

for a statistical process S ^r], is defined as 

(\r) — I im _I_ 
v--*oo Z_ >r 

r' 
S (.1: ) + n) d 1 

(6.29) 

(6.30) 

In most cases, S'r is net a known analytic function? this 

represents the first problem in evaluating T1 r » However 

in many cases S^rj can be determined in tabular ferm by 

making physical measurements at intervals Ar over a finite 

range of r . Then ^ r, may be numerically determined from 

H - k 6 • 

r Crk) ^—i_ L S(-cc)rw) a T. 
~ i. - o 

.6.31 

The difficulty with th:s result is that only the small portier, 

of the curve about r = C may be used with confidence because 

of the finite range of r Any attempt to fit the numerical 

curve by an analytic c-rve is complicated by the fact that any 

one of several equators seem tc be a good fit- 

There are three forms of correlation coefficients widely 

used throughout the literatures 

( ) — rw 

(ii) — £ 
- |cl/o< 

(6.32) 
^ - I 

''in) ^»Cv-) — e cos, . 

where oC and b are constants and r is the distance between points 

to be correlated. Form (i) is used in many theoretical 

studies, where some form of must be assumed, because it 



eases the laber of computaticr. The second form (it) is used 

when it seems to be a best fit tc the numerical data while (lit) 

is sometimes used to extend the best fit range of (li). 

Many writers avoid the use cf i¿.) and (iii) because 

these forms have derivatives at r = 0 wh»ch differ from zero. 

This is possible only in the case when the ground height 

14 
'c (r),i3 permitted tc be a d i see'-11 rue as function. For this 

reason and ease of computation 

= S (6.33) 

is selected as the correlation coefficiert t: be used in t^e 

integrand. Here 

r is the distance betwee- pci’-ts cr scatterers) to be 

correlated,- 

:Xis a measure cf the disfarce between height-independent 

scatterers (r.r the correlation distance for scatterers).. 

From the geometry of Fig ire 6.1 

r ï a Ç (6.34) 

where a is the radi ;s of the sphere Applyira the law of 

cosines from spherical trlac'cmetry 

COSÍ = CCS ©o^CCS Snn ©e^S MO COS Xi ^6.35) 
Using the first two terms cf the Taylor s series for cos if 

I - ^/2.¾ CO&Qo.cOS. 0^* Stn©a%in6^ COS X (6.36) 

with an error of less than 10% for 0< J< 1.0 radian. Thus 

14 
Chernev L A , "Wave Propagation in a Random Medium " 

McGraw-Hill Book Co.. 1'*60 Chapter 1 
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I 2 - 2cos ©acos 0a - 2sin ©a sin 9a cost (6.37) 

and 

2 2 2 1 ? • 

r ä 2a - 2a cos 9 cos & - 2a sin 9 sin 9 cos t, 
a a a a 

It is worthwhile to note that the approximation 

c o s Ç -¾ ) - X 
Z 

approximates the arc length r by its exact chord length. 

Applying the law of cosines to the triangle A'B’OA' 

(6.38) 

(6.39) 

r2 » 2a¿ - 2c2 cos 1 (6.40) 

where rc is the chord A'B' .. Utilizing the exact expression 

for cos t ) 

r2 » 2a" - 23^008 9. cos 9a - 2a2 sin 9 sin 9* cost (6.41) 
v a a â â 

Thus, if r is interpreted as a chord length, no approximation 

is necessary. 

Substituting these results into the power return integral, 

Pr - py I I / I Pr cos 0Lcos©t c.xp J- .Iks, 

*(«rr)V yy RR' 

- c.os"ôL^coszÔi. - 2cosötcos0t t X pi - Z cJ- 

+ Z a.2- cosô^cosô^-* 2a}- %\yiQeL Coî,^ IdRdfdsdt (6.42) a 
This integral is exact with the following assumptions! 

(i) Huygen ’s-Kirchhoff integral can be applied; 

(ii) the probability density of the rough surface is 

given by 
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2TT^| 

» 

(iii) the correlation coefficient,, is 

o" 
e 

By comparing Equation (6..42) to the integral developed by 

Moore and Williams,Equalion (4.17) (specialized to the case 

of an isotropic antenna), the integral form of the scattering 

cioss-section, J is found to be 

= Q- COS,©. 

b/f 

R0-R r-11 r11 
cosq'; exp/-j2.ks 

liiï0-h) J-V J-n R ^ 

-2 k1 <y¿ cos^G'c - 2cos©lcos©' exp/_ 20^ 
oc 

+ 2 q1 cos ©a. cos ©a. ■*- 2 o-1 sfn ©x sin ©1 ccsC IdÇdtds . (6.43) 
ocx OC1 / 

-Ro-R 'TT 
cr0C©(.') - -Cfi. 2T1 q. cosõt 

b A.7’ 

•• Zk1!?-1 cos29t-t-cob1 - 2 cos ©,_ cos©¿ exp 

I I 00,5 Q>. exP(-j¿'<5 

R' l 

2 a1 

+ 2 a1 cosGi^cosôá +-2 01 sinö^su-,©¿_ cost(m d£d& . (6.44) 

^1 ' I]/ 

Unfortunately, it appears that the remaining double 

integration must be carried out by machine methods. However, 

a different solution would be required for each different 

value of a/oc , and each different ratio a/b which is 

inherently contained in the angles. 
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2 » Evaluation of <ra(-ÔJ by Approximate Integration 

The integral form of the scattering cross-section, as 

developed in the previous section,is mathematically exact 

within the given assumptions but not very useful. However, 

the integration can be performed after a few approximations 

and assumptions are made. 

The scattering cross-section in terms of the 

correlation coefficient,^, is 

If, as before, the correlation coefficient,^3 , is chosen tc 

assumed that the integral converges 

2 2 
rapidly for r /<*_ « 1, then 

tx. 

Davies' approximation for the distance r is*^ 

(b.46) 

(6.47) 

From spherical trigonometry, 

15 
Davies, H., op. cit. 
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Approximating cos / by the first two terms of its 

series expansion, it is found that 

y ^ 2 C05X) . (6.49) 

Thus 

r ^ ~ 2-R^sínXõ% - s cosX v s»1 , (6.50) 

The integral form of the scattering cross-section now 

becomes 

sTjCSJ Si ^r^e. Zk K““ CCS ôt i I I COS 0' P ( -j 2.U& 

b \x R' 

- 2k¿cyz cos'0¿ +■ cos20¿+ ¿cosôtCosôc 

2_R‘ Sm" 
.2. 

0S ~ ¿ R S\n20a C.OsX 

+ s1 esc1 S[ dq> ds ciX . (6.51) 
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The limits on the integration are 

“T7< < TT 

n< n (6.52) 

-(.R-hK s <lR0-h), 

where is the maximum range within the irradiated region. 

The integration on <p presents no problem; 

i 

-rr 

^ ZTT (6.53) 

The % integral can be rearranged in a form which has 

a tabulated result. 

/; 
Et^ Ccsô,;cosô^*inzôs 

- 2., e 
Sk_2^_KL cos CO'SÓÍ ï>in*ô3 COa ^ 

1 

2.TT Ic 8 U2, tr2’ R\o^ coa ©c s>\v? Ô 
i ,2, 

j (6.54) 
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where I0 is the modified Bessel function of the first kind. 

The s integration is of the form 

r co&eL I0[A cos.e¿] €.xp[-jIks - Zk^o-^Uoaô,- coiö',f 

R' 

- A cos 0Í ” s^osQ. cosQ! csc^Sl 1 d & (6.55) 
C rv *• 

where 

— 8 kzg 7 R cos©; Sim^öä 
ocX 

(S.56) 

and S'is a function of s. If it is assumed that the integral 

converges rapidly with the explicit s, the approximation 

õt 5: ©i, may be used with great advantage. The integral then 

becomes 

cos Q,;. I0[AcosÔi] £ 

R 

da (6.57) 

^-1«) 
Cooper has shown that an integral of this form converges so 

rapidly that the finite limits, -(R-h) and (R0-R), may be 

extended to - oo and + oo respectively with very little error 

in the final result.16 This also seems to lend more weight 

to the validity of the approximation . From the 

integral tables 

f“ 
I £ ds ~ £ (6.58) 

—ao Ik cr 

16Cooper, J. A., "Comparison of Observed and Calculated 
Near-Vertical Radar Ground Return Intensities and Fading 
Spectra," Tech. Report EE-10, Univ. of New Mexico, Eng. Exp. 

Station, May 1958. 
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Thus 

r ^0-R) 

co,,©; i Ja 005,0^] Ç./p 

(.R-h) R 

- ; 2lcs - 

- eos©-)" - A C O S 0^ - *3 k1 crz 5iCOS0¿COS0i CSC1G^( 

.— r , -Acos.©,:-^' tantôt 
«VtT sînôc I0[A cosôj e 
2 k a- R (6.59) 

From Figure 6.1 and the law of sines, 

SinO^zr A s'n©il * 
b 

Combining the results of the integrations, 

02(0,) ^ TT^u otR s.r, 26t l/zk^aMÿ’sin1*©,' 

kb a- & 

(6.60) 

~ sél ton^S, _ 2Jllà±aMÿsmX2e, 
^ir' «.a b1 

This result can be simplified by using the asymptotic 

form of the modified Bessel function, 

X 

(6.61) 

I.U) CE 

V^-TTx 

I0(x) and ex(2Trx)_1^2 are graphed in Figure 6.2 -.fhich shows 

(6.62) 

that X does not have to be very large to obtain a reasonably 

good approximation. It will be assumed that 

LU) ~ —¿ X > 2. . 

V2TT: 
(6.63) 
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Figure 6.2 
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Thus, 

.Sil t(xniOl 

,(ej - e 
4cr’ 

) 2 k^g^-g^ £»\>nz2Q; > 2. 
,1 
oob* 

(6.64) 

At * 0°, sin 20^ * 0 and I0 [ 0 j * 1, which implies 

CT o(0°) = 0; however, this is an erroneous result of the 

approximations for the distance r. 

If the integral form of the scattering cross-section 

is written using all the approximations and assumptions 

previously made except the approximation for the distance r, 

the result is 
S S f - j ¿ks - M kLq * coi*- ©i\ r *■ 

<r0C0c) aR_ coszec I t clcpdisci^ . 

b\2 

Evaluating this expression at * 0°, 

tf-QC0ü):t ck. In JJJç. - ,-Zks - disis:1 V'1 
dÇciscif ^ 

(6.65) 

(6.66) 

A limited range for O”o(0°) can be found by making use of 

inequalities. 

Prom Figure 6.3 

r2 = (.h+s)1* h2 - ZbAh-t-i) COS , ©L= 0° , 

from which it is immediately apparent that 

Also, by the law of cosines. 

(6.67) 

(6.68) 

cos©¿ = b* - oJ'■*-Ih-t 

2.b (,h t s) 

(6.69) 
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Figure 6.3 
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Combining these results, 

r7 - 'Zlns-t- s2- < Zhst 

h/ü + ’ '/ci. t h/o 

(6.70) 

2 2 2 
as r > s . Solving the inequality for r , 

r*- s 2.&.S . 

For the other inequality 

Zhs - Z c*. h t 

i + hA \ + b 

As the inequalities on r^ are independent of cp and , 

'R0*h - 4k.xq->-rv 
cs0CO”) (.zrr) ah t. ci s . 

b ' o 

(6.71) 

(6.72) 

(6.73) 

Here again it will be assumed that R0~h is so large that the 

upper limit may be replaced with infinity. Now as 

Z O.W s < r *- < Z&.S , 

^b~ 
(6.74) 

then 

-Za% - r1- 
; ^ 1 e 

IbbJ 
b (6.75) 

Making use of the theorem that if f(x)< g(x) on the interval 

[ a.b], then 

Í Ç(jí) éx ú Í g Cxi d x , 
J<x 

<ro(0) is found to be between the extremes 

b ^ l 

, s 

( ZTT )¿ cxb I (cosZWs)e ^ ds <r-0 (.0°) 

r® “ 
(,<) (¿rüloA? Uo%Z\cs)e «x* ÒS . 

b J* 

(6.76) 
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Here the inequalities are placed in parentheses as a reminder 

that the integrals are approximations. Integrating on s, 

un 

b .U 

SkAcUctj 4 4\c¿ 

C< 

•I 
(<) <r0 (. 0°) 

U) UTT) aln 4-4^" 

b A -1 I 
(6.77) 

or 

l2TT)''a.V-i 20-4- •4 U or1 c\ 

C Ax X1 

U) UnWh 2c-1 ch 

{<) o-0CO°) 

4 k a- ‘-a.V-i I + I 

b Á¿ i^b L\ <x>b / 

In the denominators of the extremes note that 

(6.78) 

4 k cr'’- a 

as h/b < 1, and if 

i -i 
/4 \< cr *- a b \ ■*- 

o<x b I 

T "I 

(6.79) 

^4 k er ’’■ab \2' >> 

ck I 
(6.80) 

then the (+1) term may be dropped as a further approximation 

Thus 

<xU (½) CTyCO11) C<) =k x 

8bcrx 8 C5" *• 
(6.81) 

approximately. As the expression 

— Äh "t 0. »'ix ^ 

<roU0 ^ e ^ , 2kW-Rx ».m1-!©: ^ 2 

80^ bX 
(6.82) 
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is not dependent on altitude or the sphere radius when its 

inequality is satisfied, there is little reason to believe 

q- o(0°; is dependent on altitude and sphere radius. Hence, 

it. will be assumed that 

_ t eu-»1 Ö L 
r»*0 CôL^ ~ e. , R1- s»nXlQ[ Z o 

^ ^ x (6.83) 

where 

X is a measure of the distance between height 

independent scatterers, 

<r is the standard deviation of the scatterers about the 

mean radius of the sphere 

In general, the quantities o< and <r , or > are very 

difficult to determine for a given radar target. One method 

of determining the ratio is to make measurements of the 

power returned to a radar from the actual target. Another 

method is to compute«: and cr from a contour map. The accuracy 

of the latter method is limited by the closeness of contours. 

It should be remembered that the above expression for 

¢5^^(9^) is an approximation and ]ust one of several 

theoretical scattering cross-sections which may exist. A 

different scattering cross-section can be obtained with a 

different surface roughness model and/or a different 

correlation coefficient. 

By an analysis very similar to the one given in this 

Chapter, it can be shown that Equation (6.83) is the 

approximate scattering cross-section for a rough plane. The 

mathematical details of development are given in Appendix B. 



CHAPTER VII 

CALCULATED EXAMPLES OF POWER RETURN 

Examples of the median power return pulse from the earth's 

surface are calculated at altitudes of 6 38 159» 319» and 638 

km. These altitudes are approximately 4,100, 200, anu 400 

miles respectively. 

For the radar system it is assumed that 

I R~r , O d < -t 

PT(d) = ^ 
I o , -t i d 

Gi - 
Q ü , 0 1 © !; < ^/2 

(7.1) 

vc , “'Vx < es 
where r is the transmitted pulse length and Gs is the antenna 

angle from the vertical. The radar crcss-section of the 

earth's surface is assumed to be that which was previously 

derived: 

^ .»LL ^ , ©iZO . 
8 cr ^ 

(7.2) 

^ P 'z 0 9 
The following values cf x¿K , (l-x^ jß and otVa-*- 

were chosen for the calculation of the power return: 

(i) x^K2 » 0, (i-x¿'ß - 0,13» oc2/<t2 « 32; 

(ii) x¿K¿ * 0.10 (l-x‘')i3 * 0.24, olc/<t¿ ■ 60; (7.3) 

(iii) x2K¿ * 0.55» (1-x2)/3 = 0.25, ocVa-2 = 100. 

These are experimentally determined values obtained with 

a 415 roc. radar at altitudes between 4,000 and 12,000 feet 

Tf 
Edison, A. R,, Moore, R. K., and Warner, B. D., "Radar 

Terrain Return Measured at Near-Vertical Incidence," Trans.I RE 
P.G.A P. Vol. AP-8, Nc., 3» May I960, pp.. 246-54. 
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The first set of values are approximately these determined 

for forests, the second set approximately applies to cities 

and farmland, and the third set are approximately those 

determined for water. 

There is very little dcabt as to the validity of these 

numbers at the higher altitudes; the question is "tc what 

targets may these numbers be applied?" It is highly 

improbable that they apply to the same targets at these high 

altitudes as they do at the low altitudes 

The results of the calculations are shown graphically in 

Figures 7*1/ 7-2, 7-.¾ and 7-^ As the transmitted pulse 

length, t , was assumed to be 1C y seconds, this is also the 
duration of the specular power return as shown in Figures 

» 

7.1, 7.3.. and 7-^ The square appearance of these curves is 

a result of using a square transmitted pulse: however, this 
/ . 

points out the manner in whxch specular and scatter power 

combine. If a transmitted pulse with a continuous first 

derivative had been used, the combination of specular and 

scatter power would have a continue us first derivative. 

The power return pulses shown in these figures are median 

(50 percentile) values. The range of fading given for a 

particular pulse was determined experimentally and defines the 
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range within which 90# of the return power will found; 

i.e., the range of fading is the difference between the 95 

and 5 percentile curves. The exact location of the 5 and 

95 percentile curves with respect to the 50 percentile 

curve is slightly variant in the experimental results and 

therefore not reported here. The range of fading is included 

to emphasize the fact that it is quite unlikely that any 

individual return pulse will appear as those <*hawn. 

A different analytic form of the scattering cross-section 

has been derived by assuming a correlation coefficient of the 

form 

(7.4) 
1ft 

and the probability density function 
_ S'1) 

c y \ _ p -/9'') 
p( b, fc J = Sl_ 

(7.5) 

‘S.TT cr>-Vl 
This probability density is the same as that given in Equation 

(6.22). The resultant scattering cross-section is of the form 

,— - CO%zQi 
^TTVI rC1- G; cos ©t cot ©L Ç. 

. f__ 

f'-1 ( tn - l) l !2,k x^sin2'©^ v n1] ^ 
(7.6) 

Examples of the power returned from the above expression 

for scattering cross-section were calculated for the following 

scattering parameters; 

18 
Hayre, H. S., and Moore, R„ K., "Thecretical Scattering 

Coefficients for the Near-Vertical Incidence from Contour Maps," 
accepted for publication in J. Res, Nat, Bur. Stand.. Vol. 65 D. 
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2 
(i) xV = 0.10, (l-x2)ß * 0,,24. 1, %- O.!, *>£-2 , ico 

(il) x2k2 - 0.55, (l-x2iß = C ,25, % = 0.05, oc^.2 * 1600 

(7.8) 

These values result in scattering curves which are 

approximately the same as (7,.3 ri', and [7 3 iii'l, respectively, 

at zero angle of incidence 

The calculated return power is shewn in Figures 7»5, 7.6, 

and 77. Here the scatter power drops off mere rapidly than 

that shown in Figures 7 1, 7.3, and 74; otherwise, the 

return power is comparable. 

A study of Equation (5 1/ shows the specular power varies 

-2 --¾ 
as h while the scatter power varies more nearly as h v 

Thus the ratio 

Specular Power h 
Scatter Power . 

This ratio was evaluated at t » 1J ^seconds for the return 

power shown in Figures 7,1, 7..3, 7,4, 7.5, 7.6 and 7.7,, The 

result is shown jr Figure 7.8 Each cf these examples 

represents a quite smooth surface. A 10 leg,, h curve is 

plotted through the end point cf each cf the power ratio 

curves tc show how rapidly the power ratio is approaching the 

h variation Once again, it is emphasized that these curves 

are plotted for a target which always appears to be the same 

at any radar altitude. The difference in shape between any 

two power ratio curves can be attributed to the differences 

of their respective scattering cross-sections 
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2 
The factor x plays an important part in the power return 

equation as 

where cr is the standard deviation of target heights about 

the mean target surface and Á is the wavelength of radiation* 

As an example of the relation that o' has in the 

separation of specular and scatter, consider the scattering 

parameters (7.3 iii)¡ 

x^K2 = O.55, (l-x2)ß * 0.25, oc2/cr2 - 100. (7.11) 
2 

If it is assumed that K = ß (this has not been proved', then 

Now 

from which 

At 415 me, 

Thus 

I - Xx r. Q. 2.S - 0. 4 5 , 

X x O.S 5" 

XI - , 

Kz - /3 - o.ao . 

- 2 ( ZTTcr\^- 

X' - • 

^ ~ 0.-2 rv, C. "V €. v's 

- O . O 6 ~7 i—ri £ ^ £ 

0(. - Q . <ó~1 «.■+ £ r s 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 
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Now assume ^/k * 1 and * 10 ; this is the same 

scattering cross-section, c“0(.60 , but a different value 

r 2 
of X . 

-ztzrry1 .18.¾ -3^,3 
X = e = €. - \ O . (7.20) 

Thus, X may be safely assumed to be zero. Then from the 

previous results 

(1-x2)/3 - (1-0) (0.80) * 0.80. (7.21) 

The increase in scatter power is 

10 log 
0.80 

10 0755 5..05 db . (7.22) 

To recapitulate, the ratio was increased by a 

factor of 20.6 which resulted in the complete disappearance 

of specular power and a 5 db increase in scatter power. To 

emphasize the dependence of x on , x may be written as 

-34,3 i0" V\*) 
y - I Cl 

Thus, the ratio of '’/x does not have to be very large to 

cause the complete disappearance of x. 

(7.23) 



CHAPTER VIII 

CONCLUSIONS 

A scalar theory has been presented to explain radar 

terrain return signals at near-vertical incidence. The method 

of resolving the return signal into random and specular 

components is admittedly a first order approximation. However, 

the results demonstrate that the specular component is always 

present to some degree and assists in explaining why some experi¬ 

mental phenomena are not explainable by assuming random scatter 

or specular reflections alone. In Chapter II it was shewn 

that for a normal distribution of heights from mean surface 

level, the contribution of the specular component varied 

directly in proportion to the negative exponential of the 

square of the surface standard deviation expressed in wave¬ 

lengths. For a very rought surface the signal is nearly all 

scattered; for a very smooth surface it is nearly all 

reflected. The relative frequency of occurrence of surfaces 

which give a measurable amount cf specular plus scatter return 

signal is a matter for further study; most probably an 

extensive experimental study. 

The separation of specular and scatter components of the 

return field is dependent upon the assumption '■'f a height 

probability density function. For the purpose of this paper 

a Gaussian or normal density function was assumed. It is not 

suggested that the normal density function is the only 

applicable probability furction which can be applied to 

targets on the earth; however it seems to be the most 

64 



fis 

logical to assume. Other density functions may apply to 

certain classes of targets. Fcr example, water and city 

targets have a certain degree of periodicity in their 

surfaces? such surfaces may have probability density functions 

which are more nearly uniform than normal 

The initial development cfi the theory was carried cut 

on the assumption of a perfectly conducting surface. If the 

horizontal scale of surface irregularities is large compared 

to a wavelength, the Fresnel refiect.cn coefficient may be 

used to show the apprcx.mate reduction in signal due to 

imperfect conductivity of the surface A comparable theory is 

not available for the case where the horizontal scale of 

irregularities is small compared to wavelength 

An approximate scattering cross-sect ion. as a function cf 

angle of incidence was obtained on the assumption of a 

normal bivariate probability dens ty function and a Gaussian 

correlation function Here again these may not be the only 

probability functions wh.ch are applicable to earth targets 

If a different density function ar.d/cr correlation function is 

chosen, the analytic fcrm of the scattering cross-section may 

be quite different. 

13 
Hayre H. S., and Mccre, R. K,, cp cit 
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Any effect of depolarization by the rough surface has been 

lost in the scalar solution of the problem. Compensation for 

depolarization was included in the form of a constant multi¬ 

plier of the scatter power integral; however, the depolarization 

effects may be more significant than this Katzin, Wolf and 

Katzin have recently studied depolarization effects in the form 

20 
of a scattering matrix 

The prediction of high altidude radar terrain return 

signals by extrapolation of low altitude experimental data is 

considered to be unsound practice There are very few earth 

targets on large land masses which will contain the same 

statistical information at altitudes of 10,CC0 feet and 

100,000 feet. This is primarily a result of irradiating 

different target areas at the different altitudes which may 

cause the analytic form of the scattering cross-section to 

change. A secondary effect may be analogous to the optical 

resolution phenomena; large scale irregularities such ac 

mountains, hills, and valleys may be predominate at high 

altitudes while the small scale irregularities such as grass, 

trees, and other natural ground cover may be indistinguishable. 

7c~ 
Katzin, M., Wolf, E. A., and Katzin, J. C., "Invest¬ 

igation of Ground Clutter and Ground Scattering," Final 
Report No. CRC-5198-^. Contract AF 19(604)-5198, Electomag- 
netic Research Corp., Washington, D. C,, March, i960 
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APPENDTX A 

BOUNDARY CONDITIONS FOR FOCK' S DEVELOPHENI_QE_M 

ARBITRARY WAVE REFLECTED FROM AN ARBITRARY 

SURFACE 

Let the field of an incident wave be represented by 

k.ç 
E°e> 1 (A.l) 

where Ec and Hc denotes amplitude, and 9 is the phase 

expressed in units of length, and 

^7 a\z = (A., 2) 

The amplitudes Ec and H° would be constant if the 

incident field was a plane wave: however, in that which 

follows the components of the vectors Ec and H° shall be 

considered as slowly varying functions of space coordinates, 

E° and H° are also taken as the values of the incident field 

on the surface of the reflecting bcdy. The corresponding 

values of the reflected field at the surface of the reflecting 

body will be designated by E‘ and H1- 

Let u be a unit vector in the direction of propagation 

of the incident wave, u' be a unit vector in the direction 

of propagation of the reflected wave, and n be a unit normal 

to the surface of the body at the point of reflection. Then 

by the law of reflection the unit vectors u, u', and n are 

related by 

u' * u - 2n(u«n) . (A.3) 
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Furthermore 

u'• n * = cos (A 4) 

where 9 is the angle cf incidence. The values u and u'are 

proportional to the gradient and phase of the incident and 

reflected wave respectively. 

If the variations in amplitude cf Ec and Hc over one 

wavelength are neglected., the following results are obtained 

from Maxwell's equations: 

u X E° * h!° u*EC * 0, (A.5) 

_ EC 
u X = --u-HC * P, (A.6) 
-- ? 1 

and analogously for the reflected wave 

u' X E' = 7lH’ , u*,HC = 0, (A. 7) 

E' 
u'x H' = - , = 0, (A.8) 

where 7?^ is the intrinsic impedance cf medium 1, the medium 

containing the source cf energy. 

Let and be the magnetic permeability of medium 1 

and medium ? respectively, and and k7 be the wave numbers 

in medium 1 and medium 2 respectively. Here medium 2 is 

understood to be the reflecting body. The Fresnel reflection 

coefficients are 

N = 
COh G - - kf sin4© 

Ui cos© ♦ - kf sin4© 

(A. 9) 
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^2k,Cose sin1© 
M=—-ÎL-_ (A.10) 

^i^k.cos© +^^-i"Y kt - ■s'm'-'-© 

For polarization normal to the plane of incidence 

U) N = ^ 
tí° ' 

Ll) N = £ (A.11) 
£ • E° ' 

or 

(.cti) N =• — c * £ , 
gTe0 

For polarization parallel to the plane of incidence 

t O M - ¿ 

(.u) M = ¡2* Ü7 

£.b)° (A*12) 

or 

I N ¡V /« _ r> y M 
VILl; I VI — — —1 , 

s« d° 

Choosing case (ii) from both of the above sets of 

relations, the reflected wave in terms of the incident wave 

and the Fresnel reflection coefficients is 

n • E/ = Nj g0) ; (A.13) 
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The transmitted wave is of no interest here and its correspond¬ 

ing equations are omitted. 

Equations (A.7), (A. 13) , and (A. 14,) can be solved for the 

vectors E' and H' in terms of E° and H°. Let 

n«E° = E° , n*H° * H° . (A.15) 
— - n — — n 

Utilizing the expression 

u' = u - 2(u-n)u (A.16) 

it is found that 

E' sin^9 = NE° (n cos 29 + u cos 9)+ M (n x u) (A.17) 

H' sin^9 = MH° (n cos 29 + u cos 9) - N E° (n x u) (A.18) 

These are the values of the reflected wave at the surface 

of the reflecting body as derived from the Fresnel reflection 

formulas 



APPENDIX B 

AN APPROXIMATE SCATTERING CROSS-SECTION OF A 

ROUGH PLANE 

In this section an approximate scattering cross-section 

for a rough plane is developed; the result is suitable for 

use with Equation (5-5). 

Here again it is assumed that the Huygen's-Kirchhoff 

integral can be applied and the return power is 

¿kíR-R'l 
dfcdA' (B.l) 

by the same reasoning as ir Chapter VI. 

The geometry to be considered is that of a spherical 

wave scattered from a rough plane; this is shown in Figures 

B.l, B.2, B.3 and B.4. 

From Figure B.l, the actual radar range, Rn in terms of 

the mean range, R , and the deviation of the scatterers, S n, 
c n 

about the mean plane, is 

(B.2) 

By a development identicax tc that in Chapter Ij., 

(B. 3) 
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Figure B.l 

Figure B.2 
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Thus, in general 

and 

R~ R - £> cos9. 
o i 

R - &'cos9! 
o i 

But 

and 

An area element is shown in Figure B.2 from which 

dA -y© dyO d cp . 

? 2 2 
R£ = h^+yo-, 

RdR -f> d^s 

(B.4) 

(B.5) 

(B. 6) 

(B.7) 

(B • 8) 

Likewise 

R'dR' »ye'd/?' . (B-9^ 

Because of the assumed statistical dependence of R and 

R', new coordinates and variables cf integration are 

defined in Figure B.3. Associating the primed quantities 

with the unprimed quantities through the new variables s and 

l , 

R* = R+s (B.10) 

<+>' “ T+ 5 (B. 11) 

where s and £ represent, respectively, the change in range 

and change in azimuth in moving from A to B. Hence, 

(JR* = ds (B.12) 

dd* - di 
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With these results, the expression for the received 

power is 

P, = A r \\\{ C-o^Q,cosQ!. 

8TT KX R R' 

dR d(Ç dî. cit ■ 

(B.14) 

Note that the only difference between this equation and 

Equation (6.2D) is the absence of the multiplicative constant 

a2/b2. 

Once again assuming the normal bivariate probability 

density function, p( S , S'), (Equation (6.22)), the mean 

value of 

_ Xk ^'cos ô'c - ScosDJ 
Us,s') = e 0 (B-15) 

is 

lie C ' ) — 

- - iyO C_OS©L 

(B.16) 

from Equations (6.23)through (6.28) . 

By the same reasoning as given in Chapter VI, the 

correlation coefficient,^ , is assumed to be 

X? = e ^ \ - /=>¿ . (B.17) 

Here again, Davies’ approximation for the distance r is applied; 

r2^R2 ^ 2 + s2csc20| . (B.18) 



81 

From spherical trigonometry, 

cos ^ = cos¿9^ + sin^Q^cos ; 

and approximating cos /* w .th 

1 - -2—— ~ cosT = cos^Q. + sin^Qcos t , 
2 i 

~ 2 - 2cos^9^ - 2sin^9^cos . 

(&• 19) 

(B.29) 

(B.21) 

Then 

^ ~ I “ ^ K Sir1'©^ ¿R1- C-üC^ ©[ 

iX4 cv ^ ^ 
(B.22) 

The power return integral now has the form 

¿ i I 
A A' 

R- co^ô^co^ôx J - [ZUs 

RR' 

- l^o-^rco^4©. + cos2-©' - Zees ©, cos©' / - 

oc 

- ^R^ s'un^ô^cost, -t ■S^esC'©^ 

oc 

1) 
> ' 
dRJydsd^ (B.23) 

Moore and Williams integral in the plane has the form 

R- - ^ if Rp g0 ^ Q,0 dRd^ = A2- rpr c-oCô0dR 

[^tt)3JJ R3 sTtt'-J r"3 
A 

(B.24) 
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where an isotropic antenna has been assumed. Comparing 

these two expressions for the power return, it must be that 

0-,3(0,) - I-? ¿cc>s I 

J- 

/ 

.osó* exp )- i 2.ks 

\ 

2 U Z T i cos + cos'6 ©j + 2.cos 6¿ £ cos©. + 4 R6 sin6 

t'l (p d s d ^ . (B.25) 

The limits of integration are 

-TT < Cp < TT 

-TT < t - (B,26) 
AR-h'l 4 s < CRq-R) 

where RQ is the maximum range within the irradiated area. 

This integral, and its limits, is the same form, as Equation 

(6.51) and its limits; hence, if the same approximations are 

made in the evaluation, the results will be identical. 

-äi-.tan6©; 

= ; ZUVM^ Sir^2Ô^ Z (B• 27) 

3 O' 
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To prove that this result is valid for 9^^ ■ 0°, a 

slightly different argument from that in Chapter VI is 

presented. Evaluating the integral form of <T (9.) at 
o i 

9^ = 0° as a function of r, 

r” -,Zkz - V1 

cro<.0') ~ ¡2. I ¡ 1 ^ dsolTci^ (B.28) 

A¿ '-rr^~n o 

From Figure B.4 

r? = 2hs + s2 (E.29) 

As it has been shown that integrals of this form converge 

. j 2 
rapidly for small values of r , then a good approximation 

is 

r¿ ~ 2hs for 2hs >s' . (B.30) 

Hence 

Œ- ^TT)’4h 
■X 

l cos Zks) d s 

where the upper limit has been extended to infinity, 

evaluates to 

(B.31) 

This 

6 

cr0t0o) n 

A1 Sk1 o-2 h 4 k1 

(B.32) 
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Figure B.4 
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Rearranging, 

<To(0o) ^ z^znŸ-^cr1 

hL*L 

If 

then 

Thus, 

^ k 0-2, h 

^ k a-2- h 

OC 

CTe, CO" ) 

oc 

» 

ot 

8^" 

(B.33) 

(B.34) 

(B.35) 

<r0CGf) «r «x1 e 
ï. 

' ^ tan^ô; 

■4 o-1 

O CT 

, Zk^ g¿ R2- 3inXôt> O (B.36) 

This is the same form as the result in Chapter VI 



APPENDIX C 

Experimentally Determined Scattering Parameters 

If the lesults of the preceding sections are to be 

useful to the system designer, some typical values of the 

terrain scattering parameters, x2K2, (l-x2)ß, and oc2/cr2, 

are required. The numerical values of these parameters, 

which are presented in Table Cl , were obtained from the 

results of an extensive radar terrain return experiment 

carriel out by the Sandia Corporation, Albuquerque, New 

Mexico, during the years I952 to 1955. 

The experimental data was obtained by flying a C-47 

aircraft, equipped with 415 and 3^00 me radar, over selected 

target, areas in the United States. The results presented 

in Table Cl were obtained at altitudes of 4000, 7000, and 

120vy0 feet. These targets were deliberately selected to 

eliminate large scale roughness, such as hills, mountains, and 

valleys, and selected for homogeneily of small scale roughness 

such as trees, buildings, flat desert, etc. Extrapolation of 

these results to much higher altitudes seems to indicate that 

the specular component of the return will predominate as the 

scatter component falls off with the inverse cube of the 

altitude, versus the inverse square variation for the specular 

component. If this altitude relationship between specular and 

scatter components does occur it will probably be found over 

the open sea. However, this should not be expected over 
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large land masses as any appreciable increase in altitude will 

add a large area to the irradiated region; homogeneity of 

large land areas is net a feature of the earth's surface,. 

Table Cl 

EXPERIMENTALLY DETERMINED SCATTERING PARAMETERS 

AND THEIR TARGET DESCRIPTIONS 

cr0 (©J cc2- e 

8 cri 

Forest, Pine Island Minnesota. The target area was very 

flat and densely covered with pine hemlock, birch, 

white ash, and elm trees frem 20 to LQ feet in height. 

Freq. in me. xV (l-x2)ß / <y~¿ Range of fading 

415 0 C.13 34 14.7 db 

3800 0 0.45 16 13.9 db 

Forest, Presque Isle, Maine. The target had a snew-and- 

ice-covered rolling surface with a homogeneous covering 

of snow-bare evergreen fir and pine trees from 20 to 

50 feet in height. 

2 2 2 2 ? 
Freq. in me x K (l-x )ß «3/<r Range of fading 

415 0 0,87 34 14„7 db 

38OO 0 0,,88 22 17,5 db 

Snow-Covered Farmland, Wahpeton, North Dakota. The target 

area was flat crop land with two dry stream beds and 

an eight inch covering of dry snow., 



88 

, 2 2 
Freq. in me. x K 

415 0.066 

5800 O.O63 

(l-x'jß oeVer 

0.24 53 

0.85 57 

Range of fading 

14.2 db 

15.8 db 

Farmland, Cameron, 

and crop land 

Freq. in me . 

415 

3800 

Misbouri. The target area was flat pasture 

with a single line railroad. 

x^K^ (l-x^)ß oí¿/ crRange of fading 

0.092 0.24 60 I8.7 db 

0.34 I.98 70 14.1 db 

Farmland Sioux City, Iowa. The target area was flat crop 

land which had recently been plowed. 

Freq.. in me. x K" (l-x )/3 c*. / c Range of fading 

415 0.049 0.22 70 16.3 db 

38OO O.O9O 0.26 52 14.6 db 

Industrial Area, Minneapolis.. Minnesota, The target contained 

a predominant number of metal roofed factory buildings 

with a railroad yard at one edge. 

Freq. in me. x^K“ (l-x^)ß o<.V o'" Range of fading 

415 0 0,.28 58 16.6 db 

3800 0.23 1.73 42 14.9 db 

Residential Area, Minneapolis, Minnesota. The target area 

was one and two story brick and frame houses with pitched 

roofs, and had many old, well-established trees. 

Freq. in u;J. x^K" (l-x^)ß <5~ ^ Range of fading 

415 0 0.25 59 16.3 db 

3800 0.029 O.98 48 14.1 db 
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Apartment Buildings» Kansas City, Missouri. The majority cf 

the buildings were built of brick, flat roofed, and 

several stories tall. 

2 2 2 2 2 
Freq. in me. x K (l-x )ß cx / <3" ^ Range of fading 

¿415 

3Ö00 

0 

0.27 

0.25 

1.63 

59 

70 

I7.3 db 

18.5 db 

Desert, Saltón Sea, California. The 

arid, sandy, and barren. 

2 2 2 
Freq. in me. x K (l-x )ß 

¿415 0.0044 0.052 

3800 0.20 0.29 

target area was flat, 

2 2 
<x V cr Range of fading 

75 16.4 db 

59 16.4 db 

Water, Lake Benidji, Minnesota. The lake surface was 

moderately rough with ripples and swells about 15 

to 20 inches vertically from peak to trough and three to 

four feet horizontally from peak to peak. 

Freq. in me. x'K (l-x )ß oc / <r Range of fading 

415 0 5.05 68 8.2 db 

38OO 3-11 8.52 95 16.0 db 

Water, Saltón Sea, California, The air ever the target was 

quite calm at the time of the flights and the lake 

surface was relatively smooth. 

(l-x2)ß 

1.57 

6.94 

2 2 
Freq. in me. x K 

415 

3800 

O.59 

0 

2/ 2 
Ot / (T 

96 

228 

Range of fading 

16.2 db 

18.8 db 
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Note that some of the values reported in Table Cl do 

not agree very well with the results predicted by theory; 

however, this detracts nothing from the usefulness of these 

results. The reason for computing these parameters is to 

remove the radar system constants and altitude from the 

experimental data. As these parameters were computed from a 

median pulse, computed pulses will also be median pulses; 

i.e., at any given delay time within an ensemble of return 

pulses., one-half the power will be above the corresponding 

power point on the median return pulse. It is extremely 

improbable that any individual return pulse from an ensemble 

of return pulses will have the same shape as the median pulse. 
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