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PRODUCTION OF ORGANIC MATFER IN STRATIFIED WATER
by

Anders Stigebrandt
Department of Oceanography

Goteborg university
P.O. Box 4038

S-40040 G6teborg, Sweden

Abstract

Some aspects of the role of stratification for the biological production in aquatic systems
are reviewed. First is presented some elementary knowledge about organic matter and
processes producing and decomposing organic matter in aquatic systems, including the
roles played by light and nutrients for plant production. Next I discuss a necessary
condition on the maximum depth of well-mixed surface layers for phytoplankton growth.
This can be used to predict the time for onset and offset of phytoplaiikton growth in an
arbitrary region of the sea. High-frequency cycles of stratification-destratification of the
surface waters may enhance plant production. The perhaps best example of this may be
found at tidally forced shelf fronts which execute a fortnightly seaward-landward
oscillation. It is also shown that thin surface layers promote small phytoplankton. Reasons
for deep phytoplankton maxima in stratified water in summer are discussed. The global
production in the sea is ultimately determined by external sources and internal sinks.
However, the production is not evenly distributed. Areas of upwelling and areas having
high-frequency cycles of destratification-stratification are particularly productive.

1. Introduction

The stratification of natural water bodies is a result of external forcing by winds,
thermohaline processes and tides. The time-scale for the accompanying vertical circulation
ranges from one year in temperate lakes to hundreds of years in the ocean. Usually
turbulence is absent or occurs only sporadically in the major part of the water body. It is
only a thin layer of varying thickness close to the sea surface that is fully turbulent most
of the time. The optical properties af water are such that light penetrates only a relatively
thin layer at the sea surface. Biota encounter in natural water bodies a physical
environment that is very different from that encountered on land. As a result biological
evolutionary processes have developed species of biota and whole ecosystems which differ
much between aquatic and terrestrial environments.

2. Organic matter

Organic matter is composed of carbon and some additional essential elements of which
the so-called plant nutrients nitrogen and phosphorus are the most interesting since
shortage of one of these usually limits the production of organic matter. Through different
biogeochemical processes matter is transferred between organic and inorganic states.
Photosynthesis is the process by which illuminated plants produce organic matter from
inorganic compounds with light as the energy source. Almost neutrally buoyant
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microscopic phytoplankton is the dominant producer of organic matter in aquatic systems.
Phytoplankton reproduces extremely fast, if conditions are favourable the number of
plants and the biomass of a population may double in one day. This kind of plant is
apparently very competitive in aquatic environments. Large, slowly growing anchored
plants, which are the completely dominating type of plant on land, occur only on shallow,
illuminated bottoms.

A.nimals (zooplankton, fish, etc.), bacteria and sponges consume organic matter. Some of
the metabolized organic matter is used to build up new organisms while the rest is broken
down to inorganic constituents that are excreted and then again available for plant
production. Zooplankton that directly graze phytoplankton, so-called herbivores, are also
quite small. Herbivores are in turn eaten by larger zooplankton and other animals. The
system of primary producers and decomposers, which also involve bacteria, is quite
complex and web-like and therefore often denoted the food web.

There is an extremely great manifold of living and dead organic matters occurring in both
dissolved and particulate forms. One very important property of particulate organic matter
in aquatic systems is that it is usually denser than water why it sinks. The sinking speed
of particles depends on their specific weight, size and form. The smallest particles have
negligible sinking speeds while large particles, like faecal pellets from zooplankton and
fish, may have sinking speeds of hundreds of metres per day. The sinking implies that
organic matter is vertically dispersed from the zone of production close to the sea surface.

3. The growth and respiration of phytopiankton

The growth of phytoplankton in a unit volume may be written in the following
comprehensive way (Kremer & Nixon, 1978)

Growth NLIMLTIJMMAX.PON (1)

where PON is the concentration of phytoplankton and the rate constant is split in three
factors. The first two factors NUTLIM and LTLIM, attaining values between zero and
one, describe possible limiting effects on the growth by shortage of nutrients or light
respectively. The magnitude of these factors is thus determined by external,
environmental conditions. When nutrients and light do not limit the growth these factors
attain the value one and the growth is determined by the int, asic maximal growth rate of
phytoplankton GMAX. The value of GMAX is typically 0. day-t which implies a daily
doubling of the biomass. GMAX varies between species and increases with temperature.

The function LTLIM is often described using the following function suggested by Smith
(1936)

2
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Here I is the light intensity at the actual depth and Ik is a light sensitivity factor for
phytoplankton. The latter vary from species to species and may also vary for a specific
species due to so-called photoadaption, see e.g. Kirk (1983).

Nutrient uptake by phytoplankton is according to so-called Michaelis-Menten kinetics
which implies that NUTLIM should be described by

NUTLA.- DIN (3)
KN + DIN

Here DIN is the concentration of the actual nutrient (i.e. inorganic compounds of nitrogen
or phosphorus) and KN is the so called half saturation constant for the actual nutrient. KN
has different values for phosphorus and nitrogen, e.g. Kremer & Nixon (1978). It is
assumed that the nutrient having the lowest value of NUTLIM limits the production
(Liebigs minimum law).

Within phytoplankton there is an ongoing metabolism (so-called dark respiration) by
which primary products from the photosynthesis are processed to fats and proteins. The
respiration, which for some species (flagellates) also may include energy requirements for
swimming, may be parameterized in the following way

Resp - -rGMAX.PON (4)

According to Kirk (1983) r -0. 1 but there is large variation between different species. It
is typical for models of biological processes that rate constants and parameters vary
much. This is probably a result of the ability of living matter to adapt to changing
external conditions. When the rules for adaption are known it should be possible to
include these in the models.

The depth where the local production and respiration are of equal magnitude
(Growth+Resp=0) is called the compensation depth He. Under stratified conditions the
zone close to the sea surface where plant production may occur, the euphotic zone, is
delimited downwards by the compensation depth. It should be noted that since Growth,
see equiatiorn (), depenRds o the availablity ot oth nutrents and light th.eree is -n -a
specific water column a possibility for more than one compensation depth and a partition
of the euphotic zone in thinner layers, see example in Fig. 3. Under well mixed
conditions the situation is a bit different as discussed below.

The thickness of the euphotic zone when NUTLIM = 1 depends on the optical properties
of water which may be described by the vertical attenuation coefficient c defined by
dlldz=-c[, where I is the light intensity and z is the depth. A rule of thumb says that the
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compensation depth H I is where the light intensity is 1 % of the surface value. In the open
"blue" sea c-0.05 m"- and He,- 100 m. In "green" coastal waters c is usually
appreciably greater and the euphotic zone is accordingly thinner, often in the range 10-30
m. It should be noted that high concentrations of phytoplankton give significant
contributions to c and this is actually the reason why coastal waters often are "green".

4. Conditions for phytoplankton growth in well-mixed surface layers

During late autumn and winter, with a deepening mixed surface layer, the water column
is replenished with nutrients right up to the sea surface. NUTLIM by that often attains a
value close to one. However, at least at higher latitudes, the light at the sea surface is
weak due to short days and low sun height. Phytoplankton, passively advected around in
the deep mixed layer, will therefore stay in darkness most of the time. The average of
LTLMI over the mixed layer will be small and the integral of Growth+Resp over the
mixed layer is negative. In spring the seasonal pycnocline retreats whereby the thickness
of the mixed layer decreases. This, together with the increasing illumination of the sea
surface, drastically increases the average of LTLIM over the mixed layer. A
phytoplankton population starts to grow (bloom) when the integral over the mixed layer of
Growth+Resp becomes positive. There is a certain depth for which the vertical integral
from the sea surface to that depth of Growth+Resp is zero. This depth, the critical depth,
gives the upper limit for the thickness of a well-mixed surface layer with positive
phytoplankton production (Sverdrup, IM'3). Clearly, the critical depth for a well-mixed
layer is deeper than the depth of the euphotic zone.

In Fig. 1 are shown computations of annual cycles of mixed-layer depths and critical
depths for the Baltic proper and Kattegat. The Baltic proper has a seasonal pycnocline
that varies from - 60 m depth in winter to - 10 m in summer (e.g. Stigebrandt, 1985)
while Kattegat has a very strong halocline at about 15 m depth all the year. In order to
facilitate a comparison of model results with observations the critical depth in Fig. 1 is
defined slightly different than above. It was defined such that the integral from the sea
surface to the critical depth of Growth+Resp is equal to the integral over the same water
column of Growth/2. This definition should ensure that the phytoplankton population
really grows when the mixed layer depth becomes equal to the critical depth. In order to
demonstrate the effect of daily variations of light conditions the critical depth was
computed for both cloudy and cloudless conditions.

The computations predict that spring bloom should start in February in Kattegat and in
April in the Baltic proper (Fig. 1) which is in accordance with observations (Fig. 2).
According to the computations cloudless conditions give a tendency for an early spring
bloom. The computations also show that due to the shallow halocline phytoplankton
production should last about one month longer in Kattegat than in the Baltic proper.
However, the prediction for the autumn may be uncertain since the assumption
NUTLIM = 1 used in the computation of the critical depth may be invalid at the end of the
production season.
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Fig. 1 The annual cycle of mixed layer depth and critical depth in Kattegat and the
Baltic proper. For the computations of the critical depth the following
parameter values were used: c=0.25 m1 , Ik=30 W M-2, NUTLIM:= 1,
r--0.1.
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Fig. 2 The annual cycles of net production in Kattegat and the Baltic proper
(redrawn from Stigebrandt, 1991).
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The computations presented above demonstrate that a simple but realistic model for
growth and respiration of phytoplankton can be used to compute the critical depth for
well-mixed surface layers with respect to phytoplankton production. The latter takes place
only when the depth of the mixed layer is less than the critical depth. If one knows the
annual cycle of the seasonal pycnocline, either from measurements or from computations
using a proper model, it is thus possible to predict the time for onset and offset of
phytoplankton production. Computations similar to those presented here were first
undertaken by Sverdrup (1953).

In addition to respiration grazing by rooplankton acts as a sink process for phytoplankton.
For well-mixed surface layers one also has to consider the loss of phytoplankton sinking
through the bottom of the layer. The sinking speed of living phytoplankton is in the range
0-30 m day"1. From Stoke's law for the settling speed of small particles one expects a
positive correlation between sinking speed and plankton diameter. A complicating factor
is that some species are able to swim. Large flagellates may swim with speeds 2-20 in
day-, e.g. Valiela (1984). If w is the sinking speed the flux of phytoplankton out of a
mixed layer is wPPON, where PON is the phytoplankton concentration in the layer.

If the effect of swimming is included the rate of change of the phytoplankton
concentration in a well-mixed surface layer of thickness H is

dPON= Growth + Resp - fL PON (5)

dt H

where LTLIM in Growth is averaged over the layer. Using equations (1) and (4) one
obtains

dPON . [(NUTU1M'LTLIM -r)GMAX -2 ]PON (6)
dt H

With NUTLIM l; 1, LTLIM_ -1, r=O.1 and GMAX=0.7 one finds that a phytoplankton

population may grow only if

-!- s 0.6 (7)
H

This shows that large phytoplankton with high sinking speeds require thick well-mixed
layers to grow. In thin well-mixed surface layers, often found in estuariei and close to
coasts, one expects to find small phytoplankton with low sinking speeds or swimming
flagellates.
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5. The importance of cycles of destratification-stratification for piant Production

The description in the previous section of effects of the seasonal variation of the mixed
layer depth upon phytoplankton production demonstrates that a varying mixed layer depth
is essential for the production. The deepening of the mixed layer by entrainment of
underlying water with usually high nutrient concentrations in autumn and winter is
important for the replenishment of the surface waters with nutrients. The stratification of
the surface water in spring by the retreat of the mixed layer to depths shallower than the
critical depth is usually necessary to start plant production.

Sequences of destratification-stratification also occur on higher frequencies, for instance
forced by varying tidal currents. Legendre et al. (1986) give a number of examples of
enhanced production due to such sequences. The perhaps most well-known e~xamples of
enhanced biological production due to high frequency cycles of stratification-
destratification may be found on continental shelves with strong tides. Pingree (1978)
shows that there is an enhanced biological production coupled to the fortnightiy excursion
of shelf fronts in the North Sea. He also used fishery statistics to show that fishing
intensity decreases rapidly with distance from frontal areas.

Q F
of production

Sexcurstion in f igure

entrainmentf hihDN U

critical

PRODUCTION

Fig. 3 Idealized vertical cross-section through a shelf fronm. Q Wuid F ddenote fluxes
of heat and freshwater respectively. The long-term mean production of
organic matter along the cross-section is sketched in the lower figure.

A sketch of an idealized summer situation in a vertical cross-section from the open sea
and through a shelf front is shown in Fig. 3. Due to strong tidal currents the turbulent
bottom boundary layer surfaces on the landside of the front. On the seaward side the
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stratification may be described as two superposed turbulent mixed layers, mechanically
forced by winds anti tides respectively, which exchange water by entrainment, see
Stigebrandt (1981). "hus, there is a wind-driven supply of nutrients from the lower to the
upper layer. This is strongest close to the front where plant production accordingly is
high (cf. Fig. 3). However, in addition to this effect production in the frontal area should

also be enhanced by the seaward-landward oscillation of the front in the fortnightly
spring-neap tidal cycle. Tis oscillation imposes a cycle of stratification-destratification in
the excursion area which should strongly increase the phytoplankton production. The
expected variation of the long-term production along-the section is sketched in Fig. 3. Por
a recent paper on the dynamics of shelf fronts including biological aspects, see Bo
Pedersen (1994).

6. The summer bmerged phytoplankton maximum

In summer the surface mixed layer is usually shallow with low concentrations of nutrients
and NUTLIM has a value close to zero. However, below the euphotic zone nutrient
concentrations are often rather high. Vertical diffusion will then transport nutrients
towards the euphotic zone by which the value of NUTLIM increases. Close to the bottom
of the euphotic zone the product LTLIM times NUTLIM may attain a maximum then. At
that depth one often finds a sub-surface phytoplankton maximum, see the idealized
example in Fig. 4. In this example there are two compensation depths restricting the
euphotic zone (production layer) to the upper part of the nutricline. The actual form of
the phytoplankton conceniration depends on a number of factors like vertical diffusivity,
sinking speed of phytoplankton and rates of grazing and mineralization.

0

I LTLIM

Production -

PON Layer

7DIN NUTLIMKNUTLIM\

DEPTH

Fig. 4 Typical vertical profiles of light (I), nutrients (DIN) and phytoplankton
(PON). Also shown are NUTLIM and LTLIM. The density profile, not
shown, is parallel to the DIN profile.

A lot of papers have been published on observations and modelling of sub-surface
phytoplankton maxima in stratified water. Taylor et al. (1986) presented an instructive
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one-dimensional plankton model where the vertical diffusivity may vary vertically. The
model was used to study the difference between shelf systems, with strong turbulence
beneath the pycnocline, and deep ocean systems, with weak turbulence beneath the
pycnocline. They also studied the sensitivity of the model to certain assumptions about
respiration (mortality) and the magnitude of the half-saturation constant for nutrient
uptake. The importance of daily variations of the intensities of light and turbulence was
also studied.

7. Lare-scale circulation of 121,nt nutrients and nutrient control by sinks,

The vertical flux of sinking particulate organic matter from the euphotic zone, the net or
export production, decreases and changes character with increasing depth. The reason for
this is of course a continuous consumption (p~elagic mineralization) which implies that
particles are physically and biochemically broken down at the same time as new particles
in the form of faeces are produced. The vertical flux of sinking particulate organic matter
is called the biological pump. The biolog(ical pump tends to decrease concentrations of
biochemically active substances, e.g. carbon and nutrients, in the surface layers and
increase concentrations at greater depths.

F source

------- Eo~itiL Zone-

Physical Biological
pump DIN O pump GeoLogical

time scales

DIN

!sin

Fimg 5 The biological and physical pumps and the resulting vertical profile of
nutrients.

In the ocean there should be a vertical sinking-diffusion/advection balance of nutrients,
with nutrients transported vertically downwards by the biological pump and advected and
diffused upwards by currents and turbulence (the physical pump). The vertical
concentration profiles of nutrients should be determined by the combined action of these
pumps (Fig. 5).

The steady-state total content of nutrients in an aquatic system is dependent on external
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sources and internal sinks. Nutrient sinks are, usually associated to bottom sediments. Due

to pelagic mineralization the fraction of the net production that reaches the bottom should
be less in a deep than in a shallow system. If it assumed that nutrient sinks are
proportional to the flux of organic matter reaching the bottom it follows that deep aquatic
systems should attain higher nutrient concentrations than shallow systems, provided that
all other factors are equal.

Simple and efficient empirical nutrient models have been developed for temperate lakes,
e.g. Peters (1986). These models predict the lake nutrient concentration for a given
strength of the nutrient source. The "secret" behind th: success of these models is the
parameterization of the sinks which in essence is taken proportional to the winter surface
concentration of nutrients (phosphorus).

8. Horizontal variability of plant production in the sea

In the previous section it was demonstrated that the overall nutrient state of an aquatic
system is determined by a balance between sources and sinks. The time-constant of this
balance is about 50,000 years in the ozean. The availability of nutrients just below the
productive layer in a certain area of the sea depends on the combined action of the
biological and physical pumps. The physical pump operates on time-scales which increase
vertically, from 1 year close to the sea surface to 100-1000 years in the deep ocean.
When and how available nutrients are introduced in the production layer depends on local
mixing processes in the uppermost part of the sea. As already told, the latter are
governed by weather forced processes at the sea surface and, in shallow areas, also tides.
Close to coasts the production layer may in addition obtain nutrients from the continents.

The pattern of biological production in the sea is strongly typed by the pattern of vertical
transports of nutrients into the euphotic zone (Berger et al., 1988). A global map of
nutrient concentrations just beneath the production layer quite much resembles a map of
the net production of organic matter, e.g. Najjar (1992). Particularly great production
occurs in areas of wind-driven upwelling, e.g. along the subtropical eastern margins of
the oceans. This is manifested by great fisheries at the coasts of Peru and California in
the Pacific Ocean and at the southwest and northwest coasts of Africa in the Atlantic
Ocean. As already discussed great production also occurs at shelf fronts.

9. Conc2usions

In this paper I have tried to explain how stratification influences production of organic
matter in aquatic systems. The influence spans wide ranges in time and space. The largest
scales involve the source-sink balance regulating the nutrient content of the system while
the shortest scales are of interest for undersianding local production.

Certainly a lot of interesting topics are missing from the presentation others are only
covered in a rudimentary way. One of the missing topics is the practice to use existing
stratification in natural water bodies to interleave sewage water containing nutrients
beneath the euphotic zone in order to prevent local plant production. It would have been
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interesting to discuss under what circumstances this may work and, in particulai, to
discuss circumstances when it does not work.
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Persistence Theory of Stratified Entrainment

A. J. COTEL and I. E. BREIDENTHAL
Department of Aeronautics and Astronautics

University of Washington, Seattle, Washington, 98195, USA

Turbulent entrainment is discussed in a variety of stratified flows. In general, the entrain-
ment rates decrease as the stratification increases. Different entrainment laws have been
observed, usually the entrainment rate is proportional to Ri" 2, where D can be 0, 1, 2, 3
and Ri is the Richardson number based on the large eddies. For some flow regimes, the
entrainment rate does not depend on the Richardson number, but on the Schraidt and Rey-
nolds numbers. To explain the full spectrum of entrainment rates, a new parameter the per-
sistence has been introduced. This parameter separates the flows into persistent and
nonpersistent cases, depending on the number of rotations one eddy makes in one position.
Each regime is discussed on the basis of its definition, conditions of existence, and physical
example. A distinction is also made between thick and thin stratified interfaces.

1. Introduction

Entrainment affects the structure of the atmosphere and the ocean. It is important to
understand the process of entainment in geophysical flows and in the laboratory. If we take
as a particular example a momentum-driven jet interacting with a stratified interface, a dif-
ferent entrainment rate is observed depending on the position of the jet with respect to the
interface. If the jet is vertical, impinging on the stratified interface (Cotel & Breidenthal
1994), then the entrainment rate is proportional to Ri-1/ 2, but if the jet is horizontal below
the interface (Schneider 1980), it is proportional to Ri"3/2. If the jet is horizontal and at the
interface (Fernando 1993), the entrainment rate is now proportional to Ri".

The Reynolds, Schmidt, and Richardson numbers can be the same in all three of the
configurations, but the entrainment rates are different. What tells nature to choose one pro-
cess over another? There must be another parameter which determines the entrainment
process. It has been proposed that the other parameter is the vortex persistence T, defined
as the number of vortex rotations before a vortex has moved its own d;ameter.

A detailed explanation of each regime for Sc>l, Sc<1 and the thick interface case
is given. The Richardson number is defined to be Ri = g'-

2WW1,t



where 8 is the width of the jet at the interface, and w, is the incident jet velocity at the inter-
face.

The Reynolds number is Re = - and the Schmidt number is Sc =
v D'

where v is the kinematic viscosity and D is the molecular diffusivity.

Each entrainment rate is derived from the ratio of the appropriate length scale and
time scale. The reasoning for the choice of these scales is given in the following sections.

2. Thin stratified interface with Sc>

- Regime I: Unstratified

Regime I occurs when the Richardson number based on the large eddies is less than
one, so that even the largest eddies are unstratified. Then Taylor's entrainment hypothesis
sets the entrainment rate, which is proportional to the incident velocity. The entrainment

velocity can be defined as proportional to -., where 6 is the size of the large eddies of the
turbulent flow studied, and is the rotation period of these same eddies. Such a regime is
seen for a turbulent jet in a homogeneous environment, or a vertical jet impinging on a very
weak interface.

- Regime 11: The largest eddies are stratified and persistent.

A physical example is a vertical jet impinging on a stratified interface. The flow is
persistent, because the lateral vortices doing most of the entrainment and mixing stay in one
position. So T, the number of rotations one vortex makes in one position before it moves
its own diameter, is very large.

In this case, the important length scale is the dome height Sm of the jet, which is pro-
portional to the size of the lateral vortex. The other choices of length scales would be 8,
the width of the impinging jet and S. the rebound eddy size (Linden 1973). There is no
reboundin this c" e, so" -8 -0 nOt rele'vant, and shice the entrainment is controlied by the iat-
eral vortices, the jet vortices do not entrain directly, so 8 drops out of the problem. There
are only two time scales in the problem: one based on the jet, r, i.e. the rotation period of
the jet vortices, and one buoyancy time scale ; defined to be

(/2
Since buoyancy is controlling the lateral vortices, the buoyancy time scale is chosen.

*1
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Therefore, the entrainment velocity is !!, which gives an entrainment rate propoitional to
RFi-/2, .

- Regime III: Entraining eddies become nonstationary

When the largest eddies become nonstationary, then another entrainment mechanism

is observed. An example is the impingement of a vortex ring on an interface or entrainment

due stirring grid turbulence with salt stratification. Entrainment has been modeled by a

rebound mechanism (Linden 1973).
S

Here the entrainment velocity is !, because the important length scale is the rebound

length scale, and the time scale still has"to be the buoyancy time scale yielding an entrain-

ment rate proportional to Ri 3 t2 . The transition from regime II to regime ml must occur at

some value of T which depends on Ri. It has been proposed that the transition is at Ri=T.

- Regime IV: Diffusion across Taylor layers

If the stratification becomes very strong then molecular diffusion comes into play.
The flow is still nonstationary. Such a regime is encountered for stirring grid experiments

with heat stratification.

Thc entrainment velocity is here equal to

where the numerator is the Taylor layer diffusion length during a rebound global time and

the denominator is the rebound Kolmogorov microscale time. Assuming a Kornogorov

cascade, %, = z(.e)-", where Rer is the rebound Reynolds number based on 8 and wp
the rebound length scale and velocity respectively. This gives an entrainment rate propor-

tional to Sc 1 2RiO1 .

In the atmosphere, Sc =_ 1 and T= 1. The model would predict an entrainment rate

proportional to Ri-1.

- Regime V: Nonstationary flat interface

When the Richardson number of the smallest eddies is equal to or greater than one,

Ri drops out of the problem. The interface is flat. If the flow is nonstationary, there can be

at any point or within an eddy size an accumulation of a scalar in time, so the rate limiting
process is set by the eddies with the lowest velocity, which are the smallest eddies. Then the

Batchelor layer thickness is the characteristic length scale, so the entrainment velocity

becomes

I' _____



(D 2 LIv),

The exponent 1/3 comes from boundary layer theory for Sc> I (Schlichting 1960),
because the thickness of the vorticity gradient is bigger that the thickness of the concentra-

tion gradient. The entrainment rate is then proportional to Sc'1 R"e1 4 .

Regime VI: Stationary flat interface

In this regime, the flow is stationary, so that there cannot be any accumulation or

increase of scalar concentration in time. The rate-limiting process in the steady sequence

of events is set by the eddies with the longest rotation period, the largest eddies.

The entrainment velocity is

(D(a 2/w1 ))

and the entrainment rate is then Sc"WRe 1-2.

Figure I illustrates the entrainment regimes for thin interfaces for Sc>l. The doubles

lines represent a discontinuous jump between regimes and the single lines a continuous

transition.

3. Thin stratified interface with Sc<1

The Schmidt number is always less than T, so regime MII disappears. For the flat inter-

face region, the dependence on Sc is changed. The thickness of the vorticity gradient is

smaller than the thickness of the concentration gradient, so from boundary layer theory the
Schmidt number exponent is now -1/2.

4. Tnhick ifteerfic CIRS

When the interface is no longer sharp, then the vorticity does not impinge on the inter-
face but resides imbedded within it. Thus the entrainment mechanism is changed. In the

absence of impingment, the coi trolling eddies are no longer the largest or the smallest, but

intermediate eddies of particular size X*, which have a unity Richardson number. The larg-

est eddies cannot engulf fluid and the smallest are less'efficient at pulling down tongues of
fluid than the critical X* eddies.

This case is observed for a stratified shear layer (Fernando 1993). The eddies are



moving along at the interface, so T=I. For Re>1 and I<RkiRel14, the entrainment velocity

is proportional to the rotation speed of the eddy of size X*, Riz. = I. Assuming a Kol-

mogorov spectrum,

ýi~u= (115r 7
It follows that the entrainment rate is proportional to Ri-.

For Re>I and Ri>Re 114 , the regime is unchanged from before, as that the entrainment

rate is proportional to Sc"I3RCe114 for Sc>l, and is Sc-'I2R1" 4/4 for Sc<l.

5. Comparison with experiments

Table 1 gives a summary of some experiments on entrainment, the complete refer-

ences of which can be found in Cotel and Breidenthal (1994). The model and the experi-

ments am in accord, except for a few.

For example, Nokes (1988) found an entrainment rate proportional to Ri"1'2 using

Turner's experimental data for a stirring grid with salt stratification. Pedersen (1980)

observed a -2 exponent.

Most of the shear-driven experiments obtained a-1 exponent. That would correspond

to the thick interface case, since the vorticity is created at the surface rather than arriving

by impingement, and the interface can no longer be considered thin if Rb.1.

The entrainment rate of an impinging plume is proportional to Ri"3T (Baines 1975,

Kumagai 1984) in contrast to that of an impinging jet (Ri-1/2). Evidently this is due to the

relatively high fluctuations of a plume. In comparison, a jet is more steady. Therefore, the

jet is considered persistent, while the plume is not.

Fermando and Long (1975) observed an entrainment rate proportional to Ri714 for

stirring grid experiments. So their results do not agree with the model presented here.

Not many experiments have been done in the range Ri -+ -o. However, a compari-

son can be made with heat transfer on a flat plate. When the boundary layer is laminar, then

the small scale turbulence doesn't affect the heat transfer, but when the boundary layer is

turbulent, heat transfer is enhanced by the small scales (Schlichting 1960). This would be

analogous to the persistence effect on the entrainment rate. At the same Sc and Re, the non-

stationary entrainment rate is higher than the stationary one.

6. Condusion

A new model for stratified entrainment has been proposed, and it seems to agree with

most experiments. More experiments need to be done to fully test for the effect of the per-

- -.---.-- ---- --- -.- --- ---- --- -- ----------------



sistence parameter, while keeping the other parameters constant.

Internal waves have not been mentioned here, since the purpose is to use new argu-
ments to explain entrainment. The breaking of internal waves may be important for
entrainment, which presuinably can be modeled by nonstationaiy vortices. That would cor-
respond to Regime III or IV depending on the Schmidt number.
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Table 1:

Richardson
Reference Type of experiment number exponent Regime

k Iato & Fh WpS Surface stress (screen), salt -1 (-1/2 Price 1979) . .

Kit et al 1980 Surface stress (scre.-n), salt -3/2 11I
Jones & Mulhearn 1983 Surface stress (scren), sa@Ft -2
Deardoff & Yoon 1984 Surface stress (screen), salt -3/2
Monusmith 1986 Surface stress (moving sur- -1 iX

face belt)
Chai 1989 Surface stress (screen) -1.8
i'rner 1969 Surface stress (field), ocean -1 Ix
Denman &K Miyake 1973 Surface stress (field), ocean -1 IX
Hfalpem 1974 Si-rface stress (field), ocean -It
ttlenberg 1977 Surface stress (field), ocean -Y IX

Price et al 1978 Surface stress (field), ocean -1
"iDlon & Powell 1f07- Surface stress (field), Lake -1 "Y

Tahoe
Wu 1973 Surface stress (wind), salt -1 IV _

Kxanenburg 1984 Sufaicea stress (wind), saft -1/2 1/2t
Buch 1980 Buoyant overflow (field), salt -1
-¢dcrsen 1980 ""Buoyant overflow -1 _-IX

Moore &-ong 197-/f Counterflow, salt -1 IX
Piat & Hopfinger 198 Entrainment into a boundary -1!2 11

layer
•a"mo i ----db'-l Odell-Kovasznay tank, salt -1

Schneider 1980 IMoUizontaj Ct, sat -3/2
Kumagai 1984• Plume, salt .
Bwines 1975 Vertical jet or plume, salt -3/2____
Nokes 1988 Grid, salt -1.2
Kantha et al 1977 Surface stress (screen), salt -1 (-1/2 Price 1979) *TI
Fernando ong - y c-- id, salt -7/4
Turner 1961F Grid, salt, heat -3/2,-1 17•,'
Shy 1990 Grid+buoyancy reversal -3/2
Deardoff&Willis 1982 Surface stress (screen) R

arimousa etal 6 Ode-Kovasnay tansat -12,-I,-312 ' 717I, f
Fernndo 1987 Grid+stabilizing buoyancy -1

flux, salt
Mden 1973 . Vortex ring impingement, salt -3.2 ___.._

Hopfinger & Tolly 1976 ..id, sa.t -3/2
Haroun -idlt- -312
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Diapycnal Mixing: Fluxes and Energetics

KRAIG B. WINTERS*t, PETER N. LOMBARD*,

JAMES J. RILEY*t AND ERIC A. D'ASARO*t

The energetics and fluxes associated with diapycnal mixing in a den-
sity-stratified Boussinesq flow are discussed. The concept of gravitational
available potential energy is used to formulate an energy budget in which
the evolution of the background potential energy, L.e. the minimum poten-
tial energy attainable through adiabatic motions, can be explicitly exam-
ined. For closed systems, i.e. those with no advection acmoss the bound-
aries, the background potential energy can only change as a result of di-
abatic process. Changes in the background potential energy provide a
direct measure of the potential energy changes due to diabatic mixing.
The analysis is generalized to allow treatment of open boundaries and can
be applied to either transient or steady state flows. It is particularly ap-
propriate fcr evaluatioui of diabatic mixing rates in numerical simulations
of turbulent flows. The energetics of a liear-driven mixing layer and an
internal wave instability at a critical level are used to illustrate the analysis.

1. INTIRODUCTION In this discussion, we will consider isolated,

In this paper, we discuss the euergetics of di- small-scale turbulent mixing events within a
apycnal mixing in density-stratified Boussinesq larger-scale stable stratification, such as those
fluids. We use the term diapycnal mixing to that occur frequently in the ocea•. We will
describe the process through which the poten- consider the tinati dependent energeticu within
tial energy of a fluid volume is Irreversibly in- a fixed volume V enclosing the mixing event
creased through molecular diffusion. The rate with the aim of determining the instantaneous
of diapycnal mixing is significantly enhanced if rate of diapycnal mixing. 0"ihst, we review the
the fluid flow is turbulent rather than laminar. Osborn-Cox (1972) (OC) approach to deter-
The mixing rate is thus a fundamental descrip- mining the mixing rate from microstructure mea-
tor of a density-stratified, turbulent flow. This surements, i.e( dissipation rate of density vari-
rate, however, is notoriously difficult to mea- ance. We then introduce a more general ap-
sure, whether in the laboratory, in the field proach, based on the theory of available poten-
or, more suprisingly, in numerical simulations, tial energy. We show that using this approach,
Most measurement strategies are based on a instantaneous rates of diapycnal mixing can be
Reynolds averaged theory assuming a steady- unambiguously determined. Analyses of nu-
state, production equals dissipation, turbulent merical sixUulations of transient mixing events
energy balance. As not all flow fields of in. will be used to illustrate the discussion.
terest satisfy this assumption, a more general 2. OSnOaN-GOX BALANCE
approach is desirable. In this section we briefly review the theoret-

ical basis of the OC method for determining

diapycnal fluxes from microstructure measure-•*Applied Physics Laboratory, tDepartment of +eis
Applied Mathematics, "Departmini. of Mechanical ments, emphasizing the underlying assumptions.

Engineering, tSghoo3 of Ocean and Fishery
Sciences

_________



2.1. Diapycnal F1ix surfaces of V. This assumption is for conve-

The Osborn-Cox analysis (Osborn and Cox, nience only, diffusive boundary terms can eas-

1972) begins with the equation for tempera- ily be carried along in this and the subsequent

ture; we will use the Boussinesq density equiv- analysis. From the previous section, assuming

alent. B and C, the buoyancy flux can be replaced by
19 + . Vp =V~ p (1) the diapycnal flux, i.e.

Here r is the coefficient of diffusivity and is d
assumed constant. Define a linear averaging d-t- < I
operator <> such that all fields can be de- K9 f < IVp,12 > [ d < p >] dV (7)

composed into mean and fluctuating parts, i.e. V

p -< p > +p' with < V' >= 0. The speci- Using the OC analysis, we reach the follow-

fication of the averaging operator <> will be ing conclusion. Provided that assumptions A,
denoted assumption A. For horizontally homo- B and C are valid, i.e. provided an averaging
geneous turbulence, with mean fields that vary operator <> can be chosen such that the aver-
only in the vertical (assumption B), Eq. (1) aged fields are horizontally homogeneous and
can be used to obtain steady in time, the irreversible rate of increase

a 1 ,2 d of mean potential energy can be obtained by

-t - >+< > <p > measuring the dissipati, rate of density vari-

-K < .Vp,12 > (2) ance, the mean density gradient and integrat-
ing over the volume of interest. Many flows of

Assuming further that the flow is steady in interest do not satisfy these assumptions, par-

time (assumption C) gives ticularly the assumption of steady-state.

_< ,2 d -1 2.3. Scaling Eq. (2) for the ocean thermocline
< wIp! >= -K < [Vp' > [ <p >] (3) Suppose we were to choose <> to be a loom

average taken along vertical profiles of the ocean
The 00 assumptions ABC result in a balance thermocline. The density variance would be
between the buoyancy flux and the diapycnal dominated by vertical displacements induced
flux. Note that the diapycnal flux is positive by the internal wavefield. Assuming a Gaus-

definite for stable mean density gradients. sian distribution of internal waves with an rms

2.2. Energetics displacement of about 3m and a correlation

It is useful to relate the fluxes in Eq. (3) time scale of a few hours (Levine et al (1985),
to the time rate of change of potential energy. Briscoe (1977)), the first term in Eq. (2) is

Averaging Eq. (1) of the order of 10-3 m2 /s for n=1 profile. The
diffusive term on the right hand side of (2) is of

a 0 w9 + 2  the order of 10-1 m2/s (Gregg, 1989). We can
<P > < > a < estimate then, that in order to neglect the time

(4) dependence in (2), spatial averaging over many
The total potential energy Ep is (n = O(104)) profiles is required. If the aver-

aging is insufficient, time dependence cannot

Ep = 9 pz dV (5) be neglected and, in particular, the irreversible

result (7) will not hold. If the averaging is se-
and using the mean state < p > and (4) yields riously deficient, Eq. (2) will be well approxi-

d mated by a strictly adiabatic or reversible bal-
S< Ep >- gIV < w'pd > dV (6) ance.

VF Further insight into the role of the averag-

where we have further assumed that the mean ing operator can be obtained by considering

density gradient is fixed at the upper and lower Eq. (3). Both ocean measurements (McPhee



(1992), Mourn (1990)) and numerical simula-
tions (Ramsden and Holloway (1992), Itsweire C., pun

and Helland, (1989)) of stratified turbulence
show that the buoyancy flux on the left hand
side of (3) is dominated by scales of motion sig-
nificantly larger than the diffusive scales and
that at small scales, the buoyancy flux is of- _1 10 2

ten counter-gradient. The diapycnal flux, how-
ever, occurs only at small scales. Thus, in 6 6  . -

order for (3) to hold, the average <> must a .'k-.

include both "large"' and "small" scales. We 4 /. Ed

have already seen that, if internal wave scales ,- 'V..
are to be included, then time dependence can- 2 2

not be neglected without heavy averaging. The I E.n x
amount of averaging required depends on the "2 20 o

statistics of motions with scales much larger umn i. hWoyun pa1,e.

than those responsible for diffusion. In effect, Fig. 1. (a) Volume integrated buoyancy flux dur-
the OC analysis requires the use of an aver- ing a transient mixing event. (b) Time histories of
aging operator <> that filters out reversible, available potential energy (Ea) A the increase in
adiabatic processes. In practice, we observe background potential energy di mixing (E-ix).
that scale-selective averaging, either temporal Also shown are the volume integ bed, fluctuating

kinetic energy (Ek) and the kinetic energy dissipa-
or spatial, is not a particularly effective way tiou rate (Edim).
of accomplishing the separation. The underly-
ing difficulty is that reversible and irreversible
processesto turbulent mixing and dissipation.
prascale.sThes pvractica l difficties are pac- Figure (la) shows the volume integrated ver-ral scale. The practical difficulties are partic-

ularly severe in the ocean thermocline where tical buoyancy flux 4 as a function of time.

reversible processes occur over a broad range The horizontal extent of V coincides exactly

of scales and the turbulent mixing events are with the horizontal wavelength of the incident
wave packet. Early in the evolution $• > 0,

often initiated by internal wave instabilities, increasing thep energy E D. P toincreasing the potential energy Ep. Prior to

3. EXAMPLE: A TRANSIENT MIXING EVENT about t = 18, when the wave instability begins,
We now illustrate the difficulties inherent in the effective balance in Eq. (2) is between the

applying the OC analysis to an isolated, wave- first two terms, with the diffusive term of neg-
driven mixing event in a stratified fluid. Re- ligible importance. Physically, fluid parcels are
sults from a three-dimensional, large-eddy sim- displaced from their equilibrium positions, in-
ulation of a wave instability at a critical level creasing the potential energy\of the fluid. After
are shown. A more complete analysis of this about t = 18, 'z < 0 and the potential energy
simulation can be found in Winters and D'Asaro, decreases. It is during this time, however, that
(1994). The simulation describes the time evo- all of the diffusive mixing occurs. Energeti-
lution of a downward propagating internal wave caliy, the restratification associated with the
packet, a vertically varying horizontal shear collapsing internal waves dominates the small
flow and a small amplitude, broad-banded "noise" increase in potential energy associated with ir-
field. The analysis volume V encloses the known reversible diffusive mixing. At no time during
location of the critical level. The wave packet this process does the steady state balance (3)
enters V from above and propagates toward hold. Spatial averaging alone is insufficient to
the critical level, interacting with the ambient filter out the reversible, wavelike contributions
shear as it does so. The wave energy density to the buoyancy flux and permit the use of Eq.
increases and an instability develops, leading (7).

'I
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If, in addition to spatial averaging, the flow file p(t, z.). In 4.2, the time rate of change of
is also averaged over the lifetime of the event, the background state is integrated to give an
Eq. (3) becomes valid and the average rate expression for the instantaneous rate of diapy-
of irreversible mixing can be determined using cnal flux. The energetics of diapycnal mixing
(6) or (7). This result is somewhat unsatisfac- are then discussed in 4.3.
tory. Mixing may not happen uniformly during 4.1. The sorting coordinate z.
transient events and we would like to be able to
determine the rate of irreversible mixing on an Consider a Lagrangian description of a Boussi-
instantaneous basis. This can be accomplished nesq fluid flow in a fixed spatial volume V.

using the concepts of available and background Each fluid element is uniquely identified by its

potential energy. initial location go and the time t. For a given
velocity field 9t, the properties of interest for

4. AVAILABLE POTENTIAL ENERGY AND each element include the position !V(40, t) and
DIAPYCNAL MIXING the density p(fo, t). We will introduce an ad-

We now exploit the theory of available po- ditional property z.(2o, t), defined as follows:
tential energy to derive an expression for the
instantaneous rate of diapycnal flux. The key z.(9o, t) = -[ H(p(g, t) - p(go, t) ) dV. (8)
element in the theory of available potential en- A v

ergy is the reference or background state. The Here A is the horizontal area of V and I. is the
background state is defined as that state, oh- Hleaviside step function satisfying
tained through adiabatic redistribution of fluid
elements, that minimizes potential energy (see H Y(p(, t) - P(Ao, t))
e.g. Lorenz, 1955; Lombard, 1989). Available f 0, p(A, t) < p(!o, t)
potential energy is the difference between the = 1/2, p(X, t) = p(go, t)
potential energy of the actual fluid state and 1, p9, t) > p(Ao, t).
the potential energy of the background state.
Because the background state can be repre- The analysis can be generalized to irregular
sented mathematically as a function of a single volumes by letting A = A(z) and moving it

sorting coordinate (see Section 4.1), we often into the integrand. We will limit our discus-
refer to it as the background or sorted-state sion to regular domains for which A is inde-
profile, pendent of depth. The property z. has dimen-

For a fixrd volu ne with no boundary fluxes, sions of length and can be interpreted as a stat-
i.e. for e fixed mass of fluid, the background ically stable ordering of the fluid elements, with
profile will change in time if and only if diffu- z,(;91,t) < z.(@2,t) when p(f 1 ,t) > p(x2,t).
sive mixing occurs. Since changes in the ener- The function z.(9o, t) has the same value at all
getics of the background profile can be ascribed points on a given isopycnal surface and so z,
to dii.pycnal mixing (Winters et al 1994), we can be considered a unique function of density
can interpret the time rate of change of the p. Consequently, we will sometimes use the
backglound state in terms of a dlapycnal flux. notation z.(p).
Our development is generalized to include open The evolution equations for position and den-
systems, i.e. fixed spatial volumes within which sity are simply
the mass is not necessarily conserved. As we d

will see, the concepts of available and back- dt90 ) = 17(y, t) (9)
ground potential energy• are ideally suited to

the study of irreversible mixing In a stratified dp(tgot) KV 2 p(t) (10)
flow. dt

In Section 4.1 we introduce the spatial sort- where a is the material derivative following
ing coordinate z.. We then derive an evolu- the motion of a given element. The correspond-
tion equation for the background density pro- ing equation for z. can be derived from the pre-



ceding equations. Taking the time derivative of 4.2. Diapycnal Flux
Eq. (8) and using Eqs. (9) and (10) gives We can now express the diffusive term in (14)

d as the gradient of a diapycnal flux od. Let

ZtZ'(X0' t) Ai6(Pe, t) p xylt)) v2 I d1 <Vp >. (t gd)z,--~ d(t,z,). (15)

X[KV2p(:y, t) + Vp*, _ XV2P(X' t)] dV' (11) K dzP

where 6 is the Dirac delta function. Note that Integrating with respect to z. gives

VH(p(Y, t) - p(A't)) = 6(P(V.,t)- KA, t))Vp. od (t, Z.) = -- Xg f < V2p >,,., (t, z.') dz,'.

(12) (16)
Isopycnally averaging Eq. (11), i.e. averaging Consider a spatially isolated turbulent mix-
over those points So comprising an isopycnal ing event that occurs within V. The volume
surface, and using the incompressibility rela- integrated, instantaneous rate of diapycnal flux
tion V. ii = 0 gives i•d is

d I 'd (t) = A 'd(t,z.) dz. (17)
<z q H(p(e, t) - p(, t))77. n dS'

d where z, and z2 are the lower and upper bounds
oc dt zp = Ts(t, z,), (13) on the range of z. obtained via Eq. (8). As-

suming that V is chosen so that the diffusive
where S' is the surface bounding V and A is the flux is negligible at the bounding surface S, [

outward facing unit vector normal to S'. Ts is can be written as
the rate of advective transport of fluid heavier Z2

than a specified density across S'. A
Eq. (10) can also be averaged over an Isopy- (18)

cnal surface. Since z. has the same value for Eqs. (16) and (18) show that the diapycnal flux
all elements on an isopycnal surface, we write can be expressed in terms of the local rate of

d diffusion, averaged i3opycnally, and Integrated
p=. = <V 2 p >. (13) with respect to the z. coordinate. In the ab-

sence of molecular dIffusion, Od = 0.
Since there is a one-one mapping between These results can be recast slightly for corn-

z. and p at any time t, we can express p = parison with oceanic microstructure measure-
p(t, z.) and write a differential equation for the meats. Distributing the divergence operator,
time rate of change of the sorted-state or b "-- and noting that Vz, = dVp, gives
ground profile.

d d d(t) = -A ngf < dIVP12 >,. dz.
apAt, Z-) = ý_P,. + -i_ýZ I 2f 1  dW

t Vdp dz, +A 22<v ,p>z z.(9

Equation (14) describes the time evolution of The second term reduces to A rg(z,.i)i z..

the adiabatically rearranged state of minimum Note that when Vp = F = constant, the two
potential energy. As expected, the background terms on the right hand side of (19) cancel and
profile is insensitive to adiabatic motions unless 'd = 0.
these motions result in a net mass flux into V. Eq. (19) shows that the volume integrated,
The background density profile changes in time instantareous rate of diapycnal flux can be ob-
as a result of diffusive fluxes across isopycnal tained by making measurements of p and Vp,
surfaces. sorting, and integrating spatially. Eq. (19) is

very similar to the Osborn-Cox recipe for di-
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apycnal diffusivity (Gregg, 1987; Osborn and
Cox, 1972) when formulated in terms of density ,PK 00
rather than temperature. In contrast to the G-D

Osbom-Cox formulation, however, Eq. (19)
does not require the flow to satisfy a steady
state, production equals dissipation, density vari-
ance balance. Thus, microstructure profiles
taken from isolated turbulent mixing events, 0d
not necessarily in steady state, can be inter-
preted directly in terms of a diapycnal flux. Fig. 2. Energy transfers in a diffusive, density-
4.3. Eneryetics stratified flow. Double sided arrows indicate re-

Eneroticsversible energy exchanges, single sided arrows indi-

In this section we neglect advective fluxes cate irreversible energy transfers.

across 5, letting V. - = 0, and show that the

diapycnal flux Od results in an irreversible in-
crease in background potential energy Eb. A Denoting the available potential energy Ea,and noting that the total potential energy Ep
more complete discussion of the rates of en-
ergy transfer between kinetic, available poten-
tial and background potential energies, allow- d , +
ing for more general boundary conditions, is a-EEp --. v gpw dV + 4 | = $z + 0i (24)
given in Winters et al (1994). Within a fixed
volume V, the background potential energy is d (25)
defined as dt

where lz is the spatially integrated, (negative)
Eb(t) = g £ z. (p) p(Y, t) dV vertical buoyancy flux and 0j is the rate of ex-

,' change between internal and potential energy.
= A9 ] z~p(t,z.) dz, (20) For the Boussinesq Eq. (1), this rate is nonzero

Z1 but extremely small compared with turbulent

where z. and p are related via Eq. (8). Taking exchange rates and will be henceforth ignored.
the time derivative and neglecting advection Neglecting 0 i, Eqs. (23)-(25) are summa-
across S, we obtain rized in a simple energy diagram in Figure 2.

d zThe energy components represent spatially in-
a-Eb = A9 4 . Apl.,dz, . (21) tegrated quantities and the transfer rates are

generally time dependent. Energy is input via

The time derivative in the integrand can be turbulent production PTKE. Turbulent kinetic
rewritten using Eqs. (13) and (15). Thus, energy (TKE) can then be irreversibly dissi-

pated at rate e or converted to available po-
d-Eb = -A 2 Z. - d(Z.) dz. , (22) tential energy at rate k.•. Available potential
dt 42 ýfda. energy is then exchanged with TKE, at rate 4',,

which can be integrated by parts to give or irreversibly converted to background poten-
tial energy at rate 1%.

d /;: The time dependent, wave driven mixing pre-
-Eb W= CdZt) dz4 = 

4
d(t) (23) viously discussed can now be easily diagnosed.

The time rate of change of Eb can be corn-
assuming that diffusion across the bounding puted, as can the contributions resulting from
surface S is negligible. Thus, diapycnal mixing, mass fluxes across the bounding surface S. Al-
which occurs at the instantaneous rate @d(t) tematively, Eq. (19) can be used directly, inde-
irreversibly increases the background potential pendent of whether mass is conserved. In Fig-
energy Eb. ure (lb), the quantity Emix is the background

-I • m
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Fig. 3. Density contours from a low Re ,hear-driven mixing event.

potential energy, compensated for changes due apycnal mixing were to occur, the isopycnals
to mass fluxes acroxss S. Note that prior to would remain flat. Spreading isopycnals indi-
the wave instability, Enmx remains small as the cate the formation of a mixed layer. The diapy-
rate of diffusion Is negligible. During this time, cual flux responsible for the mixing is shown
the available potential energy EB increases as in (4b). The flux can be calculated via Eq.
the wave propagates into V, displacing the ini- (16) or by assuming the obsewed time rate of
tially quiescent isopycnals. As the wave col- change of the density field results from the gra-
lapses and restratificatlon occurs, E. decreases. dient of a flax and Integrating numerically to
At the same time, diapycnal mixing begins as find the flux. Though the volume integrated
evidenced by the increase in E.,I.. Partition- flux 'bd is a positive definite quantity, Eq. (16)
ing the potential energy between available and places no sign constraint in the local values of
background components allows the adiabatic 0d; < V 2p >', can be of either sign. Figure
and the diabatic processes to be examined sep- 4(b) shows two distinct regions where Od < 0.
arately. The regions of negative flux correspond to fluid

5. TIME DEPENDENT DIAPYCNAL FLUX for which the background density gradient in-
creases. These negative fluxes are purely dif-We now consider" a second numerical exam. fusive, they do not indicate counter-gradient

pie. Figure 3 shows Isopycnals from a low Re fluxes in the usual (adiabatic) sense.

simulation of a shear-driven mixing layer at

several instants in time. The isopycnals were 6. SUMMARY AND CONCLUSIONS
initially flat. At each time shown, the instanta- The concepts of available and background
neous value of potential energy Ep(t) is greater potential energy are extremely well suited for
than the initial value Ep(O). To what extent the analysis of the energetics of diapycnal mix-
the cumulative increase in Ep at any given time ing in density-stratified fluids. The sorting op-
iN due to adiabatic, reversible buoyancy flux or erations inherent in these ideas can be expressed
to diabatic, irreversible mixing cannot be de- mathematically and used to derive evolution
termined using simple potential energy argu- equations for the reference state, the instanta-
mc its. neous flux and the rate of change of both back-

Using the developments presented in the pre- ground and available potential energy. The re-
vious section, however, the time dependent rate suits presented show that instantaneous mixing
of diapycnal mixing, as a function of density rates can be calculated for a turbulent, strati-
(or z,) can be examined. Figure 4 shows con- fled flow even if the flow is not steady and In
tours of the reference density field p(t, z.) for the presence reversible internal waves.
the flow corresponding to Figure 3. If no di- The diapycnal flux rate in a fixed volume V
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Turbulent Penetration and Mixing

at an Interfacial Layer in a Wind Tunnel

Jayesh and Z. Warhaft

Sibley School of Mechanical & Aerospace Engineering
Ithaca, New York 14853

1 Introduction

The transport of heat, pollutants, C02, moisture and other trace gases is affected by
stable stratification, both in the ocean (particularly at the thermocline) and atmo-
sphere, (particularly at the top of the boundary layer, where there is an inversion
cap, and at the tropopause). Under some conditions the stable stratification, in
which the temperature increases (density decreases) with height, dampening tur-
bulence and sometimes completely suppressinug it, persists lor long periods allowing
the pollution concentration to increase to intolerable levels, such as can occur in Los
Angeles when warm air from the sea over-rides cooler air at ground level. The broad
concepts are well understood: the decrease in density inhibits the overturning of the
turbulent eddies by extracting their kinetic energy and converting it into potential
energy. The dynamics are discussed in the standard texts, e.g. Turner (1973). The
diffusivity of turbulence is many orders greater than that of laminar flow and if it
is suppressed, so is the mLxing and transport of pollutants, trace gases and parti-
cles. However, in order to design new power-stations and smoke stacks as well as
write new legislation, and litigate against transgression of existing law, there are
details of the scalar mixing and transport that must be understood. We must know,
for example, the probability density function (pdf) of the fluctuations, and how it
varies with stability. It is not enough to know the mean concentration of a toxic
pollutant if there is a reasonable chance of a fluctuation hundreds of times greater
occurring, killing a human or animal who happens by chance to take a breath. This
implies that we must have a deeper understanding of the higher order moments,
joint moxaents and joint pdf's and so on. In situ measurements are difficult, if not
impossille because of the very large sampling times needed to supply stable higher
order statistics (Wyngaard, 1973). The stirred tank experiments carried out over
the past thirty years (Turner 1973, Hopfinger 1987, Fernando, 1992), while sup-
plying detailed information on entrainment rates under controlled conditions, are
inherently non-stationary and thus here too there is insufficient time to gain reliable
higher order statistics.

In the experiment described here we have used a wind tunnel, with the air in
the upper portion heated, to produce an inversion or interfacial layer (Figure 1).
Moreover we have induced a much greater level of turbulence below the inversion
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Weak, small scale turbulence

U1  Hot
y Mixing or

U interfacial layer

Cold U Tz) k(z) W '(z)

Strong, large scale turbulence

Composite grid

Figure 1. A sketch of the test section of the stratified wind tunnel showing

vertical profiles of U, T(z), k(z) and (02)(z). The composite grid (Veeravalli

& Warhaft 1989) generates large scale turbulence at the bottom, and small

scale turbulence above, in the absence of mean shear. The temperature step

is generated to the left of the grid in the plenum chamber by means of a

number of horizontal heating rods, the bottom half of which ace turned off

(Yoon & Warhaft 1990). The profiles of mean temperature, kinetic energy

and temperature variance in the mixing or interfacial layer are siwilar to

those observed in the atmospheric boundary layer, at the capping inversion.
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Figure 2. (a). Horizontal velocity variance profiles, without stratification (left
hand side) and with stratification (right hand side). (u2)2 is the velocity v-ri-

ance in the strong turbulence side of the layer, 11/2 is the velocity half width of
the layer and zr is the inflection height of the velocity variance profile. Solid
line, best fit error function. The profile on the left has been shifted -4 non
dimensional units to the left and down by -0.2 units. The various symbols
represent different downstream distances. (b). Mean temperature profiles
normalized by 'ie temperature step, AT. Tm,, is ambient temperature in
the large scale turbulence region. The height z is normalized by the mean
thermal half width IT- z, is the center line height of the mean temperature
profile. The various symbols represent different downstream cdstances.
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by means of a grid of large mesh (M2). Above the layer we have used a fine mesh
(MI) which while causing turbulence in its close proximity, decays very rapidly. Thus
there is turbulent penetration of the almost quiescent inversion from below, such as
occurs below, say the inversion cap of the planetary boundary layer (although in
that case, we note, the turbulence is convectively, as well as mechanically driven).
Notice that for this set-up the flow is statistically stationary; the evolution occurs
in space (downstream), not in time as for the atmosphere and grid stirred tank
experiments. Thus we are able to measure the statistics of the fluctuations with
great accuracy. Furthermore our grid has been designed so that there is no shear
and thus we are able to study the details of the transport process (Veeravalli and
Warhaft 1989).

The experimental set-up is a combination of the earlier work of Jayesh, Yoon
and Warhaft (1991) in which there was stable temperature step in conventional grid
turbulence and the turbulence mixing grid of Veeravalli and Warhaft (1989) in which
the velocity was generated in the same way as in the present work, but there was
no stratified temperature step. A full account of the present work will appear in
Jayesh and Warhaft (1994). What follows here is a summary.

2 Apparatus and Flow Conditions

We performed the experiment in our large (.91 x .91 m 2 and 9.1 m long) open cir-
cuit, low turbulence level suction wiud tunnel designed specially to study stratified
flows, (Figure 1 and Yoon & Warhaft (1990)). A grid with two different mesh sizes
on top and bottom but the same solidity throughout was used to create turbulence
of the nature described in the Introduction. The grid design was essentially that of
Veeravalli & Warhaft (1989) but was rescaled to fit the stratified horizontal tunnel
used in our present experiment. On the top half of the flow (i.e., the low turbulence
region) a rectangular wire mesh screen (wires in both vertical and horizontal direc-
tion) of mesh size 3.175 mm and wire-diameter 1.19 mm with open area of 70.2%
(or solidity of 29.8%) was used; on the bottom, horizontal parallel adjustable bars
of width 11.11 mm were used. Here too the solidity was 29.8%. Thus the ratio
of the large to small scale mesh sizes, M2/M1 was 12.6, a value higher than in our
previous work. The overall change in U was less than 5% across the flow, compar-
ing favorably with that observed by Veeravalli & Warhaft (1989). The turbulence
intensity profiles will be discussed below. Heating elements at the entrance of the
plenum (Yoon & Warhaft (1990)) were employed to produce the desired temperature
step. Measurements were made for nominal values of AT = 10'C, and 200 C and
a mean velocity of approximately 4 m/s. The mean velocity, fluctuating velocities
and fluctuating temperature were measured using an X-wire in conjunction with
a cold wire. Wollaston wires of 5.08 Mm diameter were used for the X-wire with
the length to diameter ratio approximately 200, and the over heat ratio 1.95. A
platinum resistance wire of 1.27 pm with length to diameter ratio of 400 was used
for the cold wire.
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3 Results

As the flow evolves downstream, buoyancy effects become more pronounced since the
turbulence decays and thus has less energy to work against the restraining (negative)
buoyancy forces of the temperature step. The Bulk Richardson number, Ris, which
we define as

RiB (-/To)(ATlT)I((t)IL•)

where AT is the temperature step, To is a reference temperature, £1. is the half
width of the temperature step (uM) is the velocity variance in the high turbulence
side below the layer and Lu is the length scale of the turbulence below the layer,
varied from zero, close to the grid, to 82 far downstream. In spite of the pronounced
effects on the evolution of the layer thickness and the transport (see below) the
variation in RiB did not have a striking effect on the form of the velocity variance
profiles or the mean temperature profiles, which are close to an error function with
or without stratification (Figure 2).

On the other hand the higher order moments were strongly affected by the
stratification. Figure 3(a) s ,.u the vertical velocity time series, at the interface,
with and without stratification. For the unstratified case bursts of high velocity
are evident; with stratification the bursts are suppressed and there is no sign of
interrrittency. VeeravaLli and Warhaft (1989) show much of the thickening of the
layer (in the neutral case) is due to the large scale bursting at the interface of the
strong and weak turbulence. The qualitative effects of Figure 3(a) are manifested
in the pdf of w. In Figure 3(b) we have plotted the fourth moment (kurtosis) of w,
as a function of vertical height through the layer. On either side of the layer in the
kurtosis has the Gaussian value of 3. With no thermal stratification it has a high
value in the layer, reflecting the intermittency, but when the stratification is applied,
the kurtosis is 3 throughout. The full pdf's show Gaussian behavior throughout the
layer with stratification, while they are strongly skewed, with broad tails for the
neutral case.

The suppression of large scale mixing by the stratification inhibits the growth of
the layer. Figure 4(a) shows the evolution of the half width of the mean temperature
profile as a function of z/M 2 and Figure 4(b) shows the evolution of the temperature
variance profiles as a function of RiB, which increases with x/M 2 . For both cases the
layer first thickens, as would be expected for a passive temperature step, and then
due to the stabilizing effect of the layer, it becomes thinner. The same phenomenon
was observed in Jayesh et al. 1991 for the symmetrical case (of turbulence of the
same intensity above and below the layer). For this case however most of the layer
development (thickening and thinning) is due to the bottom part of the layer, where
the turbulence is strongest.

The effect of the stratification on the transport processes within the layer, is
clearly shown in the vertical profiles of heat flux (Ow), kinetic energy flux, (kw),wher k =1 (j2+V2+W)

where k • (a2 + v2 + w2 ), and the vertical flux of temperature variance, (02w),
Figures 5a, b, c, respectively. These figures contrast the various quantities at
x/M 2 = 32(RIB = 0.8) where the stratification is insignificant, to those at x/M 2 =
146(RiB = 63) where the stratification is so strong that the heat flux has collapsed
and has reversed sign (counter gradient) iu the upper part of the layer (Figure 5a).
Notice that the kinetic energy flux (Figure 5(b)) also changes sign in the upper part
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Figure 3. (a). Time series of the vertical velocity fluctuations with strati-
fication (upper series) and without sLratification (lower series) at x/M 2 =

146; z/M 2 - 17.1 and z/M 2 = 16.8 respectively. The straight solid lines are
±3 standard deviations from the mea•. (b). The profiles of the kurtosis of
the vertical velocity fluctuations at x/M 2  146, with (A) and without (Q)
stratification (AT = 20.2°C).
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Figure 4. (a). Downstream evolution of the Ialf width of the mean temper-
ature profile, 17, and its partition for the upper part of the layer, IrT, and
lower part, 172, as well as their ratio, Irl/1 T2. M2 is the mesh length of the
large grid bars. 0, iT0; 17,/1; A, 172; thick line, lrl/ir2. in. has been shifted
up by 1.0 and ln has been ehifted down by 1.0 on the vertical axis. (b). The
half width of the temperature variance profiles plotted as a function of Rif.

Ien (C) is the half width of the upper portion of the profile and 102 (A) is
the half width of the lower portion. The solid line is the ratio, 1e1/12. lip has
been shifted up by 1.0 and l16 has been shifted down by 1.0.
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of the layer, when the stratification becomes strong, as does transport of temperature
variance: at x/M 2 =- 32, (92w) is positive above the location where (92) is maximum,
and negative below, indicating the variance is carried away from its peak towards
the edges of the layer, while the reverse holds further downstream in the region of
counter gradient heat flax (Figure 5(c)). A more detailed analysis of these profiles is
given in Jayesh and Warhaft (1994) where the gradients (and fluxes) of the quantities
shown in Figure 5 axe discussed.

In order to further investigate the effects of buoyancy we determined the condi-
tional heat flux, i.e. the heat flux conditioned on its particular value of temperature.
Assuming joint normality between w and 0 it can be shown (Jayesh and Warhaft
1994) that the normalized conditional heat flux, ý is an inverted parabola, i.e.

- w ej0 ) 2 ( -2a2

I- J('uO) I TO --

The joint normal assumption is sound for a passive scalar (Tavoularis and Corrsin
1981). Here we study the nature of the departure from joint normality, for stratified
flows. Figure 6(a) shows ý fox a passive profile and for a stable stratification (both
linear temperature profiles) taken from the data of Yoon and Warhaft. (1990) in
conventional grid turbulence. For the passive case ý is indeed an inverted parabola,
but when the stratification becomes significant, C curls up for large a. Figure 6(a)
clearly shows that in the nmean sense, the intense fluctuations are affected by the
buoyancy whereas the weaker fluctuations are still acting as if they were a passive
scalar.

The conditional heat flux, for the present work is shown in Figure 6(b), far
downstreamn in the strongly stable region. In this inhomogeneous field the departure
from join normality is strong, as would be expected, and the strongest departure is
for the low energy turbulence. This plot provides a quantitative relationship between
the stratification and the intensity of the fluctuations, indicating, for example, that
for positive 0 its effects are small unless the fluctuations exceed approximately one
standard deviation.

In summary, our results have much in common with our previous study of a
stratified layer in a conventional grid turbulence (Jayesh et al. 1991), where we also
found that the heat flux collapsed, resulting in a small but significant depletion of
the vertical velocity variance within the layer. However, because the flow was close
to homogeneour, there was relatively little laxge scale intermittency in the velocity
field. Here, on the other hand, the velocity field above the layer was deliberately
suppressed by means of the grid construction. Thus intermittency was apriori a
principal method of transport for the passive case (the other mode being turbu-
lent diffusion, Veeravalli & Warhaft 1989). For this configuration our experiment
has clearly shown that the stratification completely suppresses the large scale in-
termittency and that transport is only by turbulent diffusion, be it up or down the
gradient.

We thank the U.S. Department of Energy, Basic Energy Sciences, for their sup-
port.
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Figure 5. (a). The normalized heat flux profiles \ (u ) / /2

two downstream locations; x/M 2 = 32 (passive) and xIM 2 = 146 (strongly
stable). 0, x/M 2 = 32 (RiB .8); A, xIM 2 = 146 (RiB = 63). z. is
the height where the mean temperature is Tmtn + (T•=, + Ta,)/2. Other
symbols have been previously defined. (b). The normalized vertical flux of
kinetic energy, (kw)/(u2)1/2 . (c). Vertical profiles of the normalized flux of
temperature variance, (O2w)/((02).,r,(u2)1/2). The circles and triangles are
at x/M 2 - 32 and 146 respectively.
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Figure 6. (a). • vs. a for data of Yoon & Warhaft (1990) where the flow is
strongly stable. O, U = 2.8 m/s, aT/az = 550C, x/M = 116.5, p = -. 39;
A, U = 3.6 m/s, &T/az =,"', x/M = 196.5, p = -. 16. The value of
for the passive case is the inverted parabola. A symmetric smooth curve has
been drawn along the data points. (b). The normalized conditional heat flux
ý as a function of a for the present experiment. The data is at xIM 2 = 146
in the strongly stable region. 0, z/M 2 = 12.04; i0, z/M 2 = 12.67; L,
z/M2 13.0. The cu-ve shown in solid line is for the passive case.
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Direct measurements of the mutual-entrainment velocity at a density interface

By K. Kan* and N. Tamai**
*DepL of Civil Eng., Wdbun Inst. of To&h.; aid

"**'Dt. of Civil Eng., Univ. of Tokyo; Japm

Through experiments for horizontally homogeneous shearing flow, charcteristics
of mutual entrainments are observed. The velocity fluctuations near the density
intcrface became relatively large. Thi shows that the mutual entrainment toward the
upper- and lower- layer directions were caused simultaneously near the interface by
shear instability. With visualization technique it is observed that the mutual
interactions between the vortex shear layer and the gravity wave play a dominant
wle on the interfacial mixing. U: chacteristics of the mutual entrainments are also
analyzed considering the interaction between the dynamic property of vortex shear
layer and gravity wave.

1 Introduction

The characteristics of mixiag phenomena vary from one se to another, depending on
what causes them to happen. Turbulence on water surface caused by winds plays a dominant
role in the behavior of stratified layers in reservoirs. While at the density interface in a saline
wedge, shear force is dominant in the interfacial mixing process. In case of thermal stratifica-
tion, thermal effect on the interface plays an important role. To establish a model for these
interface mixing phenomena and examine them experimentally, it is necessary to have suitable
facilities which can simulate turbulence generating that controls the real mixing processes. For
the case of a saline wedge which is originated from the instability of the shcar layer, an
apparatus which can generate the shear flow is necessary, and one that creates both the upper-
and lower- layers of the stratified flows has generally been used. However, in past
experiments, emphasis has often been on measuring the entraining layer, not the layer being
entrained.

In case of a saline wedge, with different combinations for the velocities in the upper-
and lower- layers, mixing at the interface is complicated. Hence it is necessary to conduct
ewqperiments by bearing on mind the mutual-entrainment phenomenon. In mixing caused by
internal waves and the instability of the shear layer, it is normally considered that mixing
advancu to the upper and the lower layer, leading to mutual entrainment. To understand this

phen .m.. it is f-0 r upper-. -d . A er. layers, Jinuding the
interfae in between. A chculating flume in which horizontally homogeneous flows can be
realized, without the influences of the flume's two ends, is easy to handle and can improve the
measurement precision. There are also secondary flow problems. It has also been pointed out
that secondary rows damp the inner side's turbulence intensity, force toward the inner side the
intermediate density layer generated by the mutual entrainment, thus reducing the entrainment
area. A circulating flume in which secondary flows' influences arm minimized has been made to
measure directly the mutual-entrainment phenomenon under shear-flow conditions, and to shed
more light on the characteristics of the mutual-entrainment phenomenon. By changing the upper
and lower layers' velocities, we have directly measured the fluid transport -t the interface,



visualized the interface, explained its original causes, and examined the suitability of the
mutual-entrainment Lonception.

2 Experiments

In Fig.1 is shown the ciroulating flume used in the experiments. It is made of acrylic,
and is elliptic, being composed of a straight part and a semi-circle part, both of which are 1.5m
long. Shear flow is generated by belts installed on the bottom and the surface of the flume's
one straight part. On the belts were attached roughness elements. Measurements were
conducted on the other side. Since there is no obstacle, homogeneous shear flow is generated
in the measuring part of the flume, and good precision can he txpected from the bottom to
water surface. In order to get rid of secondary flow's influences, vertical sleets were installed
in the curved part, and grids in the connecting part between the curved and straight ones,
guaranteeing thus a homogeneous shear flow in the straight part. The belt at the bottom is
double layered so as to eliminate influences from the motor, and horizontal sleets were installed
to minhnize the mutual interference between the surface and the bottom belts.
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Fig.1 x tal setup Fig.2 Distributions of the average velocity

and velocity fluctuations

In Fig.2 are shown the vertical distributions of the average velocity as well as the
fluctuating velocity's RMS. it is seen that a rather homogeneous shear flow exists, though
there is also weak turbulence on the inner side. To obtain the relative velocity in the
experiments, the upper and lower layers were moved to the opposite directions. Longitudinal
and vertical velocity components wcr.- measured with a two-component hot-film probe, while
density was taken by a hand-made miniature density probe which is 3nm wide and has a
0.1amM electrode.

In order to measure continuously the density variations, density probes were installed
every 5mm at 6 points, and displaced in accordance to the interface.s displacement, such that
the probes can always cover the interface. To measr the density flux at the interfce, a two-
component hot-film probe and a density probe were placed closely (3mm apart) for the
measurements.

3 Interface and Its Instability

Using aluminium powder, density interface in case where the upper- and lower- layers
move in the opposite directions was visualized. Though in the past researches about interface's
stability has been much studied, little is known about the case when instability occurs. While it
is possible to determine the instable wave period, it is not to discuss about whether this will



lead to breaking, which dominates inte•rfcial mixing. Here the large eddy model proposed by
Scorer is used in the following discussion.

When the upper- and lower- layers move in the opposite directions, and the velocity
difference (thus the shear) is small, the interface is stable, and there is no structural internal
wave. The eddy structure at the interface starts to change once the velocity difference becomes
larger. At this stage the ar no breakers accompanying eddy movement. When the velocity
differece becomes still larger, iustabRity appears, together with the eddys' deformation.
Vortices gather in the eddys, leading to billow. This is shown in Photo 1, where the bright part
corresponds to this engrossment.With this the eddys deform, which leads to gravitational
instability, absorbing the upper- and lower- layers' fluids into the eddy's center, and subse-
quently it dissipates, part of which goes into the upper- or lower- layer, as shown in Photo 2.
CoTesponding to vortex engrossment, part
of the eddy's inclination increases, then the
crest is broken away by the upper- and
lower- layer, and entrained into their res-
IXCivC -- tal-entainmnt layers. ,

In this way, muua envl~trairiet ._

occurs when both the upper and lower

layers move. Th time variations of the L- -
interface position depend on this mutual • .......... ., ,
enrmet Vofx engrssment in this -- _- -
eddy layer, as well as the mutual entrain-
mcrit thereof arc considered in the follow-
ing, using Scorer's method. Fig.3 Eddy's vibration

Photo 1 Visualization of the interfce Photo 2 Visualization of the interface

(vortex engrossment) (eddy layer's deformation)

The vibration of the eddy layer causea by velocity diftemtx is described by gravita-

tional wave (Fig.3) ý = A cos kx . Due to this vibration, vortices are distributed along the
wave, and new flow appears inside the eddy layer. The velocity, uo, at the crest, and due to the

circulation M 6x 6z inside the volume 6x , with a distance of x from the crest, can be
deduced as in the following. Let the distance between the crest and the circulation be L, and the
vertical velocity component which is perpendicular to L as u, one from the conservation of
circulation has:

u 2nrL= qi bx 8z (1)

Lt the angle in Fig.3 be9 , the horizontal component is u6 = u sine. WVhen is small enough,

L=x, sinO = A (1- coskx/x, and:



'n 8X 8z A (1- coskx)(2
2xx X

Integrating the above equation, we obtain the new velocity at the crest as:

2xxdX =2 1-jAk 8zUo/••xazA(1.coskx) 21 (3)z

2.,z- "x ax =2 •x(3)

by which the vortices are transported and amassed at N in Fig. 3. Assume that horizontal velo-

city variation is given by uO coakx,.the increase is - 11 6z du/dx. Further, vortices generated by

gravitational force due to eddy's deformation are given by 09g 6z d•/dx, which restricts eddy' s
deformation. The total of this effect and that from the vortex engrossment is given as sinkx.
When this is positive, vortices increase at N in Fig. 3, while decreases at N', and becomes
instable as shown in Fig.5. Thus the condition for instability is:

k > = 2gq 2 6z (4)

wherez , j are defined in AU= 7 5z, Ap- Op 6z. If Richardson number Ri = gph 2, the
relation between Richardson number and the ratio of the instable eddy layee s thickness 8z to
wave lnth L (about the wave's inclination) is:

= 6z/L> Ri (5)

Ile results from visualization u- shown in Fig.4, where stands for the case when
vortices gather and dissipate (Photo 1), and @ represents the stable case when the wave is
long. In the present expeiments, R& varies around 0.75, which separates the stable zone from
the unstable zone, and Eq.5 is thought to give the approximate critic value.
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Fig.4 Eddy layer's stability Fig.5 Eddy layers deformation Fig.6 Brunt-Vaisala frequency

Due to eddy deformation, vortices gather to B, D in Fig.5(a), lead to gravitational insta-
bility as in Fig.5(b), and create mixing. In this way the processes from eddy layer's increasing
instability to break waves may be modelled. And it can be considered that mixing is generated
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simultaneously in both the upper- and lower- layer. The velocity with which mixing enters into
the two layers is called mutual-entrainment velocity. Figure 6 shows Brunt-Vaisala frequency's
variation, with which mixing epands when the lower laye s speed is relatively large. The
results calcula-ed by using the density gradient at the intorface with the upper layer (interface I),
with the lower layer (interface U), and the average density gradient in the eddy layer, are drawn
with symbols o, 0, and 0, respectively. Horizontal coordinaft stands for time, and vertical
coordinate for Brunt-Vaisala frequency. Interfaces I and U's variations also show the density
distributions' variations due to mixing along the interfaces, and demonstrate that mixing occurs
at the int.faces Also, Brunt-Vaisala frequency's decrease in the eddy layer shows the mixing
in it, and that the eddy layer saves as a medium through which m g occurs in the upper- and
lower- direction.

4 Velocity Variations

In the above, we have introduced the concept mutual entrainment to the shear layer
instability in case wheie both the upper and lower layers are in movement Here we detmine
the interface's shape by using aatisc values from the velocity variations. The average velocity
and the RMS of the velocity fluctuations are given in Fig.7, which shows that the velocity
fluctuation is strong along the interface. The RMS of the veurical velocity component is shown
in Fig.8, and Reynolds stress distribution in Fig.9. The maximum Reynolds stress and the
maximum velocity fluctuation appear at the same position, in which part exists strong shear
stress. It is predicted that at these positions the instability due to shear stress be=mes larger.

In Fig.10 is shown the velocity fluctuatio spectral at 5mm below the interface. Figure
10(a) shows the case of higher stability, where the peak appears at low wave number of 0.2-
0.4. This is considered as the gravitational wave which corresponds more or less to the Brunt-
Vaisala frequency of the midkk layer in Fig.6. Fig.10(b) is for the case with relative instable
intaeace.
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Fig.7 Longitudiinal velocity and Fig.8 Vertical velocity's Fig.9 Reynolds stress

With increasing instability due to vortex engrossment, peak appears at a wave number
of 0.8-1.0, which corresponds to billow-type vibration. Thus, in case of higher stability
gravitational wave dominates; in case of lower stability eddy 'ayer's deformation leads to
instability, and billow's wave number dominates. However, both exist. Subsequently, ixi
becomes sronger, billow gets smaller and broken, leading to breakers of higher wave number.

5 Density Varlations and Density Contours

i -



in order to measure density variations in mixing, density probes were used at every
5mm, including the interface. And the time series were taken. The spectral of the density
variations at the interface is given in Fig. 11. Similar to what is shown in Fig. 10, peak appears
at billow's wave number. Because of the mixin by breakerG, there exists the parl with a
firequency of 1-2Hz.

Contours are drawn (Image 1, 2) for the time series obtained by 6 density probes which
measured acosthe interface. Vertical coodinate shows the probes' positions, horizontal
coordinate is time. At a fixed point, one can observe the phenomenon through the density
variations.

to-'1

10-a
,0 - of- 10-1 1 02 1

Fig.10(a) Fluctuation velocity's (b) Fluctuation velocity's (c) Density-vaii lioni
spectral sPectral spectral

image 1 Density contours in tre Image 2 Density contours in the
lower layer Fig. I Iupper layer

In Image 1 ame drawn the contours below the interface. The band shows the interface,
below which is eddy shaped and of which the density is higher, with the surrounding density
being lower. This shows that the mnutual. entrainment moves the fluid in the middle or the upper
layer to the lower layer. bmae 2 gives fth contours for the upper layer, an shows that the
upper part is of high density, while high density fluids from the middle- and lower- layers are
transported into the upper layer. However, direct, large scale transport from the lower to the
upper layer was not observed. It is throuigh the, middle layer that the upper and lower layer
generate mutual entrainment. In this, mutual-entrainmient processes, eddy layer's vortex
deforamato plays the domint role.

6 Density-flux Measurement and Mlxlng Inside the Large Eddy
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Since the large eddys play an important role in the mutual entrainment to the shear layer,

it is necessary to examine the mixing process by directly measuring the density flux. Though
velocity and density measurements were not taken at the same points (being 3mm apart), the
results are considered as ftom the same points, since visualization shows that the eddy scale is
larger than 3mm. Density flux in the vertical direction is shown in Fig.12, through the
presentation of the vctical velocity component v' and density fluctuation p' in quadrants. Verti-
cal coordinate shows the vertical velocity component (upward is positive), horizontal one
stands for density fluctuation. Fig 12(a), (b) and (c) show the density fluxes below the shear
layer, in the middle of the shear layer, and above the shear layer, respectively. At the borders of
the shear layer, density flux can also be observed outside the 1, 1 quadrants, showing complex
mixing. At the centcr of the shear layer, due to density effect and zero velocity, density
fluctuation is large though velocity fluctuation is limited. This shows active mixing of the
upper- and lower- layers.
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Fig.12 Dcm~ity flux (a) (b) (C)
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Fig.13 Density flux's variations Fig.14 Mixing inside the large eddy

Further, to examine the mixing process by tracing the density flux, the time series (one
sample per second) of the density flux in the large eddy amc preented in Fig. 13. Corresponding
to image processin, tranprt inside the eddy ;-a ske-tched;ý Fin .14, in 616 -- A -LT_

"A. .La• ........ -P L "A _

IV -ý, H -> M-I >11 .-> I quadrant And in Fig.15 ame given Reynolds stress's time series (twice
Per second). Since Reynolds stress is calculated when it appears in each quadrant, Reynolds
stress is z=r if the number of appearance is zero. Horizontal coordinate shows time, and
vertical one stands for dimensionless Reynolds stress -u v' / Fu' YV' . The order in which
Reynolds stress appearsin the quadrants is III->IV-> I-> IV ->III -> 11, from which eddy's
rotating direction is shown in Fig. 6. Figure 14, which was obtained by tracing density flux,
agrees rather Well with Fig.16 that was obtained by tracing Reynolds number. As shown by the
arrow in Fig.14, ispossible tomodel the mixing inside the eddy. Similaretonage 1, the



large eddy in Fig.14 is sketched in Fig.17, in which the heavily drawn part stands for lower
density, while less heavily drawn is for higher density. It agrees quite well with Image 1.

The mixing phenomenon inside the large eddy, as well as the fact that the shear layer
draws its surrounding fluids to this large eddy, have been clarified. Due to the mixing fluids,
intermittent release, the fluid in the upper (lower) layer is transported to the lower (upper) layer
through the shear layer. TI resulting density flux is dispersed to the whole layer by the
mutual-entrainment layer's turbulence, and the mutual-entrainment process is completed.

,,.i / ~ i~

Fig.15 Tine variations of Fig.16 Reynolds stress Fig.17 Eddy seen through
the Reynolds stress distribution density contours

7 Conclusions

Interface phenomenon in shear flows as well as the mutual-entrainment processes have
been investigated using a circulating flume. The following conclusions may be drawn:
1) Vertical sleds were installed ia the flume's curved part. This avoids the effects by secondary
flows, and generates quasi homogeneous shear flow in dte flume's straight part.
2) By considering vortex engrossment due to eddy's deformation, it is possible to explain the
interface's deformation and the transition to instability. This agrees well with the stability of
billow-type intcrfacial wave obtained by visualization.
3) At the in co-exist grvitatimal wave as well as billow whose wave number is slightly
smaller. Together they dominate the interfacia mixing.
4) Density flux at the interfie was measured, and it is found that transports to the upper- and
lower- layers occur simultaneously. This can also be understood from 2). However, structural
mixing that jumps across the middle layer was not observed.
5) The eddy layer's instability plays an important role.
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Abstract
Analysis of turbulence an well as internal wave observations In a tidal stratified
flow supports the following statement. Subgrid internal gravity waves in computa-
tions of stably stratified, free surface flows are a significant source of
turbulence production unknown in applied turbulence modala.

1. Introduction and goal
Usually, in feasible three dimensional computation of mass transport of shallow
coastal seas and estuaries, the horizontal mesh else Ax exceeds the water depth.
Thus, irrespective of the number of computational layers, we actually average small
scale vertical mixing phenomena over layer areas of several horizontal grid boxes
and timesteps. Hence, in view of the relevant scale ratios, the implied aubgrid sur-
face-averaging and time-averaging in large-scale free-surface simulations
approximates ensemble-averaging of 3D turbulence. Consequently, we may
apply 'standard" 3D-turbulence models as sub-
grid models in the computation of large-scale 0 I TT_
free-surface flows. However, the large aniso- IL
tr-py of the 3D-computational mesh as well as •
of the stratified flow proper leaves, in terms
of subgrid models, a spectral gap between stra- -

tifled 3D-turbulence and the resolved * - 0ow 3 000 050
horizontal circulation. We expect that internal _
gravity waves occupy this part of the subgrid
spectrum. In addition, we infer that these in- I
ternal wave, play a role in momentum transfer t
am well as energy transfer to 3D-turbulence.

The present paper explores the necessity of the ,

through analysis of our field observations in "k
the Rotterdam harbour. In the context of this 

_)7

paper we define the scromatiuctuxe as the com- Z_,:
putationally resolvable part of a stratified 0
tidal flow in nature, say beyond horizontal
length scales of 100 [m]. Further, we define
the microstauctuze 

as the subgrid 
range of -0$1

length and time sculen of nearly iotrpic
stratified 3D turbulence below the Ozmidov II
length scale. As an example we take the k-cs

turbulence model to represent vertical mixlngby N u_ (min)-
3D-turbulence.Finally, the seaontructure
contains the subgrid flow at scales occupied Vig.l. Vertical macrostructure
by aninotropic turbulence and, at larger Rotterdam Waterway
subgrid scales, internal gravity waves.

3. That site
We will only discuss our observations in the Rotterdam Waterway. This is a tidally
forced, mainly salinity stratified channel connected to the North Sea. Several kilo-
metres in upstream as well as downstream direction of our site the sand/silt bed at
22 m depth is straight; horizontal and smooth, Not this section of the channel nor
its groins did notably create lee waves. However, through 100 kHz echo sounding, we
occasionally monitored long, ship-generated Internal waves in the macrostructure
range. Then we stopped our mesostructure internal wave observations.
During the six homrs of our measurements the flood increased from practically zero
velocity at the bed to maximal 1.8 Im/s] six hours later (Fig.l). The current main-
tained a stable density stratification of 15 kg/mn between the fresh water top layer
going seaward and the landward flow of seawater in the bad layer. The density diffe-
rences were mainly due to differences in salinity content and occurred over an
interval of 3-5 [m] arounQ a depth of 10 [m].

*1
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We simultaneously deployed the following three groups of instruments, each designa-
ted to record at various ranges of vertical (% ) or hori zontal (X, ) waveleneths the
microxtructurs, the mosostructure and the macrostructure. We ctserved the micros-
tructure at 2<X,1<500 [mm) with CW`R a free falling fine-scale CTD probe sampling At 1
[nmm] vertical vintervals (use also Fig. 4a). This probe was deployed from a freely
drifting shi p. -0

Secondly, on fixed levels and in 30 a.... .Lt

minute series the mamostructure
(0.10.% <100 [mn]), was sampled at 20 20
HZ us~ng a platform (3 va.1
comp.+cond.4temp.) suspended from an
anchored vessel. Correspondingly, we Aa
define time-averages, say U of si- --

gnal u, as 30 minutes avorages i.e.
1/25 of the H2 tidal cycle. Inciden- au
tally, the 3D-velocity vector was
measured with two 2-component elec-
tromagnetic current meters of 40
[mm] diameter tested in a towing
tank and checked agaiixot LflA. In ad- *...-0 ..

dition, the platform maotions were Mn
recorded and the pertubed flow si-
gnals were corracted by transfer t
functions calibrated on-line. In UD a U
this manner tite final flow signals
have become linearly independent of
the recorded platform motions. This 4.0
method has been checked separately I" E
and works very satisfactory. o O M M ~ 10 M
Thirdly, to observe the macro- r*one

structure, we deployed the Elicar, Fig.2. C::utrad displacement Mcale Lc [m].
which is a torpedo-shaped container
suspended fromn an anchored vessel and equipped with a CTD probe, electronic compass
and Ott mill (velocity magnitude). The inacrostructure was observed by 2 minute ave-
rages per level on fixed levels 0.5 or I [(m] apart. In this manner one
macrostructural observation of the vertical profile took about 25-30 minutes and
yields as vertical resolution of 2 [(s], see also Fig. 4b. We took 15 macrostructure
profiles, 6 memostructura measurements of 30 minutes each noar 10 [is] depth and 44
drops for the niicroatructure. In the following we present and discuss our findings.

S. Macrostructure
Given the orthogonal horimontal valocity components u and v and vertical coordinate
z, positive against gravity, we define the gradient Rlichardson number Ri. the
buoyancy frequency N and mean shear rate S as follows:

Ri N% - . S8 +z B (5.1)

These macrostructural parameters are computed and smoothod using 3rd order Ausaglei-
ch splines (Fig, 4b). Fig. 1 shows qualitatively the evrolution of the vertical
macrostructure where Ri is truncated to maximal 10. During the first 150 min. the
fresh water top layer above 5 (ml depth is nearly u'-.stratllflod. Along the depth-time
platform path of the mosoattructural ibservations YA derived N-0.12-0.18 [red/u] whi-
le Ri*O.5-2.2.In particular Ri is very sensitive to smoothing. The velocity
magnitude varies between 0.5-1.5 m/s at S0O.l (1/si witnout a notable veering of the
horizontal velocity vector. Hence, we study a flow at moderate stratification and
with the only nonzero shear rate in a streanawise varl.Acal plane.

6. Wicroatructure.
Below we define state parameters of the microst,.ucture which are closely related to

the measuring technique and data processing described by (Imberger and Boashash, 19-
86) and (Ivey and Imaberger, 1991). Near a fixed horizontal position (x,y) the
vertical microstructure along a stationary interval Az at time t are observed and
subsequently defined at the Interval centre z. In essence are used: (1) the local
buoyancy frequency N 9(z,t) (2) the centred displacement scale L c(z,t) and
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(3) the turbulence dissipation rate
49(zt). 921 t - Sai S

Te ioc~l buoyancy frequency follows4
from re-ordering the observed densi-~ / N6 -.
ty profile into a monotonous one ' - .

while Lc equals twice the vertical ) - .
displacement between the observed 7V
and re-ordered density profile and -0
averaged over (Z*(z)). In absence
of overturning events L -O and thus 4
LC Is a practically un iased signs- • • a, -
ture of a turbulence mixing length. /
Moreover, Itsweire (1984) showed the a. , "
good accordance between Land twice
the rms Thorpe scale for grid- 0 01,_
generated stratified turbulence.
Finally, the energy dissipation rate '"

follows from fitting Batchelor's ---

spectrum to spectra derived from the 12
observed temperature gradient fluc- 'C "7-(•
tuation: along (z*•A(z)]. Actually, (C. .
from the independent parameters N 14A-% n.
and C follow the local X0olinogorot 4

length scale L' , the local Ozmidov
length scale These three length lv"04.)
scales

defoIne the turbulent Reynolds number Fig.3. Energy dissipation rate c [m 1/sJ].
ReW, the local activity parameter FrT (isolines of 18logc are shown)
an• shear Froude number Fry

N3 LK. C ,YK ; (.

The CTD drops were deployed from a vessel drifting along the anchored vessel for the
remaining observations. To match the low resolution of the macrostructure the fine-
scale parameters (6.1). have been smoothed vertically an well as in time. For the
purpose of this paper we can only show some results. Fig. 2, with the same reference
time as Fig. I and with the dotted line of platform, shows that in the region of si-
gnificant buoyancy, L, hardly exceeds 100 (mm]. There also holds FrT-I which implies
that LC nearly equls Ozmidov length scale. In the nearly unstratified top layer
above 5 [m] for the first 150 min. LC yields 500-1000 (mm). In addition, Fig. 3
shows in the stratified region below 5 [i] that c"1-10 [(ma/sJ] irrespective of the
variations in the underlying velocity and density profiles. This is a relatively
high energy dissipation rate, actually belonging to an unstratified channel flowl
However, the small mixing length reduces the vertical eddy diffusivity in the stra-
tified region to only 10-50 [nsn/s 2 ]. Further, we estimated Re >100 and Fr >20 in
the stratified region. This implies the application of large-ReynWlds-nunmber 'turbu-
fence models vithout direct effect of buoyancy on the energy dissipation range and
thus on the evolution equation for c.

7. Diagnosis with k-c turbulence model
Instead of a 3D-computation we use the observed macrostructure shear rate S(z) and
buoyancy frequency N(z) as input to the k-c turbulence model. Here we compare the
model's results with the observed microstructure. We will neglect the weak horizon-
tal gradient, as well as advection and assume a quasi-steady state of turbulence.
Then we apply the following IDV version of the k--c turbulence model where instead of
Ic we use q2 for turbulent kinetic cnergy:

I ,

4
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ac 8 8£ ). [S(T.1 + C (7.2)
Ft - UZaa cT 2[s c3s-10:1- c 2 .-ECq q2

CI.IO.09; a.1.0 ; O"0.7 ; at-1.3 ;ce144 c c--0 0 ~ -'2

Hare izs u the eddy viscosity and a. the turbulent Schmidt to estimate the eddy dif-
fuXivit /oo. In (7.2) we have assumed c ,"O because Fr >20. For each vertical
macrostruc~Tural
profile
we solved (7.1)
and (7.2) until
steady state.
In the strati-
fied region the
resuuit yield a
practical lami-
nar response: a
mixing length
less than 1 [m-
m) and c-0.01
nun'/a'. This is
a conasquence
Of the vlue afcl, ,C1, 1ttCl** UMV lU.l f IC

u. which sets a a) Klcrostu-uct~vr- deneLLU prufile (CWR)
critical Ri- 0 0--~- F~~~ ~
value for 2 ~ -4.1-4--4 ~-i---4  

- ,4~--r -2 -~

laminar respon- - I .1.1 -4 ~
So. Simla T 6 -s -- j--- ~ -4--4

laminar results -a__JI- -L.. 1 I -
when~~ III wa n -- 4.I I-2 ----

Inne-d we -i j-'---- -1 -71-
creased to 1.3. 6 4  ,r -1--i ~i-- I 14 -14 1. -----4
could apply em- -to -t+----r4 -1 .ci --1 I-4-J--t- :: z :
pirical dampin 11 gI I.

.5T-1.0-0. (1.0 0.5 1.0 0. , 40L .00 
2
%.% 0.0 C.'i 0.2 0.3functions fo0r P/d (-I (..) L N-2 ("/)

o 0 owo(Ri), ho- b) Moc,-ostrucLure obsorvat: 'one CRWS)
weverr, we
prefer to add Fig. 4. Vertical microstructure (a) underlying macrostructure (b).
more
hydrodynamic knowledge to the turbulence model. Actually, in the next section we
will pursue the suggestions rado by G.I. Taylor (1931) on internal wave modes. These
modes are not obvious from Fig. 4 and require a different set-up of instruments and
a different analysis.
We aim at tile following improvement of (7.1). In (7.1) we have added an unspecified
transfer term T which is the sum of the energy transfer from internal waves to tur-
bulence, and vice versa, see (Uittenbogasrd and Baron, 1989). In section 9 we
motivate the additional turbulence source T(i-'t) which should improve estimates with
(7.1) and (7.2).

8. Masontructure with randomn internal waves

We have included in Fig. I the Ellison scale: LEr- 2.jpIj(aV (0.

derived from thi rms value lp'I of density fluctuations observed on the platform.
Here p' is defined as the deviation of density p from its least square fit of sec-
tions each lasting 7 min. and taken from one 30 min. series. With 50% overlap. these
7 min sections, each containing 8,092 samples, also served as input to spectral
analysis. Fig. 1 shows that the Ellison~ scale (8.1) is 0(5) times larger tban the
centred displacement scale along the depth-time path of the platform. This indicates
large non-overturning particle motions which exceed the 3D-turbulanceaexcursiorns and
is supported by echosoundings (Fig. 5).
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The non-overturning density per-
turbations are not observable
with the methods underlying Fig. -rfe acriace 13,20 h lt3M h

4a+b but require a platform sus-
pended from an anchored vessel. __ _ - -_- - -

Incidentally , in Fig . 5 we at- -1 ., _4 _4 v: .: - _-
tempted to follow the wave
patterns with a pencil and we
found they consist of only a few
periods, which indicates to 1
short wave groups with different 14
properties. 4 II •-.••""

We want to detect whether the '," Cp-)- ,I:,,-
mesostructure in the stratified upper pert of den.s a•yer , fncrc*trcw. rofLt. 3 oL 13:M2 h.
flow can be considered as Ai - .77;? , '*' "'-'. . .,L.. ,.,,

near, random internal gravity ' 1
waves.In addition, we would like
to quantify their energy content
and other properties or limita- pLator..t I i deth
thuns.

For that purpose we considered
the following. Similar to the
formulation of the Taylor Gold- '
stein equation we assume that
the large wavelength part of me-
sostructure field satisfies the
following linearized
equations for a stratified shear Fig. 5. Echosounding indicating internal waves.
flow: (some lines are enhanced with a pencil)

flu' d- • -.

Dt w8z z(8.2)

We decompose solutions to (8.2) into elementary harmonics or modes which depend on
the vertical Cartesian coordinate z, the horizontal etroa'wise wavenumbar k in x-
direction where u(z) is the streamwise velocity (vmO) and the transverse wavenumber
9 in y-directipn. In (8.2) we substitute for the vertical velocity of a single mode
(kQ): -

w(z,t;k,i) - F(z).exp[i(k(x-ut)+Iy+t(z)-ntJ+Qt}, (8.3)

with intrinsic angular frequency 0, growth rate ý and unknown amplitude F(z). Using
WKB expansion the vertical wavenumber m(z)- tRe(du/dz) follows from the phase func-
tion *(z); the horizontal wavenumber magnitude reads k2- (k 2 + V.) and the total
wavenumber magnitude ISI'- (k2+12+m2). Consequently, the inCrinsLc frequency yields:

2oGk2 2- k- . 84
Q [- (N.cose(kj)6+(l1+& )') I k du kh.r,,,tN~cvsO~k,•)•t•+(4+,) ; ' - _k- - 1Nd ; cose(",') - TFT"S84

Here the basis of the wavenumber vector k coincides with the spatial Cartesian sys-
tem and e is the angle between k and the horizontal plane M-0. However, in the
spirit of the WE-approximation & must be nerligible'small because the vertical wa-
velength (2n/m), hidden in the magnitude Iki is assumed to be much smaller than the
vertical length scale over which a(z) varies. However, in a shear flow with signifi-
cant shear rate, but with negligible velocity curvature, the well-known dispersion
relation 0 - N.cosg for internal waves in uniform flow still holds. The vertical
fluid particle excursions possass modes belonging to (k,.) with real-valued amplitu-
de Z(k,t). In comparison with-internal waves on a uniform flow now the streamwise
variance is augmented with %<Z2>(du/dz)' so that the kinetic energy of each internal
wave modes reads:

_<u - S(<Z (k,1,)>.N'[l+ RI) (8.5)

,.....:........=-. .... . . .. . __ -.. .. • • -- - _ - . . . . -
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Here, the brackets <..> mean averaging per wavenumber vector k so that we expressed
(8.5) into spectral energy densities. Fortunately, (8.5) does not explicitly depends
on k. Hence, given the spectral energy density of Z' we integrate (8.6) directly
over the relevant bandwidth. We apply two estimators for the variance of Z and we
argue that they serve es upper and lower bounds. We define the upper bound estimator
simply by assuming all density variations are induced by linear intarnal waves so
that: <P > - <Z >. (8.6)

Hence, from the vertical macrostructure and the density variations recorded by the
platform's instiuments follow the spectrum of Z" and through (8.5) the spectrum of
IWE (Internal Wave Energy). Actually, (8.6) serves as upper-bound estimator because
we consider all density variations as wave-induced.

Next we define a lower-bound estimator using the assumption that stationary internal
waves have a +/-90o phase difference between-dgnsity and vertical velocity. Actual-
ly, if we regard the quadratures xm(< 0 ucu>) with (,.)'C complex conjugates and
i-(1,2,3) as orthogonal components of a vectok then, for 6-0 in (8.6), the magnitude
of this vector reads

tim(<pu7 ).Im(cpui >)]- N<i>.[l+)]Ž; p - t40kl <Z> zv (8.7)

Parameter p vanishes, either because the variance is independent of z or, more like-
ly in practice, its mean material derivative in negligible. Hence, for p-0 we can
estimate the variance of Z' from the quad spectra between p' and u'. However, if if
in two separate observations wave groups pass with opposite phase shifts then their
contribution to the mean quad upectra is partly cancelledý For that reason we take
the mean of absolute qilad spectra, which we define as <IImpudL'>, at the expense of
adding noise as well as some turbulence contributions to %his estimator. Finally,
the coincidence spectra of shear stress -<u'w'> and of buoyancy flux <p'w'> induced
by waves satisfyiug (8.2) yield:

- -a - 2 - >-2
cc f<Z > du k.m +02<> 2 e<pw cc- k + .t "0 -7- - ' ÷ W> > - t " J (8. 8)

From the 30 min. time series of the platform instruments we derived all raw energy
densities, coherence, phase etc.. However, Fig. 5 reveals the random nature of the
wave grousp with only a few coherent cycles. Therefore we applied, to the raw avera-
ged complex-valued Fourier spectra, a convolution filter with a width increasing
proportionally'with frequency. The factor of proportionality is chosen such that the
equivalent box-car function, moving over the time record, contains four wave periods
for the frequency/wavelength of interest. In this manner we did not de-correlated
our data. Finally, the spectra are truncated beyoand frequency (u/La) because of
instrument limitations as well as the definition of the mesostructure range. Fig. 6
is an typical, and not the best, example of our mesostructure observations in the
Rotterdam Waterway. This particular observations started a few minutes after the
echosoundings of Fig, 5. In Fig. 6 the hump at a (apparent) wavelength of about 3 m
is likely surface wave-induced energy at that frequency. For X>5 (m] we observe in
this particular case a fair coherence as well as a -90o phase shift. This phase
shift means waves travelling in the direction of the main flow or opposite to the
flow with a phase speed e:%eeding
the flow veloclty. However, in other series we observed a phase shift between p° and
w" that with decreasing wavelengths jumped irom -900 to +90a, the latter belongs to
internal waves travelling opposite the flow at phase speed smaller than the flow ve-
locity. In Fig. 6 we compare the energy spectra for total kinetic energy (Total RE)
with those for upper bound (IWZ-p*) derived from p in (8.6) and lover bound (IWE-

31pMu) derived from (8.7). Here both kinetic !WE estimates practically coincidc and
yield 60%*5% of the total kinetic energy. We have converted frequency into streamwi-
so wavelength k uring the observed macrostructure velocity while assuming a frozen
wave field. The validity of this assumption is disputable for X exceeding 0(30) [M]
if 0-N, however, this implies 8E0O which is geometrically impossible in water with
22 [m] depth.

In Fig. 6 we have plotted iT and Tr which are the co-spectra (8.7) normalized by
the square roots of the enerw specturX of utw' and V.

S -spe-tr-- - - - - -,-- - - -d_ __.
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For Fig. 6, at Ri-0.43, the mean shear i0l
rate dominates in (8.8) the shear spec-
trum of (u'w'). Indeed, Fig. 6 shows .... \.... Total XE
opposite changes in sign between 7r and 102 -- IWE-d2

r . Firstly, this behaviour ind ates -

tliwt linear theory (8.8) may be applica- I 10-
bMe. Secondly, Fig. 6 shows that the .\

waves may extract energy from the ma- 4\
crostructure but may also return their - 100"
energy at other bandwidths. \.

9. Discussion ones-for th"-i...-From Fig. 6 and similar ones for the - --

other mesostructure observations we con- 1O-2
elude that Indsed beyond X-h5 (m] at the
site investigated we can describe the iO-3

mesostructure fluctuations as random in- -5/3
ternal waves using linear theory. We
have estimated the kinetic energy of the 10-4

microstructure from L and c and applied 1m0
the connection given ýn (Ivey and Imber- I
ger, 1991) to grid-generated stratified 90------------------------
turbulence. Then we arrive at ratios of 0
0(20) between kinetic mesostructure I
energy and microstructure energy. Howe- -90
ver, the computed memostructure buoyancy 0 -i@0 -5o
flux and mesostructure shear stress are -0

negligible and of the same order as the- 1 [.0
se estimated from the microstructure -
eddy diffusivIty. The latter is derived j 05
from the fine-scale CTD drops and the 4 0 .
procedure given in (Ivey and Imberger. 10. 5 TO --- "-13

1991). Thus at our site the random in- A- [mm-]-
ternal waves, in the mexsotructure 0.d 4 .,

range, trana•er energy from the macron- o,0 ....
tructure towards the microstructure 0.2 / ;-- - -
without significant changes in energy in o.0 1 -- -------

* i the meantime. Hence, internal waves, in t -0.0.. -
the meaostk'ucture range, serve as prac- . "0,' - /

ticaily inert steps on the energy - ..-
cascade not yet accounted for in turbu- -0.2

* lance models. -o
We infer that at the high wavenumber m -0-4 oo-)
part of the mesoatructure range internal
waves break and in this way transfer Fig.6. Spectral analysis of random internal
their energy to 3D turbulence. Firstly, waves at Rý- 0.43 ; N-0.15 rad/s.
this point of view follows from
theoretical considerations on critical layer formation in a shear flow. Secondly,
all fine-scale density profile, such as Fig. 4&, show overturning or the remnants of
wave breaking. We have analysed that wave breaking due to convectional overturning
i.e. ( p /3z)>3 occurs prior to the shear instability with locally Ri<%. In other
words: at the smallest masoscale wavelength we expect that internal waves break by
convectional overturning if locally [(Op'/ z)+(8p/az)]>O. If the spectral shape for
p" is given then its constant of proportionality follows from the observed variance
of p . Finally, we can computed the rms-value | p'/azj by integration from the lar-
gest scale to the smallest mesostructure scale. Then we expect, for sinusoidal
waves, that near overturning holds I~p'/8zj--0.7(apa/a) Hence, we put£ I- - - -3 -o nrX

"a c ; <p'> - a.m ; C - a.inf-1L (9.1)

In (9.1) we computed the variance of p' from an assumed a (-3) power vertical wave-
number spectrum and integrated this spectrum from the largest vertical wavelength
Xv, which we set equal to the waterdepth H, to the smaliest vertical mesoatructure
wavelength 21TL , as we defined earlier. This yields for the "internal-wave-induced
Cox 'lumber" 8-0.56±0.25 and C<0.92 from our six mesostructure measurements at the

_ - == -- , -.. ..- --
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site investigated. These properties of C support our point of view that at the large
wavelength range of the mesostructure internal waves do not break. Next we derive
the energy transfer to 3D turbulence by wave breaking. The loss L. of kinetic IWE by
convectional overturning of waves, initially with amplitude %LE and reduced by %LC
after breaking, yields

Lý- %N L - 'Na(LE-Lc) -% (L-Lc).AI- 1 LC) (9.2)

In addition, we propose the time scale t during which an internal wave is deformeduntil the critical layer state with 0 inc (8.4) nearly 900. Here we suppose that the
Richardson number is small enough so that the mean shear rate dominates over the we-
ve-induced shear. Then we apply the refraction equation for solitary wave groups to
estimate the rate of change of 0 along a ray. For small vertical wavelengths but
gradual vertical changes in buoyancy frequency the typical time scale t to increase
the magnitude of tanO by AL-O(5+10) reads: x "A/d/ u/dzl . Hence, the ensemble ave-
raged effect of the pocess of growing and breaing waves equals the foilowing (rate
of energy) transfer Ti~t from IWE to TKE, solely by wave breaking:

fo La .br 'A LC-• du 5-10 (_.3
for L Tit - :- LE.N. ) U1 c. , E-' . .

This turbulence production term should be included in (7.1). The part of (9.3) be-
tween [..) is an additional shear stress in the momentum equations for the
macrostructure. Further, apart from A., the energy transfer (9.3) can be estimated
along the depth-time path of the platform and it should at least balance against c
in (7.1).

Co•clusious
The main conclusion of this paper is the comparison in Fig.3 along the depth-time
path of the platform between c and the energy transfer (9.3) to the microstructure:
it varies between 3-50 [mmafs 3 ] for A -5. Moreover, we added to (7.1) the source
(9.3) based on averages of the observed LC and LE. Then the results of (7.1) and
(7.2) with (9.3) cleary improve: the computed mixing length and dissipation rate are
certainly within the same ordez of Fig. 2 and 3. Thus energy transfer by wave brea-
king should by included in the proposal (Uittenbogaard and Baron, 1989).
Further analysis (Uittenbogaard, 1993) reveals that the IWE estimates follow well
the observed vertical velocity spectrum in the meosotructure range. However, the
spectrum of the observed horizontal velocity components is usually underestimated.
Hence, the latter findings suggest the variable contribution of quasi-2D turbulence
as described by (HMtais and Herring, 1989).
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Abstract

The collapse of a turbulent patch in a stratified shear flow has been considered ex-
perimentally. A region of fluid in. a linear stratification is stirred and allowed to collapse
in the presence of a constant imposed velocity shear. These experiments are a model for
the collapse behaviour which follows mixing events in stratified environments such as the
ocean and the atmosphere.

Measurements are presented showing how the dimensions of the patch evolve over
time. Initially the patch expands in the horizontal direction under the action of buoyaicy
forces in a similar manner to that found by Wu (1969). However the imposed shear profile
soon reestablishes itself in the patch and begins to play an important, yet subtle role in
the ensuing collapse. The ambient shear may be able to supply the turbulence in the
patch with energy from the mean flow, but it'also enhances the horizontal spreading rate
of the patch, whereupon buoyancy forces act more effectively to damp the turbulence. In
the range of turbulent Reynolds numbers and Richardson numbers investigated the latter
effect is observed to dominate, leading to the decay of turbulent energy.

1 Introduction

It is widely recognised that the generation of a mixed region and its subsec-ent gravity-
driven spread into a stratified medium has an important rolh to play in the ocean and
the atmosphere. Mixed regions can form following the interaction of the flow with an
obstacle. Overturning in the wake behind an object and the breaking of mountain lee
waves are among the examples given in the review by Lin & Pao (1979). Another im-
portant generation mechanism identified by Wu (1969) is the shear instability induced
by strong internal waves. Turner (1973) and Barenblatt (1978) describe in detail how
these waves can generate sufficiently large velocity gradients to become locally unstable
to a Kelvin-HIlmholtz type mode. As the instability develops, the overturning creates a
mixed region which subsequently collapses under gravity. Such processes axe thought to
account for some of the observed oceanic microstructure (Turner (1973)).
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The need for a better understanding of these mechanisms in the atmosphere and ocean
has motivated many studies and a summary of these is given in §2. In most cases, however,
the effects on the gravitational collapse arising from an ambient shear flow and from the
turbulence generated in the mixed region by the initial overturning have been neglected.
The importance of these effects needs to be assessed. The current experimental work and
results are described in §3 and §4, followed by the conclusions in §5.

2 Background

Many previous studies of mixed region collapse have considered how a quiescent; patch
spreads horizontally into an ambient stratification. The experiments of Wu (1969) iden-
tified three regimes for this process - the 'initial', 'principal' and 'final' stages of collapse.

In the initial collapse regime, a transfer in the mixed region of excess potential energy
to kinetic energy is assumed to occur. This transfer is described for a two-dimensional
mixed region by

(I - 1o)/1o ~ (NO"' A't ;: 2,()

where N is the buoyancy frequency of the stratification, t is the time and I and 10 axe the
current and initial horizontal extents of the mixed region (Wu (1969), Hartman & Lewis
(1972), Kao (1976) and Amen & Maxworthy (1980)).

The transition to the principal collapse regime was found to occur when significant
internal wave radiation results in a 'loss of energy' from the vicinity of the mixed region
(Kao (1976), Manins (1976) and Barenblatt (1978)). The corresponding buoyancy-inertia
balance applied at this stage gives

l/lo - (Nt)'"", 2 :s Nt ;: 25, (2)

where n = 2 for a two-dimensional mixed region and n = 3 in an axisymmetric collapse.
Barenblatt (1978) and Zatespin et al. (1978) found a viscous-buoyancy balanice to

apply in the s'age of 'final' collapse, given by

I/io - (gNt) 1 ', Nt t 25, (3)

where n = 6 for a two-dimensional mixed region and n = 10 for the axisymmetric case.
When the ambient conditions for the gravitational collapse of the mixed region dis-

cussed above are extended to include a velocity shear, the dependence on the Richardson
number,

N2Ri = 7' (4)

must be considered. Here the shear is parameterised by y = dU/dz. The experiments
of Itsweire et al. (1993) and Rohr et al. (1987, 1988) demonstrate that a stratified shear
flow with Ri < Ri,. (where Ri,. 0.25) can maintain or enhance the level of turbulence
within the flow due to shear instabilities. In contrast, ambient turbulence was always
observed to decay in flows when Ri > Ri,.

In this paper we shall restrict attention to the case where the shear is relatively weak,
Ri > Rio., as is typical of many oceanic and atmospheric flows. Although Ri > Ri,,,.
and turbulence cannot be maintained throughout the ambient flow, it is apparent that a
mixing event will generate a patch with a low local Richardson number. The question to
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be answered is, whether for sufficiently low Ri in the finite volume patch, the turbulence
can be maintained in the patch as it undergoes gravitational collapse. Some theoretical
models of this problem have been proposed.

Avdeyeva & Maderich (1987) model a turbulent patch as consisting of a turbulent
core region surrounded by an entrainment layer through which the level of turbulence
decreases to zero, so as to merge with the ambient fluid. A calculation of the energy
fluxes through these regions is undertaken in order to identify the important mechanisms
providing energy transfer. In the absence of external shear, the dominant terms in the
energy budget were turbulent dissipation, the conversion of potential energy to kinetic
energy, the radiation of internal waves and the smoothing of buoyancy fluctuations by
diffusion. As the external shear is increased from zero the turbulent energy extracted
from the mean shear and the energy flux associated with entrainment of ambient fluid
were found to become important only for Ri < 0.25.

However the analysis by Barenblatt (1990) suggests the possibility of different types
of behaviour. A turbulent patch was considered in its later stage of collapse, where
its thickness is much less than the horizontal spread. Consequently the ambient shear
profile is assumed to have become established across the patch, unaffected by the patch
turbulence, which is taken to be small-scale and self-similar. The subsequent evolution
of the turbulence in the mixed region is found using a semi-empirical x - c turbulence
model together with a time-varying turbulent viscosity. Two cases of interest were then
examined. In the first case, the ambient shear profile through the patch was assumed
constant in time and it was found, that for sufficient initial turbulent energy, the turbulent
intensity increases in the patch. Once the turbulence has grown sufficiently to modify the
assumed shear profile in the patch, this analysis becomes invalid. The second case then
becomes appropriate, where a constant turbulent shear stress is assumed to exist in the
patch. Sudden increases in the level of turbulence are found to be possible from this state
and Barenblatt (1990) suggests this as a mechanism for obtaining a 'turbulent burst' from
a patch of relatively weak 'fossilised' turbulence.

3 Experimental Apparatus

The mixed region collapse experiments described below were conducted in the stratified
shear flow tank detailed by Iedondo (1989) and similar to that used by Koop (1981) and
Koop & McGee (1986). The shear flow tank consists of a closed circuit channel, shaped
like a race-track, around which the fluid is driven by a special pump, as first suggested by
Odell & Kovasznay (1971). The pump consist of two stacks of thin horizontal disks which,
when rotated about a vertical axis, drive the fluid by friction in the horizontal direction
while causing a minimum of vertical disturbance to the stratification. Each stack consists
of two layers, one on top of the other in the stack, which may be driven independently of
the other at different speeds, so as to produce a sheax velocity profile over the tank depth.

In these experiments a linear stratification of depth 25cm was set up in the tank, with
the buoyancy frequency N typically in the range 0.9-2 s-'. Although vertical disturbance
and subsequent mixing ikL the flow is minimised by the use of this horizontal disk pump,
the stratification is inevitably eroded over time. At the slowest speeds the stratification
is maintained over an hour or more, but this time is reduced to about ten minutes when
the individual layers are driven at the maximum speed (approximately 3 - 4 cm/s) in
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opposite directions.
For all of our experiments the two sets of disks in c cl- stack were counter-rotated so

as to produce a zero velocity level at mid-depth. Advantage was taken of this to generate
a mixed region centred about the level of zero velocity and have it evolve in the stationary
laboratory frame.

A turbulent patch was produced using a spindle fitted with a row of nylon bristles or
plastic strips in a single plane and supported horizontally across the flow. Once a shear
flow was established, generation of the mixed region was achieved by using a stepper
motor to rotate the spindle rapidly back and forth about its mean horizontal position.
Providing this mixing process was achieved on a timescale less than or comparable to
both the buoyancy period N-', of the stratification and the shear timescale 7-1, the
initial mixed region w;as well approximated by a two-dimensional horizontal cylinder of
turbulent fluid lying across the tank. Shadowgraph images or fluorescein injected into
the vicinity of the spindle prior to mixing, with illumination by a light sheet from below,
proved to be an effective means of visualising the collapse. Video footage was taken of
each experiment allowing subsequent analysis and data to be collected from the tapes.

4 Observations and Results

Two general regimes were observed in all of the patch collapse experiments conducted.
These are broadly defined as 's.yimetric' and 'antisywmnetric' collapse about a vertical axis
through the patch midpoint. Symmetric collapse was always observed first. proceeding
under the action of buoyancy forces as seen by Wu (1969). As the patch evolved, a
transition was observed where the ambient shear became the dominant driving force for
the collapse, leading to an antisymmetric deformation of the mixed region.

With an externally imposed sheaar profile, horizontal spreading of the mixed region is
achieved much more rapidly than that which occurs for a collapse under buoyancy alone.
Buoyancy forces remain important at all times in the shear-driven case, however, causing
vertical contraction of the patch. In the antisymmetric stage of collapse the combination
of horizontal spreading by shear and vertical collapse under buoyancy results in the patch
assuming a thin pancake-like shape, slightly inclined to the horizontal.

In experiments conducted without. shear, Wu (1969) observed that the motion of the
patch boundary generates large amplitude internal waves while the mixed region collapses.
Observations of the collapse process when ambient shear is introduced show particularly
violent internal wave activity, with the large amplitude vertical oscillations being strongly
sheared in the horizontal. This induces wave-breaking, overturning and mixing events on
the patch boundary, with a subsequent increase in the rate at which energy is lost from
the patch.

Barenblatt (1990) suggested that in the presence of ambient shear, energy can be
drawn from the mean flow to maintain or even enhance the level of turbulence within
the patch. In our experiments turbulence was generated on the patch boundary by the
internal wave- shear interaction events described above, but nevertheless strong damping
of all turbulence in the patch was observed soon thereafter. The reason seems to be
that when the patch is spread horizontally by the shear the largest eddy, which scales on
the vertical dimension of the patch, is decreasing. Hence the Reynolds number for the
turbulence becomes smaller and smaller until a viscous coupling is established across the

4



patch. This conjecture is supported by observations that dye crystals dropped through
the collapsing patch indicated the existence of a smooth linear variation in velocity within
the patch.

Following the decay of turbulence in the patch there is very little mixing apparent
between the mixed region and the ambient fluid. Therefore if the mixed region volume is
assumed to iemain constant in this regime the spreading behaviour of the patch may be
predicted. The model geometry for the collapsing region is shown in Figure 1. For large
aspect ratio 1/h, we take the patch to be approximately rectangular, with area A, where

A = hi. (5)

Observations have shown that the shear is the dominant process driving the collapse
during this stage. The mixed region fluid is seen to travel at a horizontal speed matching
that of the local shear velocity, except at the extremities of the mixed region where
buoyancy gradients are high, forcing a local vertical adjustment to maintain gravitational
stability. A transfer of fluid from the section of patch above the zero velocity level to that
below will therefore occur as shown, but because of the assumed symmetry this is exactly
balanced by a return flow from the lower to upper portions at the other end. Hence the
net volume flow rate Q available to lengthen either the upper or lower sections ot the
patch is just that transported by the lineax shear profile,

Q= lh' =L, (6)

where di/dt is the rate at which the rectangular patch longthens.
Combining equations (5) and (6) we obtain,

dii _ 7 h3  (=~ y (7)
d= 2A'

the solution of which yields,
h ( 1 + h '- 1/2

1 (+ i± , . 1/ (9)

where ho and 10 are the initial patch dimensions at time t = 0. Thus equations (8) anld (9)
predict that as time passes the patch dimensions should vazy as h 1-•-1/2 and I -1 t1/2.

A graph of the patch length I/Io versus the non-dimensional time Nt for these ex-
periments is shown in Figure 2. A relatively narrow range of Richardson numbers, well
beyond those for shear instability have been considered here, including three runs without
shear. The exponent for the collapse data seems to be slightly less the 1/2 predicted by
equation (9), however the collapse needs to 1be studied for a longer time to avoid being
unduly biased by initial collapse behaviour.

Although a transition is observed experimentally between what we have termed the
symmetric and antisymmetric stages of collapse, a break p oint in the spreading rate is
not evident on this plct. This is because the transition to a shear-driven collapse, given in
equation (9), usually takes place in the principal collapse regime, described by equation
(2). As both regimes predict I Pl/1, the transition is smooth and finding it requires a
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comparison with control experiments coaducted without shear. Over a longer measure-
inent period the difference is clear between the spreading rate predicted by equation (9)
in shear and by equation (3) for the viscous collapse stage, as can be seen in Figure 2 for
the runs without shear.

5 Conclusions

An experimental method has been described which is able to generate a turbulent patch
in a stratified shear flow. It has been used to conduct preliminary experiments on a class
of problems that are directly applicable to flows in the ocean and atmosphere. Results
to date would suggest that the turbulent regions generated by mixing events in these
stratified environments will spread out to a large horizontal extent under the action of
the applied shear flow. Simple scaling laws predict that the horizontal extent of the patch
increases as tL/2 in the collapse regime dominated by shear, This seems to be in general
agreement with the experimentally observed behaviour.

Any turbulence in the patch appears to be strongly damped as buoyancy forces de-
crease the vertical length scale during the collapse. We are now looking at simultaneous
velocity and density measurements in an effort to confirm this behaviour. A complex and
very active internal wave field is also generated by the collapse; this too requires further
study.

The author is grateful to The Association of Commonwealth Universities for their financial
support during the course of this work, and also to Dr P.F. Linden and Dr S.B. Dalziel
for their helpful suggestions and comnuents,
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Efficiency of Mixing by a Turbulent Jet

in a Stably Stratified Fluid

Magnus Larson1 and Lennart J6nsson 2

ABSTRACT: Mixing in a two-layer stably stratified fluid by a turbulent jet was
studied through a laboratory experiment. A non-swirling jet was discharged vertically
downwards in a confined fluid system consisting initially of a top layer of fresh water
aild a bottom layer of salt water. In total, 16 experimental cases were performed where
the diameter and exit velocity of the jet were varied together with the density difference
between the top and bottom layer. Vertical density profiles were determined from con-
ductivity measurements. A three-layer density structure developed in all cases with an
intermediate layer that grew in size with time elapsed as fresh and salt water were mixed.
The mixing efficiency, defined as the percentage of the supplied kinetic jet energy that is
used for increasing the potential energy of the fluid system, was related to a densimetric
Froude number based on the intermediate layer depth. Overall, the calculated jet miixing
elliciency displayed higher values than comparable efficiencies for destratificatiou with
air-bubble plumes.

Introduction

Artificially induced circulation is a useful technique for improving water quality in for
example reservoirs, harbors, and small lakes. In such water bodies, a stable density
stratification may develop that prevents vertical exchange of water, resulting in stagnant
zonies with inferior water quality. Conventional methods for destratification are mainly
based on air injection techniques; bowever, an alternative method with technical and
economical advantages involves submersible mixers (Suter and Kilmore 1990, Jbnsson and
Rissler 1991, Stephens and Imberger 1993). A mixer consists essentially of a propeller
(diameter up to 2.5 m), which generates a swirling jet that penetrates through the water
column and induces vertical water exchange. The theory for describing jets created by
mixers and their interaction with a stratified, confined water body is not well-developed.
Furthermore, both laboratory and field studies on this subject axe scarce.

When comparing different techniques for destratification the efficiency 7r of the mixing
process is a key parameter. For a fixed time period, r7 may be defined as the percentage of
tie total mechanical energy input. that is used for increasing the potential energy of the
fluid system. Asaeda and Imberger (1988) and Zic et al. (1992) presented values on the
mixing efficiency for air-bubble plumes, where a maximum r7 of about 12% was obtained.

'Department of Civil Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113, JAPAN (A.sociate
Professor oil leave from Department of Water Resources Engineering, University' of Lund).

'Associate Professor, Department of Water Resources Engineering, University of Lund, Box 118,
S-221 00 Lund, SWEDEN.
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Stefan and Gu (1992) studied mixing by selective withdrawal and jet reinjection at a
different depth, and experimentally found values on r/between 12 and 33%. Stephens and
Inberger (1993) performed laboratory experiments to determine the efficiency of mixers
in destratification and obtained a maximum qj of 12%. It should be stressed that the
values on 17 reported by Stephens and Imberger (1993) are based on the energy input to
the impeller and that this y is not directly comparable to the values given in Stefan and
Gu (1992) or in the present study. The kinetic energy flux in the swirling jet generated
by the propeller will be lower than the energy input to the impeller because of losses in
the generation of the jet motion; thus, an r based on the energy input to the impeller will
be lower than if the kinetic energy flux in the jet is employed in the definition of 'n.

This study focusses on the density profile evolution in a confined region with a stably
stratified fluid, where mixing is induced by a circular, non-swirling turbulent jet. The
efficiency of the mixing process was determined from consecutive density profiles derived
from conductivity measurements. A non-swirling jet was employed as a first approxi-
mation to reproduce the effect of a mixer in the far-field; the flow pattern in swirling
and non-swirling jets displays marked similazities, although the rate of entrainment is
enhanced in a swirling jet.

Laboratory Experiment

Larson and Jbnssou (1994) performed a laboratory experiment to investigate the mixing
in a stably stratified, confined fluid system induced by a turbulent jet. A two-layer stable
stratification was created in a rectangular container by using water and sodium chloride,
and the jet water was withdrawn from the top layer (fresh water) and discharged vertically
down into the bottom layer (salt water). The container had an inside bottom area of 0.98
x 0.98 m2 , a height of 0.65 m, and the exit of the jet was located 0.43 m above the
bottom. During all experimental cases a water depth of 0.55 m was employed in the
container, where the bottom layer was initially made approximately 0.30 m thick. The
jet was generated using a variable-speed pump with a maximum capacity of 2.5 1/rain.

A measurement system was developed that could sample conductivity readings from
at most 16 probes through a predetermined scanning sequence, and each of these probes
could be located arbitrarily in the container. The conductivity data were sampled using
a personal computer and stored on disk together with the absolute probe location, which
was recorded with a potentiometer, and measurements of the exit jet flow. The salinity
was determined from the measured conductivity through calibration, and the density was
derived from the salinity using standard tables (all densities given in this paper refer to
20 degrees). The measurements were performed either at fixed locations during jet action
or while transversing the vertical with the probes when the jet was turned off. Only the
latter measurements will be discussed in this paper. Figure I illustrates the experimental
setup.

In total 16 experimental cases were performed encompassing different combinations of
salinity in the bottom layer (S), mean jet exit velocity (V,), and jet exit diameter (d,).
Two different jet diameters (8.3 and 10.2 mm) were investigated with S ranging from
0.1-1.52% and V0 from 0.14-0.51 m/sec. The corresponding ranges for the densimetric
Proude (Fr0 ) and the Reynolds (Reo) number, computed based on the jet conditions
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Figure 1: Experimental setup.

at the exit and using dO as the representative length scale, were 11.5_< FrD <44.4 and
1200•< Re. <4200. Most of the generated jets were in the turbulent range already at the
exit, although laminary flow prevailed immediately downstream the exit for a few cases
where d,=10.2 mm. Each of the experimental cases involved 10-GO inmm of effective jet
action, during which the jet was turned off 2-9 times for measurements along the vertical.
The conditions always stabilized quickly after jet turn-off, and during the measurements
along the vertical the conductivity displayed no variation in the horizontal plane. Thus,
only density profiles based on measurements from one probe are presented here.

Results

Density profile evolution

A three-layer density structure developed during all experimental cases encompassing a
top, intermediate, and bottom layer. The top and bottom layers consisted of the original
fresh and salt water respectively, and the intermediate layer, which grew in thickness with
time elapsed, was formed by mixed water from the two layers. In the earlier stages of
an experimental case, when the intermediate layer was thin, the density distribution in
this layer was almost linearly decreasing with height. However, with increasing thickness
of the intermediate layer the density became more and more homogenized in the bulk of
the layer with sharp density gradients at the transitions to the top and bottom layers (an
upper and lower interface, respectively; see Figures 2 and 3).

Initially, the jet was of a pure momentum type as fresh water was discharged into
the top layer. The water flow in the jet increased with distance from the jet exit due to
entrainment of fresh water from the top layer, in accordance with well-known jet theory.
Provided the jet momentum was large enough, the jet would penetrate the upper interface
thus entering the intermediate layer with further entrainment of water from this layer.
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Figure 2: Density profile evolution with time elapsed (S=0.51%).

Passing through the intermediate layer, the jet experienced a buoyancy effect that slowed

down the jet. In the experiment the jet passed the intermediate layer in all cases studied,

penetrating a certain distance into the bottom layer of salt water, where the increased
buoyancy stopped the downward motion altogether; a lower ceiling level was reached
depending on the downward-directed momentum of the jet. After reversal, the jet water
rose in a plume-like manner penetrating the lower interface of the intermediate layer as
it moved upwards, simultaneously surrounding the downward directed jet. A part of the

plume water was entrained into the downward moving jet and the rest rose to reach an
upper ceiling level somewhere in the intermediate layer, after which the plume spread

horizontally towards the container walls.
Figure 2 and 3 present selected density profiles measured during two different ex-

perimental cases with the sr -t jet parameters (d,=8.3 mm, V,=0.34 m/sec), but with a

salinity of 0.51 and 1.51% in The bottom layer, respectively The development of the three-
layer density structure is clearly seen in the figures together with the homogenization of
the conditions in the intermediate layer with time elapsed. The weaker stratification in
Figure 2 allows the jet to nenetrate deeper down into the bottom layer before reversal
as compared to Figure 3; thus, the jet causes a considerably larger portion of the water
volume to be mixed for the lower salinity during a specific time period.

Intermediate layer growth

The growth of the intermediate layer was most rapid during the initial phase of its develop-
ment and slowed down as the distance from the jet exit to the lower interface increased.
The vertically discharged jet transported fresh water downwards into the intermediate
layer, where the added freshwater volume depended on the amount of water that was
entrained into the jet before it penetrated the upper interface. In terms of destratification
Sit is desirable to po itioote a pronounced intermediate layer growth, creating a well-mixed
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Figure 4: Time evolution of the intermediate layer depth.

Mixing efficiency

The energy efficiency is of primary interest in practical applications regarding mixing in

density-stratified water bodies. Thus, the objective should be to use as much as possiL.-
of the kinetic energy in the jet to increase the potential energy of the fluid system. When
mixing a stably density-stratified fluid system, fluid with a higher density is lifted up
and mixed with lighter fluid, which increases the potential energy of the system. A large

portion of the kinetic energy supplied by the jet will be expended through the generation
of turbulence that is eventually dissipated into heat. An efficiency factor r7 may be defined

expressing how much of the kinetic energy per unit time AK supplied to the fluid by the
jet that is used for increasing the potential energy of the system per unit time AP,

AP AP
S= z.K -jpaQoV2

where p is the jet water density, Qo the jet flow at the exit, and a a correction factor

for the shape of the velocity profile (for laminar flow a=2.0 and for turbulent flow a was

derived from the velocity profile for smooth turbulent pipe flow as given by Schlichting

(1968)). The increase in potential energy per unit time between two consecutive density
profile measurements may be written,

AP- AmAzgA
At

where Am is the net mass of fluid that was moved as the density profile changed, Az is

the corresponding vertical displacement of the mass center for Am, A the cross-sectional

area of the container, g the acceleration of gravity, and At the timie period of jet action
between the density profile measurements (see Larson and J6nsson 1994 for further details

on how 71 was determined).

6



20 
GoaI

C,50

0ag

og
C 10

000

Sa Q

aa
13 a

o I 2 I I I I I
0 5 10

~rouide ZJuxnber (Pr l )

Figure 5: Mixing efficiency as a function of a densimetric Froude number.

All the measured density profiles from the 16 experimental cases were employed to
determine the mixing efficiency, using consecutive density profiles in time to evaluate AP.
The mixing efficiency varied approximately between 5 and 20% for the cases studied, and
there was a tendency for 7/ to increase with time within a specific case as the intermediate
layer grew. In Figure 5 is rl plotted against a Froude number Fri defined based on the
jet exit velocity, intermediate layer depth, and density difference between the top and
bottom layer. The largest values on y was obtained for the smallest values on Frj, and
7t drops of approximately as Fr71. Even though the trend of the data points in Figure
5 indicates a continuous growth in 71 az Fr1 decreases, rI typically became a constant or
even decreased in some cases towards the end of a specific experiment.

Concluding Remarks

In genleral, the calculated efficiency was significantly higher than what Zic et al. (1992)
found for air-bubble plumes, bearing in mind that Zic et al. used the submergence depth
of the diffusor to quantify the energy input when defining rn, whereas the velocity head
of the jet at the exit was used instead in the present study. However, the calculated r:s
should be comparable since in both cases the net inflow of energy to the fluid system is
used to define n. Thus, it should be possible to achieve a higher mixing efficiency with
a jet than with an air-bubble plume. This observation pertains only to the net energy
supplied to the fluid sys' m, and an overall evaluation should also involve friction losses
in pipe systems and pump efficiencies. The maximum r/ of about 20% for the jet was also
higher than what has been observed for air-bubble plumes, where a maximum value of
12% was determined by Asaeda and Irmberger (1988) from experimental data.

An additional experiment has been carried out with the same setup as for the jet
but using a small propeller instead to initiate the mixing (compare Stephens and Im-
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berger 1993); these experimental cases are presently being analyzed to determine n. Also,
detailed LDV measurements are being performed in a homogeneous fluid to determine
the velocity field immediately downstream a propeller, which will be helpful in order to
understand the mixing process in the near field. Another topic of interest concerns the
horizontal spreadiiig of the intermediate layer. In the cases presented in this paper the
horizontal and vertical length scale are of the same order of magnitude, which causes the
mixing to be quite uniform in the container. A few preliminary tests have been performed
in a flume with 4 length much greater than the depth to study the horizontal spreading
of the intermediate layer; these tests have not yet been fully evaluated.
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Abstract
A simple modI analyzing the properties of fast components of turbulent diffusion

is proposed in order to explain two different regimes of large scale transfer of passive
Rcalar observed in the stratosphere. It is argued that these fast components are
directly related to percolation of passive scalar in a turbulent fractal and there exist
two spectral power laws for fluctuations of passive scalar concentration: the "-4/3"
law and the "-7/3" law. These two laws correspond to different percolation regimes:
free and layer. The first regine is controlled by the topological instabilities of two-
dimensional turbulence in the three-dimensional space, while the second regime
occurs with laycr-type restriction of these instabilities. The fractal dimension of
passive scalar cluster at the layer percolation Dv = 9/4 and the fractal dimension
of its perimeter D. = 7/4 (for the free quasi two-dimensional turbulent percolation
Dp = 5/3). A good correspondence is found between the spectral and the fractal
scaling laws and the atmospheric, numerical and laboratory experimental data.

1 Introduction

In [1], (see also [2]-[4]) a simple model analyzing the properties of fast components of

turbulent diffusion is' proposed. It is argued that these fast components are directly

related to critical phenomena in turbulence and relationship

v Dv 2 (1)
3 --

connecting critical exponent v, fractal dimension of the passive scalar cluster DV, and

passive scalar spectral exponent -7, is obtained. Using the topological condition:

min ID, or Dv] = D, + Dv - d (2)

(where D, is the fractal dimension of passive scalar surface, 1...] means the integer part
of a number, d is the topological dimension of the space) and the Vassilicos relationship

[51,[61
-D D(3)

(where D. is fractal dimension of perimeter of the passive scalar cluster) the two con-

jectured regimes for quasi two-dimensional turbulence can be obtained:

Yl) = 5/3, D(1) ) 5/3, D(1) = 4/3, (4)



and
I7(2) = 4/3, D(2) - 4/3, DL2) = 5/3. (5)

In order to make a~comparison with observational evidence in Fig. I (adapted from [7])
we show the horizontal spectra of atmospheric traces (ozone) measured in the stratosphere.

The straight lines are drawn for comparison with the relations (4) and (5). It is seen that

the relation (4) for -1 is obse-rved in small scales and is replaced by (5) at large scales. The

Fig. 2 (which has been adapted from [8]) allows to find the value of D, for atmospheric

clouds. We have drawn in this Figure too the straight lines corresponding to the relations

(4) and (5). Again, the same tendency can be seen in Fig, 2 - the relation (4) for D, is
valid in small scales, while in large scales holds the relation (5).

In this situation the critical exponent v appears to be remarkably close to its universal
value in the three-dimensional percolation (P ý- 0.9) rather than to the one for two-

dimensional case (v = 4/3) [9].
For understanding this phenomenon and its limitations let us introduce the concepts

of free and layer quasi two-dimensional turbulence.

10 io ~10 Da "

10 0
ZZ-5/p -4/ - "

10 7- |Radar raki areasSatellite ctoud areas

WAVELENGTH .KM) to 1 02 1.6 04

P (kin)

Figure 1 Horizontal spectra of atmospheric traces (ozone). Adapted from [7].
Figure 2 Scaling relations of area (A) vs perimeter (P) for atmospheric clouds, allowing

to obtain the dimension D,,. Adapted from [8].
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2 Free quasi two-dimensional turbulence

In [10] the topological instabilities of two-dimensional turbulence in three-dimensional

space has been suggested as a basis to understand the properties of quasi two-dimensional

turbulence. The instabilities will primarily manifest themselves by exciting helical trav-

elling waves which bend the two-dimensional motion planes. Input of helicity into these

waves is the main physical (topological) process for this phenomenon and the parameter

(Idh/dtl) replaces the Kolmogorov parameter (e) = (Jdu 2 /dtj) as governing parameter

in corresponding interval of scales (cf. also with [11] and [12]). In the classic theory of

Corrsin-Obuchov [13] scaling spectrum of passive scalar concentration, c, has the form

E, cc (N) (_)-1/3 k&5 /3  (6)

( N = Idc2 /dt), while in the free quasi two-dimensional turbulence the scaling spectral
law for E'• is

E CC (N) (I dh)-1/ 3 k 4 /3  
(7)

It is clear that the percolation regime (5),(7) is controlled by these three-dimensional

topological instabilities and three-dimensional value of v S 0.9 (see Introduction) can

be understand as a consequence of this fact.

For experimental verification of the universality of this phenomenon for quasi two-

dimensional turbulence we used a laboratory quasi two-dimensional turbulence, created

in flow of mercury in external (transversal) magnetic field [14],[15].

-5/3-4/

,-5/

4 I

Figure 3a,b Spoctra of passive scalar (temperature) fluctuations in the flow of mercury a)
without magnetic field, b) with external magnetic field B 0 0.2T (arbitrary units).
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In this experiment turbulence has been generated by the honeycomb (Re = 5 10). De-
tailed description of the experimental installation used can be found in [15]. Since the
mercury is a well electrically conducting fluid, external magnetic field transforms the orig-
inal (without magnetic field) three-dimensional turbulence into quasi two-dimensional one
[10],[14],[15]. The temperature has been used as a passive scalar in our experiment. The
temperature spectrum, E,, obtained in the flow without magnetic field is shown in Fig.
3a while the temperature spectrum obtained in the flow with external magnetic field
(B = 0.2T) is shown in Fig. 3b. The straight lines are drawn for comparison with scaling
laws (6) and (7) (cf. also with atmospheric spectrum in Fig. 1).

3 Layer turbulence

Another approach has been suggested in the paper [14]. The travelling waves, which bend
the original two-dimensional motion planes, will bring about fluctuations of turbulent
energy dissipation c. In the corresponding interval of scales average rate of space C -
fluctuations, i.e a value (ld,/dzj) (where z is the co-ordinate perpendicular to two-
dimensional turbulence plane) replaces (c) as a governing paramneter [14].

Dimensions of both governing parameters (Idh/dtl) and (Ide/dzl) are the same, and
kinetic energy spectrum obtained from dimensional considerations [10],[14]

Ah 12/3 k-7 nd3 (id•/3 kde 3  (7)

has the same exponent '-7/3' in both these cases.

However, these situations are essentially different in the case of passive scalar. In the
last case spectral law (7) must be replaced by

dN de -1/3 -7/3jZ T)(11 (9)

because of space fluctuations of N. This quasi two-dimensional turbulence has a layer
nature and the Vassilicos considerations [5],[6] as well as his relationship (3) are not valid
in the case. However, for the layer turbulence we can use the two-dimensional value of
P = 4/3 [9] to obtaining the fractal dimensions (see also Discussion). Then from (1) and

(9) we obtain for layer turbulence:

S= 9/4 (10)

and from the topological condition (2)

Dp = 7/4 (11)

4



Fig. 4 shows one of the spectra of the temperature ( and energy) fluctuations observed
in stratosphere [16] and follows (9) (and (8)). Note that within the uncertainly of mea-
surement it is difficult to determine from Fig. 2 whether Dp = 5/3 (5) or D, = 7/4
(11) is observed at the large scales. In this sense, the numerical simulation of cloud for-
mation by a cellular automaton model (which turns out to have a strong resemblance to
percolation-hased grows models) [3] is very useful. In Fig. 5 (taken from [3]) the crossover
from isotropic growth of clouds to restricted growth in a layer is shown (cf. with Fig. 2).
The dotted line gives D, = 4/3 at small scales while the solid line gives D. = 7/4 at
large scales. The effective dimension of the large-scale cloud perimeter obtained in [3] for
layer Dp = 1.74+0.05. - - -

.i -7/3* V.

AeA

*6 .- .4

lok
Figure 4. Temperature and kinetic energy spectra from GASP flights in stratosphere:
A-kinetic energy, B - temperature. Adapted from [16].

4 Dp =7/4

0 1 2 3 4 5

logP

Figure 5. The crossover from isotropic cloud growth to restricted growth in a layer



(cf. with Fig. 2). Adapted from [3].

4 Discussion

The differences in the properties of free and of layer turbulent percolation cannot '.e under-
stood without taking into account the differences in their topolegy. For three-dimension
percolation clusters, due to the multiconnected topology of their external boundary, it was
argued in [171,[18] that the fractal dimensions of the cluster and its external hull are the

same. On the other hand, for two-dimensional percolation cluster these fractal dimensions
are different. In the l.•t case the fractal dimension of the hull Dh = 1 + 1/u [19], i.e
for v = 4/3 Dh = 7/4 . Thus, the topological restriction in layer (with Dv < 9/4)
suppresses the topological instabilities (Section 2) and leads to coincidence of D, for

layer percolation and D4 for two-dimensional percolation.
Following this logic, one may expect that increasing of the external magnetic field

(the topological restriction in our experiment with mercury, see above), should lead to
transition from spectrum (7) (Fig. 3b, B " 0.2T) to spectrum (9). Indeed, Fig. 6
shows the spectrum ot temperature fluctuations at strong magnetiv field (B T 17') in the

experiment and straight line is drawn for comparison with (9).

-7/3

S I 2

1ask

Figure 6. Temperature spectrum for the same flow as in Fig. 3a,b in strong magnetic

field B = IT (strong restriction).

Authors are grateful to A.J. Chorin, and K.R. Sreenivasan for encouragement.

16



t4

References

[1] A.Bershadskii, Soy. Phys. Usp., 33 (1990) 1073.

[2] A.J.Chorin, J. Stat. Phys., 69 (1992) 67.

[3] K.Nagel and E.Raschke, Physica A, 182 (1992) 519.

[4] M.Schneider and T.Wohlke, Physica A, 189 (1992) 1.

[5] J.C.Vassilicos, In "Advances in turbulence", 2, eds. I-.H.Feraholds and H.E.Fiedler,

404 (Springer, Berlin, 1989).

[6] J.K.Vassilicos and J.C.R.Hunt, Proc. Roy. Soc., A, 435 (1991) 505.

[7] G.D.Nastrom, W.H.Jasperson, and K.S.Gage, J. Ceophys. Res., D, 91. (1986) 13201.

[8] S.Lovejoy, Science, 216 (1982) 185.

[9] D.Stauffer, and A.Aharony, Introduction to Percolation Theory, (Taylor and Francis,

London 1992).

[10] A.Bershadskii, E.Kit and A.Tsinober, Proc.Roy. Soc. A, 441 (1993) 147.

[11] A.Bershadskii, and A.Tsinober, Phys. Rev. E, 48 (1993) 282.

[123 H.K.Moffatt, and A.Tsinober, Annu. Rev. Fluid Mech., 24 (1992) 281.

[13] A.S.Monin, and A.M.Yagloxn, Statistical Fluid Mechanics, bf 2, (MIT Press, Cam-

bridge, 1975).

[14] H.Branover, A.Bershadskii, A.Eidelinan, and M.Nagorny, Boundary-Layer Meteorol-
ogy, 62 (1993) 117.

[15] H.Branover, and S.Sukoryansky, Progr. in Astro. and Aeronautics, 112 (1988) 87.

[16] K.S.Gage, and C'.D.Nastrom, J. Ato. Sci., 43 (1986) 729.

[17] D.Stauffer, Phys. Rep., 54 (1979) 2.

[18] P.N.Strenski, R.M.Bradley and J.M.Debierre, Phys. Rev. Lett., 66 (1991) 1330.

[19] H.Saleur and B.Duplantier, Phys. Rev. Lett., 58 (1987) 2325.

[20] A.G.Bershadskii, Atm. and Oceanic Physics, 27 (1991) 475.

[21] A.Bershadskii, and A.Tsinober, Phys. Lett. A, 165 (1992) 37.

7



4

Appendix
It is very difficult to measure the fractal characteristics of the passive scalar in the

mercury. However, we can use the measurements of probability distributions to obtain

these characteristics. Indeed, it has been introduced in [20] (see also [21]) the probability

density distribution, p(l) (I = r/R), of active turbulent regions of scale r (R is external

scale). The perimeter'of the active turbulent subregions takes the form

P = I p(1) dl. (12)

If p(l) cc l-, then (12) gives (for x > 2): P oc (Rr1q)- 2 . We can relate' Dp to

exponent x using well known relationship P oc (R/27 )DP-1 : x = DP + 1. On the

other hand, one can estimate the scaling for large concentration of energy dissipation C
using Dp [21]: e(l) x 12-Dr and relate the probability density distributions p(c) and

p(I): p(e) c Il/dcl p(') c e--, where

2 D (13)

The Fig. 7 shows probability distribution Pr(,) = f, p(e) de oC 6a-1 obtained in the

same experiment as Fig. 3b. We infer from the Fig. 7: a • 6, , i.e. Dp - 5/3 (13) (cf.
with sections 1 and 2).

0

-2

-3

-4

-1 log a

Figure 7. Probability distribution of c for the same flow as in Fig. 3b. (B 0 O.2T).
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Turbulence Produced by Internal Waves in the
Oceanic Thermocline at Mid and Low Latitudes

M. C. GREGG, D. P. WINKEL, T. B. SANFORD

Univeraity of Washington, Seattle, WA, USA

11. PETERS

State Ui.merity of Pew York at Stony Brook, Stony Brook, N.Y., USA

When mid-latitude internal waves are at the background state mod-
elcd by Garrett and Munk [1975•], wave-wave interactions produce weak
turbulence compared to buoyant restoring forces. Consequently, high
wavcnumber spectra contain only the viscous decay portion of the univer-
sai turbulent spectrum. Increases in low-wavenumber shear above back-
ground pcoduce proportionately more intense turbulence, which can result
U1 well-developed inertial subranges. The wave and turbulent regions of the
vertical spectrum are separated by a k3' rolloff that does not vary with
the armplitude of low-wavenumber shear, indicating that the wave field is
saturated. At low latitudes, internal wave shear is generally more intense
than at mid lat;tudes, but the turbulence is similar to that found with
mid-latitude wav(s at background. Kiaematicelly, this anomaly results
from steeper slope in the rolloff range.

OBSERVATIONS AND ANALYSIS Profiles of the viscous dissipation rate, c, are

The Multi-Scale Profiler (MSP) carries three calculated by integrating spectra taken over

sts of sensors -- electromagnetic, acoustic, and successive blocks of 50 kPa or 100 kPa (0.5 m

aioi. -- tc 'neasure eastward, ., and uorth- or im). For transverse velocities assumed to
ward, v, velocitiec over waveleigý. from 1000 m be isotropic,

ýo 10 nmm. Before calcidating spectra, we sub-
tract the ensembhl av.zr ige profiles, U(x.,) and a = 7.5v/ (2rk3) 4VEL(k 3) dk 3 [W kg-']
"5(x3), and apply the Hanm filter. Velocity spec- (2)
tra, IVEL(k3) 4= t k3)+ ,(k3), are converted where ko = 1 cpm or 2 cpm, and k., is deter-
to bheax spectra vid vn:aalized to form spec- mined empirically where the spectrum is either
tra of the gradient Frcde number. 4,.(ks) resolved or noisy.(27, k3'?ýVE,.'1ý 1-2. etclwvnm ,rsle rniy

(2rk1 itver,,k. lN . Vertical wavenumber, As a reference for background internal waves,
m a, is the reaps ocal of wavelength in cycles per we use the Garrtt and Mumk [1975] modifica-

meter (cp~a),.nd N is the buoyancy frequency. tion known as GM76 and described by Gregg
Integration gives the cumnulativ'e shear var- and Kunze [1991]. Except for small changes

J "'. in shape at low wavenumber, the Froude form

.. of 0M76 is independent of N. When internal
F2 •_ = Fr(m)di. (1) waves are whe only process affecting the pro-

file, the strain spectrum is *kst(k3) = (2rk3)2

Termed the I}roude function, Fr2 = 4 whek; tte •*• 0(k,)/(Oaa- 3 )2, where co is potential den-
is rms g&radienut Richardson number is 1,14. sity. A; all wavenumbers, sM76 F,7/3,

fFr 1'



consistent with a free wave with a frequency for dissipation. Henyey et al. [1986] also de-
1.4f. veloped an analytical model as a check on the

For high wavenumbers we use the turbulent numerical calculations. Both models predict

velocity spectra of Nasmyth (published by Oakey e cc N--2 , as does a separate calculation by Mc-

[1982]) and of Panchev and Kesich [1969]. The Comas and Miller [1981]. The Henyey et aL

shear form of the velocity spectrum peaks at [1986] amplitude also agrees with ( 3) when

0.16k,, where k, - (27r)-(C/v3)1/ 4 is the vis- referenced to GM76 instead of Munk [1981].

cous, or Kolmogorov, wavenumber in cyclic units. Munk's formulation decreases the shear vari-
For the turbulent scalar spectrum we use Batch- ance by 7r/2 relative to GM76, a consequence
elor [1959]. that was not intended and is not called for by

observations [W. Munk, personal communica-THE MID-LATITUDE BACKGROUND STATE tin19]

During PATCHEX in October 1986, we ob- Osborn [1980] estimates d.apycnal diffusivity

served internal waves dose to GM76 at 34WN, as

127*W in the eastern north Pacific [Gregg and K, < 0.2e•N- 2 
[m

2 s-1] . (4)
Sanford, 1988]. Turbulence occurred intermit-
tently in thin patches and is averaged over 0.05 Using ( 3) for c gives K, •< 5 X 10-6 m 2 s-1,

MPa (5 ni) in Figure I and subsequent profiles, constant with depth and 30 times KT, the molec-
ular diffusivity. The North Altantic Tracer Re-

U.V /M s" lease Experiment (NATRE) seemn to be con--0.3 0 0.3
0. 0 0 firming ( 4) by comparing it with diffusivity

ted from the thickening of thin tracer
MSP .s. The most recent results are KP=

21.1 x 10-5 m 2 s-I from the tracer [Ledwell et al.,

1994] and the microstructure survey [Schmitt
et al., 1994].

101 . . . .... , .

~ PATCHEX

•" SAT"7 M,' 76 WN 127W $

10r PANCHEV
10.24 25 26 27 10.10 10-7 i [....- ... 1

09 /kg m"3  e/tW kg~' -1 12 -1 10 o 10 z
k,/ cpm

Fig. 1. Typical PATCHEX profile. Zero velocity
is arbitrary in this and other profils except TH 2. Fig. 2. Froude spectrum for PATCHEX.

Averaging the ensemble of 28 profiles gives The average PATCHEX spectrum is nearly
flat for k3 < 0.1 cpm (Fig. 2). A slope of k3

7 x 10- 10 N 2N(72 [W kg-1] , (3) is consistent with a shear field of many uncor-
related waves. in spite of thermohajine intru-

very close to Henycy et al. [1986], who calcu- sions dominating higher wz.venumbers, strain
lated the averaoe energy flux from low to high spectra can be formed at low wavenumbers and
wavenu.mberý, . a randern field cf large-scale are very close to th.e GM76 shear-to-strain ra-
waves having the background spectium formu- tio. The internal wave spectrum cuts off at

lated by Munk [1981]. Ray traxing followed the kc = 0.1 cpm and then decreases as k3 ' un-
evoation of intermediate-scale test waves un- til 1 cpm. The inflection near 3 cpm corre-
th their wavenumber grew to 0.2 cpm, when sponds to the largest overturning scales and is

their energy was treated as irreversibly headed the beginning of the turbulent range. The av-



Data 10'N C = 0.09-0.11 cpm. Thus, there is no reason to
s-' Wkg"-1 m2 s-1 suspect widespread shear instability at the cut-

P 3.0 1.7 x 10-1' 3.9 x 10-1 off wavenumber. Forming the probability dis-
PR 3.2 1.9 x 10-9 3.9 x 10-1 tribution of Fr 2 by first-differencing velocityFS1 12.5 1.1 x 10-1 1.4 x 10-5-

FS2 5.4 2.9 x 10-8 2.0 x 10-4 profiles over 10 m and using constant N 2 gives
FS3 4.3 5.8 x 10-1, 6.1 x 10-i only 0.2% with Fr 2 > 4 [Gregg et al., 1993].
FS4 5.0 5.0 x 10-0 4.0 x 10-1 Owing to many thermohaline intrusions, we
FS5 5.0 5.0 x 10-9 4.0 x 10-5 caaiot directly compute overturning scales, i.
FS6 5.5 3.8 x 10-1 2.6 X c0-s
FS7 4.5 1.0 x 10-8 1.0 x 10-4 Other observations [Dillon, 1982; Peters et al.,
TH1.4 0 N 2.9 8.0 x 10"- 1.9 × 10-b 1988], are consistent with I = (c/N 3)1/2 , the
TH20 N 2.7 1.3 x 10-10 3.5 x 10-6 scaling developed by Ozmidov [1965] for over-
THI 0 N 2.8 7.0 x 10-" 1.8 x 10-6 turns limited by stratification. Using ( 3) gives
TH 0O 2.9 2.2 x 10-10 5.8 x 10-6 1 = s.07(N/No)-1/2 = 0.094 m. The c dis-
C1.70S 2.8 2.2 x 10-1' 5.8 x I0-6
C00 2.8 1.7 x 10-10 4.4 X 10-6 tribution is approximately lognormal and thus
C30N 2.9 7.0 x 10-11 1.7 x 10-6 highly skewed. Consequently, the larger c's

are produced by overtarns exceeding 0.1 m,
TABLE 1. Stratification and turbulence. but visual inspection shows about 1 m as the

largest overturning scale. Because the form of
erage E in Table 1 gives 14.1 cpin for k, saturation producing the rolloff does not pro-
(27r)-1(E/V3)1/ 4. the viscous, or Kolmogorov, duce significant wave breaking, we conclude
wavenumber in cyclic units. The universal shear that Hines's approach is more likely than the

spectrum peaks at 0.16kg = 2.3 cpm. instability models to explain oceanic spectra.
The kW' rolloff is dose to the internal wave

rolloff in the stratosphere. Rather than being
broadband and random like oceanic internal The PATCHEX north profiles were taken at

waves, stratospheric waves usually have very 42*N, 126 0W in a coastal jet off California. Al-

narrow banadwidth in frequency and wavenum- though the jet was above 1 MPa, velocity and

ber. Generated at the top of the troposphere, dissipation are larger than PATCHEX through-

they propagate upward, increasing in ampli- out the profile (Fig. 3). For example, the av-

tude as the air thins. Two explanations have UV/rMs '1
been advanced for the uniform rolloff at k3 > -0.3 0 0.3
k0 . The saturated hypothesis holds that the 0 &=X

waves become unstable at kc and break by , , ksp

shear instability and convective overturning at 21-1
higher wavenumberb [Dewan and Good, 1986]. .
For a single wave, Smith et al. [1987] model the 4 -
saturated spectrum as OAT = 0.5k-, which ,.

is shown on our spectra. Fritts [personal com- U ,
munication, 1991] believes that the waves be- c-6 -
gin to lose energy at kc, but breaking begins
at higher numbers, perhaps 2,rkc. The second 8

explanation is advanced by Hines [1991a], who (.
argues that the waves do not become unsta- 10
ble at kc. Instead, energy is shifted to higher 25 26 27 10.10 i7
wavenumbers by strong Doppler shifting un- /kg m"3  S/W kg"
til the waves eventually break. Hines [1991b]
develops a spectrum that asymptotically ap- Fig. 3. Typical PATCHEX north profile.

proaches k-1.
Plotted in Figure 2 Fr2 = 0.52-0.64 for kc erage ( is more than ten times PATCHEX, giv-



ing K, = 3.9 x 10-5 m 2 S-1. (Tbl. 1). Using 04

PATCHEX north as the most energetic exam-

ple, Gregg [1989] expressed the average dissi-
pation rate in terms of the increased shear as U I2

7 10- (NN (1O/s10GM76. (5) % 4

S10 is the 10-m first-difference shear corrected /
for attenuation by the first-difference filter. The c•,m, ' .- : *

expression is adapted from Henyeu et al. [1986] 7

to use shear, which is measured well by MSP, 0 20 40 60 80
instead of kinetic energy, which is not measured dlanSo IMOS
well.

2ig. 5. Florida Strait stations, June 1990. Con-
lto.rs show average northward velocity in m s- 1 .

Labeled dashed lines are the maximum depth of the
P^, A2TCHXn surface boundary layer (SBL) and the maximum

&7,-0.26 MPa heights of the homogenous bottom layer (HBL) and
the turbulent bottom layer (TBL). Vertical dashed

01- .. lines show where the spectra were taken.

about 10 profiles, each to within 5 m of the bot-
"tom. Most drops ended in sections of contin-

S.. ,_uous strong turbulence much thicker than the

NASMYTH \ homogenous bottom boundary layer (Fig. 7).

10" 0 1 2

Fig. 4. Froude spectrum for PATCHEX north. E

The hroud~e spectrum for PATCHEX north
is 5 GM76 at 0.01 cpm and slopes steadily
downward until it intersects an extension of
the k-1 GM76 rolloff somewhat below 0.1 cpm
(Fig. 4). Owing to the irregular shape, the be-
ginning of the rolloff cannot be defined visually. 1 a4

Fox GM76, kc = 0.1 cpm and Fr 2 (kc) = 0.7. 10-2 100 102

For PATCHEX north the closest estimate to I cpm
Fr2= 0.7 gives kc = 0.04 cpm. The turbulent
spectrum begins at 0.4 cpm, where FP.2 = 2.5, Fig. 6. Froude spectra from the Florida Straits.
and is moderately well-developed with a dis-

tinct inertial subrange. Spectra taken below the core of the stream
To observe internal waves in strong mean vary by factors of 2-3 at low wavenumbers and

shear and near topography, in June 1990 we 10 at high wavenumbers (Fig. 6). All except
took stations acioss the Florida Strait at 27 0 N Stn. 1 lie well above GM76 and cutoff where
(Fig. 5). The Gulf S~ream was centered on they intersect the GM7 3 k&' rolloff extended
Stu. 3 near 0.5 MPa. At each station we took to lower wavenumbers. Considering the differ-

eat circ instances, the similarity of the rolloff



to those of PATCHEX and PATCHEX north UV M mgs
-0.4 0.0 0.4 0.8

demonstrates that it is a very robust feature. 0
The rolloff follows GM76 until the beginning of

MSP
UV l/m s7' 2 - 187

-1.2 -0.6 0.0 -
0 4 '

CL

MSP 

U V-77

CL
v•. a8  10

- 22 24 26 28 10-'0 10-'
' .06•e / kg m E I W kg'

Fig. 8. TROPIC HEAT 2 profile on the equa-

24 26 28 0-10 1"0-7 tor. The Equatorial Undercurrent is centered at
Oe / k-9 M"3 c / W kg -1 1.5 MPa.

Fig. 7. Profile at Florida Strait Stn. 4. High e at the f dependence, making ,?M$76(k3) indepen-
the bottom extends well into the stratified section dent of f. To account for decreased cohereuces
above the homogenized bottom boundary layer. observed near the equator, Munk [1981] made

the turbulent range. !Fr(k3 ,w) proportional to (w2- f2)1/-W-3,

Stations 2 and 7 are the most energetic at so that integrating makes MFr f

low wavenuinbers and have inertial subranges Munk, therefore, predicts shear variances of 14

spanning a decade. Their strong turbulence GM76 at 2" and 29 GM76 at 10.

produces K, = (1- 2) x 10-
4 M2 s-1 . Ob- 10' .,'

served c's are within a factor of two of (5) Th0,,I.A.a

in the center of the strait, but are factors of ,' ,i 101

5-10 times higher near the sides. Correcting ,

with the shear-to-strain ratio as proposed by 10' . ,

Polzin [1993] does not help. It appears, there- U . ,
fore, that the elevated c is not simply related , '

to the sheai variance. ' , i

LOW-LATITUDE ANOMALIES " '
I T I 4 W3

During TROPIC HEAT 2 we proiled be-i ' ' '
tween 11.40 N and 0' near 140°W. Shears were &mid

several times GM76 but much less than pre- lw ,'

dicted by Munk [1981]. At 140'W the internal
waves axe superimposed on 'deep jets' below l' t . .. ..
the undercurrent (Fig. 8). The jets have mag- k p

nitudes of ±0.1 m s-1 and are about 150 m

thick. Fig. 9. TROPIC HEAT 2 spectra.

As a function of vertical wavenumber and

frequency, 4iC'M'6(k3, w) is proportional to f,- 3  TROPIC HEAT 2 Froude spectra from 11.4

(w2 - f 2)t"2, where f is the Coriolis parame- 'N, 20N, 10N, and 0*N differ less than a factor

ter. Integrating over w irom f to N removes of two at all wavenumbers (Fig. 9). At low



wavenumbers they are 1.5-2 GM76, much less slightly steeper slope. The strain rolloff ends
than predicted by Munk [1981]. The spectra at 0.16 k•, the peak of the turbulent range in
are also more peaked than mid-latitude spec- 41r. The turbulent range approximates the
tra, indicating that the wave field may have a scalar spectrum derived by Batchelor [1959].
narrower bandwidth. For k3 > kc 0  0.03 cpm, 102

the spectra rolloff along .Pror slightly below.ATaln Fr WAR slghl beo.,,3 •

Near 0.2 cpm the slope steepens to approxi- F
mately kK14 . The steep rolloff produces a more ' 1

distinct rise into the turbulent range. The dis-
sipation rates give K, within a factor of two of " ,oo

PATCHEX (Table 1).
Because these profiles lack thermohaline in- lo.

trusions, strain can be obtained from temper- . 1<2gw
ature. For k3 < kc, the strain spectra axe ap- 10N, Z-jqfl
proximately flat and vary in amplitude from 3 -•

GM76 at 11.40N to 1/3 GM76 at 00N(Fig. 9). S4T.

If one wave frequency daminates the low wave- lop - '0

numbers, as seems likely owing to the peaked "
spectra, the shear-to-strain ratios correspond ,0 .0IIz17 1 o.. la, l , IV

to average frequencies of 1.10f at 11.4 0N, 1.27f k3Icpm
at 20N, and 1.7f at 10N. Eriksen [1993] ob-
tains a similar latitudinal variation in average Fig. 11. Froude spectra for COARE 3.
frequency from calculations of the response of
the equatorial ocean to rapidly moving wind During COALIE 3 we profiled along 156 0 E.

bursts. The profiles are roughly similar to those at
u,v / i -140 0W(Fig. 10). At low wavenumbers the

-0.8 -0.4 -0.0 0.4 Froude spectra are more energetic than those
0 -v isp from 1400W, and their rolloffs begin at higher

wavenumbers, closer to the GM76 rolloff ex-

2- tended to low wavenumbers than to @DST (Fig.
- 11). Otherwise the rolloff and turbulent ranges

04[- V| u CF iare similar to those for TROPIC HEAT 2, so
0 • V U CT6  that K, again is no larger than PATCHEX.

"The COARE 3 strain spectra are elevated
6• - 1 even more than 1Fr, particularly at 00, where

- the rolloff remains twice GM76. C. Eriksen

8-, [personal communication, 1994] predicted pref-
- erential elevation of t st compared to §F, as a

10 22 2 consequence of the 5i effect on near-equatorial
22 24 26 28 10.1° 10-7  responses to wind forcing.13 /- m-3•' o / W L- -1

. /km4  
sWkgz' DISCUSSION

Fig. 10. COARE 3 profile at 0'. The Equatorial Variations in turbulent production result from
Undercurrent is centered at 2.5 MPa. changes in wave-wave interactions with varia-

tions in spectral amplitude and shape. The
ChangBeswein so ofd 0.2 matchfeatures in present procedure for mid latitudes requires

r. Between kcc and 0.2 cpm, where *Fr assuming that c depends only on total shear
follows tSAT, the strain spectra transition to variance, presumably to Ic, and perhaps with
the roUoff. At 0.2 cpm, where the OFr rolloff correction for shifts in the average frequency of
steepens, t st rolls off clos'e to GM76 but with



the wave field. These are empirical results that of the narrowband distribution, and C may be
breakdown when extended from mid to low lat- lower because there are fewer and weaker inter-
itudes, as shown vividly in Figures ?? and 13. actions. In Figure 13 several other curves are

1o___-_-- ___-- ••closer to unity at 0.01 cpm and peak between
0.02-0.03 cpm, indicating that this may be a

SAT general condition at low latitades. In any event
if shear variance is the sole factor responsible

PATCHEX ram for producing turbulence, it does not work in
Fý19 1.0 , W WI the same way everywhere or there would not be

E C..•.- essentially two dissipation spectra on the right
C. for such a varied range on the left.

These anomalous results also reveal the lim-
S- Ritations of statistical approaches to wave-wave

interactions. Our ensemble-averages were ob-
. rtained by sampling sites for one to twelve days.

The data are relatively stationary because at
most places the internal wave field evolves slowly,

100. o ', ' allowing time for adequate sampling. In addi-
kl / epm tion to lacdking the three-dimensional structure

of the wave field, we have not observed the evo-
Fig. 12. Froude spectra for PATCHEX north and lution of internal wave field. Only then willCOARE3 00N. we really be able to understand the dynamics

- 25 producing turbulence. Iu the interimn, calcu-
lations of interaction rates with altered spectra

, ,would be helpful. Henyey et al. [1986] simu-
"r20 lated variations in wave energy level by chang-

I I ing the dimensionless energy density in Munk
2 t [1981] while retaining the cannonical shape. A

Pn good start would be to do similar calculations
4 ,with varied shapes, including narrow band fields

.' "• '• •ber distributions varying 'with. frequency.
-Q 1-that are not separable, i.e. ones with wavenum-
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ABSTRACT

Nonlinear geostrophic adjustment is examined with a Boussinesq model. The
motion is restricted to a two-dimensional channel in the horizontal and vertical x, z
plane; the fluid is in uniform rotation, is stably stratified, inviscid and incompressible.
The flows considered fall uadcer two classes: zero and uniform potential vorticity
flows. Steady geostrophic flow fields are determined from initial mass imbalances,
represented by an antisymmetric density anomaly that varies along the x-axis. The
distinguishing characteristic of the solutions is the development of a front, defined as
a zero-order discontinuity in both density and geostrophic velocity at both vertical
boundaries. The condition for a front to form is expressed in terms of a Rossby
number, based on the spatial gradient of the initial density anomaly, and on a Froude
number.

The relative amounts of kinetic &KE and potential energy APE partitioned to
the geostrophic flow field by the redistribution of mass is represented by
Y - KE / PE. Zero potential voiticity flow is characterized by y = 1 / 2, and there
is a smooth transition from y = 1/2 to y = 1/3 for uniform potential vorticity flow,
when the initial mass imbalance approaches a step function distribution.
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1. Introduction

The adaptation of an unbalanced mass and/or momentum distribution in
rotating fluid to a state of geostrophic balance is referred to as the geostrophic
adjustment problem. The prototype for this process was formulated by Rossby (1937,
1938), who examined the adaptation of the sea surface following a wind gust that
imparted an initial momentum imbalance by a surface stress. Ou (1984) later
demonstrated that a by-product of the geostrophic adjustment of an initial mass
imbalance is the formation of zero-order discontinuities at level boundaries-fronts in
both the density and velocity fields.

The present talk focuses on two aspects of geostrophic adjustment:
frontogenesis and partition of energy between kinetic and potential energies of the
balanced state. A front may only occur if the gradient of the initial density anomaly
is sufficiently large. The critical value may be expressed in terms of a Rossby number
and a Froude number. These nondimensional numbers are, in effect, measures of the
respective horizontal and vertical gradients of the initial density field. Although the
relative amount of kinetic AKE and potential APE energy partitioned to the balanced
flow also depends on the initial mass distribution, perhaps a more distinctive
characteristic of the fluid that determines the magnitude of y = AKEl/APE is the
potential vorticity of the flow. This distribution is emphasized by examination of both
zero and uniform potential vorticity flow.

2. Model

The fluid is incompressible and stably stratified; the constant rotation rate is
f/2, where fis the coriolis parameter; and the motion is assumed to vary only in the
(Y z) plane, where x is horizontally directed and z is directed upward antiparallel to
gravity g. This model has been examined by Ou (1984) in the context of the
geostrophic adjustment problem. The basic equations may be expressed by three
conservation principles, potential vorticity, linear momentum, incompressibility:

,d [rav ap av ap]_o(t
d=V)L Va 0, (1)Tt Tx az az ax

S(fx + v) = 0, dp = 0. (2): (3)dt dt

Here d/dt = a/ at + u al ax + w al az , where t denotes time, (u, w) are (x, z) velocity
components, while v is directed cross-stream. The Boussinesq approximation has been
introduced, and ( is a nondimensional density defined as the ratio

P'. - P, (0)

p () 
(4)

I(0
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where p,.t is the density and p (0) is a constant reference value. The fluid is assumed

to be unbounded in Ixl with rigid level surfaces at z = 0 and at z = h.

It is possible to by-pass the initial-value problem to determine the final
geostrophic state by making use of the conservation principles (1), (2) and (3). The
tacit assumption, used by several investigators following Ro by's approach, is that the
final state can be uniquely determined from the imposed initial state. There may,
however, be situations when the inviscid conservation principles cannot be applied in
this manner. The initial imbalance will generate gravity waves, for example, that may
form hydraulic jumps where a local dissipative region occurs, or waves may overturn
and dissipate energy. The conditions for these events to occur will not be examined
in the present investigation.

It is convenient to use the scaling provided by Ou (1984), since his results will
be rederived and compared with another class of flow. The nondimensional quantities

are defined as: x = Ix' , z =hzI and v = (g h)Y/2 v/, where g* =g,& p/p(o) denotes
"reduced gravity", & p is the characteristic amplitude of the density anomaly and

X - (g * h )112 f-' is the internal deformation radius.

The potential vorticity q. is defined in (1), and there are three classes of flow
that may be considered:

1) zero potential vorticity, qO = 0
2) uniform potential vorticity, q. = constant

3) nonuniform potential vorticity, qO qO (x,, z).
Only the first two classes will be investigated here, The method of solution is

presented by Blumen and Wu (1994). The initial density anomaly is antisymmetric,
and given by

p.(x.) - e Erf(ax,,) , (5)

where Erf denotes the error function, e is an amplitude to be specified, the subscript
denotes the initial state and the nondimensional inverse length scale is

a = (g*h )'/ !2faý . (6)

The quantity aD' is the dimensional length scale of the density anomaly and a in (6)

may be associated with a Rossby number based on a velocity scale (gh )1/2. The
distribution represented by (5) is displayed in Figure 1 for e = 1/2.

Finally, the steady flow is both geostrophic and hydrostatic, and satisfies thermal
wind balance
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3. Froni: formaivn
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where ais•defined by (6). With e . /2a.a*=•otforswbena = 2.03. ThefieldsOf(pv)
are displayed in Figure 2. Smaller values of a would not lead to frontal formation;
larger values would lead to a multi-valued density distribution. This latter situation,
which would occur after frontal formation on the boundaries, is not a valid steady-state
solution.

b. Uniform potential vorticity flow

This case is distinguished by qO = 1, with an initial state

p. = -z + P(O) (10)

The quantity po (,t) is also represented by (5), but in this case = 1 /4.
The initial state and final state, when a front has formed, is displayed in Figure 3. Tbe
presence of stable stratification introduces a new parameter N, the Brunt-Vaisd1h
frequency. The uniform potential vorticity solution is then characterized by two
nondimensional parameters, the Rossby number (6) and the froude number

F = (g*h) 12 /Nh. The solution presented in Figure 3 is characterized by F = 1.
This case bears a closer resemblance to atmospheric fronts that are characterized by
cold dense air that extends a few kilometers above the surface, although the upper
boundary front would be absent in the atmosphere. Further details in the
development of this solution are presented by Blumen and Wu (1994).

4. Energy ratios

Th'- redistribution of the initial unbalanced density anomaly lowers the center
of mass, and provides energy to transient and stationary motions. The quantity
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y = tKE/APE (11)

represents the ratio of the kinetic to potential energy partitioned to the stationary
geostrophic solutions. The quantity y has been determined for various model
solutions, exhibiting an upper limit of 1/2, and a lower limit of 1/3 when the initial
state exhibits a first-order discontinuity, e.g., Gill (1982). Blumen and Wu (1994) show
that the potential vorticity framework provides a relatively simple way to connect
diverse results that have appeared in the literature. Ou's (1986) demonstration that
y , 1/2, independent of a, applies only to the zero potential vorticity model. The
solution presented by Blumen and Wu (1994), for uniform potential vorticity flow, is
used to evaluate y. It is shown that for large scales (a - 0), y- 1/2. [The same
result would apply by letting the vertical density stratification vanish.] There is a
monotonic decrease to y = 1/3 as a - -, which is the limiting value for a
discontinuous initial density distribution. An unusual aspect of this problem is the fact
that the zero potential vorticity result .y 1/2 is independent of scale, while the
energy ratio associated with uniform potential vorticity flow is both shape and scale
dependent.

5. Remarks

There are a number of unanswered questions associated with the present
results. These are associated with the time-dependent adaptation of the fluid,
associated with inertia-gravity waves. The time evolutions are obtained by numerically
integrating the model which is described by Williams et aL (1992). In the zero
potential vorticity numerical experiments, a strong inertial oscillation is found in the
horizontal velocity components. With the error function initial condition (5) in the
density field, a discontinuity forms on the upper and lower boundaries whenever

a >_ 2.03, which agrees with the steady state analysis in section 3. In addition,
discontinuities are found for values of a as low as a - 1.6.

The stable stratification that exists in the uniform potential vorticity case does
permit waves to propagate away indefinitely. P :teady state could be realized, but the
wave influence on frontal formation as a function of the Rossby and Froude numbers
is being explored.
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ATM-93931 11. R. Wu also acknowledges support by the National Science Foundation
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LABORATORY EXPERIMENTS WITH MID-LATITUDE CIRCULATION
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Abstract
A laboratory fl-plane model is being used to examine aspects of wind-driven ocean

circulation at mid-latitudes, induding effects of stratification. The model is a 'sliced
cylinder' with a surface stress exerted by differential rotation of the lid and is similar to
that used by Beardsley (1969) in his experiments with a homogeneous fluid. However, a
much wider cylinder and two sloping boundaries axe required to extend the results to the
two-layer case. New results from this wider basin are given also for the homogeneous case
and reveal significant differences from previous data. In two-layer flow separation of the
western boundary current from the western wall is found to coincide with outcropping
of the lower layer to the surface, but the position of separation is almost independent of
conditions and lies only a little farther upstream than in the one-layer case. In contrast,
an energetic current extension flowing across the interior of the basin and still coincident
with the outcropping front (as predicted by Parsons, 1969) follows a mean path that is
strongly dependent on both the magnitude of the #-effect and the ratio of surface forcing
to buoyancy. Eddies are shed from an adjustment region between the separating boundary
current jet and the interior flow.

1. Introduction

There remain many uncertainties in our understanding of mid-latitude ocean circu-
lation. The causes of western boundary current separation and the factors affecting the
position of separation are still being questioned; the dynamics and path of the energetic
current extension are difficult to model; and the dynamical connections between the sub-
tropical and sub-polar gyres are unclear.

Parsons (1969) suggested that boundary cu'rent separation corresponds to surfacing
of the thermocline in the region of anticyclonic wind stress curl. By requiring that the
'equatorward' longitudinally-integrated wind-driven Ekman flux is equal to the aet 'pole-
ward' geostrophic flow in the upper layer across any latitude he showed that outcropping
will occur when the value of a forcing parameter A = Lr.b/6pd exceeds a critical value,
where L is the basin width, 7,. is a scale for the surface stress, 6p is the density difference
between layers and d, is the mean depth of the upper layer. In this model the lower layer is
assumed stationaxy. The critical value for outcropping in a rectangular basin with a cosine
wind stress is Aý = 0.26. For supercritical forcing the latitude at which outcropping should
Occur iss given iin terms Of thel' upper 'aaye on he eastern boundary, the. reduced
gravity and the applied wind stress. Veronis (1973) added to this model a cyclonic sub-
polai gyre and the possibility of a net 'poleward' flux out of the basin. Numerical solutions
by Huang & Flierl (1987) show how the model predicts a sub-tropical warm pool isolated
to the south of the basin for sufficiently large forcing, and even to the southwest after
separation from the easterni boundary under extreme forcing (A, > 6.3).

The Parsons-Veronis hypothesis was formulated in terms of an assumption that surface
stress acts as a body force on the whole depth of the upper layer. The theory also ne-
glected transport or mixing between the layers. Thus the boundary current extension was
expected to follow the isopycnal outcropping. This simple model predicts an outcropping
front extending eastward and 'poleward' across the ocean, with the lower layer surfacing



in the northwest (in the northern hemisphere). Pedlosky (1987) extended the model by
considering the wind stress as applied only to the surface Ekman layer. He also allowed
transport in the Ekman layer to cross the outcropping density front. Hence some lower-
layer water is carried into the upper layer, where it was assumed to be converted into
upper layer water by warming. This modification resulted in a significant change in the
global circulation pattern, in which outcropping of the interface is no longer associated
with a separated boundary current flowing along the outcropping front, Pedlosky appealed
instead to the local vorticity dynamics of the boundary current as the cause of separation.
The Ekman flux across the outcropping line also provides a driving mechanism for deep
circulatior..

Little attempt has been made to explore stratified fl-plane circulation using laboratory
experiments. Beardsley (1969) investigated homogeneous flow forced by a differentially
rotating lid in the 'sliced cylinder' geometry, and his study has been followed by further
experimental, analytical and numerical studies (Pedlosky & Greenspan, 1967; Beardsley
& Robbins, 1975; Becker & Page, 1990). These have been very successful in modelling
some aspects of the mid-latitude circulation, particularly the interior Sverdrup balance
closed by an intense western boundary current. However, even in this simple model
there remains uncertainty over the mechanism responsible for separation of the western
boundary current (Becker & Page, 1990). The only previous experiments with two-layer
models (Krishnamurti & Na, 1978) were attempted in a somewhat different geometry in
which the fl-effect was simulated by a conical slope on both base and lid of a cylinder.
Radial barriers served as meridional boundaries. Surfacing of the lower layer against
the (differentially rotating) lid at the radial western boundary was observed, but little
quantitative information on separation and outcropping was obtained.

In new experiments in a planar #-plane model we examine the circulation in both one-
and two-layer cases. Both base and lid are sloping in order to apply a fl-effect in each
layer, and the flow has a much smaller aspect ratio than those used previously in order
that the internal deformation radius be much smaller than the width of the basin. In
particular, we aim to test the Parsons-Veronis hypothesis and modifications introduced
by Pedlosky (1987), including the position of separation of the western boundary current,
the behaviour of any current extension flowing into the interior of the basin, and the
location of lower layer outcropping.

2. Apparatus and method

Experiments are carried out in a large rotating cylindrical tank of diameter L = 1.Om.
The north-south gradient of planetary vorticity is simulated by a variation of the depth
of each layer produced by planar sloping top and bottom boundaries. In the experiments
reported here the base slope a2 has been set at either tana 2 = 0.05 or 0.10, while the lid
has been set to a number of slopes between zero and tanal - 0.10. However, the preferred
onditions for two-layer runs are tano2 = 0.10 and tana, - 0.05, with the ratio of upper

to lower layer depths d1 /d 2S1/2, in order to impose similar values of [3 = (2f0/di)tancri in
each layer. The lid rotates relative to the cylinder about an axis normal to the lid slope.
The total mean depth of water, D, is either 15.0cm or 12.5cm. Hence the aspect ratio is
D/L = 0.128 or 0.154, which are much smaller than the aspect ratios used by Beardsley
(1969) (D/L = 0.502) and Becker & Page (1990) (D/L = 1.17). In our two-layer runs the
ratio of mean depth-to-width of the upper layer dj1 L is approximately equal to 0.04.

Tank rotation speeds f0 = 0.5-2.0 rads- 1 and relative lid speeds O2L = 0.0051-0.16 rads-1
(periods of 1228s to 40s) gave Rossby numbers Ro = QL/IQ from 0.0026 to 0.16, Ekman
numbers E = v/1D 2 from 3x1(- 5 to 1.3x10-4 and E114 -tan(aj+t 2). Only anticyclonic lid
motion is used. Hence the boundary current flows from deep to shallower water. For two-
layer cases a layer of salt solution is carefully filled beneath a layer of fresh water so as to
establish a sharp density interface and left to approach solid body rotation before the lid
motion is begun. A single density difference 6p/p = 0.005 has been used in order to reduce
the number of variables. With d, = 4cm and at = 1rads-1 the baroclinic deformation radius
is 2.2cm.

-2--

II



A particularly effective but simple method of flow visualisation in these experiments is ]
to blead narrow streams of dye into the flow from imm diameter syringe tubes positioned
at strategic points in the tank. The most effective positions for these continuous dye
sources were found to be within the boundary current. Hence they are positioned near
the 'west', from where the dye lines are passively advected 'poleward' with the current.
The dye lines enter the interior where the current separates from the wall, continue 'equa-
torward' through the interior of the basin, and eventually re-enter the western boundary
current in the 'southern' region (using northern hemisphere directions). Throughout
this circuit the tracer reveals the mean flow, any unsteadiness in the velocity field, eddy
shedding, stirring in the interior, and mixing between layers. Dye reveals more information
on the flow field than other techniques, such as streak photography, because the flow is
unsteady and involves a large range of velocities (10-2 to lcms- 1). The advection of dye
was recorded on still film and time-lapse video tapes. In addition, measurements were
made of velocity profiles in the boundary current and the interior by using a solution of
Bromothymol blue PH indicator and electrode wires stretched from the centre of the tank
to the 'west' wall.

S. Results for homogeneous flow

Although new results for the homogeneous case are of intrinsic interest, only a few
axe given here for comparison with the two-layer flows. As in earlier #-plane experiments,
a fast, narrow boundary current develops on the 'western' side of the tank, flowing
'poleward' when the surface stress distribution imparts anticyclonic vorticity. For very
small Rossby numbers circulation is centred to the 'west' of the basin and streamlines
diverge from the boundary current at all 'latitudes' in a manner consistent with linear
theory (Pedlosky & Greenspan, 1967; Beardsley, 1969) and numerical solutions (Beardsley
& Robbins, 1975; Becker & Page, 1990). However, in contrast to previous assumptions,
the laboratory flow is never completely steady. Even at Ro <0.005 a small-amplitude
oscillation persists indefinitely: each dye line leaves the boundary current at a point that
fluctuates along the wall and the dye line is stirred across a broad region of the interior
return flow.

15 ----

100

Figure1. Cirulatio in a unstable hmgnosfo srvae ydeavc
od ho riodic

0 2 4 6 8 10 12 14
EX ILO

Figure 1. Circulation in an unstable homogeneous flow as revealed by dye advec-
tion (Northern hemisphere orientation - C2 anticlockwise, fnL anticyclonic, water
deepest at bottom of picture and shallowest at the top, which is 'north' or
'poleward'). Dye is injected at the 'west' and at the centre of the cylinder. Ro =
0.053, E =- 6.x 10-1,,&B = 6.7. Eddy shedding is periodic. Photograph at 350
rotations after beginning of dye release.

Figure 2. Stability transitions in one-layer flow. No steady flow was found.
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For sufficiently large forcing the flow structure changes significantly. The current
separates from the western wall as a narrow jet in which two streamlines initially 2 cm
apart show no significant divergence. The jet penetrates a short distance 'southeast-
ward' into the interior before looping 'northward' to supply the 'eastern' part of the
basin. Increasing the forcing slightly farther causes the flow to become unstable in the
region where the separated boundary current enters the interior (fig.l). The transition
(fig.2) is well described by a critical value Re, of the Ekman layer Reynolds number ReE
- Ro/E 1 12 : Re, s4.9 + 1.5x104E. We have defined instability here as the formation and
shedding of cyclonic eddies. (Anticyclonic eddies are shed to the 'northeast' at still greater
values of ReE.) Instability is associated with rapid divergence of the flow from the narrow
separated jet to fill the full width of the interior of the basin. As this divergence occurs in
an unsteady fashion, there is very extensive stirring of the passive tracer. Beardsley (1969)
and Beardsley & Robbins (1975) reported a similar instability, but placed the threshold
under their experimental conditions at larger values of R~e. Another new observation
is that there is a further transition from periodic flow at ReE > Re. to aperiodic eddy
shedding at ReE > Re*, where Re*•,8.2 + 3.5x104E.

The position of separation of the boundary jet is of particular interest for comparison
with two-layer flows. Separation is meaningful only under conditions for which the current
leaves the wall as a narrow jet. In these cases its position has been estimated from the path
of a dyed streamline as close as possible to the wall and a region of reversed flow 'north'
of separation. Separation occurs at 0 = 350 : 3° west of the shallowest point (fig.3) and
is insensitive to conditions, showing only a possible small shift in the upsteam direction
('equatorward') for larger forcing. This finding is inconsistent with the computations and
experimental observations of Becker & Page (1990), whose results are for a cyclonic surface
stress and show a region of reversed flow on the 'southeast' boundary, some distance east
of the deepest point rather than 350 to the west as observed here. The difference may be a
result of the smaller aspect ratio and relatively large values of the 0-parameter S L,/20
= Ltan(a-1+Q2)/D in our experiments.

t
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n 20.
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RCe=Ro/E'a
Figure 3. Separation position (in degrees west of the shallowest point, 'north')
as a function of the Ekman layer Reynolds number based on the mean depth of
water. In one-layer runs separation is plotted for unstable cases only. Two-layer
runs with zero lid slope are omnitted.
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shallow 'noitf
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Figure 4. Circulation in a two-layer case (Southern hemisphere orientation - 0
clockwise, Qc anticyclonic, water shallowest at bottom of picture). Dye is injected
in both layers at the west. Red dye in the upper layer leaves the wall at the
outcropping and travels eastward in an energetic frontal stream. Blue dye in the
weaker lower layer current passes under the outcropping and along the 'poleward'
boundary. Mixing between layers occurs mainly in the east. Ro = 0.0565, A
0.34, s$ = 1.22.

Figure 5. Sketch illustrating the main aspects of the two-layer flow (in Northern
hemisphere orientation). Heavy line indicates outcropping of the interface; solid
lines show upper layer flow, broken lines the lower layer.

4. Two-layer flows

In our two-layer experiments an intense boundary current again develops on the
'western' side of the tank. The current extends throughout the depth, but velocities
are smaller in the lower layer. The current separates from the western wall under all
conditions that have been used, and forms a jet flowing into the interior (fig.4 & 5).
Separation always coincides with outcropping of the lower layer to the surface at the
wall. However, contrary to Parsons hypothesis separation and outcropping occurs in an
approximately fixed location (on average at 45° 71 instead of 350 k 30 from 'north'), with
only weak dependence on conditions (fig.6). IT fact, the data show a slight trend in the
opposite direction to that expected: separatit. occurs farther downstream ('poleward')
for /arger values of the ratio A of surface to buoyancy forces. Separation is also not
sensitive to lid slope or upper layer depth (fig.7) when S, = LtancIl/d, >1 (ie. in wide
basins). In addition, the lower layer boundary current follows the sep'arated upper layer
jet into the interior. Thus, although separation occurs at slightly 'lower latitudes' than
in the homogeneous case, the results indicate a primarily barotropic process.

A qualitative similarity between the one- and two-layer flows can also be seen down-
stream of separation (fig.4 & 5). The jet loops first anticyclonically to smaller 'latitude'
and then cylonically, in a relatively sharp turn, to flow 'poleward' again. The anticyclonic
loop follows the perimeter of an anticyclonic gyre close to the western boundary. Cyclonic
eddies are shed periodically from the tip of the cyclonic loop, move westward around the
'southeast' of the anticyclonic gyre, and then (as in the one-layer case) dissipate as they
are advected 'equatorward'.
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Figure 6. Separation position in two-layer runs (in degrees west of the shallowest,
or 'poleward', point of the basin) as a function of surface stress/buoyancy. Sym-
bols indicate values of dimensionless upper layer P-effect, S1 = L tanal/dI. Solid
liue fits S, >0.95, broken line fits data for 0.49< 51 <0.65.

Figure 7. Separation position of fig.6 but as a function of S1, the magnitude of
the topographic 9-effect.
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Figure 8. 'Latitude' of the outcropping front in two-layer runs as a function of
forcing parameter and 5,, the dimensionless p-effect. (Latitude is measured as
the'north-south'distance V" from the shallowest point of the basin, normalised by
basin width L).
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The interior flow, on the other hand, is greatly altered by the effects of stratification. 4
In the one-layer case the unsteadiness of the loop serves to spread the transport from the
narrow separated jet across the full width of the interior Sverdrup flow. In the two-layer
case (summarised in fig.5) eddy shedding divides the upper layer jet transport between, on
the one hand, a return eddy flux 'equatorward' and to the west, and on the other hand,
a narrow stream flowing across the interior. This is a frontal stream coincident with
outcropping of the density interface.. It is unstable, with meanders continually developing
into eddies as they move eastward. The front divides the upper-layer warm pool on the
'equatorward' side from a region on the 'poleward' side in which unstratified lower-layer
water is in contact with the lid. The water carried by the cyclonic eddies does not continue
to drift 'equatorward' in the western part of the basin as it does in one-layer experiments,
but instead is advected eastward some distance 'equatorward' of the outcropping front.
Both branches of the upper layer transport join a broad eastern boundary current that
returns water 'equatorward', where it is again taken into the western boundary current.

The lower layer boundary current, too, divides between a branch flowing : round the
anticyclonic gyre near separation and then meandering 'equatorward', and a branch that
crosses beneath the outcropping line to return to the western wall and flow 'poleward'.
The latter branch continues along the wall past the shallowest point and into the 'east'
of the basin. In the eastern half of the basin there is a small flux of lower layer water into
the upper layer as a result of the surface Ekman layer transport across the outcropping
front in the manner discussed by Pedlosky (1987). This water is gravitationally unstable,
mixes, and slowly adds to the upper layer volume. For instance, in one experiment the
volume of the upper layer increased by 40% (inferred from density measurements) over 5
hours of forcing. It is not y, ' clear to what extent this mixing contributes to the observed
circulation.

The latitude of the outcropping front in the interior, unlike the separation position,
does vary with surface stress, lid slope and upper layer depth: increasing either A or S1
shifts the front and its stream to deeper water ('lower latitudes') (fig.8). For small lid
stresses, small lid slopes and large upper layer depths (A < 0.4 and S1 < 0.6) the boundary
current separates but, after looping a small distance 'equatorward', it returns all the way
to the 'northwest' boundary. There is no extended region of outcropping, only a small
area against the 'west' wall beyond the separation point. However, for S1 > 0.65 and A >
0.2 the jet does not return to the boundary and the outcropping front extends across the
interior to the eastern boundary. Thus the cyclonic loop and eddy-shedding represent a
flow adjustment between the largely barotropic jet emerging from the fixed separation
point and the strongly baroclinic, forcing-dependent interior flow.

For sufficiently large forcing (A > 0.8) the upper layer also separates from the eastern
boundary and the outcropping front curves around to the 'south' (northern hemisphere
again). The upper layer is then confined to a 'low-latitude' western pool, as in the
numerical solutions of Huang and Flierl (1987). We note that the critical values of A,
first for extension of outcropping beyond the neighbourhood of the separation point and
secondly for confinement of the upper layer pool to the 'southwest', in the laboratory
model are not expected to coincide with the theoretical predictions based on a cosine
zonal wind stress in a rectangular basin with a stationary lower layer.

5. Conclusions

Having demonstrated that a laboratory two-layer O-plane model reproduces many of
the features of mid-latitude circulation and theoretical 1 -layer models, there are a number
of aspects which must now be investigated in greater detail before Parsons' model or its
modifications can be compared quantitatively with the experiments. Those models did
not include the effects of non-zonal surface stresses, a mobile lower layer of finite depth,
or surface stress applied directly to the outcropped lower layer at 'high latitudes'. All of
these are unavoidably present in the experiment. Comparison of theory and experiment
will also need to take into account the water mass conversion from lower to upper layer
at the outcropping line. Further experiments are being carried out also, using a broader
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range of conditions (including a deeper lower layer), along with more detailed investigation
of the lower layer motion and effects of a sloping side wall.

The experiments model an isolated sub-tropical gyre, neglecting effects of a reversal
of the wind stress curl and interaction with a cyclonic sub-polar gyre. However, Parsons'
analytic model of the anticyclonic gyre captured so much of the important dynamics that it
should prove profitable to explore similar laboratory models, including additional, more
realistic, factors. Particular attention needs to be given the mechanism for barotropic
separation and the process of adjustment to a baroclinic interior flow.
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MANIFESTATIONS OF BOTTOM TOPOGRAPHY ON THE OCEAN SURFACE:
THE PHYSICAL MECHANISM AND SOLLTTION OF DIRECT AND INVERSE
PROBLEMS ON A BETA-PLANE

By Victor I. Shrira and Sergei Yu. Annenkov

P.P.Shirshov Institute of Oceanology, Russian Academy of Sciences,
Krasikova 23, 117218 Moscow, Russia

1. Introduction. The shape of oceanic basin, among many other factors,
controls the formation of surface and subsurface fields of oceanographic
characteristics, but it is generally admitted that the small- and medium-scale
(i.e. 101 - 3 lam) bottom relief features neither are directly portrayed on
the surface nor bring out meaningful correlations with the surface fields of
density and current.

However, a large number of observations, coming from two main sources,
contradict to this viewpoint. First, during the last two decades there have
been repeated reports of 'underwater mountains' visually observed from space.
Thete very unusual observations were initially discarded as impossible, due to
the lack of documentary evidence and information on the conditions of observa-
tion. Nevertheless, such strange reports, repeated independently by different
people with persistence and certainty, eventually attracted serious attention.
The analysis in Solomakha & Fedorov (1983) showed that the bottom topography
cannot be directly visible from space as it seems to be. Indeed, it is well-
known that an underwater object can be very rarely seen beneath the 50 meters
depth; but the actual thickness of the water layer above the mountains so
'observed' sometimes exceeded several kilometers! On the other hand, the
possibility that changes in the geoid height due to bottom topography can be
observed visually was also disproved, since the corresponding tilts of the
surface were found to be at least an order of magnitude smaller than those
that could be observed. Solomakha & Fedorov supposed that the plankton or mud
redistribution due to the topographically-caused disturbances in the surface
and sub-surface flow fields may be observable, as well as surface waves
modulations, and specified the optimal visibility conditions, but did not
point out any mechanism responsible for the formation of such disturbances.

Meanwhile, observations of another kind appeared several years ago, and
yet did not get attention they merit. It was discovered that there are bands
in the one-dimensional spatial spectrum where surface temperature has surpris-
ingly high correlations with bottom topography. The most thorough investiga-
tion was done by Ilyin & Melnikov (1988) who found out two spectral bands of
high correlations - 4-40 km and > 200 kin. They also supposed that certain
global mechanisms connecting bottom processes with those in the near-surface
layer must exist, and suggested that the appearance of the correlations at
shorter scales might be due to the fact that the process of the baroclinic
tide formation is dominated by topography. However, in this paper we concent-
rate on another spectral band, corresponding to wavelengths of 102_ 101 kin,
though the ideas can also be applied to somewhat shorter scales.

Thus, the observations described above require a hydrodynamic theory
providing a distinct pattern of surface or near-surface flow characteristics
closely related to the shape of bottom relief features. This 'hydrodynamic
image' then could be transformed into observable features on the surface by a
number of mechanisms well-known from the study of internal wave manifestations
(e.g. Pelinovsky 1982). In order to explain the observed phenomena, the theory
must (i) provide an effective mechanism of penetration of the near-bottom
perturbations to the upper layer, and (ii) this mechanism should give local or
near-local relations between topography and surface. These conditions ensure
that the topographic image be visible (easily observable), and preserve
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similarity to the real topography shape.
Our attention will be focused on the steady patterns, since they seem more

likely to be observed, and it is natural to postulate a priori that the
mechanism can be found within the stationary model. The scales iavolved
suggest making use of the quasigeostrophic (3-plane approximation; smaller
scales will be considered elsewhere.

The problem of steady horizontally uniform zonal quasigeostrophic flow
over low-rise one-dimensional or axisymmetric topography is linear, and it is
natural to present the solution in the fonr of a convolution of the corres-
ponding Green's function G and any topography, which is assumed localized. The
separation of variables leads to the expression for the horizontal part of G
via Bessel functions, in the case of eastward flow supplemented by infinite
Fourier-Bessel series representing the wake of stationary Rossby waves behind
an obstacle. The explicit solution for the case of an unsheared incoming zonal
curreat over axisymmetric infinitesimal topography shows that the disturbance
has the form of a 'Taylor-Hogg cone' (the term proposed by Zyryanov 1985), its
amplitude decaying exponentially with the distance frora the bottom. The real
ocean is rather strongly stratified, and the cone usually cannot reach the
surface unless the barotropic current has the speed of 5-10 cra/s, which is too
high for the time- and vertically averaged currents in the ocean.

The new element in the present work changing the situation qualitatively
is taking into account the specific vertical structure of the flow, viz., the
surface and bottom boundary layers. Indeed, the surface layer usually has the
current velocity much higher than that of inner layers and is characterized by
large gradients of current and stratification; the same, though to a lesser
extent, is true for the bottom layer. The latter statement is supported by
recent observations (see, e.g., Dickson, Gould, Muller & Maillard 1985, Klein
1987) and some theoretical models (e.g., Barenblatt, Galerkina & Lebedev,
1992). We demonstrate that if the vertical flow shear is taken into account,
then the 'transmission' of the disturbance from bottom to surface is found to
be considerably higher than in the equivalent barotropic case (we term the
measure of this difference as an 'enhancement coefficient'). For a three-layer
model, which is the simplest one implementing the vertical structure described
above, we show that even in the case of relatively low topography the free
surface deflection turns out to be of the order 10 cm.a100 kin, the variations
of the surface current are comparable with the undisturbed values, and the
pycnocline displacements can be up to dozens of meters and may be observed
visually under certain conditions.

Provided that the mechanism connecting processes at the oceanic bottom
and the fields of surface characteristics exists, then the next question
naturally arises: is it possible to get any information on the near-bottom
structure or currents when the surface fields are given, and the topography
known? This question constitutes the statement of the inverse problem. The
positive answer would open the alluring perspective, since now we have no
methods for determination of currents in the near-bottom layer besides very
expensive direct observations. We show, within the multi-layer model, that
partial information on the vertical structure can be obtained, though its
large part is lost. If the stratification is assumed known, then the inverse
problem is well-posed and can be solved by inverse methods known in geophys-
ics, but the solution in general is not unique. For a three-layer model
certain additional geophysically relevant conditions are specified, which
allow us to obtain the unique solution.

2. Problem statement. The problem is treated here within the framework of
the quasigeostrophic approximation. Let L and U be the length and velocity

scales, H - the vertical scale, equal to the depth of the fluid, fo and

=o dfoldy - the Coriolis parameters, while 13 = e30 L /U. The motion depends
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in general on four nondimensional parameters: the length scales ratio C3 = HIL,

the Rossby numbers c = UoIfoL, C = 1/Tfo, and the Burger number B = Aý82

gfixp/1ftp , where T is a timescale, N is some reference value of Brunt-

Vaisiila frequency, p (z) is a vertical density profile in the undisturbed

state, p0 and Ap are the characteristics of this undisturbed profile, namely

the Boussinesque reference density and a measure of vertical changes.
We are concerned with quasi-stationary disturbances of large (5 =

'10 I- 10 1) horizontal scale caused by topography to a steady incoming zonal
flow with vertical shear U(z) (see figure 1) and assume that the quasigeostro-
phic approximation is valid. The velocity q = {u, v, w}, pressure p and dens-
ity p are assumed to be dimensionless, ,iile their dimensional counterprrts
(denoted by an asterisk) may be obtained as

{xyz} =L{x, y, z}, {u,v,w}= Uo{U,V,6w},
p = 0 U/oLp(x,YZ), p = to(z) + p(x,y,z)]Axp

and the function which comprises the stratification effects S(z) = - B dp/dz

is introduced. Expansion of the dependent variables in powers of e leads to
the vorticity equation

r~a+ _ 1 op a + + = g(1
C8t a y a x az8

with tie boundary conditions

J(p, I-) = 0, Z= 1,az (2)a h
J(p, 1z) + SAP, h) = 0, z = h(x, y),

where J(a, b) = a b - a b"y y x
3. Analysis of the vorticity equation. The problem (1), (2) can be linear-

ized about the upstream conditions, assuming , /r = 0(1). Then, search of the
T

solutions with periodicity
S= Re{O(z)exp[i(kx + ly + it)]},

where 0, denotes the perturbation streamfunction, p(x,y,z) = -U(z)y + qI(x,y,z),

yields the linearized vorticity equation

o[-kho + (--)'] - (-0-)' + 13 = 0 (3)

with the boundary conditions
0 ' - 0, z= 1,

0" (4)
S, Sh , z= 0.

Here the prime denotes d/dz, c = w1k, - = U - c, and the lower boundary condi-
tion has been transferred onto the undisturbed bottom.

On the other hand, it is easy to see that the problem is naturally
linearized just by omitting its non-steady part. Since we are interested
mainly in quasi-stationary disturbances caused by topography, we may put
• T <a in (1), and integrate it along streamlines, assuming tb'e absence of
closed streamlines above topography. Again denoting the perturbation
streamfunction by 0, we easily obtain
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ii a
d 1 dU

S1 Sh /i -+ S__-- 0 (5)

with the boundary conditionso60 V, a uOz=1
az U- TY 0 z1 68;P 0 au_ Sh(6

-0 - o 'z h(x,y),

and the Long's condition of no upstream influence is also required.
The solution of the problem (5) - (6) may then be written as+W

o(x,y,z) = { G (7)

where the Green's function G(x,y,z) is obtained via the decomposition over the
normal modes of the corresponding homogeneous problem. The latter can be
solved numerically for arbitrary S(z), U(z) (note however that we exclude the
cases with U = 0 at some z); the solution for S = const, U = const can be
found in Johnson (1977). Zyryanov (1985). We assume here that the lower
boundary condition may be applied at z = 0; it is possible to take into
account the exact bouncrA, condition as well, but this would hardly help to
win much accuracy within the quasigeostrophic approximation (see Schar &
Davies 1988 for thorough comparison ui a somewhat different context).

Thus, the solution of the nonlinear forced quasigeostrophic problem (1),
(2) consists of stationary Rossby waves represented by the c = 0 solutions of
the homogeneous linearized problem, and the nonlinear terms vanish identically
provided that the time-dependence and the horizontal non-uniformity of the
incoming flow are neglected.

4. Boundary-layer type asymptotics. Here we consider the homogeneous
counterpart of the problem (3), (4) for the case when the functions U(z), S(z)
vary slowly over the entire fluid depth except for narrow layers (of
dimensionless depths A , A2) near the boundaries z = 0, 1 respectively, where
the gradients of these functions are localized. It is convenient to write

U(Z) = U(I-Z- )U*(L)U(iAZ), S(z) = S*(1-iZ )S*,()s(I.Z), (8)

2 1 2 1
where a 8z= A khA 2 ' t << min( I, 8a), indices '.' and ' ' correspond to

lower and upper boundary layers, respectively, and we assume, without loss of
generality, that U(z) = U, S(z) = S outside the boundary layers.
Two boundary layers are treated separately, with the asymptotic technique

analog- toS t I -;_~"'cos othat of Shri;-r. (9 19). Here we will"jusut arz the results,
(see Shrira & Annenkov (1994) for details):

(i) The leading-order solution has the form
9(z) = "*l•• )0.(z)O,(z)' (9)

2 I

where 0t - -u [(±-S± )-cl(l - c), 04(-) = [U*%-) - cJ/(1 - c),
2 2

so that O(z)4 o.(z) while a 40,6 4 0;

(ii) 0 (Z) is simply the familiar trigonometric solution for the case when
U and S are constants.
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(iii) The dispersion properties of the solution are completely determined
by its 'interior' part and unaffected by the boundary layers, to the second
order in ., '2

Thus the problem considered differs from the analogous boundary-layer
problem for the Rayleigh equation, due to the specific form of boundary condi-
tions. Indeed, no solution of the 'vorticity wave' type appears. Moreover, the
only consequence of a boundary layer imposed on slowly-varying current and
density profiles is that the vertical mode gets attached to inner sides of the
boundary layers as if they were solid (satisfying the boundary condition
do./dz = 0), the solution within the layers being proportional to (U-c), to
the leading order, thus forming tails' affixed to either end of a slowly-
varying function.

5. The forced problem. Here the result obtained is applied to the problem
(5), (6). Provided that the functions U(z), S(z) can be presented in the form
considered in the preceding paragraph, the Green's function is calculated
directly. It is obvious that, in order to be effectively forced by topography,
a natural mode of the system must have non-zero amplitude in the vicinity of
the bottom, and the degree of the forcing depends directly on this amplitude.
On the other hand, the modes that have maximum at or near the surface are most
easily observed, prcviding the basis for the bottom topography manifestations
in the surface field.

If the complete orthonormalized set of normal modes 0.(z) with the corres-
ponding eigenvalues r. is known, then the Green's function has the form

G(R,Z) = 2,- .2 ý YYR)O.(0)O.(z) + K0(K.R)0(0)O.(z)) + F(R,e,z)

where (xy)=R(cos9,sine), N is the number of highest wavelike mode, Y and K
0 0

are Bessel functions, and F(R,e,z) - part of the Green's function correspond-
ing to the wake behind the obstacle. Since the functions Y0, K are both

00

strongly localized near the origin, the surface disturbance will roughly
preserve the form of the bottom relief. Certainly, in the presence of wavelike
modes the disturbance will be distorted by the wake; however, the wakes of
different seamounts must nearly compensate each other and are unlikely to be
observed above a real corrugated topography.

Considering the interaction of a single normal mode with topography of
unit height comprising one Fourier mode in each horizontal direction

h(x,y) = cos(k x)cos(k2y)

and calculating the convolution in (7), we easily obtain that the response for
ith mode is proportional to cos(kx)cos(kzy)/(k,+k -i), where K2 >0 for wave-
like modes and <0 for decaying ones. We define this as the 'transmission
coefficient'. It is seen that the large-scale topography is better trans-
mitted, while the shorter scales are suppressed.

In order to evaluate the degree of the response enhancement due to the
mechanism described, the amplitude of the disturbance caused by an axisymmet-
ric isolated topography to the flow with boundary layers was compared with
that for the equivalent barotropic flow. The upper boundary layer thickness
was taken to be about 150 m, while the thickness and velocity of the lower
boundary layer were equal to 1/2 and 1/3 of the corresponding surface values.
The maximal amplitude of the disturbance was computed, both asymptotically and
numerically; the ratios to the disturbance value in the equivalent barotropic
current (enhancement coefficients) are shown on fig. 2 for 4 values of west-
ward flow average. The enhancement can exceed an order of magnitude, though
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the averaged current should not approach to zero, since the link between two
boundary layers becomes weak and the mechanism ceases to work.

6. The multi-layer model. In order to check and go over the results
outlined, we performed a set of computations on the basis of a three-layer
model. This model is characterized by a modest number of parameters, being
able to represent the type of vertical structure described above. The results
of computations are analyzed in Shrira & Annenkov 1994, and only a b-ief
summary is presented here.

The topography has been chosen to have the form of a cylindrical cap 400 m
height. Most of the computaticns were performed for the case of a thick and
almost stagnant lower layer, while the thin surface and bottom layers had an
order of magnitude quicker current. Though the velocities were moderate
(< 10 cm/s) and confined to the thin layers (2-10% of the total depth), images
of the topography were well-pronounced on the surface, both for westward and
eastward currents, in the latter case being considerably distorted by the wake
behind the obstacle. In general, the stratification prevented the disturbance
from reaching the surface in the equivalent barotropic flow; moreover, the
disturbance diminished when simply the middle-layer current was enlarged!
Other parameters important for the enhancement mechanism were the velocity
values within the boundary layers, both of them being important for the
surface disturbance, and the boundary layers thickness. It is important to
note that the intense bottom current is not crucial for the mechanism to work,
since the only prerequisite here is the normal mode increase towards the
bottom, which can be provided by a moderate density jump.

We finish this paragraph with the remark on the validity of the quasigeo-
strophic approximation. In fact, the regimes involved in the present study
require the lower interface to be significantly strayed from its undisturbed
position, thus formally breaking the assumption that this distortion remains
small in comparison with the thickness of the lower layer. However, we expect
that the error still remains small and is associated with the mere underestim-
ate of the disturbance amplitude, this judgement being in fact based on the
assumption of minor influence of the thick and slow middle layer upon the much
more intensive bottom one.

7. The inverse problem. In this paragraph we attempt to use the theory
outlined above as the basis for reconstruction of the vertical structure of
large-scale quasigeostrophic flows. Our attention will be confined to the
multi-layer case. Apart from the evident gain in simplicity, we are motivated
by the fact that multi-layer models are the main tool of the numerical sinmula-
tion of ocean dynamics, the answer to the formulated question thus being
especially important in view of the data assimilation problem. Here we will
only sketch the main ideas.

According to the solution (7), the problem consists in the evaluation of
the model parameters from observable functions h(x,y), O(x,y). The information
on the n-layer model that we need enters the streamfunction of the uppermost
layer through n eigenvalues ac•, these eigenvalues being the object to be
determined empiricaiiy. However, the model is competetly described by 3n..2
parameters. This means that the major part of information is inevitably lost.

In order to make the problem well-posed, it can be reformulated as the
problem with only n unknowns - the velocities in each layer, while the strati-
fication parameters are assumed fixed. This assumption is partially supported
by the fact that the oceanic stratification is much easily observed and far
better known than the velocity field. Thus, the solution of the inverse
problem consists of three steps: (i) determination of the eigenvalues by
numerical inversion of the formula (7), the corresponding numerical techniques
being well-known in geophysics (Tarantola & Valette 1982), (ii) computation of
the set of n integral parameters by solution of the system of n nonlinear
equations, and (iii) provided that the stratification is given, the velocities
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in each layer are found as roots of a linear matrix problem.
It is obvious that, the second step is the most complicated, since it can

be shown that, in general, the system of nonlinear equations has n! solutions;
though some of them may be complex or unphysical, it is still essential to
make use of the a priori information for the elimination of the superfluous
roots. We use the fact that the occurrence of the disturbance in the surface
fields is possible under the special conditions, in particular for the special
form of the current velocity profile. For the three-layer model, the simplest
one of the type specified, two roots (of the total 6) are shown to satisfy the
requirement, and the unique solution can be singled out if the surface
velocity value is available.

8. Discussion. We have pointed out an effective mechanism responsible for
the transmission of large-scale (with the length scales of the order 102 Ian)
disturbances from the oceanic bottom to the surface. This mechanism is based
upon the existence of the shear currents with the well-pronounced near-surface
and near-bottom layers. This structure. appears to be really observed in the
ocean, though the information on the bottom currents is still fairly
incomplete. However, the value of the current in the lowest 50-100 m about 2-3
cm/s seems to be sufficient for the mechanism to work, provided that the
bottom layer is separated by a certain density jump. Now we are to discuss
briefly the consequences of the result and the limiting factors associated
with the approximations involved.

In this paper we have confined our attention to the investigation of the
hydrodynamic transformation of the surface layer. However, within the slightly
more complicated model it is easy to convert these disturbances into the
surface temperature anomalies. The mechanisms of the transformation of the
hydrodynamic disturbance into the optical radiation properties of the sea
surface are much more complicated and diverse. The review of these mechanisms
in application to the surface manifestations of internal waves can be found in
Pelinovsky (1982), the analysis of their effectiveness for the scales involved
being a non-trivial but realizable problem. Here we just mention the fact that
the surface disturbances produced by bottom relief features with the height of
several hundreds of meters beneath the water layer of several kilometers,
according to our estimates, can be well-represented in the averaged character-
istics of the sea surface radiation in the visible and infrared spectral
bands.

The most important potential applications of the results are associated
with the sensitivity of the surface disturbance to the vertical structure of
the current. This fact allows to formulate the inverse problem - that of
reconstruction of the undisturbed current as a function of depth given the
surface disturbance and the bottom relief. The unique solution of the problem
requires certain additional assumptions. First, the density structure must be
specified a priori. This requirement appears to be only slightly limiting,
since the stratification parameters of the ocean are much better knowni and
less alterable than the current structure. Second, the current profile itself
musf be explicitly stated as belonging to the 'boundary-layer' type described
above, the requirement being naturally connected with the existence of the
aforementioned mechanism.

It is clear that these results are still far from the practical applica-
tion. First, the surface streamfunction cannot be easily estimated: despite
the high accuracy of modem altimetry measurements, their use is not possible
due to the uncertainty of the geoid relief. However, the possibility to obtain
the information on the deep and bottom currents using the surface measurements
only appears to be potentially very important. At least, it can be used in
data assimilation schemes in the numerical ocean modeling.
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Figure 1. Coordinate system and basic notations.
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Figure 2. Enb-rucement coefficients for the disturbance caused by an axysimmetric isolated
obstacle as functions of the velocity in the surface boundary layer. The lowest point of each
curve corresponds to unshean-d flow. Asymptotic curves are dashed; numerical curves are
solid.



CYLINDRICAL CO-ORDINATE SYSTEM AND LARGE SCALE OCEAN CIRCULATION
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It is well known that the widely used, powerful geostrophic equations that single out
the vertical component of the Earth rotation, cease to be valid near the equator. Through a
vorticity and an angular momentum analysis on the sphere, equatorial dynamics must
include the effect of the horizontal component of the Earth rotation if the flow varies on a
horizontal scale L smaller than (Ha)%, (where H is a vertical scale of motion and a the
Earth radius). In equatorial regions, where the horizontal plane aligns with the Earth rotation
axis, latitudinal variations of planetary angular momentum over such scales become small
and approach the magnitude of its radial variations proscribing, therefore, vertical
displacements to be freed from rotational constraints. Two equatorial cases, including the
effect of the vertical component of the Earth rotation will be presented: the slow geostrophic

forced flow case(s = U£2p/) << 1) and the strong zonal flow case where 8 - 0(l) and

4<< Lo (L. and L, are respectively meridional and zonal length scales).

I Small Rossby number regime

For slow geostrophic motions in a rotating container, the Taylor-PRoudman-thecrem-
Poincard (TPP in what follows) applies and the motion of fluid parcels occurs as fluid
columns of constant length parallel to the axis of rotation. When the density of the fluid
changes, the fluid columns still preserve their character within layers of constant density but
velocity shear is possible at the 4--terface between layers.

Within an oceanographic context, the steady geostrophic regimes associated with the
works of Sverdrup (1947), Stommel and Arons (1960), are believed to apply to the large
scale interior ocean circulation. With the assumption of hydrostatic pressure, such flows
respond to stretching or compression of thde veri projection of the Earth rotation vector
(caused by Ekman pumping or internal mixing) by moving poleward or equatorward

according to the so called P effect where P is 2£2cos(/aid4)/, .Howcver these flows
which are geostrophic obey the Taylor-Proudman-Poincar6 theorem and therefore evolve as
columns parallel to Q2. Reconciling these two views and extending the scope of these works
in the equatorial regions is one of the objectives of the present study.

The full "geostrophic" balance:
20v-- 1 dP -212m 1 -P 1 - - gsin(O)p0 ,¢ /o zogcos(9) o d Po ss(

p. rdO po dr p0 p Prdz po
(where (r, ¢,z) are radial distance from the rotation axis, azimutal angle (longitude) and
distance from equatorial plane along the rotation axis and where (u,vw) are zonal, radial
and £2-directed velocities) has been used to discuss slow, large scale fluid motions between
two concentric spherical surfaces. When keeping all Coriolis terms in the momentum
equations the fluid is rigid in the direction of the rotation axis, a constraint which forcem
shearing and no-stretching effects to be performed along this axis, rendering the spherical
co-ordinates inappropriate. The change from spherical to cylindrical co-ordinates,
favouring the planetary rotation g, allows us to solve exactly the slow large scale motions
at mid and low latitudes. The solution of the problem is made possible by working at the
vorticity levels with the thermal wind equations

dsinue~~' - dv~ g sin(9) 0 dw
Tz2Qp, Sn0 4 C*O -0drdz) dZ 2.Qp, rd# dz 292po rod4



The combination of the vorticity equations in the meridional plane shows that shearing and

stretching along AR are tightly connected by relation sin(O)- +cos(O)-Z = 0 which can

easily be integrated along P0. At mid-latitude the integration is performed between the solid
inner spherical surface and the spherical outer surface, while in the equatorial band, where
the solid inner bounding surface vanishes, integration is performed between the southern
and northern hemispheric free surfaces (Figure 1).

Illuwa! d of the length of tie fluid column between two concentric sphecal
surfaces along the rotation axis. a) Milataade case. b) Equatorial band.
The positive radial variation of this lenth at mid-latitude undergoes a dramatic
change (jump to a finite negative value) who crossing the cylinder tangeat to the
soW minner face (P. -R).

a ~b
Figurm IT

This integration leads to an extension of the Sverdrup irlation.

sin(O) .(,(O) Z• =-.,
o , • ~ ~~+ -- L -, )' 4 d ( t a n ( e ) ) • : 4 'o) • • O , I .

or Q(9)+)mjW = If w
(where a(0,) and Q,(O,) are sour or sink terms az the inn• and outer spherhAl shells)
valid both at mid latitude and in equatorial regions. In those relations, the beta effect reduces
to a purely topographic effect and expresses the varying meridional tilt of the tangent to the
spherical shells along 12 which in the homogeneous case becomes the radial variation of
fluid layer thickiess parallel to A. It is further shown that the column height undergoes
rapid variations when approaching the cylinder F tangent to the solid inner bounding
surface followed by a drastic change at F and in its radial variation in the equatorial band
(sign reversal of the beta effect). It remains to see whether this cylinder F plays an
important role in geophysics. Its intersection with the free surface separale mid-latitudinal
dynamics from equatorial dynamics in the simple theory presented here.

When source-sinki forcn*g is i..h.., ey m along
$2 and can therefore cross the equator (Figure 2). But the TPP dynamics prevent fluid to
move across the cylinder F outside boundary layers and therefore do not allow for fluid
exchange from northern to southern hemisphere. For exchange to occur, zonal voiticity
neglected in the above dynamics is needed. Nevertheless, these dynamics show the singular
behaviour of the equatorial region in locating the cylinder F acting as a wall for meridional
fluid motions and promoting the existence of jet like features. Such jets happen to appear
each time density interfaces align with A which, in general, arises in the equatorial plane.
The dynamics studied here, need highly restrictive conditions to be applied (small Rossby
number regimes) but may influence the behaviour of equatorial zonal jets.
Higher order dynamics, instabilities and convection priocesses should play a major role in
reshaping the flow structure in these jet reSions located by this linear analysis.

IS - -



Example of fluid motions convened into spherical co-ordinrtes at low latitude.,

Figure 2. compatible with slow Flow dynamics, a) gives the meridio"al structure ot the'
antisymmatric forcing used (sour=,- or fluid in the northern hemisphere and sinks.

in the southern ionL). Cms.-!3 indicate the forcing to he used for die fluid columns
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It has also been possible to extend and solve exactly for non dispersive Rossby wave 4
dynamics up to the equator. The TPP constraint not only shows that these waves with non
divergent character are possible over all the sphere contrary to the traditional view but also
shows that baroclinic waves, in the equatorial band, are accompanied by an oscillating net
transport. It is the sign reversal of the beta effect along Q which produces this result (Figure
3). It is necessary to emphasize that the high wave phase speeds found for this equatorial
mode, need very shallow upper layers to reduce their speeds to realistic values.

Figure 3. 2

2I

Mid-latiUde fluid column dispLacgtneau for a propagating baoclinic Rosshy
wave allowing t11 column lengLhs to stay constant in upper and lower layers. No
7afistantazieou net tramspon occuts with such waves.

F-quatorial fluid column displuacmentu for a topajating "baroclinic" Rossby
ZTN wave. Upper layer I and lower layer 2 must move in phase to keep conaI their

column lengths. effeCt resulting from the reversal of dte beta effect along the
rotation axis positive in the upper layer and negative in the lower layer. The
haroclinic Rosahy wave is thezefore accompanied with a net radial transport, the
upper velocity being moem intense than the deeper one.

I[ Strong zonal flows

When the zonal flow is strong compared to the meridional one, the above zonal
component of the vorticity equation written in spherical co-ordinates becomes
(2D.V)U = ,and is still valid since the 0(l) non-linear relative vorticity terms
cancel out remarkably in case zonal length scales are much larger than meridional ones. This
equation, where 9 is latitude, expresses a balance between the buoyancy torque and the
twisting of the full Earth vorticity by the zonal flow u. This generalization of the mid
latitude thermal wind relation to the equatorial case shows that u may be obtained up to a
constant by integrating the "observed" density field along the Earth rotation axis and not
along gravity as in common mid latitude practice. The simplicity of this result valid in the
finite amplitude regime is not shared however by the other velocity components.

Vorticity and momentum equations appropriate to low frequency and predominantly
zonal flows are given on the equatorial p plane. These equatorial results and the mid
latitude geostrophic approximation are shown to stem from an exact generalized relation
that relates the variation of dynamic pressure along absolute vortex lines to the buoyancy
field. The usual hydrostatic equation follows when the aspect ratio a = H/L is such that
tan % is much larger than one. Within a boundary layer region of width (Ha)X and centered
at the equator, the analysis shows that the usually neglected Coriolis terms associated with
the horizontal component of the Earth rotation must be kept. If small, it removes the
singular equatorial behaviour.



Figure 4 shows the good agreement of-the thermal wind balance for an observed zonal
velocity field in the equatorial ocean.
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Finally, some solutions of zonally homogeneous, steady, equatorial inertial jets are
presented in which the Earth vorticity is easily turned upside down by the shear flow and the
correct angular momentum: "tr 2'cos 2 (O)A-utrcos(O)" contour lines close in the vertical-
meridional plane (Figure 5). Figure 6 illustrates the angular momentum contour lines
deduced from the above observed velocity field. They close in the equatorial band.
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in case the zonal velocity vanishes. This lines axe just parallel to the rotation
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b) The trajectory of the fluid parcels are helices with generators parallel to
the equator, winding themselves around the jet.
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a) The constant anguar. momentum lines (solid contours) in the mesidional-
vertical plane, between 0 an~d 1000 mnetr .dep&, are picture for the case of
an ocea•nic eastward. zonal jet centere4 at the .equa.,or. Thne jet normal• tofth
plawne (stippled lines: constnt zonal velocity lines) has naximttm speedas of
0.5 mn s" around 300 m and e-folds over 1" in latitude and 100 m n the
vertical. With such sh'ears, well into the geophy~sica range, the relative
voracity can extceed and turn around the Earth vorlaity. When the absolute
vortex lie ax closed in the vicinity of the je a mstofdy h•da flow paralel
to these solid contours is a solution of the equation of motions.
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TURBULENCE DECAY IN STRATIFIED AND HOMOGENEOUS MARINE LAYERS
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St.23, Moscow 117851, Russia, fax:(095)-124-5983, j.lozovatsky/ owner

1. Introduction

Important problems in studies of stratified ocean turbulence center
around the generation processes on the one hand and regularities of the
energy decay in the different patches and layers on the other, depending on
background conditions. Marine turbulence is strong intermittent in time and
space, so the mean turbulent excha•,ge through stratified layers should be
estimated by use of empirical and/or theoretical probability distribution
functions of the main turbulence parameters. However space-time averaging
evidently leads to underestimating of mixing efficiency because of energy
dissipation in the different patches are measured at the various time
intervals from patch infancy, i.e. at the different stage of decay.
Therefore the probability description of turbulent decay parameters for a
set of intermittent patches and layers may significantly improve the
estimates of vertical global transport in the ocean.

But at the first stage of marine turbulence decay study it is
important to understand the regularities of energy decay in the individual
turbulent patch. Laboratory experiments [Hopfinger and Toly,1976; Flierl et
al.,1983; Stillinger et al.,1983; Itsweir et al.,1986; Lienhard and Van
Atta,1990; Gibson,1991; De Silva and Fernando,1992] allowed to examine
turbulence evolution at the different stage of decay depending on the
distances from the energy source (grid or jet turbulence). But it is
extremely difficult or even impossible to detect both in time and space the
initial stage of turbulent patch origin and to follow the evolution of
turbulent energy in the deep ocean pycnocline by using of the traditional
methods i.e., vertical microstructure profiling or towing turbulent
measurements. Considerably easier to study some aspects of these processes
in the marine boundary layers where the sources of turbulent energy can be
identified and controlled over a period of time. Turbulence propagates into
the water column by diffusion and horizontal or vertical advection from the
solid borders or from the air-sea interface. So we can expect to find
various turbulent decay phases at the different distances as the turbulence
recedes from the boundaries. From this point of view oceanic coastal zone
is one of the best natural laboratory for marine turbulence decay study.

Such measurements have been carried out in the Equatorial Pacific
[Lilover et al., 19931. The analysis of turbulence activity variations in
the wake of the Equatorial Surface Current (ESC) and in the Pacific
Equatorial Undercurrent (EUC) west of the Baker Island (Ocll.7'N,
176028.7V) are presented in section 3 to revealed the distinctions between
turbulence evolution in the marine boundary layers and in the stratified
internal layers.

Some theoretical speculations on a spectral structure of decaying
turbulence in a stratified flow is proposed (section 2). It is conceivable
that our consideration can help to eliminate a discrepancy between active
[Dillon, 1982, 1984; Gregg,1987] and fossil [Gibson, 1987] turbulence
conceptions of oceanic mixing processes.



2. Different energy sources and turbulence decay: A spectral model

2.1 Active and fossil turbulence approaches

Turbulent cascade and corresponding energy decay in a stable
stratified fluid can be described by various spectral models [Lozovatsky,
1986, 1987], in accordance with the relation of the overturn Thorpe scale,

Lrh, to the local buoyancy scale L. = c,(c/N 3)1/2, where c is the rate of
turbulent energy generation, N is the local Vaisala frequency, cN is the
nondimensional constant. For the "external" sources of turbulent vorticity
like , for example, as high amplitude internal wave breaking, 4h > L,. On
the other hand, the small scale local shear can generate turbulence with
energy containing eddies which maximum size ½rh is under the L., so called
"internal" energy source.

According to Gibson's fossil turbulence model, decrease of ratio
l4h/L, during turbulence decay in the laboratory experiments [Stillinger et
al.,1983; Itsweir et al.,1986;] means that the L, scale should decrease
while Lrh remains constant. This leads to assumption of a "turbulence
memory", i.e. the initial overturn scale Lkh is saved in scalar
fluctuations. However Dillon [1982, 1984], Gregg[1987], Peters et al.
[1988], based on field dissipation measurements prer ted a lot of examples
around of the permanent value of Lrh/44 ratio. In . other words, in a
shear turbulence the eddies scales adapt to the changing of local buoyancy,
so called active turbulence model, and therefore the concept of "turbulent
memory" is open to question.

In this reason we would like to consider how small scale velocity and
temperature spectra vary in shape follow to the type of energy source and
how the spectral approach reflects the concepts of active and fossil
turbulence.

2.2 Active turbulence regime

An increasing of the local shear at the vertical scales less than L1w

= b1w/N 2 can produce the local ("internal") source of turbulent energy.
Here L1w is the external scale of week internal waves turbulence
[Lozovatsky, 1987] (herein referred to as L87) and b1w is the total
internal wave energy. For the Garrett-Munk standard model parameters b1w Z

34 cm/s 2 , N = 5.3 10-3 S-1 [Garrett and Munk, 1975] LI, is found to be
equal to 9.7 m. So, the transition point, Lc = 2l/kc, between the familiar

k-2 and k-3 subranges in the vertical internal wave spectra for the deep
ocean locates as usual in the vicinity of L,,. Therefore, if in a
relatively thin layer shear enhance is accompanied by significant
decreasing of the Richardson number, a new additional fluxes of turbulent
energy Pt = -<dW•> and buoyancy B = - (g/p)<p'W> are generated. The
main size of energy containing eddies, 4h' in such turbulent patch has to
be determine by the parameters of the energy source, i.e. the local
momentum flux <Lfki>, and the local shear Uz: ½•h " Lu'= = cu%<dW>/U'

were the spectral constant cu. will be introduce bellow. Notice that the

same definition for the Thorpe scale were used by Dillon [1982]. It can be
assumed that mean background shear is approximately constant at the time



where a2 and a2T - the spectral constants that should be determined. The

upper, k.., and lower boundaries, kR ,4,of these subranges are follow:

S= CUZ1 12• 1
/

2 , (7)

_= %N/(I c/_) 12 , Cr = cT(C/Uz)1/ 27/cT, (8),(9)

where cu., cR and c are expressed by use of 0(2, C2T and PT" We would like

to emphasize that the transition points between production and inertial-
convective subranges in spectra of velocity as well as of temperature
fluctuations are located at the common wavenumber (7). By this is meant
that typical sizes of main energy containing eddies (overturns) are equal
to the vertical sizes of high amplitude temperature inhomogeneities
(density inversions), that commonly is expressed in terms of rms Thorpe

scale or Elision scale: . = 2rmsp'/p,. So, the scale Lu.= 21/k/, is a

unique spectral scale that is uniform up to the constant values for ever
hydrophysical fields. Appear to be the spectral scale k, do represents the

Thorpe scale 4' for the active turbulence model.
If mean shear are kept reasonable time in stationary state by external

background processes (drift currents, equatorial undercurrents, near bottom
flows, etc.), the spectral scale L. = 2n/k, should coincide with vertical
size of mixing layer (or patch). According to (7), (8) the ratio

1/2

Ri (10)

where Ri = AF/'Z-, is characterized the width of production subrange. We

introduced a critical Richardson number Ricr equal to a/a O.11a 2. If

H z. Ri.r the production interval
can not exist or disappears. In such situation the scales L, and IV. both

tiansfer to the buoyancy scale 4,. (For Ric, = 0.25, the spectral constant

(X2 that had to be determined, is equal to 0.67 and for Ricr = 0.1, 12
1).

In scalar fields like temperature the end of active turbulence phase
is defined by equivalence 4t /L. = 1, where LT = 2n/kT from (9). It is easy

where ar = 4.9 and I is a mixing efficiency, I = Rf/(l - Rf), Rf = PrRi
is a flux Richardson number. The ratio of turbulent diffusivities in
Eq.(l1) can be defined in terms of activity parameter, A, , introduced by
Gibson, namely:

- = 13, (A,) (12)
Kr...



intervals long enough relative to the typical time of turbulence
generation. In this case the local momentum flux in the patch, affecting
against this mean shear, may already produce the permanent energy source
with the rate of kinetic energy generation equal to Pt. Owing to initial
destroy of stratification by local overturn, the following energy
generation goes on in a patch with negligible density gradient. Therefore
the rate o& turbulent temperature generation is controlled by temperature
flux <TW> that acts against "large scale components" of turbulent
gradients, GRT(k), rather than against mean gradient T,. Following [Monin

k
and Yaglom, 1975] G4(k) f k2Er(k)dk, were E1.(k) is a temperature

spectral density. Turbulence spectra in the vicinity of the local shear
scale Lu, can be found by use of a system of the spectral balance equations
in follows form:

k k

uZ f E,~,,,(k) dk + W(k), X T -G(k) f 4, (k) dk + WTk), (1),(2)

ku. ku.

where £w(k) and ZTw(k) are spectra of turbulent momentum and heat fluxes,
W(k) and WT(k) are spectral transfers of turbulent energy and temperature
inhomogeneities, c and XT are kinetic energy and temperature dissipation
rates. Following Kovaszhnay [1948] we introduce the simplest hypothesis to
parameterize spectral gradients and transfers, i.e. to express F.w(k),
Zw~k), W(k) and WT(k) in terms of wave number k, velocity spectrum E(k),
and temperature spectrum Er(k). For the nondimensional variables

x = c " 3
/
2 k, WE 3 ' E(k) =X 1/2 LPz'F7 (k)

the Eqs.(l) and (2) are represented as:

1 ai(PF(l + aoX/WE ), 1 t(3),(4)

where a, ao, and UT are the universal spectral constants and Pr, = Kr/Km is
the turbulent Prandtl number, Ai is a turbulent momentum diffusivity. The

asymptotic solution of Eqs.(3), (4) for 3.2/2 1/2 >> 1 provides well known

inertial-convective intervals, Mz = (x-7/3, WP = %)jx5/3, were a,= 0.48
and O = 0.7 are the corresponding spectral constants. At the lower wave

numbers, x c -2/3 W1/, between the inertial-convective interval (E(k)

1 
2 /3k- 5 / 3 , T(k) = TXTr- 3k- 3

51
3) and the interval of "weak turbulence"

(E(k) ETNk-, E(k) = pT k- p = 1, gr = 0.3) the additional narrow
spectral intervals, so called "production" subranges, may appear. Velocity
and temperature spectra for such intervals can be expressed in the
dimensional variables as

1/17E(k) = a 2 W/,)k-1 and E2T(k) = a 2T(Uz/C)"' 2 k-, (5),(6)

_ - _ _ _ _ _ _ _ - -



When Eq.(12) is compared with that of Eq(ll), it is apparent that A, takes
the const=nt value if Ri Ricr: A, = 0.61 for our set of the values for
universal spectral constants.

So, if the turbulent patches are generated at the background of the
permanent mean shear, the linear relation between the Thorpe scale, L4.,

and the Ozmidov scale, L,,, should exist, i.e. the Dillon's conception on
turbulence evolution in the "active regime" is confirmed. But, if external
shear decreases (Ri * Ricr), the spectral scales I4, Lr, and Lu2 give way

to 4 .For the higher values of Richardson number inertial-convective
subrange disappears and L, approaches to the Kolmogorov scale k

3 1/4 /(u /C) . When L. decreases to 8L it converts to LG = %(u/N)' , where u,
is molecular viscosity and L. is named by Gibson [1987) as the fossil
Kolmogorov length scale, c, 21. From this point on turbulence decay is
follows the fossil turbulence regime. Such type of turbulence evolution
when an internal source of turbulent energy appears at the background of an
external stratification, i.e. when ý, ¾, and Lu, are smaller than L., was

named in L87 as the regime of week internal stability. Turbulence decay in
the conditions of week internal stability is characterized in L87 by the

following limit on the Richardson number values: Ri < R. 6 (• P,/Ri)d
where c,, 0.1, and moreover Ricr < O.131/P. It is known that turbulent

Prandtl number in a stable stratified fluid is in excess of 1, so it is
clear that Ricr must be less than 0.13, i.e. is close to 0.1. On the other
hand, it is a matter of general experience that Ricr does close to 0.1, so
Pt should be greater but close to I also. As a consequence, in the
turbulent regime of week internal stability the turbulent coefficients of
heat (buoyancy) and momentum exchange are approximately the same while 4 <
&. It seems to be the common situation, when P, a &1K x > 1, relates to
turbulence decay under strong internal stability, i.e. if Ri > R.

2.3 Fossil turbulence regime

Transition from active to fossil turbulence that was analyzed in previous
paragraph might be subjected to criticism because of someone can say that
turbulent motions are simply cut off at the scales of the order of L.,
rather than, transfers to a fossil state. But it will be shown that
turbulence decay in condition of strong internal stability is reasonably
described in terms of fossil turbulence, i.e. if Ri > R.. In spectral
consideration it means regime of buoyancy subrange [Monin and Yaglom,
1975). On the assumption of buoyancy forces may highly exceed viscous
dissipation for certain scales of velocity and temperature fluctuations,
the turbulent spectra Eik) and ;.(k) must contain well known buoyancy

subranges, namely E(k) z k-11/5 and E,(k) . Y7/. At high wave numbers
these subranges are bounded by the Boldgiano - Obukhov buoyancy scale L =

C*C5/4XT3/4 (-a4g)-31 2 , where ar is the coefficient of thermal expansion, g
is gravity, c. is the spectral constant. In the course of decay the
buoyancy subrange is expanded to lower as well as to higher wave numbers,
connecting with the interval of week turbulence from the one side and with
the viscous-convective subrange from the other. As the result two new

2 - -__ _ - -- ~ - -------



spectral scales are appeared:

112 5/4 1./2
XT (-arg)1 XT

L c! and L/. C= (13),(14)

with two constants cl. and c**. If we determine the squared buoyancy

frequency as le = (-a.g)T,, the spectral scale L*, from Eq.(14) is
equivalent to the Thorpe scale

1/2

Lrh = 3 (T (15)
eV12 T

with accuracy to the value of constant. In such transition regime only, when
viscous dirsipation removes from the set of main turbulent parameters, the
Thorpe scale, Eq.(15), does not correlate with Ozmidov scale and the fossil
turbulence conception is truly realized. In the next section we will
consider applicability of active and fossil models to decaying turbulence in
the Pacific Equatorial Surface Current (ESC) and Equatorial Undercurrent
(EUC) west of the small equatorial island.

3. Turbulence intensity variations: Pacific equatorial measurements

Dropsonde microstructure measurements were carried out in the equatorial
Pacific near the Baker Island (0ol1.77N, 176o28.7W) in October 1990 from
r/v Akademik Kurchatov. Diameter of the island is about 1 mile. It presence
produces a westward turbulent wake in the upper 100 m layer downstream of
ESC and an eastward EUC wake about 50 m in thickness around the middle core
depth Zcor, = 210 w. Moreover a turbulent band is appeared at the EUC depths
in front of the island also. In addition to these island caused wakes and
eddies the permanent vertical shear between ESC and EUC may produce
turbulence in the depth range of 130 - 160 m. So we can analyze turbulence
decay in such "natural laboratory" at the different depths and horizontal
distances away from the generation sources.

Buoyancy frequency AN(z) and energy dissipation rate c(z) in the depth
range of 20 - 200 m over a length of 13 miles are presented in the figure at
the upper two panels. These data were obtained by microstructure dropsonde
BAKLAN and standard NBIS CTD/ACM at 14 points each mile as the ship drifted
directly westward from the island. Details of instruments, calibration and
data processing technique as well as background hydrology can be found in
Lilover et al.l[1993]. ESC velocities were about of -50 cm/s near the
surface. In the EUC core zonal component u t t70 cm/s.

The thickness of relatively week stratified upper layer close coincidas
with the lower boundary of the ESC turbulent wake, hk, which was marked

by the epsilon level of e z 4 10-9 W/kg. So, hIk, decreased from 105 m near
the island to 90 m at the distance of 9 - 14 miles downstream. In spite of
mean exponential c decreasing from the top down across the wake, horizontal
e variations along the wake achieved two orders in magnitude at all depths.
Extremely high intermittence of the turbulent Reynolds number, Ret WE/A,

0.2, and Cox number, Co = <T.%/T, along the ESC are shown at the
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middle panels in the figure. The Re. values even just under the entirely
mixed surface layer (z = 25 m) are in the range of 40 to 630, whereas Ret
variations at the lower wake depths (z = 70 m, for instance) are in excess
of two orders: 1.3 + 120. Cox number variability is much higher: log Co
1.1 + 4.1 at z 25 and log Co = 0.8 + 4.2 at z70 .

In the pycnocline, below the upper SEC wake occupied layer.. (z) are
mainly small and slightly varied except of depth range 130 - 160 m, that
corresponds to the high shear zone between the SEC and EUC. But high r
values in that zone consist of a small part of all e data in this layer.
According to Reynolds number values at z = 140 m, active turbulence are
revealed in the first 2 casts only. Mixing activity, characterized by Cox
number, Co = 100, is comparatively high at that depth within two miles band
near the island. Beginning from the third mile west off the island turbulent
as well as mixing disappear completely. Consequently, the interface shear is
not sufficient to be an "internal energy source" that could generate small
scale turbulence at the background of strong stratification (N > 15 cph).
However owing to mesoscale boundary layer mixing near the island, that leads
to overall stratification weakening in the pycnocline, the interface shear
can overcome buoyancy forces and produce shear turbulence. Such mechanism is
bounded near the island and therefore turbulence decays rapidly at the
distance of one mile.

In the EUC, z = 180 m, Ret are small and little affected, Ret = 0.6,
exceeding 1 twice only, whereas the Co values at that depth show an evident
tendency to increasing from 2 to 160 at the first 6 miles west off the
island with the following decreasing to the initial small values over a
length of the next 6 miles upstream. Some similarity of Co horizontal
variability in the EUC and ESC allows to assume that island generated
boundary eddies, which are advected downstream in the upper layer, may exert
some action on mixing enhance in the relatively weak stratified undercurrent
core. But without support of "external" background shear active turbulence
quickly converts to fossil state, that appear to be reflected in the figure.

Finally, let us consider the hydrodynamics phase diagram (lower panel)
that was calculated for total data set (2620 samples in each row) by use of
equal probability averaging. Every point, /At/(/Ret/), corresponds to the
arithmetic averaged activity parameter A,, Eq.12, at the equal 10% intervals
of the rearranged Ret row. Thus, three turbulent regimes are clear revealed
in this figure. First, in the wide range of the Reynolds numbers, from 100
to 1, /At/ are constant, that means in accordance with Eqs. (10) - (12) the
linear dependence between k, L1 , and ku., or in the other words - between
Thorpe scale and Ozmidov scale (active turbulence evolution regime).
Secondly, for /Ret/ < 1 /At/ are dropped, so the tendency to achieve a
fossil turbulence regime, Eqs. (13) - (14), is evident. And thirdly, we can
identified a generation regime, lRst/ > 100. At such high Reynolds numbers
turbulent activity is fast decreased to the stationary state,/At/ = const,
and the following decay leads to the fossil turbulence, /Ret/ < 1, /At/ < 1.
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OBSERVATIONS OF INTLRNAL WAVE REFLECTION AND MIXING AT A SEAMOUNT

Charles C. Eriksen
School of Oceanography WB-10, University of Washington, Seattle WA 98195
USA

The spectrum of oceanic internal gravity waves is remarkably
uniform except at sites where wave energy is suspected to be supplied to or
drawn from the wave field, noteably boundary regions such as the ocean
surface, where wind stress generates near-inertial internal waves, and the
ocean bottom, where waves reflect (Wunsch and Webb, 1979). For a smooth
flat bottom, reflection does little to alter the frequency-wavenumber
spectrum of internal Waves. Reflection from a sloping boundary, however,
quite generally requires waves to change wavenumber magnitude and
orientation (Eriksen, 1982.. Because group speed of internal waves is
proportional to wavelength, waves reflected to shorter scale must have
higher energy densities to conserve energy transport normal to a sloping
bottom. Wave rays inclined at slopes matching bottom slopes will amplify
most severely. Oceanic topography quite coammonly includes slopes which
match internal wave ray inclinations over a wide range of the band of
frequencies for which free internal waves propagate. While linear theory
predicts spectral enhancement over a sloped planar bottom to extend
indefinitely, oceanic observations demonstrate that the effects of
reflection decay away from the bottom over a few hundred utters. Within the
region of wave enhancement, density overturns are commonly found,
indicating mixing.

Ak advective-diffusive balance of oceanic properties on basin
scales predicts an effective vertical diffusivity a decade or more higher
than is found by in situ observations in the open deep ocean (Garrett,
1979a, Gregg, 1987). Munk(1966) suggested enhanced vertical mixing near the
lateral boundaries but did not identify a plausible mechanism. Armi's
(1978) suggestion that bottom boundary layer turbulence produced by quasi-
geostrophic eddies was the mechanism was refuted by Garrett(1979b) as being
not sufficiently energetic. Only a small traction of the energy transfer
that must be involved in internal wave reflection in order that the
spectrum relax to its open deep ocean shape is sufficient for mixing at the
boundaries to compensate for weak mixing in the ocean interior (Eriksen,
1985).

Detailed observations of the internal wave reflection proceso and
boundary boundary mixing it produces have only recently been collected. The
study presents the results of a moored array experiment on the steep flank
of a seamount where current and teirmerature measurements were collected for
more than a year, giving a very stable statistical description of the
oceanic internal wave field and occurence of mixing. The internal wave
reflection process found on a seamount flank must also occur quite
generally over any sloping topography in the ocean, from islands and mid-
ocean ridges to continental margins.

We set a 3-mooring array on Fieberling Guyot (32 25'N, 127 48'W), a
large seamount 1000 km west of San Diego in the eastern North Pacific
Ocean, to observe internal wave reflection. The moorings were set roughly
300 m apart on a relatively smooth portion of the seamount's southwestern
flank where bottom depths were in the range 1500-1650 m and the bottom
slope was 45%. Two of the moorings extended 300m off the bottom and the



third had its top at 100m depth. The tall mooring was instrumented with
current meters and temperature recorders closely spaced as closely as 5 m
apart from 20 to 300 m off the bottom while the shorter noorings were more
sparsely instrumanted. The close spacing, both vertical and horizontal,
insured that the instruments formed a coherent 3-dimensional array for
motions across the entire internal wave band of frequencies. Buoyancy
frequency was estimated from Conductivity-Temperature- Depth (CTD) casts
made in two surveys by Roden(1994). Near the bottom at the moored array,
buoyancy frequency was about 1.0 cph. The CTD casts verified that
temperature and salinity were very well correlated so that temperature
could reliably be used to estimate density.

The moored measurements indicate variance at free internal wave
frequencies is dominated by waves reflected off the sloping seamount flank.
In contrast to the vertically symmetric, horizontally isotropic, broadband
open ocean internal wave field described by Garrett and Munk (Munk, 1981),
current and temperature spectra at depths within several hundred meters of
the bottom are peaked at the local critical frequency (the frequency for
which internal wave rays are parallel to the local bottom slope). They
carry signatures of waves having originated by reflection off the slope:
horizontal currents are aligned across isobaths, phase propagates downward
and toward shallow water at frequencies above the critical frequency and
upward and toward deeper tiater at frequencies below the critical frequency.
These signatures are the result of wavenumber amplification upon
reflection, leading to horizontal turning of incident rays to directions
normal to isobaths and increased energy density of reflected waves over
incident ones.

The spectrum of reflected waves is dominated by a single wavenumber
at each frequency, unlike the presumed broadband Garrett-Munk spectrum of
incident waves. This single wavenumber is that which results from
reflection of incident waves of the gravest open-ocean baroclinic mode,
This narrowbandadness is likely the result of the breaking and consequent
loss of distinct identity of second and higher baroclinic mode incident
waves. That these waves break can be expected from amplification of
currents to levels that exceed phase speeds of reflected waves. Not only
are Richardson numbers over 10m vertical scale less than unity roughly half
the time near the sloping bottom, but temperature inversions are frequently
observed. while the wavenumber slopes inferred from the phase structure of
the dominant complex empirical orthogonal function describing current and
vettical displacement variance are consistent with those predicted by
linear internal wave theory, wavenumber magnitudes inferred from vertical
displacement are roughly 3 times higher than those inferred from horizontal
current. This discrepancy may be evidence that even the reflection of the
lowest baroclinic mode is governed by nonlinear balances.

Oic taprtr Ja tightly correalatesd with salinilty at the
measurement depths, tenperature inversions can be interpreted as density
overturns. These appear and disappear with time scales of a few tens of
minutes, comparable to the time scale associated with internal waves at the
local critical frequency (about 2.5 hours) and are distributed nearly
identically in records which have been low-pass filtered to remove tidal
and lower frequency variance as in unfiltered records. They are taken to be
a signature of internal wave breaking and a direct result of wave
amplification from reflection. Calculating how much potential energy
production is associated with unstable density differences observed over
fixed vertical separations depends somewhat on assumptions of how overturns



i4
relax. If we assume that unstable gradients relax to at least neutral
stability, we find rate of potential energy production to be in the range
0.5 - 2.0 microwatts per cubic meter. This would require internal wave
energy flux of roughly 0.2 milliwatts per square meter to maintain, an
amount equivalent to about 1% of the incident wave energy flux.

The rate of reflection-induced internal wave breaking implies local
equivalent turbulent buoyancy diffusivities of 1.6 - 6.4 X 10^-4 m^2/s.
This level is two orders of magnitude above those found from microscale
turbulence measurements in the ocean interior and about an order of
magnitude above the level thought necessary to maintain thermocline
structure on a global scale based on deep water renewal rates. Roughly
speaking, mixing rates in the bottom tenth of the water column are an order
of magnitude higher than those in the portion above. That is, mixing due to
internal wave breaking concentrated near the ocean bottom is more intense
roughly in inverse proportion to the fraction of the water column in which
it occurs and at an intensity sufficient to explain much of the mixing
required by basin scale property balances. The implication is that the deep
ocean mixes sustantially as a result of internal wave reflection at its
boundaries.
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Numerical simulations of the flow of a stratified fluid
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We use a high-resolution spectral numerical scheme to solve the equations of motion for the
flow of a uniformly stratified Boussincsq fluid over long isolated bottom topography in a
channel of finite depth. The results are compared with the existing theories: the nonresonant
steady hydrostatic theory of Long (1955) Tellus 7, 341-357, resonant and nonresonant time-
dependent long-wave theory, and the resonant fully nonlinear, weakly dispersive theory
developed recently by Grimshaw and Yi (1991) 1. Fluid Mech 229, 603-628.

1. Introduction
The flow of a uniformly stratified inviscid Boussinesq fluid over two-dimensional

localized bottom topography in a channel of finite depth has been the subject of extensive study
since the pioneering work of Long (1955). For this special class of flows, Long was able to
derive a linear field equation (often called Long's equation) that describes the fully nonlinear
steady flow with the assumption that all the streamlines originate upstream (i.e., no closed
streamlines). Long found that with some restrictions on the amplitude of the topography
solutions of this field equation that do ntot violate the no-closed-streamline assumption exist
except when the flow conditions are such that one of the normal internal gravity wave modes of
the channel is close to resonance. Near these resonance points the steady solutions exhibit
closed streamlines no matter how small the amplitude of the topography. The appearance of
closed streamlines in the steady solution presumably indicates the presence of wavebreaking and
some as yet not fully determined type of unsteady flow.

Grimshaw & Yi (1991), hereafter referred to as GY, proposed an approximate theory for
resonant flow in uniformly stratified flows.. They derived a new evolution equation, which we

.refer to as the firiite-amphitude long-wave equation (or more simply, the FLW equation),
which is in essence a small perturbation of the lime-dependent form of Long's equation. They
assumed that for topography of small amplitude and moderate slope that the upstream
propagating component of the resonant mode has an amplitude that scales with the channel
depth and that the nonlinearity comes in through the time dependence which scales with the 3/2
power of the height of the topography. Thus, small topography will produce a response on the
order of the channel depth, but the smaller the topography the longer it will take for this large
amplitude response to develop. The FLW equation has the property, shared with Long's
equation, that its solutions are valid only up to the point where overturning streamlines appear
somewhere in the flow. That is, the FLW equation can describe everything up to but not
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including overturning internal waves, for sufficiently small topography sufficiently close to one
of the resonant points.

Although there have been some recent studies, Hanazaki(1992, 1993) and Lamb (1994),
that compare the results of numerical solutions of the fully nonlinear equations with the FLW
equation, mostly near the first resonance point, there is as yet no thorough study of the range of
validity of the FLW equation. In the present work we describe the results of a systematic study
of this problem for long topography using a spectral method to solve the fully nonlinear inviscid
equations. Our main focus is to explore the robustness of the GY equation near the first two
resonance points.

2. Theory

Problem formulation

The flow and coordinate system under consideration are sketched in figure 1. We use a
Cartesian coordinate system with x as the horizontal and z as the vertical coordinate. A
stratified, incompressible and inviscid fluid with constant buoyancy frequency N flows through a
channel of total depth D that is bounded above by a horizontal rigid lid and below by a surface-
mounted hill represented by the curve z = h(x1 , where h(x) -> 0 as x -.+ + o. The density
variation of the fluid over the depth of the channel is assumed to be small compared to the mean
density 7, of the fluid. The hill is assumed to be two-dimensional, symmetric and streamlined,
with a maximum height h(O) = a and has a horizontal length scale L. In all the simulations
described in this paper the specific hill shape used was

h(x) = a e-c•'"L (1)

We consider the two-dimensional motion that results when the hill is towed through the
fluid at some constant speed U. That is, at time t - 0 surfaces of constant density are all
horizontal and the fluid is at rest, and at time i = 0' the hill is impulsively accelerated to speed
U. We seek the solutions of this problem for t > 0 in a reference frame in which the hill is at rest
(as depicted in Fig. 1). Accordingly, we choose a background state to consist of a constant
horizontal speed U and horizontally homogeneous density po(z) and pressurep)(z) that satisfy
the hydrostatic condition d; o/dz = -g po, where g is the acceleration due to gravity.

In general, we will present oure results in terms of the vertical displacement t•x,z, t), which
is defined such th"* the total density p(x,z,t9 at any given point and time is given by

(x, z,t)= =o(z -), (2)

There are three nondimensional parameters that define this problem:

alD, LID, and K= D (3)

where K is the inverse of the Froude number (the ratio of the mean fluid speed U to the fastest
linear internal gravity wave speed in the channel). The resonant points are where K = n, with
n 1,2 ...
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Long's model
Long's model is derived based on the assumption that all streamlines originate upstream

and therefore that there are no regions of the flow containing closed or overturning streamlines
(regions of recirculating flow). Long showed that steady solutions that satisfy this assumption
exist for all possible values of a/D ifK < I and for a/D that satisfy

!Kza / D -[I sin[Kit(1 - a / D)] I: 0 , (4)

when K> 1. Apparently for * ie parameter regimes where (4) does not hold there are no steady
solutions, since the solutions of Long's model implies statically unstable flows that presumably
imply the existence of wave breaking and associated unsteadiness. Note from (4) that K a/D is a
more natural scaling of the hill amplitude; in fact, with this scaling (4) becomes periodic in K
with unit period for K > 1. Figure 2 is a parameter space plot that shows where steady solutions
exist. Regions where no steady flow exists are shown shaded in the figure. Equation (4) and
figure 2 are strictly valid when LID > > I, but the curves are quite similar for smaller values of
L/D. We have also plotted in figure 2 the numerical simulatio.as we have performed for this
paper.

Grimshaw-Yi theory
If K n, the resonant mode in terms of the vertical displacement is

(x, Z, t) - A(x, t)sin(nmrz / D). (5)

Grimshaw & Yi (1991) show that for small amplitude and moderately long hills the amplitude
function A for the upstream propagating component of this resonant mode is governed by the
following evolution equation (the FLW equation)

JG(A, A') "-dx' + D(U -,c.)A _4c 3  h=O (6)

_6 a &N2 N IV( C )

where A = A(x,), A' = A(xft'), c. ND/(nx) is the linear long-wave internal gravity wave speed
for mode n, and the kernel function G(A, A' is given by

GAA ') d- - -- • a. (7)
f y A OA' 6-A 6ý6A cýAl 6OAJ

The variable 4 is defined as

4= z - A(x,t)s.1n(nrz / D), (8)

from which the inverse relationships z = z(4 A) and z' = z(4 A, can be derived. For these
inverse relationships to be single valued, we must require

Al < D = c. (9)na N9

which is equivalent to requiring that there are no overturning streamlines in the flow, or that the
perturbation horizontal fluid speed nowhere equals or exceeds the mean speed, which is the
same restriction imposed on Long's model. It should be remembered that (9) is an approximate
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criterion for overturning flow since it represents only the upstream propagating component of the
resonant mode. For strongly nonlinear, strongly dispersive, or off-resonant flows, other modes
may contribute which may cause overturning streamlines to occur earlier or later than predicted
by (9).

It is possible to make (6) independent of the mode number n by rescaling the vertical
length scales with D/n instead of D. This is analogous to the rescaling of Long's equation
described above.

3. Numerical results

Numerical methods

We use a numerical collocation method to solve the full equations for the motion of a
uniformly stratified, Boussinesq, inviscid fluid. The method solves the governing equations in
their vorticity-streamfunction form. We impose the additional constraint that the motion be
periodic in the horizontal direction with 'sponge' layers at both horizontal ends of he
computational domain. For numerical convenience, the bottom topography is removed from the
boundary conditions by transforming the equation to terrain-following coordinates. In our
spectral method, the solutions of the governing equations are expanded in finite Fourier series in
the horizontal direction and finite Chebyshev series in the vertical. Typically, for the calculations
described here, 128 or 256 collocation points were used in the horizontal and 40 or 65 points in
the vertical, depending on the size of the computational domain and the scale of the terrain. A
third-order Runge-Kutta scheme is used to advance the vorticity and vertical displacement
equations forward in time. We use a high-order high-wavenunber filter to eliminate noise in the
calculation generated by some peculiarities of the initial conditions and to allow the calculation
to continue past the point where wave overturning occurs.

The FLW equation was solved numerically using essentially the method described by GY
and Yi & Warn (1987), except we chose to use third-order Runge-Kutta instead of leap-frog time
stepping. We comment that the kernel function G(A, A') is singular near wave overturning
amplitudes, when (9) is an equality, and must be treated very carefully as these amplitudes are
approached. This aspect of the numerical solution of the FLW equation lead to an underestimate
of the wavebreaking time in several cases reported by GY.

Initial conditions

Our initial conditions, which mimic what is done in laboratory tow-tank experiments,
lead to some difficulties for an inviscid and nondiffusive calculation. Initially the isopycnal
surfaces are horizontal and therefore several of them intersect the hill surface. Since the fluid
parti;ls i ,, the hil` surfc cannot leave that surface, a small region with a horizontal
density gradient is generated along the bottom boundary when the initial nonuniform distribution
of density is swept over the hill crest after the flow is initiated. This small blob of nonuniform
density is advected downstream by the mean flow and with time this density gradient sharpens as
the h.avier fluid advances into the lighter fluid forming a very sharp gravity current front. Such
a front is very difficult to resolve numerically and eventually, if spectral filtering is not used,
saturates the spectrum and leads to a breakdown of the calculation. This small abnormality can
be seen propagating downstream at the mean flow speed in all of our spectral simulations.
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The first resonance point (K = 1)
We calculated the cases indicated by the o's in figure 2 near K = 1, for values of LID

ranging from 0.5 to 4.0, using both the fully nonlinear spectral model and the FLW equation.
We do not have the space here to present all the results, so we -how results in figures 3, 4 and 5
only for the case with K - 1, aiD = 0.1, and LID = 1.0.

Figure 3 shows the evolution in time of the amplitude function A(x, t) for the resonant
mode as computed by the spectral model (th%; rsults from the FLW equation are identical). The
conclusion that the FLW equation well represents the full calculation is reinforced by the drag (a
sort of integral measure of the flow) calculated from the two methods and plotted in figure 4.
Also, it appears that the drag is asymptotically approaching a small positive constant value. This
is an indication that the flow in the neighborhood of the hill is approaching a permanent
asymmetrical form with high pressure on the upstream surface and lower pressure on the
downstream surface.

It is interesting that up to the time computed (I = 100 D/I) there is no wave overturning
although the first downstream trough is very close to overturning at the final time. Figure 5 is a
plot of max(IA(x, t) 24 as a function of time, showing that the approach to the overturning
amplitude (IA(x, i) n4 1I is asymptotic in tine.

For K > 1, wavebreaking occurs much sooner and the further from resonance the sooner
wave breaking occurs, as long as the experiment is located in the shaded portion of the
parameter space shown in figure 2 (otherwise no wavebreaking is ever observed). These
wavebreaking times are comparable with Lamb's (1994) calculations. Also, the further from
resonance the bigger the difference in the predicted time of wave overturning computed from the
FLW equation as compared with that computed using the spectral model. However, in the cases
we computed the difference in this overturning time was generally no greater than about 30%,
and otherwise the FLW equation described the full calculations rather well. In general, these
breaking times for fixed K scaled with L/a, for large enough LID to be in the hydrostatic limit.
So the larger L or the smaller a the longer the time scale of the developing flow. This is simply
the long-wave linear resonant scaling.

The second resonance point (K = 2)
Results for our representative calculation for the second resonant point are plotted in

figures 6 and 7. The case we have chosen to show has K = 2, a.D = 0.05, and I'D = 1.0. The
time evolution of the amplitude function A(x,ft for the iesonant mode as computed by the
spectral method is plotted in figure 6 (and again the FLW equation produces a nearly identical
plot). The more interesting feature of this calculation is the plot of the drag, plotted in figure 7,
as computed by the two methods. The spectral model produces a drag that has the same mean
time evolution as that computed by the FLW equation, but the spectral calculation shows a
persistent oscillation with a nearly constant period and amplitude about this mean. Similar
oscillations in the drag when 1< K s• 2 have been observed in the tow-tank experiments of
Castro, et al. (1990) and the numerical simulations of Lamb (1994). We found that these
oscillations did not appear when LID = 2.0.

It appears that these oscillations in the drag are associated with the mode I wave that
propagates upstream when K > 1. Since the GY theory neglects all other modes except the
resonant mode, their theory cannot produce these oscillations. However, linear theory provides
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an approximate explanation. The most persistent mode I wave when K > 1 should be the one
with the horizontal wavelength for which the gioup speed equals the mean flow speed. The
wavenumber of this wave fbr mode 1 waves is k - (K213 

- Ij'12 ;r / D . The period of the
oscillations of this wave is given by T - 21rl[k (c -L)j - 2 (K213 - j)312, where c is the phase
speed. This theoretical result for the period of the drag oscillations is plotted in figure 8 along
with the observed periods from the numerical simulations and tow tank experiments. The
agreement is seen to be quite good. Also, note the wavelength of the most persistent wave
decreases as K increases, so that if L As so large such 6iat very little energy is put into the
horizontal spectrum at the most persistent wavelength, then the oscillations will not be
observable, as we saw in our simulations with LID - 2.0.

We acknowledge helpful discussions with Simon Clarke about the self-similar properties of the
FLW equation. We are grateful to Marina De Gabriele for her help with the numerical
simulations and with the preparation of the figures.
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Figure 1. A schematic diagram of uniformly stratified flow over bottom mounted topography in a
channel of finite depth.
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FIGURE 2. The parameter space diaSram for the hydrostatic Long's model solution of flow over a

two-dimensional hill, The white areas are regions of the parameter space for which
the solution satisfies the assumptions used in deriving Long's model and the shaded
regions are where the solution contains closed recirculating cells (which violate the
assumptions used in deriving the model). The plot is periodic in K with unit period for
A > 1. The regions between the dashed lines and the solid lines are where the
Richardson number of the steady flow is less than unity. The *'s represent the
numerical experiments done for this study.
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FIGURE 3. The function A(x, t) for the resonant mode as computed by the spectral model for the
case with K - , /lD -0.1, and L'D - 1.0. The hill is located at xD .10.
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PIGURE 6. The function A(x, t) for the resonant mode as computed by the spectral model for the
casewithK-2,a/D- 0.05,andL/D -1.0. Thehill is locatodatx/D - 20.
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FIGUR 7. The drag for the simulations shown in figure 6: - - -, spectral model; -, FLW
equation.
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ABSTRACT

Models for the evolution of the surface mixed layer need to be improved to include domi-
nant processes such as Langmuir circulation. It is shown that the wave forcing in Langmuir
circulation models is much stronger than that due to a surface buoyancy loss, and be-
girming studies of the erosion by the cells of a pre-existing stratification are described.
Mixed layer models will also need to allow for horizontal inhomogeneity; for example, it
is shown that the horizontal buoyancy gradient that may be left behind after a storm
produces restratification that can be significant. The nonlinearity of the equation of state
is another real-world factor; it gives rise to an annual average surface buoyancy that is
misleading as it is compensated by interior cabbeliag. Current work linking the mixed
layer to water mass formation is also introduced.

1. INTRODUCTION

The upper ocean typically exhibits a surface mixed layer, with a thickness of a few metres
to several hundred metres, in which the density stratification is weak due to mixing by
turbulence that is driven by surface flows of momentum and buoyancy, and possibly also by
shear across the base of the layer. The physics of this surface mixed layer presents a variety
of fascinating fluid dynamical problems, and is of great importance for a wide variety of
problems arisijg in studies of climate, biologic-al productiv.itynd. Maxind Pr-U .... ut.

In questions of climate, an elementary and common remark is that the heat capacity
of the top 2.5 m of the ocean equals that of the whole column of air above it, so that,
with turbulent mixing typically extending to a depth many times this in both summer
and winter, the ocean essentially acts as a "thermal flywheel" for the climate system,
smoothing out both temporal (seasonal) temperature changes and, through advection,
meridional gradients. Of course heat exchange between ocean and atmosphere involves
more than just the turbulent near surface layer of the ocean, with the subduction of
surface layer water into the interior being a topic of great current interest.

Sea surface and mixed layer processes also play a vital role in the exchange between the
atmosphere and ocean of gases, such as oxygen and carbon dioxide, by diffusion across the
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sea surface and across the surfaces of bubbles created by breaking waves. Carbon dioxide
is then taken up in the surface layers of the ocean by growing phytoplanktou, with the
growth rate depending on the availability of nutrients that are entrained from below the
base of the surface mixed layer. The average light intensity to which the phytoplankton
are exposed is also critical aud this becomes insufficient for further growth if the depth
over which the phytoplaukton are mixed becomes too great.

Many models for the evolution of the surface mixed layer have been developed. These
are usually one-dimensional (although possibly allowing for local convergence by prescrip-
tion of a vertical velocity at the base of the layer). The simplest models parameterise the
changes in average properties of the layer, and of its depth, in terms of the surface buoy-
ancy flux and wind stress and/or the difference between the average buoyancy and average
velocity of the mixed layer and the buoyancy and velocity of the water just below it. These
models are based on plausible physical arguments and can, to some extent, be tuned to
match data, but they are clearly incomplete. Various more complicated models, based on
turbulence closure schemes at different levels, have thus been developed. These are often
expected to be effective in view of the success of similar schemes in other boundary layer
situations, though weaknesses in closure assumptions in the strongly stratified region at
the base of the layer are admitted and sometimes compensated for by assumptions as ad
hoc as those of the bulk models.

These models will be reviewed briefly in Section 2, but I believe that their most impor-
tant shortcoming is that they ignore some of the real physical processes that are unique
to the oceanic surface mixed layer. Breaking surface waves are clearly one phenomenon
of great importance for the generation of turbulence near the surface, but the most im-
portant process appears to be Langmuir circulation. This refers to the helical circulation
cells in the upper ocean, with axes generally oriented downwind, which appear to be gen-
erated by a mechanism involving the Stokes &dift of surface waves; the cells are thus very
different from coherent longitudinal vortices that may occur in other boundary layers.
The physics of Langmuir circulation, and beginning studies of the role it plays in eroding
the stratification at the base of the mixed layer and so deepening it, will be discussed in
Section 3.

Increasing attention is also being paid to the effect on the surface mixed layer of
horizontal gradients in its properties. Simple advection of these properties by a prescribed
cnurrent is frequently allowed for in locally one-dimensional models, if only to balance the
heat budget, but recent work points also to the possible importance of dynamical effects
of a horizontal buoyancy gradient. This will be reviewed in Section 4.

Interesting physical effects can sometimes arise from the nonlinearity of the equation
of state. One example, an annual average buoyancy flux in spite of zero annual average
heat flux, will be described in Section 5. Recent consideration of water mas formation
associated with a horizontal gradient of surface buoyancy flux will be mentioned in Section
6. The paper concludes in Section 7 with a discussion.
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2. EXISTING MODELS

2.1 Forcing functions

The surface of the ocean is forced by wind stress -r, with a corresponding friction velocity
U. = (11-1/p.) 11 2 where p. is the density of water, and by a surface buoyancy flux B 0 per
unit area, given by

Bo = -C;'1 gap'Q + gpp;'(E - P) (2.1)

where Cp is the specific heat of water, a = -p-(8(p/DT),., is the coefficient of expansion
of water at fixed pressure p and salinity s, Q is the net heat flux into the water, f =
p-*(OP/0a)p,T, E is the evaporation rate and P is the rainfall rate (Gill, 1982). Here
positive B0 corresponds to los of buoyancy from the sea. The net heat flux into the sea is
made up of insolation Q., which is distributed over an attenuation depth, minus longwave
back radiation and latent and sensible heat loss rates which act at the surface.

The wind stress, at least in part, goes first into surface waves. In a wave field that
is growing downwind, part of the momentum flux goes into the downwind increase of
the wave momentum (associated with the Stokes drift of the irrotational waves) but for
typical growth rates this fraction is only 3% or so (e.g. Richma and Garrett, 1977) so
that it is reasonable to assume that all of r is available to drive the mean rotational flow
of the mixed layer.

The energy budget is more complicated. Some energy can be advected away in a
growing wave field, but the more important question concerns the energy input. Is it '"
times the surface drift of the water, or r times the phase velocity of the longest and fastest
travelling waves in the surface wave spectrum? Gemmrich et al. (1994) have examined
the energy budget of the mixed layer and conclude that the momentum goes mainly
into rather short waves, with a wavelength of about 0.25 m and a phase speed of about
0.6 m s-1 so that the energy input is Jr-I times this. This has important consequences for
turbulence levels near the surface. In fact, Gemmrich et al. (1994) based their conclusion
largely on recent measurements reported by Agrawal et al. (1992), Anis and Moum (1992)
and Osborn et al. (1992) which show an energy dissipation rate much more than the value
ua/xz, for von Karman's constant K and distance z from the surface, which would apply
for a conventional wall layer, but with a depth integral that is still much less than IrT times
the wind speed (corresponding to the phase speed of the fastest wave for a fully developed
sea). The result of Gemmrich et al. (1994) is in keeping with Thorpe's (1993) finding,
from the observed frequency of wave breaking and the energy dissipation in a breaking
event as a function of wave speed, that the breaking waves must be much shorter than
the dominant waves.

The observed turbulent dissipation rate e greater than u3/siz means that in a convec-
tive situation the buoyancy flux does not dominate in the turbulent kinetic energy equation
until it is rather deeper than the modulus u,/r.Bo of the Monin-Obukhov length defined
as minus this. Nonetheless, there are clearly times when the deepening of the mixed layer
is largely determined by surface buoyancy loss (e.g. Lombardo and Gregg, 1989), with
the main question being whether there is a significant buoyancy jump at the base of the
mixed layer and, if so, whether it is a consequence of penetrative. convection or is caused
by something other than the surface buoyancy flux.
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2.2 Bulk models

Simple models of the surface mixed layer envisage a sharp jump Ab in buoyancy b (given
by b = -g(p - po)/po, with Pa a reference density) at the base of the layer of depth h, and
prescribe the entrainment velocity acros this. As reviewed by Phillips (1977), one class
of models parameterises this entrainment rate as

w. = u.F(hAb/u,) (2.2)

where Rb = hAb/u . is a bulk Richardson number based on u. and AW, and is the only
dirensionles parameter if u. is the only relevant velocity scale. The function F in (2.2)
is presumably a decreasing function of Rb; if the rate of energy input to the mixed layer
is assumed proportional to u3. and a fixed fraction of this input is assumed to go into the
increasing potential energy of the layer as a dense fluid is entrained upwards, F xc Rb- 1

(Turner, 1973). Models based on this formulation include those of Denman and Miyake
(1973), Niller and Kraus (1977) and Garwood (1977).

However, another possible velocity scale is the magnitude Au of the difference between
the average velocity of the surface mixed layer and the velocity of the underlying fluid.
Various models for F(Rb), with Au replacing u. in (2.2), are discussed by Phillips (1977)
and generally have a rapid decrease with increasing Rb. A particularly simple form,
suggested by Pollard et al. (1973), has F = oo for Rb < 1 and F = 0 for Rb > 1, so that
the mixed layer depth adjusts to have Rb always equal too 1 during a deepening phase,
though it is assumed not to "unrix" if Au decreases.

Of course Au is a function of the hitory of u. and the mixed layer depth, so that the
two types of bulk model may predict somewhat similar behaviour, but there can also be
major differences. For example, in the case of a mixed layer developing in response to
an abrupt onset of wind above a stratified ocean, the first model will show a continued
deepening of the layer whereas the second will give a mixed layer depth of no more than
23!4u./(Nf)1/ 2 due to the rotation of the mixed layer velocity by the Coriolis force (Pollard
et al., 1973), with N the buoyancy frequency of the underlying fluid, and f the Coriolis
frequency.

The second type of bulk model, based on Au, has perhaps become more common than
the first in recent years, particularly with the popular model of Price et al. (1986) that
stops the entrainment at Rb = 0.65 instead of 1 and also smooths the interface at the
base of the layer to give it a gradient Richardson number of 0.25.

A reasonable reaction to this uncertainty is to argue that in reality the entrainment
depends on the behaviour of turbulence in a stratified fluid and cannot be simply rep-
resented in terms of either u. or Au, though possibly some simple parameterisation in
terms of both of these can be extracted from more thorough studies.

2.3 Higher order models

The success of turbulence closure models in other boundary layer situations has led to
the development of a variety of models for application to the surface mixed layer of the
ocean. The simplest of these assume simple profiles of eddy viscosity and diffusivity, as
in the recent model of Large et al. (1994). This has been used for successful simulation of
various oceanic data sets, though success on seasonal time scales, rather than daily or for



I5

individual storms, depends on allowing for advection of water with different properties.
The model also maintains an eddy viscosity of 10-' m2 s-1 and an eddy diffusivity of
10-' m2 s-1 below the base of the mixed layer. Moreover, for this as for all other models,
comparison with data is made difficult by uncertainty in the surface heat and water fluxes.

Many other mixed layer models are based on various closure schemes proposed by
Melior and Yamada (1974, 1982). However, as reviewed by Gaspar et al. (1990), the
commonly used versions suffer from uncertainty in the prescription, or computation, of
the "master length". Gaspar et al. (1990) adopt a scheme with eddy viscosity and
diffusivity determined by the turbulent kinetic energy (TKE) and a length scale. The
TKE satisfies a prognostic equation involving production, dissipation and diffusion, but
the length scale is given by simple consideration of the vertical distance a particle could
travel up or down in converting its TKE to potential energy (Bougeault and Andr6,
1986). Blauke and Delecluse (1993) find that this scheme produces better simulations
for the tropical Atlantic Ocean than that of Philander and Pacanowski (1986) in which
mixing coefficients are given prescribed values that are reduced by some function of the
local Richardson number, but some discrepancies still occur. More recently, Kantha
and Clayson (1994) have extended the modified Mellor-Yamada second moment closure
scheme of Galperin et al. (1988), but at the base of the mixed layer they use the same ad
hoc Richardson number dependent mixing formulae as employed by Large et al. (1994)
in the transition zone.

Further development and use of these models, whether bulk or higher order, is justified
by the need for adequate simulation and prediction in a variety of situations. One might,
however, question the value of some of the more elaborate schemes described above, and of
the third moment closure scheme of Andre and Lacantre (1985), in view of the fact that
they do not explicitly incorporate the unique processes occurring in the oceanic surface
layer. The most important of these processes is probably Langmuir circulation, which we
turn to next

3. LANGMUYR CIRCULATION

Lines of surface convergence, parallel to the wiad, are frequently marked by "windrows"
of foam and other flotsam. The Nobel prize winning chemist Irving Langmuir was the
first to describe the associated subsutface pattern of vortices, of alternating sign, that now
bears his name, and suggested that they are the key mechanism in producing the mixed
layer. Pollard (1977) presented a schematic diagram of Laugmuir circulation (Figure 1)
based on observations up till then. More detailed observations by Weller and Price (1988)
have shown larger downweuing speeds, up to 0.2 m s-r, beneath the surface convergences,
and associated downwind jet speeds of comparable magnitude.

Pollard's (1977) review of theories of Langmuir circulation up until 1976 provoked
Craik and Leibovich (1976) to revise an unsatisfactory earlier theory and present an
elegant dynamical model, reviewed by Leibovich (1983), that has been accepted since
then. The basic physics is an instability mechanism in which an infinitesimal downwind

jet has its vertical vorticity, with opposite sign on the two sides of the jet, tilted by the
Stokes drift of the surface waves to produce longitudinal rolls. These produce the surface
convergence at the jet, and this is in turn reinforced due to the acceleration, by the wind
stress, of the water moving towards the surface convergence.

I
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Figure 1: Pollard's (1977) schematic of Langmuir circulation.

Li and Garrett (1993) have examined the Craik-Leibovich (CL) model further and find
that, for plausible values of the eddy viscosity in the model, the predicted downwelling
speed is comparable to that measured, but the jet is weaker than observed. This suggests
the need for more refined parameterisation of the turbulence or, possibly, the importance
of other physical processes such as the interaction of the surface waves with the circulation
pattern.

Nonetheless, the vortex force associated with the Stokes drift does seem to be powerful,
making Langrnuir circulation different from longitudinal rolls in other boundary layer
situations. For example, Li and Garrett (1994, henceforth LG) recently investigated
whether Langmuir circulation could be just convective rolls in a shear flow, given that,
even under conditions of net heat input to the sea, insolation is penetrative and the sea
suriace is likely to be losing heat.

In their extension of the two-dimensional CL model, LG numerically solved the equa-
tions

J + VOu + WO- = V2U (3.1)

an an + an =V~ duo Ou + ag M (3.2)

0- + vao +woo = r nV 2O (3.3)
lt Oy liz dly

where u is the downwind current, n = Ow/ay - Ou/8z the downwind component of the

vorticity and 0 the temperature. Turbulence is represented simply by eddy viscosity v and
eddy diffusivity n. The CL vortex force, associated with the Stokes drift u,(z), is given
by the second term on the right hand side of (3.2). If there is surface cooling, streaurwise
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vorticity can also be generated by the buoyancy torque given by the last term in (3.2),
with a the expansion coefficient and g gravity. Internal heating is neglected here but can
be added to (3.3).

LG show that this problem is characterised by three non-dimensional numbers. The
first is the Langmuir number introduced by Leibovich (1977) and given by

La = (,3/2()1/2 (3.4)

\U. ) So)

where the Stokes drift is u.(z) = 2S exp(2#z). The second is the eddy Prandtl num-
ber Pr = v/s and the third, which they term the Hoenikker number in honour of the
distinguished ocean thermodynamicist Dr. Felix Hoenikker (Vounegut, 1963), is

1t0 = -agQ(35C~p,,Sof~u'. (3.5)

In this problem HoPr represents the ratio of convective forcing by surface heat loss -Q,
with C, the specific heat of water, to wave forcing. From numerical solutions and scale
analysis, LG show that, for Pr = 1, Ho must be as big as about 3 for convective forcing
to compare with wave forcing at appropriately small values of La. Realistic values for the
surface heat flux, Stokes drift and wind stress, however, give Ho significantly less than
0.1. It thus appears that the surface heat flux is unimportant to the dynamics of the
cells, a conclusion that also holds for other values of Pr, for net heating (tl6 < 0) and
for depth-distributed heating. The temperature then behaves as a passive scalar in these
numerical experiments in which a heat flux is applied to previously homogeneous water.

Figure 2 shows the non-dimensional fields obtained in a steady-state solution for
La = 0.02, Ho = 0.05 and Pr = 1. In fact, with surface heat flux only, the u and 0
fields are proportional for Pr = 1. For plausible values of the heat loss and other param-
eters, the predicted surface temperature difference 60 from divergence to convergence is
O(10- 2 )K, comparable to values reported by Thorpe and Hall (1982) and Weller and Price
(1988). Scale analysis, supported by numerical solutions, shows that b6 & HoPr/1 2La-2/6 .

This implies weak dependence (v-r'I) on the eddy viscosity v, but more dependence on
Pr. Doubts also remain, of course, about the validity of the simple parameterisations of
turbulence.

Figure 3a shows, for the same parameters as Figure 2, the non-dimensionalised vertical
profiles of the cross-stream average temperature (0), made up of the conductive solution
T and a change (0') due to the Languuir cells. The cells homogenise the temperature
below a thin conductive. surface layer and Figure 3b shows that the total vertical heat
flux Qt is largely associated with the advective heat flux Q, due to the cells, rather than
the conductive heat flux Qr. We conclude that Langniuir circulation is a powerful stirring
agent of passive scalars in the surface mixed layer, and that temperature is indeed passive
if realistic cooling or heating is applied to homogeneous water.

A more important question, however, concerns the interaction between the circulation
and pre-existing stratification. Ming Li (personal communication, 1994) is using the same
model to investigate this. Preliminary results show the expected result that, if wind stress
is applied to a density-stratified ocean, Langmuir circulation quickly develops near the
surface and, while the cells are small with a shallow penetration depth, tends to "engulf"
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Figure 2: Quasi-steady Langmuir cells at Laz = 0.02, Ho = 0.05 anad Pr = 1. Contours
of (a) downwind c'urrent, (b) temperature, (c) streamwise vorticity, (d) streamnfunction.
(From Li and Garrett, 1994.)

and homogenise the temperature as if it were a passive scalar. As the cells merge and

grow in scale, however, they do not penetrate as deeply as in homogeneous water and
give instead a well mixed layer above a jump in buoyancy to the stratified ocean beneath.
Attempts are being made to understand the depths of this layer in terms of the Froude
number based on the downwelling speed in the cells and to characterise it in terms of
external parameters. Preliminary results suggest that the mixed layer stops its rapid
growth into a stratified fluid when its depth is about 10u./N. However, the downwind
velocity field is also fairly well homogenised in the mixed layer by the ceils, leading to
small values of the Richardson number at the base of the layer. This would presumably
lead to shear instability (not possible in the present model due to its independence of the
downwind coordinate z) with the possibility that the mixed fluid would then be picked
up by the cells and stirred throughout the upper layer, though this is probably a slower
process than the initial rapid engulfment.

it is hoped that this work, and extensions to include t.ee-dimensionall effects and
more realistic treatment of subgrid-scale turbulence, will lead to a plausible blend of
bulk parameterisations of entrainment in terms of u. (as for the initial engulfment) and
Au across the base of the layer (as for the later shear instability and stirring). Our
expectations are that allowance for Laugmuir circulation will mainly reduce the occurrence
of some of the very shallow mixed layers which can occur with other schemes.
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Figure 3: Vertical profiles at La = 0.02, Ho =0.05 and Pr = 1 for (a) nondimensionalised
temperature and (b) heat fluxes. (From Li and Garrett, 1994.)

4. THE ROLE OF HORIZONTAL BUOYANCY GRADIENTS

Most of the emphasis in mixed layer modelling has been on the parameterisation of mixing
in one-dimensional models. This is clearly still the key problem, but there are increas-
ing attempts to assess the importance of the frequently observed horizontal variations in
mixed layer parameters. De Szoeke (1980) and de Ruijter (1983) have shown that the
depth-varying advection of horizontal temperature variations by wind-driven shear cur-
rents can be important, and this effe~ct has been included in the model of Lascaratos et al.
(1993). Recent observations (Bra~iaerd and Gregg, 1993a,b) have suggested that restrati-
fying currents may be driven by the horizontal buoyancy gradients themselves rather than
just by the wind, and this is providling impetus for a number of theoretical studies.

The simplest possible problem, reviewed by Tandon and Garrett (1994a), is of the ad-
justment of a constant horizontal buoyancy gradient 4a = -(g/po)(8p/L9x) in a vertically
well mixed layer of depth h initially at rest. The geostrophically adjusted state has a
vertical buoyancy gradient with N2 =- (g/pa)(8p/O9z) given by the simple formula

N 2 = M'/f2  (4.1)

where M' = 16,1j. This restratification can be significant in some fr-ontal situation in the
deep ocean, at low latitudes and on the continental shelf. The adjustment occurs on a
time scale comparable with the inertial period and is accompanied by inertial oscillations
which cause the stratification to oscillate between zero and twice the value given by (4.1).

An interesting question concerns the shear stability of the solution to this problem;
the development of stratification is accompanied by sheared currents in the direction of
the buoyancy gradient and normal to it due to the action of the Coriols force. In fact, the
steady geostrophicafly adjusted state would have Ri 1 whereas the full time-depandent,
solution has Ri = 1 for all z and t, implying stability. Ou (1984) has examined the
adjustment when b~, is not constant; Tandon and Garrett (1994a) find that Mi < 1 is
possible if the frontal region is sharp enough.
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These models are, however, limited by the assumption of a horizontally constant mixed
layer depth that does not vary with time. A more plausible starting point (Figure 4) has
horizontal variation in both buoyancy and mixed layer depth, as might be caused by
spatially varying mixing of an ocean that was initially uniformly stratified. Tandon and
Garrett (1994b) show that in this and related problems, with a plausible "wide front"
approximation, there is a slight flattening of the interface slope but restratification given
by (4.1) is still achieved locally. This holds promise for extensions of a general subinertial
mixed layer model developed by Young (1994) but hithe'to limited by the assumption of
a large density jump across the base of the mixed layer which rules out changes in the
interface.

a - f/2 C 1

L

wStorm -7 1

N mixes one
side more

________________ than the
__________________________ other _ ______________

-N
2 H(x)

V0- 0In the mixed layer, b= 2
b= 0
b,= N'

Figure 4: Horizontal buoyancy gradient in the surface mixed layer due to variable mixing.
(From Tandon and Garrett, 1994b.)

5. IS THE NONLINEARITY OF THE EQUATION OF STATE
IMPORTANT?

The density of seawater depends in a nonlinear way on the pressure and on the tempera-
ture and salinity of the water. For the surface mixed layer the temperature dependence is
41W• .... ".'1 t an----d can give rise to the interesting and potentially misleading exis-
tence of a net annual buoyancy flux into the sea even in a situation where the net annual
heat flux is zero!

This is easily seen by inspection of (2.1). The relevant nonlinearity in the equation
of state corresponds to a temperature dependence of the expansion coefficient a and the
annual average buoyancy flux has a term -C; 1p' 1 •--F7 where a', Q' are the departures
of the expansion coefficient and the total heat flux away from their annual means. We
shall ignore the depth dependence of the insolation, or assume that it is distributed over
a depth in which the temperature does not change from its surface value. Hence we may
write a' = (Oa/OT)T' with T' the departure of the surface temperature from its annual
average T, and so we are interested in evaluating the annual average TV. Now if H

II
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represents the total heat content of the ocean (down to the greatest depth affected by the
annual cycle) we have di-d- = • -'Q.(51

If the mixed layer were well mixed of constant depth, (5.1) would give (dT'/dt) cc Q' and
hence TV' = 0 as T', Q' would be in quadrature. In general, however, (5.1) gives (for

0=o)

= poCpT(dH/dt) (5.2)

- poC,;' f T d1l (5.3)

where to = 1 year and fT dH is the area enclosed by the curve of T versus H, proceeding
clockwise (Figure 5).

22-204

- .3

15

300 310 , 3180 3 ;:t0 o-0 30 3350 34 00 340
Tow heat coM (Sg.C ")

Figure 5: Temperature versus heat content of the surface mixed layer over an annual
cycle which proceeds clockwise, with J marking 15 January. (From Zahariev and Garrett,
1994.)

Data and models (Gill and Turner, 1976i Zahariev and Garrett, 1994) show a tendency
for this area to be positive (with increasing time corresponding to clockwise rather than
anticlockwise circulation around the curve in Figure 5). Equivalently, there is a tendency
for the heating of warm water and cooling of cold water, with the former expanding more
than the latter contracts. The effect can be significant; for the Mediterranean Sea the
associated buoyancy flux is comparable with other terms and equivalent to a heat input
of 6 W m-2 (Garrett et al., 1993).

-. --
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This possibility of a net surface buoyancy input for no net heat input does not mean
that the ocean becomes steadily less dense. As discussed by Zahariev and Garrett (1994)
there is a compensating loss of buoyancy due to cabbeling, or densification on mixing,
whenever the mixed layer entrains colder water from below. The effect does, however,
emphasize the need for care in evaluating the thermodynamics as well as the dynarnics of
the surface mixed layer.

6. WATER MASS FORMATION

The exchange of water between the surface mixed layer and the underlying ocean is a topic
of great current interest, with particular attention being paid to the quantity and prop-
erties of water that is subducted into the main thermocline (e.g. Marshall et a., 1993).
One approach (Walin, 1982; Speer and Tziperman, 1992) starts from consideration of the
buoyancy flux, across the sea surface, between the surface outcroppings of neighbouring
isopycnals. This buoyancy flux must be balanced by a diapycnal buoyancy flax, but with
contributions from both diapycnal advection (related to water mass formation) and di-
apycnal mixing. Garrett et al. (1994) point out that it is hard to se.parate the relative
contributions of advection and mixing, though the diapycual buoyancy flux may all be
advective in the special case of a well-mixed surface layer and an adiabatic interior. This
result does, however, ignore the seasonal cycle in the properties of the surface layer and
the horizontal diapycnal eddy fluxes in the surface mixed layer due to mesoscale eddies.

7. DISCUSSION

One-dimensional models remain the backbone of studies of the surface mixed layer, and
improved observations and greater computer power now make it possible to conduct se-
rious investigations of dominant physical processes such as Langmuir circulation which
have hitherto been bypassed in bulk models or ignored in higher-order models and may
give more rapid initial deepening of a layer than predicted by current models. Most
investigations of fully nonlinear Langruir circulation are still two-dimensional, but will
eventually be supported and extended by three-dimensional "large eddy simulations". It
is important, however, that the detailed results of these investigations be interpreted in
ways that lead to simple parameterisations suitable for operational use.

Internal waves are a process that I have not discussed in this brief review, although
the oscillatory vertical displacements and vertical shears of horizontal currents that they
produce may well affect the average behaviour of the surface mixed layer and need to be
par-ameterfis-ed (Mell1or, 19899).

Horizontal inhomogeneities of mixed layer properties also give rise to interesting phys-
ical effects that may need to be incorporated better into mixed layer models, especially
if they are being used as part of a study of larger-scale issues of ocean circulation and
climate. There are still many exciting observational, theoretical, computational and prac-
tical questions awaiting solution.
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Abstract

The paper considers singularity formation of a wave f.'leld

from oscillatory sources in 9 density stratified fluid. Three

kinds of forcing are studied: the monochromatic point source,
monochromatic point sources distributed on a curve and sources
distributed on a surface. In all the cases the frequency of
the forcing is taken to belong to an interval over which the
steady-oscillation equation is hyperbolic. We demonstrate thst
the solution diverges, asi oo , on a cheracteristic manifold
whose configuration is determined by the amplitude distribu-
tion of the forcing. Asym'ptotic formulae obtained show how
the rate of the divergence at a point of thst manifold de-
pends on the power of the source and the wny,in which the
characteristic cone emsnating from the point touches the
source.
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1. Introduction

We consider the large time behaviour of solutions of the
problem

i/W)Vau +ff,(x3)VZ lZ•) (.

k 4.O = u,•].= 0 ; ItL!4. 0 , I l1 oo 0 (1.1b)

where X=cr) X= (;V) Va = a8 ,) ai=.
Equation (1.1a) goverms wavs in a density stratified fluid in

the Boussinesq npproximtion Find ff(X) is the buoyAnOy fre-
quency l1i 2,p 1J. The following types of the forcing are di-
scussed:

,a.-,)e )X (1.2)

3 Q ap a ) Q( ,)=J e'. (1.,4)

feretT(z) denotes Dirac's delta-function, , is n curve and
X is a surface. When (XJ) is given by (1.2) or (1.3) we

qssume that U is the vertical component of the velocity field.

In that cases(x,) is related to the volume denBityg-u• Rx; "
of the real force a V'i= erp is the rest den-.

sity of the fluid. When the forcing is given by (1.4) we ns-

sume that U is the vertical component of the mass flow [I].

Thioughout a is taken to belong to the interval over which
the steady-oscillation operator X 0.'- V. 2 7 2i

is hyperbolic everywhre, i.e. 06(O,d-f(T3 )) , and the term

"characteristic" is used only regarding • . The hyperbolici-
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ty of e guarantees that at any point there exist directions,

forming the angle ocUTS) =ajCCOO (0/if(X$)) with respect to the

vertical line, along which wave energy of frequency 0 propa-

gates. We show that on a characteristic manifold emanating from

the support of the forcing (i.e. from Xo, r or 0 )IUI-*oo ,

as f Oo , while at any fixed point outside that manifold and

the support U remains bounded. Mathematically such beaiviour

can be regarded as formation of singularities of the limiting

solution taking place by the hyperbolicity of the steady-oscil-

lation equation.

2. Monochromatic point source.

Let £(?,*) be given by (1.2). The solution of (1.1) may be

written as

0

where (X mot X3,1i) denotes the solution of (1.1a) subject to
and the conditions:e•h 1 / =0; ek

as 2I1 oo . We are going to describe the k.oo behaviour of UL

on the characteristic conold (zcoC) Mf cl F(C' , r0 ) 0, t* -3oJ
where r(0a.X,Xo)is the square of the geodesic distance between

X and :o

32 2

X( , To)4J dilla -or CX0
Puttingme K(o) we represent U (T,) through the Fourier

trrinsforw of I -

2r1-- - oc (co -0¢)
I e -t I C

When-N (-X3) -COfnl8r- A we have K(Xd= I= I/ )(.-Uo)C CIJ
and (T _ X0 1,3, W) (-,tW) where d(acn=drlI/i ,,d

E(x)p)= -' - a p d'w " (2.1)

(see [4-81). In (2.1) the branches of the square roots (p .+ CL)

are taken so that they assume positive values on the real axis

.1
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ofp and have cuts along the rays (oo±i.tiaO3. Since ),
E(zi•) behaves like (c&) near0-- . Strmightforward
calculations give 19]:

When.&r(X3)#C003 we take advant•age of Hadamard's expansion of
a fundamental solution of X in powers of the geodesic dis-

wanae [1e"]d The first term of the expansion of

in powers of P is

X- ;',. 3 .co) = - (4Or (X,3)...Q1a)(M4(T)

the next term being proportionnl to P I/2 F.c ,,X). The argu-
ment of the complex number F 2,is assumed to equal IU/& when
V < 0 . The form of h shows that, when X belongs to K (=0),

AA /1~ nerCrow e I *(X X( O , X'3,CO)behaves like (GO- 0)/nearOw 0 , so we get[1l4"

U(X24) Xe K
wh•ere

r'A

~4Cff.. (~ 1  ~f~Z) 4  + ~ j

We note that this result is in agreement with Borovikov's by-
pothesis about the asymptotic behaviour of •(Yo,)at large

times [12].

3. Sources distributed on a curve.

From now on we assume thatU Ar•i X5r= =s Let in "a.UL

.be the curve P P~(,)) ,2(ic ), y 2), B~e [C, b] with
analytic ,(9), J•CO) satisfying the conditions:

Ni
~ ~~()+"~) 0;~ 6w # ~ g 9 (3.1)
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The solution of (1.1) with ;(•,J)given by (1.3) has the form: /

^ ¢ioo

where C>a nd E(;Tp)is the same as in (2.1 ). We rewrite

Here J(DWff 1Xc3-yt(0)j/I.T-f(e) I and 9pC9) is a smooth function
whose form depends on V ,g2 and X . We note that, by (3.1),
(pCI9)# 0 for any 96efL,6j.

The following formula is valid [13]:

U (x,) = P()e 0+0(4 (3-3)'-f'e)/"wherePO ~,bý4 4

In (3-.3) we suppress the dependence on the spatial variable for
X is assumed to be fixed.

By the analyticity dJc) can equal (Y either at a finite num-
ber of points or everywhere on frXbl. In the Latter case

P(4) do V~0 e'(D)

so U -%fi ett, ask-,oo, LetJW)=•Oat j t,...,i and
d(O)O for all ECe L, Jb and 0*9e . If Q,.pj does not con-
tain any of 9i (i =4:"', K ) then P(ci p,f)lOw . It can be
shown by passing to variable I (g)- 0;! ý in the integral over
T • Now let us consider the case when EaC,pI contains only

one of the points 9i, say 80, and does not contain 9 at which
o(8) equals either zero o'rJ( . Since or(9) is analytic and

d(O) cns there is Ili such t-hqt d')(8j)= O ~0<S <n
and d'CJj)#0 . Here is the S-th derivative of de
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Differentiating P(C•,,4,) we get

~do Pc0we) (3.4)

Applying the stationary phase method to the integral in (3.4)
and integrating over i we find that P(dPj) has the following

behaviour as 1 4 00 . If nl=i Po ,p Oi if a
P(aip.Aj) £. Lt ; if flj > 2 P(Q1'P'i) 1P. h * -'

Appropriately dividing fC, bj into a finite number of seg-
ments we may formulate the final result of this section. For
this purpose we introduce the set

K ()=fx 6 rm a, bI,dcho , 6% d(9)=oJ

when K c~) is empty and Xi YU(T,*t) =O(1) as oo - The
same result is valid when KVCI) is nonempty but X belongs nei-

ther to K r(r) nor to X When Ktr(r)is nonempty and TrK'(r)

ItLI-+oo , as 4-oo, and the asymptotic formulae are valid:

U (; i~ i +, if q= 2; tXi-eifx>.

U(T iii2,if d(wd.6on Eab2 (3.5)

Here J,= JX It for fixed X .

Thus 2I1U (X,)1 -ioo as'6i -,oo on K City) The rate of that pro-
cess depends on the position of X on K and is given by
(3.5). At any fixed point outside' KO() and Y' the solution re-
mains bounded in time. Geometrically set K (r} can be defined
as the set of all points X that satisfy the condition: y is
tangent to the characteristic cone emanating from X (i.e. to

X1r() ). Since the slope of a tangent vector on the cone
varies within the limits determined by the inequality•L•i'/f,
where ot is the angle between the tangent vector and the hori-
zontal plane, set K 6 i)is empty if

w 6r fo•.C= fI•e) e, efn for all,

where eW) 4 6ý1 , ~ e, and e4 are the unit vectors of the
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corresponding axes.

Number9t-i is the order of contact between y and Ko(X) .
Formulae (3.5) show ti~at the gres3ter this number is, the more
rapidly 1lU tends to infinity. This dependence is reasonable,
since the order of contact between y and Ko(X) reflects the
degree of focusing of characteristic rays nlong which the en-
ergy of frequency O* propagates from y to a neighbourhood of T.

4. Sources distributed on surfaces.

In this section we consider problem (1.1) subject to forcing
(1.4). Its solution has the form

C+too

We assume that 9 is a smooth closed surface and that, for any
fixedXO 9 , this surface can be covered by a finite number of
its subsurfaces 0,L parametrized by triples of functions

with (8,S) varying within open domains 2 LG Oso au each of
g, to satisfy one of the following conditions:

(a) There is no point belonging to g at which the relation

79. d(6,s) =(o,) (4.1)

holds;

(b) There is a unique point ý 0  .(oOS 0 ), (90o,) 'o , at
which (4.1) holds;

(c) Equality (4.1) holds along a curve lying on a, for in-
stance, along the curve J'(8, W)) , 6(bB) and on
that curve '

Here we used the notations: .
We restrict ourselves to considering surfaces possessing the

nondegeneracy property;

*1
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for each satisfying (b) and

Sd s) s=)e) > 0

for each I satisfying (c). Technically tkese properties enable

us to apply the appropriate form of the stationary phase method.
Fixing X and using the partition of unity we represent U(XJ)

ms a finite sum of the integrals:

U f j3g ) dpfa (4.2)8o- f lc 1-o1 • eiOO•p-i()(Pz+d2(x-p))X12d

wherey)t()E C~J.First we consider 1.for which
is separated from if and zero. From the integrand in " in (4.2)

we extract the singular terms which can result in an unbounded
growth of U. . Here the main role is played by the term

Uoing the same procedure as in§3 we get ['1-] tbatUica'wthe LO
if L satisfies (b) with (9 0 ,So) fulfilling and

deO , if Y',satisfies (c) with A(9) fulfilling the re-
lation I(9, am))=o-. In the other cases U.•TL( )iO0 or) 1+ s 00

Let us turn to the situation when 0 contains point(s) P

for which - It is clear that at such 4 (4.1) holds.

If d(X-ý) is separated from Or on .we can reduce (4.2) to

the form:
S=-' + +od+

where d 'Ps) and A*= A*W9,s)e C•Q). ence we get that
U' ,X.) = 0k f) as i- oo.

When Q_ is such, that is separated from (0, and con-

tairs point(s)} at which we estivats (4.2) using
the fact that (P'+ d") f is the Laplace transform of the func-

tion J+(di)Id where 1 is the Bessel function of order one.
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From the boundedness of the functions

SJdf f Jj(pp) and d o6 J, (si
it follows th.Rt O)a*mc

An example of the surfaces fulfilling the conditions above

is the sphere. For monochromatic sources distributed on a sphe-

rical surface we get the following picture. The absolute value

of the solution tends to infinity, asi•0oo,on two characteris-

tic cones touching the sphere along horizontal circumferences.
At the apexes of the cones U(Mli) diverges qs , while on

the rest of the cones ti(i,) diverges as Bled' Everywhere out-

side the cones and the sphere 1(v,4) remains bounded in time,
i.e. 11j(-T,)I < C(M) . This picture is in agreement with the re-

sults of [14] and [15] , where pulsations of a sphere in a

stratified fluid were studied.

Concluding remarks.

Asymptotical analysis made above mainly concerns the un-

bounded growth of IU(P)I as f+ C• i It takes place on a char-

acteristic set related to the support of the forcing. At A
point of that set the rate of the growth is determined by the

way the characteristic cone emanating from the point touches

the source, in other words, by the degree of focusing of char-
acteristic rays along which energy of frequency O0 propagates
from the source to a neighbourhood of the point.

The agreement of the results of §4 with those of [14, 15]

shows that this approach may be used for studying radiative

properties of a wide class of pulsating bodies.
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A study of fine structure in stratified wakes past a cylinder
"by optical, acoustic and probe methods.

V.E. Prokhorov
The Institute for Froblems in Mechanics RAS

E-mail:chakin@ipm.rnsk.su Fax:7/095 9382048

An echosounding is widely used to study the fine structure of ocean flows. On the
other hand, the highly sensitive optical (Schlieren) methods are used in laboratory
studies of stratifird liquid. Efficiency of the Schlieren technique is mainly provided
by a complex optical scheme and stabilization of the Schlieren image device. Besides,
for the fine vertical structure to be resolved the influence of the background vertical
gradient must be compensated, for which a special optical compensating scheme is
needed. Therefore, the Schlieren image device is generally adjusted to be sensitive
to horizontal gradients.

In this connection i could be useful to supplement a lab facility by ultrasonic
echosounder with narrow sound beam directed vertically. In this case a pressure P.
of the sound scattered by liquid inhomogeneities is given by [1]

¶ = ek+X -- r, (1)

V

where P. is a pressure of incident wave of length A, k = 21/A; c,d -- sound velocity
and its fluctuationrespectively, A' - local vertical scale of variability of density
fluctuations p' given by A'=p/(dp'/dz), V -scattering volume, r - distance from
scattering volume to antenna, z-vertical coordinate.

According to (1) scattering may be conditioned by both local fluctuations of liq-
uid features and their gradients. The first type of scattering (volume scattering) is
produced by a great number of liquid particles placed onto the inequilibrium hori-
zons due to vertical movements. The second type-surface scattering-is caused by
surfaces of discontinuity generated by flow in stratified fluid.

The structures generated by typical currents scatter a sound with a high intensity
and provide a value of scattered signal no less than average maximum of scattering
in the ocean. Formerly it was shown in lab experiments [2-4], and now is confirmed
in experiments where we studied a flow past a circular cylinder in salinity stratified
liquid without discrete particles (gas bubbles, suspensions). The flow was observed
by optical and acoustic methods. Stratification (profiles of buoyanct frequency) and
intensity of liquid parameters fluctuations were measured by a small conductivity
probe. Besides, some parameters of the flow were measured by means of correlative
processing of the acoustic data.

The experiments were carried out on the installation shown on the block-diagram
(Fig.l). The installation consists of lab basin (240x60x40era3), two supply tanks (with
fresh and salt water, respectively), a control stand with a transference mechanism,
a conductivity probe and the lab echosounder. The echosounder contains a control
pulse generator, a sound frequency generator, a power amplifier and time-controlled
amplifier which selects a initial distance sounded and a space interval observed. After
amplification the echosignals are detected and fed into a special digital transducer
(Interface) which provide a feed of digit data with a speed of 1.2 bii/s into computer
(PC) memory.

One of the important parts of echosounder was the antenna made of piezoelectric
ceramic disc placed into a special sound shade.

The regime of echosounder was selected as follows: radiated frequency-i MHz
(sound wave length A = 0.15 cm), period of sounding t, = 0.16 s, radiated pulse duration
r = 50 mcs. A time window selected by the time-controlled amplifier was 268 rics,
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Fig. I

that corresponds to total sounded depth of 20c w centered to the axis of the moving
cylinder.

To observe the picture of the flow the Shlihilren image device was used with
horizontal thread shade which partly overlapped an image of a horizontal light gap.
The axis of Shlleren device was oriented horizontally and parallel to the axis of the
moving cylinder, while the axis of the sound beam was oriented vertically. Both axes
intersected in the centre of the basin.

The cylinder (diameter d = 7.5 cm) was towed perpendicularly to its axis with a
speed us = 0.5cm/a. The parameters of the flow past the cylinder were Re = ud/v = 350,
Fr = uTb/2d = 0.11, where Y = 0.01 cm 2/s, T6 -= 10 a are kinematic viscosity and buoyancy
period.

Before the towage the vertical profile of specific conductivity was measured and
used to calculate the profile of buoyancy frequency N(z) = 2r/T6(z). Besides, the
amplitude of echo Aj from the bottom was measured and then used as a reference
signal to calculate the coefficient of scattering according to

n = A./Aj = A.I/(Ak,), (2)

where AA.A-amplitudes of incident sound signals and signals scattered by fine
structure of the flow, respectively, a = 0.3--coefficient of sound reflection by the basin
bottom.

To compare scattering features of the flow past the cylinder with the data of field
measurements and to estimate similarity of the phenomena a dimensionless cross-
section of volume backscattering was calculated

S= m•A, (3)
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where rm, = n
2 (cr/2)-1 is a coefficient of volume backscattering.

Prior to towage the cylinder was positioned closely to the end of the basin. During
the towage the shadow picture of the flow was observed and photographed. Right af-
ter the cylinder left the sound beam zone (with the diameter of 2.5 cm) the echosounder
switched on, and the backscattering profiles separated by period 0.16 s were obtained.
During one towage the total number of scattering profiles equals to 800. The cylinder
was stopped in the position x = 60 am from the sound beam axis that corresponds to
x/d = 8. After that the cylinder approached the nearest end of the basin to be towed
repeatedly in two hours.

OE+000 1CE-003 n 2E-003
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Fig.2,a-d show th• shadowgraphs obtained for the values of age of the wake,
respectively, Tb, 3.5Tb, 5.OTb, iiT6 . Each shadowgraph is followed by a series of throee
vertical profiles (echograrns) of the coefficient of backscattering according to (2). The
echograrns are separated by the time interval 0.32.. In the right side of Fig.2,d the
profile of square of buoyancy frequency is shown.

At the initial stage the parameters of the flow (Re, Fr) correspond to so called
regime of chain of suspended rotors [5] which are clearly seen on the 30 cm depth.
The rotors are placed in the nodes of t'he wa1 -e and separated from the central highly

30I
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gradient core by a wave-shaped layer of unstructured liquid. The dark inclined stripes
mark the crests and the troughs of coupled internal waves.

With the age increase the following peculiarities are observed:the large scale ver-
tical fluctuations fall into decay, the flow becomes nearly two-dimensional and the
fine horizontally oriented laminations arise on the wake periphery. While the cen-
tral highly gradient core appeared from the very beginning, the laminations on the
boundaries are formed afterwards due to decaying of vertical movements.

At the final stage the gradients on the periphery become extremely high which
can be identified by diffusive horizontal stripes outside the optical image region.

In the behavior of the profiles of backscattering the following features can be
noted.

At the early age (Fig.2,a) the profiles are weakly correlated, however, they con-
centrate near the wave-shaped layers mentioned above (horizons of 21 and 28 cm).
Likely enough, there is a case of scattering by sharp boundaries which separate these
layers from the rest of the disturbed region of the wake.

OE.+000 ICE-003 fl 2E-003
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i With the age increase the rotors' chains dilapidate: at t = 3.5T& they are yet seen
== on the horizon 32cm (Fig.2,b), but at t = 5.6T6 they are absent (Fig.2,c). Accordingly,
r, the location of the echograrns stabilizes and at t = 5.6T0 the echograrns obtained for
•i different time seem to be enclosed into each other.

,30
|C

1 .

IF . -2 1.' 01



I5

This phenomenon is enhanced at t = llTj (Fig.2,d) and followed by re-distribution
of maxima of the coefficient of scattering to the wake periphery, where the extremely
high gradients are indicated in the shadowgraphs.

The features mentioned above are conserved provided that the conditions of ex-
periment are repeated. It is well seen in Fig.3, where the results of the experiment
with the same speed (u = 0.5 cm/s) of the towage in the opposite direction are pre-
sented.

The buoyancy frequency profile varied slightly but on the whole the regime of the
flow (Re, Fr) is conserved, and we can see the same peculiarities of backscattering.

A combined analysis of the shadowgraphs and the echograms shows that there
are three main stages in the evolution of sound scattering according to the behaviour
of the flow.

At the initial stage the scattering signal is induced by the whole vertical size of
the wake, at the same time the shadowgraphs indicate intensive vertical movements.

At the intermediate stage the average value of the echosignals diminishs, and
vertical movements decay. Then a tendency of displacement of the scattered signal
maxima to periphery is observed.

At the final stage scattering from the boundaries dominates the rest region of the
wake.

Durations of the stages are clearly seen in Fig.4 where dependence of n on the
dimensionless age t/IT is shown for upper and lower boundaries of the wake. The
boundaries are taken on the positions +3.5 cm (upper) and -3.5 cm (lower) from the
axis of the cylindcr.

"". ............. upper boundary (+3.5 cm)
n .--------- lower boundarj (-3.5 cm)

-. tn=O.94,/A

6E-004-

JN If I t k h

OE+O00-
0 5 10 t/Tb

Fig. 4

The initial stage lasts from 0 to 2, the intermediate one - from 2 to 8. Between 3
and 8 the oscillations with periods of T1 and 9j/2 are observed. They are induced by
the scattering structure oscillating with the internal waves. Independent of the sign
of the liquid particles displacement the scattered power is always positive, therefore
we register the oscillations of both T1 and To/2 periods.

Information about vertical displacement and module of vertical velocity jwl can
be obtained from acoustic data using a relationship Lw! = C /t, where C,. is a solution
of empirical equation R(CM, t) = max{R(C, t)}, and R(C) is space correlation coefficient of
two scattering profiles separated by time interval t, (in this case t, = 0.16s).
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In Fig.5 values [wj vs. t/Ti are shown which relate to the experimental data in
Fig.l. To calculate jwl those a,, are taken valuable which correspond to R(C,.) > 0.7. A
part of them is significant in the time interval 0 < t/T# < 6, therefore the dependence
in Pig.5 seems to be continuous in that interval. However, in the range t/T& < 7 it is
represented by sparse pulsations which indicates a sharp attenuation of the vertical
movement.
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Fig. 6

Assuming the scattered signals to be formed by the surfaces of discontinuity
moving at a vertical distance c,,,, we can estimate the coefficient of baclcscattering n.
as [6]

2g (4)
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where IV is a mean value of buoyancy frequency, fl = c- /O= = 4
P -'8p/9S = 0.8(°/o0)-1, S-salinity, p -density.

Substitution of these values in (4) gives n. = 0.926./A, where A = g/N.2 . The

values of n4 calculated for N. = N = 2w/Tb are essentially less than empirical values of

n on the wake boundaries (Fig.4). It says that the surfaces of discontinuity play a

second-rate role in the backscattering at the early stages of the wake.
In this connection the role of the volume scatterers of d/c kind is more valuable.

In Fig.6 the records of the conductivity probe and echoscmnder output are shown [6].

We see that pulsations of conductivity connected with microscale volume fluctuations

correspond to more intensive sound scattering than high-amplitude large-scale con-

ductivity fluctuations connected mainly with the motion of surfaces of discontinuity.
A monotonous variation of the flow regime leads to alternation both of microscale

and large-scale structure [6].

1.. 5
n*0 - 2.4Tb

•*lO- - • 3.3T6

3t

1.5- * * 5. 1T6 /

0.0 0.2 0.4 0.6 0.8 5 r 1.0

Respectively, the parts of the volume and the surface scatterers vary as well as

the intensity of scattering which is shown in Fig.7 for the different ages t/Tb. These
data were obtained for the same cylinder and stratification but the different values of
towage speed. A behaviour of scattering testifys an intermittancy of large-scale and

microscale structures on 0 + 1 Froude number range. This fact is confirmed by shad-
owgraphs presented in [4,6]. It should be noted, that the mean value of dimensionless
cross-section of backscattering (3) obtained in our experiments approximately equals
those registered in the field measurements. It points to the fact, that the liquid
inhomogeneities produce intensive scattered signals as well as the discrete particles
(phyto-and zoo plankton) which are often considered to be the principal scatterers
in the ocec.n.
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MIXING AND BLOCKING EFFECTS IN TWO-LAYER FLOW
OVER AN OBSTACLE

V.Yu.Liapidevskii

Lavrentyev Institute of Hydrodynamics
Novosibirsk, 630090, RUSSIA

E-mail: lde'Qhydro.nsk.su
Fax: 383-2-35-40-50

A mathematical model of two-layer flow of mixible fluid is developed. An intermediate
layer where turbulent mixing and generation of short waves takes place is included in the
model as the third one. The governing equations consist of conservation laws and hence
internal hydraulic jumps are uniquely determined. A new type of solutions describing
an upstream steady-state blocked zone of finite length generated by a body towed in
two-layer fluid at rest is obtained.

Introduction.
Upstream disturbances of two-layer supercritical flow over a topography are nonlin-

ear in character. For two-dimensional flows of immiscible fluids they were investigated
experimentally and theoretically by Long (1954), Baines (1984), Armi (1986), Lawrence
(1993). It was found that blocking effects in stratified flows over an obstacle may result
in the increase of the shear between homogeneous layers and a substantial mixing may
occur. Mixing is responsible for such phenomena as a formation of stationary upstream
disturbance in supercritical flow over an obstacle and downstream control of amount of
entrained fluid in mixing layers and buoyant jetb (Wilkinson and Wood,1971).

Mathematical models.
A mathematicai model taking into account mixing and generation of short waves at

the interface is developed in (Liapidevskii, 1991). The basic idea of this work is to use the
total conservation laws of mass, momentum and ewcrgy for determining such quantities
as mean density, mean velocity and turbulence energy in the intermediate layer between
homogeneous ones. A similar approach was used in (Liapidevskii, 1987) to simulate two-
phase flows. The basic model and some more simple submodels are presented in this
section.

The basic model. The equations of two-layer flow with an intermediate la) - where
entrainment of fluid from the homogeneous layers takes place, may be written in the form
(Liapidevskii, 1991)

(h + 0.577) + (hu + 0.5qv), = 0,

u, + (0.5u 2 + bh + ± + p'/po), = 0,

wt + (0.5w2 + p*/po), = 0, (1)

(bh + bý) + (bhu + bqv), = O,

"The work was supported by Rusau Foundation of Fundaental FRseaerch under graut

No. 94-01-01210-a



((H - h - 7)w + yv + hu)t + ((H - h - i)w 2 + 7Iv2+

+hu 2 + Hp//po + 0.5b6r7 + b;h + 0.5bh2)_' = 0,
((H - h - n)w2 + q(v 2 + e) + hU2 + ýn2 + 2b6h + bh2 )±+ (1)

((If - h - 7)w3 + 7lv(v 2 + e) + htt + 2p'Q/po + 2bShu+

+2b(h + i?)yv + 2bh 2u)t = 0.

7i, + (71v). = 2aq,

(-qq)t + (tiqv) = a(0.5u 2 + 0.5w 2 + v2 + e - v(u + w) - 0.5bb). (2)

Here H is the channel depth, h, 7j are the depths of the lower layer and the in-
termediate one, respectively, u, v, w are the mean horizontal velocities in the layers,
b = (p - po)g/po > 0 is the given buoyancy of the lower layer, b = (p - po)g/po is
th'e buoyancy in the intermediate layer, p-, po are the densities of the lower and upper
layers, fl is the mean density of the intermediate laver, p* is the pressure inder the
chaunei lid, Q = hu 4i 2jv -+- (H - ?7 - h)w = Q(t) is the total flow rate, e is the specific
kinetic energy of a small-scale motion, q is the velocity of "large eddies" in the inter-
mediate layer. The only empirical coefficient a ý_ 0.15 is determined by the analysis of
mixing in shear flows of homogeneous and stratified fluids (Ovsyannikov et al. 1985). It
is responsible for scaling horizontal and vertical motions and may be eliminated from the
system by replacing independent variables.

The system (1)-(2) consists of ,he well-known shallow water equations for homoge-
neous layers and of the total conservation laws of mass, momentum and energy. The
last equation in (2) is a differential consequence of the rest equations of (1),(2) when
e - q2 . For q2 < e this equation is nessesary to determine an entrainment rate of fluid
froan homogeneous layers. When a scale of flow is large enough comparing with length
of waves generated in the intermediate layer, an equilibrium state (q - 0, e > 0) may be
azhived. If the entrainment may be neglected (a = 0) the equations (1),(2) are splitted
into conventional three-layer shallow water equations and equations for e, q. Therefore,
the system (1)-(?) is hyperbolic when the shear is small enough. If the velocity 'Iffer-
ence between layers increases, the intermediate layer thickness grows and the entrainment
process orevents the development of the long-wave instability in two-layer flow.

Tlterual jump conditions. The system (1)-(2) describes continuous as well as discon-
t•in vis solutions because it consists of the conservation laws. The jump conditions are
an:.quel, determined by the system. Therefore, the well-known contradiction between
the to..k momentum and energy in the two-layer shallow water theory may be overcome
in the t.iree-layex system since the energy e of small-scale motions in the intermediate
'zyer is included into consideration. When the entrainment may be neglected (a = 0),
the energy equation is not necsessary to find continuous solutions of (1),(2). However,
it gives an additiona, admissibility condition e _> 0 for internal jumps. When 7 -t 0,
we have 1.vo-layer flow and the conservation laws axe incompatible for flows with internal
jumps. Nev,. rthe'ess, it will be shown in the next section that there are travelling waves
pta pagating through two-layer fluid at :est (w = 0, p- 0, qo = 0, hIo < H) with the



supercritical velocity D > s/Th and containing no singularities. This new class of
solutions of the system (1)-(2) will be applied to describe blocking effects in two-layer
flow over an obstacle.

Equlibrium model. Equilibrium models may be used when a scale of the flow is much
more then a length of waves generated in the intermediate layer. In this case the equations
(2) should be replaced by

q=0, e=v(u+w)+0.5bii-0.5(u2 +w 2 )-v 2 >0. (3)

Equations (1),(3) describe equilibrium two-layer flows with a turbulent intermediate
layer. Notice that in (1),(3) the total momentum and energy equations are included and
the intermediate layer thickness n is derived from (3) and the energy equation. Jump
conditions axe uniquely determined by homogeneous conservation laws (1).

Turbulent submerged jet. The basic model (1)-(2) is rather complicated. It takes the
more simple form when the intermediate layer reaches the bottom and the thicker upper
layer is at rest (h- 0, q «< H, w-= 0, p* = 0)

(0), + (tv). = 0,

(17V), _- ('iv2 + 0.56n2). = 0, (4)
('i(v "'I + (qv(v 2 + e + 2b)), =0,

?it + (Ov)X = o(q,

(,'q), + (,iqv,) = 0.5a( V2 + e - b). (5)

Equations (4),(5) are a version of the shallow water equations taking into account the
entrainment from the upper layer. Main peculiarities of the basic model may be better
understood by this model. Characteristics of (4),(5) are represented by

dx/dt = v ± iJ , dx/dt = v.

The equilibrium conditions for the system take a form

q=0, v 2 + e=' (6)

They can be fulfilled in subcritical flows only (v2 < b&) since e > 0 everywhere. For the
equilibrium model (4),(6) characteristics are defined from

dx/dt = 1.5v ± j-75(~ - v 2 ), dx/dt = v.

Hence, the equilibrium system is hyperbolic for subcritical flows wherc (6) can be
satisfied. For supercritical flows the nonequilibrium model (4)-(5) is more adequate. In
such flows the high entrainment rate caused by the right-hand part of (5) leads to fast

cowing of a turbulent layer thickness untill a subcritical condition is reached. The system
(4)-(5) has a variety of solutions. Among them there ar3 continuous seliton-like structures
and internal jumps followed by periodical waves. Travelling waves of (4),(5) propagating
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through au equilibrium state (uo = 0, eo = b6071) are investigated in (Liapidevskii, 1989).

It is shown that there is a "soliton" for VO.75b0 . < D _ : i.e. when the velocity
D of a travelling wave lies between "equilibrium" and "frozen" speeds of disturbances,

and a "jump-wave" configuration is realized for D > 18/•o. Notice that for D = 3bo0
there .s a "smooth bore" connecting equilibrium states. In this case there are no waves
generated downstream the bore.

Two-layer flow over an obstacle.
In this section we consider some applications of the mathematical models for describ-

ing mixing and blocking effects in two-layer flow of mixible fluids over a topography. The
simplest case of the flow governed by single-layer shallow water equations may be realized
when the two-dimensional body of maximal height h,. is towed along the bottom with
the constant speed D in the thinner lower layer (h0 << H, r/o = 0) of the two-layer fluid
at rest (figure 1). The flow may be defined in terms of two dimensionless parameters

b = Fr = D,'VbA0

A flow-regime diagram in the (Fr, 8) - plane for mixible fluids differs considerably from
that for immiscible fluids because mixing between layers results in a stationary blocked
zone of the finite length upstream of the towed obstacle. A structure of such flows may
be described by solutions of (1),(2).

Steady-state solutions of (1), (2). If a flow is steady in a frame of reference moving
with the towed body the following relationships for continuous solutions of (1),(2) are
satisfied (w = 0, p" =- 0, 77o = 0)

b=0.5b, e = q2,

hu + 0.Srv - D(h + 0.S5,) ;- -Dho,

0.5u 2 + 0.5b77 + bh - Du = bho = J-,

Au2 + IV
2 - D(hu + ,v) + 0.5b(h2 + hy + 0.5,q2) - 0.5b (7

i(v - D)(v2 + q2) + h(u - D)u2 + btyhu + b(h + ?7)??v+

+2bh 2u - bD(0.5t7 + hAt + h2) = -bDho.

All dependent variables may be expressed from (7) as functions of one variable, say, u.
The relationship Q = n(D - v) = Q(u) is shown in figure 2 for Fr = 2. Along the curve
A the energy e = e(u) < 0 and this branch is not considered here. Along B we have
n - 0, h -+hA0, Q -- 0 when u -- 0. The existence of limits v(u) -4 D, e(u) -4 D2

when u --+ 0 may be shown by differentiation of (7). The part of the curve B where
e(u) > 0 is shown in figure 2 by solid line. A dependence of variable x = x - Dt may
be found from (7) and the following equation

dQ(u)/dý = 2aq(u). (8)

Solutions of (7),(8) are shown in figure 1 for Fr = 2 (dotted line). Solutions of
corresponding unsteady problem (1)-(2) are shown in figure I by solid line. The steady



upstream flow is determined by the parameters Fr and b since the flow is critical at
crest (state "'c") and supercritical downstream the body. Therefore, if the towed body is
short enough comparing with. the upstream blocked zone the entrainment over the body
can be ignored and the rclationships between the states "1" and "c" just upstream and
at the crest, respectively, have a form

((U0 - D) 2  
1 (vs-h D)2 -_ . = 0. (9

bk )(0.56% -.

-7( vc) = niD- vi) =Q,

hc(D - u,) = 41 (D - isi) = Dho - 0.5Q1

'- Du + b(O.5.... + h. + 6) ( 1

0.5V'2 - Dv, + 0.5b(;7, + h, + 6) =

= 0.5v2 - D 1 + 0.5b(77, + hi) = J1i
2 2

The equation (9) is the regularity condition of the two-layer flow at the crest. A
function 6 = 6(Ql) may be found from (9),(10) for every state "1" corresponding to
the curve B for 0 c 9, < Qo. For Fr > Fr. (Fr. = 2.1) the intermediatc layer reaches
the bottom (h1 = 0, Q, = 2h 0 D, 6 = '(Q,)) and for d > 6t the flow is governed by
(4),(5). The structure of travelling waves was ivestigated in this case in (Liapidevskii,
1989). It may be shown that for Fr> Fr* (Fr' 2.6) there is a steady upstream flow
with the transition from a mixing layer to a submerged jet for all 6e> 6 in contrast to
the flow-regime diagram for immiscible fluids (Baines, 1984).

Mixing layer and submerged jet. Further examples of simple turbulent shear flows,
namely mixing layer and submerged jet, may be obtained by discharging a dense fluid
along of the horizontal bottomn in a quiescent light fluid ambient in a two-dimensional
channel (figure 3). Such flows have been investigated theoretically and experimentally in
a number of works, for example by Wilkinson and Wood (1971) and Chu and Baddour
(1984). The system (7)-(8) may be used to describe a stationary mixing layer for D = 0,

77o = 0, Fr = uO/Vs > 1. The dependence Q = -(u) from (7) is similar to that shown
in figure 2. It is depicted in figure 4 for Fr <c 5 (the curve 171) and for Fr > 5 (the
curve 172). There are two branches A and B corresponding to subcritical and supercritical
flows, respectively. If Fr > 5 the mixing layer reaches the bottom and a submerged jet
governed by the system (4),(5) is realized.

The distinctive feature of the mixing layer from the travelling wave considered above
is that e > 0 along the curves A and B. Hence a transition from the supercritical to
subcritical flow by an internal hydraulic jump is possible. If the downstream control is
absent (6 = 0) the critical flow with the maximal entrainment fw is developed. When
increasing the dimensionless height of the obstacle the transition "1" - "2" by a hydraulic
jump occurs and the total entrainment in supecritical flow decreases. Notice that no
additional hypothesis should be used to describe the maximal entrainment regime by
(7),(8). Comparisons with experimental date presented in Chu and Baddour (1984) for



mixing layers and buoynant jets show that the system (J.),(2) describes well the averaged
flow dynamics.

Conclusions.
The three-layer flow model presented here is prekrable to the two-layer one since

mass,momentum and energy are conserved irn th- fl,- and the governing equations consist
of conservation laws. Therefore, the well-known contradiction in the shallow water theory
of two-layer flows may be overcome and internal hydraulic jumps are uniquely determined.
It iL shown that the mathematical model containing no essentional empirical constants
represents the main peculiarities of entrainment and downstream control in mixing layers
and buoyant jets. In particular, the model explaines an appreciable difference in the
entrainment rate for subcritical and supercritical flows.

This model is used also for describing the mixing and blocking effects upstream an
obstacle towed with a constant speed along the bottom in the two-layer mixible fluid
at rest. It is shown that in contrast to the two-layer flow of immiscible fluid there is a
steady-state zone of finite length just upstream the obstacle where the flow is blocked and
mixing occurs. It is interesting to note that the transition from a supercritical external
flow to a subcritical one is continuous and a mixing starts at the upstream boundary
of the blocked flow with a finite entrainment rate. If the towed body is high enough a
mixing layer may reach the bottom and a new type of flow would be established. The
steady solution of (1),(2) considered above may be used as a good test in time-dependent
calculations since the perturbated upstream subcritical flow has the finite length.
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1. Inroduction

Mathematical simulation of the heat-mass transfer in the laboratory basin of LAP RAS
dined for studying the dynamics of internal waves is based on the numerical solution
of Navier-Stokes andenergy equations. Unlike the two-dimensional models of small and
intermediate basins consiclered before [1-3J, the numerical simulation of stratification in
the large basin is performed in three- dimensional formulation permitting to take into
ccount volume iuid flow. This seems to be important for both to ascertainthe possibility

of creating and maintaining stable temperature stratification, which models the vertical
density stratification in the upper ocean layer and to study dynamics of internal waves
appearing in the basin due to temperature ana hydrodynaWics fluctuations.

The Yst three-dimensional numerical investigations regarding natural convection were
devoted to cavity flow [4,51. In these studies thelavier-Stbokes equations are expressed in
terms of the vector potential and vorlicity (0 •). This formulation has the advantage that
the continuity equation is automatically saisfied and the pressure terms are eliminated.
As an alternatives the formulation in terms of primitives variables-velocity and pressure
(?,P), and the formulation in terms of velocity and vorticity (V, d) [61 are used.

In the present paper to study hydrodynamics and heat exchange at the natural
convection m ilhe laboratory basin the flow field is calculated numerically using the
variables ($W).

2. Formulation of Problem

The model of the basin (Fig. 1) is a parallelepiped 'with the volume (d*H*1). Stratilica-
tion in the basin is a result of the inhomogeneous temperature regime on the side wails
(planes ABCO and-A'B'C'IY) : the temperature at the height from H up to H is Tat the height from HE u to surface in T7. The rest part of the side wall lower 1 0, fae
walk (the plane ABB'Ajand B'CC'B), and the bottom are heat isolated. On the surface
heat exclanjge with surrozuýdig takes place accordiug to the formula q - T(T, - T ),
where q is the ae _aty oi the heat flaw, T',.,. is the t!eTapature of the iurrounding , is
the Lemperature of the surfae, a-het exclange coefficient. Convection arises due to the
violation of hydrostatic liquid equilibrium caused by the iagomogeneity of the temperature
distribution in the field of mass fo•cs. (n

In the dimensionless variables iV, T (vortex, vector potential, temperature) the
system of nonstationary Navier-St•o& and energy equations is written as

V . .. ••;$is••.& -i•.a-l•i:fr ,.1 CTJ•' E ALWI•bT rn,.••/:••..••Jd. ~".r.•a• Jl~i•••" ' ••••'- ••r•i ~
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& (Vw,) +V 2w, + wVU +Gr -Tyi
= V(Vw5,) + V2wy + OVV - Gr -T_ (I)

= -V(vw.,) + V•W + -VW
PE = -V(17T) + -LV2T (2)

= -v; "(3)

where V(U, V, W) is the velocity vector which define by the vector potential J as
V = Aw, i.e. U = i9iPI- OOVlOZ, v = 8Cf/Oz- 0¢,/O, w = W=O /Oz - a ay.
On the solid walls and the bottom the condition of impermeability and sticking is fulfilled

= 0, DO/On = 0, n -is a normal to the boundary), The transition to dimensionless
variables is made by means of following scales : the heght of the side walls H is the
characteristic length, H /21 is a time scale, AT = (T1 - To) is a temperature scale.
The main similarity criteria are the Grashof number and.the Prandtl number (Gr =
g#Bl3 AT/0 2, Pr = v,/k, there v ,k and fl are the kinematic viscosity, conductivity and
thermal expansion coefficient respectively).

3. Method of Solution.

To solve the system of Navier-Stokes and energy equations numerically, the fiaite-
difference methodr is used. For the transport equations of vorticity and energy the
monotonous approimation of the convective terms of the second order accuracy with
com*pensation of scheme viscosity by Samiarsky method [71 is adopted. All these equations
in tfine-dependent formulation are solved by applying an alterinatng direction implicit
method. The assumption that the flows are solenoidal at ý makes it necessary to solve
three three-dimensional Poisson equations for each time layer. The direct method with
anplying of Fast Fourier Traudorm is used providing a high accuracy of the solution thePoisson .equations.

To solve eq.(1) numerically the boundary conditions for the vorticity are calculated by
the method given in [8] for a two-dimensional case. Thus, the succession of the calculations
at the every time step is as follows:

a). Using the diffirence analog of the eq.(3) we calculate 0-4+1 - the vorticity at (n+I)-
th time layer at the boundary y of the region of calculating iwhich is distant from the
boundary of the main region by one spacing.

b). Solving the system of equations (1) we find 0,+1 via 0 inside the region, bounded
by t.

c). We calculate ij1 from the eq.(i)O
d) Using the boundary condition OO/On = 0, we calculate the vector potenti •+

in the near-boundary node more exact taking into account the second condition ¢ 0 at
the boundary.

e). We calculate a new velocity vector V11+1 using the definition A = '.
f. Solving eq.(2) we find the temperature field in the all volume region.
The final .gmperature and fluid floss distribution are finded in the process of stationary

stte establihing.

4. Results of Calculation
The numerical calculations were made in the half of the region with assumption about

a symmetry relatively to the vertical symmetry plane SS'S"SN of the basin (see Fig.1).
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We use a grid which is inhomogeneous in y, with a considerable thickening of nodes
in the boundary layer near the vertical side walls and homogeneous in the two other
directions. These reuirements should be met in order one may use FET method for
solving Poisson equation. The maximum number of the nodes to be computed by PC
486 equals 33*60*~33 for the half of the volume time spacing equals r = 10-6 The

r cilr clcuatin ws prfomedforthe model of the basin given mn Fi I: HO == 0.6m,
(7 = 0.7m),H =2mn,d =4m, I= 20m, To-=60C, Ti =240C, Eii = 201 C,
Ir-=1.4* 1011, Pr =~7'

.To make the' computer time minimum the following way of transition to the stationary
regime was used. Assuming that the temperature is practically homogeneous along the
basin length and varies only near the side walls the fields of temperature and flow were
calculated at the first stage in a half of plaine EF R. on the base of two-dimensional model,
dpscribed in [1-31. After The onset of the stationary regime of convection (see Fig.2) the
fields of velocity and temperature were scattered along the basin lenght on all nodes of
the three-dimensional grid. Then the calculation of the three-dimensional model (1-3)
was performed till the stationary state established.

Fig.2 a,b shows the isolines of x-projection of the vector potential and isolines of
the temperature on the p lane EFF'E (see Fig.I1).-retnuabsiThe analysis of these -figures shows that the convective process at theretnuabai
induced by temperature profilin of the side walls leads to the formation of characteristic
four-vortex structure of the goAl water circulation in the basin with various direction
higher and lower the temperature. jump. This structure maintains the stable vertical
ternexature stratification in the volume with a characteristic thermochne at the depth
of te assigned temperature ]ump. St ratification in this case isyracticafly homogeneous

aligteBasin leng=th except the boundary layers along the wails.
Th alclaed teperaf ure profile in the middle verlical cross-section (Fig. 2c) practi-

cally coincides rather well with the one measured in the excperimential basin of lAP
(designed b crosses on th It 61y in the temperatureion.umydro

The.P co"ute eot~ eclall tergo r uprem aindThe co~uctednumericafskikM on revealed th einof unfifor&tem aladhdo
dynamics fields needed for investigation of internal waves in the basin. This region
occupies almost the entire space along the basin length except for about two-meter parts
off th~e end wails.
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1. Inroduction

Mathematical simulation of the heat-mass transfer in the laboratory basin of LAP RAS
designed for studying the dynamics of internal waves is based on the aumerical solution
of Navier-Stokes and energy equations. Unlike the two-dimensional models of small and
intermediate basins considtred-before [1-3], the numerical simulation of stratification in
the large basin is performed in three- dimensional formulation permitting to take into
accounifvolume fluid flow. This seems to be important for both to ascertain the possibility
of creating and maintaining stable temperature stratification, which models tie vertical
density stratification in the upper ocean layer and to study dynamics of internal waves
appeaing in the basin due to temperature anA hydrodynamics fluctuations.

The first three-dimensional numerical investigations regarding natural convection were
devoted to cavity flow [4,5]. In these studies theNavi-r-Sfokes equations are expressed in
terms of the vector potential and vortidty (, 0). This formulation has the advantage that
the continuity equation is automatically satisfied and the pressure tenns are elimcIted.
As an alternatives the formulation in terms of primitives v icu ,wi-velocity and pressuic
(V, P), and the formulation in terms of velocity and vorticity (V, :) [6] are used.

In the present paper to study hydrodynanics and heat exchange at the natural
convection in the laboratory basin the flow field is calculated numerically using the
variables (V, ,)-

2. Formulation of Problem

The model of the basin (Fig. 1) is a parallelepiped with the'volume (d*H*1). Stratiica-
tion in the basin is a result of the inhomogeneous temperature regime on the bide walls
(planes ABCO and A'B'C'D') : the temperature at the height from H uj to H isT0,
At the height from/H upto surface T. The rest part of the side walls lower Ai, face
walls (the plane ABAra'ndudB'CC"B), and the bottom are heat isolated. On the surface
heat exchange with surrounding takes place according to the formula q = a(T, - T.,kr),
where q is tte density of the heat flow, T is the temperature of the surrounding, T. is
the temperature of the surface, ci-heat exichnge coefficient. Convection arises due to the
violatioi of hydrostatic liquid equilibrium causid by the ingomogeneity of the temperature
distribution in the field of mass forces...

In the dimensionless variables 0, ý, T (vortex, vector potential, temperature) the
system of nonstationary Navier-Stokes and energy equations is written as

F?;
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3. Me'od of Soti.
To solve the sistm of Navim-Stohm and eoerny equatiqns nunmyic ,j the finite-

difference method is used. For the transport eqamti-o of vortict - eagy the
monotonous ap na of the convective trmns of the second o0&1 accuracy with
com~pensAton o eme vjicoity by Samarnky method [7'1 is adopted. All these equations
in tine-depeadeut fomulatn are solved by applying an alterating direction impiat
method. The asumption that the flows are slenoidal al ; makms it necessar to solve
three three-dimensional Poisson equation for each time layer. The direct method with
e.plying of Fast Fourier Transurn is used providing a hi4h accuracy of the solution theo equations.To solve eq.(1) numexically the boundary conditions for the vorticity are calculated by
the method given in [81 for a two-dimensional case. Thus, the succession of the calculations
at the every time step is as follows:

a). Using the dierence analog of the eq.(3) we calculate c+ - the vorticity at (n+ I)-
th time layer at the boundary - of the region of calculating iwhich is distant from the
boundary of the main region by one spacing.

b). Solving the system of equations (1) we find u +1 via w inside the region, Founded
by T.

c). We calculate Ot+l from the eq.(3). +1
d) Using the boundary condition &0P/&n = 0, we caklculate the vector potential

in the near-boundary node more exact taking into accouut the second condition • = 0 at
tl- boundary.

e) We calculate a new velocity vector Vf1 using the definition V = Ai.
.S•lvina eq.(2) we find the temperature field in the all volume region.

__A _q A. .... kI.4_ ~A~3 .. ep

state estabishing.
4. Results of Calculation

The nunwical caic~daiions were made in the half of the region with assumption about
a symmetry relatively to the vertical symmetry plane SS'S"S•' of the basin (see Fig.l).



We use a grid which is inhomogeneous in y, with a considerable thickening of nodes
in the boundary layer near the vertical side walls and homnogeneous in the two other
directions. These requirements should be met in order one may use FF1 method for
solving Poisson equation. The maximum number of the nodes to be computed by PC
486 equals 33*60*33 for the half of the volume time spacing equals r - 10--. The
particilar calculation was performed for the model of the basin given m Fig. 1 : H0 = 0.6m,
El = 0.7m, E = 2m, d = 4m, I = 20m, To = 60 C, T1 = 240 C, T]tj = 200 C,
Gr = 1.4 * 10 11, Pr = 7.

To make the computer time minimum the following way of transition to the stationary
regime was used. Assuming that the temperature is practically homogeneous along the
basin length and varies only near the side walls the fields of temperature and flow were
calculated at the first stage in a half of plane EFdR on the base of two-dimensioual model,
described in [1-33. After the onset of the stationa, regime of convection (see Fig.2) the
fields of velocity and temperature were scattered along the basin lenght on all nodes of
the three-dimensional grid. Then the calculation of the three-dimensional model (1-3)
was performed till the stationary state established.

Fig.2 a~b shows the isolines of x-projection of the vector potential $ and isolines of
the temperature on the plane EFF'E (see Fig.1).

The analysis of these -figures shows hat the convective process at the rectangular basin
induced by temperature profiling of the side walls leads to the formation of characteristic
four-vortex structure of the global water circulation in the basin with various direction
highe& and lower the temperature jump. This structure maintains the stable vertical
temperature stratification the volume with a characteristic thermoclne at the depth
of the ass'ged temperature Tamp. Stratification in this case is practicaDy homogeneousalong the a length except th, bounday ayers along the wal.The calculated temperature rofile in the middle vertical cr068-section (Fig.2c) practi-
cally, coincides rather well with the one measured in the experimential basin of LAP(dei ed b crosse on the •plot),e peialy in t~he tempierature jump region."The conducted numericaI simiulatlon revealed the region of uniform thiermal and hydro-
dynamics .fields needed for investigation of internal waves in the basin. This regionoccupi~es almost the entire space along the basin length except for about two-meter partsgft end wails
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