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FOREWORD 

On a continuing basis, the Army Mathematics Steering Committee (AMSC) 

sponsors three annual conferences. These meetings, in the areas of applied 

mathematics, numerical analysis and statistics, are designed to promote 

better communications among Army scientists. The oldest member of this 

series, the Conference of Army Mathematicians, held its twenty-second 

meeting at the Benet Weapons Laboratories, US Army Watervliet Arsenal, 

Watervliet, New York, on 13-14 May 1976. Dr. Moayyed A. Hussain, the 

Chairman on Local Arrangements, took this assignment seriously, and he, 

together with other members at Watervliet Arsenal, are due the thanks of 

all the attendees for an exceptionally well-planned meeting. 

The ninth Conference of Army Mathematicians also had as its host 

Watervliet Arsenal. Statistics from these two meetings point out some 

of the changes taking place in these affairs. The ninth Conference had 

65 attendees, while the present meeting entertained 94 persons. The 1963 

meeting had one invited speaker and 24 contributed papers, while the 1976 

Conference had 6 invited speakers and 44 contributed papers. The most 

encouraging statistic in these figures is the increase in the number of 

contributed articles. While 5 of the 44 papers in this class were given 

by University professors, this still leaves a sizable increase in the 

number of scientific papers being presented by Army scientists. 

The Subcommittee on Applied Mathematics of the AMSC has charge of the 

planning of the Conference of Army Mathematicians. It selects invited 

speakers whose fields stress areas of applications of mathematics which 

meet the needs of the Army. It also selects some speakers that address 

fields which meet the special interests of the host installation. From 

the titles of the addresses of the invited speakers listed below, one may 

note that the requirements of the host in the area of fracture mechanics 

is stressed in several of these talks. 

Nonlocal Elasticity and Fracture Mechanics 

Professor A. C. Eringen, Princeton University 

m 



Unsteady Problems in Combustion Using Activation Energy Asymptotic 

Professor John Buckmaster, University of Illinois 

A Return to Input-Output Methods in Statistical Theory 

Professor Thomas Kailath, Stanford University 

Three-Dimensional Cracks and Weight Functions 

Dr. Hans S. Bueckner, General Electric Company 

Recent Developments in the Theory of Elasticity and Rupture of 

Fluid Infiltrated Solids 

Professor James Rice, Brown University 

In addition to the above speakers, Professor George H. Handel man 

of Rensselaer Polytechnic Institute gave an invited address at the 

banquet which was held on the first evening of the Conference. 

Members of the AMSC were pleased that representatives of the Air 

Force, the Navy, and the Department of National Defence of Canada were 

in attendance at this symposium. They were also pleased to note the 

host installation had 22 of their staff members listening to the pre- 

sented papers. 

The last two articles appearing in these Transactions were not given 

at the Conference of Army Mathematicians. These papers, one by Dr. Achi 

Brandt and the other by Professor Gene H. Golub, resulted from invited 

addresses delivered at the 1976 Army Numerical Analysis and Computers 

Conference held 11-12 February 1976 at the US Army Research Office. 

TV 



TABLE OF CONTENTS* 

TITLE pAGE 

Foreward üi 

Table of Contents   v 

Program   • 

State of Stress in the Neighborhood of a Sharp Crack Tip 
A. Cemal Eringen    1 

Bending of a Cracked Strip Including Crack Surface Interference 
0. L. Bowie and C. E. Freese 19 

Singularity Analysis by the Finite Element Method 
Dennis M. Tracey and Thomas S. Cook 33 

Crack Tip Fields in Steady Crack Growth with Linear Strain 
Hardening 

John C. Amazigo and John. W. Huchinson 51 

Finite-Difference Solution of Poisson's Equation in Rectangles 
of Arbitrary Proportions 

J. Barkley Rosser 53 

Solutions to Initial Value Problems Using Finite Elements - 
Unconstrained Variational Formulations 

Julian J. Wu 75 

The Numerical Solution of Free Boundary Problems by Mathematical 
Programming 

Richard S. Sacher 101 

A Numerical Integration Error Analysis Utilizing a Wronskian 
Technique 

Larry A. Whatley and S. Bart Childs 105 

Input Controllable Stochastic Model 
Sheaf en Frank Kuo 115 

A Scanning Electron Microscope Investigation of Statically 
Loaded Foundation Materials 

Raymond E. Aufmuth 127 

Phase II Secure Voice Program - An Independent Army Analysis 
Theodore S. Trybul 139 

"This table of contents contains only the papers that are published in 
thTs technical manual. For a list of all papers presented at the Twenty- 
second Conference of Army Mathematicians, see the Program of the meeting. 

v 



Solving Control Problems Using Discrete Controls 
Randy J. Schuetz and Bart Chi Ids 147 

On Generalized Feller Equation 
Siegfried H. Lehnigk 157 

A Pertubation Method for Free Boundary Problems of Elliptic Type 
B. J. Fleishman and Thomas J. Mahar 159 

Determination of Propagation Constants in Scattering from 
Dielectric-Coated Wires 

Leon Kotin 169 

Activation Energy Asymptotics and Unsteady Flames 
J. Buckmaster and 6. S. S. Ludford 183 

A Model for Shock Induced Structural Transformations 
Paul Harris 203 

Some New Methods for Solving Linear Equations 
Thomas Kai lath 211 

An Exact Solution to an Elastic-Plastic Deformation Problem in a 
Radially Stressed Annular Plate 

Peter C. T. Chen 227 

An Effective Stiffness Viscoelastic Composite Beam Theory 
Charles R. Thomas 239 

Using Fast Transforms to Compute the Weight Distribution of a 
Linear Code 

Bart F. Rice 273 

Factorial and Hadamard Series for Bessel Functions of Orders 
Zero and One 

Alexander S. Elder 277 

Finite and Infinite Inhomogeneous Ladder Networks 
C. C. Yang and T. N. Lee 289 

Automatic Numerical Integration Using VP-Splines 
Royce W. Soanes, Jr 313 

Time Evolution of an Orthogonal Matrix 
James M. Wilkes 325 

The Weight Functions of Mode I of the Penny-Shaped and of the 
Elliptic Crack 

Hans F. Bueckner . 335 

VI 



The Buckling Pressure of an Elastic Plate Floating on Water and 
Stressed Uniformly Along the Periphery of an Internal Hole 

Shunsuke Takagi     357 

Nonlinear Theory of the Response of Pavements to Vibratory 
Loads 

Richard A. Weiss    419 

Characterization of Behind Armor Effects for Long Rod Penetrators 
Victor D. Maki 467 

Mathematical Models of Systems and Tactics in Land Combat 
Roger F. Willis 473 

Evaluation of Several 'Best Fit' Methods as they Pertain to the 
Superposition of Solutions in a Multipoint Boundary Value 
Program 

John H. Walker and S. Bart Childs 485 

A Statistical Study of Numerical Analysis Applied to the Regres- 
sion of nth Order Differential Equations 

Craig D. Hunter and S. Bart Childs 497 

Multi-Level Adaptive Solutions to Boundary-Value Problems 
Achi Brandt 509 

Singular Value Decomposition: Applications and Computations 
Gene H. Golub and Franklin T. Luk 577 

List of Attendees 607 

vi i 



PROGRAM 

THE 22nd CONFERENCE OF ARMY MATHEMATICIANS 
Maggs Research Center, Watervliet Arsenal 

Watervliet, New York 

All general and technical sessions will be held in Rooms 240 and 215, on 
the second floor of Maggs Research Center, Bldg. 115, Watervliet Arsenal, 
Watervliet, New York 

Wednesday, 12 May 1976 

0745 

0800-0830 

BUS FROM HOLIDAY INN TO WATERVLIET ARSENAL 

REGISTRATION - RECEPTION LOUNGE, 1st FLOOR, MAGGS RESEARCH 
CENTER 

0830-0845 

0845-0945 

OPENING OF THE CONFERENCE, WELCOMING REMARKS - ROOM 240 

GENERAL SESSION I 

SPEAKER: 

ROOM 240 

Professor A. Cemal Eringen 
School of Engineering and Applied Science 
Princeton University 
Princeton, New Jersey 

TITLE:     Nonlocal Elasticity and Fracture Mechanics 

CHAIRMAN:   Dr. E. A. Saibel 
US Army Research Office 
P.O. Box 12211 
Research Triangle Park, North Carolina 

0945-1000 BREAK 

IX 



Wednesday AM 

1000-1200      TECHNICAL SESSION I - ROOM 240 

CHAIRMAN: Dr. T. Davidson 
Chief, Materials Engineering Division 
Benet Weapons Laboratory 
Watervliet Arsenal, Watervliet, New York 

BENDING OF A CRACKED STRIP INCLUDING CRACK SURFACE 
INTERFERENCE 

0. L. Bowie and C. E. Freese, Army Materials and 
Mechanics Research Center, Watertown, Massachusetts 

DYNAMIC FRACTURE UNDER SHOCK LOADING CONDITIONS 
John F. Mescall, Army Materials and Mechanics Research 
Center, Watertown, Massachusetts 

SINGULARITY ANALYSIS BY THE FINITE ELEMENT METHOD 
Dennis M. Tracey and Thomas S. Cook, Army Materials and 
Mechanics Research Center, Watertown, Massachusetts and 
Southwest Research Institute, San Antonio, Texas, 
respectively 

SINGULAR BEHAVIOR AT THE TIP OF A GROWING CRACK IN A 
BILINEAR ELASTIC-PLASTIC MATERIAL 

John C. Amazigo and John W. Hutchinson, Department of 
Mathematical Sciences, Rensselaer Polytechnic Institute, 
Troy, New York and Division of Engineering and Applied 
Physics, Harvard University, Cambridge, Massachusetts, 
respectively 

ASSESSMENT OF STRENGTH-PROBABILITY-TIME RELATIONSHIPS IN 
CERAMICS 

Edward M. Lenoe and Donald M. Neal, Army Materials and 
Mechanics Research Center, Watertown, Massachusetts 

1000-1200      TECHNICAL SESSION II - ROOM 215 

CHAIRMAN: Dr. Aivars Celmins 
Chief of Fluid Mechanics Branch 
Applied Mathematics and Science Lab 
Ballastic Research Laboratory 
Aberdeen Proving Ground, Maryland 

FINITE-DIFFERENCE SOLUTION OF POISSON'S EQUATION 
IN RECTANGLES OF ARBITRARY PROPORTIONS 

J. Barkley Rosser, Mathematics Research Center, 
University of Wisconsin, Madison, Wisconsin 



Wednesday AM 

1000-1200     TECHNICAL SESSION II - ROOM 215 (Continued) 

ON A GENERAL METHOD FOR GENERAL PURPOSE HEAT DIFFUSION 
EQUATION 

R. Yalamanchili, GEN Thomas J. Rodman Laboratory, 
Rock Island Arsenal, Rock Island, Illinois 

SOLUTIONS TO INITIAL VALUE PROBLEMS USING FINITE 
ELEMENTS - UNCONSTRAINED VARIATIONAL FORMULATIONS 

Julian J. Wu, Benet Weapons Laboratory, Watervliet 
Arsenal, Watervliet, New York 

THE NUMERICAL SOLUTION OF FREE-BOUNDARY PROBLEMS BY 
MATHEMATICAL PROGRAMMING 

R. S. Sacher, Department of Mathematical Sciences, 
Rensselaer Polytechnic Institute, Troy, New York 

A NUMERICAL INTEGRATION ERROR ANALYSIS UTILIZING A 
WRONSKIAN TECHNIQUE 

Lawrence A. Whatley and S. Bart Chi Ids, Intern Train- 
ing Center, DARCOM, Alexandria, Virginia, and Texas 
A&M University, Texakana, Texas 

Wednesday PM 

1200-1315     LUNCH (OFFICERS' CLUB) 

1315-1515      TECHNICAL SESSION III - ROOM 240 

CHAIRMAN: Roger F. Willis 
US Army TRADOC Systems Analysis Activity 
White Sands Missile Range, New Mexico 

AN INPUT CONTROLLABLE PROBABILITY MODEL 
Frank Kuo, US Army Construction Engineering Research 
Laboratory, Champaign, Illinois 

A SCANNING ELECTRON MICROSCOPE STUDY OF STATICALLY LOADED 
FOUNDATION MATERIALS 

Raymond E. Aufmuth, US Army Construction Engineering 
Research Laboratory, Champaign, Illinois 

XI 



Wednesday PM 

1315-1515     TECHNICAL SESSION III - ROOM 240  (Continued) 

PHASE II SECURE VOICE PROGRAM - AN INDEPENDENT ARMY 
ANALYSIS 

Theodore S. Trybul, DARCOM, Alexandria, Virginia 

SOLVING CONTROL PROBLEMS USING DISCRETE CONTROLS 
Randy J. Schuetz and S. Bart Childs, Intern Training 
Center, DARCOM, Alexandria, Virginia, and Texas A&M 
University, Texakana, Texas 

1315-1515      TECHNICAL SESSION IV - ROOM 215 

CHAIRMAN: Dr. Walter Pressman 
US Army Electronics Command 
Fort Monmouth, New Jersey 

ON THE GENERALIZED FELLER EQUATION 
Siegfried H. Lehnigk, US Army Missile Command, 
Redstone Arsenal, Alabama 

A PERTURBATION METHOD FOR FREE BOUNDARY PROBLEMS OF 
ELLIPTIC TYPE 

B. A. Fleishman and Thomas J. Mahar, Department of 
Mathematical Sciences, Rensselaer Polytechnic Institute, 
Troy, New York 

CONSTITUTIVE EQUATIONS FOR TWO-PHASE FLOW 
Donald A. Drew, Department of Mathematical Sciences, 
Rensselaer Polytechnic Institute, Troy, New York 

DETERMINATION OF PROPAGATION CONSTANTS IN SCATTERING FROM 
DIELECTRIC-COATED WIRES 

Leon Kotin, US Army Electronics Command, Fort Monmouth, 
New Jersey 

1515-1530      BREAK 

1530-1630      GENERAL SESSION II - ROOM 240 

SPEAKER: Professor John Buckmaster 
Mathematics Department 
University of Illinois 
Urbana, Illinois 

xn 



1 
Wednesday PM 

1530-1630     GENERAL SESSION II - ROOM 240 (Continued) 

TITLE:     Unsteady Problems in Combustion Using 
Activation Energy Asymptotic 

CHAIRMAN:   Dr. Donald Eccleshall 
Chief, Applied Mathematics and Science Lab 
Ballastic Research Laboratory 
Aberdeen Proving Ground, Maryland 

Wednesday Evening 

1800 BANQUET - OFFICERS' CLUB 

SPEAKER: Professor George H. Handelman 
Dean, School of Science 
Rensselaer Polytechnic Institute 
Troy, New York 

MASTER OF CEREMONY: Dr. F. W. SCHMIEDESHOFF 
Director of Research, Watervliet Arsenal 
Watervliet, New York 

****************************************************************** 

Thursday, 13 May 1976 

0800 BUS FROM HOLIDAY INN TO WATERVLIET ARSENAL 

0830-1030      TECHNICAL SESSION V - ROOM 240 

CHAIRMAN:   Dr. Alma Gray 
Physical Sciences Division 
Benet Weapons Laboratory 
Watervliet Arsenal 
Watervliet, New York 

xm 



Thursday AM 

0830-1030      TECHNICAL SESSION V - ROOM 240  (Continued) 

THE STRUCTURE OF GROUPS WITH INDEX-3 SUBGROUPS AND 
LANDAU'S SECOND THEOREM 

L. V. Meisel*, D. M. Gray* and E. Brown** 
*Benet Weapons Laboratory, Watervliet Arsenal, 
Watervliet, New York 

**Department of Physics, Rensselaer Polytechnic 
Institute, Troy, New York 

PHASE-SPACE TRANSLATIONAL AND PERTURBATION METHODS IN 
NONRELATIVISTIC QUANTUM ELECTRODYNAMICS AND THEIR 
APPLICATION TO LASERS 

R. A. Shatas, S. S. Mitra, and W. C. Henneberger, 
Quantum Physics, Physical Sciences Directorate, 
Redstone Arsenal, Alabama 

A MODEL FOR SHOCK INDUCED PHASE TRANSFORMATIONS 
Paul Harris, Concepts and Effectiveness Division, 
Picatinny Arsenal, Dover, New Jersey 

BIFURCATION PROPERTIES OF LASER MODEL HAMILTONIANS 
Charles M. Bowden and R. Gilmore, Quantum Physics, 
Physical Sciences Directorate, Redstone Arsenal, 
Alabama and Institut de Physique Theorique, Universite 
de Louvain, B-1348 Louvain-La-Neuve, Belgium, respectively 

0830-1030      TECHNICAL SESSION VI - ROOM 215 

CHAIRMAN: Dr. Siegfried H. Lehnigk 
Physical Sciences Directorate 
US Army Missile Command 
Redstone Arsenal, Alabama 

A PULSATING REACTION FRONT IN SOLID FUEL COMBUSTION 
B. J. Matkowsky and G. I. Sivashinsky, Department of 
Mathematical Sciences, Rensselaer Polytechnic Institute, 
Troy, New York 

STABILITY THEORY FOR SIMPLE FLUIDS 
M. Slemrod, Department of Mathematical Sciences, 
Rensselaer Polytechnic Institute, Troy, New York 

xiv 



Thursday AM 

0830-1030      TECHNICAL SESSION VI - ROOM 215  (Continued) 

EXACT METHODS IN HEAT TRANSFER PROBLEMS 
John F. Polk, Detonation and Deflagration Dynamics 
Laboratory, US Army Ballistic Research Laboratories, 
Aberdeen Proving Ground, Maryland 

EXTREMUM VARIATIONAL PRINCIPLES FOR LINEAR DIFFUSION- 
TYPE EQUATIONS 

Ben Noble, Mathematics Research Center, University 
of Wisconsin, Madison, Wisconsin 

1030-1045      BREAK 

1045-1145      GENERAL SESSION III - ROOM 240 

SPEAKER:    Professor Thomas Kai lath 
Department of Electrical Engineering 
Stanford University 
Stanford, California 

TITLE:     A RETURN TO INPUT-OUTPUT METHODS IN 
STATISTICAL SYSTEM THEORY 

CHAIRMAN:   Dr. Merle M. Andrew 
Head, Mathematical Sciences Division 
Air Force Office of Scientific Research 
Boiling Air Force Base 
Washington, D. C. 

1145-1300      LUNCH (OFFICERS' CLUB) 

1300-1515      TECHNICAL SESSION VII - ROOM 240 

CHAIRMAN:   John F. Mescal 1 
Army Materials and Mechanics Research Center 
Watertown, Massachusetts 

FINITE ORTHOTROPIC PLATE WITH CIRCULAR HOLE LOADED BY 
FRICTIONLESS RIGID INCLUSION 

K. R. Gandhi, Army Materials and Mechanics Research 
Center, Watertown, Massachusetts 

xv 



Thursday PM 

1300-1515      TECHNICAL SESSION VII - ROOM 240  (Continued) 

AN EXACT SOLUTION TO AN ELASTIC-PLASTIC DEFORMATION 
PROBLEM IN A RADIALLY STRESSED ANNULAR PLATE 

Peter C. T. Chen, Benet Weapons Laboratory, Watervliet 
Arsenal, Watervliet, New York 

A PROBABILISTIC THEORY OF THE INTRINSIC TIME TO FRACTURE 
K. C. Valanis, Division of Materials Engineering, 
University of Iowa, Iowa City, Iowa 

FINITE ELEMENTS FOR ELASTIC-PLASTIC ANALYSIS AND ITS 
APPLICABILITY TO DUCTILE FRACTURE 

T. P. Rich, Army Materials and Mechanics Research 
Center, Watertown, Massachusetts 

AN EFFECTIVE STIFFNESS VISCOELASTIC COMPOSITE BEAM THEORY 
Charles R. Thomas, Benet Weapons Laboratory, Water- 
vliet Arsenal, Watervliet, New York 

1300-1515      TECHNICAL SESSION VIII - ROOM 215 

CHAIRMAN:    Dr. Leon Kotin 
Communication/Automatic Data Processing Lab 
US Army Electronics Command 
Fort Monmouth, New Jersey 

USING FAST TRANSFORMS TO COMPUTE THE WEIGHT DISTRIBUTION 
OF A LINEAR CODE 

Bart F. Rice, National Security Agency, Fort Meade, 
Maryland 

FACTORIAL AND HADAMARD SERIES FOR BESSEL FUNCTIONS OF 
ORDERS ZERO AND ONE 

Alexander S. Elder and Emma M. Wineholt, US Army 
Ballistic Research Laboratories, Aberdeen Proving 
Ground, Maryland 

ON A CLASS OF FINITE AND INFINITE NONUNIFORM CONTINUED 
FRACTIONS 

T. N. Lee and C. C. Yang, Department of E.E. and C.S., 
The George Washington University, Washington, D. C. and 
Applied Mathematics Division, Naval Research Laboratory, 
Washington, D. C, respectively 

xvi 



Thursday PM 

1300-1515     TECHNICAL SESSION VIII - ROOM 215  (Continued) 

AUTOMATIC NUMERICAL INTEGRATION USING VP-SPLINES 
Royce W. Soanes, Jr., Benet Weapons Laboratory, 
Watervliet Arsenal, Watervliet, New York 

TIME EVOLUTION OF AN ORTHOGONAL MATRIX 
James M. Wilkes, Army Materiel Test and Evaluation 
Directorate, White Sands Missile Range, New Mexico 

1515-1530      BREAK 

1530-1630     GENERAL SESSION IV - ROOM 240 

SPEAKER:     Dr. Hans S. Bueckner 
Turbine Department, General Electric Company 
Schenectady, New York 

TITLE:      Three-Dimensional Cracks and Weight Functions 

CHAIRMAN:    Professor Ben Noble 
Director, Mathematics Research Center 
University of Wisconsin 
Madison, Wisconsin 

****************************************************************** 

Friday, 14 May 1976 

0800 BUS FROM HOLIDAY INN TO WATERVLIET ARSENAL 

0830-1030      TECHNICAL SESSION IX - ROOM 240 

CHAIRMAN:    Dr. San-Li Pu ,  .  n. . . 
Applied Mathematics and Mechanics Division 
Benet Weapons Laboratory 
Watervliet Arsenal 
Watervliet, New York 

xvn 



Friday AM 

0830-1030     TECHNICAL SESSION IX - ROOM 240  (Continued) 

THE BUCKLING PRESSURE OF AN ELASTIC PLATE FLOATING ON 
WATER AND STRESSED UNIFORMLY ALONG THF PERIPHERY OF AN 
INTERNAL HOLE ' 

Shunsuke Takagi, US Army Cold Regions Research and 
Engineering Laboratory, Hanover, New Hampshire 

NONLINEAR THEORY OF THE RESPONSE OF PAVEMENTS TO 
VIBRATORY LOADS 

Richard A. Weiss, US Army Engineer Waterways Experiment 
Station, Vicksburg, Mississippi 

STABILITY ANALYSIS OF A HIGH-SPEED SLIDER-CRANK MECHANISM 
WITH AN ELASTIC CONNECTING ROD "tLMMNlbM 

Shih-Chi Chu and K. C. Pan, GEN Thomas J. Rodman 
Laboratory, Rock Island Arsenal, Rock Island, Illinois 

CHARACTERIZATION OF BEHIND ARMOR EFFECTS FOR LONG ROD 

Victor D Maki, US Army Ballistic Research Laboratories, 
Aberdeen Proving Ground, Maryland 

0830-1030      TECHNICAL SESSION X - ROOM 215 

CHAIRMAN:    Dr. Badrig M. Kurkjian 
US Army Material Development Readiness Command 
DARCOM 
Alexandria, Virginia 

STABILITY OF SOLUTIONS OF THE LINEAR COMPLEMENTARITY PROBLEM 
Stephen M. Robinson, Mathematics Research Center 
University of Wisconsin, Madison, Wisconsin 

MODELS OF SYSTEMS AND TACTICS IN COMBAT 
Roger F. Willis, US Army TRADOC Systems Analysis Activity, 
White Sands Missile Range, New Mexico 

EVALUATION OF SEVERAL "BEST FIT" METHODS AS THEY PERTAIN TO 
THE SUPERPOSITION OF SOLUTIONS IN A MULTIPOINT BOUNDARY 
VALUE PROGRAM 

nSS?nUa1n
kr ani! S' Bart Chi1ds' Intern Training Center, 

DARCOM, Alexandria, Virginia and Texas ASM University, 
Texakana, Texas 

xvm 



0830-1030 

Friday AM 

TECHNICAL SESSION X - ROOM 215  (Continued) 

A STATISTICAL STUDY OF NUMERICAL ANALYSIS APPLIED TO 
THE REGRESSION OF N-th ORDER DIFFERENTIAL EQUATIONS 

Craig D. Hunter and S. Bart Childs, Intern Training 
Center, DARCOM, Alexandria, Virginia and Texas A&M 
University, Texakana, Texas 

1030-1045 

1045-1145 

BREAK 

GENERAL SESSION V - ROOM 240 

SPEAKER: 

TITLE: 

CHAIRMAN: 

Professor James Rice 
Engineering Division 
Brown University 
Providence, Rhode Island 

RECENT DEVELOPMENTS IN THE THEORY OF 
ELASTICITY AND RUPTURE OF FLUID 
INFILTRATED SOLIDS 

Dr. Robert E. Weigle 
Director, Benet Weapons Laboratory 
Watervliet Arsenal 
Watervliet, New York 

1200 ADJOURN 

xix 



STATE OF STRESS IN THE NEIGHBORHOOD 

OF A SHARP CRACK TIP 

A. Cemal Bringen 

Princeton University 

ABSTRACT 

Field equations of nonlocal elasticity are solved to determine the 
state of stress in the neighborhood of a line crack in an elastic plate 
subject to uniform tension perpendicular to the line of crack at infinity. 
It is found that no stress singularity is present at the crack tip. When 
the maximum hoop stress is equated to the cohesive stress Griffith criterxon 
of fracture is obtained with the Griffith constant fully determined. 
Cohesive stress necessary to break the atomic bonds are calculated for 
kt,  Ni, Fe, LiF, Diamond and Zn.  The results are in excellent agreement 
with those known in the atomic theory of lattices and experiments. 

1.  INTRODUCTION 

The determination of the state of stress near the tip of a sharp crack 
in an elastic plate subject to uniform tension perpendicular to the line 
of crack at infinity, Fig. 1, is one of the most fundamental problems in 
fracture mechanics.  The solution of this problem was first given by Inglis 
[1913] and it was used by Griffith [1920] to establish his celebrated 
criterion for fracture of solids.  The classical elasticity solution of 
this problem gives a hoop stress with a /r singularity near the crack tip, 
where r is the distance from the crack tip.  Thus, according to classical 
elasticity the stress is infinite at the crack tip for even a minute 
amount of applied tension.  Since a plate with a sharp crack possesses a 
certain amount of resistance to fracture until the applied tension, tQ, 
reaches a critical value determined by the so-called Griffith criterxon 

(1.1)    t2l  = C ̂G 

where £ is the half crack length and C is an experimental constant (Griffith 
constant), it must be concluded that classical elasticity solution fails 
to apply near the crack tip.  This conclusion is responsible for the abandon- 
ment of maximum stress hypothesis for failure which has been prominent in 
structural mechanics.  Consequently, for brittle solids, since the time of 
Griffith, two distinct fracture criteria have been ir: use, one for 
structural members with no cracks and one for those containing cracks.  In 
fact the state of the art is more involved, far beyond this dichotomy, and 
many' other fracture criteria have been introduced by other authors to over- 

*The present work was supported by The Army Research Office at Durham. 

General lecture presented (under the title of "Nonlocal Elasticity 
and Fracture Mechanics") at the 22nd Conference of Army Mathematicians, 
Maggs Research Center, Watervliet Arsenal, Watervliet, NY, May 12-14, 1976. 
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come this stress singularity (e.g., J-integral, Barenblatt theory [1962] 
Khristianowich [1955] -Dugdale theory [i960], Goodier & Kanninen locally 
nonlinear theory [1966], etc.).  Below we give a brief discussion of 
these theories.  A thorough discussion of the status of the art is to be 
found in Goodier's [1968] article. 

Griffith Criterion.  Griffith assumes that the work done to extend a 
line crack of length It  an amount of 2d£. must be equal to the work of 
the surface tension.  In this way he arrived at the formula (1.1) with 

(1.2)     Cp = -TI^-ZT- Y G  TT(I-V^) 

where E is the Young's modulus, v is the Poisson's ratio for an isotropic 
elastic plate and Y is the surface tension energy.  The surface tension 
energy Y he employed is that borrowed from fluid statics.  In obtaining 
(1.1), the Inglis' solution for the elliptic hole was used with the 
provision that in the limit the minor axis of the ellipse approach to 
zero.  This theory has been under criticism for over half a century 
nevertheless surviving all criticisms.  Basic complaints may be sum- 
marized as: 

(i) Crack tip stress is infinite no matter how small the applied load is 

(ii) The crack opens up into an ellipse, so that the shear strain at 
the tip is too large (TT/4) for the linear theory to be applicable. 

(iii) Ellipse shrinking to a crack may not be "uniform," mathematically, 
i.e., other shapes may give different limits. 

(iv) The surface tension energy y borrowed from fluid statics may 
not be appropriate for solids. 

Barenblatt Model.  To overcome the objections (i) and (ii) B.arenblatt [1962] 
assumed that the tip region of the crack is not free of tractions but there 
exists a "cohesive stress," a(x), distributed in such a way as to bring the 
crack tip to a cusp, Fig. 2.  He then determined the shape of a(x) to 
achieve the cusp form. 

i2lli^iE1^ii';l2z]^ Khristianovich [1955] and Dugdale [1966] 
assumed that beyond the crack tip over a small length s there is a 
constant cohesive stress distribution to close up ends of the crack 
Fig. 3. 

Clearly both Barenblatt and Khristianwich-Dugdale theories are 
objectionable for their uses of heuristic assumptions not justifiable on 
the basis of any physical principles or experimental work. 

£9PAieJ^Ki1}lnjm.q^Jlc^l-  According to Goodier and Kanninen [1966] the 
atomic interactions are important at the tip of a crack.  In order to 
overcome the objection (iii) they use nonlinear springs along the tip 
of the crack.  The extent of nonlinear springs and their properties are 
left to our discretion.  While the basic idea of inclusion of long range 
interatomic interactions are worthy of careful attention the model contains 
arbitrary factors and functions to be fixed to suit the purpose. 



Remarkably common to all these models is the unequivocable realiza- 
tion that near the crack tip interatomic cohesive forces must be 
important. 

There exist solutions of Inglis' problem by using polar theories, 
e.g., couple stress, theory (Sternberg and Muki [1967]), micropolar 
theory (Kim and Eringen [1973]).  These results also contain the same 
type of singularities and therefore no further progress is possible on 
these grounds. 

Recently we have developed a continuum theory that takes into 
account the effect of long range interatomic attractions.  According to 
this theory the stress at a point of an elastic solid is influenced by 
the strains at all  points of the body.  All known physical and thermo- 
dynamic principles were satisfied (cf., Eringen[l972a,b], Eringen &^ 
Edelen [1972]).  When the nonlocal theory is employed for the solution 
of the crack tip problem one finds that the stress field at the crack 
tip is no longer singular and therefore it is possible to revert back 
to the maximum stress hypothesis for fracture criterion.  Remarkably 
enough this theory not only gives Griffith's criterion without any new 
assumption but also determines the Griffith constant.  In fact the 
cohesive stress calculated for various materials are. in excellent 
agreement with those known from Ihe atomic theory of lattices and 
experiments.  The main purpose of the present paper is an exposition of 

these results. 

2.  BASIC EQUATIONS OF NONLOCAL ELASTICITY 

Basic equations of linear, homogeneous, Isotropie, nonlocal elastic 
solids with vanishing body and inertia forces are (cf., Eringen [1972bJ) 

^     ^k = ° 

(2.2)    t U. 
[A'(|x'-x|) c^(x') 6k£ + 2y'(|x'-x|) ^(x')] dv(x') 

1/ 

(2.3)    ek£ = k(uk>l  + u£)k) 

where the only difference from classical elasticity is in the stress 
constitutive equations (2.2) which states that the stress t^(x) at a 
point x depends on strains, e,o(x'), at all  points of the- bocfy.  For 
homogeneous and isotropic solids the material moduli X'(|x -x|) and 
u'(|x'-x|) are functions of the distance between the points x' and x. 
The integral in (2.2) is over the volume f of the body enclosed within 

the surface 8 V. 

Here and throughout we employ Cartesian tensors with repeated 
indices that indicate summation over the range (1,2,3) and indices 
following a comma partial differentiation, with respect to space 
coordinates, e.g. 

\,l ~  9uk/;ix£ 



In our previous work [1972b, 1974] we have obtained the form of X'(|x'-x|) 
and u'(|x'-x|) for which the dispersion curves of plane waves coincide 
with those obtained in Born-von Kärmdn theory of lattice dynamics within 
the entire Brillouin zone.  Accordingly 

a\ P')= U,y) a(|x'-x|) 

(2.4) 

CX ( | X ' -x I )  = 

a   (a - |x'-x|) |x -x| <^ a 

Ix'-xI > a 

where a is the lattice parameter., A and y   classical Lame constants and 
aQ is a normalization constant to be determined from 

(2.5) cx(|x'-x|) dv(x') = 1 

Since the nonlocal effects are most important along the edge of the crack 
we use (2.4) and (2.5) at x = 0 to determine a . This gives a = 6/Tia3. 
Upon carrying (2.4) into (2.2) we will have   ° ° 

(2.6) 

where 

(2.7) 

ck£ 
1/ 

a(|?'-?|) ai^(?') dv(x') 

aU(5'} E A e^?'> 6k£ + 2^ ek£<?'> 

is the classical Hooke's law. 

Substituting (2.6) into (2.1) and using the identity 

a(l5'-?l)5k \t(x')   = -a(|x'-x|)>k, ^(x') 

= ~(a  au\k' +a V,k« 
and Green-Gauss theorem we obtain 

<2-8)    - I a(|x'-x|) au(x') dak(x') + 

8 \J V 

06 C | x * -x j) o^ k,(x') dv(x') = 0 

Here the surface integral may be dropped if the effect of the surface 
tensions are negligible or the body extends to infinity in all directions 
We assume this is the case so that 

(2.9) 

1/ 

a(|>-'-?|) cr]c£ k,(x') dv(x') = 0 

It is not difficult to prove that if a(|x'-x|) has a bounded sunno-i" and 
aV.l,-k  1S continuous in V then the necessary and sufficient condition  for 
(2.9; to be satisfied is, cf., Bringen [1976] 

(2.10) \l,k = 0 



Equation  (2.10) together with (2.7) are none other than Navier's equation 
for the displacement field u(x).  From this result it follows that 

Theorem.     The displacement field of the nonlocal elasticity   (under the 
conditions stated above)  satisfy Javier's equation. 

For the displacement boundary-value problem (1st boundary-value problem) 

this implies that: 

Corollary.     The displacement field of the first boundary value problem of 
the nonlocal elasticity is identical to that of the classxcal elastieity. 

Note, however, that to obtain the stress field we must substitute oyX 

obtained from the classical theory into (2.6) and carry out the volume 
integration.  Thus, for boundary conditions on the tractions we must employ 

(2.11)    tunk = t£     on 3 1^ 

on that part of the surface 3^ where the traction t£ is prescribed. 

3.  CRACK PROBLEM 

Consider a plate weakened by a sharp line crack of length 21.     The 
plate is subject to a uniform compression t0 at the crack surface and 
free of tractions at infinity.  The displacement field ux - u(x,y), 
u = v(x,y) in the upper half plane y > 0 are given by the classical 
elasticity solution (cf., Sneddon [1951, p. 404]). 

u = /k | i [|k| A(k) + 0k|y" ^r) B(k)J exp("|k,y"ikx) dk 
—CO 

00 

=        |~A(k)  + y B(k)J   exp(-|k|y -  ikx)  dk 
(3.1) 

1 
v = ' 

_OD 

where A(k) and B(k) are two functions to be determined from the boundary 
conditions at y =0.  These conditions are: 

t  = 0 , Y = 0 , ? x 
yx 

(3.2)   t  = -t     ,      y = o      ,      |x| <* 
yy   o 

o y = 0 , |x| > £ 

To obtain the solution of the crack problem with crack surface free of^ 
tractions and the plate is subject to a uniform tension tyy - tQ at y 
(Fig. 1) to the solution of the above problem we superimpose a unxtorm 

stress field tyy = tQ. 

Substituting (3.1) into (2.3) and (2.7) we calculate: 



CO 

°yy(x''y,) =-^j [lkl A<k> -(^- |k|y') B(k)] exp(-|k|y' 

- ikx') dk 

(3.3) 

yx 

oo 

- ikx') dk 

According to (2.6) then we have 

t  (x,y) = yy   * J ' 

(3.4) 
O-OO 

CO  CO 

a05'-5l) oyy(x',y') dx' dy' 

t  (x,y) = 
yx ,J 

0-c 

a(l?'~?l) a
yx(

x'»y') dx' dy' 

Substituting (3.3) and (2.4) into (3.4) and after carrying out integrations 
on x and y , we set y = 0 in these equations and in (3.1)? to form the 
boundary conditions (3.2).  As in classical treatment (3.2),, can be used 
to determine B(k) in terms of A(k).  The process is lengthy and tedious. 
We only give the resulting expression 

(3.5) B(k)   =  k (~ k2a2 + j) cos(ka)  + | ka sin(ka) 

+ j k3a3   Si(ka)   - | *  l<3a3   _ |J A(k)/[(|- k2a2 -^ 

4   A+2y 
3    A+y 

4 a 
10 

k2a2  - 4 Tg k1+al|jcos(ka) 

(| ka ^f " To ka + YÖ ^a3)sin(ka)   + I k3a3 

4 ^- k5a5)si(ka)   - \ *  k3a3 ^ü _ A *+2ji 

X+2y 
A+y 

A+y        3    A+y 

1        i 5   5 _,   4 ] 
where  Si(z)   is  the  sine  integral defined  by 

Si(z)   = sin  t 
dt 

0 

With B(k) given by (3.5), the boundary condition (3.2). is satisfied and 
(3.2)2 and (3.2)  lead to L 



(3.6) 

(2/TT)' A(k)   cos(kx)   dk = 0 x > I 

0 
o5 

(2/TT) k   a(ka)  A(k)   cos(kx)  dk = TQ x < I 

where 

(3.7) E   t   (A+2y)/2y(A+y) 
o 

a   (ka) •^ k2a2 + -r-J cos(ka)   + j ka  sin(ka) 

+ |k3a3   Si(ka)   - |^k3a3 

A V333       _i_ k5a5 l±i _ i k3a3 ±ÜL 
V  3 10  k a     A+2y       5  K S     X+2y 

-w 
+ fk». 

k5a5 

X+y \ + *>k7*7 ^ir)cos(ka) + (ikVt - TO ^ S) 
MiL)sin(ka)+(lkBaB+^kBaB^)si(ka) + _L k6ae 2+}L) + 20 K X+2y/ 

iir k5a6 - ^ k3a3 - ^ k8a8 ^ÜL + i k3a3 *+E_] 1 6        3^a   40 R. d X+2IJ  5     X+2yJ) 

The dual integral equations (3.6) must be solved to determine A(k). 
When this is done, we will have the problem solved. 

It is interesting to note that in the continuum limit a —> 0 
a —►1 and (3.6) revert the dual integral equations obtained in classical 
elasticity for the same problem.  With a complicated kernel function a(ka) 
the solution of (3.6) cannot be affected in closed form.  However, we 
can take advantage of the known classical solution to reduce the problem 
to a Fredholm integral equation which is more amenable to numerical 
treatment.  To this end let A (k) denote the solution of the dual integral 

c 
equations of the classical theory 

(2/TT)' A (k) cos(kx) dk = 0 
c 

> I 

(3.8) 

Uhr k A (k) cos(kx) dk = T 

0 

Subtracting (3.8) from (3.6) we will have 

x < I 

[A(k) - A (k)l cos(kx) dk = 0 > I 

k[A(k) - A (k)l cos(kx) dk k [l-ö(ka)] A(k) cos(kx) dk 

x < I 



Treating the right-hand side of these equations as known, we copy the 
solution of these equations from Sneddon [1951, p. 70]. 

A(k) - A (k) = (2£2/TT) [J (kl) (1-n2)^ 

0 

<;[l-a(Ca)] 

dn + k£ (l-u2)% du 

0 

A(C) cos(r,nl)   d; 

1 

c[l-ö(ca)]A(c)  cos(^nu) dr(n
2J1(£kn)dn] 

where J (z) and J^z) are Bessel functions.  After carrying out integrations 
in y and u we obtained the following integral equation of the second kind 

(3.9)    A(K) ,2 L,2N-! n<V-K2)  [n JO(K) ^(n) - K JQ(n) J-^K)] 

where 

[l-a(ne)] A(n) dn = A (K) 

K =  kl ,    n = ?£    t c =   a/l 

(3.10)   A(K) = (2/v)h   [2y(A+y)/£?to(A+2ij)] A(k) 

A (K) = (2/.)% [2va+v)/l?-t   (A+2y)] A (k) = J(K)/K c o        c      1 

in which the last equality follows from the classical solution for A (k) 
in the case of t    const. c 

o 

Wien (3.9) is solved for A(K) then the displacement and stress fields 
follow from (3.1), (3.3) and (3.4).  Along the crack line (y = 0) these 
are given by 

va,0) [2p(,Vly)/(A+2„)]/t I  = 
o A(fc) COS(KC) dk 

(3.1]) 
tyya,o)/to,  ta,0)/to = - K a(tcc) A(K) COS(KC) dK 

where  £ = x/£ 



The integral equation (3.9) is non-singular for all e 1  (L  For e = 0 
we have A(K) = A (K) = J1(K)/K.  It is also clear that l-a(Ke) = 0(e

2) 
for small e«l. °The smallest length crack may be constructed by one 
missing atom.  In this case, a = I  and e  = 1.  Thus 0 <_ e <_ 1 for a 
micro-crack of'100 atomic length e = 1/50.  It is thus expected that 
the contribution of the integral in (3.9) will become appreciable only 
for submicroscopic cracks of few atomic distances.  In fact, this turned 
out to be the case when (3.9) was solved by means of electronic computers. 

The numerical calculations were carried out over a two Brillouin 
zone, k = 2Tr/a, by discretizing (3.9) over 150 grid points.  The results 
will be reported elsewhere.  Here, however, we give some typical cases. 
In fact, we have found that the classical solution A^  is perfectly 
satisfactory for 2l/a >_ 40 (still a submicroscopic crack). 

The stress concentration for the case when the crack surface is 
free of traction but the plate is subject to uniform tension tyy = tQ 
at infinity is given by 

(3.12)   P(x) = [t  (x,0)/tQ] + 1 

The fact that the classical solution A of the dual integral equation (3.8) 
satisfies the boundary conditions extremely well for 2£/a >_ 40 can be 
seen from Fig. 4.  For other details and error estimates depending on E 

the reader is referred to Eringen, et al [1976]. 

4.  COHESIVE STRESS-FRACTURE CRITERION 

The stress concentration factor 

(4.1)    C(v) =    (2l/a)~h  P(£) 

is shown in Table 1 for various Poisson's ratio v = A/2(A+u) valid for 
21/a  >_ 100.  It is clear that 0.676 <_ C(v) <_  0.845.  For v = 0.25, 
C = 0.713 for 2£/a > 100. 

By means of (4.1) we make the following very significant observa- 
tions: 

(i) The stress field based on nonlocal theory has no singularity so 
long as a 4-  0.  In the continuum limit a— * 0, and the classical square 
root singularity occurs. 

(ii) A maximum stress hypothesis can now be used to predict the 
failure.  In fact, we state that: When  tyy max = tc = cohesive stress 
the fracture will occur.     From (3.1) it.therefore follows that 

(4.2)    t 2l  = [a/2 C2(v)] t * = C 
o c ""  G 

This is the Griffith criterion for brittle fracture, with extra benefit 
that the Griffith constant CG is now fully determined.  Interestingly, no 
ad hoc  constant (e.g., surface energy y) occurs in (4.2) and from the 
value of CG it is clear that it is a material property, i.e., it is 
known once the cohesive stress tc, lattice parameter a,and the Poisson's 
ratio v are known. 



(iii) The verification of the fact that fracture toughness, classically 
defined by Kj. = /TT£ tQ is a material property led many experimentalists 
to carry out long and arduous experiments (cf., Freed et al. [1971]; Brown 
and Strawley [1966]).  If (4.2) is used we see that 

H (4.3) K =(^c)2= (TT a/2)2 t /C(v) 
± b C 

is indeed a material property. 

(iv) Cohesive stress tc may be calculated for a given solid by use 
of (4.2).  Griffith surface energy y  appearing in (1.2) has been the 
subject of a great deal of experimentation.  If we equate (1.2) to (4.2) 
we obtain 

(4.4) t 2a - KY 
c 

where 

(4.5) K = 8C2(v)u/Vl-v) 

Calculations may now be carried out for various materials.  Employing 
the experimental values listed in Table 2, we have calculated t /E based 
on the nonlocal theory.  The results are recorded in the next to the last 
column of Table 2.  The entries in the last column of this table are 
the estimates of tc/E based on atomic considerations, Lawn and Wilshaw 
[1975, p. 160]. 

The remarkably close values obtained should be considered to be 
indicative of the far reaching power of the nonlocal theory. 
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TABLE 1. 

Stress Concentration factor at Crack Tip 

vs. Poisson's Ratio (—- = 100) 
a 

V C 

0 .676 

.05 .682 

.10 .687 

.15 .695 

.20 .703 

.25 .713 

.30 .723 

.35 .743 

.40 .764 

.45 .796 

.50 .845 

 I 
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FIGURE 1 

Elastic plate weakened by a crack 
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FIGURE 2 

Barenblatt model assumes that cohesive normal stress a(x) 
act at the tip region of the crack surface. The form of 
a(x) is to be determined to give cusps at tips. 



FIGURE 3 

Khristianowich-Dugdale Model 
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FIGURE 4 

Stress concentration along the line of crack 
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BENDING OF A CRACKED STRIP INCLUDING 
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ABSTRACT.  In the analysis of cracks lying in a compressive stress 
field, the classical solution of elasticity frequently yields unacceptable 
physical results - often predicting an overlapping of the crack faces. A 
first order correction to these solutions can be found by admitting crack 
surface interference and searching for a physically compatible displacement 
field. 

The problem of a center (or edge) cracked strip under in-plane bending 
is solved from this viewpoint. A necessary condition for a physically com- 
patible solution is shown to be the vanishing of the stress intensity factor 
at the crack tip in the otherwise compressive field. Numerical results in- 
dicate that the classical solution for the stress intensity factors at the 
crack tip in the tensile field underestimates the corrected solution by 
approximately ten percent. 

1.  INTRODUCTION. Every so often the simplifying assumptions of the 
classical linear theory of elasticity can lead to mathematical solutions 
which are physically unrealistic. We are familiar with the need for retain- 
ing the non-linear terms of the strain-displacement relations to account 
for the instability or buckling phenomena observed in the behavior of thin 
shells. Another type of deficiency arises in the analysis of configurations 
involving cracks lying in compressive stress fields. 

A simple example illustrating the subject of this investigation is pro- 
vided by a rectangular strip with a central crack loaded by a uniform uni- 
axial compression normal to the direction of the crack, Figure la. Assuming 
no friction across the crack surfaces, the obvious physically acceptable 
solution for this problem predicts the tangency of the crack surfaces AOB 
and AO'B with a stress state of uniform compression acting throughout the 
strip and across the crack surfaces. Compare this solution with that of 
reversing the signs for uniaxial tensile loading - an assumption consistent 
with the superposition argument of classical elasticity. Clearly the re- 
sulting infinite compressive stresses at the crack tips and the negative 
displacements predicting an overlapping of the crack surfaces (Figure lb) 
arrived at by such an argument is a physically unacceptable solution of the 
problem. 
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Figure 1. Central crack in rectangular strip under uniaxial compression, 
«y - - T. 

The "overlapping" problem illustrated above carries over, usually more 
subtly, to a variety of crack solutions when a portion of the crack configura- 
tion lies in a stress field which is compressive. A positive symptom of 
overlapping in the vicinity of a crack tip can be inferred from the sign of 
the stress intensity factor of linear fracture mechanics.  If, for example, 
Kj (the conventional Mode I stress intensity component) is negative, then 
there exists local overlapping at the crack tip. 

A plan of modifying the classical solution by tolerating crack closure 
but no overlapping is adopted in this paper. The problems corresponding to 
internal and edge cracks in a strip under in-plane bending are analyzed from 
this viewpoint and the "error" in the classical solutions is assessed. 

2.  CENTRAL CRACK IN AN INFINITE SHEET UNDER BENDING.  First, we con- 
sider the problem of a crack of length 2L with center at Z0 in an infinite 
sheet under in-plane bending (Figure 2). When Z0 = 0, the crack is centrally 
located with respect to the applied load and crack tips A and B obviously 
lie in compressive and tensile stress fields, respectively. We shall now 
show that both the classical and the modified solutions of this problem can 
be found by the Muskhelishvili [1] method of analysis. 
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Figure 2.     Crack in an infinite sheet under in-plane bending. 

The Muskhelishvili analysis depends  on the determination of two 
analytic stress functions  <|>(z)   and T|I(Z) 

witn the stresses  and displacements 
defined as 

a    + a    =  2[$'(z)  + <J>'(z)] 

a    - a    + 2ix      = 2[7<f)"(z)   + ip'(z)] y        x xy L   T     v  ^ CD 

2y(u +  iv)   =  K<KZ)   "   z4>'(z)   -  <Kz) 

where primes  denote differentiation and bars  complex conjugates.     The con- 
stants u and K are defined as y = E/2(l+v)   and K = 3-4v   (plane strain)   and 
K =  (3-v)/(l+v)   (plane stress) where E and v are Young's modulus  and Poissjn's 
ratio,  respectively. 

For a plate with no crack,  the stress  functions 

(J)(z)  = iTz2/8   ,     1(1 (z)   =  -iTz2/8 (2) 
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yield the stress distribution 

a    = 0   ,     T      = 0   , a    = -Ty (3) y '      xy '    x J K J 

which is  o£ course the desired loading for large   |z|. 

The physical region in Figure 2  can be described conveniently by the 
mapping 

z = ü)(C)  =  zo + £la(L/2)(c +  c"1) (4) 

The unit circle and its exterior in the c-plane are mapped into the crack 
and its exterior in the z-plane.     In particular,  t,= l maps into the crack tip 
A and r, = -1 maps into the crack tip B. 

The stress  functions  <j>(z)  and i|>(z)  can now be considered as  <j>(0  and 
KO where <f>'(z) now corresponds to (f)'(?)/"'Cc) , etc.    Using the well-known 
continuation arguments of Muskhelishvili,  the crack is traction-free if we 
set 

*CO = - *U/0 - üu/O + 'UWCO (5) 

and the extended definition of <j>(0   leads to a function continuous  across  the 
unit circle.     On the other hand,  from  {2)  the loading .conditions  at infinity 
require 

♦ CO -» iTz2/8 + iT(L/32)[LÄ2lac2 + 4z A1<xO (6) 

♦ (0  -»■ -  iTz2/8 -»• -  iT(L/32) [U2lCXC2 +  4z  £ia£ 

for large   11, \ . 

Conditions   (5)   and (6)   are satisfied by choosing 

♦ CO  =   [iTL2/32] K2iV  + 4(zo/L)Äi01C  -   [A-21" -  2]?"2 C7) 

+   [8i(7o/I/)   sin a +  4Czo/L)£"la]?-1 

and this  completes  the formal solution. 

3.     THE CLASSICAL SOLUTION WHEN  zn = 0.     The  classical solution  for 
the centrally located crack,  z0 = 0, will first be considered.    The crack 
tip A lies in apparently a compressive field and we can anticipate a physi- 
cal incompatibility of the solution. 
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The stress intensity, KJ^ , at the crack tip A in general will be 
made up of Modes I and II and can be calculated from 

^-iKfU-znm.'Va,]-1'2 (8) 
= - T(L3/,2/2)sin2a(sin a + i cos a) 

whence 

KJJ-
1
 = - (T/2)L3/2sin3 a 

K^ = - (T/2)L3/sin a cos a 

(9) 

(10) 

(1) 

Similarly,  at crack tip B  (corresponding to x, = -  1), 

K^  =   (T/2)L3/2sin3 a 
ID 

K*-1)   =  -   (T/2)L      sin    a cos  a 
2B 

A clue to the unacceptability of the solution is negativeness of K^\ 

In order to examine the physical compatibility of the displacements of 
the crack surfaces, we introduce a (5,n)  coordinate system where K- and n 
are along and normal to, respectively,  the crack direction.    Tnen 

u    + i u    = jTia(u + iv)  = Jfia(K + l)Ka)/2u (ID 

for the crack boundary where a = ZlQ are points on the unit circle in the 
S-plane.    The condition for no "overlapping" of the crack boundaries  can be 
written as 

u (6)   - u (-0)   >. 0        0 £ 6 < TT (12) 

When z    = 0, 
o 

u (0)   - u (-0)   =   (K +  l)TL2sin a sin 20[cos 2a -  l]/16y (13) 
n n 

which   (except for the trivial cases  a = o,  TT)   clearly violates  the no over- 
lapping condition   (12)   in the interval o <  6  < ir/2. 
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4.  DETERMINATION OF A PHYSICALLY ACCEPTABLE SOLUTION.  The plan for 
determining a physically acceptable solution depends on admitting crack 
closure over segments of the crack without overlapping.  If the crack tip is 
involved in the region of overlapping, as is the case in the present problem, 
a necessary condition for an acceptable solution can be expressed in terms 
of the stress intensity factors from a consideration of the local stress 
and displacement fields. 

Consider the crack tip A and the displacements Ur and u^ to the first 
order of the local crack tip expansion. A necessary condition for no local 
overlapping can easily be shown, Kj _> 0, from a consideration of u^.  If, 
in addition, we assume crack closure in the neighborhood of A, then an must 
be non-tensile across this interval. Therefore, a necessary condition for a 
physically acceptable solution is Kj = 0 at A. No claim as to the sufficiency 
of this condition can be made as the stress intensity reflects only the 
dominant term of the local solution. A solution arrived at on this basis 
must still be tested for its overall consistency. 

In the present case, we consider zQ as undetermined and impose the 
vanishing of Ki at A. Since 

♦'(1) = - iT(L2/4) J sin2a + (2/L) (sin a) Im ZQ ( (14) 

it follows that Kj = 0 at A if we choose 

Im zQ  = - (L/2)sin a (15) 

Although there are no restrictions on Re z , we choose zQ so that the crack 
passes through the origin of coordinates, thus 

zo = - (L/2)£ia (16) 

With this  choice of z  , we reexamine the non-overlapping condition   (12). 
On the crack, 

2 \ 3 
u^ = (K + 1)TL j4 sin a sin 0(1 - cos 8) 

2 2 / (1?) + cos a(l + 2 sin a)(1 - 2 sin 6 - 2 cos 6) } /32y, 

thus, 

u^Ce)   - u (-8)  =   (K + l)TL2sin3a sin  8(1 -  cos  6)/4y (18) 

which clearly satisfies   (12)   for 0  <_ 8 <_ IT and hence is  a physically 
acceptable displacement field. 

The stress  intensity factors  in the present case are 
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K™  = TL3/2sin3a (19) 
ID 

KJj2)  = - TL3/2sin2a cos a 
ZD 

Furthermore, it is easily verified that the forces normal to the segment AC 
in Figure 2 are compressive. 

It is clear that the present solution can be considered as a physically- 
acceptable solution for a central crack along the segment BC where closure 
occurs on the segment AC.    We do assume,  of course, that the frictional 
properties of the crack surfaces are consistent with a continuous displace- 
ment solution along AC,  i.e.  closure without slippage. 

A comparison with the previously derived classical solution for a 
centrally located crack can now be made by observing the change in the stress 
intensity calculation at point B.    The crack AC corresponds to a crack length 
of 2L if an effective half crack length of 2L/3 is used in the calculation 
of (19).    Thus,  the "corrected" stress intensity factors at B are 

K.D = T(2L/3)3/2sin3a 
lb 

KOD = - T(2L/3)3/2sin2a cos a 

(20) 

Since 

V'I" - WM -2(2/3)3/2 (21) 

the classical estimate of the stress intensity factor at B is in error on 
the non-conservative side by approximately nine percent. 

5.  CENTRAL CRACK IN A FINITE STRIP UNDER BENDING.  We consider, now, 
the more difficult problem of a central crack in a strip of finite width 
under bending, Figure 3, where the solution cannot be found in closed form 
and the previous arguments must be carried out numerically. For the con- 
figuration in Figure 3, Benthem and Koiter [2] have estimated the crack 
tip stress intensity factors at B for the classical solution of the problem 
by using an effective asymptotic argument. 

25 



M 
M 

Figure 3.     Central crack in a strip under bending. 

The solution was  carried out using the MMC  (Modified Mapping Collocation) 
method combined with finite elements   [3,4].     This plan is based on "partition- 
ing" the region and using a representation of the solution appropriate to 
each sub-region.     The boundary conditions    along with appropriate "stitching" 
conditions between the representations must be satisfied by the solution. 
The details  of this  approach have been previously documented and will not be 
repeated here. 

The partitioning plan is  indicated in Figure 3.    The region MRSN was 
described using the mapping function 

z =  zQ + i(A/2)(£ +  I/O (22) 

which clearly maps  the unit circle in the £-plane into the crack AB.     A 
series  representation of the solution was  chosen in the corresponding para- 
meter region and traction-free conditions  on the crack were enforced by the 
continuation argument,  e.g.,  Equation  (5).     The boundary conditions  on RS 
and MN and the stitching conditions  on RM and SN were imposed by the colloca- 
tion arguments  outlined in   [4].     In the complementary regions   (the shaded 
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areas in Figure 3)  a finite element representation of the solution was taken. 
Imposed on this representation were the appropriate stitching conditions, 
traction-free boundary conditions  and end loading, 

(3M/2b3)y (23) 
ax = 

Again, we seek a value of z0 such that the stress intensity K1A = 0 
and the crack displacements and the forces on AC are physically compatible 
with our argument.  It was found that z0 can be determined quite readily by 
iteration. From the infinite sheet solution, it is evident that for small 
l/b  ratios, zn=£/2. With this as a guide for the first approximation, 
only a few trials were required to find the proper value of z0 for successively 

increasing values of l/b. 

The numerical results are presented in Table 1. Again the results are 
to be compared with the classical solution for the central crack, z0 - 0. 
The effective half crack length, L, is evidently 

L = a  + |z0| 
(24) 

Table 1 

"Corrected Stress  Intensity Factors,  KjB, 
for Central Crack in Strip under Bending 

** 
K1B K1B 

Mb-3/2 KI8 

0.0237 1.09 
0.0672 1.09 
0.124 1.10 
0.193 1.10 
0.276 1.10 
0.379 1.10 
0.516 1.10 
0.727 1.10 
1.163 1.10 

♦Extrapolated 
**Benthem and Koiter [2] 

It is interesting to compare the present results with the classical 
results K*J of Benthem and Koiter.    Within one percent,  the classical solu- 
tion underestimates the K1B values by nine percent for all values of L/b. 

6.    MODIFICATION OF THE ASYMPTOTIC APPROXIMATION.     In  [2],  Benthem and 
Koiter introduced a non-dimensional factor K by writing 
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L/b i/b zo/b OA/b K1B 

Mb-3/2 

0.1 0.067 -0.033 0.033 0.0259 

0.2 0.133 -0.067 0.067 0.0733 

0.3 0.200 -0.100 o.ioo 0.136 

0.4 0.270 -0.130 0.140 0.213 

0.5 0.340 -0.160 0.180 0.304 

0.6 0.414 -0.186 0.228 0.417 

0.7 0.492 -0.208 0.284 0.567 

0.8 0.574 -0.226 0.350 0.796 

0.9 0.668 -0.232 0.432 1.280 

1.0 • 0.763* -0.237* 0.526* 



Kx = K 3LM(aL/b)1/2/2(b3 -  L3) (25) 

where K is  a polynomial in L/b.    An approximate solution for K was  found by- 
order of magnitude considerations of the two limiting cases,  L/b -*- 0 and 
a/b -> 0. 

The modifications  of their arguments  for the "corrected" solution for 
L/b -*- 0 can now be carried out by using our solution for the central crack 
in an infinite sheet.     In particular,  if the order of magnitude considerations 
of [2]   are modified by Equation   (20),  then,   at the crack tip B, 

K1B ->  (2/3)3/2[3ML3/2/2b3][l  + 0(L4/b4] 

for L/b ■*■ 0 

From a comparison of Equations   (25)   and  (26), 

K+    (2/3)3/2[l +   (1/2)(L/b)   +   (3/8)(L/b)2  -   (11/16)(L/b)3 

+ 0(L4/b4]     for L/b -> 0 

(26) 

(27) 

For the second limiting case,   a/b -»- 0, by using the anti-symmetry of 
the classical problem and the "edge dam" solution,  the authors  of [2]   found 

K -*■ 2/(TT
2
 -  4)1/2 = 0.826    for a/b -*• 0 (28) 

Unfortunately,  due to the non-linearity of our present solution no such 
limit can be rigorously argued.     On the other hand,  a reasonable estimate of 
this  limit can be  found by extrapolation of the data.     From Table  1,   the 
segment 0A can be extrapolated as 0A -*- 0.52b  as  a/b -*- 0.     Furthermore,  the 
stress  distribution a    along the centerline from A to the edge is very nearly 
linear.     From equilibrium conditions,  it can be argued that the  local stress 
at B is nine percent higher than in the classical  case.    Thus, 

K+    (1.09)(0.826)     for a/b -^ 0 (29) 

(Although  (29)   is  an extrapolated estimate,   it was verified that reasonable 
variations in the approximation altered this result by no more than one percent.) 

Therefore,  the simplest polynomial interpolation between these asymptotic 
results yields 

K =   (2/3)3/2[l +   (1/2)(L/b)   +   (3/8)(L/b)2  -   (11/16)(L/b)3 

4 (30) 
+   .464  (L/b)4] 
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Equation (30) is identical with the K in [2] if (2/3)3/2 were replaced by 1/2, 

7  EDGE HRACK IN A STRIP UNDER BENDING. At about the same time as 
the author's solution [5], Paris and Tada L6j considered the solution for 
an edge crack in a strip under bending again allowing for interference of 
segments of the crack surfaces, Figure 4. 
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Figure 4.     Edge crack in strip under bending. 

It is  obvious physically that for C/W < 1/2,   assuming no friction 
between the crack surfaces,  the admissible solution is one which predicts 
the strip is in uniform bending with the crack surfaces interfering and 
carrying a compressive load.    For C/W > 1/2,  it is also clear that the 
solution is identical to our results  for the central crack with a modified 
interpretation of the parameters. 

In Paris  and Tada's analysis,   the crack tip stress  intensity,  K, was 

approximated by 

K~ = G(C/W)H(C/W) (31) 

where 

G(C/W)   =   (2/3)3/2(2C/W)(l - W/2C)3/2 (32) 
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(33) 

based on the solution for a central crack in an infinite sheet under bending. 
(Note_ that in Equation (31), the alternate introduction of >/F"in the 
definition of stress intensity factors has been made.) The function 
H(C/W) was taken as the correction for the effect of the finite width of 
the strip.  Paris and Tada did not calculate H(C/W) exactly, instead, they 
assumed an approximation based on the finite width correction for a center 
cracked finite width strip under tension. Their numerical results are 
listed in Table 2. 

The results which we have derived can be applied with the following 
changes in notation. 

L = &    =  C - W/2 

b = W/2 

a = b - L 

L/b = 2(C/W) - 1 = A 

M = (2/3)b2a 

Kj = K~ 

Then, 

K~/a/7c = R(A)A3/2 VT~~T/(1 -  A3)  VTT~\ 

where 

R(A)   =   (2/3)°/z[l +  A/2  +  3AZ/8 -   11A3/16 +   .464 4] 

A comparison of the results  is  shown in Table 2 

(34) 
3/2ri   A   ...  ^   „2/0       ,„3,,,   .      ._   4, 

Table 2.    Values  of K /a \Ac 

C/W 

0.50 

0.55 

0.60 

0.70 

0.80 

A_ Equation (31) Equation (34) 

0.0 0.0000 0.0000 
0.1 0.0165 0.0164 
0.2 0.0453 0.0445 
0.4 0.129 0.118 
0.6 0.259 0.217 
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The approximation^ H(C/W) used by Paris and Tada appears to exaggerate 
the stress intensity K for the deeper cracks. For cyclic bending of an 
edge cracked strip, the moment M contributes to the crack opening after the 
crack has reached the half width of the strip. The K contributes for 
further crack growth can then be determined from Equation (34). 

8.  OBSERVATIONS. The problem of "crack overlapping" occurs in several 
of the'classical analyses found in the literature. The results of this 
investigation would appear to indicate that the errors so introduced are 
sufficient to warrant a more careful consideration of such solutions. 
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SUMMARY 

A finite element formulation is described for problems with solution 
functions known to have local r* variation (s), 0<A<l,and thus singular gradi- 
ents. Special 3-node triangular elements encircle the singularity and focus to 
share a common node at the singular point. The shape function of each triangle 
has the appropriate rx mode and a smooth angular mode expressed in element 
natural coordinates. As with standard elements, the unknowns are the nodal 
values of the function. Even if the precise angular form of the asymptotic 
solution is known, the formulation makes no attempt to embed it, but instead 
piecewise approximates it. This allows assembly of the element coefficient 
matrix using standard procedures without nodeless variables and bandwidth 

complications. 

The conditions of continuity, low order solution capability, and accurate 
numerical integration of the singularity element are discussed with a view 
towards establishing the general range of applicability of the formulation. 
Numerical applications to the elastic fracture mechanics problems of composite 

bondline cracking and crack branching are discussed. 

INTRODUCTION 

We are considering here the problem of attaining accurate numerical 
representation of a function <f> (x,y) when near discrete points in the domain <f> 
varies as rx, 0<X< 1. Standard shape functions cannot properly model the 
singular gradient of r so our approach has been to design a special singularity 
element.  Beyond embedding the proper singularity into the shape function, the 
usual questions of interelement continuity, constant state representation, and 

accurate numerical integration are addressed. 

Interelement continuity should be maintained for <J> and its derivatives 
up to one order less than that occurring in the governing volume integral, 
denoted by I, of the problem. Subsequently, it will be shown that the 
singularity element has <f> interelement continuity but no guaranteed con- 
tinuity of <(> gradients across edges. Strictly speaking then, it is limited 
to problems where I = I O, 3*/3 x.). For example, this is the 
case in the potential energy formulation of elasticity where the governing 
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functional of displacement involves only first order derivatives.    The 

virtual work formulation of plasticity is another such case with   «5 

representing the displacement increment. 

The other finite element convergence criterion      is that an 

element should be capable of representing fields with constant values 

of   i> ,    or derivatives    of   &   up to the order occurring in I.    This is 

necessary because in the limit of vanishing element size,    </>     and its 

derivatives should,  within the element,   equal the pointwise constant 

values.    From a practical standpoint the constancy conditions are 

important only when constant state conditions exist over the finite 

subdomain occupied by the element.    The boundary conditions of a 

singularity problem can cause smooth as well as singular    <t>   variations 

near the singular point.    The constancy capability of the elements at 

the singular point is important only if the smooth terms are,   on an element 

average basis,   comparable in value to the singular terms.    The element 

introduced below has    «5   modes of the constant and   r      type.    It does not 

have the polynomial terms necessary to represent non-zero constant 

derivatives.    Since the singular mode dominates the uniform mode as 

the singularity is approached,  the lack of the latter mode is of diminishing 

consequence as element size is reduced,   and thus convergence is achievable 

in this sense.    However it is clear that the element is not suited for problems 

without an "active" singularity. 

FORMULATION 

The element described here is a generalization of the singular 

element suggested      for analysis of the   r1'2    elastic crack tip singularity. 

The element is a 3 node triangle,   and has one of its nodes at the singular 

point.    The power form variation is chosen in the direction away from the 

singular point; low order smooth variation is chosen in the angular direction. 

Figure  la illustrates the modeling with one of a necessary group of triangles 

at the singular point,   node I.     The shape function is developed in terms of the 
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oblique coordinates   ?,  r\   which vary over the range [0, 1]within the 

element.    The radial edges correspond to   n = 0,   1.    The edge   5= 0 is 

actually a point - the singular point-and the far transverse edge is   5 = 1« 

The transformation to cartesian coordinates follows 

x = xl (l - §) +x J   ?(.i - n) +x     In (i) 

It is straightforward to show that   §  is always a linear function of r 

times a trigonometric function of angular orientation within the element 

and that   r\   is solely a trigonometric function of angle.    As an example, 

the isosceles triangle of Fig.   lb has the transformation equations 

% = (r   cos 9) / xQ 
=x/x

0 

(2) 

n = (tan   G/tana       + 1) /2       = (y/x .xQ/yo  + l)/2 

X      v. With   ?   being a linear function of r,    <6 varies as   r     when 

?X   terms are chosen in the shape functions; such a choice yields the 

interpolation function 

rf   =   rf1   <  I-SS   +   rfVd -*)+**?% (3) 
For the isosceles triangle this corresponds to 

tf   = fil  (1- (x/x )X) +1/2   «JJ   (l-y/x-x /y   )(x/xo) 

(4) 

+ 1/2 «SK (1 +y/x- x  /y  )(x/x   ) o     o o 

By using a group of these elements about the singularity, the 

angular form of the asymptotic solution is approximated in a piecewise 

smooth fashion.    The singular radial variation is embedded throughout 

the region occupied by the elements. 

On the radial edges    «5   is a two parameter function,   e.g.   on IT 
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rfM1 +(<4J - rf1) §x (5) 

so that there is continuity of   </>   on these edges.    On JK <?>   is a linear 

function of position which guarantees continuity with an element such 

as the bilinear isoparametric.    Derivative continuity across element 

edges is not guaranteed so that,   as previously discussed, the element 

strictly applies only to those problems whose governing integrals are 

independent of second and higher order   <f>   derivatives. 

The element is capable of representing a constant   (6   condition 

as can be seen by substituting a constant for the nodal values in the 

interpolation function and observing that   </>   then equals the constant. 

Without a linear term in the shape function the constant first derivative 

condition cannot be met.    In analysis of deformable solids where   </> 

would be the displacement function,   situations such as rigid rotation 

and uniform thermal expansion correspond to a linear   «5   mode.    The 

element cannot directly accommodate these cases,   but by choosing a small 

enough element the singular mode will dominate the exact solution making 

the exclusion of the linear mode inconsequential. 

The singular nature of the   i   gradients does not preclude the 

possibility of accurate numerical integration in forming the coefficient 

matrix.    It is assumed from the outset that the   r      variation gives rise 

to an integrable singularity.    Standard methods of integration have been 

developed for polynomial variations so that these can be used only for 

the angular integration.    In general the problem is to integrate terms of 

the form 

g (n)   dn (6) 

The determinant of the Jacobian , b(x, y)/b(§, r\), accounts for the factor § 

of the inner integrand. For the examples below a 2-point Gauss rule was 

used for the   n   integration.    The form of   f(§)   must be scrutinized before 
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choosing a   5   integration rule.    For elasticity the governing integral is a 

quadratic function of the shape function first derivatives and this results 

in 

l = 52X (V) 

Hence 

1 1 
/      f   5   d?   =    / 
0 0 
)      f   5   d5   =    / ?2X "  l     d?   =    1/2X (8) 

For the elasticity examples below, the numerical technique employed to 

achieve precisely the result (8) was a specialized  1-point rule:   one 

integration station was used at location     ? = (2\) and its weight 

was unity.    It is easily appreciated that standard methods of integration 

can be very much in error for this problem,  particularly for   \ < 0. 5. 

Hence,  generally speaking,   detailed investigation of   f (?)   is required 

for design of an adequate integration procedure. 

EXAMPLES 

The examples are problems of elastic fracture mechanics.    The finite 

element approach employed was that based upon the principle of minimum 

potential energy,   so that   4   of the last section now stands for the displacement 

vector function.    The first problem is the bimaterial elastic strip with a 

pressurized crack normal to and terminating at the bondline.    The geometry is 

illustrated in Fig.  2.    The material on the left is cracked and designated as 

material   1   with shear modulus     ^   and Poisson's ratio   V^ material 

2 to the right has properties   p^,   ^2 .    Crack length,   plate width,   and 

height are related by     a/b = a/h = 1/9.    The left end of the crack being 

surrounded completely by one material is a singular point with displacement 

varying as r*/2.    The bondline crack tip has a singularity dependent upon 

the bimaterial elastic properties.    Displacement varies as   r     with   X   a 

function of    \i J\i      and also the type of planar deformation,   i. e.   plane stress 

vs.  plane strain.      The examples here are plane strain and the material 
_ 6       . 

combination is aluminum-epoxy.    For aluminum  |i " 3-846 x 10    P81' 
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V = 0. 3; and for epoxy jx = 0. 1667 x 10 psi, V = 0.35. With aluminum 

as the cracked material m= M^/R-J = 0. 043 and X = 0. 1752. When epoxy 

is the cracked material    m = 23. 08   and   X = 0. 6619. 

Figure 3   shows the mesh used in the crack location.    Symmetry 

allowed modeling just the upper half of the strip.    Isosceles triangle s 

with a radial dimension of   a/100   and angular extent of 15° were used 

as singularity elements about each crack tip.    Of course,   about each 

tip the appropriate value of   X   was used to generate the element stiffnesses. 

The radial dimension of the singularity elements is a crucial aspect of 

the finite element model.    The singularity elements should be entirely 

within the region where displacement is accurately represented by 

the   r       form.    The crack opening displacement data from available 
■3. 

singular integral equation solutions      we*e   used to establish the 

suitability of the radial dimension   a/100.    When there is no basis for 

judgment of the range of dominance of the leading power term in the full 

solution,  a convergence study must be conducted by successively decreasing 

element size to establish accuracy estimates of the singularity solution. 

Bilinear isoparametric elements were used to model the plate 

away from the singularities.    The total mesh involved 429 nodes and 433 

elements.    The forces specified to be acting on the crack face nodes were 

calculated,   in terms of the uniform pressure   p,    consistent with the element 

shape functions.    Thus, the singularity element node on the crack face had 

an applied normal force per unit thickness equal to   . 01   pa/(l + X). 

Three features of the solutions to be discussed are the angular 

distribution of stress about the bondline crack tip, the crack opening 

behavior near the bondline,  and the stress intensity factors.    The angular 

variation of the normalized stress    a    /P   through the ring of bond tip 

singular elements is given in Figure 4.    Data are given for both   jx   /p. 

combinations.    Along with the finite element data at the twelve   discrete 

midpoint angles,   singular integral equation (SIE) data are given at angles 

of 0,   90 and 180° and   r = 0.005a.    The first striking characteristic of 

the distribution is the discontinuity of stress across the bondline. 
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Independent of which material is cracked,   at 90°- the bondline - the 

aluminum is stressed higher than the epoxy.    Hence, when the epoxy is 

cracked   a      (90~)   exceeds   CT      (90   ),    and just the opposite when 
yy yy 

the aluminum is cracked.    There is very good agreement between the 

SIE and finite element solutions with the exception of the   90     values 

for   m = 0. 043.    The finite element mesh is perhaps too coarse in the 

angular sense to accomodate the large gradient in the range 90-180° 

for   m = 0. 043,    so that mesh refinement might improve this deviation. 

In Figure 5 the normalized crack opening displacement   u  /a 

is plotted as a function of distance from the bondline crack tip to 

r/a = 0. 16   for the two   n?/n.    cases.    The data corresponds to a unit 

value of crack face pressure.    The finite element data appear in discrete 

fashion in the plot and for comparison purposes the SIE solutions are 

presented and are represented by the solid curves.    There is excellent 

agreement between the solutions for   m = 23. 08,  and this is true over 

the entire crack face,    0 <  r/a< 2.    While the SIE and finite element 

data agree at   r/a = 0. 01 for   m = 0. 043, the solutions differ by 5-10% 

over most of the crack face,   including near the embedded end.    There 

is a dramatic difference in the opening behavior local to the bondline 

for the two cracked cases.    The SIE curves demonstrate the behavior 
0. 175 0.662 ^  _     ,.     . 

which is expected from the   r and   r asymptotic displacement 

solutions.    With epoxy bonded to cracked aluminum there is a rapid gradient 

in opening which is intuitively consistent with the stiffness mismatch. 

The intersection of the two   curves is near   r/a = 0. 01 , the location of the 

first finite element node,   and the opening displacements   u    /a   there are 

0. 193 x 10"6   for m = 23. 08,  and   0.222 x 10~      for   m = 0. 043. 

The stress intensity factor,  generalized for both the embedded and 

bondline crack tips is defined as 

K = lim/2 r1_X a      (r,o) (9) 
r-> o 

To deduce   K   from the displacement data,the following equation was used 
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K = 2/2 X [X* u    (r,TT)/r X (10) 

The modulus   (x*   is defined from the relationship 

u   (r,TT) = r a     (r, o)/2X[A* (11) 
y yy 

H# is an algebraic function of the bimaterial constants and the eigenvalue   X. 

For the plane strain homogeneous material case,    m=l,    p,*   is equal 

to   |j,/2(l-V). 

From eqn.   (10), the stress intensity factor    at the embedded tip, 

K/p/a,    computed from the finite element data at   r/a=0. 01   was found to 

equal   0.89 when   m=23. 08,   and 1.52 when m=0. 043.    For a homogeneous 

plate the result is  1. 00,   and this shows the degree to which the aluminum reduces 

the severity of the singularity in the cracked epoxy,   and how much more severe 

the singularity is in aluminum when   epoxy is bonded to it.    The values for 

K/pa at the bondline crack ends are 2.85 for   m=23. 08,   and 0. 112 for 

m=0.043.    The SIE displacement data predicts essentially the same   K   values 

with the exception of the embedded tip   m=0. 043 value which is 10% lower, 

consistent with the displacement deviation mentioned above.    A detailed 

discussion of the results of the bimaterial crack problem will be reserved 

for a future specialized paper   . 

The second example is the branch crack in an elastic tension strip, 

Figure 6a.    The main crack emanates from the free edge at 45 ° and its 

projected length normal to the tension is   W/4.    W   is the strip width, 

and   3W   is the strip length.    The branch normal to the tension has length 

W/80.    There are two singularities in this problem each with local   r 

displacement distributions.    The right end of the branch has the usual 

crack tip singularity with   X = 1/2, while the angle on the upper face of 

the crack is a reentrant corner with   X = 0.674.    These conclusions are 
5 

drawn from the asymptotic analysis of reference   .    The finite element 

mesh at the branch is shown in Figure 6b.    The singularity elements were 

chosen to have a radial extent 5% of the branch length and an angular dimension 

of 22. 5° 
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The angular variation of the normalized polar stress   Cfgg/ff^ about 

the bend singularity is given in Figure 7.    The data are from the singularity- 

element midpoints.    The stress state is essentially entirely compressive 

with peak compression equal to 3. 1   CT^at   9 = 125°.    This suggests that 

forking would not occur from this point.    At the right end of the branch 

the stress intensity factors   K ,  Kn   were deduced from the singularity 

element crack face nodal displacements.    If   6   represents the relative 

opening displacement of the nodes on the two crack faces and   A   the 

relative sliding displacement, the equations used to determine   Kj   and 

K      for this plane stress example were 

8K   = 6 E/2/r A 
8Kn= A E/2/r 

Notice that the factor   /TT   is not used in these definitions.    The value of 

K    was found to be 4% lower than the value for a normal to the tension 

unbranched crack with length   (1. 05) W/4, 

K     =1.49ao^V.(1.05)W/4 

-2 
K      was determined to be negligible in relation to   K^    Kll^

Ki< 10     '    An 

additional problem was considered which had the above geometry altered by 

extending the branch length to W/40.    Kj   again was 4% lower than that of 

the projected length crack 

= 1.52   ff^V (1. 10) W/4 KI           -oo 

and   Kn/K  < 10-4 . 
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CONCLUSIONS 

The solutions to the crack problems are judged to be very accurate. 

The agreement between the singular integral equation and finite element 

results for the bimaterial problems   supports this conclusion.    Certainly 

no standard finite element formulation can be expected to provide reasonable 

solutions to problems such as these.    The formulation proposed here 

allows routine analysis of a class of singularity problems which heretofore 

has been approached only with elaborate analytical methods.    The singular 

element proposed is simple to implement since it is easily programmed 

using techniques which today are commonplace. 
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FIGURE la 

General'Triangle Terminating at Singular Point 1 

FIGURE lb 

Isosceles Triangle at Singularity 
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FIGURE 6a 

Strip With Branch Crack 

FIGURE 6b 

Mesh in Location of Branch 
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Polar Stress Variation About Bend Singularity, Branch Crack Problem 
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CRACK TIP FIELDS IN STEADY CRACK GROWTH WITH LINEAR STRAIN HARDENING 

John C. Amazigo 
Department of Mathematical Sciences 

Rensselaer Polytechnic Institute, Troy, New York 12181 

and 

John W. Hutchinson 
Division of Engineering and Applied Physics 

Harvard University, Cambridge, Massachusetts 02138 

SUMMARY 

Singular stress and strain fields are found at the tip of a crack 

growing steadily and quasi-statically into an elastic-plastic strain hardening 

material. The material is characterized by J2 flow theory together with a 

bilinear effective stress-strain curve. Anti-plane shear, plane stress and 

plane strain are each considered. Numerical results are given for the order 

of the singularity, details of the stress and strain-rate fields, and the 

near-tip regions of plastic loading and elastic unloading.. 

This paper is to be published in the Journal of Mechanics and Physics 
of Solids. 
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FINITE-DIFFERENCE SOLUTION OF POISSON'S-EQUATION 

IN RECTANGLES OF ARBITRARY PROPORTIONS 

J.  Barkley Rosser 

Mathematics Research Center,  University of Wisconsin, 
Madison,  Wisconsin 

1.    Introduction. 

We consider the problem of getting an approximation of reasonably 

good accuracy by finite-difference methods for the function   u(x, y) 

which satisfies Poisson's equation 

(1.1) V   u(x,y) = f(x,y) 

inside a rectangle    R,    and satisfies various boundary conditions on 

the boundary of   R.   When   f(x, y) = 0,    (l.l) reduces to Laplace's 

equation,  and the problem is appreciably simpler. 

This problem has been much studied.   A common approach is to 

cover   R   exactly with a mesh or grid of small rectangles,  after which 

one can replace (l.l) by a finite-difference approximation involving 

values of   u(x, y)    at the grid points.    One then tries to solve this finite- 

difference analogue of (l. l) to a suitable degree of accuracy.   In order 

to employ this approach when high accuracy is required, it has been 

necessary to require that the ratio of the sides of   R   must be rational 

since use of high order methods usually requires that one cover   R 

exactly with a grid of squares.    However,  the conformal transformation 

method of Papamichael and Whiteman [2] will lead more often than not 

The author wishes to acknowledge the sponsorship of the United 
States Army under Contract No. DAAG29-75-C-0024 and of the Science 
Research Council under grant B/RG 41 21 at Brunei University. 
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to a rectangle in which the ratio is not rational,  and covering with a grid 

of squares is not possible.    Even when the ratio is rational, there may 

be difficulties.   Suppose,  from some engineering problem, one is confronted 

with a rectangle   R   of base six and five-eighths and height five and 

seven-eighths.   If this is to be covered exactly with squares, there must 

be 53N squares along the base and    47N    squares along a vertical side, 

where   N   is a positive integer.   With such a covering, many popular 

methods would operate at less than maximum efficiency. 

Accordingly, we will propose a method of getting good accuracy 

with moderate labdr for rectangles of arbitrary proportions. 

2«    Formulation of the problem. 

By rotation,  translation,  and scaling,  as needed, we can take 

the rectangle    R   to be that shown in Figure 1.    By rotating through 

another 90     and translating and scaling again, if need be, we can 

assure that   a > ir.    If   a = IT,    we have a square,  and familiar approaches 

suffice.    So we assume    a >TT. 

We consider first the case of Dirichlet boundary conditions.    That 

is, we wish to approximate the function   u(x, y)    which is continuous 

on and inside   R,    satisfies 

(2-l) V2 u(x,y) = f(x, y) 
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Figure 1 

inside    R,    and on the sides of   R   satisfies the Dirichlet boundary 

conditions 

u(0, y) = gQ(y) 

u(Tr,y) = gT(y) 

u(x,0) = hQ(x) 

u(x,a) = h (x) 
a 

Because we seek a   u(x, y)   which is continuous on   R,    as well 

ide, we are thereby assuming that   gQ(y)    and   g^y)    are 

continuous for   0 < y < a,    that   hQ(x)    and    hQ(x)    are continuous 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

0 < y < a 

0 < y < a 

0 < x <TT 

0 <x <1T 

as ins] 
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for   0 <x <TT,    and that 

(2.6) go(0) = hQ(0), 

(2-7) g (a) = h (0) , o a 

(2-8) g (0) = h (IT) , 
IT o 

(2.9) g (a) = h  (IT) . 
IT ci 

If there should be discontinuities in the boundary conditions,  or 

their derivatives,  this would induce still another source of errors in 

the solutions,  besides those due to truncation and round off.    See 

Rosser [ 3].    "Jump" discontinuities can be "removed" by the methods 

on pp.  221-222 of Milne [4].    More complicated discontinuities can 

sometimes be "removed",  but one cannot count on doing this.    For the 

present treatment,  we assume that the boundary conditions and their 

low order derivatives are continuous.    This includes continuity at the 

corners,  as exemplified by (2. 6) through (2.9).    Or,  if we replace (2. 2) 

by 

Ux(°' y) = jo(y^ 0 < y < a , 

then continuity of the first derivatives at the corners would require 

go) = igo) 

j (a) = h'(0) . 

3.    Finite-difference approximations. 

There are finite-difference approximations of various orders.    The 

higher order methods of solution,  involving the higher order approximations, 
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can be used effectively only when the function   f(x, y)   which appears 

in (2.1) has suitable high order smoothness; that is, when it is continuous 

and has continuous derivatives of suitable orders.    Thus the reader must 

exercise discrimination in choosing which order method to use.   When 

they can be used,  the high order methods permit the use of coarse 

meshes.    This can greatly reduce the labor of computation. 

For difference approximations of order 2, one can use mesh elements 

which are rectangles,  rather than squares.    See Hockney [1].    In this 

case,  there would be no trouble if the ratio of the sides of   R   were 

irrational.    For difference approximations of order 4,  one can also use 

mesh elements which are rectangles.    See Rosser [ 5].    For difference 

approximations of order 6, it appears that the mesh elements have to be 

squares.    Details are presented in Rosser [ 5].    If   f(x, y)    in (2.1) is 

sufficiently smooth, this permits one to use quite a coarse mesh, greatly 

reducing the computational labor.   However, this raises the question 

how to proceed if the ratio of the sides of   R   is irrational. 

4.    Ill-proportioned rectangles. 

We take   h   to be the side of the square mesh element.   We 

arrange that the squares can be fitted along the base of   R.    That is, 

we take    M    to be a positive integer,  and define 

(4.D h=M* 
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We take    N   to be the integer part of   aM/rr;    in symbols 

aM (4 2) 

Then 

(4. 3) 

(4. 4) 

If 

N = 
IT 

Nh <a , 

(N +1) h > a 

(4. 5) Nh = a , 

then we can fill up the rectangle    R   exactly with    MN    squares of 

side   h,     and the methods of Rosser [ 5] are applicable.    So we are 

interested only in the case    Nh < a.    We could assume this,  but it is 

not required for the analysis which follows.    If we should have (4. 5) 

holding,  then some of the steps of the subsequent analysis would be 

quite trivial but not incorrect in any way. 

We begin by defining 

(4. 6) b = Nh 

(4.7) c=a-b=a-Nh. 

We take    Rfa to be the rectangle with corners    (0,0),  (0,b),  (TT,0),     and 

(■n, b),     and take    R      to be the rectangle with corners    (0,c),  (0,a), 

(IT, c)    and    (TT, a). 

We choose    h (x)    to be a smooth function such that 

hb(0) = go(b) 

hb(lT)    =    gTT(b)   ' 
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The better we can choose   hfa(x)   to approximate   u(x, b);    the more we 

can curtail certain computations later.    With the limited information 

available at this stage, we content ourselves with taking 

hb(x) = hjx) + (1 - * )(go(b) - ha(0)) + * (g^b) - ha(rr)) . 

We take    u (x, y)   to be the function which is continuous on and 

inside   Rb,    satisfies (2.1) inside   Rfa,    and on the sides of   Rfa 

satisfies the boundary conditions 

(4.8) ub(0,y) = gQ(y) 0<y<b 

(4.9) ub(TT,y) = g^y) 0<y<b 

(4.10) ub(x,0) = hQ(x) 0 <X<TT 

(4.11) ufa(x, b) = hb(x) 0<X<TT. 

We take    u (x, y)   to be the function which is continuous on and inside 

R ,     satisfies (2.1) inside    R ,   and on the sides of   RQ    satisfies the 
c 

boundary conditions 

(4.12) uc(0,y) = gQ(y) c <y <a 

(4.13) u (TT,y) = g (y) c <y <a 

(4.14) uc(x, c) = ub(x, c) 0<X<TT 

(4.15) uc(x, a) = hg(x) 0<X<TT. 

By our definition of   hb(x)f    we see that   ub(x, y)   has continuous 

boundary conditions around the rectangle    Rfa.    Then it follows by (4.14) 

that the same holds for   u (x, y)   relative to the rectangle   RQ.    This 

is why in (4.8) through (4.15) we can use    <   rather than    <. 
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By (4.1) and (4. 6) we can fill up the rectangle    R, •  exactly with 
b 

MN   squares of side   h.    Thus we can use the 9-point difference 

approximation of Rosser [ 5] to get accurate approximations for   u (x y) 
b    ' 

inside    Rfa    at the grid points    (mh,nh).    From these, we can get 

accurate approximations for   ujmh, c).    By (4.14) these are part of 

the boundary values for   uc(x, y).    Thus it is necessary to determine 

them to order   h  .    By the principle of the maximum, it is also sufficient. 

For a given   m,    the point   (mh,c)    is on a vertical grid line.    Thus 

one can determine   ujmh, c)   to order   h6   by using a high order 

interpolation formula in one dimension on the values at the six grid 

points    (mh,0),   (mh,h),   (mh, 2h),   (mh, 3h),   (mh, 4h),     and    (mh, 5h). 

By (4.14), this gives us good approximations to    u (x. c)    at 
c    ' 

x = h, 2h, . . . , (M - l)h.    By (4.1) and (4. 7) we can fill up the rectangle 

Rc   exactly with   MN   squares of side   h.    Thus we can use the 9-point 

difference approximation of Rosser [5] to get accurate approximations 

for   uc(x, y)   inside   Rc   at the grid points    (mh, c+nh).    Then we 

can get accurate approximations for   u- (mh, b)    by the method mentioned 

earlier. 

We define    Rfac   to be the rectangle which is the intersection 

of the rectangles    Rb and    R       In    R the function    u (x, y) - u (x, y) 

is harmonic.   Also, it is zero along the bottom and along the two 

vertical sides.    So on and inside    R,       we have 
be 
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sinh r(y -_cl gin rx x       V sinn ny - vi 
(4.16) u (x, y) - u (x, y) =   I   ar sinh f(b _ c) 

r=l 

where 

2     * (4.17) a=       /    {u (x,b)- u (x,b)}sinrxdx . 
v          ' r       IT   "n D 

Clearly the    I a I    are bounded by 

(4.18) 2    max     |u (x, b) - ub(x, b) I . 
0<X<TT 

We recall (see (4.11)) that 

ub(x,b) = hb(x) . 

Presumably   u (x, b)   is fairly close to    u(x,b).    If also we were lucky 
c 

enough to choose   hb(x)   fairly close to   u(x, b),      then by (4.18) the 

a     will be fairly small.    This will save computational effort later. 
r 

On and inside    R   define 

(4.19) v(x,y)=   I   .rb, «äÄT* si» rx , 
r=l 

where 

sinh re 
(4-2°) br "   sinhr(b - c)   ' 

On and inside    R,     define 

,       v sinh r(y - c)    . 
(4. 21) u(x, y) = u (x, y) + v(x, y) +   I   af sinh r(fa _ c) sin rx 

r=l 
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We see that   u(x, y)    is continuous on and inside the rectangle 

R ,    satisfies (2.1) inside    R, ,    and on three sides satisfies the boundary 

conditions (4. 8),  (4.9),  and (4.10).    By (4.16), we see that on and 

inside    R.       we have 
be 

(4. 22) u(x, y) = u  (x, y) + v(x, y) . 

We use (4. 22) to define   u(x, y)    for the rest of the rectangle    R  . 

Then   u(x, y)   is continuous on and inside the rectangle   R ,    satisfies 

(2.1) inside   R ,    and on three sides satisfies the boundary conditions 

(4.12),  (4.13),  and (4.15). 

Thus we see that   u(x, y)    is exactly the function   u(x, y)    that 

we were seeking to obtain. 

We have obtained accurate approximations for   u (x, y)    and 

u (x, y)    at various grid points.    If   M    is of reasonable size,  then    c 

is small,  since    0<c<h   by (4.7),  (4.3),  and (4.4).   As    a   is 

greater than   TT,    and    b = a - c    by (4.7), we see that the series on 

the right of (4.19) is rapidly convergent for   0 < y < a.    Also,  the series 

appearing on the right of (4. 21) is rapidly convergent for small    y, 

certainly for   0 < y < h.    If in addition the    a     are all quite small (see 

(4.18)),  then very few terms of the series are needed to get high accuracy. 

So,  using the known approximations for   u (mh,nh),    we can get 

approximate values for   u(x, y)    for small    y   by (4. 21).    For all other 

values of   y,    we can use the known approximations for   u (mh, c + nh) 

to get approximate values for   u(x, y)    by (4. 22). 
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The calculation of the   a     presents no problem.    Not more than 

four or five will be required; fewer if the    a    are all small.    Observe 

that the values of   u (x, b)    are given by (4.11).   Also, we had got 

accurate approximations for   u (mh, b).    So we can use a numerical 

quadrature formula to calculate the    a     by (4.17). 

CAUTION.    If   r   is not fairly small compared to    N,    then there 

will be fairly few abscissa points in each cycle of   sin rx   in (4.17); 

in such case the usual quadrature formulas are not trustworthy.    One 

can get twice, or four times, or eight times,  as many abscissa points 

by interpolating to get approximations for   u (x, b)    at the additional 

abscissa points (recall that   u,(x, b)    is given by (4.11)).    For this 

interpolation one can use a high order one dimensional interpolation 

formula on the values    u (0,b),  u (h,b),  u (2h, b), . ..   . 
t» O O 

We need high accuracy for only the first one or two of the    a , 

because of the very rapid convergence of the series appearing on the 

right of (4.19) and (4. 21).    In any case,  one should increase the number 

of abscissa points,  as needed,  to the point where one can use a 

quadrature formula with assurance.   Also,  by a little foresight in the 

choice of   M,    one can arrange that,  after increasing the number of 

abscissa points if needed, one can use a high order quadrature formula, 

like Bode's Rule, for example. 

63 



5. Tests for accuracy. 

One advantage of using the 9-point difference approximation when 

one can exactly fill up the rectangle with squares is that one can make 

a first calculation,  for less than a quarter of the calculating effort, 

with squares twice as large on a side,  and then repeat with the smaller 

squares.    Because the error is of the order of   h  ,    one can get an 

estimate of the error. 

This can be done with the present procedure by choosing   M 

divisible by 2.    If   N   is not divisible by 2, the values of   b   and    c 

which are used with the squares of side    2h   will not be the same as 

those which are used with the squares of side   h.    However, this 

does not matter. 

One dividend that will accrue from making an initial calculation 

with squares of side    2h   is that from this calculation one can derive 

a very good approximation to take for   h, (x).    Then,  for the calculation 
b 

with squares of side    h,    the    a     will be very small,  so that not more 

than two or three of them will be needed. 

6. Neumann boundary conditions. 

Suppose we have the same rectangle    R,    and impose on   u(x, y) 

the same conditions as before,  except that on top of the rectangle    R 

we specify values to be taken by   u (x, a).    That is we replace (2.5) 

by the Neumann condition 

(6.1) u (x, a) = k (x) 0 <x <TT . 
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We postpone to the latter part of the section a discussion of how 

one would handle this in the case in which    a/ir    is rational,  so that 

one can fill up   R   exactly with squares of side    h.    For the moment, 

let us assume that this can be done,  and explain how to generalize to 

the case in which    a/rr    is irrational. 

We proceed very nearly as in Section 4.    Instead of the definition 

given there of   h (x),    we use 

(6.2) hb(x) = (1- f)go(b) + ^(b) . 

We take   u, (x, y)    as before,  but for   u (x, y)   we replace (4.15) by 

the analogue of (6.1),  namely 

(6. 3) -**- u (x, a) = k (x) 0 < x < TT . v ay    c   ' a 

Everything now goes the same,  down to the definition of   v(x, y).    Let 

us pause a moment,  and think what we require of   v(x, y).    Clearly it 

should be harmonic,  so that   u(x, y),    as defined in part by (4. 21) and 

in part by (4. 22), will satisfy (2.1) inside    R.     Also, we wish   v(x, y) 

to be zero on the vertical sides of   R,     so that there    u(x, y)   will 

satisfy the proper boundary conditions.   Also,  on the bottom of   R,    we 

must have 

00 

(6.4) v(x, 0) =   Y.   a      ,S*    JC r sin rx 0 < x < IT v       ' v  ' LJ,    r sinh r(b - c) 
r=l 

so that by (4. 21)    u(x, y)   will satisfy the right boundary conditions 

on the bottom of   R.   Finally, looking at (4.22), we see that if   u(x, y) 
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is to satisfy the right boundary conditions on the top of    R,     we must have 

(6. 5) v (x, a) = 0 0 < x <TT . 

All these conditions can be met by simply replacing the factor 

sinh r(a - y) 
sinh ra 

in the definition of   v(x, y)    by 

cosh r(a - y) 
cosh ra 

In this case,  since it is unlikely that (6.2) makes    h (x)    come 

out very close to   u(x, b),    we cannot count on the    a     being 

particularly small,   so that two or three more of them might have to be 

calculated.    It might be better to turn the rectangle    R    upside down 

and proceed as follows. 

Consider next the case in which the Neumann condition is at the 

bottom of    R.    That is,     u(x, y)    satisfies (2. 2),  (2.3),   and (2. 5), 

but (2. 4) is replaced by 

(6. 6) u (x, 0) = k  (x) 0 <x <TT . y    ' o 

Again,  we proceed nearly as in Section 4.    We can now take 

h, (x)    the same as in Section 4, which should lead to smaller values 
b . 

of the    a ,     so that we can get by with calculating fewer of them.    For 
r 

the definition of   u (x, y),    we replace (4.10) by the analogue of 

(6. 6),  namely 

(6. 7) -0- u, (x, 0) = k  (x) 0 < x < IT . v ay    b    ' o 
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We take    u (x, y)    as in Section 4,  and continue the same down to the 

definition of   v(x, y).   A key requirement is that   u(x, y),     as defined 

by (4. 21),  shall satisfy the proper boundary conditions at the bottom of 

R.    In Section 4,  this required that 

00 
sinh r(y - c)    . ,.     •. ,       \       \" sinn r y - c     . 

(6.8) v x, y   +   A a      .  .    )*—~i sin v       ' *  ' u,    r sinh r(b - c) 
r = l 

rx 

should be zero when   y = 0.    This was accomplished by the proper 

choice of the    b .    Now we must assure that the partial derivative of 
r 

(6.8) with respect to   y   shall be zero when   y = 0.   Again,  this is 

accomplished by the proper choice of the   b ;    specifically we now take 

\ . -sinh ra cosh re 
*       ' r      sinh r(b - c)   cosh ra 

All else remains the same. 

Next consider the case in which there are Neumann conditions 

both at the top and the bottom of   R.    That is,    u(x, y)    satisfies (2.2) 

and (2. 3), but (2.4) is replaced by (6. 6) and (2. 5) is replaced by (6.1). 

We proceed much as in Section 4.    In the definition of   u (x, y)    we 

replace (4.10) by (6.7),  and in the definition of   u (x, y)   we replace 

(4.15) by (6. 3).   We define    h (x)    by (6.2).   It is then easily verified 

that we should replace 

sinh r(a - y) 
sinh ra 

in the definition of   v(x, y)    by 

cosh r(a - y) 
cosh ra 
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and define 

//   ,«\ u cosh ra       cosh re 6.10) b   =     .  ,    ., : ——  . 
r      sinh r(b - c) sinh ra 

One can of course have Neumann conditions on one or both of the 

vertical sides.    Let us consider first the case in which there are Neumann 

conditions on both vertical sides,  but Dirichlet conditions at the top and 
o 

bottom.    Rotation by   90    would reduce this to the case just considered. 

However,  this is not desirable,  since we would then lose the qualifica- 

tion that the height is greater than the base.    It was this that assured 

the rapid convergence of the Fourier series in (4.19) and (4.21). 

So we assume that (2. 4) and (2. 5) hold,   but that (2. 2) and (2. 3) 

are replaced by 

(6.11) u (0,y) = j   (y) 0 <y <a 
X o 

(6.12) u (Tr,y) = j   (y) 0 <y <a . 

We proceed analogously to Section 4,  except that we use cosines 

instead of sines throughout.    Because it is desirable to have    u  (x, y) 

continuous around the boundary we define 

1 2 x2 

(6.13) hb(x) =  ha(x) + -^ (x - TrHh^O) - Jo(b)) + f~- (Jff(b) - ha(u)) . 

We define    u (x, y)    and   u   (x, y)    as in Section 4,  except that 

they now have Neumann conditions on their vertical sides.   We replace 

(4.16) and (4.17) by 

00 
/ /   i A\ i       \ i       \        V sinh r(y - c) (6.14) u  (x, y) - u, (x, y) =    A   a    ' .   ,      f (  cos rx v        ' c    ' bv   ' LJ

n    r  sinh r(b - c) r = 0 
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where 

1     v 

(6.15) aQ = ~ /   (uc(x,b) - ub(x,b)}dx 

2     w 

(6.16) a   =-   f   {u (x, b) - u, (x, b)}cos rx dx . x r       IT   "i c D 

When   r = 0,    we define 

sinh r(y - c) _   y - c 
sinh r(b - c)       b - c 

Exactly analogous changes are made in (4.19) and (4.21). 

If,  in addition to the Neumann conditions on the vertical sides, 

we replace one or both of the Dirichlet conditions on the top or bottom 

by Neumann conditions,  we can modify the procedure just outlined 

quite analogously to the way in which we modified the procedure of 

Section 4 earlier in this section. 

It will be noted that we are allowing the possibility of Neumann 

conditions on all four sides.    For this,  there will be a solution only if 

the boundary conditions satisfy a certain criterion.    If they do, the 

solution is not unique, but any two solutions differ by a constant.    The 

procedure outlined will produce one of this infinity of solutions if and 

only if there is a solution. 

To handle the case of a Dirichlet condition on the left side and a 

Neumann condition on the right side, we replace    sin rx   by 

sin(r - -)x , 

69 



with suitable related changes.    To handle the case of a'Dirichlet 

condition on the right side and a Neumann condition on the left side, 

we replace    sin rx   by 

cos(r - —)x . 

We consider finally how to handle the case in which the rectangle 

has a rational ratio of the sides,  and we have filled it exactly with 

squares of side   h,    and wish to approximate   u(x, y)   at the grid points. 

At interior grid points, we can use one of the formulas of Rosser [ 5]. 

On boundaries where there are Dirichlet boundary conditions, we assign 

u the specified value.    This leaves only the boundary points where 

there is a Neumann condition to be dealt with.    Suppose,  for example, 

that the condition (6.11) holds on the left side of   R.   We note that 

(6.17) hyx, y) s - ^ f(x, y) + 5f(x + h, y) - 5f(x + 2h, y) 

+ y f(x + 3h, y) - ~i(x + 4h, y) + j f(x + 5h, y) 

holds to within terms of order   h  .   If we take   x = 0    and    y = nh, 

we get by (6.11) 

137 — — 
(6.18) hj  (nh)- - ^ u        +5u 

o 60    0,n l,n 

10 ~ 5 ~ 1 - 
- 5u_      + — u        "TU        + T u_ 2, n       3     3,n      4    4,n      5     5,n 

One could use a higher order formula than (6.17),  but it probably 

suffices.   A heuristic argument for this is as follows.    By the principle 

6 
of the maximum, if we wish to determine interior points to order   h , 
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it is sufficient to determine the boundary points to order   h  .    However, 

if the interior points are given to order   h  ,     ( 6.18) will determine 

U- to order   h  . 0, n 

Use of (6.18) with the formulas of Rosser [ 5] results in a rather 

messy matrix of coefficients of the    u       .    However, one is probably 
m, n ' r i 

using such a coarse mesh that this matrix would be less than    100 X 100, 

perhaps even less than    50 x 50.    If so,  probably the quickest method of 

solution is to use the standard computer routine for solving simultaneous 

linear equations.    If this is done,  it does not much matter if the matrix 

is messy or not. 

If it happens that one is solving the Laplace equation, with 

f(x> y) - °,     and has a zero normal derivative along one side,  say 

j  (y) = 0,    one can use the reflection principle to replace (6.18) by 

something which seems conceptually simpler.    However, it involves 

three boundary grid points and three interior points,  and so is probably 

about as much bother on a computer as (6.18), which also involves six 

grid points. 

If one has Neumann conditions on one or more sides,  and so is 

using (6.18),  one might consider the following procedure,  which would 

bypass the treatment in Section 4 altogether.   Almost always,  there is 

at least one side with Dirichlet conditions.    By rotating and relinquishing 

the qualification      a > IT,    if need be, we can arrange to have Dirichlet 
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conditions on top.    If, in the notation of Section 4, we have    0 < c < h, 

the difficulty is that we have no good way to write down an equivalent 

of (3. 7) of Rosser [ 5] for the values of   u(x, y)    at the row of grid 

points    (mh, Nh), 1 <m < M - 1.    As a substitute,  write down (3.7) of 

Rosser [ 5] for the 9-point formula centered at    (mh, a - h).    It involves 

values of   u(x, y)    at   ((m - l)h, a  - h),  ((m - l)h, a - 2h),  (mh,  a - h), 

(mh, a - 2h),  ((m + l)h, a - h),  ((m + l)h, a - 2h),     as well as at the 

boundary points    ((m'-l)h, a),  (mh, a),     and    ((m + l)h, a),     at which 

latter points    u(x, y) is known.    Now,  by a high order one dimensional 

interpolation formula,  we can write each of   u(rh, a - h)    and    u(rh, a - 2h), 

approximately as a linear combination of    u(rh, nh)    for    n < N;    we do 

this for   r = m - 1, r = m,     and   r = m + 1.    So we get a formula 

involving    u(rh, Nh),  u(rh, (N - l)h),     etc.,  for   r = m - 1,  m,  m + 1, 

which we can use in place of (3.7) of Rosser [ 5].    Probably interpolation 

of order eight should be used.    This makes the matrix still messier,  but 

if we are having to deal with a messy matrix anyhow,  because of the 

Neumann conditions,  the idea might be worth considering. 

72 



REFERENCES 

[l]   R. W.  Hockney,   "The potential calculation and some applications, " 

Methods in Computational Physics, vol. 9 (1970),  pp.  135-211. 

[2]   N.  Papamichael and John R. Whiteman,   "A numerical conformal 

transformation method for harmonic mixed boundary value problems 

in polygonal domains, " Zeit, fur Angew. Math. Phys., vol.  24(1973), 

pp.   304-316. 

[3]   J.  Barkley Rosser,   "Effect of discontinuous boundary conditions on 

finite-difference solutions, " Technical.Report TR/30,  Brunei 

University,  1973,  and MRC Technical Summary Report #1 383,  1973. 

To appear in Zeit,  für Angew. Math.  Phys. 

[4]   William E. Milne,   "Numerical solution of differential equations, " 

John Wiley and Sons,  Inc.,  New York,   I960. 

[5]   J.  Barkley Rosser,   "Nine-point difference equations for Poisson's 

equation, " MRC Technical Summary Report #152 3,  1975.    To appear 

in Computers &: Mathematics with Applications. 

^3 



SOLUTIONS TO INITIAL VALUE PROBLEMS USING 
FINITE ELEMENTS - UNCONSTRAINED VARIATIONAL FORMULATIONS 
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ABSTRACT. This paper presents a variational formulation which 
treats initial value problems and boundary problems in a unified 
manner. The basic ingredients of this theory are (1) adjoint variable 
and (2) unconstrained variations.  It is an extension of the finite 
element-unconstrained variational formulation used previously in solving 
several nonconservative stability problems. The technique which makes 
this extension possible is described. This formulation thus enables 
one to adapt such numerical technique as the finite element method, 
which has had great success and popularity for solution of boundary 
value problems, for solutions of initial value problems as well. These 
formulations are given here for a forced vibration problem, a heat 
(mass) transfer problem and a wave propagation problem. Numerical 
calculations in conjunction with finite elements for two specific 
examples are obtained and compared with known exact solutions. 

1.  INTRODUCTION.  In its application to the solutions of engineering 
problems, the finite element discretization has been implemented almost 
exclusively to the spatial dimensions.  For dynamic or time-dependent 
problems whose solutions as functions of time are of interest, a step- 
by-step procedure of finite difference, i.e., the quasi-static approach 
is usually employed. The answer to the question why the time dimension 
has not been treated equally with the spatial variables in the finite 
element discretization must be related, in part at least, to the 
development of variational methods, since the finite element procedure 
can be viewed most readily as an extremizing sequence associated with a 
variational statement. While there are numerous variational principles 
for boundary value problems, few exist for initial value problems.  Like 
many problems involving nonconservative forces, the difficulty appears to 
be that initial value problems are nonself-adjoint and thus they do not 
possess variational principles in the classical sense.  In conjunction 
with problems involving nonconservative forces, certain constrained 
variational principles (sometimes called extended Hamilton's principles 
—See, for example, ref. [1]) were used for finite element solution 
formulations [2, 3].  Shortly afterwards, using the combined notion of 
the Lagrange multipliers and the adjoint variable, some unconstrained 
variational statements were established and used as bases for finite 
element solutions [4, 5], This approach has been shown to be more 
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advantageous in terms of simplicity,versatility and the rate of conver- 
gence compared with the constrained variational approach [5, 6]. 

Fried was first to treat the time-dimension identically with the 
space dimensions in using the finite elements [7]. His solution 
formulations, however, emanate from constrained variational principles. 
In contrast, this paper presents a generalization of the unconstrained 
variational approach to time-dependent problems. 

At this point, the variational principles of integrals of convo- 
lution developed by Gurtin [8, 9] should be mentioned. The applications 
of these principles in conjunction with finite elements in the time- 
dimension [10, 11, 12, 13] have so far failed to show any advantage over 
the procedure described by Fried.  In fact, all these analyses had to 
resort to either the Fried1s or some other similar step-by-step procedure 
to complete the solutions in the time-dimension. 

In this paper, the use of unconstrained variational principles - 
finite elements for usual boundary value problems is first illustrated 
and the advantages over the constrained formulations are pointed out. 
The unconstrained variational principles can always be constructed 
through the use of the Lagrange multipliers. The unconstrained vari- 
ations are then shown to lead naturally to (nonself-) adjoint variational 
statements.  Thus, nonconservative problems can be formulated easily 
using finite elements. The application to a control problem is given 
[14]. With the introduction of a cross-product term involving two-point 
boundary (initial) values, the unconstrained variational - finite element 
formulation is again easily extended to include time-dependent problems. 
This formulation is obviously simpler compared with those derived from 
Gurtin's variational principles because no convolutional integrals are 
needed.  It is also easier to use and more versatile than the Fried"s 
procedure due to the fact that no boundary or initial conditions are 
involved in the solution formulation and because of the nature of the 
Lagrange multipliers. As further examples of application, finite 
element matrix equations are derived for several transient problems 
including a force vibration, a heat transfer and a wave propagation 
problem. Detailed formulations and numerical results of two examples 
are given and comparisons with some known exact solutions are made. 

2.  LAGRANGE MULTIPLIER AND FINITE ELEMENT FORMULATIONS.  One of 
the advantages of the finite element method is its capability of solving 
large complicated problems in a routine manner. However, the same con- 
cepts used in a program for large systems may be understood using 
relatively simple problems. 

Let us consider the stability of a Euler's column.  The governing 
equations are as follows: 
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D.E.       E I u"" + P uM + o)2 pAu = 0 (la) 

B.C.           u(0) = u'(0) = 0 (lb),(lc) 

u"(X) = 0 (ld) 

E I u"1 (£) + P u1 (£) =  0 (le) 

where u is the lateral displacement, a prime (') denotes differentiation 
with respect to the coordinate x; E is the Young's modulus, p, density 
of the material; I is the second moment, A, area of the cross-section, I, 
length of the beam and co is the eigenvalue. For eqs.(l), a usual varia- 
tional principle can be written: 

6J: (u) =0 (2a) 
where 1  » 

Jl(u) =  y f [El (u")2 - P(u»)2 + ou2pAu2] dx      (2b) 

To establish the equivalence between eqs. (1) and (2), one simply 
carries out the variation of J^ in eq. (2a): 

öJi = f [E I u"6u" - P u'ou1 + u2 pA u 6u] dx       (3a) 

= J£ [El uM" + P u" + ü)2 pAu] <5u dx 

+ [E I u" 6u' -(El u"* + P u') 6u]x _ %. 

-[El u" 6u' - (E I u"' + P u') 6u]x = 0       (3b) 

From eq. (3b) one observes that for the coordinate functions and their 
variations satisfying the boundary conditions in eqs. (lb - le), eq. 
(la) implies eq. (2a) and vice versa. The finite element formulation 
for this problem begins with eq. (3a). 

u(x) = aX(x) U (4) 

where a(x) is the displacement-function vector and U , the generalized 
displacement vector. Upon the substitution of eq. (4) into eq. (3a), 
one immediately obtains 

6U1 | Kj_ + u2M 1 U = 0 ■T J *_ * „,2M 1 n = 0 (5) 

where 

Ki = ll   [E I a" a"T - Pa1 a,T] dx (6a) 

M = il  pA a aT dx (6b) 
"       o 
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Eq. (5) is not yet ready to be solved since neither U nor 6U 
consists of independent elements due to the boundary conditions re- 
quirements placed on u(x). 

Let us now consider a slightly different variational principle: 

6J2 = 0 (7a) 
with 

J2 =  I S]   [E I (u")2 - P (u')2 + w2 pAu2] dx 

+ 
2 
I ax [u(0)]2 + I a2 [u'(0)]2 (7b) 

where     o^ and a2 are the Lagrange multipliers. 

Carrying out the variation of eqs. (7), we have 

6J2 = / [E I u" Su" - Pu' 6u + w2pAu2] dx 

+ ax u(0) 6u(0) + a2 u'(0) 6u'(0) (8a) 

= Jl  [E I u"" + Pu" + w2 pAu] 6u dx 
o 

+ [E I u" 6u* -(El u"1 + Pu') 6u] 

-  [(E I u" - a2u« - (E I u'" + Pu' + alU) 6u] _      (8b) 

Eq. (8b) states that a necessary and sufficient condition for 
6J2 = 0 is the problem defined by the following sec of equations: 

E I u"" + Pu" + w2pAu = 0 (9a) 

E I u"(0) - a2 u'(0) = 0 (9b) 

E I um (0) + Pu'(0) + ttl u(0) = 0           (9c) 

E I u»(£) = 0 (9d) 

E I u'" (£) + Pu' (£) = 0 (9e) 

provided   that the variation Su is completely arbitrary, comparing 
eqs. (9) and (1), it is seen that eqs. (1) is a special case of (9) as 
al >  a2 approach to infinity.  From eq. (8a), we can see that the finite 
element matrix equation now becomes 
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where 

6UT |K2 + W
2
M| U = 0 (10) 

K~ = K, + a,a(0)a (0) + cua'(O)a' (0) (11) 

The matrix IC in eq. (11) has been defined in eq. (5) and the super- 
script T denotes the transpose of a matrix (a vector). Since 6u is 
arbitrary, 6U in eq. (10) is arbitrary, eq. (10) leads directly to the 
final matrix equation to be solved. 

{h. *u2^} y = ° (12) 

It is then clear that the method of Lagrange multipliers, used in 
conjunction with the finite element method, will not only facilitate 
the solution formulations but also encompass a larger class of problems 
to be solved compared with the use of constrained variational statements. 
The applications of the same general concept can be extended further. 

3.  FROM UNCONSTRAINED VARIATIONS TO ADJOINT VARIATIONAL STATEMENTS. 
We have noted that the variation <5u in eq. (8) is quite independent 

of the function u itself and nothing will be changed if we simply 
replace 6u with 6v to emphasize this independence. This substitution, 
however, has suggested the adjoint variational principles. Let us 
consider 

6J3 = 0 (13a) 

Jj={ (El u"v" - Pu»v' + w2pAuv) dx 

+ oi1u(0)v(0) + a2u'(0)v(0) + c^Pu
1 (S,)v(£)        (13b) 

Carrying out the variations, we have: 

«J3 =  (6J3)U ♦   (6J3)V C14) 

where 

(6J,)    = /    (El u"6v" - Pu'Sv'  + w2pAu6v) dx 
. u        0 

+ cij u(0)6v(0)  + a2u'(0)6v'(0)  + c^u' (£)  6v(Ä) (15a) 

o 
=  f     (El u,m + Pu" + ü)2pAu)   6v dx 

0 

+ [E I u"6v»  -(El uMI   + Pu«  - ct3u')  6v]x = 
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- [  (E I u" - a2u')  6v'  -(El u'"  + Pu'  + ctjU)  6v]x = Q      (15b) 

and 

C&J3)V 
= J<f  (E l v" 6u" " Pv'fti1  + w2pAv6u) dx 

+ ai v(0)  6u(0) + a2 v« (0)  6u' (0)  + a3 v(£)  6u' (A) (16a) 

= J     (E I v"" + Pv" + co2pAv)  6u dx 
o 

+ [(E I v" + a3v)  6u'  -(El v'"   + P v')  6u]~ 

- [(E I vM - a2 v«) 6u'  -  (E I v"'   + Pv'  + oi v)  6u] (16b) 
x = 0 

From eq.   (15a), it is clear that a necessary and sufficient 
condition for    (<5J3)U = 0    is the problem defined by the following set 
of equations: 

D.E. E I u"" + Pu" + w2pAu = 0 (17a) 

B.C. E I uM(£) = 0 (17b) 

E I u"« (A)  +(P - ct3) u'(A)  = 0 (17c) 

E I u"(0)  - a2 u»(0) = 0 (17d) 

E I u'" (0)  + P u1 (0)  + ax u(0)  = 0 (17e) 

Now eqs.(9) has become a special case of eqs.(17) when a3 = 0. 
In addition, the problem defined by  (<5J3)V = 0 of eqs. (16) is called 
the adjoint problem to eqs. (17). For a3 = 0, the adjoint problem is 
identical to the problem itself —hence, the self-adjoint system. Now, 
considering 

a3 = k P (18) 

in eq. (17c), we have 

E I u"1 (£) -K P u'(Jl) =0              (19) 

K = k - 1 (20) 
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where 

Eq (19) defines the boundary condition of a general non-conser- 
vative load. It is also clear from eq. (19) that K is a dimensionless 
design constant which defines the small angle between the direction of 
the applied load P and the tangent of the deflected column at the end. 
Since (6J3) = 0 alone defines the boundary value problem of eq. (17) 
and vice versa, we need not at all to be concerned with the adjoint 
problem. Now it is a simple matter to modify the finite element matrix 

equation as 

/ K3 + u
2M I U = 0 (22) 

£3 = £2 + a3 a'Gl) a
TGl) (23) 

4.  FINITE ELEMENTS FOR INITIAL AND INITIAL-BOUNDARY VALUE PROBLEMS. 

(1) A Forced Vibration Problem. Let us first consider a problem 
of "one" degree of freedom, i.e., a mass-spring system. The differential 
equation and initial conditions are 

m ü + k u = f(t), 0<t<T (24a) 

u(0) = u0 (24b) 

u(0) = ux (24c) 

where   u(t) is the displacement of the mass centre from its equilib- 
rium position, m , the amount of mass and k , the spring constant. 
The function f(t) is given, so are the constants uQand ux. The constant 
T appeared in the bounds of eq. (24a) is any given positive number 
other than infinity. In order to formulate approximate solutions for 
eqs. (24) the way we did in the previous section, let us consider a more 

general case 

m ü + k u = f (t) (25a) 

ü(T) - a [ u(0) - u0 ] = 0 (25b) 

u(0) = ux (25c) 

where a    is a parameter, obviously eqs.   (25) reduce to  (24) when 
a    approaches to    °°    .    Now, with eqs.   (25), we are able to write an 
unconstrained variational statement as follows: 

6 J4 = 0 (26a) 
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where 

Since 

T 
J

A 
=  J [ " m"v + kuv - f(t)v 1 dt H   o 

+ ma [u(0) - uQ] v(T) - muj v(0) (26b) 

T 
C«J4)U = / [ - mu6v + kufiv - f(t) 6v ] dt 

+ ma [ u(0) - u0 ] 6v(T) - mu16v(0) (27a) 

= JT [ mü + ku - £(t) ] Sv dt 

| Ü(T) - a [u(0) - u0] \ 

+ m [ü(0) - ^  ] 6v(0) (27b) 

The already familiar form of eqs. (27) state that (a), (6J)U = 0 is a 
necessary and sufficient condition for eqs. (25),and (b),eq. (27a) 
provides us the finite element matrix equation;- -Thusy if we assume as 
before that 

u(t) = aT(t) U 

Eq. (27a) yields 

v(t) = aT(t) V 

6VT K4 U = 6V
T F (28) 

where T 

K4 = j0 ( -m a a1  + k a a ) dt 

+ ma a(T) aT(0) (29) 

and 
.T 

F = J  f (t) a dt + mau0 a(t) + m UQ  a(0) (30) 

Again, since 6V is unconstrained eq. (28) leads directly to 

K4 U = F (31) 

which is the final equation to be solved. 
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(2) A Heat Conduction Problem. The one dimensional transient 
heat conduct problem can be described by the equation 

dhK&-)-Pcf£-fC*.t)-o; C32a> 

Boundary and initial conditions are 

u(0,t)  = g0(t) (32b) 

u(L,t) = g  (t) (32c) 

u(x,0)  = h  (x) (32d) 

where K = thermal conductivity 

p = material density 

c = specific heat 

f (x,t)    = heat source function 
and 

g0(t),  gift) and h(x)  are prescribed functions 

Let us consider 
6J5 = 0 (33a) 

+ Jo   aK [u(L,t)  - gx(t)] y(L,t) dt 

- /o
T aK [u(0,t)  - g0(t)] v(0,t) dt 

- JL pc [u(x,0> - h(x)] v(x,0) dx (33b) 
0 

since 

(6J )    =fL
f
TK 3H. 6(|X)  + pc |ü 6v + f (x,t)  6v]  dx dt D u    Vo     9x      dx 3t 

,T 
+ Jo   a K [u(L,t)  - gl(t)]   Sv(L,t) dt 

/0
T a K [u(0,t)  - g0(t)]   6v(0,t) dt 

f    pc  [u(x,0)  - h(x)]   Sv(x,0) dx' (34a) 
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LT  9 ev  3u ,  „ 8u 

.T 
+ 

= i Jot ^ CK |^ ) - pc |H- - f (x,t)]6v dxdt 

J0
T K | f£(L,t) - a[u(0,t)-gl(t)] }oV(L,t) dt 

\\  K I |^C°'t:) - a[u(0,t) - g0(t)]  j.6v(0,t) dt 

L 
+ / pc [u(x,0) - h(x) ] 6v(x,0) dx (34b) 

it is clear that (6J5).. _ Q is a necessary and sufficient condition 
for eqs (32) as a -> «> ana eq. (34a) provides the finite element ma- 
trix equation. We can write from eq. (34a), 

-£&&«<&♦■*&*']*<« 

Now, let 

VoL 8x v8x'  K 9t 

+ Jo aK [u(L,t) 6v(L,t) - u(0,t) 6v(0,t)] dt 

L 
+ / p c u(x,0) 6v(x,0) dt 

= /0/0f(x,t) 6V dxdt 

T 
+ J0 aK [gl(t) 6v(L,t) gQ(t) 6v(0,t)] dt 

L 
+ / p c h(x) 6v(x,0) dx (35) 

u(x,t) = aT(x,t) U (36a) 

v(x,t) = aT(x,t) V (36b) 

in the usual manner, we have 

6VT K U = <5VT F (37) 

thrT i i K=- I  (K a Y a T + p c a a t) dx dt ~      (TO    ~JX~»X   
r ~~>L-' 

T T , , IK a „ f   . . _ - - 
■Vo 

T 
+ / aK [a(L,t) a(L,t) - a(0,t) aT(0,t)] dt 

L 
+ / p c a(x,0) aT(x,0) dx (38) 
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and LT 
F = f(f(x,t) a(x,t) dxdt 

T 
+ Jo aK [gl(t) a(L,t) - g0(t) a(0,t)] dt 

+ fL p c h(x) a(x,0) dx (39) 

Again, since 6V in eq. (37) is completely arbitrary, we arrive at the 
final matrix equation to be solved. 

K U = F C40) 

(3) A Wave Propagation Problem. For a quite general wave propa- 
gation problem, the following system can be written. 

Sfü- c2 ^H.= f(x,t). (41a) 
3x2    dt2 

u(0,t) = g0(t) (41b) 

u(L,t) = gl(t) (41c) 

u(x,0) = hQ(x) (4 Id) 

u(x,0) = hx(x) (41e) 

The extension of the previous formulation to this problem is straight 
forward. Let us consider 

where 

6J6 = 0 (42a) 

J6 - ff i - & £ -2 If !-f ™ " .**' 
T 

- a /0 [u(L,t) - gl(t)] v(L,t) dt 

.T 
+ a /o [u(0,t) - gQ(t)] v(0,t) dt 

L 
- a / [u(x,0) - hQ(x)] v(x,T) dx 

L 
+ Jo [u(x,0) - hx(x)] v(x,0) dx (42b) 
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Again, 

'L'T -      3u i, 9v 
<Ö6>U " H   I " £ 6< If > + cZW  6< W ) " *C*.t-)«v] dxdt 

- a /o [u(L,t) - gl(t)] 6v(L,t) dt 

+ a J0 [u(0,t) - gQ(t)] fiv(0,t) dt 

" a J0   [u(x,0) - h0(x)]   6v(x,T) dx 

+ J    [u(x,0)  - hxCx)]    6v(x,0) dx (43a) 

L T 
_r r   r  82u        2 32u "vo [ rr"c —7 - £cx,t)] s v dxdt 

9x 3tz 

- 4   { |£(°'t:)  - a [u(0.t)  - g0(t)]  } 6v(0,t) dt 

+ 4   { lrCX,t)  " a  [uCx'°5  " hoW]  } «vCx,T) dx 

/    [ !|r(x,0)  - hx(x)]  Sv(x,0) dx (43b) 

troin eqs. (43), it is again clear that (&J6) = 0 is a necessary and 
sufficient condition for eqs. (41) as a -»• » and that eq. (43a) will 
yield the finite element matrix equation.  From(43a) one has: 

L T, 

a / u(L,t) 6v(L,t) dt + a /  u(o,t) 6v(0,t) dt 
** t 

- a / u(x,0) 6v(x,T) dx 

= // f(x,t) 6v(x,t) dx dt 
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a / .gi(t) 6 v(L,t) dt + a / gQ(t) 6v(0,t) dt 
t *- 

-of hQ(x) 6v(x,T) dx + £ h^x) 6v(x,0) dx (44) 

Again, let T 
u(x,t) = a'(x,t) U (45a) 

v(x,t) = aT(x,t) V (45b) 

Eq. (44) becomes, in matrix form, 
T 

6 VT K U = 6 V F (46) 

where T L       T   9 . .-r 
K = JQ J0 (- a1 a'1 + c a a1) dxdt 

- a f a(L,t) aT(L,t) dt + af a(0,t) aT(0,t) dt 

- o J0 a(x,t) aT(x,0) dt (47) 

I  = Jo Jo £tx't:) 2(x't:) dxdt 

" o /„ «iCt) a(L,t) dt + o J0
T gQ(t) a(0,t) dt 

+ a f h_(x) a(x,T) dt + J h (x) a(x,0) dt (48) 

Due to the arbitrariness of SV , eq. (46) leads directly to the final 
matrix equation 

K U = F (49) 

5. NUMERICAL DEMONSTRATIONS.  Several numerical examples will be 
given in this section to demonstrate the application of the formulation 
described so far. 

(1) Forced Vibration. We shall consider a special case of the 
forced vibration problem formulated earlier. The forcing function in 
eqs. (24) is taken to be a cosine function thus, rewrite eqs. (24), 

m ü + k u = f o cos Wet (50a) 
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u(0) = u0 (50b) 

u(0) = ux (50c) 

where uQ, UJ_, £Q and Uf are given constants.  In the finite element 
formulation, we shall replace eqs. (50) with the following set 

m ü + k u = fQ cos wft (51a) 

ü(t) - a [u(0) - u0] =0 (51b) 

u(0) - Ul = 0 

thus, eqs. (50) becomes a special case of (51) as a ■*■ °°. It is con- 
venient  to  nondimensionalize the independent variable t and let 

T = t/T (52) 

In terms of t, eqs. (51) become 

2 2 
u + T u u = f1  cos (T Wf T) (53a) 

u(l) - T a [u(0) - u0] = 0 (53b) 

ü(0) - T U]L = 0 (53c) 
where 

f 1 = T fo/m w = k/m (54) 

The exact solution for eqs. (53) can be easily written as 

u(x) = A cos (T a) '• x) + B sin (T w • x) 

+ n cos (T wf . T) (55) 
with 

A = 

f0     „  ul n =  , ß = — 
mfa2-^2)      u 

a u0 + T ux cos (Tu) - n [a + Tuf sin (Twf)] 

a + T a) sin (T w) 
(56) 

To solve eqs. (53) using finite elements, one begins with the variational 
statement: 

5 J = 0 (57a) 

J = / [- ü v + T2 w2uv - f(x) V] dx 
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+ T a [u(0) - u0] v(l) - T uj v(0) (57b) 

Now that 
(6J)U = 0 (58a) 

1 
= /„ [- u 6 v + T2 a)2 u6v - £(x)6 v] 

+ T a [u(0) - u0] v(l) - Tu^vfO) (58b) 

= /0 [Ü + T2 a)2 u - f (T)] 6v dt 

- {u(0) - a T[u(0) - u0]} 6v(l) 

+' { u(0) - T uj} 6v(0) (58c) 

From eq. (58b), one has 
1 

J0 [- u 6 v + T2o)2 u 6 v] dt + aT u(0) 6v(l) 
1 

= / £(x) 6v dx + a T uQ 6v(l) + T Uj 6v(0) (59) 
with 

u(x) = aT(r) U 

eq. (59) leads to 
v(x) = aT(x) V 

6 VT K U = 6 VT F 

or 

where 

(60) 

K U = F (61) 

K = / (- 4 aT + T2 w2 a aT) dt 

+ a T a(l) a(0) (62) 

1 
F = f £(x) a dt + aTun a(l) + T u-, a(0) (63) 

The results obtained from this finite element formulation are com- 
pared with the exact solutions as shown in Tables 1-3. The values of 
the parameters chosen for these data are k = 1.0, m = 1.0, fg = 1.0, 
(Of = 0.5, u0 = 1.0, ü0 = 1.0 the number of elements used is ten. The 
calculated u and ü for T = 2.0, 10.0 and 20.0 are given in Table 1, 
2, 3 and 4 respectively. The forcing function cos Wft and the solu- 
tion u(t) are also plotted in the range 0 < t < 20 as shown in Figure 1. 

(2) Solutions to a Transient Heat Conduction Problem. As another 
numerical example, we shall take the nondimensional heat transfer problem 
defined by the following set: 
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u(t) 

Figure 1«   Forcing Function F(t) and Solution u(t) 
for the Vibration Problem 
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TABLE 1 

Solutions to the Forced Vibration Problem Using FE-UVF 
Compared with Exact Solutions (in Parentheses) 

0 < t < 2.0 

t u(t) Exact u(t) Exact 

(1.000 00) 0 1.000 000 0 (1.000 000 0) 1.000 00 

0.2 1.198 652 6 (1.198 652 7) 0.979 74 (0.979 73) 

0.4 1.389 153 7 (1.389 153 4) 0.918 43 (0.918 42) 

0.6 1.563 313 2 (1.563 312 6) 0.816 55 (0.816 54) 

0.8 1.713 202 9 (1.713 201 8) 0.676 22 (0.676 21) 

1.0 1.831 481 7 (1.831 480 3) 0.501 18 (0.501 18) 

1.2 1.911 702 4 (1.911 700 6) 0.296 62 (0.296 61) 

1.4 1.948 585 6 (1.948 583 6) 0.068 98 (0.068 97) 

1.6 1.938 251 2 (1.938 249 1) - 0.174 24 (-0.174 25) 

1.8 1.878 396 9 (1.878 395 0) - 0.424 82 (-0.424 80) 

2.0 1.768 416 1 (1.768 416 1) - 0.674 13 (-0.674 03) 
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TABLE 2 

Solutions to the Forced Vibration Problem Using FE-UVF 
Compared with Exact Solutions (in Parentheses) 

0 < t < 10.0 

t u(t) ü(t) 

0 1.000 (1.000) 1.004 (1.000) 

1.0 1.832 (1.831) 0.505 (0.501) 

2.0 1.770 (1.768) - 0.675 (-0.674) 

3.0 0.566 (0.565 - 1.614 (-1.608) 

4.0 - 1.094 (-1.094) - 1.518 (-1.512) 

5.0 - 2.123 (-2.122) - 0.435 (-0.435) 

6.0 - 1.920 (-1.919) 0.778 (0.773) 

7.0 - 0.843 (-0.843) 1.213 (1.207) 

8.0 0.167 (0.166) 0.690 (0.689) 

9.0 0.436 (0.435) - 0.126 (-0.122) 

10.0 0.114 (0.114) - 0.385 (-0.381) 
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TABLE 3 

Solution to the Forced Vibration Problem Using FE-UVF 
Compared with Exact Solutions (in Parentheses) 

0 < t < 20.0 

 1 
t u(t) u(t) 

0 1.000 (1.000) 1.05 (1.00) 

2.0 1.778 (1.768) - 0.68 (-0.67) 

4.0 - 1.097 (-1.094) - 1.57 (-1.51) 

6.0 - 1.928 (-1.919) 0.82 (0.77) 

8.0 0.173 (0.166) 0.71 (0.69) 

10.0 0.116 (0.114) - 0.44 (-0.38) 

12.0 0.453 (0.462) 0.88 (0.85) 

14.0 1.956 (1.950) 0.06 (0.03). 

16.0 - 0.156 (-0.162) - 1.76 (-1.71) 

18.0 - 2.199 (-2.186) 0.15 (0.14) 

20.0 - 0.348 (-0.342) 1.10 (1.08) 
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n P •     82u  3u  „ 
^"~^"=° ' °<X<1 ; 0<t<T C64a) 

B.C.:       u(0),t) - 1, |E (i,t) =0 (64b,c) 

I,c-: uCx,0) = 0 (64d) 

taUonT Jt ^giye\fin.ite Tal P°Sitive number' To Militate compu- 
such that    desirable t0 change the independent variable t into T 

T = t/T (65) 

thus, the system of eqs. (64) becomes 

82u  1 8u 

9x2  T 3T 
D-E"    — "--=0 , 0<x<l ; 0<T<1 (66a) 

B.C.:      u(0,T) = i . *  C1,T) . o C66bjC) 

J*c-: UCX>°) = 0 (66d) 

According to our unconstrained variational formulation, this system is 
again replaced by the following: 

D.E.:    3*11  1 8u 
^- - - - = 0 , 0<x<l ; 0<T<1 (67a) 

B.C.:     du 
to  (0,x) + a [U(0,T) -l] = 0 (67b) 

3x" C1^) = 0 (67c) 

I.C: u(x,0) = 0 (67d) 

nl^l™ Z**'   £? redUC6S t0 C66) aS a - - • ™« variational state- ment can be written as 

where X1      &J = ° '68a) 
J=- JJ    (3H.3v + I^v)dxdt 

0  o       3x 3x      T 3T 
l 

+ a/o    [u(0,x)  - 1]  V(0,T) dx 
1 

+ J0   u(x,0) v(x,0)  dx (68b) 

Sjow^haJ6 fSCt that    VCX,T)  iS unconstrained>  it is a simple matter to 

(<SJ)U = 0 {-gg} 
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Figure 2. Finite Element Grid Scheme Used for a 
~"  Transient Heat Conduction Problem 
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TABLE 4 

Transient Heat Transfer Solutions u(x,t) Using FE-UVF 
Compared with Exact Series Solutions (in Parentheses) 

0 < t < T = 1.00 

N.            X 

t     Ns 
0 0.2 0.4 0.6 0.8 1.0 

0.2 1.000 

(1.000) 

0.754 

(0.757) 

0.583 

(0.496) 

0.370 

(0.405) 

0.264 

(0.284) 

0.228 

(0.179) 

0.4 1.000 

(1.000) 

0.855 

(0.853) 

0.713 

(0.721) 

0.622 

(0.616) 

0.552 

(0.549) 

0.516 

(0.526 

0.6 1.000 

(1.000) 

0.910 

(0.910) 

0.828 

(0.830) 

0.767 

(0.767) 

0.725 

(0.724) 

0.708 

(0.710) 

0.8 1.000 

(1.000) 

0.945 

(0.945) 

0.896 

(0.896) 

0.857 

(0.857) 

0.832 

(0.832) 

0.823 

(0.823) 

1.0 1.000 

(1.000) 

0.967 

(0.967) 

0.937 

(0.937) 

0.913 

(0.913) 

0.897 

(0.897) 

0.892 

(0.892) 
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TABUE 5 

Transient Heat Transfer Solutions u(x,t) Using FE-UVT 
Compared with Exact Series Solutions (in Parentheses) 

0 < t < T - 0.05 

\.          X 
0 0.2 0.4 0.6 0.8 1.0 

0.01 1.000 

(1.000) 

0.144 

(0.157) 

0.014 

(0.005) 

0.002 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.02 1.000 

(1.000) 

0.315 

(0.317) 

0.047 

(0.046) 

(0.003) 

(0.003) 

(0.000) 

(0.000) 

(0.000 

(0.000) 

0.03 1.000 

(1.000) 

0.413 

(0.414) 

0.103 

(0.102) 

0.015 

(0.014) 

0.001 

(0.001) 

0.000 

(0.000) 

0.04 1.000 

(1.000) 

0.479 

(0.480) 

0.157 

(0.157) 

0.034 

(0.034) 

0.005 

(0.005) 

0.001 

(0.001) 

0.05 1.000 

(1.000) 

0.527 

(0.527) 

0.206 

(0.206) 

0.058 

(0.058) 

0.012 

(0.012) 

0.003 

1 (0.003) 
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is a necessary and sufficient condition of eqs. (67). Now the finite 
element matrix equations can be obtained from eq. (69). 

C«J)U = " ZV [-«A + i~ fiv] dxdt u    o 'o  ax  8x   T 9T 

1 
+ /0 [u(0,T) - 1] 6V(0,T) dt 

1 
+ / u(x,0) 6v(x,0) dx = 0 (70) 

0 
or, 

- J1/1 ;i*L 6(3X.) +I3«.öv] dxdt 
o o  3x  8x   T 8x 

.1 1 
+ a J U(0,T) 6v(0,x) dt + J u(x,0) 6v(x,0) dx 

o 'o 

1 
= a /o 6V(0,T) dt (71) 

Using the usual procedure of discretization and the assumption 
of displacement functions, the final finite element matrix equation 
evidently can be derived from eq. (71). We shall omit the details here. 
The computational results are presented in Tables 4 and 5.  The finite 
element grid scheme used is shown in Figure 2. As clearly shown in 
those tables, excellent agreement exists between the FE-UVF approach 
and the series solution.  It is noted that the approximate solutions 
are less accurate invariably as they approach the initial time t = 0. 
This is probably due to the discontinuity of the initial boundary data 
at x = 0, t = 0. 
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THE NUMERICAL SOLUTION OF FREE BOUNDARY PROBLEMS 
BY MATHEMATICAL PROGRAMMING 

Richard S. Sacher 
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Rensselaer Polytechnic Institute 
Troy, New York 12181 

1. INTRODUCTION 

This paper is concerned with the numerical solution 
of free boundary problems by mathematical programming. 
In such problems, one seeks the solution of a partial 
differential equation (usually Laplace's or Reynolds' 
equation) satisfying prescribed conditions on the 
boundary of a region when a portion of the boundary is 
unknown and must be determined as part of the problem. 
The unknown boundary is called the free boundary. 

Many of these boundary value problems have not 
yielded to analytical methods of solution.  Recently, 
however, a novel transformational approach has met 
with more success.  Specifically, the free boundary 
problem is reformulated as a variational inequality 
which, in turn, is equivalent to a certain constrained 
minimization problem in a Sobolev (function) space. 
Although this latter problem is still computationally 
intractable, finite difference or finite element 
approximations yield a difficult, but solvable, sparse, 
specially-structured quadratic programming problem of 
potentially very large size.  It is the solution of 
this last problem with which we are concerned and for 
which an algorithm will be stated. 

2. APPLICATIONS 

Free boundary problems arise in a variety of 
situations.  Rohde and McAllister [8] have developed 
the variational inequalities for the finite-length 
journal bearing problem, in which one is concerned 
with a cylindrical rod (the journal) rotating within a 
tube (the bearing).  The inner surface of the bearing 
is coated with a thin film of lubricant and we wish 
to know the pressure distribution on the film.  At a 
certain point, the pressure becomes so low that the 
lubricant vaporizes, thus creating the free boundary 
interface. 
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In the area of fluid dynamics, Baiocchi et al. [1] 
have reformulated certain problems dealing with 
stationary fluid flow through porous media as varia- 
tional inequalities.  These include porous dams in 
which the free boundary is the interface between the 
wet and dry part of the dam.  Brezis and Stampacchia 
12], [3] have studied the determination of steady sub- 
sonic flows for nonviscous compressible and incompress- 
ible fluids past a two-dimensional convex body by 
using a hodograph transformation to obtain an equiva- 
lent free boundary problem for which a variational 
inequality problem can be stated. 

3.  THE QUADRATIC PROGRAMMING PROBLEM 

The common denominator of these and several other 
free boundary problems is that their associated 
quadratic programming problem 

Minimize f(x)   = j<x,Mx> +  <q,x> 

subject to x >  0 

has certain special attributes which can be exploited in 
the development of efficient algorithms.  The matrix M 
is a block-tridiagonal Stieltjes matrix (ie., symmetric, 
diagonally dominant with nonpositive off-diagonal 
entries).  Furthermore, the diagonal blocks are them- 
selves tridiagonal matrices and the off-diagonal blocks 
are diagonal matrices. 

One computationally successful .approach to this 
problem is a modification of the block- (or line-) 
successive overrelaxation method.  This algorithm 
requires that we partition the vector 

/ x ni x = (x1,x2,—,xm) where x. e R  and conformably 

partition M and q.  For this special class of problems, 
we may state the algorithm as follows: 

Algorithm 

Step 0.  Let x = (x^,  x^,   —, xm) be any nonnegative 

vector, eg., x = 0.  Let we(0,2) be given.  Set k=0 and 

i=l. 
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Step 1.  Determine x.   >. 0 which minimizes (over the 
nix nonnegative orthant R+ ) 

^, k+1  k+1       k+1 „   k        k. f(xx  , x2  , ..., x±_v  v , xi+1, ..., xm) 

1 k+1 k 
■ •=■ <v,M..v> + <(q. + M. . .x. , + M. ... x..,), v>+c. 

2 ii       i   i,i-l l-l   i,i+l  l+l      i 

where c. may be taken to be zero. 

Step 2.  Define 

cok+1 = max   {w   :   ü. < w,   x* + ü (xk+1 - x*)   >  0 

k+1 k   .     k+l.-k+l k, 
x.       =x.+u.      (x.       -x.). 
l l l i l 

Step 3.  If i=m, go to Step 4.  Otherwise, return to Step 1 

with i replaced by i+1. 

Step 4.     Define 
m 

1.   Li 

I}. S=   {(i,j):(x^+1)   >0}U{(i,j):(xk+1)j=0,    (q.+   ^M.^J^O: 

m 

If    max I(q.   +   \   M.„xk+1).|   < e,   stop.     An approximate 
(i,j)eS       x       1=1    liL  Ä       3 

solution is at hand.  If not, return to Step 1 with k 

replaced by k+1 and i=l. 

Step 1 requires that we solve a smaller quadratic 
programming problem whose quadratic form contains a 
tridiagonal Stieltjes matrix.  For a discussion of some 
fast methods to do this, we refer the reader to [5].  For 
more details on the development of and computational 
experience with the algorithm given above, see [4]. 
From a consideration of storage requirements and speed, 
one may conclude that this algorithm is competitive, if 
not superior, to other methods described in the literature. 
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ABSTRACT. An error analysis is performed upon the superposition and numerical 
integration procedures of a method of solution of multipoint boundary value problems 
utilizing power series expansions. The procedure involves the evaluation of the re- 
lative error of the Wronskian, which provides a scalar function characterization of 
the error of integrators of a matrix of solutions. The error behavior is investigated 
by using different integration step sizes and orders (terms of the power series). 

Evaluations are performed with numerical solutions of specified accuracy or 
order. Example applications are included. 

1. INTRODUCTION. Numerical integration is commonly used by engineers and 
scientists as a tool for solving ordinary differential equations. Those equations 
which cannot be solved exactly or in closed form can often be solved using numerical 
integration techniques. There are drawbacks to each particular integration scheme. 
The most important considerations are: the origin of the problem, guidelines frcm 
the theory of the algorithm, the computer being used, and the class or problems to 
be considered, Shampine and Allen (1973). 

Many techniques, in the form of "canned" routines or pre-programmed methods, 
and their variations, are available to the user. It is now possible to obtain numeri- 
cal solutions using techniques which require lengthy operations. The more popular 
integration techniques (i.e. Adams methods, Runge-Kutta, etc.) provide reasonable 
results for a wide range of applications. They are subject to some disadvantages, the 
most common being their susoeptability to round-off error, Ralston and Wilf (i960). 
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An alternate method of numerical integration has been investigated which is 
based upon the expansion of power series. The method is relatively free of the 
disadvantages of the more popular techniques and significantly more efficient for 
certain classes of problems, Doiron (1967). Research done previously by Fehlberg 
(1964) has shown the power series technique to be five to six times faster than a 
Runge-Kutta method for the same specified accuracy in certain selected problems. 
The power series methods generally require more user effort. 

The purpose of this study is to investigate the error in the integration via 
power series expansions. It has been shown that the Wronskian can be used as a 
meaningful check on the solvability and superposition procedures in the solution 
of boundary value problems. It has been proposed that the relative error of the 
Wronskian can provide some insight into the errors arising from this particular 
integration scheme, Childs et al. (1971). 

2. DEVELOPMENT. The problems to be considered are presented as an ordinary 
differential equation written in the general linear form as 

V = i>y + f (2-1) 

where Lisa linear operator in the form of an n x n coefficient matrix (expressed 
as a constant or function of an independent variable). The letter y  represents the 
state variable vector and y denotes the derivative of y with respect to the indepen- 
dent variable (in this case t). The vector / is a vector of forcing functions. The 
above equation is subject to a set of specified boundary conditions. 

qi(y(ti)) = hi      0±ti<_'2 i = l,2,...,m     (2-2) 

where m >_ n.    The operator q^  is a linear combination of the elements of the vectors 
at t = *£, that is equal to the boundary value b.. 

To meet the above boundary condition it is necessary to superimpose independent 
solutions of equation (2-1). The technique used is to superimpose the appropriate 
number of solutions of the homogeneous equation 

Ü =LH (2-3) 

upon a particular solution 

P = Lp + f    . (2-4) 

This can be written as 

y=p+H$=p +    I    h(k)  ß, v < n (2-5) 
k=l K 

where H is a matrix whose columns are homogeneous solutions. The superscript in 
parentheses indicates that vector is the (0th column of a matrix denoted by the 
capital letter and ß denotes the superposition constants. The letter r denotes 
the number of homogeneous equations which is equal to the number of unknown elements 
of y(o). 
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It is known from elementary differential equation techniques that the sum of 
a particular solution of a linear differential equation and a solution of its homo- 
geneous differential equation is merely another particular solution of that differ- 
ential equation. 

Utilizing this fact, it can be established that y  can be expressed as a combi- 
nation of particular solutions (Childs, 1971} 

r 
I 

k=0 
y=Pa =    I    p(k) ak (2-6) 

where P is a matrix whose columns are solutions of equation (2-1), thus: 

pW = Lp(k) + f     . (2.7) 

We multiply each side of equation (2-7) by a^ and sum these products 

r  /n      r      f1j,       r 
I    h(k) a^L    I    p(k)  ak + f   I 

k=0 K k=0 K k=0 
I   P(k) «*-L    I   P(k) ak + f   I   ak       • (2"8) 

By comparing equation (2-1) with equation (2-8), it is obvious that the left hand 
side of equation (2-8) is the quantity y  and the first teim of the right hand side 
is the state vector y.    Therefore, it is elementary that the superposition constants 
must obey 

I   ak=l        . (2-9) 
k=0   K 

After determining the superposition constants/ subject to the above restriction, 
the solution becomes trivial and is generated utilizing the initial conditions 

y(o) =   P(o)    a        . (2-10) 

The reason for superposition of solutions is to satisfy the boundary conditions. 
It is necessary that the superimposed solutions be independent to be able to meet 
boundary conditions. 

The requirement of independence is satisfied using a determinant of homogeneous 
solutions, which is usually known as the Wronskian. The independence of homogeneous 
solutions is satisfied when the matrix whose columns are these vectors of rank v. 

rank (H) = r (2-11) 

which must contain at least one v x r  submatrix of H and has a non-zero  determinant 
for the range of values of the independent variable. 

This can be applied to superposition of particular solutions. Define "Pas an 
(n+1)  x (r+1)  matrix in which the first row elements are one  (unity)  and remaining 
submatrix is P (shown in equation 2-6). 
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-P=   üiiiil (2-12) 

The Wronskian of rank n has been shown to obey the following equation, 
Petrovski (1966). 

t 
det  (E(t)) = det  (H(o))  exp  (  J tr  (L(<b))  d§) (2-13) 

o 

where tr (L(<S>))  is the trace  (the summation of the principle diagonal of the matrix) 
of the coefficient matrix in equation (2-1). When the Wronskian is non-zero  at the 
initial value of the independent variable, then it is theoretically non-zero  for all 
values of the independent variable over any finite interval. The following theorem 
adapts (2-13) to particular solutions. 
Theorem: 

t 
det (-p(t))  = det rp(o)) exp ( j    tr (L(i)) d$) (2-14) 

o 

Proof: 

The columns of ^P are p   and 

p<» , v<°> + »W    . W5| 

The subtraction of one column of a matrix from all other columns does not affect 
the value of the determinant of that matrix. Therefore, subtracting the 0th column of 
T from all other columns and comparing with equation (2-13) completes the proof: 

det C"P) = det °-    \       H I = det (H)        . (2-16) 

The Wronskian shows that solutions are (not) linearly independent and that a 
fundamental set of solutions (doesn't) exist. 

The relative error of the Wronskian is defined as follows: 

E(t)    = \\W(t)\  - \»n(t)\   j (2_17) 

\W(t)\ 

where Wn (t)  is evaluated utilizing particular solutions which come from numerical 
integration procedures and W (t)  is evaluated from (2-14). 

3„ AN EXAMPLE. The power series integration method was programmed in FORTRAN 
utilizing an Amdahl 470 digital computer. The program, subroutines and function 
routines used in the study were provided from unpublished studies, Childs (1975). 

The results are for damped, forced harmonic oscillators described by the 
following equations: 
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y2 =y2 

A set of independent particular solutions are created using arbitrarily chosen 
initial conditions: 

Vl    = 1. 

y2   - 0. 

Power series evaluations are then generated using these initial conditions and 
the recursive relationships. The set of particular solutions are then solved over 
the range of the independent variable, t. 

By calculating the Wronskian using both numerical procedures and the analytical 
method, the relative error may be examined. 

The results of the relative error of the power series integration procedure 
are compared to results obtained from previous studies by Childs et al. (1971) con- 
cerning the same problem using two different numerical integration procedures with 
X = 1.0 and p = 0.2. The taro integration procedures used to compare with the power 
series method are modified Euler and Runge-Kutta methods. They are order h% and h4 

respectively, where h is the integration step size. The two plots in Figure 4-1 
are log-log plots of R(t)  versus h for the Euler and Runge-Kutta procedures. For 
these results it has been observed that the following relationship is true: 

y(R(t))  = R(yt) 

where y is a positive scalar quantity. From these results it has also been suggest- 
ed that the relative error is dominated by the following proportionality for "reason- 
able" integration step sizes 

\R(t) | cc yp t 

where j is the order of the integration formula used. 

By comparing both cases (Figure 4-1.a and 4-1.b) it has been determined that 
they have slopes of 2 and 4 respectively. It has also been observed that for "large" 
step sizes the points tend away from the straight line due to approximation error and 
also for using "small" step sizes due to round off error. 

Results for the power series integration procedure are presented in Figure 4-2 
in the form of a log-log plot of R(t)  versus h for different orders (terms in the 
power series). It is seen that a family of curves exist for different orders. It 
was observed that for constant step sizes the error decreases as the number of terms 
increase. As the step size increases, the number of terms must also increase in 
order to retain a specified accuracy. Like the Euler and Runge-Kutta procedure, the 
relative error tends toward linearity as it increases with step size. As the step 
size decreases for each "order curve" the error function tends toward the error 
specification. This observation can be explained by the evaluation subroutine used 
on accuracy specification of 1 x 10""7. Thus, more accuracy was not attempted. 
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Since the curves are all similar, results will be explained for only one curve. 
For the "order curve" evaluated at 4 terms, the step size begins at .001. It is 
observed to be within accuracy specifications due to the fact that the power series 
integration is performed with such small step sizes. Since such small steps are 
used, all the terms (in this case, 4) are not required to neet the accuracy. As the 
step size increases, more terms are required to meet the accuracy specification. At 
the step size, .005, it is observed that the curve "dips". This occurs because at 
this step size more terms (in this case, 1) are required to meet the accuracy. From 
this point on the routine is utilizing all the terms of the power series in order 
to meet the accuracy requirement. However, as the step size increases, it is seen 
that the accuracy is not being met due to the larger steps being taken. It is also 
seen that the error function is linear while all terms of the power series are being 
used and would continue to be linear (within machine limitations) if it were not 
for round-off. 

Results were also calculated for several values of (X,p). All tendencies held 
as shown in Figure 4-2. 

4* CONCLUSIONS. The relative error of the Wronskian can apparently be used 
to determine if the step size used by an integration procedure is appropriate. The 
error would grow approximately linearly in a log-log plot. Further investigations 
should involve different systems of equations. 
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INPUT CONTROLLABLE STOCHASTIC MODEL 

Sheafen Frank Kuo 
S. Army Construction Engineering Research Laboratory 

P. 0. Box 4005 
Champaign, Illinois 61820 

1. INTRODUCTION. This paper introduces a model which incorporates 
the principles of both Markov chains and finite state machines. Markov 
chains possess stochastic behavior in the transition between states but 
are not input controllable. Finite state machines, on the other hand, 
are input controllable between states, but do not have stochastic 
behavior. Basic concepts of an input controllable stochastic model and 
analysis of its short- and long-term behaviors are presented. Forecast 
accuracy (FA) of a model is defined and relations between strings and 
models are described. The first order derivative (FOD) of a model is 
introduced. A sufficient condition for a model and its FOD to have 
equal FA is proved. In addition, some applications are briefly dis- 
cussed. 

2. INPUT CONTROLLABLE STOCHASTIC MODEL. 

A. Definition. An input Controllable Stochastic Model (ICSM) is a 
quadruple H = {I, 0, S, y} where I is the input set, S is the state set, 
0 is the output set, and y is a probabilistic function, such that 

y: I x S* x 0 x St+1 * P 

where 

S*. St+1<=s 

P = the set of real numbers between 0 and 1. 

In other words, given input x^ and present state S., y assigns a 

probability P..  to each output ym and next state Sp. Using the prop- 

erty of the probability function gives 

S   I    P.. „ = l,for all x.el, S.eS 
xme0 S eS m  n 

B. Example. Let 1 = 0= {x, yh S = {A, B, C}. y is defined as 
follows: 
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y(x, A 
y(x, A 
y(x, A 
y(y, A 
y(x, B 
y(x, B 
y(x, B 
yfy. B 
y(x, c 
y(x, c 
v(y, c 
y = 0 

, x, A) = 1/4 
, y> B) = 1/4 
, x, C) = 1/2 
. y, c) - l 
, x, A) » 1/6 
, y, A) = 1/6 
, x, C) = 2/3 
, x, B) = 1 
. y. A) = 1/2 
>y,ß) = 1/2 
, x, C) = 1 
otherwise 

C. Graphic Notation. Noting the input, output, and probability 
on an arc path between two states Sj and S. gives the following: 

x/y, 1/2 

Qf~lD 
This notation means that given input x and current state S., the 

probability of getting the next state S. and output y is 1/2. Making an 

arc between each communitable state would give a flow graph for that 
model. The flow graph of the last example is shown as follows: 

x/y, 1/6 
x/x, 1/6 

x/x, 1/4 

x/x, 2/3 

y/x, 1 

y/x, 1 
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3. INPUTTABLE MARKOV CHAIN (IMC). A special case of ICSM of inter- 
est in this paper is the model with empty output set 0. This kind of 
model is called the Inputtable Markov Chain (IMC). 

A. Definition. An IMC is a triple G = {I, S, k} where I is the 
input set, S is the state set, and k is a probability function which 
satisfies: 

k(S., xjS Sk) = prob {S
t+1 - Skl S* = S., x. is input} for all 

S-, S^eS and x.el 

Hence 

SkeS 
I   k(S., x., Sk) = 1 for all S.eS and Xjel 

B. Transition Matrix.    Let K = {I, S, k} be an IMC, where I = 
{x,, x2 . . . xn} and S -{S,. S2> . . . Sn>. Using P.jk = k(S., xy  Sk) 

gives: 
•   •   • m 

PXj . • 

1   2 
•   .   • D 

Kljm 

P2jl P2J2 ■' * ' P2jm 

1 / Pljl Plj2 

m   \   Pmjl 
•   • 

01 

m * rmjl rmj2      " mjm 

as a conditional transition matrix of input Xj. Notice that the summa- 

tion of each row is 1. 

Suppose at each state St the probability of getting input x.. is qy. 

Let 

"l. 

V 
<2j 

be a diagonal matrix 

1mj, 
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Let 

Pj " Qj • Pxj (2) 

P = ."/j (3) j=l J 

Thus, P is a transition matrix without knowing an input variable. 

4. SHORT- AND LONG-TERM BEHAVIOR. 

A. Short-Term Behavior. From a given model one can explore the 
*rllV-***? JlstriS>ution; 1-e-. af**r the It-step, the model will go to 
a certain state with a certain probability. Two cases can be con- 
sidered: 

(1) Input string is given. If X]x2 . . . X[c is the input string, 

then the k-step conditional transition matrix is 

Pxlx2 • * ' xk = Pxl * Px2 ' • • Pxk        (♦) 

where PXj is the conditional transition matrix defined by equation 1. 

(2) Input string is not given, but the input distribution matrix 
Qj is given. Equations 2 and 3 can then be used to find P, and the 

k-step transition matrix is as shown in equation 5. 

Pk = P • P . . . P (5) 
 v ' 
k times 

B. Long-Term Behavior. For long-term analysis, only the case 

S2!2!VnpuJ 1S cons2dered here- If k is large, calculating Pk is 
somewhat cumbersome, but applying the z-transformation, which is a com- 
mon way of calculating the power of a stochastic matrix, simplifies it. 

q(k) = Pk 

The z-transformation q(z) of q(k) is defined as: 

00 

Q(z) = Z q(k)z"k (6) 
k=0 *■ ' 
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or Q(z)[I - z_1P] = q(0) (7) 

since q(0) = ] 

Hence Q(z) = [1 - z^P]'1 (8) 

Let the inverse transform of Q(z) = y(k). 

Therefore y(k) = ^[(l - z^P)'1] (9) 

(10) 

("1 
i(k) = y(k) 

or y(k) = Pk 

From equation 11, 

lim pk = lim y(k) 
k ^ oo   k -»• °° 

5. STATE PROBABILITY AND FORECAST ACCURACY OF A MODEL. 

A. Definition. State probability (or state frequency) Pt of state 

S. is defined as 

'i-5-Vjt °21 
w 

where Pjt = £ <ljk
Pjki ^13i 

q.. = the probability of input x^ at state S.. 

P., . = the conditional probability of S. transferring to 
jki J 

S., given input x^ 

Obviously ? P. = 1 041 

Using equations 12 through 14, ?i  for each i can be found. 

The forecast accuracy [FA(R)] of a model R is defined as: 

FA(R) = Z Z [P.q.k • max P.kj] 
1 K. 3 
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Intuitively, FA(R) is the maximum average probability of forecasting 
the next state correctly, given the current input and state. 

B. Example 1 

a, 1 

b, 1/2 

a, 1 <3> 
b, 1/2 

<nn„tT!l!Jl??re SfTn ab0Ve 1s a simPle model R W1*th two states and two 
Itlft f' /S?uf inpu* a and b are ecJually Probably at each state. Simple calculation usings equations 10, 11, and 12 gives: 

state frequency: PA = §  
PB = J 

Therefore, state A is visited twice as frequently as state B is visited. 

FA(R) . PA . qAa . max {pAaA, pÄaß} +- pA . qAb . max {pAbA( pAbB> 

+ PB * %a  ' "«■ {PBaA> PBaB> 
+ PB * %b '  max ^PBbA' PBbB} 

S1nC8      <Aa = % ■ %a -%b-
]2       pA = |  PB - 1 

Hence    FA(R) = I{§ . max {1, 0} + 1 . max {1 1} + 1 • max {1, 0} 

+ | • max {1, 0}] 

Therefore FA(R) = ]i 

The average chance of forecasting the next state correctly is 11/12 
given the current state and input. 

It is trivial to see that a deterministic model, like a finite 
state machine, has a forecast accuracy of 1. 

The following are some of the trivial properties of FA(R): 

(1) FA(R)>max Z Z P.q..P... 
- j i  k i ik ikj 
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(2) FA(R) = 1-22 Ptqik min ?m     if number of state is 2 
i k j 

(3) Define FA(R!k) = l ?* max Pikj 
i   J 

Then    min FA(R|k) < FA(R) < max FA(Rlk) 
k k 

6. THE STRING AND MODEL. Consider the following string: 

aAaAaAbAbBbBaAbAbBaAbBaAbB . . . 05) 

where A and B are state variables and a and b are input variables. 

After sufficient observation, a model like that shown below can be 
developed. 

b, 1/2 

b, 1 

Combining the last state with the current state, or putting the current 
state to the left upper corner of the next state gives 

AAAABBAABABAB 
aAaAaAbAbBbBaAbAbBaAbBaAbB ... 

Putting the upper characters down gives 

aAaAAaAAbAAbABbBBaBAbAAbABaBAbABaBAaABbB ...    061 

String 16 is said to be a First Order Derivative (FOD) of string 15. 
FOD's are developed to increase the number of states so that the system 
is better described. For example, if string 15 is an observer's weather 
record with A and B meaning sunny and rainy, respectively, and a and b 
meaning decreasing temperature and increasing humidity, respectively. 
An FOD of String 15 can be derived to String 16 with AA as sunny, AB as 
cloudy, BA as partly cloudy, and BB as rainy. Therefore, String 16 is 
more descriptive than String 15. 
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7. THE DERIVATIVE OF THE MODEL. 

A. Definition. Like a string, the model also has derivatives. 
Let R be an IMC. 

R = (I, S, H}, I = {x,, x. x>, r A2*    -- n" 

S= {Sr S2 . . . s }, H = {P  j = i, . n} 

where P  is a transition m-matrix under input x.. 
j J 

Define 

Let    P 

r = SxS={Sk I sk " *i W V5» 
lkj be an element of Px , PJ Rj be an element of P^ 

where       px. ^ a transition matrix of dim m2 x m2 under x, 

such that p; i0kj„ - 
Pikj " \ - Vr si„ ■ V; 

Define 

and if i = r, otherwise PI , .    =0 
o °o 

H'- CP; I k - 1, . . ., n} and V = I 

Then IT = {l\  S', H'} is an FOD of R = {I, s, H} 

below. 
B. Example 2. The FOD R* of the model R in Example 1 is as shown 

b, 1/2 
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Similar to Example 1, assume that input a and b are equally probable 
at each state. Then it can be shown that 

FA(R) = FA(fT) 071 

In general, equation 17 is not true. However, the sufficient con- 
dition of it can be found. 

Define index sets of R, R' as follows: 

T = {r | SreS} 

r = {r | SJeS'} 

n - {r I S'eS x S.} where S x S. = {S..S. I jeT} 

LEMMA 1: 

(1) For all iQeTJ jeT there exists jQeT' s.t. Pikj = 
?\QWQ 

(2) For all vEK jVT there exists jeT s.t. PiWl
pJ |g 

v / 0 i 0 ^Joo 

Proof: Trivial 

LEMMA 2: 

For all ineT?  max P.H = max p; k1 0 1   jeT lkJ  jeT" VJ 

Proof: 

Let maxPiy-P^ where j]£T 

By Lemma 1 

081 

Conversely, let    max^ P^y = P^ (-201 

By Lemma 1      Pg^ 1 P^ 1 max P-kj 

Therefore  max P... = max PI  k, for all i eTC 
jeT lkJ  jeT' VJ       ° 1 

QED 
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THEOREM: 

If qik = qi k for a11 VTi and if     z     p;   = P- for all i 
VJi     ° 

Then FA(R) = FA(R') 

Proof: 

Since 

And 

FA(R) = z E P q     max P., . 

FA(R') = s   IP: qr .  max P; . . 

*o k     °   °     Jö     ° J° 

= z £     2     P- q; v max P: . , 
i k i0eTr   ^o 1ok   j0   V

Jo 

= 1 k i0sTC V* mf Pikj      ^ Lera"a 2) 

= l l [(qik 7 Pikj>Pi] 

o 
Her)ce FA(R) = FA(R') QED 

It is not surprising that for most models R and its FOD R', con- 
ditions 

qik = qi k  ** a" VT1 

and  z  P: = p   for all 1 

are^easily satisfied; thus, the forecast accuracy of the FOD R* is not 

8, APPLICATION. The Markov Chain has been applied to many manaqe- 
E™™1??*? °r SyStfS analysis fields" IMC imP^" the Markov ?ha?n 
b?n?nn?r,? haS mr? fea^res  to adapt the real work of physical, economic, 
filial   Jho°' en?1neer1 "9 ^sterns [1], [4], [6]. The most important a  '  e lr,Put contro lability, allows one to understand a system 
by controlling input to find the subsequent changes in state (and out- 
fnr ;„tSe the Process!ng ts stochastic, the finite state machine 
tor automata) cannot describe the procedure properly. If a model can be 
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build corresponding to a string of data, the model can then be tested 
and evaluated by calculating its forecast accuracy. The FOD is^a useful 
tool in understanding the model, as illustrated by the weather forecasting 
example. 

Some stochastic automata have already been applied to the reliability 
problem and decision process [8]. It is hoped that the discussion in this 
paper will create a new interest in the research in a discrete system. 
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A SCANNING ELECTRON MICROSCOPE INVESTIGATION 
OF STATICALLY LOADED FOUNDATION MATERIALS 

RAYMOND E. AUFMUTH 
Department of the Army 

CONSTRUCTION ENGINEERING RESEARCH LABORATORY 
P.O. Box 4005 

Champaign, Illinois  61820 

ABSTRACT. Selected rock samples were tested to failure in bending 
tension and compression test modes within the vacuum stage of a scan- 
ning electron microscope (SEM). The load was applied slowly such that 
crack initiation and growth could be observed and recorded by photo- 
graphy and video tape. The failure surfaces were further evaluated by 
standard methods to determine failure mechanisms involved for each test 
mode and rock type. 

1  INTRODUCTION. An understanding of the physical properties 
and behavior of rock materials (rock engineering) is necessary to im- 
plement a systems approach for designing a structure. Structural 
design considerations may include rock removal, tunneling, use of 
rock as a foundation material, or any combination of these factors. 
Information about the fundamental mechanisms of the fatigue and fail- 
ure properties of rock is essential and should be available to the 
design engineer. Since construction of underground structures such 
as tunnels for defense facilities, underground power plants, and hy- 
draulic structures has increased, and since idealized construction 
sites are not always available, it is essential that rock failure 
mechanisms be controlled by proper design practice. 

There have been few investigations concerning the failure modes of 
rock materials in simulated field tests, primarily because of the exper- 
imental problems associated with controlling rock failure. Wawersik, 
Brace, and Fairhurst (AROD Proposal 11278 EN) have investigated the _ 
post-failure behavior of selected materials. Brace and Sprunt have in- 
vestigated the microcavities in crystalline rocks; and Brace (ARO Contract. 
DAHCO 4-73-C-0017) is presently investigating the microstructure in  _ 
crystalline rocks with a scanning electron microscope. The study herein 
complements these and other investigations by advancing the state-of- 
the-art of failure mechanisms. 

2  EQUIPMENT. The AMR 900 Scanning Electron Microscope (SEM) is 
a hioh-re'solution instrument providing surface resolution of 100 to 
200 ! and useful magnification of up to 50,000X. The depth of focus is 
accurate to tens of microns. This means that a fairly rough surface, 
such as a rock fracture surface, will remain in focus at high magni- 
fications. The micrograph obtained appears similar to that obtained 
from the reflection light microscope, but it has much better resolution 
and depth of field. 
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Qnn rhSSh^ ti  stage and chamber door assembly is inserted in the AMR 
?2L nJtfc* ? r'plac%the ^andard door and stage. Depending on the 
type of test to be performed, the bending or tension-compression device 

IhpT«6«!0!!    ?5semKy dur1ng 1tf 0Pe«t1on. A platform mounted on 
ri
b  plate P™v1des the X motion (right and left), the Y motion (back- 

bv articuLlpd^LfJc lh\l m2tl0n (ÜP an? d0Wn)' The Z mot1on is actuated by articulated shafts to the door and a single knob on the front face of 
A i !T\h ne ^vo]utlon of the exterior knob represents a change in Z 
of 1mm, the readout is such that one digit corresponds to a change in 
specimen neight of 0.1 mm. A counter-clockwise rotation of the staqe 
raises the bending stage and closes the compression-tension heads. The 
same revolution and motion changes apply to the X and Y directions. 

The bending stage  (Figure 1) is custom-designed to load a rectanqu- 
lar specimen having maximum dimensions of 1 x 1 x 6 in. in simple three- 
point bending to a maximum load of 2000 lb. This stage is essentially a 
platform having a knife edge on its top surface that supports the speci- 
men at the center of its bottom surface. A load bar connected to the 
platform by a ball screw and gear system is connected to the edge which 
bears down on the top of the specimen. The points of the specimen's ten- 
sion links continually vary to accommodate specimens of 3 to 5 in. in 
length. The maximum bar deflection is 0.375 in., it is applied via the 
hand crank on the outside of the chamber door. Each digit of the read- 
out corresponds to a specimen deflection of 0.004 mm at no load. 

# The bending device is loaded into the chamber parallel to the Y 
axis at an angle of 45 degrees to the horizontal. Two positions 180 
degrees apart are possible, allowing observation of the tension face or 
a side face of the specimen. 

The tension-compression stage  (Figure 2) consists of two heads 
mounted on a pair of right- and left-hand ball screws. When the screws 
are rotated, the heads move either together or apart, but remain par- 
11. u  Compression specimens are placed between the flat surfaces of 
the heads for testing. Tension specimens may be held in place by var- 
ious techniques. In this study, square steel heads with a centered 
slot and a pin hole normal to the slot were epoxied to the specimen ends 
These in turn were connected by the pin to threaded rods, flattened at 
one end, which fed through the holes in the stage heads (Figure 3). 

The gear train used for specimen deflection is the same used for the 
bending state; however, one digit of readout corresponds to 0.005 mm 
change in distance between the heads. Minimum distance between the heads 
is 0.25 in., and maximum distance is 4.0 in. The maximum load which may 
be applied to either failure mode (tension-compression) is 2000 lb  The 
stage itself is tilted at an angle of 15 deqrees to the horizontal; how- 
ever, since a specimen may be placed in any orientation between the heads, 
any desired tilt may be obtained. 
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3 MONITORING DEVICES. A secondary (backscatter) electron image for 
direct'observation of~the~ipecimen is developed and displayed on a signal 
modulation unit. (This is the primary visual means of specimen observa- 

ti on.) 

In addition, the secondary image may be displayed on a 9-in. square 
TV rate monitor display unit. This unit displays the same field as the 
previous module, but has a limited magnification range of from 100X to 
10,000X. It has a built-in zoom capability that a lows c oseup display of 
a small area in the center of the TV and is operable at all magnifications. 

Photomicrographs are obtained through a record oscilloscope 4 x 5 in. 
square and Polaroid 52-P/55-P/N, 4 x 5 in. film. An alphanumeric generator 
is integrated into the signal modular display unit in order to facilitate 
identification and description of the photomicrographs. 

4 SPECIMEN PREPARATION. Table 1 lists the representative suite of 
rock sampTeTchösen for evaluation in this study and summarizes their 
physical characteristics. One set of specimens was prepared for each of 
three test modes: bending, tension, and compression. In addition, three 
cross-sectional dimensions were prepared to determine any specimen size 
effects. 

Bending (flexure) specimens were sawed into beams and ground square 
in lengths from 4 to 5 in. long and cross sections of 1/8, 1/4, and 1/2 in. 
square. A fine notch was filed into the top (tension) surface to control 
crack origin during scanning at high magnifications. This notch was approx- 
imately 1/16 in. deep for all specimens. 

Tensile specimens were prepared in the same manner, but were cut 2-1/8 
in in lenqth. Notches were ground into opposite sides of the specimens to 
minimize extraneous stress concentrations at other points in the specimen 
?esi mode  The intact cross-section varied from 3/16 to 1/4 in, depending 
on the specimen size. Only the tensile specimens were modified for 
testing; a steel head was epoxied to each end to facilitate application 
of pure tensile stresses. 

Compression specimens were prepared similarly to the tensile speci- 
mens in lengths of 2 to 3 in., with no notching or other preparations 
made after grinding. 

a. specimens were strain-gaged, coated under vacuum with gold-_ 

I wrapping was to prevent spa!lir^ during testing 

at a failure which 
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platinum to facilitate conductivity, and wrapped in aluminum foil. Th« 
purpose of the foil wrapping was to prevent spelling during testing or 
at a failure which could harm internal portions of the vacuum system. 



5. SPECIMEN FAILURE EVALUATION. The selected rock specimens were 
evaluated for bending, tension and compression failure. Prior to the 
SEM evaluation, representative strain-gaged specimens were tested to 
failure in each mode outside the vacuum drawer to determine: (1) if 
failure at each size in each mode was feasible; (2) the extent of spalling, 
if any; and (3) where and how failure would occur on the specimen. 

Problems encountered were associated with the compressive failure mode 
which proved to spall excessively and to fail unpredictably along the en- 
tire length of the specimen. For the Westerly Blue granite and trap- 
rock shale specimens, the test size had to be reduced to 1/4 in. square 
(in compression) to facilitate the 2000 lb maximum load. 

6- SEM FAILURE METHODS. The bending (flexure) failure mode was first 
evaluated in the vacuum drawer by applying load to a specimen up to a 
strain level approaching failure. At the point approachinq failure, the 
load application was slowed to approximately 0.3 mm/min. the notch area 
was scanned during this load application. Slow load application was con- 
tinued until crack initiation, when the load was stooped and the crack 
scanned. If the crack was partial, loading was applied again while the 
crack tip was followed with a scan. Loading was halted periodically for 
a side to side scan. For the bending failure mode, there were no signifi- 
cant changes indicated on either side of the failure plane. 

For the tensile failure mode evaluation, a slight seating load was 
applied manually to the specimen before placing it in a vacuum, so that 
the specimen would not rotate during load application. Since this test 
mode builds up stress prior to failure, most specimens failed rapidly, 
even at a \/ery small load rate. In some cases, a scan was possible be- 
fore complete separation. When side scans were performed in this failure 
mode, such secondary phenomena as grain separation were present. 

7. FAILURE SURFACE EVALUATION. After completion of the SEM failure 
evaluation, one surface of each failed specimen was mounted on studs and 
coated with gold-platinum. These surfaces were then evaluated by stan- 
dard SEM evaluation procedures and a standard stub staqe. This evaluation, 
together with the SEM failure evaluation, was the basis of the failure 
analysis. 

8- FAILURE ANALYSIS. When the beams failed in a bending mode, both 
intergranular and transgranular failure mechanisms were present, usually 
in approximately equal distribution; however, different rock types exhib- 
ited each failure mechanism to different deqrees. The Bonne Terre limestone 
and Westerly Blue granite exhibit approximately equal distribution of the 
inter- and transgranular failure mechanisms. The Traprock shale and 
Murphy marble beams primarily displayed transgranular failure and inter- 
granular failure. The Danby marble primarily showed intergranular failure 
and some transgranular failure, while the Berea sandstone exhibited 100 
percent intergranular failure mechanism. 
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The tensile failure test mode showed no preferences to either rock 
tvDe or crystal/grain size relative to the failure mechanisms. Both 
inter- and transgranular failure mechanisms were approximately equally 
distributed for each rock type evaluated. These figures also indicate 
the variation in crystal/grain size for the six rock types evaluated. 
The tester y Blue granite! Murphy marble, and Bonne Terre limestone 
display good crystal cleavage planes. The Berea sandstone exhibits 
surface wear on the individual sand grains. 

As anticipated in the compression mode, transgranular failure mech- 
anisms were present due to the nature of the test. However, the Berea 
sandstone and BonSe Terre limestone exhibited an unexpectedly excellent 
interg?Snular failure mechanism. The Westerly Blue granite, Murphy marble, 
and T?aprock shale exhibited predominantly (95 percent) transgranular 
failure; tee Danby marble displayed both failure mechanisms, with inter- 
granular failure predominating. 

Table 2 summarizes the failure mechanisms relative to test mode 

and rock type. 

9  SUMMARY AND CONCLUSIONS. Selected rock samples were prepared 
and tested to failure by bending, tension, and compression within the 
warijum staae of a scanning electron microscope. Load was applied very 
X y n order to observl crack initiation and growth. Crack growth 
^observed visually and recorded by both Photography and video tape. 
The crack surfaces of the failed specimens were evaluated by standard 
methodsfanä two evaluation technques were used to determine the failure 
mechanisms for each test mode and rock type studied. 

r^ii.c-innc  Ra<?Pd on the techniques of stub evaluation and failure in 
the lacZstag" the following statements apply only to those test .odes 
and rock materials studied herein: 

a  Cross-section size differences had no effect on the faille 
mode  The only benefit derived from studying several sizes were facili- 
tation of compression testing of granite and shale specimens. 

b. The rock types evaluated in this study had no apparent effect 
on the failure mode or the failure mechanisms. 

c. Crystal/grain size directly and significantly influences the 
failure mechanisms as follows: 

(1) Large crystals/grains - failure was primarily transgranular 
for each test mode. 

(2) Small crystals/grains - failure was primarily intergranular 
for each test mode. 

131 



d. Cementing agents have little or no effect on the gross failure 
mechanisms; however, failure in the cementing agent was exclusively 
transgranular. J 

10. RECOMMENDATIONS. This study has proved the feasibility and 
usefulness of applying a metallurgical research tool to geologic mate- 
rials. The present study, in conjunction with studies by Brace of 
specimen preparation techniques, could yield valuable information in 
the area of geophysics and earthquake analysis. Studies relative to 
shckenside development in clay shales and other shear phenomena of soil 
and rock could be advanced by this approach. 
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Figure 1: Bending Stage. 
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Figure .2: Tension-Compression Stage. 
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Figure 3: Tension Heads on Specimen. 
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PHASE II SECURE VOICE PROGRAM - AN INDEPENDENT ARMY ANALYSIS 

Theodore S. Trybul 
Comptroller Directorate, Cost Analysis Division 

HQ, US Army Materiel Development & Readiness Command 
Alexandria, VA 22333 

ABSTRACT. The Phase II Secure Voice Program (P2SVP) will develop, 
acquire and install a high quality, effective, long haul DOD secure 
voice system that will serve up to 10,000 subscribers in the 1985 time 
frame to provide requisite interoperability with strategic and tactical 
systems. It replaces the Phase I Automatic Secure Voice Communications 
(AUTOSEVOCOM) Network and Interim Conferencina for the National Military 
Command System (NMCS). 

The independent army analysis was a unique effort because this 
was the first time the Army was asked by the Secretary of Defense to 
evaluate another agency's program. 

The Director, Telecommunications and Command and Control Systems, 
Office of the Secretary of Defense requested the Army to prepare 
Independent Cost Estimates (ICE's) of the P2SVP alternatives developed 
by the DCA in support of Development Concept Paper (DCP) #153. These 
Independent Cost Estimates were to be prepared for the Defense Systems 
Acquisition Review Council, Office of the Secretary of Defense, Cost 
Analysis Improvement Group (DSARC, OSD, CAIG). This analysis provided 
input for the full-scale engineering development decision point. 

HQ, DARCOM established a Systems Study Group (SSG), Chaired by 
myself, consisting of representatives (multi-and inter-disciplinary) 
from COA, CSA, ACC, ECOM, DCA, NSA, DCEC, DDR&E, DTACCS, and OSD. 
This SSG generated an ICE by analyzing the Phase II computer printouts 
at the Defense Communications Engineering Center (DCEC), supported by 
engineering judgement, mathematical analysis, expert opinion and 
historical data. These estimates were prepared in accordance with 
the Army Materiel Guide for Organizing and Presenting Cost Studies, 
and the HQ, Department of the Army Investment and 0&S Cost Guides for 
Army Materiel Systems. 

1. INTRODUCTION. An analysis of P2SV and alternatives was made 
previously by the Defense Communications Agency (DCA) in the form of 
an Economic Analysis Estimate (EAE). The ICE described in this paper 
provides an independent evaluation of the costs generated in that EAE. 
Such an evaluation is a normal procedure in the acquisition of Army 
materiel systems. Together with the benefits (effectiveness) calculations 
made in the EAE, it allows a ranking of the candidate systems to be made 
and gives visibility to the decision maker of the trade-offs involved. 
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2. DESCRIPTION OF ALTERNATIVES. Independent Cost Estimates 
were made on 4 alternatives: Worldwide Tenley, Narrowband, Wideband 
and Hybrid Systems for the Phase II Secure Voice Program. Summary 
descriptions are given. 

TABLE 1 - SUMMARY DESCRIPTION OF ALTERNATIVES 

I WORLDWIDE TENLEY 
16 KBPS 
Modified Autovon CONUS 
TTC-39 Overseas 
Predominently Wideband 
Tri-Tac Type COMSEC 

III WIDEBAND 
16 KBPS 
Modified Autovon CONUS 
TTC-39 Overseas 
Bell field COMSEC CONUS 
Tri-Tac COMSEC Overseas 

II NARROWBAND 
8 KBPS 
Modified Autovon Worldwide 
Bell field COMSEC 
Red/Maroon Interface with Tri-Tac 

IV HYBRID 
16 KBPS Overseas 
8 KBPS Conus 
Modified Autovon CONUS 
TTC-39 Overseas 
Bell field COMSEC CONUS 
Tri-Tac COMSEC Overseas 

The AN/TTC-39 is a family of modular and transportable communication 
switching systemsdesigned to provide secure automatic switching for 
tactical voice and message traffic. The family consists of hybrid circuit 
switches varying in size from 450 to 750 terminations by increments of 
150 analog or digital terminations and message switches equipped for 25 
or 50 terminations. 

A more detailed description of the four alternatives are given 
below: 

A. ALTERNATIVE I. The Worldwide Tenley provides for 16 KBPS (Wideband) 
continuously variable slope delta modulation (CVSD) terminals for all users. 
Clear, secure voice capability will be provided from the same 16 KBPS 
terminal. Leased CONUS autovon switches will be modified to emulate 
certain AN/TTC-39 switch features and the government owned switches 
overseas will be replaced with AN/TTC-39 type switches. Concentrations 
of subscribers will be provided access via a new automatic 4-wire Digital 
Access Exchange (DAX) concentrator. End-to-end encryption will be provided 
for all calls within the network, except for conferencing and NB/WB con- 
versions requiring red interfaces. Automatic remote electronic crypto- 
graphic key distribution will be provided with the Tri-Tac Tenley COMSEC 
concept in both CONUS and overseas. 
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B  ALTERNATIVE 2. Alternative 2 provides 8 KBPS Narrowband voice 
processor terminals and Bell field COMSEC in both CONUS and overseas 
portions of the DCS. CONUS Autovon switches will be modified for 
digital operation and Bernhardt KDC's will be used in CONUS and 
overseas. A red interface KDC will be required for the DCS Bellfield 
COMSEC to interoperate with the Tri-Tac Tenley COMSEC. Overseas, the 
existinq government-owned autovon switches will be modified for digital 
operation. End-to-end voice encryption will be maintained on intra-DCS 
calls since all users will have compatible terminals. However, calls 
to Tri-Tac will require 8 to 32 KBPS voice interfaces that will prohibit 
end-to-end encryption and insert voice degradation. 

C  ALTERNATIVE 3. Alternative 3 provides a Worldwide Wideband 
(16 KBPS) system using Bellfield COMSEC in CONUS and Tenley COMSEC 
overseas. As opposed to the Tenley alternative, it will not have COMSEC 
functions at each modified CONUS autovon switch. Instead, up to 3 stand- 
alone Bernhardt KDC's will be dispersed throughout CONUS to serve the 
CONUS DCS. CONUS autovon switches will be modified to provide digital 
service  The CONUS voice terminal will be procured to operate in the > 
Bellfield COMSEC mode. Overseas, this alternative will require a special 
interface KDC to allow interoperation of the CONUS Bellfield and the 
overseas Tenley key distribution systems. Voice interoperability with 
Tri-Tac subscribers and end-to-end encryption will be available. 

P  ALTERNATIVE 4. Alternative 4, the Hybrid alternative, provides 
8 KBPS Narrowband Voice Terminals with Bellfield COMSEC in CONUS and 
16 KBPS Voice terminals with Tenley COMSEC overseas. The Bellfield 
COMSEC in CONUS will be achieved with Bernhardt KDC!s. The CONUS secure 
voice terminals will be the product of a separate Narrowband development. 
CONUS autovon switches will be modified for digital operation. Overseas, 
the program will be identical to the Wideband alternative, except that 
an interface will be required between the two dissimilar voice terminals 
of each geographic area. This will preclude end-to-end encryption of 
voice calls between CONUS and overseas DCS or CONUS DCS and Tri-Tac, and 
will introduce noticeable voice degradation for these calls. 

3. METHODOLOGY. The methodologies used in this analysis included 
cost estimating relationships, regression analysis, learning curve, 
engineering estimates, analogy, del phi, cost factors, complexity factors, 
contractor^quotes, previous experience, and subjective judgement. 

The methodology employed for the investment portion of the ICE 
consisted of the formulation of the equipment requirements package, 
research of available cost data, determination of hardware costs by 
analogy and support costs from historical information and cost 
estimating guidelines. The cost data elements of the investment 
analysis include hardware, military construction, engineering, instal- 
lation and testing, material, initial spares, test equipment, data, 
training, packing, packaging and transportation. 
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The operation and support methodology consisted of cost estimating 
relationships, computer models, expert opinion, analogy, contractor 
quotes, cost factors, and exponential regression analysis. The cost 
data elements of the O&S analysis consisted of personnel, consumption, 
training, integrated logistics support, maintenance, procurement of 
switch modification, transportation, recurring spares, leasing and 
utilities. 

The methodology for the R&D cost estimates were expert opinion. 
64 individual R&D tasks were analyzed using a modified delphi technique 
and a computer routine. The cost data elements of the R&D analysis 
included engineering, tooling and prototypes. 

A. As an example of the mathematical techniques used in estimating 
costs, an analysis of CONUS transmission costs is given. These AT&T 
leased lines will be used for digital rather than the usual analog 
transmission; thus there was no relevant experience to obtain data. 

Two factors were involved in the analysis, the first of which 
was the increase in the number of digital service areas expected. This 
is expected to result in a linear decrease in total transmission costs 
of 2%/year  for 10 years. The second factor anticipates a reduction 
in costs for providing digital transmission due to technological 
advances and increased equipment production. This decrease is expected 
to start in 1980 and is expressed by the exponential regression, 

DC= 1/2 (1 + e "t/3) 

Where 0<t£10   corresponds to the years 1980 to 1990. This 
expression results from an exponential regression analysis using all 
available information on present and past transmission leasing costs. 

B. The approach to estimating Operating and Support (O&S) costs 
was as follows. Operator costs were calculated by multiplying the 
number of operators required for each equipment by the annual pay and 
allowance for the operator's grade level. 

Maintenance costs were calculated by multiplying the cost per 
active maintenance man-hour, by the total annual maintenance hours 
per equipment. Total annual maintenance naan-hours were calculated by 

AMMH = HOP (MTTR/MTBF), 

where: AMMH = Annual Maintenance Man-hours. 
HOP = Hours of Operation Per Year 

MTTR = Mean-time-to Repair 
MTBF - Mean-time-between Failure 

142 



Depot overhaul costs for labor and material were calculated by 
multiplying the depot overhaul cost by the overhaul rate to equal the 
depot cost per unit per year. The overhaul rate indicated how often 
the unit was expected to be sent back to depot for overhual. The 
depot overhaul cost was estimated by 

DOC = 0.809 (DOR) (UC) 881 

where:   DOC = Depot Overhaul Cost/Year 
UC = Unit Hardware Cost 

DOR = Depot Overhaul Rate 
Standard Error- +60$, -37% 

C. Cost Estimating Relationships (CER) were used to estimate 
costs for various equipments. For example, the CER used for the TTC 
automatic switching equipment was 

Y0 = 27284.7 + 0.002 X 
2 - 0.125XJ'7 + 24.898X.1,5 

c 1        2 * 

where:   Y = Acquisition Cost 

X, = Weight 

X„ = Volume 

X- = Number of Lines 

4. UNCERTAINTY ANALYSIS. In all cases of projected cost estimates 
some degree of uncertainty will exist and it is therefore advisable to 
state projected cost estimates in terms of most likely value, lowest 
value, and the most pessimistic (highest) value. The most likely 
value would be that value normally used in planning, programming and 
budgeting. 

The ratios of high and low values to most likely (taken as 1) 
are given in Table 2 below for the preferred alternative 1 for R&D 
and 0&S costs. 

TABLE 2 - UNCERTAINTY ANALYSIS (ALTERNATIVE 1) 

LOW       MOST LIKELY        HIGH 

R&D        .957 1 1.024 

0&S        .850 1 2.054 
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The uncertainty in the investment costs was analyzed for the 
major equipments. The uncertainties are given in terms of percentages 
of the most likely costs. 

TABLE 3 - INVESTMENT UNCERTAINTY ANALYSIS 

EQUIPMENT 
AN/TTC-39 Switch 
Tenley Family 
Bell field Family 
Loran C 
Dax (Concentrator) 
DSVT 
Goldwine Mod 
Conference Directors 
Transmission Equipment 

SERVICE AND SUPPORT 

UNIT COST 
$1,860K 

298K 
292K 
20K 
58K 
4.3K 
10.9K 

273K 

Engineer, Install and Test 
Repair Parts 
Test Equipment 
Data 
Packing, Packaging & Transportation 

18% 8% 
15% 15% 
25% 25% 
.5% .5% 
15% 40% 
10% 10% 
60% 10% 
50% 50% 
15% 15% 

10% 100% 
15% 15% 
20% 20% 
20% 50% 
15% 25% 

5. SENSITIVITY ANALYSIS, 
the context of both indivi 
It involves the systematic 
force structure cost resul 
and composition of force, 
sensitivity analysis were 
changes in terminals, logi 
horizons. 

Cost sentivity analysis is a technique within 
dual system and force structure cost analysis. 
examination of the effects of changes in total 

ting from variations in characteristics, size, 
The variables considered in conducting the 

the number of subscribers, manning levels, 
sties cost, C0NUS, leasing costs, and planning 

6- COST BENEFIT ANALYSIS. By using standard methods of measuring 
benefits (measures of effectiveness), benefit/cost ratios were 
calculated for the 4 alternatives. The values are given below: 

TABLE 4 - COST BENEFIT ANALYSIS 

Alternative 
Tenley 
Narrowband 
Wideband 
Hybrid 

Benefit/Cost 
484 
305 
378 
296 
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7  SUMMARY COSTS. The table below gives the summary costs in both 
constant and inflated FY76 dollars. The inflated costs of over a billion 
dollars is a large but not untypical program for our analysis and 
evaluation. 

TABLE 5 - ICE P2SV GENERAL COST SUMMARY 

ALTERNATIVES 
RlD" 
Investment 
O&S 

TOTAL 

(Constant 76 $ M) 

1 
3776 

179.8 
569.7 
787T" 

II 
39.3 

209.3 
495.2 
743.8 

III 
37.6 

173.1 
555.5 
766.2 

IV 
38.8 

248.8 
570.4 
858.0 

R&D 
Investment 
O&S 

TOTAL 

(Inflated 76 $ M) 

44.2 45.6 
235.9 279.3 

1026.2 882.3 
1306.3 1207.2 

44.2 
230.2 

1000.9 
1275.3 

45.7 
329.2 
1017.1 
1392.0 

8. CONCLUSION. In this presentation I have attempted to give the 
highlights of the Army's independent analysis of the P2SVP, as well as 
some of the complementary calculations used in an economic analysis that 
are needed in the decision acquisition process. 
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SOLVING CONTROL PROBLEMS USING DISCRETE CONTROLS 

Randy J. Schuetz 

Army Materiel Systems Analysis Activity 
Attn: DRXSY-RW 

Aberdeen Proving Ground, Md. 21005 
Formerly, Intern Training Center, DARCCM 

Bart Childs 

Department of Industrial Engineering 
Texas A&M University 
Texarkana, Texas 75501 

ABSTRACT. The solution of the class of problems governed by 
a set of first order linear differential equations, subject 
to a set of linear constraints, and the minimization of a 
defined quadratic performance index is presented. The number 
of differential equations must be greater than the number 
of constraints, otherwise, there is a unique solution and 
control is not possible. The solution is considered as 
known once the correct initial conditions are found; a 
number of initial value methods are available to solve 
linear differential equations. Only discrete controls 
are considered here, depicting the real world where contin- 
uously variable controls are not always present. Using the 
above, systems of the open loop type are examined. 

The method consists of superposition of linearly _ inde- 
pendent particular solutions to get the optimal solution. The 
particular solutions are generated using a power series 
integration technique on a perturbed set of arbitrarily chosen 
initial conditions. The superposition constants are deter- 
mined so that the solution both meets the constraints and 
minimizes the quadratic performance index. The itdrrunum point 
is found using a method developed by Childs and Maron for 
the explicit minimum solution to a set of quadratic equations 
subject to a set of linear constraints. 
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1. INTRODUCTION. The solution to a class of control problems with discrete 

controls is presented. The class of problems examined are those governed by 

a set of n first order linear ordinary differential equations, subject to a 

set of m  linear constraints (m<n), wherein a given quadratic performance 

index is to be minimized. The discrete controls appear in the solution as 

initial values of the differential equations. Those initial values which are 

unspecified by constraints are determined optimally by minimizing the given 

quadratic performance index. 

The letter y  is used for an n element state variable vector which is 

assumed to be a function of the independent variable t,  time. The dot (*) 

is used to denote the total derivative with respect tot. The general set 

of first order linear ordinary differential equations is written as 

y = Ly + f t  e   [o3T] (1.1) 

where L  is a n by n  coefficient matrix whose elements may be constants or 

functions of time, / is an n element vector of forcing functions, and [o3T] 

is the time interval of interest. The solution of equation (1,1) is subject 

to the linear equality boundary conditions or constraints 

qi  (y(tj) =bi i = 1323...3 m<n (1.2) 

where q^  represents the boundary condition operator that specifies a linear 

combination of elements of the state vector. The ith boundary value, b., 

at the specified value of time, t .    A quadratic performance index, h,  where 

T 
h  =   / y' M y dt 

o 
(1.3) 
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is to be minimized. The n by n matrix M is symmetric and known function of 

time, t.    The prime ( )' is used to indicate the transpose of a vector or 

matrix. The above three equations define the basic problem. 

The solution to the problem is uniquely defined once the state, y,  is 

known at any time t.    The solution is considered as known once the correct 

initial conditions, y(o),  are known. The y(o)  vector gives the desired control 

parameters, and it can be used with the differential equation (1.1) to generate 

an accurate solution for y  as a function of *. Tnis is due to the availability 

of a variety of initial value differential equation problem solvers for today's 

digital computers. 

The solution method is a superposition of solutions, a "shooting method". [6] 

The usual methods of solving similar controls problems involve the use 

of Lagrange multipliers, Hamiltonians, co-state equations, etc. which are 

unnecessary in the method presented in this paper. [5] The techniques used 

in the usual methods require a large amount of mathematical gynmastics in the 

solution process. 

2. A SHOOTING METHOD. A particular solution of equation (1.1) is a solution 

of a particular  set of initial conditions. We define such a solution as 

p™ - L P
(k) + f 

i2'1] 

where the superscript, k, is an index which denotes the fcth particular solution. 

The state vector, y, is determined by the superposition of particular solutions, 

and is expressed as 

(2.2) y  = Pa 
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where the fcth column of the matrix P is the state vector p ^ 0f equation 

(2.1) and the vector a  is the vector of superposition constants. The index, 

k,  for the vector a and the columns of P varies from zero  to r,  where r  is 

the number of differential equations minus the number of known initial 

conditions. Equation (2.2) can be rewritten as 

r 
r    (k) 

y =    lQ p(   ak (2.3) 

If equation (2.1) is multiplied by a.  and summed over k 

lj'k>an' ,1 LPM\+ I f\ (2-4) k=0 K        k=0 K      h=o        K 

Rewriting after factoring out Land/ from the summations (since they are not 

indexed by k) and substituting equation (2.3) and the derivative of equation 

(2.3) with respect to t  into equation (2.4) gives 

y = Ly + f      la (2.5) 
k=0   K 

Comparing equations (1.1) and (2.5) establishes a constraint which the super- 

position constants must meet: 

r 

io *k"3 (2-6' 
The traditional superposition of homogeneous solutions on a single particular 

solution does not have a similar constraint. However, because we superimpose 

particular solutions, we need to program only one set of equations for each 

problem. 

Independence of Solutions and Boundary Value Constraints.    The reason for the 
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superposition of the particular solutions is to satisfy the boundary conditions 

or constraints. This requires all r+1  subsets of the r particular solutions to 

be linearly independent. To insure this, P(o)  is created using the perturba- 

tion strategy: First,  arbitrary estimates are made of the r unknown values of 

y(o)  and this vector is used for p(o)(o).    Second,  columns 1 through r  of 

are generated by making each column the same as p °  (o),  except that each has 

one nonzero perturbation from one of the estimated elements of p • (o).    Each 

estimated element is perturbed in one and only one column. This strategy 

gives the desired independence. 

The boundary conditions are of the form specified in equation (1.2). 

For control problems, these boundary conditions are usually initial conditions, 

but this is not required. As stated previously, r  denotes the number of elements 

of y(o)  not uniquely specified by equation (1.2), and thus, (n-r)  elements of 

y(o)  are uniquely specified. If m  is not equal to (n-r), then there are 

m- (n-r)  boundary conditions at times greater than zero. Subsittution of 

(2.2) into (1.2) gives 

a.   (P(t.) a) = b. i = l,23...3m (2.7) 

which can be rewritten for linear operators q^,  as 

I    q.   (p(k)   (t.))a    =b. i = l,2,...3m (2.8) 
k=0    % ^        K        ^ 

Of these m  linear equations, (n-r)  specify known values of y(o)  and m-(n-r) 

specify constraints on the unknown values of y(o)  in terms of the (r+1) 

unknown superposition constants, the a^'s. With the addition of constraint 

equation (2.6), there are m-(n-r)+l  constraints with (r+1)  unknowns. Since the 

problem statement declares that m  is less than n,  it is evident that m-(n-r)+l 
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is less than r+1,  and thus it is an underdetermined system. Therefore, the 

a^'s are not uniquely specified, and we can choose them to minimize the per- 

formance index of equation (1.3). 

Optimizing on the Basis of the Quadratic Performance Index.    The a  vector is 

now included in the performance index by the substitution of equation (2.2) 

into equation (1.3) which gives 

T 
h =     / a' P' M Pa dt 

o 

The (v+1)  by (r+1)  matrix A  is defined by: 

T 
A =      j P' M P dt 

o 

(2.9) 

(2.10) 

It is possible to rewrite equation (2.9) as 

h(a)=a'Aa (2>n) 

The method that is used to solve for A  is to calculate the solution of the 

initial value problem 

A = P> M P A(o) = 0 (2.12) 

The superposition equation (2.3) requires that (r+l)*n  first order linear 

ordinary differential equations be integrated and the matrix A,  which is symmetric 

because the matrix M is symmetric, may be determined by integrating an additional 

(r+1)  * (r+2)/2  first order linear ordinary differential equations. 

In solving for the optimum a vector, the explicit formula developed by 

Childs and Maron (1975) is utilized. This formula states that the solution for 

a  such that 

h(a) = a' A a = minimum (2.13) 
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subject to 

Ka = e 
(2.14) 

is 

a = a    - N(N' AN)'1 N' A a 
V V 

(2.15) 

where k  is m-(n-r)+l  by (r+1)- and of rank m-(n-r)+l3 a    is a particular solution 
y 

of equation (2.14), and the columns of N form a basis for the null space of 

K.    The ( ) -1 in equation (2.15) denotes a matrix inverse. By using appro- 

priate matrix operations, it is possible to transform equation (2.14) into the 

equivalent system 

I    ! W 
i 

a  = d 

■This can be used to define a   and N as 

a    = 
V 

d_ 
o 

and     N = -Ji 
I 

The V s in equations (2.16) and (2.17) are identity matrices of appropriate 

order. 

3. AN EXAMPLE. The first problem chosen is 

(2.16) 

(2.17) 

x + 0.2x + x = u1 + uj> t e   [0,10] (3.1) 

subject 

x(o) = 0 x(10) = 1 x(o) = 0 (3.2) 
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and 

10 
h =      J   (x    + x ) dt = minimum (3.3) 

o 

In state variable form, this can be restated as 

y2=y2 

y2= -y2  - 0.2y2 + y3  + y^ (3.4) 

y3 = o 

y4 = o 

subject to 

y2(o)  = 0 y2(10)  = 1 y2(o)  = 0 (3.5) 

where 

10 
h =      / y' M y dt (3.6) 

o 

and 

'10    0 0 
0    10 0 

M = \  0    0    0 0   ] (3.7) 
0    0    0 0 

Using an accuracy of 10  and evaluating power series to 10 terms results in 

the following solution 

y1(o) = 0. 

y2(o) = 0. 

ys(o) = -0.105453 

y4(o)        0.115041 
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The y    and y    elements are the forcing function constants or control. 

The solution for ^ and y2  over the interval [0,10] is given in Table 1. 

4. CONCLUSIONS. A direct method has been shown for the solution of linear 

ordinary differential equations subject to minimization of a quadratic per- 

formance index and multipoint boundary values. The method avoids the necessity 

of Lagrange multipliers and other similar tools. 

The method can easily be incorporated into boundary value codes. Most 

problems will have nonlinearities which can be handled in the usual manner 

[3], [6]. 
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TABLE 1 

NUMERICAL SOLUTIONS 

Time 5L II 

0 0 0 

0.5 -0.010 -0.035 

1.0 -0.028 -0.031 

1.5 -0.035 0.006 

2.0 »0.018 0.066 

2.5 0.031 0.130 

3.0 0.111 0.186 

3.5 0.213 0.219 

4.0 0.325 0.225 

4.5 0.434 0.205 

5.0 0.527 0.166 

5.5 0.598 0.118 

6.0 0.646 0.075 

6.5 0.675 0.045 

7.0 0.694 0.034 

7.5 0.713 0.043 

8.0 0.740 0.068 

8.5 0.782 0.102 

9.0 0.841 0.135 

9.5 0.916 0.161 

10.0 1.000 0.173 

ys = -0.105 

y   = +0.115   (constants) 
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On Generalized Feller Equation 

Siegfried H. Lehnigk 

Physical Sciences Directorate, US Army Missile Command 

Redstone Arsenal, AL 

ABSTRACT 

The generalized Feller equation 

iKz) = Az  + Bz +C - z = 0,  z = z(x,t),  x>0,  t > 0, 
* V ' XX     x    z    t 

with the coefficients 

A(x) = c*xX+1, a  > 0,  XeR, X ^ 1, 

B(x) = ß x* + ß2x, ßx 2eR, 

C(x) - px^"1 + ß2,  p = \[&l  ~ Qf(l + X)], 

will be considered. The choice of p makes £(z) = 0 a Fokker-Planck 
equation. 

Solutions of A(z) = 0 will be derived for given initial and/or 
boundary conditions. The derivation of initial condition solutions 
is based on a basic solution of A(Z) = 0 and its adjoint. 

The complete paper is published elsewhere, 
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A PERTURBATION METHOD FOR FREE BOUNDARY 
PROBLEMS OF ELLIPTIC TYPE* 

B. A. Fleishman and Thomas J. Mahar1" 
Department of Mathematical Sciences 

Rensselaer Polytechnic Institute 
Troy, New York  12181 

ABSTRACT.  Nonlinear partial differential equations (PDE's) 
arise in many scientific contexts, and boundary value problems 
U^'s) fS? such equations present formidable computational dif- 
ficulties.  Thus analytical techniques for approximating the sol- 
utions of such problems have practical significance. 

A formal perturbation method is described here for appreci- 
ating solutions of certain BVP's for elliptic PDE's containing 
isSStinuoua nonlinearities.  To illustrate, we treat xn detail 

ma 
d 
the BVP 

P(e) 

u  + u  + f (u) = 0 in S: 0 < x < 1, — 
xx   yy 

u(0,y) = eh(y), u (l,y) =0  for -» < y < - 

where e is a small parameter h is periodic «d uniformly bounded, 
anrl f is a step-f unction:  f (u) =0 for u < p, f (u) - 1 tor u > p 
Ifa 'positive "constant) .  u and 8u/9n are to ^continuous across 
any "free boundary" u = y.  If 0 < y < 1/4, problem P(0) is shown 
to have at least one non-trivial solution u = u (x) such that 
£(5) = y  (o < x < 1).  For y e   (0,1/4) anuappr8ximate solution 
u?x v) of P(e) involving a free boundary in S is then sought m 
the' form u(S) = u0<x) + Eü(x,y), with the free boundary assumed 
to be x = x + eg(y) . 

Two examples are considered, h(y) = cos y and h a trigonomet- 
ric polynomial, in which the linear (variational) equation for u 
may be solved by separation of variables. 

An unusual feature of our procedure is that this equation for 
ff contains a delta-function coefficient, because in the ongimal 
equation f is a step-function in u. 

1   INTRODUCTION.  Nonlinear partial differential equations 
(PDE's) arise in many scientific contexts, and boundary value 

*  Research supported by U. S. Army Research Office. 

t Present address:  Courant Institute of Mathematical Sciences, 
New ?Srk University, 251 Mercer Street, New York, New York 
10012  (U.S.A.) 
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problems (BVP's) for such equations present formidable computa- 
tional difficulties.  Thus analytical techniques for approximating 
the solutions of such problems have practical significance. 

_  We illustrate here a perturbation method applicable to cer- 
tain BVP's for elliptic PDE's of the form 

Au + f (x,u) = 0 (!) 

where x = (x1,...,xn) is a point in Rn, A denotes the Laplacian 

operator, u is a real scalar variable, and f is a piecewise- 
contmuous function of x^...^ and u.  When f has jump discon- 

tinuities with respect to u, among the interfaces across which f 
changes abruptly there may be so-called "free boundaries" which 
are not known a priori but must be found along with the solution 
u = u(x) . 

Suppose f is a step-function in u and depends also on m of 
the independent variables, say, x1,...,xm , where 0 < m < n.  Let 

D be a fixed region in Rn whose bounding surfaces are independent 
Xm+l'"*'xn * 

Now consider a BVP for (1) on D, denoted by P(e), in which a 
!Üa: iarfe^er e occurs in the boundary conditions in such a way 
that the reduced" problem P(0) does not involve x   ,.. ,x 

If a solution uQ = uQ (x^ .. . ,xm) of P(0) is obtainable, we seek a 

solution of p(e) in the perturbed form u = uQ + eü, with free 

boundaries (if any) which are perturbations of free boundaries of 
P(0).  As we shall see in the specific problem considered below, 
for certain boundary data it is easy to find Ü and the perturbed 
free boundary. 

The unusual mathematical feature of this procedure is that 
we perturb about a surface of discontinuity, which introduces a 
delta-function into the (variational) equation satisfied by Ü. 
Our development is formal; assuming that the solution we seek exists 
and that lt^can be closely approximated by an expression of the 
lorm uQ + eu, etc., we calculate u and the modified free boundary. 

Free boundary problems for equation*similar to (1) occur in plasma 
pnysics; m [1], for example, the authors consider equations of 
the form Lu + f(x,u) = 0, where L is an elliptic operator and f 
is, however, piecewise-linear in u, not discontinuous.  Free bound- 
ary problems for equations of the form div (K grad u) = 0, where 
K ~.?!*'?) 1S a Piecewise-continuous function (which arise in the 
equilibrium Stefan problem [2] and govern  certain diffusion and 
metallurgical processes) are also being investigated by the method 
illustrated here. 

_   Besides occurring naturally, problems with discontinuous non- 
linearities are sometimes introduced as approximations (e.g., see 
LJJ) to problems with smooth nonlinearities (which, in general, 
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can not be solved explicitly).  The authors are investigating the 
feasibility of deriving approximate solutions of BVP's for equa- 
tions of type (1) in which f is bounded and has smooth dependence 
on u, by first replacing the smooth function f with one which is 
a step-function in u, then employing the procedure described here 
to treat the approximating problem.  In this connection it is im- 
portant to note that if the perturbation procedure is applied 
directly to an equation of the form (1) containing a smooth non- 
linearity f, the variational equation (to be solved for u) will 
always have variable coefficients. 

The remainder of this paper (Sections 2, 3, 4 and 5) is 
devoted to applying the perturbation technique to the particular 
BVP consisting of equations (2) and (3) below. 

2.   A PARTICULAR FREE BOUNDARY PROBLEM.   Let us denote by 
P(e) the following two-dimensional BVP for a nonlinear PDE in the 
vertical strip 

S = {(x,y):0 < x < 1, -» < y < »}: 

Au + f(u) =0 in S (2) 

u(0,y) = eh(y) , u (l,y) =0   (-» < y < »)  (3) 
P(e) 

x 
,2,„ 2 . „2 ,„2 Here A = 32/8x + 3 /3y , h is a given continuous, bounded, per- 

iodic function, e >_ 0 is a (small) constant,, and f is a step- 
function with given threshold value p >_ 0: 

f(u) = 
0 u < p 

1 u > p 

(We could also write f(u) = H(u - P), where H is the Heaviside 
unit function.) 

Solutions of P(e) will be required to be periodic and C 
(therefore bounded) in the closure of S.  In particular, then, u 
and its normal derivative 3u/3n must be continuous across any free 
boundary (not known a priori), where u = p. 

Suppose that h is bounded by 1, also that 0 £ e < p.  Then 
by continuity, u < p at points of S close to the left boundary 
x = 0.  If u < p throughout S, f = 0 in S and P(e) is a (linear) 
BVP for Laplace's equation.  For solutions satisfying u > p some- 
where in S, however, P(e) is not linear.  Analysis of the 
"reduced" problem P(0) (see Section 3) suggests that for small 
positive p, P(e) possesses solutions of both the linear and non- 
linear problems. 

The nonlinear case of P(e) is of interest^here.  We seek 
an approximate solution in the form u = uQ + eü, where uQ is 

a (known) solution of the (one-dimensional) nonlinear problem 
P(0); likewise free boundaries in P(e) are assumed to be pertur- 
bations of the free boundaries in P(0).  In Section 3 we obtain 
the solution(s) of P(0) for all non-negative values of p; xn par- 
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ticular, it is shown that when 0 <_  y < i there are non-trivial 
solutions. 4 

In Section 4 we perturb the PDE (2) about uQ and obtain 

the (linear) variational equation for ü.  In Section 5, taking 
h(y) = cos y, we solve the BVP for Ü by separation of variables. 
The free boundary is determined by substituting for x, in the 
interface condition 

u(x,y) = uQ(x) + eu(x,y) = y , 

the assumed form x = x + eg(y)f where uQ(x) = y  (that is, x = x 

is the interface for the reduced problem) and g is the periodic 
function which we must find.  Also for more general boundary data 
(namely, h a trigonometric polynomial) the variables can be 
separated; in this case we merely sketch the procedure. 

,_,  ^ ANALYSIS OF P(0).  When e = 0, the boundary conditions 
(j) are both independent of y; thus P(0) reduces to the followinq 
one-dimensional problem: 

P(0) 
u" + f(u) =0       in I: 0 < x < 1     (4) 

u(0) = 0,  u* (1) = 0 

where • = d/dx.  We shall find all C1 solutions for y > 0. 

Note first that all solutions are non-negative, because 
i! I  =..°_and V' (X) - ° °n J*  The latter follows from the facts 
that u - - f(u) £ 0 (wherever u" exists) and u'(1) = 0. 

When y = 0, (4) takes the form u" = -1 on I.  Then P(0) has 
the unique solution u(x) = x - x2/2. 

For any fixed y > 0, P(0) has the trivial solution u(x) =0 
In order for a non-trivial solution to exist, it is necessary that 
there be a smallest value x in I such that u(x) = y.  Then u(x) < y 
for 0 < x < x and (since u'(x) > 0) u(x) > y for x < x < 1.  There- 
fore a non-trivial solution of P(0) must satisfy  ~  ~~ 

u" = 0      for   0 < x < x 

u" + 1 = 0   for   x < x < 1 (5) 

plus the boundary and continuity conditions 

u(0) = 0 ,        u' (1) = 0 
    (c \ 

U(X+) = U(X-) = y, U'(x+) = U*(X-) 

for some x in I. 

Solving the differential equations (5) on their respective 
intervals, then subjecting them to conditions (6), we find that 
for y > 0, 
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UQ(X) = 
(1 - x)x (0 < x < x) 

x - |(x2 + x2) (X < X < 1) 

is a solution of P(0) provided x  (0 < x < 1) satisfies 

x(l - x) = y . <8) 

This quadratic equation has distinct real roots x in I when 
0 < y <  1/4, the double root x = 1/2 when y = 1/4, and complex 
roots when y > 1/4. 

We can now describe the numbers and types of C solutions 
of P(0) for all non-negative values of y: 

2 
y = 0:  Unique solution:  u(x) = x - x /2. 

0 < y < 1/4:  Three solutions:  the trivial one plus two 
solutions given by (7), each corresponding to a different 
root of (8) . 

y = 1/4:  Two solutions:  the trivial one plus one given 
by (7) when x = 1/2. 

y > 1/4:  Unique solution:  u(x) =0. 

4.  THE PERTURBATION PROCEDURE.  Henceforth our attention is 
restricted to values of y e (0,1/4). 

As seen in Section 3, for each such y, P(0) possesses two 
non-trivial solutions in addition to the trivial one.  Focussing 
on the nonlinear case, we have reason to expect (see [4]) that 
there exists a solution of P(e) close to at least one of the 
non-trivial solutions uQ(x) of P(0). 

For fixed y e (0,1/4), let uQ(x) be the solution (7) of 

P(e) corresponding, say, to the smaller root of equation (8); thus, 
0 < x < 1/2.  (The formal calculation which follows is the same for 
either root.)  We shall assume that the y-periodic solution of 
P(e) close to this uQ(x) can be written, neglecting terms which are 
0(e2), 

u(x,y) ~ u0(x) + eü(x,y)  , O) 

where ü is a function periodic in y and uniformly bounded in 
the closed strip. 

Similarly, we assume that the solution (9) has a free boundary 
which may be represented 

x ~ x + eg(y), <10) 

that is, as a perturbation of the "free boundary" x = x in uQ(x). 
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that   (SSEä?9  ÄU0  +  f(U0}   "  °  from Äu +  f (u)   - 0  and noting 

f(u) = f(u0 + EU)* f(uQ) + f (U0).£Ü 

v/e obtain the variational equation 

Au + f'(u0)ü = 0 , 

ore 

4Ü + jL%T#ü - o , (11, 

where we have used the identities 

f* (u0(x)) = H'[u0(x) - y] = fi[U(J(x) - y] = 6(x - x)/uj(x) . 

tions(on'ü-(9) and U°(0) = °' UÖ(1) = ° f°llow the bo^dary condi- 

u(0,y) = h(y)  ,  f£(l,Y) =0    (-» < y < »)     (12) 

u <-lnn^he ne^t section two examples are considered in which 
h actually varies with y in a periodic fashion. First we can 
gain some confidence in the validity of the perturbation pro- 
cedure from consideration of the simple example 

MY) =   e        (0 < e < y) . 

wo In F^? examPle p(£> is itself a one-dimensional problem; 
we are still interested in the nonlinear case. Without giving 
details we point out that if first one solves P(£) exactly (by 
an analysis similar to that of P(0) in the previous section)/ 
then seeks an approximate solution in the form u = u + eü 
with interface xg = x + eg (by solving the BVP (11 -°12)),'one 

finds that the latter expressions agree with the exact representa- 
tions for u and X£ through terms of first order in e. 

5-  EXAMPLES.  We give two examples in which the linear BVP 
U± - 1Z)   can be solved by separation of variables. 

EXAMPLE 1:  In P(e) let 

h(y) = cos y 

Substitution in (11) and (12) of 

ü(x,y) = v(x) cos y 

yields the BVP 

T.n   „ , 6 (x - x) V  " V +   u'(x)  v  =  °       (0 < x < 1) 
u n i) 

v(0) =i , v'(i) = o * ; 
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The differential equation in (13) implies a jump condition 
at x = x.  Suppose v(x) is_a solution continuous on [0,1].  Inte- 
grating the equation from x-ntox+n (n small and positive), 
then letting n -»■ 0, we find that the slope of v(x) undergoes a 
jump at x = x: 

v» (x+) - v'(x-) = - v(x)/X , (14) 

where 

X = uj(x) = 1 - x . 

Now solving v" - v = 0 on each of the intervals 0 < x < x 
and x < x < 1 (so that we have four arbitrary constants), then 
imposing the boundary conditions from (13), the jump condition 
(14) and the continuity condition v(x+) = v(x-), we obtain for 
BVP (13) the continuous solution 

v(x) = 

where 

cosh x + A sinh x     (0 <. x <_ x) 
(15) 

B cosh (1 - x)        (x <_ x £ 1) 

A = B.[v cosh x cosh (1 - x) - sinh 1] x (16) 

B = [cosh 1 - -r- sinh x cosh (1 - x) ] 

We seek the free boundary, for the solution u(x,y) given approxi- 
mately by (9), as a perturbation of x = x, the free boundary for 
un(x).  In other words, it is assumed that u = \i  along a curve 

x = x + eg(y) , (17) 

2 
where g is a periodic function and terms of order e 
are neglected. 

Substitution of x + eg(y) for x in 

uQ(x) + ev(x)cos y = y 

gives 

u0(x + eg(y)) + ev(x + eg(y))cos y = p , 

_      — — 2 
uQ(x) + u'(x) • £g(y) + ev(x)cos y + 0(e ) = v, 

eXg(y) + ev(x)cos y = 0  , (18) 

where we have used un(x) = y, u'(x) = X, and the fact that while 
v is not differentiaBle on [0,1J it is Lipschitzian.  Finally 
from (18) 

g(y) = - (v(x)/X)cos y = - | cosh (1 - x) cos y .     (19) 
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It should be remarked that u(x,y) = uQ (x) + ev(x)cos y, 

where uQ and v are given by (7) and (15) respectively, is not 

C in S, as required.  It is only when we adjust the (free) 
boundary between the left- and right-hand regions, by wiggling 
the interface, that we obtain a 0* (approximate) solution. 

To sum up, for given y e (0,1/4) and 0 < e < y we have de- 
rived, by a formal perturbation scheme, an approximate solution 
of P(e), which is cl and periodic in y, of the form 

u(x,y) = 
i(l - x)x + e(cosh x + Asinh x) cos y,  0<^x£x+g(y) 

(x " 2(x2 + *2) + eB coshd " x)cos y, x + g(y) < x<l 

where x is the smaller root of (8), while A, B and g(y) are given 
by (16) and (19) respectively. 

It may be shown, finally, that the requirement that 3u/9n be 
continuous across the interface is satisfied to within terms of 
order e2. 

EXAMPLE 2:  In P(E) let 
N 

h(y) = a + £ (a cos ny + b sin ny) 
u  n=l n 

where N is a positive integer.  Because the treatment is similar 
to that of the previous example, we shall only touch on the points 
of difference. 

_Again we fix y e (0,1/4), choose the root of (8) satisfying 
0 < x < 1/2, and require 0 < e < y.  To insure |h(y) | <_ 1, let 

N 

la 0 +  E (|an| + |b |) < 1  . 
n=l   n     n 

Again assuming the approximate solution of P(e) to have the 
form (9) and the free boundary to have the form (10), we are led 
to the BVP (11 - 12).  Instead of ü(x,y) = v(x)cos y, however, we 
now set 

N 

u(x,y) = aQv0(x) +  r (a v (x)cos ny + b w (x) sin ny) . 
n=l 

Substituting this for ü in (11) and (12) , then separating vari- 
ables, we find that for n = 1,...,N, both v and w must be solutions 
of the BVP n     n 

'■ + [^fji^- - n2] v = 0      (0 < x < I) 

v(0) =1  ,  v' (1) = 0 
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while v must be a solution for n = 0. 

Proceeding as in the previous example, one can obtain the 
expressions for uQ(x) + eü(x,y) to the left and right of the free 

boundary, also the approximate representation x = x + eg(y) for 
the free boundary itself.  But we shall omit the details. 
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DETERMINATION OF PROPAGATION CONSTANTS 

IN SCATTERING FROM DIELECTRIC-COATED WIRES 

Leon Kotin 

Communications/Automatic Data Processing Laboratory 

US Army Electronics Command 

Fort Monmouth, New Jersey 

ABSTRACT 

We determine the propagation constants which describe mathemati- 

cally the behavior of electromagnetic waves reflected from dielectric- 

coated wires. These are obtained from the roots of two characteristic 

equations of transcendental type. The roots are the propagation con- 

stants of the creeping waves generated by diffraction of plane waves 

polarized tangentially and normally to the wire axis, respectively. 

Their real and imaginary parts give the phase and attenuation of the 

creeping waves around the circumference of the wire. 
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DETERMINATION OF PROPAGATION CONSTANTS IN SCATTERING 
FROM DIELECTRIC-COATED WIRES 

Leon Kotin 
Communications/Automatic Data Processing Laboratory 

U. S. Army Electronics Command, Fort Monmouth, New Jersey 07703 

!• Introduction, The effectiveness of many communication 

systems can be seriously diminished by reflections of electromagnetic 

signals from obstacles, both natural and man-made. Dielectric-coated 

wires constitute a man-made obstacle which appears with increasing 

frequency in military situations. Nor is this obstacle restricted to 

communications effects. The U. S. A. Board of Aviation Accident Re- 

search recently cited the following statistics for a four-year period 

of daylight operations under peacetime conditions. There were 1.06 

accidents involving low-flying aircraft and electric wires. These re- 

sulted in 78 fatalities, 56 injuries, and 6.6 million dollars damage. 

In this paper we obtain the propagation constants which describe 

mathematically the behavior of waves reflected from dielectric-coated 

wires. 

In an attempt to determine reasonably rapid convergent series 

representations for the scatter field and radar response of dielectric- 

coated wires, F. Schwering and C. De Santis [6] obtained two compli- 

cated characteristic equations of transcendental type. The roots of 

these equations are the propagation constants of the creeping waves 

generated by diffraction of plane waves polarized tangentially and 

normally to the wire axis, respectively. Their real and imaginary 

parts give the phase and attenuation of the creeping waves around the 

circumference of the wire. 
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In the case of tangential polarization of the incident wave, the 

propagation constants v are determined from the characteristic 

equation F6l 

lT E kH^2)'(ka)Wv(a,b) - kdHv
(2)(ka)w;(a,b) = 0 (1) 

where 

Wv(a,b) -=  Jv(kda)Yv(kdb) - Jv(kdb)Yv(kda) (2) 

and 

9W (a,b) 

(2) 
Here J and Y are the Bessel and Neumann functions, H\ ' the Hankel 

V       V v 

function of the second kind, k the free-space wave number, kd the wave 

number of the dielectric material, and a and b the outer and inner 

radii of the dielectric coat (see Fig. 1). 

A more complicated expression appears in Li = 0, the characteris- 

tic equation in the case of normal polarization. This will be treated 

analogously later. 

Conductor 

T ' / / 

Ui 
/ 

^'mzzzzzniinD 
~/z Dielectric Coat 

Fig.  1.    Wire with Dielectric Coat. 
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Introducing 

x = ka ,  y = kda ,  z = kdb ,  Hv(x) = H<
2)(x) 

for simplicity into (1) - (3), we shall obtain v as the zeros of the 

function U" = U : 
V     V 

Uv = xH; (x)Wv(y,z) - yHv(x)W;(y,z) (4) 

where 

Wv(y,z) = Jv(y)Yv(z) - Jv(z)Yv(y) (5) 

and 
9W 

W'(y,z) E —Ü . 
vKJ'   '      8y 

Using function-theoretical and analytical techniques, we shall 

obtain first some general qualitative properties of v and then analyti- 

cal approximations to the large zeros. Finally we shall give numer- 

ically the physically significant smallest zeros for several representa- 

tive values of x, y and z. 

2. The symmetry of the zeros. First we show that the function 

e" w/ U is an even function of v. 
v 

Theorem 1. If U is defined by (4), then 

e-
iv*/2u = eiW2u 

V        -v 

Proof.    We have [5] 

J   (t)   COS   VTT  -   J      (t) .   , 
Y (t) =-a . -v (6) 

V Sin    VTT 

whenever v is not an integer. (For integral n, Y„(t) = lim Y (t). 
n    v->n v 

In this case, the following argument can be modified by taking limits.) 
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Then 

-Jv(z)(cos VTT Jv(y) - J_v(y))J 

= -J_r_J (y)J  (Z) _ J (z)j  (y)l  . (7) 

Thus 

W (y,z) = W (y,z) (8) 
. v       -v 

Since [5, p. 67] H  = elvirH , we have from (4) 
-v 

■iVTT U_v = e"
,v17(xH^(x)W_^(y,z) - yHv(x)irv(y,z); 

whence from (8) 

(9) 

U = e"ivi7U (10) 
-v      v 

This immediately gives us the desired result: 

e-ivTr/2u = givTr/Zu (11) 

v        -v 

An obvious consequence is that the zeros are symmetric with 

respect to the origin in the complex v-plane. 

Corollary. If v is a zero of U , so is -v. 

It is interesting to note that this simple theorem yields results 

which are far less obvious than the above corollary. These results 

refer to the strict complexity of the zeros and tho infinitude of zeros, 

and appear in the following sections. 
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(12) 

3- The strict complexity of the zeros. In the rest of this 

paper we shall denote the real and imaginary parts of v by a and ß, 

respectively, i.e., 

v = a + i3 

We now show that neither the real nor imaginary part of any zero of U 

is zero. 

Theorem 2. If U = 0, then aß f  0. 

Proof. Taking complex conjugates of both sides of (10), 

Ü  = e1™ Uv 
~v 

Since [5] for real argument 

tKi)}- w vv \-\ (») 
where we dropped the dependence on x, y and z, we have from (12) and (4) 

xH^' W_-yH(lV = elV7r(xH(1)'w -yH(1)W) (14) 
-v    -v     -V  -V V    V     V    V 

If Uv = 0 with ß = Imv = 0, then ~ = v and we have the simultaneous 

homogeneous equations 

\-^\-A'\-o <15) 

the latter coming from the right-hand side of (14). The determinant 

of coefficients of xW and yW    must then vanish: 

AEH^H;-H^'HV = O (16) 

This, however, is impossible, since H'1) and H = H^ are linearlv 
V V     V J 

independent solutions of Bessel's equation. Indeed, A = -4i/irx f  0 

[5, p. 68]. Thus ß f  0 and the zeros are not real. 
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Applying a similar argument assuming a = 0, whence -v = v, and 

taking the left-hand side of (14) give another contradiction. This 

shows tiiat the zeros cannot be pure imaginary either, completing the 

proof of the theorem. 

4. The infinitude of zeros. We know from physical considerations, 

of course, that there exist roots of the characteristic equation. We 

now prove that there are an infinite number of these roots. To this 

end, we invoke some function-theoretical considerations, such as the 

concept of order of growth u(f) of an entire (or integral) function 

f(v) [1, p. 8; 7, p. 248], defined as the infimum of all exponents p 

such that 

-»• 00 |f(v)| = 0(elvlP) as |v| 

Using Poisson's formula [5, p. 79]: 

Jv(y) =__ v   /?r 
& ,■ 
(v + h)    o 

11 2v 
cos(y cos t) sin t dt , (17) 

we find easily that when a ^ 0, 

J (y) < _______ 
v  " /¥|r(V+ h)\ o 

I TT/2  9 

/ sin^atdt 

|r(v + h)\ 

< •IT e 
= |r(v + h)\ 

\ln2 
(18) 
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Thus the order of the integral is at most 1 when a =  Re v = 0. 

Moreover the entire function l/r(v) is of order 1 [7, p. 255]. Since 

the order of the product (or sum) is no greater than that of the 

greater factor (or term), it follows that the order of J (y) is no 
v 

greater than unity when Re v = 0. 

To eliminate this restriction on the sign of a = Re v, we use the 

facts that 

i^h 1   [4, p. 229] , (19) 

Hv0)=Jv + iYv (20) 

and 

J  = J cos T7v - Y sin iTv (21) -v  v       v v ' 

From (19) and (20), we find that co(Y ) = 1 for a = 0. Then we con- 

clude from (21) and earlier results that U(J ) = 1, with no restriction 

on a. Moreover, since Jv, Yv, Hv and their derivatives can be expressed 

[5, § 3.1] in terms of elv1T and the Bessel function J with indices 

±v, ±v +1 and ±v-1 , 1t follows finally that 

Lemma. The order of growth of Uv is less than or equal to 1. 

Now let v = x. Then since e"1vir^2U is an entire even function 

of v of order = 1, the function f(x) = e"lvir/2Uv is an entire function 

of x whose order is £ -|. Consequently [7, pp. 250, 252], f(x) has an 

infinite numbe* of zees Xj,. From the definition cf f{\),  we conclude 

Theorem 3. Uv has an infinite number of zeros. 
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Moreover [7, p. 250] wa -obtain the following product repre- 

sentation: 

f(x) = f(o) " (l - _A_\ (22) 
k=l\  Ak/ 

Expressed in terms of U , (22) becomes 

s(i-4\ U = e1V17 U ?  1 - *7 J (23) 
°k=l 

where the v. are the zeros of U . Note that from Theorem 2, 

U / 0, as is required for this product representation to be valid. 

5. The large zeros of U . Since there are an infinite number 

of zeros of the entire function U , the zeros are arbitrarily 

large. To approximate these when |v| >>max(x,y,z), we first 

express U in terms of J alcne using standard identities [5, § 3.1], 

obtaining 

21 sin2 v, Uv = xjV^.^x) - Jv + }M)  + J.v + T(X) - J.v . }M~\ 

x [-Jv(y)J.v(z)- + Jv(z)J.v(y)] - y [eu\M - J_v(x)] 

x [J.V(Z)(JV . ,(y) - Jv + }(y)) + JV(Z)(J.V + !(y) - J.v _ ^y))] 

(24) 
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Then using the asymptotic behavior of J (t): 

riCr ('' ■©) J„(t) =  \2/   (1 + 0R) (25) 

for large y, and dropping the lower-order terms, we obtain from (24) 

vln{+  2yv/exz) - (n + khi as + ß > o , (26) 

implicitly giving approximately the n-th zero for large n. 

Since the zeros are symmetric in the v-plane, we can select 

ß > 0 and thus drop the lower signs in (26). Rewriting (26) as 

v ~ (n - %)TTI" / £n(-2yv/exz) , (27) 

iterating, and neglecting the lower-order terms, we obtain the 

following explicit approximation to the large zeros. 

Theorem 4. The large zeros of U in the upper half-plane 

are given by 

1 
v = -(n - h)j   + (n - %)iri In  ((2n - hhy/exz) 
n 

- %)7   + <n - %)Tn in  U2n - %)7ry/exz) /    A ^   \\ 

LM(2uT^^f V + ^-fef^Jj <28> 
for sufficiently large integers n. 

As a consequence, 

arQvn -»"2"     as n -*- co /„-, 

since the real part approaches infinity more slowly than the 

imaginary part. Furthermore, it can easily be shown from (28) 

that the distance between consecutive zeros approaches zero. 

We remark that this behavior, indeed the asymptotic represen- 

tation (28), is very  similar to that of H^(x), which arises in 
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the theory of diffraction of electromagnetic waves by a perfectly 

conducting sphere (cf. [2], [3], [4]). 

6. The case of normal polarization. If the incident wave 

is polarized normally to the axis of the dielectric-coated wire, 

the characteristic equation is 

l£ s   yH;(x)[jv(y)Y;(z) - j;(z)Yv(y)] - xHv(x)[j;(y)Y;(z) - j;(z)Y;(y)] 

= 0 (30) 

Since the treatment of this case is identical to the previously 

discussed case of parallel polarization, it suffices merely to 

state the corresponding results. 

Theorem 5. e    Uv = e   U_v- 

i- 
Corollary. If v is a zero of Uy, so is -v. 

Theorem 6. If U" = 0, then Re vim v f  0. 

Theorem 7. U has an infinite number of zeros, 
v 

7. The smallest zeros. Following are a table and curves (Fig. ?.) 

of the smallest zeros of U11 and U^in the second quadrant of the 

complex v-plane for each of several representative values of the 

parameters x, y, z. These values are x = 0.5(0.5)5, with 

y = 1.5x and z = 0.9y . We recall that x = ka, y = kda, and 
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z = kdb where k is the free-space wave number, k. the wave number 

of the dielectric coat, and a and b the radii of the coat. The 

coefficient 1.5 = kd/k is the refractive index of polyethylene 

and the coefficient 0.9 = b/a is the ratio of the two radii. 

X 

II 
U    = 0 

V 
U    = 0 

V 

Rev Im v Rev Im v 

C.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

-1.1075 

-1.7462 

-2.3282 

'-2.8819 

-3.4176 

-3.9399 

-4.4516 

-4.9538 

-5.4477 

-5.9323 

1.3605 

1.6556 

1.8668 

2.0365 

2.1804 

2.3063 

2.4184 

2.5198 

2.6118 

2.6959 

-0.7690 

-1.3273 

-1.8707 

-2.4089 

-2.9475 

-3.4831 

-4.0226 

-4.5653 

-5.1123 

-5.6643 

0.6697 

0.7794 

0.8427 

0.8815 

0.9033 

0.9121 

0.9101 

0.8986 

0.8790 

0.8524 

These zeros v/ere obtained by J. Herder of ECOH's Math. 

Support Division using a Burroughs B-5700 and the Bessel routine 

provided by M. Goldstein of New York University. The following 

curves were retained f-om the above data by C. De Santis of the 

Communications Research Tech. Area. 
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1     INTRODUCTION.   This is a review of some classical problems in laminar 
flame theory that essentially assumes no knowledge of combustion by the reader. 

Laminar flame theory is a branch of fluid mechanics -- essentially the motions 
of the gases in a flame are governed by the compressible Navier-Stokes equations ~ 
but there are of course some crucial features which are not normally found in classical 
fluid mechanics.    For one thing one is dealing with a mixture of different gases and it 
is necessary to say something about changes in each of the components of the mixture. 
Secondly   and most important, there are chemical reactions so that there is a source 
or sink term in the mass conservation equation for each component.   Moreover, heat 
is released by the chemical reactions so that there is a source term in the overall 
energy equation.   These chemical reactions are extremely sensitive to temperature -- 
they usually won't take place at all if the temperature is too low (which is fortunate) -- 
and an essential feature of combustion that helps distinguish it from other branches of 
aerothermochemistry is that the high temperatures necessary to sustain the reactions 
are generated by the heat released by the reactions themselves.   Provided there is an 
adequate supply of fuel and oxygen, combustion is a self-sustaining process. 

There are two different approaches to the theory of combustion that one can take. 
One is to insist on being as realistic as possible and retain in the formulation of the 
problem all the complexities that might play a role in practice.   This of course leads 
to equations of remarkable complexity which can only be solved numerically.   Such an 
approach has its advocates (and is necessary if detailed quantitative results are needed) 
but a more fruitful approach, given the present state of combustion science, is to strip 
each problem down to its fundamentals and write down model equations that are clearly 
inappropriate in reality but nevertheless contain the physical features which are the 
essence of the problem.   The hope is that the equations are simple enough to solve 
analytically, or, if recourse to a computer is still necessary, simple enough so that 
useful information can be extracted from the numbers.   Quantitative accuracy is sacri- 
ficed for qualitative understanding. 

Actually there is a third approach to studying combustion problems that has been 
quite popular but which should be avoided if at all possible.   One starts by writing down 
sensible model equations but then constructs what might be called  model solutions . 
That is   solutions are constructed using ad hoc irrational approximations and as a con- 
sequence one can never be sure of the significance of the end results     It isn t clear 
whether the features of the solution are creatures of the original model or of the irra- 
tional approximations.   This makes systematic development of the subject difficult and 
has led to spurious results in the past. 

»This is a more or less verbatim transcript of a review that was specifically prepared 
for oral presentation, so that the reader is asked to forgive the colloquial style.   The 
footnotes were not part of the original presentation but have been added for the sake of 
clarity. 103 



Of course it is clear why such an unsatisfactory approach has been popular — 
for many years no rational systematic method of solving the various model equations 
was known (although the literature is replete with brilliant ad hoc analyses)    But in 
recent years that has changed,  and it would probably be fair to say that there 
has been a revolution in combustion theory.   At the heart of this revolution was the 
realization that combustion theory has its own unique asymptotics which can be exploited 
using singular perturbation theory.   In particular, a combination of Damkohler Number 
asymptotics and activation energy asymptotics, where appropriate, can often lead to the 
solution of model equations that were for many years thought too difficult to solve. 

What I want to do today is briefly describe the nature of these asymptotic 
methods, concentrating particularly on activation energy asymptotics; describe the 
mathematical details of a particularly simple application of activation energy asymp- 
totics; and then describe a perturbation procedure that generates nonlinear solutions 
for a variety of problems, including a certain class of unsteady problems.   In no sense 
am 1 going to attempt an exhaustive review. 

Let us start by looking at a specific problem. 

2.   QUASI-STEADY FUEL DROP BURNING 

Flame 

Oxygen 

Fig. 1. Burning Fuel Drop 
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Figure   1  represents an idealized model of a burning fuel drop.   The situation 
is assumed steady and spherically symmetric, conditions never realized in practice 
which emphasizes that we are examining a highly idealized model. 

The ball of fuel, in liquid form, is hot because of the presence of the flame 
and as a consequence it evaporates, mixes by diffusion with the surrounding atmosphere 
of oxygen   and then this mixture burns within the flame.   Appropriate model equations 
are, 

*Yn ,%  ^   -  \  4   <r2^>  ■ ■»1VF1'«"^»-" 0 '■    2     dr r2   dr dr 

£YF = -co 

£T  = Qco . 

These equations are based on the simple chemical kinetic scheme 

[Fuel]   + [Oxygen] —► [Product] . 

The kinetics of a real flame are much more complicated than this but nevertheless the 
simple model preserves three essential features -- oxygen is consumed, fuel is con- 
sumed, and heat is generated. 

Looking at the equation for Yn, the teas s fraction of oxygen, we see that there 
are three terms.   The first term is aVass transport term (there is a radial flux of 
fuel and therefore a mass-averaged radial velocity) and  M is a measure of the flux 
of fuel leaving the surface.   It can be regarded as the fundamental unknown of the 
problem. 

The second term is a diffusion term. 

The third term, the chemical reaction term, simply indicates that the amount 
of oxygen consumed depends on how much oxygen is present, how much fuel is present, 
and the temperature  T.   The most important part of the temperature dependence is 
the exponential factor - R  is the gas constant and E  is a constant known as the acti- 
vation energy.   E  tends to be rather large so that the reaction rate is very sensitive 
to changes in the temperature. 

D    is a parameter that depends on a number of things including the pressure 
(which is1uniform) and is known as the Damkohler Number. 

The equation for YK is identical to that for YQ, a consequence of assuming 
equal diffusion coefficients.   The energy equation (whicii is an equation for the temper- 
ature since the thermal energy is much larger than the kinetic energy) is very similar 
(the Lewis number equals one) but the reaction term appears with a positive sign since 
neat is generated by the reaction, and the amount of heat generated is characterized 
by the parameter  Q. 

+Kassoy, D. R. & Williams, F. A.    Physics of Fluids, U_, 1343 (1968). 
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There are appropriate boundary conditions (which have not been written down) 
4  at the surface and 3   at infinity, making a total of 7.   Since the system is a sixth ' 
order one, these conditions are sufficient to determine the three field variables and 
M, which is a measure of the burning rate. 

There are many different ways of characterizing the solution of this problem 
and one way is to plot the variation of M with D,. ' 

n i 

DI=° 

Ignition 

Point 

D, 

Fig. 2.   Burning Response for a Fuel Drop 

Figure   2  is typical of the kind of response one gets -- an  S  shaped curve, 
and at the risk of oversimplification the turning points are labelled as the ignition 
point and the extinction point.   The reason for this is that if the response is on the 
lower branch of the curve, where the burning is weak, and  Di   is increased (by 
increasing the pressure, for example) then the response moves to the right until the 
ignition point is reached whereupon any further increase in D1   causes a jump to the 
top branch where the burning is strong.   A subsequent decrease in  D,   moves the 
response to the left along the strong burning branch until the extinction point is reached 
where the response drops back to the weak burning branch.+ 

+ 
The oversimplification stems from the possibility that the response is forced off of 
one of the branches by instability before the turning point is reached.   This happens 
in chemical reactor theory where similar  S-shaped responses occur (Cohen   D   S 
& Poore, A. B.     SIAM  J. Appl. Math., 27, 416 (1974). 
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Consider now the ends of the curve.   At the left % vanishes, whence   to 
vanishes and the equations reduce to linear equations which can be easily solved.  This 
so called frozen limit is of little interest since there is no combustion. 

The right hand end (D, -*oo) is much more important since typical flames en- 
countered in everyday life often have very large Damkohler numbers.   The limit (called 
the equilibrium limit  is a singular one in which the coefficient of the highest derivative 
vanishes, and so thin layers (boundary layers or -interior layers ) can occur.    Outside 
of these layers it is apparent, since co  must be finite, that as  Dj—> co , 

Y0 YF-* °* 

and so Yn  and/or Yp must vanish,   co  is then the product of something that goes to 
infinity times something that goes to zero and it is clear from the equations (the equa- 
tion for Yn when Yl vanishes) that this product vanishes in the limit.  In this sense 
there are similarities between the equilibrium limit and the frozen limit,  but the 
possibility of thin layers in the former case is a crucial difference. 

important though Damkohler Number asymptotics may be, it obviously cannot 
tell us anything about ignition or extinction, so that if we wish to bridge the gap between 
Di = 0 and Dt-X»  a different approach is necessary.   Activation energy asymptotics 
is an appropriate tool.   More precisely we consider the solution   of the equations when 

E     -*oo 
RTref 

where  T   f is same reference temperature.   This is a realistic limit in many com- 
bustion situations, it can be used to solve many important combustion problems, 
and it is mathematically interesting because the large parameter appears in an uncon- 
ventional fashion, as the argument of an exponential. 

One thing that is immediately clear is that we can not just put  E = oo without 
doing anything else since that just yields the frozen limit  (co = 0).   Bear inmina that 
we want to determine how the response changes with Dl9 and the above observation 
implies that only when  Dj   is very large can we get away from the frozen limit.  What 
we have to do is write 

Dx   =  exp(E/RTJ 

where T#  is a temperature that characterizes the magnitude of D1  so that 

E   ,   1        1 
co   a exp   [ -g-   (-^ T" ^ ^ ' 

and then the behavior of co in the limit  E^ oo depends upon the relative magnitudes 
of T  and  T*.   There are three possibilities. 

(i) In regions where  T >  T*   the exponential goes to infinity in the limit, so that 
y y    _>. o.  co -* 0,   corresponding to equilibrium. """ 
101p ' 

+See Buckmaster, J. D.    Combustion and Flame, 24, 79 (1975). 

"^Thin layers can occur in such regions of course. 
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(ü) 

(iii) 

In regions where  T <  T*   the exponential vanishes so that u ■-* 0, a frozen 
situation. 

Finally, in transition regions where T ^  T*   (more precisely,   T"T*   = 

O (-jf- ) )  the exponential can be simplified slightly, 

co oc exp  [ E   (T-T») 
R T 

], 

but the important point is that co  does not vanish so that such a region is a reaction 
zone.   Reaction zones are often thin (but not necessarily so) in which case they are 
called flame sheets. 

Application of activation energy asymptotics to a steady one-dimensional prob- 
lem such as the fuel drop problem requires, in general, the construction of solutions 
in the three different kinds of regions and matching them in the usual way (that is, in 
the sense of matched asymptotic expansions).   Usually, the most difficult part of this 
procedure is deciding what regions are needed and where they are located.   As an 
example, if we ask what is the nature of the solution for a point on the middle branch 
of the  S-shaped response (Fig. 2), it turns out that  T*   is the maximum temperature. 
That is, at some finite value of r  the temperature is equal to  T*   so that all the 
reaction occurs in a thin flame sheet located there, and on either'side of the sheet the 
combustion is frozen (Fig. 3). 

Surface 

Fig. 3.   Typical Temperature Distribution for a 
Solution on the Middle Branch 
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In the frozen regions solutions can easily be constructed of the linear governing equa- 
tions    In the flame sheet the description is nonlinear, but because the sheet is dun 
S equations are simplified.   Matching the flame sheet solution with the solutions in 

the frozen regions ultimately leads to the complete solution   of the problem and in 
particular, the determination of the burning rate M+.  A remark about the nature of the 
solution on the other two branches will be made later. 

3    PREMIXED FLAMES.   The fuel drop problem is an example of what is known 
as a diffusion flame.   There are other kinds of flames in which the reactants are sup- 
plied as a homogeneous mixture which merely needs to be raised to an adequate tem- 
perature to initiate burning.   Such flames are called premixed flames   a — 
example being the inner cone of a bunsen burner flame (observed when the air hole 
is open which permits oxygen to mix with the gas as it passes up the tube). 

If a match is applied to such a mixture, confined within a tube, the mixture 
will burn and a flame will travel down the tube consuming the mixture as it goes. 
Under ideal conditions this flame travels as a progressive wave with a more or less 
well defined wave speed, and one of the classical problems of laminar flame theory is 
To determine that wave or flame speed.   What I want to do now ^. ^J.^^J 
this can be done using activation energy asymptotics, since this is one of the simplest 
nontrivial applications of activation energy asymptotics presently known. 

For a premixed flame the simplest kind of sensible chemical kinetic scheme is 

[ Mixture ] =4> [ Product] 

at a rate co  = BY    exp  (-E/RT) 

where Y  is the mass fraction of mixture (a preexponential temperature dependence 
like the  Ta that was included in the fuel drop equations could be mserted without 
essentially changing the subsequent discussion). 

The flame is assumed to be one-dimensional and the situation in a flame-fixed 
frame is shown in Fig. 4. 

Hot Product ) Cold Mixture 

 <  

Y=0 ,   T=Tf / Y=1 >   T=Ta 

Stationary Flame 

Fig. 4.   The One-Dimensional Premixed Flame 

+The work of A. Linan,  Astronautica Acta, 1, 1007 (1974) on the counterflow diffusion 
flame provides an exhaustive description of calculations of this kind.   Kapila   A. K., 
Ludford, G. S. S. & Buckmaster, J. D.     Combustion and Flame, 25, 361 (1975) 
describe similar calculations for a spherical premixed flame. 
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Cold mixture comes in from the right and passes through the flame where it 
is burnt and emerges as hot product on the left.   The reaction only stops when all the 
mixture is consumed so that Y = 0 on the left and the temperature thereisT  K T   ) 
the so called adiabatic flame temperature. f        oo'' 

Appropriate model equations are 

pv H = ä*:<pD Hr* -BY exp (-E/RT> 
pv %S =h <x if> +QßY exp (-E/RT) 
pv  =  -  m (constant) 

pT = constant 

which are similar, in many respects, to the fuel drop equations written down earlier 
m    Te J£nStant maSS flux' is the f^damental unknown being essentially the flame 

forlow ^hTmb°e7flaSme:.iS "^ * ^^ ** ** P"»8"" iS COnStant' Valid 

The flame temperature  Tf can be determined without solving this system 

^^"f-^0^ Ülf flame We kn0w exactly how much of the mixture is con- sumed (all of it) and we know exactly how much heat is released per unit of mixture 
consumed (Q).   Therefore an overall energy balance requires 

C   (T, - T   )   = O. p v f      or       v- 

The system, when appropriately non-dimensionalized,  is 

'dY =   1   A BX        ~Q/* 
If       L  ,.2        ~2~   e 

ds m C 
P 

_ d£ = d^       Bx      -e/4> 
de    .,>2 + —2— e 

dg m C 

(£ ~ x,  0 „ E,   <}> ~ T,   L = is the Lewis No.) 
P 

as  S~* + °°        Y ~> !. <}> -* <j> 

as   €"* -   Q3 Y->0, <j)_>1 + 0 
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and the essential idea is that this system only has a solution for a unique+ choice of 

the parameter -~-   and so in this way the flame speed can be determined. 
m C 

An enormous amount of ingenious effort has been expended over the years on 
the solution of this problem, and literally dozens of approximate solutions can be 
found in the literature each purporting to be simpler or more *^^*£^$fr* 
attempts.   Most of this work was rendered obsolete in 1970 by Bush and Fendell^ who 
showed how the problem can be solved rationally in the limit of infinite activation 
energy (9 —*co). 

Just as for the fuel drop problem we can not just put 9 = co  in the equations - 

it is necessary to let -^ >oo  at the same time.   More precisely we write 
m Cp 

_BA        =  0_^   e2  exp   [i+Sr-].   0 = 0(1) 

*Cp        L<1+V 

a choice partly motivated by the observation   that we would expect, on physical grounds, 
that the flame temperature (1+^) is the maximum temperature and moreover that 4> 
increases monotoiScally from    °° «,«, to  (1 +<W  as the flame is traversed.   Be that 
as it may, the problem is to find  fi. 

The reaction rate co  is proportional to 

r     9 9 

so that wherever <j>  is less than the flame temperature the reaction is frozen and the 
governing equations are 

d_t +££  = o 
d|2      ^ 

&  + LdY   =  0 
—2 d£ de 5 

+In actual fact the system as written doesn't have a solution at all, since the upstream 
state Y = 1    * = 4>     is not a solution of the equations (the so-called cold boundary 
difficulty)   'The problem arises because the temperature dependence of the reaction 
rate is not accurately modelled by  exp (-9/<t>) when cj>  is small.   A realistic resolu- 
tion of the difficulty is to introduce a cutoff temperature lying between 4>     and 1+^ 
below which the reaction rate is identically zero.   No specific choice for this tern- 
perature is needed when the activation energy  9   is large, as the subsequent analysis 
shows. 

"^Bush, W. B. & Fendell, F. E.    Combustion Science & Technology, 1, 421 (1970). 
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with elementary solutions.   The location of the origin of coordinates can be chosen 
so that these equations are valid in  £ >   0. 

Noting that 

Y 0, <j> = l + 4> 
00 

is an exact solution of the complete equations, the large scale structure of the flame 
is obtained by piecing together this exact solution and appropriate solutions of the 
frozen equations, as shown in Fig. 5. 

,0=1+0 

Y = 0 

,-L| 

Fig. 5.   Large Scale Structure of the Flame 

QC   t _^The fr°Zen s°lutjons in  6 >   0  are chosen to ensure that the boundary conditions 
as   £ -^ oo  are satisfied and that cf>  and  Y  are continuous at the origin. conaiclons 

* ^     1° J
comPlete the solution it is necessary to analyze the thin region near the oriein 

where the derivatives are smoothed out.   The chemical reaction is confined to tSs re- 
gion, which is therefore a flame sheet, and the local solution has the C 

ez 

Y ~ i y(£)+ 0(4.) 

are0toarrdS' ^ ***** ^ ^ * tUckneSS °f °rder ° <F >  but Scents there 
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The perturb 

d2^   _   d2 

d£2        d£2 

It follows that 

y + L (l+4> 

ation quantities satisfy 

-i           ~     4> r          -v         1    _      ßyeT 

I L (1+4.J2 J 

a7    r 

L (1+4»«,) 

is a linear function    «a).   But then matching (both y and ip  vanish as i ■*   - oo  to 
ma^chSAe solution behind the flame sheet) implies that   Z is identically zero.   A 
problem for rp alsne may then be formulated. 

0  = ^   -   Q*e* 

as  A—> -oo        ip —>0 

as ft—> +0Q       aj 

The latter boundary condition arises from matching ahead of the flame sheet (Fig. 5). 

Integrating once, 

0  = (d£)2   -   20(tfe*-e*+l) v d£ 

and then applying the condition as I -* oo  leads to Bush and Fendell's result 

»-* 

and completes the determination of the flame speed. 

4    THE MODIFIED PREMIXED FLAME.   There are two features of Bush and 
Fendell's solution that i want to emphasize.   First of all, one of the reasons that the 
analysis is so simple is that the chemistry free equations can be so easily solved.   This 
Soests the following question.   Suppose that we are concerned with a more complicated 
problem/one related to the one-dimensional premixed flame but whose description re- 
Sires^dditional terms in the governing equations.   What additional terms would lead 
^chemistry-free equations as easy to solve as Bush and Fendell's?   Such a question 
obviously does not have a unique answer, but one possibility is 
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2 
d 4>       d4>    _  1 
—2       *t    ~ o   * (s» 9, Y,  --- ) 

d2Y   ,   T     dY 1 

de 
2 + L df   =5-g<e,+. Y, 

where  f  and  g  are quite arbitrary.   Perturbation solutions of these equations 
easily be constructed. 

can 

The second thing to notice about Bush and Fendell's solution is that the flame 
speed is extremely sensitive to the value of the maximum temperature.   The expression 
for the flame speed (essentially  m) is 

BA       _ 92 9    , 
~~2— T 

exp hrx—] »rcp        2L (1+4^)2 1+V 

and it is clear that small changes in the flame temperature (1+4)   ) will generate laree 
changes in the flame speed.   Order  0 (1/9)   changes in temperature are sufficient to 
generate    0 (1)  changes in the speed, for example.   The significance of the modified 
equations written down above is that we might expect that the  0 (1/G)  perturbation 
terms can generate  0 (1/G)   changes in the maximum temperature and thus lead to solu- 
tions quite different from Bush and Fendell's.   And yet we would not expect the inclusion 
of these terms to unduly complicate the analysis. 

Let us consider a simple example. 

,.      5.   EFFECT OF HEAT LOSSES.   In any real flame there are heat losses due 
radiation or conduction to adjacent boundaries.   In a one-dimensional formulation these 
losses can be modelled by adding a term   -K (T-T   )+,   K = constant, to the energy 
equation so that °° &y 

pvC
P si = s^ " K(T-Tco> +QBY exP<-|r>- 

The extra term tends to drive the temperature to the reservoir value, and the modified 
equations are of the type discussed above provided the magnitude of K is such that the 
non-dimensional term is O (1/9). 

flrp ,m P6/11^8? 3.s m0re implicated than Bush and Fendell  but no new principles 
are involved, and defining ^        H 

+Quite general functions of  T  can in fact be handled by the analysis, see Buckmaster, 
J. D.   Combustion & Flame (in press). 
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H =  Flame Speed/Adiabatic Flame Speed 

we find 

(1+c^)2  H2  In H ■+ K' =  0 

where  K'   is   K non-dimensionalized. 

When  K'  vanishes there are two solutions,   H = 1  (Bush and Fendell's result) 
A  H-n   Jfhr moderate values of K'   there are two solutions, but if K   is too 

SrgeVre are 2ÄT<S£ 6).   This principle has been known for many years 

K'(I*0" 

Fig. 6.   Flame Speed vs  Heat Losses 

and is the foundation of the miner's safety lamp invented by Humphrey Davy in the 
Srlv  Sth Sury!   The safety lamp consists of a naked flame surrounded by a wire 
Xuze caS S if this is carried into a combustible atmosphere   the latter passes 
toousrh the' J££e and burns on contact with the flame.   Without the gauze cage the 
£megwouldgspread through the surrounding atmosphere, usually in a -olen^explo- 
?ive\ fashion  but the gauze is such an efficient conductor of heat that the flame can not 
pass tough it    Thus the miner, on seeing the flame flare up, can safely retreat. 

Looking again at the response diagram (Fig. 6), recall that as we move around 
the curve S£um temperature changes by only an  0(1/0)  amount.   Returning 
£\Z^nll dron TeTiXse HFig   2), the top branch of the curve, including the extinction 
PoS^ÄnS^SiSS; for whichPthe maximum temperature differs by only an 

i.e. Bush and Fendell's result. 
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0(1/9)   amount from the maximum temperature in the equilibrium (D   -> oo)  limit 
The lower branch, including the ignition point, corresponds to solutions for which the 
maximum temperature differs by only an O (1/9)  amount from the maximum temper- 
ature in the frozen (Dx = 0) limit.   Thus there is an analogy between the   C-shaped 
quenching curve of Fig. 6, and the   C-shaped extinction and ignition curves of Fig. 2. 

Once the idea of adding O (1/9)  perturbation terms to systems of flame equa- 
tions and looking for solutions that differ by an O (1)  amount from the unperturbed 
solution is understood, there are an infinite number of problems that one can examine 
One is limited only by one's imagination in conjuring up different kinds of perturba- 
tions, and of course any flame can be perturbed, not just the one-dimensional premixed 
flame.   Let us consider some unsteady examples. 

6     UNSTEADY ONE-DIMENSIONAL PREMIXED FLAME.   Consider the unsteady 
form of Bush and Fendeli's problem, for which the equations are: 

9Y   , 9Y        9   ,        8Y F p er + p v si = si- <pD si> - BY e*p (- R|) 

PC
P5F 

+pvCp?i-S<X5i)+QBY«P("T^) 

8t 8x" (p v)   "  ° PT  =  constant. 

These differ from the earlier equations only by the addition of the time derivatives. 

Now the steady flame has a characteristic thickness, 

A 
mC 

P 

There is a characteristic velocity, the flame speed, 

m 
P       ' 

and so we can define a characteristic time 

Koo 
2 

Hl      C 
P 

If we try to solve the unsteady equations - as an initial value problem, for example - 
then most disturbances will change on this time scale and will be governed by the com- 
plete system of equations, without simplification.   Even without chemistry this system 
?hT^n t f T^ ?T

allenSe-   However, it is conceivable that there are disturbances 
that change on the much larger time scale 
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e xp 
t = o(-^-^), 

mA c 
P 

in which case the time derivatives are O ( g-)  terms and so can be handled in the 
same way as the small heat loss term.   Indeed we find 

2(l+<f)oo)2H3lnH+b^=0 

an equation first derived by Sivashinsky.+ Here T is time,   H  is the flame speed 
ratio as before, and b  is a parameter that depends upon the Lewis Number  L. 

b <   0 if L >   1 

b >   0 if L <   1 

b  =  0 if L  =   1 . 

Apparently, when  L = 1  there are no disturbances that change on the slow time 
scale, an atypical situation.   It is tempting when solving combustion problems to choose 
L = 1, since this often leads to mathematical simplification (the steady one-dimensional 
premixed flame then has uniform enthalpy, for example) but this temptation is appar- 
ently something that should be resisted, at least when dealing with unsteady problems. 

There are two possible steady solutions 

H  =  0, H  =  1 , 

and the stability of these solutions depends upon the sign of b: 

b>0(L<l)        H  =  1   stable, H  =  0  unstable, 

b<0(L>l)        H  =  l   unstable, H  =  0  stable. 

Thus if  L >   1,  Bush and Fendell's solution for the one-dimensional flame is unstable. 
It should be emphasized, of course, that only the predictions of instability are signifi- 
cant.   A flame that is stable to the kind of disturbances that we have considered here 
might well be unstable to other kinds of disturbances. 

7.   UNSTEADY FLAME WITH HEAT LOSSES.   As we saw earlier, when there 
are heat losses the burning response is multiple valued.   Thus it is of interest to add 
heat losses to the unsteady formulation in the hope of gaining insight into the significance 
of multivalued responses.   The result is 

2 (1+^OQ)
2
 H3 In H + 2HK' + b ^-   =  0 . 

Note that in addition to the two steady branches shown earlier in Fig. 6, there is a 
third steady solution   H = 0 (Fig.  7) • 

+Sivashinsky, G. I.     Int. J. Heat Mass Transfer, .17, 1499 (1974). 
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I 

K*(HO -2 

Fig. 7.   Stability of a Flame with Heat Losses when  L <   1 

Figure  7  shows stability arrows appropriate when  L <   1.   These indicate the direction 
the solution will be driven in an unsteady situation.   Thus when  L <   1   the branches 
AB  and  CD  are stable, whereas   CB  is unstable.   For  L >   1   the arrows must be 
reserved. 

8.   THREE-DIMENSIONAL UNSTEADY FLAMES.   The perturbation procedure 
is n°t confined to one-dimensional flames.   Three-dimensional disturbances can also 
be treated provided their nature is such that the three-dimensional terms are essentially 
0(1/0).   The equations are rather more complicated since the velocity field must be 
determined and this requires solution of the momentum equation 

9v 
at + (v • V)v  = 1 

p 
Vp + [V2v  +1  V(V-  v)] 

in addition to the previous equations. 

Permissable disturbances are defined in Fig. 8  (recall that the flame thickness 

m C   '* 
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D = 
91 

mC 

mC 

Fig. 8.   Allowable Three-Dimensional Disturbances 

The time scale is the same long time scale as before. 

The result for the flame speed   H is 

(1+^{2ln(g)-lnI1+(-)2
+(f)2]}g 

+  b   |y+b(Ä+A) = 0> 

8X   ri'4./öx\     +  /8XM"1 

H 9X 
9T 

+This is actually a limiting result only valid when the heat released by the reaction 
Q  is small compared to the enthalpy of the unburnt mixture.   In general a single 
equation governing the flame speed can not be written down when there are three- 
dimensional disturbances.   Nevertheless, many of the qualitative features of the 
general result are the same as those of the limiting result.   The details are m 
Buckmaster, J. D.     Combustion & Flame   (to appear). 
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If we look for perturbations of the one-dimensional steady flame of the form 

X =  r  + 8 eaTf(n^) ,       6   <<   1 

2 2 
 ~    +    7X   +   k    f   =   0 
^ 9£ 

then 

G  =  2E   [" 2 (1+*oo)2 ±  ^4(1+^)^+ 4b2 k2" ] . 

If k vanishes, the quantity in square brackets is either zero or negative so that we 
recover the earlier result that the flame is unstable if b <  0  (L >   1).   But if k 4 0 
there is a positive root irrespective of the sign of b, so that the one-dimensional flame 
is also unstable if  L <   1. 

The problem of flame instability is an interesting and a complicated one.   Exper- 
iment suggests that sometimes instability destroys a flame, sometimes it merely causes 
it to flicker, and sometimes bifurcation occurs+.   Most of these observations are pres- 
ently unexplained but it is possible that the above results will play a role in throwing 
light on some of these phenomena.   In general We can expect activation energy asymp- 
totics to contribute significantly to our understanding of flame instability.   For example, 
Matkowsky and Sivashinsky~H" claim to have explained cellular flames in this way. 

I shall conclude by making some additional remarks about the long time scale 
that plays such an important role in the unsteady problems discussed above.   The point 
is best illustrated by considering a specific problem. 

9.   SOLID DEFLAGRATION.   The burning of a solid is of fundamental interest 
in the theory of solid propellant rocket motors, and Fig. 9 shows a classical one- 
dimensional model.   The solid is hot, because of the proximity of the flame, and gives 
off a combustible mixture which burns within the flame.   The flame is propagating to 
the left relative to the gases but the gases are moving to the right and in the steady 
state the flame is stationary relative to the solid.   The burning rate depends upon the 
pressure and a classical problem is the determination of the steady state burning rate. 

The flame is essentially the same as that analyzed by Bush and Fendell. There 
are differences in the problems, of course, owing to the different boundary conditions, 
and a solution of the heat conduction equation has to be constructed in the solid (which' 
is being fed to the right in a flame-fixed frame) but the analysis is straightforward and 
the results have some connection with  experimental reality.++f 

At this point Fig. D.l (p. 78),  Fig. D. 11 (p. 86) and   Fig. D. 10 (p.85 ) from Markstein, 
G-  H'   Non-Steady Flame Propagation    Agardograph No. 75, Macmillan, New York, 
1964, were shown. 

Private communication. 

See Buckmaster, J. D.,  Kapila, A. K.,  & Ludford, G. S. S.     Astronautica Acta 
(to appear). 
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Solid 

Mixture P(t) 

Premixed 

Flame 

Fig. 9.   Burning Solid 

A more complicated problem is one for which the pressure varies with time. 
This also is of interest in the study of solid propellant rocket motors since such motors 
are often violently unstable.   Now if the pressure varies very slowly with time, it is 
apparent that the response wiU be quasi-steady.   That is, the burning rate will be the 
steady state value corresponding to the instantaneous value of the pressure.   The ques- 
tion then arises:   What is the slowest variation in pressure for which there will be a 
significant lag in the burning response and therefore significant transient effects?   The 
answer is pressures that vary on the long time scale 

t  = 0( 
e x p 

00 

m2 C 
) 

for these will excite the slowly varying disturbances.   Indeed, if the appropriate analy- 
sis is carried out we find 

dH 
dT 

+ C2H + a dp 
dT 

+ C4P =  0 

where  H  is the burning rate,   p  the pressure, and the C j are constants.   The analy- 
sis is inherently a nonlinear one but this is the result for infinitesimal pressure 
variations. 

Flames are often subject to external stimuli that change with time and what this 
example suggests is that provided the steady state solution is known, the unsteady prob- 
lem can be solved and nontrivial transient effects obtained provided the stimulus changes 
on the long time scale.   This could have application to a variety of important problems. 
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A MODEL FOR SHOCK INDUCED STRUCTURAL TRANSFORMATIONS 

Paul Harris 
Concepts and Effectiveness Division 

Nuclear Development and Engineering Directorate 
Picatinny Arsenal 

Dover, New Jersey 07801 

ABSTRACT. The problem of strain propagation in a medium of time 
and strain (energy) dependent elastic constants is considered. For 
the elastic constant model considered, analytic and finite difference 
approximations appear to predict avalanching of the particle velocity 
in a manner consistent with a dynamic strain induced exothermic 
structural transformation. The application to enhancement of laser 
interaction with aerospace materials is discussed. 

1. INTRODUCTION. Recent years have seen increasing military 
interest in the interaction of high power optical signals (lasers) 
with aerospace materials. A problem of particular interest has been 
the generation of a shock in an irradiated material in order to pro- 
duce a dynamic mechanical deformation in an adjacent material. The 
figure below illustrates the geometry of the problem. 

high power 
optical 
signal 

Medium 
for 
shock 

generation 

Shock 
receiving 
medium 

The shock receiving medium could be an explosive, in which case the 
hardware application might be a detonator or an explosive switch. 

For the above type of problem one would obviously like to choose 
the medium for shock generation so as to maximize the generated shock 
amplitude. There are essentially two ways in which the shock amplitude 
can be maximized for a given optical signal: one can maximize the 
strength of the laser material interaction, or one can attempt to find 
a generation medium which can act as an amplifier of shock amplitude 
(the shock being produced in approximately the electromagnetic skin 
depth of the generation medium). In this paper we will mainly con- 
sider some mathematical aspects of the second approach. 

2  MATERIAL SELECTION AND PROPERTIES. Some alloys exhibit 
"anomalously" large Grüneisen parameters as they undergo structural 
"phase" transformations. Typical alloy examples *>z are TiNi and 
KTaOo. The Grüneisen parameter (proportional to the thermal expansion 
coefficient) is a measure of the pressure change caused by a change in 
thermal energy density under constant volume conditions. Since, in the 
absence of vaporization effects, the laser interaction serves to deposit 
thermal energy in the skin depth region, an enhanced Gruneisen parameter 
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i$ equivalent to an enhanced pressure (shock) amplitude. 

TiNi is an appropriate shock generation medium because its metallic 
properties, even in the absence of Grüneisen effects, serve to produce 
a small skin depth and thus a strong laser-material interaction. The 
observed J Grüneisen parameter enhancement by a factor of approximately 
twenty during the near room temperature (martensitic) structural trans- 
formation promises enhancement of an already strong laser-material 0 
interaction. The practical limitation on the above concept is a 10 C 
half maximum width for the spike in the Grüneisen parameter, and that 
10 C temperature rise represents a rather small thermal energy density 
deposition. 

The physics which gives rise to the enhanced Grüneisen parameter 
also results in exothermic (or endothermic) effects, and different 
elastic constants on each side of the transition. While the observed3 

exothermicity of approximately 6 Cal/gm is not large, when combined 
with the observed 1  (approximate) ten percent change in elastic 
constants, one has a material which promises interesting thermo-    3 k 

mechanical effects. That interest is further raised by the knowledge ' 
that an applied strain can trigger the transformation. 

We thus have a scenario in which a propagating strain wave (shock) 
can trigger a structural transformation, and thus be amplified in the 
process. It is that secnario which we will now model and treat below. 

3. STRAIN PROPAGATION IN A TRANSFORMING MEDIUM. While there 
exists a number 2.5 0f elegant approaches to the physics of structural 
phase transitions, those approaches do not yet appear capable of treat- 
ing the propagating strain condition of interest here. We thus proceed 
somewhat intuitively. 

Consider a one-dimensional strain problem (particle displacement 
only in the direction of strain propagation) characterized by 

^° 3F -ciF =f (1) 

C = Co + a (Cj - Co)s (2) 

where p is mass density, u is particle displacement, c is an elastic 
constant, f denotes a viscosity functional, the subscript zero denotes 
the undisturbed (prestrain and pretransformation) medium, the subscript 
one dentoes a final state (transformed) parameter, and a is dependent 
upon the degree of transformation. 

We model a in the form 

(3) a - 
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where u is strain energy, W a constant, and T is a transformation 
incubation time. Thus, to first order in (at) 

a - 
I Cut 
WT 

Pn  3 u l + 
ü)t 
Wx 

92U  _ f 

3X2 

(4) 

(5) 

We will set f = o even though it is known 1  that attenuation is very 
strong in the presence of phase transformations. We will thus have to 
keep in mind that any u(x,t) solutions could in practice be of con- 
siderably reduced amplitude. 

We will now consider two approximations to Eq. (5). The first will 
be relatively unphysical, but analytically neat. The second will in- 
volve the full form of Eq. (5), but will involve a rough finite 
difference approach. 

APPROXIMATION I: We consider 

P° IrJ " co (1 + 3t) 0 = °' ß = COnSt' 
Separating variables with u(x,t) = T(t) X (x) gives 

(6) 

po    1 32T _   _2 _ jci  9£X . 
(1 + ßt) T 3t2" " "     X   33^ 

(7) 

X = XmexP .j± 
1xV^ 

32T 
iy2" 

mz 

Pn^ 
y T = 0,  y = (1 + et). 

Eq. (9) is Airy's equation and its solutions can be written as6 

where 
m2 \ 1/3 
m  '    (1 + ßt), 

with U, and IL being linearly independent and tabulated6. 

(8) 

(9) 

(10) 

(11) 
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We now let k = 2ir/A = m/yc^ and evaluate m2/p ß2. For c. = c /2 

and u = W (i.e. the strain energy taken equal to its critical trans- 
formation value) 

p 32 ^op 
2jr_ 

v2 (4T2); (12) 

where v is the velocity of sound in the preshocked medium, x  is the 
wavelength of the applied strain disturbance, and Cj = c /2 corresponds3 

to an exaggeration of the transition (exothermic) from TiNi (II) to 
TiNi (III). And using 2TTV = uQ\,  where « is the angular frequency 
of the applied disturbance, 

m' 
P»ß       0 (13) 

Thus Y becomes 

Y=(2V)2/3 (1-^). (14) 

For a particular ü>0 we can drop the subscript m in Eq. (10) and write 

u(o,o) = AU, 

and 3u(o,t) 

(2V)2/3, 1 

at 

+ BU, 

A (9      ^2/3 ../ 
2T {\x) Ul 

t=o 

(2V)2/3, 1 

(2V)2/3, 1 

B /o  N2/3 ' 
27 (2V}   U2 (2«„T) 

5 

_ 

+ 

2/: 

(15) 

(16) 

If we now make the typical "hydrodynamic" approximation of u T «1, 
then from Eqs. (15) and (16) 

A = u(o,o), 

B =-2(2v)_2/3 M|*il T - -(2V)1/3 u(o,o) 

t=o 
where 6 

1^(0,1) = 1,   U2(0,1) = 0 

(17) 

(18) 

(19a) 
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Uj_ (0,1) = o,  u2(o,i) 

have been used. 

We can thus write 

= 1 (19b) 

1/3 
u(o,t) au(o,o) Ux (Y,l) - (2V)1/'3 u(o,o) U2 (Y,l) (20) 

We thus predict avalanching of the particle displacement at the 
boundary, u(o,t), due to the avalanching behavior of l^ (Y,l). The 

avalanching is strong as it is occuring even in the presence of a 
harmonic input. 

APPROXIMATION II. Here we will consider a crude finite difference 
version of Eq. (5) written with respect to an almost constant velocity 
coordinate system. 

From Eq. (5) 

A = V_2 £$■ + (V^ - V0*) at2"   O  3X2" T n 

_9U 
9X j d2U     , 

9X2" 
(21) 

where vQ
2 = cQ/p0 ,  Vj2 = c1/pQ ^ w = M 

n being a critical strain value. 

9U |2 

\3* I 
, and W = Mn0

2 with 

Employing the so-called 7 characteristic stretching transformation 

5 =  x - Vt,   5 = aVt, (22) 

where a is a dimensionless stretching parameter (we shall neglect terms 
in ct2), and defining 

* U.c) 3U 

95 

we arrive at 

2aV2f + 

where c    =  aVr. 

(v0
2 - V2) + (Vl

2 - v0
2) 

W 
w ¥_ =  0. 

(23) 

(24) 

Writing Eq. (24) in crude finite difference form 
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r T<V W *(e„, cm) 
L 

where 

Fl - F2V2 <V *m> ¥(W Sn> - *<V Sn> 

V2 

Fl* 
2aV2 

(25) 

(26a) 

2l^V? (26b) 

Rewriting Eq.  (25) with the time derivative single-stepped backwards 
y i »Co 

Y(n,m) - v(n,m-l) Gl " G
2V

2<n'm> v(n +l,m) + 

1        2^m    v      y      y(n,m)   , 

where 

;. V (n+1,0) = 

-    F 

1+G, " 

G2=iF2 

y(n,o) - *%il 
Gl 

(27) 

(28) 

(29) 

_ We now set y(n,-l)=0 (equivalent to turning the strain on at t=0 
and/or completely neglecting the stretching parameter). With that 
condition Eq. (29) has a solution 

n 
*(n,o) 

1+G, 

31 
*(o,o). (30) 

Eq. (30) predicts a geometrical avalanching (wave) in position, in 
support of the temporal avalanching of Eq. (20). 

Experimentally it is known 8 that the martensitic transformation 
in Fe-29.5% Ni propagates at a velocity approximately one third v . 

If we thus choose V to be that velocity of propagation of the trans- 
formation, then Gi is large (a being small) and negative. Thus the 
spatial avalanching, while present, does not appear to be as stronq 
as the avalanching in time. a 
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4  DISCUSSION. The two approximations considered above hint 
stronqly that shock amplification can occur in the presence of a 
structural transformation. Considerably more work is necessary, 
however, before the prediction of an amplification factor is possible. 

In closing we will briefly list what we believe to be the promising 
approaches for future work. 

(a) Modeling. The inclusion of microscopic effects (e.g. soft 
phonon and interatomic potential effects) in the modeling 

of a. 

(b) Attenuation. It is conceivable that known strong attenuation 
durinq the transformation process could severly limit the 
predicted amplification. While experimentally \ determined 
attenuation factors in TiNi lead us to believe that this is 
not the case, f^O must be included at least for completeness, 

(c) Soliton propagation. The current fad in spatially bounded 
non linear propagation effects involves soliton 5,9 physics. 
It is necessary to seek solutions of Eq. (5) from such a 
point of view. 

(d) Finite differencing. It is necessary to refine the work 
of approximation II. 
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3 
ABSTRACT.  It takes of the order of N  operations to solve a set 

of N linear equations in N unknowns. When the underlying physical 

problem has some time- or shift-invariance properties, the coefficient 

matrix is of Toeplitz (or difference or convolution) type and the equations 

can be solved with 0(N )  operations. We have shown that with any non- 

singular N x N matrix, we can associate an integer a    between 1 and 

N such that it takes 0(N2Q!)  operations to invert the matrix. The number 

a    may be small for many non-Toeplitz matrices of physical interest.  Some 

aspects of this result are discussed here, including extensions to 

continuous-time kernels and integral equations. 

1.  INTRODUCTION.  Problems in many fields lead ultimately to the 

solution of linear matrix equations 

Ra = m , 

where R is a given N x N matrix, say, and m is a given N x 1  vector. 

The number of operations required to solve such an equation, or to find 

R_1,  is of the order of N (multiplications and additions).  This can be 

prohibitive if N is large (500 or 1000 or 3000, as can arise in many 

power system or econonometric calculations).  For this, and other reasons, 

we must often try to bring in any special features or structures that may 

be present in the original physical problem.  In many applications 

^This report is a summary of a talk given at the 22nd Conference of Army 
Mathematicians, Watervliet Arsenal, New York, May 1976.  It was based on 
work done jointly with B. Friedlander, L. Ljung and M. Morf (see the 
references) . 

This work was supported by the Air Force Office of Scientific Research, 
Air Force Systems Command under Contract AF44-620-74-C-0068, and in part 
the Joint Services Electronics Program under Contract N00014-75-C-0601, 
and the National Science Foundation under Contract NSF-Eng 75-18952. 
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we have the property 

That is, the phenomena are invariant to a change in the time- or space- 

origin (e.g., as with stationary random processes, or homogeneous media, 

etc.).  In this case, the matrix R  is said to be a Toeplitz matrix and 

has. the nice feature that its inverse can be found with only 0(N2)  multi- 

plications. Moreover the inverse can be computed recursively, i.e., the 

N x N inverse can be easily updated to yield the  (N + 1) x (N + 1) 

inverse, and Toeplitz matrices also have other useful properties. 

Unfortunately, most operations on Toeplitz matrices destroy the Toeplitz 

property.  For example, the inverse of a Toeplitz matrix is not Toeplitz, 

unless the matrix is also lower- or upper-triangular.  So also the product 

of two Toeplitz matrices is not Toeplitz, unless the matrices are also 

both lower-triangular or both upper-triangular. However, some reflection 

will show that in various ways one can regard certain matrices as being 

"less non-Toeplitz" than others, though present solution methods cannot 

take advantage of this—they require 0(N2)  operations in the Toeplitz 
3 

case, and 0(N )  otherwise. 

By a long process of abstraction and simplification of results originally 

obtained for certain nonlinear differential equations [l], [2 ], we have 

been able to show essentially the following (more precise results are 

stated later):  with any invertible N x N matrix R we can associate 

an integer a, 1 < a < N,  such that it takes 0(N2a)  operations to 

compute its inverse.  The integer a    may be called the displacement rank 

(or index of nonstationarity) of the matrix and has the property that it 

is low for matrices that are Toeplitz or near to Toeplitz, while it is 

high for arbitrary matrices.  For example, 

212 



i) a =  1 for R= L or U or LU or UL,  where L and U 

denote lower- and upper-triangular Toeplitz matrices, 

ii)  a = 2 for R = (L + U)  and R = (L + U) 

iii) a < 4 for R = (1^ + U^ (Lg + U2) 

iv)  a<3 for R = [Lx + Ux ; L2 + U2] 

v)  a < n, if R is the covariance matrix of a linear combination 

of the components of any n-vector wide-sense Markov random 

process. 
3 

in such cases,  0(N O)  can often be significantly less than 0(N ), 

thus yielding many advantages, not just for solving a given large set of 

equations, but also for interactive adjustment of the mathematical model 

(i.e., of R and m)  based on actual examination of the now-more-easily 

determined solution a. 

We shall outline our major results in Section 2, for matrix equations. 

A similar, and somewhat simpler, development can be carried out for 

integral equations, as noted in Section 3.  Section 4 contains some con- 

cluding remarks on possible extensions and generalizations. 
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2.  THE MATRIX CASE.  More details can be found in the paper [ 3], 

but we note the key definitions and results here. 

Definition 1.  The (+)-displacement rank of an N x N matrix R  is the 

smallest integer a+(R)  such that we can write 

a+(R) 
R =   E  L.U. 

1   x x 

for some lower-triangular Toeplitz matrices  (L±} and some upper-triangular 

Toeplitz matrices  {U.}. 

Definition 2. The (-)-displacement rank of an N x N matrix R is the 

smallest integer a_(R)  such that we can write 

q_(R) 
R =   E M.Z. 

1   x  1 

for some lower-triangular Toeplitz matrices  {£.} and upper-triangular 

Toeplitz matrices  [ü 1, 
i' 

Definition 3.  Let 

Z =  the lower-shift matrix 

0 

1  0 

c' •'.'••• 
o 

Lemma 1.  Computation of Displacement Ranks 

where 

and 

Also 

a+<
R> = PU(R)} 

J(R)  =  R - ZRZ' (1) 

p{A} =  the rank of the matrix A. 

0_(R)  =  p{P(R)} 
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where 

rot) =  R - Z'RZ • (2) 

The proof follows by using the result 
of Lemma 2. 

Lemma 2 . Given two column 

functional equation 

vectors x,y there is one and only one solution 

of the 

J(R)  = xy' , (3a) 

and this is 

R = L(x)U(y') , (3b) 

where *  denotes transpose,  L(x) is a lower- -triangular Toeplitz matrix 

whose first column is x,  and U(y')  is an upper-triangular Toeplitz 

matrix with first row y'. 

Proof.  For uniqueness^ note that 

J(RX) = J<V 

implies 

■»! - ZR1Z'  =  R2 " ZV 

or 

Ri - R2 =  Z(RX - R2)Z« , 

whose only solution is clearly zero. 

The rest amounts to verifying that jL(x)U(y') = xy',  which the 

reader may find amusing to check by direct computation for  3x3 matrices. 

Lemma 1 now follows easily from the observation that 

R = I L(x.)U(y!) ^ J(R)  = I \y[ 
1    X 1 

We can now state a first simple,but apparently new,result. 

Theorem 1. 

(4) 

a_(R ) = ct+(R) ,,_v?"^ - -• <™   • (5) 

Therefore, 
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a+(R) 

implies that R   has the form 

-1 

R =    Z  L.U. <~ ) 

a+(R) 

R  =  Z  "U^i fcb) 

Proof. We give the simple proof (suggested by S-Y. Kung) because it 

shows that the result is quite general and depends very little on the 

nature of the entries of R---for example, they could themselves be matrices. 

We note that 

OJR"
1
) = ein"1 -  Z'R_1Z} 

=  0{(R_1 - Z'R-1Z)R} 

■=  c{I - Z*R-1ZR} 

since rank is unaffected by multiplication by a nonsingular matrix. Now 

by a well-known matrix result that 

p{l - AB} =  p{l - BA} 

we can continue the above chain as 

a_(R_1)  =  p{I - ZRZ'R-1} 

=  p{(I - ZRZ'R_1)R} 

=  c{R - ZRZ«} 

= a (R) . 
+ 

Example.  If T is s a symmetric Toeplitz matrix, then a  (T) = 2 = a  (T) 

since we have the representations 

where 

T = T -I + I-T' 
+       + 

=  I'T + T'*I , 

T+ =  the lower-triangular part 

of the matrix T. 
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The fact that 

a (T)  = 2 = a_(T) 

can also be seen by checking that 

J(T)  = T - ZTZ' 

I. t„  ...  t 

N 

N 

o 
,  for all N > 2 

and 

rcn   = 
O 

N 

N-l 
N > 2 

_*N  *•*  2   "1 

Now it turns out to have been well-known in many contexts (see the 

discussion in [4 ]) that there exist two lower-triangular Toeplitz 

matrices A and B such that 

-1 = A'A - B'B (7) 

so that 

a_(T)  = 2 = a+(T) . 

Remark. Notice that the displacement ranks seem to identify a better 

property of matrices than their being Toeplitz. The class of Toeplitz 

matrices is not closed under inversion, unlike the (+)-displacement ranks 

and the corresponding representations <6 )• 
2 

Theorem 2.  The inverse of an N x N matrix R can be found with 0(N O) 

multiplications, where a is an integer such that a+ < 0. <  2+ + 2. This 
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can be done via certain recursive formulas called the generalized Szegö 

Levinson recursions. 

The recursions are a bit too complicated to describe here, but we 

may note that for Toeplitz matrices they are equivalent to the well-knovm 

recursions for the Szegö polynomials orthogonal on the unit circle (see, 

e.g., [5, Ch„ 11  ] or [ 6]). These were rediscovered in the statistics 

literature by Levinson [7 ] and by Durbin [8 ] for recursively solving 

the so-called Yule-Walker normal equations [9]. 

For other results in the matrix case, we refer to [3 ],[lo]-[ll], and 

instead turn briefly here to an examination of the integral 
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3.  TNTEGRAL EQUATIONS. The Fredholm integral equation of the second 

kind T 

a(t)+/,K(t,s)a(s) ds = m(t),  0<t<T       (8) 

0 

has been extensively studied, see, e.g., the recent monograph [12]. Except 

for the handful of cases where explicit analytic solution is possible, the 

generic technique is to replace the integral equation by some approximating 

set of N linear equations 

Ra = m . 

This can be done in various ways-use of degenerate kernels, projection 

(Galerkin and collocation) methods, etc. For example in the degenerate 

kernel method we replace K(t,s)  by the function 

K^t.s) = I 0±(t)M;.(s) <9> 

for some suitably chosen functions  (d.C) ,*.(•) }.  In any case, the 

resulting set of linear equations will in general require 0(N3)  operations 

for their solution and this may be prohibitively large.  More significant 

however is the observation that such approximation methods will generally 

destroy any nice structure that might have been present in the original 

problem. 

For example, if the kernel was of Toeplitz (also called displacement 

or convolution) type, 

K(t,s)  = K(t - s) ,  say 

then in general 

K   (t,s)     4    Toeplitz   for    N < ••   . 
N 

This is bad, because the Toeplitz property can be exploited to find a 

nice solution of the integral equation.. Briefly, first define 
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H(t,s)  =  the Fredholm resolvent of K(t,s) 

as the solution of the integral equation 
T 

HT(t,s) +y*HT(t,r)K(r,s) dr = K(t,s) ,  0<t,s<T. 

0 

In operator notation, we can write this as 

H + HK =  K 

or as 

(I - H) (I + K)  =  I 

which shows that the original equation 

(I + K)a = m 

can be resolved as 

a =  (1 + K)"1* =  (I - H)m 

or 
T 

a(t)  = m(t) - rHT(t,s)m(s) ds . 
0 

Therefore the basic problem is to find H(t,s). Now even though K(t - s) 

may be Toeplitz, this will not in general be true of its resolvent ^.(t.s) 

(for T < ..). Nevertheless lyt.s)  is not a completely arbitrary kernel, 

but should in some sense be close to a Toeplitz kernel (after all, its 

resolvent is Toeplitz). 

We can quantify this intuitive feeling in the following way (the 

analog of the method used in Section 2).  Define the operator 

jK(t'S)  = (?E+ !;)*<*.■> ' (10) 
and note that 

jK(t - s) = 0 . 

If K(t,s)  is not Toeplitz JK(t,s) d  0,  but it will be some function 

of two variables,which we can write as 
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jK(t,s) = I 0.(t)^(s) <U> 

x  *• „«,  fri /.i i (Ol and some integer a,     possibly even 
for some functions {<?±C> >v±^ >J 

infinite. However let us define the displacement rank of K(t,s)  as 

the smallest integer a(K)  such that the representation (11) is possible. 

Examples.   i)  K is Toeplitz, a(K) = 0. 

ii) K(t,s) = min(t.s),  the covariance of the simplest 

nonstationary random process, the Wiener process. 

Clearly jK(t,s) =1    and a = 1. 

iii)  K(t,s) = ts - min(t,s),  the covariance of the 

so-called Brownian bridge process. Now 

jK(t,s) = s + t - 1 and a = 2. H 

We can show the following result, analogous to Theorem 1 in the matrix 

case. 

Theorem 3. aCH^t ,s)) < a(K(t,s) + 2. 

Ko.ple. When K is Toeplitz, a(K) = 0. However even though its 

resolvent ^(t,s)  is not Toeplitz, there exist two functions A^), 

B (•)  such that 
X .      ■        ■ T 

jH^t.s)  = AT(t)AT(s) - BT(t)BT(s), (12> 

so that 

OCCH^t.s))  = 2 . 

Moreover the functions V0  and B^),  of one variable, can be 

determined more easily than functions of two variables.  In fact they  . 

can be obtained via the differential equations 

(|4)V«;  -BT(t)BT(T) ,   0<t<T      (13a) 

fTBT(t)  -  -AT(t)BT(t) ,   0<t<T      (13b) 

with certain easily determined boundary conditions A^O)  and ^(T) . 

^This"i7the"analog of (7) in the matrix case. 
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The point is that these differential equations can be solved by a simple 

recursive procedure, which needs only proportional to N2 operations, 

where N is the number of points in [0,T]  used in any discretization 

procedure. 

We call (13) Krein-Szego-Levinson equations because they are exactly 

the recursions found by Krein [13] for the continuous analogs of the 

Szego polynomials on the unit circle. 

Theorem 4.  If K(t,s)  has displacement rank a, H(t,s)  can be found 

with a times as much computation as in the Toeplitz case. The solution 

is found recursively via a set of generalized Krein-Szego-Levinson 

equations. 

Proofs and further results can be found in the papers [14]-[15]. 

However, we might draw explicit attention to the fact that though we 

are using a degenerate-kernel representation in (11), this is for jK(t,s) 

and not for K(t,s). Even though Jx(t,s)  is degenerate it can be seen 

by integration that, in operator notation, 

OH-1 
K =  £  L.U. 

1   X  X 

where the  {1^} and  {u\} are lower- and upper-Volterra operators. 

Therefore K can be very far from a degenerate kernel. The feature 

of our method is that it preserves any "Toeplitz-like" structure that may 

be present in K(t,s). This thought is pursued a bit further in Section 4, 
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4. CONCLUDING REMARKS. We have taken Toeplitz kernels as basic 

because they, or things close to them, arise in many applications of interest 

to us. However in other problems, other "nice" kernels may be more basic. 

For example, we might have Hankel kernels 

K(t,s)  = K(t + s) ,  say . 

integral equations with such kernels can be solved efficiently, and there- 

fore it may be of interest to classify kernels in terms of their degree 

of "non-Hankelness". This can clearly be done as above by using the 

operator / -\   s \ 

(It-lW '■ 
which gives zero when applied to Hankel kernels. Similar results can 

also be obtained for basic kernels of the form K^t - s) + K2 (t + s). 

Furthermore we could also define "second" and higher-order operators 

of the type 

J2{K(t,s)} =  (It^)2«*^ 

and so on.  It is easy to find examples where these are particularly 

appropriate. 

As a final comment, we should express our feeling that the basic 

ideas described above should be adaptable to a variety of different 

situations. Also there is clearly some quite general algebraic structure 

lurking behind our results, which some of the people in this audience 

may be better equipped to identify than we can. 
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AN EXACT SOLUTION TO AN ELASTIC-PLASTIC DEFORMATION 
PROBLEM IN A RADIALLY STRESSED ANNULAR PLATE 

Peter C. T. Chen 
Benet Weapons Laboratory 

Watervliet Arsenal 
Watervliet, NY 12189 

ABSTRACT. An exact solution to the small strain contained 
plastic deformation problem in an annular plate under internal 
pressure is obtained on the basis of the deformation theory of Hencky, 
the Mises yield criterion and a modified Ramberg-Osgood law. 
Expressions for the stresses, strains and displacement are given. 
Some numerical results have been worked out and assessed by using the 
Budianky's criterion for the acceptability of the deformation theory. 

1  INTRODUCTION. The problem is a partly plastic, annular 
plate radially stressed by uniform pressure. The material is assumed 
to be elastic-plastic and obeying the Mises yield condition. For 
ideally plastic materials, the stress solution for this problem was 
first obtained by Mises [1] and the corresponding two strain solutions 
were recently obtained by the present author on the basis of both J? 
deformation and flow theories [2]. The numerical results obtained by 
using these two theories indicate that the strain differences are 
very small and compressibility of the material should be considered. 
However, there is no published solution for strain-hardening materials, 
which is the purpose of the present investigation. 

In the present paper, an exact elastic-plastic solution for 
strain-hardening materials is given on the basis of J? deformation 
theory together with a modified Ramberg-Osgood law [3]. Exact 
solutions based on this particular model were given recently to an 
infinite sheet having a circular hole under uniform external tension 
[3] and internal pressure [4]. This paper considers annular plates 
of arbitrary inner and outer radii. Some numerical results are 
presented and the limitations of the solution are discussed. 

2. BASIC EQUATIONS. Assuming small strains and neglecting 
inertia forces in the axisymmetric state of plane stress, the radial 
and tangential stresses, ar and ae, must satisfy the equilibrium 
equation. 

ae = (3/3r) (rar)   ; 0) 
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and the corresponding strains, e and ee, are given in terms of the 
radial displacement,  u  , by 

e _ r = 9u/3r   ,   e0 = u/r  .        (2) 

We shall assume that the material  is elastic-plastic, isotropic, 
obeying the simple deformation theory and the strains are related to 
the stresses by 

er = E_1(ar-vae) + (E^-E^)  (ar- \   ae) (3) 

ee = E"l(ae-var) + (E^1-^1)  (a0- I.   ar)  , (4) 

where E,    v are elastic moduli and E. is the secant modulus on the 
effective stress-strain curve with E£ = o/e and 

a = (ar
2 + ae

2 - or oQ)^
2    . (5) 

If a modified uniaxial relation of the Ramberg-Osgood type is assumed 
L3, 4], we have 

Es-
]  = E"1 for a < ay; Eg"1  = E"1 (a/ay)^  for a ^ oy      (6) 

and the initial yield surface is defined by the ellipse a = a . 

Since the compressibility of the material is taken into account, 
the longitudinal strain e can be determined by 

1 

er + ee + ez = E-l(l-2v)(a + ae) ,       (7) r 
which holds in the elastic as well as plastic region. 

The boundary conditions on the problem are 

tfr(a, t) = - P , ar(b, t) = 0 .        (8) 

Where a, b and P are the inner, outer radii and internal pressure, 
respectively. In addition; all stresses, strains, and displacement 
must be continuous throughout the entire region. 

In the following, the solutions will be presented in terms of 
nondimensional quantities defined by 

a = a/b, g = r/b, ß = p/b, p = P/oy    , 

sr = VV    se = crQ/ay,   s = o/oy    , 

er = Eer/ay ,    e0 = Eee/ay,    ez = Eez/ay    . (9) 
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where r = p locates the elastic-plastic boundary. 

3     ELASTIC REGION.    For small pressure (p < p*), the plate 
will be elastic throughout (a < Z, < 1) and the solution is 

Sr 1   =   P(a-2_i)-l   (i +g"2)    , 
se 

1   =    Pta-2-!)"1 

*r  I   =    pfa'^Kl-vlTd + vK"2] I   =    Pia'2-!!1! 

ez 
-2p (a-2-!)"1 v    . (10) 

The critical value p* to cause incipient deformation is 

p*=  (1-a2)  [3+a4]"1/2 OD 

For values of p larger than p*, the plate becomes plastic in the 
inner region (a < 5 < 3) and is still elastic in the outer region 
(3 < 5 < 1). In~the~buter elastic region, the equations for the 
dimensiönless stresses and strains are 

Sr 

se 
I =(1 +5"2)/(l +33"4)1/2 

Gr 1 = [(1 - v) + (1 + v)f2]/(l + 33"4)1/2 

ee 

ez = - 2v/(l +33"4)1/2 • (I2) 

4. PLASTIC REGION (a < 5 < 3, P** >  P 1 P*)- Following Nadai 
for isotropic problems [5],"we Introduce the parametric representation 

(0 < 4 < TT/2) 

S„  = -S cosc()/sin(7r/3) 

S = -S cos(<|> + 26)/sin(TT/3)       (13) 
8 
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which satisfies equation (5) identically and leads to the following 
equation upon substituting into the equation of equilibrium, 

T]d? = [s1n(ir/3)(tan(ir/6) + tan<J>)]"1(tan(})d(j) - s_1ds) . (14) 

By the extended Mitchell theorem [6], the stress solution for the 
present problem is independent of v. So choose v = 1/2 and then 
equations (3), (4), (6) and (9) lead to 

er = (Sr - S6/2 )Sn~]    , 

ee = (se - Sr/2 OS""
1 . 

The compatibility equation follows from (2) and (9) as 

er = (3/35)(?ee) . 

Substituting (15) into (16) with the aid of (13), we can obtain 

C d? = [-s1n(TT/3)(cot(Tr/6) + cottj))]"1 (cot<f>d<j> + nS_1dS) 

Combining (14) and (17) yields 

S_1dS = (tan<j> + tan(ir/6j/(l  - n tan* tan(7r/6)) .    d<}> 

which can be integrated with the known condition at the elastic- 
plastic boundary.    Since S and <f> are functions of 5 and $, the 
notations.   = S(£,ß), <j>£ß = <{,(£,ß) are introduced [2].    After 
some manipulation, the relation between SrR   and <j>rfl is given tß 

»5ß 
n sin<j)ßß - /3 cos<{> 

ßß 
v     r 

exp 

JCß 
'(n-l)73~ 

by 

(15) 

(16) 

(17) 

(18) 

(19) _n sin<f>™ - /S cost}).« 

where y = (n + 3)/(n2 + 3), 

and 

tan<j>ßß = (ß2/v>3~ + ^3")/d-ß2) 

follows from (12) and (13) at £ = ß. 

t.     .$ubstnu3in? (18) into (14) and carrying out the integration with 
the known condition at the elastic-plastic boundary, we have 

(ß/S)2 = F(«|>£ß) 

(20) 
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and 

s1n(<)>    +ir/6) 
F( + rR)   =  ^  

^       sin(cj)OQ+7r/6) 
^33 

n sintj)flfi - /3~ cos<j> 
'33 33 

n sintf)     - S3 coscf) r53 53 

4n 

n2 + 3 

x exp 
(n2-l) 3 

n +3 
(<f)33 " *&] 

(21) 

from which <fcrQ can be solved as a function of £ and 3- At the inside 
surface, £ =^§, <i> = 4» «, thus the expression relating a,3 and p can 
be written parametricaTly as 

P = sa3 cos<j)aR/sin(iT/3) 

(3/a)2=F(*a3) . (22) 

where S„R and F(<f>aß) are given by (19) and (21), respectively.    By 
examining (19) andP(21), it can be found that S^R, P, 3/a-~> as 
$ ß-xj)   = tan"'   (737n) for finite n.    It should be noted that for the 
present problem we always have <S>a£<$£0$$ and ♦0i*aßi*aai*ßßi(l,n = *' 

Now we have completed the stress solution which is given by (13), 
(19),  (20),  (21) and (22). 

The solution for the strains in the plastic region (a<£<3, P>P*) 
of an elastic-plastic (finite n) plate can be obtained from (3),  (4) 
and (7), using (6), (9) and the above stress solution.    After some 
manipulation, the equations for the dimensionless strains can be 
written as 

er = -S£ß s1n(4>£g-hi/3) -S?ßcos(d»?ß+Tr/3)(l-v)/s1n(Tr/3) 

e6 = S£B sin*53 " S£3 COS(f)^ß(Fv^/sin^Tr/3^ 

e, = [Sr0 -  (1-2v)SFR] cos(<|)Eß+ir/6) 
53 53^ 

(23) 

where S     and <j> « can be evaluated as functions of £ and 3 by 
equation^ (19),^20) and (21). 
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5. DISCUSSION OF RESULTS. Since the deformation theory is 
used, the validity of the above solution should be assessed by 
applying Budiansky's criterion [7] which requires the following 
inequality to be satisfied. 

[(ns^-DAs"-1-!)]1/2 > (n tan* - S5)/(S3  tan* +1)  (24) 

For any values of n, the ranges of S and $ over which the inequality 
may not be valid can be determined. In the present case, the above 
inequality is satisfied except over a certain range of S and d> for 
n>17 [4]. 

Another limitation of the above solution is due to the small 
strain assumption. In the case of annular plates with arbitrary 
ratio of inner to outer radius a , there may exist two types of 
plastic flow. Full plastic flow with complete yielding may happen 
for larger values of a . In the case of a flat ring with smaller 
values of a , it is impossible to obtain complete yielding in it 
through applying a pressure on its inner boundary. The outer portion 
of the ring must remain strained elastically and a case of partial 
plastic flow with thickening will occur. Neither full plastic flow 
for larger a nor partial plastic flow with thickening for smaller a 
will be permitted under the assumption of small strain. 

Some numerical results have been worked out for the 2219-T87 
aluminum plate with geometric ratio b/a = 3. The material constants 
[4] are n = 9, v = 0.3, E = 10.5xl06psi, ay  = 5.5xlo4psi. The effect 
of p/a on the radial and tangential stress distributions are shown 
in Figures 1 and 2, respectively. The corresponding strain 
distributions for the radial, tangential and axial components are 
shown in Figs. 3, 4 and 5, respectively. Finally it should be noted 
that the validity of the above results based on the deformation 
theory have been assessed by applying Budiansky's criterion. The 
range of S and * for the above stresses and strains satisfy the 
inequality (24). 
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AN EFFECTIVE STIFFNESS VISCOELASTIC COMPOSITE BEAM THEORY 

Charles R. Thomas 
Benet Weapons Laboratory 
Watervliet Arsenal 

Watervliet, New York 12189 

ABSTRACT. Viscoelasticity in the individual beam layers is 
modeled according to the standard linear model and the Timoshenko beam 
theory with the resulting equations utilized in deriving a micro- 
structure or effective stiffness viscoelastic laminated beam theory. 
A time harmonic wave propagation along the length coordinate of the 
viscoelastic composite beam has been utilized to illustrate an 
application of the derived theory and to point out the influence of 
the various viscoelastic and geometric parameters involved. 

The first task in deriving the viscoelastic laminated beam 
theory was to formulate energies for individual viscoelastic layers 
in terms of the Timoshenko beam theory in a form suitable for 
developing the composite theory. A goal of the direct derivation of 
the beam theory, instead of the intermediate step of developing a 
viscoelastic laminated continuum theory which must then be reduced to 
a beam theory, was accomplished by the introduction of a gross 
rotation term for the laminated beam into the derivation of individ- 
ual layer energy relations. The final result was an energy conser- 
vation law for the individual beam layers in terms of kinetic energy, 
potential energy, and dissipation energy. 

The viscoelastic laminated beam is composed of a number of 
alternating plane, parallel layers of two homogeneous, isotropic 
viscoelastic materials which are respectively termed the reinforcing 
layer and the matrix layer. To obtain the total energy for the 
viscoelastic composite beam, the individual layer kinetic, potential, 
and dissipation energies were surnned over the n layer pairs of which 
the composite beam was composed. The discrete system thus obtained 
was then converted to a continuous system by means of a smoothing 
operation, that is a replacement of the resulting energy summations 
by weighted integrations over beam thickness. A reduction of one_ 
variable from the formulation was made possible through a continuity 
condition resulting from continuity of displacement across layer 
interfaces. The final result of the derivational work was a set of 
three flexure equations of motion and corresponding boundary 
conditions for viscoelastic laminated composite standard linear model 
Timoshenko beams. 
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Time harmonic waves of the form 

(w,*,*) = (hW,¥,*)e"aye1p(y/c-t) 

were passed through the three equations of motion and resulted in a 
characteristic equation in terms of p, the circular frequency; c, 
the phase velocity; a, the attenuation coefficient; and the numerous 
viscoelastic and geometric parameters involved. 

1. INTRODUCTION. A great deal of work has been accomplished 
in the area of elastic laminated effective stiffness or microstructure 
continuum theories and approximate plate and beam theories. By the 
same token, little has been accomplished with viscoelastic counter- 
parts to these theories. 

An elastic continuum theory which included effective stiffness 
for both the reinforcing and matrix layers of a laminated continuum 
was developed by Sun, Achenbach, and Herrmann [1, 2]. The continuum 
theory was utilized by Thomas [3] to study the simple thickness 
modes for laminated media with layering both parallel and'perpen- 
dicular to the plate free surfaces. Sun [4] deduced a two dimen- 
sional theory for laminated plates from the three dimensional 
continuum theory. Velocity correction coefficients were introduced 
into the two dimensional theory by Thomas [5] and flexural and exten- 
sional vibrations for plate strips and rectangular plates were 
studied by Thomas [6, 7] according to this theory and compared to 
similar results from effective modulus plate theories. A micro- 
structure theory for an elastic, laminated composite beam was developed 
by Sun [8] and the approach utilized in this paper will be followed 
in deriving a viscoelastic, laminated composite beam theory. 
Thomas [9] showed that the flexure beam theory in reference [8] is 
directly obtainable through a simple reduction of the existing 
flexure equations for composite plates [4, 5]. 

A continuum theory for a viscoelastic laminated composite was 
developed by Grot and Achenbach [10], however the equations developed 
were not applied to any problems of wave propagation or vibration. 
It is certainly theoretically possible to start with the equations 
in reference [10], to make appropriate series expansions and derive a 
plate theory, and to then follow reference [9] to make a direct reduc- 
tion to a viscoelastic beam theory. However, for convenience and 
simplicity of analysis, the approach in the current report will be to 
begin with the viscoelastic Timoshenko beam equations and work 
towards a viscoelastic laminated beam equation in the manner of 
reference [8]. With somewhat guarded conclusions, Stern, Bedford, 
and Yew [11] have demonstrated a definite need for an effective 
stiffness type formulation for viscoelastic laminates. 
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The current approach to obtaining a viscoelastic laminated 
beam theory will be a viscoelastic development which mirrors the 
elastic development given by Sun [8]. Surprisingly, the real 
difficulty is in obtaining the energies for a single layer modeled 
as a viscoelastic Timoshenko beam. The most pleasing and straight- 
forward development of suitable viscoelastic Timoshenko beams results 
from a utilization of viscoelastic constitutive relations of the 
differential form; it is these equations which yield a viscoelastic 
development which closely mirrors Sun's [8] elastic derivation. 

2  THE ENERGY PRINCIPLE. As Sun [8] does in the development 
of an elastic laminated beam theory, the first task in deriving a 
viscoelastic laminated beam theory is to formulate energies for 
individual viscoelastic layers in terms of the Timoshenko [12] beam 
theory. In the past, Lee [13] developed viscoelastic Timoshenko 
beam equations for viscoelastic extensional strain but the shear 
strain was left elastic. Pan [14] extended the analysis to include 
viscoelastic shear strains. The current objective is to develop 
the viscoelastic Timoshenko beam equations in a form more suitable 
to the development of a viscoelastic composite beam theory.. A first 
qoal will be the development of a single layer energy principle 
suitable for a direct application in the derivation of a multilayer 
energy principle. 

The development of an approximate theory such as for laminated 
elastic plates has originally been a two step procedure. In the 
first instance, the Mindlin plate theory [15] in its first order^ 
approximation was utilized to develop a continuum theory for laminated 
composites. Then to obtain a laminated plate theory a first order 
approximation is made on those variables which came from the first 
order part of the Mindlin theory as in Sun [4] and Thomas L5J - this 
explanation will become clear shortly. Now in developing anelastic 
laminated beam theory, Sun [8] has made both of these approximations 
simultaneously to obtain a flexure theory for laminated beams. 
Actually, Thomas [9] has shown that the flexure beam theory is 
directly obtainable from the existing flexure plate theory. 

The current objective is to immediately derive a viscoelastic _ 
laminated beam theory and to not have to develop a viscoelastic lami- 
nated continuum theory first. In making the various zero and first 
order expansions of displacement, terms which lead to an extension 
theory are also maintained since the second expansion of extensional 
displacements leads to a flexure term. The first order displacements 
which will result in the Timoshenko beam equations [12] for flexure 
as well as an extensional equation for beams are 
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v(y,z,t) = v(y,t) - z<|)(y,t) 

w(y,z,t) = w(y,t) - z$(y,t).       (1) 

the zero order terms in (1) are 7 and w and a first order expanison 
of these two displacements results in the expressions 

v(y,t) = v£(y,t) - z£ ^a(y,t) 

w(y,t) = w£(y,t) - z£ Ya(y,t)      (2) 

where the subscript a = 1, 2 will later denote whether a stiff or 
soft laminated beam layer is indicated and the superscript k which 
layer pair is indicated. While absolutely necessary at this point, 
the notation in (2) jumps into the laminate notation while seeming 
to be at the single layer stage of development. See Sun, Achenbach, 
and Herrmann [1] or Sun [8] if clarification is required. 

Combining equations (1) and (2) and extracting only those terms 
which result in flexural motion results in the displacement relations 

v(y,z,t) = -zj^a(y,t) - z<j)(y,t) 

w(y,z,t) = wj;(y,t) (3) 

where fc(y,t) represents the gross rotation in the laminated beam, 
w£(y,t) represents the transverse deflection, and <t>(y,t) repre 
the individual  layer rotation.    The various displacements and 
w. 

rotations on the right side of (2) represent the reduction from a 
laminated continuum theory to a laminated beam theory; thus, from 
continuity of displacement and rotation at laminate interfaces, it is 
clear that the notation may be simplified to w(y,t) = w"<(y,t) and 
4>(y>t)  = ^a(y>t) for a = 1, 2 and for all values of k. aHence with 
these notational simplifications in mind, the final form of the first 
order flexure displacement expansion is 

v(y,z,t)'= -z^(y,t) - Z(})(y,t) 

w(y,z,t) = w(y,t) (4) 

where these equations are valid only when eventually utilized in 
developing a laminated beam theory. Equations (4) may be reduced to 
those for a homogeneous or single layered beam by setting ^(y,t) = 0; 
this being done, equations (4) reduce to those given by Brunelle [16] 
for flexure of a beam. 
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The non-zero strain-displacement relations are 

e    = 8v 

zn 
i 8w + 3v 

3y      "ST 

The non-zero stress equations of motion which pertain to the problem 
are 

Jyz,y = pw 

ay,y + ayz,z = pv (6) 

From the appendix and equations (A-l7) the constitutive equations for 
a special case of the standard linear model are 

(1 + C ^|)ayz = (2kG + 2kV 9|) eyz 

(1 + C £)oy -  (E + E* £  ey (7) 
JL 

where shear correction coefficients k and k have now been introduced 
in a manner similar to that of Timoshenko [12] and Mindlin and 
Deresiewicz [17]. 

The procedure involved in deriving the theory will be to manipu- 
late the left sides of equations (6) until they are of the form of the 
left sides of equations (7). Thus, taking the first time derivatives 
of (6) and multiplying by the viscoelastic constant C results in the 
equations 

C a yz,y pC "w 

C a. 
y.y 

+ C ayZjZ = PC V (8) 

which when added to their counterparts in equation (6) become 

a   + C ä   = pw + pC 'w* 
yz,y   yz,y 

a  +CÖ  + o +C cr  , = pv + pC v' 
y.y   y,y  yz»z   yz»z 

(9) 

Multiplying the first equation of (8) by w and the second equation by 
v, integrating over the beam volume and time, and finally adding the 
final answers results in the equation 
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/ JV ;A jo Jo 

(<W + C &yz,y)Ät (°y,y   + C Hry>y)* 

+ (V,z + C V.zJi 

dA dy dt 

'AOO> v v + C V v + w w + C "w w) dA dy dt 
(10) 

After several  integrations by parts, equation (10) may be 
expressed as 

/ /* 
A 

(oVZ + C övz)w + (av + C bj\ n dA dt 

/. f. /! ^ A 'o Jo 

JA Jo Jo 

dz 
(a     + C a    )v yz yz'v dA dy dt 

" k L U p 

(a     + C a    )    (M + 3v.) 
yz yz'    v

3y     3Z' 

+<°y + c V 1} 

(w + C'w) w + (v + C "v)v 

dA dy dt 

dA dy dt (11) 

it is immediately clear that 

rt    o    o 
(a      + C a    )v 

yz        yz 
dA dy dt = 0 

since both beam surfaces are stress free and that 

/ f (ayz + C avz) w + (a + C cr.,)v Jyz 

(12) 

dA dt = 0 (13) 
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since the boundary terms will be satisfied at the beam ends. 
Applying equations (5) and (7) to equation (11) and taking into 
account equations (12) and (13) results in 

JA Jo }o 

* * 
(2kGeyz + 2k G eyz)    (2eyz) 

*. 
+(Eey + E ey)ey 

dA dy dt 

=   /   Jo /o P'Eft + C " )vi + ^ + C v )v]      dA dydt     (14) 

But, from the chain rule of partial  differentiation it is clear that 

3t ff_e
2] = ek + ee 

or that 

ee 1-4   (e2) 2 dt 

(15) 

(16) 

Similarly, the fact that an indefinite integral can be defined as a 
definite integral with a variable upper limit 

/g(t)dt = /^(tjdt + const. (17) 

immediately results, after taking a time derivative of both sides, in 
the equation 

-0- !l g(t)dt = g(t) 
dt a 

(18) 

_ .2 which for g(t) = e results in the relationship 

k2 ' dT  /0
t(fe)2dt (19) 

A direct application of relations (16) and (19) to equation (14) with 
an introduction of equations (4) and (5) results in the equation 
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'o 'o dt 

L 

♦ f<#V ♦ Kiy/4)2 d, 

'ov9y 

dy dt 

Vo2   dt 

L 

»i*i2      «.«ft..?. .   k. 2. Z 
AW    - 2AC/ w dx + A z ) il» 

o .        a    y 

+ ii2 - 2AC/t(zk) 'j, dx 
o   a 

,t..2 
- 2IC / <f> dx 

o 

dy dt = 0 

(20) 

after an integration over the beam area where 

bdj 
12 

A = bd I = (21) 

with b being the beam width and d being the beam thickness. 

> Following Anderson [18], a conservation law is sought in the 
existance of a quantity H such that 

H = constant. 

such that obviously 

where 

(22) 

(23) 

(24) 

with the quantities T, U, and V being called the kinetic energy, the 
potential energy, and the dissipation energy. From a comparison of 
equations (20), (23), and (24) it is clear that the various energies 
may be defined as 

T= /*£T*4ydt 

^=0 
dt 

H = T + U + V 
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U = fl I1  U* dy dt 
'o o 

V = ll  /t V* dy dt 
o o 

(25) 

and from equation (20) it is clear that the energies are 

T* = P [Aw
2 + A(z£)2i2 + I*2] 

2 

U* . 1 AkG(|S -*)2 + ^Cz|j)2(|t)2 + ¥<H>2 l
3y 2 a  3y 2 xay 

AkV(i4)2-E*Kt)2 

+ AE*(zk)2(|i)2 -pAC S2 

- pAC (zJ;)2i2-Pic 'i »2 

dx (26) 

3  THE LAMINATED BEAM THEORY. The laminated beam, Figure 1, is 
composed of a number ot alternating plane, parallel layers of two 
homogeneous, isotropic viscoelastic materials which are respectively 
termed the reinforcing layer and the matrix layer. The reinforcing 
layer is the stiffer of the two layer combination and is indicated 
by the subscript "1" while the softer matrix layer is indicated by the 
subscript "2". The elastic constants, the viscoelastic constants, the 
layer density, and the thicks for the reinforcing and matrix, layers 
respectively are E], G,, Elf G], C], P}i ^>  and E2, G2, E2, b2, L2, 
p2, d2. 

The basic variables involved are w, the transverse deflection; 
ib, the gross rotation of the stiff layer; and cf>2, the rotation of the 
loft layer. The midplane positions for the kthpair of neighboring 
reinforcing matrix layers are y* and y£ respectively as indicated n 
Fiqure 1, with the layer midplanes taken perpendicular to the z-axis. 
The width of the beam is b and the total or gross thickness is h. 

From equation (26), the kinetic, potential, and dissipative 
energies in the individual layers are 
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+ AaEa(zk)2{||)2 + I|k(<^)2 

" ^m v♦oa^>2 
+
 AaE:(za)24)2 -^a * 

- Pa^a^a5 * "Pa1«0«*« 

*k [ k = /T 

a   Jo 
dT, 

(27) 

where a = 1, 2 respectively gives the reinforcing and matrix layer 
energies. 

Now, the three energies are summed over the n layer pairs to 
determine the total energies for the composite beam 

*      k=n    ^r.      *b 
T* -    l}   (T,

k + T2) 

U* = "I" (U? ♦ Uf) 
k=l  ' 

v* - kF < ♦ v;
k). 

k=l  '   * 
(28) 

It is now convenient to convert the discrete system (28) to a contin- 
uous system by utilization of a smoothing operation, that is to 
replace the summations in (28) by weighted integrations over the 
thickness variable z. 
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The result of the smoothing operation is the energies 

T 
h/2   , 

-h/2 (v<y 
(T* + T*) dz 

* 
U 

h/2   . 
s  / 

-h/2 (d7+d2) 
(U* + U*) dz 

* 
V 

-h/2 (d]+cf2) 

. *  * 
(V1 + V2) dz 

vhere after smoothing 

z-z*. k 

(29) 

(30) 

Carrying out the integrations in (29) in terms of (27) and 
taking into account (30) results in the energies 

+ i   I,     >i_:2 + i    * __JL    •■ 2 

1    2' 

U    = — A k G n        /3w    .   >2      1   . h        ,gw        .2 
2 Wl   (d1+d2)  % -*1>    + 2 A2k2G2  (d^y (^ "*2> 

24<¥l      A2E2> Td^af-)    + 2 E,I,  T__J. (j-lo 

+ ? E2'2(^)2 
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*    ft 
V    =/0 

w'iifeii-*/^^^ 
* W*+A

2y w $)2 + vi Tdfe (ir»2 

- TZVICI + p2A2c2> Td^y*2 ■ pi'ici <d^r*i 

- P2Ä2C2 
L 

(d1+d2) 
T2 

dr. 

(31) 

At this point, continuity of displacement at the interface of 
the kth pair of layers must be considered.    Applying equation (4) to 
a multilayer beam results in the equation 

(32) v0(y,z,t) = -zk (y,t) -zd>a (y.t) 

and with the aid of Figure 2 it is clear that 

k  d 1. vl = "zi* + -f*l 
k  d2 

v2 = -z^ - -p>2 (33) 

at the interface between layers 1 and 2. It is also clear from 
Figure 2 that 

z\  - zj - l(d1+d2) 
and that equations (33) describe the same interface such that 

(34) 

vl = v2 ' 
(35) 

From equations (35) applied to equations  (33) it is clear that the 
continuity condition is 

where 
^ = n<j>1 + (l-n)<i>2 

(d!+d2) 
O-n) = (d!+d2) 

(36) 

(37) 
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Following Sun [8], the variable c|>2 is eliminated such that 

*2 = TMö 
(38) 

where for convenience the notation * = ^ has been introduced. 

Expression (38) is directly substituted into equations (31) and 
the dimensionless variable 

5 = h/(d1 + d2) 

is introduced to yield the energy expressions 

(39) 

where 

•2 
T* = ^C(p1A1 + P2A2) wZ + \lhlw} + (l-n)P2> 

+ ^PlIl*2 + ^p2I2(öTnT"TlV) 

+ ^<T1E1+(1-T.)E2)(§)2^E1I1(^)2 

+ 1FF T  (    lM_     n      3j)2 + I^VrRy ay    (i-n) ay; 

+ Ib[nE^(l-n)E2](|)
2 + CE;I1(|i:)

2 

.^(^f-^^-^PlV^PzA^w 

ibCnp^! + (l-n)P2C2]i   " &ihc-\ 'i' 

bh3 

dx 

(40) 

(41) 
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Now, all the squares of the various sums in equations (40) are 
expanded out to yield the final forms of the energy expressions as 

T* = l£a4w
2 + l^2 + ^a13^>2 -£a10# 

_ L-    /8wv2 ,3w . 1 

^a/ -5a8# + ^a5(|^)2 + ^^(^ 

-*&& 

*       t v = /* 
o 

y dy 

?bi02-^b3#   +   ^"^W 
-2€b8^ + Cb5(|^)2 + ?bll(|i)2 _2?b7|i|i 

L-?b
4w2 _?b9^2 "?bi3*2 + 2£b10$5 

where the constants a.,- are 

a1  = A]k1G1  + A2k2G2 

a2 = A2k2G2/(l-n) 

a3 = A]k1G1 - A2k2G2/(l-n) 

a4 = P1A1 + p2A2 

«5=7^1 + (l-n)E2]+^ 

a6 = A2k2G2/(l-n)2 = a2/(l-n) 

97 = JhW E2T2 

a8 = (T^F" A2k2G2 = ^6 

dx (42) 
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!K 
p2!2 

a9 = -fnPl + (1-n)pZ]to7 
n T 

a10 = (I_TI)Z p2x2 

n2 
all = E1X1 + (i-n)2    E2X2 

n2 

a12 = AlklGl +^)7A2k2G2 

2 
a13 = pl!l +Ö^FP2l2 

(43) 

which corresponds to the elastic constants given by Sun [8] for 
elastic laminated beams and where the constants b^  are 

* *    * * 
bl = AlklGl + A2k2G2 

* * 

* * 

* 

b2 = A2k2G2/(l-n) 

b3 = Alk*Gl  -"ö^yA2k2G2 

b4 = PlAlCl  + P2A2C2 

b5 = -^nE1 + 0-n)E2]+^r 

b6 = A2k2G2/(l-n)2 = b2/(l-n) 

by " (l-n)2   2 2 

*   * 
b8 = 7^T2 A2k2G2 = ^b6 

(l-n) 

b9 = -TCTIP^, + 0-n)p2C2] + -—-7 P2!2C2 
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310 
(1-n) "2" P2!2C2 

bn = hh + 
(1-n) 

7 E.I 
* 
212 

b12. Alk]*e* + J2 

(i-n) 

* * 
A2k2G2 

3l3 = PlIlCl  +-iL_     IC 

(i-n) 
(44) 

ana^rnfSP-ndS ?° .the yiscoe^stic contribution of the current 

it isNeasvftnmfZat1°nS  (22:25) 1n ^junction with equations  (42) it is easy to form energy principle (21)    that -ic AU/AI n      '. yc> 

dH _  ,t ,f 
dt - w 

'o 'o 

+>.*'# 

V 29y " a ~ 

10 

L+ b
9V - ■>, 

9w 
39y 

+ a7^f 
3y 

6*  ■  «7 V + V 
a, „4, b2W ~ b5rf + V + b7^f - bA 

3y ^y11       8 
Ä. 

J 

ay V a10$ 
82d) a       i- 

11    2 N9y 

+ a124, + a13$ b fw + b iä 
%       7...2 

L     8  <j>   .   . 
'3/ 

V b10? 

J13< J 

dtdy 

dtdy 

dtdy 
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+ /Sw 
0 

+1% 

0 

9w 9w a!i7 - V " V + "W " b2» - b3* 
dt 

a59y        79y      D5ay      D73y 

" a79y        H8y        7 9y + Dll9y 

dt 

dt = 0.  (45) 

The viscoelastic equations of motion and boundary conditions for 
laminated beams are now obtained by applying the first lemma of the 
calculus of variations to equation (45). Thus, the three equations 
of motion are 

92w  a 3*  _ 9A + h &L _ . ai _ b U. = a„w + bJw 
1^2 " a23y ' a33y + bl3/  %  b39y  

a4W  D4W a-j    i - a 

,2|+a^.v,a7^+v + b20+b50-V 
92<j> 

b7~2 + b8* = a9^ " a10$ + b9* " bH 
3y 

t9w 
39y 

-aÄ+a8, + aii0-al2, + b3i-b7y+b8, 

+ bnfi-" bi2* = ■ aio* + ai3* - bio* + b13* 

and the corresponding boundary conditions are 

(46) 

or 

w = 0   on   y = 0.Ä (47-a) 
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or 

aM . aJto + b |i _ b M = 0 Ö3y        78y      u59y      u79y      u, 

* = 0        on y = 0,A (47-b) 

a78y     a119y + b
7ly " bll^= °' 

or 

* = 0 on-       y = o,A    . (47-c) 

4. WAVE PROPAGATION. Following Sun [8], but with a visco- 
elastic counterpart, assume flexural wave propagation in the v- 
direction of the form 

a) = hWe"^ e^^c"^ 

4 = $e^y e^P^/c-t) (48) 

»nfr .ac^. theh
atten^tion coefficient, p is the circular frequency, 

and eis the phase velocity. It is also convenient at this time to 
introduce some additional relationships as 

p = 2TTü) 

_ c 
W = — 

A 

2TTC 
A = — = ex 

_ 2TT 
T   =    

P 

A 

ß = Aa (49) 

Where w js the frequency, A is the wave length, T is the period, K 
1s the wave number and ß is the attenuation constant. 
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Now, equations (48) are passed through differential equations 
(46) to obtain the characteristic equations for wave propagation. 
At the same time, the following dimensionless parametric, elastic, 
and viscoelastic dimensionless variables are introduced 

Al 

A2 

ß = Xa 

Gl 
G2 

* 
*   G-i 

PZ 

v- c 

•^TP 

-  C2C 
c = — 

_  X 
x = - 

h 
h 

K = 
(d^dg) 
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e    - _ Ü 

2 h4 

E 
61 

_ 11 
Go 2 

R 
E2 

°2 G2 

e a = 
h* 

* 
* PE-j 

61 G2 

* 

*,. 
pE? 

1 G2 
(50) 

The final  form of the characteristic equation for viscoelastic wave 
propagation is 

DET 

(R 13 *  Il3) (Rn +i in)     (Ri2 + i i12) 

(R12 + 1  I12)        (R22 
+ 1  W 

(R13 + 1  I13)        (R23 + 1  I23)        (R33 + 1  I33) 

(R23 + 1 I23) 

(51) 
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Where 

Rn = -an  ß2 + bn p - cnV   + dn 

R12 " R21 b12 ß + d 12 

R13 = R31 = " b13 3 + d13 

R22 = a22 ß   - b22 ß + c22V    - d22 

a23 ß   + b„ ß - c23Vz + d23 73 
R       _R -       3- j. U       a   _  ^..\/2 
K23     K32 

R33 = a33 ^ " b33 ß + c33v2 " d33 

11  B A„  BZ + B„  ß + cnV2 - Dn 

12 = T21  " B12 3 + D12 

13 = !31  = B13 e + D13 

22 
9 -     2 

A„ ß   - B22 ß - c,9V    + D A22 22' 22 

-   w2 
= Uo = A„ ß2 + B„ ß + c„Vc - D23 23 " '32 " M23 '23 '23' 

33 
A33 ß2 -  B33 ß " C33V2 + D33 

(52) 

The constants introduced into equation (52) are defined as 

lY     + 2JL 
lll 

'11 

X2 

4TT a2k*Y2 

261 



'11 

'11 

J12 

*12 

»13 

13 

2 2 
4TT    6a1 4TT OU 

= —ZT"   +   ~^- 
A r 

2 ? 
4-TT a^Y 4TT a2k2 

oukp 

(l-n)X 
o i *   * 
ZTrouk^Yo 

(l-n)X 

_ «I^Y _ na2k2 

A        (l-n)x 
* * 

2770, k Wi 277T1 

(l-n)A 

* * 

2K2Y2 a0k 

'22 

J22 

'22 

'22 

'23 

'       -2 "* ^X2 
- + 

(1 -n)2X2 

47re. r)6, 
D     1 

EX2 

4Tre, (1-n 
+        b 

?X2 
>< + 

47Te262 

(l-n)2!2 

2 
4TT e,ri8 

5I2 

4TT eb(l- 

5Ä2 

n) 
— + - 

/i 2 4TT EU 

(l-n)2X2 

2 
4TT e, n6. 

b    1 
-2 

4ir2e. (1 
+          b 

SX2 

-n)«2 

47r2e 6 
2 2 

(1-n)^ 
+ 

a2k2 

(1-n)2 

ne262 

(l-n)2X2 
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'23 

:23 

J23 

l33 

33 

-33 

!33 

* 
47iTie262 

(l-n)2xz 

2 
4irriE2 

(l-n)2x2 

4TT n62
e2 

(l-n)2x2 

na9k? 

(1-n)2 

6lel  . ^ 

x2       0 

§2^2 

-n) x 

47r6*el  . 
x2 

4ir20ei 

2 * 
4irr) 6?e2 

(l-n)2x2 

A     2    2 

4TT   Tl   Sn 

_2        ■* 
X CI-T,)¥ 

2 
4TT 6-je-j 

i2    + 

2 2 
4TT n Ö2e2 

(1-n)2!2 

2 
n 0^2 

1 !       (1-n)2 

A zu. 
11 " 4ir 

Bn = 47ran 

? 3    — _         8TT 6a-|üi 8TT a2c2 
cll  =       Zk        + =T~ 

T X 

Dll  = ^11 
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B     =    12 12 i; 

Di2 - 2TTb-]p 

R      -    13 
Bl3"17 

D13 = 27rb13 

A22 
J22 

4ir 

B22 " 47ra22 

87r°e bnec-, 8TT' 

'22 

eb(l-n)c2      8ir ec 
,  T 2 2 

ex2 ^ (l-n)2X2 

47r2e.Ti6*      4u2e. (lrn)«! 
'22 J¥ Ci + v»1 

* * 2 

(1-n)2!2 + (1-n)2 

A    -b23 M23  

B23 = 4lTa23 

c23 = 2TTF2C23 

2        * 
4TT T)e?87      na k*y* 

D23 =  fcy + V 
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A     -Ü!i+Ü^l!2 
23      X2      (l-n)2!2 

2 
4TT6-|E-J      4irn 6_e2 

B33 "     ji     + (1_n)^ 

3     — 3 2   — _ 8TT ee-jC-j      8IT n e2c2 

°33 = "P-+ o^x2" 
4u26?e,      4ir2n2«|e2 

A numerical  solution to characteristic equation (51) is possible 
if it is recast as the following function 

f(ß,V) = ABS (DETlRij + il^l). (54) 

Using a numerical technique such as the Rosenbrock [21] optimization 
procedure a solution is obtained when 

f(ß,V) = 0 . (55) 
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5. SUMMARY. An energy principle has been formulated for 
viscoelastic Timoshenko beams according to the standard linear 
model with the stipulation, and hence additional terms, that the 
energy principle be utilized in building a viscoelastic laminated 
beam theory. The Timoshenko model considered has accounted for 
both viscoelastic extensional and viscoelastic shear strains. To 
later incorporate the single layer energy principle into the develop- 
ment of a laminated beam theory, a term which accounts for the beam's 
gross rotation was included in the single layer development. 

Using the single layer energies developed, a viscoelastic lam- 
inated beam theory composed of a number of alternating, plane, 
parallel layers of two homogeneous, isotropic viscoelastic materials, 
termed the reinforcing layer and the matrix layer, was derived. In 
deriving the theory, the individual layer kinetic, potential, and 
dissipative energies were summed over n layer pairs to obtain the 
total energy of the composite beam; these results are converted to a 
continuous system by utilization of a smoothing operation or weighted 
integration. The number of independent variables in the total composite 
beam energies is reduced from four to three thru the introduction of 
a condition for continuity at layer interfaces. A direct application 
of the energy principle developed to the composite beam energies 
results in a set of three equations of motion and their corresponding 
boundary conditions for viscoelastic, laminated composite beams. 

Flexural wave propagation has been considered by passing 
viscoelastic harmonic waves through the derived equations of motion. 
Numerical solutions are possible by applying the Rosenbrock 
optimization procedure to the resulting characteristic equation. A 
lack of computation funds precludes the presentation of numerical 
results at the present writing. 
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APPENDIX. The present objective is to derive a set of consti- 
tutive relations which can be utilized in conjunction with the basic 
equations for a Timoshenko beam. While constitutive equations may 
be formulated in either integral or differential form, preliminary 
work in the direction of formulation of a viscoelastic beam theory 
for laminated composite materials indicates that the differential 
form of constitutive relations will be most useful. The differential 
constitutive relations will be utilized in the present development. 

The general form of the differential constitutive equations is 
adapted from Fung [20] where the stress-strain relations are of the 
form 

P1(D)alj=Q1(D)elj 

P2(D)akk = Q2(D)ekk (A-l) 

where P.(D) and Q^D)   are given by 

k=n-i  k 

P,(D) = I  VK 
1
   k=o ■ 

k=n?  . 
P?(D) = I ZC  Dk 
* k=o K 

k=m   . 
Q,(D) = I \0* 

1   k=o K 

Qo(D) = I  ]dkD
k (A-2) 

L k=o K 

with D being the time-derivative operator of the form 

D if = llfitl (A_3) 
at1 

and where a!- and e'- are the components of the stress and strain 
deviators 
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1 * a  = a.. - -r 6. . a 
ij   iJ  3 lj kk 

% -  eij " 1 6ij ekk <A"4> 

in which a-- and e,-,- are the components of stress and strain, 
i j    ' «J 

Now, assume equations (A-l) to have the form of the standard 
linear model 

(1 +Ä^)a= (B + C^)e (A-5) 

where a is stress and e is strain. Comparing the form of (A-5) with 
equations (A-l) it is clear that to have the form of the standard 
linear model it must be true that 

n-j = m-i = n2 = m2 = 1 (A-6) 

and operators (A-2) in light of (A-6) reduce to 

P^D) = aQ + a^ 

Q^D) = bQ + DlD 

P2(D) = C0 + ^D 

Q2(D) = dQ + d^  . (A-7) 

As will  be subsequently seen, the only non-zero stresses and 
strains for a Timoshenko beam with its y-axis along the length and its 

is through the thickness are cry and o     & ey arid e 
tion  (A-4)  the non-zero stress and strain deviators 

z-axis through the thickness are cry and o     & ey arid e    .    Thus, from 
equation  (A-4)  the non-zero stress and strain deviators are 

2 ' 
e'   = — e ,        e      = e (A-8) 
y      3    y yz        yz 
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Now, a direct substitute of equations (A-2), (A-7), and (A-8) into 
equation (A-l) results in 

[1 + (aj/a^Dla^ = [(bQ/ao) + (ya^D]^ 

[1  + (ai/a0)D]ay = C(b0/a0) + (ya0)D]ey 

[1  + (C^C0)D}oy = [(d0/C0) + (yC0)D]Ey    .       (A-9) 

There are thus two equations for stress-strain in the y- coordinate 

Dlay = D2ey 

D3ay = D4ey   ' (A_10) 

where 

D1 = l-^/a^D 

D2 = (bQ/a0) + (Dl/a0)D 

D3 = 1 + (Cj/C^D 

D4 = (W + (yc0)
D   •    (A_11) 

and they must be combined to form a single constitutive equation 

2D1D3a = (D2D3 + D^e  .        (A-l 2) 

Now, from both the right and left sides of equation (A-12)  it is 
clear that the constitutive equation is of the form 

(1 + FD + bD2)ay = (1  + C D + dD2)ey , (A-l3) 

but it would now be desireable to have the form of the standard linear 
model as in equation (A-5),  if possible.    This can be achieved if the 
restriction is now made that 

D1  = D3 = 1  + (a1/ao)D (A-14) 

such that equation (A-12) now becomes 

[1  + (ya0)D]ay = 2i(b0/a0 + dQ/C0) + (yaQ + d1/C0)D]ey .   (A-15) 

As a final step, define the constants 
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C - yao 

E = A/ao + W 
E* = ^Vao + W 

2G 
o' o 

2G = b}/&o (A-16) 

with the final form of the constitutive equation thus being 

(1 ♦ C J^ . (2G + 26*^,^ 

11 + c >, ■ (E + E*N ■ (A-17) 
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USING FAST TRANSFORMS TO COMPUTE THE 
WEIGHT DISTRIBUTION OF A LINEAR CODE 

Bart F. Rice 
Department of Defense 

Fort George G. Meade, Maryland 

ABSTRACT.  N. J. Patterson, in an unpublished note, observed 
that the weight distribution of a linear code could be computed 
using a Fast Hadamard Transform.  In this paper, we expand on 
Patterson's rather brief exposition, providing a proof that the 
method actually produces the weight distribution and making^a 
comparison of the storage and time involved using Patterson s 
method and the "brute force" approach. 

The weight distribution of a linear code contains a lot of 
information about the code, including its minimum distance and the 
probabilities of decoding error and failure if the decoding algorithm 
decodes all patterns of <t errors and nothing else (cf. [3J).  It 
is not surprising, therefore, that there has been much effort expended 
in investigation of weight enumeration of linear codes.  In the case 
of linear binary codes, a method for computing weight distributions 
involving Fast Hadamard transforms [1] in an unpublished note by 
N. J. Patterson has certain computational advantages over the brute 
force" technique of weight enumeration (in which a basis for the 
code is chosen and every possible linear combination of the basis 
codewords is taken in an unimaginative way, with the weight of each 
codeword recorded as the codeword is derived).  In this paper we 
expand on Patterson's rather brief discussion, providing a proof^ 
that the method actually computes the weight distribution of a linear 
binary code and making a comparison of this technique with the brute 

force approach. 

Let A be a (n,k) linear code over GF(q), with "weight enumerator 

polynomial" 

v »  n-i i 
W (x,y) = j, A± x   y 

i=0 

where A± is the number of codewords veA with weight w(v)-i.  Let A 
denote the dual of A. MacWilliams' Identity states that 

(1) lA-Hw (x,y) = W i(x+(q-l)y,x-y). 

If A is a (n,k) linear binary code then (1) becomes 

iH.(x,y) = W , 
A       AX (2) 2n ^J (x,y) = Wj_(xfy>x-y) 
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For convenience, we will assume that A is binary.  The method is 
quite general, though, and has obvious extensions to cases when 
q>2. 

Assume that k > |, or that A has rate k/n > ~.     If k/n £ -, 
the following procedure should be modified by interchanging A and AL 

and replacing k by n-k. Let H denote an (n-k)xn parity check matrix 
for A, say 

v0 

H = 

v , 
n-k-1 

where the rows v±, 0<i<n-k-l, are vectors in GF(2)
n which constitute 

a basis for A-k  Write 

H*« t  t v0 vx V 
n~k-l 

ru° i 
"I 

= 
• 
• 
• 

u.VlJ 

where u± = (u^, u±i, ..., u±  j^) is the binary (n-k)-tuple 

comprising the i-th row of Ht.  Suppose 0<_s<_2n~k-l, say 
n-k-1 

s = I      s 2\     Let 
j=0  J n-k-1 

I      s.u.. n-1 
.s-u,-   %l   .  . J=o  J 1J 

b = I    (-i)s'ui= I    (-1): 
i=0 i=0 

.n-k Notice that if we define f: V = GF(2)n  + C = complex numbers by 

( 1 v=u. 
f(v) = I 

V 0 othei 

for some i, 0<i<n-l; 

)therwise, 

then b = £ f(v) (-1)V'S.  Therefore, b is an n-dimensional 
veV s 

Hadamard transform [1] of f.  Now, the vector 

274 



(S'UQ.S'UJ s*u _ ) = 

s 

s0 

si 

n-k-1 

= (s0> s 1» 

n-1 

3n-k-l)H = njn
lsiVi = V(S>' x=0 

which may be termed the "s-th codeword" in A-k Clearly, as s runs 
through all the integers from 0 to 2n-k-l, V(s) runs through all 
the codewords of Ax. 

We have just shown that s'u^ is the i-th coordinate of V(s), 
and thus bs = the # of O-coordinates in V(s) minus the # of 1-coordinates 

= n - 2w(V(s)). 

Hence w(V(s)) = (n-b )/2.  Thus, we can compute the weight distribution 
of A1 (and subsequently, using MacWilliams' Identity, of A) via the 
Fast Algorithm; 

Step 0. Select a basis {v0, v1} ..., vn_jc_1> for A . Let B. 
denote the coefficients of W x, initialized to 0, 

1 

0<i<n. A 

Step 1.  Compute the "bulges" b , 0<s<2  -1, using a Fast Hadamard 
Transform. 

Step 2. 

Step 3. 

,n-k 
For each s, 0£s<2  -1, let i = (n-b )/2 and replace B. 
by 1+B.. s x 

x 
Use the equation (MacWilliams 1963) 

Y (tt-i)A. = 2k_r I    (n_i)B., 0<r<n , 
i-0  r  X      i-0 Vr ^  "- ' 

to compute the coefficients A., 0<i<n. 

n-k A glaring disadvantage of this method is that all of the 2 
bulges bs must be saved.  If not enough storage is available, then 
the algorithm must be modified.  The advantage is that the work factor 
of the method is (n-k)2n-k.  By contrast, the brute force method 
requires the computation of (s0, slf ..., sn_k_1)H for each of the 

2   vectors s = (s0, sl9 ..., s _k_.) eGF(2)
n_k.  This could be 

accomplished by the following: 

Brute Force Algorithm; 

Step 0.  Select a basis {v0, vj 
vn-k-i^ for A1• Let B- 

denote the coefficients of W^x> initialized to 0, 
Oki<n-l, and let s = 0 = (0, 0 0). 

275 



Step 1.  Let i = 0, v = (0, 0, ..., 0) 

Step 1.1.  If s-j=l, replace v by v+v^. When q>2, this requires 
n additions.  When q=2 these n additions can be accom- 
plished by several mod 2 additions, the exact number 
depending on word size of the machine used 
to implement the algorithm. 

Step 1.2.  Replace i by 1+i. 

Step 1.3.  If i<n-l, go to step 1.1.  Otherwise, go 
to step 2. 

Step 2.  Compute a = weight of v and replace B by 1+B . 

Step 3. Replace s by 1+s.  If s<2  -1, go to step 1. Otherwise 
stop. 

On the average, the vectors s in the Brute Force Algorithm 
will have density (n-k)/2. Thus, the work factor for this algorithm 
is n(n-k)2n-k-1.  That is, the extra cost in time is proportional to 
n. The advantage of this method is, of course, that the only storage 
required is for the arrays {A.}, {B.} and H.  If A is cyclic, with 
parity check polynomial h(x)  (of degree k), then (regarding a vector 
in GF(2)n as a polynomial of degree <n-l), we may take v0=h(x), 
v1=xh(x), ..., Vn-k-! = xn-k-1h(x), so that only_Yo need be saved. 

(In this case, (s„, s., ..., sn_v .)!! = h(x)  £  s.x .) 
i=0   1 

In conclusion, using a Hadamard transform to compute the weight 
distribution of a (n,k) linear code results in a time saving 
proportional to n at a cost in storage of approximately 2n-k words. 
The technique is particularly advantageous for high rate codes. 
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FACTORIAL AND HADAMARD SERIES FOR BESSEL FUNCTIONS OF ORDERS 
ZERO AND ONE 

Alexander S. Elder 
Emma M. Wineholt 

Propulsion Division 
US Army Ballistic Research Laboratory- 

Aberdeen Proving Ground, Maryland 21005 

ABSTRACT. Bessel functions of orders zero and one for moderate and 

large positive arguments have been programmed in FORTRAN using factorial 

series for J (x), Y (x) and Kn(x) and Hadamard series for In(x). A 

subroutine to calculate Stirling numbers of the first kind was developed 

for use in the factorial series. The recurrence relation was modified 

and the resulting Stirling numbers scaled so that the entire range of 

the computer was utilized; e.g., 10_15° < S < 10   instead of 10 < 

S < 10150.  In this way, more terms of the series can be calculated and 

higher accuracy obtained. For use in the Hadamard series, a sub- 

routine to calculate incomplete gamma functions was developed. Various 

algorithms were necessary to encompass the required range of arguments. 

These programs were devised to verify the accuracy (for moderate 

and large arguments) of our previously developed Bessel function sub- 

routine. These programs replace the asymptotic series with convergent 

series, which, of course, is desirable. Extension of the program to 

complex arguments is now in progress. 

1.  INTRODUCTION. Factorial series derived from the Laplace 
integral converge rapidly for large values of the argument, and,» thus, 
are preferable to the corresponding asymptotic series. However, the 
traditional algorithm leads to very large numbers and must be modified 
if it is to be useful for numerical work. One procedure for scaling the 
large Stirling numbers which occur in the analysis is derived below. 

Factorial series based on a Laplace integral evaluated between 
finite limits will generally diverge, so that an alternate procedure 
is required. One method, due to Hadamard, is to expand the Laplace 
integral in a series of incomplete gamma functions. The resulting series 
converge rapidly for large values of the argument.  In practice, expan- 
sions in terms of the Kummer function are more convenient for computation. 
These functions are closely related to the incomplete gamma function. 
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Computer programs based on these algorithms will be used to check 
the accuracy of the BRL subroutines for Bessel functions of complex 
argument and integral order. This is necessary as tables are not avail- 
able for a sufficient range of order and argument to make a detailed check 
by comparison. 

2. FACTORIAL SERIES. The factorial series are used to calculate 
Kn(x), Jn(x), Yn(x). 

Kn(x) can be expressed in terms of the Whittaker function as
1 

where the asymptotic expansion for the Whittaker function is2 

1 +T [n -(-1/2)Z1 h/-(-3/2)21, . . [n2-(l/2 - m)2] ) 

m=l        m!(2x)m ) 

This asymptotic expansion wa.s derived from a Laplace integral evaluated 
between zero and infinity and involves only negative integral powers of 
the argument. 

,  l2-32   l2-32-52 +  _ + 

2!(8x)Z   3! (8xr 

For n = o, 

K  (x) 
= (2x, 

r. -X 1- I2 

1! (8x) 

= fe 

a/2 
)   e" 

-X !E 
j=o 

A. 
J 

xj ] 
For n =  1, 

K M -("   V/2e"X j 1 ♦   r3    12'3'5  l2'32-5-7 

1/2 k  B. 

j=o xJ 

A computer tabulation of the first fifty of these coefficients is 
shown in Table I. 

Handbook of Mathematical Functions3 NBS55,  U.S.  Government Printing 
Office,   1964,  p.   377. 

2 
Modern Analysis, E.  J.  Whittaker and G.  N.  Watson,  University Press, 
Cambridge,  England,   1927,  p.   343. 
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I AH(I)/(I-1)! BH(I)/(I-1)! 

1 0.100000000000000E 01 
2 -0.125000000000000E 00 
3 0.351562500000000E-01 
4 -0.122070312500000E-01 
5 0.467300415039063E-02 
6 -0.189256668090820E-02 
7 0.795140862464905E-03 
8 -0.342803075909615E-03 
9 0.150645882968092E-03 
10 -0.671862039780535E-04 
11 0.303177745450967E-04 
12 -0.138121266264335E-04 
13 0.634254773036746E-05 
14 -0.293202095523644E-05 
15 0.136316535482613E-05 
16 -0.636901146338206E-06 
17 0.298858399233895E-06 
18 -0.140768510711813E-06 
19 0.665283277862541E-07 
20 -0.315364545496475E-07 
21 0.149896710531293E-07 
22 -0.71A218736970249E-08 
23 0.341061581781506E-08 
24 -0.163196999789118E-08 
25 0.782339784145318E-09 
26 -0.375679564346582E-09 
27 0.180684642541690E-09 
28 -0..870272909635814E-10 
29 0.419734622392911E-10 
30 -0.202692893602046E-10 
31 0.979963836984338E-11 
32 -0.474303516833861E-11 
33 0.229798664344921E-11 
34 -0.111443911484997E-11 
35 0-540951252872135E-12 
36 -0.262802950502473E-12 
37 0.127776781778835E-12 
38 -0.621733446036719E-13 
39 0.302739840197069E-13 
40 -0.147513520096024E-13 
41 0.719243655405693E-14 
42 -0.3509Q4046930157E-14 
43 0.171299459984542E-14 
44 -0.836694563539963E-15 
45 0.408893411120479E-15 
46 -0.199928685770698E-15 
47 0.978030155285417E-16 
48 -0.478665845012651E-16 
49 0.234372789238237E-16 
50 -0.114807037377268E-16 

0.100000000000000E 01 
0.375000000000000E 00 

-0.585937500000000E-01 
0.170898437500000E-01 

-0.600814819335938E-02 
0.231313705444336E-02 

-0.939711928367615E-03 
0.395542010664940E-03 

-0.170732000697171E-03 
0.750904632695892E-04 

-0.335091192340542E-04 
0.151275672575224E-04 

-0.689407361996464E-05 
0.316658263165535E-05 

-0.146414056629473E-05 
0.680825363327048E-06 

-0.318139586281243E-06 
0.149299935603438E-06 

-0.703299465168972E-07 
0.332411277685473E-07 

-0.157583721327770E-07 
0.749058675359042E-08 

-0.356924911166692E-08 
0.170450199779746E-08 

-0.815630838789800E-09 
0.391013424115830E-09 

-0.187770314798227E-09 
0.903113396791883E-10 

-0.434997699570835E-10 
0.209804924956504E-10 

-0.101318295010245E-10 
0.489854451812020E-11 

-0.237093860038411E-11 
0.114872954915304E-11 

-0.557099051465333E-12 
0.270420427328632E-12 

-0.131376127744436E-12 
0.63876723907882OE-13 

-0.310812902602324E-13 
0.151345040098518E-13 

-0.737452355542546E-14 
0.359568344385223E-14 

-0.175427157815494E-14 
0.856381494446786E-15 

-0.418293259651984E-15 
0.204421465226220E-15 

-0.999525323533448E-16 
0.488959734152708E-16 

-0.239306953222199E-16 
0.117174192787109E-16 

Table I. Coefficients for Asymptotic Series 
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These series can be summed by convergent factorial series using an 
algorithm described by Wasow: 

r r 
-p _  v-^  r-p+1 

r=p_l x(x+l')"(x+2) . . . (x+r) 

where r denotes the Stirling numbers of the first kind. 

/ x1/2 
Now, K (x) = ( £_]  e~X S 

o    \2x/      ° 

where S = 1 - 7-7-7-5-^ + T 
o     l!(8x)   o 

k A.  A.  AT 

j=2 xJ  x   x 

Applying Wasow's algorithm to these terms, 

*2.JjS.T? ^ 
2   2lx(x+l)  x(x+l)Cx+2)  x(x+l)(x+2)(x+3) 

A3 - A. (C   t I|L_ // 
X 
3   3Vx(x+l)  x(x+l)(x+2)  x(x+l)(x+2)(x+3) 

Therefore, T can be expressed as 

00   y 

T = y   °>T  
°  ^Ti x(x+l) „ . . (x+r) 

where V   = A_ rr . + A„. rr „ + A, rr „ + . . . . 
o,r   2 r-1   3 r-2   4 r-3 

These coefficients can be calculated and stored in the memory of the 
computer for recall on demand. 

The calculations for these coefficients, involving Stirling numbers, 
lead to very large numbers in the computation of high-order terms. 

Since the Stirling numbers are always greater than or equal to one, 
we modified them for optimal use of the full range of the computer. 

-       - 

Asymptotic Expansrons for Ordinary Differential Equations,  W.   Wasow, 
Inter science Publishers,  John Wiley,  NY,   1965,  p.   330, 
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The Stirling numbers were modified in the following way: 

125 
S1 = F, F = scale factor, such as 10 

s\  = S^'/Cn-l) 

The scale factor and the number of modified Stirling numbers which can 
be calculated are machine-dependent. The computers at BRL have a range 

from 10"155 to 10155, single precision, which is larger than the range 

of most computers. As can be seen from Table II, for F = 10   and 

n = 150, the modified Stirling numbers range from 10    to 10  . The 
process of scaling the Stirling numbers in this way must then be reversed 
in calculating each term of the factorial series. 

By this transformation, we obtained accurate results (15 significant 
digits) for x > 6 by summing 150 terms. Similar accuracy could be ob- 
tained on most computers using double precision. 

Similarly, K^x) = \\A 
1/2 -*c e  S1 

where S±  = 1 + JJJ^J +  "^ 

oo V 

T _ V 1»r    
1 ~ ~, x(x+l) . . . (x+r) 

r=l 

where V^ = B^ + H^ *  B4rr_3 + . . 

The results for YL  (x) were equally accurate. 

4 
are: 

The asymptotic series for the ordinary Bessel functions, x <_ 25, 

J0(x) = (^f      [P0M cos(x - J) - Q0(x) sin(x - })] 

Ji(x) = [h)    [pi(x) cos(x" ^ "Ql(x) S1 x" ~* 
4 Bessel Functions, Part I, published by British Association for the 

Advancement of Science,  University Tress,  Cambridge, England.,  1937, 
p. 202. 
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1 
4 
7 

10 
13 
16 
19 
22 
25 
28 
31 
34 
37 
40 
43 
46 
49 
52 
55 
58 
61 
64 
67 
70 
73 
76 
79 
82 
85 
88 
91 
94 
97 

100 
103 
106 
109 
112 
115 
118 
121 
124 
127 
130 
133 
136 
139 
142 
145 
148 

0. 
0. 
0. 
0. 
n 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

■0. 

0. 
0. 
0. 
0. 

2625414 
5944163 
6200951 
1416909 
1135215 
4031C51 
7301878 
7409170 
4501C21 
1720066 
4295206 
7221499 
8373262 
6827278 
3977589 
167774C 
5179372 
1180757 
2002407 
2541074 
2424268 
1744953 
9500023 
3918216 
1225C89 
2903199 
5208994 
7062546 
7215646 
5534381 
3171672 
1353256 
4240608 
9743876 
1622151 
1934328 
1630C54 
9554950 
3823646 
1021582 
1774159 
1938651 
1280346 
4857827 
9914948 
9965882 
4354673 
6844C32 
2797597 
1477427 

31038901-135 
07877133-124 
88981095-114 
95161720-104 
36148685E-95 
00240183E-87 
86089758E-79 
60108629E-71 
30711339E-63 
26264944E-55 
54391673E-48 
52063180E-41 
75585929E-34 
G6061237E-27 
43581573E-20 
15729906E-13 
10655300E-07 
71165955E 00 
93190783E 06 
42106383E 12 
88397106E 18 
56761975E 24 
80342511E 29 
15456175E 35 
95716187E 41 
45584933E 46 
83162194E 51 
32117985E 56 
02846948E 61 
18324812E 66 
94679423E 71 
85209439E 76 
80287624E 80 
56698C37E 84 
77246175E 89 
14981343E 93 
839C60495 97 
84811848+100 
08112042+104 
81160150+108 
94653956+111 
71243942+114 
45087299+117 
53348748+119 
59813093+121 
63274595+123 
63384560+125 
48787668+126 
12120229+127 
53080902+127 

0.293390049185972 
0.161631807256184 
0.937263899085794 
0.145745824899596 
0.872724632875019 
0.244485921578491 
0.361878183982837 
0.307506122625604 
0.159290231850353 
0.526244225186191 
0.114831115329136 
0.170161172544539 
0.175105193623330 
0.127434483546970 
0.665766457973381 
0.252791612712235 
0.704743584443506 
0.145466542291410 
0.223832004301461 
0.258158475955319 
0.224137435817219 
0.146958814419687 
0.729268853726516 
0.274247724384982 
0.781856783017240 
0.168899572458664 
0.276096523091475 
0.340768370204050 
0.316568545939851 
0.220455227036434 
0.114501970441310 
0.440823733512481 
0.124873374341855 
0.258006379428166 
0.384836375802625 
0.409407659018037 
0.306267211155246 
0.158431163016062 
0.555606274242301 
0.129004865734295 
0.192739054938949 
0.178944908244716 
0.988621557189148 
0.307581787025027 
0.501359095737511 
0.388006214031004 
0.123698885459199 
0.129991588080456 
0.300552651141317 
0.558451392197723 

131 0.162469629570885-127 
-120 0.348403288776085-117 
-111 0.122805989253782-107 
-101 0.134994681511499E-98 
E-93 0.616964862448953E-90 
E-84 0.138176751796042E-81 
E-76 0.168651283284991E-73 
E-68 0.120810725011220E-65 
E-60 0.536288624778063E-58 
E-53 0.153759178190215E-50 
E-45 0.29.4089524864916E-43 
E-38 0.385045773882694E-36 
£-31 0.352369350644976E-29 
E-24 0.229266634594032E-22 
E-18 0.107555387883677E-15 
E-ll 0.368043389831136E-09 
E-05 0.927441656806729E-03 
E 02 0.173458453446450E 04 
E 08 0.242317917476252E 10 
E 14 0.254129580523208E 16 
E 20 0.200863910466421E 22 
E 26 0.119996196936958E 28 
E 31 0.542840153293270E 33 
E 37 0.186138969273117E 39 
E 42 0.483840847139701E 44 
E 48 0.952645306311109E 49 
: 53 0.141844276858788E 55 
E 58 0.159312784381071E 60 
E 63 0.134510966747108E 65 
E 68 0.850010949437138E 69 
E 73 0.399846121274463E 74 
E 77 0.139095522997561E 79 
E 82 0.355050280369826E 83 
E 86 0.658888038138901E 87 
E 90 0.879348340649532E 91 
E 94 0.833293416906864E 95 
E 98 0.552343491325650E 99 
+102 0.251599210263367+103 
+105 0.771214486559342+106 
+109 0.155126469001113+110 
+112 0.198618366362429+113 
+115 0.155930607458550+116 
+117 0.716280594664574+118 
+120 0.181290891228498+121 
+122 0.233459123119021+123 
+124 0.136972391170442+125 
+126 0.311019186727229+126 
+127 0.209419799774947+127 
+127 0.248534593164330+127 
+126 0.100000000000000+126 

Table II. Modified Stirling Numbers for n = 150 
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Vx)  =(h) [PoW   sin(x - 1)   + Qo(x)  cos(x - I)] 

Yi(x) = (lr)      [P1(X) sin(x " ^ + <Vx) cos(x - ^)] . 
2     2 2     2     2     2 

where    P   (x)^ 1  - -——-=- + -—i—?—— 
o 2 4 

2!(8x) 4!(8x)4 

k    C. 

j=o x J 

2 222 2222? 
and    Q  (x). _       11_ + ££#  .  l2-32-52-72-92 

°      1!(8X)   3!(8x)3     5!(8x)5 

k  D. 

.^  2j+l j=o x J 

Note that Co = |Ao|, C: = -|A2|, . . . , C. = (-l)j|A 

and Do =■ -|A1|, Dj = |A3|, . . . , D. = (-l)j + 1|A2j+1| 

2j 

Similarly, 
k E. JL F. Pl " £ 4j   and   Q VE -1^ 

J=0 x J j=o X J 

And, again, EQ = |BJ, EJ = -|B2|, . . . , Ej = (-l)3|B2j | 

Fo= |Bl|, Fl = -|B3|, . . . , F. = (-DJ|B2j+1| 

For the ordinary Bessel functions, x > 25, 

J (x) = G(x) sin(x) + H(x) cos(x) 

J, (x) = M(x) sin(x) - N(x) cos(x) 

Y (x) = H(x) sin(x) - G(x) cos(x) 

Y1(x) = -N(x) sin(x) - M(x) cos(x) 
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where G(x) = (TTX)
-172 [PQ(X)-Q (X)] 

H(x) = (TTX)-
1/2 [P0(X)+QO(X)] 

M(x) = (TTX)"
1/2 [P1(X)+Q1(X)] 

N(x) = Ox)"172 [P1(x)-Q1(x)] 

manner! X " "' ^ ^ COef£icients are merely arranged in a different 

As before, the results obtained were accurate to 15 significant 
digits for x > 6 by summing 150 terms. A sample tabulation of the 
ordinary Bessel functions from the computer is shown in Table in! 

series6diverged!" ^ CalCUlatG ^ " the Same manner but the fact°rial 

3  HADAMARD SERIES  The factorial series for calculating I (x) 

mg to the previous algorithm. The Hadamard series, useful for ar 
was used instead and has been programmed. g  ' 

In(x) can be expressed by: 5 

ex cose c.Ti2n 
n 

n^ -  r(n+l/2)r(l/2) J0  
e     sin~" e de 

I fxl = e* (2x)'1/2    £  (1/2"n;)m Y(n+m+l/2, 2x) 
nl    r(n+l/2)r(l/2) m=o  ~~i  

m!(2x) 

where Y denotes the incomplete gamma function and (1/2-n) denotes 
Pochhammer's symbol. Jm  uenoT;es 

5 

■tr\JJeSSe\LUnCitinnS'   2ndM->  °-  N-   Watson>  Macmillan Co., N.J..   1948.   n.   P.H4. 3 N.Y.,   1948,  p.   204. 

6 

ImlT^Tp^TloT^'^ ms 55- v-s- ammmt «w»*** 
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Ca)n = a(a+l)(a+2) . . . (a+n+l), ^ = 2 

Y(a,x) = a"1 xa e~x M(l, i+a, x) , 

where M denotes the Kummer function. 

Hence, after substituting and simplifying, we have 

I (x)   -  ^iix)^____  f  (l/2-n)m M (1, n+m+3/2, 2x) 

r(n+i/2)r(i/2)    Lo   -TrTTlSTiT^T-Sn    • 

probJmse 1
Sn0loverflo0wfing

h\SLS^/:/Jri^ ^ ^^ "° 
of the Kummer function'requireHany terms^nT'     ^ Calculation 

the required accuracy.    The solutions of thi u A        ,  for.x=75)   to get 

^t Sblee1v— ---      ' .XSfS^S'SuIS^, 

we ha^r'we^aS ^^SeS^^oT^S bV~ " 
^S^t^eS.,^^^ "*•'■    ThL  - notXmucn7b^:r™ang 

x e I   (x)  =      
0 ro     -.1/2 (2TTX) 

1 + 

2-'(8x)2 3!(8x)3 

^M   =     gX    1/9-        T   --r3 l2-3-5 l2-32-5-7 

dWigitsth?oraTf is'0 Z™^!^/'  "? ^^  15  ^»^ant 

subroutine"^116 iim;ediate.value « verifying the accuracy of the 

diffeStilr^uJ ™    lntegralS "iSe in the -1""- «* "»dinary 
* 

equations. 

Reference 4, p. 271. 
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mmODBOTION 

» is «ell known that by given sufficient spectral data, the entries 

o£ a continued fraction expansion relate intimately to the density func- 

tlon of the inverse Sturm-Liouville problem.*.* The investigation of the 

pole-*ero distribution of a continued fraction with each of its entries a 

different convex function is significant because of the simple implanta- 

tion analytically and numerically. Hoover, although traced back to l9th 

«ntury, the literature she« very little of this kind of study. A 

recent paper by Lee and Brown,* sheds some light on the pole-aero distri- 

bution pattern of the stance function of finite inhomogeoeous ladder 

networks by using the chain matrix parameter method. 

in this paper, continued fractions with complex function entries are 

first studied in a general setting. Ihe pole-aero distribution region 

is described by a conventional root locus equation and is found to be 

bounded in the corresponding complex plane. Ihe applications of the 

theorems are illustrated by examples. 

PRELIMINARY DEFINITIONS 

Let R+ denote the positive real line, C the whole complex plane and 

P.R. any positive real rational function. Two polynomials are said to 
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be relative prime polynomials or simply r.p., if they do not have any 

common factor. 

A.  The set of arcs in C satisfying the root locus4 equation 

1 + 
G(s) 

= 0, ks ■JR+UO1 , 

is denoted by G(s), k Therefore, C-(s), k starts from the set of 

zeros of G(s) at k = 0 and ends at the set of poles of G(s) at k = 

N 
B. Suppose P(s) = k  n 

P i=1 L 
G(s) + and 

N(or N-l) 
Q(S) = k       n 

q   i=l 
G(s) + q. 

If 0 < p.  < q.   < p.+1Vi =  1,  2,.-.,  N -   1,   then the  zeros  of p(s)  and 

Q(s)  are said  to alternate with respect  to  fG(s),  k] .     The  zeros of 

P(aO   and Q(a>)   alternate on  the negative u> = G(S)  axis  of  the «>-plane and 

thus  the  zeros  of p(s)  and Q(s)  alternate along each  locii  of 

1 + ■ 
G(s) 

= 0,  ke |R
+

U0>      in s-plane. 

C. We shall denote the following continued fraction expansion. 

or C.F.,   by F 
IN 

fiz(s),  giy(s)j  if 

V8>   =ZN+~ 
Y„  + Z     ,   + Y + 

N        N-l N-l + Z.   + Y.   + 
1 x + Z1+Y1 

CD 
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where Z. = fz(s), Y. - g.yU), Vi - 1, 2,.-, N, are the entries of the 

C.F. and z(s), y(s) are two different complex functions of s. 

POLE-ZERO DISTRIBUTION OF FINITE CONTINUED FRACTION OF ARBITRARY COMPLEX 

FUNCTION ENTRIES 

Consider C.F. FN 

sides by y(s) yields 

fiZ(s), g.y(s) = A /C , then multiplying both 

wh 

-1 11 J^     _L (2) 

VyU)    S"V+-    77.+ ..•+<:,.+ «,    ' 
%       N-l l l 

ere cu = *(s)y(s).    Therefore,^ and y"1^   are functions of». 

Lemma 1:     In the C.F.    ^ [f^s),  g.yU)] - VV   " fi'  8iÄ+* W" "' 

2,***, N,  then 

a :  the zeros of A>) and y"
1 CN (cu) ^interlace on the negative real axis 

^ n        fm-  n=1  P«-'.N-1, where - CC. 
of a)-plane with 0 <-ai < Yi <ai+1 

for x  L>  d\       ' i 

and - y. are the zeros of A^CD) and y"1 CN (cnj respectively, 

1 N 

\ : V^Uo = 1 and y_ °^)]^0  = £ gi * 

Proof: By elementary property of two-element-kind R-L ladder networks, 

a follows immediately from the expression of (2). To show b^ mathe- 

tical induction is used.  Suppose the expression holds for N - n case, ma 

then 

ön+l   n       n 
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which yields, 

n+l(üJ> = ^l^K+lV^ +y"1Cn(a))J +An(c) 

and 

Hence, 

and 

y" Cn+1(cu) -g^A^a,) +y-1Cn(a)). 

Vl^U=An^U=1' 

y" cn+1 (««) 1^ - 
n     n+1 

=0 = 8n+1 + E g. - E g  . 
i=l     i=l 

This completes the proof of the lemma. 

The following corollary is the direct consequence of the above 

lemma. 

Corollary 1:  If the same hypothesis of the foregoing lemma holds for the 

C.F. FN [f.z(s), g.y(s)] , then 

a2:  the zeros of AN(s) and CN(s) alternate with respect to J>(s)y(s), fc], 

V Vs) I -1 N 

|s|z(s)y(s) = Of ~^"'  ' = S g,. 
= 1 and y(s)~Ac (s) | 

|slz(s)y(s) = o{  i=l L 

The following facts are observed 

:  Consider FN [f.z(s)3 g.y(s) AN(s)/CN(s), then 

Vs)= N   \-l N 
n a. 

1=1 xl 
n 
i=l l 

z(s)y(s) + a 
l. (3) 
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PO 
/N-l   \- 1/ N   \ N-l r 

if z(s) - na(s)/da(s) and y(s) - n^/d^s), where njs) and d&(s), 

I. (s) and db(s) are.r.p., then we have 

Case 1:  n > m, where n = degree of (n (s^s)) , m = degree of 

b 
3 

a 

1   nN 

(^(.^(•»V-i-fn^i)   £('-\) 
and 

n(N-l) /N-l       \-l/   N \ n(N-l)  i \ 

lternate with respect to fnfl(sjnjs)/d&(s)db(s), kj where z  and Z£ a 
ai      i 

Case 2:  for m > n, then the above explicit forms remain the same except 

for the upper running indices of the product of the factors, using m 

instead of n. 

In what follows the decomposition theorem pertinent to the syn- 

thesis of a finite ladder network is established. 

Theorem 1:  Let z(s) = A(s)/C(s) be a rational function. 

Z(s) = FN [f.z(s)5 g.y(s)] , fv  gi£R
+, Vi<N;  z(s) = na(s)/da(s) , 

y(s) - n^/d^s), na(s) and d^s), ^(s) and djs) are r.p., iff. 

A(s) and c(s) satisfy the following conditions, 

a :  the zeros of A(s) and y(s)"1 C(s) alternate with respect to 
4 

jz(s)y(s), k] 
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V [da(s)V
s>]_1A<s) I =1 L        J       {sl^lsjr^Cs) = Of 

and 

[».(-)^(-)]-1[da(.)db(.)]-(N-l)c(8), = X    g, > 0 , 
{81^(8)1^(8) P 0} " -^ gi 

c4:  for n > m, n - degree of (njs^s)), m = degree of (d (s)djs)), 

A(s) and y(s)~ c(s) are polynomials of degree nN and n(N-l); for m > n, 

A(s) and y(s)~ c(s) are polynomials of degree r IGN. 

Proof. The "only if" part:  It follows trivially from Lemma 1 and its 

corollary. 

The »if».part: Let A(s) and c(s) satisfy condition a through c . It 
4 4 

follows from definition B, 

A(s) -( £ a.j l £ [».(.)»„(.).+ aA(.)4b(.)J 

and 

cts) = U Yli   IÄ "i jV-'V-) £ [».('JV') + W-'V-)] ■ 
where 

0<ai < Y± <ai+i,   Vi = i,-2,--, N- 1. 

Therefore, 

A(s)/C(s) 

/    N -l\    N 

y(sH ."  Yi)   ( = gij ^ RsM*) +Y. 1 1=1    /   \ i=i  x/ i=i i i 
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which yields, 

A(a))/y-1c(a))- A(s)/y( s)"1 c(s) lz(s)y(s)  a w 

N , N-1 ,     j- -    m + 1 
\W   + Vl"       + +a10)f 

N-1 , ,„^~2 i     +c   tu + c 
Vl™       +CN-2X +cla+co 

where 

/ N 

> 

n a, i    ,  vi -QJ ^i)"1 (^ gi) '    bo = I «Ü, gi'' 
N        \-l 

and 

., b.  > 0, Vi . 
V     i 

Write, 

»here f„ - ^-1 > °'       % ~ Vl/aS [Vl/aH " VA]   * ° ' 

and 

A*-A(o.)   -  fNcoy"1c(oJ)=aJ7_1ü)N-1+ .— +a*u>+l  , (5) 

then 

a*,  b* > 0  . 
l       l 

Moreover, the interlacing zeros of A(o>) and y^cU) in the negative real 
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axis of co-plane implies that the zeros of A* and y"1 c* alternate on the 

same negative real axis, by hypothesis a^_   through c^ and Fig. 1 shows the 

locations of the zeros of A*.  Therefore, the zeros of y'V and A* 

interlace on the negative c-axis starting with the first zero belonging 

to A* as shown in Fig. 2 following the same argument. Hence, A* and y"V 

can then be written as 

N-l 
A* = k   n (tu + of'-)  , 

a i=l { x' 
and 

i       N-2 

s» I! (« + -vf) ,  i- 1, 2, .... K. !,  0<a. <Y. y c* = k 
c*  .._, \   'i / ' -  -» "->   , i\ - x, u < a. < v. < a 

i+1 

where 

/N-l    \-l 

followed from 

and 

A*|    = A(co) - fay^cCo))!    = 1 
w = 0 *       '«, = 0    ' 

/N-2    \-l/N-l 

followed from 

^0 *  oK)  i=l  x  %  iii gi 
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It is easily seen that A* and C* satisfy conditions a^ through c^ 

by simply substituting back co=z(s)y(s) to A* and C*, except for the 

degree of A*(s) and y"V(s) are n or m  degree less than that of corre- 

sponding degree of A(s) and y(s)"1c(s) respectively. 

Therefore, this process is continued until N = 1, in this case 

A1(o))/y"
1C1(<ö) = a^ + l/c1 , 

where a±  = fx > 0 and c%  = gx > 0 . 

Q.E.D. 

BOUNDEDNESS OF THE MODULUS OF ZEROS AND POLES OF FN [f^U), g^U)] 

In what follows the uniform bound is found. 

Lemma 2: , In the C.F. FN [f.z(s), g.y(s)] , if f., g^ Vi,  then 

B/^{y(s)FN[f.Z(s), giy(3)]}z(s)y(s)^>^-V^ real and .^ Y. vhere 

Y. are the poles of y(s)l?N [f^C's), g^U)] ^s)y(s)==tü 
in the ^U 

Proof:  Straightforward computation shows 

Lane. 

o/ocu 

where - Y- 
are the Poles of ^M*  ^ foregoinS relation imPlies that 

if 0/9co[yFN_,((»)] > 0, then o/Bu) [yF^)] > 0. But N - 1, 2-.are triv- 

ially true and hence the lemma. 

3:  In the C.F. FN [^«(s), g.y(s)] , if f^ g^R*, Vi, then Lemma 
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a/af. 
i{*'Mv<'>. vH }.(.w.)-. <° 

and 

3/BSi{y(S)FN[Vs,,giy(s)j|2(s)y(s)=M<0jVffi 

real and nonpositive. 

Proof:    It  follows  from (2), 

a/af. N yFN(u))J    < 0, Vuj sR+ , 

a/a 
% yFN(co)] - 

[yFg(^)]: 
<o,V cu 

Let 

yF*(a>)  = g. + ^ 1 1        1 
fj-lW +   Sj_i+  ••••+f1u)+   gx 

(7) 

Then, simple computation yields, for any k < N 

3/öfk [yFN
(üj)] = C- l)2(N"k) (l) 

[y^)]2[yFN_1(oJ)]
2...[yFk(U))J 

a/c Ö8k[yFN(c")] = (- l)2(N-k)+1__ 
yFg(cu) ••■[yFk((°)]2[yFJ(») 

It is obvious that the right hand sides of the above 

+ 
equations are 

nonpositive for «,?R   This completes the proof of the lemma. 
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Theorem 2:  Let there be two C.F., FN jf..z(s), g^U)] 
and F^ |fJ£z(s), 

g*y(s)l .  If f.> f*eR+, g. > g*eR+, i < N, then a± < Q*f Vi < K and 

v < Y*. Vj < N - 1, where - a.,  - a* and - y , - v* are the zeros and 
j   j i    i       J    J 

the poles of yF (tu) and yF*(cu) respectively. 

Proof: Since we have by Lpmma 2, yF.X^ is a monotonically increasing 

function of tu "f -  y.,  by Lemma 3, same function is an nonincreasing 

function of f. and g., Vcu , real and nonpositive. Therefore all the 

zeros of yF (cu) shift to the right on the real u>-axis as all the entries 

f and g. increase in value, as shown in Fig. 3- This gives a. < Q^ , 
i 1 A A 

Vi   < N.     The result of the poles of yF (a>)  and yFJj(to)   follows by using 

the same argument to the function of JyF  (tu) j "     and it is omitted here. 

Q.E.D. 

It is noted  that  if  the entries  of the C.F.  FN jf^s),  giy(s)J   - 

A  /C    are uniform,   f    = feR+,  gj,   = gsR~,   i < N,   then we have 

Aiw)  =  sinh (N + l) a(cu)  -   sinh Na(cu)/sinh a(cu) (8) 

y~lcjw)  = g  sinh Na(u>)/sirih a(iu)   , (9) 
N 

where 

cosh a(tu)  = 2 + fgu)/2   . 

Lemma h:    Let  the entries of the C.F.  FN [^(s),  g.y(s)j *> A^/^ be 

uniform as  defined above,   then 
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Yk=2^1 - cos^HJ /fg, Vk <N- 1 (10) 

and 

b : 2 
5 

1 - COS (2k- - Dili 

N    J 
/fg <ak < 2(1 - cos hJ7 

N 
'fg, Vk < N. (11) 

Proof:  Substituting the following identities into (8) and (9), 

cosh- Na - a*1 n r 
k=l L 

cosh a - cos (2 k- 1)TT 

2 N ] 

sinh Na » 2   sinh a Ü 
N-l r 

k=l L 
cosh a - cos 

HJ' 

results in a5 and b5 of the lemma by using the same argument as in 

Theorem 1 concerning to the sum of two polynomials with interl 

on the real axis. 

As a consequence, the following theorem.^ established. 

Theorem 5: Let - a., - Y. be the zeros and'the poles of the C.F. 

acing zeros 

'»[V'W^U.M, ;) = w-  If f±,  Z±eR  , 'then 

0 <2 I 1 - CO£ (2 k - QTT fJL]^«\<^- 

2{l - cos kJT 
N - 

fg < aN < h/f g Vk < N ■ (12) 

where 

f = ^ V   ? = inf V   f = sup f and g = SuP  g. 
1<N i<N i<N 1        i<N  x 
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Proof:  The above result follows immediately from Theorem 2 and Lemma K, 

since the zeros and the poles of the C.F. y(s)FN jf^s), 

9  vCs^l I / N / N    shift to the right on the negative real tu-axis by sr  J I z(s)y(s) = tu 

the increasing in value of all its entries £±,  g.Vi. Therefore, these 

zeros and poles are bounded in modulus by that of the zeros and the poles 

of the two corresponding C.F. of uniform entries each with f = inf f^, 

g = inf g. and f = sup f , g = sup g , respectively. 

i<N 

i<N i<N        i<N 

Q.E.D. 

ASYMPTOTIC DISTRIBUTION OF THE POLES AND THE ZEROS OF THE SEQUENCE OF 

THE CONTINUED FRACTIONS 

Let |F [N
fiz(s), flg^Cs)]} be defined as a sequence of C.F. for 

N = 1, 2,"" Now for each fixed N, the entries of the corresponding 

C.F. are f± = ^^  and ^± = ^c±^'» i <"N  In what follows the re_ 

sult pertaining to the integrated networks are derived. 

Theorem h:     If a±  and c±, for all N and i, of the above defined 

sequence are bounded away from zero, then ^C^  and NYk 
= °("   ) for 

sufficient large N and k, where - ^ and - ^  are the kth zero and 

pole of the corresponding C.F. ^jj ["^^(s), N§iy(
s)j in the w  = z^s)^s) 

plane. 

Proof: Since a. and c. are bounded away from zero for all N and i, 

we choose 

a  = sup „a. for all N and c = sup  c for all N . 
i<N KK 
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Hence a sequence of uniform C.F. |FN [^(S), i^Cs)]} with f^  = a/N0 

and gN = c/W  has the following relationship by Leimna k, 

1 - cos <2k- DTT 
2 N 

Na+ß 

-IT- < A < A ' VN> k < N - 1 , N k  NTk ac 

where ^ and NYk are the kth zero and pole of the uniform C.F. F [i^:(s), 

gNy(s)  in the cu-plane. 

It follows from Theorem 3, we have, 

[- 
(2 k- 1)TT cos 

2 N 
—=- <A< A »  VN, k < N - 1 

ac 

The conclusion of the theorem follows. 

Q.E.D. 

RIMARK 

Theorem h  is used to investigate the asymptotic behavior of the 

zeros and the poles of the nonuniform C.F. in cu-plane as well as the 

convergence of A^CD) and y~ (^(u)) as N - » .  It follows in particular 

that if Nfi = ^/N and ^g±  = Nc£/N, ^a±, ^c±  bounded away from zero, 

then N«k and ^ = Oft*2), as N - «», where ^ ^ are the zeros and the 

poles of the corresponding C.F. This result consistent with the result 

obtained from solving the transmission line equations for the distributed 

networks. 
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EXAMPLES AND APPLICATIONS 

Example 1: Let the entries of the C.F. be (fy fg, fj_) = (8/15, 

8/5, W/5) and (g5, g2, 8i) - (5/8, 5/15, 1/15); »(a) « s/(s - 1) and 

y(s) = l/(s - 1). 

Simple computation yields 

F
5[

fiz(s)' giy^s^J = A3/C3 = 

flf iq s6 - 67 s5 + lte s^ - 179 s3 + ite s2 - 67 s" + 15) ^ 

15(8 s5 - 3^ s' + 63 s5 - 63 s2 + 3^ s - 8) 

and[Z(s)y(s), k] - [s/(s -  l)2, k]   which satisfies the root locus 

o 

equation of  1 + k(s "   ^     = 0,  ke {oUR+| and  is  shown in Fig. K. 
s 

It follows  that 

^ -(I/15)[S - (1 + lfi/2)] [s - (1 - J>|5/2)] [s - (5 + 3 €l/6)] 

[s - (5 - 3 fa/6)] [s - (9 + J ^9/10)] [s - j fl9/l0)] 

y"S =(1/8)fs" (5 + j.^A)^s' (5" 3^TA)^S " (T + jNri5/8)^ 
[8 - (7- j{l5/8)] . 

The zeros of A? and y~\ are shown in Fig.  5-    As can be seen that 

they alternate with respect to Jj>/(s -  l)   ,  kj . 

In example given below,  Theorem 1 is used to realize a ladder net- 

work with a given immitance  function. 

303 



Example 2:  Let the poles and the zeros of a driving point impedance 

Z(s) be specified at - 1, - 2, - 3 + j \jY/2, - 3 + j \|T5/2 and at - 3 + 

j^3/2, - 3 + jfll/2, - 3 + j fl9/2, respectively. 

Synthesis procedures: 

1) Construct the pole-zero plot for z(s), as shown in Fig. 6. 

2) Find an arc as shown in Fig. 7 passing through all these sin- 

gularities. This arc is described by [(s + 1) (s + 2), k | by inspection 

hence, let z(s) = s + 1 and y(s) = s +2. 

3) Multiplying out, results in 

k (s + 9 s5 + 42 s + 117 s5 + 2C6 s2 + 213 s + 105) 
Z(s)  = _    a 

k (s5 + 8 s^ + 31 s5 + 68 s2 + 84 s + 48) 

4)       Since A(s) ,= 1,  yields k    = 1/15,  and 
<s|(s + 1)   (s +2)  = 0> a 

(s + 2)"  C(s)| .  = 4,  yields k    = 1/2  (note that the 
|s|(s + l)(s +2)  = 0} C 

number 4 is arbitrarily assumed which happens  to be  the total capacitance 

of the ladder network.),   therefore, we have 

(s+2)z(s)! _ 2(a) + l)(q) +g)(cu +3) 
(s + l)(s +2)  = a) 15(a) +2)(u) + 4) 

5)  Hence C.F. gives (f$, fg, y = (2/15, 6/15, 24/15) and (g , 

82> Sj) 
= (I5/6, 15/12, 1/4). Fig. 8 shows the corresponding network. 
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CONCLUSION AND SUMMARY 

The complete pole-zero pattern of a continued fraction of nonuniform 

entries is established using arcs in the s-plane defined by a simple root 

locus method. 

A process of decomposition of rational functions satisfying the 

foregoing pole-zero patterns into continued fractions is used to syn- 

thesize general inhomogeneous ladder networks. 

The analysis and synthesis results established are being extended 

to the case of infinite ladder networks (N - «) and the problem of the 

transition between lumped and distributed networks. 
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The root locus equation of 1 + k(s - 1) /s = 0 

Figure h 
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AUTOMATIC NUMERICAL INTEGRATION USING 
VP-SPLINES 

Royce W. Soanes, Jr. 
Research Directorate 

Benet Weapons Laboratory 
Watervliet Arsenal 

Watervliet, New York 12189 

ABSTRACT. A method of exploiting VP (variable power) splines 
for the purpose of automatic numerical quadrature is presented. The 
essence of the adaptive method given here is to select mesh points 
near the node where an upper bound on the local area discrepancy be- 
tween the trapezoidal estimate and the local VP spline estimate of 
the integral is a maximum. A comparison is made with Gaussian quad- 
rature for an integral containing a parameter. 

1. INTRODUCTION. The term "Automatic Integrator" refers to ^ 
numerical integration algorithms which adapt themselves to the parti- 
cular situation at hand. Automatic integrators are particularly < 

handy for obtaining dependable integral estimates during computation 
on a problem which may involve many integrals and whose nature may 
change from time to time as the parameters involved fluctuate. They 
are also useful in situations where the integrand may be expensive< 
(time consuming) to evaluate as is the case with multidimensional in- 
tegrals. 

The basic philosophy behind the automatic integration in this 
article will be to spend some computational overhead time in monitor- 
ing the region of the integrand where the VP spline interpolater is 
making the most significant contribution to the integral estimate 
(relative to the linear interpolater) and evaluate the integrand in 
these significant regions. 

As increasingly more information is accumulated about the inte- 
grand, it will be possible for the algorithm to gradually abandon 
evaluation of the integrand over large regions of uniform behavior 
and transfer its attention to regions where the integrand behaves more 
abruptly. This process will generally produce a nonuniform mesh and 
it will be necessary to have on hand an interpolater which is smooth 
but stable. Variable power splines satisfy this requirement since^ 
they are twice differentiate and they may be given some local deri- 
vative control which renders them less likely to inject interpolator 
oscillations. 

2. SUMMARY OF BASIC VP SPLINE FORMULAS. The interpolator 
functions used here are the VP (variable power) splines given on the 
jth subinterval by Eq. (1). 
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m* 
0) ^.(x) = a.+b.r.+c.r^+d.d-^) 1 

where k^ = m^+n^-m^n^ , 

r^ = (x-Xj)/^-, and 

The four parameters aj, bit a  and df may be eliminated in favor 
of yu yi+l, y\  and yj+1 . 

(2) a7- = kiyi+A1(m1qr(m1-l)yj-y}+1) 

(3) bt = ^ (-m1n1q1-Hn1yf 4-niy{+i) 

(4) ct = A1(n1qi-yj-(n1-l)yJ+1) 

(5) dj = A1(-m1qi+(mi-l.)yi+yJ+1) 

where qt = (y^-yj)/^ 

If second derivative continuity is enforced at the interior nodes 
and the curvature is set equal to zero at the end points, the follow- 
ing tridiagonal system of equations may be obtained. 

(6) (mrl )y\+y'2  = m^ 

(7) A1y'_1+Biy'+C|y'+1 = Dj (Ki<N) 

(8) yN-i + (nN_rl)y^ = n^^^-, 

The coefficients in Eq. (7) are given by equations (9-12). 

O) A1 = m1.l(m1.l-l)/(k1.l£1_l) 
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(10) C1 = n^-DAk^) 

(11) Bi = (n1..1-l)A1+(in1-l)C1 

(12) Di = ni.lAiqi.l+miCiq1 

The solution to the system described by equations (6-12) yields 
the nodal derivatives which insure continuity of the second derivative 
of the Interpolator. 

All that 1s needed now to completely define the interpolator is 
the setting of the nonlinear parameter vectors m and n. The values of 
mi-i and n< are set by obtaining a VP spline over the restricted node 
set [xi_i, xi, xi+lL Setting the end curvatures equal to zero and 
setting v5 equal to the slope of the line through (xi.yi) which makes 
equal angles with the linear interpolator on the left and right of x^ 
yields Eq. (13). 

(13)  n^j, - (VA1-1>.. I Cqf „-!+! >/Cqf+l > 
1/2 

Equation (13) sets the m's and n's while assuming a lower bound 
of L on them I.e., either ni = L or m^i - L. This lower bound L must 
be greater than 2 and it need not be greater than 3. Values of L 
greater than 3 tend to produce too much flattening of the Interpolator 
between nodes. 

3. INTEGRATION FORMULA. If the VP spline is integrated over the 
itn sublnterval, we may obtain Eq. (14) after some rearrangement and 
simplification. 

(14) /Xi+1yi(x)dx = (£i/2)(yi+yi+1) + A1 
x1 

where 

A -% 1(1+^) {^(yj-^) + ni(qryj+1) } 

+ 2(yj+1-y;)l / \2k1(B1+l)("1
+1)'/ 
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The quantity A,- 1s the discrepancy between the trapezoidal esti- 
mate and the VP spline estimate of the Integral over the 1th sublnter- 
val. This expression for Ai 1s not dependent on the existence of 
second derivatives. 

If qj 1s between qi_-j and q1+^ and yk Is between qk_-j and qk 
(k = 1, 1+1) and m-f = n^ ■ m, the maximum value that |^| may take on 
1s £flqi-rc'l+ll/(6+4/2) for an m of 1 + /2. 

4. SIGNIFICANT NODES. An Initial mesh over the desired inter- 
val of Integration must be assumed. This mesh may be uniform, or 
prior analytic knowledge of the Integrand may prompt the Insertion of 
a jode or two near an abruptness In the integrand. In any case, the 
initial mesh may be uniform or non-uniform and may contain as few as 
three points. 

The relative significance of the various points in the sample 
must be determined first. This will be done by considering the be- 
havior of a VP spline with zero end curvatures over the restricted 
node set [xj i, xu  xt+1]. Enforcement of second derivative continu- 
ity at node 1 yields Eq. (15). 

(15)  ^ = njAij.j = (^/fcj.jKq^-ypAyl-q.) 

This equation Implies Eq. (13) with y\  selected as previously 
mentioned. If Eq. (14) is used with the conditions for zero end cur- 

; re?.A tw°sfmple integral formulas may be obtained for the three 
point VP spHne. 

(16) 
xi 

'xt Jl-lM*
1 - U^/ZHy^+y^ + iij 

0?)  / 1+1yi(x)dx = fe^Xy^y^) + Vj 

where 

and 

"1 - (Af.i/2)(q1.l-yj)/(m1.l+l) 

2 
vi = U^Zjfyj-q^/fn.+l) 
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The two area discrepancy terms Uj and Vi will be used to deter- 
mine the significant points of the sample. 

At this point, we want to notice the effect of y\  on uj and vi 
as 1t varies between the left and right difference quotients qi_i and 
qj which are taken to be the reasonable limits for the assignment of 

yj locally. 

From Eq. (15) we see that as y- approaches q1t Ri approaches 
infinity  The value L is therefore assigned to mi-i as ni becomes # 
Infinite! The quantity U1 therefore approaches its extreme value ur 

as v-j approaches zero. 

(18) u* - (i?_i/2)(qi-Tqi)/(L+D 

Similarly, as y\  approaches qi_-|, Ri approaches zero. Hence, ni is 
assigned the value L as mi_i becomes infinite. We therefore have vi 
approaching its extreme value vn- while ui approaches zero. 

(19) V*= (£f/2)(qi.1-qi)/(L+l) 

These extreme values of ut and v* gives us the significance 
weights that we will assign to the nodes in the sample. 

(20) Wi = Ui-i+l?) hi'^1-11 

5. INTEGRATION ALGORITHM. The weight given by Eq. (20) is pro- 
portlonal to the sum of |ufI and |vf|; It 1s an easily calculated 
measure of the possible disagreement which may exist between the VP 
spline estimate of the integral locally and the linear estimate. It 
behooves us, therefore, to examine the integrand more closely near the 
node where wi is presently the largest. An algorithm for automatic 
Integration may therefore be summarized by the following procedural 
outline. 

I. Generate an initial (not necessarily uniform) mesh over the 
interval of integration, evaluate the integrand and compute 
the trapezoidal estimate of the integral. 

II. Compute the ^h nodal significance weight according to Eq. 
(20) for 1<1<N. 

III. Find the node where wi is the largest. 

317 



IV. If the maximum weight is less than a given fraction of the 
trapezoidal estimate or 1f the number of functional evalua- 
tions exceeds a given amount, skip to VII., otherwise con- 
tinue to V. 

V. Evaluate the integrand at the midpoint of the ,-th (i-ltn) 
subinterval 1f ^ is larger (smaller) than iu\. 

VI. Update the x and y arrays and the trapezoidal estimate and 
recalculate the three appropriate nodal weights. Return to 
step III. 

VII. Set the m's and n's according to Eq. (13). 

VIII. Compute the nodal derivatives using equations (6-12). 

IX. Compute the VP spline integral estimate using Eq. (14). 

6,^A T!SJ CASE- The following integral containing a parameter 
is considered here as a test case; it is obtained from a Weibull 
probability density. 

2        b 
(21)  / k(b)xb"Vx dx = 1 

0 

where  k(b) = b/(l-e"2 ) 

As b becomes large, the integrand will become a tall spike cen- 
tered near 1.^ The performance of VP spline adaptive integration will 
be compared with that of 32 point Gauss-Legendre quadrature. It is 
obvious that any quadrature formula using a constant mesh may be de- 
feated by this integral if b is chosen large enough. The purpose of 
the comparison is therefore not to belabor this fact but to indicate 
that the adaptive method is capable of handling even this pathological 
case accurately and stably. a 

318 



The following error table was computed for an L of 2.5. Only 32 
functional evaluations were made for the VP spline integral estimates. 

VP GAUSS 

2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
40 
50 
70 
90 
110 
130 
150 

.00012 

.000019 

.00016 

.00028 

.00054 

.00048 

.00014 

.00010 

.00041 

.00066 

.00013 

.000018 

.00048 

.00034 

.00037 

.00071 

.00019 

.00031 

.00043 

.0010 

.00074 

.00062 

.00000000000000036 

.00000000000000014 

.0000000000060 

.00000030 

.000043 

.00011 

.0032 

.0069 

.0034 

.012 

.04 

.079 
-.13 
-.18 
-.23 
-.47 
-.60 
-.78 
-.90 
-.95 
-.98 
-.99 

For well behaved Integrands, Gaussian quadrature seems to be un- 
beatable - as evidenced by the early entries in the table. The 
Gaussian accuracy deteriorates, however, as its mesh becomes less 
capable of detecting the spike. By the time b has reached a value of 
150, Gaussian quadrature has "lost" 99% of the integral value. Adap- 
tive VP spline integration, although not as accurate as Gaussian for 
small values of b, displays a uniform error pattern which is independ- 
ent of b over a considerable range. 

Needless to say, a much better parametric study than has been 
done here could be done for a variety of integrands. Fortran list- 
inqs of relevant subroutines are given here as an appendix for tnose 
interested in using adaptive integration in a practical setting or for 
those who might be able to do a more complete parametric study. 
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S«e*ftüT«ff-VPSfJ-IWNTS,X,Y,B,M»N*      
C     VPSD - VARIABLE POWER SPLINE DERIVATIVES -VPSOOOOl- 
t            ^f° SULVES A TRIDIAGüNAL SYSTEM FOR THE NOOAL VPSD0002 
C     DER VATIVFS WHICH INSURE SECOND DERIVATIVE CONTINUITY "" VP500003- 
-C     OF THE VARIABLE POWER JVP) SPLINE 'Vt C0NT'NUITY             VPSD0004 
C     NPNTS,X,Y=PATA VPSD0005 

-e     e=NUOAi-ü€Rl-vftTlV«   VPS00006 
C     M,N=VARIABLE POWERS VP-S0OOÖ7- 
—     IMPLICIT R£AL*8 {A-H,ü-Z> VPSD0008 

DIMENSION X<1), Y<1>, D(l), M(l), NU) VPSD0009 
DOUBLE PRECISION M, N, KI, KIM VPSDOOIO 
DIMENSION A(IOO), B(IOO), C(IOO) VPSDOOll 

 NP=NPNT^ .   :__..    _ _                     VPSD0012 
NM=NP-1 ""      '■"•■        — VPSDeOiS- 
-DXIM=XI2)-X(H VPSD0014 

_     QIM=(Y(2)-Y<1))/DXIM VPSOOOi-5- 
KIM=1.-(MI1)-1.)*(N(I)-1.) VPSD0016 
B(1)=M(1)-1. VPSD0017 
C-Ü)=i-;    VPSD0018 
D(l)=M(l)*OIM """""'                   VPSßOöW- 

■t ■    DEFINE TRIDIAGONAL SYSTFM VPSD0020 
DO 1 1=2,NM -  VPS00921- 
DXI=X( I + D-xil) VPSD0022 

    Q' = «VU + l»-Y(M)/oxi VPSD0023- 
--Kl~l.-<M<i-)-l.)*<N+I )-i.i                      VPSD0024 
MI)=M<l-l>*(MU-l)-l.)/(KIM*DXIM» '"'            ■ VPS000Z5H 
CIII = ill)*l((II)-l.)/|K|*D)(n VPS00026 i 
Bm = <N(I-l)-l.)*A(l)-MM(l)-i .)*C(I) ~"  VPSD0O2?-! 
D{I>=N{I-l»*AII»*oiM+M(I>*ciI)*OI VPSD0028 ! 
OXIM=DXI                       U1 VPSD0029-I 

 OIM=QI  VPSD0030 
KIM=KI '"'""  "                   VPS0003i- 

— i CONTINUE         -. _._  .. .  _ VPSD0032 
A(NP)=1.  . VPS00033 
BINP|=,W(NM)-1.             VPSD0034 
D(NP)=N(NM)*QI VPSD0035- 

-€     RtOUCF MATRIX BetBW THE-DIAG0NA1  VPSD0036 
DO 2 1 = 1,MM ""  '"'"  ;: VPS00O37- 

-     Q=A<I + l)/e(H         VPSD0038 
B(I+l)=B(I+l)-o*C(M VPS00039- 
DII+1)=DII+1I-0*D(IJ     VPSD0040 : 

2 CONTINUE VPSD0041- 
:€     BACK SUBSTITUTE- . _ VPSD0042 

DO 3 J=1,NM                             """"'  VPSO004-3- 
I=NP-J VPSD0CK4 
D(I+l)=D(I+l(/p(i+1)  VPSD0045 
0(1)=D(II-C(I)*D(I+1» VPSD0CH6 

3 CONTINUE -      VPSD0047 
—    Om«D(l)/RH|   .       _ VPSD0Ö48 

RETURN ~ VPSDOOV*- 
END VPSD0050 

~     VPSD0051- 

320 



c 
■L 

c 
c 

-c- 
t 

~c 
c 
c 
c 

~~—AOVP"0001 
ADVP0002 

 ADVP0003 
ADVP0004 
A0VP0O05 

EXTRA POINTS TO BE GENERATEADVP0006 
 AOVPOOOf- 

-e- 

 SüöROyUNP -AOVP51   H^,NPNTS.X.Yf*lNEX»MAXEX,NTOTVHNTrTOLTt+- 
AOVPSI   -   ADAPTIVE   VARIABLE   POWER   SPLINE   INTEGRATION 

-F=INTEGRANU 
NPNTS,X=INITIAL   MESH 
Y=INTEGRAND   VALUES 
MINEX,MAXrx=MINIMUM   ANU   MAXIMUM   NO.   OF   

 -^Ttrt^-ftJTAi-t*Oi-«F--POiNTS-ftl THFSAMPLt   ~ 
YINT=DEFINITE INTEGRAL 

.   AOVPSI MAY EASILY ÖE CHANGED TG YIELO THE INDEFINITE  - 
INTEGRAL AS WELL 
TOL=STOPPING TOLERANCE '^ 
IF TOLERANCE IS MET, TOL WILL BE GREATER THAN THE MAXIMUM LOCAL 

 lNTtGRAL-Pt"SCftt1»AN<:Y- OlVIOf-0 6Y THt TRAPEZOIDAL €STlMAf£- 
THIS ROUTINE CALLS VPSD AND MNSET 
IMPLICIT REAL+8 IA-H.O-Z) 
DIMENSION X(l), Yd) 

—- DIMENSION BdOGf.MdOO), NdOO), WdOO) 
DOUBLE PRECISION M, N, L, Kl  

-—eoMMm-m^y-Y+N+i-oo) • 
T0LLP = T0L*(L+1. ) 

 EVALUATE-INTEGRAND OVER INITIAL MESH   
DO 1 I=1,NPNTS 

1 Yd )=FtXH))   - - ■ "      - • 
TIN=0.   

 NEX=0  
NTOT=NPNTS 
NM=NT0T-1 " 
COMPUTE TRAPEZOIDAL ESTIMATE OF INTEGRAL 
DO 2 1=1,NM 

2 TIN = TIN+(Xd + l)-X(I))*IY(I)+YlI*l))         ^  
 DXTM=X<2)-Xd»   

ADVPOOOfl 
ADVP0009 
ADVP0010 
ADVP0011 
ADVP0012 
-frBVPOO«- 
ADVP001A 
ADVP0015 
ADVP0016 
A0VPOO17 
ADVP0018 

8 
9 

10 

WEIGHTS FOR EACH NODE 
0IM=(Y(2)-Y(1))/DXIM 
COMPUTE SIGNIFICANCE 
DO 3 1=2,NM 
DXI=Xd + l)-Xd)  -   -- •-— 
QI=(Y(I+1)-Y(I))/DXI 
H<I )={DXIM**2+OXl**2)*DA6SIOI-OIMf 
DX1M=DXI 
QIM = OI    —  -  
CONTINUE 
FIND MOST SIGNIFICANT NODE 
WMX=W(2) 
IMX-2 -*  
DO 7 I=2,NM 
IF IWMX-Wd») 5,6,6 
WMX=W(I) 
IMX=I X 

CONTINUE 
CONTINUE    
CHECK FOR EXIT 
IF INEX-KINEX) 10,8,8 
IF (WMX-TOLLP*DABS(TIN)) 21,21,9 
IF (NEX-MAXEX) 10,21,21 

c— 
CONTINUE 
I5I=1NDEX- 
1SI=IMX 

OF MOST SIGNIFICANT SU6INTERVA1- 

 ADVP0019 
ADVP0020 

• *0VPO021 
ADVP0022 
A0VP0G23 
ADVP0024 

—A0Vf>OO25-i 
ADVP0026 
ADVP002? 
ADVP0028' 

— A0VP0029! 
ADVP0030 

 AWP003*- 
ADVP0032 

- ADVP0033 
ADVP0034 

— ADVP0035 
ADVP0036 
 ABVPÖ037- 

ADVP0038 I 
ADVP0039 ' 
ADVP0040 
ADVPOOM j 
ADVP0042 j 

s—*DVPO043-i 
ADVP0044 ! 

— A0VP0045; 
ADVP0046! 
AOVP0047 
ADVP0048 

—AOVPBOA9- 
ADVP0050 

-■ ADVP0051 
ADVP0052 
ADVP0053 
ADVP0054 
 A0VP0055- 

ADVP0056 
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 -tf—rxn-Mx-tt*xi-ti«tx*ti--2.-*xriMx-) )-«■,- lur?  
11 ISI=1MX-1 
12 CONTINUE 

COMPUTE POINT TO BE INSERTED 
 XI = <XUS11*XUSI + 1) )/2.   

YI=F(XI) 

 SHl-Pi^-ARftft^^-Tü-K-r^MT-fJf1—f-Si  
K=NTOT 

 *SH=NTOT-ISi --■   •- 
DO 13 I=1,NSH 

— - X<K+H=X<K) 
Y(K+1)=Y(KJ 

 tt1* + l)=>MtC1  
K = K-1 

13 CONTINUE -   -       - - 
1=1SI+1 
X(I) = XI    
Yd )=YI 

 NM=rtT8T : ■—■ ■  

-ÄOVP005T- 
ADVP005P 
ADVP0059 
ADVP0060 
ADVP0061 
A0VP0062 
ADVP0063 
ADVP0064 
A0VPO065 
ADVP0066 
A0VP006T 
ADVP0068 
"ADVP©Ofr9~ 
ADVP0070 
ADVPO071 
ADVP0072 
AOVP0073 
ADVP0074 

NEX=NEX+1 
    NTOT=NTOT+l 
C     RECALCULATE 
C     CONTRIBUTION 

IMIO=I 
 1 b=i -i  

12=1+1 
IF U1-H 14,14,15 

14 11=2 
 15 IF -H2-NT0T-J—17,16»16 

16 I2=NM 

NEIGHBORING WEIGHTS AND COMPUTE ADDITIONAL 
TO TRAPEZOIDAL ESTIMATE OF INTEGRAL 

-i-7~OX1-tt=-X+i-H—Xi-t±-ii— 
0IM=IY(I1)-Y(I1-1))/DXIM 
00—20   l=H-rf2  
DXI=X(Itl»-xm 

■ -QI =tY-( i + H-¥^-m /OX I  
W(I)=(DXIM**2+DXI**2)*DABS(0I-0IM) 
I F   H- i MID)    19»18ri-9  

18 TL = DXIM*(Y(I-1)+Ym ) 
 TR=DXI*<Y< U+Y-H + 1M-     

TM=(DXIM+DXI)*(Y( I-D+YI 1 + 1) ) 
TIN=TIN+<TL+TR-TM)- 

19 DXIM=DXI 
 QIM=OI  
20 CONTINUE 

-GO   ro *  
SET   M'S   AND   N'S 

21 CAtT_   M*SET   INTOT,X,Y,H,N,L» 
COMPUTE   NODAL   DERIVATIVES 

 C-A-L-t— VPSe-INTi3T-,X,Yf-B,«,W  
COMPUTE INTEGRAL OF VP SPLINE 

—  YINT=0.    
DO 22 I=1,NM 
ÜXI=XU + l»-X-(H      
QI=(Y(I+1)-Y(I))/DXI 

 T=YH)+YII + H—  

ADVP0075- 
ADVP0076 
ADVP0077 
ADVP0078 
ADVP0079 
ADVP0080 

-AOVf*t3t38t- 
ADVP0082 
ADVP0083 
ADVP0084 
ADVP0085 
ADVP0086 

—AOVPÜ087- 
ADVP0088 
AÜVP0089 
ADVP0090 
ADVPO091 
ADVP0092I 
ADVPÖ093-, 
ADVP0094 i 
ADVP0095 -! 
ADVP0096 , 
ADVP0097, 
ADVP0098' 

-ADVP0099- 
ADVPOIOO; 
ADVPOLOi-j 
ADVP0102 
ADVP0103 
ADVP0104 

-AOVPOi-05-' 
ADVP0106 
AÜVP0107- 
ADVP0108 
ADVP0109- 
ADVP0110 
-AOVPOll-t- 
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Ei=iKi*i.)*(Mm*(n(i)-on*N(i)*«Qi-D(i*i))> 

E3 = DXl/(KI*(M(I)-t-l.)*«N«I) + l.)) 
CI = ÜX1*(T*E3*<E1*E2M 
YINT=YINT+CI . 

YINT=YINT/2. 
-— RFTURN 

ENO 

- ADVPOll-2- 
ADVP0113 

-ADVPO1 1* 
ADVP0115 
ADVP0116 
ADVP0117 
ADVPOUO 
ADVP0119 
ADVPOUO 
ADVP0121- 

C 
■C-— 

C 
C 
c 
-c — 
c 
c- 

^^SEf-   MNSETSE7S   THE   H'S   AND   N'S   FOR   A  VP   SPLINE          

—- NPNTSrX,Y=DATA  
M,N=VARIABLE POWERS FOR A VP SPLINE   

rL
MSsT

RBE°GR?A?ERMTHANN2 AND NEED NOT BE GREATER THAN 3 

 ^N THE LEFT AND RIGHT OF THE POINT 
IMPLICIT REAL*8 (A-H.Ü-Z) 
DIMENSION XIII* Y<l»f *<!), Nil) 
DOUBLE PRECISION M, N, L  

 -NM=NPNT-S-1— 
NIU=L   

- M(NM)=L 
DXIM=XI2)-X(1) . .. .          
QIM=<Y<2>-Y<i)>/DXI* 
DO   <►   I=2tNM  .  

 -DXI = X1 I ♦ I > -X-H1  
QI=(Y(I+1)-Y(I))/DXI 

—MN-seeeot— 
MNSE0002 

- -MNSE-0003- 
MNSE0004 
MNSE0005 
MNSE0006 

 MNSE0007- 
MNSE0008 

- MNSE0009 
MNSEOOIO 
MNSEOOll 
MNSE0012 

—MN-stwre- 

MNSEOOIA 
-■  MNSE0015   . 

MNSE0016   | 
MNSE0017 
MNSE0018   j 

■— R = <DXI/DXIM)+DSORTI 11 
IF   (R-l.)   ltl.2 

1   N<I)=L 
M(I-D=L/R 

 -oe-fo-a  

,+OIM**2)/<l.+QI**2>) 

M(1-1)=L 
N<I)=L*R 
DXIM=OXI 
OIH=OI 
CONTINUE 
RETURN■- 
END 

-WNSE0019- 
MNSE0020 
«NSE0021 ■-: 
HNSE0022 
MNSE0023 
MNSE0024 
MNS£tK)2^- 
MNSE0026 
MNSEO027 
MNSE0028 
MNSE0029 
MNSE0030 

-MNSE-0031— 
MNSE0032- 
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TIME EVOLUTION OF AN ORTHOGONAL MATRIX 

James M. Wilkes 
Army Materiel Test and Evaluation Directorate 

White Sands Missile Range, NM 

ABSTRACT.  The usual method of computing a rotation matrix as a function of 

the Euler angles is discussed.  On a digital computer these angles must be 

obtained by a numerical integration of the angle derivatives, which are func- 

tions of the angular velocity components of the rotating coordinate system. 

The numerical integration in effect imposes a rotational motion with constant 

angular velocity over a time interval of length equal to the integration 

step-size.  This constancy of the angular velocity is exploited to formulate 

a simple secondorder differential equation for the orthogonal matrix describing 

the rotation.  The equation is easily solved exactly, and gives an expression 

for the matrix at the end of an integration interval as a function of the matrix, 

and of the angular velocity components, at the beginning of the interval.  The 

second method avoids some of the difficulties of the Euler angle method, and can 

be usefully applied in digital simulations of rigid-body motion. 

1.  INTRODUCTION.  A mathematical model of the motion of a rigid body requires 

information regarding the relation between two cartesian coordinate systems, 

one of which is rotating with respect to the other.  This information is contained 

in the nine elements of the matrix R describing the change of basis from one 

coordinate system to the other.  The physical requirement that the magnitude of 

a vector be invariant under a change of basis due to a rotation, imposes the 

following mathematical condition [1] on R: 

T      T Cl.l) 
RR1 = I = R R , 

where I is the identity matrix, and the T-superscript denotes the matrix transpose. 

This condition is referred to as the orthogonality condition, and R is said to be 

an orthogonal matrix. 
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Equation (1.1) represents nine linear equations in the nine elements of R, 

which would uniquely determine those elements but for the fact that RRT = I = RTR 

is a symmetric matrix.  Due to this symmetry, only six of the equations are 

linearly independent.  The three undetermined elements serve to parameterize the 

(infinite number of) different rotation matrices, and the set of all such matrices 

constitutes the three parameter group of orthogonal matrices. 

A popular choice for the parameters is a set of three angular coordinates 

el ' e2 » and e3> known as the Euler angles [2].  With this choice the matrix R 

can be written as a product of three separate rotations, through each of the three 

Euler angles.  At least two potential difficulties accompany this parameterization. 

The first is a matter of economy of computation.  Once the values of the Euler 

angles have been determined, one still must compute the matrix elements of R as 

sums and products of trigonometric functions of the angles.  Such computations 

can become very time-consuming, and therefore expensive,  on a digital computer. 

The second problem is of a mathematical nature.  It can be shown that for a given 

sequence of Euler rotations, the angular velocity components ca., i = 1,2,3, in 

the rotating basis, can be expressed as linear functions of the Euler angle 

derivatives e±, i = 1,2,3.  That is, at any time t, one has relations of the 

following form: 

uKCt) = EG..(e2(t),e3(t)) e.(t) ,  ± - 1,2,3, (i.2) 

where all summations are understood to be from 1 to 3, on repeated indices of the 

summand.  (The coefficient matrix G depends, in general, only upon the last two 

rotation angles of the rotation sequence.)  To determine the angles, one must 

first solve (1.2) for the derivatives of the angles, and then integrate these 

derivatives.  The solution of (1.2) for the derivatives involves inverting the 

matrix G.  However, for certain values of the Euler angles, the determinant of 

G vanishes, hence G  does not exist, and the Euler angle method fails for those 

values of the angles. 
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The following observations are important for developing an alternate 

method of computing a rotation matrix.  In a digital model all integrations 

are performed numerically.  Typically, a numerical method requires for the 

computation of the value of a variable the previously calculated value of the 

variable and its derivative.  For illustrative purposes, consider a numerical 

integration based on a first-order Taylor's series.  Assuming the values 

6.(0) and 9.(0),  i = 1,2,3, to have been computed at the beginning of an 

integration interval (which we take for convenience to be t = 0), this method 

computes the following values for the Euler angles at the end of an integration 

interval of step-size x : 

>.(T) = 6.(0) + x6.(0) ,  i = 1,2,3. (1.3) 

For values of the Euler angles for which the coefficient matrix G in (1.2) is 

non-singular, we find from (1.2): 

8.(0) = IG'1.   (6.(0),6 (0)) a) (0)  ,    i = 1,2,3. (I-*) 
i       ij   z    a     j 

Substituting (1.4) into (1.3) then yields for the new values of the angles 

e.Or) = e.(0) + TE GT* (e,(o),e (0)) u (o) ,  i = 1,2,3 . (1.5) 
X X Xj    Z 3 J 

In (1.5) the angular velocity dependence of the new values involves only the 

previous values co.(0).  Since the elements of R(x) can be constructed as functions 

of the 6.(T), the values u).(0) are the best values of the angular velocity com- 

ponents available for computing R(x).  Hence, for digital computation purposes 

the angular velocity components can be considered to have the constant values 

o).(O) on time intervals equal in length to the integration step-size, that is, 

for all te[0,x]. 

This constancy of the angular velocity on integration intervals allows us to 

formulate and solve a simple second-order differential equation for R.  The solution 
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allows a direct computation of R(T) as a function of the initial matrix R(0), 

and the angular velocity components u> (0) , j = 1,2,3.  For the case R(0) - I 

(that is, when the two coordinate systems initially coincide), the result is the 

well-known expression [3,4] for the matrix describing rotations about an arbitrary 

fixed axis.  Although the method we describe is thus fairly well-known (it was in 

fact developed for, and is being successfully applied in, a large digital missile 

simulation [5]), the derivation given in Section 3 is believed to be new and, in 

our opinion, much more straight-forward than the geometrical arguments given in 

the usual derivations [3,4]. 

2*  SOME PROPERTIES OF ANTISYMMETRIC MATRICES.  By definition, an antisymmetric 

matrix A is a square matrix satisfying the identity AT = -A.  From this identity 

one can easily deduce the following general form for a 3x3 antisymmetric matrix: 

A = 

0 

-a. (2.1) 

Introducing the Levi-Civita permutation symbol e. , (e   = 1. e   =1 (-1) for 
ijk  123    '  ijk    v ' 

even (odd) permutations of 1,2,3, and e   = 0 if any two indices are the same), 

the matrix elements of A can be written concisely as 

A.. = Ze. ., a, 
ij    xjk k i,j = 1,2,3. (2.2) 

By taking the product of A with itself, we obtain the matrix elements of A2 in the 

form 

A
2
     2 r A. . = -a 6.. + a.a. 

!J 1J     1 J (2.3) 

where 6  is the Kronecker delta symbol (6 . . = 1 if i = j , and <S. . = 0 if i j=  j), 
ij ij 
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2    2 ,  '2 .  2 
and where a  = a.. + a„ + a 

Defining a symmetric matrix S(a) by 

*2 one can write A as : 

A2 - -a2I + S(a) . <2'5) 

It is easy to show, using (2.2) and (2.4), that AS(a) = 0, hence, multiplying 

both sides of (2.5) by A gives the yery useful identity: 

A3 - -a2 A . (2'6) 

3.  THE DIFFERENTIAL EQUATION FOR R.  Assuming the elements of R to be differen- 

tiable functions of time on the interval 10,T], we differentiate both sides of 

(1.1) to obtain 

R(t) RT(t) + R(t) RT(t) = 0, C3-1} 

where R is the matrix containing the derivatives of the elements of R, and we 

note that 1=0.  Defining a new matrix Q  by 

fl(t) =  R(t) RT(t) , (3,2) 

we 
T   T T 

obtain from (3.2) and (3.1), and the identity (AB)  = B A 

n(t) = R(t) RT(t) = -R(t)RT(t) = -[R(t)RT(t)]T = -nT(t) , 

and it follows that the matrix a  is antisymmetric.  By (2.1) ti  can be written 

in the general form: 
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n(t) = 

0 o»3(t) -u2(t). 

-u»3(t) 0 «^(t) 

u2(t) -u^Ct) 0 

(3.3) 

It is demonstrated in several textbooks [6,7] that the elements of n   , defined 

by (3.2), can be identified with the components in the rotating basis of the 

angular velocity vector.  As discussed in the Introduction, the best available 

values of these components on the interval {0,T] are the previously computed 

values a). (0) . 

Setting 

S> = n(0) ,   u = u (0), j = 1,2,3, (3.4) 

and multiplying both sides of (3.2) by R(t), using the orthogonality condition 

(1.1), we obtain the following first-order differential equation for R: 

R(t) = QR(t) (3.5) 

Since 2 is a constant matrix on {0,x], (3.5) can be differentiated to yield: 

R(t) = flR(t) = ß R(t) , (3.6) 

where R(t) has been replaced by (3.5) in the last equation of (3.6).  Multiplying 

(3.6) by Q  now gives 

flR(t) - fi3R(t) = JJR(t) + (/ftR(t) = 0 (3.7) 

where we have used (2.6) for Q  , and where 

cj2 =    to? + to? + w2 
(3.8) 
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Since iß2  is a scalar, it commutes with Q  , and (3.7) can be written as 

n[ R(t) + u)2R(t)] = QCQ  = 0  , (3'9) 

where we have defined 

R(t) + u,2 R(t) = Co . C3'10) 

Equation (3.10) is the familiar equation for a forced harmonic oscillator, 

except that the "dependent variable" is here a matrix function R, and the "forcing 

function" is an as yet undetermined matrix CQ .  It is easy to show, using (3.5), 

(3.6), and (2.6), that CQ = 0, so that CQ  is in fact a constant matrix. 

Furthermore, using (2.5), one can show that CQ = 0 implies that Ü  = 0, which, 

from (3.5) corresponds to the trivial solution R(t) = R(0), t£[0,x].  By direct 

substitution one can then verify that the non-trivial solutions of (3.10) have 

the general form: 

R(t) = C /a)2 + C sincut + CLcoscot , ( •  ) 
o      1        ^ 

where C and C,, are arbitrary constant matrices.  To determine the constant 

matrices in (3.11), we evaluate R and its first two derivatives (found by 

differentiating (3.11)) at t = 0, and compare the results with (3.5) and (3.6) 

evaluated at t = 0.  The results are 

C /a2 = R(0) + ft2R(0)/o>2 , 
o 

C    = fiR(0)/w  , 

C2 = -n
2R(0)/o>2  . 
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Substituting these expressions into (3.11), we obtain the following solution 

for the rotation matrix at time t = x : 

R(x) = [ I + (fi/uOsinwx + (fi2/w2) (1-COSOJT)] R(0) . (3.12) 

It is convenient to define a "transition" matrix A by 

A(x) =1+ (fi/üj)sinü)T. + (ß2/w2) (1-coscox) . (3.13) 

If the matrix R(0) is known, then A(x) defines the transition over the interval 

of length T, to the new matrix 

R(x) = A(x) R(0)  . (3#14) 

If the two coordinate systems initially coincide, so that R(0) = I, then R(x) = A(x) 

Using (2.2) and (2.3) in (3.13), we obtain the matrix elements of A in the form 

A  (x) = 6 cosüJT + lz±     (iok/w)sino)x + (w^./w
2) (1-COSCJX)  , 

which is a slightly simplified form of equation (19) of Ref. 4 for the elements 

of the matrix describing a rotation through the angle wx, about an axis defined 

by the direction cosines u./oi,  i = 1,2,3. 

4.  CONCLUSION.  The transition matrix method described in this paper eliminates 

the inversion singularity problem of the Euler angle method, as well as the numer- 

ical integration of the Euler angle derivatives required by that method.  Also, 

the only trigonometric functions to be computed in (3.12) are sincox and coscox , 

hence computation time should be reduced by the transition matrix method.  If so 

desired, the Euler angles can be recovered at any time from the rotation matrix, 

for they are simply inverse trigonometric functions of the matrix elements.  We 

remark that (3.12) is approximately valid on any interval for which the angular 
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velocity is approximately constant, that is, on any interval where the angular 

acceleration is "small".  It would appear that this formalism has significant 

advantages over the usual Euler angle method. 
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THE WEIGHT FUNCTIONS OF MODE I OF THE PENNY-SHAPED AND 
OF THE ELLIPTIC CRACK 

Hans F. Bueckner 
Mathematician, Large Steam Turbine-Generator Department 

General Electric Company 
Schenectady, N. Y. 

ABSTRACT. Fundamental fields and weight functions are presented in closed 

form by algorithm and formula. 

1. INTRODUCTION. STATES OF PLANE STRAIN. During the last three decades 
the analysis of stress fields near the edges of cracks has grown into a disci- 
pline of its own. Various methods for the computation of stress intensity 
factors have been developed. The use of weight functions is one of them. Origi- 
nally proposed for states of plane strain [l], the method can be extended to 
three-dimensional fields [2, 3, k~]. In the sequel we shall do this for the con- 
figurations of the penny-shaped and of the elliptic crack. The analysis is with- 
in the frame of the classical theory of elasticity. Using a rectangular carte- 
sian coordinate system x,y,z we denote the respective displacements by u,v,w and 
the stresses by o , Txy etc. in the familiar manner. It is useful to begin with 
a review of states of plane strain within a cylindrical elastic body V with 
generators parallel to the z-axis. Figure 1 shows its cross-section in the 
(x,y)-plane. V has mirror symmetry with respect to the (x,z)-plane. In the 
same plane a crack with faces C+, c" extends from the z-axis in the direction of 
the negative x-axis. The boundary of V consists of the crack faces and of a 
cylindrical surface B. Let B be attacked by a load of tractions, the latter 
acting with components X,Y in x- and y-direction respectively and with X,Y the 
same along a generator. Assuming mirror symmetry of the distribution of tractions 
with respect to the (x,z)-plane and imposing the constraint w = 0 we obtain a 
state of deformation in V where u,v do not depend on z (plane strain) and where a 
suitable disposition of rigid body motion makes u an even and v an odd function 
of y (mode I). Let x = rcos6 , y = rsin9 define polar coordinates r,6. With 
their aid the asymptotic behavior near r = 0 of the relevant field quantities can 

be described as follows: 

plane strain 
mode I 

^> x Figure 1 
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k       1 
a = ———  f(0)cos—0   with a suitable constant k and where \ 

V2r d 

f(0) = 1 - sin^0sin|0 for a = a 2             2 x 

f(0) = 1 + sin^0sin|0 for a = o 
22 y 

f(0)  = sin|0cos|e for a = T 
xy  ' 

furthermore 

u = |[V^('<"cos9)cos^0 

v = iky¥ ^"cos 0)sin-§e 

K = 3 - l|vs       v = Poisson's ratio 

(1.1) 

(1.2) 

p. = shear modulus . 

The constant k is known as stress intensity factor. The asymptotic relations 
(1.1), (1.2) stay valid if a bounded and smooth distribution of tractions on C+, 
C is admitted in accord with the symmetry of mode I. It is customary to con- 
sider the term r"1/- in (l.l) as a point singularity in the (x,y)-plane at the 
"crack tip" r = 0. Nevertheless the singularity is along the whole z-axis as a 
singular line (the edge of the crack). This should be kept in mind. 

Although the stresses are unbounded near r = 0 the energy of deformation 
per unit length in z-direction is bounded in general. More precisely it is 
bounded within any cylinder r = r of sufficiently small radius r .  If un- 
bounded the cause is not asymptotic behavior in accord with (l.l)°but singular 
behavior of the stress field at points r / 0 of load application. The latter 
happens for concentrated loads. If B is smooth and if the tractions are 
bounded and smoothly distributed then the energy per unit length is bounded. In 
practical mechanics no other situations are encountered. The singular behavior 
(l.l) of the stresses notwithstanding, we are justified to denote the field 
responding to the applied tractions as a regular field. 

Let now a field of plane strain and of mode I have the property that 

,-l/2 u,v = 0(r '"),   a  = 0(r"°/d)  near r = 0 3/2, 
(1.3) 

We shall call such a field fundamental if it goes without body forces and if it 
displays no surface tractions. It is not difficult to construct such a field. 
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Let t ±  0 be an arbitrary constant. We set up 

u = u +u , v = v + v    where 
s  r      t>  i 

u s 

V s 

\2 

= tr-l/2(lsin|0- (K + |)sin|e) 

and where n,vr are the displacements u,v of a suitably chosen regular field. 
It so happens Ihat the displacements us,vs create a stress field without body 
forces: no tractions are induced on C+, C" while a system of self-equilibrated 
tractions shows up on B. We choose ur,vr so as to compensate the tractions on 
B. This establishes u,v by (l.k)  as the displacements of a fundamental field. 
The asymptotic laws (1.3) can be rewritten in the vein of (1.2), (1.1). The_ 
details follow from the explicit form of us,vs in (l.k).    It has been shown in 
[1] that the construction (l.k)  yields all fundamental fields in V of mode I. 
The energy of deformation per unit length is infinite. More precisely the 
energy is already infinite within any cylinder r = r0, no matter how small 
r > 0. We can dispose of t by normalizing the fundamental field. If t(K+l)-l 

then 

v = |x|"* on C+, v=- |x|^ onC" (1-5) 

near x = 0 . 

We shall write u = uf, v = vf if the fundamental field is normalized by 
(1 5)- setting u = u , v = v we shall characterize a generic regular field, i.e. 
the meaning of ur,vr

rwill not be restricted to (l.U). Let us now consider the 
mixed energy of deformation (per unit length)W associated with uf,vf and ur,vr . 
To be on the safe side we exclude the cylindrical domain r < rQ from V. In the 
remaining portion the mixed energy can be assumed to exist. By Betti's theorem 
two representations W = Wrf5 W = Wfr of the mixed energy are available. Here 
Wrf is the work of the tractions of the regular field through the displacements 
of the fundamental one; Wfr is the work of the tractions of the fundamental 
field through the displacements of the regular one. In either case the tractions 
on the cylinder r = r0 must be taken into account. We can write 

- W'rf + W*fr = Wr'f " Wfr (l'6) 

where primes refer to the cylinder r = r0 and double primes to the boundary of 
V outside that cylinder; the latter includes B and part of C , C . Since the 
fundamental field exhibits no tractions on B, C , C" we find W|fy = 0. For suffi- 
ciently small r the left-hand side of (1.6) can be evaluated with the aid of the 
asymptotic rela?ions (l.l), (1.2) for the regular field and (1.3), (lA) for the 
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fundamental field. In this context (1.1+) must be supplemented by formulas for 
the stresses to which us,vs give rise. Without going into any further detail 
we observe that specified stresses <r fff and displacements wr5wf of regular and 
fundamental field respectively obey the order relations 

r a    • w, or   i = 0(1), roaf • wr = 0(1) as rQ ->o (l.7) 

on the cylinder r = r0. Since W£f and W£r are representable as line integrals 
over the circle r = r0 the asymptotic relations determine the left-hand side of 
U.o; in the limit rQ -»0. The final result of this procedure is 

k = y|7/(XrUf + Vf ) ds (1.8) 
£ 

for the stress intensity factor k of the regular field. X„,Yr are the components 
of traction of that very field, and the integration in (1.8) Is  over the line £ 
which bounds the cross section of V in the (x,y)-plane, ds being the length 
element of £.    £  is the projection of B as well as of C+, C" onto that plane 
Details of the derivation of (1.8) can be found in [1,2]; a different derivation 
is in L3J. It is possible to extend (1.8) to regular fields with body forces. 
In the special case that the tractions appear exclusively on C+, C" in the form 
of a pressure distribution formula (1.8) specializes into 

k = -~ I  m(s)p(s)ds; £+ =  projection of C+ (1.8') 
£+ 

P = applied pressure, m = v on C+ . 

We caliche displacements uf,vf weight functions. They permit to represent k 
as a weighted sum of the tractions Xr,Yr. The use of a formula of type (1.8) 
for the computation of the stress intensity factor k is advantageous in two 
respects: 

(1) uf,vf depend exclusively on the shape of V; thus geometry and loading 
appear independently in (1.8). 

(2) the effort to calculate uf,vf is not higher than the effort to calculate 
the displacements of some regular field. 

At a specified point s- the value of m(s') in formula (1.8') can be interpreted 

JresSure 6SS intenSlty factor of a re^1&*  field responding to concentrated 

p(s) =~8(s-s') 
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where &(...) is Dirac's Delta function. For this reason one could be inclined 
to classify m(s) as Green's function. Unfortunately the interpretation makes 
the function m(s) an abstract from infinitely many fields, each characterized 
by a different point s of load concentration. To compute m that way would 
sacrifice the advantage (2) which rests on the circumstance that m(s) is a 
boundary displacement of only one field. The term "weight function" was chosen 
in order to avoid the misleading suggestions associated with the concept of 
Green's function. 

For some plane strain configurations of mode I in which the crack faces 
alone are loaded by some pressure distribution p(s) integral equations have   + 
been found [2] which link p(s) to the crack opening displacement v(s) = vr on C 
in the form       ^ 

p(s) =Aj L(s,t)q(t)dt;  q(t) = ^^y ' v(t) (1.9) 
a 

The interval (a,b) is identical with £+;  L(s,t) is a Cauchy type singular 
integral operator. The integral is taken as Cauchy principal value. An example 

pC) - - fj°^f (1-10) 

-1 

for the Griffith crack ( - 1 < x < 0; y = 0) in an infinite solid. The 
homogeneous case p(s) =  0 admits the solution q(t) = 0 only if one insists that 
q(t) be bounded. If one drops this condition then q(t) = cm(t) with c as 
constant coefficient becomes a solution. For the Griffith crack the homogeneous 
equation admits two solutions associated with the crack tips x = 0, x = -1, 
namely 

l+s 1/2 s X/2 , 
m(s) = | i±5|  ,  m(s) = \JL\        . (l.ll) 

2. FIELDS IM THREE DIMENSIONS. Let us now generalize the states of plane 
strain of mode I into states of three dimensions. We shall assume a plane 
crack in the (x,y)-plane. Figure 2a shows an elliptic crack as example. The 
faces are denoted by C , C" and the contour by C'. In Figure 2b an infinite 
crack occupying the half-plane x < 0 is represented. We shall assume that the 
displacement field has mirror symmetry with respect to the (x,y)-plane; more 
precisely u,v are to be the same at points (x,y,z) and (x,y,-z) while w changes 
sign without change of absolute value. This is the generalization of mode I of 
plane strain. Finally we confine the attention to those fields which can be 
derived from a Boussinesq-Papkovich potential G(x,y,z). This potential is 
harmonic, i.e. 

V% = G  +G  +G  =0. (2.1) xx   yy   zz 
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Figure 2a 

> 

Figure 2b 

Here and in what follows coordinate-denoting subscripts indicate partial 
derivatives. The displacements and stresses are derived as follows: 

U = " zGxz " (1-2v)Gx» 
v = 

w = - zG  + 2(l-v)G 
zz       '   z 

*yz ~  (l-2v)Gy , 

(2.2) 
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a   = x 
2uf(zG    )    + 2vG    I  ,    a   = 24(zGyy^ + 2vGxx]' 

az = ^[zGzzz-Gzz]' 

•TyZ = ■ 2^GyZz' TZX = - 2^ZGXZZ ' 

- - 2^zGxyz + ^-^xy] ' 

> (2.3) 

xy 

For the sake of a first orientation let us consider the configuration of Figure 2b. 
It admits in particular states of plane strain, and the asymptotic relations of the 
preceding section apply if the roles of y and z are exchanged. In order to exhibit 
a more general class of states we set up 

G(x,y,z) = F(x,z)cos\y (2.*0 

with some real constant \ > 0. The case \ =  0 is that of plane strain. The 
function F(x,z) must satisfy 

F  + F„ - A = 0 . 
XX   zz 

Defining polar coordinates p, 4> by means of 

i<t> pe      = x + iz 

(2.5) 

(2.6) 

we can rewrite (2.5) in the form 

p^      + pF    - F. 
M    PP P 1 

K9^ = 0 . 

It admits the product solution 

F =F*(Xp)cos|4>  with "1 ■ 

F*(t) - 3^ I3/2(t) - 3^ ' Ä ^P J     * 

I ,2 is the modified Bessei function of type I and of fractional order 3/2 . 
Altogether we can write 

G(x,y,z) = g(x,z)h(\p)cos\y with 

g(x,z) = Up)3/2 cos |* = Re[*.(x+iz)]3/2 , j 

.   v  _ 3 d sinht 
h(t)  "tdt  t 

(2.8) 
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h(t) admits an expansion in even powers of t; moreover h(0) = 1. The function 
g(x,z) itself is a Boussinesq-Papkovich potential. It describes a state of 
plane strain and of mode I. The field of displacements and stresses is regular 
The y-axis represents the edge of the crack. As we let p -> 0 we approach the 
edge. Asymptotic relations of type (l.l) and (1.2) after exchange of the roles 
of y,z become valid with an intensity factor k depending on y. This is due to 
the preponderance of g(x,z) in the representation (2.8) of G(x,y,z). Locally 
the behavior of the field near an edge point y is given by the field of plane 
strain of g(x,z) but modified by the factor cos\y. We list in particular: 

k = k(y) = k(0)cos\y ^^ 

U = 2TT V|P (K-COS*)COS|* ,    w = -|-Y|P -(K-cos^sinl* 
(2.10) 

v = 0(p3/2) 

k 1 
a =    .— f(<)>)cos75 <t> where 

f(o) = 1 - TJ sin-^ <i> sin | <t> for a = a 

f($) = 1 + -sin- Osin | <t> for a = a f (2.11) 

f(<0 = 2v for a = a 

1 ^ y 

f ( $) = sin 3 <t> cos %<s> for a = T 

x 

2 - —o  2 

zx 

Furthermore the stresses T        T      stay bounded.    The special potential (2.8) 
induces no tractions on theWs of the crack.    This is obvious inasmuch as 

llXC+Tyc-&re^°fnre-nend'    tt f°/ °z We„derive from (2-3)  that cz = 2nGzz= -2^+ Gyy) 
?X    'A* ° °n the faces and az = ° allows.    The displacements are       ^ 
of bou^d2dapS.P ^    F°r thlS reaS°n thS USe °f (2*8) mUSt be confined to domains 

Still with regard to Figure 2b let us consider 

G(x,y,z)  = Erfc(q)eXcosy ;       q = yip • cos| <t>   . (2.12) 

tha/nf^i? if Üa™°ni°- +
Wr

x
tinS for simplicity Erfc(q) = Q(q) and observing 

that q as well as the product excosy   are harmonic functions we find 
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V^ = eXcosy (V2^ + 2^)   , (2-13) 

V2Q = Q'<q)(<£+<£) = - 2qQ'(q)(q^+qj) = - qft'(q)/p (2-^) 

Qx = Q'Cq)^« dQ'/2p (2a5> 

and altogether V^ = 0 as asserted. The potential (2.12) is periodic in y with 
the period 2«. Inspite of the factor ex the potential as a whole and all of its 
partial derivatives go to zero as p -»». For small p we may use 

G = eXcosy(l-4^q+0(q3)) (2-16) 

in order to determine the asymptotic behavior of displacements and stresses as we 
approach the edge of the crack. The function q can be taken as Boussmesq- 
Papkovich potential; as such it leads to a state of plane strain. The state has 
displacements 

^ [1 cos | * + (K - |)C0S \   ♦] 

(2.17) 

u = us 
^VP" 

w = w = =^.   \  sin | * - (K + |)sin \  ♦ . 
8   UVPL       2 2        J 

A comparison with (l.U) shows that us,ws have the asymptotic properties of 
the displacements of a fundamental field of plane strain and of mode I. Going 
back to (2.16) we can expect the potential q to dominate the behavior of G in the 
approach p -» 0. More precisely we find 

u = a(y)u , w = a(y)wo with a(y) =  cosy (2.l8) 
s s -y^ 

as asymptotic representations of u,w in the case of G. 

The field of G has vanishing shearing stresses TZX, iyZ  on the (x,y)-plane. 
We assert that a    vanishes on the faces of the crack. As before we find 

a    = - 2n£G with £G = G  + Gon C , C" (2.19) Jz M xx   yy 

But 
x + G = e cos y  on C , C 

and £G  = 0 follows. The displacements and stresses go to zero as p ->«> 
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The potential G(x,y,z) of (2.12) gives rise to other potentials 
G(\x, \(y-y'), \z)  where \,  y' are real constants and also X. > 0. These poten- 
tials can be linearly combined in a finite number of terms, the combination co- 
efficients to be real. All combinations form a real linear space of infinite 
dimension. Each potential of this space yields a field of displacements and 
stresses which we now designate as fundamental field. This is a generalization of 
fundamental fields of plane strain and justified by the asymptotic relations of 
type (2.1Ö) as well as by the absence of tractions on the crack faces. 

We turn next to Figure 2a and disregard temporarily that the crack is to be 
elliptic. More generally we admit as crack contour C any rectifiable Jordan 
curve of continuous tangent. The Boussinesq-Papkovich potentials associated 
with this crack configuration can be represented as harmonic potentials of single 
layers, more precisely in the form 

G(x,y,z) = - kn(l_v] fft(t,r\)R-\d.T\ with 

*2-<x-ft)2 + (y-i>2
+«2. j (2*20) 

The integration is over one of the crack faces. Of the density function f(* n) 
we assume continuity inside C and furthermore for interior points (J,T)) 

|f(i,Tj)| _< f//2 (2.21) 

where fQ is some constant and where d is the distance from the contour C of 
(|,T|). Formulas (2.3) lead to 

w = 2(l-v)Gz = f  on C
+    1 

= -f on C     J 

a
z 

= -  g(x,y) on C , C"  with -N 

1(2 23) 
g(x'y) = " A 2^lTvjJJf^^>[(x'02 + (y-^)2]" 1/2-di d^J 

As in (2.19), A stands for the Laplacian operator of the (x,y)-plane  The 
function g(x,y) represents a pressure distribution within the crack.* The 
stresses TZX, Tyz vanish in the (x,y)-plane and in particular on the crack. In 
the nontrivial case f(e,T)) d  0 we call G and the associated field fundamental if 
thereare no tractions on C+ C", i.e. if g(x,y) H 0. We call G and the 
associated field regular if f(gjT1) satisfies a condition more stringent than 
(.2.21), namely ^ 
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where f, is a suitable constant. Let s denote the arclength on C, counted from 
TZl  point of C- in the counterclockwise sense as one looks down at the (x y)- 
wP  n the neighborhood of any point s of C we expect the field of G to 
SoS^he asymptotic behavior of a field of plane strain for an associatedhalf- 
Sane crack- the latter must have the tangent at s as edge and must follow the 
fnner normal of C at s. In the case of a regular field the asympto ic 
behavior will be determined by a stress intensity factor k - k(s). In this 
context we list in particular the asymptotic relations 

K + 1,1^
1

/
2
  _ n+ (2.25) 

w = k(s) 
i i   1/2    + 
kfr) one 

0 - k(s)(2d) -
1/2    for z = 0 and points outside the crack .   (2.26) 

As for the fundamental field we merely write the analogue of (2.25) in the form 

w=ß(s)d-1/2   onC+ (2.27) 

where the intensity function ß(s) depends on the fundamental field. 

Tn the case of plane strain Betti's theorem of reciprocity was applied to 
the mixed enerS formed by a regular and by a fundamental field  The procedure the mixed energy lormea y * can be ^^  for the con_ 
led to formulas tl.ö;, \x.o )  ior *.. XH<= <=^- - /, o,\ 1n 4.h(3 fnrm 
figuration of Figure 2a [2]. This yields the analogue of (1.8 ) m the form 

fk(s)ß(s)ds = ^ JJ M(x,y)g(x,y)dxdy (2.28) 

Mfx v)  is the normal displacement w of the fundamental field on C . The factor 
«x'v is the pressure w?thin the crack of the regular field. It is obvious that 
trLllZtl fiel,  does not permit to W^^^-)^ need 
T^F-in-i+Piv manv or - for practical purposes - a sufficiently large numDer oi 
lineal indecent fundamental field?. In order to find such fields we must 

Figure 3 
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solve the homogeneous integro-differential equation 

0 = AJTf(^)[(x.5)
2
+ (y-n)

2]'l/2d6dT, (2.29) 

for nontrivial density functions f(g,T)). 

Assuming that we possess a fundamental field for the crack configuration 
of Figure 2a we can construct a fundamental field for a finite elastifbodv with 
the same crack. Figure 3 shows a sphere S around the origin  The elastic bSv 
is bounded by S and by the faces C+, C". In analogy to the conSrucSon (AT 

I L\°,°v,Ur t™*"*1**  «eld for Figure 2a a regular field for^Sre 3 * 
such that the modifying regular field has no tractions on the crack wSle its 
tractions on S annihilate those of the fundamental field of Figure 2a  The 
resulting field has no tractions on crack faces and on S; it displays*the 
asymptotic behavior of the initial fundamental field near the ed^e c« of the 

Let ftSZt ?°W J.^f"511**1 and a reS^ar field for Figure 3, both of mode I. 
Let the regular field be generated by a distribution of tractions on S  Under 
these circumstances the analogue of (1.8) is * un o. unaer 

J  k(s)ß(s)ds =-JL- TAu^ + v^ + w^ )dS 
(2.30) 

where uf,vf3wf are the displacements of the fundamental field and X Y 7    -f-h* 
components of traction of the regular one. The fundamental potential Gil  (2 12) 
can be used m order to construct an analogue of formula (2.28). Since G has 

1(1] nr,  °ne ?hOUid "Fly the associate* fundamental field to the analysis of 
k(y) of a regular field with the same period and the same symmetry with respect 
to y  Moreover it will suffice to consider a slab 0 < y < JT Fu^tSr detSls 
can be left to the reader. -  -   Jur™er details 

n. J!    P™^-SHAPED AND ELLIPTIC CRACK. We return to Figure 2a and interpret 
C as an ellipse with half-axes a,b. The ellipse has the equation   intSrpret 

E(x,y) = 1 - x
2/a2 - y2/b

2 = 0 . 
(3.1) 

The w-zeros of the function 

2     2    2 
T(u>;x,y,z) = 1 - -_£_ _ _X_ 

a + w  b + w 

z 
0) 

SwteantS™ifed elliPti° "**•■    Th8 la^st ™* °" = ° win Play an 
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At this juncture we turn to the penny-shaped crack by letting b = a. Without 
essential loss of generality we assume a = 1. Cylindrical coordinates r, 0, z 
Sbe useful. We have here x = rcos 6  and y = rsin 0. The function T takes the 

special form 
2    2 

T = 1 - 
z 

1 + w 

The mapping (see also [7]) 

r + iz = cosh (s + it); s > 0, -7j*<t<-gJt 

permits to represent pairs (r,z) by pairs (s,t) in accord with Figure k. 

z 

t > 0 

(3.2) 

(3.3) 

t = 0 

r <- r 
^ s = 0      ( 

\- ' J 1 ^ 
s = 0 

t < 0 

Figure k 

The representation is unique whenever z/Oorr>l. For points of the cracky 
two different representations appear which permit to distinguish between C and C . 
From (3.3) it follows that (3.2) has the roots 

2 .2 
a) = sinh s ,  Wp = - sin t 

The following relations are useful: 

r = cosh s cos t , z = sinh s sin t 

s = t = sinh s cos t/N, t = 
r   z r 

2     2 
N = sinh s + sin t 

^F(s) = (FM (s) + tanhsF'(s))/N . 

s = -cosh s sin t/N 
z 

(3.U) 

(3.5) 

(3.6) 

(3.7 
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s z l/sint = (1-r2)"1/2  on C+ 

- M  2.-1/2    - (3*8) = -(1-r ) '  on C 

Furthermore 

sinh s <r + z2 < cosh2 s = l + sinh2 s (3>9) 

In what follows we establish an infinite family of fundamental potentials 
without solving (2.29) directly. We set «"««au. potentials 

Gn(x,y,z) =Fn(r,z) cosn(e-e')  and 

Fn(r,z) = v\(s)      for n = 0,1,2,... (3>lo) 

Here 0- is a constant which may depend on n. We shall try to make G a funda 
mental potential through a suitable choice of Hn(s). WrSing^ together 

G = rncosn(0-0') • H (s) 

we observe that the factor preceding Hn is a harmonic function, i.e. 

^(rncosn(e- 0')) = A r
ncos (0-0- )= 0 (3 u) 

nature'" ^ ^^ *"* (3*6)' (3'?) yieldS after stePs of « elementary 

VGn = r cosn(e-e')[H»(s) + (2n + l)tanhs.H^(s)]/N (3.12) 

Consequently we must solve 

H;'(s)+ (2n + l)tanhs.H;(s) =0 (3<13) 

We find 

H'(B) = 2  
cosh2n+1s (3.14) 

with some constant c. Integration of H'(s) and a special choice of c yield 
r. n 

H (s) =a n n 

with 

1 
pit - arctan (sinh s) - a sinh s Y.  i 

° k^2 

a   = i—- ,   a   = a (-i)k h1/2] 0     (l-v)V^        k       oK    J    \   k   I  ' 

n 
1 1 

(3.15) k=l 2kakcosh2ks. 
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We leave the verification of (3.15) to the reader. Note that the definition of 

the coefficients ak is independent of nl 

Having established the potential Gn we check on some of its properties. 

Due to (2.2) 

w.2(l-v)QM onC+ (3.16) 

Now (3.1*0 and (3.8) yield 

G  = rncosn(e-0')H'(O)s 
nz n   L 

= crncosn(e-e')'(l-r2)"l/2 on C+ (3.17) 

In the construction of Hn we have chosen the constant c of (3.1*0 such that 

V?(l-v)c-l (3-lV) 

This choice implies 

ß = cosn(0- 0') 

for the intensity fi(s) associated with G   We still ^ *° ™£* f %«*  doeS 
not induce tractions on the crack. The nature of G makes it obvious that 
., TV7 vanish on the (x,y)-plane. As for az  we observe that 

G = rncosn(0-0')Hn(O) on C+, C~ (3.l8) 
n n 

Due to (2.19) and (3.11) cz vanishes. Finally it can be established tha^the  /2> 

«Pid of G has vanishing displacements and stresses at R = » where R-U + z ;  , 
SSover ?fie sLIsSs have the order of R-3 for large R while the displacements 
are in the order of R-2. In this context we refer to (3-9) with the consequence 
R ~ i.es and to (3.1*0, (3.15) with the consequence 

H (s) - 0(e-(2n+1>S) (3'19) 
n 

for large R. All of this is compatible with the asymptotic behavior for large R 
of the field of the potential of a single layer. Gn admits a representation 

(2.20) with the density function 

f - f - V2"rncosn(0-0') • (l-r2)"1/2 . (3.20) 
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Formula (2.28) takes the special form 

* 2n   1 

k(e)cosn(e.eOde -|J frn(i-r2)-V2cosn(e.ei)g(pjfl)pdrdfl   ^ ^ 

til)    %Z.TS ? Pemi* t0 calculate the kurier components ofl^ acinus 
k(6).    one can also establish the following formula (see Fi^re 5) 

k(0,) =    * |/M(r,e,0')g(r,e)rdrde        where 1 

M-Cl-r^Vs    d2 = l+r
2_2rcos(e.ei)      j (3*22) 

In this case the intensity ß(s)  is a Dirac delta function on C\    An extension 
of the concept of weight functions in the nature of the case  (* ??) htTtll 

cSSe1ee^L5eCefo^]thn
s
gerral 1°™'    ^^ ^ ^ Ä" e'    rst 

S.rfSv ^ ^      *    Formulas for the penny-shaped crack of type 
m      i      7 T C5;6h    ThSy CSn be and were indeed derived by direcT analysis of the regular field with the aid of Fourier-Hankel tränst      L 

e> 

Figure 5 
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F.-, + TF ^ - nFn_1 + DFn_i; (D-n)Fn = ^lfT~  Vl nr 

*\  - ^n = °; [D(D + 1)-n^n + l)]Fn + Fn,zZ 
= ° (3*23) 

D = r -T- + z o?   cVz 

The operator D preserves harmonicity. The third relation expresses the harmom- 
y A without reference to the 9  - term. It is possible to establish the 

formulas of the first line by merely using az  = 0 and the asymptotic behavior of 
w on the crack in the case of any G^. 

Returning to the general elliptic crack we make an extensive use of available 
literature [7 - ll]. In particular Dyson's formulas [8,9]/will ^ applied. 
Following Dyson we write the density function f in (2.20) in the form 

f(x,y) = - lw(l-v)h(x,y)EX-l/2(x,y) (3.24) 

where E is the function in (3.1). We are primarily interested in the cases 
X = 0 and X = 1; h(x,y) is to be a polynomial in x and y. Under these circum- 
stances the case X = 1 will yield a regular potential and the case X - 0 a 
fundamental one for properly chosen h(x,y). Dyson himself admits more general 
h(x v)  The case X = 0 is pertinent to the analysis of. an electrically charged 
disk; so far it has not been applied to elastic analysis. We introduce the 
following denotations and symbols: 

Q(s) = s(a2+s)(b2+s); 5(s) = Ql/2(s) > 0 (3.25) 

for s > 0 

a2    q = _bL. D = iii + i4 <3-26) 

a2
+S'    "      b2

+s' Pöx2      *öy2 

We denote the largest co-root of T = 0 by t; it is nonnegative. These symbols 
and denotations are unrelated to formerly defined quantities. Dyson and_ 
Hobson have shown that the potential G of (2.20) can be rewritten as a single 
integral, 2_  <» 

rcabr(X + ö) r  TX / t^  „r,\ 
G(x,y,z) = —. 2-        g^Y Mh(px,qy) • ds  , (co * s) (3.2?) 

r(i)xr(x) J q(s) * 2/w^; t 
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where M^ is the following differential operator: 

^ =n=o Unn.(x+i)U+2)...(x+n) ' (3-27,) 

The symbol T denotes the Gamma function. We replace XT(x)  by unity for X  = 0 
Since h(x,y) is a polynomial only a finite number of terms in (3.27) have to be 
used  Mxh(px,qy) is therefore a polynomial in x,y whose coefficients are 
functions of s. Let us now consider G on the crack; in this case t = 0 and thus 

_ nabr(\ + |) r°   ^ 

" r(i)XT(X) J ^7 \h(l«,qy)dfl valid for C , c-.   (3,28) 

In the cases X . 0, X - l the function TX is a polynomial in x,y. Altogether 
we see now that G x,y,0) is a polynomial in x,y on the crack, and so is 
- az = A2uG(x,y,0) = g(x,y). We can write 

g = W (3.29) 

where £x  denotes a linear operator which transform the polynomial h into a 
polynomial g. The nature of the mapping depends on X . 

Case X  = 1 

This is the case of ordinary elasticity. £-,  maps the real linear space of 
all polynomials of degree < m (real coefficients} into itself, ^h = 0 for some 
hj  0 cannot happen. The mapping is therefore 1-1; given g there is a unique h 
The mapping does not necessarily transform homogeneous polynomials into 
homogeneous ones. 

Case X  = 0 

, h  _
Xn 5  u 2T  m th6n g = *oh has degree not higher than m-2. The case 

i£*Z  ?   J1 t  ° °!n haPPen- We ca-H such an h a fundamental polynomial. It 
leads to a fundamental field G. Trivial cases are: h = 1, h = x, h = y, h = xy. 

Here the reader is reminded of the definition of the degree of a polynomial h(x v) 
J l5(»,y) i? \m°n0m!> Ue' h " "V with c t 0 then the degree of h £t^. if 
h is a combination of monomes we look for the monome of highest degree: that 

SSTJh!:8,   J SS d6gr^ °f h* A Polynomial is homogeneous if all of its monomes 
nnXTtu        tgre' JhS VSlUeS °f h °n E = ° are Siven by the Fourier poly- 
E(acos e[  bsin 0) i"l   ^ ^^ *" degree ^ N if h has de^ee *• . ^ote that 

constru0crteedaCah
S
d?Sie:w:^ fet" 

fÜnd?Mntal *»**<>«** ***)  of degree m can be 
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h(x,y) = xm + h1(x,y)E(x,y) where ^ = - £Qxm (3.30) 

Since £  xm has degree < m-2 the polynomial h is of degree < m-2; consequently 
hnE has°degree < m, and the degree of h cannot exceed m. But h = x = a cos e 
on E = 0; this Is a Fourier polynomial of degree m. The degree of h(x,y) cannot 
be less. Thus h is seen to have exact degree m. Now hLE and \ = 0, hx and \ - 1 
define the same potential. Hence 

£  (hnE) = rf-h. and £ h =  0 . (3-31) 
o 1    11     ° 

This establishes h as a fundamental polynomial of degree m. In the same vein 

we construct 

h(x,y) = x^y + h2(x,y)E(x,y) where £^2  = - if  " y .        (3.32) 

With (3.30), (3.32) we have obtained two linearly independent fundamental poly- 

nomials of degree m. 

The application of the operators £Q>  *, involves certain elliptic integrals. 
The following coefficients are needed for tÄe construction of fundamental poly- 

nomials: 

mn J 
o 

n,J run through the nonnegative integers. The coefficients satisfy the recur- m 
sions 

(a^K-H n " (aa+an-1)0™ + (2n + l)cm,n+i = ° Vl,n - ^TfflT1^  ^" -' m,n+l (3.3^) 
2  2 2 

c  = TC ,  + (1-T )c n  , with T = a /(a -b ) 
mn   m-l,n  v    m,n-l 

Üp to degree 3 fundamental polynomials can be homogeneous. This is no longer so 
from degree four on. We give some polynomials below: 

Fundamental polynomials up to degree k 

m = 0: h = 1 

m = l: h = x, h = y 

m = 2: h = co]x
2 - c^y , h = xy 
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<3 

,3. m = h:    h = ci ox y - c. 

2 
/" . 

3 2 2 
'12" * ~ "21^ '    h = ax   + ß* y   + ?y   + 6x2 + eyS 

with the following coefficients: 

a = '11 3c o2 

C21-C12    -5co2 + 2c12 

,   ß »-3 ^o c
o2 

5C2o"2c21    -5co2 + 2ci2 

7 = 
3c 

2o     Lii 

2o-2c21 C21"C12 

= i(T-l)|^(a.ß)a2+7b
2|;  € = .lTraa2.( ß-7)b£ 

S^hTStSn:ii ^J^i"* f°r the «*** function M . *& the intensity function ß is on the 

P(s) = 2 = 0- V2 / 

tf+? S 
iA 

(3.35) 
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THE BUCKLING PRESSURE OF AN ELASTIC PLATE FLOATING 

ON WATER AND STRESSED UNIFORMLY ALONG THE PERIPHERY 

OF AN INTERNAL HOLE 

Shunsuke Takagi 

Corps of Engineers 

U.S. Army Cold Regions Research and Engineering Laboratory 

Hanover, New Hampshire 

INTRODUCTION 

To test the strength of an ice sheet floating on water the 

following measurement is regularly performed (Zahilanski et al., l): 

Dig a hole, place a vertical pile of various shapes and push it breaking 

through the ice. However, the mechanism of the failure is not yet 

clarified, and the interpretation of the data is not yet satisfactory. 

To understand the basic mechanism, an ideally simple case is chosen and 

analyzed in this paper. 

A paper of the same title was presented at the 20th Conference of 

Army Mathematicians (197U). When numerical work was attempted in the 

summer of 1975, it vas found that the analysis presented in the 20th 

Conference did not work as expected. A new analysis as reported in this 

paper was developed, and the numerical computation was carried out. 

"» I--7 
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1. The Problem 

Suppose a thin elastic plate floating on water, extending horizon- 

tally to infinity, and stressed with uniform horizontal pressure along 

the periphery of an internal circular hole. We are interested in formu- 

lating the "buckling pressure and the deformation at the failure. 

The vertical deflection w  of an elastic plate that rests on a liquid 

and is subjected to a vertical load q  and the horizontal stress of 

components ^j ff , and N        is governed by the differential equation, 

i  ■ 2 2 2 
DV w    +    yw      =  q    +    N      $-%    +    2// $-&-    +    N      —  (l l) 

where D  is the flexural rigidity and y  the specific weight of the 

liquid (Ref. 2).  Let v  be the radial distance from the center of the 

hole.  In our problem £7=0 and the deformation is cylindrically sym- 

metric around the center of the hole.  Then (l.l) becomes 

+ ±%\ 2W    + v    = ±(N      ^ + N      i $A       (12) 

where IQ = (D/y) is the characteristic length, and N      and NQ    are the 

radial and hoop horizontal stresses in the plate (see Appendix B). 

Following the usual treatment (Ref. 2), we assume that the horizontal 

stress components N^,  N        N      are in equilibrium by themselves.  Then 

they are derived from a biharmonic function <|> by 

N        = LA 
xx „ 2 3y 

yy    3*2 
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N      = - T-t- 
xy dXdtJ 

In the general polar coordinates they are: 

"rr "  r 3r    p2    3Q2 

rG      3r 

66    9r2 

\^ 36/ 

In our problem 4> is a function of r only and must tend to zero vhen 

r becomes infinite. Then they are formulated as 

-2 N        =    - AT 
rr 

^66  = ^ 

where A  is a constant.  Constant A  is positive because Npr  is pressure. 

Instead of A  we introduce nondimensional constant a  and express the 

stress components as 

-It -2 
Ü7   = -ayl    v 

\   (1.3) 

U -2 
*ee = aYlo r 

Introduce the nondimensional length X, 

7  -1 (l.fc) 
o 
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In this way  (1.2)  becomes 

d w _    2 d^7 
^    x . 3 

2 
1-a d u    1-a du 

+ —- — + w 
dx'    ""da; 

At a: = «, the condition 

w    =    0 

du to  = ° 

2^2 
a: dx x 3 dx 

(1.5) 

(1.6) 

must be satisfied. At x = IQ) where XQ is the value of x at the 

periphery of the internal hole, we consider three conditions:  (l) the 

clamped-edge condition 

w  = 0 

du _ 
dx (1.7) 

2) the simple-edge condition 

w    = 0 

d u    _v dw _ 

dx2    *    **    = ° 

and  (3)  the  free-edge condition 

(1.8) 

d u 

dx 

V 

X 

du 
dx =    0 

d   /d2w + 1 
X 

du 
dx 

' (1.9) 

a    du 
2 dxj x 

= 0 

where v is Poisson's ratio. 

The second equation of (1.8) and the first equation of (1.9) are 

found from M^ =  0.  The second equation of (1.9) is derived from 
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Q    +  (l/r){W    /36) = 0. The effect of horizontal stress must be 

counted in Q  .  In the rectangular coordinates x, y,  shears ^ and Q, y 

are given by 

m 
Q. 

xx 
ZM 

'x "dx 
xy 

*y 
+ N      r—  + xx  3x 

N      & 
xy  3z/ 

m 
Q 

Xtj_ 
dM 

'y dx 
__m +  N    M + N   M 
3y      xy dx yy  3y 

' (1.10) 

These equations are found by extending Hitenyi's (3) one-dimensional 

treatment to two-dimensional. In polar coordinates v,  6, components of 

shear Q    and Qa  are given (see Appendix A) by 
T 0 

Q„ 

Qt 

 1 
9r + I r 

3M 
Mvv    + 36 

r9 - M ee 
3tf      .  IM 717 

+ 9r V   r  36 r6 

3M 

3F"   F Mr9 + F IT   + 3r *r6 + r  36 ff66 

(1.11) 

Constant a  is the eigenvalue to be determined to satisfy the boundary 

conditions at x  = x ,    The first step for the solution of this eigen- 

value problem is to discover, given a positive number a, tvo real 

functions, w  (x)  and w  (x),  that are the solutions of the differential 

equation (1.5) and meet the boundary conditions at x = <*>  in (1.6) but 

are not restricted at x = x    in any way. We call them the fundamental 

solutions. We shall find them later in the following form, 

w1  + ^^J2 

-Sl-ä [2 K-a /2 

f (r2 + r
h-l) + (r2+ rk-^ 

-1+i 

V2 e 

■xr        -1_ 

r  -1  dr 

(1.12) 
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The second step is to express the fundamental solutions as power 

series of x.     Let fm  (x)     (m =  0, 1, 2, 3) be the Fuchsian type solu- 

tions of (1.5) relative to x  = 0.  We shall find linear combinations, 
3 

k Z_  ^ Jm (1.13) 
m=o 

by determining constants A^  by use of (1.12).  The solution w(x)   is 

a linear combination of the fundamental solutions, 

w(x)    =    A Wl(x)    + B w2(x) (1.^) 

The third step is to solve the simultaneous equations of 4 and B 

that are found by substituting (l.lM into the boundary conditions 

(1-7), (1.8), or (1.9) at x  = XQ.     If a root of the algebraic equation 

found by letting the determinant of the simultaneous equations equal to 

zero is positive, the root gives XQ.     Our problem is then solved. 

1&-  Abstract of the result. 

The main feature of the numerical result is as follows: 

1.  Buckling takes place under the free-edge condition.  Buckling 

does not take place under the clamped-edge and the simple-edge conditions. 

2-  Eigenvalue a  under the free-edge condition is found in the 
2 

range 1-v 4 a <  », vhere v is Poisson's ratio of the elastic ice plate. 
0 

When a =  1-v , root XQ  is equal to zero.  Analysis presented here is 

complete for the case 1-v2 4 a  < 2, but not complete for the case 2 < a <  ». 

It.is believed that the result presented in this paper can practically 

cover all the cases of our interest. 

3.  Buckling under the free-edge condition takes the shape as shown 

in Figure 5 and 6. (a  is restricted to 1-v2 <fl<2).  This shape of 
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deformation is observed frequently in laboratory experiments and field 

tests.  Therefore we may conclude that buckling is an important mechanism 

of failure. 

PART I.  FUNDAMENTAL SOLUTIONS 

2. Fuchsian Type Solutions 

Equation (1-5) has a regular singularity at x  = 0.  The solutions 

relative to x =  0 are the Fuchsian type power series of x.    Their 

indieial numbers are: 

v  = 0 
o 

v1 = 2 

v2 = 1 + V 

v  = l - v 

where 

(2.1) u = vl-a 

The four solutions may be expressed with a single formula 
CO 

f (x)    - y\     a{m) xm + kn (2.2) 
n=o 

where m = 0, 1, 2, 3, and 

a -    ± 
o 

and the rest of the coefficients a K     (n>l) are determined by the 

recurrence formula, 

Am)    _    (m) 
an        ~    "Vl 

(v + Un)(v + Un-2)(v + Un-l-y)(v + Un-1 +y) 

(2.3) 
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fo{x)    =    X) .BnL ,. 7)    1,/ ,Y-"rT-L—.\   *™ (2.U) 

Their individual forms are: 

(-if        r(f(3-y))    rfe(3+y)|_ 

^   ^3n(2n):    F^(3-y)j7(^3+p)) 

£f     k3n(2n+l)l    r(n-^(5-p))   r((n-^(5+p)j 

fk+1(x)    = V (-Dn   r(g(2±y))   rft(3^}) r(|^±y)) ^+i±y 

n=0   kknm r(ni| (2±,))    r^^jj   r(nni(5±y)]ra: 

(2.6) 

where fe=l, 2.  In (2.6) we have introduced the convention that the upper 

or lower of the double sign + (or + ) should be taken according to k = 1 

or 2, respectively.  This convention is observed throughout the paper. 

The main objective of PAST I is to determine the fundamental solution, 

i.e. to determine A,     in (1.13). 

Differential equation (1.5) has an irregular singularity at x = -. 

In other words, the solution relative to x = », say f (x), can be found 

in the form 
00 

/(*) = e~Xx   J2     Pn    *"  2 ~n 

n=o 

where A satisfies Xk  + 1 = 0.  The series £ p    x'
n  in this equation 

n=o      n 

is asymptotic and divergent in this case.  Therefore this equation does 

not provide any means for determining A       in (1.13). 

3-  Countour Integral Solution 

In order to find the fundamental solutions, (1.5) must be transformed 

by means of the contour integral, 
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w(x)    = / v(c) exX>    dc (3'1} 

L 

where L is a contour in the complex plane of T,  that shall be determined 

to let a solution of (1.5) satisfy the boundary condition (1.6) at x  = ». 

Following the usual procedure (ince (U), pp. I87-I88), one arrives at 

the differential equation of u U), 

{l+tM)    il   + 10£3^§ + (23+ak
2g + (9+3akv = 0 (3.2) 

dc3        d? 

The contour L selected for this solution is shown in Figure 1. 

To find the solution relative to t,  = °°, let 

C = ßr (3.3) 
where .  , N 

ß = exp(3wiA). (3.U) 

Then the equation  (3-2)  becomes 

(Al)    &   +    10r3^|     +    (23+a)r2   §   +    (9+3a)w    =    0 
dr dr ,       , 

(3.5) 

This equation has a regular singular point at r = ».  The indicial 

numbers X  (m = 0, 1, 2) at r = » are: m 

\    -    3 

X±    =    2 +  u 

X2    =     2 - vi 

where u  is given by  (2.1).     The solution Uffl(r)  corresponding to the indi 

cial number X    is: m 

Vmir)    =   12     qn 
(m)      -X-hn {3.6) r   m 

n=o 



Fig. 1.  Contour L on the complex plane £. 

Points A    and A    represent points °°g on the 

respective branch. 
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where tt-1 

q{m)    =     n      (^P+*   )(^P+^ +2) ^n ll e    m     r    m 
(kp+\m+2-\i){kp+\m+2+\i) 

-1 
(3.1) 

p=0 

The contour L must be such that the point C = 3 is a branch point 

of y(c)- This condition is satisfied by the series v Ar)  and vAr),  as 

shovm by (3-10) below.  These two series can be expressed by means of 

hypergeometric series F (  ,  ,  ;  ;) as 

vk(r)    = r"2+y F ((2+y)A, (U+u)A; (2+y)/2; r~k)   .      (3.8) 

The hypergeometric series are summed up by use of the formula 

l-2a 
F(a, i + a; 2a; z) 220"1 (1-z) 

-1 
2 1 + vO- 

(3.9) 

[Handbook (Ref. 5) p. 556, Formula (l5.1.lMJ.  Thus vAr), where 

k  = 1 or 2, reduces to 
-1 , 

ufc{r) = (rU-l) 2 ,/Äif /2 (l/2)(rc +7^-1)1 (3.10) 

This equation shows that C = 3 is a branch point.  Formula (3-9) can 

be proved by showing that the one on the right-hand side satisfies the 

hypergeometric differential equation of the one on the left-hand side 

and also that they satisfy the same initial conditions at 2  = 0. 

Suppose that vAr)  on one of the branch A AS  of L  in Figure 1 is 

given by (3.10).  Then, vAr)  on the other branch A^  of L  is given by 

-(Al) 
-1 
2 (l/2)(r2+P^l) 

+(j/2 

Thus one finds the integral solution, 

F(: 
,*1 ,> -f    (,2+pTi)"2 ♦ (*2+F$*\ 

-1 
$xr  ,   h ..  2j e (r -1) dr 

(3.11) 
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The fundamental solutions wAx)   and wAx)  are given by the real and 

imaginary parts of F(x), 

F{x)    = w {x)    + i wAx) 

**'     Integration of the Integral Solution 

(3.12) 

We shall integrate (3.11) to a linear combination of f {x), f (x), 

f2(x)   and fAx).     The first step for this goal is to change the range 

of integration in (3-11).  Introduce a complex variable z  = ßr, where 

ß is given by {3.k).    Use of z  transforms (3.11) to 

V 
2 

-1 
zx      -l,  1+  . 2 . 

e   ß {-z  -1)  dz HX) = c ||fv-y-a*-]j * + (ß-v+yTXi)2 

^ 3 'CU.l) 

The range of integration ß "- °o ß in (k.l)   shall be changed to ß ^ 0 

and 0 ^ - <*>.  Thus (l+.l) becomes 

F(x) 

O       -<»  , 
WI,iiHllP,»'.™iV       -.i— / 

-2 2.     h  A    2   / -2 2.1k    \ 2 
"z +ztz  +1) e  ^ ß (s +1)  ds 

(U.2) 

In the above equations, quantities inside the square roots are chosen to 

be positive in order to insure correct forms in the respective ranges. 

Letting z  = ßr in the first integral and z = -r  in the second integral, 

(h.2)  transforms to a summation of normal forms of integration, 

F(x)    =    ih±{x)  + ih2(x)  -  »exp(-iiiriA) g  (x)   - .ßexp(piriA) g     (x) 

(U.3) 
Til 1 

where 

\(x)    =    f  (r2 + iJ^Fj 
2 

1 
"2 

e  (l-z> )  dr> (h.k) 



and _ - V 

gk{x)    =| (rZ+fi^l)    2    e"^ (A-lf 2 dr (U.5) 

*o 

Expansion of exp(frn*) transforms (if.*0 to power series of x, 

hk(x)    =  Ä<*> +ßs h [k)  +  |j- (ß*)2 fc<fc)' + ...        (U.6) 

where        , .       + |        _ _ 

\(fc) - I     {*'  + i-/1-r'f)     rn(l-rU) 2 dr (M) I \r    + \ll-r J 

Integration of (h.j)  will be carried out later.  Integral (h.5)  trans- 

forms to power series of x 

9±(x)    = 20
(1) + g^x  + gv

{l)x    1+v    +g2
l     x2  + ...  (U.8) 

and 

*2<*> = S0
(2).+ ^

(2)-1-li- ^(2)- ^ ^2
(2)-2 ^ •••      <*-9) 

as explained in the next section.  Thus one finds ~F{x)  in the following 

form. 

F(ar) = B    + S(2)s1-|J + Bx +  B(l)*1+P + Bx2 +  ...       (fc.10) 
o   u        1    y        2 

where 

yo        tfo ' 

WM ]1T!1 

h -l(41,^1-»(-"nr41'* ^41 
- yni 

B{k)    = -ße  ^ *<*> <U^> 

In this calculation we tentatively assume that 0 < a <  1. Series are ar- 

ranged in the ascending order on this assumption.  The formulas for the 
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values of a  outside the range 0 < a <  1 will be derived from the formulas 

in this range.  Note, that the entries in (it.lO), except B x,  are the first 

terms of fjx),  where m  = 0, 1, 2, 3.  The first-order term, Si, is not 

contained in any of fjx);   it is proved later that B    = 0.  The entries 

in (It.10) are sufficient to'express ufe(ar) as a linear combinations of 

/ (x). 

ha.     Formulas of q^   '  »n 

We shall give the integral forms of g^k)  by successively developing 

(t.5) into series of x.     Integration of these formulas will.be carried 

out in the next section. 

Letting x  = 0 in (it. 5), one finds (k) xxnus   y 

£' -   f     <-* *f^)  2    (Al)" * * (^j 
(2} 

To find g^   ',  the  formula 

P 

$2^    ~    9{o2)    -    f     ^ tp+'l)2    (e~™ -1)   (Al)" 2 dr 
^o 

shall be transformed by introducing £ = vx  to 

- *^ / <C2*/ÄIV (."'-l) ({*wV * d{ (l.a.2) 
"o 

Letting a:'= 0 inside the integral, one finds 
U 00 

„(a)   .   25 J   {P-2 ,,-e.^   d? (1B 3) 

O 
(2) 1- 

To find g^  , multiply x P on (Ua.3) and subtract it from (ha..2). 

Thus one finds 
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,2(«) - 42>- 42) *1_u 

1   y 

. > r Lvr£(5
2

+)pQ')?^c,'-2)(.-c-i)« 
o 

Letting 5 = rx, this transforms to 
00 

-rx / -l 
Ylv ' rx 

dr (Ua.U) 
'1' '    .rx 

o 

where 

+i(,) = (A/Al)^ (Al)" 2 - 22 r^2 (Ua.5) 

Because of the inequality 1 >, (l - e"U)/u >l-u/2 the integrand of (lta.lt) 

is uniformly hounded.. One can, therefore, let x -*- 0 inside the integral. 

Thus 
or 

g^    = -I   <j> (r) r dr (Ua.6) 

o 

To find ffl2 , multiply x on (Ua.6) and subtract it from (Ua.lt).  Thus 
'2 

one finds 

•*<«> - ».8)-*i2)^.-»i8)« 
a. 

= x2 I  «^(r) *•' 2 2 r x 

2 . e-asp - 1 +J?x ^ 

Because of the inequality 0 £ (l-u-e"u)/u >, - J "the integrand of the 

last integral is uniformly hounded. One can, therefore, let x -»- 0 inside 

the integral.  Thus 

g[2)    = \    f ^(r) r2 dr (Ua.7) '2 
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To find g±     , one may simply differentiate g Ax)   in (U.5) with 

regard to x  and let a; = 0 in the result. Thus one finds 

(1)      f 1     'Ü. _i 
] dr (lta.8) 

.(1) To find g^     , use (Ita.l) and (Ua.8) to derive the formula 

H{x)    ~    <?o 
(1)   „(1). - g1    x 

/ 

2 , -rx 
(r +/r + 1) ' (e~rx  - 1 + rx)  (Al) 2 dr 

Letting £ = rx,  this' becomes 

1 
=    x My j (5V)'2 <e2+/?£v2 (.-5.1+c) dC (i+a.Q) 

Letting a: = 0 inside the integral, one finds 

OP 

I'- «l" ■' 
2 

^-2(e-5-1 + C) dC (ita.10) 

.(I)- To find g2    , use (i*a.a) and (Ua.10) to derive the formule 

r*1*    „dL   .(1)  1+M ^U) - 0?' -   g^'x - g^> J 

=      X 1+Ji 

OO 

/ * 
u^Y2 (P+l^+xV 2 -2"2 ry-2 

(e~*-l+C) d£ 

Letting £ = r-x, this transforms to 

x 

CO 

/ 

-rx 
*Jr) r2   £ - 1 + *r 

2 2 r x 
dr (Ua.ll) 

vhere 

372 



*2(r) = (Al)" 2 (AjAl)" 2 -2_ 2 ^"2 

Because the integrand of (i4a.ll) is uniformly bounded, one can let x  -> 0 

inside the integral. Thus one finds 
CO 

41} -■'! /"'■vr) r2 ^ (Ita-12) 

" o 

Ub.    Evaluation of g 

The independent variable n introduced by 

..." i.2+/rU+"l   =    n"l/2 (^.D 

is useful for the following integrations.    This transforms to 

T2   = (1 - n)/(2nl/2) 

; 
l + rk   = (l + n)/(2nl/2) 

and 

r  dr = -[(1 + r1)/(
1+n3/2)] dn 

Substituting these in (ka.l), one finds 

= (2/27)-1 r(L±Ji)r (i^i) sin ILL+JLL        (i.b.2) 

Eq. (^a.8) is similarly integrated to 

Use of n transforms (ka.6) to 

7(2) = -I (  [1 - (1 -n)(i - n)   |n k dn 

By 

'o 

letting 1 + n = 2 - (1-n), the last integral is divided in two por- 

(2) 
tions; thus g^  becomes 
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=       i     7 1        7- 
it    Jl    "     2      J2 

where 

/I i. {1. J\ „" * -1 
an 

and the remaining integral J    simply integrates to 

J2    = - 5(p/2, 1 - y/4) 

After partial integration of n 4  , «7 integrates to 

J1 = -h/u + 2B(v/2,  1 - ]i/k) 

Thus one finds 

J2) _  -1 
(4b.4) 

Combining (4b.3) and (kt.k)  the result may be shown with a single formula, 

(4b.5) 

„(*)   -  T  -1 9^   = + u 

,y-2 
imes After partial integration of £y  , (4a.3) integrates; after two t 

of partial integrations of CV~2,   (4a.10) integrates; the two results 

are shown here with a single formula: 

(k)       «+u/2 rv     =  +  p -1 + 2 H/  [w(l+y)] x r(l?p) (4b.6) 

We express ^2)  in  (4a.7)  and ^l}  in  (4a. 12) with a single formula, 

.(*) 
CO 

(Al)" 2 (r2 +    r\i) h~'+V/2 _2^/2 r-
2^ r2 dr 

Use of n changes this to 

1 
Jk)    _     l 
9*     ~e7t i 1 - (1 + n)(l - n)' 

_ P 
-1+ 2 

5 + P 
r,       k k    M     ^1/2  - n     (l - n) . dn 
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Letting 1 + n = 2 - (l-n), this can he divided in tvo integrals, 

j{k)    = (8/2)" K±  + (W2) Kr 

where     , ^ 

Ki   = f   1 -((l " *>* 2)  n 
k   ±   k.  (l - n)1/2 dn 

and the remaining integral K    simply integrates to 

#„ 
/l + v  3 - lA 

I + E 
After the partial integration of n U - U  , ^ integrates to 

Thus one finds 

2 

Itc.     Integration of h 
(k) 
n 

ffeb.7) 

Let 

j*    + i/l - r =    C 

Then 

r2    =    (l +    r)/(2t) 

and 

7l - rU    = i  (1 - C)2/(2C) 

rdr    = J(C2 - l)/(^2)j    cLC 

(Uc.l) 
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Substituting these in (h.j),   one gets 

'&)  -  -•-  2  /      2 ^2 
/ 

;itc.2) 

For n    =    1,  this  integrates tc 

K U/v) 1  -  exp(+)jTTt/l+) 
(i*c.3) 

To integrate (l»c.2) for n=0 and 2, it is noted that 7z(l) + /z(2 

is real.  To show this, let 

J. 

2 
r = cosG in (if.7) to get 

n-1 

,cosO cosyd  dt 

which is real.  Divide the contour of (^c.2) in two parts, 

n+1 

n J (fc) _ 7(fe) 

where 

I (*) 

Jo 

_ jj_ n+1 
+  2 "  2 n-1 

(i+c2) <H 

and 
7- _ H.  2+1 
r + 2   2 

n-1 

J^ 

Letting X,  = i*^, the latter integrates to 

Transforming the Gana-functions, this yields 

-1 

o '\Wr\T| expl~IT"i   £ln~h 

and 
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4*1 - - k [U-P^f1 r(3ja)r^) exP(Ä^) TTJ(-l+y)\      .     ir(l+y) 
—* —'   sm  r— 

Thus  one  finds 
1 

*W+*(«. «~
2 (^> ♦!<*)♦ (2^)-1 r^)rft=) !=os f  -,: 

and 

411 ♦ 42). ii2 
(41142i) + Jl   [A-(i-p2)]"r(^u2z>i.)(coSf+ i) 

Taking the real parts, one finds 

,(D  .  x.(2) h +    k -     (2/2TT)    (-) )   ("IT")  cos 
l r,i+yu r,i-y, yu (lic.U) 

and. 

,(i)  ,(2)   ,n 2v-i IT" r,3+u-> r,3-Px  yir 
hK

2   '  + hK
2   '     =     (1-P )  ^ -  (—)  (-y) cos— >c.5) 

ltd.  Fundamental solutions for 0 < a < 1. 

Substituting (Ub.2) and (iic.it) into (U.ll), one gets 

Bo    =     (2/27)-1 r(if) F(if) 

Substituting (Vb.5) and (Uc-3) into (^.12), one gets 

Bl    =  ° 

Substituting (Itb-7) and (l+c.5) into (U.13), one gets 

B2"    l ^ a-v
2)}V^r(^) 

Substituting (^b.6)  into (U.lU), one gets 

[vd-v 
-1       +2 

r(2+p)   exp^üM 

(Ud.i) 

;iKi.2) 

M.3) 

(Ud.U) 

Thus one  finds 

F(x)     =    Bo /o(x)     +■   BgfgU)     +    41}/2U)     +    Si2)/3(x) (1+dU5) 

When  0 < a <  1,   functions / {x)   (m =  0,   1,   2,   3)  are real.     Therefore, 
TU 

fundamental solutions wAx)  and wAx)   are found by decomposing the coef- 

ficients into real and imaginary parts.  Thus 
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wi{x) = p0 
fo{x) + p, foM +- Po /„(*: 1 J 2X 

2 J3 
and 

,4d.6 

*>2(*)  = ^ /2U)  + q    f Ax)     + «  f U) :2 ,3, 

where 

Pr 

-1 
;2/2T) " r(i±E) r(i-u. 

Qr ^     (I"/) 
-1 

Ud.7) 

(lid.8) 

(itd.9) 

Pz. = + ii(i-p2) 
-1+2 

2  r(2+vi' cos 
(3+y)TT 

It (Ud.10) 

<?*, = + v(i-u2) 
-l 

2+ 2 F(2+p)  sin^f^ 

5-  Fundamental Solutions for a =  1 

When a =1, (1.5) reduces to 
^ 3 

+ - ___ + w h i =  0 

Mevel (1961) gave the Fuchsian type solut 

(ltd.11) 

ions of this equation with the 

notations, 

nev (x) 

n=0 

(-1)? 

h3n(2n)l 

r(f)1 

nev(x)     = V*    (-1)' 
1       Z-f  i,H„. 

r(n+|) 

r<l> r(f) 

a; 

2  r, 3 
n=Q h-'inl)'       W) J(n+f) 

a: kn+1 

nev^ix)     = \^ -1 \" 

K=0  It J^(2n+1). 

r(f) 
r(n+^) 

x hn+2 

and 



nel Ax)     =    nev Ax)     logx- 

-3x „,5x   n 
E(_l)n      T{h] T{h]      V^ / 1    I + _L_\ ^

n+1 

To find the fundamental solutions, the.unknown function w(x)  must 

"be transformed to the unknown function U-U) defined by the contour 

integral (3.1).  The transformed differential equation is 

(1 + CU) ff + 2,3y = 0 

and one finds 

y(c) =  (l+C ) 

Therefore the complex solution w(x) for a = 1 is found in the integral 

form 
/LX 

-2—   dC (5-1) 

The contour L is the one shown in Figure 1.  To find the fundamental 

solutions in the form of the linear combination of the nev  functions, 

J. Dieudonne (1958), as explained in Hevel (1968), expanded (5-1) into 

power series in the neighborhood of x  = 0, and determined the first few 

coefficients.  The fundamental solutions thus found are denoted here by 

N   , N W1  and wg: 2 

w\{x)    = (k^r1 T  (i) nev(x)  - ^2^)~1 nevAx)  + (2/27)"1 F (f) nei^U) 

and 
2 2 

w\{x)    = (SA)"1  r (£) nevAx)    -    (h^  )-1 F (f) nei^U) + neZ^x) 

_ (i _ Y + log /2) neu^aO 

where y is Enler's constant 0.5772156- 

379 



We  shall  show in the following that w±(x)   and w  (x)   in  (ltd.6)   and 

(itd. 7),   respecitvely,  gives 

lim    w(x)     =    -J(x)     +    ^wi{x) 
a-*-! x 2 

lim    wAx)    =    Jhx)    -    /2wJ\x) 
a-*l x 2 

To show this, note that 
2 

lim p    f    (x)     =  (2/2T)-1 F (i) nev   {x) 
C+l        ° ^        0V 

2 
üni <? /(*) = (2/2^)-1 F (J) nev   (x) 

lim 4+1(a:) = nev Ax) 
a+1      K+1 1 

We shall prove, therefore, that 

*5 (Pl f2U) + P2 f3
{x))   =    " ^ (1 - Y + log^ +.J) n^U) + /2W (*) 

1 

(5,2) 

all   {"I f2ix)     +    q2 f3M)     -    ^ (1 - Y + log/2 - J) n^U)  _ ^ neZi(x) 

(5-3) 

The left-hand side of (5.2) becomes 
CO 

£   (Pl f2M ♦ P2 f3M)    .   E    %^>+1   li,   i   (- clM ♦ Ca(„ 

where 

r(n+|(2+n))   r(n4(3+p))   r(n+J(5+y)) 

Taking the  limit,   one  finds that 
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lim -f-C^n)  + C2(n)j 

- /2 n 
n   n] 

[1 - Y - log^r + U" + 
/2 

2^ (i*p+l + 2p I+p- 

p=l 
n 

where we have introduced the convention that the summation £  disappears 
p-1 

when n = 0.  This equation proves (5-2). 

The left-hand side of (5-3) becomes 

lim 
a-KL 
^ f2(x) + q2    f3( 

n=0 

(_l)n Ln+1 

1 ^  ! 
lim 
u-*o 

\   (.5x(n) + S2(n| 

where 5. (n) can be given from C^  (n)  by replacing cos ((3+phAj 

with sin ((3+y)-rr/iy.  Taking the limit, one finds that 

lim 
y-K> 

/2 

I (- 5l(n) + 52(»))  = 

n!.(f)  (f) 
n   n 

l - Y - log— - r + 

n 
p=l 

where, by convention, the summation £ disappears when n  - 0.  This 
p=l 

proves (5.3). 

6.  Fundamental Solutions for a =  0. 

When a = 0, (1.5) reduces to 

2 \ 2 
d _ + 1 d_ x 

,2    a: da 
. dx 

w + w    = 0 

as may be derived by putting H^  = 0 and /^ = 0 in (1.2).  This equation 

can be decomposed in two equations, 

,2 

vdx 

_ + I 4- _ i) w      =    0 
2     X QX    /  1 

and 

(6.1) 
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iäx 
+    i d 

a; d^ + Z)W2    =  ° (6.2) 

The solutions of the tvo equations satisfying the boundary condition 

(l- 6) at x -  °° are 

w. Kera; + i keix 

and 
(6.3; 

u
2 " ker:r ~ ^ keia 

giving the fundamental solutions kera; and kera;.  Thus 

w = 4 kera; + B  keix 

We shall prove that z^U) in (Ud-6) and wJx)   in (l*d.7) sati 

and 

lim w  (x)    =    /2 kera; 

lim u (a;)  =  /2 keix 
(2->0 

First ve note that 

lim f^x)     =  lim y (a;)  = bera; 

and 

um fAx)     =    h  beia lim /" (x) 
P+l 

Letting 

A = 1 - u 

Ve transform (l»d.6) to 

V 

+    i 
A 

Letting A-*o, 

1-A 
2   r(2-!   r(it±A} j 1 
IT       

K   h   '     K   I,   ''J, 

(6.k) 

(6.5) 

sfy 

(6.6) 

(6.7) 

h ^fo   + (TTTnl^y2       r^-A) cos AIL./3 
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dfo      df3 
lim w      =    —    fceis +  /2(log2-a)  ter:r    +     /2 l^-(j^ - ^ 

Substituting  from  (2.H)  and  (2.6),  one  finds  that 
c» 

-O ^3^ V^ (-1)"   a"   _        V        - 

X->o 

3f        S/ V* (-1)" xkn 

n=l V        / p=l 

which proves   (6.6). 

We transform  (^d-T)  to 

w 1 „2 Wojx.   1  _•   *IL 
2 y(l+u) 

4 

2 x       1        .     ATT       j? 2      r(2+y)-  Y sinjj- 'f^    + 

r(2jA} r^),^   -   T^^)l   2 rd+x) cos^ ^ 

1 3A        3/2 
-2- berx    -     /id-Y+log^)  bei* +    — lim  (-^ - -gj) 

v/2V(2-X) 

Letting  X-HD, 

nimw      =    -^- berx    -     /2(l-Y+log>'2)   bexx +    — ^^-"^ 
I+o    2 2^2 2/2    ^o 

Substituting  from   (2-5)   and   (2.6),   one  finds  that 

. 2n+l 
3/,        3/2 .      V^ (-1)VW+2 V        I 

XT>-O n=l V '        P-2 

which proves (6.7)- 

6a.  Eigenvalues for a  = 0. 

When a = 0, no horizontal pressure works on the plate, and buckling 

should not take place under any boundary conditions.  We shall prove below 

that this is true under the boundary conditions (1.7), (l-8), and 

(1.9). 

The following formulas are needed for the proof.  Substituting either 

(6.3) into (6.1) or (6.U) into (6.2), one finds the relations, 



-1 ker"x + x      ker'x + keix = 0 (6a.1) 

and 

-1 
kei"* + x~      kei'x - kerx = 0 (6a. 2) 

We shall prove that no positive number XQ  can satisfy the clamped- 

edge condition (1.7).  The determinant of (1.7) is given by 

D. kerx      ker rx 

keix  kei'a: 

vhen (6.5) is used.  Differentiating D^  one finds the differential 

equation 

dPn 1     -1 2        9 
to" + x      D1    = ker x    +    kei x 

Solving this equation under the boundary condition that D    = 0 at 

^ = °°, one finds 
CO 

Dl    =    ~xf      5(ker2C + ker2£) d£ 

which is negative for any positive x,  proving our contention. 

We shall prove that no positive number XQ  can satisfy the simple- 

edge condition (1.8). The determinant of (1.8) transforms to 

D. 
-1 kerx  (l-v)x~1 ker'x  + ke ix 

kei*  (l-v)x'1  kei'ar - kera 

This equation transforms to 

D. ~    ~    IT j      ^(ker2S + kei2£) d£ -  (ker2* + kei2*), 
x 

vhich is negative for any positive x,  proving our contention. 

We shall prove that no positive number XQ  can satisfy the free-edge 

condition (1.9).  The determinant of (1.9) transforms to 
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D. 
(l-v)x 1 ker'x + keix  - kei'x 

(l-v)x"1 kei'x - kerx    ker'x 

This equation transforms to 

■D, = 2-2. (^r^x  + kei'2x) +    i   f   5(ker25 + kei2^) 
x x J 

d? 

x 

which is positive for any positive x, proving our contention. 

7.  Fundamental Solutions for a > 1. 

For a > 1,-y defined in (2.1) must he replaced with y = ik,  vhere 

To compute f(x + iy),  ve use the formulas 

-1 

T(x+iy)/T{x) n 
n=0 

2     2 
1 + w /(x+n) 

and 

Arg r(x+iz/) = ^(x) + ^ L/(x+n) - tan 1[y/(x+n) ]| 

n=0 

(7-2) 

(7.3) 

[Handbook (ref.   5), P-   256].     These formulas can be proved by use of 

Euler's formula for the Gamma function  (ref.   (9), P-   237)- 

Using these formulas,  coefficients of F(x)  in  (Ud.5) become 

v-2. 

o    2 
^(2TT) 

2 r*(£) n    [i + K (^P+D ] 
^ p=0 

(7-10 

-2 
B, = i(2ir)  2 r2(f)   n   [i + < (Up+3)^] 

a 4 

-1 

p=0 

B W = ^a*)"1  i? exp(+^ + ?
i ? iKlog^ + *0) 

(7-5) 

(7.6) 

where i? and 0 are defined by 
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r(2+i<)    =    R exp(+t0) 

They are given by 

R n 
n=0 

in + 2)     [{n+2)d +    K  ] 2T     2 

and 

0=      K(l   -   y)   +        2 
n=0 

-1 [</{n+2)]  -    tan X  [K/(W+2)] 

Lex Functions fQ(x)  and ^U) are real.  To decompose the comple 

function fk+1(x)  into the real and imaginary parts, the denominator of 

(2.3), 

(hn+l+u) (kn-i+v) (kn) (kn+2\i) 

is transformed to 

= 8n[2n(l6n2 + 1* _ 5^) + iK(32n
2 - a)] 

Thus one finds 

Wx) - z (-DVO) 

n=0 

where 

P<°>  = 1 o 

P.   =  0 

n exv(+ipn) x hn+l+iK 

>(o) 
n B'^inir1 n 

2M 2 5v2 n p (kp    + 1 - ^r)- + (a- l)(hp* - % ) 
p=l I 4 H 

2  a ,2 
8 

1 
2 

\ "* tan 

p=l 

-1 
<(^P2 ~  !)> p(^p2 + l-$a) 

for n _> 1. 

Fundamental solutions w^x) t  w^x),  and their derivatives are 

found by decomposing F(x)  and its derivatives into real and imaginary 

parts.  We formulated them (up to the third derivatives) as follows: 
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■dV r2i 

dx 
m 

±-  n fi + -s=3^ 
2/2^        [    (Up+i)1 

-1 dmf 

dr 
m 

* «,(»/»      S.   (-1)" #> -te+1""'    «»<81 - p +*(m,> 

a< n=0 

|  B exp(-<Tt/U)      V**      (_x)n ppi 
aic n 

a: 
lm+l-m cos(e2 + pn - *n   ) 

n=0 
(7.7) 

dW2    _    rjL_       n     1+      «-1- —i 

dx 
m /27a (l^p+3)2 ax m 

(m) R exp(KT/H)      X^    (_l}n p(ffl) ^n+l-m    sin(e        pn + ^) 
<ZK Z—rf n 

n=0 

(m). 
B exp^/^V-    (.!)« PW    x1,n+1-mBin(e2 + Pn-*;'n;) 

n=0 (7.8) 

where 

T   +    iclog— 
k    - /2 

+ (1-Y)<   +   2-r(^2 - tan -lJL.\ 
P+2/ 

p=0 

,(D 
n 

=    P^o)   f(Un+l)2 + K2] 

1 
2 

,(2)     = 
n « 

p(3)    =    P(2) 
n n 

V{1)   \(kn)2+    K21      2 

, _ 1 

(Un-1)2 + K2|      2 

(0) 
n 

(1)    , 
n 

=    0 

-1 =    tan        </(Un+l) 

387 



,(2)     - 
vo 2 

.(2) 
n *^1}  + tan^Cc/flm)] for n > 1 

(3) A(2) -i 
'0        =    4>Q      + TT - tan    K 

(3) 
n ^2) + tan 1[</(hn-l)] for n >    1 
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PART II.  ASYMPTOTIC EXPANSIONS 

Values of a series solution developed in PART I must overlap on 

a certain range of x  vitlrthe values of. an asymptotic expansion determined 

corresponding to the respective series solution.  The series may he used 

for any x  less than the overlapping range, and the asymptotic expansion 

may he used for any x  larger than the overlapping range. 

8. Asymptotic Expansion for 0 < a <_ 1. 

Using analytical continuation of the hypergeometric function in 

(3.8) from the range 1 < r < » into the neighborhood of r =  1 (more 

exactly in the range |l-rU| < l), one finds that vfc(r) in the contour 

integral solution (3-11) defined in the range 1 < r < - is analytically 

continued to . 

vk(r)    = v{V        r/i(2+y),i(2-p);|; 1-xj   + 

+ ,,<*>  .rV-l)" * F4(2+P), i(2-y); \  ; 1-rJ (8.1) 

defined in the neighborhood of r  = 1, where 

„(*> - - 2A r(|(2i,))  rfe(2ip>)   r(±^) 

<*> =■   rr(l(2i"')   T%{2-^ %{k-A 

-1 

"2 

-1 

(8.2) 

(8.3) 

Double signs may not appear in the hypergeometric functions on the right- 

hand side of (8.1) because of their symmetric properties with regard to 

the first and second parameters. 

Letting v    = 1 + t  and developing the hypergeometric functions on 

the right-hand side of (8.1) into power series, one can integrate (8.l) 

to a complex-form asymptotic expansion for 0 4 a  4 1, 

389 



Fix)   - 

(»(1)  + v{2))   e-
x//2" 1 1     '   e 

3P, 

+  (41}  +y
(2))     e~x//2     I1 /** irf\ 51 2      2 ) jx «p(^ + r) + 7 

25 

a:" L/2 

where 

exp/^   +    H] 
\/2 2J 

(8.1*) 

^    =    -(1 + 2a)A 

^2    =    (9 + 20a + lkz2)/96 

^    =    -  (3 + a)/6 

B2    = -(3 + a)(5 + a)/l20 

Asiatic expansions for ^U, and «,,(*) are given by the real and 

imaginary parts of (8.1*), respectively. 

9-  Asymptotic Expansion rn-r 1 <_ a ± 2. 

A form of asymptotic expansion for a  > 1 is fonnd by lettlng 

"=<<I° the »*«<*«■*• Of v.'1' ♦ vl»     lk  . 1>2).  In tMs case 

formulas (7.2) and (7.3) need to be modified to inclnde the case 

x =  0.  The modified formulas are: 

|rKv)|2   =   zT2   II   [1 + (^/n)2]-1 

n=l (9.1) 

and 
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Arg r 

CO     . V 

(iy)    = - l  sign(iy) - J/Y +  Z)(n-tan" n)'    (9-2) 
^ n=l x 

vhere 

sign(y)  = 1 for z/ > o 

= _i        for y <  o 

The result of the transformation becomes extremely simple: 

v(l) +    y|2)     =     cc£(Kl0g2) 

and 

(9-3) 

o       o 4 

Substituting these into (8.U) the complex form asymptotic expansion for 

a > 1 is found. 

Our numerical computation shows that this asymptotic expansion 

is effective only for a    close to  1. We used this formula for 

2 >fl>l. 

10.     Asymtotic  expansion for a ^ 2. 

Letting V = ik, the  integral  solution  (3.1l)  transforms to 

F(x)    = 
/ 

ßxr e cos flog (r* + /r4-D 

1 
U .v" 2 (r -1). dx        (10.1) 

Expanding the integrand in the neighborhood of r 

v  = 1 + t, and using the approximations, 

log(r2 + Ak-1)    = 2^t + 0(t3/2) 

= 1 by letting 

and 

/r -1 = 2/t + 0(t) 

one finds the integral asymptotic solution, 
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F{x)~      I       e cosUH)    — (10.2) 
Jo ^ 

To  evaluate this  integral,  define the function, 
CO 

a (*}    -   I     f     Bxt+iK/t    it Gk{x)    ~    2     /     e     " T (10.3) 
^o ^ 

Then  (10.2)  becomes 

F(*)~  e^^ar) + G^x)} (l0mh) 

2 
Letting t =  £ ,  (10.3) transforms to 

CO 

o 

Define z  by 

^ U  ♦ §)2 - -a2 

The root 2 of this equation satisfying the condition that the real part 

of z  must approach positive infinity as £ ■*  °° is 
1 

3    =    exP(- ^f) x2 £  + exp(^f) |KX" I 

Use of z thus  defined transforms   (10.3)  to 

1 2 »exp(5^/8) 

where 

'AX)      =      X      2 ,K 7Tix        /* ,       2s 
* exp(W ~8)     / exp(-H^)    ds 

5 1     - i afc    =    +exp(^T-£)    yzx    2 

Transforming the contour of integration to the sum of two contours, 

cu/vo and cv+°°,  one  find s 

G^x)  + G2(x)    =    A7^ exp(K2/(8ßr) + Tri/8) (l0>5) 

Thus  one gets 
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T[x)   —   SUx exv($x + K
2
/(Q$X)  + H/8) (10.6) 

We use this equation for a  ^ 2. 

11.  Fundamental Solutions for Large a  and Small x. 

Our numerical computation shows that the overlapping range of the 

series solution and the asymptotic expansion moves to small values of 

x  as the values of a  increases.  When a  = 2, the series solution and the 

asymptotic expansion overlap in the neighborhood of x =  6. When a =  6, 

they overlap in the neighborhood of x =  1, showing that the fundamental 

solutions at this value of a  is ineffective.  For larger a, fundamental 

solutions must be transformed to a more effective form. 

Following formulas were used for the transformation.  For large 

values of y 

T(x+iy)    ~     &    e    2"    y~    2      (£)" ~h    yX~2      l)L&      tki{x^] (11'1) 

and
        '       ^-l _ +TH    -n (11.2) 

T{x+iy) T{n+x+iy) e    y 

where x  and y  are real.  These formulas can be derived by transforming 

the asymptotic expansions of the Gamma-functions by using the assumption 

that y  is large. 

When x  is small, the number of terms needed for the summation of 

series f (x)     (m = 0, 1, 2, 3) in (2.U) *  (2.6) are fairly small. 

Letting K be large under this condition, formulas (ll.l) and (11.2) may 

be applied to transform series fm(x).    Thus one finds 

f (x)   ~ cos[(2K)-1«2] t11-3) 
o 

f^x)   ~   2< sin[(2K)"V] (ll-1*) 
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and 

fk+1W x-      exp[+t(i+K°) x] (11.5) 

Also one finds 
_ 1 _ 1 

r^i+io)  r(i(i-iK)j  ~    IHT.K"
2

   e_VC7r (ii.6) 

r(J(3+io)   T^(3-iK)j   ~   TT    K2    e"^ (11.7) 

and 11 3   . 
op" ~   oK7T ±'Z'K +. XT'2- 

T(2+i<)    ~    (2TFKV      e    ^       (K/e) e    4 (11.8) 

Thus for extremely large K and small x,  one finds the complex expression, 

T(x)   ~    ^(l+i(2K)-1
a;2)  + BX

1+£K
 + Cx1_i<, (11.9) 

where 
_ 1      _ 1 

■*  =     ^/«) 2    e~ ^ (11.10) 

1 • 13 1 

B    =    £2 (2,)
2
K     

2e *             *""                                           (11.11) 

1- 13 3. 

C    =    -     22 (2*)2     K     
2 e     ^              K™-                                         (11.12) 
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Define operators 

da; 
+ v    d_ 

x    äx 

dxJ 
+ Id2 

x  ,  2 da; 

1-a 
2 

X 

d_ 
dx 

PART III  EIGENVALUES 

12.  Computation of x 

Our numerical computation shows that the clamped-edge condition 

(1.7) and the simple-edge condition (1.8) do not yield any positive 

number a; as a root of the respective determinent equations. The free- 
o 

edge condition (1.9) always yields roots or a root. We shall discuss 

"below only the free-edge condition. 

_ (12.1) 
da; 

and 

(12.2) 

Then the determinant D    found by substituting (l.lU) into (1.9) is given by 

D  = !   !       X ! (12.3) 
3   |L(W2)   M(W2)| 

Root x    thus found in the range 0 < a <_ 2 are shown in Figure 2 
o — 

and 3. 

To discuss the neighborhood of XQ =  0 in these figures, take the 

first term of the series / (x)   {m =  0, 1, 2, 3), and approximate wAx) 

and wAx)  in  (Ud.6)  and  (Ud.?) with 

vAx)    =    p    +Plx
1+y    +ppx1-y    + 0  (a;2) (12.U) 

1 ro       rl 2 

and 

WAX)     = q/ + c?/^     +    q/-y
+     OU5-^) (12.5) 

Because M(ar1-P) = 0, M(u ) is negligible against lA{wA.     Therefore the 

root of (12.3) is given by L(w ) = 0, which yields 
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0.8 

Fig. 2.  Values of XQ  in the range  0 < a   <^ 2 using v (Poisson's 

ratio) as parameters. 

Fig. 3.  Val ues of x0  expressed with logarithmic scale in the range 

0 < a  ^ 2 using a  as parameter. 
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Ax\
2li =    (v-v)  r(l+y)  COS[(3+U)TTA] (12.6) 

/2    °) (v+y)  r(l-y)  cos[(3-vhA] 

2 
This equation shows that the condition y £ v, i.e. a  ^ - v , must be met. 

When y = \>,    x    becomes equal to zero.  Each curve in Figure 2, therefore, 

terminates at the intersection with the axis of abscissa, whose coordinate 

2 is a -  1 - v . 

For small y, (12.6) becomes 

ln(j*°)= 5-Y-v + 3 4^<3)-V"3+fe *3)      <^> 
where c(3) is Rieman's Zeta-function.  Our numerical computation shows 

that (12.7) gives close approximation over the entire lengths of the 

curves in the neighborhood of a -  1-0 in Figure 3- 

To discuss the neighborhood of a: =0 for the case 1 < a <  2, we 
o =  = 

used the complex form F(x) in (ltd. 5) with coefficients given by (7 A) —- 

(7-6).  Taking the first terms of / (x), one finds that 

M(F) = 2B2 {1+K
2
)X~

1 

Because B    is a pure imaginary, the real part of M(F), i.e. M(w ), is 

negligible against the imaginary part of M(F), i.e. M(üp).  Therefore 

D    = 0 is equivalent to L(w ) = 0.  Equating the real part of L(F) 

equal to zero, one finds that x    is approximated by the root of 

tan(a+Klirc) = 

2     1 1 "l 2      1 
[(V-K ) exp(-ncir)  - K(1+V)  exp (-pcir) ] • [<(l+v) exp(pciT) +  (V-K ) exp(-pcTT) ] 

(12.8) 

vhere 
00 

"""" -1  K  \  ' a = {- <log^ - (l-ak - ^2(~ tan 
n+2 n+2) (12.9) 

n=0 
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For small K (12.8) reduces to 

vrr 
vH(ar) + 1 + v - r1 

k 

I* 1 + (I+VJTT  vir' 
8 96 

_ |l _ (1+v)7r + 
V1T 

32 E{x >1 (12.10) 

where 

H(x) = log[(/2) a:J _ 1 + Y (12.11) 

Our numerical computation shows that this equation gives close approxi- 

mation over the entire lengths of the curves in the neighborhood of 

a. -  1 + 0 in Figure 3. 

Equation (12.8) shows that, if x is a root, then x    , given bv 

Xn+1    = xn  a^-*/*) (12.12) 

is also a root.  Therefore infinitely many roots exist in the neighbor- 

hood of x  = 0.  Roots xo, x±, x2  and x    are shown in Figure k  where 

K = Sa-1  is used as the Ordinate.  The solid line covers the values we 

actually computed.  They may be extended to the left of the solid lines 

by means of (12.10) and (12.12). 

The asymptotic behavior of the large roots can be found by using 

F(a) in (10.6) to compute L(F) and M(F).  Assuming that ? defined by 

C = < /(kx2) (12.13) 

is of the ordinary magnitude for large x,  one finds 

L(F) _ F(x)   (ß2 - 2C + ß"V) 

and 

M'(P) ~ Fix)   (l+c
2) fexp(^) - c exp(- ^)] 

Thus one discovers that there are two asymptotic roots, 

(12.lit) 

(12.15) 
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xh   = (^7z)_ 2 K (12.16) 

where 

h    =    2 ~+ ^ (12.17) 

In these two equations, suffix h  is defined by 

h    =    k - 1, (12.18) 

where the old convention for suffix k  is still observed.  The two lines 

in Figure h  expressing the two equations in (12.16) are shown by the broken 

lines. 

Asymptotic roots were also computed retaining all the terms in 

L(F) and M(F) that were found by letting F(x)  be (10.6).  Carrying out 

the computation of D    as given by (12.3), one finds that the equation 

D    -  0 reduces to 

Nnx
n    =    0 (12.19) 

n=0 

where 

No = (l+c)(l+C2)(l-^+C2) (12.20) 

N± = /2  [(l-v) + h$ -2K2  + 8c^ - (3-vk1*] 

N2 = -|+5(2-v)c - (6-vk2 + (l2-7v)?
3 

N3 = i /2 [-(3+v) + 2(9-li*v)c - (15-I3v)?2] 

^ = Y6 [("3+8v) +3 (15-I6v)?] 

The positive roots of NQ  are QQ  and ^ in (12.17).  The solid lines 

running close to the broken lines in Figure h  cover the values of 
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x    and x, computed for v = 0-5 by use of (12.19).  The values of XQ  and 
o     1 

x    in the range a    4 2 were computed by using the series (7-7) 

and (7.8). 

The asymptotic "behavior of the small roots can he found by using 

(11-9) to compute L(F) and M(F).  One finds that 

M(F) =    i A   (KX)-
1
  (1+K

2
) (12.21) 

Because A  is real, M(w1) is negligible against M(«2), and D^  = 0 is 

equivalent to Ld^) = 0.  For large K, this yields 

x    =    /2 e K 

vhich, however, is not small.  Therefore small roots do not accumulate at 

point x  = 0, when K is large. 

This conclusion does not yet exclude the possible existence of 

roots that are too small to be found with the asymptotic expansion (10.6) 

but too large to be'found with the approximation (11-9).  It is probably 

true, however, that roots xn  (n >. 2) become equal to zero at certain 

values of K and do not extend indefinitely to large values of the 

ordinate. 

Extension of the curves expressing xn  (n  ^ 2) beyond the ordinate 

K  =i /3 was not attempted.  Our interest was originally in small a, 

and moreover we did not have enough time to have series improve 

for the case a  > 1.  However, we believe that small roots are not 

important for engineering purposes and need not be known in detail. 

13-  Deformation 

Forms of deformation corresponding to the roots xn  were calculated in 

the range 1-v < a < 2 by assuming the normalization, 
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w{x )    = 1 (13.1) 
n 

Two cases, {a  = 1, v = 0.3) and (a - k,  v = 0.3), are shown in Figure 

5 and 6, respectively. 

These forms of deformation have often been observed in laboratories 

and fields when floating ice plates are compressed.  We are now convinced 

that buckling is frequently taking place. 

Forms of deformation other than shown in Figure 5 and 6 can be guessed 

by use of Figure 7 and 8, where the values of w   .  (minimum depression) 
mvn 

and x   .     (defined by w   . = w{x   .   )) determined for x    are shown.  (See rmn J rmn rmn o 

Figure 5 for the definition of x   .  on a curve of deformation).  Values 
rmn 

2 
a  m these figures are restricted to 1-v < a ^2.  We did not compute 

them for the case a  > 2, nor for x     (n > 1) except for the cases shown n        = 

in Figure 6.  The broken lines in these figures are determined by the 

terminal condition v = p. 

The deformation at fracture shall be determined by assuming that 

the stress at x   . reaches the fracture stress a„ .  In the general rmn f ° 

polar coordinates, stress components a  , a„„, a „ are given (see '        ^ rr      ee  re 
Appendix C) by 

rr 

r 2 2  1 
Y,h 9  W v  3w V 3 w 
2(l-v) .3r2 

+ 
r 3r +     2 r 362J 

Eh 
2 1-v 

l to + i_ _8jJ +  ij£ 
r 3r   2 „02   

V „ 2 
r  90      3r 

(13.2) 

and 

r6 
ET?  
2(l+v) 

_3_ 
3r 

/l 3w\ 
\^r 36/ 
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Fig. 5-  Normalized deformation for the case (a = 1, v = 0.3) 

9 
_i_ 

10 
l 

-0.2 -1 

Fig. 6.  Normalized deformation for the case (a = h,v -  0.5- 
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a=2.0 I-1 1.0.95.9  0.8   0.75 

Fig. 7.  Values of w   .     determined corresponding to x  . 
Ill Is it O 

.8 .9 1.0 I.I 

2.6 2.8 3.0 3.2 

Fig. 8.   Values of w   .       determined corresponding to xr rmn 
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where h  is the thickness of the plate.  In our case of axisymmetry, 

introducing the nondimensional length x  defined by (l.fc), the ahove 

formulas become 

0 
TV 

= 
' Eh 

2(l-vUo
2 

d2W 

äx 

U dw 
x da: 

°ee 
= 

2(l-v)l 2 

il dw 
Ix dec 

,2 
Q W 

ax 

(13.3) 

and 

a a    = 0 

At point x . , where dw/dx = 0, therefore, 

larr| > l°ee| 

Let v  (x)  be the normalization of w(x)  at x = XQ.     Then the de- 

pression is given by 

w[x)    =    K Wß{x) 

where K  shall be determined by applying the condition that 

(13.U) 

l0rrl =    af at x = xmiM 
(13-5) 

where a„ is the fracture strength. Summing up the above results, 

K  is found: 

X = 2J12 a- (Eh) -1- H(v,a) 
o  f 

where 

H(v,a)  =  (1-v )/ 
^dx"" 

(13.6) 

(13-7) 

x 
mvn 

Values of H(v,a) are shown in Figure 9 for the case 1-v £ a  <_ 2. 
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06    °8      1-0      1.2      1.4      1.6      |.8    2.0 

Fig.   9.       Values  of H(v,a). 
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APPENDICES 

In the following Appendices A, B, and C, transformation of tensor 

components utilized in this paper are derived by use of the tensor nota- 

tion where tensors are expressed in combinations of components and base 

vectors.  This tensor expression yields simpler and more enjoyable 

analysis of component transformations in Euclidean space than the con- 

ventional tensorial expressions where base vectors are omitted, because 

geometric and mechanical quantities are explicitly shown in the former 

and therefore the meaning of the step by step computation is clear. 

In the Appendix D., the deformation for the case a  = °° is derived. 

In the Appendix E, the buckling of the semi-infinite plate is discussed. 

It is interesting to note that both cases pertains to the case of 

x    = o° but. they are substantially different. 
o 

A.  Transformation of (1.10) to (l.ll). 

Shears 0 and Q    in rectangular coordinates are the magnitude per 
x y 

unit length of the shears acting on a side normal to the x-axis and y- 

axis, respectively, (see Figure 10). We shall begin with expressing 

Q    and Q    as components of a vector.  Let c and c be unit vectors in 
x y x y 

the x-  and y-directions.  In Figure 11, let cn be a unit vector normal 

to the hypotenuse AB  (Fig. 11). Vector Cn  is given by 

(A.l) 

because c thus defined satisfies the condition 

c  ds=c  dy + cdx 
n x     ä        y 

n 

and 

°n  * Cx    = äy/dS 

c • c  = dx/ds 
n       y 
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where the dot (•) between two vectors means the scalar product of the 

two vectors.  Let Qg  be the shear per unit length of the hypotenuse 

AB.     It is given by 

%  ds = %<% + %** (A.2) 

We can now prove that the equation 

Q= QxCx    + %% (A.3) 

is the desired vector combination of ^ and QyJ   because the relation 

■Q • c = Q 
n s 

is satisfied. 

Substitute (1.10) into (A.3) and transform the result to a tensor- 

invariant form: 

Q    =     V • M + Vw • N 

where 

(A.k) 

°X  dx    + Cy   ty (A.5) 

M  = MXX   °XCT   +  M^M^I   +   C   C    )    +   M C   C (iß) xx-   xx        xy    x y        y x' yy    y y \A.<o) 

N = "xx CxCx    + %KCy  + <V^ + Nyy Cy Cy <A.7) 

In (A. It), a convention is made that a.be means (a.b)c. 

Let u^ and uQ  be the unit vectors in the r-  and 6-directions.  They 

are given by 

u„ = c cos6 + c sine 
^     y 

(A.8) 

u„ = -c sine + c cose 
y 

These equations yield 
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Fig. 10. Definition of Qx  and Q  . 

Fig. 11.  Definition of C . 
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e 

and 

3u 
 I 
dr 

3u 

Or 

3u 
 i 
de 

3u„ 

> 

u„ 

u V 

In the polar coordinates,   (A.5)  becomes 

V=   u   |-   + u   ^_ 
21 8r 9 r>36 

Q   = 

where 

M 

and 

N    = 

(Ur    h   +U
6k)-M+f: 3w 3w 

'r    dr 6       3 
8U    \        XT 

1?] -N' 

/>/     U U     + M     (u U     +  U  U   )   + M       n  n 
rr r r        rev r e      W      M66    8Ui e    e e 

N     U  U     +  A' (u U     +  U  U   1   +      N        n  n 
rr r- r        r6   vr e 8 r} 66     6  6 

In the polar coordinates, (A3) becomes 

Q = Q  u + £n 
Y r   9 6 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

Carry out the differentiation in (A.ll) by use of (A.9) and the scalar 

products indicated by dot (•) and identify the components with those 

of (A.lii), then one finds (l.ll). 

B.  Transformation of (l.l) to (1.2) 

We shall prove the formula in the general polar coordinates, 

2 2? 

'xx  3^2  **xy  Zxly  + hyy  ~2 
dy 

= N      LE + p»      1_ /l  3u, ,   „      A    32W      I3w\     -     , . 
" 3l.2 r*  ^  {r 3?j+ /7ee r2 ^2 + ? 3?)     ^'^ 
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The left-hand side of (B.l) is a tensor-invarient form N •• W « 

where N is given "by (A.7), and VV w is a dyadic, 

The double dot (- •) of ab-'cd means (b.cHa.d).  In polar coordinates, 

/  3      3 \ /  iL.      dw  \ 
P?w   = ^ur 3? + ue Fse/ \UY 3r   + ue ^V 

Carrying out the differentiation given by (A.9), one finds 

,1 32w _,. 1 3£N .„ .. (B.2) + (l"l + ?F ue e 
T    36 

Carrying out the double dot products by use of N in (AT) and VV *> in 

(B.2), one finds that N-Wu becomes the right-hand side of (B.l). 

C.  Proof of (13.2) 

Substituting Equation (l.U) of Mansfield (l), one can transform 

the tensor equation 

ö= ace    +occ + T (c c + c■ c ) 
xxx       y y y       xy   x y       y x 

to an tensor-invariant form 

a  = _ [2?Z/(l-v2)] (77a; +44wj (c-l) 

The tensor-invariant operator 

* " C* 3^ ~ °2/ 3* 

becomes 

3    „ i_ (C.2) 
A ~    nr F3? ~ 8 3r 

in the polar coordinates. 

Substituting (A.10) and (C.2), and carrying out the differentia- 

tion as given by (A.9), one finds that (Cl) becomes 
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0 =   arrcrcr + %cVe + ueV + °ee u6ue 
vhen V are» and aee are 6iven by (13.2). 

d. Deformation for a =  «.. 

Let WiU) and ^(ar) be defined with the real and imaginary parts of 

the right-hand side of (10.6): 

*>■]_ (*) = R cosl 

and 

W2U) = B  sin! 

vhere 
1 

B(x)     =     (T!/X)
2

    exp -ar//2 - <2/(h/2x)\ 

and 

2 -*"(*) = TT/8 + x//2    - K2/{h/2x) 

The depression is given by 

w{x)    =    A w±{x)  + B w  (x) 

When K = »,  there are two positive roots given by  (12.16).     The 

ratio 

A    =        L(V    _ M(w2) 

B " L(wx)     "    -    Wiw^J 

can be computed by using (I2.lt) and (12.15). Thus one finds 

A _     (1+Cft)  cosJ^ +     (1-zh)   sinlh 

B "     tl+V   sin^ ~     U-CÄ)  cosJ^ 

where 

J/z    =    *<**> 

and Ä is defined by (12.18).  Normalizing w(x)   at x =  *,, one finds 

Ä 
and 

^ =  (ÄJ-1' (cosl^ +  (/^i1 sinjj 

S  =  (\)_1 (sinJ^ +  (/3)  cosJ^j 
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Thus the normalized deformation w (x)  is given hy 

wN(x)    = R{x)/Rh CCS (l(x)    -    Ih)    + (^3)  sin (lU) " V 

Letting 

re = K 

and assuming ? to he finite, one may let *- in (D.l).  Thus one finds 

wN{x)    = exp(-5/'/2) 

- 1 
:osU//2~) + (^   sinU/i^) (D.2) 

The maximum of w^U) occurs at 

tan(5//2)  = - 2 + /3 

vhich is negative.  Therefore w^x)  is always decreasing for 5 > 0. 

The deformation at a  = -, therefore, does not take a minimum, as those 

(shown in Figure 5 and 6) of case 1-v <, a < 2 do. 

E.  Buckling of semi-infinite plate 

We shall show that the deformation discovered in the preceding 

section is different from the tackling deformation of a rectangular 

semi-infinite floating plate. 

We assume that uniform pressure N^  is applied on the axis y,  the 

axis x  extending from x =  0 to x =  «.  Then from (l.l) one gets 
k ,2 
^ + yw    = N      ^ k '      xx  , «; 
dec CLT 

(E.l) 

vhere ve have put q =  0. .Defining new a hy the quotient of old x 

divided hy the characteristic length lQ  = (D/y)l/k,   (E.l) hecomes 

41 +  2a ^ + « = 0 
da:       dx 

vhere we have put 

(E.2) 

(D.l) 
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xx iurxo (E.3) 

Because N^  4 0, the relation 

a> 0 

must be satisfied.  The solution of the differential equation (E.2) is 

Kkx) (E.h) 
wk    = exp(X-x) 

vhere 

h      =    -*±Sa    -1 (E>5) 

The real part of X^ must be chosen to be negative.  The convention with 

regard to suffix k  is still observed. 

When a  = 1, the general solution is given by 

w    = A  cos x + 5 sinx 

which ve do not accept, because the boundary condition at x = - cannot 

be met. 

When 0 4 a <    1, letting 

a  = cos 2n 

the general solution is given by 

,,  _   -ßx r . w    -    e   U cosax + B  sinax] 

where 

ß = sinn 

and 

a = cosn 

The condition 

0< i) < -ir/it 

must be met to satisfy the conditions with regard to a  and X.. 

(E.6) 

(E.7) 

(E.8) 

(E.9) 

(E.10) 
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When a  >. 1, letting 

a    = cos?i 2ri 

one finds four fundamental solutions 

cosva:, sinvx, cosU/v), and sinU/v) 

where 

v = exp(n) 

We shall discuss below only the case 0 < a  < 1, because the boundary 

condition ati=» cannot he satisfied in the other cases. 

The free-edge condition for this case is 

and 

3     dx 

•  (E.ll) 

The second equation of (E.ll) is derived from the first equation of 

(1.10).  Substituting (E.T), one finds that the eigenvalue is given by 

n = TT/6 

i.e. 

a    = 1/2 
(E.12) 

The deformation for this case is 

w(x)    =      A  exp(-x/2) COS[(/3TT/2) + (TT/6)] (E-13) 

where A  is arbitrary.  The maximum of w(x)  occurs at 

x    = WO^)- 
Therefore the deformation in this section is different from the deformation 

in the preceding section. 

For the simple-edge condition, the eigenvalue is given by 

a    - 1 

which we do not accept. 
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Pavements to Vibratory Loads 

Richard A. Weiss 
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Soils and Pavements Laboratory 

U. S. Army Engineer Waterways Experiment Station 

Vicksburg, Mississippi 

ABSTRACT. A nonlinear model of the pavement response to a dynamic 

load is presented which has applications to the vibratory nondestructive 

method of testing pavements.  The parameters of the model have been 

determined by comparison with actual dynamic load-deflection curves.  The 

model gives a quantitative description of the dependence of the measured 

dynamic load-deflection curves on the strength of the pavement, static 

load of the vibrator, and the frequency of operation of the vibrator. 

The model determines the elastic modulus of the subgrade from the measured 

load-deflection curves.  The nonlinear dynamical model is applied to the 

laboratory determination of the resilient modulus with the result that 

the resilient modulus is expressed analytically in terms of the static 

confining pressure, dynamic deviator stress, and material parameters which 

describe the linear and nonlinear behavior of soil under dynamic and static 

force loading. 

I.  INTRODUCTION 

The Waterways Experiment Station (WES) has for many years used the 
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method of nondestructive testing of airfield pavements.1-5 This method of 

testing pavements is relatively quick accurate, reproducible, and in- 

expensive.  When the nondestructive test method is used an airfield 

runway need not be shut down for long periods of time as is the case for 

the destructive testing of pavements. 

The instrument used for the vibratory nondestructive testing of pave- 

ments is a mechanical vibrator whose force payload to the pavement surface 

is generated either by a hydraulic system or a mechanism of counter-rotating 

weights.  The WES 16-kip vibrator applies a static load of 16 kips to the 

pavement surface and a dynamic load to the pavement surface which can be 

varied from 0 to 15 kips.  Both static and dynamic loads are applied to 

the pavement surface through a circular 18-in. diameter baseplate. 

Four types of nondestructive tests are generally performed on pave- 

ments, and these consist of the following measurements: 

a. Dynamic load-deflection curves giving the dynamic amplitude 

as a function of the dynamic load. 

b. Frequency response spectrum giving the dynamic amplitude 

as a function of frequency for a fixed dynamic load. 

c_.  Deflection basin measurements. 

d.  Rayleigh wave dispersion curves giving phase velocity 

versus wavelength. 

Only the dynamic load-deflection curves and the frequency response spectrum 

measurements will be considered in this paper. 
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A typical measured frequency response curve appears in Fig. 1, and 

a typical measured dynamic load-deflection curve appears in Fig. 2. Most 

of the WES measurements of the dynamic load-deflection curves were done at 

a frequency of 15 Hz. Experience has shown that the dynamic load-deflection 

curves are relatively smooth for this frequency. The frequency response 

spectrum may contain multiple resonance peaks. 

Two basic theoretical approaches have been taken to describe the ex- 

perimental data: 

1. a linear theory of the frequency response spectrum 

2. a nonlinear theory of the dynamic load-deflection curves 

The two types of dynamic pavement response models that have been considered 

are shown in Fig. 3.  Single-mass and multiple-mass models have been devel- 

oped in the linear theory, while only a single mass model was developed 

with a nonlinear spring constant. It was found that multiple-mass pavement 

response models are somewhat intractable because they contain many para- 

meters. Only the single-mass pavement response models are considered in 

this paper.  The elements of the spring-mass-dashpot model must be determined 

in terms of the characteristic forms of the measured frequency response 

spectrum and the measured dynamic load-deflection curves. 

II.  DYNAMIC FREQUENCY RESPONSE THEORY 

The dynamic frequency response spectrum measured at the pavement sur- 

face is often quite complex and difficult to interpret. Many factors prob- 

ably contribute to produce its characteristic shape. In order to extract 

some information about pavement and subgrade structure from the measured 

dynamic frequency response spectrum it is necessary to use a simple 
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dynamic pavement response model to fit the measured frequency response 

spectrum with the theoretically predicted frequency response spectrum.  This 

fit will yield the parameters of the dynamic model from which the pavement and 

subgrade structure can be determined. The frequency response spectrum of 

the single-mass model has one resonance peak, and this predicted resonance 

peak is fit to the second resonance peak of the measured response spectrum. 

The second peak is chosen because an examination of many frequency response 

spectra has shown this peak to be more consistent and less affected by 

electronic equipment than the other peaks.  Generally the second peak is 

the most pronounced. 

The second resonance peak is associated with a resonance frequency and 

a resonance amplitude as indicated in Fig. 4. The resonance amplitude and 

frequency was used to calculate the elements of the spring model — effective 

mass, effective spring constant, and effective damping constant.  The elements 

of the single-mass spring model can be simply related to the resonance peak. 

DETERMINATION OF ELEMENTS OF THE SPRING MODEL 

Within the framework of the single-mass spring model6"9 the dynamic 

amplitude of the pavement surface response to a sinusoidal dynamic load 

can be written as 

A - Vs (i) 

S = /(k-mod2)* + C2ü)
2 (2) 

where A = amplitude of the dynamic displacement of the pavement surface as 

represented by a linear spring model, FD = dynamic load applied tQ fche paye_ 
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ment surface,  S = dynamic stiffness, k - linear spring constant, m = 

effective mass of the pavement-subgrade system,  u> = angular frequency, and 

C = damping coefficient.  The resonance frequency and amplitude can be 

obtained from (1) and (2) to be 

Y m rR  2ir v/~ 
(3) 

^  2kD/ 1 - D2 

2/ km 

where f - resonance frequency, A^ = responance amplitude, and D - damp 

ing ratio. The three elements of the linear spring model that are to be 

obtained are k , m and C . In order to determine these three parameters 

another piece of information, in addition to fR and ^ , is necessary. 

This is given by 

J<») = VA (6) 

where J(u) = ratio of the resonance amplitude to the amplitude at some 

nearby frequency. The theoretical value of this ratio is given by 

n    %  / (k - moj2)2 + C2ü)2 (7) 
J(k,m,C,cü) - f 2 

(k - nun2) + c2o)2 
R      R 
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The three measured quantities which are extracted from the frequency response 

curve are fR , ^ and J(w). 

The spring model elements k , m and C must now be obtained in terms 

of fR , AJJ and J(u). The equations in (3) - (6) can be inverted to deter- 

mine k and D in the following manner 

k = 4TT2mf 2 ' 
R 

1 + 
47r2mf2 IS 

(8) 

D2 = I . J. 
2 1 + D 

4Tr2mf2 
RV- 

-1/2 

(9) 

The k and D terms have now been expressed in terms of the effective mass. 

Using (8) and (9) it is now possible to express J(k,m,C,u)  in terms of the 

effective mass as the only unknown parameter as follows 

J(m,(o) = 
1 - mar 4mD2to2 

may 
I - R 4mD2ü)2 

K 

(10) 

The only unknown independent variable in J(m,w) is now the effective mass. 

By sweeping through a series of values of m and calculating numerical 

values of J(m,uO  it is possible to determine the specific value of m for 

which J(n,üi)  is equal to the experimental value of the J-ratio, i.e., 
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J(m,u) = J(u). This condition determines the value of the effective mass 

required by the spring-mass-dashpot model to fit the experimentally mea- 

sured dynamic frequency response curve.  Placing this calculated value of 

the effective mass into (5), (8) and (9) gives the proper values of k and 

C required to fit the experimental frequency response data. The necessary 

computer programs to accomplish this work on a digital computer have been 

developed and will be referred to as the WES Dynamic Frequency Response 

Program. 

DETERMINATION OF SUBGRADE MODULUS BY FREQUENCY RESPONSE METHOD 

The value of the spring constant that is determined from the measured 

frequency response spectrum will be used to determine the subgrade modulus. 

The theory of the linear elastic layered half-space predicts a theoretical 

value of the static spring constant kT which depends on the radius of 

the loaded area and on the elastic constants of the subgrade and the pave- 

ment layers. Computer programs are available which calculate the value 

of k^ if the Young's modulus and Poisson's ratio of each layer of the 

half-space is known. A well known computer program of this kind is the 

Chevron Program.  The procedure for determining the Young's modulus Eg 

of the subgrade is shown in Fig. 5.  The measured values of fR , ^ and 

J(ü))  are inserted into the WES Dynamic Frequency Response-Program and 

values of k , m and C are determined.  The Young's modulus and Poisson's 

ratio of the layers of the pavement are selected and entered into the 

Chevron Program. The subgrade modulus Eg is then iterated in the Chevron 

Program and a series of values of kT are determined. The proper value of 

E„  is determined by the condition 
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k = kT (ID 

The predicted value of Eg will depend on the values of the elastic moduli 

selected for the pavement layers. 

NUMERICAL RESULTS OF FREQUENCY RESPONSE METHOD 

Values of k , m , C and Eg have been obtained for several airport 

pavement sites and are listed in Table I.  This table has listed the sites 

according to increasing values of the Dynamic Stiffness Modulus (DSM), which 

is the slope of the dynamic load-deflection curves at a dynamic load of 14 

kips.  It is seen that the measured spring constant k increases with in- 

creasing pavement strength and that k is not equal to the DSM value.  The 

effective mass is presented as a ratio to the above-surface (vibrator) mass, 

and increases with the strength of the pavement.  The effective mass is not 

equal to the above-surface mass and any theory which apriori assumes that 

m = my cannot be used to fit the experimental frequency response data. 

The value of the damping constant also increases with increasing pavement 

strength.  The predicted values of Eg are compared to those modulus values 

that are predicted by the CBR method (Eg = 1500 CBR).  The values of E 

predicted by the combined WES Frequency Response Program and the Chevron 

Program are 3 to 5 times larger than those predicted by the CBR method. 

There are several possible reasons for the discrepancy in the values 

of Eg predicted by these two methods: 

a. the pavement-subgrade system is nonlinear under dynamic and 

static loading 

b. the subgrade is not uniform and the theoretical layered 
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elastic half-space model requires a rigid boundary below 

the subgrade 

c. reflections from a lower boundary layer add to the motion 

of the pavement surface 

When a rigid boundary such as bedrock is present relatively close to the 

pavement surface it is possible that the effects listed in b. and c. may be 

of importance for determining the motion of a pavement surface that is sub- 

jected to a sinusoidal dynamic loading. However, the discrepancy between 

the values of Ec predicted by the CBR method and that predicted by the 

frequency response spectra method also occurs in cases where the subgrade 

is relatively uniform and contains no obvious discontinuities.  Therefore 

only the fact that the response of pavements and subgrades to dynamic and 

static loads is nonlinear remains as a possible explanation for the dis- 

crepancy in the values of Eg determined by these two methods. 

III.  NONLINEAR THEORY OF PAVEMENT RESPONSE TO DYNAMIC SURFACE LOADINGS 

An alternative method for determining the subgrade modulus from 

vibratory nondestructive test data is the use of the dynamic load-deflection 

curves measured at the pavement surface for a fixed frequency and a fixed 

static load. These dynamic load-deflection curves are generally nonlinear 

for weak pavements and become more linear for stronger pavements.  Over the 

years the WES has collected an extensive set of dynamic load-deflection curves 

that have been obtained on many airfield pavements throughout the country. 

The nonlinear dynamic load-deflection curves were measured at a fre- 

quency of 15 Hz and at a static surface loading of 16 kips.  The nonlinear 
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dynamic theory must account for the frequency and static load conditions 

under which the dynamic load-deflection curves were measured.  The pre- 

dicted subgrade modulus should be free of the particular loading charac- 

teristics of the vibrator. Therefore, in addition to the static Young's 

modulus some other parameters have to be introduced which will account 

for the observed nonlinearity of the dynamic load-deflection curves. 

These nonlinear parameters must also account for the nonlinear behavior of 

the static load-deflection curves. The predicted subgrade modulus value 

will be independent of the particular loading characteristics of the 

vibrator — frequency, static load, and dynamic load. Only the natural 

overburden pressure will be reflected in the subgrade modulus value. 

The determination of the elastic constants and the static and dynamic 

nonlinear parameters of the pavements and subgrades from measured dynamic 

load-deflection data requires a nonlinear dynamic theory of pavement 

4 
response . 

EQUATION OF MOTION OF A NONLINEAR OSCILLATOR 

The nonlinear theory of pavement response to a vibratory load assumes 

that the pavement-subgrade system can be described by a lumped mass non- 

linear oscillator whose equation of motion is written as 

mx + Cx + k0Qx + bx
3 + ex5 = F + F (12) 

where m = effective mass of the pavement-subgrade system, x = total 

displacement of the pavement surface beneath the vibrator baseplate, C = 

damping constant,  kQo = linear spring constant, b = third order non- 

linear pavement parameter,  e = fifth orcUr nonlinear pavement parameter, 
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F - dynamic load applied to the pavement surface, and Fg = static load 

applied to the pavement surface. The total displacement of the pavement 

face is decomposed into a static and a dynamic part as follows sur 

x = x + K e 
(13) 

where x = static elastic displacement of the pavement surface, and 5 - 
e 

dynamic elastic displacement of the pavement surface. Placing (13) into (12) 

gives the following equation of motion 

+ Ck + (kQ0 + 3bx2 + 5ex<*|c + b53 + e55 + 5g(xe>0  = FD (14) 

where 

g(x ,0  - 3bx % +  lOexfS + 10ex|?2 + 5exe? 3 (15) 

For convenience in manipulating (14) it is necessary to use a time 

averaged expression for (15) 

g(xe,5) - 3albx2 + 5a2ex^ + a^2  + *fP <16> 

where a , a , a and a are coefficients to be determined from the mea- 

sured dynamic load-deflection data. Combining (16) and (14) gives the motion 

equation as 

m| + d + k £ + be?3 + en?5 = Fß (17) 

where 

k„ - knn + 3be,x
2 + 5ee xj (I8) 

0   00     2 e     4 e 
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6 = 1 + a3 (19) 

n - 1. + a, (20) 

e2 = 1 + ax (21) 

ek - 1 + a2 (22) 

The parameters  6 , n , E  and e  depend on the pavement strength and are 

determined by requiring (17) to adequately describe the dynamic load-deflection 

curves. The nonlinear parameters b and e determine the static load-deflec- 

tion curves, as can be seen from (12) 

Fc - k x + bx3 + ex5 (23) 
S   00 e    e    e 

In general it is found that b < 0 and e > 0 for pavements and most sub- 

grades. 

THEORY OF DYNAMIC LOAD-DEFLECTION CURVES 

The problem remains to solve the nonlinear equation (17).  This can 

be done by casting (17) into an equivalent linear form for which the dynamic 

amplitude is given by 

5 - FD/S (24) 

where 

S = / (k - mu2)2 + C2to2 (25) 

where S = dynamic stiffness, k = dynamic spring constant, m = effective 

mass, (jj = angular frequency and C = damping constant.  The requirement that 

(24) and (25) be a solution of (17) is that the spring constant in (25) is 

U 
given by 
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k = k0 + I b9C
2 + | en? (26) 

Therefore the spring constant for a nonlinear system depends on the dynamic 

and static displacements of the pavement surface. 

Placing (26) into (25) and (24), and solving for the dynamic amplitude 

yields the result 

where 

D 
5 = ~  (1 + ct.* + aJ)2 +  •••) 

b0 z 

= /(k - mo)2)2 + C2w2 

(27) 

(28) 

♦ ■ 'J/SS (29) 

dj = - I" b0(ko - mw
2) (30) 

a2=l(f) b202(kO - mw2)2 " S0 I ^(k0—2)+l(!)  ^ (31) 

As seen from (27) - (30) the degree of nonlinearity of a dynamic load- 

deflection curve depends on the strength of the pavement and the frequency 

of operation of the vibrator. The strength of the pavement.affects the 

degree of nonlinearity of the dynamic load-deflection curves through the 

term S~h    that appears in (27) and (29).  The S"1* term shows that strong 

pavements tend to be more linear than weak pavements.  From (30) it is clear 

that there is a critical frequency for which the first order nonlinear term 

vanishes and this frequency is given by 

431 



1 fc„ 
fr  = 97i-f (32) 

At this frequency the dynamic load-deflection curves should become especially 

linear in the regions of low dynamic force if the second order nonlinear term 

is comparatively small. The straightening effect at the critical frequency 

will not be strongly evident if the second order nonlinear term is compara- 

tively large. 

DYNAMIC NATURE OF THE SPRING CONSTANT 

The measurement of the dynamic load-deflection curves determine the 

linear and nonlinear parameters of a pavement system — k  , b , e , 8 , 

n ' E2 ' £l*  '     Etluation (26) shows that the spring constant k that is 

determined from a dynamic analysis of the nonlinear properties of a pave- 

ment-subgrade system is dependent on the dynamic and static displacements 

of the pavement surface as well as on the elastic constants of the pave- 

ment-subgrade system.  Therefore the spring constant k that is determined 

from the dynamic response of a nonlinear pavement system is a dynamic 

quantity that is not analogous to an ordinary static spring constant.  The 

theoretical static spring constant determined from a static linear elastic 

program such as the Chevron Program will depend only on the elastic constants 

of the pavement.  Therefore the value of k determined from the dynamic 

response data of a nonlinear pavement cannot logically be compared to the 

static k„ value determined from static layered elastic computer programs. 

Static plate bearing tests will result in a spring constant which will also 

not be directly comparable to the spring constant determined from an analysis 
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of dynamic data. 

FINITE DEPTH OF INFLUENCE 

The static linear and nonlinear parameters kQ0 , b and e respec- 

tively can be related to the elastic parameters of the pavement layers and 
4 

to the depth of influence of the static stress-strain field . The finite 

depth of influence is written in terms of the static deflection of the 

pavement surface as 

J = A + Z^+I^ (33) 
-^ 0   2 e   *f e 

For the simplest case of a vibrator placed on the surface of a subgrade, 

the static parameters are 

2irazfl(l - v)G (34) 
k00 lj\ - 2v) 

4Tra2i|>./(l - v)G 
b 1  (35) 

^2(1 - 2v) 

_ 6Tra2i|;6(l  - v)G (36) 
6 =      J0d - 2v) 

where 

21"       k (37) 

"Id -t 
and i>  = volume factor for the frustum of the cone of stress and strain. It 

is through equations similar to (34) - (37) that the connection is made be- 

tween the elastic parameters of the pavement system and the theoretical 
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expression for the dynamic stiffness as given by (25) and (26). 

MODEL PARAMETERS 

The model parameters k.m.C.k    b  e  $        /  ß       fl 

Ti , e2 and e^ depend on vibrator characteristics and on the structure of 

the pavement and subgrade.  This dependence is in general very complicated 

and difficult to determine theoretically.  The simplest way to attach the 

model parameters to the strength of a pavement-subgrade system is to deter- 

mine these parameters in terms of the measured dynamic stiffness modulus 

(DSM) of a pavement.  The DSM is the slope of the load-deflection curve 

measured by the WES 16-kip vibrator in the region of large dynamic load; 

it is in fact the tangent modulus of the dynamic load-deflection curves for 

FD ^ 15 kips. The DSM value is a suitable choice for a parameter in terms of 

which to describe the model parameters because it is a measure of the bulk 

strength of the pavement and subgrade.  The model parameters expressed in 

terms of the measured DSM correspond to the WES 16-kip vibrator.  The 

vibrator characteristics appear in these parameters because the subgrade 

modulus to be determined is intended to be independent of the dynamic char- 

acteristics of the vibrator.  A corresponding set of vibrator parameters 

will have to be developed for any other vibrator that is to be used for 

nondestructive testing of pavements. 

The model parameters are presented as a function of the measured DSM in 

Figs. 6 through 15.  From these figures it is seen that k , m , C and / 

are increasing functions of the strength of the pavement. The dynamic spring 

constant presented in Fig. 6 corresponds to a dynamic load of 15 kips.  The 

depth of influence of the static stress-strain field increases with increasing 
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pavement strength while the static deflection of the pavement surface 

under a fixed static load decreases with increasing strength. As seen 

from Fig. 7 the effective mass is generally much larger than the above- 

surface mass, and it would be incorrect to assume that the only lumped- 

mass of the vibrator-pavement-subgrade system is the vibrator mass itself. 

The effective mass of the dynamic model includes the inertial effects of 

the mechanical radiation field in the pavement and subgrade.  In all cases 

of the pavements investigated it was found that b < 0 and e > 0 . 
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DETERMINATION OF SUBGRADE MODULUS FROM DYNAMIC LOAD-DEFLECTION CURVES 

The nonlinear dynamic response model that has been outlined in the 

preceding section can be used in conjunction with a dynamic load-deflection 

curve measured at the pavement surface to determine the modulus of the sub- 

grade beneath the pavement. A computer program has been developed which 

calculates the theoretical dynamic response of a pavement in terms of the 

elastic moduli of the pavement'layers and subgrade and in terms of the 

empirically determined parameters 6 , TI , e£ , ^ , m and C which have 

been expressed in terms of the measured DSM values of the pavement. A 

typical example of the vibratory nondestructive input data to the computer 

program is shown in Table II.  The computer program calculates a theoretical 

load-deflection curve in terms of the b and e coefficients that are 

determined from measured load-deflection curves and in terms of the elastic 

moduli of the pavement layers and the subgrade.  The elastic moduli of the 

pavement layers are selected from laboratory tests and CBR measurements. 

The subgrade modulus is then determined by requiring that the theoretically 

predicted dynamic load-deflection curve agree with the measured dynamic load- 

deflection curve.  This procedure for determining the subgrade modulus is 

shown in Fig. 16.  The numerical results of this procedure for a few pavement 

sites are presented in Table III.  The values of the subgrade modulus pre- 

dicted by the nonlinear dynamic response theory are in general agreement with 

those predicted by the empirical relation E = 1500 CBR. 
o 

IV.  LABORATORY CONFIRMATION OF VIBRATORY NONDESTRUCTIVE FIELD TEST DATA 

It is of interest to be able to correlate the laboratory value of the 

resilient modulus  Mf  of a soil sample taken from the subgrade at a pavement 
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or soil site for which the subgrade modulus has been predicted by the vibratory 

nondestructive testing method. Such a correlation is difficult to achieve 

because the loading conditions on the soil sample for the laboratory tests are 

different from the loading conditions on the sübgrade during vibratory non- 

destructive testing. The loading conditions differ in terms of the magnitude 

of the static and dynamic stresses and in terms of the frequency of application 

of the dynamic stress. 

In its natural state, an element of soil in the subgrade is subjected 

only to the overburden pressure. When a vibrator is operated on the surface 

of a pavement or subgrade, an additional static and dynamic stress is applied 

to an element of soil in the subgrade.  For the WES 16-kip vibrator the static 

load applied to the surface is 16 kips, while the dynamic load can be varied 

up to 15 kips and is applied sinusoidally with a frequency of 15 Hz. The 

stress field in the subgrade is nonuniform and can be calculated by standard 

elasticity theory. 

The laboratory sample for resilient modulus testing is cylindrical in 

shape with a typical diameter of 3 inches and a length of 6 inches. The 

cylindrical sample is subjected to a static confining pressure and then a 

dynamic load is applied in the axial direction. The stress is uniform along the 

axis of the laboratory sample. The total stress along the axis of the labor- 

atory sample is written as 

a= oJ) + os (38) 

where a = dynamic stress in axial direction of sample, and ag = confining 
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pressure.  The axial dynamic stress is also called the deviator stress and 

is written as c?D = a  - og , where a = total stress along the axis of the 

specimen. The resilient modulus has been measured for a number of soil 

and pavement materials, and Mf has been found to depend on a      and a    . 

The dependence of M  on the dynamic deviator stress is such that M  at r r 

first decreases with increasing values of 0D , attains a minimum value, and 

then increases with further increase of the deviator stress10. 

The dynamic stress acting along the axial direction of the soil specimen 

during the laboratory resilient modulus test is applied as a series of pulses 

in the form of haversines with a pulse of 1 second duration being applied 

every 3 seconds. The characteristic frequency of the dynamic loading on the 

sample will therefore be in the range of 0.3 - 1.0 Hz, and this is much lower 

than the frequency of 15 Hz at which the vibratory nondestructive field tests 

are conducted.  The large difference in the frequencies used for these two 

types of tests requires that an adequate account of frequency effects be 

included in the theoretical analysis of both laboratory and field vibratory 

tests. 

NONLINEAR DYNAMICAL ANALYSIS OF THE RESILIENT MODULUS TEST 

A dynamical theory of the resilient modulus test has been developed which 

is similar in form to the analysis developed for the vibratory nondestructive 

field tests. The basic result of this theory is that the dynamic displacement 

of the test specimen can be written as 

5 = FD/S - AcaD/S (39) 

/ 2 ' 
S = /(k - mio2) + c2co2 (40) 
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where 5 , F  and a = resilient dynamic displacement, dynamic load, and 

dynamic stress on the cylinder end in the axial direction; S , k , m , C 

and A = dynamic stiffness, spring constant, effective mass, damping 

constant, and area of loaded end of the cylinder respectively; u = effective 

angular frequency component of the dynamic load applied to the soil sample. 

The nonlinear theory of vibrations that was outlined earlier in this 

paper for the vibratory nondestructive field tests can also be used to calculate 

the quantities in (39) and (40). This nonlinear theory shows that the spring 

constant is given by 

k = k + |be?2 + JW4 <41) n  4     o 

" k„ = knn + 3be x
2. + 5ee. x"+ (42) 

0   00     2 e     k  e 

where b , e , 6 , n , E2 and e^ = parameters which characterize the soil 

sample, and x = resilient static displacement of the soil sample in the r  '      e 

axial direction. The coefficients kQo , b and e could be determined from 

the resilient static stress-strain curve if such a curve could be measured. 

The resilient static stress-strain curve of the soil sample is determined by 

FS - *SAC - k0 0Xe + bxe + eXe (43) 

where oc = static confining pressure, and F = total static force applied 

to the cylinder end. 

4 
The solution of (39) - (42) can be written as 
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1 + a, ill + a V 
1 2 (44) 

where 

Al S0 = /(k0 - rm2r + C
2

ü3
2 

(45) 

¥ = F2/SJ = A^/s" 
v     o C D     o (46) 

<*!  " " ^(k    - ma)2) (47) 

2 2 
a2 - II!) *'2(\ -m^2)2- S2(|ne(ko - mco2) +1(1) b262)     (48) 

The dynamic stiffness of the soil sample can be obtained from (39) and (44) 

to be 

s = s0(i + g^ + g2^2) (49) 

ßl - - «1 (50) 

h   " »? - «2 (51) 

The quantities necessary for the calculation of the resilient modulus have 

now been determined. 

CALCULATION OF THE RESILIENT MODULUS 

The resilient modulus is defined as the slope of the unloading portion of 

the dynamic stress-strain curve of the soil sample, and is given by 
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M - ^S. - -L-l^i-1"1 (52) Mr " dED " Ac[dFD| 

where e = dynamic strain in axial direction, L = length of the soil sample, 

and A = area of end of the cylindrical sample.  In (52) I    is assumed to 

describe the unloading portion of the resilient dynamic load-deflection curve 

of the soil sample. Combining (44) and (52) gives 

M '- M- [l + 6* + « *2| (53) 

r   ro»    1    2 J 

where 

5l=-3ai (54> 

5 - 9a2 - 5a. <55> 
2    1    z 

M  - -*- S (56) 
Mro  Ac 0 

For the low frequency and small mass with which the resilient modulus tests 

are conducted, the inertial and damping terms in (40) and (45) can be neglected 

and the following approximations can be made 

S * k (57) 

(58) 

The same approximations can be made in (47) and (48). Combining (42), (56) and 

(58) gives the following approximation 

441 



M_„ ^ E- + E_x? + E. xk (59) ro 0 2 e ^ e 

where 

Eo=ikoo (60) 

E2=^3be2 (61) 

\=T5e£k (62) 
c 

The quantities EQ , E2 and E^ ate soil parameters which are independent 

of the size of the soil sample and machine characteristics. The calculation 

of the resilient Poisson's ratio requires further study. 

The expression for Mr given by (53) - (56) characterizes the resilient 

modulus in terms of a^   , ag and u .  The parameters required to describe 

the resilient modulus are kQo , b , e , 6 , n , ^ , e^ , m , L , Ac .  These 

parameters will depend on the type of testing machine, size of soil sample, and 

the type of soil constituting the soil sample; and therefore the parameters 

will have to be determined for each type of testing machine.  Typical values of 

the parameters describing a resilient modulus test as described by (39) - (62) 

are given for lean clay in Table IV.  It is possible to determine resilient 

modulus parameters which are. independent of the size of the soil sample and 

independent of the type of testing apparatus.  The parameters E , E and E 
0   2      k 

that occur in (60) - (62) are soil parameters and are independent of the sample 

size or loading conditions.  It is the quantity EQ  that must be compared with 
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the value of E  determined from the vibratory load-deflection curves that 

were measured directly on the subgrade. The value of Eg was determined in 

a manner such that its value is independent of the static and dynamic loads 

exerted by the vibrator. 

The preceding analysis shows that the characteristic shape of the non- 

linear dynamic load-deflection curves measured in the field by the WES 16-kip 

vibrator is due in part to the basic nonlinear response of the material in the 

subgrade to dynamic loads. The signs of the coefficients describing the resil- 

ient modulus test: ^ > 0 , ^  > 0 , ^ < 0 , «? > 0 .,_ b < .0 «and e > 0 , 

determine to a large extent the signs of the corresponding coefficients deter- 

mined from the vibratory nondestructive tests conducted on pavements and sub- 

grades. However, inertial, damping and. frequency effects will affect the 

values of a      and a  that are determined by vibratory nondestructive test- 

ing. For the vibratory nondestructive tests done on pavements and subgrades at 

15 Hz, it is generally found that c^. > 0 and ^ > 0 which is in agreement 

with the signs of the corresponding coefficients describing the resilient 

modulus laboratory test. For frequencies different from 15 Hz and for excep- 

tional pavement cases it is found that c^ > 0 and c»2 < 0 or c^ < 0 and 

a    >  0 . Therefore, the combination of the large effective mass associated 

with a pavement and subgrade, and the relatively high frequency of operation 

of the WES 16-kip vibrator can produce a dynamic load-deflection curve which 

has a shape which is considerably different from the shape of the dynamic load- 

deflection curve measured in the laboratory during a resilient modulus test. 

Because of the finite size of the soil sample for the resilient modulus 

test, the effective mass of the soil sample is, to a good approximation, equal 
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to the actual mass of the sample. The effective mass that enters the dynamical 

calculations for the vibratory nondestructive field tests is generally quite 

large compared to the moving mass of the vibrator because of the large inertial 

effects associated with the pavement and subgrade. The large effective mass 

and high frequency of the vibratory nondestructive field tests indicate that 

the inertial and damping terms are comparable or larger than the elastic effects, 

rm2 %  k and Cu * k . . The relatively small mass of the soil sample used for 

the laboratory resilient modulus tests and the low frequency at which these 

tests are conducted suggest that for this case, mco2 « k and Cw « k , and 

the linear and nonlinear elastic properties are measured-directly in this test. 

The resilient modulus tests combined with the nonlinear dynamical theory 

of these tests indicate that the static nonlinear elastic coefficients b and 

e have the signs b < 0 and e > 0..  It is this basic property of soils that 

is responsible for making the corresponding coefficients determined from field 

tests exhibit the same signs.  It is the nonzero values of b and e as deter- 

mined from the resilient modulus that are responsible for the finite depth of 

influence of the static stress-strain field in the subgrade beneath a static 

load placed on the pavement surface.  The intrinsic nonlinearity exhibited by 

the soil during the resilient modulus tests is responsible for the finite depth 

of influence of the static stress-strain field in an actual soil formation. 

V.  CONCLUSION 

The nonlinear dynamic pavement response model that is presented.in this 

paper gives a quantitative description of the dynamic response of a pavement 

surface under the action of the dynamic and static load applied to the 
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pavement surface by the WES 16-kip vibrator. The model parameters - spring 

constants, effective mass, damping constant and finite depth of influence of 

the static load have been determined as a function of pavement strength as 

represented by the measured DSM. The nonlinear pavement response model gives 

a theoretical expression for the pavement response in terms of these parameters 

and in terms of the elastic constants of the pavement and subgrade. For a 

suitable choice of the elastic moduli of the pavement layers, it is possible 

to predict the value of the subgrade modulus from the dynamic load-deflection 

curve measured at the pavement surface. 

Of much importance to pavement engineers is an estimation of the strength 

and condition of a subgrade as measured by its subgrade modulus. The nonlinear 

elastic response model of the dynamic load-deflection curve combined with 

measured values of this curve is sufficient to determine the subgrade elastic 

modulus quickly and accurately. This work was funded by the Federal 

Aviation Administration. 
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TABLE I 

NUMERICAL RESULTS FOR FREQUENCY RESPONSE METHOD 

LOCATION DSM 
kips/in 

m/m 
V 

C 
lOHb «sec/in 

k 
kips/in 

E (CHEVRON) 
103psi 

E (CBR) 
''lO^si 

B2 700 1.7 1.0 2137 65 21 

N18 770 2.0 0.8 1500 58 27 

Wl 860 1.8 0.4 2620 136 30 

B3 1630 2.0 1.1 2140 35 25 

W2 1940 2.4 1.3 2470 69 30 

P14 2120 2.5 1.5 2610 139 30 

P13 2780 4.4 2.0 3500 153 30 

Bl 3120 10.0 2.8 4270 140 21 
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TABLE II 

INPUT OF WES NONLINEAR DYNAMIC PROGRAM 

SITE B2A 

DSM = 700 kips/in 

FD A 

kips in. 

0 0.0 

2 0.003 

4 0.007 

6 0.011 

8 0.015 

10 0.020 

12 0.025 

14 0.030 
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TABLE III 

RESULTS OF WES NONLINEAR DYNAMIC PROGRAM 

1 
SITE DSM 

kips/in 

SUBGRADE CBR Eg(CBR) 

103psi 

E_(WES NONLINEAR) 

103psi 

TETS 450 8 12.0 13.0 

B2A 700 14 21.0 22.8 

N18 770 18 27.0 25.9 

WES-AC 780 4 6.0 6.7 

Wl 860 20 30.0 18.8 

N23A 980 18 27.0 28.1 

B3 1680 17 25.5 11.1 

W2C 1940 20 30.0 35.5 

P14A 2120 20 30.0 13.7 

P13 2780 20 30.0 17.7 

Bl 3120 14 21.0 9.0 

WES-PCC 3500 4 6.0 6.8 
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TABLE IV 

PARAMETERS DESCRIBING THE DYNAMIC CHARACTERISTICS 

OF THE RESILIENT MODULUS LABORATORY TEST 

Ac in2 6.16 61 lb2/in" -5.66 x 1013 

L in 6.0 6 
2 lb"/in8 1.45 x 1027 

W lb 5.0 ai lb2/in" 1.89 x 1013 

m lb sec2/in 0.013 °2 lbVin8 3.5 x 1026 

0) sec-1 6.0 
*1 lb2/in" -1.89 x 1013 

mo)2 lb/in 0.468 
*2 lbVin8 7.2 x 102" 

C lb sec/in 30.0 e dimensionless 30.0 

Cm lb/in 180.0 n • dimensionless 50.0 

koo lb/in 1.5 x 10" £2 dimensionless 31.0 

ko lb/in 4.0 x 10" S dimensionless 54.0 

k lb /in 4.0 x 10" Eo lb/in2 1.5 x 10" 

b lb/in3 -2.0 x 107 E 
2 

lb/in" -2.0 x 109 

e lb/in5 3.6 x 1011 E 
i, 

lb/in6 9.7 x 1013 
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DYNAMIC PAVEMENT RESPONSE MODELS 

m, 

I LiJ c 

777777 
SINGLE MASS 

1. LINEAR SPRING 
2. NONLINEAR SPRING 

m. 

LLJ 3 LLI CJ 

'12 

m, 

liJ   C2 

////} '/////////'   ' 
DOUBLE MASS 

1. LINEAR SPRINGS 

Figure 3.  Single and double mass dynamic pavement 
response models 
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FREQUENCY RESPONSE CURVES 

FREQUENCY 

MEASURED QUANTITIES:   f, =RESONANCE FREQUENCY 

AR   - DYNAMIC AMPLITUDE AT RESONANCE 

J (f) = AR/A = RATIO OF AMPLITUDE AT 
RESONANCE TO AMPLITUDE 
AT ARBITRARY FREQUENCY. 

Figure k.    Measured quantities obtained from frequency- 
response curves 
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FREQUENCY RESPONSE METHOD 

FREQUENCY 

INPUT DATA 
fR AR    J=AR/A 

WES DYNAMIC FREQUENCY 
RESPONSE PROGRAM 

I 
OUTPUT DATA 

k    m     c 

BALTIMORE (B2) 
T - 77° F 

AC Ej= 2.0 x10s ^ = 0.30 Hj = 5 

BLACK    E? = 20 x 105 Vi = o.35 H2 = 7 

GW-GM     E, = 1.0x105 */3 = 0.35 H3 = 9 

SM-SC Es = ?        vs = 0-35 

CHEVRON LAYERED 
LINEAR ELASTIC 
PROGRAM 

T 
Es - 65 x 103 PSI 

Figure 5. Method of calculating subgrade modulus from 
measured frequency response curves 
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Figure 6. Dynamic spring constant versus measured DSM 
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Figure 9. Linear static spring constant versus DSM value 
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500 1000 1500 2OO0 
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2500 3000 3500 

Figure 10. Third order static nonlinear parameter versus DSM value 
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Figure 11. Fifth order static nonlinear parameter versus DSM value 
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DSM, KIPS/IN. 

Figure ik.    Dimensionless parameter n versus 
measured DSM values 
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DYNAMIC LOAD-DEFLECTION METHOD 

2      4      6      8     10 

DYNAMIC LOAD, KIPS 

14 

BALTIMORE (B2) 
T = 77° F 

AC Ej = 2.0 x 105 vx = 0.30 Hj = 5 

BLACK 
BASE 

E2 = 2.0x105 v2 = 0.35 H2 = 7 

GW-GM E2= 1.0 x10s i/3 = 0.35 H3 = 9 

SM-SC 

INPUT DATA 

1. DSM VALUE 

2. POINT BY POINT TABULATION 
OF LOAD-DEFLECTION CURVE 

I 
WES NONLINEAR DYNAMIC 
LOAD-DEFLECTION PROGRAM 

I 
OUTPUT DATA 

k   M   C   Ec 

j>c = 0.35 

Es = 22.8 x 1Q3 PSI 

Figure 16.  Determination of subgrade modulus from measured 
dynamic load-deflection curves 
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CHARACTERIZATION OF BEHIND ARMOR EFFECTS FOR 
LONG ROD PENETRATORS 

Victor D. Maki 
Engineering Branch 

Ballistic Modeling Division 
US Army Ballistic Research Laboratory 

Aberdeen Proving Ground, Maryland 

ABSTRACT. This study was needed to provide information on the 
behind armor'effects essential to armored vehicle analysis and in the 
design of future kinetic energy penetrators.  Both spall and rod pene- 
trator fragment data was examined for gross characteristic statistical 
trends  Use of least squares was employed to ascertain causes for simi- 
larities in the data base. A linear function relating fragment mass to 
velocity was employed to study effects of variation in projectile materials, 
initial projectile weights, striking velocities, length to diameter ratios 
and plate thicknesses.  Kolmogorov-Smirnov type test statistics were used 
to determine whether or not a unique parent weight distribution existed 
between various firings. The Weibull, Poisson and Truncated Normal cumu- 
lative distribution functions were also compared with empirical weight 
distributions for several selected firings.  This paper summarizes the 
characteristics found. 

1  INTRODUCTION. Whenever armored vehicles of any kind are attacked 
by metal rod penetrators, fragments are sprayed inside the vehicle which 
damage components and personnel. To facilitate a greater understanding 
of those mechanical processes involved, a gross characterization was done 
that includes fragment numbers, mass distributions, and spatial locations 
behind 6.35 and 12.7 millimeter rolled homogenous steel targets.  The 
fragment data base used for this analysis is comprised of 140 test firings 
completed at the BRL in 1970.  In the data base projectile weights, length 
to diameter ratios, projectile material types,target plate thickness, 
fragment masses, fragment locations, (see Figure 1), and velocities were 
found recorded in a BRL Memorandum Report1. This data was transcribed 
onto IBM punched cards for computer reduction and analysis.  Initially, 
the natural log of fragment mass and velocity were fitted with a first 
degree polynomial of the form, y = aQ + a^ where y denotes the In velocity 

parameter and x the In of fragment mass. This polynomial fitting and 
plotting technique was later published by the author as a BRL Systems 

1L Herr and C. Gabarek, "Ballistic Performance and Beyond Armor Data for 
Rods Impacting Steel Armor Plates," US Army Ballistic Research Labora- 
tories Memorandum Report #2575, January 1976. 
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Programming Bulletin2. The volume of linear equations and plots produced 
was found to be valuable as a convenient index in a search for trends from 
firing to firing which later led to a zone analysis of the data. A zone 
definition and the results of the zone analysis are on the following page. 

Zone number 1 is represented by the innermost circle on the recovery 
media surface and is measured by an angle of ten degrees with respect to 
the shotline.  Zones 2-thru-5 are defined by an angle increase of ten 
degrees per zone.  For all firings the shotline was orthogonal to the 
target surface plane.  Projectile striking velocities were in the 900 to 
1500 meters/sec range. The straight line function, In (fragment velocity) 
a0 + al *-ln fragment mass) when fitted on a zone per zone basis revealed 

a distinct trend. As zone angle increased, the slope values, a 's were 
more negative in value. This agrees with the basic conservation of energy 
lr.w of physics. 

2. The Weibull Distribution Function.  In a testing of the Poisson, 
Truncated Normal, and Weibull distribution functions the latter provided 
the best fit to the fragment mass parameter. A detailed report of how 
the Weibull distribution function parameters were estimated can be found 
in Reference 3. A two sided Kolmogorov-Smirnov type test was employed as 
a criteria for best fit. The empirical cumulative distribution function, 
(Equation 1) was computed for the fragment mass parameters for several 
selected firings.  A graphical and numerical comparison with the Weibull 
cumulative distribution function, (Equation 2) was then performed. 

0, x < x(1) 

FN(x)=J K/N, x(K) < x <x(K+1) ci) 

l>   X(N) 1 x 

F(x) = 1.0 - exp - (*-) C2) 
6 

x, is the fragment mass parameter. 

Victor D. Maki, "PDT Plot Subroutine with Bi-variate Analysis," US Army 
Ballistic Research Laboratories Systems Programming Bulletin #SPB-G-74 
17 July 1974. ' 

3 
Victor D. Maki, "Three Probability Density Function FORTRAN Subroutines," 
US Army Ballistic Research Laboratories Interim Memorandum Report #396 
June 1975. ' 
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The computed maximum absolute difference was numerically compared with, 

1 36/S which is fully described in Reference 4. If the computed maximum 
absolute difference was found to be less than the above statistic, a 
decision was made to accept the Weibull distribution function for describing 
fragment mass.  Included in this paper is a plot of this typetest for 
round number 5 (see Figure 2). For "good" fitting of ^ »eibull distribu 
tion function to a large number of firings fragment masses greater than 
100  grains should be ignored. Because rod penetrator fragment mass distri- 
ouUonTare characteristically bi-modal more than 90 percent of ^e frag- 
ments can be found in the first mode and therefore, for this data set, 
ignoring the second mode caused no significant loss m accuracy. 

3.  ZONE DEFINITION. 

Shotline 

Armor Plate 

Collection Media 

Fragment Impact 
Location 

Figure 1 

Zone 1 is represented by the innermost circle and forms an angle of 
ten degrees measured from the shotline.  Zones 2-thru-5 are defined by 
an angle increase of ten degrees per zone. 

4W. J. Conover, Practical Non-Parametric Statistics, published by 
John Wiley, 1971, New York, NY. 
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4.  TWO-SIDED KOLMOGOROV-SMIRNOV TYPE TEST 

1.0 

K/N 
0.5 

0.4 

0.3 

0.0 

ROUND NB. 5 
WEIBULL CD.F.,(SMOOTH CURVE) RND 
EMPIRICAL CD.F..(8TEP FUNCTION). 
SftMMR = 0.604 THETR = 6-156 N =  190 
MAXIMUM ABSOLUTE DIFFERENCE = 0.0746480 

0.9  - 

0.8  - 

0.7 

0.6  - 

0.2  - 

0.1  - 

40 80 LEO 160        200        240 
MflSS.CGRS. ) 

280 320 

Figure 2 

1.36//N = .09866477 

Since the maximum absolute difference is smaller than the above value 
the Weibull distribution is accepted for this firing. 
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The fitting of the Weibull distribution to spall fragment mass is doc- 
umented in Reference 5.  Further interest on the readers part on this 
topic should be directed to Mr. John Misey, US Army Ballistic Research 
Laboratory, Aberdeen Proving Ground, Maryland 21005. 

5.  CONCLUSIONS OF ANALYSIS. 

a. As zone angle increases, average fragment velocity decreases, 
numbers of fragments decrease and average mass increases. 

b  A two-sided Kolmogorov-Smirnov type test shows the Weibull dis- 
tribution function is a good choice for describing fragment mass less than 

100 grains. 

c. Rod penetrator fragment mass distributions are characteristically 

bi-modal. 

5"Behind Armor Data for Long Rod Penetrators," paper presented by 
Mr. John Misey at the Second Annual Automatic Cannon Caliber Munitions 
Symposium, 25 September 1975 at Frankfort Arsenal. 
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MATHEMATICAL MODELS OF SYSTEMS AND TACTICS IN LAND COMBAT 

Roger F. Willis 

US Army TRADOC Systems Analysis Activity 
White Sands Missile Range, New Mexico 88002 

ABSTRACT  This paper covers a variety of mathematical models that have 
recently'been developed, tailored to specific decision problems in tactics 
and alternative system tradeoffs. These models emphasize rapid and flexible 
variation of assumptions, investigation of alternative tactics, tradeoffs 
between system parameters, tradeoffs between the elements of a force and 
various optimizations. Alternative mathematical formulations include linear 
versus non-linear, constant versus time-varying coefficients and stochastic 
versus deterministic. 

1. INTRODUCTION 

Flexible and efficient mathematical models are required for use in different 
phases of a particular force evaluation or combat developments study. In an 
early phase these models can be used to compare and screen alternatives -- 
alternative systems, alternative tactics or alternative mixes. In late phases 
the same models can be used for sensitivity analysis, to give approximate 
answers to "what if" questions - i.e., to determine how study results might 
chanqe if certain assumptions are varied. In most studies the major analyt- 
ical tool will be a large, relatively slow and expensive computer model or 
simulation or computer-assisted wargame (e.g., DIVWAG). The mathematica 
models presented in this paper are intended to supplement the large models, 
to provide additional insights and to enrich the study results. These models 
can also be used to develop hypotheses (e.g., about the relative merits of 
alternative tactics) that can then be tested with high resolution stochastic 
simulations. 

2  We consider the class of models consisting of sets of ordinary differential 
equations in which each equation represents the time rate of change of the 
number remaining of a particular type of weapon. The equations can be 
deterministic or stochastic, linear or non-linear, with constant coefficients 
or variable coefficients.  We consider ten specific decision problems and 
the mathematical categories of models as follows: 

a. deterministic, linear, constant coefficients 

(1) tradeoff between ground forces and aircraft 

(2) remotely piloted vehicles 

(3) air defense suppression 
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(4) optimum artillery mix 

b. deterministic, linear, variable coefficients 

(1) antiarmor target priorities 

(2) optimum disengagement time 

(3) electronic warfare 

c. deterministic, non-linear 

(1) weapon effectiveness 

(2) force required 

d. stochastic 

(1) time to achieve goal 

3.    More complete statements of the decision problems are: 

a.    To what extent can tanks be traded off for close support aircraft? 

maneuver KtSAnP*61* p1l0ted ^^ are ^U1>ed t0 ™^t one 

and sSPPreHsrionh0o}dairrtJefeenL?ire * all°Cat6d ^^ «unterbattery fire 

ing admechaaniZed inlan^^lion? ^"^ ^ and nUmbers f0r ^^~ 

anti-aermor°^p
ho°ns? ^ "" "* &U°C&ted betWeen three or *™ ***** of 

f.    What is the optimum time for a defending anti-armor force to disengage? 

attacgkingWohrVmming tS?' ^ det6Ct1ng enenv *™«"™* systems and 

h.    What weapon effectiveness is required against a given enemy force: 

(1) if replacements are available? 

(2) if no replacements are available? 
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1. What force size is required against a given enemy? 

j. With a given force available, how much time would be required to 
reduce an enemy force to a specified level? 

4  In this paper we will present models for only four of these decision 
tab ems- a el and j. These particular examples were selected to illustrate 
The four'categories of models and'several different measures of effectiveness. 
In the first problem, involving tradeoffs between ground and air, we are 
nteresteS inThe broader question of what mix of ground forces and air forces 

do we need in NATO? What factors should be incorporated in a simple model 
designed to give gross, order-of-magnitude answers to this question? Some 
of them are: aircraft availability rate and sortie rate, attrition of 
aircraft, allocation of aircraft against alternative target types (e.g.» tanks 
or artillery), lethality of air-delivered weapons, tank effectiveness, tank 
Vulnerability and artillery effectiveness. The model is presented in Figure 1, 
with variables and factors defined as follows: 

X,(t) = Red tanks 

X2(t) = Red artillery 

Y,(t) = Blue tanks 

Y2(t) = Blue artillery 

Y3(t) = Blue aircraft 

J = rate at which a Blue tank can kill Red tanks 

K = rate at which a Red tank can kill Blue tanks 

P = Blue aircraft attrition rate per sortie flown 

b = rate at which a Blue artillery weapon can kill Red tanks 

k = average number of Red tanks killed per aircraft sortie 

s = sortie rate, per available aircraft 

V = aircraft availability rate, taking into account NORM, NORS, etc. 

r = replacement rate for Red tanks 

L = rate at which a Blue artillery weapon can kill Red artillery 

M = rate at which a Red artillery weapon can kill Blue artillery 

N = average number of Red artillery weapons killed per aircraft sortie 

f = fraction of Blue aircraft sorties employed against Red tanks (the rest 

are used against artillery) 

g = fraction of Blue artillery employed against Red tanks (the rest are used 

against artillery) 
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RED TANKS 
dX, 
—1 = - JY.  - bgY2 - VskfY, + r 
dt                                                 3 

RED ARTILLERY 
dX- 
—i = - L(l-g)Y2 - VsN(l-f)Y, 
dt                                                          3 

BLUE TANKS 
dY, 
—1 = - KX, 
dt 

BLUE ARTILLERY 
dY, 
—1 = - MX, 
dt 

BLUE AIRCRAFT 
dY. 
—1 = - VsPY, 

* 

Figure 1 

Rates at which Committed Strengths Change 

476 



From the first differential-equation in Figure 1 we see that Red tanks 
are killed by Blue tanks (Y,), Blue artillery (Yj and Blue aircraft (Y3). 
To some extent Red tank losses are compensated for by replacement tanks, 
at a rate of r per minute. The Blue commander has two weapon allocation 
problems: allocation of available aircraft against tanks (f) and against 
artillery (l-f)j allocation of available artillery against tanks (gj and 
against artillery (1-g). 

5  The solutions of this model express the numbers of weapons of each type 
surviving (and committed) as functions of time. This model can be used 
to investigate tradeoffs between tanks and close air support aircraft in 
the following way. We set a tactical goal and calculate the various 
combinations of "number of tanks" and "number of aircraft ,each of which 
will achieve the goal. An example of a goal is: "Reduce the 
Red tank strength by 100 within 2 hours. The tradeoff curves (tanks versus 
aircraft) will usually depend on the values assumed by all the other factors 
in the model, such as Red tank effectiveness, Blue tank effectiveness, Blue 
aircraft attrition rate, number of Blue artillery tubes available, etc. 
The tradeoff curves also vary with the type of goal required.  Reduce the , 
Red to Blue tank force ratio by 50% in 6 hours" would give different curves. 

6. For example, if we leave out Red and Blue artillery to simplify the 
calculations and make the following assumptions 

J = .003 S = .004 

K = .001 P = -05 

V = 0.70 k = 2 

we get the following results, for the Blue goal of killing the required 
number of Red tanks within 16-2/3 hours: 

Number of Red Number of Blue 
tanks killed aircraft  tanks 

400 

300 

7  The tradeoff between Blue tanks and Blue aircraft depend on two major 
uncertainties: the duration of combat and the ratio of Blue tank effectiveness 
(J) to Red tank effectiveness (K). We see this directly in the following 
results, based on the assumptions: V = 0.70, S = 0.004, k = 2, p = 0.05. 

100 133 
75 200 
50 267 

100 33 
75 100 
50 167 
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Ratio of Blue tank Number of Blue tanks 
effectiveness to Red   Combat Time   equivalent to one 
tank effectiveness     (minutes)    Blue aircraft 

1 to 1 2000 8.5 
1000 6 2 
500 5.8 

3 to 1 2000 5.3 
1000 2 7 
500 2.2 

8. For the next decision problem (3e) the question is: How should Red 
tank fire be allocated between three or four types of Blue anti-armor 
weapons (targets)? The Red side makes tactical judgments about allocation 
of fire. Here we let f. be the fraction of Red fire directed against type 1 
Blue weapons, f2 the fraction of Red fire directed against type 2 Blue 
weapons etc. fie could let the f factors vary with time during the battle, 
out in the examples given here we'assume that for a given battle each f 
is given a fixed value, with the sum of f. equal to one. 1 

9  The ability of individual weapons to kill targets (detect, hit, kill) 
is assumed to vary with time during the battle (comparable to variations 
with range as intervisibility, detection and weapon accuracy change)  The 
model represents the dynamics of combat as the battle progresses, the rates 
mode 1Ca set ^^«J weapons surviving changes due to 2tt"Slin? ThS 
model, a set of N + 1 differential equations, is given below in Dara 10 
The factors and variables are defined as follows: 

X = number of Red tanks 

Yj= number of type 1 Blue weapons (e.g., M60A1E3) 

Y2= number of type 2 Blue weapons (e.g., TOW on M113) 

Y3= number of type 3 Blue weapons (e.g., TOW on jeep) 

Y4= number of type 4 Blue weapons (e.g., DRAGON) 

YN= number of type N Blue weapons. 

f^ fraction of Red tank fire allocated against type i Blue weapons 

(This could include target opportunities as well as target priorities.) 

Kj (t) = average rate at which a type i Blue weapon can kill Red tanks 

Älll^lvInTS?) °PP0rtUnit1es' hit Polity, rate of fire and kill 

J,. (t) = average rate at which a Red tank can kill type 1 Blue weapons 

We assume that each K. and J. is a linear function of time. In particular, 
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K.(t) = a. + b.t 
% %        % 

JAt) = o. + d.t 

10. The model is: 

Red tanks ' 

Blue weapons 

§:=-x1(t)Y1-K2(m2.-...-KN(mN 

dYn 

dl. 

dT=-J2(t)hx(t) 

dT = - *N(t) fN X(t) 

11. We consider five alternative tactical allocation schemes for the Red 
tanks, as follows: 

a. Initial Blue strength. 

Y.(o) 

i      N- 
E Y.(O) 

b. Equal priorities by target type. 

Ji      N 

c. Initial threat to Red tanks. 

a. 

?i = N 
E a. 
d-1    ° 

d. Initial ease of killing. 

c. 
]i     N 

E a. 
Ö-1    ' 
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e. Later threat to Red tanks (time t, e.g., t = 5 or 10) 

/„• = 

a. .+ b . t 

i      N _ 
I      (a. + b. t) 
3=1      3        3 

a. b. c. d. 

.152 .163 .013 .015 

.053 .270 .008 .040 

.000 .600 .000 .060 

?' *J" or<?er to compare these Red alternatives we must make assumptions 
about the initial force sizes on both sides and the coefficients representing 
weapon kill capabilities. In a number of runs we used the following values: 

Blue weapons Blue versus Red        Red versus Blue 

type 1(tanks) 

type 2 (long range ATGM) 

type 3 (short range ATGM) 

l/ith overall Red to Blue initial force ratios on the order to 3 to 1 or 
4 to 1 the order of preference for the Red alternatives in para 11 turned 
out as follows: 

Best: e. later threat to Red tanks 
a. initial Blue strength 
b. equal priorities by type 
d. initial ease of killing 

Worst: c. initial threat to Red tanks 

13 In the next decision problem (3i) we consider the tactical question 
of how a given initial Blue force should be broken up into smaller units 
for employment against the enemy. If the effectiveness of the defending 
Blue force does not depend on the absolute scale of the battles fought 

?L V»-^^%(but °nl£ °r the force rati°) then it might not matter how 
the initial force is broken up into units. We have investigated many 

ilttiTZ BSV/tES"w1th respect t0 tMs t,uestion- Here» *««* 
Model A 

f--*»™ %--*R(t) 
Model B 

dR ,„... jg 

dt 
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Model C 

Model D 

% = - LB(t)R(t) + aR(t) 
at 

H= - JR(t)B(t) + bB(t) at 

g| = - (P + ttt)B(t) 

|| = -  (a + bt)R(t) 
at 

14. In evaluating combat of maneuver units the single most meaningful measure 
of effectiveness is the cumulative loss ratio—i.e., the ratio of total Red 
losses to total Blue losses. This loss ratio will depend on many factors, 
including (in most cases) the initial force ratio—the ratio of the initial 
number of Red weapons to the initial number of Blue weapons. If we cal- 
culate the cumulative loss ratio at the particular time t at which Blue 
has a fraction "A" of his force surviving (e.g., A = 0.70) the result for 
Model A is: 

. F 
L(t) = 1-A 

o(l-A2) 

Fa* 

R K 

where F0  is the initial force ratio ( -f-)  and 0=7» the ratio of individual 
weapon effectiveness coefficients. Itrfs clear that, for Model A, L does 
not depend on the scale of the battle (B0 or RD) but only on the initial 
ratio of forces. 

15. For Model B, the loss ratio is: 

L'*>-hi 

M+l      M-N 
a  (1 - A      )Ra 

F0
M+1 

If M does not equal N then L does depend on the scale (Ro) but if M * N 
then it does not. 

16. The cumulative loss ratio L satisfies   the following equation when 
B(t) equals AB0 for Model C: 

b log [E0 -   (1  - A)L^ + 3(1 - A)  B0 L  = 

b log F0 + a log A + K(l - A) B0 

Since B0 appears explicitly the loss ratio does depend on scale for Model C. 
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17. Based on the Taylor series solutions of Model D, the cumulative loss 
ratio, at any time t, is: 

t2                            t3      2 
L(t)  _vt - 2     (pgF„ -g)  + J _JP ■<* -(yb+2qa)F0]    -• • •  

aF0t - t  (op - bF0)  + t_3 [a2pF0 -   (aq + 2bp)]  -• • • 
2 ß 

This expression depends on F0 but not on B0 or R0 (and hence not on the 
scale of battle). 

1?;u 
The.final decision problem to be illustrated in this paper is 3j• 

with a given force available, how much time would be required to reduce 
f«HeS?my l°rcLt0  \specified level? For example, Red has six tank platoons 
and Blue has three tank platoons. How long would it take Red to reduce 
Blue to 6SJ> of his initial strength (e.g., with about 2 platoons left)? 
These numbers are too small for stable results from a deterministic model. 
Thus, we consider the following stochastic model, developed by Isbell arid 
Warlow.  At time t, the probability that exactly R Red units and exactly B 
Blue units are surviving is:   

P(R3   B; R03   B03   t) 

where Ro and B0_are the initial strengths. If f and g are transition 
probabilities, in small increments of time, for Red and Blue respectively, 
then it is assumed that the function P satisfies the following differential 
equations: 

dP(R3B)        -,„.,,, r -1 
-fä = f  (R+l,   B)  P(R+13B)+ g(R3B+l)P(R,B + 1)   -  \f(R,   B)  + g(R3   B)l P 

(R3  B) 

where P(R3  B3  t) = 0 if R > R0 or B > B0 

and P(R03  B03   0)  = 1. 

IV?uafSnmÜ tha^t and g are 1inear functions of weapon characteristics 
and that Red and Blue weapon are equally capable, then the solutions are 
as given in Figure 2, where the functions F satisfy the following relations: 

F(R3  B; R03  BJ = R + \ + ^    F(R + 13   B; R03  B0) 

+ R + B + 1    F(R>  B + 2'  R°>   B°} 
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19. Examples of specific solutions are the following; 

a. Initial Red force:  6 platoons 
Initial Blue force; 3 platoons 

Time required to reduce Blue force 
by 65% 

Probability  (t minutes or less) 

.63 7 

.56 5 

.42 3 

.16 1 

b. Initial Red force:  4 platoons 
Initial Blue force: 2 platoons 

Time required to reduce Blue force 
by 65% 

Probability  (t minutes or less)  

.42 7 

.32 5 

.19 3 

.06 1 
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EVALUATION OF SEVERAL 'BEST FIT' METHODS AS THEY PERTAIN TO THE 
SUPERPOSITION OF SOLUTIONS IN A MULTIPOINT BOUNDARY 

VALUE PROGRAM 

John H. Walker 

U.S. Army Test and Evaluation Command 
White Sands Missile Range 
White Sands, New Mexico 

S. Bart Childs, Ph.D. 

Department of Industrial Engineering 
Texas A&M University 

Texarkana, Texas 

ABSTRACT. A shooting method is the superposition of initial value solutions 
of ordinary differential equations such that boundary are "met" or a performance 
index is minimized. 

The results of meeting noisy boundary conditions in least squares and minimax 
norms are presented. The example problem is a damped, forced harmonic oscillator. 

The procedures are basic to system identification problems. 

1. INTRODUCTION. The linear boundary value problem is governed by the 
ordinary differential equation 

y  = Ly  + / W 

where y  and y  are, respectively, the vector of n state variables and its deriva- 
tive, L  and / are matrix and vector functions of the independent variable t, time. 
The solution of this differential equation is subject to a set of boundary condi- 
tions 

q.(y(t.))-b. i = l32s...3m>n (2) 

where qi  is the boundary condition operator that specifies alinear combination 
of the state variables equal to the boundary value, 2K, at time, t^. 

A shooting method is to superimpose appropriately independent solutions of 
(1). This can be written as 

y-     ?PW«, (3) 
3=0 3 

where p(;j)  is a particular solution of (1) and a.  is the corresponding superposi- 
tion constant. 
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The independence properties can be assured by the following strategy. Assume 
p(0)(0) = a.   Then take 

Vi      (0} =   ai +  6^.       i3 j = lt2,...än (4) 

where <5 is the Kronecker delta and all &J f* 0.   The above strategy gives a deter- 

minant (Wronskian) of the associated homogeneous differential equations, at t=0, 
of the product of the ß's. 

The superposition of particular solutions also requires that 

n 
I 

3=0 
la. = 1. (5) 

Childs et al. [1970] give more details on the strategy and a proof of (5). If a 
is the initial value vector that makes (1) satisfy (2) then it is obvious that aQ=l 

and a2=«2=...=aM=0. How close the actual superposition constants come to these 

values is an indication of the merit of the numerical method. 

The superposition (3) is substituted into the boundary conditions (2). If the 
boundary conditions are linear in y, then the operators q and z may be interchanged 
giving 

n ... 
I    te^P  <V;1 a. =b. i = l,2,...,m. (6) 

3=0 13 1- 

The use of shooting procedures results in the particular solutions, p({,),  being 
known and we observe that the bracketed terms in (6) are simply coefficients of an 
algebraic equation in the unknown superposition constants. We write (5) and (6) as 
the matrix equation 

Sa = d (7) 

where      sQj = i,        dQ = 1 

and        s.  . = q.(p(^ Si.,' = %l(P      (tiJ)>        di'=h i=_l,23...3m (8) 

2- NONLINEARITIES. If the differential equation is nonlinear then we may 
write it as 

y = g(y,t). (9) 

Equation (9) is linearized via a Taylor series expansion in order to obtain an 
equation linear in 3; 

3 = g(w,t)  + r|£|   c * - w J (10) 
L y-*y=w 

where w  is a reference solution or a previous approximation to y.   Equation (10) 
may be rewritten as 
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■a = Ja + g' U1) 

where      J = ^ and   g> = g(Wit) - Jw . (12) 

Therefore, if we are given a nonlinear differential equation subject to 
boundary conditions, we may approximate it by the linear equation 

'z = Jz + g' (13) 

subject to the boundary conditions 

q.(z(t.))=b. i = lt2,...,m. (14) 

It is obvious that (13) and (14) are analagous to (1) and (2) and so we proceed 
in the same fashion. The only difference is that now the solution is obtained 
iteratively. 

We again superimpose n+l  particular solutions of (13) that meet the boundary 
conditions (14): 

n 
z=   lV

(i}a. C15J 
3=0 ° 

where each pJ' satisfies 

pV> =JP
(^  +g<. W 

The superposition constants are determined by 

\a.=l C17) 
3=0 ° 

and n      ,., 
q.C  I (v°  (t.))a.) =b. i =l,2,...tm>n . (18) 

x fco %     2 % 

If the operators, q.%  are linear then (17) and (18) form a set of linear equations 
analagous to (7). 

If any of the boundary condition operators, H,  are nonlinear, then they must 
also be linearized by a Taylor series expansion. The linearization is done with 
respect to the superposition constants with the initial reference values of the 
vector, a, as 

aQ = 1 

a.  = 0        3 = l,2t...tn  . (19) 
3 

The reader can refer to Childs et al. [1970] and to Roberts and Shipman [5] 
for more details on these linearization procedures. 
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'3. OVERDETERMINED BOUNDARY CONDITIONS. If the number of boundary condt- 
tions, m, is greater than the order of the differential equation, n,  then (7) 
constitutes an overdetermined set of linear equations with the a.'s unknown. 
Not all of the equations can be met exactly, some will have to be met in a 
"best fit" sense. Let's assume that p of the m  boundary conditions are to be 
met exactly, then p+l  of the m+1  equations (the superposition condition is 
included) must be met exactly. Equation (7) may be partitioned as follows; 

S3 S4. o-1 

~d 1 

d L o- 

(20) 

The components s^ s2  and de  correspond with the equations to be met exactly. 
By suitable matrix operations, (20) can be transformed into 

I ,i -. 

4-1 

a 

*- o- 

■d' 

d' 
(21) 

Two matrix equations results from (21) 

S4 % - K 

a   = a    - Sn a e        e        2    o 

(22) 

(23) 

Equation (22) is solved in a "best fit" sense for a  , which is then substituted 
into (23) for a  . ° 

Once the superposition constants, aj,  are found, they are multiplied by 
their appropriate particular solutions at t=0s  that is, p(J*(o)t  which yields 
an estimate of y(0),  i.e. 

71 

y(O)  = I p(JJ(0)a.   . 
0=0 ° 

(24) 

If the problem is nonlinear, the LHS of (24) is taken as the unperturbed par- 
ticular solution at t=0, p(o) (o).    Independent perturbed solutions are generated 
by the strategy described in (4) and a new set of superposition constants found. 
The method is repeated until convergence of consecutive p(0)(0)  vectors are 
observed (i.e., aQ will approach unity and all other a.'s will approach zero). 

There are two principal methods of solving overdetermined systems of 
linear equations. They are: 

1) least squares solution 
2) minimax or Chebyshev solution. 

a. Least-Squares Solution: Given 

s' a   = d' 4    o        o 488 (25) 



the residual vector can be written, 

R-S'a    -d'    . (26) 4    o        o 

The least-squares solution is the vector, %t  that minimizes the sum of the 
squares of the components of the residual vector, R,  is: 

a^(s/s^(S'>X    . (27) 

This is substituted back into (23) to find ag  . 

b. Minimax Solution: The minimax solution is the vector aQ which minimizes 
the largest absolute value of the components of the residual vector (26). That 
is, we want to minimize maxCr^r^...,?     )  . The method advanced by Powell is 

used in the program. See [3] and [4] for more specifics on the minimax method. 

4. RESULTS. We considered the following problem 

x + ]ix + &c = sin(t) (28) 

which is the equation of motion for a forced, damped harmonic oscillator. 
By the change of variables 

y2 = a, y2 = xt y2 = y, y4 = 5 (29) 

(28) may be replaced by 

y2 =y2 

h = -y4yi "y3y2 + sin(t} (30) 

h = ° 
'y4 = o . 

Initial values were selected for the state variables and solutions for 
y  and y were generated on the interval 0<t<l5.    At times, t=l>233s...sl5t  the 
value of y2 was observed. These values were taken as the exact boundary values 
(to 8 significant figures). Six sets of "noisy" data were produced by two 
techniques. The first was to round off the exact boundary values to 1,2, and 
3 decimal places to the right of the decimal point. The second technique was 
to add a random variable that was normally distributed with a mean of zero  and 
a standard deviation, a.   Three different values of a were used: .01,  .ls  and 
5  See Table 1 for the sets of boundary values. The program was run using 

each set of the corrupted boundary values as data. The errors between the 
originally selected initial conditions and those that the computer estimated 
from the noisy data were computed. Both least-squares and minimax were employed 
to solve the overdetermined system, for each data set. See Tables 2, 3, 4 
and 5. Two criteria were chosen as the basis for evaluating the closeness 
of fit: (1) the sum of the absolute values of the errors and (2) the sum of the 
squares of the errors. In all cases, the least-squares solution proved the _ 
better fit, as expected. The accuracy of the parameter estimates is impressive, 
even with the noisiest data. 
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Boundary values Boundary values Boundary values 
rounded to 3 rounded to 2 rounded to 1 

t. decimal places decimal places decimal place 

1 -0.220 -0.22 -0.2 
2 0.35D-01 0.3D-01 0.0 
3 -0.474 -0.47 -0.5 
4 -0.589 -0.59 -0.6 
5 0.393 0.39 0.4 
6 1.597 1.60 1.6 
7 1.452 1.45 1.5 
8 -0.388 -0.39 -0.4 
9 -2.324 -2.32 -2.3 
10 -2.274 -2.27 -2.3 
11 0.88D-01 0.9D-01 0.1D-00 
12 2.711 2.71 2.7 
13 2.997 3.00 3.0 
14 0.401 0.40 0.4 
15 -2.816 -2.82 -2.8 

Boundary values Boundary values Boundary values 
with N(0,.01) with N(0,.l) with N(0,.5) 

t. r.v. added r.v. added r.v. added 

1 -0.21869550 -0.20667165 -0.15323232 
2 0.37798268D-01 0.66064361D-01 0.19169151 
3 -0.46666120 -0.40497946 -0.13083809 
4 -0.59655859 -0.66370844 -0.96215247 
5 0.39299204 0.39030898 0.37838423 
6 1.5960593 1.5846639 1.5340173 
7 1.4712304 1.6443249 2.4136342 
8 -0.38313658 -0.33635166 -0.12841859 
9 -2.3169182 -2.2529945 -1.9688892 
10 -2.2631763 -2.1656611 -1.7322599 
11 0.91826552D-01 0.12353162 0.26444312 
12 2.6876393 2.4736753 1.5227239 
13 3.0007328 3.0323136 3.1726727 
14 0.39058453 0.29953824 -0.10511233 
15 -2.8133056 -2.7851188 -2.6598437 

TABLE 1 
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True value 
of initial 
conditions 

I.C. estimates using 
Least Squares. B.V.'s 
input with 8 signifi- 
cant figures 

I.C. estimates 
using Minimax. B.V.'s 
input with 8 significant 
figures 

x(0)         1.0 0.99999999 0.99999997 

x(0)         0.5 0.49999999 0.49999998 

y     0.2 0.20000000 0.20000000 

5     1.0 1.00000000 1.00000000 

£1^1  = 2.0D-08 

y e2.    = 2.0D-16 

l\e.\  =    4.0D-08 

I =    1.0D-15 

TABLE 2 
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I. C. estimates using 
Least Squares. B.V.'s 
are rounded to 3 deci- 
mal places 

I. C. estimates using 
Minimax. B.V.'s are 
rounded to 3 decimal 
places 

X(0) 

X(0) 

y 

5 

1.0000524 

0.49978310 

0.20004417 

0.99996730 

0.99976973 

0.49976451 

0.20009774 

0.99998927 

l\e.\  = 3.4617D-04 l\e.\  = 5.7423D-04 

I e . = 5.2812D-08 I e.    =11.8148D-08 

X(0) 

X(0) 

V 

5 

I. C. estimates using 
Least Squares. B.V.'s 
are rounded to 2 deci- 
mal places 

I. C. estimates using 
Minimax. B.V.'s are 
rounded to 2 decimal 
places 

1.0011527 1.0008828 

0.50086499 0.50155621 

0.19989372 0.19996940 

1.0001414 0.99988326 

li«<i ■ 2 2654D- ■03 II e. = 2.5864D-03 

L    ^ 
2 1082D- -06 I 2 e . = 3.2157D-06 

TABLE 3 
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X(0) 

X(0) 

y 

5 

I.C. estimates using 
Least Squares. B.V.'s 
are rounded to 1 deci- 
mal place 

0.95849170 

0.50061069 

0.20243731 

0.99890736 

l\e.\  = 4.5649D-02 

T e2   = 1.7304D-03 
£■  1. 

I.C. estimates using 
Minimax. B.V.'s are 
rounded to 1 decimal 
place 

0.93474852 

0.48097522 

0.20584127 

0.99848235 

l\&i\  = 9.1635D-02 

Je?   = 4.6561D-03 

X(0) 

X(0) 

V 

I.C. estimates using 
Least Squares. N(0,.01) 
r.v. added to the 
B.V.'s 

1.0009066 

0.49193995 

0.20106603 

1.0003406 

l\e.\ = 9.7755D-03 

7 e.    =  6.7049D-05 

I.C. estimates using 
Minimax. N(0,.01) r.v. 
added to the B.V.'s 

0.99134015 

0.48700959 

0.20179481 

0.99973471 

\\e.\  = 23.7104D-03 
IS 

Y e2   = 24.7035D-05 

TABLE 4 
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I.C. estimates using 
Least Squares. N(0,.l) 
r.v. added to the 
B.V.'s 

X(0) 1.0112150 

X(0) 0.41910446 

y 0.21071785 

? 1.0033087 

Il^l = .1061 

I.C. estimates using 
Minimax. N(0,.l) r.v. 
added to the B.V.'s 

0.91127941 

0.36854682 

0.21777510 

0.99682169 

Ik-I = -2411 

I  ej = 6.7957D-03 I  e. = 2.5477D-02 

X(O) 

X(O) 

y 

5 

I.C. estimates using 
Least Squares. N(0,.5) 
r.v. added to the 
B.V. 

1.1020264 

0.90461984D-01 

0.25470622 

1.0143196 

I.C. estimates using 
Minimax. N(0,.5) r.v. 
added to the B.V.'s 

0.49280864 

-0.18505768 

0.28377993 

0.97314194 

Il^l = .5809 Ik-| = 1.3029 

v 2 
)  & • .1813 I e\     = .7343 

TABLE 5 
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A STATISTICAL STUDY OF NUMERICAL ANALYSIS 
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ABSTRACT. An extension of regression analysis from the 
usual algebraic models to differential equation models is given. 
A shooting method, superposition of appropriately independent 
initial value solutions of differential equations, is used. The 
shooting method used is based on particular solutions of the gov- 
erning differential equations. Nonlinear differential equations 
and/or boundary conditions can be accommodated. 

The statistics of linear regression are generated through 
a straightforward analysis of variance. These provide the basis 
of "acceptance" or "rejection" of the regression. 

The statistics generated include an (uncorrected) ANOVA 
tables, general F-test on the regression, R2 value, the coefficient 
of variation, covariance matrix of the superposition constants, 
estimate of the variance about the regression, estimate of the 
variance of the parameters, and the confidence intervals of these 
estimates. 

The procedures are basic to system identification problems. 
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1.  INTRODUCTION.  The linear boundary value problem is governed by the 

ordinary differential equation 

y = Ly + f (1) 

where y  and y  are, respectively, the vector of n  state variables and its deriva- 

tive, L  and / are matrix and vector functions of the independent variable t, 

time.  The solution of this differential equation is subject to a set of boundary 

conditions 

q^yit^)  =£.      i =13   23...3 m>n (2) 

where ^ is the boundary condition operator that specifies a linear combination 

of the state variables equal to the boundary value, b., at time, t..     We 

are concerned only with those cases where m>n  and the boundary conditions are 

to be met in a least squares sense. 

A shooting method is to superimpose appropriately independent solutions of 

equation  (1).  This can be written as 

n 
V =      I P 

0=0 
(3) a 

•3 (3) 

(A) 
where p        is a particular solution of (1) and a.  is the corresponding super- 

imposition constant. 

The independence properties can be assured by the following strategy. 

Assume p 0)(0) = a.     Then take 

(i) 
Pi     (0) = \ + W    l> i=1> 2---> n (4) 

where &  is the Kronecker delta and all 3 ^ 0.     The above strategy gives a 
«7 

determinant (Wronskian) of the associated homogeneous differential equations, 

at t=0,  of the product of the ß's. 
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The superposition of particular solutions also requires that 

n 
I a. = 1. 

3=0 3 

Childs et al. [1970] give more details on the strategy and proof of (5). 

If a is the initial value vector that makes (1) satisfy (2) then it is obvious 

that aQ = 1  and ^ = a2 =...= an = 0.     How close the actual superposition 

constants come to these values is an indication of the merit of the numerical 

method. 

The superposition (3) is substituted into the boundary conditions (2). 

If the boundary conditions are linear in y,  then the operators q  and Z may be 

interchanged giving 

(5) 

n So) I    qJplSJ(*t)>    «, = *, i = 13  23...3m. (6) 

So) 
3=0    * - 3 

The use of shooting procedures results in the particular solutions, p1^, being 

known and we observe that the bracketed terms in (6) are simply coefficients 

of an algebraic equation in the unknown superposition constants. We write 

(5) and (6) as the matrix equation 

where 

and 

Sa = d 

S0J = '> 

(7) 

do = 1 

d. = b.        i = 13  2}...3 m 
3 = 03  lt...j n. 

2. THE OVER-DETERMINED SYSTEM. The solution of the system (7) is 

easily obtained for the data sets we have considered. We rewrite (7) parti- 

tioning (and rearranging if necessary) the elements of the vectors and 

matrices 

a 
(8) 

a. m 
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The equality sign is understood to mean "equality" (as much as our numerical 

procedures allow) for the upper portion of (8) and "least squares" fit for 

the lower portion.  The equality conditions come from the superposition 

constraint (5) and any boundary conditions that may exist which should be met 

"exactly." Weighting of the rest of the boundary conditions can be done 

but is not shown. 

A straightforward method of solution is by elementary operations 

(Gaussian reduction with maximum pivot selection) to transform (8) into the 

equality (P) and the "least square" fit (10) 

I ae +  <S2at =  <dß (g) 

'S4al  = 'dl (10) 

The '()  denotes the values have been affected by the reduction process. Note 

that 'S1  = I  and 'S   = 0. 

The least square solution for a%  in (10) is obtained in the usual manner, 

the normal equations result from premultiplying by the transpose of 'S.  The 

result is substituted into (9) to obtain the rest of the a  vector. 

The "correct" initial value vector can    be calculated from 

y(0)  = p(0)(0) + Ba (11) 

where B  is a diagonal matrix with indices varying from 0  through n. B      = 03 

Bii  = ^i f°v  ^ = 1»   2>-—>  n-     0ur computational procedure is to repeat the 

process with p       (0) = y(0)  from (11) such that we should have 

aj= ° 0=1,   2,...3  n (12) 

This will aid in construction of confidence limits of parameter estimates. 

This also gives a convenient quantity 

which is the "predicted" boundary value. 
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3. ANALYSIS OF VARIANCE. An uncorrected ANOVA table is presented below 

in terms of the nomenclature introduced. The significant calculations are 

presented in terms of vector products. These products are over the q  and 

b  vectors and are formed over the elements associated with least squares 

boundary conditions onlys any exact boundary conditions are ignored in these 

products. 

TABLE 1 

ANOVA TABLE 

Source 
Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square 

Due to regression q b n SS/n 

About the regression 
(residual) 

T   -T 
b b - q b m-k-n 

2 
s 

Total (uncorrected) 
T 

b'b m-k 

Notice in the degrees of freedom column that m  is the total number of boundary 

conditions and k  of those are to be met exactly. 

We define b  to be the mean of the least square boundary values 

b =  (I b.)/(m-k) 
1 

The following formulae are used to calculate the usual statistics; 

3, R 
I  (q.b. - b )2 

bTb - b2(m-k) 

s    = MS (residual) = estimated variance of system 

2 
F    ., = MS (regression)/s' 
cal ö 

(14) 

(15) 

(16) 

(17) 
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In (15) the summation and product are over the least square boundary conditions. 

The F7 value must exceed a Fischer's F  with: 

Probability of 1 - a   (a is the producers risk) 

Numerator degrees of freedom n 

Denominator degrees of freedom m-k-r 

for the regression to be aaaepted. 

The estimated variances of the boundary values are: 

est.  var.     (qj =  ('S^)   [('S ) ('S / ]~2   CS^.f 8
2 

J4i' 
where the i subscript denotes the ith row of the 'S    matrix. The resulting 

confidence limits in terms of the t  statistic are: 

(18) 

ii t t(v>  1 ~ */2)   y/[est.  vav  (q.)] (19) 

where y = m-k-n  and a is the producer's risk. 

We have stated these procedures are basic to system identification 

procedures.  We are most interested in y(0)  and its covariance in those cases. 

Recall equations (9) and (10) and we denote 

r2 = Cd^Cd^/tm-n) 

The covariance matrix of a7 is 

ct = U's^es^Y1*2 

Likewise, the covariance matrix of a    is 
e 

ce = rs2) ct cs/ 
The final covariance matrix is formed by appropriate multiplying by the 

perturbation matrix B giving 

(20) 

(21) 

(22) 

C 

B 

l< 
"1 

T B    = 

0_ 

0 
I 

0 - - 01 

y 
(23) 
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(24) 

The zeroth.  row and column of the result are null reflecting the variance of 

the superposition constraint (5).  The ith diagonal element is the estimated 

variance of y.(0).     Its square root is the estimated standard deviation of 

v  (0).     The confidence limits (which Draper and Smith point out should be 

viewed with caution) are 

y.(0)  +t(m-ns  l-a/2)   [est.   std.   dev.]^ 
Is 

A more stringent confidence limit would be a hyperellipsoid like 

eT(C )    e    < n T    F(n3 m-n3  1-a) C25) 
v 

where the vector e  is within the confidence limits about y(0).     This kind of 

statement is difficult to use if n>2. 

4. AN EXAMPLE. Consider the problem of determining the coasting dynamics 

of an automobile.  The three force elements of a model of the phenomenon are [5] 

a. Rolling friction due to tire flexing and Coulomb friction on 

gear train. 

b. Aerodynamic resistance proportional to the square of velocity. 

c. Product of mass and deceleration. 

The differential equation may be written as 

x + c^f      (x)2     +v^g = o (26) 
M 2 

where 

3 
p = air density (slugs/ft ) 

2 
Ar. =  frontal area of vehicle (ft ) 

M =  mass of vehicle (slugs) 
2 

g   = acceleration of gravity (ft/sec ) 

C, = coefficient of drag 
a 

\I_P  = rolling friction coefficient 
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x  = velocity (ft/sec) 

2 x =  acceleration (ft/sec ) 

Since the displacement, x,  does not appear in (26), we can write this as a 

single first order ordinary differential equation (substituting y  for x) 

h =    ~ yj£f-     yJL   +ys9 (27) 
M 2 6 

The most economical procedure to obtain sufficient measurements would be to 

coast an automobile in neutral from some speed like say 80 miles/hour and 

record the speed at intervals of say 5 seconds.  The boundary values in 

Figure 1 are velocities in ft/sec at 5 second intervals. Since (27) is 

nonlinear, the usual Newton type linearization procedures are employed, see 

Walker [4] in this proceedings or Childs [1] , [2] for more details. 

Figure 2 is the output of our program which is based on (27), the data in 

Figure 1, parameter values common in engineering use, and automobile parameters 

from the Road and Track Test Annual for 1966 for a Sunbeam Alpine.  The 

coefficient of drag Cd= y2 = 0.5025 + 0.0690  and coefficient of rolling friction 

V-f = ys = 0.0169 +_ 0.0031  resulted. 

5.  CONCLUSIONS. Regression analysis with differential equation models 

is feasible.  It could significantly affect design of experiments when such 

models are relevant. Determination of the parameters in the simple example 

would be expensive if one had to use wind tunnels or treadmills. 
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MULTI-LEVEL ADAPTIVE SOLUTIONS TO 
BOUNDARY-VALUE PROBLEMS* 

Achi Brandt 
Weizmann Institute of Science, Rehovot, Israel 

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 

ABSTRACT. The boundary-value problem is discretized on several grids 
(or finite-element spaces) of widely different mesh sizes.  Interaction» 
between these levels enable us (i) to solve the possibly nonlinear system 
of n discrete equations in 0(n) operations (40n additions and shifts for 
Poisson problems).  (ii) To conveniently adapt the discretization (the 
local mesh size, local order of approximation, etc.) to the evolving 
solution in a nearly optimal way, obtaining "»-order" approximations 
aS low n" even when singularities are present.  General theoretical analysis 
of the numerical process. Numerical experiments with linear and nonlinear, 
elliptic and mixed-type (transonic flow) problems - confirm theoretical 

predictions. 

1.  INTRODUCTION. 

in most numerical procedures for solving partial differential equations, 
the analyst first discretizes the problem, choosing approximating algebraic 
equations on a finite dimensional approximation space, and then devises a 
numerical process to (nearly) solve this huge system of discrete equations. 
Usually, no real interplay is allowed between discretization and solution 
processes. This results in enormous waste: The discretization process, 
being unable to predict the proper resolution and the proper order of 
approximation at each location, produces a mesh which is too fine  The 
algebraic system thus becomes unnecessarily large in size, while accuracy 
usually remains rather low, since local smoothness of the solution is not 
being properly exploited. On the other hand, the solution process fails 
to take advantage of the fact that the algebraic system to be solved does 
not sfand by itself, but is actually an approximation to ^t^^^"18' 
and therefore can itself be approximated by other (much simpler) algebraic 

systems. 
The purpose of the work reported here is to study how to intermix 

discretization and solution processes, thereby making both of them 
orders-of-magnitude more effective.  The method to be proposed is not 
"saturated", that is, accuracy grows indefinitely as computations pro- 
ceed  The rate of convergence (overall error E as function of compu- 
tatLal work W) is in principle of "infinite order" e.g., E - exp <-£*> 
for a d-dimensional problem which has a solution with scale-ratios >3>0, 
or BV«P (-Wt?S), for problems with arbitrary thin layers (see Sec. 9). 

* The research reported here was partly supported by the Israel Commission 
for Basic Research. Part of the research was conducted at the ^stitute 
for Computer Applications in Science and Engineering (ICASE), NASA 
Langley Research Center, Hampton, Virginia. 
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The basic xdea of the Multi Level Adaptive Techniques (MLAT) is to 
work not with a single grid, but with sequence of grids ("levels") of 
increasing fineness, which may be introduced and changed in the process, and 
which constantly interact with each other.  For description purposes, it 
is convenient to regard this technique as composed of two main concepts: 

rae^ i
XL The Multi Grid (MG) method for solving discrete equations.  This 

method iteratively solves a system of discrete (finite-difference or finite- 

aiSTni eqUatl°nS °" a ^iven **iä>  *y  constant interactions with a hier, 
archy of coarser grids, taking advantage of the relation between different 
discretizations of the same continuous problem.  This method can be 
viewed in two complimentary ways:  One is to view the coarser grids as 
correction grids, accelerating convergence of a relaxation scheme on the 
finest grid by efficiently liquidating smooth error components 
(See general description in Sec. 2 and algorithm in Sec. 4.)  Another point 
of view is to regard finer grids as the correction grids, improving ac- 
curacy on coarser grids by correcting their forcing terms.  The latter 
is a very useful point of view, making it possible to manipulate ac- 
curate solutions on coarser grids, with only infrequent "visits" to 
pieces of finer levels.  (This is the basis for the multi-grid treatment 
of non-uniform grids; cf. Sees. 7.2 and 7.5.  The FAS mode for nonlinear 
problems and the adaptive procedures stem from this viewpoint.)  The two 
seemingly different approaches actually amount to the same algorithm (in 
the simple case of "coextensive" levels). 

The multi-grid process is very efficient: A discrete system of n 
equations (n points in the finest_grid) is solved, to the desired accuracy, 
m 0(n) computer operations.  If P parallel processors are available, 
the required number of computer steps is 0(n/P + log n).  For example, only 
40n additions and shifts are required for solving the 5-point Poisson 
equation on a grid with n points (see Sec. 6.3).  This efficiency does 
not depend on the shape of the domain, the form of the boundary conditions, 
or the mesh-size, and is not sensitive to choice of parameters.  The memory 
area required is essentially only the minimal one, that is, the storage of 
the problem and the solution.  In fact, if the amount of numerical data is 
small and only few functionals of the solution are wanted, the required 
memory is only O(log n), with no need for external memory (see Sec. 7.5). 

Multi-grid algorithms are not difficult to program, if the various 
grids are suitably organized. We give an example (Appendix B) of a 
FORTRAN program, showing the typical structure, together with its computer 
output, showing the typical efficiency.  With such an approach, the program- 
ming of any new multi-grid problem is basically reduced to the programming 
of a usual relaxation routine.  The same is true for nonlinear problems 
where no linearization is needed, due to the FAS (Full Approximation Storage) 
method introduced in Sec. 5. 

Multi-grid solution times can be predicted in advance, - a 
recipe is given and compared with numerical tests (Sec. 6).  The basic 
tool is the local mode (Fourier) analysis, applied to the locally 
linearized-freezed difference equations, ignoring far boundaries.  Such 
an analysis yields a very good approximation to the behavior of the 
high-frequency error modes, which are exactly the only significant modes 
m the multi-grid process, since the low-frequency error modes are 
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liquidated in the coarse-grids processing, with negligible amounts of com- 
putational work. Thus, mode analysis gives a very realistic prediction of 
convergence rates per unit work.  (For model problems, the analysis can be 
made rigorous; see Appendix C.)  The mode analysis can, theref°re,be 
used to choose suitable relaxation schemes (Sec. 3) and suitable criteria 
for switching and interpolating between the grids (Appendix A   ^ 
numerical tests ranged from simple elliptic problems to non-linear mixed 
ty^e (transonic flow) problems, which included hyperbolic regions and 
discontinuities (shocks). The results show that, as predicted by the 
mode analvsis, errors are reduced by an order of magnitude (factor 10) 
SenSng'com^utational work equivalent to 4 to 5 relaxation sweeps on 

the finest grid. 
(2) »*».pi-iv» discretization. Mesh-sizes, orders of approximation 

and other discretization parameters are treated « ^"^"££1^ 
Using certain general internal criteria, these variables are controlled 

= ; the r quired control ^ould ^^^^^fl^^ 

S^-l^ <^"US^! -fine meshes near singular points 
(Sat otherwiseYmay «contaminate» the whole solution)  exploit local 
smoothness of solutions (in proper scale), etc.  (see Sec. 9). 

Multi-grid processing and adaptive discretization can be used in- 
HpnJpntlv of each other, but their combination is very fruitful: MG 
ifthe oniy fLt (and convenient) method to solve discrete equations on 
tL non!uniform grids typically produced by the adaptive ^^'.^ 
iterative character fits well into the adaptive process.  The two ^s 

or"s »Seh interact with each other through the multr-grrd process. 
Sus difference equations should only be constructed on •*>"»"""* 

^SÄ* ^es it easy to ^Z^t^^Tl^* 

STÄuETlofal Srratis^cilitatin, for^^ple^the u 

(Sec. 7). 
The presentation in this article is mainly in terms of finite- 

differencf:riutions to partial-differential ^^^J^Si. 
The basic ideas, however, are more general, applicable to integro dif 

ferential problems, functional n^mizat-n ist Sly diseased in 
finite-elements discretization.  The latter is crierly 

Sees. A.5 and 7.3. 

Contents of the article: 
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2.  MULTI-GRID PHILOSOPHY. 

Suppose we have a set of grids G°,G1...,GM, all approximating the 
same domain Q with corresponding meshsizes h >h >...>h . For simplicity 
one can think of the familiar uniform square grids, with the mesh-size 
ratio h.  -h =1:2. Suppose further that a differential problem of the 

Tc+1 k 
form 

(2.1) LU(x) = F(x)  in fl,  Au(x) = *(x) on the boundary 9fi, 

is given. On each grid Gk this problem can be approximated by difference 

equations of the form 

(2.2) LV(x)=Fk(x)  for xeGk,   AkUk (x) = *k (x)  for xe9Gk. 

(See example in Sec. 3.1). We are interested in solving this discrete 
problem on the finest grid, G. The main ideals to exploit the fact 
that the discrete problem on a coarser grid, G say, approximates the 
same differential problem and hence can be used as a certain approximation 
to the GR problem. A simple use of this fact has long been made by 
various authors (e.g., [14]);.namely, they first solved (approximately) 
the Gk problem, which involves an algebraic system much smaller and thus 
much easier to solve than the given GM problem, and then they iterpolated 
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in ™ T    ?    G t0 G ' USing the "^ as a first approximation 
in some iterative process for solving the GH problem. A more advanced 
technique was^o use a still coarser grid in a similar manner when 
solving the G problem, and so on.  The next natural step is to ask 
whether we can exploit the proximity between the GE and GM problems 
not only in generating a good first approximation on GH, but also in the 
process of improving the first approximation. 

More specifically let uM be an approximate solution of the GM problem, 
ana let 

(2.3) LM uM = FM - fM,     AM uM = $M -<frM. 

The discrepancies fM and <j,M are called the residual functions, or residuals. 
Assuming for simplicity that L and A are linear (cf.Sec. 5 for the non-  
linear case) . the exact discrete solution is ^uV, where the 
correction v* satisfies the residual equations 

(2.4) LM V* = f",    AM V* = <j>M. 

Can we solve this equation, to a good first approximation, again by inter- 
polation from solutions on coarser grids? As it is, the answer is 
generally negative. Not every G -problem has meaningful approximation 
on a coarserMgrid G .  For instance, if the right-hand-side fH fluctuates 
rapidly on G , with wavelength less than 4h  these fluctuations are not 
visible on coarser grids.  Such rapidly-fluctuating residuals fH are ex- 
actly what we get when the approximation uM has itself been obtained as 
an interpolation from a coarser-grid solution. 

An effective way to damp rapid fluctuations in residuals is by usual 
relaxation procedures, e.g., the Gauss-Seidel relaxation (see Sec. 3). 
At the first few iterations such procedures usually seem to have fast 
convergence, with residuals (or corrections) rapidly decreasing from one 
iteration to the next, but soon after the convergence rate levels off 
and becomes very slow.  Closer examination (see Sec. 3 below) shows that 
the convergence is fast as long as the residuals have strong fluctuations 
on the scale of the grid. As soon as the residuals are smoothed out, 
convergence slows down. 

This is then exactly the point where relaxation sweeps should be 
discontinued and approximate solution of the (smoothed out) residual 
equations by coarser grids should be employed. ~~ 

The Multi-Grid (MG) methods are systematic methods of mixing relax- 
ation sweeps with approximate solution of residual equations on coarser 
grids.  The residual equations are in turn also solved by combining 
relaxation sweeps with corrections through still coarser grids, etc.  The 
coarsest grid G is coarse enough to make the solution of its algebraic 
system inexpensive compared with, say, one relaxation sweep over the 
finest grid. 
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The following sections further explain these ideas. Sec. 3.1 explains, 
through a simple example, what is a relaxation sweep and shows that it indeed 
smooths out the residuals very efficiently. The smoothing rates of general 
difference systems are summarized in Sec. 3.2. A full multi-grid algorithm, 
composed of relaxation sweeps over the various grids with suitable inter- 
polations in between, is then presented in Sec. 4. An important modification 
for nonlinear problems is described in Sec. 5 (and used later as the basic 
algorithm for non-uniform grids and adaptive procedures). Appendix A supple- 
ments these with suitable stopping criteria, details of the interpolation 
procedures and special techniques (partial relaxation). 

3.  RELAXATION AND ITS SMOOTHING RATE. 

3.1 An Example. Suppose, for example, we are interested in solving 
the partial differential equation. 

,  s -   32u(x,y) . y.    3 u(x,y) _ r,  } (3.1)    LU(x,y) =a  f-   +b     2  - * ix,y; 

"SZ,.. :£■'-<'* "^' ♦ > <>* - <** "*" - -.*, 
a, ß h^ hk 

Ua
k
ß= U

k(ahk,ßhk), Fk>ß = F
k(ahk,ßhk); a,ß integers. 

(In the multi-grid context it is important to define the difference equations 
in this divided form, without, for example, multiplying throughout by hk , 
in order to get the proper relative scale at the different levels.) Given 
an approximation u to £,  a simple example of a relaxation scheme to improve 
it is the following. 

r^iMB-Seidel Relaxation:  The points (a,ß) of Gk are scanned one by one 
in some prescribed order; e.g., lexicographic order. At each point the value 
u   is replaced by a new value, u  , such that equation (3.2) at that point 
a,ß _        ,p 

is satisfied. That is, u ß satisfies 

^1.8 -  2Vß + U o-l,g    + b Vfr+1       2Ua>ß+      M~l      =    Fkf 

 " 2 h2 (3.3)    a  '- , + ° 2 <*'& 
h. \ 

where the new values Ü      ua     are used since, in the l^~***hic 
order, by the time <a J^il'scäüleÄ new values have already replaced old 
values at (a-l,ß) and (a,ß-l). 

A complete pass, scanning in this manner all the points of G , is 
called a (Gauss-Seidel lexicographic) G* relaxation sweep. The new ap- 
proximation Ü does not satisfy (3.2), and further relaxation sweeps may 
be required to improve it. An important quantity therefore is the 
rate of convergence, p say, which may be defined by 
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(3.4)  y =   ,     Where v =* Uk-u,  v - Uk - ü 

I'll being any suitable discrete norm. 

The rate of convergence of the above relaxation scheme is 
asymptotically very slow.  That is, except for the first few relaxation 
sweeps we have y = 1 - o(hR ). This means that we have to perform 0(h ~2) 
relaxation sweeps to reduce the error order of magnitude. k 

In the multi-grid method, however, the role of relaxation is not to 
reduce the error, but to smooth it out; i.e., to reduce the high-frequency 
components of the error (the lower frequencies being reduced by relax- 
ation sweeps on coarser grids).  In fact, since smoothing is basically 
a local process (high frequencies have short coupling range), we can 
analyze it in the interior of G by (locally) expanding the error in 
Fourier series. This will allow us to study separately the convergence 
rate of each Fourier component, and, in particular, the convergence 
rate of high-frequency components, which is the rate of smoothing. 

Thus to study the 0=(6 ,6 ) Fourier component of the error functions 
v and v before and after the relaxation sweep, we put 

i(6ia+92ß) _  i(ena+enß) 
'a,3 - "e e and   Vß = Äe 

Subtracting (3.2) from (3.3), we get the relation 

(3.5)    v„, D = A„ e  1  2     and   v   = Ä„ e  1      2 

(3.6)    a (v   0-2v-+v,„)+c(v     - 2v   + v    )   = n 
a+l,ß    a,8   a-l,8;  ° v a,8+1    a,ß   a,ß-i;  °' 

from which, by (3.5), 
i6l    iö2        -i6l    "i9p 

(ae   + ce  ) AQ + (ae    +c e    - 2a - 2c) A = 0. 

Hence the convergence rate of the 0 component is 

(3.7)    y(9) = 1-2-1  = 
Ae 

i6l    i62 
ae   + ce 

-18     -16 
2a+2c - ae    - ce 

Define |6| = max (|dj , | &2 \) .  in domains of diameter 0(1) the lowest 

Fourier components have |e| = 0(hk), and their convergence rate therefore 
is, y(ö) = 1 - o(hfc ).  Here, however, we are interested in the rate of 
smoothing, which is defined by 

(3.8)    y =     max      y (6) , 

pir < |e| <_ IT 
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where p is the mesh-size ratio and the range pit <_ 16 | <_ IT is the suitable 
range of high-frequency components, i.e., the range of components that 
cannot be approximated on the coarser grid, because its mesh-size is 

A Al 
h, • , = h, / p. We will assume here that p = -- 
"k-1 
(cf. 

k 
Sec. 6. 

which is the usual ratio 

2) 

Consider first the case a=c (Poisson equation).  A simple cal- 
culation shows that y = y( \ ,  arccos -) = .5.  This is a very satis- 
factory rate; it implies that 3 relaxation sweeps reduce the high- 
frequency error-components by almost an order of magnitude.  Similar 
rates are obtained for general a and c, provided a/c is of moderate 
size. 

The rate of smoothing is less remarkable in the degenerate case 
a«c (or c<<a) .  For instance, 

1/2 

(3.9) V< 2 0 ) = 
a2 + 

a2 + (c+2a)' 

which approaches 1 as a -*■ o.    Thus, for problems with such a degeneracy, 
Gauss-Seidel relaxation is not a suitable smoothing scheme.  But other 
schemes exist.  For example, 

Line Relaxation:  Instead of treating each point (a,ß) of G separ- 
ately, one takes simultaneously a line of points at a time, where a line 
is the set of all points (a,ß) in G with the same a (a vertical line). 
All the values u  on such a line are simultaneously replaced by new 
values ü  which" simultaneously satisfy all the equations (3.2) on that 
line.    (This is easy and inexpensive to do, since the system of 
equations to be solved for each such line is a tridiagonal, diagonally 
dominant system.  See, e.g., in [17].)  As a result, we get the same relation 
as (3.3) above, except that ua _+1 is replaced by 

u
a>g+1-  Hence, instead 

of (3.7) we will get: 

(3.10) U(6) = -i8. 
2(a+c - c cos0 ) - ae 

from which one can derive the smoothing rate 

(3.11) y = max {' 
-1/2 

a+2c }    ■ 
which is very satisfactory, even in the degenerate case a«c. 

3.2.  General results.  The above situation is very general (see [4] 
and Chapter 3 of [3]): For any uniformly elliptic system of difference 
equations, it can be shown that few relaxation sweeps are enough to 
reduce the high-frequency error components by an order of magnitude. 
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The same holds for degenerate elliptic systems, provided a suitable relax- 
ation scheme is selected. A scheme of line-relaxation which alternately 
use all line directions and all sweeping directions is suitable for 
any_ degenerate case.  Moreover, such a scheme is suitable even for non- 
elliptic systems, provided it is used "selectively"; i.e., the entire 
domain is swept in all directions, but new values are not introduced 
at points where a local test shows the equation to be non-elliptic and 
the forward characteristic direction to conflict with the current 
sweeping direction. 

By employing local mode analysis (analysis of Fourier components) 
similar to the example above, one can explicitly calculate the smoothing 
rate V» for any given difference equation with any given relaxation scheme. 
(Usually y should be calculated numerically; an efficient FORTRAN sub- 
routine exists; typical values are given in Table 1, in Sec. 6.2).  In 
this way, one can select the best relaxation scheme from a given set of 
possibilities.  The selection of the difference equation itself may also 
take this aspect into account.  This analysis can also be done for 
non-linear problems (or linear problems with non-constant coefficients), 
by local linearization and coefficients freeze.  Such localization is 
fully justified here, since we are interested only in a local pro- 
perty (the property of smoothing.  By contrast, one cannot make similar 
mode analysis to predict the overall convergence rate p of a given relax- 
ation scheme, since this is not a local property). 

An important feature of the smoothing rate y is its insensitivity. 
In the above example no relaxation parameters were assumed.  We could 
introduce the usual relaxation parameter co;_i.e., replace at each point 
the old value u   not with the calculated u „. but with 

Ua,ß + u*ua,ß~ua ß*"  The mode analysis shows, however, that no GO t  1 
provides a smoothing rate better than to=l.  In other cases, co=l is not 
optimal, but its y is not significantly larger than the minimal y.  in 
delayed-displacement relaxation schemes a value to < m     . < 1 should 

_ critical 
often be used to obtain y < 1, but there is no sensitive dependence on the 
precise value of to, and suitable values are easily obtained from the local 
mode analysis.  Generally, the smoothing rate of delayed-displacement 
schemes is somewhat worse than that of immediate-displacement schemes, 
and the latter should, therefore, be preferred, except when parallel 
processing is used. 

3.3. Acceleration by weighting.  The rate of smoothing y may some- 
times be further improved by various parameters introduced into the 
scheme.  Since y is reliably obtained from the local mode analysis, we 
can optimize these parameters to minimize y.  For linear problems, 
such optimal parameters can be determined once and for all, since they 
do not depend on the shape of the domain.  For nonlinear problems precise 
optimization is   expensive , and one should prefer the simpler, more ro- 
bust relaxation schemes, such as SOR. 

One general way of parametrization is the weighting of corrections. 
We first calculate, in any relaxation scheme, the required correction 
6UV = Uv " Uv  (where v = (a,ß)  or, for a general dimension d, 
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v = (v ,v , . ..,v ), v  integers). Then, instead of introducing these 

corrections, we actually introduce corrections which are some linear 
combination of <Su at neighboring points. That is, the actual new 

values are 

(3.12)        uv = uv + yZr o>y 6uv+Y 

where the weights w  are the parameters, y = ^1>y2'   '' ' ,Yd} '  Yj in~ 

tegers and V  a small set near (0,0, ...,0).  For any fixed T  we can 
optimize the weights.  In case r = {o}, u is the familiar relaxation 
parameter. Weighting larger r is useful in delayed displacement relax- 
ation schemes. For immediate-displacement line relaxation, weighting 
along the line may be useful. 

Examples. In case of simultaneous displacement (Jacobi) relaxation 
for the 5-points Poisson equation, the optimal weights for T={o} is 

= .8, for which the smoothing rate is ii = .60.  For the set 
00 00 

r = £<YrY2>: IY1I + IY2I 1 1 > the optimal weights are a^ = 6a>o^±1 - 

6CJ    = 48/41, yielding y = 9/41. This rate seems very attractive; 

the" smoothing obtained in one sweep equals that obtained by 

(log 9— ) / (log 1) = 2.2 sweeps of Gauss-Seidel relaxation. Actually, 

however, each sweep of this weighted-Jacobi relaxation requires 9 additions 
and 3 multiplications per grid point, whereas each Gauss-Seidel sweep 
requires only 4 additions and 1 multiplication per point, so that the 
two methods have almost the same convergence rate per operation, Gauss- 
Seidel being slightly faster.  The weighted Jacobi scheme is considerably 
more efficient than any other simultaneous-displacement scheme, but like 
any carefully weighted scheme, it is considerably more sensitive to 
various changes. 

The acceleration by weighting can be more significant for higher- 
order equations.  For the 13-points biharmonic operator, Gauss-Seidel 
relaxation requires 12 additions and 3 multiplications per grid point 
and gives y = .802, while weighted Jacobi (with weights ü>QO = 1.552, 

M    = u     = .353) requires 17 additions and 5 multiplications per 
o,+l   +l,o 

point and gives y = .549, which is 2.7 tiroes faster.  (The best relax- 
ation sweep for the biharmonic equation A U = F is to write it as the 
system AV=F, AU=V and sweep Gauss-Seidel, alternatively on U and V. 
Such a double sweep costs 8 additions and 2 multiplications per grid 
point, and( yields y=.5. But a similar procedure is not possible for 
general 4-th order equations.) 
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4.  A MULTI-GRID ALGORITHM (CYCLE C) FOR LINEAR PROBLEMS 

There are several actual algorithms for carrying out the basic multi- 
grid idea, each with several possible variations. We present here an algor- 
ithm (called "Cycle C" in [3]) which is easy to program, generally ap- 
plicable and never significantly less efficient than the others ("Cycle A" 
and "Cycle B").  The operation of the algorithm for linear problems is 
easier to learn, and is therefore described first.  In the next section 
the FAS (Full-Approximation-Storage) mode of operation, suitable for non- 
linear problems and other important generalizations, will be described. 
A flow-chart of the algorithm is given in Figure 1.  (For completion, we 
also flowchart, in Fig. 2, Cycles A and B.)  A sample FORTRAN program of 
this cycle, together with a computer output, is given in Appendix B. 

Cv.de C starts with some approximation uM being given on the finest 
grid G .  In the linear case one can start wi?h any approximation, but 
a major part of the computations is saved if u has smooth residuals 

M ° 
(e.g., if u satisfies the boundary conditions and LMuM-FM is smooth. 
As explained in Sec. 6, smoothing the residuals involves most of the 
computational effort).  In the nonlinear case, one may have to use a 
continuation procedure, usually performed on coarser grids 
(cf. Sec. 8.2). Even for linear problems, the most efficient 
algorithm is to gbtain u  by interpolating from an approxi- 
mate solution u    calculated on G   by a similar al- 
gorithm.  (Hence the denomination "cycle" for our present 
algorithm, which would generally serve as the basic step in 
processes of continuation, refinement and grid adaptation, 
or as a time step in evolution problems).  For highest ef- 
ficiency, the interpolation from u    to u  should be of 
sufficiently high order, to exploit all smoothness in u  . 
(Cf. (A.7) in Sec. A.2, and see also Sec. 6.3.) 

The bjisic rule in Cycle C is that each v  (the function defined on 
the grid G ; k=0, i*,««•» M_D is designed to serve as a correction for 
the approximation v   previously obtained on the next finer grid G  , 
if and when that approximation actually requires a coarse-grid cor- 
rection, i.e., if and when relaxation over G   exhibits slow rate of 
convergence.  Thus, the equations to be (approximately) satisfied by 
v are 

(4.1)    LV = fk,       AkVk = <|>k, 

k     k 
where f and <j>  are the residuals (to the interior equation and the 
boundary condition, respectively) left by v   , that is, 

(A   y\   ' fk  - T k  ^k+1   Tk+1„k+1>      *k   T k  ^k+1   Ak+1 k+1x W.2) f - lk+i (f   - L  v  ),    <j> = lfc+i (<f>   - A  v  ). 

1 k 
We denote by V the functions iji the equations, to distinguish from 
their computed approximations v . When v is changing in the algorithm 
(causing V   to change), V remains fixed. 
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J< M ,k        ,M k M 
Set    k=rM,       f=F,        41     =  *   ,       v=u 

I 
v    =F  RelaxfL   « = f   ,     A   •=<)>   ]   v 

Q 
1 

> 

Has     v       converged? D^C Is convergence slow? 
YES 

k=M 

k<M 

o- 
NO 

YES 

-^-/ END J 
k=0 

k>0 

k =? k+1 k i  k-1 

U I 
k .  k   k  k-1 

V   =r V   + I,  nV k-1 

I 
vk ^ 0 

Jn   .   Tk  ..k+1   k+1 k+1 f  ¥ I, _ (f    - L   V   ) 
k+1 

k .  k  ,xk+l   .k+1 k+1. 
♦ * Zk+lU   " A  v  ) 

Figure 1.   Cycle C,  Linear Problems. 
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Set     k=?M,        fK  =  F   , " —M *k =   »M,       vk  =  uM 

I 
For     j   =  0,1, k-1, set    m(j)=Fk, 

i 
Solve     L°v°  =  f°,       A°v°  =  /\ 

Set     k=?l. 

f 
-»»■/is     m(k-l)   = k?\ 

I  _, YES 

NO k   .      k 
V       T    I v 

k-1  k-1 

k   .     k k       k-1 
v     T   v     +   I        v 

k-1 

I 
vk  ^  Relax [Lk- = fk,     Ak-=<£k]   vk 

f   - 
I Has  v   converged?j- 

. YES 
k=M 

fk<M 

N0  ^ / -N 
 ^*"{ Is convergence slow? V 

WYES 

^-/ END J            V ~ 

NO 

Cycle Al 

Set  k =f k+1 k<M X 
Cycle B 

k=M 

Figure 2.   Cycles A and B,  Linear Probl ems. 
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We use the notation I to represent interpolation from G to G .  In 
case m>k, I may represent a simple transfer of values to the coarser 
grid G from the corresponding points in the finer grid G ; or instead, 
it may represent transfer of some weighted averages.  In case k>m, as in 
step (e) below, I is usually a polynominal interpolation of a suitable 
order (at least tße order of the differential equation.  See Sees. A.2 
and A.4 for more details). 

The equations on G are thus defined in terms of the approximate 
solution on G  .On the finest grid G , the equations are the original 
ones; namely 

,„ ^v    *M   M    ,M  -M      MM (4.3)    f=F,    (f)=$,    v=u. 

The steps of the algorithm are the following: 

(a) Set k+M (k is the working level, and we start at the finest 
level), and introduce the given approximation v •*- u 

k 
(b) Improve v by one relaxation sweep for the difference equations 

(4.4)   vk ■*-  Relax 

(4.1).  Symbolically, we write such a sweep as 

I* 
k - f\ Ak- = f k 

v 

(c) If relaxation has sufficiently converged (the precise cri- 
terion is described in Sees. A.7 and A.8), go to Step (f). 
If not, and if the convergence rate is still fast (by a cri- 
terion given in Sec. A.6) go back to Step (b).  If con- 
vergence is not obtained and the rate is slow, go to Step (d). 

(d) If k=o (the slow convergence has taken place at the coarsest 
grid G°), go back to Step (b) (to continue relaxation never- 
theless, since on G° relaxation is very inexpensive.  If, how- 
ever, the problem is indefinite, then slow rate of divergence 
may occur, in which case the G° problem should be solved directly. 
This is as inexpensive as relaxation, but requires additional 
programming.  See Sec. 4.1 below).  If k>o, lower k by 1 (to 
compute correction on the next, coarser level).  Compute f and 
<|> on this new level, using (4.2), put v =o as the starting ap- 
proximation, and go to Step (b). 

(e) If k=M (convergence has been obtained on the finest level), 
the algorithm is terminated.  If k<M |v has converged and is 
ready to serve as a correction to v  ), put 

,A  cs     k+1 ^  k+1 a. xk+1 „k 

(4.5)    v   ■*• v   + I   v . 

Then advance k by 1 (to resume computations in the finer level) 
and go to Step (b). 

The storage required for this algorithm is only a fraction more than 
the number of locations, 2n say, required to store u and F on the finest 
grid.  Indeed, for a d-dimensional problem, a storage of roughly 2n/2 
locations is required to store v ~ and f  , the next level requires 2n/ 
2  , etc.  The total for all levels is 
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(4.6)       2n(l+2~d+2~2d+... )  < 2n  2 

2d-l 

(In the FAS version below, a major reduction of storage area is possible 
through segmental refinement. See Sec. 7.5) 

4.1.  Indefinite Problems and the Size of the Coarsest Grid.  If, on 
any grid G , the boundary value-problem (4.1) is a non-definite elliptic 
problem, with eigenvalues 

(4-7)       ^^-^!<o<^iii- - 
and with the corresponding eigenfunctions VY, VY,...,V7, V0 . ,.. ., 

12      %       £+1 

then it cannot be solved by straight relaxation. Any relaxation sweep 
will reduce the error components in the space spanned by V  , V   , ..., 

but will magnify all components in the span of V , V7, ..., V7.  A multi- 
grid solution, however, is not seriously affected by this magnification, 
provided the magnified components are suitably reduced by the coarse- 
grid corrections.  This will usually be the case, since these components 
are basically of low frequency and are well approximated on coarser grids. 
But care should be taken regarding the coarsest grid: 

On the coarsest grid, an indefinite problem should be solved 
directly, (i.e., not by relaxation of any kind.  Semi-iterative solutions, 
like Newton iterations for non-linear problems, are, of course, per- 
missible) .  Furthermore, this grid should be fine enough to provide rough 

approximation to v£, V2, ..., v£ for any k, hence also for the corresponding 

differential eigenfunctions.  This means that G° should contain at 
least 0(1),  probably 21,  points.  Or, in other words, G° should be just 
fine enough to still have smoothing capability at any finer level G . 
For example, if SOR relaxations with <D<ü) are used, h should satisfy 
(see [4] or Sec. 3 in [3]) c ° 

(4.8)   Re {B(0,h) / b (h)} > o,    (o < h < h ) , 
o —  — o 

where B(6,h) is the symbol of L  (see (A.3) in Appendix A) and b (h) is its 
central coefficient. ° 

Usually, G° can still be coarse enough to have the direct solution 
of its equations still far less expensive than, say, one relaxation 
sweep over the finest grid, so that the indefinite problem is solved with 
the same overall efficiency as definite problems. 

5.   THE FAS (FULL APPROXIMATION-STORAGE) ALGORITHM. 

In the j?AS mode of the multi-grid algorithms, instead of storing a 
correction v  (designed to correct the finer-level approximation u  ), 
the idea is to store, the full current approximation u, which is the sum 
of the correction v and its base approximation u  : 
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(5.1)      uk= Ik+1u
k+1 + A   (k-o,l,•..,M-1). 

In terms of these full-approximation functions, we can rewrite the cor- 
rection equations (4.1-3) as 

(5.2) 

where 

LV = F\      AV = *\ 

Fk = LNI^ uk+1) + Ik
k
x (Pk+1 - Lk+1 uk+1) , 

(5.3) *k - Ak(Ik
k
1 u

k+1) + 1^ (*k+1 - Ak+1 uk+1) , 

(k-0,l,...,M-l), 

and where for k-M we have the original problem, i.e., 

(5.4) FM - FM,     *M - *M. 

For linear problems, equations (5.2-4) are exactly equivalent to 
(4.1-3). The advantage of the FAS mode is that equations (5.2-4) apply 
equally well to nonlinear problems. To see this, consider for instance 

the nonlinear equation i/V1 - F*1 given on the finest grid. Given an 
approximate solution u  we can still improve it by relaxation sweeps, 
with smoothing rates y  (varying over the domain, but still reliably 
estimated by mode analyses, applied locally to the linearized-freezed equation) 
As in the linear case, the smoothed-out functions are the residual 

f* = F* - LMUM 

and the correction U^-u . Therefore, the equation that can be approx- 
imated on coarser grids is the residual equation 

Its coarser-grid approximation is 

(5.5) L^V-1 - I*"1 I^1 uM - IM"X fM, 

which is the same.as (5.2) for k-M-1. In interpolating IT  (or a computed 
approximation vr    ) back to G , we should actually interpolate 

U**"1 - i*1"1 U
M, because this is the coarse-grid approximation to the 

N 

2 Again we distinguish between the notation IT used to write the equations 
and the computed approximation u . Equation (5.2), for k<M, is not equival- 
ent to (2.2), although they both use the notation u\ 
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M M smoothed-out function U -u . Similarly, in interpolating an (approximate) 
solution U of (.5.2) to the finer grid G  , the polynominal inter- 
polation should operate on the correction. Thus the interpolation is 

,c ,v      k+1 _ k+1 ^ Jc+1 . k  T k  k+1, 
(5.6)     u   «- u   + I   (u - I   u  ) , 

which is equivalent to (4.5). Note that generally, 

_k+l _ k  k+1  ,  k+1 
1 k Jk+1 U    * U   • 

The FAS (Cycle C) algorithm is the same algorithm as in Sec. 4, with 
the FAS equations (5.2-4) replacing (4.1-3), and with (5.6) replacing (4.5). 
It is flowcharted in Fig. 3. 

The FAS mode has several important advantages:  It is suitable for 
general nonlinear problems, with the same procedures (relaxation and inter- 
polation routines) used at all levels. Thus, for example, only one 
relaxation routine should be written. Moreover, this mode is suitable for 
composite grids (non-uniform grids created by increasingly finer levels 
being defined on increasingly smaller subdomains; see Sec. 7.2), which is 
the basis for grid adaptation on one hand, and segmental refinement 
(see Sec. 7.5) on the other hand. Generally speaking, the basic feature of 
the FAS mode is that the function stored on a coarse grid G coincides there 
with the fine-grid solution: u = I u  .  This enables us to manipulate 
accurate solutions on coarse grids. 

The storage required for the FAS algorithm is again given by (4.6). 
With segmental refinement (Sec. 7.5) it can be reduced far below that, 
even to O(log n). 

An important by-product of the FAS mode is a good estimate for the 
truncation error, which is useful in defining natural stopping criteria 
(see Sec. A.8) and grid-adaptation criteria (Sec. 8.3).  Indeed, for 
any k<m<M it can easily be shown (by induction on m, using (5.2-3)) that 

(5.7) 
Fk  -   Ik F1" = Lk(Ik um)   -   Ik Lm um   , 

m mm 

■zk       Tk  jm       Ak._k    m.        „k   .m    m $    -I     $    =A(I    u)-I    A    u     , 
m mm 

m k 
which are exactly the G approximations to the G truncation errors. 

A slightdisadvantage of the FAS mode is the longer calculation required 
in computing F , which is almost twice as long as the calculation of f in 
the former (Correction-Storage) mode.  This extra calculation is equivalent 
to one extra relaxation sweep on G , but only for k<M, and is about 5% to 
10% of the total amount of calculations. Hence, for linear problems on 
uniform grids, the CS mode is slightly preferable. 
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^k  ^M   -k   .M    k   M 
Set k=?M,   F = F ,   * = 3> ,   u=u 

I 
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k .   ,  , k  -k   ,k .7k.  k 
u  =? Relax [L «=F ,  A '=FA ] u 

I Has  u 

f 
converged 

YES 

k=M 

k<M 

>v   N0        r \ 
?J        ^ 1 Is convergence slow?h 

YES 

-^-/ENDJ O 

i 
k 4= k+1 

I 
i 

k 4= k-l 

k .  k 
u  5 u  + 

Tk    k-l    k-l k, 

I 

NO 

k . xk  k+1 u  =? I,  -U 
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-k .  k  -k+1   k+1 k+1.    k k 
F=Fiin(F   -L  u  )+Lu 
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Figure 3.   Cycle  C,  Full-Approximation-Storage. 

527 



6.  PERFORMANCE ESTIMATES AND NUMERICAL TESTS 

6--A-.. Predictability. An important feature of the multi-grid method 
ia that, although  itera tive, its total computational work can be pre- 
dicted in advance by local mode (Fourier) analysis. Such an analysis, 
which linearizes and freezes the equations and ignores distant boundaries, 
gives a very good approximation to the behavior of high-frequency com- 
ponents (since they have short coupling range), but usually fails to approx- 
imate the behavior of the lowest frequencies (which interact at long 
distances).  The main point here, however, is that these lowest frequencies 
may indeed be ignored in the multi-grid work estimates, since their con- 
vergence is obtained on coarser grids, where the computational work is 
negligible. The purpose of the work on the finer grids is only to converge 
the high frequencies. Thus, the mode-analysis predictions, although not 
rigorous, are likely to be very realistic. In fact, these predictions 
are in full agreement with the results of our computational tests. (For 
rigorous bounds - see App. C). 

6.2. Multi-Grid Rates of Convergence. To get a convenient measure 
of convergence per unit work, we define as our Work Unit (WU) the com- 
putational work in one relaxation sweep over the finest grid G . The 
number of computer operations in such a unit is roughly wn- , where  . K 
is the number of points in G^ and w is the number of operations required 
to compute the residual at each point.  (In parallel processing the count 
should, of course, be different.  Also, the work unit should be 
further specified when comparing different discretization and relaxation 
schemes.)  If the mesh-size ratio is p = h  /h  and the problem's domain 

is d-dimensional, then a relaxation sweep over Gm~^  costs approximately p -* 
WUs (assuming the grids are co-extensive, unlike those in Sec. 7). 

Relaxation sweeps make up most of the multi-grid computational work. 
The only other process that consumes any significant amount of compu- 
tations is the I   and I   interpolations.  It is difficult to measure 
them precisely in WUs, but their total work is always considerably smaller 
than the total relaxation work.  In the example in Appendix B, the inter- 
polation work is about 20% of the relaxation work. Usually the percentage 
is even lower, since relaxing Poisson problems is particularly inexpensive. 
To unify our estimates and measurements we will therefore define the multi- 
grid convergence rate u as the factor by which the errors are reduced per 
one WU of relaxation, ignoring any other computational work (which is 
never more than 30% of the total work). 

The multi-grid rate of convergence may be estimated by a full local 
mode analysis.  The following is a simplified analysis, which gives a 
good approximation. We assume that the relaxation sweep over any grid 

G affects error components e1 *X only in the range  u < |©| < - 

where 
Vi     ' -\' 

d 
C6.1)   0= CO1,02, ..., 0 ),  0-x = Z    0. x.,   101 =* max  |0. 

j=l 3 3        l<j<d   D 
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CThe 9/h, of Sec. 3 and Appendix A is denoted here 0, to unify the dis- 
cussion of all levels.} In fact, if proper interpolation scheme is used 
(see Sec. A. 21 only components in the range |6| <. (l+e)V \^  ,  say, 
are affected by interactions with, coarser grids. But if proper residual- 
weighting is also used (to make ä m  1; cf. Sec. A.4) £hen the combined 
action of the coarse-grid correction cycles and the G relaxation sweeps 
yields convergence rates which are slowest at |G| = ir/hfc_1 (cf. App. A). 
For such 9 the coarse-grid cycles have neutral effect, sjLnce a  -1, hence 
the convergence rate is indeed as affected only by the G relaxation 

sweeps. 

One relaxation sweep over Gk reduces the error components in the 

range   *  < |e| < — by the smoothing factor y.  (See Sec. 3. If the 
hk-l ~~     hk 

smoothing rate near a boundary is slower than y, which is not the usual 
case, smoothing may be accelerated there by partial relaxation sweeps - 
cf. Sec. A.9.) Thus a multi-grid cycle with s relaxation sweeps on 
each level reduces all error components by the factor y . The amount of 
work units expended in these sweeps is 

Ad _,_ A2d .    ,  A(M-l)d  _s  
s + sp + sp  + ... + sp Ad " 

1-p 

Hence, the multi-grid convergence rate is 

(6.2)    y> = y(1-p)  , 

which is not much bigger than y. In case 5>1, the effective smoothing rate y 
(see (A.8)) should replace y in this estimate. 

Estimate (6.2) is not rigorous, but is simple to compute and very 
realistic. In fact, numerical experiments (Sec. 6.4-5) usually show slightly 
faster (smaller) rates y, presumably because the worst combination of 
Fourier components is not always present. 

The theoretical multi-grid convergence rates, for various represent- 
ative cases, are summarized in Table 1. 

Explanations to Table 1.  The first column specifies the difference 
operator and the dimension d. A denotes the central second-order 
U2d+l)-point) approximation, ana" A™ the fourth-order ((4d+l)-point "star") 
approximation, to the Laplace operator. A* is the central 13-point approxi- 
mation to the biharmonic operator. The operators 3x, 3 , 3  and <*  are tne 
usual central second-order approximations to the corresponding partial- 
differential operators.  3" is the backward approximation, upstream dif- 
ferencing is assumed for tfte inertial terms of the Navier stokes equations; 
central differencing for the viscosity terms, forward differencing for the 
pressure terms, and backward differencing for the continuity equation. 

Rh is the Reynolds number times the mesh-size. 

The second column specifies the relaxation scheme and the relaxation 
parameter u. SOR is Successive Over Relaxation, which for ü>=1 is the 
Gauss-Seidel relaxation. xLSOR (yLSOR) is Line SOR, with lines in the 
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TABLE 1. Theoretical smoothing and MG-convergence rates. 

h»               a Relax. Scheme a 
A 
P y 8 *n? r1 

add mult Ww M 

\             1 SOR          1 1:3 .557 .693 2.73 2 1 9.0 
1:2 .477 .668 2.49 3 2 6.9 
2:3 .378 .723 3.08 3 2 7.5 

2 SOR           1 1:3 .667 .697 2.77 4 1 6.8 
.8 1:2 .552 .640 2.24 5 2 4.1 
1 .500 .595 1.92 4 1 3.5 

1.2 .552 .640 2.24 5 2 4.1 
1 2:3 .400 .601 1.96 4 1 2.9 

LSOR          1 1:2 .447 .547 1.66 8 4 3.1 
ADLR          1 .386 .490 1.40 8 4 2.6 

.8 .456 .555 1.70 8 4 3.1 

SD           .8 1:2 .600 .682 2.61 5 2 4.8 
WSD  1.17, .195 .220 .321 0.88 9 3 1.6 

1.40, .203 .506 .600 1.96 9 3 3.6 
3 SOR          1 1:3 .738 .746 3.42 6 1 7.8 

1:2 .567 .608 2.01 6 1 3.7 
2:3 .441 .562 1.73 6 1 2.0 

\w SOR          .8 1:2 .581 .665 2.46 9 3 9.1 
1 .534 .625 2.13 8 2 7.9 

1.2 .582 .666 2.46 9 3 9.1 
LSOR          1 .484 .580 1.84 14 7 6.8 

3 SOR           1 .596 .636 2.21 12 2 7.0 
3  + 23 3 + 3   2 
XX    x y   yy SOR           1 1:2 . 62 .699 2.79 8 2 5.2 

LSOR,ADLR .447 .547 1.66 12 5 3.1 

\2 SOR           1 1:2 .802 .847 6.04 12 3 11.1 
1 2:3 .666 .798 4.43 12 3 6.5 

WSD 1.552, .353 1:2 .549 .638 2.22 17 5 4.1 
1.4  , .353 1.03 div. div. 17 5 div. 

WSDA 1.552, .353 .549 .638 2.22 14 4 4.1 
NAVIER - STOKES CSOR 

Rh = 0            2 downstr.  1, .5 1:2 .800 .846 5.98 18 6 11.0 
any 1, .5 .800 .846 5.98 33 16 11.0 
100 1.1, .5 1.73 div. div. 33 16 div. 
100 

10 

.8, .5 .93 .947 18.4 33 16 34.0 

upstream  1, .5 .884 .912 10.8 33 16 20.0 
100 1, .5 .994 .995 220. 33 16 100. 
100 .8, .5 .984 .988 83. 33 16  ] L50. 

0           3 downstr.  1, .5 .845 .863 6.79 33 8 10.7 
any 

10 

1, .5 .845 .863 6.79 60 25 10.7 

upstream  1, .5 .874 .889 8.49 60 25 13.4 
100 1, .5 .989 .990 100. 60 25  ] .60. 

»mt. ———1 
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TABLE 1.  (Cont'd.  Here d=2, p=l:2) 

\ 

3  + e3  ,    e«l 
xx   yy 

a3  + c3 
xx   yy 

(q = min(— , —)) 

h h x 

h  h x 

(n>o) 

Navier - Stokes 
with large Rh in 
2 or 3 dimensions 

Relax. 
Scheme 

SOR, xLSOR any 

yLSOR 

ADLR 

SD, yLSD, ADLSD   1 

SD    (2q+2)/(3q+2) 

yLSD (2a+2c)/(2a+3c) 

ADLSD      2/3, 2/3 

yLSOR 

yLSOR+ 

yLSOR- 

yLSORs 

SOR (pressure 
corrected by the 
continuity equation), 
downstream or up- 
stream, with any 
relaxation parameters. 

1- 0(e) 

max (5 

c-l/4 

-1/2 

(l+2q) 

' a+2c 

-1/2 

(q+2)/(3q+2) 

(2a+c)/(2a+3c) 

<-3"1/2 = .577 

max l-n 
3-n 

l-n+n /4 

5+n+n /4 

1/21 

max (j ,   [5+6n+2n2]"1/2j 

max (J 'i 2+n+i ^ 

<  3 -1/2 _ = .577 

> 1 - ^r 
2_ 
Rh 
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x (y) direction.  yLSOR+, yLSOR- and yLSORs indicate, respectively» relax- 
ation marching forward, backward and symmetrically (alternately forward 
and backward). CSOR means Collective SOR Csee Sec. 3 in [3]) and the attached 
üJ'S are u^ for the velocity components and u0 for the pressure. ADLR denotes 
Alternating Direction Line Relaxation Ca sweep of xLSOR followed by a sweep 
of yLSOR).  SD is Simultaneous Displacement (Jacobi) relaxation, WSD is 
Weighted Simultaneous Displacement with the optimal weights as specified in 
S^c. 3.3 above (and with other weights, to show the sensitivity).  WSDA (for 
Ah?.is like WSD' excePt tliat residuals are computed in less operations by 
making first a special pass that computes A u.  yLSD is y-lines relaxation 
with simultaneous displacement, ADLSD is the corresponding alternating-direction 
(yLSD alternating with xLSD) scheme. 

The next columns list p = h : h   (see discussion below), the 
smoothing rate y as defined by (5.8), and the multi-grid convergence rate p, 
ce.lculated by (6.2). We also list | log °| i, which is the theoretical 
number of relaxation Work Units required to reduce the error by the factor e, 
and WM, the overall multi-grid computational work (see Sec. 6.3). To make 
comparisons of different schemes possible, we also list, for each case, the 
number of operations ger grid point per sweep. This number times n (the 
number of points on G ) give the number of operations in a Work Unit. We 
list only the basic number of additions and multiplications (counting shifts 
as multiplications), thus ignoring the operations of transferring information, 
indexing, etc., which may add up to a significant amount of operations, but 
which are too computer- and programs-dependent to be specified.  Also, we 
assumed that the right-band sides f , including i: , are stored in the most 
efficient form (e.g., h r is actually stored).  Note that the SOR operation 
count is smaller for u=l (Gauss-Seidel) than for any other ü>. 

Numbers in this table were calculated by Allan S. Goodman, at IBM Thomas 
J. Watson Research Center.  A more extensive list is in preparation. 

Mesh-size ratio optimization.  Examining Table 1, and many other unlisted 
examples, it is evident that the mesh-size ratio p = 1:2 is close to optimal, 
yielding almost minimal |log p|~ and minimal W .  This ratio is more con- 
venient and more economic in the interpolation processes (which are ignored 
in the above calculations) than any other efficient ratio.  In practice, 
therefore,, the ratio p = 1:2 should always be used, giving also a very desirable 
standardization. 

6.3.  Over-All Multi-Grid Computational Work.  Denote by W the com- 
M 

putational work (in the above Work Units) required to solve the G  pro- 
blem ((2.2), k=M) to the level of its truncation errors xM (cf. Sec. A.8). 
If the problem is first solved on G   to the level x   , and if the cor- 
rect order of interpolation is used to interpolate the solution to GM (so 
that unnecessary high-frequencies are not excited? cf. Sec. A.2, and in 
particu^aj (A.7) for i=l) then the residuals of this first GM approximation 
are 0 Cx  ). The computational work required to reduce them to 0 Cx ) is 

log OCxM/xM_1) / log p .  Hence, 
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(6.3)    *M"*H-1+ l0gl^: / l0g? " 

Similarly, we can solve the GM"j problem expending work 

C6.4)   w  = Vj-1 + P
jd log -^l / lo* ? 

(since a GM"j work unit is pAjd times the GM unit).  If we use p-order ap- 

proximation, then 

k      0(hP)       AP 

(6.5)       "^  < -JL—    -0<P >• 
k-1   _  n/V,   P> T 0(hk_1 ) 

Hence, using (6.4) for j=0,l,2,...M-l and neglecting WQ, 

W  < (l+pd+p2d+...) P log P / log °  . 
"M - 

Or, by (6.2) , 

A 
p log p  

WM1
 (l-2d)2iogy 

(The same £ was assumed in computing the first approximation and in the 
improvement cycles.  This of course is not necessary.) 

Tvoical values of this theoretical WM are shown in Table 1 above. ** 

actua^omputlfioL a couple of extra Wof ™» ™*™££££j£^ 
a problem, because we cannot make non-integral number of re^a^°n ^weep* 
MG cycles, and also because we usually solve to accuracy below the level of 

the truncation errors. 

Por 5-ooints Poisson problems, for example, the following procedure gives 

a GM solution with residuals smaller than tM.  (1) Obtain u   on G  , with  ^ ^ 

residuals smaller than T*"1. C±i> Starting with the cubic interpolation u - I^u 

(preferably by using the difference operator itself; cf. [7]>, make a MG correc- 

tion cycle such as Cycle C with n=o (i.e., switching to G " ^after two sweeps 

on Gk), with ^transfer by injection (cf. Sec. A.4) and 1^ by linear 

interpolation, and with »convergence» on Gk defined as obtained after the 

first sweep following a return from G*"1. A precise count shows Step (ii) 

to require 30n + 0(n1/2) operations, where n is the number of points in G 

Thus, the total number of operations is 

n + i + i^+ ...130n + 0(n1/2) I40n + 0(n1/2). 
4  16 

incidentally, none of these operations is a full ^f^^  J£* 
additions and shifts (multiplications or divisions by 2 or 4) are used. 

.M 
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The theoretical W^ for this problem (sixth line in Table 1) amounts to only 
17.5n operations, since it ignores, interpolation work Q0.3n operations in 
the above procedure) and allows non-integral numbers of sweeps and cycles. 
In fact, numerical tests showed the above algorithm to yield residuals con- 
siderably below the truncation errors.  (The only cases in which the residuals 
approached 50% of the truncation errors were cases with high smoothness, in 
which the correct MLAT discretization would be different; namely, of higher 
order, (of. Sec. 8 and the remark following' formula (A.7).) 

6.4. Numerical Experiments: Elliptic Problems. A typical numerical 
experiment is shown in Appendix B, including the FORTRAN program and the 
computer output. The output shows a multi-grid convergence rate 

1 

o  / .009051 ) 
y  I   28.1  / 

12.92 
= .537 

which is close to, and slightly faster than, the theoretical value y = .595 
shown in Table 1. 

Many numerical experiments with various elliptic difference equations 
in various domains were carried out at the Weizmann Institute in 1970-1972, 
with the collaboration of Y. Shiftan and N. Diner. Some representative 
results were reported in [2], and many others in [11]. These experiments 
were made with other variants of the multi-grid algorithm (variants A and 
B), but their convergence rates agree with the same theoretical rates p. 
The experiments with equations of the form aU  + cU , with a»c, showed 
poor convergence rates, since the relaxation scheme ££ed was Gauss-Seidel, 
and not the appropriate line relaxation (cf. Sec. 3.1).  Some of these 
rates were better than predicted by the mode analysis, because the grids 
were not big enough to show the worst behavior.  The convergence rates 
found in the experiments with the biharmonic equation were also rather 
poor (although nicely bounded away from 1, independently of the grid size), 
again because we used Gauss-Seidel relaxations and injections instead of 
the appropriate schemes (cf. Sec. 3.3 and A.4). All these points were 
later clarified by mode analyses, which fully explain all the experimental 
results. In solving the stationary Navier-Stokes equations, as reported 
in [2], SOR instead of CSOR was employed (cf. table 1 above), and an additional 
over-simplification was done by using, in each multi-grid cycle, values of the 
nonlinear terms from previous cycle, instead of using the FAS scheme (Sec. 5). 

Nevertheless, these experiments did clearly demonstrate important 
features of the multi-grid method: The rate of convergence was essentially 
insensitive to several factors, including the shape of the domain fl, the 
right-hand side F (which has some influence only at the first couple of 
cycles; cf. Sec. A.2) and the finest mesh-size h  (except for mild varia- 
tions when h^ is large). The experiments indicated that the order I of 

If 

the interpolations I   should be the order of the elliptic equation, as 
shown in Sec. A.2 below.  (Note that in I2J the order was defined as the 
degree A of the polynominal used in the interpolation, whereas here 
I = A+l.) 

More numerical experiments are now being conducted at the Weizmann 
Institute in Israel and at IBM Research Center in New York, and will 
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he reported elsewhere. We will briefly report here only an extreme case 
of the multi-grid tests - the solution of transonic flow problems. 

6 5  Numerical Experiments: Transonic Flow Problems. These experi- 
ments were conducted in 1974 at the Weizmann Institate with J.L Fuchs, 
and recently at the NASA Langley Research Center in collaboration with 
Dr Jerry South while the present author was visiting the Instl™te 

?or Comber Applications in Science and Engineering (ICASE). They are 
preliminarily reported in [12] , and will be further «^rtedel-ejhere. 
One purpose of this work was to examine the performance of the multi-grid 
method in a problem that is not only nonlinear, but more significantly, 
is also of mixed (elliptic-hyperbolic) type and contains discontinuities 

(shocks). 
We considered the transonic small-disturbance equation in conservation 

form 

(6.7) [(K-K<>x) 4>xlx + c ^ = 0, 

for the velocity disturbance potential <fr(xfy) outside an airfoil. Here 

K = (1-M^2) / T2/3,  K = \  (Y+l) Mw
2,  Mro is the free-stream Mach number, 

and Y-1.4 is the ratio of specific heats,  T is the airfoil thickness 
ratio, assumed to be small. c=l, unless the y coordinate is stretched. 
The airfoil, in suitably scaled coordinates, is located at iy-0, |x| < ,,/, 
and we consider nonlifting flows, so that the problem domain can, by 
symmetry, be reduced to the half-plane {y>o}, with boundary conditions 

2  2 _ 
(6.8) <>(x,y> ■*■  °    as x +y -»■ » 

Co   ,        for  |x| > -  , 
(6.9) * (x,o) = \ ! y LF'(X),     for  |x| < - , 

where T F(X) is the airfoil thickness function which we took to be 
parabolic. Equation (6.7) is of hyperbolic or elliptic type depending 
on whether K -2K* is negative or positive (supersonic or subsonic). 

The difference equations we used were essentially the Murman's con- 
servative scheme ([9]; for a recent account of solution methods, see [8]), 
where the main idea is to adaptively use upstream differencing m the 
hyperbolic region and central differencing in the elliptic region, keep- 
ing the system conservative. For relaxation we used vertical (y line 
relaxation, marching in the stream direction. The multi-grid solution 
was programmed both in the CS CSec. A\  and the FAS CSec. 5) modes,   +1 
with practically the._jame results. We used cubic interpolation for I k 
and injection for I fc . 
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Local mode analysis of the linearized-freezed difference equations 
and vertical-forward line relaxation gives the smoothing rate 

f    b+        K   ^ 
(6.10)    y = max 1   ——r^  ,  — f h (-*)   - v 

^ b++b_+ib_  ' 2c+b J '  °+{x)   ~  K 2K ^(x+f) 

at elliptic (subsonic) points, and y = o at.supersonic points. We were 
interested incases where K<1 and <J> >o, and hence, in smooth elliptic 
regions  (b % b_) without coordinate stretching we get y £ 1/|2+i] =0.45 

and y = y ' = 0.55. 

The actual convergence rates, observed in our experiments with mod- 
erately supercritical flows (M^ = 0.7 and M = 0.85, T = 0.1) on a 
64x32 grid, were y = 0.52 to 0.53, just slightly faster than the theor- 
etical value.  (See detailed output in [12]. The work count in [12] is 
slightly different, counting also the work in the I k transition). 

For highly supercritical flows (M^ = 0.95, T = 0.1) the MG convergence 
rate deteriorated, although it was still 3 times faster than solution by 
line relaxation alone. The worse convergence pattern is explainable in 
terms of the mode analysis for the elliptic region immediately behind 
the shock, where b+ » b_, yielding y closer to 1. Also, the fast changes 
m <frx in that region gives a >  1 (see Sec. A.l), i.e., the coarse grid 
cycles actually magnify the Fourier component with 9 = (£ , 0), the same 
component for which y is closer to 1. This worse behavior in this re- 
stricted region further affected our computations because we did not use 
separate stopping tests for this region as we should (see Sec. A.6).  A 
correct multi-grid algorithm for this problem should, therefore, include 
symmetric selective line relaxation (see Sec. 3.2), or partial relaxation 
sweeps (see Sec. A.9), or both, in addition to residual weighting (Sec. A.4) 

Coordinate stretching, which transforms the bounded computational 
domain to the full half plane, gave difference equations that again 
exhibited slow multi-grid convergence rate. This, too, is explainable 
by the mode analysis.  For example, in the regions where the y coordinate 
is highly stretched, c in (6.7) becomes very small and hence y in (6.10) 
is close to 1.  The theoretical remedies:  alternating-direction line re- 
laxations and partial relaxation sweeps.  The latter was tried in one 
simple situation (stretching only the x coordinate), and indeed restored 
the convergence rate of the corresponding unstretched case. 

7.  NON-UNIFORM GRIDS. 

Many problems require very different resolution in different parts of 
their domains.  Special refinement of the grid is required near singular 
points, in boundary layers, near shocks, and so on.  Coarse grids (with 
higher approximation order) should be used where the solution is smooth, 
or in subdomains far from the region where the solution is accurately 
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needed, etc. A general method for locally f^J»» "^T^^'SSS 
imation orders is described in Sec. 8. An important feature of the method 
iradaptivity! the grid may change during the solution process, adapting 
i^lfPto the evolving solution.  In this section, we propose a method of 
organ z ngnonTnSrm grids so that the local refine^t if highly flexible. 
The main Idea is to let the sequence of uniform ^J  'J  '   -»^ <£_ 
Sec. 2) be open-ended and -n-coextensive ^^^J^1^ *fineM„t, 
duced on increasingly narrower subdomains to Produce higne 
and coarser levels may be introduced on «creaaMgly wider ^*JJ^~    g 

cover unbounded domains) , and, furthermore, to let each ofthe "*« £e 

reduced storage requirement. 

ScafZ^l^T^rZ "engthy^cuSuons, aerially where 
£ grid is Segu^r* anfthese calcuUtions should be repeated each 
relation, sweep, or else additional memory ^-*°f^r^f 

S A.5), and complete generality is not necessary for obtaining any 
desired refinement pattern. 

Another approach for organising a non-uniform grid is by a 
 .£-. transformation, with a uniform f™^™*-££,%*=&- 
formed domain. On suoh grids, topologically still "£*"f^.K-i j^ 

Method can ^«^"t S-!a^« -i**l2.. 

^^tl-Z^^^l7rrp^rT  is not easy to 
produce, unless it is a one-dimensional ^^f^l**™^^ 

ALom^^^ 
does become sophisticated (i.e., adaf1Ve' *"* ™*/^ nLhe^-order approx- 
one-dimensional transformations), and in particular if higher 
imations should be used in some or all subdomains. 

mv.   K« it-  in the original or in some transformed domain, one would 
11*. rhlvf/convenfenrsySm for local -finements with minimal 
äLeeping and efficient methods for formulating ^f^l^f 
equations. The following system is proposed (and then generanz 

in Sees. 7.3, 7.4): 
DO/ 



A non-uniform grid is a union of uniform sub-grids, G°, G1,...,GK, 
with corresponding mesh-sizes h , h ,...,hM. Usually h :h   = 2':l'and 
every other grid line of G   ig a grid line of G*.  Unfikethe descrip- 
tion in Sec. 2, however, the sub-grids are not necessarily extended over 
tjie same domain.  The domain of G   may be only part of the domain of 
G  (but not vice versa).  Thus we may have different levels of refine- 
ment at different subdomains. 

For problems on a bounded domain ft, several of the first (the coars- 
est) sub-grids may extend to the entire domain ft.  That is, they do not 
serve to produce different levels of refinement, but they are kept in 
the system fog serving in the multi-grid process of solving the difference 
equations. G should be coarse enough to have its system of difference 
equations relatively inexpensive to solve (i.e., requiring less than 
0(znk) operations, where nk is the number of grid points in G . But cf. 
Sec. 4.1). The finer sub-grids typically extend only over certain sub- 
domains of ft, not necessarily connected. Generally, G is stretched over 
those subdomains where the desired mesh-size is h or less. Thus, very 

fine levels (e.g., with M=20, so that h =2~2°h ) may be introduced, provided 
they are limited to suitably small subdomains. 

Such a system is very flexible, since grid refinement (or coarsening) 
is done by extending (or contracting) uniform sub-grids.  There are several 
possible ways of storing functions on a (possibly disconnected) uniform 
grid, allowing for easy grid changes.  For example, each string (i.e., con- 
nected row or column) of function values can be stored separately, at an 
arbitrary place in one big storing area, with a certain system of pointers 
leading from one string to the next.  The extra storage area needed for 
these pointers is small compared with the area needed for storing the 
function values themselves.  One such system, with subroutines for 
creating, changing and interpolating between the grids, is now under 
construction, and will be reported elsewhere. 

If the (original or transformed) problem's domain is unbounded, we 
usually put suitable boundary conditions on some finite, "far enough" 
artificial boundary.  In the present system, we do not have to decide 
in advance where to place the artificial boundary: We can extend (or 
contract) the coarsest sub-grid(s) as the solution evolves. Moreover, 
we can add increasingly coarser levels (G~ , G ,...) to cover increasingly 
wider domains, if required by the evolving solution.  In this way, we may 
reach computational domains of large diameter R, by adding only O(log R) 
grid points (assuming the desired mesh-size, out at distance r, is pro- 
portional to r, or larger.  This should usually be the case, especially 
if appropriate higher-order approximations are used at large distances). 

There appears to be a certain waste in the proposed system, as one 
function value may £e stored several times, when its grid point belongs 
to several levels G . This is not the case^ First, because the amount 
of such extra storage is small (less than 2  of the total storage; see 
(4.6)). Moreover, the stored values are exactly those needed for the 
multi-grid process of solution:  In fact, in that process, the values 
stored for different levels at the same grid-point are not identical, 
they only converge to the same value as the process proceeds.      ' 
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7 2  The Multi-Grid Algorithm on Non-Uniform Grids.  The following 

is a description of the modification in the FAS multi-grid algorithm (Sec 
in casTof a non-uniform grid with the above structure.  The a gorithm 
remains almost the same, except that the difference equations (5.2-4) 
are changed to take account of the fact that the Revels G do not 
necessSly cover the same domain.  Denoting by G* the set of poxnts of^ 

Gk which are inner points of a finer level G™ (i.e., points where the G 
G whxch are inner yu      . 3.    picture 4), the modified form of 
difference equations are defined , see ngure HI, 

the difference equations on G is 

(7.1)     Lkuk=Fk,        Akuk=ik, 

5) 

where 

(7.2)     F" = P"   ana   * = *    •"» - ~k+i F
k=Fk   and   5k=$k   in Gk-G k and for k=M, 

(7.3)     Fk = F*  and   $k= «^ ^ GJ^ , 

(7.4)     Fm= ^ 
(F   LU)   L (I»U> 

k/Tk m, 
(7.5,     •* - I* <*" " *"»"> ♦ *«> ' • m   m 

Fk and *\ as in Sec. 2, are the Gk approximation to the original right- 

hand sides F and $, respectively. 

Observe that, by (7.2-3), each intermediate ^1 G JP^Jj^ 

role:  on the subdomain^here the ^W^ —"on there is an 

S3^jr^roSSig-i«~t^ equation. At the same time, 
ofthe subdomain where finer sub-grxds ^^'^S not confused 

calculating the coars-^V^thTcorrecSon Tis only implicitly 
owing to the FAS mode « ^^^written in terms of the |ull approx- 
comPuted,kits equatxon bexng ^ually w       ^ ^      ^ r_ght_ 

imation u .  In other words, t    may     *      ±    ^ G solution, 
hand side (Fk), corrected to achieve G accuracy in «i 

Indeed 
<7.« ^-I^^W^V.    ■ 
„hi* i. the Gm approximation to the Gk truncation error. 

„ell be boundary points.    Indeed, at ^™^rL^ callea boonaarv con- 
«. defined, although ^^^'^SS^l e^tions are not de- 
ditions.     The only G    points wnere v» ,ollndarv of G  ;   i.e.,  the boundary 
fined are point, on or ^^iggS, but --lo-er levels are.    If 

Torif Sef'ofTdo notSooin<:ide^ith grid lines of G», «£ is defined 
S\„e set of points of G* to *iofe proper interpolation fro» inner pornts 
of G1" is „ell-defined.    For m>M, Gm is empty. 
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Figure 4.  Example of Non-Uniform Grid. 

A section of the domain Q    and its boundary 3ft is shown, 

covered with a coarser grid G  (line intersections) and a 

finer grid G   (crosses and circles). For the case of 

a 5-points (or 9-points "box") difference equations, Gk+1 

inner points are marked with crosses, its outer points with 

circles.  (For convenient interpolation, outer points should 
k ir 

lie on G lines). At outer points belonging to G , the 

converged solution satisfies the G difference equations, 

such as the 5-point relations indicated by squares. At 

other outer points, such as those shown with triangles, the 

solution is always an interpolation from values at adjacent 
k 

G points.  (Note that starting values at outer points should 

be such that these interpolation relations are satisfied.  The 

FAS interpolation steps will then automatically preserve these 

relations.) 
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The only other modification required in applying  Cycle C 
to non-uniform grids is in the convergence switching criteria. 

See Sec. A.10. 

When converged, the solution so obtained satisfies equations (2.2) 

in the inner part of ? - G*  , <k=0,l M) • °* outer <l-e-' non_  .. 
innert Points"the solution automatically satisfies eithej: a coarser-grid 
difference equation (if the point belongs to a coarser grid) or a ™££ 
grid interpolation relation.  (See Figure 4)  Note that, in this Pr°ce^re' 
difference equate should be defi TIP* on uniform grids only  Thxs xs an 

important advantage.  Difference equations on ^-^^J^3* ^e 
much simpler, more accurate. The basic weights for eac* term <e.g , the 
weights (1,2,1) for the secord order approximation to 3 /3x )   can be 
from small standard tables; whereas on a general grid those weights 
should be recomputed (or stored) separately for each point, and they are 
very complicated for high-order approximations. 

Another advantage is that the relaxaH on ^^^Jg ^tlT 
qrids only.  This simplifies the sweeping, and is particular y important 
where symmetric and alternating-direction sweeps are required (cf. Sec. 3). 

K^rlcal experiments indicate that the typical multi-gr« ^r*m~ 

.ates'^Sa^e^lhT^rall -™ ^^^^^SJi^ 

^oSfon n^  h:rG^:rup1nly
eaS::aPll parT-of the points 

of the final non-uniform grid. 

7 3  Finite-ElementsGeneraUzation.  The structure and solution 

strictly uniform, levels. 

Quite often, especially in P™o*f^^f^e^friangulation) 
discretizations, the "basic" partitions  (eg , the suitable 

of the domain is a non-uniform one, but one which_ i| P       defined ^ 
for the geometry of the problem  Finer levels G ,G ,,r , are 
uniform refinements of that basic level; e.g., hk      V        k 
is constant within each basic element. 

Having defined the levels Gk in this manner the rest -y - 

princiPle be as before:;  Th<, actua composite grid may^ ^ ^ 

arbitrary portions of each level, i.e., tn     _  coarser levels 
be co-e^ensive, allowing *«/£f ^^^ia not coarse enough 
<G , G ...,) may be added if the basic level general algor- 
for full-speed multi-grid solution  ^f^f^  £ coaLe enough) . 
ithm for coarsening a non-uniform G , and usually 
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Data structures, similar to the uniform case may be used, but should be 
constructed separately for each basic element (or each set of identical 
basic elements). 

The multi-grid algorithm is the same as in Sec. 7.2.  The discrete 
equations are thus defined separately for each level.  The reproduction 
of these equations during relaxation is not as convenient as in the 
strictly uniform case, but still, in the interior of any basic 
element the equations can readily be read from fixed tables, 
one table for each set of identical basic elements. 

I1A1—Local Transformations.  Another important generalization of 
the above structure is to subgrids which are defined each in terms of 
another set of variables.  For example, near a boundary or an interface, 
the most effective local discretizations are made in terms of local 
coordinates in which the boundary (or interface) is a coordinate line. 
In particular, with such coordinates it is easy to formulate high-order 
approximations near the boundary; or to introduce mesh sizes that are 
different across and along the interface (or the boundary layer); etc. 
Usually it is easy to define suitable local coordinates, and uniformly 
discretize them, but it is more difficult to patch together all these 
local discretizations. 

A multi-grid method for patching together a collection of local grids 
Gl'G2'""Gm (each being uniform in its own local coordinates) is to relate 
them all to a basic grid GQ, which is uniform in the global coordinates 
and stretches over the entire domain.  The relation is essentially as above 
(Sec. 7.2); namely, finite-difference equations are separately defined in 
the inner points of each grid, and the FAS multi-grid process auto- 
matically combines them together through its usual interpolation periods. 

A remark:  To a given collection of local grids we may have to add 
intermediate grids to obtain fast multi-grid convergence.  That is, if a 
given local grid Gfc is much finer than the basic grid G , we have to 
add increasingly coarser grids, all of them uniform grids in the same 
local coordinates, such that the coarsest of them has a mesh size which 
is (in the global coordinates) nowhere much smaller than the basic mesh 
size hQ.  Similarly, if the basic global grid G is not coarse enough, 

the usual multi-grid sequence of global grids  G°, G1,...,GK = G    should 
be introduced.  Thus, in each set of coordinates we will generally have 
several grids. 

Such a system offers much flexibility.  Precise treatment of 
boundaries and interfaces by the global coordinates is not required. 
The local coordinates may be changed in course of computations, e.g., to 
fit a moving interface. New sets of local coordinates may be introduced 
(or deleted) as the need arises. 

The data structure required for creating, changing and employing 
such grids is basically again just any data structure suitable for 
changeable uniform grids.  This, however, should be supplemented by 
tables for the local transformations, such that one can efficiently (i) 
reproduce the local difference equation, and (ii) interpolate from local 
to global grid points, and vice-versa. 
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7.5.    Segmental Refinement.    The multi-grid algorithm for non-uniform 
grids   (Sec.   7.2)   can be useful even in the case of uniform grids,  if the 
computer memory is not sufficiently large to store  the  finer levels. 

»Segmental refinement"  is  the refinement of one subdomain at a time. 
To see why and how this is possible,  observe that with the FAS mode   (Sag.   5) 
the  full solution u^ is obtained on all grids.     But on a coarser^grid G  , 

the uM solution satisfies  "corrected"  difference equation, with F    = % 
replacing F*.     It is therefore not necessary to keep the fine grid,  once 
F    has been computed. 

The  corrected forcing function F* can be  computed by segmental refine- 
ment      Refining only one subdomain,  o^e can use the algorithm afcove   (Sec. 
^fto^btaJa m/lti-grid solution    including ^ values^f^^the^ 

^refi^r-rSiS TslIo^ZTo^.    And so on,   through a 
sequence of subdomains  covering the entire domain. 

Since sequent suhdo^efin^n^ ?"%£ SSSS: 

^v« TpoinTin^r t" <and few -"y fro!S the boundary ofl 

intervals into each other),  then tne segmental refinements 
If extra accuracy is desired,   another cycle or  segment 0Koprve 

SliSidateW-fre^ene, ««* c-j-»*. which canno    he    ~^- 

only few neighboring meshes. 

With this techni,oe one « ^^^=^^g^S^^§f 

|^LT^!nCj;hirh,e iLTSSiSi by preiircinarv   (one-d^nsronai, 

numerical tests. 
m nrinciDle    the required storage  area can be reduced to only a con- 

:,! L'all stor.^  requirement can in principle be reduced to 

jd {1 + log | / log J} 

10e,tions, »here h is the finest -esh-si2e and R is the dieter of the 

domain. No external memory is needed. 
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8.  ADAPTIVE DISCRETIZATION TECHNIQUES. 

The previous section described a flexible data structure and solution 
process which facilitate implementation of variable mesh-sizes h. The 
difference equations in that process are always defined at inner points of 

orders oHoi;,^^ T*-^  ea8y t0 Smpl°y ^ «* Variable approximation 
I e  f- "ow' then' mesh-sizes and approximation-orders are to be chosen? 
Should boundary layers, for examples, be resolved by the grid? What is 
their proper resolution? Should we use high-order of approximation at such 
layers? How to detect such layers automatically? In this section we pro- 
pose a general framework for automatic selection of h and p in a (nearly) 
optimal way.  In the next (Sec. 9) we will study some special cases, and 
show how this proposed system automatically resolve or avoid from resolving 
thin layer, depending on the alleged goal of the computations. 

8.1 Basic Principles. We will treat the problem of selecting the 
discretization parameters h and p (and possibly other parameters, see 
Sec. 8.4) as an optimization problem: We will seek to minimize a certain 
error estimator E, subject to a given amount of computational work W. 
(Or, equivalently, minimize the work W to obtain a given level E of 
the error estimator. We will see that the actual control quantity is 
neither E nor W, but their rate of exchange.)  It is important, however, 
to promptly emphasize that we should not take this optimization too 
pedantically it is enough, for instance, to obtain E which is one or two 
orders of magnitudes larger than the minimum (or, equivalently, to invest 
work W which is by some fraction more than theoretically needed. Note 
below that l°g(l/EmiQ) is usually proportional to W).  Full optimization 
is not our purpose, is enormously harder and, in fact, is self-defeating, 
since it requires too much computational work to be invested in controling 
h and p. We will aim at having the control work much smaller than the 
actual numerical work W, using the optimization problem only as a loose 
directive for sensible discretization. 

The Error Estimator E is a functional that estimates the overall error 
m solving the differential boundary-value problem, in terms of any given 
numerical approximation. In principle, such a functional should be 
furnished whenever a problem is submitted for numerical solution; in 
practice, it is seldom provided.  To have such an estimator depends on 
having a clear and well-defined idea about the goal of the computations, 
i.e., an idea about what error norm we intend to minimize.  Given the goal, 
even roughly, we can usually formulate E quite easily. We assume that 
the numerical approximation U is in some suitable neighborhood of the 
true solution (this is a necessary and justifiable assumption; see Sec. 
8.2), so that E can be written as a linear functional 

(8-D E =  /*G(x) x(x) dx . 

a 

T(X) is a local estimate of the truncation error i.e., the error by which 
the numerical solution U fails to satisfy the differential equation LU=F; 
or more conveniently, the error by which the differential solution U 
fails to satisfy the discrete equation L U =F.  That is, 
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(8.2) T(X) =  |LU(x) - IAKX)!  . 

G(x) is the non-negative "error-weighting function" (or distribution), 
through which the computations goal should be expressed. 

The choice of G can be crude. In fact, multiplying G by a con- 
stant does not change our optimization problem.  Also, we can make large 
errors, up to one or two orders of magnitudes, in the relatxve values 
of G at two different points, since we are content in having E only to that 
accuracy. What matter are only large changes in G, e.g., near boundaries. 
For example, if we have a uniformly elliptic problem of order m, and if 
we are interested in computing good approximations to 0 and its derivatives 
up to order A and upto the boundary, then a suitable choice is 

(8.3) G(x) = dx 

where d is the distance of x from the boundary.  (The formula should be 
suitably modified near a boundary corner). This and similar^choices of 
G are easily found by local one-dimensional crude analysis of the relation 
between a perturbation in the equations and the resulting perturbation 
in the quantity we wish to approximate.  Even though crude, such choiceof C 
would specify our goal much closer than people usually bother to. Mbre- 
™er wePca^ change G if we learn that it fails to properly weigh a certain 
rlgion of the computation; it can serve as a convenient control, conveying 
our intentions to the numerical discretization and solution. 

ThP Work Functional W.  In solving the discrete equations by the multi- 
grid method, the main overall computational work is the number of Work 
Units invest in relaxations, times the amount of computations in each 
Work Unit (see Sec. 6).  If the discretization and relaxation schemes 
are suitable, the number of Work Units is almost independencyf the 
relaxation parameters h and p.  (See e.g., the rate y for Ah  vs. A 
in Table 1 above). Since for our optimization problem we need W°nly 
up to a multiplicative constant, we can take into account only ^amount 

or computations in a single Work Unit, i.e., the ^V^uS volum«" 
sweep over the domain.  The local number of grid points per unit volume 
is hue)  , and the amount of computation at each grid point is a function 
w(p(x)) , wh'e p(x) is the local order of approximation. Hence, we can 

regard the work functional as being 

f w(p(x))  , 
(8.4)        W = I  ■ *    d- dx. 

'ß  h(x)Q 

,1^1 Optimization Equations.     Treating the ^^^^^T" 
as spltial variablesTlTöö^nTTÜ) ,  the Euler equations of minimizing E 

for  fixed W are 
3E       ,   .     3W = 0 

<8-5a> 8h(xT      X  3h(x) 

9E ,     9W = 0 
(8.5b) 3pllö"+  X  3p(x) 
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where X is a constant (the Lagrange multiplier).  It is easily seen that 
X is actually the marginal rate of exchange between work and optimal 
accuracy, i.e., 

dE .      d log - 
(8.6)   X = - -2ÜL = E  IE , 

dW        dW 

and the meaning of (8.5) is that we cannot lower E by trading work (e.g., 
by taking smaller h at one point and larger at another, keeping W 
constant, or trading a change in h with a change in p). 

Equations (8.5) make some essential simplifications in the 
optimization problem:  They regard h and p as defined at all points 
xeQ;  Also, h and p are assumed to be continuous variables, whereas in 
practice they are discrete.  (p should be a positive integer, in some 
schemes a positive even integer.  Values of h are restricted by some 
grid-organization considerations.)  These simplifications are crucial for 
our approach, and they are altogether justified by the fact that we are 
content in having only an approximate optimum. The practical aspect, of 
choosing permissible h and p close to the solution of (8.5), is discussed in 
Sec. (8.3).  One restriction we should, however, take into account in 
the basic equations, namely, the restriction 

(8.7) Po <_p(x) < p±(x). 

Without such a restriction, the optimization equations may give values 
of p which cannot be approximated by permissible values,  p  is usually 
1 or (in symmetric schemes) 2.  The upper bound p may express the high- 
est feasible order due to round-off errors; or the highest order for which 
we actually have appropriate (stable) discretization formulae, with special 
such restriction near boundaries (hence the possible dependence of p on 
the position x).  With this restriction, Euler equation (8.5b) should be 
rewritten as 

(8.8) 

r 
>_ o, 

8E 
3p(x) 9p(x) 

H = o, 

<  o, 

if  p(x) = p 

if  po < p(x) < p (x) 

if  p(x) = p1(x) 

Local Optimization Equations.  Substituting (8.1) and (8.4) into 
(8.5a) and (8.8), we get the following equations at each point x e fi: 

(8.9a) 

■8.9b) 

546 

G 8h 
Xdw(p) 

h 

8p 
XW(p)   > 
vd            < 



where the equality-inequality sign, in (8.9b) and hereinafter, correspond, 
to the three cases, introduced in (8.8).  In principle, the pair of 
equations (8.9) determines, for each x e a.   the local values of the pair 

(h,p), once X is given. 
Thus X is our global control parameter.  Choosing larger X, we will 

get an optimized grid with less work and poorer accuracy; lowering X, we 
invest more work and get higher accuracy.  For each X, however, we 
get (approximately) the highest accuracy for the work invested.  ■£ 
principle X should be given by whoever submits the problem ^ numerical 
solution; i.e., he should tell at what rate of exchange he is willing 
to invest computational work for additional accuracy (see (8.5)).  In 
practice thifis not done, and X usually serves as a convenient control 

parameter (see Sees. 8.2 and 8.3). 

To compute h and p from (8.9) we should know the behavior of x as a 

function of h and p. Generally, 

(8.10)    t(x,h,p) ^ t(x,p) hP, 

where t(x,p) depends on the equations and on the solution.  Since it is 

SSLS'SS: l! our numerical ^-^ations ~ ^«^££E£r 

h and p (see Sec. 8.3), so that we need to estimate t(x,h,p) only 
h and p close to the current h(x) and p(x). 

äSSÄ^Äs ££■£ rri1 

in steps  6y.     At eacn step we  uo = 4_ör>cr\   -,Q  a first approximation in 
«« extrapolation f"^ „H^    ^in purpose o/Lch con- 
an iterative process for solving pW- approbations ve use in 
tinuation procedures " Jf ^^.^enough»  to the solution  (of the 

^.T^TS Sirfi^-rairre^ntSl^atfons'or *. houndar, 
conditions, or both, are expressed. 

■The continuation process is not » »-^/-^Sn/^Se^elves, 

„, cases, the ^^^^TJ^^^T^l^^  P«*"-- 
since they correspond to a sequence or problei»s the continue- 

r„ prr? nof oSTLtnodr^inr- ^0, ~ *~. * 
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effect, the only way to define the solution, i.e., the way to select one 
out of the many solutions of the non-linear algebraic system.  The desired 
solution is defined as the one which is obtained by continuous mapping 
from [YO, Y*3 to the solution space with a given solution at y     (eg 
the single solution, if PCYO) is linear).  By the continuation°process, 
we keep every intermediate numerical solution in the vicinity of a 
physical solution (to an intermediate problem), hence the target numerical 
solution is, hopefully, near the target physical solution, and is not 
some spurious solution of the algebraic system.  Thus, although sometimes 
we may get away without a continuation process (simply because a starting 
solution is "close enough", so that the continuation may be done in just 
one step), in principle a continuation process must be present in any 
numerical solution of non-linear problems.  Moreover, such a process is 
usually inexpensive, since it can be done with crude accuracy, so 
that its intermediate steps usually total less computational work than 
the final step of computing an accurate solution to P(Y ). 

A continuation process is necessary, in principle, not only for non- 
linear problems, but also for linear problems with grid adaptation.  In 
fact, when h or p are themselves unknown, the discrete problem is 
nonlinear, even if the differential problem is linear. 

In our system, a continuation process with crude accuracy and 
little work is automatically obtained by selecting a large value for the 
control parameter X (cf. Sec. 8.1).  Then, in the final step (Y=Y*)/ * is 
decreased to refine the solution.  Thus, the overall process may be 
viewed as a multi-grid process of solution, controlled by the two para- 
eters y and A. 

.I'.ne most efficient way of changing Y is probably to change it as 
soon as possible (e.g., when the multi-grid processing exhibits convergence 
to a crude tolerance) and to control the step-size 6y  by some automatic 
procedure, so that &y  is sharply decreased when divergence is sensed (in 
the multi-grid processing), and slowly increased otherwise. 

In changing Y it is advisable to keep the residuals as smooth as 
possible, since higher frequency components are more expensive to liquidate 
(lower components being liquidated on coarser grids).  Thus, for example, 
if a boundary condition should be changed while changing y,  it is advisable 
to introduce this change into the system at a stage when the 
algorithm is to start working on the coarsest grid. 

Y-Extrapolation.  In some cases the given problem (Y=Y*) is much too 
difficult to solve, e.g., because the differential solution fluctuates 
on a scale too fine to be resolved.  In such cases one is normally not 
interested in the details of the solution but rather in a certain 
functional of the solution.  It is sometimes possible in such cases to 
solve the problem for certain values of Y far from y^,  and to extrapolate 
the corresponding functional values to Y=Y* • 
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8.3.  Practice of Discretization Control.  The main practical re- 
strictions imposed on the theoretical discretization equations (8.9) are 
the following: The approximation order p should be a positive integer. 
In many problems p is also restricted to be even, since odd orders are 
less efficient. The mesh-size function h(x) should be such that a reasonable 
grid can be constructed with it.  Thus, in the gjcid structure outlined in 
Sec. 7.1, h is restricted to be of the form h=2 h^, where k is an integer. 
Also, in the multi-grid discretization method outlined in Sec. 7.2, any 
uniform subgrid truly influences the global solution only if it is large 
enough, i.e., if at least some of its inner points belong also to coarser 
grids. These discretization restrictions will actually help us in meeting 
another practical requirement, namely, the need to keep the control-work 
(computer work invested in testing for and affecting discretization refor- 
mulations) small compared with the numerical work (relaxation sweeps and 

interpolations). 

The practical adaptive procedure is proposed to be generally along 

the following lines: 

A Testing.  In the multi-grid solution process (possibly incorporating 
a continuation process), at some natural point we get an estimate of the 
decrease in the error estimator E introduced by the present discretization 
parameters. For example, in FAS Cycle C (see its flowchart in Fig. 2), at 
the point where new F is computed, the quantity 

i-k  T k Jc+li 
(8.11)   -AE = G |F  - Ik+1 F"  | 

at each point may serve as a local estimate for the decrease in E per 
unit volume (cf. (8.1) and (5.7)), owing to the refinement from h to hk+]/ 
Each such decrease in E is related to some additional work AW (per 
unit volume).  For example, the refinement from hR to hk+1 requires 

the additional work 

(8 12)     AW = ^-r - ^    (Per unit volume) . 
h      h, 
k+1     k 

Hence we compute the ratio of exchanging accuracy per work Q = - AE /AW. 
At regions where this ratio is much bigger than X (the control rate of 
exchange; cf. Sec. 8.1) we say that the present parameter (h   in the 
Sample) is highly profitable and it is worth trying ^further «fine the 
discretization (e.g., introduce there the subgrid G   with h   - Jv+i £)• 
At regions wher^Q is much smaller than X we may coarsen the discretization 

(abolish the G   subgrid). 
Extrapolated tests.  More sophisticated tests may be based on assuming 

the truncation error to have some form of dependence on h and p, such as 
rsiOlabove  instead of using AE and AW at the previous change (from 
£" C^in tS above example) we can then anticipate the corresponding 

values ti^and ÄW at the next change     ( from h   to h  ) , which are 
the more appropriate values in testing whether to make that next change. 
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Thus, in the above example, assuming (8.1Q) and h.   = h^ /2 = h./4, we 

get AE = 2~P AE ,   AW = 2d AW, and hence 

  H  d  i-k    k -k+1. 

(8.13,      5 - ^ -  2-P-« a - ^     |r ' ^i F    ' . 
AW W(p) (2d -1) 2P 

The extrapolated ratio Q is used in testing for grid changes.  This may 
seem risky, since it depends on assuming (8.10).  But in fact there is 
no such risk, because we can see from (8.13) that testing with Q is not 
that much different from testing with Q.  (In fact, if p is constant, 
testing with Q is equivalent to testing with Q against another constant X.) 
An^Jhe test with Q does not presume (8.10); it only assumes that the finer 
(G  ) approximation is considerably better than the coarser one, so that 
their difference roughly corresponds to an added accuracy due to the 
refinement.  Note also that the multi-grid stopping criteria 
((A.17) or (A.20) in App. A) are precisely such that  Q can 
be reliably computed from the final approximation. 

B.  Changing the discretization.  The desired grid changes are first 
just recorded (e.g., incidentally to the stage of computing F ) and only 
then they are simultaneously introduced, taking into account some organ- 
izational and stabilizational considerations:  A change (e.g., refinement) 
is introduced only if_there is a point where the change is "overdue" 
(e.g., a point where Q > 10X).  Together with such a point the change is 
then also introduced at all neighbor (and neighbor of neighbor, etc.) 
points where the change is "due" (e.g., where Q > 3X).  The changed subgrid 
(G   in the above example) is then augmented as follows:  (i)  Around each 
new grid point we adcl extra points, if necessary, so that the grid point 
(corresponding to a G   point where a refinement was due) becomes an inner 
point (cf. Sec. 7.2) in the new subgrid (G  ).  (ii)  Holes are filled; 
that is, if, on any grid line, a couple of points are missing in between 
grid points, these missing points are added to the grid. 

The control work in this system is negligible compared with, say, 
k+1 

the work of relaxing over G  , because:  (i)  The tests are made in the 
transition from G   to G , which takes place only once per several G 
relaxation sweeps.  (ii)  Q is computed and tested only at points of the 
coarser grid G , and at each such point the work is smaller than the relax- 
ation work per point.  (iii)  Changing the discretization is itself inex- 
pensive since it is done by extending or contracting uniform grids (cf. 
Sec. 7.1), the main work being in interpolating the approximate solution 
to the new piece of uniform subgrid. 

8.4 Generalizations.  In some problems it5|s not enough to adapt h 
and p.  Sometimes different increments h  , h  , , h   should 
be used at the d different directions, and each h   should be separately 
adapted. Basically the same procedures as.ahove can be used to test 
and execute, for example, a change from h 3 to h J  /2.  More generally, 
one would like to adapt the local coordinates (cf. Sec. 7.4), e.g., near 
discontinunities.   Automatic procedures for such adaptation have not 
been so far developed, but are conceivable. 
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Other discretization parameters, such as the centering of each 
term in the difference operator, may be treated adaptively.  (In fact, 
such adaptive discretization is already in use in mixed-type problems, 
where it was introduced by Murman to obtain stability.  See, e.g., [9]). 
In problems with unbounded domains, the discrete domain may be determined 
adaptively (with increasingly coarser levels; cf. Sec. 7.1), using a pro- 
cedure that decides to extend the domain if the previous extension was 
highly profitable in terms of -AE/AW.  In many problems, some terms jLn 
the difference operator can altogether be discarded on most levels G . 
In particular, in singularly perturbed problems, the highest order 
terms may be kept only on the finest-narrowest levels.  Decision can 
again be made in terms of -AE/AW, in an obvious way. 

9.  ADAPTIVE DISCRETIZATION;  CASE STUDIES. 

To get a transparent view of the discretization patterns and the 
accuracy-work relations typical to the adaptive procedures proposed above, 
we consider now several test cases which are simple enough to be analyzed 
in closed forms. That is, we consider problems with known solutions and 
simple behavior of the local truncation errors, and we calculate the 
discretization functions h(x) and p(x) that would be selected by the local 
optimization equations (8.9), and the resulting relation between the error 
estimator E and the computational work W. 

9.1 Uniform-Scale Problems. A problem is said to have the uniform 
scale n(x) if the local truncation error (8.2) has the behavior 

P 
(P <PiPi) • (9.1)   x(x,h,p) * t(x) n(x) 

Such a behavior occurs, for example, when the solution is a trigonometric or 
exponential function exp(0-x), where 0 is either a constant or a slowly 
varying function (see example in Sec. 9.2). We will also assume for sim- 

plicity that (see (8.4)) 

(9.2)        w(p) = w p o 

Usually 1=1,  since the number of terms in the difference equations, and 
hence also the amount of computer operations at each grid point, are 
proportional to p. 1=2  is appropriate if we assume that we have to 
increase the precision of our arithmetic when we increase p.  Rescaling 

W, we can assume that w = 1. 

Using (9.1-2) in equations (8.9) we get 

,„ £-1 ,-d 
(9.3a)   Gx = Xd p   h  , 

h      Ü--1 ~d  > 
(9.3b)   GT log - + XÄ, P   h    = o . 

Hence, denoting by p the value of p that satisfies 
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,_ „. l-l    SLp/d -1  ^    a    -I    -1 
(9.4) p ejr'=A       Gtne       d 

we have 

a. 
P = Pf if Po - P - Pl   ' 

P = P0, if 
'b 

P - Po   ' 

P = Pxr if P± 1 P  • 

(9.5a) h = n  e"Ä/d   , 

(9.5b) h =   (Xd p n     t    G     ) 

A-] Pl  -1   -1     1/(Pi+d) 

(9.5c)       h = (xa P 
x V   t   G 

1) -1 

Notice that at any point either p or h, but never both, is "aaaptive", 
i.e., äepenaent of X.  Where p is aaaptive (pn < p = p < p ), h is fixeä anä 

a £ 
each "scale cube" n is äiviaea into e mesh cells. 

Assume now further that the computer precision is unlimitea (which is 
never really the case, but may proviae insight), so that SL=1  anä p =°°.  If 
sufficiently high accuracy is äesireä, then X is sufficiently small to have 
p>p , so that (9.5a) applies.  By (8.1) ana (9.3a) this implies 

(9.6) E = xae J  n~dax , 

anä hence, by (8.6) , 

(9.7) E = C e-W/(eä/rf
däx) =   -c 6^ 

o o 

where ß is some average value of the scale n(x).  In this (idealized) 
case, E decreases exponentially with W.  For realistic W this convergence 
rate becomes poor when 3 is very small, as in singularly perturbed problems. 
In such problems, however, for realistic W (9.5a) no longer applies, 
and another rate of convergence, independent of ß, takes over (see Sec. 
9.3). 

9.2.  One-Dimensional Case.  Consider a 2-point boundary-value problem 

(9.8) a £%    + |° = 0 , in 0<x<l, 
2   2    dx dx 

with constant n>0 andwith boundary conditions U(0) and U(l) such that 
the solution is U = e    .An elliptic (stable) difference approximation 
to such an equation can be central for n^h but should be properly directed 
for ri<h.  (The first order term being the main term, the second order 
term should be differenced backward relative to it with approximation 
order p1 = p - [logn/logh].  See [4] and Sec. 3.2 in [3]).  In either case, 
the truncation error is approximately 
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(#• 

l -2x/n 
2n 

(9.9) t(x,h,p) = t(x)l-l ,  where t(x) = 

We now choose the error weighting function to be 

(9.10) G(x) = 1, 

which would be the choice (see (8.3)) when one is interested in accurate 
computation of boundary first-order derivatives (corresponding, e.g., to 
boundary pressure or drag, in some physical models). We again assume no 
precision limitations, so that £=1 and p,=°°. We take pQ=2 since second- 
order is no more expensive than first-order approximations. Inserting 

these into (9.5) we get 

(9.11a)     h = J ,   p = logji - 1 - — ,  for  0 < x < XQ , 

(9.11b)     h = J. e2(x-xo)/(3n)f   p = 2 f  for  xo < x < 1 , 

where 

(9.11c)     xo = 3. (logjjL - 3) . 

If x > 1, then (9.11a) applies throughout, and hence 
o — 

(9.12) W= /^dx = 2. (logjf -1 -J-) 

! -2-w-i' "J. ,      Ae    1      en 
(9.13) E = / Tdx = — = ^e 

and the condition x > 1 itself becomes, by (9.11c, 12), 
o — 

(9.14) W > (2-fi) 2- . 

Thus, if W satisfies (9.14), E converges like (9.13). 

9.3.  Singular Perturbation:  Boundary Layer Resolution. When n is 
very small, problem (9.8) is singularly perturbed, and its solution has 
a boundary layer near x=0.  The above mesh-size h=n/e is too small to 
be practical.  Indeed, in the optimal discretization (9.11), for small n we 
get small x , and an "external region" XQ _< x < 1 is formed where the 
mesh size grows exponentially from n/e.  The small mesh size is used 
only to resolve the boundary layer.  In this simplified problem the solution 
away from the boundary layer (i.e., for x»n) is practically constant, 
so that indefinitely large h is suitable.  Usually h will grow exponentially, 
as in (9.11b), from h = - to some definite value suitable for the 
external region.  In the6transition region we have p=2, i.e., the minimal 
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order of differencing is used in the region where h changes.  This may 
be useful in practical implementations. 

From (9.11) and (9.9) we get for small n 

1 
(9.15)      W = / E- dx 

0 
h —       k * - UogjE-r 

1     e  1/2 -(fW)1/2 

(9.16) E = fx  dx = ^| log TT %     <f «>   e 

0        2    ZA 

where the integrals are separately calculated.in (o,X ) and (X ,1).  Thus, 
E converges exponentially as a function of W '  instead of W, °but this 
rate is independent of n and does not deterioriate as n ->■ 0. 

9.4.  Singular Perturbation without Boundary-Layer Resolution.  To see 
the effect of choosing different error weighting functions, consider 
again the above problem (Sees. 9.2, 9.3), but with the choice G(x) = x. 
This choice is typical to cases where one is not interested in calculating 
boundary derivatives of the solution (see (8.3)). We then get 

(9.17) £ = log £  -1 - 2£ <  log _1 _ 2 . 

Therefore, for small n and reasonable A, p < o and p=2 for all x.  Hence, 
no resolution of the boundary layer is formed.  Indeed, by (9.5b), for 
very small n (singular-perturbation case) 

(C^ (9.18)    [^   = ^e
2*Al L   iA£» 

so that h>>n .  In practical situation where the solution in the external 
region is not constant, the actual mesh-size will be determined by the 
external regime. 

9.5.  Boundary Corners.  Consider the two-dimensional Poisson equation 
AU=F with smooth F and homogeneous boundary conditions, near a boundary 
corner with angle ir/a, — <_ a < 1.  Denoting by r the distance from the 
corner, at small r the solution U is 0(r ), and so is also the error 
weighting function G (if accuracy is sought in the solution^^but not 
in its derivativesnear the boundary).  Hence, T = 0(h r    ) and 
8x/9h = 0(h  r    ).  If we fix the order of approximation p, then the 
optimal mesh-spacing derived from (8.9a) is 

(9.19)    h=0(A1/(p+2) rß),   ß=E±^  . p+2 
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Hence, by (8.4) and (8.1) the total work and total error contribution from 
a region of radius r around the corner are, respectively, 

W=J\dxdy      =    0(A-2/(*+2)   r2"2*)   , 

E=/GTdxdy    =    0(Ap/(p+2)     r2"25)    . 

Hence the relation E ^ W~P'  (the usual relation in d-dimensional smooth 
problem with p-th order approximation) still holds uniformly.  The corner 
does not "contaminate" the global convergence. 

In the practical grid organization (Sec. 8.3) finer levels G with 
—k 

increasingly smaller mesh-sizes h, = 2 h will be introduced near the 

corner.  By (9.19), the level G will extend from the corner to a dis- 

tance r = C x2a_P"2 hv
1/ß.  Since ß<l, for small h we get hk > rk- This 

gives us in practice a natural stopping value for the refinement process: 

The finest mesh-size near the corner is such that 1^ ^ 4rR , so that level 
lc .   x. „k-1 G still has an inner point belonging to G 

9.6.  Singularities.  Like boundary corners, all kinds of other pro- 
blem singularities, when treated adaptively, cause no degradation of the 
convergence rate (of E as function of W) . 

Consider for example the differential equation LU=F where F is 
smooth except for a jump discontinuity at x=0. Whatever the approximation 
order p, the system will find -AE (see (8.11)) to be 0(1) at all points 
whose difference equation include values on both sides of the discontinuity. 
At these points further refinements will, therefore, be introduced as long 
as -AE/AW > O(X).  Thus, around x=0, some fixed number (depending only 
on p) of mesh .points will be introduced at each level Gk, until a mesh 
size h = 0(X ' ) is reached.  The total amount of added work is there= 
fore proportional to the number of levels introduced, which is 0(log h) . 
The error contribution of the discontinuity is 0(h ), which is exponentially 

small in terms of the added work. 

This and similar analyses show that the adaptive scheme retains its 
high-order convergence even when the problem is only piecewise smooth, 
or has algebraic singularities, etc. 

10.  HISTORICAL NOTES AND ACKNOWLEDGEMENTS. 

Coarse-grid acceleration techniques were recommended and used by several 
authors, including Southwell [24,13,14], Stiefel [15], Fedorenko [5], Ahamed 
[19], Wachspress [17], de la Valee Poissin [16] and Settari and Aziz [24]. 
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Southwell called his technique "block" and more generally "group relax- 
ation", described it as "almost essential to practical success", and gave 
heuristic explanation as well as practical implementation methods based on 
variational considerations ("the aim being to reduce the total energy by 
as great an amount as possible").  He also depicted procedures of "advance 
to a finer net" [14].  Techniques of multiplicative coarse-grid corrections 
(special-cases of which appeared in [14], [19]) were developed by Wachspress 
([17], Chapter 9), who called them "variational techniques". This work 
motivated several studies, by Froelich, Wagner, Nakamura and Reed (see a 
brief survey in [18]) and was applied in nuclear reactor design computations. 

All these were two-level methods.  The multi-grid idea was introduced 
by Fedorenko [6], mainly for theoretical purposes.  Namely, he rigorously 
proved that W(n,e), the number of operations required to reduce the residuals, 
of a Poisson problem on a rectangular grid with n points, by a factor e, is 
O(n|loge|).  Bakhvalov [1] generalized this result to any second-order 
elliptic operator with continuous coefficients.  For large n, this is the 
best possible result - except for the actual value of the coefficient.  The 
Fedorenko estimate can be written as 

W(n,.01) <_ 210000n + W(l<£ ,.01) , 

and the Bakhvalov constants are still much larger.  For admissible values 
of n these estimates are therefore far worse than estimates obtained in 
other methods, and they did not encourage any development of the method. 
Fedorenko experimented with a two-level algorithm only, and seemed to imply 
that for practical grid sizes ADI may be more efficient.  He did not realize 
the true practical potential, in both efficiency and programming simplific- 
ation, of a full, systematic multi-grid approach.  (It can be proved that 
W(n,.01) <_ 106n, and in practice W(n,.01) ^ 5Qn is obtainable.  See App. C). 

The first full multi-grid algorithms and numerical tests were described 
in [2].  Our original approach was to regard the finer levels as "correcting" 
the coarser level (cf. Sees. 1, 7.2 and 7.5 above).  For uniform non-adaptive 
grids this approach turns out to be equivalent to the one implied by [6], 
but fundamentally it is different and more powerful, since the process is 
not confined to a fixed discrete system. 

A systematic multi-grid approach for a restricted class of problems, 
with somewhat different procedures of relaxation and transfer to coarser 
grids, is described in [21].  The multi-grid method is also portrayed in [23], 

Adaptive discretization procedures were introduced by several authors. 
See for example [10], [20], [21] and references in [21].  The present approach 
is different, not only in its multi-level setting, but also in its basic 
criteria and procedures. 

It is my pleasure to acknowledge the help I received from my 
students and colleagues throughout the work reported here.  Yosef Shiftan, 
Nathan Diner, Yehoshua Fuchs and Dan Ophir in the Weizmann Institute; Jerry 
South in NASA Langley Research Center; and Will Miranker, Don Quarles, Fred 
Gustavson and Allan Goodman at IBM Thomas J. Watson Research Center - thank 
you all.  I am also grateful for valuable discussions I had with Olof 
Widlund, Eugene Wachspress, Antony Jameson, Perry Newman, Jim Ortega, Ivo 
Babuska and Werner Rheinboldt. 
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APPENDIX A.  INTERPOLATIONS AND STOPPING CRITERIA:  ANALYSIS AND RULES. 

The multi-grid algorithms described above (Sees. 4 and 5) need to be 
supplemented with some rules of interpolations and stopping criteria. 
More specifically, for the interpolation I k  , transferring weighted 
residuals from a fine grid G to the next coarser grid G   , we should k^ 
prescribe the weights, while for I   , interpolating corrections from G 
back to G , the method and order of interpolation should be prescribed. 
Stopping criteria should define convergence at the various levels and 
detect slow convergence rates.  Numerical tests show that the parameters 
to be used are very robust:  Full efficiency of the multi-grid algorithm 
is obtained for stopping parameters that do not depend on the geometry 
and the mesh size, and which may change over a wide range (see, e.g., 
Appendix B), provided the correct forms of the stopping criteria are 
used, and some basic rules of interpolation are observed.  To find 
the correct forms and rules, and to determine the stopping parameters, 
we have to analyze the Coarse-Grid Correction (CGC) cycle, whjch consists 
of interpolating (I  ) the residuals to the coarser grid G  , where the 
residual problem is solved, an.d then interpolating (Ij^J that solution 
back as a correction to the G approximation. 
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We can use a local mode analysis (for the linearized, coefficient- 
freezed difference equations), similar to the example in Sec. 3.  Such 
an analysis may be inaccurate for the lowest frequency modes, for which 
the interaction with the boundary is significant.  But these lowest modes 
are of little significance in our considerations, since they are efficiently 
approximated on the coarsest grids with little computational work, and 
since care will be taken (i) to choose interpolation schemes that do not con- 
vert small low-frequency errors into large high-frequency errors; and (ii) to 
stop relaxation sweeps before low-frequency error components become so large 
that they significantly feed the high frequencies (e.g., by boundary and 
non-linear interactions).  In fact, we will see that the dominant components 
(i.e., the components that are slowest to converge in the combined procep^ 
of relaxation and coarse-grid corrections) are the Fourier components e 
for which 19 ] is close to p-n  ,  where (in a general d-dimensional problem) 

d 
(A.O)       e = (e-,,6.,, ...,e,),      e-x =• i   ex,       |e| =   max     |e |  , 

12 a j=1    j  J llj£d 

h = hk = K-l  ' 

These components feed on each other in the interpolation processes between G 
and Gk  , they are slower to converge by relaxation., and in the CGC cycles 
they may even diverge. 

To simplify the discussion we will assume that the mesh-size ratio 
has its usual value p=| , which is the only one to be used in practice 

(cf. Sec. 6.2). 

A.l.  Coarse Grid Amplification Factors.  For any given set of dif- 
ference operators Lk and a multi-grid scheme, a local mode analysxs of 
the complete MG cycle can be made (cf. App. C), and the various parameters 
can be optimized.  The essential information can, however, be obtained 
from a much simpler analysis that treat separately the_two main processes 
relaxation sweeps and CGC cycles.  The smoothing rate y (see Sec. 3) is the 
main quantity describing the relaxation sweeps.  The CGC local mode analysis 
is summarized below (for algebraic details see Sec. 4.5 of [3]). 

lG'x/h 
In the CGC analysis, together with each basic Fourier component e 

(0 < |01 <_ 2L ) we should treat all the G components that coincide with 

it on Gk-1,2i.e., all components e
ie'*X/h (0 < |e'| < ir) such that _ 

6' H 6 (mod IT) for j=l,2,...,d.  We call such component 6 a harmonic 
of 9. jWe are especially interested in those harmonics that are not 
separated from 6 by the relaxation sweeps, e.g., the set 

9' = 0 (mod n) :  y(6') >_ y(6) 
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Denote by |T | the number of members in this set.  (Usually |? | =2° , 

where a is the number of coordinates j for which 16 j| ^ ^- ) .  in terms 
of the 6 Fourier components and its harmonics, the CGC cycle has two 
effects: 

(i)  Assuming the components not in T to be comparatively small when 
the CGC cycle is entered, the set of components in T     is transformed in 
the cycle by a certain matrix, whose spectral radius turns out to be 

(A.l) 

where 

(A.2)    a   (0) =  |i -  E  R(9,9') B, (9') Bu .(29)"
1 p(0')| . 

0 eTe 

The functions P(0'), R(0,0') and B. (9) are the "symbols" of Ik_1, I k 
i * k   k-l 

and L , respectively, i.e., 

k-l i9'«x/h    ..,,  ie-x 1 k 
e      = P(9 ) e   , (cf. (A.10) below), 

(A.3)     Ifc* eie*X/h =    z R(9,0') e19'-^  , 
9' = 9 (mod ir) 

Ä i0-x/h£        i9«xAp 
L e       = BÄ(9) e     * , (£= k,k-l). 

(If L is a system of equations, and the right-hand side of (A.2) is there- 
fore a matrix, then a   (0) is meant to be the spectral radius of that 
matrix).  For small |e| we have |T | = 1 and hence 

(A.4)     a(0) = aQ(0) = 1 - p(o) + 0 (|9|P + \Q\
T

)   , 

where p is the approximation order of L and L,   (or the minimum of the 
k 

two) and I is the order of the I   interpolation (1=2 for linear inter- 
polation, etc.).  The principal CGC amplification factor is 

(A. 5)    a  = max a (9) 

o<e<| 

= max (l,a ) ,    where  a = max a   (0) 
o o        o 

°£e<f 
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(ii) The CGC cycles also generate new secondary harmonics "^    . 
The rate of generating these, i.e., the ratio of the new 6» amplitude to 
the old amplitude of the combined harmonics, turns out to be 

(A.6)     0. (9") =  |R(e,6") Bk(6") V^)"
1 p(6") 

= oclel1-10) 

where m is the order of the differential equations. 

It follows from (A.4,6) that if p(o) = 1, as it is always chosen 
to be (cf. Sec. A.4), and if I>m, then components with small |6| are very 
efficiently reduced in the multi-grid process. 

k 
A.2.  The Coarse-to-Fine Interpolation Ik_r On the other hand, it 

follows from (A.6) that if Km then even a small and smooth residual 
function may produce large high-frequency residuals, and sigai&cant amount 
of computational work will be required to smooth them out.  This effect 
was clearly shown in numerical experiments ([2], [11]). Hence we have 

The Basic Rule:  The order of interpolation should be no less than the 
n-a~ ^  .hP differential equations.  (I>M.)  In particular, polynomial 
interpolation should be made with polynomials of degree >_sHL. 

Higher interpolation orders (I>M) are desired in the initial stages 
of solving a problem, when the residuals are (locally) smooth  For 
instance, in regions where the given problem has smoothness of order q 

(i.e., F(x) = Z  A0 e
i6'X/h , A0 = 0(|e|-

qhq)) , in order to ensure that 

the high-frequency residuals remain 0(hq) , at the i-th interpolation from 

1^
M"1 to n

M the order should be 

(A.7)   I>_i + max[q-(i-l)Pf o] . 

(In fact, as long as q > iP, this interpolation need not be followed 
by G* relaxation sweeps, since the low-frequency amplitudes are still 
Sminant. Relaxation would only feed from these low components tohigh 
frequency ones, causing additional work later.  Still fetter, however, 
instead of this multi-grid mode without intermediate G relaxation, 
is to make a higher-order correction on G  ). 

Eventually, however, the smoothness of F (which is the original re- 
sidual function) is completely lost in subsequent residuals and the con- 
vergence of components in the dominant range (|e| * j ) becomes our main 
concern. For these components, higher interpolation orders (I>m) is no 
more effective than the minimal order (I=m) . This again was exhibited 
in"liumerical experiments ([2], [10j), which confirmed that the multi-grid 
efficiency is not improved (except in the Tq/pl first cycles) by using 

I > m. 
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An efficient method to implement high-order interpolations in case of 
equations of the form A U = F is to base the interpolation on suitably- 
rotated difference approximations.  See [14, p. 53] and [7]. 

hili The Effective Smoothing Rate.  The smoothing rate y was defined 
m (3.8) as the slowest convergence rate for all components not represented 
at the coarser level. More relevant, however, is the slowest rate among 
all components for which the coarse-grid correction is not effective 
namely, ' 

(A.8)    y = max {y{9) : \ < |e| < u  or a (6) > 1} , 

which we call the "effective smoothing rate".  It is clear, on one hand, 
that go rate faster than y can be generally obtained as rate of convergence 
per G relaxation sweep, no matter how well and how often the G   problem 
is solved.  On the other hand, the rate y can actually be attained (or 
approached) by correctly balancing the number of relaxation sweeps in 
between CGC cycles (see Sec. A.6).  In most cases (all cases examined by 
us) one can make a (6) < 1 for all [ 61 < \     by proper choice of I^see 
Sec. A.4), and it is therefore justifiable to use y as the effective 
rate when relaxation schemes are studied by themselves. 

A.4.  The Fine-to-Coarse Weighting of Residuals (Ik_1), and the 

Coarse-Grid Operator L " .  The transfer of the Gk residuals 
k   k   k k vi 

r = f - L u to the coarser grid G ~ , to serve there as the right-hand 

s£de f    (see Sec. 4, Step e) can be made in many ways.  Generally 
f is defined as some weighted average of the residuals in neighboring Gk 
points: 

(A.9)        f^Cx) = i^1 r
k
(x) =  2 p^ r

k
(x+vh), 

where v= (v^v^. . . ,vd> , v  integers, and the summation is over a small 
set.  In terms of these weights, p (6) in (A.2) is given by 

(A.10)      p(6) = Z pv e
i6'V  . 

The coarse grid operator L*""1 can also be chosen in many ways, e.g., 
as some weighted average of the operator L in neighboring points. 

How are these choices to be made? The main purpose should be to min- 
imize a, but without investing two much computational work in the weighting 
Usually, it is preferable to adjust p  and not LK ±,  because.this provides 
enough control on a   (cf. (A.2)) and because complicating L*'1 adds many 
more computations and gets increasingly complicated as one advances to still 
coarser levels.  For the programmer, using the same operators at all levels 
is an important simplification (cf. App. B), especially for non-linear pro- 
blems . 
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It is clear from (A.4) that we should take p(o) = I P - 1-  There is 
no apriori restriction, however, on the signs of the weights p^ The 

trivial weighting 

(A.11)    Po=l,   pv=0 for V^O;     P(6) Hi, 

called injection, has an important advantage in saving computations, not 
only because the weighting itself issaved, but mainly because it requires 
the computation of r* only at the G* X points, while other weighting schemes 
compute r at all G points, an additional work comparable to one G relax- 

ation sweep. 

Examples.  For symmetric second-order equations, injection should 
usually be used.  For the 5-point Laplace operator, f^example, if we take 
I*"1 to be injection, I ^ linear interpolation and L   also a 5-point 

Laplace operator, we get ö  = ä    = 1, the minimal possible value. Any 
weighting is a pure waste, including the "optimal" weighting 

(A.12)    p00 = i,   p01 - P^ - P10 - P_10 " | '   Paß-oft*|«| + |ß|>l 

which minimized Ö , giving 5 = j , but does not lower 5. Numerical tests 
(modifying the program of Appendix B) indeed showed no improvement by 
weighting.  If, however, the equation has strong variation, making B^ 
quite different from B^ we may get for injection a  = OQ > 1, while 

weighting (A.12) will keep 5Q safely below 1, giving a  = 1. 

For higher-order equations, non-trivial weighting offers an important 
advantage.  If, for example, iT  and L _ are 13-points biharmonic operators 
and I _ is cubic interpolation, then a  = 3 for injection, while a  - 1 
for the weighting 

_n-n   = —      D=0  for   I a I +131 f  1• 
p01 = P0-l " P10 " P-10  4 '     PaB ' ' 

A 5  Finite Elements Procedures.  The main difference between finite- 
element and finite-difference multi-grid procedures is in the interpolation 
schemes.  In the finite-element case, interpolation procedures follow auto- 
matically from the variational formulation and tfce definition o| the approx- 
imation spaces Sk (corresponding to the levels G ).  Usually, S is a sub- 
space of S  .  The coarse-to-fine interpolation is, therefore, simply the 
identity operation.  Also, if the variational problem in S is to minimize 
A (v*), then, fpr^any given approximation v , the correction problem an the 
coarser space S   is, simply, to minimize 

(8.13)     Vl(vk_1) = Vvk + VX"1) ' 
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Example•  Consider the standard example, where S is the space of 
piecewize linear functions on the triangulation G and ä is a Dirichlet 
inte.gralkwhoge minimization is equivalent to the difference equation 
&V    = F , A being the 5-point Laplacian.  Computing K       by (A,B) , it 

turns ojatjto be equivalent to the equation Ak_1 Vk_1 = lk_1 (Fk-AkyK) 
where I k has the weights (cf. Sec. A.4). k 

P00 = 4 '    P01 - pll = Pio = P0-l - p-l -1 " p-io = I • 

These weights give the same multi-grid convergence rate as injection (and 
are, therefore, redundant). 

A-6- Criteria for Slow Convergence Rates.  (A)  Relaxation sweeps, 

say on G , should be discontinued, and a switch should be made to a coarse- 
grid correction, when the rate of convergence becomes slow; e.g., when 

(A.14)      residual norm     _ g    +  3y 
residual norm a sweep earlier — ^ ~ -3 

a + 3 

The norm here is a suitable (e.g., L , L^ or (A.18))  discrete measure, 
usually of the "dynamic" res^.duals_,  that is, residuals computed incidentally 
to the relaxation process.  y and a  are defined in (A.8) and (A.5), respec- 
tively^ Usually, one can choose the I   weighting so that ö=l, in which 
case y=y.  in any case, (A.14) is designed to ensure that, on one hand, 
the CGC cycle is delayed enough to make its a  magnification small compared 
with the intermediate reduction by relaxation sweeps.  On the other hand, 
for 9 with y(6) considerably slower than y, the CGC cycles are still suf- 
ficiently frequent to compensate for the slower y, since their reduction 
rate a(6) decreases rapidly ((A.4) with p (0)=1). the stopping rule (A.14) 
also prevents low error frequencies from dominating relaxation, thus 
avoiding significant feeding from low to high frequencies (through boundary 
and nonlinear interactions). 

If the "stopping rate" n varies over the domain of computations (as a 
result of variations in L, in case of nonlinear or non-constant-coefficients 
problems), the largest n should be chosen for the stopping criterion (A.14). 
If log n changes too much over the domain (which should not happen when 
a proper relaxation scheme is used), then (A.14) must be checked separately 
in subdomains, and partial sweeping (see Sec. A.9) might be used. 

An appropriate value of n may also easily be found by direct trial and 
error.  Such value is typical to the (locally linearized, coefficient- 
freezed) problem, is independent of either h, SI  or F, and may therefore 
be found, once for all, on a moderately coarse grid.  In some nonlinear 
problems the value may need some adjustment as the computations proceed. 
Whenever the coarse-grid corrections seem to be ineffective, n should be 
increased, e.g., to (l+3n)/4.  Generally, the overall multi-grid con- 
vergence rate is not much sensitive to increasing n: At worst, the rate 
may become n instead of the theoretically best rate max y 7     (cf. 

Sec. 6.2). ü 
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For the Poisson actuation with Gauss-Seidel relaxation, for example, 

we have 0=1, y=y= .5, hence n=.6^  T,he example in Appendix B «*£«*"* 
the optimal MG convergence rate y3/4-* .595 is indeed attained  Experiment- 
ing with this program gave similar results for any smaller n (the reason 
being that the minimal number of two sweeps at each level is good enough 
in this problem), while for any n<.95 the total amount of computational 
work was no more than twice the work at n=-62. 

(B)  Another way to decide upon discontinuation of relaxation is to 
directly measure the smoothness of the residuals. The switch to coarser 
grids can be made, for instance, when differences between residuals at 
neighboring points are small compared with the residuals themselves. 

A.7.  Convergence Criteria on Coarser Grids.  In the CG^mode analysis 
above"it was assumed that the problem on the coarser grid G   was fully 
solved and then interpolated as a correction to the G approximation  In 
the actual multi-grid algorithm (Sec. 4) we solve the G   problem iter- 
atively, stopping the iterations when some convergence criterion is met. 
This criterion should roughly detect the situation atjWhich more improve- 
ment (per unit work) is obtained by relaxing on the G grid (after inter- 
polating) then by further iterating the G*  problem (before interpolating). 
po  x^y, ZT T  .„ fo.^1a^ 4-0 q~r 4 6 2 in [3]) shows that such a cn- A crude mode analysis (similar to bee. <*.o..£ ±u   L->J; 
terion is 

(A.15)    llr^1!! <6 ||rk||,   6 = 

2"d 

*-\ ) 

(^k   - yk-l> 

where d is the dimension, 5 is given by (A.5), 

-1 
S=  max  |   Z R(e,9") Bk(6') Vl*

26*" P(e'} 

lei < | e-eT 

and p = ^(1"2"d) on the G* grid (cf. (A.8)). |]rk_1|| is any norm of the 

current residuals in the Gk_1 problem, while |lrk|| is the corresponding 
norm in the G* problem.  It is important that these norms are comparable: 
They should be discrete approximations to the same continuum norms.  Also, 
if r   are the "dynamic" residuals (i.e., computed incidentally to the 
last Gk  relaxation sweep, using, latest available values of the relaxed 
solution) then r should be the GK dynamic residuals, unlike the residuals 

transferred to Gk_1 (to define fk-1; cf. Sec. A.4) which must be "static" 
residuals (i.e., computed over the grid without changing the solution at 
the same time).  If, however, rk and rk_i are static and dynamic, respectively, 
the parameter 6 in (A.15) should be multiplied by a certain factor ß (see 

Sec. 4.6.2 in [3]). 
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The stopping criterion (A.15) is based on the assumption that error 
components with |6| - - dominates the process.  In the first Tq/pl CGC 
cycles, however, lower components are dominant, and the main consideration 
is to converge them. Hence, at that initial state, the G   convergence 
criteria should be 

(A.16)    Or*"1!! < ||T
k-l|| 

where T   are the G " truncation errors (cf. Sec. A.8). 

_  _ The key factor 6 can also be found by trial and error.  Like n above, 
it is essentially independent of h, ß and F, and may, therefore, be found 
once for all by tests on moderately coarse grids.  Numerical experiments 
show that the overall multi-grid efficiency is not much sensitive to very 
large variations in 6 and, in particular, 6 may be lowered by orders of 
magnitudes without large changes in the efficiency.  For example: 

For the 5-points Poisson equation with Gauss-Seidel relaxation, in- 
jection and linear interpolations, (A.15) yields 6 = .219. Numerical 
experiment (e.g., with the program in Appendix B) show that with any 
.001 < p <_ .5 the computational work is no more than 25% above the work 
with p = .22, and no more than 100% extra work for any .0001 < p < .7. 

h^äi Convergence on the Finest Grid.  On the finest grid GM the so- 
lution is usually considered converged when the (static) residuals are of 
the order of the truncation error, in some appropriate norm.  One way to 
estimate the truncation error is to measure them on coarser grids by (5.7) 
and extrapolate (taking into account that they are 0(hp))  Another, related 
but more straightforward criterion is to detect when the G solution 
has contributed most of its correction to the G I solution.  In the 
FAS algorithm the natural place to check is when a new FH_I is computed, 
the convergence test being 

(A.17)   | IF*1-1 - F*"1 .  11 « I IF*"1 - I«"1 FM| I 
''       previous''     ''        MM' 

The norm here may be any  (L , L„, etc.), but the most relevant one 
is the discrete version of the norm (cf. Sec. 8.1) 

<A-18> ||f||  = / G(x) |f(x)|dx 

k  A.9.  Partial Relaxation Sweeps. A partial relaxation sweep over 
G is a relaxation sweep that may skip some subdomains of G .  (Unlike 
"selective" relaxation sweeps, which in principle pass through all the 
grid points, although corrections may not be introduced in some of them. 
Cf. Sec. 3.2.  A partial sweep may be selective, too.) 

Partial sweeps are not used much in standard relaxation calculations. 
Usually, a slow-to-converge subdomain is coupled to other subdomains 
and therefore cannot be relaxed separately.  In the multi-grid process, 
however, only high-frequency error components are to be reduced by relax- 
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ation, and this can be done separately in subdomains: With regard to 
high-frequencies, subdomains are practically decoupled. Hence, in the 
multi-grip process, partial sweeps are potentially very important.  In 
fact, high-frequency amplitudes may vary greatly over the domain, especially 
if p and ä  vary much, or if high-frequency error components are introduced 
at boundaries, making partial sweeping there very desirable. 

Partial sweeping may be performed by applying a criterion for slow 
convergence (Sec. A.6) separately in subdomains.  (If the connected 
region of partial relaxation is small, n in (A.14) should be changed to 
(Ö p+3p)/(a +3), where y is the largest amplification factor for Fourier 
components on the relaxed region.) A subdomain may be excluded from 
subsequent relaxation sweeps if slow convergence is shown simultaneously 
on that subdomain and on all neighboring subdomains. Under relaxation 
may be used to phase-out the relaxed region (cf. [3], Sec. 4.6.4). The 
subdomains may be chosen quite arbitrarily, but each of them should be 
large enough (at least 4x4) to allow for separate smoothing. 

A.10.  Convergence Criteria on Non-uniform Grids 

_k ;k_1 are not coextensive (i.e., the domain When G  and G' 
covered by Gk is only part of the Gk_1 domain; cf. Sec. 7.2), 

the convergence criteria (Sees. A.9-8) should be slightly modified. 

First, in (A.15), ||rk||  is not a comparable norm, since it may be 

measured on a much narrower subdomain. Instead, one can use the 

test 

(A.19)     llr^M < «llr^H/n, 
k-1 

where  ||rk_1||  is the residual norm computed on G    at the first 

relaxation1««^, after switching from Gk.  The division^ n in 

(A.19)  is designed to compensate for the fact that  ||rx  ||  is 

computed a sweep later than  ||r ||. 

The other modification is in (A.17), where it was assumed that 

GM is the finest level everywhere. Generally, the convergence 

test can be, for example, 

ex.»,   M? -iUioo.ii«N* - i^+i]i  f°rai:k=^ M_I)' 
where the norms are taken over <£+1  (or, more precisely, over Gk+1 - GR+2). 
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APPENDIX B:  SAMPLE MULTI-GRID'PROGRAM AND OUTPUT. 

_  This simple program of Cycle C (written in 1974 by the author at the 
Weizmann Institute) illustrates multi-grid programming techniques and 
exhibits the typical behavior of the solution process.  For a full 
description of Cycle C, see Sec. 4 or the flowchart in Pio. 1. 

The program solves a Dirichlet problem for Poisson equation on a 
rectangle.  The same 5-point operator is used on all grids.  The I 
residuals transfer is the trivial one (injection) , the I E Interpol 

The higher interpolation (A.7) and the special stopping 
criterion (A.16), recommended for the first [q/p] cycles, are not implemented 
here. 

t-w ^ 6aCh pid.Gk WS St°re botfc+Mk ***  ^ <k=l,2,...,M).  For handling 
tnese arrays f  is also called v  .  The coarsest grid has NXO x NYO 
intervals of length HO each.  Subsequent grids are defined as straight re- 
finements, with mesh sizes H(k) = H0/2**(k-l).  The function F(x,y) is the 
right-hand side of the Poisson equation.  The function G(x,y) serves both 
asMthe Dirichlet boundary condition (* ) and as the first approximation 
(UQ).  The program cycles until the L norm of the residuals on G is re- 
duced belo^ TOL, unless WORK exceeds WMAX.  After each relaxation sweep on 
any grid G , a line is printed out showing the level k, the L, norm of the 
( dynamic") residuals computed in course of this relaxation, and WORK, 
which is the accumulated relaxation work (where a sweep on the finest 
grid is taken as the work unit). 

Note the key rc_le of the GRDFN and KEY subroutines.  The first is used 
to define a grid (v ), i.e., to allocate for it space in the general vector 
Q (where IQ points to jbhe next available location), and to store its para- 
meters.  To use grid v , CALL KEY(k,IST,M,N,H) retrieves the grid para- 
meters (dimension MxN and mesh-size H) and sets the array IST(i) so that 
Vij = Q(IST(i)+J)•  This makes it easy to write one routine for all grids 

v ; see for example, Subroutine PUTZ(k).  Or to write the same routines 
(RELAX, INTADD, RESCAL) for all levels. 

To solve on the same domain problems other than Poisson, the only 
subroutines to be changed are the relaxation routine RELAX and the re- 
sidual injection routine RESCAL, the latter being just a slight variation 
of the first. 

For different domains, more general GRDFN and KEY subroutines should 
be written.  A general GRDFN subroutine, in which the domain characteristic 
function is one of the parameters, has been developed, together with the 
corresponding KEY routine.  This essentially-reduces the programming of 
any multi-grid solution to    programming a usual relaxation routine• 
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FEOGRAM CYCLE C 
EXTERNAL GfF 
CALL MULTIG (3f 2, 1 ., 6 , . 01 ,30. ,G,F) 
STOP 
END 

FUNCTION F (XfY) 
F = SIN (3.*(X+Y)) 
RETURN 
END 

CYCLE   C 

Right-hand side of the equation 

Boundary values and first approximation 
FUNCTION   G (X,Y) 
G=COS (2.*(X + Y)) 
EETURN 
END 

SUBROUTINE   MULTIG (NX0,NY0,H0,M,TOL,WMAX,U1,F) 
EXTERNAL   U1,F .        .^     , 
DIMENSION   EPS(10) Multi-grid algorithm 

DO    1   K = 1,M 
K2 = 2**(K-1) 
CALL   GRDFN(K,NX0*K2+1,NY0*K2+1,HQ/K2) 
CALL   GRDFN(K+M,NXC*K2+1,NYC*K2+1,HC/K2) 
EPS (M) =TOL 
K = M 
WU = 0 
CALL   PUTF(M,U1,0) 
CALL   PUTF(2*M,F,2) 
ERR=1.E30 
ERRP=ERR 
CALL   RELAX(K,K+M,ERR) 
WU=WU+U.**(K-M) 

(see Fig.   1) 

WRITE (6,4)K,ERR,WU 
FORMAT ('    LEVEL',12,' 
IF(ERR.LT.EPS(K) )GOTO   2 
IF    (WU.GE.WMAX) EETURN 
IF (K.EQ. 1.0R.   ERR/ERRP.LT.    .6)GOI0   3 
CALL   RESCAL(K,K+M,K+M-1) 
EPS (K-1) =.3*ERR 
K = K-1 
CALL   PUTZ (K) 
GOTO   5 
IF    (K.EQ.M) RETURN 
CALL   INTADD (K,K+1) 
K=K+1 
GOTO   5 
END 

SUBROUTINE   GRDFN (N, IMAX, JMAX ,HH) 
C0MMON/GRD/NST(20) ,IMX(20) ,JMX(20) ,B (20) 
DATA   IQ/1/ 
NST(N)=IQ 
IMX (N) =IMAX 
JMX (N) =JMAX 
H(N)=HH 
IQ=IQ+IMAX*JMAX 
EETURN 
END 

EESIDUAL NORM=',1PE10.3,'   MORK=•,0PF7.3) 

n=.6 

6=.3 

Define an IMAX x JMAX 
N 

array v 

SUBROUTINE KEY(K , 1ST, 1 MA X , JM AX,H!i) 
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C0Mi-lON/GED/NST(20) ,IMX(2Q) ,JMX(20) 
DIMENSION   IST(1) 
IMAX=IMX (K) 
JMAX=JMX (K) 
IS=NST(K)-JI1AX-1 
DO    1   I=1,IMAX 
IS=IS   +   JMAX 
1ST (I) =IS 
HH = H (K)   ' 
RETURN 
END 

(20) Set 
k 

1ST such that 

v"(I,J)= Q(IST(I)  + j) 

and set IMAX 

JMAX 

IMX(K) 

JMX(K) 

HH =  H(K) 

SUBROUTINE   PUTF(K,F,NH) 
COMMON   Q (18000) ,1ST (600) 
CALL   KEY    (K,IST,II,JJ,H) 
H2=H**NH 
DO    1   1=1,11 
DO    1   J=1,JJ 
X= (I-1)*H 
Y = (J-I)*H 
Q (IST(I)+J) =F(X,Y)*H2 
RETURN 
END 

K 
H(K) 

NH ,K 

SUBROUTINE   PUTZ(K) 
COMMON   Q (18000) ,IST(200) 
CALL   KEY (K,IST,II,JJ,H) 
DO    1    1=1,11 
DO    1   J=1,JJ 

I   Q (1ST (I) 4J) =0. 
RETURN 
FND 

SUBROUTINE   RELAX(K,KRHS,ERR) 
COMMON   Q (18000) ,IST(200) ,IRHS(200) 
CALL   KEY (K,IST,II,JJ,H) 
CALL   KEY (KRHS, IEH S, II, JJ , H) 
11=11-1 
J1=JJ-1 
ERR=0. 
DO    1   1=2,11 
IR=IPHS(I) 
IO = IST (I) 
IM=IST (1-1) 
IP = IST (1 + 1) 
DO    1   J=2,J1 

A=Q(IR + J)-Q(I0+J+1)-Q(I0+J-1)-Q(IM+J) -Q(IP+J) 
EER=ERR+ (A+4 .*Q (10 + J) ) **2 
Q(IO + J)=-.25*A 
ERR = SQET (ERR)/H 
RETURN 
END 

SUBROUTINE   INTADD (KC,KF) 
COMMON   0. (18000) ,ISTC (200) ,ISTF(200) 
CALL   KEY (KC,ISTC,I1C,JJC,HC) 
CALL   KEY (KF,ISTF,IIF,JJE,HF) 
DO    1    IC=2,IIC 
IF=2*IC-1 
;"_; 570 
u £ —  I 

K 

A Gauss-Seidel Relaxation sweep 

on the equation 

V K _     KRHS = v 

giving 

ERR = ||residuals|| 

Linear interpolation and addition 

KF    KF    KF  KC 
/  ^ v  +1  v 

KC 



IFO = ISTF (IF) 
IFM=ISTF (IF-1) 
ICO = ISTC (IC) 
ICM=ISTC (IC-1) 
DO    1   JC=2,JJC 
J?=JF+2 
A = .5* (Q(ICO+JC)+Q(ICO + JC-1) ) 
AM = .5* (Q (ICM + JC) +Q(ICM+JC-1) ) 
Q(IFO+JF)    =   Q (IFO + JF) + Q(ICO + JC) 
Q(IFM+JF)    =   Q(IFM + JF)+.5*(Q(ICO+JC)+^(ICM+JC)) 

Q (IFO+JF-1) =Q (IFO + JF- 1)+ A 
Q(IFM+JF-1)    =   Q(IFM + JF-1) + .5*(A + AM) 
RETURN 
END 

SUBROUTINE   RESCAL(KF,KRF,KRC) 
COMMON   Q (13000) f IDF (200) ,IRF(200) , IRC (200) Residuals injection 
CALL KEY (KF,IUF,IIF,JJF,HF) 
CALL KEY (KRF,IRF,IIF,JJF,HF) 
CALL KEY (KRC,IRC,IIC,JJC,HC) 
IIC1=IIC-1 VKRC ^ coarse   (vKRF _  .    KF} 

JJC1=JJC-1 fine h 

DO    1   IC=2,IIC1 
ICR = IRC (IC) 
IF=2*IC-1 
JF = 1 
IFR=IRF (IF) 
IFO = IUF (IF) 
IFM = IUF (IF-1) 
IFP = IUF (IF+1) 
DO    1   JC=2,JJC1 
JF=JF+2 
S = Q (IFO+JF+1) + Q(IFO + JF-1) + Q (IFM+ JF) + Q (IFP+JF) 
Q (ICR+JC)=4.*(Q(IFR + JF) - S+ 4 . *Q (IFO+JF) ) 
RETURN 
END 

571 



LEVEL 6 RESIDUAL NOFM= = 2.S14E401 WOBK= -  1.000 
LEVEL 6 RESIDUAL NORM= = 2.764E+01 WORK^ 2.000 
LEVEL 5 RESIDUAL NORM = = 2.659E+01 WORK= 2.250 
LEVEL 5 RESIDUAL NOEM = = 2.555E+01 WQRK=- 2.500 
LEVEL 4 RESIDUAL NDRM = = 2.317B+01 WOEK= 2.563 
LEVEL 4 RESIDUAL NORM= = 2.095E+01 WORK= 2.625 
LEVEL 3 RESIDUAL NDRM = : 1.649E+01 WORK> 2.641 
LEVEL 3 RESIDUAL NORM= : 1.285E+01 WQRK= 2.656 
LEVEL 2 RESIDUAL N0RM= : 7.626E+00 WORK= 2.660 
LEVEL 2 RESIDUAL NORM= : 3.840E+00 WORK= 2.664 
LEVEL 3 RESIDUAL NORM = : 5.058E+00 WORK= 2.680 
LEVEL 4 RESIDUAL NORM= : 8.006E+00 WORK= 2.742 
LEVEL 4 RESIDUAL NORM= " 2.545E+00 WORK= 2.805 
LEVEL 5 RESIDUAL NOEM= 9.736E+00 WORK= 3.055 
LEVEL 5 RESIDUAL NORM= 2.464E+00 WORK= 3.305 
LEVEL 6 RESIDUAL NOEM= 1.064E+01 WORK= 4.305 
LEVEL 6 RESIDUAL N0EM= 2.442E+00 WORK= 5. 305 
LEVEL 6 RESIDUAL NOEM= 2.399E+C0 WORK= 6.305 
LEVEL 5 RESIDUAL NOEM = 2.351E+00 WORK= 6.555 
LEVEL 5 RESIDUAL NORM= 2.3C3E+00 WORK= 6. 805 
LEVEL 4 RESIDUAL NORM = 2.173E+00 WORK= 6.867 
LEVEL 4 RESIDUAL NORM = 2.043E+00 WORK= 6. 930 
LEVEL 3 RESIDUAL NORM= 1.739E+00 WORK= 6.945 
LEVEL 3 RESIDUAL NORM= 1.453E+0G WORK= 6.961 
LEVEL 2 RESIDUAL NORM= 9.889E-01 WORK- 6.965 
LEVEL 2 RESIDUAL NORM= 6.183E-01 WORK= 6.969 
LEVEL 1 RESIDUAL NORM= 2.760E-01 WOF.K= 6.97C 
LEVEL 1 RESIDUAL NORM= 5.170E-02 WORK= 6.971 
LEVEL 2 RESIDUAL NORM = 2.292E-01 WORK= 6.975 
LEVEL 3 RESIDUAL NOEM = 5.465E-01 WORK= 6.990 
LEVEL a RESIDUAL NORM= 7.71CE-01 WORK= 7.053 
LEVEL 4 RESIDUAL NORM= 1.163E-01 WOEK= 7. 115 
LEVEL 5 RESIDUAL NOEM= 8.657E-01 WORK= 7.365 
LEVEL 5 RESIDUAL NORM= 1.058E-C1 WORK= 7.615 
LEVEL 6 RESIDUAL NORM= 9.059E-01 WORK= 8.615 
LEVEL 6 RESIDUAL NORM= 1.052E-01 WORK= 9.615 
LEVEL 6 RESIDUAL NORM = 1.012E-01 WORK= 10.615 
LEVEL 5 RESIDUAL NORM= 9.759E-02 WORK= 10.865 
LEVEL 5 RESIDUAL NORM = 9.452E-02 WORK= 11.115 
LEVEL 4 RESIDUAL NORM= 8.710E-02 WORK= 11.178 
LEVEL 4 RESIDUAL NORM = 7.960E-02 WORK= 11.240 
LEVEL 3 RESIDUAL NORM= 6.389E-02 WORK= 11.256 
LEVEL 3 RESIDUAL NORM= 4.931E-02 WORK= 11.271 
LEVEL 2 RESIDUAL NORM= 2.916E-02 WORK= 11.275 
LEVEL 2 RESIDUAL NORM= 1.622E-02 WORK= 11.279 
LEVEL 2 RESIDUAL NORM= 1.017E-02 WORK= 11.283 
LEVEL 3 RESIDUAL NORM= 1.949E-02 WORK= 11.299 
LEVEL 4 RESIDUAL NOEM = 3.128E-02 WOPK= 1 1.361 
LEVEL 4 RESIDUAL NORM= 8.843E-03 WORK= 1 1. 424 
LEVEL 5 RESIDUAL NORM= 3.710E-02 WORK= 1 1.674 
LEVEL 5 RESIDUAL NORM= 8.486E-03 WORK= 11.924 
LEVEL 6 RESIDUAL NORM= 4.0C7E-02 WOEK= 12.924 
LEVEL 6 RESIDUAL NORM = 9.051E-03 WORK= 13.924 

OUTPUT 

Error reduction by a factor 

greater than 10 per cycle. 

Each cycle costs 4.3 wu 

Insensltivlty:Results would 

be practically the same 

for any .005 <_ 8 <  .5 

or any 0 < n < .65 
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APPENDIX C.  RIGOROUS BOUND TO MODEL-PROBLEM CONVERGENCE RATE. 

We consider the model problem: 5-goints Poisson equation WJ 
on a (n +1) x fo2+l) rectangular grid G* with. Dirichlet boundary conditions. 

Let n. i 2V and let Gk be the (2*^+1) * (w\+l) uniform grid on the same 

domain, with^mesh size h,=2~\, (k=o, 1 M) . We will estimate the K    ° M 
convergence rate and work in one multi-grid cycle C . 

The cycle CM is defined inductively as follows:  (i)  Make r relax- 
ation sweeps on the GM approximate solution u". To facilitate the rigorous 
Fourier analysis we choose as our relaxation the Weighted Simultaneous Dis- 
placement (WSD, or "weighted Jacobi") method with the optimal weights ü>0(J-48/41, 

"oi^o-r^io^-icf8741 (see Sec' 3-3)> (ii) Inject (cf' Se°" AM-I the 
residual problem to GM_1.  (iii)  Get an approximate solution v   to this 

GM_1 problem by two C**"1 cycles, starting from the zero approximation, 

(iv)  Correct uM - uM + I^f"'1.  where 1^ is linear interpolation. 

It is easily calculated that one WSD sweep amplifies the Fourier com- 
ponent exp(i6-x/hM) of the residual by the factor 

u(9) = 1 - (2 - cosG1 - cos62) (24 + 8cos91 + 8cos92) / 41. 

Denote by A(6) the amplitude, before the CM cycle, of tjje 9=(9 ,0,,) com- 
ponent of the residual.  Acutally present on the grid G are only components 
of the form 6 = (a^/h^a^) , (a.= + 1, + 2, ..., +(n.-D), and their 

amplitudes MB^J  = -MB^-BJ   = -A(-eif82) are real (assuming two of 

the boundary lines to lie on the axes).  Since V^^) = vl±*v+?2)   is real, 

the r relaxation sweeps operate separately on each residual mode, trans- 

forming its amplitude A(6) to A'(6) = y(9)r A(9). 

For any component 6= (6^6,,) such that |e| = max( | ej , | 6 |) < ir/2 , 

denote 61 = (9,,*f .     92 - ^ + ir,92>, 03 = (B-^ ± *> ,  0 = <B1±ir. %+?) . 

where each + sign is chosen so that |e*| < ir,(i-1,2,3,4).  Of these four 

»harmonics", only the 91 mode appears on GM_\ its amplitude there (in the 

right-hand side of the GM_1 residual problem formed in Step (ii)) being 

(C.I)     Ag = A'(61) + A'(92) + A'(93) + A'(04). 

Let E denote an upper bound to the factors by which any C cycle reduces 

the L norm of the residuals on (T.  In particular, the two C   cycles 

(Step (iii)) are equivalent to solving a GM_1 problem with amplitudes aQ 
instead of AQ, where 
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(C.2)        Z   |an-A I2 < e  4    E  A 2 

|e| <§- 'BO1
- 

eN-i |e|l| e 

Hence, interpolating the computed correction from GM_1 to GM (Step (iv)), 
the new residual amplitudes are easily calculated to be 

A(G£) = A'(0£) - s(0£) ac 

= pOV A(D£) - S(6£)Ae + S(9*) (Ae-ae),     (£=1,2,3,4,), 

where 

(1 + cos6 )(1 + cosO.)(4 - 2cosen - 2cos9 ) 
S(0) =  i fL 1 ±_ 

4 - 2cos261 - 2cos29 

Hence 

(C3)     Z Ä(0V < 2q2 Z A(eV + 2 Z S(GV (A -a )2 , 
A £       '   £ 9  6 

where q is any upper bound to the spectral radii of the 4x matrices 0(9) 
defined by x 

Q£m (6) = (6£m ~  s<9*» nOV . (1 ±£,m < 4). 
2 

Denoting $_. = 1 - cos 9  , it is easy to check that 

£ 2     1     ßi2 + B?2    ^ &o (C.4)    I S(eV = ±(i + _i 1 l_l }<  1 
A (ß1 + ß2)

2   ßl + ß2  -  2 

Hence, summing (C.3) over the relevant range of 9, using (C.2) and (C.4) 
and then (C.l), we obtain. 

I    Ä(0)2     <     2q
2 Z       A(9)2  +  e,   ,4 Z       A 2 

'    ' IT 

±2 !■" |9| < TT ^ lei < *   e 

- (2q2 + YEM-I4)  ,  , z    A(0)2 > 
|e| < 7T 

where y  is any upper bound to all Z y(9£)2r,  (0 < |e| < it/2) . 
£ ~ 

Thus, we have obtained the bound 

<C5>     eM
2 - 2q2 + yeM_^   . 

A simple computer program confirms the bounds q2 = (7/41)r and 

«V that7e41i ^Ol^00" ^  ^ ^^ " ^ f°ll0WS' ** induction M — 
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The number of operations to the CM cycle is W 1 (12^-3) nn + 2*^ . 
Hence ^ auction on M,WM ±(24r+6) n^. We thu£ have xn summary 

Theorem. The above CM cycle reduces'the L2 error by a factor < .101 and 

costs 78 operations (additions and multiplications) per (GM) grid point. 

The theorem can be improved (to .1 reduction in only 53 operations- 
per-pSnt) S defining tneV cycle to consist of r+M relaxation sweeps and 
online CM^ cycle, and choosing large r.  (Employing arbitrarily large r 
payl only with^imultaneous-displacement schemes on rectangular domains, 

where there is no feed from low to high frequencies). 

In practice, .1 reduction is obtained in about 26 °Perati°n^  <^ns_ 
App. B.  The Gauss-Seidel sweep employe^ there can be done ^qperati^is 
JS-point  But for every 3 sweeps on G* the interpolations I   and I 
are SS performed, eachcos.ting an average of 6/4 operations per poxnS. 
Zlrl    I work unit in App. B should be considered as representing 
OxS+'s  )/3 - operations) .  These operations involve only additions and 

shifts. 

575 



SINGULAR VALUE DECOMPOSITION: 

APPLICATIONS AND COMPUTATIONS 

Gene H. Golub 
and 

Franklin T. Lok 
Stanford University, Stanford, California 

ABSTRACT. The Singular Value Decomposition (SVD) of a rec- 
tangular~^atrix~is described.  Several problems arising in Jata 
analysis are given and their solution is given in terms of the SVD. 
Numerical methods are discussed for computing the decomposition for 

dense and sparse matrices. 

1.  INTRODUCTION. This paper is concerned with the singular 

value decomposition of a given matrix. The decomposition is very use- 

ful although it may not be as familiar as some of the other matrix 

decompositions. We shall describe the decomposition, give some 

specific examples of its applications, and suggest some methods to 

compute the decomposition. 

There are many matrix decompositions that are useful in mathe- 

matical applications. A very familiar one is the QR decomposition of 

a square matrix A: 

A = QR , 

where Q is an orthogonal matrix and R is an upper triangular matrix. 

There are several numerical schemes to compute this decomposition. We 

could use the Gram-Schmidt method; the columns of Q, are the orthogonal 

columns generated by the process. Another way to generate Q, and R 

is through the use of Householder transformations. 
Another familiar decomposition Is the reduction of a square 

matrix to its Jordan canonical form: 

-1 
A = XJX   ; 

where X is nonsingular and J is a block diagonal matrix in which 

*This work was in part supported by U.S. Army Research Grant 
DAHCO^-75-G-Ol85- 
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each diagonal matrix is an elementary- Jordan block J (A.), 
r i viz. 

J (A. ) = r l 

A,  1 

A.  1 O 

O 
A. rX x 

This decomposition has been used extensively in the study of stability 

of differential equations. Unfortunately, there does not appear to be 

any good numerical algorithm to compute the decomposition feolub and 

Wilkinson [lU]). 

Finally, we shall discuss the singular value decomposition of 
an m X n matrix A: 

A USV* , 

where U is an m X m orthogonal matrix, V is an n X n orthogonal 

matrix, and S is an m X n matrix with non-negative elements down the 

main diagonal and zeros everywhere else. For our discussion, we shall 

assume that A has at least as many rows as columns so that m > n, 

although this, is not always the case. There are many proofs of this 

decomposition, for instance, in the book by Forsythe and Moler [6]. 

A very clear and useful discussion is given in the book by Lanczos: 

"Linear Differential Operators" [17]. 

It is not very difficult to see that U consists of the 

eigenvectors of AA*, V consists of the eigenvectors of A*A and 

the diagonal elements a., 1 < i < n, Df Z are the non-negative 

square roots of the eigenvalues of A*A. We assume the ff.'s are 

arranged in such a way that 
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a   > er > • • • > o^ > 0 , 

where r is the rank of the matrix A. 

The singular values and the eigenvalues of a given matrix can 

frequently differ.  Consider an m X m matrix 

A = 

0  1 

0  1 O 
«    • 

O 
The matrix A is of rank m-1 hut all its eigenvalues equal 0. However, 

(m-l) singular values of A equal 1 and only one singular value is 

zero. Hence the number of non-zero, eigenvalues of a matrix gives a lower 

bound on its rank, whereas the number of non-zero singular values of 

a matrix is its rank. 

2. APPLICATIONS.  In this section we shall discuss some 

applications of the singular value decomposition (cf. Golub [3]). 

A.  Let n      he the set of all m X m orthogonal matrices. 

We wish to replace a given m X m matrix A by an m x m orthogonal 

matrix Q that is near A.  In order to study the nearness of one 

matrix with respect to another matrix, we introduce a norm; we use the 

Frobenius norm of a matrix, viz., 

I|A||= (*. Ia./)1/2 

We shall use this matrix norm throughout this discussion. Our problem 

then consists of the following: let A be an arbitrary m X m matrix; 

determine 0, £ um 
such that 
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!|A -  Qll < ||A - X|| for any    X G U 

This problem is important in factor analysis and has also found appli- 

cations in aeronautics (cf. Bar-Itzhack [l]). 

The solution to the problem is fairly simple.  It is as follows: 

if 

A = USV*, 

then we replace all the singular values by 1 and write 

Q = UIV 
t 

It is well-known that the singular values of an orthogonal matrix all 

equal 1. Now, 

||A -  Q||  =   IIUSV13  -  UIV^I 

=  ||2 -  l||     since the Frobenius norm is unitarilv 
1) invariant" 

=    [(^-l)2   +    (CT2-1)2 
+    (CT   -lH n 

2nl/2 

this value then is a measure of the departure from orthogonality of a 

given matrix. The result is true for all unitarily invariant norms 

(Fan and Hoffman [5]). 

B. We consider the following important generalization of 

problem A.  Let A be an m X n matrix associated with a set of data 

and let B be obtained from A through a rotation of the data.  The 

following figure may represent a typical situation: 

A norm is said to be unitarily invariant if ||AU| 
where U*U= I and V*V = I. 
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Our idea is to replace A by BQ, that is, we wish to replace A by 

a rotation of B. We want to determine G U  such that 
n 

||A - BQJI = min . 

The solution is again given in terms of the singular value decomposition. 

Green [15] and Schönemann [21] showed that if 

and 

then 

B*A = USV* 

UV* , 

||A - BQJI < ||A - BX||       for all      X £ U. n 

Assume A£!| 

Let 
(r) 
m,n 

(k) 
m->n (k)  /    \ 
We want to determine B £ ^    (k < r) such that 

^x"'  be the set of all m X n matrices of rank k 

A Bll < A - X for all X G % 

m>n 

(k) 
m,n 

In other words, we want to approximate the matrix A with a matrix of 

lower rank and we want the best approximation for the fixed rank. The 

solution is given in terms of the singular value decomposition. 

Let A = USV*, then B = UfljV , where 

m X n 

Wow 
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I|A - B|| = IIUEV* - ujy*! 

= P - «til 

= ^i+-+^l/2- 

Mirksy [18] showed that the above result is true for all 

unitarily invariant norms. 

Consider the following example. Let 

A = 
1   0 

0  IG"10/ 

Mathematically, the matrix is of rank 2. But the following rank 1 

matrix 

B = 
1  0 

0  0 

-10 
differs from A by only 10   and is the closest matrix of rank 1 to A. 

D. The singular value decomposition also enters in the com- 

putation of the pseudo-inverse of a matrix. An n x m matrix X is a 

pseudo-inverse of an m x n matrix A if it satisfies the following 

four relations: 

(i) AXA = A, 

(ii) XAX = X, 

(iii)  (AX)  = AX, 

(iv)  (XA)* - XA , 

582 



The pseudo-inverse X is unique and we denote it "by A . 

verify that given 

We can easily 

we always have 

where 

A - UZV    , 

A+ = VAl^ , 

A = 

o> 

_1_ 
0"r 

n X m 

If    A    is  square and of full rank,  then    A    - A    . 

Consider the following problem. Suppose we have an m-vector 

b and an m X n matrix A. We would like to determine an n-vector x 

such that 

||AX - b||2 = min. 
r*j rw ' 

If   A    is not a matrix of full rank,  we do not have a unique solution 

to the problem.    Let 

x = {x|||Ax - h||2 -min]   . 

We would like to determine    £ £ X    such that    ||S|I2    is a minimum. 

27 
||yj|2 = (Ey2//2    for    X= (yi,y2, ., yn) 
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^  + + 
The solution is given by x = A b. Hence if we had A , it would he 

fairly simple to compute a sequence of solutions {x.}  given the 

sequence of data {b.}. 
J 

Unfortunately, the pseudo-inverse of a matrix is not a continuous 

function of the elements of A.  If we let 

A(e) = 

where e > 0, then 

A+(£) = 

1 

0 

/ 1 

V 0 

But 

A+(0) = 
0 

0 

Hence for a small positive e, we see that A (e) is quite different 

from A (0). Thus the computation of the pseudo-inverse is quite an 

ill-conditioned problem. 

If we want to compute the pseudo-inverse in a stable way, we 

must impose some additional conditions. We shall give one possibility 

which seems quite satisfactory. 

Suppose we are given a matrix A but we also know that the 

matrix is really some matrix B plus some perturbation A, viz., 

A = B + A . 

We do not know B but we know some bound on the error: 

Nl < Ti ; 

for example, this would happen if the elements of A were empirical 

data with known uncertainties. We wish to determine B such that 

||A - B|| < TI , 
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and 

rank(B) = min . 

The solution is given by the singular value decomposition. If we write 

then 

if 

and 

\ = TOkyt > 

B = B 
P 

2       . .     2    .    2 
Vl '" + ^r-11    ' 

2 2 2 2 
ffp + Vl+ ••'   + °r>T1     ' 

Note that although 

||A - B|| < Ti 

yet 

In i     \ V2 

||A+ -B+||  =(^-+  '••  +4   ' 
Vi 

E.    We may use the singular value decomposition to solve 

homogeneous equations.    Suppose   A    is an m x n matrix of rank r. Let 

AV = UZ . 

We partition V into an n>< r matrix V  and an n x (n-r) matrix Vg, 

i.e. 

v = (yvv2) , 
and 

A(YVY2)  = (UZ^O) , 

where 
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Then 
m x r 

AV0=0, 

and we have found an orthogonal basis for the null space of A. 

Given a set of eigenvalues of a square matrix, we need to 

solve a set of homogeneous equations in order to find the eigenvectors. 

Golub and Wilkinson [ llj.] used the idea to compute the Jordan canonical 

form of a matrix. 

Often, we wish to know which columns of a given matrix A are 

linearly independent.  If A is a set of measurements and if some 

columns are dependent, we may want to determine which are the dependent 

columns, eliminate them and obtain a linearly independent set of measure- 

ments. The singular value decomposition can be very effective for this 

purpose. 

Let A € ^n~   and let the last column of A consist of 

all zeros. We find 

V2 

from which we see we should eliminate the last column of A. 

In general, we want to take V  and perform Gaussian elimina- 
+    c- 

tion with complete pivoting on V  such that 

where 
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^   is an (n-r) X (n-r) upper triangular matrix 

D   is an (n-r) X r matrix, and 

II   is an n X n permutation matrix. 

Then if 
An = (AX,A2) , 

we can decide that the columns of A2 form a linearly independent 

basis for the columns of A. This and other problems of dependence 

are discussed extensively in a paper by Golub, Klema and Stewart [10], 

F. Another problem is the following. Consider 

£*5o w^w2 • 

It is not difficult to see that the maximal value of the normalized 

bilinear form is a^  which is attained when £ = u^ and 3 = v^ 

where a      is the largest singular value of A, and u^ ^ are the 

corresponding left and right singular vectors, respectively. 

Let X be an m x s matrix and Y be an m X t matrix. Consider 

£ = Xu  and  a = Yv . 

The angle 0 between | and £ is given by 

i\ 
cos 0 = 

iUll2 

We can choose | and a to maximize the normalized inner product. 

We call the maximal value the canonical correlation and the correspond- 

ing angle (say 0) the angle between the two subspaces U and V. 

We can determine 0 very easily using the singular value 

deomposition. We compute the QE decomposition of X and Y, viz. 
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X = QR    and    Y = PS . 

Then 

6  = cos_1(a  (Q^P)) . 
max   '' 

The computation can he carried out even when X and Y have less than 

full rank (Bjorck and Golub [2]). 

G. One further application of the singular value decomposition 

is in computing the parameter A in ridge regression using the cross 

validation technique (Golub, Wahba and Heath [133), 

Given an m x n matrix K of rank r and an m-vector g. We 

wish to minimize 

<P(£) = IliS " Klug + *Ö2 • 

Using the variational technique, we see cp(f) attains its minimum at 

f = f where f satisfies 

(A  + AI)f = K^g . 

Hence we have a ridge regression problem.  The question is how to 

choose A.  One possibility is to try to estimate A from the data; 

we shall describe one method based on cross validation. We shall 

see how the singular value decomposition of K aids us in both 

choosing A and solving for f for the chosen value of A. 

Let K   denote the (m-l) X n matrix obtained by leaving 

out the j-th row of K, and let g/^  denote an (m-l)-vector obtained 

by leaving out the j-th component of g,  viz. 

K(J) 
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and 

where k. is the j-th row of K. 

Let f^ .(A) denote the solution to 

(K(d)tK(j) + AI) p)(70 =K(d)tg(d) 

■She cross-validation weighted square error CV(A) is defined by 

ev(A) - £ w,[g, - t: fUJU)r , 
d=i j o 

where 

w. > 0. 
3 ~ 

We wish to choose A such that CV(A)  is a minimum. We see 

CV(A) 
S    „.[g.-^V^M^K^^Jf 

5=1 

m 

0    0 

t/T,tT - I ^i - %{A + u - *^)_1 (Kt" ^)£]2' 
where    e. = (0,.. .,0,1,0,.. .,0)   . 

j *- ■ ,^^ - ■■* 

3  ■ 
We apply the Sherman-Morrison formula to obtain 

(A + AI - k.kV1 = (K*K + AI)"1 + a'MA + Al)-1k k*(A + AI)'1, j;ro 
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where ,  ,      1 

a.  = 1 - k.(K K + AI)"V 
3 ~3 ~3 

and 

a. / 0 by assumption . 

After some additional computations, we get 

CV(A) - ||B(A)[I - K(K*K + AI)"1^]^!!2 , 

where B(A) is an m x m matrix given by 

{B(A)}.. - wp[l - kJ(K*K + AI)"1 k.]"1 , 

and    {B(A)1.. = 0    for i / j . 

We factorize K as 

K = UEV*, 

i.e., the singular value decomposition of K. Then 

CV(A) = ||B(A)[£ - US(2*2 + AirVg]!!2 , 

A   t 
where  g = U g. Now, 

{B(A)}.. = wl/2[l - kJv^E + AD'Vk.]"1 

But since 

KV = UE , 

we obtain 
/     r 

{B(A)},, = w1/2(l - Z u2,cp,(A))_1 , li   l      .±    IJ '0 

where 
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CT. 

9,(A) = -ö-2 
2    ' 

er. + A 
J 

and er 's are the singular values of K. Finally, 
3 

r /\ 

m 
CV(A) = Z w. 

i=l 

gi" ,?, Vö(A)gö 
r 

1 - E u. .cp.(A) 

j=l 
1J 3 

which is very easy to evaluate. 

For a chosen value of A, we may solve the ridge regression 

problem easily using the singular value decomposition of K. We have 

(A + Al)f = K^ , 

which reduces to 

VCZ^E + Al)Vtf = VZ^ . 

Hence 

f = V^Z + AJ)"^' 
Ut' 

where 

r  cr.g. 

3=1 «r + A 

V = (vx, v2, ' V 
Many numerical experiments have been carried out in [13], 
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3.  COMPUTING THE SINGULAR VALUE DECOMPOSITION OF A DENSE MATRIX 

Our basic tool is the Householder transformation. Consider a matrix 

P^ of the form 

where 

,(D = I o (1) (l)t 2u  u ' 

u (1) ,= 1. 

Note that the matrix P (1) is symmetric and orthogonal. Let A (1) 

,(D denote the original matrix. We construct P 

elements below the diagonal in the first column of A 

to annihilate all 
(1) 

p(DA(l) = 

°i ai2 
0 a22 

0 a32 

m2 

A (3/2) 

mn 

,(D We next apply a Householder transformation Q 
(3/2) 

A    , and our idea is to eliminate all elements to the right of the 

(1,2) position in the first row of PiS  '   ' 

on the right of 

to the right of 

without disturbing the zero 

elements in the first column: 

A(5/2)Q(1) 

a 
22 

m2 

*23 

a; 
32  "33 

m3 

HA(2; 

mn 

Our process continues with 
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A(k+l/2)  = p(k)A(k) 

where the effect of    P 00 is to eliminate all elements below the 
(k) 

diagonal in the k-th column of A  , and with 

A(k+1) = A(k+l/2)Q(k) ^ 

where the effect of Q^ '    is to eliminate all elements to the right 
(k+1/2) 

of the (k,k+l) position in the k-th row of AK '. 

The end result is that we have n transformations on the left 

((n-1) transformations if m = n), and (n-2) transformations on the 

right of A: 

J = P 
(n) . P^WX) 

Q 
(n-2) 

O 
We now apply the QR method due to Francis [7] and Kublanovskaya [ 16] 

(Golub and Kahan [9]) so that 

i.e., the singular value decomposition of J.  If we write 

= p(
1) ... P(

n) P = P 

then 

and   Q = Q^1) 
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A = PJQ* 

= (PX) ZCQY)13 

- uzv13 , 
where 

U = PX,     V = QY . 

The first program to do the above computations was given by 

Golub and Reinsch [12]. A version for complex matrices was given by 

Businger and Golub [3] A program for real matrices is available in 

Release 2 of EISPACK [>]. 

J+.  COMPUTING THE SINGULAR VALUE DECOMPOSITION OF LARGE 

SPARSE MATRICES. We have several possibilities for computing the 

singular value decomposition of a large and sparse matrix.  In most 

problems, we want only the few greatest singular values of a large 

matrix,- for instance, in image reconstruction, the order of the matrix 

frequently exceeds 10,000 but only very few, generally less than 100, 

of the greatest singular values are of physical significance. 

A.  Standard Lanczos algorithm.  The best available algorithm 

for computing a few of the greatest singular values of a large sparse 

matrix, say A, is the Lanczos algorithm. The algorithm uses the matrix 

A only in the computation of the matrix-vector product Ax or A^x 

given a vector x. Hence we can use the sparsity of A to compute 

the products very efficiently. Unlike other methods that transform 

the matrix, the Lanczos algorithm preserves the matrix's sparse 

structure and works well even if the matrix is so large that it has to 

be stored on some auxiliary device (e.g. magnetic disk or tape). 

We use the Lanczos algorithm to bidiagonalize a given m x n 

matrix A: 

A = PJQ* , 

where 
t . _ . 

~m '     "" ~"  ~n 
ptp ^ xm > ^Q - I , 

and 
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J = 

mX n 

We can expand the two resultant equations: 

AQ = PJ      and 

in terms of the columns p.  of P and g^ of Q to yield 

P*A = JQt , 

A%+1 = ßi^i + ai+lBi+i ' 

t.     t 
£nA = «rAx ■ 

X.y C-y   • * • )  ll™-L f 

So our algorithm is 

(l) Choose £  such that H^-J^ 

Set 

wn = Aq , 
~1   ~1 

a. w. 
1»2' 

-1 
-Bi = ai #1 
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(2)    For    i = 1,2,...,s-1  (2 < s < n),   compute 

z.   = A p.   - a.q.   , 

\ = Il5i«2 > 

q. L-,   = ß.   z. 
<*1+1 Kl  ~3 

w. ,,   = Aq -  p.p. 
~i+l        «.i+l        1*1 

ai+1 - l|w1+1ll2 , 

*1+1       1+1~1+1 

For some s < n, we denote 

J (s) 

°1  ßl 

'2  '2 o 
cc 
s-1   s-1 

a 

and 

p   = (&!_>  &2>   ••• > £s) > 

Q 
(s) 

(si> ,%> ••• * ,ss) 

We now apply the QR method on J    so that (s) 

j(s) = x(s)2(s)y(s)t 

i.e., the singular value decomposition of J  . Let (s) 
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,(s) _ 

(s) ^  (S/ . . 
where cr,  > a^      > 

and 

X(S) _ ,,(S)    (B) x(B)x 

T<').^"),4,). -•*i')'- 
The c/S^, P^x^, and Q  #1   are usually accurate approximations 

to the largest singular value, and the corresponding left and right 

singular vectors, respectively, of A. We may apply the Kaniel-Paige 

theory [l9] to show that if 0 > 0 is the angle between c^ and v^, 

then 

where 

2 . (s) 
al - el ^ al      Z a 1 ' 

2^ tan 6 
€i = ^2 A + r^     ' 

s-ivi - r' 

and 

T    is the (s-l)-st Chebyshev polynomial of the first kind, 
s-1 

r 2cr 

(s) We construct an example to show how u^   generally approxi- 

mates cr, well even for a small s. Let o^ = 1.0, cr2 = 0.9, s = 20 

and 0 = cos  0.1. Then 
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2 
tan2 0 = 1 ~ °-1    =  99 , 

0.1 

r - it?^2 - cos . 

1 + r i L = X.X05 
1 - T 

and 

Hence 

T (1.105)= 2.8 x 103 

and 

2 . 2 • 1 • 99  . n  ,_  , -5 
1  (2.8 x 103)2 

a± -  0.000025 < aj20) < o^ . 

Since n is usually very large, we often choose some s « n 

subject to storage availability. If our convergence criterion for the 

singular value is not satisfied, we may use Q  £[   as the new 

initial vector and restart the Lanczos algorithm.  Since the accuracy 

of our approximation is bounded by tan 0, where 0 is the angle 

between our initial vector and v., we expect to obtain better approxi- 

mations * if we iterate the Lanczos algorithm.  If z.  (or w ) = 0 

for some i < s, we could continue the algorithm by choosing some z. 

(or w.) orthogonal to all the previous z.'s  (or w 's), i < i. We 

could also choose to terminate the algorithm because z. (or w ) = 0 
~i    ~i   ~ 

usually means some singular values have converged. 

The sequences of vectors {£.) and {£.} form orthogonal sets 

in exact arithmetic. Hence theoretically, we need only to keep the 

most recent pairs of ^K'S and o..'s in memory, providing great 

savings in storage. Unfortunately, the sequences {£.] and {%.} 

generally lose orthogonality very quickly due to cancellation errors 

in the computations of the z^s and w.'s. A remedy is to reorthogo- 

nalize the most recently computed jo.  (or £.) with respect to all 
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the previous g.'s (or S.'s), 3 <  i. But this task is expensive in 

both execution time and storage, because we must now store all the 

computed {£._} and {^]      in memory. Paige [19] argues against the 

necessity of reorthogonalization, but the matter is still a subject of 

controversy. 

B. Block Lanczos algorithm. In many cases we may save work 

if We iterate with a block of vectors instead of a single vector. The 

saving could be considerable if we were computing a multiple singular 

value. In general, if we had some a priori knowledge of the singular 

value spectrum, we could choose an appropriate block size with good 

gains. Computer experiments (Golub, Luk and Overton [ll])  show that 

if we want several of the largest singular values, we often gain by 

choosing a block size p > 1. Also, if the matrix is stored on an 

auxiliary device, we may make some gains in efficiency if we multiply 

the matrix into several vectors simultaneously. 

In a similar way to the standard Lanczos algorithm, our block 

version reduces the matrix A to a block bidiagonal form. We start 

with an arbitrary n X p matrix 0^, and perform a QR factorization of 

the product ACL : 

P1A1 = AQ1 ' 

where   P  is an m x p matrix such that P^ = I , 

and    A,  is a p x p upper triangular matrix. 

Our algorithm continues with 

<*iBi-l = At]?i-1 - Qi-lAi-l' 
and 

P.A. = AQ. - P. ..B* , , 
11     1    1-1 1--L 

1 — 2,.?,..., s 

where Q.B. ,  and PJL  are the QP factorizations of the respective 

right-hand sides, and 
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Q.  is an n x p matrix such that Q.Q. = I , 
1 11    ' 

P.  is an m x p matrix such that P*? = I , 
x l l    ' 

and both Bi_1 and A±    are p x p upper triangular matrices. 

¥e have tacitly assumed p x s < n. We consider the ps X ps 

block tridiagonal matrix  <PS^: 

r(s) 

A, B; 

A^ B: 

o 
o 

A 1 B -, s-1 s-i 

A 

which is also banded upper triangular with bandwidth = p+1. 

We can reduce J S)    to bidiagonal form using the Householder 

transformations. We can also use plane rotations to reduce J^s^ to 

bidiagonal form to take advantage of the sparse banded structure of 
(s) 

J  . A plane rotation in the (i,j)-plane is an orthogonal matrix 

P. . of the form 

r 
. l 

-cr 

0" 

r 
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P   2 
where y + a = 1. It is easy to verify that given a vector & we 

can choose r and a    such that P.. annihilates the j-th component 
X3 (s) 

of x. We give a simple example to demonstrate how we can reduce J 

using plane rotations. 

Suppose we have the following 6x6 matrix 

A = 

We construct a plane rotation Q,, postmultiplying A to annihilate 

the (1,3) element. The rotation creates a non-zero element in the (3,2) 

position, i.e., 

AQ  = 
23 

Now we apply a plane rotation Pg,, premultiplying AQ^ to eliminate 

the (3,2) element. A new non-zero element appears in the (2,5) position: 

P AQ , 
23 23 

We construct Q. s to annihilate the new nonzero (2,5) element from the 

right: 
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P23AQ23% 

x    x 

xxx 

xxx 

o XXX 

S    x    x 

An appropriate plane rotation P^ from the left will annihilate the 

newly created {3,k)  element without creating new nonzero elements: 

%P23AQ2A5 
= 

x    x     0 

xxx 

XXX 

We say we have "chased" away the (l,3) element of A (cf. Eutishauser 
[20]). 

We may determine the singular value decomposition of the 

resultant bidiagonal matrix using the QR method. Using a theorem due 

to Underwood [22], we can show that the p largest singular values 
(s) 

of J    are usually accurate approximations to the p largest 

singular values of A.  In fact, if cr^ > 0 is the smallest singular 

value of. Q1V1, where Y±    consists of the first p columns of V, 

then for k = 1,2,...,p, 

where 

2 ^ (s) 
ak - ek < °k  < °k * 

J^  - (      J.  \ tan 0 
ek - (c7l + a"k) 

2 ?- +  rk 
s-i^i - rk

; 
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= cos_1 amin ' 

rk      or,   + a-,      ' 

and   T is the (s-l)-st Chebyshev polynomial of the first kind. 

We consider an example similar to the one we have given in 

the previous section.    Let    o^ = 1.0,  cr2 = 0.9,  ^ = 0.5, P = 2,   s = 10 

and    0 = cos"1 0.1.    Then 

tan2 6 = 99, 

al" a5 _ ?^5 _ 0 25 rl = ^~T^ " 27Ö - °'25' 

0 o ~ °>     o h 
r2   ~   (Trt   +   C7, 1.9 

1.67   , 
1   +  ri 1.25   s 

1 - r1     0.75 

1 + r2 :1^:153 
l—^"0.79 " 1,W ' 

T (1.67) = ixA , 

T9(l.53) = 3-7 x 105     • 

Hence 

2 4 2^22 t 2.0 X IQ"6  , Sl=17 
and 

2 &   1.9 x 99       t 1#4 x 10-5 
2      (5.7 x 10^)2 

Comparing the two examples,  we can see how a proper choice 

of the block size would save us work with the same limitation on 
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storage space.  In general, a good choice of p depends on the singular 

value spectrum, the number of singular values desired, and the avail- 

ability of memory.  If there is a cluster of p largest singular 

values, it usually pays to choose p = p. Often, the knowledge is not 

available and a satisfactory rule appears to be choosing p equal to 

the number of singular values we want to compute. Our tests [11] 

show that the reorthogonalization of each recently computed P.  (Q.) 

with respect to all the previous P 's (Q.'s), j <  i, is necessary for 

accurate results. We therefore must keep all the P.*s and Q.'s 

in memory, effectively bounding the value p X s. 

An algorithm will soon be published [11]. 
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