U.S. Army Corps of Engineers New England District

FINAL
REMEDIAL INVESTIGATION REPORT AREA OF CONTAMINATION (AOC) 57

VOLUME II OF III APPENDICES A THROUGH D

CONTRACT DACA-31-94-D-0061
DELIVERY ORDER NUMBER 0001
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DISTRICT CONCORD, MASSACHUSETTS

FINAL
REMEDIAL INVESTIGATION REPORT AREA OF CONTAMINATION (AOC) 57

VOLUME II OF III APPENDICES A THROUGHD

CONTRACT DACA-31-94-D-0061
DELIVERY ORDER NUMBER 0001

Prepared for:
U.S. Army Corps of Engineers

New England District
Concord, Massachusetts

Prepared by:
Harding Lawson Associates
Portland, ME
Project No. 45001
Task No. 0914403

June 2000

EXPLORATION LOGS

SOLL BORNTG LOC			Study Araa: $A 0 C 57$
			Boring No.: $578-95-02 \mathrm{x}$
Client: USATHAMA		Project No. $9144-02$	Protection: D
Contractor: D.C. Maher	Date Started: $9 / 27 / 95$		Completed: $9 / 27 / 9$
Method: $4 / 2^{\prime \prime}(\pm D) 454$	Casing Size:	12	Pi Meter:TE 580 A 0 VM
Ground Elev.:	Soil Drilled:	19 ft	Total Depth: 19^{1}
Logged by: sjm	Checked by:		$\overline{7}$ Below Ground: 16.92^{\prime}

Screen:
(ft.) Riser:
(ft.) Diam:
(ID) Material:
Page 1 of: 2

NOE: PID battery Iow; urable to measme porm for $19-21$

SOIL. BORING LOG

Client: U'S Armi Irvigumeritai Contert Froject No. 9144-02			Protection: $\quad 2$
Contractor:D.L.Maler Date St	Date Started: $10.5-95$		Completed: $12-5-95$
Method: $6^{5 / 8 "(I D) ~ H 54 s ~ C a s i n g ~}$	Casing Size: $6^{\prime \prime}$ steel		PIMeter: TE SCOB OUN?
Ground Elev.:	Soil Drilled: 14^{\prime}		Total Depth: 14^{\prime}
Logged by:S. Moytuornenj Checke	Checked by:		\geq Below Ground: 3.17'
	Diam: $4^{\prime \prime}$ (ID)	$\text { Material: } \operatorname{sch} 4 / 240$	Page 1 of: 2

PIPTH NOT TOSCALE

\qquad

Stedy tec 57
Boring No.: 574-95-18,4
Pratection: T)
Completed: irl, is

PXPIH NOT 70 SCALE

Site: $\frac{A \cdot 557}{5-75}$ Client: $A=$ Project No. dur -:2 1 of 2

Test Pit $57=-45-4 x$ Date q, 18-45 Time $13: 0$ End $13: 40$

Coordinates \quad SKETCH MAP OF TEST PIT SITE APp $\rho \%$

1. Jefe Jerosson(ABB-ES
2. Tim Singer (ENPRC)
3.
4.

(NO

SCALE $1^{\prime \prime}=5^{\prime}$ FT.
NOTES: \qquad
$12 f t$ long french
P1D Exon stockituerails $=$ backing
\qquad

Profile Along Test Pit: $\frac{57 E-95-01 x}{57}$
site:

North vel (sima as souls) silly sind

NOTES: \qquad
Samples collated
A fixitsicering- 0-1s

* Perdiscres ring son ph cobectad Cranderybrom lens. $z^{\prime \prime} 3^{3 \prime}$ thence at

orabitionsimple collected at 6°
REFERENCE: FIELD BOOK, Pg. 5-7
ATTACHMENTS
signature:

NOTES:

$$
\text { SCALE } 1^{\prime \prime}=10^{\prime} \mathrm{FT} .
$$

Site: $\quad A C C 5$ Client: $\frac{A E C}{A-1}$ Project No.: $9144-022^{1 \text { of } 2}$
Test Pit Date Coordinates

$P\left\|D \pm 6^{\prime \prime}\right\| 2-2 \mid=R_{a c k} \operatorname{cosen} 3$
11

\qquad

TEST PIT RECORD
Profile Along Test Pit: 57E-95-02X
Site: AOS. 57
North

 to micicera thetic (simple

SCALE 1" $^{\prime}$ \qquad

DEPTH (FT). \qquad
NOTES:

\qquad
\qquad
(arsed is-
E^{\prime}
$0 v か=B \therefore j \cos +35^{-1}$

* $6^{\prime \prime}$ dun s en giles were collodion ito

$$
\text { gradation- evileLledE } 5
$$

REFERENCE: FIELD BOOK, Pg. Pg 5 -7
ATTACHMENTS Nine
signature:

wire not 2 :

Site: $A O C 57$ Client: AEC Project No.: $4144-02$ 1 of 2 Test Pit $\xrightarrow{572-95-03 x}$ Date $9-10,-95$ Time $15: 25$ End $16: 00$
Coordinates

$$
(6)=-14 W \Leftrightarrow 3 m-32-2 x
$$

SKETCH MAP OF TEST PIT SITE

NOTES:

$$
\text { Soil: zxicanad d in } 3 \text {, } 1914
$$

$$
\begin{gathered}
\text { ad stockpiled saperatile } \\
a-1 \text { ft }
\end{gathered}
$$

$$
1-5+h
$$

$$
s-1 i s t
$$

Senile then backilhed back in level
 after test pit complete. Th. 2xcau<itad an 9-ie-85

Crew Members:

1. Take Jacobson (ABBEs)
2. Tin Sager (EnPRO)
3.
4.
5.
6.

Monitor Equipment:
PI Meter
Explosive Gas
Avail. Oxygen
OVA

Other

Photogoraphs, Roll
None 2
Exposure
Asin

Profile Along Test Pit: $\quad 575-95-03 x$
Site: \qquad $A C C 57$

North wall (same a. 3 South wail)
SKETCH MAP OF TEST PIT PROFILE

NOTES: \qquad $=K 4-5 ゙ y \operatorname{sinpl}-5^{1}$

$$
H_{2 a d} \text { pace }=B_{i=c} \operatorname{kgj}_{5},-d
$$

$$
\begin{gathered}
g r a d=1 \text { on } x-J l e \\
c=1=i k d \leq 5
\end{gathered}
$$

REFERENCE: FIELD BOOK, Pg.
ATTACHMENTS Mn -x
All sindilisa from $0-1$ fit dent by collecting ionporjites fora norths? south wallis; sean invar levels by
 SIGNATURE:

TEST PIT RECORD

SKETCH HAP OF TEST PIT SITE

NOTES:

$$
5-1264
$$

Monitor Equipment:
PI Meter
Explosive Gas
Avail. Oxygen
OVA
Other

\qquad
\qquad
Photogoraphs, Roll Nisei
Exposure

Profile Along Test Pit: $-57 E-95-04 x$
Site :_AOC57
West walt (All walls simitar)
SKETCH MAP OF TEST PIT PROFILE

SCALE $1^{\prime \prime}=$ \qquad
 DEPTH (FT). \qquad
NOTES: \qquad
(A) silty sind; wall graded; is-2ci/,
 damp; vas vil y loos ie; Topi disk brown contains some cigurici (roots,
(B) medium sims; poorly gradin; minimal Sins 2; drop; loose, light how, modeled with
 reddish cringe; SP
Duplicate sample collected

$$
a t 5 \text { for off-sile araitas }
$$

REFERENCE: FIELD 800K, Pg. 8 (sin
ATTACHMENTS Nita SIGNATURE:

Site: $A O C 57$ 575-95-05x Client: AEC \qquad Project No: $9144-02$ 1 of 2

Test Pit Date 9-19-95 Time 9:10 End 4:50

Coordinates

SKETCH MAP OF TEST PIT SITE

SCALE 1" = Nine \qquad FT.

NOTES: \qquad
Test Pit Trench approx: maturely 15 st long $i 13$ feat dap sidewalls caved in. Could not dig much deeper thin $13 G_{4}$
Excaraiked in 3 insets
$0-15 t ; 1-G F j$ nd 6-13st.
Backfilled tare lifts to their respective lacatrous.

Crew Members:

1. Jake Jacobson (ABB-ES)
2. Tim Sager (ENPRO)
3.
4.
5.
6.

Monitor Equipment:
Pl Meter
Explosive Gas
Avail. Oxygen
OVA

Other

Profile Along Test Pit: $-57 E-95-0.5 x$
Site: AC 57

SCALE $1=5 \quad 5 \quad$ FT. Vertical $1^{\prime \prime}=$ 1' morizatal $^{\prime}$
DEPTH (FT)
NOTES: \qquad
(A) silty scad, well gaia;
bravo j simp

40,5
\qquad
(B) Medium sand; poorly graded

Gradatim take, \in^{\prime} no observable Site; ; moist;

REFERENCE: FIELD BOOK. Pg. Pis i, nose; 1 inuit brow \rightarrow modeixid
 with rubbish F range whits;
$S P$

Site: \qquad Client: AEC \qquad Project No.: $9144-02$ 1 of 2
Test pit $575-95-06 X$ Date $9-19-95$ Time Lie: 35 End Ho: RD 5

SCALE 1" $=$ None
\qquad FT.

NOTES: Test pit Trench approx is st. lone mad llfeet deep il ft.
$\frac{\text { Excavated in }}{0-1 \operatorname{sit} ; 1-651}$ $6-1181$.
Bactifilizd buick to their respective beations.
\qquad
\qquad
\qquad
\qquad
\qquad

Profile Along Test Pit: $-57 E-95-06 \mathrm{X}$
Site: \qquad AC 57

East wall (wrest) wall sinilor)
SKETCH MAP OF TEST PIT PROFILE

SCALE $1^{*}=$ \square
5
FT. $v e=t i \operatorname{cai}$
DEPTH (FT). \qquad (walls continued to celkepar
NOTES:

(A) Silty sind; val gradid;
$20-25 \%$ fins w/ some gravel
up to $1^{\prime \prime}$ dicmaler; damp; very
loose; dork brown; sm
contains some roots. Modeled
(A) Silty sind; val gradid;
$20-25 \%$ fins w/ some gravel
up to $1^{\prime \prime}$ dicmaler; damp; very
loose; dork brown; sm
contains some roots. Modeled
(A) Silty sind; val gradid;
$20-25 \%$ fins w/ some gravel
up to $1^{\prime \prime}$ dicmaler; damp; very
loose; dork brown; sm
contains some roots. Modeled with blacker ashier soil below identified as (B)
\qquad
(c) Madimsond; poorly graded
 no observed Sims; moist; loose;

Gradation sample collactade eric andes. light brow modeled with reddish orange \& white; $S P$

REFERENCE: FIELD BOOK, Pg. \qquad eng
ATACHMENTS Now SIGNATURE:

\qquad

Coordinates
SKETCH MAP OF TEST PIT SITE

NOTES: \qquad

Excavated in approximate!,
3 lifts $0-3 f t ; 4 f t-\frac{55 f}{2} ;$ and 5 to $>8 t$. Backfilwd back to juxir respecting locations
\qquad

\qquad
\qquad
\qquad
\qquad

Profile Along Test Pit: $-57 E-95-07 \times$
Site: \qquad ADC 57

SKETCH MAP OF TEST PIT PROFILE

DEPTH (FT).
NOTES: \qquad
(A) Silly sind; well grades;
\qquad
\qquad brown sm
\qquad fuel odor detiziled;
\qquad
\qquad
(c) Medium sand; poorly Graded moist Lo wet light begun to white. $\mathrm{Fe}_{2} \mathrm{e}$ dor detected
\qquad
\qquad
\qquad

REFERENCE: FIELD 8OOK, Pg.
ATTACHMENTS

ATMACHMENT No ri
SIGNATURE:

Site: \qquad client: $A=C$ \qquad Project No.: $9144-02{ }^{1 \text { of } 2}$
Test Pit 57E-95-09x Date $9-20-95$ Time $8=0$ Coordinates

SKETCH MAP OF TEST PIT SITE cy:3nchater

Excocxted i- 3 lifts 2-1it $1-54$ on d 5 ta 65 Soil hackifive to sejpastius location

NOTES: \qquad inciting and heft do .p to
-

Crew Members:

1. Jake Jacobson (ABB-ESS)
2. Tim Slager (ENPRO)
3.
4.
5.

$7 x$
6.

Monitor Equipment:
PI Meter
Explosive Gas Avail. Oxygen OVA Other

Exposure No-

Profile Along Test Pit: $-57 E-95-0 . \times$
Site: \qquad

$$
\text { Souty.wall (soil layers simior on }_{\text {east }}
$$

SKETCH MAP OF TEST PIT PROFILE

SCALE $1^{\prime}=\frac{5}{5}$ FT. Virtical; $1^{\prime \prime}=1^{\prime}$ hopizolfol
DEPTH (FT). \qquad Growd maker pimentre e'
NOTES:
(A) siliysend; wall gridid; $15-20$, fixes w/ 5% grave in to abrot $1^{\prime \prime}$ dinatai; donp; vury bosix; durk brown; strines rarid; SM; soil contains sone roots 2
d2bris (piziz is rung2r;

$$
\operatorname{dim} 2 r(3 \cot +2)
$$

(B) Sami as above (A; ancept that soll also upporis tiz zontaiz black orgenje materizal. Septie odor detactad. Sori is rery
 Very moist; black; lenzi is

* septie edor datacted

Grain size unalysen cilectade
REFERENCE: FIELD 800K. Pg. $11-12$

ATTACHMENTS $N_{\Delta u}$
signature:

(S) medion anaty 1 foct thick

Mo, Ancerviote sins; wity, loose; light brown ; Sóp

TEST PIT RECORD

Site: ACC 57 Test Pit $\quad 57 E-9.5-04 x$ Date $9-20-95$ Time $9: 15$ End $9: 45$
Coordinates
To $\begin{gathered}\text { Bar } \\ \uparrow\end{gathered}$
SKETCHIMAP OF TEST PIT SITE

NOTES:
Surface debris (gree burlap) and sheatmatal notes mityin $6 t_{0} 8$ fest of test pit

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Crew Members:

1. Ja ak Jacobsur (ABB-Es $)$
2. Tim Slager (ENPRO)
3.

5.
6.

Monitor Equipment:
$\begin{array}{lll}\text { Pl Meter } & \text { N } & N \\ \text { Explosive Gas } & Y & \Phi \\ \text { Avail. Oxygen } & Y & \$ \\ \text { OVA } & Y & \$ \\ \text { Other } & & \end{array}$
Other

Profile Along Test Pit: $-57 E-95-0.9 x$
Site: AOC57

SKETCH MAP OF TEST PIT PROFILE
Typical all walls

SCALE 1" = \qquad
DEPTH (FT). \qquad FT. vartical; $1^{\prime \prime}=1^{\prime}$ horizotfol

NOTES: \qquad 10-15\% 首ines wis-iongravel up to cisost " $^{\text {" dianatar ; donp; ver }}$
 round; sin; costais soma rosts, Apprax 1 to $1 \%+t$

(B) Silty send; inellgrachd; /0-150, finis io/ S24ig graval
wp to $1 \frac{1}{2}$ "dioneler; veiydry (dusty);
 rovidi Sm
(D) SBtack ergais layze $x 1$ fot Fhick sibyi Soilisvary
colnesiva; vera moist; black
String sepluic edori no fual odordetacted
(c) Medium sumd; poorly gradad
some roots cos corganic matror notedj very wety very loosu; ligh bरgN: if fow ; SP

Coordinates

SCALE $1^{\prime \prime}=$ None \qquad FT.

NOTES: Reit $0, r \sim 10^{\prime}$ Long and 3^{i} level excouated to io betome note Started to collapse. Hale um bucklilat Innecti rita after logging
\qquad

Crew Members:
Mike Lounsity
2. Tim Slager (ENPRO)
3.
4.
5.
6.

Monitor Equipment:
PI Meter Explosive Gas
Avail. Oxygen OVA Other

Photogoraphs, Roll None
Exposure \qquad

Profile Along Test Pit: $-57 E-95-10$
Site: \qquad

SKETCH MAP OF TEST PIT PROFILE
bicule

SCALE $1^{\prime \prime}=$ as shown 3par
DEPTH (FT).
NOTES: \qquad to io' bitome Sicle Wri!) wese caving fin
S-1-Burk Brown Sitty Somel, Dry - Topi-1 and sund. offisite cinel onibie Sianie Culieital
5-1 Tan Rechion- Rine Sund, ver amiton

Pry-onsite anel offíste Sande cultecter
S] Browin thediun - fite Sond, vey cunfien $D_{\text {f }}$ - AAmp. onste SAmpe cultated

REFERENCE: FIELD BOOK, Pg.

SIGNATURE: \qquad
\qquad ,

Site: $A O C 57$ Client: AEC Project No.: $9144-02$
Test Pit 57E-95-11 Date 9-19-95 Time 1315 End $13 y^{-}$
Coordinates
SKETCH MAP OF TEST PIT SITE

$$
\text { SCALE } 1 \text { " }=\text { None }
$$ FT.

NOTES: \qquad
$\frac{\text { Tejtpitn } 8^{\prime} \text { Long anal }}{3^{\prime} \text { wide excavital }}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2. Tim Slager (ENPRO)
3.
4.
5.
6.

Monitor Equipment:
Pl Meter Explosive Gas Avail. Oxygen OVA

Other \qquad

Exposure

Profile Along Test Pit: $-57 E-95-i 1$
Site: AOC57

SKETCH MAP OF TEST PIT PROFILE

SCALE $1^{\circ}=$ aS ShGMFI. DEPTH (FT).
NOTES:
 at $\varepsilon \times 1>1106$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
signature: \qquad
REFERENCE:FIE:D BOOK, Pg.
 $10^{\text {ste. }}$ AT None A.ITACTMENTS g, m路

TEST PITRRECORD
Profile Along Test Pit: $-57 E-95-12 x$
Sits: \qquad ADC 57

SKETCH MAP OF TEST PIT PROFILE
Typical all walls

SCALE ${ }^{\prime \prime}=\frac{5}{5} \quad$ FT, Vertical; $1^{\prime \prime}=1^{\prime}$ horizo.tiol
A* $\operatorname{DEPTH}(F T)$ - $\frac{-13}{13}$ Sides began to cave in soil type
NOTES:
(A) 5:1ry sand; well graded; $10-15 \geqslant-4$ firs in 5-10\% gramil; dry; vary looser; dort to med iva brow sm; many tres roots
\qquad
(13) Black i layer; septic end strong Fiuelador rested (2.7 ppm wy Pl about 1 (it down in tran ib) Soil very whesive; very moss:
(c) Madiv, to fine sand; poorly
 graded; very whit; loose light to yellowish brown; sP
 Grai-size e ow' and G $\boldsymbol{y}^{\prime \prime}$

* Seel odor detected $11-12$

ATTACHMENTS None
\qquad SIGNATURE:

$$
\begin{aligned}
& \text { filled the pit fo the } \\
& \text { app os binate } 7 \text { il eva }
\end{aligned}
$$

Profile Along Test Pit: $-57 E-95-13 x$
Site: AOC57

SKETCH MAP OF TEST PIT PROFILE
Typical all walls

			(A) darfabrow-			
			(B)			

SCALE $1^{\prime \prime}=$ \qquad FT. Vertical; $1^{\prime \prime}=1^{\prime}$ horizontal
DEPTH (FT)._ \quad _ sidewalls collapsed; water frickling in at abojt 6°
NOTES: \qquad

(A) Silty sand; well graded; 20 to 25% fines; damp; very loose; dark brown of some black organic material; Sm; mary ports Approx 254 thick
(B) Medive sind turning finer wits depth; poorly graded; wait; 100 in in spots u. $/$ tight consolidated chuaks in other areas; light brain to tom; $S P$
\qquad
-

No observable black organic layer was fount in this pit.

REFERENCE: FIEID BOOK, Pg. \qquad 13
\qquad
SIGNATURE:
R0 gower were hates of organise material
Groundwater observed
to be seeping in $\approx 6 \mathrm{Ft}$.

SKETCH MAP OF TEST PIT SITE

No wind

NOTES:
 6 ft dep where under b_{2} an to pour in.
At $y^{i} /$ fart $_{2}$ below grade water was stating to Skip in
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Crew Members:

1. Jake Jacobson (ABB-ES)
2. Tim Slager (ENPRC)
3.
4.
5.
6.

Monitor Equipment:
Pl Meter
Explosive Gas
Avail. Oxygen
OVA
Other

\qquad
\qquad
Photogoraphs, Roll Noe Exposure

Profile Along Test Pit: $-57 E-95-14 x$
Site: ADC 57

SKETCH MAP OF TEST PIT PROFILE No topsoil

- leaicit e lowbrust
$\left.\begin{array}{|l|l|l|l|l|l|}\hline & & \text { (A) } & \begin{array}{c}\text { MeJivgit brown } \\ \hline\end{array} & \text { sand }\end{array}\right]$

SCALE $1=\frac{5}{6}$ FT. Vertical; $1^{\prime \prime}=1^{\prime}$ horizontal

Sol dasisnatia
NOTES:
A

NOTE
(A) Medium sand poorly graded damp; very loose; light to yellow is brown; sp
(B)
approximately 2 ff be lou ground
surface Septic odor not wd
(c) Similar to (A) except wit.
\qquad
\qquad
\qquad
\qquad
\qquad

REFERENCE: FIELD BOOK, Pg.

$$
14-15
$$

ATTACHMENTS Non

SIGNATURE:

Site: $A O C 57$ Client: $\triangle A E C$ \qquad Project No.: $9144-\mathrm{ClOf}^{2}$ Test pit $-57 E-95-15 x$ Date $9-21-95$ Time $8: 50$ End $9=30$ Coordinates

SKETCHUMAP OF TEST PIT SITE

NOTES: \qquad Exca-ated to $58 t$ where. grox-stwater entered trans

Soil back i: lind into finch
 which it was excaivectos

Crew Members:

1. Jake Jacobson (ABB-ECS
2. Tim Slager (ENPRO)
3.
4.
5.
6.

Monitor Equipment:

Profile Along Test Pit: $57 E-95-15 x$
Site: ADC. 57

SKETCH MAP OF TEST PIT PROFILE
Typical all walls

SCALE $1^{\prime \prime}=\frac{5}{5} \mathrm{ST}^{\text {FT }}$ Vertical; $1^{11}=1^{\prime}$ horizontal
DEPTH (FT) \qquad
NOTES: \qquad
(A) Silly send; well graded dry to damp; very loose;
\qquad
(B) Blast layer; foal odor Small; $5 p p, 7$ noted in ind trench; Layer is appioxinataly
 below grade; soilvoy conisivio ad moist; appear to contain. organic material (decoyed ing j)
(Ci Medium to fine Sound; poorly. graded; very whit; loose;
 REFERENCE: FIELD BOOK, Pg. $16-17$ ATTACHMENTS Nod signature:
 15antbrioum to white SP

Site: \qquad Client: $A F C$ \qquad Project No: $\frac{9144-021 \text { of } 2}{}$ Test Pit $-57 E-95-16 x$ Date $9-21-95$ Time $10: 05$ End $10: 35$ Coordinates

NOTES: \qquad Test pit approximately
$\frac{10 \text { feet long. } z x \text { caviled to }}{5 \text { feet where groundwater seeped }}$ in. Oil sheen noted on wo groundwaterestering trench. Soil backcsilled into french within respective 10 cation from which it was axcaratel

TEST PIT RECORD
Profile Along Test Pit: $-57 E-95-16 x$
Site: \qquad
Typical all walls
SKETCH MAP OF TEST PIT PROFILE

$$
\text { SCALE } 1=5 \text { FF. Vertical; } 1^{\prime \prime}=1^{\prime \prime} \text { horizontal }
$$

DEPTH (Ti) $\frac{5 \mathrm{FF}}{5 \mathrm{~F}}$. Soil $\mathrm{t}_{\text {ye }}$
Notes: $\frac{\text { (A) silty sand; wall graded }}{10.15 \% \text { F is }} 5$

$$
\begin{align*}
& 10-15 \% \text { fie } ; \text {; } 5-10 \geqslant n \text { gravel } \tag{B}\\
& \text { up to } 3 / 4^{\prime} \text { to } 1^{11} \text { dicander }
\end{align*}
$$ loose; dark brawn; SM; many roots

(B) Black layer; fuel odor noted (3ppom Gram stacipiw) sail very moist containing ergioncs (roots).
Linsinected
(c) Medium sound; poorly graded veiny wet; loose; light brown to whits; fuel odor detected. simple may have sari collected

Gradatiorsimpla

REFERENCE: FIELD BOOK. Pg. 17
ATTACHMENTS Now

balks twa water table.
water bugs coming in

$$
a t \approx 5 s^{\prime}
$$

NOTES: \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Profile Along Test Pit: \quad 57E-95-17x
Site: \qquad
North wall - Similar to soutiowall
SKETCH MAP OF TEST PIT PROFILE

NOTES: \qquad
(A) Silty sound; poorly giadast

loose; dense roots; dark brown; sm

odor (7ippon indre, 4) very
cohesive; containjoryanic materiel) almost mastic like consistency;
Appeased to be approximately isis to 1 st minims at t_{2} eos t end of thru. torch

FEFERENCE: FIELD BOOK. Pg. $17=18$
ATTACHMENTS
 gravel; poorly graded; vic wet
white. strong fuel odor
detected. Supple may
hare bee, coilested brow vertus table, water began
 ABB Environmental Services, Inc.

Site: $A O C 57$ Client: $A F C$ Project No.: $9144-02 \quad 1$ of 2 Test Pit $-57 E-95-18 x$ Date $9-21-95$ Time $13: 00$ End $13: 30$ Coordinates

NOTES: \qquad
Test pit approximately 10 ft dong
Excavated to 3 feet Oulhere groundwater was encountered Soil backeilled into trench within respective location from which it was excavated.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Crew Members:

1. Jake Jacobson (ABB-ES)
2. Tim Slager (ENPRC)
3.
4.
5.
6.

Monitor Equipment:
PI Meter
Explosive Gas
Avail. Oxygen
OVA

Other

TEST PIT RECORD
Profile Along Test Pit: $-57 E-95-10 \mathrm{X}$
Site: AOC57
Typical
allualls
SKETCH MAP OF TEST PIT PROFILE

\qquad
\qquad
(A) Blacklayer; no Euelodor

(C) coostorimedium sind; Moll graded; very wet; loose;
light brown to whiter than

Grai-sizecolisoted e z^{\prime}
(B); grain size sioghliy ioniser than (B)

REFERENCE: FIELD BOOK. Pg. \qquad
ATTACHMENTS Nome SIGNATURE:

Site:

Client: $A E C$ Project No.: $9144-i 2^{1}$ of 2 Test pit $57 E-95-19 x$ Date $9-21-95$ Time $14: 00$ End 14:30 Coordinates

NOTES: \qquad
Test pit approximately
Crew Members:

1. Jake Jacobson (ABB-ESS)
2. Tim Slager (ENPRO)
3.
4.
5.
6.

Monitor Equipment:
Pl Meter
Explosive Gas
Avail. Oxygen
OVA
10 feet long Excaval ed
to $3 / 2$ दे Set where ground water was encounterd.

Soil back filled into trench within respective locating
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TEST PIT.RECORD
Profile Along Test Pit: $\quad 57 E-95-19 x$
Site: _ ABC 57

Typical all walls
SKETCH MAP OF TEST PIT PROFILE

SCALE 1: $=\frac{5}{31 / 2} f^{F}$ Vertical; $1^{\prime \prime}=1^{\prime}$ hoizochal
DEPTH (FT).
NOTES: \qquad
silty some; poorly graded

very loose; Medimbrows;
numerous roots
(13) Black layer; no noticeable septic or fuel odor.
\qquad very moist.

(c) Medium sand; poolly graded;
vary wet. Sample collected above water level.; loose; light ta yellowish brow; SP

REFERENCE: FIELD BOOK, Pg. \qquad $18-19$

ATTACHMENTS
Nova:

Site:
A OC 57 Client: $A E C$ Project No.:9144-0 Z2 oi 2
Test Pit
57E-95-20X Date $9-21-95$ Time 15:00 Coordinates

SKETCH MAP OF TEST PIT SITE

SCALE 1" = Note FT.
NOTES:
Test pit approximately 10 feet long, Excavated to to ft where groundwater was ancon tared, Top 5 feet of material seems to be fill material. (charcoal broquets found at least 2 St below grade.

No black organic layer
was observed.
\qquad
\qquad
\qquad
\qquad

Crew Members:

1. Jake Jacobson (ABB-ENS)
2. Tim Slager (ENPRO)
3.
4.
5.
6.

Monitor Equipment:
PI Meter
Explosive Gas
Avail. Oxygen
OVA

Other

Profile Along Test Pit: $-57 E-95-20 X$
Site: \qquad

SKETCH MAP OF TEST PIT PROFILE

SCALE 1" $=5$ FT. Vertical; $1^{\prime \prime}=1$ 'horizontal
DEPTH (FT). \qquad
NOTES: \qquad

(A) fnediva to fine send; poorly

REFERENCE: FIELD 800K Pg .
ATTACHMENTS

$$
\begin{gathered}
\text { Note: No black ergmic } \\
\text { layer was noted } \\
\text { in this } p \text { is }
\end{gathered}
$$

Site: \qquad ADC 57 client AEC 9-22-95 Time Project No.: $9144-02^{1 \text { of } 2}$

Test Pit \qquad 57 \qquad

SKETCH MA OF TEST PIT SITE

SCALE $1^{\prime \prime}=$ No re FT.

longe Approximately 3 to if Sp. appears to bi Sill. Danes such as bricks, nails, ash, glass, iron ware noted. Greer light powdery material surrounding the chou, of what apperrest to be metal was collected and simplest. Below four feat was clean smadiui to fine sand. Excavation want $t_{0} 10$ st. As groundwater was ancountrost

Profile Along Test pit:-57E-95-21X EP 1<1 TP 4^{2012} Site: AOC. 57

West well (typical of all mails)
SKETCH MAP OF TEST PIT PROFILE stael strapping

NOTES:
(A) Ash, some charcoal; silty sod dart bozen nark; steal stappent
(iB) Medina sind, poos) grade dep; light brown trace of
(c) bitt: contains some dieristinailsib of cinders, ash, brick glass, nails; iras object

found with light gran material
surconding it This grac-matrin) REFERENCE: FIELD BOOK. pg. was simple.
(D) Medium to fin a sind; trace offïus $d r_{n}$; RI roose; light brown to on oropgebrown; Appear: to be nestle material).

Sita: $A O C 57$ client: $A F C$ Project No.: $9144-022^{1 \text { of } 2}$ Test Pit 57E-95-22x Date $9-22-95$ Time $9: 20$ End 10:10 Coordinates

NOTES:
Test pit appososimately 10 Kt log g. Trench excavated partly inly a shall mound (appion $20 f+$ high) at the edge of the embarkment.
A crushed rusted 55 gallon duma
sat onto of this mood on the
grand surface Pit execrated to asset 1054 bags No grand under encountered The tip approximate 4 ios Foot la poe oppose to con some debris (brick; ash; y loss, nails)
\qquad

\qquad
\qquad

Crew Members:

1. Jake Jacobson = (ABB-ES)
2. Tim Slager (ENPRO)
3.
4.
5.
6.

Monitor Equipment:
PI Meter
Explosive Gas
Avail. Oxygen
OVA

Other \qquad

TEST PIT RECORD
 Site: AOC 57
\qquad

SCALE $1^{\prime \prime}=\quad 5$ DEPTH (FT). $\quad-\quad \mathrm{O}$

FT. vartical; $1^{\prime \prime}=1^{\prime}$ horizortill
NOTES:
NOTES:
(A) Siltysand; weligaded is is to $20^{\circ} \beta$ fines; vary loose; verydry; derk brown; sM ; appeass to be fill maherial contain.t sone piesesof brick coal; 3 bottlos, chuaks of quwa ont some ash.
(B) Cleim Mediun to Fine sand; poorly groidd; $5-10 \%$ Fines; vey foase; very dry; SP.
\qquad
No grovaduater enconitured

Bothon of Excavalitiv,
No grounducitar encouriterad

Equipment a Vehicle Stg y ark SKETCH MAP OF TEST PIT. SITE

SCALE 1 " = None FT.
NOTES: \qquad
\qquad
10 ft . No gios-dumador zeounteried Sons debris found in the top 5 ft. of soil.

Crew Members:

1. Jana Jacobson (ABB-E-S)
2. Tim Slager (ENPRO)
3.
4.
5.
6.

Monitor Equipment:
Pl Meter
Explosive Gas
Avail. Oxygen
OVA
Other \qquad
\qquad
Photogoraphs, Roll None
Exposure
\qquad

Profile Along Test Pit: $-57 E-95-23 x$ EP C TP-2
Site: $A O C 57$

Typiculall walls
SKETCH MAP OF TEST PIT PROFILE

SCALE $1^{\prime}=-5$
FT. vertical; $1^{\prime \prime}=$ 1' horizontal $^{\prime}$
DEPTH (FT). \qquad
NOTES: \qquad
(A) Silty sind; inieil grads? 15-200\% fires very 100 eg ; very din, dark bromic; SM
Soil contains sone debris: 20 incl bolt; vehicle goer; mabel strapping; soma cherciocl
(B) Cleon radium to $C_{i n}$ sind;

poorly gradaej s~iogefines;
very loose dry to dem with depth; 5 Sp

Non gromsumote' encorntinas
REFERENCE: FIELD BOOK, Pg.
ATTACHMENTS Nus SIGNATURE:

TEST PITRECORD
Profile Along Test Pit: $-57 E-95-24 x \quad E P / C \quad T P-1 \quad 2$ ot 2 Site: AOC 57
 SKETCH MAP OF TEST PIP PROFILE

$$
\text { SCALE } 1^{\prime}=5 \quad 5 \text { vi vertical; } 1^{\prime \prime}=1^{\prime} \text { horizon al }
$$

NOTES:
(A) $\approx 6^{\prime \prime}$ vogatatise topsoil
(B) Silty son; well gradad;

$$
10-i 5 \% / \text { Sinew/ } 5 \% \text { gravel; }
$$ dry; loose; dark brown; sm; uppers to be fill material; pocket of coal found at north end of trench approx, lately $1 y_{2}$ ts $2 \frac{1}{2}$ ft

druse. A venice transmission was fort in this zone as well.
(C) Same or similar soil as above (B) except dorkerin color and
 had on fuel oil smell). Sepia collat signature:
(1) Medium sand decreasing to

Find send vito depth
\longrightarrow Gasoline odor detected; poorly
graded damp; loose; yellowish brown changing to grey with
depth $\frac{A P \cos ^{2}}{2}$
\qquad Nae

TEST PIT RECORD
EPIC

Crew Members:

1. Jiko Jacobsor (ABB-ES)
2. Tim Slager (ENPRO)
3.
4.
5.
6.

Monitor Equipment:
PI Meter
Explosive Gas
Avail. Oxygen
OVA
Other
\qquad
Photogoraphs, Roll None

An appionimatz $6^{\prime \prime}$ to $1 f$ f thick layes of soilswas wown wot approxi atoly 4 fiVbelongrade. Mediven smod Snalive matl) bebo inpproximatily Sfte had a gasoline ador
P,D $248 p p=$ (naad jpaid).
\qquad
\qquad

TEST PIT RECORD

Froilie Along Test Pic: $\quad 575-05-n \leq Y$
Site: \qquad ADC 57

SKETCH MAP OF TEST PIT PROFILE

SCALE $1=\frac{5}{\text { DEPTH (FT) }} \frac{12}{12}$ (g min vertical; $1^{\prime \prime}=1^{\prime \prime}$ horizerfal

SKETCH MAP OF TEST PIT SA 150^{1} to $57 E-95-03 x$

NOTES: \qquad
\qquad
Test pitt upproxinedely 1057

A thin $\left(1\right.$ to $2^{\prime \prime}$ thick layer)
Crew Members:

1. Taka Jacobson (ABB-ENS)
2. Tim Slager (ENPRO)
3.
4.
5.
6.

Monitor Equipment:
Pl Meter
Explosive Gas
Explosive Gas
Avail. Oxygen
OVA
Other \qquad
\qquad
Photogoraphs, Roll None Exposure coal ash t eon) (indars is preinit an the approximate syr foot lewis.
\qquad
\qquad
\qquad
\qquad
\qquad

TEST PIT RECORD
Profile Along Test Pit: $-57 E-95-26 x$
Site: AC 57

Typical Profile - Allinalls
SKETCH MAP OF TEST PIT PROFILE

SCALE $1^{*}=$ \qquad FI. vertical; $1^{\prime \prime}=1^{\prime}$ horizontal
NOTES: \qquad fines w/ 5-10\% gravel; dry; loose; madiwn brown; SM
(B) Thin ($1^{\prime \prime}+02^{\prime \prime}$ thick lager) of coal asir; cinder
(c) Silly send well greed; $15-20 \%$ fins w/ $5-10 \%$ gravel; dry
\qquad
(D) Clean Miadivn sons; poorly
 grader; damp; loose; yellowish brown to gray with depty; SP

REFERENCE: FIEID BCOK Pg. \qquad
22
ATTACHMENTS $N \cdot g n$

SIGNATURE:

Site: $A O C 57$ client: $A E C$ Project No.: $9144-02{ }^{1 \text { of } 2}$ Test Pit $-57 E-95-27 x$ Date $9-25-95$ Time -1 10.00 End $10: 40$ Coordinates

SKETCH MAP OF TEST PIT SITE

NOTES:
$\frac{\text { Sxcorvation approximately } 10 \mathrm{ft} \text { long. }}{\text { and } 12 \mathrm{ft} \text { deep } \mathrm{No} \text { groundwater }}$
Sxcorechin-appsoximately 10 ft long.
and 12 ft dep No groundwater
encombard
\qquad
\qquad enemband

Profile Along Test Pit: $-57 E-95-27 \times$
Site: \qquad AOC 57

Typical all walls
SKETCH MAP OF TEST PIT PROFILE

			(2)			
			(12)			
			(D)			

SCALE $1=-5$
Fr. Vertical; $1^{\prime \prime}=1^{\prime}$ morizoltal
DEPTH (FI). \qquad
NOTES:
(A) Silty $\sin d ;$ wall g;aded; $10 \cdot 15^{\circ} \%$ fines w/ $5-10 \%$ gravil ; dry; ionse; madiva bionain; SM
(B) Thin $\left(\approx 3^{\prime \prime} t_{\text {hick layes }}\right)$ of dark brown to blask sois - may contrin snza cond asl. Nu cindous cv: $2=0$

(c) S:lty sana wall giadaj; 15-2un

domp; light broun to radd.sh brown; sm
(D) Clean mediun sand; pooly
grabed; trace of gravel; tam

to jeflow.sn bonwa; sp; west.
No jovaduatar ancounterad

SKETCH MAP OF TEST PIT SITE

Crew Members:

1. Jacobson/ ABB
2. Slater/Enpro
3.

1
4.
x_{2}
5
5

Monitor Equipment:
Scale $1^{\prime \prime}=$ N $_{0}$ Side $F T$.
NOTES: \qquad
Gecplyitcil anomallz reported
earlier was fou -d to be two
truck sides to a truck bed $\approx 12^{\circ} \operatorname{long}$
$\approx 11 / 2$ wide made of steel. See po z Other metal debris noted.

PI Meter
Explosive Gas

TEST PIT RECORD
Profile Along Test Pit: \quad ThE- $96-28 x$
Site: $A O C-57$
WEST WALL*

SKETCH MAP OF TEST PIT PROFILE

SCALE $1^{-}=$ \qquad FT. 1 Block 55^{-1} maria a vertical
notes: \qquad
c 3 General Soil Layers
(A) Silty sind; poorly gradus; $15-20 \%$ fines; dry; loose; light tans; SM
Fill $\rightarrow \frac{\text { Mididgraded sand; } 10 \% \text { fines; damp; }}{\text { Mativen bosun; Medium dense; swish }}$
some trace gravel (5%); dork brown

with lenses of darkribrav-soil. Debris
anted: (1) Aroophaylyy was (2) $12^{\prime} \operatorname{lon} \operatorname{gig} x 11_{2}^{\prime}$ wide steal trick bed sides or tail gales
(2) O:1 Filter
(3) 5 gal steal bucket
(4) $2^{\prime \prime} \times 8^{\prime \prime}$ Boards ≈ 4 +0. $5^{\circ} 1079$

REFERENCE: FIELD BOOK, Pg.
debris noled-hack sem blade
attachments rubber bells (Can) stael sheatín
stealstrapping, brick,

* Note: "Cast pro wall profile similar excect caal/iinder layer was not as evident.
* OGf-site soil samples collected @ location S-3

Project No.: $9144-0 \theta$
1 of 2 Test Pit $57 E-96-29 x$ Date 8-20-96 Time 8:45 End 11:20

NOTES: \qquad
Test Pit 57E-96-29x dug west for 10 feet and then northwest for another 10 feet. Test pit dept was to approximately 10 ft bogs.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Crew Members:

1. Jacobson/ ABB
2. Slater / Empro
3.
4.
5.
6.

Monitor Equipment:
$\begin{array}{lll}\text { Pl Meter } & \bigotimes & \mathrm{N} \\ \text { Explosive Gas } & \mathrm{Y} & \mathrm{N} \\ \text { Avail. Oxygen } & \mathrm{Y} & \mathrm{N} \\ \text { OVA } & & \mathrm{Y} \\ \mathrm{N} \\ \text { Other } & & \end{array}$

\qquad
Site:
57E-96-29X
Along Test Pit: AOC-57

SOUTH WALL (Noty wall simila) sketci wang resipr rhorle

 DEPTH (FT). \qquad
notes: \qquad
(A) Top soil: Silty send; poorly gradod; 15% fiws dry, looin; lioghtan; Sn -

appraximate 6" fuicik la yer of saudupt with petrolzua like sdor (P io fron Stackpile measiond : 13 ppm)-
 samdust Lense notat at wast and
(4) Corcrete debris (bsoker slab)
attachments
(5) Metal sicraps, wiresieve
signatue: RRO2an,
\qquad
(c) Fine to mediu-sand; poolly gradel; madim dense reddishbrowe tunnizy gray w/fapty; wete $>25 t$; $s p$

* Septic odor noled fron sampiz s-3; slightsaptic in s-7 ** s-s collected from the sawdust layer for Pill madspace

E

TEST PIT RECORD

Site: $A O C 57$ Client: USAEC Project No.: $9144-088^{1 \text { of } 2}$ Test Pit $57 E-96-30 X$ Date $\frac{8-20.96}{}$ Time 13:15 End 15:45
Coordinates

NOTES:
Trensin excavated is a generally
soutberidirection to assess extant
of contamination, Visual and PID measurements indicating diminishing in potential sortanimandis seemed to occur approximately 25 feet from the $57 \times-95-24 \times$ stake - Contamination seeped fo be most prevalent below a Sound dust (wood chip) layer located at the appsorint 5 it bes level.

Depots of fest pit mums $\geqslant 10$ fast bogs

Crew Members:

1. Jacobson/ ABB
2. Slater / Enpro
3.
4.

$5.03 x$
6.

Monitor Equipment: | Pl Meter | Q | N |
| :--- | :--- | :--- |
| Explosive Gas | Y | N |
| Avail. Oxygen | Y | N |
| OVA | Y | N |
| Other | Y | N |

\qquad

Profile Along Test Pit: $\quad 5>E-96-30 x$
Site: \qquad $A O C-57-30 X$
(N)

SKETCH i MÁP OF TEST PTI PPGFILE
East wall

NOTES: \qquad
(A) Top soil-sillysiod; poorly graded; Lo \% files
(B) Well grad sand; Yowliws; 5% gravely med brail $3: 25$

(C) Fill Layer; Sand; will graded;

\qquad
(D) Fire to median sand; posily grader; medium dense; gray until the last half ($\approx 20 \mathrm{fes})$

REFERENCE: FIELD BOOK. Pg. \qquad $9-10$

ATTACHMENTS Nov e
\qquad
SIGNATURE:
turned a light brown to reddish brown oj $5 P$

* S-5 collected in Dork ingrown layer w/ some wood rips
** 5-3 Off-ste lab sample Ex 573006 also cullectad from this pocitron
Note: Sawdust layer had a petroleum like odor but did not axhibit ABB Environmental Services, inc. 9312005S L 3 signisicats PID levels above background (1 to 2 ppi)

Site: $\frac{A O C .57}{57 E-96}$ Client: USAEC Project No.: $9144-08{ }^{1 \text { of } 2}$ Time 8:55 End $10: 45$ Coordinates Date ez)

SKETCH MAP OFTESTPIT SITE

NOTES:
Test Pit dug in a southeast worst direction te define adige of contoinudad oren. Contamination spars to diminish approxizalch 25 fret southeast of the 57 Effs: $24 x$ stake.

Depth of Test Pit $\times 10 \mathrm{ft}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TEST PIT RECORD
Profile Along Test Pit: $5>E-96-31 x$
Site: $A O C-57$
(N)

IF if Northeast Wall (Smith te sw il)
OLES

(A) $y_{1} V$ \square

NOTES:
Top $\operatorname{soin}-$ silty send; parl grady
15% fin es; trace of $1 / 2{ }^{\prime}$ to $1^{\prime \prime}$ gravel;
losiz;dry; SM
(B) Fill Material) - Misc debris noted
\qquad

(C) Approx i' $^{\prime}$ trick lager of dot stained silty sons.

REFERENCE: FIELD BOOK, Pg.

$$
11-14
$$

(1) Light brown sand - Fine to Madivn sand; poorly graded; inedina dense Faddish brows af lours depths then turning gray.

* OKE-site confirmatory collected at this location too. (see sp-3)

Project Ert Devens
Project No. 09144.02

Study Area ACC 57
Boring No. 57m-95-01x Date Installed $9 / 22 / 95$

Driller K REGAN (D.L. MAHER) Drilling Method H.S.A. $\left(65 / \beta^{\prime \prime} I_{D}\right)$ Development Method Dedicated subme coble

Field Geologist G. GuLLETS

Stick-up of Casing Above Ground Surface: 2.54 FEET Type of Surface Seal/ Other Protection: gavel pad \&y Type of Surface Casing: \qquad
ID of Surface Casing: \qquad CINCH

Diameter of Borehole:_ $\quad 10$ SCH
\qquad
Type of Riser Pipe:_ SCH 40 PVC
Type of Backfill: \qquad Depth of Top of Seal:_ $\&$ FEET (bags) Type of Seal: BENTCNITE PELLET Depth of Top of Sand:_13FEET (bogS)
Depth of Top of Screen:_ 19 FEET (bagS) Type of Screen: Slot Size \times Length: O.OIO INCH - 10 FEET ID of Screen: \qquad 4 NCH (20-40)
Type of Sandpack:

Depth of Bottom of Screen: \qquad Depth of Sediment Sump with Plug:_N|A

Death of Bottom of Borehole: \qquad

MOTORING WELL CONSTRUCTOR DAGAN

Project Fort Sevens
Study Area ADC 57
Boring No. $57 M-95-02 x$
Date installed $9-29-95$
Field Geologist S. Montramery

Project No. $9144-02$ -

DrillerD.L. MAHEE - B. Burns Drilling Method $61 / 4^{\prime \prime}(I D) H S A$ Development Method Dedicated seldom.

Type of Surface Seal Other Protection: Q avi pad
Type of Surface Casing: steel

ID of Surface Casing: \qquad

Diameter of Borehole: \qquad $+$

Riser Pipe 10: \qquad

Type of Backiil:

Depth of Top of Seal:

Type of Seal: \qquad
Depth of Top of Sand: \qquad 9 '

Depth of Top of Screen: 14

Type or screen: Schedule 40 PVC
Slot Size x Length: $0.010^{i 1}$ machine slot $\times 10^{1}$
10 of Screen:
み゙
Type of Sandpack: $20-40$ silica sand
Depth of Bottom of Screen:-24

Depth of Bottom of Borehole: \qquad

MONTORING WELL CONSTRUCTION DIAGRAM

Project Eon Devens
Project No. 9144.02

Study Area AOC 57
Boring No. 57M-95-0 $3 \times$ Date Installed $10-3-95$ Field Geologist

Ground
Elevation Elevation

Project Fort Devens
Project No. \quad Ca 14 -02

Study Area AOC 57
Boring No. 57M-95-C4B
Date Installed 1013195

Driller K BEGAN Drilling Method $\frac{\mathrm{H}}{\mathrm{H}}$ Drilling Method $\frac{\text { H.S.A. }(65 / 8 \text { ID }}{\text { Development Method Dedicated subvene }}$ de

Field Geologist \qquad G Gulseth

Stick-up of Casing Above Ground Surface .a. 50 feet

Type of Surface Seal/ Other Protection: gavel pad 4 Type of Surface Casing: Procover

1D of Surface Casing: \qquad 6 NCH

Diameter of Borehole: \qquad
\qquad

Riser Pipe ID: \qquad 41 NCH

Type of Riser Pipe: \qquad
Type of Backfill: \qquad Benton :te/Cement Grout

Depth of Top of Seal: \qquad
Type of Seal: \qquad Bentonite Pellet

Depth of Top of Sand: \qquad
Depth of Top of Screen: \qquad
Type of Screen: \qquad SCH 40 PVC

Slot Size x Length: 0.010 iNCH - 10 FEET
ID of Screen: 4 NeH

Type of Sandpack: $\# 00 \leq A N D$
Depth of Bottom of Screen: \qquad
Depth of Sediment Sump with Plug: 28.91 FEET
Depth of Bottom of Borehole: \qquad

MONITORING WELL CONSTRUCTION DIAGRAM

Project Font Devons Project No. 0,14

Study Area $A D C 5$ Boring No. $5=1,-95-05 x$ Date installed $16-3-25$

Driller \square $i .1$ Drilling Method $10 \cdot \frac{12}{2} \cdots \leq 4$ Development Method Dedicated subome os

Diameter of Borencle \qquad
Riser Pipe 10:_ i." $^{\prime}$
Type of Riser Pipe: Scivituig it FVC
Type of Eackill:
 6
Depth of Top of Seal
Type of Seal:

\square
Depth of Top of Screen:
type of screen: Efudeto w FVC

ID of Screen: \qquad

Type of Sandpack: 20 - 40 silica $\leq a n d$

Depth of Bottom of Borehole \qquad

Project Fort Devens
Project No. 09144.02

Study Area AOC 57 Boring No. $57 \mathrm{M}-95-06 \mathrm{X}$ Date Installed $10 / 4 / 95$

Driller K. REGAN(D.L. MAHER) Drilling Method H.S.A. $\left(6^{5} / 8^{4}\right.$ ED) Development Method Dedicated subme is

Field Geologist G.GULSETH pump

Elevation

Stick-up of Casing Above Ground Surface: 2. 21 FT
Type of Surface Seal Other Protection: gand ped of m
Type of Surface Casing: PROCOVER
ID of Surface Casing: \qquad
Diameter of Borehole: \qquad 10 INCH \qquad
Riser Pipe ID: \qquad 4 iNCH

Type of Riser Pipe: \qquad SCH 40 PVC

Type of Backfill: \qquad Bentonite Grout

Depth of Top of Seal: \qquad 4 FEET

Type of Seal: \qquad Bentonite Pele

Depth of Top of Sand: \qquad 8 FEET

Depth of Top of Screen: \qquad 11.87 FEET

Type of Screen: SCH 40 PVC
Slot Size \times Length: 0.010 INCH -10 FEET
ID of Screen: \qquad
Type of Sandpack: \#OOSAND (20/40)
Depth of Bottom of Screen: $\quad 21.87$ FEET
Depth of Sediment Sump with Plug: 22.04 F $\in \in T$
Depth of Bottom of Borehole: 23 FEET
Project For Devons
Project No. $9144-02$

Study Area $\frac{\triangle C C 57}{\text { Boring No. } \frac{57 M-95-07 x}{10-5-95}}$
DrillerD.L.MAHER - B. Burns
\qquad
Date Installed Drilling Method $65 / 8^{\prime \prime}$ (ID) HSAs
Development Method Dedicated sulamencsibld pump sing
\qquad

Stick-up of Casing Above Ground Surface: \qquad 1.5 FT.

Type of Surface Seal Other Protection: gavel fad Type of Surface Casing: \qquad ID of Surface Casing: \qquad Diameter of Borehole: \qquad Riser Pipe ID: Type of Riser pipe: Schedule 40 PVC

Depth of Top of Seal:-

Depth of Top of Sand:

\qquad

Depth of Bottom of Borehole:

Project Fort Devens
Project No. $9144-C 2$
Study Area AOC 57
Boring No. 57:4-95-c8A Date installed $10-10-95$
Field Geologist $\frac{\text { S. Mantromaty }}{1}$
 Development Method Dedicated sulonuersike pump si

Type of Seal: 1/4"hentraite pellets

Depth of Top of Sand: \qquad $2 f$

Depth of Top of Screen: \qquad -
 10 of Screen: $4^{\text {: }}$ Type of Sandpack: $70-4 / n$ silica sand Depth of Bottom of Screen: \qquad $13 \therefore$

Depth of Sediment Sump with Plug:-
Depth of Bottom of Borehole: \qquad

Project Eon Devons
Project No. 914402

Study Area $10 C 57$
Boring No. $57 \mathrm{M}-95-08 \mathrm{~B}$ Date Installed $10-10-95$

Field Geologist

Driller D.L.MAHER - B. Burns Drilling Method $65 / 8^{\prime \prime}(\pm 0)$ HSAs Development Method Dedicated oubmenoi

Stick-up of Casing Above Ground Surface: $2,9^{\prime}$
Type of Surface Seal Other Protection: gavel pad
Type of Surface Casing: \qquad ${ }^{6}$
ID of Surface Casing: \qquad
Diameter of Borehole: \qquad

Riser Pipe ID: \qquad Schedule 40 PVC
 Type of Seal: $\frac{1 / 4^{N} \text { bentonite pellets }}{13:}$ Depth of Top of Sand: $\frac{13^{\circ}}{15^{\prime}}$
Depth of Top of Screen: $\frac{15^{\prime}}{\text { Type of Screen: Scluedile } 40 \text { PVC }}$
\qquad
10 of Screen:
\qquad
Type of Sandpack:
Depth of Bottom of Screen: 28^{\prime}

Depth of Bottom of Borehole: \qquad

MONITORING WELL CONSTRUCTION DIAGRAM

Project Fort Devons
Project No. $09144-08$

Study Area AOC 57
Boring No. $57 m-96-09 x$ Date Installed 8.28 .96

Driller \qquad Drilling Method 4.25" HSA Development Method Pump of Sure
\qquad

Ground Elevation

Type of Surface Seal Other Protection: Gravel Pad Type of Surface Casing: STEEL STAND PIPE ID of Surface Casing: \qquad Diameter of Borehole: \qquad Riser Pipe ID: \qquad 2"

Type of Riser Pipe: \qquad SCHD. 40 PUS

Type of Backfill: \qquad Depth of Top of Seal: $\quad 3.0^{1} \mathrm{bg} 5$ Type of Seal: \qquad Depth of Top of Sand \qquad Depth of Top of Screen: $\frac{12 \cdot 8^{\prime} \log 5}{\log }$ Type of Screen:-SCHD. 40 PUS Slot Size \times Length: \qquad
ID of Screen: \qquad
Type of Sandpack: \qquad
Depth of Bottom of Screen: \qquad
$22.8^{\prime} \log 5$
Depth of Sediment Sump with Plug:-23.0' lg 5
Depth of Bottom of Borehole:
$23.0^{1} \mathrm{la} 5$

MONITORING WELL CONSTRUCTION DIAGRAM PROJECT OPERATIONS PLAN FORT DEVENS, MASSACHUSETTS

Study Area 57
Boring No, 57 7 - $56-101 x$ Data installed $8 / 36 / 95$

Driller \qquad
Drilling Method

Field Geologist \qquad K. LAuren

Stick-up of Casing Above Ground Surface: J^{\prime}
Type of Surface Seal Other Protection: (ERZENJ
Type of Surface Casing:_STELC- 5 CuT
ID of Surface Casing: \qquad
Diameter of Borehole: $G^{\prime \prime}$
Riser Pipe ID:

Type of Riser Pipe:

Type of Backfill:

Depth of Top of Seal:

Type of Seal: \qquad RULES

Depth of Top of Sand: \qquad
Depth of Top of Screen:_ 3^{\prime}
Type of Screen: \qquad
Slot Size \times Length: \qquad

ID of Screen: \qquad $2^{\prime \prime}$

Type of Sandpack: \qquad
Depth of Bottom of Screen: \qquad
Depth of Sediment Sump with Plug: 13^{\prime}

Depth of Bottom of Borehole:
13^{\prime}

MONITORING WELL CONSTRUCTION DIAGRAM

Project Fort Devons
Project No. 9/44. 08

Study Area
Boring No. Date Installed \qquad 57 $573-96-11 x$

Driller \qquad
Drilling Method \qquad

Field Geologist \qquad il. Wisen

Stick-up of Casing Above Ground Surface: 2.5^{\prime}

Type of Surface Casing: $5, E \in C$

ID of Surface Casing: \qquad
Diameter of Borehole: \qquad
\qquad
Type of Riser Pipe: \qquad

Type of Backfill: \qquad
Depth of Top of Seal: \qquad
Type of Seal: Ponsentat R<lleJJ
Depth of Top of Sand: \qquad
Depth of Top of Screen:_
Type of Screen: \qquad Sic

Slot Size \times Length: \qquad 0.01×10

10 of Screen: \qquad

Type of Sandpack: \qquad va 2

Depth of Bottom of Screen: \qquad 12^{\prime}

Depth of Sediment Sump with Plug: 12^{\prime}

Depth of Bottom of Borehole: \qquad 12"

MONITORING WELL CONSTRUCTION DIAGRAM PROJECT OPERATIONS PLAN FORT DEVENS, MASSACHUSETTS

Driller \qquad
\qquad

Drilling Method Development Method

Field Geologist K.whsen

Stick-up of Casing Above Ground Surface: 3.0 0
Type of Surface Seal Other Protection: Gravel Pars
Type of Surface Casing: STEEL

ID of Surface Casing: \qquad
Diameter of Borehole:___ $E^{\prime \prime}$
\qquad
Type of Riser Pipe: $\quad \rightarrow$ —

Type of Backfill: \qquad N / N

Type of Seal: BCVTCNTK PELLETS' Depth of Top of Sand:_i.5 Depth of Top of Screen:____ 2^{\prime}
\qquad

Depth of Bottom of Screen: 12^{\prime}

Depth of Sediment Sump with Plug:___ Depth of Bottom of Borehole:___

MONITORING WELL CONSTRUCTION DIAGRAM PROJECT OPERATIONS PLAN FORT DEVENS, MASSACHUSETTS

Driller NHB
Drilling Method \qquad Development Method Pump + Suit

Field Geologist \qquad k^{\prime} wider

Stick-up of Casing Above Ground Surface: \qquad 2.6

Type of Surface Seal Other Protection: \qquad Paris Type of Surface Casing:_ STEEL

ID of Surface Casing \qquad
Diameter of Borehole: \qquad Riser Pipe ID: \qquad
Type of Riser Pipe: $\quad \sim /$

Type of Backfill: \qquad
Depth of Top of Seal: GROunD sc.RFACE
Type of Seal: \qquad BKNTENTE PELLETS Depth of Top of Sand :_5 Depth of Top of Screen:_ 2^{\prime}
\qquad
ID of Screen:

Type of Sandpack:

Depth of Bottom of Screen: \qquad
Depth of Sediment Sump with Plug: 12^{\prime}
Depth of Bottom of Borehole: $\quad 12^{\prime}$

MONITORING WELL CONSTRUCTION DIAGRAM
PROJECT OPERATIONS PLAN FORT DEVENS, MASSACHUSETTS
Project Fort Devens Project No. \qquad

Study Area Boring No. $5+7-9=-015$
Date installed $10-11-95$

Driller D.L.MASEE E, BARE Development Method
 * ie djayram for associate l

Stick-up of Casing Above Ground Surface: 1.55
Type of Surface Sal Other Protection:
Type of Surface Casing: \qquad
10 of Surface Casing: \qquad
Diameter of Borehole: \qquad Riser Pipe $10: \quad!^{\prime \prime}$
Type of Riser pipe: Sledtile to P, ©

Type of Seal:

Depth of Top of Sand: \qquad $9=1$

Depth of Top of Screen:-
Type of Screen: Sicinatuin in Fir
 ID of Screen: \qquad Type of Sandpack: $20-140$ mira sand

Depth of Bottom of Screen: \qquad $1 \leq i$
Depth of Sediment Sump with Plug: $\frac{n^{\prime}}{15}$
Depth of Bottom of Borehole:-_

 Stick-up of Casing Above Grouñd Surface: 1.55

Type of Surface Seal Other Protection: ocainel ado
 1D of Surface Casing: \qquad
\qquad
Diameter of Borehole:
Riser Pipe ID: \qquad
Type of Riser pipe: Scluthle ti: PK
 Depth of Top of Sand: \qquad 15^{3}
Depth of Top of Screen:_工.ri'
Type of Screen: Siletule if, Dir

Depth of Bottom of Screen:- \bar{T}, i^{2} ?
Depth of Sediment Sump with Plug: $\frac{\pi / t}{\%}$
Depth of Bottom of Borehole: \qquad

Project Fort Devens
Project No. 9144.03
Field Geologist

Study Area AOC 57
Arse 2 Driller \qquad
Boring No. 57P.98.02x Date Installed 5.26 .98

Drilling Method Haws Aucle
Development Method \qquad
\qquad

Stick-up of Casing Above Ground Surface: 2.05
Type of Surface Seal/ Other Protection: NON ε
Type of Surface Casing:_Now
ID of Surface Casing:_Non
Diameter of Borehole: $\frac{(2 \pi}{-1 \prime \prime} 3^{\prime \prime} 0.8$.
Riser Pipe ID: \qquad
Type of Riser Pipe:_Sch 410 PrC
Type of Backfill: \qquad
Depth of Top of Seal: \qquad
Type of Seal: \qquad —

Depth of Top of Sand:_non
Depth of Top of Screen: 0.3' BeS
Type of Screen:1" 10 0.010" ShOt Prc sen 40
Slot Size \times Length: $2^{\prime} \times 0.010^{\prime \prime}$ stor
ID of Screen: ," ID
Type of Sandpack:-Non
Depth of Bottom of Screen: \qquad
Depth of Sediment Sump with Plug: 2.3' BGS
Depth of Bottom of Borehole: 2.3°

Project Fort Devens Project No. 9144.03

 Study Area A OC 57 ares 3 Driller HLA Boring No. 57P.98.03x Date Installed 5.26 .98Drilling Method Haws glucose Development Method Now r
Field Geologist \qquad 12 ustad

Project Fort Devens Study Area AOC 57 Arcs 3 Driller \qquad HL

Project No. 9144.03

Field Geologist \qquad RTurais

Boring No. 57P.98.04X Date Installed 5.26 .98

Drilling Method HANNOAUGR Development Method \qquad N/A
\qquad _

Stick-up of Casing Above Ground Surface: 2.81°
Type of Surface Seal Other Protection: NA

Type of Surface Casing:_N/
ID of Surface Casing:_NA

Diameter of Borehole: $\quad 3^{\prime \prime}$
Riser Pipe ID: \qquad
Type of Riser Pipe: $5<\mu \quad 40$ PrC

Type of Backfill: \qquad NATIVE

Depth of Top of Seal:__NA

Type of Seal: \qquad
Depth of Top of Sand:_NA
Depth of Top of Screen: 2 GS
Type of Screen: Sem 40 Pro
Slot Size \times Length: $3^{\prime} \times 0.01^{\prime \prime}$
ID of Screen: \qquad

Type of Sandpack:_NA
Depth of Bottom of Screen:-5'BGS
Depth of Sediment Sump with Plug: $5^{\prime \prime}$ BES
Depth of Bottom of Borehole:- 5^{\prime} BS GS

GEOPHYSICAL INVESTIGATION DATA AND ANALYSIS

1.0 Introduction

Geophysical surveying was completed over AOC 57 at the former Fort Devens in Ayer, MA. Geophysical work was conducted in two separate areas in September 1995 and August 1996. Several geophysical techniques were employed at AOC 57 to screen for the presence or absence of buried waste at the site.

2.0 Equipment and Survey Methodology

Four types of geophysical surveys were conducted at AOC 57 and include an EM-61 Time Domain Metal Detection survey, an EM-31 electromagnetic ground conductivity survey, a GEM gradiometer survey, and a ground-penetrating radar survey. A Geonics, Inc. EM-61 High Resolution Time Domain Metal Detector was used to determine the presence of ferrous as well as non-ferrous metallic wastes. A Geonics, Inc. EM-31 Electromagnetic Ground Conductivity instrument was used to detect the presence of conductive wastes. A GEM-19 gradiometer was used to measure deviations in the earth's magnetic field to determine the presence of ferrous objects. A GSSI System III GPR unit equipped with a 500 megahertz antenna was used to profile selected electromagnetic and magnetic anomalies.

Prior to geophysical surveying a 50 by 50 foot grid was established using a tape and compass. Pin flags and blaze orange marking paint were used to identify grid nodes. Data was collected with reference to the preestablished survey grid by pacing. EM-31 and EM-61 surveys were conducted concurrently along survey lines spaced ten feet apart. EM-61, EM-31, and gradiometer measurements were collected every five feet along each survey line. GPR data was collected along selected lines in order to profile EM-31 and EM-61 anomalies. EM-31 and EM-61 data was collected with data loggers. Data was downloaded to a computer and processed using various geophysical software applications.

3.0 Results

The lateral extent of geophysical surveying is shown on the attached Figures. EM-31, EM-61, and gradiometer surveying indicated the presence of several anomalies across the

APPENDIX C

survey areas. The most prominent anomalies are contemporaneous with the escarpment which parallels the drainage area bordering the southern portion of the site. This suggests that whatever materials were dumped in this area appear to have disposed of just over the edge of the bank. Surface debris was observed along the escarpment and included motor vehicle parts, glass, concrete with rebar, and razor wire. Test pitting was conducted at selected locations of high amplitude EM anomalies that could not be attributable to the presence of surfacial metallic objects or debris.

QUALITY CONTROL RESULTS AND ASSESSMENT
D-1 1993 ON-SITE AND OFF-SITE LABORATORY DATA
D-2 1996 ON-SITE LABORATORY DATA
D-3 1996 OFF-SITE LABORATORY DATAD-4 1998 OFF-SITE LABORATORY DATA (SUPPLEMENTAL RI)
D-5 1999 OFF-SITE LABORATORY DATA (AREA 3 SOIL REMOVAL)

D.1.0 INTRODUCTION

This Data Quality Report (DQR) provides a detailed data quality assessment for off-site analytical data generated during site investigations conducted at Fort Devens during the fall 1995 at Areas of Concern (AOCs) 57, 63AX, and 69W. The DQR also addresses data collected in February of 1996, during the Round 2 Groundwater sampling event at AOCs 57, 63AX and 69W. The data quality assessment for the Round 2 Groundwater sampling event is presented separately within this report.

Samples collected during the investigations for off-site laboratory analyses were submitted to Environmental Science and Engineering (ESE), Gainesville, Florida. All laboratory data generated during the sampling programs were reviewed in terms of data quality objectives (DQOs) established in the Fort Devens Project Operations Plan (POP) (ABB-ES, 1995), published analytical methods (USEPA, 1988a; USEPA, 1989a) or applicable USEPA data validation guidelines (USEPA, 1988b; USEPA, 1989b). DQOs refer to a set of qualitative and quantitative statements that assess the data generated during the sampling and analysis phases of the project. The DQOs are defined by the parameters of precision, accuracy, representativeness, completeness, and comparability (PARCC). These parameters present an indication of the data quality, and the confidence that a particular compound may be present or absent in an associated environmental sample. This report describes the analytical methods performed at the on-site and off-site laboratories, and presents an assessment of data quality and usability for samples collected during the field investigations.

Harding Lawson Associates

APPENDIX D

D.1.1 OFF-SITE LABORATORY ANALYTICAL METHODS

Subsurface soil, sediment, groundwater, and surface water samples were collected during the 1995 Fort Devens Site Investigation. Groundwater samples were collected during the Round 2 sampling event. Samples were analyzed for chemical parameters on the Fort Devens Project Analyte List (PAL). The PAL and analytical methodologies are outlined in the Fort Devens POP (ABB-ES, 1995). The analyses performed are summarized on Table D-1.

The USEPA has recently identified two general levels of analytical data quality, Screening with Definitive Confirmation and Definitive Data, which replace the former five levels of data quality (USEPA, 1993). All off-site laboratory data are considered Definitive Data.

The contract laboratory which completed analyses of all off-site analytical samples was Environmental Science and Engineering (ESE), Gainesville, FL. All analyses run by the contract laboratory were completed implementing the 1990 U.S. Army Toxic and Hazardous Materials Agency (USATHAMA) QA Program (USATHAMA, 1990). Method performance demonstration, data management, and oversight for USATHAMA analytical procedures are currently performed by the U.S. Army Environmental Center (USAEC). A discussion of AEC-certified methods used by ESE Laboratories for samples collected at Fort Devens is provided in Section 7.0 of the Fort Devens POP (ABB-ES, 1995) and methods are listed in Table D-1. This table includes a description of the methods used as well as equivalent EPA methods, where they exist. The USAEC method numbers (i.e., method JS16) are specific to the project and to the particular laboratory

APPENDIX D

performing the analyses. For some analyses standard USEPA methods are used. These methods are also indicated on Table D-1.

A detailed discussion of the USAEC laboratory QA program is presented in Section 3.0 of this RI. The laboratory must document proficiency using each of the methods by meeting USAEC performance protocols. Once the laboratory has demonstrated this proficiency, they become certified to perform that particular method. It is through this certification process that certified detection limits (CRLs) are established. CRLs for USAEC methods and reporting limits (RLs) for standard USEPA methods are presented in Appendix B of the Fort Devens POP (ABB-ES, 1995).

APPENDIX D

D.2.0 OFF-SITE LABORATORY QUALITY CONTROL BLANK RESULTS

A quality control review was completed for off-site QC blanks including method blanks, rinse blanks and trip blanks which were analyzed at an off-site laboratory. Blank samples provide a measure of contamination that may have been introduced into a sample set either (1) in the field while samples were being collected or transported to the laboratory, or (2) in the laboratory during sample preparation and analysis. This discussion is intended to provide an evaluation of data generated at this laboratory based on method blank and field quality control blank data.

D.2.1 METHOD BLaNKS

Method blanks were analyzed at the laboratory with each lot of samples to evaluate if sample processing and analysis resulted in sample contamination. Method blanks were performed for both water and soil samples for the following chemical classes: inorganics, VOCs, SVOCs, pesticides/PCBs. Method blanks were also analyzed using USEPA methods for hardness, alkalinity, TOC, TPHC, TDS, and TSS.

Harding Lawson Associates

D.2.1.1 Inorganics

Four aqueous method blanks were analyzed by the laboratory for PAL inorganics during the 1995 Field Investigation. During the Round 2 Groundwater sampling event three aqueous method blanks were analyzed. All results for aqueous method blanks were below the respective CRLs indicating there was no inorganic contamination introduced at the laboratory.

Three soil method blanks were analyzed in association with field samples from the 1995 Fort Devens Investigation. Several elements were detected in soil method blanks. The frequency and concentration ranges of elements detected in these blanks are summarized in Table D-2. All results for mercury, selenium, arsenic thallium, antimony, silver, beryllium, cadmium, copper, chromium, cobalt, sodium, nickel, lead, vanadium, and zinc were below the CRLs.

Soil method blank analyses were conducted by the laboratory using a USAEC approved soil as the matrix. A Rocky Mountain Blend soil type was used. The high frequency and concentrations of many of the inorganics are due to background levels inherent in this soil and are consistent with previous data collected from analysis of this soil blend. As a result; elements reported for soil method blanks are not believed to represent laboratory introduced contamination.

Based on soil and aqueous method blank results, significant inorganic contamination was not introduced during laboratory handling and analysis.

APPENDIX D

D.2.1.2 VOCs

Method blanks were run with each lot of water and soil samples to determine if VOCs were introduced during laboratory handling and analysis.

Seven aqueous method blanks were analyzed for VOC contamination during the 1995 Field Investigation. No target compound results were above CRLs with the exception of acetone, methylene chloride, and chloroform. The concentration and frequency of detection for these compounds are shown in Table D-3.

Acetone and methylene chloride are considered common laboratory contaminants (USEPA, 1988b) and were likely introduced during laboratory handling.

Chloroform is commonly produced in chlorinated drinking water supplies. The source of the chloroform in method blanks could potentially have been the off-site laboratory. These results indicate that low concentrations of acetone, methylene chloride, and chloroform may have been introduced during laboratory handling. Field samples collected at Fort Devens during the 1995 Site Investigation with detections of these compounds at similar concentrations may not be representative of site conditions.

Three aqueous method blanks were analyzed for VOC contamination during the Round 2 Groundwater sampling event. No results for target VOCs were above CRLs.

Ten method blanks were analyzed for VOCs in soil during the 1995 Field Investigation. No method blank compound results were at concentrations above the CRLs with the exception of toluene. Toluene was detected in two out of ten

Harding Lawson Associates

method blanks at concentrations ranging from $0.00096 \mu \mathrm{~g} / \mathrm{g}$ to $0.001 \mu \mathrm{~g} / \mathrm{g}$. Theses results indicate that low concentrations of toluene may have been introduced during laboratory handling. Field samples collected at Fort Devens during the 1995 Field Investigation with similar concentrations of toluene may not be representative of site conditions.

D.2.1.3 SVOCs

Five aqueous method blanks were analyzed for SVOC contamination during the 1995 Field Investigation and three during the Round 2 Groundwater sampling event. The concentrations and frequency for compounds detected in aqueous method blanks are outlined in Table D-4. With the exception of diethyl phthalate and bis(2-ethylhexyl)phthalate, no target SVOCs were reported at concentrations above CRL values. Phthalates are referenced as common laboratory contaminant by the USEPA (USEPA, 1988b). Concentrations of diethyl phthalate and bis(2ethylhexyl)phthalate reported in Fort Devens field samples may have been introduced as laboratory contamination. Dioctyl adipate (hexanedioic acid), dioctyl ester, and toluene, which are tentatively identified compounds (TIC) or non-target SVOCs, were also detected in method blanks.

Twelve method blanks for soil were analyzed for SVOC contamination during the 1995 Field Investigation. The concentrations and frequency for compounds detected in soil method blanks are outlined in Table D-5. No target SVOC results were at concentrations above CRLs with the exception of di-n-butyl phthalate. Di-n-butyl phthalate is considered a common laboratory contaminant by the USEPA (USEPA, 1988b) and was likely introduced during laboratory

APPENDIX D

sample handling and extraction. Samples with similar concentrations of this compound are not considered representative of site conditions.

D.2.1.4 Pesticides/PCBs

Five aqueous method blanks and seven soil method blanks were analyzed for pesticide compounds and PCB during laboratory sample preparation and analysis during the 1995 Field Investigation. In addition, three water method blanks for PCBs and four water blanks for pesticides were analyzed for the Round 2 Groundwater sampling event. No pesticides/PCBs target compounds were at concentrations above CRL values, indicating no laboratory sample contamination occurred.

D.2.1.5 TPHC

Several analytical methods were used to measure and characterize petroleum hydrocarbons in aqueous method blanks. During the 1995 Field Investigation, five water method blanks were analyzed for total petroleum hydrocarbons (TPHC) by USEPA Method 418.1; four soil method blanks were analyzed for TPHC as diesel, gasoline and aviation gasoline by modified USEPA Method 8015; and six soil method blanks were analyzed for TPHC using USEPA Method 9071 to extract the soils followed by a method 418.1 analysis. One soil method blank analyzed by USEPA Method $9071 / 418.1 \mathrm{had} 23 \mu \mathrm{~g} / \mathrm{g}$ of TPHC reported. All other method blank results form the 1995 Field Investigation were below the corresponding RLs.

Two water method blanks were analyzed for TPHC by Method 418.1 during the Round 2 Groundwater sampling event with results below the RLs.

Based on method blank results, the off-site laboratory is not believed to be a significant source of TPHC contamination for the Fort Devens field samples; however, low concentrations (approximately $23 \mu \mathrm{~g} / \mathrm{g}$) of TPHC in soils may represent laboratory contamination..

D.2.1.6 USEPA Methods for Water Quality Parameters

Method blanks were analyzed using USEPA methods for the following parameters: nitrate and nitrite-nitrogen, kjeldahl-nitrogen, anions (chloride and sulfate), total phosphate, hardness, alkalinity, TOC, TDS, and TSS.

Four water method blanks were analyzed during the 1995 Field Investigation and two during the Round 2 Groundwater sampling event for nitrate and nitrite nitrogen using USEPA Method 352.1. No blanks had concentrations above the CRL of $10 \mu \mathrm{~g} / \mathrm{L}$. Nitrogen was also analyzed using the kjeldahl method for organic nitrogen, USEPA Method 351.2. Three water method blanks were analyzed in association with the 1995 Field Investigation and two for the Round 2 Groundwater sampling event. All results were less than the RL of $183 \mu \mathrm{~g} / \mathrm{L}$.

Four water method blanks (three during the 1995 Field Investigation and one during the Round 2 Groundwater sampling event) were analyzed for total phosphate by USEPA Method 365.2. All results were less than the CRL of $13.3 \mu \mathrm{~g} / \mathrm{L}$.

Harding Lawson Associates

APPENDIX D

Anions in water (bromide, chloride, fluoride, and sulfate) were evaluated using ion chromatography, USEPA 300 Series Methods (USEPA, 1983). During the 1995 Field Investigation, one method blank was analyzed for bromide and fluoride, and four method blanks were analyzed for chloride and sulfate. Three additional water method blanks were analyzed in association with Round 2 Groundwater sampling event. All results for these method blanks were less than the corresponding CRLs.

During the 1995 Field Investigation, five water method blanks were analyzed for total dissolved solids (TDS) and total suspended solids (TSS) using USEPA Methods 160.1 and 160.2, respectively. One method blank contained TDS at $17000 \mu \mathrm{~g} / \mathrm{L}$ and TSS at $8000 \mu \mathrm{~g} / \mathrm{L}$. The TDS and TSS concentrations for all other method blanks were below the RLs of $10,000 \mu \mathrm{~g} / \mathrm{L}$ and $4,000 \mu \mathrm{~g} / \mathrm{L}$, respectively. Four water method blanks were analyzed during the Round 2 Groundwater sampling event for TDS and TSS. One blank contained TDS at $16,000 \mu \mathrm{~g} / \mathrm{L}$ compared to the RL of $10,000 \mu \mathrm{~g} / \mathrm{L}$. TSS was detected in two method blanks at $6,000 \mu \mathrm{~g} / \mathrm{L}$ and $7,000 \mu \mathrm{~g} / \mathrm{L}$ compared to the RL of $4,000 \mu \mathrm{~g} / \mathrm{L}$. These results indicate that low concentrations of TDS and/or TSS may be reported due to laboratory processing.

Two aqueous method blanks were analyzed for hardness (USEPA Method 130.2) during the 1995 Field Investigation and four during the Round 2 Groundwater sampling event. All method blank results for hardness were below the RL of $1,000 \mu \mathrm{~g} / \mathrm{L}$.

Three water method blank samples were analyzed for alkalinity (USEPA Method 130.1) during the 1995 Field Investigation, and three during the Round 2 Harding Lawson Associates

Groundwater sampling event. Three of these method blanks had alkalinity reported at $1,000 \mu \mathrm{~g} / \mathrm{L}$ compared to the RL of $5,000 \mu \mathrm{~g} / \mathrm{L}$.

Four soil method blanks were analyzed during the 1995 Field Investigation for total organic carbon (TOC) concentrations using USEPA Method 9060. The TOC concentrations for these blanks were below the CRL of $360 \mu \mathrm{~g} / \mathrm{g}$.

Based on method blanks results for samples analyzed by USEPA methods, the data collected during the Fort Devens Site Investigation was not significantly impacted by laboratory contamination.

D.2.2 Field Quality Control Blanks

Field quality control blanks which were analyzed at the off-site laboratory include, rinse blanks, and trip blanks. Results from analyses of the field quality control blanks were used to evaluate the potential for contamination of samples during collection and shipment and processing at the off-site laboratory.

APPENDIX D

D.2.2.1 Rinse Blanks

Rinse blanks were used to evaluate the potential for field sampling (e.g., insufficient cleaning of sampling equipment) cross contamination of site samples. Rinse blanks were collected by pouring previously analyzed deionized water over sampling equipment (i.e., split-spoons, trowels, and shelby tubes) and into sample containers. Dedicated sampling equipment was used for the Round 2 Groundwater sampling event so collection of rinse blanks was not done. The rinse blanks collected during the 1995 Fort Devens Investigation were analyzed for the following chemical classes: inorganics, VOCs, SVOCs, and pesticides. Rinse blanks were also analyzed by USEPA methods for TOC and TPHC.

Inorganics. Six rinse blanks were analyzed for PAL elements during the 1995 Field Investigation. PAL elements were not detected at concentrations above the CRLs with the exception of mercury, lead, iron, potassium, and manganese. The concentration range and frequency of detection for these elements is shown in Table D-6. Detections of these elements may represent residual contamination left on the sampling equipment prior to the rinse blank collection. In general, the rinse blank data indicate that decontamination procedures were effective in the removal of residual inorganic contamination from the sampling equipment.

VOCs. Six rinse blanks were analyzed for VOCs during the 1995 Field Investigation. The concentration range and frequency for VOCs detected in rinse blanks above the CRL are shown in Table D-7.

The USEPA considers methylene chloride and acetone common laboratory contaminants (USEPA, 1988b). These compounds were detected in the method

APPENDIX D

blanks as well as the rinse blanks, indicating they may represent laboratory contaminants. Fort Devens field samples with detections of these compounds at similar concentrations should be considered laboratory related contamination.

Detections of carbon tetrachloride, chloroform, and 1,1,1-Trichloroethane in Fort Devens Field samples at concentrations similar to those detected in rinse blanks (Table D-7) may be related to field sampling or decontamination procedures.

SVOCs. Six rinse blanks were collected during the 1995 Field Investigation and analyzed for SVOCs. The concentration range and frequency of detection for semivolatile compounds detected in rinse blanks is shown in Table D-8. With the exception of bis(2-ethylhexyl) phthalate and benzyl alcohol, all results for target SVOCs were at concentrations below CRLs. The presence of low concentrations of benzyl alcohol in Fort Devens field samples may be attributed to field sampling activities and not representative of actual site conditions. The USEPA Region I considers phthalates as common laboratory contaminants (USEPA, 1988b). Phthalates were detected in the method blanks as well as the rinse blanks indicating that they were likely introduced as laboratory contamination.

Several SVOC TICs including N,N-diethyl-3-methylbenzamide (N,N-diethyl-mtolumide), and benzyl adipate were detected in one rinse blank. Six additional unknown non-target SVOCs were detected in the rinse blanks at concentrations ranging from $4 \mu \mathrm{~g} / \mathrm{L}$ to $10 \mu \mathrm{~g} / \mathrm{L}$; however, most of these unknown constituents were also detected in the method blanks indicating that the contamination was laboratory related.

APPENDIX D

Pesticides/PCBs. Four rinse blanks were analyzed for pesticides and PCBs during the 1995 Field Investigation. All results for pesticides and PCBs were below CRLs. The lack of pesticides and PCBs detected indicates there is no evidence of cross contamination during field sampling.

USEPA Methods. During the 1995 Field Investigation, three rinse blanks were analyzed for TOC and all results were at concentrations below the RL of $1000 \mu \mathrm{~g} / \mathrm{L}$. Six rinse blanks were analyzed for TPHC. Concentrations of TPHC in all blanks were below the RL of $100 \mu \mathrm{~g} / \mathrm{L}$. These data indicate contamination of TOC and TPHC during field sampling did not occur.

D.2.2.2 Trip Blanks

Trip blanks are analyzed to assess the potential for cross contamination of VOCs during sampling, transit, and storage. The trip blank consists of a VOA sample container filled at the contract laboratory with DI/carbon filtered water and shipped to the site with the other VOA sample containers. Trip blanks were included with each shipping container of field VOC samples.

Sixteen trip blanks were collected and analyzed in association with samples analyzed for VOCs from the Fort Devens 1995 Site Investigation and two from the Round 2 Groundwater sampling event. Target VOCs and associated TICs detected in the trip blanks, including the frequency and range of concentrations are shown in Table D-9.

The USEPA considers acetone and methylene chloride common laboratory contaminants (USEPA, 1988b). Acetone, methylene chloride, and chloroform
were detected in the method blanks as well as the trip blanks indicating they were introduced at the laboratory. Fort Devens field samples with concentrations of these compounds in the range detected in trip blanks and method blanks, are not considered representative of site conditions at Fort Devens.

The presence of carbon tetrachloride and tetrachloroethene in trip blanks indicates that cross contamination may have occurred in shipment or handling of the field samples. However, no carbon tetrachloride or tetrachloroethene was detected in samples from AOC 63AX.

D-15

APPENDIX D

D.3.0 ACCURACY OF OFF-SITE LABORATORY DATA

Accuracy is a quantitative parameter that determines the nearness of a result to its true value. Accuracy measures the bias in a measurement system. The accuracy of each analytical method was evaluated based on percent recoveries for matrix spikes and/or surrogate standards.

A matrix spike is a sample of a particular matrix to which predetermined quantities of standard solutions of certain target analytes were added prior to sample extraction/digestion and analysis. Samples were spilt into replicates, one replicate was spiked and both aliquots were analyzed.

Accuracy was also evaluated using the recovery of surrogate standards in the volatile and semivolatile analyses. Surrogate standards are organic compounds which are similar to the analytes of interest in chemical composition, extraction, and chromatography, but which are not normally found in environmental samples. These compounds are spiked into all volatile and semivolatile samples prior to analysis.

Percent recovery of matrix spikes and surrogate spikes provide and indication of data accuracy and potential data bias from matrix related effects. Percent recovery was calculated using the equation shown in Section 3.3 of the Fort Devens POP (ABB-ES, 1995). The percent recovery for these QC samples were evaluated and are discussed below.

APPENDIX D

D.3.1 MATRIX Spikes

Soil, sediment, surface water and groundwater samples were used for matrix spike and matrix spike duplicate analysis. Spiked samples were analyzed for hardness, alkalinity, nitrate and nitrite-nitrogen, kjeldahl-nitrogen, sulfate, total phosphate, TPHC, TOC, PAL inorganics, and PAL pesticide/PCBs. Matrix spike and matrix spike duplicate (MS/MSD) samples were collected at a rate of one per twenty environmental samples. A summary of all MS/MSD data collected during the Fort Devens Site Investigations are presented in Table D-10 and Table D-11.

The spike data for all samples collected during 1995 Fort Devens Site Investigation were evaluated together, and are discussed below as one data set. Similarly, all groundwater spiked samples collected during the Round 2 Groundwater sampling event were evaluated collectively. The data have been segregated by method and by analytical parameter to show recovery trends of the individual spiked analytes. In the tables, matrix spikes have been paired with the corresponding matrix spike duplicates to make recovery comparisons. The average recoveries, and maximum and minimum recoveries for water samples (surface water and groundwater) and solid media (subsurface soil and sediment) are presented to measure trends for each particular method. The criteria used for interpreting MS/MSD data are taken from USEPA CLP analytical protocols (USEPA, 1988a; USEPA, 1989a) and the Fort Devens Project Operations Plan (ABB-ES, 1995).

APPENDIX D

D.3.1.1 Inorganics

Matrix spike analysis was completed for recoveries of PAL elements. USEPA CLP guidelines specify control limits of recovery for inorganic MS/MSD 75% to 125% (USEPA, 1988). The majority of PAL elements had recoveries within USEPA control limits. A subset of elements had recoveries outside these limits. Elements with at least one MS/MSD recovery outside USEPA CLP limits are presented in Table D-12.

Groundwater, 1995 Field Investigation. The following samples were spiked with target elements: one filtered and unfiltered groundwater sample from AOC 57; one unfiltered groundwater sample from AOC 69W; one filtered groundwater and two unfiltered groundwater samples from AOC 63AX. Elements with recoveries outside the USEPA CLP limits include mercury, arsenic, antimony, calcium, iron, and manganese.

For the elements arsenic, calcium, manganese, and iron, all matrix spike concentrations were low relative to concentrations already present in the sample. For example, the spike concentration for calcium was $10,000 \mu \mathrm{~g} / \mathrm{L}$ compared with sample concentration which was $52,800 \mu \mathrm{~g} / \mathrm{L}$. USEPA Region 1 data validation guidelines (USEPA, 1989b) specify spike concentrations be greater than four times the sample concentration for data qualification actions to reply. Since the spike concentration is insignificant relative to the sample concentration, an accurate matrix spike recovery cannot be measured. Based on these results, results for arsenic, calcium, and manganese in groundwater are not qualified in this RI.

Percent recoveries for mercury and antimony were slightly below the lower CLP control limit of 75% in a small subset of samples. Low recoveries for antimony and mercury were only observed in one or two of sixteen samples, respectively. Based on this data, mercury and antimony data for aqueous samples is not qualified.

Groundwater, Round 2. The following samples were spiked with target elements: one filtered and unfiltered groundwater sample from AOC $57,63 \mathrm{AX}$ and 69 W ; and one additional unfiltered groundwater sample from AOC 63AX. The majority of PAL elements had recoveries within USEPA control limits. A subset of elements had results outside these limits. Elements with recoveries outside the USEPA CLP limits include lead, selenium, arsenic, antimony and manganese.

Spike recoveries for arsenic in one out of fourteen samples were above the upper control limit of 125%. The recovery in this sample was 135.7%; however, the spiked sample duplicate recovery was acceptable (124.3\%). The low frequency of outlier recoveries for arsenic indicate there was minimal matrix related effects and no qualification of results was conducted.

For manganese, the matrix spike concentration was low relative to concentrations already present in the sample so matrix spike recovery cannot be measured.

Low spike recoveries were reported for lead and selenium in both the filtered and unfiltered sample and duplicate from AOC 57 (MXG302X2). These data suggest there may be some matrix interference in AOC 57 .groundwaters reported for lead and selenium. Lead and selenium were not detected in any samples. CRLs

Harding Lawson Associates

APPENDIX D

reported for these elements should be considered estimated and potentially biased low. Lead and selenium recoveries in the remaining ten samples evaluated were all acceptable.

The percent recoveries for antimony were low in several spiked samples. A total of six out of fourteen spiked samples had recoveries below the lower control limits. Outlier recoveries ranged from 39.5% in the sample and sample duplicate MXG302X2 and MDG302X2 to 74.9% in sample MXAX08A2. Antimony was not detected in any groundwater samples. Based on these data, antimony CRLs for aqueous samples are considered estimated and potentially biased low.

Surface Water. One surface water sample from AOC 57 (WX5705XX), including both filtered and unfiltered samples, was spiked with target elements. All elements had percent recoveries for MS/MSDs within the USEPA CLP limits with the exception of iron. The MS for iron in the filtered surface water sample had a recovery of 129%; however, iron recovery for the filtered MSD was acceptable (118%) and results are not qualified. Recoveries of iron in the unfiltered sample were acceptable. Overall, the inorganic spike data indicate that aqueous concentrations were not significantly influenced by matrix effects.

Soil. Five soil MS/MSD samples were analyzed for PAL inorganics; for lead analyses three matrix spike and matrix spike duplicate samples were analyzed by GFAA and two by ICP. The majority of PAL elements had recoveries within CLP limits. Elements for which at least one MS/MSD recovery was not within USEPA CLP limits are presented in Table D-13.

For the elements aluminum and iron, all matrix spike concentrations were low relative to concentrations already present in the sample. Since the spike concentrations were insignificant relative to sample concentrations, matrix spike recoveries were not assessed.

The elements mercury, selenium, lead (by GFAA), arsenic, manganese, and nickel in soil had MS/MSD recoveries above and below the USEPA CLP recovery range. The frequency at which the recovery was outside the USEPA CLP limits, and corresponding recovery ranges are shown in Table D-13.

For mercury, MS/MSD recoveries in soil sample EX571501 from AOC 57 were below the USEPA control limits; however, recoveries in the other eight spiked samples were within the control limits. Overall, mercury concentrations for soil samples are acceptable based on the MS/MSD recovery data, and qualification of the data was not conducted.

One selenium MS/MSD pair had recoveries just below the lower control limit, and two other pairs had recoveries above the upper control limit. Based on spike recovery data, positive detections of selenium in soil are considered estimated with no particular low or high bias.

The recovery of lead by GFAA ranged from 50% to 60% in two of the three MS/MSD pairs, slightly below the lower limit of 75%. Recoveries in the third pair were 23.7% and 140.5%. Recoveries of lead in the two pairs of MS/MSD analyzed by ICP were all acceptable. Results indicate lead results for soil analyzed by GFAA are estimated, and results may be biased low.

Harding Lawson Associates

APPENDIX D

Five out of ten spiked soil samples had arsenic recoveries above the USEPA control limit. One spiked soil sample (BXAX0206) was reported below the lower limit; however, the spike concentration in this sample was low relative to the concentration already present in the sample so recovery evaluations could not be made. The high recoveries of arsenic in 50% of the spiked soil samples indicate that there may be some matrix interference. Results for arsenic in soil samples should be considered estimated and potentially biased high.

Manganese recoveries were outside the control limit in seven out of the ten MS/MSD samples. However, with the exception of one sample (BX570319), all MS were low relative to the sample concentration making the comparison invalid. The recovery in the sample BX570319 (68.6\%) was just below the lower control limit of 75%. Due to the low frequency of valid outlier recoveries of manganese, the soil matrix does not appear to have significantly impacted the data. Qualification of manganese data based on spike recoveries in soil was not conducted.

The recovery for nickel (128.3%) in soil sample BXAX0206 was slightly above the upper control limit. All nine other MS/MSD recoveries ranged from 104% to 118%. Based on theses results, recovery of nickel in soil does not appear to be impacted by the soil matrix. Qualification of nickel data for soil was not conducted.

Sediment. Two sediment MS/MSD samples were analyzed for PAL inorganics; for lead analyses one MS/MSD sample was analyzed by GFAA and one by ICP. The majority of PAL element recoveries were within CLP control limits.

Harding Lawson Associates

APPENDIX D

Elements for which at least one MS/MSD recovery was not within USEPA CLP limits are presented in Table D-14.

For the elements aluminum and iron, all matrix spike concentrations were low relative to concentrations already present in the sample. Since the spike concentration is insignificant relative to sample concentrations, an accurate matrix spike recovery was not evaluated.

The elements arsenic, antimony, and manganese in sediment samples had MS/MSD recoveries above and below the acceptable USEPA CLP recovery range. The frequency at which the recoveries were outside the USEPA CLP limits and the recovery ranges are shown in Table D-14.

The arsenic MS/MSD recoveries for one out of the two sediment samples were approximately 12%, well below the USEPA control limits. The sample was DX2W0200 collected from AOC 69W. Due to the low MS recovery, positive results for arsenic in sediment samples from AOC 69W should be considered biased low, and non-detect results are unusable.

Percent recoveries for antimony in sediment samples were slightly above the upper USEPA control limit of 125% in two of the four samples. The recoveries in these samples were 126% and 126.7%, indicating that matrix effects for sediment were minimal. All sediment results for antimony are considered acceptable based on the MS/MSD results for accuracy, and qualification of the data was not conducted.

APPENDIX D

Manganese recoveries for MS/MSDs in sediment were acceptable in three of the four samples analyzed. The recovery in one MS for sample DXZW0200 from AOC 69 W was only 4%, well below the USEPA control limit of 75%. Due to the low MS recovery, positive results for manganese in sediment samples from AOC 69W should be considered biased low, and non-detect results should be considered unusable.

D.3.1.2 Pesticides/PCBs

Pesticide and PCB compounds were spiked into groundwater, surface water, soil and sediment samples to evaluate matrix effects. Nine target pesticide and two PCB compounds were used for spiking including endosulfan I, endosulfan II, aldrin, dieldrin, endrin, heptachlor, isodrin, lindane, methoxychlor, 4,4'-DDT, aroclor 1016, and aroclor 1260. Percent recoveries for pesticides were compared to the USEPA CLP guidelines (USEPA, 1988) control limits. The USEPA CLP guidelines do not specify limits for spike recoveries of endosulfan I, endosulfan II, isodrin, methoxychlor, and PCBs. For these compounds, the surrogate recovery control limits of 30% to 150% specified in the USEPA CLP Guidelines (USEPA, OLM03.1 August 1994) were used as guidance in evaluating spike recoveries.

Groundwater, 1995 Site Investigation. Three groundwater samples, one from AOC 57, 63AX and 69W, were spiked with pesticides and PCBs. Recoveries were within USEPA limits for all spike compounds with the exception of aldrin in one of six spiked samples. A recovery of 121% was reported. This exceeds the upper control limit of 120%. Due to the low frequency of recoveries out of limits no qualification of results is done.

Harding Lawson Associates

Groundwater, Round 2. Three groundwater samples, one from each of the AOCs $57,63 \mathrm{AX}$ and 69 W , were spiked with target pesticides. Two groundwater samples, one from AOC 63AX and one from AOC 69W were spiked for PCBs. The recoveries of all analytes were within USEPA limits.

Surface Water. One surface water sample from AOC 57 was spiked with target pesticides and PCBs. All spike recoveries were within the USEPA CLP control limits for aqueous samples. The aqueous MS/MSD recovery data for pesticides/PCBs indicate that there were no matrix effects and qualification of the data was not required.

Soil. Four MS/MSD soil sample pairs from AOC 57 were spiked with pesticide and PCB compounds. The majority of spike analytes were within recovery limits. Analytes for which at least one MS/MSD recovery was not within USEPA CLP limits are presented in Table D-15.

The recovery of endosulfan II in soil sample EX571502 exceeded the upper control limit in both the MS and MSD. However, recoveries of endosulfan II in the three other spiked sample pairs were within limits. Both MS and MSD spike recoveries for 4,4-DDT in sample EX571600 exceeded the upper control limits but recoveries in the remaining three soil samples were within control limits.

Spike recoveries for aroclor 1016 were acceptable; however, one of the spike recoveries for aroclor 1260 in sample EX571502, and both MS and MSD recoveries in sample EX571502 were above the upper control limit. The original

APPENDIX D

analysis reported high aroclor 1260 concentrations relative to spike concentrations and no actions were taken for the high recoveries.

High recoveries of endosulfan II, 4,4-DDT, and Aroclor-1260 in soil indicate some matrix interference. There were no detects of endosulfan II in AOC 57 samples. Positive results for 4,4-DDT in soil samples collected at AOC 57 should be considered estimated and potentially biased high.

Sediment. Two sediment samples, one from AOC 57 and one from AOC 69W, were spike with target pesticides and PCBs. The percent recoveries of the spiked samples were compared to the USEPA CLP control limits and all recoveries were within the criteria range with the exception of 4,4-DDT. One out of the four reported recoveries for 4,4-DDT (166.7\%) exceeded the upper control limit of 134%. Based on the low frequency of exceedances for recovery of 4,4-DDT qualification of sediment data was not conducted.

D.3.1.3 USEPA Methods

Matrix Spike recoveries for USEPA methods water quality parameters were evaluated for groundwater and surface water. The matrix recoveries for soil and sediment were also evaluated for TOC, TPH as gasoline and diesel, and TPHC.

For water quality parameters of hardness, alkalinity, nitrate and nitrite-nitrogen, kjeldahl-nitrogen, sulfate, and total phosphate, the USEPA CLP control limits for inorganic matrix spikes ($75 \%-125 \%$ recovery) were used for guidance.
Professional judgement was used when evaluating the organic parameters TOC

Harding Lawson Associates

and TPHC. The MS/MSD recoveries for these parameters were evaluated on a sample by sample basis and are discussed below.

Groundwater, 1995 Field Investigation. Five groundwater samples were spiked for hardness including three groundwater samples from AOC 57, one from AOC 63 AX , and one from AOC 69W. Hardness data for which at least one MS/MSD recovery was not within USEPA CLP limits are presented in Table D-16.

Four out of eight spike recoveries for hardness were well below the lower control limit of 75%. The outlier recoveries were found in the samples MXAX02X1 and MXZW01X3 from AOCs 69 W and 63AX, respectively, and one of the two samples (MX5701X1) from AOC 57. Based on these results, there appears to be either significant matrix interference or other analytical performance issues resulting in low spike recoveries. With the exception of groundwater sample MXG302X1 in which acceptable hardness recoveries were reported, all hardness results for groundwater samples should be considered invalid.

For alkalinity three groundwater samples from AOC 57 and one groundwater sample from AOC 69 W were spiked for matrix evaluation. All spiked sample recovery results for alkalinity are within control limits. According to the data downloaded from IRDMIS, percent recoveries for alkalinity reported for Lot PJOW exceed the control limits. However, the high recoveries are believed to be erroneous due to a unit conversion error for two spiked samples in Lot PJOW. Corrective action for this discrepancy is currently ongoing.

APPENDIX D

Spike sample recoveries for all other water quality parameters were within the established control limits indicating no matrix effects.

Groundwater, Round 2. Five groundwater samples were spiked for hardness including two groundwater samples from AOC 57, one from AOC 63AX and AOC 69W. Two sets MS/MSDs were analyzed for the sample from AOC 63AX. Hardness data for which at least one MS/MSD recovery was not within USEPA CLP limits are presented in Table D-16.

Two spike recoveries for hardness were well below the lower control limit of 75%. The outlier recoveries were found in the sample MXAX03X2 from AOC 63AX. However, an additional spike and spike duplicate analysis for this sample was performed and results were within the control limits. Based on these results, there does not appear to be any significant matrix effects impacting the hardness data. All hardness results for groundwater samples remained unqualified.

For alkalinity, two groundwater samples from AOC 57 and one groundwater sample from AOC-69W were spiked for matrix evaluation. All recovery results for alkalinity are within the established guidelines.

Spike sample recoveries for all other water quality parameters were within the established control limits indicating no matrix effects. Spike recovery control limits for TPHC are not available; however, spike recoveries ranged from 89% to 97.9% and are considered acceptable.

Surface Water. One surface water sample from AOC 57 (WX5705XX) was spiked to evaluate matrix effects on the measurement of water quality parameters

Harding Lawson Associates
listed above. All results were within the established control limits indicating no matrix interference.

Soil. Two MS/MSD soil sample pairs from AOC 57 were spiked and analyzed for matrix effects on concentrations of TPH as diesel and gasoline by Modified USEPA Method 8015. The recovery range for these samples was 74.9% to 112.4%. Based on these results, there does not appear to be any adverse effects on the TPHC data analyzed by USEPA Method 8015.

A total of seven spiked sample pairs were analyzed for matrix effects on TPH by USEPA Method $9071 / 418.1$. These samples included three soil samples from AOC 57, three from AOC 63AX, and one from AOC 69W. The majority of samples had percent recovery ranging from 71.0% to 128.6%. The spike recoveries outside this range included one sample from AOC 57 (EX571502) which exhibiting relatively low recoveries of 29.2% and 43.7% in the MS and MSD, and one sample from AOC 63AX (AXE9503X) in which the MS had a relatively low recovery of 52.6%. In general, spike recoveries for TPH by USEPA Method 9071 in all other soil samples indicated acceptable method performance. Low recoveries in samples EX571502 and AXE9503X may be attributed to sample homogeneity in the unspiked samples and are not likely an indication of poor method performance. Based on the spike recoveries for TPHC, qualification of the data was not conducted.

Four soil samples were spiked for TOC analysis, including two from AOC 57, and two from AOC 69W. The recovery of these spiked samples ranged from 77.5% to

Harding Lawson Associates

APPENDIX D

132.3%. Based on these results, there appears to be no matrix related effects on TOC concentrations in soil.

Sediment. Two pairs of sediment MS/MSD samples, one from AOC 57 and one from AOC 69 W , were analyzed for matrix effects on petroleum hydrocarbon concentrations. Recoveries ranged from 88.9% to 171.9% for TPH as diesel, and 84.2% to 162.3% for TPH as gasoline, indicating good method performance.

The spike recoveries of TPHC for USEPA Method 9071 were 4.3% and 51.4% in the MS and MSD in sample DX570500 from AOC 57. These spike recoveries are low in comparison the spike recoveries observed for the second sediment sample (DXZW0200) which were approximately 117% in the MS and MSD. Low spike recoveries in sediment sample DX570500 may be attributed to sample heterogeneity or from matrix interference. All positive sediment sample results for TPHC for AOC 57 sediments should be considered estimated and biased low, and all non-detect results should be considered invalid.

Matrix spike and MSDs were analyzed for two sediment samples from AOC 57 to evaluate matrix effects on TOC concentrations. The percent recoveries in sample DX570500 ranged from 83.9% to 125.0% indicating good accuracy within the matrix. Spike recoveries for the second sediment sample from AOC 57 (DX570900) were only 0.9% and 54.0%. This sample had a high TOC concentration in the original sample which likely contributed to the low recoveries. No qualification of results was conducted.

D.3.2 SURROGATE RECOVERIES

Harding Lawson Associates

In addition to matrix spikes, the recovery of surrogate standards were also used to assess matrix effects and accuracy of the analytical data. Surrogate standards were used for VOC and SVOC analyses and were added to all soil, sediment, surface water and groundwater samples prior to analysis.

D.3.2.1 SVOC

The SVOC surrogate standards used to evaluate matrix effects and analytical accuracy included 2 -fluorophenol, phenol-D6, 2,4,6-tribromophenol, nitrobenzeneD5, 2-fluorobiphenyl, and terphenyl-D14. Recovery criteria for these surrogates, are taken from analytical USEPA CLP protocols (USEPA, 1988a) and the Fort Devens Project Operations Plan (ABB-ES, 1995) and are presented in Table D-17.

Interpretations on data usability were based on guidance outlined in the USEPA Region I Functional Guidelines for Data Validation (USEPA, 1988). According to this guidance SVOA sample results are qualified based on independent evaluations of surrogate recoveries for acid fraction compounds and base-neutral compounds. Each fraction has three surrogates. The acid fraction surrogates include 2-flourophenol, phenol-D6, and 2,4,6-tribromophenol. The base-neutral surrogate standards include nitrobenzene-D5, 2-flourobiphenyl, and terphenylD14. SVOA positive results are qualified as estimated if two or more surrogates in either the acid or base-neutral fraction are outside the recovery limits. Positive results are qualified as estimated and negative (non-detect) results are qualified as unusable (rejected) if any surrogate is less than ten percent recovery for the associated fraction.

APPENDIX D

All SVOA samples were evaluated using the criteria outlined above. Sample results were identified as usable, estimated, or rejected based on the USEPA Region I Guidelines. Data bias was identified if trends in surrogate recoveries for individual samples indicated low or high bias.

Groundwater, 1995 Field Investigation. All SVOC results for groundwater samples meet USEPA surrogate standard recovery guidelines.

Groundwater, Round 2. All surrogate standard recovery data is within USEPA guidelines. Based on surrogate standard recoveries, qualification of sample data was not conducted.

Surface Water. Surface water samples with two or more surrogate standards from acid fraction with recoveries outside the acceptable QC limits included samples from AOC 57 sample (WX5704XX, WX5705XX ,WX5706XX, WX5710XX). Surrogate recoveries above the control limits for 2-fluorophenol and phenol-D6 were observed for these samples. No acid fraction compounds were detected in any of the surface water samples and no qualification of results was conducted.

Soil. Soil samples with two or more surrogate standards from the acid fraction with recoveries outside the acceptable QC limits included AOC 57 samples EX570405 and BX570200. High outlier recoveries for 2-fluorophenol and phenolD6 were reported for these samples. Soil sample EX572404 had two surrogate standards in the base-neutral fraction (2-fluorobiphenyl and nitrobenzene-D5) with high recoveries. No acid fraction compounds were detected in these samples and no qualification of results was conducted. No base neutral fractions

Harding Lawson Associates

APPENDIX D

compounds were reported in these two samples, and no qualification of results was conducted.

All soil samples spiked with SVOC surrogate standards had recoveries above the 10% minimum recovery criteria with the exception of 2,4,6-tribromophenol in sample EX571602. All non-detect results in the acid fraction of this sample are rejected and considered unusable.

Sediment. All sediment samples had recoveries of surrogate standards within the USEPA CLP limits. All SVOC surrogate results for sediment samples are within guidelines.

D.3.2.2 VOCs

Surrogate standards used for volatile organics include 1,2-dichloroethane-D4, 4bromoflourobenzene, and toluene-D8. The criteria used for interpreting surrogate data are taken from analytical USEPA CLP protocols (USEPA, 1988a) and the Fort Devens Project Operations Plan (ABB-ES, 1995) and are presented on Table D-18. Interpretations on data usability were based on guidance outlined in the USEPA Region I Functional Guidelines for Data Validation (USEPA, 1988). According to the guidelines, positive results and quantitation limits are considered estimated values if one or more surrogate standard per sample is outside the recovery limits. If any surrogate standard is recovered at less than ten percent, positive results are considered estimated values and non-detect results are rejected and considered unusable.

APPENDIX D

All VOC samples were evaluated using the criteria outlined above. Sample results were identified as usable, estimated, or rejected based on the USEPA Region I Guidelines. Data bias was identified if trends in surrogate recoveries for individual samples indicated low or high bias.

Groundwater, 1995 Field Investigation. The surrogate recoveries for groundwater samples at AOCs 57, 69W and 63AX were evaluated for matrix effects and accuracy of the analytical data. All samples had recoveries within CLP ranges with the exception of those discussed below.

Five groundwater samples from AOC 57 (MX5702X1, MX5703X1, MX5705X1, MX5706X1, MDG307X1), one sample from AOC 69W (MXZW12X3), and three samples from AOC 63AX (MXAX03X1, MXAX07X1, MXAX08X1) had surrogate recoveries for 1,2-dichlorobenzene-D4 above the CLP criteria. Positive results for VOCs in these samples should be considered estimated, and possibly biased high; however, no positive detections were reported in samples MX5702X1, MX5705X1, MX5706K1, MD6307X1, and MX1X08X1. Sample MXAX03X1 had only chloroform reported, which was likely a contaminant (see Section 2). Positive results for ethylbenzene, tetrachloroethene, toluene, xylenes, and chloromethane reported in MX5703X1, MXZW12X3, and MXAX07X1 are considered estimated and potentially biased high.

Groundwater samples, MXAX08B1 and MXAX09X1 from AOC 63AX, had surrogate recoveries for toluene-D8 and 4-bromoflourobenzene below the lower control limits for these standards. Based on these results, positive results and CRLs reported for volatile organics, these samples should be considered estimated, and biased low values.

Groundwater, Round 2. The surrogate recoveries for groundwater samples at AOCs 57, 69 W and 63AX were evaluated for matrix effects and accuracy of the analytical data. All samples had recoveries within CLP ranges with the exception of those discussed below.

Four groundwater samples from AOC 63AX (MXAX02X2, MXAX03X2, MXAX04X2, and MXAX08B2) and six samples from AOC 69W (MXZW10X4, MXZW11X4, MXZW14X4, MXZW15X2, MXZW18X2, and MDZW11X4) had surrogate recoveries for 1,2-dichlorobenzene-D4 above the CLP criteria. Positive results for VOCs in these samples should be considered estimated, and biased high; however, no positive detections, or only low concentrations of toluene ($<1.2 \mu \mathrm{~g} / \mathrm{L}$) were reported in all samples with the exception of MXZW10X4. The concentration of ethyl benzene reported in MXZW10X4 is estimated and potentially biased high.

Surrogate recoveries for toluene-D8 and 4-bromoflourobenzene ranged from 86% to 106%, and 88% to 100%, respectively. All recoveries were within the control limits.

Surface Water. The recovery of surrogate standard 1,2-Dichloroethane-D4 in surface water samples WX5704XX and WX5705XX from AOC 57 exceed the upper control limit. No VOCs were reported in WX5704XX. Positive results reported for 1,2-dichloroethene, tetrachloroethene, and trichloroethene in surface water sample WX5705XX are considered estimated and potentially biased high. The recoveries for all other surrogate standards in surface water samples were within the established guidelines.

Harding Lawson Associates

APPENDIX D

Soil. The recoveries of surrogate standards toluene-D8 and 4bromoflourobenzene in soil sample BXZW0107 from AOC 69W exceeded the upper control limit. Positive concentrations of ethylbenzene and xylenes in this sample are estimated and possibly biased high. The surrogate recovery for toluene-D8 in one sediment sample from AOC 69W (RXZW3006) also exceeded the upper control limit. Positive results for toluene, xylene, and styrene should be considered estimated, and potentially biased high. All other VOC surrogate standard recoveries for soil samples were acceptable.

Sediment. Several surrogate recoveries reported for sediment samples from AOC 57 were above the upper control limits. These sediment samples include DX570500, DX570502, DX570600, DX570800, DX570900, and DX571000. Only acetone and low concentrations of toluene ($<0.01 \mu \mathrm{~g} / \mathrm{g}$) were reported in these samples. Because acetone represents possible laboratory contamination, and concentrations of toluene were so low, no qualification of these results was conducted. All other VOC surrogate standard recoveries for sediment samples were acceptable.

VOC surrogate recovery data indicate some matrix related effects. As indicated some sample results should be considered estimated with potential high and low bias, but overall the accuracy of the GC/MS method used for VOC analyses was acceptable.

D.4.0 PRECISION

Precision is a measure of the reproducibility of the analytical resalts under a given set of conditions. It is a quantitative measure of the variability of a group of measurements compared to their average value. Precision is measured as the relative percent difference (RPD) between a sample and its duplicate, as is calculated for field duplicate samples, and matrix spike/matrix spike duplicate samples. The following equation is used to calculate the RPD.

$$
R P D=100 \times \frac{D_{1}-D_{2-}}{0.5\left(D_{1}+D_{2}\right)} 1
$$

D_{1} and D_{2} are the reported concentrations for sample duplicate analyses.

When measuring precision for organic analyses, the RPDs of the field duplicates are compared to established review criteria. The RPDs for field duplicates are compared to the acceptance criteria of 50% RPD for soil matrices and 30% RPD for water matrices (USEPA, 1988b). The criteria for RPDs for organic compounds in field duplicates did not apply in cases where: 1.) the results are non-detect and; 2.) the compounds detected are common lab contaminants. In cases where one organic result is non-detect, the CRL value was used to calculate the RPD. The acceptance criteria for inorganic analysis for field duplicate samples only applies to analytes that are greater than 5 times the CRL (USEPA, 1989b).

APPENDIX D
Precision is also evaluated by comparison of MS and MSD results. The USEPA CLP control limits were used to evaluate duplicate precision between MS and MSDs. In cases where USEPA CLP control limits for spikes are not available, such for inorganics and various USEPA analytical methods, the control limits for field duplicates listed above were used as guidance.

A discussion of the RPDs for field duplicates is presented below in Section 4.1, and the RPDs for MS/MSDs are presented in Section 4.2.

D.4.1 OFF-Site Laboratory Field Duplicate Results

Duplicate samples from AOCS 57, 63AX, and 69W at Fort Devens were collected to measure the sampling and analytical precision for analyses performed at the off-site laboratory. The duplicate samples were analyzed for the following Fort Devens PAL analytes: inorganics; VOCs; SVOCs; pesticide and PCBs. Aqueous field duplicate samples were also analyzed for various water quality parameters including hardness, alkalinity, sulfate, phosphate and nitrogen. Soil and sediment field duplicate samples were also analyzed for TOC and TPHC.

All field duplicate data collected during the Fort Devens Site Investigations are shown in Table D-19 and Table D-20. The RPD has been calculated for each pair of field duplicates collected during the 1995 Fort Devens Site Investigation, and the Round 2 Groundwater sampling event.

Harding Lawson Associates

APPENDIX D

D.4.1.1 Inorganics

'An analysis of the precision of the inorganic duplicate data was completed for each PAL element.

Groundwater, 1995 Field Investigation. The concentrations of inorganics in three groundwater samples and corresponding field duplicates were used to evaluate sampling and analytical precision for elements. One sample duplicate from each of the three AOCs (57, 63AX, and 69W) were collected. The RPDs of all inorganic groundwater concentrations for duplicates were below the USEPA Region I limits with the exception of iron. However, outlier RPDs for iron were only observed in one out of three sample duplicate pairs. Groundwater sample results for elements were not qualified based on duplicate results.

Groundwater, Round 2. The concentrations of inorganics in four filtered and unfiltered groundwater samples duplicate pairs were used to evaluate precision for elements. One sample duplicate pair from each of the three AOCs (57, 63AX, and 69 W) and one additional sample duplicate pair from AOC 57 were collected. Elements for which at least one outlier RPD was observed are shown in the Table D-21. Outlier RPDs were observed for arsenic, iron, and barium ; however, the frequency at which an outlier RPD was observed was low. Groundwater data for these elements were not qualified based on duplicate precision results.

Surface Water. One surface water sample and duplicate were collected and evaluated for precision. The RPDs of all inorganic concentrations were within the

APPENDIX D

USEPA Region I limits. Surface water sample results for inorganics were not qualified.

Soil. One sample duplicate pair from each of the three AOCs (57, 63AX, and 69W) were collected. Elements for which at least one outlier RPD was observed are shown in the Table D-22. Outlier RPDs were observed for arsenic and potassium; however, the frequency at which an outlier RPD was observed was low. Soil sample data for these elements were not qualified based on duplicate precision results.

Sediment. Two sediment sample duplicate pairs, one from AOC 57 and one from AOC 69 W were collected and evaluated for precision. Elements for which the RPD was greater than the control limit 50% are shown in Table D-22. All outlier values were associated with sediment sample DX570300 from AOC 57. Based on the variability of results in this sediment sample, concentrations of mercury, manganese, sodium, and zinc in sediment samples from AOC 57 should be considered estimated.

D.4.1.2 VOCs

Duplicate VOC sample results were evaluated to assess the sampling and analytical precision.

Groundwater, 1995 Field Investigation. Three groundwater sample duplicate pairs, one from each AOC, were collected. The majority of target compounds were non-detects in both analyses. Compound RPDs were within the USEPA Region I guidelines with the exception of ethylbenzene. Ethylbenzene was

Harding Lawson Associates

detected in sample MDZX12X3 from AOC 69 W at $6 \mu \mathrm{~g} / \mathrm{L}$; the corresponding sample duplicate MXZW12X3 was non-detect with a reporting limit of less than $\quad 0.5 \mu \mathrm{~g} / \mathrm{L}$. The resulting RPD was 169.2%. High RPDs are commonly reported for samples with results at or near the reporting limits as in sample MXZW12X3. In general, the duplicate data indicate that there was good precision of the aqueous VOC concentrations, and qualification of the data was not conducted.

Groundwater, Round 2. Three groundwater sample duplicate pairs, one from each AOC, and one additional duplicate pair from AOC 57 were collected. The majority of target compounds were non-detects in both analyses. Compound RPDs were within the USEPA Region I guidelines with the exception of toluene. Toluene was detected in sample MX5701X2 from AOC 57 at $1.2 \mu \mathrm{~g} / \mathrm{L}$; the corresponding sample duplicate MD5701X2 was non-detect with a reporting limit of less than $0.5 \mu \mathrm{~g} / \mathrm{L}$. The resulting RPD was 82.4%. High RPDs are commonly reported for samples with results at or near the reporting limits. In general, the field duplicate data indicate that there was good precision of the aqueous VOC concentrations and qualification of the data was not conducted.

Surface Water. The concentrations of one duplicate pair of surface water samples from AOC 57, WX5703XX, were assessed for precision. All surface water sample duplicate results were reported as non-detect indicating good precision for surface water VOC data.

Soil. One sample duplicate from AOCs 57, 63AX, and 69 W was collected. The majority of target compounds were non-detects in both analyses. .The RPDs for all duplicate groundwater results were below the USEPA Region I limits with the

Harding Lawson Associates

APPENDIX D

exception of toluene. The RPD for toluene in soil sample BXZW0100 from AOC 69 W was 127.1%. Toluene results for sample BXZW0100 are considered estimated values. However, the frequency at which an outlier RPD was observed for toluene was only one out of three. Qualification of other sample results was not conducted based on duplicate results.

Sediment. Two sediment sample duplicate pairs, one from AOC 57 and one from AOC 69 W , were collected. All VOC results for sediment samples and sample duplicates were reported as non-detect. VOC results in sediment samples were not qualified based on duplicate results.

D.4.1.3 SVOCs

Duplicate SVOC sample results were evaluated to assess sampling and analytical precision.

Groundwater. 1995 Field Investigation. Duplicates for one water sample from each AOC were collected. With the exception of phthalate esters, there were no target SVOCs detected in groundwater sample duplicate pairs indicating good agreement between results.

Groundwater, Round 2. Three groundwater sample duplicate pairs, one from each AOC, and one additional duplicate pair from AOC 57 were collected. The majority of target SVOCs were non-detects in both analyses. The RPDs of duplicate results were within the USEPA Region I guidelines with the exception of $1,3,5$ - trimethylbenzene. This compound was detected in sample MX5703X2 from AOC 57 at $30 \mu \mathrm{~g} / \mathrm{L}$, and the corresponding sample duplicate MD5703X2 at

Harding Lawson Associates
$20 \mu \mathrm{~g} / \mathrm{L}$. Results of $1,3,5$-trimethylbenzene in sample MX5703X2 is considered estimated. In general, the field duplicate data indicate that there was good precision of the aqueous SVOC concentrations and additional qualification of the data was not conducted.

Surface Water. One surface water sample from AOC 57 was collected. There were no target SVOCs detected in either sample indicating good agreement between the results.

Soil. Three duplicate soil samples, one from each AOC, were analyzed. The majority of target SVOCs were non-detect in both analyses. All RPDs were within USEPA limits.

Sediment. Two sediment samples, one from AOC 57 and one from AOC 69W, were analyzed in duplicate. For most target SVOCs concentrations were nondetect in both the sample and sample duplicate, and resulting in acceptable agreement between results. Target SVOCs detected include pyrene and fluoranthene. The sample duplicate RPDs for fluoranthene in sample DXZW0100 and pyrene in sample DXZW0100 were 66.7%, exceeding the precision control limit of 50%. Based on these results, concentrations of PAHs reported in sediment samples should be considered estimated values.

D.4.1.4 USEPA Methods

An analysis of duplicate results for a variety of water quality parameters obtained using standard USEPA methods was also conducted. Soil and sediment samples

Harding Lawson Associates

APPENDIX D

were also analyzed for TOC and TPHC. A discussion of precision between sample duplicates analyzed for these parameters is presented below.

Groundwater, 1995 Field Investigation. Three groundwater samples, representing one sample from each AOC, were collected. Hardness concentrations for groundwater sample MXAX03X1 and the sample duplicate MXAX03X1 from AOC 63AX were reported as $18,000 \mu \mathrm{~g} / \mathrm{L}$ and non-detect (less than $1000 \mu \mathrm{~g} / \mathrm{L}$). The RPD was 178.9%, exceeding the control limit of 30%. However the RPDs for the other two groundwater duplicate pairs ranged from 0% to 5.7% indicating excellent precision.

Additional parameters evaluated for precision in groundwater include alkalinity, sulfate, total phosphate, nitrate and nitrite-nitrogen, and nitrogen by the kjeldahl method. With the exception of nitrate and nitrite-nitrogen data, all results had RPDs within control limits. The RPD for nitrate and nitrite nitrogen in groundwater sample MXAX03X1 from AOC 63AX was 85.5%. However the RPDs for the other two groundwater duplicate pairs ranged from 9.2% to 26.1%, indicating acceptable precision. Based on these results, nitrate/nitrite concentrations from AOC 63AX groundwaters are considered estimated.

Overall, precision between groundwater samples for water quality parameters is considered acceptable, and additional qualification of the data was not conducted.

Groundwater, Round 2. Three groundwater duplicate samples, representing one sample from each AOC, and one additional sample from AOC 57 were collected. Hardness concentrations for groundwater sample MXAX04X2 and the sample duplicate MDAX04X2 from AOC 63AX were reported as $264,000 \mu \mathrm{~g} / \mathrm{L}$ and

Harding Lawson Associates
$6,800 \mu \mathrm{~g} / \mathrm{L}$. The RPD was 190%, well above the RPD goal of 30%. Based on these results, hardness results for AOC 63AX are considered estimated. The RPDs for the three groundwater duplicate pairs ranged from 5.8% to 7.8% indicating excellent precision.

Additional parameters evaluated for precision in groundwater include alkalinity, sulfate, total phosphate, nitrate and nitrite-nitrogen, and nitrogen by the kjeldahl method. With the exception of nitrate and nitrite-nitrogen data, and total phosphate data all results had RPDs within control limits.

The RPD for nitrate and nitrite-nitrogen in sample MXAX04X2 and sample duplicate MDAX04X2 from AOC 63AX was 38.7%. The RPD in the sample duplicate pair MXZW11X4 and MDZW11X4 from AOC 69W was 198\%, also exceeding the control limit. Based on these results nitrate/nitrite results are considered estimated values. However, the RPDs for the other two groundwater duplicate pairs ranged from 3.8% to 8.7%, indicating acceptable precision.

For total phosphate, two of the four sample duplicate pairs had outlier RPDs. The RPDs were 48.9% for sample duplicate pair MX5703X2 and MD5703X2 from AOC 57, and 52.2% for sample duplicate pair MXZW11X4 and MDZW11X4 from AOC 69W. Based on these results, phosphate results from AOC 57 and 69 W are considered estimated values. The remaining two field duplicates analyzed for total phosphate had RPDs of 0% and 2.2% indicating acceptable precision.

APPENDIX D

Surface water. One surface water field duplicate sample from AOC 57, WX5703XX, was collected. Precision criteria for sulfate and alkalinity in this surface water sample were acceptable. The control limit of 30% RPD was exceeded for hardness, total phosphate, and nitrogen by the kjeldahl method.

The results for kjeldahl nitrogen for the sample and duplicate were $1430 \mu \mathrm{~g} / \mathrm{L}$ and $229 \mu \mathrm{~g} / \mathrm{L}$. The RPD for these results was 144.8%. The results for total phosphate ranged from $24.8 \mu \mathrm{~g} / \mathrm{L}$ and $118 \mu \mathrm{~g} / \mathrm{L}$ between the sample and sample duplicate, with an RPD of 130.5%. The RPD for hardness was 32.5%. Positive results in surface water samples for nitrogen determined by the kjeldahl method, hardness, and total phosphate should be considered estimated.

Soil. One soil field duplicate sample from AOC 63AX (BXAX0410) was collected and analyzed for TOC. Three soil duplicate samples including BXAX0215 from AOC 63AX, sample BXZW0100 from AOC 69W, and sample EX570405 from AOC 57 were collected for TPHC (USEPA Method 9071/418.1). All RPDs for these parameters were within RPD goals demonstrating consistency for the method and matrix.

Sediment. Two sediment sample duplicate pairs, DXZW0100 and DDZW0100 from AOC 69W, and DX570300 and DD570300 from AOC 57, were evaluated for precision of TOC and TPHC data.

The TOC results for the sediment sample and duplicate from AOC 69 W were $12,400 \mu \mathrm{~g} / \mathrm{g}$ and $7,420 \mu \mathrm{~g} / \mathrm{g}$. The RPD of these results is 50.5%, slightly above the 50% RPD limit. The TPHC results (USEPA method 9071/418.1) for this sample duplicate pair were $896 \mu \mathrm{~g} / \mathrm{g}$ and $360 \mu \mathrm{~g} / \mathrm{g}$, with an RPD of 85.4%. Based

Harding Lawson Associates

on these duplicate results, TPH results for all AOC 69 W sediments should be considered estimated values. The RPDs for TOC and TPHC in the sediment sample from AOC 57 were within RPD goals and results for AOC 57 sediments were not qualified.

D.4.2 Off-Site Laboratory Spike Duplicate results

All matrix spike duplicate data and the corresponding RPDs for the 1995 Fort Devens Site Investigation and Round 2 Groundwater sampling event are presented in Table D-10 and Table D-11. The RPDs for spike duplicates were calculated for TPH, TOC, inorganics, and pesticide/PCBs and compared to the USEPA CLP control limits (USEPA, 1988a) to determine precision of analysis. Samples with RPDs for spike samples outside control limits are discussed below.

D.4.2.1 Inorganics

Elements were spiked into groundwater, surface water, soil and sediment samples to evaluate precision. The USEPA CLP guidelines do not specify limits for spike RPDs for elements. As a result, the RPD limits for laboratory duplicates of 25% in water samples and 35% in soil samples specified in the USEPA Region I Guidelines (USEPA, 1989b) were used as guidance.

Groundwater, 1995 Field Investigation. Two groundwater samples from AOC 57, MX5701X1 and MX5705X1, and one groundwater sample from AOC 69W MXZW10X3 were evaluated for precision based on spiked samples. Both filtered

Harding Lawson Associates

APPENDIX D

and unfiltered samples were included in this evaluation. The percent recoveries of iron for spike duplicates in sample MXZW10X3 were 105.0% and 55.5%, with and RPD of 62%. Iron results for groundwater from AOC 69 W are considered estimated. The RPDs for all other elements in spiked groundwater samples were within EPA limits.

Groundwater. Round 2. Three groundwater MS/MSD samples, one from each AOC, and one additional sample for AOC 69W were evaluated for precision based on spiked samples. Both filtered and unfiltered samples were included in this evaluation. The RPDs for all elements in spiked groundwater samples were acceptable indicating excellent method performance.

Surface water. Filtered and unfiltered fractions of surface water sample WX5705XX from AOC 57 were assessed for spike duplicate precision. The RPDs for all elements were within USEPA limits.

D.4.2.2 Pesticides/PCBs

Pesticide and PCB compounds were spiked in duplicate into groundwater, surface water, soil and sediment samples to evaluate precision. Nine target pesticide and two PCB compounds were used including endosulfan I, endosulfan II, aldrin, dieldrin, endrin, heptachlor, isodrin, lindane, methoxychlor, 4,4'-DDT, aroclor 1016, and aroclor 1260. The USEPA CLP control limits for pesticide compounds used in the CLP methods are shown in Table D-23. The USEPA CLP guidelines do not specify limits for spike RPDs for endosulfan I, endosulfan II, isodrin, and PCBs. For these compounds, the RPD control limits for field duplicates of 30%
in water samples and 50% in soil samples specified in the Region 1 USEPA guidelines (USEPA, 1988b) were used.

Groundwater, 1995 Field Investigation. Three groundwater samples, MX5701X1, MXAX02X1, and MXZW10X3, from AOC 57, 63AX and 69W, respectively, were spiked with target pesticides and PCBs. For the CLP spike compounds only aldrin and lindane in the groundwater sample from AOC 69 W exceeded the USEPA control limits. The RPD for lindane was 15.3% and aldrin was 32.5%. All other pesticides and PCBs had spike RPDs less than 30% with the exception of methoxychlor in sample MXZW10X3 from AOC 69W. The RPD for methoxychlor (34.3%) was only slightly above the USEPA duplicate RPD limit. These compounds were not detected in any groundwater samples and no qualification of results was conducted.

Groundwater, Round 2. Three groundwater samples, MXG302X2, MXAX03X2, and MXZW12X4, from AOC 57, 63AX and 69W, respectively, were spiked with target pesticides and PCBs. The RPDs for spiked PCBs in all three groundwater sample were within USEPA duplicate limits. For pesticides, eight out of the ten spiked compounds had RPD exceedances in groundwater samples from AOC 57 and 69 W . Based on frequency of RPD exceedances for pesticides in samples MXG302X2 and MXZW12X4, positive results reported in samples from AOCs 57 and 69 W should be considered estimated. The only positive detections were low concentrations of endosulfan II in sample EX5706X1 and heptachlor epoxide and gamma-chlordane in MXZW10X4. These concentrations are considered estimated. The RPDs for pesticides in sample MXAX03X2 from AOC 63W

Harding Lawson Associates

APPENDIX D

ranged from 2.2% to 5.8% indicating excellent precision for this sample. Qualification of the data from AOC 63 AX was not conducted.

Surface water. One surface water spiked sample, WX5705XX, from AOC 57 was evaluated for precision. All RPDs for this sample were within RPD limits indicating good method performance and sampling precision.

Soil. The RPDs of four spiked soil samples from AOC 57 (EX570506, EX571502, EX572500, BX570319) were used to evaluate precision. The RPDs for these samples were within RPD limits indicating acceptable method performance and sampling precision.

Sediment. The RPDs from two spiked sediment samples were used to evaluate precision. These samples include DX570500 from AOC 57 and DXZW0200 from AOC 69W. The RPDs for all pesticide and PCBs were within RPD limits with the exception of aroclor 1260 . The RPD for aroclor 1260 was 50.8%, which is only slightly above the control duplicate control limit of 50%. Overall, pesticide and PCB results for precision in sediment are acceptable and qualification of the data was not conducted.

D.4.2.3 USEPA Methods

Precision for spiked samples was also evaluated for various water quality parameters including hardness, alkalinity, total phosphate, sulfate, nitrate and nitrite-nitrogen, and kjeldahl-nitrogen in water samples, and TPH and TOC in soil and sediment samples. USEPA CLP guidelines for evaluating spike duplicate RPDs are not available. The USEPA Region I control limits for field duplicates
30% in water and 50% in soil were used to compare RPDs between spiked samples.

Groundwater, 1995 Field Investigation. Several groundwater samples were spiked in duplicate for the water quality parameters listed above to evaluate precision. All RPDs between the MS and MSDs were less than the 30% control limit indicating excellent method performance. The RPDs for hardness for both the filtered and unfiltered fraction in sample MXAX03X2 were reported as 139.2% However, evaluation of the raw data indicated the calculation of RPDs was erroneous, and the actual RPDs ranged from 1% to 29.9%. Based on the MS/MSD results, qualification of water quality data is not required.

Groundwater, Round 2. Several groundwater samples were spiked in duplicate for the water quality parameters listed above to evaluate precision. All RPDs between the MS and MSDs were less than the 30% control limit with the exception of hardness in sample MXAX03X2 from AOC 63AX. The spiked sample concentrations for hardness in this sample and the sample duplicate were $4000 \mu \mathrm{~g} / \mathrm{L}$ and $1000 \mu \mathrm{~g} / \mathrm{L}$, with an RPD of 120%. Based on these results hardness in samples from AOC 63AX are considered estimated values. The RPDs for hardness in the three other groundwater samples ranged from 0% to 2.4% indicating excellent method performance. The frequency of outlier RPDs. for hardness was low so qualification of the data was not required.

Surface water. Two surface water samples from AOC 57 including WX5703XX, and WX5705XX were spiked in duplicate for the water quality parameters listed

APPENDIX D

above to evaluate precision. All RPDs between the MS and MSDs were less than the 30% control limit indicating acceptable method performance.

Soil. Soil samples from AOC 57 (EX570506, EX571502) were spiked in duplicate for TOC and TPHC (USEPA Modified Method 8015) to evaluate precision. Samples BX570122, BX570615 from AOC 57, and BXZW1607 from AOC 69W were also spiked in duplicate for TOC. All RPDs between the MS and MSDs were less than the 50% RPD limit indicating acceptable method performance.

Sediment. Sediment samples from AOC 57 (DX570500) and AOC 69W (DXZW0200) were spiked in duplicate for TOC, TPH as gasoline and diesel fuel (USEPA Method 8015) and TPHC (USEPA Method 9071/418.1) to evaluate precision.

Sample DX570900 from AOC 57 was spiked in duplicate for TOC and the results were $54.0 \mu \mathrm{~g} / \mathrm{g}$ and $0.9 \mu \mathrm{~g} / \mathrm{g}$. An RPD of 193.5% was calculated for these TOC results, exceeding the 50% control limit. This sample had high concentrations of TOC relative to spike concentrations and no actions were taken based on these RPDs. The two additional TOC duplicate sample pairs had RPDs of 30% and 50.2%.

The RPDs of sediment samples for TPHC as gasoline and diesel fuel exceeded the 50% control limits in one of the two spiked sample pairs. These outlier RPDs were from sample DX570500 and ranged from 54.8% (TPH as gasoline) to 63.7% (TPH as diesel fuel). However, RPDs for the second sediment duplicate pair were 8.2% (TPH as diesel) and 0% (TPH as gasoline) indicating excellent
agreement between results. Based on duplicate spike data, TPH results for sediment samples overall are acceptable and do not require qualification.

The RPDs for spiked sediment samples for TPHC by USEPA Method 9071/418.1 exceeded the control limit in one of the two sample pairs. An outlier RPD of 169% was observed for sample DX570500. However, the RPD for the second sediment duplicate pair was 0% indicating excellent agreement between results. Based on duplicate spike data, TPHC (USEPA Method 9071/418.1) results for sediment samples were not qualified.

APPENDIX D

D.5.0 COMPARISON OF OFF-SITE AND ON-SITE ANALYTICAL RESULTS

This section discusses the results of a comparison of data generated from chemical analyses performed on soil samples collected during the 1995 AOC 57, 63AX, and 69W Remedial Investigations at Fort Devens, Massachusetts. A total of 36 split samples were collected between September 12, 1995 through October 2, 1995. The soil samples were split in the field and submitted for on-site and off-site volatile analysis and petroleum hydrocarbons. The purpose of collection of the split samples is to provide a comparison of the on-site data with the associated off-site data, in order to evaluate data quality and establish the on-site results as screening data with definitive confirmation (USEPA, 1993).

D.5.1 ANALYTICAL METHODOLOGIES

The analytical methods used on-site were purge and trap gas chromatography (GC) analyses for volatile organic compounds (VOCs) in soil using a flame ionization detector (FID) for benzene, toluene, ethylbenzene, m / p-xylene, and o xylene (BTEX), and chlorobenzene, and chlorinated VOCs using an electron capture detector (ECD) for 1,1-dichloroethene, trichloroethene, tetrachloroethene; 1,1,1-trichloroethane, carbon tetrachloride, and chloroform. The purge and trap GC field screening also provides an estimate of the concentration of non-target fuel hydrocarbons, or total petroleum hydrocarbons (TPH). The TPH concentration represents an estimate of total hydrocarbons present that are detected by the FID. The TPH analysis is reported as the total TPH response of peaks associated with the calibration of the FID with a JP-4 standard. The TPH
data are the primary means of identifying volatile fuel-related contamination in highly contaminated samples.

Soil samples were also analyzed at the on-site laboratory for semivolatile total petroleum hydrocarbons (TPH) using modified USEPA Method 3500 followed by analysis using USEPA Method 418.1.

The on-site field screening target compound data were evaluated using the USAEC off-site analytical GC/mass spectrometry (MS) method for VOCs. As discussed in Section D-2, this method is based on USEPA Method 8260 with subsequent certification by USAEC. Off-site TPH results were generated using USEPA Method 9071 to extract samples followed by analysis using USEPA Method 418.1 (USEPA, 1983; USEPA, 1986).

D.5.3 Program Objectives

The objectives of the on-site soil field screening analytical program were to evaluate the downgradient, lateral, and vertical distribution of contamination in overburden soil, and identify critical samples for off-site laboratory analysis. For the purpose of this on-site/off-site data comparison action levels to evaluate the data sets were based on Category S-1 soils cleanup criteria outlined in the Massachusetts Contingency Plan (MCP) (MADEP, 1995). A summary of target compound action levels for each target compound evaluated using the on-site methods is outlined below:
Action Level ($\mu \mathrm{g} / \mathrm{g}$)
Benzene 10
Toluene 90
Ethylbenzene 80
Total Xylenes 500
1,1-Dichloroethene 0,3
Chloroform 0.1
1,1,1-Trichloroethane 30
Carbon Tetrachloride 1
Trichloroethene 0.4
Tetrachloroethene 0.5
TPH 500

D.5.4 Data Comparison and Evaluation

Comparability of the data was evaluated using two separate comparisons outlined in Section 4.6 of the POP (ABB-ES, 1995). The first comparison evaluates agreement based on detection of analytes relative to action levels. The second comparison evaluates data based on relative percent differences (RPDs) between split samples. Results of the on-site/off-site analyses are summarized on Table D-24.

D.5.4.1 Comparison 1

In this comparison on-site and off-site results were organized into one of the four categories described below:

1. Both on-site and off-site analyses had the target compounds detected/non-detected at concentrations less than the action levels.

Harding Lawson Associates
2. Both on-site and off-site analyses had the target analytes detected at concentrations greater than action levels.
3. The target compounds were reported above action levels for on-site and the off-site data results were less than action levels.
4. The target compounds were reported above the action level off-site and the on-site results were less than the action levels.

A primary assumption of the comparison was that the off-site data represented the accurate definitive data when comparing results. Sample data which fall within categories 1 and 2 represent agreement between on-site and off-site analytical results. Sample data in category 3 suggested a high bias in the on-site results. Sample data in category 4 suggest a low bias in on-site results. The analytical goal of the program was to have over 95 percent of the results fall into categories 1, 2 and 3 .

The detection of target VOCs by the on-site laboratory relative to action levels was confirmed by the off-site laboratory. The majority of the soil samples fell within Category 1. One exception was the split sample result for EX570704 and EF570704, where one target compound (1,1-dichloroethene) fell into Category 3. This sample was analyzed at a 145X dilution and the 1,1 -dichloroethene detection was identified as possible laboratory contamination at the time of analysis in the field. 1,1,-Dichloroethene contamination was not observed in other field screening samples and no trend is apparent. The off-site results confirm that the on-site 1,1-dichloroethene detection was a false positive. Overall, these results

Harding Lawson Associates

APPENDIX D

indicate good comparison of on-site and off-site results for volatile organic compounds, and that the goals of the field program for usability of on-site results were met.

The results of all split sample analysis fell into Category 1 and Category 2 indicating complete agreement for the on-site and off-site analyses relative to action levels for fuel hydrocarbons. These data indicate that the on-site data are adequate for the evaluation of the distribution of hydrocarbons at the $500 \mu \mathrm{~g} / \mathrm{g}$ action levels.

D.5.4.2 Comparison 2

For the second comparison, relative percent difference (RPD) values were calculated for associated on-site/off-site surface soil samples. Calculation of RPD is outlined in the POP (ABB-ES, 1995). RPD values were compared to USEPA Region I duplicate criteria of 50%.

VOCs

The majority of results were non-detects in both the on-site and off-site laboratory indicating consistent agreement with the absence of contamination for VOCs. RPDs for the majority of samples with VOCs detected exceeded the 50 RPD project goal. In many of the samples low concentrations of VOCs were reported at, or near, the reporting limit of the other split sample. Examples of this can be seen in samples BX570515, EX570200, EX571000, and EX571700. Detection limits for soils are in the low part per billion range and lack of quantitative agreement at these low concentrations are not interpreted to impact use of field

Harding Lawson Associates
screening results. .In some samples, concentrations of VOCs reported for the onsite screening analysis was much greater than concentrations reported in the offsite analysis. Example of these results can be seen in samples EX570704, EX570502, and RXZW3006. Affected compounds include BTEX and chlorobenzene. These results indicate high bias of on-site results by as much as two of three orders of magnitude, and the possibility of false positive reporting of additional target analytes. In all the above samples high concentrations of TPH was detected indicating the presence of fuel contamination at the sample location. The on-site method for BTEX and chlorobenzene utilized a single column GC/PID analysis for BTEX and chlorobenzene with no second column confirmation. It is highly likely that BTEX concentrations were over estimated due to interference from non-target fuel hydrocarbons. False positive identification of chlorobenzene may also have occurred due to interference with non-target fuel hydrocarbons. The off-site analysis was conducted using GC/MS confirmation of target analytes so interference from non-target hydrocarbon would not results in quantitative interferences or false positive identification of compounds.

It is important to note that evidence had also been published indicating the possibility of low bias off-site results due to loss of VOCs during sample collection and handling using bulk sampling procedures (Liikala, 1995). It is possible that concentrations reported at the on-site laboratory may be more representative of actual site conditions. However, for the purpose of this comparison, on-site results are considered potentially biased high.

APPENDIX D

TPH

In the majority of samples TPH was reported as a non-detect in both samples. RPDs of samples with detected TPH ranged from 7% to 200% with the majority of RPDs outside the 50% project goal. There was good correlation of split sample results relative to general concentrations reported. In all samples with detects reported, concentrations trends between high and low values agreed well. These results indicate that TPH data are adequate for determination of presence and absence of fuel contamination and the determination of the relative concentrations of contamination at the sites, however, reported concentrations should be considered estimated values.

D.5.5 Conclusions

There was a strong qualitative and quantitative correlation between the on-site and off-site laboratories. The goal of 95 percent of on-site/off-site data characterized by conditions specified in categories 1,2 or 3 was achieved (ABB-ES, 1995), based on results presented in Comparison 1. The comparison results indicate that screening results provided adequate data to identify the presence or absence of contamination at action levels based on MCP Category S-1 soil cleanup criteria (MADEP, 1995).

Comparison 2 reviewed RPD results. An evaluation of RPDs indicates low concentrations of VOCs at, or near, the on-site laboratory reporting limits should be considered estimated values. Results for on-site analyses for the VOC target

Harding Lawson Associates
compounds BTEX and chlorobenzene at sample locations containing fuel contamination may be biased high and contain possible false positive identifications for these compounds. Bias is possibly a result of interferences with fuel-related compounds and limitations of the GC/PID used at the on-site laboratory. Off-site data generated using GC/MS analyses should be used to confirm the detections and concentration ranges of these compounds. The TPH results are adequate for qualitative and semi-quantitative uses, but reported concentrations should be considered estimated.

REFERENCES

ABB Environmental Services, Inc. (ABB-ES), 1995. "Project Operation Plan Fort Devens, Massachusetts; Data Item A004/A006; May 1995.
Massachusetts Department of Environmental Protection (MADEP), 1995. "Massachusetts Contingency Plan"; Office of Environmental Affairs, Boston, Massachusetts, January 1995.
U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), 1990. Quality Assurance Program; USATHAMA PAM 11-41; Aberdeen Proving Ground, MD; January 1990.
U.S. Environmental Protection Agency (USEPA), 1983. "Methods for the Chemical Analysis of Water and Wastes"; Environmental Monitoring and Support Laboratory; USEPA 600-4-79-020; Cincinnati OH; March 1983.
U.S. Environmental Protection Agency (USEPA), 1986. "Test Methods for Evaluating Solid Waste"; Laboratory Manual Physical/Chemical Methods; Office of Solid Waste and Remedial Response; Washington, DC; SW-846; November 1986.
\section*{U.S. Environmental Protection Agency (USEPA), 1988a. "Contract Laboratory Program Statement of Work for Organic Analyses"; February 1988.}
U.S. Environmental Protection Agency (USEPA), 1988b. "Region 1 Laboratory Data Validation Functional Guidelines For Evaluating Organic Analyses"; Hazardous Site Evaluation Division; November 1988.
U.S. Environmental Protection Agency (USEPA), 1989a. "Contract Laboratory Program Statement of Work for Inorganic Analyses"; July 1988, revised August 1989.
U.S. Environmental Protection Agency (USEPA), 1989b. "Region 1 Laboratory Data Validation Functional Guidelines For Evaluating Inorganic Analyses"; Hazardous Site Evaluation Division; February 1989.

U.S. Environmental Protection Agency (USEPA), 1993. "Data Quality Objectives Process for Superfund"; Office of Solid Waste and Emergency Response; EPA540-R-93-071; September 1993.

Table D-1
Summary of Analytical Parameters
aOC 57, 63AX, and 69W Remedial Investigation Fort Devens, Massachusetts

PARAMETER	MATRIX (SOlH/WATER)	USAEC Mentiod NUMBER	EQUIVALENT USEPA METHOD NUMBER	METHOD DESCRIPTION	LABORATORY/ ARMYCERTIFIED Reporting Limit
pH	Water	No Certified Method	150.1	Measured in Field	N/A
Temperature	Water	No Certified Method	170.1	Measured in Field	N/A
Turbidity	Water	No Certified Method	180.1	Measured in Field	N/A
Conductivity	Water	No Certified Method	120.1	Measured in Field Electrode	N/A
RedOX	Water	No Certified Method	SM 2580b	Measured in Field	N/A
Total Suspended Solids	Water	No Certified Method	160.2	Gravimetric	$4000 \mu \mathrm{~g} / \mathrm{L}$
Total Dissolved Solids	Water	No Certified Method	160.1	Gravimetric	10,000 $\mu \mathrm{g} / \mathrm{L}$
Alkalinity	Water	No Certified Method	301.0	Titrimetric	$5000 \mu \mathrm{~g} / \mathrm{L}$
Total Organic Carbon	Soil	No Certified Method	SW 9060	Infrared	$360 \mu \mathrm{~g} / \mathrm{g}$
	Water	No Certified Method	SW 9060	Infrared	$1000 \mu \mathrm{~g} / \mathrm{L}$
Nitrate/Nitrite	Water	TF22	351.2	Colorimetric	$10 \mu \mathrm{~g} / \mathrm{L}$
Hardness	Water	N/A	$\begin{aligned} & 130.2 \text { or } \\ & \text { SM2340B } \end{aligned}$	Titration or Calculation	$1000 \mu \mathrm{~g} / \mathrm{L}$
Anions	Water	TT10	300.0	Ion Chromatography (Chloride, sulfate)	$\begin{gathered} \text { Chloride - } \\ 2,120 \mu \mathrm{~g} / \mathrm{L} \\ \text { Sulfate }-10,000 \mu \mathrm{~g} / \mathrm{L} \end{gathered}$
	Water	TF27	365.2	Colorimetric Total Phosphorous	Phosphate $13.3 \mu \mathrm{~g} / \mathrm{L}$
TKN (Kjeldahl)	Water	No Certified Method	351.2	Calorimetric	$183 \mu \mathrm{~g} / \mathrm{L}$
Carbonate/ Bicarbonate	Water	No Certified Method	310.1	Titrimetric	N/A
Total Petroleum Hydrocarbons	Water	No Certified Method	418.1	Infrared	$100 \mu \mathrm{~g} / \mathrm{L}$
	Soil	No Certified Method	SW 9071/ 418.1	Infrared	$21 \mu \mathrm{~g} / \mathrm{g}$
Aluminum	Water	SS10	200.7	ICP	$141 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$14.1 \mu \mathrm{~g} / \mathrm{g}$

Table D-1
Summary of Analytical Parameters
aOC 57, 63AX, and 69W Remedial Investigation Fort Devens, Massachusetts

PARAMETER	MATRIX (SOIL, WATER)	USAEC METHOD NUMBER	Equivaient USEPA METHOD Number	METHOD DESGRIPTION	LABORATORY/ ARMY-CERTIFIED REPORTING LIMIT
Antimony	Soil	JS16	SW 6010	ICP	$3.8 \mu \mathrm{~g} / \mathrm{g}$
	Water	SD28	-	GFAA	$3.03 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JD25	\bullet	GFAA	$1.09 \mu \mathrm{~g} / \mathrm{g}$
Arsenic	Water	SD22	206.2	GFAA	$2.54 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JD19	SW 7060	GFAA	$0.25 \mu \mathrm{~g} / \mathrm{g}$
Barium	Water	SS10	200.7	ICP	$5.0 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$29.6 \mu \mathrm{~g} / \mathrm{g}$
Beryllium	Water	SS10	200.7	ICP	$5.0 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$1.86 \mu \mathrm{~g} / \mathrm{g}$
Cadmium	Water	SS10	200.7	ICP	$4.01 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$3.05 \mu \mathrm{~g} / \mathrm{g}$
Calcium	Water	SS10	200.7	ICP	$500 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$59.0 \mu \mathrm{~g} / \mathrm{g}$
Chromium	Water	SS10	200.7	ICP	$6.02 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$12.7 \mu \mathrm{~g} / \mathrm{g}$
Cobalt	Water	SS10	200.7	ICP	$25 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$15.0 \mu \mathrm{~g} / \mathrm{g}$
Copper	Water	SS10	200.7	ICP	$8.09 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$58.6 \mu \mathrm{~g} / \mathrm{g}$
lron	Water	SS10	200.7	ICP	$42.7 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$50.0 \mu \mathrm{~g} / \mathrm{g}$
Lead	Soil	JS16	SW 6010	ICP	$6.62 \mu \mathrm{~g} / \mathrm{g}$
	Soil	JD17	SW 7421	GFAA	$0.177 \mu \mathrm{~g} / \mathrm{g}$
	Water	SD20	239.2	GFAA	$1.26 \mu \mathrm{~g} / \mathrm{L}$

Table D-1
Summary of Analytical Parameters
aOC 57, 63AX, and 69W Remedial Investigation
Fort Devens, Massachusetts

PARAMETER	MATRIX (SOM, WATER)	USAEC Mettor NUMBER	Equivalent USEPA METHOD Number	MeTHOD DESCRIPTION	LABORATORY/ ARMY-CERTIFIED REPORTING LIMIT
Magnesium	Water	SS10	200.7	ICP	$500 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$50.0 \mu \mathrm{~g} / \mathrm{g}$
Manganese	Water	SS10	200.7	ICP	$2.75 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$0.275 \mu \mathrm{~g} / \mathrm{g}$
Mercury	Water	SB01	245.1	CVAA	$0.243 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JB01	SW 7471	CVAA	$0.05 \mu \mathrm{~g} / \mathrm{g}$
Nickel	Water	SS10	200.7	ICP	$34.3 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$12.6 \mu \mathrm{~g} / \mathrm{g}$
Potassium	Water	SS10	200.7	ICP	$375 \mu \mathrm{~g} / \mathrm{L}$
	Soll	JS16	SW 6010	ICP	$37.5 \mu \mathrm{~g} / \mathrm{g}$
Selenium	Water	SD21	270.2	GFAA	$3.02 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JD15	SW7740	GFAA	$0.25 \mu \mathrm{~g} / \mathrm{g}$
Silver	Water	SD23	272.2	GFAA	$0.25 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JD18	SW 7761	GFAA	. $025 \mu \mathrm{~g} / \mathrm{g}$
	Water	SS10	200.7	ICP	$4.6 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$2.5 \mu \mathrm{~g} / \mathrm{g}$
Sodium	Water	SS10	200.7	ICP	$500 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$150 \mu \mathrm{~g} / \mathrm{g}$
Thallium	Water	SD09	279.2	GFAA	$6.99 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JD24	SW846 7841	GFAA	$0.5 \mu \mathrm{~g} / \mathrm{g}$
Vanadium	Water	SS10	200.7	ICP	$11.0 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$13 \mu \mathrm{~g} / \mathrm{g}$
Zinc	Water	SS10	200.7	ICP	$21.1 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$30.2 \mu \mathrm{~g} / \mathrm{g}$
Semivolatile Organic Compounds	Water	UM18	625	Extraction,GC/MS	See POP
	Soil	LM18	SW 8270	Extraction,GC/MS	See POP

Table D-1
Summary of Analytical Parameters
aOC 57, 63AX, and 69W Remedial Investigation Fort Devens, Massachusetts

PARAMETER	Mathix (SOIL,WAIER)	USAEC METHOD NUMBER	Equivalent USEPA METHOD NUMBER	METHOD DESCRIPTION	LABORATORY/ ARMY-CERTIFIED Reporting Limit
Volatile Organic Compound	Water	UM20	624	Purge and Trap, GC/MS	See POP
	Soil	LM19	SW 8240	Purge and Trap, GC/MS	See POP
Pesticides/PCBs	Water	UH13	608	Extraction, GC	See POP
	Soil	LH10	SW 8080	Extraction, GC-EC	See POP
GRO	Water	No Certified Method	Modified 8015	GC/FID	$400 \mu \mathrm{~g} / \mathrm{L}$
	Soil	No Certified Method	Modified 8015	GC/FID	$8 \mu \mathrm{~g} / \mathrm{g}$
DRO	Soil	No Certified Method	Modified 8015	GC/FID	$8 \mu \mathrm{~g} / \mathrm{g}$

Notes:

POP	$=$	Project Operations Plan; Fort Devens, Massachusetts, Data Item A004/A006; U.S. Army Environmental Center; Aberdeen Proving Ground, Maryland; May 1995.
SW	$=\quad$ EPA "Test Methods for Evaluating Solid Wastes", SW-846, September 1986	
GRO	$=$	Gasoline Range Organics
DRO	$=$	Diesel Range Organics

Table D-2
Elements Detected in Soil Method Blanks
1995 AOC 57, 63AX, and 69W Remedial Investigation Fort Devens, Massachusetts

Element	Frequency of Detiction	Concentation Range ($0 \mathrm{~g} / \mathrm{g}$)	$\begin{gathered} \text { CRL } \\ (\mu \mathrm{g} / \mathrm{g}) \end{gathered}$
Aluminum	3/3	482-520	14.1
Barium	3/3	8.73-9.51	29.6
Calcium	3/3	235-269	59.0
Copper	1/3	1.01	58.6
Iron	3/3	955-1030	50.0
Lead ${ }^{1}$	3/3	0.756-0.816	
Potassium	3/3	179-198	37.5
Magnesium	3/3	130-150	50.0
Manganese	3/3	21-28.9	0.275

${ }^{1}=\quad$ Results from GFAA. Lead was also analyzed by ICP but all results were below the CRLs.

Table D-3
vocs Detected in Method Blanks for Water
1995 AOC 57, 63AX, and 69 W Remedial Investigation Fort Devens, Massachusetts

compound	FREQUENCY of Detection	Concentration Range (ug/)	$\begin{gathered} \text { CRL } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$
Acetone ${ }^{1}$	1/7	17	13
Methylene Chloride ${ }^{1}$	1/7	5.7	2.3
Chloroform ${ }^{1}$	1/7	2.1	0.5

${ }^{1}=$ Data from method blanks analyzed during the 1995 Field Investigation.

Table D-4
sVoCs Detected in Water Method Blanks
-
1995 AOC 57, 63AX, 69W Remedial Investigation fort Devens, Massachusetts

Compound	Frequency of Betection	Concemtration Range $(\mu \mathrm{g} / \mathrm{L})$	$\begin{gathered} \mathrm{CRL} \\ (\mu \mathrm{~g} / \mathrm{L}) \end{gathered}$
Target SVOCs			
Diethyl phthalate ${ }^{1}$	1/5	2.2	2
bis(2-ethylhexyl) phthalate ${ }^{2}$	1/3	400	4.8
SVOC TICs			
Dioctyl adipate ${ }^{1}$	1/5	20	Not determined
Toluene ${ }^{1}$	1/5	3	Not determined

${ }^{1}=$ Detected in method blanks analyzed during the 1995 Field Investigation.
${ }^{2}=$ Detected in method blanks analyzed during the 1996 Round 2 Groundwater sampling event.

Table D-5
SVOCs Detected in Method Blanks for Soil
1995 aOC 57, 63AX, 69W Remedial Investigation fort Devens, Massachusetts

Compound	Frequency of DETECTION	Concentration Range (g / g)	$\begin{aligned} & \text { CRL1. } \\ & (\omega \mathrm{g} / \mathrm{g}) \end{aligned}$
Target SVOCs			
di-n-butyl phthalate ${ }^{1}$	1/12	0.08	0.061
SVOC TICs			
nonacosane ${ }^{1}$	1/12	0.3	Not determined

${ }^{1}=$ Detected in method blanks analyzed during the 1995 field investigation.

Table D-6

- Elements Detected in Rinse Blanks

1995 AOC 57, 63AX; 69W Remedial Investigation Fort Devens, Massachusetts

Elifment	Frequency of Detection	concenimation Range (ug/L)	CRL (ug/L)
Mercury	2/6	0.242-0.463	0.243
Lead ${ }^{1}$	1/6	1.63	1.37
Iron	4/6	70.5-543	38.8
Potassium	1/6	755	375
Manganese	1/6	3.6	2.75

${ }^{1}=$ Lead analyzed by graphite furnace atomic adsorption

Table D-7

- Vocs Detected in Rinse blanks

1995 AOC 57, 63AX, 69W Remedial Investigation fort Devens, Massachusetts

Compound	Frequency or Detection	CONCENTBATION range ($н \mathrm{~g} / \mathrm{M})$	$\begin{aligned} & \text { cRI } \\ & (\mathrm{Lg} / \mathrm{L}) \end{aligned}$
1,1,1-Trichloroethane	5/6	1.2-2.4	0.5
Acetone	2/6	18	13
Carbon Tetrachloride	1/6	1.2	0.58
Chloroform	3/6	0.59-1.7	0.5
Methylene Chloride	5/6	4-9.3	2.3

1995 AOC 57, 63AX, 69W REMEDIAL INVESTIGATION Fort Devens, Massachusetts

Compound	Frequency or betection	CONCENTRATION Range (ug/L)	$\begin{gathered} \text { CRI } \\ (\mathrm{gg} / \mathrm{l} \end{gathered}$
Target SVOCs			
Bis (2-ethylhexyl) phthalate	4/6	6.1 to 14	4.8
Benzyl alcohol	1/6	7.4	0.72
SVOC TICs			
N,N-diethyl-3-methylbenzamide	1/6	9	Not Determined
benzyl adipate	1/6	40	Not Determined
unknown non-target SVOCs	1/6 to $3 / 6$	4-10	Not Determined

Table D-9
vocs Detected in Trip Blanks
1995 AOC 57, 63AX, 69W Remedial Investigation fort Devens, Massachusetts

Compound	Frequency or Detection	Concentration Range ($\mathrm{g} / \mathrm{L} / \mathrm{I})$	CRL $(\mu \mathrm{g} / \mathrm{L})$
Target VOCs			
Carbon Tetrachloride ${ }^{1}$	1/16	2.3	0.58
Tetrachloroethene ${ }^{1}$	1/16	3.4	1.6
Chloroform ${ }^{1}$	1/6	3.5	0.5
Methylene Chloride ${ }^{1}$	9/16	2.5-5.6	2.3
Methylene Chloride ${ }^{2}$	1/2	2.7	2.3
Acetone ${ }^{2}$	1/2	14	13
VOC TICs			
Hexane ${ }^{1}$	1/16	6	Not Determined

${ }^{1}=$ Detected in trip blanks analyzed during the 1995 Field Investigation.
${ }^{2}=$ Detected in trip blanks analyzed during the 1996 Round 2 Groundwater sampling event.

TABLE D-10
Chemical Quality Control Report
Installation：Fort Devens，MA（DV）

MS／MSD

Percent
ゅத்

v v
莫号范

$8{ }^{88}$
$\infty \omega \boldsymbol{\omega} \omega \boldsymbol{\omega} \boldsymbol{\omega} \boldsymbol{\omega}$
$\begin{array}{lll}0 & 0 & m \\ 0 & \infty & 0 \\ 0 & 0 \\ \text { M }\end{array}$
．
品

Method Description

Chemical quality Control Report Inatallation: Fort Devens, MA (DV)

Chemical Quality Control Report Installation: Fort Devens, MA (DV)
Group 4 Sites

Ms/MSD

avg
minimum minimum

gegsegs

! ! ! ! ! ! ! ! ! ! ! !

 $\stackrel{0}{0}$

geg

Chemical quality Control Report
Installation：Fort Devens，MA（DV） Group 4 Sites

v v v v

 DV4S＊147
 －1
$\stackrel{y}{5}$
0
0

Lab

N in n ñ

IRDuIs Pield sampla

IRDMIS

Mathod Dascription

 $\begin{array}{ll}\varphi & N \\ m & 0 \\ 0 & g\end{array}$

 19－SBP－95

 8888888888888888 ＊
 avg

票异顑

8

＊

 ウَ

IRDMIS

皃自

Chemical quality Control Report
Installation：Fort Devens，MA（DV） Group 4 sit

MS／MSD

呂
\square「 $\stackrel{\mathrm{m}}{\dot{\circ}} \mathrm{o}$

家 in
$\dot{+}$
$\dot{\infty}$
 ©
$\dot{\circ} \dot{\circ} \dot{\circ} \dot{\sim}$ $\stackrel{\otimes}{\infty}$
unite

8
が6
$\stackrel{6}{0}$
$\stackrel{0}{0}$
\qquad

$\stackrel{7}{\square}$

n
\vdots
\dot{H}
\vdots
\vdots

$\dot{\sim}$	

	\%88080

$8 \cdot 5$	－ 86	Den	29800．	＞	ع8zo．	1980．	56－AON－90	56－d8s－Ľ	axan	Lri＊stac	6teolsxa	yaosi	OTHT	
$9 \cdot z$	6.601	Den	T9800＊	＞	¢ヶ¢0．	гโย0．	56－500－82	56－dxs－tz	asan	tzt＊stad	009tLsx	yaosi	Othr	
$9 \cdot 2$	－ 2 zit	en	T9500．	＞	z5E0．	żeo	56－520－8z	56－d9s－tz	anan	$\tau て \tau+8 ъ \Omega \Omega$	$0097 \angle 5 \times 8$	yaosi	0thl	
$9 \cdot 81$	6.54	on	2980．0．	＞	z0¢0－	$8660{ }^{\circ}$	56－ז20－02	56－d8s－tz	anan	5it＋S5Aa	205tLsx	yaosi	Othi	
$9 \cdot$ ¢	5．T6	nem	19800．	＞	ヶ9¢0．	86 ¢0．	56－530－02	56－das－tz	anan	sti＋stad	z0stLsx	ycosi	OthI	
5.6	$0 \cdot 26$	50	19400．	＞	tzzo	＜oza＊	56－500－8t	56－das－6I	атan	sot＊stia	9050LSx9	yaosi	01H］	
5.6	$2 \cdot 62$	פ®	19800．	＞	£ヶ\％\％	lozo	56－520－81	96－das－6t	atan	sot＋stid	9050L5x9	yaosi	Othr	
	T－90\％											unmixem		
	5．79											иппттит¢		
	6.58											sat		
												＊＊＊＊＊＊＊		
$\varepsilon \cdot 5$	＋18	sen	85900.	＞	9950	sozo	56－axs－0¢	S6－485－โI	a0an	T6¢＊Sヶsa	00zomzxa	Todh	${ }^{\text {othr }}$	
E．s	－ 58	Don	8โ900．	＞	slto．	sozo	56－a85－0¢	56－d9s－tr	－${ }^{\text {dan }}$	т6£＊5ヶла	00zomzxa	тจah	OTHT	
0.4	$0 \cdot 201$	Don	85900．	＞	8970	6540°	56－520－80	56－395－EI	वxan	I6I＊Stsd	oosolsxa	TЈан	0tht	
$0 \cdot 1$	－．90才	mon	8г900．	＞	＜8v0．	6540°	56－120－80	56－dxs－ET	axan	โ6โ＊S「ла	oosolsxa	Tכd	OTHT	
－¢	E． 69	Dea	8 ¢900．	＞	＜9\％0．	trzo	56－10N－90	56－das－Ľ	©xan	Lpt－5ヶлa	6tE0Lsxa	Toar	OtHT	
－$\cdot \boldsymbol{\varepsilon}$	E．6L	Dom	85900°	＞	1650.	troo	56－now－90	56－das－Lz	oxan	L？I＊Stsd	6IE0L5x	TכdH	0thi	
－ 01	$8 \cdot \mathrm{E6}$	Don	8 8900．	$>$	s6ta	8020	56－500－8z	56－dis－tz	andn	T2T＋Stso	009TLSx	TDat	0 OHI	
C－0I	E．301	dom	$85900 \cdot$	＞	＜tzo	800°	56－500－8z	56－das－tz	ansm	тzt＋b゙sa	009tlsxa	Todh	OTHT	
T•8z	5．79	＋om	8 8900．	$>$	\％＜20．	s9zo－	56－120－02	56－dxs－Iz	and	sitastad	zostlsx	todi	OTHI	
T．8z	L－s8	500	85900.	＞	＜zzo．	s9zo．	S6－－200－02	56－485－5z	anan	Sti＋stad	zostlsx		OTHI	
\cdots	9．9L	man	85900.	＞	＜sto	sozo－	56－500－8T	56－485－6T	aun	sotastia	905025xa	tode	Otht	
\cdots	－ 28	Den	82900.	＞	6950	sozo	56－520－8t	56－das－6T	वum	sot＋sbia	9090L5xa	тכ¢	0tht	
	0.66											unnuтxem		
	5．t9													
	6.08											bine		
$6 \cdot 7$	$6 \cdot$ 28	oen	＜5900．	＞	L9t0．	Fozo．	S6－ags－0¢	56－dys－II	adan	I6E＊Sba	00zomzxa	Nมang	OTHI	
$6 \cdot 2$	E．78	sen	L5900．	＞	z＜to．	7020－	56－ags－ox	56－¢95－tı	aban		00zomzxa	Nтang	OTHT	
$2 \cdot 5$	ع． 69	Den	Ls900．	＞	вгго．	6s50．	56－500－80	56－dxs－ยI	बxan	$\tau 6 \tau * 5 b \wedge a$	00solsxa	ndang	OLHT	
z＇s	$0 \cdot \mathrm{EL}$	¢	＜s900．	＞	sezo．	6spo	56－520－80	56－895－દ์	© ${ }^{\text {dan }}$	T6T＋Sちsa	0050L5xa	nades	0 THT	
L＇s	2．78	Den	L5900．	＞	عоzo	trzo	56－10N－90	56－das－くz	axan		6IE0Lsxa	nadas	0 THI	
L＇s	z．68	sen	Ls900．	＞	stzo．	โъて＊	56－nck－90	56－das－Lz	axan		6זE0Lsxa	nadang	OTHI	
$\varepsilon \cdot 8 \tau$	s．rb	sen	L5900．	＞	ssio．	8020	56－520－82	56－895－tz	वnan	tet＋sbsa	009 TLSx	ndang	0 THI	
ع． 8τ	0.66	sen	$45900{ }^{\circ}$	7	9070	80z0＊＊	56－500－82	S6－ats－tz	वnan	12t＊stad	009tLSx	nadas	0 THI	
ady	Kresosey 7uosxod	日于ج吅	－nten ordures teuf．5po		onres	$\begin{aligned} & \text { onten } \\ & \text { oypdd } \end{aligned}$			701	qет	zequma －Tcurs PLota SIWCTI	$\begin{aligned} & \text { Ouren } \\ & 7 \mathrm{BOII} \end{aligned}$		
							asw／sw							
	．					$\begin{gathered} \text { (} \Lambda a) \text { YW } \\ 7 \text { Yoday } \end{gathered}$	Fs is dnax 1ad 7xoa ：uo 10 人）	ュetrejen อรฺุจัด						

Method Description	IRDMIS Method Code	Test Name	IRLMIS Field Sample Number	Lab Number	Lot	Sample Date	Analyais Dato	Spike Value
	LH10	ISODR	BX570319	DV4S*147	UPXD	27-sEP-95	06-NOV-95	. 0361
	LH10	ISODR	DX570500	DV4S*191	UFRD	13-SEP-95	08-0CT-95	. 0668
	LH10	ISODR	DX570500	DV4S*191	UPRD	13-SBP-95	08-OCT-95	. 0688
	LH10	ISODR	DXZwo200	DV4S*391	UPQD	11-s8P-95	30-SEP-95	. 0305
	LH10	ISODR	DXZw0200	DV4S*391	UPQD	12-SEP-95	30-SBP-95	. 0305

		avg						
		minimum						
	LH10	LIN	EX570506	DV4S*105	UPTD	19-3EP-95	18-OCT-95	. 0205
	LH10	LIN	RX570506	DV4S*105	UFTD	19-SBP-95	18-OCT-95	. 0205
	LH10	LIN	EX571502	DV4S*115	UFUD	21-SBP-95	20-OCT-95	. 0265
	LH10	LIN	EX571502	DV4S*115	UPUD	21-SEP-95	20-OCT-95	. 0265
	LH10	LIN	EX571600	DV4S*121	UFVD	21-SEP-95	28-OCT-95	. 0208
	LH10	LIN	Ex571600	DV4S*121	UFVD	21-SEP-95	28-OCT-95	. 0208
	LH10	LIN	BX570319	DV4S*147	UTXD	27-SEP-95	06-NOV-95	. 0241
	LH1O	LIN	BX570319	DV4S*147	UPXD	27-3BP-95	06-NOV-95	. 0241
	LH10	LIN	DX570500	DV4S*192	UPRD	13-SEP-95	08-OCT-95	. 0459
	LH10	LIN	DX570500	DV4S*191	UPRD	13-SEP-95	08-OCT-95	. 0459
	LH10	LIN	DXZW0200	DV4S*391	UPQD	11-sBP-95	30-SBP-95	. 0204
	LH10	LIN	DXZNO200	DV4S*391	UPQD	11-SEP-95	30-S8P-95	. 0204

		minimum						
		maximum						
	LH10	MEXCLR	EX570506	DV4S*105	UFTD	19-SBP-95	18-OCT-95	. 205
	LH10	MEXCLR	EX570506	DVAS*105	UFTD	19-SBP-95	18-OCT-95	. 205
	LH10	MEXCLR	EX571502	DV4S*115	UPUD	21-S8P-95	20-OCT-95	. 265
	LH10	MEXCLR	EX571502	DV4S*115	UFUD	21-SBP-95	20-OCT-95	. 265
	LH10	MEXCLR	EX571600	DV4S*121	UFVD	21-SBP-95	28-OCT-95	. 208
	LH10	MBXCLR	EX571600	DV4S*121	UFVD	21-SEP-95	28-OCT-95	. 208
	LH10	MEXCLR	BX570319	DV4S*147	UFXD	27-SEP-95	06-NOV-95	. 241
	LH10	MEXCLR	BX570319	DV4S*147	UFXD	27-SEP-95	06-NOV-95	. 241
	LH10	MEXCLR	DX570500	DV4S*191	UFRD	13-SEP-95	08-OCT-95	. 459
	LH10	MEXCLR	DX570500	DV4S*191	UFRD	13-38P-95	08-OCT-95	. 459

Chemical Quality Control Report
Installation: Fort Dovens, MA (DV) Group 4 Sites
Ms/MsD

Method Dascription	IRDMIS Method Code	Test Name	TRDNIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	$<$	$\begin{array}{r} \text { Original } \\ \text { Sample } \\ \text { Value } \end{array}$	Units	Percent Recovery	RPP
	LH10	MEXCLR	DXZW0200	DV4S*3.91	UFQD	11-SBP-95	30-38P-95	. 203	. 176	<	. 0711	veg	86.7	13.3
	LH10	MEXCLR	DXZW0200	DV4S*391	UPQD	11-SEP-95	30-3BP-95	. 203	. 154	$<$. 0711	UGG	75.9	13.3
		avg											76.8	
		minimua											33.6	
		maximum	.										101.5	
	LH10	PPDDT	EX570506	DV4S*105	UFTD	19-SBP-95	18-OCT-95	. 0205	. 0112	$<$. 00707	veg	54.6	4.6
	LH10	PPDDT	EX570506	DV4S*105	UFTD	19-SBP-95	18-OCT-95	. 0205	. 0107	$<$. 00707	UGG	52.2	4.6
	LH10	PPDDT	BX571502	DVAS*115	UPUD	21-SEP-95	20-OCT-95	. 0265	. 028	$<$. 00707	UEG	105.7	15.4
	LH10	PPDDT	EX571502	DV4S*115	UFUD	21-SEP-95	20-OCT-95	. 0265	. 024	$<$. 00707	UGG	90.6	15.4
	LH10	PRDDT	EX571600	DV4S*121	UFVD	21-SEP-95	28-OCT-95	. 0208	. 0319	$<$. 00707	veg	153.4	6.5
	LH10	PPDDT	EX571600	DV4S*121	UPVD	21-SEP-95	28-OCT-95	. 0208	. 0299	$<$. 00707	UEG	143.8	6.5
	LH10	PPDDT	BX570319	DV4S*147	UFXD	27-SBP-95	06-NOV-95	. 0241	. 0216	$<$. 00707	USG	89.6	2.3
	LH10	PPDDT	Bx570319	DV4S*147	UFXD	27-sEP-95	06-NOV-95	. 0241	. 0211	<	. 00707	UGG	87.6	2.3
	LH10	PPDDT	DX570500	DV4S*191	UFRD	13-SEP-95	08-OCT-95	. 0459	. 014		. 0363	ueg	30.5	0.0
	LH10	PPDDT	DX570500	DV4S*191	UFRD	13-SBP-95	08-OCT-95	. 0459	. 014		. 0363	UGG	30.5	0.0
	LH10	PPDDT	DXZW0200	DV4S*391	URQD	11-sEP-95	30-SBP-95	. 0204	. 034		. 021	Usa	166.7	38.6
	LH10	PPDDT	DXZw0200	DV4S*391	UPQD	11-SEP-95	30-SEP-95	. 0204	. 023		. 021	UGG	112.7	38.6

		avg											93.1	
		minimum											30.5	
		maximum						.					166.7	
	LH16	PCB016	EX570506	DV4S*105	NGYB	19-SEP-95	10-OCT-95	. 273	. 205	$<$. 0666	USG	75.1	28.4
	LH16	PC8016	EX570506	DV4S*105	NGYB	19-SBP-95	10-OCT-95	. 273	. 154	$<$. 0666	UEG	56.4	28.4
	IH16	PCB016	EX571502	DV4S*115	NGZB	21-SEP-95	21-OCT-95	. 354	. 315	$<$. 0666	UGG	89.0	8.3
	LH16	PCB016	Ex571502	DV4S*115	NGZE	21-SEP-95	21-OCT-95	. 354	. 29	$<$. 0666	UGG	81.9	8.3
	LH16	PCB016	KXX572500	DV4S*125	ngap	22-SEP-95	03-NOV-95*	. 276	. 197	<	. 0666	UGG	71.4	3.1
	LH16	PCB016	BX572500	DV4S*125	NGAF	22-SBP-95	03-NOV-95	. 276	. 191	$<$. 0666	UGG	69.2	3.1
	LH16	PCB016	BX570319	DV4S*147	NGCF	27-SEP-95	02-NOV-95	. 321	. 292	$<$. 0666	UEG	91.0	4.6
	2H16	PCB016	BX570319	DV4S*147	NGCP	27-SBP-95	02-NOV-95	. 321	. 279	<	. 0665	UEG	86.9	4.6
	[H16	PCB016	DX570500	DV4S*191	NGWE	13-SEP-95	06-0CT-95	. 612	. 422	$<$. 0666	UEG	69.0	17.5
	LH16	PCB016	DX570500	DV4S*191	NGWB	13-SEP-95	06-OCT-95	. 612	. 354	$<$. 0666	USG	57.8	17.5
	LH16	PCB016	DX2W0200	DV4S*391	NGVB	11-SEP-95	03-OCT-95	. 271	. 227	<	. 0666	UGG	83.8	3.1
	LH16	PCB016	DXZW0200	DV4S*391	NGVE	11-SBP-95	03-OCT-95	. 271	. 22	$<$. 0666	UEG	81.2	3.1

Chemical Quality Control Report
Installation: Port Devens, MA (DV) Group 4 Sites

MS/MSD

Method Deacription	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	$\begin{aligned} & \text { Analysis } \\ & \text { Date } \end{aligned}$	Spike Value	Value	<	$\begin{array}{r} \text { Original } \\ \text { Sample } \\ \text { Value } \end{array}$	Units	Percent Recovery	RPD
SE IN WATRR BY GEAA	SD21	SE	MXAX02XI	DV4W*233	XCNP	31-0CT-95	27-NOV-95	37.5	37.5	<	3.02	UGL	100.0	1.1
SE IN WATER EY GFAA	SD21	SB	MXAX02X1	DV4W*233	XCNP	31-OCT-95	27-NOV-95	37.5	37.1	$<$	3.02	UGL	98.9	1.1
SE IN WAIER BY GPAA	SD21	SB	MX2*10x3	DV4W*271	XCQP	02-NOV-95	30-NOV-95	37.5	34.8	$<$	3.02	UGL	92.8	4.7
SE IN WATER BY GFAA	SD21	SB	Mx2w10x3	DVAW*271	XCQP	02-NOV-95	30-NOV-95	37.5	33.2	$<$	3.02	UGL	88.5	4.7

		avg											96.7	
		minimum											88.5	
		maximum											101.3	
AS IN WATER BY GRAA	SD22	AS	HX5701X1	DV4F*167	YCRP	30-OCT-95	29-NOV-95	37.5	39.4	$<$	2.54	UGL	105.1	4.4
AS IN WATBR BY Gran	SD22	AS	MX5701x1	DV4F*167	YCRP	30-OCT-95	29-NOV-95	37.5	37.7	$<$	2.54	UGL	100.5	4.4
AS IN WATER BY GPAA	SD22	AS	MX5703x1	DV4F*171	YCSP	02-NOV-95	30-NOV-95	37.5	46		71	UGL	122.7	6.7
AS IN WATBR BY GRAA	SD22	AS	MX5703x1	DV4F*171	ycsp	02-NOV-95	30-NOV-95	37.5	43		71	UGL	114.7	6.7
AS IN WATER BY GRAA	SD22	AS	wx5705x	DV4F*204	ycmp	13-SEP-95	09-OCT-95	37.5	37.2		8.85	UGL	99.2	2.7
AS IN NATER BY GPAA	SD22	AS	wx5705xx	DV4F*204	YCNP	13-SBP-95	09-OCT-95	37.5	36.2		8.85	UGL	96.5	2.7
AS IN WATER BY GPAA	SD22	AS	MKAXO2X1	DV4F*233	YCRF	31-OCT-95	30-NOV-95	37.5	41.8		2.98	UGL	111.5	2.9
AS IN WATER BY GRAA	SD22	AS	MXAX02X1	DV4F*233	YCRF	31-OCT-95	30-NOV-95	37.5	40.6		2.98	val	108.3	2.9
AS IN WATER BY GRAA	SD22	AS	NX2W10x3	DV4F*271	YCus	02-NOV-95	30-NOV-95	37.5	48		160	06L	128.0	4.3
AS IN WAIER BY GRAA	SD22	AS	NXEW10x3	DV4F*271	YCuF	02-NOV-95	30-NOV-95	37.5	46		160	UGL	122.7	4.3
AS IN WATER BY GPAA	SD22	AS	NX5701x1	DV4W*167	YCRP	30-OCT-95	29-NOV-95	37.5	40.2		24.5	UGL	107.2	2.8
AS IN WRTER BY GRAA	SD22	AS	MX5701x1	DV4W*167	YCRP	30-OCT-95	29-NOV-95	37.5	39.1		24.5	UGL	104.3	2.8
AS IN WATER BY GFAA	SD22	AS	MX55703X1	DV4W*171	Yesp	02-NOU-95	30-NOV-95	37.5	45		74	UGL	120.0	0.0
AS IN MATER BY GEAA	SD22	As	. $\mathrm{M} \times 5703 \mathrm{X1}$	DV4W*171	YCSF	02-NOV-95	30-NOV-95	37.5	45		74	UGL	120.0	0.0
AS IN WATER BY GFAA	SD22	AS	nxx5705xx	DV4W*204	YCNP	13-SEP-95	09-OCT-95	37.5	36.7		9.17	UGL	97.9	3.6
AS IN WATER BY GFAA	SD22	As	wx55705xx	DV4W*204	YCNP	13-SBP-95	09-OCT-95	37.5	35.4		9.17	UGL	94.4	3.6
AS IN watir by gran	SD22	AS	MXAX02X1	DV4W*233	YCRF	31-OCT-95	30-NOV-95	37.5	39.1		5.22	UGL	104.3	. 5
AS IN WATER BY GEAA	SD22	As	MXAX02X1	DV4W*233	YCRP	31-OCT-95	30-NOV-95	37.5	38.9		5.22	UGL	103.7	. 5
AS IN HATER EY GPAA	SD22	AS	MX2*10x3	DV4W*271	YCus	02-NOV-95	30-NOV-95	37.5	45		180	UGL	120.0	11.8
AS IN WATER BY GRAA	SD22		MXZW10x3	DV4W*271	ycur	02-NOV-95	30-NOV-95	37.5	40		180	UGL	106.7	21.8
		\#\#t\#												
		avg											109.4	
		minimum											94.4	
		maximum											128.0	
SB IN WATER BY GPAA	SD2 8	SB	MX5701X1	DV4F*167	NFWD	30-OCT-95	29-NOV-95	80	77.4	<	3.03	UGL	96.8	. 9

IRDMIS
Method

 minimum
maximum

$$
\begin{aligned}
& 29-\mathrm{NOV}-95 \\
& 30-\mathrm{NOV}-95
\end{aligned}
$$

$$
9-\mathrm{NOV}-95
$$

$$
\begin{aligned}
& \text {-NOV-95 } \\
& \hline-0 C T-95
\end{aligned}
$$

$$
\begin{aligned}
& 10-0 C T-95 \\
& 10-07-95
\end{aligned}
$$

$$
\begin{aligned}
& 29-N O V-95 \\
& 29-N O V-95
\end{aligned}
$$

$$
\begin{aligned}
& 29-\mathrm{NOV}-95 \\
& 30-\mathrm{NOV}-95 \\
& 30-\mathrm{NOV}-95
\end{aligned}
$$

 $\varphi \omega \varphi \varphi \varphi \varphi \omega \varphi \omega$

Value	<	original Sample Value	Onits
76.7	<	3.03	vel
67.5	$<$	3.03	vol
59.6	<	3.03	vis
74.9	<	3.03	UGL
73.8	<	3.03	VGL
72.1	<	3.03	UGL
73	<	3.03	UGL
73.6	$<$	3.03	UGL
73.1	<	3.03	voi
71.7	<	3.03	UGL
66.1	$<$	3.03	VGL
62.6	<	3.03	UGL
69	<	3.03	UGL
71.2	$<$	3.03	UGL
64.3	$<$	3.03	UGL
72.6	$<$	3.03	UGL
60.9	<	3.03	VGL
72.8	<	3.03	UGL
70.4	<	3.03	UGL

\qquad

Chemical Quality Control Report Installation：Fort Devens，
Group 4 Sites

릉
H
म
म

 28－NOV－95
$28-\mathrm{NOV}$

$$
\begin{aligned}
& \text { 気号 } \\
& \text { 号 }
\end{aligned}
$$

in in in in in in in in
in min in in in in

MS／MSD
$\begin{aligned} & \text { Sample } \\ & \text { Date }\end{aligned}$
$\begin{aligned} & \text { eqcines } \\ & \text { pleta } \\ & \text { SIMCXI }\end{aligned}$

品

 ＊＊＊＊＊＊＊＊＊＊ avg
Method Description

最白自自首自自思

参

号号各会品品号品品品品

in in in in un in in in

NX5701x1	DV4F＊167	zPSP	30－0CT－95	27－1
5701x	DV4F＊167	28	30－0CT－95	7 －xov－95
5705x	DV4F＊20	zFL	13－sBP－95	03－OCT－95
5705xx	DV4F＊20	$z 8$	13－S8P－95	5
ax02x1	DV4P＊233	zPSF	1	5
Ax02x1	DV4F＊233	zP	31－0CT－95	27－20V－95
MXCZW10x3	DV4F＊271	2FVP	02－nov－95	27－NOV－95
CWN10x3	DV4P＊271	zF	02－NOV－95	7－N0V－95
Mxax08B1	DV4P＊451	2FT	03－NOV	28－N
Cax08B1	DV4		03 －NO	28－8

8888888888

 Value $<\quad \begin{array}{r}\text { Original } \\ \text { Sample } \\ \text { Value }\end{array}$

 $\stackrel{\square}{6}$

Field Sample Number	$\begin{aligned} & \text { Lab } \\ & \text { Number } \end{aligned}$	Lot	Sample Date	$\begin{aligned} & \text { Analyaia } \\ & \text { Date } \end{aligned}$	Spike Value
NX5701x1	DV4W*167	zfsp	30-OCT-95	27-k0v-95	500
MX5701x1	DV4W*167	zFSP	30-0CT-95	27-nov-95	500
wx5705xx	DV4W*204	zpLP	13-SBP-95	03-OCT-95	500
wx5705xx	DV4W*204	zpLp	13-sBP-95	03-OCT-95	500
mxax02x1	DV4W*233	zFSF	31-0CT-95	27-nov-95	500
MXAX02x1	DV4W*233	zFSP	31-OCT-95	27-nov-95	50
MXZN10X3	DV4W*271	zFVP	02-NOV-95	27-nov-95	500
mXZw10x3	DV4W*271	zfVF	02-NOV-95	27-nov-95	500
mxax08B1	DV4W*451	2FTP	03-NOV-95	28-nov-95	500
MXAX08B1	DV4W*451	zPTP	03-NOV-95	28-NOV-95	500

avg minimum maximum

 ! IRDMIS
Method

 （2）

IRDMIS				
Field				
Sample	Lab		Sample	Analysis
Number	Number	Lot	Date	Datke

$27-\mathrm{NOV}-95$
$27-\mathrm{NOV}-95$

28－NOV－95
$27-\mathrm{NOV}-95$
$03-$ OCT－95
03－0CT－95
03－©CT－95
$27-\mathrm{NOV}-95$
$27-\mathrm{NOV}-95$
$27-\mathrm{NOV}-95$

minimum
maximum

㚻品品罪思思兒思品

ได

Chemical Quality Control Report
Installation: Fort Devens, MA (DV) Group 4 sites
台:
0000000090

OOOOOONNOM $1 \times M N$
$0 \dot{0} \dot{0} 0$
0
 n
$\dot{0}$
\vdots
n
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 4 & 0 & 0 \\ 4 & 0 & 0 & 0\end{array}$ $\begin{array}{lll}0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1\end{array}$
2
3
$\stackrel{+}{\mathrm{N}}$ Original

00000000 OOOANO -0 0-0 0000 0

260000
 $v \vee$
 08
88
in
N

80
88
18
N

88
0
0 80
88
10
N 080
088
080

in 응 | 0 |
| :--- |
| 8 |
| 0 |
| 0 |
| 0 |
| 0 |

 08
88
8
8
0
n
N 000092
000092

000092 | 0 |
| :--- |
| 8 |
| 0 |
| 0 |
| 0 | 8

8
8
8
0
8

monomn	∞ ¢
	$\dot{8} \stackrel{1}{0}$
	，
	；

$\pm 00 \mathrm{OH}$

シーロー

بِّبٌ بٌ بٌ بٌ بٌ بٌ بٌ بٌ

S6－AON－80
S6－AON－80 56－ags－0z
56－dgS－0z
56－ACN－80

20－SBP－95
$09-\mathrm{NOV}-95$
$09-\mathrm{NOV}-95$

S6－ACN－ST

DV4N＊167 SDSD 30－OCT－95

$\begin{array}{lll}\text { DV4W＊204 } & \text { SDOD } & 13-\text { SBP－95 } \\ \text { DV4W＊233 } & \text { SDSD } & 31-O C T-95 \\ \text { DV4W＊233 } & \text { SDSD } & 31-O C T-95\end{array}$

DV4W＊271 SDTD 02－NOV－95
MX5701X1
MX5701X1
WX5705XX
WX5705XX
MXAX02X1
MXAX02X1
MXZW10X3
MXZW10X3
PCB016
PCB016
PCB016
PCB016
PCBO16
PCB016
PCB016
PCB016
\＃\＃\＃\＃\＃＊＊＊＊
minimum
maximum

Method Description Code

$\begin{array}{lllll} & & & \\ \text { MX5701X1 } & \text { DV4W＊167 SDSD } & 30-O C T-95 & 08-N O V-95 \\ \text { MX5701X1 } & \text { DV4W＊167 SDSD } & 30-O C T-95 & 08-N O V-95\end{array}$

n

のびムのに

T．5	2．LL	T08	\％20	$>$	988＊	s＊	56－ags－9z	S6－dgs－Et	amas		xxscolsxm	nacria	£โHم	
T•s	2•T8	Tan	\＄20＊	$>$	90＊＊	s．	56－a8s－92	56－dBs－EI	amar	toz＊M\＄Sa	XXS0L5xM	natig	Etho	
6°	$8 \cdot 98$	Ton	－ 200°	＞	を¢\％	s－	56－ACN－7I	56－500－0¢	gras	L9t＊MトAO	ExTOLSXN	nygra	Ethn	
6°	9． 48	Tin	\％ 20	＞	8E＊＊	s ．	56－ACN－7L	56－LT0－0E	gaax	L9T＊MをAの	LXTOLSXN	negria	عthn	
	2．LL							－				mamprem		
	$0 \cdot L 5$											unumpuex		
	L． 29	．										．Gne		
												＊＊＊＊＊＊＊＊＊＊		
$8 \cdot 2$	0.25	Tm	عzo＊	＞	saz	s－		56－son－zo	93aI	TLZ＊MFAの	Exothzxw	AISNHE	عโ\％ก	
$8 \cdot 2$	9．19	Tan	عとo ${ }^{\circ}$	＞	$80{ }^{\text {－}}$	s ．	56－AON－t 1	56－10N－20	gวal	TLZ＊MFムの	Exotmzxa	ajsnar	ع ¢\％	
I＇z	8.99	Ton	ع $20{ }^{\circ}$	＞	－ε－	5.	56－AON－7t	56－100－TE	gacu	$\varepsilon \varepsilon \tau+M \beta \Omega a$	IXZOX6XN	arsnge	عโtn	
I＇z	2•89	7×0	ع 20	＞	でと．	5 －	S6－now－8T	56－บจ0－โع	gacil		Ixzoxexw	arsma	عโHก	
［．9	9＊2L	Tan	$\varepsilon z 0^{\circ}$	＞	ع9¢ ${ }^{\circ}$	s ．	S6－a85－9\％		amal	¢OZ＊MFSa	xxsolsx	arisker	Ethn	
I．9	$\boldsymbol{z} \cdot L$	Ton	ع $20 \cdot$	＞	988＊	5 －	56－d8s－9z	56－d8s－$\frac{1}{}$	amas	Foz＿mbad	xxsolsx	atiskeg	عthn	
6.	$8 \cdot 89$	Tm	عzo＊	＞	＊\％${ }^{\circ}$	5 －	S6－now－yI	56－工20－0¢	gacis	L9tamind	TxtoLsxh	arsnag	Ethn	
6.	＊． 69	Im	E20＊	＞	くもE	s ．	S6－AON－7T	56－エフO－0¢	！	L9T＊MFAI	txiocsx	atsexa	ETH\％	
	9－02I											mimitxeu		
	$0 \cdot 67$											unmTupw		
	\％． 66		．				．					Gne		
												＊＊＊＊＊＊＊＊＊＊		
s．ze	0.89	Tan	8160°	＞	E®	5 －	56－son－ti	56－AON－z0	Eフal	TLZ＊M＊S	ExOTmzxw	NHCTH	عthn	
s＇zE	0.67	TS0	8160°	$>$	siz	5.	56－sati－7I	56－MON－z0	Exat	TLZ＊Mbлの	ExOTmzxW	NAGTH	عเนก	
s ${ }^{\text {c }}$	$0.6 \tau 5$	T0n	8560°	＞	569 ${ }^{\circ}$	s．	56－ncN－7I	56－50－TE	gaax	عEz $*$ Mbлa		NagTy	عт\％ก	
s°	9.651	Tin	8160°	＞	865°	s ．	56－A0x－7t	56－100－IE	gada	EEZ＊MねAd	Ixzoxxxw	NJCTY	عโ\％	
\％＇I	0.66	Tin	8160°	$>$	565°	5.	56－dgs－92	56－d8s－ET	aral	¢0z＊mbsa	joxsolsxa	NSOTY	¢ ¢\％	
\boldsymbol{z} I	\％．00t	ITO	8160°	$>$	505＊	$\mathrm{s}^{\text {．}}$	56－das－92	56－ats－ET	amar．	toz＊Mrsa	xxscolsxy	Nraty	عthn	
$\varepsilon \cdot \tau$	8．LIt	TEn	8160°	＞	685°	s ．	56－san－7I	56－【จO－0¢	gacur	L9I＊M＊AO	rxroossw	negre	¢т\％ก	
$\varepsilon \cdot \tau$	9－02T	700	8160°	$>$	E09	5.	56－AON－\％T	56－【フO－0E	8gat	L9tambsa	TXT0LSEN	Neaty	ELH	
	8．701											mimixem		
	$0 \cdot 25$											umuptuṭu		
	$5 \cdot 28$											Gne		
	－											＊＊＊＊＊＊＊＊＊＊		
5．9	0＊ 2%		Ezo	＞		5 －	S6－MON－7T	56－MON－z0	grax	тLZ＊MFsa	Exothzxa	atsery	Ethn	
S．9	8．7\％	Ton	ع $20 \cdot$	＞	－ 2 －	s ．	S6－ACN－7I	56－MON－z0	日xal	$\tau \angle \tau+M\rangle \Lambda \square$	Exotmzxw	atskry	عthn	
वay	Krenovey 74osxed	ตวศน	oncen －Tdures 		onten	$\begin{aligned} & \text { enten } \\ & \text { oyfüs } \end{aligned}$	－7ed sfanteus	ozed －Tảures	701	$\begin{aligned} & \text { Iequrnw } \\ & \text { qey } \end{aligned}$	תəqum ofciunes profa SIWTAI	$\begin{aligned} & \text { euren } \\ & \text { 780.L } \end{aligned}$	opos роч7ек SIMCOI	บof7dfxosed poyzew
							CSW／8W							
	－		．			$\underset{7 \times 00}{ }$	7s \＆dnoxp ied 7rod ：u 	реттедвит 				．		

TABLE D-11

Chemical Quality Control Report
Installation: Port Devens, MA (DV) Group 4 Sitea,
MS/MSD

Value	Original Sample Value Units	
40800	30400	UGL
39600	30400	UGL
202000	76700	UGL
200000	76700	UGL
30700	76700	UGL
22700	76700	UGL
40400	58000	UGL
39600	58000	UGL
78400	51200	UGL
78400	51200	UGL

 $v \vee v \vee \vee \dot{v}$ 률 117000
 응

ALKALITNITY
ALKALINITY
ALKALINITY
ALKALINITY
ALKALINITY
ALKALINITY

IIIII

IRDMIS
Field
Sample
Number

: IRDNIS
Method
Code

Method Description HARDNBSS II 츤
「「「「mmoommmmbe

\qquad

 Chemical Quality Control Report Installation：Fort Devens，MA（DV）
Group 4 Sitea
 H品
\qquad
 vuvuruvururv
¢
mintioniminiminimin

镸直
\pm

Analysis	Spike
Date	Value

$13-$ PBB－96
$14-$ FBB－9
14－PEB－96

署罥署品思思男思

뭉
H

 ल்

$\vee v$

N

最最最景
 ＝ maximum
品罟品㽞品

Method Description

 METALS IN WATBR BY ICAP METALS IN NATBR BY ICAP

99
 Percen
6
6
6
0
0 ${ }^{\circ}$

 $\stackrel{\circ}{8}{ }^{\circ}$

 $\stackrel{\infty}{\infty} \stackrel{\infty}{\infty} \stackrel{\infty}{\infty}$ $\dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\infty} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\infty} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega}$

Chemical Quality Control Report
Installation: Port Devens, MA (DV) Group 4 sites MS/MSD

sIWTAI

음움

BEBEBEEBEBBBE

 Chemical quality Control Report
Installation: Port Devens, MA (DV) Group 4 Sites

08
88
80
0

\qquad

 2x20ణ๐xw
 $\stackrel{2}{2}$ IRDPIS
Method
 *
IRPMISLab

Field
Sarple
Number
--...-.

 MXAX03X2 MXAXO3X2 MXZW12X4
MXZW12X4 MXG302X2 axG302×2
axAX03x2
exeoxte

MX2N12X4
MX5708B2
MX5708B2
MX5708B2

Method Descxiption

授

avg
minimum
maximum

 100.3
8 B .5
113.0

 $v \vee v \vee \vee v \vee v \vee v \vee \vee \vee v$

NI
$\mathbf{* * *}$
ninimun

Chemical Quality Control Report Installation：Fort Devers，

む
联
0
0
0
0
0
0

©

包思

蔦思 IRDNIS
Method
Code

Method Description

品畐

Chemical Quality Control Report
Installation：Fort Devens，MA（DV） Installation：Fort Devens，
Group 4 Sites
MS／MSD

000

19
Percent

00009000 ！！！！！ \cdots \div

荡荡
 \％igo
 B号 Э
 260000 250000 $\substack { 225000 \\ \begin{subarray}{c}{250000{ 2 2 5 0 0 0 \\ \begin{subarray} { c } { 2 5 0 0 0 0 } } \end{subarray}$ シ̊ 0
8
0
0
0
0
\mathbf{N}
 8\％ \％ 25000
25000 $\circ o_{0}^{\circ}$
in
ñ
N 08
88
108
N ${ }^{3}$

5－FEB－96
26 －FBB－96
19－FBB－96

 FBB－96
FBB－96

8B－96

$\stackrel{a}{i}$ N宮葛

号 Lab
Number

 DV4W＊27言浬

xG302x IRDMIS
Field
Sample
Number
MXG302×2
MXG302X2
MXG302X2
MXAX03X2 MXAX03X2
MXAX03X2

 $\quad \begin{aligned} & \text { MXZW12X4 } \\ & M X Z W 12 \times 4\end{aligned}$ ＊

 SO4
SO4
SO4
SO4

諳部主
 0
0
0
荡 IRD

101.1
$\stackrel{m}{-}$
Chemical Quality Control Report Installation：Fort Devens，
Group 4 Sites
MS／MSD $\begin{array}{lllll}\text { IRDMIS } & & & \\ \text { Field } & & & \\ \text { Sanqle } & \text { Lab } & & \text { Sample } & \text { Analyais } \\ \text { Number } & \text { Number Lot } & \text { Date } & \text { Date }\end{array}$

关
\vdots
\vdots

鸟号菏 คั ने

\mathfrak{c}
晏
※． －
 $+$
0

Method Description	IRDMIS Method Code	Test	$\begin{aligned} & \text { IRDMIS } \\ & \text { Field } \\ & \text { Sample } \\ & \text { Number } \end{aligned}$	$\begin{aligned} & \text { Lab } \\ & \text { Number } \end{aligned}$	Lot	Chemical quality Control Report Installation: Fort Devens, MA (DV) Group 4 Sites MS/MSD			Value			Onits	Percent Recovery	RPD
						Sample Date	Analysia Date	$\begin{aligned} & \text { Spike } \\ & \text { Value } \end{aligned}$			$\begin{gathered} \text { Original } \\ \begin{array}{c} \text { Sample } \\ \text { Value } \end{array} \end{gathered}$			
		********** avg minimum maximum									.		78.9 65.0 94.4	
	UH13	DLDRN	MXG302×2	DV4W*1.64	TDRB	12-PBB-96	08-MAR-96	. 5	. 449	$<$. 024	USL	89.8	25.9
	UH13	DLDRN	MXG302x2	DV4W*164	TDRE	12-PEB-96	08-MAR-96	. 5	. 346	<	. 024	UGL	69.2	25.9
	UH13	DLDRN	MXAX03X2	DV4W*236	TDTB	14-PEB-96	12-MAR-96	. 5	. 372	$<$. 024	UGL	74.4	25.9 3.8
	UH13	didrn	MXAX03X2	DV4W*236	TDTB	14-PEB-96	12 -MAR-96	. 5	. 358	<	. 024	vel	71.6	3.8
	$\mathrm{UH13}^{4}$	DLDRN	MXZZ122X4	DV4W*276	TORS	13-PEB-96	08-MAR-96	. 5	. 478	<	. 224	USL	95.6	27.6
	UH13	$\xrightarrow[* * * * * * * * * * ~]{\text { DLDR }}$	MXZW12X4	DV4W*276	TDRB	13-FEB-96	08-MAR-96	. 5	. 362	<	. 224	UEL	72.4	27.6
		avg											78.8	
		${ }^{\text {minimum }}$											69.2	
		maximum											95.6	
	UH13	Endon	mXG302X2	DV4W*164	TDRE	12-FEB-96	08-MAR-96	. 5	. 387	<	. 0238	USL	77.4	28.0
	$\mathrm{UH13}^{4}$	ENDRN	mxG30292	DV4W*164	TDRE	12-FRB-96	08-MAR-96	. 5	. 292	-	. 0238	UGL	58.4	28.0
	UH13	ENDRN		DV4W*236	TDTB	14-FEB-96	12-MAR-96	. 5	. 377	$<$. 0238	UGL	75.4	4.3
	$\mathrm{UH13}$	ENDRN	Mxax03X2	DV4W*236	TDTB	14-PEB-96	12-MAR-96	. 5	. 361	<	. 0238	ves	72.2	4.3
	$\mathrm{UH13}^{\text {che }}$	ENDRN	MXZN1234	DV4W*276	TDRE	13-8EB-96	08-MAR-96	. 5	. 413	<	. 0238	usl	82.6	28.5
	UH13	$\underset{* * * * * * *}{\text { SNR }}$	nxzw22X4	DV4W*276	TDRE	'23-FEB-96	08-MAR-96	. 5	. 31	<	. 0238	usb	62.0	28.5
													71.3	
		${ }_{\text {minimum }}$										-	58.4	
		maximum		.									82.6	
	UH13	HPCL	MxG302x2	DV4W*164	TDRB	12-PEB-96	OB-MAR-96	. 5	. 496	<	. 0423	UGL	99.2	24.9
	UH13	HPCL	MXG302x2	DV4W*164	TDRB	12-PRB-96	08-MAR-96	. 5	. 386	<	. 0423	UGL	77.2	24.9
	UH13	HPCL	MXAX03X2	DV4W*236	TDTB	14-PBB-96	12-MAR-96	. 5	. 411	<	. 0423	usi	82.2	2.2
	UH13	HPCL	MXAX03x2	DV4W*236	TDTE	14-PR8-96	12-MAR-96	. 5	. 402		. 0423	UGL	80.4	2.2
	$\mathrm{UH13}_{\text {UH13 }}$	${ }_{\text {HPCL }}$	MXZN12X4	DV $4 \mathrm{~W}+276$ DV $4 \mathrm{~W} * 275$	TDRE	13-PRB-96	OB-MAR-96	. 5	. 524		. 0423	ugl	104.8	29.1
	UH13	${ }_{* * * * * * * * * * ~}^{\text {HPCL }}$	mXZW12X4	DV4W*276	TDRE	13-p8B-96	08-MAR-96	. 5	. 391	<	. 0423	UGL	78.2	29.1
		avg minimum											87.0	
		maximun											$\begin{array}{r} 77.2 \\ 104.8 \end{array}$	

Method Description	IRDMIS Method code	TestName	IRDMIS Pield Sample Number	Lab	Lot	Chemical Quality Control Report Installation: Fort Devens, MA (DV) Group 4 Sites MS/MSD			value		Original$\begin{gathered}\text { Sample } \\ \text { Value }\end{gathered}$	Units	Percent Recovery	RPp
						$\begin{aligned} & \text { Sample } \\ & \text { Date } \end{aligned}$	Analysis Date	Spike Value						
	UH13	ISODR	MXG302X2	DV4**164	TDRE	12-FEB-96	08-MAR-96	1	. 937	<	. 0562	UEL		
	UH13	ISODR	MXG302x2	DV4w*164	TORE	12-PEB-96	OB-MAR-96	1	. 733	$<$. 0562	Ves	93.7 73.3	24.4
	UH23	ISODR	MxAX03x2	DV4w+236	TDTB	14-PBB-96	12 -MAR-96	1	. 746	<	. 0562	UGL	74.6	2.4 2.0
	UH13	ISODR	MXAX03×2	DV4W+236	TDTB	14-P88-96	12 -MAR-96	1	. 731	<	. 0562	vGL	73.1	2.0
	UH13	ISODR	MXZW12X4	DV4W*276	TDRB	13-PBB-96	OB-MAR-96	1	. 986	<	. 05652	UGL	73.1 98.6	2.0 27.7
	UH13	ISODR	mxZw12X4	DV4**276	TDRB	13-PBE-96	08-MAR-96	1	. 746	<	. 0562	UGE	74.6	27.7
		avg											81.3	
		minimun maximum									.		73.1 98.6	
	UH 13	Lin	Hxas 02×2	DV4w*164	TDRE	12-PBB-96	08-MAR-96	. 5	. 334	<	. 0507	UGL	66.8	22.8
	UH13	LIN	MXG302x2	DV4W*154	TDRB	12-PBB-96	08-MAR-96	. 5	. 42	<	. 0507	UEL	84.0	22.8 22.8
	UH13	Lin	MXAX03x2	DV4**236	TDTB	14-7EB-96	12 -MAR-96	. 5	. 33	<	. 0507	ves	66.0	3.1
	$\mathrm{OH13}^{13}$	Lin	Mxax03x2	DV4W*236	тDTB	14-PBB-96	12 -MAR-96	. 5	. 32	$<$. 0507	UGL	64.0	3.1
	$\mathrm{CH13}^{\text {che }}$	${ }_{\text {LIN }}$	nxZw12x4	DV4 * 276	TDRE	13-FEB-96	08-MAR-96	. 5	. 452	<	. 0507	USL	90.4	27.1
	UH13	$\operatorname{LIN}_{\boldsymbol{\text { LI******* }}}$	MXZW12X4	DV4**276	TDRB	13-7EB-96	08-MAR-96	. 5	. 344	<	. 0507	vel	68.8	27.1
		avg											73.3	
		minimum											73.3 64.0	
		maximum											64.0 90.4	
	UH23	mexctr	MxG302x2	DV4W*164	TDRB	12-FER-96	08-MAR-96	1	. 921	$<$. 057	USL	92.1	48.8
	UH13	mexcler	mXe302x2	DV4**164	TDRE	12-FEB-96	O8-mar-96	1	. 56	<	. 057	UGL	56.0	48.8
	UH13	mbxCle	Mxax03x2	DV4W*236	TDTB	14-PEB-96	12-MAR-96	1	. 944	<	. 057	ves	94.4	5.8
	$\mathrm{UH13}^{4}$	mexctr	MXAXO3X2	DVW*236	TDTB	14-FEB-96	12-MAR-96	1	1	<	. 057	UGL	100.0	5.8
	UH13	mexclir	HxZW12x4	DV4w*276	TDRB	13-pig-96	08-mar-96	1	. 952	<	. 057	vel	95.2	38.1
	UH13	MEXCTR	MXZW12X4	DV4W*276	TDRE	13-FRB-96	08-MAR-96	1	. 647	<	. 057	USL	64.7	38.1
		avg											83.7	
		minimum											83.7 56.0	
		maximum											100.0	
	$\mathrm{UH13}^{3}$	PrDDT	MXXG30292	DV4W*164	TDRB	12-PBB-96	08-mar-96	. 5	. 509	<	. 034	UGL	101.8	36.7
	$\mathrm{UH13}_{\mathrm{UH13}}$	PPDDT	MXG30222	DV4W*164 DV4W* 235	TDRB	12-PEB-965	08-MAR-96	. 5	. 351	<	. 034	UGL	70.2	36.7
	UH13	PRDDT	MXAX 03×2	DV4W*236	TDTB	14-PBB-95	12-MAR-96	. 5	. 463	$<$. 034	uga	92.6	36.7

Method Deacription	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number:	Lot	Sarople Date	Analyais Date	Spike Valua
	UH13	Prdot	MXAX03 ${ }^{\text {P2 }}$	DV4W*236	TDTE	14-FEB-96	12-MAR-96	. 5
	UH13	PRDDT	MX2N12X4	DV4W*276	TDRB	13-FBB-96	08-MAR-96	. 5
	UH13	PPDDT	MXEW12X4	DV4W*276	TDRS	13-FBB-96	OB-MAR-96	. 5
		avg minimum maximum						

Table D-12
Elements with Matrix Spike Recoveries in Water

- Outside USEPA Criteria

1995 AOC 57, 63AX, 69W Remedial Investigation
Fort Devens, Massachusetts

Element	FREQUENCY of RECOVERY OUTSIDE USEPA CLP IMITS 1	Recovery fange
Groundwater		
Mercury ${ }^{1}$	2/12	70.8-72.8
Arsenic ${ }^{1}$	1/16	128
Antimony ${ }^{1}$	1/16	74.5
Calcium ${ }^{1}$	1/16	134
Iron ${ }^{1}$	5/16	49-145
Manganese ${ }^{1}$	2/16	58.8-71.6
Lead ${ }^{2}$	4/16	52.8-55.3
Selenium ${ }^{2}$	4/16	35.2-53.6
Arsenic ${ }^{2}$	1/16	135.7
Antimony ${ }^{2}$	6/16	39.5-74.9
Manganese ${ }^{2}$	1/16	133.4
Surface Water		
Iron ${ }^{1}$	1/4	129

${ }_{2}^{1}=$ Spike results from the 1995 Fort Devens Site Investigation.
${ }^{2}=$ Spike results from the Round 2 Groundwater sampling event.

Elements with Matrix Spike Recoveries in Soll Outside USEPA CLP LImits
 1995 AOC 57, 63AX, 69W Remedial Investigation Fort Devens, Massachusetts

\%./.ElEMENT	Frequency of recovery outside USEPA CEP LIMITS	Recovery Range
Mercury	2/10	39.2-41.7
Aluminum	10/10	0.9-504.7
Iron	10/10	0.4-462.3
Selenium	6/10	60.0-134.5
Lead by GFAA	6/6	23.7-140.5
Arsenic	6/10	28.4-186.3
Manganese	7/10	4.0-477.4
Nickel	1/10	128.3

Table D-14

Elements with Matrix Spike Recoveries in Sediment Outside USEPA Criteria

1995 AOC 57, 63AX, 69W Remedial Investigation Fort Devens, Massachuseits

Element	Frequency of Recovery OUTSIDE USEPA CLP LIMITS	Recovery Range
Arsenic	2/4	12.4-12.6
Antimony	2/4	126.0-126.7
Manganese	1/4	4.1
Aluminum	4/4	0.5-1.2
Iron	4/4	0.2-48.7

Pesticide and PCBs with Soil Matrix Spike Recoveries Outside USEPA CLP LImits

1995 AOC 57, 63AX, 69W Remedial Investigation Fort Devens, Massachusetts

Element	FREquency of Recovery OUTSIDE USEPA CLP LIMITS	Recovery Range
Endosulfan II	2/8	169.8-181.1
Aroclor 1260	2/8	226-226.0
4,4-DDT	2/8	143.8-153.4

Hardness Data with Matrix Spike Recoveries in Water Samples

 Outside Control Limits1995 AOC 57, 63AX, 69W Remedial Investigation Fort Devens, Massachusetts

. Element	Frequency of Recovery Outside USEPA CLP Limits	Recovery Range
Groundwater		
Hardness ${ }^{1}$	6/10	1.3-35.0
Hardness ${ }^{2}$	2/10	17.1-23.1

${ }^{1}=$ Data collected during the 1995 Fort Devens Field Investigation.
${ }^{2}=$ Data collected during the 1996 Round 2 Groundwater sampling event.

Table D-17
USEPA CLP Surrogate Recovery Criteria for SVOCS
1995 AOC 57, 63AX, 69W Remedial investigation Fort Devens, Massachusetts

SURROGATE	Percent Recovery Limits for Water	PERCENT RECOVERY Limits for Soll
2-Fluorophenol	21\% to 100\%	25\% to 121%
Phenol-D6	10\% to 94%	24\% to 113%
2,4,6-Tribromophenol	10\% to 123%	19\% to 122\%
Nitrobenzene-D5	35\% to 114\%	23\% to 120%
2-Fluorobiphenyl	43\% to 116\%	30\% to 115\%
Terphenyl-D14	33% to 141%	18\% to 137%

Table D-18
usepa clp Surrogate Recovery Criteria for vocs
1995 AOC 57, 63AX, 69W Remedial Investigation Fort Devens, Massachusetts

Surrogate:	PERCENT RECOVERY LIMITS FOR WATER	Percent Recovery lmits FOR SOIL
1,2-Dichloroethane-D4	76\% to 114\%	70\% to 121%
4-Bromofluorobenzene	86% to 115%	74\% to 121\%
Toluene-D8	88\% to 110%	81\% to 117\%

sample duplicatbs (non-filterrd samples)

	웅ㅇㅇㄱ긍ㅇㅇㅇ웅 	
$\begin{array}{l\|l} 5 & 0 \\ \hline 5 & 8 \\ \hline \end{array}$		
		ヘึ $\check{\sim}$
vi	vvv＊vvv＊v	vvv＊vv＊v
	 	 స゙
		운 ⿹ㅓㄴ운운畕品甾甾苔呂苔吕自自
宦鼠		
	 	un un un M in un un Mn un
	 	둥 뭉 뭉 뭉뭉 뭉 뭉 뭉
兄		
		○○○○○○。
戒		

Method Description	Method Code	$\begin{aligned} & \text { Teat } \\ & \text { Name } \end{aligned}$	$\begin{aligned} & \text { IRDMIS } \\ & \text { Pield } \\ & \text { Sample } \\ & \text { Number } \end{aligned}$	$\begin{aligned} & \text { Lab } \\ & \text { Number } \end{aligned}$	Lot	$\begin{aligned} & \text { Sample } \\ & \text { Date } \end{aligned}$	Analysis Date	$<$	Value	Units	RPD
PB IN SOIL BY Gran	JD17	PB_{8}	BXZW0100	DV4S*435	овев	19-SBP-95	16-OCT-95		7.53	UGG	8.6
PB IN SOIL by gran	JD17	PB	Bxzwoioo	DV4S*246	OBQ	19-SBP-95	16-OCT-95		6.91	UGg	8.6
PB IN SOIL by gran	JD17	PB	EX570405	DV4S*104	OBQ	19-SBP-95	16-0CT-95		1.83	Ueg	1.1
PB IN SOIL BY GPAA	JD17	PB	8D570405	DV4S*436	OBQB	19-SBP-95	16-OCT-95		1.81	UGG	1.1
AS IN SOIL BY GPAA	J19	As	BDAX0215	DV4S*442	Q $\mathrm{max}^{\text {a }}$	27-sEP-95	24-OCT-95		11.7	UGG	52.4
As in soil by gran	J019	AS	BxAX0215	DV4S*217	Q $\mathrm{BXB}^{\text {a }}$	27-s8P-95	24-OCT-95		20	UGG	52.4
As IN SOIL by Gran	JD19	AS	Bxzw0100	DV4S*435	QbVE	19-SBP-95	18-OCT-95		10.6	UGG	27.6
AS IN SOIL BY Gras	SD19	AS	BXZW0100	DV4S*246	QBVB	19-SBP-95	18-OCT-95		14	UGG	27.6
As In Soil by gran	J019	As	Dx570300	DV4S*187	QBus	13-sBP-95	OB-OCT-95		180	Ueg	40.0
AS IN SOIL by gran	JD19	AS	DD570300	DV4S*431	Qbus	13-SBP-95	OB-OCT-95		120	UGG	40.0
AS IN SOIL by gran	JD19	As	Dxzw0100	DV4S*289	QBus	11-sBP-95	08-OCT-95		9.95	UGG	16.7
AS IN SOIL BY GPAA	JD19	AS	DDZW0100	DV4S*400	QBUB	11-SBP-95	08-OCT-95		8.42	UGG	16.7
as in soil by gram	JD19	AS	EX570405	DV4S*104	QBVE	19-SBP-95	18-OCT-95		9.68	UGG	10.0
AS IN SOIL bX GFAA	TD19	As	ED570405	DV4S*436	QBVB	19-SBP-95	18-OCT-95		10.7	UGG	10.0
TL IN SOIL BY GPAA	SD24	TL	BXAX0215	DV4S*217	Rbgb	27-SBP-95	22-OCT-95	<	. 5	veg	0.0
TL IN SOIL BY GPAA	JD24	TL	BDAX0215	DV4S*442	rbge	27-s8P-95	22-OCT-95	<	. 5	UGG	0.0
TL IN SOIL BY GFAA	JD24	TL	BXZN0100	DV4S*246	RBFB	19-SBP-95	15-OCT-95	<	. 5	UGG	0.0
TL IN SOIL BY GPAA	J024	TL	BXZw0100	DV4S*435	RbFB	19-SBP-95	15-OCT-95	<	. 5	UGG	0.0
TL IN SOIL BX GPAA	SD24	TL	DX570300	DV4S*187	RBRE	13-SEP-95	09-OCT-95	$<$. 5	UsG	0.0
TL IN SOIL BY GPAA	SD24	TL	DD570300	DV4S*431	RBEB	13-SEP-95	09-OCT-95	<	. 5	UGG	0.0
TL IN SOIL BY Gram	JD24	TL	DXZW0100	DV4S*289	RBEB	11-SEP-95	09-OCT-95	<	. 5	UGG	0.0
TL IN SOIL BY GPAA	JD24	TL	DDEW0100	DV4S*400	RBEB	11-SBP-95	09-OCT-95	<	. 5	UGG	0.0
TL IN SOIL BY Gram	S024	TL	ED570405	DVAS*436	RBPB	19-SEP-95	15-OCT-95	<	. 5	UGG	0.0
TL IN SOIL BY Grat	JD24	TL	EX570405	DV4S*104	RBFB	19-SEP-95	15-OCT-95	$<$. 5	UGG	0.0
SB IN SOIL BY GPAA	JD25	SB	Bxax0215	DV4S*217	sbob	27-38P-95	25-OCT-95	<	1.09	UGG	0.0
SB IN Soil by gran	TD25	ss	BDAX0215	DV4S*442	SBob	27-3BP-95	25-OCT-95	$<$	1.09	UGG	0.0
SB IN SOIL BY GrAA	JD25	SB	BxZw0100	DV4S*246	SBNB	19-SEP-95	18-OCT-95	<	1.09	UGG	0.0

SAMPLE DUPLICATBS（NON－PILTERED SAMPLBS）

0000000 $\therefore 000000$	0000000000 $\dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$	 	N
美：			85
	 「	 	
	 	今 	（
	 		n
¢			※
	 	 	号号
	すิ		管管
둔			率畄
			号号
吕号号号号号号吕号			\％\square^{4}
			趗

Bgigig
sample duplicatbs（non－filterbd samples）

$$
\begin{aligned}
& \text { 岽 } \\
& \text { 总 } \\
& \hline
\end{aligned}
$$

$$
8
$$

$$
38
$$88

0－－－－－－－－－－－
$05-$ OCT－95
$05-$ OCT－95
$03-O C T-95$
$03-O C T-95$
$03-O C T-95$
$03-O C T-95$
$05-O C T-95$
$05-O C T-95$
$20-O C T-95$
${ }_{8}^{8}$Ft

v
 $20-0 C T-95$
$20-0 C T-95$
易

in！| o | on | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

\qquad

BXZNO100
BXZW0100DD570300DDZW0100DXZW0100
E0570405EXAX0215BXAX0215
BDAX0215
BXZW01008．BXZ 20100
DX570300DD570300DDZW0100
DXZN0100
Method Deacription
IRDNIS
Mothod Moth
Code

甾出出甾 㽞
$\theta \theta$苟呺号号宛？：皆
a菑
品品苗各
椥品軍㡙

Chemical Quality Control Report
Installation: Fort Devens, MA (DV)
SAMPLB DUPLICATBS (NON-FILITRRBD SAMPLBS)

Chemical Quality Control Report
Installation：Fort Devens，MA（DV） Installation：Fort Devens，MA（DV）
Group 2، 7 Sites
sAMPLB DUPLICATBS（NON－PILTBRED SAMPLBS）

1

xxxxxxxxx xx
올 올 рорио
рои，

Method Doscription

DX570300 DV4S＊187 UBUF 13－SRP－95 03－OCT－95
DX570300 DV4S＊289 UBUF 11－SEP－95 03－OCF－95
EX570405 DV4S＊104 UBVP 19－SEP－95 05－OCT－95
．
$\begin{array}{ll}\text { nn } & \text { n } \\ 9 & \\ 1 & 1 \\ 15 & 5 \\ 0 & 8 \\ 1 & 1 \\ 0 & 0\end{array}$
n
0
1
1
1
5
8
8
8
n
1
1
4
1
1
an un in in un un in m

 BXAX0215
 BXZW0100 88
8
号
in
吕 0
0
0
0
1
in
合 응

 BXAX0215
BDAK0215 BXZW0100 BXZW0100 DX570300号

离酸

$\begin{array}{ll}n & n \\ 0 & 0 \\ 1 & 1 \\ -1 & 1 \\ 8 & 8 \\ 1 & 8 \\ 0 & 1 \\ n & 0\end{array}$
$\stackrel{-1}{\dot{N}} \underset{\sim}{\dot{N}}$

g
 n

IRDMIS
Method Test

4.
思
最

--------Method Description

묻 뭉 뭉 물 뭉 HMDHMGHA		

	 		0 on ∞ m un un 	
	\％${ }^{4}$	8		
$\stackrel{9}{5}$		in in		
وّ	 	$\stackrel{\text { 号号 }}{5}$	 	
	 台台台官詒台		 	今～
		思品	bpppspoppp	
		号咨	$\stackrel{0}{0}{ }^{\circ}$ 	
	Gi jo sis si d	号等		
－		渵盄		
$\stackrel{\overline{0}}{\mathbb{E}_{0}^{\prime}}$		台呙	葛品品品品品品品品品	
a		云云		

ة！

 Group 2， 7 sites

0－OCT－95

 30－SBP－95
30－SBP－95 26－SBP－95

n
号
हु
\vdots
\vdots

 n
\vdots
1
\vdots
1
1

 긍
 \circ
0.8
号
号
 응
 Bxax0215 M

 88
O．
N
N
N
0

\qquad

 IRDMIS
Method 2ed

 पुष पुष पे पे पुष

 $\stackrel{9}{7}$

8

\qquad

Method Deacription	IRDHIS Mathod code	Test	IRDMIS Field Sample Number	$\begin{aligned} & \text { Lab } \\ & \text { Number } \end{aligned}$	Lot	Sample Date	Analysis Date
bNA'S IN SOIL by Gc/ms	LM18	12DPH	EX570405	DVAS*104	OBOG	19 -sBP-	29-SBP-95
bNA's IN SOIL by gc/ms	LM18	13DCLIB	Bxax0215	DV	OETG	27-SBP-95	10-OCT-95
bNA'S IN SOIL BY Gc/ms	LM18	13 DCLB	BDAX0215	DV4S*442	OB	27-8BP-95	10-0CT-95
BNA'S IN SOIL BY GC/ms	LM18	13DCLB	Exzwoiot	DV4S*246	Osco	19-SBP-	30-SEP-95
BNA's IN SOIL BY GC/ms	LM18	13 DCLB	BXZw0100	DV4S*435	OB	19-SBP-95	30-SEP-95
bNA's IN SOIL BY Gc/ms	[M18	13 DCLB	DD570300	DV4S*431	OBLG	13-SBP-95	26-SRP-95
ENA'S IN SOIL BY Gc/ms	LM18	13DCLB	DX570300	DV4S*187	OEK	13-SBP-95	26-SBP-95
BNA'S IN SOIL BY GC/MS	LM18	13 DCLE	DXzwoioo	DV4S*289	OB	11-SBP-95	27-SBP-95
BNA'S IN SOIL BY GC/Ms	18	13 DCLB	DDEw0100	DV4S*400	OBJG	11-SBP-95	28-SEP-95
BNA's IN SOIL BY GC/ms	[M18	13DCLB	kD570405	DV4S*436	OBOC	19-SBP-95	29-SBP-95
BNA'S IN SOIL BY GC/ms	LM18	13DCLB	EX570405	DV4S*104	OROG	19-SBP-95	29-S8P-95
bna's in soil by gc/ms	1918	14DCLB	BDAX0215	DV4S*442	OETE	27-38P-95	10-OCT-95
BNA'S IN SOIL BY Gc/ms	LM18	14 DCLB	Bxax0215	DV4S*217	ostc	27-SBP-95	10-OCT-95
BNA's IN SOIL BY GC/ms	LM18	14DCLB	BXZN0100	DV4S*435	OBOG	19-SBP-95	30-SEP-95
BNA'S IN SOIL BY GC/MS	18	14DCLB	BXzwo100	DV4S*246	OBO	19-SEP-95	30-SEP-95
BNA'S IN SOIL BY GC/ms	$\underline{M 18}$	14DCLB	DD570300	DV4S*431	OBL	13-SBP-95	26-SBP-95
BNA'S IN SOIL BY GC/MS	LM18	14 DCLB	DX570300	DV4S*187	OEKG	13-SBP-95	26-SEP-95
BNA'S IN SOIL EY GC/MS	[M18	14DCLB	DDzwoioo	DV4S*400	OBJG	11-SEP-95	28-SEP-95
BNA'S IN SOIL EY GC/ms	LM18	14 DCLB	DXzw0100	DV4s*289	OBJG	11-SBP-95	27-SBP-95
BNA'S IN SOIL BY Gc/ms	LM18	14DCLB	BD570405	DV4s*436	O8OG	19-SBP-95	29-SBP-95
bNA'S IN SOIL BY GC/Ms	LM18	14 DCLB	EX570405	DV4S*104	OBOG	19-SBP-95	29-SEP-95
BNA'S IN SOIL by ec/ms	LM18	2457 CP	Bxax0215	DV4S*217	obtg	27-SBP-95	10-0CT-95
BNA'S IN SOIL BX GC/ms	LM18	245 TCP	BDAX0215	DV4S*442	OETG	27-SBP-95	10-OCT-95
BNA'S IN SOIL BY GC/MS	IM18	2457 CP	BXzw0100	DV4S*246	OBO	19-SBP-95	30-S8P-95
BNA'S IN SOIL BY GC/ms	IM18	245 CCP	Bxzwoion	DV4S*435	OBOG	19-SBP-95	30-SBP-95
BNA'S IN SOIL by gc/ms	IM18	2457 CP	DD570300	DV4S*431	O8	13-SBP-95	26-SBP-95
BNA'S IN SOIL BY GC/Ms	IM18	2457 CP	DX570300	DV4S*187	bikc	13-SBP-95	26-S8P-95
ENA'S IN SOIL BY GC/ms	LMIS	2457 CP	Dxzwoioo	DV4S*289	OBJ	11-s8P-95	27-SEP-95
ENA'S IN SOIL BY GC/ms	[M18	$2457 C P$	DDZw0100	DV4S*400	OBJG	21-SBP-95	28-SEP-95
bNA'S In sorl by gc/ms .	LM18	245TCP	ED570405	DV4S*43	OBOG	19-SBP-95	29-SBP-95

sample duplicatbs (Non-filtirbd samplbs)

$\begin{array}{lllllllll}\text { A } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0\end{array}$ $\begin{array}{llllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & m & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & n & n & 0 & 0 & 0\end{array}$ 000000000000荡： 888388888

 5
5 $\stackrel{\circ}{6}$ ®ั่ （\％ٌ 4
Sample
DateDat！
\pm
BX570405

 0
0
0
0
M
品
M
品
 EXAX0215
<
\qquad

Lob Sample Analysis

品

\qquad
 응 BXAX0215
BDAX0215
BXZW0100
品品号号

昫
念
品

量

IRDMIS
Method
Noshor

咅

Method Descelption

BNA＇s IN SOIL BY GC／MS
 पुप्ठ प्य प्ठ प्ठ प्य पु प प्व
品品品品品品品品品品

 प्प प्य पु पु प्र प्य प्य प्य

 पुप प्प प्र प्र प्य प्य प्ठ प्य प्ठ
茄品品品品敁品品品云云云云云云云云云

Chemical Quality Control Report
Installation：Fort Devens，MA（DV）
SAMPLR DUPLICATBS（NON－PILTERED SAMPLBS）

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0		

Unite
Uace 88
 858 88 O

$\because \mathrm{m}$ 9
6
0 4

 Field
Sanple Sab Sample Analysia
Amber

Lab		Sample	Analysia
Number	Lot	Date	Date

29－SBP－95
$30-$ SBP－95
$30-$ SEP－ 95 $10-O C T-95$
$10-$ CTF－95
$30-38 P-95$
－SBP－95
$-5 B P-95$ DV4S＊217 OBTG 27－SBP－95

 27－SBP－95 10－OCT－95

8
8
0
0
0

～

 8
0
0
0
0
0
0
0
0
0
0
0
0

IRDMIS Method Test

LM18 2NP ＋ | 苞 |
| :--- |
| 翤 |

曷 33 DCBD
33 DCBD ，ind苞帚号号 3NANIL
3NANIL 3NANIL
3NANIL 불 술
N
N
O

0 | 0 |
| :--- |
| N |
| O |
| |

 ；

（an＇s IM SOIL

式式式式甙荷

sAMPLE DUPLICATBS (NON-pILTBRED SAMPLBS)

	0000	0000000000 $\therefore 0^{\circ} 0^{\circ} 000000$	OOOORNOOO 	$0 .$
	Og \%	K	Kig ig ig ix ix ig i	80
0				
	$\vee \vee v v$		$v \vee v \vee v v^{*}$	v v v v
$\begin{aligned} & \text { 票 } \\ & \text { 畐。 } \\ & \text { 年落 } \end{aligned}$		 ¢	 ¢	
		 	 署 	
وٌ				
$\begin{gathered} \text { 免 } \\ 3 \\ 3 \\ \hline 1 \end{gathered}$		लサNTMTNTH 	NサN NTHFH 	
$\begin{aligned} & \text { 㤟 } \\ & \text { 晨 } \end{aligned}$				
8				UVUUU甘甘甘す
$\begin{aligned} & \stackrel{0}{C} \\ & \text { Cu } \\ & \text { © } \end{aligned}$				
－				云云尘云云云
			 	$\therefore g g_{0} 09$

SAMPLB DUPLICATBS (NON-FILTERED SAMPLES)

8 O K \％\％\％
ペ ©
$\xrightarrow[0]{0}$

30－98P－95
26 －SBP－95
26 －SBP－95
28－SBP－95
$27-$－SEP－95

 28－SBP－95 28－SBP－95
$27-\mathrm{BBP}-95$
$29-88 P-95$ 29－SBP－95

号皆8 8

 n
$\dot{\alpha}$
$\dot{\alpha}$
品
\vdots
\vdots

88
0
0
0
0
0

$\stackrel{N}{N}$ IRDNIS
Rield
OZW0100号
N BXAXO215
BDAXO215 XZZN0100

8

 DAX0215 | \circ |
| :--- |
| -8 |
| 0 |
| 0 |
| 0 |
| 0 | 80

0.

0
0
0
0
0
0

录录录
宗宗

I
 II IIII In IRDMIS
Method

athod Description

 प्ठ प्ర प्ర प्ర प्ठ प्ठ

 $\stackrel{\text { g }}{\underset{5}{5}}$
ッ ッ

合皆

Sample Analysis	
Date	Date

IRDMIS
Method
Test
aNAPNE
ANAPNB
ANAPNB

頻

是运

 IRDMIS
Method登装 ：

 －云気気気云気気気云気気気

 Method Descriptian －－－－－－－－
 NN№웅
sAMPLE DUPLICATBS（NON－FILTERED SAMPLBS）

 $\stackrel{y}{5}$

V

\qquad
 स̣

IRDMIS Test

 bantr
 BAPYR
BAPYR品品品 룰采曷曷息

苟畄 | M18 |
| :--- |
| M18 |
| M18 |

눌

葡 \sum_{n}^{∞}

，

	000	0000000000 	0000 NNOOO $\therefore 0^{\circ} 00$ in in o	$\begin{array}{r} \text { Pr } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$
－	80	\% \%		
$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{1}{5} \end{aligned}$	HनN	ÑNHMNHNさN！	ト 「	
	v v v	vvvvマvマvマv		$\checkmark \vee \vee \vee v$
		 	 ○	 安皆岕品㟧哭
	 嵓品品品 $\begin{aligned} & 1 \\ & \text { 1 } \\ & \end{aligned}$	 宛荷荷 	 	a
Џ				
$\begin{array}{r} \text { 员 } \\ \text { 最貝 } \\ \hline \end{array}$		 	N\＃ 合台它合客客台	
		๓ルㅇㅇㅇㅇㅇㅇ으응 	 	
		 	 	$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\sim}$
8		U甘す犬y	UU才్ర犬	
免			 	
d				云云云云云云

 88_{8}^{8}

 IRDNIS
Method
 Method Deacription

気気

 BNA＇s IN SOIL BY GC／MS
BNA＇s IN SOIL BY GC／MS

高含 舀畜
SAMPLE DUPLICATBS (NON-FILTBRED SAMPLES)
怘응ㅇㅇㅇㅇㅇ웅0000 n

 Pield
Sample Lab Sample Analysis －－－－－－．－．－－－

 19－SBP－95 29－8BP－95 10 －OCT－95
10 OCT－95
 n
a
1
1
a
品
1 $\begin{array}{cc}n & n \\ o & 0 \\ 1 & 0 \\ \alpha & 1 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1\end{array}$ μ
0
1
0
0
0
0
1

 0－OCT－95 20－OCT－95
$10-0 C T-95$

 $29-\operatorname{SBP}-95$
$29-$ SBP－95

 $\begin{array}{llll}\text { BXAX0215 } & \text { DV4S＊217 } & \text { OBTG } & 27-s \mathrm{SPP}-95 \\ \text { BDAX0215 } & \text { DV4 } * 442 & \text { OFRG } & 27-\mathrm{sBP}-95\end{array}$
品品另品台嫘 xax0215

 ニ̈

 DV4s＊246 OBOG

 88
80
0
0
0
0
0
0
0
0
\vdots
5
5
5

 BXAX0215
BDAX0215
BXZ＊0100
 응․․

 ัี
品品 irdmis

葛最

 N．0춘 CLL．6BZCL6BZ
CL6BZ N
8：
：
克莒 ：
它
 IIII Mathod Dascription Code

 푸풉 풉 푸풀 훅풀 ：

思
 8

울 몰 불 몰 은

Chemical Quality Control Report Installation：Fort Devens，MA（DV）

SAMPLB DUPLICATBS（NON－FILTERED SAMPLES）
念
台 $\left\lvert\, \begin{array}{lll}1 & 0 & 0 \\ \dot{0} & 0 \\ 0 & 0 & 0 \\ 0\end{array}\right.$ 000000000000
으오Nㅇㅇㅇㅇ $\therefore 000100000000$

 Value

N N

Sample Analysta

n
N
1
品
0
0
6
0
27－SBP－95

－ 95

U

27－SBP－95

$$
9
$$

 F
～
离
合 DV4S＊442

受真

O
o
号
号
吕 DD570300
DXZW0100
DDZW0100

BXAX0215

\circ
0
$त$

 BXAX 0215
BDAK0215

菦葡氐息息息

品
（
（

喿品品品品

闇新

울 올 올 올 星

 पुप्ठप्ण

云云云云云云云云云
云云巟云云

519595	985853538	385885853

0
0
3

ลิ
$1 \begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0\end{array}$ $\begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0\end{array}$ $\begin{array}{lllllllll}0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \dot{0} & 0 & 0 & 0 \\ 0\end{array}$ $\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$
$\stackrel{3}{4}$

 \rightarrow

\because

${ }^{n} \mathrm{n}$

Sample Analyaie
Analyais
Date

－
$\begin{array}{ll}n & 18 \\ o & 0 \\ 1 & 1 \\ \vdots & 1 \\ 8 & 8 \\ 1 & 1 \\ 0 & 0 \\ -1 & 0\end{array}$
$\begin{array}{cc}n & n \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 8 & { }_{n}^{2} \\ 1 & 1 \\ 0 & 0 \\ 0 & 0\end{array}$
 DD570300
DDZN0100
DXZ 20100
BD570405
BX570405
$\stackrel{3}{3}$
$v \vee \vee \vee v$
$\vee \vee \vee \vee \vee \vee \vee \vee \vee \vee$
$\vee \vee \vee \vee \vee \vee \vee v \vee v$
$v \vee \vee \vee$

DV4S＊400 OBTG	$11-S E P-95$	$28-S B P-95$
DV4S＊436 OBOG	$19-S B P-95$	$29-S B P-95$
DV4S＊104 OBOG	$19-S B P-95$	$29-S B P-95$

Date
品
㿟
品

N
N
＋
0
0
0

XXAX0215

80
응
条
合

咅
루풀

hethod Description

萼品品品号品品品茄品

 병방붕방뭉

$\underset{\sim}{\text { 品 }}$	1000000	000000000 $\therefore 0^{\circ} 0$ o 0 品 00	OOOONROOOO 	0000 m 0000 m
罭	I	8\％		\％8888080
$\stackrel{9}{3}$	$\mathrm{mmmm} \mathrm{m}_{\mathrm{n}}^{\mathrm{m}}$			
	 呙岕品品品 品品	 －	 ○○	
		 「 「 「	 	 rígoi m N N ने
				囬苗品品品
		NサMNHNH． 	 	
		ज ッ 용ㅇㅇ으응 N Not 	 	
$\begin{aligned} & \text { 旨㐭 } \\ & \text { 毕 } \end{aligned}$				
		 	 	$\stackrel{\oplus}{\sim}$
				븡뱅븡븡
0				

IRDMIS

Field | TRDMIS |
| :--- |
| Field |

Sample
Date
26－SBP－9
$27-$ SBP－9
$29-$ SBP－95
29 －SBP－95
10－OCT－95

 DDZW0100 DV4S＊400 ORJG 11 －SBP－95 28 －SBP－95 －

 26 －SBP－95
$26-$ SBP－95 $10-0 C T-95$
$10-0 C T-95$
 BXAX0215 DV4S＊217 OETG 27－SEP－95 BXANY215 DV4S＊442 OETG 27－SEP－95 BXZNO100 DV4S＊246 OBOG 19 －SEP－95 $\begin{array}{llll}\text { BXXZO100 } & \text { DV4S } \$ 435 & \text { OBOG } & 19-\text { SRP－95 } \\ \text { DX570300 } & \text { DV4S } 4187 & \text { OKKG } & 13-\text { SBP－95 }\end{array}$ DD570300 DV4S＊431 ORLG $\begin{array}{lll}\text { DDZW0100 } & \text { DV4S＊400 OBJG } & 11-\text { SBP－95 } \\ \text { DXZNO100 } & \text { DV4S } \$ 289 & \text { OBJG } \\ 11-S B P-95\end{array}$
 DX570300 DV4S＊187 OKKG 13 －SRP－95

 1 ！
 ＝ ま $=$ ． GSITOS是曷

${ }^{\infty}{ }^{\infty}$

¢	पुర	ర00000	प्ర己
			夋益
二ぇそう	2		z
会台			蕞

09000000000000 00000

HMNHHHMMN M M

M M
MNNMNNNMm ติ̣ ํ
$\vee \quad \vee \vee \vee \vee \vee \vee \vee v \quad \vee \vee \vee \vee \vee \vee \vee \vee v$

10－OCT－95会

 n
0
1
\vdots
品
\vdots
\vdots
0号

0－OCP－95
 n
1
1
1
0
0
0
0
1
1

n	n
1	0
1	
1	
0	
日	
日	
1	1
i	1

 $10-O C T-95$
$10-O C T-95$ trdmis • IRDMIS $\quad \begin{gathered}\text { IRDMIS } \\ \text { pield }\end{gathered}$

	IRDMIS Method	Test Method Daacription Codo
Name		

 hPCL帚是芫包号寻局号
旨 HPCLE
HPCLE 숭 몸

？

時品 웅 옴 몰明

－

8
0
0
0
8
0
0
0
0
5

$\begin{array}{lll}\text { DV4S＊217 OBTG } & 27-\mathrm{sBP}-9 \\ \text { DV4S } 442 \text { OBTG } & 27-\text { SBP－9 }\end{array}$等 100 BXZWO100 DX570300 옹
M
M
M
M
응

 Exs70405

BXAX0215

 BDAX0215品 EXZWN0100DD570300 DD570300 DDzwo100筑 ED570405 BXAX0215药 BXZW0100
BXZW0100号 DD570300
DDZW0100 DDZFO100㔯
获
$\begin{array}{llllllllll}00 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 000 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$
0000000000
$\dot{0} 0 \dot{0} \dot{0} \dot{0} \dot{\circ} \dot{0} 000$
00
00

\＆

 $\begin{array}{llll}\text { Field } & & \\ \text { Sample } & \text { Lab } & \text { Sample } & \text { Analysis } \\ \text { Number } & \text { Number } & \text { Date } & \text { Date }\end{array}$

 $\begin{array}{ll}n & 2 \\ 0 & 0 \\ 1 & 1 \\ 0 & \\ 0 \\ 0 & \\ 1 \\ n & \end{array}$ 9－SRP－95

10－OCT－95 10 －OCP－95
10 －OCT－95
30 －SBP－95
 n
0
0
1
1
0
0
0
0
1
1
0
0
0

 $\begin{array}{ll}n & n \\ 0 & 0 \\ 1 & 1 \\ 6 & 6 \\ 8 & 8 \\ 1 & 1 \\ 0 & 0\end{array}$
 10
0
1
2
2
0
0
1
1

 M
a
品
品

0 | n |
| :---: |
| 0 |
| 1 |
| 1 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 1 |
| 0 |
| 0 |

 LTV＊SVB
LTA 80
0
0
0
0
K
K
自 응
응
M
금
음

 BXAX0215

90
8
0

 BXAX0215
BDAX0215 BXZW0100 DX570300 DD570300 DDZW0100 n
0
0
0
0
0
0
品
镸

解面身云云穷云云覓筧要
 Method Description
BNA＇S IN SOIL BY GC／HS

 BNA＇S IN SOIL BY GC／M
BNA＇S IN SOLL BY GC／M BNA＇s IN SOLL BY GC／MS
BNA＇S IN SOIL BY GC／MS BNA＇S IN SOIL BY GC／MS號

 प्ర प्ర प्ర U

Nㅡㅇ

n
0
0
0
0

10－OCT－95
$10-0 c T-95$

BXAX 0215
BDAX 0215DX570300 DD570300 DX2W0100
 KxAx0215

 \begin{tabular}{l}
80

0

\hline

98

08

0

0

\hline
\end{tabular} 0

0
0
0
0
0
0 80
08
号
0
0
0
0
 n
0
0
0
0
0
\qquad
\qquad

				第的
免慁				
	 			鼻䚁
				翌翌
		पुप్ర प्ठర		प्రुप
				屰出
C				맨믄
\％		o品品品品品品品品品	品品品品品品品品品	品品
－				
$\begin{aligned} & \frac{\mathbf{5}}{\mathbf{0}} \mathbf{2} \end{aligned}$				畄罦

SAMPLER DUPLICATRS (NON-PILTERRD SAMPLES)

$\begin{aligned} & 0 \\ & \text { 品 } \\ & \text { 感 } \end{aligned}$	 	品 「 「	 ※	
』	88% OD © 8品品兽苗鱼荅品品			$\begin{aligned} & \text { 最晏 } \end{aligned}$
$\begin{array}{r} \stackrel{4}{4} \\ \text { 等夏 } \end{array}$	\rightarrow NHFMH 	NサN 	NFNNMNMN 	
皆筫	 解的动层的的 甾甾希呂呂合畄目	쓱ㅇㅇㅇㅇㅇㅇㅇ으응 	ッ～8응ㅇㅇㅇ으응 禾娄长会的的会会会 	
$\begin{aligned} & \text { 苞总 } \\ & \text { 总 } \end{aligned}$	 			$\begin{aligned} & \text { N N } \\ & \text { N } \\ & \text { N N } \\ & \text { N } \end{aligned}$
8	 	 	 	
T				夋嫘
$\begin{aligned} & \stackrel{0}{\vec{U}} \\ & \text { U } \\ & \text { © } \end{aligned}$				벙 벙
a				巟少
$\begin{aligned} & \mathbf{O} \\ & \mathbf{4} \\ & \mathbf{N} \\ & \mathbf{8} \end{aligned}$	 			

$\begin{array}{ll}19-\text { SRP－95 } & 29-\text { SRP－95 } \\ 19-8 R P-95 & 29-S R P-95\end{array}$
10－0CT－95 $10-0 \subset \mathrm{CT}-95$ n
o
\vdots
$\dot{1}$
品
\vdots
\vdots
0 6－SBP－95 26 －SBP－95
$28-$－SBP－95
$27-$ SEP－ 95
 0－OCT－95 0－OCT－95啹
品呙台 n

\vdots
\vdots
\vdots
\vdots い $ム{ }^{\circ} \mathrm{n}$ に
 －SBP－95
 27－SEP－95

\vec{N}
$\stackrel{y}{5}$

$\stackrel{\rightharpoonup}{7}$

号 $\stackrel{+}{0}$

若買
ジ
n
N
各 BXAXO215 ： BX570300
号

 BXZwo100
BXZN0100
 0
0
0
0
号
呙 DDZW0100
DXZN0100敫
 BXAX0215
BDAX0215 IRDMIS
Method需

品

叁号品品品品品品品品品品

 ～～～嵔
葡

$$
8
$$

Oo
号8

Chemical Quality Control Report
Installation：Fort Devens，MA（DV）
sAMPLE DUPLICATBS（NON－fILTERED SAMPLRS）
台：OOO O ㅇ․ 0.0
0000000000 －000 $0.0^{\circ} 000$

응ㅇㅇㅇㅇㅇㅇㅇ $\therefore 000000000$ | \circ |
| ---: |
| 0 |
| 0 |

 \％

ヘN NHMMHNHN N ले ल ल －
 10－OCT－95
 30－SBP－95
26－SEP－95 26－SERP－95

 10－0CT－95
 M
台
岕
í
ín

Sampla Date

Sampla	Analyais
Date	Date

16
感
0
0
0
 BXZN0100 IRDMIS
Field

음
号
号
品
 BXAXO215 BDAX0215 BXZW0100
BXZW0100 BX2670300 DD570300 DDZW0100号

 BDAK0215

 DDZW0100

蓸思
H

 PHRENOL

 III会

最旨
吕 IRDMIS
Method Method
Code Mathod Description

 $\stackrel{\infty}{\infty}$畕腊

號号

 $\infty \infty \infty$

Chemical Quality Oontrol Report
Installation: Fort Devens, MA (DV)
sample duplicatbs (non-pilitirid samples)

2

$\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}$
000

部㫨骂

\＆g

务䯇角

Sample Lab Sample Analysis
 Date

19－SBP－95
19－SEP－95

n 1 1 0 0 0 1 0 0

88
\％
0
0
0

$\begin{aligned} & \text { N N } \\ & \text { N } \\ & \text { N } \\ & \text { Og } \end{aligned}$

－0tom
xzwo100

 BDAX0215
BXZW0100 BXZWN0100
 80
M
o
in
0
0

胃 $111717 c \mathrm{cb}$
11
晶胞
烒
風䔍
苞界界

플
푼 ${ }^{\circ}$
군 ${ }^{2}$
－

 논Nㅡㄴ Method Description

$0000 \mu \mathrm{OO} 000$ OOOOMMOOOO

 N
$\stackrel{H}{O} \mathrm{H}$

呙	0	H	-1	0	0	0
0	0					
1	0	0	0	0	0	0
1	H	H				

$\begin{array}{lllllllll}0 & 0 & 0 & \infty & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0\end{array}$
$0000 \infty \infty 0000$
$0000 \div \pm 0000$
000 $\therefore 00^{\circ}$ nita I

 888 Value \qquad 0
N
N
0

0 | 40 |
| ---: |
| |
| |
| 0 |
| 0 | N

N N N N N N N N N N N N
©
0.8
0

0 | 1 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

SAMPLB DUPLICATBS (NON-FILTERBD SAMPLES)

sAMPLR DUPLICATBS（NON－PILTBRED SAMPLBS）
？8B8888838
val

IRDMIS				
Field				
Sample	Lab	Let	Sample	Analysie
Number		Let		

03－毋cT－95

 $03-0 C T-95$$02-0 C T-95$
 29－SBP－95
$19-\mathrm{BEP}-95$
$20-$－sBP－95 $19-\mathrm{SEP}-95$
20 －SEP－95 $18-$ SRP－95
$19-$ SBP－95
$27-58 P-95$ 27－S8P－95
26 －SBP－95皆27－SBP－95
27－SBP－9529－SBP－95
$26-$ SBP－95
$19-$－8PP－95
$20-$ SEP－956－SBP－95
7－SBP－9503－OCT－95
02－OCT－95
26 －SBP－95
BDAX0215BDAX0215
BXAX0215\circ
0
0
0
0
0DX570300
DD570300DDEZ
DXZ0100号咢EX570405BXAXO215
BDAXO215BDAX0215
BXZW0100BXZ
BXZ 210100
0DX570300
DD570300DD570300DxZW0100EX570405
ED570405

Mathod Description | 年 |
| :--- |
| |
| 0 |
| 2 |

 몬 끌 불
IRDMIS
Method
 른 M 3 曷
0
0

$\begin{array}{llllllll}0 & 0 & O & M & M & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & M & 0 & 0 & 0 \\ M & 0 & 0 \\ M\end{array}$
0
OOOONNOOOO
 $\begin{array}{l:l}9 & \\ \text { N } \\ \text { N }\end{array}$

多 8
10
08
08
0 n
0
0
0
0
0 영
088
08
0

F

IRDNIS Teat IRDMIS

N N N N N N N N N N
N
N
N
N
N

 กิิ

vOC＇s In soil by gc／ms

等

	HRNOOOO 꺼 M	응ㅇㅍㅉㅇㅇㅇ －0 o o	0000000000 －oo min in oio	－0 0
$\begin{aligned} & \stackrel{y}{4} \\ & \underset{5}{5} \end{aligned}$			Hig ig ig it i ig tis in	式哭骂
$\begin{aligned} & 9 \\ & \underset{\sim}{5} \end{aligned}$		등ㄷㅇㅇㅇㅇㄷㅇㅇㅇ		
v	v v v	$v \vee v \vee v \vee v v$		v
	 NーNM～N	 	 	安安崽 등
Џ	OOM OHON OH			
$\begin{array}{r} \text { H } \\ \text { 告 } \\ \text { 首 } \end{array}$	$\stackrel{+1}{+N+}$ 含台台台台台	 	\＃N～NMNTH 	
		 为条会会会会会 	극ㅇㅇㅇㅇㅇㅇㅇㅇ으응 N N Nㅡㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 	
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{6} \\ & \stackrel{y}{4} \end{aligned}$			 	总总畳兽
				閶畄益
			পogo o o o o o o o o	
－				云云云
	प్ Y Y Y Y Y Y Y Y			

	$0 \div j 0000$ H	0000 in no oo o 	$0000 n m 0000$ $\therefore \dot{\circ} \dot{\sim}$	$\circ \circ$
$\begin{aligned} & \text { B } \\ & \underset{y}{2} \end{aligned}$			Kig	\％ 08
$\stackrel{9}{3}$				$\begin{aligned} & \text { Ni N゙ } \\ & \text { Oig í } \end{aligned}$
v	$v \mathrm{v}$	$v \vee v \vee v \vee v \vee v$		v v
	品品品品品首品 	 	 	
$\begin{aligned} & \text { 咠 } \\ & \text { 号品落 } \end{aligned}$	 	 	 	
乌	O 			
点鲁	＊\＃N N － 0 on on on o它它它它台	※た 台台它合台台台	NサMFTHNT 	
		N N． 品甾苗合呂呂合自首	m m 옹ㅇㅇㅇㅇㅇ응 능 N Ny 	
$\begin{aligned} & \text { 曾見 } \\ & \text { R } \end{aligned}$	酋酋首首曾酋首 			岛鹤忽
\％				
$\begin{aligned} & \text { 品 } \\ & 0 \\ & 0 \end{aligned}$				
8				它定云
7	$\begin{array}{llll} \text { on } & 0 & 0 & 0 \\ \hline \end{array}$			

 Irdins
Nothod Test
Code

\qquad

 운꾼문 पुप्ర प्ֶ备备齐 붕
Chemical Quality Control Report
Installation：Fort Devens，MA（DV）
SAMPLB DUPLICATBS（NON－FILTBRBD SAMPLBS）

：\％\％
品

Nّ

$\vee v \vee \vee \vee \vee \vee \vee$ $v \vee v \vee v \vee v v$
$\vee \vee \vee v$

IRDMIS
DV4S＊187 YGUG $13-$ SBP－95 19－SBP－95
JV4S＊431 YGVG $13-$ SBP－95 20－SBP－95
$\begin{array}{lll}13-S B P-400 \text { YGSG } & 11-S B P-95 & 19-\text { SBP－95 } \\ 11-S B P-95 & 18-S B P-95\end{array}$
V4S＊104 YGHG 19－SRP－95 26－SBP－95
DV4S＊436 YGNG $19-$ SRP－95 27 －SBP－95
6－1CN－
7 Sites

O
O
K
K
0

ED570405
1
碳
［1
管

 IRDMIS
Method
Method Description

0	0	0	0	0
0	0	0	0	0
0	0			

ield			
Sample	Lab		
Number	Number	Lot	Sample Date
Analyais			
Date			

10－OCT－95

にn in
n un

d号品 XXAX03x
罗

思盢思
BE MDG307X1

$$
8
$$

$$
\begin{aligned}
& 000000 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\underset{\infty}{\boldsymbol{m}} \underset{\infty}{\boldsymbol{m}}
$$

B

Sample	Analyais
Date	Date

 0
1
1
2
2
2
1

6－1200－

7－nOV－9

$27-N O V-95$
$28-N O V-95$
n
n
1
1
1
1
\vdots
\vdots
1
1

27－NOV－95
 an an n n n n^{n} 31－0ст－95

N
1 －OCT－95
1－OCT－95
2－NOV－95

嫘

XG307x1
OZW12X3
Z2N1233
$\times 5703 \times x$
mdax03x2

矣 뭉

 MDZW12X3
MXZN12X3关 WXX5703XX
WD5703XX

ํํํํ
Ois
8日昭
88888888

 杂杂苗希畄 939 ${ }^{9} 9$

 S d

 H

 Mathod

Nㅓㅇ 엉 Nㅗㅇ Nㅗㅇ $\div \dot{6} \dot{0} \dot{0} \dot{0} \dot{0}$

 $\dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty}+$
$\vee \vee v \vee \vee \vee \vee$

| Pield | | |
| :--- | :--- | :--- | :--- |
| Sample | Sample | Analysis |
| Number Number Lot Date | Date | |

MDAX03X1 DV4W＊447 2PSP 31－OCT－95 27－NOV－95 MXAX03X1 DVAW＊235 ZFSF 31－OCT－95 27 －NOV－95 DV4W＊448 ZPSF
DV\＆W＊ 165 ZFSF DV4W＊450 ZFTP
OV4W＊275 ZFTP $\begin{array}{llll}\text { MXZW12X3 } & \text { DV4W＊275 ZFIP } & 02-\text { NOV－95 } & 28-N O V-95 \\ \text { WD5703XX } & \text { DV4W＊432 ZFLP } & 13-98 P-95 & 03-\text { OCT－95 }\end{array}$ $\begin{array}{lllll}\text { MDAXO3X1 } & \text { DV4W＊447 } & \text { ZPSP } & 31-O C T-95 & 27-\mathrm{NOV}-95 \\ \text { MXAXO3X1 } & \text { DV } 4 \mathrm{~W}+235 & \text { ZFSF } & 31-O C T-95 & 27-\mathrm{NOV}-95\end{array}$ DV4W＊ 418 2PSP $\begin{array}{lll}\text { DV4W＊} 165 \text { ZPSP } & 31-\mathrm{OCT}-95 & 27-\mathrm{NOV}-95 \\ \text { DV4 } 4450 \text { 2FTP } & 02-\mathrm{NOV}-95 & 28-\mathrm{NOV}-95\end{array}$ MXZZ12X3 DVAW 275 zFTF 02 －NOV－95 $28-\mathrm{NOV}-95$
菅 $27-\mathrm{NOV}-95$
$27-\mathrm{NOV}-95$
 $7-\mathrm{NOV}-95$
$28-\mathrm{NOV}-95$
 $77-\mathrm{NOV}-95$
$7-\mathrm{NOV}-95$ in un
 $28-\mathrm{NOV}-95$
28 －NOV－ 95

范

 | 5 |
| :--- | n

n
n
0 6
0
0
0
0
0
 nXAX03X1 MKXAX03X1
MDAXO3X1
MDG307X1 MXG307X1 mxzewi2x3 MDZW12K3
WD5703XX mDAX03x1 nx＿xx03x1

罢男
－

a o $a, 0$ a

Chemical quality Control Report
Inctallation: Port Dovens, MA (DV)
Group 2, 7 sites
SAMPLE DUPLICATRS (NON-PILITRPED SAMPLBS)

00000000 0
 4.4:4.0.0.

Value Unite
!

Sampla	Anmlyais
Date	Date

7 -NOV-95
-NOV-95
-NOV-95
-OCT-95

- OCT-95

-NOV-9
$\begin{array}{lllll}\text { ZW12X3 } & \text { DV4W*275 ZFTF } & 02-\mathrm{NOV}-95 & 28-\mathrm{NOV}-95 \\ 5703 X X & \text { DV4N*202 ZFLF } & 13-8 B P-95 & 03-0 C T-95\end{array}$

-NOV-95 n
n
1
1
3
2
1

-NOV-95 3-NOV-95 -NOV-95-95

是			MMOOMFOO nin in óo rio o o	$\stackrel{H}{\dot{\sim}}$
$\begin{aligned} & \mathbf{y} \\ & \underset{5}{5} \end{aligned}$				9 ${ }^{2}$
				吕：
	 	 	 ત્ં	
駺落：	 	 	 	㣍台
§	 	 	yuyuyuyu 	号萑
	 	 	 	耎言
号枒：				¢
				웁
8		畄品首并首鼻		
I			曾曾曾并曾曾酋品	
8	 		 zzzzzzz	㥅
¢	 	产		呂产

Chemical Quality Control Report
Installation：Fort Dovens，MA（DV）
SAMPLB DUPLICATBS（NON－PILTERED BAMPLRS）

$\stackrel{\stackrel{\rightharpoonup}{\alpha}}{\alpha}$	웅ㅇㅇㅇ $\dot{\circ} \dot{0} \dot{0} 0 \dot{0}$	00000000 00000000	00000000 00000000	0000000 $\dot{\circ} 00000$
5	용응ㅇㅇㅇㅇㅇ 	$\oplus \infty \omega \infty \omega \infty \quad \infty$ 	 	
v			$v \vee \vee \vee v \vee v$	$v \vee v \vee v マ v$
	 	 	 2\％2\％号品 	 ต m m
咠	 安安家定岕岗 	 	安安安安安宫品 08082 	
$\stackrel{\square}{0}$				
$\begin{gathered} \frac{\mu}{4} \\ \text { 首 } \\ \hline \end{gathered}$	 －合台合合	 客台合台台台	 台台台合台台	
$\begin{aligned} & \text { L } \\ & \text { é } \\ & \text { H } \\ & \hline \end{aligned}$	i			
5				
I				

 $\stackrel{5}{5}$
 $\oplus \omega_{i}^{\infty} \infty \infty \quad \infty \quad \infty$ NNNNNNN
 Group 2， 7 sites

$$
\begin{aligned}
& \text { a } \\
& \stackrel{\alpha}{\mu}
\end{aligned}
$$

$$
\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{c:c}
0 \\
0 & 1 \\
\sim & 1 \\
\mathbf{S} & 1
\end{array}
$$

号追号昆

$$
\underset{\sim N N N W}{N+N}
$$

Chemical Quality Control Report
Installation: Fort Devens, MA (DV)
SAMPLB DUPLICATBS (NON-FILTERED SAMPLBS)

品	.0000000 $\dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$	00000000 $\dot{0} \dot{0} \dot{0} \dot{0} \dot{0} 0 \dot{0}$	00000000	0000000 000000
표				
$\begin{aligned} & \text { g } \\ & \underset{\sim}{\mathbf{B}} \end{aligned}$				
	$v \vee v \vee v v$		\boldsymbol{v}	vvvvv
	 	 	 	它它它它出品品
$\begin{aligned} & \text { 寞品 } \\ & \text { 品 } \end{aligned}$	 	 	 － 	旨它女它它品
و				
	 它台台台台宫			
$\begin{aligned} & \text { 息 } \\ & \hline \end{aligned}$			NHNHNN	
		-	 	
－				
－		云巩云功㠫		
	 	如的的时的的时时 	 	

$\underset{\sim}{\alpha}$	$\begin{aligned} & 0000 \\ & 0000 \\ & 000 \end{aligned}$
8	

Method Description	IRDWIS Method Code	Teat Name
binds in mater by gc／ms	$0 \mathrm{M18}$	2NP
BNA＇S IN WATER BY GC／ms	UN18	2NP
bNA＇S IN WATBR BY Gc／ms	UM18	2NP
BNA＇S IN WATBR BY GC／MS	UN1B	2 NP

MDZN12X3
MXZN12K3
WD5103XX
WX5703XX

MDAX03X1
MXAX03X1

Field Sample Number	Lab Number	Lot	Sample Date	$\begin{aligned} & \text { Analyais } \\ & \text { Date } \end{aligned}$
MDEW12X3	DV4W＊450	WDHI	02－NOV－95	05－DBC－95
MXZW12K3	DVAW＊275	WDHI	02－NOV－95	05－DEC－95
WD5703xx	DV4W＊432	WDWH	13－s8P－95	27－s88－95
nX5703xX	DV4W＊202	WDWH	13－88P－95	26－SEP－95

－MOV－95

 Group 2， 7 Sitea 33DCBD 33DCBD
33 DCBD
$33 D C B D$号号号 3NANIL
3NANIL 3NANIL
 4BRPPs IRDMIS
Method

鄣

DV4W＊447 WDPI 31－OCT－95
 MDAXO3X1 DV4w＊447 ndpl 31－OCT－95

0.0
000
000
0.0
000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
000
0.0
0.0
0.0
0.0
0.0
$0.0-1$

啹号号号家
$\begin{array}{l:l}9 & 0 \\ \text { 3 } \\ 5 & 1\end{array}$
$\stackrel{+}{\sim}$
ต M M M M M m

3-NOV-95

$13-\mathrm{NOV}-95$
$-\mathrm{NOV}-95$

 3 -NOV-95
 3 - NOV-95
 5-DBC-95

3－NOV－9513－NOV－95
13 －NOV－95 －MOV－95 5－DRC－95
$5-\mathrm{DBC}-95$

定
IRDMIS

Fiold | IRDMIS | | |
| :--- | :--- | :--- |
| Mothod | Tost | $\begin{array}{l}\text { Fiold } \\ \text { Sample }\end{array}$ | Mathod Deacription

$E$$\stackrel{\oplus}{\mathbf{4}}$
Mothod Description
IRDNIS
Field
Sample Analyaie
IRDNIS
FieldMothod Doscriptian

公
呙 10000000 00000000 00000000

00000000 $\therefore 0^{\circ} 00^{\circ} 00^{\circ}$ 0000000 $\dot{0} 0 \dot{0} 0000$

咅 5！

Mのハットr

$$
\because
$$

!n!n!n!n! ! !m n n n n n n n

- नं नं नं नं

3－NOV－95

$13-\mathrm{NOV}-95$
$13-\mathrm{NOV}-95$ n
n
1
1
3
2
m

m | n |
| :--- |
| 0 |
| 8 |
| 8 |
| 3 |

 13－MOV－95

 Sample
Date Analyais
先びムームー

荡 uxax03x1
uxg307x1
uxG307x1 줃 MxzW12x3 X45703×X

드N 들 중
 NㅜN

会 N
 mdaxo3xi 등 통鱼

 aNapri，里曷星是是家矣委
會哙品会 둘
 irperis
Method咅
 o

 Mothod Daecription

 z $z=2 z \begin{gathered}2 \\ y\end{gathered}$

識諳䪭

？

SAMPLR DUPLICATBS (NON-PILTERRE SAMPLES)

00000000 00000000
00000000 $\dot{0} \dot{0} \dot{0} 0 \dot{0} 00$

$$
00000000
$$ 00000000

$$
\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
$$ －

\qquad

 Value Uni
－
 NNNNNNNNN
 － $\boldsymbol{N}_{\infty}^{\infty} \boldsymbol{N}_{\infty} \boldsymbol{\infty} \boldsymbol{\infty} \boldsymbol{\infty}$ N～～～
 3－NOV－95 27－8BP－95 $3-\mathrm{NOV}-95$ 3－NOV－95 5－DBC－95 05－DRC－95
$27-$ SRP－95 26－SBP－95
13－NOV－95
 $13-\mathrm{NOV}-95$
$13-\mathrm{sOV}-95$ 05－DEC－95

$13-\mathrm{NOV}-95$
$13-\mathrm{NOV}-95$ －NOV－95 5－DRC－95
 6－SEP－95
7－SEP－95

-95
Sample
Date
Field Lab Sample Analyaie
Sample Lab

4
0
4

 \qquad

 ExEOXEC

 MDAX03X1
MXAXO3X1
 MDZN12X3 MXX2N12X3 － MDAX03X1
MXCAXO3XI 등
 주N NKX2N12X3 WX5703XX
WD5703XX

荡
 BKPANT BKPANI
BKPANT
BKPANT
BKPANT BKPANT容公苞 UYUUUYOU
 IRDMIS
Method poyzon
UN18

 1ํ．1＂

प्0 U

为胃

息覓

等

 प्र प्रुप्ठ

	它它它它客品茴 	 	
	 $\stackrel{\mathrm{N}}{\mathrm{H}=\mathrm{M}} \mathrm{m}$ 它宫它宫它宫客		

Method	Description	IRDMIS Mathod Code	Test Name
BNA＇s	IN WATER BY GC／MS	UM18	CARBAZ
BNA＇S	IN WATER BY GC／ms	UH18	CARBAZ
BNA＇S	IN WATER BY GC／MS	UM18	CARBAZ
BNA＇S	IN WATER BY GC／Ms	UN18	CARBAZ
BNA＇S	IN WATER BY GC／ms	UN18	CHRY
ENA＇S	IN NATER BY Gc／ms	UN18	CARY
BNA＇S	IN WATER BY GC／ms	UH18	CHRY
BNA＇S	IN NATER BY GC／MS	UM18	CHRY
BRN＇S	IN KATBR BY GC／ms	U18	CHRY
BNA＇S	IN NATER BY GC／ms	UM18	CHRY
bin＇s	IN NATBR BY GC／MS	UM14	CRRY
BNA＇S	IN WATER BY GC／MS	UM12	CHRY
BNa＇s	IN Matbr by gc／ms	UM18	CL6B2
BNA＇s	IN matEr by GC／ms	UM18	CL6BZ
BRN＇S	IN WATBR BY GC／ms	UM18	CL6Bz
BNU＇S	IN WATER BY GC／MS	UM18	CL682
BREA＇S	IN MATER BY GC／mS	UH18	CL6B2
BRU＇S	IN WATER BY GC／hs	UH18	CL682
BNA＇S	IN WATER BY GC／MS	UM18	CL682
BRA＇S	IN NATER BY GC／MS	U418	CL6Bz
ben＇s	IN WATER EY OC／MS	Un18	CL6CP
BRL＇S	IN WATER BY GC／Ms	UM18	CL6CP
BRA＇S	IN MATER BY GC／MS	0 H 18	CL6CP
bina＇s	IN NATER BY CC／MS	UN18	CL6CP
bind	IN WATBR BY Ge／ms	UM18	CL6CP
bind ${ }^{\text {a }}$	IN WATER BY GC／HS	UN19	CL6CP
BRNA＇S	IN WATER BY GC／ms	Un18	CL6CP
BRA＇S	IN WATIRR BY GC／MS	UN18	CL6CP
bru＇s	IN NATER BY EC／MS	Un1：	CL6ET

SAMPLB DUPLICATRS (NON-PILTERED SAMPLRS)

$\underset{\sim}{a}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$	00000000 $\dot{0} \dot{0} \dot{0} \dot{0} 0 \dot{0} 0$	00000 00000	00000000 00000000
$\begin{aligned} & \text { D } \\ & \underset{\sim}{\mathbf{n}} \end{aligned}$	匂号易易			
$\underset{\Xi}{9}$			ペトトゥドゥト	$\boldsymbol{\omega} \boldsymbol{\infty} \boldsymbol{\omega} \boldsymbol{\omega} \boldsymbol{\infty}$
v	$v \vee v v$	$v \vee v \vee v \vee v v$		
	 㗊葸品品 草品 능 ́ㅡㅇㅜN	 	容客定完品品品品 4\％2\％品品 	
$\begin{aligned} & \text { 㻤 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { nan un u } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	 OO 	 ○ 8 O 	óáááá OOO
			 合它合客客	
$\stackrel{8}{8}$	分㐫亩亩			
$\begin{aligned} & \text { 吕 } \\ & \text { H } \\ & \text { 0 } \end{aligned}$				
8				
$\begin{array}{r} \mathbf{8} \\ \frac{1}{4} \\ \frac{0}{2} \end{array}$		 	 	

Value Unit:

$$
2
$$

sample duplicatgs（non－filterkd samples） $\begin{array}{l:l}\text { 只 } & 0 \\ & 0 \\ & \\ & \end{array}$

 v 27－SBP－95 \qquad
 00000000 00000000 $\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0\end{array}$ 00000000 00000000
응ㅇㅇㅇㅇㅇㅇ 13－NOV－95＜ $\vee \vee v \vee \vee \vee v$ $v \vee v \vee \vee \vee v$

| IRDNIS | | |
| :--- | :--- | :--- | :--- |
| Field | | |
| Sample | | |
| Nubber | Number Lot Date | Analyaia | 13－SEP－95 \qquad M

1
1
ह
0
1
ल

n
o
1
1
0
i
i
i
－NOV－95
$-\mathrm{NOV}-95$
n
0
0
0
5
3
3
3

- SBP－9
$-\mathrm{HOV}-95$
$-\mathrm{NOV}-95$
$-\mathrm{NOV}-95$
$-\mathrm{NOV}-95$
$-\mathrm{ROV}-95$
 WDWH

棓喑語童童
 W4W＊235 WDFI

 mDax03x1 MXAX03X1
 MDZF12X3 MXZN12X3 KOK5703XX
ND5703XX mDAX03X1 mexax 03×1 MDG307x1
MxG307x1
 중
ल
둥
$\times 1$ 12xAX03×1 MDG： MXG307xi
MDZ CXZW12X3気荷 7
 IRDNIS LRENE
 큰析
皆咢電 ？ ，

 Method $\begin{array}{r}9 \\ 5 \\ \hline\end{array}$寝 is ET ${ }_{5}^{\circ} \stackrel{\oplus}{5} \stackrel{\oplus}{5}$
$\infty \infty \infty \infty \infty$
 BNA＇s IN WATER IN GC／MS
 ant＇s in water by cc／ms

 Method Description
BNA＇s IN WATER BY CC／M
BNA＇S IN WATER BY GC

 어어어엉
惫首家家
 の日禺
员

Value $\backsim ⿰ 幺 幺$
\bullet $\varphi \varphi \varphi \varphi \varphi \varphi$ $\stackrel{\oplus}{+} \dot{+} \ddagger$

苟

$\begin{aligned} & \frac{8}{3} \\ & 3 \end{aligned}$	（n n n n $\vee \vee \vee v$	$\dot{\infty} \dot{\infty} \dot{\infty} \dot{\omega} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty}$ $\vee v \vee \vee \vee \vee v \vee$	 vマvマママvv	vvvvマvvv
	先に的に 谓出岩岕岕 ：	 1ヶ11 1 1 1 	 	 ल m
$\begin{aligned} & \text { 员 } \\ & \text { 鿓落 } \end{aligned}$		 	安安安它客客品署 	 ioior
§				
		 台台台台台它	 合合合白白白	 白白台台白白白
$\begin{aligned} & \text { U } \\ & \text { © } \\ & \text { E } \\ & \hline \end{aligned}$				
8		 	 	
品				
\％				
$\begin{aligned} & \% \\ & \frac{8}{3} \\ & \frac{8}{2} \end{aligned}$		on On of or on os os 自甶甶自自各自自	 	

(sgrdive agabinid-NON) sanwitana grawys

Method Description	IRDMIS Method Codo	Tent Name	IRDNIS Field Sawple Number	Lab Number	Lot	Sample Date	Analyais Date	$<$	Value	Units	RPD
BNA'S IN WATER BY GC/ms	UM18	PCB221	MX2W12x3	DV4W*275	WDHI	02-NOV-95	05-DEC-95	<	21	DGL	0.0
BNA'S IN WATER BY GC/ms	UM18	PCB221	MDEW12X3	DV4W*450	WDHI	02-NOV-95	05-DBC-95	<	21	Uel	0.0
BNA'S IN WATER BY GC/MS	UN18	PC8221	WX5703x	DV4W*202	WDWH	13-SEP-95	26-SEP-95	$<$	21	UGL	0.0
BNA'S IN MATER EY GC/MS	UM18	PCB221	WD5703xX	DV4W*432	WDWH	13-SBP-95	27-S8P-95	$<$	21	UGL	0.0
BNA'S IN WATER BY GC/ms	UM18	PCB232	MDAX03X1	DV4W*447	WDPI	31-OCT-95	13-NOV-95	$<$	21	UGL	0.0
BNA'S IN WATER BY GC/MS	UM18	PCB232	MXAX03×1	DV4W*235	WDPI	31-0CT-95	13-NOV-95	$<$	21	UCL	0.0
BNA'S IN WATER BY GC/MS	UM18	PCB232	NXG307×1.	DV4W*165	WDPI	31-OCT-95	13-M0V-95	$<$	21	UGL	0.0
BNA'S IN WATER EY GC/MS	UM18	PCB232	MDG3 07x1	DV4W*448	WDPI	31-OCT-95	13-NOV-95	<	21	UCL	0.0
BNA'S IN WATER BY GC/MS	U418	PCB232	NX2N12X3	DV4W*275	WDHI	02-NOV-95	05-DBC-95	$<$	21	UGL	0.0
BNA'S IN WATER EX GC/MS	UM18	PCB232	HDZN12X3	DViW $=450$	WDHI	02-NOV-95	05-DRC-95	$<$	21	UGL	0.0
ENA'S IN WATRR BY GC/ms	UM18	PCB232	WX 5703xx	DV4W*202	WDWH	13-SEP-95	26-88P-95	<	21	UGL	0.0
BNA'S IN WATER BY GC/MS	U418	PC8232	WD5703x	DV4W*432	WDWH	13-SEP-95	27-S8P-95	$<$	21	UGL	0.0
BNA'S IN WATER BY GC/MS	UM18 ${ }^{\text {- }}$	PCB242	MDAX03X1	DV4W*447	WDPI	31-OCT-95	13-NOV-95	$<$	30	UGL	0.0
BNA'S IN WATER BY GC/MS	Un18	PCB242	MXAXO3x1.	DV4W*235	WDPI	31-OCT-95	13-10V-95	$<$	30	UGL	0.0
BNL'S IN WATER BY GC/Ms	UM19	PCB242	M2xG3 07x1	DVAW*165	WDFI	31-OCT-95	13-NOV-95	<	30	UGL	0.0
BNA'S IN WATER BY GC/MS	0 U18	PC8242	MDG307x1	DV4W*448	WDFI	31-OCT-95	13-NOV-95	$<$	30	UGL	0.0
BNA'S IN WATBR BY GC/MS	UM18	PC8242	MX2N12X3	DVAW*275	WDHI	02-NOV-95	05-DBC-95	<	30	UGL	0.0
BNA'S IN WATER BY GC/MS	UHP_{18}	PCB242	MDZW12X3	DV4W+450	WDHI	02-NOV-95	05-DBC-95	$<$	30	UGL	0.0
BRIA'S IN WATER BY GC/MS	U,18	PCB242	WX5703xX	DV4W 202	NDKH	13-SEP-95	26-SBP-95	<	30	vel	0.0
ENA'S IN NATER BY GC/ms	0 L 18	PCB242	WD5703XX	DV4W*432	WDWH	13-SEP-95	27-88P-95	<	30	val	0.0
BRN'S IN WATER BY GC/MS	UM18	PCB248	MDAX03X1	DV4W*447	WDPI	31-OCT-95	13-NOV-95	$<$	30	val	0.0
ENA'S IN WATER BY GC/ms	Un18	PCB248	MKAXO3X1	DV4W*235	WDEI	31-OCT-95	13-NOV-95	$<$	30	UGL	0.0
BRA'S IN WATER BY GC/MS	UM18	PCB248	MXG307X1	DV4W*165	WDPI	31-OCT-95	13-NOV-95	$<$	30	UGL	0.0
BRA'S IN NATER BY GC/MS	UM18	PCB248	MDG307X1	0V4W*448	WDPI	31-OCT-95	13-ROV-95	$<$	30	uel	0.0
BNA'S IN WATER BY GC/MS	L418	PCB248	MXZEN12X3	DV4N*275	wDHI	02-MOV-95	05-DEC-95	<	30	UGL	0.0
BRA's IN WATER BY GC/MS	UN18	PCB248	HDEN12X3	DV4W*450	wDHI	02-NOV-95	05-DEC-95	\leqslant	30	UGL	0.0
BNA'S IN WATER BY GC/MS	UM18	PCB24í	wx5703x	DV4W*202	WD*H	13-SBP-95	26-SBP-95	$<$	30	UGL	0.0
BNA'S IN WATER BY GC/HS	UN18	PCB248	WD5703x	DV4W*432	WDWH	13-SEP-95	27-SBP-95	$<$	30	UGL	0.0
BRE' B IN WATER BY GC/ws	UN18	PCB254	mbax03x1	DV4W*447	WDFI	31-OCT-95	13-NOV-95	<	36	val	0.0

 Sample Analyais
Date
Date

13－NOV－95 13 －NOV－95
13 －NOV－95
$13-\mathrm{NOV}-95$

会

n
n
n
\vdots
\vdots

会

 §

砣它
 nocax 03×1 MxGcio7x N N 낭

DV4 $\mathrm{H}^{2}+447$

 monxo3x1

茄
 ： OO：O O O O O

IRDHIS

 BNA＇S IN WATER BY GC／MS

E

Chemical quality Control Report Inatallation：Fort Devene，MA（DV）

SAMPLE DUPLICATRS（NON－PILTRRED SAMPLBS）

value

解是号
value

27－SEP－95
$13-\mathrm{NOV}-95$
$13-\mathrm{NOV}-95$
$13-\mathrm{NOV}-95$
$13-\mathrm{NOV}-95$
$13-\mathrm{NOV}-95$
$05-\mathrm{DBC}-95$

3－NOV－95

13－NOV－95
13－NOV－95

IRDMIS Field Sauple Number

咎总
Phantr

号

道置 lill ilil PHENOL关号员品 ！ ？ R

 IRDMIS
Method
GNA＇S IN WATER BY GC／MS UM18
皆

BNA＇S IN WATBR BY GC／MS
BNA＇S IN WATER BY GC／MS
BNA＇S IN WATER BY GC／MS

＂1075
5ins

0

BNA＇S IN WATBR BY GC／MS
BNA＇S IN NATBP BY GC／BS
 BNA＇S IN NATBR BY GC／MS

曾兽葸

sAMPLB DUPLICATBS (NON-PILITRRBD SMMPLBS)

Method Dencription	IRDMIS Mothod Code	$\begin{aligned} & \text { Tant } \\ & \text { Naname } \end{aligned}$	IRDMIS Field Sanple Mumber	$\begin{aligned} & \text { Lab } \\ & \text { Number } \end{aligned}$	Lot	$\begin{aligned} & \text { sample } \\ & \text { Date } \end{aligned}$	Analyaie Date	<	Value	Unita	RED
ben's in water by ac/ms	OM11	PPDDT	MDZW12	DV4W+450	MDHI	02-NOV-95	05-DBC-95	<	9.2	UOL	0.0
BNA'S IN WATER EY GC/hs	Un1:	PPDDT	nxiw1 2x3	DV4W*275	WDHI	02-NOV-95	05-D8C-95	<	9.2	vel	0.
bin's in water by gc/ms	un18	PPDOT	nex5703xx	DV4W-202	WDWH	13-s8P-95	26-88P-95	<	9.2	uel	0.0
BNA'S IN WATER EY GC/hs	UH18	PPDDT	wD5703xx	DV4W*432	WDWH	13-88P-95	27-8BP-95	<	0.2	USL	0.0
bents in watir ay oc/ms	Un18	PYR	mDax03x1	DV4W*447	WDPI	31-0CT-95	13-nov-95	<	2.8	uel	0.0
BNA'S IN MATER EY CC/Ms	UN18	PYR	mxax03x1	DV4W*235	MDPI	31-0CT-95	13-nov-95	<	2.8	Usb	0.0
bNA'S IN WATER' BY OC/Ms	UN10	PYR	MxG307x1	DV4W*165	Mర゙¢	31-0CT-95	13-80V-95	<	2.8	UGL	0.0
BHA'S IN MATER EY OC/ms	U41:	PYR	hides 07x1	DV4W*44	MDPI	31-OCT-95	13-NOV-95	<	2.8	USL	0.0
beh's in wattr by ce/ms	UM18	PYR	MKX2412X3	DV4K+275	WDHI	02-NOV-95	05-D8C-95	<	2.8	USL	0.0
BNA'S IN WATER EY OC/ms	Luls	PYR	MDEW12x3	DV4W*450	NDHI	02-NOV-95	05-DRC-95	<	2.8	UEL	0.0
BRA'S IN WATER BY GC/ms	LTH2	PYR	wD5703x	DV4W*432	WDWH	13-58P-95	27-8BP-95	<	2.8	USL	0.0
BNA's In hater by ec/ms	un18	PYR	hex5703xx	DV4W*202	WDWH	13-88P-95	26-88P-95	<	2.8	USL	0.0
bna's in mater by oc/ms	Lum18	TXPHEN	monx03xi	DV4N*447	NDPI	31-ocr-95	13-m0V-95	<	36	uel	0.0
BNA'S IN MATER BX GC/hs	UM18	TXPHEN	NCAX03x1	DV4W+235	WDPI	31-0CT-95	13-MOV-95	<	36	uel	0.0
bin's in matir by oc/ms	UW18	TXPHEN	micsio7x	DV4W+448	WDFI	31-0ct-95	13-nov-95	<	36	UGL	0.0
bin's In mater by cc/ms	UN18	TXPHEN	HK¢¢07x1	DV4W*165	WDPI	31-OCT-95	13-NOV-95	<	36	USL	0.0
binds in matir by cc/ms	U418	TXPHEN	nitewi2x3	DV4W* 450	wdir	02-NOV-95	05-D8C-95	<	36	vel	0.0
binh's in hatar by oc/ms	UM18	TXPhis	MK2N1203	DV4W*275	WDHI	02-NOV-95	05-DBC-95	<	36	val	0.0
bin's in mater by ac/ms	U418	TXPHEN	kx5703xx	OV4W*202	MDWH	13-88P-95	26-8BP-95	<	36	USL	0.0
BNA'S IN MATER BY Gc/ms	UN18	TXPHEN	wDS703xx	DV4W* 432	WDWH	13-8BP-95	27-3EP-95	<	36	uel	0.0
binds in mater bx ac/ms	UM18	UNK522	maxio3x	DV4N*47	NDPI	31-OCT-95	13-80V-95		10	vel	0.0
bents in mater by ac/ms	Unle	UnK522	M6AX03x1	DV4N*235	MDPI	31-OCT-95	13-MOV-95		10	UEL	0.0
bints in matbr by gc/ms	Un18	uners22	M $4 \times 6307 \times 1$	DV4W*165	MDPI	31-0CT-95	13-MOV-95		10	USL	22.2
BNA'S IN MATER BY OC/ms	UN18	UNK5 22	nitasixi	DV4W*44	MDPI	31-0CT-95	13-nov-95		-	USL	22.2
VOC's in matir by ec/ms	UH20	111 TCB	hacux ${ }^{\text {axi }}$	0V4W+235	xans	31-OCT-95	07-nov-95	<	. 5	USL	0.0
Voc's in matir by oc/ms	UM20	111 TCB	MDNX03X1	DV4W*447	xOnN	31-0CT-95	07-NOV-95	<	. 5	uel	0.0
VOC's in mater by oc/ms	UM20	111 TCB	mDE307x1	DVAN*448	xDN	31-OCT-95	07-NOV-95	<	. 5	UGL	0.0
VOC's IN mater by oc/ms	UN20	111 TCB	nexas07x1	DV4W*165	x	31-0CT-95	06-MOV-95	<	. 5	USL	0.

SAMPLB DUPLICATES (NON-PILTERED SAMPLBS)

Method Dascription	IRDMIS Method code	Teat	IREMIS Field Sample Number	Lab Number	Lot	$\begin{aligned} & \text { Sample } \\ & \text { Date } \end{aligned}$	Analyaia Date	<	Value	unite	RPD
VOC's in water by ec/ms	UM20	1117 CE	MX2N12X3	DV4W*275	XDJN	02-NOV-95	07-NOV-95	<	. 5	UOL	0.0
VOC's in water by gc/ms	CM20	111 TCB	MDZw12x3	DV4W+450	xDKN	02-NOV-95	07-nov-95	<	. 5	UGL	0.0
voc's in watbr by ge/ms	UM20	1117 CB	wD5703x	DV4W*432	хDOM	13-SEP-95	21-SBP-95	<	. 5	UGL	0.0
VOC'S IN WATER BY GC/ms	Cum 20	111 TCB	wx5703xx	DV4W*202	XDNM	13-8BP-95	20-s8P-95	<	. 5	USL	0.0
Voc's in mater by cc/ms	UM20	112 TCB	nxax03xi	DV4W*235	xans	31-OCT-95	07-nov-95	<	1.2	vel	0.0
voc's in water by cc/ms	U420	112 TCB	mDAX03x1	DV4W*44	xDN	31-OCT-95	07-nov-95	<	1.2	UGL	0.0
voc's in watrr by ce/ms	UM20	112 TCB	MXG307x1	DVAW*165	xDIN	31-OCT-95	06-NOV-95.	<	1.2	vel	0.0
vocis in water bx cc/ms	U420	112 TCB	mDG307x1	DV4W*448	XDNN	31-OCT-95	07-NOV-95	<	1.2	vel	0.0
voc's in mater by ce/ms	UM20	112 TCB	mDZw12x3	DV4W+450	xDKN	02-NOV-95	07-NOV-95	<	1.2	UGL	0.0
VOC's In water by cc/ms	UM20	112 TCB	nexzw12x3	DV4W 275	xans	02-NOV-95	07-NOV-95	<	1.2	ves	0.0
voc's in water by cc/ms	UH20	112 TCB	wD5703xx	DViW*432	xDOM	13-SEP-95	21-SEP-95	<	1.2	vel	0.0
voc's in watar by oc/ms	UM20	112 TCB	wK5703xx	DV4W*202	xDsm	13-sBP-95	20-stP-95	<	1.2	vel	0.0
VOC'S In matbr by ac/ms	UM20	${ }^{11 D C E}$	mXPX0331	DV4W*235	XDN	31-0CT-95	07-nov-95	<	. 5	ves	0.0
VOC'S IN water by oc/ms	UW20	11DCB	mDax03x1	DV4W*447	XDJN	31-OCT-95	07-nov-95	$<$. 5	val	0.0
voc's in water by ce/ms	UM20	11DCB	MDG307K1	DV4W*448	xDN	31-OCT-95	07-nov-95	<	. 5	ves	0.0
VOC'S IN WATER BY GC/MS	UM20	11DCE	EXCB07X1	DV4W*165	XDNN	31-0CT-95	06-NOV-95	<	. 5	UGL	0.0
voc's in water by oc/ms	CM20	11DCB	nxzN12X3	DViW*275	XDN	02-NOV-95	07-NOV-95	<	. 5	UEL	0.0
voc's in water by oc/ms	UM20	11DCB	MDZW12X3	DVAW*450	хDкN	02-NOV-95	07-NOV-95	<	.5	UGL	0.0
voc's in water by ac/ms	UM20	11DCB	WD5703XX	DV4W*42	xDOM	13-88P-95	21-88P-95	<	. 5	UGL	0.0
voc's In water by oc/ms	UH20	11DCB	wx5703xx	DV4W*202	XDIM	13-8BP-95	20-s8p-95	<	. 5	UGL	0.0
voc's in matbr by ce/ms	um20	11DCLs	nexax 03 xi	DV4W*235	xמN	31-OCT-95	07-nov-95	$<$. 68	val	0.0
voc's in water by cc/ms	Un20	11DCLB	mDAX03x1	DV4W*447	xDN	31-OCT-95	07-NOV-95	<	. 68	UGL	0.0
voc's in water by oc/ms	UN20	11DCLB	nxceso7x1	DVAW*165	xDIN	31-OCT-95	06-nov-95	<	. 68	ugl	0.0
voc's In water by cc/ms	UM20	11 DCLE	MDE307x1	DV4W*448	XDNs	31-OCT-95	07-NOV-95	<	. 68	ugl	0.0
voc's in matikr by ec/ms	Lin 20	11 DCLS	hDEw12x3	DV4W*450	xDkN	02-Nov-95	07-NOV-95	<	. 68	UGL	0.0
VOC's IN WATER BY GC/ms	L 212	11DCLs	nexwi2x	DV4W*275	xDIN	02-NOV-95	07-nov-95	<	. 68	UGL	0.0
voc's in water by cc/ms	प\|20	11DCLs	WD5703xX	DV4W*432	xDO\%	13-SEP-95	21-S8P-95	<	. 68	vel	0.0
voc's in water by echms	UN20	11DCLE	wx5703xX	DVAW*202	XDNM	13-SBP-95	20-SBP-95	<	. 68	L	0.0
	UN20	12DCB	$\operatorname{mDAX03X1}$	DV4W*44	NN	31-OCT-95	07-NOV-95		. 5	UGI	

Chemical Quality Control Report
Installation：Fort Dovens，MA（DV）
Group 2， 7 sites

年

K

 ひんひひび
 IRDNIS
Field
Sampl
Number率
 MDGE307x1
MXZZN12x3
MDZH12X3 MDZW12x3
wD5703xX wx5703xX

 MDG30181
MXZW12X3
 wx5703XX mDax03x1 출 MOKG307X1器 WD5703xx
w 65703 xx

$\stackrel{1}{2}$ 8

㱕管 열

 12DCLP
 ： 럼

 Irpenis
Method
Code ：

ํํํํํํํํ

Method Dencription

은
亩亩

总

${ }_{3}^{2}$

2

0
0

 3S3S3S3

 पुप्ठप्ठप्ठप्ठप्ठ प्ర
首总曾首首息曾
 Z Z Z Z Z Z Z Z

Chemical quality Control Report
Enatallation：Port Devens，MA（DV） Group 2， 7 sites
SAMPLE DUPLICATBS（NON－pILTERED SAMPLBS） $\begin{array}{ll} & \text { IRDMIS } \\ \text { IRDNIS } & \text { Field }\end{array}$
응ㅇㅇㅇㅇㅇㅇ
00
8888088:
8：888\％\％\％8：\％
$\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$

最家淢

\qquad

07－MOV－95
07－nOV－95
$6-\mathrm{NOV}-95$
$7-\mathrm{NOV}-95$
$07-\mathrm{NOV}-95$
$07-\mathrm{NOV}-95$

$21-38 \mathrm{P}-95$
$20-38 \mathrm{P}-95$
07－NOV－95

20－SBP－95

DV4W＊202 XDRN
DV4W＊447 XDJN

 $\begin{array}{ll}\text { DV } 4 W+432 \text { XDOW } & 13-S B P-95 \\ \text { DV } 4 W * 202 & \text { XDNM } \\ 13-S B P-95\end{array}$

MDAX03X1
MXCAX03X1

0

mDAX03XI
 MDZW12×3

 Bvs
它最宽荮

ACROLN 3 ACROLN Z
0
0
0
0

N
5

Mathod Description

VOC＇S IN WATER BY GC／MS UN2O

8

ํㅜ쿵 voc＇s IN WATER BY GC／

o

올 올 온 올

云云云云云云云云

पु प्ర प्⿱

寝曾首首
至至要
6
4
4
8
8

 $\begin{array}{llll}\text { WD5703XX } & \text { OVAW } 432 \text { XDOM } & 13-3 B P-95 & 21-S B P-95 \\ \text { WX5703XX } & \text { DV4W＊202 XDNH } & 13-\text { SBP－95 } & 20-\text { SBP－95 }\end{array}$ $\begin{array}{lll}\text { DV4W＊447 XDNN } & 31-O C T-95 & 07-\mathrm{NOV}-95 \\ \text { DV4W＊235 XDNN } & 31 \text {－OCT－95 } & 07-\mathrm{NOV}-95\end{array}$
 6－NOV－95

07－NOV－95
$07-\mathrm{NOV}-95$ $6-\mathrm{NOV}-95$
$7-\mathrm{NOV}-95$ 7－NOV－95
$7-\mathrm{NOV}-95$ 21－SBP－95 20－S8R－95

7－NOV－95 7－ $\mathrm{NOV}-95$
$07-\mathrm{KOV}-95$ 06－NOV－95 7－NOV－95 1 －NON－95
$21-$ SBP－95
$20-$ SEP－95
 Sample
IRDMIS

\qquad晏景齵沓 ํ ํ ㅇ
 U
m
8

 논 $\begin{array}{r}30 甘 \\ 9 \\ \hline\end{array}$

H IRDMIS
Method

	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$
욘 온 옻 웇	물 율 몰 올
备畕界益	

㐾

울 우ㅎㅜㅜㅎㅜㅜ훟 문 ค 8楇

을

 पुणुप्ठ पु

울 몰 온 율 올 온 9

自品酋自自自自自空空空空定

 GYYY Y Y Y Y

$$
\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0
\end{array}
$$

$$
\begin{aligned}
& 0000000 \\
& 00000000
\end{aligned}
$$ －

$0:$

 07 －NOV－95
06 NOV－95 06 －NOV－95
$07 \mathrm{NOOV}-95$ $07-\mathrm{nOV}-95$
$07-\mathrm{NOV}-95$ $07-\mathrm{NOV}-95$
21 －SBP－95 20－S8P－95
07－NOV－95
07 －NOV－ 95 06 －nov－95 $07-\mathrm{NOV}-95$
$07 \mathrm{NOV}-95$
$21-\mathrm{SBP}-95$ 20 －SBP－95
07－nov－95
 7－NOW－9 $07-\mathrm{nOV}-95$
$06-\mathrm{NOV}-95$

$31-$ OCT－95
31 oct－95
$31-$ OCT－95
$31-$ OCT－95
02 －NOV－95
02 －NOV－95

领

13－SBP－95

各管

DV4W＊235
DV4W＊448
DV4W 465

DV4W． 165
DV4W

DV4W＊450

 MxAx03X1 mxax03X1 | 7 |
| :---: |
| |

 WK5703xx

 MDG307×1
 MDZ＊1．2X3 प्रू
in
in mDAX03X1 MXAXX03X1 MDG：307X1
 N

mDAX03X1

 мхахо3х1 ${ }^{N}$ 뭉
 シ式 \qquad
 웅 웅 웅 옹 옹 웅 웅

 IRDNIS MRDNTIS \qquad

d

20

 엉
兑首曾曾首首曾首宽

 प्⿱一兀口
曾曾曾呈曾首首

SAMPLB DUPLICATBS (NON-FILTERED SAMPLES)

品	OO o 오 O	$\dot{\sim} \dot{\sim}$	0000000 －00000 0	00000000 $\therefore 0000000$
	呂号号淢			
$\underset{\underset{7}{3}}{9}$	$\ddot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}$			
v	$v \vee v \vee$	$v \quad v \quad v v$	vvvvvvvv	
		它它定它它安首品 「58555 둥	 	言它它它它它品品 424 242π
$\begin{aligned} & \text { 品 } \\ & \text { 菏 } \end{aligned}$	 ；동 등	 O O O O Z Z O O 	 	
وٌ				
首真				
	䍗䍗䍗哭哭			
\pm	分分畕盆			
$\begin{aligned} & \dot{0} \\ & \mathbb{U} \\ & 0 \\ & 0 \end{aligned}$	品咱品品			
\＆	齊愐少云			
	$\begin{aligned} & 0 \\ & 0 \\ & y \end{aligned}$	प प प प y y y y 		on os on on on on or

鸟鸟 岛号号EGETG © © ©8 운 $\because \because n!$
\qquad

IRDNIS				
Pleld				
Sampla	Lub		8ample	Analymis
Sumber	Number	Lot	Dete	Date

 MDZW12x3 DVAW 450 XDKN O2－NOV－95 O7－NOV－95 NX55703XX DV4W＊202 XDNM 13－SBP－95 20－SBP－95
DV4W＊235 XDT
$\begin{array}{lll}\text { DV4W＊235 XDNN } & 31-O C T-95 & 07-\text { NOV }-95 \\ \text { DV4W＊447 XDNN } & 31-O C T-95 & 07-\text { NOV－95 }\end{array}$ 31－OCT－95 06－NOV－95 $\begin{array}{ll}\text { DV4W } 165 \text { KDNN } \\ \text { DVU } 275 \text { XDJN } 02-\mathrm{NOV}-95 & 07-\mathrm{NOV}-95\end{array}$ DV4W＊450 XDKN O2－NOV－95 O7－NOV－95 $\begin{array}{lll}\text { DVAW＊202 XDNM } \\ 13-S B P-95 & 20-8 B P-95\end{array}$ 07－NOV－95

 07－NOV－95
 07－NOV－95
$07-\mathrm{MOV}-95$

\qquad

 －\times Cax 03×1 MXCAX03X1
MDAX03X1
 줏줄
©
⿹ㅓㄴ MXZW12X3
MDZW12X3 MDZW12X3
WD5703XX Mxax03X1 MXAX03XI
mpax03X1 MDG307X1
MXG307X1 MXG307X1
MDZW12X3 NXXZN12X3 WD5703XX
wX5703XX
苞氝DBRCTMmTTC6H5
TC6H5
TC6H5 농

呍 | N |
| :---: |
| 男 |
| O | Mothod

 $\frac{0}{5}$

Method Dencription

358
$\frac{9}{8}$

 OC＇S IN WATER BY GC／HS
OC＇S IN MATER BY GC／MS
문 문문

免曾角臬 る そ かのッ VOC
VOC

 望

TABLE D-19

Chemical Quality Control Report
Inatallation：Fort Devens，MA（DV） Group 2， 7 sites
SAMPLB DUPLICATBS（pILTERED SAMPLBS）
 IRDMIS
Method
Teat

号吻
品品
Method Description思思界思思界

 둡
SAMPLB DUPLICATBS（FILTBRED SAMPLBS）

0.0	TEn	T－It	＞	56－son－8z	56－sON－zo	aLaz	sLr＊d\＃nd	Extchzxw	NR	otss	
$0 \cdot 0$	700	t．tz	＞	56－ncx－8z	56－nON－zo	dLaz	OSt＋absa	Exztuzaw	NZ	orss	
0.0	Tin	II	P	96－nca－8z	56－now－zo	aLaz	sLz＋d〉sa	Exztmzxw	Λ	0 Tss	
$0 \cdot 0$	T0	τ	＞	56－ncx－82	56－nox－zo	aLaz	05\％\＃drad	Exztmzas	Λ	0Tss	dYSI 29 dqivm ni stuigh
0.0	TEQ	$\varepsilon \cdot \%$	\geqslant	56－son－gz	56－AON－zo	dusz	05t＋dpha	exztmzaw	IN	0ISs	dYol xa yeitm ni stuian
0.0	Ton	E．7E	＞	S6－son－8z	56－ron－z0	dLaZ	sLて＊dbムa	Exztmzxa	IN	orss	
8.1	7 m	0028z		56－ran－8z	S6－nON－zo	dLaZ	057＊d「sa	Exzthzaw	W	otss	
$0 \cdot 1$	Ten	00282		S6－naN－8Z	56－AON－20	aLaz	sLz＊dFsa	Exztazxw	Un	0TEE	
6． 22	TM	SL＇z	＞	56－now－8z	56－MON－z0	dLaz	SLZ＊dFSO	Exztmzxw	NW	0tss	
$6 \cdot L \%$	75	$7{ }^{-1}$ E		56－10x－8z	56－MON－20	a．an	os\％＊absa	Exztmzaw	NW	0 05s	
\％L	Tm	0102		56－now－8z	S6－AON－20	duaz	0S7＋dVAd	Exzinzaw	2W	0tss	
\％ 2	Ton	0912		56－now－8Z	S6－now－zo	duaz	sLて＊disa	Exztmzxw	0W	Otss	
9．7	Tin	0691		56－תON－8Z	56－MON－zo	alaz	057＋dPsa	Exztmzaw	\％	0tss	duSt xa thing ni styian
9．7	T00	0＜LI		56－nON－8L	S6－nON－zo	aldz	sǐadrsa	Exztmzxw	8	OTSE	TWI 89 \＆ZITKM NI STYLEW
－ \boldsymbol{z}	Im	$8 \cdot 8 \varepsilon$	＞	S6－now－9z	56－MON－z0	dunz	05t＋drsa	exztmzaw	8a	otes	TYOI Ka dmimm ni stilan
$8 \cdot \boldsymbol{L}$	15	5．7\％		S6－ncN－9z	S6－AON－zO	dLaz	sLz＊dbsa	Exztazxw	ga	0tss	
0.0	700	$60 \cdot 8$	＞	56－son－8z	56－AON－20	dLat	ostadrad	exztazaw	∞	076s	
0.0	701	$60 \cdot 8$	＞	56－ncN－8	56－now－zo	aLd2	SLZ＊arsa	EXZ TMZXW	ก	0tss	वWI $x 8$ \％HIEM NI STYIGM
0.0	T00	20.9	＞	56－now－8z	56－MON－Z0	dLdz	OSt＋drsd	Exz tmzaw	¢	otss	
$0 \cdot 0$	Im	20．9	＞	56－nON－8Z	56－AON－20	dudz	SLZ＊dFAC	ExZTMzXM	¢	otss	dWPI XE \％EIYM NI ETYLRM
0.0	T190	st	＞	56－ron－8	96－nON－zo	dLdz	OSt＊drsa	exzimzaw	∞	otss	
0.0	Ton	st	$>$	56－ncN－82	56－AON－z0	aldz	SLZ＊d＊Sa	Exzthzxw	∞	OTss	TWI 18 yaivm ni stuinw
adx	97\％40	onten	＞	$\begin{array}{r} \text { eyed } \\ \text { gỵoरteuy } \end{array}$	$\begin{array}{r} \text { ozed } \\ \text { efdures } \end{array}$	701	$\begin{aligned} & \text { xoqumn } \\ & \text { qet } \end{aligned}$	xequins －tanes plofy gIWTDI	$\begin{aligned} & \text { owven } \\ & 789 \text { I } \end{aligned}$	－pos рочден SIWCRI	

[^0]TABLE D-20

$09090 \% 0 \%$
090

㑒	$m \ldots \infty \infty 00 \infty \infty$ 			$00^{\circ} \mathrm{O}$
				贰易易
$\begin{aligned} & \mathrm{g} \\ & \stackrel{11}{8} \end{aligned}$			NNNNNNNN	$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 0 \\ & 6 \\ & 6 \end{aligned} 9$
v				v v v
	 B नN～NNN N	 号 	 	ดั ロロ ロ नi웅
	 思思思思思思思罥 	 	 	Кロッロ 圆思图 © の円゙
$\stackrel{\beth}{g}$		 		品界品
	 ；台台台台台台台	 台合合台台台	in © in Nin in in 台台台台台台台	
$\begin{aligned} & \text { 宸最 } \\ & \text { H } \end{aligned}$				显显易
	NNNNNNNN N N N N ल m m m m m	 	 	$\begin{aligned} & \circ \stackrel{\circ}{\circ} \text { 응 } \\ & \text { 呙 } \end{aligned}$
			氐氐氐氐氐氐氐	
－				易省第
8 8	 			曾界臭空空
¢				号要少
				㒶具是

Chemical Quality Control Report
Installation: Fort Devens, MA (DV) Installation: Fort Devens, MA (DV)
Group 4 Sites sAMPLE DUPLICATBS

Chemical Quality Control Report
Installation: Fort Devens, MA (DV)
Group 4 Sites
SAM (DV)
SAMPLE DUPLICATBS

Chemical Quality Control Report
Installation：Fort Devens，MA（DV）
Group 4 Sites SAMPLR DUPLICATES

Mur＂oooo तनूनल
峝号
 Sample
Date
Analysis
Date

 IRDMIS
Field 2x5703×2 MxAX04X2
MDAX04X2 MDAX 04×2
MDKW1 MDZNIIX4 MX5701X MX5701X2
MD5701X2 M $\times 5$ 5703X2 4D5703X2 MDAXO4X2 MXZW11X4
MDZN11X4 MX5701X2
MD5701X2
 MD5703x2 MD5703×2
MXAX04X2 MXAX04X2
MDAX04X2 MDZW11X

㡙出昏盅出出出
㽞思盢

8日电8日的

IRDMIS
Method

앙

Method Deacription

B－MAR－96

12－MAR－96 | 6 |
| :---: |
| |

12
6

0
0
0

12－MAR－96

MX5701X2 DV4W＊168 2PZF 13－FBB－96 OB－MAR－96
$\begin{array}{llll}\text { MD5701X2 } & \text { DV4N＊455 ZFAG } & 13-\text { FBB－96 } & 08 \text {－MAR－96 } \\ \text { MD5703X2 } & \text { DV4W458 } & \text { ZFBG } & 14-\text { FEB－96 } \\ \text { 12－MAR－96 }\end{array}$
 UDAXO4X2 DV4W＊457 ZFBG $15-$ PBB－96 12 －MAR－96
$\begin{array}{lllll}\text { MDZW11X4 } & \text { DV } 4 \text { W＊456 } & \text { ZFBG } & 14-\text { PEB－96 } & 12-\text { MAR－96 } \\ \text { CXZN11X4 } & \text { DV4W }+274 & \text { ZFZF } & \text { 14－FBB－96 } & \text { OB－MAR－96 }\end{array}$
MX5701X2 DVKW＊168 ZFZF 13 －FBB－96 O8－MAR－96 MD5701X2 DV4W＋455 ZFAG 13－FRB－96 OB－MAR－96
 DV4N＊23B ZFAG 15－FBB－96 08－MAR－96 $\begin{array}{lllll}\text { IDAXO4X2 } & \text { DV4W＊457 } & \text { ZFBG } & 15-\mathrm{FBB}-96 & 12 \text {－MAR－96 } \\ \text { OXZN11X4 } & \text { DV4W＊274 } & \text { ZPZP } & 14-\mathrm{FBB}-96 & 08-\text { MAR－96 }\end{array}$ 12－MAR－96 96－】ねW－80
 7BOI SIWCAI

$\oplus \infty \propto \infty$
$x x ¥ x x y ェ x$

 －

苟

云云各云

0000×00
\qquad

 펍․․ $v \vee \vee v$ OB－MARR－96
$08-M A R-96$
$12-M A R-96$
OB－MAR 96
$12-M A R-96$
$12-M A R-96$
O8－MAR－96

 HBR日童 11898 14－PBB－96

$$
\begin{aligned}
& \text { IRDMIS } \\
& \text { Pleld }
\end{aligned}
$$

Field			
Sample	Lab		
Number	Number Lot	Analysis	
Nate	Date		

 MX5701X2
MD5703X2 MX5703X2 MXAX04X2
 － $\begin{array}{lllll}\text { MX5701X2 } & \text { DV4W＊16B ZFZR } & \text { 13－FEB－96 } & 08-M A R-96 \\ \text { MD5701X2 } & \text { DV4W＊455 ZFAG } & 13-\text { FBB－96 } & 08-M A R-96 \\ \text { MX5703X2 } & \text { DV4W＊172 ZFAG } & 14-\text { EBB－96 } & 08-M A R-96\end{array}$ $\begin{array}{lllll}\text { MX5703X2 } & \text { DV4W＊172 ZRAG } & 14-\text { FBB－96 } & 08-M A R-96 \\ \text { MD5703X2 } & \text { DV4W＊458 ZFBG } & 14-\text { FEB－96 } & 12-M A R-96\end{array}$
 DV4W＋456
DV4F＋274
 IRDNIS Test
H

$>$ $p s p p p p$
 IRDNIS
Method
Cod

 ํํㄹ

 Hethod Descripticn

鬲先 MX5701X2
MD5701X2
MD5703X2 Mx5703×2

Chemical quality Control Report Installation: Fort Devens, MA (DV)

号

 －

先
ถัロロ 0
0
0
0
0
¢

டัロロ゙ロロ $+$

$$
\begin{aligned}
& \text { ample } \\
& \text { patate }
\end{aligned}
$$

$4 W * 168$	
PDRC	$13-\mathrm{PRB}-96$
$4 * 172$	PDRC
$14-\mathrm{PRB}-96$	

 $\mathrm{VWW}^{2} * 238$ PDTC 15 －PBB－96
 DV4W＊456 pDTC 14 －PBB－96
MD5701X2 DV4W＊455 KDD 13 －PRB－96

鳀宣家
 $4 \mathrm{k} * 456$

$\times 27$ WN＊274 ：号莩 | N |
| :---: |
| N |
| 咅 |亲 창

$\stackrel{\square}{5}$	
पुप్ర प्ర पुपర पुप	पुप पुप्ర
云召云云云至云	云罢云云云
9	
	畄細畄

足：OOO OO OOOOOOOO

0000000 00
\cdots
n

$$
\frac{\mathrm{y}}{5}
$$

 누운
郎号品

응
ir
「～～

Method Description

$\stackrel{\text { a }}{\stackrel{a}{\alpha}}$				응ㅇㅇㅇㅇ․
$\stackrel{\text { 出 }}{\substack{\$ \\ \hline}}$				
$\begin{aligned} & \stackrel{y}{7} \\ & \stackrel{y}{5} \end{aligned}$		 	 	のタのタのタのタの
v	$v \vee \vee \vee \vee v$		$\checkmark \vee \vee \vee \vee v \vee$	vvvvvvvv
	 $\mathrm{O}_{\circ}^{\circ} \mathrm{O}^{\circ} \mathrm{N}$	 1 6 1 	 ～	 1 1 1 1 6 1
$\begin{aligned} & \text { 品 } \\ & \text { 号 } \\ & \text { 感 } \end{aligned}$	品品䛜䛜睍䍐 	 	 	
$\stackrel{ঐ}{\varrho}$				
	品NNNNNN N 合合客客	 		－HMWN 吕合合合合合
$\begin{aligned} & \text { 苟晨 } \\ & \text { 首 } \end{aligned}$				
		 	官官官官客	$\stackrel{\infty}{\infty} \stackrel{\oplus}{\oplus} \stackrel{\infty}{\sim} \stackrel{\infty}{\sim} \stackrel{\infty}{\sim}$
－				
$\begin{aligned} & \frac{\rightharpoonup}{4} \\ & \frac{0}{2} \end{aligned}$	かのの日のか 	 	 	

	Chemical quality control Report Installation: Port Devens, MA (DV) group 4 Sites sAMPLE DUPLICATBS										
Method Description	IRDMIS Method code	$\begin{aligned} & \text { Teat } \\ & \text { Name } \end{aligned}$	$\begin{aligned} & \text { IRDMIS } \\ & \text { Field } \\ & \text { Sample } \\ & \text { Number } \end{aligned}$	$\begin{aligned} & \text { Lab } \\ & \text { Number } \end{aligned}$	Lot	Sample Date	Analyais Date	<	value	Units	D
ENA'S IN WATER BY GC/ms	UM18	24DMPN	MX5701x2	DV4W*168	WDDJ	13-PBB-96	26-PEB-96	<	5.8	val	. 0
BNA'S IN WATER EX GC/Ms	UM18	24DMPN	MD5701x2	DV4W*455	WDD	13-PBB-96	26-F8B-96	<	5.8	vas	. 0
BNA'S IN WATER BY GC/ms	UM18	24 DHPN	MD5703X2	DV4W*458	WDEJ	14-P8B-96	04-MAR-96	<	5.8	UGL	. 0
bNa'S In water by ac/ms	UM18	24DMPN	Mx5703X2	DV4W*172	WDBJ	14-PRB-96	04-MAR-96	<	5.8	UGL	. 0
BNA'S IN WATBR EY GC/ms	UM18	24 DMPN	MXAX04<2	DV4W*238	WDEJ	15-PRB-96	04-MAR-96	<	5.8	vel	. 0
BNA'S IN wATER BY GC/Ms	UM18	24DMPN	MDAX04x2	DV4W*457	WDBJ	15-P8B-96	04-MAR-96	<	5.8	Vel.	. 0
bxa's in watir by gc/ms	UM18	24DMPN	MDZF1114	DV4W*456	WDDJ	14-P88-96	26-FRB-96 $\mathbf{2 6 - F E B - 9 6}$	$<$	5.8 5.8	UGL	. 0
BNA'S IN WATER BY Gc/ms	UM18	24DMPN	MXZWilix ${ }^{\text {a }}$	DV4W*274	WDD	14-PRB-96	26-FBB-96	<	5.8	UGL	. 0
BNA'S IN WATER BY GC/ms	UM18	24 DNP	MDS701x2	DV4W*455	WDD	13-PEB-96	26-PEB-96	$<$	21	UGL	- 0
BNA'S IN WATER BY Gc/ms	UM18	24DNP	M $\times 570132$	DV4W*168	WDD	13-PEB-96	26-PEB-96	<	21	UGL	. 0
bNA'S In mattr by ce/ms	UM18	24DNP	M $\times 5703 \times 2$	DV4W*172	WDBJ	14-PBB-96	04-MAR-96	<	21	UGL	. 0
BNA'S IN WATER BY GC/ms	CM18	24DNP	MD5703×2	DV4W*458	WDBJ	14-P8B-96	04-MAR-96	<	21	vGL	. 0
BNA'S IN WATER EX GC/Ms	UM18	24DNP	MDAX04K2	DV4W*457	WDBJ	15-P8B-96	04-MAR-96	<	21	UGL	. 0
ENA'S IN WATER BY GC/Ms	UM18	24 DNP	MXAX04X2	DV4W*238	WDES	15-PRB-96	04-MAR-96	<	21	UsL	. 0
bNa'S in watrr by gc/ms	UM18	24 208	MDZF1114	DV4W*456	WDD	14-P8B-96	$26-\mathrm{FRB}-96$ $26-\mathrm{PRB}-96$	$<$	21	UGL	. 0
bind's in matrr by ec/ms	UM18	24DNP	mxzwilix	DV4W+274	WDD	14-PEB-96	26-PBB-96	<	21	UGL	. 0
ENA'S IN MATER BY GC/MS	UM18	240Nr	Mx5701x2	DV4W*168	Wpos	13-PRB-96	26-FEB-96	<	4.5	UCL	. 0
ENA'S IN WATER BY GC/MS	UM18	24DNT	MD5701x2	DV4W*455	WDD	13-P88-96	26-FRB-96	<	4.5	UGL	. 0
ENA'S IN WATER BY Gc/ms	UM18	240NT	MD5703X2	DV4W*458	WDEJ	14-P88-96	04-MAR-96	<	4.5	UGL	- 0
BNA'S IN WATER BY Gc/ms	UM18	24DNT	Mx5703X2	DV4W*172	WDET	14-P8B-96	04-MAR-96	<	4.5	UGL	. 0
ENA'S IN mattr by gc/ms	UM18	24DNT	mxax04x2	DV4W*238	WDBJ	15-PEB-96	04-MAR-96	<	4.5	UEL	. 0
gNa's In water by cc/ms	CM18	24DNT	MDAX04x2	DV4W*457	WDBJ	15-PEB-96	04-MAR-96	<	4.5	UGL	. 0
ENA'S In Water by gc/ms	UM18	24DNT	MDZF1124	DV4W*456	WDD	14-PBB-96	26-PEB-96	<	4.5	UGL	. 0
ENA'S IN WATER BY GC/ms	6M18	24DNT	MXZN1144.	DV4W*274	WDD	14-PEB-96	26-PEB-96	$<$	4.5	UGL	. 0
BNA'S IN WATER BY GC/ms	UM18	26DNT	mD570142	DV4W*45	WDDJ	13-PEB-96	26-FEB-96	<	. 79	vel	. 0
ENA'S IN WATER BY GC/ms	UM18	260NT	Mx5701x2	DV4W*168	WDD	13-FEB-96	26-PRB-96	$<$. 79	VGL	. 0
ENA'S IN WATER BY GC/ms	UM18	26DNT	M M 5 5703K2	DVWW*172	WDEJ	14-PRB-96	04-MAR-96	<	.79	UEL	. 0
bNA'S IN WATER BY GC/Ms	UM18	26DNT	MD5703X2	DV4W*458	WDBJ	14-PRB-96	04-MAR-96	$<$. 79	UGL	. 0
bna's In water by gc/ms	UM18	26DNT	MDAX04×2	DV4W*457	WDEJ	15-FEB-96	04-MAR-96	$<$. 0

Chemical Quality Dontrol Report
Installation: Fort Devens, MA (DV) SAMPLE DURLICATBS

0000000000000000
D
烒
号
 $\stackrel{y}{3}$
agagaの $m m m m m m m m ~$
 $\stackrel{7}{\circ}$
m $\dot{m} \dot{m} \dot{m}$

Group 4 Sites
SAMPLB DUPLICATBS

IRDNIS Field

Analysis
Date
4－MAR－95
14－MAR－96 $\begin{array}{llll}\text { MDAX04X2 } & \text { DV4W＋457 WDEJ } & 15-\mathrm{FBB}-96 & 04 \text {－NAR－96 } \\ \text { MXAX04X2 } & \text { DV4W＊238 WDBJ } & 15-\mathrm{FBB}-96 & 04 \text {－MAR－96 }\end{array}$

13－FBB－96 26－FBB－96

是

\[

\]

－FBB－96 96－88d－

0
4
4
4

\circ
0
0
0
0

Mx5701x2
N
물
n
na MX5703X2
MD5703X2 MD5703×2
MXAXO
MDAXO 4×2
MXZW11X4
MD5701×2
MD5701X2
NX5701X2
MD5703X2
NX5703K2
MDAXO 4×2
MKAXO 2×2

 2NANIL 룰呆 2NANIL 2NANIL

，

シivipi

益苗苗
南首是最

O

 पु पु प्ठ प्ठ पु प्ठ प्र प्व

Chemical Quality Control Report
Inatallation: Fort Devens, MA (DV)
Group 4 Sites

$$
\text { 品: } 000
$$

ㅇ․ㅇㅇㅇㅇㅇㅇ

Ton	r．s	$>$	96－88d－92	96－898－7I	radm	－ $12 \times \mathrm{mbsa}$	3xtruzxw	NHCDD	8twn	
IDA	I－s	$>$	96－88A－92	96－88a－75	radm	95t＊MbSa	txtrmzaw	NWCHDE	8 TNO	SW／D．x de agrum NI SItNE
Im	I•s	＞	96－\％\％W－70	96－88d－5t	rgam	8EZ＋MFAI	2x\％0xtaw	NYCTIDY	8 ILN	SW／0 XG \％GItM NI SIVNB
Ton	I－s	$>$	96－2\％N－70	96－883－St	rgam	L53 4 M 4 Aa	extoxyaw	NษCTVY	8INK	
20n	I－s	＞	96－8\％N－70	96－88a－tI	radm	85t＋Mbsa	zxeolsdw	NYOTDE	8Tw	
T00	$\underline{r} \cdot \mathrm{~s}$	$>$	96－8\％\％－70	96－89a－pI	rgam	zLT＊MFSO	exeolsxw	NKCTM	8Twn	
Tan	I－s	＞	96－88d－9Z	96－88a－EI	raam	89T＊MFAd	extolsxw	NYOTDE	8thn	
TSN	I＇S	$>$	96－9\＃\＃－9Z	96－883－Eโ	ram	¢5taMtsa	extolsaw	NHCTIV	8TNA	SW／O9 XE \％
TEN	\downarrow	＞	96－988－92	96－888－＞	radm	953＋Misa	＊xtrmzaw	DHEY	8Twn	SW／D 2 ／
Ton	t	2	96－88a－9Z	96－89a－tI	raan	bLr＊Mzad	Fxitmzen	วHGY	8INO	SW／Do \times K
Ton	＊	＞	96－8tw－zo	96－88a－st	rgam	8Eて＊MbAL	zxpoxtxw	OHEV	8TNת	SW／כ5 18 \％
Tin	－	＞	95－846－80	96－88a－5t	гяam	L5\％＊MFAO	2x30xvaw	DHGY	8iwn	
Tin	t	$>$	96－84＊－70	96－838－7T	гяam		2xEOLSAW	จHGY	8TWก	
Ina	＊	＞	96－8t6－70	96－8Ba－t		zLI +Mzal	2xE0LSxW	DHEY	SINT	SH／OD Ka \％RIUM NI S．UNQ
TE	＊	＞	96－88a－9z	96－88a－EI	saam	ssbuntal	2xtolsaw	ОНE\％	8TM	
Ton	$\stackrel{1}{ }$	＞	96－988－9Z	96－89a－EI	radm	89T＊MFAS	extolsx	ОНа\％	8Tw	
IDS	2I	$>$	96－888－97	96－888－7I	racm	bLZ＊MFAI	\＃xtrmzxw	dNS	9\％Nก	
T50	$\tau \tau$	$>$	96－98a－92	96－898－7	radm	953＊MをAa	－xitmzaw	ant	8TW	SW／DO
750	2L	$>$	96－26W－70	96－88a－st	гяam	8عZ＊Mマムの	2x\％0xTXW	dNT	8\％\％	
Tax	$\boldsymbol{\tau L}$	$>$	96－2tw－70	96－88a－st	rgam	LSt¢M\％AC	zxboxtaw	dN3	－โ\％	SW／DO
TOn	$\boldsymbol{\tau}$	$>$	96－8\％W－70	96－983－仕	sяam	8Sbambad	exeolsam	dNB	8 เสก	
Tim	II	＞	96－84N－70	96－88a－zг	sacm	$\tau \angle T * M \forall \Lambda \square$	zxeolsxw	dN\％	9\％สก	SW／Do x K
TED	$\tau \tau$	$>$	96－87a－9z	96－89a－ ¢ $^{\text {c }}$	raam	89T＊MBAD	2xtolsxw	dNB	8twn	
Tan	$\boldsymbol{\tau}$	＞	96－88a－9z	96－888－ع	гпам	S5b＊MFnd	zxtolsam	dN\％	8 IWก	
T00	z＇s	$>$	96－888－9Z	96－88d－7i	sam	FLZamtad	－xitmzxw	TINENS	8 INก	SW／OD Ka \％givm ni sivng
150	$\boldsymbol{r} \cdot \mathrm{s}$	$>$	96－88a－9z	96－88a－ヤI	гаवм	95b＊M3nd	＊xtrmzaw	TINGNO	－twn	
150	z．s	＞	96－8\％\％－70	96－88a－5t	сяam	L5¢＋M7Aa	zxpoxvaw	TINES	9IMn	
IEN	$z \cdot s$	$>$	96－8\％W－80	96－g8a－SI	cram	8モて＊Mヶムa	2xtoxexw	TINENS	stwn	
Ton	$\underline{s} \cdot$	$>$	96－a6W－70	96－89a－bI	fram	z८T＊MFA的	2xE0LSXW	TINGN	\％LWn	
Im	c＇s	$>$	96－86\％－70	96－88a－3I	sдам		2xcolsaw	TINGN	Btw	SW／OO K9 צ日Ium NI Sitwg
өコrua	onfen	＞	egea efadteur	$\begin{array}{r} \text { ofed } \\ \text { ordues } \end{array}$	701	$\begin{aligned} & \text { tequann } \\ & \text { qeI } \end{aligned}$	xequmw －Idures PTeŢ： SIWCII	2แाeN 2804	оро刀 роч7en SIWवaI	

0000000000000000000000000000

N N N N N N N N N N

 	 1： 	のロロロロロロ゚ロロロ゚ロ思思总资总资思思 	
思思思思思思思思 年	 	㘣思思思思思 	图圆思明 \boldsymbol{H}_{1} 以
		名名角魚各名	
	 	考药它合台台台台	

00000000
浐：ㅇ․ㅇ․ ㅇ․ㅇ․․․․․ㅇ

\squaremmmmmm9 ！
value

जिi．iDate
－MAR－96－ $\mathrm{FBB}-96$

ロัロロ66

！
Sample
Date$15-\mathrm{FBB}-96$
$14-\mathrm{PEB}-96$
13－FRB－9614 －PBB－96
14 －PBB－96

$15-$ FBB－9626－FRB－96| 1 |
| :--- |04 －MAR

$04-$ MAR－95
0444－MAR－9604 －MAR－96
26 －FEB－96
$26-$ FBB－96
 －
LotMDE
WDD
WDJ各名
IRDMIS
Pield
Sanple
Mumber
MDAX04X2

 DV4W 1172 WBE 14 －PBB－9
MD5701×2
 MD5
MD
MDO3X2 MDAX
MXAX04X2
 N NX5701×2
MD5701×2
HD5703 MD5703X2 M $\times 5703 \times 2$
$M \times A \times 04 \times 2$
 MDZN11X4
MXZN11X4新 $\begin{array}{ll}\text { MD5701X2 } & \text { DV } 4 W * 455 \\ \text { MK5701X2 } & \text { DV } 4 W * 168 \\ \text { MK5703X2 } & \text { DV } 4 W * 272 \\ \text { MD5703X2 } & \text { DV } 4 W * 458\end{array}$ MD5703X2 DV4W＊456
 DV4W＊455
IRDMIS
Mathod
Test

\square
気気管
兑

 NK5701×2

MD5701×2 | Mathod Description | Code |
| :--- | :--- |
| BNA＇S IN WATBR BY GC／MS UM1B | |

 ∞ io

$\stackrel{\oplus}{\stackrel{\oplus}{5}} \stackrel{\oplus}{5}$

 $\stackrel{\oplus}{\square}$

꽁

은 물

曾曾曾品曾曾总息

 प्रुप्ण言管
云云云云云々そ

含含畄畄畄含含畄

3．pas－96

\％\％\％\％\％\％\％

\qquad

05703×2 moxacasz

鲾壁

$\stackrel{N}{N}$

mems
山 0
會高

㭠
 IRDMIS
Method

Method Deacription

云各各云云各召云

Chemical Quality Control Report
Inatallation：Fort Devens，MA（DV）
Group 4 Sites samplb duplicatbs RPD 으응ㅇㅇㅇㅇ 응ㅇㅇㅇㅇㅇㅇ 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
 ジャ゙
－＋＋＋＋＋＋＋
Mimmimi灾
N N N N N
OMONOM
$v \vee v \vee \vee \vee v \vee \quad v \vee v \vee v \vee v v$

6
0
1
0
2
2
1
\circ
\circ
\vdots
品
\vdots
0
N

6
0
1
1
0
0
0
1
\vdots
0
0

6
1
1
0
0

菅
ட゚ டٌ
v $v \vee \vee v$

IRDMIS
Field

IRDMIS
Field
Sample Lab

s

IRDMIS Method

		${ }^{\infty}{ }^{\infty} \infty \infty \infty \infty$ 	
		云要云云要云云云	云云云云台
uno an os os os 	 	 	

Chemical quality Control Report
Installation：Fort Devens，MA（DV）
Group 4 Sites
SAMPLE DUPLICATBS

Value

N N N

M
－ －

包荡

24－MAR－9 04－MAR－96
26－FBB－96
26－FBB－96
 \circ
0
1
1
0
0
0
0
0
0

6
0
1
\vdots

26－RBB－96
告 \circ
\vdots
\vdots
\vdots
\vdots
\vdots

6－FBB－96

 $26-$ FBB－96
$26-$ FBB－96 DV4W＊238 WDRJ 15－PBB－96
 \qquad

 DV4W＊45 WDRJ $14-$ PBB－96
 DV4N＊456 WDDJ $14-\mathrm{PBB}-96$
DVAW＊274 WDDJ
$14-\mathrm{PRB}-96$
 \qquad
 VV4N＊168 NDDJ $14-$ PBB－96
 DV4W＊458 WDEJ $14-$ FKB－96

 $\begin{array}{ll}\text { DV4W＊168 WDDJ } & 13-\text { PEB－96 } \\ \text { DV4N＊455 WDDJ } & 13-\text { PEB－96 } \\ \text { DV4W＊458 WDBJ } & 14-\text { PBB－96 }\end{array}$

 IRDMIS \qquad BXITMZGh
ZX N
N
C
N
W

 MX5703X2
MXAX04×2
教

 MD5703X2
MDAX04X2
 x $1 \times 5701 \times 2$
45701×2 105703X2 EX5703X2 1xAKO4×2
2DAX04×2 MDEN11X4

采品 웅只只品 BENZID品品星
N
N
M会管荷花
第

 II
 핔ํioi

 $\stackrel{\infty}{\boldsymbol{N}_{5}^{5}} \stackrel{\infty}{4}$
물 울兌鸟号 ion
覓畄品品这药条㠫㠫

 BNA＇S IN WATER BY GC／MS

云云云云云云云

是苞
䫉

希曾
名各
0
0
0
0
0

00900

$\varphi_{0} \varphi \varphi \varphi \varphi \varphi \varphi \quad \varphi \quad \varphi \quad \varphi \quad \varphi \quad \varphi$

 \circ
0
1
1
1
1
1 \circ
0
1
x_{1}
\vdots
\vdots 6－PBB－96 26－FRB－96
26－FBB－96
04－MAR－96
 4－MAR－96 4－MAR－96 26－MAR－96
 26－FBB－96

 Lab Number

品

豪

 DV4W＊455
DV4 4 ＊i68

 MX5701X2

 MX5703X2
MD5703X2

 Nㅓㅇ

N出 N N N

苞
鼻品睢 IRDNIS
Method

云云云云云云云

Chemical Quality Control Report Group 4 Siteb
SAMPLB DUPLICATBS
会 $\begin{array}{lll} & & \begin{array}{l}\text { IRDMIS } \\ \text { IRDMIS }\end{array} \\ \text { Method }\end{array}$ Teat $\begin{aligned} & \text { Field } \\ & \text { Manlle }\end{aligned}$

> 号

MD5701×2
$\begin{array}{ll}\text { IRLMIS } \\ \text { Field } & \\ \text { Sample } \quad \text { Lab } \quad \text { Sample } \\ \text { Number } \quad \text { Number }\end{array}$
Value Unite

$\infty \infty \infty \infty \infty$ N N N N のテのシ்

 Analysis
Analysis
Date
－－－

	090	ㅇ․ㅇ․	응ㅇㅇㅇㅇㅇㅇㅇ․	응ㅇㅇㅇㅇㅇㅇㅇ․	ㅇ․ㅇㅇㅇㅇㅇㅇㅇ․
5	봉눌	包产产			
$\stackrel{0}{7}$	No No Na	유궁			\cdots
	v v v		vvv＊vvvv	vvvvvvvv	vvv＊vvv
			 ¢ ल	 が	
			 㤩 	思思思思思思思置 	思思思思思思思
§		管魚角	 		
			 合台台台台台	会品 它它詒台台官	 吕台台台台台
$$	晾苞				
		$\stackrel{\infty}{\infty}$			
	$\frac{\text { 坒哭 믈 }}{2}$	贸㕸奣			
	प्णुप्ण	Uुप्ర प्ర		प्ర प्ष प्ర प्ठ प्ठ प्ठ प्ठ प्ర	
\％	出分䚡				
	曾曾采息空		曾品品曾品曾曾界 	 	
$\stackrel{\square}{0}$	如乐云	亿弗云		云云云云云弘云云	云云云云云云云

Chemical Quality Control Report Group 4 Sites

$$
\begin{aligned}
& \text { Unite }
\end{aligned}
$$

 $\stackrel{9}{2}$
$\left\{\begin{array}{llll}0 & 0 & 0 & 0 \\ \infty & \infty \\ \dot{\infty} & \dot{\infty} \\ \dot{\infty}\end{array}\right.$

00.0 .0 .00

 00 000000000 \because
Chemical Quality Control Report
Installation: Fort Devens, MA (DV)

26－7BB－96
26－FBB－96

6
0
0
0
6
6

6	10
0	0
1	
0	

 $\begin{array}{lll}\text { VV4W＊456 WDDJ } & 14-\mathrm{PRB}-96 \\ \text { WV } 4 \mathrm{~W}+274 \text { WDDJ } & 14-\mathrm{PRB}-96\end{array}$

$\begin{array}{lll}\text { DV } 4 W * 172 \text { WDBJ } & 14-\mathrm{FBB}-96 \\ \text { DV } 4 W 445 \text { WDBJ } & 14-\mathrm{PEB}-96 \\ \text { DV } 4 W * 457 \text { WDEJ } & 15-\mathrm{FEB}-96\end{array}$

U $4 W+458$ WDRJ 14－FEB－96

 MX5701×2
MD5701×2
ォ
MKAXO4K2
范
会
N

mDAX04X2
\％
y
둔
in

MD5703K2
MDAX04×2

臬䢑氐完
11 1
 U
 Uil

 N్లN N్N N్N

年 퓨표 눈물
$\frac{\operatorname{mon}}{2} \frac{n}{2} \frac{v_{2}^{2}}{2}$式式谋
Chemical Quality Control Report
Installation: Fort Devens, MA (DV) Group 4 Sites
SAMPLE DUPLICATES

	Chemical quality control Report Installation: Fort Devens, MA (DV) Group 4 Sites sample duplicatbs										
Method Description	IRDMIS Method Code	Test Name	$\begin{aligned} & \text { IRDNIS } \\ & \text { Field } \\ & \text { Sample } \\ & \text { Number } \end{aligned}$	$\begin{aligned} & \text { Lab } \\ & \text { Number } \end{aligned}$	Lot	Date $\begin{aligned} & \text { Sample } \\ & \text { Date } \end{aligned}$	Analyais Date	<	Value	Units	RPD
bna's In watbr by cc/ms	UM18	PYR	MDAX04x2	DV4W*457	WDEJ	15-P8B-96	04-mAR-96	<	2.8	UsL	. 0
ENA'S IN WATBR BY GC/ms	UM18	PYR	MXAX04×2	DV4W*238	WDBJ	15-PEB-96	04-MAR-96	<	2.8	vel	. 0
gna's in watrr by cc/ms	UM18	PYR	MDZw11x4	DV4W*456	WDD	14-FEB-96	26-F8B-96	<	2.8	UGL	. 0
gNA'S IN WATBR BY GC/Ms	UM18	PYR	mXzwilix	DV4W*274	WDDJ	14-8BB-96	26-PBB-96	<	2.8	UGI	. 0
BNA'S IN WATER BY GC/ms	UM18	TXPHEN	MD5701X2	DV4W*45	WDD	13-PBB-96	26-FBB-96	<	36	UGL	. 0
gNa's In watrr by gc/ms	CM18	TXPHEN	Mx5701x2	DV4W*168	WDD	13-PRB-96	26-PBB-96	<	36	USL	. 0
BNA's IN WATER BY GC/Ms	UM18	TXPHEN	MD5703X2	DV4W*458	WDES	14-PEB-96	04-MAR-96	<	36	Uel	. 0
bNA'S IN MATER EY ©C/ms	UM18	TXPR ${ }^{\text {den }}$	M055703x2	DV4W*172	WDET	14-PEB-96	04-MAR-96	<	36	USL	. 0
ENA'S IN WATER BY Gc/ms	UM18	txphisn	MDAX04x2	DV4W*45	WDEJ	15-PBE-96	04-MAR-96	<	36	Uel	. 0
BNA'S IN WATER BY GC/Ms	UM18	TXPHEN	MxAX04x2	DV4W*238	WDES	15-FEB-96	04-MAR-96	<	36	UGL	. 0
ENA'S In watrr by gc/ms	UM18	TXPHEN	MDZN1114	DV4W*456	WDD	14-PRB-96	26-PEB-96	<	36	UGL	-0
ENA'S IN WATER BY GC/MS	UM18	TXPhEn	mXZN1134	DV4W*274	WDD	14-788-96	26-FRB-96	<	36	UGL	. 0
bna's in water by gc/ms	UM18	UNK549	Mx5703×2	DV4W*172	WDES	14-FEB-96	04-MAR-96		7	USL	15.4
BNA'S IN WATER BY GC/MS	UM18	UNK549	MD5703×2	DV4W*458	WDBJ	14-PBE-96	04-MAR-96		6	UGL	15.4
minds in matirr by gc/ms	U418	UNK649	MDZN11X4	DV4W*556	wDD	14-PEB-96	26-7RB-96		50	ust	85.7
BNA'S IN WATER BX GC/MS	UM18	UNK649	mxzw11x4	DV4W*274	WDD	14-F8B-96	26-FBB-96		20	USL	85.7
VOC'S IN WATER BY GC/MS	UM20	1117 CB	Mx5701x2	DV4W*168	xpzo	.13-FEB-96	16-P8B-96	<	. 5	usl	.0
VOC'S IN WATER BY Gc/ms	UM20	111 cc	MD5701x2	DV4W*455	xDzo	13-P8B-96	16-FBB-96	<	. 5	U0L	. 0
VDC's In water by ec/ms	UM20	111 TCB	Mx5703x2	DV4W*172	xDzo	14-FEB-96	16-PBB-96	<	. 5	UGL	. 0
voc's in haitr by gc/ms	UM20	111 TCB	MD5703X2	DV4W*458	xDAP	14-7BE-96	20-PEB-96	<	. 5	Ues	. 0
voc's in watikr by gc/ms	U420	111 TCB	MXAXO4X2	DV4W*238	xozo	15-pBb-96	16-KEB-96	<	. 5	UEL	. 0
voc's in mater by ec/ms	UM20	111 TCB	MDAXO4x2.		XDAP	15-PEB-96	20-FBB-96	<	. 5	OGL	. 0
voc's in watir by gc/ms	UM20	111 TCB	MDEN1134	DV4W*456	xDYO	14-PEB-96	16-FEB-96	<	. 5	USL	. 0
vOC's In WATER EY GC/Ms	UM20	111 TCB	MXZ41134	DV4W*274	xDYo	14-PRB-96	16-FRB-96	<	. 5	UGL	. 0
voc's in matir by ec/ms	UM20	112 TCB	mD5701x2	DV4W*455	xDzo	13-pEB-96	16-PBB-96	<	1.2	Uge	. 0
voc's in mater by gc/ms	Ln420	112 CCB	MX570192	DV4W*168	xDzo	13-PBB-96	16-FBB-96	<	1.2	UGL	. 0
VOC'S IN HATER BY GC/MS	UW20	112 TCB	MX5703X2	DV4W*172	xDzo	14-PEB-96	16-FBB-96	<	1.2	UGL	. 0

号

응ㅇㅇㅇㅇㅇㅇㅇㅇ 으으응ㅇㅇㅇㅇ 으으으응

붕

MD5701X2 DV4W＊45 XDzo 13 －PBB－96 16 －FBB－96 $\begin{array}{llll}\text { MX5701X2 DV4W＊168 XDZO } & 13-\mathrm{FBB}-96 & 16 \text {－FBB－96 }\end{array}$
 $\begin{array}{llll}\text { MDDAX04X2 } & \text { DV4W＊} 457 \text { XDAP } & 15-\mathrm{FBB}-96 & 20-\mathrm{FBB}-96\end{array}$
 16－780－96 16－FBB－96

会
 IRDMIS
Mothod
Teat

12DCLB
12DCLB
12DCCB
12 DCLB 12 DCLB 엽 운苞荷 섬若品荷救荷㴑

 IRDMIS
Method
Codo

 80울

 4
3
3
3
 1
4
4
3
3
3
3 ∞
0

 점 N （10404X2 MxZN11X4
 Mothod Description

8
껑

曾自曾曽畐曾自百

そ 号

品 무 응ㅇㅇㅇㅇㅇ 응ㅇㅇㅇㅇ

$$
\begin{aligned}
& \text { D } \\
& \text { Hy } \\
& \text { O } \\
& 5
\end{aligned}
$$

Chemical Quality Control Report
Installation: Fort Devens, MA (DV)

$0.0 .900$		

品				
思				
$\stackrel{8}{2}$	\cdots			¢
	$1 \vee v \vee \vee \vee \vee v v$	$\boldsymbol{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}$	\boldsymbol{v}	v v v v v
	ロロロロロロロロ゚ロロのロロ 	 	 	
	 	 	 	圆思思思思 $m_{1} M_{1} M_{1} M_{1} M_{1}$
$\overleftrightarrow{\Omega}$		 		
$\begin{array}{r} \text { H } \\ 0 \\ 0 \end{array}$	 	M 		
$\begin{aligned} & \text { 若最 } \\ & \hline \end{aligned}$		N N N N N N N N Nivio 		
8	 			
8				
8		प y y y y y y 	的路的的的的 	

ㅇ․ㅇ․ ∞

 우ㅇㅜㅜㅇ

 ～
 6－ $\mathrm{FBB}-96$莮 둔

4－FRB－96
4－PBB－96 \circ
0
0
0
0
0

号
 14 －FEB－96
14 －FBB－96

 DV4W＊456 XDYO
DV4W＊274
$\begin{array}{llll}\text { MX5701X2 } & \text { DV4W＊168 XDZO } & 13-\mathrm{FBB}-96 \\ \text { DV4W } 455\end{array}$
 MD5703X2 DV4W＊45 XDAP 14－PEB－96 $\begin{array}{lll}\text { MXAXO4X2 } & \text { DV } 4 W * 238 & \text { XDZO } \\ \text { MDAX } 04 \times 2 & 15-\mathrm{FEB-96} \\ \text { DV } 4 * * 457 & \text { XDAP } & 15-\mathrm{FEB}-96\end{array}$ MDZW11X4 4
 xpyo
xDyo
9
0
0
0
0
0
0
3品
解

2
1
1
1
4
4
$\frac{1}{2}$
3

\circ
发
\vdots vvvv vvv

ロ				
g			नलनलनलन	\cdots ！！！！！！
		$v \vee v \vee v v v$	$v \vee v \vee v v v$	v v v v
	 －	 	 	がのロロロロのロロ茵思思思思
	 范 	 电 	 	出㽞思自思的
و	名多名星영쑹우응 		 	
乭崱	㶽品 该它客它它 台台台台台台白	 台台合客合客宫	 「FFWNFN 白台台台台台白	
	 － 1FFHEFEFE		 	
－				
口				
	 	の的かの的の的 	 	osonven

Chemical Quality Control Report
natallation: Port Devens, MA (DV)

sample duplicatzs

Field Duplicates for Groundwater Samples with Elements Exceeding Precision Criteria

1995 AOC 57, 63AX, 69W Remedial Investigation Fort Devens, Massachusetts

Eitment	Frequency apd Exceeded	mpd range
Total Metals		
Arsenic ${ }^{2}$	1/4	42.4
Iron ${ }^{2}$	1/4	45
Dissolved Metals		
Barium ${ }^{2}$	1/4	123.9

${ }^{2}=$ Data collected during the Round 2 Groundwater sampling event.

Field Duplicates for Soil and Sediment Samples with Elements Exceeding Precision Criteria

1995 AOC 57, 63AX, 69W Remedial Investigation fort Devens, Massachusetts

Elimment	Frequency mpd Excemded.	RPD RAnge:
Soil		
Arsenic	1/3	52.4
Potassium	1/3	77.6
Sediment		
Mercury	1/2	138.1
Manganese	1/2	99.5
Sodium	1/2	178.7
Zinc	1/2	114.1

1995 AOC 57, 63AX, 69W Remedial Investigation Fort Devens, Massachusetts

SpIke Compound	APD LMMIS FOR Water	RPD Lmils for Soll
Lindane (gamma-BHC)	15	50
Heptachlor	20	31
Aldrin	22	43
Dieldrin	18	38
Endrin	21	45
4,4-DDT	27	50

$\begin{aligned} & \text { ON-STIE } \\ & \text { SAMPIP } \\ & =1 \text { II } \end{aligned}$	$\begin{gathered} \text { SAMPIL } \\ \therefore \text { COLISTRON } \\ \text { DATE } \end{gathered}$	COMPOUND	$\begin{aligned} & \text { ORSITILAE } \\ & \text { CONCINTRAEION } \\ & \text { chena } \end{aligned}$	\qquad	(\% 0_{0} O	CATEGOSY
BFIT0413	9/21/93	TPH	ND	ND	0	1
		Voc	ND	ND	0	1
BF370515	922/95	tonuan	0.0037	\$0.0024	200	1
		TPH	ND	ND	0	1
BF970612	9/28/95	TPH	ND	N0	0	1
		voc	$N D$	ND	0	1
BFAXOS06	10/2/99	TPH	ND	ND	0	1
		VOC	ND	ND	0	1
BFAX0508	102/99	TPH	ND	ND	0	1
		Voc	ND	ND	0	1
BFAX0S10	10/2/93	TPH	ND	ND	0	1
		Voc	ND	ND	0	1
EFS 70106	9/18/83	TPH	141	$\checkmark 3$	200	1
		voc	ND	ND	0	1
EFS70200	9/12/95	IPH	454	69	147	1
		chylbentese	0.0024	40.0023	200	1
		mimane	0.0023	40.0023	200	1
		coul xyimes	0.0029	40.0069	0°	1
EF370405	9/19/99	TPH	ND	ND	0	1
		Voc	ND	ND	0	1
EDFS 70403	9/19/99	TPH	23.60	-32	0°	1
		Voc	ND	ND	0	1
EFS 70506	9/19/95	TPH	ND	ND	0	1
		VOC	ND	ND	0	1
EF570704	9/19/93	TPH	31800	65000	69	2
		enyibearepe	0.031	14	198	1
		tohame	0.023	3.4	197	1
			0.27	92	188	1
		1,1-dichloroetrese	80.0039	6.1EX	200	3
		Letrechloronthere	0.0059	4.7	00°	1
		richlarombue	0.011	4.78	0°	1
Ers 70809	9/20/93	TRH	57.6	475	0	1
		Voc	ND	ND	0	1
ET590903	9/20/95	TPH	79.2	669	200	1
		VOC	ND	ND	0	1
EF571000	9/19/93	TPH	25	30	105	1
		colvene	0.0037	0.0024	43	1
		narmetioroathen	0.003	40.0022	200	1
[5F571200	9/20/99	[PH	9110	9700	62	2
		tolmen	0.0083	0.0022	200	1
		terrackorowhem	0.0011	40.0022	0°	1
[E971305	9/21/95	TRH	ND	ND	0	1
		voc	ND	ND	0	1
EFS71406	9/21/95	TPH	49.3	<60	0^{+}	1
		Voc	ND	ND	0	1
EF571902	9/21/95	TPH	26100	21000	7	2
		toluen	0.0017	0.0056	107	1
		clatiobersee	0.00036	0.016	200	1
		Atribemzeos	40.0017	0.054	200	1
		total y ylimer:	40.0015	0.245	200	1
		kerichioroether	0.0023	0.0048	70	1
EFST71600	9/21/93	TPH	169	120	34	1
		voc	ND	ND	0	1
EF571700	9/21/95	TPH	2390	3400	35	2
		Helune	0.0072	4.0025	200	1
		intrachlorortheoe	0.0047	4.0025	200	1
EF371402	9/21/93	TPH	49.5	<4	0	1
		VOC	ND	ND	0	1
E53571902	9/21/93	TPH	130	40	200	1
		VOC	ND	ND	0	1
EFS72500						
	9/21/93	TPH	81.1	$\leqslant 2$	200	1
		voc	ND	ND	0	1
RF2W2607	9/11/95	TPH	902	2100	30	2
		cotal syicest	40.0015	0.0023	200	1
RFZW3006	9/11/99	TPH	320	7700	12	2
		Lolveer	0.004	0.026	142	1
		chlorobenuse	<0.00086	0.031	200	1
		Crybersem	40.0017	$0.26 E$	200	1
		Cotal xylmer	0.0023	$6.5 \mathrm{E} / \mathrm{J}$	200	1
RF2W3304	9/12/99	TPH	27.8	59	200	1
		VOC	ND	ND	0	1
RF2W3607	9/21/99	VOC	ND	ND	0	1
		79H	566	1100	64	2
RF2W3704	9/23/99	torlone	0.0024	40.0046	0°	1
		TPH	1400	1800	25	2
RFZW3103	9/14/93	TPH	34.4	<120	0°	1
		VOC	ND	ND	0	1
RWFEW4504	9/15/98	T2H	ND	ND	0	1
		Holume	0.0013	40.0024	0	1

Notes:	
ND	Nod denectod mbove melyet denction limil
NA	Not applicmble
E	
D	
J	Reperted comecetriotion is meetimed vive
${ }_{\mathbf{7 7}}$	Total Patrolem Hydrocuroim

1996 ON-SITE LABORATORY DATA

APPENDIX D-2 QUALITY CONTROL SUMMARY REPORT 1996 ON-SITE ANALYTICAL PROGRAM

AOCs 69W, 61Z, 50 and 57

DI. 0 INTRODUCTION

The purpose of this Quality Control Summary Report (CQSR) is to present evaluations of quality control (QC) measurements made during the 1996 on-site laboratory analyses and to evaluate data precision and accuracy. Dates of on-site analysis are from June 17 through November 6, 1996. The on-site laboratory provided field screening for AOCs 69W, 61Z, 50 and 57. Soil and water samples were analyzed for target volatile organic compounds and petroleum hydrocarbons at Ft Devens, Ayer, Massachusetts.

D2.0 ANALYTICAL METHODS

The data quality objectives and general descriptions of on-site methodologies for the investigations are presented in the Fort Devens Project Operation Plan (ABB-ES, 1995). Onsite analytical procedures used during the investigations included purge and trap USEPA Method 5030A and modified USEPA Method 8021A for volatile organic compounds (VOCs) (USEPA, 1995) and the modified Massachusetts hydrocarbon methods for extractable petroleum hydrocarbons (EPH) and volatile petroleum hydrocarbons (VPH) (MADEP, 1995a; MADEP, 1995b). Total Recoverable Petroleum Hydrocarbons (TPHC) in soils will be quantified with an infrared spectrophotometer using modified USEPA Method 418.1(USEPA, 1983). Descriptions of the 1996 analytical methods, and any modifications to procedures in the QAPjP incorporated into the 1996 field investigations are presented in Attachment 1.

D2.1 MDL Study for EPH/VPB/VOCs Analysis:

Prior to sample analysis a Method Detection Limit (MDL) study was performed for EPH, VPH, and VOCs target compounds.

Based on the extraction and analysis of seven spiked samples, the EPH MDL for soil analysis was determined to be $18 \mathrm{mg} / \mathrm{Kg}$. For purposes of this project the reporting limit (RL) has been determined to be $100 \mathrm{mg} / \mathrm{Kg}$. Only concentrations greater than $100 \mathrm{mg} / \mathrm{kg}$ are reported. Sample quantitation limits (SQLs) consisting of the reporting limits adjusted for sample volume, percent moisture, and dilution factor are reported for non detects. The results of the EPH MDL study are listed in Table D2-1.

Based on a methanol extraction and analysis of seven spiked samples, the VPH MDL for soil analysis was determined to be $0.57 \mathrm{mg} / \mathrm{Kg}$. The reporting limit was established to be 6.3 $\mathrm{mg} / \mathrm{Kg}$. Only concentrations greater than $6.3 \mathrm{mg} / \mathrm{kg}$ are reported. Sample quantitation limits (SQLs) consisting of the reporting limits adjusted for sample volume, percent moisture, and dilution factor are reported for non detects. The results of the VPH MDL study are listed in Table D2-1.

Based on the analysis of seven spiked samples, an initial VOC MDL for soil and aqueous analysis was determined and reported in Table D2-1. The reporting limits were established to be $2.0 \mu \mathrm{~g} / \mathrm{L}$ for all target analytes (m / p-Xylene is $4.0 \mu \mathrm{~g} / \mathrm{L}$). Only concentrations greater than $2.0 \mu \mathrm{~g} / \mathrm{L}$ (m / p-Xylene is $4.0 \mu \mathrm{~g} / \mathrm{L}$) are reported. Sample quantitation limits (SQLs) consisting of the reporting limits adjusted for sample volume, percent moisture, and dilution factor are reported for non detects.

A second VOC MDL was made when a second field effort phase commenced in mid-summer. Based on the analysis of seven spiked samples, the second VOC MDL for soil and aqueous analysis was determined and reported in Table D2-1. The reporting limit was established to be $1.0 \mu \mathrm{~g} / \mathrm{L}$ for all target analytes (m / p-Xylene is $2.0 \mu \mathrm{~g} / \mathrm{L}$). Only concentrations greater than $1.0 \mu \mathrm{~g} / \mathrm{L}$ (m / p-Xylene is $2.0 \mu \mathrm{~g} / \mathrm{L}$) are reported. Sample quantitation limits (SQLs) consisting of the reporting limits adjusted for sample volume, percent moisture, and dilution factor are reported for non detects.

D2.2 REPORTING LIMITS AND INSTRUMENT CALIBRATION

The calibration range for each instrument includes an initial calibration standard at the reporting limit. EPH instrument calibration ranged from $50 \mathrm{mg} / \mathrm{Kg}$ through $150 \mathrm{mg} / \mathrm{Kg}$ with a reporting limit of $50 \mathrm{mg} / \mathrm{Kg}$. VPH instrument calibration ranged from $6.3 \mathrm{mg} / \mathrm{Kg}$ through $19 \mathrm{mg} / \mathrm{Kg}$ with a reporting limit of $6.3 \mathrm{mg} / \mathrm{Kg}$. Initial VOC instrument calibration ranged from $1.0 \mu \mathrm{~g} / \mathrm{L}$ through $100 \mu \mathrm{~g} / \mathrm{L}$. The second phase VOC instrument calibration ranged from $1.0 \mu \mathrm{~g} / \mathrm{L}$ through $20 \mu \mathrm{~g} / \mathrm{L}$. Each instrument calibration range is recorded in the laboratory logbooks and saved electronically for future reference.

D3.0 QUALITY CONTROL BLANK SUMMARY

Routine QC blanks analyzed in the field laboratory include instrument blanks, equipment rinse blanks (pump blanks and bailer blanks) and method blanks.

D3.1 Instrument Blanks:

Instrument blanks were run for the EPH and TPHC analyses. Instrument blanks consisted of clean extraction solvent analyzed directly on the instrument to determine background response
for the instrument. No instrument contamination was identified through instrument blank analysis.

D3.2 Method Blanks:

Method blanks were run for EPH/VPH/VOC and TPHC analyses after initial and continuing calibrations with a minimum of one blank per day of analysis to evaluate the potential for sample contamination during sample preparation and analysis at the on-site laboratory. EPH and TPHC soil method blanks were extracted daily with each extraction batch using the same procedures as samples. VPH soil method blanks were purged and analyzed solutions of analyte free water, methanol and surrogate. VOC method blanks were purged and analyzed solutions of analyte free water and surrogate (methanol was added for soil method blanks).

Method blank data indicate that method contamination did not result in false positive identification of EPH, VPH, or TPHC results during sample analysis. No method blanks had EPH, VPH or TPHC detected at concentrations greater than the reporting limits.

VOC method blanks were analyzed each day using the same procedure as samples. The VOC soil method blank analyzed on 8/29/96 had a detection of chloroform greater than the reporting limit at $390 \mathrm{mg} / \mathrm{Kg}$. Soil samples (RF571509 and RF571603) from AOC 57 associated with this method blank were qualified (B) indicating the results may represent laboratory contamination. The VOC method blank analyzed on 11/01/96 had a detection of naphthalene greater than the reporting limit at $3.2 \mu \mathrm{~g} / \mathrm{Kg}$. Naphthalene was not detected in associated samples, and no samples associated with this method blank were qualified (B). With the exception of the VOC samples discussed above, VOC data indicate that no other laboratory contamination introduced during sample preparation and analysis.

D3.3 Equipment Rinseate Blanks:

Equipment rinse blanks (pump blanks and bailer blanks) were collected periodically and analyzed for VOCs. Rinse blanks were collected at a minimum of one per twenty samples as specified in the POP. Five bailer blanks were collected and analyzed with two blanks exhibiting low levels of toluene ($2.5 \mu \mathrm{~g} / \mathrm{L}$ and $2.1 \mu \mathrm{~g} / \mathrm{L}$). Samples associated with these blanks contained no toluene detections.

D4.0 DATA ACCURACY AND PRECISION

The accuracy and precision of laboratory and field sampling methodologies was evaluated using matrix spike/ matrix spike duplicate (MS/MSD), matrix spike (MS), field duplicate analyses, and surrogate spikes as outlined below:

- EPH/VPH utilized MS/MSD and surrogate percent recovery (\%R) goals of 50\%-150\% and MS/MSD relative percent difference (RPD) goals of less than 30%.
- Duplicate analyses were also utilized with RPD goals of less than 50% for soil samples.
- TPHC analyses utilized a single MS sample with a \%R goal of 50% to 150%; duplicate analyses were also utilized with RPD goals of less than 50% for soil samples.
- VOC analyses utilized MS/MSD and surrogate percent recovery (\%R) goals of 50\% 150% and a MS/MSD RPD goal of less than 30%.
- Field duplicate analyses were also utilized with RPD goals of less than 30% for aqueous samples and less than 50% for soil samples.

Field duplicates, matrix spikes and matrix spike/matrix spike duplicate collection frequency goal was five percent for the program.

D4.1 Matrix Spikes:

EPH. Three samples were collected as matrix spike/matrix spike duplicates (this represented a frequency of 5 percent). The samples were spiked at a mid-point of the calibration curve ($100 \mathrm{mg} / \mathrm{Kg}$). The data are tabulated in Table D4-1. MS/MSD recoveries for two calculated spike samples ranged from 43% to 54%. The RPDs for the sample sets were 15% and 18%. One MS/MSD data set was not analyzed due to operator failure to spike the sample with the MS/MSD spiking solution. Although two of four recoveries were outside the desired recovery range the RPD results were well below the 30% goal, indicating good precision. These results indicate a possible low bias shown by the MS/MSD recoveries. Sample results are usable as estimated values with a possible low bias by a factor of two.

VPH. Two samples were analyzed as matrix spike/matrix spike duplicates. This represented a 3.3 percent frequency. Both samples were spiked at a mid-point of the calibration curve $(12.5 \mathrm{mg} / \mathrm{Kg}$). The data is tabulated in Table D4-1. MS/MSD recoveries for the two spiked samples ranged from 57% to 91%. The RPDs for the samples sets were 3.4% and 10%. The established goals were partially met for this data set, however, the RPDs calculated are well below the established goal of 30% indicating excellent accuracy and precision.

TPHC. Nine samples were analyzed as matrix spikes. This represents an 8.1 percent frequency. The samples were spiked at a mid-point of the calibration curve ($2500 \mathrm{mg} / \mathrm{Kg}$). The data is tabulated in Table D4-1. Results for TPHC in two samples exceeded the calibration range of the instrument and no MS results were obtained. MS/MSD recoveries for the other seven spiked samples ranged from 88% to 162%. Two MS recoveries were not calculated due to original sample concentrations above the instrument calibration range. One
recovery exceeded the recovery goal of 150%. Eighty six percent of this data set met the established goals indicating good accuracy and precision.

VOC. Twènty one samples were analyzed as matrix spike/matrix spike duplicates. This represents a 4.7 percent frequency. The data is tabulated in Table D4-2. The samples were spiked at a mid-point of the calibration curve (see Table D4-2 to find specific spike concentrations). Ninety eight percent of the spike recoveries met the goal range of 50% to 150% recovery. Ninety eight percent of the RPDs met the goal of 30% or less. The established goals were met for this data set indicating excellent accuracy and precision.

D4.2 Field Duplicates:

Field duplicate samples were collected at a rate of approximately 5 percent of the samples during the field sampling effort and submitted to the field laboratory for analysis. Relative percent difference goals of less than 30% for aqueous sample analysis and less than 50% for soil analysis were outlined for the project.

EPH. Four samples were collected and analyzed as field duplicates (this represented a frequency of 6.7 percent). The results of the EPH field duplicate samples are listed in Table D4-3. The results of all sample sets were non-detects. In general, field duplicate results indicate good precision of measurement was obtained for the EPH sample analyses. These results indicated agreement for absence of EPH, however, evaluation of precision for positive detection of EPH was not possible.

VPH. Four samples were collected and analyzed as field duplicates (this represented a frequency of 6.7 percent). The results of the VPH field duplicate samples are listed in Table D4-3. The results of all sample sets were non-detects. These results indicated agreement for absence of VPH, however, evaluation of precision for positive detection of VPH was not possible.

TPHC. Fourteen samples were collected and analyzed as field duplicates (this represented a frequency of 13 percent). The results of the TPHC field duplicate samples are listed in Table D4-3. The RPDs of three sample duplicate sets were calculated and ranged from 0.0\% to 33%. Seven results were non-detects for both samples. Four sample duplicate sets had a non-detect for one of the samples in the duplicate pair with a positive detection at the reporting limit in the associated duplicate. In general field duplicate results indicate good accuracy and precision of measurement was obtained for the TPHC sample analyses, however, variability of the TPHC measurement at the reporting limit are apparent. These results indicate detection limits and low concentration positive detections are estimated values.

VOC. Thirty nine samples were collected and analyzed as field duplicates (this represented afrequency of 8.7 percent). The results of the VOC field duplicates are listed in Table D4-4.

The results of the duplicate sample sets (seventeen soil samples and twenty two aqueous samples) were evaluated and RPDs calculated.

Eight soil RPDs were calculated and seven exceeded the 50% goal. Five of the seven were duplicate sets that exceeded the goal included a detection one sample and the duplicate did not ($200 \% \mathrm{RPD}$). Two of these five results were chloroform. Chloroform was identified as a possible laboratory contaminant in Subsection D3.2. One of the results is qualified " B " indicating the sample was associated with a contaminated method blank. The differences in the field duplicate results are interpreted to be related to laboratory contamination. The three other results included o-xylene and naphthalene with positive and non-detect results in samples RF571010, EF573106, and RF571603. In all cases reported detections were only 2 to 3 times the reporting limits. These results demonstrate variability of xylenes and naphthalene at or near, the reporting limit. The remaining field duplicate results included detections of TCE, PCE, and cis-1,2-dichloroethene in samples BXG613B29 and BX502025. Although two of three results had RPDs greater than 50 , these results showed good agreement with the presence of target compounds and the relative concentrations reported. The field duplicate data indicate that all soil VOC results should be considered estimated.

Nineteen aqueous RPDs were calculated and two exceeded the goal of 30. These results indicate good accuracy and precision of measurement was obtained for the aqueous VOC sample analyses.

D4.3 Surrogate Recoveries:

Surrogates were added to each EPH, VPH and VOC sample to monitor the efficiency of the measurement and possible matrix effects on recovery of target analytes. Surrogate recovery goals of greater than or equal to 50% were established for the project. Sample results associated with surrogate recoveries below the goal are reported with an " S " qualifier.

EPH. All samples submitted for EPH analysis were spiked, prior to the extraction step, with naphthalene or σ-terphenyl as a surrogate. The surrogate recoveries were recorded and used to determine accuracy of each sample analysis. No EPH samples had surrogate percent recoveries below the goal of 50%. Surrogate recoveries ranged from 75% to 160% with the mean equal to 98%, indicating good recoveries were obtained during the program. Upper and lower control limits (mean ± 3 standard deviations) were 144 and 53 respectively.

VPH. All samples submitted for VPH analysis were spiked, prior to the methanol extraction step, with 2,5-dibromotoluene as a surrogate. The surrogate recoveries were recorded and used to determine accuracy of each sample analysis. Surrogate goals were a minimum of 50% recovery. Sample results associated with surrogate recoveries below the goal are reported with an " S " qualifier. Sample BX610215XF had a 45\% surrogate recovery and was qualified ' S '. Sample BXBD0227XF had a 174% surrogate recovery and was qualified ' S '. With the
exception of sample BXBD0227XF, surrogate recoveries ranged from 59% to 149% with the mean equal to 101%, indicating good recoveries were generally obtained during the program. Upper and lower control limits (mean ± 3 standard deviations) were 178 and 24 respectively.

VOC. All samples submitted for modified USEPA Method 8021 analysis were spiked prior to analysis with 4-Bromofluorobenzene. The surrogate recoveries were recorded and used to determine the accuracy of each sample analysis. Surrogate goal was a minimum of 50\% recovery. Soil surrogate recoveries ranged from 58% to 138% with the mean equal to 104%. Upper and lower soil control limits (mean ± 3 standard deviations) were 158 and 50 respectively. Aqueous surrogate recoveries ranged from 63% to 166% with the mean equal to 103%, indicating good recoveries were generally obtained during the program. Upper and lower aqueous control limits (mean ± 3 standard deviations) were 149 and 57 respectively. All samples had surrogate recoveries above the goal and no VOC results were qualified.

D4.4 Data Qualification:

The on-site analytical data was qualified as needed during the field program. A secondary review was made after the laboratory was dismantled and the database reviewed for any further qualification. The qualifiers in each case were applied through guidance found in the ABB SOP: purge and trap field chromatography, 1995.

B qualifier is added to values as evidence of method blank contamination.
E qualifier is added to values that exceed the calibration range of the instrument.
S qualifier is added to values that exceed surrogate acceptance range requirements.

D5.0 ON-SITE/OFF-SITE LABORATORY SPLIT SAMPLE DATA COMPARISON

This section discusses the results of a split samples collected during the 1996 AOC 50, 57, 612, and 69W Remedial Investigations at Fort Devens, Massachusetts. The soil samples were split in the field and submitted for on-site and off-site volatile analysis (14 samples), EPH/VPH (7 samples), and petroleum hydrocarbons by 418.1 (22 samples). The purpose of collection of the split samples is to provide a comparison of the on-site data with the associated off-site data, in order to evaluate data quality and establish the on-site results as screening data with definitive confirmation (USEPA, 1993).

D.5.1 ANalytical Methodologies

The on-site field screening target compound data were evaluated using the USAEC offsite analytical GC/mass spectrometry (MS) method for VOCs and SVOCs.
Dichlorobenzenes and naphthalene off-site data were taken from the SVOC analyses. Off-
site TPH results were generated using USEPA Method 9071 to extract samples followed by analysis using USEPA Method 418.1 (USEPA, 1983; USEPA, 1986). EPH and VPH results were obtained using methods developed by the MADEP (MEDEP, 1995a; MEDEP, 1995b).

D.5.3 PROGRAM OBJECTIVES

The objectives of the on-site soil field screening analytical program were to evaluate the downgradient, lateral, and vertical distribution of contamination in overburden soil, and identify critical samples for off-site laboratory analysis. For the purpose of this on-site/offsite data comparison action levels to evaluate the data sets were based on Category S-1 soils cleanup criteria outlined in the Massachusetts Contingency Plan (MCP) (MADEP, 1995c). A summary of target compound action levels for each target compound evaluated using the on-site methods is outlined below:

Action Level ($\mu \mathrm{g} / \mathrm{g}$)

Benzene	10
Toluene	90
Ethylbenzene	80
Total Xylenes	500
Chlorobenzene	8
1,1-Dichloroethene	0.3
1,2-Dichloroethene	2
Chloroform	0.1
1,1,1-Trichloroethane	30
Carbon Tetrachloride	1
Trichloroethene	0.4
Tetrachloroethene	0.5
TPH	500
Dichlorobenzene (each isomer)	100
Naphthalene	4
Vinyl Chloride	0.3
D.5.4 DATA ComPARISON AND EvALUATION	
Comparability of the data was evaluated using two separate comparisons outlined in	
Section 4.6 of the POP (ABB-ES, 1995). The first comparison evaluates agreement based	
on detection of analytes relative to action levels. The second comparison evaluates data	
based on relative percent differences (RPDs) between split samples. Results of the on-	
site/off-site analyses are summarized on Table D-5-1, Table D-5-2, and Table D-5-3 for	
EPH/VPH, TPHC, and VOCs, respectively.	

Comparison 1

In this comparison on-site and off-site results were organized into one of the four • categories described below:

1. Both on-site and off-site analyses had the target compounds detected/nondetected at concentrations less than the action levels.
2. Both on-site and off-site analyses had the target analytes detected at concentrations greater than action levels.
3. The target compounds were reported above action levels for on-site and the off-site data results were less than action levels.
4. The target compounds were reported above the action level off-site and the on-site results were less than the action levels.

A primary assumption of the comparison was that the off-site data represented the accurate definitive data when comparing results. Sample data which fall within categories 1 and 2 represent agreement between on-site and off-site analytical results. Sample data in category 3 suggested a high bias in the on-site results. Sample data in category 4 suggest a low bias in on-site results. The analytical goal of the program was to have over 95 percent of the results fall into categories 1,2 and 3 .

EPH/VPH

EPH/VPH split sample results are presented in Table D5-1. With the exception of VPH reported by the off-site laboratory in sample BXBD0123, results were reported as non-detect by both the on-site and off-site laboratory. All results were less than the $500 \mathrm{mg} / \mathrm{g}$ action level indicating good agreement on hydrocarbon levels relative to the MCP soil criteria.

TPHC. The results of 21 of 22 (95.5\%) split sample analysis fell into Category 1 and Category 2 indicating good agreement for the on-site and off-site analyses relative to action levels for fuel hydrocarbons. These data indicate that the on-site data are adequate for the evaluation of the distribution of hydrocarbons at the $500 \mathrm{mg} / \mathrm{g}$ action levels.

VOCs. The detection of target VOCs by the on-site laboratory relative to action levels was confirmed by the off-site laboratory. All but one soil sample results fell within Category 1. The one exception was BF570705, where one target compound (Naphthalene) fell into Category 3. Overall, these results indicate good comparison of onsite and off-site results relative to MCP soil cleanup goals and that the goals of the action level comparison were met.

Comparison 2

For the second comparison, relative percent difference (RPD) values were calculated for associated on-site/off-site surface soil samples. Calculation of RPD is outlined in the POP (ABB-ES, 1995). RPD values were compared to USEPA Region I soil field duplicate criteria of 50%. No comparison was conducted for the VPH/EPH results because no comparative positive detections were available.

VOCs

The majority of results were non-detects in both the on-site and off-site laboratory indicating consistent agreement with the absence of contamination for VOCs.
Approximately half the positive detections were low concentrations of VOCs reported in the off-site laboratory at concentrations below the reporting limit of on-site split sample. These results are at low concentrations are not interpreted to impact use of field screening results.

In the remaining samples, concentrations of VOCs reported for the on-site screening analysis are consistently greater than concentrations reported in the off-site analysis. Example of these results can be seen in samples BF570700 for naphthalene, BF570705 for ethylbenzene, xylenes, and naphthalene, and BF573006 for ethylbenzene and naphthalene. These results indicate a possible high bias of on-site results. In the above samples high concentrations of TPH were detected indicating the presence of fuel contamination at the sample locations. The on-site method for VOCs utilized a single column GC/PID analysis for BTEX and naphthalene with no second column confirmation. It is highly likely that compound concentrations were over estimated due to interference from non-target fuel hydrocarbons. The off-site analysis was conducted using GC/MS confirmation of target analytes so interference from non-target hydrocarbon would not results in quantitative interferences or false positive identification of compounds.

It is important to note that evidence had also been published indicating the possibility of low bias off-site results due to loss of VOCs during sample collection and handling using bulk sampling procedures (Liikala, 1995). It is possible that concentrations reported at the on-site laboratory may be more representative of actual site conditions. However, for the purpose of this comparison, on-site results are considered potentially biased high.

TPHC

TPHC was detected in approximately 63% of the samples. RPDs of samples with detected TPH ranged from 6% to 200% with the majority of RPDs outside the 50% project goal. There was good correlation of split sample results relative to the magnitude of concentrations reported. In all samples with detects reported, concentrations trends between high and low values agreed well. These results indicate that TPH data are adequate for determination of presence and absence of fuel contamination and the determination of the relative concentrations of contamination at the sites, however, reported concentrations should be considered estimated values.

D.5.5 Conclusions

There was a strong qualitative and quantitative correlation between the on-site and off-site laboratories. The goal of 95 percent of on-site/off-site data characterized by conditions specified in POP for data categories 1,2 or 3 was achieved (ABB-ES, 1995), based on results presented in Comparison 1. The comparison results indicate that screening results provided adequate data to identify the presence or absence of contamination at action levels based on MCP Category S-1 soil cleanup criteria (MADEP, 1995).

An evaluation of RPDs (Comparison 2) indicates results for on-site analyses for the VOC target compounds BTEX and naphthalene contamination may be biased high. Bias is possibly a result of interferences with fuel-related compounds and limitations of the GC/PID single column analysis used at the on-site laboratory. The TPH results are adequate for qualitative and semi-quantitative uses, but reported concentrations should be considered estimated.

REFERENCES:

ABB Environmental Services, Inc. (ABB-ES, 1995). "Project Operations Plan", Fort Devens, Massachusetts; Data Item A004/A006; May 1995.

ABB Environmental Services, Inc. (ABB-ES), 1994. "Field Analyses Data Evaluation", SOP.
ABB Environmental Services, Inc. (ABB-ES), 1993. "Purge and Trap Analysis of Volatile Organic Compounds by Field Gas Chromatography", SOP.

Liikala, T.L., et al., 1995. Volatile Organic Compounds: Comparison of Two Sample Collection and Preservation Methods; Environmental Science and Technology; Vol. 30, No. 12, pp. 3441-3447.

Massachusetts Department of Environmental Protection, 1995a. "Method for the Determination of Extractable Petroleum Hydrocarbons (EPH); (public Comment Draft 1.0); August 1995.

Massachusetts Department of Environmental Protection, 1995b. 'Method for the Determination of Volatile Petroleum Hydrocarbons (VPH); (public Comment Draft 1.0); August 1995.

Massachusetts Department of Environmental Protection (MADEP), 1995c. "Revised Massachusetts Contingency Plan"; 310 CMR 40.000. January 1995.
U.S. Environmental Protection Agency (USEPA), 1983. "Methods for Chemical Analysis of Water and Wastes"; Environmental Monitoring and Support Laboratory; USEPA 600-4-79020; Cincinnati OH; March 1983.
U.S. Environmental Protection Agency (USEPA), 1993. "Data Quality Objectives Process for Superfund"; Office of Solid Waste and Emergency Response; EPA540-R-93-071; September 1993.
U.S. Environmental Protection Agency (USEPA), 1995. "Test Methods for Evaluating Solid Waste"; Laboratory Manual Physical/Chemical Methods; Office of Solid Waste and Remedial Response; Washington, DC; SW-846; November 1986, revised January 1995.

APPENDIX D-2
 TABLE D2-1
 1996 METHOD DETECTION LIMIT STUDY SUMMARY
 1996 ON-SITE LABORATORY
 FORT DEVENS, MASSACHUSETTS

EPH MDL Study

COMPOUND SPIKE CONC.	R1	R2	R3	R4	R5	R6	R7	STD. DEV. MDL	RL		
EPH	$50 \mathrm{mg} / \mathrm{Kg}$	53	48	41	44	44	39	36	5.7	18	$100 \mathrm{mg} / \mathrm{Kg}$

VPH MDL Study

COMPOUND	SPIKE CONC.	R1	R2	R3	R4	R5	R6	R7	STD. DEV.	MDL	RL
VPH	$2.5 \mathrm{mg} / \mathrm{Kg}$	2.0	2.1	2.3	2.3	1.9	2.4	1.9	0.19	0.57	$6.3 \mathrm{mg} / \mathrm{Kg}$

Initial VOC MDL Study

COMPOUND	SPIKE CONC.	R1	R2	R3	R4	R5	R6	R7	STD. DEV.	MDL	RL
Vc	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.320	0.358	0.287	0.296	0.260	0.302	0.297	0.0303	0.095	$2.0 \mu \mathrm{~g} / \mathrm{L}$
t-1,2-DCE	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.096	0.096	0.098	0.104	0.093	0.098	0.108	0.0053	0.017	2.0 g $/ \mathrm{L}$
c-1,2-DCE	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.093	0.096	0.092	0.093	0.089	0.095	0.097	0.0026	0.008	$2.0 \mu \mathrm{~g} / \mathrm{L}$
TCE	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.093	0.091	0.093	0.090	0.086	0.083	0.094	0.0042	0.013	$2.0 \mu \mathrm{~g} / \mathrm{L}$
PCE	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.108	0.103	0.102	0.103	0.099	0.101	0.110	0.0039	0.012	$2: 0 \mu \mathrm{~g} / \mathrm{L}$
BEN	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.575	0.589	0.577	0.578	0.566	0.553	0.564	0.0117	0.037	$2.0 \mu \mathrm{~g} / \mathrm{L}$
TOL	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.416	0.423	0.415	0.429	0.409	0.423	0.422	0.0066	0.021	$2.0 \mu \mathrm{~g} / \mathrm{L}$
EBEN	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.385	0.411	0.377	0.400	0.391	0.397	0.542	0.0572	0.180	$2.0 \mu \mathrm{~g} / \mathrm{L}$
$\mathrm{m} / \mathrm{p}-\mathrm{X}$	$0.20 \mu \mathrm{~g} / \mathrm{L}$	0.796	0.828	0.728	0.798	0.784	0.756	0.716	0.0405	0.127	$4.0 \mu \mathrm{~g} / \mathrm{L}$
0-X	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.371	0.393	0.348	0.479	0.362	0.392	0.376	0.0429	0.135	$2.0 \mu \mathrm{~g} / \mathrm{L}$

Second VOC MDL Study

COMPOUND	SPIKE CONC.	R1	R2	R3	R4	R5	R6	R7	STD. DEV.	MDL	RL
VC	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.065	0.059	0.055	0.043	0.052	0.044	0.050	0.0079	0.025	$1.0 \mu \mathrm{~g} / \mathrm{L}$
1,1-DCE	$0.10 \mu \mathrm{~L}$	0.080	0.071	0.067	0.066	0.054	0.054	0.048	0.0111	0.035	$1.0 \mu \mathrm{~L} / \mathrm{L}$
t-1,2-DCE	$0.10 \mu \mathrm{~L} / \mathrm{L}$	0.104	0.089	0.099	0.092	0.092	0.085	0.080	0.0079	0.025	$1.0 \mu \mathrm{~g} / \mathrm{L}$
C-1,2-DCE	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.086	0.078	0.087	0.079	0.083	0.073	0.077	0.0050	0.016	$1.0 \mu \mathrm{~L} / \mathrm{L}$
Chloroform	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.110	0.105	0.114	0.106	0.110	0.101	0.105	0.0043	0.014	$1.0 \mu \mathrm{~L} / \mathrm{L}$
1,1,1-TCA	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.095	0.090	0.098	0.089	0.096	0.086	0.088	0.0047	0.015	$1.0 \mu \mathrm{~L} / \mathrm{L}$
Carbon tet.	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.093	0.087	0.097	0.085	0.094	0.085	0.086	0.0050	0.016	$1.0 \mu \mathrm{~g} / \mathrm{L}$
TCE	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.090	0.085	0.091	0.084	0.085	0.081	0.081	0.0039	0.012	$1.0 \mu \mathrm{~g} / \mathrm{L}$
PCE	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.090	0.084	0.095	0.089	0.086	0.082	0.079	0.0054	0.017	$1.0 \mu \mathrm{~g} / \mathrm{L}$
BEN	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.110	0.106	0.102	0.104	0.109	0.106	0.109	0.0029	0.009	$1.0 \mu \mathrm{~g} / \mathrm{L}$
TOL	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.118	0.117	0.115	0.114	0.119	0.115	0.118	0.0019	0.006	$1.0 \mu \mathrm{~g} / \mathrm{L}$
CBEN	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.101	0.095	0.096	0.097	0.102	0.096	0.097	0.0028	0.009	$1.0 \mu \mathrm{~g} / \mathrm{L}$
EBEN	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.112	0.105	0.106	0.110	0.113	0.108	0.115	0.0037	0.012	$1.0 \mu \mathrm{~g} / \mathrm{L}$
m/p-X	$0.20 \mu \mathrm{~g} / \mathrm{L}$	0.244	0.223	0.222	0.227	0.239	0.230	0.222	0.0088	0.028	$2.0 \mu \mathrm{~g} / \mathrm{L}$
o-X	$0.10 \mu \mathrm{~g} / \mathrm{L}$	0.128	0.124	0.122	0.122	0.125	0.123	0.124	0.0021	0.007	$1.0 \mu \mathrm{~g} / \mathrm{L}$

1996 ON-SITE LABORATORY
FORT DEVENS, MASSACHUSETTS
EPH MS/MSD

SAMPLE					
ID	SAMPLE CONC. $(\mathrm{mg} / \mathrm{Kg})$	MS CONC. ADDED $(\mathrm{mg} / \mathrm{Kg})$	MS RECOVERY $(\%)$	MSD RECOVERY $(\%)$	RPD $(\%)$
	<100	100	45	54	18
BX613A17XF	<100	100	50	43	15
BX610123XF					

VPH MS/MSD

SAMPLE ID	SAMPLE CONC. $(\mathrm{mg} / \mathrm{Kg})$	MS CONC. ADDED $(\mathrm{mg} / \mathrm{Kg})$	MS RECOVERY $(\%)$	MSD RECOVERY $(\%)$	RPD $(\%)$
	<6.3	12.5	88	91	3.4
BX613A17XF	<6.3	12.5	57	63	10
BX610123XF					

TPHC MS

SAMPLE ID	SAMPLE CONC. (mg/Kg)	MS CONC. ADDED (mg/Kg)	MS RECOVERY $(\%)$
RF571503	$12,000 \mathrm{E}$	2500	NC
EF573004	$12,000 \mathrm{E}$	2500	NC
BF570900	<53	2500	104
RF572002	<54	2500	104
BF571005	<53	2500	96
EF572803	<52	2500	92
RF571409	64	2500	92
BFZW1909	840	2500	162
BFZW0302	<54	2500	88

NC = Not calculated
$E=$ Exceeded calibration range

TABLE D4-2
VOC MATRIX SPIKE and MATRIX SPIKE DUPLICATE RESULTS

- 1996 ON-SITE LABORATORATORY FORT DEVENS, MASSACHUSETTS

Aqueous samples

				\qquad		$\begin{aligned} & \text { Rpa } \\ & \text { osion } \end{aligned}$
MXBD01P1XF	VC	<2.0	5.0	101	101	0
	t-1,2-DCE	<2.0	5.0	99	103	4.0
	c-1,2-DCE	<2.0	5.0	93	102	9.2
	TCE	<2.0	5.0	101	104	2.9
	PCE	<2.0	5.0	102	105	2.9
	BEN	<2.0	5.0	90	100	11
	TOL	<2.0	5.0	87	129	39
	EBEN	<2.0	5.0	94	109	15
	m/p-X	<4.0	10	93	104	11
	0-X	<2.0	5.0	90	104	14
XFSA0315	VC	<2.0	5.0	105	109	3.7
	t-1,2-DCE	<2.0	50	85	89	4.6
	c-1,2-DCE	<2.0	50	87	92	5.6
	TCE	<2.0	50	86	91	5.6
	PCE	<2.0	50	88	92	4.4
	BEN	<2.0	50	94	96	2.1
	TOL	<2.0	50	94	95	1.1
	EBEN	<2.0	50	94	96	2.1
	m / p-X	<4.0	100	95	97	2.1
	o-X	<2.0	50	95	97	2.1
XFSA0265	VC	<2.0	5.0	101	105	3.9
	t-1,2-DCE	<2.0	50	103	101	2.0
	c-1,2-DCE	8.5	50	95	93	2.1
	TCE	<2.0	50	105	104	1.0
	PCE	15	50	81	79	2.5
	BEN	<2.0	50	97	97	0
	TOL	<2.0	50	98	98	0
	EBEN	3.1	50	96	98	2.1
	m / p-X	<4.0	100	105	104	1.0
	o-X	<2.0	50	103	104	1.0
XFSA0660	VC	<1.0	10	87	89	2.3
	1,1-DCE	<1.0	10	96	97	1.0
	t-1,2-DCE	<1.0	10	95	101	6.1
	c-1,2-DCE	<1.0	10	60	97	47
	Chloroform	<1.0	10	84	108	25
	1,1,1-TCA	<1.0	10	101	105	3.9
	Carbon tet.	<1.0	10	101	103	2.0
	TCE	<1.0	10	95	101	6.1
	PCE	<1.0	10	67	55	20
	1,3-DCB	<1.0	10	70	104	39
	1,4-DCB	<1.0	10	64	102	46

Aqueous samples

						\#Rrs
XFSA0755	1,2-DCB	<1.0	10	56	108	63
	BEN	<1.0	10	87	102	16
	TOL	<1.0	10	90	103	13
	CBEN	<1.0	10	79	106	29
	EBEN	<1.0	10	93	103	10
	m / p-X	<2.0	20	92	104	12
	o-X	<1.0	10	79	102	25
	Naph	<1.0	10	12*	101	158*
	VC	<1.0	10	85	91	6.8
	1,1-DCE	<1.0	10	98	102	4.0
	t-1,2-DCE	<1.0	10	102	104	1.9
	c-1,2-DCE	<1.0	10	108	111	2.7
	Chloroform	<1.0	10	110	110	0
	1,1,1-TCA	<1.0	10	105	107	1.9
	Carbon tet.	<1.0	10	104	107	2.8
	TCE	<1.0	10	110	109	0.9
	PCE	<1.0	10	116	117	0.9
	1,3-DCB	<1.0	10	106	108	1.9
	1,4-DCB	<1.0	10	107	109	1.9
	1,2-DCB	<1.0	10	114	114	0
	BEN	<1.0	10	105	106	0.9
	TOL	<1.0	10	108	108	0
	CBEN	<1.0	10	106	105	0.9
	EBEN	<1.0	10	105	104	1.0
	m/p-X	<2.0	20	109	108	0.9
	o-X	<1.0	10	106	106	0
	Naph	<1.0	10	99	113	13
XFSA1015	VC	<1.0	10	110	113	2.7
	1,1-DCE	<1.0	10	112	114	1.8
	t-1,2-DCE	<1.0	10	118	120	1.7
	c-1,2-DCE	<1.0	10	114	116	1.7
	Chloroform	<1.0	10	113	116	2.6
	1,1,1-TCA	<1.0	10	112	113	0.9
	Carbon tet.	<1.0	10	112	115	2.6
	TCE	<1.0	10	115	116	0.9
	PCE	<1.0	10	114	115	0.9
	1,3-DCB	<1.0	10	118	119	0.8
	1,4-DCB	<1.0	10	120	123	2.5
	1,2-DCB	<1.0	10	125	128	2.4
	BEN	<1.0	10	103	104	1.0
	TOL	<1.0	10	106	107	0.9
	CBEN	<1.0	10	103	105	1.9
	EBEN	<1.0	10	102	103	1.0
	m/p-X	<2.0	20	102	103	1.0

Aqueous samples

	ANEMW!	4Mimise cores (ogli)		\qquad		RP\% \%\%s
XFSA1220	0-X	<1.0	10	104	105	1.0
	Naph	<1.0	10	125	146	15
	VC	<1.0	10	88	91	3.4
	1,1-DCE	<1.0	10	96	99	3.1
	t-1,2-DCE	<1.0	10	97	102	5.0
	c-1,2-DCE	<1.0	10	95	101	6.1
	Chloroform	<1.0	10	96	102	6.1
	1,1,1-TCA	<1.0	10	98	101	3.0
	Carbon tet.	<1.0	10	96	100	4.1
	TCE	<1.0	10	95	100	5.1
	PCE	<1.0	10	96	102	6.1
	1,3-DCB	<1.0	10	96	105	9.0
	1,4-DCB	<1.0	10	95	105	10
	1,2-DCB	<1.0	10	88	104	17
	BEN	<1.0	10	101	104	2.9
	TOL	<1.0	10	103	106	2.9
	CBEN	<1.0	10	100	104	3.9
	EBEN	<1.0	10	100	103	3.0
	m/p-X	<2.0	20	100	103	3.0
	$0-\mathrm{X}$	<1.0	10	101	105	3.9
	Naph	<1.0	10	94	127	30
XFSA1420	VC	<1.0	10	82	84	2.4
	1,1-DCE	<1.0	10	96	98	2.1
	t-1,2-DCE	<1.0	10	104	108	3.8
	c-1,2-DCE	<1.0	10	102	107	4.8
	Chloroform	<1.0	10	105	109	3.7
	1,1,1-TCA	<1.0	10	103	107	3.8
	Carbon tet.	<1.0	10	105	110	4.7
	TCE	<1.0	10	108	110	1.8
	PCE	<1.0	10	112	115	2.6
	1,3-DCB	<1.0	10	111	115	3.5
	1,4-DCB	<1.0	10	122	126	3.2
	1,2-DCB	<1.0	10	128	132	3.1
	BEN	<1.0	10	99	99	0
	TOL	<1.0	10	100	101	1.0
	CBEN	<1.0	10	102	103	1.0
	EBEN	<1.0	10	100	101	1.0
	m/p-X	<2.0	20	100	101	1.0
	o-X	<1.0	10	102	103	1.0
	Naph	<1.0	10	102	136	29

APPENDIX D-2

TABLE D4-2
VOC MATRIX SPIKE and MATRIX SPIKE DUPLICATE RESULTS

- 1996 ON-SITE LABORATORATORY

FORT DEVENS, MASSACHUSETTS

Aqueous samples

	ANAMME:	SAMIESE cone (ogli)				$\begin{aligned} & \text { Ren } \\ & \text { \& \% } \end{aligned}$
XFSA1350	VC	<1.0	10	84	79	6.1
	1,1-DCE	<1.0	10	102	99	3.0
	t-1,2-DCE	<1.0	10	110	109	0.9
	c-1,2-DCE	<1.0	10	107	108	0.9
	Chloroform	<1.0	10	108	107	0.9
	1,1,1-TCA	<1.0	10	105	104	1.0
	Carbon tet.	<1.0	10	106	106	0.0
	TCE	<1.0	10	106	108	1.9
	PCE	<1.0	10	99	101	2.0
	1,3-DCB	<1.0	10	111	111	0
	1,4-DCB	<1.0	10	121	120	0.8
	1,2-DCB	<1.0	10	121	118	2.5
	BEN	<1.0	10	101	100	1.0
	TOL	<1.0	10	103	102	1.0
	CBEN	<1.0	10	106	105	0.9
	EBEN	<1.0	10	103	102	1.0
	m / p-X	<2.0	20	103	102	1.0
	0-X	<1.0	10	105	104	1.0
	Naph	<1.0	10	135	146	7.8
XFSA2030	V'	<1.0	10	69	74	7.0
	1,1-DCE	<1.0	10	97	103	6.0
	t-1,2-DCE	<1.0	10	108	112	3.6
	c-1,2-DCE	<1.0	10	113	116	2.6
	Chloroform	<1.0	10	114	116	1.7
	1,1,1-TCA	<1.0	10	109	114	4.5
	Carbon tet.	<1.0	10	110	114	3.6
	TCE	<1.0	10	110	114	3.6
	PCE	<1.0	10	111	117	5.3
	1,3-DCB	<1.0	10	120	125	4.1
	1,4-DCB	<1.0	10	123	133	7.8
	1,2-DCB	<1.0	10	127	141	10
	BEN	<1.0	10	90	93	3.3
	TOL	<1.0	10	93	96	3.2
	CBEN	<1.0	10	97	100	3.0
	EBEN	<1.0	10	94	99	5.2
	$\mathrm{m} / \mathrm{p}-\mathrm{X}$	<2.0	20	94	100	6.2
	o-X	<1.0	10	98	99	1.0
	Naph	<1.0	10	144	151	4.7

APPENDIX D-2
TABLE D4-2
VOC MATRIX SPIKE and MATRIX SPIKE DUPLICATE RESULTS 1996 ON-SITE LABORATORATORY FORT DEVENS, MASSACHUSETTS

Soil samples

SMMPLE 11		SMmpif come (fylk)	Mscome A मिए (1) (1)			
RF570802	VC	<125	625	108	105	2.8
	1,1-DCE	<125	625	103	99	4.0
	t-1,2-DCE	<125	625	108	108	0
	c-1,2-DCE	<125	625	107	108	0.9
	Chloroform	<125	625	107	108	0.9
	1,1,1-TCA	<125	625	107	109	1.9
	Carbon tet.	<125	625	111	112	0.9
	TCE	<125	625	109	108	0.9
	PCE	<125	625	107	106	0.9
	BEN	<125	625	98	97	1.0
	TOL	<125	625	98	98	0
	CBEN	<125	625	99	102	3.0
	EBEN	<125	625	99	99	0
	m / p-X	<250	1250	98	99	1.0
	0-X	<125	625	99	98	1.0
EF573004	VC	<125	625	102	104	1.9
	1,1-DCE	<125	625	97	92	5.3
	t-1,2-DCE	<125	625	106	108	1.9
	c-1,2-DCE	<125	625	106	108	1.9
	Chloroform	<125	625	106	108	1.9
	1,1,1-TCA	<125	625	106	108	1.9
	Carbon tet.	<125	625	108	108	0
	TCE	<125	625	107	109	1.9
	PCE	<125	625	112	113	0.9
	BEN	<125	625	99	99	0
	TOL	<125	625	100	100	0
	CBEN	<125	625	100	102	2.0
	EBEN	<125	625	107	110	2.8
	m/p-X	<250	1250	113	113	0
	o-X	<125	625	117	117	0
BFZW1901	VC	<125	625	103	99	4.0
	1,1-DCE	<125	625	105	102	2.9
	t-1,2-DCE	<125	625	107	105	1.9
	c-1,2-DCE	<125	625	106	105	0.9
	Chloroform	<125	625	105	105	0
	1,1,1-TCA	<125	625	105	104	1.0
	Carbon tet.	<125	625	107	104	2.8

APPENDIX D-2
 TABLE D4-2
 VOC MATRIX SPIKE and MATRIX SPIKE DUPLICATE RESULTS 1996 ON-SITE LABORATORATORY FORT DEVENS, MASSACHUSETTS

Soil samples

	AMAMTH	SMITAE conc. (igesg)				RPD (\%)
RF571605	TCE	<125	625	107	105	1.9
	PCE	<125	625	108	106	1.9
	1,3-DCB	<125	625	101	100	1.0
	1,4-DCB	<125	625	103	104	1.0
	1,2-DCB	<125	625	107	111	3.7
	BEN	<125	625	95	95	0
	TOL	<125	625	97	97	0
	CBEN	<125	625	95	95	0
	EBEN	<125	625	96	96	0
	m/p-X	<250	1250	96	96	0
	0-X	<125	625	97	97	0
	Naph	<125	625	84	101	18
	VC	<125	625	81	81	0
	1,1-DCE	<125	625	89	86	3.4
	t-1,2-DCE	<125	625	94	94	0
	c-1,2-DCE	<125	625	103	103	0
	Chloroform	<125	625	113	112	0.9
	1,1,1-TCA	<125	625	108	108	0
	Carbon tet.	<125	625	104	102	1.9
	TCE	<125	625	102	102	0
	PCE	<125	625	102	103	1.0
	1,3-DCB	<125	625	107	108	0.9
	1,4-DCB	<125	625	108	107	0.9
	1,2-DCB	<125	625	107	109	1.9
	BEN	<125	625	78	79	1.3
	TOL	<125	625	80	81	1.2
	CBEN	<125	625	82	82	0
	EBEN	<125	625	83	83	0
	m / p-X	<250	1250	81	81	0
	$0-\mathrm{X}$	<125	625	83	83	0
	Naph	<125	625	90	97	7.5
RF571705	VC	<125	625	76	76	0
	1,1-DCE	<125	625	62	64	3.2
	t-1,2-DCE	<125	625	125	126	0.8
	c-1,2-DCE	<125	625	103	104	1.0
	Chloroform	<125	625	122	123	0.8
	1,1,1-TCA	<125	625	106	106	0

APPENDIX D-2
 TABLE D4-2
 VOC MATRIX SPIKE and MATRIX SPIKE DUPLICATE RESULTS 1996 ON-SITE LABORATORATORY FORT DEVENS, MASSACHUSETTS

Soil samples

		SMAPSE come (ugks)		\qquad	\qquad	Red (\%).
BFZW2110	Carbon tet:	<125	625	108	107	0.9
	TCE	<125	625	103	103	0
	PCE	<125	625	102	104	1.9
	1,3-DCB	<125	625	104	107	2.8
	1,4-DCB	<125	625	104	108	3.8
	1,2-DCB	<125	625	104	109	4.7
	BEN	<125	625	78	79	1.3
	TOL	<125	625	82	83	1.2
	CBEN	<125	625	81	81	0
	EBEN	<125	625	82	83	1.2
	m/p-X	<250	1250	80	81	1.2
	o-X	<125	625	82	83	1.2
	Naph	<125	625	77	89	14
	VC	<125	625	73	73	0
	1,1-DCE	<125	625	61	61	0
	t-1,2-DCE	<125	625	99	99	0
	c-1,2-DCE	<125	625	101	101	0
	Chloroform	<125	625	116	116	0
	1,1,1-TCA	<125	625	105	105	0
	Carbon tet.	<125	625	107	107	0
	TCE	<125	625	104	103	1.0
	PCE	<125	625	104	102	1.9
	1,3-DCB	<125	625	108	108	0
	1,4-DCB	<125	625	118	112	5.2
	1,2-DCB	<125	625	120	115	4.3
	BEN	<125	625	78	77	1.3
	TOL	<125	625	83	83	0
	CBEN	<125	625	80	80	0
	EBEN	<125	625	82	82	0
	m/p-X	<250	1250	80	80	0
	o-X	<125	625	82	82	0
	Naph	<125	625	84	95	12
RF572002	VC	<125	625	101	98	3.0
	1,1-DCE	<125	625	108	105	2.8
	t-1,2-DCE	<125	625	130	127	2.3
	c-1,2-DCE	<125	625	108	106	1.9
	Chloroform	<125	625	112	111	0.9

APPENDIX D-2
 TABLE D4-2
 VOC MATRIX SPIKE and MATRIX SPIKE DUPLICATE RESULTS 1996 ON-SITE LABORATORATORY FORT DEVENS, MASSACHUSETTS

Soil samples

APPENDIX D-2

TABLE D4-2
VOC MATRIX SPIKE and MATRIX SPIKE DUPLICATE RESULTS
1996 ON-SITE LABORATORATORY FORT DEVENS, MASSACHUSETTS

Soil samples

	AMMII	SAMPIER Come. (deris)				
	Chioroform	<1.0	10	79	94	17
	1,1,1-TCA	<1.0	10	72	95	28
	Carbon tet.	<1.0	10	70	97	32
	TCE	<1.0	10	75	93	21
	PCE	<1.0	10	77	95	21
	1,3-DCB	<1.0	10	92	95	3.2
	1,4-DCB	<1.0	10	93	99	6.3
	1,2-DCB	<1.0	10	95	104	9.0
	BEN	<1.0	10	67	84	23
	TOL	<1.0	10	71	84	17
	CBEN	<1.0	10	78	85	8.6
	EBEN	<1.0	10	75	85	13
	m/p-X	<2.0	20	75	85	13
	o-X	<1.0	10	78	85	8.6
	Naph	<1.0	10	126	101	22
BX502015	VC	<1.0	10	111	97	13
	1,1-DCE	<1.0	10	110	99	11
	t-1,2-DCE	<1.0	10	110	102	7.5
	c-1,2-DCE	<1.0	10	109	102	6.6
	Chloroform	<1.0	10	110	104	5.6
	1,1,1-TCA	<1.0	10	111	103	7.5
	Carbon tet.	<1.0	10	112	104	7.4
	TCE	<1.0	10	108	100	7.7
	PCE	<1.0	10	116	106	9.0
	1,3-DCB	<1.0	10	108	103	4.7
	1,4-DCB	<1.0	10	110	104	5.6
	1,2-DCB	<1.0	10	110	106	3.7
	BEN	<1.0	10	98	89	9.6
	TOL	<1.0	10	98	89	9.6
	CBEN	<1.0	10	97	91	6.4
	EBEN	<1.0	10	98	91	7.4
	m/p-X	<2.0	20	98	91	7.4
	$0-\mathrm{X}$	<1.0	10	98	91	7.4
	Naph	<1.0	10	90	101	12

APPENDIX D-2

TABLE D4-2
VOC MATRIX SPIKE and MATRIX SPIKE DUPLICATE RESULTS 1996 ON-SITE LABORATORATORY FORT DEVENS, MASSACHUSETTS

Soil samples

SAMPME m	4MAM					
BX502025	VC	<1.0	10	88	87	1.1
	1,1-DCE	<1.0	10	91	88	3.4
	t-1,2-DCE	<1.0	10	98	96	2.1
	c-1,2-DCE	<1.0	10	101	100	1.0
	Chloroform	<1.0	10	103	100	3.0
	1,1,1-TCA	<1.0	10	96	91	5.3
	Carbon tet.	<1.0	10	95	91	4.3
	TCE	<1.0	10	97	93	4.2
	PCE	<1.0	10	166	163	1.8
	1,3-DCB	<1.0	10	104	103	1.0
	1,4-DCB	<1.0	10	107	109	1.9
	1,2-DCB	<1.0	10	108	1.12	3.6
	BEN	<1.0	10	84	82	2.4
	TOL	<1.0	10	84	82	2.4
	CBEN	<1.0	10	89	87	2.3
	EBEN	<1.0	10	85	83	2.4
	m/p-X	<2.0	20	85	83	2.4
	0-X	<1.0	10	87	85	2.3
	Naph	<1.0	10	106	106	0

APPENDIX D-2

TABLE D4-3
EPH, VPH, TPHC FIELD DUPLICATE RESULTS
1996 ON-SITE LABORATORY
FORT DEVENS, MASSACHUSETTS
EPH Duplicates

SAMPLE	SAMPLE CONC. $(\mathrm{mg} / \mathrm{Kg})$	DUPLICATE CONC. $(\mathrm{mg} / \mathrm{Kg})$	RPD $(\%)$
BX613A17XF	<100	<100	NA
BX610115XF	<100	<100	NA
MXBD0323XF	<100	<100	NA
MXBD0217XF	<100	<100	NA

VPH Duplicates

SAMPLE ID	SAMPLE CONC. $(\mathrm{mg} / \mathrm{Kg})$	DUPLICATE CONC. $(\mathrm{mg} / \mathrm{Kg})$	RPD
	<6.3	<6.3	(\%)
BX613A17XF	<6.3	<6.3	NA
BX610115XF	<6.3	<6.3	NA
MXBD0323XF	<6.3	<6.3	NA
MXBD0217XF			

TPHC Duplicates

SAMPLE ID	SAMPLE CONC. ppm	DUPLICATE CONC. ppm	RPD $(\%)$
RF571206	<52		
EF573106	10,000	14,000	NA
BFZW1901	<53	53	33
BFZW1905	<53	<53	200
RF571503	12000 NA	12000 Na	
RF571603	53	53	0
BFZW0304	<58	<58	0
BFZW0306	<57	<59	NA
RF571709	65	<65	NA
RF572002	<54	<54	200
BF571110	<62	<65	NA
BF570910	<70	<70	NA
EF572803	<52	52	NA
RF571409	64	<64	200
			200

$\mathrm{NC}=$ Not calculated
NA = Not applicable
$\mathrm{E}=$ Exceeded calibration range

APPENDIX D-2

TABLE D4-4
VOC DUPLICATE RESULTS
1996 ON-SITE LABORATORY

Aqueous Samples

				$\begin{aligned} & \text { Rei } \\ & \text { ind } \end{aligned}$
MẊ613B30XF	ALL BRL	ND	ND	NA
MX610129XF	ALL BRL	ND	ND	NA
XFSA0315	ALL BRL	ND	ND	NA
XFSA0345	VC	4.0	4.3	7.2
	c-1,2-DCE	86	85	1.2
	TCE	25	24	4.1
	PCE	67	65	3.0
	EBEN	3.3	3.0	9.5
	m/p-X	9.0	8.1	11
	o-X	2.7	2.2	20
XFSA0265	c-1,2-DCE	8.5	6.8	22
	PCE	15	12	22
	EBEN	3.1	<2.0	200.0
MF571305	TOL	2.9	2.6	11
	EBEN	2.8	2.6	7.4
XFSA0420	PCE	33E	33E	0
XFSA0520	C-1,2-DCE	4.1	4.6	11
	PCE	2.3	2.5	8.3
XFSA0640	ALL BRL	ND	ND	NA
XFSA0650	ALL BRL	ND	ND	NA
XFSA0755	ALL BRL	ND	ND	NA
XFSA0840	ALL BRL	ND	ND	NA
XFSA1015	ALL BRL	ND	ND	NA
XFSA1035	ALL BRL	ND	ND	NA
XFSA1130	PCE	64E	63E	1.6
XFSA1330	PCE	4500	4100	9.3
XFSA1420	ALL BRL	ND	ND	NA
XFSA1440	PCE	3.0	3.2	6.5
XFSA1350	PCE	12000	8000	40

APPENDIX D-2

TABLE D4-4
VOC DUPLICATE RESULTS
1996 ON-SITE LABORATORY
. FORT DEVENS, MASSACHUSETTS
Aqueous Samples

SAMBIE \#	AMM14	SMMPI come. (aylis)		$\begin{aligned} & \text { Rer } \\ & \text { R } \end{aligned}$
XFSA1945	c-1,2-DCE	11	7.7	35
	PCE	26E	20	26
XFSA1965	c-1,2-DCE	64 E	70E	9.0
	TCE	17	18	5.7
	PCE	93E	100E	7.3
	TOL	4.9	7.8	46
XFSA2020	BRL	ND	ND	NA

APPENDIX D-2

TABLE D4-4
VOC DUPLICATE RESULTS
1996 ON-SITE LABORATORY
. FORT DEVENS, MASSACHUSETTS
SOLL Samples

SAMPLEM \#im	ANXIFIEM		DIMITEATE come (igelsg)	$\begin{aligned} & \text { RPD } \\ & \text { Sol } \end{aligned}$
RF570802	BRL	ND	ND	
EF573004	BRL	ND	ND	NA
RF571010	0-X	880	<300	200
RF571206	BRL	ND	ND	NA
EF573106	Naph	560	<270	200
BFZW1901	BRL	ND	ND	NA
RF571603	Chloroform	380 B	<260	200
	Naph	<260	930	200
BFZW0304	BRL	ND	ND	NA
BFZW0306	BRL	ND	ND	NA
RF571709	BRL	ND	ND	NA
RF572002	Chloroform	340	<270	200
BF571005	BRL	ND	ND	NA
BF571110	BRL	ND	ND	NA
BXG613B29	c-1,2-DCE	12	6.5	59
	PCE	220E	100E	75
BX502025	PCE	17	21	21
BX502030	BRL	ND	ND	NA

* = data not included with statistics of the table, data is an outlier.

BRL = All target compounds reported below reporting limits
$\mathrm{ND}=$ non-detect

Appendix D-2
 Table D5-1
 VPH/EPH Split Sample Results
 1996 Field Program
 Fort Devens, Massachusetts

Notes:
$\mathrm{BC}=$ Not Calculated
RPD $=$ Relative Percent Difference

Appendix D-2
Table D5-2
TPHC Split Sample Results
1996 Field Program
Fort Devens, Massachusetts

Fichos Samper Number	AMMLME	OFHSSHE/, Resulim,	OnS STE. Rusurt.	RPD	Scenario
EF 573106	TPHC	18300	1000	57*	2
EF573006	TPHC	6960	8900	24	2
EF572911	TPHC	262	160	48	1
EF572810	TPHC	36100	160	198*	4
BF571110	TPHC	27.8 U	62 U	NC	1
BF571105	TPHC	4250	7400	54*	2
BF571010	TPHC	27.8 U	65	200*	1
BF571005	TPHC	27.6 U	53 U	NC	1
BF570905	TPHC	27.8 U	61 U	NC	1
BF570900	TPHC	39.4	150	65*	1
BF570805	TPHC	27.8 U	67 U	NC	1
BF570800	TPHC	50	53	6.0	1
BF570705	TPHC	31600	14000 E	77*	2
BF570700	TPHC	41400	12000 E	110*	2
BFZW0306	TPHC	57.5	57 U	200*	1
BFZW0310	TPHC	27.8 U	61 U	NC	1
BFZW1905	TPHC	27.8 U	0.4 U	NC	1
BFZW1909	TPHC	1740	840	67*	2
BFZW2002	TPHC	27.8 U	62	200*	1
BRZW2004	TPHC	27.8 U	62 U	NC	1
BFZW2104	TPHC	27.8 U	55 U	NC	1
BFZW2108	TPHC	27.8 U	57	200*	1

Notes:

1. Concentrations in $\mu \mathrm{g} / \mathrm{g}$

RPD $=$ Relative Percent Difference

APPENDIX D-2

TABLE D5-3
SUMIMARY OF VOLATILE SPLIT SAMPLE RESULTS
1996 FIELD PROGRAM
FORT DEVENS, MASSACHUSETTS

APPENDIX D-2

TABLE D5-3
SUMMARY OF VOLATILE SPLIT SAMPLE RESULTS
1996 FIELD PROGRAM
FORT DEVENS, MASSACHUSETTS

APPENDIX D-2
TABLE D5-3
SUMMARY OF VOLATILE SPLIT SAMPLE RESULTS
1996 FIELD PROGRAM
FORT DEVENS, MASSACHUSETTS

ManME					Cenerser
	CLC6H5	0.00086 U	0.31 U	NA	1
	ETC6H5	0.0017 U	0.31 U	NA	1
,					1
	TCLEE	0.00081 U	0.31 U	NA	1
	TRCLE	0.0028 U	0.31 U	NA	1
	XYLEN	0.0015 U	0.61 U	NA	1
	12DCLB	. 11 U	0.31 U	NA	1
	13DCLB	. 13 U	0.31 U	NA	1
	14DCLB	. 098 U	0.31 U	NA	1
	NAP	. 037 U	0.31 U	NA	1
BF571005	111TCE	. 0044 U	0.26 U	NA	1
	11DCE	. 0039 U	0.26 U	NA	1
	12DCE	. 003 U	0.26 U	NA	1
	12DCLB	. 11 U	0.26 U	NA	1
	13DCLB	. 13 U	0.26 U	NA	1
	14DCLB	. 098 U	0.26 U	NA	1
	C2H3CL	. 0062 U	0.26 U	NA	1
	C6H6	. 0015 U	0.26 U	NA	1
	CCL4	. 007 U	0.26 U	NA	1
	CHCL3	. 00087 U	0.26 U	NA	1
	CLC6H5	. 00086 U	0.26 U	NA	1
	ETC6H5	. 0017 U	0.26 U	NA	1
	MEC6H5	. 00078 U	0.26 U	NA	1
	NAP	. 037 U	0.26 U	NA	1
	TCLEE	. 00081 U	0.26 U	NA	1
	TRCLE	. 0028 U	0.26 U	NA	1
	XYLEN	. 0015 U	0.39 U	NA	1
BF571010	111TCE	. 0044 U	0.33 U	NA	1
	11DCE	. 0039 U	0.33 U	NA	1
	12DCE	. 003 U	0.33 U	NA	1
	12DCLB	. 11 U	0.33 U	NA	1
	14DCLB	. 098 U	0.33 U	NA	1
	C2H3CL	. 0062 U	0.33 U	NA	1
	C6H6	. 0015 U	0.33 U	NA	1
	CCL4	. 007 U	0.33 U	NA	1
	CHCL3	. 00087 U	0.33 U	NA	1
	CLC6H5	. 00086 U	0.33 U	NA	1
	ETC6H5	. 0017 U	0.33 U	NA	1
	MEC6H5	. 00078 U	0.33 U	NA	1
	NAP	. 037 U	0.33 U	NA	1
	TCLEE	. 00081 U	0.33 U	NA	1
	TRCLE	. 0028 U	0.33 U	NA	1
	XYLEN	. 0015 U	0.49 U	NA	1
BF571105	111TCE	. 0044 U	0.27 U	NA	1
	11DCE	. 0039 U	0.27 U	NA	1
	12DCE	. 003 U	0.27 U	NA	1

APPENDIX D－2

TABLE D5－3
SUMMARY OF VOLATILE SPLIT SAMPLE RESULTS
1996 FIELD PROGRAM
．FORT DEVENS，MASSACHUSETTS

		絃山宸			
	12DCLB	． 6 U	0.27 U	NA	1
	13DCLB	． 6 U	0.27 U	NA	1
	14DCLB	． 5 U	0.27 U	NA	1
	C2H3CL	． 0062 U	0.27 U	NA	1
	C6H6	． 0015 U	0.27 U	NA	1
	CCL4	． 007 U	0.27 U	NA	1
	CHCL3	． 00087 U	0.27 U	NA	1
	CLC6H5	． 00086 U	0.27 U	NA	1
	ETC6H5	． 0017 U	0.27 U	NA	1
	MEC6H5	． 00078 U	0.27 U	NA	1
	NAP	． 2 U	0.27 U	NA	1
	TCLEE	． 00081 U	0.27 U	NA	1
	TRCLE	． 0028 U	0.27 U	NA	1
	XYLEN	． 0015 U	0.41 U	NA	1
BF571110	111TCE	． 0044 U	0.31 U	NA	1
	IlDCE	． 0039 U	0.31 U	NA	1
	12DCE	． 003 U	0.31 U	NA	1
	12DCLB	． 11 U	0.31 U	NA	1
	13DCLB	． 13 U	0.31 U	NA	1
	13DCLB	． 13 U	0.31 U	NA	1
	14DCLB	． 098 U	0.31 U	NA	1
	C2H3CL	． 0062 U	0.31 U	NA	1
	C6H6	． 0015 U	0.31 U	NA	1
	CCL4	． 007 U	0.31 U	NA	1
	CHCL3	． 00087 U	0.31 U	NA	1
	CLC6H5	． 00086 U	0.31 U	NA	1
	ETC6H5	． 0017 U	0.31 U	NA	1
				§\＃\＃\＃\＃\＃\＃，	1
	NAP	． 037 U	0.31 U	NA	1
	TCLEE	． 00081 U	0.31 U	NA	1
	TRCLE	． 0028 U	0.31 U	NA	1
	XYLEN	． 0015 U	0.62 U	NA	1
EF572810	111TCE	． 0044 U	0.31 U	NA	1
	I1DCE	． 0039 U	0.31 U	NA	1
	12DCE	． 003 U	0.31 U	NA	1
	C2H3CL	． 0062 U	0.31 U	NA	1
	C6H6	． 0015 U	0.31 U	NA	1
	CCL4	． 007 U	0.31 U	NA	1
	CHCL3	． 00087 U	0.31 U	NA	1
	CLC6H5	． 00086 U	0.31 U	NA	1
					1
	MEC6H5	． 00078 U	0.31 U	NA	1
					1
	TRCLE	． 0028 U	0.31 U	NA	1
					1
EF572911	111TCE	． 0044 U	0.31 U	NA	1

APPENDIX D-2
TABLE D5-3
SUMMARY OF VOLATILE SPLIT SAMPLE RESULTS
1996 FIELD PROGRAM
FORT DEVENS, MASSACHUSETTS

	11DCE	. 0039 U	0.31 U	NA	1
	12DCE	. 003 U	0.31 U	NA	1
,	C2H3CL	. 0062 U	0.31 U	NA	1
	C6H6	. 0015 U	0.31 U	NA	1
	CCL4	. 007 U	0.31 U	NA	1
	CHCL3	. 00087 U	0.31 U	NA	1
	CLC6H5	. 00086 U	0.31 U	NA	1
	ETC6H5	. 0017 U	0.31 U	NA	1
	MEC6H5	. 00078 U	0.31 U	NA	1
	TCLEE	. 00081 U	0.31 U	NA	1
	TRCLE	. 0028 U	0.31 U	NA	1
	XYLEN	. 0015 U	0.62 U	NA	1
EF573006	111TCE	. 0044 U	0.26 U	NA	1
	11DCE	. 0039 U	0.26 U	NA	1
	12DCE	. 003 U	0.26 U	NA	1
	C2H3CL	. 0062 U	0.26 U	NA	1
	C6H6	. 0015 U	0.26 U	NA	1
	CCL4	. 007 U	0.26 U	NA	1
	CHCL3	. 00087 U	0.26 U	NA	1
	CLC6H5	. 00086 U	0.26 U	NA	1
		\%		\%	1
	MEC6H5	. 00078 U	0.26 U	NA	1
	TCLEE	. 00081 U	0.26 U	NA	1
	TRCLE	. 0028 U	0.26 U	NA	1
	XYLEN	. 13	3.8	97	1
EF573106	111TCE	. 0044 U	0.27 U	NA	1
	11DCE	. 0039 U	0.27 U	NA	1
	12DCE	. 003 U	0.27 U	NA	1
	12DCLB	. 6 U	0.27 U	NA	1
	13DCLB	. 6 U	0.27 U	NA	1
	14DCLB	. 5 U	0.27 U	NA	1
	C2H3CL	. 0062 U	0.27 U	NA	1
	C6H6	. 0015 U	0.27 U	NA	1
	CCL4	. 007 U	0.27 U	NA	1
	CHCL3	. 00087 U	0.27 U	NA	1
	CLC6H5	. 00086 U	0.27 U	NA	1
	ETC6H5	. 0017 U	0.27 U	NA	1
	MEC6H5	. 00078 U	0.27 U	NA	1
					1
	TCLEE	. 00081 U	0.27 U	NA	1
	TRCLE	. 0028 U	0.27 U	NA	1
	XYLEN	. 0015 U	0.41 U	NA	1

NOTES:
NA= not applicable
$\mathrm{J}=$ estimated result
$\mathrm{U}=$ non-detect

ATTACHMENT D2-1

1996 FIELD ANALYTICAL PROCEDURES

PROJECT OPERATION PLAN ADDENDUM 1996 FIELD SCREENING METHODOLOGY TARGET VOLATILE ORGANIC COMPOUNDS(VOCS) ESTIMATION OF TOTAL VOLATTLE PETROLEUM HYDROCARBONS(TVPH) AND TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS(TEPH)

1.0 Introduction

Field screening procedures for Fort Devens remedial investigations are described in Section 4.6 of the Fort Devens Project Operation Plan (POP) (ABB-ES, 1995). Modifications to some of these field screening procedures have been made for the 1996 field investigations. The purpose of this addendum is to outline modifications to field screening procedures that will be incorporated into the 1996 field program. Field screening gas chromatography (GC) procedures have been developed to provide on-site results for target volatile organics (VOCs) and estimates of total volatile petroleum hydrocarbons (TVPH) and extractable petroleum hydrocarbons (TEPH). The TVPH and TEPH measurements will provide an estimate of total hydrocarbons present in each fraction that are comparable to results generated using analytical methods developed by the Massachusetts Department of Environmental Protection (MADEP), however, TVPH and TEPH will be reported as a total concentration and not broken down into aliphatic and aromatic fractions as outlined in the MADEP methodology (MADEP, 1995). The purpose of the field analyses is to provide quick turnaround of analytical results for real time decision making during the field investigation.

A summary of the field methodologies instrumentation, sample preparation, instrument calibration, target compounds and detection limits, sample quantitation, and analytical quality control analyses are presented below.

2.0 Field Instrumentation and Analytical Methods

Investigations at AOC 50 are driven by the potential presence of fuel hydrocarbons including benzene, toluene, ethylbenzene, and xylene (BTEX), and solvents including tetrachloroethene (PCE) and the de-chlorination degradation products trichloroethene (TCE), cis-1,2dichloroethene, trans-1,2-dichloroethene, and vinyl chloride in groundwater. Groundwater samples collected at AOC 50 will be analyzed using purge and trap Method 5030A and modified USEPA Method 8021A and modified USEPA Method 8015A (USEPA, 1995). As outlined in Method 8021A, BTEX compounds will be identified and quantified with a photoionization detector (PID) and the chlorinated solvents will be identified and quantified using an electrolytic conductivity detector (ELCD). As outlined in Method 8015, TVPH will be quantified using a Flame ionization detector (FID). Target compounds and reporting limits
for AOC 50 groundwater samples are summarized in Table 1. For target compound analyses, analytical procedures for instrument calibration, sample identification, quality control blank analyses, and sample preparation will be consistent with those outlined in the POP. TVPH procedures are described below in Subsection 2.2.

Investigations at AOCs $61 Z$ and 63 BD are driven by the potential presence of fuel hydrocarbons as a result of fuel oil and waste oil products releases to soil. Soil samples collected at AOCs 61 Z and 63BD will be analyzed for TVPH and TEPH using modified USEPA Method 8015A for TVPH and TEPH. Soil samples analyzed for TVPH will be prepared using a methanol extraction as outlined in USEPA Method 5030A and the POP. Methanol extracts will be analyzed using purge and trap GC/FID for the TVPH. Soil samples analyzed for TEPH will be prepared using a methylene chloride micro-extraction technique and direct injection by GC/FID. A summary of target compounds and reporting limits for the soil analyses is presented in Table 1.

Laboratory techniques used for sample preparation for the TEPH method, and calibration and sample quantitation procedures for the TVPH and TEPH methods are outlined in the following sections.

2.1 TEPH Sample Preparation:

Sample analysis and preparation techniques have been adapted from protocols outlined in SW-846 3rd ed. USEPA Methods 3550A (USEPA 1995).

Soil Samples. Weigh 2 grams ($\pm 0.1 \mathrm{~g}$) wet soil into a 12 ml screw cap test tube. Spike the sample mixture with appropriate concentration of surrogate solution. For MS/MSD samples the appropriate aliquot of spike solution is added to the sample. Add approximately 2 grams of anhydrous sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (a drying agent) to the sample. With a Teflon spatula thoroughly mix the sample and sodium sulfate (break the sample up to form a uniform free flowing mixture). Add 10 mL of methylene chloride to the sample.

Shake or vortex vigorously for 3 minutes to mix and extract the sample. The field chemist will pay close attention to the sample extraction to ensure that the soil and solvent are actively mixing during the 3 minute extraction. Allow the sample to stand and separate or centrifuge the sample to separate the solvent phase. Withdraw a the extract solvent and transfer the sample extract to a sample vial and cap, sample in now ready for analysis.

Dilutions. If high concentrations of fuels are suspected, then samples should be analyzed prior to concentration, otherwise the extract can be diluted with methylene chloride to bring the target compound concentrations within the instrument calibration range. To dilute the sample, remove a measured quantity of extract and add to an appropriate volume of extraction solvent. The results of diluted samples will be adjusted for by the dilution factor.

2.2 TVPH and TEPH Instrument Calibration

Initial and continuing calibration will be established for TVPH and TEPH. A commercial gasoline standard will be used for TVPH calibration. A commercial Fuel Oil \#2 or diesel standard will be used for TEPH calibration. The retention time markers identified in the MADEP methods to determine the retention times of the TVPH and TEPH determination will be used to define the hydrocarbon molecular weight range of the TVPH and TEPH analyses. The hydrocarbon range quantified in the TVPH analysis will extend from 0.1 minutes before the marker compound pentane to 0.1 minute after naphthalene. The TEPH hydrocarbon range quantified will extend from 0.1 minute before naphthalene to 0.1 minute after hexatriacontane. The concentration of hydrocarbons in standards and samples will be determined based on the total baseline to baseline area response of the standards within the designated retention time widows. A three point initial calibration and continuing calibration will be conducted as outlined in the POP. The concentrations of TVPH and TEPH will be added together to determine the total concentration of petroleum hydrocarbons present at a given sample location.

3.0 Quality Control:

Quality control steps outlined below will be conducted during the field analyses including an MDL study for target compounds, initial and continuing calibrations, method blank extraction and analysis with each sample batch, matrix spikes and field duplicate sample analyses, and evaluation of accuracy using a surrogate standard.

- holding times: Soil: 14 days

$$
\text { Water: } 7 \text { days }
$$

- Surrogate \%R goal of 50% ($<30 \%$ re-analysis limit)
- MDL study (Appendix B part 136, CFR 40)
- Initial calibration by linear regression (.95) or average response factor (RSD 25\%) with low standard at or near reporting limit
- Continuing calibration each day and after 20 samples (30% difference)
- Extraction blank (method blank) with each extraction batch prepared or daily with each purge and trap analytical sequence
- Matrix spike/Matrix spike duplicates will be prepared by spiking 5 percent of samples with target compounds, a commercial gasoline standard, or a commercial diesel fuel standard, as appropriate for each analysis, at approximately the mid-range of the calibration curve. Percent recoveries (\%R) and relative percent difference (RPD) will be used to evaluate the accuracy and precision of measurements and to qualify results. Percent recovery goals: 60% to 140%; RPD < 20
- Field duplicates will be submitted to the field laboratory routinely during the program. Relative percent difference of the duplicate results will be used to evaluate the precision
of field measurements and qualify results. RPD goals are 30% for aqueous samples and 50% for soil samples.

4.0 Data Review and Reporting:

The field chemist will review results based on project data quality control goal outlined above. Sample results not meeting data quality control goals will be qualified as outlined below:

Qualification flags for data evaluation

(J) The J flag is used to indicate estimated data. This can occur when a compound does not meet calibration criteria for initial calibration, continuing calibration, or both.
(B) The B flag is used when a target compound is detected in an associated method blank. All values within five times of the method blank result are flagged.
(E) The E flag is used to indicate estimated data. The flag is used when a compound is detected at a concentration that is above the highest calibration standard.
(S) The S flag is used when the associated surrogate recovery is less than 50%. For soils the surrogate recovery must be greater than 50 percent for results to go unqualified, however, re-analysis will only occur if recoveries are less than 30%.

Matrix spike and field duplicate results will be tabulated and summarized on an ongoing basis during the field program. Results will be used by the field chemist, FOL, and project manager on an ongoing basis to evaluate the usability of results. Associated field sample results presented in the final data reports may be qualified based on the judgment of the field and project chemist.

REFERENCES:

Massachusetts Department of Environmental Protection (MADEP), 1995. "Method for the Determination of Extractable Petroleum Hydrocarbons (TEPH); Division of Environmental Analysis; Office of Research and Standards; Bureau of Waste Site Cleanup; August 1995.

Massachusetts Department of Environmental Protection (MADEP), 1995. "Method for the Determination of Volatile Petroleum Hydrocarbons (TVPH); Division of Environmental Analysis; Office of Research and Standards; Bureau of Waste Site Cleanup; August 1995.
U.S. Environmental Protection Agency (USEPA), 1995. "Test Methods for Evaluating Solid Waste"; Laboratory Manual Physical/Chemical Methods; Office of Solid Waste and Remedial Response; Washington, DC; SW-846; November 1986; Revised January 1995.

ATTACHMENT D-1
 TABLE 1

SUMMARY OF TARGET COMPOUNDS AND REPORTING LIMITS 1996 FIELD SCREENING PROGRAM FORT DEVENS REMEDIAL INVESTIGATION

TARGET ANALYTE	Somuc/G	WATER $\mu \mathrm{G} / \mathrm{L}$
Benzene	0.25	2
Toluene	0.25	2
Ethylbenzene	0.25	4
m/p-xylene	0.5	2
o-xylene	0.25	2
Tetrachloroethene	0.25	2
Trichloroethene	0.25	2
cis-1,2-dichloroethene	0.25	2
trans-1,2-dichloroethene	0.25	2
Vinyl chloride	0.25	2
1,2-dichlorobenzene*	0.25	2
1,3-dichlorobenzene*	0.25	2
1,4-dichlorobenzene*	0.25	2
Naphthalene*	0.25	2
TVPH	6.25	50
TEPH	100	NA
TPH-IR	50	NA

Notes:
$\mathrm{NA}=$ soil not analyzed $\mu \mathrm{g} / \mathrm{g}=$ microgram per gram $\mu \mathrm{g} / \mathrm{L}=$ microgram per liter

* Added to target list part way through field program

1996 OFF-SITE LABORATORY DATA

D.1.0 INTRODUCTION

This Data Quality Report (DQR) provides a detailed data quality assessment for off-site analytical data generated during site investigations conducted at Fort Devens during the fall of 1996 at Areas of Concern (AOCs) 57 and 69W.

Samples collected during the investigation were submitted to Environmental Science and Engineering (ESE), Gainseville, Florida. All laboratory data generated during the sampling programs were reviewed in terms of Data Quality Objectives (DQOs) established in the Fort Devens Project Operations Plan (POP) (ABB-ES, 1995), published analytical methods (USEPA, 1990; USEPA 1994) or applicable USEPA data validation guidelines (USEPA, 1988; USEPA 1989).
DQOs refer to a set of qualitative and quantitative statements that assess the data generated during the sampling and analysis phases of the project. The DQOS are defined by the parameters of precision, accuracy, representativeness, completeness, and comparability (PARCC). These parameters present an indication of the data quality, and the confidence that a particular compound may be present or absent in an associated environmental sample. This report describes the analytical methods performed at the on-site and off-site laboratories, and presents an assessment of data quality and usability for samples collected during the fall 1996 field investigation.

D.1.1 OFF-SITE LABORATORY ANALYTICAL METHODS

Subsurface soil and groundwater samples were collected during the 1996 Fort Devens Site Investigation. Samples were analyzed for chemical parameters on the Fort Devens Project Analyte List (PAL). The analytical methodologies performed include PAL inorganics, PAL volatile organic compounds (VOCs), PAL semivolatile organic compounds (SVOCs), PAL pesticides and polychlorinated biphenyls (PCBs). In addition samples were analyzed for total petroleum hydrocarbons (TPHC), and several water quality parameters including hardness, nitrate and nitrite-nitrogen, kjeldahl-nitrogen, total phosphate, total organic carbon (TOC), total dissolved solids (TDS) and total suspended solids (TSS). The analyses performed are summarized on Table D-1.

The USEPA has identified two general levels of analytical data quality, Screening with Definitive Confirmation and Definitive Data (USEPA, 1993). All off-site laboratory data are considered Definitive Data.

The contract laboratory which completed analyses of all off-site analytical samples was Environmental Science and Engineering (ESE), Gainesville, Florida. Analyses were completed implementing the 1990 U.S. Army Toxic and Hazardous Materials Agency (USATHAMA) QA Program (USATHAMA, 1990). Method performance demonstration, data management, and oversight for USATHAMA analytical procedures are currently performed by the U.S. Army Environmental Center (USAEC). A discussion of AEC-certified methods used by ESE Laboratories for samples collected at Fort Devens is provided in Section 7.0 of the Fort Devens POP (ABB-ES, 1995), and methods are listed in Table D-1. This table includes a description of the methods used as well equivalent EPA methods, where they exist. The USAEC method numbers (i.e., method JS16) are specific to the project and to the particular laboratory performing the analyses. For some analyses standard USEPA methods are used. The methods are also indicated in Table D-1.

A detailed discussion of the USAEC laboratory QA program is presented in Section 3.0 of this RI. The laboratory must document proficiency using each of the methods by meeting strict USAEC performance protocols. Once the laboratory has demonstrated this proficiency, they become certified to perform that particular method. It is through this certification process that certified reporting limits (CRLs) are established. CRLs for USAEC methods and reporting limits (RLs) for standard USEPA methods are presented in Table D-1 and in Appendix B of the Fort Devens POP (ABB-ES, 1995).

Samples collected from AOC 612 and 69 W were also analyzed for petroleum hydrocarbon analysis using methods developed by the Massachusetts Department of Environmental Protection (MADEP, 1995a; MADEP, 1995b) for volatile petroleum hydrocarbons (VPH) and Extractable Petroleum Hydrocarbons (EPH). Results of these analyses were used to provide more detail on the chemical composition of hydrocarbons present. Analyses were performed by Groundwater Analytical, Inc., Buzzards Bay. A summary of the data quality review of VPH and EPH results is presented in Attachment D-1.

Harding Lawson Associates

D.2.0 OFF-SITE LABORATORY QUALITY CONTROL BLANK RESULTS

A review was completed on QC blanks including method blanks, rinse blanks and trip blanks analyzed at the off-site laboratory. Blank samples provide a measure of contamination that may have been introduced into a sample set either (1) in the field while samples were being collected or transported to the laboratory, or (2) in the laboratory during sample preparation and analysis. This discussion is intended to provide an evaluation of data generated at this laboratory based on method blank and field quality control data.

D.2.1 METHOD BLANKS

Method blanks were analyzed at the laboratory with each lot of samples to evaluate if sample processing and analysis resulted in sample contamination. Method blanks were performed for both water and soil samples for the following chemical classes: inorganics, VOCs, SVOCs, pesticides/PCBs. Method blanks were also analyzed using USEPA methods for hardness, TOC, TPHC, TDS, and TSS. All method blank data from the AOC 57 and 69W Fort Devens Site Investigation conducted in the fall of 1996 are presented in Table D-2.

D.2.1.1 Inorganics

Seven aqueous method blanks (one for each IRDMIS inorganic method) were analyzed by the laboratory for PAL inorganics during the 1996 Field Investigation. All results for aqueous method blanks were below the respective CRLs indicating there was no inorganic contamination introduced at the laboratory.

One soil method blank, representing one for each IRDMIS inorganic method, was analyzed in association with field samples from the 1996 Fort Devens Investigation. Several elements were detected in soil method blanks. The frequency and concentration ranges of elements detected in these blanks are summarized in Table D-3. Results for mercury, selenium, arsenic thallium, antimony, silver, beryllium, cadmium, chromium, cobalt, sodium, molybdenum, nickel, vanadium, and zinc were below the CRLs.

Soil method blank analyses were conducted using a USAEC approved soil as the matrix. The concentrations of the detected inorganics are due to background

Harding Lawson Associates
levels inherent in this soil. As a result, elements reported for soil method blanks are not interpreted to represent laboratory introduced contamination.

Based on soil and aqueous method blank results, significant inorganic contamination was not introduced during laboratory handling and analysis.

D.2.1.2 VOCs

Method blanks were run with each lot of water and soil samples to determine if VOCs were introduced during laboratory handling and analysis. Three aqueous method blanks were analyzed during the 1996 Field Investigation. All aqueous results for target VOCs were below CRLs. Three soil method blanks were analyzed for VOCs during the 1996 Field Investigation. All method blank results were at concentrations below the CRLs with the exception of acetone, methylene chloride, and trifluorochloromethane. The concentration and frequency of detection for these compounds are shown in Table D-4.

Acetone, methylene chloride, and trichlorofluoromethane, a tentatively identified compound (TIC), are considered common laboratory contaminants (USEPA, 1988) and were likely introduced during laboratory handling. These results indicate that low concentrations of acetone, methylene chloride, and triflorochloromethane may have been introduced during laboratory handling. Field samples with similar concentrations of these compounds may not be representative of site conditions.

D.2.1.3 SVOCs

Two aqueous method blanks were analyzed for SVOC contamination during the 1996 Field Investigation. All method blank results were at concentrations below the C CRLs.

Three method blanks for soil were analyzed for SVOC contamination during the 1996 Field Investigation. The concentrations and frequency for compounds detected in soil method blanks are outlined in Table D-5. All target SVOC results for soil method blanks were at concentrations below CRLs. Dioctyl adipate (hexanedoic acid dioctyl ester) and heptacosane, which are non-target SVOCs or TICs, were detected in soil method blanks.

Harding Lawson Associates

D.2.1.4 Pesticide/PCB

Two aqueous method blanks and two soil method blanks were used to determine if pesticides and PCB compounds were introduced during laboratory preparation and handling. All PCB method blank results were at concentrations below CRL values indicating no sample contamination occurred. The pesticide malathion was detected in water method blanks and the pesticides alpha-chlordane and gammachlordane were detected in soil method blanks. The concentration and frequency of detection of these pesticides in water and soil method blanks are shown in Tables D-6 and D-7, respectively. Samples with similar concentrations of these compounds in the media in which they were detected may not be representative of site conditions.

D.2.1.5 TPHC

Several analytical methods were used to measure and characterize petroleum hydrocarbons. During the 1996 Field Investigation, two water method blanks were analyzed for total petroleum hydrocarbons (TPHC) by USEPA Method 418.1; two soil method blanks were analyzed for TPHC as diesel, gasoline and aviation gasoline by USEPA Method 8015; and three soil method blanks were analyzed for TPHC using USEPA Method 9071. All method blank results from the 1996 Field Investigation were below the corresponding CRLs. Based on method blank results, the off-site laboratory is not a significant source of TPHC contamination for the Fort Devens field samples.

D.2.1.6 USEPA Methods for Water Quality Parameters

Method blanks were analyzed in association with USEPA methods for the following water quality parameters: nitrate and nitrite-nitrogen, kjeldahl-nitrogen, total phosphate, hardness, TOC, TDS, and TSS. No positive detections above RLs were reported in any of the above methods.

Based on method blanks results for samples analyzed by USEPA methods, the data collected during the Fort Devens Site Investigation was not impacted by laboratory contamination.

D.2.2 FIELD QUALITY CONTROL BLANKS

Field quality control samples which were analyzed at the off-site laboratory include, rinse blanks, and trip blanks. Results from analyses of the field quality control blanks were used to evaluate the potential for contamination of samples during collection, and shipment and processing at the off-site laboratory.

D.2.2.1 Rinse Blanks

Rinse blanks were used to evaluate the potential for field sampling contamination of site samples. Rinse blanks were collected by pouring deionized water over sampling equipment and into sample containers. The rinse blanks collected during the 1996 Fort Devens Investigation were analyzed for the following chemical classes: PAL inorganics, SVOCs, and PCBs. Rinse blanks were also analyzed by USEPA methods for TOC and TPHC. All rinse blank data collected during the 1996 investigation have been tabulated and are presented in Table D-8.

Inorganics. One rinse blank was analyzed for a subset of PAL elements analyzed by graphite furnace (mercury, thallium, lead, selenium, arsenic, and antimony) during the 1996 Field Investigation. These elements were not detected at concentrations above the CRLs. Rinse blank data for PAL elements analyzed by ICP were not reported. In general, the rinse blank data indicate that decontamination procedures were effective in the removal of residual inorganic contamination from the sampling equipment.

SVOCs. One rinse blank was collected during the 1996 Field Investigation and analyzed for SVOC contamination. With the exception of bis(2-ethylhexyl) phthalate detected at $12 \mu \mathrm{~g} / \mathrm{L}$, all results for target SVOCs were at concentrations below CRLs. The USEPA Region I considers phthalates as common laboratory contaminants (USEPA, 1988), however, phthalates were not detected in the method blanks collected during this investigation. The presence of phthalates in rinse blanks may be attributed to sampling activities. Detection of bis(2ethylhexyl)phthalate in Fort Devens field samples at concentrations similar to those detected in rinse blanks may be related to field sampling or decontamination procedures.

Pesticides/PCBs. One rinse blank was analyzed for PCBs during the 1996 Field Investigation. All results reported for PCBs in rinse blanks were below CRLs.

Harding Lawson Associates

The lack of PCBs detected in rinse blanks indicates there is no evidence of cross contamination during field sampling. Rinse blank samples were not submitted for pesticide analysis during this investigation.

USEPA Methods. During the 1996 Field Investigation, one rinse blank was analyzed for TOC and all results were at concentrations below the reporting limit of $1000 \mu \mathrm{~g} / \mathrm{L}$. Six rinse blanks were analyzed for TPHC. Concentrations of TPHC in the rinse blank was below the reporting limit of $181 \mu \mathrm{~g} / \mathrm{L}$, as well as TPH as gasoline and diesel (reporting limit of $340 \mu \mathrm{~g} / \mathrm{L}$). These data indicate contamination of TOC and TPHC during field sampling did not occur.

D.2.2.2 Trip Blanks

Trip blanks are analyzed to assess the potential for cross contamination of VOCs during sampling, transit, and storage. The trip blank consists of a VOA sample container filled at the contract laboratory with DI/carbon filtered water and shipped to the site with the other VOA sample containers. Trip blanks were included with each shipping container of field VOC samples. No VOCs were detected in three trip blanks indicating cross contamination of VOCs during shipment or handling did not occur. Trip blank data collected during the 1996 investigation are presented in Table D-9.

D.3.0 ACCURACY OF OFF-SITE LABORATORY DATA

'Accuracy is a quantitative parameter that determines the nearness of a result to its true value. Accuracy measures the bias in a measurement system. The accuracy of each analytical method was evaluated based on percent recoveries for matrix spikes and/or surrogate standards.

A matrix spike is a sample of a particular matrix to which predetermined quantities of standard solutions of certain target analytes were added prior to sample extraction/digestion and analysis. Samples were spilt into replicates, one replicate was spiked and both aliquots were analyzed.

Accuracy was also evaluated using the recovery of surrogate standards in the volatile and semivolatile analyses, and for pesticides and PCBs. Surrogate standards are organic compounds which are similar to the analytes of interest in chemical composition, extraction, and chromatography, but which are not normally found in environmental samples. These compounds are spiked into all samples prior to analysis.

Percent recovery of matrix spikes and surrogate spikes provide an indication of data accuracy and potential data bias from matrix related effects. Percent recovery was calculated using the equation shown in Section 3.3 of the Fort Devens POP (ABB-ES, 1995).

D.3.1 MATRIX SPIKES

Soil and groundwater samples were used for matrix spike and matrix spike duplicate analyses. Spiked samples were analyzed for hardness, nitrate and nitrite-nitrogen, kjeldahl-nitrogen, total phosphate, TPHC, TOC, PAL inorganics, and PAL pesticide/PCBs. Matrix spike and matrix spike duplicate (MS/MSD) samples were collected at a rate of one per twenty environmental samples. A summary of all MS/MSD data collected during the Fort Devens Site Investigations are presented in Table D-10.

The spike data for samples of a specific matrix and analytical method were evaluated together, and are discussed below as one data set. The data have been

Harding Lawson Associates

segregated by method and by analytical parameter to show recovery trends of the individual spiked analytes. In the tables, matrix spikes have been paired with the corresponding matrix spike duplicates to make recovery and RPD comparisons. The average recoveries, and maximum and minimum recoveries for groundwater samples and soil are presented to measure trends for each particular method. The criteria used for interpreting MS/MSD data are taken from analytical USEPA CLP protocols (USEPA, 1990; USEPA, 1994) and the Fort Devens Project Operations Plan (ABB-ES, 1995).

D.3.1.1 Inorganics

Matrix spike analysis was completed all PAL elements. The USEPA CLP guidelines specify control limits for recoveries of inorganic MS/MSDs of 75% and 125% (USEPA, 1990). The majority of PAL elements had recoveries within the USEPA control limits. A subset set of elements had recoveries outside these limits. Elements with at least one MS/MSD recovery outside USEPA CLP limits are presented in Table D-11.

Groundwater. The following groundwater samples from AOC 57 were spiked with target elements: MX5703X3 and MX5710X1. All elements had recoveries within the USEPA CLP limits indicating that groundwater data for inorganics was not significantly influenced by matrix effects.

Soil. One soil MS/MSD sample from AOC 57 (BX570905) was analyzed for PAL inorganics. For the elements aluminum and iron, all matrix spike concentrations were low relative to concentrations already present in the sample. For example, the spike concentration for aluminum was approximately $230 \mu \mathrm{~g} / \mathrm{g}$ compared with the sample concentration of $5610 \mu \mathrm{~g} / \mathrm{g}$. The spike concentration for iron was approximately $1,200 \mu \mathrm{~g} / \mathrm{g}$ while the sample concentration was $6410 \mu \mathrm{~g} / \mathrm{g}$. The USEPA Region I Data Validation Guidelines (USEPA, 1989) specify spike concentrations be greater than four times the sample concentration for data qualification actions to apply. Since the spike concentrations for aluminum and iron were insignificant relative to sample concentrations, matrix spike recoveries could not be accurately assessed. Based on these results, results for aluminum and iron in soil are not qualified in this RI.

For the elements mercury, arsenic, and manganese the MS/MSD recoveries were below the acceptable USEPA CLP recovery ranges. The frequency at which the

MS/MSD recoveries were outside the USEPA CLP limits, and the corresponding recovery ranges are shown in Table D-11. The outlier recoveries ranged from 52.7% to 74.7%. Outlier recoveries may have been obtained as the result of nonhomogeneous concentrations throughout the sample matrices or from matrix interference. Overall, usable results were obtained for all PAL inorganics. The MS/MSD data for soil suggests that there may be some matrix interference in soil samples with detected concentrations of mercury, arsenic, and manganese. Results for mercury, arsenic, and manganese in soil samples should be considered estimated and may be biased low.

D.3.1.2 Pesticides/PCBs

Pesticide and PCB compounds were spiked into groundwater samples to evaluate method accuracy. Ten target pesticide and two PCB compounds were used for spiking including endosulfan I, endosulfan II, aldrin, dieldrin, endrin, heptachlor, isodrin, lindane, methoxychlor, $4,4^{\prime}$-DDT, aroclor 1016, and aroclor 1260. Percent recoveries for pesticides were compared to the USEPA CLP control limits (USEPA, 1994) to determine if results were acceptable. The USEPA CLP guidelines do not specify limits for spike recoveries of endosulfan I, endosulfan II, isodrin, methoxychlor, and PCBs. For these compounds, the surrogate recovery control limits of 30% to 150% specified in the USEPA CLP Guidelines (USEPA, 1994) were used as guidance in evaluating spike recoveries.

Groundwater. One groundwater sample from AOC 57 (MX5703X3) was spiked with target pesticides and PCBs. The spike recoveries of pesticides and PCBs were within USEPA limits with the exception of lindane. The percent recoveries for lindane were 37% and 36%, below the USEPA control limit of 46%. Lindane was not detected in any groundwater samples. Based on these data, lindane reporting limits for groundwater samples collected during this RI may be biased low. Acceptable recoveries for all other pesticide and PCBs indicate there was no matrix effects and the data is acceptable.

D.3.1.3 USEPA Methods

Matrix spike recoveries for water quality parameter analyzed by USEPA methods were evaluated for groundwater. The matrix recoveries for soil were also evaluated for TOC, TPH as gasoline and diesel, and TPHC.

Harding Lawson Associates

For water quality parameters of hardness, nitrate and nitrite-nitrogen, kjeldahlnitrogen, and total phosphate, the USEPA CLP control limits for inorganic spikes ($75 \%-125 \%$ recovery) were used for guidance. Professional judgement was used when evaluating the organic parameters TOC and TPHC. The MS/MSD recoveries for these parameters were evaluated on a sample by sample basis and are discussed below.

Groundwater. One groundwater sample from AOC 57 (MX5703X3) was spiked for hardness, nitrogen and phosphate for matrix evaluation. Spike sample recoveries for total phosphate, nitrate and nitrite-nitrogen, and kjeldahl-nitrogen were within the established control limits indicating good accuracy.

According to the data downloaded from IRDMIS, percent recoveries for hardness reported for Lot ZKGN exceeded the control limits. However, the high recoveries are believed to be erroneous due to a unit conversion error samples in this lot. Corrective action for this discrepancy is currently ongoing. Qualification groundwater data based on spike recoveries was not conducted.

Soil. Two MS/MSD soil samples (EX573106 and BX570905) from AOC 57 were spiked and analyzed for matrix effects on concentrations of TPH as diesel and gasoline by USEPA Method 8015. The spike recovery range for these samples was 69.7% to 134.2%. Based on these results, recoveries are within an acceptable range for TPHC data analyzed by USEPA Method 8015.

A total of three spiked soil sample pairs were analyzed for TPHC by USEPA Method 9071. These samples included two soil samples from AOC 57 (EX573106 and BX570905) and one from AOC 69W (BXZW0310). Spike recoveries ranged from 95.4% to 100.1% with the exception the MS recovery in AOC 57 soil sample EX573106. The MS and MSD recoveries reported for this sample were 2.5% and 4.0%, respectively. The low spike recovery reported in sample EX573106 is attributed to sample heterogeneity between the spike and unspiked samples and no site wide qualification of TPHC results was done. TPHC results in sample EX573106, are considered estimated and biased low. Sample EX573106 had $18,300 \mu \mathrm{~g} / \mathrm{g}$ of TPHC reported in the original sample.

One soil sample (BX570914) from AOC 57 was spiked for TOC analysis. The recovery of this spiked sample was $.92 .2 \%$ and 107.6% in the. MS and MSD fractions, respectively, indicating acceptable method performance.

Harding Lawson Associates

D.3.2 SURROGATE RECOVERIES

In addition to matrix spikes, the recovery of surrogate standards were also used to assess matrix effects and accuracy of the analytical data. Surrogate standards were used for VOC, SVOC, pesticide and PCB analyses and were added to all soil and groundwater samples prior to analysis.

D.3.2.1 SVOC

The SVOC surrogate standards used to evaluate matrix effects and analytical accuracy included 2-fluorophenol, phenol-D6, 2,4,6-tribromophenol, nitrobenzeneD5, 2-fluorobiphenyl, and terphenyl-D14. Recovery criteria for these surrogates, are taken from analytical USEPA CLP protocols (USEPA, 1994) and the Fort Devens Project Operations Plan (ABB-ES, 1995) and are presented Table D-12. All SVOC surrogate recovery data for the 1996 Fort Devens Site Investigations are presented in Table D-13.

Interpretations on data usability were based on guidance outlined in the USEPA Region I Functional Guidelines for Data Validation (USEPA, 1988). According to this guidance SVOA sample results are judged based on independent evaluations of surrogate recoveries for acid fraction compounds and base-neutral compounds. Each fraction has three surrogates. The acid fraction surrogates include 2-flourophenol, phenol-D6, and 2,4,6-tribromophenol. The base-neutral surrogate standards include nitrobenzene-D5, 2-flourobiphenyl, and terphenylD14. SVOA positive results are considered estimated values if two or more surrogates in either the acid or base-neutral fraction are outside the recovery limits. Positive results are considered estimated values and negative (non-detect) results are considered as unusable (rejected) if any surrogate is less than ten percent recovery for the associated fraction.

All SVOA samples were evaluated using the criteria outlined above. Sample results were identified as usable, estimated, or rejected based on the USEPA Region I Guidelines. Data bias was identified if trends in surrogate recoveries for individual samples indicated low or high bias.

Groundwater. All SVOC results for groundwater samples meet the USEPA surrogate standard recovery guidelines and are considered acceptable.
Qualification of the groundwater data was not required.
Harding Lawson Associates

Soil. Four soil samples had recoveries of surrogate standards outside the USEPA CLP guidelines shown in Table D-12. However, qualification of data was not required because there was only one surrogate outlier from either acid or baseneutral fractions. All SVOC results for soil samples are considered acceptable based on surrogate standard recoveries.

D.3.2.2 VOCs

All VOC surrogate recovery data for the Fort Devens Site Investigations are presented in Table D-14. Surrogate standards used for volatile organics include 1,2-dichloroethane-D4, 4-bromoflourobenzene, and toluene-D8. The criteria used for interpreting surrogate data are taken from analytical USEPA CLP protocols (USEPA, 1994) and the Fort Devens Project Operations Plan (ABB-ES, 1995) and are presented in Table D-15. Interpretations on data usability were based on guidance outlined in the USEPA Region I Functional Guidelines for Data Validation (USEPA, 1988). According to the guidelines, positive results are considered estimated values if one or more surrogate standard per sample is outside the recovery limits. If any surrogate standard is recovered at less than ten percent, positive results are considered estimated values and non-detect results are rejected and considered unusable.

All VOC samples were evaluated using the criteria outlined above. Sample results were identified as usable, estimated, or rejected based on the USEPA Region I Guidelines. Data bias was identified if trends in surrogate recoveries for individual samples indicated low or high bias.

VOC soil and groundwater surrogate recovery data indicate the overall accuracy of the GC/MS method used for VOC analyses was acceptable.

Groundwater. The surrogate recoveries for groundwater samples at AOCs 57 and 69 W were evaluated for matrix effects and accuracy of the analytical data. All groundwater had surrogate recoveries within the USEPA CLP criteria indicating acceptable method performance. Qualification of groundwater data was not required.

Soil. The recovery of surrogate standard 1,2-Dichloroethane-D4 in soil sample BX571010 from AOC 57 exceed the upper control limit. The surrogate recovery was 126%. Detected concentrations of VOCs in this sample would be qualified as

Harding Lawson Associates
estimated and potentially biased high based; however, no VOC were detected in this sample.

The recovery of surrogate standard 4-bromoflourobenzene in soil samples EX572810 and EX573006 from AOC 57 exceeded the upper control limit. The recoveries were 176% and 182%, respectively, compared to the upper control limit of 121%. Positive results for 2-hexanone, ethylbenzene, tetrachloroethene, and xylenes in sample EX572810 and 2-hexanone and xylenes in sample EX573006 are judged as estimated and biased high based on elevated surrogate recoveries.

D.3.2.3 Pesticide/PCBs

All pesticide surrogate recovery data for the Fort Devens Site Investigations are presented in Table D-16. Surrogate standards used for pesticide and PCB analyses include tetrachlorometaxylene and decachlorobiphenyl. The surrogate recovery control limits of 30% to 150% specified in the USEPA CLP Guidelines (USEPA, 1994) were used as guidance in evaluating surrogate spike recoveries in soil and groundwater samples.

Interpretations on data usability were based on guidance outlined in the USEPA Region I Functional Guidelines for Data Validation (USEPA, 1988). According to the guidelines, professional judgement should be used do determine if recoveries reported below or above the control limits require qualification. All Pesticide and PCB sample data were evaluated using this criteria. Sample results were identified as usable, estimated, or rejected based on the USEPA Region I Guidelines.

Groundwater. The pesticide and PCB surrogate recoveries for groundwater samples at AOCs 57 and 69 W were evaluated for matrix effects and accuracy of the analytical data. All surrogate recoveries for tetrachlorometaxylene were within the USEPA CLP control limits and are considered acceptable.

Several groundwater samples had recoveries of decachlorobiphenyl below the USEPA control limits. The outlier recoveries for this surrogate standard ranged from 13.9% to 18.4% for the PCB method and 14.6% to 28.6% in the pesticide method. Low recoveries for decachlorobiphenyl were reported for the following AOC 57 samples: MD5711X1, MX5711X1, MX5712X1 from the PCB fractions

Harding Lawson Associates

and; MX5713X1, MX5703X3 from the pesticide fraction. Reporting limits and detected concentrations results for pesticides and PCBs in these samples would be qualified as estimated and potentially biased low based on low surrogate recoveries. Pesticides and PCBs were not detected in these soil samples, and reporting limits are considered estimated.

Soil. All surrogate recoveries reported for the pesticide method in soil samples were within the USEPA CLP control limits and are considered acceptable. Outlier RPDs for both surrogate standards, tetrachlorometaxylene and decachlorobiphenyl, were reported for the PCB method for AOC 57 soil samples.

Samples with decachlorobiphenyl recoveries below the control limit included AOC 57 samples EX572810, EX573006, and EX573106. The surrogate recoveries in these samples were $15 \%, 15 \%$, and 19.6%, respectively. Based on these results, Aroclor 1242 and Aroclor 1248 in these three samples and Aroclor 1260 in sample EX572810 are considered estimated and potentially biased-low values.

Soil samples BX570805, BX570905, BX570800, BX570805, and had high surrogate recoveries of decachlorobiphenyl. The recoveries for these samples ranged from 157.4% to 182.9%. Based on these results, Aroclor 1242 and Aroclor 1248 in these four soil samples are considered estimated and potentially biased-high values.

All other soil samples had surrogate recoveries within the USEPA CLP guidelines and are considered acceptable.

D.4.0 PRECISION

Precision is a measure of the reproducibility of the analytical results under a given set of conditions. It is a quantitative measure of the variability of a group of measurements compared to their average value. Precision is measured as the relative percent difference (RPD) between a sample and its duplicate, as is calculated for field duplicate samples, and matrix spike/matrix spike duplicate samples. The following equation is used to calculate the RPD.

$$
R P D=100 \times \frac{D_{1}-D_{2}}{0.5\left(D_{1}+D_{2}\right)}
$$

D_{1} and D_{2} are the reported concentrations for sample duplicate analyses.
When evaluating precision for organic analyses, the RPDs of the field duplicates are compared to the acceptance criteria of 50% RPD for soil matrices and 30% RPD for water matrices (USEPA, 1988). In cases where one organic result is non-detect, the CRL value was used to calculate the RPD. The acceptance criteria for inorganic analysis for field duplicate samples only applies to analytes that are greater than 5 times the CRL (USEPA, 1989).

Precision is also evaluated by comparison of MS and MSD results. The USEPA CLP control limits were used to evaluate duplicate precision between MS and MSDs. In cases where USEPA CLP control limits for spikes are not available, such as inorganics and various USEPA analytical methods, the control limits for field duplicates listed above were used as guidance.

A discussion of the RPDs for field duplicates is presented below in Section D.4.1, and the RPDs for MS/MSDs are presented in Section D.4.2.

D.4.1 OFF-SITE LABORATORY FIELD DUPLICATE RESULTS

Field duplicate samples from AOCS 57 and 69W at Fort Devens were collected to measure the sampling and analytical precision for the analyses performed at the off-site laboratory. Soil and groundwater duplicate samples were analyzed for the

Harding Lawson Associates

following Fort Devens PAL analytes: inorganics; VOCs; SVOCs; pesticide and PCBs, and TPH. Groundwater field duplicate samples were also analyzed for various water quality parameters including hardness, phosphate and nitrogen and soil duplicate samples were analyzed for TOC and TPHC.

All field duplicate data collected during the 1996 Fort Devens Site Investigation is shown in Table D-18. The RPD has been calculated for each pair of field duplicates.

D.4.1.1 Inorganics

An analysis of the precision of the inorganic duplicate data was completed for each PAL element.

Groundwater. One sample duplicate pair (MX5711X1 and MD5711X1) from AOC 57 was collected. The RPDs of inorganic concentrations for duplicates ranged from 1.5% to 21.6% indicating excellent sampling and analytical precision. All field sample duplicate RPDs were within the USEPA Region I limits.

Soil. One sample duplicate pair from AOC 57 was collected. Calcium was the only element for which the duplicate RPD (78.5\%) exceeded the USEPA Region I control limit of 50% RPD. In general, the RPDs between field duplicates indicated good precision. Soil sample data for inorganic elements was considered acceptable based on duplicate precision results.

D.4.1.2 VOCs

Groundwater. One groundwater sample field-duplicate from AOC 57 was collected. Detected target compounds included 1,2-DCE, ethylbenzene, toluene, trichloroethene, and tetrachloroethene. The RPDs ranged from 0% to 18.4% and were well within the USEPA Region I guidelines (30\%). The duplicate data for VOCs indicate good precision of the aqueous VOC concentrations.

Soil. One sample duplicate pair from AOC 57 was collected. With the exception of methylene chloride and 1,1,2-trichloro-1,2,2-trifluoroethane, there were no target VOCs detected in groundwater sample duplicates. The RPDs for all VOC results were below the USEPA Region I limit (50%) with the exception of methylene chloride at 79.1% RPD. However, methylene chloride is considered a

Harding Lawson Associates

APPENDIX D

common laboratory contaminant so it's presence in these samples may not be site related. No qualification of the precision of results was performed.

D.4.1.3 SVOCs

Groundwater. The RPD for duplicates for one groundwater sample pair from AOC 57 was evaluated. Most target SVOCs concentrations were reported as nondetect in both the sample and sample duplicate, resulting in acceptable agreement between results. Target SVOCs detected include 1,2,3-trimethylbenzene, 1,2dichlorobenzene, 1-ethyl-4-methylbenzene, naphthalene, and bis(2ethylhexyl)phthalate. RPDs for 1,2-dichlorobenzene, 1-ethyl-4-methylbenzene, and naphthalene were within limits ranging from 10.5 to 27.6. The sample duplicate RPD for 1,2,3-trimethylbenzene in samples MX5711X1 and MD5711X1 was 46.2%, exceeding the precision control limit of 30%. The concentration of $1,2,3-$ trimethylbenzene in sample MX5711X1 is considered an estimated value. The outlier RPD for bis(2-ethylhexyl)phthalate is not considered significant because this compound is a considered a potential laboratory contaminant.

Soil. The RPDs of SVOC concentrations for one duplicate soil sample from AOC 57 was evaluated. The samples evaluated were BX571110 and duplicate sample BD571110. There were no target SVOCs detected in either soil sample indicating excellent agreement for non-detected target compounds.

D.4.1.4 Pesticide/PCBs

Groundwater. One groundwater field duplicate was collected from AOC 57. The samples evaluated were MX5711X1 and duplicate sample MD5711X1. All results were reported as non-detect indicating excellent agreement for non-detected target compounds.

Soil. One field duplicate soil sample was collected from AOC 57 for pesticides and PCBs. The samples evaluated were BX571110 and duplicate sample BD571110. All results were reported as non-detect indicating excellent agreement for non-detected target compounds.

D.4.1.5 Other Methods

An evaluation of duplicate results for various water quality parameters obtained using non-USAEC performance demonstrated methods was conducted. Duplicate soil samples were analyzed for TOC and TPHC. A discussion of precision between sample duplicates analyzed for these parameters is presented below.

Groundwater. Two groundwater duplicate samples, representing one sample from each AOC were evaluated. The RPD reported for hardness for groundwater sample MX5711X1 and the sample duplicate MD5711X1 from AOC 57 was 34.2%, just above the USEPA Region I control limit of 30%. However, the RPDs for the other groundwater duplicate pair was 3.1% indicating excellent precision. As discussed in Section D.3.1.3, the data downloaded from IRDMIS shows hardness concentrations for samples in Lot ZKGN that are believed to be erroneous due to a unit conversion error. Corrective action for this discrepancy is currently ongoing.

Additional parameters evaluated for precision in groundwater include TSS, TPHC, total phosphate, nitrate and nitrite-nitrogen, and nitrogen by the kjeldahl method. With the exception of TSS data, all results had RPDs within control limits demonstrating consistency for the method and matrix. The RPD for TSS in groundwater sample MDZW19X1 and the sample duplicate MXZW19X1 from AOC 69 W was 66.7%. Concentrations of TSS were only slightly greater than the RLs, and no qualification of data usability was done. The RPD for the other groundwater duplicate pair was 3.9%, indicating acceptable precision.

Soil. Soil sample duplicate pairs BX571110 and BD571110 from AOC 57, and samples BXZW0306 and BDZW0306 from AOC 69W were evaluated for precision of TPHC (Method 9071) data. The TPHC results for the soil sample and duplicate pair from AOC 57 were $35.4 \mu \mathrm{~g} / \mathrm{g}$ and a non-detect value of less than $27.8 \mu \mathrm{~g} / \mathrm{g}$. Similarly, the TPHC results in the AOC 69 W sample duplicate pair were $57.5 \mu \mathrm{~g} / \mathrm{g}$ and less than $20.9 \mu \mathrm{~g} / \mathrm{g}$. Variability of results found in this soil sample duplicate pair may be attributed to sample heterogeneity. These results indicate variability of TPHC at concentrations at or near the reporting limits, and that TPHC results in soil should be considered estimated.

D.4.2 OFF-SITE LABORATORY SPIKE DUPLICATE RESULTS

All spike duplicate data and the corresponding RPDs for the 1996 Fort Devens Site Investigation are presented in Table D-10. The RPDs for spike duplicates were calculated for hardness, TPHC, TOC, inorganics, and pesticide/PCBs. The results were compared to the USEPA CLP control limits (USEPA, 1988) to determine if results were acceptable. Samples with RPDs for spike samples outside control limits are discussed below. For most fractions which exhibited RPDs outside the established QC limits, qualification of the data was not required.

D.4.2.1 Inorganics

Elements were spiked into groundwater, surface water, soil and sediment samples to evaluate precision. The USEPA CLP guidelines do not specify limits for spike RPDs for elements. As a result, the RPD control limits for laboratory duplicates of 25% in water samples and 35% in soil samples specified in the USEPA Region I Guidelines (USEPA, 1988) were used as guidance.

Groundwater. Two groundwater samples from AOC 57, MX5710X1 and MX5703X3 were evaluated for precision based on spiked samples. The RPDs for elements in spiked groundwater samples ranged from 0.2% to 10.5%. These results were within the USEPA guidelines indicating acceptable precision between results.

Soil. Soil sample BX570905 from AOC 57 were assessed for spike duplicate precision. The RPDs for all elements ranged from 0.1% to 12.4% with the exception of iron and aluminum. Aluminum and iron RPDs were 193.6% and 198.1%, respectively. However, as discussed in Section D.3.1.1, the spike concentrations low relative to the concentrations present in the unspiked sample making the comparison invalid. The RPD results for elements in soil samples were considered acceptable indicating good method performance.

D.4.2.2 Pesticides/PCBs

Pesticide and PCB compounds were spiked in duplicate into groundwater and soil samples to evaluate precision. Nine target pesticide and two PCB compounds were used as spikes including endosulfan I, endosulfan II, aldrin, dieldrin, endrin,
heptachlor, isodrin, lindane, methoxychlor, 4,4'-DDT, aroclor 1016, and aroclor 1260. The USEPA CLP control limits for pesticides are shown in Table D-17. The USEPA CLP guidelines do not specify limits for spike RPDs for endosulfan I, endosulfan II, isodrin, and PCBs. For these compounds, the RPD control limits for field duplicates of 30% in water samples specified in the USEPA CLP Guidelines (USEPA, 1994) were used. Spiked soil samples were not analyzed for pesticides and PCBs during this investigation.

Groundwater. One groundwater sample MX5703X3, from AOC 57, was spiked with target pesticides and PCBs. The RPDs for pesticides ranged from 0.3% to 18.9% and PCBs ranged from 5.1% to 17.2%. These results were all within the USEPA control limits described above. These results indicate excellent precision between sample results.

D.4.2.3 Other USEPA Methods

Precision for spiked samples was also evaluated for various water quality parameters including hardness, total phosphate, nitrate and nitrite-nitrogen, and kjeldahl-nitrogen in water samples, and TPHC and TOC in soil samples. USEPA CLP guidelines for evaluating spike duplicate RPDs for these parameters are not available. The USEPA Region I control limits for field duplicates 30% in water and 50% in soil were used to compare RPDs between spiked samples.

Groundwater. One groundwater sample MX5703X3 from AOC 57 was spiked in duplicate for the water quality parameters listed above to evaluate precision. All RPDs between the MS and MSDs were less than the 30% control limit indicating excellent method performance.

Soil. Soil samples from AOC 57 (BX570914) were spiked in duplicate for TOC to evaluate precision. Samples EX573106, BX570905 from AOC 57, and BXZW0310 from AOC 69W were spiked in duplicate for TPHC analysis by USEPA Method 9071. All RPDs between the MS and MSDs were less than the 50% control limit indicating acceptable method performance for TOC and TPHC (Method 9071).

Two soil samples from AOC 57 (EX573106 and BX570905) were spike in duplicate to evaluate precision for TPHC as diesel and gasoline (USEPA

Harding Lawson Associates

Method 8015). The RPDs of soil samples for TPHC as gasoline were within the USEPA control limits indicating acceptable precision.

The RPD for TPHC as diesel fuel (63.3\%) exceeded the 50% control limits in sample EX573106. Diesel was not detected in either sample. RPD for TPH as diesel in the second soil duplicate pair was 2.6% indicating excellent agreement between results. Based on duplicate spike data, TPH results (USEPA Method 8015) for soil samples overall are acceptable and no qualification of the use of TPH diesel results was done.

REFERENCES

ABB Environmental Services, Inc. (ABB-ES), 1995. "Project Operation Plan Fort Devens, Massachusetts; Data Item A004/A006; May 1995.

Massachusetts Department of Environmental Protection (MADEP), 1995a. "Method for the Determination of Extractable Petroleum Hydrocarbons (EPH); Division of Environmental Analysis; Draft 1.0; August 1995.

Massachusetts Department of Environmental Protection (MADEP), 1995b. "Method for the Determination of Volatile Petroleum Hydrocarbons (VPH); Division of Environmental Analysis; Draft 1.0; August 1995.
U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), 1990. Quality Assurance Program; USATHAMA PAM 11-41; Aberdeen Proving Ground, MD; January 1990.
U.S. Environmental Protection Agency (USEPA), 1983. "Methods for the Chemical Analysis of Water and Wastes"; Environmental Monitoring and Support Laboratory; USEPA 600-4-79-020; Cincinnati OH; March 1983.
U.S. Environmental Protection Agency (USEPA), 1986. "Test Methods for Evaluating Solid Waste"; Laboratory Manual Physical/Chemical Methods; Office of Solid Waste and Remedial Response; Washington, DC; SW-846; November 1986.
U.S. Environmental Protection Agency (USEPA), 1988. "Region 1 Laboratory Data Validation Functional Guidelines For Evaluating Organic Analyses"; Hazardous Site Evaluation Division; November 1988.
U.S. Environmental Protection Agency (USEPA), 1989. "Region 1 Laboratory Data Validation Functional Guidelines For Evaluating Inorganic Analyses"; Hazardous Site Evaluation Division; February 1989.
U.S. Environmental Protection Agency (USEPA), 1990. "Contract Laboratory Program Statement of Work for Inorganic Analyses"; Office of Solid Waste and Remedial Response; ILM01.0; March 1990.
U.S. Environmental Protection Agency (USEPA), 1993. "Data Quality Objectives Process for Superfund"; Office of Solid Waste and Emergency Response; EPA540-R-93-071; September 1993.
U.S. Environmental Protection Agency (USEPA), 1994. "Contract Laboratory Program Statement of Work for Organic Analyses"; Office of Solid Waste and Emergency Response OLM03.1; August 1994.

ATTACHMENT D-1
 PROJECT CHEMIST REVIEW SUMMARY MADEP VOLATILE PETROLEUM HYDROCARBON (VPH) AND EXTRACTABLES PETROLEUM HYDROCARBONS (EPH) METHODS AOC 69W
 FORT DEVENS, AYER MASSACHUSETTS

Introduction

This memo summarizes the ABB-ES chemist review of the analytical results generated by Groundwater Analytical for VPH and EPH analyses for Ft. Devens Task 001 Modification (1996). The VPH and EPH methods were conducted as outlined in accordance with Massachusetts Department of Environmental Protection (MADEP, 1995a; MADEP, 1995b).

The data review summaries below discuss the control elements to which the data were evaluated. The data that are available for review included: method control blanks, laboratory control samples, duplicates, matrix spikes/matrix spike duplicates, holding times and a \% surrogate recovery.

Extractable Petroleum Hydrocarbons

Method Control Blanks

The method demonstrated no evidence of contamination of EPH or any of the targeted polynuclear aromatic hydrocarbon analytes.

Laboratory Control Samples

The laboratory control sample analyses demonstrated percent recovery values within the specified acceptable ranges.

Duplicates

One field duplicate sample was analyzed; no EPH or targeted polynuclear aromatic hydrocarbon analytes were detected. The results of the sample sets were non-detects. In general, the duplicate results indicate good precision of measurement was obtained for the EPH sample analyses. These results indicated agreement for absence of EPH, however, evaluations of precision for positive detection EPH was not possible.

Matrix Spike/ Matrix Spike Duplicates

Two matrix spike/matrix spike duplicate pairs were analyzed. All target compounds with the exception of naphthalene met the quality control limits for one set of spikes. The associated samples had no detection of naphthalene and were not qualified. Although naphthalene recovery of one set was outside the desired recovery range and the RPD result (RPD = 37) slightly exceeded the 30% goal, the balance of analytes results indicate good precision was achieved.

Holding Times .
All holding and extraction time limits established for sample analysis were met.

\% Surrogate recoveries

All surrogate recoveries were within the acceptance criteria of $60-140 \%$.

Data Ouality Objectives (DOOs)

DQOs are based on the premise that different data uses require different levels of data quality. Data quality refers to the degree of uncertainty of analytical data with respect to precision, accuracy, representativeness, completeness, and comparability (PARCC). These objectives are established based on site conditions, the purpose of the field program, and the knowledge of the measurement systems used for generation of the analytical data.

No major quality control problems were observed during the data validation process which would affect the usability of the sample results. A discussion of the laboratory data quality as it relates to the PARCC objectives is presented below.

Precision and Accuracy

Precision refers to the reproducibility of a measurement under certain specified conditions, and accuracy measures the bias associated with the sampling and

Harding Lawson Associates
analysis process. Precision and accuracy are affected by both field and laboratory conditions. Precision was monitored through the analysis of field and laboratory blanks, matrix spikes, and surrogate spikes. The Massachusetts Department of Environmental Protection protocols used for the analysis of samples define the criteria for acceptable precision and accuracy. No major precision and accuracy problems were observed which would affect usability.

Representativeness

Measurements are made so that the results obtained are representative of the sampling population, the medium (e.g., soil, groundwater, sediment, etc.) and the site conditions. The sampling protocols were developed to ensure that the samples were representative of the media, that sampling locations were properly selected, and that a sufficient number of samples were collected. Sample handling protocols (chain-of-custody, storage, and transportation) were adequate to preserve the sample integrity. Proper documentation established that the correct protocols had been followed. Co-located samples (field duplicates) were also collected to assess representativeness, and no major problems were observed which would affect usability.

Completeness

The characteristic of completeness is regarded as providing the results of all samples in the data reporting format outlined in the VPH and EPH methods of Massachusetts Department of Environmental Protection. The completeness requirement for sample analysis has been met for this program.

Comparability

The characteristic of comparability reflects both the internal consistency of measurements and the expression of results in units which are consistent with other organizations reporting similar data. Each value reported for a given measurement should be similar to other values within the same data set and with other related data sets. Comparability was assured through use of standardized sampling procedures and the use of VPH and EPH methods of Massachusetts Department of Environmental Protection analytical methods.

APPENDIX D-3
 Table D-1
 Summary of analytical Parameters
 AOC 57 and 69W Remedial Investigation Fort Devens, Massachusetts

PABAMETER	MATRDX (SOIL/WATER)	USAEC METHOD Number	Equivalent USEPA METHOD Number	Method DESCRIPTION	LABORATORY/ Army-Certified REPORTing LIMIT
pH	Water	No Certified Method	150.1	Measured in Field	N/A
Temperature	Water	No Certified Method	170.1	Measured in Field	N/A
Turbidity	Water	No Certified Method	180.1	Measured in Field	N/A
Conductivity	Water	No Cerrified Method	120.1	Measured in Field Electrode	N/A
RedOX	Water	No Certified Method	SM 2580b	Measured in Field	N/A
Total Suspended Solids	Water	No Certified Method	160.2	Gravimetric	$4000 \mu \mathrm{~g} / \mathrm{L}$
Total Dissolved Solids	Water	No Cerified Method	160.1	Gravimetric	10,000 $\mu \mathrm{g} / \mathrm{L}$
Total Organic Carbon	Soil	No Certified Method	SW 9060	Infrared	$360 \mu \mathrm{~g} / \mathrm{g}$
	Water	No Certified Method	SW 9060	infrared	$1000 \mu \mathrm{~g} / \mathrm{L}$
Nitrate/Nitrite	Water	TF22	351.2	Colorimetric	$10 \mu \mathrm{~g} / \mathrm{L}$
Hardness	Water	N/A	130.2 or SM2340B	Titration or Calculation	$1000 \mu \mathrm{~g} / \mathrm{L}$
TKN (Kjeldahl)	Water	No Certified Method	351.2	Calorimetric	$183 \mu \mathrm{~g} / \mathrm{L}$
Total Petroleum Hydrocarbons	Water	No Certified Method	418.1	infrared	$167 \mu \mathrm{~g} / \mathrm{L}$
	Soil	No Certified Method	SW 9071/ 418.1	Infrared	$21 \mu \mathrm{~g} / \mathrm{g}$
Aluminum	Water	SS18	200.7	1 CP	$141 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$14.1 \mu \mathrm{~g} / \mathrm{g}$
Antimony	Soil	JS16	SW 6010	ICP	$7.14 \mu \mathrm{~g} / \mathrm{g}$
	Water	SD28	-	GFAA	$3.03 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JD25	-	GFAA	$1.09 \mu \mathrm{~g} / \mathrm{g}$
Arsenic	Water	SD22	206.2	GFAA	$2.54 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JD19	SW 7060	GFAA	$0.25 \mu \mathrm{~g} / \mathrm{g}$
Barium	Water	SS18	200.7	ICP	$2.5 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$5.91 \mu \mathrm{~g} / \mathrm{g}$

APPENDIX D-3
 Table D-1
 SUMMARY of ANalytical Parameters

AOC 57 and 69W Remedial Investigation Fort Devens, Massachusetts

Parameter	Matrix (SOIL, WATER)	USAEC Method Number	Equivalent USEPA Method NUMBER	METHOD DESCRIPTION	LABORATORY/ Army-Certified Reporting Limit
Beryllium	Water	SS18	200.7	ICP	$5.0 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$0.5 \mu \mathrm{~g} / \mathrm{g}$
Cadmium	Water	SS10	200.7	ICP	$3.01 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$0.7 \mu \mathrm{~g} / \mathrm{g}$
Calcium	Water.	SS18	200.7	ICP	$1000 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	$1 C P$	$100 \mu \mathrm{~g} / \mathrm{g}$
Chromium	Water	SS18	200.7	ICP	$6.96 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$4.05 \mu \mathrm{~g} / \mathrm{g}$
Cobalt	Water	SS18	200.7	ICP	$50 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$1.42 \mu \mathrm{~g} / \mathrm{g}$
Copper	Water	SS18	200.7	ICP	$5 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$0.965 \mu \mathrm{~g} / \mathrm{g}$
Iron	Water	SS18	200.7	ICP	$36.8 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$3.68 \mu \mathrm{~g} / \mathrm{g}$
Lead	Soil	JS16	SW 6010	ICP	$10.5 \mu \mathrm{~g} / \mathrm{g}$
	Soil	JD17	SW 7421	GFAA	$0.177 \mu \mathrm{~g} / \mathrm{g}$
	Water	SD20	239.2	GFAA	$1.26 \mu \mathrm{~g} / \mathrm{L}$
Magnesium	Water	SS18	200.7	ICP	$1000 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$100 \mu \mathrm{~g} / \mathrm{g}$
Manganese	Water	SS18	200.7	ICP	$2.5 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$2.05 \mu \mathrm{~g} / \mathrm{g}$
Mercury	Water	SB01	245.1	CVAA	$0.243 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JB01	SW 7471	CVAA	$0.05 \mu \mathrm{~g} / \mathrm{g}$
Nickel	Water	SS18	200.7	ICP	$7.11 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$1.71 \mu \mathrm{~g} / \mathrm{g}$

APPENDIX D-3
 Table D-1
 SUMMARY OF ANALYTICAL PARAMETERS

aOC 57 and 69W Remedial Investigation Fort Devens, Massachusetts

PARAMETER	Matrix (SOIL/WATER)	USAEC Method Number	Equivalent USEPA METHOD Number	Method DESCRIPTION	LABORATORY/ Army-Certified Reporting Limit
Potassium	Water	SS18	200.7	ICP	$1000 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$100 \mu \mathrm{~g} / \mathrm{g}$
Selenium	Water	SD21	270.2	GFAA	$3.02 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JD15	SW7740	GFAA	$0.25 \mu \mathrm{~g} / \mathrm{g}$
Silver	Water	SD23	272.2	GFAA	$0.25 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JD18	SW 7761	GFAA	. $025 \mu \mathrm{~g} / \mathrm{g}$
	Water	SS18	200.7	ICP	$4.42 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$0.589 \mu \mathrm{~g} / \mathrm{g}$
Sodium	Water	SS18	200.7	ICP	$2290 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$100 \mu \mathrm{~g} / \mathrm{g}$
Thallium	Water	SD09	279.2	GFAA	$6.99 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JD24	$\begin{gathered} \text { SW846 } \\ 7841 \end{gathered}$	GFAA	$0.5 \mu \mathrm{~g} / \mathrm{g}$
Vanadium	Water	SS18	200.7	ICP	$4.69 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$3.39 \mu \mathrm{~g} / \mathrm{g}$
Zino	Water	SS18	200.7	ICP	$35.8 \mu \mathrm{~g} / \mathrm{L}$
	Soil	JS16	SW 6010	ICP	$8.03 \mu \mathrm{~g} / \mathrm{g}$
Semivolatile Organic Compounds	Water	UM18	625	Extraction,GC/MS	See POP
	Soil	LM18	SW 8270	Extraction,GC/MS	See POP
Volatile Organic Compound	Water	UM20	624	Purge and Trap, GC/MS	See POP
	Soil	LM19	SW 8240	Purge and Trap, GC/MS	See POP
Pesticides/PCBs	Water	UH13/UHO2	608	Extraction, GC	See POP
	Soil	LH10/LH16	SW 8080	Extraction, GC-EC	See POP

APPENDIX D-3
 Table D-1
 Summary of analytical Parameters
 AOC 57 and 69W Remedial Investigation Fort Devens, Massachusetts

PARAMETER	MATBIX (SOIL/WATER)	USAEC METHOD Number	Equivalent USEPA METHOD NUMBER	MeTHOD DESGRIPTION	LABORATORY/ ARMY-CERTIFIED REPORTING LIMIT
GRO	Water	No Certified Method	Modified 8015	GC/FID	$400 \mu \mathrm{~g} / \mathrm{L}$
	Soil	No Certified Method	Modified 8015	GC/FID	$8 \mu \mathrm{~g} / \mathrm{g}$
DRO	Soil	No Certified Method	Modified 8015	GC/FID	$8 \mu \mathrm{~g} / \mathrm{g}$

Notes:

| POP | $=\quad$ Project Operations Plan; Fort Devens, Massachusetts, Data Item A004/A006; U.S. Army Environmental Center; Aberdeen Proving |
| :--- | :--- | :--- |
| Ground, Maryland; May 1995. | |

Source: ESE, 1991.

 ธ
\qquad

 뭄몀 ~ 8

Contractor Method Description

 !am $=$零
\qquad

范 \ddagger \mathfrak{L} 5 .

\qquad

 웅ํํ

Test
Contractor Method Description

APPENDIX D-3
 Table D-3
 Elements Detected in Soil Method Blanks
 1995 AOC 57 and 69W Remedial Investigation
 fort Devens, Massachusetts

ELEMENT	Frequency of Detection	Concentration Range $(\omega \mathrm{g} / \mathrm{g})$	$\begin{gathered} \text { CRL, } \\ (\mu \mathrm{g} / \mathrm{g}) \end{gathered}$
Aluminum	1/1	636	14.1
Barium	1/1	13.4	29.6
Calcium	1/1	421	3.05
Lead	1/1	. 649	1.26
Copper	1/1	1.01	58.6
Iron	1/1	1160	42.7
Potassium	1/1	215	37.5
Magnesium	1/1	202	50.0
Manganese	1/1	27.3	0.275

APPENDIX D-3
Table D-4
VOCs Detected in Method Blanks for Soll

1995 AOC 57 AND 69W REMEDIAL INVESTIGATION
Fort Devens, Massachusetts

COMPOUND	Frequency of Detection	Concentration Range $(\mu \mathrm{g} / \mathrm{g})$	$\begin{gathered} \mathrm{CRL} \\ (\mathrm{~g} / \mathrm{g}) \end{gathered}$
Target VOCs			
Acetone	1/3	0.017	0.017
Methylene Chloride	3/3	0.0015-0.0039	0.012
VOC TICs			
Trichlorofluoromethane	1/3	0.011	NA

APPEndix D-3

Table D-5

- SVOCs Detected in Soil Blanks

1995 AOC 57 and 69W Remedial Investigation
Fort Devens, Massachusetts

	Frequency of DETECTION	Concentration Range $(\mu \mathrm{g} / \mathrm{g})$	$\begin{gathered} \mathrm{CRL} \\ (\mathrm{ug} / \mathrm{g}) \end{gathered}$
SVOC TICs			
Dioctyl adipate	1/3	3	Not determined
heptacosane	2/3	0.3	Not determined

1995 AOC 57 AND 69W REmEDIAL Investigation Fort Devens, Massachusetts

Compound	Frequency of Deiection	COncentration Range $(\mu \mathrm{g} / \mathrm{L})$	$\begin{gathered} \text { CRL } \\ (\omega \mathrm{g} / \mathrm{L}) \end{gathered}$
Malathion	2/2	0.188	Not Available

APPENDIX D-3
 Table D-7
 Pesticides Detected in Method Blanks for Soll
 1995 AOC 57 and 69W Remedial Investigation fort Devens, Massachusetts

COMPOUND	Frequency of Detection	Concentration Range ($\mathrm{\mu g} / \mathrm{L}$)	$\begin{gathered} \text { CRL } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$
alpha-Chlordane	1/2	0.00596	0.005
gamma-Chlordane	2/2	0.00655-0.0108	0.005

Appendix D-3
TIble: D-8
RINSE BLANKS
FT. DEVENS DV4

T

 IRDMIS
Method
Code \qquad
Contractor Method Description

宕：

邑

웅
0
0
0
0
0

Contractor Method Description

 IRDMIS ๐以

 $\underset{\sim}{8}$

swro

 $\stackrel{s}{s}$ OOOOOLO

感

記認 Nry

 $\underset{\substack{\text { IRRMIS } \\ \text { Rethod } \\ \text { Code }}}{ }$

풀
Contractor
寝

 ํㅜํํㅜํํㅜㅇㅜํㅜํํํํ

IRDMIS
Method

Contractor Method Description	IRDMIS Method Code	Test Name	IRDNIS Site ID	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analys is Date	Spike Value	Value <	Original Sample Value Unit	Percent Recovery	RPD	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	$\begin{aligned} & 1302 \\ & 1302 \end{aligned}$	HARD	$\begin{aligned} & 57 M-95-03 x \\ & 57 M-95-03 X \end{aligned}$	$\begin{aligned} & \mu \times 5703 \times 3 \\ & M \times 5703 \times 3 \end{aligned}$	DV4W*537 DV4W*537	$\begin{aligned} & \text { ZKGN } \\ & \text { ZKGN } \end{aligned}$	$\begin{aligned} & \text { 02-0CT-96 } \\ & 02-0 C T-96 \end{aligned}$	$\begin{aligned} & 14 \text {-OCT-96 } \\ & \text { 14-OCT-96 } \end{aligned}$	$\begin{aligned} & 200000 \\ & 200000 \end{aligned}$	$\begin{aligned} & 196000000 \\ & 192000000 \end{aligned}$	$\begin{aligned} & 1.660 E+09 \text { UGL } \\ & 1.660 \mathrm{E}+09 \mathrm{UGL} \end{aligned}$	98000.0	2.1	
		HARD										96000.0	2.1	
		avg minimum maximu										97000.0 96000.0 98000.0		
ABB-ES ABB-ES ABB-ES ABB-ES	$\begin{aligned} & 8015 \\ & 8015 \\ & 8015 \\ & 8015 \end{aligned}$	DIESEL	57E-96-31X 57E-96-31X 57B-96-09X 578-96-09x	EX573106 EX573106 BX570905 BX570905	DV4S*519 DV4S*519 DV4S*525 DV4S*525	$\begin{aligned} & \text { QEFU } \\ & \text { QEFU } \\ & \text { QEXU } \\ & \text { OEXU } \end{aligned}$	$\begin{aligned} & 21-A U G-96 \\ & 21-A U G-96 \\ & 29-A U G-96 \\ & 29-A U G-96 \end{aligned}$	$\begin{aligned} & \text { 29-AUG-96 } \\ & \text { 29-AUG-96 } \\ & \text { 08-EP-96 } \\ & \text { 08-SEP-96 } \end{aligned}$	$\begin{aligned} & 466 \\ & 466 \\ & 539 \\ & 539 . \end{aligned}$	$591<$$307<$$508<$$495<$	$\begin{aligned} & 7.98 \text { UGG } \\ & 7.98 \text { UGG } \\ & 7.98 \text { UGG } \\ & 7.98 \text { UGG } \end{aligned}$	134.2	63.3	
		DIESEL										69.7	63.3	
		DIESEL										115.4	2.6	
		DIESEL										112.4	2.6	
		avg minimum										107.9 69.7		
		maximum										134.2		
ABB-ES ABB-ES ABB-ESABB-ES	$\begin{aligned} & 8015 \\ & 8015 \\ & 8015 \\ & 8015 \end{aligned}$	TPHGAS	$\begin{aligned} & 57 E-96-31 x \\ & 57 E-96-31 x \\ & 57 B-96-09 x \\ & 57 B-96-09 x \end{aligned}$	$\begin{aligned} & \text { EX573106 } \\ & \text { EX573106 } \\ & \text { BX570905 } \\ & \text { B5750905 } \end{aligned}$	DV4S*519 DV4S*519 DV4S*525 DV4S*525	OEFUOEFUQEXUOEXU	$\begin{aligned} & 21-A U G-96 \\ & 21-A U G-96 \\ & 29-A G-96 \\ & 29-A U G-96 \end{aligned}$	$\begin{aligned} & \text { 29-AUG-96 } \\ & \text { 29-AUG-96 } \\ & \text { 08-EEP-96 } \\ & \text { 08-SEP-96 } \end{aligned}$	$\begin{aligned} & 430 \\ & 430 \\ & 497 \end{aligned}$	$440<$$310<$$380<$$370<$	8 UGG8 UGG8 UGG8 UGG	108.3	34.734.7	
		TPHGAS										76.3		
		TPHGAS										93.6	2.7	
		TPHGAS **********							497			91.1	2.7	
		avg minimum maximem										92.3 76.3 108.3		
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	$\begin{aligned} & 9060 \\ & 9060 \end{aligned}$	TOC	57M-96-09X BX570914 57M-96-09X BX570914		$\begin{aligned} & \text { DV4S*530 } \\ & \text { DV4S*530 } \end{aligned}$	$\begin{aligned} & \text { ZEMO } \\ & \text { ZEMO } \end{aligned}$	$\begin{aligned} & \text { 27-AUG-96 } \\ & \text { 27-AUG-96 } \end{aligned}$	$\begin{aligned} & 16-\text { SEP-96 } \\ & 16 \text { SEP-96 } \end{aligned}$	$\begin{aligned} & 2500 \\ & 2720 \end{aligned}$	$\begin{aligned} & 2220 \\ & 2070 \end{aligned}$	$\begin{aligned} & 792 \text { UGG } \\ & 792 \text { UGG } \end{aligned}$	107.6	15.4	
		TOC			92.2							15.4		
		avg minimum										99.9 92.2		
		maximum										107.6		
ABB-ES	9071	TPHC	ZWB-96-03X	8XZW0310		DV4S*501	ZELO	23-AUG-96	18-SEP-96	1270	$1070<$	27.8 UGG	95.4	. 0
ABB-ES	9071	TPHC	ZWB-96-03X	8XZW0310	DV4S*501	ZELO	23-AUG-96	18-SEP-96	1270	1070 <	27.8 UGG	95.4	. 0	
ABB-ES	9071	TPHC	57E-96-31X	EX573106	DV4S*519	ZEHO	21-AUG-96	12-SEP-96	47300	1800	18300 UGG	4.0	47.3	
ABB-ES	9071	TPHC	57E-96-31X	Ex573106	DV4S*519	ZEHO	21-ANG-96	12-SEP-96	47300	1110	18300 UGG	2.5	47.3	

Contractor	Method Description	Appendix D-3 Table: D-10 FT. DEVENS DV4 1996 MS/MSD RESULTS										Original Sample Value Unit	Percent Recovery	
		IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value <			RPD
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/FURNACE METALS/SOIL/FURNACE	$\begin{aligned} & \text { JD24 } \\ & \text { JD24 } \end{aligned}$	TL TL **********	$\begin{aligned} & 578-96-09 x \\ & 578-06-09 x \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { BX570905 } \end{aligned}$	$\begin{aligned} & \text { DV4S*525 } \\ & \text { DV4S*525 } \end{aligned}$		29-AUG-9	$5 \text { 24-SEP-96 }$	4.86 4.67	$3.81<$ $3.66<$.5 UGG	96.0 95.9	. 0
			avg minimum maximum										$\begin{aligned} & 95.9 \\ & 95.9 \\ & 96.0 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/FURNACE METALS/SOIL/FURNACE	$\begin{aligned} & \text { JD25 } \\ & \text { JD25 } \end{aligned}$	$\begin{aligned} & \text { SB } \\ & \text { SB } \\ & \text { ********** } \end{aligned}$	$\begin{aligned} & 578-96-09 x \\ & 578-96-09 x \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { BX570905 } \end{aligned}$	$\begin{aligned} & \text { DV4S*525 } \\ & \text { DV4S } 525 \end{aligned}$	$\begin{aligned} & \text { SBXB } \\ & \text { SBXB } \end{aligned}$	29-AUG- 29-AUG-	$\begin{aligned} & 5 \text { 23-SEP-96 } \\ & 5 \\ & 23-\text { SEP-96 } \end{aligned}$	$\begin{aligned} & 9.69 \\ & 9.62 \end{aligned}$	$\begin{aligned} & 7.61 \ll \\ & 7.56< \end{aligned}$	$\begin{aligned} & 1.09 \text { UGG } \\ & 1.09 \text { UGG } \end{aligned}$	96.1 96.2	. 1
			avg minimum maximem										96.2 96.1 96.2	
$\begin{aligned} & A B B-E S \\ & A B B-E S \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \text { AG } \\ & \text { AG } \\ & * * * * * * * * * \end{aligned}$	$\begin{aligned} & 57 B-96-09 x \\ & 57 B-96-09 x \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { BX570905 } \end{aligned}$	$\begin{aligned} & \text { DV4S*525 } \\ & \text { DV4S } 525 \end{aligned}$	UBNI UBNI	$\begin{aligned} & 29-A \cup G- \\ & 29-A \cup G-S \end{aligned}$	$\begin{aligned} & \text { 26-SEP-96 } \\ & 26-\text { SEP-96 } \end{aligned}$	9.54 9.4	7.22 6.76	1.12 UGG 1.12 UGG	92.6 88.0	5.1 5.1
			avg minimum maximum										90.3 88.0 92.6	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	JS16 JS16	$\begin{aligned} & \text { AL } \\ & \text { AL } \\ & \text { ********** } \end{aligned}$	$\begin{aligned} & 57 B-96-09 x \\ & 57 B-96-09 x \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { BX570905 } \end{aligned}$	$\begin{aligned} & \text { OV4S } \# 525 \\ & \text { DV4S } 525 \end{aligned}$	UBNI UBNI	$\begin{aligned} & 29-A U G-S \\ & 29-A U G-S \end{aligned}$	$\begin{aligned} & \text { 26-SEP-96 } \\ & \text { 26-SEP-96 } \end{aligned}$	239 235	147 2.35	5610 UGG 5610 UGG	75.3 1.2	$\begin{aligned} & 193.6 \\ & 193.6 \end{aligned}$
			avg minimum maximum										38.3 1.2 75.3	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \text { BA } \\ & \text { BA } \\ & \text { ********** } \end{aligned}$	$\begin{aligned} & 57 B-96-09 x \\ & 57 B-96-09 \mathrm{X} \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { BX570905 } \end{aligned}$	$\begin{aligned} & \text { DV4S*525 } \\ & \text { DV4S*525 } \end{aligned}$	UBNI UBNI	$\begin{aligned} & 29-A U G-1 \\ & 29-A N G-1 \end{aligned}$	$\begin{aligned} & 26-\text { SEP-96 } \\ & 26-\operatorname{SEP}-96 \end{aligned}$	$\begin{aligned} & 71.6 \\ & 70.5 \end{aligned}$	57.2 54.6	13.3 UGG 13.3 UGG	97.8 94.8	3.1 3.1
			avg minimum maximum										$\begin{aligned} & 96.3 \\ & 94.8 \\ & 97.8 \end{aligned}$	
ABB-ES	METALS/SOIL/ICP	JS16	BE	57B-96-09x	BX570905	DV4S*525	UBNI	29-AUG-	26-SEP-96	59.6	$49.2<$. 5 UGG	101.0	1.1

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	Appendix D-3 Table: D-10 FT. DEVENS DV4 1996 MS/MSD RESULTS						Value <	Original Sample Value Unit	Percent Recovery	RPD
					IRDMIS Field Sample Number	Lab Number		Sample Date	Analysis Date	Spike Value				
ABB-ES	METALS/SOIL/ICP	Js16	BE 	57B-96-09x	BX570905	DV4S*525	UBNI	29-AUG-96	26-SEP-96	58.8	48 <	. 5 UGG	99.9	1.1
			avg minimum maximum										$\begin{array}{r} 100.5 \\ 99.9 \\ 101.0 \end{array}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \text { CA } \\ & \text { CA } \end{aligned}$	578-96-09x 578-96-09X	$\frac{\text { BX570905 }}{1 \times 570905}$	$\begin{aligned} & \text { DV4S*525 } \\ & \text { DV4S*525 } \end{aligned}$	UBNI UBNI	$\begin{aligned} & 29-\text { AUG-96 } \\ & \text { 29-AUG-96 } \end{aligned}$	$\begin{aligned} & \text { 26-SEP-96 } \\ & 26 \text {-SEP-96 } \end{aligned}$	$\begin{aligned} & 5980 \\ & 5880 \end{aligned}$	$\begin{aligned} & 4800 \\ & 4660 \end{aligned}$	$\begin{aligned} & 292 \text { UGG } \\ & 292 \text { UGG } \end{aligned}$	$\begin{aligned} & 98.6 \\ & 97.0 \end{aligned}$	1.6
			avg minimum maximum										$\begin{aligned} & 97.8 \\ & 97.0 \\ & 98.6 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { Js16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & C D \\ & C D \end{aligned}$	$\begin{aligned} & 578-96-09 x \\ & 578-96-09 x \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { BX570905 } \end{aligned}$	$\begin{aligned} & \text { DV4S*525 } \\ & \text { DV4S*525 } \end{aligned}$	UBNI UBNI	$\begin{aligned} & \text { 29-AUG-96 } \\ & \text { 29-AUG-96 } \end{aligned}$	$\begin{aligned} & \text { 26-SEP-96 } \\ & 26 \text { SEP-96 } \end{aligned}$	$\begin{aligned} & 59.6 \\ & 58.8 \end{aligned}$	$\begin{aligned} & 47.4 \ll \\ & 46.6< \end{aligned}$	$\begin{aligned} & .7 \text { UGG } \\ & .7 \\ & \hline \end{aligned}$	$\begin{aligned} & 97.3 \\ & 97.0 \end{aligned}$. 4
			avg minimum maximum										$\begin{aligned} & 97.2 \\ & 97.0 \\ & 97.3 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \text { CO } \\ & \text { co } \\ & \text { ********** } \end{aligned}$	$\begin{aligned} & 57 \mathrm{~B}-96-09 \mathrm{x} \\ & 578-96-09 \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { BX570905 } \end{aligned}$	$\begin{aligned} & \text { DV4S*525 } \\ & \text { DV4S*525 } \end{aligned}$	UBNI UBNI	$\begin{aligned} & \text { 29-AUG-96 } \\ & \text { 29-AUG-96 } \end{aligned}$	$\begin{aligned} & \text { 26-SEP-96 } \\ & 26 \text {-SEP-96 } \end{aligned}$	$\begin{aligned} & 119 \\ & 118 \end{aligned}$	$\begin{aligned} & 91.9 \\ & 89.6 \end{aligned}$	$\begin{aligned} & 2.7 \text { UGG } \\ & 2.7 \text { UGG } \end{aligned}$	$\begin{aligned} & 94.5 \\ & 92.9 \end{aligned}$	1.7
			avg minimum maximm										$\begin{aligned} & 93.7 \\ & 92.9 \\ & 94.5 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	CR CR 	$\begin{aligned} & 578-96-09 x \\ & 578-96-09 x \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { BX570905 } \end{aligned}$	$\begin{aligned} & \text { DV4S*525 } \\ & \text { DV4S*525 } \end{aligned}$	UBNI UBNI	$\begin{aligned} & \text { 29-AUG-96 } \\ & \text { 29-AUG-96 } \end{aligned}$	$\begin{aligned} & \text { 26-SEP-96 } \\ & 26-\text { SEP-96 } \end{aligned}$	$\begin{aligned} & 119 \\ & 118 \end{aligned}$	$\begin{aligned} & 93.9 \\ & 90.2 \end{aligned}$	$\begin{aligned} & 7.57 \text { UGG } \\ & 7.57 \text { UGG } \end{aligned}$	$\begin{aligned} & 96.6 \\ & 93.6 \end{aligned}$	3.2 3.2
			avg minimum maximum										$\begin{aligned} & 95.1 \\ & 93.6 \\ & 96.6 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \text { CU } \\ & \text { CU } \\ & \text { ********** } \end{aligned}$	$\begin{aligned} & 578-96-09 x \\ & 578-96-09 x \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { BX570905 } \end{aligned}$	$\begin{aligned} & \text { DV4S*525 } \\ & \text { DV4S*525 } \end{aligned}$	UBNI UBNI	$\begin{aligned} & 29-A U G-96 \\ & 29-A U G-96 \end{aligned}$	$\begin{aligned} & \text { 26-SEP-96 } \\ & 26 \text {-SEP-96 } \end{aligned}$	$\begin{aligned} & 59.6 \\ & 58.8 \end{aligned}$	$\begin{aligned} & 47.9 \\ & 45.8 \end{aligned}$	5.47 UGG 5.47 UGG	$\begin{aligned} & 98.4 \\ & 95.3 \end{aligned}$	3.1
			avg minimum										$\begin{aligned} & 96.9 \\ & 95.3 \end{aligned}$	

Contractor	Method Description	IRDMIS Method Code	Test Name	Appendix D-3 Table: D-10 FT. DEVENS DV4 1996 MS/MSD RESULTS							Value $<\quad$Original Sample Value Unit		Percent Recovery	RPD	
				IRDMIS Site ID	IRDMIS Field Sample Nunber	Lab Number	Lot	Sample Date	Analysis Date	Spike Value					
			maximum										98.4		
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	FE FE ********** avg minimum maximem	$\begin{aligned} & 578-96-09 x \\ & 578-96-09 x \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { BX570905 } \end{aligned}$	DV4S*525 DV4S*525		$\begin{aligned} & \text { 29-AUG- } \\ & \text { 29-AUG- } \end{aligned}$	$\begin{aligned} & 5 \text { 26-SEP-96 } \\ & 526 \text { SEP-96 } \end{aligned}$	$\begin{aligned} & 1190 \\ & 1180 \end{aligned}$	$\begin{array}{r} 782 \\ 3.68 \end{array}$	6410 UGG 6410 UGG	80.4	$\begin{aligned} & 198.1 \\ & 198.1 \end{aligned}$	
													40.4 80.4 80		
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & 578-96-09 x \\ & 578-96-09 x \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { BX570905 } \end{aligned}$	DV4S*525 DV4S*525		$\begin{aligned} & \text { 29-AUG- } \\ & \text { 29-AUG- } \end{aligned}$	$6 \text { 26-SEP-96 } 6 \text { 26-SEP-96 }$	$\begin{aligned} & 5960 \\ & 5880 \end{aligned}$	$\begin{aligned} & 4930 \\ & 4770 \end{aligned}$	521 UGG521 UGG	$\begin{gathered} 101.2 \\ 99.3 \end{gathered}$	1.9	
			avg minimum maximum										$\begin{array}{r} 100.3 \\ 99.3 \\ 101.2 \end{array}$		
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \text { MG } \\ & \text { MG } \\ & * * * * * * * * * * \end{aligned}$	$\begin{aligned} & 578-96-09 x \\ & 578-96-09 x \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { BX570905 } \end{aligned}$	DV4S*525 DV4S*525	UBNI UBNI	$\begin{aligned} & \text { 29-AUG-96 26-SEP-96 } \\ & \text { 29-AUG-96 26-SEP-96 } \end{aligned}$		$\begin{aligned} & 5960 \\ & 5880 \end{aligned}$	$\begin{aligned} & 4930 \\ & 4580 \end{aligned}$	$\begin{aligned} & 1340 \text { UGG } \\ & 1340 \text { UGG } \end{aligned}$	$\begin{gathered} 101.2 \\ 95.3 \end{gathered}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	
			avg minimum maximum							$\begin{array}{r} 98.3 \\ 95.3 \\ 101.2 \end{array}$					
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \text { MN } \\ & \text { MN } \end{aligned}$	$\begin{aligned} & 578-96-09 x \\ & 578-96-09 x \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { BX570905 } \end{aligned}$	$\begin{aligned} & \text { DV4S }{ }^{\star 525} \\ & \cdot \text { DV4S*525 } \end{aligned}$	UBNI UBNI	$\begin{aligned} & \text { 29-AUG- } \\ & \text { 29-AUG- } \end{aligned}$	$6 \text { 26-SEP-96 } 6 \text { 26-SEP-96 }$		$\begin{aligned} & 59.6 \\ & 58.8 \end{aligned}$	$\begin{aligned} & 42.7 \\ & 30.8 \end{aligned}$	65.2 UGG 65.2 UGG	$\begin{aligned} & 87.7 \\ & 64.1 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 31.1 \end{aligned}$
			avg minimum maximm										75.9 64.1 87.7		
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \mathrm{NA} \\ & \mathrm{NA} \end{aligned}$	$\begin{aligned} & 578-96-09 x \\ & 578-96-09 x \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { BX570905 } \end{aligned}$	DV4S*525 DV4S*525	$\begin{aligned} & \text { UBNI } \\ & \text { UBNI } \end{aligned}$	$\begin{aligned} & \text { 29-AUG- } \\ & \text { 29-AUG- } \end{aligned}$	$\begin{array}{ll} 6 & 26-\text { SEP-96 } \\ 6 \\ 26 \text {-SEP-96 } \end{array}$	$\begin{aligned} & 5960 \\ & 5880 \end{aligned}$	$\begin{aligned} & 4900 \\ & 4770 \end{aligned}$	505 UGG505 UGG	$\begin{gathered} 100.6 \\ 99.3 \end{gathered}$	1.3	
			avg minimum maximum										$\begin{array}{r} 100.0 \\ 99.3 \\ 100.6 \end{array}$		
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \mathrm{NI} \\ & \mathrm{NI} \end{aligned}$	$\begin{aligned} & 57 B-96-09 x \\ & 57 B-96-09 x \end{aligned}$	$\begin{aligned} & \text { BX570905 } \\ & \text { XX570905 } \end{aligned}$	DV4S*525 DV4S*525	$\begin{aligned} & \text { UBNI } \\ & \text { UBNI } \end{aligned}$	29-AUG	$\begin{array}{ll} 6 & 26 \text {-SEP-96 } \\ 626 \text {-SEP-96 } \end{array}$	$\begin{aligned} & 59.6 \\ & 58.8 \end{aligned}$	46.3 43.5	$\begin{aligned} & \text { 7.3 UGG } \\ & 7.3 \text { UGG } \end{aligned}$	$\begin{aligned} & 95.1 \\ & 90.6 \end{aligned}$	4.9 4.9	

Appendix D-3 Table: D-10 FT. DEVENS DV4 1996 MS/MSD RESULTS													
Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Field IRDMIS Sample Site ID Number	Lab Number		Sample Date	Analysis Date	Spike Value	Value <	Original Sample Value Unit	Percent Recovery	RPD
$\begin{aligned} & A B B-E S \\ & A B B-E S \end{aligned}$	total mitrogen/water/ TECH TOTAL NITROGEN/WATER/TECH	$\begin{aligned} & \text { TF26 } \\ & \text { TF26 } \end{aligned}$	N2KJEL N2KJEL 	57M-95-03X MX5703×3$57 M-95-03 X$MX5703X3	DV4W*537 DV4W*537	$\begin{aligned} & \text { SHOB } \\ & \text { SHOB } \end{aligned}$	$\begin{aligned} & \text { 02-OCT- } \\ & \text { 02-OCT- } \end{aligned}$	$\begin{aligned} & 28-\text { OCT-96 } \\ & 28-\text { OCT-96 } \end{aligned}$	$\begin{aligned} & 4000 \\ & 4000 \end{aligned}$	$\begin{aligned} & 4000 \\ & 4000 \end{aligned}$	324 UGL 324 UGL	100.0 100.0	. 0
			avg minimum maximum									$\begin{aligned} & 100.0 \\ & 100.0 \\ & 100.0 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PHOSHATES/WATER/TECHNICON PHOSHATES/WATER/TECHNICON	$\begin{aligned} & \text { TF27 } \\ & \text { TF27 } \end{aligned}$	$\begin{aligned} & \text { PO4 } \\ & \text { PO4 } \\ & \text { ********** } \end{aligned}$	$\begin{aligned} & \text { 57M-95-03X MX5703X3 } \\ & 57 \mathrm{M}-95-03 X \operatorname{MX5703\times 3} \end{aligned}$	DV4W*537 DV4W ${ }^{\star} 537$	WHAC WHAC	$\begin{aligned} & \text { 02-OCT- } \\ & \text { 02-OCT- } \end{aligned}$	$\begin{aligned} & 22-\text { Oct-96 } \\ & 22-0 C T-96 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 427 \\ & 380 \end{aligned}$	$\begin{aligned} & \text { 16.2 UGL } \\ & 16.2 \text { UGL } \end{aligned}$	106.8 95.0	11.6 11.6
			avg minimum maximum									$\begin{array}{r} 100.9 \\ 95.0 \\ 106.8 \end{array}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UHO2 UHO2	PCBO16 PCB016 **********	57M-95-03X M×5703×3 57M-95-03X MX5703×3	DV4W*537 DV4W*537	$\begin{aligned} & \text { SDOF } \\ & \text { SOQR } \end{aligned}$	$\begin{aligned} & \text { 02-OCT- } \\ & \text { 02-OCT- } \end{aligned}$	$\begin{aligned} & 13-\text { OCT-96 } \\ & \text { 13-OCT-96 } \end{aligned}$	$\begin{aligned} & 3.75 \\ & 3.75 \end{aligned}$	$\begin{aligned} & 4.25< \\ & 4.04< \end{aligned}$	$\begin{aligned} & .16 \text { UGL } \\ & .16 \text { UGL } \end{aligned}$	113.3	5.1 5.1
			avg minimum maximum									$\begin{aligned} & 110.5 \\ & 107.7 \\ & 13.3 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	$\begin{aligned} & \text { UHO2 } \\ & \text { UHO2 } \end{aligned}$	$\begin{aligned} & \text { PCB260 } \\ & \text { PCB260 } \\ & \text { ********* } \end{aligned}$	57M-95-03X MX5703×3 57M-95-03X MX5703X3	DV4W*537 DV4W*537	SDOF SDQF	$\begin{aligned} & \text { O2-OCT- } \\ & \text { 02-OCT- } \end{aligned}$	$\begin{aligned} & 13-\text { OCT-96 } \\ & 13-\text { OCT-96 } \end{aligned}$	$\begin{aligned} & 3.75 \\ & 3.75 \end{aligned}$	$\begin{aligned} & 2.65< \\ & 2.23< \end{aligned}$	$\begin{aligned} & .19 \text { UGL } \\ & .19 \text { UGL } \end{aligned}$	$\begin{aligned} & 70.7 \\ & 59.5 \end{aligned}$	17.2 17.2
			avg minimum maximum									65.1 59.5 70.7	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	AENSLF AENSLF **********	57M-95-03X MX5703X3 57M-95-03X MX5703X3	DV4W*537 TDBG 02-OCT-96 30-OCT-96 DV4W*537 TDBG 02-OCT-96 30-0CT-96				$.5$	$.383<$	$\begin{aligned} & .023 \text { UGL } \\ & .023 \text { UGL } \end{aligned}$	76.6 76.4	. 3
			avg minimum maximum						76.5 76.4 76.6				

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	$\begin{aligned} & \text { IRDMIS } \\ & \text { Field } \\ & \text { Sample } \\ & \text { Number } \end{aligned}$	Appendix D-3 Table: D-10 FT. DEVENS DV4 1996 MS/MSD RESULTS				Spike Value	Value <	Original Sample Value Unit	Percent Recovery	RPD
						Lab Number		Sample Date	Analysis Date					
			minimum maximum										$\begin{aligned} & 66.4 \\ & 66.7 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	$\begin{aligned} & \operatorname{LIN} \\ & \text { LIN } \\ & \text { ink******* } \end{aligned}$	57M-95-03 $57 \mathrm{M}-95-0$	$\begin{aligned} & M \times 5703 \times 3 \\ & M \times 5703 \times 3 \end{aligned}$	DV4 ${ }^{*} \times 53$ DV4		02-OCT-	$\begin{aligned} & 30-0 C T-96 \\ & 30-0 C T-96 \end{aligned}$. 5	$.185<$ $.18<$	$\begin{aligned} & .0507 \text { UGL } \\ & .0507 \text { UGL } \end{aligned}$	37.0 36.0	2.7
			avg minimum maximum										$\begin{aligned} & 36.5 \\ & 36.0 \\ & 37.0 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & A B B-E S \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	MEXCLR MEXCLR *********	$\begin{aligned} & 57 M-95-1 \\ & 57 \mathrm{M}-95-\mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \times 5703 \times 3 \\ & M \times 5703 \times 3 \end{aligned}$	DV4 ${ }^{\text {DV }}$ ¢ 53	TDBG	02-OCT- 02-OCT-	$\begin{aligned} & 30-\text { OCT-96 } \\ & 30-0 C T-96 \end{aligned}$	1	. 8486 <	$\begin{aligned} & .057 \text { UGL } \\ & .057 \\ & \hline \end{aligned}$	84.6 82.9	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$
			avg minimum maximum										$\begin{aligned} & 83.8 \\ & 82.9 \\ & 84.6 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	$\begin{aligned} & \text { PPDDT } \\ & \text { PPDDT } \end{aligned}$	$\begin{aligned} & 57 M-95-1 \\ & 57 M-95-1 \end{aligned}$	$\begin{aligned} & \text { MX5703x3 } \\ & 4 \times 5703 \times 3 \end{aligned}$	$\begin{aligned} & \text { DV4W*53 } \\ & \text { DV4W*53 } \end{aligned}$	$\begin{aligned} & \text { TDBG } \\ & \text { TDBG } \end{aligned}$	02-OCT- 02-0CT-	$\begin{aligned} & 30-\text { OCT-96 } \\ & 30-0 C T-96 \end{aligned}$. 5	. $353<$. 034 UGL . 034 UGL	70.6 69.6	1.4
			avg minimum maximum										$\begin{aligned} & 70.1 \\ & 69.6 \\ & 70.6 \end{aligned}$	

APPENDIX D-3
 Table D-11
 Elements with Matrix Spike Recoveries in Soil Outside USEPA Criteria
 1995 AOC 57 and 69W Remedial Investigation
 Fort Devens, Massachusetts

Elimment	Frequency of Recovery Outside USEPA CLP LiMITS	Recovery range
Mercury	1/2	74.7
Arsenic	2/2	52.7-68.1
Manganese	1/2	64.1

Appendix D-3

Table D-12
USEPA CLP Surrogate Recovery Criteria for SVOCS
1995 AOC 57 AND 69W Remedial Investigation
Fort Devens, Massachusetts

Surrogate	PERCENT RECOVERY LIMITS FOR WATER	Percent recovery Limits FOR SOIL
2-Fluorophenol	21\% to 100\%	25\% to 121\%
Phenol-D6	10\% to 94\%	24\% to 113\%
2,4,6-Tribromophenol	10\% to 123\%	19\% to 122\%
Nitrobenzene-D5	35\% to 114\%	23\% to 120%
2-Fluorobiphenyl	43\% to 116\%	30\% to 115\%
Terphenyl-D14	33% to 141%	18\% to 137\%

Movoo

 คัロロロロロロロ

名 0

 Contractor Method Description

ํํํํํํํํํํํํํํํํํ

	N゙Nざ
宣 8 은 홍 	

Contractor Method Description
Test
Name
SEMIVOLATILE SURROGATE RESULTS

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Unit	Percent Recovery
			minimum maximum									$\begin{aligned} & 72.0 \\ & 94.0 \end{aligned}$
ABB-ES	ORGANICS/WATER/GCMS	UM18	2FP	57M-96-11X	MD5711x1	DV4W*305	WDIM	02-0СТ-96	08-0CT-96	100	55 UGL	55.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2FP	57M-96-13X	M $\times 5713 \times 1$	DV4W*307	HDIM	02-0СT-96	08-0CT-96	100	59 UGL	59.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2FP	57M-96-09X	M $\times 5709 \times 1$	DV4W*533	WDIM	01-0СT-96	08-0CT-96	100	58 UGL	58.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2FP	57M-96-10X	M $\times 5710 \times 1$	DV4W*534	LDOM	02-0СT-96	16-0CT-96	100	35 UGL	35.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2FP	57M-96-11X	MX5711×1	DV4N*535	LDIM	02-0СT-96	08-0CT-96	100	45 UGL	45.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2FP	G3M-92-07X	MXG307X3	DV4W*536	WDIM	01-0СT-96	08-0СT-96	100	57 UGL	57.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2FP	57M-95-03X	MX5703x3	DV4W*537	WDIM	02-0СT-96	09-OCT-96	100	51 UGL	51.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	$\underset{* k * * * * * * * *}{2 F P}$	SBK-96-540	SBK96540	DV4W*540	WDDM	03-SEP-96	13-SEP-96	100	53 UGL	53.0
			avg									51.6
			minimum									35.0
												59.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	NBD5	57N-96-11X	M05711x1	DV4W*305		02-0СT-96	08-0CT-96	50	42 UGL	84.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	NBD5	57M-96-13X	M×5713×1	DV4W*307	WDIM	02-0СT-96	08-0CT-96	50	42 UGL	84.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	NBD5	57M-96-09X	MX5709×1	DV4Wぇ533	WDIM	01-0CT-96	08-0СT-96	50	43 UGL	86.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	NBD5	57M-96-10X	M $\times 5710 \times 1$	DV4W*534	WDOH	02-0CT-96	16-0CT-96	50	35 UGL	70.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	NBD5	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	WDIM	02-0CT-96	08-0CT-96	50	33 UGL	66.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	NBD5	G3M-92-07X	MXG307X3	DV4W*536	WDIM	01-0CT-96	08-0CT-96	50	39 UGL	78.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	NBD5	57M-95-03X	MX5703×3	DV4W*537	WDIM	02-0СT-96	09-0CT-96	50	36 UGL	72.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	$\begin{aligned} & \text { NBD5 } \\ & * * * * * * * * * \end{aligned}$	SBK-96-540	S8K96540	DV4W*540	LDDM	03-SEP-96	13-SEP-96	50	38 UGL	76.0
			avg									77.0
			minimum									66.0
												86.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	PHEND6	57M-96-11X	M05711x1	DV4H*305		02-0CT-96	08-0CT-96	100	42 UGL	42.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	PHEND6	57M-96-13X	M $\times 5713 \times 1$	DV4W*307	LDIM	02-0CT-96	08-0CT-96	100	44 UGL	44.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	PHEND6	57M-96-09X	MX5709X1	DV4W*533	WDIM	01-0СT-96	08-0CT-96	100	42 UGL	42.0
ABB-ES	ORGANICS/HATER/GCMS	UM18	PHEND6	57M-96-10X	MX5710x1	DV4W*534	WDM	02-0СT-96	16-0СT-96	100	36 UGL	36.0
ABS-ES	ORGANICS/WATER/GCMS	UM18	PHEND6	57M-96-11X	M $\times 5711 \times 1$	DV4世*535	WDIM	02-0С1-96	08-0CT-96	100	36 UGL	36.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	PHEND6	G3M-92-07X	MXG307X3	DV4W*536	WDIM	01-0CT-96	08-0CT-96	100	40 UGL	40.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	PHEND6	57M-95-03X	MX5703x3	DV4W*537	WDIM	02-0СT-96	09-OCT-96	100	36 UGL	36.0
ABB-ES	ORGANICS/WATER/GCMS	UN18	PHENDG **********	SBK-96-540	SBK96540	DV4W*540	LDDM	03-SEP-96	13-SEP-96	100	36 UGL	36.0
			avg									39.0

	00000000001400 	응웅ㅇㅇㅇㅇ웅
	¢	
言言美	¢冖¢	¢
		ロロロ\％ロロ゚ロ\％
	응퉁웅ㅁㅁㅁ운늠으으 	
		破
\bigcirc ¢ ${ }^{\text {a }}$－		
速 密欪㒴出出出欪欪㒴	密密出出出密出出	
战：		
 	出出出出出出出出出 	

$\begin{array}{l:l:l} \text { 号 } & 0 & 0 \\ 0 & \text { No } \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & & \\ 0 & & \end{array}$	000000000000001000
	ㅇํㅇํํํํㅇㅇㅇํㅇํํํํํํ웅
	ํํํํํํํํํํํํํํํํํㅇ ث
$\begin{array}{l:c} \stackrel{u}{3} & \frac{3}{9} \end{array}$	
	 inniningnning o

APPENdIX D-3
 Table D-15
 USEPA CLP Surrogate Recovery Criteria for VOCS

1995 AOC 57 and 69W Remedial Investigation
Fort Devens, Massachusetts

Surrogate	PERCENT RECOVERY LIMITS FOR WATER	Percent Recovery Limits for Soll
1,2-Dichloroethane-D4	76\% to 114\%	70\% to 121%
4-Bromofluorobenzene	86\% to 115%	74\% to 121%
Toluene-D8	88\% to 110%	81\% to 117%

Appendix $D-3$
Table：D－16
DEVENS DV4 1996 DEVENS DV4
SURROGATE RECOVERIES $\underset{\text { PEST／PCB }}{\substack{\text { FT．} \\ \hline}}$ IRDMIS
Field Lab
Number
Lot
Date $\begin{array}{ll}\text { Analysis } & \begin{array}{l}\text { Spike } \\ \text { Date }\end{array} \\ \text { Value }\end{array}$

8888888888888
888．8．8．8．8．8．8．8．8．8．8．8．
ģsqusgig

－ппロロッグ

むひひひひひひひひひ	MRDMIS
$\begin{array}{ll}\text { Method } \\ \text { Code } & \\ \text { Teat } \\ \text { Name }\end{array}$	

095

avg $\substack{\text { minimum } \\ \text { maximum }}$
 O

 No
80
80

Contractor Method Description \qquad
PESTICIDES／SOIL／GCEC

LH10
LH10
LH10
LH1O
LH10
LH10
LH10
LH10
LH1O
LH10

ㅇㅡㅗㅇㅡㅗㅇㅜㅗ옾ㅇㅡㅗㅇㅜㅗㅇㅜㅗㅇㅡㅗ

Appendix D-3

Table D-17
USEPA CLP Spike Precision Criteria for Pesticides

1995 AOC 57 and 69W Remedial Investigation
Fort Devens, Massachusetts

	RPD LIMITS FOR WATER
Lindane (gamma-BHC)	15
Heptachlor	20
Aldrin	22
Dieldrin	18
Endrin	21
4,4-DDT	27

Contractor Method Description

$$
\begin{aligned}
& \text { Table: D-18 } \\
& \text { FIELD DUPLICATE RESULTS } \\
& \text { FT. DEVENS DV4 } 1996
\end{aligned}
$$

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	$\begin{aligned} & \text { Analysis } \\ & \text { Date } \end{aligned}$	Value Unit	RPD
ABB-ES	METALS/SOIL/CVAA	JB01	HG	578-96-11X	BX571110	DV4S*529	QHDH	03-SEP-96	15-SEP-96 <	. 05 UGG	. 0
ABB-ES	METALS/SOIL/CVAA	JB01	HG	578-96-11X	BD571110	DV4S*539	OHDH	03-SEP-96	15-SEP-96 <	. 05 UGG	. 0
ABB-ES	METALS/SOIL/GFAA	JD15	SE	578-96-11x	8×571110	DV4S*529	MBCG	03-SEP-96	24-SEP-96 <	. 25 UGG	. 0
ABB-ES	METALS/SOIL/GFAA	JD15	SE	578-96-11X	BD571110	DV4S*539	MBCG	03-SEP-96	24-SEP-96 <	. 25 UGG	. 0
. ABB-ES	METALS/SOIL/GFAA	JD17	PB	578-96-11x	BX571110	DV4S*529	OBBG	03-SEP-96	24-SEP-96	2.05 UGG	7.1
ABB-ES	METALS/SOIL/GFAA	JD17	PB	578-96-11X	BD571110	DV4S*539	OBBG	03-SEP-96	24-SEP-96	1.91 UGG	7.1
ABB-ES	METALS/SOIL/GFAA	JD19	AS	578-96-11x	BD571110	DV4S*539	QBLG	03-SEP-96	25-SEP-96	5.17 UGG	7.4
ABb-ES	METALS/SOIL/GFAA	JD19	AS	57B-96-11X	BX571110	DV4S*529	abLG	03-SEP-96	25-SEP-96	4.8 UGG	7.4
ABB-ES	METALS/SOIL/FURNACE	JD24	TL	578-96-11X	BX571110	DV4S*529	RBSB	03-SEP-96	24-SEP-96 <	. 5 UGG	. 0
ABB-ES	METALS/SOIL/FURNACE	JD24	TL	57B-96-11X	BD571110	DV4S*539	RBSB	03-SEP-96	24-SEP-96 <	. 5 UGG	. 0
ABB-ES	METALS/SOIL/FURNACE	JD25	SB	578-96-11X	BX571110	DV4S*529	SBXB	03-SEP-96	23-SEP-96 <	1.09 UGG	. 0
ABB-ES	METALS/SOIL/FURNACE	JD25	SB	578-96-11X	BD571110	DV4S*539	SBXB	03-SEP-96	23-SEP-96 <	1.09 UGG	. 0
Abb-es	METALS/SOIL/ICP	JS16	AG	578-96-11x	BX571110	DV4S*529	UBNI	03-SEP-96	26-SEP-96 <	. 589 UGG	. 0
ABB-ES	METALS/SOIL/ICP	JS16	AG	578-96-11X	BD571110	DV4S*539	UBNI	03-SEP-96	26-SEP-96 <	. 589 UGG	. 0
ABb-es	METALS/SOIL/ICP	JS16	AL	578-96-11X	BX571110	DV4S*529	UBNI	03-SEP-96	26-SEP-96	3940 UGG	15.6
AbB-ES	METALS/SOIL/ICP	JS16	AL	578-96-11X	BD571110	DV4S*539	UBNI	03-SEP-96	26-SEP-96	3370 UGG	15.6
ABb-ES	METALS/SOIL/ICP	JS16	BA	578-96-11x	BX571110	DV4S*529	UBNI	03-SEP-96	26-SEP-96	15.5 UGG	16.0
ABB-ES	METALS/SOIL/ICP	JS16	BA	578-96-11X	BD571110	DV4S*539	UBNI	03-SEP-96	26-SEP-96	13.2 UGG	16.0

Appendix D-3
Table: $0-18$
FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

Appendix D-3
FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

Table: $0-18$
FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS site ID	IRDMIS Field Sample Nunber	Lab Number	Lot	Sample Date	Analysis Date	$<$	Value Unit	RPD
ABB-ES	PESTICIDES/SOIL/GCEC	LH10	TXPHEN	57B-96-11X	BD571110	DV4S*539	UFRF	03-SEP-96	11-0CT-96	<	. 444 UGG	. 0
ABB-ES	PESTICIDES/SOIL/GCEC	LH10	TXPHEN	578-96-11X	BX571110	DV4S*529	UFRF	03-SEP-96	11-0СT-96	<	. 444 UGG	. 0
ABB-ES	PESTICIDES/SOIL/GCEC	LH16	PCB016	57B-96-11X	BX571110	DV4S*529	NGKH	03-SEP-96	10-0CT-96	<	. 0666 UGG	. 0
ABB-ES	PESTICIDES/SOIL/GCEC	LH16	PCB016	57B-96-11X	BD571110	DV4S*539	NGKH	03-SEP-96	10-0СТ-96	<	. 0666 UGG	. 0
ABB-ES	PESTICIDES/SOIL/GCEC	LH16	PCB221	57B-96-11X	BD571110	DV4S*539	NGKH	03-SEP-96	10-OCT-96	<	. 082 UGG	. 0
ABB-ES	PESTICIDES/SOIL/GCEC	LH16	PCB221	57B-96-11X	BX571110	DV4S*529	NGKH	03-SEP-96	10-0СT-96	<	. 082 UGG	. 0
ABB-ES	PESTICIDES/SOIL/GCEC	LH16	PCB232	57B-96-11X	BX571110	DV4S*529	NGKH	03-SEP-96	10-0CT-96	<	. 082 UGG	. 0
ABB-ES	PESTICIDES/SOIL/GCEC	LH16	PCB232	57B-96-11X	BD571110	DV4S*539	NGKH	03-SEP-96	10-0СT-96	<	. 082 UGG	. 0
ABB-ES	PESTICIDES/SOIL/GCEC	LH16	PCB242	57B-96-11X	BD571110	DV4S*539	NGKH	03-SEP-96	10-0CT-96	<	. 082 UGG	-0
ABB-ES	PESTICIDES/SOIL/GCEC	LH16	PCB242	578-96-11X	BX571110	DV4S*529	NGKH	03-SEP-96	10-0СT-96	<	. 082 UGG	. 0
ABB-ES	PESTICIDES/SOIL/GCEC	LH16	PCB248	$578-96-11 X$ $578-96-11$	BD571110	DV4S*539	NGKH	03-SEP-96	10-0СT-96 10-0СT-96	<	$\begin{aligned} & .082 \text { UGG } \\ & .082 \text { UGG } \end{aligned}$. 0
ABB-ES	PESTICIDES/SOIL/GCEC	LH16	PCB248	57B-96-11X	BX571110	DV4S*529	NGKH	03-SEP-96	10-0СT-96		. 082 UGG	. 0
ABB-ES	PESTICIDES/SOIL/GCEC	LH16	PCB254	57B-96-11X	BD571110	DV4S*539	NGKH	03-SEP-96	10-0СT-96	<	$.082 \text { UGG }$. 0
ABB-ES	PESTICIDES/SOIL/GCEC	LH16	PCB254	57B-96-11X	BX571110	DV4S*529	NGKH	03-SEP-96	10-0СT-96	<	. 082 UGG	. 0
ABB-ES	PESTICIDES/SOIL/GCEC	LH16	PCB260	578-96-11X	BD571110	DV4S*539	NGKH	03-SEP-96	10-0CT-96	<	$.0804 \text { UGG }$. 0
ABB-ES	PESTICIDES/SOIL/GCEC	L.H16	PCB260	57B-96-11X	BX571110	DV4S*529	NGKH	03-SEP-96	10-0СТ-96	<	. 0804 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	124 TCB	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96		. 04 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	124TCB	57B-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96	<	. 04 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCNS	LM18	12 CLLB	57B-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96	,	. 11 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	12 DCLB	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96	<	. 11 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	130 CLB	$57 \mathrm{~B}-96-11 \mathrm{X}$ $57 \mathrm{~B}-96-11 \mathrm{x}$	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96	<	$.13 \text { UGG }$. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	13DCLB	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96	$<$. 13 UGG	. 0

Appendix D-3
Table: D-18
FIELDD DUPLCATE RESULTS
FT. DEVENS DV4 1996

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Value Unit	RPD
ABb-ES	ORGANICS/SOIL/GCMS	LM18	14DCLB	57B-96-11x	8x571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96 <	. 098 UGG	. 0
ABb-ES	ORGANICS/SOIL/GCMS	LM18	140CLB	57B-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96 <	. 098 UGG	. 0
Abb-ES	ORGANICS/SOIL/GCMS	LM18	245TCP	57B-96-11X	Bx571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96 <	. 1 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	245 TCP	57B-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96 <	. 1 UGG	. 0
ABb-ES	ORGANICS/SOIL/GCMS	LM18	246TCP	578-96-11X	Bx57110	DV4S*529	OEXK	03-SEP-96	23-SEP-96 <	. 17 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	246TCP	57B-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96 <	. 17 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24DCLP	578-96-11X	BD57110	DV4S*539	OEXK	03-SEP-96	23-SEP-96 <	. 18 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24DCLP	578-96-11x	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96 <	. 18 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24DMPN	57B-96-11X	BD57110	DV4S*539	OEXK	03-SEP-96	23-SEP-96 <	. 69 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24 DMPN	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96 <	. 69 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24DNP	57B-96-11X	BD571110	DV4S*539	OEXK	03-SEP-	23-SEP-96 <	1.2 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24DNP	578-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96 <	1.2 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24DNT	57B-96-11X	BD57110	DV4S*539	OEXK	03-SEP-96	23-SEP-96 <	. 14 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24DNT	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96 <	. 14 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	260NT	57B-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96 <	. 085 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	260NT	578-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96 <	. 085 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2 CLP	57B-96-11x	8 S 71110	DV4S*539	OEXK	03-SEP-96	23-SEP-96 <	. 06 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2 CLP	57B-96-11X	8X571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96 <	. 06 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2CNAP	578-96-11x	80571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96 <	. 036 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2CNAP	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96 <	. 036 UGG	. 0
Abb-ES	ORGANICS/SOIL/GCMS	LM18	2MNAP	578-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96 <	. 049 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24NAP	578-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96 <	. 049 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2MP	57B-96-11x	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96 <	. 029 UGG	. 0

Appendix $D-3$
FIELD DUPLLCATE RESULTS

FT. DEVENS DV4 1996. | IRDMIS |
| :---: |
| Field |

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	Field Sample Nunber	$\begin{aligned} & \text { Lab } \\ & \text { Number } \end{aligned}$	Lot	Sample Date	Analysis Date
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2MP	578-96-11X	BX571110	DV4S*529	OEXK	03	-SEP
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2NANIL	578-96-11x	BD571110	DV4S		03	<
ABb-ES	ORGANICS/SOIL/GCMS	LM18	2NANIL	578-96-11X	BX571110	DV4S*529		03-SEP	23-SEP-96 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2NP	578-96-11X	BD571110	DV4S*539	OEXK	03-SEP	<
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2NP	578-96-11X	BX571110	DV4S*529		03-SEP-9	23-SEP-96 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	33DCBD	578-96-11x	BD571110	DV4S*539	OEXK	03-SEP-96	96 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	33DCBD	578-96-11X	Bx571110	DV4S*529		03-SEP-9	3-SEP-96 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	3NANIL	57B-96-11X	BD571110	DV4S*539	oexk	03-SEP-96	23-SEP-96 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	3NANIL	578-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	460N2C	57B-96-11x	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	460N2C	578-96-11X	BX571110	DV4S*529	OEXK	03-SEP-9	23-SEP-96 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	4BRPPE	578-96-11	BD571110	DV4S*539	OEXK	03-SEP-9	23-SEP-96 <
ABB-ES	ORGANICS/SOIL/GCMS	L.M18	4BRPPE	578-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	4 CANIL	57B-96-11X	BD571110	DV4S*539	OEXK	03-SEP-	23-SEP-96 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	4CANIL	57B-96-11X	BX571110	DV4S*529		03-SEP-9	23-SEP-96
ABB-ES	ORGANICS/SOIL/GCMS	LM18	4CL3C	578-96-11X	BD571110	DV4S*539	OEXK	03-SEP-9	23-SEP-96 <
AB8-ES	ORGANICS/SOIL/GCMS	LM18	4CL3C	57B-96-11X	Bx571110	DV4S*529		03-SEP-96	23-SEP-96
ABB-ES	ORGANICS/SOIL/GCMS	LM18	4CLPPE	578-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96 <
ABb-ES	ORGANICS/SOIL/GCMS	LM18	4CLPPE	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96
ABB-ES	ORGANICS/SOIL/GCMS	LM18	4 MP	57B-96-11x	80571110	DV4S*539		03-SEP-96	23-SEP-96 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	4MP	578-96-11X	Bx571110	DV4S*529		03-SEP-96	23-SEP-96
ABB-ES	ORGANICS/SOIL/GCMS	LM18	4NANIL	578-96-11x	BD571110	DV4S*539		03-SEP	SEP-96 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	4NANIL	578-96-11X	BX571110	DV4S*529	OEXK	03-SEP-9	23-SEP-96

Appendix D-3
FIELD DUPLICATE RESULTS

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site 10	IRDMIS field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	$<$	Value Unit	RPD
ABB-ES	ORGANICS/SOIL/GCMS	LM18	4NP	57B-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96	<	1.4 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	4NP	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96	$<$	1.4 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	ANAPNE	57B-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96	<	. 036 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	ANAPNE	57B-96-11X	BX571110	DV4S*529	DEXK	03-SEP-96	23-SEP-96	$<$. 036 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	ANAPYL	578-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96	<	. 033 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	ANAPYL	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96	<	. 033 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCNS	LM18	ANTRC	578-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96	<	. 033 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	ANTRC	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96	<	. 033 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	B2CEXM	57B-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96	<	. 059 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	B2CEXM	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96	$<$. 059 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	B2CIPE	57B-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96	<	. 2 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	B2CIPE	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96	<	. 2 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	B2CLEE	57B-96-11X	80571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96	<	. 033 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	B2CLEE	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96	<	. 033 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	B2EHP	578-96-11x	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96	<	. 62 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	B2EHP	578-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96	$<$. 62 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	BAANTR	57B-96-11X	B0571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96	<	. 17 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	BAANTR	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96	<	. 17 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	BAPYR	57B-96-11X	B0571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96	<	. 25 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	BAPYR	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96	<	. 25 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	BBFANT	57B-96-11X	BD571110	DV4S*539	OEXK	03-SEP-96	23-SEP-96	<	. 21 UGG	. 0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	BBFANT	57B-96-11X	BX571110	DV4S*529	OEXK	03-SEP-96	23-SEP-96	<	. 21 UGG	. 0
ABB-ES ABB-ES	ORGANICS/SOIL/GCMS ORGANICS/SOIL/GCMS	LM18 LM18	BBZP BBZP	57B-96-11X $578-96-11 X$	BD571110 BX571110	DV4S*539 DV4S*529	OEXK	$03-$ SEP-96 03-SEP-96	23-SEP-96 23-SEP-96	<	.17 UGG .17 UGG	. 0

Appendix D-3
FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

Appendix D-3
Table: D-18
FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

Appendix D-3
Table: D-18
FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value Unit	RPD
ABB-ES	VOLATILES/SOIL/GCMS	LM19	CHBR 3	57B-96-11X	BD571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	. 0069 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	CHBR3	57B-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 0069 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	CHCL3	57B-96-11X	BD571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	. 00087 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	CHCL3	57B-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 00087 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCNS	LM19	CLC6H5	57B-96-11X	BD571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	. 00086 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCNS	LM19	CLC6H5	57B-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 00086 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCNS	LM19	CS2	578-96-11x	B0571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	. 0044 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	CS2	578-96-11x	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 0044 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCNS	LM19	DBRCLM	57B-96-11x	BD571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	. 0031 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	DBRCLM	57B-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 0031 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	ETC6H5	57B-96-11X	BD571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	. 0017 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	ETC6H5	57B-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 0017 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	MEC6H5	57B-96-11X	8×571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96		. 0018 UGG	79.1
ABB-ES	VOLATILES/SOIL/GCMS	LM19	MEC6H5	57B-96-11X	BD571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	. 00078 UGG	79.1
ABB-ES	VOLATILES/SOIL/GCMS	LM19	MEK	57B-96-11X	BD571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	. 07 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	MEK	57B-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 07 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	MIBK	57B-96-11X	BD571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	. 027 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	MIBK	57B-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 027 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	MNBK	578-96-11X	BD571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	. 032 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	MNBK	57B-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 032 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	STYR	57B-96-11X	BD571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	$.0026 \text { UGG }$. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	STYR	57B-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 0026 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	T13DCP	578-96-11X	B0571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	. 0028 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	T13DCP	578-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 0028 UGG	. 0

Appendix D-3
FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS site 10	IRDMIS Field Sarmle Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value Unit	RPD
ABB-ES	VOLATILES/SOIL/GCMS	LM19	tclea	57B-96-11X	BD571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	. 0024 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	TCLEA	57B-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 0024 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	TCLEE	57B-96-11X	BD571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	. 00081 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	TCLEE	57B-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 00081 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	TCLTFE	578-96-11X	BD571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96		. 012 UGG	29.7
ABB-ES	VOLATILES/SOIL/GCMS	LM19	TCLTFE	57B-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96		. 0089 UGG	29.7
ABB-ES	VOLATILES/SOIL/GCMS	LM19	TRCLE	578-96-11x	B0571110	DV45*539	YGRK	03-SEP-96	11-SEP-96	<	. 0028 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	TRCLE	57B-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 0028 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	XYLEN	57B-96-11X	BD571110	DV4S*539	YGRK	03-SEP-96	11-SEP-96	<	. 0015 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	XYLEN	57B-96-11X	BX571110	DV4S*529	YGRK	03-SEP-96	11-SEP-96	<	. 0015 UGG	. 0
ABB-ES	METALS/WATER/CVAA	S801	HG	57M-96-11X	M05711x1	DV4W*305	QJRF	02-DCT-96	22-0CT-96	<	. 243 UGL	. 0
ABB-ES	METALS/WATER/CVAA	SB01	HG	57M-96-11X	MX5711X1	DV4W*535	QJRF	02-0CT-96	22-0CT-96	<	. 243 UGL	. 0
ABB-ES	METALS/WATER/GFAA	SD09	TL	57M-96-11X	M05711x 1	DV4W*305	UCGG	02-0CT-96	29-0CT-96	$<$	6.99 UGL	. 0
ABS-ES	METALS/WATER/GFAA	SD09	TL	57M-96-11X	MX5711X1	DV4W*535	UCGG	02-0CT-96	29-0СT-96	$<$	6.99 UGL	.0
ABB-ES	METALS/WATER/GFAA	SD20	PB	57M-96-11x	MD5711X 1	DV4W*305	WCVH	02-0СT-96	29-OCT-96	<	1:26 UGL	. 0
ABB-ES	METALS/WATER/GFAA	SD20	PB	57M-96-11X	MX5711X1	DV4W*535	WCVH	02-0СT-96	29-0CT-96	<	1.26 UGL	. 0
ABB-ES	METALS/WATER/GFAA	SD21	SE	57M-96-11X	MD5711x1	DV4W*305	XCLH	02-0CT-96	02-NOV-96	<	3.02 UGL	. 0
ABB-ES	METALS/WATER/GFAA	S021	SE	57M-96-11X	M $\times 5711 \times 1$	DV4**535	XCLH	02-0CT-96	02-NOV-96	<	3.02 UGL	. 0
ABB-ES	METALS/WATER/GFAA	S022	AS	57M-96-11X	M05711x1	DV4W*305	YCOH	02-0CT-96	02-NOV-96		170 UGL	. 0
ABB-ES	METALS/WATER/GFAA	S022	AS	57M-96-11X	MX5711×1	DV4W*535	YCQH	02-0Ст-96	02-NOV-96		170 UGL.	. 0

METALS/HATER/GFAA

 METALS/WATER/ICP
METALS/WATER/ICP
METLS/LATER/ICP
 METALS/WATER/ICP
METALS/WATER/ICP
METALS/HATER/ICP
METALS/WATER/ICP METALS/HATER/ICP METALS/WATER/ICP METALS/HATER/ICP METALS/WATER/ICP
METALS/WATER/ICP METALS/WATER/ICP
METALS/WATER/ICP METALS/WATER/ICP
METALS/WATER/ICP

Appendix D-3
FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

Contractor	Nethod Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Value Unit	RPD
ABB-ES	METALS/WATER/ICP	SS18	K	57M-96-11X	MD5711X1	DV4W*305	OCDE	02-0CT-96	23-0CT-96	1920 UGL	13.3
ABB-ES	METALS/WATER/ICP	SS18	K	57M-96-11X	MX5711x1	DV4W*535	OGDE	02-0CT-96	23-0СT-96	1680 UGL	13.3
ABB-ES	METALS/WATER/ICP	SS18	MG	57M-96-11x	M $\times 5711 \times 1$	DV4Wネ535	OCDE	02-0CT-96	23-0CT-96	1190 UGL	- 0
ABB-ES	METALS/WATER/ICP	SS18	MG	57M-96-11X	MD5711x1	DV4W*305	OGDE	02-0СТ-96	23-0CT-96	1190 UGL	. 0
ABB-ES	METALS/WATER/ICP	SS18	MN	57M-96-11X	MD5711x1	DV4W*305	OGDE	02-0CT-96	23-0СT-96	2100 UGL	5.4
ABB-ES	METALS/WATER/ICP	SS18	MN	57M-96-11X	MX5711x1	DV4Wえ535	OGDE	02-0CT-96	23-0СТ-96	1990 UGL.	5.4
ABB-ES	METALS/WATER/ICP	SS18	NA	57M-96-11X	M05711x1	DV4W*305	OCDE	02-0CT-96	23-0CT-96	4050 UGL	1.5
ABB-ES	METALS/WATER/ICP	SS18	NA	57M-96-11X	MX5711X1	DV4W*535	OGDE	02-0СТ-96	23-0СТ-96	3990 UGL	1.5
ABB-ES	METALS/WATER/ICP	SS18	NI	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	OCDE	02-0CT-96	23-DCT-96 <	7.11 UGL	. 0
ABB-ES	METALS/WATER/ICP	SS18	NI	57M-96-11X	MD5711X1	DV4W*305	OGDE	02-0СТ-96	23-0СT-96 <	7.11 UGL	. 0
ABB-ES	METALS/WATER/ICP	SS18	V	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	OCDE	02-0CT-96	23-0CT-96 <	4.69 UGL	. 0
ABB-ES	METALS/WATER/ICP	SS18	V	57M-96-11X	MD5711x1	DV4W*305	OGDE	02-0СТ-96	23-0CT-96 <	4.69 UGL	. 0
ABB-ES	METALS/WATER/ICP	SS18	2N	57M-96-11X	M $\times 5711 \times 1$	DV4W\#535	OCDE	02-0CT-96	23-OCT-96<	35.8 UGL	. 0
ABB-ES	METALS/WATER/ICP	SS18	2N	57M-96-11X	MD5711X1	DV4W*305	OCDE	02-0СT-96	23-0CT-96 <	35.8 UGL	. 0
ABB-ES	TOTAL NITROGEN/WATER/TECH	TF26	N2KJEL	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	SHOB	02-0CT-96	28-0CT-96	448 UGL	13.8
ABB-ES	TOTAL NITROGEN/WATER/TECH	TF26	N2KJEL	57M-96-11X	MD5711x1	DV4W*305	SHOB	02-0СT-96	28-0СT-96	390 UGL	13.8
ABB-ES	TOTAL NITROGEN/WATER/TECH	TF26	N2KJEL	ZWN-96-19X	MDZW19X1	DV4W*304	SHOB	30-SEP-96	28-0CT-96 <	183 UGL	. 0
ABB-ES	TOTAL NITROGEN/WATER/TECH	TF26	N2KJEL	ZHN-96-19X	MXZW19x1	DV4W*510	SHOB	30-SEP-96	28-0CT-96 <	183 UGL	. 0
ABB-ES	PHOSHATES/WATER/TECHNICON	TF27	PO4	57M-96-11X	MD5711×1	DV4W*305	LHAC	02-0CT-96	22-0СT-96	70.8 UGL	7.6
ABB-ES	PHOSHATES/WATER/TECHNICON	TF27	PO_{4}	57M-96-11X	MX5711x1	DV4W*535	WHAC	02-0CT-96	22-0СT-96	65.6 UGL	7.6
ABB-ES	PHOSHATES/WATER/TECHNICON	TF27	PO4	2WM-96-19x	MXZW19X1	DV4W*510	LHAC	30-SEP-96	22-0СT-96	19.8 UGL	6.3
ABB-ES	PHOSHATES/WATER/TECHNICON	TF27	PO4	ZWM-96-19X	MDZW19X1	DV4W*304	LHAC	30-SEP-96	22-0СT-96	18.6 UGL	6.3

Appendix $D-3$
Table: D-18
FIELD DUPLCATE RESULTS
FT. DEVENS DV4 1996

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS site ID	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Value Unit	RPD
ABB-ES	PESTICIDES/WATER/GCEC	UHO2	PCB016	57M-96-11X	MD5711x1	DV4W*305	SDaF	02-0CT-96	13-0CT-96 <	. 16 UGL	- 0
ABB-ES	PESTICIDES/WATER/GCEC	UHO2	PCB016	57M-96-11X	MX5711x1	DV4W*535	SOQF	02-0СT-96	14-0СТ-96 <	. 16 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UHO2	PCB221	57M-96-11X	M05711x1	DV4W*305	SOQF	02-0CT-96	13-0СT-96 <	. 16 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UHO2	PCB221	57M-96-11X	MX5711x1	DV4W*535	SOQF	02-0CT-96	14-0СТ-96 <	. 16 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UHO2	PCB232	57M-96-11X	MX5711×1	DV4W*535	SDaF	02-0CT-96	14-0СТ-96 <	. 16 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UHO2	PCB232	57M-96-11X	MD5711x1	DV4W*305	SOQF	02-0CT-96	13-0СТ-96 <	. 16 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UHO2	PCB242	57M-96-11X	MX5711X1	DV4W*535	SDQF	02-0CT-96	14-OCT-96 <	. 19 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UHO2	PCB242	57M-96-11X	MD5711x1	DV4W*305	SDQF	02-0СT-96	13-0СТ-96 <	. 19 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UHO2	PCB248	57M-96-11X	M $\times 5711 \times 1$	DV4 ${ }^{\star} \times 535$	SOAF	02-0ct-96	14-OCT-96 <	. 19 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UHO2	PCB248	57M-96-11X	MD5711x1	DV4W*305	SOQF	02-0CT-96	13-0СТ-96 <	. 19 UGL	. 0
ABS-ES	PESTICIDES/WATER/GCEC	UHO2	PCB254	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	SDQF	02-0CT-96	14-OCT-96 <	. 19 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UHO2	PCB254	57M-96-11X	MD5711x1	DV4W*305	SDQF	02-0СТ-96	13-0СТ-96 <	. 19 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UHO2	PCB260	57M-96-11X	MD5711x1	DV4 ${ }^{*} \times 305$	SDQF	02-0СT-96	13-ОСТ-96 <	. 19 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UHO2	PCB260	57M-96-11X	MX5711x1	DV4W*535	SDQF	02-0СT-96	14-OCT-96 <	. 19 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ABHC	57M-96-11X	MD5711×1	DV4W*305	TDBG	02-0CT-96	31-OCT-96<	. 0385 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ABHC	57M-96-11X	MX5711×1	DV4W*535	TDBG	02-0CT-96	31-0СТ-96 <	. 0385 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ACLDAN	57M-96-11X	MX5711×1	DV4W*535	TDBG	02-0CT-96	31-OCT-96<	. 075 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ACLDAN	57M-96-11X	MD5711X1	DV4W*305	TDBG	02-0CT-96	31-OCT-96 <	. 075 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	AENSLF	57M-96-11x	MD5711x1	DV4W*305	TDBG	02-0CT-96	31-OCT-96<	. 023 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	AENSLF	57M-96-11X	MX5711X1	DV4W*535	TDBG	02-0CT-96	31-0СТ-96 <	. 023 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ALDRN	57M-96-11X	MX5711X1	DV4W*535	TDBG	02-0CT-96	31-OCT-96<	. 0918 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ALDRN	57M-96-11X	MD5711x1	DV4W*305	TDBG	02-0СT-96	31-0СТ-96 <	. 0918 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	BBHC	57M-96-11X	MX5711×1	DV4W*535	TDBG	02-0СТ-96	31-DСТ-96 <	. 024 UGL	. 0

Appendix $\mathrm{D}-3$
Table: $\mathrm{D}-18$
FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Nunber	Lot	Sample Date	Analysis Date	<	Value Unit	RPD
ABB-ES	PESTICIDES/WATER/GCEC	UH13	BBHC	57M-96-11X	MD5711x1	DV4W*305	TDBG	02-0CT-96	31-0CT-96	<	. 024 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC.	UH13	BENSLF	57M-96-11X	MX5711×1	DV4W*535	TDBG	02-0СT-96	31-0CT-96	<	. 023 UGL	. 0
ABS-ES	PESTICIDES/WATER/GCEC	UH13	BENSLF	57M-96-11X	M05711x1	DV4W*305	TDBG	02-0CT-96	31-0CT-96	<	. 023 UGL	. 0
ABB-ES	PESTICIDES/HATER/GCEC	UH13	DBHC	57M-96-11X	mX5711×1	DV4 ${ }^{\star}$ 535	TDBG	02-0CT-96	31-OCT-96	<	. 0293 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	DBHC	57M-96-11X	MD5711X1	DV4W*305	TDBG	02-0СT-96	31-0CT-96	<	. 0293 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	DLDRN	57M-96-11X	MX5711x1	DV4 ${ }^{\text {* }} 535$	TDBG	02-0CT-96	31-0СT-96	<	. 024 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	DLDRN	57M-96-11X	HD5711x1	DV4W*305	TDBG	02-0СT-96	31-0CT-96	<	. 024 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ENDRN	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	TOBG	02-0CT-96	31-0CT-96	<	. 0238 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ENDRN	57M-96-11X	MD5711x1	DV4W*305	TDBG	02-0СT-96	31-0СT-96	<	. 0238 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ENDRNA	57M-96-11X	MX5711×1	DV4W*535	TDBG	02-OCT-96	31-OCT-96	<	. 0285 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ENDRNA	57M-96-11X	HD5711x1	DV4W*305	TDBG	02-0СT-96	31-0CT-96	<	. 0285 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ENDRNK	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	TDBG	02-0CT-96	31-OCT-96	<	. 0285 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ENDRNK	57M-96-11X	MD5711x	DV4N*305	TDBG	02-0CT-96	31-0CT-96	<	. 0285 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ESFSO4	57M-96-11X	M $\times 5711 \times 1$	DV4 ${ }^{\text {\# }} 535$	TDBG	02-0СT-96	31-OCT-96	<	. 0786 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ESFSO4	57M-96-11X	MD5711X1	DV4N*305	TDBG	02-0СT-96	31-0СT-96	<	. 0786 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	GCLDAN	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	TDBG	02-OCT-96	31-OCT-96	<	. 075 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	GCLDAN	57M-96-11X	MD5711x1	DV4W*305	TDBG	02-0CT-96	31-OCT-96	<	. 075 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	HPCL	57M-96-11X	MX5711×1	DV4 ${ }^{\star}$ 535	TDBG	02-OCT-96	31-0CT-96	<	. 0423 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	HPCL	57M-96-11X	MD5711x1	DV4W*305	TDBG	02-0СT-96	31-OCT-96	<	. 0423 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	HPCLE	57M-96-11X	MX571181	DV4 ${ }^{\star}$ 535	TDBG	02-0CT-96	31-OCT-96	<	. 0245 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	HPCLE	57M-96-11X	MD5711x1	DV4W*305	TDBG	02-0СT-96	31-0CT-96	<	. 0245 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ISCDR	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	TDBG	02-OCT-96	31-0СT-96	<	. 0562 UGL.	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	ISORR	57M-96-11X	MD5711x 1	DV4W*305	TDBG	02-0CT-96	31-0СT-96	<	. 0562 UGL	. 0

FIELD DubLe: D-18 RESULTS
FT. DEVENS DV4 1996

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Value Unit	RPD
ABB-ES	PESTICIDES/WATER/GCEC	UH13	LIN	57M-96-11X	MX5711x1	DV4W*535	TDBG	02-0ct-96	31-0Ст-96 <	. 0507 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	LIN	57M-96-11X	MD5711x1	DV4W*305	TDBG	02-0CT-96	31-0СТ-96 <	. 0507 UGL	. 0
ABB-ES	PESticIdes/WATER/GCEC	UH13	MEXCLR	57M-96-11X	M \times 5711x1	DV4W*535	tDBG	02-OCT-96	31-OCT-96 <	. 057 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	MEXCLR	57M-96-11X	MD5711X1	DV4W*305	TDBG	02-OCT-96	31-0СT-96 <	. 057 UGL	. 0
ABB-ES	PESticides/UATER/GCEC	UH13	PPDDD	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	TDBG	02-0CT-	31-OCT-96 <	. 0233 UGL	. 0
ABB-ES	PESTICIDES/HATER/GCEC	UH13	PPDDD	57M-96-11X	MD5711x1	DV4W*305	TDBG	02-OCT-96	31-0CT-96 <	. 0233 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	PPDDE	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	TDBG	02-OCT-96	31-OCT-96 <	. 027 UGL	. 0
ABB-ES	PESTICIDES/LATER/GCEC	UH13	PPDDE	57M-96-11X	MD5711x1	DV4W*305	TDBG	02-0CT-96	31-0СT-96 <	. 027 UGL	. 0
ABB-ES	PEsticides/Water/gcec	UH13	PPDDT	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	TDBG	02-0CT-96	31-OCT-96 <	. 034 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	PPDDT	57M-96-11X	MD5711x1	DV4W^305	TDBG	02-0CT-96	31-0CT-96 <	. 034 UGL	. 0
ABB-ES	PESTICIDES/HATER/GCEC	UH13	TXPHEN	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	TDBG	02-0CT-96	31-OCT-96 <	1.35 UGL	. 0
ABB-ES	PESTICIDES/WATER/GCEC	UH13	TXPHEN	57M-96-11X	MD5711x1	DV4W*305	TDBG	02-OCT-96	31-0CT-96 <	1.35 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	123 MM	57M-96-11X	MD5711x1	DV4W*305	WDIM	02-0CT-96	08-0СT-96	8 UGL	46.2
ABB-ES	ORGANICS/WATER/GCMS	UM18	123 TMB	57M-96-11X	MX5711x1	DV4W*535	LDIM	02-0CT-96	08-0CT-96	5 UGL	46.2
ABB-ES	ORGANICS/WATER/GCMS	UM18	124 TCB	57M-96-11X	MX5711x1	DV4W*535	hDIM	02-0CT-96	08-0СT-96 <	1.8 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	124TCB	57M-96-11X	MD5711x1	DV4W*305	LDIM	02-0CT-96	08-0СТ-96 <	1.8 UGL	. 0
ABB-ES	ORGANICS/HATER/GCMS	UM18	120CLB	57M-96-11X	MD5711x1	DV4W*305	hDIM	02-0ct-96	08-0CT-96	3.4 UGL	26.7
ABB-ES	ORGANICS/WATER/GCMS	UM18	12 CLLB	57M-96-11X	MX5711x1	DV4W*535	WDIM	02-0CT-96	08-0СT-96	2.6 UGL	26.7
ABB-ES	ORGANICS/WATER/GCMS	UM18	13DCLB	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	WDIM	02-OCT-96	08-OCT-96 <	1.7 UGL	. 0
ABb-ES	ORGANICS/WATER/GCMS	UM18	13DCLB	57M-96-11X	MD5711x1	DV4W*305	WDIM	02-0CT-96	08-0.5-96 <	1.7 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	14DCLB	57M-96-11X	M $\times 5711 \times 1$	DV4W*535	LDIM	02-0CT-96	08-0CT-96 <	1.7 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	14DCLB	57M-96-11X	MD5711x1	DV4W*305	W0	02-0ct-96	08-0СT-96 <	1.7 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	245 TCP	57M-96-11X	MX5711X1	DV4W*535	LDIM	02-0CT-96	08-0CT-96 <	5.2 UGL	. 0

FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	$<$	Value Unit	RPD
ABB-ES	ORGANICS/WATER/GCMS	UM18	245TCP	57M-96-11X	MD5711x1	DV4W*305	WDIM	02-0СT-96	08-0CT-96	<	5.2 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	246TCP	57M-96-11X	MX5711X1	DV4W*535	LDIM	02-0Ст-96	08-0Ст-96	<	4.2 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	$246 T C P$	57M-96-11X	MD5711x1	DV4W*305	WDIM	02-0CT-96	08-0СT-96	<	4.2 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	24DCLP	57M-96-11X	MX5711x1	DV4W*535	WDIM	02-0СT-96	08-0CT-96	<	2.9 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	24DCLP	57M-96-11X	MD5711x1	DV4W*305	WDIM	02-0СT-96	08-0СТ-96	<	2.9 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UN18	24DHPN	57M-96-11X	MX5711x1	DV4W*535	LDIM	02-0Ст-96	08-0СТ-96	<	5.8 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	24DMPN	57M-96-11X	MD5711x1	DV4W*305	WDIM	02-0СT-96	08-0СТ-96	<	5.8 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	240NP	57M-96-11X	MX5711x1	DV4W*535	LDIM	02-0CT-96	08-0СT-96	<	21 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	24DNP	57M-96-11X	MD5711x1	DV4W*305	WDIM	02-0СT-96	08-DCT-96	<	21 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	24DNT	57M-96-11X	MX5711x1	DV4W*535	LDIM	02-0СT-96	08-0СT-96	<	4.5 UCL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	24DNT	57M-96-11X	MD5711x1	DV4W*305	WDIM	02-0CT-96	08-0CT-96	<	4.5 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	260NT	57M-96-11X	MX5711x1	DV4W*535	WDIM	02-0СT-96	08-0CT-96	<	. 79 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	260NT	57M-96-11X	MD5711x1	DV4W*305	LDIM	02-0CT-96	08-0СT-96	<	. 79 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UN18	2CLP	57M-96-11X	MX5711x1	DV4W*535	WDIM	02-0СT-96	08-0СT-96	<	. 99 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2CLP	57M-96-11X	MD5711x1	DV4W*305	WDIM	02-0СТ-96	08-0СT-96	<	. 99 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2CNAP	57M-96-11X	MX5711x1	DV4W*535	WDIM	02-0СT-96	08-0CT-96	<	. 5 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	LM18	2CNAP	57M-96-11X	MD5711x1	DV4W*305	WDIM	02-0СT-96	08-0CT-96	$<$. 5 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2MNAP	57M-96-11X	MX5711x1	DV4W*535	WDIM	02-0CT-96	08-0CT-96	<	1.7 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	ZMNAP	57M-96-11X	MD5711x1	DV4W*305	WDIM	02-0СТ-96	08-0CT-96	<	1.7 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2 MP	57M-96-11X	MX5711×1	DV4W*535	WDIM	02-0CT-96	08-0СT-96	<	3.9 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2MP	57M-96-11X	MD5711x1	DV4W*305	WDIM	02-0CT-96	08-0СT-96	<	3.9 UGL	. 0
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM18 UM18	2NANIL 2NANIL	$57 M-96-11 X$ $57 M-96-11 X$	MX5711x1 MD5711x1	DV4W*535 DV4W*305	WDIM	02-0CT-96 02-0CT-96	08-OCT-96 08-0CT-96	$<$	4.3 UGL 4.3 UGL	. 0

FIELD DUPLICATE RESULTS

31
81
ع
FIELD DUPLICATE RESULTS
FT．DEVENS DV4 1996.
苛 鸡 Vatur
 MM 1．9 UG 6．7 UG
4．8 UGL 1.6 $\stackrel{~}{3}$
 $\begin{array}{ll} & \begin{array}{c}\text { IRDMIS } \\ \text { Field }\end{array} \\ \text { IRDMIS } & \begin{array}{c}\text { Sample }\end{array} \\ \text { Site ID } & \text { Number }\end{array}$
DV4 ${ }^{\text {® } 535 ~ W D I M ~ 02-O C T-96 ~ 08-O C T-96 ~<~}$

 $\begin{array}{ll}\text { 57M－96－11x MX5711x1 } & \text { DV4 } W^{\star} 535 \text { WDIM 02－OCT－96 08－OCT－96 }< \\ \text { 57M－96－11X MD5711x1 } & \text { DV4W } 305 \text { LDIM 02－OCT－96 08－OCT－96 }<\end{array}$ 57M－96－11X MX5711X1 DV4W＾535 LDIM 02－0CT－96 08－OCT－96＜
 DV4W＊305 WDIM 02－OCT－96 08－0CT－96＜ $\begin{array}{ll}\text { 57M－96－11x MD5711x1 } & \text { DV4W＊305 WDIM 02－OCT－96 08－OCT－96 } \\ 57 \mathrm{M}-96-11 \times & \\ \text { MX5711x } & \text { DV4W＊535 WDIM 02－OCT－96 08－OCT－96 }\end{array}$ $\begin{array}{ll}\text { 57M－96－11X MX5711x1 } & \text { DV4W＊535 WDIM 02－OCT－96 08－OCT－96 } \\ \text { 57M－96－11X M05711X1 } & \text { DV4W＊305 LDIM 02－OCT－96 08－OCT－96 }\end{array}$ 57M－96－11x MX5711x1 DV4W＾535 LDIM 02－OCT－96 08－OCT－96＜ $\begin{array}{ll}\text { 57M－96－11X MX5711X1 } & \text { DVLW＊535 WDIM 02－OCT－96 08－OCT－96 } \\ 57 M-96-11 \times \text { MD5711X1 } & \text { DV4W＊305 }\end{array}$ $\begin{array}{ll}\text { 57M－96－11X MX5711X1 } & \text { DV4W＊535 WDIM 02－OCT－96 08－OCT－96 }< \\ \text { 57M－96－11X M05711X1 } & \text { DV4W＊305 WDIM 02－OCT－96 08－OCT－96 }<\end{array}$ $\begin{array}{ll}\text { 57M－96－11X MX5711X1 } & \text { DVL }{ }^{\star} \text { 535 WDIM 02－OCT－96 08－OCT－96 } \\ \text { 57M－96－11X M05711X1 } & \text { DV4W＊305 WDIM 02－OCT－96 08－OCT－96 }\end{array}$ 57M－96－11X MX5711X1 DV4W夫535 LDIM 02－OCT－96 08－OCT－96＜

ORGANICS／WATER／GCMS
oreanics／natekcis
ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS
ORGANICS／HATER／GCMS
ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS

ORGANICS／WATER／GCMS
ORGANICS／HATER／GCMS
ORGANICS／WATER／GCMS

ABB－ES
Contractor Method Description
Appendix D-3
Table: D-18
FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

Appendix D-3
FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

 엉 헉 목 홍 홍 M 8.6 UGL
8.6 UGL 4.8 UGL
4.8 UGL 3.3 UGL 헝 홍

FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

Appendix D-3
Table: D-18
FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996
Q

Appendix D-3
FIELD DUPLICATE RESULTS
FT. DEVENS DV4 1996

VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS
VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS
VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS
VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS VOLATILES/HATER/GCMS VOLATILES/WATER/GCMS
VOLATILES/WATER/GCMS VOLATILES/HATER/GCMS
VOLATILES/HATER/GCMS VOLATILES/WATER/GCMS
VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS VOLATILES/ATILES/WATER/GCMS VOLATILES/WATER/GCMS
VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS

Table：D－18
FIELD DUPICAEE RESULTS
FT．DEVENS DV4 1996

$\begin{gathered} \mathbf{S}^{-\dagger} .7 \\ \hline \end{gathered}$	$\begin{aligned} & 790 \\ & \hline \end{aligned}$	$\begin{aligned} & 96-120-60 \\ & 96-120-60 \end{aligned}$	$\begin{aligned} & 96-100-20 \\ & 96-100-20 \end{aligned}$	$\begin{aligned} & \operatorname{sic\alpha } \\ & \mathrm{s} 7 \alpha \mathrm{x} \end{aligned}$		$\begin{aligned} & \text { LXLULSOW } \\ & \text { LXILLSXW } \end{aligned}$	$\begin{aligned} & x 11-96-w<5 \\ & \times 11-96-w<5 \end{aligned}$	N37 $1 \times$ Nヨา 1 x	$\begin{aligned} & \text { ozwn } \\ & \text { o己Wh } \end{aligned}$	SWOJ／צ31甘M／S31IItion SWכэ／Уヨ1УM／SヨาII甘า0＾	$\begin{aligned} & 53-894 \\ & 53-894 \end{aligned}$
0^{-}	าต o 0	96－150－60	96－150－20	s7ax	502＊Mヶへ0	IXILLSCOW	X $15-96-625$	Hzunn	ozwn	SWכэ／צヨ1\％M／S3าII＊าon	S3－88\％
0^{*}	19n 01	96－130－60	96－100－20	s70x	5£5＊Нヶへ0	LXLILSXW	Xll－96－WLS	lizunn	02wn	SWכT／8ヨ1VM／S3711\％70＾	S3－88\％
$0 \cdot$	\％O\％	96－150－60	96－130－20	s70x	$50 \Sigma_{*} \times \dagger \wedge 0$	IXILISSOW	XIL－96－WLS	zozunn	O2W7	SWכэ／צヨivM／S31II＊Ton	S3－88\％
$0{ }^{\circ}$	70n 01	96－130－60	96－130－20	s70x	S¢5＊MケイO	LXLLLSXW	XLL－96－WLS	z0z\x	02wn	SWอэ／8314M／S3าIIV70＾	S3－894
0°	70n 2	96－130－60	96－190－20	s70x	50£＊Mクイロ	EXILLSCW	XIL－96－W25	86lynn	O2W7		S3－89\％
0°	$790 \sim$	96－120－60	96－130－20	s70x		LXLILSXW	x1L－96－WLS	86LxN	02 wn	SWอэ／צヨ1vM／S3าIL＊า0＾	S3－898
$0 \cdot$	$79 n 9$	96－130－60	96－150－20	s70x		LxILCSOW	XIL－96－WLS	26lynn	Ozwn	SWכэ／ช̇IVM／S3าIL＊า0＾	S3－898
0^{*}	7ตก 9	96－150－60	96－150－20	s70x	S£5＊ハサイ	LXLLLSXW	XLL－96－W25	261xnn	O2Wn	SWD9／8ヨ1vM／S	S3－884
$0{ }^{*}$	าวก じし	96－150－60	96－100－20	sา0x	50¢＊MヶイО	IXILISSOH	XIL－96－WLS	3าכ1	O2wn	S¢Јэ／צヨıทM／sэาII＊า0＾	S3－898
0^{*}	7ตก じし	96－150－60	96－130－20	s70x	S¢5＊Мทก0	LXLILSXW	XIL－96－WLS	3าวษ1	O2Wn		S3－gat
1－2	79n ぐゅ	96－150－60	96－150－20	S70x	5¢5＊丹ヶへの	LXILLSXW	X $11-96-6<5$	33าว1	O2un	SW59／8ヨ1VM／S37IIV70＾	S3－89\％
－2	70n 8 －\％	96－150－60	96－130－20	S70x	50£＊Mクイの	Exilicsow	XL6－96－W2S	33751	O2W		S3－884
0°	$7{ }^{\text {¢ }}$ 15＊	＞96－100－60	96－100－20	stox	50£＊Mヶへイ	IXILISSW	XIL－96－WLS	ช37	ozun	SWJ9／צヨ1vM／S37IIV70	S3－884
0^{*}	750	＞96－130－60	96－100－20	S70x	S¢S＊MヶイO	IXLLLSXW	XLL－96－WLS	＊ 3 フ1	02 W	SWD9／צGIVM／S37IIV70	S3－884
0°	79n L°	＞96－130－60	96－100－20	s70x	$505 *$ M \dagger ก0	EXILLSOW	Xll－96－W2S	djasll	O2wn	SWD9／צヨIVM／S3IIIVา0＾	S3－89\％
0^{*}	70 $2^{\text {－}}$	$>96-130-60$	96－130－20	s70x	SES＊MYイО	LXLLLSXH	XIL－96－W2S	dJosh1	02 hn		S3－884
$0 \times$	\％ 5°	96－130－60	96－100－20	S70x	50£ \times My $\ 0$	IXILLS ${ }^{\text {a }}$	XIL－96－WLS	y＜1s	Ozwn	SWכ9／8ヨ1＊M／S3าII甘า0＾	S3－884
Ody	7 ！un mıen	әдеロ		707	Jequin	Jequnn	OI 2 l ！ 5	auren	opoj		5．J7403
		s！s介jeut	әjdures		qe7	ә¢dues	SIWOyI	151	рочдах		
						Pla！			siway		
						SIWOXI					

$\xrightarrow[\rightarrow]{\text { SQL＞}}$ asdrv $\backslash a 2 m s d t a b$

1998 OFF-SITE LABORATORY DATA (SUPPLEMENTAL RI)

1.0 INTRODÚCTION

This Quality Control Summary Report (QCSR) provided a summary of quality control sample measurement associated with field sampling and analysis activities conducted during the 1998 Supplemental Field Investigation. Samples were analyzed at on-site and off-site laboratories. Data quality objectives and analytical methods for the 1998 investigation are the same as those described in Appendix D-2 and Appendix D-3 for the 1996 investigation. During the 1998 program, on-site analyses included only Total Recoverable Petroleum Hydrocarbon (TPHC) analysis. Off-site analyses included a subset of inorganics ($\mathrm{As}, \mathrm{Ba}, \mathrm{Cu}, \mathrm{Mn}, \mathrm{Pb}, \mathrm{Sb}, \mathrm{Se}$, and Zn), volatile, semivolatiles, pesticides, PCBs, TPHC, and Total Suspended Solids.

2.0 OFF-SITE DATA QUALITY CONTROL REVIEW

Quality control sample data associated with the off-site analytical program include method blanks, field QC blanks (rinse blanks and trip blanks), field duplicates, matrix spike/matrix spike duplicates (MS/MSD). Surrogate recovery data for volatile, semivolatiles, pesticides, and PCB analyses were also reviewed. Data quality interpretations were based on Quality Control limits specified by USEPA (USEPA, 1994; USEPA,1996; USEPA, 1989). With the exception of the items listed below, all analytical results generated during the field investigation met project QC goals and are usable without qualification. No results were rejected based on the QC review. A subset of results are considered estimated values.

2.1 Method Blanks

Method blanks results are summarized in Table D-1 and Table D-2. With the exception of the semivolatile compound bis(2-ethylhexyl)phthalate at $29 \mathrm{ug} / \mathrm{L}$, and the metal manganese at $11 \mu \mathrm{~g} / \mathrm{L}$, target analytes were not reported in aqueous method blanks. These results indicate the laboratory was free of laboratory introduced contamination for the majority of aqueous target analytes. Similar concentrations of bis(2ethylhexyl)phthalate and manganese in aqueous samples may represent laboratory contamination.

A small subset of target analytes were detected in soil method blanks including TPHC at $36.5 \mu \mathrm{~g} / \mathrm{g}$, barium ($8.31 \mu \mathrm{~g} / \mathrm{g}$), manganese ($21.2 \mu \mathrm{~g} / \mathrm{g}$), alpha-chlordane ($.0058-.0082$ $\mu \mathrm{g} / \mathrm{g}$), gamma-chlordane (. $0092-.013 \mu \mathrm{~g} / \mathrm{g}$), diacetone alcohol as a semivolatile tentatively identified compound. With the exception of the above analytes, the laboratory soil analyses were free of laboratory introduced contamination. Similar concentrations of the analytes listed above in soil samples may represent laboratory introduced contamination.

2.2 Rinse Blanks

Rinse blank results are summarized in Table D-3. With the exception of low concentrations of arsenic ($2.93 \mu \mathrm{~g} / \mathrm{L}$) and manganese ($6.28 \mu \mathrm{~g} / \mathrm{L}$), no other target analytes were detected in rinse blanks. These results indicate that field sampling processes did not contribute to sample contamination for the majority of target analytes. The low concentration of arsenic and manganese in the rinse blanks is not interpreted to have an impact on sample data usability.

2.3 Trip Blanks

Trip blank results are summarized in Table D-4. No target compounds were detected in any of the three trip blanks associated with this data set. These results indicate that no cross contamination of samples occurred during shipment and storage.

2.4 Surrogate Recoveries

Surrogate data were reviewed for all volatile (Table D-5), semivolatile (Table D-6), and pesticide and PCB (Table D-7) analyses. Surrogate recoveries were compared to limits specified in the USEPA Contract Laboratory Program (CLP).

Volatiles

Surrogate recoveries for all aqueous samples were within CLP limits indicating usable results were obtained for all water samples. Surrogate recoveries were within limits for all soils with the exception of DX570600 (57D-98-06X) and DX570800 (57D-98-08X) which had high recoveries of one of three surrogates. No volatile target analytes were

Harding Lawson Associates

reported in sample DX570800. Results for benzene, chlorobenzene, and toluene in samples DX570600 are potentially biased high.

Semivolatiles

Surrogate recoveries for all soil/sediment samples were within CLP limits indicating usable results were obtained. With the exception of water samples WX570300 (57W-9803X) and WX570400 (57W-98-04X), all surrogate recoveries for water samples met USEPA guidelines. Low recoveries ($28 \%-30 \%$) were reported in two base/neutral surrogates for samples WX570300 (57W-98-03X) and WX570400 (57W-98-04X) indicating a low bias for base/neutral compounds in these samples. All non-detect and detected results for these samples are considered estimated and potentially biased low.

Pesticides

With the exception of water sample MX570200 (57W-98-02X), sediment sample DX570500 (57D-98-05X), and soil samples SX570302 (57S-98-03X) and SX570701 (57S-98-07X), all samples had surrogate recoveries within CLP limits. Low recoveries were observed in the samples listed above, and all results for pesticides in water sample MX570200 (57W-98-02X), sediment sample DX570500 (57D-98-05X), and soil samples SX570302 (57S-98-03X) and SX570701 (57S-98-07X) are considered estimated and potentially biased low.

PCBs

Surrogate recoveries for all soil/sediment samples were within CLP limits indicating usable results were obtained. With the exception of water sample WX570400 (57W-9804X) with low recoveries ($19 \%-29 \%$), all water sample recoveries were within CLP limits. All results for water sample WX570400 (57W-98-04X) are considered estimated and potentially biased low.

2.5 Matrix Spike Results

Matrix spike data were reviewed for TOC, TPHC, and inorganics (Table D-8). Recoveries for all spike analytes were within USEPA Region I limits of $75 \%-125 \%$ for inorganic parameters with the exception of TOC, arsenic, and antimony in soils. TOC recoveries were 130% and 206%. Arsenic recoveries ranged from 27% to 148%. The

Harding Lawson Associates

APPENDIX D-4

spike concentration of TOC and arsenic in the matrix spikes was relatively low compared to the concentrations reported in the original samples. No data use qualifications were applied to the TOC or arsenic data based on these results. Antimony recoveries in two sets of MS/MSD samples ranged from $33 \%-56 \%$. Based on these results all antimony soil results are for method JS16 are considered to be estimated and potentially biased low.

2.6 Field Duplicate Results

One water duplicate MX5711XX and one soil duplicate SX570700 were collected during the 1998 program. Duplicate results are presented in Table D-9 and Table D-10. Relative percent difference (RPD) of results was compared to USEPA Region I goals of 30% for waters and 50% for soils.

Inorganics

All soil results were within USEPA limits. Results for barium and copper in water sample MX5711XX exceeded limits. Results for copper included detection at $8.54 \mu \mathrm{~g} / \mathrm{L}$ and a non-detect at $<5 \mu \mathrm{~g} / \mathrm{L}$. No data qualification was done because the detected concentration only slightly exceeded the reporting limit. Results for barium in all water samples should be considered estimated values.

Pesticides/PCBs

Results for all aqueous samples were reported as non-detects with agreement between duplicates for absence of contamination. Target analytes DDT and aroclor 1260 were reported in the soil duplicate with RPDs within USEPA limits indicating good precision.

Semivolatiles

No target compounds were reported in the soil duplicate pair. The compounds 1,2dichlorobenzene, 1,4 -dichlorobenzene, and naphthalene were detected in the aqueous samples. RPDs for all results exceeded the USEPA limits; however, concentrations were low ($<7 \mu \mathrm{~g} / \mathrm{L}$) relative to reporting limits and no qualification of data was done based on these duplicate results.

Harding Lawson Associates

Volatiles

With the exception of acetone in the soil duplicate, no VOCs were reported in soil samples demonstrating agreement for the absence of contamination. Acetone was reported at a concentration slightly greater than the reporting limit, and it was not interpreted to be a site related compound.

A number of target compounds were reported in the water duplicate pair. Detections include 1,2,4-trimethylbenzene, ethylbenzene, xylenes, trichloroethene, and tetrachloroethene. All RPDs were within USEPA limits indicating excellent precision for the sample pair.

Total Suspended Solids

One aqueous duplicated pair was collected. An RPD of 191 was observed in the data set indicating a large difference in results. These data indicate that all TSS data should be considered estimated.

TPHC

One soil duplicated pair was collected. An RPD of 108 was observed in the data set indicating a large difference in results. These data indicate that all off-site soil TPHC data should be considered estimated.

2.7 Tentatively Identified Compounds (TICs)

A subset of samples had non-target compounds reported as tentatively identified compounds (TICs) in the VOA and SVOA data. TICs are summarized on Table D-11.

The majority of SVOA non-target compounds were reported as unknowns. TICs included alkanes (C16-C29), β-sitosterol, and alpha-pinene. Sediment and soil samples contained numerous unknowns ranging in total concentration per sample from $<5 \mu \mathrm{~g} / \mathrm{g}$ to $171 \mu \mathrm{~g} / \mathrm{g}$. The β-sitosterol, and alpha-pinene are interpreted to represent natural organics. The alkanes and unknowns may represent fuel related contamination.

Harding Lawson Associates

No TICs were reported in VOA soils. A number of fuel related hydrocarbons were reported in aqueous samples including light alkanes, alkyl-substituted benzenes, and cyclohexanes which are indicators of possible gasoline contamination.

3.0 ONSITE DATA QUALITY CONTROL REVIEW

The 1998 field program included the on-site analysis of soil samples for Total Petroleum Hydrocarbons using a Modified USEPA Method 418.1 methodology. The data use objectives for the program was to provided data on the presence or absence of hydrocarbon contamination use in direction of the sampling program. Field data were used to locate explorations and select samples for off-site analysis. Data quality was assessed by evaluation of comparability of on-site results to split samples analyzed at the off-site laboratory.

3.1 Data Comparison and Evaluation

Comparability of the data was evaluated to determine if results were usable for defining the presence/absence and relative concentrations of TPH using the on-site data. Relative percent difference (RPD) calculations were used to determine the comparability of the on-site/off-site results. Results of the on-site/off-site analyses are summarized on Tables I-4 and I-5.

Soil Matrix

Fourteen soil split samples were submitted for off-site TPH-IR analysis. Split sample data for TPH is presented for soil matrices on Table I-4

Sediment Matrix

Eight sediment samples were submitted for off-site TPH-IR analysis. Split sample data for TPH is presented for sediment matrices on Table I-5.

3.1.1 Split-Sample Comparison Conclusions

There was a high degree of correlation between the on-site and off-site laboratories relative to soil and sediment data. Comparison of the on-site/off-site soil results indicate

Harding Lawson Associates

that 100 percent of the calculated soil sample results agree within the 100 percent RPD requirement set forth by the USEPA for field duplicates (USEPA, 1996). The remaining two soil samples were a duplicate pair (570700) that was reported below the reporting limit of the on-site lab but had positive detections in the off-site lab. Evaluation of the on-site results indicate that the sample matrix had a high water content, 25 percent and 27 percent total solids. This was a probable interference in the modified extraction procedure utilized by the on-site laboratory. The percent difference of the off-site duplicate result was 70 percent. This demonstrates a notable variance for the off-site results, and implies a high degree of variation within the homogeneity of the sample matrix for this sample.

For sediment samples, 75 percent of calculated RPDs were within the USEPA field duplicate limits. Two samples that exceeded RPDs of 100 had higher concentrations reported at the on-site laboratory. These results indicate a possible high bias at the on-site laboratory.

Based on the split sample results, field TPH results are usable for the determination of presence/absence and relative concentrations of TPH in the soil and sediment media.

TABLE D-4 Soil Comparison

Sample	570101	570200	570302	570401	570503	570601	570700
ID	On-site						
On-sult	1000	1400	14000	680	3200	2500	<800
Off-site result	393	1200	14800	1150	1750	4620	6170
RPD	87	15	6	51	59	60	$*$
Sample ID	570700 D	570701	570800	570900	571301,	571401	571503
On-site result	<740	32000	<800	1500	1600	1200	<270
Off-site result	1830	17000	494	1930	951	895	<27.9
RPD	$*$	61	0	25	51	29	0

* Refer to "Split Sample Comparison Conclusions".

Harding Lawson Associates

APPENDIX D-4

TABLE D-5 Sediment Comparison

Sample ID	570100	570200	570300	570400	570500	570600	570700	570800
On-site result	2500	<31000	<1800	<1500	5500	<380	5500	<390
Off-site result	103	452	185	246	3540	160	200	109
RPD	184	0	0	0	43	0	186	0

References:

U.S. Environmental Protection Agency (USEPA), 1989. "Region 1 Laboratory Data Validation Functional Guidelines For Evaluating Inorganic Analyses"; Hazardous Site Evaluation Division; February 1989.
U.S. Environmental Protection Agency (USEPA), 1994. "USEPA Contract Laboratory Program Statement of Work for Organic Analysis; OLM03.1; Office of Solid Waste and Emergency Response; EPA-540/R-94/073; August 1994.
U.S. Environmental Protection Agency (USEPA), 1996. "Region 1 EPA-NE Data Validation Guidelines For Evaluating Environmental Analyses"; Quality Assurance Unit Staff; Office of Environmental Measurement and Evaluation; December 1996

Harding Lawson Associates

TABLE D－1
METHOD BLANKS（SOIL）
FT．DEVENS AOC 57
1998 SUPPLEMENTAL FIELD INVESTIGATION

 !

 IRDMIS
Method
Code LM18
Contractor Method Description

TABLE D－1

윤 뭉

敬拿

 IRDMIS
Method
\qquad LM18
都

腎

TABLE D－2
METHOD BLANKS（Water）
FI DEVENS AOC 57
－
荧： を ذృずずずずずずす ずずずずずずずす

1998 SUPPLEMENTAL FIELD INVESIIGATION mamp

Emixit

登

Contractor Method Description

管

$\stackrel{\square}{4}$

華

Analysis

 NM
 Prep
Date
 ！

Test
Hane

．

ล
 IRDMIS Method
H02
Contractor Method Description

$\stackrel{t}{t}$
出出出 出出出 出出

TABLE D-2

 $\underset{\sim}{\infty}$
 Method Description
辇:
 м

Analysis
Date
登边

 1RDMIS
Method
M18
\qquad
 ¢

METHOD BLANKS（Water） FT．DEVENS AOC 57

Contractor	Method Description	IRDMIS Method Code	Test Name	Lot	Prep Date	Analysis Date
ABB－ES	ORGANICS／WATER／GCMS	LM18	NNDPA	WDIO	01－JUN－98	16－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCB016	WDHO	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCB016	WDIO	01－JUN－98	16－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCB221	WDHO	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCB221	WDIO	01－JUN－98	16－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCB232	WDHO	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCB232	WDIO	01－JUN－98	16－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCB242	WDHO	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCB242	WDIO	01－JUN－98	$16-J U N-98$
ABB－ES	ORGANICS／WATER／GCMS		PCB248	WDHO	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCB248	WDIO	01－JUN－98	16－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCB254	WDHO	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCB254	WDIO	01－JUN－98	16－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCB260	WDHO	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCB260	WDIO	01－JUN－98	16－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCP	WDHO	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PCP	WDIO	01－JUN－98	16－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PHANTR	WDHO	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PHANTR	WDIO	01－JUN－98	16－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PHENOL	WDHO	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PHENOL	WDI	01－JUN－98	16－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PPDDD	WDHO	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PPDDD	WDIO	01－JUN－98	16－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PPDDE	WDHO	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PPDDE	WDI	01－JUN－98	16－JUN－98
ABS－ES	ORGANICS／WATER／GCMS		PPDDT	WDH0	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PPDDT	WDI	01－JUN－98	16－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PYR	WDHO	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		PYR	WDIO	01－JUN－98	16－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		TXPHEN	WDHO	28－MAY－98	15－JUN－98
ABB－ES	ORGANICS／WATER／GCMS		TXPHEN	WDIO	01－JUN－98	16－JUN－98
ABB-ES	VOLATILES／WATER／GCMS	UM20	111TCE	XDG	03－JUN－98	03－JUN－98
ABB－ES	VOLATILES／WATER／GCMS		112TCE		03－JUN－98	03－JUN－98
ABB－ES	VOLATILES／WATER／GCMS		11DCE	XDG	03－JUN－98	03－JUN－98
ABB－ES	VOLATILES／WATER／GCMS		11DCLE	XDG	03－JUN－98	03－JUN－98

!

Analys
Date

家品
Prep
Date
＂

lest

끌

Method Description

㻤：

TABLE D－3

RINSE BLANKS
FT．DEVENS AOC 57
1998 SUPPLEMENTAL FIEL INVESTIGATION

总
\vdots
思
号
 Analysis
Date ！ \＆家

\circ
0
0
0
0
3
3
3
3

 SBK－98－001 SBK98001
 둥ㅎㅇㅁㅇㅎㅁㅁ
总总总总总总总

 コロコロコ

トトトトト ト ト ト

 $\stackrel{M}{\overline{3}}$ Method Description
 Contractor
 ＊－．
ABB－
$* ?^{*}$
$* ?^{*}$
$* ? *$
$* ?^{*}$
ABB－
ABB－
ABB－
ABB
ABB－
ABB
ABB

 TABLE D－3
RINSE BLANKS
FT．DEVENS AOC 57
1998 SUPPLEMENTAL FIELD INVESTIGATION IS

 RDMIS rows
UH13
UM18

ORGANICS／WATER／GCMS ORGANICS／WATER／GCM
 RRGANICS／WATER／GCMS ORGANICS／WATER／GCMS

资
 ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS
象第第号
我 ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS
ORGANICS／WAER／GCMS ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS
告

57

 ：苕

\section*{| 4 |
| :---: |
| 0 |
| 0 |}

Contractor Method Description

 : $\bar{N} \frac{1}{N} \frac{1}{N}$
\square

Contractor Method Description
ORGANICS/WATER/GCMS
ORGANICS/WATER/GCMS
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGAN ICS/WATER/GCMS
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS
ORGANICS/WATER/GCMS
ORGANICS/WATER/GCMS SWO5/XJIVM/SJI NY980
SWOS/YJIVM/SJIN甘SYO

VOLATILES/WATER/GCMS

 VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS
VOLATILES/WATER/GCMS VOLAT ILES/WATER/GCMS
VOLAT ILES/WATER/GCMS VOLAT ILES/WATER/GCMS
VOLAT ILES/WATER/GCMS
VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS
VOLATILES/WATER/GCMS

ロ

需：

毎
Analysis
Date

 ！

$\propto \propto \propto \propto \propto \alpha$
 $\stackrel{\pi}{2}$

\qquad MMMMMMNMMMMNMMMMMMMMMOMOMOMMMMNMMMM

을

 Sample

 IRDMIS $\begin{array}{l:l} \\ & \\ \vdots \\ \text { N } \\ \text { N }\end{array}$

o
0
0
0

钲空菏

 $\underset{\sim}{7}$

\＆

 aqo

 NֹN

\qquad
 IRDMIS䔒：

出

Contractor

 우NNNNNNN
 운NNNN․․․․․․

트드․

 avgmini
maxi

 Analysis Spik

$\stackrel{\infty}{2}$ 죽

ㅇㅇㅇ ㅇㅇㅇ0ㅇㅇㅇ0000000000ㅇ
 gegeqggeggegegeggegegg

틀 avg
mini
maxi

Sample

Lab
Number

皆

TABLE D-5

VOLATILE SURROGATE RESULTS

1998 SUPPLEMENTAL FIELD INVESTIGATION

TABLE D－5

VOLATILE SURROGATE RESULTS

1998 SUPPLEMENTAL FIELD INVESTIGATION

 N

 Kion웅

FB ak＊＊＊＊＊＊＊＊
avg
minimum
maximum

ontractor Method Description
出出出出出出出出出出出出出出

SEMIVOLATILE SURROGATE RESULTS
1998 SUPPLEMENTAL FIELD INVESTIGATION

$0_{1} \infty_{1} \omega_{1} \infty \infty \infty_{1} \infty \infty$

 мммммммммм
мммммммммм
 Nom－ominotin

玄

 ㅇN心N心灾灾NN

드드․

\qquad
table D－6

SEMIVOLATILE SURROGATE RESULTS

1998 SUPPLEMENTAL FIELD INVESTIGATION
 MMMMMMMMMMMMMM $\begin{array}{ll}\text { Analysis } & \text { Spike } \\ \text { Date } & \text { Value }\end{array}$

 ！
Sample
 NNNN

品等

 ＊＊＊＊＊＊＊＊＊＊＊号夽希

O．tㅇ․ ぶロ்

MNNNMNNNNNNNMNNNNNNN

 مioncio

TABLE D－6

SEMIVOLATILE SURROGATE RESULTS

1998 SUPPLEMENTAL FIELD investigation

 $\infty \infty$ u
$\infty=\underset{\sim}{\infty}=$
∞
 $N+a$
$\infty a N$in

웅

¢：下Non	
$\frac{0}{0} 0$	

MN

$M M$ ммммммммммммммммммммммммм

ロロ～ロ
\qquad
86－AVW－62 86－AVW－6
Date

은으웅

м

ninimum PHEND6

TABLE D－6
SEMIVOLATILE SURROGATE RESULTS
1998 SUPPLEMENTAL FIELD INVESTIGATION
∞
$8+5$
$8+8$

ㅇgggighyg NOLNMN！MMMF мйм мммммм

ММММММММММММ ммммммммммм

定家家定定定定家定定穵

$$
\begin{aligned}
& \text { Sample } \\
& \text { Date }
\end{aligned}
$$

minimum

$\sum^{\infty} \sum^{\infty} \sum^{\infty} \sum^{\infty} \sum^{\infty} \sum^{\infty} \sum^{\infty} \sum^{\infty} \sum^{\infty} \sum^{\infty} \sum^{\infty}$

 ぶ

Sample
Date

 MMMMMMMMMMMMM
MMMNMNMMMMMMM

∞
－in
TABLE D－6

SEMIVOLATILE SURROGATE RESULTS

1998 SUPPLEMENTAL FIELD INVESTIGATION
Percent

 $\stackrel{\rightharpoonup}{\sim}$
言息

 ： $* * * * * * * * *$
avg
minimum minimum
maximum IRDMIS
Method
Contractor Method Description \qquad

	\％®\％
	竞交
号	－
\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％	\％
	室室
	$\stackrel{\sim}{N}$
	윺움
－$\sim^{\text {n }}$	
	希炎
	玄运

㲮

ॐّ

1998 SUPPLEMENTAL FIELD INVESTIGATION

＋1	－1－1－1－1－1
E	
こ！	
\％	
－1	
，	
＇	
，	

으은윰은으은융뮤은응유윤으응 오운은 $\underset{y}{y}$ y象華
 Analysis

 Sample
 innunnNNNNNNN

 IRDMIS
field

 nُ	Mロロ 硕宗家 분 붕
	¢\％
	交交尩交
	交六穴
우오웅응ㅇㅇ으으으음ㅇㅁ오몸오 	
＊＊＊＊＊＊＊＊＊	${ }^{*}$
	$5{ }^{5}$
	安安定
$888 \times \times \times \times \times \times \times \times \times 888$	
	员등
33	
	× \times
OOOT－TOOO	，
	\％\％\％\％
	¢n¢

 $\sum_{\overline{3}}^{\infty} \sum_{\bar{\infty}}^{\infty} \sum_{j}^{\infty}$

受罗罝
TABLE D-6
SEMIVOLATILE SURROGATE RESULTS
1998 SUPPLEMENTAL FIELD INVESTIGATION

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS site ID	Field Sample Number	Lab Number		Sample Date	Analysis Date	Spike Value	Value Unit	Percent Recovery
ABB-ES	ORGANICS/WATER/GCMS	UM18	TRPD14	57P-98-02X	MX5702XX	ADV1 ${ }^{*} 20$	WDIO	26-MAY-98	16-JUN-98	50	51 UGL	102.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	TRPD14	57P-98-03X	MX5703XX	ADV1W*22	WDIO	26-MAY-98	16-JUN-98	50	48 UGL	96.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	TRPD14	57P-98-04X	MX5704XX	ADV1W*24	WDIO	26-MAY-98	16-JUN-98	50	48 UGL	96.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	TRPD 14	57M-96-11X	MX5711XX	ADV1W*26	WDIO	27-MAY-98	16-JUN-98	50	55 UGL	110.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	TRPD 14	57M-96-11X	MX5711XX	ADV1W*26	WDIO	27-MAY-98	16-JUN-98	50	52 UGL	104.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	TRPD 14	57M-96-11X	MX5711XX	ADV1W*26	WDIO	27-MAY-98	16-JUN-98	50	46 UGL	92.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	TRPD 14	57M-96-11X	MD5711XX	ADV1W*28	WDIO	27-MAY-98	16-JUN-98	50	49 UGL	98.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	TRPD 14	S8K-98-001	SBK98001	LADVIW*2	WDHO	21-MAY-98	15-JUN-98	50	47 UGL	94.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	TRPD 14	57W-98-02X	W×570200	LADV1W*5	WDHO	21-MAY-98	15-JUN-98	50	47 UGL	94.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	TRPD 14	57W-98-03X	WX570300	LADV1W*7	WDHO	21-MAY-98	15-JUN-98	50	20 UGL.	40.0
ABB-ES	ORGANICS/WATER/GCMS	UM18	TRPD 14 **********	57W-98-04X	WX570400	LADV1W*9	WDHO	21-MAY-98	15-JUN-98	50	19 UGL	38.0
			avg minimum maximum									$\begin{array}{r} 83.9 \\ 38.0 \\ 110.0 \end{array}$

I

Sample

剖豙音音内人⿱宀⿻心㇒山 ョะロッロ章定害害
 유ํN

震

 $\xrightarrow[\substack{\text { romis } \\ \text { nethid }}]{ }$
Contractor Method Description

20．
 Stugugug

 すずすずずすざ

人完寅容高京

 minimum
maximum －

UGEUUGUUUUU

 -

óo ó IRDMIS
Field

 avg
minimum
maximum

TABLE D－7
 PESTICIDE／PCB SURROGATE RESULTS

1998 SUPPLEMENTAL FIELD INVESTIGATION

苂： 9

\％
ロロロ
 ${ }_{\substack{\text { naly } \\ \text { pate } \\ \text { ate }}}$

ripons	

$\substack{\text { minimum } \\ \text { maxium }}$
miden IRDMIS
Method
Code

Contractor Method Description

－－moningmoonnay

$\frac{9}{2} \frac{9}{2}$	

紫类

$\stackrel{\circ}{9} \frac{0}{5}$

 －ースースース

 1

 IRDMIS
Field

TABLE D-7

PESTICIDE/PCB SURROGATE RESULTS

1998 SUPPLEMENTAL FIELD INVESTIGATION

∞_{0}^{∞}
tungutonmN outMontom "~N

${ }_{3}$
$\times \times \times$
Ooㅇㅇㄱ--80000
¢
1 ${ }^{1}{ }^{\text {c }}$ d ${ }^{\text {d }}$

E
윽
 $\underset{\text { maximum }}{\text { minimum }}$

 IRDMISMethod

ABB-ES	PESTICIDES/WATER/GCEC
ABB-ES	
PESTICIDES/WATER/GCEC	

TABLE D-7

TABLE 8
MATRIX ．SPIKE／MATRIX SPIKE DUPLICATE RESULTS

苞罢：号号劵
\qquad
으뭄

 әрaures
jeu！b！do
Percent
Recovery

 no
gusu
～～～ヘッM

MM
MiN
Min
0in

Nin

 IRDMIS

[^1]

$B A$
$B A$
$B A$
$B A$
$* * * *$

TABLE 8
MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number Lot	Sample Date	Analysis Date	Spike Value	Value <	Original Sample Value Unit	Percent Recovery	RPD
ABB-ES	METALS/SOIL/ICP	JS16	$\underset{* * * * * * * * * *}{ }$	57s-98-07X	SD570700	ADV1S*27 UBZJ	19-MAY-98	03-JUN-98	481	91.2	77.4 UGG	95.8	2.5
			avg minimem maximum									$\begin{aligned} & 96.5 \\ & 95.8 \\ & 98.2 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	$\begin{aligned} & \text { LH10 } \\ & \text { LH10 } \end{aligned}$	AENSLF AENSLF $* * * * * * * * *$	$\begin{aligned} & 57 s-98-14 x \\ & 57 s-98-14 x \end{aligned}$	$\begin{aligned} & \text { sx571401 } \\ & \text { SX571401 } \end{aligned}$	ADV1S*12 UFLG ADVIS*12 UFLG	$\begin{aligned} & \text { 20-MAY-98 } \\ & 20-\mathrm{MAY}-98 \end{aligned}$	$\begin{aligned} & \text { 29-JUN-98 } \\ & 29-\mathrm{JUN}-98 \end{aligned}$	$.0291$	$.011<$	$\begin{aligned} & .00602 \text { UGG } \\ & .00602 \text { UGG } \end{aligned}$	54.9 50.4	8.5 8.5
			avg minimum maximum									52.7 50.4 54.9	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	$\begin{aligned} & \text { LH10 } \\ & \text { LH10 } \end{aligned}$	$\begin{aligned} & \text { ALDRN } \\ & \text { ALDRN } \\ & * * * * * * * * \end{aligned}$	$\begin{aligned} & 57 \mathrm{~s}-98-14 \mathrm{X} \\ & 57 \mathrm{~s}-98-14 \mathrm{X} \end{aligned}$	SX571401SX571401	ADV1S*12 UFLG ADV1S*12 UFLG	$\begin{aligned} & 20-\mathrm{MAY}-98 \\ & 20-\mathrm{MAY}-98 \end{aligned}$	$\begin{array}{r} 29-\text { JUN-98 } \\ 29-J U N-98 \end{array}$	$.0291$	$\begin{aligned} & .0096< \\ & .00888< \end{aligned}$	$\begin{aligned} & .00729 \text { UGG } \\ & .00729 \text { UGG } \end{aligned}$	48.0 44.4	$\begin{aligned} & 7.8 \\ & 7.8 \end{aligned}$
			avg minimum maximum									46.2 44.4 48.0	
$\begin{aligned} & \text { ABB-ES } \\ & A B B-E S \end{aligned}$	PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	$\begin{aligned} & \text { LH10 } \\ & \text { LH10 } \end{aligned}$	BENSLF BENSLF 	$\begin{aligned} & 57 \mathrm{~s}-98-14 x \\ & 57 \mathrm{~s}-98-14 x \end{aligned}$	SX571401Sx571401	ADV1S*12 UFLG ADV1S*12 UFLG	$\begin{aligned} & \text { 20-MAY-98 } \\ & \text { 20-MAY-98 } \end{aligned}$	$\begin{aligned} & \text { 29-JUN-98 } \\ & 29-J U N-98 \end{aligned}$	$\begin{aligned} & .0291 \\ & .0291 \end{aligned}$	$.0103<$	$\begin{aligned} & .00663 \text { UGG } \\ & .00663 \text { UGG } \end{aligned}$	51.4 42.7	$\begin{aligned} & 18.7 \\ & 18.7 \end{aligned}$
			avg minimum maximum									47.1 42.7 51.4	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	$\begin{aligned} & \text { LH10 } \\ & \text { LH10 } \end{aligned}$	DLDRN DLDRN 	$\begin{aligned} & 57 s-98-14 x \\ & 57 s-98-14 x \end{aligned}$	$\begin{aligned} & \mathrm{SK571401} \\ & \mathrm{SX571401} \end{aligned}$	ADV1s*12 UFLG ADV1s*12 UFLG	$\begin{aligned} & \text { 20-MAY-98 } \\ & 20-\text { MAY- } 98 \end{aligned}$	$\begin{aligned} & \text { 29-JUN-98 } \\ & 29-J U N-98 \end{aligned}$	$\begin{aligned} & .0291 \\ & .0291 \end{aligned}$	$.00861<$	$\begin{aligned} & .00629 \text { UGG } \\ & .00629 \text { UGG } \end{aligned}$	49.9 43.0	14.9 14.9
			avg minimum maximem									46.5 43.0 49.9	
$\begin{gathered} A B B-E S \\ A B B-E S \end{gathered}$	PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH10	ENDRN ENDRN **********	$57 \mathrm{~S}-98-14 \times$$57 \mathrm{~S}-98-14 \mathrm{x}$s 571401Sx 51401		ADV1S*12 UFLG 20-MAY-98 29-JUN-98 ADV1S*12 UFLG 20-MAY-98 29-JUN-98			$\begin{aligned} & .0291 \\ & .0291 \end{aligned}$	$.0104<$	$\begin{aligned} & .00657 \text { UGG } \\ & .00657 \text { UGG } \end{aligned}$	51.9 46.9	10.3 10.3
			avg			49.4							

Contractor	Method Description	MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS FT. DEVENS AOC 57												
		IRDMIS Method Code	Test Name	IRDMIS site ID	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value <	Original Sample Value Unit	Percent Recovery	RPD
			minimum maximum										$\begin{array}{r} 91.2 \\ 112.8 \end{array}$	
ABB-ES	METALS/WATER/ICP	SS18	PB	57M-96-11X	MX5711xX	ADV1W*26	OGHG	27-MAY-	03-JUN-98	1000	$1020<$	50 UGL	102.0	2.0
ABB-ES	METALS/WATER/ICP	ss18	PB	57M-96-11X	MX57111x	ADV1 ${ }^{*} 26$	OGHG	27-MAY-	03-JUN-98	1000	$1000<$	50 UGL	100.0	2.0
ABB-ES	METALS/WATER/ICP	SS18	PB	57M-96-11X	MX57111XX	ADV1 ${ }^{*}$ 27	OGHG	27-MAY-	03-JUN-98	1000	$1010<$	50 UGL	101.0	. 0
ABB-ES	METALS/WATER/ICP	SS18	PB	57M-96-11X	MX5711xX	ADV1W*27								
			avg minimum maximum										$\begin{aligned} & 101.0 \\ & 100.0 \\ & 102.0 \end{aligned}$	
ABB-ES	METALS/WATER/ICP	SS18	SB	57M-96-11X	MX57111x	ADV1W*26	OGHG	27-MAY-	O3-JUN-98	1000	$1050<$	50 UGL	105.0	3.9 3.9
ABB-ES	METALS/WATER/ICP	SS18	SB	57M-96-11X	MX5711XX	ADV1 ${ }^{*} 26$	OGHG	27-MAY-	03-JUN-98	1000	$1010<$	50 UGL	101.0	3.9
ABB-ES	METALS/WATER/ICP	SS18	SB	57M-96-11X	MX57111X	ADV1 ${ }^{*} 27$	OGHG	27-MAY-	03-JUN-98	1000	$1030<$	50 UGL	103.	2.0
ABB-ES	METALS/WATER/ICP	SS18	SB	57M-96-11X	MX5711xX	ADV1W*27	OGHg	27-MAY-	03-JUN-98	1000	1010 <	50 UGL	101.0	2.0
	:		avg minimum maximum										$\begin{aligned} & 102.5 \\ & 101.0 \\ & 105.0 \end{aligned}$	
ABB-ES	METALS/WATER/ICP	SS18	SE	57M-96-11X	MX57111XX	ADV1W*26	OGHG	27-MAY-	03-JUN-98	1000	$991<$	50 UGL	99.1	. 5
ABB-ES	METALS/WATER/ICP	SS18	SE	57M-96-11X	MK57111x	ADV1 ${ }^{*} 26$	OGHG	27-MAY-	03-JUN-98	1000	986 <	50 UGL	98.6	. 3
ABB-ES	METALS/WATER/ICP	SS18	SE	57M-96-11X	MX57111X	ADV1 ${ }^{*} 27$	OGHG	27-MAY-	03-JUN-98	1000	998 <		99.8	-3
ABB-ES	METALS/WATER/ICP	SS18	SE **********	57M-96-11X	MX5711XX	ADV1W*27	OGHG	27-MAY-	03-JUN-98	1000				
			avg											
			minimum										98.6 99.8	
ABB-ES	METALS/WATER/ICP	SS18	ZN	57M-96-11X	MX5711xX	ADV1 ${ }^{*}$ * 26	OGHG	27-MAY-	03-JUN-98	1000	$986<$	35.8 UGL	98.6	.1
ABB-ES	METALS/WATER/ICP	SS18	ZN	57M-96-11X	MX5711xX	ADV14*26	OGHG	27-MAY-	03-JUN-98	1000	$985<$	35.8 UGL	98.5	.1
ABB-ES	METALS/WATER/ICP	SS18	ZN	57M-96-11X	MX5711XX	ADV1W*27	OGHG	27-MAY-	03-JUN-98	1000	976 <	35.8 UGL	97.6	. 0
ABB-ES	METALS/WATER/ICP	SS18	ZN 	57M-96-11X	MX5711XX	ADV1W*27	OGHG	27-MAY-	03-JUN-98	1000	976 <	35.8 UGL	97.6	. 0
			avg										98.1 97.6	
			minimum maximu										97.6 98.6	

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Nunber	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value <	Original Sample Value Unit	Percent Recovery	RPD
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	$\begin{aligned} & \text { UHO2 } \\ & \text { UHO2 } \end{aligned}$	PCB016	57M-96-11X	MX5711XX	ADV1W*26	SDWG	27-MAY-98	24-JUN-98	3.75	$3.73<$. 16 UGL	99.5	24.0
			PCBO16	57M-96-11X	MX5711XX	ADV1W*26	SDWG	27-MAY-98	24-JUN-98	3.75	$2.93<$. 16 UGL	78.1	24.0
			avg minimum maximum										$\begin{aligned} & 88.8 \\ & 78.1 \\ & 99.5 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	$\begin{aligned} & \text { UHO2 } \\ & \text { UHO2 } \end{aligned}$	PCB260	57M-96-11X	MX5711XX	ADV1 ${ }^{*}$ 26	SDWG	27-MAY-98	$24-J U N-98$ $24-J U N-98$	3.75	$3.83<$ $3.56<$.19 UGL .19 UGL	102.1 94.9	7.3
			$\begin{aligned} & \text { PCB260 } \\ & * * * * * * * * * \end{aligned}$	57M-96-11X	MX5711XX	ADV1W*26	SDWG	27-MAY-98	24-JUN-98	3.75	$3.56<$. 19 UGL	94.9	7.3
			avg										98.5	
			minimum										94.9	
			maximum											
$\begin{aligned} & A B B-E S \\ & A B B-E S \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	AENSLF	57M-96-11X	MX5711XX	ADV1 ${ }^{*} 26$	TDOI	27-MAY-98	27-JUN-98	. 5	$.368<$. 023 UGL	73.6	17.1
			AENSLF 	57M-96-11X	MX5711XX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 31 <	. 023 UGL	62.0	17.1
			avg										67.8	
			minimum										62.0	
			maximum										73.6	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	ALDRN	57M-96-11X	MX5711XX	ADV1 ${ }^{*} 26$	TDOI	27-MAY-98	27-JUN-98	. 5	. 299 <	. 0918 UGL	59.8	24.4
			ALDRN **********	57M-96-11X	MX5711XX	ADV1 ${ }^{*}$ 26	TDOI	27-MAY-98	27-JUN-98	. 5	. 234 <	. 0918 UGL	46.8	24.4
			avg										53.3	
			minimum							.			46.8	
			maximum										59.8	
ABB-ESABB-ES	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	BENSLF	57M-96-11X	MX5711XX	ADV1 ${ }^{\star}$ 26	TDOI	27-MAY-98	27-JUN-98	. 5	. 339 <	. 023 UGL	67.8	30.6
			BENSLF **********	57M-96-11X	MX5711xX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 249 <	. 023 UGL	49.8	30.6
			avg										58.8	
			minimum										49.8	
			maximum										67.8	
ABB-ES	PESTICIDES/WATER/GCEC	UH13	DLDRN	57M-96-11X	MX5711XX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 329 <	. 024 UGL	65.8	26.5
ABB-ES	PESTICIDES/WATER/GCEC	UH13	DLDRN	57M-96-11X	MX5711XX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 252 <	. 024 UGL	50.4	26.5

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Nunber	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value <	Original Sample Value Unit	Percent Recovery	RPD
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	$\begin{aligned} & \text { UHO2 } \\ & \text { UHO2 } \end{aligned}$	PCB016	57M-96-11X	MX5711XX	ADV1W*26	SDWG	27-MAY-98	24-JUN-98	3.75	$3.73<$. 16 UGL	99.5	24.0
			PCBO16	57M-96-11X	MX5711XX	ADV1W*26	SDWG	27-MAY-98	24-JUN-98	3.75	$2.93<$. 16 UGL	78.1	24.0
			avg minimum maximum										$\begin{aligned} & 88.8 \\ & 78.1 \\ & 99.5 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	$\begin{aligned} & \text { UHO2 } \\ & \text { UHO2 } \end{aligned}$	PCB260	57M-96-11X	MX5711XX	ADV1 ${ }^{*}$ 26	SDWG	27-MAY-98	$24-J U N-98$ $24-J U N-98$	3.75	$3.83<$ $3.56<$.19 UGL .19 UGL	102.1 94.9	7.3
			$\begin{aligned} & \text { PCB260 } \\ & * * * * * * * * * \end{aligned}$	57M-96-11X	MX5711XX	ADV1W*26	SDWG	27-MAY-98	24-JUN-98	3.75	$3.56<$. 19 UGL	94.9	7.3
			avg										98.5	
			minimum										94.9	
			maximum											
$\begin{aligned} & A B B-E S \\ & A B B-E S \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	AENSLF	57M-96-11X	MX5711XX	ADV1 ${ }^{*} 26$	TDOI	27-MAY-98	27-JUN-98	. 5	$.368<$. 023 UGL	73.6	17.1
			AENSLF 	57M-96-11X	MX5711XX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 31 <	. 023 UGL	62.0	17.1
			avg										67.8	
			minimum										62.0	
			maximum										73.6	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	ALDRN	57M-96-11X	MX5711XX	ADV1 ${ }^{*} 26$	TDOI	27-MAY-98	27-JUN-98	. 5	. 299 <	. 0918 UGL	59.8	24.4
			ALDRN **********	57M-96-11X	MX5711XX	ADV1 ${ }^{*}$ 26	TDOI	27-MAY-98	27-JUN-98	. 5	. 234 <	. 0918 UGL	46.8	24.4
			avg										53.3	
			minimum							.			46.8	
			maximum										59.8	
ABB-ESABB-ES	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	BENSLF	57M-96-11X	MX5711XX	ADV1 ${ }^{\star}$ 26	TDOI	27-MAY-98	27-JUN-98	. 5	. 339 <	. 023 UGL	67.8	30.6
			BENSLF **********	57M-96-11X	MX5711xX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 249 <	. 023 UGL	49.8	30.6
			avg										58.8	
			minimum										49.8	
			maximum										67.8	
ABB-ES	PESTICIDES/WATER/GCEC	UH13	DLDRN	57M-96-11X	MX5711XX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 329 <	. 024 UGL	65.8	26.5
ABB-ES	PESTICIDES/WATER/GCEC	UH13	DLDRN	57M-96-11X	MX5711XX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 252 <	. 024 UGL	50.4	26.5

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Nunber	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value <	Original Sample Value Unit	Percent Recovery	RPD
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	$\begin{aligned} & \text { UHO2 } \\ & \text { UHO2 } \end{aligned}$	PCB016	57M-96-11X	MX5711XX	ADV1W*26	SDWG	27-MAY-98	24-JUN-98	3.75	$3.73<$. 16 UGL	99.5	24.0
			PCBO16	57M-96-11X	MX5711XX	ADV1W*26	SDWG	27-MAY-98	24-JUN-98	3.75	$2.93<$. 16 UGL	78.1	24.0
			avg minimum maximum										$\begin{aligned} & 88.8 \\ & 78.1 \\ & 99.5 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	$\begin{aligned} & \text { UHO2 } \\ & \text { UHO2 } \end{aligned}$	PCB260	57M-96-11X	MX5711XX	ADV1 ${ }^{*}$ 26	SDWG	27-MAY-98	$24-J U N-98$ $24-J U N-98$	3.75	$3.83<$ $3.56<$.19 UGL .19 UGL	102.1 94.9	7.3
			$\begin{aligned} & \text { PCB260 } \\ & * * * * * * * * * \end{aligned}$	57M-96-11X	MX5711XX	ADV1W*26	SDWG	27-MAY-98	24-JUN-98	3.75	$3.56<$. 19 UGL	94.9	7.3
			avg										98.5	
			minimum										94.9	
			maximum											
$\begin{aligned} & A B B-E S \\ & A B B-E S \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	AENSLF	57M-96-11X	MX5711XX	ADV1 ${ }^{*} 26$	TDOI	27-MAY-98	27-JUN-98	. 5	$.368<$. 023 UGL	73.6	17.1
			AENSLF 	57M-96-11X	MX5711XX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 31 <	. 023 UGL	62.0	17.1
			avg										67.8	
			minimum										62.0	
			maximum										73.6	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	ALDRN	57M-96-11X	MX5711XX	ADV1 ${ }^{*} 26$	TDOI	27-MAY-98	27-JUN-98	. 5	. 299 <	. 0918 UGL	59.8	24.4
			ALDRN **********	57M-96-11X	MX5711XX	ADV1 ${ }^{*}$ 26	TDOI	27-MAY-98	27-JUN-98	. 5	. 234 <	. 0918 UGL	46.8	24.4
			avg										53.3	
			minimum							.			46.8	
			maximum										59.8	
ABB-ESABB-ES	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	BENSLF	57M-96-11X	MX5711XX	ADV1 ${ }^{\star}$ 26	TDOI	27-MAY-98	27-JUN-98	. 5	. 339 <	. 023 UGL	67.8	30.6
			BENSLF **********	57M-96-11X	MX5711xX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 249 <	. 023 UGL	49.8	30.6
			avg										58.8	
			minimum										49.8	
			maximum										67.8	
ABB-ES	PESTICIDES/WATER/GCEC	UH13	DLDRN	57M-96-11X	MX5711XX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 329 <	. 024 UGL	65.8	26.5
ABB-ES	PESTICIDES/WATER/GCEC	UH13	DLDRN	57M-96-11X	MX5711XX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 252 <	. 024 UGL	50.4	26.5

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Nunber	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value <	Original Sample Value Unit	Percent Recovery	RPD
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	$\begin{aligned} & \text { UHO2 } \\ & \text { UHO2 } \end{aligned}$	PCB016	57M-96-11X	MX5711XX	ADV1W*26	SDWG	27-MAY-98	24-JUN-98	3.75	$3.73<$. 16 UGL	99.5	24.0
			PCBO16	57M-96-11X	MX5711XX	ADV1W*26	SDWG	27-MAY-98	24-JUN-98	3.75	$2.93<$. 16 UGL	78.1	24.0
			avg minimum maximum										$\begin{aligned} & 88.8 \\ & 78.1 \\ & 99.5 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	$\begin{aligned} & \text { UHO2 } \\ & \text { UHO2 } \end{aligned}$	PCB260	57M-96-11X	MX5711XX	ADV1 ${ }^{*}$ 26	SDWG	27-MAY-98	$24-J U N-98$ $24-J U N-98$	3.75	$3.83<$ $3.56<$.19 UGL .19 UGL	102.1 94.9	7.3
			$\begin{aligned} & \text { PCB260 } \\ & * * * * * * * * * \end{aligned}$	57M-96-11X	MX5711XX	ADV1W*26	SDWG	27-MAY-98	24-JUN-98	3.75	$3.56<$. 19 UGL	94.9	7.3
			avg										98.5	
			minimum										94.9	
			maximum											
$\begin{aligned} & A B B-E S \\ & A B B-E S \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	AENSLF	57M-96-11X	MX5711XX	ADV1 ${ }^{*} 26$	TDOI	27-MAY-98	27-JUN-98	. 5	$.368<$. 023 UGL	73.6	17.1
			AENSLF 	57M-96-11X	MX5711XX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 31 <	. 023 UGL	62.0	17.1
			avg										67.8	
			minimum										62.0	
			maximum										73.6	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	ALDRN	57M-96-11X	MX5711XX	ADV1 ${ }^{*} 26$	TDOI	27-MAY-98	27-JUN-98	. 5	. 299 <	. 0918 UGL	59.8	24.4
			ALDRN **********	57M-96-11X	MX5711XX	ADV1 ${ }^{*}$ 26	TDOI	27-MAY-98	27-JUN-98	. 5	. 234 <	. 0918 UGL	46.8	24.4
			avg										53.3	
			minimum							.			46.8	
			maximum										59.8	
ABB-ESABB-ES	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	BENSLF	57M-96-11X	MX5711XX	ADV1 ${ }^{\star}$ 26	TDOI	27-MAY-98	27-JUN-98	. 5	. 339 <	. 023 UGL	67.8	30.6
			BENSLF **********	57M-96-11X	MX5711xX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 249 <	. 023 UGL	49.8	30.6
			avg										58.8	
			minimum										49.8	
			maximum										67.8	
ABB-ES	PESTICIDES/WATER/GCEC	UH13	DLDRN	57M-96-11X	MX5711XX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 329 <	. 024 UGL	65.8	26.5
ABB-ES	PESTICIDES/WATER/GCEC	UH13	DLDRN	57M-96-11X	MX5711XX	ADV1W*26	TDOI	27-MAY-98	27-JUN-98	. 5	. 252 <	. 024 UGL	50.4	26.5

Ni
Nin

table 8 MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS FT. DEVENS AOC 57														
Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value <	Original Sample Value Unit	Percent Recovery	RPD

			avg minimum maximum										58.1 50.4 65.8	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	ENDRN ENDRN	$57 \mathrm{M}-96-1$ $57 \mathrm{M}-96-1$	M M 5711 MX	ADV1 ${ }^{*} 26$ ADV1	TDOI	27-MAY-	$\begin{aligned} & 27-\text { JUN-98 } \\ & 27-\text { JUN-98 } \end{aligned}$. 5	$\begin{aligned} & .371< \\ & .28< \end{aligned}$	$\begin{aligned} & .0238 \text { UGL } \\ & .0238 \text { UGL } \end{aligned}$	74.2 56.0	$\begin{aligned} & 28.0 \\ & 28.0 \end{aligned}$

			avg minimum maximum										65.1 56.0 74.2	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	HPCL	57M-96-1 $57 \mathrm{M}-96-1$	MX5711XX MX5711XX	ADV1 $W^{*} 26$ ADV1	TDOI TDOI	27-MAY-	$\begin{aligned} & 27-\mathrm{JUN}-98 \\ & 27-\mathrm{JUN}-98 \end{aligned}$. 5	. $327<$	$\begin{aligned} & .0423 \text { UGL } \\ & .0423 \text { UGL } \end{aligned}$	65.4 52.0	$\begin{aligned} & 22.8 \\ & 22.8 \end{aligned}$
			HPCL **********	$57 M-96-1$	MX5711XX	ADV1W*26			27-JUN-98					
			avg minimum maximum										58.7 52.0 65.4	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	$\begin{aligned} & \text { ISOOR } \\ & \text { ISOOR } \end{aligned}$	$\begin{aligned} & 57 \mathrm{M}-96-1 \\ & 57 \mathrm{M}-96-1 \end{aligned}$	MK5711xX	ADV1W*26 ADV1W*26	$\begin{aligned} & \text { TDOI } \\ & \text { TDOI } \end{aligned}$	$\begin{aligned} & \text { 27-MAY- } \\ & 27-\text { MAY- } \end{aligned}$	$\begin{aligned} & \text { 27-JUN-98 } \\ & 27-J U N-98 \end{aligned}$	1	. $526<$	$\begin{aligned} & .0562 \text { UGL } \\ & .0562 \text { UGL. } \end{aligned}$	$\begin{aligned} & 66.0 \\ & 52.2 \end{aligned}$	$\begin{aligned} & 23.4 \\ & 23.4 \end{aligned}$
			********** avg minimum maximum										59.1 52.2 66.0	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	$\begin{aligned} & \text { UH13 } \\ & \text { UH13 } \end{aligned}$		$\begin{aligned} & 57 \mathrm{M}-96-1 \\ & 57 \mathrm{M}-96-1 \end{aligned}$	MX5711XX MX5711XX	ADV1 ${ }^{*}$ 26 ADV1W*26	TDOI TDOI	$27 \text {-MAY- }$ 27-MAY	$\begin{aligned} & 27-\mathrm{JUN}-98 \\ & 27-\mathrm{JUN}-98 \end{aligned}$	$\begin{aligned} & .5 \\ & .5 \end{aligned}$	$.294<$	$\text { . } 0507 \text { UGL UGL }$	$\begin{aligned} & 58.8 \\ & 48.6 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 19.0 \end{aligned}$
			$\operatorname{LIN}_{* * * * * * * * *}$	57M-96-										
			avg minimum maximum										53.7 48.6 58.8	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	$\begin{aligned} & \text { UH13 } \\ & \text { UH13 } \end{aligned}$	MEXCLR	57M-96-11	MX5711xX	ADV1W*26	TDOI	27-maY-	27-JUN-98	1	. 844 <	. 057 UGL	84.4	43.9
			MEXCLR **********	57M-96-	MX5711xX	ADV1W*26	TDOI	27-MAY-	27-JUN-98	1	. $54<$. 057 UGL	54.0	43.9
			avg minimum maximum										$\begin{aligned} & 69.2 \\ & 54.0 \\ & 84.4 \end{aligned}$	

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMISsite ID	MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS FT. DEVENS AOC 57						Value	Original Sample Value Unit	Percent Recovery	RPD
					IRDMIS Field Sample Number	Lab Number		Sample Date	Analysis Date	Spike Value				
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH13 UH13	PPDDT PPDDT	$\begin{aligned} & 57 M-96-11 \\ & 57 M-96-11 \end{aligned}$	MX5711XX MX5711XX	ADV1 ${ }^{*}$ 26 ADV1 ${ }^{*}$ 26	$\begin{aligned} & \text { TDOI } \\ & \text { TDOI } \end{aligned}$	$\begin{aligned} & 27 \text {-MAY- } \\ & 27-\text { MAY- } \end{aligned}$	$\begin{aligned} & 27-J U N-98 \\ & 27-J U N-98 \end{aligned}$	$\begin{aligned} & .5 \\ & .5 \end{aligned}$	$\begin{aligned} & .347< \\ & .229< \end{aligned}$	$\begin{aligned} & .034 \text { UGL } \\ & .034 \text { UGL } \end{aligned}$	69.4 45.8	$\begin{aligned} & 41.0 \\ & 41.0 \end{aligned}$
			avg minimum maximum										57.6 45.8 69.4	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM18 UM18	$\begin{aligned} & 12 \mathrm{TTCB} \\ & 12 \mathrm{~T} C \mathrm{TCB} \\ & * * * * * * * * \end{aligned}$	$\begin{aligned} & 57 M-96-11 \\ & 57 M-96-11 \end{aligned}$	MX5711xX MX5711XX	ADV1 ${ }^{*}$ *2 ADV1 ${ }^{*}$ 26		$\begin{aligned} & 27 \text {-MAY- } \\ & 27-M A Y- \end{aligned}$	$\begin{aligned} & 16-J U N-98 \\ & 16-J U N-98 \end{aligned}$	50 50	$\begin{aligned} & 32< \\ & 28< \end{aligned}$	$\begin{aligned} & 1.8 \text { UGL } \\ & 1.8 \mathrm{UGL} \end{aligned}$	64.0 56.0	13.3 13.3
			avg minimum maximum										60.0 56.0 64.0	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM18 UM18	$\begin{aligned} & \text { 14DCLB } \\ & \text { 14CLLB } \\ & * * * * * * * * \end{aligned}$	$\begin{aligned} & 57 \mathrm{M}-96-11 \\ & 57 \mathrm{M}-96-11 \end{aligned}$	MX5711XX MX5711XX	ADV1 ${ }^{*}$ *2 ADV1W*26	$\begin{aligned} & \text { WDIO } \\ & \text { WDIO } \end{aligned}$	$\begin{aligned} & 27-\mathrm{MAY}- \\ & 27-M A Y- \end{aligned}$	$\begin{aligned} & 16-\text { JUN }-98 \\ & 16-\mathrm{JUN}-98 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 28 \\ & 24 \end{aligned}$	$\begin{aligned} & 2.7 \text { UGL } \\ & 2.7 \text { UGL } \end{aligned}$	56.0 48.0	15.4 15.4
			avg minimum maximm										52.0 48.0 56.0	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	ORGANICS/WATER/GCMS	UM18	240NT	57M-96-11	MX5711xX	ADV1 ${ }^{*}$ 26	hDIO	27-maY-	16-JUN-98	50	$37<$	4.5 UGL	74.0	8.5
	ORGANICS/WATER/GCMS	UM18	${ }_{* * * * * * * * * *}^{240 N T}$	57M-96-11	MX5711XX	ADV1W*26	WDIO	27-MAY-	16-JUN-98	50	34 <	4.5 UGL	68.0	8.5
			avg minimum maximum										$\begin{aligned} & 71.0 \\ & 68.0 \\ & 74.0 \end{aligned}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	ORGANICS/WATER/GCMS	UM18	2CLP	57M-96-11	MX5711x	ADV1 ${ }^{*}$ 26	WDIO	27-maY-	16- JUN-98	100	$1.4<$. 99 UGL	1.4	. 0
	ORGANICS/WATER/GCMS	LM18	$\frac{2 c i p}{* * * * * * * *}$	57M-96-11	MX5711XX	ADV1 ${ }^{\star}$ 26	WDIO	27-mAY-	16-JUN-98	100	1.4 <	. 99 UGL	1.4	. 0
			avg minimum maximum										1.4 1.4 1.4	
ABB-ES	ORGANICS/WATER/GCMS	UM18	$4 \mathrm{4C3C}$	57M-96-11	MX5711XX	ADV1 ${ }^{*} \times 26$ ADV1	wolo	27-MAY-	$16-J U N-98$ $16-J U N-98$	100 100	$4<$	4 4 4 UGL	4.0 4.0	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	4CL3C	57M-96-1	MX5711XX	ADV1W*26	holo	27-MAY-9	16-JuN-98					

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number		Sample Date	$\begin{aligned} & \text { Analysis } \\ & \text { Date } \end{aligned}$	Spike Value	Value <	Original Sample Value Unit	Percent Recovery	RPD
			**********										--------	
			avg minimum						.				4.0 4.0 4.0	
			maximum										4.0	
ABB-ESABB-ES	ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	$\begin{aligned} & \text { UM18 } \\ & \text { UM18 } \end{aligned}$	$4_{4 N P}$	57M-96-1	MX5711XX	ADV1 ${ }^{\star} \times$ ADV1		27-MAY-98 27-MAY-98	$16-J U N-98$ $16-J U N-98$	100 100	$\begin{aligned} & 12< \\ & 12< \end{aligned}$	$\begin{aligned} & 12 \text { UGL } \\ & 12 \text { UGL } \end{aligned}$	12.0 12.0	. 0
			${ }_{* * * * * * * * * *}^{\text {NP }}$	57M-96-1	MX5711XX	ADV1W*		27-MAY-98	$16-\mathrm{JUN}-98$					
			avg minimum										12.0	
			maximum										12.0	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABS-ES } \end{aligned}$	ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM18	ANAPNE	57M-96-1	MX5711XX	ADV1 ${ }^{*}$	hDIO	27-MAY-98	16-JUN-98	50	$37<$	1.7 UGL	74.0	11.4
			anAPNE	$57 \mathrm{M}-96-1$	MX5711XX	ADV1W*		27-MAY-98	16-JUN-98	50		1.7 UGL	6.0	
													70.0	
			avg minimum										66.0	
			maximum										74.0	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	$\begin{aligned} & \text { UM18 } \\ & \text { UM18 } \end{aligned}$	NNDNPA	57M-96-1	MX5711XX	ADV1 ${ }^{*}$	h010	27-MAY-98	16-JUN-98	50	$39<$	4.4 UGL	78.0	10.8
			NNDNPA	57M-96-11	MX5711XX	ADV1W*		27-MAY-98	16-JUN-98	50	35 <	4.4 UGL	70.0	
													74.0	
			minimum										70.0	
			maximum										78.0	
ABB-ESABB-ES	ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM18UM18	PCP	57M-96-1	MX5711XX	ADV1 ${ }^{*}$	holo	27-MAY-98	16-JUN-98	100	$60<$	18 UGL	60.0	6.9
			PCP	57M-96-1	MX5711XX	ADV1W*		27-MAY-98	16-JUN-98	100	56 <	18 UGL	56.0	6.9

			avg minimum										56.0	
			maximum										60.0	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM18	PHENOL	57M-96-1	MX5711XX	ADV1 ${ }^{*}$		27-MAY-98	16-JUN-98	100	$9.2<$	9.2 UGL	9.2	. 0
			PHENOL い14	57M-96-1	MX5711XX	ADV1W*		27-MAY-98	16-JUN-98	100	$9.2<$	9.2 UGL	9.2	. 0
													9.2	
			minimum										9.2	
			maximum						*				9.2	

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS FT. DEVENS AOC 57														
Contractor Method Description		IRDMIS Method Code	Test	IRDMIS Site ID	IRDMIS Field Sample Number	$\begin{aligned} & \text { Lab } \\ & \text { Number } \end{aligned}$	Lot	$\begin{aligned} & \text { Sample } \\ & \text { Date } \end{aligned}$	Analysis Date	Value Spike Value	Value	Original Sample Value Unit	Percent Recovery	RPD
ABB-ES ABB-ES	ORGANICS/WATER/GCMS ORGANICS/HATER/GCMS	UM18	PYR PYR PYR 	$\begin{aligned} & 57 \mathrm{M}-96-11 \\ & 57 \mathrm{M}-96-11 \end{aligned}$	$\begin{aligned} & \text { MX5711xX } \\ & \text { KX5711XX } \end{aligned}$	ADV1 ${ }^{*} 26$ ADV1W*26	$3 \text { holo }$	$\begin{aligned} & 27-\text { MAY-9 } \\ & 27-\text { MAY-9 } \end{aligned}$	$\begin{aligned} & \text { 16-JUN-98 } \\ & \text { 16-JUN-98 } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$39 \ll$	$2.8 \text { UGLL }$	78.0 74.0	5.3 5.3
			avg minimum maximum										76.0 74.0 78.0	
$\begin{aligned} & \text { ABB-ES } \\ & A B B-E S \end{aligned}$	VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS	$\begin{aligned} & \text { UM20 } \\ & \text { UM20 } \end{aligned}$	$\begin{aligned} & 11 \text { 11DEE } \\ & 1100 \mathrm{E} \\ & * * * * * * * * * \end{aligned}$	57M-96-11 $57 \mathrm{M}-96-11$	Mx5711XX	ADV1 ${ }^{\star}$ 2 26 ADV1w*26	XDGV XDGV	27-MAY-9	03-JUN-98 03-JUN-98	50 50	45<	.5 UGL	98.0 88.0	2.2 2.2
			avg minimum maximum										89.0 88.0 90.0	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS	$\begin{aligned} & \text { UM20 } \\ & \text { UM20 } \end{aligned}$	C6H6 C6H6 **********	$\begin{aligned} & 57 M-96-11\rangle \\ & 57 M-96-11\rangle \end{aligned}$	MX5711XX MX5711XX	ADV1 $W^{*} 26$ ADV1W*26	$\begin{aligned} & 3 \text { XDGV } \\ & 3 \text { XDGG } \end{aligned}$	$\begin{aligned} & 27-\mathrm{MAY}-9 \\ & 27-\mathrm{MAY}-9 \end{aligned}$	$\begin{aligned} & 03-\text { JUN }-98 \\ & 03-\text { JUN-98 } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 49 \ll \\ & 47< \end{aligned}$	$\begin{aligned} & .5 \mathrm{UGL} \\ & .5 \mathrm{UGL} \end{aligned}$	98.0	4.2
			avg minimum maximum										96.0 94.0 98.0	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	VOLATILES/WATER/GCMS VOLATILES/WATER/GCMS	$\begin{aligned} & \text { UM20 } \\ & \text { UM20 } \end{aligned}$	CLCGH5 CLCGH5 	$\begin{aligned} & 57 M-96-11\rangle \\ & 57 M-96-11\rangle \end{aligned}$	MX5711xX MX5711XX	ADV1W*26 ADV1W*26	$\begin{aligned} & \text { XDGV } \\ & 3 \text { XDGG } \end{aligned}$	$\begin{aligned} & \text { 27-MAY-9 } \\ & 27-\text { MAY-9 } \end{aligned}$	$\begin{aligned} & 03-\text { JUN-98 } \\ & 03-\text { JUN-98 } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 50< \\ & 49< \end{aligned}$.5 UGL	100.0 88.0	2.0 2.0
			avg minimum maximum										$\begin{array}{r} 99.0 \\ 99.0 \\ 100.0 \end{array}$	
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	VOLATILES/HATER/GCMS VOLATILES/WATER/GCMS	$\begin{aligned} & \text { UM20 } \\ & \text { UM20 } \end{aligned}$	MEC6H5 MEC6H5 	$\begin{aligned} & 57 M-96-11\rangle \\ & 57 M-96-11\rangle \end{aligned}$	M×5711xX MX5711XX	ADV1W*26 ADV11**26	$\begin{aligned} & \mathrm{XDGV} \\ & 30 \mathrm{OGV} \end{aligned}$	$\begin{aligned} & \text { 27-MAY-9 } \\ & 27-M A Y-9 \end{aligned}$	03-JUN-98 03-JUN-98	50 50	47 <	. 5 UGL	94.0 94.0	. 0
			avg minimum maximm										94.0 94.0 94.0	
${ }_{\text {ABB }}^{\text {ABB-ES }}$	VOLATILES/NATER/GCMS VOLATILES/WATER/GCMS	UM20	${ }_{\text {TRCLE }}^{\text {TRCLE }}$	57M-96-11 $57 \mathrm{M}-96-11$	MX5711\%	ADV1 $1{ }^{*} \times 26$ ADV1 $W^{*} 26$	XDGV	27-MAY-9	O3-JUN-98 $03-\mathrm{JUN}-98$	50 50	51 48	3.7 3.7 UGL	102.0 96.0	6.1 6.1

\%

Contractor Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	TABLE 8 MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS FT. DEVENS AOC 57					
				IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value

		avg minim maxim							

TABLE D-9
field duplicate result filtered samples

TABLE D-10
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES
FT. DEVENS AOC 57 TABLE D-10
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES
FT. DEVENS AOC 57

Value Unit	RPD
2120000 UGL	191.4
46700 UGL	191.4

1998 SUPPLEMENTAL FIELD INVESTIGATION

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB } \end{aligned}$		$\begin{aligned} & 1602 \\ & 1602 \end{aligned}$	$\begin{aligned} & \text { TSS } \\ & \text { TSS } \end{aligned}$	$\begin{aligned} & 57 \mathrm{M}-96-11 \mathrm{X} \\ & 57 \mathrm{M}-96-11 \mathrm{X} \end{aligned}$	$\begin{aligned} & \text { MX5711XX } \\ & \text { MD5711XX } \end{aligned}$	ADV1W*26 ADV1W*28		$\begin{aligned} & \text { 27-MAY-98 } \\ & 27-\text { MAY-98 } \end{aligned}$	$\begin{aligned} & 02-\text { JUN-98 } \\ & 02-J U N-98 \end{aligned}$
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$		$\begin{aligned} & 9071 \\ & 9071 \end{aligned}$	$\begin{aligned} & \text { TPHC } \\ & \text { TPHC } \end{aligned}$	$\begin{aligned} & 57 \mathrm{~s}-98-07 x \\ & 57 \mathrm{~s}-98-07 \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { SX570700 } \\ & \text { SD570700 } \end{aligned}$	LADV1S*7 ADV1S*27		$\begin{aligned} & \text { 19-MAY-98 } \\ & \text { 19-MAY-98 } \end{aligned}$	$\begin{aligned} & 11-\text { JUN-98 } \\ & 16-\text { JUN-98 } \end{aligned}$
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-E } \end{aligned}$	METALS/SOIL/ICP-MS METALS/SOIL/ICP-MS	$\begin{aligned} & \mathrm{J} 301 \\ & \mathrm{~J} 301 \end{aligned}$	$\begin{aligned} & \text { AS } \\ & \text { AS } \end{aligned}$	$\begin{aligned} & 57 s-98-07 x \\ & 57 s-98-07 x \end{aligned}$	$\begin{aligned} & \text { sX570700 } \\ & \text { SD570700 } \end{aligned}$	LADVIS*7 ADV1S*27		$\begin{aligned} & \text { 19-MAY-9 } \\ & \text { 19-MAY-9 } \end{aligned}$	$\begin{aligned} & 30-J U N-98 \\ & 30-J U N-98 \end{aligned}$
$\begin{aligned} & \text { ABB-ES } \\ & A B B-E S \end{aligned}$	METALS/SOIL/ICP-MS METALS/SOIL/ICP-MS	$\begin{aligned} & \text { J301 } \\ & \text { J301 } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \mathrm{SE} \end{aligned}$	$\begin{aligned} & 57 \mathrm{~s}-98-07 x \\ & 57 \mathrm{~s}-98-07 x \end{aligned}$	$\begin{aligned} & \text { sX570700 } \\ & \text { SD570700 } \end{aligned}$	LADV1S*7 ADV1S*27		$\begin{aligned} & \text { 19-MAY-98 } \\ & \text { 19-MAY-98 } \end{aligned}$	$\begin{aligned} & 30-\text { JUN-98 } \\ & 30-J U N-98 \end{aligned}$
$\begin{aligned} & \text { ABB-ES } \\ & A B B-E S \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \mathrm{BA} \\ & \mathrm{BA} \end{aligned}$	$\begin{aligned} & 57 s-98-07 x \\ & 575-98-07 x \end{aligned}$	$\begin{aligned} & \text { SX570700 } \\ & \text { SD570700 } \end{aligned}$	LADV1S*7 ADV1S*27	$\begin{aligned} & \text { UBZJ } \\ & \text { UBZJ } \end{aligned}$	$\begin{aligned} & \text { 19-MAY-98 } \\ & \text { 19-MAY-98 } \end{aligned}$	$\begin{aligned} & 03-J U N-98 \\ & 03-J U N-98 \end{aligned}$
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \mathrm{CU} \\ & \mathrm{CU} \end{aligned}$	$\begin{aligned} & 57 \mathrm{~s}-98-07 x \\ & 575-98-07 x \end{aligned}$	$\begin{aligned} & \text { SX570700 } \\ & \text { SD570700 } \end{aligned}$	LADV1S*7 ADV1S*27		$\begin{aligned} & \text { 19-MAY-98 } \\ & \text { 19-MAY-98 } \end{aligned}$	$\begin{aligned} & 03-\mathrm{JUN}-98 \\ & 03-\mathrm{JUN}-98 \end{aligned}$
$\begin{aligned} & \text { ABB-ES } \\ & A B B-E S \end{aligned}$	$\begin{aligned} & \text { METALS/SOIL/ICP } \\ & \text { METALS/SOIL/ICP } \end{aligned}$	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \text { MN } \\ & \text { MN } \end{aligned}$	$\begin{aligned} & 57 \mathrm{~s}-98-07 x \\ & 57 \mathrm{~s}-98-07 x \end{aligned}$	$\begin{aligned} & \text { SX570700 } \\ & \text { SD570700 } \end{aligned}$	LADV1S*7 ADV1S*27	UBZJ	$\begin{aligned} & \text { 19-MAY-98 } \\ & \text { 19-MAY-98 } \end{aligned}$	$\begin{aligned} & 03-\mathrm{JUN}-98 \\ & 03-\mathrm{JUN}-98 \end{aligned}$
$\begin{aligned} & \text { ABB-ES } \\ & A B B-E S \end{aligned}$	$\begin{aligned} & \text { METALS/SOIL/ICP } \\ & \text { METALS/SOIL/ICP } \end{aligned}$	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & P B \\ & P B \end{aligned}$	$\begin{aligned} & 57 s-98-07 x \\ & 575-98-07 x \end{aligned}$	$\begin{aligned} & \text { SX570700 } \\ & \text { SD570700 } \end{aligned}$	LADV1S*7 ADV1S*27	$\begin{aligned} & \text { UBZJ } \\ & \text { UBZJ } \end{aligned}$	$\begin{aligned} & \text { 19-MAY-98 } \\ & \text { 19-MAY-98 } \end{aligned}$	$\begin{aligned} & 03-\mathrm{JUN}-98 \\ & 03-\mathrm{JUN}-98 \end{aligned}$
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB- } \end{aligned}$	METALS/SOIL/ICP METALS/SOIL/ICP	$\begin{aligned} & \text { Js16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \text { SB } \\ & \text { SB } \end{aligned}$	$\begin{aligned} & 57 s-98-07 x \\ & 57 s-98-07 x \end{aligned}$	$\begin{aligned} & \text { sX570700 } \\ & \text { SD570700 } \end{aligned}$	LADV1S*7 ADV1S*27	$\begin{aligned} & \text { UBZJ } \\ & \text { UBZJ } \end{aligned}$	$\begin{aligned} & \text { 19-MAY-98 } \\ & \text { 19-MAY-98 } \end{aligned}$	$\begin{aligned} & 03-J U N-98 \\ & 03-J U N-98 \end{aligned}$
$\begin{aligned} & \text { ABB-ES } \\ & \text { ABB-ES } \end{aligned}$	$\begin{aligned} & \text { METALS/SOIL/ICP } \\ & \text { METALS/SOIL/ICP } \end{aligned}$	$\begin{aligned} & \mathrm{JS} 16 \\ & \mathrm{JS} 16 \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SE } \end{aligned}$	$\begin{aligned} & 575-98-07 x \\ & 575-08-07 x \end{aligned}$	$\begin{aligned} & \text { SX570700 } \\ & \text { SD570700 } \end{aligned}$	LADV1S*7 ADV1S*27		$\begin{aligned} & \text { 19-MAY-98 } \\ & \text { 19-MAY-98 } \end{aligned}$	$\begin{aligned} & 03-\mathrm{JUN}-98 \\ & 03-\mathrm{JUN}-98 \end{aligned}$
$\begin{aligned} & A B B-E S \\ & A B B-E S \end{aligned}$	$\begin{aligned} & \text { METALS/SOIL/ICP } \\ & \text { METALS/SOIL/ICP } \end{aligned}$	$\begin{aligned} & \text { JS16 } \\ & \text { JS16 } \end{aligned}$	$\begin{aligned} & \mathrm{ZN} \\ & \mathrm{ZN} \end{aligned}$	$\begin{aligned} & 57 \mathrm{~s}-98-07 x \\ & 57 \mathrm{~s}-98-07 x \end{aligned}$	$\begin{aligned} & \text { SX570700 } \\ & \text { SD570700 } \end{aligned}$	LADV1S*7 ADV1S*27		$\begin{aligned} & \text { 19-MAY-98 } \\ & \text { 19-MAY-98 } \end{aligned}$	$\begin{aligned} & 03-\mathrm{J} N \mathrm{~N}-98 \\ & 03-\mathrm{JUN}-98 \end{aligned}$

TABLE D-10
 Contractor Method Description -----PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC PESICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC
PESIICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC PESTICIDES/SSOIL/GCEC
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC
PESTICIDES/SOIL/GCEC Contractor

TABLE D-10

FIELD DUPLICATE RESULTS UNFILTERED SAMPLES

1998 SUPPLEMENTAL FIELD INVESTIGATION
品:O으 으 OO OO OO OO OOO OO NN OO OO O

 Contractor Method Description ABB-ES PESTICIDES/SOIL/GCEC ABB-ES PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC PESTIICIDESSS/SOIL/GCEC PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC
PESTICIDES/SOIL/GCEC
ORGANICS/SOIL/GCMS
 -anics/sollacus ORGANICS/SOIL/GCMS ORGANICS/SOIL/GCMS ORGANICS/SOIL/GCMS ORGANICS/SOIL/GCMS
 n ABB-ES

華留

table d-10

Contractor	Method Description	Method Code	Test Name	IRDMIS Site ID	Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Value Unit	RPD
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24DCLP	575-98-07x	SX570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	. 9 UGG	133.3
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24DCLP	57S-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-9	29-MAY-98 <	. 18 UGG	133.3
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24DMPN	57s-98-07x	SX570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	3 UGG	125.2
ABb-ES	ORGANICS/SOIL/GCMS	LM18	24DMPN	57s-98-07X	S0570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 69 UGG	
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24DNP	57s-98-07X	sx570700	LabV1s*7	OEXL	19-MAY-9	28-MAY-98 <	6 UGG	133.3
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24DNP	57s-98-07X	SD570700	ADV15*27	OEXL	19-MAY-98	29-MAY-98 <	1.2 UGG	
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24DNT	57s-98-07x	sx570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	. 7 UGG	133.3
ABB-ES	ORGANICS/SOIL/GCMS	LM18	24DNT	57s-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 14 UGG	
ABB-ES	ORGANICS/SOIL/GCMS	LM18	260NT	575-98-07X	5x570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	4 UGG	129.9
ABB-ES	ORGANICS/SOIL/GCMS	LM18	260NT	575-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 085 UGG	
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2 CLP	57s-98-07x	sx570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	. 3 UGG	133.3
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2CLP	57s-98-07X	SD570700	ADV1s*27	OEXL	19-MAY-98	29-MAY-98 <	. 06 UGG	133.3
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2 NNAP	57s-98-07X	S×570700	LADV1S*7	DEXL	19-MAY-98	28-MAY-98 <	. 2 UGG	139.0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2 NNAP	57s-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 036 UGG	139.0
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2 MNAP	57s-98-07X	Sx570700	LADV1S*7	OEXL	19-MAY-9	28-MAY-98 <	-2 UGG	121.3
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2 MNAP	57s-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 049 UGG	
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2MP	575-98-07x	S×570700	L.ADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	.1 UGG	110.1
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2 MP	57s-98-07X	SD570700	ADV1s*27	OEXL	19-MAY-98	29-MAY-98 <	. 029 UGG	110.1
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2NANIL	57s-98-07X	5x570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	. 3 UGG	131.5
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2NANIL	578-98-07X	SD570700	ADV1s*27	OEXL	19-MAY-98	29-MAY-98 <	. 062 UGG	131.5
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2NP	57s-98-07X	s×570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	. 7 UGG	133.3
ABB-ES	ORGANICS/SOIL/GCMS	LM18	2 NP	575-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 14 UGG	133.3
ABB-ES	ORGANICS/SOIL/GCMS	LM18	33DCBD	575-98-07X	s×570700	LADV1s*7	OEXL	19-MAY-98	28-MAY-98 <	30 UGG	130.6

table d-10
Field duplicate results unfiltered samples
1998 SUPPLEMENTAL FIELD INVESTIGATION

est lame	IRDMIS Site ID	Sample Number	Lab Number	Lot	Sample Date	$\begin{aligned} & \text { Analysis } \\ & \text { Date } \end{aligned}$	Value Unit	RPD
33DCBD	578-98-07X	s5570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	6.3 UGG	130.6
SNANIL	57s-98-07X	SX570700	LADV1s*7	OEXL	19-maY-98	28-MAY-98 <	2 UGG	126.5
SNANIL	57S-98-07X	S0570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 45 UGG	126.5
46DN2C	575-98-07X	Sx570700	LADV1s*7	OEXL	19-maY-98	28-mAY-98 <	3 UGG	138.0
46DN2C	57s-98-07x	S0570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 55 UGG	138.0
4RRPPE	575-98-07x	Sx570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	. 2 UGG	143.3
BRPPE	57S-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 033 UGG	
CANIL	578-98-07x	SX570700	LADV1S*7	OEXL	19-maY-98	28-MAY-98 <	4 UGG	132.6
CANIL	57s-98-07X	S5570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 81 UGG	132.6
CL3C	575-98-07X	Sx570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	. 5 UGG	136.1
CL3C	575-98-07X	S5570700	ADV1S*27	DEXL	19-MAY-98	29-MAY-98 <	. 095 UGG	136.1
CLPPE	57s-98-07x	Sx570700	LADV1S*7	OEXL	19-maY-98	28-MAY-98 <	. 2 UGG	143.3
CLPPE	57S-98-07X	S5570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 033 UGG	143.3
4MP	575-98-07X	SX570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	1 UGG	122.6
MP	57S-98-07X	S5570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 24 UGG	122.6
NANIL	575-98-07X	5×570700	LADV1S*7	OEXL	19-maY-98	28-MAY-98 <	2 UGG	132.0
NANIL	57s-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 41 UGG	132.0
NP	575-98-07X	sX570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	7 UGg	133.3
NP	575-98-07X	S5570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	1.4 UGG	133.3
ALPHPN	57s-98-07x	sx570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98	10 UGG	163.6
ALPHPN	57S-98-07X	S5570700	ADV15*27	OEXL	19-MAY-98	29-MAY-98	1 UGG	163.6
NAPNE	575-98-07x	Sx570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	. 2 UGG	139.0
ANAPNE	57S-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 036 UGG	139.0

 Contractor Method Description ABB-ES ORGANICS/SOIL/GCMS ABB-ES ORGANICS/SOIL/GCMS RGANICS ORGANICS/SOIL/GCMS RRGANICS/SOIL/GCMS ORGANICS/SOIL/GCMS ORGANICS/SOIL/GCMS aranics/soilacis ORGANICS/SOIL/GCMS ORGANICS/SOIL/GCMS ORGANICS/SOIL/GCMS ORGANICS/SOIL/GCMS ORGANICS/SOIL/GCMS ORGANICS/SOIL/GCMS
ORGANICS/SOIL/GCMS ORGANICS/SOIL/GCMS ORGANICS/SOIL/GCMS ORGANICS/SOIL/GCMS
ORGANICS/SOIL/GCMS

table D－10

field duplicate results unfiltered samples
1998 SUPPLEMENTAL FIELD INVESTIGATION
吴： ตim MM $M M$
$M M$ M Mnn ∞
ni
ni 00
 Value Unit皆 1 Uuc ge ริำ g皆 3．2 UGG .8 UGG
.15 UGG
1 UGG －
 G
S
－ C
 1 UGG
TABLE D-10
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES
FT. DEVENS AOC 57
1998 SUPPLEMENTAL FIELD INVE

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Value Unit	RPD
ABB-ES	ORGANICS/SOIL/GCMS	LM18	DNOP	57S-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 19 UGG	136.1
ABB-ES	ORGANICS/SOIL/GCMS	LM18	FANT	575-98-07X	S×570700	LADV1S*7		19-MAY-98	28-MAY-98 <	. 3 UGG	126.1
ABB-ES	ORGANICS/SOIL/GCMS	LM18	FANT	57s-98-07x	SD570700	ADV1S*27		19-MAY-98	29-MAY-98 <	. 068 UGG	
ABB-ES	ORGANICS/SOIL/GCMS	LM18	flrene	57s-98-07X	SX570700	LADV1s*7	OEXL	19-MAY-98	28-MAY-98 <	. 2 UGG	143.3
ABb-ES	ORGANICS/SOIL/GCMS	LM18	FLRENE	57s-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 033 UGG	143.3
ABB-ES	ORGANICS/SOIL/GCMS	LM18	HCBD	57s-98-07X	Sx570700	LADV1s*7	OEXL	19-MAY-98	28-MAY-98 <	1 UGG	125.2
ABb-ES	ORGANICS/SOIL/GCMS	LM18	HCBD	575-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 23 UGG	125.2
ABB-ES	ORGANICS/SOIL/GCMS	LM18	ICDPYR	57s-98-07X	SX570700	LADV1s*7	OEXL	19-MAY-98	28-MAY-98 <	1 UGG	110.1
ABB-ES	ORGANICS/SOIL/GCMS	LM18	ICDPYR	575-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 29 UGG	110.1
ABB-ES	ORGANICS/SOIL/GCMS	LM18	ISOPHR	57s-98-07X	Sx570700	LADV1S*7	OEXL	19-mAY-98	28-MAY-98 <	. 2 UGG	143.3
ABb-ES	ORGANICS/SOIL/GCMS	LM18	ISOPHR	575-98-07X	SD570700	ADV1s*27	OEXL	19-MAY-98	29-MAY-98 <	. 033 UGG	143.3
ABB-ES	ORGANICS/SOIL/GCMS	LM18	NAP	57s-98-07X	5x570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	. 2 UGG	137.6
ABB-ES	ORGANICS/SOIL/GCMS	LM18	NAP	57s-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 037 UGG	
ABB-ES	ORGANICS/SOIL/GCMS	LM18	NB	57s-98-07X	SX570700	LADV1S*7		19-MAY-98	28-MAY-98 <	. 2 UGG	126.5
ABb-ES	ORGANICS/SOIL/GCMS	LM18	NB	57s-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 045 UGG	126.5
ABB-ES	ORGANICS/SOIL/GCMS	LM18	NNDNPA	57s-98-07X	SX570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	1 UGG	133.3
ABB-ES	ORGANICS/SOIL/GCMS	LM18	NNDNPA	57s-98-07X	SD570700	ADV15*27	OEXL	19-MAY-98	29-MAY-98 <	. 2 UGG	133.3
ABb-ES	ORGANICS/SOIL/GCMS	LM18	NNDPA	57s-98-07X	SX570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <	1 UGG	136.1
ABB-ES	ORGANICS/SOIL/GCMS	LM18	NNDPA	57s-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	. 19 UGG	136.1
ABb-ES	ORGANICS/SOIL/GCMS	LM18	PCP	57s-98-07X	SX570700	LADV1s*7	OEXL	19-MAY-98	28-MAY-98 <	6 UGG	128.8
ABB-ES	ORGANICS/SOIL/GCMS	LM18	PCP	57S-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <	1.3 UGG	128.8
ABB-ES	ORGANICS/SOIL/GCMS	LM18	PHANTR	57s-98-07x	SX570700	LADV1S*7		19-MAY-98	28-MAY-98 <	. 2 UGG	143.3
ABB-ES	ORGANICS/SOIL/GCMS	LM18	PHANTR	575-98-07X	SD570700	ADV1s*27	OEXL	19-MAY-98	29-MAY-98 <	. 033 UGG	143.3

TABLE $\mathrm{D}-10$
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES
FT. DEVENS AOC 57 TABLE $\mathrm{D}-10$
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES
FT. DEVENS AOC 57
1998 SUPPLEMENTAL FIELD INVESTIGATION

0090009号 ! M प्रु
으N 넉 4
넉
은 in 엉
으N ${ }_{S}^{9}$
으N O 을

오N | 4.4 |
| :--- | :--- | :--- | .0023 UGG

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	Field Samole Number	Lab Number	Lot	Sample Date	Analysis Date
ABB-ES	ORGANICS/SOIL/GCMS	LM18	PHENOL	57s-98-07X	SX570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98
ABB-ES	ORGANICS/SOIL/GCMS	LM18	PHENOL	57S-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	PYR	57s-98-07X	S×570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	PYR	57S-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98 <
ABB-ES	ORGANICS/SOIL/GCMS	LM18	UNK651	575-98-07X	SX570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98
ABB-ES	ORGANICS/SOIL/GCMS	LM18	UNK651	57S-98-07X	S0570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98
ABB-ES	ORGANICS/SOIL/GCMS	LM18	UNK653	57S-98-07X	SX570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98
ABB-ES	ORGANICS/SOIL/GCMS	LM18	UNK653	57S-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98
ABB-ES	ORGANICS/SOIL/GCMS	LM18	UNK659	575-98-07X	SX570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98
ABB-ES	ORGANICS/SOIL/GCMS	LM18	UNK659	57S-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98
ABB-ES	ORGANICS/SOIL/GCMS	LM18	UNK662	57S-98-07X	SX570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98
ABB-ES	ORGANICS/SOIL/GCMS	LM18	UNK662	575-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98
ABB-ES	ORGANICS/SOIL/GCMS	LM18	UNK663	57s-98-07X	5×570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98
ABB-ES	ORGANICS/SOIL/GCMS	LM18	UNK663	57S-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98
ABB-ES	ORGANICS/SOIL/GCMS	LM18	UNK669	575-98-07X	SX570700	LADV1S*7	OEXL	19-MAY-98	28-MAY-98
ABB-ES	ORGANICS/SOIL/GCMS	LM18	UNK669	57S-98-07X	SD570700	ADV1S*27	OEXL	19-MAY-98	29-MAY-98
ABB-ES	VOLATILES/SOIL/GCMS	LM19	111TCE	575-98-07x	S×570700	LADV1S*7	YGOL	19-MAY-98	28-MAY-98 <
ABB-ES	VOLATILES/SOIL/GCMS	LM19	111TCE	575-98-07X	SD570700	ADV1S*27	YGOL	19-MAY-98	29-MAY-98 <
ABB-ES	VOLATILES/SOIL/GCMS	LM19	112TCE	57S-98-07X	SD570700	ADV1S*27	YGOL	19-MAY-98	29-MAY-98 <
ABB-ES	VOLATILES/SOIL/GCMS	LM19	112TCE	57S-98-07X	SX570700	LADV1S*7	YGOL	19-MAY-98	28-MAY-98 <
ABB-ES	VOLATILES/SOIL/GCMS	LM19	110 CE	57S-98-07X	SD570700	ADV1S*27	YGOL	19-MAY-98	29-MAY-98 <
ABB-ES	VOLATILES/SOIL/GCMS	LM19	11DCE	57S-98-07X	SX570700	LADV1S*7	YGOL	19-MAY-98	28-MAY-98 <
ABB-ES	VOLATILES/SOIL/GCMS	LM19	110 CLE	57S-98-07X	SD570700	ADV1S*27	YGOL	19-MAY-98	29-MAY-98 <

FIELD DUPLICATE RESULTS UNFILTERED SAMPLES
FT. DEVENS AOC 57

1998 SUPPLEMENTAL FIELD INVESTIGATION

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Number	$\begin{aligned} & \text { Lab } \\ & \text { Number } \end{aligned}$	Lot	Sample Date	$\begin{aligned} & \text { Analysis } \\ & \text { Date } \end{aligned}$	Value Unit	RPD
ABB-ES	VOLATILES/SOIL/GCMS	LM19	110 CLE	57S-98-07x	SX570700	LADV1S*7		19-MAY-98	28-MAY-98	. 0023 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	12DCE	57s-98-07x	SD570700	ADV1s*27		19-MAY-98	29-MAY-98 <	. 003 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	12DCE	57S-98-07X	SX570700	LADV1S*7	YgoL	19-MAY-98	28-MAY-98 <	. 003 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	12 CLLE	575-98-07x	SD570700	ADV1S*27	YGOL	19-MAY-98	29-MAY-98 <	. 0017 UGG	0
ABB-ES	VOLATILES/SOIL/GCMS.	LM19	12 CLLE	57S-98-07X	SX570700	LADV1S*7		19-MAY-9	28-MAY-98 <	. 0017 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	120 CLP	575-98-07x	SD570700	ADV1S*27	YGOL	19-MAY-9	29-MAY-98 <	. 0029 UGG	-
ABB-ES	VOLATILES/SOIL/GCMS	LM19	120CLP	57S-98-07X	SX570700	LADV1S*7	YGOL	19-MAY-98	28-MAY-98 <	. 0029 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	ACET	575-98-07x	SX570700	LADV1S*		19-MAY	28-MAY-98	. 33 UGG	180.4
ABB-ES	VOLATILES/SOIL/GCMS	LM19	ACET	57s-98-07X	SD570700	ADV1s*27		19-MAY-98	29-MAY-98 <	. 017 UGG	
ABB-ES	VOLATILES/SOIL/GCMS	LM19	BRDCLM	575-98-07X	SD570700	ADV1S*27		19-MAY-98	29-MAY-98 <	. 0029 UGG	- 0
ABb-ES	VOLATILES/SOIL/GCMS	LM19	BRDCLM	57s-98-07X	SX570700	LADV1S*7		19-MAY-98	28-MAY-98 <	. 0029 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	C13DCP	575-98-07X	SD570700	ADV1s*27		19-MAY-98	29-MAY-98 <	. 0032 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	C13DCP	57S-98-07X	sx570700	LADV1S*7		19-MAY-98	28-MAY-98 <	. 0032 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	Czave	575-98-07X	SD570700	ADV1s*27		19-MAY-98	29-MAY-98 <	. 032 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	C2AVE	57s-98-07X	SX570700	LADV1S*7	YGOL	19	28-MAY-98 <	. 032 UGG	. 0
ABb-ES	VOLATILES/SOIL/GCMS	LM19	C2H3CL	575-98-07X	SD570700	ADV1S*27		19-MAY-98	29-MAY-98 <	. 0062 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	C2H3CL	57S-98-07X	SX570700	LADV1S*7	YGOL	19-MA	28-MAY-98 <	. 0062 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	$\mathrm{CLH5CL}^{\text {che }}$	575-98-07X	SD570700	ADV1S*27		19-MAY-98	29-MAY-98 <	. 012 UGG	. 0
ABb-ES	VOLATILES/SOIL/GCMS	LM19	C2H5CL	575-98-07X	SX570700	LADV1s*7	YGOL	19-MAY-98	28-MAY-98 <	. 012 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	C6H6	575-98-07x	SD570700	ADV1s*27	YGOL	19-MAY-98	29-MAY-98 <	. 0015 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	C6H6	57s-98-07X	SX570700	LADV1S*7		19-MAY-98	28-MAY-98 <	. 0015 UGG	. 0
ABb-ES	VOLATILES/SOIL/GCMS	LM19	CCL3F	575-98-07X	SD570700	ADV1S*27		19-MAY-98	29-MAY-98 <	. 0055 UGG	. 0
ABB-ES	VOLATILES/SOIL/GCMS	LM19	CCL3F	57S-98-07X	SX570700	LADV1S* ${ }^{\text {a }}$	YGOL	19-MAY-98	28-MAY-98 <	. 0559 UGG	. 0

TABLE D-10
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES
믕으 으 으 으 으 으 으 으 으 으 으 으

TABLE D-10								
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES FT. DEVENS AOC 57								
1998 SUPPLEMENTAL FIELD INVESTIGATION								
IRDMIS			IRDMIS Field Samp					
Method Code	Test Name	IRDMIS Site ID	Sample Number	$\begin{aligned} & \text { Lab } \\ & \text { Number } \end{aligned}$	Lot	Sample Date	$\begin{aligned} & \text { Analysis } \\ & \text { Date } \end{aligned}$	Value Unit
LM19	CCL4	575-98-01	SD570700	ADV1S*2	Ygol	19-MAY-	29-MAY-98 <	. 007 UGG
LM19	CCL4	57s-98-07	SX570700	LADV1S*	YGOL	19-MAY-9	28-MAY-98 <	. 007 UGG
LM19	CH2CL2	57s-98-01	SD570700	ADV1S*27	YGOL	19-MAY-	29-MAY-98 <	. 012 UGg
LM19	CH2CL2	575-98-07	SX570700	LADV1S*7	YGOL	19-MAY-	28-MAY-98 <	. 012 UGG
LM19	CH38R	57s-98-070	SD570700	ADV15*27		19-MAY	29-MAY-98 <	. 0057 UGG
LM19	CH3BR	575-98-07	sx570700	LADV1S*		19-MAY-9	28-MAY-98 <	. 0057 UGG
LM19	CH3CL	575-98-070	SD570700	ADV11*27		19-MAY-	29-MAY-98 <	. 0088 UGG
LM19	CH3CL	57s-98-07	SX570700	LADV1S*		19-MAY-9	28-MAY-98 <	. 0088 UGG
LM19	CHBR3	57s-98-01	SD570700	ADV1S*27	YGOL	19-MAY-	29-MAY-98 <	. 0069 UGG
LM19	CHBR3	575-98-07	Sx570700	LADV1S*		19-MAY-9	28-MAY-98 <	. 0069 UGG
L.M19	CHCL3	575-98-01	SD570700	ADV1S*2		19-MAY-	29-MAY-98 <	. 00087 UGG
LM19	CHCL3	575-98-07	SX570700	LADV1S*7	YGOL	19-MAY-9	28-MAY-98 <	. 00087 UGG
LM19	CLCOH5	57s-98-0	SD570700	ADV1S*27		19-MAY-9	29-MAY-98 <	. 00086 UGG
LM19	CLC6H5	57s-98-07	SX570700	LADV1S*	YGOL	19-MAY-9	28-MAY-98 <	. 00086 UGG
LM19	cs2	57s-98-01	SD570700	ADV1S*27		19-MAY-	29-MAY-98 <	. 0044 UGG
LM19	CS2	575-98-07	SX570700	LADV1S*7	YGOL	19-MAY-9	28-MAY-98 <	. 0044 UGG
LM19	DBRCLM	57s-98-07x	SD570700	ADV1S*27		19-MAY-	29-MAY-98 <	. 0031 UGG
LM19	DBRCLM	575-98-07	Sx570700	LADV1S*	YGOL	19-MAY-9	28-MAY-98 <	. 0031 UGG
LM19	ETC6H5	57s-98-01	S 5570700	LADV19*7	YGOL	19-MAY-9	28-MAY-98 <	. 0017 UGG
LM19	ETC6H5	575-98-07	SD570700	ADV1S*27		19-MAY-9	29-MAY-98 <	. 0017 UGG
LM19	MEC6H5	57s-98-07	SX570700	LADV1S*		19-MAY-98	28-MAY-98 <	. 00078 UGG
LM19	MEC6H5	57s-98-07	SD570700	ADV1S*27	YGOL	19-MAY-98	29-MAY-98 <	. 00078 UGG
$\begin{aligned} & \text { LM19 } \\ & \text { LM19 } \end{aligned}$	MEX MEK	$\begin{aligned} & 575-98-1 \\ & 575-98-1 \end{aligned}$	$\begin{aligned} & \text { SD570700 } \\ & \text { SX570700 } \end{aligned}$	ADV1S*2 LADV1S*	YGOL	$\begin{aligned} & 19-\mathrm{MAY}-¢ \\ & 19-\mathrm{MAY}-\oint \end{aligned}$	$\begin{aligned} & \text { 29-MAY-98 } \\ & \text { 28-MAY-98 } \end{aligned}$	$\begin{aligned} & .07 \text { UGG } \\ & .07 \text { UGG } \end{aligned}$

Contractor Method Description
 ABB-ES VOLATILES/SOIL/GCMS VOLATILES/SOIL/GCMS VOLATILES/SOIL/GCMS VOLATILES/SOIL/GCMS VOLATILES/SOIL/GCMS VOLATILES/SOIL/GCMS vatilessolus VOLATILES/SOIL/GCMS VOLATILES/SOIL/GCMS bolatiles/soilgas VOLATILES/SOIL/GCMS
VOLATILES/SOIL/GCMS VOLATILES/SOIL/GCMS VOLATILES/SOIL/GCMS
VOLATILES/SOIL/GCMS VOLATILES/SOIL/GCMS VOLATILES/SOL/GCMS VOLATILES/SOIL/GCMS
VOLATILES/SOIL/GCMS VOLATILES/SOIL/GCMS VOLATILES/SOIL/GCMS VOLATILES/SOIL/GCMS
VOLATILES/SOIL/GCMS

TABLE D－10
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES FT．DEVENS AOC 5

1998 SUPPLEMENTAL FIELD INVESTIGATION

웃 두 으 오 으 으
으 으 으 으 으 으
Value Unit

宁
ㅎ す
$\stackrel{\text { 늘 }}{\square}$

． 19 UGL | \square |
| :--- |
| \square |

ず
 －－－－－－－－－－－
 IRDMIS
Method Contractor Method Description

 57M－96－11X MX5711XX
57M－96－11X MD5711XX 57M－96－11X MD5711XX $\begin{array}{llllll}\text { 57M－96－11X MD5711XX } & \text { ADV1W＊28 OGHG } 27-M A Y-98 & \text { O3－JUN－98 } \\ \text { 57M－96－11X MX5711XX } & \text { ADV1W＊26 OGHG } 27-M A Y-98 & 03-J U N-98\end{array}$ 57M－96－11x MD5711xX ADV1 ${ }^{\star}$ ²8 OGHG 27－MAY－98 03－JUN－98＜
 $\begin{array}{llllll}\text { 57M－96－11X MD5711XX } & \text { ADV1W＊28 OGHG 27－MAY－98 O3－JUN－98 } \\ \text { 57M－96－11X MX5711XX } & \text { ADV1W＊26 OGHG } 27 \text {－MAY－98 } & 03-J U N-98<\end{array}$

 $\begin{array}{llll}\text { PCBO16 } & 57 M-96-11 \times \text { MX5711XX } & \text { ADV1 } W^{\star} \text { 26 } & \text { SDWG 27－MAY－98 } 24-\text { JUN－98 } \\ \text { PCBO16 } & 57 M-96-11 X ~ M D 5711 X X ~ & \text { ADV1 }\end{array}$

 DW 18 CHI
 －
 Nơ 옥 죽 꾹목 옥옥 목ㄲㅗㅗ 목목
－ METALS／WATER／ICP

 METALS／WATER／ICP
METALS／WATER／ICP
 METALS／WATER／ICP
METALS／WATER／ICP
 PESTICIDES／WATER／GCEC
PESTICIDES／WATER／GCEC
PESTIICIDES／WATER／GCEC
PESTICIDES／WATER／GCEC
PESTICIDES／WATER／GCEC
PESTICIDES／WATER／GCEC
PESIICIDES／WATER／GCEC
PESIICIDES／WAER／GCEC
PESTICIDES／WATER／GCEC
PESIICIDES／WATER／GCEC
PESTICIDES／WATER／GCEC
PESTICIDES／WATER／GCEC ABB－ES
 ABB－ES
ABB－ES

出
品
品

읏ㅇㅇ 응ㅇㅇㅇ 으 으 으 응 으 으 으 으
TABLE
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES
FT. DEVENS AOC 57
1998 SUPPLEMENTAL FIELD INVE

TABLE D－10
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES TABLE D－10
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES
1998 SUPPLEMENTAL FIELD INVE

宫空 き： $\stackrel{8}{68}$ $\stackrel{9}{9}$ N్ㅓㅜ芯路感骴 5．逢领噳 ？

1998 SUPPLEMENTAL FIELD INVESTIGATION

 IRDMISField
Sample Analysis
Date
Date
 27－MAY－98 28－JUN－98＜
27－MAY－98 27 27UN－98＜ 27－MAY－98 28－JUN－98＜ $>86-N ก \Gamma-8 Z$ 86－ $\mathrm{AWW}-22$
 27－MAY－98 28－JUN－98＜ ADV1 ${ }^{*}$ ²8 TDOI 27 －MAY－98 28－JUN－98 $<$
ADV1 ${ }^{*} 26$ TDOI 27 －MAY－98 27 －JUN－98 $<~$ ADV1W＊28 TDOI 27－MAY－98 28－JUN－98＜
宛
 ADV1 ${ }^{*}$＊28 TDOI 27 －MAY－98 28 －JUN－98＜ ADV1 ${ }^{*}$ 28 TDOI 27－MAY－98 28－JUN－98＜

v
∞
∞
0
1
1

Number
$-\ldots-1 . . .$.
MX5711XX

$57 \mathrm{M}-96-11 \mathrm{X}$ MX5711XX 57M－96－11X MD5711XX 57M－96－11X MX5711XX 57M－96－11X MD5711XX
57M－96－11X MX5711XX 57M－96－11X MD5711XX 57M－96－11X MX5711XX 57M－96－11X MD5711XX
57M－96－11X MX5711XX 57M－96－11X MD57111xX 57M－96－11X M05711xX 57M－96－11X MDS711XXX
57M－96－11X MX5711XX 57M－96－11X MD5711XX 57M－96－11X ND5711XX

 IRDMIS
苞茞
츨
 중原 멎 씰 $\stackrel{8}{0}$苞 LIN MEXCLR MEXCLR合会莒容宸 늠
 IRDMIS
Method $: \frac{m}{I}$ UH13 Mㅗㄷ 쏟 $\stackrel{M}{5}$ Mㅗㄱ $\stackrel{M}{5}$ $\stackrel{M}{5}$ UH13 쏟쏟 UH13 UH13
UH13 $\stackrel{M}{ } \times$ 쏙쏙 Contractor Method Description ABB－ES PESTICIDES／WATER／GCEC ABB－ES PESTICIDES／WATER／GCEC PESTICIDES／WATER／GCEC ABB－ES PESTICIDES／WATER／GCEC ABB－ES PESTICIDES／WATER／GCEC PESTICIDES／WATER／GCEC PESTICIDES／WATER／GCEC PESTICIDES／WATER／GCEC PESTICIDES／WATER／GCEC PESTICIDES／WATER／GCEC
PESIICIDES／WATER／GCEC PESTICIDES／WATER／GCEC
PESTICIDES／WATER／GCEC PESTICIDES／WATER／GCEC
 PESTICIDES／WATER／GCEC PESTICIDES／WATER／GCEC PESTICIDES／WATER／GCEC

TABLE D-10
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES
FT. DEVENS AOC 57
1998 SUPPLEMENTAL FIELD INVESTIGATION Q:苞:
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES

1998 SUPPLEMENTAL FIELD INVESTIGATION

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample Number	$\begin{aligned} & \text { Lab } \\ & \text { Number } \end{aligned}$	Lot	Sample Date	Analysis Date	Value Unit	RPD
ABB-ES	ORGANICS/WATER/GCMS	UM18	2 CLP	57M-96-11X	MX5711xX	ADV1W*26		27-MAY-98	$16-\mathrm{JUN}-98$. 99 UGL	0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2CNAP	57M-96-11x	MD5711XX	ADV1 $W^{*} 28$		27-mAY-98	$16-\mathrm{JUN}-98<$. 5 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2 CNAP	57M-96-11X	MX5711XX	ADV1 ${ }^{*} 26$		27-MAY-98	$16-\mathrm{JUN}-98$ <	. 5 UGL	. 0
ABb-ES	ORGANICS/HATER/GCMS	UM18	2MNAP	57M-96-11X	MD5711XX	ADV1W^28		27-mAY-98	16-JUN-98 <	1.7 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2 MNAP	57M-96-11X	MX5711xX	ADV1 ${ }^{*} 26$		27-MAY-98	$16-J U N-98<$	1.7 UGL	. 0
ABB-ES	ORGANICS/HATER/GCMS	UM18	2 MP	57M-96-11X	MX5711xX	ADV1W*26		27-MAY-98	16-JUN-98 <	3.9 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2 MP	57M-96-11X	MD5711XX	ADV1 ${ }^{*} 28$		27-MAY-98	$16-\mathrm{JUN}-98$ <	3.9 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2NANIL	57M-96-11X	MD5711xX	ADV1 ${ }^{*} 28$		27-MAY-98	16-JUN-98 <	4.3 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2NANIL	57M-96-11X	MX5711XX	ADV1W*26		27-MAY-98	16-JUN-98	4.3 UGL	. 0
ABB-ES	ORGANICS/HATER/GCMS	UM18	2 NP	57M-96-11X	MD5711xX	ADV1 ${ }^{*}$ 28		27-mAY-98	16-JUN-98 <	3.7 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	2NP	57M-96-11X	MX5711XX	ADV1W*26	W010	27-MAY-98	16-JUN-98 <	3.7 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	33DCBD	57M-96-11x	MD5711xX	ADV1 ${ }^{*} 28$		27-MAY-98	16-JUN-98 <	12 UGL.	. 0
ABb-ES	ORGANICS/WATER/GCMS	UM18	33DCBD	57M-96-11X	MX5711XX	ADV1W*26	WDIO	27-MAY-98	16-JUN-98 <	12 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	3NANIL	57M-96-11X	MX5711xX	ADV1 ${ }^{*}$ * 26		27-MAY-98	16-JUN-98 <	4.9 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	3NANIL	57M-96-11X	MD5711XX	ADV1W*28	hDIo	27-MAY-98	16-JUN-98 <	4.9 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	46DN2C	57M-96-11X	MD5711XX	ADV1 ${ }^{*}$ 28		27-MAY-98	$16-\mathrm{JUN}$-98 <	17 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	460 N 2 C	57M-96-11X	MX5711XX	ADV1W*26		27-MAY-98	$16-\mathrm{JUN}-98$ <	17 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	LM18	4BRPPE	57M-96-11X	MD5711xX	ADV1W*28		27-MAY-98	16-JUN-98 <	4.2 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	4 BRPPE	57M-96-11X	MX5711XX	ADV1W*26		27-MAY-98	16-JUN-98 <	4.2 UGL	. 0
ABB-ES	ORGANICS/WATER/GCMS	UM18	4 CANIL	57M-96-11X	MD5711xX	ADV1 ${ }^{\star} 28$		27-MAY-98	16-JUN-98 <	7.3 UGL	. 0
ABE-ES	ORGANICS/WATER/GCMS	UM18	4CANIL	57M-96-11X	MX5711xX	ADV1W*26		27-MAY-98	$16-\mathrm{JUN}-98$ <	7.3 UGL	. 0
Abb-ES	ORGANICS/WATER/GCMS	UM18	4CL3C	57M-96-11X	MD5711xX	ADV1W*28		27-MAY-98	16-JUN-98 <	4 UGL	. 0
ABS-ES	ORGANICS/WATER/GCMS	UM18	4CL3C	57M-96-11X	MX5711XX	ADV1W*26	WDIO	27-MAY-98	16-JUN-98 <	4 UGL	. 0

TABLE D-10
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES

LS jot SNanjo - 1f
OL-0 ヨาavı

Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS Site ID	IRDMIS Field Sample	Lab Number	Lot	Sample Date	Analysis Date
ABB-ES	ORGANICS/WATER/GCMS	UM18	4CLPPE	57M-96-11X	MD5711xX	ADV1 ${ }^{*}$ *28	WDIO	27-MAY-98	16-JUN-98
ABB-ES	ORGANICS/WATER/GCMS	UM18	4CLPPE	57M-96-11X	MK5711XX	ADV1W*26		27-MAY	16-JUN-98
ABB-ES	ORGANICS/WATER/GCMS	UM18	4MP	57M-96-11X	MD5711xX	ADV1W*28	hDIO	27-MAY	16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	4MP	57M-96-11X	MX5711XX	ADV1W*26		27-MAY	16-JUN-98
ABB-ES	ORGANICS/WATER/GCMS	UM18	4NANIL	57M-96-11X	MD57111X	ADV1 ${ }^{*} 28$	hDIO	27-MAY	16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	4NANIL		MX5711XX	ADV1W*			
ABB	ORGANICS/WATER/GCMS	UM18	4 NP	57M-96-1	MX5711xX	ADV1W*26	WDIO	27-MAY-9	16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	4NP	57M-96-11X					
ABB-ES	ORGANICS/WATER/GCMS	UM18	ANAPNE	57M-96-11X	MD5̊7111x	ADV1W*28		27-MAY-9	16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	ANAPNE	57M-96-11X					
ABB-ES	ORGANICS/WATER/GCMS	UM18	ANAPYL	57M-96-11X	MD5711XX	ADV1 ${ }^{*} 28$		27-MAY-98	16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	ANAPYL	57M-96-11X	MX5711XX	ADV1W*26		27-MAY-9	16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	ANTRC	57M-96-11x	MD57111x	ADV1W*28	h010	27-MAY-98	16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	ANTRC	57M-96	MX5711XX	ADV1W*26		27-MAY-98	16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	B2CEXM	57M-96-11X	MD5711XX	ADV1 ${ }^{*} 28$	WDIO	27-MAY-98	6-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	B2CEXM	57M-96-11X	MX5711XX	ADV1 ${ }^{*}$ 26		27-MAY-	16-JUN-98
ABB-ES	ORGANICS/WATER/GCMS	UM18	B2CIPE	57M-96-11X	MD5711xx	ADVIW*28	WD10	27-MAY-98	16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	B2CIPE	57M-96-11X	MX5711XX	ADV1W*26		27-MAY-98	8 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	B2CLEE	57M-96-11x	MD5711xX	ADV1W*28	WD10	27-MAY-98	16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	B2CLEE	57M-96-11X	MX5711XX	ADV1W*26			
ABB-ES	ORGANICS/WATER/GCMS	UM18	B2EHP	57M-96-11X	MD5711xX	ADV1 ${ }^{*} 28$		27-MAY-98	16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	B2EHP	57M-96-11X	MX5711XX	ADV1W*26		27-MAY-9	
ABB-ES	ORGANICS/WATER/GCMS	UM18	BAANTR	57M-96-11x	MD5711xX	ADV		27-MA	16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	BAANTR	57M-96-11X	MX5711XX	ADV1W*26	WDIO	27-MAY-	16-JUN-98 <

TABLE D-10
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES
1998 SUPPLEMENTAL FIELD INVESTIGATION

IRDMIS			Field				
Method	Test	IRDMIS	Sample			Sample	Analysis
code	Name	Site ID	Number	Number	Lot	Date	Date

ABB-ES ABB-ES	ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM18 UM18	BAPYR BAPYR	57M-96-11X MD5711XX 57M-96-11X MX5711XX	ADV1W*28 WDIO 27-MAY-98 16-JUN-98 ADV1W*26 WDIO 27-MAY-98 16-JUN-98
ABB-ES	ORGANICS/WATER/GCMS	UM18	BbFANT	57M-96-11X MD5711XX	ADV1W*28 WDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	BBFANT	57M-96-11X MX5711XX	ADV1W*26 WDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	BBZP	57M-96-11X MD5711XX	ADV1W*28 LDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	BBZP	57M-96-11X MX5711XX	ADV1W*26 WDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	benzoa	57M-96-11X MD5711XX	ADV1/ *28 WDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	BENZOA	57M-96-11X MX5711XX	ADV1W*26 LDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	BGHIPY	57M-96-11X MD5711XX	ADV1W*28 LDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	BGHIPY	57M-96-11X MX5711XX	ADV1W*26 WDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	bKFANT	57M-96-11X MD5711xX	ADV1W*28 WDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	BKFANT	57M-96-11X MX5711XX	ADV1W*26 WDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	LM18	BZALC	57M-96-11X MD5711XX	ADV11*28 LDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	LM18	BZALC	57M-96-11X MX5711XX	ADV1W*26 LDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	carbaz	57M-96-11X MD5711xX	ADV14*28 WDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	CARBAZ	57M-96-11X MX5711XX	ADV1W*26 WDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	CHRY	57M-96-11X MD5711XX	ADV1W*28 WDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	CHRY	57M-96-11X MX5711XX	ADV1W*26 WDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	cl6BZ	57M-96-11X MD5711XX	ADV1W*28 WDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	CL6BZ	57M-96-11X MX5711XX	ADV1W*26 WDIO 27-MAY-98 16-JUN-98 <
ABB-ES	ORGANICS/WATER/GCMS	UM18	CL6CP	57M-96-11X MD5711XX	ADV1W*28 WDIO 27-MAY-98 16-JUN-98 <
ABb-ES	ORGANICS/WATER/GCMS	UM18	CL6CP	57M-96-11X MX5711XX	ADV1W*26 WDIO 27-MAY-98 16-JUN-98
ABB-ES	ORGANICS/WATER/GCMS	UM18	CL6ET	57M-96-11X MD5711XX	ADV1W*28 WDIO 27-MAY-98 16-JUN-98

呗 응 으 으 으 으 으 으 으 으 으 으
d
g
すこ す

$$
\begin{aligned}
& \text { n } \\
& \text { NO }
\end{aligned}
$$

Contractor Method Description ABB－ES ORGANICS／WATER／GCMS ABB－ES ORGANICS／WATER／GCMS GANICS／WATER／GCMS ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS ORGANICS／WATER／GCMS
ORGANICS／WATER／GCMS
1998 SUPPLEMENTAL FIELD INVESTIGATION IRDMIS
Field
Lab
Number
Sample

Date | Analysis |
| :--- |
| Date | ＜

IRDMIS

$$
\begin{aligned}
& \text { TABLE D-10 } \\
& \text { FIELD DUPLICATE RESULTS UNFILTERED SAMPLES } \\
& \text { FT. DEVENS AOC } 57
\end{aligned}
$$

$$
\begin{aligned}
& \text { 总 } \\
& 0 \\
& 3 \\
& \text { N }
\end{aligned}
$$

$$
1.5 \text { UGL }
$$

$$
\begin{aligned}
& 1.5 \text { UGL } \\
& 1.5 \text { UGL }
\end{aligned}
$$

さ 옹 79017 3.3 UGL 3．3 UGL
3.3 UGL
3.7 UGL 3.7 UGL $\stackrel{\rightharpoonup}{9}$ 3．4 UGL 8．6 UGL宫宫 4.8
4.8
NoILษפIISヨANI वาヨId 7甘INZWヨาddns 866l
TABLE D-10
FIELD DUPLICATE RESULTS UNFILTERED SAMPLES FT. DEVENS AOC 57

1998 SUPPLEMENTAL FIELD INVESTIGATION

Test	IRDMIS	Field Sample	Lab		Sample	Analysis
Name	Site ID	Number	Number	Lot	Date	Date <
NAP	57M-96-11X	MX5711XX	ADV1W*26	WDIO	27-MAY-98	16-JUN-98
NAP	57M-96-11X	MD5711XX	ADV1W*28	WDIO	27-MAY-98	16-JUN-98
NB	57M-96-11X	MD5711XX	ADV1W*28	WDIO	27-MAY-98	16-JUN-98 <
NB	57M-96-11X	MX5711XX	ADV1W*26	WDIO	27-MAY-98	16-JUN-98 <
NNDNPA	57M-96-11X	MD5711XX	ADV1W*28	WDIO	27-MAY-98	16-JUN-98 <
NNDNPA	57M-96-11X	MX5711XX	ADV1 ${ }^{*} 26$	hDIO	27-MAY-98	16-JUN-98 <
NNDPA	57M-96-11X	MD5711XX	ADV1W*28	WDIO	27-MAY-98	16-JUN-98 <
NNDPA	57M-96-11X	MX5711XX	ADV1W*26	hDIO	27-MAY-98	16-JUN-98 <
PCP	57M-96-11X	MD5711XX	ADV1W*28	WDIO	27-MAY-98	16-JUN-98 <
PCP	57M-96-11X	MX5711XX	ADV1W*26	WDIO	27-MAY-98	16-JUN-98 <
PHANTR	57M-96-11X	MD5711xX	ADV1 ${ }^{*} 28$	WDIO	27-MAY-98	16-JUN-98 <
PHANTR	57M-96-11X	MX5711XX	ADV1W*26	WDIO	27-MAY-98	16-JUN-98 <
PHENOL	57M-96-11X	MD5711XX	ADV1W*28	WDIO	27-MAY-98	16-JUN-98 <
PHENOL	57M-96-11X	MX5711XX	ADV1W*26	WDIO	27-MAY-98	16-JUN-98 <
PYR	57M-96-11X	MD5711XX	ADV1W*28	WDIO	27-MAY-98	16-JUN-98 <
PYR	57M-96-11X	MX5711XX	ADV1W*26	WDIO	27-MAY-98	16-JUN-98 <
UNK530	57M-96-11X	MD5711XX	ADV1W*28	WDIO	27-MAY-98	16-JUN-98
UNK530	57M-96-11X	MX5711XX	ADV1W*26	WDIO	27-MAY-98	16-JUN-98
UNK538	57M-96-11X	MX5711xX	ADV1W*26	WDIO	27-MAY-98	16-JUN-98
UNK538	57M-96-11X	MD5711XX	ADV1W*28	WDIO	27-MAY-98	16-JUN-98
UNK621	57M-96-11X	MD5711XX	ADV1W*28	WDIO	27-MAY-98	16-JUN-98
UNK621	57M-96-11X	MX5711XX	ADV1W*26	WDIO	27-MAY-98	16-JUN-98
111TCE	57M-96-11X	MD5711XX	ADV1 ${ }^{*}$ 28	XDGV	27-MAY-98	03-JUN-98 <

TABLE D－10
field duplicate results unfiltered samples

	IRDMIS Field IRDMIS Sample	Lab
Siter in		

Analysis
Date
：

57M－96－11X MX5711XX ADV1W＊26 XDGV 27－MAY－98 03－JUN－98＜ ADV1W＊26 XDGV 27－MAY－98 03－JUN－98＜

ADV1w＊26 XDGV 27－MAY－98 03－JUN－98＜
ADV1w＊28 XDGV 27－MAY－98 03 －JUN－98 $<$ ADV1W＊26 XDGV 27－MAY－98 03－JUN－98＜
ADV1W＊28 XDGV $27-M A Y-98$ 03－JUN－98＜ ADV1 ${ }^{*}$ 26 XDGV 27－MAY－98 03－JUN－98 $<$
ADV1W＊28 XDGV 27－MAY－98 03－JUN－98 $<$
ADV1W＊26 XDGV 27－MAY－98 03－JUN－98＜ ADV1W＊26 XDGV 27－MAY－98 03－JUN－98＜ ADV1W＊28 XDGV 27－MAY－98 03－JUN－98＜ $\begin{aligned} & \text { ADV1W＊26 XDGV } 27-\text { MAY－98 } \\ & \text { 03－JUN－} 98\end{aligned}<$

 XXLLESXW XLl－96－N． 57M－96－11X MX57111XX
57M－96－11X MD5711XX 57M－96－11x MX5711XX 57M－96－11X MD5711XX 57M－96－11X MX5711XX
57M－96－11X MD5711XX 57M－96－11X MX5711XX 57M－96－11X MX5711XX 57M－96－11X MD5711XX 57M－96－11X MX5711XX XXLLLSXW XLL－96－WLS 57M－96－11X MSS711XX 57M－96－11X MX5711XX
57M－96－11X MD5711XX 57M－96－11X MX5711XX
57M－96－11X MD5711XX 57M－96－11X MX5711XX
57M－96－11X MD5711XX 57M－96－11X MX5711XX 57M－96－11X MX5711XX ＝ BRDCLM 는
쓴山 썽 C2H3CL
C2H3CL⿹ㅓN
Nㅓ̃ C6H6
C6H6岗 CCL4 CL4 ${ }^{\mathrm{CH} \mathrm{H} 2 \mathrm{CL} 2}$ CH3BR 를 CHBR3
CHBR3 IRDMIS
Method Contractor Method Description Code UM20
LM2O 우ㄷㅜㅗㄱ unio${ }^{\text {minco }}$ 를蹬䠉 unco登登璒 숟욱 꾹 Nㅜㄱㅜㅜㄱ ABB－ES VOLATILES／WATER／GCMS ABB－ES WOLATILES／WATER／GCM ABB－ES VOLATILES／WATER／GCMS OLATILES／WAIER VOLATILES／WATER／GCMS － VOLATILES／WATER／GCMS VOLATILES／WATER／GCMS VOLATILES／WATER／GCMS VOLATILES／WATER／GCMS VOLATILES／WATER／GCMS VOLATILES／WATER／GCMS VOLATILES／WATER／GCMS VOLATILES／WATER／GCMS VOLATILES／WATER／GGMS VOLATILES／WATER／GCMS VOLATILES／WATER／GCMS VOLATILES／WATER／GCMS VOLATILES／WATER／GCMS VOLATILES／WATER／GCMS
 ABB－ES出出 ABB－ES
出出岗容宮
 ABB－ES范莨荌
令
出出
1998 SUPPLEMENTAL FIELD INVESTIGATION

> TABLE D-10

> FIELD DUPLICATE RESULTS UNFILTERED SAMPLES FT. DEVENS AOC 57

1998 SUPPLEMENTAL FIELD INVESTIGATION											
Contractor	Method Description	IRDMIS Method Code	Test Name	IRDMIS site ID	$\begin{aligned} & \text { IRDMIS } \\ & \text { Field } \\ & \text { Sample } \\ & \text { Number } \end{aligned}$	Lab Number	Lot	Sample Date	Analysis Date	Value Unit	RPD
ABB-ES	VOLATILES/WATER/GCMS	UM20	CHCL3	57M-96-1	MX5711xX	ADV1W*26		27-maY	03-JUN-98 <	. 5 UGL	. 0
ABB-ES	VOLATILES/WATER/GCMS	UM20	CHCL3	57M-96-11	MD5711xX	ADV1W*28	XDGV	27-MAY	03-JUN-98 <	. 5 UGL	. 0
ABB-ES	VOLATILES/WATER/GCMS	UM20	CL2BZ	57M-96-11	Mx5711xx	ADV1W*26	XDGV	27-MAY	03-JUN-98	19 UGL	5.4
ABB-ES	VOLATILES/WATER/GCMS	UM20	CL2BZ	57M-96-1	MD5711xX	ADV1W*28	KDGV	27-MAY-	03-JUN-98	18 UGL	5.4
ABB-ES	VOLATILES/WATER/GCMS	UM20	CLC6H5	57M-96-1	Mx5711xx	ADV1W*26		27-MAY	03-JUN-98 <	. 5 UGL	. 0
ABB-ES	VOLATILES/WATER/GCMS	UM20	CLC6H5	57M-96-11	MD5711x	ADV1W*28		27-MAY-9	03-JUN-98 <		. 0
ABB-ES	VOLATILES/WATER/GCMS	UM20	CS2	57M-96-11	Mx5711xx	ADV1W*26		27-maY	03-JUN-98 <	. 5 UGL	. 0
ABB-ES	VOLATILES/WATER/GCMS	UM20	CS2	57M-96-11	MD5711XX	ADV1W*28		27-MAY-9	03-JUN-98 <		. 0
ABB-ES	VOLATILES/WATER/GCMS	UM20	CYHX	57M-96-11	mx5711xx	ADV1W*26		27-MAY	03-JUN-98	20 UGL	. 0
ABB-ES	VOLATILES/WATER/GCMS	UM2O	CYHX	57M-96-11	MD5711x	ADV1W*28		27-MAY-9	03-JUN-98		. 0
ABB-ES	VOLATILES/WATER/GCMS	UM20	DBRCLM	57M-96-11	Mx57111x	ADV1W*26	XDGV	27-MAY-9	03-JUN-98 <	. 67 UGL	. 0
ABB-ES	VOLATILES/WATER/GCMS	UM20	DBRCLM	57M-96-11	MD5711x	ADV1W*28		27-MAY-9	03-JUN-98	. 67 UGL	. 0
ABb-ES	VOLATILES/WATER/GCMS	UM20	ETC6H5	57M-96-11	mx5711xx	ADV1W*26	XDGV	27-MAY-9	03-JUN-98	20 UGL	. 0
ABB-ES	VOLATILES/WATER/GCMS	UM20	ETC6H5	57M-96-11	MD5711XX	ADV1W*28		27-MAY-9	03-JUN-98	20 UGL	. 0
ABB-es	VOLATILES/WATER/GCMS	UM20	MEC6H5	57M-96-11	.Mx5711xX	ADV1W*26	XDGV	27-MAY-9	03-JUN-98 <	. 5 UGL	. 0
ABB-ES	VOLATILES/WATER/GCMS	UM20	MEC6H5	57M-96-11	MD5711XX	ADV1W*28	XDGV	27-MAY-9	03-JUN-98 <	. 5 UGL	. 0
ABB-ES	VOLATILES/WATER/GCMS	UM2O	MECYPE	57M-96-11	MX5711xX	ADV1W*26	XDGV	27-MAY-9	03-JUN-98	20 UGL	. 0
ABB-ES	VOLATILES/WATER/GCMS	UM20	MECYPE	57M-96-11	MD5711XX	ADV1W*28	XDGV	27-MAY-9	03-JUN-98	20 UGL	. 0
ABB-ES	VOLATILES/WATER/GCMS	UM20	MEK	57M-96-11	Mx5711xX	ADV1W*26		27-MAY-9	03-JUN-98 <	6.4 UGL	. 0
ABB-ES	VOLATILES/WATER/GCMS	UM20	MEK	57M-96-11	MD5711XX	ADV1W*28	XDGV	27-MAY-9	03-JUN-98 <	6.4 UGL	. 0
ABb-es	VOLATILES/WATER/GCMS	UM20	MIBK	57M-96-11	MX57111x	ADV1W*26	XDGV	27-MAY-9	03-JUN-98 <	3 UGL	. 0
ABB-ES	VOLATILES/WATER/GCMS	UM20	MIBK	57M-96-11	MD5711XX	ADV1W*28	XDGV	27-MAY-9	03-JUN-98 <	3 UGL	. 0
ABB-ES	VOLATILES/WATER/GCMS	UM2O	MNBK	57M-96-11	MX5711XX	ADV1W*26	XDGV	27-MAY-9	03-JUN-98 <	3.6 UGL	. 0

table D-10

FIELD DUPLICATE RESULTS UNFILTERED SAMPLES
1998 SUPPLEMENTAL FIELD INVESTIGATION

TABLE D-11
SUMMARY OF TENTATIVELY IDENTIFIED COMPOUNDS
AOC 571998 SUPPLEMENTAL FIELD INVESTIGATION DEVENS, MASSACHUSETTS

MEDIA	SITE ID	$\begin{gathered} \text { FIELD SAMPLE } \\ \text { NUMBER } \end{gathered}$	IRDMIS TEST NAME	PARAMETER NAME	VALUE	$\begin{aligned} & \text { FLAG } \\ & \text { CODE } \end{aligned}$
SVOA sediment (LM18)	57D-98-01X	DX570100	$\begin{array}{\|l\|} \hline \text { C29 } \\ \text { UNK646-687 } \\ \hline \end{array}$	nonacosane unknown (7)	6.71	$\begin{aligned} & \hline S \\ & s \\ & \hline \end{aligned}$
	57D-98-02X	DX570200	C16A C27 SMOLE UNK532-687	hexadecanoic acid heptacosane sulfur unknown (20)	$\begin{array}{\|ll\|} \hline 1.6 & \\ 5.2 & \\ 2.1 & \\ & 145 \\ \hline \end{array}$	$\begin{array}{\|l} \hline s \\ s \\ s \\ s \\ \hline \end{array}$
	57D-98-03X	DX570300	$\left.\begin{array}{\|l\|} \hline \text { C29 } \\ \text { UNK644-687 } \end{array} \right\rvert\,$	nonacosane unknown (12)	9.4	$\begin{aligned} & \hline s \\ & s \\ & \hline \end{aligned}$
	57D-98-04X	DX570400	C29 PHENAA UNK597-689	nonacosane phenacetin unknown (32)	$\begin{array}{\|ll\|} \hline 13 & \\ 1.3 & \\ & 121 \\ \hline \end{array}$	$\begin{aligned} & \hline s \\ & S \\ & S \\ & \hline \end{aligned}$
	57D-98-05X	DX570500	C16A C27 SMOLE UNK517-695	hexadecane heptacosane sulfur unknown (18)	5.5 7.4 1.8 54	$\begin{aligned} & \hline s \\ & s \\ & s \\ & s \\ & \hline \end{aligned}$
	57D-98-06X	DX570600	C29 UNK538-687	nonacosane unknown (21)	${ }^{7.2} 6$	$\begin{array}{\|l} \hline s \\ s \\ \hline \end{array}$
	57D-98-07X	DX570700	$\begin{array}{\|l\|} \hline 3 S 5 E 3 L \\ \text { UNK597-687 } \\ \hline \end{array}$	B-sitosterol unknown (30)	${ }^{1.8} \begin{aligned} & \\ & \\ & \\ & \end{aligned}$	$\begin{aligned} & \hline s \\ & s \\ & \hline \end{aligned}$
	57D-98-08X	DX570800	$\begin{array}{\|l\|} \hline \text { 3S5E3L } \\ \text { UNK612-687 } \\ \hline \end{array}$	B-sitosterol unknown (21)	.$^{66} \quad 31$	$\begin{aligned} & \hline s \\ & s \\ & \hline \end{aligned}$
SVOA soils (LM18)	57S-98-01X	SX570101	UNK636-695	unknown (3)		S
	57S-98-02X	SX570200	UNK645-669	unknown (6)	59	S
	57S-98-03X	SX570302	UNK667	unknown	20	S
	57S-98-05X	SX570503	UNK667	unknown		S
	57S-98-06X	SX570601	UNK653-669	unknown (5)	21	S
	57S-98-07X	SD570700	ALPHPN C27 UNK526-682	alpha-pinene heptacosane unknown (10)	$\begin{array}{\|ll\|} \hline 1 & \\ 1.5 & \\ & \\ \hline \end{array}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \hline \end{aligned}$
	57S-98-07X	SX570700	ALPHPN UNK645-669	alpha-pinene unknown (8)	10 170 	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~s} \\ & \hline \end{aligned}$
	57S-98-07X	SX570701	UNK577-628	unknown (4)	50	S
	57S-98-08X	SX570800	$\begin{array}{\|l\|} \hline \text { C29 } \\ \text { UNK636-695 } \\ \hline \end{array}$	nonacosane unknown (6)	111	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~s} \\ & \hline \end{aligned}$
	57S-98-09X	SX570900	UNK653-695	unknown (6)	56	S
	57S-98-13X	SX571301	UNK653	unknown	. 8	S
	57S-98-14X	SX571401	UNK667	unknown	1	S
	57S-98-15X	SX571503	UNK695	unknown	4	S
$\begin{array}{\|l\|} \hline \text { SVOA } \\ \text { water } \\ \text { (UM18) } \end{array}$	57M-96-11X	MD5711XX	UNK525-621	unknown (4)	49	SD
	57M-96-11X	MX5711XX	ETC6H5 PRC6H5 UNK519-621	$\begin{aligned} & \text { ethylbenzene } \\ & \text { propylbenzene } \end{aligned}$ unknown (4)		s
	57P-98-02X	MX5702XX	UNK519-582	unknown (2)	19	S
	57P-98-03X	MX5703XX	PRC6H5 UNK530-592 XYLEN	$\begin{aligned} & \text { propyibenzene } \\ & \text { unknown (15) } \\ & \text { xylene } \\ & \hline \end{aligned}$	$\begin{array}{\|ll\|} \hline 5 & 171 \\ 5 & \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$
	57W-98-05X	WX570500	UNK528-666	unknown (3)		S

TABLE D-11
SUMMARY OF TENTATIVELY IDENTIFIED COMPOUNDS AOC 571998 SUPPLEMENTAL FIELD INVESTIGATION DEVENS, MASSACHUSETTS

MEDIA	SITE ID	FIELD SAMPLE NUMBER	IRDMIS TEST NAME	PARAMETER NAME	VALUE	$\begin{aligned} & \text { FLAG } \\ & \text { CODE } \end{aligned}$
	57W-98-08X	WX570800	UNK662	unknown	4	S
VOA water (UM20)	57M-96-11X	MD5711XX	$\begin{aligned} & \text { 124TMB } \\ & \text { 1E2MB } \\ & \text { 2MEPEN } \\ & \text { 3MEPEN } \\ & \text { CL2BZ } \\ & \text { CYHX } \\ & \text { MECYPE } \\ & \text { NAP } \\ & \text { PRC6H5 } \\ & \text { UNK219 } \end{aligned}$	1,2,4-trimethylbenzene 1-ethyl-2-methylbenzene 2-methylpentane 3-methylpentane chlorobenzene cyclohexane methylcyclopentane naphthalene propylbenzene unknown	20 20 10 30 18 20 20 10 10 10	S
	57M-96-11X	MX5711XX	124TMB 1E2MB $3 M E P E N$ CL2BZ CYHX INDAN MECYPE NAP PCYMEN PRC6H5	1,2,4-trimethylbenzene 1-ethyl-2-methylbenzene 3-methylpentane chlorobenzene cyclohexane indan methylcyclopentane naphthalene 4-(1-methylethyl)toluene propylbenzene	10 20 20 10 19 20 10 20 10 10 10	S
	57P-98-03X	MX5703XX	$\begin{aligned} & \hline \text { 124TMB } \\ & \text { 1E2MB } \\ & \text { INDAN } \\ & \text { NAP } \\ & \text { UNK237 } \\ & \hline \end{aligned}$	1,2,4-trimethylbenzene 1-ethyl-2-methylbenzene indan naphthalene unknown	$\begin{aligned} & \hline 70 \\ & 10 \\ & 6 \\ & 8 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$

Notes:
soils $=\mu \mathrm{g} / \mathrm{g}$ wates $=\mu \mathrm{g} / \mathrm{L}$
$S=$ non-target compound; $D=$ duplicate
Unknown (\#) = total concentration of specified number of unidentified non-target compounds
SVOA = semivolatile organic analysis
VOA = volatile organic analysis

1999 OFF-SITE LABORATORY DATA (AREA 3 SOIL REMOVAL)

A data quality review was completed on analytical data collected during confirmation sampling associated with the AOC 57 Source Area 3 Removal Action. Samples were analyzed for extractable petroleum hydrocarbon (EPH), volatile petroleum hydrocarbon (VPH), organochlorine pesticides by USEPA Method 8081, and polychlorinated biphenyls (PCBs) by USEPA Method 8082 (USEPA, 1996). Soil samples were analyzed for EPH/VPH using Massachusetts Department of Environmental Protection (MADEP) procedures (MADEP, 1998). Samples were analyzed by Katahdin Analytical Services in Westbrook, Maine. Soil samples were collected during field investigations completed in March, April, and June 1999. Data were validated to evaluate quality control measurement data associated with the laboratory analytical results, and to determine the usability of reported results.

Based on the data quality review described below, all VPH/EPH and PCB results are considered to be usable for quantitative and qualitative assessment of the presence and concentration of specified target analytes. Results for some hydrocarbon groups and target compounds have been qualified J indicating that reported results are interpreted to be estimated values. A subset of pesticide results has been qualified rejected R or estimated J due to poor matrix spike performance. Qualified sample results are discussed in detail below.

Data Review

The data quality review was performed by the HLA project chemist in accordance with reduced data validation guidance provided by the USACE New England. During the validation process, the major QC measurement specified in the analytical data sets are evaluated. Data validation actions were based on qualification procedures outlined in the USEPA validation guidance documents (USEPA, 1994). The following QC measurement and method requirements were evaluated:

- holding time compliance
- sample shipping and custody records
- laboratory control sample (LCS) results
- matrix spike (MS) results
- surrogate recoveries
- laboratory and field QC blank results
- field duplicate results

Harding Lawson Associates

APPENDIX D-5

VPH

All soil samples were preserved in methanol and analyzed within the 28 day holding time specified in the method. No target analytes were reported in laboratory method blanks, trip blanks, or rinse blanks associated with the data sets. LCS recoveries and duplicate data associated with the soil samples were within method specified limits indicating the analytical method was in control during the analysis of all samples in the data set. No matrix spike analyses were completed on samples in the data set due to lack of adequate volume of samples supplied to the laboratory. With the exception of samples discussed below, surrogate recoveries were within method specified limits for all samples.

A subset of samples was run at dilutions due to the presence of C9-C12 non-target compounds in the sample analysis. Reporting limits for BTEX and MTBE were elevated due to dilution in samples EX57W11X, EX57W14X, EX57W15X and the associated field duplicate, EX57W16X, and EX57W17X. It is possible that BTEX and MTBE might be present at concentrations below these elevated reporting limits; however, the overall VPH target compound results suggest that the contamination is primarily weathered hydrocarbons with the majority of BTEX has degraded.

The following data qualification actions and data use considerations should be incorporated into assessments made with this data set:

1. Aromatic fractions and target compound results in samples EX57W15X and the associated field duplicate, and EX57W 17X, were qualified estimated J due to surrogate recovery outside the method specified limits of $70 \%-130 \%$. Surrogate recovery for the aromatic fraction was $62 \%-67 \%$ indicating a slight low bias in the results.
2. All results for sample EX57W13X were qualified estimated J because of surrogate recovery outside the method specified limits of $70 \%-130 \%$. Surrogate recovery for the aromatic and aliphatic fractions were $66 \%-69 \%$ indicating a slight low bias in the results.
3. Results for the C9-C10 aromatic fraction in sample EX57W 02X and the associated duplicate were qualified estimated J due to differences in the field duplicate results.

Harding Lawson Associates

EPH

All samples were analyzed within the 14 day soil holding time specified in the method. LCS and MS recoveries, and duplicate data were within method specified limits for the majority of analytes indicating the analytical method was in control during the analyses. With the exception of two samples discussed below, surrogate recoveries were within method specified limits for all samples.

The following data qualification actions and data use considerations should be incorporated into assessments made with this data set:

1. Aromatic fraction and target compound results for soil sample EX57W13X were qualified estimated J due to low surrogate recovery (34\%). Results for these samples are considered potentially biased low.
2. Aliphatic fraction and target compound results for soil sample EX57W12X were qualified estimated J due to low surrogate recovery (19%). Results for these samples are considered potentially biased low.
3. Naphthalene results for a subset of samples were qualified estimated J due to low matrix spike recoveries of ($31 \%-43 \%$).
4. In samples EX57W02X, EX57W06X, EX57W08X, and EX57W12X results reported for C19-C36 aliphatics were qualified non-detect U due to similar concentrations being reported in the laboratory method blank.

Pesticides

All samples were analyzed within the14 day soil holding time specified in the method. LCS recoveries, and duplicate data were within method specified limits. All reported surrogate recoveries were within method limits. Data from the MS/MSD pairs analyzed with each of the 3 data delivery groups indicate that there were matrix effects limiting the accuracy of the pesticide results. Different matrix effects were observed for each MS/MSD pair including inconsistent low and high recoveries in a subset of the target compounds. In two of three MS/MSD samples, high concentrations of PCBs were present in the samples causing interference in the data. No clean up steps were taken during the analysis of these samples. It is possible that more reliable data could have been obtained if clean up steps including Forisil or Silica clean ups were undertaken at the laboratory. Results were qualified based on USEPA guidelines.

Harding Lawson Associates

1. Results for dieldrin, 4,4'-DDD, 4,4'-DDT, alpha-chlorodane, beta-BHC, endosulfan I and II, endosulfan sulfate, endrin, gama-BHC, gama-chlordane, and heptachlor epoxide were qualified estimated J in a subset of samples due to matrix spike recoveries outside limits.
2. A subset of methoxychlor results were rejected R due to low MS recoveries.

PCBs

All samples were analyzed within the 14 day soil holding time specified in the method. LCS, MS, surrogate recoveries, and duplicate data were within method specified limits indicating the analytical method was in control during the analyses. No data qualification was done on the PCB data sets.

Harding Lawson Associates

Reference:

Massachusetts Department of Environmental Protection (MADEP), 1998. "Method for the Determination of Volatile Petroleum Hydrocarbons (VPH)"; Division of Environmental Analysis; Office of Research and Standards; Bureau of Waste Site Cleanup; January 1998.

Massachusetts Department of Environmental Protection (MADEP), 1998. "Method for the Determination of Extractable Petroleum Hydrocarbons (EPH)"; Division of Environmental Analysis; Office of Research and Standards; Bureau of Waste Site Cleanup; January 1998.
U.S. Environmental Protection Agency (USEPA), 1996. "Test Methods for Evaluating Solid Waste"; Laboratory Manual Physical/Chemical Methods; Office of Solid Waste and Emergency Response; Washington, DC; SW-846; November 1986; Revision 4 -December 1996.
U.S. Environmental Protection Agency (USEPA), 1994. "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review"; Office of Solid Waste and Emergency Response; EPA-540/R-94/012; February 1994.

[^0]: sQL＞updata chem aet meth＝rtrim（meth）；

 SQL＞Cf：Xnbonlina
 SQL＞update cqe get methartrim（meth）；
 SQL＞conmit；

[^1]:
 늑눅ㅇ․ㅇㄱㄱ

