<i>i</i>		517m 41121449 319 115 1114 0188
2. A set of the se		
1. AGENCY USE ONLY (LEAVE CHARA) 2 REPORT DATE FIN	PCATTURE AN MAL/01 DEC	91 TO 31 MAR 93
4. TITLE AND SUBTITLE UUGM CODE DEVELOPMENT (U)		5
5 AUTHOR(S)	ga din da da interneta a si anga pananga sama	
Professor S. Eidelman		6775/DARPA F49620-89-C-0087
2 PERFORMING COLAMIZATION COLAMINATION COLAMINATION COLAMINATION Science Applications International Corp 1710 Goodridge Drive, MS 2-3-1 McLean VA 22102	AEOSR-TR-	 3 - (3 - (3 - (3 - (3 - (3 - (3 - (3 -
2. SPONSORING MONITORING MODIFICATION OF DECRESSION OF DEC	3	10 SPONSDRING MONITORING VGENCY REPORT NUMBER F49620-89-C-0087
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLI	MITED	126 DISTRIBUTION CODE
13. Additional and a set of the primary objective of SAIC was to develop an unsite that dynamically adapts to the computed solution of of gasdynamics in two and three spatial dimensions. imposed on the algorithm were: robustness, accura adaptability. The main research and code development these objectives; extensive testing and code validemonstrate the code's performance for realistic CFD in all flow regimes from subsonic to hypersonic development of the AUGUST code "Adaptive Unstructura Triangles". AUGUST is implemented for solution of adaptive triangular or tetrahedral grids. The code Godunov method, allowing accurate and robust numeric gas dynamics. A new method was developed for Direct D AUGUST code was also implemented for multiphase, structured/unstructured version of the AUGUST code was was extensively validated for a wide range of problement.	tructured g the time de Important acy, effici t effort wa idation eff problems. . The main red Grid Up Euler's en fully implicat solution bynamic Grid multicompon s also deve	rid algorithm and code pendent Euler equations requirements that were ency, flexibility. and is focused on achieving ort was undertaken to The method is accurate n achievement was the owind Second Order for quations on dynamically ements the Second-Order of Euler equations of Refinement (DDR). The ent flows. A combined loped. The AUGUST code s proven to be a robust 15. NUMBER OF PAGES 255
 13. ABSTRACT Affection 200 and 20	tructured g the time de Important acy, effici t effort wa idation eff problems. . The mai red Grid Up Euler's ec fully impl cal solution bynamic Grid multicompon s also deve	rid algorithm and code pendent Euler equations requirements that were ency, flexibility, and is focused on achieving ort was undertaken to The method is accurate n achievement was the owind Second Order for quations on dynamically ements the Second-Order a of Euler equations of Refinement (DDR). The ent flows. A combined loped. The AUGUST code s proven to be a robust 15. NUMBER OF PAGES 255 16. PRICE CODE ATION 20. LIMITATION OF ABST

Standard F	201.00	298	26A	÷.
in in ped by	3.565	da 1	24. °A	
- H 1 1 2				

UUGM CODE DEVELOPMENT

. .►

....

.

r

Science Applications International Corporation An Employee-Owned Company

e and a second sec

••

UUGM CODE DEVELOPMENT

Accesio	n For		
NTIS DTIC Unanno Justific	CRA&I TAB ounced ation		
By Distribution /			
Availability Codes			
Dist	Avail an Spec	nd or ial	
A-1			

DITC SHALLT CORPORATE 3

Post Office Box 1303, 1710 Goodridge Drive, McLean, Virginia 22102 (703) 821-4300

UUGM CODE DEVELOPMENT

SAIC Final Report #SAIC-93/1152

Final Report for work accomplished under AFOSR Contract #F49620-89-C-0087 during period 15 October 1990 through 30 November 1992

> Contributors: Shmuel Eidelman William Grossmann Isaac Lottati Xiaolong Yang Marty Fritts Adam Drobot Michael Kress Aaron Friedman

Prepared by: Science Applications International Corporation Applied Physics Operation 1710 Goodridge Drive, MS 2-3-1 McLean, VA 22102

Sponsored by Defense Advanced Research Projects Agency DARPA Order No. 6775 Monitored by AFOSR Under Contract No. F49620-89-C-0087

July 26, 1993

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.

EXECUTIVE SUMMARY

This progress report documents the effort conducted at SAIC from 15 October 1990 through 31 May 1993, under DARPA and AFOSR contract #F49620-89-C-0087 entitled "UUGM Code Development".

Scope of Research

The primary objective of SAIC was to develop an unstructured grid algorithm and code that dynamically adapts to the computed solution of the time dependent Euler equations of gasdynamics in two and three spatial dimensions. Important requirements that were imposed on the algorithm were: robustness, accuracy, efficiency, flexibility, and adaptability. The main research and code development effort was focused on achieving these objectives; extensive testing and code validation effort was undertaken to demonstrate the code's performance for realistic CFD problems. The method is accurate in all flow regimes from subsonic to hypersonic.

Achievements

C

The main achievement was the development of the AUGUST code (Adaptive Unstructured Grid Upwind Second Order for Triangles). AUGUST is implemented for solution of Euler's equations on dynamically adaptive triangular or tetrahedral grids. The code fully implements the Second-Order Godunov method, allowing accurate and robust numerical solution of Euler equations of gas dynamics.

A new method was developed for Direct Dynamic Grid Refinement (DDR). This method allows grid refinement in arbitrary regions of the computational domain, using only one level of undirectness in the logical data structure. The DDR is an integral part of the AUGUST solver and allows manipulation of the grid as a part of the solution. The adapted grid is not only more refined in the adaptation regions of the flow but is also improved structurally due to a refinement algorithm.

The AUGUST code was also implemented for multiphase, multicomponent flows. We used a multiple-fluid description, where a separate set of conservation laws is used to describe every flow component. In our approach Lagrangian tracers are used to describe sparse or discrete flow components that do not form a continuum. Use of unstructured triangular grids allows adjustment of the grid resolution to the accuracy requirements in the flow subdomains.

A combined structured/unstructured version of the AUGUST code was also developed. Following this approach the unstructured adaptive grid is used only in the flow regions requiring adaptation or description of the complex geometry elements. The structured grid is used to simulate the larger part of the computational domain. This approach has allowed us to capitalize on the advantages of both structured and unstructured grid approaches. Using the structured/unstructured grid version of the

i

AUGUST code, we simulated the shock wave focusing problem for the reflector used for extracorporeal shock-wave lithotripsy. In this simulation, we showed that the solution smoothly transits through the interfaces between the grids, maintaining the same accuracy and resolution.

The AUGUST code was extensively validated for a wide range of problem: and has proven to be a robust tool. The code was initiated at the start of the UUGM project and has now evolved into a production code that is used for many applied problems. The list of applications includes potential flow past an ellipse, hypersonic flow past a flat plate, shock diffraction over single and double wedges, mine explosions under vehicles, pulsed detonation engines, shock focusing in air, and nonideal airburst in multiphase media. The code has shown the required robustness and insensitivity to the initial user specified grid. The number of nodes required to obtain a high-quality solution is significantly smaller than for structured grid codes. This is particularly true for transient problems with complicated flows having discontinuities.

It is important to note that the AUGUST code obtains a high resolution solution with no "knobs." The various flow regimes, except those requiring a different definition of boundary and initial conditions, were simulated using the same code.

ii

TABLE OF CONTENTS

1. INTRODUCTION	. 1
1.1 RECENT CFD DEVELOPMENT	. 1
1.2 UNSTRUCTURED MESHES IN COMPLEX GEOMETRIES	. 1
2. UUGM: UNIVERSAL CFD SIMULATION ENVIRONMENT	. 2
2.1 MATHEMATICAL MODEL AND INTEGRATION ALGORITHM	. 3
2.2 MULTIPHASE MULTICOMPONENT REACTIVE FLOW	. 9
2.3 DIRECT DYNAMIC REFINEMENT METHOD FOR UNSTRUC-	
TURED TRIANGULAR GRIDS	. 13
2.4 STRUCTURED/UNSTRUCTURED COMPOSITE GRIDS	. 16
2.5 THREE-DIMENSIONAL CAPABILITY	. 19
3. APPLICATIONS	. 22
3.1 POTENTIAL FLOW OVER AN ELLIPSE	. 23
3.2 HYPERSONIC FLOW PAST A FLAT PLATE	. 24
3.3 SHOCK ON WEDGE WITH ADAPTIVE GRIDDING	. 26
3.4 MINE EXPLOSION UNDER VEHICLE	. 30
3.5 PULSED DETONATION ENGINE	. 36
3.6 SHOCK FOCUSING IN AIR	. 36
3.7 NONIDEAL AIRBURST IN MULTIPHASE MEDIA	. 39
3.8 FLOW IN THE SARL WIND TUNNEL	. 39
3.9 SHOCK ON DOUBLE WEDGE	. 42
3.10 SUPERSONIC SPRAY COATING DEVICES	. 46
3.11 DUSTY FLOW OVER A CYLINDER	. 49
3.12 IMAGE PROCESSING	. 52
3.13 DETONATION IN A MULTIPHASE MEDIUM	55
	~~
4. CONCLUSIONS	. 60
REFERENCES	61
ADDENIDIX As Code Description	
APPENDIA A. Code Description	

APPENDIX B: Listings

Ô

•

APPENDIX C: Copies of Publications

LIST OF ILLUSTRATIONS

Figure 2.1.1	Representative triangular cell in the mesh showing fluxes and	-
	projected values.	5
Figure 2.1.2	Density profile comparison between analytical results and results	
	obtained by applying the second-order Godunov algorithm using	
	structured or unstructured grids.	8
Figure 2.3.1	Illustration of the grid refinement process.	14
Figure 2.3.2	Illustration of the grid coarsening process.	15
Figure 2.4.1	A possible candidate configuration for hybrid structured/unstructured	
	domain decomposition.	18
Figure 2.4.2	Hybrid structured/unstructured grid used to simulate ellipsoidal	
	reflector, showing adaptation to curved boundaries.	18
Figure 2.5.1	An elongated tetrahedron can be refined using smaller tetrahedra that	
-	are nearly regular.	20
Figure 2.5.2	Points used to define structure of vehicle.	21
Figure 2.5.3	Tetrahedral grid generated by Finite Octree method.	21
Figure 3.1.1	The grid used for simulating the flow over an ellipse.	24
Figure 3.2.1a	Grid for simulation of hypersonic flow over a flat plate.	25
Figure 3.2.1b	Second order solution for a flat plate, pressure contours. Mach = 32 :	
	5509 grid vertices: $P_{max} = 5.0 \times 10^4 Pa$, $P_{min} = 98.7 Pa$.	26
Figure 3 3 1a	Density contours at early time for shock in planar channel	
	$(M = 8.7 \text{ wedge angle} = 27^\circ)$	27
Figure 3.3 1h	Grid at early time for shock in planar channel	~.
118010 3.3.10	$(M = 8.7)$ wedge angle = 27°	28
Figure 3 3 72	Density contours at intermediate time for shock in planar channel	20
Figure 5.5.2a	Density contours at intermediate time for shock in planar channel $(M - 8.7)$ wedge angle -27°	20
Elemen 2.2.0h	(101 - 0.7), wedge aligie - 27).	20
rigure 5.5.20	One at intermediate time for shock in plana channel $O(-9.7)$	20
F ' 333	(M = 8.7, wedge angle = 27°).	29
Figure 3.3.3a	Density contours at late time for snock in planar channel	~~
_	$(M = 8.7, wedge angle = 27^{\circ}).$	29
Figure 3.3.3b	Grid at late time for shock in planar channel	•••
	$(M = 8.7, wedge angle = 27^{\circ}).$	30
Figure 3.4.1	Two views of interaction between mine blast and M925 cargo truck:	• •
	pressure contours at $t = 0.574$ msec.	31
Figure 3.4.2	Blast – plow interaction: pressure contours in initial stage.	33
Figure 3.4.3	Blast – plow interaction: pressure contours in advanced stage.	33
Figure 3.4.4	Structural response of the plow to blast load:a) $t = 0$; b) $t = 200$	
	msec; c) $t = 400$ msec; d) $t = 600$ msec.	34
Figure 3.5.1	Pulsed detonation engine simulation: flow tracers.	35
Figure 3.6.1a	Hybrid structured/unstructured grid used for numerical simulation of	
-	ellipsoidal reflector.	37
Figure 3.6.1b	A schematic drawing of the center cross section of the ellipsoidal	
-	reflector.	37

۲

•

Figure 3.6.2	Pressure contours at time $t = 1.21 \times 10^{-6}$ sec showing the incident	70
Figure 2.6.2	wave as reflected from the reflection wall. Description of time $t = 8.41 \times 10^{-4}$ and showing the stage of	30
rigule 5.0.5	Pressure contours at time $t = 8.41 \times 10^{-5}$ sec showing the stage at which the maximum forward processing is obtained.	20
Eigenera 2 7 1	Formation of a radiative aloud. Multiphase simulation	38
Figure 3.7.1	The unstructured grid used to simulate the SADI wind turned	40
Figure 3.8.1	The unstructured grid used to simulate the SARL wind tunnel.	41
Figure 3.8.2	The pressure contours from the simulation of the SARL wind tunne	41
Figure 3.9.1	Experimental interferogram of a shock hitting a 45° corner at $N' = 2.85$.	42
Figure 3.9.2	Interaction of a Mach 8.7 planar shock wave with a 27° double ramp: Mach reflection stage.	43
Figure 3.9.3	Interaction of Mach 8.7 planar shock wave with a 27° double ramp: start of the diffraction stage.	44
Figure 394	Interaction of Mach 8.7 planar shock wave with a 27° double ramp	
F 3 10 1	shock diffraction stage.	45
Figure 3.10.1	The figure shows the initial computational grid for the jet spray simulation demonstration. Shown are the nozzle, injection region and target surface depicted as a flat plate with perforations, oriented perpendicular to the mean spray flow. The boundary conditions used for the sample simulation ware: $V = 1000 \text{ m/sas} = -0.1 \text{ kg/m}^3$	
	T _g = 3500 K at the inlet of the reactor nozzle; $V_g = 1500$ m/sec, ρ_g	
	= 0.3 kg/m ³ , $T_g = 1500$ K, $V_p = 1500$ m/sec, $T_p = 1500$ K, $N_p = 2000$ at the inlet of the reactor nozzle.	46
Figure 3.10.2	Lagrangian marker particles are shown in color representing the evolution of injected particle temperature as a function of particle	
	position and time in the jet spray stream.	47
Figure 3 10 3	Gas temperature contours in the jet spray stream. The maximum	
	temperature is 3500°K and the minimum is 600°K.	48
Figure 3.10.4	Gas density contours in the jet spray stream. The injected stream and the main flow mix poorly. The diamond patterns describe the shock wave pattern resulting from the flow's overexpansion	48
Figure 2 10 5	Brensura contours in the jet spray stream. The diamond patterns	40
rigute 5.10.5	show that supersonic flow is maintained near the vicinity of the target	
	show that supersome now is maintained near the vicinity of the target	18
Figure 2 11 1	Surface. Comparison for $M = 2.8$ nurs are flow: (a) interferogram from	40
riguie 5.11.1	experiment; (b) density contours from present calculation.	50
Figure 3.11.2	Density contours for the case $M_s = 2.8$, $\rho_p = 0.25 \text{ kg/m}^3$, $r_p = 10 \mu \text{m}$	
	at two different times: (a) particle density at t_1 , (b) gas density at t_1 ;	
	c) particle density at t ₂ , (d) gas density at t ₂ .	51
Figure 3.11.3	Density contours for the case $M_s = 2.8$, $\rho_0 = 0.76$ kg/m ³ , for two	
-	different particle sizes: (a) particle density and (b) gas density for $r_p =$	
	10 μ m; c) particle density and (d) gas density for $r_{p} = 50\mu$ m.	51
Figure 3.12.1	Edge enhancement for a sinusoidal distribution without noise.	56
Figure 3.12.2	Edge enhancement for a sinusoidal distribution with 10% intensity	
-	random noise.	54

v

Figure 3.12.3	Edge enhancement for a sinusoidal distribution with 50% intensity	
	random noise.	55
Figure 3.12.4	Edge enhancement for a sinusoidal distribution with 100% intensity	
	random noise.	55
Figure 3.13.1	Computational domain and boundary conditions.	57
Figure 3.13.2	Explosive initially localized in 2.5-cm layer at constant density of 100 kg/m ³ . Density in the cloud is 0.75 kg/m ³ . (a), (b), and (c) are gas	
	pressure, gas density, and particle density at 66 µsec, respectively.	-58
Figure 3.13.3	Particle density distributed in layer in accordance with the fourth power of height. Gas pressure, temperature, and particle density at	
	55 µsec, respectively.	59

E

vi

1. INTRODUCTION

1.1 RECENT CFD DEVELOPMENT

Computational fluid dynamics (CFD) development over the past twenty years has truly been outstanding. The recent CFD developments that are particularly important are: 1) advances in flow solvers in all the regimes of fluid flow (very low speed and subsonic flows, transonic flow, supersonic and hypersonic flows), 2) advances in unstructured adaptive gridding techniques and, 3) advances in chemical and particle kinetic modeling for fluid flows. Developments in graphics and visualization, construction of graphical user interfaces (GUIs) and advances in large database management have also played an important role in the scale and complexity of problems that can now be realistically simulated by CFD techniques. SAIC has been involved in all aspects of these developments and is on the forefront of CFD technology development.

DARPA, NASA, DNA and DOE have for the most part been the largest benefactors of CFD development, and each agency today is actively pursuing CFD applications to real problems. Full 3-D unsteady flows about military and commercial aircraft are routinely simulated to assess aerodynamic performance characteristics, and where it used to require several hundred hours of CRAY CPU time it now takes minutes to an hour on a supercomputer or a like time on workstations, depending on the specifics of the problem being solved. The U.S. Marine Corps' latest initiative in the development of blast (due to land mines) resistant vehicles is being pursued successfully with the aid of full 3-D CFD simulations of land mine blast effects on truck configurations. The CFD technology developed in SAIC's UUGM contract is playing a leading role in this Marine Corps effort (see Section 3.4). Many other such examples of improvements in CFD performance exist. In view of this, it is quite appropriate to begin to transition CFD technology into other disciplines that can take advantage of realistic CFD based simulation.

1.2 UNSTRUCTURED MESHES IN COMPLEX GEOMETRIES

Current emphasis in CFD calls for solutions of applied physical problems for complex realistic geometries.¹ In addition to the inherent difficulties in describing the details of the complex three-dimensional geometry, the flow fields usually have an inhomogeneous structure. Regions of rapid change of the flow functions and chemical reactions will be embedded in regions where the flow gradients are relatively small. Accurate simulations of flows in regions with strong gradients is key to the overall accuracy of physical, chemical and biological simulations. For this reason most of the software and hardware computational resources are defined by the accuracy requirements of these flow regions and geometry of the computational domain.

Early CFD research was almost entirely concerned with the formulation the mathematical models of the flow and methods of solution. Mesh generation was regarded as secondary and meshes were developed for specific cases. During this early period very

1

significant improvements were made in the methods of integration of the partial differential equations of gasdynamics. Presently, as a result of steady improvement in the various integration techniques, the advantages which could be gained by using better thow solvers have become limited. On the other hand substantial progress is anticipated to the areas of grid generation and algorithm development.²

Currently, most numerical simulations employ structured meshes compased of quadrilaterals in two dimensions or hexahedra in three dimensions. However, it has become evident that the quadrilateral structured grids cannot satisfy the requirements of large scale numerical simulations over complex geometries in three dimensions. The physics of the flow about a complete aircraft is extremely complex. Yet the flow in many distinct regions and regimes may be represented by fairly well-known physical theories. Vortices shed by lifting surfaces are confined to fairly thin wake regions. Exhaust plumes can be initially approximated by regular bounding surfaces. Flow disturbances due to shocks are confined to thin discontinuities. Boundary layers are restricted to near-wall regions. Each of these flow regions requires different theories, different resolution and different numerical algorithms. This diversity of computational requirements cannot be satisfied by the quadrilateral structured grids.

Recently proposed alternatives to quadrilateral grids use triangles in two dimensions and tetrahedra in three dimensions. For these grids the mesh will generally lose its structure, allowing a new degree of flexibility in treating complex geometries.^{3,4} Unstructured grids can relatively easily be adapted to follow flow features, thereby increasing the solution accuracy. The result has been the development of adaptive refinement techniques which have been used with great success for two dimensional simulations on unstructured triangular grids. These methods have resulted in the resolution of previously difficult details in the evolving flows over complex configurations.

However, it is not a trivial task to adapt this approach to three-dimensional simulations. One of the problems is the generation of the adaptive grid. Since the grid is constructed from the volume elements (tetrahedra) the moving front is made up of a surface of triangular faces. It should be noted that this moving front can and will change its shape during the computation as time evolves. It is necessary to take care when determining the intersections of planar faces, and to ensure that no overlapping of tetrahedra occurs.

2. UUGM: UNIVERSAL CFD SIMULATION ENVIRONMENT

The Ultimate Unstructured Grid Method (UUGM) represents a new approach to the computational domain discretization. The principal advantage of the method is most apparent for simulations of complicated flow regimes with physical and chemical processes over bodies with complex geometries in three dimensions.

The usual technique employed in regridding is called hierarchical dynamic refinement (H refinement). The idea here is to retain a history of the original grid and the

subdivisions needed to change it into the current grid, so that it is always possible to retrace these steps and get back to previous grids. While this feature is useful in modeling reversible processes, it is generally unnecessary, and it increases overhead costs. Our implementation (Direct Dynamic Refinement) is Markovian, in the sense that the way regridding is done depends only on the current grid and flow conditions.

The other distinguishing feature is the use of the Second-order Godunov method to solve the Euler equations of gasdynamics. The philosophy behind it is to treat the local values of the dependent variables at every point on the grid as initial conditions for a Riemann problem, and to use the resultant solution of that problem to calculate the fluxes of material, momentum, and energy from one cell to the rest. Previous implementations of this method were confined to structured meshes.

2.1 MATHEMATICAL MODEL AND INTEGRATION ALGORITHM

We consider a system of two-dimensional Euler equations written in conservation law form as

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0, \qquad (2.1)$$

where

$$U = \begin{vmatrix} \rho \\ \rho u \\ \rho v \\ e \end{vmatrix}, F = \begin{vmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u(e+p) \end{vmatrix}, G = \begin{vmatrix} \rho v \\ \rho u v \\ \rho u v \\ \rho v^2 + p \\ v(e+p) \end{vmatrix}.$$

Here u, v are the x, y velocity vector components, p is the pressure, ρ is the density and e is total energy of the fluid. We assume that the fluid is an ideal gas and the pressure is given by the equation of state,

$$p = (\gamma - 1) \left[e - \left(\frac{\rho}{2} \right) (u^2 + v^2) \right], \qquad (2.2)$$

where γ is the ratio of specific heats and is typically taken as 1.4 for air. It is assumed that an initial distribution of the fluid parameters is given at t = 0, and the boundary conditions defining a unique solution are specified for the computational domain.

The system of governing equations in Eq. (2.1) can be written as

$$\frac{\partial U}{\partial t} + \nabla \cdot Q = 0, \qquad (2.3)$$

where Q represents the convective flux vector. Integrating Eq. (2.3) over space and using Gauss' theorem produces the expression

$$\frac{\partial}{\partial t} \int_{\Omega} U \, dA + \oint_{\partial \Omega} Q \cdot dI = 0, \qquad (2.4)$$

where dl = ndl, *n* is the unit normal vector in the outward direction, and *dl* is the element of length on the boundary of the domain. Here Ω is the domain of computation and $\partial \Omega$ is the boundary of this domain.

We seek a solution to the system of Eq. (2.1) in the computational domain, which is decomposed in part into triangles with arbitrary connectivity and in part into rectangles using a logically structured grid. We use the advantage of the unstructured grid (Refs. 5-8) to describe the curved boundary of the computational domain and areas that need increased local resolution; this covers a small part of the total computational domain. The largest area of the computational domain is decomposed by the structured grid. The numerical technique for solving Euler's equation on an unstructured grid is described in Refs. 9-11, and the technique for the structured grid is described in Ref. 9. These numerical techniques apply some of the ideas that were introduced in Refs. 13-14. The structured and unstructured codes apply the center-based formulation, i.e., the primitive variables are defined in the center of the cell, which makes the cell the integration volume, while the fluxes are computed across the edges of the cell. The basic algorithmic steps of the Second-Order Godunov method can be defined as follows:

1. Find the value of the gradient at the baricenter of the cell for each gasdynamic parameter U_i ;

2. Find the interpolated values of U at the edges of the cell using the gradient values;

3. Limit these interpolated values based on the monotonicity condition; 13

4. Subject the projected values to the characteristics constraints, 14

5. Solve the Riemann problem applying the projected values at the two sides of the edges;

6. Update the gas dynamic parameter U according to the conservation equations (1) applying to the fluxes computed and the current timestep.

As was recommended in Ref. 11, we prefer the version based on triangle centers over the vertex-based version of the code. For the same unstructured grid, a center-based algorithm will result in smaller control volumes than a vertex-based. In addition, for the Second-Order Godunov solver, implementation of the boundary conditions is more straightforward and accurate for the center-based algorithm than in the vertex-based version. These two factors, along with the effects of grid connectivity, strongly affect the algorithm accuracy and performance and are the main reasons for the superiority of the center-based version over the vertex version.

Equation (2.4) can be discretized for each element (cell) in the domain

$$\frac{(U_i^{n+1} - U_i^n)}{\Delta t} A_i = \sum_{j=1}^M Q_j^n \cdot n_j \Delta L_j, \qquad (2.5)$$

where A_i is the area of the cell; Δt is the marching timestep; U_i^n and U_i^{n+1} are the primitive variables at the center of the cell at time *n* and at the updated (n + 1)st timestep; Q_j is the value of the fluxes across the boundaries on the circumference of the cell where n_j is the unit normal vector to the boundary edge *j*, and ΔL_j is the length of the boundary edge *j*. The fluxes Q_i^n are computed applying the Second-Order Godunov algorithm, and Eq. (2.5) is used to update the physical primitive variables u_i according to computed fluxes for each marching timestep Δt . The marching timestep is subjected to the Courant-Friedrichs-Lewy (CFL) constraint.

Figure 2.1.1 Representative triangular cell in the mesh showing fluxes and projected values

To obtain second-order spatial accuracy, the gradient of each primitive variable is computed in the baricenter of the cell. This gradient is used to define the projected values of primitive variables at the two sides of the cell edge, as shown in Fig. 2.1.1. The gradient is approximated by a path integral

$$\int_{\Omega} \nabla U_i^{\text{cell}} \, dA = \oint_{\partial \Omega} U_j^{\text{edge}} \, dl. \qquad (2.6)$$

The notation is similar to the one used for Eq. (2.5), except that the domain Ω is a single cell and U_i and U_j are values at the baricenter and on the edge respectively. The gradient is estimated as

$$\nabla U_i^{\text{cell}} = \frac{1}{A} \sum_{j=1}^3 U_j^{\text{edge}} \mathbf{n}_j \Delta L_j \qquad (2.7)$$

where U_{i}^{edge} is an average value representing the value of primitive variable for edge j.

The gradients that are computed at each baricenter are used to project values for the two sides of each edge by piecewise linear interpolation. The interpolated values are subjected to monotonicity constraints.³ The monotonicity constraint ensures that the interpolated values do not create new extrema.

The monotonicity limiter algorithm can be written in the following form

$$U_{\text{proj}}^{\text{edge}} = U_i^{\text{cell}} + \phi \nabla U_i \cdot \Delta \boldsymbol{r}$$
(2.8)

where Δr is the vector from the baricenter to the point of intersection of the edge with the line connecting the baricenters of the cells over the two sides of this edge. Here ϕ is the coefficient that limits the gradient ∇U_i .

First we compute the maximum and minimum values of the primitive variable in the *i*th cell and its three neighboring cells that share common edges (see Fig. 2.1.1):

$$\begin{array}{l} U_{\text{cell}}^{\max} = \max\left(U_{k}^{\text{cell}}\right) \\ U_{\text{cell}}^{\min} = \min\left(U_{k}^{\text{cell}}\right) \end{array} k = i, 1, 2, 3.$$

$$(2.9)$$

The limiter can be defined as

$$\phi = \min\left\{1, \phi_k^{ir}\right\}, k = 1, 2, 3 \tag{2.10}$$

where the superscript *lr* stands for left and right of the three edges (6 combinations altogether); ϕ_k^{lr} is defined by

$$\phi_{k}^{lr} = \frac{\left[1 + \operatorname{sgn}\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{\text{cell}}^{\text{max}} + \left[1 - \operatorname{sgn}\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{\text{cell}}^{\text{man}}}{2 \Delta U_{k}^{lr}}, \ k = 1, 2, 3 \quad (2.11)$$

where $\Delta U_{k}^{lr} = \nabla U_{i}^{lr} \cdot \Delta \mathbf{r}_{k}$ and

$$\Delta U_{\text{cell}}^{\max} = U_{\text{cell}}^{\max} - U_{i}^{\text{cell}} \\ \Delta U_{\text{cell}}^{\min} = U_{\text{cell}}^{\min} - U_{i}^{\text{cell}} \end{cases}$$
(2.12)

To obtain second-order accuracy in time and space, we subject the projected values of the left and right side of the cell edge to characteristic constraints following Ref. 4. The one-dimensional characteristic predictor is applied to the projected values at the half timestep $t^n + \Delta t/2$. The characteristic predictor is formulated in the local system of coordinates for the one-dimensional Euler equation. We illustrate the implementation of

the characteristic predictor in the direction of the unit vector \mathbf{n}_{c} . The Euler equations for this direction can be written in the form

$$W_{t} + A(W)W_{nc} = 0;$$
 (2.13)

$$W = \begin{cases} \tau \\ u \\ p \end{cases}; \ A(W) = \begin{pmatrix} u & -\tau & 0 \\ 0 & u & \tau \\ 0 & \rho c^2 & u \end{pmatrix},$$
(2.14)

where $\tau = \rho^{-1}$, ρ denotes density, u, p are the velocity and pressure. The matrix A(W) has three eigenvectors (l#, r#) (l for left and r for right, where # stands for +, 0, -) associated with the eigenvalues $\lambda^+ = u + c$, $\lambda^- = u$, $\lambda^- = u - c$.

An approximation of the value projected to an edge, accurate to second order in space and time, can be written as

$$W_{i+\Delta r}^{n+1/2} \approx W_{i}^{n} + \frac{\Delta t}{2} \frac{\partial W}{\partial t} + \Delta r \frac{\partial W}{\partial r_{nc}}$$

$$\approx W_{i}^{n} + \left[\Delta r - \frac{\Delta t}{2} A \left(W_{i} \right) \right] \frac{\partial W}{\partial r_{nc}}.$$
(2.15)

An approximation to $W_{i+\Delta r}^{n+1/2}$ can be written as

$$W_{i+\Delta r}^{n+1/2} = W_i + \left(\Delta r_i - \frac{\Delta t}{2} \left(M_x M_n\right) n_c\right) \cdot \nabla W_i, \qquad (2.16)$$

where

$$\left(\mathbf{M}_{\mathbf{x}} \mathbf{M}_{\mathbf{n}} \right) = \begin{cases} \max \left(\lambda_{i}^{+}, 0 \right) & \text{for the cell on the left of the edge} \\ \min \left(\lambda_{i}^{-}, 0 \right) & \text{for the cell on the right of the edge}. \end{cases}$$
 (2.17)

The gradients applied in the process of computing the projected values at $t^{n} + \Delta t/2$ are subjected to the monotonicity limiter.

Following the characteristic predictor described above, the full Riemann problem is solved at the edge. The solution of the Riemann problem defines the flux $Q^{n+1/2}$ through the edge. The fluxes through the edges of triangles are then integrated (Eq. 2.5), thus giving an updated value of the variables at t^{n+1} . One of the advantages of this algorithm is that calculation of the fluxes is done over the largest loop in the system (the loop over edges) and can be vectorized or parallelized. This leads to an efficient algorithm.

We have carried out an extensive and painstaking series of tests in the course of developing and implementing the algorithm. Most of these used a standard benchmark, the exploding diaphragm or "Sod problem" (Fig. 2.1.2). In this problem two regions containing an ideal gas at different densities and pressure are separated by an infinitely thin interface (the diaphragm). A shock wave, a rarefaction wave, and a contact discontinuity propagate away from that point at different speeds when this diaphragm is instantaneously removed. The Riemann solution yields an analytical solution in terms of simple waves which can be compared with the numerical approximation.

We used this problem as a testbed to compare structured vs. unstructured grids, first-order vs. second-order Godunov schemes, schemes with and without limiters, etc. For example, Fig. 2.1.2 shows that the solution obtained with an unstructured grid is noticeably better than that obtained with a structured grid.

Figure 2.1.2 Density profile comparison between analytical results and results obtained by applying the second-order Godunov algorithm using structured or unstructured grids.

2.2 MULTIPHASE MULTICOMPONENT REACTIVE FLOW

Multiphase multicomponent reacting flows (MPMCRF) consist of material media (continua and particles) dispersed in a flow varying in space and time. Two basic approaches can be used to describe MPMCRFs, heterogeneous and homogeneous phase descriptions. For homogeneous mixtures one assumes that each mixture component occupies the same volume with other mixture components on an equal basis ($V_1=V_2=...=V_n=V$). This approach is justified for an interpenetrating mixture of gases or a dilute suspension of particles in a gas. In a heterogeneous description of a suspension, each component occupies only part of the global volume ($V_1+V_2+...+V_n=V$). Therefore in the mathematical description of the heterogeneous suspensions, in addition to the density of the i-th component ρ_i one needs to introduce the fractional volume of the components:

$$\phi_1 + \phi_2 + \dots \phi_N = 1 \quad (\phi_i > 0),$$
 (2.18)

which allows us to define the real density of each of the components as $\sigma_i = \frac{\rho_i}{\phi}$.

Consider a chemically reacting system containing an N-component gaseous phase and one solid particle phase. The conservation equations can be written as follows:³

Conservation of Mass

Global continuity for gaseous phase:

$$\frac{\partial \rho_{g}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\rho_{g} u_{(g)j} \right) = I_{g}.$$
(2.19)

Continuity of N-1 species or components of gaseous phase:

$$\frac{\partial Y^{i}}{\partial t} + \frac{\partial}{\partial x_{j}} \left[\rho_{g} Y^{i} \left(u_{(g)j} + V^{i}_{j} \right) \right] = \omega^{1} + I^{1}_{g}. \qquad (2.20)$$

Continuity for solid particle phase:

$$-\frac{\partial \rho_{p}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\rho_{p} u_{(p)j} \right) = -I_{p}. \qquad (2.21)$$

In the above equation of mass conservation, ρ_g is the partial gas density. The gas volume fraction is ϕ_g . The relation between partial gas density and material density σ_g is $\rho_g = \phi_g \sigma_g$. Similarly, we define the partial phase density ρ_p and material density σ_p . The relation between the two is then $\rho_p = \phi_p \sigma_p$. We assume volume conservation, which is

$$\phi_{g} + \phi_{p} = 1. \tag{2.22}$$

The species diffusion velocity V_{\perp}^{\perp} is calculated through Fick's law:

$$V_{i}^{I} = -\frac{D}{Y'}\frac{\partial Y'}{\partial x_{i}}, \qquad (2.23)$$

where D is the diffusion coefficient. Finally, we assume mass conservation in all chemical reactions:

$$\sum_{i}^{N} w_{i}^{i} = 0 \quad \text{and} \quad I_{p} = -\sum_{i}^{N} I_{g}^{i} = -I_{g}.$$
 (2.24)

Conservation of Momentum

Conservation of momentum for the gaseous phase:

$$\frac{\partial \left(\rho_{g} u_{(g)i}\right)}{\partial t} + \frac{\partial}{\partial x_{j}} \left[\rho_{g} u_{(g)i} u_{(g)j} + \delta_{ij} \phi_{g} p_{g}\right]$$

$$= \frac{\partial}{\partial x_{j}} \left[\left(\mu' - \frac{2}{3} \mu\right) \frac{\partial u_{(g)k}}{\partial x_{k}} \delta_{y} + \mu \left(\frac{\partial u_{(g)i}}{\partial x_{j}} + \frac{\partial u_{(g)i}}{\partial x_{i}}\right)\right]$$

$$- F_{i}^{(p)} + I_{p} u_{(p)i}.$$
(2.25)

Conservation of momentum for the particle phase:

$$\frac{\partial \left(\rho_{p} u_{(p)i}\right)}{\partial t} + \frac{\partial}{\partial x_{j}} \left[\rho_{p} u_{(p)i} u_{(p)j} + \delta_{ij} \phi_{p} p_{p}\right] = \frac{\partial}{\partial x_{j}} \left(\tau_{(p)ij}\right) + F_{i}^{(p)} - I_{p} u_{(p)i}. \quad (2.26)$$

In the above momentum conservation equations, p_p and p_g are the pressure of the solid particle and gaseous phases respectively, $F_i^{(p)}$ represents the interaction force between the two phases, and $\tau_{(p)ij}$ is the stress tensor for the particle phase, to be determined by experimental or empirical correlations.

For the gaseous phase, the stress tensor can be written as

$$\tau_{(g)ij} = -p\delta_{ij} + \left(\mu' - \frac{2}{3}\mu\right)\frac{\partial u_k}{\partial x_k}\delta_{ij} + \mu\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right), \quad (2.27)$$

where μ is the dynamic viscosity and μ' is the second viscosity coefficient.

Conservation of Energy

The governing equation for conservation of energy for the gaseous phase is usually written

$$\frac{\partial \left[\rho_{g}\left(e_{g}+0.5u_{(g)i}u_{(g)}\right)\right]}{\partial t} + \frac{\partial}{\partial x_{j}}\left[\rho_{g}u_{(g)j}\left(e_{g}+0.5u_{(g)i}u_{(g)i}\right) + \phi_{g}p_{g}u_{(g)j}\right] \\
= -\frac{\partial q_{(g)j}}{\partial x_{j}} + Q_{g} + \frac{\partial}{\partial x_{j}}\left[u_{(g)i}\left[\left(\mu'-\frac{2}{3}\mu\right)\frac{\partial u_{(g)k}}{\partial x_{k}}\delta_{ij} + \mu\left(\frac{\partial u_{(g)i}}{\partial x_{i}}\right)\right]\right] \qquad (2.28)$$

$$-F_{(p)i}u_{(p)i} + Q_{p}.$$

The equation for conservation of energy for the particle phase has the form

$$\frac{\partial}{\partial t} \left[\rho_{p} (C_{s} T_{p} + 0.5 u_{(p)i}) \right] + \frac{\partial}{\partial x_{j}} \left[\rho_{p} u_{(p)j} (C_{s} T_{p} + 0.5 u_{(p)i} u_{(p)i}) + \phi_{p} u_{(p)j} p_{p} \right]$$

$$= -\frac{\partial q_{(p)j}}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} (u_{(p)j} \tau_{(p)ij}) + F_{i}^{(p)} u_{(p)i} - Q_{p}.$$
(2.29)

In the conservation of energy, $\frac{\partial q_{(g)j}}{\partial x_j}$ and $\frac{\partial q_{(p)j}}{\partial x_j}$ are the heat flux gradients in the *j*th direction in the gaseous and particle phases, respectively. Q_p is the energy source due to heterogeneous chemical reactions (between the gaseous and particle phases), plus heat transfer between the two phases. Here $Q_g = \sum_{i=1}^{N} (-\omega_1 \Delta h_{fi}^{\circ})$ is the energy source due to homogeneous (gaseous) chemical reactions, which is defined in the chemical reaction model.

Conservation of Number of Particles

An equation for total conservation of particles is given by

$$\frac{\partial n_{p}}{\partial t} + \frac{\partial}{\partial x_{i}} \left(n_{p} u_{(p)j} \right) = 0.$$
(2.30)

Equation of State

The equation of state for all gases can be put into the generic form

$$e_{g} = f_{g}(p_{g}, \sigma_{g}, Y^{1}, \cdots, Y^{N}),$$
 (2.31)

where for an ideal gas the form is

$$e_{g} = \frac{p_{g}}{\sigma_{g}(\gamma_{g} - 1)} \tag{(.32)}$$

and

$$p_{g} = \sigma_{g} R_{u} T_{g} \sum_{i=1}^{N} \frac{Y^{i}}{W^{i}}.$$
(33)

An equation of state for the particle phase can be written in symbolic form as

$$p_{p} = f\left(\sigma_{p}, T_{p}\right), \qquad (2.34)$$

where the exact form of Eq. (2.34) that is to be used in a numerical simulation depends on experimental data or results from physical approximations.

In the above equations, γ_g is the ratio of specific heats of the gaseous mixture and R_u is the universal gas constant.

Chemical Reaction Model

A phenomenological chemical reaction model for the gaseous phase (including M chemical reactions) has been formulated as

$$\omega^{1} = W^{i} \sum_{k=i}^{M} \left(v_{k}^{\prime (1)} - v_{k}^{(1)} \right) B_{k} T^{ak} \exp \left(\frac{E_{ak}}{R_{u} T_{g}} \right) \prod_{j=1}^{N} \left(\frac{X^{j} p_{g}}{R_{u} T_{g}} \right)^{v_{jk}}.$$
 (2.35)

Similarly, a phenomenological heterogeneous (for gas and particle phases) chemicals reaction model can be written symbolically as

$$I_{(p)} = f(T_{p}, P_{p}, ...), \qquad (2.36)$$

and again the exact form of Eq. (2.36) will depend on experimental data or approximations from physical models.

The following nomenclature defines the symbols used in the above system of equations (2.19) - (2.36): B - chemical reaction collision frequency factor; C_S - specific heat for solid particle; e - internal energy; D - mass diffusion coefficient; E_{ak} - activation energy for the kth reaction; F_i - interphase force in *i*th direction; I - source function generated by chemical reaction; p_g - gas pressure; q_i - heat flux in the *i*th direction; R_u - universal gas constant; t - time; T - temperature; u_i - velocity in *i*th direction; V_i - species diffusion velocity in *i*th direction; W^i - molecular weight of *i*th component of gas; x_i - coordinate in *i*th direction; χ^i - mode fraction of *i*th component of gas; Y^i - mass fraction of *i*th component of gas; α - temperature exponent of the kth reaction; γ - ratio of specific heat; λ - thermal conductivity of gas; μ - dynamic viscosity of gas; μ' - second

viscosity coefficient of gas; τ_{ij} - stress tensor; ω^{i} - mass rate of production of species *i*; ρ - density; $v_{i,k}$ - stoichiometric coefficient for species *i* appearing as a reactant in the *k*th reaction; $v'_{i,k}$ - stoichiometric coefficient for species *i* appearing as a product in the *k*th reaction; ϕ - volume fraction; σ - material density. Subscripts are defined as follows: g gas phase; p - particle phase; *i,j,k*, - direction indexes; l - species index. Superscripts refer to species type.

The comprehensive mathematical model and system of equations given above for an MPMCRF simulation of advanced material synthesis processes is based on volume averaging, assuming that each phase or component can be described by continuous flow. Such averaging leads to a loss of information that can be recovered by appropriate closure relations. The closure relations such as interphase forces, chemical reaction models and the equations of state are usually developed from correlations involving experimental data or from simple physical or chemical models describing interphase or intraphase interactions. Such correlations are generally only valid within the range of known experimental data; the choice of appropriate closure models reflects the understanding of the underlying physical and chemical nature of the system to be simulated.

2.3 DIRECT DYNAMIC REFINEMENT METHOD FOR UNSTRUCTURED TRIANGULAR GRIDS

As stated, an unstructured grid is very well suited to implement boundary conditions on complex geometrical shapes and to refine the grid if necessary. This feature of the unstructured triangular grid is compatible with efficient use of memory resources. The adaptive grid enables the code to capture moving shocks and large-gradient flow features with high resolution. The memory resources available can be very efficiently distributed in the computational domain to accommodate the resolution needed to capture the main features of the solution's physical property. Dynamic refinement controls the resolution priorities. These priorities can be set according to the physical features that the user wishes to emphasize in the simulation. The user has control over the resolution of the physical features, without being restricted to the initial grid. The alternative to Direct Dynamic Refinement is the hierarchical dynamic refinement⁶ (H refinement) that keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). In the H refinement method, it is necessary to keep overhead information on the level of each triangle subdivision, and double indirect indexing is required to keep track of the H refinement process. As mentioned, H refinement relies heavily on the initial grid as it subdivides the mother grid, and returns to that grid after the passage of the shock.

The Direct Dynamic Refinement (DDR) method for capturing the shock requires the refinement to be in the region ahead of the shock. This requirement minimizes the dissipation in the interpolation process when assigning values to the new triangles created in the refined region. Additionally, it requires that the coarsening of the grid be done after the passage of the shock. The interpolation and extrapolation in the refinement and coarsening of the grid is done in the region where the flow features are smooth.

a. Original grid.

c. Grid after one refinement and one reconnection.

b. Grid after one refinement.

d. Second refinement.

e. Second reconnection.

Figure 2.3.1 Illustration of the grid refinement process.

a. Original grid.

b. Point removal.

c. Constructing of new cells.

d. Grid after reconnection and relaxation.

Figure 2.3.2 Illustration of the grid coarsening process.

The physics of the problem is involved in the process that identifies the region of refinement and coarsening. Error criteria can be derived that will allow grid adaptation to stationary or moving pressure or density discontinuities, region of high vortical activity, etc. There should be an error indicator specially suited to capture and identify the region of importance for each of the physics features to be resolved.

The original FUGGS algorithm reported in Ref. 9 was modified to enable adaptivity of the grid in the course of the computation. In AUGUST, we have implemented an algorithm with multiple criteria for capturing a variety of features that might exist in the physics of the problem to be solved. To identify the location of a moving shock, we use the flux of total energy into triangles. The fluxes entering and leaving triangles are the most accurate physical variables computed by the Godunov algorithm for solving the Euler equations, and are used to update the physical variables for each timestep in each triangle. A shock wave means that there is a "step-function" change in the cell that is caused by an influx of energy, momentum or density. Stationary shocks can be identified by density gradients that are computed in the course of implementing the Second-Order Godunov algorithm.

In Fig. 2.3.1, we illustrate the basic process of refinement accomplished in the DDR. The original grid is shown in Fig. 2.3.1a. Figure 2.3.1b illustrates a one-step scheme refinement in which a new vertex is introduced into a triangular cell, forming three new cells. This is followed by reconnection, which modifies the grid as demonstrated in Fig. 2.3.1c. The process of refinement and reconnection can be continued until the necessary grid resolution is achieved, as illustrated in Figs. 2.3.1d and 2.3.1e. This direct approach to the grid refinement provides extreme flexibility in resolving local flow features. A similar simple method is applied to grid coarsening. In the first step of coarsening the marked vertices, all associated elements of the grid are simply removed, as shown in Fig. 2.3.2a. During the second step, this void in the grid is filled with new larger triangles (Fig. 2.3.2b) and then reconnected as shown in Fig. 2.3.2c. When a very large increase of the local grid density is required, these simple algorithms of grid addition and deletion can create triangles with an unacceptably large aspect ratio. To avoid this condition for very large grid densities (when the area of the triangles in the dense region is reduced to less than 2% of the initial area), we introduced local grid relaxation immediately after the grid deletion procedure.

AUGUST has proven to be a very robust and efficient algorithm capable of computing transient phenomena, and with the ability to sense the region of physical interest and resolve it by refining and coarsening the grid as needed.

2.4 STRUCTURED/UNSTRUCTURED COMPOSITE GRIDS

Structured rectangular grids allow the construction of numerical algorithms that perform an efficient and accurate integration of fluid conservation equations. The efficiency of these schemes results from the extremely low storage overhead needed for domain decomposition and the efficient and compact indexing that also defines domain connectivity. These two factors allow code construction based on a structured domain decomposition that can be highly vectorized and parallelized. Integration in physical space on orthogonal and uniform grids produces the highest possible accuracy of the numerical algorithms. The disadvantage of structured rectangular grids is that they cannot be used for decomposition of computational domains with complex geometries.

The early developers of computational methods realized that, for many important applications of Computational Fluid Dynamics (CFD), it is unacceptable to describe curved boundaries of the computational domain using the stair-step approximation available with the rectangular domain decomposition technique. To overcome this difficulty, the techniques of boundary-fitted coordinates were developed. With these techniques, the computational domain is decomposed into quadrilaterals that can be fitted to the curved domain boundaries. The solution is then obtained in the physical space using the geometrical information defining the quadrilaterals, or in the computational coordinate system that is obtained by transformation of the original domain into a rectangular domain. The advantage of this technique is that it employs the same indexing method as the rectangular structured domain decomposition methods that also serve to define domain connectivity. The boundary-fitted coordinate approach leads to efficient codes, with approximately a 4:1 penalty in terms of memory requirement per cell as compared with rectangular domain decomposition. However, this approach is somewhat restricted in its domain decomposition capability, since distortion or large size variations of the quadrilaterals in one region of the domain leads to unwanted distortions or increased resolution in other parts of the domain. An example of this is the case of structured body fitted coordinates used for simulations of flows over a profile with sharp trailing edges. In this case, increased resolution in the vicinity of the trailing edge leads to increased resolution in the whole row of elements connected to the trailing edge elements.

The most effective methods of domain decomposition developed to overcome this disadvantage are those using unstructured triangular grids. These methods were developed to cope with very complex computational domains. The unstructured grid method, while efficient and powerful in domain decomposition, results in codes that must store large quantities of information defining the grid geometry and connectivity, and have large computational and storage overheads. As a rule, an unstructured grid code requires greater storage by a factor of 10, and will run about 20 times slower per cell per iteration than a structured rectangular code.

Unstructured grid methods are used to their best advantage when combined with grid adaptivity. This feature usually allows dynamic decomposition of the computational domain subregions, thus leading to an order-of-magnitude reduction in the number of cells for some problems, as compared to the unstructured grid lacking this adaptive capability. However, this advantage is highly dependent on the problem solved. Adaptive unstructured grids have an advantage over the unadaptive unstructured domain decomposition if the area of high-resolution domain decomposition is less than one tenth of the global area of the computational domain. This explains why the adaptive unstructured method may be extremely effective for solutions with multiple shock waves in complex geometries, but becomes extremely inefficient when high resolution is needed in a substantial area of the computational domain.

Our approach to domain decomposition combines the structured and unstructured methods for achieving better efficiency and accuracy. Under this method, structured rectangular grids are used to cover most of the computational domain, and unstructured triangular grids are used only to patch between the rectangular grids (Fig. 2.4.1) or to conform to the curved boundaries of the computational domain (Fig. 2.4.2). In these figures, an unstructured triangular grid is used to decompose the regions of the computational domain that have a simple geometry.

Figure 2.4.1 A possible candidate configuration for hybrid structured/unstructured domain decomposition.

Figure 2.4.2 Hybrid structured/unstructured grid used to simulate ellipsoidal reflector, showing adaptation to curved boundaries.

2.5 THREE-DIMENSIONAL CAPABILITY

Once the 2D capability was fully developed, we initiated the development of a fully 3D CFD adaptive unstructured simulation capability. This part of our effort is not yet documented in published material.

The first step in solving a 3D CFD problem is to discretize the computational domain into tetrahedra. The grid generation is a recognized bottleneck in the time it takes to evaluate an aerodynamic configuration.¹⁵ One could even argue that it represents the most time-consuming portion of the evaluation process. There are a handful of codes that are capable of gridding any given domain into tetrahedra. In order to shorten the part to our objective of achieving a 3D adaptive solver capability, we decided to make use of an existing grid generator to provide the initial grid.

OCTREE,¹⁶ which was developed at Rensselaer Polytechnic Institute (RPI), is a Finite Octree 3D grid generator that provides the initial grid for our adaptive solver. The productivity of a 3D grid generator is a function of the complexity of the surfaces that define the domain of computation. Usually, this task is the most time-consuming and painful for the user. OCTREE does not have a CAD/CAM package to assist the user in defining the surfaces of the geometry to be gridded. Nevertheless, OCTREE is a very robust and reliable grid generator.

The OCTREE algorithm is based on the concept of dividing the computational domain into octants. In each step, the code defines three planes that halve the domain in each of the three dimensions, thus dividing the volume into eight octants. Those three planes intersect the surfaces of the geometry, defining vertices. All the vertices are collected and sorted into topological loops. If the vertices are not sufficient to define correct topological loops, the code will subdivide the corresponding octant into eight smaller octants until the topology is fully resolved. The user is allowed to specify the level of the local octree subdivision he wishes to resolve. Once the code subdivides the volume into the level of octree specified by the user or needed to resolve the local geometrical details, the code defines tetrahedra to fill the volume of the computation domain. The code provides the user with an option that improves the quality of the tetrahedra by smoothing and eliminating the very small ones.

As stated, OCTREE provides the initial grid for the 3D solver. The adaptivity of the mesh is controlled by specific physical features that the user defines based on the physics of the problem to be solved. The adaptivity of the mesh automatically traces the physical features in the simulation and refines and coarsens the mesh accordingly to the criteria and the resolution specified by the user.

Figure 2.5.1 An elongated tetrahedron can be refined using smaller tetrahedra that are nearly regular.

The target tetrahedra are refined by first subdividing each of the four surfaces into smaller triangles that satisfy the resolution set by the user. There are no constraints on the way each face is subdivided. Each edge of the face is subdivided according to the local resolution needed, and the points along the edges are connected to construct the best triangles possible. The code adds points inside the face along with points on the edges to achieve an adequate triangulation of the faces. The triangles of the four faces of the target tetraheda are used to define smaller tetrahedra that will fill the volume. If needed, the code will add points inside the volume of the target tetrahedron to achieve the best tetrahedra possible. The code has the ability to reconnect tetrahedra to improve quality. The reconnection is done by pulling out an edge, sorting all the tetrahedra connected to this edge, deleting these tetrahedra and filling the void with better shaped tetrahedra.

Figure 2.5.1 shows how the subdivision process can fill an irregular (elongated) tetrahedron with smaller tetrahedra that are nearly equilateral. (This is not the case with H refinement.) Figure 2.5.2 shows points used to create octree refinement to grid a problem involving surface-mine blast effects on the underside of a truck. Figure 2.5.3 is the corresponding tetrahedral grid. The calculated overpressures on the surface of the truck underbody for an eight-pound explosive are shown in Sec. 3.4.

The algorithm used to solve the 3D gasdynamic equations is an immediate extension of the 2D case described in Sec. 2.1. Thus, Eq. (2.6) is replaced by

$$\int_{\Omega} \nabla U_i^{\text{cell}} \, \mathrm{d}V = \int_{\partial \Omega} U_j^{\text{face}} \, \mathrm{d}\mathbf{S}, \qquad (2.6')$$

Figure 2.5.2 Points used to define structure of vehicle.

Figure 2.5.3 Tetrahedral grid generated by Finite Octree method.

where now Ω and $\partial \Omega$ are the volume and surface of a tetrahedron, and dV and dS are the corresponding differential elements. Its finite-difference approximation is

$$\nabla U_i^{\text{cell}} = \frac{1}{V} \sum_{j=1}^4 \widetilde{U}_j^{\text{face}} \mathbf{n}_j \Delta S_j, \qquad (2.7')$$

where the summation is over the four faces and n_j is the normal to the *j*th face with surface area dS_{j} . In the equations corresponding to Eqs. (2.9) - (2.11), the range 1, 2, 3 is replaced by 1, 2, 3, 4. Equations (2.12) - (2.16) are formally unchanged, and Eq. (2.17) becomes

$$\left(\mathbf{M}_{x} \mathbf{M}_{n}\right) = \begin{cases} \max\left(\lambda_{i}^{+}, 0\right) & \text{for the cell on the left of the edge} \\ \min\left(\lambda_{i}^{-}, 0\right) & \text{for the cell on the right of the edge.} \end{cases}$$
(2.17')

3. APPLICATIONS

The AUGUST code was extensively validated for a wide range of known CFD problems and has been shown to be a robust simulation tool. It has been utilized on a variety of problems which span flow regimes ranging from low subsonic Mach numbers to hypersonic Mach numbers (Table 3.1).

Appendix C contains a complete collection and description of the CFD problems addressed during the UUGM research. Additional details of the AUGUST code are contained in SAIC's progress report for the UUGM DARPA program, submitted in November 1991. Here we briefly describe the most noteworthy applications.

It is worth underscoring again that in the past it was necessary to use a sequence of codes as well as numerical parameter adjustment to bridge the gap in flow phenomena occurring in different flow regimes. An important point to be made here is that the AUGUST code allows robust, accurate and efficient solutions across these different regimes without the necessity of adjusting coefficients to enhance convergence accuracy or efficiency.

Table 3.1 AUGUST Applications

Problem	Activity
1. Calculation of potential flow about an ellipse.	Reported at the 4th International Symposium on Computational Fluid Dynamics, Davis, CA, Sept 1991.
2. Hypersonic flow past a flat plate.	Reported at AIAA Reno Meeting (AIAA- 90-0699), 1990.

Problem

Activity

3. Shock on wedge with adaptive gridding.	Reported at the Free Lagrange Conference, Jackson Lake, WY, 1990.
4. Simulation of mine explosion under a vehicle.	Performed for U.S. Army Corps of Engineers, Ft. Belvoir, VA.
5. Simulation of pulsed detonation engine.	Published in J. of Propulsion and Power Nov/Dec 1991 Vol. 7 (6) pp. 857-865 and AIAA Meeting, Reno, NV 1992.
6. Shock focusing in air using structured/unstructured grids.	Presented at the ICAM Conference, Rutgers, NJ, June 1992.
7. Nonideal airburst calculations for multiphase media.	Performed for the Defense Nuclear Agency, Alexandria, VA.
8. Flow in the SARL wind tunnel.	Performed for Wright-Patterson AFB.
9. Simulation of a shock on a double wedge.	Presented at the Army workshop on Adaptive Methods for PDEs, RPI, March 1992.
10. Supersonic spray coating devices.	To be published.
11. Nanomaterial synthesis.	Published in Surf. Coating Tech. 49, 387- 393 (1991).
12. Dusty flow over a cylinder.	To be published in AIAA Journal.
13. Image processing.	Presented at SPIE conference on Applications of Digital Image Processing, San Diego, July 1991.
14. Multiphase detonation.	Published in Combust. Sci. Tech. 89, 201- 218 (1993).

3.1 POTENTIAL FLOW OVER AN ELLIPSE

One of the outstanding early CFD computational challenges (from the point of view that no satisfactory solution had been obtained) was associated with simulating subsonic (Mach 0.2 ϵ nd less) flow over a symmetric elliptical airfoil using the Euler equations (Fig. 3.1.1). All previous attempts to compute the flow over such an ellipse resulted in spurious lift and drag values that were significantly larger than the classical

Figure 3.1.1 The grid used for simulating the flow over an ellipse.

potential flow solution. The potential flow result should have been closely approximated if there were no numerical viscosity present. This test case is important because, in transitioning from an Euler solver to a full Navier-Stokes solver, one needs confidence that the artificial (numerical) viscosity will not dominate the physical viscosity included in the Reynolds' stress terms. As shown in Appendix C-1, use of an earlier version of the AUGUST code, the Fast Unstructured Grid Godunov Solver (FUGGS) code provided solutions to this test case that were very close to the potential flow solution. Other attempts resulted in lift and drag values that were off by several orders of magnitude compared with the SAIC FUGGS results. The results described here were prepared for a poster presented to Dr. Arje Nachman, SAIC's UUGM AFOSR program monitor and Dr. James Crowley, SAIC's UUGM DARPA program manager.

3.2 HYPERSONIC FLOW PAST A FLAT PLATE

To demonstrate the versatility of the method for the entire range of flow regimes we have simulated a hypersonic flow test problem. One of the advantages of the Godunov methods is that over the whole range of calculations performed (low subsonic flow, supersonic flow, unsteady flow with strong shock, or hypersonic flow at Mach number M=32) it is unnecessary to change or adjust the numerical algorithm. In Ref. 17 the performance of first- and second-order Godunov methods was analyzed for hypersonic flow regimes. There, as a test problem, an analytical solution was used for a hypersonic flow around a flat plate of finite thickness. This solution was obtained based on the analogy between hypersonic flow over a flat plate of finite thickness and a strong planar explosion. Here we use an expression from Ref. 17 which defines the shape of the shock wave as a function of plate thickness d; γ is the adiabatic coefficient, and α is a nondimensional scale factor related to the energy released at the stagnation point.

$$Y_{\rm SHCCK} = \left(\frac{1}{2}D_f \frac{dx^2}{2}\right)^{\nu s}$$

where D_f is a coefficient of order unity,

$$a = k_1 (\gamma - 1)^{k_2 + k_3 in(\gamma - 1)}$$

with $k_1 = 0.36011$, $k_2 = 1.2537$, and $k_3 = -0.1847$.

As a direct comparison we solved the hypersonic flow problem for the same set of conditions as in Ref. 17:

$$U_{p} = 10011 \text{ m/sec}, p = 98.72 \text{ Pa}, \rho = 1.24 \times 10^{-3} \text{ kg/m}^{3}, \text{ and } \gamma = 1.2$$

The grid used for this simulation is shown in Fig. 3.2.1a. This grid has \approx 5500 vertices and its spatial resolution at the leading edge of the plate is of the same order as that of a 300 x 60 rectangular grid used in Ref. 5.

Figure 3.2.1a Grid for simulation of hypersonic flow over a flat plate.

Figure 3.2.1b shows results for this simulation in the form of pressure contours. Figure 3.2.1b also represents the location of the analytically calculated shock front by a discrete line (squares). The shock resolution and accuracy or its location are comparable to that obtained in Ref. 17 even though our triangular grid has less than one third as many nodes as the rectangular grid used in Ref. 17. This is because in constructing the triangular grid we had the flexibility to place the highest concentration of nodes in the area of the leading edge where the main properties of the flow are established.

Figure 3.2.1b Second order solution for a flat plate, pressure contours. Mach = 32: 5509 grid vertices: $P_{max} = 5.0 \times 10^4$ Pa, $P_{min} = 98.7$ Pa.

3.3 SHOCK ON WEDGE WITH ADAPTIVE GRIDDING

An unstructured grid is very suitable for implementing boundary conditions on complex geometrical shapes and refining the grid if necessary. This feature of the unstructured triangular grid is compatible with efficient usage of memory resources. The adaptive grid enables the code to capture moving shocks and large-gradient flow features with high resolution. The memory resources available can be very efficiently distributed in the computational domain to accommodate the resolution needed to capture the main features of the physical property of the solution.

One strategy for doing this is called hierarchical dynamic refinement (H refinement). It keeps a history of the initial grid (other grid) and the subdivision of each level (daughter grid). H refinement subdivides the initial grid into two or four triangles in each level, and keeps track of the number of subdivision levels each triangle has undertaken. In the H refinement method, one has to keep overhead information on the level of each triangle subdivision, and needs double indirect indexing to keep track of the H refinement process. This slows down the computation by partially disabling the vectorization of the code. As mentioned, H refinement relies heavily on the initial grid as it subdivides the mother grid and returns back to it after the passage of the shock.

AUGUST and its predecessor FUGGS use a second-order Godunov solver on an unstructured grid. The refinement strategy incorporated in these codes is called Direct Dynamic Refinement. For shock capturing, Direct Dynamic Refinement basically requires the refinement to be in the region ahead of the shock. This requirement minimizes the dissipation in the interpolation process when assigning values to the new triangles created in the refined region. Additionally, it requires that the coarsening of the grid should be done after the passage of the shock. In principle, the interpolation and extrapolation in the refinement and coarsening of the grid are done in the region where the flow features are smooth.

FUGGS was used with direct dynamic refinement to solve the transient behavior of the flow entering a channel with a wedge (prism) having an inclination of 27°. The flow enters the channel from the left with Mach number 8.7. A sequence of snapshots illustrates the density contours, and the grid for each timestep is given in Figs. 3.3.1a -3.3.3a (contour plots) and 3.3.1b - 3.3.3b (grid). These figures clearly demonstrate the automatic adaptation of the grid to the moving shocks and the ability to capture the detailed physics of the simulation with very high resolution and minimal memory requirements. The initial grid can clearly be seen to the right of the shock ("ahead") in the early stage of the shock propagation from left to right. The coarsening algorithm is able to produce a reasonable mesh in the region trailing the shock as shown in the figures.

Figure 3.3.1a Density contours at early time for shock in planar channel $(M = 8.7, wedge angle = 27^{\circ}).$

Figure 3.3.1b Grid at early time for shock in planar channel $(M = 8.7, wedge angle = 27^\circ)$.

Figure 3.3.2a Density contours at intermediate time for shock in planar channel $(M = 8.7, wedge angle = 27^{\circ})$.

Figure 3.3.2b Grid at intermediate time for shock in planar channel $(M = 8.7, wedge angle = 27^\circ)$.

Figure 3.3.3a Density contours at late time for shock in planar channel $(M = 8.7, wedge angle = 27^{\circ}).$

Figure 3.3.3b Grid at late time for shock in planar channel $(M = 8.7, wedge angle = 27^\circ).$

3.4 MINE EXPLOSION UNDER VEHICLE

The main objective of this joint Marine-Army program was the development of vehicles hardened against antitank (AT) land mines. The basic vehicle is the M925 5-ton cargo truck. Numerical simulations were used to determine the dynamic loads produced by the AT mine detonation on the cargo bed and other structural elements of the truck.

The algorithms, techniques and codes developed under the UUGM program provided two key elements necessary for the numerical simulations for this project: a) flexibility in describing the very complex geometry of the truck; b) high resolutioncalculation of the shocks and other discontinuities using an adaptive unstructured grid. A version of the AUGUST-2D code developed under the UUGM program is being used for the analysis of blast resistance of different truck geometries.

We have carried out four such calculations, using four, eight, eight, and 20 pounds of C-4 explosive. These employed fixed (nonadaptive) meshes with 30,000 (4-1b case), 21,000 (8-lb cases).

A one- or two-dimensional calculation was performed to produce the initial blast profiles laid down on the three-dimensional grid. Aside from the amount of explosive, the calculations differed in the following ways: all but the 4-lb blast were centered beneath

Figure 3.4.1 Two views of interaction between mine blast and M925 cargo truck: pressure contours at t = 0.574 msec.

the left front wheel of the truck (the 4-lb blast was situated 70 cm further back); for the first 8-lb case a crater with diameter 60 cm and depth 30 cm was situated underneath the blast.

All but the second 8-lb case used an ideal-gas equation of state with $\lambda = 7/5$ for the air and detonation products. Twenty pressure "sensors" positioned on the mesh at points corresponding to the pressure gauges used in actual field tests were used to record the pressure and impulse histories there for comparison with the experimental data.

The calculations were run out to about 4.5 msec. The pressure stations closest to ground level and to the blast center exhibited peaks up to $\sim 10^3$ psi. In some cases multiple peaks were present, corresponding to reflected shocks.

An example of the domain decomposition of the computational grid for a typical mine-truck interaction problem is shown in Fig. 2.5.2. In Fig. 2.5.3 the unstructured triangular grid is used to describe a cross section of an M925 cargo truck. Use of unstructured grids allows detailed description of the truck geometry. Figure 3.4.2 shows results of the simulation in the form of pressure contours overlaid on the unstructured grid, viewed from two different directions halve a millisecond after the detonation.

At Ft. Belvoir's request, SAIC also assessed the damage to a mine-clearing plow due to a single detonation of an AT mine at close range during the Desert Storm operation. At that time, Ft. Belvoir RDEC had responsibility for support of countermine activity in the Desert Storm operation.

To simulate the plow-mine blast interaction, SAIC used computational capabilities partially developed under the UUGM program. Use of unstructured triangular grids again enables detailed description of the plow geometry and use of Direct Dynamic grid Adaptation method allows detailed simulation of the complex pattern of the shock wave reflections.

In Fig. 3.4.2 the initial stage of the blast-plow cross section interaction is shown in the form of pressure contours overlaid on the dynamically adapting grids. In Fig. 3.4.3 a more advanced stage of the blast-structure interaction is shown in the same format as in Fig. 3.4.2. The adaptive grid allows high resolution of a complex blast interaction phenomena.

SAIC has also simulated the structural response of the plow to the dynamic load that is defined by the gas dynamic simulations described above. In Figs. 3.4.4a - d results are shown for the plow deformation in response to dynamic load. Recent experimental assessment of the plow damage showed that SAIC predictions correctly described blast damage to the plow.

Figure 3.4.3 Blast - plow interaction: pressure contours in advanced stage

b. Detonation

c. Detonation product expansion Figure 3.5.1 Pulsed detonation engine simulation: flow tracers.

3.5 PULSED DETONATION ENGINE

The main objective was the development of a revolutionary propulsion concept based on intermittent detonative combustion. Development of this concept will result in a new class of engines with performance surpassing those of small turbines at significantly reduced cost. SAIC's PDE research was noted in a recent article [Aviation 3^{-1} -ek, October 28, 1991, pages 68-89]. The PDE is currently considered as a candidate concept for numerous propulsion systems including the air-to-air missile, cruise missile. RPV engine, high altitude UAVs and others.

The codes developed under the UUGM program have enabled SAIC to conduct a detailed study of the PDE concept. The unstructured grids used in the simulations allowed us to describe the complex geometries of the detonation chamber and air inlets for a full missile configuration. Adaptive gridding allowed efficient and accurate simulation of the detonation and resulting shock waves interacting with the thrust-producing surfaces of the engine.

In Fig. 3.5.1 results are shown for the simulation of the PDE detonation cycle for a Mach 2 missile. Lagrangian flow tracers are used to track air and fuel trajectories in the engine. The figures demonstrate the sequence of stages in one PDE cycle. Shown in Figs. 3.5.1a-c are the fuel mixing stage, the detonation stage and the detonation products discharge stage, respectively. Detailed CFD analysis of various geometries and flow regimes allowed us to develop an understanding of the parametric dependence of the fundamental variables that determine the PDE performance.

3.6 SHOCK FOCUSING IN AIR

Research relating to focusing of shock and acoustic waves is of considerable practical interest for application to extracorporeal shock-wave lithotripsy (ESWL). A schematic of the cross section of such a reflector is shown in Fig. 3.6.1. Strong acoustic waves are generated in the left focal point of the ellipsoid by an instantaneous release of energy and are refocused at the right focal point. Ideally, focusing should be based on waves of acoustic intensity, since the nonlinear reflections of strong shock waves lead to significant distortions in wave propagation and impair simple geometrical focusing.

Figure 3.6.1 shows the computational domain and grid for the ellipsoidal reflector. Figure 3.6.2 shows the simulation results at time $t = 1.21 \times 10^{-6}$ sec. At this stage, the wave front that propagated to the left has undergone full reflection and the reflected wave propagates in the direction of the incident wave to the right. Figure 3.6.3 shows the pressure contours ($t = 8.41 \times 10^{-4}$ sec) when the maximum focused pressure is obtained in the system. The incident front has left the computational domain, and the maximum pressure occurs in a small volume in the vicinity of the right focal point. The maximum focused pressure has reached 1.37×10^5 Pa and is located 11 mm to the right of the focal point of the ellipsoid. In all the figures presented, the method of composite domain decomposition works extremely well, producing seamless solutions at the interfaces.

Figure 3.6.1a Hybrid structured/unstructured grid used for numerical simulation of ellipsoidal reflector.

Figure 3.6.1b A schematic drawing of the center cross section of the ellipsoidal reflector.

Figure 3.6.2 Pressure contours at time $t = 1.21 \times 10^{-6}$ sec showing the incident wave as reflected from the reflector wall.

Figure 3.6.3 Pressure contours at time $t = 8.41 \times 10^{-4}$ sec showing the stage at which the maximum focused pressure is obtained.

3.7 NONIDEAL AIRBURST IN MULTIPHASE MEDIA

The main objective was to advance the understanding of the formation dynamics and microphysics of the multiphase flow of clouds developing as a result of a nuclear explosion. A main difficulty in analysis of nuclear cloud formation is the necessity to take into account physical phenomena that are interdependent and occur on vastly different scales. At about 30 seconds after a nuclear detonation, the cloud can be 4 km high and the shock wave will be at the distance of 10 km. The multiphase interactions that occur on a scale of 10-100 meters are very important and have to be accounted for.

SAIC has developed a multiphase, multicomponent version of the AUGUST-2D code developed under the UUGM program. We use an explicit method for the solution of the multiphase flow described by equivalent Euler equations, and an implicit integration for simulation of the particle-fluid interactions. The grid adaptivity allows efficient and accurate simulation of this multiphase phenomenon. The grid adaptivity is used for adjusting the spatial scale of the domain decomposition to the scale required for accurate simulation of various physical interactions. Other code improvements such as introduction of the real-gas equation of state and Lagrangian particle tracing were employed to enable simulations and analysis of this complicated phenomena.

In Fig. 3.7.1a the computational domain and grid are shown for the nuclear cloud simulation. In this figure the temperature contours are overlaid on the unstructured grid. In Fig. 3.7.1b the particle density contours are shown for the same stage of the cloud evolution as in Fig. 3.7.1a. In Fig. 3.7.1c particle radius is shown for the same stage of the cloud evolution, and Fig. 3.7.1d shows locations of the Lagrangian tracers that mark evolution of the detonation products.

3.8 FLOW IN THE SARL WIND TUNNEL

One of the problems to which AUGUST 3D has been applied is that of modeling the SARL wind tunnel at Wright Laboratory. This example is a good test of the use of the Second-Order Godunov method to do nearly incompressible flow calculations. To illustrate the results, Fig. 3.8.1 shows the grid used for simulating the flow. The calculation was performed by specifying the inflow and outflow parameters and running the simulation to convergence. The run was performed at SAIC on the Stardent workstation and repeated on an Iris at FIMM. Figures 3.8.2 and 3.8.3 show the pressure levels in the tunnel. The results were visualized using AVS.

Figures 3.8.1 and 3.8.2 show two views of the pressure contours generated in a calculation of subsonic flow (Mach number 0.05). The results were confirmed by comparison with those obtained using a code with a structured grid, and by checking them against measurements.

Figure 3.7.1 Formation of a radiative cloud. Multiphase simulation.

Figure 3.8.1 The unstructured grid used to simulate the SARL wind tunnel.

Figure 3.8.2 The pressure contours from the simulation of the SARL wind tunnel.

41

3.9 SHOCK ON DOUBLE WEDGE

A much more complicated problem, which has been extensively studied to benchmark and validate Euler solvers, is flow over a double wedge. This problem contains multiple fluid phenomena and is a stringent test for any solver. It includes shock formation, a Mach stem, rarefaction, a slip line, vortex generation and rollup, and is transient in nature. To validate our direct dynamic refinement method in AUGUST, we simulated a Mach 2.85 shock wave propagating in a channel and impinging on a symmetric 45° wedge, and also a Mach 8.7 shock impinging on a symmetric 27° wedge.

Both of these compared well with experimental results. Figure 3.9.1 shows an interferogram taken from Glaz et al., 1^7 showing the M = 8.7 shock interacting with the front surface of the 27° wedge. Our results are shown in Figs. 3.9.2 - 3.9.4. The first of these illustrates the grid and density when the shock is on top of the wedge. The shock is well resolved and the grid is well adapted in the vicinity of important features and coarsened in the region that the shock has passed through. The next two figures show the evolution of the flow and the grid after the wedge where comparison can be made with the experimental results. AUGUST produces no artificial features and recovers the phenomenology seen in the experiment.

Figure 3.9.1 Experimental interferogram of a shock hitting a 45° corner at $M_s = 2.85$.

In the figures showing the triangular grids, the area of a triangle in the dense region of the grid is roughly 100 times smaller than the area of a triangle in the initial grid. The figures show that the grid adaptivity is capable of capturing the flow gradients including shocks, contact discontinuities and slip lines. Formation of a triple point of the Mach reflection, slip line and strong vortex formation are seen in Fig. 3.9.2a. In fairness, most of the flow phenomena that is captured by AUGUST have also been captured by other CFD schemes.¹⁸ However, the accuracy estimated for the AUGUST numerical calculations in this example is on the order of 4%, equal to the accuracy of the experimental observations.

b. Adaptive grid, 15,123 vertices

Figure 3.9.2 Interaction of a Mach 8.7 planar shock wave with a 27° double ramp: Mach reflection stage.

b. Adaptive grid, 27,132 vertices

Figure 3.9.3 Interaction of Mach 8.7 planar shock wave with a 27° double ramp: start of the diffraction stage.

۱

b. Adaptive grid, 46,462 vertices

Figure 3.9.4 Interaction of Mach 8.7 planar shock wave with a 27° double ramp: shock diffraction stage.

3.10 SUPERSONIC SPRAY COATING DEVICES

In this section we present the results of an application of the UUGM similar on technology to a sample problem involving spray-coating devices. Here we only trease aerodynamic flow of particles in a high temperature gas which is moving superscript, we consider a reasonably complex geometry including a simulated surface that the substrate to be coated. The details of the surface interaction resulting in deposition are not treated in this example.

In Fig. 3.10.1 the computational domain and grid are shown for a model supersonic jet sprayer device that includes reactor nozzle, solid particle injector, and expansion nozzle. Also shown in Figure 3.10.1 is a perforated flat surface substrate placed in the flow field. The high-velocity high-temperature flow stream exiting the reactor nozzle accelerates the injected particles. The particles are heated during acceleration, melt, then expand with the flow in the nozzle, gain more speed, and finally impinge onto the surface. Details of the flow-surface interaction (here without boundary layers taken into account) will strongly affect the uniformity with which the surface will be "coated" by the particles carried by the flow.

Figure 3.10.1 The figure shows the initial computational grid for the jet spray simulation demonstration. Shown are the nozzle, injection region and target surface depicted as a flat plate with perforations, oriented perpendicular to the mean spray flow. The boundary conditions used for the sample simulation were: $V_g = 1000 \text{ m/sec}$, $\rho_g = 0.1 \text{ kg/m}^3$, $T_g = 3500 \text{ K}$ at the inlet of the reactor nozzle; $V_g = 1500 \text{ m/sec}$, $\rho_g = 0.3 \text{ kg/m}^3$, $T_g = 1500 \text{ K}$, $V_p = 1500 \text{ m/sec}$, $T_p = 1500 \text{ K}$, $N_p = 2000 \text{ at the inlet of the reactor nozzle}$.

To trace the motion of the particles in the plasma spray device and the interaction pattern with the target surface we have injected Lagrangian "marker" particles (massless but moving with the local flow speed) in the particle injector flow stream. In Fig. 3.10.2 results are shown in the form of marker particle locations. To monitor the particle temperatures we have introduced particle coloring, where the color defines the local particle temperature. Thus one can evaluate the evolution of the particle temperature by observing the particle color transition. This coloring scheme can be used to show other parameters such as particle residence time or density. This represents a simple method of visualization that we have used successfully in past UUGM simulations.

Figure 3.10.2 Lagrangian marker particles are shown in color representing the evolution of injected particle temperature as a function of particle position and time in the jet spray stream.

In Fig. 3.10.3 simulation results for the steady state are presented in the form of gas temperature contours for the jet spray system. Here it is possible to observe a very large temperature variation in the nozzle. The cold gas that is injected with the particles remains at the edge of the jet stream. At the same time the main jet cools through the expansion in the nozzle from 3500°K to 2000°K, and then undergoes a series of expansions and compressions in the system of shock waves created by overexpansion of the supersonic jet. Figure 3.10.3 also shows a nonuniform temperature distribution on the surface that is partially created by the gas flow through the perforated holes.

In Figs. 3.10.4 and 3.10.5 simulation results are shown for the density and pressure contours. Here we can observe the formation of several diamond-shaped shock structures as a result of supersonic flow over expansion. However, for the flow regimes in our simulation these shocks do not lead to a higher rate of mixing by injected cold gas with particles and the main hot gas stream. This can be noticed in the density contours, where one clearly observes that the high-density cold gas does not penetrate the main hot jet flow. By changing the condition (injection pressure, angle of entry, etc.) of the injected flow one can improve mixing, thus achieving higher particle temperatures and velocity.

Figure 3.10.3 Gas temperature contours in the jet spray stream. The maximum temperature is 3500°K and the minimum is 600°K.

Figure 3.10.4 Gas density contours in the jet spray stream. The injected stream and the main flow mix poorly. The diamond patterns describe the shock wave pattern resulting from the flow's overexpansion.

Figure 3.10.5 Pressure contours in the jet spray stream. The diamond patterns show that supersonic flow is maintained near the vicinity of the target surface.

3.11 DUSTY FLOW OVER A CYLINDER

A numerical study of two-phase compressible flow has been performed for the reflection and diffraction of a shock wave propagating over a semicircular cylinder in a dusty gas. The following model was used to derive the governing equations:

(1) The gas is air and is assumed to be ideal;

(2) The particles do not undergo a phase change because for the particles considered here (sand) the phase transition temperature is much higher than the temperatures typical for the simulated cases;

(3) The particles are solid spheres of uniform diameter and have a constant material density;

(4) The volume occupied by the particles is negligible;

(5) The interaction between particles can be ignored;

(6) The only force acting on the particles is drag and the only mechanism for heat transfer between the two phases is convection. The weight of the solid particles and their buoyant force are negligibly small compared to the drag force;

(7) The particles have a constant specific heat and are assumed to have a uniform temperature distribution inside each particle.

Under the above assumptions, separate equations of continuity, momentum, and energy are written for each phase. The interaction effects between the two phases appear as source terms on the right-hand sides of the governing equations. The two phases are coupled by interactive drag force and heat transfer.

The objectives of the study were (a) to solve the two-phase compressible flow field and compare the simulation with available experimental results; (b) to observe and investigate the reflection and diffraction wave patterns when a shock wave propagates over a semicircular cylinder in a dusty gas, with particle radius and loading as parameters.

To test the accuracy of the two-dimensional computation, we first computed the pure gas flow case of shock wave reflection and diffraction over a semicircular cylinder. We then compared the simulation with experimental results. Shock wave reflection on a wedge has been extensively studied by many researchers (see e.g., review papers of Ben-Dor and Dewey¹⁸ and Hornung.¹⁹ As one can see from Fig. 3.11.1, the results show excellent quantitative and qualitative agreement between the numerical simulation and experimental results.

Figure 3.11.1 Comparison for $M_s = 2.8$ pure-gas flow: (a) interferogram from experiment; (b) density contours from present calculation.

In the two-phase simulation a planar shock with $M_s = 2.8$ propagates into an area of dusty gas and impinges on a semicircular cylinder. The interface between pure air and dusty air is located at x = 0.0 of the computational domain. The area of the dusty air contains a semicylinder with a radius of 1m. The size of the computational domain, initial parameters of the gas, parameters of the incoming shock, size of the semicylinder and its location in the computational domain, are the same as in the reflection and diffraction simulation in the pure gas case. The main objective of this set of simulations was to study the effects of particle size and particle loading on the parameters of the reflected and diffracted shock waves.

The first set of simulation results is shown for the case with dust parameters $r_p = 10\mu$ m and $\rho_p = 0.25$ kg/m³. The gas parameters and the parameters of the incoming shock wave were the same as in the pure gas case presented above. In Figs. 3.11.2a and 3.11.2b, the particle density and gas density contours are shown at the stage where significant diffraction has taken place and the shock front is approaching the trailing edge of the cylinder. To study the influence of particle loading on the dynamics of reflection and diffraction, we have simulated the case with a dust density of $\rho_p = 0.76$ kg/m³ and with $r_p = 10\mu$ m. To examine the effect of particle size on the reflection-diffraction process, we simulated a case where the particle loading and gas flow conditions were the same as in the previous case with particle density $\rho_p = 0.76$ kg/m³, but the particle size was $r_p = 50\mu$ m (Fig. 3.11.3).

On the basis of these calculatrions we reached the following conclusions:

(1) For a two-dimensional pure-gas flow, numerical results agree well with existing experimental data qualitatively and quantitatively, indicating that the gas phase is accurately simulated by the adaptive grid technique;

Figure 3.11.2 Density contours for the case $M_s = 2.8$, $\rho_p = 0.25 \text{ kg/m}^3$, $r_p = 10 \mu \text{m}$ at two different times: (a) particle density at t_1 , (b) gas density at t_1 ; c) particle density at t_2 , (d) gas density at t_2 .

(

•

Figure 3.11.3 Density contours for the case $M_s = 2.8$, $\rho_p = 0.76 \text{ kg/m}^3$, for two different particle sizes: (a) particle density and (b) gas density for $r_p = 10 \mu \text{m}$; c) particle density and (d) gas density for $r_p = 50 \mu \text{m}$.

(2) Particles in the gas can have a profound effect on the shock wave reflection and diffraction pattern, which is a function of particle size and loading. The bas the particle loading, the less the influence of particle on the flow field;

(3) In the three simulation cases, particles accumulate behind the "back ulder" of the semicircular cylinder due to the effect of particle inertia and the rarefaction ave;

(4) For different particle sizes at fixed particle loading, the larger particle will have a longer relaxation zone and less accumulation at the "back shoulder" and behind the incident shock. The gas density contours show a less distinguishable slip line in the small particle case than in the large particle case.

3.12 IMAGE PROCESSING

Very recently, there have been exploratory efforts in image processing based on nonlinear methods. If the purpose of an enhancement process is to highlight the edges of an image, then the technique used in the frequency domain is usually highpass filtering. An image can be blurred, however, by attenuating the high-frequency component of its Fourier transform. Since edges and other abrupt changes in the gray levels are associated with high-frequency components, image sharpening can be achieved in the frequency domain by a highpass filtering process, which attenuates the low-frequency without disturbing high-frequency information in the Fourier transform. The primary problem with this technique is that an ideal discontinuity has an infinite spectrum of frequencies associated with it. When filtering is applied, some frequencies are cut off, leading to a loss of edges in the image.

In computational fluid dynamics (CFD) similar problems exist in simulating flows with discontinuities. The problem of simulating flows with discontinuities is less forgiving, since an incorrect calculation usually leads to a complete distortion of the flow field. This has led CFD scientists to develop sophisticated algorithms that identify and preserve discontinuities while integrating the flow field in the computational domain. In the image domain, sharpening is usually done by differentiation. The most commonly used methods involve the use of either gradients or second derivatives of the pixel information. Central differencing is usually used to calculate the derivatives. CFD research has shown that this strategy will lead in many cases to smearing of the flow discontinuities (analog of the image edges in image enhancement).

A new and unique image sharpening method based on computational techniques developed for AUGUST has been developed. Preliminary experience shows that it can enhance image edges and deconvolve images with random noise. This indicates a potential application for image deconvolution from sparse and noisy data resulting from measurements of backscattered laser-speckle intensity.

52

The Second-Order Godunov Method used in AUGUST was developed from an understanding of the phenomenology of signal propagation in gasdynamical systems. The numerical algorithm implementing this method is not analytical and contains a set of steps that can be regarded as wave filters. These filters are designed to not smear the discontinuity (edge), suppress the spurious oscillations, and propagate the relevant signals through the system. The following algorithmic steps are performed to advance the solution for a single iteration in the Second-Order Godunov Method:

- 1. Local Extrapolation
- 2. Monotonicity Constraint
- 3. Characteristics Constraint
- 4. Riemann Problem Solution
- 5. Integration

Most of these steps have an analog in conventional image processing methods. Here we will give an explanation of the function of each algorithmic step of the Second-Order Godunov Method and where applicable, will point to its possible analog in conventional signal processing techniques.

Step 1 consists of extrapolation of the values in the computational grid (pixel) cell to the edges of the cell. Linear or nonlinear extrapolation can be used. This step is analogous to the standard edge-sharpening techniques used in image processing, with one important difference: the extrapolation is done not for the value itself but for its flux (change of value across cell boundary).

Step 2 includes a monotonicity constraint for the values at the cell edges. This is analogous to the nonlinear technique of locally monotonic regression only recently introduced for signal processing.

Step 3 subjects the values at the edges to the constraints derived from a solution of the one-dimensional characteristics. This step assures that the values at the edges have not been extrapolated from directions inconsistent with the characteristic solutions. This prevents extrapolation as well as smearing or overshoot of the discontinuities. For the image-processing application, this can be regarded as a form of automatic edge detection step where the shock waves are associated with the edges of an image.

Step 4 uses an exact solution of the system of the gasdynamic equations for calculation of the flux values based on the extrapolated values of the parameters at the left and right side of the edges. This step has no analogy in image processing. However, since the analytical solution includes discontinuities, an exact calculation of the flux at the edge location is allowed, even if this flux is calculated through a discontinuity.

Step 5 consists of finite-volume integration of the system of conservation laws. Here, the image is effectively treated as a flow field: the flux integration serves as a smoothing filter from the image perspective.

The effect of these steps is equivalent to the application of a unique filte stack with proven properties of discontinuity preservation and robustness.

The field of gray scale intensity of an image can be translated into a flow ueld. To every image pixel we assign to the corresponding cell of the computational domain values of the gasdynamical parameters proportional to the values of the gray scale. Our understanding of the basic gasdynamical processes plays a major role in completing the analogy. Appropriate mapping of the image gray scale intensity into a flow field creates conditions favorable for the formation or enhancement of field discontinuities. For example, a shock wave reflecting from a wall or a contact surface can increase in strength, or two colliding flow streams will produce a contact surface that will become stronger in time. If we have a numerical technique to resolve these discontinuities accurately, then with successive numerical integration of the flow field, the discontinuities will sharpen as the solution evolves in time. Then by inverse mapping of the flow field to the image gray scale field, we can reconstruct an enhanced image.

Figure 3.12.1 Edge enhancement for a sinusoidal distribution without noise.

Figure 3.12.2 Edge enhancement for a sinusoidal distribution with 10% intensity random noise.

Fig. 3.12.3 Edge enhancement for a sinusoidal distribution with 50% intensity random noise.

Fig. 3.12.4 Edge enhancement for a sinusoidal distribution with 100% intensity random noise.

Applications have been made to two-dimensional images derived from satellite reconnaissance and gamma-ray medical diagnostics (see Appendix C). Note that the images shown there are distorted by the xerographic process used to reproduce these illustrations, which also act as a nonlinear filter but is not funed to these images.

Analogous extensions of nonlinear CFD techniques can be used for image compression.

3.13 DETONATION IN A MULTIPHASE MEDIUM

In this study the main subjects were the initiation, propagation, and structure of detonations occurring when combustible particles are intentionally or unintentionally dispersed into the air. Formation of this potentially explosive dust environment and the properties of its detonation are of significant practical interest in view of its destructive or creative effects. Previous experimental and theoretical studies of these phenomena addressed only homogeneous particle/oxidizer mixtures. However, intentional or accidental processes of the explosive dust dispersion always lead to inhomogeneous particle density distribution.

On the other hand, some industrial methods of explosive forming rely on detonation of explosive powder. This powder can be deposited as a thin layer over the surface area of the forming metal, with a residual concentration in the vicinity of the latter.

When the detonation wave is generated in a homogeneous mixture by "ct initiation," it starts with a strong blast wave from the initiating charge. As the blast we decays, combustion of the reactive mixture behind its shock front starts to have a wiger role in support of the shock wave motion. When the initial explosion energy eveeds some critical value, transition to steady state detonation occurs. In explosive dust mixtures with a nonuniform particle density, the initiation dynamics is significantly more complicated. The critical initiation energy sufficient for one of the explosive particle density regions is not necessarily adequate for other regions. We have demonstrated that the phenomenology of these interactions is distinctly different from the classical studies of multilayer detonations in gases. This is primarily because the energy content of adjacent layers in a typical multigas layer experiment varies by a factor of two or four, whereas the energy content in explosive dust/air mixtures can vary by several orders of magnitude.

At present the physics of the energy release mechanisms in solid particles/air mixtures is not clearly understood. This can be attributed to the obvious difficulties of making a direct non-obtrusive measurement in the optically thick environment typical for this system. The chemical processes of single-particle combustion, which mainly occur in the gaseous phase, are significantly faster than the physical processes of particle gasification or disintegration. Thus, in the multiphase mixtures, the rate of energy release is mostly determined by physics of particle disintegration. It is very difficult to describe the details of particle disintegration in the complex environment prevalent behind the shock or detonation wave. Fortunately, in most cases of multiphase detonation, only the main features of the particle disintegration dynamics need to be captured to describe the phenomena.

In this work we considered solid particles consisting of explosive material. Twodimensional simulations were done for the system of low particle density concentration clouds and ground layers formed by high concentrations of the RDX powder. We examined three cases of ground layer density distribution: a fourth power distribution with 12 mm above ground with a maximum density on the ground of 800 kg/m³; a uniform 25-mm layer with a density of 100 kg/m³; and a 12-mm uniform layer with a density of 250 kg/m³. In all these cases, the weight of the condensed phase per unit area was the same, which allowed examination of the effects of the particle density distribution on detonation wave parameters.

Figure 3.13.1 shows a setup for a typical two-dimensional simulation. Here the computational domain is $25 \text{cm} \times 25 \text{cm}$. The explosive powder density is distributed according to the 4th power law of the vertical distance, starting from the ground where the density is 800 kg/m^3 , and rising to 1.2cm, where the density is 0.75 kg/m^3 . From this point to 25cm height, the density is constant and equal to 0.75 kg/m^3 . The density distribution is uniform in the x direction.

Figure 3.13.1 Computational domain and boundary conditions.

In all three cases, the detonation wave in the cloud in the computational domain was significantly overdriven and did not play an important role. We estimated that the self-sustained regime of the detonation wave in the cloud for the examined cloud concentrations can occur only at the distances of 2-3m above ground. At the same time, the particle density distribution in the layer determines the dynamics of the detonation wave as well as the pressure on the ground.

In all three two-dimensional simulations, we observed a very distinctive shape of the detonation wave front in the vicinity of the layer. In this area, the overdriven detonation in the cloud is preceding the detonation wave in the ground layer. This feature of the detonation front can be explained by the fact that the energy released in the ground layer detonation wave produces a faster propagating shock wave in the dilute cloud than in the ground layer which is heavily loaded with solid particles. However, these structures were not observed experimentally, and more studies are needed to examine their parameters.

Figure 3.13.2 Explosive initially localized in 2.5-cm layer at constant density of 100 kg/m³. Density in the cloud is 0.75 kg/m³. (a), (b), and (c) are gas pressure, gas density, and particle density at 66 µsec, respectively.

Figure 3.13.3 Particle density distributed in layer in accordance with the fourth power of height. Gas pressure, temperature, and particle density at 55 µsec, respectively.

4. CONCLUSIONS

The AUGUST-2D and AUGUST-3D adaptive unstructured CFD simulation codes, developed under SAIC's UUGM (through a contract form ARPA's Appliciand Computational Mathematics Program) program have been tested through the se standard CFD benchmark test cases and have been applied to a wide range of the line is problems for a variety of end-users. In most cases where these codes have been applied, significant improvements in accuracy, resolution, and ease of use have been noted. Use of the Second Order Godunov flow solver algorithm has provided a robust capability to treat low Mach number subsonic-to high Mach number hypersonic flow problems within one simulation code without the necessity of tuning the flow solver via adjustable parameters. In addition, the extension of the AUGUST family of codes to treat multiphase, multicomponent reactive flow phenomena provides the capability, for the first time, of simulating a wide variety of physically interesting and challenging problems that are rich in physics-chemical phenomena. The range of these problems includes: 1) full 3D flows about complex aircraft in all flight regimes (except rarefied flows), 2) shock-body interactions, 3) chemically reacting flows typical in combustion problems, and 4) detonation phenomena found in explosives, shock tubes, and specific applications to such devices as the pulsed detonation engine.

SAIC's UUGM program has resulted in over 20 publications in various stages of preparation, and numerous presentations at U.S. and international technical meetings, conferences, and workshops. The AUGUST family of simulation codes is presently being applied to several current materials development and synthesis areas of research. In particular, the ability of the AUGUST codes to capture the complex geometry of material synthesis reactor configurations, resolve the complex flow patterns, and treat the complex physics and chemistry of the synthesis process provides a simulation and modeling tool that is useful for design of such process reactors, analyse and evaluate experimental results, and (depending on successful benchmarking) provide a process control tool based on validated models. SAIC intends to exploit this capability in future programs.

SAIC's Applied Physics Operation, Hydrodynamic Modeling Division staff members performed the work under the DARPA UUGM program. Dr. Shmuel Eidelman and Dr. William Grossmann were co-program managers. Important contributions were made by Drs. Itzhak Lottati, Xiaolong Yang, Marty Fritts, Adam Drobot, Ahron Friedman, and Michael Kress. SAIC's UUGM team would like to acknowledge the support and interest of Dr. James Crowley (ARPA ACMP program manager), Drs. Lois Auslander and Helena Wisniewski (previously DARPA ACMP program managers), and Dr. Arje Nachman (AFOSR) who served as the ARPA agent for the UUGM program.

REFERENCES

- 1. T.J. Baker and A. Jameson, "A Novel Finite Element Method for the Calculation of Inviscid Flow Over a Complete Aircraft," Sixth International Symposium on Finite Element Methods in Flow Problems, Antibes, France (1986).
- 2. T.J. Baker, "Developments and Trends in Three-Dimensional Mesh Generations," Transonic Symposium held at NASA Langley Research Center, Virginia (1988).
- 3. R. Lohner, "Generation of Three-Dimensional Unstructured Grids by the Advanced-Front Method," AIAA 26th Aerospace Sciences Meeting, Reno, AIAA Paper 88-0515, January 1988.
- 4. R. Lohner and K. Morgan, "Improved Adaptive Refinement Strategies for Finite Element Aerodynamic Computations," AIAA 29th Aerospace Sciences Meeting, Reno, AIAA Paper 86-0499, January 1986.
- 5. A. Jameson, T.J. Baker, and N.P. Weatherill, "Calculation of Inviscid Transonic Flow Over a Complete Aircraft," AIAA 24th Aerospace Sciences Meeting, Reno, NV, AIAA Paper 86-0103, January 1986.
- 6. R. Lohner, "Adaptive Remeshing for Transient Problems, Comp. Meth. Appl. Mech. Eng. 75 195-214 (1989).
- 7. J. Peraire, M. Vahdati, K. Morgan, and O.C. Zienkiewicz, "Adaptive Remeshing for Compressible Flow Computations," J. Comp. Phys. <u>72</u>, 449-466 (1987).
- 8. D. Mavriplis, "Accurate Multigrid Solution of the Euler Equations on Unstructured and Adaptive Meshes," AIAA 88-3707 (1988).
- I. Lottati, S. Eidelman, and A., Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," 28th Aerospace Sciences Meeting, AIAA-90-0699, Reno, NV (1990).
- I. Lottati, S. Eidelman, and A. Drobot, "Solution of Euler's Equations on Adaptive Grids Using a Fast Unstructured Grid Second Order Godunov Solver," Proceeding of the Free Lagrange Conference, Jackson Lake, WY, June 1990.
- 11. I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Grids," Proceeding of the 4th International Symposium on Computational Fluid Dynamics, Davis, CA, September 1991.
- 12. S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," AIAA Journal 22, 10 (1984).
- 13. B. van Leer, "Towards the Ultimate Conservative Difference Scheme, V.A. Second Order Sequel to Godunov's Method," J. Comp. Phys. <u>32</u>, 101-136 (1979).
- 14. P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gasdynamic Simulations," J. Comp. Phys. <u>54</u>, 174-201 (1984).
- 15. J.F. Thompson, "Grid Generation Techniques in Computational Fluid Dynamics," AIAA Tour., Vol. 22, No. 11, pp. 1505-1523, November, 1984.
- M.S. Shepherd and M.K. Georger, "Automatic Three-Dimensional Mesh Generation by the Finite Octree Method," Intern. J. Num. Meth. Eng., Vol. 32, pp. 709-749, (1991).
- H.M. Glaz, P. Colella, L.I. Glass, and R.L. Deschambault, "A Detailed Numerical, Graphical and Experimental Study of Oblique Shock Wave Reflections," DNA-TK-86-365, 1986.
- I.I. Glass and D.L. Zhang, "Interferometric Investigation of the Diffraction of Planar Shock Waves Over a Half-Diamond Cylinder in Air," UTIAS Report No. 322, March 1988.
- 19. H. Hornung, "Regular and Mach Reflection of Shock Waves," Annual Review of Fluid Mechanics, Vol. 18, pp. 33-58, 1986.

¢

PUBLICATIONS UNDER THE UUGM PROJECT

- S. Eidelman, W. Grossmann, and I. Lottati, "A Review of Propulsion Applications of the Pulsed Detonation Engine Concept," AIAA 89-2446, AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conf., Monterey, CA, July 1989.
- S. Eidelman, W. Grossmann, and I. Lottati, "Computational Analysis of Pulsed Detonation Engines and Applications," AIAA 90-0460, 28th Aerospace Sciences Meeting, Reno, NV, January 1990.
- I. Lottati, S. Eidelman, and A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)", AIAA 90-0699, 28th Aerospace Sciences Meeting, Reno, NV, January 1990.
- 4. S. Eidelman and I. Lottati, "Reflection of the Triple Point of the Mach Reflection in a Planar and Axisymmetric Converging Channels," 9th Mach Reflection Symposium, Freiburg, Germany, June 1990.
- I. Lottati, S. Eidelman, and A. Drobot, "Solution of Euler's Equations on Adaptive Grids Using A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," in H.E. Trease, M.J. Fritts, and W.P. Crowley (Eds.), Proceedings of the Next Free-Lagrange Conference, Jackson Lake, WY, June 1990 [Advances in the Free-Lagrange Method, Springer-Verlag, New York (1992)].
- S. Eidelman, W. Grossmann, and I. Lottati, "Air-Breathing Pulsed Detonation Engine Concept; A Numerical Study," AIAA 90-2420, AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conf., Orlando, FL, July 1990.
- E. Hyman, K. Tsang, I. Lottati, A. Drobot, B. Lane, R. Post, and H. Sawin, "Plasma Enhanced Chemical Vapor Deposition Modeling," *Surface and Coatings Tech.* 49, 387 (1991).
- 8. S. Eidelman, W. Grossmann, and A. Friedman, "Nonlinear Signal Processing Using Integration of Fluid Dynamics Equations," Applications of Digital Image Processing XIV, SPIE Vol. 1567, 1991.
- S. Eidelman, W. Grossmann, and I. Lottati, "Review of Propulsion Applications and Numerical Simulations of the Pulsed Detonation Engine Concept," J. Propulsion 7, 857 (1991).
- 10. D.L. Book, S. Eidelman, I. Lottati, and X. Yang, "Numerical and Analytical Study of Transverse Supersonic Flow Over a Flat Cone," Shock Waves 1, 197, 1991.

- S. Eidelman and X. Yang, "Detonation Wave Propagation in Variable Density Multiphase Layers," AIAA 92-0346, 30th Aerospace Sciences Meeting, Reno, NV, January 1992.
- 12. S. Eidelman, I. Lottati, and W. Grossmann, "A Parametric Study of the Air-Berning Pulsed Detonation Engine," AIAA 92-0392, 30th Aerospace Sciences Meeting & Exhibit, Reno, NV, January 1992.

1

1

t

ŧ

- 13. I. Lottati and S. Eidelman, "A Second Order Godunov Scheme on a Spatial Adapted Triangular Grid," in U.S. Army Workshop on Adaptive Methods for Partial Differential Equations, Rensselaer, NJ, 1992.
- 14. I. Lottati and S. Eidelman, "Decomposition by Structured/unstructured Composite Grids for Efficient Integration in Domains with Complex Geometries," in Adv. in Computer Methods for Partial Differential Equations VII, R. Vichnevetsky, D. Knight, and G. Richter (Eds.), 1992.
- 15. X. Yang, S. Eidelman, and I. Lottati, "Two-Phase Compressible Flow Computation on Adaptive Unstructured Grid Using Upwind Schemes," in *Adv. in Computer Methods* for Partial Differential Equations VII, R. Vichnevetsky, D. Knight, and G. Richter (Eds.), 1992.
- S. Eidelman and W. Grossmann, "Pulsed Detonation Engine Experimental and Theoretical Review," AIAA 92-3168, AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conf. and Exhibit, Nashville, TN, July 1992.
- 17. S. Eidelman and A. Altshuler, "Synthesis of Nanoscale Materials Using Detonation of Solid Explosives," *1st Intern. Conf. on Nanostructured Materials*, Cancun, Mexico, September 1992.
- 18. S. Eidelman and X. Yang, "Detonation Wave Propagation in Combustible Mixtures with Variable Particle Density Distributions," AIAA J. 31, 228, 1993.
- S. Eidelman and X. Yang, "Detonation Wave Propagation in Combustible Particle/Air Mixture with Variable Particle Density Distributions," Combust. Sci. and Tech. 89, 201, 1993.
- X. Yang, S. Eidelman, and I. Lottati, "Computation of Shock Wave Reflection and Diffraction Over a Semicircular Cylinder in a Dusty Gas," AIAA 93-2940, 24th Fluid Dynamics Conf., Orlando, FL, July 1993.
- 21 I. Lottati and S. Eidelman, "Acoustic Wave Focusing in an Ellipsoidal Reflector for Extracorporeal Shock-wave Lithotripsy," AIAA 93-3089, 24th Fluid Dynamics Conf., Orlando, FL, July 1993.

APPENDIX A

CODE DESCRIPTION

•

APPENDIX A CODE DESCRIPTION

A.1 AUGUST (2D)

The subroutines in the AUGUST code are organized here as they appear in the listing in Appendix B. A brief description indicates the function performed by each subroutine.

TABLE A.1

LAST OF SUBROUTINES

1. MAIN	Governing program for AUGUST. Reads input files and sets the mode for the computation.
2. HYDRFL	Computes the fluxes at interfaces by applying the Godunov algorithm to solve the Riemann problem across the interface.
3. HYDRMN	Controls the computation. The integration of the fluxes and update of the physical variables, adaptation of the grid and writing to output files are performed in this subroutine.
4. GEOMTR	Calculates the geometrical quantities not provided by the input data file but needed for the computational algorithm. GEOMTR is only used once for starting a new simulation.
5. UPDATE	Reads the input file for a new simulation and calls GEOMTR to update the geo- metrical variables needed to perform the computation.

	<u> </u>
6. UPGRAD	Called if a restart run is performed. Will read the appropriate file written at the end of the previous run.
7. GRADNT	Computes the gradient of the physical variables to improve the prediction of those variables for the two sides of the interface. The gradients are subjected to the monotonicity condition that limits the projected values, thus preventing new maxima-minima from being caused artificially by interpolation (IOPORD = 2). Calls FCHART in order to compute projected values at the half timestep associated with the local characteristics of the flow.
8. GRDFLX	Computes the gradient of the pressure and Mach number in each cell. This information is used as an error indicator for the adaptation needed in a steady state solution.
9. FIRST	The equivalent of GRADNT if run in a first order mode (IOPORD = 1). Using FIRST assumes that the physical variables are constant in each cell. Takes care of the boundary conditions if the interface is a boundary.
10. FCHART	Computes the projected values at a half timestep for the two sides of the interface based on the local characteristics of the flow. Called by GRADNT, it modifies the projected values for the two sides of the interface and assigns them to the correct location in memory. Takes care of the boundary conditions if the interface is a boundary.

•

11. PRLCTN	Determines particle cell location in the initial phase of tracing a group of particles.
12. PRPTHC	Advances the position of each particle, assuming that the particle has the flow velocity of the cell. PRPTHC will find the cell location of the particle after it advances by the timestep of the computation.
13. VERCEN	Places an additional vertex at the center of a specified cell to refine the size of the cell by a factor of three.
14. DISECT	Places an additional vertex at the middle of a specified edge to refine the size of the two cells adjacent to the edge by a factor of two. This method of refinement is used only on the edges lying on the boundaries of the computational domain.
15. DYNPTN	Tests and flags the cells for specified refinement criteria. DYNPTN is called only if the parameter IOPADD = 1. Will start the refinement procedure by calling VERCEN and DISECT and will call DYYPTN for further refinement. This insures that the buffer zone ahead of the shock is resolved according to the specified area criteria (AREADD).
16. DYYPTN	Refines the cells flagged by DYNPTN by calling VERCEN and DISECT until the area of each flagged cell meets the area criteria specified by the parameter AREADD.

17. INTPTN	Refines the cells in the inlet region. Prepares the inlet region for the introduction of a shock wave. This initial refinement is essential to prevent additional refinement of the grid in the presence of a shock wave. It is called only if the parameters ICOND=0 and IOPTN= 2 (solution for transient phenomena).
18. DELPTN	Tests and flags the cells for the specified criteria for coarsening. DELPTN is called only if parameter IOPDEL = 1.
19. RELAXY	Relaxes the vertices of the cells that were created in the process of deleting a vertex.
20. VERDEL	Deletes a specified vertex.
21. RECNC	Tests two cells adjacent to the specified edge. Compares them to the two cells that can be created if this edge is flipped to pass between the other two vertices of the quadrilateral containing the original two cells. If the tests result in a better quality triangle, then RECNC will swap the edge.
22. EOS	Applies Gilmore equation of state to compute $\gamma = c_p/c_v$, giving the internal energy and density of the fluid in a cell. This option is controlled by the parameter IOPEOS = 1.
23. LIFTDR	A diagnostic to compute the lift, drag, and transfer momentum developed in the configuration. Takes into account all boundary edges that are specified as 5. It is controlled by the parameter $IOPLFT = 1$.

THE MAIN PROGRAM

All of the data input and initiation of a run (or a restart run) is performed in MAIN. The actual simulation is controlled by HYDRMN, which is called from MAIN. At the completion of a run, control is returned to MAIN and a successful termination prints the message STOP 777.

MAIN contains one name list (file no. 2) and requires an input file that contains the grid data description (file no. 16). The data organization for the grid file is described in Appendix A. There are five files that should be included: CINTOO.H, CMSHOO.H, CPHS10.H, CPHS20.H, CHYDO0.H.

	100110 100110	
		I FIGH IOPIN
	XIMI 64 TI IN STIN	
<i>A</i>		
ALL LICTION TO	NDIMP KDIMP	INSPOL INDIET
NAMELISI/UAIA		
		ODEVNI JAVOVM
	IOTION IOTOTID	OF DIA MADIM
	MODEOC UDDTOL I	
		UFINI IUPADU
3	IODDEL AREADD	
		AREDEL IWINDSV
	107170	
	ISIAIC	

VARIABLE	PURPOSE
ICOND	= 0 READ INPUT GRID FOR A NEW SIMULATION = 1 READ THE GRID FROM PREVIOUS RUN

ICOND = 0:

MAIN will read the initial grid definition stored in file number 16. The current setting is to read the input ile as provided by Smart, a two dimensional triangula. grid generator that runs interactively on the Macintosh prosonal computer.

MAIN will call UPDATE, which will call CEOMTR. GEOMTR will compute essential geometrical parameters that are not provided by file 16. All geometrical information is dumped into output files (8 and 88) so that ICOND=0 is used only once at the beginning of a new simulation.

ICOND = 1;

ICONP = 0:

MAIN will call UPGRAD, which will call one of the output files (8 or 88) written by the previous run. This will load the geometrical definition of the grid (either 8 or 88---they are identical). Writing identical files provides a backup in the event that the job terminates for lack of time while in the process of writing to one of those output files.

VARIABLE	PURPOSE
ICONP	= 0 PRIMITIVE VARIABLES INITIALIZED = 1 VARIABLES READ FROM PREVIOUS RUN

Initialize the primitive variables in computational domain with an initial value specified by the user. The two options set by the code are controlled by IOPTN.

ICONP = 1:The flow field condition reads in files 8 or 88 and
provides a followup run set from the previous run.

VARIABLE	PURPOSE
ITRIGF.	 = 0 USING THE INPUT GRID AS THE INITIAL GRID = 1 THE INPUT GRID TRIPLED BY ADDING AN EXTRA VERTEX IN EACH TRIANGLE

ITRIGR = 1:

The original grid cells will be tripled by adding an extra vertex in the baricenter of each triangle. This option can be triggered at the beginning of a simulation only (ICOND = 0).

VARIABLE	PURPOSE
IOPTN	= 1 SOLUTION FOR STEADY STATE = 2 SOLUTION FOR TRANSIENT PHENOMENA

There are two choices available to set the initial condition of the problem.

lopin = 12

Assign the conditions at the inlet to the computational domain. This is the fastest way to get a steady state solution for the conditions specified at the inlet. In this option. PIN (pressure), RIN (density) and XMCHIN (Mach number: are assigned to the pressure density and velocity (the speed of sound is computed in the code) and imposed at the inlet boundaries.

\$(0)**:4**\$;}@**_%**4~

Used if a shock wave is to be simulated moving from the inlet (edge boundary 8) to the outlet (edge boundary 7). For this setting, specify PIN (ambient pressure in the chamber), RIN (ambient density in the chamber) and XMCHIN (upstream Mach number). The code will use the normal shock wave relations for an adiabatic flow of a completely perfect fluid to compute the static-pressure ratio across the shock P_2/P_1 and the density ratio ρ_2/ρ_1 , and the ratio of the Mach number across the shock M_2/M_1 . These computed quantities are applied to set correctly the condition on the pressure density and velocity at the inlet boundary.

VARIABLE	PURPOSE
ALPHA	THE DIRECTION OF INFLOW IN DEGREES RELATIVE TO A RIGHT HAND COORDINATE SYSTEM. ALPHA = 0 MEANS FLOW FROM LEFT TO RIGHT.

The velocity computed by the code according to the input data provided by the user is split (projected) in the X and Y directions by using α .

VARIABLE	PURPOSE
HRGG	INITIAL γ IN THE EQUATION OF STATE. THE CODE RUNS USING THE IDEAL EQUATION OF STATE AS A BASELINE AND SHOULD BE MODIFIED IF SOMETHING ELSE IS DESIRED. IOPEOS=1 WILL TRIGGER THE USE OF GILMORE EQUATION OF STATE.

VARIABLE	PURPOSE
IHRN	NUMBER OF ITERATIONS IN THE RIEMANN SOLVER TO FIND THE DIAPHRAGM SOLUTION. (THREE TO FOUR SHOULD BE USED AND INCREASED ONLY FOR A VERY HIGH MACH NUMBER CASES.)

VARIABLE	PURPOSE
NTIME	NUMBER OF REPEATS FOR THE INTEGRATION/ REFINEMENT/COARSENING SEQUENCE. AN OUTPUT DUMP IS DONE FOR EVERY SEQUENCE REPEAT.

VARIABLE	PURPOSE
MDUMP	NUMBER OF OUTERMOST LOOP ITERATIONS IN THE CALCULATION WHERE COARSENING OF THE GRID IS PERFORMED EVERY SEQUENCE REPEAT.

VARIABLE	PURPOSE
NDUMP	NUMBER OF OUTER LOOP ITERATIONS IN THE CALCULATION WHERE REFINING IS DONE FOR EVERY SEQUENCE REPEAT WITHOUT COARSENING.

VARIABLE	PURPOSE
KDUMP	NUMBER OF ITERATIONS PERFORMED WITH NO REFINEMENT OR COARSENING. THE INNER LOOP OF THE CALCULATION. IF KDUMP = 0, KDUMP WILL BE SET BY THE CODE AUTOMATI-CALLY ACCORDING TO THE SETTING OF THE VARIABLE AREADD.

VARIABLE	PURPOSE
IOSPCL	 = 0 NOT USING REDEFINITION OF POINTS ON THE BOUNDARY = 1 USING REDEFINITION OF POINTS ON THE BOUNDARY

IOSPCL = 1:

Modifies the definition of points along the boundary according to a presetting in the code. The setting currently will redefine the points along the edge boundary 5 to exactly match NACA0012 airfoil shape. This is done to redefine points on a boundary that has an analytical definition of points, but where these points have been dislocated by a refining procedure.

VARIABLE	PURPOSE
IOPLFT	 = 0 THE COMPUTATION OF LIFT DRAG AND MOMENT TURNED OFF = 1 THE COMPUTATION OF LIFT DRAG AND MOMENT TURNED ON

1

1

1

Set IOPLFT = 1 if integral quantities need to be computed. The current setting will calculate the lift, drag and moment on edge boundary 5.

VARIABLE	PURPOSE
IOPRCN	 = 0 A GLOBAL SWAPPING (RECONNECTION) PROCEDURE IS OFF = 1 A GLOBAL SWAPPING (RECONNECTION) PROCEDURE IS ON

This swapping is done by calling subroutine RECNC. It is used only in a new simulation (ICOND = 0).

VARIABLE	PURPOSE
IOPORD	 = 1 THE CODE WILL RUN FIRST ORDER GODUNOV METHOD = 2 THE CODE WILL RUN SECOND ORDER GODUNOV METHOD

IOPORD = 1 Subroutine FI

Subroutine FIRST is called.

IOPORD = 2 Subroutine GRADNT is called.

VARIABLE	PURPOSE
IOP" YN	 = 0 NO BUOYANCY EFFECTS ARE COMPUTED = 1 BUOYANCY EFFECTS IN THE X DIRECTION ARE COMPUTED = 2 BUOYANCY EFFECTS IN THE Y DIRECTION ARE COMPUTED

The buoyancy effect applies the gravity acceleration as g = 9.81.

VARIABLE	PURPOSE
IAXSYM	 = 0 THE CODE WILL RUN IN A PURE TWO DIMENSIONAL MODEL = 1 THE CODE WILL RUN IN AN AXISYMMET- RICAL MODE (X AS THE AXIS OF SYMMETRY) = 2 THE CODE WILL RUN IN AN AXISYMMET- RICAL MODE (Y AS THE AXIS OF SYMMETRY)

VARIABLE	PURPOSE
IOPEOS	 = 0 THE CODE WILL RUN WITH CONSTANT γ = 1 THE CODE WILL RUN WITH VARIABLE γ USING THE EQUATION OF STATE FOR AIR

I©IEEQS∈OS

The initial γ is not changed and is kept constant across the computational domain at all times (with value set by HRGG).

IOPEOS = 1.The γ of each cell will be modified according to localinternal energy and density. Thus, if IOPEOS = 1, the actualpressure and density should be input (in the appropriatedimension). Otherwise (IOPEOS=0), a normalized pressureand density of unity can be used for simulation.

VARIABLE	PURPOSE
MPRTCL	= 0 NO PARTICLE TRACING = 1 THE CODE WILL TRACE PARTICLES

MPRTCL = 1:

The ability to trace particles will be turned on. Initially PRLCTN is called to identify the cell location of each particle. For each time step, PRPTHC will be called to update the cell location of each particle if it is relocated, assuming the particle moves at the same velocity as the fluid.

The initial location of the particles is defined in MAIN.

VARIABLE	PURPOSE		
IOPINT	 = 0 DOES NOT PREPARE A BUFFER ZONE. = 1 INITIALLY PREPARE A BUFFER ZONE AHEAD OF EDGE BOUNDARY 8 		

For simulating transient phenomena, the refining of the grid is done in the region ahead of the shock. In this way, we avoid interpolating in a region where large gradients reside. IOPINT = 1 will refine the region of the inlet flow to prepare a buffer zone (edge boundary 8). If refining is needed in another region, subroutine INTPTN should be modified accordingly.

VARIABLE	PURPOSE
IOPADD	= 0 THE REFINEMENT PROCEDURE IS TURNED OFF = 1 THE REFINEMENT PROCEDURE IS TURNED ON

VARIABLE	PURPOSE
IOPDEL	= 0 THE COARSENING PROCEDURE IS TURNED OFF = 1 THE COARSENING PROCEDURE IS TURNED ON

VARIABLE	PURPOSE
AREADD	SPECIFIES THE MINIMUM AREA VALUE THAT A TRIANGLE SHOULD HAVE AFTER REFINEMENT. SPECIFIED AS A FRACTION OF THE AVERAGE TRIANGLE AREA OF THE INITIAL GRID. THIS REFERENCE AREA IS KEPT CONSTANT THROUGH THE WHOLE SIMULATION.

VARIABLE	PURPOSE
AREDEL	SPECIFIES THE MAXIMUM VALUE THAT A TRIANGLE SHOULD HAVE AFTER COARSENING DEFINED AS A FRACTION OF THE REFERENCE AREA.

VARIABLE	PURPOSE
IWINDW	= 0 NO RESTRICTION ON THE REGION FOR REFINING THE GRID = 1 SETTING A WINDOW FOR REFINING THE GRID

IWINDW = 1.The user can specify a region in which the refinement
process will take place. Otherwise, the refinement takes
place everywhere in the computational domain.

VARIABLE	PURPOSE
ISTATC	 = 0 THE ADAPTATION WILL BE DONE ON A MOVING WAVE = 1 THE ADAPTATION WILL BE DONE ON A STEADY STATE CONDITION

Because the criteria for refinement in the presence of a static shock are not suited to treating a moving shock, the code sets different error indicators for adapting the grid for the two cases.

ISTATC =0

The energy and density net fluxes across each cell are tested for sensing the level of activity. This method is a very good error indicator for sensing transient phenomena as traveling shocks.

STM TO BAR

The pressure and Mach gradients in each cell are tested for sensing steady state shocks.

The gradient of density is always tested as a third criteria for making sure that static shocks are not ignored in computing a transient flow.

HYDRICE

Computes the fluxes across interfaces when the conditions for both sides are given. The fluxes are computed assuming a shock solution at a broken diaphragm simulated by the presence of the interface. The conditions existing on the two sides of the diaphragm will define the condition of the flow at the diaphragm location. These conditions are computed by solving the Riemann problem using the Godunov algorithm. The condition at the diaphragm defines the flux of energy, mass, and momentum passing across the interface. The Euler conservation law is applied to conserve energy, mass, and momentum crossing interfaces from one cell to the other.

Quantity	Side 1	Diaphragm (Interface)	Side 2
Density	ρ1	ρ	ρ2
Pressure	P1	Р	P2
Velocity Perpendi Jar to Interfac	uı	u	u2
Velocit arallel to Inter_ce	v ₁	v	v2

HYDRMIN

Controls the code and the iteration loops. It calls HYDRFL to find the interface fluxes. These fluxes are integrated to update the physical variables in each cell. If adaptation of the grid is required, HYDRMN will set the criteria for controlling the adaptation of the grid. The refining (DYNPTN, DYYPTN) and coarsening (DELPTN) of the grid is invoked by HYDRMN. HYDRMN also controls the output by writing the necessary information on files for post processing data and for restarting the AUGUST code at a later time. It also manages print file diagnostics.

GEOMTR

Calculates geometrical variables that are not supplied by the input data and are needed to run the code. For example, it will compute:

- 1) Area of the cells;
- 2) Length of the edges:
- 3) Unit vector perpendicular to the edge. (For boundary edges, this unit vector is direct from the computational domain outward);
- 4) Unit vector directed from the baricenter of the left cell to the baricenter of the right cell. For boundary edges, the unit vector is perpendicular to the edge (from left cell outward).

The code will change the direction of the boundary edges so that all are arranged counterclockwise and the associated computational cell is always on the left side. GEOMTR is called once in the beginning of a new simulation.

UPDATE

Called in the beginning of a new simulation for setting geometrical variables not provided by the input data. (It calls GEOMTR.)

UP(C)RAD)

Called if the run is a restart. UPGRAD will read the appropriate file (either 8 or 88) dumped by the previous run.

CRADNT

Compute the gradients of the physical variables in each cell. These computed gradients, along with the physical values at the baricenters, are applied using linear interpolation to predict the values on the interface.

The computed gradients are subjected to the monotonicity condition, ensuring that the projected values are bounded by the value of each quatity in the three adjacent cells, and to make sure that no new maxima or minima occurs. The projection of quantities to the interface improves the results from the code and provides second order accuracy in space.

GRADNT calls FCHART, which computes the projected values at the interfaces at the half timestep level according to the local characteristics of the flow in each cell bordering the interface cell. The assignment of values at the two sides of each interface is done at the end of FCHART. This same loop will also impose the boundary conditions for the interfaces at the boundaries of the computational domain.

GRDFLX

Computes the gradient of the Mach value and pressure gradient in each cell. These gradients are applied if the adaptation is done on a steady state converged solution. These variables, in addition to the computed density gradient, provide the criteria for adaptation if it is necessary to refine the grid for steady state problems.

FIRST

Assigns flow quantities to each side of an edge. These are based on the values at the baricenter of the triangles on either side of the edge. FIRST uses a first order approximation to find the values at the edge.

The user can specify FIRST or GRADNT by choosing 1 or 2 for the parameter IOPORD.

FCHART

Called by GRADNT to compute the values projected at the interfaces at the half timestep. These calculations are done by applying the local velocity characteristics in each cell. This projection in time improves the results and makes the code second order accurate in time.

PRINCHAN

Identifies the initial cell location of each particle. Called once after specifying the starting location of each particle to be traced.

PRPTEC

Advances the particle position by the marching timestep. It finds the new cell location if a particle crosses an interface. The assumption is that the particles move at the fluid velocity.

Introduces a **VERCEN** new vertex at the baricenter of the designated cell during the refinement process.

DISECT

Introduces a new vertex at the middle of a designated edge.

DYNPIN

Tests the cells according to the refining criteria and flags each cell which requires refinement. The flagged cells are refined in DYYPTN. The refinement is subjected to geometrical constraints on the cell shape to retain a high better quality refined grid.

The user can specify a window in the computational domain for refinement. The parameter to trigger this option is IWINDW = 1. For specifying the actual window, it may be necessary for the user to alter this subroutine and provide a definition of the geometrical area to be refined.

DYYPTN

Traces the cells that are flagged for refinement by DYNPTN. It subdivides them until each one of the refined cells meets the area refinement criteria of AREADD. Because each loop of refinement is restricted to a one-third reduction in cell area (calling VERCEN), DYYPTN will perform the necessary number of loops to meet the area reduction specified for refinement. AREADD is a fraction of the average area of the initial grid. This reference area is kept constant and fixes the minimum resolution in the simulation domain.

21/99 CAPA

Performs the initial refinement of the grid before the initialization. The assumption is that a shock wave is introduced through the inlet boundary. Consequently, LAAPTN will test for the inflow boundary interface and will refine the appropriate cells. (Note: It is not recommended that the code automatically refine the grid in the inlet region in the presence of a shock wave. If a shock wave is not introduced through the inlet, INTPTN should be modified to accommodate the change of the initial condition.)

DELPTN

Tests the cells according to coarsening criteria and flags them. Each triangle is tested to determine which vertex of the triangle is most appropriate for removal. This vertex is removed by calling VERDEL. DELPTN cannot delete nodes that have the status JV(1,IV) = 3. It is therefore recommended that nodes at sharp corners or nodes on important boundaries that are curved, be flagged as JV(1,IV) = 3.

RELAXY

Relaxes the cells that are created in the process of deleting a vertex. The relaxation procedure relocates the designated vertex to the mass center of the surrounding vertices.

LAPLAC

Computes the Laplacian of the pressure and density.

VERDEL

Deletes a designated vertex.

\$ **}) ; 4**); **(6** ; 8

Tests the possibility of swapping the designated interface to create two triangles of better quality than the original two.

12(0)*2*)

Computes γ using to the equation of state for air (Gilmore equation of state), given the density and internal energy of the air. The user may choose to apply the equation of state by setting IOPEOS = 1.

Ø) I (si y ₽) } .

Computes integral quantity diagnostics on any configuration. The integral quantities are lift, drag, and momentum and are found on boundary interfaces designated as 5.

GRADNEL

Computes the gradient of a scalar variable at the center of a cell. It uses a least squares technique to interpolate the values at the center of four triangles (the cell and its three adjacent triangles) to fit (four equations with three unknowns).

 $f = a_0 + a_1x + a_2y$

Those gradients are subjected to a monotonicity limiter that ensures no new minima or maxima are produced artificially in the projected values at the interfaces.

1)	find maximum and minimum of f_1, f_2, f_3, f_4 $f_{max} = Max (f_1, f_2, f_3, f_4)$ $f_{min} = Min (f_1, f_2, f_3, f_4)$
2)	compute $\Delta f_{max} = f_{max} - f_1$ $\Delta f_{min} = f_{min} - f_1$
3)	compute incremental projected values at the interfaces $f_{mjR} - f_R = \nabla f_R \cdot \bar{r}_{jR}$ $f_{mjL} - f_L = \nabla f_L \cdot \bar{r}_{jL}$

The monotonicity algorithm involves the following steps

 $\Delta f_{mjR} = f_{mjR} - f_R = \nabla f_R \cdot \overline{r}_{jR}$ $\Delta f_{mjL} = f_{mjL} - f_L = \nabla f_L \cdot \overline{r}_{jL}$

where j stands for every interface of the cell and fmj is the interpolated value at the middle of the interface.

4) compute the limiter by calculating the minimum of indicator for each edge of the three edges of the cell.

right to the interface RUVPR = $\frac{(1 + \text{sign } \Delta f_{miR}) \Delta f_{max} + (1 - \text{sign } \Delta f_{miR}) \Delta f_{min}}{2 \Delta f_{mjR}}$ left to the interface RUVPL = $\frac{(1 + \text{sign } \Delta f_{miL}) \Delta f_{max} + (1 - \text{sign } \Delta f_{mjL}) \Delta f_{min}}{2 \Delta f_{mjL}}$

This formulation ensures that

$${\rm if} \begin{cases} \Delta f_{mj} > 0 \; {\rm RUVP} = \frac{\Delta f_{max}}{\Delta f_{mj}} \\ \Delta f_{mj} < 0 \; {\rm RUVP} = \frac{\Delta f_{min}}{\Delta f_{mj}} \end{cases}$$

the outcome of RUVP is always positive. If RUVP > 1 then the projected value at the interfaces will introduce a new minimum or maximum relative to the values at the baricenters of the appropriate cells.

Select the minimum between the six values for RUVP (two for every one of the three interfaces of the cell) not exceeding unity. The selected minimum

of RUVP is the required limiter. The gradient is multiplied by this limiter that is always less or equal to unity.

FCHART

Computes the projected values at the half time step level based on the local characteristics of the flow. This process extends the accuracy of the code to be second-order in time as well as in space.

The characteristic projection consists of several steps.

 Calculate the velocity of sound in the two cells bordering the designated interface

 $CNLEFT = \sqrt{\gamma_L \cdot P_L/\rho_L} \quad sound speed in left cell$

CNRIGT = $\sqrt{\gamma_R \cdot P_R / \rho_R}$ sound speed in right cell

UVLEFT = $\overline{U}_L \cdot \overline{t}$ velocity of fluid at the left cell projected in \overline{t} direction

UVRIGT = $\overline{U}_R \cdot \overline{t}$ velocity of fluid at the right cell projected in \overline{t} direction

where

 $\overline{\mathbf{t}} = \mathbf{X}\mathbf{X}\mathbf{N}\cdot\overline{\mathbf{i}} + \mathbf{Y}\mathbf{Y}\mathbf{N}\cdot\overline{\mathbf{j}}$ $\overline{\mathbf{U}} = \mathbf{U}\cdot\overline{\mathbf{i}} + \mathbf{V}\cdot\overline{\mathbf{j}}$

2) To compute the interpolated left and right projected values at time $t^{N} + \Delta t/2$, we calculate the distances that the disturbances generated from the baricenter of the cells, traveling toward the interface:

 $ZZLEFT = (UVLEFT + CNLEFT) \cdot \Delta t/2$

 $ZZRIGT = -(UVRIGT - CNRIGT) \cdot \Delta t/2$

If ZZLEFT or ZZRIGT is negative they are reset to zero.

3) Calculate the distances that the flow will travel if it were to flow at the velocity of each of the local characteristics:

 $ZOLEFT = UVLEFT \cdot \Delta t/2$

 $ZORIGT = -UVRIGT \cdot \Delta t/2$

ZPLEFT = (UVLEFT + CNLEFT) $\cdot \Delta t/2$ ZPRIGT = - (UVRIGT + CNRIGT) $\cdot \Delta t/2$ ZMLEFT = (UVLEFT - CNLEFT) $\cdot \Delta t/2$ ZMRIGT = - (UVRIGT - CNRIGT) $\cdot \Delta t/2$.

4) Calculate the projected values of the nonconservative variables (density, velocity component (perpendicular and tangential to the interface), and pressure).

For the left cell:

Density HRRL = $\rho_L + \overline{\nabla}\rho_L \cdot (\overline{r}_L - ZZLEFT \cdot \overline{t})$ Perpendicular Velocity HUUL = $U_L + \overline{\nabla}U_L \cdot (\overline{r}_L - ZZLEFT \cdot \overline{t})$

Tangential Velocity	HVVL	*	$V_L + \overline{\nabla} V_L \cdot (\overline{r}_L - ZZLEFT \cdot \overline{t})$
Pressure	HPPL GMTLFT	2	$P_{L} + \overline{\nabla}P_{L} \cdot (\overline{r}_{L} - ZZLEFT \cdot \overline{t})$ $\rho_{L} \cdot HRRL \cdot HPPL$
For the right cell:			
Density	HRRR	8	$\rho_{\mathbf{R}} + \overline{\nabla} \rho_{\mathbf{R}} \cdot (\overline{\mathbf{r}}_{\mathbf{R}} - ZZRIGT \cdot \overline{\mathbf{t}})$
Perpendicular velocity	HUUR		$U_R + \overline{\nabla} U_R \cdot (\overline{r}_R - ZZRIGT \cdot \overline{t})$
Tangential velocity	HVVR	=	$V_R + \overline{\nabla} V_R \cdot (\overline{r}_R - ZZRIGT \cdot \overline{t})$
Pressure	HPPR GMTRGT	8	$P_{\mathbf{R}} + \overline{\nabla} P_{\mathbf{R}} \cdot (\overline{\mathbf{r}}_{\mathbf{R}} - ZZRIGT \cdot \overline{\mathbf{t}})$ $\rho_{\mathbf{R}} \cdot HRRR \cdot HPPR$

For the left cell, taking into account the following characteristics:

• For UVLEFT + CNLEFT:

• For UVLEFT – CNLEFT:

• For UVLEFT:

```
PPP = \overline{\nabla}P_{L} \cdot (ZOLEFT - ZZLEFT) \cdot \overline{t}

RRRR = \rho_{L} + \overline{\nabla}\rho_{L} \cdot (\overline{r}_{L} - ZOLEFT) \cdot \overline{t}

URLFT = PPP/GMTLFT + 1/HRRL - 1/RRRR

If UVLEFT is negative, URLEFT is reset to zero.
```

For the right cell, taking into account the following characteristics:

• For UVRIGT + CNRIGT:

• For UVRIGT - CNRIGT:

• For UVRIGT:

 $PPP = \overline{\nabla}P_{R} \cdot (ZZRIGT - ZORIGT) \cdot \overline{t}$ $RRRR = \rho_{R} + \overline{\nabla}\rho_{R} \cdot (\overline{r}_{R} + ZORIGT) \cdot \overline{t}$ URRGT = PPP/GMTRGT + 1/HRRR - 1/RRRRIf UVRIGT - CNRIGT is positive, URRGT is reset to zero. The projected values will be:

RRL = 1/(1/HRRL - (UPLFT + UMLFT + URLFT))UUL = HUUL + (UPLFT - UMLFT) \sqrt{GMTLFT} VVL = HVVL + (UPLFT - UMLFT) \sqrt{GMTLFT} PPL = HPPL + (UPLFT + UMLFT) GMTLFT RRR = 1/(1/HRRR - (UPRGT + UMRGT + URRGT))UUR = HUUR + (UPRGT - UMRGT) \sqrt{GMTRGT} VVR = HVVR + (UPRGT - UMRGT) \sqrt{GMTRGT} PPR = HPPR + (UPRGT + UMRGT) · GMTRGT.

Those values are the assigned condition for the two sides of the interface. If the interface is a boundary, the right condition is determined according to the type of boundary.

DYNPTN applies three distinct criteria to test cells to determine their need for refinement. They are as follows:

For unsteady dynamic simulation

- 1) total energy flux entering or leaving a cell
- 2) total density flux entering or leaving a cell
- 3) density gradient in each cell.

For steady state simulation

- 1) Pressure gradient in each cell
- 2) Mach number gradient in each cell
- 3) density gradient in each cell.

Cells that meet one of those three criteria are flagged, and are actually subdivided in DYYPTN until they meet the area criteria set for refinement (AREADD). The code will compute the maximum of each of the three criteria and set a 5% of the maximum or higher to the refinement criteria for the fluxes and 3% for the gradient. These criteria work extremely well for moving waves. It should be noted that those error indicators and their levels are set according to the actual simulated condition. For different cases, other error indicators and level settings might be more appropriate than the above.

DELPTN

Tests the cells for coarsening criteria. The same criteria that refines the grid are applied to coarsen the grid but in a different setting. Each cell that has less than 5% of the fluxes and less than 3% of the gradient criteria is eligible for coarsening. The code will test the cell flagged for coarsening and will choose one of the three vertices of the cell for deletion by determining which of the three has the smallest aspect ratio. (The aspect ratio is defined as the ratio between the height emerging from the node and its corresponding base.) There are vertices that cannot be removed, such as corners or vertices that preserve the original shape of the boundaries (JV(1,IV) = 3).

After the vertex is deleted, a relaxing procedure is performed on the vertices surrounding the deleted vertex, as well as a swapping procedure to improve the quality of the triangles constructed in the deletion procedure.

VERCEN

Adds an additional vertex at the baricenter of the designated cell.

VERCEN assigns one of the three new triangles the number of the original triangle and will add two more at the end of cells table. A new vertex plus three new interfaces are added at the end of the associated tables.

DISECT

Adds a new vertex at the middle of the designated edge.

DISECT will add one new vertex, three new edges and two new triangles. all of which are added at the end of the corresponding tables (vertices, edges and cells).

VERDEL

Forces deletion of a designated vertex. There are two types of vertices: deletion of a vertex in the interior of the computational domain and deletion of a vertex on the boundary. The steps of deleting a vertex are:

1) Identify the edges and cells surrounding the designated vertex in the computational domain

Interior Vertex to be Deleted

and on the boundary.

Deletion is more difficult and needs more computational resources than addition. The new vertices edges and cells being added are stacked at the bottom of the corresponding tables while undergoing deletion is always a member in the table. In order not to leave gaps in the table, a more complicated procedure was developed to replace the deleted member by the member at the bottom of the table.

2) Once the vertex, edges and cells joining the designated vertex are deleted we rezone the void (polygon) without adding new vertices. The adding of the new edges and cells are stacking at the end of the corresponding tables.

3) A relaxation procedure is performed on the vertices of the polygon (void). This procedure improve the quality of the cells that fill the void.

4) A swap procedure is performed on the new edges that were added in the process of filling the void.

A.1.1 Pre-Processor for the Unstructured Grid

The input geometrical data for AUGUST should provide the ...llowing data:

1) Number of: vertices (NV) flagged vertices (NVM) edges (NE) cells (NS) 2) A table of vertices specifying: number of vertex (IV) x coordinate (XV(1,IV)) y coordinate (XV(2,IV)). 3) A table of flagged vertices that cannot be removed by the coarsening process: number of vertex (IV) status of vertex (JV(1, IV)) The only status of vertex that is currently implemented is the flagging node that does not allow removal: JV(1.IV)=34) A table of edges specifying: number of edges (IE) vertex number indicating the beginning of the edge (JE(1,IE)) vertex number indicating the end of the edge (JE(2,IE))cell number indicating the cell at the left the edge (JE(3,IE))cell number indicating the cell at the righthe edge (JE(4,IE))number associated with the status of the : .ge

36

(JE(5,IE))

If JE(5,IE)=0, the edge is an ordinary edge inside the computational domain.

If $JE(5,IE)\neq0$, the edge lies on the boundary of the domain. The labeling number will indicate what type of boundary to be applied through this edge.

IV1 = JE(1,IE) vertex indicating the beginning of the edge IV2 = JE(2,IE) vertex indicating the end of the edge

The direction of the edge is defined from IV1 to IV2.

ISL = JE(3,IE)	left triangle
ISR = JE(4,IE)	right triangle
IJE5 = JE(5,IE)	status of the edge
IJE5 = 5	simulating wall conditions
IJE5 = 6	simulating wall conditions
IJE5 = 7	simulating supersonic outlet conditions
IJE5 = 8	simulating supersonic inlet conditions

5) A table of cells specifying:

number of cells (IS) number of first edge (JS(4,IS)) number of second edge (JS(5,IS)) number of third edge (JS(6,IS))

The sign of JS(4,IS), JS(5,IS), JS(6,IS) indicates whether the direction of the edge is counterclockwise (positive) or clockwise (negative).

The three associated vertices for the triangle JS(1,IS), JS(2,IS), JS(3,IS) are defined by the code in GEOMTR.

.

The three vertices of the cell are ordered in a counterclockwise arrangement.

IV1 = JS(1,IS)	first vertex
IV2 = JS(2,IS)	second vertex
IV3 = JS(3,IS)	third vertex
IE1 = JS(4,IS)	First edge of the triange directed from IV1 to IV2 (IE1 is positive).
IE2 = JS(5,IS)	Second edge directed originally from IV3 to IV2. (IE2 will be negative because its direction is clockwise)
IE3 = JS(6,IS)	Third edge directed originally from IV3 to IV1 (IE3 is positive)

A.1.2 Post-Processor for the Unstructured Grid

Postprocessing for visualization of the results on an unstructured grid is done in two different codes. The first code, DRAWBF, reads the data as dumped by AUGUST and performs the whole load of computation necessary to produce the information needed for the graphic.

The second code DRAWAF reads the data file written by DRAWBF and uses the DISSPLA software to produce the image on the screen. Breaking the postprocessing job into two separate codes enables the user to run the two codes on different machines.

DRAWBF

Reads an input data file produced by AUGUST and will read another input data file (drawbf.d) specifying the option that the user chooses to have processed.

The input data file drawbf.d specifies the window of the computational domain chosen by the user to be processed. This window is specified by XMIN, XMAX, DX and YMIN, YMAX, DY, where XMIN, XMAX, YMIN, YMAX, will specify the lower and upper limit of the region to be drawn. DX and DY will be parameters for DISSPLA to subdivide the axis into tick marks.

DISSPLA is constrained to seven colors. To extend the number of contour levels, the code can be set to draw a couple of levels in each color (7 x **NLEV** where **NLEV** is the number of levels for each color).

The user should specify the variable he wants to draw:

IHYD = 1 is density,

- = 2 is velocity in the x direction
- = 3 is velocity in the y direction
- = 4 is pressure
- = 5 is gamma (γ)
- = 6 is Mach number
- = 7 is entropy
- = 8 is a vector plot of the velocity field
- = 9 is a plot of the location of particles

The last parameter that the user should specify is IREC. IREC specifies how many dumps are in the input file produced by AUGUST. If IREC=0, the user will get as many figures as the number of dumps produced by AUGUST. Otherwise, the user will get the figure corresponding to IREC specified in the input file.

Subroutine NEXTREC reads a whole dump from the input file (written by AUGUST). It will make sure that the allocation of memory is adequate according to the number of vertices, edges and triangles to be processed. If the memory allocation is not adequate, the code will stop with an explanatory message.

Subroutine LOADF loads the portion of data needed according to the specification of the window and according to the specified IHYD into the appropriate matrices in the code.

Subroutine PHYDR produces the data for the contour plots.

Subroutine VECTOR produces the data for the vector plot of the velocity field.

Subroutine TRACER produces the data for the location of particles.

DRAWAF

DRAWAF reads an input data file (drawbf.k) produced by DRAWBF and another input file (drawaf.d) that specifies the format chosen for display.

The parameters specified in drawaf.d are:

I SIVIE STREET IN

No grid is drawn.

Grid is drawn.

)(@)**:43@)\'@<u></u>__(6**}///

A single frame is drawn.

IDFION = 1. Two frames are drawn, one for the grid and one for displaying results. The frame for the grid is drawn even if IFMESH=0, but in this case the frame will stay empty.

Identical with IOPTN=1 except the level on the bar chart is written in engineering format (XE+Y). As in the former, it is written keeping a four decimal digit.

ICONFG = 0The basic dimension for the frames is specified as 6.0x 3.0 inches (in the x and y axis, respectively). The codemakes sure that the proportionality of the frame matches thephysical window to be drawn, so that the figure will not bedistorted. This is done by redefining the x or y dimension ofthe frame accordingly, but not to exceed the 6.0 x 3.0 on thescreen (ICONFG=0 should be picked if IOPTON > 0 and atwo-frame drawing is desired).

(6(0)))]](0))))

The same as ICONFG=0 except that the basic dimensions are defined now as $6.0 \ge 6.0$ inches. This option should be specified if a one frame drawing is desired.

The user can specify a header for the drawing composed of two lines to be specified as Caption 1 and Caption 2 in the input file.

The standard drawing includes the number of vertices, edges and cells as well as the Mach number, lift, drag, moment, angle of attack (for drawing diagnostics for a wing profile). An indication of the nature of the results that appear on the drawing is also included, i.e., the physical variables drawn are identified by the parameter passing from DRAWBF.

It should be noted that the format of the output drawing is very easily redesigned to meet the needs of an individual user.

- 1. Read geometrical data defining the initial grid. The current format is set to read data file from Smart (two dimension grid generator).
- 2. Read geometrical data defining the grid read from a file dumped by a previous run of the code.
- 3. Initialize the physical variables according to IOPTN (either steady state or moving shock wave). If a different initial setting is needed, it should replace the current setting.
- 4. Read the physical variables from a file dumped by a previous run.

A.2 AUGUSTT (3D)

The subroutines in the AUGUSTT code are organized here as they appear in the listing in Appendix B. A brief description indicates the function performed by each subroutine.

TABLE A.2.1

LIST OF SUBROUTINES

The subroutines in the AUGUST code are organized here as they appear in the listing in Appendix B. A brief description indicates the function performed by each subroutine.

1. MAIN	Governing program for AUGUST. Reads input files and sets the mode for the computation.
2. HYDRFL	Computes the fluxes at interfaces by applying the Godunov algorithm to solve the Riemann problem across the interface.
3. HYDRMN	Controls the computation. The integration of the fluxes and update of the physical variables and writing to output files are performed in this subroutine.
4. GEOMTR	Calculates the geometrical quantities not provided by the input data file but needed for the computational algorithm. GEOMTR is only used once for starting a new simulation.
5. UPDATE	Reads the input file for a new simulation and calls GEOMTR to update the geo- metrical variables needed to perform the computation.
6. UPGRAD	Called if a restart run is performed. Will read the appropriate file written at the end of the previous run.

7. GRADNT	Computes the gradient of the physical variables to improve the prediction of those variables for the two sides of the interface. The gradients are subjected to the monotonicity condition that limits the projected values, thus preventing new maxima-minima to be caused artificially by interpolation (IOPORD = 2). Calls FCHART in order to compute projected values at the half timestep associated with the local characteristics of the flow.
8. FIRST	The equivalent of GRADNT if run in a first order mode (IOPORD = 1). Using FIRST assumes that the physical variables are constant in each cell. Takes care of the boundary conditions if the interface is a boundary.
9. FCHART	Computes the projected values at a half timestep for the two sides of the interface based on the local characteristics of the flow. Called by GRADNT, it modifies the projected values for the two sides of the interface and assigns them to the correct location in memory. Takes care of the boundary conditions if the interface is a boundary.

The MAIN Program

All of the data input and initiation of a run (or a restart run) is performed in MAIN. The actual simulation is controlled by HYDRMN, which is called from MAIN At the completion of a run, control is returned to MAIN and a successful terminat. I prints the message STOP 777.

MUN contains one name list (file no. 2) and requires an input file that contains ne grid data description (file no. 16). The data organization for the

44

grid file is described in Appendix A. The following files should be included: DMSH00.H, DPHS ϕ 0.H, DHYD00.H.

AND ALL CONTRACTOR AND A	
CONCERNMENT AND A REPORT OF A REPORT OF A REPORT OF A R REPORT OF A REPORT OF A REPORT OF A REPORT OF A REPORTO	
	· 사업에서 신문 도 가는 것 같아요. 그는 것 같아요. 그는 것 같아요. 그는 그는 것 같아요. 이상이 있어요. 이상이 있는 것 같아요. 가는 것 같아요. 가는 것 같아요. 가는 것 같아요. 가는 것

VARIABLE	PURPOSE
ICOND	= 0 READ INPUT GRID FOR A NEW SIMULATION = 1 READ THE GRID FROM PREVIOUS RUN

ICOND = 0

MAIN will read the initial grid definition stored in file number 16. The current setting is to read the input file as provided by Smart, a two-dimensional triangular grid generator that runs interactively on a Macintosh personal computer.

MAIN will call UPDATE, which will call GEOMTR. GEOMTR will compute essential geometrical parameters that are not provided by file 16. All geometrical information is dumped into output files (8 and 88) so that ICOND=0 is used only once at the beginning of a new simulation.

ICOND = 1

MAIN will call UPGRAD, which will call one of the output files (8 or 88) written by the previous run. This will load the geometrical definition of the grid (either 8 or 88--they are identical). Writing identical files provides a backup in the event that the job terminates for lack of time while in the process of writing to one of those output files.

VARIABLE	PURPOSE
ICONP	= 0 PRIMITIVE VARIABLES INITIALIZED = 1 VARIABLES READ FROM PREVIOUS RUN

ICONP = 0. Initialize the primitive variables in computational domain with an initial value specified by the user. The two options set by the code are controlled by IOPTN.

ICONP = 1. The flow field condition reads in files 8 or 88 and provides a follow-up run set from the previous run.

VARIABLE	PURPOSE
IOPTN	= 1 SOLUTION FOR STEADY STATE = 2 SOLUTION FOR TRANSIENT PHENOMENA

There are two choices available to set the initial condition of the problem.

Assign the conditions at the inlet to the computational domain. This is the fastest way to get a steady-state solution for the conditions specified at the inlet. In this option, PIN (pressure), RIN (density) and XMCHIN (Mach number) are assigned to the pressure density and velocity (the speed of sound is computed in the code) and imposed at the inlet boundaries.

10PTN = 2:...

Used if a shock wave is to be simulated moving from the inlet (edge boundary 8) to the outlet (edge boundary 7). For this setting, specify PIN (ambient pressure in the chamber). RIN (ambient density in the chamber) and XMCHIN (upstream Mach number). The code will use the normal shockwave relations for an adiabatic flow of a completely perfect fluid to compute the static-pressure ratio across the shock P2/P1 and the density ratio r2/r1, and the ratio of the Mach number across the shock M2/M1. These computed quantities are applied to set correctly the condition on the pressure density and velocity at the inlet boundary.

VARIABLE	PURPOSE
ALFA	THE DIRECTION OF INFLOW IN DEGREES RELATIVE TO A RIGHT-HAND COORDINATE SYSTEM. ALFA = 0 MEANS FLOW FROM LEFT TO RIGHT.

The velocity computed by the code according to the input data provided by the user is split (projected) in the X and Y directions by using α .

VARIABLE	PURPOSE
HRGG	INITIAL γ IN THE EQUATION OF STATE. THE CODE RUNS USING THE IDEAL EQUATION OF STATE AS A BASELINE AND SHOULD BE MODIFIED IF SOMETHING ELSE IS DESIRED. IOPEOS=1 WILL TRIGGER THE USE OF GILMORE EQUATION OF STATE.

VARIABLE	PURPOSE
IHRN	NUMBER OF ITERATIONS IN THE RIEMANN SOLVER TO FIND THE DIAPHRAGM SOLUTION. (THREE TO FOUR SHOULD BE USED AND THE NUMBER INCREASED ONLY FOR VERY HIGH MACH NUMBER CASES.)

VARIABLE	PURPOSE
NTIME	NUMBER OF REPEATS FOR THE INTEGRATION SEQUENCE. AN OUTPUT DUMP IS DONE FOR EVERY SEQUENCE REPEAT.

VARIABLE	PURPOSE
NDUMP	NUMBER OF OUTER LOOP ITERATIONS IN THE CALCULATION WHERE REFINING IS DONE FOR EVERY SEQUENCE REPEAT WITHOUT COARSENING.

VARIABLE	PURPOSE
IOPORD	 = 1 THE CODE WILL RUN FIRST ORDEK GODUNOV METHOD = 2 THE CODE WILL RUN SECOND ORDER GODUNOV METHOD

Subroutine FIRST is called.

IOPORD = 2 Subroutine GRADNT is called.

HYDREL

Computes the fluxes across interfaces when the conditions for both sides are given. The fluxes are computed assuming a shock solution at a ruptured diaphragm simulated by the presence of the interface. The conditions existing on the two sides of the diaphragm will define the condition of the flow at the diaphragm location. These conditions are computed by solving the Riemann problem using the Godunov algorithm. The condition at the diaphragm defines the flux of energy, mass, and momentum passing across the interface. The Euler conservation law is applied to conserve energy, mass, and momentum crossing interfaces from one cell to the other.

Quantity	Side 1	Diaphragm (Interface)	Side 2
Density	ρ1	ρ	r2
Pressure	P1	Р	P2
Velocity Perpendicular to Interface	u1	u	u2
Velocity Parallel to Interface	v ₁	v	v ₂
Velocity Parallel to Interface to Construct a Right-Hand Coordinate System (u, v, w,)	w1	w	w2

49

EYDRMIN

Controls the code and the iteration loops. It calls HYDRFL to find the interface fluxes. These fluxes are integrated to update the physical variables in each cell. If adaptation of the grid is required, HYDRMN also controls the output by writing the necessary information on files for postprocessing data and for restarting the AUGUST code at a later time. It also manages print file diagnostics.

(e))(e))(e)

Calculates geometrical variables that are not supplied by the input data and are needed to run the code. For example, it computes:

- 1) distances between baricenters of adjoining cells;
- 2) the location of the intersection between the line joining adjacent baricenter cells and the interface.

The code changes the direction of the boundary edges so that all are arranged counter clockwise and the associated computational cell is always on the left side. GEOMTR is called once in the beginning of a new simulation.

UPDATE

Called in the beginning of a new simulation for setting geometrical variables not provided by the input data. (It calls GEOMTR.)

UPGRAD

Called if the run is a restart. UPGRAD will read the appropriate file (either 8 or 88) dumped by the previous run.

GRADNT

Compute the gradients of the physical variables in each cell. These computed gradients, along with the physical values at the baricenters, are applied using linear interpolation to predict the values on the interface.

The computed gradients are subjected to the monotonicity condition, ensuring that the projected values are bounded by the value of each quantity in the three adjacent cells, and to make sure that no new maxima or minima occur. The projection of quantities to the interface improves the results from the code and provides second order accuracy in space.

GRADNT calls FCHART, which computes the projected values at the interfaces at the half timestep level according to the local characteristics of the flow in each cell bordering the interface cell. The assignment of values at the two sides of each interface is done at the end of FCHART. This same loop also imposes the boundary conditions for the interfaces at the boundaries of the computational domain.

FOR THE STR

Assigns flow quantities to each side of an edge. These are based on the values at the baricenter of the triangles on either side of the edge. FIRST uses a first order approximation to find the values at the edge.

The user can specify FIRST or GRADNT by choosing 1 or 2 for the parameter IOPORD.

FCHART

Called by GRADNT to compute the values projected at the interfaces at the half timestep. These calculations are done by applying the local velocity characteristics in each cell. This projection in time improves the results and makes the code second order accurate in time.

GRADNT

Computes the gradient of a scalar variable at the center of a cell. The gradient theorem is applied for each cell.

$$\int \nabla \cdot d\mathbf{v} = \oint f \, \hat{\mathbf{n}} \, d\mathbf{s}$$
volume four surfaces

Those gradients are subjected to a monotonicity limiter that ensures no new minima or maxima are produced artificially in the projected values at the interfaces.

The monotonicity algorithm involves the following steps.

1)	find maximum and minimum of f_1 , f_2 , f_3 , f_4 , f_5 $f_{max} = Max (f_1, f_2, f_3, f_4, f_5)$ $f_{min} = Min (f_1, f_2, f_3, f_4, f_5)$
2)	compute $\Delta f_{max} = f_{max} - f_1$ $\Delta f_{min} = f_{min} - f_1$
3)	compute incremental projected values at the interfaces $f_{mjR} - f_R = \overline{\nabla} f_R \cdot \overline{r}_{jR}$ $f_{mjL} - f_L = \overline{\nabla} f_L \cdot \overline{r}_{jL}$

 $Df_{mjR} = f_{mjR} - f_R = \overline{\nabla} f_R \cdot \overline{r} j_R$ $Df_{mjL} = f_{mjL} - f_L = \overline{\nabla} f_L \cdot \overline{r} j_L$

where j stands for every interface of the cell and fmj is the interpolated value at the middle of the interface.

4) compute the limiter by calculating the minimum of indicator for each edge of the four surfaces of the cell.

right to the interface RUVPR = $\frac{(1 + \text{sign } \Delta f_{miR}) \Delta f_{max} + (1 - \text{sign } \Delta f_{miR}) \Delta f_{min}}{2 \Delta f_{mjR}}$

left to the interface RUVPL = $\frac{(1 + \text{sign } \Delta f_{mjL}) \Delta f_{max} + (1 - \text{sign } \Delta f_{mjL}) \Delta f_{min}}{2 \Delta f_{mjL}}.$

This formulation ensures that:

$$if \begin{cases} \Delta f_{mj} > 0 \text{ RUVP} = \frac{\Delta f_{max}}{\Delta f_{mj}} \\ \Delta f_{mj} < 0 \text{ RUVP} = \frac{\Delta f_{min}}{\Delta f_{mj}} \end{cases}$$

the outcome of RUVP is always positive. If RUVP > 1 then the projected value at the interfaces will introduce a new minima or maxima as compared to the values at the baricenters of the appropriate cells.

Select the minimum between the six values for RUVP (two for every one of the three interfaces of the cell) not exceeding unity. The selected minimum of RUVP is the required limiter. The gradient is multiplied by this limiter that is always less or equal to unity.

J (x ∞) = X ∧ 3 ζ 4 mm

Computes the projected values at the half timestep level based on the local characteristics of the flow. This process extends the accuracy of the code to be second-order in time as well as in space.

The characteristics projection consists of several steps.

1) Calculate the velocity of sound in the two cells bordering the designated interface:

 $CNLEFT = \sqrt{\gamma_L \cdot P_L / \rho_L} \quad sound speed in left cell$

CNRIGT = $\sqrt{\gamma_R \cdot P_R / \rho_R}$ sound speed in right cell

UVLEFT = $\overline{UL} \cdot \overline{t}$ velocity of fluid at the left cell projected in \overline{t} direction

UVRIGT = $\overline{UR} \cdot \overline{t}$ velocity of fluid at the right cell projected in \overline{t} direction

where:

 $\overline{\mathbf{t}} = \mathbf{X}\mathbf{X}\mathbf{N} \cdot \overline{\mathbf{i}} + \mathbf{Y}\mathbf{Y}\mathbf{n} \cdot \overline{\mathbf{j}} + \mathbf{z}\mathbf{z}\mathbf{n}\ \overline{\mathbf{k}}$ $\overline{\mathbf{U}} = \mathbf{U} \cdot \overline{\mathbf{i}} + \mathbf{v} \cdot \overline{\mathbf{j}} + \mathbf{w} \cdot \overline{\mathbf{k}}$

2) To compute the interpolated left and right projected values at time tN + Dt/2, we calculate the distances that the disturbances generated from the baricenter of the cells, traveling toward the interface:

 $ZZLEFT = (UVLEFT + CNLEFT) \cdot \Delta t/2$ $ZZRIGT = - (UVRIGT - CNRIGT) \cdot \Delta t/2$

If ZZLEFT or ZZRIGT are negative they are reset to zero.

3) Calculate the distances that the flow will travel if it were to flow at the velocity of each of the local characteristics:

ZOLEFT	=	UVLEFT $\cdot \Delta t/2$
ZORIGT	H	- UVRIGT $\cdot \Delta t/2$
ZPLEFT	=	(UVLEFT + CNLEFT) $\cdot \Delta t/2$
ZPRIGT	=	- (UVRIGT + CNRIGT) $\cdot \Delta t/2$

ZMLEFT = $(UVLEFT - CNLEFT) \cdot \Delta t/2$ ZMRIGT = $-(UVRIGT - CNRIGT) \cdot \Delta t/2$.

4) Calculate the projected values of the nonconservative variables (density, velocity component (perpendicular and tangential to the interface), and pressure).

For the left cell:

2

Density	HRRL	=	$\rho_{\rm L} + \overline{\nabla} \rho_{\rm L} \cdot (\overline{r}_{\rm L} - ZZLEFT \cdot \overline{t})$
Perpendicular Velocity Tancential Velocity	HUUL HVVL	=	$\begin{split} & U_{L} + \overline{\nabla} U_{L} \cdot (\overline{r}_{L} - ZZLEFT \cdot \overline{t}) \\ & V_{L} + \overline{\nabla} V_{L} \cdot (\overline{r}_{L} - ZZLEFT \cdot \overline{t}) \end{split}$
Pressure	HPPL GMTLFT	=	$P_{L} + \overline{\nabla}P_{L} \cdot (\overline{r}_{L} - ZZLEFT \cdot \overline{t})$ $\rho_{L} \cdot HRRL \cdot HPPL$

For the right cell:

Density	HRRR	=	$\rho_{\mathbf{R}} + \overline{\nabla} \rho_{\mathbf{R}} \cdot (\overline{\mathbf{r}}_{\mathbf{R}} - \mathbf{ZZRIGT} \cdot \overline{\mathbf{t}})$
Perpendicular velocity	HUUR	=	$U_R + \overline{\nabla} U_R \cdot (\overline{r}_R - ZZRIGT \cdot \overline{t})$
Tangential velocity	HVVR	=	$V_R + \overline{\nabla} V_R \cdot (\overline{r}_R - ZZRIGT \cdot \overline{t})$
Pressure	HPPR GMTRGT	=	$P_{R} + \overline{\nabla}P_{R} \cdot (\overline{r}_{R} - ZZRIGT \cdot \overline{t})$ $\rho_{R} \cdot HRRR \cdot HPPR$

For the left cell, taking into account the following characteristics:

• For (UVLEFT + CNLEFT):

 $\begin{array}{l} UUU = \overline{\nabla} U_L \cdot (ZPLEFT - ZZLEFT) \ \overline{t} \\ \\ PPP = \overline{\nabla} P_L \cdot (ZPLEFT - ZZLEFT) \ \overline{t} \\ \\ UPLFT = -0.5 \cdot \left(UUU + PPP / \ \sqrt{GMTLFT} \right) \ / \ \sqrt{GMTLFT} \\ \\ If UVLEFT + CNLEFT \ is \ negative, \ UPLFT \ is \ reset \ to \ zero. \end{array}$

• For UVLEFT – CNLEFT:

 $\begin{array}{l} UUU = \overline{\nabla} U_L \cdot (ZMLEFT - ZZLEFT) \cdot \overline{t} \\ \\ PPP = \overline{\nabla} P_L \cdot (ZMLEFT - ZZLEFT) \cdot \overline{t} \\ \\ UMLFT = 0.5 \cdot (UUU - PPP/\sqrt{GMTLFT}) / \sqrt{GMTLFT} \\ \\ If UVLEFT - CNLEFT is negative, UPLFT is reset to zero. \end{array}$

• For UVLEFT:

 $PPP = \overline{\nabla}P_{L} \cdot (ZOLEFT - ZZLEFT) \cdot \overline{t}$

```
RRRR = \rho_L + \overline{\nabla}\rho_L \cdot (\overline{r}_L - ZOLEFT) \cdot \overline{t}
URLFT = PPP/GMTLFT + 1/HRRL - 1/RRRR
If UVLEFT is negative, URLEFT is reset to zero.
```

For the right cell, taking into account the following characteristics:

```
• For UVRIGT + CNRIGT:
```

```
\begin{array}{l} \textbf{UUU} = \overline{\nabla} \textbf{U}_{R} \cdot (\textbf{ZZRIGT} - \textbf{ZPRIGT}) \ \overline{\textbf{t}} \\ \textbf{PPP} = \overline{\nabla} \textbf{P}_{R} \cdot (\textbf{ZZRIGT} - \textbf{ZPRIGT}) \ \overline{\textbf{t}} \\ \textbf{UPRGT} = -0.5 \cdot (\textbf{UUU} + \textbf{PPP} / \sqrt{\textbf{GMTRGT}}) / \sqrt{\textbf{GMTRGT}} \\ \textbf{If UVRIGT} + \textbf{CNRIGT is positive, UMRGT is reset to zero.} \end{array}
```

• For UVRIGT - CNRIGT:

 $\begin{array}{l} \textbf{UUU} = \overline{\nabla} \textbf{U}_{R'} \left(\textbf{ZZRIGT} - \textbf{ZMRIGT} \right) \cdot \overline{\textbf{t}} \\ \textbf{PPP} = \overline{\nabla} \textbf{P}_{R} \cdot \left(\textbf{ZZRIGT} - \textbf{ZMRIGT} \right) \cdot \overline{\textbf{t}} \\ \textbf{UMRGT} = 0.5 \cdot \left(\textbf{UUU} - \textbf{PPP} / \sqrt{\textbf{GMTRGT}} \right) / \sqrt{\textbf{GMTRGT}} \\ \textbf{If UVRIGT} - \textbf{CNRIGT is positive, UMRGT is reset to zero.} \end{array}$

• For UVRIGT:

 $PPP = \overline{\nabla} P_{R} \cdot (ZZRIGT - ZORIGT) \cdot \overline{t}$

RRRR = $\rho_R + \overline{\nabla} \rho_R \cdot (\overline{r}_R + ZORIGT) \cdot \overline{t}$ URRGT = PPP/GMTRGT + 1/HRRR - 1/RRRR If UVRIGT - CNRIGT is positive, URRGT is reset to zero.

The projected values will be:

RRL = 1/(1/HRRL - (UPLFT + UMLFT + URLFT)) $UUL = HUUL + (UPLFT - UMLFT) \sqrt{GMTLFT}$

 $VVL = HVVL + (UPLFT - UMLFT) \sqrt{GMTLFT}$ PPL = HPPL + (UPLFT + UMLFT) GMTLFT RRR = 1/(1/HRRR - (UPRGT + UMRGT + URRGT)) $UUR = HUUR + (UPRGT - UMRGT) \sqrt{GMTRGT}$ $VVR = HVVR + (UPRGT - UMRGT) \sqrt{GMTRGT}$ $PPR = HPPR + (UPRGT + UMRGT) \cdot GMTRGT.$

Those values are the assigned condition for the two sides of the interface. If the interface is a boundary, the right condition is determined according to the type of boundary.

A.2.1 Preprocessor for the Three-Dimensional Unstructured Grid

The input geometrical data for AUGUST should provide the following data:

1) Number of vertices (NV)

- 2) A table of vertices specifying: number of vertex (IV) x coordinate (XV(1,IV)) y coordinate (XV(2,IV)) z coordinate (XV(3,IV).
- 3) Number of edges (NE)
- A table of edges specifying number of edges (IE) vertex number indicating the beginning of the edge (JE(1,IE)) vertex number indicating the end of the edge (JE(2,IE))
 IV1 = JE(1,IE) vertex indicating the beginning of the edge
 IV2 = JE(2,IE) vertex indicating the end of the edge

The direction of the edge is defined from IV1 to IV2.

5) Number of sides (NS)

6) A table of sides (triangles) specifying:

number of sides (IS) number of first vertice (JS(1,IS)) number of second vertices (JS(2,IS)) number of third vertices (JS(3,IS)) number of first edge (JS(4,IS)) number of second edge (JS(5,IS)) number of third edge (JS(6,IS))

The sign of JS(4,IS), JS(5,IS), JS(6,IS) indicates whether the direction of the edge is counter clockwise (positive) or clockwise (negative).

tetrahedra on left to the side (JS(7,IS))

tetrahedra on right to the side (JS(8,IS))

Number associated with the status of the side (JS(9,IS)).

if JS(9,IS) = 0 the side is an ordinary side inside the computational domain.

if $JS(9,IS) \neq 0$ the side lies on the boundary of the domain. The labeling number will indicate what type of boundary to applied through this side.

The three vertices of the side are ordered in a counter clockwise arrangement.

IV1 = JS(1,IS)	first vertex
IV2 = JS(2,IS)	second vertex
IV3 = JS(3,IS)	third vertex
IE1 = JS(4, IS)	First edge of the triangle directed from IV1 to IV2
	(IE1 is positive).
IE2 = JS(5,IS)	Second edge directed originally from IV3 to IV2.
	(IE2 will be negative because its direction is clockwise.)
IE3 = JS(6,IS)	Third edge directed originally from IV3 to IV1 (IE3
	is positive).
IC1 =JS(7,IS)	tetrahedra on the left
IC2 = JS(8, IS)	tetrahedra on the right

The normal to the side is directed from IC1 toward IC2. If the side is a boundary, the normal is always from the computational domain pointing outside (out of the fluid domain). The three vertices are ordered in a counter clockwise direction opposite to the direction of the normal to the side. For a boundary side, IC2 will be always zero.

IJS = JS(9,IS)	Status of the side
IJS9 = 6	Simulating wall conditions
IJS9 = 7	Simulating supersonic outlet conditions
IJS9 = 8	Simulating supersonic inlet conditions.

7) A table of sides specifying:

x coordinate of baricenter of side (XS(1,IS)) y coordinate of baricenter of side (XS(2,IS)) z coordinate of baricenter of side (XS(3,IS)) area of side (XS(4,IS))

8) A table of sides specifying:the three component of the vector normal to the side:

 $\vec{N} = XN(IS) \overrightarrow{i} + yN(IS) \overrightarrow{J} + ZN(IS)\overrightarrow{k}$

the three component of the parallel vector tangential to the side:

 $\overrightarrow{P} = XP(IS) \overrightarrow{r} + YP(IS) + ZP(IS)\overrightarrow{k}$

the three component of the parallel vector tangential to the side:

 $T = XT(IS) \overrightarrow{r} + YT(IS) \overrightarrow{j} + ZT(IS) \overrightarrow{k}$

where $\overline{P} \times \overline{T} = \overline{N}$ (the normal, perpendicular and parallel vectors form a local right-handed coordinate system).

9) number of cells (tetrahedrals) (NC)

- 10) A table of cells specifying: Number of cells (IC)
 Number of first vertex (JC(1,IC))
 Number of second vertex (JC(2,IC))
 Number of third vertex (JC(3,IC))
 - N aber of fourth vertex (JC(4,IC))

 - I ...mber of the second side (JC(6,IC))

Number of the third side (JC(7.IC))

Number of the fourth side (JC(8,IC))

IV1 = JC(1,IC) first vertex

IV2 = JC(2,IC) second vertex

IV3 = JC(3,IC) third vertex

IV4 = JC(4, IC) fourth vertex

Seen from inside the tetrahedron, the first three vertices are counter clockwise around the large with the fourth vertex at the apex.

IS1 = JC(5,IC) first side

IS2 = JS(6,IC) second side

IS3 = JS(7,IC) third side

IS4 = JS(8,IC) fourth side

Face ISJ is opposite the IVJ vertex

11) A table of cells specifying:

x coordinate of the baricenter of cell	(XC(1,IC))
y coordinate of the baricenter of cell	(XC(2,IC))
z coordinate of the baricenter of cell	(XC(3,IC))
Volume of the cell	(XC(4,IC))

A.2.2 Face(Triangle) information

Cell(Tetrahedral) information

xc(1.k) - x position of cell centroid xc(2.k) - y position of cell centroid xc(3.k) - z position of cell centroid xc(4.k) - volume of cell

jc(1.k) - the index of the first base vertex jc(2.k) - the index of the second base vertex jc(3.k) - the index of the third base vertex jc(4.k) - the index of fourth vertex opposite base jc(5.k) - the index of face opposite first vertex jc(6.k) - the index of face opposite first vertex jc(7.k) - the index of face opposite secondvertex jc(8.k) - the index of face opposite third vertex jc(9.k) - the index of face opposite fourth vertex jc(10.k) - the index of cell opposite first vertex jc(11.k) - the index of cell opposite third vertex jc(12.k) - the index of cell opposite third vertex jc(13.k) - the index of cell opposite third vertex jc(13.k) - the index of cell opposite fourth vertex

APPENDIX B

1

1

•

•

0

LISTINGS

Thu Jul 1 14:17:00 1993

М

•

	#	routine	page
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	main HYDRFL RYDRFL KYDRFL HYDRMN GEOMTR UPGRAD GRADNT FIRST FCHART EOS1 MATRLA PSM BILD MATRLX VOLMTETC	1 13 19 22 26 33 38 39 51 53 59 62 64 64 64 66
Thu Jul	1 14:17	:00 1993	threed.f
	#	routine	page
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	BILD EOS1 FCHART FIRST GEOMTR GRADNT HYDRFL HYDRFL MATRLA MATRLA MATRLX PSM RYDRFL UPGRAD VOLMTETC main	64 59 53 51 33 39 13 26 22 62 64 64 19 38 66 1

threed.f

Module List - order of occurence

page

i

Module List - alphabetical order

main program

	PROGRAM AUGUSTT
3 (
4 C	
5 C	The AUGUSTT Code
6 C	
7 C	- Adaptive
σι	- Unstructured
10 Č	- Upwind
11 Č	- Second order
12 C	- Triangular
13 C	- Inree dimension
14 U	The geometry structure comes from RERMIDA
16 Č	The solver is based on FUGGS
17 C	
18 C	
19 C	Version: 1.00 22 july, 1991
20 C	Authors, Itzbak Lottati (203)249-8648
22 č	Shmuel Eidelman (703)448-6491
23 C	Adam Drobot (703)734-5840
24 C	Colones Analizations for the Colones of
25 C	Science Applications International Corporation
27 C	1710 Goodridae Orive
28 Č	McLean, Virginia 22102
29 C	-
30 C=	ؾᆌؠᄡᄘᇺᇹᇴᇔᅀᆃᅕᇾᇄᆔᆂᅸᆍᆍᆍᆍᆂᆂᆍᆂᆂᆖᇍᆿᆍᅷᄡᆣᅕᄮᄔᇰᆮᇹᇴᇭᅶᇰᇍᇃᆮᇊᇹᅋᇴ <u>ᆂᆮᇢᇕᆑᅕᄾᅽ</u> ᆃᆄᄡᆥᆖᅕᅸ <u>ᆂᆖᆃᆂᆂᆃ</u> ᆸᆸᆸᆸ
J LC	
33 C-	
34 C	Ī
35 C	BERMUDA IS A MULTIDIMENSIONAL CODE WHICH IS BASED ON THE I
35 C	USE OF TRIANGULAR GRIDS AS THE FUNDAMENTAL MESH I
37 C	THAT ALL QUANTITIES ARE BASED AT THE BARICENTER I
39 Č	OF SIDES/TRIANGLES.
40 C	1
41 C	THE QUIP IS THAT THOSE WHO WORK ON BERMUDA I
42 C	TRIANGLES ARE NEVER HEARD FROM AGAIN.
43 C	THE BASIC MODULES IN BERMUDA INCLUDE:
45 Č	
46 C	A HYDRODYNAMICS CODE
47 C	BASED ON A FIRST ORDER GODUNOV I
но L 10) Г	TEITUU UK A SELUMU UKUEK GUUUMUV – Í WITH MESH ANADTATION – I
50 č	
51 C	······································
52 C	COTO CETUD. TAGIES AND THETE HEAVEN
55 L	UKIN JEIUM INDIEJ ANN INEIK NEANING:
55 Č	***********
56 Č	+ +
57 C	+ LIST OF VERTICES +
00 C	+ + + +
59 L 60 C	+ XV(1,IV) - X POSITION OF VERTEX +
61 Č	+ XV(2,IV) - Y POSITION OF VERTEX +
62 Č	+ XV(3, IV) - Z POSITION OF VERTEX +
63 C	+
64 C	***************************************
66 C	*******
67 Č	÷
68 Č	+ LIST OF EDGES +
69 C	
/0 C 71 C	+ IL - EUGE INDEX +
72 Č	+ JE(2, IE) - INDEX OF UPPER EDGE VERTEX +
73 C	+ JE(3.IE) - INDEX OF LEFT SIDE +

page

1

page

1
Thu Jul	1 14:17:	00 1993	threed.f	main program		page 2
74	74 C	+	JE(4,IE)	- INDEX OF RIGHT SIDE	*	74
75	75 C	+	XE(1,IE)	- LENGTH OF EDGE	+	75
/0 77	70 L 77 C	+	XE(2,IE)	- DISTANCE BETWEEN ADJOINING SIDE	*	76
78	78 C	+		PUINIS.	* •	//
79	79 Č	+++++	****	*****	++	79
80	80 C					80
81	81 C	+++++	****	*********	++	81
83	83 C	+ 1	IST OF STOPS		* *	82
84	84 Č	+			+	84 84
85	85 C	+	IS	- SIDE INDEX	+	85
80 97	80 C	+	JS(1, IS)	- INDEX OF FIRST VERTEX	+	86
88	88 C	+	JS(3, 15)	- INDEX OF THIRD VERTEX	* +	8/
89	89 0	+			+	89
90	90 C	+	THE VERTIC	ES RUN AROUND THE SIDE IN ORDER	+	90
91	91 C	+	COUNTER-CL	OCKWISE FASHION	+	91
93	93 C	+	JS(4, IS)	- INDEX OF THE FIRST FOGE	÷	92
94	94 C	+	JS(5, IS)	- INDEX OF THE SECOND EDGE	+	94
95	95 C	+	JS(6,IS)	- INDEX OF THE THIRD EDGE	+	95
90 07	90 L 07 C	+		ADE ADDANCED IN COUNTED SCIOCKUISE	+	96
98	98 Č	+	FASHION. E	DGE ONE RUNS FROM VERTEX-ONE TO	+	9/
99	99 C	+	VERTEX-TWO	ETC THE SIGN OF JS(4-6, IS) INDICATES	+	99
100	100 C	+	IF EDGE DA	TA IS STORED THE SAME WAY. IF IT IS	+	100
101	101 L	+	JS>0 ANU I	I IS REVERSED JS<0	+	101
103	103 C	• •	JS(8, IS)	- INDEX OF CELL ON RIGHT	+	102
104	104 C	+	(+	104
105	105 C	+	XS(1.IS)	- X POSITION OF CENTROID OF TRIANGLE	+	105
100	100 U	+	XS(2,15) XS(3,15)	- T PUSITION OF CENTROID OF TRIANGLE	+	105
108	108 C	+	XS(4.IS)	- AREA OF TRIANGLE	+	108
109	109 C	+	XS(5,IS)	- DISTANCE BETWEEN ADJOINING CELLS	+	109
110	110 C	+		POINTS CROSSING TRIANGLE IS	+	110
112	111 C	+ +			+	111
113	1 13 C	+++++	+++++++++++++++++++++++++++++++++++++++	*****	**	113
114	114 C					114
115	115 L	+++++	******	**********	**	115
117	117 Č	+ L	IST OF CELLS		+	117
118	118 C	+			+	118
119	119 C	+		- CELL INDEX	+	119
120	120 C	+	JC(7, 10)	- INDEX OF FIRST VERIEX	+	120
122	122 C	+	JC(3,IC)	- INDEX OF THIRD VERTEX	+	122
123	123 C	+	JC(4,IC)	- INDEX OF FOURTH VERTEX	+	123
124	124 C	+		TION FOR WERTIGES IS THAT 1 3	+	124
125	125 C	+	ARE ARRANG	ED COUNTER-CLOCKWISE ABOUT THE	+	125
127	127 C	+	BASE AND T	HAT 4 IS AT THE APEX.	+	127
128	128 C	+	10/2 10)		+	128
129	129 C	+	JC(5,1C)	- INDEX OF FIRST SIDE	+	129
131	131 C	+	JC(7.IC)	- INDEX OF THIRD SIDE	+	130
132	132 C	+	JC (8, IC)	- INDEX OF FOURTH SIDE	+	132
133	133 C	+	THE CONVEN	TION FOR STORE IS THAT SIDE OUR COURDS	+	133
134	134 C	+	THE CONVEN	RETWEEN VERTEX_ONE VERTEX_TWO AND THE	+	134
136	136 C	+	VERTEX AT	THE APEX ETC SIDE FOUR IS THE BASE	*	136
137	137 C	+			+	137
138	138 C	+	XC(1, IC)	- X PUSITION OF CELL POINT	+	138
140	140 C	+ +	XC(2,1C)	- Z POSITION OF CELL POINT	+	139
141	141 C	+	XC(4,IC)	- CELL VOLUME.	+	141
142	142 C	+			+	142
143	143 C	÷		· • • • • • • • • • • • • • • • • • • •	+	143 144
145	145 C	*****	· · · · · · · · · · · · · · · · · · ·	· · · · · / · · / · · · · · · · · · · ·	т. Т	144
146	146 C					146
147	147 C=		*****	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	****	147

page

Thu Jul	1 14:	17:00 1993	threed.f	main program	page
148	148	С			
149	149	C DEFINI	TION FOR ALL	HYDRODYNAMIC QUANTITIES	
150	150	((I	
152	152	Č		i	
153	153	C USE OF	PARAMETERS:	I	
154	154	C MU		ANNAL AND A TANK TARES T	
155	100	և ոտ Ը	V - MAATI		
157	157	č		Ī	
158	158	C			
159	159	C	****	***	
161	161	C			
162	162	includ	e 'dash0i).h'	
163	163	includ	e 'dhydmi).h'	
164	164	includ	e donsmi	י. איי	
166	165	C		7 .11	
167	167	REAL X	X(600),PP(60),HR(600),	
168	168	. U	U(600),GG(60), AA(600), EE(600)	
109	109	DOUBLE	PRECISION N	JLI, VULZ, VULZ, VUL4, VULL, XXI, TYI, ZZI FFVOI	
171	171	OPEN(2	.FILE='data	.dd'.FORM-'FORMATTED')	
172	172	OPEN(4	FILE='them	no.d', FORM= 'FORMATTED')	
173	173	OPEN(8	,FILE-'three	ed2.5', FORM='UNFORMATTED')	
174	174	UPER(8	S ,Filt='thre	PEROZ', FUKRE'UNFUKRATIEU') ad3' FORM_'HINFORMATTED')	
175	176	OPEN(1	0.FILE='three	ed4',FORM='FORMATTED')	
177	177	OPEN(1	5,FILE='AVSfi	nhail.inp',FORM='FORMATTED')	
178	178	OPEN(1	4, FILE='AVSs	mhail.inp',FORM='FORMATTED')	
179	1/9	UPEN(1 OPEN(2	6 FTLE='UUIP 6 FTLE='FYDE'	JI.MSH',FUKM='FUKMAIILU') SV RNA' FARM_'FARMATTEN')	
181	181	OPEN(2	7.FILE='ve06	40.stv'.FORM='FORMATTED')	
182	182	OPEN(1	8,FILE='f064	D.stv',FORM='FORMATTED')	
183	183	OPEN(1	9.FILE='pr64	D.stv', FORM='FORMATTED')	
185	184	0 25 7(1	1,FILE* Truc	K.INPUT.OD., SIAIUS=.ULD.	
186	186	C	ا قا ق بر حج ج ق ق بو بو ج	Ĩŧ₽₽₽₽₽ŧġſ₽₽₽±#₽₽₩₩₽₩₩₽₽₽₩₽₽₩₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	
187	187	C			
188	188	C NAMEL	IST /DATA/ I	COND, ICONP, IOPTN, XMCHIN, RIN, PIN, ALFA, HRGG, IHRN,	
190	103	ι. C	n	i Inc., noune, lorono	
191	191	Č			
192	192	C		1	
193	193	C ME	ANTHE OF NAM	ELIST VADIADIES.	
194	195	C nc	MITING AL INVI		
196	196	Č ICOND	- 0 READ INP	JT GRID FOR A NEW RUN I	
197	197	C	I READ THE	GRID FROM PREVIOUS RUN	
198	198	C ICONP	= U PRIMITIV = 1 VARTARIF	S READ ERON PREVIOUS RUN	
200	200	Č IOPTN	= 1 SOLUTION	FOR STEADY STATE,	
201	201	Ç	= 2 SOLUTION	FOR TRANSIENT PHENOMENA	
202	202	C	COD TDANS	I CHT SUDCY CALCULATIONS (100TH-2) THIS VADIADIS	
203	203	C Anunin	IS USED TO	SPECIEV THE UPSTREAM MACH NUMBER	
205	205	č		I	
206	206	C	RIN = THE	AMBIENT DENSITY IN THE CHAMBER I	
207	207	C	DIN - THE		
200	4 ,	č	FIN ■ 18C	ANDIENT FREDORE IN THE UNABLES I	
210	J	č	APPLYING	NORMAL SHOCK WAVES RELATIONS FOR AN ADIABATIC I	
211	.1	C	FLOW RELA	TION STATIC-PRESSURE RATIO ACROSS THE SHOCK I	
212	-12	L C	AS WELL A	S THE DENISTIT KATTU AND MACH NUMBER RATIO	
214	214	č	INLET EDG	ES(EDGE BOUNDARY 8) OF THE COMPUTATIONAL I	
215	215	Ç	DOMAIN		
216	216	C	COD 01040	A STATE SUCCE CALCULATIONS/100TH 1) THIS IS THE I	
21/ 218	21/ 218	C C	INFLOW MAI	CH NUMBER, ALL DOMAIN VELOCITIES ARE THEN	
219	219	č	INITIALIZ	ED WITH THIS VALUE.	
220	220	C			
221	221	C	RIN = THE	AMBIENT DENSITY AT INFINITY	

(

b

3

Thu Jul	1 14:17:0	0 1993	threed.f	main program	page 4
222	222 C			· I	222
223	223 C		PIN = THE	AMBIENT PRESSURE AT INFINITY I	223
224	224 C				224
225	225 C			TATIONAL DUMAIN ARE THEN INITIALIZED WITH	225
220	220 C				220
228	228 C	ALFA	- THE DIRECT	ION OF INFLOW IN DEGREES RELATIVE TO A RIGHT	228
229	229 C		HAND COORD	INATE SYSTEM. ALFA=0 MEANS FLOW FROM LEFT TO I	229
230	2 30 C		RIGHT. ALF	A=90 MEANS FROM BOTTOM TO TOP. ALFA=-90 OR 270 I	230
231	231 C	UDCC	MEANS FLOW	FROM TOP TO BOTTOM ETC.	231
232	232 6	HKGG	THE CODE D	WHA IN THE EQUALION OF STATE I	232
233	233 C			UND USING THE AIR EQUATION AS A DASELINE AND I	233
235	235 C	THRN	= NUMBER OF	ITERATIONS IN THE RIFMANN SOLVER TO FIND THE	234
236	2 36 C		DIAPHRAGM	SOLUTION. (3 to 4 SHOULD BE USED AND INCREASED I	236
237	237 C		ONLY FOR H	IGH MACH NUMBER CASES).	237
238	2 38 C			I	238
239	239 C	NTIME	- NUMBER UF	REPEATS FOR THE INTEGRATION SEQUENCE.	239
240	240 C	NOIMD	- NUMBED OF	JUMP IS DUNE EVERT SEQUENCE REPEAL.	240
241	241 C	HUUMP	- NUMBER OF	TIERATIONS IN THE INNER COUP	241
243	243 C	+		O NTIME - DUMPING DATA	243
244	244 C	1		1	244
245	245 C	I	+	O NDUMP - INTEGRATION I	245
245	246 C	I	I	I	246
24/	247 U	ļ	1		24/
240	240 C	Ĩ	*.		240
250	250 C	+		O DUMPING LOOP	250
251	251 C			I	251
252	2 52 C	1 OPORD	= 1 THE COD	E WILL RUN FIRST ORDER GODUNOV METHOD I	252
253	253 C		- 2 THE COD	E WILL RUN SECOND ORDER GODUNOV METHOD I	253
254	254 L			1	254
255	255 (-			····	200 256
257	257	ICOND	= 0		257
258	258	ICONP	= 0		258
259	259	IOPTN	- 1		259
260	260	IEOS	- 1		260
261	261 C		- 7 E		261
202	263	ADGRIN DTM	- 1 25		202
264	264	PIN	- 101350.		264
265	265	RGAS	= 8314.3		265
266	266	GPERCC	001		266
267	267 C		•		267
268	208	ALFA =	U.		200
209	209		4		205
271	271	NTIME	- 12		271
272	272	NDUMP	- 200		272
273	273	IOPORD	- 2		273
274	2/4 C		UE THONT DAT		274
275	2/3 U 276 C	KEAU I	nc TIPUT DAT	7	2/3
277	277 1	RFAD	(2.DATA)		277
278	278 C	116/16/	·		278
279	279 C	PRINTO	UT THE RUN P	ARAMETERS	279
280	2 80 C				280
281	281	PRINT	101, ICO	NU, ILUNP, IUPIN, XMUHIN, KIN, PIN, ALFA, HRGG, IHRN, IME NDIMO INDORD	281
202	202 283 C	•	18.1	the, hours, torord	282
284	284 C	SET RU	N CONDITIONS	AND PRINTOUT TO CONSOLE	284
285	2 85 C				285
286	286 C	READIN	G GRID DATA	FROM EDGE.ZON	286
287	287 C	-	1 / 3		287
200	200	INIKD	100ND 50	() THEN	280
209	290 (111	10010 . LV .		290
291	291	CALL	UPDATE		291
292	2 92 C				292
293	293	ELSE			293
294	294 C	C 41 1	HOCDAD		294
295	295	CALL	UPGKAD		293

•

Thu Jul	1 14:	17:00	1993 threed	.f main program	page 5
296	296	C			296
297	297		END IF		297
298	298		CALL MATRIA		298
300	299	r	CALL MAIKLA		299
301	301	Č.	- INITIALIZATIO		300
302	302	č	- 1911 1916 16911 10		301
303	303	-	HRSM = 1.	E-8	302
304	304		HRGP = HR	GG + 1.	304
305	305		HRGM = HR	GG - 1.	305
306	306		CF = HR	GP / (2. * HRGG)	306
307	307	r	$\Pi = 0.$		307
300	300	L	DIDAD - ATAN/	1) / 45	308
310	310		$\Delta I PHA = \Delta I FA$	* PTRAN	309
311	311		PRINT *.ALFA.	PIRAD.ALPHA	510 311
312	312	С	,		312
313	313		COSS = COS(A	LPHA)	313
314	314		SINN = SIN(A	LPHA)	314
315	315	~	TANN = TAN(A	LPHA)	315
310 217	310	L [316
318	317	(ؾૻૻૻૻૻૻૻૻૻૡૻૡૻૡૻૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡ	317
319	319	Č	SET THE INITI	AL VALUE FOR PRIMITIVE VARIABLES	318 310
320	320	č			319
321	321	Č(2):	>>>		321
322	322		TLIMIT = .9		322
323	323		ITER = 6		323
324	324		IF(ICOND . E	Q.O) THEN	324
325	325		UVIN = XMC	HIN * SORT(HRGG * PIN / RIN)	325
320	320		UIN = UVIN VIN = UVIN	* CD22	326
328	328		AIM = 0	- 2144	327
329	329	С	HIN - V.		320
330	330	•	DO 150 IC	= 1 , NC	330
331	331		HYDV(I	C, 1) - RIN	331
332	332		HYDV (1	C, 2) = 0.	332
333	333		HYDV(I	(, 3) = 0.	333
334	334		HYDV(I	(, 4) = 0.	334
335	335		HTUV(1	(, 5) = PIN	335
230 337	330			· · · · · · · · · · · · · · · · · · ·	330
338	338		HYDV	(1, 7) = 1.4	330
339	339	С			339
340	340	150	CONTINUE		340
341	341		RADIUS = .(0001	341
342	342		EXPLSV = 8.	• .	342
343	343		DO IC = 1		343
344 386	344				344
346	346		771 - Y		345 246
347	347		RSS - SC	RT(XXI * XXI + YYI * YYI + 771 * 771)	347
348	348		IF(RSS	. LT . RADIUS) THEN	348
349	349		print	*.xxi.yyi,zzi,radius	349
350	350		HYDV	(IC, 1) = EXPLSV * .4536 * .75 / 3.141569 /	350
351	351		• UNDU	(RADIUS * RADIUS * RADIUS)	351
JJ2 157	352		HAUA I U LDA I	(IC, 0) = 1. (IC, 8) _ HYDU/IC, 1) + 1000 + 4 105 +	202
354	354			1000 * 1 01 / 7	354
355	355		NITER = 0		355
356	356		DST = HYDV(IC	C. 1) * GPERCC	356
357	357		VOL = WMX * (1 DST / FSX) / DST / XGX	357
358	358	~	EMEO = HYDV(]	C , 8) / HYDV(IC , 1) * WMX / RGAS	358
359	359	Ç	1		359
300	360		ITT = (EMED -	- LMEUX(3)) / RANGEX + 1	360
362	10C ¢ar	r	111 = MAXU(1	, minu(117 , 4/)]	361
363	362	L	K = 1YY + 2		302
364	364		IYY = IYY		202 AAF
365	365		. + INT(AMAX1(EMEO - EMEOX(K) . 0.) / DYX(K))	365
366	366		INT AMAXI	EMEOX(K + 1) - EMEO , 0.) / DYX(K))	366
367	367	•	IYY = MAXO(1)	MINO(IYY , 47))	367
368	368	C	VI 114 . 0		368
202	202		KI = III + 2		369

page

Thu Jul	1 14:17:	:00	1993	threed.f	main program	page	6
370	370		K2 =	K1 + 1			376
371	371		RT -	(EMEO - EMEC)X(K1)) / (EMEOX(K2) - EMEOX(K1))		371
3/2	372			TX(K1) + 100	A = RT		372
374	374		ERS	• CVMA(KI) •	$\mathbf{K} = \{ CVMA(K Z) - CVMA(K I) \}$		373
375	375 (2	2113	- 0.			3/4
376	376 1	10	CONT	INUE			376
377	377		P = 1	RGAS * T / VOL	_ / GPERCC		377
370	370 (•	KGAM	1I = UVM			378
380	380	•	X = (:0VX / VOL / ((T + THETAX) ** ALFAX)		3/9
381	381		Z = 2	(* EXP(BETAX	(*X)		381
382	382		X = 1	L. + BETAX * X			382
384	384		FRS -	ALFAA ~ 1 / (FRS + RT * 7	(+ INEIAX) * T		383
385	385 C	2	0.10		•		385
386	386	_	IF (ITER .EQ. NIT	ER) GO TO 20		386
387	387 C		C1/04 -		5012		387
389	389		*	+ RT *	$7 \pm (2 - RT / ALFAX - PT \pm X)$		388
390	390		T = 1	- AMIN1(ERS	7 CVM , TLIMIT + T }		390
391	391 C						391
392 303	392 303 C	•	NITER	l = NITER + 1			392
394	394	•	RT -	0.01 * T			393 304
395	395		K1 =	RT			395
390 307	390 307		KI =	MINU (KI, 49			396
398	398		K2 =	K1 + 1)		397
399	399		RT =	RT - K1			399
400 401	400		CVM =	CVMX(K1) + R	T * (CVMX(K2) - CVMX(K1))		400
402	402		ERS -	ERS - EMEO	$(Energy (K_2) - Energy (K_1))$		401
403	403 C	;					403
404	404		GO TO	10			404
406	406 2	0	CONTI	NUE			405
407	407	•	P = P	* (1. + Z)			407
408	408		RGAMM	1 = (RGAMM1			408
409	409		- 	KI * Z	* (2 RI / ALFAX - RT * X)) / (1. + Z)		409
411	411		RGAMM	1 - RGAMM1 /	((1 RT * X) ** 2 + X * RGAMM1)		410
412	412		ERS -	ERS / EMEO			412
415	413 41 4		HYDV(1(, 7) = 1 1(, 5) = 0	. / KGAMM1 + 1.		413
415	415		END I	F			415
416	416		END D	0			416
417 418	417 C		YCOUN	T - 0			417
419	419		DO IC	= 1 NC			410
420	420		RCOUN	T = HYDV(IC	, 8) + .5 * HYDV(IC , 1) *		420
421 422	421 422		•		(HYDV(IC, 2) * HYDV(IC, 2) + HYDV(IC, 2) + HYDV(IC, 3) * HYDV(IC, 3) +		421
423	423		•		HYDV(1C, 3) + HYDV(1C, 3) + HYDV(1C, 4))		422
424	424		XCOUN	T = XCOUNT + X	(C(4, IC) * RCOUNT		424
425	425						425
427	427			IJJ=1			420
428	428		Ī	F(IIJJ.EQ.0) (GO TO 1122		428
429	429 C		remov	e the followed	i IF statement for regular run		429
431	431 Č		ĬFĊ	IOPTN . EQ . 1	L) THEN		
432	432 C		1				432
433 434	433 434		N	K = 360	NY		433
435	435		U	XX(IX) = (I)	(5)*.002		434
436	436 19	90	C	INTINUE			436
437	437		R	AD (11,1001)	(PP(IX), IX=1, NX)		437
439	439		KI Pi	EAD (11, 1001)	(HR(IX),IX=1,NX)		455 430
440	440		R	AD (11,1001)	(AA(IX), IX=1, NX)		440
441	441		RI	AD (11,1001)	(GG(IX), IX=1, NX)		441
443	442 143 10	201	FORMAT	(6E12.5)	(cc(i/),1X=1,NK)		442 447
-							

Thu Jul	1 14:	17:00	1993	threed.f	main .	page	7
444	444	C					6.0.A
445	445			ICOUNT = 0			444
446	446		I	DO 260 IC = 1 , N			446
447	447	Ç		XXI = XC(1),	IC) + .2667		447
440 AAQ	440			$\lambda \lambda I = \lambda U (I)$	10) + .1143 10)) 06506		448
450	450	c		$\frac{111}{771} = XC(2)$	IC = 1.90090		449
451	451	•		ZZI = XC(3)	$IC_{1} = 1.25$		400
452	452			RSS = SORT(XX)	I * XXI + YYI * YYI + ZZI * ZZI)		451
453	453			XYS = SORT(XX)	I * XXI + YYI * YYI)		453
454	454	С					454
400	433			$\frac{100}{100} = \frac{100}{100} = $, NX-1		455
457	457			$\frac{1}{1002} = \frac{1}{1002}$	(*) [X+1]		456
458	458			IF(RSS . G	, XDD1, AND, RSS, LT, XDD2) THEN		43/
459	459			XKSI = (RSS - X001) / (X002 - X001)		459
460	460			ICOUNT =	ICOUNT + 1		460
461	461	Ç		11001/10			461
402	402			HTDV(IC.)	$L = HK(1X) = (1XKS1) + HD(1Y_1) + YKS1$		462
464	464	С	•		UK(IXTI) ~ XKJI		463
465	465	-		HYDUVW =	UU(IX) * (1XKSI) +		465
466	466		•		UU(IX+1) * XKSI		466
467	467			HYDV(IC,4	I) = ZZI / RSS * HYDUVW		467
400	458	c		HYDVUV =	XYS / RSS * HYDUVW		468
409	405	L.		THETHA -	ATAN2 (YVT YYT)		469
471	471			HYDV(IC.2	(1) = HYDVUV * COS(THETHA)		4/U 471
472	472			HYDV(IC.3) = HYDVUV * SIN(THETHA)		472
473	473	С					473
4/4 A75	4/4			HYDV(IC,5	$h_{i} = PP(IX) + (1XKSI) + PP(IX) +$		474
476	476	ſ	•		(1) = 1 08*HYDV(1C 5)		475
477	477	•		HYDV(IC.7	f) = GG(IX) * (1XKSI) +		4/0 477
478	478		•		GG(IX+1) * XKSI		478
479	479			HYDV(IC,6	() = AA(IX) * (1XKSI) +		479
400	480		•		AA(IX+1) * XKSI		480
482	482		_	UIDA(10°C)) = CC(IA) ~ (1AKSI) + FF(TX+S) + YKST		481
483	483	С	•				402 483
484	484			GOTO 301			484
485	485			ENDIF			485
460	480	2/0		CONTINUE			486
407 488	407 488	201	NITE	LUNIINUE			487
489	489		IF(N)	TER.EO.O) THEN			400
490	490		IF(H	YDV(IC , 6) . L	T2) THEN		490
491	491		DST -	HYDV(IC , 1) *	GPERCC		491
492	492		VOL =	WMA * (1 DST	/ FSA) / DST / XGA		492
493	493	r	11 =	HIDA(IC'2) .	VUL * GPEKLL / KGAS		493
495	495	•	T = T	Т			495
496	496		RT =	0.01 * T			496
497	497		K1 =	RT			497
498	498		KI =	MINU (K1, 49)			498
500	500		K2 =	мми (кі, з) Кі + і			4 3 3
501	501		RT =	RT - K1			501
502	502		ENERG	Y = EMEOA(K1) +	RT * (EMEOA(K2) - EMEOA(K1))		502
503	503	^	ENERG	Y = ENERGY * RGAS	/ WMA		503
504	504	L	DO 11	CD _ 1 NITCD			504
506	506		χ = 0	OVA / VOL / (T +	THETAA) ** ALFAA		506
507	507	С					507
508	508		BETAZ	X = BETAA * X			508
509	509		RT =	X * EXP(BETAZX)	,		509
010	51U 511	r	KIINV	= 1. / (1. + RT) T IS THE DEDIVATIVE		510
512	512	-	ERS -	JINE FUNCTION, R	I TO THE DEKTAMITAE		511 512
513	513		RT -	1 TT * PTINV *	RTINV * ALFAA * RT * (1. + BETAZX) /		513
514	514		•	(1 + 1	HETAA)		514
515	515		ĘRS =	ERS / RT			515
510 517	517		[#]	- LK3			515
71/	711		CITU U	v			211

Thu Jul	1 14:17:00	1993 threed.f	main program	page 8
518	518 C	at = 0.01 + t		518
520	520	KI = 0.01 - 1 $KI = RT$		519
521	521	KI = MINO (K1. 4	19 }	520
522	522	K1 - MAXO (K1, 3	3)	522
523	523	K2 = K1 + 1		523
524	524	RT = RT - KI		524
525	525 526 (ENERGI - ENEVAL	(1) + RT = (EMEUA(K2) - EMEUA(K1))	525
527	527	X = COVA / VOL /	((T + THETAA) ** ALFAA)	520
528	52 8	EX = EXP(BETAA	* X)	528
529	52 9	Z = X * EX		529
530	530	RI = ALTAA * 1 /	(1 + 1HELAA)	530
532	532	HYDV(IC.8) =	FNFRGY * RGAS / WMA	531
533	533	EMEO = HYDV(IC ,	8) / HYDV(IC , 1) * WHA / RGAS	533
534	534 C			534
535	535	IYY = (EMEO - EM	IEOA(3)) / RANGEA + 1	535
530	537 C	ITT = maxu(1, n)	11MU(1YY . 4/))	536
538	538	K = IYY + 2		53/
539	539	IYY = IYY		539
540	540	. + INT(AMAX1(EM	EO - EMEOA(K) , 0.) / DYA(K))	540
541	541	INT(AMAX1(EM	EDA(K + 1) ~ EMEO , 0.) / DYA(K))	541
543	543 C	111 = MAAU(1, M1	nu (111,47))	542
544	544	K1 = IYY + 2		545 882
545	545	K2 = K1 + 1		545
546	546	RT = (EMEO - EME	OA(K1)) / (EMEOA(K2) - EMEOA(K1))	546
547 548	547 548	= i = iA(KI) + IU $= CVMA(KI)$	U. T KI + DT # (CUMAI V2) CUMAI VI))	547
549	549	ERS = 0.	$(C_{MM}(K_{Z}) - C_{MM}(K_{I}))$	64C 043
550	5 50 C			550
551	551	P = RGAS * T / VO	L / GPERCC	551
552	552	RGANM1 = CVM	1 / DCAMMI	552
554	554	$\frac{HYDV(IC, 7) =}{HYDV(IC, 5) =}$	D KGAMTI + I.	553
555	555 C		,	555
556	5 56	ELSE		556
557	557 C	DET UVDUT TO	1) • 005800	557
330 550	550	NOI = HINX + (1)	I) = GPEKLC _ DST / ESY \ / DST / YCY	558
560	560	TT - HYDV(IC . 5) * VOL * GPERCC / RGAS	550
561	561 C			561
562	562			562
564 564	56 4	KI = 0.01 ~ 1 KI = PT		563
565	565	$K_1 = K_1$ $K_1 = MINO (K_1, 4)$	9) .	565
566	566	K1 = MAX0 (K1, 3	, j	566
567	567	K2 = K1 + 1		567
560 560	500	RI = KI - KI	1) + DT + / FMEOV/ (2)) FMEOV/ (2))	568
570	570	ENERGY = ENERGY *	RGAS / WMX	570
571	571 C			571
572	572	DO ITER = 1 , NIT	ER	572
5/5	5/3 574 C	X = COVX / VOL /	(T + THETAX) ** ALFAX	573
575	575	BETAZX - BETAX * 2	X	575
576	576	RT = X * EXP(BET	AZX)	576
577	577	RTINV = 1. / (1.	+ RT)	577
5/8	5/8 L-		UN, RT IS THE DERIVATIVE	578
580	580	RT = 1, $-TT + RT$	INV * RTINV * ALFAX * RT * (1. + RFTA7X) /	579
581	581	. (T + THETAX)	581
582	582	ERS = ERS / RT		582
583	533 584	T = I - ERS		583
585	585 C			564 595
586	586	RT = 0.01 * T		586
587	587	K1 - RT		587
588	588	K1 = MINO (K1, 49	<i>4</i>)	588
509 590	509 590	KI = MAKU (KI, J) K2 = K1 + 1)	589 500
591	591	RT = RT - K1		591

10.00

Thu Jul	1 14:17:	:00 1	993 th reed. f	main program	page	9
592	592	_	ENERGY - EMEOX(K1) + RT * (EMEOX(K2) - EMEOX(K1))		592
593	593 C					593
594	594		X = UVX / VUL / ((1 + THETAX) ** ALFAX)		594
596	596		7 - X + FY)		595
597	597		RT = ALFAX * T / (T + THETAX)		590
598	598		ENERGY - ENERGY + R	Τ * Ζ * Τ		502
599	5 99		HYDV(IC , 8) - EN	ERGY * RGAS / HMX		599
600	600		VOL = WMX * (1)	DST / FSX) / DST / XGX		600
601 602	601 607 C		EMEO = HYDV(IC , 8) / HYDV(IC , 1) * WHX / RGAS		601
602	602 L		TVV - / EMED - EMED	X (2)) / DANCEY , 1		602
604	604		IYY = MAXO(1 MIN)	N(J) / KANGEA + (N/ IYY 47))		603
605	605 C		tive count to them			004 606
606	6 06		K = IYY + 2			606
607	607		IYY = IYY			607
608 508	6 08		. + INT(AMAX1(EMEO	- EMEDX(K) , 0.) / DYX(K))		608
009 610	610		- INI(AMAXI(EMEU)	K(K + 1) - EMED , 0.) / DYX(K))		609
611	611 C		III - MANU(I, MINU)	(111 , 47)]		610
612	612	•	KI = IYY + 2			612
613	613		K2 = K1 + 1			613
614	614		RT = (EMEO - EMEDX	(K1))/(EMEOX(K2)-EMEOX(K1))		614
615	615		T = TX(K1) + 100.	* RT		615
616	616		CVH = CVMX(K1) + (RT * (CVMX(K2) - CVMX(K1))		616
01/ 618	618 C		EKS = 0.			617
619	610 C	01	CONTINUE			618
620	620	~	P = RGAS + T / VOL /	/ GPERCC		620
621	621		RGAMM1 = CVM			621
622	6 22 C					622
623	623		X = COVX / VOL / ()	(T + THETAX) ** ALFAX)		623
024 626	024 626		L = X = LAP(DEIAX = V = 1 + DETAY = V	· X)		624
626	626		RT = AIFAX + T / (1)	(+ THETAX)		025
627	627		ERS = ERS + RT * Z	T		627
628	6 28 C					628
629	629		IF (ITER .EQ. NITER	t) GO TO 201		629
630	630 C			N 44		630
0JI 632	031 632		UVH = UVH = XGX + SU			631
633	633		T = T = AMIN1(FRS)	. " (632
634	634 C		i · · · · · · · · · · · · · · · · · · ·			634
635	635		NITER = NITER + 1			635
636	6 36 C					636
637	637		RT = 0.01 * T			637
000	000 610		KI = MINO (K1 A0)			638
640	640		K1 = MAXO (K1. 3)			640
641	641		K2 = K1 + 1			641
642	642		RT = RT - K1			642
6 4 3	643		CVM = CVMX(K1) + RT	* (CVMX(K2) - CVMX(K1))		643
044 646	099 646		EKS = EMEUX(K1) +	KI ~ (EMEOX(KZ) - EMEOX(K1))		544 647
646	646 C		LNJ - LNJ - CMEU			043 646
647	647		GO TO 401			647
648	648 C					648
649	6 49 20	01	CONTINUE			649
00U 661	00V 651		Υ = Υ = (I. + Z) Эсамыі _ (DCAMAI ·			650
652	652	•		(2, ~ RT / ALFAX _ PT * Y)) / / 1 + 7)		031 657
653	653		X = X * Z / (1. + Z	$) \qquad \qquad$		653
654	654		RGAMM1 = RGAMM1 / ((1 RT * X) ** 2 + X * RGAMM1)		654
655	655		ERS = ERS / EMED			655
05f	050		HYDV(IC , 7) = 1.	/ RGAMM1 + 1.		656
00 65	05/ 650		HTUV(IC, 5) = P			657
65	659		END 1F			070 650
660	660 2	260	CONTINUE			660
661	661 C					661
662	662 C((2)				662
663 664	503		ELSE			663
004 665	004 L 665		¥MSOD - ⊻MC1111 +	XMCHIN		004 665
103	304		VIIMAU = VIIMITI	212 JULE 1 1		003

Thu Jul	1 14:1	7:00	1993	threed.	f main program	page	10
666	6 66			PINL - PIN			666
667	6 67			RINL - RIN			667
668	6 68			RINRTO - (HRGC + 1.) * XMSOR /		668
009 670	620		•	DINOTO	(HRGG - 1.) * XMSOR + 2.)		669
671	670			PINKIU = (2. " NRGU " XMOQK - (NRGU - 1.)) [(NDCC - 1)		670
672	672		•	PIN - PINRT	(nkud + 1.) D * PINL		672
673	673			RIM = RINRT	D * RINL		673
674	674			YMCHIN - SQ	RT(((HRGG - 1.) * XMSQR + 2.) /		674
075 676	675		•		(2. * HRGG * XMSQR - (HRGG - 1.)))		675
677	677			PRINT* HRGG	, KIN, PIN, TRUBIN Dini dini yachir		676
678	678			UVIN = XMCH	IN * SORT(HRGG * PINI / RINI) -		679
679	679		•		(MCHIN * SQRT(HRGG * PIN / RIN)		679
680	680			UIN = UVIN	* COSS		680
681	681			VIN - UVIN	* SINN		681
683	583 683	c		WIN = 0.			682
684	684	C.		DO 155 TC +	1.NC		683
685	685			HYDV (IC	, 1) - RINL		685
686	6 86			HYDV (IC	, 2) = UIN		686
687	687			HYDV(IC	, 3) = VIN		687
000	600			HYDV(IC	(4) = WIN		688
690	690	С		UIDA(IC	,) / - PINL		689
691	691	15	5	CONTINUE			690
692	692		ENE)IF			692
693	693	ç	ren	nove the fol	owed END IF for regular run		693
605	094 605	C C	E1				694
696	696	r(2)	ت: >>>>>)	WIF			695
697	697	Č Ĵ					697
698	6 98	1122	CON	ITINUE			698
699	6 99		IF	ICOND . EQ	. O) THEN		699
700	700		NPF YDD	RICL = 25	442		700
702	702		XP	TC(2,1) =			701
703	703		XPR	TCL(3,1) =	.4224		702
704	704		XPR	TCL(1,2) =	.002		704
705	705		XPR	TCL(2,2) =	3556		705
707	700			(IUL(3,2) = 0)	275		706
708	708		XPR	TCL(2,3) = -			707 708
709	709		XPR	TCL(3,3) =	1.4224		709
710	710		XPR	TCL(1,4) = 2	.032		710
711	711		XPR	TCL(2,4) = -	. 3048		711
713	713			$(1C_{1}(3,4) = -$	4.572 3048		/12
714	714		XPR	TCL(2.5) =	1016		714
715	715		XPR	TCL(3,5) = .	3048		715
716	716		XPR	TCL(1,6) = .	4572		716
/1/ 719	/1/		XPR YDD	I(L(2, 6) = .)	1010		717
719	719		XPR	TCL(1.7) =	6096		710 710
720	720		XPA	TCL(2.7) -	1016		720
721	721		XPR	TCL(3,7) = .	3048		721
722	722		XPR	TCL(1,8) = .	4572		722
723	723			ILL(2.8) = . TCI(3.8) =	1010		123
725	725		XPR	TCL(1.9) = 1	.3462		725
726	726		XPR	TCL(2,9) =	1016		726
727	727		XPR	TCL(3,9) = .	3048		727
/28	/28		XPR	TCL(1,10) =	1.4900		728
730	730		766 766	TCI (3.10) =	. 4572		730
731	731		XPR	TCL(1,11) =	1.651		731
732	732		XPR	TCL(2,11) =	. 1016		732
733	733		XPR	TCL(3,11) =	.3048		733
/ 34	/ 54 735		XPP YDF	(1,12) =	1.4900		/34
736	736			TC(2, 12) =	.1524		736
737	737		XPR	TCL(1,13) -	.6096		737
738	738		XPR	TCL(2.13) -	.7740		738
739	739		XPR	TCL(3,13) =	1.0668		739

Thu Jul	1 14:17:00	1993	threed.f	main	program
740	740	XPRTCL	(1.14) = .6096		
741	741	XPRTCL	(2,14) = .8138		
742	742	XPRTCL	(3.14) = .5334		
743	7 43	XPRILL XPRICL	(1,15) = 1.4224 (2,15) = .7740		
745	745	XPRTCL	(3,15) = 1.0668		
746	746	XPRTCL	(1,16) = 1.4224		
747	7 47 7 4 9	XPRTCL	(2,16) = .8128 (3,16) = .6334		
749	749	XPRICL	(1.17) =3058		
750	750	XPRTCL	(2.17) = 1.3208		
751	751	XPRTCL	(3,17) =4318		
753	/52	XPRICE	(1,10) = .2032		
754	754	XPRTCL	(3,18) = 1.1898		
755	755	XPETCL	(1,19) = .254		
/50 757	/50 757	XPRICL YPOTCI	(2,19) = .1//2 (3,10) = 1,1048		
758	758	XPRTCL	(1,20) = .9144		
759	759	XPRTCL	(2,20) = .4064		
760	760	XPRTCL	(3,20) = .9652		
762	762	XPRICL	(1,21) = .2032 (2.21) = .7680		
763	763	XPRTCL	(3,21) = 1.1888		
764	764	XPRTCL	(1.22) = .1532		
765	766	XPRICL	(2,22) = 1.1888		
767	767	XPRTCL	(1,23)1532		
768	768	XPRTCL	(2,23)7665		
/09 770	/09 770	XPRICL YPRTCI	(3,23) = 1.18/8 (1.24) = .1532		
771	771	XPRICL	(2.24) = .7765		
772	772	XPRTCL	(3,24) = 1.1898		
173 774	773	XPRTCL	(1,25) = .1532		
775	775	XPRICE	(3.25) = 1.1898		
776	776	DO IK	1 NPRTCL		
777	777	RMINN ·	- 100000000.		
779	779				
780	780	12-JC(2,IC)		
781	781	[3=JC(3	3, [C]		
783	783	XX1 =)	(PRTCL(1, TK)		
784	784	YYI =	(PRTCL(2 , IK)		
785	785	ZZI = >	(PRTCL(3 . IK)	13 991 994 -	77
787	787		DEMIETE (11, 12 DEMIETE (11, 12	, 15, XXI, 111, Z . 14, XXI, YYI 7	21. VOL1) 71. VOL2)
788	788	CALL VO	DLMTETC (11, 13	. 14. XXI. YYI. Z	ZI, VOL3)
789	789	CALL VO	DENTETC (12, 13	. I4, XXI, YYI, Z	ZI , VOL4)
790 791	790 791		(V(1, 14))		
792	792	ZZI -)	(V(3,14)		
793	793	CALL VO	LMTETC (11, 12	. 13. XX1. YYI. Z	ZI, VOLL)
794 795	794 795	UEFVUL	DABS(VOLI)+DABS	(VUL2)+DABS(VUL3)	+UAUS(VUL4)
796	796	IF(DAE	S(DEFVOL/VOLL)	. LT001) THE	K
797	797	IJ	(PRT(IK) = IC	a	
798 799	798 799	PR1 981	MI*,1K,VOIL,VOL NT* ic.voll.def	2,V013,V014 Vol.defvol/voll	
800	800	PRI	NT*,(XV(kk,jc(1	,ic)),kk=1,3)	
801	801	PRI	NT*, (XV(kk,jc(2	,ic)),kk=1,3)	
802	802 803	PRI	ni=,(XV(KK,JC(3 NT* (XV(kk ic/A	,1C}),KK=I,J) .ic)) kk=1 3)	
804	804	PRI	NT*, (JS(9, jc(kk	,ic)),kk=5,8)	
805	805	END IF		· - · · ·	
805 807	505 807	END DO			
808	808	DO IK *	1, NPRTCL		
809	809	10	= IJKPRT(IK)		
810 811	810 811		- JU(5,1C)		
812	812	IS	- JC(IKK.IC)		
813	813	IBC	- JS(9,1S)		

0

Thu Jul	1 14:1	7:00	1993	threed.f	main program	page	12
814	814		IF	IBC . EQ .	5) THEN		814
815	815		15	55 = 15			815
816	816	•	ENC) IF			816
817	817		END DO)			817
818	818		I.	$\mathbf{KPRT}(\mathbf{IK}) = \mathbf{I}$	55		818
819	819		END DO) ·			813
820	820	_	END II	F			820
821	821	С					821
822	822		PRIN	* , ICUNU, IC	UNP		022
823	823	C					023
824	824		11(LCUMP . EU .	L) INCR The DTAR BUTH WITH WITH WITH TT		024
825	825		READ	(8) RIN,PIN,K	INL, PINL, UVIN, UIN, VIN, WIN, II DTAN, DTAN, ADVIN, MIN, VIN, KIN, TT		023
825	826	•	PRIN	", KIN,PIN.	KIAL, PIAL, UVIA, UIA, VIA, WIA, II		020
827	827	C	KE/	W (8) NPRILL			929
828	828	ç	11	(NPKILL.61.0)	T/12) 12-1 HDDTCI)		920
829	829	C	. KE/	W (0) (IJNPK	((K), IK=1, APRICL)		930
830	830		00 1	L = L , J (0) (/WYDW/TC	TV) TV_1 () TC_1 NC)		831
831	831		KEAU	(O) ((NIDA(IC	, 1N		832
832	032	~	CUD I	0			833
833	033	L		e			834
634	034	r		F			835
030	032	L	700110	r = 0			836
030	030		D0 38	1 - 0 1 1 - 1 NC			837
020	03/		DC JO	T _ HYNV/ IC	8) + .5 * HYDV(TC 1) *		838
030	030		NUVUN		(HYDV(1C 2) * HYDV(1C 2) +		839
040	840		•		HYDV(IC 3) * HYDV(IC 3) +		840
040	9/1		•		HYDV(IC 4) * HYDV(IC 4)		841
041 942	842		7000	T = 7COUNT +	XC(4, IC) * RCOUNT		842
240	RAR	38	O CONTI	NIF			843
RAA	844	50	YCOU	NT = 7COUNT -	XCOUNT		844
845	845		PRIN	T * ZCOUNT.Y	COUNT		845
845	846		CALL	HYDRMN			846
847	847	С					847
848	848	Č -	EXIT	POINT FROM PR	OGRAM		848
849	849	Ċ	-				849
850	850	Ċ					850
851	851		STOP	777			851
852	852	С					852
853	853	С					853
854	854	C -	Forma	TS	*****		654
855	855	C					855
856	85 6	101	FORMA	T(1H ,'ICOND-	',12,5X,'ICONP=',12,5X,'IOPTN=',12,/,1X,		000
857	857		•	XMCHIN	=',F13.6,5X,'RIN=',F13.6,5X,'PIN=',F13.6,/,1X,		057
858	8 58		•	'ALFA-'	, +13.0, 5X, 'HKGG=', +13.0, 5X, 'IHKN=', 12, 5X, /, 1X,		000
859	859		•	'NTIME=	',12,5X, NOUMP=',15,5X,'10PORD=',12)		003
860	860						000
861	861		END				001
862	862	r					002

Thu Jul	1 14:	17:00	1993 threed.f SUBROUTINE HYDRFL	page	13
863	1		SUBROUTINE HYDRFL		863
864	2	C	· · · · ·		864
865	3 A	(C	±4++++++++++++++++++++++++++++++++++++		865
867	5	č	HYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES		867
868	6	Č	FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I		868
869	7	C	VARIABLES .		869
871	9	C)] 		870
872	10	Č	· · · · · · · · · · · · · · · · · · ·		872
873	11		include 'dmsh00.h'		873
8/4 875	12		include 'dnymnu.n' include 'dnymnu.n'		8/4
876	14		include 'dmtrl0.h'		876
877	15	C			877
8/8 879	10		REAL UELP(128), WSUP(128), WSUP(128), WSUU(128), RSTAR(128) (STAR(128) PMAX(128) PMIN(128)		878
880	18		REAL RRIGHT(128), URIGHT(128), VRIGHT(128), PRIGHT(128)		880
881	19		REAL RLEFTT(128), ULEFTT(128), VLEFTT(128), PLEFTT(128)		881
882 883	20	r	REAL ENRGY1(128), ANRGY1(128)		882
884	22	Č	- BEGIN LOOP OVER ALL EDGES IN THE DOMAIN		884
885	23	C			885
880	24 25		DU 280 IH = I , 6 DO 280 IC = 1 NC		885
888	26		HYDFLX(IC, IH) = 0.		888
889	27	280	CONTINUE		889
890 901	28	C	NC1 _ 1		890
892	30		NS2 - NOFVES(1)		892
893	31		DO 110 INS = 1 , NVEES		893
894	32	C C	CETCH HYDDO OHANTITIES		894
8 96	34	č			896
897	35		DO 120 IS - NS1 , NS2		897
898	35	r	$\mathbf{KS} = \mathbf{IS} - \mathbf{NSI} + \mathbf{I}$		898
900	38	6	RRR(KS) = RR(IS)		900
901	39		UUR(KS) = UR(IS)		901
902	40		VVR(KS) = VR(IS)		90Z
904	42		PPR(KS) = PR(IS)		904
905	43		AAR(KS) = AR(IS)		905
906	44 45		EER(KS) = ER(IS)		905
908	46	C	uan(NS) - an(15)		908
909	47		RRL(KS) = RL(IS)		909
910	48 49		UUL(KS) = UL(IS) VVI(KS) = VI(IS)		910
912	50		WWL(KS) = WL(IS)		912
913	51		PPL(KS) = PL(IS)		913
914 Q15	52		AAL(KS) = AL(IS) FFI(KS) = FI(IS)		914
916	54		GGL(KS) = GL(IS)		916
917	55	C			917
918 919	50 57	120 C	CUNITNUE		918
920	58	v	00 130 KS = 1 , NOFVES(INS)		920
921	59	Ç	THE SECTION OF CODE FOUNDS FOR POSTADE AND RUSTADE IN		921
922 923	61	C	THE RIEMANN PROBLEM USING NEWTON'S METHOD.		923
924	62	Ĉ			924
925	63		WLEFT(KS) = SURT(GGL(KS) * PPL(KS) * RRL(KS)) WDIGT(KS) = SODT(COD(KS) * DDD(KS) * DDD(KS))		925 026
927	65		WLESO(KS) = WLEFT(KS) * WLEFT(KS)		927
928	66		WRISQ(KS) = WRIGT(KS) * WRIGT(KS)		928
929	67 69	C			929 030
931	69		PSML(KS) + HRSM * PMIN(KS)		931
932	70	Ç			932
933	71	C	- FORM THE STARTING GUESS FOR THE SOLUTION		933
935	73	Ŀ	PSTAR(KS) = (WLEFT(KS) * PPR(KS) +		935
936	74		WRIGT(KS) * PPL(KS) -		936

Thu Jul 1 14:17:00 1993 threed.f SUBROUTINE HYDRFL page WLEFT(KS) * WRIGT(KS) * (UUR(KS) - UUL(KS))) / (WLEFT(KS) + WRIGT(KS)) PSTAR(KS) = AMAX1(PSTAR(KS), PSML(KS))130 CONTINUE С DO 140 I = 1 . IHRN С C --- BEGIN THE NEWTON ITERATION -----£ ZLEFT(KS) = 2. * WLEFT(KS) * WLEFS(KS) (WLESQ(KS) + WLEFS(KS)) USTL(KS) = UUL(KS) -(PSTAR(KS) - PPL(KS)) / WLEFT(KS) 150 CONTINUE C DO 152 KS = 1 , NOFVES(INS) CFFR = (GGR(KS) + 1.) / (2. * GGR(KS)) WRIFS(KS) = (1. + CFFR * (PSTAR(KS) / 97 PPR(KS) - 1.)) * WRISQ(KS) WRIGT(KS) = SQRT(WRIFS(KS)) ZRIGT(KS) = 2. * WRIGT(KS) * WRIFS(KS) WRISQ(KS) + WRIFS(KS)) USTR(KS) = UUR(KS) (PSTAR(KS) - PPR(KS)) / WRIGT(KS) 152 CONTINUE С DO 160 KS = 1 , NOFVES(INS) DPST(KS) = ZLEFT(KS) * ZRIGT(KS) * (USTR(KS) - USTL(KS)) / <u>971</u> (ZLEFT(KS) + ZRIGT(KS)) PSTAR(KS) = PSTAR(KS) - DPST(KS) PSTAR(KS) = AMAX1(PSTAR(KS) , PSML(KS)) CONTINUÈ С CONTINUE Ĉ С --- FORM FINAL SOLUTIONS -----С DO 170 KS = 1 , NOFVES(INS) I/U KS = 1 , NUTVES(INS) CFFL = (GGL(KS) + 1.) / (2. * GGL(KS)) WLEFT(KS) = SQRT(WLESQ(KS) * (1. + CFFL * (PSTAR(KS) / PPL(KS) - 1.))) 170 CONTINUE C DO 172 KS = 1 , NOFVES(INS) 172 CONTINUE Ĉ DO 180 KS = 1 , NOFVES(INS) USTAR(KS) = (PPL(KS) - PPR(KS) + WLEFT(KS) * UUL(KS) + WRIGT(KS) * UUR(KS)) (WLEFT(KS) + WRIGT(KS)) 180 CONTINUE С DO 190 KS = 1 , NOFVES(INS) С С --- BEGIN PROCEDURE TO OBTAIN FLUXES FROM REIMANN FORMALISM --C IF(USTAR(KS) . LE , 0.0) THEN С RO(KS) = RRR(KS)PO(KS) = PPR(KS) UO(KS) = UUR(KS) CO(KS) = SORT(HRGG * PPR(KS) / RRR(KS)) WO(KS) = WRIGT(KS)

Thu Jul	1 14:1	7:00	1993 th re t	d.f	SUBROUTINE HYDRFL	page	15	
1011	149		GO(KS) = GGR(KS)			1011	
1012	150	_	ISN(H	S) = 1			1012	
1013	151	C	C HAAV				1013	
1014	152		ENKGT I	(KS) = EEK(KS)			1014	
1015	153		VGDNV	(KS) = VVR(KS)			1015	
1010	155		WGDNV ((KS) = WWR(KS)			1017	
1018	156	С					1018	
1019	157	_	ELSE				1019	
1020	158	C) - 001 (KS)			1020	
1027	159) = RAL(NS)			1021	
1020	161) = UUL(KS)			1023	
1024	162		CO(KS) = SQRT(HRGG * PP	L(KS) / RRL(KS))		1024	
1025	163		WO(KS) = WLEFT(KS)			1025	
1025	164		GU(K)) = GGL(KS)			1026	
1027	165	C	194(1	5)1			1027	
1029	167	•	ENRGYI	(KS) = EEL(KS)			1029	
1030	168		ANRGYI	(KS) = AAL(KS)			1030	
1031	169		VGDNV (KS) = $VVL(KS)$			1031	
1032	1/0		WGDNV	(KS) = MME(KS)			1032	
1035	172	190	CONTINUE				1033	
1035	173	c					1035	
1036	174		DO 200 KS -	1, NOFVES(INS)			1036	
1037	175		DELP(KS) = PSTAR(KS) - P	0(KS)		1037	
1038	1/0		WSUP(KS	= 15N(KS) + 100(KS + $WU(KS) / RU(KS)$		1038	
1039	178	200	CONTINUE) = 13#(K3) = 00(K3) + CO(K3)		1039	
1041	179	500	CONTINUE				1041	
1042	180		DO 210 KS +	1, NOFVES(INS)			1042	
1043	181		IF(DELP(KS).GT.O.)THE	N		1043	
1044	182		WSOU(K)) = WOUP(KS)			1045	
1045	184		WSOO(KS) = HSOM(KS)			1045	
1047	185		END IF	,			1047	
1048	186	_210	CONTINUE				1048	
1049	187	C	DO 220 KS -				1049	
1050	189	C	00 220 K3 -	I . NUPVES(INS)			1050	
1052	190	Č	- USE OUTER ST	ATE SOLUTION	*****		1052	
1053	191	C					1053	
1054	192		PGDNV(K	S) = PO(KS)			1054	
1055	193		CCDNV(K	S) = (0(KS) S) = 00(KS)			1055	
1050	195		RGDNV(S = RO(KS)			1057	
1058	196	220	CONTINUE				1058	
1059	197	Ç					1059	
1050	198	()	- COMPUTE STAF	RED VALUES			1061	
1062	200	Ŀ	00 230 KS -	I. NOFVES(INS)			1062	
1063	201		RSTAR(H	S) = 1. / (1. / RC	(KS) - DELP(KS) /		1063	
1064	202		•	(WO(KS) * WO(KS)))		1064	
1065	203		USTAR()	5) = SURT(GO(KS)	* PSTAR(KS) / RSTAR(KS))		1066	
1067	204	230			INK (K3) T C31AK(K3)		1067	
1068	206	C					1068	
1069	207		DO 240 KS -	1 , NOFVES(INS)			1069	
1070	208		IF(DELP(KS) . GT . O.) THE	N		10/0	
1071	219		ELSE) - MOUF(NO)			1072	
1073	211		SPIN(KS) = WSOM(KS)			1073	
1074	212	_	END IF	, - <i>r</i>			1074	
1075	213	240	CONTINUE				1075	
10.3	214	C	DA 250 KS -				1070	
10/8	215	С	UV 23V N3 =	r + uniacof tuo)			1078	
1079	217	-	IF(WSOO(KS). GE . 0.) THEN			1079	
1080	218		IF(SPIN	(KS).GE.O.)T	HEN		1080	
1081	219	C	HET THE CTAP	DER STATE DERUTE			1082	
1083	220	C	- USE INE STAP	VED SIMIE KESULIS			1083	
1084	222	-		RGDNV(KS) -	RSTAR(KS)		1084	

Thu Jul	1 14:	17:00	1993 threed.f	SUBROUTINE HYDRFL	page	16
1085	223			UGDNV(KS) = USTAR(KS)		1085
1086	224			CGDNV(KS) = CSTAR(KS) PGDNV(KS) = PSTAR(KS)		1086
1088	226	c	ELSE			1088
1090	228	C	EVALUATE THE INSI	DE RAREFACTION WAVE		1089
1091	229	C	CCDNV/ KS) -	/ CCTAD/ VS) + 9		1091
1093	231		• • • • • • • • • • • • • • • • • • •	(CSTAR(KS) + 2 1STAR(KS) + (GO(KS) - 1.))		1092
1094	232		. UCDNV(KS) -	/ (GO(KS) + 1.)		1094
1096	234		RGDNV(KS) =	(CGDNV(KS) / CO(KS)) **		1095
1097 1098	235 236		· PGDNV(KS) =	(2. / (GO(KS) - 1.)) * RO(KS) (CONV(KS) * CONV(KS) * RONV(KS) /		1097
1099	237	•	•	GO(KS)		1090
1100	238 239	C	END IF			1100
1102	240	C				1102
1103	241	250	CONTINUE			1103
1105	243	C	00 250 KG 1 N			1105
1107	245		IS = KS + NS1	- 1		1106
1108	246	C	101 - 157 7 15	N Contraction of the second		1108
1110	248		ICR = JS(8, 1S))		1109
1111	249 250	C	CTT - SORTE COL K	S) * PCDNV(KS) / PCDNV(KS))		1111
1113	251		XSS = XS(5, 1S)			1112
1114 1115	25Z 253	с	XYZ = 1. / XSS			1114
1116	254	•	IATRB = JS(9 , 1	S)		1115
1117	255	С	IF(IAIKB . EQ .	U) THEN		1117
1119	257		XXN = (XC(1))	. ICR) - XC(1 . ICL)) * XYZ		1119
1121	2 50 2 59		ZZN = (XC) 2	(100) = XC(2, 10L) = XYZ		1120 1121
1122	260	C	VE1 -			1122
1124	262		. (UGDNV(KS) * XN(IS) +		1123
1125 1126	263 264		- VGDNV(KS - HGDNV(KS) * XP(IS) +) * XT(IS)) * XXN +		1125
1127	265		. (UGDNV(KS) * YN(IS) +		1127
1128	200		. VGDNV(KS . WGDNV(KS) * YP(IS) +) * YT(IS)) * YYN +		1128
1130	268		. (UGDNV(KS) * ZN(IS) +		1130
1132	270		WGDNV(KS) * ZT(IS)) * ZZN		1131 1132
1133	271	C	DTH - XSS / (CTT			1133
1135	273		DTT = AMIN1(DTU ,	, DTT)		1134
1136 1137	274 275	C	FI SE			1136
1138	276	C				1138
1139	277		YYN = (XYZMDL)	(1, IS) - XC(1, ICL)) * XYZ (2, IS) - XC(2, ICL)) * XYZ		1139
1141	279	~	ZZN = (XYZMDL)	(3, IS) - XC(3, ICL)) * XYZ		1141
1142	281	ι	VEL -		:	1142 1143
1144	282		. (UGDNV(KS) * XN(IS) +		1144
1145	284		WGDNV(KS) * XT(IS)) * XXN +		1145
1147 1148	285 286		UGDNV(KS) * YN(IS) +) * YP(IS) +		1147
1149	287		WGDNV(KS	(* YT(IS () * YYN +	:	1149
1150	288 289		UGDNV(KS)	1 + 2N(1S) + 1 + 2P(1S) +		1150 1151
1152	290	c	WGDNV(KS	ý * ZT(IŠ) * ZZN	1	1152
1155	292	L	DTU = XSS / (CTT	+ ABS(VEL))	1	1153
1155 1156	293 204	ſ	DTT = AMIN1(DTU ,	DTT)	1	1155
1157	295	L.	END IF		-	1157
1158	296	260	CONTINUE		1	1158

(

1

page

Thu Jui	1 14:17:0	10 1993	threed.f	SUBROUTINE HYDRFL	page	17
1159	2 97 C	~~ ~~~				1159
1160	298	DO 270	KS = 1, NUF	VES(INS)		1160
1162	300 C	13	- K3 + K34 +	1		1162
1163	301 C	FLUX F	OR DENSITY	• • • • • • • • • • • • • • • • • • • •		1163
1164	302 C					1164
1165	303	RO(KS) = RGDNV(K)	S) * UGDNV(KS)		1165
1100	304 L 305 C	FINX F	OR MOMENTUM DE		:	1100
1168	306 C					1168
1169	307	UO(KS) = PGDNV(KS)	S) * XN(IS) +		1169
1170	308	•	R0(KS	S) * (UGDNV(KS) * XN(IS) +	-	1170
11/1	309	•		ACUNA(K2) + A1(12)) ACUNA(V2) - X5(12) +		1171
1173	311	COL KS) - PGDNV(KS	S) * YN(IS) +	÷	1173
1174	312	•	RO(KS	S) * (ÙGDNV(KS) * YN(IS) +	i	1174
1175	313	•		VGDNV(KS) * YP(IS) +	1	1175
1176	314		A DODANI VS	WGUNV(KS) * YT(IS)) S) * 7N(IS) +		1176
1178	316	#U(N3	ROL KS	S = 2N(1S) + 2N(1S)	-	11//
1179	317	•		VGDNV(KS) * ZP(IS) +		1179
1180	318	•		WGDNV(KS) * ZT(IS))	1	1180
1181	319 C		OD CHEREY DEN		1	1181
1183	320 L	··· FLUX F	UK ENERUT DEN.	JII) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	1182
1184	322	PO(KS) = UGDNV(KS	S) * (ENRGYI(KS) +		1184
1185	323	•	.5 * RGDNV(KS	5) * (UGDNV(KS) * UGDNV(KS) +		1185
1186	324	•		VGDNV(KS) * VGDNV(KS) +	1	1186
118/	325	•		WGUNV(KS) * WGUNV(KS))		1187
1189	327 C	ELUX F	OR COMBUSTION	INTERFACE TRACKING		1189
1190	328 C					1190
1191	329	AO(KS) = UGDNV(KS	S) * RGDNV(KS) * ANRGYI(KS)	1	1191
1192	330 C		ur			1192
1193	132 (JU CONTIN	UL		1	1104
1195	333	DO 290	IS = NS1 , NS	52		1195
1196	334	KS	= IS $-$ NS1 $+$	1	1	1196
1197	335 C	10	10/ 7 10)		1	1197
1190	330		JS(7, 15)		1	1130
1200	3 38 C		05(0,10)			1200
1201	339	IATRB	= JS(9 , IS)		1	1201
1202	340	IF(IA	TRB . EQ . 0)) THEN]	1202
1203	341 L 342 C	FLUX F	OR DENSITY			1203
1205	343 C				j	1205
1206	344	DLENG	= XS(4 , IS)) * RO(KS)	1	1206
1207	345	HYDFLX	(ICL, 1) = (ICR, 1)	HYDFLX(ICL, 1) + DLENG]	1207
1200	340 347 C	nturlk	(108,1)*	HIDELAL ILK , 1 / - ULERU	1	1200
1210	348 C	FLUX F	OR MOMENTUM DE	ENSITY (U DIRECTION)	i	1210
1211	349 C				1	1211
1212	350	DLENG	• XS(4,15) (10) - 2\-	/ " UU(KS) Ηγηθιχ(ΤΟΙ - 2.) + ΟΙΕΝΟ]	1212
1213	352	HYDELX	$(ICR_{2}) =$	HYDELX ICR . 2) - DIENG	1	1214
1215	353 C				i	1215
1216	354 C	FLUX F	OR MOMENTUM DE	ENSITY (V DIRECTION)	1	1216
1217	355 C	DIENC	. YEL A 15 1	+ CO(KS)	1	1217
1210	357	HYDFIX	- ^3(+ , 13) (ICL , 3) =	HYDFLX(ICL.3) + OLENG	1	1219
1220	358	HYDFLX	(ICR , 3) -	HYDFLX(ICR, 3) - DLENG	j	1220
1221	359 C]	1221
1222	360 C	FLUX F	OR MOMENTUM DE	ENSLIY (W DIRECTION)		1222
1223	362	DI ENG	= XS(4 . IS)) * WO(KS)	1	1224
1225	363	HYDFLX	(ICL . 4) =	HYDFLX(ICL, 4) + DLENG	i	1225
1226	364	HYDFLX	(ICR, 4) =	HYDFLX(ICR , 4) - DLENG	1	1226
1227	365 C]	1227
1220	367 L	··· PLUX P	UK ENERGI DENS	JII)	1	1229
1230	368	DLENG	= XS(4 , IS)) * PO(KS)	ī	1230
1231	369	HYDFLX	(ICL , 5) =	HYDFLX(ICL , 5) + DLENG	1	1231
1232	370	HYDFLX	(1CR.5) -	HYDFLX(ICR , 5) - DLENG	1	1232

Thu Jul	1 14:17:00	1993	threed.f	SUBROUTINE HYDRFL	page	18
1233	371 C					1233
1234	372 C.	FLUX F	OR COMBUSTION	INTERFACE TRACKING		1234
1235	373 C					1235
1236	374	DLENG	= XS(4, 1S)	TAO(KS)		1236
1237	375	HYDFLX	(ICL, 6) =	HYDFLX(ICL, 6) + DLENG		1237
1238	376	HYDFLX	(ICR, 5) =	HYDFLX(ICR, 6) - DLENG		1238
1239	377 C					1239
1240	378	ELSE				1240
1241	379 C					1241
1242	380 C.	FLUX F	OR DENSITY	• • • • • • • • • • • • • • • • • • • •		1242
1243	381 C					1243
1244	382	DLENG	= XS(4, 1S)	* RO(KS)		1244
1245	383	HYDFLX	(ICL, I) =	HYDFLX(ICL, I) + DLENG		1245
1246	384 C	-				1246
1247	385 C.	FLUX F	OR MOMENTUM DE	NSILY (U DIRECTION)		1247
1248	3 86 C					1248
1249	387	DLENG	= XS(4, 1S)	* UU(KS)		1249
1250	388	HYDFLX	(ICL, 2) =	HYDFLX(ICL, 2) + OLENG		1250
1251	389 C					1251
1252	390 C .	FLUX F	OR MOMENTUM DE	NSITY (V DIRECTION)		1252
1255	391 C					1253
1254	392	ULENG	= XS(4, 15)			1254
1255	393	HYDFLX	(ICL , 3) =	ATDFLX(ICL, 3) + OLENG		1255
1256	3 94 C					1256
1257	- 395 C .	. FLUX FO	OR MOMENTUM DE	NSITY (W DIRECTION)		1257
1258	396 C					1258
1259	397	ULENG	= XS(4, 15)	* WU(KS)		1259
1260	398	HYDELX	(ICL, 4) =	MTUFLX(ICL, 4) + ULENG		1260
1201	399 C		on success orac	***		1201
1262	400 L .	FLUX F	OK ENERGT DENS	LIT		1202
1203	401 L	0. 510	VC/ 4 10 1			1203
1204	402	ULENG	= XS(4 , 15)			1204
1205	403	HTUFLX	(101,5)=	ATOFLX(ILL , 5) + ULENG		1200
1200	404 L					1200
120/	405 L.	FLUX F	OK COMBOSTION	INTERFALE TRACKING		120/
1208	406 L	OI ENC	VC/ A TC \	+ 40/ 24)		1200
1203	407		= X3(4,13) / 70/ 6 \			1203
12/0	408	RIUFLA	(101,0)*	MIDELA ILL , O) + ULENG		1270
12/1	409 L					12/1
1272	410		nr			1272
1274	411 29	U CUNTIN	UC.			12/3
1275	412 L	NC1 -	1			12/4
1275	413	ncə	NG2 + NOENEC/	TNS & 1 Y		12/3
1277	414 114	1 - 268 1 - 268	NG2 T RUEVES(1113 T 1)		1270
12//	413 11	a courte				1270
1270	410 L	OCTION				1270
1200	417	CNU				1220
1200	410	CNU				1291
1201	イルコ し					****

Thu Jul	1 14:	17:00 1	993 threed.f SUBROUTINE RYDRFL	page	19
1282	I		SUBROUTINE RYDRFL		1282
1283	2	C			1283
1284	3	C			1284
1285	4	C			1285
1280	5	C C	KTURFE IS A 2 DIMENSIONAL KIEMANN SULVER HAN INTEGRATES I ELNYES ACONSS NOOMAL INTEGEACES TO HODATE VEDTICES I		1286
1288	7	č	VARIARIES		1289
1289	8	č			1289
1290	9	Č	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1290
1291	10	3			1291
1292	11		include 'dmsh00.h'		1292
1293	12		include 'dhydmu.h'		1293
1234	14		include 'dmtrl0 b'		1294
1296	15	С			1295
1297	16		REAL DELP(128), WSOP(128), WSOM(128), WSOO(128),		1297
1298	17		. RSTAR(128),CSTAR(128),PMAX(128),PMIN(128)		1298
1299	18		REAL RRIGHT(128), URIGHT(128), VRIGHT(128), PRIGHT(128)		1299
1300	19		REAL KLEFII(126), ULEFII(126), VLEFII(126), PLEFII(126) DEAL ENDEVI(128) ANDEVI(128)		1300
1301	20	r	REAL EIRATT(120), AIRO(1(120)		1302
1303	22	Č	BEGIN LOOP OVER ALL EDGES IN THE DOMAIN		1303
1304	23	C			1304
1305	24		NS1 = 1		1305
1305	25		NSZ = NOFVES(1)		1306
1307	20	r	uu 110 1ms = 1 , mvees		1307
1309	28	C	FFTCH HYDRO QUANTITIES		1300
1310	29	Č			1310
1311	30		DO 120 IS - NS1 , NS2		1311
1312	31	~	KS = IS - NSI + 1		1312
1313	32	Ĺ	10 - 19/ 7 18 1		1313
1315	34		ISC = JS(9, 15)		1314
1316	35	C			1316
1317	36		RRL(KS) = HYDV(ICL, 1)		1317
1318	37		UUL(KS) - HYDV(ICL , 2) * XN(IS) +		1318
1220	35		. HTDV(ICL, 3) * TN(IS) +		1319
1321	40		VV1(KS) = HYDV(ICL, 2) + XP(IS) +		1320
1322	41		. HYDV(ICL.3) * YP(IS) +		1322
1323	42		. HYDV(ICL , 4) * ZP(IS)		1323
1324	43		WHL(KS) = HYDV(ICL, 2) * XT(IS) +		1324
1325	44		HTUV(ICL, 3) * Y(IS) + HTUV(ICL, 3) +		1325
1320	45		PPI(KS) = HYDV(ICL, 5)		1320
1328	47		AAL(KS) = HYDV(ICL, 6)		1328
1329	48		EEL(KS) = HYDV(ICL , 8)		1329
1330	49	•	GGL(KS) = HYDV(ICL, 7)		1330
1331	50	C	/ 24) 100 - / 24) 000		1331
1333	52		IF(IBC , EO , O) THEN		1333
1334	53		UUR(KS) - UUL(KS)		1334
1335	54		ELSE		1335
1336	55		UUR(KS) = - UUL(KS)		1336
1337	50		11 VVD(KS) - VVI(KS)		1220
1330	57		WWR(KS) = WWI(KS)		1339
1340	59		PPR(KS) = PPL(KS)		1340
1341	60		AAR(KS) = AAL(KS)		1341
1342	61		EER(KS) = EEL(KS)		1342
1343	62	r	GGR(KS) = GGL(KS)		1343
1344	03 64	ັ 120	CONTINUE		1345
1346	65	C	00111110L		1346
1347	66	-	DO 130 KS = 1 , NOFVES(INS)		1347
1348	67	C			1348
1349	68	C	THIS SECTION OF CODE SOLVES FOR "PSTAR" AND "USTAR" IN		1349
1350	59 70	с С	THE KIERANN PROBLEM USING NEWTON'S METHOD.		1350
1351	21	U.	WLEFT(KS) = SORT(GGL(KS) * PPL(KS) * RRL(KS))		1352
1353	72		WRIGT(KS) = SQRT(GGR(KS) + PPR(KS) + RRR(KS))		1353
1354	73		WLESQ(KS) = WLEFT(KS) * WLEFT(KS)		1354
1355	74		WRISQ(KS) = WRIGT(KS) * WRIGT(KS)		1355

Thu Jul	1 14:	17:00 1	.993 threed.f	SUBROUTINE RYDRFL	page	20
1356	75	C				1356
1357	76		PMIN(KS) = A	MINI(PPL(KS) , PPR(KS))		1357
1350	78	r	POML(K5) * H	KSM - PMIN(KS)		1358
1360	79	č	FORM THE STARTING	GUESS FOR THE SOLUTION		1359
1361	80	C	·····			1361
1362	81		PSTAR(KS) =	(WLEFT(KS) * PPR(KS) +		1362
1303	82		•	WRIGT(KS) * PPL(KS) -		1363
1365	84		•	(1000 (KS) - 100 (KS) *		1364
1366	85		•	(WLEFT(KS) + WRIGT(KS))		1305
1367	86		PSTAR(KS) =	AMAX1(PSTAR(KS) , PSML(KS))		1367
1368	87	_130	CONTINUE			1368
1309	00 89	L	DO 140 I = 1	THON		1369
1371	90	С		* 10 Yay		1370
1372	91	Č	BEGIN THE NEWTON I	TERATION		1372
1373	92	C	55 454 115 4 114			1373
13/4	93		100 150 KS = 1, NO	FVES(INS)		1374
1376	95		WLEFS(KS)	$(\Lambda S) + 1.) / (2. * GOL(KS))$ = (1. + (FFI * (PSTAP(KS) /		1375
1377	96		•	PPL(KS) - 1.)) * WLESO(KS)		1377
1378	97		WLEFT(KS)	= SQRT(WLEFS(KS'))		1378
1379	98		ZLEFT(KS)	= 2. * WLEFT(KS) * WLEFS(KS) /		1379
1381	39		• • • • • • • • • • • • • • • • • • • •	(WLESQ(KS) + WLEFS(KS))		1380
1382	101			(PSTAR(KS) - PPL(KS)) / WLEFT(KS)		1381
1383	102	150	CONTINUE	(1000 M(100)) = 112(100) MELTI(100)		1383
1384	103	С				1384
1385	104		DO 152 KS = 1 , NO	FVES(INS)		1385
1300	105		UPPK = (66K WRIFS/ KS) .	$(K_{2}) + I_{*}) / (2. * GGR(K_{2}))$		1386
1388	107		· · · · ·	$\frac{PPR(KS) - 1}{P} + WRISO(KS)$		1387
1389	108		WRIGT(KS)	= SQRT(WRIFS(KS))		1389
1390	109		ZRIGT(KS)	• 2. * WRIGT(KS) * WRIFS(KS) /		1390
1391	110		. (24) (172)	(WRISQ(KS) + WRIFS(KS))		1391
1393	112		USIK(KS)	= DUR(KS) + (POP(KS)) / UDICT(KS)		1392
1394	113	152	CONTINUE	(13/1/(K3 / 5 / / / K10/(K3)		1304
1395	114	С				1395
1396	115		DO 160 KS = 1 , NO	EVES(INS)	•	1396
1308	117		UP31(K5)	• ZLEFI(KS) * ZRIGT(KS) * (HSTD/ KS) HSTL(KS) /		1397
1399	118			(ZLEFT(KS) + ZRIGT(KS))		1300
1400	119		PSTAR(KS)	PSTAR(KS) - DPST(KS)		1400
1401	120		PSTAR(KS)	• AMAX1(PSTAR(KS) , PSML(KS))		1401
1402	121	160	CONTINUE			1402
1404	122	140	CONTINUE			1403
1405	124	C				1405
1406	125	C	FORM FINAL SOLUTION	S		1406
1407	126	C	DO 170 KG 1 NO		1	1407
1400	127		CFFI = (GGI / K)	$(x_{2}) + 1$) / (2 * CC1 / VS))]	1408
1410	129		WLEFT(KS) = S	ORT(WLESO(KS) * (1. +	1	1409
1411	130			FFL * (PSTAR(KS) / PPL(KS) - 1.)))		1411
1412	131	170	CONTINUE		1	1412
1413 1 <i>4</i> 14	132	L	DO 172 KS - 1 NOR	WECT INC)	ļ	1413
1415	134		CFFR = (GGR(K))	$(S_1 + 1, 1) / (2, * GGR(KS_1))$	1	1414 1415
1416	135		WRIGT(KS) = S	QRT(WRISQ(KS) * (1. +	ſ	1416
1417	136		C	FFR * (PSTAR(KS) / PPR(KS) - 1.)))	Ţ	1417
1418	137	1/2	CUNTINUE		1	1418
1420	130	L	00 180 KS # 1 NOF	VES(INS)	J	1419
1421	140		USTAR(KS) = (PPL(KS) - PPR(KS) +	1	1471
1422	141	-	····、··- , (WLEFT(KS) * UUL(KS) +	1	422
1423	142			WRIGT(KS) * UUR(KS)) /	Ĵ	1423
1424 1426	143 1 <i>4</i> 4	180	CONTINUE	WLEFI(KS) + WRIGT(KS))	ļ	1424
1426	144	100	CONTINUE]	1425
1427	146	-	DO 190 KS = 1 , NOF	VES(INS)	1	1427
1428	147	C			ĵ	428
1429	148	С	BEGIN PROCEDURE TO	OBTAIN FLUXES FROM REIMANN FORMALISM	1	1429

Thu Jul	1 14:1	7:00	1993 threed.f	SUBROUTINE RYDRFL	page	21	•
1430	149	С	IF(HSTAD(KS)			1430	
1432	151	С	11 (03100 (13)			1431	
1433 1434	152 153		RO(KS) = RR PO(KS) = PP	R(KS) R(KS)		1433 1434	
1435	154		UO(KS) = UU	R(KS)		1435	
1430	155		CU(KS) = SQ WO(KS) = WR	RT(HRGG * PPR(KS) / RRR(KS)) IGT(KS)		1436	-
1438	157		GO(KS) = GG	R(KS)		1438	
1439	159	С	720(K2) = T			1439 1440	
1441 1442	160		ENRGYI(KS)	= EER(KS)		1441	
1443	162		VGDNV(KS) =	VVR(KS)		1442	
1444 1445	163 164	с	WGDNV(KS) *	WWR(KS)		1444	•
1446	165	Å	ELSE			1446	
144/	160 167	C	RO(KS) = RR	L(KS)		1447 1448	
1449	168		PO(KS) = PP	L(KS)		1449	
1450	170		CO(KS) = SQ	L(KS) RT(HRGG * PPL(KS) / RRL(KS))		1450 1451	
1452	171		WO(KS) = WL	EFT(KS)		1452	•
1455	173		ISN(KS) = -	1		1453	
1455 1456	174	C	ENDENT (KS)	- FEI (KS)		1455	
1457	176		ANRGYI (KS)	= AAL(KS)		1450	
1458 1459	177		VGDNV(KS) =	VVL(KS)		1458	_
1460	179		END IF			1459	•
1461 1462	180 181	190 C	CONTINUE			1461	
1463	182	-	DO 200 KS = 1 , NOF	VES(INS)		1463	
1404	183 184		DELP(KS) = PS' $WSOP(KS) = ISI$	FAR(KS) - PO(KS) V(KS) * 110(KS) + WO(KS) / RO(KS)		1464	
1466	185		WSOM(KS) = IS	Y(KS) * UO(KS) + CO(KS)		1466	_
1407	187	200 C	LUNTINUE			1467 1468	
1469 1470	188 189		DO 210 KS = 1 , NOF	VES(INS)		1469	
1471	190		WS00(KS) - WS	DP(KS)		1470	
1472 1473	191 192		ELSE USOD(KS) = US	NM KS)		1472	
1474	193		END IF			1474	-
1475 1476	194 195	210 C	CONTINUE			1475 1476	•
1477	196	<u>,</u>	DO 220 KS = 1 , NOF	/ES(INS)		1477	
1478	197	C	- USE OUTER STATE SOL	ALION		1478 1479	
1480	199	C		N 45 Y		1480	
1482	201		UGDNV(KS) = U)(KS)		1482	
1483 1484	202 203		$\frac{\text{CGDNV}(\text{KS}) = C(0)}{\text{PGDNV}(\text{KS}) = P(0)}$)(KS)		1483	
1485	204	220	CONTINUE			1485	
1486 1487	205 206	C	- COMPLITE STARDED VAL	IFS		1486	
1488	207	č				1488	
1489 1490	208 209		DU 230 KS = 1 , NOF RSTAR(KS) = 1	/ES(INS) / (1, / RO(KS) - DFLP(KS) /		1489 1490	
1491	210			(WO(KS) * WO(KS)))		1491	•
1492 1493	211		USTAR(KS) = S(WSOM(KS) = 1	(KI (GU (KS) * PSTAR(KS) / RSTAR(KS) } N (KS) * USTAR(KS) + CSTAR(KS)		1492 1493	
1494	213	230	CONTINUE			1494	
1495	215	L	DO 240 KS = 1 , NOF	VES(INS)		1495 1496	
1497 1492	216		IF(DELP(KS) . (T. O.) THEN		1497	
1499	218		ELSE = #20	r(NJ)		1499	•
1500	219 220		SPIN(KS) = WS(М(KS)		1500	
1502	221	240	CONTINUE			1502	
1503	227	C				1503	

Thu Jul	1 14:1	17:00	993	threed.f	SUBROUTINE RYDRFL	page	2 2
1504	223		DO 250	KS = 1 , 1	NOFVES(INS)		1504
1505	224	C					1505
1506	225		IF(WSC)O(KS) .	GE.O.) THEN		1506
1507	220	r	11	(SPIN(KS). GE . U.) [HEN		1507
1509	228	C	USE THE	STARRED S	STATE RESULTS		1200
1510	229	č					1510
1511	230				RGDNV(KS) = RSTAR(KS)		1511
1512	231				UGDNV(KS) = USTAR(KS)		1512
1513	232				CGUNV(KS) = CSTAR(KS) PCDNV(KS) = OSTAD(KS)		1513
1515	234		FLS	(F	rubny(ks) = rsiar(ks)		1514
1516	235	С					1516
1517	236	C	EVALUAT	E THE INSI	IDE RAREFACTION WAVE		1517
1518	237	C		MILL VC Y	(CSTAD(VS) + 2		1518
1520	230		LGL	MA(K2) .	ISN(KS) = 2.5		1519
1521	240		•		/ (GO(KS) + 1.)		1520
1522	241		UGE)NV(KS) -	- ISN(KS) * CGDNV(KS)		1522
1523	242		RGE	NV(KS) =	• (CGDNV(KS) / CD(KS)) **		1523
1524	243			Mn// VC \	(2, / (60(KS) - 1,)) + RO(KS)		1524
1525	244		Pul	MA(Y2) .	COUNTA(KS) ~ COUNTA(KS) ~ KOUNTA(KS) /		1525
1527	246	С	•		do((3)		1527
1528	247	-	END) IF			1528
1529	248	С					1529
1530	249	250	END IF				1530
1531	250	۲ <u>50</u>	CONTINU	IE .			1531
1533	252	C	DO 260	KS = 1 . M	IOFVES(INS)		1532
1534	253		IS	= KS + NSI	-1		1534
1535	254		RR	IS) = RG	DNV(KS)		1535
1536	255	250	PR(IS) = PG	DNV(KS)		1536
1538	257	200	CONTINU	l£			153/
1539	258	C	NS1 - N	IS2 + 1			1539
1540	259		NS2 - H	IS2 + NOFVE	(S(INS + 1)		1540
1541	260	110	CONTINU	IE			1541
1542	261	С	octuby				1542
1343	202		END				1543
1545	264	С	CHU				1545
Thu Jul	1 14:1	7:00 1	993	threed.f	SUBROUTINE KYDRFL		
1546	1		SHADOUT	THE KYNDEL	,		1646
1547	ż	С	JUDRUUI	THE KIDKEL	•		1540
1548	3	C					1548
1549	4	ç					1549
1550	5	C C	KYDRFL	ISAZ DI	MENSIONAL RIEMANN SULVER THAT INTEGRATES I		1550
1552	7	č		VARIARIES	NOUS HUMINE INTERFACES TO UPDATE VERTICES I		1552
1553	8	Č			Î		1553
1554	9	Ç		*********			1554
1555	10	С	J	1.1			1555
1000	11		include	ComSi I disur	100.n Mail b'		1557
1558	13		include	'dnbs	m0.h'		1558
1559	14		include	'dmtr	10.h'		1559
1560	15	C					1560
1561	16		REAL DE	LP(128),WS	OP(128), WSOM(128), WSOO(128),		1561
1563	1/		. RS	TAK(128),C	STAK(128), MAX(128), MIN(128) HRTCHT/128) VDTCHT/128) DDTCHT/128)		1562
1564	19		REAL RI	FFTT(128).	ULEFTT(128), VI FFTT(128), PI FFTT(128)		1564
1565	20		INTEGER	NOFVEP(12	8)		1565
1566	21	C					1566
1567	22	C	FETCH H	YDRO QUANT	ITIES		1567
1560	25	ι	00 120	WS = 1 N	00TC1		1200
1570	25		120	= [JKPRT(KS)		1570
1571	26		ĨČL	= JS(7 ,	1S)		1571
1572	27		IBC	- JS(9 ,	IS)		1572
1573	28	C		1 40 1 1			1573
15/4	29		KKĽ	(K2) = H	TUAL TOT ' I		12/4

Thu Jul	1 14:1	7:00	1993	threed.f	SUBROUTINE KYDRFL	page	23
1575	30			UUL(KS) - H	YDV(ICL, 2) * XN(IS) +		1575
1576	31				IYDV(ICL . 3) * YN(IS) +		1576
1577	32			ŀ	YDV(ICL, 4) + ZN(IS)		1577
1578	33			VVL(KS) = H	(YDV(ICL , 2) * XP(IS) +		1578
1579	34		•		IYDV(ICL, 3) * YP(IS) +		1579
1580	35		•	ł	IYDV(ICL , 4) * ZP(IS)		1580
1581	36			WWL(KS) = H	YDV(ICL, 2) * XT(IS) +		1581
1582	37		•	ł	YDV(ICL, 3) * YT(IS) +		1582
1583	38		•	+	(YDV(ICL , 4) * ZT(IS)		1583
1584	39			PPL(KS) = H	(YDV(ICL, 5)		1584
1585	40			AAL(KS) = 1	(YDV(ICL, 6)		1585
1580	41			EEL(KS) = f	(YDV(ILL.8)		1586
150/	42	r		GGL(KS) = r	TOV(ILL, 7)		158/
1500	43	L		000/ 45) - 0	(24) 100		1000
1505	44			TEL THE FO	(A) THEN		1503
1591	46			IIIIR(KS) = I			1591
1592	47			ELSE			1592
1593	48			UUR(KS)	· UUL(KS)		1593
1594	49			ENDIF	· · ·		1594
1595	50			VVR(KS) = V	IVL(KS)		1595
1596	51			WWR(KS) = H	WL(KS)		1 596
1597	52			PPR(KS) = P	PPL(KS)		1597
1598	53			AAR(KS) = A	VAL(KS)		1598
1599	54			EER(KS) = E			1599
1600	55	~		GGR(KS) = 0	JGL(KS)		1600
1001	50	L		TTME			1001
1602	5/	121	J CON	TINUE			1602
1604	00	L	00	130 45 - 1 4			1604
1605	60	r	00	100 KJ - 1 / 1			1605
1606	61	č	THI	S SECTION OF C	ODE SOLVES FOR "PSTAR" AND "USTAR" IN		1606
1607	62	č	THE	RIEMANN PROBL	EM USING NEWTON'S METHOD.		1607
1608	63	č					1608
1609	64	-		WLEFT(KS) -	• SORT(GGL(KS) * PPL(KS) * RRL(KS))		1609
1610	65			WRIGT(KS) -	• SORT(GGR(KS) * PPR(KS) * RRR(KS))		1610
1611	66			WLESQ(KS) -	• WLEFT(KS`) * WLEFT(KS)		1611
1612	67			WRISQ(KS) -	• WRIGT(KS) * WRIGT(KS)		1612
1613	68	С					1613
1614	69			PMIN(KS) =	AMIN1(PPL(KS) , PPR(KS))		1614
1615	70	~		PSML(KS) =	HRSM * PMIN(KS)		1015
1010	/1	č	505	M THE STADTING			1010
1610	72	с	FUR	A THE STARTING	GOESS FOR THE SUPERIOR		1619
1610	75	ι.		PSTAR(KS)	. (WIFFT(KS) + PDD(KS) +		1610
1620	75			13mm(K3) -	WRIGT(KS) * PPI(KS) $-$		1620
1621	76		•		WLEFT(KS) * WRIGT(KS) *		1621
1622	77				(UUR(KS) - UUL(KS))) /		1622
1623	78		•		(WLEFT(KS) + WRIGT(KS))		1623
1624	79			PSTAR(KS) -	AMAX1(PSTAR(KS), PSML(KS))		1624
1625	80	130) CON	TINUE			1625
1626	81	C					1626
1627	82	•		DO 140 I = 1	, IHRN		1627
1628	83	ç	000		175947100		1628
1629	84	ί	BEG	IN THE NEWTON	ITERATION		1029
1030	00	L	00	150 45 - 1 - 1			1631
1622	00		00	100 K3 = 1 , 0	$\frac{1}{1} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} \right)$		1632
1633	89				l = (1 + CFI + (DCTAD) KC) /		1633
1634	Â			ALLI 3(1.3)	PPI(KS) = 1, 1, 1 + WFSO(KS)		1634
1635	90		•	WLEFT(KS)	= SORT(WLEFS(KS))		1635
1636	91			ZLEFT(KS)	= 2. * WLEFT(KS) * WLEFS(KS) /		1636
1637	92			· · · · · · · · · · · · · · · · · · ·	(WLESQ(KS) + WLEFS(KS))		1637
1638	93			USTL(KS)	= UUL(KS) -		1638
1639	94		•		(PSTAR(KS) - PPL(KS)) / WLEFT(KS)		1639
1640	95	150) CON	TINUE			1640
1641	96	С					1641
1642	97		00	152 KS = 1, M	17KILL 19/ 45 \ . \ / / 2 + 000/ 45 \ .		1042
1045	98			LITK = (60 UNTEC/ VC)	m(n) + i + j + (2 + "bbK(K))		1643
1044	39			MHIL2(K2)	I = (1. + UTH - (PSNAK(KS) / V = (1. + UTH - (PSNAK(KS) /)))))))))))))))))		1644
1045	101		•	WDICT/ VS)	<pre></pre>		1646
1647	102			7DIGT (KS)	/ = JUNIE WRIGTE KS / / WRIFSE KS / /		1647
1648	103			201011 (0.3.)	f WRISO(KS) + WRIFS(KS))		1648
	144		-		f mired in the mire of the total		

Thu Jul	1 14:	17:00	1993	threed, f	SUBROUTINE KYDRFL	page	24
1649 1650 1651 1652	104 105 106	152	CO	USTR(KS) (Itinue	UUR(KS) + (PSTAR(KS) - PPR(KS)) / WRIGT(KS)		1649 1650 1651
1653 1654 1655	108 109 110	L	00	160 KS = 1 . NPR DPST(KS) =	ITCL ZLEFT(KS) * ZRIGT(KS) * USTR(KS) - USTL(KS)) /		1652 1653 1654 1655
1656 1657 1658 1659	112 113 114	_ 16	0	PSTAR(KS) = PSTAR(KS) = CONTINUE	ZLEFT(KS) + ZRIGT(KS)) PSTAR(KS) - DPST(KS) AMAXI(PSTAR(KS) , PSML(KS))		1656 1657 1658 1659
1661 1662	115	ີ 14	0	CONTINUE			1660 1661
1663 1664	118 119	č	- FOF	M FINAL SOLUTION	\$		1663
1665 1666	120 121		D O	170 KS = 1 , NPR CFFL = (GGI (K	TCL S) + 1,) / (2, * GGL (KS))		1665
1667 1668	122 123			WLEFT(KS) = S C	QRT(WLESQ(KS) * (1. + FFL * (PSTAR(KS) / PPL(KS) - 1.))		1667
1669 1670	124 125	170 C	CON	TINUE			1669 1670
1671 1672	126 127		DO	172 KS = 1, NPR CFFR = (GGR(K	TCL S) + 1.) / (2. * GGR(KS))		1671 1672
1673 1674	128	. 70	•	WRIGT(KS) = S C	QRT(WRISQ(KS) * (1. + FFR * (PSTAR(KS) / PPR(KS) - 1.)))		1673 1674
1675	130	c 1/2	CON	11NUE			1675 1676
1678	132		00	USTAR(KS) = (PPL(KS) - PPR(KS) +		1677 1678
1680	135		•	,	WRIGT(KS) * UUL(KS) + WRIGT(KS) * UUR(KS)) /		1679 1680
1682	137	_1 80	CON	TINUE	WLEFI(KS) + WKIGI(KS)		1681 1682
1684	139 140	r r	D0	190 KS = 1 , NPR	TCL		1683 1684
1686 1687	141	Č	- 8EG	IN PROCEDURE TO	OBTAIN FLUXES FROM REIMANN FORMALISM		1685
1688 1689	143 144	c		IF(USTAR(KS)	. LE . 0.0) THEN		1688
1690 1691	145 146	-	٠	RO(KS) = RRI PO(KS) = PP	R(KS) R(KS)		1690
1692 1693	147 148			UO(KS) = UU CO(KS) = SO	R(KS) RT(HRGG * PPR(KS) / RRR(KS))		1692
1694 1695	149 150			WO(KS) = WR GO(KS) = GG	IGT(KS) R(KS)		1694 1695
1696 1697	151 152	С		ISN(KS) = 1			1696 1697
1698 1699	153 154			VGDNV(KS) = WGDNV(KS) =	VVR(KS) WWR(KS)		1698 1699
1700	155 156	C		ELSE			1700 1701
1702	157	C		RO(KS) = RRI	.(KS)		1702 1703
1704	159			PO(KS) = PPL UO(KS) = UUI	.(KS) .(KS)		1704 1705
1707	162			WO(KS) = SUH WO(KS) = HLE	CI(HRGG * PPL(KS) / RRL(KS)) (FT(KS))		1706
1709	165 165	r		ISN(KS) = -	-(KS) 1		1708
1711	165	C.		VGDNV(KS) =	VVL(KS)		1710
1713	168 169	100	CUN	END IF	ππ ε(NJ)		1713
1715	170 171	C	D0 2	200 KS = 1 N001	сı	:	1715
1717 1718	172 173		50 (DELP(KS) = PST WSOP(KS) = ISN	AR(KS) - PO(KS)	1	1717
1719 1720	174 175	200	C01	WSOM(KS) = ISN VTINUE	I KS) + UO(KS) + CO(KS)		1719
1721 1722	176 177	С	D0 2	10 KS = 1 , NPRT	CL	1	1721 1722

6

Thu Jul	1 14:1	7:00	1993	threed.f	SUBROUTINE KYDRFL pa	age
1723	178			IFC DELPC KS), GT , Q,) THEN	
1724	179			WS00(KS)	- WSOP(KS)	
1725	180		1	ELSE		
1726	181			WS00(KS)	• WSOM(KS)	
1727	182			END IF		
1728	183	210	0 00	NITINUE		
1729	104	ι	50	220 85 - 1	NOTCI	
1730	105	c	00	220 K3 = 1 ,	NFRICL	
1732	187	C	- 115	F OUTER STATE	SOLUTION	
1733	188	č				
1734	189	•		PGDNV(KS)	= PO(KS)	
1735	190			UGDNV(KS)	= UQ(KS)	
1736	191			CGDNV(KS)	= CO(KS)	
1737	192			RGDNV(KS)	- RO(KS)	
1/38	193	220	CO	NIINUE		
1739	194	с с		WONTE STADDED	VALUES	
1741	195	č		WOIL STARLO		
1742	197	v	Đ0	230 KS = 1 .	NPRTCL	
1743	198			RSTAR(KS)	= 1, / (1. / RO(KS) - DELP(KS) /	
1744	199		•		(WO(KS) * WO(KS)))	
1745	200			CSTAR(KS)	= SQRT(GO(KS) * PSTAR(KS) / RSTAR(KS))	
1746	201	220		WSOM(KS)	= ISN(KS) * USTAR(KS) + CSTAR(KS)	
1747	202	230		NIINUE		
1740	203	L.	nn	240 KS - 1	NODTCI	
1750	205		00	TEC DELPC KS), GT , O,) THEN	
1751	206			SPIN(KS)	WSOP(KS)	
1752	207			ELSE		
1753	208			SPIN(KS) -	• WSOM(KS)	
1754	209			END IF		
1/55	210	240		NTINUE		
1757	211	Ŀ	00	250 45 - 1	NODICI	
1757	212	r	50	230 83 = 1 ,	HFRICL	
1759	214	U	IF	(WS00(KS) .	. GE . O.) THEN	
1760	215		••	IF(SPIN(K	S) . GE . O.) THEN	
1761	215	C				
1762	217	Ç	US	E THE STARRED	STATE RESULTS	
1763	218	C				
1766	219				KGUNV(KS) = KSTAR(KS) HCDRV(KS) = HSTAR(KS)	
1766	220				CCDNV(KS) - CSTAR(KS)	
1767	222				PGDNV(KS) = PSTAR(KS)	
1768	223			ELSE		
1769	224	С				
1770	225	Ç	EV	ALUATE THE INS	SIDE RAREFACTION WAVE	
1/71	225	C		CCD804 45 \	- / CSTAD(#C) # 2	
1773	229			CODMA(K2)	= (LJHAK(TO) " 2 = (LJHAK(TO) " 2 ISAT (CT) ALTON (CT) + (CT) ALTON (CT) + (CT	
1774	220		•		/ (GO(KS) + 1.)	
1775	230		•	UGDNV(KS)	- ISN(KS) * CGDNV(KS)	
1776	231			RGDNV(KS)	= (CGDNV(KS) / CO(KS)) **	
1777	232		•		(2. / (GO(KS) - 1.)) * RO(KS)	
1778	233			PGDNV(KS)	= CGDNV(KS) * CGDNV(KS) * RGDNV(KS) /	
1779	234	c	•		GU(KS)	
1781	233	L.		END IF		
1782	237	C		LIND IF		
1783	238		EN	D IF		
1784	239	250) CO	NTINUE		
1785	240	С				
1786	241		DO	260 KS = 1 ,	NPRICL	
1787	242			RR(KS) = I	KPNNA K2)	
1780	245	260) co	PR(K5) = 1	rounv(K3)	
1790	244	- 200 C		TRUE		
1791	246	•	RF	TURN		
1792	247		EN	D		
1793	248	C				

Thu Jul	1 14:	:17:00	1993	threed.f		SUBROUTI	NE HYDRMN		page	26
1794	1		SUBROUT	INE HYDRMN						1794
1795	2	С								1795
1796	3	C				**======		1		1796
1797	4	ç						1		1797
1798	5	ç	HYDRMN	IS A 2 DIME	NSIUNA	L RIEMANN SULVER	THAT CALCULATES			1798
1/99	07	L C		IT IS CONFI	CUDED	MAL INTERFACES. TO WODE IN FITUED	TWO OR THREE	1		1799
1801	8	č		DIMENSIONAL	SITUA	TIONS, THE HYDROD	YNAMIC QUANTITIF	s i		1801
1802	ğ	č		CAN BE SIDE	OR VE	RTEX CENTERED FOR	2-D AND CELL OR	i		1802
1803	10	Č		VERTEX CENT	ERED F	OR 3-D. THE SPECI	FIC USE IS BASED	Î		1803
1804	11	C		ON THE CONT	ENTS O	F "OPTHYD".		1		1804
1805	12	ç						I		1805
1805	13	C						1		1806
1909/	14	r	*	*-******			********	1		1808
1809	16	č	THE US	E OF THE HYD	RO VAR	IABLES IS AS FOLL	OWS:			1809
1810	17	Č								1810
1811	18	С	++++++	++++++++++++	·++++++	+++++++++++++++++++++++++++++++++++++++	*****			1811
1812	19	C	+				+			1812
1813	20	ç	+	HYDV(IV,IH)	CONTA	INS VERTEX CENTER	ED HYDRO- +			1813
1014	21	L C	+	DINAMIC QUA	101111E	2. 11 12 02ED M11	H ALL CASES. +			1014
1816	23	č	+	HYDE (TH. IE)	CONTA	INS EDGE CENTER	FD HYDRO. +			1816
1817	24	č	+	DYNAMIC FLU	IX QUAN	TITIES WITH ORIEN	TATION +			1817
1818	25	Č	+	DETERMINED	BY THE	"SIDE" "VERTEX"	OR "CELL " +			1818
1819	26	Ç	+	OPTIONS . I	TISU	SED FOR THE CASES	WHERE +			1819
1820	27	Ç	+	"OPTHYD" =	"SIDE	2D" 2-D SIDE CEN	TERED +			1820
1821	28	Č	+		"VERIE	X20" Z-U VERIEX C V30" 3 0 VERIEX C				1021
1922	30	č	+	-	VERIE	AJU J-U VERIER C	ENTERED +			1823
1824	31	č	+	HYDC(IC.IH)	CONTA	INS CELL CENTER	ED HYDRO- +			1824
1825	32	Ċ	+	DYNAMIC QUA	NTITIE	S. IT IS USED FOR	THE CASE +			1825
1826	33	C	+	"OPTHYD" =	"CELL	3D* 3-D CELL C	ENTERED +			1826
1827	34	Ç	+				+			1827
1828	35	C C	+	T 1/ 1/	EBTEN	TMNEY	+			1020
1830	30	č	+	2 - 21	TOF	TNDEX	+			1830
1831	38	č	+	IE - E	DGE	INDEX	+			1831
1832	39	Č	+	IC - C	ELL	INDEX	+			1832
1833	40	С	+	IH - H	IYDRO	INDEX	+			1833
1834	41	ç	+			66468 9 74 - 14 - 44444	+			1834
1035	42	L r	+	1	. = KU / _ HY	UENSIIT IN *****	*****			1033
1030	43	č	+	3		Y VELOCITY *****	***** +			1837
1838	45	ē	+	4	- UZ	***********	****** +			1838
1839	46	С	+	5	i = PO	PRESSURE IN ****	****** +			1839
1840	47	Ç	+	6) = EN	ENERGY IN ****	***** +			1840
1841	48	Ċ	+				+			1041
1944	49	ř	******	*********	*****	******	*********			1843
1844	51	Ū	include	dmsh00	J.h'					1844
1845	52		include	dhydm0).h'					1845
1846	53		include	'dphsm0	/ . h*					1846
1847	54	~	include	dmtr10).h'					184/
1040	22	L	QFAI DD	N(128) IIDN/1	28) VD	N(128) WON(128) F	PN(128)			1840
1850	57			N(128),XS2S(128).X	SAR(128)	ra(120),			1850
1851	58		REAL HY	D'JR(128), HYD	VU(128), HYDVV(128), HYDV	W(128),			1851
1852	59		. HY	DVP(128)	•					1852
1853	60		INTEGER	NDUMMY1,NDU	IMMY2, N	DUMMY3				1853
1854	61		INTEGER	(1)00MMY(4),V	UATA(2),FDATA(2)				1004
1000	20 52		CHADART	CK"JI VLADEL FR*32 FIARFI	•					1856
1857	64		CHARACT	ER*6 CTRI	TET					1857
1858	65		INTEGER	1 SURF (40000	10]					1858
1859	66	С		• • • • • •						1859
1860	67	_	REAL CD	1(4),CD2(4)						1860
1861	68	C		_1						1001
1002	09 70			=1 -A						1863
1864	70		NDUMMY3	=0						1864
1865	72		IDUMMY (1) = 0						1865
1866	73		IDUMMY (2) = 0						1866
1867	74		LDUMMY (3) = 0						1867

•

.

.

.

•

0

(

1

Thu Jul	1 14:17:0) 1993 threed.f	SUBROUT	INE HYDRMN	page	27
1868	75	IDUMMY(4) = 0				1868
1009	/0	VOATA(1) = 1				1869
10/0	70	VUAIA(2) = 1				1870
1872	70	FUR(A(1) = 1 $FDATA(2) = 4$				1871
1873	80	VIARFI - Dressure	new / m##21			18/2
1874	81	FLABEL=' tets fac	, new / m c			18/3
1875	82	CTRI=' tri '				10/4
1876	83	CTET=' tet '				1876
1877	84 C	TLIMIT=TT				1877
1878	85	TLIMIT-30.				1878
1879	86 C					1879
1860	8/	IJKNUM = 0				1880
1982	00 90	IF(ILUMP . LV . DEVIND 10	1) THEN			1881
1883	90	REWIND 26				1882
1884		READ (26.*) LJKN	IM			1003
1885	92	DO $KKJ = 1$, IJK	NUM			1995
1886	93	READ (26,*) RO, (RRN(IK), IK=1, NPRTCL)			1886
1887	94	WRITE (10,*) RO,	(RRN(IK), IK=1, NPRTCL)			1887
1888	95	END DO				1888
1889	96	END IF	****			1889
1090	97	10 120 Ji = 1, n				1890
1892	1 00	TL(01-01-2) 1503=	0			1891
1893	100	DO KK = 1.5				1092
1894	101	DO $IV = 1$, NV				1894
1895	102	HNUM(IV , KK)	- 0.			1895
1895	103	END DO				1896
1997	104					1897
1899	106 C	00 140 111 - 1 ,	IUUIP			1898
1900	107 C -	SELECT ORDER OF I	TEGRATION	******		1900
1901	1 08 C					1901
1902	109	IF(IOPORD.EQ.1)TH	EN			1902
1903	110	CALL FIRST				1903
1904	111	CALL CRADNT	() THEN			1904
1906	113	ENDIF				1905
1907	114 C					1907
1908	115	DTT = 1.E24				1908
1909	116 C					1909
1910	118 C	CALL MIDKPL				1910
1912	119	DTT = DTT + .4				1911
1913	120	TT = TT + DTT				1913
1914	121	PRINT *, JT, ITT, DT	T, TT, NS			1914
1915	122 C					1915
1910	123	NC1 = 1				1916
1917	124	$\frac{1}{10} \frac{1}{10} \frac$	WEED			1917
1919	126 C					1010
1920	127	DO 150 IC = NC1 ,	NC2			1920
1921	128	KC = IC - NC1	+ 1			1921
1922	129	RRR(KC) = H	DV(IC, 1)			1922
1923	131	VVP(KC) = H	UV(10,2)			1923
1925	132	WWR(KC) = H	DV(IC . 4)			1925
1926	133	PPR(KC) - H	ΌV(IC , 5)			1926
1927	134	AAR(KC) = H	'DV(IC,6)			1927
1928	12°C					1928
1930	¥ -	KKL(KC) = #1	DFLX(IC, I)			1030
1931		VVL(KC) = H	DFLX(IC 3)			1931
1932	j	WWL(KC) - HI	DFLX(IC, 4)			1932
1933	۰)	PPL(KC) = HY	DFLX(IC , 5)			1933
1934	÷1	AAL(KC) = HY	DFLX(IC,6)			1934
1935	12 U	VCDC/ VC 1	() ()			1935
1930	143 144	X3230 ND } # /	υ(ζ , ΙΟ) ΛΟΙΜ(ΙΓ)			1037
1938	145 15) CONTINUE	world to 1			1938
1939	146 C					1939
1940	147	DO 170 KC = 1 , N	OFVEC(INC)			1940
1941	148	IC = KC + NC1	- 1			1941

Thu Jul	1 14:1	7:00	1993	threed.f	SUBROUTINE HYDRMN	page 28
1942	149		RRN(KC) = $RRR($		1942
1943	150		URN(VRN(K() = RRR(K)	(KC) * WVP(KC)	1943
1945	152		WRN(KC) = RRR	(KC) * WWR(KC)	1944
1946	153		EPN(KC) = HYDV	V(IC, 8) + .5 * RRR(KC) *	1945
1947	154		•		(UUR(KC) * UUR(KC) +	1947
1940	155		•		VVK(KL) * VVR(KC) + WWD(KC) * WWD(KC))	1948
1950	157		ARN(KC) = RRR((KC) * AAR(KC)	1949
1951	158	170	CONTI	NUE		1950
1952	159	Ç	- COMPUT	E THE SOURC	CE TERM FOR AXI SYMMETRY FLOW PROBLEM	1952
1953	160	с	- IF INC	FLUW IS NO	JI AXI SYMMETRY , COMMENT LOOP 160	1953
1955	162	•	DO 19) KC = 1 .	NOFVEC(INC)	1954
1956	163		IC	= KC + NC1	1 - 1	1956
1957	164	c	DTA =	DTT * XSAR	R(KC)	1957
1959	165	L.	RRII	- DTA * RRI	(KC)	1958
1960	167		UULL .	DTA * UUL	L(KC)	1959
1961	168		VVLL ·	• DTA * VVL	L(KC)	1961
1902	109		WWLL *	• UIA = WWL (^) _ DON(L(KC)	1962
1964	171	С		(c) - KRAL		1963
1965	172		URN(I	(C) = URN((KC) - UULL	1965
1966	173	С		(A) 1000		1966
1967	1/4	r	VKN(I	(C) = VKN((KC) - VVLL	1967
1969	176	v	WRN(H	(C) = WRN((KC) - WWEL	1968
1970	177	C				1970
1971	1/8		FDN/ N	• UTA = PPL (C) _ EDN/		1971
1973	180	С	Lint	(c) - Lra(1972
1974	181		AALL -	DTA * AAL	.(KC)	1974
1975	182	c	ARN(H	(C) = ARN((KC) – AALL	1975
1977	184	190	CONTIN	IUE		1976
1978	185	C				1978
1979	185		DO 195	i IC = NC1	, NC2	1979
1981	188		HOUM	- IL - NLI =	1. / RRN(KC)	1980 1981
982	189		HYDV (IC, 1) =	RRN(KC)	1982
1983 1084	190		HYDV (1(1, 2) = 1(1, 2)	URN(KC) * HOUM	1983
1985	192		HYDV	IC (4) =	WRN(KC) * HDUM	1964
1986	193		HYDV (IC , 6) =	ARN(KC) * HDUM	1986
1987	194	195	CONTIN	UE		1987
1989	195	•	DO 200	IC = NC1	. NC2	1988
1990	197		KC	= IC - NC1	+ 1	1990
1991	198		HYDV (IC,8)=	(EPN(KC)5 * HYDV(IC , 1) *	1991
1993	200		•		$\frac{110}{10} \left(\frac{10}{10}, \frac{2}{2} \right)^{-1} \frac{110}{10} \left(\frac{10}{10}, \frac{2}{2} \right)^{+}$	1992
1994	201		•		HYDV(IC, 4) * HYDV(IC, 4)))	1994
1995 1006	202	200	CONTIN	UE		1995
1997	203	C	IF(IEO	S. EO. 1) THEN	1996
1998	205		TÙIMIT	.9	,	1998
1999	206		ITER =	6 	n	1999
2000	208		KC	= IC - NC1	د + 1	2000
2002	209	C			-	2002
2003 2004	210		NITER =	0 10 10 4 1		2003
2005	212	С	11(110	•(IC + O)	, . L< j INCM	2004
2006	213		OST = H	YDV(IC,	1) * GPERCC	2006
2007	214		VOL = W	MA * (1	- DST / FSA) / DST / XGA	2007
2009	215	С		HIDV(IC ,	O / / HIDV(IC , I) = WMA / RGAS	2008
2010	217		IYY = (EMEO - EME	EOA(3)) / RANGEA + 1	2010
2011	218	r	IYY = M	AXO(1,M)	IND(IYY , 47))	2011
2013	220	•	K = IYY	+ 2		2012
2014	221		IYY - I	YY		2014
2015	222		. + INT(AMAX1 (EME	EU - EMEUA(K) , O.) / DYA(K))	2015

Thu Jul	1 14:17:00	1993 threed.f	SUBROUTINE HYDRMN	page	29
2016	223	INT(AMAXI(EMEOA(K + 1) - EMEO , 0.) / DYA(K))		2016
2017	224	IYY = MAXO(1,	MINO(IYY , 47))		2017
2018	2 25 C				2018
2019	226	K1 = IYY + 2			2019
2020	227	K2 = K1 + 1			2020
2021	228	RT = (EMEO - E	MEOA(KI)) / (EMEOA(K2) - EMEOA(KI))		2021
2022	229	I = IA(KL) + CUMA(KL)	100. * K1		2022
2023	230	CVM = CVMA(K1) + RI * (CVMA(R2) - CVMA(R1))		2023
2024	232 C	EK3 # 0.			2024
2025	232 0	P = PCAS + T /	VOI / CPERCC		2025
2020	234	RGAMM1 = CVM			2020
2028	235	HYDV(IC, 7)	= 1. / RGAMM1 + 1.		2028
2029	236	HYDV(IC.5)	= P		2029
2030	237 C				2030
2031	238	ELSE			2031
2032	2 39 C				2032
2033	240	DST = HYDV(IC	, 1) * GPERCC		2033
2034	241	VOL = WMX * (1	. – DST / FSX) / DST / XGX		2034
2035	242	EMEO = HYDV(IC	, 8) / HYDV(IC , 1) * WMX / RGAS		2035
2030	243 L				2030
2037	244	ITT = (EFEU - ITV - MAYO(1))	EFEUR()) / KANGER + 1 NIND(IVV 47))		2037
2030	243	111 = POOU(1 ,	HINO(111, 47))		2030
2039	240 0	K = IYY + 2			2040
2041	248	IYY = IYY			2041
2042	249	+ INT(AMAX1(EMEO - EMEOX(K) , 0,) / DYX(K))		2042
2043	250	INT(AMAX1(EMEOX(K + 1) - EMEO . 0.) / DYX(K))		2043
2044	251	IYY = MAXO(1,	MINO(IYY, 47))		2044
2045	2 52 C				2045
2046	253	K1 = IYY + 2			2046
2047	254	$K_2 = K_1 + 1$			2047
2048	255	RT = (EMEO - E	MEDX(K1)) / (EMEOX(K2) - EMEOX(K1))		2048
2049	250	I = IX(KI) + COMMENT	100. * Ki		2049
2050	23/	CAM = CAWY(VI	j + ki = (LVMX(KZ) - LVMX(KI))		2030
2031	250 0	EKS = 0.			2051
2052	260 10	CONTINUE			2053
2054	261	P = RGAS * T /	VOL / GPERCC		2054
2055	262	RGANM1 = CVM			2055
2056	2 63 C				2056
2057	264	X = COVX / VOL	/ ((T + THETAX) ** ALFAX)		2057
2058	265	Z = X * EXP(BE	TAX + X)		2058
2059	266	X = 1. + BETAX	* X		2059
2060	267	RI = ALFAX * 1	/ (I + IKEIAX)		2000
2001	200	FK2 = FK2 + K1	• 2 • 1		2062
2002	270	TE (TTED EO	NITED) CO TO 20		2063
2005	271 6	II (IICK ICC)	MILK) 00 10 20		2064
2065	272	CVM = CVM * XGX	+ SCVX		2065
2066	273	* + R	T * Z * (2 RT / ALFAX - RT * X)		2066
2067	274	T = T - AMIN1(ERS / CVM , TLIMIT * T)		2067
2068	275 C		_		2068
2069	275	NITER = NITER +	1		2069
2070	277 C	0T 0 01 + T			2070
20/1	270	$KI = U \cdot U I = I$			2071
2072	2/3	NT - MINU (NI	(0)		2072
2074	281	K1 = MAXO (K1)	3)		2074
2075	282	$K_2 = K_1 + 1$	5)		2075
2076	283	RT = RT - K1			2076
2077	284	CVM = CVMX(K1)	+ RT * (CVMX(K2) - CVMX(K1))		2077
2078	285	ERS = EMEOX(K1) + RT * (EMEOX(K2) - EMEOX(K1))		2078
2079	286	ERS = ERS - EME	0		2079
2080	287 C				2080
2081	288	GO TO 10			2081
2082	289 C	CONTINUE			2002
2003	290 20 201		7)		2003
2004	291	RGAMM1 - / DCAM	<i>⊾ ,</i> M1 +		2085
2003	293	* TQ = 100000 * TQ *	7 * (2, - RT / ALFAX - RT * X)) / (1, + 7)		2085
2087	294	X = X * 7 / []	+Z		2087
2088	295	RGAMM1 - RGAMM1	/ (((1 RT * X) ** 2 + X * RGAMM1)		2088
2089	296	ERS = ERS / EME	0		2089

Thu Jul	1 14:1	7:00	1993 th reed. f	SUBROUTINE HYDRMN pa	ige 30
2090 2091	297 298		HYDV(IC , 7) =	1. / RGAMM1 + 1.	2090
2092	299		END IF	r	2091
2093	300	c	END DO		2093
2094	302	L	ELSE		2094
2096	303	С		_	2095
2097 2008	304		DO IC = NC1, NC		2097
2099	306		END DO	mbv(10, 0) ~ (Htuv(10, 7) - 1.)	2098
2100	307	•	END IF		2100
2101	308 309	C	NC1 + NC2 + 1		2101
2103	310		NC2 - NC2 + NOFVE	C(INC + 1)	2102
2104	311	_ 110	CONTINUE		2104
2105	313	Ç	IF(NPRTCL . NE	. 0) CALL KYDRFL	2105
2107	314		IJKNUM = IJKNUM	+ 1	2107
2108	315 316	140	WRITE(10,*) (T,() CONTINUE	PR(KKJJ),KKJJ=1,NPRTCL)	2108
2110	317	C			2109
2111	318		PMAX = -1000000		2111
2113	320		IV1 = JC(1.1)		2112
2114	321		IV2 = JC(2, 1)		2114
2115	322 323		IV3 = JC(3, 10) IV4 = JC(4, 10)		2115
2117	324		HNUMM = HYDV(I	Č, 5)	2110
2118	325		HNUMN = XC(4),		2118
2120	320		HNUM(IV1 , 5)	= HNUM(IV1,5) + HNUMM = HNUM(IV1,1) + HNUMN	2119
2121	328		HNUM(IV2 , 5)	- HNUM(IV2 , 5) + HNUMM * HNUMN	2121
2122	329 330		HNUM(IV2,1) HNUM(IV3 5)	= HNUM(IV2 , 1) + HNUMN = HNUM(IV3 , 5) + HNUMM * HNUMM	2122
2124	331		HNUM(1V3 , 1)	= HNUM(IV3,1) + HNUMN	2123
2125	332		HNUM(IV4,5)	= HNUM(IV4 , 5) + HNUMM * HNUMN	2125
2120	334	415	CONTINUE	= nnun(1V4 , 1) + MNUNN	2126
2128	335		DO IV = 1 , NV		2128
2129	336 337		HNUM(IV,5) FNDDO	• HNUM(IV,5) / HNUM(IV,1)	2129
2131	338		DO IV - 1 , NV		2130
2132	339		IF(HNUM(IV , S	5).GT. PMAX) PMAX - HNUM(IV , 5)	2132
2134	341		PRINT * , PMAX		2133
2135	342	C			2135
2130	343 344		ISNS = 0 DO 300 IS = 1	24	2136
2138	345		IF(JS(9,IS).	Q.6.AND.XS(2,IS).LT.1.9649) THEN	2138
2139 2140	346 347		ISNS=ISNS+1	ic and the second se	2139
2141	348		END IF	5	2140
2142	349	300	CONTINUE		2142
2145	351	С	print*,1545		2143
2145	352	Ç	STEVE FORMAT		2145
2140	353 354	L	00.312 IV = 1.	NV	2145
2148	355		WRITE(17,1001)	V. (XV(KK,IV),KK=1,3)	2148
2149	356 357	1001	FORMAT('n,',15,'	,',2(F10.5,','),F10.5)	2149
2151	358	Č	CONTINUE		2150
2152	359		DO 322 IS = 1.	ISNS	2152
2155	361		WRITE(18,1002) IS,(JS(KK,IK),KK=1,3),JS(3,IK)	2153
2155	362	1002	FORMAT('en,',4()	10, '. '), 110)	2155
2150	505 364	322 C	CONTINUE		2156
2158	365	•	WRITE(19,1005) 1	т	2158
2159	366 367	1005	FORMAT('time,',E	13.5)	2159
2161	368		IZERO = 0		2160
2162	369		DO 342 IS = 1 .	ISNS	2162
2103	5/0		IK=ISURF(IS)		2163

1

Thu Jul	1 14:1	7:00 19	93 threed.f SUBROUTINE HYDRMN	page 31	
2164	371		WRITE(19,1003) IS, ITWO, IZERO, HNUM(JS(1, IK), 5), HNUM(JS(2,	IK).5). 2164	
2166	373	1003	FORMAT('sfe,',2(15,','),'pres,',15,',',3(E12.5,','),E12.5	2165 2166 2166	
2167 2168	374	342	CONTINUE	2167	
2169	376	L	WRITE(14,10101) 3*ISNS.ISNS.NDUMMY1.NDUMMY3.NDUMMY3	2168	
2170	377	10101	FORMAT(518)	2170	
2172	378	10102	FORMAT(18, 3220.7) FORMAT(218.A6.318)	2171	
2173	380	10104	FORMAT(18, E20.7)	2173	
21/4 2175	381		CALL RTURFL KKVV = 0	2174	
2176	383		DO 310 IV = 1 , ISNS	2175 2176	
2177 2178	384 385		IK=ISURF(IV) IV1 = JS(1 IK)	2177	
2179	386		IV2 - JS(2, IK)	2178	
2180 2181	387 388		IV3 = JS(3, IK)	2180	
2182	389		YYV = XV(2, IV1)	2181 2182	
2183 2184	390 301		ZZV = XV(3, IVI)	2183	
2185	392		$\frac{2}{2} = -2N(1K)$	2184 2185	
2186	393		ZNN = -ZN(IK)	2186	
2188	395		YYY = YYV + YNN * .001	2187 2188	
2189	396		ZZZ = ZZV + ZNN * .001	2189	
2190	398		KKVV = KKVV + 1 WRITE(14.10102) KKVV.XXX.YVY 777	2190	
2192	399		XXV = XV(1, IV2)	2192	
2193	400		YYV = XV(2, 1V2) 77V = XV(3, 1V2)	2193	
2195	402		XXX = XXV + XNN * .001	2195	
2196	403 40 4		YYY = YYV + YNN * .001 777 = 77V + 7NN * .001	2196	
2198	405		KKVV = KKVV + 1	2197	
2199 2200	406 407		WRITE(14,10102) KKVV,XXX,YYY,ZZZ	2199	
2201	408		YYV = XV(2, IV3)	2200	
2202	409 410		$\begin{array}{l} \chi \chi \chi = \chi \chi (3, 1 \chi 3) \\ \chi \chi \chi = \chi \chi \chi + \chi \chi \chi + \chi \eta \chi + \eta \eta \eta \eta \eta \eta \eta \eta$	2202	
2204	411		$\frac{1}{1} \frac{1}{1} \frac{1}$	2203	
2205	412		ZZZ = ZZV + ZNN * .001	2205	
2207	414		WRITE(14,10102) KKVV,XXX,YYY,ZZZ	2206 2207	
2208	415	310	CONTINUE	2208	
2210	417		DO 320 IS = 1 , ISNS	2209 2210	
2211	418		IK-ISURF(IS)	2211	
2213	420		KKVV = KKVV + 3	2212 2213	
2214	421	320		2214	
2215	423		WRITE(14,10101) VDATA	2215 2216	
2217	424		$\mathbf{K}\mathbf{K}\mathbf{V}\mathbf{V} = 0$	2217	
2219	425		IK=ISURF(IV)	2218	
2220	427		PRR = PR(IK)	2220	
2222	429		WRITE(14,10104) KKVV+1,PRR WRITE(14,10104) KKVV+2,PRR	2221 2222	
2223	430		WRITE(14,10104) KKVV+3,PRR	2223	
2224	431	430	KKVV = KKVV + 3 Continue	2224	
2226	433		ISNS = 0	2226	
2228	434 435		15 = 1, NS IF(JS(9.1S).E0.6) THEN	2227 2228	
2229	436		XXS = XS(1, IS)	2229	
2230	43/ 438		$x_{15} = x_{5}(2,15)$ $zz_{5} = x_{5}(3,15)$	2230 2231	
2232	439		ISNS=ISNS+1	2232	
2233	440 441		ISURF(ISNS)=IS FND_IF	2233	
2235	442		END DO	2235	
2236 2237	443 444		PTINTT,ISNS WRITE(15,10101) 3*ISNS,ISNS,NDHMMY1 NDHMMY3 NDHMMY3	2236 2237	
				~~~//	

Thu Jul	1 14:	17:00	1993 threed.f SUBROUTINE HYDRMN	page	32
2238	445		KKVV = 0		223R
2239	446		DO 410 IV = 1 , ISNS		2239
2240	447		IK-ISURF(IV)		2240
2241	448		IVI = JS(1, IK)		2241
2242 2283	449		$\frac{1}{1} \frac{1}{2} = \frac{1}{1} \frac{1}{2} \frac{1}{1} $		2242
2244	451		XNN = -XN(IK)		2243
2245	452		YNN = -YN(IK)		2245
2246	453		ZNN = -ZN(IK)		2246
224/	454		XXV = XV(1, IV1)		2247
2240	400		110 = AV(2, 101) 77V = XV(3, 101)		2248
2250	457		XXX = XXV + XNN * .001		2249
2251	458		YYY = YYV + YNN * .001		2251
2252	459		ZZZ = ZZV + ZHN * .001		2252
2200 2264	400		KKVV = KKVV + 1 UDITE/15 10102) VVINI VVV VVV 777		2253
2255	462		XXV = XV(1.1V2)		2255
2256	463		YYV = XV(2, IV2)		2256
2257	464		ZZV - XV(3, IV2)		2257
2250	405		XXX = XXV + XNN + .001		2258
2260	467		777 = 774 + 788 + .001		2259
2261	468		KKVV = KKVV + 1		2261
2262	469		WRITE(15,10102) KKVV,XXX,YYY,ZZZ		2262
2263	470		XXV = XV(1, IV3)		2263
2265	471		77V = XV(2, 1V3)		2264
2266	473		XXX = XXV + XNN * .001		2203
2267	474		YYY = YYV + YNN * .001		2267
2268	475		ZZZ = ZZV + ZNN * .001		2268
2209 2270	4/0 477		KKVV = KKVV + 1 WDITE(15 10102) VV10/ VVY VVY 777		2269
2271	478	410	CONTINUE		2271
2272	479		KKVV = 0		2272
2273	480		00 420  IS = 1, ISNS		2273
2214 2275	481 482		IK=ISUKF(IS) WDITE(IS 10103) IS IS CIDI KNUMAI KNUMA2 KNUMA3		2274
2276	483		KKVV = KKVV + 3		2275
2277	484	420	CONTINUE		2277
2278	485		WRITE(15,10101) VDATA		2278
22/9	400		WRITE(15,*) VLABEL		2279
2281	488		D0.330  IV = 1. ISNS		2281
2282	489		IK-ISURF(IV)		2282
2283	490		PRR - PR(IK)		2283
2285	491 702		WR11E(15,10104) KKVV+1,PRR		2284
2286	493		WRITE(15,10104) KKVV+3. PRR		2285
2287	494		$\mathbf{K}\mathbf{K}\mathbf{V}\mathbf{V} = \mathbf{K}\mathbf{K}\mathbf{V}\mathbf{V} + 3$		2287
2288	495	330	CONTINUE		2288
2209	490 407	c			2289
2291	498	Č===	ヹヹヹヹ゚ゔヹヸ゚ヸヸ゚ヸ゚゚ゟ゙ヹヹヹヹヹヹヹヸヹヹ゙ゔゔ゚ゔゔヺヸヹヹ゙ヿ゚ヸヸ゚ヽヷゔ゚ヸ゙゙゙゙゙゙゙゙゙゙゙゙ゔゔヸヹヹヹヷ゚゚ヸヸ゙ヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹ゚ゔゔ゚ゔゔ゚ゔ		2290
2292	499	Č			2292
2293	500	ç			2293
2294	501	C C	I OUIPUI FILE FOR RESTARTS I		2294
2296	503	č	·		2295
2297	504		IF( JT . EQ . 1 ) THEN		2297
2298	505		REWIND 8		2298
2299	500		WRITE(9) NV.NE.NS.NC.NTIME WRITE(9) ((YV(IK IV) IK-1 3) IV-1 NV)		2299
2301	508		WRITE(9) ((JE(KK,IE),KK=1.2),IE=1.NE)		2301
2302	509		WRITE(9) ((JS(KK,IS),KK=1.9),(XS(KI,IS),KI=1,5),		2302
2303	510		. XN(IS), YN(IS), ZN(IS), XP(IS), YP(IS), ZP(IS),		2303
2304	511 512		<ul> <li>XI(15), TI(15), (T(15), 15=1, N5)</li> <li>WRITE(Q) ((XY7MD) (K1 15) V1=1 A) 15=1 N5)</li> </ul>		2304
2306	513		WRITE(9) {(JC(KK,IC),KK=1.8),(XC(KI.1C),KI=1.4),IC=1.NC)		2306
2307	514		WRITE(9) ((RGRAD(IC,KI),UGRAD(IC,KI),VGRAD(IC,KI),		2307
2308	515		. WGRAD(IC,KI),PGRAD(IC,KI),KI=1,3),IC=1,NC)		2308
2309	510 517		WKIIE(9) SAKEVG, NVECE NDEME NVECY NDEMY NVECS NDEMS NVECS NDEMS		2309
2311	518		WRITE(9) RIN.PIN.RINE.PINI IVIN IIIN VIN WIN TT		2310
			······································		

C

•

ŀ

Thu Jul	1 14:1	7:00	.993 three	ed.f SUBROUTINE HYDRMN	page	33
2312	519		WRITE(9) M	<b>IPRTCL</b>		2312
2313	520		IF (NPRTCL.	.GT.0)		2313
2314	521		. WRITE(9) (	(IJKPRT(IK), IK=1, NPRTCL)		2314
2315	522		END IF	(  YDN(IC IK) IK-1 B) IC  I N C)		2315
2310	528	r	WRITE(9)	((niDa(10,1V),1V=1'0)'10=1'40)		2310
2318	525	L	REWIND 88			2318
2319	526		WRITE(88)	NV, NE, NS, NC, NTIME		2319
2320	527		WRITE(88)	((XV(1K, IV), IK=1,3), IV=1, NV)		2320
2321	528		WRITE(88)	((JE(KK, IE), KK=1,2), IE=1, NE)		2321
2322	529		WRITE(88)	((JS(KK,IS),KK=1,9),(XS(KI,IS),KI=1,5),		2 <b>322</b>
2323	530		•	XN(IS), YN(IS), ZN(IS), XP(IS), YP(IS), ZP(IS), YT(IS), ZT(IS), ZT(IS), XT(IS), ZT(IS), XT(IS), XT(IS), XT(IS), XT(IS), YT(IS), YT(I		2323
2324	237			XI(15), II(15), LI(15), 15=1, N5) /(YY7MD) (XI IS) XI-1 (X) (S=1, N5)		2324
2326	533		WRITE(88)	((X)(X)(X), (X), (X), (X), (X), (X), (X)		2325
2327	534		WRITE(88)	((RGRAD(IC.KI), UGRAD(IC.KI), VGRAD(IC.KI).		2327
2328	535		*	WGRAD(IC,KI),PGRAD(IC,KI),KI=1,3),IC=1,NC)		2328
2329	536		WRITE(88)	SAREVG,		2329
2330	537			NVECE, NREME, NVECV, NREMV, NVECS, NREMS, NVECC, NREMC		2330
2331	538		WRITE(88)	RIN, PIN, RINL, PINL, UVIN, UIN, VIN, WIN, TT		2331
2332	539		WRITE(88)	NPRILL CT D)		2332
2334	540		WPITE(88)	(LINDRT(IK) IK-1 NDRTCI)		2333
2335	542		WRITE(88)	((HYDV(IC.IK), IK=1.8), IC=1, NC)		2335
2336	543	С				2336
2337	544	120	CONTINUE			2337
2338	545		REWIND 10			2338
2339	546		REWIND 25	A T 1////////		2339
2340	54/		WRITE(20,*)			2340
2342	540		RFAD (10. *)	, ISRNUT		2342
2343	550		WRITE (26.	*) RO. (RRN(IK), IK=1, NPRTCL)		2343
2344	551		END DO	,, (		2344
2345	552	C				2345
2346	553		RETURN			2346
2347	554	r	END			2347
2340	222	r.				2348
Thu Jul	1 14:1	7:00	.993 th <b>ree</b>	d.f SUBROUTINE GEOMTR		
0740						~~~~
2349	1	c	ZORKOULINE G	JEUTIK		2349
2350	2	ц.				2330
2352	Ă	C				2351
2353		C				2351 2352
7724	5	C C C	Geontr Comp	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I		2351 2352 2353
2334	5	C C C C	geomtr comp	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I		2351 2352 2353 2354
2355	5 6 7	C C C C C	g <b>eom</b> tr comp	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I I I I I		2351 2352 2353 2354 2355
2355 2356 2357	5 6 7 8	C C C C C C	GEOMTR COMP	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I		2351 2352 2353 2354 2355 2355 2356
2355 2355 2356 2357 2359	5 6 7 8 9	C C C C C C	GEOMTR COMP	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I		2351 2352 2353 2354 2355 2355 2356 2357 2358
2354 2355 2356 2357 2358 2359	5 6 7 8 9 10	C C C C C	GEOMTR COMP include include	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I I idmsh00.h' 'dhydm0.h'		2351 2352 2353 2354 2355 2356 2356 2357 2358 2359
2354 2355 2356 2357 2358 2359 2360	5 6 7 8 9 10 11 12	C C C C C C	GEOMTR COMP include include include include include	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I I 'dmsh00.h' 'dhydm0.h' 'dphsm0.h' 'dmtr10.h'		2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
2354 2355 2356 2357 2358 2359 2360 2361	5 6 7 8 9 10 11 12 13	с с с с с с	GEOMTR COMP include include include include include	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I I 'dmsh00.h' 'dhydm0.h' 'dphsm0.h' 'dmtr10.h'		2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2360 2361
2355 2356 2357 2358 2359 2360 2361 2362	5 6 7 8 9 10 11 12 13 14	с с с с с с с с	GEOMTR COMP include include include include include	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I I 'dmsh00.h' 'dhydm0.h' 'dphsm0.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES		2351 2352 2353 2354 2355 2355 2355 2355 2357 2358 2359 2360 2361 2362
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363	5 6 7 8 9 10 11 12 13 14 15	с с с с с с с с	GEOMTR COMP include include include include OEFINING BOU	Indary EDGES AND COMPUTING BAR CENTER OF TRIANGLES		2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2361
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2364	5 6 7 8 9 10 11 12 13 14 15 16	с с с с с с с	GEOMTR COMP include include include include OEFINING BOU PRINT * , NE	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I 'dmsh00.h' 'dhydm0.h' 'dhydm0.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES		2351 2352 2353 2354 2355 2355 2355 2355 2355
2354 2355 2355 2358 2359 2360 2361 2362 2363 2364 2365 2365	5 6 7 8 9 10 11 12 13 14 15 16 17	с с с с с с с с	GEOMTR COMP include include include include OEFINING BOU PRINT * , NE DO 110 IC =	Index Constant of the constant		2351 2352 2353 2354 2355 2355 2355 2355 2355
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2366 2367	5 6 7 8 9 10 11 12 13 14 15 16 17 18	C C C C C C C C C C	GEOMTR COMP include include include include OEFINING BOU PRINT * , NE DO 110 IC = SVOLM(IC) CONTINUE	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I 'dmsh00.h' 'dhydm0.h' 'dhydm0.h' 'dmtr10.h' JNDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES E.NS 1 , NC - 1. / XC( 4 , IC )		2351 2352 2353 2354 2355 2355 2355 2355 2355
2354 2355 2355 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	C C C C C C C C C C C C C C C C C C	GEOMTR COMP include include include include OEFINING BOU PRINT * , NE DO 110 IC = SVOLM( IC ) CONTINUE	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I 'dmsh00.h' 'dhydm0.h' 'dphsm0.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES E.NS 1 . NC = 1. / XC(4.IC)		2351 2352 2353 2354 2355 2355 2355 2355 2355
2354 2355 2355 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2369	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	C C C C C C C C C C C C C C C C C C	GEOMTR COMP include include include include OEFINING BOU PRINT * , NE DO 110 IC = SVOLM( IC ) CONTINUE DO 120 IS =	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I 'dmsh00.h' 'dhydm0.h' 'dhydm0.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES E.NS 1 . NC = 1. / XC( 4 . IC ) 1 . NS		2351 2352 2353 2354 2355 2355 2355 2355 2355
2354 2355 2355 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2369 2370	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	c c c c c c c c c c c c c c c c c c	GEOMTR COMP include include include include OEFINING BOU PRINT * , NE DO 110 IC = SVOLM( IC ) CONTINUE DO 120 IS =	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I 'dmsh00.h' 'dhydm0.h' 'dphsm0.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES E.NS 1 . NC = 1. / XC( 4 . IC ) 1 . NS		2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2366 2367 2368 2369 2370
2354 2355 2355 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2369 2370 2371	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	c c c c c c c c c c c c c c c c c c	GEOMTR COMP include include include include OEFINING BOU PRINT * , NE DO 110 IC = SVOLM( IC ) CONTINUE DO 120 IS = ICL = JS( 7	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I 'dmsh00.h' 'dhydm0.h' 'dphsm0.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES E.NS 1 . NC = 1. / XC( 4 . IC ) 1 . NS . IS )		2351 2352 2353 2354 2355 2356 2357 2358 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2369 2370 2371
2354 2355 2355 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2369 2370 2371 2372	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	c c c c c c c c c c c c c c c c c c	GEOMTR COMP include include include include OEFINING BOU PRINT * , NE DO 110 IC = SVOLM( IC ) CONTINUE DO 120 IS = ICL = JS( 7 ICR = JS( 8	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I 'dmsh00.h' 'dhydm0.h' 'dphsm0.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES E.NS 1 . NC = 1. / XC( 4 . IC ) 1 . NS . IS )		2351 2352 2353 2354 2355 2355 2355 2355 2355
2354 2355 2355 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2369 2370 2371 2372 2373	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	c c c c c c c c c c c c c c c c c c	GEOMTR COMP include include include include OEFINING BOU PRINT * , NE DO 110 IC = SVOLM( IC ) CONTINUE DO 120 IS = ICL = JS( 7 ICR = JS( 8	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I 'dmsh00.h' 'dhydm0.h' 'dphsm0.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES E.NS 1 . NC = 1. / XC( 4 . IC ) 1 . NS . IS ) . IS )		2351 2352 2353 2354 2355 2356 2357 2358 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2367 2368 2367 2370 2371 2372 2373
2354 2355 2355 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2369 2371 2372 2371 2372 2374 2375 2374	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	c c c c c c c c c c c c c c c c c c	GEOMTR COMP include include include include OEFINING BOU PRINT * , NE DO 110 IC = SVOLM( IC ) CONTINUE DO 120 IS = ICL = JS( 7 ICR = JS( 8 IV1 = JS( 1 IV2 = JS( 1)	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I 'dmsh00.h' 'dhydm0.h' 'dphsm0.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES E.NS 1 . NC = 1. / XC( 4 . IC ) 1 . NS . IS ) . IS )		2351 2352 2353 2354 2355 2355 2355 2355 2355
2354 2355 2355 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2367 2368 2369 2371 2372 2374 2375 2374 2375 2374 2375 2375 2375 2375 2375 2375 2356 2357 2358 2359 2359 2359 2359 2359 2359 2359 2359	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28	c c c c c c c c c c c c c c c c c c	GEOMTR COMP include include include include OEFINING BOU PRINT * , NE DO 110 IC = SVOLM( IC ) CONTINUE DO 120 IS = ICL = JS( 7 ICR = JS( 8 IV1 = JS( 1 IV2 = JS( 3)	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I 'dmsh00.h' 'dhydm0.h' 'dphsm0.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES E.NS 1 . NC = 1. / XC( 4 . IC ) 1 . NS . IS ) . IS ) . IS ) . IS )		2351 2352 2353 2354 2355 2355 2355 2355 2355
2354 2355 2355 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2369 2371 2372 2374 2375 2374 2375 2376 2377 2376 2377	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29	c c c c c c c c c c c c c c c c c c	GEOMTR COMP include include include include OEFINING BOU PRINT * , NE DO 110 IC = SVOLM( IC ) CONTINUE DO 120 IS = ICL = JS( 7 ICR = JS( 8 IV1 = JS( 1 IV2 = JS( 2 IV3 = JS( 3)	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I 'dmsh00.h' 'dhydm0.h' 'dmsh00.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES E.NS 1 . NC = 1. / XC( 4 . IC ) 1 . NS . IS ) . IS ) . IS )		2351 2352 2353 2354 2355 2355 2355 2355 2355
2354 2355 2355 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2369 2371 2372 2374 2375 2375 2375 2377 2378	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30	c c c c c c c c c c c c c c c c c c	GEOMTR COMP include include include include OEFINING BOU PRINT * , NE DO 110 IC = SVOLM( IC ) CONTINUE DO 120 IS = ICL = JS( 7 ICR = JS( 8 IV1 = JS( 1 IV2 = JS( 3 X1 = XV( 1 .	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I 'dmsh00.h' 'dhydm0.h' 'dphsm0.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES E.NS 1 . NC = 1. / XC( 4 . IC ) 1 . NS . IS ) . IS ) . IS ) . IS ) . IS )		2351 2352 2353 2354 2355 2355 2355 2355 2355
2354 2355 2355 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2369 2371 2372 2373 2375 2376 2377 2378 2377 2378 2379	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31	c c c c c c c c c c c c c c c c c c	GEOMTR COMP include include include include OEFINING BOU PRINT * , NE DO 110 IC = SVOLM( IC ) CONTINUE DO 120 IS = ICL = JS( 7 ICR = JS( 8 IV1 = JS( 1 IV2 = JS( 3 X1 = XV( 1, Y1 = XV( 2,	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I 'dmsh00.h' 'dmsh00.h' 'dmsh00.h' 'dmsm0.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES E.NS 1 . NC = 1. / XC( 4 . IC ) 1 . NS . IS ) . IS ) . IS ) . IS ) . IS ) . IS )		2351 2352 2353 2354 2355 2355 2355 2355 2355
2354 2355 2355 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2369 2371 2372 2373 2375 2376 2377 2378 2378 2378 2378 2378 2378 2378	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32	c c c c c c c c c c c c c c	GEOMTR COMP include include include include oDEFINING BOU PRINT * , NE DO 110 IC = SVOLM( IC ) CONTINUE DO 120 IS = ICL = JS( 7 ICR = JS( 8 IV1 = JS( 1 IV2 = JS( 2 IV3 = JS( 3 X1 = XV( 1 , Y1 = XV( 3 ,	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I 'dmsh00.h' 'dhydm0.h' 'dphsm0.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES E.NS 1 . NC = 1. / XC( 4 . IC ) 1 . NS . IS ) . IS )		2351 2352 2353 2354 2355 2355 2355 2355 2355
2354 2355 2355 2355 2357 2358 2359 2360 2361 2362 2363 2364 2365 2365 2365 2366 2367 2368 2367 2371 2372 2374 2375 2377 2378 2377 2378 2379 2378 2379 2378 2379 2380 2377 2378 2379 2380 2377 2378 2378 2379 2380 2377 2378 2378 2379 2378 2379 2378 2378 2377 2378 2377 2378 2377 2378 2377 2378 2377 2378 2377 2378 2377 2378 2377 2378 2377 2378 2377 2378 2377 2378 2377 2378 2377 2378 2377 2377	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34	c c c c c c c c c c c c c c c c c c c c c	GEOMTR COMP include include include include OEFINING BOU PRINT * . NE DO 110 IC = SVOLM( IC ) CONTINUE DO 120 IS = ICL = JS( 7 ICR = JS( 8 IV1 = JS( 1 IV2 = JS( 3 X1 = XV( 1 . Y1 = XV( 2 . Z1 = XV( 3 .	PUTE THE DUAL MESH AFTER INITIALIZATION THE GRID 'dmsh00.h' 'dhydm0.h' 'dmsh00.h' 'dmsh00.h' 'dmtr10.h' INDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES E.NS 1 . NC = 1. / XC( 4 . IC ) 1 . NS . IS ) . IS )		2351 2352 2353 2355 2355 2355 2355 2355

ı,

Thu Jul	1 14:17:0	0 199	3 threed.f	SUBROUTINE GEOMTR	page 34
2383	35	E	3 = YN( IS )		2383
2384	36	0	C = ZN(IS)		2384
2385	37 C				2385
2300	30 30 C	L	J = - ( A " XI +	B ~ 11 + C ~ 21 J	2380
2388	40	X	(CI = XC(1), IC)	L <b>)</b>	2367
2389	41	Ŷ	(CL = XC(2), IC)		2389
2390	42	2	2CL = XC(3, IC)	LĴ	2390
2391	43 C	-			2391
2392	44	Ũ	D = A * XCL + B	* YCL + C * ZCL + D	2392
2393	45 L	,	0 \21 - BOTA	1.21	2393
2395	40	i	IF ( TATRB . EO .	C ) THEN	2394
2396	48 C	•			2396
2397	49	X	(CR = XC(1, IC))	R )	2397
2398	50	Y	(LR = XC(2, IC))	R)	2398
2399	51	2	(CR = XC(3, 1C))	R )	2399
2400	52 L 53	Y	(X - YCR - YC)		2400
2402	54	Ŷ	(Y = YCR - YCL)		2402
2403	55	ż	Z = ZCR - ZCL		2403
2404	56 C				2404
2405	57	0	)) <b>)) =</b> A * XX + B	* YY + C * ZZ	2405
2406	58 C				2406
2407	59	X	$(\mathbf{T}_{\mathcal{L}} = - \mathbf{U}\mathbf{U} / \mathbf{U}\mathbf{U}\mathbf{U}$	_ 997	2407
2400	61	Ŷ	(Y7MDI(1 IS)	$= x_1^2$ = $x_1^2 + x_2^2 + x_2^2$	2400
2410	62	x	(YZMDL(2, IS)	• YCL + XYZ * YY	2410
2411	63	X	(YZMDL(3, IS)	= ZCL + XYZ * ZZ	2411
2412	64	X	(S(5, IS) = S(	QRT( XX * XX + YY * YY + ZZ * ZZ )	2412
2413	65 C	-			2413
2414	66 67 C	5	ELSE		2414
2415	67 L	Y	(Y7 = _ DD		2410
2417	69	x	(YZMDL(1.IS)	= XCL + XYZ * A	2417
2418	70	X	(YZMDL(2, IS)	• YCL + XYZ * B	2418
2419	71	X	(YZMDL(3, IS)	= ZCL + XYZ * C	2419
2420	72	X	(S(5, IS) = A)	BS(XYZ)	2420
2421	/3	X	(YZMDL(4, 15)	= 1.	2421
2422	74 0	F	IND TE		2423
2424	76 C				2424
2425	71 1	.20 C	CONTINUE		2425
2426	78 C				2426
2427	/9	P	RETURN		242/
2420 2429	81 C		: NU		2420
2430	82		SUBROUTINE U	PDATE	2430
2431	<b>83</b> C				2431
2432	84 C-	*****		· · · · · · · · · · · · · · · · · · ·	2432
2433	85 C		UDDATE COMONTE	THE DUAL MECH AFTED INITIALIZATION THE COTO I	2433
2434 2875	87 C		UPUNIC CUMPULE	THE DUAL HESH AFTER INITIALIZATION THE GRID I	2434 2835
2436	88 C-			۱ آ ۰ - ۰ - ۰ - ۰ - ۰ - ۰ - ۰ - ۰ - ۰ - ۰	2436
2437	89 Č			·	2437
2438	90	i	include dms	h00.h'	2438
2439	9I 02	ļ	include dhy		2439
244U 2441	92	1	include dont	รแนะเห ะ10.b'	244U 2441
2442	94 C	,		10.11	2442
2443	95 C				2443
2444	96 C		READ IN VERTEX	INFORMATION	2444
2445	97 C		DFAD (10 +1 ***		2445
2440 2887	90		KLAU (10,") N	1, NV	2440 2887
2447 2448	100		RFAD (16.*) 1.	), XV(1, IK), XV(2, IK), XV(3, IK)	2448
2449	101	•	XXX =XV(1.1K)	+ 34.5	2449
2450	102		YYY =XV(2,IK)	- 65.75	2450
2451	103		ZZZ =XV(3,IK)	+ 11.5	2451
2452	104		XV(1, [K)=XXX*	.0254	2452
2933 2858	106		AV(2,1K)=TTT* XV(3 1K)=777*	.V234 N254	2433 7858
2455	107 11	10	CONTINUE	, V& 47	2455
2456	108		PRINT * , NV		2456

D

0

Thu Jul	1 14:1	7:00	1 <b>9</b> 93	threed.f	SUBROUTINE GEOMTR	page	35
2457	109	C					2457
2458	110	Ç	REA	D IN EDGE INFORMA	TION ( EDGES OF TRIANGLES).		2450
2459	112	L	D	0.1120 IK = 1 N	F		2460
2400	112		R	FAD (16.*) 1J.JE(	L 1. TK), JE(2, IK)		2461
2462	114	1120	C C	ONTINUE			2462
2463	115		P	RINT * , NE			2463
2464	116	С					2464
2465	117	C	REA	D IN CELL (TETRAH	IDRAL) INFORMATION.		2405
2466	118	ç	051				2400
2467	119	í,	LEL	L INFORMATION, FU	R LACH CELL FOUR VERITCES		2468
2400	120	L	n	0 1130 TK ≠ 1 N	ſ .		2469
2403	122		R	EAD (16.*) IJ.JC(	1.IK).JC(?.IK).JC(3.IK).JC(4.IK)		2470
2471	123	1130	) Ĉ	ONTINUE			2471
2472	124	C					2472
2473	125		D	$0\ 1200\ IK = 1$ , N	C		24/3
2474	126		I	V1 = JC(1, IK)			24/4
2475	127		I	V2 = JC(2, 1K)			24/3
2476	128		ł	$V_{3} = J_{1}(3, IK)$ $V_{4} = I_{1}(4, IK)$			2477
24//	129	c	1	94 = JC( 4 , IK )			2478
2470	130	č	SID	E INFORMATION, FO	R EACH CELL CENTROID OF CELL		2479
2480	132	č					2480
2481	133		X	(C(1, IK) = (X	V(1, IV1) + XV(1, IV2) +		2481
2482	134		•	X	V(1, IV3) + XV(1, IV4) + .25		2482
2483	135		X	(C(2, IK) = (X	V(2, IV1) + XV(2, IV2) + 2E		2403
2484	136		•		V(2, 1V3) + XV(2, 1V4) = -23		2404
2485	137		,	(L(3, IK) = (X	V(3, 1V1) + AV(3, 1V2) + 25		2486
2460	138	r	•	^	(a( 3 , 143 ) + va( 3 , 144 ) ) .co		2487
2407	140	č	ST	F INFORMATION, FO	R EACH CELL VOLUME OF CELL		2488
2489	141	č					2489
2490	142	•	)	(PIJ = XV(1, IV2))	?) - XV(1, IV1)		2490
2491	143		۱	(PIJ = XV(2, IV2))	(2 - XV(2 - IV1))		2491
2492	144		1	[PIJ = XV( 3 , IV2	?) - XV(3, IV1)		2492
2493	145	C			) vill 1 11/1 \		2453
2494	140			(P1K = XV( 1 , 1V) (D1K = XV/ 2 , 1V)	(1, 1) = AV(1, 1)		2495
2490	147		-	7 <b>DTK =</b> XV( 3	(2, 101)		2496
2490	149	C			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2497
2498	150	•	;	KNIK = YPIJ * ZPI	( – ZPIJ * Y <b>PIK</b>		2498
2499	151		١	YNIK = ZPIJ * XPI!	<pre>&lt; = XPIJ * ZPIK</pre>		2499
2500	152	_	2	ZNIK = XPIJ * YPI	( - YPIJ * XPIK		2500
2501	153	C			a > vu/_11/1 >		2502
2502	154			XP1J = XV( 1 , 1V VDT1 _ VV/ 2 - IV/	+ ) - AV(1, 1)		2503
2503	155			707.1 + YV(3 - 1V)	(1) - xv(3) = V(1)		2504
2504	150	C		FITO = VA( 2 1 14.	· , ···· , ··· ,		2505
2506	158	•	1	VOL = ( XNIK * XP)	IJ + YNIK * YPIJ +		2506
2507	159		•		ZNIK * ZPIJ ) / 5.		2507
2508	160		1	XC(4, IK) = VO			2500
2509	161		<u> </u>	IF( VOL . LI . O.	) PRINT *, IK, VOL		2510
2510	162	120	U				2511
2511	103	r	1	PRIME , AC			2512
2512	165	č	RE	AD IN SIDE (TRIAN	GLE) INFORMATION.		2513
2514	166	č					2514
2515	167	С	SI	DE INFORMATION, F	OR EACH FACE THREE VERTICES		2515
2516	168	С					2510
2517	169			UU 1150 [K = 1 ,	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		2518
2518	170	110	n	KEAU (ID,") IJ,JS Continie	(1,1N),03(2,1N),03(3,1N)		2519
2519	1/1	112	v	DRINT * NS NC			2520
2520	173	C		nami y noyne			2521
2572	174	č	SI	DE INFORMATION, F	OR EACH FACE THREE EDGES		2522
2523	175	Č					2523
2524	176			00 '150 IK = 1 ,			2524
2525	177			P'AC (5,*) IJ,JS	(4,1K),JS(5,1K),JS(0,1K)		2526
2526	178	116	U	LUNIINUE	W		2527
252/	1/9	r		rnini ", asiacin	v		2528
2520	181	č	CF	LL INFORMATION. F	OR EACH CELL FOUR EDGES		2529
2530	182	č	~ L				2530

Thu Jul	1 14:1	17:00	1993 threed.f SUBROUTINE GEOMTR	page	36
2531 2532	183 184		DO 1140 IK = 1 , NC READ (16,*) IJ,JC5.IDIR1,JC6.IDIR2.		2531 2532
2533	185		$\frac{JC7, IDIR3, JC8, IDIR4}{IC(5, IK) - IAPS(-105)}$		2533
2535	187		JC(6, 1K) = 1ABS(JC6)		2534
2536	188		JC(7, IK) = IABS(JC7)		2536
2537	189	1140	JU(8,1K) = IABS( JC8 ) CONTINUE		2537
2539	191	1140	PRINT * , NS,NC,NV,NE		2530
2540	192	ç	STOR THEODHATTON FOR CACH CACE LEFT AND DIGUT TETREMEDIA		2540
2541	195	C	SIDE INFORMATION, FOR EACH FALE LEFT AND RIGHT TETREHEDRA		2541
2543	195		DO 1170 IK - 1 , NS		2543
2544 2545	190		READ (16, ") IJ,JS(7,IK),JS(8,IK) .IS( 9 IK ) = 0		2544
2546	198	1170	CONTINUE		2546
2547	199	<u>^</u>	PRINT * , NC,NV,NE		2547
2540	200	ĉ	SIDE INFORMATION, FOR EACH FACE BOUNDARY CONDITION		2548
2550	202	C			2550
2551	203 204	1180	CONTINUE DEAD (16 * END-1210) 11 TOUMY 15(0 11)		2551
2553	205		GO TO 1180		2552
2554	206	1210	CONTINUE		2554
2556	207	С	PRINT * , NV,NE,NS,NC		2555
2557	209	•	DO 1190 IK = 1 , NS		2557
2558	210		IV1 = JS(1, IK)		2558
2560	212		$1\sqrt{2} = 33(2, 10)$ $1\sqrt{3} = 35(3, 10)$		2559
2561	213	C			2561
2563	214	C	SIDE INFORMATION, FOR EACH FACE TANGENTIAL VECTOR		2562
2564	216	•	XP(IK) = XV(1, IV2) - XV(1, IV1)		2564
2565	217		YP(IK) = XV(2, IV2) - XV(2, IV1)		2565
2567	219		$\frac{2}{2} + \frac{1}{2} + \frac{1}$		2567
2568	220		YPDUHY = XV( 2 . 1V3 ) - XV( 2 . 1V1 )		2568
2570	222	С	2400MT = XV(3, 1V3) - XV(3, 1V1)		2569
2571	223	Č	SIDE INFORMATION, FOR EACH FACE NORMAL UNIT VECTOR		2571
2572 2573	224	C	YN(1K) = YO(1K) + 700 HMY = 70(1K) + YOUHMY		2572
2574	226		YN(IK) = $ZP(IK)$ * $XPDUMY = XP(IK)$ * $ZPDUMY$		2574
2575	227	c	ZN( IK ) = XP( IK ) * YPDUHY - YP( IK ) * XPDUMY		2575
2577	229	C	SIDE INFORMATION, FOR EACH FACE TANGENTIAL VECTOR		2576
2578	230	С			2578
2579	231		X( IK ) = - YP( IK ) * ZN( IK ) + ZP( IK ) * YN( IK ) YT( IK ) = - ZP( IK ) * YN( IK ) + YD( IK ) * 7N( IK )		2579
2581	233	_	ZT(IK) = -XP(IK) * YN(IK) + YP(IK) * XN(IK)		2581
2582	234	С	YY7NIN _ YN(TK\+YN(TK) _ YN(TK\+YN(TK) , 70/TK\+70/TK)		2582
2584	236		IF(XYZDUM, EG.O.) PRINT *, IK		2584
2585	237	~	XYŻDUM - 1. / SQRT( XYZDUM )		2585
2587	238	C	SIDE INFORMATION, FOR EACH FACE AREA OF FACE		2586
2588	240	C			2588
2589	241 242	r	XS(4, IK) = .5 / XYZDUM		2589
2591	243	č	SIDE INFORMATION, FOR EACH FACE CENTROID OF FACE		2591
2592 2503	244	C			2592
2594	246		$\frac{1}{1} = \frac{1}{1} + \frac{1}$		2594
2595	247		XS(2, IK) = (XV(2, IVI) + XV(7 IV2) +		2595
2597	248 249		$ \frac{XV(2, 1V3)}{XS(3, 1K)} = (\frac{XV(3, 1V3)}{XV(3, 1V1)} + \frac{XV(3, 1V2)}{XV(3, 1V2)} +$		2596 2597
2598	250		. XV(3,IV3))/3.		2598
2599 2600	251		XN(IK) = XN(IK) * XYZDUM YN(IK) = YN(IK) * YYZDUM		2599
2601	253		ZN(IK) * ZN(IK) * XYZDUM		2601
2602	254		XYZDUH = XP(IK)*XP(IK) + YP(IK)*YP(IK) + ZP(IK)*ZP(IK)		2602
2604	255		XP(IK) = XP(IK) + XYZDUM		2003 2604

Thu Jul	1 14:	17:00	1993 threed.f	SUBROUTINE GEOMTR	page	37
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621	257 258 259 260 261 262 263 263 264 265 266 265 266 267 268 269 270 271 272 273	1190 C	$\begin{array}{r} YP(1K) = YP(1K) * XYZDUM\\ ZP(1K) = ZP(1K) * XYZDUM\\ XYZDUM = XT(1K) * XT(1K) + YT(1)\\ XYZDUM = 1. / SQRT(XYZDUM)\\ XT(1K) = XT(1K) * XYZDUM\\ YT(1K) = YT(1K) * XYZDUM\\ YT(1K) = YT(1K) * XYZDUM\\ ZT(1K) = ZT(1K) * XYZDUM\\ CONTINUE\\ PRINT * , NS\\ \hline \\ NVECV = NV / 128\\ NREMV = NV - NVECV * 128\\ NREMV = NV - NVECV * 128\\ NREME = NE - NVECE * 128\\ NVECS = NS / 128\\ NREMS = NS - NVECS * 128\\ NVECS = NC / 128\\ \hline \\ \end{array}$	K)*YT(IK) + ZT(IK)*ZT(IK)	page	37           2605           2606           2607           2608           2609           2610           2611           2612           2613           2615           2615           2616           2617           2618           2619           2620
2622	274		NREMC = NC - NVECC * 128			2622
2623 2624	275 276	C	DO 125 INV - 1 NVECV			2623
2625	277		NOFVEV( INV ) = 128			2624 2625
2626	278	125				2626
2628	280		IF( NREMV . GT . 0 ) THEN			2627
2629	281		NVEEV - NVECV + 1			2629
2630	282 292		NOFVEV( NVEEV ) = NREMV			2630
2632	284	C	CHU IF			2631
2633	285		DO 105 INE - 1 , NVECE			2633
2634	286	105	NOFVEE( INE ) = 128			2634
2635	288	105	NVFFF = NVFCF			2635
2637	289		IF( NREME . GT . 0 ) THEN			2030 2637
2638	290		NVEEE - NVECE + 1			2638
2039	291		NUFVEL( NVELL ) - NREME FND IF			2639
2641	293	С				2040 2641
2642	294		DO 115 INS # 1 , NVECS			2642
2043	295	115	NOFVES( INS ) = 128 CONTINUE			2643
2645	297	115	NVEES - NVECS			2044 2645
2646	298		IF( NREMS . GT . 0 ) THEN			2646
204/ 2648	299		NGEVES( NVEES \ _ NDEMS			2647
2649	301		END IF			2040 2649
2650	302	С				2650
2051 2652	304		UU I 35 INC = 1, $NVECCNOEVEC( INC ) = 128$			2651
2653	305	135	CONTINUE			2002 2653
2654	306		NVEEC - NVECC			2654
2000	307		IF( NREMC . GI . O ) THEN			2655
2657	309		NOFVEC( NVEEC ) = NREMC			2000 2657
2658	310	-	END IF			2658
2059	311	C	DDINT * NV NE NE NC			2659
2661	313		PRINT *, NVEEV, NVEEE_NVEES_NVFFC			2000 2661
2662	314		PRINT *, NREMV, NREME, NREMS, NREMC			2662
2663	315	1001	FORMAT(417)			2663
2665	317	C C	FURMAT(17, JECV. 16)			2004
2666	318	-	CALL GEOMTR			2666
2667	319	С	NE THOM			2667
2669	320 321		KE LUKN FND			2668
2670	322	С				2670
Thu Jul	1 14:	17:00	1993 threed.f	SUBROUTINE UPGRAD	page	38
---------	----------	-------	---------------------------------------	---------------------------------------------------------	------	------
2671	•				,	
2672	2	C	SUDRUUTINE UPGRA	J ·		2671
2673	ž	Č		************		2673
2674	4	C		1		2674
2675	5	C	UPGRAD COMPUTE	THE DUAL MESH AFTER ADDAPTING THE GRID I		2675
2670	7	С				2676
2678	8	č				20//
2679	9	-	include 'dmsl	100.h'		2679
2680	10		include 'dhyd	dm0.h'		2680
2682	11		include 'dph:	smu.n'		2681
2683	13	С				2002
2684	14	-	REAL XELEFT(128)	YELEFT(128), XERIGT(128), YERIGT(128)		2684
2685	15	ç				2685
2086	16	Ç	- DEFINING BOUNDARY	Y EDGES		2686
2688	18	L	PEAD(8) NV NE I	IS NO NTINE		2687
2689	19		READ(8) ((XV(1)	(.IV).IK=1.3).IV=1.NV)		2680
2690	20		READ(8) ((JE(KI	(, IE), KK-1,2), IE-1, NE)		2690
2691	21		READ(8) ((JS(K)	(,1S),KK=1,9),(XS(KI,IS),KI=1,5),		2691
2692	22		. XN(13	5), YN(IS), ZN(IS), XP(IS), YP(IS), ZP(IS),		2692
2694	23		• AT(13 PFAD(8) ((197M	J (KI 32) KI-1 V) A2-1 M27 2)'11(12)'71(12)'12=1'N2)		2693
2695	25		READ(8) ((JC(K)	(.1C).KK=1.8).(XC(KI.IC).KI=1.4).IC=1.NC)		2695
2696	26		READ(8) ((RGRAD	D(IC,KI),UGRAD(IC,KI),VGRAD(IC,KI),		2696
2697	27		. WGRAL	)(IC,KI),PGRAD(IC,KI),KI=1,3),IC=1,NC)		2697
2098	28		READ(8) SAREVG	, IDENE NNECH NORMA NURCE NORME NURCE NORME		2698
2700	30		PRINT * NF.	INCHE, IIVELV, AKEMV, AVELS, AKEMS, AVELL, AKEML IS		2099
2701	31	С				2701
2702	32		DO 100 IC = 1 , N			2702
2703	33	100	SVOLM( IC ) = 1.	/ XC( 4 , IC )		2703
2704	34 35	L00	CONTINUE			2704
2706	36	U.	DO 105 INE = 1 .	NVECE		2705
2707	37		NOFVEE( INE ) - 1	28		2707
2708	38	105	CONTINUE			2708
2709	39		NVEEE - NVECE			2709
2711	40		NVEFF - NVECF + 1	U ) THEN		2710
2712	42		NOFVEE( NVEEE ) -	NREME		2712
2713	43	•	END IF			2713
2714	44	С				2714
2716	45		UU 115 INS = 1,	NVECS		2715
2717	47	115	CONTINUE	20		2717
2718	48		NVEES - NVECS		•	2718
2719	49		IF( NREMS . GT .	O ) THEN		2719
2720	50		NVEES = NVECS + 1	NORMS		2720
2722	52		FND IF			2722
2723	53	C				2723
2724	54		DO 125 INV = 1 ,	NVECV		2724
2725	55 55	175	NUFVEV( INV ) = 1	28		2725
2720	50	125	NVEEV - NVECV			2720
2728	58		IF( NREMV , GT .	0 ) THEN		2728
2729	59		NVEEV = NVECV + 1	- ,		2729
2730	60		NOFVEV( NVEEV ) =	NREMV		2730
2732	01 62	c	END IF			2731
2733	63	L.	DO 135 INC = 1	NVECC		2136
2734	64		NOFVEC( INC ) = 1	28		2734
2735	65	135	CONTINUE			2735
2736	66		NVEEC - NVECC			2736
2738	0/ 68		IF( NKENL . 61 . NVEEC - NVECC - 1	U ) INC.		2131
2739	69		NOFVEC( NVEEC ) +	NREMC		2730
2740	70	_	END IF			2740
2741	71	C			:	2741
2742	12		PRINT *, NV, NE, NS	NU, NVELV, NREMV, NVECE, NREME, NVECS, NREMS,		2742
2744	74	с	•	NTEUL, HREFIL		2744

Thu Jul	1 14:1	7:00	1993	threed.f	SUBROUTINE UPGRAD	page	39
2745	75		RETURN				2745
2746	76	_	END				2746
-2747	77	C					2747
Thu Jul	1 14:1	7:00	1993	threed.f	SUBROUTINE GRADNT		
2748	1	r	SUBROUT	TINE GRADNT			2748
2750	2 7	с Г			······		2/49
2751	4	č			· · · · · · · · · · · · · · · · · · ·		2751
2752	5	Č	GRADNT	COMPUTE THE	GRADIENT FOR SECOND ORDER CALCULATION		2752
2753	6	Ç			I		2753
2754	7	Ç					2754
2756	a a	ι	include	'dush00	1. ክ '		2/55
2757	10		include	dhydm0	).h'		2750
2758	11		include	dphsm0	).h'		2758
2759	12	_	include	e 'dmtr10	).h'		2759
2760	13	C		MIDI (1201 DD	MID: (190) 10:MID: (100) 10:MID: (100)		2760
2762	14		KEAL KH	MIDL(120), PP MIDI(128) AA	MIDL(120),UUMIDL(128),VVMIDL(128), MIDL(128)		2762
2763	16		REAL RI	GRAD(128).PI	(GRAD(128), UIGRAD(128), VIGRAD(128).		2763
2764	17		. WI	GRAD(128), AI	(GRAD(128)		2764
2765	18		REAL RJ	GRAD(128), PJ	JGRAD(128), UJGRAD(128), VJGRAD(128),		2765
2767	19		OFAL DV	GRAU(128),A.	JRAU(128) (CDAD(128) UK(DAD(128) UKCDAD(128)		2765
2768	20			GRAD(128), AK	(GRAD(128)		2768
2769	22		REAL RM	AX(128), PMAX	((128), UMAX(128), VMAX(128), WMAX(128),		2769
2770	23		. AM	AX(128)			2770
2771	24		REAL RM	IIN(128), PMIN	I(128),UMIN(128),VMIN(128),WMIN(128),		2771
2773	25		0FA1 00	1111(120) 1211(120)			2112
2774	27		REAL RO	L(4).UOL(4).	VOL(4), WOL(4), POL(4), AOL(4)		2774
2775	28	C		- , , , .			2775
2776	29	~	DO 120	IH = 1, 3			2776
2/1/ 2778	30 31	L	00 120				2777
2779	32	С	00 120	IC - 1 , NC			2779
2780	33	•	RGRAD (	IC , IH ) -	0.		2780
2781	34		UGRAD (	IC , IH ) =	0.		2781
2782	35		VGRAD(	$IC , IH \} =$	0.		2782
2784	37		PGRAD	$IC \cdot IH = IC$	0.		2784
2785	38	C		,			2785
2786	39	120	CONTINU	E			2786
2788	40	Ċ	- REGIN I		FORES IN THE DOMAIN		2787
2789	42	č	- ocura c	OUP OVER ALL			2789
2790	43	-	NS1 = 1				2790
2791	44		NS2 = N	OFVES(1)	~~		2791
2792	45	c	DO AO I	NS = 1, NVE	£5		2/92 2703
2794	47	č	- FETCH H	YDRO QUANTIT	IES		2794
2795	48	C					2795
2796	49		DO 105	IS = NS1, N	152		2796
2797 2708	50	r	K2	= 15 - MSI +	· 1		2/9/ 2708
2799	52		ICL =	JS(7.IS)			2799
2800	53	_	ICR =	JS(8, IS)			2800
2801	54	C	14700	10 10	<b>`</b>		2801
2002	33 56		141KD =	98 FU U 92(3,12	) THEN		2802
2804	57	С	11 ( 14)		7 1106.09		2804
2805	58		XYZ +	XYZMDL( 4 ,	15)		2805
2806	59		RRMI	DL( KS ) - H	YDV( ICL , 1 ) + XYZ * ( HYDV( ICR , 1 ) -		2806
2808	61		• []]]][]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	DI(KS) = H	HYDV(ILL, 1)) YDV(ICL 2) + XY7 * (HYDV(ICP 2) -		2808
2809	62			uut (uu ) = ()	HYDV(ICL.2)		2809
2810	63		VVMI	DL( KS ) = H	YDV( ICL , 3 ) + XYZ * ( HYDV( ICR , 3 ) -		2810
2811	64		د ابت سفت = ۰		HYDV(ICL, 3))		2811
2012	CD 77		WWW[]	UL(KS) = H	HUV( IUL , 4 ) + ATZ " ( HTUV( IUR , 4 ) - HVDV/ ICL , 4 ) 1		2012
2814	67		PPMI	DL( KS ) = H	YDV( ICL , 5 ) + XYZ * ( HYDV( ICR , 5 ) -		2814
2815	68		•		HYDV(ICL.5))		2815

Thu Jul	1 14:1	17:00	1993 threed.	f SUBROUTINE GRADNT	page	40
2816	69	С				2816
2817	70	c	ELSE			2817
2819	72	L	RRMIDL( KS	) = HYDV( TCL 1 )		2818
2820	73		UUMIDL( KS	) = HYDV(ICL, 2)		2819
2821	74		VVMIDL( KS	) = HYDV(ICL, 3)		2821
2823	76		PPMIDL( KS	) = HYDV( ICL , 4 ) ) = HYDV( ICL , 5 )		2822
2824	77	С		,, ( <b></b> , <b>.</b> ,		2824
2825 2826	78 79	c	END IF			2825
2827	80	<b>105</b>	CONTINUE			2820
2828	81	C		1 NCO		2828
2830	83		KS = IS =	1 , N52 NS1 + 1		2829
2831	84	C				2831
2832 2833	85 86		XEXN = XS(	4 , IS ) * XN( IS )		2832
2834	87		XEZN = XS(	4, IS) + ZN(IS)		2833 2834
2835	88	C				2835
2837	90		HIGRAD( KS	) = KKMIUL( KS ) * XEXN ) = HUMIDI( KS ) * XEXN		2836
2838	91		VIGRAD( KS	) = VVMIDL( KS ) * XEXN		2838
2839 2840	92 03		WIGRAD( KS	) = WWMIDL( KS ) * XEXN		2839
2841	94	С	FIGHND( NS	J = PPRIDE( KS ) = XEXN		2840 2841
2842	95		RJGRAD( KS	) = RRMIDL( KS ) * XEYN		2842
2843 2844	90 97		UJGRAD( KS VJGRAD( KS	) = UUMIDL( KS ) * XEYN ) = VVMIDL( KS ) * XEYN		2843
2845	98		WJGRAD( KS	) = WWMIDL( KS ) * XEYN		2845
2846 2847	99	<u>د</u>	PJGRAD( KS	) = PPMIOL( KS ) * XEYN		2846
2848	101	ι	RKGRAD( KS	) = RRMIDL( KS ) * XF7N		2847
2849	102		UKGRAD( KS	- UUMIDL( KS ) * XEZN		2849
2850 2851	103 104		VKGRAD( KS	) = VVMIDL( KS ) * XEZN - Humidl( KS ) * VEZN		2850
2852	105		PKGRAD( KS	= PPNIDL(KS) * XEZN		2851
2853	106	2	CONTINUE			2853
2855	107	C	CUNTINUE			2854
2856	109		DO 130 IS = NS	, NS2		2855
2857 2858	110	C	KS = IS - I	ISI + 1		2857
2859	112	•	ICL = JS( 7 ,	IS )		2859
2860	113	c	ICR = JS(8)	IS)		2860
2862	115	L	RGRAD( ICL . 1	) = $RGRAD(ICL, 1) + RIGRAD(KS)$		2861 2862
2863	116		RGRAD( ICL , 2	) = $RGRAD(ICL, 2)$ + $RJGRAD(KS)$		2863
2865	11/		RGRAD(ICL, 3	$ = RGRAD(ICL_3) + RKGRAD(KS) $		2864
2866	119		UGRAD( ICL . 2	) = UGRAD(ICL, 2) + UJGRAD(KS)		286 <del>6</del>
2867 2868	120		UGRAD( ICL , 3	) = UGRAD( $ICL$ , 3) + UKGRAD( $KS$ )	:	2867
2869	122		VGRAD(ICL, 2	) = VGRAD(ICL, 2) + VJGRAD(KS)		2869
2870	123		VGRAD( ICL , 3	) = VGRAD(ICL, 3) + VKGRAD(KS)		2870
2872	124		WGRAD(ICL, I WGRAD(ICL, 2	= WGRAD(ILL, 1) + WIGRAD(KS) $ = WGRAD(ICI, 2) + WIGRAD(KS)$		2871 2872
2873	126		WGRAD( ICL , 3	) = WGRAD(ICL, 3) + WKGRAD(KS)		2873
2874 2875	127		PGRAD(ICL, 1 PCRAD(ICL, 2	= PGRAD(ICL, 1) + PIGRAD(KS)		2874
2876	129		PGRAD(ICL, 3	) = PGRAD(1CL, 2) + PGGRAD(KS)		2876
2877	130	C	14700 15/ 0			2877
2879	132		IATRB = JS(9) IF( IATRB - FO	15 } . 0 } THEN	-	2878 2870
2880	133	C				2880
2881 2882	134	с с	GRADIENT OF DEP	SITY ( U V W DIRECTION )		2881
2883	136	-	RGRAD( ICR , 1	) = RGRAD( ICR , 1 ) - RIGRAD( KS )		2883
2884 2886	137		RGRAD( ICR , 2	) = RGRAD(ICR, 2) = RJGRAD(KS)		2884
2886	139	С	NUMULILY, 3	) = KURAU( ILK , 3 ) - KKUKAU( KS )		2885 2886
2887	140	ç	GRADIENT OF U	ELOCITY ( U V W DIRECTION )	i	2887
2889	141	ι.	UGRAD( ICR . 1	) = UGRAD( ICR , 1 ) - UIGRAD( KS )		2888 2889

Ē.

Thu Jul	1 14:1	7:00	1993	threed.f	:	SUBROUTINE	GRADNT	page	41
2890	143		UGRAD(	ICR , 2 ) = UGR	AD( ICR , 2	) - UJGRAD(	KS)		2890
2891 2892	144	r	UGRAD(	ICR, $3$ ) = $UGR$	AD(ICR, 3	) - UKGRAD(	(KS)		2891
2893	146	č	. GRADIE	IT OF V VELOCITY	(UVWDIR	ECTION )			2893
2894	147	C	VCDAD/	100 1 1 - VCD		UTCDAD			2894
2896	140		VGRAD	ICR = VGR	AD(ICR, 2	) - VIGRAD( ) - VJGRAD(	KS )		2895
2897	150	~	VGRAD (	ICR , 3 ) = VGR	AD(ICR, 3	) - VKGRAD(	KS )		2897
2898	151	ι C	GRADIE	IT OF W VELOCITY		CTION )			2898 2800
2900	153	Č							2900
2901 2902	154		WGRAD(	ICR = 1 $=$ WGR ICR = 2 $=$ WGR	AD(ICR, 1)	) - WIGRAD(	KS )		2901
2903	156	_	WGRAD (	ICR , 3 ) = WGR	AD( ICR ; 3 )	- WKGRAD(	KS)		2903
2904	157	C C	CDADIE	T OF DESSUDE /		( MOT			2904
2906	159	č		II OF PRESSURE (	U W UIKEU	10A )	*************		2905
2907	160		PGRAD(	ICR, 1) = PGR	AD( ICR , 1 )	- PIGRAD(	KS)		2907
2909	162		PGRAD(	$ICR \cdot 2 = PGR$ $ICR \cdot 3 = PGR$	AD(ICR.3)	) - PJGRAD( ) - PKGRAD(	KS)		2908
2910	163	C		•			· · ·		2910
2911	164	с	ENU IF						2911 2012
2913	166	130	CONTINU	E					2913
2914 2915	167	C	NS1 = 1	152 + 1					2914
2916	169		NS2 = 1	S2 + NOFVES( IN	S + 1 }				2916
2917 2918	170	90 ۲	CONTINU	E					2917
2919	172	L	DO 140	IH = 1 . 3					2919
2920	173	C	00 140						2920
2922	175	C	00 140	10 * 1 , MC					2921
2923	176		RGRAD(	$IC$ , $IH$ ) = $RGR_{i}$	VD( IC , IH )	* SVOLM(	10)		2923
2924	177		UGRAD(	IC, $IH$ ) = $UGRCIC$ , $IH$ ) = $VGRC$	VD(IC, IH) ND(IC, IH)	* SVOLM( * SVOLM(	1C) 1C)		2924 2925
2926	179		WGRAD (	IC . IH ) = WGR	VD( IC . IH )	* SVOLM(	ic )		2926
2927 2928	180 181	c	PGRAD (	IC, IH = PGR	VD(IC,IH)	* SVOLM(	IC)		2 <b>92</b> 7 2029
2929	182	140	CONTINU	E					2929
2930 2031	183	С	NC1 _ 1						2930
2932	185		NC2 = N	OFVEC(1)					2932
2933 2034	186	c	DO 80 1	NC = 1 , NVEEC					2933
2935	188	L	DO 150	IC = NC1 , NC2					2935
2936	189	c	KC	= IC - NC1 + 1					2936
2938	191	L	IS = J	C(5,IC)					2938
2939	192	С	701	16( 7 16 )					2939
2941	194		ICR =	JS(8, IS)					2940
2942	195	С	0001						2942
2944	190		KKUL - UUOL -	HYDV(ICL, 1 HYDV(ICL, 2					2943 2944
2945	198		VVOL -	HYDV( ICL , 3					2945
2940 2947	200		WWUL =	HYDV( ICL , 4 HYDV( ICL , 5					2940 2947
2948	201	С	1,200						2948
2949 2950	202		IAIRB - IF( IAT	JS(9,15) RB,E0.0)TI	EN				2949 2950
2951	204	C							2951
2952 2953	205 206		RROR -	HYDV( ICR , 1 )					2952 2953
2954	207		VVOR -	HYDV (ICR , 3	•				2954
2955 2056	208		WWOR -	HYDV( ICR , 4					2955
2957	210	С	PPUK =	move ick . 5 ,	,				2957
2958	211	c	ELSE						2958
2959	212	ι	RROR -	RROL					2959 2960
2961	214		UUOR -	UUOL					2961
2963	215		WWOR -	WWOL					2962

.

Thu Jul	1 14:17:00	1993	threed.f	SUBROUTINE GRADNT	page	42
2964	217	PPOR	= PPOL			2964
2905	218 C	END T	r			2965
2967	220 C	CNU I	ſ			2965
2968	221	ROL (	1 ) = RROL			2968
2969	222	UOL (	1 ) - UUOL			2969
2970	223	VOL(	1 ) = VVOL			2970
2971	224	WUL(	1 ) = WWUL 1 ) _ DDOI			2971
2973	2 <b>26</b> C	FUL(	I J = PFOL			29/2
2974	227	ROR(	1 ) = RROR			2974
2975	228	UOR (	1 ) = UUOR			2975
2976	229	VOR(	1 ) = VVOR			2976
2977	230	WUK(	1 ) = WWUK 1 ) = PDOD			2977
2979	232 C	i ont	<i>z                                    </i>			2970
2980	233	IS = .	JC(6,IC)			2980
2981	234 C					2981
2902	235	ILL *	JS(7, 15)			2982
2984	237 C	168 -	03(0,13)			2903 2084
2985	238	RROL ·	- HYDV( ICL , 1 )			2985
2986	239	UUOL	HYDV(ICL, 2)			2986
2987	240	VVOL -	= HYDV(ICL, 3)			2987
2980	241	PPOL -	= HYDV( [CL , 4 ) = HYDV( [Cl , 5 )			2988
2990	243 C	1102	- mov( tor , a )			2909
2991	244	IATRB -	= JS(9, IS)			2991
2992	245	IF( IA	TRB . EQ . 0 ) THEN			2992
2993	245 C	PROD .				2993
2995	248	ULIOR	= HYDV(ICR, 1)			2994
2996	249	VVOR	HYDV(ICR, 3)			2996
2997	250	WWOR =	HYDV(ICR, 4)			2997
2998	251	PPOR •	HYDV(ICR, 5)			2998
2999	252 L 253	FISE				2999
3001	254 C					3000
3002	255	RROR	RROL			3002
3003	256	UUOR ·				3003
3004	25/	VVUR -	· VVUL			3004
3006	259	PPOR -				3005
3007	260 C					3007
3008	261	END IF	7			3008
3009	262 C	001 ( 1				3009
3011	264		2) = 14101			3010
3012	265	VOL ( 2	2) = VVOL			3012
3013	266	WOL( 2	2) = WWOL			3013
3014	257	POL( 2	? ) = PPOL			3014
3015	269 L	ROR( 2	) = RROR			3015
3017	270	UOR ( 2	) = UUOR			3017
3018	271	VOR( 2	) = VVOR			3018
3019	272	WOR( 2	() = WWUR			3019
3021	274 C	PUR( 2	. ) <del>-</del> Fruk			3020
3022	275	IS = J	IC(7, IC)			3022
3023	276 C					3023
3024	277	ICL =	JS(7, IS)			3024
3025	279 C	1CK =	13(0,12)			3025
3027	280	RROL -	HYDV(ICL, 1)			3027
3028	281	UUOL -	HYDV(ICL, 2)			3028
3029	282	VVOL -	HYDV(ICL, 3)			3029
3030	203 284	WWUL =	HYDV(ICL, 4)			1020
3032	2 <b>85</b> C	ITVL =	HIDEL TOP & D }			3032
3033	286	IATRB =	JS(9, IS)			3033
3034	287	IF( IAT	RB. EQ. 0) THEN			3034
3035 3036	266 C 280	<b>DDUD</b> -				3035
3037	290	UUOR -	HYDV(ICR 2)			3037

Ľ

lo

ŀ

ŀ

0

Thu Jul	1 14:17:00	1993 threed.f	SUBROUTINE GRADNT	page 43
3038	291	VVOR = HYDV( ICR , 3 )		3038
3039	2 <b>92</b>	WWOR = HYDV( $1CR$ , 4)		3039
3041	293 294 C	PPUR = HIDV( ICK , 5 )		3040
3042	295	ELSE		3042
3043	2 <b>96</b> C			3043
3044	297	RROR = RROL		3044
3045	290	VOR = VVOI		2045
3047	300	WWOR - WHOL		2047
3048	301	PPOR = PPOL		3048
3049	302 C	CNR 15		3049
3051	304 C			UCUC 1208
3052	305	ROL(3) = RROL		3052
3053	306	UOL(3) = UUOL		3053
3054	307	VOL(3) = VVOL		3054
3056	309	POL(3) = PPOL		3055 3056
3057	310 C			3057
3058	311	ROR(3) = RROR		3058
3059	312	UOR(3) = UUOR		3059
3061	314	WOR(3) = WWOR		3061
3062	315	POR(3) = PPOR		3062
3063	316 C			3063
3065	31/	15 = JC(8, 1C)		3064
3066	319 C	ICI = JS(7, IS)		3066
3067	320	ICR = JS(8, IS)		3067
3068	321 C			3068
3009	322	$\frac{KKUL = HTDV(ILL, I)}{HHO}$		3069
3071	324	VVOL = HYDV(ICL, 3)		3071
3072	325	WWOL - HYDV( ICL , 4 )		3072
3073	326	PPOL = HYOV( ICL , 5 )		3073
3075	327 L 328	TATER = .IS( 9 IS )		3074 3075
3076	329	IF( IATRB . EQ . 0 ) THEN		3076
3077	330 C			3077
3078	331	$\frac{RROR}{H} = \frac{HYDV}{ICR} = \frac{1}{2}$		3078
3080	333	VVOR = HYOV(ICR, 2)		3020
3081	334	WWOR = HYDV( ICR , 4 )		3081
3082	335	PPOR = HYDV( ICR , 5 )		3082
3083	336 U	C1 SC		3083
3085	338 C			3085
3086	339	RROR = RROL		3036
3087	340	UUOR = UUOL		3087
3080	341 382	WWOR = WWOI		3080
3090	343	PPOR - PPOL		3090
3091	344 C			3091
3092	345 346 C	END IF		3092
3094	347	ROL(4) = RROL		3094
3095	348	UOL(4) = UUOL		3095
3096	349	VOL(4) = VVOL		3096
3097 3008	350	POL( 4 ) = WHOL POL( 4 ) = PPOL		3097 3097
3099	352 C			3099
3100	353	ROR(4) = RROR		3100
J101 3102	354 155	UOR(4) = UUOR		3101
3103	355	WOR( 4 ) - WWOR		3103
3104	357	POR(4) = PPOR		3104
3105	358 C	DWAY/ VC 1 . AMAY1/ DOL / .		3105
3100 3107	359 360	KMAA(KU) * AMAAI(KUL(] DOD/1	), KUL(2), KUL(3), KUL(4), ) ROR(2), ROP(3), ROP(A))	3100
3108	361	UMAX( KC ) = AMAX1( UOL( 1	), UOL(2), UOL(3), UOL(4).	3108
3109	362	. UOR( 1	), UOR(2), UOR(3), UOR(4))	3109
3110	363 264	VMAX( KC ) = AMAX1( VOL( 1	), VOL(2), VOL(3), VOL(4),	3110
JIII	JU4	• • • • • • • • • • • • • • • • • • •	/, <b>VUN( 2 ), VUN( 3 ), VUN( 4 )</b> )	2111

Thu Jul	1 14:17:00	1993	threed.f SUBROUTINE GRADNT	page	44
3112	365	WMAX(	KC ) = AMAX1( WOL( 1 ) , WOL( 2 ) , HOL( 3 ) , WOL( 4 ) ,		3112
3113	365	DHAY/	WOR(1), WOR(2), WOR(3), WOR(4))		3113
3115	368	PDAA(	R(1) = R(1), POL(2), POL(3), POL(4), POR(1), POR(2), POR(3), POR(4), POR(4), POR(4), POR(4), POR(4), POL(4),		3114
3116	369 C	•			3116
3117	370	RMIN(	KC ) = AMIN1(ROL(1), ROL(2), ROL(3), ROL(4),		3117
3118	371		ROR(1), ROR(2), ROR(3), ROR(4))		3118
3120	373	Owtur	$KC = AMINI(UUL(1), UUL(2), UUL(3), UUL(4), HOR(1) HOR(2) HOR(3) HOR(4) \$		3119
3121	374	VMIN(	KC = AMIN1(VOL(1), VOL(2), VOL(3), VOL(4), KC = AMIN1(VOL(1), VOL(2), VOL(3), VOL(4), KC = AMIN1(VOL(1), VOL(2), VOL(3), VOL(4)), KC = AMIN1(VOL(1), VOL(2), VOL(3), VOL(4)), KC = AMIN1(VOL(1), VOL(2), VOL(3), VOL(4)), KC = AMIN1(VOL(1), VOL(2), VOL(3)), VOL(4), KC = AMIN1(VOL(1), VOL(2), VOL(3)), VOL(4)), KC = AMIN1(VOL(1), VOL(2), VOL(3)), VOL(4)), KC = AMIN1(VOL(1), VOL(2)), VOL(3)), VOL(4)), KC = AMIN1(VOL(1), VOL(2)), VOL(3)), VOL(4)), KC = AMIN1(VOL(1), VOL(2)), VOL(3)), VOL(4)), KC = AMIN1(VOL(1), VOL(3)), KC = AMIN1(VOL(1), VOL(1)), KC = AMIN1(VOL(1)), K		3120
3122	375	•	VOR(1), VOR(2), VOR(3), VOR(4))		3122
3123	376	WMIN(	KC = AMIN1(WOL(1), WOL(2), WOL(3), WOL(4), WOL(1), WOL(2), WOL(3), WOL(4), WOL(1), WOU(1), W		3123
3125	378	PMTN(	MOR(1), $MOR(2)$ , $MOR(3)$ , $MOR(4)$ ; $KC_{1} = \Delta MIN1 (POI(1), POI(2), POI(3), POI(4)$		3124
3126	379	•	POR(1), POR(2), POR(3), POR(4))		3126
3127	380 C		· · · · · · · · · · · · · · · · · · ·		3127
3128	381 150	J CONTINU	JE		3128
3130	383	00 180	1C = NC1, $NC2$		3129
3131	384	KC	+ 1C - NC1 + 1		3131
3132	385 C				3132
3133	380		KC) = KMAX(KC) - HYDV(LC, I) KC) - DWIN(KC) - HYDV(LC, I)		3133
3135	388		(C) = MAX(C) = MDV(C, 1)		3135
3136	389	UUL	(KC) = UMIN(KC) - HYDV(IC, 2)		3136
3137	390	VVR	(KC) = VMAX(KC) - HYDV(IC, 3)		3137
3130	302	VVL( WWD)	KC ) = VMIN(KL) - HYUV(IC, S) KC ) = WMAX(KC) - HYDV(IC, A)		3138
3140	393	WWL (	$KC = WMIN(KC) - HYDV(IC \cdot 4)$		3140
3141	394	PPR (	KC = PMAX(KC) - HYDV(IC, 5)		3141
3142	395 396 C	PPL(	KC ) = PMIN( $KC$ ) - HYDV( $IC$ , 5 )		3142
3144	397 180	) CONTINU	E		3143
3145	3 <b>98</b> C				3145
3146	399	00 170	IC = NC1, $NC2$		3146
3148	400 401 C	KL.	≠ 16 - N61 + 1		3147 3148
3149	402	IS = J	IC(5, IC)		3149
3150	403 C				3150
3151 3152	40 <b>4</b> 405	ICL =	JS( / , 15 ) ( 21 - 8 )2(		3151
3153	406 C	ten -			3153
3154	407	XML =	XYZMDL(1, IS) - XC(1, ICL)		3154
3155 3156	408	YML = 7ML =	XYZMDL(2, IS) - XC(2, ICL) XYZMDI(3, IS) XC(3, ICL)		3155
3157	410 C	2012 -	(2 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 + 1) + (3 +		3157
3158	411	RROL =	1.E-16 + RGRAD( ICL , 1 ) * XML +		3158
3159	412		RGRAD(ICL, 2) * YML * RGRAD(ICL, 3) * ZML		3159
3161	415	UUUL =	ILE-ID + UGRAD( ICL , I ) * XML + HGRAD( ICL , 2 ) * YML + HGRAD( ICL 3 ) * 7ML		3161
3162	415	VVOL =	1.E-16 + VGRAD( ICL , 1 ) * XML +		3162
3163	416	•	VGRAD(ICL, 2) * YML + VGRAD(ICL, 3) * ZML		3163
3165	417 418	WWUL =	L.E-10 + WURAD(ILL, 1) * AML + WGRAD(ICL, 2) * YML + WCRAD(ICL, 3) * 7ML		J104 3165
3166	419	PPOL =	1.E-16 + PGRAD( ICL , 1 ) * XML +		3166
3167	420	•	PGRAD(ICL,2) * YML + PGRAD(ICL,3) * ZML		3167
3169	421 L 422	TATER -	(21 0)21		3168
3170	423	IF( IAT	RB. EQ. 0) THEN		3170
3171	424 C				3171
31/2	425	XMR =	XYZMDL(1, IS) - XC(1, ICR) XYZMDI(2, IS), XC(2, ICR)		3172
3174	427	ZMR =	XYZMDL(3, 1S) - XC(3, 1CR)		3174
3175	428 C				3175
3176 3177	429 430	RROR =	1.E-10 + RGRAD( ICR , 1 ) * XMR +		3176 3177
3178	431	UUOR =	1.E-16 + UGRAD(ICR, 1) * XMR +		3178
3179	432	•	UGRAD( ICR , 2 ) * YMR + UGRAD( ICR , 3 ) * ZMR		3179
3180	433 434	VVOR -	1.E-16 + VGRAD( ICR , 1 ) * XMR +		3180
3182	434	WWOR -	1.E-16 + WGRAD(ICR, 1) * XMR +		3182
3183	436		WGRAD( ICR , 2 ) * YMR + WGRAD( ICR , 3 ) * ZMR		3183
3184	437	PPOR =	1.E-16 + PGRAD( ICR , 1 ) * XMR +		3184
7103	430		PURADI ICK , Z ] " TAK * PURADI ICK , J ] " /MK		1100

0

Thu Jul	1 14:17:00	1993 threed.f SUBROUTINE GRADNT	p <b>age</b> 45
3186	439 C		3186
3188	440 441 C	ELSE	318/ 3188
3189	442	RROR = RROL	3189
3190	4 <b>43</b> 44 <b>4</b>	UUUR = UUUL VVOR = VVOI	3190
3192	445	WHOR = WWOL	3192
3193	446 447 C	PPOR = PPOL	3193
3195	447	END 1F	3194 3195
3196	4 <b>49</b> C		3196
3197 3198	450 451	ROL(1) = 1. / RROL UO(1) = 1 / UUO	319/
3199	452	VOL(1) = 1. / VVOL	3199
3200	453	WOL(1) = 1. / WWOL	3200
3202	454 455 C	POL(1) = 1.7 PPOL	3201
3203	456	ROR(1) = 1. / RROR	3203
3204	45/ 458	UOR(1) = 1. / UUOR VOR(1) = 1. / VVOR	3204
3206	459	WOR $(1) = 1.$ / WWOR	3206
3207	460	POR(1) = 1. / PPOR	3207
3209	461 C	1S = JC(6, 1C)	3208
3210	4 <b>63</b> C		3210
3211	46 <b>4</b> 465	ICL = JS(7, IS)	3211
3213	4 <b>65</b> C	10k = 00(0, 10)	3213
3214	467	XML = XYZMDL(1, IS) - XC(1, ICL)	3214
3215	408 469	YML = XYZMDL(2, IS) - XC(2, ICL) ZML = XYZMDL(3, IS) - XC(3, ICL)	3215 3216
3217	470 C		3217
3218	471 472	RROL = 1.E-16 + RGRAD(ICL, 1) * XML + PCDAD(ICL, 2) * YML + PCDAD(ICL, 3) * 7ML	3218
3220	473	UUOL = 1.E-16 + UGRAD(ICL, 1) * XML +	3220
3221	474	UGRAD( ICL, 2) * YHL + UGRAD( ICL, 3) * ZHL	3221
3222	4/5 476	VVUL = 1.E-10 + VGRAD(ILL, 1) * XML + VGRAD(ICL, 2) * YMI + VGRAD(ICL 3) * 7ML	3222
3224	477	WWOL = 1.E-16 + WGRAD( ICL , 1 ) * XML +	3224
3225	478 470	WGRAD(ICL, 2) * YML + WGRAD(ICL, 3) * ZML	3225
3227	480	+ PGRAD(ICL, 2) * YHL + PGRAD(ICL, 3) * ZHL	3227
3228	481 C		3228
3230	402 483	IATRB = 35(9, 13) IF( IATRB . EQ . 0 ) THEN	3230
3231	484 C		3231
3232	485 486	XMR = XYZMDL(1, 1S) - XC(1, 1CR) YMR = XYZMDL(2, 1S) - XC(2, 1CR)	3232
3234	487	ZMR = XYZMDL(3, IS) - XC(3, ICR)	3234
3235	488 C	$DDDD = 1 E_16 + DCDAD(1CD + 1) + YWD +$	3235
3237	490	$\frac{1}{1000} + \frac{1}{1000} + 1$	3237
3238	491	UUOR = 1.E-16 + UGRAD( ICR , 1 ) * XMR +	3238
3239	492 493	VVOR = 1.E-16 + VGRAD(ICR, 2) + YMR + UGRAD(ICR, 3) + ZMR	3240
3241	494	• VGRAD( ICR , 2 ) * YMR + VGRAD( ICR , 3 ) * ZMR	3241
3242 3243	495 496	WWOR = 1.E-10 + WGRAD(ICR, 1) * XMR + WGDAD(ICP, 2) * VMD + WGDAD(ICD, 3) * 7MD	3242
3244	49/	PPOR = 1.E-16 + PGRAD(ICR, 1) * XMR +	3244
3245	498 400 C	• PGRAD( ICR , 2 ) * YMR + PGRAD( ICR , 3 ) * ZMR	3245
3247	500	ELSE	3247
3248	501 C		3248
3250	502 503	UUOR = UUOL	3250
3251	504	VVOR - VVOL	3251
3252 3253	505 506	NWUK = WHOL Ponr = Poni	3252
3254	507 C		3254
3255	508 509 C	END IF	3255
3257	510	ROL(2) = 1. / RROL	3257
3258	511	UOL(2) = 1. / UUOL	3258
3259	512	VUL( 2 ) = 1. / VVUL	3238

Thu Jul	1 14:17	:00 199	3 threed.f	SUBROUTINE GRADNT	pa <b>ge</b>	46
3260 3261	513 514		WOL(2) = 1. / WWOL			3260
3262	515	Ç				3201
3263	516		ROR(2) = 1. / RROR			3263
3264	517		UOR(2) = 1. / UUOR			3264
3266	510 510		VUK(2) = 1. / VVUK VOP(2) = 1 / VVOR			3265
3267	520		POR(2) = 1. / PPOR			3200
3268	521	C				3268
3269	522	~	IS = JC(7, IC)			3269
3270	523	•	101 = .15(.7 = 15.)			3270
3272	525		ICR = JS(8, IS)			3272
3273	526 (	2				3273
3275	527		XML = XYZMDL(I, IS) - XC XML = XYZMDL(2, IS) - XC	(1. ICL)		3274
3276	529		ZML = XYZMDI(2, IS) - XC	(2, 101)		3275
3277	530 (	2				3277
3278	531		RROL = 1.E-16 + RGRAD(ICL)	, 1 ) * XML +		3278
3280	533	•	$\frac{\text{KGRAD}(\text{ ILL})}{\text{ILD}(1)} = 1  \text{F}_{-16} + \text{I}\text{GPAD}(1)$	, 2) * YML + RGRAD( ICL , 3) * ZML		3279
3281	534	•	UGRAD( ICL	. 2) * YML + UGRAD( ICL . 3) * 7MI		3280
3282	535		VVOL = 1.E-16 + VGRAD( ICL	, 1 ) * XML +		3282
3283 3284	536 537	•	$\frac{VGRAD}{VGRAD}$	, 2 ) * YML + VGRAD( ICL , 3 ) * ZML		3283
3285	538	•	WGRAD( ICL	. 2) * YML + WGRAD(ICL, 3) * 7MI		3284
3286	539	ł	PPOL = 1.E-16 + PGRAD(ICL)	, 1 ) * XML +		3286
3288	540 541 (	•	PGRAD( ICL	, 2 ) * YML + PGRAD( ICL , 3 ) * ZML		3287
3289	542	1/	ATRB = JS(9, IS)			3289
3290	543	, II	F( IATRB . EQ . 0 ) THEN			3290
3292	544 U 545	. ,	(MR = XY7MD) ( 1 . IS ) - XC	( 1 100 )		3291
3293	546		(MR = XYZMDL(2, IS) - XC	(2, ICR)		3292
3294	547	. 7	ZMR = XYZMDL(3, IS) - XC	(3, ICR)		3294
3295	548 U 549	I	2000 - 1 F-16 + 000AD/ 100	1 ) * YMD +		3295
3297	550		RGRAD( ICR	(2) * YMR + RGRAD(ICR . 3) * ZMR		3297
3298	551	l	JUOR = 1.E-16 + UGRAD( ICR	, 1 ) * XMR +		3298
3300	553	• •	UGRAD( ICR /VOR = 1.F~16 + VGRAD( ICR	, 2) * YMR + UGRAD( ICR , 3) * ZMR 1) * YMR +		3299
3301	554	•	VGRAD( ICR	, 2 ) * YMR + VGRAD( ICR , 3 ) * ZMR		3301
3303	555 556	1	WOR = 1.E~16 + WGRAD( ICR WGPAD( ICP	, 1) * XMR + 2) * VMD + HCDAD/ TCD - 3) * 7MD		3302
3304	557	· ·	POR = 1.E-16 + PGRAD( ICR	, 1) * XMR +		3304
3305	558	•	PGRAD( ICR	, 2 ) * YMR + PGRAD( ICR , 3 ) * ZMR		3305
3307	559 C	5	'I SF			3306
3308	561 C					3308
3309	562	F	ROR = RROL			3309
3311	564	ι ι	100K = 100L 1708 - 1770			3310
3312	565	h	WOR = WWOL			3312
3313	566	P	POR - PPOL			3313
3314 3315	567 C	c	NO TE			3314
3316	5 <b>69</b> C					3316
3317	570	R	OL(3) - 1. / RROL			3317
3318	571	U	OL(3) = 1.7000L			3318
3320	573	W	OL(3) = 1. / WOL			3320
3321	574	P	OL( 3 ) = 1. / PPOL			3321
3322	575 C		00/3 . 1 / 0000			3322
3324	577	н 1	OR(3) = 1. / KKUK			3323 3324
3325	578	v	OR( 3 ) = 1. / VVOR			3325
3326	579 580	W	OR(3) = 1. / WWOR			3326
3328	581 C	۲	UR( J ) = L. / PPUK			3327 3328
3329	582	I	S = JC( 8 , IC )			3329
3330	583 C	,	( 21 7 12)			3330
3332	585	l T	CR = JS(7, 15)			3332 3332
3333	586 C					3333

(

1

Thu Jul	1 14:17:00	1993 threed.f SUBROUTINE GRADNT	page	47
3334	587	XML = XYZMDL(1, IS) - XC(1, ICL)		3334
3335	588	YML = XYZMDL(2, IS) - XC(2, ICL)		3335
3336	5 <b>89</b>	ZML = XYZMDL(3, IS) - XC(3, ICL)		3336
3337	5 <b>90</b> C			3337
3338	591	RKUL = 1.1 + KUKAU(1(1, 1)) = XML + DCDAD(1(1, 2)) + YML(0(0, 0, 0)) = TAL(1, 2) + TAL(1		3338
3340	592 503	$HIOI = 1 F_16 + HCPAD(1C1, 2) + TML + KGRAD(1CL, 3) + ZML$		3339
3341	594	UGRAD(ICL, 2) * YMI + IIGRAD(ICL, 3) * 7MI		3340
3342	595	VVOL = 1.E-16 + VGRAD( ICL , 1 ) * XML +		3342
3343	5 <b>96</b>	. VGRAD( ICL, 2 ) * YML + VGRAD( ICL, 3 ) * ZML		3343
3344	597	WWOL = 1.E-16 + WGRAD( ICL , 1 ) * XML +		3344
3345	598	WGRAD(ICL, 2) * YML + WGRAD(ICL, 3) * ZML		3345
3340	599 600	PPUL = 1.1 - 10 + PukAU(1) + 1 = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +		3340
3348	601 C	$\cdot \qquad                   $		3348
3349	602	IATRB = JS(.9, IS)		3349
3350	6 <b>03</b>	IF( IATRB . EQ . 0 ) THEN		3350
3351	604 C			3351
3352	605	XMR = XYZMDL(I, IS) - XC(I, ICR)		3352
3353	607	TMR = ATZMUL(2, 15) - AU(2, 10K) 7MD - XY7MDI(3, 15) - XC(2, 10K)		3353
3355	608 C	2RR = A12RDE(J, 13) = AC(J, 1CR)		3355
3356	609	RROR = 1.E-16 + RGRAD( ICR , 1 ) * XMR +		3356
3357	610	RGRAD(ICR, 2) * YMR + RGRAD(ICR, 3) * ZMR		3357
3358	611	UUOR = 1.E-16 + UGRAD(ICR, 1) * XMR +		3358
3359	612 613	UGRAD(ICR, 2) * YMR + UGRAD(ICR, 3) * ZMR		3359
336U 3361	610 A13	VVUK ≠ i.t-10 + VGKAU( LLK , ] ) * XMK + VCDAD( ICD - 2 ) ★ VMD + VCDAD( ICD - 3 ) ★ 7MD		3360
3362	615	WOR = 1.F-16 + WGRAD(ICR 1 ) * XMP +		3362
3363	616	. HGRAD(ICR. 2) * YMR + HGRAD(ICR. 3) * ZMR		3363
3364	617	PPOR = 1.E-16 + PGRAD( ICR , 1 ) * XMR +		3364
3365	618	. PGRAD( ICR , 2 ) * YMR + PGRAD( ICR , 3 ) * ZMR		3365
3366	619 C			3366
330/	62U	ELSE		330/
3360	621 C			3360
3370	623	UUOR = UUOL		3370
3371	624	VVOR = VVOL		3371
3372	625	WWOR = WWOL		3372
3373	62 <b>6</b>	PPOR = PPOL		3373
33/4	027 L			33/4
3376	629 C			3376
3377	630	ROL( 4 ) = 1. / RROL		3377
3378	631	UOL(4) = 1. / UUOL		3378
3379	632	VOL(4) = 1. / VVOL		3379
3380	633	WOL(4) = 1. / WWOL		3380
3301	034 635 C	rul( 4 ) = 1. / rrul		3382
3383	636	ROR(4) = 1. / RROR		3383
3384	637	UOR(4) = 1. / UUOR		3384
3385	638	VOR(4) = 1. / VVOR		3385
3386	639	WOR(4) = 1. / WWOR		3386
3387	64U	PUK( 4 ) = 1. / PPUK		3305
3380	041 L 642	TSNR = STGN( 1,, ROR( 1, ) )		3380
3390	643	ISNL = SIGN(1., ROL(1))		3390
3391	644 C			3391
3392	645	TEMPR = (1 + ISNR) * RR(KC) +		3392
3393	6 <b>46</b>	. (1 - ISNR) * RRL( KC )		3393
3394 2205	04/ 649 C	KUVYKI = U.S " ILMPK " KUK( I )		2224 2305
3306	0400 L 640	TEMPL = ( 1 + ISNL ) * RRR( KC ) +		3396
3397	650	(1 - ISNL) * RRL( KC )		3397
3398	651	RUVPL1 = 0.5 * TEMPL * ROL( 1 )		3398
3399	652 C			3399
3400	653	ISNR = SIGN(1., ROR(2))		3400
3401 3402	054 665 C	ISNL = SIGN( 1. , KUL( 2 ) )		3401
3402	656	TEMPR = (1 + ISNR) * RPR(KC) +		3403
3404	657	(1 - ISNR) * RRL(KC)		3404
3405	658	RUVPR2 = 0.5 * TEMPR * ROR( 2 )		3405
3406	659 C			3406
3407	660	TEMPL = ( 1 + ISNL ) * RRR( KC ) +		3407

Thu Jul	1 14:17:00	1993	threed.f		SUBROUTINE GRADNT	page	48
3408	661	•	(1 - ISNL) *	RRL( KC )			3408
3409 3410	662 663 C	RUVPL	2 = 0.5 * TEMPL *	ROL(2)			3409
3411	664	ISNR	- SIGN( 1. , ROR(	3))			3410
3412	665	ISNL	SIGN( 1., ROL(	3))			3412
3413 3414	656 C 667	TEMOD	# ( ) + ISND ) *	DDD( VC )			3413
3415	668		(1 - ISNR) *	RRL(KC)	•		3414
3416	6 <b>69</b>	RUVPR	3 = 0.5 * TEMPR *	ROR(3)			3416
3417	670 L	TEMPL	= (1 + ISNL) *	RRR( KC )	+		3417 3418
3419	672	•	(1 - ISNL) *	RRL(KC)			3419
3420	673 674 C	RUVPL	3 = 0.5 * TEMPL *	ROL(3)			3420
3422	675	I SNR ·	SIGN( 1. , ROR(	4))			3421 3422
3423	676	ISNL	= SIGN( 1. , ROL(	4 j j			3423
3424 3425	10// し 678	TEMPO	= ( 1 + TSNP ) *	0001 VC )			3424
3426	679		(1 - ISNR) *	RRL(KC)			3426
3427	680 681 C	RUVPR	1 = 0.5 * TEMPR *	ROR( 4 )			3427
3429	682	TEMPL	= (1 + ISNL) *	RRR(KC)	+		3428
3430	683	•	(1 - ISNL) *	RRL(KC)			3430
3431	684 685 C	RUVPL	1 = 0.5 * TEMPL *	ROL(4)			3431
3433	6 <b>86</b>	RMIN(	KC ) = AMIN1( 1.	. RUVPR1	RUVPL1 . RUVPR2 . RUVPL2 .		3433
3434	687	•		RUVPR3	RUVPL3 , RUVPR4 , RUVPL4 )		3434
3435 3436	688 C 689	ISND .	STONE T HORE	1))			3435
3437	690	ISNL :	= SIGN( 1. , UOL(	1))			3430
3438	691 C	TOMOO	( )				3438
3439	693	IEMPK	$= (1 + 1SNR)^{-1}$		+		3439
3441	694	RUVPR	l = 0.5 * TEMPR *	UOR( 1 )			3441
3442	695 C	TEMOI	- ( 1 + 1500 ) +				3442
3444	697	10mmL	$= (1 + 1SNL)^{-1}$ (1 - 1SNL) *	UUL( KC )	+		3443
3445	6 <b>98</b>	RUVPL	L = 0.5 * TEMPL *	UOL(1)			3445
3440 3447	699 C 700	ISNR .		2))			3445
3448	701	ISNL -	SIGN( 1. , UOL(	2))			3448
3449	702 C	TENDO	- ( 1 + TCND ) +	(100 ( vc )			3449
3451	704	+ CRIFK	(1 - 1SNR) *	UUL( KC )	+		3450
3452	705	RUVPR2	! = 0.5 * TEMPR *	UOR(2)			3452
3453 3454	706 C 707	TEMPL	= ( 1 + (SNL ) *	HUR( KC )	+		3453
3455	708	•	(1 - ISNL) *	UUL( KC )			3455
3456	709 710 C	RUVPL2	! = 0.5 * TEMPL *	UOL(2)			3456
3458	711	ISNR -	SIGN( 1. , UOR(	3))			3458
3459	712	ISNL =	SIGN( 1. , UOL(	3 ) )			3459
340U 3461	713 L 714	TEMPR	= ( 1 + ISNR ) *	UUR( KC )	+		346U
3462	715	•	(1 - ISNR) *	UUL( KC )			3462
3463 3464	716 717 C	RUVPR3	8 = 0.5 * TEMPR *	UOR(3)			3463
3465	718	TEMPL	= (1 + ISNL) *	UUR( KC )	+		3465
3466	719	•	(1 - ISNL) *	UUL( KC )			3466
3467 3468	720 721 C	RUVPL	i = 0.5 * IEMPL *	UOL(3)			3407 3468
3469	722	ISNR =	SIGN( 1. , UOR(	4))			3469
3470 3471	723 724 C	ISNL -	SIGN( 1. , UOL(	4))			3470
3472	725	TEMPR	= (1 + ISNR) *	UUR( KC )	+		3472
3473	726		(1 - ISNR) *	UUL( KC )			3473
3474 3475	727 728 C	KUVPR4	= U.5 " IEMPR "	UUR(4)			3475
3476	729	TEMPL	= (1 + ISNL) *	UUR( KC )	+		3476
3477 3479	730	DIMDI 4	(1 - ISNL) *	UUL( KC )			3477 3479
3479	732 C	NUVFL4	- <b></b> icnrt "	UUL( 4 )			3479
3480	733	UMIN(	KC ) = AMIN1( 1.	, RUVPR1 ,	RUVPL1 , RUVPR2 , RUVPL2 .		3480
3481	/ 34	•		KUVPR3 ,	KUVPLJ , KUVPR4 , KUVPL4 )		3401

Thu Jul	1 14:17:00	1093	threed.f	SUBROUTINE GRADNT	page	49
3482	735 C					2402
3483	736	TCND	- SIGN( 1 \/00( 1 ) )			3482
3484	737	ISNI	= SIGN(1, , VOR(1))			2403
3485	738 C	IJAL	- Jian( 1. , VOL( 1 / )			3494
3486	739	TEMPR	= (1 + ISNR) * VVR(KC)	+		3486
3487	740		(1 - ISNR) * VVL(KC)			3487
3488	741	RUVPR	1 = 0.5 * TEMPR * VOR( 1 )			3488
3489	7 <b>42</b> C					3489
3490	743	TEMPL	= (1 + ISNL) * VVR(KC)	+		3490
3491	744	•	(1 - ISNL) * VVL(KC)			3491
3492	/45	RUVPL	1 = 0.5 * TEMPL * VOL(1)			3492
3493	740 L	T C MD				3493
3494	747	TONK	= SIGN( 1. , VOK( 2 ) )			3494
3495	740 740 C	LOWE	$= \operatorname{SIGN}(1., \operatorname{VOL}(2))$			3495
3497	750	TEMPR	= (1 + ISNR) * VVR(KC)	+		3490
3498	751		(1 - ISNR) * VVL( KC )			3498
3499	752	RUVPR	2 - 0.5 * TEMPR * VOR( 2 )			3499
3500	7 <b>53</b> C		, , , , , , , , , , , , , , , , , , ,			3500
3501	754	TEMPL	= (1 + ISNL) * VVR(KC)	+		3501
3502	/55	•	(1 - ISNL) * VVL(KC)			3502
3503	/50	RUVPE	2 = 0.5 * 1EMPL * VOL(2)			3503
3504	757 C	ISND	- STON( 1 VOD( 3 ) )			3504
3506	759		= SIGN(1, VOI(3, Y))			3505
3507	7 <b>60</b> C	TONE	= 51um( 1. , VoE( 5 ) )			3507
3508	761	TEMPR	= (1 + ISNR) * VVR(KC)	+		3508
3509	762	•	' 1 - ISNR ) * VVL( KC )			3509
3510	763	RUVPR	35 * TEMPR * VOR( 3 )			3510
3511	7 <b>64</b> C					3511
3512	/65	TEMPL	= (1 + ISNL) * VVR(KC)	+		3512
3513	/00	• • • • • • • • • • • • • • • • • • • •	(1 - 1SNL) = VVL(KC)			3513
3515	768 C	RUVPL.	5 = 0.5 " IEMPL " VOL( 5)			3514
3516	769	ISNR	= SIGN( 1 VOR( 4 ) )			3515
3517	770	ISNL	= SIGN $(1, VOL(4))$			3517
3518	771 C					3518
3519	7 <b>72</b>	TEMPR	= (1 + ISNR) * VVR(KC)	+		3519
3520	7 <b>73</b>	•	(1 - ISNR) * VVL(KC)			3520
3521	/74	RUVPR	4 = 0.5 * TEMPR * VOR(4)			3521
3522	776	TEMDI	- ( 1 + ISNL ) * W/D( *C )			3522
3524	777		(1 - ISNE) * VVI(KC)			3524
3525	778	RUVPL	4 = 0.5 * TEMPL * VOL( 4 )			3525
3 <b>526</b>	7 <b>79</b> C					3526
3527	780	VMIN(	KC ) = AMIN1(1., RUVPR1,	RUVPL1 , RUVPR2 , RUVPL2 ,		3527
3528	/81	•	RUVPR3 ,	RUVPL3 , RUVPR4 , RUVPL4 )		5528
3530	/02 L 793	TCND				3529
3530	784	ISNA -	= SIGN(1, , MOR(1))			3530
3532	785 C	LONC -	- Stan( 1. , HOE( 1 ) )			3532
3533	786	TEMPR	= (1 + ISNR) * WWR(KC)	+		3533
3534	787	•	(1 - ISNR ) * WWL( KC )			3534
3535	788	RUVPR	1 = 0.5 * TEMPR * WOR( 1 )			3535
3536	7 <b>89</b> C					3536
3537	/30	TEMPL	= (1 + ISNL) * WWR(KC)	+		3537
3530	/91	•	$\{1 - 1SNL\} * WWL(KL)$			3538
3540	792 793 C	KUVPL.	L = 0.3  Hence Wol(1)			3540
3541	794	ISNR -	= SIGN(1, , WOR(2))			3541
3542	795	ISNL -	- SIGN( 1. , WOL( 2 ) )			3542
3543	7 <b>96</b> C					3543
3544	797	TEMPR	= (1 + ISNR) * WWR(KC)	+		3544
3545	/98	•	(1 - ISNR) * WWL(KC)			3545
3540 3547	800 C	KUVPRZ	2 - U.J - IEMPK - WUK( 2 )			2040 25,47
3547	801 L	TEMDI	- (1 + ISNI ) * WWD( MC )	*		3548
3549	802		(1 - [SNL ) * WWI ( KC )			3549
3550	803	RUVPL2	2 = 0.5 * TEMPL * WOL( 2 )			3550
3551	804 C					3551
3552	805	ISNR -	• SIGN( 1. , WOR( 3 ) )			3552
3553	806	ISNL -	• SIGN( 1. , WOL( 3 ) )			3553
3334	007 L	TEMOS	- ( ) + ISND ) + DUD( PC )			1004 1666
1123	000	+CUILT!	- ( I + IONK ) ~ WWK( KU )	T		2222

Thu Jul	1 14:17	2:00	1993	threed.f		SUBROUTINE GRAD	INT	page	50
3556	809		•	(1 - ISNR) *	WWL( KC )				3556
3557 3558	810 811	ſ	RUVPR	3 = 0.5 * TEMPR *	WOR(3)				3557
3559	812	C	TEMPL	= ( 1 + ISNL ) *	WWR(KC)	+			3558
3560	813			(1 - ISNL) *	WWL(KC)				3560
3562	815	С	RUVPL	5 = 0.5 " IEMPL "	WUL(3)				3561
3563	816		ISNR	= SIGN( 1. , WOR(	4))				3563
3565	817 818	с	ISNL	= SIGN( 1. , WOL(	4))				3564
3566	819	-	TEMPR	= (1 + ISNR) *	WWR(KC)	+			3565
3568	820 821		RIIVPR	( 1 - ISNR ) * 1 = 0 5 * TEMPR *	WWL(KC)				3567
3569	822	С			""" ( T				3569
3570	823 824		TEMPL	= (1 + ISNL) + (	WWR(KC)	+			3570
3572	825		RUVPL	4 = 0.5 * TEMPL *	WOL(4)				3572
3573 3674	826	С	UMTM/	KC ) _ AMEN1/ 1	0152001				3573
3575	828		• ******	<pre>KC ) * Animi( i.</pre>	RUVPR1 .	RUVPLI , RUVPR	Z, RUVPLZ, 4, RUVPL4)		3574
3576	829	С	TCND	STORE 1 0000		• • •	· · · · · · · · · · · · · · · · · · ·		3576
3578	831		ISNK I	= SIGN( 1. , PUR( = SIGN( 1. , POL(	1))				3577
3579	832	С	TENDO						3579
3581	833 834		TEMPK	= (1 + 1SNR) * (1 - ISNR) *	PPR(KC)	+			3580
3582	835	-	RUVPR	L = 0.5 * TEMPR *	POR(1)				3582
3583 3584	836	C	TEMPI	= (1 + 1SNI) *	PPR( KC )	+			3583
3585	838		•	(1 - ISNL) *	PPL( KC )				3585
3580 3587	839 840	r	RUVPL	L = 0.5 * TEMPL *	POL(1)				3586
3588	841	•	ISNR -	SIGN( 1. , POR(	2))				3588
3589	842	r	ISNL -	SIGN( 1., POL(	2))	·			3589
3591	844	C	TEMPR	* (1 + ISNR) *	PPR(KC)	+			3590 3591
3592	845		•	(1 - ISNR) *	PPL( KC )				3592
3593 3594	840 847	С	RUVPK2	: = 0.5 * IEMPR *	POR(2)				3593 3604
3595	848		TEMPL	= (1 + ISNL) *	PPR( KC )	+			3595
3590 3597	849 850		RUVPL2	( L = ISNL ) * ! = 0.5 * TEMPI *	PPL( KC )				3596
3598	851	С							3598
3599 3600	852 853		ISNR = ISNI =	SIGN(1., POR( SIGN(1., POL)	3))				3599
3601	854	С			• • • •				3601
3603	855 856		IEMPR	= (1 + ISNR) * (1 - ISNR) * (	PPR(KC)	+			3602
3604	857		RUVPR3	= 0.5 * TEMPR *	POR( 3 )				3604
3605 3606	858 ( 859	C	TEMPI	= ( ] + ISNI ) *	DOD( VC )	L			3605
3607	860		•	(1 - ISNL) *	PPL( KC )				3607
3608 3609	861 862 (	C	RUVPL3	= 0.5 * TEMPL *	POL(3)				3608
3610	863	-	ISNR -	SIGN( 1. , POR(	4))				3610
3611	864	r	ISNL =	SIGN( 1., POL(	4))				3611
3613	866	•	TEMPR	= ( 1 + ISNR ) *	PPR( KC )	+			3613
3614	867			(1 - ISNR) *	PPL(KC)				3614
3616	869 (	C	KUYP K4	= 0.0 " IEMPK "	PUK( 4 )				3616
3617 3618	870 971		TEMPL	= ( 1 + ISNL ) *	PPR(KC)	+			3617
3619	872		RUVPL4	(1 - 15NL) *	POL( 4)				3619
3620	873 (		041447	VC ) _ AMTH1/ 1	Dining				3620
3622	875		• • • • • • • • • • • • • • • • • • •	NU ) * AMINI( 1.	RUVPRI .	RUVPLI , RUVPR2 RUVPL3 , RUVPR4	(, RUVPL2 , 1 , RUVPL4 )		3621 3622
3623	876 (	170	C (1)+++++	115					36, 3
3625	878 (	1/0	CONTIN	UL					3024 3625
3626	879		DO 330	IH = 1 , 3					3626
3627 3628	880 C	•	DO 330	IC = NC1 . NC2					3627 3628
3629	882		KC	• IC - NC1 + 1					3629

Thu Jul	1 14:17:00 19	993 th <b>ree</b> d	I. F SUBROUTINE GRADNT	page	51
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647	883       C         884       385         386       387         388       389         889       C         890       330         891       C         892       893         894       80         895       C         896       897         897       C         898       899         900       C	RGRAD(IC, UGRAD(IC, VGRAD(IC, WGRAD(IC, PGRAD(IC, PGRAD(IC, CONTINUE NC1 = NC2 + 1 NC2 = NC2 + N CONTINUE CALL FCHART RETURN END	IH ) = RGRAD( IC , IH ) * RMIN( KC ) IH ) = UGRAD( IC , IH ) * UMIN( KC ) IH ) = VGRAD( IC , IH ) * VMIN( KC ) IH ) = WGRAD( IC , IH ) * WMIN( KC ) IH ) = PGRAD( IC , IH ) * PMIN( KC ) HOFVEC( INC + 1 )		3630 3631 3632 3633 3634 3635 3635 3635 3636 3637 3638 3639 3640 3641 3642 3644 3645 3644 3645 3645 3647
inu Jui	1 14:1/:00 1	993 th <b>ree</b> 0	SUBROUTINE FIRST		
3648 3649 3650 3651 3652 3653 3654 3655 3655 3655 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3665 3666 3667 3668 3669 3667 3668	1 2 3 4 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	FIRST IS TO FIRST IS TO include include include DO 110 IS = 3 ICL = JS( 7 ICR = JS( 8 RL( IS ) = H UL( IS ) = H VL( IS ) = H	RST I BY PASS GRADIENT AND CHARACTERSTIC COMPUTATION I I dmsh00.h' dhydm0.h' dphsm0.h' dmtr10.h' I, NS , IS ) ; IS ) ; YDV( ICL , 2 ) * XN( IS ) + ; YDV( ICL , 3 ) * YN( IS ) + ; YDV( ICL , 4 ) * ZN( IS ) + ; YDV( ICL , 2 ) * XP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( IS ) + ; YDV( ICL , 3 ) * YP( ICL ) + ; YDV( ICL , 3 ) * YP( ICL ) + ; YDV( ICL ) + ; YDV		3648 3649 3650 3651 3652 3653 3654 3655 3655 3655 3657 3658 3659 3660 3661 3662 3663 3665 3665 3665 3665 3668 3669 3670 3671
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3684 3685 3685 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700	24 25 26 27 28 29 30 31 32 33 C 33 34 35 36 C 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 C 52 53 C	WL(IS) =         PL(IS) =         AL(IS) =         GL(IS) =         GL(IS) =         IATRB =         IF(IATRB -         IF(IATRB -         WR(IS) =         WR(IS) =         WR(IS) =         PR(IS) =         GR(IS) =         GR(IS) =         ELSE	<pre>YDV( ICL , 3 ) * YP( IS ) + YVV( ICL , 4 ) * ZP( IS ) YDV( ICL , 2 ) * XT( IS ) + YDV( ICL , 3 ) * YT( IS ) YDV( ICL , 4 ) * ZT( IS ) YDV( ICL , 5 ) YDV( ICL , 6 ) YDV( ICL , 7 ) YDV( ICL , 7 ) YDV( ICR , 1 ) YDV( ICR , 2 ) * XN( IS ) + YDV( ICR , 3 ) * YN( IS ) + YDV( ICR , 4 ) * ZN( IS ) YDV( ICR , 3 ) * YP( IS ) + YDV( ICR , 3 ) * YP( IS ) + YDV( ICR , 3 ) * YP( IS ) + YDV( ICR , 3 ) * YP( IS ) + YDV( ICR , 4 ) * ZT( IS ) YDV( ICR , 4 ) * ZT( IS ) YDV( ICR , 4 ) * ZT( IS ) YDV( ICR , 6 ) YDV( ICR , 7 ) YDV( ICR , 7 ) YDV( ICR , 7 ) YDV( ICR , 7 )</pre>		3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3684 3685 3688 3685 3688 3689 3691 3692 3693 3695 3695 3695 3695 3699 3699 3699

Thu Jul	1 14:	17:00	1993 threed.f SUBROUTINE FIRST	Fage 52
3701 3702	54 55	C	IF( IATRB . EQ . 8 ) THEN	3701
3703	56	~	RR(IS) = RIN	20/2
3704	57		UR( IS ) = UIN * XN( IS ) + VIN * YN( IS ) + WIN * 7N(	15 ) 3703
3705	58		VR(IS) = UIN + XP(IS) + VIN + YP(IS) + HIN + ZP(IS)	IS ) 3705
3706	59		WR(IS) = UIN = XT(IS) + VIN = YT(IS) + WIN = ZT(IS)	IS ) 3706
3707	60		PR(IS) = PIN	3707
3708	61		AR(IS) = AL(IS)	3708
3709	62		GR(IS) = GL(IS)	3709
3710	63	-	ER(IS) = EL(IS)	3710
3/11	64	C		3711
3/12	65	~	END IF	3712
3/13	00	ι		3713
3715	67	r	IF( IAIRD . EQ . / ) THEN	3714
3716	60	ι.	(15), $((15))$	3715
3717	70		KK( 13 ) = KL( 13 ) 10/ TS ) _ 61/ TS )	3716
3718	71		VR(15) = VL(15)	3/1/
3719	72		WR(15) = WI(15)	3/18
3720	73		PR(IS) = PI(IS)	3719
3721	74		AR(IS) = AL(IS)	3720
3722	75		GR(IS) = GL(IS)	3722
3723	76		ER(IS) = EL(IS)	3723
3724	77	С		3724
3725	78		END IF	3725
3726	79	С		3726
3727	80	~	IF( IATRB . EQ . 6 ) THEN	3727
3728	81	Ç		3728
2720	82		KK(1S) = KL(1S)	3729
3730	0.0		UK(15) = -UL(15)	3730
3732	95		AU( 12 ) = AI( 12 ) AU( 12 ) = AF( 12 )	3/31
3733	86		DQ(15) = HC(15)	3/32
3734	87		AR(IS) = AI(IS)	3/33 3774
3735	88		GR(1S) = GI(1S)	3735
3736	89		ER(IS) = EL(IS)	3736
3737	90	C		3737
3738	91		END IF	3738
3739	92	C		3739
3740	93	_	END IF	3740
3741	94	C		3741
3742	95	_110	CONTINUE	3742
3/43	96	Ľ	OF THOM	3743
3/44 2785	9/		KE I UKN GND	3744
3743	90	ſ	CUN	3745
J/40	77	L.		3/40

Thu Jul	1 14:17:00	1993 th	reed.f	SUBROUTINE FCHART	page	53
3747	1	SUBROUTIN	E FCHART			3747
3748	2 C					3748
3749	3 C		******			3749
3/50	4 L 5 C	CHADCT I	NTRODUCE			3750
3752	6 C	CHARLE	NIKUUULE	CORRECTION FOR SECOND URDER CALCULATION 1		3751
3753	7 Č			************************************		3753
3754	8 C			· · · · · · · · · · · · · · · · · · ·		3754
3755	9	include	'dmshi	20.11		3755
3757	10	include	'anya 'anya	nU.n.' m1.b.'		3756
3758	12	include	'dmtr	10.h'		3758
3759	13 C					3759
3760	14	REAL ZZLE	FT(128),	COLEFT(128), ZPLEFT(128), ZMLEFT(128)		3760
3762	15	QEAL LLKI	GI(128),4 FT(128) I	LUKIGI(128), ZPRIGI(128), ZMRIGI(128) IMFEET(128), HDFEET(128)		3761
3763	17	REAL UPRI	GT(128).	JMRIGT (128), URRIGT (128)		3763
3764	18	REAL UVLE	FT(128),I	JVRIGT(128), CNLEFT(128), CNRIGT(128)		3764
3765	19	REAL RLEF	TT(128),I	JLEFTT(128),VLEFTT(128),PLEFTT(128),		3765
3767	20	DEAL DEAL	II(128) HT(128) I	DICUT(128) VDICUT(128) DOTCUT(128)		3766
3768	22	ACAL ARIG	HT(128),	Aluni (120), Valuni (120), Paluni (120),		3768
3769	23 C					3769
3770	24	NS1 = 1				3770
3772	25 26		VES(1)	777 C		3771
3773	27 C	00 90 103	= 1 , 10			3/12
3774	28	00 110 IS	= NS1 ,	NS2		3774
3775	29	KS =	IS - NS1	+ 1		3775
3//0 3777	30 U 31	101 - 151	(7 15	<b>,</b>		3776
3778	32	ICR = JS	(8, IS			3///
3779	33 C			,		3779
3780	34	GL( IS )	= HYDV(	ICL , 7 )		3780
3782	2C 3F	CNLF13 =	GE( 15 )	* HYDV(ICL, 5) / HYDV(ICL, I)		3781
3783	37 C	CALTI	SURI CH			3783
3784	38	IATRB - JS	5(9,19	5)		3784
3785	39	IF( IATRB	. EQ . (	) ) THEN		3785
3780	40 C 41	<b>YY7</b> - 1	1 451 5	15.)		3786
3788	42	XXN - (	$(\hat{x}\hat{c}\hat{l}\hat{1})$	ICR) - XC(1, ICL)) * XY7		3/0/
3789	43	YYN - (	( XC( 2 .	ICR) - $XC(2, ICL)$ ) * $XYZ$		3789
3790	44	ZZN = (	(XC(3.	ICR ) - XC( 3 , ICL ) ) * XYZ		3790
3791	45 L 45	un ET .		(1 2) <b>*</b> XXN *		3791
3793	47		HYDV()	CL 3 ) * YYN +		3793
3794	48	•	HYDV( 1	CL , 4 ) * ZZN		3794
3795	49 C	and to )				3795
3790	50 51	GK( 15 )		$I(\mathbf{K}, f)$ * $\mathbf{W}\mathbf{B}\mathbf{W}(\mathbf{I}(\mathbf{D}, \mathbf{K})) = f(\mathbf{W}\mathbf{D}\mathbf{W}(\mathbf{I}(\mathbf{D}, \mathbf{K})))$		3796
3798	52	CNRGT = S	SORT ( CNR	GTS)		3798
3799	53 C		1	····· ,		3799
3800	54	UVRGT =	HYDV( 1	CR , 2 ) * XXN +		3800
3802	55	•		CP 4 1 + 77N		3801
3803	57 C	•		(h, f f ) 22h		3803
3804	58	ELSE				3804
3805	59 C	CHDCT (				3805
3807	61 C	CHR01 = (	MLTI			3807
3808	62	XYZ = 1.	/ XS( 5	, IS )		3808
3809	63	XXN - (	XYZMDL (	1, IS - XC(1, ICL) + XYZ		3809
3810	04 65	YYN = ( 77N = /		$Z_{1}$ (S) - XC( $Z_{1}$ (CL)) + XYZ		3810
3812	66 C	77U = (	ATZRUL (	x + xy - xy + xy + y + xy		3812
3813	67	UVLFT -	HYDV( I	CL , 2 ) * XXN +		3813
3814	68	•	HYDV( I	CL , 3 ) * YYN +		3814
1815 3816	09 70 C	•	ΗΥΟΥ( Ι	LL , 4 ) * ZZN		3815
3817	71	UVRGT -	UVLFT			3817
3818	72	GR( IS	) = GL(	IS )		3818
3819	73 C	C100 10				3819
1061	/ 4					2020

Thu Jul	1 14:1	7:00	1993 th	reed.f		SUBROUTINE	FCHART		page	54
3821	75	C	Call 657							3821
3823	70 77		CNRIGT	(KS)=( (KS)=(	CNRGT					3823
3824 3825	78 70	С	INA FET	( 45 ) - 1	N/I ET					3824
3826	80		UVRIGT	(KS) = (	JVRGT					3826
3827 3828	81 82	C 110	CONTINUE							3827 3828
3829	83	c	00.120.VC							3829
3831	85 85	С	00 130 KS	1 = 1 , NU	FVES( INS /					3830
3832 3833	86 87		ZZLEFT( K	(S) = .!	5 * ( UVLEFT( K) 5 * ( UVRIGT( K)	S) + CNLEFT S) - CNRIGT	(KS))*0 (KS))*0	11 11		3832
3834	88	С				5 / - cinctor	(((3))) 0	.,		3834
3835 3836	89 90	130 C	CONTINUE							3835 3836
3837	91 02	C C	HARACTERIST	ICS LOCAT	IONS					3837
3839	93	C	DO 140 KS	= 1 . NO	FVES( INS )					3839
3840 3841	94 95	С	1F( 771FF	T(KS).	17.9.)7715	FT(KS) = 0				3840 3841
3842	96	~	IF( ZZRIG	T(KS).	LT . 0. ) ZZRI	GT(KS) = 0	•			3842
3844	97 98	140	CONTINUE							3843 3844
3845 3846	99 100	C	NO 150 KS	- 1 NO	EVES ( INS )					3845
3847	101	C		,						3847
3848 3849	102 103		ZOLEFT( K ZORIGT( K	(S) = .! (S) =!	5 * UVLEFT( KS 5 * UVRIGT( KS	) * DTT ) * DTT				3848 3849
3850	104		ZPLEFT( K	(S) ≠ .!	5 * ( UVLEFT( K	S) + CNLEFT	(KS))*0	TT TT		3850
3852	106		ZMLEFT( K	(S) = .	5 * ( UVLEFT( K	S) - CNLEFT	(KS)) * D	TT		3852
3853 3854	107 108	С	ZMRIGT( K	(S) =!	5 * ( UVRIGT( K	S) - CNRIGT	(KS))*D	11		3853 3854
3855	109	_15 <b>0</b>	CONTINUE							3855
3857	111	C F	IRST GUESS	LEFT AND I	RIGHT VARIABLES	, LINEAR INT	ERPOLATON			3857
3858 3859	112	С	00 160 15		152					3858 3859
3860	114	~	KS =	IS - NS1	+ 1					3860
3862	115	L	ICL = JS	(7, IS	)					3862
3863 3864	117	ſ	ICR = JS	5(8,IS	)					3863 3864
3865	119	·	IATRB = J	IS( 9 , IS	}					3865
3865 3867	120	С	IF( IAIRE	I.EQ.U	) THEN					3867
3868 3860	122		XYZ = 1.	/ XS( 5	(IS)	ICL ) ) *	**7			3868 3869
3870	124		YYN =	( XC( 2 .	ICR) - $XC(2)$	, ICL ) ) *	XYZ			3870
3871 3872	125 126	С	ZZN =	(XC(3.	1CR) - $XC(3)$	, ICL ) ) *	XYZ			3872
3873 3874	127		XXL =	(XYZMDL(	1, IS ) - XC(	1, ICL))				3873 3874
3875	129		ZZL =	(XYZMDL(	3; 15) - xC(	3; ICL ) )				3875
3876 3877	130 131	C	XX = XXL	- ZZLEFT(	KS) * XXN					3877
3878 3970	132		YY = YYL 77 = 771	- ZZLEFT	KS) * YYN KS) * 77N					3878 3879
3880	134	C								3880
3881 3882	135 136		HRRL ≈ . RGRAD(	HYDV(ICL ICL 2	, 1 ) + RGRAD( ) * YY + RGRAD(	ICL . 1 ) * ICL . 3 ) *	2Z			3882
3883	137		HUUL -	HYDV ( ICL	, 2) + UGRAD(		XX +			3883 3884
3885	139		. UGRAD( HVVL ≈	HYDV ( ICL	(3) + VGRAD(	ICL , 1 ) *	XX +			3885
3886 3887	140 141		. VGRAD( HWWL =	ICL 2 HYDV( ICI	) * YY + VGRAD( _ 4 ) + WGRAD(	ICL . 3 ) * ICL . 1 ) *	ZZ XX +			3886 3887
3888	142		. WGRAD(	ICL 2	) * YY + WGRAD(	ICL , 3 ) *	22			3888 3880
3890	143		. PGRAD(	ICL, 2	, 5 ) + PGRAD( ) * YY + PGRAD(	ICL . 3 ) *	22			3890
3891 3892	145 146	С	GMTIFT -		* HRRI * HPPI					3891 3892
3893	147	r	SQGMTL =	SORT ( GM	ILFT)					3893
3894	148	ι								2024

Thu Jul	1 14:17:00	1993 threed.f	SUBROUTINE FCHART	page	55
3895 3896 3897 3898 3899 3899	149 150 151 152 153	XX = ( ZPLEFT( KS YY = ( ZPLEFT( KS ZZ = ( ZPLEFT( KS UUU = UGRAD( ICL , UGRAD( ICL ,	) - ZZLEFT( KS ) ) * XXN ) - ZZLEFT( KS ) ) * YYN ) - ZZLEFT( KS ) ) * ZZN 1 ) * XX + UGRAD( ICL . 2 ) * YY + 3 ) * ZZ	38 38 38 38 38	195 196 197 198 199
3900 3901 3902 3903	154 155 156 157 C	PPP = PGRAD( ICL , . PGRAD( ICL , UPLFT =5 * ( U	3) * ZZ UU + PPP / SQGMTL ) / SQGMTL	39 39 30 30	100 101 102
3904 3905 3906	158 159 160	XX = ( ZMLEFT( KS YY = ( ZMLEFT( KS ZZ = ( ZMLEFT( KS	) - ZZLEFT( KS ) ) * XXN ) - ZZLEFT( KS ) ) * YYN ) - ZZLEFT( KS ) ) * ZZN	39 39 39 39	104 105 106
3907 3908 3909	161 162 163	UUU = UGRAD( ICL , UGRAD( ICL , PPP = PGRAD( ICL ,	1) * XX + UGRAD( ICL , 2) * YY + 3) * ZZ 1) * XX + PGRAD( ICL , 2) * YY +	39 39 39	107 108 109
3910 3911 3912 3913	164 165 166 C 167	. PGRAD( ICL , UMLFT = .5 * ( U XX = ( 70) FFT( KS	3) * ZZ UU – PPP / SQGMTL ) / SQGMTL ) – ZZIEET( KS ) ) * XXN	39 39 39 39	10 11 12 13
3914 3915 3916 3917	168 169 170 171	YY = ( ZOLEFT( KS ZZ = ( ZOLEFT( KS PPP = PGRAD( ICL , PGRAD( ICL ,	) - ZZLEFT( KS ) ) * YYN ) - ZZLEFT( KS ) ) * ZZN 1 ) * XX + PGRAD( ICL , 2 ) * YY + 3 ) * ZZ	39 39 39 39 39	14 15 16 17
3918 3919 3920 3921	172 C 173 174 175	XX = XXL - ZOLEFT( YY = YYL - ZOLEFT( ZZ = ZZL - ZOLEFT(	KS ) * XXN KS ) * YYN KS ) * ZZN	39 39 39 39	18 19 20 21
3922 3923 3924 3925	176 C 177 178 179	RRRR = HYOV( ICL . URLFT = PPP / GMTL	1 ) + RGRAD( ICL . 1 ) * XX + RGRAD( ICL . 2 ) * YY + RGRAD( ICL . 3 ) * ZZ FT + 1. / HRRL - 1. / RRRR	39 39 39 39	122 123 124 125
3926 3927 3928 3929	180 C 181 182 183	XXR = ( XY2MDL( YYR = ( XY2MDL( 77R = ( XY2MDL(	1, IS) - XC(1, ICR)) 2, IS) - XC(2, ICR)) 3, IS) - XC(3, ICR))	39 39 39 39	126 127 128 128
3930 3931 3932 3933	184 C 185 186 187	XX = XXR + ZZRIGT( YY = YYR + ZZRIGT( 7Z = 7ZR + ZZRIGT(	KS) * XXN KS) * YYN KS) * 7ZN	39 39 39 39	)30 )31 )32 )33
3934 3935 3936 3037	188 C 189 190	HRRR - HYDV( ICR RGRAD( ICR , 2	(, 1) + RGRAD( ICR , 1) * XX + ) * YY + RGRAD( ICR , 3) * ZZ 2) + UCRAD( ICR , 1) * XY +	39 39 39 30	134 135 136 137
3938 3939 3940	192 193 194	. UGRAD( ICR , 2 HVVR - HYDV( ICR . VGRAD( ICR , 2 HVVR - HYDV( ICR	) * YY + UGRAD( ICR , 3 ) * ZZ , 3 ) + VGRAD( ICR , 1 ) * XX + ) * YY + VGRAD( ICR , 3 ) * ZZ A ) + VGRAD( ICR , 3 ) * ZZ	39 39 39 39	138 139 140
3942 3943 3944	195 196 197 198	. WGRAD( ICR , 2 HPPR = HYDV( ICR . PGRAD( ICR , 2	) * YY + WGRAD( ICR , 3 ) * ZZ , 5 ) + PGRAD( ICR , 1 ) * XX + ) * YY + PGRAD( ICR , 3 ) * ZZ	39 39 39	142 )43 )44
3945 3946 3947 3948	200 201 202 C	GMTRGT = GR( IS ) SQGMTR = SQRT( GM	* HRRR * HPPR TRGT )	39 39 39 39	145 146 147 148
3949 3950 3951 3952	203 204 205 206	XX = ( ZZRIGT( KS YY = ( ZZRIGT( KS ZZ = ( ZZRIGT( KS UUU = UGRAD( ICR ,	) - ZPRIGT( KS ) ) * XXN ) - ZPRIGT( KS ) ) * YYN ) - ZPRIGT( KS ) ) * ZZN 1 ) * XX + UGRAD( ICR , 2 ) * YY +	39 39 39 39	149 150 151 152
3953 3954 3955 3956	207 208 209 210	UGRAD( ICR , PPP = PGRAD( ICR , PGRAD( ICR , UPRGT =5 * ( U	3) * ZZ 1) * XX + PGRAD( ICR , 2) * YY + 3) * ZZ UU + PPP / SQGMTR ) / SQGMTR	39 39 39 39	153 154 155 156
3957 3958 3959 3960	211 C 212 213 214	XX = ( ZZRIGT( KS YY = ( ZZRIGT( KS ZZ = ( ZZRIGT( KS	) - ZMRIGT( KS ) ) * XXN ) - ZMRIGT( KS ) ) * YYN ) - ZMRIGT( KS ) ) * ZZN	39 39 39 39	157 158 159 160
3961 3962 3963 3964	215 216 217 218	UUU = UGRAD( ICR . UGRAD( ICR . PPP = PGRAD( ICR . PGRAD( ICR .	1) * XX + UGRAD( ICR , 2) * YY + 3) * ZZ 1) * XX + PGRAD( ICR , 2) * YY + 3) * ZZ	39 39 39 39	161 262 263 264
3965 3966 3967 3968	219 220 C 221 222	UMRGT = .5 * (Ú XX = (ZZRIGT(KS YY = (ZZRIGT(KS	UU - PPP / SQGMTR ) / SQGMTR ) - ZORIGT( KS ) ) * XXN ) - ZORIGT( KS ) ) * YYN	39 39 39 39	)65 )66 )67 )68

Thu Jul	1 14:17:00	1993 threed.f	SUBROUTINE FCHART	page	56
3969	223	ZZ = ( ZZRIGT( KS )	- ZORIGT( KS ) ) * ZZN		3969
3970	224	PPP = PGRAD(ICR, I	) * XX + PGRAD( ICR , 2 ) * YY +		3970
3971	225	. PGRAD(ICR, 3	5 ) * <i>22</i>		39/1
39/2	220 L		(C.) + YYN		39/2
3974	228	YY = YYR + 70RIGI( H	(S) * YYN		3975 3074
3975	229	ZZ = ZZR + ZORIGT(H)	(S) * ZZN		3975
3976	2 <b>30</b> C	•	•		3976
3977	231	RRRR = HYDV( ICR , 1	) + RGRAD( ICR , 1 ) * XX +		3977
3978	232	•	RGRAD( ICR , 2 ) * YY + RGRAD( ICR , 3 ) * ZZ		3978
3979	233	URRGI = PPP / GMIRGI	+1. / HRRR $-1.$ / RRRR		3979
3900	234 L 235	EI SE			3900
3982	236 C	LEJE			3082
3983	237	XYZ = 1. / XS(5)	IS )		3983
3984	238	XXN = ( XYZMDL( 1	. IS ) - XC( 1 , ICL ) ) * XYZ		3984
3985	239	YYN - (XYZMDL( 2	(1, 1S) - XC(2, 1CL) + XYZ		3985
3986	240	$ZZN = \{XYZMDL\}$	3, IS) - XC(3, ICL)) * XYZ		3986
3987	241 L	YYE _ ( YYZMOL( 1	15 $10 $ $10 $ $10 $ $10 $ $10$		3987
3080	242	$\frac{1}{2} = \frac{1}{2} $	15 - 15 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 -		2080
3990	244	ZZL = (XYZMDL(3))	(15) - xc(3) - ic(1)		3990
3991	245 C				3991
39 <b>92</b>	246	XX = XXL - ZZLEFT( K	(S_) * XXN		3992
3993	247	YY = YYL - ZZLEFT(H)	(S) * YYN		3993
3994 2005	248	ZZ = ZZL - ZZLEFI(K)	(S) * 22N		3994
3006	249 L 250		1 ) + RGRAD/ TC1 1 ) * YY +		3995
3997	251	, RGRAD(ICL, 2)	* $YY + RGRAD(ICL + 1) + 77$		3997
3998	252	HUUL = HYDV( ICL ,	(2) + UGRAD(ICL, 1) * XX +		3998
3999	253	. UGRAD( ICL , 2 )	* YY + UGRAD( ICL , 3 ) * ZZ		3999
4000	254	HVVL = HYDV( ICL ,	3) + VGRAD(ICL, 1) * XX +		4000
4001	255	VGRAD(ICL, 2)	* $YY + VGRAD(ICL, 3) * ZZ$		4001
4002	200 257	HWWL = HTUV(ILL, WCDAD/IC1 2)	4 } + WGKAU( ILL , I } * XX + * VY → WCDAD( IC) 3 } * 77		4002
4003	258	HPPI = HYDV(ICL)	5 + PGRAD(ICL, 1) + XX +		4004
4005	259	. PGRAD( ICL , 2 )	* YY + PGRAD( ICL , 3 ) * ZZ		4005
4006	2 <b>60</b> C				4006
4007	261	GMTLFT = GL( IS ) *	HRRL * HPPL		4007
4008	262	SQGMTL = SQRT( GMTL	FT)		4008
4009	203 C	YY - ( 701EET( KS )	771EET ( VC ) ) * YYN		4009
4011	265	YY = (7PLEFT(KS))	- 77(FFT(KS)) + YYN		4011
4012	266	ZZ = ( ZPLEFT( KS )	- ZZLEFT( KS ) ) * ZZN		4012
4013	267	UUU = UGRAD( ICL , 1	) * XX + UGRAD( ICL , 2 ) * YY +		4013
4014	268	. UGRAD( ICL , 3	3) * <u>77</u>		4014
4015	269	PPP = PGRAD(1CL, 1)	.) * XX + PGRAD( ICL , 2 ) * YY +		4015
4010	270	101  FT = 5 + (100)	I + PPP / SOCHTI ) / SOCHTI		4017
4018	272 C		String Square y Square		4018
4019	273	XX = ( ZMLEFT( KS )	- ZZLEFT( KS ) ) * XXN		4019
4020	274	YY = (ZMLEFT(KS))	- ZZLEFT( KS ) ) * YYN		4020
4021	275	ZZ = ( ZMLEFT( KS )	- LLLEFT( KS ) ) * ZZN		4021
4022	277	UUU = UGKAD( ILL , I HCDAD( IC) - 3	.) * XX + UGRAD(ILL, 2) * TT +		4022
4023	278	PPP = PGRAD(ICL, 1)	) * XX + PGRAD(ICL 2) * YY +		4024
4025	279	PGRAD( ICL , 3	() * ZZ		4025
4026	280	UMLFT = .5 * ( UUU	I - PPP / SQGMTL ) / SQGMTL		4025
4027	281 C				4027
4028	282	XX = (ZOLEFI(KS))	- 22LEFT( KS ) ) * XXN		4028
4029	203	77 = (2016FT(KS))	-222271(K3)) - 11R - 771557(KS)) + 77%		4030
4031	285	PPP - PGRAD( ICL . 1	) * $XX + PGRAD(ICL, ?) * YY +$		4031
4032	286	. PGRAD( ICL , 3	i) * ZZ		4032
4033	2 <b>87</b> C	· · · ·			4033
4034	288	XX = XXL - ZOLEFT( K	(S ) * XXN		4034
4035	289	17 = 11L - LULLTI ( M	(5) J = TTN (5) X = 77N		4035
4030	290 291 C	LL = LLL + LULEFI( N			4037
4038	292	RRRR = HYDV( ICL . I	) + RGRAD( ICL . 1 ) * XX +		4038
4039	293		RGRAD( ICL , 2 ) * YY + RGRAD( ICL , 3 ) * ZZ		4039
4040	294	URLET - PPP / GMTLET	1 + 1. / HRRL - 1. / RRRR		4040
4041	295 C	U000 U004			4041
4U4Z	290	NKKK = NKKL			7076

Thu Jul	1 14:17	:00 1993	threed.f	SUBROUTINE FCHART	pa <b>ge</b>	57
4043	297	HUUR	= HUUL			4043
4044	2 <b>98</b>	HVVR	- HVVL			4044
4045	2 <b>99</b>	HWWR	= HWWL			4045
4046	300	HPPR	= HPPL			4046
4047	301	С				4047
4048	302	GMTRG	T = GMTLFT			4048
4049	303	SQGMT	R = SQGMTL			4049
4050	304	C				1050
4051	305	UPRGT	= UPLFT			4051
4032	300	UMRGI	= UMLF1			:052
4055	307	C UKKGI	* UKLFI			4053
4055	300	END IF				4054
4056	310					4055
4057	311	ŘRI (K	S) = HRRI			4050
4058	312	UUL( K	$S \hat{J} = HUUL$			4057
4059	313	VVLČ K	S = HVVL			4050
4060	314	WWL(K	S) = HWWL			4050
4061	315	PPL( K	S) = HPPL			4061
4062	316	C				4062
4063	317	RRR(K	S ) ≠ HRRR			4063
4064	318	UUR( K	S = HUUR			4064
4005	319	VVR(K	S = HVVR			4065
4000	320	WWR(K)	S = HWWR			4066
1000	323	, <b>РРК(</b> К	5) = HPPR			4067
4000	322					4068
4070	323	UPLEFT	(KS) ≖ UP1 (KS) - UM1	LT 1 ST		4069
4071	325	IIRI FFT	(KS) = 1101	_: (  FT		40/0
4072	326 (					4071
4073	327	UPRIGT	( KS ) = UPI	RGT		4072
4074	328	UMRIGT	( KS ) = UMF	NGT		4074
4075	32 <b>9</b>	URRIGT	( KS ) = URF	RGT		4075
4076	330	0				4076
4077	331	160 CONTIN	UE			4077
4078	332 (					4078
4079	333 (	CORRECTION	N OF THE FIF	RST GUESS		4079
4000	334 ( 335	00 170				4080
4082	375	. 00 170	K2 = 1 * W	TACO( THO )		4081
4083	337	, IF( HVI	FFT( KS )	CNIFET ( KS ) IF O ) HOLSET ( KS ) - O		4082
4084	338	IFC UV	LEFT(KS)	- CNLEFT(KS) = 0. + UNLEFT(KS) = 0.		4003
4085	339	IFC UV	LEFT (KS).	LE = 0,  URIFFT(KS) = 0.		4004
4086	340 (					4086
4087	341	IF( UVI	RIGT( KS ) +	CNRIGT(KS) . GE . 0. ) UPRIGT(KS) = 0.		4087
4088	342	IF( UV	RIGT( KS ) -	- CNRIGT( KS ) . GE . O. ) UMRIGT( KS ) + O.		4088
4089	343	IF( UVI	RIGT(KS).	GE . 0. ) URRIGT(KS) = 0.		4089
4090	344 (	170 0007100				4090
4091	345	170 CONTINU	JE			4091
4092	340 (	-				4092
4095	342 (	TINAL VALU	JES FOR KIG	II ANU LEFT STATES		4093
4095	349	, DO 180	KS = 1 NC	EVEST INS )		4034
4096	350	15	= KS + NSI	+ 1		4093
4097	351 (	;		*		4090
4098	352	GMTLF1	T = GL(IS)	* RRL( KS ) * PPL( KS )		4098
4099	353	SQGMTL	. = SQRT( GM	ITLET )		4099
4100	354 (					4100
4101	355	GMTRG1	= GR(IS)	* RRR( KS ) * PPR( KS )		4101
4102	356	SQGMTR	R = SQRT{ GM	ITRGT )		4102
4103	357 U					4103
4104	320	KKL( K	(5) = 1.7	(1. / RRL(KS) - (UPLEFT(KS) + UPLEFT(KS))		4104
4106	360		(S) _ 100 (	UTLEFT( K3 ) + UKLEFT( K3 ) )		4105
4107	361		(J) = UUL(	NO / T OVUNIL " ( UPLEFI( NO ) - IMIFET/ KS ) )		4100
4108	362		(S) = VVI (	KS  + SOGMTI * ( UP) FFT( KS ) =		4107
4109	363			UMLEFT(KS))		4109
4110	364	WWL( K	(S) = WWL(	KS ) + SQGMTL * ( UPLEFT( KS ) -		4110
4111	365	•	•	UMLEFT( KS ) )		4111
4112	366	PPL( K	(S ) * PPL(	KS) + GMTLFT * ( UPLEFT( KS) +	1	4112
4113	367	•		UMLEFT( KS ) )		4113
4114	360	000/	S 1 - 1 - 1			4114
4115	370	HRH( K		( 1. / KKK( K2 ) - ( UPKLGI( K2 ) +		4115
-7 A A V	510	•		$u(n_i u(i \land j / T Uniu) ( \land j / j )$		4110

Thu Jul	1 14:1	17:00	1993 threed.f	SUBROUTINE FCHART	<b>page</b> 58
4117 4118	371		UUR( KS ) = UUR( KS ) + SQGMTR	* (UPRIGT(KS) -	4117
4119	373		· VVR( KS ) = VVR( KS ) + SQGMTR	* (UPRIGT(KS) -	4118 4119
4120 4121	374 375		WWR(KS) = WWR(KS) + SOGMTR	UMRIGT( KS ) ) * ( HPRYGT( KS ) -	4120
4122	376			UMRIGT(KS))	4122
4123	378		PPR(KS) = PPR(KS) + GMIRGI	* (UPRIGT(KS) + UMRIGT(KS))	4123 4124
4125	379	C , 90	CONTINUE		4125
4127	381	0	CONTINUE		4126 4127
4128 4129	382 383		DO 200 IS = NS1 , NS2 KS = IS - NS1 + 1		4128
4130	384	С			4130
4131	386		ICL = JS(7, 15) ICR = JS(8, 15)		4131 4132
4133 4134	387 388	C	R(I = RR(KS)		4133
4135	389		UL(IS) = UUL(KS) * XN(IS)	+	4134
4130 4137	390 391		• VVL(KS) * YN(IS) • WVL(KS) * ZN(IS)	+	4136 4137
4138	392		VL(IS) = UUL(KS) * XP(IS)	+	4138
4140	394		• WWL( KS ) * ZP( IS )	+	4139 4140
4141 4142	395 396		WL( IS ) = UUL( KS ) * XT( IS ) . VVI( KS ) * YT( IS )	+ +	4141
4143	397				4143
4144	39 <b>9</b>		PL(IS) = PPL(KS) $AL(IS) = HYDV(ICL + 6)$		4144 4145
4146 4147	400 401		GL(IS) = HYDV(ICL, 7) FL(IS) = HYDV(ICL, 8)		4146
4148	402	C			4147
4149 4150	403 404		IATRB = $JS(9, IS)$ IF(IATRB . EQ, Q) THEN		4149 4150
4151	405	С	00(15) = 000(15)		4151
4153	400		UR(IS) = UUR(KS) * XN(IS)	+	4152 4153
4154 4155	408 409		• VVR(KS) * YN(IS) • WWR(KS) * 7N(IS)	+	4154
4156	410		VR(IS) = UUR(KS) + XP(IS)	+	4156
4157 4158	411		- VVR( KS ) * YP( IS ) - WWR( KS ) * ZP( IS )	+	4157 4158
4159 4160	413 414		WR(IS) = UUR(KS) * XT(IS)	+	4159
4161	415				4161
4162 4163	416 417		PR(IS) = PPR(IS) $AR(IS) = HYDV(ICR, 6)$		4162 4163
4164 4165	418 419		GR(IS) = HYDV(ICR, 7) $FR(IS) = HYDV(ICR, 8)$		4164
4166	420	С			4166
4167 4168	421 422	с	£L3£		4167 4168
4169	423 424	r	IF( IATRB . EQ . 8 ) THEN		4169
4171	425	2	RR(IS) = RIN		4171
4172 4173	426 427		UR(IS) = UIN * XN(IS) + VIN VR(IS) = UIN * XP(IS) + VIN	* YN( IS ) + WIN * ZN( IS ) * YP( IS ) + WIN * ZP( IS )	4172 4173
4174	428		WR(IS) = UIN * XT(IS) + VIN	* YT( IS ) + WIN * ZT( IS )	4174
4176	430		AR(IS) = AL(IS)		4175
4177 4178	431 432		GR( IS ) = GL( IS ) ER( IS ) = EL( IS )		4177 4178
4179	433 434	C			4179
4181	435	C			4180 4181
4182 4183	436 437	с	IF( IATRB . EQ . 7 ) THEN		4182 4183
4184	438 430		RR(IS) = RL(IS)		4184
4186	440		VR(IS) = VL(IS)		4185
4187 4188	441 442		WR( IS ) = WL( IS ) PR( IS ) = PL( IS )		4187 4188
4189	443		AR(IS) = AL(IS)		4189
4130	444		un( 15 / * ul( 15 )		4190

1919       445       ER(IS) - EL(IS)         1919       446       C         1914       446       C         1915       449       IF(IATRB.EQ.6) THEN         4195       450       C         4196       450       C         4197       451       RR(IS) - KL(IS)         4198       452       UR(IS) - VL(IS)         4199       453       UR(IS) - VL(IS)         4200       454       HR(IS) - KL(IS)         4201       455       PR(IS) - KL(IS)         4201       455       PR(IS) - KL(IS)         4203       456       C         4204       458       C         4205       450       C         4206       460       E         4207       461       C         4211       456       C         4211       456       C         4211       456       C         4212       456       C         4214       459       C         4214       450       C         4214       450       C         4214       450       C         4214       G <th>59</th>	59
4192       446       C         4193       447       END IF         4194       448       C         4195       449       IF{ LATRB - EQ , 6 ) THEN         4196       430       C         4196       430       C         4196       431       UR (15) - VU (15)         4196       431       UR (15) - VU (15)         4200       453       UR (15) - VU (15)         4201       454       WR (15) - VU (15)         4202       455       PR (15) - FL (15)         4204       458       ER (15) - EL (15)         4204       458       ER (15) - EL (15)         4205       450       ER (15) - EL (15)         4206       460       END IF         4207       461       C         4210       462       200       CONTINUE         4211       465       C       MS2 - NS2 + 1         4212       460       KS1 - NS2 + 1       KS2 - NS2 + 1         4214       471       END       FUNN         4214       471       END       FUNN         4215       471       FUNN       KS2 - NS2 + 1         4220       C	4191
1333       147       C         1354       149       1F(LATRB.EQ.6).THEN         1355       149       149         1354       149       15         1355       149       15         1357       149       15         1353       147       15         1353       147       15         1353       147       15         1353       147       15         1353       147       15         1353       147       15         1353       147       15         1353       147       15         1353       147       15         14204       458       ER(15) - EL(15)         14205       459       16         14204       458       ER(15) - EL(15)         14214       456       16         14214       456       16         14214       456       16         14214       456       16         14214       456       16         14214       456       16         14214       456       16         14214       16       16	4192
1165       140       1F(1ATRB - EQ - 6 ) THEN         1196       190       C       RR (1S ) - #L(1S )         1197       431       UR (1S ) - #L(1S )         1198       432       UR (1S ) - #L(1S )         1199       433       UR (1S ) - #L(1S )         1199       433       UR (1S ) - #L(1S )         1200       445       PR (1S ) - #L(1S )         1201       455       PR (1S ) - #L(1S )         1202       456       AR (1S ) - #L(1S )         1204       458       ER (1S ) - #L(1S )         1204       458       EN 1F         1213       456       EN 1F         1213       456       PO Continue         1213       457       RETURN         1213       450       C         1414       456       90         1421       461       RETURN         1421       461       SUBROUTINE EOSI (RR, EEE, N, GAPMA)         1421       461       SUBROUTINE EOSI (RR, EEE, N, GAPMA)         14214       C </td <td>4193</td>	4193
9196       450       C       RR [15] - HL(15]         4197       451       WR [15] - UL(15]         4198       452       WR [15] - UL(15]         4200       454       WR [15] - HL(15]         4201       455       PR(15] - HL(15]         4202       456       AR(15] - AL(15)         4203       457       GR [15] - EL(15)         4204       458       ER(15] - EL(15)         4205       459       C         4204       458       ER(15] - EL(15)         4205       459       C         4207       461       C         4211       456       C         4212       466       WS1 - NS2 + 1         4213       467       O CONTINUE         4214       459       O CONTINUE         4215       4369       C         4216       410       C         4217       411       HS1 - NS2 + 1         4216       410       C         4217       411       HS1 - NS2 + NOPVES( INS + 1 )         4218       1       SUBROUTINE EOS1         4219       C       AIR PAREPCRE, INCLUBE IMPERFECT, THERATEC, THERMALLY PERFECT, THERMALLY PERFECT, THERMALLY PERFEC	4194
4197       451       RR (1 5) - RL(15)         4198       452       UR (1 5) - VL(15)         4200       453       VR (1 5) - VL(15)         4201       455       PR (1 5) - PL(15)         4202       455       PR (1 5) - PL(15)         4201       456       PR (1 5) - PL(15)         4202       456       AR (1 5) - PL(15)         4204       458       ER (1 5) - EL(15)         4204       459       C       END IF         4204       450       C       END IF         4204       450       C       END IF         4204       456       C       END IF         4204       456       C       COUTINUE         4210       464       200       CONTINUE         4211       456       O       ENDITH         4214       456       90       CONTINUE         4215       450       C       ATTON         4216       470       RETURN       ENDITH COSI (RR, EEE, N, GAMAD)         4220       C       ATR IS ASSUMED TO BE CALORICALLY IMPERFECT, THERMAILY PERFECT.         4218       1       SUBROUTINE EOSI (RR, EEE, N, GAMAD)         4221       5	4196
4189       452       UR(15) - UL(15)         4200       354       UR(15) - UL(15)         4201       455       PR(15) - PL(15)         4202       456       RR(15) - EL(15)         4203       457       GR(15) - EL(15)         4204       458       ER(15) - EL(15)         4205       459       C         4206       460       END IF         4207       466       C         4210       466       C         4210       467       NS2 - NS2 + I         4214       458       90         4215       469       CO         4216       470       REVIN         4217       471       END         4218       1       SUBROUTINE EOSI (RRR, EEE, N, GAMMA)         4219       C       AIR IS ASSUMED TO BE CALDRICALLY IMPERFECT, THERMALLY PERFECT, 4221         4214       458       C       INPUT VARIBLE DEFINITIONS.         4225       C       ON DENSITY AND INTERNAL EMERGY. THIS ROUTINE PERFORMS A TABLE         4224       C       C       RREFORE, INCLUE IMPERFECTIONS VIA A VARIABLE GAMMA DEPENDENT         4225       C       ON DENSITY AND INTERNAL EMERGY. THIS ROUTINE PERFORNS A TABLE         42	4197
199       453       UK(15) = V(L(15))         4200       454       UK(15) = V(L(15))         4201       455       PR(13) = P(L(15))         4202       456       AR(15) = AL(15))         4203       457       GR(13) = GL(15))         4204       458       C         4205       450       C         4206       460       C         4207       456       G         4208       462       C         4208       462       C         4209       466       C         4200       466       C         4210       466       C         4210       467       C         4210       466       C         4210       467       NS2 + NS2 + 1         4213       467       NS2 - NS2 + NOFVES(1NS + 1)         4214       468       90       CONTINUE         4215       470       RETURN       SUBROUTINE EOS1         4214       469       O       CONTINUE         4215       470       RETURN         4216       14       SUBROUTINE EOS1         4217       471       END	4198
4201       455       PR[15] - PL[15]         4202       456       AR[15] - AL[15]         4204       458       ER(15) - EL[15]         4204       459       C         4205       460       END IF         4206       462       END IF         4207       461       C         4214       465       C         4214       466       YOD CONTINUE         4214       466       YOD CONTINUE         4214       466       YOD CONTINUE         4215       416       YOD CONTINUE         4216       YOD CONTINUE       END         4217       YOT END       YOT END         4218       1       SUBROUTINE EOSI (RRR, EEE.N, GAMMA)         4220       C       AIR IS ASSUMED TO BE CALORICALLY IMPERFECT, THERMALLY PERFECT.         4221       4C       THOREFORE, INCLUDE IMFERFECTIONS VIA A VARIABLE GAMA DEPENDENT         4222       C       INDUESTY AND INTERNAL ENERGY THUIT VOLUME         4223       C       INDUESTO TINUE         4224 </td <td>4199</td>	4199
4202       456       AR(15) - AL(15)         4203       457       GR(15) - EL(15)         4204       458       ER(15) - EL(15)         4205       459       C         4205       450       END IF         4207       461       C         4208       462       END IF         4209       463       C         4211       465       C         4212       466       MS1 - NS2 + 1         4213       467       MS2 - NS2 + NOFVES(1NS + 1)         4214       468       90       CONTINUE         4216       470       ETURN         4217       471       ENO         4218       1       SUBROUTINE EOS1 (RRR, EEE, N, GAMMA)         4219       C       AIR IS ASSUMED TO BE CALORICALLY IMPERFECT, THERMALLY PERFECT, 4223         4214       46       TO DENSITY AND INTERNAL EREGY. THIS ROUTINE PERFORMS A TABLE         4224       C       IMPUT VARIBLE DEFINITIONS.         4225       C       ON DENSITY AND INTERNAL EREGY. THIS ROUTINE PERFORMS A TABLE         4226       C       INPUT VARIBLE DEFINITIONS.         4227       C       GOWERTEO FOR INTERNAL CALL TO ENEREGY PER UNIT VAUIT MASS)         4228 </td <td>4200</td>	4200
4203       457       GR(IS) - GL(IS)         4204       458       ER(IS) - EL(IS)         4205       459       C         4206       450       C         4207       461       C         4208       452       C END IF         4209       463       C         4210       464       200 CONTINUE         4211       465       C         4212       466       NS1 - NS2 + 1         4213       467       NS2 - NS2 + NOFVES(INS + 1)         4214       458       90         CONTINUE       C       ARTURN         4217       471       EN0         Thu Jul 1       14:17:00       1993       threed.f       SUBROUTINE EOSI         4218       1       SUBROUTINE EOSI (RRR.EEE.N.GAMMA)       4219         4219       C       ART IS ASSUMED TO BE CALORICALLY IMPERFECT. THERMALLY PERFECT.         4221       421       C       THEREFORE INCLOS INFRENCETONS VIA A VARIABLE CAMAD DEPENDENT         4223       C       ODENSITY AND INTERNAL ENERGY PER UNIT VOLUME         4224       C       GC       HOWER AMAD.ENERGY PER UNIT VOLUME         4225       S       C       INOWER OF ENTERTONS. <td>4202</td>	4202
4204       438       ER(IS) - EL(IS)         4205       450       450         4206       460       END IF         4207       461       462         4208       462       END IF         4209       463       C         4211       456       MSI - MSZ + 1         4212       466       MSI - MSZ + 1         4213       470       RSI - MSZ + 1         4214       458       90       CONTINUE         4215       450       RETURN         4217       471       ENO         Thu Jul I 14:17:00 1993       threed.f       SUBROUTINE EOSI         4218       1       SUBROUTINE EOSI (RRR,EEE, N, GAMMA)         4219       2       C       AT IS ASSUMED TO BE CALORICALLY IMPERFECT. THERMALLY PERFECT.         4220       3       C       ATRAS SDENSITY       MOI DINTERMAL ENERGY PER UNIT VOLIME         4223       5       C       INPUT VARIBLE DEFINITIONS.       4224         4224       7       C       ERR - MASS DENSITY       ATRAVE RER & EEE         4223       13       C       NUMBER OF ENTRIES IN ARAYS RRA & EEE       4231         4224       10       DIMENSION MP(N), (MA, 1(N), 1(N), 1(	4203
1205       450       END IF         1205       461       C         1206       462       END IF         1208       462       END IF         1209       463       C         1211       465       C         1212       466       NS1 - NS2 + 1         1212       466       90         1214       465       C         1215       469       C         1216       470       RETURN         4217       471       END         1       SUBROUTINE EOS1 (RRR,EEE,N,GAMMA)         4218       1       SUBROUTINE EOS1 (RRR,EEE,N,GAMMA)         4219       2       C         4211       40       C         4221       41       C         4223       C       IREERORE, INCLUDE IMPERFECT, MERMALLE GOS1         4224       C       LOOK UP FOR GAMMA.         4225       C       INPUT VARIBLE OF INITIONS.         4226       9       C       RETERNAL ENERGY PER UNIT VOLUME         4226       9       C       N         4221       10       C       EEE - INTERNAL ENERGY PER UNIT VOLUME         4223       10	4204
2207       461       C       LECK IN         4208       462       END IF         4209       464       200       CONTINUE         4211       465       C       NS1 - NS2 + INSY + NOFVES(INS + 1)         4213       467       NS1 - NS2 + NOFVES(INS + 1)         4214       468       90       CONTINUE         4216       470       RETURN         4217       471       END         71       END       Thu Jul 1 14:17:00 1993       threed.f         4218       1       SUBROUTINE EOS1 (RRR,EEE,N,GAMMA)         4219       2       C         4214       41       The END         7       C       THEREFORE, INCLUDE INPERFECT, SUBROUTINE EOS1         4221       42       C       THEREFORE, INCLUDE INPERFECTIONS VIA A VARIABLE GAMMA DEPENDENT         4223       6       LOOK UP FOR GAMMA.       ENERGY PER UNIT VOLUME         4224       7       C       C         4225       8       C       INPUT VARIBLE DEFINITIONS.         4226       9       C       RRR - MASS DENSITY         4227       10       C       EEE - INTERNAL ENERGY PER UNIT VOLUME         4228       11       C <td>4205</td>	4205
4208       462       END IF         4209       463       C         4211       464       200       CONTINUE         4211       465       C       NS1 = NS2 + NOFVES(INS + 1)         4213       466       90       C         4214       468       90       C         4215       469       C       RETURN         4216       470       RETURN         4217       471       END         1       SUBROUTINE EOSI (RR, EEE, N, GAMMA)         4219       2         4214       466       C         4215       470       RETURN         4216       471       END         4219       C       SUBROUTINE EOSI (RR, EEE, N, GAMMA)         4224       C       INFERFORE, INCLUDE IMPERFECTIONS VIA A VARIABLE GAMAN DEPEMDENT         4224       C       LOOK UP FOR GAMMA.         4225       S       C       INPUT VARIBLE DEFINITIONS.         4226       C       INPUT VARIBLE DEFINITIONS.         4227       10       C       EEE = INTERNAL EMERGY PER UNIT VOLUME         4228       IC       INTERNAL EMERGY PER UNIT VOLUME       EEE         4230       IC	4207
4209       463       C         4210       464       200       CON CONTINUE         4211       466       NS1 - NS2 + I         4212       466       NS2 - NS2 + NOFVES(INS + 1)         4213       467       NS2 - NS2 + NOFVES(INS + 1)         4214       468       90       CONTINUE         4215       469       C       RETURN         4217       41       ENO       NETURN         4217       41       ENO       SUBROUTINE EOSI (RRR, EEE, N, GAWAA)         4218       1       SUBROUTINE EOSI (RRR, EEE, N, GAWAA)       C         4221       4       C       THEREFORE, INCLUDE IMPERFECTIONS VIA A VARIABLE GAWAA DEPENDENT         4222       5       C       ON OKISITY AND INTERNAL ENERGY. THIS ROUTINE PERFORMS A TABLE         4223       6       C       INPUT VARIBLE DEFINITIONS.       C         4224       7       C       EEE       INTERNAL ENERGY PER UNIT VOLUME         4225       8       C       INPUT VARIBLE DEFINITIONS.       C         4226       9       C       RR - MASS DENSITY       C         4227       10       C       EEE       INTERNAL ENERGY PER UNIT VOLUME         4228       11	4208
#210       404       ZUD       CUNTINUE         4211       465       C       NSI - NSZ + 1         4213       466       NSI - NSZ + 1         4214       468       90       CONTINUE         4215       469       C         4216       470       RETURN         4217       471       END         Thu Jul 1       14:17:00       1993       threed.f         SUBROUTINE EOSI (RRR, EEE, N, GAMMA)       2         4219       2       C         4220       3       C       AIR IS ASSUMED TO BE CALORICALLY IMPERFECT, THERMALLY PERFECT, 4221         4221       4       C       THERFORE, INCLUDE IMPERFECT, THERMAL EGAMMA DEPENDENT         4223       5       C       IN DERFORE, INCLUDE IMPERFECT, THERMAL EGAMMA DEPENDENT         4224       7       C       LOK UP FOR GAMMA.         4225       8       C       INPUT VARIAL ENERGY PER UNIT VOLUME         4226       9       C       RR = MASS DENSITY         4227       10       C       EEE = INTERNAL ENERGY PER UNIT VOLUME         4230       12       C       N = NUMBER OF ENTRIES IN ARRAYS RRR & EEE         4231       14       PARAMETER (M = 64)       C	4209
111       102       C       NS1 = NS2 + NOFVES(INS + 1)         1212       466       90       CONTINUE         1214       466       90       CONTINUE         1215       469       0       RETURN         1217       471       END         1       SUBROUTINE EOSI (RRR, EEE, N, GAMMA)         1       210       C         1       SUBROUTINE EOSI (RRR, EEE, N, GAMMA)         1       C       AIR IS ASSUMED TO BE CALORICALLY IMPERFECT, THERMALLY PERFECT,         1       4210       C       AIR IS ASSUMED TO BE CALORICALLY IMPERFECT, THERMALLY PERFECT,         1       4220       C       AIR IS ASSUMED TO BE CALORICALLY IMPERFECT, THERMALLY PERFECT,         4221       4       C       THEREPORE, INCLUDE IMPERFECTIONS VIA A VARIABLE CAMMA DEPENDENT         4222       C       OD DENSITY AND INTERNAL ENERGY. THIS ROUTINE PERFORMS A TABLE         4223       6       C       HOWT VARIBLE DEFINITIONS.         4224       7       C       C         4225       8       C       INPUT VARIBLE DEFINITIONS.         4226       10       C       RR + MASS DENSITY         4228       11       C       (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS) <tr< td=""><td>4210</td></tr<>	4210
4213       467       mS2 - MS2 + NOFVES(INS + 1)         4214       468       90       CONTINUE         4215       469       C       RETURN         4216       470       RETURN         4217       471       END         Thu Jul 1 14:17:00       1993       threed.f       SUBROUTINE EOSI         4218       1       SUBROUTINE EOSI (RRR,EEE,N,GAMMA)         4219       2       C         4220       3       C       AIR IS ASSUMED TO BE CALORICALLY IMPERFECT, THERMALLY PERFECT.         4221       4       C       THREFRORE, INCLUDE IMPERFECTIONS VIA A VARIABLE GAMMA DEPENDENT         4223       C       ON DENSITY AND INTERNAL ENERGY. THIS ROUTINE PERFORMS A TABLE         4224       C       INPUT VARIBLE DEFINITIONS.         4225       B       C       INPUT VARIBLE DEFINITIONS.         4226       C       RR - MASS DENSITY         4227       10       C       EEE       INTERNAL ENERGY PER UNIT VOLUME         4228       I       C       INTERNAL ENERGY PER UNIT VOLUME       C         4229       I       C       INTERNAL ENERGY PER UNIT VOLUME       C         4230       I       DIMENSION TII(M), IZ(M), IZ(M), TZ(M), RD(M), E(M) <td< td=""><td>4212</td></td<>	4212
4214       466       90       CONTINUE         4215       469       C         4216       470       RETURN         4217       471       ENO         Thu Jul I 14:17:00 1993       threed,f       SUBROUTINE EOSI         4218       1       SUBROUTINE EOSI (RRR, EEE, N, GAMMA)         4219       2       C         4219       2       C         4220       3       C         4221       4       C         4223       C       THREFORE, INCLUDE IMPERFECTIONS VIA A VARIABLE CAMMA DEPENDENT         4224       C       UDOK UP FOR GAMMA.         4225       C       ON DENSITY AND INTERNAL ENERGY PER UNIT NOLINE         4224       C       INPUT VARIBLE DEFINITIONS.         4225       C       INPUT VARIBLE DEFINITIONS.         4226       C       RR - MASS DENSITY         4227       IO       C       EEE - INTERNAL ENERGY PER UNIT VOLUME         4228       IC       O       INTERNAL CALL TO ENERGY PER UNIT MASS)         4229       IC       N = NUMBER OF ENTRIES IN ARRAYS RRE & EEE         4231       I       DIMENSION RRP(N), EEE(N), GAMMA(N)         4233       I       DIMENSION RRP(N), T2(M), T22(M)	4213
4215       409       C         4216       470       RETURN         4217       471       END         1       SUBROUTINE EOS1       RETURN         4218       1       SUBROUTINE EOS1 (RR, EEE, N, GAMMA)         4219       2       C         4210       3       C         4211       4       C         4212       4       C         4213       4       C         4214       C       THERFORE, INCLUDE IMPERFECTIONS VIA A VARIABLE GAMMA DEPENDENT         4222       5       C       ON DENSITY AND INTERNAL ENERGY. THIS ROUTINE PERFORMS A TABLE         4224       7       C       Imput VARIBLE DEFINITIONS.         4225       9       C       RR = MASS DENSITY         4226       9       C       RR = MASS DENSITY         4227       10       C       EEE = TINERAL ENERGY PER UNIT VOLUME         4228       11       C       (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4230       12       C       N       -NUMBER OF ENTRIES IN ARRAYS RR & EEE         4231       14       PARAMETER (N = 64)	4214
4217       471       END         Thu Jul 1 14:17:00 1993       threed.f       SUBROUTINE EOS1         4218       1       SUBROUTINE EOS1 (RR, EEE, N, GAMMA)         4219       2       C         4220       3       C       AIR IS ASSUMED TO BE CALORICALLY IMPERFECT. HERMALLY PERFECT.         4220       3       C       AIR IS ASSUMED TO BE CALORICALLY IMPERFECT. THERMALLY PERFECT.         4221       4       C       THEREFORE, INCLUGE IMPERFECTIONS VIA A VARIABLE GAMMA DEPENDENT         4222       5       C       ON DENSITY AND INTERNAL ENERGY. THIS ROUTINE PERFORMS A TABLE         4223       6       C       LOOK UP FOR GAMMA.         4224       C       C         4225       8       C       INPUT VARIBLE DEFINITIONS.         4226       9       C       RR + MASS DEMSITY         4227       10       C       EEE = INTERNAL ENERGY PER UNIT VOLUME         4228       11       C       (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4229       1       C       Norwerted FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4230       13       C       NARAMETER (M = 64)         4231       1       DIMENSION RP(M), EEE(N), GAMMA(N)         4233	4215
Thu       Jul       J	4210
Thu Jul 1       14:17:00       1993       threed.f       SUBROUTINE EOSI         4218       1       SUBROUTINE EOSI (RRR, EEE, N, GAMMA)         4219       2       C       AIR IS ASSUMED TO BE CALDRICALLY IMPERFECT. THERMALLY PERFECT.         4221       4       C       THEREFORE, INCLUDE IMPERFECTIONS VIA A VARIABLE GAMMA DEPENDENT         4222       5       C       ON DENSITY AND INTERNAL ENERGY. THIS ROUTINE PERFORMS A TABLE         4224       7       C       IONU VARIBLE DEFINITIONS.         4225       8       C       INPUT VARIBLE DEFINITIONS.         4226       9       C       RR - MASS DENSITY         4227       10       C       EEE INTERNAL ENERGY PER UNIT VOLUME         4228       I       C       (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4230       13       C       N - NUMBER OF ENTRIES IN ARRAYS RRR & EEE         4231       14       PARAMETER (M - 64)       IMENSION RRP(N), EEE(N), GAMMA(N)         4233       16       DIMENSION RRP(N), EEE(N), GAMMA(N)         4234       17       DIMENSION RRP(N), G(M), I(M), J(M)         4235       18       DIMENSION ONFORD, G(MI), G(M), J(M), J(M)         4236       C       GG(112), G7(112), GF(640)         4239	7611
42181SUBROUTINE EOSI (RRR, EEE, N, GAMMA)42192C42203C42214C42214C42225C42236C424474256C42647425742647427142874291429142914201421142214221423142414258426142710428142912429124211042291242110422912423134231342316423164231642316423164231642316423164231642316423164231642316423164231642316423164231642316423164231642316423164241042410425<	
1Soundof Time Cost (NRR, CLE, N, GAMA)42192422034221442144214421442144214422542264224642258422674226742271422814229142291422014229142201422914220142201422114222142231422414224142251422714228142291422914230142311442321642321542331616114(M), 112(M), 712(M), 722(M), RHO(M), E(M)42331617118042341719019019019019019019019019019019019019019019019019019 <td>421R</td>	421R
4220       3       C       AIR IS ASSUMED TO BE CALORICALLY IMPERFECT, THERMALLY PERFECT,         4221       4       C       THEREFORE, INCLUDE IMPERFECTIONS VIA A VARIABLE GAMMA DEPENDENT         4221       4       C       ON DENSITY AND INTERNAL ENERGY.       THIS ROUTINE PERFORMS A TABLE         4223       6       C       LOOK UP FOR GAMMA.       ENERGY       THIS ROUTINE PERFORMS A TABLE         4224       7       C       C       INPUT VARIBLE DEFINITIONS.       E         4226       9       C       RRR - MASS DENSITY       C       C         4227       10       C       EEE = INTERNAL ENERGY PER UNIT VOLUME       (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4229       12       C       N       NUMBER OF ENTRIES IN ARRAYS RRR & EEE       E         4230       13       C       IMENSION RRP(N), EEE(N), GAMMA(N)       E         4231       14       PARAMETER (M = 64)       C       E         4233       15       DIMENSION RRP(N), EEE(N), GAMMA(N)       E         4234       17       DIMENSION MPP(M), Q(M), I(M), J(M)       G(112), G5(112), G5(112), G5(112), G1(23)         4235       10       IMENSION MPP(M), Q(M), I(M), J(M)       G(112), G7(112), GF(840)         4236       1	4219
4221       4       C       THEREFORE, INCLUDE IMPERFECTIONS VIA A VARIABLE GAMMA DEPENDENT         4222       5       C       ON DENSITY AND INTERNAL ENERGY. THIS ROUTINE PERFORMS A TABLE         4223       6       C       LOOK UP FOR GAMMA.         4224       7       C         4225       8       C       INPUT VARIBLE DEFINITIONS.         4226       9       C       RRR - MASS DENSITY         4227       10       C       EEE - INTERNAL ENERGY PER UNIT VOLUME         4228       11       C       (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4229       12       C       N       - NUMBER OF ENTRIES IN ARRAYS RRR & EEE         4230       13       C       MENSION REP(N), EEE(N), GAMMA(N)         4231       14       PARAMETER (M = 64)         4232       15       C       DIMENSION TII(M), TI2(M), T21(M), T22(M), RHO(M), E(M)         4233       16       DIMENSION MOP(M), Q(M), 1(M), J(M)       G(112), G5(112), G4(112), G5(112), G5(112), G4(12), G5(12), G4(12), G5(12), G4(12), G5(12), G4(12), G5(12), G4(12), G5(12), G4(12), G5(12), G5(12), G4(12), G5(12), G5(12), G7(122), G4(12), G5(12), G5(12)	4220
4222       5       C       ON DENSITY AND INTERNAL ENERGY. THIS ROUTINE PERFORMS A TABLE         4223       6       C       LOOK UP FOR GAMMA.         4224       7       C         4225       8       C       INPUT VARIBLE DEFINITIONS.         4226       9       C       RRR - MASS DENSITY         4227       10       C       EEE - INTERNAL ENERGY PER UNIT VOLUME         4228       11       C       (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4229       12       C       N - NUMBER OF ENTRIES IN ARRAYS RRR & EEE         4230       13       C         4231       14       PARAMETER (M - 64)         4232       15       C         4233       16       DIMENSION RRP(N), EEE(N), GAMMA(N)         4234       17       DIMENSION RRP(N), O(M), T12(M), T12(M), T22(M), RHO(M), E(H)         4235       18       DIMENSION GI(168), G2(112), G3(112), G4(112), G5(112),         4236       19       DIMENSION MPR(N), O(M), T12(M), T21(M), T22(M), RHO(M), E(H)         4238       21       C       G6(112), G7(112), G3(112), G4(112), G5(112),         4239       22       C       NOTE: THE TABLE LOOK UP TREATS ARRAY GF AS THOUGH IT         4240       23       C	4221
4223       0       C       LOUK UP FOR GAMPA.         4224       7       C         4225       8       C       INPUT VARIBLE DEFINITIONS.         4226       9       C       RR = MASS DENSITY         4227       10       C       EEE = INTERNAL ENERGY PER UNIT VOLUME         4228       11       C       (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4229       12       C       N       NUMBER OF ENTRIES IN ARRAYS RRE & EEE         4230       13       C       (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4231       14       PARAMETER (M = 64)       (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4232       15       C       DIMENSION TI1(M), T12(M), T21(M), T22(M), RHO(M), E(H)         4233       16       DIMENSION T11(M), T12(M), T21(M), T22(M), RHO(M), E(H)         4234       17       DIMENSION GI(168), G2(112), G4(112), G5(112), G5(112), G6(112), G6(112), G7(12), G7(12), G7(12), G7(12), G7(12), G5(112), G5(112), G5(112), G4(112), G5(112), G4(112), G5(112), G4(12), G7(12), G7(12), G7(12), G7(100, G7(10), G	4222
4225       B       C       INPUT VARIBLE DEFINITIONS.         4226       9       C       RRR - MASS DENSITY         4227       10       C       EEE - INTERNAL ENERGY PER UNIT VOLUME         4228       II       C       (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4229       12       C       N       - NUMBER OF ENTRIES IN ARRAYS RRR & EEE         4230       13       C       Variable of ENTRIES IN ARRAYS RRR & EEE         4231       14       PARAMETER (M - 64)         4232       15       C         4233       16       DIMENSION RIP(N), EEE(N), GAMMA(N)         4234       17       DIMENSION T11(M), T121(M), T21(M), T22(M), RHO(M), E(H)         4235       18       DIMENSION T11(M), T12(M), J(M)         4236       19       DIMENSION G1(168), G2(112), G3(112), G4(112), G5(112),         4237       20       i       G6(112), G7(112), G7(840)         4238       21       C       Vere DIMENSIONED (8, 105).         4240       23       C       WOTE: THE TABLE LOOK UP TREATS ARRAY GF AS THOUGH IT         4240       24       C       EQUIVALENCE (G1(1), GF (12)), (G2(1), GF (169)), (G3(1), GF (281)), I         4241       1       (G4(1), GF (393)), (G5(1), GF (505)), (G6(1), GF	4223 4774
4226       9       C       RRR - MASS DENSITY         4227       10       C       EEE - INTERNAL ENERGY PER UNIT VOLUME (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4228       II       C       (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4228       II       C       (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4229       I2       C       N - NUMBER OF ENTRIES IN ARRAYS RRR & EEE         4230       13       C         4231       I4       PARAMETER (M = 64)         4232       I5       C         4233       I6       DIMENSION RRP(N), EEE(N), GAMMA(N)         4234       I7       DIMENSION ONP(M), Q(M), I(M), T22(M), T22(M), RHO(M), E(M)         4235       I8       DIMENSION ONP(M), Q(M), I(M), J(M)         4236       I       G6(112),G7(112),G4(112),G5(112),         4238       C       VERE DIMENSIONED (8,105).         4240       23       C       WERE DIMENSIONED (8,105).         4241       24       C       EQUIVALENCE (G1(1),GF(1)), (G2(1),GF(169)), (G3(1),GF(281)),         4242       25       EQUIVALENCE (G1(1),GF(729))       C         4244       26       I       (G7(1),GF(729))         4245       28       <	4225
4227       10       C       EEE = INTERNAL ENERGY PER UNIT VOLUME (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4228       11       C       N = NUMBER OF ENTRIES IN ARRAYS RR & EEE         4230       13       C         4231       14       PARAMETER (M = 64)         4232       15       C         4233       16       DIMENSION RRP(N), EEE(N), GAMMA(N)         4234       17       DIMENSION TI1(M), T12(M), T21(M), T22(M), RHO(M), E(M)         4235       18       DIMENSION OMP(M), Q(M), I(M), J(M)         4236       19       DIMENSION GI(168), G2(112), G3(112), G4(112), G5(112),         4237       20       !       G6(112), G7(112), G4(112), G4(112), G5(112),         4238       21       C       NOTE: THE TABLE LOOK UP TREATS ARRAY GF AS THOUGH IT         4240       23       C       WERE DIMENSIONED (8,105).         4241       24       C       EQUIVALENCE (G1(1), GF(1)), (G2(1), GF(169)), (G3(1), GF(281)),         4242       25       EQUIVALENCE (G1(1), GF(729))       (G7(1), GF(505)), (G6(1), GF(617)).         4244       27       1       (G7(1), GF(729))       (G7(1), GF(617)).         4244       27       1       (G7(1), GF(729))       (G4(1), GF(617)).         4245       28	4226
4228       11       C       (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)         4229       12       C       N       - NUMBER OF ENTRIES IN ARRAYS RRR & EEE         4230       13       C         4231       14       PARAMETER (M = 64)         4232       15       C         4233       16       DIMENSION RRP(N), EEE(N), GAMMA(N)         4234       17       DIMENSION T11(M), T12(M), T21(M), T22(M), RHO(M), E(M)         4235       18       DIMENSION 0MP(M), Q(M), I(M), J(M)         4236       19       DIMENSION GI(168),G2(112),G3(112),G4(112),G5(112),         4238       21       C         4238       21       C         4239       22       C         4239       22       C         4241       24       C         4242       25       EQUIVALENCE (G1(1),GF(1)), (G2(1),GF(169)), (G3(1),GF(281)),         4242       25       EQUIVALENCE (G1(1),GF(729))         4244       26       1       (G7(1),GF(729))         4245       28       C         4246       29       DATA XL16E       /2.7725887222397744835689081810414791107177734375/         4247       1       (G7(1),GF(729))       C       G6 ACR	4227
4239       12       C       N = NONDER OF ENTRIES IN ARRAIS RAR & LEE         4231       14       PARAMETER (N = 64)         4232       15       C         4233       16       DIMENSION RRP(N), EEE(N), GAMMA(N)         4234       17       DIMENSION T11(M), T12(M), T21(M), T22(M), RHO(M), E(M)         4235       18       DIMENSION OMP(M), Q(M), I(M), J(M)         4236       19       DIMENSION G1(168), G2(112), G3(112), G4(112), G5(112),         4237       20       i       G6(112), G7(112), GF(840)         4238       21       C       4239       22       C         4239       22       C       NOTE: THE TABLE LOOK UP TREATS ARRAY GF AS THOUGH IT         4240       23       C       WERE DIMENSIONED (8, 105).         4241       24       C       EQUIVALENCE (G1(1), GF(1)), (G2(1), GF(169)), (G3(1), GF(281)).         4242       25       EQUIVALENCE (G1(1), GF(729))       1       (G7(1), GF(729))         4245       28       C	4228
4231       14       PARAMETER (M = 64)         4232       15       C         4233       16       DIMENSION RRP(N), EEE(N), GAMMA(N)         4234       17       DIMENSION T11(M), T12(M), T21(M), T22(M), RHO(M), E(M)         4235       18       DIMENSION OMP(M), Q(M), I(M), J(M)         4236       19       OIMENSION G1(168),G2(112),G3(112),G4(112),G5(112),         4237       20       i       G6(112),G7(112),GF(840)         4238       21       C       NOTE: THE TABLE LOOK UP TREATS ARRAY GF AS THOUGH IT         4240       23       C       WERE DIMENSIONED (8,105).         4241       24       C       EQUIVALENCE (G1(1),GF(1)), (G2(1),GF(169)), (G3(1),GF(281)),         4242       25       EQUIVALENCE (G1(1),GF(729))       (G3(1),GF(617)),         4243       26       i       (G4(1),GF(729))         4245       28       C       DATA XLIGE /2.7725887222397744835689081810414791107177734375/         4246       29       DATA XLIGE /2.7725887222397744835689081810414791107177734375/         4247       30       C       G - GAMMA - 1.0 IS STORED FOR 32 BIT WORD MACHINES IN POWERS OF         4249       32       C       16 ACROSS FOR MASS DENSITY VARIATION AND INTERMEDIATE VALUES         4250       33       C </td <td>4230</td>	4230
4232       15       C         4233       16       DIMENSION RRP(N), EEE(N), GAMMA(N)         4234       17       DIMENSION T11(M), T12(M), T21(M), T22(M), RHO(M), E(H)         4235       19       DIMENSION OMP(M), Q(M), I(M), J(M)         4236       19       DIMENSION G1(16B),G2(112),G3(112),G4(112),G5(112),         4237       20       i       G6(112),G7(112),GF(840)         4238       21       C	4231
4233       16       DIMENSION RRP(N), ELE(N), GAMMA(N)         4234       17       DIMENSION T11(M), T12(M), T21(M), T22(M), RHO(M), E(M)         4235       18       DIMENSION OMP(M), Q(M), I(M), J(M)         4236       19       DIMENSION GI(16B), G2(112), G3(112), G4(112), G5(112),         4237       20       i       G6(112), G7(112), GF(840)         4238       21       C         4239       22       C       NOTE: THE TABLE LOOK UP TREATS ARRAY GF AS THOUGH IT         4240       23       C       WERE DIMENSIONED (8,105).         4241       24       C         4242       25       EQUIVALENCE (G1(1), GF(1)), (G2(1), GF(169)), (G3(1), GF(281)).         4243       26       1       (G4(1), GF(393)), (G5(1), GF(505)), (G6(1), GF(617)),         4244       27       1       (G7(1), GF(729))         4245       28       C       DATA XLIGE /2.7725887222397744835689081810414791107177734375/         4246       29       DATA XLIGE /2.7725887222397744835689081810414791107177734375/         4247       30       G       G       GAMMA - 1.0 IS STORED FOR 32 BIT WORD MACHINES IN POWERS OF         4248       31       C       G = GAMMA - 1.0 IS STORED FOR 32 BIT WORD MACHINES IN POWERS OF         4249       32	4232
4235       17       DIMENSION OMP(M), (M), (M), (M), (M), (M)         4235       18       DIMENSION OMP(M), Q(M), I(M), J(M)         4236       19       DIMENSION GI(168), G2(112), G3(112), G4(112), G5(112),         4237       20       !       G6(112), G7(112), GF(840)         4238       21       C         4239       22       C       NOTE: THE TABLE LOOK UP TREATS ARRAY GF AS THOUGH IT         4240       23       C       WERE DIMENSIONED (8,105).         4241       24       C         4242       25       EQUIVALENCE (G1(1), GF(1)), (G2(1), GF(169)), (G3(1), GF(281)),         4243       26       1       (G4(1), GF(393)), (G5(1), GF(505)), (G6(1), GF(617)),         4244       27       1       (G7(1), GF(729))         4245       28       C	4233
4236       19       DIMENSION GI(168), G2(112), G3(112), G4(112), G5(112),         4237       20       1       G6(112), G7(112), GF(840)         4238       21       C         4239       22       C       NOTE: THE TABLE LOOK UP TREATS ARRAY GF AS THOUGH IT         4240       23       C       WERE DIMENSIONED (8, 105).         4241       24       C         4242       25       EQUIVALENCE (G1(1), GF(1)), (G2(1), GF(169)), (G3(1), GF(281)).         4243       26       1       (G4(1), GF(393)), (G5(1), GF(505)), (G6(1), GF(617)).         4244       27       1       (G7(1), GF(729))         4245       28       C          4246       29       DATA XL16E       /2.7725887222397744835689081810414791107177734375/         4248       31       C       G       G admma + 1.0 IS STORED FOR 32 BIT WORD MACHINES IN POWERS OF         4249       32       C       16 ACROSS FOR MASS DENSITY VARIATION AND INTERMEDIATE VALUES         4250       33       C       1 - 16 FOR POWERS OF 16 VERTICALLY WHICH REPRESENT THE INTERNAL         4251       34       C       ENERGY VARIATION.         4252       35       C         4253       36       C       16**(7). GE. RHO .GE. 16**(6)	4235
4237       20       i       G6(112),G7(112),GF(840)         4238       21       C         4239       22       C       NOTE: THE TABLE LOOK UP TREATS ARRAY GF AS THOUGH IT         4240       23       C       WERE DIMENSIONED (8,105).         4241       24       C         4242       25       EQUIVALENCE (G1(1),GF(1)), (G2(1),GF(169)), (G3(1),GF(281)).         4242       25       EQUIVALENCE (G1(1),GF(1)), (G2(1),GF(505)), (G6(1),GF(617)).         4242       25       I       (G4(1),GF(729))         4244       27       I       (G7(1),GF(729))         4245       28       C	4236
4238       21       C         4239       22       C       NOTE: THE TABLE LOOK UP TREATS ARRAY GF AS THOUGH IT         4240       23       C       WERE DIMENSIONED (8,105).         4241       24       C         4242       25       EQUIVALENCE (G1(1),GF(1)), (G2(1),GF(169)), (G3(1),GF(281)).         4242       25       EQUIVALENCE (G1(1),GF(1)), (G2(1),GF(505)), (G6(1),GF(617)),         4242       26       1       (G7(1),GF(729))         4245       28       C         4246       29       DATA XL16E       /2.7725887222397744835689081810414791107177734375/         4247       30       C	4237
4239       22       C       NOTE: THE TABLE LOOK OF TREATS ARRAY OF AS TROUGH TT         4240       23       C       WERE DIMENSIONED (8,105).         4241       24       C         4242       25       EQUIVALENCE (G1(1), GF(1)), (G2(1), GF(169)), (G3(1), GF(281)).         4243       26       1       (G4(1), GF(393)). (G5(1), GF(505)), (G6(1), GF(617)).         4244       27       1       (G7(1), GF(729))         4245       28       C         4246       29       DATA XL16E       /2.7725887222397744835689081810414791107177734375/         4247       30       C	4238
4241       24       C         4242       25       EQUIVALENCE (G1(1), GF(1)), (G2(1), GF(169)), (G3(1), GF(281)),         4243       26       I       (G4(1), GF(393)), (G5(1), GF(505)), (G6(1), GF(617)),         4244       27       I       (G7(1), GF(729))         4245       28       C          4246       29       DATA XL16E       /2.7725887222397744835689081810414791107177734375/         4246       29       DATA XL16E       /2.7725887222397744835689081810414791107177734375/         4247       30       C       G       G GAMMA - 1.0 IS STORED FOR 32 BIT WORD MACHINES IN POWERS OF         4248       31       C       G - GAMMA - 1.0 IS STORED FOR 32 BIT WORD MACHINES IN POWERS OF         4249       32       C       16 ACROSS FOR MASS DENSITY VARIATION AND INTERMEDIATE VALUES         4250       33       C       1 - 16 FOR POWERS OF 16 VERTICALLY WHICH REPRESENT THE INTERNAL         4251       34       C       ENERGY VARIATION.         4252       35       C         4253       36       C       16**(7) .GE. RHO .GE. 16**(-6)         4254       37       C       16**(15) .GE. E       .GE. 16**(8)	4240
4242       25       EQUIVALENCE (G1(1), GF(1)), (G2(1), GF(169)), (G3(1), GF(281)),         4243       26       I       (G4(1), GF(393)), (S5(1), GF(505)), (G6(1), GF(617)),         4244       27       I       (G7(1), GF(729))         4245       28       C	4241
4243       20       1       (G4(1),GF(393)), (S5(1),GF(505)), (G6(1),GF(617)),         4244       27       1       (G7(1),GF(729))         4245       28       C	4242
4245       28       C         4246       29       DATA XL16E       /2.7725887222397744835689081810414791107177734375/         4248       30       C	4243 4244
4246       29       DATA XL16E       /2.7725887222397744835689081810414791107177734375/         4247       30       C	4245
424730C424831CG = GAMMA - 1.0 IS STORED FOR 32 BIT WORD MACHINES IN POWERS OF424932C16 ACROSS FOR MASS DENSITY VARIATION AND INTERMEDIATE VALUES425033C1 - 16 FOR POWERS OF 16 VERTICALLY WHICH REPRESENT THE INTERNAL425134CENERGY VARIATION.425235C425336C $16^{**}(2)$ .GE. RHO .GE. $16^{**}(-6)$ 425437C $16^{**}(15)$ .GE. E425437C $16^{**}(15)$ .GE. E425437C $16^{**}(15)$ .GE. E425437C425437C425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437425437<	4246
424831CG = GAMMA - 1.0IS STORED FOR 32BIT WORD MACHINES IN POWERS OF424932C16ACROSS FOR MASS DENSITY VARIATION AND INTERMEDIATE VALUES425033C1 - 16FOR POWERS OF 16VERTICALLY WHICH REPRESENT THE INTERNAL425134CENERGY VARIATION.425235C425336C16**(?).GE. RHO.GE. 16**(-6)425437C16**(15).GE.E.GE. 16**(8)	4247
4249       52       C       10 ACROSS FOR MASS DENSITY VARIATION AND INTERMEDIATE VALUES         4250       33       C       1 - 16 FOR POWERS OF 16 VERTICALLY WHICH REPRESENT THE INTERNAL         4251       34       C       ENERGY VARIATION.         4252       35       C         4253       36       C       16**(?)         4254       37       C       16**(15)         4254       37       C       16**(15)         4254       37       C       16**(15)	4248
4251 34 C ENERGY VARIATION. 4252 35 C 4253 36 C 16**(2) .GE. RHO .GE. 16**(-6) 4254 37 C 16**(15) .GE. E .GE. 16**(8)	4250
4252 35 C 4253 36 C 16**(?) .GE. RHO .GE. 16**(-6) 4254 37 C 16**(15) .GE. E .GE. 16**(8)	4251
4253 36 C 16**(2) .GE. RHD .GE. 16**(-6) 4254 37 C 16**(15) .GE. E .GE. 16**(8)	4252
4254 J/ C 10**(15).GE. E .GE. 10**(8)	4253
	4254 4255
4256 39 DATA G1 /8*.4222.8*.4152.8*.4110.8*.4081.8*.4058.8*.4040.	4256
4257 40 1 8*.4024,8*.4011,8*.3998,8*.3988,8*.3978,8*.3969,	4257
4258 41 8*.3961,8*.3953,8*.3935,8*.3918,	4258
4259 42 1 .3723,.3715,.3707,.3699,.3690,.3680,.3663,.3637, 4260 43 1 3555 3538 3522 3502 7476 3420 3344 3239	4259 4260
4261 44 ! .3370,.3370,.3370,.3364,.3347,.327730992885.	4261

Thu Jul	1 14:17:00	1993	threed.f	SUBROUTINE EOSI	<b>page</b> 60
4262	45	ł	.3257,.3227.	.3201,.3134,.3062,.3014,.2884,.2591.	4262
4203	40	I DATA	.3166,.3110,	.3063, .2946, .2831, .2783, .2677, .2358/	4263
4265	47	UATA	3075 2006	-2940, -2787, -2635, -2588, -2502, -2236, -2810, -2656, -2456, -2418, -2360, -2131	4264
4266	49	1	.30432819.	.269525542317226922162038	4265
4267	50	1	.29292740.	.259324552206213620971955.	4200
4268	51	1	.2840, .2672,	.2500, .2366, .2166, .2015, .1988, .1879,	4268
4269	52	1	.2764, .2611,	.2429,.2285,.2125,.1890,.1890,.1811,	4269
4270	53	1	.2714, .2555	. 384, .2210, .2079, .1818, .1/99, .1747,	4270
4271	54 56	1	2009,	.2343,.2141,.2037,.1822,.1709,.1689,	4271
4273	56	1	.259	2268 2087 1961 1834 1673 1601	4272
4274	57	i	.24012191.	.197217751592144413581203.	42/3 8778
4275	58	I	.2002,.1960,	.1749, .1536, .1376, .1252, .1107, .1044,	4275
4276	59	1	.19111829,	.1633,.1420,.1266,.1101,.1012,.0933,	4276
4277	60	I DATA	.1950,.1781,	.1566,.1415,.1241,.1118,.1009,.0948/	4277
4270 4270	01 62	UAIA	63/.20011/89,	.159414431306118910951013.	4278
4280	63	1	2034 1854	1683 1497 1322 1160 1051 0046	4279
4281	64	i	.19691855.	168514871304114910240916.	4200
4282	<del>65</del>	1	.1899,.1837,	.1677, .1475, .1287, .1126, .1002, .0900,	4282
4283	66	1	.1841,.1817,	.1667,.1464,.1272,.1109,.0983,.0888,	4283
4284	6/	!	.1800,.1800,	.1659, .1455, .1262, .1097, .0965, .0878,	4284
4285	00 69	1	1773 1778	1057,.1450,.1254,.1087,.0949,.0868, 1656 1447 1250 1090 0030 0950	4285
4287	70	i	.17831778.	1658.1448.1248.1076.0933.0851	4280
4288	71	1	.1808, .1781,	166714511248107409300843.	4288
4289	12	!	.2134,.2040,	.1978, .1782, .1565, .1368, .1206, .1074,	4289
4290	73	!	.22102072.	.1957, .1739, .1516, .1312, .1137, .1000.	4290
4291	/4 76		.2245,.2109,.	.198917721563139012471133/	4291
4293	75		2350 2157	2023 1708 1575 1370 1107 1067	4292
4294	77		.23972194.	.203417961572137212051070	4293
4295	78	ł	.24522227.	2050, 1805, 1576, 1379, 1236, 1118,	4295
4296	79	1	.2510,.2256,	2069, 1814, 1581, 1383, 1231, 1103,	4296
429/	80		.25602282	2091, 1822, 1585, 1385, 1226, 1083,	4297
4290	82	1	2677 2358	2111,.1029,.1508,.1380,.1222,.1070, 2129 1835 1592 1385 1219 1071	4298
4300	83	i	.27592403	214518571598138912191078.	4299
4301	84	L	.2834,.2445,.	2160,.1878,.1603,.1394,.1223,.1084,	4301
4302	85	1	.2905,.2484,.	2175, 1898, 1613, 1399, 1226, 1090,	4302
4303	85	1	.2963,.2531,.	2199, 1918, 1625, 1407, 1230, 1096,	4303
4304	88	1	.4323,.3302,. 4510 4026	3624 3212 2025 2551 2375 2015/	4304
4306	89	DATA (	5/.41993837.	340129792623231821081854.	4305
4307	90	1	.3924,.3642,.	3194, .2760, .2427, .2157, .1902, .1721,	4307
4308	91	1	.37943479.	3025, .2673, .2311, .2019, .1842, .1613,	4308
4309	92	1	.3674,.3448,.	2961, .2593, .2255, .1994, .1785, .1594,	4309
4310 4311	93	:	3661 3438	2910,.2517,.2293,.2006,.1843,.1679,	4310
4312	95	1	.36743435	308027282606257725732573	4311 4312
4313	96	i.	.3685,.3453	3210, .3014, .2942, .2933, .2932, .2932.	4313
4314	97	1	.3814,.3612,.	3341,.3276,.3257,.3253,.3252,.3252,	4314
4315	98 00	1	.3903,.3752,.	3570, .3522, .3513, .3510, .3506, .3496,	4315
4310	39	1	.4012,.3899,.	3/82,.3/51,.3/43,.3/41,.3/34,.3/13, 3056 3030 3020 3013 3007 2000	4315
4318	101	i	.42904205	411840924077406540594047.	4318
4319	102	1	.5411,.5385,.	5359, .5353, .5351, .5350, .5350, .5350/	4319
4320	103	DATA G	6/.5823,.5812,.	5801, .5797, .5796, .5797, .5797, .5797,	4320
4321	104	1	.6096,.6090,.	6085,.6082,.6082,.6083,.6083,.6083,.	4321
4323	105	1	.0300,.0300,. 6481 6483	0307, 0303, 0303, 0305, 0305, 0305, 6485 6483 6484 6486 6487 6497	4322
4324	107	i	.66276632	663766366637664066406640	4JZJ 4324
4325	108	l	.6754,.6761	6769, .6768, .6770, .6773, .6773, .6773.	4325
4326	109	1	.68666875	6885,.6884,.6886,.6890,.6890,.6890,	4326
4327	110		.6966,.6977,.	6989,.6989,.6991,.6995,.6995,.6995, 7083, 7083, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085, 7085,	4327
4320	112	1	./UDD,./U/U,. 7130 7164	/VOJ,./VOJ,./UO5,./U90,./U90,./090, /160 7160 7172 7176 7172 7173	4328
4330	113	i	.7214	724872487251725672567256.	4329
4331	114	i	.72857303	7321,.7321,.7325,.7330,.7330,.7330,	4331
4332	115	!	.7350,.7370,.	7390, .7390, .7393, .7398, .7399, .7399,	4332
4333	110	I DATA C	./411,.7432,.	/453,.7454,.7457,.7463,.7463,.7463/	4333
4335	118	UNIA G	.8454 8496	0130,.0139,.0145,.0152,.0153,.0153, 8538 .8540 .8547 .8556 .8557 .8557	4334 1775
		•	************	~~~~; • \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

ł

Thu Jul	1 14:17	:00	993 threed.f	SUBROUTINE EOSI	page	61
4336	119		.8727, .8774, .8822,	.8825,.8832,.8842,.8843,.8843,		4336
4337	120		.8938,.8990,.9042,	.9046,.9054,.9064,.9065,.9065,		4337
4338 4330	121		1 .3111,-9190,-92224 1 0258 0316 037 <i>1</i>	-9220,.9235,.9240,.9247,.9247, 9370 9387 9390 9400 9400		4338
4340	123		1 .938494459506.	.95119520953295339533.		4340
4341	124		.9496, .9559, .9622.	.9627,.9637,.9649,.9650,.9650,		4341
4342	125		.9596,.9661,.9727,	.9731,.9741,.9754,.9755,.9755,		4342
4343	126			.9826,.9836,.9849,.9850,.9850, 0012 0022 0025 0037 0037		4343
4344	127		984599159986.	.999199229930,.99379937.		1345
4346	129		.991599879999,	.9999,.9999,.9999,.9999,.9999,		4346
4347	130	-	ı .9981,.9999,.9999,	.9999,.9999,.9999,.9999,.9999/		4347
4348	131	(		ON CLEMODE DATA (NO TEND MODEL)		4348
4349	132	C	TO AVOID COSTLY LOGARITHMI	C FUNCTIONS THE TABLE "G" IS STORED IN A		4350
4351	134	č	FORM SO THAT THE HEXADECIM	AL WORD STRUCTURE OF A 32 BIT MACHINE		4351
4352	135	C	MAY BE EXPLOITED.			4352
4353	136	C	THIS LOGIC MAY BE TRANSFER	ED TO OTHER MACHINES BY RECALCULATING		4353
4355	137	č	MACHINE DEPENDENT FUNCTION	S AND KEY NUMBERS MUST ALSO BE CHANGED.		4355
4356	139	Č				4356
4357	140		RL16E = 1./XL16E			4357
4358	141		IST = 0			4358
4359 4360	142	r	NK = N			4359
4361	144	<b>10</b>	CONTINUE			4361
4362	145		NST = MINO(NR,M)			4362
4363	146	C				4363
4304	147		UU 20 IKE=1,NSI DUO(105) - 778413+000(151	105)		4304
4365	149		F(1RE) = AMAX1(3.e8, 10000)	*EEE(IST+IRE)/RRR(IST+IRE))		4366
4367	150	C				4367
4368	151	ç	CALCULATE MASS DENSITY VAR	IATION INDEX "I".		4368
4369	152	Ų	TEM _ ALOC(0HO(TEE))*01 166	± 500 0		4309
4371	154		I(IRE) = AINT(TEM)			4371
4372	155		OMP(IRE) = TEM - FLOAT(I(I	RE))		4372
4373	156		I(IRE) = 502 - I(IRE)			4373
43/4 1375	15/	r	I(IRE) = MAXU(I(IRE), I)			4374
4376	159	č	CALCULATE INTERNAL ENERGY	VARIATION INDEX "J".		4376
4377	160	Ċ				4377
4378	161		TEM = ALOG(E(IRE))*RL16E			4378
43/9 11380	162		JCT = AINI(IEM) $TEM = TEM = FLOAT(JCY)$			4320
4381	164		TEM = EXP(XL16E*TEM)			4381
4382	165		JCY = JCY = 7			4382
4383	166		JS = AINT(TEM)			4383
4384 4385	168		V(IRE) = IS + IS			4385
4386	169		J(IRE) - MINO(J(IRE).104	)		4386
4387	170		J(IRE) = I(IRE) + 8*J(IRE)	E)		4387
4388	171	20	I(IRE) = J(IRE) - 8			4.568 4380
4390	173	C 20	CONTINUE			4390
4391	174	-	DO 30 IRE=1,NST			4391
4392	175		T11(IRE) = GF(1(IRE))			4392
4393	176		121(1RE) = GF(1(1RE)+1) 12(1PE) = GF(1(1PE))			4395 4304
4395	178		$\frac{12(1RC) = GF(J(1RC))}{122(1RE) = GF(J(1RF)+1)}$			4395
4396	179	30	CONTINUE			4396
4397	180	ç				4397
4 J98 4 300	181	ι r	CALCULATE GAMMA BY LINEAR	INIERPOLATION.		4300
4400	183	ç	DO 40 IRE=1.NST			4400
4401	184		T12(IRE) = T12(IRE) - T11(	IRE)		4401
4402	185		T22(IRE) = T22(IRE) - T21(			4402
44US 4408	180 197		uAmmA(ISI+IKL) = 0MP } + (1 _ ∩MD	(1KE) = (111(1KE) + U(1KE) + 12(1KE)) (1RE) + (121(1RE) + 0(1RE) + 122(1RE))		4404
4405	188		i + 1.	(Inc); (Tex(Inc) · Y(Inc) Tee(Inc);		4405
4406	189	40	CONTINUE			4406
4407	190	C				4407 4409
4408 4400	102		nK = nK - nST $IST = IST + NST$			4409
1.103	1.20					

Thu Jul	1 14:17:00	1993 threed.f	SUBROUTINE EOSI	<b>page</b> 62
4410	193 194 C	IF(NR.GT.0) GO TO 10		4410
4412	195	RETURN		4412
4413	196	END		4413
4414	197 C			4414
Thu Jul	1 14:17:00	1993 threed.f	SUBROUTINE MATRLA	
4415	1	SUBROUTINE MATRLA		4415
4416	2 C		1156	4416
4417		FVALUATES MATERIAL PROPER	TILS	441/ 4418
4419	5 Č			4419
4420	6	include 'dmtr10.1		4420
4421 AA22	7	CHARACTER*8 PRODUCT	(15), PHASE(15), GG, SS, VV, NASAP	4421
4422	9	$\begin{array}{ccc} REAL & A(15), \\ REAL & CE(7,2). \end{array}$	(V(0:5.2)	4422
4424	10 C			4424
4425	11	DATA KVOL/15*0	)./	4425
4426	12	DATA GG/'G'/,	SS/'S'/, VV/'VVV'/	4426
4427	15		13#*VVVV */	4427 4428
4429	15	DATA PHASE/2*'G',13*		4429
4430	16 C			4430
4431	17 C	DATA PRODCT/'H2O', 'H	//////////////////////////////////////	4431
4432 4433	10 C	1	7*' '/	4432 AA33
4434	20 Č			4434
4435	21	ALFAA=.5		4435
4436	22	BETAA=.09585		4436
4437 4438	23	(HE (AA=400. CADDAA_12 685		443 AA38
4439	25	NNASA=100		4439
4440	26	X(1)-21.		4440
4441	27	X(2)=79.		4441
4442	28	KVUL(1)=350. KVOL(2)=380		4442
4444	30	M(1)=32.		4444
4445	31	M(2)=28.016		4445
4446	32	CVS(1)=0.		4446
999/ 4448	33	CV3(2)=0. RHOS(1)=0.		444/
4449	35	RHOS(2)=0.		4449
4450	36	HS = 0		4450
4451	37	<b>NG =</b> 0		4451
4452	30 L 30	TMS = 0.		4452
4454	40	COVA = 0.		4454
4455	41	GML = 0.		4455
4456 4467	42	SML = 0. SV = 0		4450 ##57
4458	44	SCVA = 0.		4458
4459	45 C			4459
4460	46	REWIND 4		4460
4401 AA62	4/ 48	UU IIU 1 = 1, 15 TF ( PRODAT(1) FA )		4401 1462
4463	49	NS = I		4463
4464	50 C			4464
4465	51	IF ( PHASE(I) .EQ. G	G) THEN	4405
4400 4467	52 53	mu = mu + 1 $GML = GML + X(1)$		4467
4468	54	THS = THS + X(1)*M(1)		4468
4469	55	COVA = COVA + X(I)*K	/OL(I)	4469
44/0 4471	50 C 57	FISE TE ( DHASE(T) (	CO SS ) THEN	44/0
4472	58	PHASE(1) = VV	ахун та у 11961¥	4472
4473	59	SML = SML + X(1)		4473
4474	60	TMS = TMS + X(1)*M(1)	(r ( <b>1</b> )	4474
44/5 4476	01 62	SUVA = SUVA + X(1)*U	(3(1) 2HOS(1)	44/3 4476
4477	63 C	9A = 3A ≤ V(1) U(1)/I		4477
4478	64	ELSE		4478
4479	65	STOP ' PRODUCTS EITH	ER SULID, S, OR GAS, G'	4479
4460	00 L			4400

.

(

page

Thu Jul	1 14:1	7:00	1993	threed.f	SUBROUTINE MATRLA	p <b>age</b>	63
4481	67		END IF				4481
4482	60 60	110	CONTIN	UE			4482
4484	70	10	IF(N	S.IT. 1)	STOP ' NO PRODUCTS ?'		4403
4485	71	ĉ	., (				4485
4486	72		COVA -	COVA * CAF	PPAA / GML		4486
4487	73		FSA =	TMS/AMAX1(S	SV.1.E-15)		4487
4488	74		TML =	GML + SML			4488
4469	/5			GML/:ML			4489
4450	70		WMA	TMS/TMI			4490 AAQ1
4492	78	C					4492
4493	79		DO 130	INASA = 1	, NNASA		4493
4494	80		IF (N	G .EQ. 0 )	GO TO 20		4494
4495	81	1	READ (	4,1001) NAS	SAP, ID		4495
4495	82	1001	FURMAT	(A8,/1X,11)			4496
4497 AAQR	84	c	16 ( 1	U .NE. 1 )	GU 10 I		449/
4499	85	U.	D0 120	T = 1. NS			4499
4500	86		IF (	NASAP .EQ.	. PRODCT(I) .AND. PHASE(I) .EQ. GG ) THEN		4500
4501	87		PHAS	E(I) = VV			4501
4502	88		NG -	NG - 1			4502
4503	89	1000	READ	(4,1002) (	(CF(K,KK),K=1,7),KK=1,2)		4503
4504	90	1002	FURM	AI(5115.8)			4504
4505	91	L.	CF	(1 1) <del>-</del> (E(	(1.1) - 1		4505
4507	93		ČF	(1.2) = CFI	(1,2) - 1		4507
4508	94		DO	115 K = 0	5		4508
4509	95		CV	(K,1) = CV(	(K,1) + (X(1)/GML)*CF(K+1,1)		4509
4510	96	115	CV	(K,2) = CV(	(K,2) + (X(I)/GML)*CF(K+1,2)		4510
4511	97	C	TNO	16			4511
4512	90	120	CONTIN	15			4512
4514	100	0	CONTIN	UL .			4514
4515	101	130	CONTIN	VE			4515
4516	1 <b>02</b>	С					4516
4517	103	20	DO 140	I = 1, NS			4517
4518	104	140	IF ( P	HASE(I) .NE	. VV ) STOP ' SPECIES NOT FOUND IN MASA'		4518
4519	105	140	CUNTIN	UE			4519
4521	107	L	DQ 150	1 = 3, 50			4521
4522	108	150	TA(1)	= FLOAT ( 100	)*1)		4522
4523	109	C					4523
4524	110		CALL P	SM ( CV(0,2	2),4, TA(3),8, CVMA(3) )		4524
4525	111	c	CALL P	JM ( CV(0,)	(),4, (A(11),40, CVMA(11) )		4525
4520	112	L	DO 155	K = 1 4			4527
4528	114		CV(K.1	) = CV(K.1)	)/FLOAT(K+1)		4528
4529	115	155	CV(K,2	) = CV(K,2)	)/FLOAT(K+1)		4529
4530	116	C					4530
4531	117		CALL P	SM ( CV(0,2	2),4, TA(3),8, EMEOA(3) )		4531
4532	118	c	CALL P	SM ( UV(U,)	1),4, 1A(11),40, EMEUA(11) )		4532
4534	120	Ŀ	00 160	I = 3, 10			4534
4535	iži	160	EMEOA (	$I) = TA(I)^{2}$	'EMEQA(I)		4535
4536	122		DO 161	1 = 11, 50			4536
4537	123	161	EMEOA(	$I) = TA(I)^{\prime}$	'EMEOA(I)		4537
4538	124	C	00 100	1 3 64			4538
4539 4540	125	180	EMEUV (	1 = 3, 30 1) = EMEON	(1)*XCA + TA/1)*SCVA		4540
4541	127	500	LICOM	ij - cricum	(1) VAU - M(1) SCHU		4541
4542	128	-	CALL B	ILD (EMEOA,	48, RANGEA, DYA)		4542
4543	129	C	_		· ·		4543
4544	130		RETURN				4544
4545	131		END				4545

Thu Jul	1 14:	17:00	1993	three	ed.f	SUBROUTINE PSM	page	64
4546	1		SUBRO	UTINE P	SM (A,N	POL, T,N, SMM)		4546
4547	2	С						4547
4548	3	c	REAL	A(0	:NPOL).	T(N), SMM(N)		4548
4550	5	L	DO 10	.1 = 1	N			4549
4551	6	10	SMM(J)	) = A(N	POL)			4550
4552	7	C	• •		,			4552
4553	8	^	DO 20	K = NP	0L-1, 0	, -1		4553
4004 4555	10	ι	n0 1	51	1 11			4554
4556	11	15	SMM	(J) = S	X, N MM(J) *	T(J) + A(K)		4555
4557	12	č		(*) 5				4330
4558	13	20	CONTIN	IUE				4558
4559	14	C	057101					4559
4561	16		FND	•				4560
4562	17	C						4561
The dul	1 14.	17.00	1003	three	d f			100L
ind out	1 14.	17.00	1997	un ee	u. 1	SUBRUUTINE BILD		
4563	1	~	SUBROU	ITINE B	ILD(Y,N,	,RANGE,DY)		4563
4004	2	ι		(N) DA		2001		4564
4566	4		IF( N	.GT. 2	01 ) STO	2007 NP 1 ANEY 201 DOINTS ALLOWED 1		4565
4567	5	С			••• ) 510	ST UNET ZUT FUTITS ALLUNED		4300
4568	6		RANGE	- (Y(N	+2) - Y(	(3)) / (N-1)		4568
4569	7		DO 10	1 = 1	N-1			4569
4570	ő	10		:) ≃ Y{  110	1+3) - 1	r(1+2)		4570
4572	10	C,	CONTIN					4571
4573	11	•	RETURN	ŀ				4372
4574	12		END					4574
Thu Jul	1 14:	17:00	1993	three	d.f	SUBROUTINE MATRLX		
4575	1	~	SUBROU	TINE M	ATRLX			4575
45/0 4577	2	C	DEADE	MATCOL	AL 30000			4576
4578	4	č	FVALUA	TES MAI	TERTAL R	KIILS PELATED CONTANTS		4577
4579	5	č	211,000					43/0
4580	6		includ	e	'dntr10.	h'		4580
4581	7		CHARAC	TER*8	PRODCT	(15), PHASE(15), GG, SS, VV, NASAP		4581
4502	q		REAL	,	K(15), K CE(7 2)	VUL(15), M(15), RHOS(15), CVS(15)		4582
4584	10	С	NENG	,				4003
4585	11		DATA	1	<pre><vol 15*<="" pre=""></vol></pre>	0./		4585
4586	12		DATA	9	G/'G'/,	SS/'S'/, VV/'VVV'/		4586
4587	13	c	DATA	C	CV/12*0.	1		4587
4589	15	U.	DATA P	RODCT	H201	021 101 1N21 10+19908 1/		4588
4590	16		DATA P	HASE/4*	iiGi isi	10*' '/		4590
4591	17	С		_				4591
4592	18		ALFAX=	.5				4592
4594	20		THETAY	-UYOOD -400				4593
4595	21		CAPPAX	-12.685	5			4595
4596	22		NNASA=	100				4596
4597	23		X(1)=2	.5				4597
4590	24		$\chi(2) = 1$	.00				4598
4600	26		X(4)=1	.5				4399
4601	27		X(5)=5	.15				4601
4602	28		KVOL(1)	=250.				4602
4003	29		KVOL(2)	J=600.				4603
4605	31		KVOL(3)	=380.				4004
4606	32		KVOL (5)	)=0.				4606
4607	33		M(1)=18	3.				4607
4608	34		M(2)=44	ł.				4608
4009 4610	2C 76		m(3)=26 M(A)=26	). 1				4509
4611	37		M(5)=12	2.				4010
4612	38		CVS(5)-	1.1				4612
4613	39		RHOS(5)	=2.6				4613

Ø

Thu Jul	I I	4:17:00	1993 threed.f	SUBROUTINE MATRLX	page	65
4614	4	0	NS = 0			4614
4615	4	1	NG - 0			4615
4617	4	3	TMS = 0.			4010
4618	4	4	COVX = 0.			4618
4619 4620	4: 4:	5	GML = 0. SML = 0			4619
4621	4	7	SV = 0.			4620
4622	4	8	SCVX = 0.			4622
4023	4	9 C 0	REWIND 4			4623 4624
4625	5	1	DO 110 I = 1, 15			4625
4626	5	2	IF ( PRODCT(I) .	EQ. VV ) GO TO 10		4626
4027	5. 5	3 4 C	W2 = 1			4627 4628
4629	5	5	IF ( PHASE(I) .E	Q. GG ) THEN		4629
4630	5	6	NG = NG + 1			4630
4632	5	8	TMS = TMS + X(1)	•M(I)		4031 4632
4633	5	9	COVX = COVX + X(	I)*KVOL(I)		4633
4634	5	0 C	FISE TE ( DUASE/	T) EO SS ) THEN		4634
4636	6	2	PHASE(I) = VV	i) . Eq. 55 ) There		4035 4636
4637	6	3	SML = SML + X(I)			4637
4638 4630	5	4 5	$\frac{1}{1} \frac{1}{1} \frac{1}$	*M(1) T)*CVS(1)		4638
4640	6	6	SV = SV + X(I) * M	(1)/RHOS(I)		4640
4641	6	7 C	51 6F			4641
4642 4643	6	8 9	ELSE STOP ' PRODUCTS	FITHER SOLID S OR GAS C'		4642
4644	7	o c		LIMER SOLID, S, OR GRS, G		4644
4645	7	1	END IF			4645
4040 46 <b>4</b> 7	7	2 110 3 C	CUNTINUE			4040 4647
4648	7	4 10	IF ( NS .LT. 1 )	STOP ' NO PRODUCTS ?'		4548
4649	7	5 C				4649
4050	7	0 7	FSX = LUVA = LA	2PAX / GML SV_1_F-15)		4050
4652	71	8	TML = GML + SML			4652
4653	79	9	XGX = GML/TML			4653
4054	8	1	WMX = TMS/TML	-		4054
4656	8	<b>2</b> C				4656
4657 4668	83	3	DO 130 INASA = 1 IE ( NC EO O )	, NNASA CO TO 20		4657
4659	8	5 1	READ (4,1001) NA	SAP, ID		4659
4660	8	<u>6</u> 10 <b>01</b>	FORMAT(A8,71X,11			4660
4001	- 84 84	/ B C	IF ( 10 .NE. 1 )			4001 4662
4663	89	9	DO 120 I = 1, NS			4663
4664	90	0	IF ( NASAP .EQ	. PRODCT(I) .AND. PHASE(I) .EQ. GG ) THEN		4664
4005	92	2	NG = NG - 1			4666
4667	93	3	READ (4,1002)	((CF(K,KK),K=1,7),KK=1,2)		4667
4668	94	4 1002 5 C	FORMAT(5E15.8)			4008
4670	9	6	CF(1,1) = CF	(1.1) - 1.		4670
4671	97	7	CF(1,2) = CF	(1,2) - 1.		4671
40/2 4673	90	5 9	$\frac{100115}{CV(K,1)} = CV$	, 5 (K_1) + (X(T)/GML)*CF(K+1_1)		4072 4673
4674	100	0 115	CV(K,2) = CV	(K,2) + (X(I)/GML)*CF(K+1,2)		4674
4675	10	1 C	5ND 75			4675
4677	103	3 120	CONTINUE			4677
4678	10	4 C				4678
4679 4680	10	5 130 6 C	CONTINUE			4679 4680
4681	10	7 20	DO 140 I = 1. NS			4681
4682	108	8	IF ( PHASE(I) .N	E. VV ) STOP ' SPECIES NOT FOUND IN NASA'		4682
4083 4684	109	9 140 0 C	CONTINUE			4684
4685	11	ī	DO 150 I = 3, 50			4685
4686	112	2 150	TX(I) = FLOAT(10)	)*1)		4686
408/	11.	JL				400/

Thu Jul	1 14:17:	10 1993 three	ed.f	SUBROUTINE	MATRLX	page	66
4688 4699 4691 4692 4693 4694 4695 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 Thu Jul	114         115         116         117         118         119         120         121         122         123         124         125         126         127         128         129         130         131         0         134         135         1         14:17:	CALL PSM ( ) CALL PSM ( ) CALL PSM ( ) CV(K,1) = C1 CV(K,2) = C1 CALL PSM ( ) CALL PSM ( ) CALL PSM ( ) DO 160 I = 1 DO 161 I = 1 DO 161 I = 1 DO 180 I = 2 CALL BILD (E RETURN END 0 1993 three	CV(0,2),4, TX( CV(0,1),4, TX( (K,1)/FLOAT(K (K,2)/FLOAT(K CV(0,2),4, TX( CV(0,1),4, TX( 1, 50 X(1)*EMEOX(I) 1, 50 X(1)*EMEOX(I) 4, 50 MEOX(I)*XGX + MEOX,48,RANGE) ed.f	3),8, CVMX(3) ) 11),40, CVMX(11) ) +1) +1) 3),8, EMEOX(3) ) 11),40, EMEOX(3) ) 11),40, EMEOX(11) ) FX(I)*SCVX K,DYX) SUBROUTINE	VOLMTETC		4688 4699 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4705 4706 4707 4708 4709
4710	1		OLMTETC ( 11	12 13 X Y. 7			4710
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4735 4735 4736 4737 4738 9739	1 2 0 0 3 4 0 0 5 6 0 0 7 8 9 0 0 11 12 0 14 15 0 14 15 0 14 15 0 14 15 0 14 15 0 22 23 0 22 23 0 22 23 0 22 26 0 27 28 29 0 20 0 21 0 22 26 0 27 0 28 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SUBROUTINE A VOLMTETC F GRID VERTI THE CODE A FORMED BY BY THE RIC COUNTER-CL TRIANGLE, 1 DECEMBER, DECEMBER, DOUBLE PREC DOUBLE PREC include	OLMTETC ( I1, INDS THE VOLUM CES I1, I2, I1 SSUMES THAT TH I1, I2 AND I3 HT HAND RULE, OCKWISE AS VII (X, Y, Z) ALSO HE VOLUME RETU F THE VERTICE! AND RULE THE V 1991: M. FRITT ISION R21X, R21 ISION VOLUMT,) 'dmsh00.h'	I2, I3, X, Y, Z, Y ME OF THE TETRAHEDRI AND THE POINT (X HE AREAL VECTOR OF POINTS IN THE DIREC IF I1, I2 AND I3 AI WED FROM ABOVE THE D LIES ABOVE THE PL/ JRNED IS A SIGNED QU S ARE NOT ORDERED B YOLUME WILL BE NEGA IS, FRITTS%MCL.SAINN (301) 266-0992	VOLUMT ) ON DEFINED BY THE , Y, Z). THE BASE TRIANGLE CTION OF (X, Y, Z): RE ARRANGED PLANE OF THE ANE). BUT NOTE UANTITY - IE. Y THE RIGHT TIVE. ET@CCC.NERSC.GOV,		4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4723 4724 4723 4724 4725 4726 4727 4728 4726 4727 4728 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
4740	31 C 32 C	*************	^것##\$\$## <b>#</b> ####	م ه ه یو چه ه یو ه و یو ه یو	발해 도소 뉴 유 유 온 는 방 문 국 <b>소 공 북 문 발 유 두 고 1</b>	•	4740
4742 4743 4744 4745 4746 4747 4748 4747 4748 4750 4751 4750 4751 4755 4755 4755 4755 4755 4756 4757 4758	32       C         33       C         35       36         37       38         39       40         41       42         43       C         44       C         45       46         47       48       C         48       C         49       C	FIND THE VOL R21X = XV( R21Y = XV( R21Z = XV( R31X = XV( R31Y = XV( R31Z = XV( R41X = X R41Y = Y R41Z = Z VOLUMT = 1 2	UME OF THE TE1 1,12) - XV(1,1 2,12) - XV(2,1 3,12) - XV(3,1 1,13) - XV(1,1 2,13) - XV(2,1 3,13) - XV(3,1 - XV(2,1 - XV(2,1 - XV(3,1 - XV(3,1) - XV(3,1 - XV(3,1) - XV(3,1 - XV(3,1) - XV(3,1)	RAHEDRON	- • )/6.00		4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4755 4755 4755 4755 4755 4755 4755

Thu Jul	1 14:	17:00	1993	threed.f	SUBROUTINE VOLMTETC page	e 67
4759 4760 4761 4762 4763 4764 4765	50 51 52 53 54 55 56	C C C C C	RETUR	RN 		4759 4760 4761 4762 4763 4764 4765

## Thu Jul 1 14:15:40 1993

	#	routine	page
	1	AUGUST	1
	2	HYDRFI	13
	3	HYDRMN	18
	Ă	GEOMTR	25
	5	HEATE	20
	š	UDCDAD	29
	0	UFUIDU	20
Thu Jul	1 14:15	:40 1993	mainhd.f
	#	routine	page
	1	AUGUST	1
	2	GEOMTR	25
	3	HYDREL	13
	4	HYDRMN	18
	5	HPDATE	20
	6	IIDCDAN	29
		UT UNVE	<u> </u>

mainhd.f

Module List - order of occurence

i

Module List - alphabetical order

Thu Jul	1 14:	15:40	1993	i	mainhd.	d.f PROGRAM AUGUST pa	ige
1	1	•	PRO	GRAM	AUGUST	ST	
3	2	C	( <b>* *</b> * <b>*</b> *	****	******	***************************************	
4 5	4 5	С С		The	AUGUST	T Code	
6	6	C				- Adaptive	
8	8	č				- Godunov	
9 10	9 10	C C				- Upwind - Second order	
11	11	Č				- Triangular	
13	13	c				The geometry structure comes from BERMUDA	
14 15	14 15	С С				The solver is based on FUGGS	
16	16	Č		Vone	ione	2.00 june 17 1001	
18	18	č		ver.2	1011:		
19 20	19 20	C C		Auth	ors:	Itzhak Lottati (703)749-8648 Shmue) Eidelman (703)448-6491	
21	21	Ç				Adam Drobot (703)734-5840	
23	23	č				Science Applications International Corporation	
24 25	24 25	C C				Applied Physics Operation 1710 Goodridge Drive	
26 27	26	C				McLean, Virginia 22102	
28	28	C===	*****	****	*****	≝ċ##??₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	
29 30	29 30	C C					
31 32	31 32	C					
33	33	č	BE	RMUD	AISA	A MULTIDIMENSIONAL CODE WHICH IS BASED ON THE	
34 35	54 35	č			FOR	FIELD LIKE QUANTITIES. THE CODE REQUIRES I	
36 37	36 37	C C			THAT	T ALL QUANTITIES ARE BASED AT THE BARICENTER I	
38	38	č			TUT (		
39 40	39 40	C			TRIAN	ANGLES ARE NEVER HEARD FROM AGAIN.	
41 42	41 42	C C			THE E	BASIC MODULES IN BERMUDA INCLUDE:	
43	43	Č					
44	45	č				BASED ON A FIRST ORDER GODUNOV I	
46 47	46 47	C C				METHOD OR A SECOND ORDER GODUNOV I WITH MESH ADAPTATION. I	
48	48 40	Ċ				1	
50	50	Č					
51 52	51 52	Ċ	GH	ud s	ETUP TA	TABLES AND THEIR MEANING:	
53 54	53 54	C	++ +	++++	******	***************************************	
55	55	č	+	LI	ST OF V	VERTICES +	
50 57	50 57	C	+		IV	- VERTEX INDEX +	
58 59	58 59	C C	+		JV(1	(1,IV) - S STATUS OF THE POINT + S=0 FRFF POINT WHICH MAY RF +	
60	60	č	+			DELETED/MOVED +	
62	62	č	+			S=1 POINT RESTRICTED TO A SURFACE +	
63 64	63 64	С С	++			S=3 POINT WHICH IS FIXED AND MAY + NOT BE REMOVED +	
65	65	č	+		JV(2	(2,IV) - INDEX OF A LINE WHICH INCLUDE THE +	
67	00 67	C	+			NEGATIVE MEANS THE POINT IS ON A +	
68 69	68 69	C C	+		XV(1	BOUNDARY LINE + (1.IV) - X POSITION OF VERTEX +	
70	70	č	+		XV(2	(2.1V) - Y POSITION OF VERTEX +	
72	72	C	++	·++++	++++++	+ ++++++++++++++++++++++++++++++++++++	
73	73	С					

page

l

Thu Jul 1 14:15:40 1993

mainhd f

PROGRAM AUGUST

hu Jul	1 14:3	15:40	1993	mainhd.f	PROGRAM AUGUST	page 2
74	74	С	+-	*****	• • • • • • • • • • • • • • • • • • • •	74
75	75	Ç	+		+	75
/6	/6	C	+	LIST OF EDGES	+	76
78	// 78	c c	+	IF	- FDGF INDEX +	//
79	79	č	, +	JE(1, IE)	- INDEX OF LOWER EDGE VERTEX +	70
80	80	č	+	JE(2.IE)	- INDEX OF UPPER EDGE VERTEX +	80
81	81	Č	+		+	81
82	82	C	+	FOR TWO DIMENSI	ONAL PROBLEMS +	82
83	83	č	+	15/2 15)		83
04 85	04 85	č	÷	JE(3, IE)		84
86	86	č	+	02(4,10)	- INDEX OF RIGHT SIDE +	86
87	87	č	+	IF JE(3-4,	IE) IS NEGATIVE THIS INDICATES THAT THE +	87
88	88	C	+	•	EDGE LIES ALONG A BOUNDARY. +	88
89	89	Ç	+			89
90	90	C	+	JE(5,1E)	- INDEX DEFINING BOUNDARY CONDITION +	90
91	91	r	- <b>+</b>		$6 = 0$ WALL V_PERPENDICULAR=0 +	91
93	93	č	+		7 - SUPERSONIC OUTFLOW +	93
94	94	Ĉ	+		8 - INFLOW BOUNDARY +	94
95	95	C	+		+	95
96	96	ç	+	XE(1,IE)	- LENGTH OF EDGE +	96
9/	97	C	+	XE(2,IE)	- DISTANCE BETWEEN ADJOINING SIDE +	97
90	90	ř	+		PUINIS. +	98
100	100	č	++	*****	***************************************	100
101	101	č				101
102	102	Č	++	*****	*******	102
103	103	C	+		+	103
104	104	Ç	+	LIST OF SIDES	+	104
105	105	C	+	15		105
107	100	ř		15	- SIDE INDEX +	100
108	108	č	+	JS(2, IS)	- INDEX OF SECOND VERTEX +	108
109	109	Ċ	+	JS(3.15)	- INDEX OF THIRD VERTEX +	109
110	110	ι	+		+	110
111	111	ç	+	THE VERTIC	ES RUN AROUND THE SIDE IN ORDER +	111
112	112	C C	+	COUNTER-CL	UCKWISE FASHION +	112
113	115	ř	+	.15(4 15)	- INDEX OF THE FIRST FOCE +	113
115	115	č	+	JS(5, IS)	- INDEX OF THE SECOND EDGE +	115
116	116	č	+	JS(6, IS)	- INDEX OF THE THIRD EDGE +	116
117	117	C	+		+	117
118	118	ç	+	THE EDGES	ARE ARRANGED IN COUNTER-ICLOCKWISE +	118
119	119	C	+	FASHION. E	UGE ONE RUNS FROM VERTEX-ONE TO +	119
121	120	ř	+		TA IS STORED THE SAME WAY IF IT IS +	120
122	122	č	+	JS>0 AND I	T IS REVERSED JS<0 +	122
123	123	Č	+		+	123
124	124	C	+	XS(1,1S)	- X POSITION OF SIDE POINT +	124
125	125	ç	+	XS(2, IS)	- Y POSITION OF SIDE POINT +	125
120	120	د د	+	Y2(2,12)	~ AKEA UF SIDE +	120
128	128	č			+	127
129	129	č	++	*****	*****	129
130	130	C				130
131	131	C===	****	**************	ᅽਸ਼ਫ਼ਖ਼ੑਜ਼ਫ਼ਫ਼ਖ਼ਲ਼ _{ਸ਼} ਗ਼ਗ਼ਖ਼ਸ਼ਖ਼ਫ਼ਫ਼ਜ਼ੑਜ਼ੑਜ਼ੑਸ਼ੑਸ਼ਸ਼ਖ਼ਫ਼ਫ਼ਸ਼ੑਖ਼ਸ਼ਫ਼ਸ਼ਸ਼ਖ਼ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼	131
132	132	ç		THITTON FOR ALL U		132
133	122	с с		INITION FOR ALL H	TURUUTNAMIC QUANTITIES	133
135	135	č				134
136	136	č			Ĩ	136
137	137	С	USE	OF PARAMETERS:	Ī	137
138	138	C			1	138
139	139	ç		MHQ – MAXIMU	M NUMBER OF HYDRO QUANTITIES.	139
140	140	L C			1 T	140
142	141	(			l I	141 142
143	143	č	= = = =			142
144	144	C===		********	######################################	144
145	145	С	-			145
146	146		inc	:lude 'cmsh00.	h'	146
14/	14/		100	iuae chyduu.	n	147

page

Thu Jul	1 14:15:40	) 1993 mainhd.f PROGRAM AUGUST	page 3
148	148	include 'cint00.h'	148
149	149	include 'cphs10.h'	149
150	150	include 'cphs20.h'	150
151	151 C		151
152	152 L==	;	***** 152 163
154	155 0	NAMELIST /DATA/ ICOND.ICONP.ITRIGR.IOPTN.	155
155	155	. XMCHIN, RIN, PIN, ALFA, HRGG, IHRN, NTIME, MDUMP, NDUM	P, 155
156	156	. KDUMP, IOSPCL, IOPLFT, IOPRCN, IOPORD, IOPBYN, IAXSY	M, 156
157	157	. IOPEOS, MPRTCL, IOPINT, IOPADD, IOPOEL, AREADD, ARED	EL, 157
150	150 150 C	. ININDW,ISTAIC	150
160	160 C	***********	160
161	161 C		161
162	162 C		: 162
163	163 U	MEANING OF NAMELIST VARIABLES:	i 163
165	165 C	ICOND = 0 READ INPUT GRID FOR A NEW RUN	I 104
166	166 Č	= 1 READ THE GRID FROM PREVIOUS RUN	I 166
167	167 Ç	ICONP = 0 PRIMITIVE VARIABLES SET TO ZERO	I 167
168	168 C	= 1 VARIABLES READ FROM PREVIOUS RUN	I 168
109	169 C	INRIGH = U USING THE INPUT GRID AS THE INTITAL GRID	I 169
171	171 C	FACH TRIANGLE	I 170
172	172 Č	10PTN = 1 SOLUTION FOR STEADY STATE,	I 172
173	173 C	= 2 SOLUTION FOR TRANSIENT PHENOMENA	I 173
174	174 C		I 174
1/5	1/5 C	XMCHIN = FUR IKANSIENI SHUCK CALCULAIIUNS(IUPIN=Z)IHIS VARIABL IS USED TO SDECIEV THE HOSTDEAN MACH NUMBED	L 1/5
177	170 C	15 USED TO SPECIFI THE UPSTREAM MACH NUMBER	I 170
178	17 <b>8</b> Č	RIN - THE AMBIENT DENSITY IN THE CHAMBER	I 178
179	179 C		I 179
180	180 C	PIN = THE AMBIENT PRESSURE IN THE CHAMBER	I 180
181	181 L 182 C	ADDIVING NODMAL SHOCK WAVES DELATIONS END AN ADIADATI	
183	183 C	FIOW RELATION STATIC-PRESSURE RATIO ACROSS THE SHOCK	I 183
184	184 C	AS WELL AS THE DENSITY RATIO AND MACH NUMBER RATIO	I 184
185	1 <b>85</b> C	ARE COMPUTED TO SET CORRECTLY THE CONDITION AT THE	I 185
186	186 C	INLET EDGES (EDGE BOUNDARY 8 ) OF THE COMPUTATIONAL	I 186
187	187 U 199 C	UUMAIN	I 187
189	189 C	FOR STEADY STATE SHOCK CALCULATIONS(IOPTN=1)THIS IS T	I 100 HF I 189
190	190 C	INFLOW MACH NUMBER. ALL DOMAIN VELOCITIES ARE THEN	I 190
191	191 C	INITIALIZED WITH THIS VALUE.	1 191
192	192 C	DTHE THE ANDTENT DENETTY AT INCLUSIV	I 192
195	193 U 194 C	RIN = THE AMBIENT DENSITY AT INFINIT	1 193
195	195 C	PIN - THE AMBIENT PRESSURE AT INFINITY	1 195
195	196 C		I 196
197	197 C	ALL COMPUTATIONAL DOMAIN ARE THEN INITIALIZED WITH	1 197
100	100 C	THUSE VALUES.	1 198 T 100
200	200 C	ALFA = THE DIRECTION OF INFIOW IN DEGREFS RELATIVE TO A RIGHT	1 200
201	201 Č	HAND COORDINATE SYSTEM. ALFA=0 MEANS FLOW FROM LEFT TO	I 201
202	2 <b>02</b> C	RIGHT, ALFA=90 MEANS FROM BOTTOM TO TOP. ALFA=-90 OR 2	70 I 202
203	203 C	MEANS FLOW FROM TOP TO BOTTOM ETC.	1 203
204	204 L 205 C	THE CODE RUNS USING THE ALD FRUNTION AS A RASELINE AND	1 204 1 205
206	206 C	SHOULD BE MODIFIED IF SOMETHING ELSE IS DESIRED.	1 206
207	207 C	IHRN - NUMBER OF ITERATIONS IN THE RIEMANN SOLVER TO FIND THE	I 207
208	208 C	DIAPHRAGM SOLUTION. (3 to 4 SHOULD BE USED AND INCREASE	D I 208
209	209 C	UNLY FOR HIGH MACH NUMBER CASES).	1 209
211	210 C	NTIME - NUMBER OF REPEATS FOR THE INTEGRATION/REFINEMENT/	I 210
212	212 Č	COARSENING SEQUENCE	ī 212
213	213 C	AN OUTPUT DUMP IS DONE EVERY SEQUENCE REPEAT.	1 213
214	214 C	MOUMP + NUMBER OF OUTERMOST LOOP ITERATIONS IN THE CALCULATION	I 214
215 214	215 U 216 C	WHERE CUARSENING OF THE GRID IS PERFORMED EVERY SEQUEN DEPEAT	1 $215$ $215$
210	210 C	NDUMP = NUMBER OF OUTER LOOP ITERATIONS IN THE CALCULATION WHEN	RE 1 210
218	218 Č	REFINING IS DONE EVERY SEQUENCE REPEAT WITHOUT COARSEN	INGI 218
219	219 C	KDUMP - NUMBER OF ITERATIONS PERFORMED WITH NO REFINEMENT OR	1 219
220	220 C	COARSENING. IT IS THE INNER LOOP OF THE CALCULATION.	I 220
221	221 L	IT KUUMPRU IS KEAU IN, KUUMP WILL BE SEI BY IME	1 221

hu Jul	1 14:1	5:40	1993 mainhd.f PROGRAM AUGUST	page 4
222	222	С	CODE AUTOMATICALLY ACCORDING TO THE VARIABLE AREADD.	1 222
223	223	С		1 223
224	224	C	+ONTIME - DUMPING DATA	1 224
225	225	C		1 225
220	220	c	I +O ADUAR - CUARSENING	1 220
228	228	č	I I + O NDUMP - REFINENEMENT	1 228
229	229	C	I I I	1 229
230	230	Ç	I I I +O KDUMP - INTEGRATION	1 230
231	231	Ç		I 231
232	232	r		i 232 i 233
234	234	č		I 234
235	235	C	I I + 0 OUTER LOOP	1 235
236	236	Ç		1 236
237	237	C	I +O OUTERMOST LOOP	1 237
230	230	č		1 230
240	240	č		1 240
241	241	С	IOSPCL - O NOT USING REDEFNITION OF POINTS ON THE BOUNDARY	1 241
242	242	Č	= 1 USING REDEFENITION OF POINTS ON THE BOUNDARY	I 242
243	243	L C	IOPLET = U THE COMPUTATION OF LIFT DRAG AND MOMENT TURNED OF	1 243 I 244
245	245	č	10PRCN = 0 A GLOBAL SWAPING ( RECONNECTION ) PROCEDURE IS OFF	1 245
246	246	č	= 1 A GLOBAL SWAPING ( RECONNECTION ) PROCEDURE IS ON	1 246
247	247	C	IOPORD = 1 THE CODE WILL RUN FIRST ORDER GODUNOV METHOD	I 247
248	248	C	= 2 THE CODE WILL RUN SECOND ORDER GODUNOV METHOD	I 248
249	249	c c	= 1 RUDYANCY FFFECT IN THE Y DIRECTION ARE COMPUTED	L 249 T 250
251	251	č	IAXSYM = 0 THE CODE WILL RUN IN A PURE TWO DIMENSIONAL MODE	I 251
252	252	Ĉ	= 1 THE CODE WILL RUN IN AN AXI SYMMETRICAL MOUE (X AXIS)	1 252
253	253	C	= 2 THE CODE WILL RUN IN AN AXI SYMMETRICAL MODE (Y AXIS)	I 253
254	254	C	IOPEOS = 0 THE CODE WILL RUN WITH CONSTANT GAMA	I 254
255	255	ř	= 1 THE CODE WILL KON WITH VAKIABLE GAMA USING EQUATION OF STATE FOR AIR	1 200 1 256
257	257	č		1 257
258	258	C	MPRTCL = 0 NO PARTICLE TRACING	I 258
259	259	Ç	= 1 THE CODE WILL TRACE PARTICLES	1 259
260	260	C C	LOPINI = O NOT REFINING INITIALY THE EDGE BOUNDARY NO 8	1 260
201	201	č	TOPADD = 0 THE REFINEMENT PROCEDURE IS TURNED OFF	1 201 1 262
263	263	č	= 1 THE REFINEMENT PROCEDURE IS TURNED ON	1 263
264	264	C	IOPDEL = 0 THE COARSENING PROCEDURE IS TURNED OFF	I 264
265	265	č	= 1 THE COARSENING PROCEDURE IS TURNED ON	I 265
200	200	ř	AKEADU * SPECIFT INE MINIMUM VALUE INALA IKIANGLE SHUULU HAVE AFTER REFINEMENT AS A EDACTION OF AVEDAGE TRIANGLE ADEA	1 200
268	268	č	AREDEL = SPECIFY THE MAXIMUM VALUE THAT A TRIANGLE SHOULD HAVE	I 268
269	269	Ċ	AFTER COARSENING AS A FRACTION OF AVERAGE TRIANGLE AREA	I 269
270	270	Č		I 270
2/1 272	2/1	U C	IWINUW = U NU KESIKICIIUN UN IHE REGIUN FOR REFINING THE GRID	1 2/1 t 272
273	273	č	ISTATC = 0 THE ADAPTATION WILL BE DONE ON A MOVING WAVE	I 273
274	274	Č	= 1 THE ADAPTATION WILL BE DONE ON A STEADY STATE	I 274
275	275	Č	CONDITION	1 275
275	2/6	C C		1 276 T 777
278	278	с		1 <i>211</i> 278
279	279	•	CHARACTER*15 ZHEADER.MNAME,MVNAME	279
280	280		CHARACTER*1 FILLCH	280
281	281	~	INTEGER NUMQUADS	281
282	202	r r	- OPEN ALL FILES FOR THIS PILN	282
284	284	č	VILN ALL FILLY FOR THIS ROW CONSTRAINTS AND	- 205 284
285	285	-	OPEN( 4,FILE='naca4' ,FORM='UNFORMATTED')	285
286	286		OPEN(88,FILE='naca82',FORM='UNFORMATTED')	286
287	287		OPEN( 8,FILE='naca2' ,FORM='UNFORMATTED')	287
200	200		UPEN( 9,FILL='NACAJ' ,FUKM='UNFUKMAIILD') OPEN( 2 FILF='data.d' FORM='FORMATTED')	∠88 280
290	290		OPEN(16.FILE='wedge45.zon'.STATUS='OLD')	290
291	291		OPEN(18,FILE='nacaa',FORM='UNFORMATTED')	291
292	292	C		292
293	293	(====	***************************************	- 293
294 205	294 206	с	DEFAILT VALUES FOR INPUT DATA	274 205
	در ع	u -*	- PEIAVEL THEORY IN THEORY BALLY	

Thu Jul	1 14:1	15:40	1993	mainhd.f	PROGRAM AUGUST	page	5
296	296	С					296
297	297	c	THIRD	= 1. / 3.			297
290	290	L	TCOND	= 0			290
300	300		ICONP	<b>-</b> 0			300
301	301		ITRIGR	- 0			301
302	302	r	IOPIN	= 1			302
304	304	L.	XMCHIN	= 25.			304
305	305		RIN =	1.			305
306	306	r	PIN =	1.			305
308	308	L	ALFA -	0.			308
309	309		inrige -	1.4			309
310	310		IHRN =	- 4			310
312	312		MDUMP	= 1 = 80			312
313	313		NDUMP	- 1			313
314	314		KOUMP	= 0			314
315	315		IOPL FT	= 0			315
317	317		IOPRCN	<b>-</b> 0			317
318	318		IOPORD	= 2			318
319	320		TAXSYM	= 0			320
321	321		IOPEOS	- 0			321
322	322	C	MOBIO	•			322
323	323		TOPINI	= 0			323
325	325		IOPADO	= 0			325
326	326		IOPDEL	= 0			326
327	328			= 0.005 = 1.			327
329	329		IWINDW	= 0			329
330	330		ISTATC	= 0			330
331	331	C	- PEAD T		ΤΔ		331
333	333	č			10		333
334	334	~	READ (	2,DATA)			334
335	335	С С		IT THE RUN	PADAMETEDS		335 336
337	337	č	- 11,441,0				337
338	338		PRIN	T 101, I	COND, ICONP, ITRIGR, IOPTN,		338
339 340	339 340		•	K	MCHIN,KIN,PIN,ALFA,HRGG,IHRN,NIIME,MDUMP,NDUMP, DIIMP IOSPOI IOPIET IOPDON IOPODO IOPRYN IAYSYM		339 340
341	341		•	I	OPEOS.MPRTCL, IOPINT, IOPADD, IOPDEL, AREADD, AREDEL,		341
342	342	•	•	I	WINDW, ISTATC		342
343 344	343 344	ι Γ	- SET RU		S AND PRINTOUT TO CONSOLE		343 344
345	345	č					345
346	346		XREADD	= 1. / ARE			346
348	347		IF( NA	READ . LT .	3 )  NAREAD = 3		348
349	349		IF ( NA	READ . GT .	5 ) NAREAD = 5		349
350	350		IF( IS	TATC . EQ .	1) NAREAD = 3 DEL NAREAD		350
352	352		PRINT	* ICOND.IC	ONP		352
353	353	C					353
354	354		NPT =	0			354
355	355		IF( IC	OND EO	0 ) THEN		356
357	357		DO 122	IS = 1 , M	SM		357
358	358	100	KSDELT	(IS) = 0			358
360	360	166	END IF	VC			360
361	361		HYDMOM	(1) = 0.			361
362	362		HYDMOM	(2) = 0.			362
363 364	364	ç	niumum	(4) = 0.			364
365	365	-	DO 124	IK = 1 , M	BP		365
366	366	104	GAMAG (	IK) = HRG	G		365
368	368	C 124	- CONTIN	UC			368
369	369	C===		`***** <b>*</b> **	알 바 타 바 는 바 는 날 는 날 바 는 음 방 두 두 바 있 중 을 알 가 도 두 두 두 두 수 있 는 노 는 분 가 가 다 드 한 이 가 다 다 나 나 가 가 다 드 한 가 다 다 다 다 가 가 다 다 다 다 가 가 다 다 다 다 다 다		369
## Thu Jul 1 14:15:40 1993 mainhd.f

PROGRAM AUGUST

6

C(1)>>>>> IF(ICOND.EQ.1) CALL UPGRAD C. C	C C F	EAD IN THE MESH DATA
C(1)>>>>> IF (ICOND . EQ . 0 ) THEN IF (ICOND . EQ . 1 ) CALL UPGRAD C C	Ċ	
IF (ICOND . EQ . 0 ) THEN IF (ICOND . EQ . 1 ) CALL UPGRAD C	C(1)>>>	»>
<pre>IF( ICONF . EQ . I ) CALL UPGRAD C C C **SMART* FORMAT MESH FILE IS READ. THE FILE IS SELECTED BY THE C NORMAL MACINTOSH FILE DIALOG BECAUSE OF FILE '** IN PLACE OF THE C FILE NAME. VERTICES OF EACH TRIANGLE ARE FORMED FROM THE INPUT. C FREAD (16,900) ZHEADER 900 FORMAT(A15) IF (ZHEADER NE. 'SMaRT-Z-T-(003)') THEN C C</pre>	- ( - )	IF( ICOND , EO , Q ) THEN
C		IF ( ICONP , FO , 1 ) CALL UPGRAD
C	r	
C A "SMART" FORMAT MESH FILE IS READ. THE FILE IS SELECTED BY THE C MORMAL MACINTOSH FILE DIALOG BECAUSE OF THE '*' IN PLACE OF THE C FILE MARE. VERTICES OF EACH TRIANGLE ARE FORMED FROM THE INPUT. C	č	
C A SJAKE MACINTOSH FILE DIALOG BECAUSE OF THE '*' IN PLACE OF THE C TORMAL MACINTOSH FILE DIALOG BECAUSE OF THE '*' IN PLACE OF THE C FILE NAME. VERTICES OF EACH TRIANGLE ARE FORMED FROM THE INPUT. READ (16,900) ZHEADER 900 FORMAT(A15) IF (ZHEADER. N.E. 'SMART-Z-T-(D03)') THEN C	C A #CM	ADT CODMAT MESH FILE IS DEAD THE FILE IS SELECTED BY THE
C HOUNAL INCINUOS FILE DIALOG BELADSE OF THE FORMED IN FLACE OF THE C FILE NAME. VERTICES OF EACH TRIANGE ARE FORMED FROM THE INPUT. READ (16,900) ZHEADER 900 FORMAT(AIS) IF (ZHEADER . NE. 'SMART-Z-T-(003)') THEN C	C NUDMI	I MARINTARU FILE IS ALAD. THE IS SELECTED DI THE
C FILE NAME. VENTLES OF PACH INTAMALE AND FOUND FROM THE INPUT READ (16,900) ZHEADER 900 FORMAT(A15) IF (ZHEADER .NE. 'SMART-Z-T-(003)') THEN C	C ETIE	NAME VEDTICES OF CACH TOTANGE ADE FORMED COOM THE INDUT
C	S FILE	NAME. VERTICES OF EACH TRIANGLE ARE FORMED FROM THE INFOT.
<pre>NEAD (10,900) ZHEADER OF GRWAT(A15) IF (ZHEADER .NE. 'SMART-Z-T-(003)') THEN C</pre>		
900 FORMAT(A15) IF (ZHEADER .NE. 'SMART-Z-T-(003)') THEN C	۴ ممم	EAD (10,900) ZHEADER
<pre>IF (2HEADER .NE. 'SMART-Z-1-(U03)') THEM C</pre>	100 H	URMA! (A15)
C	_ 1	F (ZHEADER .NE. 'SMART-Z-T-(UU3)') THEN
PRINT *, 'MESH FILE IS NOT THE CORRECT KIND OR VERSION' CALL EXIT ENDIF READ (16,910) FILLCH, NV, NVMK PRINT *, NVMK READ (16,910) FILLCH, NV, NVMK READ (16,910) FILLCH, NV, NVMK READ (16,910) FILLCH, NUMQUADS PRINT *, NS READ (16,910) FILLCH, NUMQUADS PRINT *, NUMUADS 910 FORMAT(A1,217) READ (16,920) FILLCH, NZMK, NSMK, NNMK PRINT *, NZMK, MSMK, NNMK PRINT *, NZMK, MSMK, NNMK 920 FORMAT(A1,1X,313) IF (NV .GT. MVM) THEN C	<u> </u>	THIS ROUTINE CANNOT READ ANY OTHER INPUT
CALL EXIT ENDIF READ (16,910) FILLCH, NV, NVMK PRINT *, NV, NVMK READ (16,910) FILLCH, NE, NEMK READ (16,910) FILLCH, NE, NEMK READ (16,910) FILLCH, NUMQUADS PRINT *, NS READ (16,910) FILLCH, NUMQUADS PRINT *, NUMQUADS 910 FORMAT(A1,217) READ (16,920) FILLCH, NZMK, NSMK, NNMK PRINT *, NZMK, NSMK, NNMK 920 FORMAT(A1,1X,313) IF (NV .GT. NVM) THEN C	F	RINT *, 'MESH FILE IS NOT THE CORRECT KIND OR VERSION'
ENDIF READ (16,910) FILLCH, NV, NVMK PRINT *, NC, NVMK READ (16,910) FILLCH, NE, NEMK PRINT *, NE, NEMK READ (16,910) FILLCH, NS PRINT *, NS READ (16,910) FILLCH, NUMQUADS PRINT *, NUMQUADS 910 FORMAT(A1,217) READ (16,920) FILLCH, NZMK, NSMK, NNMK PRINT *, NZMK, NSMK, NNMK PRINT *, NZMK, NSMK, NNMK 920 FORMAT(A1,1X,313) IF (NV.GT. MVM) THEN C	C	ALL EXIT
READ (16,910) FILLCH, NV, NVMK PRINT *, NV, NVMK READ (16,910) FILLCH, NE, NEMK PRINT *, NE, NEMK READ (16,910) FILLCH, NS PRINT *, NS READ (16,910) FILLCH, NUMQUADS PRINT *, NS READ (16,920) FILLCH, NZMK, NSMK, NNMK PRINT *, NZMK, NSMK, NNMK 900 FORMAT(A1, IX, 313) IF (NV .GT. MVM) THEN C	E	NDIF
PRINT *, NV, NVMK READ (16, 910) FILLCH, NE, NEMK PRINT *, NE, NEMK READ (16, 910) FILLCH, NS PRINT *, NS READ (16, 910) FILLCH, NUMQUADS PRINT *, NUMQUADS 910 FORMAT(A1, 217) READ (16, 920) FILLCH, NZMK, NSMK, NNMK PRINT *, NZMK, NSMK, NNMK 920 FORMAT(A1, 1X, 313) IF (NV .GT. MVM) THEN C	۶	EAD (16,910) FILLCH, NV, NVMK
READ (16,910) FILLCH, NE, NEMK PRINT *, NE, MEMK READ (16,910) FILLCH, NS PRINT *, NUMQUADS PRINT *, NUMQUADS 910 FORMAT(A1,217) READ (16,920) FILLCH, NZMK, NSMK, NNMK PRINT *, NZMK, NSMK, NNMK 920 FORMAT(A1,1X,313) IF (NV .GT. MVM) THEN C	P	RINT *, NV, NVMK
PRINT*, NE, NEMK READ (16,910) FILLCH, NS PRINT*, NS READ (16,910) FILLCH, NUMQUADS PRINT*, NUMQUADS 910 FORMAT(A1,217) READ (16,920) FILLCH, NZMK, NSMK, NNMK PRINT*, NZMK, NSMK, NNMK 920 FORMAT(A1,1X,313) IF (NV.GT.MVM) THEN C	P	EAD (16.910) FILLCH.NE.NEMK
READ (16.910) FILLCH, NS PRINT *, NS READ (16.910) FILLCH, NUMQUADS PRINT *, NUMQUADS 910 FORMAT(A1,217) READ (16.920) FILLCH, NZMK, NSMK, NNMK PRINT *, NZMK, NSMK, NNMK 920 FORMAT(A1,1X,3I3) IF (NV .GT. MVM) THEN C	, r	RINT * .NE . NEMK
PRINT *,NS READ (16,910) FILLCH, NUMQUADS PRINT *,NUMQUADS 910 FORMAT(A1,277) READ (16,920) FILLCH, NZMK, NSMK, NNMK PRINT *,NZMK, NSMK, NNMK 920 FORMAT(A1,1X,313) IF (NV.GT. MVM) THEN C		FAD (16.910) FILICH NS
READ (16,910) FILLCH, NUMQUADS PRINT *, NUMQUADS 910 FORMAT(A1,217) READ (16,920) FILLCH, NZMK, NSMK, NNMK PRINT *, NZMK, NSMK, NNMK 920 FORMAT(A1,1X,3I3) IF (NV.GT. MVM) THEN C	5	RINT * NS
PRINT *, NUMQUADS 910 FORMAT(A1,217) READ (16,920) FILLCH, NZMK, NSMK, NNMK PRINT *, NZMK, NSMK, NNMK 920 FORMAT(A1,1X,313) IF (NV.GT.MVM) THEN C	r t	FAD (16 010) FTLICH NUMPUARS
910 FORMAT(A1,217) READ (16,920) FILLCH, NZMK, NSMK, NNMK PRINT *, NZMK, MSMK, NNMK 920 FORMAT(A1,1X,3I3) IF (NV .GT. MVM) THEN C	r r	DTNT * NIMONADC
910       FUNRATI(A1,21/) READ (16,920) FILLCH, NZMK, NSMK, NNMK         920       FORMAT(A1,1X,3I3) IF (NV .GT. MVM) THEN         C	010 F	NINT (A) 973)
PRINT *, NZMK, NSMK, NNNK PRINT *, NZMK, NSMK, NNNK 920 FORMAT(AI, IX, 3I3) IF (NV .GT. MVM) THEN C	210 L	URRAI(A1,C17) EAD (16 000) ETIICH NOWE NEWE
920 FORMAT(A1, IX, 3I3) IF (NV.GT.MYN) THEN C	۲ -	2AU (10,92U) (11LLH, NZMK, NSMK, NAMK 0787 + 8794 8594 8994
<pre>920 FURMAT(AL,IX,313) IF (NV .GT. MVM) THEN C</pre>	000 F	KIRI -, NZMK, NSMK, NNMK
IF (NV .GI. MVM) THEN C	920 F	UK/TAI(A1,1X,313)
CCHECK NODE (I.E., VERTEX) STORAGE SIZE PRINT 1020,NV,MVM,NVMK 1010 FORMAT(1X, 'TOO MANY NODES. ',19,', MAX = ',15) CALL EXIT ENDIF IF (NE .GT. MEM) THEN C	<u> </u>	F (NV .GI. MVM) THEN
PRINT 1020, NV, MVM, NVMK 1010 FORMAT(1X, 'TOO MANY NODES. ', 19, ', MAX = ', 15) CALL EXIT ENDIF IF (NE.GT. MEM) THEN CCHECK SIDE (I.E., EDGE) STORAGE SIZE PRINT 1020, NE, MEM, NEMK 1020 FORMAT(1X, 'TOO MANY SIDES. ', 19, ', MAX = ', 15) CALL EXIT ENDIF IF (NS.GT. MSM) THEN CCHECK ZONE (I.E., SIDE OR TRIANGLE) STORAGE SIZE PRINT 1030, NS, MSM 1030 FORMAT(1X, 'TOO MANY ZONES. ', 19, ', MAX = ', 15) CALL EXIT ENDIF IF (NUMQUADS.GT. 0) THEN CCHECK FOR QUADRILATERALS IN THE INPUT PRINT 1040 1040 FORMAT(1X, 'NO QUADRILATERALS ARE ALLOWED.') CALL EXIT ENDIF CREAD MARKER DEFINITIONS C THE FOLLOWING JUST READS THE VARIABLES WITHOUT STORING C THEM INTO PERMANENT ARRAYS, EFFECTIVELY JUST READING C PAST THE MARKER DEFINITION INFORMATION		CHECK NUDE (I.E., VERTEX) STORAGE SIZE
1010 FORMAT(1X, 'TOO MANY NODES. ', 19, ', MAX = ', 15) CALL EXIT ENDIF IF (NE .GT. MEM) THEN C	F	RINI 1020, NV, MVM, NVMK
CALL EXIT ENDIF IF (NE.GT. MEM) THEN C	1010 F	'ORMAT(1X,'TOO MANY NODES. ',19,', MAX = ',15)
ENDIF IF (NE .GT. MEM) THEN C	(	ALL EXIT
IF (NE .GT. MEM) THEN C	5	NDIF
C CHECK SIDE (I.E., EDGE) STORAGE SIZE PRINT 1020, NE, MEM, NEMK 1020 FORMAT(1X, 'TOO MANY SIDES. ', 19, ', MAX = ', 15) CALL EXIT ENDIF IF (NS.GT. MSM) THEN C	1	F (NF .GT. MEM) THEN
PRINT 1020.NE, MEM, NEMK 1020 FORMAT(1X, 'TOO MANY SIDES. ', 19, ', MAX = ', 15) CALL EXIT ENDIF IF (NS .GT. MSM) THEN C	C	CHECK SIDE (I.E., EDGE) STORAGE SIZE
1020 FORMAT(IX, 'TOO MANY SIDES. ', 19, ', MAX = ', 15) CALL EXIT ENDIF IF (NS .GT. MSM) THEN C	៍រ	RINT 1020 NF MEM NEMK
CALL EXIT ENDIF IF (NS .GT. MSM) THEN C	1020 0	ORMAT(12 + TOO MANY SIDES + 19 + MAX = + 15)
ENDIF IF (NS.GT. MSM) THEN CCHECK ZONE (I.E., SIDE OR TRIANGLE) STORAGE SIZE PRINT 1030, NS, MSM 1030 FORMAT(1X, 'TOO MANY ZONES. ', 19, ', MAX = ', 15) CALL EXIT ENDIF IF (NUMQUADS.GT. 0) THEN CCHECK FOR QUADRILATERALS IN THE INPUT PRINT 1040 1040 FORMAT(1X, 'NO QUADRILATERALS ARE ALLOWED.') CALL EXIT ENDIF C	1020 1	
IF (NS.GT. MSM) THEN IF (NS.GT. MSM) THEN C		
CCHECK ZONE (I.E., SIDE OR TRIANGLE) STORAGE SIZE PRINT 1030, NS, MSM 1030 FORMAT(1X, 'TOO MANY ZONES. '.19,', MAX = ',15) CALL EXIT ENDIF IF (NUMQUADS .GT. 0) THEN C	1	C /NC /T NCN\ TUEN
PRINT 1030, NS, MSM 1030 FORMAT(1X, 'TOO MANY ZONES. '.19,', MAX = ',15) CALL EXIT ENDIF IF (NUMQUADS .GT. 0) THEN C	r '	F (ND JULA NON) INCH CURCH TONE // C SIDE OD TDIANCIE) STODACE SIZE
PRINT 1030, NS, MSM         1030       FORMAT(1X, 'TOO MANY ZONES. ', 19, ', MAX = ', 15) CALL EXIT ENDIF         IF       IF         OUT       IF         PRINT 1040         1040       FORMAT(1X, 'NO QUADRILATERALS ARE ALLOWED.') CALL EXIT ENDIF         C		THE ADD ACK ZUNE (I.E., SIDE OR TRIANGLE) STORAGE SIZE
CALL EXIT ENDIF IF (NUMQUADS .GT. 0) THEN C	1020 1	КІЛІ ІЧЭЧ, ПЭЛІ Ормат/19 1700 ману 70000 1 10 1 мау 1 10)
CALL EXIT ENDIF IF (NUMQUADS .GT. 0) THEN C	1020	UKMAI(17, 100 MANT ZUNES. ',19,', MAX * ',15)
ENDIF IF (NUMQUADS.GT. 0) THEN C	(	ALL LAII
IF (NUMQUADS .GT. 0) THEN         C	E	NUIF
C CHECK FOR QUADRILATERALS IN THE INPUT PRINT 1040 1040 FORMAT(1X,'NO QUADRILATERALS ARE ALLOWED.') CALL EXIT ENDIF C READ MARKER DEFINITIONS C THE FOLLOWING JUST READS THE VARIABLES WITHOUT STORING C THEM INTO PERMANENT ARRAYS, EFFECTIVELY JUST READING C PAST THE MARKER DEFINITION INFORMATION	1	F (NUMQUADS .GT. 0) THEN
PRINT 1040 1040 FORMAT(1X,'NO QUADRILATERALS ARE ALLOWED.') CALL EXIT ENDIF C READ MARKER DEFINITIONS C THE FOLLOWING JUST READS THE VARIABLES WITHOUT STORING C THEM INTO PERMANENT ARRAYS, EFFECTIVELY JUST READING C PAST THE MADRER DEFINITION INFORMATION	C	CHECK FOR QUADRILATERALS IN THE INPUT
1040       FORMAT(1X,'NO QUADRILATERALS ARE ALLOWED.')         CALL EXIT       ENDIF         C	F	RINT 1040
CALL EXIT ENDIF C READ MARKER DEFINITIONS C THE FOLLOWING JUST READS THE VARIABLES WITHOUT STORING C THEM INTO PERMANENT ARRAYS, EFFECTIVELY JUST READING C PAST THE MARKER DEFINITION INFORMATION	1040 F	ORMAT(1X, 'NO QUADRILATERALS ARE ALLOWED.')
ENDIF C READ MARKER DEFINITIONS C THE FOLLOWING JUST READS THE VARIABLES WITHOUT STORING C THEM INTO PERMANENT ARRAYS, EFFECTIVELY JUST READING C PAST THE MARKER DEFINITION INFORMATION	Ċ	ALL EXIT
C READ MARKER DEFINITIONS C THE FOLLOWING JUST READS THE VARIABLES WITHOUT STORING C THEM INTO PERMANENT ARRAYS, EFFECTIVELY JUST READING C PAST THE MARKER DEFINITION INFORMATION	Ē	NDIF
C THE FOLLOWING JUST READS THE VARIABLES WITHOUT STORING C THEM INTO PERMANENT ARRAYS, EFFECTIVELY JUST READING C PAST THE MARKER DEFINITION INFORMATION	C	READ MARKER DEFINITIONS
C THEM INTO PERMANENT ARRAYS, EFFECTIVELY JUST READING C PAST THE MARKED DEFINITION INFORMATION	С	THE FOLLOWING JUST READS THE VARIABLES WITHOUT STORING
C PAST THE MARKER DEFINITION INFORMATION	0	THEM INTO PERMANENT ARRAYS. EFFECTIVELY JUST READING
	č	PAST THE MARKER DEFINITION INFORMATION
	- r	A 21 N7M = 1 N7MK
READ (16 1050) NHN HNAME NVAL	د د	FAR (16 1050) NMN MNAME NVAL
		A 20 NZMV _ 1 NVA
00 EV HEHT - 1,447E DEAD (16 1050) NEW HUNAME	L L	CAD (16 1050) NHS HUNAME
RCAD (10,1000) NITY, NYNAME	۲ ۲ ۸۰	CAD (10,1000) NITV, FIVRANE
	20 (	
ZI CUNTINUE	21 (	UNTINUE
1050 FORMAT(3X, 12, 1X, A15, 1X, 12)	1050 F	ORMAT(3X, 12, 1X, A15, 1X, 12)
DO 31 NZM = 1,NSMK	[	10 31 NZM = 1,NSMK
READ (16,1050) NMN,MNAME,NVAL	P	EAD (16,1050) NMN,MNAME,NVAL
DO 30 NSMV = 1. NVAL	ŕ	0 30 NSMV = 1.NVAL
READ (16,1050) NMV. MVNAME	ĩ	EAD (16.1050) NMV. MVNAME
30 CONTINUE	30 0	ONTINUE
31 CONTINUE		ONTINUE
BO A1 N7M ~ 1 NNMK	31 (	
DCAD (16 1060) NAM MAAME AVAI	31 ( r	Ω Δ1 N7M 1 NNMK

page

Thu Jul	<b>I 14:</b>	15:40	1993	mainhd.	F PROGRAM AUGUST	page 7
444	444		DO 4	0 NNMV = 1,	NVAL	444
445	445	40	READ	(16,1050)	NMV, MVNAME	445
440	440	40	CONT	INUE		440
448	448	¢		f	READ IN VERTEX INFORMATION	448
449	449		DO 5	1 IV = 1,	NV	449
450	450		IS =		TV VIII 10) VVIO 10)	450
451	451		.1V(1	(10, 1210)	1K, XV(1,15), XV(2,15)	401 452
453	453	С	INÌT	IALIZE ANY	VERTEX MARKER STORAGE, I.E. JV(*,IV)	453
454	454	51	CONT	INUE		454
455	455	1060		T 1060, NV	DEE (VEDITOES) DEAD IN 1)	455
450	450	1210	FORM	AT(15, HUL AT(17,F15,G	1.1X.F15.9)	450
458	458		IF (	NVMK .GT. (	D) THEN	458
459	459	Ç		F	READ IN VERTEX MARKER INFORMATION	459
460	460		00 5	5 1V = 1, NV	/ MV1 MV2 MV2 MVA	460
462	462		JV(1	(IU, ) IX(	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	462
463	463	С	- • • • -	STORE THE	SE MARKERS IN JV(*, IXV) AS DESIRED	463
464	464	55	CONT	INUE		464
405 466	400	1070	9KIN ) FORM	1 10/0, NVM AT(15 ' NOU	S (VEDTEX) MADREDS READ (N ')	405
467	467	1071	ENDI	F	e (entry homens have in y	467
468	468	C		1	READ IN EDGE INFORMATION ( EDGES OF TRIANGLES).	468
469	469		D0 6	0 IE = 1,	NE	469
470	470		READ	(16.*) IJ.	JE(1, IS), JE(2, IS), JE(3, IS), JE(4, IS)	470
472	472	С	INIT	IALIZE ANY	MARKER STORAGE.	472
473	473	<b>6</b> 0	JE (5	(IE) = 0		473
474	474	00	PRIN	T 1080.NE		474
476	476	1080	FORM	AT(15, SI	DES (EDGES) READ IN.')	476
477	477	r	IF (	NEMK .GT. (	)) THEN DEAD IN FORT MADVED INFORMATION	477
4/0	4/0	L	DO 6	5 IV = 1.NF	KEAU IN EUGE MARNER INFORMATION	4/0
480	480		READ	(16,*) IXE	E, MV1, MV2, MV3, MV4	480
481	481		JE(5	(IXE) = MVI	l	481
48Z 483	482	05	CUNI	INUL T 1000 NEMI	<i>(</i>	482 483
484	484	1090	FORM	AT(15, ' SIC	DE (EDGE) MARKERS READ IN.')	484
485	485	•	ENDI	F .		485
480	480	C	nn 8	f	NS	480
488	488		IE =	15 1,	Ch	488
489	489		READ	(16,1100)	IJ, MV1, MV2, MV3, MV4,	489
490	490	1100		AT /17 AT3	IV1, IU1, IV2, ID2, IV3, IU3	490
492	492	1100	JS(4	(I) = IVI	* 101	492
493	493		JS(5	,IE) = 1V2	* 102	493
494	494	~	JS(6	,IE) * IV3	* 103	494
495	495	c C	221	/,IE) = MV)		495
497	497	č	STOR	E THESE MAR	RKERS IN JS(*, IS) AS DESIRED	497
498	498	C	CONT	74010		498
499 500	499	81	DOTN	INUE T 1110 NS		499 500
501	501	1110	) FORM	AT(15, 201	NES (SIDES) READ IN.')	501
502	502	~	CLOS	E (16)	TARK MERTER INDIACE FOR FACH CIDE (TRIANCIE)	502
503 504	503	(	D0 8	! 5 IS = 1	NS	503
505	505		00 8	5 J = 1,	3	505
506	506		IE =	JS(J + 3)	, IS )	506
507 508	507 508		ILAB	S = IABS() TF _ GT	IL J () THEN	507
500	509		ĴS(	J, IS) =	JE(1, IEABS)	509
510	510		ELŠE			510
513	511		ןאט 22(	J, IS) = 1F	JE( Z , IEABS )	511
513	512	85	CONT	INUE		513
514	514	Ċ				514
515 616	515	C===	******	*********	и и канан килдизиран арараран калан канарарарарараран канар канар канар канар канар канар канар канар канар кан	515
517	517	v	IF(I	OSPCL.EQ.1)	) THEN	517

Thu Jul	1 14:1	15:40 19	93 mainhd.f	PROGRAM AUGUST	page	8
518 519 520	518 519 520	с с с	SPECIAL CASE FOR	HALF CIRCLE BOUNDARY DATA		518 519 520
521	521	-	DO 382 IE = 1 ,	NE		521
522	522		IJE5 = JE(5, 1)	E) 6) THEN		522
524	523	С	1r( 1000 - 00 -			524
525	525		IV1 = JE( 1 , IE	)		525
526	526	c	IV2 = JE(2, IE)	)		526
528	528	L	XXS1 = XV( 1 , I	V1 )		528
529	529		YYSI = XV(2, I)	VI j		529
530	530		XXS2 = XV(1, 1)	V2)		530
532	532		DXX = XXS1 - 1.5	0		532
533	533		ANGL = 1.5707963			533
534	534		$IF(UXX \cdot NE \cdot UXV(1 \cdot IV1) =$	) ANGL = ATANZ( TYSE, DXX ) COS( ANGL ) + 1.5		534
536	536		XV(2, IV1) =	SIN( ANGL )		536
537	537		DXX = XXS2 - 1.5	0		537
539	530		IF( DXX . NF . 0	) ANGI = ATAN2( $YYS2$ , $DXX$ )		539
540	540		XV(1, IV2) =	COS( ANGL ) + 1.5		540
541	541	~	XV(2, IV2) =	SIN( ANGL )		541
543	542 543	L C	XXS = XV(1, 1) YYS = .6 + (2)	VI ) ~ 1.000930411304 969 * SORT( XXS ) - 126 * XXS -		- 543 - 543
544	544	č	3	516 * XXS * XXS + .2843 * XXS * XXS * XXS -		544
545	545	Ç		015 * XXS * XXS * XXS * XXS )		545
540 547	540	C	IF( XXS . GT .	3 = AND = XXS = LT = .7 = JV(1 = 1V1) = 0		547
548	548	Č				548
549	549	C	XXS = XV(1, 1)	V2 ) * 1.008930411364 960 * SOPT( YYS ) 126 * YYS		549
551	551	č		516 * XXS * XXS + .2843 * XXS * XXS * XXS -		551
552	552	Č	1	015 * XXS * XXS * XXS * XXS )		552
553 554	553 564	C C	XV(2, IV2) =	SIGN(1., XV(2, IV2)) * YYS 3 AND XXS IT 7) IV(1 IV2) = 0		553 554
555	555	č	IF( XE( 1 , IE	).GT2 ) CALL DISECT ( IE , IDONE , IJKINT )		555
556	556		ENDIF	, , , , , , , ,		556
557 558	55/	382	CONTINUE END IE			557 558
559	559	С				559
560	560	(====		***************************************		560
562	562	C C				562
563	563	Č	CALCULATE GRID QU	ANTITIES THROUGH GEOMTR		563
564	564	C				564
566	566	с	CALL OPDATE			566
567	567	C====	*************	***************************************		567
508 560	568 560	С С	DEETNE THE INITIA	I COID BY & FACTOD OF THOFF IF CALLED FOR		568
570	570	c		C GRID DE A FACTOR OF THREE IT CALLED FOR SECOND		570
571	571	(>>>>				571
572	572		IF( ITRIGK + EQ NSS * NS	. 1 ) THEN		572
574	574		DO 110 IS - 1 ,	NSS		574
575	575	110	CALL VERCEN( I	S )		575
570	577	110	NEE - NE			570
578	578		DO 120 IE = 1 .	NEE		578
575	579		IF( JE( 5 , 1E	). NE. 0) THEN		579
581	581		ENDIF	A re , mone , movini j		581
582	582	120	CONTINUE	1		582
583 584	583 584		UU ISU IK # 1 . PRINT* NV NF NS	ว IK		- 584 - 584
585	585		$DO \ 130 \ IE = 1$	, NE		585
586	586		CALL RECNC(	IE, IDONE, ITL, ITR, JA, JB, JC, JD)		586
587 588	587 588		CALL RECNC( CALL RECNC/	JA, JADUNE, HIL, HIR, JAA, JAB, JAC, JAD) JB, JADONE, ITE, ITE, JAA, JAB, JAC, JAD)		587
589	589		CALL RECNC(	JC , JCDONE , ITL , ITR , JCA , JCB , JCC , JCD )		589
590	590	130	CALL RECNC	JD , JDDONE , ITL , ITR , JDA , JDB , JDC , JDD )		590
221	221	130	CONTINUE			221

Thu	Jul	1	14:15:40	1993	mainhd.f
1110	vui	•	14+14+40	****	11044 0 T T T T T T T T

PROGRAM AUGUST

đ

1

4

◀

1

1

(

ł

t

1	14:15	:40 1993 mainhd.f PROGRAM AUGUST	page	9
5	02	<b>END 16</b>		502
2	92			292
5	93			227
5	05	· {		505
Š	96	C		596
5	97	C FIND AVERAGE TRIANGLE AREA		597
5	98	C		598
- 5	99	SAREMN - 1000000.		599
6	00	SAREMX = 0.		600
6	01	SAREVG = 0.		601
0	02	$00\ 105\ 15\ =\ 1$ , NS		602
0	03	AKEASS = AS( J , IS ) CADEMY - AMAY1( CADEMY ADEASS )		503
6	104	CADEMN - ANTALI SAREINA , ARCAJJ )		004 205
о б	06	SAREVG = SAREVG + AREASS		606
	07	105 CONTINUE		607
	08	AVGARE - SAREVG		608
ļ	09	SAREVG = SAREVG / NS		609
1	0	FMINVG - SAREVG * AREADD		610
1	11	SAREMN - SAREMN / SAREVG		611
	12	SAREMX = SAREMX / SAREVG		612
	15	rkini", Jakevg, Jakenz, Jakenn C		613
	15	C DO INITIAL REFINEMENT FOR ALL INFLOW ROHNDADIES DEFINED		014 614
	16	C BY EDGES THAT CONTAIN BOUNDARY CONDITION REINFLOW		616
ĵ	7			617
1	18	1F(IOPINT.EQ.1)THEN		618
1	9	NUFDIV = 2		619
2	0	CALL INTPTN( AREADD , NOFDIV , 1 , LTRIG )		620
ž	1	NOFDIV = 2		621
21	2	CALL DITPIN( AREADD , NOPDIV , I , LIKIG ) NOEDIV - 2		622
20	á	CALL INTETN (AREADD , NOFDIV , 2 , LTRIG )		624
2	5	NOFDIV = 2		625
Ž	6	CALL DYYPTN ( AREADD , NOFDIV , 2 , LTRIG )		626
27	,	NOFDIV = 2		627
21	8	CALL INTPTN( AREADD , NOFDIV , 3 , LTRIG )		628
2	9 0	NOFDIV = 2 CALL DYVDYM ADEADD NOEDIU 2 LIDIC )		629
יכ ז	1	CALL DITPIN( ARCADD , NOPULY , 5 , LIKIS )		631
3	2	PRINT*.NV.NE.NS		632
33	3	ENDIF		633
34	4 (	C		634
35		(=====================================		635
3	י וס זי ד	L CONTRACTOR DEAD IN DEEVICIES DENIS DATA		030
יכ קר	ا ا	C FUR ICONDED READ IN FREVIOUS KUN'S DATA		636
ž	<b>9</b>	Č(1)		639
ã	Ō	ELSE		64C
4	1	CALL UPGRAD		641
47	2 (	C CALL GEOMTR		642
4	3	IF( ICONP . EQ . 0 ) THEN		643
4: 4:	•	KEAD (OO) KIN, YIN, KINL, YINL, UVIN, UIN, VIN, TI, UVIDMON(1) UVINAM(2) UVINAM(4)		044 6 AC
4; A/	5 6	• DETINT * RIN PIN HVIN HIN VIN TT		640 646
47	i	READ (88) ((HYDV(IS.IK).IK=1.5) IS=1 NS)		647
48	}	READ (88) ((HYDVVV(IV.IK), IK=1.5).1V=1.NV)		648
49	)	READ (88) IJKINT, (KSDELT(IS), IS=1, NS)		649
50	)	IF( MPRTCL , EQ , 1 )		650
51		. READ (88) NPT. ((XPRTCL(IK, IPT), IK=1,2), IPT=1, NPT),		651
52	<u>.</u>	(IJKPRT(IPT), IPT=1,NPT)		652
5.		ENDIE FUNIE		053
5 5	4 5			900 655
5. 5(	5			656
š	7	C INITIALIZATION OF THE PROBLEM		657
5	8	C		658
5	9	SARERV = 1. / SAREVG		659
6	0	SARESQ = SORT(SAREVG)		660
Ģ	i <b>1</b>	FMINVG = SAREVG * AREADD		661
6	12	NKOM = 1.1-0 NDCD = NDCC + 1		DD2
U F	13 14	HRGM = HRGG = 1.		664
ì	65	CF = HRGP / (2. * HRGG )		665
		•		

page

666         667         657	Thu Jul	1 14:1	5:40	1993	mainhd.f		PROGRAM	AUGUST	page	10
667         667         JOHRP + 9         663           668         668         IT (XOURP - JOURP         663           668         669         KUMP - JOURP         663           667         671         671         671         671           673         673         673         673         673         674         674         674         674         674         674         674         674         674         675         675         ALPHA - ATAM (1.) / 45.         673         673         673         674         674         674         674         674         674         677         677         676         677         677         677         677         677         677         677         678         678         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679         679	666	665	С							666
Bess         Dess         FLKRUMP-CL_011FR         Gess           660         660         FLKRUMP-CL_011FR         671           671         671         671         671           672         672         672         673         673           674         674         674         674         674           675         675         675         674         674           675         675         675         674         674           675         675         675         676         677           676         676         676         677         679           679         679         670         670         670           676         67         677         670         670           678         678         671         674         674           677         670         670         670         670         670           671         677         677         677         677         677           677         677         677         677         677         677           677         677         677         677         677         677	667	667		JDUMP	<b>•</b> 9					667
000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000 <td>668</td> <td>668</td> <td></td> <td>IF (KDU</td> <td>JMP.EQ.0)TH</td> <td>EN</td> <td></td> <td></td> <td></td> <td>668</td>	668	668		IF (KDU	JMP.EQ.0)TH	EN				668
671       672       672       673       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       677       675       675       675       675       675       675       676       676       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       678       677       678       677       678       677       677       677       677       677       677       677       6	670	670		FNDIF	* JUURIP					670
672       673       674       C       673       674       674       674       674       675       675       675       674       674       674       674       674       674       674       674       674       675       675       675       675       675       676       678       678       678       678       678       678       678       678       678       678       678       678       678       678       678       678       678       678       678       678       678       678       678       679       679       679       679       679       679       679       679       679       679       679       679       670       670       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677	671	671	С	LIDI						671
673       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       674       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       6	672	672		TT = (	).					672
0/4       0/4       0/4       0/4       0/4       0/4         0/5       0/5       ALPAN + ALFA + PLAD, PLAA       675         0/5       0/5       0/5       ALPAN + ALFA + PLAD, PLAA       675         0/6       0/5       PRINT + ALFA + PLAD, PLAA       675         0/7       0/7       PRINT + ALFA + PLAD, PLAA       675         0/7       0/7       PRINT + ALFA + PLAD, PLAA       675         0/7       0/7       PRINT + ALFA + PLAA       677         0/7       0/7       0/7       0/7       678         0/7       0/7       0/7       0/7       0/7       686         0/7       0/7       0/7       0/7       0/7       679         0/7       0/7       0/7       0/7       0/7       0/7       0/7 <td>673</td> <td>673</td> <td>C</td> <td></td> <td>ATAN/ 1</td> <td>\ / AF</td> <td></td> <td></td> <td></td> <td>673</td>	673	673	C		ATAN/ 1	\ / AF				673
676       677       677       677       677       677       677       677       678       677       678       677       678       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       679       670       677       671       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       677       6	0/4 676	0/4 675			- AIAN( 1.	) / 45. 1000				0/4
677         677         PRINT *, XNCHIN, PIN, RIN         677           678         678         C         678           679         COSS - COS (ALPHA )         678           679         GOS - COS (ALPHA )         678           679         GOS - COS (ALPHA )         680           681         TANN - TAN(ALPHA )         681           682         682         C         682           683         683         C         683           684         644         C         684           686         C         SC THE INITIAL VALUE FOR PRIMITIVE VARIABLES	676	676		PRINT	*.ALFA.PIF	AD. ALPHA				676
678       679       COSS - COS( ALPHA )       679         679       679       COSS - COS( ALPHA )       680         680       SINN - SIN( ALPHA )       680         681       GAIN - TAN( ALPHA )       681         682       682       C       682         683       681       C       682         684       C	677	677		PRINT	*, XMCHIN, F	'IN, RIN				677
679       CDS - COS (A PIRA )       679         680       680       SIN A PIRA )       680         681       681       TANN - TAN( A PIRA )       680         682       682       C       681         683       682       C       682         684       684       C       684         684       C       SET THE INITIAL VALUE FOR PRIMITIVE VARIABLES       684         684       C       SET THE INITIAL VALUE FOR PRIMITIVE VARIABLES       686         685       C(2)>>>>       685       690       690         691       G91       UIN - UVIN * COSS       693         693       693       PIN - 1.       693       693         694       C       DI >D IS - 1 , NS       694         695       G95       HYDW (IS , 2) = 0.       694         696       G96       HYDW (IS , 2) = 0.       698         696       G96       HYDW (IS , 1) - FIN       699         696       G96       HYDW (IS , 1) - FIN       699         700       HYDW (IS , 1) - FIN       700       700         701       TX SS + I , I , 0) THEN       700       700         702       707 <t< td=""><td>678</td><td>678</td><td>С</td><td></td><td></td><td></td><td></td><td></td><td></td><td>678</td></t<>	678	678	С							678
bits         SIMP = SIMP = SIMP A (STR)         Box           bits         Common Stress         Box           bits         Commo	679	679		COSS =	COSC ALPH					679
682       CRACK       CRACK       682         683       CRACK       684       C       684         684       C       684       C       684         685       G86       C       685       686       C       685         686       C       C       C       686       686       687       687       687       687       687       687       688       688       688       688       689       UIN - UVIN * COSS       689       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       690       <	681	681		TANN -	TAN( ALPH					681
683       684       684       684       684       684       684       684       684       684       684       684       685       685       685       685       686       686       686       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       687       689       691       VIN - WARLIN * SORT ( HRGG * PIN / RIN )       688       689       691       VIN - WARLIN * SORT ( HRGG * PIN / RIN )       693       693       691       NUN - WARLIN * SORT ( HRGG * PIN / RIN )       693       693       691       NUN * SIN )       693       693       691       NUN * SIN )       693       693       697       NUOV (IS , 1 > - RIN )       693       697       697       NUOV (IS , 1 > - 0.       698       698       699       697       697       697       697       697       700       700       700       700       700       700       700       700       700       700       700       700	682	682	С	TOUR -	- many ment	<i>n )</i>				682
684         684         684         684         684         684         685         686         686         686         686         686         686         686         686         687         687         687         687         687         687         687         687         687         687         688         17 (10PTN, EQ. 1) THEN         688         688         688         17 (10PTN, EQ. 1) THEN         688         689         690         01N - UNIN * SORT (HRGG * PIN / RIN )         689         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         691         691         691         691         691         691         691         691         691         691         691         691         691         691         691         691         691         691         691         691         691         691         691         691         691         696         696         HYOW (15, 2, 1 - 1, NY         699         690         HYOW (15, 2, 1 - 1, NY         700         700         700         700         70	683	683	Ç===	*****		***************		*****		683
BOBS         C SL1         THE INTIAL VALUE FOR PRIMITIVE VARIABLES         Sector           BOBS         C SL1         THE INTIAL VALUE FOR PRIMITIVE VARIABLES         Sector           BOBS         C SL1         THE INTIAL VALUE FOR PRIMITIVE VARIABLES         Sector           BOBS         C SL1         THE INTIAL VALUE FOR PRIMITIVE VARIABLES         Sector           BOBS         C SL1         THE INTIAL VALUE FOR PRIMITIVE VARIABLES         Sector           BOBS         C SC1         THE VALUE FOR PRIMITIVE VARIABLES         Sector           BOBS         C SC1         THE VALUE FOR PRIMITIVE VARIABLES         Sector           BOBS         C SC1         THE VALUE FOR PRIMITIVE VARIABLES         Sector           BOBS         C SC1         THE VALUE FOR PRIMITIVE VARIABLES         Sector           BOBS         C SC1         THE VALUE FOR PRIMITIVE VARIABLES         Sector           BOBS         C SC1         Sector         Sector         Sector           BOBS         C	684	684	ç							684
C12       C	C00 686	686	ີ ເຈ-	- 2F1 11	HE INITIAL	VALUE FUR PRIMITIV	E VARIAD	(Lt)		685
668         668         11f ( 107TN . EQ . 1 ) THEN         668           669         660         11N - XUCHIN * SQRT( HRGG * PIN / RIN )         669           660         690         UIN - WULN * SQRT( HRGG * PIN / RIN )         669           661         691         691         11N - WULN * SQRT( HRGG * PIN / RIN )         669           662         693         FIN - I.         669         693           663         694         C         693         693           664         694         C         693         693           695         694         DD 15 - 1 , MS         693           696         696         HYDW( 15, 2 ) - 0.         693           697         HYDW( 15, 3 ) - 1 MRN         693           698         HYDW( 15, 4 ) - PIN         693           699         HYDW( 15, 1 ) - 125 * RIN         700           700         TOU         XXSS - XS( 1 , IS )         701           701         XXS - XS( 1 , IS )         701         702           702         IF (XSS . IT . 0 ) THEN         700           703         HYDWU [S , 1 ) - I, NW         700           705         END IF         706           706         100	687	587	Č(2)	>>>>						687
669       699       UVIN - XCHIN * SQRT(HRGG * PIN / RIN )       699         690       691       VIN - UVIN * COSS       690         691       691       VIN - UVIN * SINN       691         692       691       VIN - UVIN * SINN       691         692       693       PIN - 1.       692         693       693       PIN - 1.       693         694       694       C       694         695       695       D0 iso 15 - 1, NS       694         696       697       HYDW(15, 2) - 0.       697         698       698       HYDW(15, 3) - 1, BRIN       698         698       699       HYDW(15, 1) - 125 * RIN       700         7001       XSS - SS(1, 1S) H       700       700         701       XSS - SS(1, 1S, 1) - 125 * RIN       700         702       176 (XS, L1, .0) THEN       700         703       HYDW(1S, 1) - 1.00 * PIN       704         704       704       HYDW(1V, 1) - RIN       700         706       706       106       107 (IV, .4) - PIN       700         707       C       COT       700       700       700         709       HYDWW(1V, .1) - RIN	688	688	-(-)	IF( I(	OPTN . EQ .	1 ) THEN				688
690       01N - 001N - COSS       691       691       691       691       691       691       691       691       691       691       691       691       691       691       691       691       691       691       691       691       691       691       691       691       691       691       693       693       693       693       693       693       693       693       693       694       694       694       694       694       694       695       695       696       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       101       703       11       703       11       704       704       704       704       704       704       704       704       704       707       707       707	689	6 <b>89</b>		UVIN -	- XMCHIN *	SQRT( HRGG * PIN /	RIN )			689
031       031       041       0410       0410       0410         032       033       031       0410       0410       0410         033       033       0410       0410       0410       0410         034       054       054       054       054       054         054       055       00       150       15       1       NS         056       056       HYDV(15, 1)       - R1N       056         057       HYDV(15, 2)       - 0.       057         058       059       HYDV(15, 2)       - 0.       058         059       HYDV(15, 1)       - 125       + R1N       070         050       700       HYDV(15, 1)       - 125       * R1N       700         051       701       XSS + X5(1, 1, 15)       700       700       700         052       150       CONTAULE       700       700       700         706       150       CONTAULE       700       707       707         707       70       C       700       700       700         708       709       HYDVV(1V, 1)       - RN       700         710       HYDVVV(	690 601	690		UIN =	UVIN * COS	is N				690
663       693       693       694       693       693       694       694       695       695       695       695       696       696       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       701       701       702       717       701       701       703       703       703       703       703       703       703       703       703       703       704       704       704       704       704       707       707       707       707       707       707       707       707       707       707       7	692	692			UVIN - 510	in a state of the				691
694       694       C       694       694       694       695       695       695       696       696       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       697       701       XSS = XS(1, 1S) > HRGG       700       703       111 X XSS = XS(1, 1S) > HRGG       700       703       703       HYDV(1S, 1, 1 > .100 * PIN       703       703       HYDV(1S, 1 > .100 * PIN       704       704       110       700       705       605       150       COUTINUE       706       706       706       706       706       707       C       707       707       707       C       700       710       HYDVV(1V, 1 ) = RIN       710       710       HYDVVVV(1V, 1 ) = RIN       710       711	693	693		PIN =	1.					693
695       695       D0 1s0 1S - 1, NS       695         696       697       697       HYDV(1S, 1) - RIN       696         697       697       HYDV(1S, 3) - 0.       697         698       698       HYDV(1S, 5) - HRGG       700         700       HYDV(1S, 5) - HRGG       700         701       702       1F(XSS.LT0) THEN       700         702       702       1F(XSS.LT0) THEN       702         703       MYDV(1S, 1) - 1.2S* RIN       703       704         704       HYDV(1S, 4)100 * PIN       703       704         705       END 1F       705       706         706       705       CONTINUE       706         707       C       707       707         708       708       D0 176 IV - 1, NV       708         709       HYDVV(1V, 1) - RIN       706       707         710       T10 THYDVVV(1V, 1) - RIN       711       711         712       HYDVVV(1V, 1) - PIN / HRGH       712         713       T13 HYDVVV(1V, 1) - RIN       713         714       T4       XSS - XV(1) IV + 1) - RIN       714         715       IF(XSS.LT0) THEN       715 <tr< td=""><td>694</td><td>6<b>94</b></td><td>С</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>694</td></tr<>	694	6 <b>94</b>	С		_					694
090       090       HIVV(15, 1) = KIN       090         697       697       HYDV(15, 3) = 0.       697         698       698       HYDV(15, 4) = PIN       699         700       700       HYDV(15, 5) = HRGG       700         701       702       1F(XSS.LT.0) THEN       700         703       703       HYDV(15, 1) = .125 * R1N       700         704       704       HYDV(15, 1) = .125 * R1N       700         703       1070       C       701       705         704       704       HYDV(15, 1) = .125 * R1N       700         705       END 1F       700 * 707       707         706       150       COUTINUE       706       707         707       C       707       707       707         708       709       HYDVV(1V, 2) = 0.       711       711         711       HYDVVV(1V, 2) = 0.       711       711       711       711         712       HYDVVV(1V, 2) = 0.       713       713       713       713       713       713         714       Y4 SS = XV(1, 1V)       Y10       714       714       715 715       1F(XSS.LT0) THEN       716         717 <td>695 695</td> <td>695</td> <td></td> <td>D0 150</td> <td>1S = 1,</td> <td>NS</td> <td></td> <td></td> <td></td> <td>695</td>	695 695	695		D0 150	1S = 1,	NS				695
639         659         HUDV(15, 3) = 0.         658           639         659         HUDV(15, 4) = PIN         659           700         HUDV(15, 5) = HRGG         700           701         XSS + XS(1, 15)         701           702         71f (XSS, 1, 1, 0)         702           703         703         HUDV(15, 1) = .125 * RIN         702           704         HUDV(15, 1) = .125 * RIN         703           705         FOS         END IF         705           706         150         CONTINUE         706           707         C         707         707           708         DO 176 IV = 1, NV         708         709           709         HYDVV(1V, 1) = RIN         709         709           710         HYDVVV(1V, 1) = RIN         709           711         HYDVVV(1V, 2) = 0.         711           712         712         HYDVVV(1V, 3) = 0.         711           711         HYDVVV(1V, 4) = PIN / HRGM         712           713         T13         HYDVVV(1V, 4) = PIN / HRGM         712           714         714         XSS = XV(1, 1V)         714           715         IF (XSS LT0) THEN         716 </td <td>090 697</td> <td>690 697</td> <td></td> <td></td> <td>13, 1) = 15</td> <td>• KIN</td> <td></td> <td></td> <td></td> <td>090 607</td>	090 697	690 697			13, 1) = 15	• KIN				090 607
699       699       699       699         700       HYDW(IS,5) + HRGG       700         701       XSS - XS(1, IS)       701         702       702       IF(XSS.LT0) THEN       703         703       HYDV(IS, 4)100 * PIN       703         704       HYDV(IS, 4)100 * PIN       703         705       EMO IF       705         706       706       150       CONTINUE         707       707       C       707         708       708       DD 176 IV - 1, NV       708         709       HYDVV(IV, 1) - RIN       709       700         711       711       HYDVVV(IV, 2) - 0.       710         711       HYDVVV(IV, 2) - 0.       710       710         711       HYDVVV(IV, 2) - 0.       711       711         711       HYDVVV(IV, 3) - 0.       713         713       HYDVVV(IV, 4) - PIN / HRGM       713         713       THYDVVV(IV, 4) - PIN / HRGM       714         714       XSS - XV(I, IV)       715         715       IF(XSS.LI,0)       THEN         716       716       HYDVVV(IV, 4) - PIN / HRGM       717         717       HYDVVVV(IV, 4	698	6 <b>98</b>		HYDV	13 , 2 ) = 15	0.				698
700       YOO       HYOV(15,5) = HRGG       YOO         701       XSS = XS(1,1S)       YOO         702       YOO       YOV(1S,1) = .125 * RIN       YOO         703       HYDV(1S,1) = .125 * RIN       YOO       YOO         704       HYDV(1S,4) = .100 * PIN       YOO       YOO         705       END IF       YOO       YOO         706       150       CONTINUE       YOO         707       C       YOO       YOO         708       YOO       HYDVV(1V,1) = RIN       YOO         709       HYDVVV(1V,2) = 0.       YOO       YOO         711       HYDVVV(1V,2) = 0.       YOO       YOO         711       HYDVVV(1V,2) = 0.       YOO       YOO         711       HYDVVV(1V,4) = PIN / HRGH       YOO       YOO         712       HYDVVV(1V,1) = RIN       YOO       YOO         713       HYDVVV(1V,1) = NIN       YOO       YOO         714       YAO       YOO       YOO       YOO         715       IF(XS) LT0)       THEN       YOO         716       THOVVV(1V,1)       YOO       YOO       YOO         716       HYDVVV(1V,1)       YOO	699	699		HYDV(	IS,4)-	PIN				699
701       701       715       702         702       716 (X.S X.S. (I., I.S.)       702         703       703       HYDV(IS, I) = .125 * RIN       703         704       704       HYDV(IS, I) = .100 * PIN       704         705       END IF       705         706       150       CONTINUE       706         707       C       707       707         708       708       D0 176 IV - I., NV       708         709       HYDVV(IV, I), I) - RIN       709       709         700       HYDVVV(IV, I), I) - RIN       706       707         710       HYDVVV(IV, I), I) - RIN       710       710         711       HYDVVV(IV, I), I) - RIN       712       712         713       TIS HYDVVV(IV, I), I) - RIN       714         715       TIF (XSS, LT0) THEN       715         716       HYDVVV(IV, I), I) - RIN       716         717       HYDVVV(IV, I), I - RIN       716         718       TIE END IF       720         720       C(2)       720         721       ELSE       721         722       C       722         723       ZMSQR - XMCHIN * XMCHIN <td>700</td> <td>700</td> <td></td> <td>HYDV(</td> <td>IS, 5) -</td> <td>HRGG</td> <td></td> <td></td> <td></td> <td>700</td>	700	700		HYDV(	IS, 5) -	HRGG				700
703       HTQV (IS, 4) = .125 * RIN       703         704       704       HTQV (IS, 4) = .100 * PIN       704         705       FRO IF       705         706       705       EMO IF       706         707       707       C       707         708       708       709       HYDVV (IV, 1) = RIN       708         709       709       HYDVVV (IV, 3) = 0.       710       710         711       11       HYDVVV (IV, 3) = 0.       711       712         712       HYDVVV (IV, 4) = PIN / HRGM       712       712         713       HYDVVV (IV, 5) = HRGG       713       714         714       714       XSS = XV(1, IV)       11       714         715       IF (XSS, LI,0) THEN       715       715         716       716       HYDVVV (IV, 4) = PIN / HRGM       717         717       717       HYDVVVV (IV, 4) = PIN / HRGM       716         719       19       176       CONTINUE       720         720       C(2)       720       720       720         721       721       ELSE       721       721         722       722       C       722       723 </td <td>701</td> <td>701</td> <td></td> <td>X55 = 157 + 157</td> <td>XS(1,1) SC 1T</td> <td>) // ) THEN</td> <td></td> <td></td> <td></td> <td>701</td>	701	701		X55 = 157 + 157	XS(1,1) SC 1T	) // ) THEN				701
704       YOU       IS       4       100       * PIN       704         705       705       END IF       705       705       705         706       706       150       CONTINUE       706       707         708       709       DO 176 IV = 1 , NV       708       709         709       709       HYDVV(IV , 1) = RIN       709         710       710       HYDVVV(IV , 2) = 0.       710         711       HYDVVV(IV , 2) = 0.       710         712       712       HYDVVV(IV , 3) = 0.       711         713       HYDVVV(IV , 4) = PIN / HRGM       712         714       714       XSS = X/(I, IV)       714         715       IF (XSS : LT0) THEN       715         716       716       HYDVVV(IV , 4) = PIN / HRGM       717         717       HYDVVV(IV , 1) - RIN       716       718         719       176       CONTINUE       720         720       C(2)       720       720         721       721       ELSE       721         722       722       C       722         723       ZXMSQR = XMCHIN * XMCHIN       726         724	702	702			IS 1)	125 * RIN				702
705       705       END iF       705         706       150       CONTINUE       706         707       C       707       707         708       709       D0 175 IV = 1 , NV       707         708       709       D0 175 IV = 1 , NV       707         709       HYDVV(IV, 1) = RIN       708         709       HYDVV(IV, 1) = 0.       710         711       HYDVV(IV, 1, 3) = 0.       711         712       HYDVV(IV, 1, 4) = PIN / HRGM       712         713       713       HYDVV(IV, 1, 4) = PIN / HRGM       712         714       XSS = XV(1, 1V)       714       715       IF (XSS - XV(1, 1V)         715       IF (XSS - XV(1, 1) = RIN       716       717         716       HYDVVV(IV, 4) = PIN / HRGM       717         715       IF (XSS - XV(1, 1) = RIN       716         716       HYDVVV(IV, 4) = PIN / HRGM       716         717       HYDVVV(IV, 4) = PIN / HRGM       716         718       T18       END IF       718         719       719       IF (COND . EQ . 1 . AND . ICONP . EQ . 0 ) THEN       721         722       C       722       725       ELSE       725 <tr< td=""><td>704</td><td>704</td><td></td><td>HYDV (</td><td>IŠ 4 )</td><td>.100 * PIN</td><td></td><td></td><td></td><td>704</td></tr<>	704	704		HYDV (	IŠ 4 )	.100 * PIN				704
706       150       CONTINUE       707         707       C       707       707         708       709       D0 176 JV = 1, NV       708         709       709       HYDVVV(IV, 1) = RIN       708         700       T00       HYDVVV(IV, 2) = 0.       710         711       711       HYDVVV(IV, 3) = 0.       711         712       HYDVVV(IV, 4) = PIN / HRGM       712         713       HYDVVV(IV, 5) = HRGG       713         714       714       XSS = XV(1, 1V)       714         715       IF(XSS - LT0) THEN       716         716       716       HYDVVV(IV, 4) = PIN / HRGM       716         717       HYDVVV(IV, 4) = PIN / HRGM       716         718       T18       END IF       718         719       719       170       C(2)       720         721       ELSE       721       721       C         722       722       C       722       723       XMSQR - XMCHIN * XMCHIN       726         722       722       C       725       ELSE       726       727         724       IF(ICOND . EQ . 1 . AND . ICONP . EQ . 0 ) THEN       726       727	705	705		END IF	F					705
707       707       708       708       708       708       708       708       708       708       708       708       708       708       708       708       708       708       708       709       709       HYDVVV(IV,1),1) = RIN       708       709       709       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       714       714       714       714       714       714       714       714       714       714       714       714       715       715       716       717       717       717       717       717       717       717       717       717       717       717       717       717       718       718       718       718       718       718       718       718       718       718       718       718       71	705	706	150	CONTIN	NUE					706
709       709       HTDYUV(IV,1) = RIN       709         710       710       HYDVV(IV,2) = 0.       710         711       711       HYDVVV(IV,3) = 0.       711         712       712       HYDVVV(IV,4) = PIN / HRGM       712         713       713       HYDVVV(IV,5) = HRGG       713         714       714       XSS = XV(1, IV)       714         715       IF(XSS.LT0) THEN       714         716       716       HYDVVV(IV,4) = RIN         717       HYDVVV(IV,4) = PIN / HRGM       715         716       716       HYDVVV(IV,4) = RIN         717       HYDVVV(IV,4) = RIN       716         718       718       END IF       718         719       719       176       CONTINUE       719         719       719       IF(COND.EQ.LICAND.ICONP.EQ.O) THEN       720         720       C       723       XMSQR = XMCHIN * XMCHIN       725         721       721       ELSE       725       725       ELSE       725         723       720       C (HRGG + 1.) * XMSQR / 2.)       728       728       728       728       728       728       729       727       RIML + RIN       73	708	707	L	DO 176	5 IV = 1 .	NV				708
710       710       HYDVVV(IV, 2) = 0.       710         711       711       HYDVVV(IV, 3) = 0.       711         712       712       HYDVVV(IV, 4) = PIN / HRGM       712         713       713       HYDVVV(IV, 5) = HRGG       713         714       XSS = XV(1, IV)       714       715         716       716       HYDVVV(IV, 4) = PIN / HRGM       715         716       716       HYDVVV(IV, 1) = RIN       716         717       HYDVVV(IV, 4) = PIN / HRGM       717         718       718       FI8       END IF         718       718       END IF       718         720       C(2)=       720       720         721       721       ELSE       721         722       722       C       722         723       XMSQR = XMCHIN * XMCHIN       723         724       TF(I CONO . EQ . 1 . AND . ICONP . EQ . 0 ) THEN       726         725       ELSE       725       725         726       727       RINL = RIN       726         727       RINL = RIN       726       727         730       PINFTO = ( 2. * HRGG * XHSQR / . (HRGG - 1. ) ) /	709	709		HYDVV	( IV . 1)	= RIN				709
711       711       HYDVVV(IV, 3) = 0.       711         712       712       HYDVVV(IV, 4) = PIN / HRGM       712         713       713       HYDVVV(IV, 5) = HRGG       713         714       714       XSS = XU(1, IV)       714         715       IF(XSS.LT0) THEN       714         716       716       HYDVVV(IV, 1) = RIN       716         717       HYDVVV(IV, 1) = RIN       716         718       718       END IF       716         719       19       176       CONTINUE       717         720       C(2)       720       720         721       FLSE       721       722         722       722       C       722         723       723       XMSQR = XMCHIN * XMCHIN       723         724       724       IF(ICOND.EQ.1.AND.ICONP.EQ.0) THEN       726         725       ELSE       725       726       727         727       RINL = RIN       726       727       727       RINL = RIN         729	710	710		HYDVV	/(IV,2)	<b>•</b> 0.				710
712       712       712       713       713       714       714       715       1       713       714       714       715       1       713       714       714       715       1       714       714       715       1       714       714       715       1       714       714       715       1       714       714       715       1       717       714       714       715       1       715       1       716       716       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717	711	711		HYDVV	V(IV,3)	= 0.				711
713       714       XSS - XV(1, )       1         714       XSS - XV(1, )       1       714         715       IF(XSS, LT,0) THEN       715         716       716       HYDVVV(IV, 1) = RIN       716         717       THYDVVV(IV, 1) = RIN       717         718       718       END IF       717         718       718       END IF       718         719       176       CONTINUE       719         720       C(2)       720       721         721       FLSE       721         722       722       C       722         723       XMSQR = XMCHIN * XMCHIN       720       723         724       724       IF(ICOND. EQ. 1. AND. ICONP. EQ. 0.) THEN       723         725       ELSE       725       725       ELSE         726       726       PINL = PIN       726       727         727       RINRTO - (HRGG + 1) * XMSQR /       729       729         728       729	712	713			/(1V,4) /(1V,5)	= PIA / HKGM = HRGG				713
715       715       IF(XSS.LT0) THEN       715         716       716       HYDVVV(IV.1) = RIN       716         717       717       HYDVVV(IV.4) = PIN / HRGM       717         718       718       FIN       717         719       176       CONTINUE       718         719       716       CONTINUE       719         720       C(2)       720         721       721       ELSE       721         722       C       722         723       723       XMSQR = XMCHIN * XMCHIN       723         724       IF(ICOND.EQ.I.AND.ICONP.EQ.O) THEN       724         725       ELSE       725         726       PINL = PIN       726         727       RINL = RIN       726         728       728       RINRTO = (HRGG + 1) * XMSQR /       727         730       730       PINRTO = (2.* HRGG * XMSQR - (HRGG - 1.)) /       730         731       731	714	714		XSS =	XV(1,1)	()				714
716       HYDVVV(IV.1) = RIN       716         717       717       HYDVVV(IV.4) = PIN / HRGM       717         718       FIS       END IF       718         719       719       176       CONTINUE       719         720       C(2)       720       721       FLSE       722         721       721       ELSE       722       723       723       724       724       724       727       727         724       724       IF(ICOND.EQ.1.AND.ICONP.EQ.0)       THEN       723       723       724       724       725       FLSE       725       725       FLSE       726       727       727       RINL = RIN       726       727       727       RINL = RIN       726       727       727       RINTO = (HRGG + 1.) * XMSQR / .       728       728       729       729       .       ((HRGG - 1.) * XMSQR + 2.)       730       730       730       730       730       730       730       730       731       732       732       PINTO = (2.* HRGG * XMSQR - (HRGG - 1.)) / .       730       731       732       732       733       733       733       733       733       734       734       734       734       734       734 <td>715</td> <td>715</td> <td></td> <td>IF( XS</td> <td>SS . LT</td> <td>.Ó ) THEN</td> <td></td> <td></td> <td></td> <td>715</td>	715	715		IF( XS	SS . LT	.Ó ) THEN				715
717       HYDUVV(IV, 4) = PIN / HKGM       717         718       718       END IF       718         719       176       CONTINUE       719         720       720       C(2)       720         721       721       ELSE       721         722       722       C       722         723       723       XMSQR = XMCHIN * XMCHIN       722         724       IF(ICOND.EQ.I.AND.ICONP.EQ.0) THEN       724         725       ELSE       725         726       726       PINL = PIN         727       727       RINL = RIN         728       RINRTO = (HRGG + 1.) * XMSQR /       728         729       .       ((HRGG - 1.) * XMSQR - (HRGG - 1.)) /       730         730       730       PINRTO = (2. * HRGG * XMSQR - (HRGG - 1.)) /       730         731       .       .       (HRGG + 1.)       731         732       732       PIN = PINRTO * PINL       732       733         733       731       .       .       .         733       733       RIN = RINRTO * RINL       .       .         733       734       YMCHIN * SQRT( ((HRGG - 1.)) * XMSQR + 2.) /       .       .	716	716		HYDVV	/(IV.1)	= RIN				716
719       710       176       CONTINUE       719         719       770       C(2)       720         721       721       ELSE       721         722       722       C       722         723       723       XMSQR = XMCHIN * XMCHIN       723         724       724       IF(ICOND.EQ.1.AND.ICONP.EQ.0) THEN       724         725       ELSE       725         726       726       PINL * PIN         727       727       RINL * RIN         728       RINRTO = (HRGG + 1.) * XMSQR /       726         729       .       ((HRGG - 1.) * XMSQR + 2.)       729         730       730       PINRTO * PINL       730         731       731       .       .       .         733       RIN - RINRTO * RINL       .       .       .         733       734       YMCHIN * SQRT(((HRGG - 1.)) * XMSQR - (HRGG - 1.)))       .       .         734       734       YMCHIN * SQRT(((HRGG * PINL / RINL) -       .       .         735       .       .       .       .       .         736       736       PRINT*, HRGG, RIN, PIN, YMCHIN       .       .       . <tr< td=""><td>718</td><td>718</td><td></td><td></td><td>/(1V,4)</td><td>= PIN / HKUM</td><td></td><td></td><td></td><td>718</td></tr<>	718	718			/(1V,4)	= PIN / HKUM				718
720       720       C(2)       720         721       721       ELSE       721         722       722       C       722         723       723       XMSQR = XMCHIN * XMCHIN       723         724       724       IF(ICOND . EQ . 1 . AND . ICONP . EQ . 0 ) THEN       724         725       ELSE       725         726       726       PINL = PIN       726         727       RINL = RIN       727         728       728       RINRTO = (HRGG + 1. ) * XMSQR / 2. )       728         729       .       ((HRGG - 1.) * XMSQR + 2. )       730         731       .       .       (HRGG + 1. )       730         733       731       .       .       .       .         733       733       RIN = RINRTO * RINL       .       .       .         733       733       RIN = RINRTO * RINL       .       .       .       .         734       734       YMCHIN = SQRT( ( HRGG - 1. ) * XMSQR + 2. ) /       .       .       .       .         734       734       .       .       .       .       .       .       .         735       .       .       . </td <td>719</td> <td>719</td> <td>176</td> <td>CONTIN</td> <td>NUE</td> <td></td> <td></td> <td></td> <td></td> <td>719</td>	719	719	176	CONTIN	NUE					719
721       721       ELSE       721         722       722       C       722         723       723       XMSQR = XMCHIN * XMCHIN       723         724       IF(ICOND.EQ.1.AND.ICONP.EQ.0) THEN       723         725       ELSE       725         726       PINL * PIN       726         727       727       RINL * RIN       727         728       728       RINRTO = (HRGG + 1.) * XMSQR /       728         729       729       (HRGG - 1.) * XMSQR - (HRGG - 1.)) /       730         731       731       (HRGG + 1.) * XMSQR + 2.)       730         733       733       PINRTO = (2. * HRGG * XMSQR - (HRGG - 1.)) /       731         733       733       RIN = RINRTO * RINL       732         733       733       RIN = RINRTO * RINL       733         734       734       YMCHIN = SQRT( (HRGG - 1.) * XMSQR - (HRGG - 1.)) )       735         735	720	720	C(2)							720
722       723       724       724       724       724       725       723         724       724       1F(ICOND.EQ.1.AND.ICONP.EQ.0)THEN       724       725         725       725       ELSE       725         726       726       PINL * PIN       726         727       727       RINL * RIN       727         728       728       RINRTO = (HRGG + 1.) * XMSQR / 2.)       729         730       PINRTO = (2. * HRGG * XMSQR - (HRGG - 1.)) / 730       731         731       731	721	721	~	ELSE						721
723       724       IF(ICOND.EQ.I.AND.ICONP.EQ.O) THEN       724         725       725       ELSE       725         726       726       PINL * PIN       726         727       727       RINL * RIN       727         728       728       RINRTO = (HRGG + 1.) * XMSQR /	723	723	ι	YMSOR	- XMCHIN *	XMCHIN				723
725       725       ELSE       725         726       726       PINL + PIN       726         727       727       RINL + RIN       727         728       728       RINRTO - (HRGG + 1.) * XMSQR /       728         729       729       ((HRGG - 1.) * XMSQR + 2.)       729         730       PINRTO = (2. * HRGG * XMSQR - (HRGG - 1.)) /       730         731       731       .	724	724		IF( I	COND . EQ .	1 . AND . ICONP .	EQ.0	) THEN		724
726       726       PINL = PIN       726         727       727       RINL = RIN       727         728       728       RINRTO = (HRGG + 1.) * XMSQR /       728         729       729       .       (HRGG - 1.) * XMSQR + 2.)       728         730       730       PINRTO = (2. * HRGG * XMSQR - (HRGG - 1.)) /       730         731       731       .       (HRGG + 1.)       731         732       732       PIN = PINRTO * PINL       732         733       733       RIN = RINRTO * RINL       733         734       734       YMCHIN = SQRT((HRGG - 1.) * XMSQR + 2.)/       734         735       .       (2. * HRGG * XMSQR - (HRGG - 1.)))       735         736       736       PRINT*, HRGG, RIN, PIN, YMCHIN       736         737       PRINT*, HRGG, RINL, PINL, XMCHIN       736         738       738       UVIN = XMCHIN * SQRT(HRGG * PIN / RIN )       738         739       739       .       YMCHIN * SQRT(HRGG * PIN / RIN )       739	725	725		ELŠE			•	,		725
727       727       728       728       RINRTO = (HRGG + 1.) * XMSQR /       728         729       729       . (HRGG - 1.) * XMSQR + 2.)       729         730       730       PINRTO = (2. * HRGG * XMSQR - (HRGG - 1.)) /       730         731       731       . (HRGG + 1.)       * XMSQR + 2.)         733       731       . (HRGG + 1.)       731         732       732       PIN = PINRTO * PINL       732         733       733       RIN = RINRTO * RINL       733         734       734       YMCHIN = SQRT( (HRGG - 1.) * XMSQR + 2.) /       734         735       . (2. * HRGG * XMSQR - (HRGG - 1.)) )       735         736       736       PRINT*, HRGG, RIN, PIN, YMCHIN       736         737       PRINT*, HRGG, RIN, PINL, XMCHIN       736         738       738       UVIN = XMCHIN * SQRT(HRGG * PINL / RINL) -       738         739       739       . YMCHIN * SQRT(HRGG * PIN / RIN )       739	726	726		PINL +	• PIN					726
729       729	727	727 729		RINL .	<pre>KIN</pre>	+ 1. ) * YMSOR /				728
730       730       PINRTO = (2. * HRGG * XMSQR - (HRGG - 1. )) /       730         731       731       (HRGG + 1. ))       731         732       732       PIN = PINRTO * PINL       732         733       733       RIN = RINRTO * RINL       733         734       734       YMCHIN = SQRT( ( (HRGG - 1. ) * XMSQR + 2. ) /       734         735       735       (2. * HRGG * XMSQR - (HRGG - 1. ) ))       735         736       736       PRINT*, HRGG, RIN, PIN, YMCHIN       736         737       737       PRINT*, HRGG, RINL, PINL, XMCHIN       737         738       738       UVIN = XMCHIN * SQRT( HRGG * PINL / RINL ) -       738         739       739       YMCHIN * SQRT( HRGG * PIN / RIN )       739	729	729			( ( HRG	G - 1. ) * XMSOR +	2.)			729
731       731       (HRGG + 1.)       731         732       732       PIN = PINRTO * PINL       732         733       733       RIN = RINRTO * RINL       733         734       734       YMCHIN = SQRT( ( (HRGG - 1. ) * XMSQR + 2. ) /       734         735       735       (2. * HRGG * XMSQR - (HRGG - 1. ) ))       735         736       736       PRINT*, HRGG, RIN, PIN, YMCHIN       736         737       737       PRINT*, HRGG, RINL, PINL, XMCHIN       737         738       738       UVIN = XMCHIN * SQRT( HRGG * PINL / RINL ) -       738         739       739       YMCHIN * SQRT( HRGG * PIN / RIN )       739	730	730		PINRTO	)=(2.*	HRGG * XMSQR - ( H	RGG - 1.	))/		730
732       732       PIN - PINKIU * PINL       732         733       733       RIN - RINRTO * RINL       733         734       734       YMCHIN = SQRT( ( (HRGG - 1. ) * XMSQR + 2. ) /       734         735       735       .       ( 2. * HRGG * XMSQR - (HRGG - 1. ) )       735         736       736       PRINT*, HRGG, RIN, PIN, YMCHIN       736         737       737       PRINT*, HRGG, RINL, PINL, XMCHIN       737         738       738       UVIN = XMCHIN * SQRT( HRGG * PINL / RINL ) -       738         739       739       .       YMCHIN * SQRT( HRGG * PIN / RIN )       739	731	731		* n t + -	01N070 + -	(	HRGG + 1	.)		731
734       734       YMCHIN = SQRT(((HRGG - 1.) * XMSQR + 2.)/       734         735       735	/32	152		Р1N = 0тм -	PINKIU * P	'INL PTN1				152
735       735       .       (2. * HRGG * XMSQR - (HRGG - 1. )))       735         736       736       PRINT*, HRGG, RIN, PIN, YMCHIN       736         737       737       PRINT*, HRGG, RINL, PINL, XMCHIN       737         738       738       UVIN = XMCHIN * SQRT(HRGG * PINL / RINL) -       738         739       739       .       YMCHIN * SQRT(HRGG * PIN / RIN)       739	734	734		YMCHI	V = SORT(	( HRGG - 1. ) * X	MSOR + 2	.)/		734
736         736         PRINT*, HRGG, RIN, PIN, YMCHIN         736           737         737         PRINT*, HRGG, RINL, PINL, XMCHIN         737           738         738         UVIN = XMCHIN * SQRT(HRGG * PINL / RINL) -         738           739         739         YMCHIN * SQRT(HRGG * PIN / RIN)         739	735	735				( 2. * HRGG * XMS	QR - (H	RGG - 1. ) ) )		735
737         737         PRINT*, HRGG, RINL, PINL, AMCHIN         737           738         738         UVIN - XMCHIN * SQRT( HRGG * PINL / RINL) -         738           739         739         YMCHIN * SQRT( HRGG * PIN / RIN )         739	736	736		PRINT	*,HRGG,RIN,	PIN, YMCHIN				736
739 739 . YMCHIN * SQRT(HRGG * PIN / RIN) 739	/37	137		PRINT	",HRGG,RINŁ . xmc⊔in +	SORT ( HOCC * DINS	ר ומזק /	_		730
	739	739		A NATH A	YMCHIN *	SQRT( HRGG * PIN /	RIN)			739

6

Thu Jul	1 14:	15:40	1993	mai <b>nhd.</b> f	PROGRAM AUGUST	page	11
740	740		END I	F			74(
741	741		DO 17	5 IV = 1, NV			741
742	742		HYDVV	V(IV.1)=	RINL		742
744	743		HYDVV	(1V, 2) = ((1V, 3) = ((1V, 3)) = ((1V, 3	0.		743
745	745		HYDVV	V(IV,4) =	PINL / HRGM		749
746	746		HYDVV	V(IV,5)=	HRGG		746
747	747		XSS =	XV(1, IV)	N =		747
740	740		11 ( X	55 . Li0	) IHEN DIN		748
750	750		HYDVV	(1V, 1) =	INTN = RTN		749
751	751		HYDVV	V(IV, 4) =	PIN / HRGM + .5 * RIN * UVIN * UVIN		750
752	752		END I	F			752
753	753	175	CONTIN				753
755	/ 34			J 15 = 1 , MS	M1		754
756	756		HYDV	$IS (2) = R_1$ IS (2) = 0	สม		/55
757	757		HYDV (	IS, 3) = 0.			750
758	758		HYDV (	IS, 4 = PI	NL		758
759	759		HYDV(	IS, 5) = HR	GG		759
761	761		12( Xd	XS(1, 1S)	) THEM		760
762	762		HYDV(	IS . 1 ) = RI	) IACN N		761
763	763		HYDV	$\overline{IS}$ , $2\hat{)} = UV$	IN		763
764	764		HYDV (	IS, 4) = PI	N		764
765	765	170	END 1				765
767	767	1/0	CONTIN	IUE			766
768	768	Ċ,	IFC IC	PEOS . ED . 1	) THEN		767
769	769		HRGGN	= HRGG	y men		760
770	770		HRGGL	- HRGG			770
771	771		RINRTO	= (HRGGN +	1. ) * XMSQR /		771
773	773			( ( HRGGN ) = ( 2 * NRC	-1.) * XMSQR + 2.)		772
774	774		FIRKI	/= ( 2 nku	GN ~ AMOUR - ( MRGGN - 1, ) ) / ( MRGGN + 1 )		773
775	775		PIN -	PINRTO * PINL			775
776	776		RIN =	RINRTO * RINL			776
777	777		TTNN -	· PIN / ( HRGG	N - 1. )		777
770	770		TTNI -	EKINI / (UDC	C1 1 \		778
780	780		RRNI	RINE / ( DRG	GL - 1. )		779
781	781		DO 112	2 KI = 1 . 9			781
782	782		CAL	L EOS( RRNN ,	TTNN , 1 , HRGGN )		782
783	783		CAL	L EOS( RRNL ,	TTNL , 1 , HRGGL )		783
785	796		KINKI	I = (HKGGN + (UDCCN))	1. ) * XMSUR /		784
786	786		PINRTO	((1Ruon) = (2, * HRG)	- 1. ) ~ AMBUK + 2. ) GN * XMSOR - ( HRGGN - 1 ) ) /		785
787	787		•	(	(HRGGN + 1.)		787
788	788		RIN =	RINRTO * RINL	,		788
789	789		PIN =	PINRTO * PINL	и , ,		789
790	790		DDNN -	PIN / ( MKGG DIN	N - 1. )		790
792	792		TTNL =	PINL / ( HRG	GL - 1. )		702
793	793		RRNL -	RINL	,		793
794	794		YMCHIN	= SQRT( ( (	HRGGN - 1.) * XMSQR + 2.) /		794
795 706	795			HOCCN DIN DI	2. * HRGGN * XMSQR ~ ( HRGGN - 1. ) ) )		795
797	797		PRINT*	HRGGI RINL P	A, TACALA INI XMCHTN		/90
798	798	1122	CONTIN	UE			798
799	799		UVIN -	XMCHIN * SQR	T( HRGGL * PINL / RINL ) -		799
800	800			YMCHIN * SOR	T( HRGGN * PIN / RIN )		800
802	801 802		UU 1/2	15 = 1, NS 15 = 1 - 10			801
803	803	172	CONTIN	ue, o j = miki UE	aut.		802 203
804	804		END IF				804
805	805		UIN =	UVIN * COSS			805
806	806	c	VIN =	UVIN * SINN			806
808	007 808	L	FNDIF				807
809	809	C(2)-	CHU11				800 808
810	810	C					810
811	811		IF( MP	RTCL . EQ . 1	) THEN		811
812	812			= () CO 147 1 1	20		812
013	012		UU I	AA 14Y = 1 * 1	JV		813

1

í

Thu Jul	1 14:1	5:40	1993	mainhd.f	PROGRAM AUGUST	page	12
814 815 816 817 818 819 820	814 815 816 817 818 819 820	190	DO 1 IKXY XPRT XPRT CONT NPT PRIN	90 IKY = 1 = IKXY + CL( 1 , IK; CL( 2 , IK; INUE = IKXY T *, NPT	, 15 1 XY ) = ( IKX - 1 ) * .1 + .05 XY ) = ( IKY - 1 ) * .1 + .05		814 815 816 817 818 819 820
821 822	821 822		CALL	PRLCTN T *, NPT			821 822
823 824	823 824	с	ENDIF				823 824
825 826	825 826	C=∍=	*******				825
827	827	Č	- READ I	NPUT DATA I	FROM THE PREVIOUS RUN		827
829	829	ι	PRINT	* ,ICOND,	ICONP		828 829
830 831	830 831		IF( II REAL	CONP . EQ . D (88) RIN,	. 1 ) THEN .PIN.RINL.PINL.UVIN.UIN.VIN.TT.		830 831
832 833	832 833		PRTI	H NT ★ RIN B	YDMOM(1),HYDMOM(2),HYDMOM(4)		832
834	834		REAL	D (88) ((H)	YDV(IS,IK),IK=1,5),IS=1,NS)		834
836	836		REAL	D (88) [JK]	INT. (KSDELT(IS), IS=1,NS)		835 836
837 838	837 838			( MPRTCL . READ (88)	EQ . 1 ) NPT,((XPRTCL(IK,IPT),IK=1.2),IPT=1.NPT),		837 838
839 840	839 840		ENDIF		(IJKPRT(IPT), IPT=1, NPT)		839 840
841	841	C					841
843	843	C					842 843
844 845	844 845	C C	- PERFOR	1 THE ACTU	AL CALCULATION		844 845
846 847	846 847	с	CALL H	YDRMN			846
848	848	Č===	********		***************************************		848
850	850	Ç	- EXIT PO	DINT FROM P	PROGRAM		849 850
851 852	851 852	С С	******				851 852
853 854	853 854	с	STOP 77	77 			853 854
855 856	855 856	0					855
857	857	Č	- 100001				857
859	859	101	FURMAL	(IH , ICOND IOPTN	)=',12,5X,'1CONP=',12,5X,'1TRIGR=',12,5X, {=',12,/,1X,		858 859
860 861	860 861			'XMCHI 'ALFA≖	IN=',F13.6,5X,'RIN=',F13.6,5X,'PIN≠',F13.6,/,1X, -',F13.6,5X,'HRGG=',F13.6,5X,'THRN=' T2.5X / TX		860 861
862 863	862		•	'NTIME	='.12,5X, 'MDUMP=',15,5X, 'NDUMP=',15,5X,/1X		862
864	864			'IOPRC	N=', 12, 5X, 'IOPORD=', 12, 5X, 'IOPBYN=', 12, 5X, /, 1X		863 864
866 866	865 866		•	'IAXSY 'IOPIN	M=',12,5X,'IOPEOS=',12,5X,'MPRTCL=',16,5X,/,1X, HT=',12,5X,'IOPADD=',12,5X,'IOPDEL=',12,5X,/,1X.		865 866
867 868	867 868		•	'AREAD 'IWIND	W=',f13.6,5X,'AREDEL=',f13.6,5X,/,1X, W=',12.5X,'ISTATC=',12)		867 868
869 870	869 870	C					869
871	871	L	END				870 871

Thu Jul	1 14:15	5:40	1993	mainhd.f	SUBROUTINE HYDRFL	page	13
872	1	_	SUBROU	TINE HYDRFU			872
873 874	23	C			I		873
875	4	č			I		875
876	5	ç	HYDRF		IMENSIONAL RIEMANN SOLVER THAT COMPUTES THE I		876
878	0 7	C		OR TRIAN	AF BASED QUANTITIES.		8//
879	8	č			I		879
880	9	Ç					880
882	10	L	includ	e 'cnst	100.h'		882
883	12		includ	e 'chyo	100.h'		883
884 885	13		includ	e 'cini e 'cobi	10.h'		884
886	15		includ	e 'cphi	520.h'		886
887	16	č					887
888 889	17	{)==== []			ſŖŦġŖŧŗĸŢĸĸĬĸĸŔŶĔĔĊŴġĸġŶĿŎŊŸĿŎŴĸŦŶŴĬŔĸĬŔĸŔĸĹĸĊŖŧĊŴĿ		888
890	19	C	REAL D	ELP(MBP),WS	SOP(MBP),WSOM(MBP),WSOO(MBP),		890
891	20		• R	STAR(MBP),(	STAR(MBP), PMAX(MBP), PMIN(MBP)		891
892 893	21		REAL R	RIGHI(MBP), FFTT(MBP),	UKIGHI(MBP),VKIGHI(MBP),PKIGHI(MBP) UHFFTT(MBP),VLFFTT(MBP),PLFFTT(MBP)		892
894	23	C					894
895	24	C===	#### <b>#</b> ###############################		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		895
890 897	25 26	C					890
898	27	č	- BEGIN	LOOP OVER A	ALL EDGES IN THE DOMAIN		898
899	28	С	no 290	14 1			899
900	29 30		D0 280	III = 1, 4 IS = 1, 1	15		900 901
902	31		HYDFLX	( IS , )	= 0.		902
903 904	32	280	) CONTIN	UE			903
905	34	L.	NE1 -	1			904
906	35		NE2 =	NOFVEE( 1 )			906
907 908	36	r	00 110	INE = 1,	NVEEE		907
909	38	Č	- FETCH	HYDRO QUANT	ITTIES		909
910	39	č	FOR LE	FT AND RIGH	IT SIDE OF THE INTERFACE ON WHICH THE		910
912	40 41	C	KIEMAN	N PROBLEM I	12 ZOLAED		911
913	42	•	DO 120	IE - NEI ,	NE2		913
914 015	43	r	KE	= IE - NE1	L + 1		914
915 916	45	L	RR	R( KE ) = F	R(IE)		915 916
917	46		UU	R( KE ) = l	R(IE)		917
918 010	47		VV	R(KE) = V D(VE) = D	(R(IE))		918
920	49	C					920
921	50		RR	L( KE ) = F	AL ( IE )		921
922	51			L( KE ) = U I ( KF ) ≖ N			922
924	53		PP	L( KE ) = F	PL(IE)		924
925	54	_12(	) CONTIN	UE			925
927	55 56	C	- ASSIGN	GAMA A VAL	UE		920 927
928	57	С					928
929 030	58 50		DO 130	KE = 1 , M	IOFVEE(INE)		929
931	60		ISL	= JE(3)	IE)		931
932	61		ISR	= JE(4,	IE)		932
933 934	62 63		GAM JE(	AL(KE) = ISR NF .	HYDV(ISL, 5)		933 934
935	64		G	AMAR( KE )	= HYDV( ISR , 5 )		935
936	65		ELS	E NHAD ( VE )	- CAMAL ( VE )		936
<b>9</b> 2 92	67		FND	IF	= UATIAL( AE )		938 938
9	68	Ç					939
9 94.	69 70	C	- THIS S דאר סיו	EUTION OF C Emann odgei	OUE SOLVES FOR "PSTAR" AND "USTAR" IN		940 0/1
942	71	č	THE RI	LIVINI PAUDL	LET (J3130 NEW (V)) J (LETIOD.		942
943	72		WL	EFT( KE ) =	• SQRT( GAMAL( KE ) * PPL( KE ) * RRL( KE ) )		943
944 945	73	С	WK	101( KC ) =	· SUNTE GAMANE RE ) ^ PPREKE ) ^ REREE ) )		944 945

Thu Jul	1 14:15	5:40 199	3 mainhd.f	SUBROUTINE HYDRFL	page	14
946 947	75 76		WLESQ( KE ) -	- WLEFT( KE ) * WLEFT( KE )		946
948	77	C				947
949 950	78 79	<u>^</u>	PSML( KE ) =	AMINI( PPL( KE ) , PPK( KE ) ) HRSM * PMIN( KE )		949 950
951 952	80 81	C F	ORM THE STARTING	GUESS FOR THE SOLUTION		951 952
953 954	82 83	С	PSTAR( KE ) -	• ( WLEFT( KE ) * PPR( KE ) +		953 954
955 956	84 85	•		WRIGT( KE ) * PPL( KE ) - WLEFT( KE ) * WRIGT( KE ) *		955 956
957 958	86 87	•		( UUR( KE ) - UUL( KE ) ) ) / ( WLEFT( KE ) + WRIGT( KE ) )		957 958
959 960	88 89	130 0	PSTAR( KE ) =	AMAX1( PSTAR( KE ) , PSML( KE ) )		959 960
961 962	90 91	С	DO 140 I = 1	. IHRN		961 962
963 964	92 93	C	FGIN THE NEWTON			963 964
965	94 95	Č r				965
967 968	96 97	c	(CE - ( CAMA	$(\psi \in \{1, 1, 2\})$ (CANAL( $\psi \in \{1, 4\}$ )		967
969 970	98		WLEFS( KE )	$= (1 + C + (PSTAR(KE))^{-1})$		969
970	100	•	WLEFT( KE )	= SORT( WEFS( KE ) )		970
972 973	101	•	ZLEFI( KE )	= 2. * WLEFT( KE ) * WLEFS( KE ) ; ( WLESQ( KE ) + WLEFS( KE ) )		972 973
974 975	103 104	•	USTL( KE )	= UUL( KE ) - ( PSTAR( KE ) - PPL( KE ) ) / HLEFT( KE )		974 975
976 977	105 106	150 C C	ONTINUE			976 977
978 979	107 108	c D	0 152 KE = 1 , N	OFVEE( INE )		978 979
980 981	109 110		CF = ( GAMA WRIFS( KE )	R( KE ) + 1 . ) / GAMAR( KE ) * .5 = ( 1. + CF * ( PSTAR( KE ) /		980 981
982 983	111 112	٠	WRIGT( KE )	PPR(KE) - 1.)) * WRISQ(KE) = SORT(WRIFS(KE))		982 983
984 985	113 114		ZRIGT( KE )	= 2. * WRIGT( KE ) * WRIFS( KE ) / ( WRISO( KE ) + WRIFS( KE ) )		984 985
986 987	115 116		USTR( KE )	= $UUR(KE) + (PSTAR(KE)) - PPR(KE)) / WRIGT(KE)$		986 987
988 989	117 118	152 C	ONTINUE			988 980
990 991	119	0	0 160 KE = 1 , N	OFVEE( INE ) * 7PICT( KE ) *		990 990
992 003	121	•		(USTR(KE) - USTL(KE)) /		992 002
994 006	123	•	PSTAR( KE )	= PSTAR(KE) - DPST(KE)		993 994
995 996	124	160	CONTINUE	≈ AMAXI( PSIAK( KE ) , PSML( KE ) )		996
997 998	120	140 C		045		997 998
1000	128	C F C _	ORM FINAL SOLUTI	ONS		999 1000
1001	130	c U	0 170 KE = 1 , N	OFVEE( INE )		1001 1002
1003 1004	132 133		CF = ( GAMAL( WLEFT( KE ) =	KE ) + 1. ) / GAMAL( KE ) * .5 SQRT( WLESQ( KE ) * ( 1. +		1003 1004
1005 1006	134 135	170 C	ONTINUE	CF * ( PSTAR( KE ) / PPL( KE ) - 1. ) ) )		1005 1006
1007 1008	136 137	C D	0 172 KE = 1 , N	OFVEE( INE )		1007 1008
1009 1010	138 139	С	CF = ( GAMAR(	KE ) + 1. ) / GAMAR( KE ) * .5		1009 1010
1011 1012	140 141	•	WRIGT( KE ) =	SQRT( WRISQ( KE ) * ( 1. + CF * ( PSTAR( KE ) / PPR( KE ) - 1. ) ) )		1011 1012
1013 1014	142 143	172 C C	ONTINUE			1013
1015 1016	144 145	D	0 180 KE = 1 , N USTAR( KF ) =	OFVEE(INE) (PPL(KE) - PPR(KE) +		1015
1017	146	•	vorini ( () "	WLEFT( KE ) * UUL( KE ) + WRIGT( KE ) * UUR( KE ) ) /		1017
1019	148	•		( WLEFT( KE ) + WRIGT( KE ) )		1019

Thu Jul	1 14:	15:40 1	993 mainhd.f	SUBROUTINE HYDRFL	page	15
1020	149	180	CONTINUE			1020
1021	150	C C	REGIN PROCEDURE	TO OBTAIN FULKES FROM REIMANN FORMALISM		1021
1023	152	č				1023
1024	153		DO 190 KE = 1 ,	NOFVEE(INE)		1024
1025	154	С	IF( USIAK( )	KE ) . LE . U.U ) INEN		1025
1027	156	•	RO( KE )	= RRR( KE )		1027
1028	157		PO( KE )	= PPR(KE)		1028
1029	150		CO( KE )	= SORT ( GAMAR ( KE ) * PPR ( KE ) / RRR ( KE ) )		1029
1031	160		WO(KE)	= WRIGT( KE )		1031
1032	161	c	ISN( KE )	• 1		1032
1033	163	U.	VGDNV( KE	) = VVR( KE )		1034
1035	164	C				1035
1036	165	r	ELSE			1036
1038	167	C	RO( KE )	= RRL( KE )		1038
1039	168		PO( KE )	= PPL( KE )		1039
1040	109		00( KE )	= UUL( KE ) = SORT( CAMALI KE ) * DDI( KE ) / DDI( KE ) )		1040
1042	171		WO(KE)	= WLEFT( KE )		1042
1043	172	~	ISN( KE )	- 1		1043
1044	1/3	Ĺ	VGDNV( KF	) = VVI ( KF )		1044
1046	175		END IF			1046
1047	176	_190	CONTINUE			1047
1048	177	L	D0 200  KF = 1	NOFVEE( INF )		1040
1050	179		DELP( KE )	= PSTAR( KE ) - PO( KE )		1050
1051	180		WSOP(KE)	= ISN( KE ) * UO( KE ) + WO( KE ) / RO( KE )		1051
1052	181	200	CONTINUE	= 15M(RE) - 00(RE) + CO(RE)		1052
1054	183	c				1054
1055	184		DO 210 KE = 1 .	NOFVEE( INE )		1055
1050	185		WSOO( KE )	= WSOP(KF)		1050
1058	187		ELSE			1058
1059	188		WSOO( KE )	= WSOM( KE )		1059
1061	190	210	CONTINUE			1061
1062	191	ç				1062
1063	192	C	USE DUTER STATE	SOLUTION		1063
1065	194	C	DO 220 KE = 1 .	NOFVEE( INE )		1065
1066	195		PGDNV( KE )	= PO( KE )		1066
1067	190		CGDNV( KE )	= UU( KŁ ) = CO( KF )		1068
1069	198		RGDNV( KE )	= RO( KE )		1069
1070	199	220	CONTINUE			1070
1071	200	с с	COMPUTE STARRED	VALUES		1072
1073	202	č				1073
1074	203		DO 230 KE = 1,	NOFVEE(INE)		1074
1075	204		IE = KE + KE ISL = JE(3	. IE )		1076
1077	206		ISR = JE(4)	, IE )		1077
1078	207		IF( ISR . NE GAMAG( KF )	. 0 ) HEN = 5 * ( HYDV( ISL 5 ) + HYDV( ISP 5 ) )		1078
1079	200		ELSE	5 ( IID4( ISC ; 5 ) + IID4( ISC ; 5 ) )		1080
1081	2:0		GAMAG( KE )	- HYDV( ISL, 5)		1081
1082	12	С	END IF			1082
1084	213	~	RSTAR( KE )	= 1. / ( 1. / RO( KE ) - DELP( KE ) /		1084
1085	214	r	•	( WO( KE ) * WG( KE ) ) )		1085
1087	215	L	CSTAR( KE )	= SORT( GAMAG( KE ) * PSTAR( KE ) / RSTAR( KE ) )		1087
1088	217		WSOM( KE )	= ISN( KE ) * USTAR( KE ) + CSTAR( KE )		1088
1089	218	230	CONTINUE			1089
1091	220	v	DO 240 KE = 1 .	NOFVEE( INE )		1091
1092	221		IF ( DELP ( KE	). GT . O. ) THEN		1092
1033	222		SPIN( KE )	* WOUP( KE )		1032

## 

lhu Jul	1 14:	15:40	1993 mainhd.f	SUBROUTINE HYDRFL page	16
1094	223		ELSE		1094
1095	224		END IF	= WSUM( KE )	1095
1097	226	240	CONTINUE		1090
1098	227	С	DO 250 KE - 1		1098
1100	229	С	UU 250 KE = 1 ,	NOFVEL( INE )	1099
1101	230	•	IF( WSOO( KE )	. GE . O. ) THEN	1101
1102	231	c	IF( SPIN( K	E).GE.O.)THEN	1102
1104	233	C	USE THE STARRED	STATE RESULTS	1103
1105	234	С			1105
1100	235			RGDNV( KE ) = RSTAR( KE ) HGDNV( KE ) = HSTAR( KE )	1106
1108	237			CGDNV( KE ) = CSTAR( KE )	1107
1109	238		<b>FI CF</b>	PGDNV( KE ) = PSTAR( KE )	1109
1111	240	С	ELSE		1110
1112	241	Č	EVALUATE THE INS	SIDE RAREFACTION WAVE	1112
1113	242	C	WOCC - CAMA		1113
1115	244		HRGM = GAMAG	G( KE ) - 1.	1114
1116	245		HRGP = GAMA	G(KE) + 1.	1116
1117	240		CGDNV( KE )	= ( CSTAR( KE ) * 2. ~ ISN( KE ) * HSTAD( KE ) * HDCM ) / HDCO	1117
1119	248		UGDNV( KE )	- ISN( KE ) * CGDNV( KE )	1118
1120	249		RGDNV(KE)	= ( CGDNV( KÉ ) / CO( KE ) ) **	1120
1121	250		PGDNV( KF )	(2. / HRGM ) * RO( KE ) = CCDNV( KE ) * CCDNV( KE ) * DCDNV( KE ) / HDCC	1121
1123	252	С	10000 ( (ic )		1122
1124	253	~	END IF		1124
1125	255	ι	END IF		1125
1127	256	250	CONTINUE		1120
1128	257	C	DO 142 1C -	NC1 NC2	1128
1129	250		KF = TE = NE	NCI, NEZ F1 + 1	1129
1131	260	С			1131
1132	261		RRR(KE) =	XN(IE)	1132
1134	263		VVR(KE) -	XXN(IE)	1133
1135	264		PPR( KE ) =	YYN( IE )	1135
1130	205		PPL( KE ) =	XE(2, IE)	1136
1138	267		UUL( KE ) =	XYMIDL( IE )	1137
1139	268	C	CONTINUE		1139
1140	270	142 C	CUNITAUE		1140
1142	271	Č	SEARCH FOR MINIM	NUM VALUE OF TIMESTEPDTT	1142
1143	272	C	DO 260 KE - 1	NORVER ( INC )	1143
1145	274		CTT = SQRT( GAMA	AG(KE) * PGDNV(KE) / RGDNV(KE))	1144
1146	275	~	VEL = UGDNV( KE	)	1146
1147	270	L	PROJET = RRR( KE	- ) * VVR( KF ) + IIIIR( KF ) * PPP( KF )	1147
1149	278		DTU = PPL( KE )	* ABS( PROJET ) / ( CTT + ABS( VEL ) )	1149
1150	279		DT1 = DTU + UUL(	(KE)	1150
1152	281		DTT = AMIN1(DTT)	「, DT1, DT2)	1151
1153	282	260	CONTINUE		1153
L154 1155	283 284	C		IYES AT CACH INTEDEACE	1154
1156	285	č			1100
1157	286		DO 270 KE - 1	NOFVEE( INE )	1157
1159	288		HRGM = GAMAG	(KE) - 1.	1158
1160	289		HRGP = GAMAG	i( KE ) + 1.	1160
1161	290 201	C C	FHIN FOD DENCITY	, 1	161
1163	292	č	FON FOR DENSITY	· ····································	163
1164	293	~	RO( KE ) - RGDNV	/(KE) * UGDNV(KE)	164
166	294 295	ι C	FLUX FOR MOMENTH	IM DENSITY	165
167	296	ē	- ware i are inorigitto	1	167

Thu Jul	1 14:1	15:40 1	993 mainhd.f SUBROUTINE HYDRFL	page 17
1168	297		UO( KE ) = PGDNV( KE ) * RRR( KE ) +	1168
1169	298		. RO( KE ) * ( UGDNV( KE ) * RRR( KE ) -	1169
1171	300		wolk(KE) = PGDNV(KE) * UUR(KE) +	1170
1172	301		. RO( KE ) * ( UGDNV( KE ) * UUR( KE ) +	1172
1173	302	r	• VGDNV( KE ) * RRR( KE ) )	1173
1175	304	č	FLUX FOR ENERGY DENSITY	1174
1176	305	C		1176
1177	306		PO(KE) = UGDNV(KE) * (PGDNV(KE) * HRGG / HRGM +	1177
1179	308			1170
1180	309	C		1180
1182	310	270 C	CONTINUE	1181
1183	312	Č	COLLECT INTERFACE FLUXES FOR EACH TRIANGLE	1183
1184	313	С		1184
1185	315		KE = IE - NE1 + 1	1185
1187	316	C		1187
1188	317 318		ISL $\sim$ JE(3, IE) ISP $\sim$ JE(A, IE)	1188
1190	319	С	IJK = JE( 4 , IE )	1189
1191	320	•	DFLUX - RRL( KE )	1191
1192	321 322	C	15( 15( 5 15 ) 50 0 ) THEN	1192
1194	323	С		1195
1195	324	ç	FLUX FOR DENSITY	1195
1190	325	ι		1196
1198	327		HYDFLX(ISR, 1) = HYDFLX(ISR, 1) - DFLUX * RO(KE)	1198
1199	328	C	CHIV FOR MOMENTUM DEUCITY ( 1) OTDECTION )	1199
1201	330	с	FLOX FOR MUMENTUM DENSITY ( U DIRECTION )	1200
1202	331	-	HYDFLX(ISL, 2) = HYDFLX(ISL, 2) + DFLUX * UO(KE)	1202
1203	332	ſ	HYDFLX( ISR , 2 ) = HYDFLX( ISR , 2 ) - DFLUX * UO( KE )	1203
1205	334	č	FLUX FOR MOMENTUM DENSITY ( V DIRECTION )	1204
1206	335	C		1206
1207	330 337		HYDELX(ISL, 3) = HYDELX(ISL, 3) + DELUX * WO(KE) HYDELX(ISP, 3) = HYDELX(ISP, 3) = DELUX * WO(KE)	1207
1209	338	C	$\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}(\operatorname{Hor}))))))))))))))))))))))))))))))))))))$	1209
1210	339	Ç	FLUX FOR ENERGY DENSITY	1210
1212	340	L	HYDELX(ISL, 4) = HYDELX(ISL, 4) + DELUX * PO(KE)	1211
1213	342	_	HYDFLX( ISR , 4 ) = HYDFLX( ISR , 4 ) - DFLUX * PO( KE )	1213
1214	343	С		1214
1215	345	С	¢L3£	1215
1217	346	Ç	FLUX FOR DENSITY	1217
1218	347 348	ι	HYDELX(ISL 1) = HYDELX(ISL 1) + DELUX * RD(XE)	1218
1220	349	С	$\operatorname{Hole}(X) = \operatorname{Hole}(Y) = H$	1220
1221	350	C	FLUX FOR MOMENTUM DENSITY ( U DIRECTION )	1221
1223	352	L	HYDFLX( ISL , 2 ) = HYDFLX( ISL , 2 ) + DFLUX * UO( KE )	1222
1224	353	C		1224
1225	354 355	C	FLUX FOR MOMENTUM DENSITY ( V DIRECTION )	1225
1227	356	•	HYDFLX( ISL , 3 ) = HYDFLX( ISL , 3 ) + DFLUX * WO( KE )	1227
1228	357	ç		1228
1230	359	с	FLUA FUR ENERGY DENSIT	1229
1231	360	•	HYDFLX( ISL , 4 ) = HYDFLX( ISL , 4 ) + DFLUX * PO( KE )	1231
1232	362 362	C	FND TE	1232
1234	363	290	CONTINUE	1233
1235	364	С		1235
1230	366 366		$\frac{1}{NE2} = \frac{NE2 + 1}{NE2}$	1236
1238	367	110	CONTINUE	1238
1239	368 360	C		1239
1241	370	( <b></b>		- 1240 1241

Thu Jul	1 14:1	15:40	1993	mainhd.f		SUBROUT	INE HYDRFL		page	18
1242 1243 1244 1245 1246 1247 1248 1249	371 372 373 374 375 376 377 378	С С С С С С С С	EXIT P RETURN END	POINT FROM	SUBROUTINE					1242 1243 1244 1245 1246 1247 1248 1249
Thu Jul	1 14:1	15:40	1993	mainhd.f		SUBROUTI	INE HYDRMN			
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262	1 2 3 4 5 6 7 8 9 10 11 12 13		Subrou 	ITINE HYDRM HYDRODYN Edge bas Subrouti The Refi The Subr For Post	N AIN SUBROUTIN AMIC SOLVER. ED FLUXES FON NE HYORFN NEMENT AND CO OUTINE GENER/ -PROCESSING.	NE FOR THE UNS THIS SUBROUT R EACH TRIANGL IT ALS DARSENING OF T ATES THE OUTPU	STRUCTURED GRI NE OBTAINS TH E/SIDE FROM SO CONTROLS THE GRID. MT THAT IS USE	I I I I I I I I I I I I I I		1250 1251 1252 1253 1254 1255 1255 1255 1257 1258 1259 1260 1261
1263	14	č		**	**********			I		1262
1264 1265 1266 1267 1268 1269 1269	15 16 17 18 19 20 21	c	includ includ includ includ includ	e'cms e'chy e'cin e'cph e'cph	h00.h' d00.h' t00.h' s10.h' s20.h'					1264 1265 1266 1267 1268 1269 1270
12/1 1272	22	(≍== C	*=====	*********	## = = = = = = = = = = = = = = = = = =	;×≠≈≈≈≈≈≈≈≈≈≈	************			1271
1273	24		REAL R	RN(MBP), UR	N(MBP), VRN(ME	3P),EPN(MBP),X	SAR(MBP),			1273
1274	25		INTEGE	R IEDIST(2	) )					1274 1275
1276	27	C						_		1276
1278	29	C-==	******			***************	************	养羊芋茸苦苦 <b>治</b> 動 植 言道		1277
1279	30	c	CFL =	0.90						1279
1281	32	Č	- SET SP	ECIFIC TIM	E FOR A DUMP					1280
1282	33 34	С	TI TMTT	-30						1282
1284	35		FLATOR	= .9						1283
1285	35			= KDUMP	2 ) THEN					1285
1287	38		LDUMP	= 6	. J / INEN					1280
1288	39		IF( LD	UMP . LT .	KDUMP ) LDUN	1P × KDUMP				1288
1290	41	С	CNU IF							1209
1291	42		D0 120	JT = 1,	NTIME					1291
1293	44	С	00 130	T( = T )	THUNDIN'					1292
1294	45		DO 140	ITT = 1,		- HOUND - / 1T				1294
1296	47		IJKIJK	= IJKINT	+ IJKKJI		~ 1 ) ~ NDUN	- + 111		1295
1297	48 40	С	00 142	147 - 1						1297
1299	50	C	00 142	101 - 1 *	LDUMP					1290
1300	51 52	C	- SELECT	ORDER OF	INTEGRATION -					1300
1302	53	~	IF(IOP	ORD.EQ.1)T	HEN					1302
1303	54		CAL		1) TUEN					1303
1305	56		CAL	L GRADNG						1304
1306	57	r	ENDIF							1306
1308	50 59	C	- SET TI	MESTEP TO I	HIGH VALUE IT	WILL BE CALC	ULATED PROPERI	Y		1307
1309	60	Ċ	IN THE	FLUX SUBR	DUTINE					1309
1310 1311	61 62	C		I.F24						1310
1312	63	C	UT -	. • 14.66 T						1312

Thu Jul	1 14:1	15:40 19	993 mainhd.f	SUBROUTINE HYDRMN	page	19
1313	64	C	FIND THE FLUXES			1313
1314	65	С				1314
1315	66	~	CALL HYDRFL			1315
1310	68	L	DTT - DTT + CEL			1310
1318	69		TT = TT + OTT			318
1319	70		PRINT *. JT. IT. I	IT.IKT.DTT.TT.NS		319
1320	71	C				. 320
1321	72	C	INITIALIZE THE	/ERTEX BASED QUANTITIES NEEDED FOR COARSENING AND -		1321
1322	73	C	FOR REFINEMENT,	AND FOR POST-PROCESSING		1322
1323	74	ι	DO 210 IV - 1	N17		1323
1325	76		PR(IV) = 0.	,		1325
1326	77		DO 210 IR = 1	. MHO		1326
1327	78		HYDVVV( IV , I	() = 0.		1327
1328	79	210	CONTINUE			1328
1329	80	C	NC1 - 1			1329
1331	82		NS2 = NOEVES(1)	1		1331
1332	83		$D0 \ 110 \ INS = 1$	NVEES		1332
1333	84	C				1333
1334	85		DO 150 IS = NS1	, NS2		1334
1335	86		KS = IS - NS	51 + 1		1335
1330	87		KKK( KS ) =			1330
1338	89		VVR(KS) =	HYDV(15, 2)		1338
1339	90		PPR(KS) =	HYDV(IS,4)		1339
1340	91	С				1340
1341	92		RRL(KS) =	HYDFLX( IS . 1 )		1341
1342	93		UUL( KS ) =	HYDELX( IS , 2 )		1342
1345	94		AAF( K2 ) =			1343
1345	96	С	112(10)			1345
1346	97		XSAR(KS)	- SAREA( IS )		1346
1347	98	150	CONTINUE			1347
1348	99	C	DO 170 KG - 1			1348
1349	100		IC = KC + N	NURVES ( INS )		1349
1351	102		GAMAG(KS)	HYOV(IS.5)		1351
1352	103		hrgm 🚊 gamág	(KS) - 1.		1352
1353	104	C				1353
1354	105		RRN(KS) = RRI	((KS)) ((KS)) + (((((KS))))		1354
1355	107		VRN(KS) = RRI	( KS ) * VVR( KS )		1356
1357	108		EPN(KS) = PPI	(KS) / HRGM + .5 * RRR(KS) *		1357
1358	109		· · · · · · · · · · · · · · · · · · ·	( UUR( KS ) * UUR( KS ) +		1358
1359	110			VVR( KS ) * VVR( KS ) )		1359
1300	111	1/0	CONTINUE			1360
1362	112	Cusan				1362
1363	114	č				1363
1364	115	C	COMPUTING THE SO	DURCE TERM ASSOCIATED WITH AXI-SYMMETRIC CASE		1364
1365	116	С		1 6 000105003		1365
1365	117		XYDUMY = 1.	/ 6.283185307		1366
1368	110		XXBQU( K2 ) D0 100 k3 =	x norves(INS)		1368
1369	120	188	CONTINUE			1369
1370	121	C				1370
1371	122	C	Y-AXIS IS AXIS (	OF SYMMETRY		1371
1372	123	С	TEL TAKEVU	50 2) TUEN		1372
1373	124		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 NOEVES(INS)		1374
1375	.26		IS = KS + N	1 - 1		1375
1376	· 27		XS2S = XS(	1, 15)		1376
1377	128		XYRAD( KS )	= XS2S		1377
1378	129		IF( XSZS . (	+		1378
1380	130		BBN/ KC /	= RRN(KS) + (1 - RRA)		1380
1381	132		URN( KS )	= URN(KS) * (1 DTA)		1381
1382	133		VRN(KS)	= VRN( KS ) * ( 1 DTA )		1382
1383	134		EPN(KS)	= EPN( KS ) * ( 1. – DTA ) – PPR( KS ) * DTA		1383
1384	135	180	ENU IF			1384
1386	137	Č	CONTINUE			1386
						· - =

Thu Jul	1 14:	15:40 1	.993 mainhd.f	SUBROUTINE HYDRMN	page	20
1387	138	C	X-AXIS IS AXIS O	F SYMMETRY		1387
1388	139	C	FISETE ( TAYS	YM EO 1)THEN		1388
1390	141		DO 182 KS =	1 . NOFVES( INS )		1390
1391	142		IS = KS + NS	1 - 1		1391
1392	143		XS2S = XS(2)	(, <u>IS</u> )		1392
1393	144		XYKAU(KS)	= X525		1393
1395	145		DTA = DTT	* VVR( KS ) / XS2S		1394
1396	147		RRN(KS)	= RRN(KS) * (1 DTA)		1396
1397	148		URN(KS)	= URN( KS ) * ( 1. – DTA )		1397
1398	149		VRN( KS )	= VRN(KS) * (1 DIA) = SDN(KS) * (1 DIA) = DDD(KS) * DTA		1398
1400	151		END IF	$- \operatorname{crit}(K_{2}) = (1) - \operatorname{crit}(K_{2}) = \operatorname{crit}(K_{2}) = \operatorname{crit}(K_{2})$		1400
1401	152	182	CONTINUE			1401
1402	153	•	ENDIF			1402
1403	154	L C_				1403
1405	155	č	COMPOSE THE CITE	CI OF THE BOOTANCE (URAPITE) TERM		1404
1406	157	-	GRAVTY = 9.81			1406
1407	158	С				1407
1408	159		1F( 10PBTN . E	V . 2 ) HER 1 NOEVES ( INS )		1408
1410	161		DTA = DTT *	RRR( KS ) * GRAVTY		1410
1411	162		VRN(KS)	= VRN(KS) - DTA		1411
1412	163	194	EPN( KS )	= EPN( KS ) - DTA * VVR( KS )		1412
1415	165	104 C	CONTINUE			1413
1415	166	-	ELSEIF( 10PBYN	I.EQ.1)THEN		1415
1416	167		DO 186 KS =	1 , NOFVES( INS )		1416
141/	160			KKK(K)) * GKAVIY - UDN(KS) - DTA		1417
1419	170		EPN(KS)	= EPN( KS ) = DTA + UUR( KS )		1419
1420	171	186	CONTINUE			1420
1421	172	r	END IF			1421
1423	174	C====		₩₩₩₽₽₽₩₩±±₽₽₩₩±±₽₩₩₩₩₩₩₩±±₽₽₽₽₽₽₽₽₽₽₽₽		1422
1424	175	C				1424
1425	175	C	STOPING THE FILLY	ES END THE DEFINEMENT/CONDSENING STEDS		1425
1427	178	č	STORING THE LEVA	LS FOR THE REFINENCIATION STEPS		1427
1428	179		DO 190 KS = 1 ,	NOFVES( INS )		1428
1429	180		IS = KS + NSI -			1429
1430	182	С				1430
1432	183	-	RRLL = RRL( KS	)		1432
1433	184		UULL = UUL(KS)	)		1433
1434	185		VVLL = VVL( KS RRN( KS ) = RRN	/ ( KS ) ~ RRII * NTA		1434
1436	187		URN(KS) = URN	(KS) - UULL * DTA		1436
1437	188	-	VRN(KS) = VRN	(KS) - VVLL * DTA		1437
1438	189	C	DDII DDI/ VC	١		1438
1440	191		HYDFLX( IS . 4	/ ) = ABS( PPLL ) / EPN( KS ) * DTA		1440
1441	192	-	EPN(KŠ) = EPN	(KS) - PPLL * DTA		1441
1442	193	C 100	CONTINUE			1442
1445	194	C	CONTINUE			1443
1445	196	-	DO 202 IS - NS1	, NS2		1445
1446	197		KS = IS - NS1 +	$\frac{1}{1}$		1446
144/	100		ENERGI = 1. / R	KN(KS) * URN(KS) + VRN(KS) * VRN(KS) +		144/ 1448
1449	200		TTN(KS) = EPN	(KS)5 * ENERGY		1449
1450	201		HYDFLX( IS . 1	) = ENERGY / TTN( KS )		1450
1451 1452	202	c	HTUPLX( 15 , 2	$j = \kappa \pi (\kappa S)$		1451
1453	204	202	CONTINUE			1453
1454	205	Ç	EQUATION OF STAT	E FOR AIR		1454
1455	206	C		1 )THEN		1455
1457	208		CALL EOS( RRN	, ITN , NOFVES( INS ) , GAMAG )		1457
1458	209		ELSE			1458
1459	210	r	ENDIF			1459
1400	411	Υ.				1400

Thu Jul	1 14:	:15:40 199	13 mainhd.f	SUBROUTINE HYDRMN	page	21
1461	212	C A	CCUMULATE VALUES AT THE V	ERTICES FOR ADAPTATION AND ALSO		1461
1462	213	C F	OR POST-PROCESSING			1462
1463	214	C				1463
1464	215		DO 220 KS = 1, NOFVES(	INS )		1464
1403	210	r	15 = K5 + N51 - 1			1465
1467	218	L	1V1 = -1S(-1) = 1V1			1466
1468	219		IV2 = JS(2 - IS)			140/
1469	220		IV3 = JS(3, IS)			1400
1470	221	С				1405
1471	222		VOLUME = 6.283185307 *	XYRAD(KS)		1471
1472	223	С				1472
1473	224		XYAREA = XS(3, IS) *	VOLUME		1473
14/4	225		ATFUK = ATAREA * RRN( K	5 ) 5 )		1474
1475	227		YYENV - YYADEA * VON( K			1475
1477	228		XYFDP = XYAREA * FPN( K	5 ) S )		19/0
1478	229		XYFDG = XYAREA * GAMAG(	KS )		1477
1479	230	С				1479
1480	231		HYDVVV(IV1,I) = HYD	VVV(IVI.1) + XYFDR		1480
1481	232		HYDVVV(IV1, 2) = HYD	VVV( IV1 , 2 ) + XYFDU		1481
1402	233		HADAAA(IAI'2) = HADAAA(IAI'2) = HADAAAA(IAI'2) = HADAAAA(IAI'2) = HADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	VVV(1V1, 3) + XYFDV		1482
1484	235		HYDVVV(IVI, 5) = HYD	VVV(IVI + + + + + + + + + + + + + + + + + +		1485
1485	236		PR(IV1) = PR(IV1) +	XYAREA		1404
1486	237	C				1486
1487	238		HYDVVV(IV2.1) = HYD	VVV(IV2,1) + XYFDR		1487
1488	239		HYDVVV(IV2, 2) = HYD	VVV( IV2 , 2 ) + XYFDU		1488
1409	240		HTUVV(1V2,3) = HTU	VV(1V2, 3) + XYFDV		1489
1401	241		HYDVV(1V2, 4) = HYDVV(1) = HYDVVV(1) = HYDVVV(1) = HYDVV(1) = HYDVVV(1) = HYDVVVV(1) = HYDVVVV(1) = HYDVVVV(1) = HYDVVVV(1) = HYDVVVV(1) = HYDVVVV(1) = HYDVVVVV(1) = HYDVVVVV(1) = HYDVVVVV(1) = HYDVVVVVV(1) = HYDVVVVVVV(1) = HYDVVVVV(1) = HYDVVVVVV(1) = HYDVVVVVVVVVVVVV(1) = HYDVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	VVV(IV2 + 4) + XIFUP		1490
1492	243		PR(IV2) = PR(IV2) +	XYARFA		1491
1493	244	C	, , , , , , , , , , , , , , , , , , , ,			1493
1494	245		HYDVVV( IV3 , 1 ) = HYD	VVV(IV3,1) + XYFDR		1494
1495	246		HYDVVV(IV3, 2) = HYDV	VVV( IV3 , 2 ) + XYFDU		1495
1490	247		HYDVVV(1V3,3) = HYD'	VVV( IV3 , 3 ) + XYFDV		1496
1497	240		HVDVVV(1V3 + 4) = HTVV	VVV(1V3,4) + XYFDP		1497
1499	250		PR(IV3) = PR(IV3) +	XYARFA		1498
1500	251	С				1500
1501	252		IENUMR = 0			1501
1502	253		IE1 = IABS(JS(4, IS))	))		1502
1503	254		IJE5 = JE(5, IEI)			1503
1504	255		IF ( IJED , NE , U ) IHE	N		1504
1506	257		IFDIST( IFNIMR ) = IF1			1505
1507	258		END IF			1500
1508	259		IE2 = IABS( JS( 5 , IS			1508
1509	260		IJE5 = JE(5, IE2)			1509
1510	261		IF( IJE5 , NE . 0 ) THE	¥		1510
1512	263		ICHUNK = ICHUNK + 1 IFDIST( IFNIMD ) = IF7			1511
1513	264		END IF			1512
1514	265		IE3 = 1ABS( JS( 6 , IS )			1514
1515	266		IJE5 = JE(5, IE3)			1515
1516	267		IF( IJE5 . NE . 0 ) THEN	1		1516
1518	200 260		ICHUMK = ICHUMK + I IFDIST( IENNMD ) _ IEN			1517
1519	270		END IF			1510
1520	271	С				1520
1521	272		IF( IENUMR . NE . 0 ) TH	IEN		1521
1522	273		DO $322$ IK = 1 , IENUMR			1522
1525	2/4		IEK = IEVIST( IENUMR )			1523
1525	276		IJEDD = JE( D , IEK ) RRNN = RRN( KS )			1524
1526	277		URNN = URN(KS)			1923 1526
1527	278		VRNN - VRN( KS )			1527
1528	279		EPNN = EPN( KS )			1528
1529	280	C	IF( IJE55 . EQ . 6 . OF	. IJE55 . EQ . 5 ) THEN		1529
1220	201	C C	uuvv = -(URN(KS))	* XN( IEK ) +		1530
1532	283	č.	ANIII = TIBNU KC / AKU( K2 )	" THL LEN J J * YN( TEK ) +		1531
1533	284	ċ.	VRN(KS)	* XN( IEK )	1	1533
1534	2 <b>85</b>	C	URNN = UUVV * XN( IEK )	- VVUU * ÝN( IEK )		1534

Thu Ju)	1 14:1	5:40	93 mainhd.f	SUBROUTINE HYDRMN	page	22
1535 1536 1537	286 287 288	C C C	VRNN - UUVV * Y Else IF( Ije55 RRNN - RIN	YN( IEK ) + VVUU * XN( IEK ) . EQ . 8 ) THEN		1535 1536 1537
1538	289	ç	URNN - RIN * UI	N		1538
1539	290 291	с С	EPNN = PIN / HR	IN RGM + .5 * RIN * UVIN * UVIN		1539
1541	292	č	END IF			1541
1542	293	С		, DUR		1542
1543	294		XYFDU = XYAREA *	URNN		1544
1545	296		XYFDV - XYAREA *	VRNM		1545
1546	297		XYFDP = XYAREA *	* EPNN * Camag( KS )		1540
1547	299	C	ATTUN - ATOMES			1548
1549	300		IV1 = JE(1, IE)			1549
1550	301		$\frac{1}{1} \frac{1}{1} \frac{1}$	:K ) ) = HYDVVV( IVI , 1 ) + XYFDR		1550
1552	303		HYDVVV( IVI , 2	) = $HYDVVV(IVI, 2) + XYFDU$		1552
1553	304		HYDVVV( IVI , 3	) = HYDVVV(IV1, 3) + XYFDV		1553
1555	305		HYDVVV(IVI, 4	) = HYDVVV(IVI, 5) + XYFDG		1555
1556	307		PR(IV1) = PR(	IVI ) + XYAREA		1556
1557	308	С	UVD18/8// 11/2 1			1557
1559	310		HYDVVV(IV2, 1 HYDVVV(IV2, 2	) = HYDVVV(IV2, 2) + XYFDU		1559
1560	311		HYDVVV( IV2 . 3	) = $HYDVVV(IV2, 3) + XYFDV$		1560
1561	312			) = HYDVVV( IV2 , 4 ) + XYFDP ) = HYDVVV( IV2 , 5 ) + YYFDG		1501
1562	314		PR(IV2) = PR(	IV2) + XYAREA		1563
1564	315	322	CONTINUE			1564
1565	316	ſ	END 11			1505
1567	318	220	CONTINUE			1567
1568	319	ç	CONCERNET NONCONCER			1568
1509	320 321	с	CONSTRUCT NUNCONSEN	RVED HTURUUTRAMIC QUATITIES		1570
1571	322	•	DO 195 IS = NS1 ,	NS2		1571
1572	323		KS = IS - NSI + 1	I DOM( VC )		1572
1575	324		HYDV(IS, 1) = F	RRN(KS)		1574
1575	326		HYDV( IS , 2 ) = U	JRN(KS) * HOUM		1575
1576	327		HYDV(15, 3) = 0 HYDV(15, 5) = 0	VRN( KS ) " HOUPI Samag( KS )		1570
1578	329		HYDV( IS , 4 ) = 1	TTN( KS ) * ( HYDV( IS , 5 ) - 1. )		1578
1579	330	_195	CONTINUE			1579
1581	332	Ļ	NS1 = NS2 + 1			1581
1582	333		NS2 - NS2 + NOFVES	S( INS + 1 )		1582
1583 1584	334	110 C	CONTINUE			1584
1585	336	Č	END OF LOOP OVER TH	RIANGLES		1585
1586	337	C				1580
1588	339	C===				1588
1589	340	C	CALL FOR PARTICLE	TRACERS		1589
1590	341 342	C	TEC MORTCL . FO . 1	1 )THEN		1590
1592	343	С	IT WARDE I LOT	· / ///_//		1592
1593	344	r	CALL PRPTHC			1593
1594	345	L	ENDIF			1595
1596	347	C				1596
1597	348	C	END OF INNER LOOP (	OVER KDUMP		1597
1590	350	Č	******			1599
1600	351	ç		THE MENTER DATED AMANTITIC		1600
1601	352 353	с- с	NURMALIZE CUNSERVA	HIVE VERIER BADED QUANTITIES		1602
1603	354	•	DO 230 IV = 1 , NV			1603
1604	355		VAREA = 1. / PR( I)	V ) 0		1604
1605	357		HYDVVV(IV . IR )	+ HYDVVV( IV . IR ) * VAREA		1606
1607	358	230	CONTINUE	• • •		1607
1608	359	C				1009

Thu Jul	1 14:1	5:40 1	993	mainhd.f	:	SUBROUTINE	HYDRMN		page	23
1609	360	142	CONTI	NUE DINNE CITY						1609
1610 1611	361 362	C	WRITE	THE DUMP FILE	DATA FOR POST-I	PROCESSING				1610
1612	363	ĩ	IF( IT	. EQ . MDUMP	. AND . ITT . I	EQ . NOUMP	) THEN			1612
1613	364		WRIT	E (9) NV,NE,N E (0) ((yv/tk	S,NPT,NTIME	-1 MVA				1613
1615	366		WRIT	E(9)(JV(2, I))	V),IV=1,NV)	-1,847				1615
1616	367		WRIT	E (9) ((JE(KK	, IE), KK+1,5), IE	•1,NE)				1616
1617	368 369		WRIII WRITI	: (9) ((JS(KK ; (9) (/XS/KK	.15),KK=1,6),15 .15),KK=1,2),15	=1,NS) =1,NS)				1617
1619	370		WRITI	(9) RÌN.PIN	UVIN, UIN, VIN, T	T, IOPLET				1619
1620	371	r	WRITI	E (9) ((HYDV(	IS, IK), IK=1,5),	IS=1,NS)				1620
1622	373	Č	WRITE (	DUT PARTICLE	TRACER DATA	******				1622
1623	374	C	15( )		1 <b>\T</b> HEM					1623
1625	375		WR	ITE (9) ((XPR	TCL(IK, IPT), IK-	L.2).IPT-1.	NPT).			1629
1626	377		-	((W	PRTCL(IK, IPT), II	(=1,2),IPT=	1,NPT)			1626
1627	378 379	с	ENDI	•						1627
1629	380	Č	PRINT	CONSOLE MESSA	GE AT END OF LO	)P				1629
1630	381	C	DOTH	[ ★ 1T N\/ N	F NS					1630
1632	383	С	7.6104	, , , ,,,,,,,	L/11J					1632
1633	384	r	END IF							1633
1634	386	(====	******			**********	王朱帝帝帝帝亲亲亲 医马克马尔氏			1635
1636	387	C		•						1636
1638	388 389	C		I REFINEMEN	T/ADDITION OF PO	DINTS I				1638
1639	390	Ċ		I		I				1639
1640 1641	391 392	C C								1640
1642	393	Č	CALCUL	ATE THE GRADI	ENT OF THE MACH	NUMBER FOR	STEADY STATE			1642
1643 1644	394 306	C	ADAPTI	/E STEP AND G	ENERATE THE QUAI	NTITIES ON	WHICH WE ADAPT.			1643
1645	396	C	ADAPTAT	TION TO STATI	C QUANTITIES BAS	SED ON GRAD	IENTS OF			1645
1646	397	ç	MACH NI	IMBER, PRESSU	RE, AND DENSITY	OVERRIDES	NC I TV			1646
1648	399	č	AUAPTA		IC FLUXES OF CHE	KUT ANU DEI	NJ111			1648
1649	400		IF( IS	TATC . EQ . 1	) THEN					1649
1651	401		D0 240	IS = 1, NS						1650
1652	403		HYDFLX	(1S, 1) =	ABS( PL( IS ) )	+ ABS( PR(	IS))			1652
1654	404		HYDFLX	15, 2 = 15, 4 = 15	ABS( KL( IS ) )	+ ABS( KK) + ABS( VR)	IS ) )			1053
1655	406	240	CONTINU	ĴE	,,,,		,,			1655
1650	407 408	C	EL SE							1655
1658	409	C	,2250							1658
1659	410		CALL GI							1659
1661	412		HYDFLX	(IS, 1) =	( UL( IS ) * UL(	( IS ) + UR	( 1S ) * UR( IS )	)/		1661
1662	413		-	15 2)-	(HYDFLX(IS, )	) + 1.E-1	2) (15) * 00/ 15)			1662
1664	415			13,27-	(HYDFLX(IS, 2	2) + 1.E-1	(13) $(13)$	<i>} /</i>		1664
1665	416		HYDFLX	(IS,4)=	( VL( IS ) * VL(	(IS) + VR	(IS) * VR(IS)	)/		1665
1667	418	242	CONTINU	JE	( morex( 13 , -	• ) • 1.0-1/	2)			1667
1668	419	c	END IF							1668
1670	420	L	DYDMOM	- HYDFLX( 1	. 4 )					1670
1671	422		DO 250	15 - 1 , NS						1671
1673	423 424	250	CONTIN	= AMAAI( UTD JE	num , NTUFLX( IS	5,4]]				1673
1674	425		HYDMOM	(4) = .5 *	( Dydmom + Hydmo	)M(4))				1674
1675 1676	426 427	С	PRINT*,	HYDMOM(4)						1675
1677	428	~	DYDMOM	= HYDFLX( 1	. 2 )					1677
1678	429		DO 260	IS = 1 , NS		: 211				1678
1680	431	260	CONTINU	- minnit did	INT , HIDEEX( I	, , , ) ]				1680
1681	432		HYDMOM	(2) = .5 *	( DYDMOM + HYDMO	)M(2))				1681
1002	433		CV141.	$\pi(ununi(2))$						1005

ł

1

ŧ

ihu Jul	1 14:1	5:40 1	93 mainhd	.f SUBROUTINE HYDRHN	page	24
1683	434	С				1683
1004	435		010m0m = h10r 00.270 IS = 1	LA(1,1) . NS		1685
1686	437		DYDMOM - AMAX	1( DYDHOM , HYDELX( IS , 1 ) )		1686
1687	438	270	CONTINUE			1687
1688	439		HYDMUM( 1 ) = DDTNT+ HYDMOM	.5 * (DYUMUM + HYUMUM(1))		1688
1690	441	с				1690
1691	442	Č	REFINEMENT ST	EP DONE HERE		1691
1692	443	С		1) 70730		1692
1693	444 115		NOFDIV = 4	1) INEN		1604
1695	446		CALL DYNPTN	( AREADD , NOFDIV , IJKIJK , LTRIG )		1695
1696	447		NOFDIV = 2	· · · · · · · · · · · · · · · · · · ·		1696
1697	448		CALL DYYPTN	( AREADD , NOFDIV , IJKIJK , LTRIG )		1697
1698	449		CALL DYYPTN	(AREADD NOEDIV LIKLIK ITRIG)		1690
1700	451		CALL DYYPTN	( AREADD , NOFDIV , IJKIJK , LTRIG )		1700
1701	452	С				1701
1702	453		PRINI*,NV,N	E,NS		1702
1704	455	140	CONTINUE			1703
1705	456	C				1705
1706	457	Ç	END OF OUTER	LOOP DEFINED BYNDUMP		1706
1709	458	C				1707
1709	459	C				1700
1710	461	č	1			1710
1711	462	Ç	I COA	RSENING/DELETION OF POINTS I		1711
1712	463	C	I			1712
1714	404	č				1713
1715	466	•	IF(IOPDEL.EQ	.1)THEN		1715
1716	467		IF( IJKIJ	K . GT . 19 ) CALL DELPTNT( AREDEL , IJKIJK )		1716
1/1/	468		PRINT", NV,	NE, NS		1717
1719	409	130	CONTINUE			1719
1720	471	c				1720
1721	472	C	END OF OUTERM	OST LOOP DEFINED BY MDUMP		1721
1722	473	C				1722
1724	474	C	==2#==#= <b>=</b> =====	######################################		1724
1725	476	č	I			1725
1726	477	C	I DIA	GNOSTIC FOR LIFT/DRAG		1726
1727	478	C	I	·		1727
1729	479	L	TECTOPLET.EO.	1)THEN		1729
1730	481		CALL LIFTDR			1730
1731	482	_	ENDIF			1731
1732	483	C				1732
1734	485	C				1734
1735	486	Ċ	1			1735
1736	487	ç	i ont	PUT FILE FOR RESTARTS I		1736
1/3/	488	C C	1	****-********************		1738
1739	490	č				1739
1740	491		REWIND 88			1740
1741	492		ITERAT - ITE	RAT + 1		1741
1742	493 404		WRITE (88) N	V, NVNK, NE, NENK, NS, NSNK, LIEKAI (JV(KK, TV), KK+1-2), (XV(TK, TV), TK+1-2), TV+1, NV)		1742
1744	495		WRITE (88) (	(JE(KK, IE), KK=1,5), (XE(KI, IE), KI=1,2), IE=1, NE)		1744
1745	496		WRITE (88) (	XN(IE), YN(IE), XXN(IE), YYN(IE), IE-1, NE)		1745
1746	497		WRITE (88) (	(JS(KK,IS),KK=1,6),(XS(KI,IS),KI=1,3),IS=1,NS)		1746
1748	490		WRITE (88) S	AREVG.NVECE.NREME.NVECV.NREMV.NVECS.NREMS		1748
1749	500		WRITE (88) R	IN, PIN, RINL, PINL, UVIN, UIN, VIN, TT,		1749
1750	501			HYDMOM(1), HYDMOM(2), HYDMOM(4)		1750
1751	502		WRITE (88) (	(HYDV(1S, IK), IK=1, 5), IS=1, NS)		1751
1753	503		WRITE (88) 1	(n1/2494(14,14),14#1,0/,19#1,49) .JKJJK. (KSDFIT(IS) IS#1.NS)		1753
1754	505		IF( MPRTCL	. EQ . 1 )		1754
1755	506		WRITE (88) N	PT, ((XPRTCL(IK, IPT), IK=1,2), IPT=1, NPT),		1755
1756	507			(IJKPRT(IPT), IPT-1,NPT)		1756

Thu Jul	1 14:15:40	1993	mainhd.f	5	SUBROUTINE	HYDRMN		page	25
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1765 1766 1767 1768 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1781 1783 1784 1785	508       C         509       510         511       512         513       514         515       516         517       518         519       520         521       522         523       524         525       C         528       C         529       C         531       C         532       C         533       C         534       C         535       536	REWIN WRITE WRITE WRITE WRITE WRITE WRITE WRITE WRITE WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE IF( WRITE WRITE WRITE WRITE	D 8 (8) NV.NVMK.NE,NE (8) ((JV(KK,IV),K (8) ((JE(KK,IE),Y),K) (8) ((JS(KK,IS),K (8) (XN(IE),YN(IE (8) (XMIDL(IE),YN (8) (XMIDL(IE),YN (8) (AMIDL(IE),YN (8) (AMIDL(IE),YN (8) (HYDVV(IV,I (8) (HYDVV(IV,I (8) (HYDVV(IV,I (8) (HYDVV(IV,I (8) (HYDVV(IV,I (8) IJKIJK,(KSDEL MPRTCL - EQ - 1 ) (8) NPT,((XPRTCL(I NUE IN SEQUENCE LOOP E DINT FROM SUBROUTI	EMK, NS, NSMK, (K=1,2), (XV( (K=1,5), (XE( ), XXN(IE), Y (K=1,6), (XS( MIDL(IE), XYM NREME, NVECV PINL, UVIN, U HYDMOM(2), F (IK, IS), IS (IK, IFT), IK- (IS), IS=1, (IK, IPT), IK- (IJKF DEFINED BY (NE	ITERAT [IK, IV), IK [KI, IE), KI (YN(IE), IE (KI, IS), KI MIDL(IE), II (NREMV, NV MIN, VIN, TT HYDMOM(4) S-1, NS) IV-1, NV) NS) -1,2), IPT- RT(IPT), II NTIME	=1,2), IV=1,NV) =1,2), IE=1,NE) =1,NE) =1,3), IS=1,NS) E=1,NE) ECS, NREMS ( 1,NPT), PT=1,NPT)		poge	1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1765 1766 1767 1768 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
1786	537 C								1786
1787 1788	538 C- 539 C	FORMAT	S	• • • • • • • • • • • • • • • • • • •	********				1787 1788
1789	540 C								1789
1/30	J41			_		0.0017.0			1730
Inu Jui	1 14:15:40	1393	mainnd.t	2	OBROUTINE	GEOMIR			
1791 1792 1793 1794 1795 1796 1797 1798	1 2 C 3 C 4 C 5 C 6 C 7 C 8 C	SUBROU GEOMT	TINE GEOMTR R COMPUTE GEOMETRI DEFINITION NEEDE	CAL PARAMET	ERS TO CON	MPLETE THE GRI	I I D I I I		1791 1792 1793 1794 1795 1796 1797 1798
1799 1800	9 C 10 C						I		1799 1800
1801 1802 1803 1804 1805 1806 1807	11 12 13 14 15 16 C	includ includ includ includ includ	e 'cmsh00.h' e 'chyd00.h' e 'cint00.h' e 'cphs10.h' e 'cphs20.h'						1801 1802 1803 1804 1805 1806
1808	18 C								1808
1809 1810	19 20 C	REAL	KELEFT(MBP), YELEFT	(MBP),XERIG	ii (MBP), YEI	RIGT(MBP)			1809 1810
1811 1812	21 C== 22 C	********		``## <b>##</b> ########	********		*****		1811
1813	23 C								1813
1814 1815 1816 1817 1818 1819 1820 1821	24 C - 25 C 26 C 27 28 29 30 31	MAKE S EDGES DO 105 IJE5 IF( IS	JRE THAT THE DOMAI BY ORIENTING THEM = JE(5, IE) IJE5.NE.0)TH R = JE(4, IE) (ISP.NE.0)TH	IN IS ALWAYS CORRECTLY.	O THE LI	EFT OF BOUNDAR	Υ		1814 1815 1816 1817 1818 1819 1820
1822	32	16	IV2 = JE(1, IE)	116,17					1822
1823 1824	13 34		IVI = JE(2, IE) JE(1, IE) = IV1						1823
1825 1826 1827	35 36 37		JE(2, IE) = IV2 JE(3, IE) = ISP JE(4, IE) = 0	2					1825 1826 1827

_

Thu Jul	1 14:	15:40 1	993 mainhd.f		SUBROUTINE	GEONTR	page	26
1828	38		DO 106 IR	= 1, 3	• •			1828
1830	40		IF( JEE .	EQ. IE ) JS( IR +	3, ISR)	- IE		1830
1831 1832	41 42	106						1831
1833	43		ENDIF					1833
1834 1835	44 45	105 C	CONTINUE					1834
1836	46	Č	FIND UNIT VECTOR	S NORMAL TO THE ED	GES			1836
1837	47 48	L C	AND ALSO TRIANGL	E AREAS.	IRIANGLE BA	KILENIEKS		1837
1839	49	C	NE3					1839
1841	51		NE2 = NOFVEE( 1	)				1841
1842 1843	52 53		DO 110 INE - 1, DO 140 IE = NE1	NVEEE . NE2				1842 1843
1844	54		KE = IE - NE1	+ 1				1844
1845	55 56		IV1 = JE(1), IV2 = JE(2),	IE)				1845
1847	57		ISL = JE(3)	IE )				1847
1849	59	C	138 - 36( 4 ,	16 7				1849
1850 1851	60 61	C	FIND UNIT VECTOR STORED IN XN(IF)	NORMAL TO AN EDGE				1850
1852	62	č						1852
1853 1854	63 64		DXD = XV(1) DYD = XV(2)	IV2) - XV(1, IV IV2) - XV(2, IV	1) 1)			1853
1855	65		XE( 1 , IE ) =	SQRT( DXD * DXD +	oyo * oyo	)		1855
1850	67		XEY = 1. / XEY XO = OXO = XEY	, I, IE J				1850
1858	68 69	c	YD = DYD * XEY	,				1858
1860	70	C	XN( IE ) - Y	Ū				1860
1861 1862	71 72	С	YN(IE) = -X	D				1861 1862
1863	73	·	IJE5 = JE( 5 ,	IE )				1863
1865	74 75	L (====		# # # # # # # # # # # # # # # # # # # #	**********			1865
1866 1867	76	С С		FS				1866
1868	78	č		• • • • • • • • •				1868
1869 1870	79 80		IF(IJE5 . NE . IV3 = JS(1 . I	O) THEN SL)				1869 1870
1871	81		IF( IV3 . EQ .	IV1 . OR . IV3 . E	0. IV2) I	V3 = JS(2, ISL)		1871
1873	83		XELEFT(KE) =	(XV(1, IV3) +	XV(1, IV2	() + () +		1873
1874 1875	84 85		YFIFFT( KF ) =	(XV(2, IV3) +	XV( 1 , IV1 XV( 2 , IV2	)) * THIRD		1874 1875
1876	86	-		( (	XV( 2 , IVI	) ) * THIRD		1876
1877	87 88	ι	AA = XV(1, IV)	2) - XV(1, IV1	)			1877
1879 1880	89 00		BB = XV(2, IV)	(2) - XV(2, IV1)	)			1879
1881	91		DD = YELEFT( KE	) - XV( 2 . IV1 )				1881
1882 1883	92 93		EE = ( AA * CC XERIGT( KE ) =	+ BB * UO ) * XEY + V( 1 . IV1 ) + AA	* XEY * EE			1882 1883
1884	94	c	YERIGT( KE ) =	XV(2, IV1) + BB	* EE			1884
1886	95	ι	DXD = XERIGT( K	E) - XELEFT( KE )				1886
1887 1888	97 98		DYD = YERIGT( K XF( 2 IF ) =	E) - YELEFT( KE) Sort( DXD * DXD +	( חצח * חצח			1887 1888
1889	99	C		AFFT TO BYOUT DAD	· ··· ···			1889
1890	100	ι C	STORED IN XXN(IE	ELEFT TO KIGHT BAR	I-LENIER AT	INTERFALE		1891
1892	102	C	YY _ 1 / VE/ 7	1F.)				1892
1894	103		XXN( IE ) = DXD	* XY				1894
1895 1896	105 106	с	YYN( IE ) - DYD	• * XY				1895 1896
1897	107	Č	LENGTH OF LINE B	ETWEEN BARI-CENTER	s			1897
1899	108 109	C	SIVKED IN AL(2,1	<b>L</b> )				1899
1900 1901	110	r	XE(2, IE) =	2. * XE( 2 . IE )				1900 1901
****		~						

Thu Jul	1 14:15	i:40 19	93 mainhd.f	SUBROUTINE GEOMTR	page	27
1902	112	C	COORDINATES OF	BARI-CENTERS FOR EACH TRIANGLE		1902
1903	113	Ç	STORED IN XS(1,	IS),XS(2,IS)		1903
1904	114	L	VC/ 1 TCL )	- YELEET( KE )		1904
1905	115		XS(2, ISL)	= XELEFIC KE )		1006
1907	117	С	NG( C ; 10C ;			1907
1908	118	Č	INTERSECTION PO	INT ON INTERFACE FOR LINE CONNECTING BARI-CENTERS -		1908
1909	119	C	STORED IN XMIDL	(IE), YMIDL(IE) AND FRACTION OF LENGHT BETWEEN		1909
1910	120	Ç	LEFT BARI-CENTE	R TO INTERSECTION POINT IN XYMIDL(IE).		1910
1911	121	C		£		1911
1012	122		ATTILUE( IE ) =	.3 YEDICT( VE )		1912
1913	123		YMIDI ( IF ) *	YERIGT( KE )		1913
1915	125	С				1915
1916	126	C=====				1916
1917	127	ç				1917
1918	128	C	DECIN AD TOTANCI	F\$		1918
1020	129	C	REGULAR IRTANGLI	[]		1919
1921	131	C C	ELSE			1920
1922	132		IV3 = JS(1)	ISL )		1922
1923	133		IF( IV3 . EQ .	$IV1 \cdot OR \cdot IV3 \cdot EQ \cdot IV2 \cdot IV3 = JS(2 \cdot ISL)$		1923
1924	134		IF( IV3 . EQ .	IV1 . OR . IV3 . EQ . IV2 ) IV3 = JS( 3 , ISL )		1924
1925	135		XELEFT( KE ) =	(XV(1, IV3) + XV(1, IV2) + XV(1, IV2))		1925
1920	130	•	VELEET ( VE ) -	(YV(2) IV3) + YV(2) IV2) +		1920
1928	138		TELETI NE J =	XV(2, IV2) * THIRD		1928
1929	139	c .				1929
1930	140		IV3 = JS(1)	ISR )		1930
1931	141		IF( IV3 . EQ .	IV1 . OR . IV3 . EQ . IV2 ) IV3 = JS( 2 , ISR )		1931
1932	142		IF( IV3 . EQ .	$IVI \cdot OR \cdot IV3 \cdot EQ \cdot IV2 \cdot IV3 = JS(3, ISR)$		1932
1038	143 144		XERIGI( KE ) =	$(XV\{1, IV3\} + XV\{1, IV2\} + VV(1, IV1)) + TUIDD$		1933
1935	145	•	YFRIGT( KF ) =	(XV(2, IV3) + XV(2, IV2) +		1934
1936	145		12/1201 ( 112 /	XV(2, IV1) * THIRD		1936
1937	147	C				1937
1938	148		DXD = XERIGT(	KE) - XELEFT( KE)		1938
1939	149	r	DID = VERIGI(	KE) - YELEFT( KE)		1939
1940	150	C	LENGTH OF LINE	RETWEEN BARI_CENTERS		1940
1942	152	č	STORED IN XE(2.	IE)		1942
1943	153	Č		,		1943
1944	154		XE(2.IE)	- SQRT( DXD * DXD + DYD * DYD )		1944
1945	155	C		A LEET TO DICUT MADE CENTED AT INTEDEACE		1945
1940	100	C	STODED IN YYN/1	M LEFT TO RIGHT BART-LENTER AT INTERFALE		1940
1948	158	č	STORED IN ANI(II			1948
1949	159		XY = 1. / XE(	2 , IE )		1949
1950	160		XXN(IE) = D	XD * XY		1950
1951	161	^	YYN(IE) = D'	YD * XY		1951
1925	167	ι Γ	COOPDINATES OF	RADI_CENTEDS FOD FACH TDIANCLE		1023
1954	164	č	STORED IN XS(1.)	IS), XS(2, IS)		1955
1955	165	Ċ				1955
1956	166		XS(1, ISL) :	- XELEFT( KE )		1956
1957	167		XS(2, ISL)	= YELEFT( KE )		1957
1958	108		X2( 2 , 12K ) 4	■ AERIUI( KE ) • VEDICT/ VE )		1929
1960	170	с	V2( 5 1 120 ) ;	- ILMANIA NE J		1960
1961	171	-	AA = XV(1, I)	V2) - XV(1, IV1)		1961
1962	172		BB = XV(2, I)	V2) - XV(2, IV1)		1962
1963	173		CC = XELEFT(KI)	E) - XERIGT(KE)		1963
1904	1/4		UU = TELEFI( Ki	$C_{j} = TERIGI(RE_{j})$		1964
1905	175		OBD = YEPIGT /	N = y = AV(1, 1V1) (F) - XV(2 1V1)		1902
1967	177		EE = (ACA * DI	D = DBD + CC ) / (AA + DD = BB + CC )		1967
1968	178	C	(			1968
1969	179	C	INTERSECTION PO	INT ON INTERFACE FOR LINE CONNECTING BARI-CENTERS -		1969
1970	180	Ŭ C	STURED IN XMIDL	(11), YMIDL(IE) AND FRACTION OF LENGHT BETWEEN		1970
19/1 1072	101 192	r r	LEFT BARI-LENIE	TO INTERSECTION POINT IN XYMIDL(IE).		19/1
1973	183	~	XMIDL( IE ) = )	KV(1, IV1) + AA * EE		1973
1974	184		YMIDL( IE ) = )	XV(2, IV1) + BB * EE		1974
1975	185	C	• • •			1975

Thu Jul	1 14:1	5:40	993 mainhd.f	SUBROUTINE GEOMTR	page	28
1976	186		XEMID = XMIDL(	IE ) - XELEFT( KE )		1976
19//	107	c	TEMID = TMIDE(	IE ) - TELEFI( KE )		1977
1970	100	C		5007/ YENID + YENID + YENID + YENID \ + YY		1978
1980	109	r	VIGUAL( IC ) =	JURI ( ACHID * ACHID + ICHID * ICHID ) * XI		19/9
1981	101	U I	ENDIE			1980
1982	192	140	CONTINUE			1901
1983	193	C				1083
1984	194		NE1 = NE2 + 1			1984
1985	195		NE2 = NE2 + NO1	FVEE(INE + 1)		1985
1986	196	_110	CONTINUE			1986
1987	197	C				1987
1988	198	Ç	CALCULATE AREA	JF TRIANGLES		1988
1909	733	ι	DO 160 TC 1	NC		1989
1001	200		UU 150 15 # 1 /			1990
1992	202		1V1 = 35(1)			1991
1993	203		IV3 = JS(3)			1003
1994	204		DX = XY(1, 1)	(V2') - XV(1, IV1)		1993
1995	205		DXX = XV(1, 1)	V3) - XV(1, IV1)		1995
1996	206		DY = XV(2, 1)	(V2) - XV(2, IV1)		1996
1997	207		DYY = XV(2, 1)	(V3) - XV(2, IV1)		1997
1998	208		XS(3, IS) =	.5 * ( DX * DYY - DXX * DY )		1998
1999	209	120	CONTINUE			1999
2000	210	L	DDINT * NC NC			2000
2002	212	С	FRINI ( NC/N			2001
2003	213	č	FIND AN EDGE ASS	OCIATED WITH A VERTEX		2002
2004	214	č	THE VALUE WILL E	E NEGATIVE IF ON THE BOUNDARY		2003
2005	215	C				2005
2006	216		DO 180 IV = 1 ,	NV		2006
2007	217		JV(2, IV) = 0			2007
2008	218	180	CONTINUE			2008
2009	219	C		117		2009
2010	220		UU I UU I E = 1, UU = 1E(1) IE			2010
2012	222		IJE5 = JE(5, 1)	F)		2011
2013	223		IF( IJE5 . NE .	O ) THEN		2013
2014	224		JV(2, IV1) =	- ÎE		2014
2015	225		END IF			2015
2010	220	100	CONTINUE			2016
2018	228	L	00 170 TE = 1	NF		2017
2019	229	С	00 1/0 10 - 1 /			2010
2020	230		IV1 = JE( 1 , IE			2020
2021	231	_	IV2 = JE( 2 , IE			2021
2022	232	С			:	2022
2023	233			) - EQ - O ) THEN		2023
2025	235		SV(2, IVI) =	IE .		2024
2026	236	С				2023
2027	237	-	IF( JV( 2 , IV2	). EO. 0 ) THEN		2020
2028	238		JV(2, IV2) =	ie		2028
2029	239	_	END IF			2029
2030	240	0	004273446			2030
2032	241	1/0 1	LONTINUE			2031
2032	242	6	DO 100 TS - 1	NC		2032
2034	244		SAREA( IS ) = 1.	$\frac{1}{2}$ XS(3, 15)		2033
2035	245	190	CONTINUE	,,,		2035
2036	246	C				2036
2037	247	(====	***********	방문학교학분은은 것 또 또 한 분 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 은 한 것 는 것 는 것 는 것 은 한 것 는 것 는 것 는 것 는 것 는 것 는 것 는 것 는 것 는 것	:	2037
2038	248	C C		- BEAMWEATION		2038
2039	249	ι Γ	OPTION FOR GLUBA	L RELUNNELIIUN		2039
2041	251	•	IF (TOPRCN. FO. 1)T	HEN		2040
2042	252		DO 200 IE = 1	NE		2042
2043	253		CALL RECNC( IE ,	IDONE, ITL, ITR, JA, JB, JC, JD)		2043
2044	254		CALL RECNC( JA ,	JADONE, ITL, ITR, JAA, JAB, JAC, JAD)		2044
2045	255		CALL RECNC( JB ,	JBDONE, ITL, ITR, JBA, JBB, JBC, JBD)	2	2045
2045	250		UALL RECNC( JC ,	JUDUNE, ITL, ITR, JCA, JCB, JCC, JCD)	į	2046
2047	25/ 268	200	CONTINUE	JUDUNE, IIL, IIK, JDA, JDB, JDC, JDD)	2	2047
2049	259	270	ENDIF			2049

Thu Jul	1 14:1	5:40	993 mainhd.f	SUBROUTINE GEOMTR	page	29
2050	260	С				2050
2051	261	C===	ŧssz≠zs±##¥≈£±¥s#±xz±s7∓±s	======================================		2051
2052	262	Ç		-		2052
2053	203	ι Γ	EXII POINI FROM SOBROUTIN	***************************************		2053
2054	204	č	****			2054
2056	266	•	RETURN			2056
2057	267	Ç				2057
2058	268	ç				2058
2059	209 270	C	END			2059
Thu Jul	1 14:1	5:40	993 mainhd.f	SUBROUTINE UPDATE		
2061	1					2061
2062	2	C	SUBRUCTIAL OFDATE			2001
2063	3	Č				2063
2064	4	Ç.		I		2064
2065	5	ç	UPDATE BUFFERS IN A BLUC	K UF NODES, EDGES, AND CELLS TU I		2065
2000	7	č	THE BLOCKING SIZE IS DET	FRMINED BY PARAMETER		2000
2068	8	č				2068
2069	9	C				2069
2070	10	Č				2070
2071	11	_(===== _∩	¢^^^^^^^	쁙쁙푣뉀쒂괡╾르픚뉻⊐尚읍≜훕뚭횎¢울쫕宫ù울쯩르뽂빌뀰두쀼⋇₡⋞ĸ₩ù\$k##		2071
2072	12	C	include 'cmsh00.h'			2072
2074	14		include 'chyd00.h'			2074
2075	15		include 'cint00.h'			2075
2076	16		include 'cphs10.h'			2076
2072	1/	c	include cpnszu.n.			2077
2070	10					2070
2080	20	č				2080
2081	21	C	BREAK UP THE VERTEX, EDGE	, AND TRIANGLE DATA INTO BLOCKS		2081
2082	22	C				2082
2083	23		NVELE = NE / MBL			2083
2085	24		NVECS = NS / MRI			2004
2086	26		NREMS = NS - NVECS * MBL			2086
2087	27		NVECV = NV / MBL			2087
2088	28		NREMV = NV - NVECV * MBL			2088
2009	30	r	PRIME ", NV, NC, NJ, NVELE,	nkeme, nvec v, nkemv, nvec 3, nkem 3		2009
2091	31	u.	DO 105 INE - 1 . NVECE			2091
2092	32		NOFVEE( INE ) = MBL			2092
2093	33	105	CONTINUE			2093
2094	34		NVELE = NVECE			2094
2095	36		NVFFF = NVFCF + 1			2095
2097	37		NOFVEE( NVEEE ) = NREME			2097
2098	38	_	END IF			2098
2099	39	C				2099
2100	40 1		UU 115 INS = 1 , NVECS NOEVES( INS ) _ MRI			2100
2102	42	115	CONTINUE			2102
2103	48		NVEES - NVECS			2103
2104	44		IF( NREMS . GT . 0 ) THEN			2104
2105	45		NVEES = NVECS + 1			2105
2100	40		UNLAFS( NAFES ) = NKEWS			2100
2108	48	C				2108
2109	49	-	DO 125 INV = 1 , NVECV			2109
2110	50		NOFVEV( INV ) = MBL			2110
2111	51	125	CONTINUE			2111
2112	52		NVEEV - NVELV			2112
2113	55		NVEEV = NVECV + 1			2114
2115	<b>Š</b> 5		NOFVEV( NVEEV ) - NREMV			2115
2116	56		END IF			2116
2117	57	Ç				2117
2118	58 60	۱ ۲	CALL TO THE GEOMETRY DEFIN	WILLOW SURKOULINE		2110
2120	60	v	CALL GEOMTR			2120

•

2121       61       C         2122       62       C         2123       63       C         2124       64       C	2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2134 2135
	2132 2133 2134 2135
Thu Jul 1 14:15:40 1993 mainhd.f SUBROUTINE UPGRAD	2132 2133 2134 2135
2132       1       SUBROUTINE UPGRAD         2133       2       C         2134       3       C         2135       4       C         2136       5       C         2137       6       C         2138       7       C         2139       8       C         2140       9       C         2140       9       C         2141       10       C	2136 2137 2138 2139 2140 2141
2142       11       include       'cmsh00.h'         2143       12       include       'chyd00.h'         2144       13       include       'cint00.h'         2145       14       include       'cphs10.h'         2146       15       include       'cphs20.h'         2147       16       C         2148       13       C	2141 2142 2143 2144 2145 2146 2147 2147
2140       17       C         2140       18       C         2150       19       C       MVM MAX NUMBER OF VERTICES (POINTS)         2151       20       C       MEM MAX NUMBER OF EDGES (INTERFACES)         2152       21       C       MSM MAX NUMBER OF SIDES (TRIANGLES)         2153       22       C         2154       23       C	2140 2149 2151 2152 2153 2153 2153
2155       24       C         2156       25       C         2157       26       READ (88) NV.NVMK.NE.NEMK.NS.NSMK.ITERAT         2158       27       C         2159       28       C       READ IN VERTEX INFORMATION	2155 2156 2157 2158 2159 2160
2161       30       READ (88) ((JV(IK,IV),IK=1,2),(XV(IK,IV),IK=1,2),IV=1,NV)         2162       31       C         2163       32       C READ IN EDGE INFORMATION (EDGES OF TRIANGLES)         2164       33       C         2165       34       READ (88) ((JE(KK,IE),KK=1,5),(XE(KI,IE),KI=1,2),IE=1,NE)         2166       35       READ (88) (XN(IE),YN(IE),XXN(IE),YN(IE),IE=1,NE)	2161 2162 2163 2164 2165 2165
2167         36         C           2168         37         C         READ IN SIDE (TRIANGLE) INFORMATION           2169         38         C           2170         39         READ (88) ((JS(KK, IS), KK=1, 6), (XS(KI, IS), KI=1, 3), IS=1, NS)           2171         40         READ (88) (XMIDL(IE), YMIDL(IE), XYMIDL(IE), IE=1, NE)           2172         41         READ (88) SAREVG, NVECE, NREME, NVECV, NREMV, NVECS, NREMS	2167 2168 2169 2170 2171 2172
2173       42       C         2174       43       C          2175       44       C         2176       45       PRINT * , NE,NS         2177       46       C	2173 2174 2175 2176 2177
21/8 4/ L DEFINE INVERSE AREA OF TRIANGLES 2179 48 C 2180 49 DO 100 IS = 1 , NS 2181 50 SAREA( IS ) = 1. / XS( 3 , IS ) 2182 51 100 CONTINUE 2183 52 C	2178 2179 2180 2181 2182 2182 2183
2184       53       C        BREAKUP THE DATA STRUCTURE INTO BLOCKS         2185       54       C         2186       55       DO 105 INE = 1 , NVECE         2187       56       NOFVEE( INE ) = MBL         2188       57       105       CONTINUE         2189       58       NVEEE = NVECE         2190       59       IF( NREME , GT , 0 ) THEN         2191       60       NVEFE + 1	2183 2184 2185 2186 2187 2188 2189 2190 2190

Thu Jul	1 14:1	5:40	1993	mainhd.f	SUBROUTINE UPGRAD	page	31
2192	61		NOFVEE	NVEEE )	- NREME		2192
2193	62		END IF				2193
2194	63	C					2194
2195	64		DO 115	INS = 1,	NVECS		2193
2196	65		NOFVES	(1NS) =	MBL		2190
2197	66	115	5 CONTINU	JE			219/
2198	67		NVEES -	NVECS			2190
2199	68		IF ( NR	MS GI.	D) THEN		2199
2200	69		NVEES =	NVECS +			2200
2201	70		NOFVES	(NVEES)	= NREMS		2201
2202	71	_	END IF				2202
2203	72	С					2203
2204	73		DO 125	INV = 1.	NVECV		2204
2205	74		NOFVEV	(INV) =	MBL		2205
2206	75	12	S CONTIN	JE			2200
2207	76		NVEEV	NVECV			2207
2208	- 77		14 ( NRI	EMV . GT .	O) THEN		2208
2209	78		NVEEV -	NVECV +	1		2209
2210	79		NOFVEV	( NVEEV )	= NREMV		2210
2211	80		END IF				2211
2212	81	C					2212
2213	82	C	- PRINTO	JT THE VER	RTEX, EDGE, AND TRIANGLE BLOCK DATA		2213
2214	83	С					2214
2215	84		PRINT	*,NV,NE,N	IS, NVECE, NREME, NVECV, NREMV, NVECS, NREMS		2215
2216	85	C					2216
2217	86	(≈=		********	슻븮븮냘슻븮슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻		2217
2218	87	С					2218
2219	88	C	EXIT P	DINT FROM	SUBROUTINE		2219
2220	89	C					2220
2221	90	С					2221
2222	91		RETURN				2222
2223	92	C	~~~~~				2223
2224	93	С					2224
2225	94	С					2225
2226	95		END				2226

## Thu Jul 1 14:15:55 1993 gradhd.f

0

4

1

	#	routine	page
	1	GRDFLX	1
	2	GRDENG	4
	3	GRADNL	7
	4	GRADNT	11
	5	MONOTN	15
	6	GRADNG	23
	7	GRADNO	25
	8	GRADNS	27
	9	LUDCMP	29
	10	LUBKSB	30
	11	FIRST	31
	12	FCHART	32
	13	PRLCTN	36
	14	PRPTHC	37
Th. 1.1			
	1 14:1:	:55 1993	gradhd.t
	#	routine	page
	1	FCHART	32
	2	FIRST	31
	3	GRADNG	23
	4	GRADNL	7
	5	GRADNO	25
	6	GRADNS	27
	7	GRADNT	11
	8	GRDENG	4
	9	GRDFLX	1
	10	LUBKSB	30
	11	LUDCMP	29
		410440 Tere	1 5
	12	MONUTN	10
	12 13	PRLCTN	36

Module List - order of occurence

page i

Module List - alphabetical order

Thu Jul	1 14:15	i:55 1	993 g	radiid.f	SUBROUTINE GRDFLX	page
1	1		SUBROUTI	NE GRDFLX		
2	2	C				
4	4	Č			Ĩ	
5	5	C	GRAFLX	COMPUTE THE	GRADIENT FOR ERROR INDICATOR I	
7	7	č		CALCULATION		
8	8	Ç	,		······································	
10	10	ι	include	'cmsh00.	.h'	
11	11		include	chyd00.	.h'	
12	12		include	'CINTUU. 'cohs10.	.n. .h.	
14	14	_	include	'cphs20.	.h'	
15 16	15 16	C			****	
17	17	Č				
18	18		REAL AA	3,3),BB(3,4)	),B(3),INDX(3),ATEMP(3,3,3),BTEMP(3,4,3)	
20	20	С	REAL AAU	(3,3),000(3,	(4)	
21	21	C=====		*********		
22	22	C C				
24	24	Č	BEGIN LO	OP OVER ALL	CELLS IN THE DOMAIN	
25 26	25 26	C	NS1 = 1			
27	27		NS2 = NO	FVES(1)		
28	28	c	DO 90 IN	S = 1 , NVEE	25	
30	30	C	FETCH HY	DRO QUANTITI	ES	
31	31	C	DO 105 1	C NC1 NC		
32 33	32 33		UU 105 1 KS =	5 = N51 , N5 : IS - NS1 +	52 1	
34	34	C			•	
35	35 36		XSM = X	S(1, 1S)		
37	37		XSM2 =	XSM * XSM		
38 30	38		YSM2 =	YSM * YSM YSM * YSM		
40	40	C	A1361 -	A JOT 1 JOT		
41	41		AAO( 1	(1) = 1.0		
42	43		AAO(1	. 2 ) = ASM		
44	44	С		1 ) YOM		
45 46	45 46		AAU(2 AAQ(2	(1) = XSM2 (2) = XSM2		
47	47	~	AAO( 2	, 3 ) = XYSM	1	
48 49	48 49	C	AAO( 3	. 1 ) = YSM		
50	50		AAO( 3	. 2 ) = XYSM	1	
51 52	51 52	r	AAO ( 3	, 3 ) = YSM2		
53	53	•	881 - H	YDV(IS,4	)	
54 55	54 55		<b>BB2 =</b> S	QRT ( ( HYDV	/(1S,2)* HYDV(1S,2)+ /(1S,3)* HYDV(1S,3))*	
56	56		. н	YDV( 15, 1	) / HYDV( IS , 4 ) / HYDV( IS , 5 ) )	
57 58	57 58	C	<b>RR1Y</b> -	881 * YSM		
59	,õ ,õ		BB2X =	BB2 * XSM		
60 61	0	С	001V -	001 # VSM		
62	52		882Y ~	BB2 * YSM		
63	63	С	<b>DDA</b> ( )	1) 001		
65	65		BBO(1	(1) = 881 (2) = 882		
6F	66	C	000/ 0	1 1 0014	,	
6:	68		BB0(2	(1) = 881X (2) = 882X	х К	
6	69 70	C	000( 7	1) 0014	,	
7.	71		BBO(3	(1) = BB17 (2) = BB27		
7.	72	С	00 115	***		
1.	/3		DO 115	IK = 1 , 3		

page

Thu Jul	1 14:1	5:55	1993 g	radhd.f		SUBROUTIN	E GRDFL	x	p	age 2
74	74		IE = JS	( IK + 3 , I	S )					74
75 76	75 76		IF( IE ISS = J	.GT.0)TI E(4,IE)	HEN					75 76
77 78	77 78		ELSE							70
79	79	_	END IF	c( J , -12 )						78 79
80 81	80 81	С	IF( ISS	. NE . 0 ) 1	THEN					80 81
82 83	82 83		XSS = XS	S(1, ISS)						82
84	84	С	155 - 7.							83 84
85 86	85 86		HYDVP = HYDVR =	HYDV(ISS, SQRT ((HYL	4) )V(ISS,2)	* HYDV(	ISS . 2	) +		85 86
87 88	87 88		•	HYDV ( ISS	)V(1SS,3)	* HYDV(	ISS, 3	))* (155 E ) )		87
89	89	C	-		• ) /	133 , 4 )	/ 1104			89
91	91	С	ELJE							90 91
92 93	92 93		IE = IAE XSS = 2.	BS(IE) .*XMIDL(TE	) _ XSM					92
94 95	94 05	r	YSS = 2	* YMIDL( IE	) - YSM					93 94
96	96	L.	HYDVP -	881						95 96
97 98	97 98		HYDVR = IJE5 = J	BB2 JE(5, IE)						97 08
99 100	99 100		IF( IJE5	5 . EQ . 8 )	THEN					99
101	101		HYDVR =	SQRT( UVIN	* UVIN * RIN	/ PIN / I	HRGG )			100
102	102	С	ENU IF							102
104 105	104 105	С	END IF							104
106	106	•	XSS2 = X	SS * XSS						105
107	108		$\frac{1552 = 1}{XYSS = X}$	22 * 722						107 108
109 110	109 110	С	ATEMP( 1	. 1 . IK )	= 1.0					109
111 112	111		ATEMP( 1	, 2 , IK )	= XSS					111
113	113	С		, J , IN J	= 192					112 113
114	114		ATEMP{ 2 ATEMP( 2	. 1 . IK ) . 2 . IK )	= XSS = XSS2					114
116 117	116 117	С	ATEMP(2	, 3 , IK )	= XYSS					116
118	118		ATEMP( 3	, 1 , IK )	= YSS					117
120	120	•	ATEMP( 3	, 2 , 1K ) ;	= XTSS = YSS2					119 120
121	121	ι	BTEMP( 1	, 1 , IK ) =	≠ HYDVP					121
123 124	123 124	С	BTEMP(1	.2,IK)	= HYDVR					123
125	125	•	BTEMP( 2	. 1 . IK ) :	HYDVP * XSS					124
127	127	C		+ C + IK ) *	* איעוה * XSS					126 127
128 129	128		BTEMP(3 BTEMP(3	. 1 . IK ) ·	= HYDVP * YSS • HYDVR * YSS					128
130 131	130 131	C 115	CONTINUE							130
132	132	c								131
133	135		AA(1,1	L) ≖ AAU{ ATEMP(	1,1) + 1,1,2) +	+ ATEMP( 1 + ATEMP( 1	, 1, 1, 1, 3	L ) + 3 )		133 134
135 136	135 136		AA(1,2	2) = AAO( ATEMP(	1, 2) + 1, 2, 2) +	ATEMP( 1	. 2 . 1	( ) +		135
137	137		AA(1,3	3) = AAO(	1,3) +	ATEMP( 1	, 3, 1	( ) +		130
139	139	С	•	AIEMP(	1,3,2)+	AIEMP( I	, 3 , 3	)		138 139
140	140 141		AA(2,1	L) = AAO( ATEMP(	2,1) + 2,1.2)+	· ATEMP( 2 · ATEMP( 2	.1.1	) + } )		140
142 143	142 143		AA(2,2	2) = AAO( ATEMD	2, 2) + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	ATEMP( 2	, 2 , 1	<b>( )</b> +		142
144	144		· AA(2,3	3) = AAO(	2,3) +	ATEMP( 2	, 2, 3, 1	) +		143 144
145	145	С	•	ATEMP(	۷,3,2)+	ATEMP(2	, 3 , 3	; )		145 146
147	147		AA(3,1	) = AAO(	3,1) +	ATEMP( 3	, 1 , 1	) +		147

Thu Jul	1 14:15:55	1993 gradhd.f SUBROUTINE GRDFLX	page	3
148	148	ATEMP(3,1,2) + ATEMP(3,1,3)		148
149	149	AA(3,2) = AAU(3,2) + AIEMP(3,2,1) + ATEMP(3,2,2) + ATEMP(3,2) + ATEMP(3,2) + ATEMP(3,2) + ATEMP(3,2) + ATEMP(		149
150	150	AA(3,3) = AAO(3,3) + ATEMP(3,3,1) +		150
152	152	ATEMP(3, 3, 2) + ATEMP(3, 3, 3)		152
153	153 C			153
154	154	BB(1,1) = BBO(1,1) + BTEMP(1,1,1) +		154
155	155	BTEMP(1, 1, 2) + BTEMP(1, 1, 3)		155
150	150	BB(1, 2) = BBU(1, 2) + BIEMP(1, 2, 1) + BIEMP(1, 2, 3)		150
158	157 158 C	$\cdot \qquad \text{Dictiv}(1,2,2) \neq \text{Dictiv}(1,2,3)$		15/
159	159	BB(2,1) = BBO(2,1) + BTEMP(2,1,1) +		159
160	160	. BTEMP(2,1,2) + BTEMP(2,1,3)		160
161	161	BB(2,2) = BBO(2,2) + BTEMP(2,2,1) +		161
162	162	$\mathbf{BIEMP}(2, 2, 2) + \mathbf{BTEMP}(2, 2, 3)$		162
164	103 C	RR(3 1) = RRO(3 1) + RTEMP(3 1 1) +		103
165	165	BTEMP(3, 1, 2) + BTEMP(3, 1, 3)		165
166	166	BB(3,2) = BBO(3,2) + BTEMP(3,2,1) +		166
167	167	. BTEMP(3,2,2) + BTEMP(3,2,3)		167
168	168 C			168
109	109	UEIERM = AA(1, 1) * (AA(2, 2) * AA(3, 3) - AA(3, 2) * AA(3, 3)) + AA(3, 3)		109
171	171	AA(2, 1) * (AA(3, 2) * AA(1, 3) -		171
172	172	AA(1,2) * AA(3,3) +		172
173	173	. AA(3,1)*(AA(1,2)*AA(2,3)-		173
174	174			174
1/5	1/5 C	NTDNIN - 1 / NETEDM		175
177	170 177 C	DIRALN = 1. / DEIERA		177
178	178	AAA1 = AA(2,3) * AA(3,1) - AA(2,1) * AA(3,3)		178
179	179	AAA2 = AA(3,3) * AA(1,1) - AA(3,1) * AA(1,3)		179
180	180	AAA3 = AA(1,3) * AA(2,1) - AA(1,1) * AA(2,3)		180
181	181 C			181
183	102	$AAA4 = AA(2, 1)^{*}AA(3, 2) - AA(3, 1)^{*}AA(2, 2)$ AAA5 = AA(3, 1) * AA(1, 2) - AA(1, 1) * AA(3, 2)		102
184	184	AAA6 = AA(1, 1) * AA(2, 2) - AA(2, 1) * AA(1, 2)		184
185	1 <b>85</b> C			185
186	186	PL( IS ) = DTRMIN * ( BB( 1 , 1 ) * AAA1 +		186
187	187	BB(2, 1) * AAA2 + BB(2, 1) * BB(		187
190	100 190 C	. BB(3,1) * AAA3)		100
190	190	$PR\{IS\} = DTRMIN * (BB(1, 1) * AAA4 +$		190
191	191	. BB(2,1) * AAA5 +		191
192	192	. BB(3,1) * AAA6)		192
193	193 C	D(1, 1) = DTDM1H + (DD(1, 2)) + AAA1		193
194	195	RL(15) = D(RH) + (BC(1, 2) + AAA1 + BR(2, 2) + AAA2 + BR(2, 2) +		194
196	196	BB(3,2) * AAA3)		196
197	197 C			197
198	198	RR(IS) = DTRMIN * (BB(1, 2)) * AAA4 + BB(1, 2) + BB(1, 2) + AAA4 + BB(1, 2) + BB(1, 2) + AAA4 + BB(1, 2) +		198
200 133	199	$\frac{1}{2} \frac{1}{2} \frac{1}$		199
201	201 C	• • • • • • • • • • • • • • • • • • •		200
202	202 10	5 CONTINUE		202
203	203 C			203
204	204	NS1 = NS2 + 1		204
205	205 00	NGC = NGC + NURVES( INS + I ) CONTINUE		205
207	200 90 207 C	CONTINUE		207
208	208 C==	======================================		208
209	209 C			209
210	210 C	EXIT POINT FROM SUBROUTINE		210
211	211 C			211
213	212 0	RETURN		213
214	214 C			214
215	215 C			215
216	216 C			216
217	217	ENU		217

Thu Jul	1 14:	15:55	1993 gradhd.f SUBROUTINE GRDENG	page	4
218	1		SUBROUTINE GROENG		219
219	2	С			210
220	3	C	***************************************		220
221	4	ç			221
222	5	C	GRAENG COMPUTE THE GRADIENT FOR SECOND ORDER CALCULATION		222
223	7	L L			223
225	ล่	č			224
226	9	•	include 'cmsh00.h'		225
227	10		include 'chyd00.h'		227
228	11		include 'cint00.h'		228
229	12		include 'cphs10.h'		229
230	13	r	include cpns20.h		230
232	15	C===	******		231
233	16	č			232
234	17		REAL RRMIDL(MBP), PPMIDL(MBP), UUMIDL(MBP), VVMIDL(MBP)		234
235	18		REAL RIGRAD(MBP), PIGRAD(MBP), UIGRAD(MBP), VIGRAD(MBP)		235
236	19		REAL RJGRAD(MBP), PJGRAD(MBP), UJGRAD(MBP), VJGRAD(MBP)		236
23/	20		REAL AA(3,3), BB(3,4), B(3), INDX(3), ATEMP(3,3,3), BTEMP(3,4,3)		237
230	22	C	KEAL AAU(3,3), DOU(3,4)		238
240	23	Č===	ᇃᇳݗݒݒݥݔݵݚݔݕݖݚݥݥݺݺݠݑݑݔݺݵݹݵݸݵݕݵݔݠݷݕݕݵݻݚݷݭݵݵݚݻݚݷݵݵݵݵݵݵݚݦݥݬݕݐݚݑݷݠ		239
241	24	С			241
242	25	C	- BEGIN LOOP OVER ALL CELLS IN THE DOMAIN		242
243	26	C	110 h		243
244	2/		NS1 = 1		244
245	20		NO ON INC - 1 NULES		245
247	30	С	00 50 105 4 1 , 114225		240
248	31	Č	- FETCH HYDRO QUANTITIES		247
249	32	C			249
250	33		DO 105 IS = NS1 , NS2		250
251	34	C			251
252	35		ADT = AD(1, 1D) $VSM = VS(2, 1C)$		252
254	37		XSM2 = XSM + XSM		255
255	38		YSM2 = YSM * YSM		254
256	39		XYSM = XSM * YSM		256
257	40	С			257
258	41		AAO(1, 1) = 1.0		258
259	42		AAO(1, 2) = XSM		259
261	45	C	AAU(1, 3) = TSM		260
262	45	•	AAO(2, 1) = XSM		261
263	46		AAO(2, 2) = XSM2		263
264	47	-	AAO(2,3) = XYSM		264
265	48	С			265
200	49		AAU(3, 1) = YSM		266
268	50		AAO(3, 2) = XISM		267
269	52	С	The second se		200
270	53		BB1 = HYDFLX( IS , 1 )		270
271	54		BB2 = HYDFLX(IS, 2)		271
212	55 EE	r	BBJ = HYDFLX( IS , 4 )		272
273	30 57	ι.	ARIX = ARI * YSM		273
275	58		BB2X = BB2 * XSM		274
276	59		8B3X = BB3 * XSM		276
277	60	С			277
278	61		BB1Y = BB1 * YSM		278
279	62		882Y = 882 * YSM		279
281	60 64	r	רכס (מט = ונסס		280
282	65	τ.	880(1,1) = 881		201 202
283	66		BBO(1, 2) = BB2		283
284	67		880(1,3) - 883		284
285	68	С			285
286	59		880(2,1) = 881X		286
20/ 289	70		BBU( 2 , 2 ) = BBZX BBO( 2 , 3 ) = BBZX		287
289	72	С	DDV( C , J ) = 00JA		288
290	73		BBO(3,1) - BBIY		209
291	74		BBO(3,2) = BB2Y		291
			page 4		

Thu Jul	1 14:15	5:55	1993	gradhd.f					SUBROUT	INE	GR	DEN	١G			page	5
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309	75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92	c c c	BBO( DO 11 IE - IF( I ISS - ELSE ISS - END I IF( I XSS - YSS - HYDVR HYDVV HYDVV	3 , 3 ) = 5 IK = 1 JS( IK + E . GT . JE( 4 , JE( 3 , F SS . NE . XS( 1 , XS( 2 , = HYDFLX = HYDFLX	BB3Y , 3 3 , 1S 0 ) THE IE ) - IE ) 0 ) TH ISS ) ( ISS , ( ISS , ( ISS ,	) in ien 1 ) 2 ) 4 )					urt					hañc	292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
310	93		ELSE														309 310
311 312	94 95	С	IF =	TARS( IF	1												311
313	96		HYDVR	= BB1	,												313
314	97 98		HYDVU	= 882 = 883													314
316	99	С	VCC	0 + vN1		、 <i>"</i>	~~										316
318	100		XSS = YSS =	2. * YMI	JL(IE) JL(IE)	) - X ) - Y	SM SM										317 318
319	102	С		-	•												319
321	103	С															320 321
322 323	105		XSS2 =	= XSS * X - VSS * V	SS SS												322
324	107	_	XYSS -	• XSS * YS	ŝŝ												323 324
325 326	108 (	C	ATEMP	1.1.	IK ) =	1.0											325
327	110		ATEMP	1.2.	IK ) =	XSS											327
328	1112 (	0	ATEMP	. 1 , 3 ,	1K ) =	122											328 320
330	113		ATEMP	2.1.	1K) =	XSS											330
332	114		ATEMP	2,2,	IK ) = IK ) =	XYSS											331 332
333 334	116 ( 117	C	ATEMP	3.1	IK ) =	224											333
335	118		ATEMP	3,2,	IK ) ≈	XYSS											335
330 337	119	2	AIEMP(	3,3,	ik) =	YSS2											336
338	121		BTEMP (	1.1.	IK) =	HYDVI	R								•		338
340	123		BTEMP	1,2,1,3,	IK ) = IK ) =	HYDVI	J J										339 340
341 342	124 (	2	DTEMD/	2 1	ли ) .	UVDU	n * ve										341
343	126		BTEMP (	2,2,	IK ) =	HYDVL	j * XS	55 55									342 343
344 345	127 128 (		BTEMP (	2.3,	IK ) =	HYDV\	/ * XS	S									344
346	129	•	BTEMP(	3,1,	IK ) =	HYDVF	R * YS	S									345 346
347 348	130		BIEMP( BTEMP(	3.2.	IK ) = IK ) =	HYDVU	) * YS / * YS	is is									347 348
349	132 0				,												349
350	133 134 (	115	CONTINU	Ł													350 351
352	135		AA( 1	, 1 ) =	AAO()	1.1	)	+	ATEMP(	1	, 1	,	1	) +			352
354	130		AA( 1	, 2) =	AAO()	. 2	; 2)	++	ATEMP(	1	, 1 , 2	:	3	) ) +			353 354
355 356	138			A 3 ) - A	TEMP( 1	. 2	2)	+	ATEMP(	1	, ż	•	3	)			355
357	140			. J ) A	TEMP( 1	3	, 2)	+	ATEMP(	1	, 3 , 3	:	3	) + )			356 357
358 359	141 C 142		AAI 2	. 1 ) =	AAO( 2	. 1	)	+	ATEMD(	2	1		1	• •			358
360	143		•	A	TEMP( 2	; 1	(2)	÷	ATEMP (	2	, 1	;	3	j			360
362	144 145		AA ( 2	,	AAU(2 TEMP(2	. 2	)	+++	ATEMP( ATEMP(	2	2	,	1	+			361
363	146		AA( 2	, 3 ) = ]	AA0( 2	.3	)	+	ATEMP(	2	3		ĩ	+			363
365	147 148 C		•	A	16178 ( 2	. 3	, z )	+	AIEMP(	2	, 3	•	3)				364 365

Thu Jul	1 14:15:	55 1993	gradhd.f		SUBROUTINE GRDENG	page 6
366 367 368 369 370 371 372	149 150 151 152 153 154 155 C	AA( 3 · AA( 3 · AA( 3 ·	AAO(3, ATEMP(3, 2) = AAO(3, ATEMP(3, 3, 3) = AAO(3, ATEMP(3, ATEMP(3,	1 ) 1 , 2 ) 2 ) 2 , 2 ) 3 ) 3 , 2 )	+ ATEMP(3,1,1)+ + ATEMP(3,1,3) + ATEMP(3,2,1)+ + ATEMP(3,2,3) + ATEMP(3,3,1)+ + ATEMP(3,3,3)	366 367 368 369 370 371 372
373 374 375 376 377 378 379	156 157 158 159 160 161 162 C	BB( 1 BB( 1 BB( 1	.1) = BBO(1. BTEMP(1. .2) = BBO(1. BTEMP(1. .3) = BBO(1. BTEMP(1.	1) 1,2) 2,2) 3) 3,2)	+ BTEMP(1,1,1) + + BTEMP(1,1,3) + BTEMP(1,2,1) + + BTEMP(1,2,3) + BTEMP(1,3,1) + + BTEMP(1,3,3)	373 374 375 376 377 378 378
380 381 382 383 384 385 386	163 164 165 166 167 168	BB(2 BB(2 BB(2	, 1) = BBO(2, BTEMP(2, , 2) = BBO(2, BTEMP(2, , 3) = BBO(2, BTEMP(2,	1) 1,2) 2) 2,2) 3) 3,2)	+ BTEMP(2,1,1)+ + BTEMP(2,1,3) + BTEMP(2,2,1)+ + BTEMP(2,2,3) + BTEMP(2,3,1)+ + BTEMP(2,3,3)	380 381 382 383 383 384 385
387 388 389 390 391 392	109 C 170 171 172 173 174 175	BB(3 BB(3 BB(3	, 1) = BBO(3, BTEMP(3, , 2) = BBO(3, BTEMP(3, , 3) = BBO(3, BTEMP(3,	1) 1,2) 2) 2,2) 3) 3,2)	+ BTEMP(3,1,1)+ + BTEMP(3,1,3) + BTEMP(3,2,1)+ + BTEMP(3,2,3) + BTEMP(3,3,1)+ + BTEMP(3,3,3)	386 387 388 389 390 391 392
393 394 395 396 397 398 399	176 C 177 178 179 180 181 182	DETERI - - - -	M = AA(1,1)*( AA(2,1)*( AA(3,1)*(	AA(2, AA(3, AA(1, AA(3, AA(1, AA(2,	2) * AA(3,3) - 2) * AA(2,3)) + 3) * AA(3,2) - 3) * AA(1,2)) + 2) * AA(2,3) - 2) * AA(1,3))	393 394 395 396 397 398 398
400 401 402 403 404 405 406	183 C 184 185 C 186 187 188 189 C	DTRMII AAA1 AAA2 AAA3	N = 1. / DETERM = AA(2,3) * AA( = AA(3,3) * AA( = AA(1,3) * AA(	3,1) 1,1) 2,1)	- AA(2,1) * AA(3,3) - AA(3,1) * AA(1,3) - AA(1,1) * AA(2,3)	400 401 402 403 404 405 406
407 408 409 410 411 412 413	190 191 192 193 C 194 195 196	AAA4 AAA5 AAA6 RR( IS	= AA(2,1) * AA( = AA(3,1) * AA( = AA(1,1) * AA( S) = DTRMIN * (BB( BB( BB( BB(	3,2) 1,2) 2,2) (1,1) (2,1) (3,1)	- AA(3,1) * AA(2,2) - AA(1,1) * AA(3,2) - AA(2,1) * AA(1,2) * AAA1 + * AAA2 + * AAA3)	407 408 409 410 411 412 413
414 415 416 417 418 419 420	197 C 198 199 200 201 C 202 203	RL( 19 : UR( 19	S) = DTRMIN * (BB( BB( BB( S) = DTRMIN * (BB( BB	(1, 1) (2, 1) (3, 1) (1, 2) (2, 2)	* AAA4 + * AAA5 + * AAA6 ) * AAA1 + * AAA2 +	414 415 416 417 418 419 420
421 422 423 424 425 426	204 205 C 206 207 208 209 C	: UL( IS :	5) = DTRMIN * ( 88( 88( 88( 88( 88(	(3,2) (1,2) (2,2) (3,2)	* AAA3 ) * AAA4 + * AAA5 + * AAA6 )	421 422 423 424 425 425 426
427 428 429 430 431 432 433	210 211 212 213 C 214 215 216	VR( 15 : VL( 15 :	5 ) = UIRMIN * ( 88( BB( BB( 5 ) = DTRMIN * ( 88( BB( BB(	(1,3) (2,3) (3,3) (1,3) (2,3) (2,3) (3,3)	- AAA1 + * AAA2 + * AAA3 ) * AAA4 + * AAA5 + * AAA6 )	427 428 429 430 431 432 433
434 435 436 437 438 439	217 C 218 1 219 C 220 221 222 9	05 CONTINU NS1 = N NS2 = N O CONTINU	JE 152 + 1 152 + NOFVES( INS + JE	1)		434 435 436 437 438 439

-

page

6

Thu Ju)	1 14:1	5:55	1993	gradhd.f		SUBROUTINE	GRDENG		page	1
440 441 442 443 444 445 446 447	223 224 225 226 227 228 229 230	C C C C C	- EXIT P RETURN	OINT FROM SU	BROUTINE					440 441 442 443 444 445 446 447
448 449 450	231 232 233	C C	END							448 449 450
Thu Jul	1 14:1	5:55	1993	gradhd.f		SUBROUTINE	GRADNL			
451 452 453 454 455 456	1 2 3 4 5 6	с с с с	SUBROU Gradn	L COMPUTE THE	E GRADIENT FOR ALL TRIANGLES	SECOND ORDEF	R CALCULATION	I I I I		451 452 453 454 455 456
457 458 459 460 461 462	7 8 9 10 11	с с с с		CELL FOR CO SQUARE TEC	OMPUTING THE GI	RADIENT APPLY	YING LEAST	I I I		457 458 459 460 461
463 464 465 466 467	13 14 15 16 17	ç	includ includ includ includ	e 'chydol e 'cintol e 'cintol e 'cphs10 e 'cphs20	0.h' 9.h' 0.h' 0.h'					462 463 464 465 465 466 467
468 469 470 471 472 473	18 19 20 21 22 23	C=== C	REAL R REAL R REAL R REAL R	RMIDL(MBP),P IGRAD(MBP),P JGRAD(MBP),P MAX(MBP),PMA	PMIDL(MBP),UUM) IGRAD(MBP),UIG JGRAD(MBP),UJGI X(MBP),UMAX(MB)	IDL (MBP), VVMI RAD (MBP), VIGF RAD (MBP), VJGF P), VMAX (MBP)	IDL (MBP) XAD (MBP) XAD (MBP)	54 42 8 # 2		468 469 470 471 472 473
474 475 476 477 478 479	24 25 26 27 28 29		REAL R REAL R REAL R REAL R REAL R REAL R	MIN(MBP),PMII LEFTT(MBP),UI RIGHT(MBP),UI OR(3),UOP(3) OL(3),UOL(3) OL(3),BR(3)	N(MBP), UMIN(MBR LEFTT(MBP), VLEF RIGHT(MBP), VRIC , VOR(3), POR(3) , VOL(3), POL(3) 4) B(3) INDX(3)	P),VMIN(MBP) TT(MBP),PLEF GHT(MBP),PRIG	TTT(MBP) GHT(MBP) RTEMP(3.4)			474 475 476 477 478 478
480 481 482 483 484	30 31 32 33 34	C C==== C C C	- BEGIN	LOOP OVER AL	L CELLS IN THE	DOMAIN				480 481 482 483 484
485 486 487 488 489 490	35 36 37 38 39 40	С С	NS1 = NS2 = D0 90 - FETCH	I NOFVES( 1 ) INS = 1 , NVI HYDRO QUANTI	EES TIES					485 486 487 488 489 490
491 492 493 494 495	41 42 43 44 45	C C	00 105 JJCOL	IS = NSI , 1 R = 0 5 IK = 1 , 3	¥S2					491 492 493 494 495
490 497 498 499 500 501	40 47 48 49 50 51	C C	IVV - IEE - IF( 1 IV1 -	JV(2, IV) EE.GT.0 JE(1, IEE	) ) THEN )) THEN					496 497 498 499 500 501
502 503 504 505 506 507 508 509 510	52 53 54 55 56 57 58 59 60	C	IF( 1 ISI = ELSE ISI = END I ISS = IE =	VI, EQ, IV JE(3, IEE JE(4, IEE F ISI IEE NULE	v ) IMEN ) )					502 503 504 505 506 507 508 509 510
310	00	100	CONTE							210

Thu Jul	1 14:1	15:55	1993	gradhd.f	1	SUBROUTINE	GRADNL	page	8
511	61	С							511
512	62		JJCOL	R = JJCOLR + 1	~~				512
513 514	03 64	c	IICUL	.K( JJCULK ) = [:	22				513
515	65	÷	DO 16	$0 \ IR = 1, 3$					515
516	66		JR =	MOD(IR, 3) +	1				516
517	5/ 68			IABS( JS( JR +	3, ISS ) ) THEN				517
519	69		JJR =	MOD(JR + 1.	3) + 4				518
520	70	-	IER =	IABS( JS( JJR	. iss ) )				520
521 522	71	C	111 -	15( 1 15D )					521
523	73		IF( I	V1 . E0 . IVV )	THEN				522
524	74		ISR =	JE( 3 , IER )					524
525 526	75								525
527	77		END I	F					520
528	78	-	END I	F					528
529	79	C	CONT	\$\$+ 1E					529
530	81	C 100	CUNIT	NUL					530
532	82	-	IF( 1	SR . NE . ISI )	THEN				532
533	83		ISS -	ISR					533
535	85 85		1L = GO TO	1EK   150					534 535
536	86		END I	F					536
537	87	C							537
538	88 89	ſ	FLSF						538
540	90	ŭ	IEE =	- IEE					539
541	91		IV1 -	JE(1, IEE)					541
542 543	92			$V1 \cdot EQ \cdot IVV$	THEN				542
544	93 94		ELSE	JE( J , IEE )					543 544
545	95		ISI =	JE( 4 , IEE )					545
546 547	96 07		END I	F					546
548	98		155 = ISI =	151					547 548
549	99		IE =	IEE			•		549
550	100	C	CONTI	WIE					550
552	102	C 1/0	CONTI	NUC					551 552
553	103		JJCOL	R = JJCOLR + 1					553
554 555	104	r	TICOL	R(JJCOLR) = IS	55				554
556	105	C	D0 18	0 IR = 1, 3					555 556
557	107		JR =	MOD(IR, 3) +	1				557
558	108		IEA =	IABS( JS( JR +	3, ISS ) )				558
560	110		171 1 JJR =	$\frac{1}{MOD}(JR + 1)$	1 ncn 3 ) + 4				559 560
561	111		IER =	IABS( JS( JJR	íss))				561
562	112	С	71/1						562
564	114		IVI = IF(I)	VI, EQ, IVV)	THEN				503 564
565	115		ISR =	JE( 3 , IER )					565
566	116		ELSE	15/ A (50 )					566
568	118		END I	JE(4, IEK) F					568
569	119		END I	F					569
570	120	C 190	CONT	MILE					570
572	122	100 C	CUNIT	NUC					572
573	123		IF( I	SR . NE . ISI )	THEN				573
574 575	124			ISR					574 575
576	126		ot do	170					576
577	127	~	END 1	F					577
578 579	128	U	END 1	F					578 570
580	130	115	CONTI	NUE					580
581	131	C							581
582 583	132		ATEMP	(1, 1) = 0.					582 583
584	134		ATEMP	(1,3) = 0.					584

Thu Jul	1 14:	15:55	1993	gradhd.f	SUBROUTINE GRADNL	page	9
585	135	C	ATEMO	( ) ) )		5	685
587	130		ATEMP	(2, 1)	= U. = A	5	86
588	138		ATEMP	(2,3)	= 0.	5	588
589	139	C			_	5	89
590 501	140		ATEMP	(3, 1)	- 0.	5	90
592	142		ATEMP	(3,2)	= 0.	5	191
593	143	С		( • • • • )	••	5	i93
594	144		BTEMP	(1,1)	= 0.	5	94
595 596	145		BIEMP	(1,2)	≖ U. ⊳ A	5	195
597	147		BTEMP	(1, 4)	= 0.	5	90
598	148	C				5	98
599	149		BTEMP	(2, 1)	• 0.	5	99
601	150		BTEMP	(2, 2)	- 0. - 0.	6	00
602	152		BTEMP	(2,4).	= 0.	6	02
603	153	C	07540			6	03
004 605	154		BILMP	(3, 1)	= U. - 0	6	04
606	156		BTEMP		- 0. = 0.	0	05
607	157		BTEMP	(3,4)	= 0.	δ	07
608	158	C			1100LD	6	80
610	160		UU 225	) KK = 2 , TTCNID/ VI	JJUULK K	6	09
611	161		IF( 19	SS. NE. (	D ) THEN	0 6	10
612	162		XSS =	XS( 1 , 1	55)	6	12
613	163	~	YSS =	XS(2,1	SS )	6	13
615	104	L	HYIND		SS 1)	6	14
616	166		HYDVU	= HYDV( 1	SS . 2 )	6	15
617	167		HYDVV	- HYDV( IS	SS , 3 )	6	17
618	168	~	HYDVP	= HYDV( IS	SS , 4 )	6	18
620	170	L	XSS2 =	. xss * xss	S	5	19 20
621	171		YSS2 -	YSS * YSS		6	21
622	172	~	XYSS -	• XSS * YSS	5	6	22
623	1/3	ι	ATEMD/		ATEMD( 3 3 ) + 1 0	6	23
625	175		ATEMP	1,2).	ATEMP(1, 2) + XSS	6	25
626	176		ATEMP (	1,3)•	• ATEMP(1,3) + YSS	6	26
628	178	Ľ	ATEMD/	2 1 1 -	ATCH0/ 2 1 ) . YCC	6	27
629	179		ATEMP	2.21	$\Rightarrow$ ATEMP(2, 2) + XSS	0/ 6/	20 29
630	180		ATEMP (	2,3).	ATEMP(2,3) + XYSS	6	30
631 632	181	С	ATEMD/	2 1 1	ATEND( 2 1 ) . VCC	6	31
633	183		ATEMP(	3,2)	= ATEMP(3, 2) + XYSS	6. 6	52 37
634	184		ATEMP (	3,3).	ATEMP(3,3) + YSS2	6	34
635	185	C				6	35
030 637	180		BIEMP	1,1)=	BIEMP(I,I) + HYDVR BIEMP(I,2) + HYDVR	63	36
638	188		BTEMP	1,3)	$\mathbf{BTEMP}(1,3) + \mathbf{HYDVV}$	0.	37 38
639	189		BTEMP(	1,4)=	BTEMP( 1 , 4 ) + HYDVP	6	39
640 641	190	C	DTEMP (	<b>•</b> • • •		64	40
041 642	102		BIEMP(	$\begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix} =$	• BIEMP( 2 , 1 ) + HTUVR * X55 , RTEMP( 2 , 2 ) + HVMVH * VSS	64 E	41 42
643	193		BTEMP	2,3)	BTEMP(2,3) + HYDVV * XSS	64	43
644	194		BTEMP (	2,4)-	BTEMP(2,4) + HYOVP * XSS	64	44
645 646	195 106	C	ptrun (	2 1 1		64	<b>15</b>
647	190		BTEMP	3,21-	BTEMP(3,2) + HYDVI * YSS	64 64	40 47
648	198		BTEMP(	3,3).	BTEMP( 3 , 3 ) + HYDVV * YSS	64	48
649	199	~	BTEMP	3,4)=	BTEMP(3,4) + HYDVP * YSS	64	49
050 651	200	C	END IF			65	50
652	202	С	CNU 11			65 67	52 52
653	203	225	CONTINU	E		65	53
054 655	204	C	887 1	1)-	ATEMD( 1 1 )	65	54 . E
656	205		AA(1	, , , , = , 2 ) =		05	)3 36
657	207		AA( 1	; 3) -	ATEMP(1,3)	65	;;; ;7
658	208	С	•		· - ·	65	58
Thu Jul	1 14:15:	55 1 <b>99</b> 3	gradhd.f	SUBROUTINE GRADNL	page 10		
--------------------------	-------------------------------------	-------------------------------	------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------		
659 660 661 662	209 210 211 212 C	AA( 2 AA( 2 AA( 2	, 1 ) = , 2 ) = , 3 ) =	ATEMP(2,1) ATEMP(2,2) ATEMP(2,3)	659 660 661 662		
663 664 665 666	213 214 215 216 C	AA( 3 AA( 3 AA( 3	, 1 ) = , 2 ) = , 3 ) =	ATEMP(3,1) ATEMP(3,2) ATEMP(3,3)	663 664 665		
667 668 669 670	217 218 219 220	88(1 88(1 88(1 88(1)	, 1 ) = , 2 ) = , 3 ) = 4 ) =	BTEMP(1,1) BTEMP(1,2) BTEMP(1,3) BTEMP(1,4)	667 668 669		
671 672 673 674	221 C 222 223 224	BB( 2 BB( 2 BB( 2	. 1 ) = . 2 ) =	BTEMP(2,1) BTEMP(2,2) BTEMP(2,3)	670 671 672 673		
675 676 677 678	225 226 C 227 228	BB(2) BB(3) BB(3)	, 3 ) = , 4 ) = , 1 ) = , 2 ) =	BTEMP(2,4)	674 675 676 677		
679 680 681 682	229 230 231 C 232	BB(3 BB(3 BB(3	(3) = (4) = (4)	$\begin{array}{c} \text{BTEMP}(3, 2) \\ \text{BTEMP}(3, 3) \\ \text{BTEMP}(3, 4) \end{array}$	678 679 680 681		
683 684 685 686	233 234 235 236		AA( 2	$\begin{array}{c} AA(3,2) & * AA(3,3) - \\ AA(3,2) & * AA(2,3) + \\ 1) & * (AA(1,3) & * AA(3,2) - \\ AA(3,3) & * AA(1,2) + \\ \end{array}$	682 683 684 685		
687 688 689 689	237 238 C 239 240 C	: Dtrmin	AR(5)	AA(2,2) * AA(2,3) - AA(2,2) * AA(1,3))	686 687 688 689		
691 692 693	240 C 241 242 243 243	AAA1 = AAA2 = AAA3 =	AA(2,3) AA(3,3) AA(1,3)	8) * AA(3,1) - AA(2,1) * AA(3,3) 8) * AA(1,1) - AA(3,1) * AA(1,3) 8) * AA(2,1) - AA(1,1) * AA(2,3)	690 691 692 693		
695 696 697 698	244 C 245 246 247 248 C	AAA4 - AAA5 - AAA6 -	AA(2,1 AA(3,1 AA(1,1	<pre>1 ) * AA( 3 , 2 ) - AA( 3 , 1 ) * AA( 2 , 2 ) 1 ) * AA( 1 , 2 ) - AA( 1 , 1 ) * AA( 3 , 2 ) 1 ) * AA( 2 , 2 ) - AA( 2 , 1 ) * AA( 1 , 2 )</pre>	694 695 696 697		
699 700 701 702	240 C 249 250 251 252 C	RGRAD(	IS,1)	= DTRMIN * ( BB( 1 , 1 ) * AAA1 + BB( 2 , 1 ) * AAA2 + BB( 3 , 1 ) * AAA3 )	698 699 700 701		
703 704 705 706	252 253 254 255 255	RGRAD(	IS,2)	= DTRMIN * ( BB( 1 , 1 ) * AAA4 + BB( 2 , 1 ) * AAA5 + BB( 3 , 1 ) * AAA6 )	702 703 704 705		
707 708 709 710	257 258 259 260 C	UGRAD(	IS,1)	= DTRMIN * ( BB( 1 , 2 ) * AAA1 + BB( 2 , 2 ) * AAA2 + BB( 3 , 2 ) * AAA3 )	706 707 708 709		
711 712 713 714	261 262 263 264 C	UGRAD(	15,2)	= DTRMIN * ( BB( 1 , 2 ) * AAA4 + BB( 2 , 2 ) * AAA5 + BB( 3 , 2 ) * AAA6 )	710 711 712 713		
715 716 717 718	265 266 267 268	VGRAD(	IS , 1 )	= DTRMIN * ( BB( 1 , 3 ) * AAA1 + BB( 2 , 3 ) * AAA2 + BB( 3 , 3 ) * AAA3 )	714 715 716 717		
719 720 721 722	269 270 271 272	VGRAD(	IS,2)	- DTRMIN * ( BB( 1 , 3 ) * AAA4 + BB( 2 , 3 ) * AAA5 + BB( 3 , 3 ) * AAA6 )	718 719 720 721		
723 724 725 726	273 274 275 276 C	PGRAD(	IS,1 >	= DTRMIN * ( BB( 1 , 4 ) * AAA1 + BB( 2 , 4 ) * AAA2 + BB( 3 , 4 ) * AAA3 )	722 723 724 725		
727 728 729 730	277 278 279 280 C	PGRAD(	IS,2):	= DTRMIN * ( BB( 1 , 4 ) * AAA4 + BB( 2 , 4 ) * AAA5 + BB( 3 , 4 ) * AAA6 )	725 727 728 729		
731 732	281 10 282 C	5 CONTINUE	E		730 731 732		

Thu Jul	1 14:1	5:55 1	993 gra	idhd.f		SUBROUTINE	GRADNL		page	11
733	283		NS1 = NS2	+ 1						733
734	284	00	NS2 = NS2	+ NOFVES(	INS + 1 )					734
735	205	6 C	CONTINUE							736
737	287	Č=#==	**********		************	*****				737
738	288	C								738
739	289	Ç	CALL THE P	NONOTONICIT	Y LIMITER	*********				739
740	290	L	CALL MONOT	EN .						740
742	292	С								742
743	293	C====	**********	********						743
744	294	Ç								744
745	295	с С	FXIT POINT	FROM SURR						743 745
747	297	č	LATT TOTAL		0011112					747
748	298	C								748
749	299	c	RETURN							749
750	301	Ċ								750
752	302	č								752
753	303		END							753
Thu Jul	1 14:1	5:55 19	993 gra	idhd.f		SUBROUTINE	GRADNT			
754	1		SURPOUTINE	GRADNT						754
755	2	C	SARWAALTUR							755
756	3	C						· I		756
757	4	ç	CRARNT CC	MOUTE THE			D CALCHLATTON	I		757
750	5 6	C C		NETHE INFO	RMATION IN TH	THREE NET	GHROURING	I T		759
760	ž	č	TR	IANGLES TH	AT HAVE COMMON	EDGES TO	COMPUTE	i		760
761	8	C	GF	ADIENT APP	LYING LEAST SO	QUARE TECHN	IQUE	I		761
762	9	Č						I		762
764 764	10	C		*******				•1		764
765	12	C	include	'cmsh00.	h'					765
766	13		include	'chyd00.	h'					766
767	14		include	'cint00.	h'					767
769	15		include	cphs10.	n' h'					769
770	17	C ·		-p1102.01						770
771	18	(====					*******			771
772	19	C			101 (100) 10001					772
77A	20		REAL REAL	D(MBP),PPM	RAD(MBP),00MII	AD(MBP),VVM	IDL(MDP) RAD(MRP)			774
775	22		REAL RJGR	VD(MBP),PJG	RAD (MBP), UJGR	AD(MBP), VJG	RAD(MBP)			775
776	23		REAL RMAX	(MBP), PMAX(	MBP), UMAX (MBP)	), VMAX(MBP)	- ,			776
777	24		REAL RMIN	(MBP),PMIN(	MBP),UMIN(MBP)	),VMIN(MBP)	CTT/MOD)			771
779	25		REAL REEF	T(MRP), ULE	GHT(MBP),VLEF	HT(MRP) PRI	GHT(MBP)			779
780	27		REAL ROR(3	3),UOR(3),V	OR(3), PÓR(3)					780
781	28		REAL ROL(3	1), UOL(3), V	OL(3),POL(3)	ATT 10 10 0				781
/82 793	29		REAL AA(3,	3),88(3,4)	.B(3),INDX(3), A)	AIEMP(3,3,	3),81EMP(3,4,3)			/82 783
784	31	C	NERE PONV(S	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•/					784
785	32	(====	**********	*******	*************	********	*****	******		785
786	33	C			Ar					786
787 200	34	C	BEGIN LOUP	VVER ALL	LELLS IN THE I	JUMAIN	***************			/0/ 789
789	36	L	NS1 = 1							789
790	37		NS2 - NOFV	/ES( 1 )						790
791	38	<u>^</u>	DO 90 INS	= 1 , NVEE	S					791
/92 703	39	L C		O OHANTITI	F\$					/92 703
794	40	с	ICIUN NIUN	w yummiiii	LJ					794
795	42		DO 105 IS	= NS1 , NS	2					795
796	43	C								796
797	44		XSM = XS(	1, IS						797
798	45 46		124 = 124 124 = 124	(2,13) (M * XSM						790
800	40		YSM2 = YS	SM * YSM						800
801	48		XYSM = XS	SM * YSM						801
802	49	C								802
803	50		AAU(1,	1) = 1.0						003

ŧ

ł

Thu	Jul	1 14:	:15:55	1993	gradhd.f	SUBROUTINE GRADNT	page 12
8	04	51		AA0(	1,2)=	XSM	804
ช ค	05 06	52	ſ	AAU (	1.3)=	ΥSΜ.	805
8	07	54	v	AAO (	2,1)=	XSM	807
8	80	55		AA0 (	2,2)=	XSM2	808
8 8	09 10	50 57	r	AAU (	2,3)=	XYSM	809
š	11	58	U	AA0 (	3,1)=	YSM	811
8	12	59		AAD (	3,2)=	XYSM	812
8 8	13	60 61	r	AA0 (	3,3)=	YSM2	813
8	15	62	Ľ	881 -	HYDV( IS	.1)	814
8	16	63		B82 -	HYDV( IS	· 2 )	816
8 R	17	64 65		883 -	HYDV(IS	, 3)	817
8	19	66	С	- +00	. 1104( 13	. + )	818 819
8	20	67		881X	= 881 * XS	SM	820
8	21	68 60		BB2X	$= 882 * X_{3}^{2}$	SM Sm	821
8	23	70		884X	= BB4 * XS	sn Sm	822
8	24	71	C				824
8	25	72		BB1Y	$= 881 * Y_{3}$	SM Sm	825
8	27	74		BB3Y	= 883 * YS	SM	820 827
8	28	75		<b>BB4</b> Y	= 884 * YS	5M	828
8	29	76	C	880/	1 11-	001	829
8	30 31	78		BBO (	1, 1) = 1, 2) =	882	830
8	32	79		BBO(	i, <u>3</u> ) =	883	832
8	33	80	c	880 (	1,4)=	684	833
8	34 35	82	L	BBO (	2 1) =	RR1X	834
8	36	83		8B0(	2,2)=	BB2X	836
8.	37	84		BB0(	2,3)=	BB3X	837
8	39 39	00 86	C	BBO(	2,4)=	884X	838
8	10	87	•	BB0 (	3,1)=	8B1Y	840
84	11	88		880 (	3,2)=	882Y	841
84	13	90		BBO(	3, 3) = 3, 4) = 1	RA4Y	842 843
84	14	91	C	(	••••		844
84	15 16	92		D0 11	5  IK = 1	3	845
8/	10 17	94 94			$J_{S}$ $I_{K} + J_{S}$ $F_{-}$ $GT_{-}$ $O$	• , 15 ) • ) THEN	840 847
84	18	95		ISS =	JE( 4 , 1	E´)	848
84	19 :0	96 07		ELSE	15/3		849
85	51	98		END I	υς(J, - F		851
8	52	99	С		-		852
85	3	100		IF(I	SS.NE. YS/1 I	0) THEN SS )	853
85	5	102		YSS =	$\hat{x}$ S(2,1)	( 22	855
85	6	103	C				856
85 89	17 18	104		HYDVK	HYDV(I HYDV(I)	SS , 1 ) SS , 2 )	857
85	i9	106		HYDVV	= HYDV( I	SS . 3 )	859-
86	i0	107	~	HYDVP	- HYDV( I	SS . 4 )	860
00 86	2	100	L	FLSE			861 862
86	3	110	C				863
86	4	111		IE =	IABS( IE )		864
86	6	112		HYDVU	= 882		865 866
86	7	114		HYDVV	- 883		867
86	8	115	c	HYDVP	= 884		868
87	0	110	L	XSS =	2. * XMID	L(IE) – XSM	869 870
87	1	118	_	YSS =	2. * YMID	L(IE) - YSM	871
87	2	119	C	T 100	. 15/ 5		872
87	4	121	č	IJES	- JE( 5 . IJE5 . E0	. 6 . OR . LJE5 . EO . 5 ) THEN	8/3 874
87	5	122	Ç	UUÙV	= - ( B	B2 * XN( IE ) + BB3 * YN( IE ) )	875
87 רפ	6 7	123	C		= - 8 	B2 * YN( IE ) + BB3 * XN( IE )	876
0/	1	174	U U	A LUV	u - UUVV "	ΛΠ( IL ) + VVUU ~ TN( IL )	8//

Thu Jul	1 14:15	5:55	1993 gradhd.f SUBROUTINE GRADNT	page 13
878	125	C	HYDVV = UUVV * YN( IE ) + VVUU * XN( IE )	878
880	120	L C		879
881	128	č	HYDVR - RIN	880
882	129	č	HYDVU = UIN	882
883	130	С	HYDVV - VIN	883
884	131	C	HYDYP = PIN	884
885	132	ç		885
200	135	L	END 1F	886
888	135	С		887
889	136	-	XSS2 = XSS * XSS	889
890	137		YSS2 = YSS * YSS	890
891	138	~	XYSS = XSS * YSS	891
803	139	L		892
894	141		ATFMP(1, 2, TK) = 150	893
895	142		ATEMP(1, 3, IK) = YSS	074 805
896	143	C		896
897	144		ATEMP(2, 1, IK) = XSS	897
200	140		AIEMP(2, 2, 1K) = XSS2	898
900	147	C	$\operatorname{Wicht}(\mathcal{L},\mathcal{J},\mathcal{I}\mathcal{K})=\mathcal{N}(\mathcal{I}\mathcal{I})$	899
901	148	•	ATEMP(3,1,IK) = YSS	900
902	149		ATEMP(3, 2, IK) = XYSS	902
903	150	c	ATEMP(3,3,IK) = YSS2	903
905	151	L.	RTEMP(1 1 TK) - UVNVP	904
906	153		BTEMP(1, 2, IK) = HYDVU	905 905
907	154		BTEMP(1, 3, IK) = HYDVV	907
908	155	•	BTEMP(1,4,IK) = HYDVP	908
010 Q10	150	C	ATEMO( 2 1 TK ) - UVRUD * YCS	909
911	158		$\frac{1}{1} = \frac{1}{1} + \frac{1}$	910
912	159		BTEMP(2,3,IK) = HYDVV * XSS	912
913	160	~	BTEMP(2,4,1K) = HYDVP * XSS	913
914 015	101	C	DTEMP(2 1 TK) - UVDVD * YCC	914
916	163		BTFMP(3, 2, 1K) = HYDVK * 155	915
917	164		BTEMP(3,3,IK) = HYDVV * YSS	917
918	165	~	BTEMP(3,4,IK) = HYDVP * YSS	918
919 919	100	C 115	CONTINIE	919
921	168	C 115		920
922	169	-	AA(1,1) = AAO(1,1) * 3. + ATEMP(1,1,1) +	922
923	170		ATEMP(1, 1, 2) + ATEMP(1, 1, 3)	923
924 925	1/1		AA(1, 2) = AAU(1, 2) * 3 + AIEMP(1, 2, 1) + ATEMP(1, 2, 2) + ATEMP(1, 2, 2)	924
926	173		AA(1,3) = AAO(1,3) * 3 + ATEMP(1,2,3)	925
927	174		ATEMP(1,3,2) + ATEMP(1,3,3)	927
928	175	C		928
929 930	170		$AA(2, 1) = AAU(2, 1) \times 3. + AIEMP(2, 1, 1) + ATEMP(2, 1, 2) + ATEMP(2, 1, 2)$	929
931	178		AA(2, 2) = AAO(2, 2) * 3 + ATEMP(2, 2, 1) +	930
932	179		ATEMP(2,2,2) + ATEMP(2,2,3)	932
933	180		AA(2,3) = AAO(2,3) * 3. + ATEMP(2,3,1) +	933
934 035	101	r	• ATEMP $(2, 3, 2)$ + ATEMP $(2, 3, 3)$	934
936	183	C	AA(3,1) = AAO(3,1) * 3, + ATEMP(3,1,1) +	935 Q36
937	184		. ATEMP(3,1,2) + ATEMP(3,1,3)	937
938	185		AA(3,2) = AAO(3,2) * 3. + ATEMP(3,2,1) + ATEMP(3,2,2) + ATEMP(3,2) + AT	938
929	180		$\begin{array}{ccc} \bullet & A[EMP(3,2,2) + A[EMP(3,2,3)] \\ \bullet & A(3,3) - AAO(3,3) + 3 + ATEMP(3,2,3) \\ \bullet & ATEMP(3,2,3) + 3 + ATEMP(3,2,3) \\ \bullet & A(3,3) - AAO(3,3) + 3 + ATEMP(3,2,3) \\ \bullet & A(3,3) - AAO(3,3) + 3 + ATEMP(3,2,3) \\ \bullet & A(3,3) - AAO(3,3) + 3 + ATEMP(3,2,3) \\ \bullet & A(3,3) - AAO(3,3) + 3 + ATEMP(3,2,3) \\ \bullet & A(3,3) - AAO(3,3) + 3 + ATEMP(3,3) \\ \bullet & A(3,3) - AAO(3,3) + 3 + ATEMP(3,3) \\ \bullet & A(3,3) - AAO(3,3) + 3 + ATEMP(3,3) \\ \bullet & A(3,3) - AAO(3,3) + 3 + ATEMP(3,3) \\ \bullet & A(3,3) - AAO(3,3) + ATEMP(3,3) \\ \bullet & A(3,3) - AAO(3,3) + ATEMP(3,3) \\ \bullet & A(3,3) - AAO(3,3) + ATEMP(3,3) \\ \bullet & ATEMP(3,3) + ATEMP(3,3) + ATEMP(3,3) \\ \bullet & ATEMP(3,3) + ATEM$	939
941	188		ATEMP(3,3,2) + ATEMP(3,3,1) + ATEMP(3,3,2) + ATEMP(3,3,3)	940 QA1
94	189 (	0		942
<b>9</b> .	190		BB(1,1) = BBO(1,1) + 3. + BTEMP(1,1,1) +	943
** <	191		BB(1, 2) + BB(1, 2) + 3 + BEMP(1, 1, 3)	944
5 · O	193		BTEMP(1, 2, 2) + BTEMP(1, 2, 3)	745 946
947	194		BB(1,3) = BBO(1,3) * 3. + BTEMP(1,3,1) +	947
948	195		BTEMP(1, 3, 2) + BTEMP(1, 3, 3)	948
949 950	197		DO(1,4) = BBU(1,4) = J. + BIEMP(1,4,1) + BTEMP(3,4,2) + DTEMP(1,4,2)	949
951	198 (	2	·	951

1

t

Thu Jul	1 14:1	5:55	1993	g <b>radhd.</b> f		SUBROUTINE	E GRADNT	page I	4
952	199		8B( 2	, 1 ) = 880(2,1)	* 3.	+ BTEMP( 2	2,1,1)+	95	2
953	200		•	BTEMP( 2 , 1	, 2)	+ BTEMP( 2	2,1,3)	95	3
954	201		BB( 2	(2) = BBO(2, 2)	* 3.	+ BTEMP( 2	2,2,1)+	95	4
900	202		·	BTEMP(2,2	. 2 )	+ BTEMP( 2	2,2,3)	95	5
950	203		BB( 2	(3) = BBO(2, 3)	* 3.	+ BTEMP( 2	2,3,1)+	95	6
937	204		. 00/ 2	BIEMP(2,3	· 2 ) ·	+ BTEMP( 2	2,3,3)	95	7
950	205		DD\ 2	, 4 ) = BBU(2, 4)	* 3	+ BTEMP( 2	2,4,1)+	95	8
959	200	r	•	BIEMP( 2 , 4	, 2)	+ 8TEMP( 2	2,4,3)	95	9
961	208	Ľ.	88/ 3	1 ) - BPO( 2 1 )	* 2			96	0
962	209			RTFMP(3 1	21	T DIEMP( )	$\left(\begin{array}{c} 1 \\ 1 \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right)$	96	1
963	210		BB{ 3	(2) = BBO(3, 2)	+ 2	+ ATEMD( 3	), I, J) I	90	Ž.
964	211			BTEMP(3,2	. 21.	+ RTEMPI 3	2 3 3	90	5
965	212		BB( 3	(3) = 680(3, 3)	* 3.	+ BTEMP( 3	(3, 2, 3)	50 06	4 5
966	213		•	BTEMP(3,3	. 2) +	+ BTEMP( 3	. 3 . 3 )	96	5
967	214		BB( 3	, 4 ) = 880(3,4)	* 3. +	BTEMP( 3	. 4 . 1 ) +	96	7
968	215		•	BTEMP(3,4	.2)+	+ BTEMP( 3	4,3)	96	8
909	216	C						96	9
970	217		DETERM	M = AA(1,1) * (AA	(2, 2)	2 ) * AA( 1	3,3)-	97	0
072	210		•		ų <b>3</b> , 2	2 ) * AA( ;	2,3))+	97	1
972	220		•	AA(2,1)*(AA	(1, 3)	5) * AA( .	3,2)-	97	2
974	221		•	AA AA \ # ( 1 - E \AA		) * AA(	1, 2) +	97	3
975	222		•	MA(3,1)" (MA		2) * AA( ) 2) * AA( )	(2, 3) - (1, 2)	974	4
976	223	С	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ų <b>2</b> , 2	- ) - AA(	1.3))	975	5
977	224	•	DTRMIN	M = 1, / DETERM				9/0	2
978	225	C						97.	/ 0
979	226		AAA1 =	• AA(2,3) * AA(3	, 1) -	AA( 2 .	1) * AA(3,3)	970	2 0
980	227		aaa2 =	= AA(3,3) * AA(1	· ī ) -	- AA( 3	1) * AA(1,3)	980	á.
981	228		AAA3 -	• AA(1,3) * AA(2	. 1) -	AA( 1 .	1) + AA(2, 3)	98	í
982	229	C			•		- , ,	982	Ž
983	230		AAA4 =	• AA(2,1) * AA(3	, 2) -	• AA(3, 1	1) * AA(2,2)	98	3
095	232		AAA5 =	• AA(3,1) * AA(1	. 2 ) -	• AA( 1 , 1	1) * AA(3,2)	984	ŧ.
903 086	232	r	aaad *	• AA(1,1) * AA(2	. 2 ) -	· AA(2,2	1) * AA(1,2)	985	5
987	234	L.	DCDAD/		(			986	j
988	235		NUMP(	$(13, 1) = \text{DIRMIN}^{\circ}$		· · 1 ) * #	AAA1 +	987	!
989	236		•		00(2		AAA2 +	988	3
990	237	С	•		OD( J	•••)~/	AAAS)	985	Į
991	238	•	RGRAD(	IS = 2 = DTRMIN *	( BR( 1	1)*4		990	2
992	239				BR( 2	1 1 * 4	1005 +	221	
993	240		•		BB(3	. 1 ) * A	AA6	992	i
994	241	С				• • • •		904	í
995	242		UGRAD (	IS , 1 ) - DTRMIN * (	( 88( 1	.2) * A	VAA1 +	995	
990	243		•		BB( 2	, 2) * A	AA2 +	996	j.
997	244	~	•		BB( 3	,2)*A	NAA3 )	997	,
990	240	L	HCDAD/			• • • •		998	\$
1000	240		UGIOAD (	13, 2) * UKMIN * 1	(88(1	, 2) * A	VAA4 +	999	F
1001	248		•		BB( 2	, Z ) * A	VAA5 +	1000	1
1002	249	С	•		BD( )	, Z ) * A	VAAD )	1001	
1003	250	-	VGRAD/	IS = DTRMIN + I	( AR( )	3) * 6	NAA1 +	1002	,
1004	251		•	t w t wrowidt		3 * 4	NAA2 +	1003	
1005	2 <b>52</b>		•		BB(3	. 3 ) * A	IAA3 )	1004	
1006	253	С			, •	, - ,	1	1006	
1007	254		VGRAD(	IS, 2) = DTRMIN * (	(BB(1	, 3) * A	VAA4 +	1007	
1008	255		•		BB( 2	, 3) * A	VAA5 +	1008	
1009	250	~	•		BB( 3	, 3) * A	VAA6 )	1009	
1010	20/	L	00040/	15 1 ) 070414				1010	
1011	200		PGKAD(	15, 1 = DIRMIN * (		, 4 ) * A	AA1 +	1011	
1013	260		•		88(2	, 4 ) * A		1012	
1014	261	c	•		RR( 7	,4)*A	WAS)	1013	
1015	262	~	PGRAD/	IS 2 ) * DTDMIN * (	DQ( 1	/ \ ± •	AAA +	1014	
1016	263		• •••••••(	·····	RR( 7	, 4 J * A A ` * *	1004 + 1885 +	1015	
1017	264				89/2	 ★ . × .	ΔΔ6 )	1015	
1018	265	С	-		00( )	, ¬ / " Au	vvvu /	101/	
1019	266	105	CONTINU	E				1010	
1020	267	C _						1019	
1021	268		NS1 = NS	S2 + 1				1021	
1022	269		NS2 = N	S2 + NOFVES( INS + 1 )	i			1022	
1023	270	90	CONTINUE	E				1023	
1024	2/1	Ľ						1024	
1452	212	(====	*****	L \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	*******	**=****	*****	1025	

1

Thu Jul	1 14:1	5:55	1993	g <b>radhd.</b> f	SUBROUTINE GRADNT	page	15
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041	273 274 275 276 277 278 279 280 281 282 283 284 285 285 286 287 288	C C C C C C C C C C C C	- CALL 1 CALL N - EXIT F RETURN	THE MONOTON MONOTN POINT FROM	SUBROUTINE		1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
Thu Jul	1 14:1	5:55	1993	gradhd.f	SUBROUTINE MONOTH		
1042	1		SUBROL	JTINE MONOT	N		1042
1043	2	ç			Ţ		1043
1044	4	č			1		1044
1046	5	C	MC	DNOTH LIMIT	THE GRADIENTS SO THAT NO NEW EXTREMUM ARE I		1046
1047	6	ç	CF	REATED ARTI	FICIALY DURING THE PROJECTION PROCESS		1047
1048	8	с С			1 T		1046
1050	ğ	Č			<b>·</b>		1050
1051	10		includ	ie 'cms	h00.h1		1051
1052	11		incluc	ie 'chy io 'cin	d00.h' +00.b'		1052
1055	13		incluo	ie (coh	s10.h'		1054
1055	14		includ	ie 'cph	s20.h'		1055
1056	15	ç					1056
1058	10	=## 	*******	**********	╡╡╪╫╡╬╬╕╜╬╫┿Ҟ══╤┪╺╖═╀┶╡╪┶┟┟┧┝┇╡┫╡╛┇╬╘╏╫╚╡╫┙╞╪╖┲╝╖╖╝╄╸		1057
1059	18	·	REAL F	RMIDL(MBP)	, PPMIDL(MBP), UUMIDL(MBP), VVMIDL(MBP)		1059
1060	19		REAL F	RIGRAD (MBP)	, PIGRAD (MBP), UIGRAD (MBP), VIGRAD (MBP)		1060
1061	20		REAL F	RJGRAD(MBP)	, PJGRAD(MBP), UJGRAD(MBP), VJGRAD(MBP)		1061
1062	21		REAL F	RMIN(MBP),P	MIN(MBP),UMAX(MBP),VMAX(NBP) MIN(MBP),(MIN(MBP),VMIN(MBP)		1063
1064	23		REAL F	RLEFTT(MBP)	,ULEFTT(MBP),VLEFTT(MBP),PLEFTT(MBP)		1064
1065	24		REAL F	RRIGHT (MBP)	,URIGHT(MBP),VRIGHT(MBP),PRIGHT(MBP)		1065
1065	25		REAL H	KOR(3),UOR( 201 (3) 1101 (	3),VOR(3),POR(3) 3) VOL(3) POL(3)		1000
1068	27		REAL	VA(3.3).BB(	3,4).B(3).INDX(3).ATEMP(3,3,3).BTEMP(3,4,3)		1068
1069	28	_	REAL #	4A0(3,3),BB	0(3,4)		1069
1070	29	C .					1070
1071	30 31	### 					1071
1073	32	č	- LIMITE	ER FOR GRAD	IENTS BEGINS		1073
1074	33	ç	USED 1	TO PREVENT	NEW MINIMA AND MAXIMA		1074
10/5	54 75	C r	AT PRO	JJECTED INT	LKRALE VALUES.		1075
1077	36	v	NS1 -	1			1077
1078	37		NS2 =	NOFVES( 1	)		1078
1079	38	r	00 80	INS = 1,	NVEES		1079
1080	40	C	DQ 150	IS = NS1	. NS2		1081
1082	41		KS =	IS - NS1 +	1		1082
1083	42	Č	C1007	TRIANCIE	ner		1083
1085	43	с	~ F1K21	IKIANGLE E	NAE		1085
1086	45	÷	IE =	IABS( JS(	4 , IS ) )		1086
1087	46	С			<b>F N</b>		1087
1088	47 10		ISL *	• JE(3, I	L ) F )		1088
1009	40	С	134 1	- JE( 4 , 1	<b>L</b> )		1090
1091	50	5	RROL	- HYDV( IS	iL,1)		1091
1092	51		UUOL	= HYDV( IS	L.2)		1092
1093 1004	5Z 52		VVOL	= HYDV( 15			100V 10A2
1095	54	Ç	FFUL	- mov( 13	Έ τ T J		1095
1096	55		IJE5	= JE( 5 ,	IE )		1096

•

1

Thu Jul	1 14:15:	55 1993	gradhd.f	SUB	ROUTINE M	IONOTN	page	16
1097	56	IF(	IJE5 . EQ . O )	THEN				1097
1098	5/ U	0000	- 4401/ 150					1058
1100	59	UUOR	= HYDV( ISR ,					1100
1101	60	VVOR	= HYDV( ISR ,	Ξ́)				1101
1102	61	PPOR	= HYDV( ISR ,	1)				1102
1103	62 C	51.55						1103
1104	64 C	£LSE						1104
1105	65	RROR	= RROL					1106
1107	66	UUOR	= UUOL					1107
1108	67	VVOR	= VVOL					1108
1109	60 60 C	PPOR	= PPOL					1109
1111	70 C	IF(	LIF5 . FO . 6	OR JJE5 FO	. 5 ) THE	N		1111
1112	71 Č	ŪŪV	V = - ( UUOL 3	XN( IE ) + VVOL	* YN( IE	·····		1112
1113	72 C	VVU	J = - UUOL	YN( IE ) + VVOL	* XN( IE	() ()		1113
1114	73 C	UUO	R = UUVV * XN(	(E ) - VVUU * YN(	IE)			1114
1115	74 U 75 C	VVU	K = 0044 - 18( .	LE ) + VV00 - XN(	IE )			1115
1117	76 Č	ELSI	E IF( IJE5 . EQ	. 8 ) THEN				1117
1118	77 C	RRO	R = RIN					1118
1119	78 C	UUU	R = UIN					1119
1120	79 C 80 C		K = VIN D _ DIN					1120
1122	81 C	END	IF					1122
1123	82 C							1123
1124	83	END	IF					1124
1125	84 L 85	POI (	1 ) - 0001					1125
1127	86	UOL	1 ) = UUOL					1127
1128	87	VOL (	1) = VVOL					1128
1129	88	POL (	1 ) = PPOL					1129
1130	89 C	000/						1130
1132	90	HOR (	1 ) = IIIIOR					1132
1133	92	VOR	1) = VVOR					1133
1134	93	POR (	1) = PPOR					1134
1135	94 C	CECOW						1135
1130	95 U 96 C	JELUN	J IRIANGLE EDGE			~~~~~~		1130
1138	97	IE =	IABS( JS( 5 ,	(S))				1138
1139	98 C							1139
1140	99	ISL ·	= JE(3, IE)					1140
1141	101 C	15K =	• JE( 4 , IE /					1141
1143	102	RROL	= HYDV( ISL , )	)				1143
1144	103	UUOL	= HYDV( ISL , 2	2)				1144
1145	104	VVOL	= HYDV( ISL , )	3 )				1145
1140	105	PPUL	= UIDA( 12F '	• )				1140
1148	107	IJE5	= JE(5, IE)					1148
1149	108	IF(	IJE5 . EQ . 0 )	THEN				1149
1150	109 C	0000						1150
1151	111		= HYDV( ISP . 2	5				1152
1153	112	VVOR	= HYDV( ISR .	j j				1153
1154	113	PPOR	= HYDV( ISR , 4	t )				1154
1155	114 0	E1 66						1155
1150	116 C	EL3C						1150
1158	117	RROR	- RROL					1158
1159	118	UUOR	- UUOL					1159
1160	119	VVOR						1160
1162	120 121 r	Pruk	- FFUL					1162
1163	122 C	IF(	IJE5 . EQ . 6	OR . IJE5 . EQ	. 5 ) THE	N		1163
1164	123 C	UUV	/= - ( UUOL '	XN( IE ) + VVOL	* YN( IE	))		1164
1165	124 C	VVU	י אמעט א UUOL י ה אוווא א UUOL י	YNT IE ) + VVOL	* XN( IE	)		1165
1167	125 0	ννοι	< = 00VV ~ ∧N( . R = UUVV * YN( .	(E) + VVUU * XN(				1167
1168	127 C	440			,			1168
1169	128 0	ELSI	E IF( IJE5 . EQ	. 8 ) THEN				1169
1170	129 C	RROI	₹ = RIN					1170

•

Thu Jul	1 14:	15:55	1993 gradhd.f SUBROUTINE MONOTN	page 17
1171	130	ç	UUOR = UIN	1171
11/2	131	C C	VVOR * VIN PDOD - DIN	1172
1174	133	č	END IF	1173
1175	134	C		1174
1176	135	r	END IF	1176
1178	137	L.	ROL(2) = RROL	1177
1179	138		UOL(2) = UUOL	1170
1180	139		VOL(2) = VVOL	1180
1182	141	С	rol(2) = rrol	1181
1183	142		ROR(2) = RROR	1102
1184	145		VOP(2) = UUOR	1184
1186	145		POR(2) = PPOR	1185
1187	146	C		1100
1189	147	с	- THIRD TRIANGLE EDGE	1188
1190	149		IE = IABS( JS( 6 , IS ) )	1189
1191	150	C	151 - 157 - 157	1191
1193	152		ISR = JE(4, IE)	1192
1194	153		RROL = HYDV(ISL, 1)	1195
1195	154		UUOL = HYDV(ISL, 2) VVDL = HYDV(ISL, 3)	1195
1197	156		PPOL = HYDV(ISL, 4)	1196
1198	157	С		1198
1200	150		IJES = JE(S, IE) IF(IJES, EO, O) THEN	1199
1201	160	C		1200
1202	161		RROR = HYDV( ISR , 1 )	1202
1204	163		VVOR = HYDV( ISR , 3 )	1203
1205	164	c	PPOR = HYDV( ISR , 4 )	1205
1207	166	L	ELSE	1206
1208	167	C		1207
1209	169		RROR = RROL INIOR = INIO	1209
1211	170		VVOR - VVOL	1210
1212	171	c	PPOR = PPOL	1212
1213	173	c	IF( 1JE5 , EQ , 6 , 0R , 1JE5 , EQ , 5 ) THEN	1213
1215	174	C	UUVV = - ( UUOL * XN( IE ) + VVOL * YN( IE ) )	1214
1210	1/5	C C	VVUU = -UUOL * YN(IE) + VVOL * XN(IE)	1216
1218	177	č	VVOR = UUVV * YN(IE) + VVUU * XN(IE)	1217
1219	178	C		1210
1221	180	č	RROR = RIN	1220
1222	181	C	UUOR = UIN	1222
1223	182	с С	VVUK = VIN PPOR = PIN	1223
1225	184	č	END IF	1224 1225
1226	185	С		1226
1228	187	С		1227
1229	188		ROL(3) = RROL	1220
1230	109		UUL(3) = UUUL VOL(3) = VVOI	1230
1232	191	_	POL(3) = PPOL	1231
1233	192	C	ROR( 3 ) + PROP	1233
1235	194		UOR(3) = UUOR	1234 1235
1236	195		VOR(3) = VVOR	1235
1238	190	С	run( 3 ) * Prun	1237
1239	198	C	FIND MAXIMA IN THE NEIGHBORHOOD OF A TRIANGLE	1238
1240	199 200	C	PMAY(KS) = AMAY1(POL(1)) POL(2)) POL(2)	1240
1242	201		$\frac{1}{1}, \frac{1}{1}, \frac$	1241
1243	202		UMAX(KS) = AMAX1(UOL(1), UOL(2), UOL(3),	1243
1644	203		UUR(1), UOR(2), UOR(3))	1244

ŝ

page

17

Thu Jul	1 14:	15:55 1	193 gradhd.f	SUBROUTINE MONOTN	page	18
1245 1246	204 205		VMAX(KS) = AMAX1(VOL(1	), VOL(2), VOL(3),		1245
1247 1248	206 207		PMAX( KS ) = AMAX1( POL( 1 POR( 1	), POL(2), POL(3),		1240
1249	208	C C	FIND MINIMA IN THE NEICHBOD	$2000 0 \in A$ TRIANCIC		1248
1251	210	č	RMIN( KS ) = AMIN1( DOL( )			1250
1253	212		$\frac{1}{1000} = \frac{1}{1000} = 1$	), ROR(2), ROR(3))		1253
1255	214		VMIN(KS) = AMINI(VOL(1)) UOR(1) VMIN(KS) = AMINI(VOL(1))	), UOR(2), UOR(3), ), UOR(2), UOR(3))		1254 1255
1257	216		VOR(1) = VOR(1)	), VOR(2), VOR(3), ), VOR(2), VOR(3))		12. 1257
1259	218	c	POR(1) = ARTAT(POL(1))	), POR(2), POR(3), ), POR(2), POR(3))		1258 1259
1261	220	ຼັ150	CONTINUE			1260 1261
1263	222	C	FIND DIFFERENCES BETWEEN EX	TREMA AND THE TRIANGLE CENTERED		1262 1263
1264	223	C	QUANTITIES			1264 1265
1266 1267	225 226	_	DO 180 IS = NS1 , NS2 KS = IS - NS1 + 1			1266
1268	227 228	С	RRR(KS) = RMAX(KS) -	HYDV(IS,1)		1268 1269
1270 1271	229 230		RRL( KS ) = RMIN( KS ) - UUR( KS ) = UMAX( KS ) -	HYDV(IS,1) HYDV(IS,2)		1270 1271
1272 1273	231 232		UUL( KS ) = UMIN( KS ) - VVR( KS ) = VMAX( KS ) -	HYDV(IS,2) HYDV(IS,3)		1272
1274 1275	233 234		VVL( KS ) = VMIN( KS ) - PPR( KS ) = PMAX( KS ) -	HYDV(IS,3)		1274
1276 1277	235 236	С	PPL(KS) = PMIN(KS)	HYDV(IS,4)		1276
1278 1279	237 238	180 C	CONTINUE			1278
1280 1281	239 240	C C	FIND THE PROJECTED INCRAMEN	TS FOR INTERFACE BASED QUANTITIES		1280
1282 1283	241 242		DO 170 IS = NS1 , NS2 KS = IS - NS1 + 1			1282
1284 1285	243 244	С С	FIRST TRIANGLE EDGE			1284
1286 1287	245 246	C	IE = IABS(JS(4, IS))			1286
1288 1289	247 248	С	ISL = JE(3, IE)			1288
1290 1291	2 <b>49</b> 250	С	ISR = JE(4, IE)			1290
1292 1293	251 252		XML = XMIDL(IE) - XS(1) YML = YMIDL(IE) - XS(2)	, ISL )		1292
1294 1295	253 254	С	RR01 = $1.F-12 +$	,,		1294
1296 1297	255 256	•	RGRAD(ISL, 1) + UUOI = 1.F-12 + UUOI = 1.F-1	* XML + RGRAD( ISL , 2 ) * YML		1296
1298 1299	257 258		UGRAD( ISL , 1 ) * VVOL = 1.E-12 +	'XML + UGRAD(ISL, 2) * YML		1298
1300 1301	259 260		VGRAD(ISL, 1) * PPOL = 1.F-12 +	XML + VGRAD( ISL , 2 ) * YML		1300
1302 1303	261 262	с.	PGRAD(ISL, 1)*	* XML + PGRAD( ISL , 2 ) * YML		1302
1304 1305	263 264		IJE5 = JE( 5 , IE ) IF( IJE5 , E0 , 0 ) THEN			1304
1306 1307	265 266	C	XMR = XMIDL(IE) - XS(I)	ISB )	-	1305
1308 1309	267 268	с	YMR = YMIDL( IE ) - XS( 2 ,	ISR )	-	1308
1310 1311	269 270	-	RROR = 1.E-12 + RGRAD( ISR _ 1 ) *	XMR + RGRAD( ISR 2 ) + YMP	1	1310
1312 1313	271 272		UUOR = 1.E-12 + UGRAD( 1SR	XMR + IIGRAD( ISR 2 ) * YMP	-	1312
1314 1315	273	•	VVOR = 1.E-12 + VGRAD( TSR 1.1 *	XMR + V(DDD(12R, 2) + VMD	1	1313
1316 1317	275	·	PPOR = 1.E-12 + PGRAD( ISP 1 ) +	2 MD + D(DAD/ 1SD - 2 ) + VMD	1	1315
1318	277	c .	i diviot 150 , 1 ) ~	ATT TURADI IST , ( ) - TEK	1	1317

Thu Jul	1 14:1	5:55	1993	gradhd.f			SUBROUT I	NE M	IONOT	N		page	19
1319	278		ELSE										1319
1320	279	С		0.001									1320
1321	280		KKUK =										1321
1323	282		VVOR -	VVOL									1322
1324	283		PPOR =	PPOL									1324
1325	284	С	CH0.10										1325
1320	285	r	END IF										1326
1328	287	v	ROL( 1	) = 1. / RR	OL								1327
1329	288		UOL( 1	) = 1. / UU	0L								1329
1330	289			) = 1. / VV	0L 01								1330
1332	291	c	102( 1	, - <b>.</b> . , , ,	01								1331
1333	292		ROR( 1	) = 1. / RR	OR								1333
1334	293 204		UOR( 1	) = 1. / UU	OR								1334
1336	295		POR( 1	) = 1. / PP	OR								1335
1337	296	C	_	,,									1337
1338	297	Ç	- SECOND	TRIANGLE EDG	E		********						1338
1339	290	ι	IF = I	ABSC JSC 5	( ( 21								1339
1341	300	C			,,								1341
1342	301		ISL =	JE(3, IE)									1342
1345	302	С	12K -	JE( 4 , 1E )									1343
1345	304	•	XMŁ =	XMIDL( IE )	- XS( 1	, 1SL	)						1345
1346	305	~	YML =	YMIDL( IE )	- XS( 2	, ISL	)						1346
1347	300	ι	8801 =	1 F-12 +									1347
1349	308			RGRAD( IS	L,1)	* XML	+ RGRAD(	ISL	. 2	) *	YML		1340
1350	309		UUOL =	1.E-12 +					_				1350
1351	311		· vvoi -	UGRAU(15	L.I)	* XML -	+ UGRAD(	ISL	, 2	) *	YML		1351
1353	312			VGRAD( IS	L,1)	* XML -	+ VGRAD(	ISL	. 2	) *	YML		1353
1354	313		PPOL =	1.E-12 +									1354
1355	315	r	•	PGKAD( 15	L, I)	* XML +	+ PGRAD(	ISL	, 2 )	•	YML		1355
1357	316	•	IJE5 =	JE( 5 , IE	)								1357
1358	317	~	IF( IJ	E5.EQ.O	) THEN								1358
1360	310	ι	YMP -	XMIDI ( IF )	1 124	150	۱						1359
1361	320		YMR -	YMIDL( IE )	$-\hat{x}\hat{s}(\hat{2})$	ISR I	Ś						1361
1362	321	C											1362
1364	323		KKUK =	1.E-12 + RCRAD( 15	<b>P</b> 1 }	* YMD .		150	2 1		VMD		1363
1365	324		UUOR =	1.E-12 +	,			174	• 6 )	,	11167		1365
1366	325		•	UGRAD( 15	R,1}	* XMR +	UGRAD()	ISR	, 2)	*	YMR		1366
1368	320 327		VVUK =	1.E-12 + VGRAD( 15		* YMD .	VCDAD/	150	2 1		YMD		1367
1369	328		PPOR -	1.E-12 +	/	Ai II.		1.21	• ~ )		1.087		1369
1370	329	~	•	PGRAD( IS	R,1)	* XMR +	PGRAD(	ISR	. 2 )	*	YMR		1370
1372	331	L	ELSE										1371
1373	332	C											1373
1374	333		RROR *	RROL									1374
1375	334		VVOR -										1375
1377	336		PPOR -	PPOL									1370
1378	337	С											1378
1379	330	c	ENU IF										1379
1381	340	*	ROL( 2	) = 1. / RRG	)L								1381
1382	341		UOL ( 2	) = 1. / UU	)L								1382
1364	342		POL( 2	) ≈ 1. / VV( ) ≈ 1. / PD(	)I JL								1383
1305	344	С	. vel 2	7 · 10 / 194									1385
1385	345		ROR( 2	) = 1. / RR(	)R								1386
1388	340 347		UUR(2 VOR(2	) * 1. / UU( ) * 1 / WW	)6 )K								1387
1389	348		POR( 2	) = 1. / PP(	)R								1389
1390	349	C	TUTRO	TANCIE PAR									1390
1392	350	ι C	HIRD TH	CIANGLE EUGE									1391
~~~~ <u>~</u>		-											1725

Thu Jul	1 14:15:55	1993 gradhd.f	SUBROUTINE MONOTH	page 2	!0
1393	352 353 C	IE = IABS(JS(6 , IS))	139	13
1395	354	ISL = JE(3, IE)		139	4
1396	355	ISR = JE(4, IE)		139	6
1398	350 L 357	XMI = XMIDL(IF) = XS(1 (SL)	139	17
1399	358	YML = YMIDL(IE) - XS(2, ISL)	139	9
1400	359 C 360			140	10
1402	361	. RGRAD(ISL , 1) * XML + RGRAD(ISL , 2) * YML	140	1
1403	362	UUOL = 1.E - 12 + 1.E - 1.E		140	3
1404	364	• UGRAU(15L , 1 VVOL = 1.F-12 +) * XML + UGRAD(ISL , 2) * YML	140	4
1406	365	. VGRAD(ISL , 1) * XML + VGRAD(ISL , 2) * YML	140	6
1407	300 367	PPOL = 1.E-12 + OCPAD(TS) = 1		140	7
1409	368 C		/ ARE + PORAD(ISE, 2) - THE	140 140	8 9
1410	369 370	IJE5 = JE(5, IE)		141	Ŏ
1412	371 C	IF(1325 . EQ . U) THEM		141	1
1413	372	XMR = XMIDL(IE) - XS()	1 , ISR)	141	3
1414	373 374 C	YMR = YMIDL(IE) - XS(2	2, ISR)	141	4 E
1416	375	RROR = 1.E - 12 +		141	3 6
1417	376 377	• RGRAD(ISR , 1)) * XMR + RGRAD(ISR , 2) * YMR	141	7
1419	378	• UGRAD(ISR , 1)) * XMR + UGRAD(ISR _ 2) * YMR	141	8 Q
1420	379	VVOR = 1.E - 12 +		142	Ď
1421	381	+ VGRAD(ISR, 1) PPOR = $1.F_{-}12$ +) * XMR + VGRAD(ISR , 2) * YMR	142	1
1423	382	PGRAD(ISR , 1)) * XMR + PGRAD(ISR , 2) * YMR	142	3
1424	383 C 384	FISE		142	4
1426	385 C	LUE		142	5
1427	386	RROR - RROL		142	7
1420	388	VVOR = VVOL		1428	3
1430	389	PPOR = PPOL		1430	Ĵ
1431	390 L 391	END IF		143	1
1433	392 C			143	3
1434	393 394	ROL(3) = 1. / RROLHOL(3) = 1. / HHOL		1434	4
1436	395	VOL(3) = 1. / VVOL		143	5
1437	396 307 с	POL(3) = 1. / PPOL		1437	1
1439	398	ROR(3) = 1. / RROR		1439	3 3
1440	399	UOR(3) = 1. / UUOR		1440)
1442	400	POR(3) = 1. / PPOR		144]	•
1443	402 C			1443	j
1444	403	ISNK = SIGN(1., ROR(1)) ISNL = SIGN(1., ROI(1))		1444	+
1446	405 C			1446	5
1447 1448	406 C	PERFORM THE LIMITING ON TH	E INCRAMENTS	1447	1
1449	408	TEMPR = (1 + ISNR) * RR	R(KS) +	1448	;)
1450	409	(1 - ISNR) * RR	L(KS)	1450)
1452	411 C	RUVPRI = 0.5 ~ IEMPR - RU	R(1)	1451	;
1453	412	TEMPL = (1 + ISNL) * RR	R(KS) +	1453	j
1454	413	- (1 - ISNL) * RR RUVPL1 = 0.5 * TEMPL * RO	L(KS)	1454	•
1456	415 C			1455	;
1457 1458	410 417	ISNR = SIGN(1., ROR(2 ISNI = SIGN(1 POL(2))	1457	, ,
1459	418 C	sour - stand to ' word t	//	1458	; }
1460	419	TEMPR = (1 + ISNR) * RR	R(KS) +	1460)
1462	421	- (1 - 15NK) * RR RUVPR2 = 0.5 * TEMPR * RO	R(2)	1461	
1463	422 C			1463	j
1404 1465	423	IEMPL = (1 + [SNL) * RR (1 - ISNI) * PD	R(KS) +	1464	:
1466	425	RUVPL2 = 0.5 * TEMPL * RO	ū(²)'	1405	,

Thu Jul	1 14:	15:55	1993	gradhd, f	SUBROUTINE MONOTN	page	21
1467	426	С					1467
1468	427		ISNR	= SIGN(1. , ROR(3))		1468
1469	428	•	ISNL	= SIGN(1., ROL(3))		1469
14/0	429	ι	TEMOD	- (1 + 15ND) *	000(VC)		1470
1472	431		I CRIFIC	(1 - 1SNR) +	RRI(KS)		14/1
1473	432		RUVPR	3 = 0.5 * TEMPR *	ROR(3)		1473
1474	433	C		.			1474
14/5	434		TEMPL	= (1 + ISNL) *	RRR(KS) +		1475
1470	435		RIVPI	(1 ~ 15NL) * 3 = 0.5 * TEMPI *	RRL(KS) RDL(3)		1476
1478	437	С					1478
1479	438		RMIN(KS) = AMIN1(1.	, RUVPR1 , RUVPL1 , RUVPR2 , RUVPL2 ,		1479
1480	439	c	•		RUVPR3 , RUVPL3)		1480
1482	441	L	ISNR	= SIGN(1. BOR(1))		1481
1483	442		ISNL	= SIGN(1. , UOL(\mathbf{i}		1483
1484	443	C					1484
1485	444		TEMPR	= (1 + ISNR) *	UUR(KS) +		1485
1487	445		RIVPR	$(1 - 150K)^{-1}$			1486
1488	447	C					1488
1489	448		TEMPL	= (1 + ISNL) *	UUR(KS) +		1489
1490	449		Birini	(1 - ISNL) *	UUL(KS)		1490
1491	450	r	KUVPL	I = 0.3 " IEMPL "	UUL(I)		1491
1493	452	v	ISNR	- SIGN(1. , UOR(2))		1492
1494	453		ISNL	- SIGN(1. , UOL(2))		1494
1495	454	C	TENOD	/ 1 . TCHD) +			1495
1490	455		IEMPK	= (1 + 1SNR) * (1 - 1SNR) * (UUR(KS) +		1496
1498	457		RUVPR	2 = 0.5 * TEMPR *	UOR(2)		1497
1499	458	C					1499
1500	459		TEMPL	= (1 + ISNL) *	UUR(KS) +		1500
1501	400		RIVPI :	(I - ISNL) * 2 = 0 5 * TFMDI *			1501
1503	462	С		013 (LIAC			1502
1504	463		ISNR	SIGN(1., UOR(3))		1504
1505	464	~	ISNL -	SIGN(1., UOL(3))		1505
1500	405	L	TEMOD	= (1 + ISNO) *	111D(KS) +		1506
1508	467		•	(1 - ISNR) *	UUL(KS)		1508
1509	468		RUVPR:	3 = 0.5 * TEMPŔ *	UOR(3)		15 J
1510	469	C	TEMOL	. (1 . TCML) *			1510
1512	471		ICHFL	= (1 + 15NL) *			1511
1513	472		RUVPL3	3 = 0.5 * TEMPL *	UOL(3)		1513
1514	473	C					1514
1515	474		UMIN(KS) = AMIN1(1.	, RUVPR1 , RUVPL1 , RUVPR2 , RUVPL2 ,		1515
1517	476	С	•		RUVPRJ, RUVPLJ)		1510
1518	477	-	ISNR -	SIGN(1. , VOR(1))		1518
1519	478	r	ISNL -	SIGN(1., VOL(1))		1519
1520	480	L.	TEMPP	= (1 + ISNR) *	VVR(KS) +		1520
1522	481		•	(1 - ISNR) *	VVL(KS)		1522
1523	482		RUVPR	= 0.5 * TEMPR *	VOR(1)		1523
1524	483 484	C	TEMO	- (1 + T\$NI) +			1524
1526	485		ICRIPL	(1 - ISNL) *	VVI(KS)		1525
1527	486		RUVPL	* 0.5 * TEMPL *	VOL(1)		1527
1528	487	С		610W/ 1 10-1			1528
1529	488 480		ISNR =	SIGN(1. , VOR(2 J J 2 N N		1529
1531	490	С	I SUL .	· stont I. , VUL(c ; ;		1530
1532	491		TEMPR	= (1 + ISNR) *	VVR(KS) +	•	1532
1533	492			(1 - ISNR) *	VVL(KS)		1533
1535	495 401	c	KUVPR2	: ≈ V.5 * IEMPR *	VUK(2)		1534
1536	495	U U	TEMPL	= (1 + ISNL) *	VVR(KS) +	Ì	1536
1537	496		•	(1 - ISNL) *	VVL(KS)		1537
1538	497 409	c	RUVPL2	* 0.5 * TEMPL *	VOL(2)	1	1538
1540	499	L	ISNR -	SIGN(1. VOR/	3))	1	1239
			1.014() *	arout ve t cout	~ ; ;		7440

Thu Jul	1 14:15:	55 1993	gradhd.f		SUBROUTINE	MONOTN			page	22
1541	500	ISNL	- SIGN(1. , VOL(3))						1541
1542	501 C	TEMDO	- (] + ISND) *	W/D (YS)						1542
1545	502	I CHIFR	(1 - ISNR) *	VVI(KS)	•					1545
1545	504	RUVPR	3 = 0.5 * TEMPR *	VOR(3)						1545
1546	505 C									1546
1547	506	TEMPL	= (1 + ISNL) *	VVR(KS)	+					1547
1548	507		(1 - ISNL) * 3 - 0 5 * TEMPI *	VVL(KS)						1548
1549	500 509 C	RUVEL	J - 0.5 TOMPL	VUL(J)						1550
1551	510	VMIN(KS) = AMIN1(1.	, RUVPR1 ,	RUVPL1 ,	KUVPR2 ,	RUVPL2 .			1551
1552	511	•				RUVPR3 ,	RUVPL3)			1552
1553	512 C	1040								1553
1555	513	1 SNR T SNI	= SIGN(1. , POR($=$ SIGN(1. , POL(1555
1556	515 C	1000		- , ,						1556
1557	516	TEMPR	= (1 + ISNR) *	PPR(KS)	+					1557
1558	517		(1 - ISNR) *	PPL(KS)						1558
1559	510 C	KUVPK	1 = 0.5 - ICMPK -	PUR(1)						1009
1561	520	TEMPL	= (1 + ISNL) *	PPR(KS)	+					1561
1562	521	•	(1 - ISNL)*	PPL(KS)						1562
1563	522	RUVPL	1 = 0.5 * TEMPL *	POL(1)						1563
1504	523 U	TSND	- STON (1 DOD (2))						1504
1566	525	I SNL	= SIGN(1 POL(1566
1567	526 C			- , ,						1567
1568	527	TEMPR	= (1 + ISNR) *	PPR(KS)	+					1568
1509	528	•	(1 - ISNK) * 2 - 0 5 * TEMOD *	PPL(KS)						1509
1570	529 530 C	RUVPR	2 = 0.3 ~ (CHPK ~	FUR(2)						1570
1572	531	TEMPL	= (1 + ISNL) *	PPR(KS)	+					1572
1573	532	•	(1 - ISNL) *	PPL(KS)						1573
1574	533	RUVPL	2 = 0.5 * TEMPL *	POL(2)						1574
1575	534 0	ISNR	= SIGN(1 POR(3))						1575
1577	536	ISNL	= SIGN(1. , POL(3))						1577
1578	537 C									1578
1579	538	TEMPR	= (1 + ISNR) *	PPR(KS)	+					1579
1581	539	- RIVPR	$(1 = 1.5 \text{ mm})^{-1}$ 3 = 0.5 * TEMPR *	PPL(KS)						1581
1582	541 C									1582
1583	542	TEMPL	= (1 + ISNL) *	PPR(KS)	+					1583
1584	543	• • • • • • • • • • • • • • • • • • • •	(1 - ISNL) *	PPL(KS)						1584
1586	544 545 C	RUVPL	3 = 0.3 ~ (EMPL ~	PUL(J)						1586
1587	546	PMIN(KS) = AMIN1(1.	, RUVPR1 ,	RUVPL1 ,	RUVPR2 ,	RUVPL2 ,			1587
1588	547	•				RUVPR3 ,	RUVPL3)			1588
1589	548 C		*** 1/2							1589
1590	549 . 550 C		NUE							1590
1592	551 C	LIMIT	THE ACTUAL GRADIE	NTS						1592
1593	552 C									1593
1594	553	DO 330	IH = 1 , 2							1594
1595	554 C	UU 330	22N 12N = 21							1232
1597	556	KS	= IS - NS1 + 1							1597
1598	557 C									1598
1599	558	RGRAD	(IS, IH) = RGR	AD(IS, IH) * RMIN(KS) * (1599
1601	559 560	UGRAD	(15, 1H) = 0GR (15, 1H) = VGR	AD(15,1H AD(15,1H) * UMIN(KS) * 1	LATOR			1600
1602	561	PGRAD	(IS, IH) = PGR	AD(IS , IH) * PMIN(KS) * 1	LATDR			1602
1603	562 C					,				1603
1604	563	330 CONTI	NUE							1604
1605	564 C	NC1 -	NS2 + 1							1606
1607	566	NS2 =	NS2 + NOFVES(INS	+ 1)						1607
1608	567 8	80 CONTI	NUE							1608
1609	568 C									1609
1010	509 C	********	*************	********	******	***	**********	* * *		1010
1612	571 0	CALL T	HE CHARECTERISTIC	LIMITER						1612
1613	572 Č	UTILL I								1613
1614	573	CALL F	CHART							1614

Thu Jul	1 14:1	5:55 1993	gradhd.f SUBROUTINE MONOTN	page	23
1615	574	С			1615
1616	575	C=======	ŢŢĸŦŦŔŔĊĔŸ <u>ŢŢŢĊŢŎŢŎŢŎ</u> ŢŢŢŢŢŢŎŢŎŢŎĬĬŢĬŢŢŢŎŢŎŎŎŎŎŎŎŎŎŎ	•	1615
101/	5/0	C C			161/
1619	578	Č EX	IT POINT FROM SUBROUTINE	-	1619
1620	579	Ç			1620
1621	580	ε ε	 TIIDN		1621
1623	582	C			1622
1624	583	Ċ			1624
1625	584	C	• D		1625
Thu Jul	1 14:1:	5:55 1993	gradhd f SUBROUTINE GRADNG		1020
1627	1	SII			1627
1628	ż	С С			1628
1629	3	C			1629
1630	4	и С С	RADING COMPUTE THE CRADIENT FOR SECOND ORDER CALCULATION I		1630
1632	6	č	USING THE INFORMATION STORED ASSOCIATED WITH THE		1632
1633	7	Ç	VERTICIES OF THE TRIANGLE TO COMPUTE THE GRADIENT		1633
1636	8	C			1634
1636	10	Č			1636
1637	11	in	clude 'cmsh00.h'		1637
1638	12	in	clude 'ChydOU.h'		1638
1640	14	in	clude 'cphs10.h'		1640
1641	15	in	clude 'cphs20.h'		1641
1642	16	C		-	1642
1644	18	C		•	1644
1645	19	C BE	GIN LOOP OVER ALL CELLS IN THE DOMAIN	-	1645
1646	20	C	1 - 1		1646
1648	22	NS	2 = NOFVES(1)		1648
1649	23	DO	90 INS = 1 , NVEES		1649
1650	24				1650
1652	26	C FE		•	1651
1653	27	DO	105 IS = NS1 , NS2		1653
1654	28	c	KS = 1S - NS1 + 1		1654
1656	30	٠ ١	V1 = JS(1.IS)		1656
1657	31	I	V2 = JS(2, IS)		1657
1658	32	I	V3 = JS(3, 1S)		1658
1660	34	x	V2 = XV(1, 1V2)		1660
1661	35	X	V3 = XV(1, IV3)		1661
1663	30 37	Y Y	VI = XV(2, IVI) V2 = XV(2, IV2)		1663
1664	38	Ý	$v\bar{3} = xv(\bar{2}, 1v\bar{3})$		1664
1665	39	C	= (XV2 - XV1) * (YV3 - YV2) - (XV3 - XV2) * (YV2 - YV1))	1665
1000 1667	4U 41	с С	1NV = 1. / L		1000
1668	42	R	RMDL1 = HYDVVV(IV1,1)		1668
1669	43	U	UMDL1 = HYDVVV(IV1, 2) / RRMDL1		1669
10/0	44 45	V	VMDL1 = HYDVVV(IVI, 3) / KKMDL1 BMD11 = (HYDVVV(IV1 A) = 5 * DDMD11 * (HIMD11 * HIMD11 +		10/0
1672	46		VVMDL1 * VVMDL1)) * (HYDVVV(IV1 , 5) - 1.)		1672
1673	47	C _			1673
10/4	48 ∡0	R	KMULL = HTUVVV(IVL, 1) HMDI2 = HYDVVV(IV2, 2)/RDMDI2		10/4
1676	50	V	VMDL2 = HYDVVV(IV2 , 3) / RRMDL2		1676
1677	51	P	PMDL2 = (HYDVVV(IV2 , 4)5 * RRMDL2 * (UUMDL2 * UUMDL2 +		1677
10/8 1670	52 53	r ·	VVMUL2 * VVMUL2)) * (HYOVVV(1V2 , 5) - 1.)		10/8
1680	54	R	RMDL3 = HYDVVV(IV3 , 1)		1680
1681	55	U	UMDL3 = HYDVVV(IV3 , 2) / RRMDL3		1681
1682	50 67	V	₩π⊔L3 = 111/////(1//3,3)/ ΚΚΠ/L3 PMD/3 = (HYD////(1//3,4) = .5 + RPMD/3 + (ⅢΜΒ/3 + ⅢΜΒ/3 +		1082
1684	58	•	VVMDL3 * VVMDL3)) * (HYDVVV(IV3 , 5) - 1.)		1684
1685	59	С			1685

Thu Jul	1 14:15:55	1993 gradhd.f SUBROUTINE GRADNG	page 24
1686 1687 1688 1689 1690 1691	60 61 62 63 64 65	ZVI = RRMDL1 ZV2 = RRMDL2 ZV3 = RRMDL3 A = (YV2 - YV1) * (ZV3 - ZV2) - (YV3 - YV2) * (ZV2 - ZV1) B = (ZV2 - ZV1) * (XV3 - XV2) - (ZV3 - ZV2) * (XV2 - XV1)	1686 1687 1688 1689 1690 1690
1692 1693 1694	66 67 68 C	RGRAD(IS , 1) = - A * CINV RGRAD(IS , 2) = - B * CINV	1692 1693 1694
1695	69	ZVI = UUMDL1	1695
1696	70	ZV2 = UUMDL2	1696
1697	71	ZV3 = UUMOL3	1697
1698	72	A = (YV2 - YV1) * (ZV3 - ZV2) - (YV3 - YV2) * (ZV2 - ZV1)	1698
1699	73	B = (ZV2 - ZV1) * (YV3 - XV2) - (ZV3 - ZV2) * (XV2 - ZV1)	1699
1700 1701	74 C 75	$B = (2V_2 - 2V_1) - (2V_3 - 2V_2) - (2V_3 - 2V_2) - (2V_3 - 2V_2)$ UGRAD(IS.1) = - A * CINV	1700
1702	76	UGRAD(IS, 2) = -B * CINV	1702
1703	77 C		1703
1704	78	2VI = VVMDLI	1/04
1705	79	2V2 = VVMDL2	1705
1706	80	7V3 = VVMDI3	1706
1707	81	A = (YV2 - YV1) * (ZV3 - ZV2) - (YV3 - YV2) * (ZV2 - ZV1)	1707
1708	82	B = (ZV2 - ZV1) * (XV3 - XV2) - (ZV3 - ZV2) * (XV2 - XV1)	1708
1709 1710 1711	83 C 84 85	VGRAD(IS , 1) = - A * CINV VGRAD(IS , 2) = - B * CINV	1709 1710 1711
1712	86 C	ZV1 = PPMDL1	1712
1713	87		1713
1714	88	ZVZ = PPMDLZ	1/14
1715	89	ZV3 = PPMDL3	1715
1716	90	A = (YV2 - YV1) * (ZV3 - ZV2) - (YV3 - YV2) * (ZV2 - ZV1)	1716
1717	91	B = (ZV2 - ZV1) * (XV3 - XV2) - (ZV3 - ZV2) * (XV2 - XV1)	1717
1718	92 C		1718
1719 1720 1721	93 94 95 C	PGRAD(15, 1) = -A * CINV PGRAD(15, 2) = -B * CINV	1/19 1720 1721
1722	96 105	CONTINUE	1722
1723	97 C		1723
1725 1726	99 99 100 90	NSI = NSZ + I NSZ = NSZ + NOFVES(INS + 1) CONTINUE	1725
1727 1728 1720	101 C 102 C===		1727 1728 1729
1730	104 C	CALL THE MONOTONICITY LIMITER	1730
1731	105 C		1731
1732	106	CALL MONOTN	1732
1733	107 C		1733
1734	108 Cam		1734
1735 1736	109 C 110 C		1735
1737	111 C	EXII PUIN: FRUM SUBRUUTINE	1/3/
1738	112 C		1738
1739	113 C		1739
1740	114	RETURN	1740
1741	115 C		1741
1743 1744	117 C 118	END	1742 1743 1744

Thu Jul	1 14:1	5:55	1993	gradhd.f	SUBROUTINE GRADNO	page 2
1745	1		SUBROUT	INE GRADNO		174
1746 1747	23	C			I	174
1748	4	C			I	174
1749	5	C	GRADING	COMPUTE TH	E GRADIENT FOR SECOND ORDER CALCULATION I	174
1750	D 7	L C		VERTICIES	OF THE TRIANGLE TO COMPLITE THE GRADIENT I	175
1752	8	č		APPLYING	THE GRADIENT THEOREM I	175
1753	9	ç			I	175
1755	10	C	*~~^~~			1/5
1756	12	-	include	e 'cmsh(10.h'	175
1757	13		include	e 'chydl	10.h' 10. h'	175
1759	15		include	critice cphs	10.h'	175
1760	16	~	include	e 'cphsa	20.h'	176
1762	1/	U C===	*******	********	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	176
1763	19	č				176
1764	20		REAL RE	(MIDL(MBP), F	PPMIDL(MBP),UUMIDL(MBP),VVMIDL(MBP)	176
1765	22		REAL RU	GRAD(MBP).	PJGRAD(MBP), UJGRAD(MBP), VJGRAD(MBP)	176
1767	23		REAL RM	AX(MBP), PM	AX(MBP), UMAX(MBP), VMAX(MBP)	176
1768	24 25		REAL RM	IIN(MBP),PM	(N(MBP),UMIN(MBP),VMIN(MBP) HESTT/MRP) VIESTT/MRP) DISSTT/MRP)	176
1770	26		REAL REAL	IGHT(MBP),	JRIGHT(MBP), VRIGHT(MBP), PRIGHT(MBP)	177
1771	27		REAL RO	R(3), UOR(3)), VOR(3), POR(3)	177
1773	28		REAL RU)L(3),UUL(3, \/3 3) 88/3	4) R(3) INDX(3) ATEMP(3,3,3) RTEMP(3,4,3)	177
1774	30		REAL A	(0(3,3),BB0	(3,4)	177
1775	31	Ç				177
1777	33	C				177
1778	34	Č	- BEGIN L	OOP OVER AI	L CELLS IN THE DOMAIN	177
1779	35	C	00 120	14 - 1 2		177
1781	37		D0 120	IS = 1 , N	5	178
1782	38		RGRAD(IS. IH) -	• 0.	178
1783	- 39 40		VGRAD (15, 18) ·	= 0. = 0.	178
1785	41		PGRAD (IS . IH) ·	= 0.	178
1786	42	120	CONTINU	JE		178
1788	44	Ç	NE1 = 1	L		178
1789	45		NE2 = N	OFVEE(1)		178
1790	40	С	00,90,1	NE = 1, N		179
1792	48	Č	- FETCH H	IYDRO QUANT	ITIES	179
1/93	49 50	C	DO 105	16 - NE3	NEO	1/9
1795	51		KE *	IE - NEL	• 1	179
1796	52	С	****		`	179
1797	54		1V1 = [V2 =]	JE(1, IE) JE(2, IE)		179
1799	55		RRMDL	= (HYDVVV	(IV1 , 1) + HYDVVV(IV2 , 1)) * .5	179
1800	56 57		UUMDL	= (HYDVVV)	(IV1,2)+HYDVVV(IV2,2))*.5/RRMDL (IV1,3)+HYDVVV(IV2,3))*5/RRMDL	180
1802	58		PPMDL	= (HYDVVV	(101, 3) + 10000(102, 3)) + .5	180
1803	59		GGMDL	= (HYDVVV	(IV1, 5) + HYDVVV(IV2, 5)) * .5	180
1804	61		PPMDL	- (PPMUL - (UUMDL -	- ,5 * KRMUL * * (IIIMD1 + VVMD1 * VVMD1)) * (GGMD1 - 1,)	180
1806	62	С	•			180
1807 1808	63 64		REMIDE	.(KE) ≠ RI (KE) → III	KMUL IMAT	180
1809	65		VVMIDL	(KE) = VI	INDE	180
1810	66 67	c	PPMIDL	.(KE) = PI	PMDL	181
1812	68	ر 105	CONTINU	JE		181
1813	69	C		• • • • •	NF0	181
1814 1815	/0 71		DU 110 KF -	1E = NE1 . 1F _ NF1 -	NEZ + 1	181 181
1816	72	C		16 - 961	•	181
1817	73		XEXN -	XE(1 . IE) * XN(IE)	181
1010	74		ACIN =	λε(I , IÈ) ~ TN(1E)	101

Thu Jul	1 14:15:55	1993	gradhd.f	SUBROUTINE	GRADNO	page	26
1819	75 C					1	819
1820	76	RIGRAD(KE) = RRMIDL(KE) * XEX	N		1	820
1821	//	UIGRAD(KE = UUMIDL(KE) * XEX	N		1	.821
1823	/0 70	VIGRAD(KE) = VVMIDL(KE) * YEY	N		1	822
1824	79 80 C	PIGND(14		1	623
1825	81	RJGRAD(KE) = RRMIDL(KE) * XEY	N		1	825
1826	82	UJGRAD (KE) = UUMIDL(KE) * XEY	N		i	826
1827	83	VJGRAD (KE) = VVMIDL(KE) * XEY	N		1	827
1828	84	PJGRAD (KE) = PPMIDL(KE) * XEY	N		1	828
1029	86 110	CONTINUE	F			1	829
1831	87 C	CONTINU	L			1	831
1832	88	DO 130	IE = NE1 , NE2			î	832
1833	89	KE =	IE - NE1 + 1			ĩ	833
1834	90 C	101				1	834
1836	91	12D = 4	JE(3, IE) JE(A, IE)			1	835
1837	93	IJE5 =	JE(5, IE)			1	837
1838	94 C					i	838
1839	95	IF(IJ	E5 . EQ . 0) THEN			ĩ	839
1840	96 C	DCDAD/				1	840
1842	97	RGRAD(13L, I = KGKAD(ISL, 1) $1SR = 1 = DCDAD(ISD = 1)$	+ KIGRAD	(NC) (VC)	1	841
1843	<u>99</u>	RGRAD	$ISL_2 = RGRAD(ISL_2)$) + R.1GRAD		1	042 843
1844	100	RGRAD (ISR, 2) = RGRAD(ISR , 2) - RJGRAD	(KE)	i	844
1845	101	UGRAD (ISL , 1) = UGRAD(ISL , 1)) + UIGRADI	(KE)	Ĩ	845
1846	102	UGRAD(ISR , 1) = UGRAD(ISR , 1)) - UIGRAD	(KE)	1	846
1847	103	UGRAD(ISL , 2 = UGRAD($ISL , 2ISP = 2 = \mu CPAD(ISP = 2$) + UJGRAD	(KE)	1	847
1849	105	VGRAD	$13R_{2} = 0GRAD(13R_{2})$) = 0.000000	KE J	14	848 840
1850	106	VGRAD(ISR (1) = VGRAD (ISR (1)) - VIGRAD	KE)	1	850
1851	107	VGRAD	ISL, 2) = VGRAD(ISL , 2) + VJGRAD	(KE)	ī	851
1852	108	VGRAD(ISR , 2) - VGRAD(ISR , 2) - VJGRAD	KE)	1	852
1853	109	PGRAD(ISL , 1) = PGRAD (ISL , 1)) + PIGRAD	KE)	1	853
1855	111	PGRAD	$ISK_{1} = PGRAD(1SK_{1})$	$+ P_1 GRAD$	KF)	10	855
1856	112	PGRAD(ISR, 2) = PGRAD(ISR , 2) - PJGRAD	KE)	1	856
1857	113 C					1	857
1858	114	ELSE				1	858
1059	115 L 116		1 121) - BCDAD(151 1		(KE)	10	859 060
1861	117	RGRAD	$ISL \cdot 2 = RGRAD(ISL \cdot 2)$	+ RJGRAD	KE	11	861
1862	118	UGRAD (ISL, 1) = UGRAD(ISL, 1) + UIGRAD	KE)	1	862
1863	119	UGRAD(ISL, 2) = UGRAD(ISL , 2)) + UJGRAD(KE)	1	863
1804	120	VGRAD(ISL = 1 = VGRAD($ISL = 1$) + VIGRAD(KE)	14	864
1866	122	PGRAD((15L, 2) = VGRAD(15L, 2)) + PIGRAD(10	000 866
1867	123	PGRAD(ISL , 2) = PGRAD(ISL , 2)) + PJGRAD	KE)	1	867
1868	124 C					10	868
1869	125	END IF				11	869
1871	127 130	CONTINUE				14	5/U 871
1872	128	NE1 = NE	2 + 1			1/	872
1873	129	NE2 = NE	E2 + NOFVEE(1NE + 1)			i	B73
1874	130 90	CONTINUE	5			11	B74
10/5	131 U 132	00 140	1 D			18	875
1877	132	DO 140 1	In = I + Z $IS = 1 + NS$			10	5/0 R77
1878	134	RGRAD(IS, IH) = RGRAD(IS . IH) * SAREA(IS)	18	878
1879	135	UGRAD (IS, IH) = UGRAD(IS, IH) * SAREA(15)	18	879
1880	136	VGRAD((S, IH) = VGRAD(IS, IH)) * SAREA(IS)	18	380
1001	13/	PGRAD((5, 1H) = PGRAD(1S, 1H)) * SAREA(15)	10	581
1883	130 140 139 C	CONTINUE	-			18	202
1884	140 C===		*************	****	******	10	
1885	141 C					18	385
1886	142 C	- CALL THE	MONOTONICITY LIMITER			18	386
100/	143 C	CALL 101				18	387
1889	145 C	UALL MUN	10 + 11			18	000
1890	146 C===	******		****	多年多年年代,在北方山谷市省省市市省	18	890
1891	147 C					it	391
1892	148 C					18	392

Thu Jul	1 14:1	15:55 1	993	gradhd.f			SUBROI	UTINE G	RADNO		page	27
1893	149	C	EXIT PO	INT FROM	SUBROUTINE			******			-	1893
1894	150	Ç										1894
1895	151	C										1895
1090	152	c	KETUKN									1890
19097	153	r r										1897
1899	155	č										1899
1900	156	U	END									1900
Thu Jul	1 14:1	15:55 1	993	gradhd.f			SUBRO	UTINE G	RADNS			
1901	1		SUBROUT	INE GRADN	s							1901
1902	ź	С		1112 01201	-							1902
1903	3	Č								1		1903
1904	4	С								I		-04
1905	5	Ç	GRADNS	COMPUTE	THE GRADIE	NT FOR	SECOND	ORDER	CALCULATIO	I I		1905
1906	6	C		USING THE	L INFURMAT	ION AS	SOCIATE	WITH T	HE BARICE	ITER I		1906
1008	9	C C		FDCF COM	NU IKIANGU Dhiting tug	ES FRU	COD TU	NO 21DF	AND ADDIVI			1907
1909	q	č		THE GRAD	IENT THEOR	EM TO	COMPLITE	THE GR	ADIENT	I I		1909
1910	10	č								ī		1910
1911	11	C			*********					I		1911
1912	12	C										1912
1913	13		include	cms	h00.h'							1913
1015	14		include	CNY	400 5'							1914
1915	15		include	cill rnh	s10.h'							1019
1917	17		include	cph	s20.h'							1917
1918	18	С										1918
1919	19	C====	*******	*******	********			******			-	1919
1920	20	C										1920
1921	21		REAL KK	CDAD(MOD)	,PPMIUL(ME	9P),00M	IUL (MEP),VVMIU	IL(MBP)			1921
1923	23		REAL R.I	GRAD(MRP)	P. IGRAD (ME	IP) ILIG	RAD (MRP	V.IGRA	D(MBP)			1923
1924	24		REAL RM	IAX (MBP), PI	MAX(MBP),L	IMAX (MB	P), VMAX	(MBP)				1924
1925	25		REAL RM	IIN(MBP),P	MIN(MBP), L	IMIN (MB	P),VMIN	(MBP)				1925
1926	26		REAL RL	EFTT(MBP)	,ULEFTT(ME	3P),VLE	FTT(M8P)),PLEFT	T(MBP)			1926
1927	2/		REAL RH	(1GH1(MBP)	,UKIGHI(ME 2) VOD(2)	POD(2)	GHT (MBP)),PRIGH	IT (MBP)			1927
1920	20		REAL RO		3). VOL(3).	POL (3)						1920
1930	30		REAL AA	(3,3),BB(3,4),B(3),	INDX(3),ATEMP	(3,3,3)	.8TEMP(3,4	1,3)		1930
1931	31		REAL AA	0(3,3),80	0(3,4)	•		,		• •		1931
1932	32	C										1932
1933	33 34	(=====		:유민산문도박유무함(B 문 부 부 권 또 문 원 문 비	****	******		*********			1933
1935	35	Č	BEGIN L	OOP OVER	ALL CELLS	IN THE	DOMAIN		********		-	1935
1936	36	С										1936
1937	37		DO 120	IH = 1, I	2							1937
1030 1920	30		DU 120	10 IU) 12 = 1 ' 1	כות ד 0							1030
1940	40		UGRADI	IS . IH)	= 0.							1940
1941	41		VGRAD(IS, IH)	= 0.							1941
1942	42		PGRAD(IS , IH)	= 0.							1942
1943	43	120	CONTINU	it.								1943 1044
1944	44 45	L	NF1 = 1									1945
1946	46		NE2 = N	OFVEE(1)							1946
1947	47		DO 90 I	NE = 1 , 1	NVEEE							1947
1948	48	ç										1948
1949 1050	49 50	с	TEILH H	TUKU UUAN	111152	******		*******			-	1949
1951	51	Ċ.	00 105	IE = NE1	. NE2							1951
1952	52		KE -	IE - NEI	+ 1							1952
1953	53	£										1953
1954	54		ISL =	JE(3 , 1	t)							1954
1066	55 66		1.1EE -	JE(4,1)	ני) 15 (1955
1957	57	С	1050 #	UL(J ,	,							1957
1958	58	•	IF(IJ	E5 . EQ .	0) THEN							1958
1959	59		-									1959
1960	60		rrmol	= XYMIDL(IE) * (HYDV(ISR , 1	1.		• •		1960
1065	62 62		• {}!!!!MT\!		IE) * (HTUV(15L, 1 15D 2))+	HTUV(ISL	, 1)		1965
1963	63			- XIIIDE() (HYDV	ISL 2	$(1)^{-1}$	HYDV(ISL	. 2)		1963
										/		
						page	27					

4

(

(

ſ

Thu Jul	1 14:15:55	1993 g	gradhd.f SUBROUTINE GRADNS	page	28
1964	64	VVMDL -	- XYMIDL(IE) * (HYDV(ISR , 3) -		1964
1905	00 66	DOMOI -	HYDV(ISL, 3) + HYDV(ISL, 3)		1965
1967	67	Friul -	$\frac{1}{100} + \frac{1}{100} + \frac{1}$		1900
1968	68 C				1968
1969	69	ELSE			1969
1970	70 C				1970
1972	72	UUMDI =	= HYDV(TSL, 2)		19/1
1973	73	VVMDL -	HYDV(ISL, 3)		1973
1974	74	PPMDL =	HYDV(ISL, 4)		1974
19/5	75 L 76				1975
1977	77 C				19/0
1978	78 [.]	RRMIDL(KE) = RRMDL		1978
1979	79	UUMIDL(KE) = UUMDL		1979
1081	80 81		KE) ≈ VVMDL		1980
1982	82 C	renoc((NC) - FFRUC		1981
1983	83 105	CONTINUE			1983
1984	84 C	00 110 1			1984
1986	85 86		IE = NEI , NEZ IE _ NEI + 1		1985
1987	87 C	NL -			1900
1988	88	XEXN = X	(E(1, IE) * XN(IE)		1988
1989	89 00 C	XEYN = X	(E(1, IE) * YN(IE)		1989
1991	90 C 91	RIGRAD	KF) = RRMIDI (KF) * YFYN		1990
1992	92	UIGRAD(KE) = UUMIDL(KE) * XEXN		1992
1993	93	VIGRAD(KE = VVMIDL(KE) * XEXN		1993
1994	94 05 C	PIGRAD(KE) = PPMIDL(KE) * XEXN		1994
1995	96 U	R.IGRAD(KF) = RRMIDI (KF) * XEVN		1995
1997	97	UJGRAD(KE) = UUMIDL(KE) * XEYN		1997
1998	98	VJGRAD(KE) = VVMIDL(KE) * XEYN		1998
2000	99 100 C	PJGRAD(KE) = PPMIDL(KE) * XEYN		1999
2001	101 110	CONTINUE			2000
2002	102 C				2002
2003	103	DO 130 I	E = NE1 , NE2		2003
2005	104 105 C		1C - NCI + 1		2005
2006	106	ISL = J	E(3, IE)		2006
2007	107	ISR = J	E(4, IE)		2007
2008	108 109 C	IJE5 = -	JE(5 , IE)		2008
2010	110	IF(IJE	5. EQ. 0) THEN		2009
2011	111 C				2011
2012	112	RGRAD(I	SL, I) = RGRAD(ISL, I) + RIGRAD(KE) SP = 1 = PCPAD(ISP = 1) = OICPAD(KE)		2012
2014	114	RGRAD(I	$SL_{2} = RGRAD(ISL_{2}) + RIGRAD(KE)$		2013
2015	115	RGRAD(I	SR , 2) = RGRAD(ISR , 2) - RJGRAD(KE)		2015
2016	116	UGRAD(I	SL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)		2016
2017	118	UGRAD(1)	SK + I = UGRAD(ISR + I) = UIGRAD(KE) SI = UGRAD(ISI = 2) + UIGRAD(KE)		2017
2019	119	UGRAD(I	SR = 2 = UGRAD(ISR = 2) - UJGRAD(KE)		2019
2020	120	VGRAD(I	SL, 1) = VGRAD(ISL, 1) + VIGRAD(KE)		2020
2021	121	VGRAD(I	SR , 1) = VGRAD(ISR , 1) - VIGRAD(KE) SL 2) - VGRAD(ISL 2) - VIGRAD(KE)		2021
2023	123	VGRAD(1	SR, 2 = VGRAD(ISL, 2) + VJGRAD(KE) SR, 2) = VGRAD(ISR, 2) = VJGDAD(KE)		2022
2024	124	PGRAD(1	SL = 1 + PGRAD(ISL = 1) + PIGRAD(KE)		2024
2025	125	PGRAD(I	SR , 1) - PGRAD(ISR , 1) - PIGRAD(KE)		2025
2020	120	PGRAD(I	SL = PGRAD(ISL = 2) + PJGRAD(KE)		2026
2028	128 C	rannu (13	3n + c = runnu(13n + c) - ruukAU(Rc)		2027
2029	129	ELSE			2029
2030	130 C	D00404			2030
2031	131	RCDADI 1	SL , L) * KGRAD(ISL , L) + RIGRAD(KE) SL 2) * RGRAD(ISL 2) + DICDAD(KE)		2031
2033	133	UGRAD(1	SL, $(1) = \text{NURAD}(15L, 2) + \text{NURAD}(KE)$		2033
2034	134	UGRAD(I	SL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)		2034
2035	135	VGRAD(1	SL, 1) \approx VGRAD(ISL, 1) + VIGRAD(KE)		2035
2030	137	PGRAD(1	SL, $2 = VORAD(1SL, 2) + VJGRAD(KE)$ SL, $1 = PGRAD(1SL, 1) + PIGRAD(KE)$		2030

Thu Jul	1 14:1	15:55	1993 gradhd.f	SUBROUTINE GRADNS	page	29
2038	138		PGRAD(ISL, 2) = PGRAD(ISL, 2) + PJGRAD(KE)		2038
2039	139	C				2039
2040	140	С				2040
2042	142	130	CONTINUE			2042
2043	143		NE1 = NE2 + 1 NE2 = NE2 + NOEVEE(INE +	1)		2043
2045	145	90	CONTINUE	• ,		2045
2046	146	C	DO 140 14 - 1 2			2046
2047	147		D0 140 IN = 1, 2 D0 140 IS = 1, NS			2047
2049	149		RGRAD(IS, IH) = RGRAD(IS, IH) * SAREA(IS)		2049
2050	150 151		UGRAD(15 , 1H) = UGRAD(VGRAD(15 , 1H) = VGRAD(15 , 14) * SAREA(15) 15 - 14) * SAREA(15)		2050
2052	152		PGRAD(IS , IH) = PGRAD(IS, IH) * SAREA(IS)		2052
2053	153	140	CONTINUE			2053
2054	154	C. (≈==	×=####################################	말날 해 해 보 보 방 밖에 가 다 가 다 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가		2054
2056	156	C		T CD		2056
2057	157	с	- CALL THE MUNUTUNICITY LIMI	1tK		2057
2059	159	÷	CALL MONOTN			2059
2060	160	C				2060
2062	162	C		******		2061
2063	163	Ç				2063
2065	104	C	- EXIT POINT FROM SUBROUTINE			2064
2066	166	č				2066
2067	167	r	RETURN			2067
2069	169	č				2069
2070	170	С				2070
2071	171		END			2071
Thu Jul	1 14:1	15:55	1993 gradhd.f	SUBROUTINE LUDCMP		
2072	1	~	SUBROUTINE LUDCMP(A,N,NP,I	NDX,D)		2072
2073	3	C	******			2073
2075	4	Č		i		2075
2076 2077	5	C C	PERFORM AN L U DECOMPOSIT	ION OF THE A MATRIX I		2076
2078	7	č		i		2078
2079	8	C	DADAMETED (NUAV 100 TINV 1	05.20)		2079
2080	10		DIMENSION A(NP.NP). INDX(N)	.UE-20) .VV(NMAX)		2080
2082	11		D=1.			2082
2083 2084	12		UU 12 1=1,N AAMAX=0.			2083 2084
2085	14		DO 11 J=1.N			2085
2086	15	11	IF (ABS(A(I,J)),GT.AAM	AX) AAMAX=ABS(A(I,J))		2086
2088	17	11	IF (AAMAX.EQ.O.) PAUSE '	Singular matrix.'		2088
2089	18	10	VV(Ì)=1./AAMAX	-		2089
2090	19 20	12	LUNTINUE DO 19 J=1.N			2090 2091
2092	21		IF (J.GT.1) THEN			2092
2093	22		D0 14 $I=1, J-1$			2093
2094	23		IF (I.GT.1)THEN			2094
2096	25		DO 13 K=1, I-1	(4.3)		2096
2097	20 27	13	SUM=SUM-A(I,K)*A CONTINUE	(1,0)		209/
2099	28		A(I, J) = SUM			2099
2100	29 30	11				2100
2102	31	1.4	ENDIF			2102
2103	32		AAMAX=0.			2103
2104	55 34		UU 10 1≈J,N SUM=A(I.J)			2104
2106	35		IF (J.GT.1)THEN			2106
2107	36 37		DO 15 K=1, J-1 SUM_SUM_A(3 V)*A(V	1)		2107 2108
C 1.00	J/		DOLEDOLEN(THV), W(V	, u j		2100

•

Î

Thu Jul	1 14:	15:55	1993 gradhd.f	SUBROUTINE LUDCMP	page	30
2109	38	15	CONTINUE			2100
2110	39		A(I,J)=SUM			2110
2111	40		ENDIF			2111
2112	41		DUM=VV(I)*ABS(SU	IM)		2112
2113	42		IF (DUM.GE.AAMAX	() THEN		2113
2114	45		1888-1 0000-1010			2114
2116	45		FNDIF			2115
2117	46	16	CONTINUE			2110
2118	47		IF (J.NE.IMAX)THEN			2118
2119	48		DO 17 K=1,N			2119
2120	49		DUM=A(IMAX,K)			2120
2121	50		A(IMAX,K)=A(J,	K)		2121
2122	51	17	A(J,K)=UUM			2122
2124	53	17	D=_D			2123
2125	54		VV(IMAX)=VV(.1)			2124
2126	55		ENDIF			2125
2127	56		INDX())=IMAX			2120
2128	57		IF(J.NE.N)THEN			2128
2129	58		IF(A(J,J).EQ.D.),	A(J,J)=TINY		2129
2130	59		DUM=1./A(J,J)			2130
2131	- 00 N		00 18 1=J+1,N A(1 1)=A(1 1)+1	DIN		2131
2133	62	18	CONTINUE	UUm		2132
2134	έŝ	10	ENDIF			2133
2135	64	19	CONTINUE			2134
2136	65		IF(A(N,N).EQ.O.)A(N,	N)=TINY		2136
2137	66		RETURN			2137
2138	67		END			2138
5138	69	с				2139
Thu Jul	1 14:	15:55	1993 gradhd.f	SUBROUTINE LUBKSB		
2140	1		SUBROUTINE LUBKSB(A.)	N.NP. INDX.B)		2140
2141	2		DIMENSION A(NP,NP), IN	NDX(N),B(N)		2140
2142	3		II=0			2142
2143	4		DO 12 I=1,N			2143
2144	5					2144
2145	7		SUM=6(LL) 8((1)-8(1)			2145
2147	8		IF (II NF A\THEN			2146
2148	ğ		DO 11 J=11. I-1			214/
2149	10		SUM=SUM-A(I.J)*	*B(J)		2140
2150	11	11	CONTINUE			2150
2151	12		ELSE IF (SUM.NE.O.)) THEN		2151
2152	13		II=I			2152
2133	14					2153
2154	15	12				2154
2156	17	12	DO 14 I = N 1 = 1			2155
2157	18		SUM=B(1)			2130 2157
2158	19		IF(I.LT.N)THEN			2158
2159	20		00 13 J=I+1.N			2159
2150	21		SUM-SUM-A(I,J)*	*B(J)		2160
2101	22	13	CONTINUE			2161
2162	23		LNU1F B(T)_SUM(A(T_T)			2162
2164	25	14	CONTINUE			2163
2165	26	• •	RETURN			2104 2165
2166	27		END			2166

Thu Jul	1 14:15:	55 199)? gradhd.f	SUBROUTINE FIRST	page	31
2167	1	ç	SUBROUTINE FIRST			2167
2168	2 C	•				2168
2169	3 C					2169
2170	4 U 5 C		FIRST IS USED TO	FIND THE LEFT AND RIGHT INTERFACE I		2170
2172	6 Č		QUANTITIES	TO FIRST ORDER WITHOUT USING EITHER THE I		2172
2173	7 C		GRADIENT (OR THE CHARACTERISTICS.		2173
21/4 2175	9 C			1 		2174
2176	10 C					2176
2177	11	1	include 'cmst	100.h'		2177
2170	12	í	include 'cint	.00.h'		2179
2180	14	i	include 'cphs	10.h'		2180
2181	15	i	inc)ude 'cphs	20.h'		2181
2182	10 C		*****	Ĵ\$₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		2183
2184	18 C					2184
2185	19	ε	10 110 IE = 1, N			2185
2100	20		ISL = JE(3, IE) ISR = JE(4, IE)	Ś		2180
2188	22		IJE5 = JE(5)	íE)		2188
2189	23		RL(IE) =	HYDV(ISL, 1)		2189
2190 2191	24		UL(IE) =	HYDV(ISL , Z) * XN(IE) HYDV(ISL , 3) * YN(IE)		2190
2192	26	•	VL(IE) = -	HYDV(ISL , 2) * YN(IE)		2192
2193	27	•		HYDV(ISL , 3) * XN(IE)		2193
2194	28 20 r		PL(IE) =	HYDV(ISL, 4)		2194
2195	30 C	{	EDGES IN THE COM	PUTATIONAL DOMAIN		2196
2197	31 C	-				2197
2198	32	1	(F(IJE5 . EQ . () THEN HVTV/ ISD 1)		2198
2200	34		UR(IE) =	HYDV(ISR, 2) * XN(IE)		2200
2201	35	•		HYDV(ISR , 3) * YN(IE)		2201
2202	36		VR(IE) = -	- HYDV(ISR, 2) * YN(IE)		2202
2203	38	•	PR(IF) =	$\frac{1}{1} \frac{1}{1} \frac{1}$		2203
2205	39 C					2205
2206	40 C	8	EDGES ON THE BOUN	IDARY WITH ENFORCED CONDITIONS		2206
2207	41 U 42 C		1.1F5 = 6 A	WALL WITH REFLECTING NORMAL COMPONENTS		2207
2209	43 Č		= 7 SL	IPERSONIC OUTFLOW ZERO NORMAL DERIVATIVE		2209
2210	44 C		= 8 II	FLOW WITH PRESPECIFIED VALUES (RIN, UIN, VIN, PIN)		2210
2211	45 U 46	f	SETEC LIES . FO), 8) THEN		2212
2213	47		RR(IE) =	RIN		2213
2214	48		UR(IE) =	UIN * XN(IE) + VIN * YN(IE)		2214
2215	49 50		VK(1E) = - PR(1F) =	PIN ~ TN(LE) + VIN " XN(LE)		2215
2217	51 C		(, , , , , , , , , , , , , , , , , , ,			2217
2218	52	ŧ	ELSEIF(IJE5 . EC	(7) THEN		2218
2219	53 54		KK(IE) = R(IF) =	KL(IE) UL(IE)		2219
2221	55		VR(IE) =	VL(IE)		2221
2222	56		PR(1E) =	PL(IE)		2222
2223	5/し 58	ŗ	ELSETE (LIES . EL) 6 . OR . L'ES EO . 5.) THEN		2223
2225	59	•	RR(IE) =	RL(IE)		2225
2226	60		UR(IE) = -	- UL(IE)		2226
2227	01 62		VK(1£) = PR(1F) =	VL(IL) PI(IF)		2228
2229	63 C		(a) 12 / -			2229
2230	64		END IF			2230
2231	05 66 r	110 (LUNITNUE			2231
2233	67 C	*****	, 월 2 월 2 월 2 월 2 월 2 월 2 월 2 월 2 월 2 월 2 월 2 월 2 월 2 월 2 월 2 월 2 월 2 월	***************************************		2233
2234	68 Č					2234
2235	69 C	[EXIT PUINT FROM S	DARKANI INF		2235
2237	71 C					2237
2238	72	1	RETURN			2238
2239	73 C					2239
664V	/ T L					~~~~~

Thu Jul	1 14:	15:55	1 993 g	radhd.f		SU	BROUTINE FI	RST		page	32
2241 2242	75 76	С	END								2241 2242
Thu Jui	1 14:	15:55	1993 g	radhd.f		SU	BROUTINE FC	HART			
2243 2244	1 2	с	SUBROUTI	NE FCHART							2243 2244
2245 2246	3	C C							I I		2245 2246
2247 2248 2248	5	C C	FCHART Charact	ERISTICS.	PROJECTED	INTERFA	CE VALUES A	CCORDING TO			2247
2249 2250 2251	7 8 9	C							I		2249
2252	10	U	include	'cmsh00 'chvd00	.h' .h'						2252
2254	12		include	cint00	.h'						2254
2256	14 14	r	include	cphs20	.h'						2256
2258	16	C===	*******				**********	*****	****		2258
2260	18	C	REAL ZZL	EFT(MBP), ZO	LEFT(MBP), PICT(MBP)	, ZMLEFT (MBP)				2260
2262	20		REAL UPL	EFT(MBP), UM	LEFT(MBP)	,URLEFT(MBP), SQGMTL	(MBP)			2262
2263	22		REAL UVL	EFT(MBP), UV	RIGT(MBP)	.CNLEFT(MBP), SUGHIR MBP), CNRIGT	(MBP)			2203
2205	23 24	~	REAL REAL	GHT (MBP), UL	IGHT(MBP)	,VLEFII(,VRIGHT(MBP),PLEFTT M8P),PRIGHT	(MBP)			2265
2268	25 26	ι (===	********	*********		******	*****	********	***		2267
2269	27 28	C	NE1 = 1								2269
2271 2272	29 30		$\frac{NE2 = NC}{DO 90 IN}$	IFVEE(I) IE = I , NVEI	EE						2271
2273 2274	31 32	С	DO 110 I	E = NE1 , N	E2						2273 2274
2275 2276	33 34	С	KE •	IE - NE1 +	1						2275
2277 2278	35 36		ISL = J ISR = J	E(3, IE) E(4, IE)							2277 2278
2279 2280	37 38	С	GAMAL (KE) = HYDV	(ISL , 5)					2279 2280
2281 2282	39 40		CNLFTS CNLFT =	= GAMAL(KE SQRT(CNLF) * HYDV TS)	(ISL .	4) / HYDV(ISL , 1)			2281 2282
2283 2284	41 42		UVLFT =	HYDV(ISL HYDV(ISL	, 2) * X) , 3) * Y	XN(IE) YN(IE)	+				2283
2285 2286	43 44	C	IJE5 =	JE(5, IE)						2285 2286
2287 2288	45 46	С	IF(IJE	5.EQ.0) THEN						2287 2288
2289 2290	47 48		GAMAR(CNRGTS	KE) = HYDV = GAMAR(KE	(ISR , 5) * HYDV) (ISR,	4) / HYDV(ISR , 1)			2289 2290
2291 2292	49 50	C	CNRGT -	SORT (CNRG	rs)						2291 2292
2293 2294	51 52		UVRGT -	HYDV(1SR HYDV(1SR	. 2) * X) . 3) * Y	XN(IE) YN(IE)	*				2293 2294
2295 2296	53 54	С	FLSE			,,					2295
2297 2298	55 5ô	С	GAMAR	KF) = GAM	AL(KF)						2297
2299 2300	57 58		CNRGT	- CNEFT = UVLFT							2299
2301	59	C									2301
2303	61 62	C	CNIEF	T(KF) = C	21 F T						2303
2305	63 64	c	CNRIG	iT(KE) = CI	NRGT						2305
2307	55	L	UVLEF	T(KE) ~ U	VLFT						2307
2309	6/	С,,,		i)(∧() ≈ U	1101						2309
2311	69	C C									2310

Thu Jul 1 14:15:55 1993 SUBROUTINE FCHART gradhd.f page DO 130 KE = 1 , NOFVEE(INE) C ZZLEFT(KE) = .5 * (UVLEFT(KE) + CNLEFT(KE)) * DTT ZZRIGT(KE) = - .5 * (UVRIGT(KE) - CNRIGT(KE)) * DTT С 130 CONTINUE С С CHARACTERISTICS LOCATIONS C DO 140 KE = 1 , NOFVEE(INE) C IF($ZZLEFT(KE) \cdot LT \cdot 0 \cdot) ZZLEFT(KE) = 0$. IF (ZZRIGT (KE) . LT . 0.) ZZRIGT (KE) = 0.С 140 CONTINUE C DO 150 KE = 1 , NOFVEE(INE) C С ZOLEFT(KE) = .5 * UVLEFT(KE) * DTT ZORIGT(KE) = .5 * UVRIGT(KE) * DTT ZPRIGT(KE) = .5 * (UVRIGT(KE) + CNRIGT(KE)) * DTT ZMLEFT(KE) = .5 * (UVLEFT(KE) - CNLEFT(KE)) * DTT Č C С C C C 150 CONTINUE С FIRST GUESS LEFT AND RIGHT VARIABLES. LINEAR INTERPOLATON С Ĉ DO 160 IE = NE1 , NE2 KE = IE - NEI + IC ISL = JE(3, IE)ISR = JE(4, IE)C XX = XMIDL(IE) - ZZLEFT(KE) * XXN(IE) - XS(1, ISL)YY = YMIDL(IE) - ZZLEFT(KE) + YYN(IE) - XS(2, ISL)С HRRL = HYDV(ISL , 1) + RGRAD(ISL , 1) * XX + RGRAD(ISL , 2) * YY HUUL = HYDV(ISL , 2) + UGRAD(ISL , 1) * XX + UGRAD(ISL , 2) * YY HVVL = HYDV(ISL , 3) + VGRAD(ISL , 1) * XX + VGRAD(ISL , 2) * YY HPPL = HYDV(ISL , 4) + PGRAD(ISL , 1) * XX + PGRAD(ISL , 2) * YY С GMTLFT = GAMAL(KE) * HRRL * HPPL SOGMTL(KE) = SORT(GMTLFT)C С IIMLFT = 0. UMLFT = 0. IF(UVLEFT(KE) - CNLEFT(KE).GT.0.) THEN XX = (ZHLEFT(KE) - ZZLEFT(KE)) * XXN(IE) YY = (ZHLEFT(KE) - ZZLEFT(KE)) * YYN(IE) UUU = UGRAD(ISL, 1) * XX + UGRAD(ISL, 2) * YY VVV = VGRAD(ISL, 1) * XX + VGRAD(ISL, 2) * YY UVU = UUU * XXN(IE) + VVV * YYN(IE) PPP = PGRAD(ISL, 1) * XX + PGRAD(ISL, 2) * YY UHLFT = .5 * (UVU - PPP / SQGMTL(KE)) / SQGMTL(KE) С С С С С C С C C END IF C С URIFT = 0.IF(UVLEFT(KE) . GT . O.) THEN XX = (ZOLEFT(KE) - ZZLEFT(KE)) * XXN(IE) YY = (ZOLEFT(KE) - ZZLEFT(KE)) * YYN(IE) PPP - PGRAD(ISL , 1) * XX + PGRAD(ISL , 2) * YY С С С С XX = XMIDL(IE) - ZOLEFT(KE) * XXN(IE) - XS(1, ISL)YY = YMIDL(IE) - ZOLEFT(KE) * YYN(IE) - XS(2, ISL) С С RRR = HYDV(ISL , 1) + RGRAD(ISL , 1) * XX + RGRAD(ISL , 2) * YY C С C URLFT - PPP / GMTLFT + 1. / HRRL - 1. / RRRR С END IF C IJE5 = JE(5, IE)IF(IJE5.EQ.O) THEN С

Thu Jul	1 14:15:55	1993 gradhd.f	SUBROUTINE FCHART	page 3
2386	144	XX = XMIDL(IE) +	→ ZZRIGT(KE) * XXN(IE) - XS(1 . ISR)	238
2387	145	YY = YMIDL(IE)	- ZZRIGT(KE) * YYN(IE) - XS(2 , ISR)	238
2388	146 C	. ,		238
2389	147	HRRR = HYDV(ISR	, 1)+	238
2390	148	RGRAD(IS	(1, 1) + XX + RGRAD(ISR, 2) + YY	239
2391	149	HUUR = HYDV(1SR)		239
2392	150	101 JUNNEU - 01/101 - 021 JUNNEU - 021	$(1)^{n}$ $(1)^{n}$ $(1)^{n}$ $(1)^{n}$ $(1)^{n}$ $(1)^{n}$ $(1)^{n}$ $(1)^{n}$	239
2393	152	VGRAD(ISI	(1) + XX + VCRAD(ISR 2) + YY	239
2395	153	HPPR = HYDV(ISR)	. 4) +	239
2396	154	. PGRAD(ISI	(, 1) * XX + PGRAD(ISR , 2) * YY	239
2397	155 C		• • • • •	239
2398	156	GMTRGT = GAMAR(KE)) * HRRR * HPPR	239
2399	157	SUGMIR(KE) = SU	(I(GMIRGI)	239
2400	159 C	UPRGT = 0.		240
2402	160 Č	IF(UVRIGT(KE)	+ CNRIGT(KE) . LT . O.) THEN	240
2403	161 C	XX = (ZZRÌGT(KI	E) - ZPRIGT(KE)) * XXN(IE)	240
2404	162 C	YY = (ZZRIGI (KI	:) - ZPRIGT(KE)) * YYN(IE)	240
2405	163 C	UUU = UGRAD(ISR)	(1) = XX + UGRAD(1SR, 2) = YY	240
2400	165 C	AAA = AQVAD(12V)	F + VVV + VVV(TE)	240
2408	166 Č	PPP = PGRAD(ISR)	(1) * XX + PGRAD(ISR , 2) * YY	240
2409	167 C	UPRGT =5 * (UVU + PPP / SQGMTR(KE)) / SQGMTR(KE)	240
2410	168 C	END IF		241
2411	169 C			241
2412	170 C	$\frac{UKKGI = U}{IC}$		2412
2413	172 C	XX = (77RIGT(K))	(1, 0, 1) inc. (1, 0) inc. inc. (1, 0) inc. (1, 0)	241
2415	173 C	YY = (ZZRIGT(KI	\rightarrow ZORIGT(KE)) * YYN(IE)	241
2416	174 C	PPP = PGRAD(ISR	, 1) * XX + PGRAD(ISR , 2) * YY	241
2417	175 C	XX = XMIDL(IE)	+ ZORIGT(KE) * XXN(IE) - XS(1 , ISR)	241
2418	176 C	YY = YMIDL(IE)	+ $2ORIGT(RE) * YYN(IE) - XS(2, ISR)$	241
2419	178 C	RCRAD(ISK	, 1) + XX + PCPAD(TSP 2) + VV	291
2421	179 C	URRGT = PPP / GMI	(RGT + 1. / HRRR - 1. / RRRR	242
2422	180 C	END IF		242
2423	181 C			242
2424	182	ELSE		242
2425	183 C	1000 _ 1001		242
2420	185	HHIR = HHIH		742
2428	186	HVVR = HVVL		242
2429	187	HPPR = HPPL		242
2430	188 C			243
2431	189 L	UPRGI = UMLFI HDDCT = UDIET		243
2432	191 C	UNNUT - UNLIT		243
2434	192	END IF		243
2435	193 C			243
2436	194	RRL(KE) = HRRL	T VIN TO A LINE A VAL TO A	243
243/ 2439	106 132	VUL(KE) = HUUL	* ΛΠ(ΙΕ) + ΗVVL * ΥΝ(ΙΕ) * ΥΝ(ΙΕ) + ΗVVI * ΥΝ/ ΙΕ \	243
2439	197	PPL(KE) = HPPI	INT TE Y & HAAF VILLE Y	2430
2440	198 C	the process of the second s		2440
2441	199	RRR(KE) = HRRR		244
2442	200	UUR(KE) = HUUR	* XN(IE) + HVVR * YN(IE)	244
2443 2888	201	DDD(KE) = - HUUK	TN(IE) + HVVK * XN(IE)	294. 284
2445	203 C	$\frac{1}{1} = \frac{1}{1} = \frac{1}$		244
2446	204 C	UMLEFT(KE) = UML	FT	244
2447	205 C	URLEFT(KE) = URL	FT	244
2448	206 C			2448
2449 2450	207 C	UPRIGIC KC) = UPP	61	2443
2451	209 C	UNITAL (NC) - UNI		245
2452	210 16	O CONTINUE		245
2453	211 C			245
2454	212 C	FINAL VALUES FOR RIGHT	AND LEFT STATES	2454
2455	213 C	NO 100 VE 1 W		245
2430	214 U	UU IOU KE * I , RU	TYEL INE)	2400
2458	216 C	GMTLFT = SQGMTL(KE) * SQGMTL(KE)	2458
2459	217 C	GMTRGT = SOGMTR(KE) * SQGMTR(KE)	2459

34

Thu Jul	1 14:15	:55	1993	gradhd.f	SUBROUTINE FCHART	page	35
2460	218	C		KE) = 1 / (1 / 001 (KE) _ (11MLEET(KE) +		2460
2462	220	č			URLEFT(KE)))		2462
2463	221	ç	UUL(KE) = UUL(KE) - SQGMTL(KE) * UMLEFT(KE)		2463
2464	222	C C	PPC(KE = PPL(KE) + GMILFI'	· UMLEFI(KE)		2404
2466	224	č	RRR(KE) = 1. / (1. / RRR(KE) - (UPRIGT(KE) +		2466
2467	225	ç	·	VE A HUD (VE A . COCHTR (URRIGT(KE)))		2467
2408	220	C C	PPR(KE) = $PPR(KE)$ + $SUGRIR(KE)$	VPRIGT(KE)		2400
2470	228	č					2470
2471	229	C 18	O CONTI	NUE			2471
2473	231	L	DO 200	IE = NE1 , NE2			2473
2474	232	•	KE	= IE - NE1 + 1			2474
2475 2476	233 234	¢	tsi =	JE(3 JE)			24/5
2477	235		ISR =	JE(4, IE)			2477
2478	236	C					2478
24/9 2480	237	C	1JE5 -	= JE(5 , IC)			24/9
2481	239	č	- PROJEC	TED VALUES ON THE LEFT SIDE	OF THE INTERFACE		2481
2482	240	С	01 (1	r) - 001/ KF)			2482
2483	241 242			E = KRL(RE)			2403
2485	243		VL(I	E = VVL(KE)			2485
2486	244	c	PL(II	E = PPL(KE)			2486
2488	245	ι C	- PROJEC	TED VALUES ON THE RIGHT SIDE	OF THE INTERFACE		248/
2489	247	Ċ					2489
2490	248	C	- EDGES	IN THE COMPUTATIONAL DOMAIN	**============================		2490
2492	250	L	IF(IJ	E5 . EQ . O) THEN			2492
2493	251		RR(IE) = RRR(KE)			2493
2494 2495	252		UR(VP(IE = UUR(KE)			2494
2496	254		PR(IE) - PPR(KE)			2496
2497	255	ç		ON THE DOUBDARY			2497
2498	250 257	ι C	- EDGES (UN THE BOUNDART			2490
2500	258		ELSEIF	(1JE5 . EQ . 8) THEN			2500
2501	259		RR($\frac{\text{IE}}{\text{IE}} = \frac{\text{RIN}}{16} + \frac{\text{RIN}}{16} + \frac{1}{16} + 1$	(IN * YN/ IC)		2501
2502	261		VR(IE = - UIN + YN(IE) + 1	/IN * XN(IE)		2503
2504	262		PR (IE) = PIN			2504
2505	263 264	С	FISETE	(THES FO 7) THEN			2505
2507	265		RR(IE = RL(IE)			2507
2508	266		UR (IE = UL(IE)			2508
2509	267		PRÍ	$\frac{1E}{1E} = \frac{1E}{1E}$			2509
2511	269	C					2511
2512	270		ELSEIF	(IJE5 . EQ . 6 . OR . IJE5	. EQ . 5) THEN		2512
2515	272		UR(IE = - UL(IE)			2514
2515	273		VR(IE) = VL(ÌE)			2515
2516	274	r	PR(1E) * PL(IE)			2516
2518	276	L	END IF				2518
2519	277	200	CONTIN	UE			2519
2520	279	L	NE1 - 1	NE2 + 1			2521
2522	280		NE2 - 1	NE2 + NOFVEE(INE + 1)			2522
2523	281	90 C	CONTIN	ŲE			2523
2525	283	ւ (≠≈≠#	***	******	·****		2525
2526	284	C					2526
2527 2528	285 286	C	- EXIT P	DINI EKOM ZORKODIINE			2527
2529	287	č					2529
2530	288	c	RETURN				2530
2531 2532	289 290	C C					2531
2533	291	č					2533

Thu Jul	1 14:15:55	1993 gradhd	.f	SUBROUTINE	FCHART	page	36
2534	292	END					2534
Thu Jul	1 14:15:55	1993 gradhd	.f	SUBROUTINE	PRLCTN		
2535 2536 2537	1 2 C 3 C	SUBROUTINE PR	LCTN]	ſ	2535 2536 2537
2538 2539 2540 2541	4 C 5 C 6 C 7 C	PRLCTN INITI DOMAI	ALIZE PARTICLES N FOR THE FIRST	LOCATION IN THE TIME	COMPUTATION		2538 2539 2540 2541
2542 2543 2544 2544	8 C 9 C 10	include '					2542 2543 2544
2545 2546 2547 2548	11 12 13 14	include ' include ' include '	cint00.h' cphs10.h' cphs20.h'				2545 2546 2547 2548
2549 2550 2551	15 C 16 C=== 17 C	*****	੶ ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	₣₮दਲ਼±₽₽₽₽₽₽₽₽₽₽₽	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2549 2550 2551
2552 2553 2554 2555	18 19 20 C 21	IPT = 0 DO 110 IPRTCL	= 1 , NPT				2552 2553 2554 2555
2556 2557 2558	22 23 24 C	DO 130 IS = 1 IF(IDUM . EQ	, NS . 0) THEN				2556 2557 2558
2559 2560 2561	25 26 27	IV1 = JS(1 , IV2 = JS(2 , IV3 = JS(3 ,	15) 15) 15)				2559 2560 2561
2562 2563 2564 2565	28 C 29 30 31	X1 = XV(1), Y1 = XV(2), X2 = XV(1)	IV1) IV1) IV2)				2562 2563 2564 2565
2566 2567 2568	32 33 C 34	$Y_2 = XV(2)$, XX = (X2 - X)	IV2)				2566 2567 2568
2569 2570 2571	35 36 C 37	XXP = (XPRTC) $YY = (Y2 - Y)$	L(1, IPRTCL)	- X1)			2569 2570 2571
2572 2573 2574 2575	38 39 C 40 41 C	A1 = XX * YYP	- YY * XXP	- 11)			2573 2574 2575
2576 2577 2578	42 43 44	X1 = XV(1), Y1 = XV(2), X2 = XV(1),	IV2) IV2) IV3)				2576 2577 2578
2579 2580 2581 2582	45 46 C 47 48	Y2 = XV(2), $XX = (X2 - X)$ $XYP = (X2 - X)$	IV3) 1) 1 (1 IPRTC!)	- *1)			2579 2580 2581 2582
2583 2584 2585	49 C 50 51	YY = (Y2 - Y YYP = (XPRTC	1) L(2, IPRTCL)	- Y1)			2583 2584 2585
2586 2587 2588	52 C 53 54 C	A2 = XX * YYP	- YY * XXP				2586 2587 2588
2589 2590 2591 2592	55 56 57 58	X1 = XV(1), Y1 = XV(2), X2 = XV(1), Y2 = XV(2).	IV3) IV3) IV1) IV1)				2589 2590 2591 2592
2593 2594 2595	59 C 60 61	XX = (X2 - X XXP = (XPRTC	1) L(1, IPRTCL)	- X1)			2593 2594 2595
2596 2597 2598 2599	62 C 63 64 65 C	YY = (Y2 - Y YYP = (XPRTC	1) L(2 , IPRTCL)	- Y1)			2590 2597 2598 2599
2600 2601 2602	66 67 C 68	A3 = XX * YYP IA1 = INT(SI	- YY * XXP GN(1.1 , A1))			2600 2601 2602
2603 2604	69 70	IA2 - INT(SI IA3 - INT(SI	GN(1.1 , A2) GN(1.1 , A3)))			2603 2604

Thu Jul	1 14:3	15:55	1993	gradho	l.f	SUB	ROUTINE	PRLCTN		page	37
2605 2606	71 72	с	IAJ	= IA1 + 1	A2 + 1A3						2605 2606
2607	73		IF(IAJ . EQ	. 3) THEN						2607
2608	74 75		IPT LIKP	= 1PT + 1 PT(1PT	- 15						2508
2610	76		XPRT	CL(1,	PT) = XPRTCL(1, IPRTC	Ł)				2610
2611	77	~	XPRT	CL(2,	PT) = XPRTCL(2 . IPRTC	L)	101			2611
2612	/8 79	ί	I NY I DUM	NU ", API [= 1	(ICL(1,1PI),XPK	100(2,191)	,136261(181)			2612
2614	80		END	IF							2614
2615	81	r	END	IF							2615
2617	83	130	CONT	INUE			•				2617
2618	84	110	CONT	INUE							2618
2619	85 86	С	יאות PR	* 121 INT *.	NPT. (XPRTCL (1.	IPT).XPRTC	I (2. IPT)	. IPT=1.NPT)			2620
2621	87	Č	WR	ITE (10.) NPT. (XPRTCL	(1, IPT), XP	RTCL(2,I	PT), IPT=1, NF	יד)		2621
2622	88 90	C									2622
2624	90	č	- EXIT	POINT FI	OM SUBROUTINE						2624
2625	91	ç									2625
2620	92	ι	RETU	IRN							2627
2628	94	C									2628
2629	95 06	C									2629
2631	97	U	END								2631
Thu Jul	1 14:	15:55	1993	gradhe	i.f	SUB	ROUTINE	PRPTHC			
2632	1		SUBR	OUTINE P	RPTHC						2632
2633	2	Ç									2633
2634	3	C		~~~~~~					[T		2634
2636	5	č	PRP	THC TRACI	PARTICLES PAT	H IN THE C	OMPUTATI	ON DOMAIN	I		2636
2637	6	Ç							Į		2637
2638	8	C							·===]		2639
2640	9	-	incl	ude	cmsh00.h'						2640
2641 2642	10		incl	ude	chyd00.h'						2641
2643	12		incl	ude	cphs10.h'						2643
2644 2645	13	c	incl	ude	cphs20.h'						2644
2645	14	L	DO 1	10 IPRTC	= 1 , NPT						2645
2647	16		KFIN	D = 0							2647
2648 2649	1/	C	D0 1	10 TK =	3						2648
2650	19		KFIN	$\mathbf{D} = 0$, .						2650
2651	20		IJE5	= 0	100701						2651
2653	22		XP =	XPRTCL(1, IPRTCL)						2653
2654	23	~	YP =	XPRTCL(2 . IPRTCL)						2654
2055	24 25	C	00 1	20 1.1 =	. 3						2000 2656
2657	26		IE =	JS(IJ	3, IS)						2657
2658	27	С	16/	IF OT	() THEN						2658
2660	29	С	1.(1L . UI	<i>,</i> inca						2660
2661	30		IV1	= JE(1	IE)						2661
2663	31 32	C	172	= JE(2	, IE)						2663
2664	33	•	X1 =	XV(1 .	IVI)						2664
2665 2665	34		Y1 =	XV(2,	IV1) IV2)						2665
2657	36		Y2 =	XV(2.	IV2)						2667
2668	37	C		1 40	· ·						2668
2659 2670	38 39		XX = XXP	= (XZ =) = (XP =	X1)						2009 2670
2671	40	С		1	··· · /						2671
2672	41		YY =	(Y2 - ` _ (YD	(1)						2672
2674	42	С	(17	- (18 -	• • /						2674
2675	44		A -	ХХ * УУР	- YY * XXP						2675

Thu Jul	1 14:	15:55	1993	gradhd.f	SUBROUTINE PRPTHC	page	38
2676	45		IF(A	. LT . 0.) THEN		2676
2677	46		IJKPRT	(IPRTCL)	= JE(4, IE)		2677
2678	47		IJE5 -	JE(5 . 1	E)		2678
2079	48		XREV =	1. / XE(1 , IE)		2679
2681	50		FND TF	= KF180 +	1		2680
2682	51	С					2682
2683	52	_	ELSE				2683
2684	53	C	****	15 (0			2684
2005	54 55		1V1 = IV2 =	JE(2 , -			2685
2687	56	С		011 + , -			2687
2688	57		X1 = X	V(1 , IV1			2688
2689	58		Y1 = X	V(2, IV1			2689
2691	- 59 60		∧∠ = ∧ ¥2 = ¥	V(1 , 1V2 V(2 - TV2			2690
2692	61	С	12 - 1	•(2 , 1•2)		2091
2693	62		XX = (X2 - X1)			2693
2694	63	c	XXP =	(XP - XI)		2694
2695	65	L	YY - (¥2 - ¥1)			2695
2697	66		YYP =	(YP - Y1)		2090
2698	67	Ç		•	, ,		2698
2699	68		A = XX	* YYP - Y	Y * XXP		2699
2700	70		LIF(A	. LI . U. (IDRTCI \) (HEN - 16(3		2700
2702	71		IJE5 =	JE(5	IE)		2702
2703	72		XREV =	1. / XE(1, - IE)		2703
2704	73		KFIND	= KFIND +	1		2704
2705	74		END IF				2705
2707	76	C					2700
2708	77	120	CONTIN	JE			2708
2709	78	C	10/ 10				2709
2711	80		IF (KF	INU . 61 . (1007(1)	U. AND. IJES. NE. U) THEN		2710
2712	81	C			- 15		2712
2713	82		AA = Xi	2 - X1			2713
2714	83		BB = Y	2 - Y1			2714
2715	85			2 - XI			2715
2717	86		TREV -	(CC * AA	+ 0D * 8B) * XREV * XREV		2710
2718	87		IF(BB	. NE . O.) THEN		2718
2/19	88 80			= X1 + TR			2719
2721	90		FND IF	(1, IPK)	$(L) = XP + I \cdot I + (XPRICP - XP)$		2720
2722	91		IF(AA	. NE . 0.) THEN		2722
2723	92		YPRTCP	= Y1 + TR	EV * 88		2723
2725	93 Q4			2 , IPRI	(L) = YP + I.I + (YPRTCP - YP)		2724
2726	95	С					2725
2727	96		END IF				2727
2728	97	_110	CONTINU	ŀΕ			2728
2730	99 99	L	DO 180	IPRTCI =	NPT		2729
2731	100	С	00 100	1) KIGE			2731
2732	101		IS = IJ	KPRT(1PR	ICL)		2732
2735	102		UPRTCL	= HYDV(IS	5 , 2)		2733
2735	104	С	VPRICE	≈ πιυν(I.	\$, J)		2/34 2735
2736	105	-	XPRTCL(1 , IPRTC	CL) = XPRTCL(1, IPRTCL) + UPRTCL * DTT		2736
2737	106		XPRTCL(2, IPRTO	CL) = XPRTCL(2, IPRTCL) + VPRTCL * DTT		2737
2739	108		WPRICL(1, 1PRIC 2 10010	.L) ≈ UPRICL `L) = VPRTCI		2738
2740	109	С	maicel	e, irdi	st / - Vrnitt		274N
2741	110		DO 180	IK = 1 , 3			2741
2/42	111		IS = []	KPRT(IPR)			2742
2744	112		YP = XP	RTCI (2	IPRICE)		2/43 2788
2745	114		KFIND -	0	······································		2745
2746	115	r	IJE5 •	0			2746
2748	110	ι	00 170	1.1 = 1 3			2747 2789
2749	118		IE = JS	(IJ + 3)	IS)		2749

Thu Jul	1 14:15	5:55	1993	gradhd.f		SUBROUTINE	PRPTHC	page	39
2750	119	С							2750
2751	120		IF(IE	. GT . 0) TH	EN				2751
2752	121	C	111 -	15() 15)					2752
2754	123		IV2 =	JE(2, IE)					2754
2755	124	C							2755
2755	125		X1 = X	V(1, IV1)					2756
2758	120		$X_{2}^{T} = X_{1}^{T}$	V(2, 1V1) V(1, 1V2)					2758
2759	128	_	Y2 = X	V(2, IV2)					2759
2760	129	С	vv /	V2 V1)					2760
2762	130		XXP = ((XP - X1)					2762
2763	132	С							2763
2764	133		YY = {	$(Y_2 - Y_1)$					2764
2766	134	С	116 =	(12 - 11)					2766
2767	136		A = XX	* YYP - YY *)	(XP				2767
2768	137		IF(A	. LT . 0.) TH	IEN E(A TE)				2768
2770	139		IJE5 =	JE(5 . IE)	-(4,12)				2770
2771	140		XREV =	1. / XE(1 , 1	IE)				2771
2772	141		KFIND	= KFIND + 1					2772
2774	142	С	CAU IT						2774
2775	144	-	ELSE						2775
2776	145	С	191 -	15(2) 15)					2776
2778	140		1V1 = 0 1V2 = 0	JE(2, -IE)					2778
2779	148	С							2779
2780	149		X1 = X1	V(1, IVI)					2780
2782	150		X2 = X1	V(2, IV1)					2782
2783	152		Y2 = X1	V(2, IV2)			•		2783
2784	153	С	~~ ~	VO V1 \					2784
2786	154			X2 - X1) (XP - X1)					2785
2787	156	C		(,					2787
2788	157		YY = (Y2 - Y1)					2788
2790	159	C	112 = 1	(18 - 11)					2789
2791	160	-	A = XX	* YYP - YY * X	XP				2791
2792	161		IF(A .	LT. 0.) TH					2792
2794	162		IJES =	JE(5 - IE)	(3, - IE)				2793
2795	164		XREV -	1. / XE(1 , -	IE)				2795
2796	165		KFIND -	= KFIND + 1					2796
2798	167	С	CAD IF						2798
2799	168	_	END IF						2799
2800	169	170 c	CONTINU	JE					2800
2802	170	L	IF(KF)	IND . GT . 0 .	AND JJE5	NF . 0) TH	FN		2801
2803	172	_	IJKPRT	(IPRTCL) = IS	,				2803
2804	173	C	ΔΔ - V2	2 - XI					2804
2806	175		BB = Y2	- XI - YI					2805
2807	176		CC = XF	- X1					2807
2808	177		00 = YF	ν - Υ1 / (Γ) * ΔΔ → ΠΠ	(* PD) * VDC	4 * YOCU			2808
2810	179		IF(BB	. NE . 0.) TH	IEN	V ^ XKEV			2810
2811	180		XPRTCP	= X1 + TREV *	AA				2811
2812	181		KPRTCL	(I, IPRTCL)	= XP + 1.1 *	(XPRTCP -	XP)		2812
2814	183		IF(AA	. NE . 0.) TH	EN				2814
2815	184		YPRTCP	= Y1 + TREV *	88	/			2815
2010 2817	185		FND TE	(2, IPRICL)	= YP + 1.1 * ((YPRTCP -	YP)		2816
2818	187	С	200 11						2818
2819	188	100	END IF	15					2819
2821	100 (С 190	CUNTINU	JC.					2820
2822	191	Ĉ.							2822
2823	192	C	- EXIT PC	INT FROM SUBRO	UTINE		********		2823

Thu Jul	1 14:	15:55	1993	gradhd.f	SUBROUTINE PRPTHC	page	40
2824	193	С					2024
2825	194	Ċ					2024
2826	195	-	RETURN				2025
2827	196	С					2020
2828	197	č					2827
2829	108	č					2828
2830	100	0	END				2829
2030	133		C NU				2830

Thu Jul 1 14:16:08 1993 adaphd.f

•

•

0

۲

0

	#	routine	page
	1	VERCEN	1
	2	DISECT	. 4
	3	DYNPTN	12
	4	DYYPTN	21
	5	INTETN	30
	6	DEIPTNT	40
	ž	RELAXY	40
	8	I API AC	47
	ğ	RECNC	40
	10	FOS	53
	11	LIFTOR	56
	••		50
Thu Jul	1 14:16	5:08 1993	adaphd.f
			-
	#	routine	page
	#	routine DELPINT	page 40
	# 1 2	routine DELPINT DISECT	page 40 4
	# 1 2 3	routine DELPINI DISECI DYNPIN	page 40 12
	# 1 2 3 4	routine DELPINI DISECI DYNPIN DYYPIN	page 40 12 21
	# 2 3 4 5	routine DELPINT DISECT DYNPIN DYYPIN EOS	page 40 4 12 21 53
	# 1 2 3 4 5 6	routine DELPINT DISECT DYNPIN DYYPIN EOS INTPIN	page 40 4 12 21 53 30
	# 1 2 3 4 5 6 7	routine DELPINT DISECT DYNPIN OYYPIN EOS INTPIN LAPLAC	page 40 4 12 21 53 30 47
	# 12 34 56 78	routine DELPINT DISECT DYNPIN OYYPIN EOS INTPIN LAPLAC LIFIDR	page 40 4 12 21 53 30 47 56
	# 1 2 3 4 5 6 7 8 9	routine DELPINT DISECT DYNPIN OYYPIN EOS INTPIN LAPLAC LIFTDR RECNC	page 40 4 12 21 53 30 47 56 49
	# 1 2 3 4 5 6 7 8 9 10	routine DELPINT DISECT DYNPIN OYYPIN EOS INTPIN LAPLAC LIFTDR RECNC RELAXY	page 40 4 12 21 53 30 47 56 49 42
	# 1 2 3 4 5 6 7 8 9 10 11	routine DELPINT DISECT DYNPIN OYYPIN EOS INTPIN LAPLAC LIFTOR RECNC RELAXY VERCEN	page 40 4 12 21 53 30 47 56 49 42 1

Module List - order of occurence

page

i

Module List - alphabetical order

Thu Jul 1 14:15:08 1993 adaphd.f

SUBROUTINE VERCEN

SUBROUTINE VERCEN(IT) С C-C I VERCEN ADD A VERTEX IN THE IT TRIANGLE. THE VETTEX С IS ADDED IN THE CENTROID OF THE TRIANGLE. С Ţ С. ______ Q С IMPLICIT REAL (A-H,O-Z) С 'cmsh00.h' include include 'chyd00.h' include 'cint00.h' 'cphs10.h' include include 'cphs20.h' С С SET UP THE NEW TRIANGLE BOOKKEEPING. 20 20 Ĉ IV1 = JS(1, IT)IV2 = JS(2 , IT) IV3 = JS(3 , IT) 24 25 26 С $\begin{array}{r} \text{IE1} &= \text{JS}(4, \text{IT}) \\ \text{IE2} &= \text{JS}(5, \text{IT}) \\ \text{IE3} &= \text{JS}(6, \text{IT}) \\ \text{IE1A} &= \text{IABS}(1\text{IE1}) \\ \text{IE2A} &= \text{IABS}(1\text{IE2}) \\ \text{IE2A} &= \text{IABS}(1\text{IE2}) \\ \text{IE2A} &= \text{IABS}(1\text{IE2}) \\ \end{array}$ IE3A = 1A8S(IE3) Ç PUT IN NEW TRIANGLES C C NV = NV + 1XV(1, NV) = (XV(1, IV1) + XV(1, IV2) + XV(2, NV) = (XV(2, IV1) + XV(2, IV2) + XV(2, IV3)) * THIRDXV(1, NV) = 038 JV(1, NV) = 0C DO 110 IR - 1 , MHQ HYDVVV(NV , IR) = (HYDVVV(IV1 , IR) + HYDVVV(IV2 , IR) + HYDVVV(IV3 , IR)) * THIRD . CONTINUE С NE = NE + 1 JE(1, NE) = NV JE(2, NE) = IV1 JE(5, NE) = 0JE(5, NE) = 0 NE = NE + 1 JE(1, NE) = NV JE(2, NE) = 1V2 JE(5, NE) = 0 NE = NE + 1 JE(1, NE) = NV JE(2, NE) = 1V3 JE(5, NE) = 0JE(5 , NE) = 0 NEM1 = NE - 1NEM2 - NE - 2 C С С TRIANGLE ONE, THE ORIGINAL IT. JS(3 , IT) = NV JS(5 , IT) = - NEM1 JS(6 , IT) = NEM2 С С TRIANGLE TWO. С NS = NS + 1JS(1, NS) = IV2 JS(2, NS) = IV3 JS(2, NS) = NV JS(4 , NS) = IE2

.72

¢

page

t

б

Thu Jul	1 14:16:08 1	1993 adaphd.f	SUBROUTINE VERCEN	page	2
74	74	JS(5,NS) = - NE			74
75	75	JS(6 , NS) = NEMI			75
76	7 6 C				76
77	77 C	TRIANGLE THREE.			77
/8	78 C				78
79	/9	ND = ND + 1 19(1 NC \ _ 1/2			79
81	81	35(1, 13) = 103 15(2, NS) = 101			80
82	82	JS(3, NS) = NV			82
83	83	JS(4, NS) = IE3			83
84	84	JS(5 , NS) = - NE	M2		84
85	85	JS(6,NS)=NE			85
80 97	80 L 97 C	NOW ELV THE LEFT AN			86
88	88 C	NUM FIX THE LEFT AN	W RIGHT FUR EDGES.		87
89	89	NSM1 = NS - 1			89
90	90	IF(JE(4 , IE2A)	. EQ . IT) JE(4 , IE2A) = NSM1		90
91	91	IF(JE(3, IE2A)	EQ = IT JE(3 , IE2A) = NSM1		91
92	92	$\frac{11}{12}\left(\begin{array}{c} 12 \\ 12 \\ 12 \end{array}\right)$	EU = H $EU = H$ H $EU = H$ H H H H H H H H H		92
94	94	JF(4, NFM2) = NS	$\cdot cq \cdot ti j dc(d, tcok j = nd)$		93 0A
95	95	JE(3, NEM2) = IT			95
96	96	JE(4, NEM1) = IT			96
97	97	JE(3, NEM1) = NS	M1		97
98	00 20	JE(4, NE) = NSM1 $JE(3, NE) = NSM1$			98
100	100 C	02(5 , 42) - 45		1	100
101	101	JV(2, NV) = NE			101
102	1 02 C			1	102
103	103	XSAREA = XS(3, IT)) * THIRD	1	103
105	104	XS(3, 11) = XSR	EA ADEA		104
106	106	XS(3, NS) = XSAR	EA	נ 1	105
107	107 C			i	07
108	108	XS(1, IT) = (XV	(1, IV1) + XV(1, IV2) +	1	801
109	109	• XV XS(1 NSM1) - ((1 , NV)) * (HIRD XV(1 - TV2) + XV(1 - TV2) +	1	109
111	111	, (1961 ; 1)CA	XV(1, 1V2) * XV(1, 1V3) *	1	110
112	112	XS(1, NS) = (XV	(1, IV3) + XV(1, IV1) +	1	112
113	113	. XV	(1, NV)) * THIRD	1	113
114	114	XS(2, IT) = (XV)	(2, IV1) + XV(2, IV2) +	1	114
115	115	• XV • XS(2 NSM1) - ((2, NV) + 1H1KD XV(2, 1V2) + $XV(2, 1V2)$ +	1	15
117	117		XV(2, NV)) * THIRD	1	17
118	118	XS(2, NS) = (XV	(2, IV3) + XV(2, IV1) +	ī	118
119	119	. XV	(2, NV)) * THIRD	1	19
120	120 L	YCADEA _ 1 / YS(2	17)	1	20
122	122	SAREA = 1.7 AS(3) SAREA(1T) = XSAREA	, μ,) Δ	1	22
123	123	SAREA(NS) = XSARE	A.	1	23
124	124	SAREA (NSMI) = XSA	REA	1	24
125	125 C	DD 620 ID) MUD		1	25
120	120	HYDV(IT IR) = (1	20
128	128	e strang at a an a " (HYDVVV(IV2 , IR) +	1	28
129	129	•	HYDVVV(NV , IR)) * THIRD	1	29
130	130	HYDV(NS, IR) = (HYDVVV(IV3 , IR) +	1	30
131	131	•	ΠΤUVVV(1VL,1K)+ ΗγΩVVV(NV ID)) * ΤΗΙΦΩ	1	32
133	133	HYDV(NSM1, IR) =	(HYDVVV(IV2 , IR) +	1	33
134	134 .		HYDVVV(IV3 , IR) +	1	34
135	135	CONTINIC	HYDVVV(NV , IR)) * THIRD	1	.35
130	±30 030 137 C	CONTINUE		1	30
138	138	HDUM = 1.	/ (HYDV(IT, 1) + 1.F-12)	1	38
139	139	HYDV(IT , 2) = HYE	DV(IT, 2) * HDUM	i	39
140	140	HYOV(IT, 3) = HYC	DV(IT , 3) * HDUM	1	40
141	141	HYDV(IT, 4) = (1)	YDV(IT, 4) -	1	41
142	142 .	ו*כ, . ו∗ויכ זו/ערµאן)	11UV(11,1)" HYDV(11,2)	1	42
144	144	HYDV(IT . 3) * I	YDV(IT, 3)) *	1	44
145	145	· · · · · · · · · · · · · · · · · · ·	YDV(IT , 5) - 1.)	ī	45
146	146 C	(15)84		1	45
14/	147	HUUM = 1.	/ (HYUV(NS , 1) + 1.E-12)	1	47
			page 2		

Thu Jul	1 14:16:08 1	993	adaphd.f	SUBROUTINE VERCEN	page	3
148	148		HYDV(NS , 2) -	HYDV(NS, 2) * HDUM		148
149	149		HYDV(NS , 3) =	HYDV(NS, 3) * HDUM		149
150	150		HYDV(NS, 4) =	(HYDV(NS, 4) -		150
151	151	•	.5	* HYDV(NS , 1) *		151
152	152	•		* HYUV(NS , 2) + + uvpu(NS , 2) +		152
153	153	•	HTUV(NS,)			122
155	104	•		(1104(115 , 5) - 1.)		104
155	155 C		HOIM -	1. / (HYDV(NSM1 + 1) + 1.F-12)	:	156
157	157		HYDV (NSM1, 2)	= HYDV(NSMI , 2) * HDUM		157
158	158		HYDV(NSM1 , 3)	- HYDV (NSM1 , 3) * HDUM		158
159	159		HYDV(NSM1 , 4)	= (HYDV(NSM1 , 4) -		159
160	160	•	1	.5 * HYDV(NSM1 , 1) *		160
161	161	•	(HYDV(NSM1, 2) * HYDV(NSM1 , 2) +		161
162	102	•	HIUV(NSM1 , S) " HTUV(NSM1 , 3)) "		102
164	164 C	•		(niow(noni , 5) - 1.)		164
165	165		$DO 114 \ IR = 1$.	2		165
166	166		RGRAD(NS , IR)	- RGRAD(IT , IR)		166
167	167		RGRAD(NSM1 , IR	= RGRAD(IT, IR)		167
168	168 C					168
109	169		UGRADI NS , IR J	= UGRAD(11 , 1R)	:	109
171	171 C		noruni usur , tr	, ~ uunnu(11 , 1K)		171
172	172		VGRAD(NS . IR)	= VGRAD(IT, IR)		172
173	173		VGRAD(NSM1 , IR) = VGRAD(IT, IR)		173
174	1 74 C					174
175	175		PGRAD(NS , IR)	= PGRAD(IT, IR)		175
176	176		PGRAD(NSM1 , 1R	= PGRAD(IT, IR)		170
1//	1// 114		CUNTINUE			1//
170	179		JEN(1) = JETA			179
180	180		JEN(2) = IEZA			180
181	181		JEN(3) = IE3A			181
182	182		JEN(4) = NEM2			182
183	183		JEN(5) = NEM1			183
184	184		JEN(O) = NE			104
100	103 0		00 30 (ENN = 1	6		186
187	187		IEN - JEN(IENN))		187
188	188		JV1 = JE(1 , IE	Ń)		188
189	189		JV2 = JE(2 , IE	N)		189
190	190		AX = XV(1, JV2)	() - XV(1, JV1)		190
191	191		AY = XV(2, JVZ)	() - XV(2, JV1)		191
103	192		YEREV = 1 / YE	I IEN)		193
194	194		XN(IEN) = AY	XEREV		194
195	195		YN(IEN) = -AX	* XEREV		195
196	196		ISSR = JE(4, 1)	EN)		196
197	197		ISSL = JE(3, I)	EN)		102
198	198 U 100	T)		100
200	200	10	CLIFS NE 101			200
201	201 C	11	1 1000 + HC + V)			201
202	202		AA = XV(1, JV2)) - XV(1, JV1)	:	202
203	203		BB = XV(2, JV2)	() - XV(2, JV1)		203
204	204		XEL = XS(1, 1S)	SL)		204
205	205		- TEL = XS(2 + 12 - CC = YEL - YV(1		1	205
207	207		DD = YEL - XV(2)	JVI)		207
208	208		EE = (AA * CC +	BB * DD) * XEREV * XEREV		208
209	209		XER - XV(1 . JV	1) + AA * EE		209
210	210		YER = XV(2, JV)	1) + 8B * EE		210
211	211		AX = XEK - XEL			212
212	212		$\frac{\pi}{XF(2)} = \frac{\pi}{FN} = \frac{\pi}{FN}$	SORT(AX * AX + AY * AY)		213
214	214		X = X = 1. / $X = 1$	2, 1EN)		214
215	215		XXN(IEN) = AX	* XEREV		215
216	216		YYN(IEN) = AY	* XEREV		215
217	217		XE(2, IEN) =	2. * XE(2 , IEN)		21/ 218
210	218		- XTTIUL(ILN) = - YMTOI (TEN) = Y	. J F D		219
219	220		YMIDL(IEN) = Y	ER		220
221	2 21 C		internet ten y " t			2 21

Thu Jul	1 14:1	6:08	1993	adapt	d.f SUBROUTINE VERCEN	page	4
222	2 22			ELSE			222
223	2 23	С					223
224	224			XER = XS	(1, ISSR)		224
225	225			YER = XS	(2, ISSR)		225
226	226			XEL = XS	(1, ISSL)		226
227	227	~		YEL = XS	(2, ISSL)		227
228	228	C					228
229	229				1, JVZ - $AV(1, JVI)$		229
230	230			CC - YEI	2, JV2) - AV(2, JV1) YED		230
232	232				- YER		232
233	233			ACA = XF	R = XV(1 - JVI)		237
234	234			DBD = YE	R = XV(2, JV1)		234
235	235			EE = (A	CA * DD - DBD * CC) / (AA * DD - BB * CC)		235
236	236			XMIDL(I	EN) = XV(1, JV1) + AA * EE		236
237	237			YMIDL(I	EN) = XV(2 , JV1) + BB * EE		237
238	238	С					238
239	239			XEMID =	XMIDL(IEN) - XEL		239
240	240	~		YEMID =	YMIDL(IEN) - YEL		240
241	241	Ĺ			ערו		241
242	242						242
243	243			XF(2	= 7EL IEN) = SORT(AX * AX + AY * AY)		243
245	245			XFREV =	1 / XE(2) IFN)		245
246	246			XXN(IEN) = AX * XEREV		246
247	247			YYN(IEN) = AY * XEREV		247
248	248	С		•	• 200 10		248
249	2 49			XYMIDL(IEN) = SQRT(XEMID * XEMID + YEMID * YEMID) * XEREV		249
250	250	С					250
251	251	~		END IF			251
252	252	د مر	~	NT TAULT			252
253	255	00	ι U	ATTNOE			254
255	255	Г	- FXT				255
256	256	č					256
257	257	č					257
258	258			JRN			258
259	259	С					259
260	260	C					260
261	261	С					261
202	202		END				202
Thu Jul	1 14:1	6:08	1993	adaph	d.f SUBROUTINE DISECT		
263	1		Sligt		ISECT (N IDONE IDUMP)		263
264	2	С	5401				264
265	3	Č					265
266	4	C			t		266
267	5	С		DISECT D	ISECTS THE LINE N TO CREATE TWO NEW TRIANGLES AND		267
268	6	Ç		A NEW VE	RTEX. IF THE LINE N IS ON A SOLID BOUNDARY, ONLY I		268
269		ç		ONE NEW	TRIANGLE IS CREATED.		209
2/0	ð	č		015CCT 0			2/0
272	10	r		CALL TO	TCHIET CAN BE USED TO MAKE THOSE SIDES. HOREVER, A		272
273	11	č		BEFORE C	ALLING DISECT.		273
274	12	č					274
275	13	Ĉ		INPUT:	N - THE SIDE TO BE DISECTED.		275
276	14	С			1		276
277	15	C		OUTPUT:	N3 - THE SECOND HALF OF WHAT WAS N. WHEN N IS I		277
278	16	Ç			DISECTED, THE INDEX N IS RETAINED FOR ONE OF I		2/8
2/9	1/	L C			THE NEW SIDES, THE UTHER IS NO.		2/9
200	10	r r			TT THE STADTING VEDTCY OF THE INDIT LINE N		281
282	20	č			12 - THE ENDING VERTEX OF THE INPUT LINE N:		282
283	21	č			13 - THE THIRD VERTEX IN THE TRIANGLE TO THE RIGHT: I		283
284	22	C			14 - THE THIRD VERTEX IN THE TRIANGLE TO THE LEFT: 1		284
285	23	С			15 - THE NEW VERTEX.		285
286	24	C			Ι		286
287	25	Ç					287
288	26	C		100.1011	9FAL (A H G 7)		208
209	20	r		INFEICI	KEAL (A-1,U-2)		209
290	20	U.	incl	ude	'cmsh00.h'		291
292	30		incl	ude	'chyd00.h'		292
					•		

K

6

•

0

page

4
Thu Jul	1 14:1	6:08	1993	adaphd.f	SUBROUTINE DISECT	page	5
293 294 295 296	31 32 33 34	С	inc inc inc	clude 'cint0 clude 'cphs1 clude 'cphs2	0.h' 0.h' 0.h'		293 294 295 295
297 298	35	r		INTEGER IS(2),	IVS(2)		297 298
299	37 38	C		ITRING = 0			299
301	39			IJE3 = JE(5),			301
303	41			I5 = 0			303
305	42	c		EROR = 1.0E-3			305
307	44	C		FIND THE VERTI	CES OF THE LINE N.		307
309	40	ι		I1 = JE(1 , N)		309
310	48 49			12 = JE(2, N) IT1 = JE(4	, , , , , , , , , , , , , , , , , , ,		310
312	50 51	C					312
314 315	52 53	C		THESE ARE THE	VERTICES ID WHICH THE NEW LINES WILL BE DRAWN.		314 315
316 317	54 55	C C		TRIANGLES TO E THESE VERTICES	AND IS STORES WHETHER THEY ARE VERTEX 1, 2		316 317
318 319	56 57	C C		OR 3 IN THE TR	IANGLE IT.		318 319
320 321	58 59			$\begin{array}{r} D0 \ 10 \ I = 1 \ , \\ IVS(I) = 0 \end{array}$	2		320 321
322 32 3	60 61			IT = JE IF(IT.NE	(5-I, N) . 0) THEN		322 323
324 325	62 63			DO 20 J IV =	≖ 1 . 3 JS(J , IT)		324 325
326 327	64 65			IF(I IV	V . NE . II .AND. IV . NE . I2) THEN S(I) = IV		326 327
328 329	66 67			IS END I	(`I_)` = J F		328 329
330 331	68 69	ĩ	20	CONTINUE END IF			3 30 331
332 333	70 71	1	10	CONTINUE I3 = IVS(1)			332 333
334 335	/2 73			I4 = IVS(2) IS1 = IS(1)			334 335
336 337	74 75	С		1S2 = 1S(2)			336 337
338 339	76 77	C C	CON	MPARE OPPOSING A	NGLE PAIRS IN THE QUADRILATERAL		338 339
340 341	78 79			IF(ITRING . E AX = XV(1 . I	Q.O) THEN 3) - XV(1, I1)		340 341
342 343	80 81			AY = XV(2, I) $BX = XV(1, I)$	3) - XV(2, II) 4) - XV(1, II)		342 343
344 345	82 83			BY = XV(2, I) $CX = XV(1, I)$	4) - x (2 , 11) 4) - x (1 , 12)		344 345
346 347	84 85			CY = XV(2, I) $DX = XV(1, I)$	4) - XV(2), I2) 3) - XV(1), I2)		346 347
348 349	86 87			OY = XV(2, I) AI2 = AX * BY	3) - XV(2, 12) - AY * BX		348 349
350 351	88 89			AI1 = CX + DY $XIN = XF(1)$	- CY * DX		350 351
352 353	90 91			ROUNDF = EROR	* XLN * XLN ROUNDF , OR , AI1 , LT , ROUNDF) RETURN		352 353
354 355	92 93	с		END IF			354 355
356 357	94 95	Ċ C		CREATE A NEW V	ERTEX MIDWAY ON LINE N.		356 357
358 359	96 97	-		IDONE = 1 NV = NV +	1		358 359
360 361	98 99	с		15 - NV			360 361
362 363	100 101	Ċ		CHANGE THE LIN BUT NOW ENDS A	E N SO THAT IT STARTS AT THE SAME VERTEX. T IS.		362 363
364 365	102 103	Ċ		JE(2 . N) =	15		364 365
366	104	С					366

Thu Jul	1 14:	16:08 1993	ad aphd. f	SUBROUTINE DISECT	page	6
367 368	105 106	C C	DRAW THE THREE NEW LINES,	ALL ENDING AT 15.	-	367 368
369 370 371 372 373	107 108 109 110 111	C	DO 30 I = 1, 2 IF(JE(5 - I, N), N NE = NE + 1 JE(1, NE) = IVS(I) JE(2, NE) = I5	E.O) THEN		369 370 371 372 373
374 375 376 377 378 379	112 113 114 115 116 117	30	JE(5 , NE) = 0 IF(I . EQ . I) NI = IF(I . EQ . 2) N2 = END IF CONTINUE	- NE - NE		374 375 376 377 378 378
380 381 382 383 383	118 119 120 121 122		WE NEED TO HANDLE THE LINE SINCE WE ARE NOT ADDING A T THE OLD ONE.	FROM 12 TO 15 SEPARATELY, LINE TO 12, BUT REPLACING		379 380 381 382 383 384
385 386 387 388 388 389	123 124 125 126 127	С	NE = NE + 1 JE(5, NE) = JE(5, N N3 = NE JE(3, N3) = 0)		385 386 387 388 388
390 391 392 303	128 129 130	C C	JE(4, N3) = 0 RESET THE OLD TRIANGLES AND) SET UP THE NEW TRIANGLES.		390 391 392
394 395 396 397	132 133 134 135		N WAS ORIGINALLY DRAWN FROM N1 IS THE NEW LINE FROM 13 N2 IS THE NEW LINE FROM 14 N3 IS THE NEW LINE FROM 12	1 II TO I2 NOW FROM II TO I5. TO I5. TO I5. TO I5.		393 394 395 396 397
398 399 400 401 402	136 137 138 139 140		NAA IS THE OLD LINE FROM 14 NBB IS THE OLD LINE FROM 11 NCC IS THE OLD LINE FROM 13 NDD IS THE OLD LINE FROM 12 THE DIRECTIONS OF LINES NAA	I TO 11. TO 13. I TO 12. TO 14. A THROUGH NOD ARE NOT		398 399 400 401
403 404 405 406	141 142 143 144	C C	EXPLICITLY USED. IF(IT1 . NE . 0) THEN NCC = JS	5(IS1 + 3 , IT1)		403 404 405 406
407 408 409 410 411	145 146 147 148 149		JS(IS1 + 3 , IT1) = NI J = MC IF(JS(J , IT1) . NE . IEROR = 2 II = I	D(IS1 , 3) + 1 I2) THEN		407 408 409 410
412 413 414 415	150 151 152 153	С	END IF JS(J, IT1) = I5 JJ = MOD(IS1 + 1, 3)	+ 1		411 412 413 414 415
416 417 418 419	154 155 156 157	C	NBB = IABS(JS(JJ + 3 , NS = NS + 1 JS(1 , NS) = I2	111))		416 417 418 419
420 421 422 423 424 425	158 159 160 161 162 163		JS(2, NS) = 15 JS(3, NS) = 13 JS(4, NS) = N3 JS(5, NS) = - N1 JS(6, NS) = NCC JE(3, N3) = NS			420 421 422 423 424 425
426 427 428 429 430	164 165 166 167 168	6	JE(4, N1) = NS JE(3, N1) = IT1 NCC = IABS(NCC IF(JE(4, NCC), EQ, IF(JE(3, NCC), EQ,) IT1) JE(4 , NCC) = NS IT1) JE(3 , NCC) = NS		426 427 428 429 430
431 432 433 434 435 436 437 438	169 170 171 172 173 174 175 176	C	END IF IF(IT2 . NE . 0) THEN J = MOD(IS2 NOD = JS(J + 3 JS(J + 3, IT2) = - N2 IF(JS(J, IT2) . NE .	+ 1 , 3) + 1 , IT2) I2) THEN		431 432 433 434 435 436 437 438
439 440	177		ilkuk = 3 J2 = J page	6		439 440

Thu Jul	1 14:16:08 1993	adaphd.f	SUBROUTINE DISECT	page	7
441	179	END IF			441
442	180	JS(J . 112) =	- 15		442
443	181 C				443
444	182	NAA = IAUS(JS(152 + 3, 112)		444
445	105 C	- 2N	NS + 1		440 AAK
447	185	- (2N _ 1)2L	12		440
448	186	JS(2, NS) =	14		448
449	187	JS(3, NS) =	15		449
450	188	JS(4,NS) =	NDD		450
451	189	JS(5,NS) =	N2		451
452	190 L				452
453	191 192 r	irt liking . Ly .	U) INCN		433
455	193	JE(1.N3) = I	2		455
456	1 94	JE(2, N3) = I	15		456
457	195	JS(6,NS) =	- N3		457
458	196	JE(4,N3)=	NS		458
459	197 C 108	C1 CE			459
461	190 C	LLJL			461
462	200	JE(1,N3) ≃ I	5		462
463	201	JE(2,N3) = I	2		463
464	202	JS(6,NS) =	N3		464
465	203	JE(3,N3)=	NS		465
400	204 C 205	END T.			400
468	205 206 C				468
469	207	JE(3,N2) =	NS		469
470	2 08	JE(4, N2) =	112		470
471	209	NDO =	IA8S(NDD)		471
4/2	210	IF(JE(4 , NDU)). $EQ = 112$) $JE(4, NDD) = NS$		4/2
475	212 C	IF(JE() , NUU	$(1) \cdot E(1) \cdot E(1) = (1) - E(1) - E($		473
475	213	END IF			475
476	214 C				476
477	215	NSM1 = NS - 1			477
478	216	NEM1 = NE - 1			478
4/9	219 0	NEMZ = NE - Z			4/9
400	210 C	IEC TRING FO	0) THEN		481
482	220	XV(1, 15) = 0.2	25 * (XV(1, 11) + XV(1, 12) +		482
483	221 .		XV(1, I3) + XV(1, I4))		483
484	222	XV(2, 15) = 0.2	25 * (XV(2 , I1) + XV(2 , I2) +		484
485	223	W/ 1 TE \ 0	XV(2,13) + XV(2,14))		200
400	2 24 2 25 C	JA(1 '12) = 0			400
488	226	DO 85 IR = 1 . MHO)		488
489	227	HYDVVV(15 , IR)	= 0.25 * (HYDVVV(I1 , IR) +		489
490	228 .		HYDVVV(I2, IR) +		490
491	229		HYDVVV(I3, IR) +		491
492	231 85	CONTINUE	HTUVVV(14 , 1R))		492
494	2 32 C	SVAT THUE			494
495	233	JV(2,NV) = N			495
496	234	IF(JV(2 , 12) .	.GT.0)JV(2.I2) = N3		496
497	235 C	6 1 1 1 1 1 1 1 1 1 1			497
498 100	230	DX = XV(1, 15)	= XV(1, 11)		490
499 500	238	DY = XV(2, 13)	- XV(2, 11)		500
501	239	DYY = XV(2, 15)) - XV(2, 11)		501
502	240	XS(3, IT1) = .5	5 * (DX * DYY - DXX * DY)		502
503	241	DX = XV(1, 12)	- XV(1, I3)		503
504	242	DX = XV(1, 15)	$V = \lambda V \{ 1, 13 \}$		504
505	243	DYY = XV(2, 12)	- AV(2, 13)		506
507	245	XS(3, NSM1) = .	5 * (DX * DYY - DXX * DY)		507
508	246	DX = XV(1, 14)	- XV(1,12)		508
509	247	DXX = XV(1, 15)	- XV(1, 12)		509
510	248	DY = XV(2, 14)	- XV(2, 12)		510
517 517	249 250	- UTT = XV(∠ , 15) - YS(3 - NS \ - 5	/ ~ AV(Z , 12) * (DX * DYY _ DXX * DY)		512
512	251	DX = XV(1, 11)	- XV(1, I1)		513
514	252	DXX = XV(1 , 15)) = XV(1, 14)		514

Thu Juł	1 14:16:08	1993	adaphd.f	SUBROUTINE DISECT	page	8
515 516 517	253 254 255		DY = XV(2, 1) DYY = XV(2, 1) XS(3, 112)	1) - XV(2, I4) 15) - XV(2, I4) = 5*(0X*0YY - 0XX*0Y)		515 516 517
518	256 C		YE(1 IT1)			518
520	258		×3(1,111)	XV(1, NV)) * THIRD		520
521	2 59 260	•	XS(1,NSM1)	- (XV(1, 13) + XV(1, 12) + XV(1, NV)) - THIRD		521 522
523 524	2 61 262		XS(2,111)	= (XV(2, I1) + XV(2, I3) + XV(2, NV)) = THIRD		523 528
525	263	•	XS(2 , NSM1)	= (XV(2, 13) + XV(2, 12) +		525
520 527	264 265 C	•		XV(2,NV))*(HIRD		526 527
528 529	2 66 2 67		XS(1,NS)=	(XV(1, I2) + XV(1, I4) + XV(1, NV)) * THIRD		528 529
530	268	-	XS(1,172)	= (XV(1, I4) + XV(1, I1) + VV(1, I1)) +		530
532	270	•	XS(2,NS) =	(XV(2, 12) + XV(2, 14) +		532
533 534	271 2 72	•	XS(2, 172)	XV(2, NV)) * THIRD = (XV(2, 14) + XV(2, 11) +		533 534
535	273	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	XV(2,NV)) * THIRD		535
537	274 0		DO 94 IR = 1,	мно		537
538 539	27 6 277		HYDV(IT1 , IR) = (HYDVVV(I1 , IR) + HYDVVV(I3 , IR) +		538 539
540	278	•		$\frac{HYDVVV(NV, IR)}{HYDVVV(NV, IR)} + \frac{HIRD}{HIRD}$		540
542	280	•	11 0V (45H1 , 1	$H_{V} = (H_{V} = (H$		542
543 544	281 28 2	•	HYDV(IT2 , IR	HYDVVV(NV,IR)) * THIRD) = (HYDVVV(I4,IR) +		543 544
545 546	2 83 284	•	•	HYDVVV(11, IR) + HYDVVV(11, IR) + THIPD		545
547	285	•	HYDV(NS , IR) = (HYDVVV(I2, IR) +		547
548 549	286 287	•		HYDVVV(I4,IR)+ HYDVVV(NV,IR))*THIRD		548 549
550 551	288 94 289 C		CONTINUE			550 551
552	290		HDUM	= 1. / (HYDV(IT1 , 1) + 1.E-12)		552
554	291 292		HYDV(111 , 2 HYDV(171 , 3) = HYDV([11], 2) = HUUM) = HYDV([T1], 3) = HDUM		554 554
555 556	2 93 2 94		HYDV(IT1 , 4) = (HYDV(ITI , 4) - .5 * HYDV(ITI , 1) *		555 556
557	295	•	(HYDV(ITI .	2) * HYDV(IT1 , 2) +		557
559	297	•	NIUV(111 ,	(HYDV(111,5))-1.)		559
560 561	298 C 299		HDUM	= 1. / (HYDV(NSM1 , 1) + 1.E-12)		560 561
562 563	300 301		HYDV(NSM1 , 2 HYDV(NSM1 3) = HYDV(NSM1 , 2) * HDUM) = HYDV(NSM1 , 3) * HDUM		562 563
564	302		HYDV (NSM1 , 4) = (HYOV(NSM1 , 4) -		564
566	303	•	(HYDV(NSM1 ,	2) * HYDV(NSM1 , 2) +		566
567 568	305 306	•	HYDV(NSM1 ,	3) * HYDV(NSM1 , 3))) * (HYDV(NSM1 , 5) - 1,)		567 568
569	307 C	-		-1 / (11201 / 122 · 1) + 1 5 · 12)		569
571	309		HYDV(IT2 , 2	= HYDV(112, 2) * HDUM		571
572 573	310 311		HYDV(IT2,3 HYDV(IT2,4) = HYDV(IT2,3) * HDUM) = (HYDV(IT2,4) -		572 573
574 575	312	•	(HYDV(172	.5 * HYDV(IT2 , 1) * 2) * HYDV(IT2 , 2) +		574
576	314	•	HYDV(IT2 .	3) * HYDV(112.3))) *		576
577 578	315 316 C	•		(HTUV(112 , 5) - 1.)		578
579 580	317 318		HOUM HYDV(NS.2)	= 1. / (HYDV(NS, ') + 1.E-12) = HYDV(NS, 2) * HDUM		579 580
581	319		HYDV(NS , 3)	- HYDV(NS , 3) * HDUM		581
583	321	•	(+ , Cfi JVUTE -	-5 * HYDV(NS , 1) *		583
584 585	322 323	•	HYDV(NS, 2 HYDV(NS, 3) * HYDV(NS , 2) +) * HYDV(NS , 3))) *		584 585
586	324 325 C	•	• ··- • -	(HYDV(NS, 5) - 1.)		586 587
588	326		SAREA(ITI) =	1. / XS(3 , IT1)		588

Thu Jul	1 14:16:0	8 1993	adaphd.f	SUBROUTINE DISECT	page	9
589	327		SAREA(NSM1)	- 1. / XS(3 , NSMI)		589
590	328		SANEA(112) =	1. / XS(3, 112)		590
591	329 330 C		SAREA(IIS) -	1. / x3(5 , N5)		591
593	331		DO 112 IR = 1	, 2		593
594	332		RGRAD(NS , IR) = RGRAD(IT2, IR)		594
595	333		RGRAD(NSM1 ,	IR) = RGRAD(IT1, IR)		595
596	334		UGRAD(NS , IR) = UGRAD(IT2, IR)		596
598	325		VGRAD(NS . IR	$\frac{1}{1} = VGRAD(112, 1R)$		597
599	337		VGRAD (NSM1 ,	IR = VGRAD($IT1$, IR)		599
600	338		PGRAD(NS , IR) = PGRAD(IT2, IR)		600
601	339		PGRAD(NSM1 ,	IR) = PGRAD(IT1, IR)		601
602 603	340 11	2	CUNTINUE			602
604	342		KSDELT(NS) =	DIMP		604
605	343		KSDELT(NSM1)	= IDUMP		605
6 06	344		KSDELT(ITI)	= IDUMP		606
607	345		KSDELT(IT2)	= IDUMP		607
608 600	340 L 347		15N(1) - NAA			608
610	348		JEN(2) = N88			610
611	349		JEN(3) = NCC			611
612	350		JEN(4) = NDD			612
613	351		JEN(5) - N			613
014 615	352		JEN(D) = NI $JEN(7) = N2$			615
616	354		JEN(8) = N3			616
617	355		JENN = 8			617
618	356 C					618
619	357	1	ELSE			619
621	3300 U 3501		XV(1 15) =	0.5 * (XV(1 11) + XV(1 12))		621
622	360		XV(2, 15) =	0.5 + (XV(2, I1) + XV(2, I2))		622
623	361		JV(1, 15) =	0		623
624	362 C					624
625	363		IF(105PUL . E	Q . I . AND . IJE5 . EQ . 6) THEN 6327		025 626
627	365		DXX = XV(1)	IS) - 1.5		627
628	366		IF(DXX . NE .	0.) ANGL = ATAN2($XV(2, 15)$, DXX)		628
629	367		XV(1, I5) =	COS(ANGL) + 1.5		629
630	368		XV(2, 15) =	SIN(ANGL)		630
632	370 C		ENU IF			632
633	371		DO 80 IR = 1 ,	мно		633
634	372		HYDVVV(15 , I	R) = 0.5 * (HYDVVV(I1 , IR) +		634
635	373			HYDVVV(I2,IR))		635
630 637	375 (U	CUNITNUE			637
638	376		JV(2.11) =	- N		638
639	377		JV(2,NV) =	- N3		639
640	378 C					640
041 642	3/9 380		XSAKEA = .5 *	λοί ο ' iic') - χεαρέα		041 642
643	381		XS(3, NS) =	XSAREA		643
644	382 C					644
645	3 83		XS(1,NS) =	(XV(1, 12) + XV(1, 14) +		645
646	384	•	VC(1 172)	XV(1, NV)) * THIRD		040 647
04/ 648	386		XS(1,112)	* (XV(1 , 14) * XV(1 , 11) * XV(1 , NV)) * THIRN		648
649	387	•	XS(2.NS) =	(XV(2, 12) + XV(2, 14) +		649
650	388	•		XV(2, NV)) * THIRD		650
651	389		XS(2, IT2)	= (XV(2, 14) + XV(2, 11) +		051 652
052	301 (230	•		AV(C , NV)) ~ THIRD		653
654	392		DO 92 IR = 1.	мно		654
655	393		HYDV(IT2 , IR) = (HYDVVV(I4 , IR) +		655
656	394	•		HYDVVV(11, 1R) +		050 657
657 659	395 306	•		NTUVVV(NV.IK) * HIKU		017 655
000 659	397		אטווא, וא	$\frac{1}{100000} = \frac{1}{100000} = \frac{1}{1000000} = \frac{1}{10000000000000000000000000000000000$		659
660	398	:		HYDVVV(NV, IR)) * THIRD		660
661	399 9:	2	CONTINUE			661
662	4 00 C					002

Thu Jul	1 14:16:08	1993	adaphd.f	SUBROUTINE DISECT	page	10
663 664 665 666 667 668 669 670 671	401 402 403 404 405 406 407 408 409 C	• • •	HDUM HYDV(1T2 , HYDV(1T2 , HYDV(1T2 , (HYDV(1T2 HYDV(1T2	- 1. / (HYDV(IT2 , 1) + 1.E-12) 2) = HYDV(IT2 , 2) * HDUM 3) = HYDV(IT2 , 3) * HDUM 4) = (HYDV(IT2 , 4) - .5 * HYDV(IT2 , 1) * , 2) * HYDV(IT2 , 2) + , 3) * HYDV(IT2 , 3))) * (HYDV(IT2 , 5) - 1.)		663 664 665 666 667 668 669 670
672 673 674 675 676 677 678	410 411 412 413 414 415 416	•	HDUM HYDV(NS, 2 HYDV(NS, 3 HYDV(NS, 4 (HYDV(NS, 4	= 1. / (HYDV(NS , 1) + 1.E-12)) = HYDV(NS , 2) * HDUM) = HYDV(NS , 3) * HDUM) = (HYDV(NS , 4) - .5 * HYDV(NS , 1) * 2) * HYDV(NS , 2) + 3) * HYDV(NS , 2) +		672 673 674 675 675 676 677
679 680 681 682 683 684 685	417 418 C 419 420 421 422 C 123		XSYREA - 1. SAREA(IT2) SAREA(NS)	(HYDV(NS , 5) - 1.) / XSAREA = XSYREA - XSYREA		678 679 680 681 682 683 683
685 686 687 688 689 690 691	423 424 425 426 427 428 122 429 C		DU 122 IR - RGRAD(NS , UGRAD(NS , VGRAD(NS , PGRAD(NS , CONTINUE	I. 2 IR.) = RGRAD(IT2, IR.) IR.) = UGRAD(IT2, IR.) IR.) = VGRAD(IT2, IR.) IR.) = PGRAD(IT2, IR.)		685 686 687 688 689 690 690
692 693 694 695 696 697 698	430 431 432 C 433 434 435 436 437		$\begin{array}{l} \text{KSDELI(NS)} \\ \text{KSDELT(IT2)} \\ \text{JEN(1)} = NI \\ \text{JEN(2)} = NI \\ \text{JEN(3)} = NI \\ \text{JEN(4)} = NI \\ $	= 100MP) = 100MP 00		692 693 694 695 696 697 698
700 701 702 703 704 705 706	439 C 440 441 C 442 443		JENN = 5 END IF DO 90 IENN = IEN = JEN(IE	1, JENN NN)		699 700 701 702 703 704 705
707 708 709 710 711 712 713	445 446 447 448 449 450 451		JV2 = JE(2 , AX = XV(1 , AY = XV(2 , XE(1 , IEN) XEREV = 1. / XN(IEN) = A	$ \begin{array}{l} IEW \\ IEW \\ JV2 \\ JV2 \\ JV2 \\ JV2 \\ SQRT \\ AX + AY + AY + AY \\ XE(1, IEW \\ Y + XEREV \\ AY + VEDEV \\ \end{array} $		706 707 708 709 710 711 712
714 715 716 717 718 719 720	452 453 454 C 455 456 457 C 458		ISSR = JE(4 ISSL = JE(3 IJE5 = JE(5 IF(IJE5 . NE	, IEN) , IEN) , IEN) , 0) THEN		713 714 715 716 717 718 719
721 722 723 724 725 726 727	459 460 461 462 463 464 465		BB = XV(2 , XEL = XS(2 , YEL = XS(2 , CC = XEL - XV DD = YEL - XV EE = (AA * C XFR = XV/ 1	JV2) - XV(1 , JV1) JV2) - XV(2 , JV1) ISSL) (1 , JV1) (2 , JV1) C + BB * DD) * XEREV * XEREV JV1) + AA * FE		720 721 722 723 724 725 726
728 729 730 731 732 733 734	466 467 468 469 470 471 472		YER - XV(2, AX - XER - XE AY - YER - YE XE(2, IEN) XEREV = 1. / XXN(IEN) = YYN(IEN) =	JVI) + BB * EE L = SQRT(AX * AX + AY * AY) XE(2, IEN) AX * XEREV AY * XEREV		728 729 730 731 732 733
735 736	473 474		XE(2, IEN) XYMIDL(IEN)	= 2. * XE(2 , IEN) = ,5		735 736

Thu Jul	1 14:1	6:08 1	993 adaphd.f	SUBROUTINE DISECT	page	11
737	475		XMIDL(IEN) = XER			737
/ 38	476	r	YMIDL(IEN) = YER			738
739	477	t	EI SE			239
741	4/0	r	ELJE			740
742	480	v	XER = XS(1), ISSR)		741
743	481		YER = XS(2), ISSR	ý		742
744	482		XEL = XS(1), ISSL	ý		744
745	483	-	YEL = XS(2 , ISSL)		745
/40	484	C	AA VILL 1 110 1			746
747 748	400		AA = AV(1, JVZ)	-XV(1, JVI)		747
749	487		CC = XFI - XFR	- xv(2, JVI)		748
750	488		DD = YEL - YER			749
751	489		ACA = XER - XV(1)	, JV1)		751
/52	490		DBD = YER - XV(2)	, JV1)		752
/53	491		EE = (ACA * DD - 1)	DBD + CC) / (AA + DD - AB + CC)		753
755	492 703		$\frac{XMIDL(1EN) = XV}{YMIDL(1EN) = XV}$	$1 \downarrow JVI \end{pmatrix} + AA + EE$		754
756	493	С		2, JVI) + BB = EE		/55
757	495		XEMID = XMIDL(IEN) - XEI		757
758	496		YEMID = YMIDL(IEN) - YEL		758
759	497	С				759
760	498		AX = XER - XEL			760
762	499		AT = TEK - TEL VEC 2 TEN N _ CON			761
763	501		$x \in \{2, 1 \in \mathbb{N}\} = 3q$	(I(AA - AA + AI - AI))		762
764	502		XXN(IEN) = AX * 2	(FREV		764
765	503		YYN(IEN) = AY *	(EREV		765
766	504	C				766
/0/	505	c	XYMIDL(IEN) = SQI	RT(XEMID * XENID + YEMID * YEMID) * XEREV		767
769	500	L	END TE			768
770	508	С				709
771	509	90	CONTINUE			771
772	510	С				772
773	511		IF(IEROR.NE.O) TH	IEN		773
775	512		WRIIE (0,1000) N			774
776	513		IF(IEROR.EQ.2)	WRITE $(0,1002)$ 12, J1, 111, 15 WRITE $(6,1003)$ 12, 12, 172, 15		//5
777	515		STOP	(0,1003) 12, 02, 112, 13		777
778	516		END IF			778
779	517	С				779
780	518	Ç	EXIT POINT FROM SUBROUT	INE		780
782	520	c c				781
783	521	C	RFTURN			/02 783
784	522	С				784
785	52 3	С				785
786	524	Ç	FORMATS			786
/0/ 799	525	1000				787
789	520	1000		TS///)		/00/
790	528	1002	FORMAT(' DISECT 12	* ',15,' J= ',15,' IT1= ',15,' I5= ',15)		790
791	529	1003	FORMAT(' DISECT 12	= ', I5, ' J= ', I5, ' IT2= ', I5, ' I5= ', I5)		791
792	530	C				792
/93 704	531	ί.	 CND	-		793
/ 34	JJZ		CND			/94

.

Thu Jul	1 14:1	16:08	1993 adaphd.f SUBROUTINE DYNPTN	page 12
7 95	1		SUBROUTINE DYNPTN(DAREA , NOFDIV , IDHMP , ITRIG)	705
7 96	2	Ç		795
797	3	Ç		797
790	4	ĉ		798
800	6	ĉ	DIMPIN ADAPT THE ORID DIMANICALLY, ADD VERTEUES	799
801	7	Č	•	800
802	8	С		802
803	9	~	IMPLICIT REAL (A-H,O-Z)	803
805	11	Ļ	include 'cmsh00 h'	804
806	12		include 'chyd00.h'	805
807	13		include 'cint00.h'	807
808	14		include 'cphs10.h'	808
810	15	r	include cpnszu.n.	809
811	17	Ļ	INTEGER JIRIG(NEM) KTRIG(MEM) IRECNC(MEM)	810
812	18		INTEGER JSE(MEM), JEE(MEM), IOFDVS(10), NOFDVS(10)	817
813	19	C		813
814	20		EQUIVALENCE (UL, JTRIG)	814
816	22		EQUIVALENCE (VR, KIRIG) FOULVALENCE (VL TRECNC)	815
817	23		EQUIVALENCE (PR.JSE)	810 817
818	24		EQUIVALENCE (PL, JEE)	818
819	25	С		819
821	20		SMINVG = 7 * SMINVG	820
822	28		00 115 IS = 1 . NS	821
823	29		JEE(IS) = 0	823
824	30	_115	5 CONTINUE	824
825	31	ι	0 ~ 224	825
827	33		FLUXPP = .00001 + HYDMOM(4)	826 827
828	34		FLUXUU = .00001 * HYDMOM(2)	828
829	35		FLUXRR = .00001 * HYDMOM(1)	829
830	30		$DO 120 \text{ IS } \neq 1 \text{, NS}$	830
832	38		$\frac{1}{1000} \frac{1}{1000} = \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	831
833	39		UCRTRY = HYDFLX(IS , 2) - FLUXUU	833
834	40		IUCRTR = SIGN(1. , UCRTRY)	834
835	41		RCRTRY = HYDFLX(IS , 1) - FLUXRR	835
837	42		$\frac{1}{16} = \frac{1}{16} + \frac{1}{16} $	836
838	44		IPCRTR . EQ . 1 . OR .	838
839	45		. IUCRTR . EQ . 1 . OR .	839
840	46		. IRCRTR . EQ . 1) . AND .	² 40
842	47		KSDELT(IS) = IDUMP	841
843	49		JEE(IS) = 1	843
844	50		MSS = MSS + 1	844
845	51 52		JIRIG(NSS) = IS	845
847	53	120	CONTINUE	845
848	54	C		848
849	55		DO 130 IS = 1, NSS	849
850	50 67	120	JSE(IS) = JTRIG(IS)	850
852	57 58	C 130	CONTINUE	851
853	59	•	MSS = NSS	853
854	60		DO 140 KDIV $= 1$, NOFDIV	854
855	61 62		11K16 = 0 00 160 KS - 1 NSS	855
857	63	С	CUI + 1 = CN NCI NU	856 867
858	64		ISS = JSE(KS)	858
859	65	С		859
800 861	00 67		UU 100 KK = 1, 3 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2	860
862	68	С	111 - 11 JUL - 11	001 R62
863	69	-	IE = JV(2, IVV)	863
864	70	~	IF(IE . GT . O) THEN	864
005 866	/1 72	L,	$I_{\rm M1} = IE(1) IE$	865
867	73		IF(IV1, EO, IVV) THEN	000 867
868	74		ISI = JE(3, IE)	868

Thu Jul	1 14:1	6:08 1993	adaphd.f	SUBROUTINE DYNPTN	page	13
869	75		ELSE			869
870 871	/0 77		ISI = JE(4 , IE , END IF)		870 871
872	78	•	IS = ISI			872
873 874	79 80	C 750	CONTINUE			873 874
875	81	C				875
876 877	82 83		JES = JEE(IS)			876 877
878	84		IF(JES . EQ . 0	AND . XAS . LT . SAREVG) THEN		878
879 880	85 86		ITRIG = ITRIG + 1 $KTRIG(ITRIG) = 1$	rs.		879 890
881	87		KSDELT(IS) = 100	JMP		881
882	88		JEE(IS) = 1			882
884	90	С	CNV IF			884
885	91		00760 IR = 1, 3	· · · •		885
887	92 93		JR = MOU(IR, 3) IEA = IABS(JS(J)	(+1)		880 887
888	94		IF(IEA . EQ . IE) THEN		888
889 890	95 96		JJR = MOD(JR + I) IFR = TARS(JS(J)	, 3) + 4 IR IS))		889 890
891	97	С				891
892 893	98 99		IV1 = JE(1, IER) IF(IV1 = FO = IV1) /) THEN		892 893
894	100		$^{T}SR = JE(3, IER)$)		894
895 806	101		ELSE	1		895 806
897	102		END IF	,		897
898	104	c	END IF			898
900	105	76 0	CONTINUE			900
901	107	C		T) THEN		901
902 903	100		IS = ISR	L) TAEN		902
904	110		IE - IER			904
905	111		END IF			905 90 6
907	113	С	51.6T			907
908 909	114 115	С	ELSE			908
910	116	•	IE = -IE			910
911 912	117		$IVI = JE\{I, IE\}$ $IF(IV) = F(I, IE)$	I I) THEN		911 912
913	119		ISI = JE(3, IE))		913
914 915	120 121		ELSE = JE(4) JE'			914 915
916	122		END IF			916
917 918	123		1S = 1SI 1SI = 0			917 918
919	125	_	IIE = IE			919
920 921	125 127	C 650	CONTINUE			920 921
922	128	C				922
923 924	129		JES = JEE(1S) $XAS = XS(3 - 1S)$			925 924
925	131		IF(JES . EQ . 0	AND . XAS . LT . SAREVG) THEN		925
926 927	132		ITRIG = ITRIG + 1 KTRIG(ITRIG) =	15		920 927
928	134		KSDELT(IS) = ID	IMP		928
929 930	135 136		JEE(IS) = 1 FND IF			929 930
931	137	С				931
932 933	138		UU 660 IR = 1, 3 JR = MOD(IR - 3)) + 1		933 932
934	140		IEA - IABS(JS(JI	(+3, IS))		934
935 936	141 142		IF(IEA . EQ . IE) IHEN . 3) + 4		936 936
937	143		IER = IABS(JS(J	JR, ÍS))		937
938 939	144 145	Ç	IVI = JE(1) TER)		93 9 938
940	146		IF(IVI . EQ . IV	I´) THEN		940
941 942	147 148		ISR = JE(3 , IER ELSE)		941 942

Thu Jul	1 14:	16:08	1993 adaphd.f	SUBROUTINE DYNPTN	page	14
943	149		ISR = E(4, IER)			943
944 945	150		END IF END IF			944
946 947	152	C 660	CONTINUE			946
948	154	C	CONTINUE			947 948
949 950	155		IF(ISR.NE.ISI) IS = ISR	THEN		949
951	157		IE = IER			951
952 953	158		GO TO 650 END IF			952
954 055	160	С				954
955	162	160	CONTINUE			955 956
957 958	163	C 150	CONTINUE			957
959	165	C 130	CONTINUE			958 959
960 961	166 167		DO 170 IS = 1 , ITRIG TRIG(IS + MSS) = KTR	16(15)		960
962	168		JSE(IS) = KTRIG(IS)			961 962
963 964	169 170	170	CONTINUE NSS = ITRIG			963 964
965	171	c	MSS = MSS + ITRIG			965
960 967	172	140	CONTINUE			966 967
968 960	174	c	NSS = MSS			968
970	176	L	DO 300 KDIV = 1 , 1			969
971 972	177	r	LTRIG = NSS			971
973	179	L.	DO 310 IS = 1 , NSS			972
974 975	180 181		ISS = JTRIG(IS) XSARFA = XS(3, ISS)			974 075
976	182	~	IF(XSAREA . GE . RMINVO	G) THEN		976
977 978	184	L	DO 335 IR = 4, 6			977 978
979 980	185		IE = IABS(JS(IR , ISS))		979
981	187		IF(IJE5 . NE . 0) THE	γ		980 981
982 983	188 189		JR2 = MOC(1R - 3, 3) IF2 = IARS(.1S(.1R2 1)	+ 4 SS 1		982
984	190		JR3 = MOD(IR - 2, 3)	+ 4		984
985 986	191		IE3 = IABS(JS(JR3 , IS XE1 = XE(1 , IE)	SS))		985 986
987 088	193		XE2 = XE(1, IE2)			987
989 989	194		XEDIST = 1. / XE1			988 989
990 991	196 197		YE2 = XE2 * XEDIST YE3 = XE3 * YEDIST			990
992	198		ZE2 = (YE2 - 1.5) * (YE21)		992
993 994	199 200		ZE3 = (YE3 - 1.5) * (YY2 = XF1 * XF1 + XF2 *	YE3) XF2 + .35 * XF1 * XF2 - XF3 * XF3		993
995	201		YY3 = XE1 * XE1 + XE3 *	XE3 + .35 * XE1 * XE3 - XE2 * XE2		995
990 997	202		. YY2.GT.O.AND	. 263 . L1 . U ANU . . YY3 . GT . O.) THEN		990 997
998 998	204	c	CALL DISECT (IE , IDONE	I, IDUMP)		998
1000	206	C	LTRIG = LTRIG + 1		:	1000
1001	207 208		JTRIG(LTRIG) = NS KSDFLT(NS) = IDUMP			1001
1003	209	С				1003
1004	210 211		END IF END IF			1004
1006	212	335	CONTINUE		1	1006
1008	214	310	CONTINUE			1008
1009	215 216	С	NSS = ITRIC		1	1009
1011	217		IEDGE = 0		1	1011
1012 1013	218 219	С	NCOLOR = 0		1	1012
1014	220	-	DO 295 $IE = 1$, NE			1014
1015	222	295	JSE(IE) = U CONTINUE			1015

Thu Jul	1 14:16:08	1993	adaphd.f	SUBROUTINE DYNPTN	pa ge	15
1017	2 23 C					1017
1018	224	00 32	0 IS = 1, NSS	5		1018
1019	225	122 =	$\frac{1}{2} \frac{1}{2} \frac{1}$			1019
1021	2 20	ADARE	H - V2(1 , 1 3	ן נו		1020
1022	228	XXS =	XS(1 . ISS)			1022
1023	229	YYS =	XS(2 . ISS)			1023
1024	230	IZZ =	1			1024
1025	231	IF(1	WINDW . EQ . 1	L) THEN		1025
1026	232	XXSS	= - XXS * XXS	+ XXS + .75		1026
1027	233	1755	= -115 = 115	+ 1.		1027
1020	234	122 = END T	- INT(SIGN(I. F	. , ,, ,, , , , , , , , , , , , , , , ,		1020
1029	236 C	CHO I	1			1029
1031	237	IF(X	SAREA . GT . F	RMINVG . AND . IZZ . EQ . 1) THEN		1031
1032	2 38 C	•				1032
1033	239	DO 73	5 IR = 4, 6			1033
1034	240	IE =	IABS(JS(IR ,	, ISS))		1034
1035	241	11()	ISE(IE) · EU	U) THEN		1035
1030	242	ILUGE	- 11001 + 1 (115065) - 1	10		1030
1038	244	NCOLO	R = NCOLOR + 1			1038
1039	245	JEE(NCOLOR) = IE	•		1039
1040	246	JSE (IE) = 1			1040
1041	247	END I	F			1041
1042	248 735	CONTI	NUE			1042
1043	249 C					1043
1044	250	AKEAA 191 -	13 = SAREA(133 14RS(157 4	((22)		1044
1045	252	XE1 =	XE(1, IE1)			1045
1047	253	HD1 -	AREAXS * XE1	* XE1		1047
1048	254	IJE5	= JE(5 , IE1			1048
1049	255	IE2 =	IABS(JS(5	1SS))		1049
1050	256	XEZ =	XE(1 , IE2)			1050
1051	257		- TIES - IEC E	* XLZ		1051
1053	259	I5CJ =	IABS(JS(6 .			1053
1054	260	XE3 =	XE(1 , IE3))		1054
1055	261	HD3 -	AREAXS * XE3	* XE3		1055
1056	262	IJE5	= IJE5 + JE(5	5, IE3)		1056
1057	263	RATIO	= AMAX1(HD1)	, HD2 , HD3)		1057
1058	204	IKAII TC(D	U⊐U ATTO IF 7			1050
1059	266	111		XSARFA = GT = SMINVG = 1		1060
1061	267		JE5 . GT . 0)) IRATIO = 2		1061
1062	2 68 C	• ·	•			1062
1063	2 69	IF(I	RATIO . EQ . 2	?) THEN		1063
1064	270	IJE51	= JE(5 , IE1			1064
1065	2/1	1152	. = JE(5 , 1E2 - JC(5 , 1E2			1066
1067	273	19633 19633	JE51 = NF = 0) THEN		1067
1068	274	IEDIS	T = 1E1	,		1068
1069	275	XE1 =	XE(1 , IE1)			1069
1070	276	XEZ -	XE(1, IE2)			1070
1071	2//	XE3 =	XE(1,1E3)			10/1
1072	270	10/1	1552 NE A) THEN		1072
1074	280	IFDIS	T = 1F2	/ men		1074
1075	281	XE1 =	XE(1, IE2)			1075
1076	2 82	XE2 -	XE(1, 1E1)			1076
1077	283	XE3 =	_XE(1 , IE3)			1077
1078	284	END I	1063 NE A) TUEN		10/8
1080	200	I J TL	UC33 . NE . U	ן והבת		1080
1081	287	XF1 =	XE(1 . 1F3)			1081
1082	288	XE2 =	XE(1 . IE2)			1082
1083	289	XE3 -	XE(1 . IE1)			1083
1084	290	END I	F			1084
1085	291	XEDIS	1 = 1. / XE(1)	I, IEDISI)		1082
1080	292 203	TEZ =	ALC " ALUISI			1087
1088	294	7F2 =	(YF2 - 1.5)) * (YE2 ~ .1)		1088
1089	295	ZE3 =	(YE3 - 1.5) * (YE31)		1089
1090	296	YY2 =	XE1 * XE1 + >	KE2 * XE2 + .35 * XE1 * XE2 - XE3 * XE3		1090

Thu Jul	1 14:1	6:08	1993	adaphd.f	SUBROUTINE DYNPTN	page	16
1091	297		YY3	- XE1 * XE1	+ XE3 * XE3 + .35 * XE1 * XE2 - XE2 * XE2		1091
1092	298		IF(ZE2 . LT .	.0 . AND . ZE3 . LT . 0 AND .		1092
1095	299		. CALL	YYZ . GI .	U. AND YYS GIONE IDIME)		1093
1095	301	С	UNCL		EDIST, LUUNE, LUURP)		1094
1096	302		LTRI	G = LTRIG +	1		1096
1097	303		JTRI	G(LTRIG)	⇒ NS		1097
1098	304	c	KSDE	LT(NS) =	IDUMP		1098
1100	202	L	TEDG		1		1099
1101	307		IREC	NC(IEDGE)	⊐ NE		1100
1102	308		NCOL	OR - NCOLOR	+ 1		1102
1103	309		JEE (NCOLOR) =	NE		1103
1104	310				1		1104
1105	312		IRFC	NC(IFDGE)	1 = NF - 1		1105
1107	313		NCOL	OR = NCOLOR	+1		1107
1108	314		JEE (NCOLOR) =	NE - 1		1108
1109	515 316	c	JSE (NE - 1) =	1		1109
1111	317	L	END	IF			1110
1112	318		END	IF			1112
1113	319	С					1113
1114	320	c	IF(IRATIO . EQ	. 1) THEN		1114
1116	322	Ĺ	CALL	VERCENC IS	()		1115
1117	323		KSDE	LT(ISS) =	IDUMP		1117
1118	324		LTRI	G = LTRIG +	l		1118
1119	325		JTRI	G(LTRIG)	= NS - 1		1119
1120	320	r	K2DF	LI(NS - 1) = 100MP		1120
1122	328	C.	LTRI	G = LTRIG +	1		1121
1123	329		JTRI	G(LTRIG)	- NS		1123
1124	330	~	KSDE	LT(NS) =	IDUMP		1124
1125	332	ſ	1 EDC		1		1125
1127	333		IREC	NC(IEDGE)	I = NF		1120
1128	334		NCOL	OR = NCOLOR	+ 1		1128
1129	335		JEE(NCOLOR) =	NE		1129
1130	336		JSE(NE = 1	1		1130
1132	338		IREC	E = 1EDGE +	1 = NE - 1		1131
1133	339		NCOL	OR - NCOLOR	+ 1		1133
1134	340		JEE(NCOLOR) =	NE - 1		1134
1135	349		JSE(NE - 1) =			1135
1130	343		IRFC	NC(IFDGE)	= NF - 2		1130
1138	344		NCOL	DR = NCOLOR	+ 1		1138
1139	345		JEE (NCOLOR) =	NE - 2		1139
1140	340	c	JSE(NE - 2) =	1		1140
1142	348	C	FLSE				1141
1143	349	С					1143
1144	350		IDIS	CT = 0			1144
1145	352		100 54	45 KK = 4 , - 157 kk			1145
1147	353		IEF	IABS(IEE			1140
1148	354		IJE5	5 = JE(5)	IEF)		1148
1149	355		IF(IJE55 . EQ	O) THEN		1149
1150	350		111	122. GI. GI. GI. GI. GI. GI. GI. GI. GI. GI	J J IHEN FF N		1150
1152	358		ELSE				1152
1153	359		ISI -	JE(3 , 18	EF)		1153
1154	300		END	LF (S = SADEA/	101 /		1154
1156	362		IE1	= IABS(JS(4 . ISI))		1155
1157	363		XE1 -	• XE(Ì , ÌE	El ;		1157
1158	364		IJE5	5 = JE(5,			1158
1159	200 366		HUI -	* AKEAAS *) • IARS(19/			1122
1161	367		XE2	• XE(1 , 1	2)		1161
1162	368		IJE5	5 = 1JE55 +	JE(5 , 1E2)		1162
1163	369		HD2	AREAXS *)	(E2 * XE2		1163
1104	270		163 -	- IND2(J2(U , 151))		1104

0

Thu Jul	1 14:16:08	1993 ac	laphd.f	SUBROUTINE DYNPTN	page	17
1165	371	XE3 = X8	(1, IE3)			1165
1166	372	IJE55 =	IJE55 + JE(5 , IE3)			1166
1167	373	HD3 = AH	AMAY1 (HD1 HD2 HC	2)		110/
1160	374	YSAREA -	$\times XS(3, 1SI)$			1169
1170	376	IF(RATI	0 . LT . 7 AND . Y	SAREA . GT . SMINVG . AND .		1170
1171	377			IJE55 . EQ . 0) THEN		1171
1172	378		•] 'D = 4 - 6			11/2
1174	380	IE = IAE	IS(JS(IR , ISI))			1174
1175	381	IF(JSE	IE). EQ. 0) THEN	ł		1175
1176	382	IEDGE -	IEDGE + 1			1176
11//	383 384	IKELNL(12062) = 12 NCOLOR + 1			1178
1179	385	JEE (NC	DLOR) = IE			1179
1180	386	JSE(IE) = 1			1180
1181	387	END IF				1181
1182	388 435 389		CEN(IST)			1183
1184	390	KSDELT	ISI) = IDUMP			1184
1185	391	LTRIG -	LTRIG + 1			1185
1186	392	JTRIG(TRIG) = NS - 1			1180
1187	393 304 C	KSUELI	NS - 1) * 100MP			1188
1189	395	LTRIG -	LTRIG + 1			1189
1190	396	JTRIG(TRIG) = NS			1190
1191	397	KSDELT(NS) = IDUMP			1191
1192	398 U 399	IFDGE *	IEDGE + 1			1193
1194	400	IRECNC (IEDGE) = NE			1194
1195	401	NCOLOR	NCOLOR + 1			1195
1196	402	JEE (NC	DLOR) = NE			1190
1197	405	JSE(NC) = 1 IFDGE + 1			1198
1199	405	IRECNC (IEDGE) = NE - 1			1199
1200	406	NCOLOR	- NCOLOR + 1			1200
1201	407	JEE (NC	JLOR = NE - 1			1201
1202	400	IEDGE -	IEDGE + 1			1203
1204	410	IRECNC (IEDGE) = NE - 2			1204
1205	411	NCOLOR	NCOLOR + 1			1205
1206	412 413	JEE (NU	JLUK) = NE - 2			1207
1208	414	ENDIF				1208
1209	415	END IF	-			1209
1210	416 545	CONTINU				1210
1211	417 C	IEC 101	SCT , EO , O) THEN			1212
1213	419	IE1 - I.	ABS(JS(4 , ISS))			1213
1214	420	XEI = X	E(1, IEI)			1214
1215	421 A22	$\frac{1E2}{YF2} = 1$	F(1) (F2)			1216
1217	423	IE3 - I	ABS(JS(6 , ISS))			1217
1218	424	XE3 = X	E(1, IE3)			1218
1219	425	IEDIST	= IE1 - VE1			1219
1220	420	IF(XE2	. GT . XEDIST) THEN			1221
1222	428	XEDIST	= XE2			1222
1223	429	IEDIST	= IE2			1223
1224	430 431	TEL XE3	. GT . XEDIST) THEN			1225
1226	432	XEDIST	= XE3			1226
1227	433	IEDIST	= 1£3			1227
1228	434	END IF				1229
1229	435 436	12E = 1	ELA, IEDIST)			1230
1231	437	XSISL =	XS(3 , ISL)			1231
1232	438	XSISR =	XS(3 , ISR)			1232
1233	43 9 440	1JE5 # 15/ 901	JE(5, ILUIST) SI . GT . RMINVG . AN	D. XSISR, GT. RMINVG, AND		1234
1235	441	. IJE	5. EQ . 0 . AND . IR	ATIO . NE . 2) THEN		1235
1236	442	IF(155	. NE . ISL) THEN			1230
1237	443	DO 345	IR = 4, b RS/ IS/ 10 ISI \ \			1238
1238	444	1E # 1A	us(us(17, 13C))			

•

€

1

•

١

1

1

1

1

ł

Thu Jul	1 14:	16:08	1993 ad <mark>aphd.</mark> f	SUBROUTINE DYNPTN	page	18
1239 1240 1241 1242 1243 1244	445 446 447 448 449 450		IF(JSE(IE) . IEDGE = IEDGE + IRECNC(IEDGE) NCOLOR = NCOLOR JEE(NCOLOR) = JSE(IE) = 1	EQ . 0) THEN 1 = IE + 1 IE		1239 1240 1241 1242 1243 1243
1245	451 452	345	END IF CONTINUE			1245
1247 1248	453 454	С	END IF			1240
1249	455	Ţ	IF(ISS . NE . I	SR) THEN		1248 1249
1250	450		IE = IABS(JS(1	в R. ISR))		1250
1252 1253	458 459		IF(JSE(IE) . IEDGE = IEDGE +	EQ. 0) THEN		1252
1254 1255	460 461		IRECNC(IEDGE)	- IE + 1		1255
1256	462		JEE(NCOLOR) =	IE		1255 1256
1258	465		JSE(IE) = 1 END IF			1257 1258
1259 1260	465 466	355	CONTINUE END IF			1259
1261 1262	467 468	С	IDONE - 0			1260
1263	469		CALL DISECT (IE	DIST , IDONE , IDUMP)		1262 1263
1265	470	С	IF (IDONE . EQ .	1) THEN		1264
1266 1267	472 473		LTRIG = LTRIG +	i NS		1266
1268	474		KSDELT(NS) = I	DUMP		1267
1270	476		JTRIG(LTRIG) =	NS - 1		1269 1270
1271	477 478	С	KSDELT(NS-1)	- IDUMP		1271
1273 1274	479 480		IEDGE = IEDGE +	1 = NF		1273
1275	481		NCOLOR = NCOLOR	- mL +]		1274
1270	483		JSE(NE) = 1	NE		1276 1277
1278 1279	48 4 485		IEDGE = IEDGE + IRECNC(IEDGE)	1 ≈ NE - 1		1278
1280 1281	486 487		NCOLOR = NCOLOR	+ 1 NE 1		1280
1282	488		JSE(NE - 1) =			1281 1282
1284	409		IRECNC(IEDGE)	1 = NE - 2		1283 1284
1285 1286	491 492		NCOLOR = NCOLOR - JEE(NCOLOR) = 1	▶ 1 ₩E - 2		1285
1287 1288	493 49 4		JSE(NE - 2) = 0	L		1287
1289	495	C				1288
1290	490		END IF			1290 1291
1292 1293	498 499		END IF END IF			1292 1293
1294 1295 1296	500 501 502	ິ ິ 320	CONTINUE			1294 1295
1297 1298	503 504	•	DO 340 IEM = 1 , IE = JEE(IEM)	NCOLOR		1290 1297 1298
1300	506	L	ISL = JE(3 , IE)		1299 1300
1302	508		IJE5 = JE(5, IE)	15L) 		1301 1302
1303 1304	509 510		IF(YSAREA . GE . IE1 = IABS(JS(4	RMINVG . AND . IJE5 . NE . 0) THEN		1303 1304
1305 1306	511 512		IE2 - IABS(JS(5	· , ISL))		1305
1307	513		IJE51 = JE(5, 1)	E1)		1300
1309	515		IJE52 = JE(5, 1) IJE53 = JE(5, 1)	E3)		1308 1309
1310 1311	516 517		IF(IJE51 . NE . IEDIST = IE1	O) THEN		1310
1312	518		XE1 = XE(1, IE1))		1312

Thu Jul	1 14:16:0	8 1993 adaphd.1	SUBROUTINE DYNPTN	page	19
1313	519	XE2 - XE(1 ,	162)	;	1313
1314	520	XE3 = XE(1)	IE3)	2	1314
1315	521	END IF]	1315
1310	522	IF(1JE52 - HE IEDIST - 1E2	. U) THEN		1310
1318	525	XF1 = XF(1)	IF2)		1317
1319	525	XE2 = XE(1 ,	IEI)		1319
1320	52 6	XE3 = XE(1)	IE3)	į	1320
1321	527	END IF		1	1321
1322	528	1F(1JE53 . NE	. U) THEN]	1322
1323	530	XF1 = XF(1)	(F3)	-	1323
1325	531	XE2 = XE(1)	IE2)	1	1325
1326	532	XE3 = XE(1),	IE1)	1	1326
1327	533	END IF	VEC 1 - 100101 1	1	1327
1328	539	XEDISI = 1. /	AE(I , IEUISI)]	1328
1330	536	YF3 = XF3 + XF	DIST	-	1330
1331	537	ZE2 = (YE2 -	1.5) * (YE21)		1331
1332	538	ZE3 = (YE3 -	1.5) * (YE31)	1	1332
1333	539	YY2 = XE1 * X	1 + XE2 * XE2 + .35 * XE1 * XE2 - XE3 * XE3	1	1333
1334	54U 541	TT3 = XE1 - X1	$1 + \lambda L 3 = \lambda L 3 + .35 = \lambda L 1 = \lambda L 3 - \lambda L 2 = \lambda L 2 = \lambda L 2 = 0$		1334
1336	542	YY2. GT	0. AND YY3 GT 0. THEN		1336
1337	543	CALL DISECT (IEDIST , IDONE , IDUMP)	j	1337
1338	544 C			J	1338
1339	545	LTRIG = LTRIG	+ 1]	1339
1340	540 547	UTRIG(LIKIG ,	* NS : INIMP	1	1340
1342	548 C	NOULLI (HO)			1342
1343	549	IEDGE = IEDGE	+ 1	j	1343
1344	550	IRECNC(IEDGE) = NE	1	1344
1345	551	NCOLOR = NCOLO]	1345
1340	552 553	JEE(MCULUR)	= NC		1340
1348	554	IEDGE = IEDGE	+ 1		1348
1349	555	IRECNC(IEDGE) = NE - 1		1349
1350	55 6	NCOLOR = NCOLO	Ř + 1	1	1350
1351	557	JEE(NCOLOR)	= NE - 1]	1351
1352	550 (JSE(ME - I)	* 1		1352
1354	560	ELSE			1354
1355	661 C			t	1355
1356	562	IEDIST = JE1			1356
1358	503 564	$\frac{1}{1}$	YEDIST) THEN	1	1358
1359	565	XEDIST = XE2			1359
1360	566	IEDIST = IE2		j	1360
1361	567	END IF	VEDICE & THEN	1	1361
1302	560	IF(XE3 , GT , YEATST - YE7	XEUISI) THEN		1302
1364	570	1EDIST = 1E3			1364
1365	571	END IF		j	1365
1366	572	ISL = JE(3)	IEDIST)	1	1366
1367	5/3	ISK = JE(4, y)			130/
1369	575	$x_{SISE} = x_{SE} = x_{SE}$, ISC)	:	1369
1370	576	IJE5 - JE(5	IEDIST)		1370
1371	577	IF(XSISL . G	. RMINVG . AND . XSISR . GT . RMINVG . AND .		1371
1372	578		IJE5.EQ.O) THEN		1372
13/3	5/9	UU 045 1K = 4 1F = 1ARS(15	, o	:	1374
1375	581	IF(JSE(IE)	. EQ . 0) THEN	:	1375
1376	582	IEDGE - IEDGE	+ 1		1376
1377	583	IRECNC(IEDGE) = IE		1377
1378	584 585	NCOLOR + NCOLO	K + 1 - 15		13/8
1380	586	JSF(IF) = 1	- 16		1380
1381	587	ENDIF			1381
1382	588 64	5 CONTINUE	<i>.</i>		1382
1383	589	DO 655 IR = 4	, b		1383
1384	590 501	1E = 1882(J2)	IK, IDK J J FO, O) THEN		1385
1386	592	IEDGE = IEDGE	+ 1		1386

•

Th u J ul	1 14:	16:08	1993 adaphd.f SUBROUTINE DYNPTN	page	20
1387 1388 1389 1390 1391 1392 1393	593 594 595 596 597 598 599	655 C	IRECNC(IEDGE) = IE NCOLOR = NCOLOR + 1 JEE(NCOLOR) = IE JSE(IE) = 1 END IF CONTINUE		1387 1388 1389 1390 1391 1392 1393
1394 1395 1396 1397	500 501 502 603	С	IDONE = 0 CALL DISECT (IEDIST , IDONE , IDUMP) IF(IDONE , EQ , 1) THEN		1394 1395 1396
1398 1399 1400	604 605 606		LTRIG = LTRIG + 1 JTRIG(LTRIG) = NS KSDELT(NS) = IDUMP		1398 1399
1401 1402 1403	607 608 609		LTRIG = LTRIG + 1 JTRIG(LTRIG) = NS - 1 KSDELT(NS - 1) = IDUMP		1401 1402 1403
1404 1405 1406	61 0 611 612	C	IEDGE = IEDGE + 1 IRECNC(IEDGE) = NE		1404 1405 1406
1407 1408 1409	613 614 615		NCOLOR = NCOLOR + 1 JEE(NCOLOR) = NE JSE(NE) = 1		1407 1408 1409
1410 1411 1412	616 617 518		IEDGE = IEDGE + 1 IRECNC(IEDGE) = NE - 1 NCOLOR = NCOLOR + 1		1410 1411 1412
1415 1414 1415 1416	620 621		JEE(NCULOR) = NE - 1 $JSE(NE - 1) = 1$ $IEDGE = IEDGE + 1$ $IEDGE(IEDGE = NE - 2$		1413 1414 1415
1417 1418 1419	623 624 625		NCOLOR = NCOLOR + 1 JEE(NCOLOR) = NE - 2 JSE(NCOLOR) = NE - 2		1410 1417 1418
1420 1421 1422	626 627 628	С	END IF		1420 1421 1422
1423 1424 1425	629 630 631	340	END IF END IF Continue		1423 1424 1425
1420 1427 1428 1429	632 633 634	C C	NSS - LTRIG		1426 1427 1428
1429 1430 1431 1432	636 637 638		IE = JEE(IEM) CALL RECNC(IE , IDONE , ITL , ITR , JA , JB , JC , JD) CALL RECNC(IA JADONE 1TL , ITR JAA JAB JAC JAD)		1429 1430 1431 1432
1433 1434 1435	639 640 641		CALL RECNC(JB , JBDONE , ITL , ITR , JBA , JBB , JBC , JBD) CALL RECNC(JC , JCDONE , ITL , ITR , JCA , JCB , JCC , JCD) CALL RECNC(JD , JDDONE , ITL , ITR , JDA , JDB , JDC , JDD)		1433 1434 1435
1436 1437 1438	642 643 644	370 C 300	CONTINUE		1436 1437 1438
1440 1441 1442	646 647 648	5	NVECE = NE / MBL NREME = NE - NVECE * MBL NVECS = NS / MBL		1439 1440 1441 1442
1443 1444 1445	649 650 651		NREMS = NS - NVECS * MBL NVECV - NV / MBL NREMV - NV - NVECV * MBL		1443 1444 1445
1446 1447 1448 1440	552 653 654	C 400	DO 400 INE = 1 , NVECE NOFVEE(INE) = MBL CONTINUE		1446 1447 1448
1450 1451 1452	656 657 658	4UV	NVEEE = NVECE IF(NREME . GT . 0) THEN NVEEE = NVFCF + 1		1449 1450 1451 1452
1453 1454 1455	659 660 661	с	NOFVEE (NVEEE) = NREME END IF		1453 1454 1455
1456 1457 1458	662 663 664	410	DO 410 INS - 1 , NVECS NOFVES(INS) = MBL CONTINUE		1456 1457 1458
1459 1460	6 65 6 66		NVEES = NVECS 1F(NREMS . GT . 0) THEN		1459 1460

1

(

Thu Jul	1 14:1	16:08 19	93 adaphd.1	:	SUBROUTINE DYNPTN	page	21
1461	667		NVEES . NVECS	• 1			1461
1462	668		NOEVES(NVEES)	= NREMS			1462
1463	6 69		END IF				1463
1464	670	С					1464
1465	671		$00 \ 420 \ INV = 1$, NVECV			1465
1466	672		NOFVEV(INV)	MBL			1466
1467	673	420	CONTINUE				1467
1468	674		NVEEV = NVECV				1408
1469	675		IF(NREMV . GT	. U) THEN			1409
14/0	6/6		NVEEV = NVELV	Γ <u> </u> \ _ ΝΟΓΜ\/			1470
14/1	677		NUPVEV (NVEEV .) = NKEMV			1472
14/2	670	r	END IF				1473
1473	680	L	DOTNT* NV NE !	15			1474
1475	681	C	EKTHE 'HATHE'	10			1475
1476	682	Č	EXIT POINT FROM	SUBROUTINE			1476
1477	683	č					1477
1478	684	C					1478
1479	6 85		RETURN				1479
1480	6 86	С	*****				1460
1481	6 87	C					1901
1482	688	C					1402
1483	689		END				1405
T hu Jul	1 14:	16:08 1	993 adaphd.	f	SUBROUTINE DYYPTN		
1404	•						1484
1404	1	r	SUDRUUTINE UTI	FINE UAKEN , NOFUI	v, iounr, ciria /		1485
1400	2	ř				I	1486
1400	د ۸	r				Ī	1487
1488	5	č	DYYPTN ADAPT	THE GRID DYNAMICAL	LY. ADD VERTECES	I	1488
1489	ő	č	SUB DIVIDE TH	E TRIANGLE THAT WE	RE FLAGED IN DYNPTH	I	1489
1490	ž	Č				I	1490
1491	8	Č			***************************************	I	1491
1492	9	С					1492
1493	10		IMPLICIT R	EAL (A-H,O-Z)			1493
1494	11	С					1494
1495	12		include 'a	msh00.h'			1493
1496	13		include 'C	nyauu.n'			1497
1497	14		include 'C	1NCUU.N'			1498
1490	10		include 'c	ph510.11			1499
1500	17	c		histori			1500
1501	18	C	INTEGER .ITRIG(MEM).KTRIG(MEM).IR	ECNC(MEM)		1501
1502	19		INTEGER JSE (ME	M), JEE (MEM), IOFDVS	(10), NOFDVS(10)		1502
1503	20	С		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1503
1504	21		EQUIVALENCE (U	L,JTRIG)			1504
1505	22		EQUIVALENCE (V	R,KTRIG)			1505
1506	23		EQUIVALENCE (V	L.IRECNC)			1000
1507	24		EQUIVALENCE (P	R, JSE)			1508
1508	25	^	EQUIVALENCE (P	L,JEE)			1509
1509	20	L					1510
1210	21		ANTNUC - CADE	VG * THIRD			1511
1511	20		RMINVG = 7 *	SMINVG			1512
1513	30		DO 115 IS = 1	, NS			1513
1514	31		JEE(IS) = 0	• ••=			1514
1515	32	115	CONTINUE				1515
1516	33		MSS = 0				1517
1517	34		NSS = LTRIG				1519
1518	35	С					1510
1519	36		DU 140 KDIV	i, NUFDIV			1520
1520	37		[1KIG = 0	NCC			1521
1521	38	c	DO 120 K2 = 1	ccn ,			1522
1526	39	Ŀ	10101 - 221	KS)			1523
1523	4U A 1		122 = 91KIR(() THEN			1524
1524	41 //2	ſ	11 (133 + 110	, o y mula			1525
1525	42	~	D0.160 KR = 1	. 3			1526
1527	43		IVV = JS/ KR	. ISS)			1527
1528	45	С					1528
1529	46		IE = JV(2	!, IVV)			1529
1530	47		IF(IE . (IT.O) THEN			1230
1531	48	С					1771

Thu Jul	1 14:	16:08	1993	adaphd.f		SUBROUTINE DYY	PTN	page	22
1532 1533 1534	49 50 51		1\ 	/1 = JE(1 , F(IVI . EQ	, IE) . IVV) THEN				1532 1533
1535	52		EL	_SESE	, 12)				1534 1535
1536	53 54		IS En	SI = JE(4, ND IF	. (E)				1536
1538	55	c	IS	5 = ISI					1537
1559	57	750	CO	INTINUE					1539
1541 1542	58 59	C	16	S - 156/ 15	c)				1541
1543	60		XA	$\frac{15}{15} = \frac{5}{15} \frac{15}{15}$, IS)				1542
1544 1545	61 62		1F 11	(JES . EQ RIG = ITRIG	. 0 . AND . XAS . G + 1	. GT . RMINVG)	THEN		1544
1546	63		KT	RIG(ITRIG) = IS				1545
1548	65		JE	E(IS) = 1	= 100MP 1				1547 1548
1549 1550	66 67	r	EN	DIF					1549
1551	68	v	00	760 IR = 1	ι, 3				1550 1551
1552	70 70		JR IE	.= MOD{ IR A = IABS(J	, 3) + 1 JS(JR + 3, IS)	}			1552
1554	71		IF	(1EA . ÈQ	IE) THEN	,			1555
1556	73		IE	R = IABS(J)	(+1,3)+4)S(JJR, IS))				1555
1557 1558	74 75	С	īv	1 = JF(1)	IFR)				1557
1559	76		IF	(IVI EQ	. IVV) THEN				1559
1561	78		EL	K = JE(3),	IER)				1560
1562 1563	79 80		IS EN	R = JE(4),	IER)				1562
1564	81		EN	D IF					1563 1564
1565	82 83	С 76 0	CO	NTINUE					1565
1567 1568	84 85	C	15						1567
1569	86		IS	= ISR = ME .	. 151) HEN				1568
1570 1571	87 88		IE GO	= IER TO 750					1570
1572	89	~	EN	DIF					15/1 1572
1573	90 91	Ĺ	ELS	SE					1573 1574
1575 1576	92 93	C	10	- 15					1575
1577	94		IVI	I = JE(1),	IE)				1576 1577
1578 1579	95 96		IF(IS)	(IV1 . EQ . I = JE(3 .	. IVV) THEN				1578
1580	97 08		ELS	SE JE (A	···)			1	1580
1582	99		END) IF	IC)			1	1581 1582
1583 1584	100 101		IS IST	= ISI (= 0				1	1583
1585	102	c	IIE	= IE]	1585
1587	104	650	CON	ITINUE				1	1586 1587
1588 1589	105 106	С	JES	S = JEE(IS)			1	1588
1590	107		XAS	= XS(3)	ís)			1	1589
1591 1592	108		IF(ITR	JES.EQ. (IG = ITRIG	. 0 . AND . XAS . + 1	GT . RMINVG) 1	THEN	1	1591
1593 1594	110		KTR	(IG(ITRIG)) = IS - 1011MP			į	1593
1595	112		JEE	(IS) = 1	- 10011F			1	1594
1590	115	С	FND	11				1	1596 1597
1598 1599	115 116		00	660 IR = 1	, 3 3) + 1			1	598
1600	117		IEA	= IABS(JS	S(JR + 3 , IS))		1	1222 1222
1602	118		IF(JJR	ILA . EQ . = MOD(JR	. it) THEN + 1 , 3) + 4			1	601 602
1603 1604	120	c	IER	= IABS(JS	S(JJR, ÍS))			1	603
1605	122	•	IV1	= JE(1 ,	IER)			1	605

Thu Jul	1 14:1	16:08	1993 adaphd.f	SUBROUTINE DYYPTN	page	23	
1606	123		IF(IVI . EQ . IVV)	THEN		1606	
1607	124		ISR = JE(3, IER)			1607	
1000	125		$\frac{1}{100} = \frac{1}{100} \left(\frac{1}{100} + \frac{1}{100} \right)$			1608	
1610	127		END IF			1610	
1611	128		END IF			1611	
1612	129	C				1612	
1613	130	660	CONTINUE			1613	
1014	131	L		7UCN		1614	
1615	133		IS = ISR			1615	
1617	134		IE = IER			1617	
1618	135		GO TO 650			1618	
1619	136	c	END IF			1619	
1620	138	ι.	END TE			1620	
1622	139	160) CONTINUE			1622	
1623	140	C				1623	
1624	141	100	END IF			1624	
1025	142	150	CUNTINUE			1625	
1627	144	C	DO 170 IS = 1 . ITRIG			1627	
1628	145		JTRIG(IS + MSS) = KTRI	IG(IS)		1628	
1629	146	170) CONTINUE			1629	
1630	147		NSS = LIKIG NSS = MSS + ITDIC			1630	
1632	140	C	$n_{33} = n_{33} + 11$ RIG			1632	
1633	150	140	CONTINUE			1633	
1634	151		NSS = MSS			1634	
1635	152	C	00 200 KDTV 1 1			1635	
1637	153		$\frac{1}{100} \frac{1}{100} \frac{1}$			1637	
1638	155	С				1638	
1639	156		$00 \ 310 \ IS = 1$, NSS			1639	
1640	157		ISS = JTRIG(IS)			1640	
1641	158		XSAKEA = XS(3, 1SS)) THEM		1041	
1643	159	С	IF (ASAREA . GE . RATAN	,) (1 E M		1643	
1644	161	•	$00\ 335\ IR = 4$, 6			1644	
1645	162		IE - IABS(JS(IR , ISS			1645	
1646	163		IJE5 = JE(5, IE)			1645	
1647	165		1R2 = MOD(IR = 3, 3)	+ 4		1648	
1649	166		IE2 - IABS(JS(JR2 , IS	SS))		1649	
1650	167		JR3 = MOD(IR - 2, 3)	+ 4		1650	
1651	168		IE3 = IABS(JS(JR3, IS))	55))		1651	
1653	170		XF2 = XF(1) F2			1653	
1654	171		$\overline{XE3} = \overline{XE}(1, IE3)$			1654	
1655	172		XEDIST = 1. / XE1			1655	
1656	173		YEZ = XEZ * XEDIST			1650	
1658	175		ZE2 = (YE2 - 1.5) * (YE21)		1658	
1659	176		ZE3 = (YE3 - 1.5) * (YE31)		1659	
1660	177		YY2 = XE1 * XE1 + XE2 *	XE2 + .35 * XE1 * XE2 - XE3 * XE3		1660	
1661	178		YY3 = XE1 * XE1 + XE3 * IE(7E2 + T 0 AND	XE3 + .35 * XE1 * XE3 - XE2 * XE2		1662	
1663	180		YY2 . GT . 0 AND	· YY3 . GT . 0.) THEN		1663	
1664	181		CALL DISECT (IE , IDONE	I, IDUMP)		1664	
1665	182	C				1665	
1666	183		LTRIG = LIRIG + 1			1000	
1668	185		STRIGT LINIG) * MS KSDELT(NS) = IDUMP			1668	
1669	186	C	HOULD IN THE IDEA			1669	
1670	187		END IF			1670	
1671	188		END IF			1671	
10/2	100	222	CUNTINUE FND TF			1673	
1674	191	310	CONTINUE			1674	
1675	192	С				1675	
1676	193		NSS = LTRIG			1070	
10//	194 195		$\frac{1}{NCOLOR} = 0$			1678	
1679	196	С				1679	

Thu Jul	1 14:	16:08	1993 a	daphd.f	SUBROUTINE DYYPTN	page	24
1680 1681 1682 1683 1684	197 198 199 200 201	295 C	DO 295 JSE(IE CONTINU	IE = 1 ,) = 0 E	NE		1680 1681 1682 1683
1685 1686	202 203	r	ISS = J XSAREA	TRIG(15 - XS(3	() () () ()		1685 1685 1686
1688 1689	204	C	IF(XSA	REA . GT	. RMINVG) THEN		1687 1688 1689
1690 1691 1692	207 208 209		00 735 IE = IA IF(JSE	IR = 4 , BS(JS((IE) .	6 IR.ISS)) EQ.O)THEN		1690 1691 1692
1693 1694 1695	210 211 212		IEDGE = IRECNC(NCOLOR	IEDGE + IEDGE) • NCOLOR	1 = IE + 1		1693 1694
1696 1697 1698	213 214 215		JEE(NC) = 1	IE		1695 1696 1697
1699 1700	216	735 C	CONTINUE				1698 1699 1700
1702 1703	219		$\frac{AKEAXS}{IE1} = I/XE1 = XE$	= SAREA(ABS(JS(E(1 , II	155) 4, 155)) E1)		1701 1702 1703
1704 1705 1706	221 222 223		HD1 = AF IJE5 = IE2 = IA	REAXS *) IE(5 , 1 NBS(JS(XE1 * XE1 IE1) 5 , ISS))		1704 1705 1706
1707 1708 1709	224 225 226		XE2 = XE HO2 = AF IJE5 = 1	E(1 , II REAXS * > (JE5 + JE	E2) (E2 * XE2 E(5 . IE2)		1707 1708
17 10 17 11 17 12	2 27 2 28 2 29		IE3 = IA XE3 = XE HD3 = AF	NBS(JS(1 , 1E NEAXS *)	6, ISS)) 3) (E3 * XE3		1710 1711 1712
1713 1714 1715	230 231 232		IJE5 = 1 RATIO = IRATIO =	JE5 + JE AMAX1(H	E(5 , IE3) HD1 , HD2 , HD3)		1713 1714
1716 1717 1718	233 234 235		IF(RATI	0.LE.	7. AND . 1JE5 . EQ . 0 . AND . XSAREA . GT . SMINVG) IRATIO = 1		1715 1716 1717
1719 1720 1721	236 237 238	С	IF(IRAT	10 . EQ	. 2) THEN		1718 1719 1720
1722 1723 1724	239 240 241		IJE52 = IJE53 =	JE(5 , JE(5 ,	IE2) IE3)		1721 1722 1723
1725 1726	242 243		IEDIST = XE1 = XE	IE1 (1, IE	1)		1724 1725 1726
1728 1729	245 246 247		XE2 = XE XE3 = XE END IF	(1,1E (1,IE	2)		1727 1728 1729
1731 1732	248 249		IFC IJE5 IEDIST = XE1 = XE	2 . NE . IE2 (1, IE	0 j imen 2)		1730 1731 1732
1735 1734 1735	250 251 252		XE2 = XE XE3 = XE END IF	(1 , 16 (1 , 16	1) 3)		1733 1734 1735
1730 1737 1738	253 254 255		IF(IJE5 IEDIST = XE1 = XE	3.NE. 1E3 (1,1E	U) THEN 3)		1736 1737 1738
1/39 1740 1741	256 257 258		XEZ = XE XE3 = XE END IF	(1, IE (1, IE	2) 1)	1	1739 1740 1741
1/42 1743 1744	259 260 261		XEDIST = YE2 = XE2 YE3 = XE2	1. / XE 2 * XEDI: 3 * XEDI:	(1, IEDIST) ST ST]	1742 1743 1744
1745 1746 1747	262 263 264		ZE2 = (ZE3 = (YY2 = XE2	(E2 - 1.) (E3 - 1.) L * XE1	5) * (YE21) 5) * (YE31) + XE2 * XE2 + .35 * XE1 * XE2 - XE 3 * XE3	1 1 1	1745 1746 1747
1748 1749 1750	265 266 267		YY3 = XE1 IF(ZE2 YY2	L * XE1 - LT(. GT . 0	+ XE3 * XE3 + .35 * XE1 * XE3 - XE2 * XE2 D . AND . ZE3 . LT . O AND . AND . YY3 . GT . O.) THEN	1	1748 1749 1750
1751 1752 1753	268 269 270	С	CALL DISE	CT (IEC TRIG + :	DIST, IDONE, IDUMP)	1	.751 .752 .753

Thu Jul	1 14:16:08	1993	a daphd. f	SUBROUTINE DYYPTN	page	25	
1754	271	JTRIG(LTRIG)	= NS		1754	
1755	272	KSDELT	(NS) =	IDUMP		1755	
1756	273 C					1756	
1757	274	IEDGE	= IEDGE	· 1		1757	
1/58	275	IRECNC	(IEDGE			1758	
1/59	2/0	NCOLOR	= NLULUI			1/59	
1700	279	JEE(N	CULUR) *			1761	
1762	270		- IEDĈE -	1		1762	
1763	280	IRECNC	I IFOGE			1763	
1764	281	NCOLOR	= NCOLOR	1 + 1		1764	
1765	282	JEE(N	COLOR) =	NE - 1		1765	
1766	283	JSE (N	E - 1) •	• 1		1766	
1767	2 84 C					1767	
1768	285	END IF				1768	
1/69	286	END IF				1/69	
1771	207 U	15/ 10	ATIO C	1) TUEN		1771	
1772	200 280 C	161 10		· · · · · · · · · · · · · · · · · · ·		1772	
1773	290	CALL V	ERCENC IS	(2)		1773	
1774	291	KSDELT	(ISS) -	IDUMP		1774	
1775	292	LTRIG	🗕 LTRIĆ +	1		1775	
177 6	2 93	JTRIG(LTRIG)	= NS - 1		1776	
1777	294	KSDELT	(NS - 1) = IDUMP		1777	
1778	295 C					1//8	
1700	296		= LIKIG 4	- MC		1790	
1791	297					1781	
1782	299 0	KODELI	(115) -			1782	
1783	300	IEDGE	= JEDGE -	• 1		1783	
1784	301	IRECNC	(IEDGE)	= NE		1784	
1785	3 02	NCOLOR	= NCOLOF	1 + 1		1785	
1786	303	JEE(N	COLOR) =	NE NE		1786	
1787	304	JSE(N	E) = 1	1		1/8/	
1780	305		= ICDGE ' (IFOCE '			1789	
1790	307	NCOLOR	- NCOLOF	(+ 1)		1790	
1791	308	JEE(N	COLOR) =	NE - 1		17 91	
1792	309	JSE(N	E - 1) -	- 1		1792	
1793	310	IEDGE	- IEDGE			1793	
1/94	311	IKELNC	(ILUGE)			1794	
1795	313	JEE(N		s NF - 2		1796	
1797	314	JSE(N	E - 2) -	1		1797	
1798	315 C		•			1798	
1799	316	ELSE				1799	
1800	317 C	101007	~			1800	
1802	310		= U KK - A	6		1802	
1803	320	1FF = .	JSC KK	ISS)		1803	
1804	321	IEF -	IABS(IE			1804	
1805	322	IJE55	= JE(5 ,	IEF)		1805	
1806	323	IF(IJ	E55 . EQ	. O) THEN		1800	
1807	324		15// 1	U) IHEN		1808	
1800	325	FI SE	UE(4 , 1			1809	
1810	327	ISI =	JE(3.)	EF)		1810	
1811	328	END IF				1811	
1812	329	AREAXS	= SAREA	ISI)		1812	
1813	330	IE1 =	IABS(JS)	4 (ISI))		1013	
1014	331	ALI ≈ 11555	AE(1 , 1 - IE(6			1815	
1816	333	10200 HD1 #	ARFAXS *	XF1 * XF1		1816	
1817	334	IE2 =	IABS(JS)	5, ISI))		1817	
1818	335	XE2 =	XE(1,	E2)		1818	
1819	336	IJE55	= IJE55 ·	JE(5, IE2)		1819	
1820	337	HD2 =	AREAXS *	XEZ * XEZ		1020	
1821	338	123 =	TARPET A	[[] [] [] [] [] [] [] [] [] [1822	
1823	380	AEJ = . 1.1666 -	ACTI, 1 • 1.3655	LG / - JF (5 F3)		1823	
1824	341	HD3 =	AREAXS *	XE3 * XE3		1824	
1825	342	RATIO	- AMAX1(HD1 , HD2 , HD3)		1825	
1826	343	YSAREA	= XS(3	, ISI)		1826	
1827	344	IF(RA	TIO . LT	. 7 AND . YSAREA . GT . SMINVG . AND .		1951	

	Thu Jul	1 14:	16:08	1993	adaphd.f	SUBROUTINE DYYPTN	page	26
	1828	345		•		IJE55 . EQ . O) THEN		1828
	1829	346		IDISC	[= 1			1829
	1831	347		00 435	S IR = 4			1830
	1832	340		1 = 31 1F(_19	(F(TF)	IK, ISI)) FO O)THEN		1831
	1833	350		IEDGE	= IFDGE +			1832
	1834	351		IRECNO	(IEDGE)) = IE		1033
	1835	352		NCOLOF	t = NCOLOF	8 + 1		1835
	1836	353		JEE(N	icolor) =	• IE		1836
	103/	354			t) ≈ i			1837
	1839	356	435	CONTIN	lif			1838
	1840	357		CALL V	ERCEN(IS	I)		1839
	1841	358		KSDELT	(ISI) =	I ÓUMP		1841
	1842	359		LTRIG	LTRIG +	1		1842
	1043	361			LIRIG)	= NS + 1 \ _ (DUMP		1843
	1845	362	С	NJULLI	(N2 - I) - 100AP		1844
	1846	363	•	LTRIG	- LTRIG +	1		1845
	1847	364		JTRIG(LTRIG)	= NS		1847
	1848	365	c	KSDELT	(NS) =	IDUMP		1848
	1850	367	L	IFOCE		1		1849
	1851	368		IRECNC	(IFDGE)			1850
	1852	369		NCOLOR	- NCOLOR	+ 1		1851
	1853	370		JEE(N	COLOR) =	NE		1853
	1054	3/1		JSE(N	E) ≈ 1			1854
	1856	372		ILUGE	<pre>= itugt + (isnce)</pre>	L + NF 1		1855
	1857	374		NCOLOR		- HE - 1 + 1		1856
	1858	375		JEE(N	COLOR) =	NE - 1		1007
	1859	376		JSE (N	E - 1) =	1		1859
	1861	3//		IEDGE -	= IEDGE +			1860
	1862	370		NCOLOD	- NCOLOD	⇒ NE - 2 - 1		1861
	1863	380		JEE(N	COLOR) =	NE - 2		1862
	1864	381		JSE (NI	- 2) -	1		1903
	1865	382		END IF				1865
	1867	383 384	545	END IF	IF			1866
	1868	385	545 (CONTIN	JE .			1867
	1869	386	•	IF(ID)	ISCT . EO	. O) THEN		1000
	1870	387		IE1 = 1	ABS(JS(4, ISS))		1870
	1871	388		XE1 = >	(E(1 , IE			1871
	10/2	300		$\frac{112}{152} = 1$	AB2(J2)	5 , 155))	-	1872
	1874	391		IE3 = 1	ABS(JS(6 - 155		1873
	1875	3 92		XE3 =)	E(Ì , ÌE	3)	i	1875
	876	393		IEDIST	= IE1		1	1876
ł	10// 1979	394 205			= XE1		i	1877
j	879	396		XFDIST	. ui.∧ ∍ XF2	EDISI) IMEN]	1878
1	880	397		IEDIST	= 1E2		1	1079 1880
1	881	398	•	END IF			j	1881
	882	399		IF(XE3	. GT . X	EDIST) THEN	1	1882
1	884	401		IFDIST	= AEG = IF3			1883
1	885	402		END IF			1	1004
1	886	403		ISL = J	E (3 , IE	DIST)	1	886
1	887	404		ISR = J	E(4 , IE	DIST)	1	887
1	889	405		- ASISE -	XS(3,	15L) · · ·]	888
j	890	407		IJE5 =	JE(5 . 1	EDIST)	1	800
1	891	408		IF(XSI	SL GT .	RMINVG . AND . XSISR . GT . RMINVG . AND .	1	891
1	892	409		· IJE	5.EQ.	O. AND . IRATIO . NE . 2) THEN	1	892
1	093 894	410 411		11(122	• NE• I	SL) THEN 6	1	893
l	895	412		IE = IA	BS(JS(T))	u R. TSL) Y	1	894 905
ī	896	413		IF(JSE	(ÌE) .	EQ. O) THEN	1	896
1	897	414		IEDGE =	IEDGE +	1	i	897
1	698 200	415		IRECNC (IEDGE)	• IE	1	898
1	900	417		JEF(NC	= NCULUK ·	+ L IF	1	899
ī	901	418		JSE(IE) = 1		1	901
							•	

Thu Jul	1 14:1	16:08	1993	adaphd.f	SUBROUTINE DYYPTN	page	27
1902	419		END	IF			1902
1903	420	345	CON	TINUE			1903
1904	421	•	END	IF			1904
1905	422	C) THEN		1905
1900	423		11 (155 . NE . 15K) THEN		1906
1907	424			355 IK = 4, 0	((0.)		1907
1000	425			# THOP (12) EU	(10K)) ()) THEN		1900
1010	420		111	CE = IEDCE + 1	. U / INCN		1010
1910	128		IOF	CNC((FDGE) =	IF		1011
1912	429		NCO	IOR = NCOLOR +			1912
1913	430		JEE	(NCOLOR) = IE	-		1913
1914	431		JSE	(IE) = 1			1914
1915	432		END	ÎF			1915
1916	433	35 5	CON	TINUE			1916
1917	434	_	END	IF			1917
1918	435	C					1918
1919	436		IDO	NE = 0			1919
1920	43/		CAL	L DISECT (TEDI:	SI, IDUNE, IDUMP)		1920
1921	430	c	16(IDONE . EQ . I) THEN		1921
1023	433	L	ITD				1922
1924	141		.178	IG(ITRIG) = N'	Σ.		1923
1925	442		KSD	FIT(NS) = IDU	4P		1925
1926	143		LTR	IG = LTRIG + 1			1926
1927	444		JTR	IG(LTRIG) = N	5 - 1		1927
1928	445		KSD	ELT(NS - 1) =	IDUMP		1928
1929	146	C					1929
1930	447		IED	GE = IEDGE + 1	-		1930
1931	448		IRE	CNC(IEDGE) =	VE		1931
1932	449		NCO	LUK = NCULUK +	l		1932
1034	450		JEE	(NUULUK) = NE			1933
1934	451			(NC) = 1 CE - IEDCE - 1			1934
1936	452		TRE	CNC(IFDGE) = 1	NF = 1		1935
1937	454		NCO	LOR = NCOLOR +	γ υ - γ		1937
1938	455		JEE	(NCOLOR) = NE	- 1		1938
1939	456		JSE	(NE - 1) = 1			1939
1940	457		IED	GE = IEDGE + 1			1940
1941	458		IRE	CNC(IEDGE) =	VE - 2		1 941
1942	459		NCO	LOR = NCOLOR +			1942
1943	460		JEE	(NCOLOR) = NE	- 2		1943
1944	401		JSE	(NE - Z) = 1			1944
1945	402	c	ENU	l Ir			1945
1940	403	6	CND	tr			1940
1048	465		END	16			1048
1949	466		FND	1F			1949
1950	467		END	İF			1950
1951	468	C					1951
1952	469	320) CON	TINUE			1952
1953	470	C		•·• ·•· ·			1953
1954	471		00	340 IEM = 1 , N	COLOR		1954
1955	4/2	c	15	= JEE(IEM)			1905
1930	4/3	ι	151	- 15(3 15)			1950
1058	474		1 JC I VCA	DEV - X2(3 1	51)		1957
1950	476		LIF	5 = 3F(5), 1F)		1959
1960	477		IF(YSAREA . GE . I	RMINVG . AND . IJE5 . NE . 0) THEN		1960
1961	478		ĪEÌ	= $IABS(JS(4)$, ISL))		1961
1962	479		IE2	= IABS(JS(5	, ISL))		1962
1963	480		1E3	= IABS(JS(6	, ISL))		1963
1964	481		IJE	51 = JE(5, IE)			1964
1965	482		IJE	52 = JE(5, IE)	<u>(</u>)		1905
1063	403		115	DJ = JE(D, IE)) / TUEN		1900
1060	404 795		110	IJEDI . NE . U) 181CH		1968
1960	486		YF1	$= XF \{ 1 IF1 \}$			1969
1970	487		XF2	= XE(] . IF2			1970
1971	488		XE3	= XE(1) IE3			1971
1972	489		END	IF			1972
1973	490		IF(IJE52 . NE . 0) THEN		1973
1974	491		IED	IST = IE2			1974
1975	492		XE1	= XE(1 , IE2)		1975

Thu Jul	1 14:16:08	1993 adaphd.f	SUBROUTINE DYYPTH	page	28
1976 1977 1978 1979 1980	493 494 495 496 497	XE2 = XE(1 , IE1) XE3 = XF(1 , IE3) END IF IF(IJE53 . NE . 0) IEDIST = IE3	THEN		1976 1977 1978 1979 1980
1981 1982 1983	498 499 500	XE1 = XE(1, IE3) XE2 = XE(1, IE2) XE3 = XE(1, IE1)			1981 1982 1983
1984 1985	501 502	END IF XEDIST = 1. / XE(1 .	. IEDIST)		1984 1985
1985 1987 1988	503 504 505	YE2 = XE2 * XEDIST $YE3 = XE3 * XEDIST$ $7E2 = (YE2 + 1 + 5) + 1$	* (452))		1986 1987
1989 1990	506 507	ZE2 = (YE2 - 1.5) * ZE3 = (YE3 - 1.5) * YY2 = XE1 * XE1 + XE2	* (YE31) 2 * XE2 + .35 * XE1 * XE2 - XE3 * XE3		1989 1989
1991 1992	508 509	YY3 = XE1 * XE1 + XE3 IF(ZE2 . LT0 . A	3 * XE3 + .35 * XE1 * XE3 - XE2 * XE2 AND . ZE3 . L O AND .		1991 1992
1993 1994 1995	510 511 512 C	CALL DISECT (IEDIST	AND . YY3 . GT . O.) THEN , IDONE , IDUMP)		1993 1994 1005
1996 1997	513 514	LTRIG = LTRIG + 1 JTRIG(LTRIG) = NS			1995 1996 1997
1998 1999 2000	515 516 C	KSDELT(NS) = IDUMP			1998 1999
2000 2001 2002	518 519	IRECNC(IEDGE + 1 NCOLOR = NCOLOR + 1			2000
2003 2004	520 521	JEE(NCOLOR) = NE JSE(NE) = 1			2003 2004
2005 2006 2007	522 523 524	IEDGE = IEDGE + 1 IRECNC(IEDGE) = NE NCOLOR = NCOLOR + 1	- 1		2005
2008 2009	525 526	JEE(NCOLOR) = NE - JSE(NE - 1) = 1	1		2008 2009
2010 2011 2012	527 C 528 529 C	ELSE			2010 2011 2012
2013 2014	530 531	IEDIST = IE1 XEDIST = XE1			2013 2014
2015 2016 2017	532 533 534	IF(XE2 . GT . XEDIST XEDIST = XE2 IEDIST = 162	T) THEN		2015 2016 2017
2018 2019	5 35 536	END IF IF(XE3 . GT . XEDIST	「) THEN		2018 2019
2020 2021 2022	537 538 530	XEDIST = XE3 IEDIST = IE3 END IE			2020 2021 2022
2023 2024	540 541	ISL = JE(3 , IEDIST ISR = JE(4 , IEDIST)		2023
2025 2026	542 543	XSISL = XS(3 , ISL) XSISR = XS(3 , ISR))) _ \		2025
2028 2029	545 546	IF(XSISL . GT . RMIN	IVG . AND . XSISR . GT . RMINVG . AND . IJE5 . EQ . 0) THEN		2028
2030 2031 2032	547 548 549	D0 645 IR = 4, 6 IE = IABS(JS(IR, I IE()SE(IE) = 60	(SL)) 0) THEN		2030 2031 2032
2033 2034	550 551	IEDGE = IEDGE + 1 IRECNC(IEDGE) = IE			2033 2034
2035 2036 2037	552 553 554	NCOLOR = NCOLOR + 1 JEE(NCOLOR) = IE JSE(IE) = 1			2035 2036 2037
2038 2039	555 556 645	END IF CONTINUE			2038 2039
2040 2041 2042	557 558 559	DO 655 IR = 4 , 6 IE = IABS(JS(IR , I IE(JSE(IE) E0	(SR))		2040 2041 2042
2043 2044	560 561	IEDGE = IEDGE + 1 IRECNC(IEDGE) = IE	~ ; mua		2043
2045 2046 2047	562 563 564	NCOLOR = NCOLOR + 1 JEE(NCOLOR) = IE JSE(JE) ~ 1			2045 2046 2047
2048 2049	565 566 655	END IF CONTINUE			2048 2049

Thu Jul	1 14:16	5:08	1993	adaphd.f	SUBROUTINE DYYPTN	page	29
2050	567	c					2050
2050	568	C I	100	IF = 0			2050
2052	560		CALL	DISECT / IEDIST			2051
2053	570		IFI	IDONE FO . 1)	THEN		2052
2054	571	C		10012			2053
2055	572	v	I TRI	IG = ITRIG + I			2055
2056	573		JTRI	IG(ITRIG) = NS			2056
2057	574		KSDE	LT(NS) = IDUMP			2057
2058	57 5		LTRI	IG = LTRIG + 1			2058
2059	576		JTRI	IG(LTRIG) = NS -	1		2059
2060	577		KSDE	ELT(NS - 1) = ID	UMP		2060
2061	578	С					2061
2062	579		IEDG	E = IEDGE + 1			2062
2063	580		IREC	NC(IEDGE) = NE			2063
2004	581		NCOL	OR = SCOLOR + 1			2064
2005	582		JEE(NCULUR = NE			2065
2000	203		J2F(2066
2007	504		ILUU	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	1		2007
2060	586		NCOL	$\Delta P = NCOLOP + 1$	- 1		2000
2070	587				1		2009
2071	588		JSE	$\left(NE - 1 \right) = 1$			2070
2072	589		IFDO	F = IFDGE + 1			2072
2073	590		ISEL	NC(IEDGE) = NE	- ?		2073
2074	591		NCOL	OR = NCOLOR + 1	-		2074
2075	592		JEE	(NCOLOR) = NE -	2		2075
2076	593		JSE	NE - 2) = 1			2076
2077	5 94		END	ÎF			2077
2078	5 95	С					2078
207 9	5 96		END	IF			2079
2080	597		END	IF			2080
2081	598		END	IF			2081
2082	599	_340	CONT	INUE			2082
2003	501	ι	NCC	LINKC			2083
2004	502	r	u22	* LIKIG			2004
2000	602	L.	00.3		ΩD		2003
2000	604		15)/U IEM = I , NUVL . IEE/ IEM)	UN		2000
2007	605			DECNC(IF IDON	ר מני מני או		2088
2089	606		CALL	RECINCI 14 JADO	NF [T1 TR ΔA ΔR ΔC ΔD		2089
2090	607		CALL	RECNC(JB JBDO	NE, ITL, ITR, JBA, JBB, JBC, JBD)		2090
2091	6 08		CALL	RECNC(JC . JCDO	NE, ITL, ITR, JCA, JCB, JCC, JCD)		2091
2092	6 09		CALL	RECNC(JD , JDDO	NE, ITL, ITR, JDA, JDB, JDC, JDD)		2092
2093	610	370	CONT	INUE			2093
2094	611	С					2094
2095	612	300	CONT	TINUE			2095
2096	613	С					2096
2097	614		NVECE	E = NE / MBL			2097
2098	615		NREME	: = NE - NVECE × M	BL		2098
2099	617		NVELS) = NS / MBL	וחו		2099
2100	619		NNECU	5 = NJ - NVELJ " M 1 - NJ / MD1	IDL,		2100
2102	610		NDENN	I = NV / NVECV * M	191		2102
2102	620	ſ	NINGER				2103
2104	621	°,	DO 40	O INF = 1 . NVECE			2104
2105	622		NOEVE	F(INF) = MBI			2105
2106	623	40 0	CONTI	INUE			2106
2107	624		NVEEE	= NVECE			2107
2108	6 25		IF(N	REME . GT . O) T	HEN		2108
2109	62 6		NVÉEE	= NVECE + 1			2109
2110	627		NOFVE	EE(NVEEE) = NREM	IE		2110
2111	628	_	END 1	lF			2111
2112	629	С					2112
2113	630		DO 41	0 INS = 1, NVECS	i		2113
2114	631		NOFVE	S(INS) = MBL			2114
2115	632	410	CONTI	INUE			2115
2110	033		NVEES	CJ3VN = (CJ3VN = (2110
211/	635		IF(NUEFO	IKEM3 . 61 . 0) 1	ncn		2118
2110	253			5 = NVEL3 T 50/ NVEES _ NDEM	10		2110
2120	637			.J. HVEEJ / = HKEM F			2120
2121	638	С		<u>ه ۱</u>			2121
2122	639	-	00 42	O INV + 1 _ NVECV	1		2122
2123	640		NOFVE	V(INV) = MBL			2123

2124 641 420 CONTINUE 212 2125 633 IF(NREW , GT, 0) THEN 212 2126 643 MOFEV , WEEV 1 212 2128 645 MOFEV , WEEV 1 212 2128 645 MOFEV , WEEV 1 212 2129 644 MOFEV , WEEV 1 212 2130 650 C 212 2131 646 PRINT*, NV, NE, NS 212 2134 651 C 212 2134 652 C 212 2135 653 RETURN 212 2136 656 C 212 2141 1 SUBROUTINE INTPIN (DAREA , NOFDIV , IOUMP , ITRIG) 214 2141 1 SUBROUTINE INTPIN (DAREA , NOFDIV , IOUMP , ITRIG) 214 2144 4 C 214 214 2144 4	Thu Jul	1 14:1	16:08	1993	ad aphd. f	SUBROUTINE DYYPTN	page	30
112 142 142 142 1227 144 14 142 1238 645 147 148 1239 646 EdD IF 121 1231 648 148 PRINT, NV, HE, NS 121 1231 656 147 121 121 121 1336 655 147 121 121 121 121 134 155 147 141	2124	641 642	420	CONTINU	E			2124
2127 644 WUEPU - KWCEV + 1	2125	64Z		IF(NRF	NVELV MV . GT .	0) THEN		2125
2128 645 EMOTYEV(MEEV) - # AREMY 211 2139 647 C PRINT*, NV, NE, NS 211 2131 640 C PRINT*, NV, NE, NS 211 2131 640 C PRINT*, NV, NE, NS 211 2131 640 C PRINT*, NV, NE, NS 211 2133 650 C	2127	644		NVEEV -	NVECV +	1		2127
1210 640 C. LOU I." 1211 646 C. 1211 648 C	2128	645 546		NOFVEV(NVEEV)	≈ NREMV		2128
2132 648 PRINT*, NV, NE, NS 21.2 2133 650 C EXIT POINT FROM SUBROUTINE 21.2 2134 651 C 21.2 2135 652 C 21.2 2136 653 RETURN 21.2 2137 654 C 21.2 2138 655 C 21.2 2140 657 END 21.2 2141 1 SUBROUTINE INTPTN (DAREA , NOFDIV , IOUMP , LTRIG) 21.4 2142 C 21.2 21.2 21.2 2143 S C 21.2 21.4 2144 C 21.2 21.4 21.2 2144 C 21.2 21.4 21.2 2145 S C INPLICIT REAL (A-N, O-Z) 21.2 2146 6 SUB DUIDE TO REFINE AT THE INITIAL STAGE OF THE SIMULATION I 21.1 2147 7 C 21.2 21.2 2148 8 C 21.2 21.2 2149 9 C 21.2	2130	647	С	CAD TL				2129
213 654 C 21 213 651 C 21 213 653 C 21 213 653 C 21 213 655 C 21 213 655 C 21 213 655 C 21 214 1 SUBROUTINE INTPIN (DAREA , NOFDIV, IDUMP, LTRIG) 21 2141 1 SUBROUTINE INTPIN (DAREA , NOFDIV, IDUMP, LTRIG) 21 2144 2 C 21 2145 5 C NIPTIN ADAPT THE GRID OYMAHICALLY, ADD VERTECES 21 2146 5 C SUBB DIVIDE TO REFINE AT THE INITIAL STAGE OF THE SIMULATION I 21 2147 7 C 21 21 21 2148 8 C 21 21 21 2159 10 IMPLICIT REAL (A-H,O-Z) 21 21 2154 14 include 'crbs20.h' 21 21 2155 15 include 'crbs20.h' 21 21 2154 14 incl	2131	648	~	PRINT*	,NV,NE,NS			2131
2135 651 C 213 2136 653 RETURN 211 2136 653 RETURN 211 2138 655 C 211 2140 657 END 211 2141 1 SUBROUTINE INTERING DAREA , NOFDLV , IOUMP , LTRIG 211 2141 1 SUBROUTINE INTERING DAREA , NOFDLV , IOUMP , LTRIG 211 2142 2 C 214 214 2143 3 C 214 214 2144 4 C 1111 214 2145 4 C 1111 214 2146 4 C 1111 214 2147 7 C 1111 214 2147 7 C 1111 214 2148 9 C 1111 214 2150 10 IMPLICIT REAL (A-H,O-Z) 211 2151 11 1104 'cmb00.h' 211 2153 13 include 'cmb10.h' 211 2154	2132	649 650	С С	- FXIT PO	INT FROM	SUBBOULTINE		2132
2135 652 C C 211 2136 653 RETURN 211 2137 654 C 211 2138 655 C 211 2140 557 END 211 2141 1 SUBROUTINE INTPIN (DAREA , HOFDIV , IDUMP , LTRIG) 214 2142 2 C 211 2144 4 C 211 2145 5 SUBROUTINE INTPIN (DAREA , HOFDIV , IDUMP , LTRIG) 214 2144 4 C 212 2145 5 C SUB DIVIDE TO REFINE AT THE INTIAL STAGE OF THE SIMULATION I 212 2146 6 C SUB DIVIDE TO REFINE AT THE INTIAL STAGE OF THE SIMULATION I 212 2147 7 C 100 100 101 2148 6 C SUB DIVIDE TO REFINE AT THE INTIAL STAGE OF THE SIMULATION I 212 2149 7 C 101 101 212 2150 10 IMPLICIT REAL (A-H,O-Z) 211 211 2151 10 C IMPLICIT	2134	651	č		101 1000	Sobroot the		2134
2130 634 C 21 2130 654 C 21 2130 655 C 21 2140 655 C 21 2141 1 SUBROUTINE INTPTN(DAREA , NOFDIV , IDUMP , LTRIG) 21 2141 1 SUBROUTINE INTPTN(DAREA , NOFDIV , IDUMP , LTRIG) 21 2143 2 C 21 2144 4 C 21 2145 5 C INTPTN ADAPT THE GRID DYNAMICALLY, ADD VERTECES 1 2146 5 C SUB DIVIDE TO REFINE AT THE INITIAL STAGE OF THE SIMULATION 1 21 2147 7 C IMPLICIT REAL (A-H, O-Z) 21 2158 1 C INPLICIT REAL (A-H, O-Z) 21 2159 10 C INPLICIT REAL (A-H, O-Z) 21 2154 14 include 'comb00.h' 21 21 2155 15 include 'comb00.h' 21 21 2156 16 include 'comb00.h' 21 21 2157 17 C Include 'comb00.h'	2135	652	С	DETHON				2135
2138 655 C 21 2139 656 C 21 2140 657 END 21 2141 1 SUBROUTINE INTPIN(DAREA , NOFOIV , IDUMP , LIRIG) 21 2142 2 C 21 2143 3 C 1 21 2144 4 C 1 21 2145 5 C INPIN ADAPT THE GRID DYNAMICALLY, ADD VERTECES 1 21 2146 6 C SUB DIVIDE TO REFINE AT THE INITIAL STAGE OF THE SIMULATION 1 21 21 2147 7 C 21 21 21 21 2158 10 IMPLICIT REAL (A.H.O.Z) 21 21 21 21 2151 11 C include 'cmsh00.h' 21<	2130	654	С	RE I UKN				2130
2139 656 C END 21 Thu Jul 1 14:16:08 1993 adaphd.f SUBROUTINE INTPTN 2141 1 SUBROUTINE INTPTN (DAREA , NOFDIV , IDUMP , LTRIG) 21 2142 2	2138	655	Č					2138
Thu Jul 1 14:16:08 1993 adaphd.f SUBROUTINE INTPTN 2141 1 SUBROUTINE INTPTN(DAREA , NOFDIV , IDUMP , LTRIG) 214 2143 C 214 2144 C 214 2145 S C 214 2146 G SUB DIVIDE TO REFINE AT THE INITIAL STAGE OF THE SIMULATION I 214 2147 T 214 214 214 2148 B C 214 214 2149 P 1 214 1 2151 IC Include 'cmsh00.h' 214 215 2153 Ia Include 'cmsh00.h' 214 215 2154 14 include 'cmsh00.h' 214 215 215 2155 Ia Include 'cmsh00.h' 214 215 215 215 216 216 217 217 217 217 217 217 217 217 217 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 <t< td=""><td>2139 2140</td><td>650 657</td><td>C</td><td>END</td><td></td><td></td><td></td><td>2139 2140</td></t<>	2139 2140	650 657	C	END				2139 2140
2141 1 SUBROUTINE INTPTN (DAREA , NOFDLV , IDUMP , LTRIG) 214 2142 2	Thu 1.1	1 14.1	6.00	1002	adambd f			
2141 1 SUBROUTINE INTPTN(DAREA , NOFOLV , IOUMP , LTRIG) 214 2142 C 214 2143 3 C 214 2144 C 214 2145 5 C INTPTN ADAPT THE GRID DYNAHICALLY, ADD VERTECES 1 2146 6 C SUB DIVIDE TO REFINE AT THE INITIAL STAGE OF THE SIMULATION I 214 2147 7 C 1212 214 214 2149 9 C 1212 214 1212 2150 10 IMPLICIT REAL (A-H,O-Z) 211 211 2151 11 C 212 213 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 211 214 21		[[4:]	10:08	1992 4	adapnd.r	SUBRUUTINE INTPIN		
2143 3 C	2141	1	r	SUBROUT	INE INTPT	N(DAREA , NOFDIV , IDUMP , LTRIG)		2141
2144 6 C INTPTM ADAPT THE GRID DYNAMICALLY, ADD VERTECES I 214 2145 5 C INTPTM ADAPT THE GRID DYNAMICALLY, ADD VERTECES I 214 2146 6 C SUB DIVIDE TO REFINE AT THE INITIAL STAGE OF THE SIMULATION I 214 2147 7 C 214 214 214 2148 8 C 214 214 214 2150 10 IMPLICIT REAL (A-H,O-Z) 211 211 2151 11 C 211	2142	3	C					2142
2146 5 C INTPIR ADAPT THE GRID DYNAMICALLY. ADD VERTECES I 214 2146 6 C SUB DIVIDE TO REFINE AT THE INITIAL STAGE OF THE SIMULATION I 214 2147 7 C I 214 2149 9 C I 214 2149 9 C INPLICIT REAL (A-H, O-Z) 211 2151 1 C 212 213 214 2153 1 include 'cmsh00.h' 211 211 215 2154 14 include 'chyd00.h' 211 215 215 215 2155 15 include 'chyd00.h' 211 215 215 216 211	2144	4	č					2144
2147 7 C 1 214 2148 8 C 1 214 2149 9 C 1 214 2150 10 IMPLICIT REAL (A-H,O-Z) 214 2151 11 C 214 215 2151 11 C 215 215 2153 13 include 'chyd00.h' 211 2154 14 include 'chyd00.h' 211 2155 15 include 'chy200.h' 211 2156 16 include 'chy200.h' 211 2157 17 C 211 211 2158 18 INTEGER JTRIG(MEM), KTRIG(MEM), IRECNC(MEM) 211 2159 19 INTEGER JSE(MEM), JECMEND, INFOVS(10), NOFOVS(10) 211 2160 20 C 211 211 211 2162 EQUIVALENCE (VR, KTRIG) 211 211 211 2166 25 EQUIVALENCE (PR,JSE) 211 211 2166 26 212 214 214 214	2145	5	Ç		ADAPT TH	E GRID DYNAMICALLY, ADD VERTECES I		2145
2148 8 C 1 21 2149 9 C 1 21 2150 10 IMPLICIT REAL (A-H, 0-Z) 21 2151 11 C 21 2152 12 include 'cmsh00.h' 21 2153 13 include 'cmsh00.h' 21 2154 14 include 'cphs10.h' 21 2155 15 include 'cphs20.h' 21 2156 16 include 'cphs20.h' 21 2157 17 C 21 2158 18 INTEGER JEK(MEM).KIRIG(MEM), IRECNC(MEM) 21 2159 19 INTEGER JEK(MEM).JECMEN(I).OFDVS(10).NOFDVS(10) 21 2160 C 21 21 21 2161 21 EQUIVALENCE (VL, JIRIG) 21 2162 22 EQUIVALENCE (VL, JIRIG) 21 2163 32 EQUIVALENCE (VL, JIRIG) 21 2164 24 EQUIVALENCE (VL, IRECNC) 21 2165 25 EQUIVALENCE (VL, IRECNC) 21 2166	2140	7	C	208 01	VIDE IU K	EFINE AT THE INITIAL STAGE OF THE STHULKTON I		2140
2149 9 C 214 2150 10 IMPLICIT REAL (A-H, 0-Z) 214 2151 11 C 214 2152 11 include 'cmsh00.h' 214 2153 13 include 'cmsh00.h' 214 2154 14 include 'cphs10.h' 214 2155 15 include 'cphs10.h' 214 2156 16 include 'cphs10.h' 214 2157 17 C 214 2158 18 INTEGER JJRIG(MEM), KIRIG(MEM), IRECNC(MEM) 211 2159 19 INTEGER JSE(MEM), JOFDVS(10) 211 2160 20 C 214 216 2161 21 EQUIVALENCE (VL, JTRIC) 214 2162 22 EQUIVALENCE (VL, JTRIC) 214 2163 23 EQUIVALENCE (VL, JTRIC) 214 2164 24 EQUIVALENCE (VL, JTRIC) 214 2165 25 EQUIVALENCE (VL, JTRIC) 214 2166 C 214 216 2167 27 <	2148	8	Č					2148
2151 10 INFLICTION CONTON (NOTO) 21 2152 12 include 'cmsh00.h' 21 2153 13 include 'chyd00.h' 21 2154 14 include 'cphsl0.h' 21 2155 15 include 'cphsl0.h' 21 2156 16 include 'cphsl0.h' 21 2157 17 C 21 2158 18 INTEGER JTRIG(MEM), KTRIG(MEM), IRECNC(MEM) 21 2159 19 INTEGER JTRIG(MEM), JEC(MEM), IDFDVS(10), NOFDVS(10) 21 2160 20 C 21 216 2161 21 EQUIVALENCE (WL, JTRIG) 21 2162 22 EQUIVALENCE (WL, JTRIG) 21 2163 23 EQUIVALENCE (WL, JTRIG) 21 2164 24 EQUIVALENCE (WL, JTRIG) 21 2165 25 EQUIVALENCE (PL, JSE) 21 2166 26 21 21 2167 27 SINVG = SAREVG * DAREA 21 2168 28 RHINVG = .7 * SIMINVG 21	2149	9	C	1 MOI	TOTT DEA	L (A H O.7)		2149
2152 12 include 'cmsh00.h' 21 2153 13 include 'chyd00.h' 21 2154 14 include 'chyd00.h' 21 2155 15 include 'cphs0.h' 21 2156 16 include 'cphs0.h' 21 2157 17 C 21 2158 18 INTEGER JSE(MEM),JEE(MEM),IRECNC(MEM) 21 2159 19 INTEGER JSE(MEM),JEE(MEM),IOFDVS(10) 21 2161 21 EQUIVALENCE (UL,JTRIG) 21 2162 22 EQUIVALENCE (UL,JTRIG) 21 2163 23 EQUIVALENCE (VL,IRECNC) 21 2164 24 EQUIVALENCE (VL,IECNC) 21 2165 25 EQUIVALENCE (VL,IECNC) 21 2166 C 21 21 2167 27 SINNG = SAREVG * DAREA 21 2168 28 RMINVG = .7 * SMINVG 21 2170 30 LO 115 IS - 1 , NS 21 2171 31 LEE (IS) = 0 21 2173 35	2151	11	С	ftari				2151
2153 13 Include 'cph30.h' 21 2154 14 include 'cph30.h' 21 2155 15 include 'cph30.h' 21 2156 16 include 'cph30.h' 21 2157 17 C 21 2158 18 INTEGER JTRIG(MEM), IRECNC(MEM) 21 2159 19 INTEGER JSE(MEM), JEE(MEM), IOFDVS(10), NOFDVS(10) 21 2160 20 C 21 216 2161 21 EQUIVALENCE (UL, JTRIG) 21 2162 22 EQUIVALENCE (VR, KTRIG) 21 2163 23 EQUIVALENCE (PR, JSE) 21 2164 24 EQUIVALENCE (PR, JSE) 21 2165 25 EQUIVALENCE (PL, JEE) 21 2166 26 21 216 21 2166 28 RHING = .7 * SHING 21 2169 20 21 21 21 2169 20 21 21 21 2170 30 CO 115 IS - 1 , NS 21 <	2152	12		include	' CTTS	h00.h'		2152
2155 15 include 'cph510.h' 21 2156 16 include 'cph520.h' 21 2157 17 C 21 215 2158 18 INTEGER JSE(MEM), JEE(MEM), IRECNC(MEM) 21 2159 19 INTEGER JSE(MEM), JEE(MEM), IOFDVS(10), NOFDVS(10) 21 2160 20 C 21 216 21 2161 21 EQUIVALENCE (UL, JTRIG) 211 210 2162 22 EQUIVALENCE (VL, IRECNC) 211 2163 23 EQUIVALENCE (VL, IRECNC) 211 2164 24 EQUIVALENCE (PL, JEE) 210 2165 25 EQUIVALENCE (PL, JEE) 211 2166 26 C 211 2167 27 SHING = SAREVG * DAREA 211 2168 28 RMINVG = .7 * SMINVG 21 2170 30 GO 115 IS - 1 , NS 21 21 2173 33 C 21 21 21 2173 33 C 21 21	2153	13		include	'CNY 'cin	000.n' 100.h'		2153
2156 16 include 'cphs20.h' 215 2157 17 C 215 2158 18 INTEGER JTRIG(MEM), KTRIG(MEM), IRECNC(MEM) 21 2159 19 INTEGER JSEI(MEM), KTRIG(MEM), IRECNC(MEM) 21 2160 C 21 216 21 2161 21 EQUIVALENCE (UL, JTRIG) 21 2162 22 EQUIVALENCE (VL, TREG) 21 2163 23 EQUIVALENCE (VL, IRECNC) 21 2164 24 EQUIVALENCE (VL, JEE) 21 2165 25 EQUIVALENCE (PL, JEE) 21 2166 26 21 21 2167 27 SMINVG = SAREVG * DAREA 21 2168 28 RMINVG ~ .7 * SNINVG 21 2170 30 LOO 115 1S - 1 . NS 21 2171 31 JEE(TS) = 0 21 2173 35 DO 120 IS - 1 . NS 21 2173 35 DO 120 IS - 1 . NS 21 2174 34 MSS - 0 21 2177	2155	15		include	'cph	s10.h'		2155
2157 17 C 21 2158 18 INTEGER JTRIG(MEM), KTRIG(MEM), IRECNC(MEM) 21 2159 19 INTEGER JTRIG(MEM), JEE(MEM), IOFDVS(10), NOFDVS(10) 21 2160 20 C 21 2161 11 EQUIVALENCE (UL, JTRIG) 21 2162 22 EQUIVALENCE (UL, JTRIG) 21 2163 23 EQUIVALENCE (VR, KTRIG) 21 2164 24 EQUIVALENCE (PR, JSE) 21 2165 25 EQUIVALENCE (PL, JEE) 21 2166 26 21 21 216 2167 27 SHINVG = SAREVG * DAREA 21 21 2168 28 RMINVG = .7 * SMINVG 21 21 2170 30 (JO 115 IS = 1 , NS 21 21 21 2171 31 JEE(IS) = 0 21 21 21 2173 32 C JD 120 IS = 1 , NS 21 21 2174 34 MSS = 0 21 21 21 2175 35 DO 120 IS = 1	2156	16	c	include	'cph	s20.h'		2156
2159 19 INTEGER JSE(MEM), JEE(MEM), TOFDVS(10), NOFDVS(10) 21 2160 20 C 210 2161 21 EQUIVALENCE (UL, JTRIG) 210 2162 22 EQUIVALENCE (V, KTRIG) 210 2164 23 EQUIVALENCE (V, IRCCNC) 210 2165 25 EQUIVALENCE (PL, JSE) 210 2166 26 C 210 2167 27 SMINVG = SAREVG * DAREA 211 2168 28 RMINVG = .7 * SMINVG 211 2169 29 C 211 211 2170 30 GO 115 IS - 1 , NS 211 2173 33 C 211 211 2174 34 NSS = 0 211 2175 35 DO 120 IS = 1 , NS 211 2176 36 C DO 120 IS = 1 , NS 211 2177 37 C IE = IABS(JS(IR , IS)) 211 2174 38 C IJES05 , AND , XSS , LT05 , AND . 211 2180 40 IF (XSS , GT .	2157	17	Ļ	INTEGER	JTRIG(ME	M).KTRIG(MEM).IRECNC(MEM)		2157
2160 20 C 211 2161 21 EQUIVALENCE (UL, JTRIG) 211 2162 22 EQUIVALENCE (V., KTRIG) 211 2163 23 EQUIVALENCE (V., IRECNC) 211 2164 24 EQUIVALENCE (PR, JSE) 211 2165 25 EQUIVALENCE (PL, JEE) 211 2166 26 C 211 2167 27 SMINVG = SAREVG * DAREA 211 2168 28 RMINVG = .7 * SMINVG 211 2170 30 LO 115 IS - 1 . NS 211 2171 31 JEE(IS) = 0 211 2173 33 C 212 2174 34 NSS - 0 211 2175 35 DO 120 IS - 1 . NS 211 2176 36 C DI 220 IS - 1 . NS 211 2177 37 C IE - IABS(JS(IR , IS)) 211 2178 38 C IJES - JE(5 . IE) 211 2179 37 C IE - IABS(JS(IR , IS)) 211 <tr< td=""><td>2159</td><td>19</td><td></td><td>INTEGER</td><td>JSE (MEM)</td><td>, JEE (MEM), 10FDVS(10), NOFDVS(10)</td><td></td><td>2159</td></tr<>	2159	19		INTEGER	JSE (MEM)	, JEE (MEM), 10FDVS(10), NOFDVS(10)		2159
2162 22 EQUIVALENCE (U., JARID) 211 2163 23 EQUIVALENCE (V., IRECNC) 211 2164 24 EQUIVALENCE (PR, JSE) 211 2165 25 EQUIVALENCE (PR, JSE) 211 2166 26 211 2167 27 SMINVG = SAREVG * DAREA 211 2168 28 RMINVG = .7 * SMINVG 211 2169 29 C 211 211 2170 30 L0 115 = 1 . NS 211 2171 31 JEE (IS) = 0 211 211 2172 32 115 CONTINUE 211 2173 33 C 212 215 CONTINUE 211 2176 36 C D0 120 IS = 1 . NS 211 212 213 215 211 2176 36 C D0 120 IS = 1 . NS 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211	2160	20	С	FOUTVAL	ENCE /IH	ITDIC)		2160
2163 23 EQUIVALENCE (VL, IRECNC) 211 2164 24 EQUIVALENCE (PR, JSE) 210 2165 25 EQUIVALENCE (PL, JEE) 210 2166 26 C 211 2167 27 SMINVG = SAREVG * DAREA 210 2168 28 RMINVG = .7 * SMINVG 211 2169 29 C 211 2170 30 L0 115 IS = 1 , NS 211 2171 31 JEE(IS) = 0 211 211 2173 32 C 212 217 213 211 2174 34 NSS = 0 211	2162	22		EQUIVAL	ENCE (VR.	KTRIG)		2162
2164 24 EQUIVALENCE (PR, JSE) 214 2165 25 EQUIVALENCE (PL, JEE) 214 2166 26 214 2167 27 SMINVG = SAREVG * DAREA 214 2168 28 RMINVG = .7 * SMINVG 214 2169 29 C 216 2170 30 $L0$ 115 IS = 1 , NS 211 2171 31 JEE(IS) = 0 211 2173 33 C 212 2174 34 NSS = 0 211 2175 35 D0 120 IS = 1 , NS 211 2176 36 C 00 120 IS = 1 , NS 212 2177 37 C IE = IABS(JS(IR , IS)) 211 2178 38 C J25 - JE(5 , IE) 211 2180 40 IF(XSS , GT05 , AND , XSS , LT05 , AND , 211 2181 41 KSDELT(IS) , LT , IDUMP) THEN 211 2182 42 C IF(IJE5 , EQ , 8) THEN 211 2184 44 JEE(IS) = I 214	2163	23		EQUIVAL	ENCE (VL.	IRECNC)		2163
2166 26 210 211 2167 27 SMINVG = SAREVG * DAREA 210 2168 28 RMINVG = .7 * SMINVG 211 2169 29 C 211 2170 30 LO 115 IS = 1 , NS 211 2171 31 JEE(IS) = 0 211 2172 32 115 CONTINUE 211 2173 33 C 211 211 2174 34 NSS = 0 211 211 2176 36 C DO 120 IS = 1 , NS 211 2176 36 C DO 120 IS = 1 , NS 211 2176 36 C DO 120 IS = 1 , NS 211 2176 36 C DO 120 IS = 1 , NS 211 2177 37 C IE = IABS(JS(IR , IS)) 211 2178 38 C IJES - xE(S , IE) 211 2180 40 IF (XSS , GT05 , AND , XSS , LT , .05 , AND , 211 2181 41 . KSDELT (I S) , LT , IDUMP) THEN 211	2164	24			ENCE (PR, ENCE (PI	JSE) JFF)		2104
2167 27 SMINVG = SAREVG * DAREA 210 2168 28 RMINVG = .7 * SMINVG 210 2169 29 C 211 2170 30 LO 115 IS = 1 , NS 211 2171 31 JEE(IS) = 0 211 2173 33 C 211 2174 34 NSS = 0 211 2175 35 DO 120 IS = 1 , NS 211 2176 36 C DO 120 IS = 1 , NS 211 2177 37 C IE = IABS(JS(IR , IS)) 211 2178 38 C JJES = JE(5 , IE) 211 2179 39 XSS = XS(1 , IS) 211 2180 40 IF(XSS , GT05 , AND , XSS , LT05 , AND , 211 2181 41 . KSDELT(IS) , LT . IDUMP) THEN 211 2182 42 C IF(ISS , GT05 , AND , XSS , LT05 , AND , 211 2183 43 KSDELT(IS) = IOUMP 211 211 2184 44 JEE(IS) = I 211 211 <td>2166</td> <td>26</td> <td>C</td> <td>CQUITE:</td> <td></td> <td></td> <td></td> <td>2166</td>	2166	26	C	CQUITE:				2166
2168 28 RHINUG = ./ * SHINUG 214 2169 29 C 211 2170 30 $UO \ 115 \ IS = 1 \ , NS$ 21 2171 31 $JEE(\ IS \) = 0$ 21 2172 32 115 CONTINUE 21 2173 33 C 21 21 2174 34 NSS = 0 21 2175 35 DO 120 IS = 1 , NS 21 2176 36 C DO 120 IR = 4 , 6 21 2177 37 C IE = IABS(JS(IR , IS)) 21 2178 38 C IJE5 - JE(5 , IE) 21 2179 39 XSS = XS(1 , IS) 21 21 2180 40 IF(XSS , GT05 , AND , XSS , LT05 , AND , 21 2181 41 KSDELT(IS) = IDUMP 21 2182 42 C IF(IJE5 , EQ , 8) THEN 21 2183 43 KSDELT(IS) = IDUMP 21 21 2184 44 JEE(IS) = I 21 21 2	2167	27		SMINVG	= SAREVG	* DAREA		2167
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2169	20	С	KMINVG	≠ ./ ° 3	ninvu		2169
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2170	30	-	ÚO 115	IS = 1 ,	NS		2170
2172 33 C 21 2173 33 C 21 2173 33 C 21 2175 35 DO 120 IS = 1, NS 21 2176 36 C DO 120 IR = 4, 6 21 2177 37 C IE = IABS(JS(IR, IS)) 21 2178 38 C IJE5 = JE(5, IE) 21 2179 39 XSS = XS(1, IS) 21 21 2180 40 IF(XSS, GT,05, AND, XSS, LT, .05, AND, 21 2181 41 . KSDELT(IS), LT, IDUMP) THEN 21 2182 42 C IF(IJE5, EQ, 8) THEN 21 2183 43 KSDELT(IS) = IDUMP 214 2184 44 JEE(IS) = I 214 2184 44 JEE(IS) = I 214 2187 47 END IF 214 2187 47 END IF 214 2188 48 120 CONTINUE 214 2189 49	2171	31	115	JEE(I	5) = 0 HF			2171
2174 34 NSS = 0 21 2175 35 D0 120 IS = 1, NS 21 2176 36 CD0 120 IR = 4, 6 21 2177 37 CIE = IABS(JS(IR, IS)) 21 2178 38 CIJE5 = JE(5, IE) 21 2179 39 XSS = XS(1, IS) 21 2180 40IF(XSS, GT05, AND, XSS, LT, .05, AND, 211 2181 41.KSDELT(IS), LT, IDUMP) THEN 211 2182 42CIF(IJE5, EQ, 8) THEN 211 2183 43KSDELT(IS) = IDUMP 211 2184 44JEE(IS) = i 211 2186 46JTRIG(NSS) = IS 211 2187 47END IF 211 2188 48120CONTINUE 211 2190 50D0 130 IS = 1, NSS 211 2191 51JSE(IS) = JTRIG(IS) 211	2173	33	C	CONTIN	JL			2173
2175 35 35 35 35 217 35 217 35 217 36 20 20 $18 = 4$, 6 217 2177 37 C $IE = IABS(JS(IR, IS))$ 217 211 211 211 2111 2111 2111 2111 2111 2111 2111 21111 21111 21111 21111 21111 211111 211111 2111111 21111111 $2111111111111111111111111111111111111$	2174	34		NSS = ()	NC		2174
2177 37 C IE = IABS(JS(IR, IS)) 21 2178 38 C IJE5 = JE(5, IE) 21 2179 39 XSS = XS(1, IS) 21 2180 40 IF(XSS, GT05, AND, XSS, LT05, AND, 211 2181 41 . KSDELT(IS), LT, IDUMP) THEN 211 2182 42 C IF(IJE5, EQ, 8) THEN 211 2183 43 KSDELT(IS) = IDUMP 214 2184 44 JEE(IS) = 1 214 2185 45 NSS = NSS + 1 214 2186 46 JTRIG(NSS) = IS 214 2187 47 END IF 214 2188 48 120 CONTINUE 214 2189 49 C 214 214 2190 50 D0 130 IS = 1, NSS 214 214 2191 51 JSE(IS) = JIRIG(IS) 214	21/5	35	с	00 120	15 = 1, $0 \ \text{IR} = 4$	אס . 6		2175
217838CIJE5 = JE(5, IE)21217939XSS = XS(1, IS)21218040IF(XSS, GT,05, AND, XSS, LT, .05, AND,210218141.KSDELT(IS), LT, IDUMP) THEN210218242CIF(IJE5, EQ, 8) THEN210218343KSDELT(IS) = IDUMP210218444JEE(IS) = I211218545NSS = NSS + 1212218646JTRIG(NSS) = IS214218747END IF214218848120CONTINUE214218949C21421905000 130 IS = 1, NSS214219151JSE(IS) = JTRIG(IS)214	2177	37	č	IE •	IABS(JS(IR , IS))		2177
2179 39 A35 = A3(1, 15) 21 2180 40 IF(XSS, GT,05, AND, XSS, LT, .05, AND, . 21 2181 41 . KSDELT(IS), LT, IDUMP) THEN 21 2182 42 C IF(IJE5, EQ, 8) THEN 21 2183 43 KSDELT(IS) = IDUMP 214 214 2184 44 JEE(IS) = I 214 2185 45 NSS = NSS + 1 214 2186 46 JTRIG(NSS) = IS 214 2187 47 END IF 214 2188 48 120 CONTINUE 214 2189 49 C 214 214 2190 50 DO 130 IS = 1, NSS 214 2191 51 JSE(IS) = JTRIG(IS) 214	2178	38	С	IJE5	- JE(5,	IE)		2178
2181 41 . KSDELT(IS).LT.IDUMP) THEN 214 2182 42 C IF(IJE5.EQ.8) THEN 214 2183 43 KSDELT(IS) = IDUMP 214 2184 44 JEE(IS) = I 214 2185 45 NSS = NSS + 1 214 2186 46 JTRIG(NSS) = IS 214 2187 47 END IF 214 2188 48 120 CONTINUE 214 2189 49 C 214 214 2190 50 DO 130 IS = 1, NSS 214 214 2191 51 JSE(IS) = JTRIG(IS) 214	21/9	40		IF(XS	S.GT.	05 . AND . XSS . LT05 . AND .		2180
2182 42 C IF(IJE5.EQ.8) IHEN 211 2183 43 KSDELT(IS) = IDUMP 211 2184 44 JEE(IS) = I 211 2185 45 NSS = NSS + 1 211 2186 46 JTRIG(NSS) = IS 211 2187 47 END IF 211 2188 48 120 CONTINUE 211 2189 49 C 211 212 2190 50 DO 130 IS = 1, NSS 211 212 2191 51 JSE(IS) = JTRIG(IS) 211	2181	41	-	. KSI	DELT(IS). LT. IDUMP) THEN		2181
2183 44 JEC (T S) = 1 211 2184 44 JEC (T S) = 1 211 2185 45 NSS = NSS + 1 211 2186 46 JTRIG(NSS) = IS 211 2187 47 END IF 211 2188 48 120 CONTINUE 211 2189 49 C 211 212 2190 50 D0 130 IS = 1 , NSS 211 2191 51 JSE(IS) = JTRIG(IS) 211 214	2182	42	C		JE5.EQ	. 8) IHEN INUMP		2182
2185 45 NSS = NSS + 1 213 2186 46 JTRIG(NSS) = IS 213 2187 47 END IF 213 2188 48 120 CONTINUE 213 2189 49 C 213 214 2190 50 DO 130 IS = 1 , NSS 213 2191 51 JSE(IS) = JTRIG(IS) 214	2184	44		JEE(I	Š) = 1			2184
2100 40 31K10(1035) = 15 214 2187 47 END IF 214 2188 48 120 CONTINUE 214 2189 49 C 214 214 2190 50 D0 130 IS = 1 , NSS 214 214 2191 51 JSE(IS) = JTRIG(IS) 214	2185	45		NSS = 1	NSS + 1	15		2185
2188 48 120 CONTINUE 218 2189 49 C 219 2190 50 D0 130 IS = 1 NSS 219 2191 51 JSE(IS) = JTRIG(IS) 211 211	2187	40		END IF	= (ccn	15		2187
2189 49 C 211 2190 50 D0 130 IS = 1, NSS 211 2191 51 JSE(IS) = JTRIG(IS) 211	2188	48	120	CONTIN	UE			2188
2191 51 JSE(IS) = JTRIG(IS) 21	2189	49 50	C	00 130	15 = 1	220		2109
	2191	51		JSE(I	s) = jtr	IG(IS)		2191
2192 52 130 CONTINUE 219 2103 53 C 219	2192	52	_130	CONTIN	JE			2192
2193 53 C 2194 54 MSS = NSS 210	2195	55 54	L	MSS = I	NSS			2194

•

6

Thu Jul	1 14:1	16:08	1993	adaphd.f	SUBROUTINE INTPIN	pa ge	31
2195	55		D0	140 KDIV = 1	, NOFOIV		2195
2196	56		IT	RIG = 0	10CC		2196
2197	57	c	00	150 KS = 1 ,	N22		2197
2190	59	Ļ	15	S = JSE(KS)			2190
2200	60	С					2200
2201	61		DO	160 KR = 1,	3		2201
2202	62	c	IV	V = JS(KR, I)	SS)		2202
2203	64	C		IF = JVf 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2203
2205	65			IF(IE . GT .	0) THEN		2205
2206	66	C					2206
2207	67			IVI = JE(I), IE(IV) EO	IL) IVV) THEN		2207
2209	69			ISI = JE(3)	IE)		2209
2210	70			ELSE	,		2210
2211	71			ISI = JE(4)	IE)		2211
2212	72						2212
2214	74	С		15 - 151			2214
2215	75	7 50		CONTINUE			2215
2216	76	С		100 - 1007 TO	• •		2216
2218	78			XAS = XS(3)			2217
2219	79			IF(JES . EQ	. O . AND . XAS . LT . SAREVG) THEN		2219
2220	80			ITRIG = ITRIG			2220
2221	81 82			KIRIG(IKIG) = 15 = IDHMD		2221
2223	83			JEE(IS) = 1	- 1901		2223
2224	84	_		ENDIF			2224
2225	85	С		DO 760 ID - 1	3		2225
2227	87			JR = MOD(IR = I	(3) + 1		2227
2228	88			IEA = IABS(.	S(JR + 3 , IS))		2228
2229	89			1F(IEA , EQ	· IE) THEN		2229
2230	91			IER = IABS(J	(, , , , , , , , , , , , , , , , , , ,		2231
2232	92	3					2232
2233	93			IV1 = JE(1)			2233
2235	95			ISR = JE(3)	IER)		2235
2236	96			ELSE	· · · ·		2236
2237	97			ISR = JE(4)	IER)		2237
2239	99			END IF			2239
2240	100	760		CONTINUE			2240
2241	101	С			ICT) TURN		2241
2243	103			IS = ISR	• 151 / SOCK		2243
2244	104			IE = IER			2244
2245	105	С		CO TO 750			2245
2240	107			END IF			2247
2248	108	С					2248
2249	109	c		ELSE			2249
2250	110	L		IF = - IF			2251
2252	112			IV1 = JE(1)	IE)		2252
2253	113			IF(IV1 . EQ	. IVV) THEN		2253
2254	114			151 = Jt(3), FISE	It)		2255
2256	116			ISI = JE(4)	IE)		2256
2257	117			END IF			2257
2259 2259	118			13 = 151 $1S1 = 0$			2259
2260	120	С					2260
2261	121	650 C		CONTINUE			2201 2262
2263	123	L.		JES + JEE(19	;)		2263
2264	124			XAS = XS(3)	(21		2264
2265	125			IF(JES . EQ	. O . AND . XAS . LT . SAREVG) THEN		2205 2266
2267	120			KTRIG(ITRIG) = IS		2267
2268	128			KSDELT(IS)	≈ IDUMP		2268

Thu Jul	1 14:	16:08	1993 adaphd.f	SUBROUTINE INTPIN Pag	ge 32
22 69 2270 2271	129 130	C	JEE(IS) = 1 END IF		2269 2270
2272	132	L	DO 660 IR = 1 .	. 3	2271
2273	133		JR = MOD(IR)	3) + 1	2273
2274	134		IEA = IABS(JS((JR + 3 , IS))	2274
2276	135			$\frac{11}{1} + \frac{1}{3} + \alpha$	2275
2277	137		IER = IABS(JS((JJR . 15))	2276
2278	138	С			2278
2279	139		IV1 = JE(1), I	IER)	2279
2281	140		IF(1V1 - EV)	IVV) THEN (FR)	2280
2282	142		ELSE		2281
2283	143		ISR = JE(4, I)	IER)	2283
2284	144		END IF		2284
2286	145	С			2285
2287	147	660	CONTINUE		2280
2288	148	C			2288
2289	149		IF(ISR . NE .	ISI) THEN	2289
2290	150		15 = 15R 1F = 1FR		2290
2292	152		GO TO 650		2291
2293	153		END IF		2293
2294	154	160	END IF		2294
2295	100	100	CUNTINUE		2295
2297	157	150	CONTINUE		2296
2298	158	С			2298
2299	159		D0 170 IS = 1, IT		2299
2300	160		JIKIG(15 + M55) =	= KIRIG(15)	2300
2302	162	170	CONTINUE		2301
2303	163		NSS = ITRIG		2302
2304	164	ç	MSS = MSS + ITRIG		2304
2305	165	140	CONTINUE		2305
2307	167	140	NSS = MSS		2305
2308	168	C			2308
2309	169		DO 300 KDIV = 1 , 1	1	2309
2310	171		LIKIG = NSS		2310
2312	172		NCOLOR = 0		2312
2313	173	С			2313
2314	1/4		DO 290 IE = 1, NE		2314
2316	175	290	CONTINUE		2315
2317	177	C			2310
2318	178		D0 310 1S = 1, NSS	S	2318
2320	180		$\frac{133 = \text{JIRIG}(13)}{\text{XCADEA} = \text{XC}(3) = 10$	(22	2319
2321	181		IF(XSAREA . GE . F	RMINVG) THEN	2320
2322	182	C			2322
2323	183		DO 335 IR = 4, 6		2323
2325	185		IE = IABS(JS(IR), $IJE5 = JE(5) IE$, 155))	2324
2326	186		IF(IJE5 . NE . 0)	, THEN	2325
2327	187		JR2 = MOD(1R - 3)	, 3) + 4	2327
2320	180		122 = 1ABS(JS(JR2))	2 , ISS))	2328
2330	190		IE3 = IABS(JS(JR3))	3. ISS))	2329
2331	191		XE1 = XE(1 , 1E)	·····//	2331
2332	192		XE2 = XE(1, IE2)		2332
2333	193		$\frac{1}{1} \frac{1}{1} \frac{1}$)	2333
2335	195		YE2 - XE2 * XEDIST		2334
2336	196		YE3 = XE3 * XEDIST		2336
233/	197		2EZ = (YEZ - 1.5)) * (YEZ1)	2337
2339	199		YY2 = XE1 + XE1 + X	/ (=== = =) XE2 * XE2 + ,35 * XE1 * XE2 _ XE3 * XE3	2338
2340	200		YY3 = XE1 * XE1 + X	KE3 * XE3 + .35 * XE1 * XE3 - XE2 * XE2	2340
2341	201		IF(ZE2 . LT0 .	. AND . ZE3 . LT . O AND .	2341
204 2	202		. 112.61.0	AND . YY3 . GT . O.) THEN	2342

Thu Jul	1 14:	16:08	1993 adaphd.f	SUBROUTINE INTPIN	page	33
2343	2 03		CALL DISECT (IE , IDONE , I	DUMP)		2343
2344	204	С				2344
2345	205		LTRIG = LTRIG + 1			2345
2340	205		JTRIG(LTRIG) = NS			2346
234/	207	c	KSUELI(NS) = LUUMP			2347
2340	200	ι				2348
2350	210		IDECNC (JEDGE) = NE			2349
2351	211		NCOLOR + NCOLOR + 1			2350
2352	212		JEE(NCOLOR) = NE			2352
2353	213		JSE(NE) = 1			2353
2354	214		IEDGE = IEDGE + 1			2354
2355	215		IRECNC(IEDGE) = $NE - 1$			2355
2350	210		NCULUR = NCULUR + 1			2356
2358	218		JEE(NE - 1) = 1			235/
2359	219	С	OSE(112 - 1) - 1			2350
2360	220	-	END IF			2360
2361	221		END IF			2361
2362	222	3 35	CONTINUE			2362
2363	223		ENDIF			2363
2304	224	310	CONTINUE			2364
2305	225	L	210TL - 224			2305
2367	227		IFDGF = 0			2367
2368	228		NCOLOR = 0			2368
2369	229	С		·		2369
2370	2 30		DO 295 IE = 1 , NE			2370
2371	231		JSE(IE) = 0			2371
23/2	232	295	CONTINUE			2372
23/3	233	ι	DO 320 15 - 1 NSS			2373
2375	235		15 = 15 = 1, 155			2375
2376	236		XSAREA = XS(3, ISS)			2376
2377	237	С				2377
2378	238		DO 735 IR = 4, 6			2378
2379	239		IE = IABS(JS(IR, ISS))			2379
2380	240		IF(JSE(IE) EQ. 0) THE	N		2380
2301	241		ICUGE # ICUGE + 1 IDECNC(IEDGE) = IE			2381
2383	243		NCOLOR = NCOLOR + 1			2302
2384	244		JEE(NCOLOR) = IE			2384
2385	245		JSE(IE) = 1			2385
2386	246		END IF			2386
2387	24/	/35	CONTINUE			2387
2380	240	ι	TEC YSADEA OT DMENUC) T	UCN		2388
2309	250	r	IF (ASARCA . GI . RATAVO) A	ncn		2309
2391	251	~	AREAXS = SAREA(ISS)			2391
2392	252		IE1 = IABS(JS(4, ISS))			2392
2393	253		XE1 = XE(1 , IE1)			2393
2394	254		HD1 = AREAXS * XE1 * XE1			2394
2395	255		$\frac{1}{100} = \frac{1}{100} \left(\frac{5}{100}, \frac{1}{100} \right)$			2395
2397	257		$XE2 = XE\{1, IE2\}$			2397
2398	258		HD2 = AREAXS * XE2 * XE2			2398
2399	2 59		IJE5 = IJE5 + JE(5, 1E2)			2399
2400	260		IE3 = IABS(JS(6, ISS))			2400
2401	261		XE3 = XE(1, IE3)			2401
2402	267		NUJ = AKŁAXO * XŁŚ * XŁŚ 1.155 - 1.155 - 157 5 152 \			2402
2404	264		RATIO = AMAX1(HD1 HD2 H	13)		2404
2405	265		IRATIO = 0	,		2405
2406	2 66		IF(RATIO . LE . 7 AND .	IJE5 . EQ . 0 . AND .		2406
2407	267		XS/	AREA . GT . SMINVG) IRATIO = 1		2407
2408	268	~	IF(IJE5 . GT . 0) IRATIO -	2		2408
2409	209	C				2409
2410 2411	270		17(1KALLU - EU - 2) IHEN 13551 - 357 5 151 3			2410
2412	272		IJE52 = JE(5, 1E7)			2412
2413	273		IJE53 = JE(5, 1E3)			2413
2414	274		IF(IJE51 . NE . 0) THEN	•		2414
2415	275		IEDIST + IE1			2415
2410	2/6		XEI = XE(1 , IE1)			2410

(

Thu Jul	1 14:	:16:08	1993 adaphd.f	SUBROUTINE INTPTN	page	34
2417	277		XE2 = XE(1 1E2			
2418	278		XE3 = XE(1), IE3			2417
2419	279		END IF			2418
2420	280		IF(IJE52 . NE . 0) THEN		2419
2421	281		IEDIST = IE2			2421
2422	282		XE1 = XE(1, IE2)			2422
2423 2828	283		XE2 = XE(1, 1E1)			2423
2425	285		FND 1F			2424
2426	286		IF(LJE53 . NE . O) THEN		2425
2427	287		IEDIST = IE3	,		2420
2428	288		XE1 = XE(1 , IE3)			2428
2429	289		XE2 = XE(1, 1E2)			2429
2430	290		XE3 = XE(1, IE1)			2430
2432	292		YFNIST - 1 / YF(1			2431
2433	293		$\frac{1}{1} \frac{1}{1} \frac{1}$, (()())		2432
2434	294		YE3 = XE3 * XEDIST			2433
2435	295		ZE2 = (YE2 - 1.5)	* (YE21)		2424
2436	296		ZE3 = (YE3 - 1.5)	* (YE31)		2435
2437	297		YY2 = XE1 * XE1 + X	E2 * XE2 + .35 * XE1 * XE2 - XF3 * XE3		2437
2430	298		YY3 = XE1 * XE1 + X	E3 * XE3 + .35 * XE1 * XE3 - XE2 * XE2		2438
2440	300			$\frac{1}{10} - \frac{1}{10} + \frac{1}{10} $		2439
2441	301		YY2 GT 0	AND YYR CT O TUCH		2440
2442	302		CALL DISECT (IEDIS	T. IDONF. IDUMP)		2441
2443	303	С				2442
2444	304		LTRIG = LTRIG + 1			2444
2445	305		JTRIG(LIRIG) = NS	_		2445
2440 2887	300	c	KSDFFI(NS) = IDOW	P		2446
2448	308	ن.	IFDGE - IFDGE + .			2447
2449	309		IRECNC(IFDGE) = N	F		2448
2450	310		NCOLOR = NCOLOR + 1			2449
2451	311		JEE(NCOLOR) = NE			2450
2452	312		JSE(NE) = 1			2452
2453	313		IEDGE = IEDGE + 1			2453
2434 2855	314		$\frac{1}{1} \frac{1}{1} \frac{1}$	E - 1		2454
2456	316		JEF (NCOLOR) - NE	- 1		2455
2457	317		JSE(NE - 1) = 1	- 1		2455
2458	318	С				2437
2459	319		END IF			2459
2460	320	c	END IF			2460
2401	321	L				2461
2463	323	C	11(104110 . EQ . 1) HALM		2462
2464	324	•	CALL VERCEN(ISS)			2403 2464
2465	325		KSDELT(ISS) = IDU	1P		2465
2466	326		LTRIG = LTRIG + 1			2466
240/	327		JTRIG(LTRIG) = NS			2467
2400	320 320	c	NOULLI(ND - L) = D	LDOULL.		2468
2470	330	•	LTRIG = ITRIC + 1			2469
2471	331		JTRIG(LTRIG) = NS			24/U 7871
2472	332		KSDELT(NS) = IDUM)		2472
2473	333	С				2473
24/4	334		IEDGE = IEDGE + 1			2474
24/5	333		$\frac{1}{1} \frac{1}{1} \frac{1}$			2475
2477	337		JFF(NCOLOR) = NF		:	24/0
2478	338		JSE(NE) = 1			24// 7878
2479	339		IEDGE = IEDGE + 1			2479
2480	340		IRECNC(IEDGE) = NE	1 - 1		2480
2401	541 242		NCOLOR = NCOLOR + 1	,	:	2481
2402 2483	745 272		JCE(NEIV) = NE - 3CE(NEIV) = 1	1		2482
2484	344		$\frac{1}{1} = \frac{1}{1} = \frac{1}{1}$			(483 2484
2485	345		IRECNC(IEDGE) = NF	- 2		2 404 2 8 8 6
2486	346		NCOLOR = NCOLOR + 1	-		2486
2487	347		JEE(NCOLOR) = NE -	2		2487
2488	348 340	r	JSE(NE - 2) = 1		í	2488
2409	349 350	L	FISE			2489
6730	230		L LJL		ā	2490

2491 351 C C 249 2493 353 D0 545 KK - 4, 6 249 2494 354 LEF - IASK (EE) 249 2495 355 LEF - IASK (EE) 249 2496 356 LESS - C(5, LEF) 249 2496 356 LEF - IASK (EE) 249 2496 356 LEF - IASK (EE) 249 2499 359 IT LES - C(3, LEF) 249 2500 360 ELSZ - LC(3, LEF) 250 2501 361 IST - JE(3, LEF) 250 2503 363 APECAX + SAREA (ISI) 250 2504 366 ILEZ + C(3, LEF) 250 2507 367 HOL + AREAX + SAREA (ISI) 250 2508 368 LEZ + AREA(ISI) 250 2509 368 LEZ + AREA(ISI) 250 2510 301 LEES + S(IC + IEZ) 251 2511 377 HG + AREAS + KI > S(I) 251 2513 373 HE + LASE (IS (I + IEZ) 251 2514	Thu Jul	1 14:16:0	08 1993	adaphd.f	SUBROUTINE INTPTN	page	35
2492 352 IDISCI + 0 249 2494 353 IDISCI + 0 249 2495 355 IEF - JISK K EX, ISS 249 2496 355 IEF - JISK K EX, ISS 249 2496 355 IEF - JISK K EX, ISS 249 2496 356 IEF - JISK K EX, ISS 249 2497 357 IF(JISSS - QL O) THEN 249 2498 358 ISI - JE (4 , IEE) 249 2500 360 ELIS - JE (5 , IEI) 250 2503 358 KEI - XE(1 , IEI) 250 2504 364 IEI - 1485 (356 , IEI) 250 2505 366 ILES - JE (5 , IEI) 250 2506 366 ILES - JE (5 , IEI) 250 2509 369 ILES - JE (5 , IEI) 250 2510 370 ILES - JE (5 , IEI) 250 2511 371 MC2 - AREAS * KE' * KE2 251 2512 372 IAS / JE (5 , IEI) 251 2513 371 ILES - JE (5 , IEI) 251 <tr< th=""><td>2491</td><td>351 C</td><td></td><td></td><td></td><td></td><td>2491</td></tr<>	2491	351 C					2491
2493 353 00 55 (KK. 155) 249 2494 354 IEF. JAKS(EF) 249 2495 355 IEF. JAKS(EF) 249 2496 355 IEF. JAKS(EF) 249 2497 355 IEF. JAKS(EF) 249 2498 358 IF(JEE. CT. 0.) THEN 249 2499 359 ISI. JE(4. IEE) 249 2500 360 ELSE 250 2501 361 ISI JE(4. IEE) 250 2504 364 ARDAX: SARCA(ISI) 250 2506 366 ILEE - XE(1, IEI) 250 2506 366 ILEE - XE(1, IEI) 250 2507 367 MDI - AREAS: XEI * KI 250 2511 371 ILEE - KE(1, IEI) 250 2513 373 KZI - KE(1, IEI) 251 2513 373 KZI - KE(1, IEI) 251 2513 373 KZI - KE(1, IEI) 251 2514 374 ILEE - KE(1, IEI) 251 2515 375 HOI - CHA	2492	352	ID	ISCT = 0			2492
2494 354 IEF - JS(JK, ISS) 249 2495 355 IEF - JS(K, ISS) 249 2496 357 IEFS - WE(S, IEF) 249 2497 357 IEFS - WE(S, IEF) 249 2498 359 IEF - GT - O. J HEN 249 2499 359 IEF - JE(A, IEF) 250 2500 360 ELSE 250 2501 361 IEF - JE(A, IEF) 250 2502 362 END IF SACKA (SI) 250 2503 363 IEF - JE(A, IEF) 250 2504 366 IEF - JE(A, IEF) 250 2507 367 HOI - AREAS * KEI * KEI 250 2509 368 IEZ - JAES (JS (E, IEZ) 250 2510 370 HOI - AREAS * KEI * KEI 250 2511 371 HO2 - AREAS * KE * KE 251 2513 372 HES - JEC * JE	2493	353	D0	545 KK = 4 ,	6		2493
2495 355 LEF - LASSI LE) 249 2496 356 LISE - AE (5, LF) 249 2497 356 LISE - AE (5, LF) 249 2498 359 LF (1, EE) 249 2500 360 FIE (- LASSI LE) 250 2501 361 LS (- LE) 250 2502 362 END IF 250 2503 363 AREAS - SAREA (SI) 250 2504 364 LE - LASSI SCH : XE) 250 2505 366 KE - KE (1, EE) 250 2506 369 LIZ - RASSI SCH : XE) 250 2508 369 LIZ - RASSI SCH : XE) 250 2510 370 LIS - SAEC * KE 2 * KE) 251 2511 371 HO2 - AREAS * KE * KE 2 251 2512 373 KE 2 * KE * KE 2 * KE 2 * 251 2513 373 KE 2 * KE * KE 2 * KE 2 * 251 2514 374 LJS - KE * KE * KE 2 * 251 2516 375 MG3 AREAS * KE * KE * KE * KE * 252 <tr< th=""><td>2494</td><td>354</td><td>IE</td><td>E = JS(KK, I)</td><td>SS)</td><td></td><td>2494</td></tr<>	2494	354	IE	E = JS(KK, I)	SS)		2494
2490 350 1.1655 1.1615	2495	355	IE	t = IAB2(IEE			2495
2439 330 If (Ligs. CV, U) (MRR 249 2439 351 If (E, G, T, G) (MRR 249 2500 360 I, SI, LE, G, T, C) (MRR 249 2500 361 ISI, LE, G, T, C) (MRR 250 2501 361 ISI, LE, J, LE, J 250 2503 363 ARACAS, SAREA, ISI) 250 2504 364 I: I - MASK (S, I; I) 250 2505 366 KI - LAKAS, SKE, ISI) 250 2506 367 HILZ, AKAS, SKE (S, IEI) 250 2506 366 HILZ, AKAS, SKE (S, IEI) 250 2510 370 HILZ, ISKE (S, IEI) 251 2511 371 HO2 - AREAKS * KZ * KZ (Z) 251 2512 372 IEI - AMASK (S, IC S, IEZ) 251 2513 373 AKI - JES + JES	2490	350	13	100 - JE(D ,			2490
2-380 336 11 12.2.1 1.0.1 2.0.1 2500 360 1.1.2 1.6.1 1.5.1 250 2501 361 1.5.1 - U.G. 250 2501 361 1.5.1 - U.G. 250 2503 363 AREAXS = SAREA(151) 250 2504 364 1.6.1 1.6.1 250 2506 366 1.0.55 - U.G. 250 2507 367 H01 - AREAXS = XEL + XEL 1 250 250 2508 369 1.1.2 AREAS = XEL (-1, SEL 1 250 2510 370 K.DES = -LISS (-1, SEL 1) 250 250 2511 371 H02 = AREAXS = XE2 × XE2 251 251 2513 373 K23 = AREAX = K2 × K23 251 251 251 2514 374 1.1.2.5.4 × K13 251 251 251 251 2515 375 H03 = AREAX = K2 × K23 251 251 251 2	249/	357	11	(JJE55 . EV .	U) INEN		2497
130 131 <td>2490</td> <td>350</td> <td>11</td> <td></td> <td>) /////</td> <td></td> <td>2490</td>	2490	350	11) /////		2490
	2433 2600	360	E1.	1 = JE(4 , IE CE	L)		2499
2502 160 160 161 250 2503 364 1E1 - 1085(J3(4, 1S1)) 250 2504 364 1E1 - 1085(J3(4, 1S1)) 250 2505 365 KEI + KE(1, 1E1) 250 2506 366 LJE55 - JE(5, 1E1) 250 2507 367 HDI - AREANS * XEI * XEI 250 2508 368 1E2 - IA85(J3(5, 1S1)) 250 2510 370 LJE55 - JE(5, 1E2) 251 2511 371 HG2 - AREANS * XEI * XEI 251 2513 372 LJE5 - LJE55 - JE(5, 1E2) 251 2514 374 LJE55 - LJE55 - JE(5, 1E3) 251 2515 375 HD3 - AREANS * XEI * XEI 251 2518 375 HD3 - AREANS * XEI * XEI 251 2519 370 IDISCT = I 1JE55 - E0 (J) THEN 251 2520 380 IF(RATIO . (I - T . AND . YAAREA - SC) ACI . THEN 252 2521 381 IF(RATIO . (I - T . AND . YAAREA - SC) ACI . THEN 252	2500	361	11	JE Table(3) IF	F)		2500
2563 363 AREAXS - SAREA(1S1) 256 2564 364 F1 - HAS(13(4, 1S1)) 256 2565 366 LLES - JE(5, 1E1) 250 2507 367 HD1 - AREAXS - SK1 + KE1 250 2508 368 HZ - HAS(13(5, 1S1)) 250 2509 368 HZ - KE(1, 1E2) 250 2500 367 HD1 - AREAXS - SK1 + KE1 250 2500 368 HZ - KE(1, 1E2) 251 2511 371 HD2 - AREAXS + KE2 + KE2 251 2512 127 HZ - HAS(13(5, 1S1)) 251 2513 374 LLESS - LLXS + KE2 + KE2 251 2514 374 LLESS - LLXS + KE2 + KE2 251 2515 376 WH10 - MAXA + KD2 + HD3 + S1 251 2516 377 YASARA - S(3 + S1) 251 2517 YT SARAA - S(3 + S1) 251 2518 378 IF(RATIO + L + 7, -AND + YSARA - GT - SHINVG , AND - ZSA 2520 382 IF (RATIO + L + 7, - AND - YSARA - GT - SHINVG , AND - ZSA 2520 383 IF (SATIO +	2502	362	EN		•)		2502
254 364 TET = Ta95(JS)(JA = [ST]) 256 255 365 XEI = XE(1 , TEL) 250 2507 367 HDI = AREAX5 * XEI * XEI = XEI 250 2508 368 TEZ = TA85(JS)(S = SEI) 250 2509 369 KEZ = TA85(JS)(S = SEI) 250 2510 370 LE55 = JE(5 , TEZ) 251 2511 371 HDZ = AREAX5 * XEZ * XEZ 251 2512 372 TE3 = TA85(JS)(G = TST) 251 2513 371 KE3 = AKE(J , TES) 251 2514 374 LJE55 = LJE(S , TE3) 251 2515 375 RATTO = ARAX1 (HDL , HDL	2503	363	AR	FAXS = SAREA(ISI)		2503
2255 365 $\vec{x}(i - xc(i, i, lc1))$ 2250 2507 367 HD1 - AREAS * xc1 * xc1 2508 368 L2 - lass(s) (s (s (s 1))) 2509 369 X2 - xc(i, i, lc2) 2510 370 L4ES + lass(s) (c (s (s 1))) 2511 371 HD2 - AREAS * xc2 * xc2 2511 371 L2 - lass(s) (c (s (s 1))) 2512 372 L2 - lass(s) (c (s (s 1))) 2513 373 X2 - xc(i, lc3) 2514 374 L4ES + lass(s) (c (s (s 1))) 2515 375 HD3 - AREAS * xc3 * xc3 2516 376 Ratio - ARAX(s) (ls1) ND3 2517 377 YSAREA - xS(s, ls1) 2518 373 LF (ratio - L1 - r. AND · YSAREA - GT . SMINVG . AND . 2519 379 101SCT - 1 2520 380 L1EC + lass(s) (c (s (s 1))) 2523 383 LF (s (s (s 1))) 2524 393 LF (s (s (s (s 1))) 2525 393 LE (s	2504	364	IE	1 = 1485(JS(4. ISI))		2504
2506 366 LJE55 - JE(5, IE1) 250 2507 361 IE2 - IABS(JS(5, IS1)) 250 2508 368 IE2 - IABS(JS(5, IS1)) 250 2510 370 ILE55 - ILE2) 250 2511 371 HD2 - AREANS * XE2 * XE2 251 2512 372 IE3 - IABS(JS(6, IS1)) 251 2513 373 XE3 - IAES5 + JE(5, IE3) 251 2514 374 LJE55 + ILE35 + JE(5, IE3) 251 2517 377 KARAA * XS(3, IS1) 251 2517 377 SAREAA * XS(3, IS1) 251 2517 377 SAREAA * XS(3, IS1) 251 2517 377 SAREA * XS(3, IS1) 251 2518 376 IDISCT - I JE55 - E0 · 0) THEN 252 2520 380 IF (RATIO · LT · 7 · · AAO · YSAREA · GT · SMINVG · ANO · 251 2521 381 IF (JSE(IE) · E0 · 0) THEN 252 2523 383 IF (JSE(IE) · E0 · 0) THEN 252 2	2505	365	XE	1 = XE(1, IE)	1)		2505
2607 367 HOI - AREAKS * XE1 * XE1 250 2608 369 IE2 + IARS(S(S) (S, ISI)) 250 2609 369 XE2 * XE(1, IE2) 250 250 370 ILES - IJLSS + JE(5, IE2) 251 2511 371 HO2 - AREAKS * XE2 * XE2 251 2513 373 XE3 - XE(1, IE3) 251 2514 374 ILES - IJLSS + JE(5, IE3) 251 2515 375 HO3 - AREAKS * XE3 * XE3 251 2516 376 RATIO - AMAXI (HOI, HOZ, HO3) 251 2517 377 YSAREA - XS(3, ISI) 251 2518 378 IF(RATIO - L 7 AMO - YSAREA - GT . SHINVG - AMO . 251 2519 379 IDISCT - 1 JE55 - EU (S, IE3) 252 2520 360 IDISCT - 4 (S 252 2521 381 DO 435 IR - 4 (S 252 2521 381 IF(JSE - ILES + IE5 - IE5 +	2506	36 6	IJ	E55 = JE(5 ,	IEI)		2506
2508 368 IE2 - IABS(JS(5, [E2]) 250 2510 370 IJE55 - JJE55 + JE(5, [E2]) 251 2511 371 HU2 - AREAS * K2(* K2 * K2 251 2512 372 IE3 - IABS(JS(6, IS1)) 251 2513 373 K2 * AREA * K2 * K2 * K2 * K2 251 2514 374 IJE55 - JJE55 + JE(5, IE3) 251 2515 376 RATIO - AMAXI(HDI , HD2, HD3) 251 2516 376 RATIO - AMAXI(HDI , HD2, HD3) 251 2517 377 YSAREA - XS(3, IS1) 252 2519 379 IDISCT - 1 255 250 2521 310 DO 435 IR - 4, 6 252 252 2522 382 IE - IABS(JS(IR, IS1)) 252 2525 387 IECGE + IECGE + 1 252 2526 388 JSE(IE) - I 252 2530 390 435 COUTHNE 252 2531 391 CAUC(LEGE) - I 252 2531 391 CAUC(LEGE) - I 253 2531 392	2507	367	HD	1 = AREAXS * X	E1 * XE1		2507
2509369 $KL2 - KL(1, 1E2)$ 2502510370 $LE2 - kL(1, 1E2)$ 2512511371 $MU2 - aREAXS + KL2 + KL2$ 2512512373 $KE3 - KL2(1, 1E3)$ 2512513373 $KE3 - KL2(1, 1E3)$ 2512514374 $LJE5 - LJE5 + LJE5 + L(5, 1E3)$ 2512515375 $HO3 - aREAXS + KL3 + KL3$ 2512516376RATIO - AMAKI (HD1, HO2, HO3)2512517377YSAREA - XS(3, 1S1)2512518378 $LF(RATIO - LT - AMAO + YSAREA - GT - SMINVG - AMO - 25125193791JE55 - EQ - 0) THEN25203801DISCT - 1.2522521381DO 435 IR - 4 , 62522522383IF(-JSE(IE) - EQ - 0) THEN2522523383IF(-USE(IE) - EQ - 0) THEN2522524384IEDCE - IEDCE + 12522525385IRCCNC(IEDCE) - IE2522526386MCOLOR - NCOLOR + 12522527387JEC(INCOLOR + NCOLOR + 12532531391CALL VERCEN(151)2532532392END IF2532533393UTRIG - LTRIG + 12532534394JTRIG - LTRIG + 12532535395KSDELT(INS) - 10MP2532536396C1TRIG - INTIG + 12542540400IEDCE - IEDCE + 12542541401IEDCE - $	2508	368	IE	2 = IABS(JS(5 , ISI))		2508
2510 3/0 1.3E55 - J.2E5 - J.2E / 2.1E2 / 2.251 2512 372 1.E3 - 1.4E5 / 3.E2 + X.E2 / 2.21 2512 372 1.E3 - 1.4E5 / 3.E2 + X.E2 / 2.21 2514 374 1.J.255 - J.255 + J.2 (5 - 1.E3) 2515 375 H03 - AREAAS + X.E3 + X.E3 - X.E3 / 2.21 2516 376 RATIO - AMAXI (HO I - HOZ + HO3) 2517 377 TSARAE - X.S (3 , 1.51) 2518 378 1.F (RATIO - LT - 7 AND - YSAREA - GT - SHINVG - AND . 2519 379 .	2509	369	XE	2 = XE(1, 1E)			2509
2511 371 HUZ = AREAXS - AEZ 251 2512 373 XE = XE(1, 1E3) 251 2513 373 XE = XE(1, 1E3) 251 2514 374 LUES = 1.0ES + 1.0E3 251 2515 375 HD3 = AREAXS * XE3 * XE3 251 2516 376 RATIO = AMAXL (HO1 = MOZ + HO3) 251 2517 377 YSAREA - XS(3, 1S1) 251 2518 378 IF (RATIO = L - 7 AMO - YSAREA - GT - SMINVG - ANO - 251 2519 379 - - 252 2520 380 IDISCT - I 252 252 2521 381 IP (JSC (TE) - EQ - 0) THEN 252 2522 383 IF (JSC (TE) - EQ - 0) THEN 252 2526 385 IRECKC (TEOGE) = IE 252 2526 385 IRECKC (TEOGE) = IE 252 2527 397 JEE (MOLOR + ICOLOR + 1 252 2530 399 EKO IF 253 2531 391 CALL VRCEN (ISI) 253 2533 393 LTRIG	2510	3/0	IJ	E55 = 1JE55 +	JE(5 , 1EZ)		2510
2513 372 11.3 = 1.463 (. 33 (. 6., 151 /) 251 2513 372 12.3 = XE (. 1.23) 251 2514 374 1.4E55 = .JE(5 + .JE(5 , IE3) 251 2515 375 MCD = AMAX1 (. HDL , HDZ , HDZ) 251 2516 376 RATIO = AMAX1 (. HDL , HDZ , HDZ) 251 2517 377 YSAREA = .X5 (. 3 , IS1) 251 2519 379	2511	3/1	10	2 = AKLAND - X 2 - TADS(15(2011
	2512	3/2	15.	3 = 1AD3(03(3 = YE/ 1 1E	, 171))		2512
	2513	373	AC 1 1	J = XC(I , IC CEE _ TIEEE +	フ /)F(5 1 F3)		2515
2216 375 NATIO = MARAXI (HDI _ HDZ , HD3) 2211 2517 377 YSAREA - XS(3, ISI) 231 2518 318 IF (RATIO - I , · · AND , YSAREA . GT , SMINVG . AND . 231 2519 379 . IJE55 . EQ . 0) THEN 231 2520 380 IDISCT = 1 252 252 2521 381 D0 435 IR - 4 , 6 252 2522 383 IF(JSE(IE) . EQ . 0) THEN 252 2524 384 IEDGE = IEDGE = I IE 252 2526 385 IRECNC(I EDGE) = IE 252 2527 387 JEE (NOLOR) = IE 252 2528 389 END IF 252 2529 399 END IF 252 2533 391 CALL VERCEN (ISI) 253 2533 393 LTRIG - LTRIG + I 253 2533 394 JTRIG (LTRIG) = NS - 1 253 2533 393 LTRIG - I N - IDUMP 253 2533 394 JTRIG (LTRIG + I 233 2533 395 JTRIG (LTRIG +	2515	375	HD IO	$R = \Delta PFAXS + X$	GL(3 , 1L3) F3 * XF3		2515
2517 377 GYAREA - GS(3, TSI) 251 251 2518 378 IF(RATIO.L.I.T.7.AND.YSAREA.GT.SMINVG.AND. 251 2519 379 JJESS.EQ.O) THEN 251 2520 380 IDISCT = 1 252 2521 310 DIST = 1 252 2522 382 IE = TABS(JS(IR, ISI)) 252 2523 333 IF(GATIO.N.L.I.T.7.AND.YSAREA.GT.SMINVG.AND. 252 2524 384 IEOGE = IEDGE + 1 252 2525 385 IRECNC(IEOGE) - 1E 252 2526 386 MODLOR = NCOLOR + 1 252 2528 388 JSE(IE) - 1 252 2529 390 435 CONTINUE 253 2531 391 CALL VERCEN(ISI) 253 253 2533 393 LTRIG (LTRIG + 1 253 253 2536 395 KSDELT((NS) - 1) = IDUMP 253 253 2537 397 LTRIG (LTRIG + 1 253 253 2538 396 VTRIG (LTRIG + 1 253 253 <td>2516</td> <td>376</td> <td>RA</td> <td>TIO = AMAX1(H)</td> <td>D1 , HD2 , HD3)</td> <td></td> <td>2516</td>	2516	376	RA	TIO = AMAX1(H)	D1 , HD2 , HD3)		2516
2518 378 IF(RATIO., LT. 7., AND., YSAREA., GT., SMINUG., AND., 2511 2519 379	2517	377	YS	AREA = XS(3)	ISI)		2517
2519 379 . IJE55 . EQ . 0) THEN 251 2520 380 IDISCT - 1 252 2521 381 DO 435 IR - 4 . 6 252 2522 382 IE - IABS(JS(IR, ISI)) 252 2523 383 IF(JSC(IF, ISI)) 252 2524 384 IEDGE + 1 252 2524 384 IEDGE + 1 252 2525 385 IRCHC(IEDGE) - IE 252 2526 386 MCOLOR - NCOLOR + 1 252 2526 386 JSC(IF) - I 252 2530 390 435 CONTINUE 253 2531 391 CALL VERCEN(ISI) 253 2533 393 LTRIG - IRIG + 1 253 2534 394 JTRIG (LTRIG + INS - 1) 253 2535 395 KSDELT(INS) - IDUMP 253 2536 396 JTRIG (LTRIG + 1 253 2537 397 LTRIG + IRIG + 1 254 2538 398 JTRIG (LTRIG + 1 254 2540 400	2518	378	ĬF	(RATIO . LT .	7. AND . YSAREA . GT . SMINVG . AND .		2518
2520 380 IDISCT - 1 252 2521 381 DO 435 IR - 4, 6 252 2523 383 IF (JSE(IE) - E0, 0) THEN 252 2524 384 IEDGE + IEDGE + IE 252 2525 385 IRECNC(IEDGE + 1 252 2526 386 MCOLOR + NCOLOR + 1 252 2527 387 JEE (NCOLOR) - IE 252 2528 386 JSE (IE) - I 252 2529 389 END IF 252 2530 390 CALL VERCEN(ISI) 253 2531 391 CALL VERCEN(ISI) 253 2533 391 CALL VERCEN(ISI) 253 2533 393 LTRIG - ITRIG + I 253 2534 394 JTRIG - ITRIG + I 253 2535 395 KSDELT(INS - I) - IDUMP 253 2536 396 C 253 2537 397 LTRIG - ITRIG + I 253 2538 398 JTRIG(LTRIG) - NS - 1 254 2540 400 C <td< th=""><td>2519</td><td>379</td><td>•</td><td>• • • • • • • • • •</td><td>IJE55 . EQ . 0) THEN</td><td></td><td>2519</td></td<>	2519	379	•	• • • • • • • • • •	IJE55 . EQ . 0) THEN		2519
2521 381 D0 435 IR - 4 , 6 252 2522 382 IE - IABS(JS(IR, ISI)) 252 2523 383 IF(JSE(IE).E0.0) THEN 252 2524 384 IEDGE - IEDGE + 1 252 2525 385 IRCHC(IEDGE) - 1E 252 2526 386 MCOLOR - MCOLOR + 1 252 2527 39 END IF 252 2530 390 435 CONTINUE 253 2531 391 CALL VERCEN(ISI) 253 253 2533 393 LTRIG - LTRIG + 1 253 253 2534 394 JTRIG (LTRIG) = NS - 1 253 2536 396 C 253 253 395 KSDELT(NS - 1) = IDUMP 253 2537 397 LTRIG - LTRIG + 1 253 253 253 253 253 2540 400 C 254 254 254 254 254 2541 401 IEDGE + IEDGE + 1 254 254 254 254 2544 403 </th <td>2520</td> <td>380</td> <td>ID</td> <td>ISCT = 1</td> <td></td> <td></td> <td>2520</td>	2520	3 80	ID	ISCT = 1			2520
2522 382 IE - IABS(JS(IR, ISI)) 252 2523 383 IF(JSE(IE). EO. 0) THEN 252 2524 384 IEDGE = IEDGE + 1 252 2525 385 IRECNC(IEDGE) = IE 252 2526 386 MCOLOR + NCOLOR + 1 252 2527 387 JEE(MCOLOR) = IE 252 2528 385 IRECNC(IEDGE) = 1 252 2529 389 END IF 252 2530 390 ASE (IE) I = 1 253 2531 391 CALL VERCEN (ISI) 253 2533 392 KSDELT (ISI) = IDUMP 253 2533 393 LTRIG - LTRIG + 1 253 2533 396 C 253 2537 397 LTRIG - LTRIG + 1 253 2538 398 JTRIG(LTRIG) = NS 253 2540 400 C 254 2541 401 IEDGE + I 254 2542 402 IRECNC(IEDGE) = NE 254 2544 404 IEEG = IEDG	2521	381	D0	435 IR = 4 ,	6		2521
2523 383 IF(JSE(IE), EQ. 0) THEN 252 2524 384 IECGE = IEDGE + 1 252 2525 385 IRECNC(IEDGE) = IE 252 2526 386 MCOLOR + NCOLOR + 1 252 2527 387 JE(MCOLOR) = IE 252 2528 386 JSE(NCOLOR) = IE 252 2529 389 EMD IF 252 2530 390 435 CONTINUE 253 2531 391 CALL VERCEN(ISI) 253 2533 392 KSDELT(ISI) = IDUMP 253 2533 393 LTRIG + IRIG + 1 253 2536 395 KSDELT(NS - 1) = IDUMP 253 2537 397 LTRIG - LTRIG + 1 253 2538 398 JTRIG(LTRIG) = NS 253 2539 398 KSDELT(NS) = IDUMP 253 2541 401 IEDGE = IEDGE + 1 254 2542 402 IRCENC(IEDGE) = NE 254 2543 403 MCOLOR = NEOLOR + 1 254 2544 <	2522	382	IE	= IABS(JS(I	R , ISI))		2522
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2523	383	IF	(JSE(IE) .	EQ. 0) THEN		2523
2525 365 INCLUC + ICUGE) = IE 252 2526 366 MCOLOR + ICUCOR + I 252 2527 387 JEE (NCOLOR) = IE 252 2528 388 JSE (IE) = I 252 2531 391 CALL VERCEN (ISI) 253 2532 392 KSDELT (ISI) = IDUMP 253 2533 393 LTRIG + IRIG + I 253 2534 394 JTRIG (LTRIG) = NS - 1 253 2535 395 KSDELT (NS - 1) = IDUMP 253 2536 396 C 253 2537 397 LTRIG + LTRIG + I 253 2538 398 JTRIG (LTRIG) = NS 253 2539 399 KSDELT (NS) = IDUMP 253 2540 400 C 2544 2541 1 IEGEE = IEDGE + 1 254 2543 401 IEGEE + I 254 2544 402 IRECNC (IEDGE) = NE 254 2544 404 JEE (NCOLOR) = NE 254 2544 405 JSE (NE	2524	384	IE	DGE = IEDGE +			2524
2527 360 RCULUR = RCULUR + 1 252 2528 388 JSE(IE) = I 252 2530 390 435 CONTINUE 253 2531 391 CALL VERCEN(ISI) 253 2532 392 KSDELT(ISI) = IDUMP 253 2533 393 LTRIG - LTRIG + 1 253 2533 394 JTRIG(LTRIG) = NS - 1 253 2535 395 KSDELT(NS - 1) = IDUMP 253 2536 396 C 253 2537 397 LTRIG - LTRIG + 1 253 2538 398 JTRIG(LTRIG) = NS 253 2540 400 C 254 2541 401 IEDGE + 1 254 2542 402 IRECNC(IEDGE) = NE 254 2543 403 MCOLOR + NCOLOR + 1 254 2544 405 JSE(NCOR) + NE 254 2544 406 IEDGE + 1 254 2544 405 JSE(NCOR) + NE - 1 254 2545 405 JSE(NCOR) + NE - 1 <td>2525</td> <td>205</td> <td>1K</td> <td>ELNU(ILDUL)</td> <td>= 1t</td> <td></td> <td>2020</td>	2525	205	1K	ELNU(ILDUL)	= 1t		2020
2227 307 JECL NOLOR (* = 1C) 222 2228 389 END IF 252 2530 390 435 CONTINUE 253 2531 391 CALL VERCEN(ISI) 253 2533 392 KSDELT(ISI) = 100MP 253 2533 393 LTRIG + LTRIG + 1 253 2534 394 JTRIG(LTRIG) = NS - 1 253 2535 395 KSDELT(NS - 1) = 100MP 253 2536 396 C 737 253 2537 397 LTRIG - LTRIG + 1 253 2538 398 JTRIG(LTRIG) = NS 253 2539 399 KSDELT(NS) = 100MP 253 2538 398 JTRIG (LTRIG) = NS 253 2539 399 KSDELT(NS) = 100MP 253 2540 400 C 254 2541 401 IEDGE + 1 254 2544 402 IRECNC(IEDGE) = NE - 1 254 2544 405 JSE(NE) = 1 254 2544 405 <t< th=""><td>2520</td><td>300</td><td>10</td><td>ULUK = NCULUK</td><td>+ 1 7E</td><td></td><td>2520</td></t<>	2520	300	10	ULUK = NCULUK	+ 1 7E		2520
2529 309 END IF 252 2530 300 435 CONTINUE 253 2531 391 CALL VERCEN(ISI) 253 2533 392 KSDELT(ISI) = IDUMP 253 2533 393 LTRIG + LTRIG + I 253 2534 394 JTRIG (LTRIG) = NS - 1 253 2535 395 KSDELT(NS - 1) = IDUMP 253 2536 396 C 253 2537 397 LTRIG - LTRIG + 1 253 2538 398 JTRIG(LTRIG) = NS 253 2539 399 KSDELT(NS) = IDUMP 253 2530 399 KSDELT(NS) = IDUMP 253 2540 400 C 254 2541 401 IEDGE = IEDGE + 1 254 2544 402 IRECNC(IEDGE) = NE 254 2544 404 JEE(NCOLOR) = NE - 1 254 2544 405 JSE(NE) = 1 254 2544 406 IEDGE + IEDGE + 1 254 2549 406 JEE(NCOLOR) = N	2527	307 388	10	E(1E) = 1			2528
2530 330 435 CONTINUE 2531 2531 391 CALL VERCEN (ISI) 253 2532 332 KSDELT (ISI) = 10UMP 2533 2533 393 LTRIG = LTRIG + 1 2533 2535 395 KSDELT (ISI) = 10UMP 2533 2536 396 C 2533 2537 397 LTRIG - LTRIG + 1 2533 2538 398 JTRIG(LTRIG) = NS 2533 2539 399 KSDELT (NS) = 10UMP 2533 2539 399 KSDELT (NS) = 10UMP 2533 2540 400 C 2544 2541 401 IEDGE + I 2544 2541 401 IEDGE + NCOLOR + N 2544 2543 403 MCOLOR - NCOLOR + 1 2544 2544 404 JEE (NCOLOR) = NE 2544 2544 405 JSE (NE - 1) = 1 254 2544 406 IEDGE + 1 254 2544 406 IEDGE + NE - 1 254 2545 405 JS	2529	389	FN				2529
2531 301 CALL VERCEN(ISI) 253 2532 392 KSDELT(ISI) = IDUMP 253 2533 393 LTRIG = LTRIG + 1 253 2534 394 JTRIG(LTRIG) = NS - 1 253 2535 395 KSDELT(NS - 1) = IDUMP 253 2536 396 C 253 2537 397 LTRIG - LTRIG + 1 253 2538 398 JTRIG(LTRIG) = NS 253 2539 399 KSDELT(NS) = IDUMP 253 2540 400 C 254 2541 401 IEDGE = IEDGE + 1 254 2542 402 IRECNC(IEDGE) = NE 254 2544 404 JEE (NCOLOR + NE 254 2544 404 JEE (NCOLOR + NCOLOR + 1 254 2544 405 JSE (NE - 1 = NE - 1 254 2545 405 JSE (NE - 1 = NE - 1 254 2546 406 IEDGE + IEDGE + 1 254 2547 407 IRECNC (IEDGE) = NE - 1 255 2551 411	2530	390 43	35 CO	NTINUE			2530
2532 392 KSDELT(IST) = IDUMP 253 2533 393 LTRIG = LTRIG + 1 253 2534 394 JTRIG(LTRIG) = NS - 1 253 2535 395 KSDELT(NS - 1) = IDUMP 253 2536 396 C 253 2537 397 LTRIG = LTRIG + 1 253 2538 398 JTRIG(LTRIG) = NS 253 2539 399 KSDELT(NS) = IDUMP 253 2530 399 KSDELT(NS) = IDUMP 253 2540 400 C 254 2541 401 IEDGE = IEDGE + 1 254 2542 402 IRECNC(IEDGE) = NE 254 2543 403 MCOLOR = NCOLOR + 1 254 2544 404 JEE(NCOLOR) = NE 254 2544 404 JEE(NCOLOR) = NE 254 2544 404 JEE(NCOLOR) = NE - 1 254 2545 405 JSE(NE - 1) = 1 254 2546 406 IEDGE + IEDGE + 1 254 2547 407 IRECNC(IEDG	2531	391	ČĂ	LL VERCEN(ISI			2531
2533 393 LTRIG - LTRIG + 1 253 2534 394 JTRIG(LTRIG) = NS - 1 253 2535 395 KSDELT(NS - 1) - IDUMP 253 2536 396 C 253 2537 397 LTRIG - LTRIG + 1 253 2538 398 JTRIG(LTRIG) = NS 253 2539 399 KSDELT(NS) = IDUMP 253 2540 400 C 254 2541 401 IEDGE = IEDGE + 1 254 2542 402 IRECNC(IEDGE) = NE 254 2544 404 JEE(NCOLOR) = NE 254 2544 404 JEE(NCOLOR) = NE 254 2544 404 JEE(NCOLOR) = NE - 1 254 2544 404 JEE(NCOLOR) = NE - 1 254 2544 404 JEE(NCOLOR) = NE - 1 254 2547 407 IRECNC(IEDGE + NE - 1 254 2548 408 NCOLOR - NCOLOR + 1 254 2551 411 IEDGE + 1EDGE + 1 255 2552 412	2532	392	KS	DELT(ISI) =	IDUMP		2532
2534394JTRIG(LTRIG) = NS - 12532535395KSDELT(NS - 1) = IDUMP2532536396C2532537397LTRIG = LTRIG + 12532538398JTRIG(LTRIG) = NS2532539399KSDELT(NS) = IDUMP2532540400C2542541401IEDGE = IEDGE + 12542542402IRECNC(IEDGE) = NE2542543403NCOLOR = NCOLOR + 12542544404JEE(NCOLOR) = NE2542545405JSE(NE) = 12542546406IEDGE = IEDGE + 12542547407IRECNC(IEDGE) = NE - 12542548408NCOLOR = NCOLOR + 12542549409JEE(NCOLOR) = NE - 12542540400JSE(NE - 1) = 12542541401JEDGE = IEDGE + 12542542400JSE(NE - 2) = 12542551411IEDGE = IEDGE + 12552551411IEDGE = IEDGE + 12552551414JEE(NCOLOR + 12552553413NCOLOR = NCOLOR + 12552554414JEE(NCOLOR) = NE - 22552555419C2552556416END IF2552557417END IF2552558418545CONTINUE2561421IEI = IAAS(JS(4, ISS))2562	2533	393	LŤ	RIG = LTRIG +	1		2533
2335 395 KSDELT(NS - 1) = IDUMP 253 2536 396 C 253 2537 397 LTRIG - LTRIG + 1 253 2538 398 JTRIG(LTRIG) = NS 253 2539 399 KSDELT(NS) = IDUMP 253 2540 400 C 254 2541 401 IEDGE = IEDGE + 1 254 2543 403 NCOLOR + NCOLOR + 1 254 2543 403 NCOLOR + NCOLOR + 1 254 2544 404 JEE (NCOLOR) = NE 254 2544 404 JEE (NCOLOR) = NE - 1 254 2544 404 JEE (NCOLOR) = NE - 1 254 2544 404 JEE (NCOLOR) = NE - 1 254 2547 407 IRECNC (IEDGE) = NE - 1 254 2548 408 NCOLOR - NCOLOR + 1 254 2550 410 JSE (NE - 1) = 1 255 2551 411 IEDGE + 1 255 2555 413 NCOLOR + NCOLOR + 1 255 2555 414 <td>2534</td> <td>394</td> <td>JT</td> <td>RIG(LTRIG) =</td> <td>NS - 1</td> <td></td> <td>2534</td>	2534	394	JT	RIG(LTRIG) =	NS - 1		2534
2336 396 C 2537 2537 397 LTRIG = LTRIG + 1 2533 2538 398 JTRIG(LTRIG) = NS 2533 2539 399 KSDELT(NS) = IDUMP 2533 2540 400 C 2544 2541 401 IEDGE = IEDGE + 1 2544 2542 402 IRECNC(IEDGE) = NE 2544 2543 403 MCOLOR - NCOLOR + 1 2544 2544 404 JEE(NCOLOR) = NE 2544 2544 405 JSE(NE) = 1 2544 2545 405 JSE(NE) = NE 2544 2546 406 IEDGE = IEDGE + 1 2544 2547 407 IRECNC(IEDGE) = NE - 1 2544 2548 408 MCOLOR - MCOLOR + 1 2544 2549 409 JEE(NCOLOR) = NE - 1 2544 2550 410 JSE(NE - 1) = 1 2555 2551 411 IEDGE + ICOLOR + 1 2555 2552 412 IRECNC(IEDGE) = NE - 2 255 2555 415 JSE(N	2535	395	KS	DELT(NS-1)	- IDUMP		2535
2537 397 LIRIG - LIRIG + I 253 2538 398 JIRIG (LIRIG) = NS 253 2539 399 KSDELT(NS) = IDUMP 253 2540 400 C 254 2541 401 IEDGE = IEDGE + 1 254 2542 212 IRECNC(IEDGE) = NE 254 2543 403 NCOLOR - NCOLOR + 1 254 2546 405 JSE(NE) = 1 254 2546 406 IEDGE = IEDGE + 1 254 2546 406 IEDGE = IEDCE + 1 254 2547 407 IRECNC(IEDGE) = NE - 1 254 2548 408 NCOLOR - NCOLOR + NCOLOR + 1 254 2549 409 JEE(NCOLOR) = NE - 1 254 2549 409 JEE(NCOLOR) = NE - 2 255 2551 410 JSE(NE - 1) = 1 255 2552 412 IRECNC(IEDGE) = NE - 2 255 2553 413 NCOLOR + NCOLOR + 1 255 2554 414 JEE(NCOLOR) = NE - 2 255 2554	2536	396 C					2530
2330330JIRIG (IRIG) = NS2332530399KSDELT (NS) = IDUMP2532531400C2542541401IEDGE = IEDGE + 12542542402IRECNC (IEDGE) = NE2542543403NCOLOR + NCOLOR + 12542544404JEE (NCOLOR) = NE2542545405JSE (NE) = 12542546406IEDGE + IEDGE + 12542547407IRECNC (IEDGE) = NE - 12542548408NCOLOR + NCOLOR + 12542549409JEE (NCOLOR) = NE - 12542550410JSE (NE - 1) = 12552551411IEDGE = IEDGE + 12552552412IRECNC (IEDGE) = NE - 22552554413NCOLOR + NCOLOR + 12552555415JSE (NE - 2) = 12552555415JSE (NE - 2) = 12552556416END IF2552557417END IF2552558418545CONTINUE2552559419C2552560420IF (IDISCT . EQ . 0) THEN2562561421IE1 = IABS(JS (4 , ISS))2562562422XE I = XE (1 , IEI)2562563423IE2 = IABS (JS (5 , ISS))2562564424XE 2 = XE (1 , IE2)256	2537	397	L1	KIG = LIKIG +			2037
2540 400 C 2541 2541 401 IEDGE = IEDGE + 1 254 2542 402 IRECNC(IEDGE) = NE 254 2543 403 NCOLOR + NCOLOR + 1 254 2544 404 JEE (NCOLOR) = NE 254 2545 405 JSE (NE) = 1 254 2546 406 IEDGE = IEDGE + 1 254 2546 406 IEDGE = IEDGE + 1 254 2547 407 IRECNC (IEDGE) = NE - 1 254 2548 408 NCOLOR + NCOLOR + 1 254 2549 409 JEE (NCOLOR) = NE - 1 254 2550 410 JSE (NE - 1) = 1 255 2551 411 IEDGE = IEDGE + 1 255 2552 413 NCOLOR + NCOLOR + 1 255 2554 414 JEE (NCOLOR) = NE - 2 255 2555 415 JSE (NE - 2) = 1 255 2556 416 END IF 255 2557 417 END IF 255 2556 418 545	2530	390	110 121	RIG(LIRIG) =			2530
2540 400 C 2541 2542 2542 402 IRECNC(IEDGE) = NE 254 2543 403 MCOLOR = NCOLOR + 1 254 2544 404 JEE (NCOLOR) = NE 254 2545 405 JSE (NE) = 1 254 2546 406 IEDGE = IEDGE + 1 254 2547 407 IRECNC(IEDGE) = NE - 1 254 2548 408 NCOLOR = NCOLOR + 1 254 2549 409 JEE (NCOLOR) = NE - 1 254 2550 410 JSE (NE - 1) = 1 255 2551 411 IEDGE = IEDGE + 1 255 2551 411 IEDGE = NE - 2 255 2551 411 IEDGE + NCOLOR + 1 255 2552 412 IRECNC (IEDGE) = NE - 2 255 2553 413 MCOLOR + NCOLOR + 1 255 2554 414 JEE (NCOLOR) = NE - 2 255 2555 415 JSE (NE - 2) = 1 255 2556 416 EMD IF 255 2557 </th <td>2535</td> <td>799 299</td> <td>67</td> <td>UELI(#3) = 1</td> <td>Butte</td> <td></td> <td>2540</td>	2535	799 299	67	UELI(#3) = 1	Butte		2540
2542 402 IRECNC (IEDGE) = NE 2544 2543 403 NCOLOR = NCOLOR + 1 2544 2544 404 JEE (NCOLOR) = NE 2544 2545 405 JSE (NE) = 1 2544 2546 406 IEDGE = IEDGE + 1 2544 2547 407 IRECNC (IEDGE) = NE - 1 254 2548 408 NCOLOR = NCOLOR + 1 254 2549 409 JEE (NCOLOR) = NE - 1 254 2550 410 JSE (NE - 1) = 1 255 2551 411 IEDGE = IEDGE + 1 255 2552 412 IRECNC (IEDGE) = NE - 2 255 2553 413 NCOLOR = NCOLOR + 1 255 2554 414 JEE (NCOLOR) = NE - 2 255 2555 415 JSE (NE - 2) = 1 255 2556 416 END IF 255 2559 419 C 255 2559 419 C 255 2560 420 IF (IDISCT . EQ . 0) THEN 256 2560 420 IF (2541	401	IF	DGF = IFDGF +	1		2541
2543 403 NCOLOR = NCOLOA + 1 2544 2544 404 JEE(NCOLOR) = NE 2544 2545 405 JSE(NE) = 1 2544 2546 406 IEDGE = IEDGE + 1 2544 2547 407 IRECNC(IEDGE) = NE - 1 2544 2548 408 NCOLOR = NCOLOR + 1 2544 2549 409 JEE(NCOLOR) = NE - 1 2544 2550 410 JSE(NE - 1) = 1 2555 2551 411 IEDGE = IEDGE + 1 2555 2552 412 IRECNC(IEDGE) = NE - 2 2555 2553 413 NCOLOR + NCOLOR + 1 2555 2554 414 JEE(NCOLOR) = NE - 2 2555 2555 415 JSE(NE - 2) = 1 2555 2555 415 JSE(NE - 2) = 1 2555 2555 416 END IF 2555 2556 418 545 CONTINUE 2555 2557 417 END IF 2555 2556 418 545 CONTINUE 2556 2561	2542	402	IR	ECNC(IEDGE)	- = NE		2542
2544 404 JEE(NCOLOR) = NE2542545 405 JSE(NE) = 12542546 406 IEDGE = IEDGE + 12542547 407 IRECNC(IEDGE) = NE - 12542548 408 NCOLOR = NCOLOR + 12542549 409 JEE(NCOLOR) = NE - 12542550 410 JSE(NE - 1) = 12552551 411 IEDGE = IEDGE + 12552552 412 IRECNC(IEDGE) = NE - 22552553 413 NCOLOR = NCOLOR + 12552554 414 JEE(NCOLOR) = NE - 22552555 415 JSE(NE - 2) = 12552556 416 END IF2552557 417 END IF2552558 418 545CONTINUE2552550 420 IF(IDISCT . EQ . 0) THEN2562561 421 IE1 = IABS(JS(4, ISS))2562562 422 XE1 = XE(1, IE1)2562563 423 IE2 = IA8S(JS(5, ISS))2562564 424 XE2 = XE(1, IE2)256	2543	403	NC	OLOR - NCOLOR	+ 1		2543
2545 405 $JSE(NE) = 1$ 2544 2546 406 $IEDGE = IEDGE + 1$ 254 2547 407 $IRECNC(IEDGE) = NE - 1$ 254 2548 408 $NCOLOR = NCOLOR + 1$ 254 2549 409 $JEE(NCOLOR) = NE - 1$ 254 2550 410 $JSE(NE - 1) = 1$ 255 2551 411 $IEDGE = IEDGE + 1$ 255 2552 412 $IRECNC(IEDGE) = NE - 2$ 255 2553 413 $NCOLOR = NCOLOR + 1$ 255 2554 414 $JEE(NCOLOR) = NE - 2$ 255 2554 414 $JEE(NCOLOR) = NE - 2$ 255 2554 416 END IF 255 2556 416 END IF 255 2557 417 END IF 255 2558 418 545 CONTINUE 255 2559 419 C 255 2560 420 IF(IDISCT . EQ . 0) THEN 256 2561 421 IEI = IABS(JS(4 . ISS)) 256 2562 422 $xE1 = xE(1, IEI)$ 256 2563 423 IE2 = IABS(JS(5, ISS)) 256 2564 424 $xE2 = xE(1, IE2)$ 256	2544	404	JE	E(NCOLOR) =	NE		2544
2546 406 IEDGE = IEDGE + 1 2544 2547 407 IRECNC(IEDGE) = NE - 1 254 2548 408 NCOLOR - NCOLOR + 1 254 2549 409 JEE(NCOLOR) = NE - 1 254 2550 410 JSE(NE - 1) = 1 255 2551 411 IEDGE = IEDGE + 1 255 2552 412 IRECNC(IEDGE) = NE - 2 255 2553 413 NCOLOR = NCOLOR + 1 255 2554 414 JEE(NCOLOR) = NE - 2 255 2555 415 JSE(NE - 2) = 1 255 2556 416 END IF 255 2557 417 END IF 255 2559 419 C 255 2560 420 IF(IDISCT . EQ . 0) THEN 256 2561 421 IE1 = IABS(JS(4 . ISS)) 256 2561 421 IE1 = ABS(JS(5 . ISS)) 256 2563 423 IE2 = IABS(JS(5 . ISS)) 256 2563 423 IE2 = IABS(JS(5 . ISS)) 256 2563 <	2545	405	JS	E(NE) = 1			2545
2547407IRECNC { IEDGE $) = NE - 1$ 2542548408NCOLOR = NCOLOR + 12542549409JEE (NCOLOR $) = NE - 1$ 2542550410JSE (NE - 1) = 12552551411IEDGE = IEDGE + 12552552412IRECNC (IEDGE) = NE - 225532553413NCOLOR = NCOLOR + 125552554414JEE (NCOLOR) = NE - 225552555415JSE (NE - 2) = 125552556416END IF25552557417END IF25552558418545CONTINUE25552559419C25562561420IF (IDISCT . EQ . 0) THEN25662561421IE1 = IABS(JS(4 , ISS))2562562422XE1 = XE (1 , IE1)2562563423IE2 = IABS(JS(5 , ISS))2562564424XE2 = XE (1 , IE2)256	2546	406	IE	DGE = IEDGE +	1		2546
2548408NCOLOR = NCOLOR + 12542549409JEE(NCOLOR) = NE - 12542550410JSE(NE - 1) = 12552551411IEDGE = IEDGE + 12552552412IRECNC (IEDGE) = NE - 22552553413NCOLOR = NCOLOR + 12552554414JEE(NCOLOR) = NE - 22552555415JSE(NE - 2) = 12552556416END IF2552557417END IF2552558418545CONTINUE2552559419C2552561421IE1 = IABS(JS(4 , ISS))2562562422XE1 = XE(1 , IE1)2562563423IE2 = IABS(JS(5 , ISS))2562564424XE2 = XE(1 , IE2)256	2547	407	IR	ECNC(IEDGE)	≖ NE - 1		254/
2549 409 JEE (MCULOR) = NE - 12542550 410 JSE (NE - 1) = 12552551 411 IEDGE = IEDGE + 12552552 412 IRECNC (IEDGE) = NE - 22552553 413 NCOLOR = NCOLOR + 12552554 414 JEE (NCOLOR) = NE - 22552555 415 JSE (NE - 2) = 12552556 416 END IF2552557 417 END IF2552558 418 545CONTINUE2552559 419 C2552561 420 IF (IDISCT . EQ . 0) THEN2562561 421 IE1 = IABS(JS(4 , ISS))2562562 422 $xE(1 , IE1)$ 2562563 423 IE2 = IABS(JS(5 , ISS))2562564 424 $xE2 = xE(1 , IE2)$ 256	2548	408	NC	OLOR - NCOLOR			2340
2550410 $35E(NE - 1) = 1$ 2552551411 $IEDGE = IEDGE + 1$ 2552552412 $IRECNC(IEDGE) = NE - 2$ 2552553413 $NCOLOR = NCOLOR + 1$ 2552554414 $JEE(NCOLOR) = NE - 2$ 2552555415 $JSE(NE - 2) = 1$ 2552556416 $END IF$ 2552557417 $END IF$ 2552558418545 $CONTINUE$ 2552559419C2552561420 $IF(IDISCT . EQ . 0) THEN$ 2562561421 $IE1 = IABS(JS(4 . ISS))$ 2562562422 $XEI = XE(1 . IE1)$ 2562563423 $IE2 = IABS(JS(5 . ISS))$ 2562564424 $XE2 = XE(1 . IE2)$ 256	2549	409	JL	E(NCOLOR) =	NE - 1		2343
2551 411 1Ebde * 1Ebde * 1 255 2552 412 IRECNC (IEDGE) = NE - 2 255 2553 413 NCOLOR = NCOLOR + 1 255 2554 414 JEE (NCOLOR) = NE - 2 255 2555 415 JSE (NE - 2) = 1 255 2556 416 END IF 255 2557 417 END IF 255 2558 418 545 CONTINUE 255 2559 419 C 255 255 2561 420 IF (IDISCT . EQ . 0) THEN 256 2561 421 IE1 = IABS(JS (4 , ISS)) 256 2562 423 IE2 = IABS(JS (5 , ISS)) 256 2563 423 IE2 = IABS(JS (5 , ISS)) 256 2564 424 XE2 = XE (1 , IE2) 256	2550	410	ປວ 15	$E(NE - I) = \\ DCE = IEDCE = $	1		2551
2552412Include (1600) = 100 + 11 2552553413NCOLOR = $1COLOR + 1$ 2552554414JEE($1COLOR$) = $1E - 2$ 2552555415JSE($1E - 2$) = 1 2552556416END IF2552557417END IF2552558418545CONTINUE2552559419C2552560420IF(IDISCT . EQ . 0) THEN2562561421IE1 = $1ABS(JS(4, ISS))$ 2562562422 $XE1 = XE(1, IE1)$ 2562563423IE2 = $1ABS(JS(5, ISS))$ 2562564424 $XE2 = XE(1, IE2)$ 256	2552	411	10	FCNC(IFDGE)	= NF = 2		2552
2554 414 JEE(NCOLOR) = NE - 2 255 2555 415 JSE(NE - 2) = 1 255 2556 416 END IF 255 2557 417 END IF 255 2558 418 545 CONTINUE 255 2560 420 IF(IDISCT . EQ . 0) THEN 256 2561 421 IE1 = IABS(JS(4 , ISS)) 256 2562 422 XE1 = XE(1 , IE1) 256 2563 423 IE2 = IABS(JS(5 , ISS)) 256 2564 424 XE2 = XE(1 , IE2) 256	2553	413	NC	OLOR = NCOLOR	- 116 - 6 +]		2553
2555 415 JSE(NE - 2) = 1 255 2556 416 END IF 255 2557 417 END IF 255 2558 418 545 CONTINUE 255 2559 419 C 255 2560 420 IF(IDISCT . EQ . 0) THEN 256 2561 421 IE1 = IABS(JS(4 , ISS)) 256 2562 422 XE1 = XE(1 , IE1) 256 2563 423 IE2 = IABS(JS(5 , ISS)) 256 2564 424 XE2 = XE(1 , IE2) 256	2554	414	JF	E(NCOLOR) =	NE - 2		2554
2556 416 END IF 255 2557 417 END IF 255 2558 418 545 CONTINUE 255 2559 419 C 255 2560 420 IF(IDISCT . EQ . 0) THEN 256 2561 421 IE1 = IABS(JS(4 , ISS)) 256 2562 422 XE1 = XE(1 , IE1) 256 2563 423 IE2 = IABS(JS(5 , ISS)) 256 2564 424 XE2 = XE(1 , IE2) 256	2555	415	ĴŜ	E(NE - 2) =	1		2555
2557 417 END IF 255 2558 418 545 CONTINUE 255 2559 419 C 255 2560 420 IF(IDISCT . EQ . 0) THEN 256 2561 421 IE1 = IABS(JS(4 , ISS)) 256 2562 422 XE1 = XE(1 , IE1) 256 2563 423 IE2 = IABS(JS(5 , ISS)) 256 2564 424 XE2 = XE(1 , IE2) 256	2556	416	EN	DIF			2556
2558 418 545 CONTINUE 255 2559 419 C 255 2560 420 IF(IDISCT.EQ.0) THEN 256 2561 421 IE1 = IABS(JS(4, ISS)) 256 2562 422 XE1 = XE(1, IE1) 256 2563 423 IE2 = IABS(JS(5, ISS)) 256 2564 424 XE2 = XE(1, IE2) 256	2557	417	EN	D IF			2557
2559 419 C 255 2560 420 IF(IDISCT.EQ.0) THEN 256 2561 421 IE1 = IABS(JS(4, ISS)) 256 2562 422 XE1 = XE(1, IE1) 256 2563 423 IE2 = IABS(JS(5, ISS)) 256 2564 424 XE2 = XE(1, IE2) 256	2558	418 54	45 CO	NTINUE			2558
2560 420 IF(IDISCI.EQ.0) IHEN 256 2561 421 IE1 = IABS(JS(4, ISS)) 256 2562 422 XEI = XE(1, IEI) 256 2563 423 IE2 = IABS(JS(5, ISS)) 256 2564 474 XE2 = XE(1, IE2) 256	2559	419 C	-	/			2559
2501 421 $1E1 = 1ABS(JS(4, 1SS))$ 250 2562 422 $XE1 = XE(1, 1E1)$ 256 2563 423 $1E2 = 1ABS(JS(5, 1SS))$ 256 2564 424 $XE2 = XE(1, 1E2)$ 256	2560	420	IF	(IDISCT . EQ	U J HEN		2000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2501	421	IE	T = TUR2(12(4, 133))		2501
$2564 424 \qquad \text{XF2} = \text{XE}(1, \text{IE2}) \qquad 256$	2002	422	7 C	1 = AE(1 , 1t 2 = 10051 = 15/	5 ((25))		2563
	2564	424	XF	2 = XE(1). IF	2)		2564

Thu Jul	1 14:	:16:08	1993	ad aphd. f	SUBROL	ITINE	INTPTN	page	36
2565	425		IE3 =	IABS(JS(5 , ISS))				2565
2500 2567	426		XE3 =	XE(1, IE	3)				2566
2568	428		XEDIS	T = XE1					2567
2569	429		1F(X	E2 . GT . X	EDIST) THEN				2569
2570	430		XEDIS	T = XE2					2570
2572	432		FND T	1 = 152 F					2571
2573	433		IF(X	E 3 . GT . XI	DIST) THEN				25/2
2574	434		XEDIS	T = XE3					2574
2575	435		END T	1 = 163 F					2575
2577	437		ISL =	JE(3.IE	DIST)				2576
2578	438		ISR =	JE(4 , IEI	DIST)				2578
2579	439		XSISL	= XS(3, 1)	SL)				2579
2580	440		ASISK 1.1E5	= XS(3,1	SK)				2580
2582	442		IF(XS	SISL. GT.	RMINVG . AND . XSISR .	GT .	RMINVG . AND .		2581
2583	443		. <u>I</u> .	JE5 . EQ . (. AND . IRATIO . NE .	2)	THEN		2583
2585	4 44 115		1F(1:	SS . NE . IS	L) THEN				2584
2586	446		IE = 1	ABS(JS(IF	. ISL))				2585
2587	447		IF(JS	SE(ÌE).E	Q.O) THEN				2587
2588	148		IEDGE	= IEDGE + I	17				2588
2590	449		NCOLOF	<pre>>(IEDGE) = > = NCOLOR +</pre>	: 1E . 1				2589
2591	451		JEE(N	(COLOR) = 1	E				2590
2592	452		JSE(]	E) = 1					2592
2593	403	345	ENU II						2593
2595	455	747	END IF						2594
2596	456	С							2595
2597	457		IF(19	S. NE . IS	R) THEN				2597
2598 2599	450		15 - 1	1R = 4, 6 ABS(1S(10	150)				2598
2600	460		IF(JS	E(IE) . E	0.0) THEN				2599
2601	461		IEDGE	= IEDGE + 1					2601
2602	462			(IEDGE) =	IE				2602
2603	464		JEE(N	(= 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 100000 + 100000 + 100000 + 100000 + 100000 + 1000000 + 100000000	F				2603
2605	465		JSE(I	E = 1	L				2605
2606	466	766	END IF						2606
2608	407	722	END IF	UE					2607
2609	469	С							2609
2610	470		IDONE	= 0					2610
2612	4/1 472			ISECT (LED	IST, IDONE, IDUMP)				2611
2613	473	С		VAL . EV .	. , 1868				2012
2614	474		LTRIG	= LTRIG + 1					2614
2015 2616	4/5 476			LIRIG = 10					2615
2617	477		LTRIG	(13) = 10 = LTRIG + 1	טוזר				2010
2618	478		JTRIG(LTRIG) =	NS - 1				2618
2619	479	c	KSOELT	(NS - 1)	= IDUMP				2619
2621	481	L	IEDGE	= IFDGF + 1					2620
2622	482		IRECNC	(IEDGE) =	NE				2622
2623	483		NCOLOR	- NCOLOR +	1				2623
2024	404 485		JEE(N	CULUR) ≈ Ni F) = 1	<u>.</u>				2624
2626	486		IEDGE	= IEDGE + 1					2626
2627	487		IRECNC	(IEDGE) =	NE - 1				2627
2028	488 190		NCOLOR	= NCOLOR +					2628
2630	490		JSE(N	COLOR / ≃ NI E = 1) ≈ 1	1				2029
2631	491		IEDGE	E IEDGÉ + 1					2631
2632	492		IRECNC	(IEDGE) =	NE - 2				2632
2634	+93 494		JFF/ N	≠ NCULUK + COLOR) = NC	1 - 2				2633
2635	495		JSE (NI	E - 2) * 1					2635
2636	496	c	END IF						2636
2638	497	L	END IF					1	2637
			200 11						1030

2839 499 FWD IF 2639 2840 500 FWD IF 2641 2841 501 CONTINUE 2642 2843 503 320 CONTINUE 2641 2844 504 C 2641 2642 2845 505 C 2644 2644 2846 506 IS - JEC (IF M) 2645 2846 508 IS - JEC (IF M) 2646 2846 508 IS - JEC (IF M) 2646 2847 508 IS - JEC (IF M) 2647 2848 508 IS - JEC (IF M) 2648 2849 509 IS - JEC (IF M) 2649 2840 501 IJES - JEC (IF M) 2649 2841 IE - IASI (JS (IF I)) 2643 2845 IS II (IF I) - IE - IE (IF I) 2644 2845 IS II (IF I) - IE (IF I) 2655 2845 IF (I LES I , JE (I) 2654 2846 502 KE I + KE (I) IE (IF I) 2655 2846 S22 KE I + KE (I) IE (IF I) 2654<	Thu Jul	1 14:16:08	1993 adaphd.f	SUBROUTINE INTPTN	pa ge	37
2640 500 END IF 2641 2641 501 C 264 2641 500 C 264 2644 500 C 264 2644 500 C 264 2645 506 C 2645 2646 500 TE 2645 2647 500 C 2646 2648 500 TSL - JE(3, TE) 2646 2649 500 TSAEA - X5(5, TSL) 2646 2651 111 TSAEA - X5(5, TSL) 2645 2651 511 TE3 - K6(5, TSL) 2651 2652 512 TE3 - K6(5, TSL) 2653 2653 513 TE3 - K6(1, TSL) 2655 2654 514 TE3 - K6(1, TE1) 2656 2655 515 TEDIST - TE1 2656 2661 521 K22 - K6(1, TE1) 2661 2665 525 TEDIST - TE2 2656 2666	2639	499	END IF			2639
201 501 C 200 203 120 CONTINUE 264 204 304 C 264 204 304 C 264 204 304 C 264 204 505 IE - JEE(IEN) 264 204 507 S0 264 205 511 IE - JEE(IEN) 264 2050 511 IES - JEE / SEE /	2640	500	END IF			2640
5245 700 520 CONTINUE 7244 2644 900 240 100 244 2645 900 C 2444 2645 2646 900 C 2447 2647 2647 900 C 2447 2647 2648 900 TSELA - X55 , 151) 2646 2651 900 TSELA - X55 , 151) 2646 2651 900 TSELA - X55 , 151) 2651 2652 911 141 × 1485 / 355 (- 51 / 51) 2655 2653 911 1423 - 445 (- 51 / 151) 2655 2654 914 1423 - 445 (- 51 / 151) 2655 2655 911 14051 - 445 (- 161) 2656 2656 910 14051 - 445 (- 161) 2656 2656 921 1451 - 451 (- 162) 2650 2661 922 × 451 (- 162) 2656 266 2661 922 × 451 (- 162) 2656 2666 2662 922 × 451	2641	501 502 C	END IF			2641
2644 504 C 00 340 [EH = 1, NCOLOR 2645 2645 505 IE = JEEC [EH) 2645 2644 507 C 26447 2645 505 ISL = JEC (IF H) 2644 2644 507 C 26447 2645 508 ISL = JEC (IF H) 2644 2645 508 ISL = JEC (IF H) 2645 2651 511 IET (YSMEA - SE L & NHWG , AMD , IJES , NE , 0) THEN 2651 2652 513 IET - IARS (JS (S , ISL)) 2652 2653 516 ILES - AE (S , IEL) 2655 2655 516 ILES - AE (S , IEL) 2655 2656 510 IEZ - IARS (JS (G , ISL)) 2655 2659 510 IEZ - IARS (JS (G , ISL)) 2655 2659 510 IEZ - ICE) 2656 2661 521 KEI + KE (I , IEZ) 2656 2661 522 KEI + KE (I , IEZ) 2661 2661 522 KEI + KE (I ,	2042	502 0	CONTINUE			2643
2645 505 00 340 1CH 1, NCOLOR 2645 2646 500 IE JEE (IEM) 2646 2648 500 YJAEEA - X5 (S 1, IS) 2649 2649 500 YJAEEA - X5 (S 1, IS) 2649 2649 501 YJAEEA - X5 (S 1, IS) 2649 2651 111 YJAEEA - X5 (S 1, IS) 2649 2652 512 IEI - IANS (JS (S 1, IS, I) 2651 2653 S13 IEZ - IANS (JS (S 1, IS, I) 2652 2655 S15 ILES - NE (O) THEN 2655 2656 S16 ILES2 - NE (O) THEN 2655 2656 S11 ILES2 - NE (O) THEN 2656 2661 S21 ILE (T IEZ) 2656 2661 S21 KE - KE (I) IEZ) 2656 2661 S22 KE (I , IEZ) 2656 2661 S22 KE (I , IEZ) 2656 2662 S22 KE (I , IEZ) 2661 2663 S	2644	504 C	CONTINUE			2644
2646 506 [E - JEE(IF H) 2647 2647 507 [SL - JEE (IF H) 2649 2648 508 [SL - JEE (IF H) 2649 2649 500 [SL - JEE (IF H) 2649 2649 500 [IE + JEE (IF H) 2649 2651 511 [IE + JEE (IF H) 2649 2652 513 [IE + JEE (IF H) 2651 2653 513 [IE + JEE (IF L) 2651 2654 514 [IE + JEE (IF L) 2656 2655 515 JUESI - #E (S , IE L) 2656 2656 516 JUESI - #E (S , IE L) 2656 2656 510 JUESI - #E (S , IE L) 2661 2661 200 XE2 - XE (I , IE L) 2661 2662 522 KE - XE (I , IE L) 2661 2663 523 FID (IF (JUES2 - NE - 0) THEN 2661 2664 527 KE (I + IE J) 2661 2671 533 KE (I + IE J) 2661	2645	505	DO 340 IEM = 1 ,	NCOLOR		2645
244 30/ L 534 2540 300 ISL = JE(3, IE) 2540 2551 S11 IF(YSMEA, GE, PMINNG, AND, LJES, NE, O) THEN 2551 2552 S12 IEI = IABS(JS(4, ISL)) 2552 2553 S13 IE2 = IABS(JS(5, ISL)) 2552 2554 S14 IEI = IABS(JS(5, ISL)) 2553 2555 S151 IJES = JE(5, IE2) 2565 2565 S151 IJES = JE(5, IE2) 2565 2565 S151 IJES = JE(5, IE2) 2565 2565 S151 IJES = JE(1, IE2) 2565 2565 S151 IJES = JE(1, IE2) 2565 2566 S20 KE1 × KE(1, IEE) 2566 2561 S21 KE2 × KE(1, IEE) 2662 2562 KE2 × KE(1, IEE) 2661 2662 2563 S21 KE1 × KE(1, IEE) 2662 2564 S26 KE1 × KE(1, IEE) 2663 2565 S27 KE1 × KE(1, IEE) 2664	2646	506	IE = JEE(IEM)			2646
5680	204/	507 C	151 - 15/ 3 15)		204/
2650 510 1/E5 ⁺ Jef S ⁺ (F S ⁺) 2650 2651 511 1F (YAREA, GE, MHNOK, AND, IJES, NE, O) THEN 2651 2652 512 1E1 - IAAS(JS (4, ISL)) 2652 2653 513 1Z ⁺ (AAS(JS (4, ISL)) 2653 2654 514 1E3 - IAAS(JS (5, ISL)) 2654 2655 515 1JES - JE (5, IZ) 2655 2656 516 1JES - JE (5, IZ) 2656 2656 517 IJES - JE (5, IZ) 2656 2650 519 IFI IJES - JE (5, IZ) 2656 2650 519 IFI IJES - JE (5, IZ) 2656 2651 521 KZ - XE (1, IE2) 2661 2661 522 KZ + XE (1, IE2) 2662 2663 523 END IF 2666 2664 524 IFI IJES - NE (0,) THEN 2666 2664 527 KZ + XE (1, IE2) 2666 2664 528 KZ + XE (1, IE2) 2666 2664 527 KZ + XE	2649	509	YSAREA = $XS(3)$	ISL)		2649
2651 511 IF (YSAUEA. GE., PMINUG. AND., LJES. NE. 0.) THEN 2651 2652 512 IE - IABS(JS (S. ISL.)) 2652 2653 513 IE2 - IABS(JS (S. ISL.)) 2654 2654 514 IE5 - IE5 (S. ISL.)) 2655 2655 516 IJE5 - JE (S. IE2) 2657 2658 516 IJE5 - JE (S. IE2) 2657 2658 516 IJE5 - JE (S. IE2) 2650 2659 519 IE015 - IE1 2659 2650 520 KE - XE (I, IE2) 2661 2661 2622 KZ - XE (I, IE2) 2661 2662 522 KZ - XE (I, IE2) 2662 2664 524 IF (IE2) 2663 2664 524 IF (IE2) 2663 2665 527 KE - KE (I, IE2) 2664 2666 527 KE - KE (I, IE3) 2670 2666 527 KE - KE (I, IE3) 2671 2673 530 IF (IE3) 2672	2650	510	IJE5 = JE(5, IE))		2650
2852 512 [L1 - [A83] JS[4 , [J]] 2652 2853 513 [E2 - [A83] JS[6 , [SL]] 2653 2854 514 [E2 - [A83] JS[6 , [SL]] 2653 2854 516 [JE2 - [A83] JS[6 , [SL]] 2655 2856 516 [JE2 -]] 2655 2857 517 [JE31 -]] 2656 2858 518 [F(1, LE31 -]] 2657 2859 519 [EDIST -]] 2658 2860 520 XE1 - KE[1 , [E2] 2661 2862 522 XE2 - XE[1 , [E2] 2661 2864 521 KE - N [] 2679 2864 527 KE + A[] 1E2] 2665 2864 527 KE + A[] 1E2] 2661 2864 527 KE + A[] 1E2] 2662 2864 528 KE + A[] 1E2] 2661 2866 528 KE + A[] 1E2] 2661 2866 528	2651	511	IF(YSAREA . GE .	RMINVG . AND . IJE5 . NE . O) THEN		2651
5555 514 1E3 1E3 <td>2652</td> <td>512</td> <td>1E1 = IABS(JS(4))</td> <td>. [SL])</td> <td></td> <td>2052</td>	2652	512	1E1 = IABS(JS(4))	. [SL])		2052
2655 515 11251 - JE(5, 1E1) 2655 2656 516 11652 - JE(5, 1E2) 2656 2657 517 11053 - JE(5, 1E2) 2656 2658 518 1F(11051, ME, 0, 0) THEN 2659 2660 520 XE1 - KE(1, IE1) 2660 2661 521 XE2 - XE(1, IE2) 2661 2662 522 KE3 - KE(1, IE2) 2661 2664 524 IF(11552, NE, 0) THEN 2663 2664 524 IF(11552, NE, 0) THEN 2665 2666 525 IEDIST - IE2 2665 2666 526 XE1 - XE(1, IE3) 2667 2666 528 KE3 - KE(1, IE3) 2667 2671 530 IF(1155) XE2 + XE(1, IE3) 2671 2671 531 IEDIST - IE3 2671 2671 2673 533 XE2 + XE(1, IE3) 2675 2674 534 XE2 + XE2 + XE3 - XE3 + XE3 + XE3 + XE3 2678 2676 537 YE3 +	2654	513	1E2 = IABS(JS(S))	(SL)		2654
2556 516 JJE52 - JE(5, IE3) 2557 2557 517 JJE53 - JE(5, IE3) 2657 2568 518 IF(JJE51, ME, 0) THEN 2659 2660 520 XE1 - XE(1, IE1) 2660 2661 521 XE2 - XE(1, IE2) 2661 2662 522 XE3 - XE(1, IE3) 2662 2663 523 FWI IF(JJE52, ME, 0) THEN 2664 2664 524 IF(JJE52, ME, 0) THEN 2664 2665 525 IF(JJE52, ME, 0) THEN 2666 2666 526 XE2 - XE(1, IE2) 2667 2668 529 XE2 - XE(1, IE3) 2667 2670 530 IF(JJE52, ME, 0) THEN 2667 2671 531 IEDIST - IE3 2671 2673 533 XE2 - XE(1, IE2) 2673 2674 534 KE3 - XE(1, IE3) 2677 2674 534 KE3 - XE(1, IE3) 2677 2674 534 KE3 - XE(1, IE3) 2677	2655	515	IJE51 = JE(5 , 1	E1)		2655
2653 517 12653 - 364 (5 , 16 3) 2656 2658 519 1F(1251 - 16) 2658 2659 519 1ED1ST - 1E1 2659 2661 521 X22 - XE (1 , 1E2) 2661 2662 522 X2 - XE (1 , 1E3) 2662 2664 524 1F (1252 - NE - 0) THEN 2663 2664 524 1F (1252 - NE - 0) THEN 2664 2664 525 1ED1ST - 1E2 2663 2665 526 XE - XE (1 , 1E3) 2665 2666 526 XE - XE (1 , 1E3) 2663 2666 527 XE - XE (1 , 1E3) 2663 2670 530 FE (1 , 1E3) 2663 2671 531 1ED1ST - 1E3 2671 2672 532 XE 1 - XE (1 , 1E2) 2673 2674 534 XE 2 - XE (1 , 1E1) 2673 2675 535 FN IF 2675 2676 536 XE 1 - XE (1 , 1ED1) 2674 2676 536 XE 1 - XE (1 , 1ED1) 2675 2676	2656	516	IJE52 = JE(5, 1)	E2)		2656
2225 513 111, 12C, 1, 10C, 1, 10C	2057	51/	1JE53 = JE(5, 1)	とう) へ) TUEN		205/ 2658
2660 520 XEI - XE(1, IEI) 2660 2661 521 XE - XE(1, IEZ) 2661 2662 522 XE - XE(1, IEZ) 2663 2664 524 IF(IEZ) 2663 2664 524 IF(IEZ) 2664 2665 525 IEOIST - IEZ 2665 2666 526 XEI - XE(1, IEZ) 2665 2666 526 XEI - XE(1, IEZ) 2665 2666 526 XEI - XE(1, IEZ) 2666 2667 527 XEI - XE(1, IEZ) 2667 2668 528 XEI - XE(1, IEZ) 2667 2669 520 IF(IIEZ) 2671 531 E0DIF 2672 532 XEI - XE(1, IEZ) 2673 2674 533 XEI - XE(1, IEZ) 2673 2674 533 XEI - XEI - XEI XEI IIEZ) 2673 2674 533 XEI -	2659	519	IEDIST = IE1	0) (nc#		2659
2661 521 XE2 - XE(1, [E2]) 2661 2662 523 END IF 2662 2663 523 END IF 2663 2664 524 IF(1, L5E2, NE, 0) THEN 2665 2665 525 IEDIST - IE2 2665 2666 525 KE(1, IE1) 2666 2667 527 XE2 - XE(1, IE1) 2667 2668 KE3 - XE(1, IE3) 2668 2669 529 END IF 2667 2671 531 IEDIST - IE3 2671 2674 534 KE2 - XE(1, IE1) 2673 2674 534 KE2 - XE(1, IE1) 2674 2675 535 END IF 2674 534 XE2 - XE(1, IE1) 2676 535 END IF 2674 534 XE2 - XE(1, IE1) 2675 2676 535 END IF 1. (XE(1, IEDIST) 2676 2676 2674 534 XE1 - XE1 + XE2 + XE1 + XE2 - XE3 + XE3 2680 2679 539 ZE2 - (YE2 - XE + XE0IST 2677 2677 2677 2677 26	2660	520	XE1 = XE(1 , IE1)		2660
2662 522 AL3 - XE(1, LE3) 2663 2664 524 IF(1, LE52, NE, 0, 0) THEN 2664 2665 525 LEDIST - IE2 2665 2666 526 KL1 - XK(1, IE1) 2667 2668 528 KK3 - XK(1, IE1) 2669 2669 520 KD1F 2669 2669 528 KK3 - XK(1, IE1) 2669 2670 530 IF(1, LE53, NE, 0,) THEN 2670 2671 531 IEDIST - IE3 2671 2672 532 KL1 - XK(1, IE1) 2673 2674 534 KE3 - XKC1, IE2) 2673 2674 534 KE3 - XKC1, IE1) 2674 2675 536 KD1F 2673 2676 536 KKDIST - I. / KK(1, IEDIST) 2674 2676 536 KKDIST - I. / KK(1, IEDIST) 2675 2676 536 KKDIST - I. / KK(1, IEDIST) 2676 2679 539 YZ2 - (YZ - I.5) * (YZ1) 2677 <t< td=""><td>2661</td><td>521</td><td>XE2 = XE(1, IE2)</td><td>)</td><td></td><td>2661</td></t<>	2661	521	XE2 = XE(1, IE2))		2661
2004 322 LFW 1/1 JE52 . NE . 0) THEN 2004 2065 525 IEOIST = IE2 2665 2066 526 KE1 . KE (1 , IE2) 2666 2067 527 XE2 - XK (1 , IE1) 2666 2068 528 KE3 - XK (1 , IE1) 2667 2069 529 END IF 2669 2070 530 IF (IJE53 . NE . 0) THEN 2670 2071 531 IEDIST - IE3 2671 2072 533 KE2 - XK (1 , IE2) 2673 2074 534 KE3 - XK (1 , IE1) 2674 2075 535 END IF 2675 2076 S37 YE2 - XE2 * XEDIST 2677 2077 537 YE2 - XE2 * XEDIST 2676 2078 538 YE3 - KE3 * XEDIST 2677 2079 539 ZE2 - (YE2 - I.5) * (YE21) 2678 2080 JZ2 - (YE2 - XE3 * XEDIST 2677 2081 541 YY2 - XE1 * KE1 + KE2 * XE2 + .35 * KE1 * XE2 - XE3 * XE3 * XE3 * XE2 * XE	2662	522	XE3 = XE(1, 1E3))		2002
2665 526 101ST = 162 101M 2665 2666 526 XE1 = XE(1, IE1) 2666 2668 527 XE2 = XE(1, IE1) 2667 2668 528 XE3 = XE(1, IE1) 2669 2669 529 END IF 2669 2670 530 IF(IDST = IE3) 2671 2672 532 XE1 = XE(1, IE3) 2673 2673 533 KE2 = XE(1, IE1) 2673 2674 534 XE3 = XE(1, IE1) 2674 2675 536 KDIST = I.2 2677 2678 2676 536 XEDIST = I. / XE(1, IEDIST) 2676 2676 536 XEDIST = I. / XE(1, IEDIST) 2677 2678 538 YE3 = XEDIST 2679 2680 540 ZE3 = (YE2 - I.1) 2679 2681 541 YE2 - XE3 * XE1 * XE3 * XE3 * XE3 * XE3 * XE3 2680 2682 542 Y3 * XE1 * XE3 * XE3 * XE3 * XE3 * XE3 * XE3 2681 2683 147	2003	524	IF(LIF52 . NF .	0) THEN		2664
2666 526 XE1 - XE(1, IE1) 2666 2668 528 XE3 - XE(1, IE3) 2668 2669 520 END IF 2669 2671 531 IEDIST - IE3 2671 2672 322 XE1 - XE(1, IE3) 2672 2673 533 XE2 - XE(1, IE2) 2673 2674 534 XE3 - XE(1, IE1) 2674 2675 535 END IF 2675 2676 536 XEDIST - I. / XE(1, IE1) 2676 2675 535 END IF 2676 2676 537 YE2 - XE2 * XEDIST 2677 2678 538 YE3 - XE3 * XE1 × XE1 * XE1 * XE2 * XE3 * 356 XE1 * XE2 * XE3 2680 541 YY2 - XE1 * XE1 + XE2 * XE3 + .35 * XE1 * XE2 - XE3 * XE3 2680 2681 543 IF(IZE - UT0 - AND , Y3 - GT .0 NHD . 2683 2684 543 IF(IZE - UT0 AND , Y3 - GT .0 NHD . 2684 2685 545 CALL DISECT (IEDIST , IDOME , IDUMP) 2684 2686 546 C 2689 2687 <td< td=""><td>2665</td><td>525</td><td>IEDIST = IE2</td><td></td><td></td><td>2665</td></td<>	2665	525	IEDIST = IE2			2665
2667 527 X2 - X([1, IE]) 2667 2668 529 END IF 2669 2670 530 IF (JEES., NE., 0) THEN 2670 2671 531 IEDIST - IE3 2671 2672 531 IEDIST - IE3 2671 2673 533 XE2 - XE(1, IE1) 2673 2674 534 XE2 - XE(1, IE1) 2674 2675 535 END IF 2676 2676 536 KEDIST - I, / XE(1, IEDIST) 2676 2676 537 YE2 - XE2 * XEDIST 2677 2676 538 YE2 - XE2 * XEDIST 2679 2679 339 ZE2 - (YE2 - 1.5) * (YE21) 2679 2680 540 ZE3 - (YE3 - 1.5) * (YE21) 2679 2681 541 Y7 - SE1 + XE1 + XE2 + .35 * XE1 * XE2 - XE3 * XE3 2680 2682 542 Y7 - SE1 + XE1 + XE3 * XE3 + .35 * XE1 * XE3 - XE2 * XE2 2682 2683 541 Y7 - SE1 + XE1 + XE3 * XE3 + .35 * NE1 * XE3 - XE3 * XE3 2680 2684 544 Y7 - SE1 * XE1 + XE3 * XE3 + .35 * NE1 * XE3 - XE2 * XE2 2682	2666	52 6	XE1 = XE(1, 1E2))		2666
2608 268 AL3 - AL(1, 1E3) 2600 2670 530 IF(1,1E3, NE, 0,) THEN 2670 2671 511 IEDIST - IE3 2671 2672 532 XE1 - XE(1, IE3) 2673 2674 534 XE2 - XE(1, IE1) 2673 2675 535 END IF 2674 2676 536 XEDIST - 1. / XE(1, IEDIST) 2675 2676 536 XEDIST - 1. / XE(1, IEDIST) 2675 2676 536 XEDIST - 1.5) * (YE21) 2677 2678 538 YE3 - XE3 * XEDIST 2679 2680 540 ZE2 - (YE2 - 1.5) * (YE21) 2679 2681 541 YY2 - XE1 * XE1 + XE3 + XE3 + XE1 * XE3 - XE2 * ZE2 2680 2682 279 - XE1 * XE1 + XE3 + XE3 + X53 + XE1 * XE3 - XE2 * XE2 2682 2683 543 IF(ZE2 - UT + .0 - AND . ZE3 - UT0 - AND . 2683 2684 545 CALL DISECT (IEDIST, IONE , IDUMP) 2684 2685 545 CALL DISECT (IEDIST , IONE , IDUMP) 2689 2686 C 2689 2690 2690	2667	527	XE2 = XE(1 , IE1			2667
2570 350 IF(1 JE53 . NE . 0) THEN 2671 2671 531 IEDIST - IE3 2671 2671 531 IEDIST - IE3 2672 2673 533 KE2 - KE(1 , IE2) 2673 2674 534 KE2 - KE(1 , IE1) 2674 2675 535 END IF 2675 2676 535 END IF 2677 2677 537 YE2 - KE2 * XEDIST 2677 2678 538 YE3 - KE3 * KEI ST 2678 2679 539 ZEZ - (YE2 - 1.5) * (YE21) 2678 2680 540 ZES - (YE3 - 1.5) * (YE21) 2678 2681 541 YY - XE1 * KE + XE2 * XE2 + .35 * XE1 * XE3 - XE2 * XE2 2680 2682 542 YY - XE1 * KE + XE2 * XE3 + .35 * XE1 * XE3 - XE2 * XE2 2682 2684 544 YY6T . 0 . AND . YY6T . 0 . AND . 2683 2685 545 CALL DISECT (IEDIST , IOUMP) 2686 2686 546 C 2689 2686 546 C 2689 2687 2706	2000	520	$\frac{\lambda L J}{FNO} = \frac{\lambda L (I, ILJ)}{FNO}$)		2669
2671 531 IEDIST - IE3 2671 2672 532 XE1 - XE(1, IE3) 2673 2673 533 XE2 - XE(1, IE2) 2673 2674 534 XE3 - XE(1, IE1) 2675 2675 535 END IF 2675 2676 536 XEDIST - I. / XE(1, IEDIST) 2675 2678 538 YE3 - XE2 * XEDIST 2677 2679 537 YE2 - XE2 * XEDIST 2678 2680 540 ZE3 - (YE3 - I.5) * (YE21.) 2679 2681 541 YY2 - XE1 * XE1 + XE2 * XE235 * XE1 * XE3 - XE2 * XE2 2681 2682 542 YY3 - XE1 * XE1 + XE3 - XE3 + .35 * XE1 * XE3 - XE2 * XE2 2682 2683 543 IF (ZE2 . IT0 - AND . ZE3 - UT . 0AND . 2683 2684 544 YY2 . XEI + XE3 + .35 * XE1 * XE3XE2 * XE2 * .XE2 2683 2684 545 CALL DISECT (IEDIST, IDOME, IOUMP) 2686 2685 546 C 2687 2686 546 C 2689 2689 549 KSDELI (NS) = IDUMP 2689 <	2670	530	IF(IJE53 . NE .	0) THEN		2670
2672 532 XE1 - XE(1, E3) 2672 2673 533 XE2 - XE(1, E1) 2674 2674 534 XE3 - XE(1, E1) 2675 2676 535 END IF 2676 2677 537 YE2 - XE2 * XE0IST 2677 2678 538 YE3 - XE3 + XE0IST 2678 2680 540 ZE2 - (YE2 - 1.5) * (YE21) 2680 2681 541 YY2 - XE1 * XE1 + XE2 + .35 * XE1 * XE3 - XE2 * XE2 2682 2682 542 YY3 - XE1 * XE1 + XE2 * XE2 + .35 * XE1 * XE3 - XE2 * XE2 2682 2683 543 IF (ZE2 - LT0 - ANDY36T01 HEN 2686 2684 S44 YY26T0ANDY36T01 HEN 2686 2685 545 CALL DISECT (IEDIST100ME , .100ME) 2686 2686 546 C .2687 2686 2689 540 LTRIG - LTRIG + I 2687 2689 2689 550 C LTRIG - EIDGE + 1 2690 2691 2690 550 C LECMC(IEDGE) - NE 2693 2693	2671	531	IEDIST = IE3			2671
2673 533 AEZ = AE(1, IEZ) 2673 2674 535 EMO IF 2675 2675 535 EMO IF 2675 2676 537 YE2 = XE2 * XEDIST 2676 2679 538 YE3 = XE3 * XEDIST 2679 2679 538 YE2 = XE2 * XEDIST 2679 2680 540 ZE3 = (YE2 - 1.5) * (YE2 - 1.1) 2679 2680 540 ZE3 = (YE2 - 1.5) * (YE2 - 1.1) 2680 2681 541 YY2 = XE1 * XE1 + XE2 * XE215 > * (YE2 - XE3 * XE3 - 285 * XE1 × XE2 - XE2 * XE22681 2681 2682 542 YY3 - XE1 * XE1 + XE3 * XE3 + .35 * XE1 * XE3XE2 * XE22683 2681 2683 543 IF (ZE2 . IT . OAMO .ZE3 - UT . OAMO . 263XE3 * XE32684 2682 2684 544 .YY2 .GT .OAMO .YY3 .GT .OAMO . 2684 2685 545 CALL DISECT (IEDIST , IDOME , IDUMP) 2685 2686 546 C 2689 2689 549 KSDELT (MS) = IDUMP . 2689 2690 550 C 2691 2692 2693 5	2672	532	XE1 = XE(1, IE3)			2672
2075 535 END IF 2675 2676 535 KEDIST - 1. / XE(1, IEDIST) 2676 2676 536 XEDIST - 1. / XE(1, IEDIST) 2677 2678 538 YE2 - XE2 * XEDIST 2677 2679 539 ZE2 - (YE2 - 1.5) * (YE21) 2679 2680 540 ZE3 - (YE3 - 1.5) * (YE31) 2680 2681 541 YY2 - XE1 * XE1 + XE2 * .35 * XE1 * XE2 - XE3 * XE3 2681 2682 542 YY3 - XE1 * XE1 + XE3 * XE3 - XE1 * XE2 - XE3 * XE3 2682 2683 543 IF(ZZ - (I - 0 AND . YZ3 - GT . 0 ANO . 2683 2684 544 YY2 - GT . 0 AND . YZ3 - GT . 0 ANO . 2684 2685 545 CALL DISECT (IEDIST , IDONE , IDUMP) 2685 2686 547 LTRIG - LTRIG + I 2687 2689 548 JTRIG(LTRIG) - NS 2689 2689 548 JTRIG(L RIG) - NE 2691 2693 551 IEDGE + 1 2691 2693 554 JEE(NCOLOR) - NE 2693 2694 555 JSE(NC + NCOLOR + 1	20/3 2674	533	AL2 = AL(1, 1L2)			2073
2676 536 XEDIST - 1. / XE(1, IEDIST) 2676 2677 537 YE2 - XE2 * XEDIST 2677 2678 539 YE2 - XE2 * XEDIST 2678 2679 539 ZE2 - (YE2 - 1.5) * (YE21) 2680 2680 540 ZE3 - (YE2 - 1.5) * (YE21) 2680 2681 541 YY2 - XE1 * XE1 + XE2 * XE2 + .35 * XE1 * XE3 - XE3 * XE3 2681 2682 542 YY3 - XE1 * XE1 + XE2 * XE2 + .35 * XE1 * XE3 - XE2 * XE3 2681 2683 543 IF (ZE2 . LT . 0. AND . 2E3 . LT . 0. AND . 2683 2684 544 YY2 . GT . 0. AND . YY3 . GT . 0.) THEN 2684 2685 545 CALL DISECT (IEDIST , IDONE , IDUMP) 2685 2686 545 C 2686 2687 547 LTRIG - ITRIG + I 2690 2690 550 C 2689 2689 2691 551 IEDGE + IEDGE + I 2691 2692 552 IRECNC(IEDGE) = NE - 1 2693 2693 554 JEE(N COLOR + NE - 1 2693 2694 556 IEDGE + IEDGE +	2675	535	END IF	,		2675
2677 537 YE2 = XE2 * XEDIST 2677 2678 538 YE3 = XE3 * XEDIST 2678 2679 539 ZE2 = (YE2 - 1.5) * (YE21) 2679 2680 540 ZE3 = (YE3 - 1.5) * (YE31) 2680 2681 541 YY2 = XE1 * XE1 + XE2 * XE2 + .35 * XE1 * XE2 - XE3 * XE3 2681 2682 542 YY3 = XE1 * XE1 + XE3 * XE3 + .35 * XE1 * XE2 - XE3 * XE2 2682 2683 543 IF (ZE2 . IT0 - AND . YE3 - GT0 . AND . YE3 - XE2 * XE2 2683 2684 544 . YY2 - GT0 . AND . YE3 - GT0 . J HEN 2684 2685 545 CALL DISECT (IEDIST , IDONE , IDUMP) 2685 2686 547 LTRIG - LTRIG + I 2687 2688 548 JTRIG(LTRIG) = NS 2688 2689 540 C 2690 2690 550 C 2691 2691 IEDGE - IEDGE + 1 2693 2693 555 JSE(NCOLOR + NCOLOR + NE - 1 2693 2694 556 IEDGE + 1 2696 2695 556 IEDGE + NE - 1 2699	2676	536	XEDIST = 1. / XE(1, IEDIST)		2676
2678 538 YE2 = (YE2 - 1.5) * (YE21) 2679 2680 540 ZE2 = (YE2 - 1.5) * (YE21) 2680 2681 541 YY2 = XE1 * XE1 + XE2 * XE2 + .35 * XE1 * XE2 - XE3 * XE3 2681 2682 542 YY3 = XE1 * XE1 + XE3 * XE3 + .35 * XE1 * XE2 - XE2 * XE2 2682 2683 543 IF (ZE2 . IT0 . AND . ZE3 . UT .0 AND . 2684 2684 544 . YY2 GT .0 AND . YZ3 . GT .0.) THEN 2685 2685 545 CALL DISECT (IEDIST , IDONE , IDUMP) 2686 2686 546 C 2687 2689 549 KSDELT (NS) = IDUMP 2688 2680 550 C 2689 2689 2690 550 C 2690 2691 2691 551 IEDGE + IEDGE + I 2692 2692 2693 553 MC0LOR > NE 2691 2691 2694 555 JSE(NC) = I 2692 2693 2695 555 JSE(NC) = NE - 1 2697 2696 2696 566 IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDE 2	2677	537	YE2 = XE2 * XEDIS	Ť		2677
2680 540 ZE3 - (YE3 - 1.5) * (YE31) 2680 2681 541 YY2 - XE1 * XE1 + XE2 * XE2 + .35 * XE1 * XE2XE3 * XE3 2681 2682 542 YY3 - XE1 * XE1 + XE3 * XE3 + .35 * XE1 * XE3XE2 * XE2 2682 2683 543 IF(ZE2 . LT 0. AND . YY3 . GT . 0 AND . 2683 2684 544 .Y2 . GT . 0 AND . YY3 . GT . 0) THEN 2685 2685 545 CALL DISECT (IEDIST , IDONE , IDUMP) 2686 2686 546 C 2686 2687 547 LIRIG + LTRIG + 1 2687 2688 548 JTRIG (LTRIG) = NS 2688 2689 549 KSDELT(NS) = IDUMP 2688 2690 550 C 2690 2691 551 IEDGE = IEDGE + 1 2691 2692 552 IRECNC(IEDGE) = NE 2693 2693 554 JEE (NCOLOR) = NE 2692 2694 555 JSE (NE) - 1 2696 2695 555 JSE (NE) - 1 2696 2696 555 JSE (NCOLOR) = NE - 1 2696 <td>20/8</td> <td>538</td> <td>7F2 - (VF2 - 1 5</td> <td>() * (YE2 _ 1)</td> <td></td> <td>20/0 2679</td>	20/8	538	7F2 - (VF2 - 1 5	() * (YE2 _ 1)		20/0 2679
2681 541 YY2 = XE1 * XE1 + XE2 * XE2 + .35 * XE1 * XE2 - XE3 * XE3 2681 2682 542 YY3 = XE1 * XE1 + XE3 * XE3 + .35 * XE1 * XE3 - XE2 * XE2 2682 2683 543 IF(ZE2 LT . 0. AND . YZ3 . CT . 0. AND . 263 . LT . 0. AND . 2683 2684 2684 544 YY2 . GT . 0. AND . YY3 . GT . 0.) THEN 2684 2685 545 CALL DISECT (IEDIST , IDOWE , IDUMP) 2685 2686 546 C 2686 2687 547 LTRIG - LTRIG + I 2687 2688 548 JTRIG(LTRIG) = NS 2688 2689 550 C 2690 2690 2691 551 IEDGE = IEDGE + 1 2692 2693 553 MCOLOR - NCOLOR + 1 2693 2694 554 JEE (NCOLOR) = NE 2695 2695 555 JSE (NE) - 1 2693 2694 554 JEE (NCOLOR) = NE - 1 2693 2693 558 MCOLOR - NCOLOR + 1 2693 2694 554 JEE (NCOLOR) = NE - 1 2693 2695 555 JSE (NE - 1) = 1 <	2680	540	ZE3 = (YE3 - 1.5)	(1221)		2680
2682 542 YY3 = XE1 * XE1 + XE3 * XE3 + XE3 - XE2 * XE2 2682 2683 543 IF(ZE2, LT, O, AND, ZE3, LT, O, AND, ZE3, LT, O, AND, ZE3 2683 2684 544 YY2, GT, O, AND, YY3, GT, O, THEN 2684 2685 545 CALL DISCCT (IEDIST, IDOME, IDUMP) 2685 2686 546 C 2686 2687 547 LTRIG = LTRIG + 1 2686 2688 548 JIRIG(LTRIG) = NS 2686 2689 590 550 C 2690 2691 551 IEDGE = IEDGE + 1 2691 2692 252 IRECNC(IEDGE) = NE 2692 2693 553 NCOLOR - NCOLOR + 1 2693 2694 554 JEE (NCOLOR) = NE - 1 2695 2695 555 JSE (NE) = 1 2695 2696 566 IEDGE + 1 (EDGE + 1 2693 2696 556 IEDGE + 1 2695 2697 557 IRECNC(IEDGE) = NE - 1 2695 2698 558 NCOLOR - NCOLOR + 1 2695 2699 559	2681	541	YY2 = XE1 * XE1 +	XE2 * XE2 + .35 * XE1 * XE2 - XE3 * XE3		2681
2083 543 IF (22.L) . J. AND. 223. Cl. J. AND. 2003 2084 544 . YY 3.G T. O. AND. YY 3.G T. O.) THEN 2684 2685 545 CALL DISECT (IEDIST, IDONE, IDUMP) 2686 2684 546 C 2686 2687 2687 2687 2687 2688 548 JTRIG (LTRIG) = NS 2689 2690 550 C 2690 2690 2691 551 IEDGE = IEDGE + 1 2691 2692 2693 553 NCOLOR = NCOLOR + 1 2693 2693 2694 554 JEE(NCOLOR) = NE 2695 2695 2695 555 JSE(NE) = 1 2697 2696 2696 556 IEDGE = IEDGE + 1 2697 2696 2696 555 JSE(NE) = NE - 1 2697 2696 2697 557 IRECNC(IEDGE) = NE - 1 2697 2696 2698 558 MCOLOR + NCOLOR N = NE - 1 2699 2699 2700 2700 </td <td>2682</td> <td>542</td> <td>YY3 = XE1 * XE1 + XE1</td> <td>XE3 * XE3 + .35 * XE1 * XE3 - XE2 * XE2</td> <td></td> <td>2682</td>	2682	542	YY3 = XE1 * XE1 + XE1	XE3 * XE3 + .35 * XE1 * XE3 - XE2 * XE2		2682
2685 545 CALL DISCT (TEDIST, IDDNE, IDDNE, IDDNE) 2685 2686 546 C 2686 2687 547 LTRIG = LTRIG + 1 2687 2688 548 JTRIG(LTRIG) = NS 2688 2689 549 KSDELT(NS) = IDUMP 2689 2691 550 C 2690 2692 552 IRECNC(IEDGE) = NE 2692 2693 553 NCOLOR - NCOLOR + 1 2693 2694 2695 555 JSE(NE) = NE 2694 2695 555 JSE(NE) = 1 2695 2695 2696 556 IEDGE + 1 2695 2695 2697 557 JSE(NE) = 1 2695 2695 2696 556 IEDGE + 1 2697 2698 2698 558 MCOLOR + NCOLOR + NE - 1 2697 2698 2699 559 JEE(NCOLOR) = ME - 1 2700 2701 2701 561 C 2702 2702 2702 2702 2703 2704 2703 563 C <td>2083</td> <td>543 544</td> <td>IF(2E2 . LIU</td> <td>AND YY3 GT A YTHEN</td> <td></td> <td>2005</td>	2083	543 544	IF(2E2 . LIU	AND YY3 GT A YTHEN		2005
2686 546 C 2686 2687 547 LTRIG - LTRIG + 1 2687 2688 548 JTRIG (LTRIG) = NS 2689 2689 549 KSDELT(NS) = IDUMP 2689 2691 551 IEDGE - IEDGE + 1 2691 2692 252 IRECNC(IEDGE) = NE 2692 2693 553 NCOLOR + NOLOR + 1 2693 2694 554 JEE (NCOLOR) = NE 2694 2695 555 JSE (NE) = 1 2695 2696 556 IEDGE = IEDGE + 1 2694 2697 557 IRECNC (IEDGE) = NE - 1 2697 2698 558 MCOLOR = NCOLOR + 1 2698 2699 559 JEE (NCOLOR) = NE - 1 2697 2698 558 MCOLOR = NCOLOR + 1 2698 2699 559 JEE (NCOLOR) = NE - 1 2698 2700 560 JSE (NE - 1) = 1 2701 2701 561 C 2701 2702 562 ELSE 2705 2704 564 <	2685	545	CALL DISECT (IED	IST, IDONE, IDUMP)		2685
2687 547 LTRIG = LTRIG + 1 2687 2688 548 JTRIG (LTRIG) = NS 2688 2689 549 KSDELT(NS) = IDUMP 2689 2690 550 C 2690 2691 551 IEDGE = IEDGE + 1 2691 2692 2552 IRECNC (IEDGE) = NE 2692 2693 553 MCOLOR = NCOLOR + 1 2693 2694 554 JEE (NCOLOR) = NE 2694 2695 555 JSE (NE) = 1 2695 2696 556 IEDGE = IEDGE + 1 2695 2697 557 IRECNC (IEDGE) = NE - 1 2696 2698 558 MCOLOR = NCOLOR + 1 2697 2699 559 JEE (NCOLOR) = NE - 1 2698 2699 559 JEE (NCOLOR) = NE - 1 2700 2700 560 JSE (NE - 1) = 1 2701 2702 562 ELSE 2702 2703 563 C 2703 2704 564 IEDIST - IE1 2706 2704 565 XE	2686	546 C				2686
2080 540 SINIG(_LING_) = NS 2000 2689 550 C 2690 2691 551 IEDGE = IEDGE + 1 2691 2692 552 IRECNC(IEDGE + 1 2692 2693 553 MCOLOR - NCOLOR + NE 2693 2694 554 JEE(NCOLOR) = NE 2694 2695 555 JSE(NE) = 1 2696 2696 566 IEDGE = IEDGE + 1 2696 2697 557 IRECNC(IEDGE) = NE - 1 2697 2698 558 NCOLOR + NCOLOR + 1 2698 2699 559 JEE(NCOLOR) = NE - 1 2698 2700 560 JSE(NE - 1) = 1 2700 2701 561 C 2701 2702 562 ELSE 2702 2704 564 IEDIST = IE1 2704 2705 565 XEDIST = XE1 2705 2706 566 IF(XE2 . GT . XEDIST) THEN 2708 2709 569 <td>2687</td> <td>547</td> <td>LTRIG = LTRIG + 1</td> <td>MC .</td> <td></td> <td>2688</td>	2687	547	LTRIG = LTRIG + 1	MC .		2688
2690 550 C 2690 2691 551 IEDGE = IEDGE + 1 2691 2692 552 IRCUNC (IEDGE) = NE 2693 2693 553 NCOLOR + NCOLOR + 1 2693 2694 554 JEE (NCOLOR) = NE 2694 2695 555 JSE (NE) = 1 2695 2696 556 IEDGE = IEDGE + 1 2697 2697 557 IRECNC (IEDGE) = NE - 1 2697 2698 558 NCOLOR + NCOLOR + 1 2698 2699 559 JEE (NCOLOR) = NE - 1 2697 2699 559 JEE (NCOLOR) = NE - 1 2698 2699 559 JEE (NCOLOR) = NE - 1 2699 2700 560 JSE (NE - 1) = 1 2700 2701 561 C 2702 2702 562 ELSE 2702 2704 564 IEDIST = IE1 2704 2705 565 XEDIST = XE1 2706 2706 566 IF (XE2 , GT , XEDIST) THEN 2706 2709 569	2000	549	KSDELT(NS) = 10	n S IJMP		2689
2691 551 IEDGE - IEDGE + 1 2691 2692 552 IRECNC(IEDGE) = NE 2693 2693 553 NCOLOR - NCOLOR + 1 2693 2694 554 JEE(NCOLOR) = NE 2694 2695 555 JSE(NE) = 1 2695 2696 556 IEDGE = IEDGE + 1 2697 2697 557 IRECNC(IEDGE) = NE - 1 2697 2698 558 NCOLOR + NCOLOR + 1 2697 2699 559 JEE(NCOLOR) = NE - 1 2698 2699 559 JEE(NCOLOR) = NE - 1 2699 2700 560 JSE(NE - 1) = 1 2700 2701 561 C 2701 2702 562 ELSE 2703 2704 564 IEDIST = IE1 2704 2705 565 XEDIST = XEI 2705 2706 566 IF(XE2 , GT , XEDIST) THEN 2706 2709 569 END IF 2709 2709 569 END IF 2709 2709 569 END IF <td>2690</td> <td>550 C</td> <td></td> <td>•••</td> <td></td> <td>2690</td>	2690	5 50 C		•••		2690
2692 552 IRELNUC (IEDGE) = NE 2693 2693 553 NCOLOR = NCOLOR + 1 2693 2694 554 JEE (NCOLOR) = NE 2695 2695 555 JSE (NE) = 1 2695 2696 556 IEDGE = IEDGE + 1 2697 2697 557 IRECNC (IEDGE) = NE - 1 2699 2698 558 MCOLOR = NCOLOR + 1 2699 2699 559 JEE (NCOLOR) = NE - 1 2699 2700 560 JSE (NE - 1) = 1 2700 2701 561 C 2701 2702 562 ELSE 2702 2703 563 C 2705 2704 564 IEDIST = IE1 2705 2705 565 XEDIST = XE1 2706 2707 567 XEDIST = XE2 2707 2708 568 IEDIST = IE2 2708 2709 569 END IF 2710 2710 570 IF (XE3 . GT . XEDIST) THEN 2710 2710 570 IF (XE3 . GT . XED	2691	551	IEDGE - IEDGE + 1			2691
2693 553 HOUGON + H 2694 2694 554 JEE(NCOLOR) = NE 2695 2695 555 JSE(NE) = 1 2695 2696 556 IEDGE = IEDGE + 1 2697 2697 557 IRECNC(IEDGE) = NE - 1 2697 2698 558 MCOLOR - NCOLOR + 1 2698 2699 559 JEE(NCOLOR) = NE - 1 2699 2700 560 JSE(NE - 1) = 1 2700 2701 561 C 2701 2702 562 ELSE 2702 2703 563 C 2704 2704 564 IEDIST = IE1 2705 2705 565 XEDIST = XE1 2705 2704 564 IEDIST = XE1 2705 2705 565 XEDIST = XE2 2707 2708 568 IEDIST = IE2 2708 2709 569 ENO IF 2710 2710 570 IF(XE3 . GT . XEDIST) THEN 2710 2711 572 IEDIST = IE3 2712 </td <td>2692</td> <td>552</td> <td>IKEUNU(IEDGE) =</td> <td>1</td> <td></td> <td>2693</td>	2692	552	IKEUNU(IEDGE) =	1		2693
2695 555 JSE(NE) = 1 2695 2696 556 IEDGE = IEDGE + 1 2696 2697 557 IRECNC(IEDGE) = NE - 1 2697 2698 558 NCOLOR = NCOLOR + 1 2698 2699 559 JEE(NCOLOR) = NE - 1 2699 2700 560 JSE(NE - 1) = 1 2700 2701 561 C 2701 2702 562 ELSE 2702 2704 564 IEDIST = IE1 2705 2705 565 XEDIST = XE1 2706 2706 566 IF(XE2.GT.XEDIST) THEN 2706 2707 567 XEDIST = XE2 2707 2708 568 IEDIST = IE2 2708 2709 569 ENO IF 2709 2710 570 IF(XE3.GT.XEDIST) THEN 2710 2711 571 XEDIST = XE3 2711 2712 572 IEDIST = XE3 2711	2694	554	JEE(NCOLOR) = N	Ē		2694
2696 556 IEDGE = IEDGE + 1 2696 2697 557 IRECNC(IEDGE) = NE - 1 2697 2698 558 NCOLOR = NCOLOR + 1 2698 2699 559 JEE(NCOLOR) = NE - 1 2699 2700 560 JSE(NE - 1) = 1 2700 2701 561 C 2702 2703 563 C 2703 2704 564 IEDIST = IE1 2704 2705 565 XEDIST = XE1 2705 2706 566 IF(XE2, GT, XEDIST) THEN 2706 2707 567 XEDIST = XE2 2707 2708 568 IEDIST = IE2 2708 2709 569 ENO IF 2709 2710 570 IF(XE3, GT, XEDIST) THEN 2710 2710 570 IF(XE3, GT, XEDIST) THEN 2710 2711 571 XEDIST = XE3 2711 2712 572 IEDIST = IE3 2712	2695	555	JSE(NE) = 1			2695
2697 557 IRECRC (IEDGE) = NE = 1 2698 2698 558 NCOLOR = NCOLOR + 1 2699 2699 559 JEE(NCOLOR) = NE = 1 2700 2700 560 JSE(NE = 1) = 1 2701 2701 561 C 2702 2703 563 C 2703 2704 564 IEDIST = IE1 2704 2705 565 XEDIST = XE1 2705 2706 566 IF(XE2 . GT . XEDIST) THEN 2706 2708 568 IEDIST = IE2 2709 2709 569 END IF 2709 2710 570 IF(XE3 . GT . XEDIST) THEN 2710 2711 571 XEDIST = XE3 2711 2712 572 IEDIST = IE3 2712	2696	556	IEDGE = IEDGE + 1			2090 2607
2699 550 JEE(NCOLOR) = NE - 1 2699 2700 560 JSE(NE - 1) = 1 2700 2701 561 C 2701 2702 562 ELSE 2703 2704 564 IEDIST = IE1 2704 2705 565 XEDIST = XE1 2705 2706 566 IF(XE2 . GT . XEDIST) THEN 2706 2708 568 IEDIST = IE2 2708 2709 569 END IF 2709 2710 570 IF(XE3 . GT . XEDIST) THEN 2710 2710 570 IF(XE3 . GT . XEDIST) THEN 2710 2710 570 IF(XE3 . GT . XEDIST) THEN 2710 2711 571 XEDIST = XE3 2711 2712 572 IEDIST = IE3 2712	2097 2698	558	NCOLOR = NCOLOR +			2698
2700 560 JSE(NE - 1) = 1 2700 2701 561 C 2701 2702 562 ELSE 2702 2703 563 C 2703 2704 564 IEDIST = IE1 2704 2705 565 XEDIST = XE1 2705 2706 566 IF(XE2.GT.XEDIST) THEN 2706 2707 567 XEDIST = XE2 2707 2708 568 IEDIST = IE2 2708 2709 569 END IF 2709 2710 570 IF(XE3.GT.XEDIST) THEN 2710 2711 571 XEDIST = XE3 2711 2712 572 IEDIST = IE3 2712	2699	559	JEE(NCOLOR) = N	E - 1		2699
2701 561 C 2701 2702 562 ELSE 2702 2703 563 C 2703 2704 564 IEDIST = IE1 2704 2705 565 XEDIST = XE1 2705 2706 566 IF(XE2 , GT , XEDIST) THEN 2706 2708 568 IEDIST = XE2 2708 2709 569 END IF 2709 2710 570 IF(XE3 , GT , XEDIST) THEN 2710 2710 570 IF(XE3 , GT , XEDIST) THEN 2710 2711 571 XEDIST = XE3 2711 2712 572 IEDIST = IE3 2712	2700	560	JSE(NE - 1) = 1			2700
2702 502 CLSE 2703 2703 563 C 2703 2704 564 IEDIST = IE1 2704 2705 565 XEDIST = XE1 2705 2706 566 IF(XE2, GT, XEDIST) THEN 2706 2707 567 XEDIST = XE2 2707 2708 568 IEDIST = IE2 2708 2709 569 END IF 2709 2710 570 IF(XE3, GT, XEDIST) THEN 2710 2711 571 XEDIST = XE3 2711 2712 572 IEDIST = IE3 2712	2701	561 C	בו כב			2701
2704 564 IEDIST = IE1 2704 2705 565 XEDIST = XE1 2705 2706 566 IF(XE2.GT.XEDIST) THEN 2706 2707 567 XEDIST = XE2 2707 2708 568 IEDIST = IE2 2708 2709 569 END IF 2709 2710 570 IF(XE3.GT.XEDIST) THEN 2710 2711 571 XEDIST = XE3 2711 2712 572 IEDIST = IE3 2712	2702	563 C	CLJC			2703
2705 565 XEDIST = XE1 2705 2706 566 IF(XE2.GT.XEDIST) THEN 2706 2707 567 XEDIST = XE2 2707 2708 568 IEDIST = IE2 2708 2709 569 END IF 2709 2710 570 IF(XE3.GT.XEDIST) THEN 2710 2711 571 XEDIST = XE3 2711 2712 572 IEDIST = IE3 2712	2704	564	IEDIST = IE1			2704
2706 566 IF(XE2.GT.XEDIST) THEN 2706 2707 567 XEDIST = XE2 2707 2708 568 IEDIST = IE2 2708 2709 569 END IF 2709 2710 570 IF(XE3.GT.XEDIST) THEN 2710 2711 571 XEDIST = XE3 2711 2712 572 IEDIST = IE3 2712	2705	56 5	XEDIST = XE1			2705
2708 568 IEDIST = IE2 2708 2709 569 END IF 2709 2710 570 IF(XE3 . GT . XEDIST) THEN 2710 2711 571 XEDIST = XE3 2711 2712 572 IEDIST = IE3 2712	2705	500 567	IF(XEZ . GT . XE	DI21) HEN		2700
2709 569 END IF 2709 2710 570 IF(XE3.GT.XEDIST) THEN 2710 2711 571 XEDIST = XE3 2711 2712 572 IEDIST = IE3 2712	2708	568	IEDIST = IE2			2708
2710 570 IF(XE3.GT.XEDIST) THEN 2710 2711 571 XEDIST = XE3 2711 2712 572 IEDIST = IE3 2712	2709	569	END IF			2709
2/11 5/1 ALUIST = ALS 2/11 2712 572 IEDIST = IE3 2712	2710	570	IF(XE3 . GT . XE	DIST) THEN		2/10 2711
	2712	572	IEDIST = IE3			2712

Thu Jul	1 14:	16:08	1993 adaphd.1	F SUBROUTINE INTPTN	page	38
2713	57 3		END IF		-	2713
2714	574		ISL = JE(3)	IEDIST)		2714
2716	576		XSISL = XS(3)	. ISL }		2715
2717	577		XSISR = XS(3)	, ISR)		2717
2718	578		IJE5 = JE(5) IF(XSISE, G)	, LEDIST.) F. RMINVG. AND . XSISR . GT. RMINVG. AND		2718
2720	580		. IJE5 . EQ	. 0) THEN		2720
2721	581 582		DO 645 IR = 4			2721
2723	583		IF(JSE(IE)	. EQ . Q) THEN		2722
2724	584		IEDGE = IEDGÉ	+ 1		2724
2726	586		NCOLOR = NCOLO) = 1E)R + 1		2725
2727	587		JEE (NCOLOR)	= IE		2727
2728 2729	588 580		JSE(IE) = 1 END IE			2728
2730	590	645	CONTINUE			2729
2731	591		DO 655 IR = 4			2731
2733	593		IE = IABS(JS(IE))	• EQ • O) THEN		2732
2734	594		IEDGE = IEDGE	+ 1		2734
2736	595 596		IRECNC(IEDGE NCOLOR = NCOLO) = 1E 18 + 1		2735
2737	597		JEE(NCOLOR)	= IE		2730
2738 2730	598 500		JSE(IE) = 1			2738
2740	600	65 5	CONTINUE			2739
2741	601	С	TDANE A			2741
2742	602 603		IDUNE = 0 CALL DISECT (TEDIST LOONE LOUMP)		2742
2744	604	-	IF(IDONE . EQ	. 1) THEN		2744
27 45 27 46	605 606	C	ITRIC - ITRIC	+ 1		2745
2747	607		JTRIG(LTRIG)	= NS		2740
2748	6 08		KSDELT(NS) =	IDUMP		2748
2750	610		JTRIG(LTRIG)	+ 1 = NS - 1		2749
2751	611	•	KSDELT(NS - 1) = IDUMP		2751
2752	612 613	C	IEDGE = IEDGE	+ 1		2752
2754	614		IRECNC(IEDGE) = NE		2753
2755 2756	615 616		NCOLOR - NCOLO	R + 1 - NE		2755
2757	617		JSE(NE) = 1			2757
2758	618		IEDGE = IEDGE	+ 1		2758
2760	620		NCOLOR = NCOLO) ≈ NE - 1 R + 1		2759
2761	621		JEE(NCOLOR)	- NE - 1		2761
2763	623		JSE(NE - 1)	a <u> </u> +]		2762
2764	624		IRECNC(IEDGE) = NE - 2		2764
2765	625 626		NCOLOR = NCOLO	R + 1 - NF - 2	1	2765
2767	627		JSE(NE - 2)	•]		2767
2768	628	С	END IE			2768
2770	630		END IF			2769 2770
2771	631		END IF			2771
2773	632 633	340	END IF CONTINUE			2772
2774	634	c				2774
2775 2776	635 636	c	NSS = LTRIG			2775
2777	637	~	DO 370 IEM = 1	, NCOLOR		2777
2778	638 630		IE - JEE(IEM)		÷	2778
2780	640		CALL RECNCI JA	, JADONE, ITL, ITR, JAA, JB, JC, JD J , JADONE, ITL, ITR, JAA, JAB, JAC, JAD)		2780
2781	641		CALL RECNC (JB	, JBDONE , ITL , ITR , JBA , JBB , JBC , JBD)		2781
2783	042 643		CALL RECNC(JC	JUDUNE, IIL, IIR, JUA, JUB, JUC, JUD)		2782
2784	644	370	CONTINUE	· · · · · · · · · · · · · · · · · · ·		2784
2785 2786	045 646	ι 300	CONTINUE			27 85 2786

(

Thu Jul	1 14:16	:08 1	993	adaphd.f	SUBROUTINE	INTPTN	page	39
2787	647	С						2787
2788	6 48		NVECE =	NE / MBL				2788
2789	6 49		NREME =	NE - NVECE * MBL				2789
2790	650		NVECS -	NS / MBL				2790
2791	651		NREMS -	NS - NVECS * MBL				2791
2792	652		NVECV =	NV / MBI				2792
2793	653		NREMV .	NV + NVECV * MBI				2703
2704	654	c						2704
2705	655	·	DO 400	INE # 1 NVECE				2705
2795	656		NOFVEE (INF) = MRI				2706
2707	657	400	CONTINU	F				2707
2708	658	400	NVEFE -	NVECE				2708
2700	650		IET NDE	ME GT O Y THEN				2700
22200	560		MUCEE _	NUECE A 1				2000
2000	661		NOEVEE/	NVECE T I NVECE \ _ NDEME				2000
2001	663			NVEEL) = NRENC				2001
2002	200	^	CND IF					2002
2003	003	L	00 410					2003
2804	004			INS = 1, NVECS				2804
2805	003		NUEVES(1N2) = MRL				2805
2806	666	410	CONTINU					2806
2807	667		NVEES =	NVECS				2807
2808	6 68		IF(NRE	MS.GT.O) THEN				2808
2809	6 69		NVEES =	NVECS + 1				2809
2810	670		NOFVES(NVEES) = NREMS				2810
2811	671		END IF					2811
281 2	672	Ç						2812
2813	673		DO 420	INV = 1, $NVECV$				2813
2814	674		NOFVEV(INV) = MBL				2814
2815	67 5	420	CONTINU	E				2815
2816	67 6		NVEEV =	NVECV				2816
2817	677		IF(NRE	MV.GT.O) THEN				2817
2818	67 8		NVEEV -	NVECV + 1				2818
2819	67 9		NOFVEV(NVEEV) = NREMV				2819
2820	680		END IF					2820
2821	681	С						2821
2822	682	•	PRINT*	.NV.NE.NS				2822
2823	683	С						2823
2824	684	Č	EXIT PO	INT FROM SUBROUTINE	***********			2824
2825	685	č						2825
2826	686	č						2826
2827	687	•	RETURN					2827
2828	688	C						2828
2820	689	č						2829
2830	600	ř						2830
2831	691	•	END					2831
5031	031		C110/					

Thu Jul	1 14:	:16:08	1993	ad aphd. f	:	SUBROUTINE DELPTNT		page	40
2832	1	_	SUBROU	TINE DELPTNT(DAREA , IDUMP)			2832
2833	2	C							2833
2034	3	ι Γ					1		2834
2836	5	č	DELPT	N ANAPT THE CD	ID DYNAMICALLY	DELETE VERTECES	I		2835
2837	6	č	WILL	FLAGED TRIANGI	ES FOR DELETION	I DELETE VERTELES	l T		2836
2838	1	Č		The second		•	ľ		2837
2839	8	C					·[2030
2840	9	С							2840
2041	10	r	IM	PLICII REAL (A	-H,O-Z)				2841
2843	12	C.	includ	e 'msh00	h'				2842
2844	13		includ	e 'chvd00.	 h'				2843
2845	14		includ	e 'cint00.	h'				2845
2840	15		includ	e 'cphs10.	h'				2846
2848	10	ſ	INCIUD	e 'cphs20.1	h'				2847
2849	18	L.	INTEGE	R .ITRIG(MEM) K	TRIC/MEM) TOECH	C(MEM)			2848
2850	19		INTEGE	R JSE(MEM). JEE	(MEM), IOFDVS(10	NOFDVS(10)			2849
2851	20		INTEGE	R IITRIG(200)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			2851
2852	21	c	REAL AI	DFCTR(8),DLFCTI	R(8)				2852
2000	22	L	CONTVAL		C \				2853
2855	24		EQUIVA	FNCE (VR KTRIG	u) G1				2854
2856	25		EQUIVA	LENCE (VL, IRECH	NC)				2000
2857	26		EQUIVA	LENCE (PR, JSE)					2857
2850	27	c	EQUIVAL	LENCE (PL, JEE)					2858
2860	29	ι.		$R(1) = \Omega \Delta R F \Delta$					2859
2861	30		DLFCTF	R(2) = .4					2860
2862	31		DLFCTF	R(3) = .5					2862
2863	32		DLFCTF	R(4) = .65					2863
2865	30	c	DLFUIH	((5)=.8					2864
2866	35	U.	SMINVG	= SAREVG * DA	AREA				2865
2867	36		DO 112	IS = 1 , NS					2867
2868	37		JSDELT	(IS) = 0					2868
2820	38	112	CONTIN	IVE					2869
2871	40	с	ISUELI	= 0					2870
2872	41		NSS =	0					2871
2873	42		FLUXPP	' = .00001 * HY	(DMOM(4)				2873
28/4	43		FLUXUU	l = .00001 * HY	(DMOM(2)				2874
2876	44		DO 120	(= .00001 * HY	UMUM(I)				2875
2877	45		PCRTRY	= HYDFLX(IS)	4) - FLUXPP				2870
2878	47		IPCRTR	= SIGN(1. ,	PCRTRY)				2878
2879	48		UCRTRY	= HYDFLX(IS	, 2) - FLUXUU				2879
2881	49		DCDTDV	= SIGN(1.)	UCRTRY)				2880
2882	51		IRCRTR	= SIGN(1)	REALES) - LOVKK				2881
2883	52		NIDUMP	- IDUMP - NAR	EAD				2883
2884	53		IF(2884
2886	54 55		• IP	CRIR . EQ	1 . AND .				2885
2887	56		. 10	CRTR _ FO	1 ANU - 1 AND				2885
2888	57		. KS	DELT(IS) . L	E . NIDUMP . AN	D.			2888
2889	58		. KS	DELT(IS) . N	E.O) THEN				2889
2890 2801	59		NSS =	NSS + 1					2890
2892	61			133 J = 13					2891
2893	62	120	CONTIN	VE					2092
2894	63	C	0						2894
2095 2806	04 66	C	PRINT*	, NV, NE, NS, NSS				:	2895
2897	66	L.	ISOFUT	= NSS					2895
2898	67		DO 210	IS = 1 , NSS				:	209/ 2898
2899	68		JSDELT	(IS) = JTRIG	(IS)				2899
2900	69 70	210	CONTIN	JE					2900
2902	70 71	L	005 00						2901
2903	72		ILOOP 4	*]					2902
2904	73	310	CONTINU	JE					2904
2905	74		ISS =	JSDELT(ILOOP))				2905
Thu Jul	1 14:1	6:08	1993 adaphd.f	SUBROUTINE DELPTNT	page	41			
--------------	----------	-------------	---	---------------------------------------	------	--------------			
2906	75		XSAREA = XS(3)	ISS)		2906			
2907	/0		INDUIR = 0			2907			
2909	78	C	IF (ASAKEA . LI .	SULUAD) HEN		2908			
2910	79	v	CALL VERDELT(ISS	. INDETR . NIDUMP . LITRIG . ITTRIG)		2909			
2911	80		IF(INDCTR . EQ .	1) THEN		2911			
2912	81		ILOOP = 1			2912			
2913	82			2		2913			
2914	03 84		JSUELI(ILUUP) =	U		2914			
2916	85					2915			
2917	86		ELSE			2910			
2918	87		JSDELT(ILOOP) =	0		2918			
2919	88		ILOOP = ILOOP + 1			2919			
2920	89	r	ENU IF			2920			
2921	90	L	IE ISDELT GT	11000) CD TO 310		2921			
2923	92		PRINT *.KDIV.NV.NF	F.NS.DIFCTR/KDTV)		2922			
2924	93	30 0	CONTINUE			2924			
2925	94	С				2925			
2926	95		NVECE = NE / MBL			2926			
2927	90		$\frac{NKEME}{MVECS} = \frac{NE}{MS} - \frac{NVECE}{MOI}$	* MBL		2927			
2920	97		NRECS # NS / MBL NREMS # NS _ NVERS	* MRI		2928			
2930	99		NVECV = NV / MBL	TIDE		2929			
2931	100		NREMV = NV - NVECV	* MBL		2931			
2932	101	С				2932			
2933	102		D0 400 INE = 1 , NV	/ECE		2933			
2934	103	400	NUFVEE(INE) = MBL			2934			
2936	105	400	NVEFE = NVECE			2935			
2937	106		IF(NREME . GT . 0) THEN		2930			
2938	107		NVEEE = NVECE + 1	,		2938			
2939	108		NOFVEE(NVEEE) = N	IREME		2939			
2940	109	^	END IF			2940			
2941	111	L	00 410 INS - 1 NV	IECS		2941			
2943	112		NOFVES(INS) = MBI			2942			
2944	113	410	CONTINUE	•		2944			
2945	114		NVEES = NVECS			2945			
2946	115		IF(NREMS . GT . O) THEN		2946			
294/ 2048	110		NVEES = NVEES + 1	IDENS		2947			
2949	118		FND TE	IKERIJ		2948			
2950	119	С				2950			
2951	120		DO 420 INV = 1 , NV	/ECV		2951			
2952	121		NOFVEV(INV) = MBL			2952			
2953	122	420				2953			
2934	123		IF NDEMU CT O) THEN		2954			
2956	125		NVEEV = NVECV + 1) Inch		2900 2956			
2957	126		NOFVEV(NVEEV) = N	IREMV		2957			
2958	127		END IF			2958			
2959	128	C	DETATA AND ME NO			2959			
2900	130	ſ	rkini", NV, NE, NS			2900			
2962	131	č	EXIT POINT FROM SUR	ROUTINE		2901			
2963	132	Č				2963			
2964	133	С				2964			
2965	134	c	RETURN			2965			
2900	135	C C				2966			
2907	137	č				290/ 2060			
2969	138	-	END			2969			

Thu Jul	1 14:16:	08	1993	adaphd.f		SUBROUTINE RELAXY	page	42
2970	1		SUBR	OUTINE RELAXY	(IV)			2970
2971	2		IMPL	ICIT REAL (A-	H,O-Z)			2971
2972	3 0						•	2972
2973 2974	4 L 5 C		*****	******		***************************************	t I	2973
2975	6 Č		THIS	ROUTINE RELA	X THE GRID AFTER	DELETION	Î	2975
2976	7 C						Í	2976
2977	8 C		*		************		I	2977
2978	9 C		incl	udo 'cmeh	00 b!			2978
2980	11		incl	ude 'chvd	00.h'			2980
2981	12		incl	ude 'cint	00.h'			2981
2982	13		incl	ude 'cphs	10.h'			2982
2983 2984	14		Inci		20.11			2983
2985	16			IETRIG = 0				2985
2986	17			IE = JV(2)	IV)			2986
2987	18			IF(IE . GT .	O) THEN			2987
2900	20			IV1 = JE(1)	IF)			2900
2990	21			IV2 = JE(2)	ÎE)			2990
2991	22			IF(IV1 . EQ	. IV) THEN			2991
2992	23			ISI = JE(3)	IE)			2992
2993	24			1SI = JE(4)	IE)			2993
2995	26			END IF	,			2995
2996	27			IS = ISI				2996
2997	28 U 29	75		CONTINUE				2997
2999	30 C							2999
3000	31			$DO \ 65 \ IR = 1$, 3			3000
3001	32			JR = MOD(IR)	(1R + 3 + 1))		3001
3003	34			IF(IEA . EQ	. IE) THEN	,		3003
3004	35			IIR = MOD(JR	(, 3) + 4			3004
3005	30 37			IEI = JS(IIH) IFII = IARS(15 J			3005
3007	38			IETRIG = IETR	IG + 1			3007
3008	39			JECRSS(IETRI	G) = IEII			3008
3009	40 41			JJR = MUD(JR)	+ 1, 3) + 4			3009
3011	42			IER = IABS(II)	EM)			3011
3012	43			IETRIG = IETR	IG + 1			3012
3013	44 45 C			JECRSS(IEIRI	G) = IER			3013
3015	45 0			IV1 = JE(1)	IER)			3015
3016	47			IV2 = JE(2)	IER)			3016
3017	48			IF(IV1 . EQ	. IV) THEN			3017
3019	50			ITRIG = ITRIG	+ 1			3019
3020	51			IICOLR(ITRIG) = IV2			3020
3021	52			JSCRSS(ITRIG) = ISR			3021
3022	55 54			ISR = JE(4)	IER)			3023
3024	55			ITRIG = ITRIG	+ 1			3024
3025	56			IICOLR(ITRIG) = IVI			3025
3020	57 58			22CK22(11K10) = 12K			3020
3028	59			END IF				3028
3029	60	65		CONTINUE				3029
3030	62 U			IFC ISR . NF	. IST) THEN			3031
3032	63			IS = ISR	,			3032
3033	64			IE = IER				3033
3034 3035	05 66			GU IU /5 FND IF				3035
3036	67 C			2				3036
3037	68			00 510 IE = 1	, ITRIG			3037
3038 3030	09 C ז רפס			IFM - MOD(IF	- 1 .)TRIC) +	1		3039
3040	71			IEP = MOD(IE	, ITRIG) + 1	•		3040
3041	72			IEI - MOD(IE	+ 1 , ITRIG) +	1		3041
3042	74 74			IV1 = IICOLR(IEM)			3043

Thu Jul	1 14:16:08 1993	adaphd.f	SUBROUTINE RELAXY	page	43
3044	75	IV2 - IICOLR(IE			3044
3045	/b 77 C	1V3 = 11COLR(1E)	1)		3045
3047	78	X1 = XV(1, IV1)) - XV(1, IV2)		3047
3048	79	Y1 = XV(2, IV1)) - XV(2, IV2)		3048
3049	80	X2 = AV(1, 1V3)	(1) - XV(1), IVZ)		3049
3050	82	XSIN = (X2 * Y1)	- X1 * Y2)		3051
3052	83	XCOS = (X1 * X2)	+ Y1 * Y2)		3052
3053	84	ANGLE(IE) = XS	IN / (ABS(XCOS) + 1.E-7)		3053
3054	85 86 C	IF(ANGLE(IC)	. LI . 0.) KETOKA		3055
3056	87 510	CONTINUE			3056
3057	88 C				3057
3058	89	XSUM = 0			3050
3060	91	HSUMR = 0.			3060
3061	92	HSUMU = 0.			3061
3062	93 04	HSUMV = U.			3063
3064	95	HSUMG = 0.			3064
3065	96 C				3065
3066	97 08	DU IIU II = 1, IVV = IICOIR(II)			3000
3068	99 C	IAA - LICOTKA LI	/		3068
3069	100	XSUM = XSUM + XV	((1, IVV))		3069
3070	101	YSUM = YSUM + XV	((2, IVV)		3070
3072	102 0	HSUMR = HSUMR +	HYDVVV(IVV,1)		3072
3073	104	HSUMU = HSUMU +	HYDVVV(IVV, 2)		3073
3074	105	HSUMV = HSUMV +	HYDYVV(IVV,3)		3074
3076	100	HSUMG = HSUMG +	HYDVVV(IVV.5)		3076
3077	108 110	CONTINUE			3077
3078	109 C	YTNVDC - 1 / 11	DIC		3078
3080	110	XV(1, IV) = X	(SUM * XTNVRG		3080
3081	112	XV(2, IV) = Y	SUM * XINVRG		3081
3082	113	HYDVVV(IV,1)	= HSUMR * XINVRG		3082
3084	114	HYDVVV(IV, 2)	- HSUMV * XINVRG		3084
3085	116	HYDVVV(IV , 4)	= HSUMP * XINVRG		3085
3086	117	HYDVVV(IV,5)	= HSUMG * XINVRG		3080
3088	119	ELSE			3088
3089	120 C				3089
3090	121	$\frac{1E}{1V1} = -\frac{1E}{1V1}$			3090
3092	123	IV1 = JE(2, IE)	`		3092
3093	124	IF(IV1 . EQ . I	(V) THEN		3093
3094 3095	125 126	ISI = JE(3 , 16 ITRIG = ITRIG +			3095
3096	127	JSCRSS(ITRIG)	= ISI		3096
3097	128	IICOLR(ITRIG)	= IV2		3097 3008
3098	129	ISI = JF(4)	:)		3099
3100	131	ITRIG = ITRIG +	1		3100
3101	132	JSCRSS(ITRIG)			3101 3102
3102	133	FND IF	- 111		3103
3104	135 C				3104
3105	136	IS = ISI			3105
3107	138	IIE = IE			3107
3108	139	IETRIG = IETRIG	+ 1		3108
3109	140 141 C	JECRSS(IETRIG)) ≠ [Ł		3110
3111	142 670	CONTINUE			3111
3112	143 C				3112
3113	144	10 680 IR = 1, 10 - MOD(10)	ز ۲ + ۱		3114
3115	146	IEA = IABS(JS(JR + 3 , IS))		3115
3116	147	IF(IEA . EQ . 1	IE) THEN		3116
3117	148	IIR = MOD(JR ,	5)+4		2117

Thu Ju	1 1 14:1	16:08 199	3 ad aphd. f	SUBROUTINE RELAXY page	44
3118	149		IEI = JS(IIR , IS)	3118
3120	150		IEII = IABS(IEI)		3119
3121	152		JECRSS(IETRIG) =	IEII	3120
3122	153		JJR = MOD(JR + 1)	3) + 4	3122
3123	154		IEM = JS(JJR, IS))	3123
3125	155		$\frac{1000}{1000} = \frac{1000}{1000} + 1000$		3124
3126	157		JECRSS(IETRIG) =	IER	3125
3127	158	С	1110 10 (1 10)		3127
3120	159		1VI = JE(1, IER)		3128
3130	161		IF(IV1 - E0 - IV)	THEN	3129
3131	162		ISR = JE(3, IER)		3131
3132	163		ITRIG = ITRIG + 1		3132
3134	165		IICULK(IIKIG) = I	V2 SD	3133
3135	166		ELSE	54	3134
3136	167		ISR = JE(4, !ER)		3136
313/	168		ITRIG = ITRIG + 1	N/•	3137
3139	170		JSCRSS(ITRIG) = I	SB 21	3138
3140	171		END IF		3140
3141	172	<u> </u>	END IF		3141
3142	173	680	CONTINUE		3142
3144	175	C	CONTINUE		3143
3145	176		IF(ISR . NE . ISI) THEN	3145
3146	177		IS = ISR		3146
3147	170		1E = 1EK GO TO 670		3147
3149	180		END IF		3140
3150	181	^	ITRIG = ITRIG - 1		3150
3151 3152	182	L			3151
3153	184		IV2 = JE(2, IIE)		3152
3154	185	С			3154
3155	185	,	1V3 = JE(1, 1ER)		3155
3157	188	С	144 = JE(2, IEK)		3156
3158	189		X1 = XV(1, IV1)	- XV(1, IV2)	3158
3159	190		Y1 = XV(2, IV1)	- XV(2, IV2)	3159
3161	191		XC = XV(1, 1V4) $Y2 = XV(2, 1V4)$	-XV(1, 1V3)	3160
3162	193		XSIN = (X2 + Y1)	(1 * Y2)	3162
3163	194		xcos = (x1 * x2 + y)	(1 * Y2)	3163
3164	195	c	XANGLE = XSIN / (AI	3S(XCOS) + 1.E-7)	3164
3166	197	L.	IF(ABS(XANGLE) .	GT . 1.F-3) RETURN	3165
3167	198	С			3167
3168	199		IVI = IVI		3168
3170	200		$\frac{1111}{111} = \frac{1111}{111}$	1VI = 1VZ	3169
3171	202		IF(IV . EQ . IV3)	IVL = IV4	3171
3172	203		IVTRIG = ITRIG + 1		3172
3175	204	с	HCOLR(HVIRIG) =	VL	3173
3175	206	-	DO 512 IE = 1, IVTE	IG	3175
3176	207	С			3176
3178	208		IEM * MOD(IE - 1, IFP * MOD(IF IVT	IVIRIG + 1	3177
3179	210		IEI = MOD(IE + 1),	IVTRIG + 1	3179
3180	211	С	11/1 1100.01		3180
3182	212		IVI = HICOLR(IEM) IV2 = TICOLP(IEP)		5181 3192
3183	214		IV3 - HICOLR(HEI)		3183
3184	215	С			3184
3185	216		XI = XV(1, IV1) - Y1 = YV(2, IV1)	XV(1, IV2)	3185
3187	218		X2 = XV(1, IV3) - X2 = XV(1, IV3)		3187
3188	219		Y2 = XV(2, IV3)	XV(2, IV2)	3188
3189	220		XSIN = (X2 + Y1 - X)	1 * Y2)	3189
3191	222		ANGLE (TF) \pm XSTN /	1 " T2) 2 ABS(XCOS) + 1.E-7)	1190 3101
~~~*			and the provide provid	( new fire the second sec	

Thu Jul	1 14:1	16:08	1993	adaphd, f	SUBROUTINE RELAXY page	45
3192	223			IF( ANGLE( IE ) . LT	. 0. ) RETURN	3192
3193	224	С				3193
3194	225	512		CONTINUE		3194
3195	220	C		XV(1, IV) = .5 *	(XV(1 + VI) + XV(1 + VI))	3195
3197	228			XV(2, IV) = .5 *	(XV(2, IVI) + XV(2, IVL))	3197
3198	229			HYDVVV( IV , 1 ) = .	5 * ( HYDVVV( 1VI , 1 ) +	3198
3199	230		•	uvounut tu 5)	HYDVVV(IVL, 1))	3199
3200	231			$HIDAAA(IA,C) = \mathbf{I}$	$3^{-}$ (NTDVVV(1V1 2))	3200
3202	233		•	HYDVVV( $IV, 3$ ) = .	5 * ( HYDVVV( IVI , 3 ) +	3202
3203	234				HYDVVV(IVL, 3))	3203
3204	235			HYDVVV(IV, 4) = .	5 * ( HYDVVV( 1VI , 4 ) +	3204
3205	230		•	HYDVVV( IV . 5 )	5 * ( HYDVVV ( IVI . 5 ) +	3205
3207	238				HYDVVV(IVL, 5))	3207
3208	239	C				3208
3209	240	c		END IF		3209
3210	241	L		DO 120 TSNN # 1 TT	PIC	3210
3212	243			Ids = JSCRSS( ISNN )		3212
3213	244	С				3213
3214	245			IVI = JS(1, INS)		3214
3215	240			1V2 = J3(2, 1N2)		3215
3217	248			AX = XV(1, IV2) =	· XV(1, IVI)	3217
3218	249			AY = XV(2 . IV2) -	- XV(2, IVI)	3218
3219	250			BX = XV(1, IV3) -	- XV(1, IV1)	3219
3220	251			DT = AV(2, 1V3) - XS(3, 1NS) = 0.5	· AV( C , IVI ) * ( AX * RY , AY * RX )	3220
3222	253	С		x3( 3 , 183 ) ~ 0.3		3222
3223	254			SAREA(INS) = $1. /$	XS(3, INS)	3223
3224	255			HYDFLX(INS, $4$ ) =	0.	3224
3225	250			HYDFLX(INS, 1) = HYDFLX(INS, 2) =	0.	3225
3227	258			KSDELT(INS) = 1		3227
3228	2 <b>59</b>	С				3228
3229	260			XXC = (XV(1, IV))	) + XV(1, IV2) + XV(1, IV3)) *	3229
3230	201		•	$\frac{1}{YYC} = (XVL 2 IV1)$	) + XV(2 + VZ) + XV(2 + V3)) *	3230
3232	263			THIRD	) · NV( L ; IVL ) · NV( L ; IVL ) )	3232
3233	264			XS(1, INS) = XXC		3233
3234	265	r		XS(2, INS) = YYC		3234
3236	267	L.		DO 130 IR = 1 . MHO		3236
3237	268			HYDV( INS , IR ) = (	HYDVVV( IV1 , IR ) +	3237
3238	269		•		HYDVVV(IV2, IR) +	3238
3239	270	130	•	CONTINUE	HTUVVV( $1V3$ , $1K$ ) ) * HIKU	3239
3241	272	ĉ		CONTINUE		3241
3242	273			HDUM = 1.	/ ( HYDV( INS , 1 ) + 1.E-12 )	3242
3243	274			HYDV(INS, 2) = HY	(DV(INS, 2) * HDUM (DV(INS, 2) * HDUM	3243
3244 3285	275 276			$\frac{1}{1} + \frac{1}{2} + \frac{1}$	HYDY(115, 5) - 1001 HYDY(115, 4) -	3245
3246	277		•	.5*	HYDV( INS , 1 ) *	3246
3247	278		•	( HYDV( INS , 2 ) *	HYDV( INS , 2 ) +	3247
3248	279		•	HYDV( $(NS, 3)$ *	$\frac{\text{RYDV}(\text{INS}, 3)}{\text{WOW}(\text{INS}, 5)} $	3240
3249	281	С	•	(	mbv(1x3, 3) - 1.	3250
3251	282	120		CONTINUE		3251
3252	283	С		00 140 1599 1 15	7010	3252
3253 3254	284 285			UU 140 IENN # 1 , IE IEN # JECRSS( IENN )		3254
3255	286	С		sen seenest tenn j		3255
3256	287			JV1 = JE(1, IEN)		3256
3257	288			JVZ = JE(2, IEN)	. XVE 1 1V1 V	325/
3250	209			AY = XV(2, JV2) -	- XV(2, JV1)	3259
3260	291			XE(1, IEN) = SQRT	( AX * AX + AY * AY )	3260
3261	292			XEREV = 1. / XE( 1 .	IEN )	3251
3262	293			- XN( IEN ) = AY = XER - YN( IEN ) = _ AY = Y		3263
3264	295			ISSR = JE( 4 . IEN )	ν	3264
3265	296			ISSL = JE( 3 , IEN )		3265

Thu Jul	1 14:	16:08	1993 adaphd.f	SUBROUTINE RELAXY	page	46
3266	297	С				3266
3267	298	•	IF( JE( 5 , 1	EN ). NE . O ) THEN		3267
3200 3260	299	C	$\Delta A = V V (1)$	W(2) vir( 1 $W(1)$		3268
3270	301		BB = XV(2)	JVZ  ) - $XV(2 , JV1 )$		3209
3271	302		XEL = XS( 1 ,	ISSL)		3271
3272	303		YEL = XS(2),	ISSL)		3272
3273	304		UL = XEL - XVI	(1, JVI) (2, 101)		3273
3275	306		EE = (AA + C)	C + BB * DD) * XEREV * XEREV		3275
3276	307		XER = XV(1)	JV1 ) + AA * EE		3276
3278	308		YER = XV(2),	JV1 ) + BB * EE		3277
3279	310		AY = YER - YEI			3270
3280	311		XE( 2 . IEN )	= SQRT(AX * AX + AY * AY)		3280
3281	312		XEREV = 1. / 2	(E(2, IEN)		3281
3283	314		$\frac{1}{YYN}(IEN) = A$	AX * XEREV		3282
3284	315		XE( 2 , IEN )	= 2. * XE( 2 , IEN )		3284
3285	316		XYMIDL( IEN )	* .5		3285
3287	318		YMIDL( IEN ) *	= XLK , VFD		3286
3288	319	C	MIDE( ILR )			3288
3289	320		ELSE			3289
3290	321	C	VCD - VC/ 1	1000 )		3290
3292	323		$\frac{AER = AS(1)}{YER = XS(2)}$	ISSR )		3291
3293	324		XEL = XS(1)	ISSL )		3293
3294	325	r	YEL - XS( 2 ,	ISSL )		3294
3295	320	۰L	AA = XV(1)	(V2) xV(1, 1V1)		3295
3297	328		BB = XV(2, 3	VZ) - $XV(2.JV1)$		3297
3298	329		CC = XEL - XER			3298
3299	330 331		$DD = YEL - YER  \Delta CA = YER - YV$			3299
3301	332		DBD = YER - XV	( 2 , JV1 )		3301
3302	333		EE = (ACA * C	D - DBD * CC ) / ( AA * DD - BB * CC )		3302
3303	334		XMIDL( IEN ) =	XV(1, JV1) + AA * EE		3303
3305	336	С	THIDL( ICH ) =	AV(7, JVI) + BB - EE		3304
3306	337		XEMID = XMIDL(	IEN) - XEL		3306
3307	338	r	YEMID = YMIDL(	IEN) - YEL		3307
3309	340	L	AX = XFR - XFL			3308
3310	341		AY = YER - YEL			3310
3311	342		XE(2, IEN)	= SQRT(AX * AX + AY * AY)		3311
3313	344		XXN( IFN ) = A	IL Z , ILN ) X * XFRFV		3312
3314	345		YYN( IEN ) = A	Y * XEREV		3314
3315	346	Ç				3315
3317	348	C	XTMIDL( IEA )	= SAKI( YEWID = YEWID + LEWID = LEWID ) = YEKFA		3310
3318	349	•	END IF			3318
3319	350	C	CONTINUE			3319
3321	352	140 C	CONTINUE			3320
3322	353	•	DO 142 IENN -	1, IETRIG		3322
3323	354		IE = JECRSS( I	ENN )		3323
3324	355		CALL REUNL( IE	, LUUNE, LIL, LIR, JA, JB, JC, JD) JADONE ITI ITP JAA JAB JAC JAD)		3324
3326	357		CALL RECNC ( JB	, JBDONE , ITL , ITR , JBA , JBB , JBC , JBD )		3326
3327	358		CALL RECNC ( JC	, JCDONE , ITL , ITR , JCA , JCB , JCC , JCD )		3327
3329	360	142	CONTINIE	, JUDUME, IIL, IIK, JUA, JUB, JUC, JUD)		3328 3320
3330	361	C	JUTT LIVE			3330
3331	362	Ç	EXIT POINT FROM SU	BROUTINE		3331
3333	364	Č	*****			3332
3334	365	-	RETURN			3334
3335	366	C	*****			3335
3337	368	C				3330
3338	369	-	END			3338

•

1

page 46

.

Thu Jul	1 14:1	6:08 1	993 adaphd.f SUBROUTINE LAPLAC	page	47
3 <b>339</b>	1		SUBROUTINE LAPLAC		3339
3340	2	Č			3340
3341	3	C			3342
3343	5	č	LAPLAC COMPUTE THE LAPLACIAN FOR GRID ADAPTATION		3343
3344	6	C	1		3344
3345	8	C			3346
3347	9	-	include 'cmsh00.h'		3347
3348	10		include 'chyd00.h'		3348 3340
3350	12		include 'cphs10.h'		3350
3351	13	_	include 'cphs20.h'		3351
3352	14	С	DEAL DOMINI (MRD) DOMINI (MRD)		3352
3354	15		REAL ROR(3), UOR(3), VOR(3), POR(3)		3354
3355	17	_	REAL ROL(3), UOL(3), VOL(3), POL(3)		3355
3356	18	C	EDSION - 025		3350
3358	20	с			3358
3359	21		DO 120 IS = 1 , NS		3359
3360	22		RR(15) = 0.		3361
3362	24	120	CONTINUE		3362
3363	25	C	DEST LOOD OUTD ALL EDGES IN THE DOMAIN		3363
3365	20	C	BEGIN LOUP OVER ALL EDGES IN THE DUMAIN		3365
3366	28	ç	NEI = 1		3366
3367	29		NE2 = NOFVEE(1)		3367
3308	30 31	r	UU 9U INE = I , NVEEE		3369
3370	32	Č	FETCH HYDRO QUANTITIES		3370
3371	33	C			3371
33/2	54 35		UU 105 IE = NE1, NE2 $KF = IF - NF1 + 1$		3373
3374	36	C			3374
3375	37		ISL = JE(3, IE)		3375
3370 3377	38 39	С	15K = JE( 4 , 1E )		3377
3378	40	•	IF( JE ( 5 , IE ) . EQ . O ) THEN		3378
3379	41	С			3380
3381	42		(RGRAD(ISL, 1)) + RGRAD(ISL, 1)		3381
3382	44		RLMDL = XYMIDL( IE ) * ( RGRAD( ISR . 2 ) -		3382
3383	45		. RGRAD(ISL, 2)) + RGRAD(ISL, 2)		3384
3385	40		PGRAD(ISL, 1)) + PGRAD(ISL, 1)		3385
3386	48		PLMDL = XYMIDL( IE ) * ( PGRAD( ISR , 2 ) -		3386
3387	49 50	c	PGRAU(ISL, 2) + PGRAU(ISL, 2)		3388
3389	51	L.	ELSE		3389
3390	52	С			3390
3391	53 54		RKMDL = KGRAD(1SL,1) DIMOL = RCRAD(1SL,2)		3392
3393	55		PRMDL = PGRAD(ISL, 1)		3393
3394	56	<u>^</u>	PLMDL = PGRAD(ISL, 2)		3394
3395	57 58	L	END TE		3396
3397	59	С			3397
3398	60		RRMIDL(KE) = (RRMDL * XN(IE) + RLMDL * YN(IE)) *		3398
3399	61 62		• PPMIDL(KF) = (PRMDL * XN(IE) + PLMDL * YN(IE)) *		3400
3401	63		. XE(1, IE)		3401
3402	64	C	CONTINUE		3402
3404	66	C 103	CONTINC		3404
3405	67		DO 130 IE = NE1 , NE2		3405
3406	68 60	r	KE = IE - NE1 + I		3407
3408	70	L	ISL = JE(3, IE)		3408
3409	71		ISR = JE(4, IE)		3409
3410	72 73	C	IE(.)E(.5 IE), E0, 0) THEN		3411
3412	74	C			3412

Thu Jul	1 14:1	16:08	1993 adaphd.f	SUBROUTINE LAPLAC	page	48
3413 3414	75 76		RR(ISL) = RR(IS)	(L) + RRMIDL( KE )		3413
3415	77		D(1S1) = D(1S1)	(1) + 0		3414
3416	78		P(1SP) = P(1SP)	R ) _ DDMIDI ( KE )		3413
3417	79	C	$\operatorname{Ac}(100) = \operatorname{Ac}(10)$			3410
3418	80	v	FLSE			3418
3419	81	С				3410
3420	82	-	RR(ISL) = RR(IS	L) + RRMIDL( KE )		3420
3421	83		RL(ISL) = RL(IS)	L) + PPMIDL( KE )		3421
3422	84	С	- • • • • •			3422
3423	85		END IF			3423
3424	86	С				3424
3425	87	130	CONTINUE			3425
3426	88	C				3426
3427	89		NE1 = NE2 + 1			3427
3428	90		NE2 = NE2 + NOFVEE	( INE + 1 )		3428
3429	91	90	CONTINUE			3429
3430	92	C				3430
3431	93		U0 135 15 = 1, NS			3431
3432	94		$\Sigma KK = ABZ(KK(1Z))$	) ) * SAREA( IS )		3432
3433	93		2PK = ABS( KL( 15	) * SAKEA( IS )		3433
3434	90		RK(13) = 2KK = 3			3434
3433	97	125	CONTINUE	AKE VG		3435
3430	90	173	CONTINUE			3430
3437	100	L	00 140 TS - 1 NS			3437
3439	101		7RI = (RGRAD(IS))	+ (1 21) + 968AD(15 1) +		3430
3440	102		RGRAD( IS	2 ) * RGRAD( 15 2 ) ) * SAREVG		3435
3441	103		7PI = (PGRAD(IS))	(1) * PGRAD(1S, 1) +		3441
3442	104		PGRAD( IS	(2) * PGRAD(1S, 2)) * SAREVG		3442
3443	105		ZRR - ABS( HYDV( I	S.1)) * EPSLON		3443
3444	106		ZPP - ABS( HYDV( I	S . 4 ) ) * EPSLON		3444
3445	107		RR(IS) = RR(IS)	) / ( ZRL + ZRR )		3445
3446	108		RL(IS) = RL(IS)	) / ( ZPL + ZPP )		3446
3447	109	140	CONTINUE			3447
3448	110	C				3448
3449	111	C	- EXIT POINT FROM SU	BROUTINE		3449
3450	112	Ç				3450
3451	113	C				3451
3452	114	~	RETURN			3452
5455	115	C				3453
3454 3455	110	ç				3454
3433	11/	L				1455
3450	118		LNU			3456

Thu Ju]	1 14:16:08	3 1993	adaphd.f	SUBROUTINE RECNC	p <b>age</b> 49
3457	1	SUBROL	TINE RECNC( I	E. IDONE. ITL. ITR. JA. JB. JC. JD.)	3457
3458	2	IMPLIC	CIT REAL (A-H,	0-Z)	3458
3459	3 C				3459
3460	4 C				3460
3462	5 C	THIS I	ROUTINE CHECKS	FOR RECONNECTION OF EDGE NUMBER IF	3401
3463	žČ	TO GET	T A BETTER CON	NECTIVITY BETWEEN ADJACENT TRIANGLES I	3463
3464	8 C	USED /	AFTER ADDITION	AND DELETION I	3464
3465	9 C			I	3465
3400	10 L			****************	3400 3467
3468	12	inclu	ie 'cmsh00	.h'	3468
3469	13	inclu	ie 'chyd00	.h'	3469
3470	14	includ	le 'cint00	.h'	3470
3471	15	inclu	ie cpnsio	•0 .h'	34/1
3473	17 C	THE FUL		•••	3473
3474	18	EF	ROR = 1.0E - 3		3474
3475	19 C				3475
34/0 3477	20	11	XUNE = 0 5/15 50 0	) RETURN	34/0 3477
3478	22	IF	( JE( 5 . IE	). NE. 0) RETURN	3478
3479	23	Î	IR = JE(4, I)	É)	3479
3480	24	11	IL = JE(3, I)	Ε)	3480
3481 3482	25 L 26 C	TOENT	FY VERTICES		3481
3483	27 C	IVENT	ITT VERTICES		3483
3484	28	11	= JE( 1 , IE	)	3484
3485	29	12	2 = JE( 2 , IE	)	3485
3480	30	טע זר	) 1 1V = 1 , 3 ) = JS( TV , T	τι )	3460 3487
3488	32	IF	( ID . NE . I	1 . AND . ID . NE . I2 ) THEN	3488
3489	33	14	I = ID		3489
3490	34	IV	14 = IV		3490
3491	36 1		NTINUE		3492
3493	37 Č				3493
3494	38	00	3 IV = 1, 3		3494
3495	39	1L 1 C	J=JS{IV,I	ίκ) 1 ΑΝΩ 10 ΝΕ 12 ΥΤμέΝ	3495
3497	41	I3	l = ID	1 · AND · 10 · NC · 12 ) INCN	3497
3498	42	IV	/3 = IV		3498
3499	43	EN			3499
3500	44 S 45 C	IT MAY	HAPPEN THAT	13 15 14	3501
3502	46	IF	( 13 . EQ . I	4 ) GO TO 999	3502
3503	47 C		• • •	,	3503
3504	48 C	COMPAR	RE OPPOSING AN	GLE PAIRS IN THE QUADRILATERAL AND RECONNECT TO	3504
3506	50 C	LUCIC	WE DIAGONAL D	UNIMANCE OF THE POISSON SOLVER.	3506
3507	51	A)	x = XV(1, 13)	) - XV(1, I1)	3507
3508	52	AY	- XV(2,13	) - XV(2, 11)	3508
3510	55 54	87 BA	х = л¥(1,14) (= ху́г 2 тл	$ \begin{array}{c} J = AV(1, 11) \\ J = XV(2, 11) \end{array} $	3510
3511	55	ĊX	( = XV( 1 , 14	$\dot{y} = \dot{x}\dot{y}(\dot{1}, \dot{1}\dot{2})$	3511
3512	56	CY	( = XV( 2 , 14	) - XV(2, 12)	3512
3513	57	DX	x = XV(1, 13)	) - XV(1, 12)	3513
3515	50 59	AT	2 = AV(2, 13) 2 = AX + BY -	) - AV(2, 12) AY * BX	3514
3516	60	AI	1 = CX + DY =	CY * DX	3516
3517	61	XL	N = XE(1, I)	E )	3517
3518	62 63 C	RC	PUNDF = EROR *	XLN * XLN	3518
3520	64 C	IA IS	BETWEEN II AN	D 13	3520
3521	65 C	IB IS	BETWEEN II AN	D [4	3521
3522	66 C	IC IS	BETWEEN 12 AN	D 14 .	3522
3523	0/ し 68 C	10 15	OCIWEEN IZ AN	U LJ	3523
3525	69	IE	s = JS( IV4 + )	3.ITL)	3525
3526	70	IC	) = JS( IV3 +	3 , ITR )	3526
3527	71	IV	14 = MOD( IV4 -	+ 1 , 3 ) + 1	3527
3529	73	10	3 = mul( 1V3 - ; = JS( IV4 + )	3, ITL)	3529
3530	74	IA	- JS( IV3 +	3, ITR )	3530

Thu Jul	1 14:1	6:08	1993	adaphd.f	SUBROUTINE RECNC	page	50
3531	75	С					3531
3532	76			JB = IABS(IB)			3532
3533	78			JJJ = IABS(IJJ)			3533
3535	79			JC = IABS(IC)			3535
3536	80			IF( AI2 . LT .	ROUNDF . OR . AII . LT . ROUNDF ) RETURN		3536
3537	81	С					3537
3538	82			XLI = XE(1, J)	A ) D )		3538
3540	84			XI3 = XF(1, J)			3540
3541	85			XL4 = XE(1, J)	Ō Ś		3541
3542	86	C					3542
3543	8/			XX = XV(1, 13)	(-) - XV(-1) + 14		3543
3545	89			XLL = SORT(XX)	* XX + YY * YY )		3545
3546	90	C					3546
3547	91			AREATL = SAREA(	ITL )		3547
3548	92			AREATE = SAREA(	1TR ) V12 * V12		3548
3550	94			ASP3 = AREATL *	XLZ * XLZ XI3 * XI3		3550
3551	95			ASPTL = AREATL	* XLN * XLN		3551
3552	96			ASP1 = AREATR *	XL1 * XL1		3552
3553	97			ASP4 = AREATR *	XL4 * XL4 * YLN + YLN		3553
3555	99			ASPN = AMAX1{ A	SPTL ASPTR ASP1 ASP2 ASP3 ASP4		3555
3556	100	С					3556
3557	101			XSISR = 0.5 + A	12		3557
3558	102	c		x SINSR = 1. / x	SISR		3558
3560	103	ι.		XSISI = 0.5 * A	11		3560
3561	105			XSINSL = 1. / X	ŚĪŚL		3561
3562	106	С					3562
3563	107			ASP2 = XSINSR *			3563
3565	109			ASPSR = XSINSR			3565
3566	110			ASP3 = XSINSL *	XL3 * XL3		3566
3567	111			ASP4 = XSINSL *	XL4 * XL4		3567
3568	112			ASPSL = XSINSL	* XLL * XLL ( NG2A FD2A CD2A 12D2		3568
3570	113	С		USEL - NEWILL V	JEDE, AJEDA, AJEI, AJEZ, AJEJ, AJE4)		3570
3571	115	_		IF( ASPN . LT .	ASPL ) RETURN		3571
3572	116	Č	YES	, REDRAW LINE- T	HE OLD CONNECTION VIOLATES DIAGONAL DOMINANCE.		3572
3574	11/	r r	UKA	W LINE DIRECTED	IF ) THE SAME SINCE IF IS STILL INTERNAL.		3574 3574
3575	119	Ŷ		IDONE = 1	y to y the date date at the date antender		3575
3576	120			JE(1, IE) =	14		3576
3577	121			JE(2, IE) =	13		3577
3579	122	С		xe(1,1e) =			3579
3580	124	č	ITR	IS STILL TO THE	RIGHT, ITL TO THE LEFT OF THE NEW LINE IE .		3580
3581	125	Ç	FIN	D THE OTHER DIRE	CTED LINE SEGMENTS		3581
3582 3583	120	C		DO 30 T - 1 2			3582
3584	128			IM5 = 5 - 1			3584
3585	129			IF( JE( IM5 , J	B). NE. ITL) GO TO 26		3585
3586	130	20		JE( IM5 , JB )	= ITR		3586
3588	131	20		CUNTINUE			3507
3589	133			JE( IMS , JD )	= IIL		3589
3590	134	28		CONTINUE			3590
3591	135	30		CONTINUE			3591
3593	130	č	RES	ET JS( 1 - 6 . 1	TL AND ITR )		3593
3594	138	Č	STAI	RT BOTH TRIANGLE	S AT 14 WITH ( AND PUT IN COUNTERCLOCKWISE		3594
3595	139	С	MANI	NER)	10		3595
3590 3507	14U 141			JS(4, 11K) = .1S(5, 1TD) =			3597
3598	142			JS(6, ITR) =	- IE		3598
3599	143			JS( 1 , ITR ) =	14		3599
3600	144 145			JS(2, ITR) =	11		3600
3602	145			JS(4, ITI) =	IS IF		3602
3603	147			JS( 5 , ITL ) =	io		3603
3604	148			JS( 6 , ITL ) -	IC		3604

Thu Jul	1 14:16:08 1993	adaphd.f	SUBROUTINE RECNC	page	51
3605	1.60	15(1) - 14			3605
3606	150	JS(2, ITL) = 13			3606
3607	151	JS(3, ITL) = 12			3607
3608	152 C				3608
3609	153	IF(JV(2, II), GI)	(0) JV(2, 11) = JA		3609
3611	154 155 C	IF( JV( 2 , 12 ) . 61	, 0 ) JV(2 , 12 ) = JC		3611
3612	156	XEL = (XV(1, I3))	+ XV(1, I2) + XV(1, I4)) * THIRD		3612
3613	1 <b>57</b>	YEL = ( XV( 2 , 13 )	+ XV(2, 12) + XV(2, 14)) * THIRD		3613
3614	158	XER = (XV(1, 13))	+ XV(1, I1) + XV(1, I4) + THIRD		3614
3615	159 160 C	TER = (XV(2, 13))	+ XV(2, 11) + XV(2, 14) = (H1KU)		3015
3617	161	DO 92 IR $= 1$ , MHQ			3617
3618	162	HYDV(ITL, $IR$ ) = (	HYDVVV( 13 , IR ) +		3618
3619	163		HYDVVV(I2, IR) + HYDVVVV(I2, IR) + HYDVVVVV(I2, IR) + HYDVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV		3619
3621	104 . 165 C		NTUVVV(14,1K)) ~ INIKU		3620
3622	166	HYDV(ITR, IR) $=$ (	HYDVVV( 13 , IR ) +		3622
3623	167 .		HYDVVV( I1 , IR ) +		3623
3624	168 .		HYDVVV(I4, IR)) * THIRD		3624
3625	109 92 170 C	CONTINUE			3625
3627	171	HDUM = 1. /	( HYDV( ITL , 1 ) + 1.E-12 )		3627
3628	172	HYDV( ITL , 2 ) = HYD	V(ITL, 2) * HDUM		3628
3629	173	HYDV( ITL , $3$ ) = HYD	V(ITL, 3) * HDUM		3629
3030 3631	1/4	HYDV(1 L, 4) = (H)	YUV(11L,4) - WDV(1T1 1) ★		3030
3632	176	( HYDV( ITL . 2 ) * H	YDV(ITL, 2) +		3632
3633	177 .	HYDV( ITL , 3 ) * H	YDV(ITL, 3)))*		3633
3634	178 .	( H	YDV( ITL , 5 ) - 1. )		3634
3636	179 L 180		( HVDV/ TTD 1 ) + 1 E-12 )		3636
3637	181	HYDV(ITR. 2) = HYD	V(ITR, 2) * HDUM		3637
3638	182	HYDV( ITR , 3 ) + HYD	V(ITR, 3) * HDUM		3638
3639	183	HYDV(ITR, 4) = (H)	YDV(ITR, 4) -		3639
3040 3641	184	.5 " H / HYDV/ ITR 2 \ * H	ITUV(LIK,L)" IYDV(ITP, 2)+		3641
3642	186 .	HYDV( ITR , 3 ) * H	YDV(ITR.3)) *		3642
3643	187 .	`́(Н	YDV( ITR , 5 ) - 1. )		3643
3644	188 C				3644
3646	109	RGRAD2 = RGRAD( ITL ,	2 + RGRAD(11R, 1)		3646
3647	191	RGRAD(ITL, 1) = $.5$	* RGRAD1		3647
3648	192	RGRAD(ITR, 1) = $.5$	* RGRAD1		3648
3649	193	RGRAD(11L, 2) = .5	RGRADZ		3650
3651	195 C	NUMPLY IN , 2 )J	nunde		3651
3652	196	UGRAD1 = UGRAD( ITL ,	1 ) + UGRAD( ITR , 1 )		3652
3653	197	UGRAD2 = UGRAD(ITL,	2) + UGRAD( ITR , 2)		3653
3034 3655	198 100	$\frac{UGRAD(IIL, I) = .5}{UGRAD(IIR I) = .5}$	) * UGRADI		3655
3656	200	UGRAD(ITL, 2) = .5	tugrad2		3656
3657	201	UGRAD( ITR , 2 ) = .5	i * UGRAD2		3657
3658	202 C	VCDAD1 - VCDAD( IT			3650 3650
3660	203	VGRAD2 = VGRAD( IIL ,	2) + VGRAD(ITR, 2)		3660
3661	205	VGRAD(ITL, 1) = $.5$	* VGRAD1		3661
3662	206	VGRAD( ITR , 1 ) = $.5$	* VGRAD1		3662
3663	207	VGRAD(111., 2) = .5 VGRAD(110, 2) = .5	VGRADZ		3003
3665	209 C	100/00/ 11/ - C / # -3			3665
3666	210	PGRAD1 = PGRAD( ITL .	1 ) + PGPAD( ITR , 1 )		3666
3667	211	PGRAD2 = PGRAD( ITL .	2) + PGRAD(ITR, 2)		3667
3008 3660	212	PGRAD(IIL, I) = .5 PGRAD(ITR I) = .5	) ~ YGRADI 5 * PCRANI		3669
3670	214	PGRAD(ITL 2) = .5	* PGRAD2		3670
3671	215	PGRAD(ITR, 2) = .5	* PGRAD2		3671
3672	216 C	VC/ 1 171 1 UP1			3672
3073 3674	21/ 218	AS( I , IIL ) = AEL XS{ 2   TI ) = VEI			3674
3675	219	XS(1, ITR) = XER			3675
3676	220	XS(2, ITR) = YER			3676
3677	221 C				30//
2010	622	VO( 2 * TIK ) = V212H			307 U

Thu Jul	1 14:	:16:08	1993	adaphd.f	SUBROUTINE RECNC	page	52
3679	223	6		XS(3, ITL) = XSIS	SL		3679
3681	224	ι		SARFA( ITL ) - YSTN	\$1		3680
3682	226			SAREA( ITR ) = $\chi$ SINS	SR		3681
3683	227	C					3683
3685	228			JEN(1) = JA			3684
3686	230			JEN(2) = JB			3685
3687	231			JEN(4) = JD			3080
3688	232	~		JEN(5) = IE			3688
3690	233	Ŀ		00 80 TENN - 1 5			3689
3691	235			IEN = JEN( IENN )			3690
3692	236			JV1 = JE(1, IEN)			3692
3694	23/			JV2 = JE(2, IEN) AX = XV(1, W2)			3693
3695	239			AY = XV(2, JV2) =	- XV(1, JVI)		3694
3696	240			XEREV = 1. / XE(1),	IEN)		3696
3698	241 242			XN(1EN) = AY + XER YN(TEN) = AY + Y			3697
3699	243			ISSR = JE(4, IEN)			3698
3700	244			ISSL = JE( 3 , IEN )			3700
3701	245			IJE5 = JE(5, IEN)			3701
3703	247	C		IF( 1525 . NE . 0 )	INCN		3702
3704	248			AA = XV(1, JV2) -	XV(1, JV1)		3703
3705	249			BB = XV(2, JV2) -	XV(2, JV1)		3705
3707	251			AEL = XS(1, 1SSL) YEL = XS(2, 1SSL)			3706
3708	252			CC = XEL - XV(1, J)	V1 )		3707
3709	253			DD = YEL - XV(2, J)	V1 )		3709
3711	255			XER = XV(1	* DD ) * XEREV * XEREV + AA * FF		3710
3712	256			YER = XV(2, JV1)	+ 88 * EE		J/11 3712
3713	257			AX = XER - XEL			3713
3714	250			AY = YER - YEL YF( 2 IEN ) - SODT			3714
3716	260			XEREV = 1. / XE(2)	(AA = AA + AI = AI		3715
3717	261			XXN( IEN ) = AX * XE	REV		3717
3710	202			YYN( IEN ) = AY * XEI YE( 2 IEN ) = 2 *	REV		3718
3720	264			XYMIDL(IEN) = .5	AC( Z , ICM )		3719
3721	265			XMIDL( IEN ) = XER			3721
3723	200 267	С		YMIDL( IEN ) = YER			3722
3724	268	•		ELSE			3725
3725	269	С					3725
3727	271			AEK = AS(1, 155K) $YFR = XS(2, 155K)$			3726
3728	272			XEL = XS(1, ISSL)			3728
3729	273	r		YEL = XS(2, ISSL)			3729
3731	275	ι		AA = XV(1,, V2)	XV( 1		3730
3732	276		l	BB = XV(2, JV2) -	XV(2, JV1)		3732
3733	277		(	C = XEL - XER			3733
3735	279			AU = TEL - TER ACA = XFR - XV/ 1 .1	1//1		3734
3736	280		i	)BD - YER - XV( 2 , J	IVI )		3736
3737	281		1	E = (ACA * DD - OBD)	) * CC ) / ( AA * DD - BB * CC )		3737
3739	283		1	(MIDL(1EN) = XV(1)	, JVI ) + AA * EE 		3738
3740	284	C ·		,,			3740
3/71 3742	285 286		)	EMID = XMIDL( IEN )	- XEL		3741
3743	287	C	1	CHAN = THING( IEN )	- 164		3742 3747
3744	288		ł	X = XER - XEL			3744
3745	289		ļ,	Y = YER - YEL	AV + AV , AV + AV \		3745
3747	291		, ,	EREV = 1. / XE(2)	IEN )		3/46 3787
3748	292		)	XN( IEN ) = AX * XER	EV /		3748
3/49 3750	293 204	r	۲	YN( IEN ) = AY * XER	EV		3749
3751	295	v	X	YMIDL( IEN ) - SORT(	XEMID * XEMID + YEMID * YEMIN ) * YEREV		3750 3751
3752	2 <b>96</b>	С					3752

Thu Jul	1 14:	16:08 19	993 adap	ohd.f	SUBR	DUTINE RECNC		pa <b>ge</b>	53
3753	297		END IF						3753
3754	298	C							3754
3755	299	80	CONTINUE						3755
3757	301	L	RETURN						3757
3758	302	С							3758
3759	303	999	WRITE (	(6,1000) IE					3759
3760	304	C	CALL DOINT	COOM CHODONI	TTNE				3760
3762	305	C	EXIT PUINT	TRUN SUDRUU	11182				3762
3763	307	č							3763
3764	308		RETURN						3764
3766	309	C C	*****						3765
3767	311	Č	FORMATS			******	****		3767
3768	312	Č							3768
3769	313	1000	FORMAT('011	rs about to e	BOMBRECNC ON E	DGE ',15)			3769
3/70	314	L C							3770
3772	316	C	END						3772
The .lei	1 14.1	16+08-10	193 adar	nhri f	SIIRD	NUTTHE ENS			
		10100 1.	CURROUTINE			SUTTIL LUS			
5//5 3774	1	r	SURKUULINE	LUS (KKR, EEE	:, N, GAMMA)				5//3 3774
3775	3	Č					I		3775
3776	4	C					I		3776
3777	5	C	AIR IS ASSU	JMED TO BE CA	ALORICALLY IMPER	FECT, THERMALLY			3777
3//8	0 7	L C	CAMMA DEPEN	IEKEPUKE, INU NDENTON DENSI	LUUE IMPERFELII ITY AND INTEDNAL	UNS VIA A VAKIABLE			3770
3780	8	č	THIS ROUTIN	VE PERFORMS	A TABLE LOOK UP	FOR GAMMA.			3780
3781	9	C					İ		3781
3782	10	Ç					I		3782
3784	11	Ċ	INPIT VARIE	BLE DEFINITION	ONS.				3784
3785	13	č	RRR = MASS	DENSITY					3785
3786	14	C	EEE - INTER	RNAL ENERGY F	PER UNIT VOLUME				3786
3787	15	C		ERIED FOR IN	NTERNAL *CALL TO	ENERGY PER UNIT MAS	S)		3787
3789	17	Ċ	n - Noribi	K VI ENIKIES	5 10 ARKAIS KKK				3789
3790	18	•	PARAMETER (	(M = 64 )					3790
3791	19	С							3791
3792	20		DIMENSION P	(KK(N), EEE(N 111/M) T12/N	1), GAMMA(N) 4) T21/M) T22/	W) DHO/W) F(W)			3/92 3703
3794	22		DIMENSION O	MP(M). 0(M).	. I(M). J(M)	1), AUV(0), L(0)			3794
3795	23		DIMENSION G	G1(168),G2(11	12),G3(112),G4(1	l2),G5(112),			3795
3796	24	ا د		G6(112),G7(11	L2),GF(840)				3796
3797	25 25	č	NOTE: THE	TABLE LOOK L	IP TREATS ARRAY	GE AS THOUGH IT			3798
3799	27	č	WERE DIMENS	SIONED (8,105	5).				3799
3800	28	С							3800
3801	29	1	EQUIVALENCE	(G4(1),GF( (G4(1),GF(3	1)), (G2(1),GF 393)) (C5(1) CF	(169)), (G3(1),GF(28) (505)) (C6(1) CF(61)	1)).		3802
3803	31			(G7(1).GF(7	729))	(2021), (00(1),01(01)	• 7 7 •		3803
3804	32	C	-	(					3804
3805	33	c	DATA XL16E	/2.77258872	2223977448356890	81810414791107177734	375/		3805
3800	34 35	C	G - GAMMA	1 0 15 570	2FD FOR 32 RIT W	OPD MACHINES IN POWE	RS OF		3807
3808	36	č	16 ACROSS F	OR MASS DENS	SITY VARIATION A	ND INTERMEDIATE VALU	ES		3808
3809	37	С	1 - 16 FOR	POWERS OF 16	5 VERTICALLY WHI	CH REPRESENT THE INTI	ERNAL		3809
3810	38	C	ENERGY VARI	ATION.					3810
3811	39 40	C C	16**(2) .6	F. RHO .GF.	15**(-6)				3812
3813	41	č	16**(15) .G	E. E .GE.	16**(8)				3813
3814	42	C							3814
3815	43		UATA G1 /8*	- 4222,8*.415	2,8*.4110,8*.40	31,8*.4058,8*.4040,			3815
3817	44 45	1	0~ 8*	.3961_8*_394	23.8*.3035 8*.39	70'0"'13'0'0"'1303' 70'0"'13'0'0"'1303'			3817
3818	46	1	.37	23371537	7073699,.3690.	.3680,.3663,.3637,			3818
3819	47	ļ	.35	55353835	52235023476.	.3430,.3344,.3238,			3819
3820	48 10	1		0/U33/U33 067	5/0,.5364,.3347, 201 3134 3069	.3277,.3099,.2885, 3014 2884 2601			3821
3822	50			66311030	63,.29462831	.2783, .2677, .2358/			3822
3823	51		DATA G2/.31	111300629	940, .2787, .2635,	.2588,.2502,.2236,			3823

Thu Jul	1 14:16:08	1993	adaphd.f	SUBROUTINE	EOS	page 5	<u>;</u> 4
3824	52	1	.3075,.2906,	.2810,.2665,.2466,.2418,	.2350,.2131,	382	24
3825	53	1	.3043,.2819,	.2695, .2554, .2317, .2269,	.2216,.2038,	382	25
3826	54	ł	.2929,.2740,	.2593,.2455,.2206,.2136,	.2097,.1955,	382	<u>:6</u>
3827	55		.2840,.26/2,	.2500,.2366,.2166,.2015,	.1988,.1879,	382	27
3828	50	1	.2/04,.2011,	.2429,.2285,.2125,.1890,	1890, 1811,	382	8
3830	58	:	.26692504.	.2343214120371822	.17991689.	302	.9 ເດ
3831	59	1	.26242473.	.2304209619981828.	.16841639.	383	ii
3832	60	Ì	.2599, .2446,	.2268, .2087, .1961, .1834,	.1673,.1601,	383	32
3833	61	1	.2401,.2191,	.1972177515921444,	.1358,.1203,	383	13
3834	62 57	1	.2002,.1960,	.1/49,.1536,.1376,.1252,	.110/,.1044,	383	54 22
3836	64	1	1950 1781	1566 1415 1241 1118	.1012,.0955,	202 181	10
3837	65	DATA G3	/.20011789.	.1594144313061189.	.10951013.	383	
3838	66	l	.2040,.1826,	.1657, .1494, .1338, .1177,	.1081,.0980,	383	8
3839	67	l	.2034,.1854,	.1683149713221169.	.1051,.0946,	383	19
3840	68 60		.1969,.1855,	.1085,.1487,.1304,.1149,	.10240910.	384	0
3842	70 70	1	.1841 1817	1667 1464 1272 1109	.1002,.0900,	204 384	12
3843	71	i	.18001800.	.1659145512621097.	.09650878,	384	13
3844	72	1	.1779,.1787,	.1657, .1450, .1254, .1087,	.0949,.0868,	384	14
3845	73	1	.1773, .1778,	.1656,.1447,.1250,.1080,	.0939,.0859,	384	15
3840	/4	1	.1/83,.1//8,	-1058,.1448,.1248,.10/0, 1667 1461 1248 1074	.0933,.0851,	384	10
3848	75	:	.1008,.1781,	.1978178215651368.	1206.1074.	384	18
3849	77	i	.22102072.	.1957173915161312.	.11371000.	384	19
3850	78	1	.2245, .2109,	.1989, .1772, .1563, .1390,	.1247,.1133/	385	j0
3851	79	DATA G4	/.22992132.	.2017, .1795, .1579, .1384,	.1221,.1090,	385	j1
3852	80	1	.2350,.2157,	.2023,.1/98,.15/5,.13/0,	.119/,.105/,	385	12
3854	82	1	.2397,.2194,	2050 1805 1576 1379	.1205,.1070,	303 384	13
3855	83	i	.25102256.	.2069181415811383.	.12311103.	385	<b>5</b> 5
3856	84	1	.2560,.2282,	.2091, .1822, .1585, .1385,	.1226, .1083,	385	56
3857	85	1	.2605,.2312,	.2111,.1829,.1588,.1386,	.1222,.1070,	385	57
3858	85	1	.20/7,.2358,	.2129,.1830,.1592,.1380,	.1218,.10/1,	385	Öt a
3860	87 88	1	.2/392403.	2145,.1057,.1590,.1309, 2160 1878 1603 1394	.1219, 1070,	386	50
3861	89	i	.29052484.	.2175189816131399.	.1226,.1090,	386	51
3862	90	1	.2963, .2531,	.2199, .1918, .1625, .1407,	.1230,.1096,	386	j2
3863	91	1	.4323,.3582,	.3109,.2889,.2803,.2706,	.2410,.2224,	386	j3
3004	92 03	DATA CE	.4010,.4020,	.J024,.J212,.2920,.2931, 3401 2070 2623 2318	2108 1854	000 386	)4 55
3866	94	1	.39243642.	.3194276024272157.	.19021721.	386	56
3867	95	Ì	.3794,.3479,	.3025, .2673, .2311, .2019,	.1842,.1613,	386	57
3868	96	I	.3674,.3448,	.2961, .2593, .2255, .1994,	.1785,.1594,	386	8
3869	97	1	.35/3,.3443,	.2910,.2517,.2293,.2000,	.1843,.10/9,	360 397	99 70
3871	90	t t	.3674 .3435.	.3080 .2728 .2606 .2577 .	.2573 .2573	387	11
3872	100	1	.36853453.	.3210301429422933.	.29322932.	387	12
3873	101	1	.3814,.3612.	.3341,.3276,.3257,.3253,	.3252,.3252,	387	13
3874	102	1	.3903,.3752,	.3570,.3522,.3513,.3510,	.35063496,	387	/4 76
30/5 3876	103	1	.4012,.3099,	.3/02,.3/51,.3/43,.3/41, .3956,.3930, 3020, 3013	.3/34,.3/13, .39073890	38/ 381	э 76
3877	105	i	.42904205	.4118,.409240774065.	.4059,.4047,	387	17
3878	106	Ì	.5411,.5385,	.5359,.5353,.5351,.5350,	.5350,.5350/	387	/8
3879	107	DATA G6	/.5823,.5812,	.5801579757965797.	.5797,.5797,	387	/9
3880	108	1	.0090,.0090,	.0085,.0082,.0082,.0083,	.0083,.0083, 6305 6305	300 388	20 21
3882	110	i	.64816483	.6485648364846486.	.64876487 .	388	32
3883	111	Ì	.6627,.6632,	.6637663666376640.	.6640,.6640,	388	33
3884	112	1	.6754,.6761,	.6769, .6768, .6770, .6773,	.6773, .6773,	388	<u>34</u>
3885	113	1	.6866,.6875,	.0885,.6884,.6886,.6890,	.0890,.0890,	388	15
3000 3897	114	1	7056 7070	.0909090909910995. 7083 7083 7085 7000	.0333,.0333, .7090 .7090	300 189	37
3888	116	i	.71397154.	.7169716971727176.	.71777177.	388	38
3889	117	l	.7214, .7231,	.7248, .7248, .7251, .7256,	.7256,.7256,	388	39
3890	118	l	.72857303.	.7321,.7321,.7325,.7330,	.7330,.7330,	389	10
3891	119	1	1/350, 1/3/0,	./390,./390,./393,.7398, 7453 7464 7467 7469	./399,./399, 7463 7463/	385	12
3803	121	DATA G7	/.80698103	.8138.8139.8145.8152	.81538153.	389	33
3894	122	1	.8454, .8496.	.8538, .8540, .8547, .8556,	.8557,.8557,	389	<b>}</b> 4
3895	123	1	.8727, .8774,	.8822, .8825, .8832, .8842,	.8843, .8843,	389	)5 )C
3896	124	1	.8938,.8990,	.9042,.9046,.9054,.9064,	.9065,.9065,	389	10 37
2021	123	1	·arri'·aroo'	·JLLL, .JLLO, .JLJJ, .JL40,	, 7641 , , 7641 ,	103	11

i

page

Thu Jul	1 14:1	6:08	1993	adaphd.f	SUBROUTINE EOS	pa <b>ge</b>	55
3898 3899	126 127		!	.9258,.9316,.9 .9384,.9445,.9	9374,.9379,.9387,.9399,.9400,.9400, 9506,.9511,.9520,.9532,.9533,.9533, 9522, 9527, 9537, 9540, 9550		3898 3899
3001	120			05 <b>06</b> 0661 (	022,.9027,.9037,.9049,.9050,.9050, 0727 0731 0741 0754 0755 0755		3900
3902	130		i	.9686,.9753,.9	9821, 9826, 9836, 9849, 9850, 9850,		3902
3903	131		1	.9769,.9837,.9	9906, .9912, .9922, .9936, .9937, .9937,		3903
3904	132		1	.9845,.9915,.9	986,.9991,.9999,.9999,.9999,.9999,		3904
3905	133		1	.9915,.998/9	1999,,9999,,9999,,9999,,9999,,9999,		3905
3900	134	C	: 	.9901,.9999,.3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3900
3908	136	č	REAL	AIR EOS, TABLE LO	OOKUP ON GILMORE DATA. (NO TEMP. MODEL)		3908
3909	137	C	TO A	JOID COSTLY LOGARI	THMIC FUNCTIONS THE TABLE "G" IS STORED IN A		3909
3910	138	Č	FORM	SO THAT THE HEXAD	DECIMAL WORD STRUCTURE OF A 32 BIT MACHINE		3910
3911	139	ι r	THIS	SE EXPLUITED.	ISFERED TO OTHER MACHINES BY RECALCHLATING		3911 3012
3913	141	č	THE 1	TABLE "G" APPROPRI	ATE TO THE WORD ARCITECTURE OF THAT MACHINE.		3913
3914	142	Č	MACH	INE DEPENDENT FUNC	CTIONS AND KEY NUMBERS MUST ALSO BE CHANGED.		3914
3915	143	C					3915
3910	144		KL101 IST -	- 1./XLIOL			3910 3017
3918	146		NR •	* N			3918
3919	147	С					3919
3920	148	10	CONTI	INUE			3920
3921 3022	149	r	NST =	• WINU(NK,M)			3921 3022
3923	151	C	DO 20	) IRE=1.NST			3923
3924	152		RHO()	IRE) = .774413*RRF	R(IST+IRE)		3924
3925	153		E(IRE	<pre>E) = AMAX1(3.e8,10</pre>	<pre>D000.*EEE(IST+IRE)/RRR(IST+IRE))</pre>		3925
3926	154	C	CALCI	HATE MACE DENCITY			3926
3927	155	č	CALCO	ILATE MAJA UCNJITI	VARIATION INDEX "1".		3927
3929	157	U	TEM =	<pre>ALOG(RHO(IRE))*F</pre>	RL16E + 500.0		3929
3930	158		I (IRE	) = AINT(TEM)			3930
3931	159			(RE) = TEN - FLOAT	((1(IRE))		3931
3932	161		1(186	F = MAXO(I(IRF))	() [_1]		3932
3934	162	С	1 ( 1 %	,) = ( <b>1</b> 000(1(1))	(,-)		3934
3935	163	C	CALCL	JLATE INTERNAL ENE	RGY VARIATION INDEX "J".		3935
3936	164	C	TEM	ALOC(C/IDC))*011	CC		3936
393/	105			ALUG(E(IRE))*RLI			3938
3939	167		TEM -	TEM - FLOAT(JCY)			3939
3940	168		TEM -	EXP(XL16E*TEM)			3940
3941	169		JCY =	+ JCY - / - AINT/TEM)			3941 3042
3942	171			FINITIEN)	(JS)		3943
3944	172		J(IRE	) = JS + 15*JCY			3944
3945	173		J(IRE	= MINO(J(IRE))	, 104)		3945
3946	1/4		J(]RE	1) = 1(1KL) + 6* 2) = 1(1PE) = 8	J(IKE)		3940 3047
3948	175	20	) CONTI				3948
3949	177	C _					3949
3950	178		DO 30	) IRE=1,NST			3950
3951 3052	1/9		111(1	IRE) = GF(I(IRE)) IRE) = GF(I(IRE)+T	0		3952
3953	181		T12(1	IRE) = GF(J(IRE))	•		3953
3954	182	-	T22()	(RE) = GF(J(IRE)+1)	1)		3954
3955	183	30	CONTI	INUE			3955 3056
3950	104	ĉ	CALC	HATE GAMMA BY LIN	FAR INTERPOLATION.		3957
3958	186	č	0/1201				3958
3959	187		DO 40	) IRE=1,NST	T11/IDE)		3959
3960	188		112(1	(RE) = 112(1RE) -	111(1KL) T21(10F)		3961
3962	190		GAMMA	A(IST+IRE) =	OMP(IRE) *(T11(IRE) + O(IRE)*T12(IRE))		3962
3963	191		1	+ (1	- OMP(IRE))*(T21(IRE) + Q(IRE)*T22(IRE))		3963
3964	192	-	1	+ 1.	· · · · · ·		3964
3965	193	40	CONT1	INUE			3905 3066
3967	194	L	NR -	NR - NST			3967
3968	196		IST -	IST + NST			3968
3969	197	~	IF(NF	<b>1.GT.O)</b> GO TO 10			3969
3970	198	C C	EYIT				3970 3971
J7/1	122	U **	- CVII	TATEL LUNE SOURCE			

Thu Jul	1 14:1	16:08	1993	a <b>daphd.</b> f	SUBROUTINE EOS	pa <b>ge</b>	56
3972 3973 3974 3975 3976 3977 3978	200 201 202 203 204 205 205	с с с с	RETURN				3972 3973 3974 3975 3976 3977
Thu Jul	1 14:1	.6:08	1993	adaphd.f	SUBROUTINE LIFTDR		33/9
3979	1		SUBROUT	INE LIFTDR			3979
3980	2	С	1				3980
3982	<u>د</u>		include	cmshuu.h			3981
3983	5		include	cint00.h	ı		3083
3984	6		include	cphs10.h			3984
3985	7		include	cphs20.h			3985
3987	a a	ſ	KLAL PH	E22(1000),DINPH	<pre><s(1000), pre="" xl0cat(1000),="" yl0cat(1000)<=""></s(1000),></pre>		3985
3988	10	U.	XLIFT	= 0.			3907
3989	11		XDRAG	i = 0.			3989
3990	12		XMOMN	i = 0.	10/10 / D.T.		3990
3991	14		YVII -	= 2.7  WIN / 100  M	UVIN / RIN		3991
3993	15		XYV -	SIN( ALPHA )			3003
3994	16		NBB -	0			3994
3995	17		DO	210 IE = 1 . N	lξ		3995
3990 3997	10		1JE5 = TE( 1.)	UE(5,1E) E5 E0 5)T	'HEN		3996
3998	20		NB	B = NBB + 1	IDEN		3998
3999	21		IV	1 = JE(1, IE)	)		3999
4000	22		IV	2 = JE(2, IE)	)		4000
4001	23		13	L = JE( 3 , IE FS = HYDV( IS)	(Δ) _ PINI		4001
4003	25		PR	ESS( NBB ) = PR	ES ES		4002
4004	26		XL	IFT = XLIFT + P	RES * XE( 1 , 1E ) *		4004
4005	27		• •	- )  PAG - YDPAC + P	XN(IE) * XYV + YN(IE) * XYU)		4005
4007	29			( X	(N( IE ) * XYU + YN( IF ) * XYV )		4000
4008	30		XL	OCAT( NBB ) = .	5 * ( XV( 1 , IV1 ) + XV( 1 , IV2 ) )		4008
4009	31		XX	V = XLOCAT(NBB)			4009
4010	33		TL YY	UCAI(NOB) = . V ⊷ YIACAT/NRA	5 * ( XV( 2 , IVI ) + XV( 2 , IVZ ) )		4010
4012	34		XM	OMN = XMOMN + P	RES * XE(1, IE) *		4012
4013	35		•	( X	IN( IE ) * XXV - YN( IE ) * YYV )		4013
4014	36	С	CN				4014
4015	38	С	Ęn	UIF			4015
4017	39	210	C0	NTINUE			4017
4018	40	C					4018
4019	41		XLIFI	= ALIFI * UINV = XDDAG * HINV			4019
4021	43		XMOMN	= XMOMN * UINV	R		4021
4022	44		WRITE	(4) NBB, (XLOCA	T(KK),YLOCAT(KK),PRESS(KK),KK=1,NBB)		4022
4023	45		WRITE	(9) XLIFT, XDRA	G. XMOMN, XMCHIN, ALFA		4023
4024	40 47	с	PRINI	", ALIFI, XDRAG	, Anumin, Amunin, Alfa		4024 4025
4026	48	č	EXIT PO	INT FROM SUBROU	TINE		4026
4027	49	C					4027
4028	50 51	C	DETHON				4028
4030	52	С	NC IVKN				4029
4031	53	č					4031
4032	54	C					4032
4033	55		END				4033

## Thu Jul 1 14:16:26 1993 delthd.f

page

1

1 2	1 2	С	SUBROUTINE VERDELT( KSD , INDCTR , NIDUMP , JJTRIG , IITRIG )
3 4	3 4	C C	l I
5 6 7	5	C C C	VERDEL FORCE DELETION OF CELL NUMBER KSD I
/ 8 9	7 8 9	C	IMPLICIT REAL (A-H.O-Z)
0	10	C	
1	11		include 'cmsh00.h' include 'chyd00.h'
3	13		include 'cint00.h'
4	14		include 'cphs10.h'
5	15	~	include 'cphs20.h'
7	10	L	INTEGER JUV(MEM), JUE(MEM), JUS(MEM)
8	18		INTEGER IUV(MEM), IUE(MEM), IUS(MEM)
9	19		INTEGER IITRIG(200)
0	20	C	
2	22		EQUIVALENCE (UR.JUE)
3	23		EQUIVALENCE (VR.JUS)
4	24		EQUIVALENCE (PL, IUV)
6	26		FOUTVALENCE (VL.IUS)
7	27	C	
8	28	C	JUV(IVV) >> NV
9 10	29	C r	TAA( WA ) >> TAA
1	31	č	D0 *** KI = 1 , JVDELT
2	32	C	IVM = NVDELT( KI )
3	33	C	JVM = IVDELT( KI ) HVV/ TVM ) = 1VM
5	35	č	IUV(JVM) = IVM
6	36	č	
7	37	ç	DO *** KI= 1 , IETRIG
Ö Q	38 30	د ۲	IEM = MELKDD( KI )
õ	40	č	JUE(IEM) = JEM
1	41	Ç	IUE( JEM ) = IEM
2	42	C C	DO *** VI - 1 TTDIC
4	44	č	ISM = NSCRSS( KI )
5	45	Ċ	JSM = ISCRSS(KI)
6	46	C	JUS(ISM) = JSM
' 8	47	C	105( JSH ) = 15H
9	49	5	FLUXPP = .00001 * HYDMOM( 4 )
0	50		FLUXUU = .00001 * HYDMOM(2)
1	51 52		FLUXKK = .UUUU1 " HTUMUM( 1 ) AREVGG = AREDEL * SAREVG
3	53		XYLONG = 0.
4	54		XYSHRT = 10000000.
5 6	55 56	r	XYLNGI = 0.
7	57	L.	KV1 = JS( 1 , KSD )
8	58		KV2 = JS(2, KSD)
9 0	59 60		KV3 = JS(3, KSD)
1	61		JKV2 = JV(2, KV2)
2	62		JKV3 = JV(2, KV3)
3	63		KE1 = JS(4, KSD)
4	64 65		RE2 = JS( 5 , KSU ) KE3 = JS( 6 , KSD )
6	66		IKE1 = IABS(KE1)
7	67		IKE2 = IABS(KE2)
8	68 60		IKE3 = IABS(KE3)
0	70		1JE52 = JE(5, 1KE2)
1	71		IJE53 = JE( 5 , IKE3 )
2	72		
3	/3		IFT IJEDD . NE . U . ANU . JAVZ . LI . U ) IHEN

page

.....

Thu Jul	1 14:16:26 19	93 delthd.f	main program
74	74	IKKF = 4	
75	75	IEIN1 JKV1	
76	76	IEIN2 = - JKV2	
77	77	IKKE1 - IKE3	
78	78	KKE1 = KE3	-
79	79	KKV1 = KV3	
80	80	IKKE2 = IKE1	
81	81	KKE2 = KE1	
82	82	KKV2 = KV1	
83	83	IKKE3 = IKE2	
84	84	KKE3 = KE2	
85	85	KKV3 = KV2	,
80	80 L 97	CISE 10/ 11EE2	
07	89		. HE . 0 . AND . JAVI . LI . 0 ) THEN
80	80	IFINI =1KV3	
0) 0)	90	IFIN2 = - JKV1	
91	91	IKKE1 = IKE2	
92	92	KKE1 = KE2	
93	93	KKV1 = KV2	
94	94	IKKE2 = IKE3	
95	95	KKE2 = KE3	
96	96	KKV2 = KV3	
97	97	IKKE3 = IKE1	
98	98	KKE3 = KE1	
99	99	KKV3 = KV1	
100	100 C	C) CC 1C/ 11CC3	
101	101	INNE - A	. WE . U . ANU . JEVS . LI . U ) THEN
102	102	IFIN1 =1KV2	
104	104	IEIN2 = - JKV3	
105	105	IKKF1 = IKE1	
106	106	KKE1 = KE1	
107	107	KKV1 = KV1	
108	108	IKKE2 = IKE2	
109	109	KKE2 = KE2	
110	110	KKV2 = KV2	
111	111	IKKE3 = IKE3	
112	112	KKE3 = KE3	
113	113	KKV3 = KV3	
114	114 U	FICE 16/ 11652	
115	115	ELSE IN IJESS	· CQ · V · ANU · JKVJ · LI · V · ANU ·
117	117	INNE - 3	JANT . LI . U / HEA
118	118	1  FIN =1  KV	
119	119	IFIN2 = - JKV1	
120	120	IKKE1 = IKE3	
121	121	KKE1 = KE3	
122	122	KKV1 = KV3	
123	123	IKKE2 = IKE1	
124	124	KKE2 = KE1	
125	125	KKV2 = KV1	
126	126	IKKE3 = IKE2	
127	127	KKE3 = KE2	
128	128	KKVJ = KVZ	
129	129 L 130	FISE 1E( 1.1E52	
131	131		
132	132	IKKF = 3	unes : Er : o y men
133	133	IEINI = - JKV2	
134	134	IEIN2 = - JKV3	
135	135	IKKE1 = IKE2	
136	136	KKE1 = KE2	
137	137	KKV1 = KV2	
138	138	IKKE2 - IKE3	
139	139	KKEZ = KE3	
140	140	KKV2 = KV3	
141	141	IKKLJ = IKLI	
142	142	KKEJ * KEI VVV3 - VV1	
143	140 144 C	VVAJ * VAT	
145	145	FISE JEC LIEST	
146	146	the state to cont	JKV2 . LT . O . THEN
147	147	IKKE = 3	

*

186

2

4

0

.

۲

page

page

Thu Jul	1 14:	16:26	1993	delthd.f	main program	page	3
148	148			IEIN1 = - JKV1			148
149	149			IEIN2 = - JKV2			140
150	150			IKKE1 = IKE1			150
151	151			KKE1 = KE1			151
152	152			KKVI - KVI			152
153	153			1KKE2 = 1KE2			153
155	154			KKU2 - KU2			154
156	156						155
157	157			KKE3 = KE3			150
158	158			KKV3 = KV3			157
159	159	С					150
160	160			ELSE IF( IJE53	. NE . O ) THEN		160
161	161			IKKE = 1			161
102	102			IEIN = - JKVI			162
103	103			IKKEI = IKEJ			163
165	165			KKV1 = KV3			164
166	166			IKKE2 = IKE1			165
167	167			KKE2 - KE1			100
168	168			KKV2 = KV1			168
169	169			KKE3 = KE2			169
170	170			IKKE3 = IKE2			170
1/1	1/1	c		KKV3 - KV2			171
172	172	ι		ELCE 10/ 13000			172
174	174			ELSE IT IJESZ	. NE . U J THEN		173
175	175			IEIN = JKV3			1/4
176	176			IKKE1 = IKE2			175
177	177			KKE1 = KE2			177
1/8	178			KKV1 = KV2			178
179	179			IKKEZ = IKEJ			179
181	181			KKV2 = KV3			180
182	182			IKKE3 = 1KE1			181
183	183			KKE3 = KE1			183
184	184	-		KKV3 = KV1			184
185	185	С					185
100	100			ELSE IF ( IJESI .	NE. U) THEN		186
188	188			IRRE = 1 IFIN + - 1KW2			187
189	189			IKKE1 = IKE1			188
190	190			KKE1 = KE1			109
191	191			KKV1 = KV1			191
192	192			IKKE2 = IKE2			192
193	193			KKE2 = KE2			193
195	194			NNV2 = NV2			194
196	196			KKF3 = KF3			195
197	197			KKV3 = KV3			190
198	198	С					198
199	199			ELSE IF ( JKV3 .	LT.O) THEN		199
200	200						200
202	202			IKKE1 = IKE3			201
203	203			KKE1 = KE3			202
204	204			KKV1 = KV3			203
205	205			IKKE2 = IKE1			205
200	200			KKE2 = KE1			206
208	207			KKV2 = KV1 IVVE3 - IVE2			207
209	209			KKF3 = KF2			208
210	210			KKV3 = KV2			209
211	211	C					211
212	212			ELSE IF( JKV2 .	LT.O) THEN		212
213	213					ä	213
215	215			ICIN = - JAVZ IKKEI - IKED			214
216	216			KKE1 = KE2			215 216
217	217			KKV1 = KV2			217
218	218			IKKE2 = IKE3			218
219	219			KKE2 = KE3		2	219
220	220			NNV2 = NV3 IKKE3 - IKE1		2	20
				INNEU " INEL		2	21

Thu J	ul 114:	:16:26	1993	delthd.f	main program		page	4
222	222			KKE3 = KE1				222
223	223	c		KKV3 = KV1				223
225	225	ç		ELSE IF( JKV1	LT . O ) THEN			225
226	226			IKKE = 2				226
227	227			IEIN = - JKV1				227
220	229			KKF1 = KE1				220
230	230			KKV1 = KV1				230
231	231			IKKE2 = IKE2				231
232	232			$\frac{1}{1} \frac{1}{1} \frac{1}$				232
234	234			IKKE3 = IKE3				234
235	235			KKE3 = KE3				235
230	230			KKV3 = KV3 FND IF				230
238	238	С						238
239	239			IF( IKKE . EQ	4) THEN			239
240	240			JVI = JE(1, .) $JV2 = JE(2)$	LINZ } FIN2 }			240 241
242	242			JJV3 = JE(1)	IKKE3 )			242
243	243			JJV4 = JE(2)	IKKE3)			243
244	244			IF( JJV3 . EQ .	JVI ) THEN			244
245	245			JV4 = JJV4				245
247	247			ELSE				247
248	248		•	JV3 = JJV4				248
245	249			END IF				250
251	251			XA = XV(1, J)	2) - XV(1, JV1)			251
252	252			YA = XV(2, J)	(2) - XV(2), JVI			252
253	253			YB = XV(2.J)	(1, 3)			255
255	255			AB = XA * XB +	ra * YB			255
256	256			IF( AB . GT . (	. ) IKKE = 5			256
25/	257	C	I	ENU IF				257 258
259	259	č	IJTRIG	NUMBER OF CIR	UMFERENCE EDGES AROUND VOID			259
260	260	ç	ITRIG	NUMBER OF TRIAL	GLES TO BE DELETED			260
201	201	C		NUMBER OF EDG	ICES TO BE DELETED			201 262
263	263	č	010221					263
264	264	ç	IVDELT	(*) SEQUENCE O	VERTICES TO BE DELETED			264
200	205	L C	15CRSS	(*) SEQUENCE OF	FOGES TO BE DELETED			205
267	267	č	100.00	() 52452.000 0.				267
268	268			IF( JV( 1 , KV)	) . EQ . 3 ) RETURN			268
209	209			IF( JV( 1 , KV)	(1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,			209
271	271			IJTRIG = 0	,			271
272	272			ITRIG = 0				272
273	274			1EIRIG = 0 JVDFIT = 0				273
275	275			JL00P = 0				275
276	276	C						276
278	278	C		IFT IKKE - CU				278
279	279	Ċ	THE T	RIANGLE TO BE I	LETED IS INTIRELY IN THE DOMAIN C	DF COMPUTATION .		279
280	280	C	THE F	IRST LOOP IS A	JUND VERTEX KV1 .			280
282	282	Ŀ		IVV = KV1				282
283	283			IE = IKE3				283
284	284			$\frac{IV1 = JE(1, 1)}{IE(1)IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	- ) (V/V ) THEN			284
285	285			ISI = JE(3.1)				286
287	287		1	ELSE	- \			287
288	288			151 = JE(4, 1 FND 1F	- )			200 280
209	290			IS = ISI				290
291	291	C		-				291
292	292	110	(	CONTINUE				292 293
293	293	ι.		ITRIG = ITRIG	1			294
295	295			ISCRSS( ITRIG	= IS			295

Thu Jul	1 14:	16:26	1993	delthd.f	main program	page	5
296	296	C					206
297	297	-		IF( ITRIG . E	Q.2) THEN		290
298	298			IJTRIG = 0			298
299	299			IEIRIG + IEIR	16 + 1 C ) - 2010		299
301	301			END IF			300
302	302	C		2.1.0 1.1			302
303	303			IETRIG = IETR	IG + 1		303
304	304	r		IECRSS( IETRI	G ) = IE		304
305	306	L		IF(			305
307	307			HYDFLX( I	S. 4) - GT - FLUXPP - OR -		300
308	308		•	HYDFLX( I	S, 2), GT, FLUXUU, OR,		308
309	309		•	HYDFLX( I	S, 1). GT. FLUXRR. OR.		309
310	310		٠	KSUELI( I	S) GI. NIDUMP. OR . S) GT. ADEVICE ) THEM		310
312	312		•	$\frac{1}{1}$	S ) . GI . AREVGG ) THEN		311
313	313			RETURN			313
314	314	~		END IF			314
315	315	C		00 120 TP - 1	3		315
317	317			JR = MOD(1R)	, 3) + 1		310
318	318			IEA - IABS( J	S(JR + 3, 1S)		318
319	319			IF( IEA . EQ	. IE ) THEN		319
320	320			IIR = MOD(JR)	, 3) + 4		320
322	322			IEI = 35(11) IEIB = IABS(	, 15 ) IFT )		321
323	323			XEIEB = XE( 1	, IEIB )		323
324	324			XYLNGT - XYLN	GT + XEIÉB		324
325	325			IF( XYLONG .	LT . XEIEB ) XYLONG = XEIEB		325
327	327			LITRIG # LITR	JI • ALILB J ATONKI # ALILB IG + 1		326
328	328			IICOLR( IJTRI	G) = IEI		328
329	329			JJR = MOD( JR	+1,3)+4		329
330	330	c		IER = IABS( J	S(JJR, IS))		330
332	332	۲.		IVI = JF(1)			331
333	333			IF( IV1 . EO .	IVV) THEN		332
334	334			ISR = JE(3),	IER )		334
335	335			ELSE			335
330	330			1SR = JE(4)	IER )		336
338	338			END IF			337 338
339	339	C					339
340	340	120		CONTINUE			340
341	342	L		TEC ISD NE	ICT \ THEN		341
343	343			IS = ISR	131 / THEN		342 383
344	344			IE = IER			344
345 346	345			GO TO 110			345
340	340	C				-	346
348	348	•		IETRIG = IETRI	G + 1	:	348
349	349			IECRSS( IETRIG	i ) = IKE2		349
350	350	r		IJTRIG = IJTRI	G - 2		350
352	352	č	EIRST	LOOP SUROUNDI	NG KV1 IS DONE SECOND LOOP OVER KV2 START	;	351
353	353	Č			NO KAY YO BONE, SECOND EDDI VAEN NAZ SINKI .	:	353
354	354			IVV = KV2			354
355 356	355 356			IE = IABS(IIC)	OLR(IJTRIG + 1))		355
357	357			1F( IV1 . EO .	IVV ) THEN		330 357
358	358			ISI = JE(3)	IE )		358
359	359			ELSE		-	359
361	361			131 = JE(4), END IF	it j		360
362	362			IS = ISI			301 362
363	363	C				5	363
364	364	120		ILCOP = 0		2	364
366	366	120		JOOURI - IARSE			365
367	367	C			TRACENT TOLETO 1 1	1	367
368	368			ITRIG = ITRIG	+ 1	1	368
369	369			ISCRSS( ITRIG	) = [S	3	369

page

5

Juge

Thu Jul	1 14:16:26	5 1993	delthd.f	main program	page	6
370	370		IETRIG - IETRIG +	1		370
371	371		IECRSS( IETRIG ) =	IE		371
372	372 L 373		IF(			372
374	374		HYDFLX( IS , 4	). GT . FLUXPP . OR .		374
375	375	•	HYDFLX( IS , 2	). GT. FLUXUU. OR.		375
376	376	•	HYDFLX( IS , 1	) GT . FLUXRR . OR .		376
378	378	•	XS(3, 15).	GT . AREVGG ) THEN		378
379	379	•	INDCTR = 3			379
380	380		RETURN			380
381	381 382 C		END IF			381
383	383		DO 140 IR = 1 . 3			383
384	384		JR = MOD(IR, 3)	+ 1		384
385	385		IEA - IABS( JS( JR	+ 3 , 1S ) )		385
380	380		$\frac{11}{110} = \frac{100}{10} = \frac{11}{10}$			380
388	388		IEI = JS(IIR . IS)			388
389	389		IEIB = IABS( IEI )			389
390	390		XEIEB = XE(1, IE)			390
391 302	391 302		XYLNGI = XYLNGI + /	AFIER ) AAIUNG - AEIEB		391 302
393	393		IF( XYSHRT . GT . )	KEIEB ) XYSHRT = XEIEB		393
394	394		ILOOP = ILOOP + 1	····· , ······ ····· ·····		394
395	395		IF( 1LOOP . EQ . 1	. AND . JDOUBL . EQ . IEIB ) THEN		395
390 307	390 307		JLUUP = 1 IFTRIG = IFTRIG + 1	1		390 307
398	398		IECRSS( IETRIG ) =	JDOUBL		398
399	399		IJTRIG = IJTRIG -			399
400	400		IF(IEI.GI.0)	IHEN B		400
401	401		ELSE	5 )		402
403	403		JKVV = JE( 2 , IEI	3 )		403
404	404		END IF			404
405	405 406		IVDELI = JVDELI + . IVDELT( JVDELT ) =	.1KVV		405
407	407		ILOOP = 0			407
408	408		ELSE			408
409	409		IJTRIG = IJIRIC + I	1 1F1		409 410
411	411		END IF	101		411
412	412		JJR = MOD(JR + 1)	, 3) + 4		412
413	413		IER = IABS( JS( JJ	R , IS ) )		413
414	414 U 415		$IVI = JE(1) \cdot IFR^{-1}$			415
416	416		IF( IVI . EQ . IVV	) THEN		416
417	417		ISR = JE(3, IER)			417
418 410	418			)		418
420	420		END IF			420
421	421		END IF			421
422	422 C	`	CONTINUE			422
424	424 C	, ,	CONTINUE			424
425	425		IF( IER . NE . IKE	2 ) THEN		425
426	426		IS = ISR			426
428	428		GO TO 130			428
429	429		END IF			429
430	430		IJTRIG = IJTRIG - 1	1		430
432	432 C	SECO	ND LOOP SURDUNDING I	KVZ IS DONE, THIRD LOOP OVER KV3 START .		432
433	433 Č	5200				433
434	434		KET = IECRSS(2)			434
435 436	435 436		IVV = KV3 IF = IARS( TICOLD(	LITRIG + 1)		435 436
437	437		IF( IE . EQ . KET	) THEN		437
438	438		JL00P = 2			438
439 AAO	439 C	h	CONTINUE			439 440
441	441	,	IKET = IICOLR( 1 )			441
442	442		KKET = IABS( IKET			442
443	443		JKET = IABS( IICOL	R( IJTRIG ) )		443

Thu Jul	1 14:	16:26	1993	delthd.f	main program	page	7
444	444			IF( JKET . EQ . KKE	T ) THEN		444
445	445			JLOOP = 3	TUCN		445
447	447			JKVV = JE(1.KKET)	· ; ncn		446
448	448			ELSE	,		44/ 448
449	449			JKVV = JE( 2 , KKET	· )		449
450	450			END IF			450
451	451			JVDELI = JVDELI + 1	14104		451
453	453			D0 160  KK = 2. LJT	RIG		452
454	454			IICOLR( KK - 1 ) =	IICOLR( KK )		453 454
455	455	160		CONTINUE			455
400 457	450			IJIRIG = IJIRIG - 2			456
458	458			IETRIG = IETRIG + I	KKFT		457
459	459			GO TO 150			450
460	460			END IF			455
401	461			GO TO 170			461
463	463			$\frac{1}{1} \frac{1}{1} \frac{1}$			462
464	464			IF( IV1 . EO . IVV	) THEN		463
465	465			ISI = JE( 3 , IE )	,		404
465	466			ELSE			466
407	407			151 = JE(4, 1E)			467
469	469			IS = ISI			468
470	470	C					409 470
471	471			ILOOP = 0			471
4/Z 473	4/2	180		CONTINUE			472
474	474	С		NUMBE - INDS( TICH	LR( IJIRIG ) )		473
475	475	-		ITRIG = ITRIG + 1			4/4 475
476	476			ISCRSS(ITRIG) = IS	5		476
4// 478	4//			IETRIG = IETRIG + 1	r.		477
479	479	С		16CK35( 161K10 ) # 1	IE		478
480	480	-		IF(			4/9
481	481		•	HYDFLX( IS , 4 )	. GT . FLUXPP . OR .		481
482	482		•	HYDFLX(IS, 2)	. GT . FLUXUU . OR .		482
484	484		•	KSOFLT( IS ) 0			483
485	485		:	XS(3.IS).G	T AREVGG ) THEN		484
486	486			INDCTR = 3			486
487	487			RETURN			487
489	400	c		END IF			488
490	490	•		DO 190 IR - 1 . 3			489
491	491			JR = MOD(IR, 3) +	1		491
492	492			IEA = IABS( JS( JR +	3, 15))		492
493	495			111111111111111111111111111111111111			493
495	495			IEI = JS(IIR . IS)	· •		494 405
496	496			IEIB = IABS( IEI )			496
49/ 102	497 100			XEIEB = XE( 1, IEIB			497
499	499			TERUS = ATERUS + XE	IEB ) XYLONG - XETER		498
500	500			IF( XYSHRT . GT . XE	IEB ) XYSHRT ~ XEIEB		499 500
501	501			ILOOP = ILOOP + 1	,		501
502	502			IF( ILOOP . EQ . 1 .	AND . KDOUBL . EQ . IEIB ) THEN		502
504	504			JEUOP = 4 IFTRIG = IFTRIG + 1			503
505	505			IECRSS( IETRIG ) = K	DOUBL		304 505
506	506			IJTRIG = IJTRIG - 1	1122		506
507 508	207 509			$\frac{1}{1} \frac{1}{1} \frac{1}$	HEN .	4	507
509	509			ELSE - JELL , TEIR .	•	4	508 500
510	510			JKVV = JE( 2 , IEIB	)		509 510
511	511			END IF		į	511
512	512			JVDELT = JVDELT + 1	2104	1	512
514	514			1000 = 0	/4/	1	513
515	515			ELSE			514 515
516	516			IJTRIG = IJTRIG + 1		Ì	516
51/	517			IICOLR( IJTRIG ) - IE	1	ŝ	517

page

Thu Jul	1 1,4:1	6:26	1993	delthd.f	mai	n program	page	8
518 519	518 519			END IF JJR = MOD(JR + 1, 3) JFR = TARS(JS(-1)P)	) + 4 IS ) )			518 519 520
520 521	520	С		1EK - 1AD3( 00/ 00h ;	,			521
522	522			IVI = JE(1, IER)	TUC N			522 523
523 524	523			ISR = JE(3, IER)	INCH			524
525	525			ELSE				525
526	526			ISR = JE(4, IER)				520 527
527 528	527			END IF				528
529	529	C						529
530	530	190		CONTINUE				530 531
532	532	L		IF( IER . NE . KET )	THEN			532
533	533			IS = ISR				533
534	534			IE = IEK				535
536	536			END IF				536
537	537	C		000TTNUE				537
538 530	538 630	200		CONTINUE TRET = IICOIR(1)				539
539	540			KKET = IABS( IKET )				540
541	541			JKET = IABS( IICOLR(	IJTRIG ) )			541 542
542 543	542 543			$\frac{1100P}{100P} = 5$	) INCN			543
544	544			IF( IKET . GT . 0 ) T	HEN			544
545	545			JKVV = JE(1, KKET)				545 546
540 547	540 547			JKVV = JE(2, KKET)				547
548	548			END IF				548
549	549			JVDELT = JVDELT + 1				549 550
550 551	551			DO 210  KK = 2, IJTRI	G			551
552	552			IICOLR(KK - 1) = II	COLR( KK )			552
553	553	210		CONTINUE				553 554
555 555	555			IETRIG = IETRIG + 1				555
556	556			IECRSS( IETRIG ) = KK	ET			556
557	557			GO TO 200 END TE				558
550	559	С						559
560	560	170		CONTINUE				560 561
561 562	561 562	Ç		INDCTR = $2$				562
563	563	С		IF( XYLONG / XYSHRT	. GT . 10	AND . JLOOP . EQ . 0 ) RETURN	1	563
564	564	С			1 ) TUCN			564 565
505 566	566	С		ELSE IT ( INNE . LV .	1) (11214			566
567	567	č	BEGI	NING THE DELETION PROC	ESS IF KSD H	IAS AN EDGE ON THE BOUNDARY		567
568	568	C	THE	FIRST LOOP IS AROUND V	ERIEX KKV2 .			500
570	570	L		IVV = KKV2				570
571	571			IE = IEIN				571 572
572 573	5/2			XXYYIB = XE(1, IE)	+ XE( 1 . 1	(KKE1 )		573
574	574			IV1 = JE( 1 , IE )				574
575	575			IF(IV1 . EQ . IVV)	THEN			5/5 576
5/0 577	577			ELSE				577
578	578			ISI = JE(4, IE)				578
579	579 Epn			END IF				579
581	581	С		10 - 101				581
582	582	220		CONTINUE				582 583
583 584	583 584	C		ITRIG = ITRIG + 1				584
585	585			ISCRSS( ITRIG ) = IS				585
586	586	С		ICTRIC - ICTRIC - 1				587
58/ 588	587 588			IECRSS( IETRIG ) = IE				588
589	589	С						589
590	590				GT CLUVE	ΩΩ		590 591
221	241		٠	TIUFLA( 13 , 4 )	. u rtuk!			

Thu Jul	1 14:	:16:26	1993 delthd.f	main program	page 9	)
592	592		. HYDFLX(	IS, 2). GT. FLUXUU. OR.	592	,
593	593		• HYDFLX(	IS, 1). GT. FLUXRR. OR.	593	ł
394 605	594		. KSUELI(	IS). GT. NIDUMP. OR.	594	,
506	595			IS ) . GI . AKEVGG ) THEN	595	ŧ
597	597		PETIDN		596	ł
598	598		FND IF		597	
599	599	С			598	
600	600	•	DO 230 IR -	1.3	599	
601	601		JR = MOD( 1	(, 3) + 1	600	1
602	602		IEA = IABS(	JS(JR + 3, IS)	602	
603	603		IF( IEA . E	. IE ) THEN	603	
604	604		IIR = MOD(	JR , 3 ) + 4	604	
606	600 606		$\frac{111}{1000} = \frac{110}{1000}$		605	
607	607		1010 = 1405 1010 = 1405	, iti ) 1 TCTP )	606	
608	608		XYINGT - XYI	I, ICID) NGT _ YFTED	607	
609	609		IF( XYLONG )	LT . XETER ) XYLONG = XETER	608	
610	610		IF( XYSHRT .	GT . XEIEB ) XYSHRT = XFIFB	610	
611	611		IJTRIG = IJI	RIG + 1	611	
612	612		IICOLR( IJTR	IG) = IEI	612	
613	613		JJR = MOD(J)	R + 1 , 3 ) + 4	613	
014 615	614	~	IER = IABS(	JS(JJR, IS))	614	
616	616	L	11/1 - 15/ 1		615	
617	617		IFC IVI FC	, ICK J IVV ) THEN	616	
618	618		ISR = JE(3)	- IFR )	61/	
619	619		ELSE	· ···· ,	010	
620	620		ISR = JE(4)	, IER )	620	
621	621		END IF		621	
623	623	ſ	ENU IF		622	
624	624	230	CONTINUE		623	
625	625	ĉ	Contract		DZ4	
626	626		IF( IER . NE	. IKKE1 ) THEN	626	
627	627		IS = ISR		627	
020 620	028 620		IE = IER		628	
630	630		GU 10 220 END 15		629	
631	631	С			630	
632	632		IETRIG = IET	RIG + 1	632	
633	633		IECRSS( IETR	IG ) = IKKE1	633	
034 675	634	~	IJTRIG = IJT	RIG - 2	634	
636	636	č	ETOST LOOD SUDOUN		635	
637	637	č	THUI LOUP DUNDUN	JING KAVE IS DUNE, SECUND LOUP UVER KRV3 START .	636	
638	638	•	IVV = KKV3		0J/ 639	
639	639		IE = IABS( I	ICOLR( IJTRIG + 1 ) )	639	
640	640		IV1 = JE(1)	, IE )	640	
041 642	641		IF( IV1 . EQ	. IVV ) THEN	641	
643	642		121 = 7F( 3	, (C )	642	
644	644		ISI = JF(4)	IF )	643	
645	645		END IF	,	044 6/6	
646	646		IS = ISI		646	
04/ 642	04/ 649	ί	11.000 0		647	
649	649	240	TLUUP = U		648	
650	650	£ 40	JDOUBL = TABS	SC LICOLR ( LITRIG ) )	649	
651	651	С			000	
652	652		ITRIG - ITRIC	i + 1	652	
653 654	653 654		ISCRSS( ITRIC		653	
655	655		121K16 = 1214 12CDCC/ 15TO	(16 + 1 C ) _ IE	654	
656	656	С	150833( 1618)	u / ≈ 1E	655	
657	657	-	IF(		050 667	
658	658		. `HYDFLX( 1	S, 4). GT, FLUXPP. OR.	658	
659	659		• HYDFLX( I	S, 2). GT, FLUXUU. OR.	659	
000	000		. HYDFLX( I	S. 1). GT. FLUXRR. OR.	660	
662	662		• KOULLI( ]	S) GT ADEVEC ) THEN	661	
663	663		INDCTR = 3	J , GI . AKEVOO J INEN	662	
664	664		RETURN		003 664	
665	665		END IF		665	

)

)

b

b

page

Thu Jul	1 14:	16:26	1993	delthd.f	ma	in program		pa <b>ge</b>	10
666	666	C							666
667 669	667			D0 250 IR = 1, 3				I	667
000 669	000 669			JR = MUU(IR, J) $IFA = IARS(JS(JE))$	+ 1				558 550
670	670			IF( IEA . EQ . 1E	) THEN				670
671	671			IIR = MOD( JR , 3	) + 4'			(	671
672	672			IEI = JS(IIR, IS)	)			1	672
67A	67A			IEIB = IABS(IEI)	10 )			ł	673
675	675			$\frac{AEIED}{XYINGT} = \frac{XYINGT}{YINGT} + \frac{AEIED}{XYINGT} = \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XYINGT} + \frac{AEIED}{XY$	XETER				0/4 675
676	676			IF( XYLONG . LT .	XEIEB ) XYLONG	= XEIEB			676
677	677			IF( XYSHRT . GT .	XEIEB ) XYSHRT	= XEIEB		ſ	677
678	678			ILOOP = ILOOP + 1				ł	678
679 680	679 690			IF( ILOOP . EQ . 1	. AND . JDOUB	L . EQ . IEIE	B) THEN	ł	679 670
681	681			JEOUP = 1 IFTRIG = IFTRIG +	1				08U 691
682	682			IECRSS( IETRIG ) -	JDOUBL			,	682
683	683			IJTRIG = IJTRIG -	1			(	683
684	684			IF( 1E1 . GT . 0 )	THEN			1	684
680 883	685			JKVV = JE(1, IEI)	8)			1	585 676
687	687			JKWV = JF(2) IFI	B )				960 697
688	688			END IF	.,				688
689	<b>689</b>			JVDELT = JVDELT +	1			(	589
690	690			IVDELT( JVDELT ) -	JKVV			(	690
091 602	602			1L00P = 0				1	591 602
693	693			LITRIG = LITRIG +	1			ť	992 603
694	694			IICOLR( IJTRIG ) =	ĪEI			í	694
695	695			END IF				(	695
696	696 697			JJR = MOD(JR + 1)	. 3) + 4				6 <b>96</b>
097 608	608	c		1FK = 1482( 12( 1)	к, 12))			4	5097 508
699	699	L		IVI = JE(1), IFR	)				090 600
700	700			IF( IV1 . EQ . IVV	) THEN			1	700
701	701			ISR = JE(3, IER)	)				701
702	702			ELSE				-	/02
703	703 704			15K = JE(4, 1EK)	)			:	/03
705	705			END IF					/04 705
706	706	C							706
707	707	250		CONTINUE					707
708	708	C						-	708
710	710			$\frac{1}{1} = \frac{1}{1} = \frac{1}$	ES ) THEM			!	/U9 710
711	711			IE = IER					711
712	712			GO TO 240				-	712
713	713	•		END IF					713
714	714	ι		TETRIC - TETRIC +	1				/14
716	716			IECRSS( IETRIG ) =	IKKE3				716
717	717			IJTRIG = IJTRIG -	1			,	717
718	718	C						7	/18
719	719	C	SECON	ND LOOP SUROUNDING	KKV3 IS DONE,	THIRD LOOP OV	/ER KKV1 START .	1	/19
720	721	L		TVV - KKVI				:	/ ZU 791
722	722			IE = IABS( IICOLR(	IJTRIG + 1 )	)		-	722
723	723			IF( JE( 5, IE ) .	NE.O) THEN			7	723
724	724			IER = IE					/24
725	/25			GU 10 200 END 16				-	/25
727	727			IVI = JE(1, IE)		1		1	127
728	728			IF( IVI . EQ . IVV	) THEN				28
729	729			ISI = JE(3, IE)				7	129
/30	/30							2	/30
732	732			131 = JE( 4 , 15 ) FND IF				1	- 31 /32
733	733			IS = ISI					733
734	734			ISI = 0					/34
735	735	C						Ĩ	/35
/ 30	/30	270		ILUUP = 0				]	/ 30 237
738	738	210		KDOUBL = TARS( 110	OLR( LITRIG )	)			738
739	739	С				,			739

Thu Jul	1 14	:16:26	1993	delthd.f	main program	page	11
740	740			ITRIG = ITRIG	+ )	, ,	740
741	741			ISCRSS( ITRIG	) = 1S		740
742	742			IETRIG = IETRI	G + 1		742
-/43 744	/43 744	r		IECRSS( IETRIG	) = IE		743
745	745	Ċ.		1 <b>F(</b>			744
746	746		•	HYDFLX( IS	4), GT, FLUXPP, OR		745
747	747		•	HYDFLX( IS	. 2). GT. FLUXUU. OR.		740
/48 7/0	748		•	HYDFLX( IS	. 1 ) . GT . FLUXRR . OR .		748
750	750		•		) GL NIDUMP . OR . ) GT AREVCC ) TUCH		749
751	751		•	INDCTR = 3	). 01. AREVOU ) INEN		750
752	752			RETURN			752
/53 754	/53	c		END IF			753
755	755	L		DO 280 TP - 1	2		754
756	756			JR = MOD(IR)	3) + 1		755
757	757			IEA = IABS( JS(	JR + 3, IS))		750
758	758			IF( IEA . EQ .	IE ) THEN		758
760	760			ILK = MOD( JK ,	3)+4 15)		759
761	761			IEIB = IABS(IF)	13)		760
762	762			XEIEB = XE(1,	IÉIB)		762
763 764	763			XYLNGT = XYLNGT	+ XEIEB		763
765	765			IFE XYLUNG . LI	· XEIEB ) XYLONG = XEIEB		764
766	766			1100P = 1100P +	$\frac{1}{1}$		765
767	767			IF( ILOOP . EQ	. 1 . AND . KDOUBL . EQ . IEIB ) THEN		/00
768	768			JLOOP = 2			768
770	709 770			IETRIG = IETRIG	+1		769
771	771			IJTRIG = LITRIG	_ 1		770
772	772			IF( IEI . GT .	0 [°] ) [°] THEN		7/1
773	773			JKVV = JE(1)	IEIB)		773
775	775			$\frac{\text{ELSE}}{1000 - 157}$			774
776	776			END IF	1610 )		775
777	777			JVDELT = JVDELT	+ 1		777
178	778			IVDELT ( JVDELT )	) - JKVV		778
780	780			1L00P = 0			779
781	781			IJTRIG = LITRIG	+ 1		780
782	782			IICOLR( IJTRIG	) = IEI		782 782
/83 794	/83 794			END IF			783
785	785			JJK = MUD(JK + IED - IABS(IS))	1, 3) + 4		784
786	786	С		100 - 1000( 00(	оок, 13 / )		785
787	787			IV1 = JE(1, IE)	R)		787
/88 790	788			IF( IV1 . EQ . ]	(VV) THEN		788
790	790			1SK = JE(3, 1E)	.к )		789
791	791			ISR = JE(4)	R )		790 701
792	792			END IF			792
795	793 704	r		END IF			793
795	795	280		CONTINUE			794
796	796	С					795
797	797 700			IF( ISR . NE . I	SI ) THEN		797
799	790			12 = 12K			798
800	800			GO TO 270			799
801	801	•		END IF			801
801	807	U 260		CONTINUE			802
804	804	Ĉ		CONTINUE			803
805	805			IETRIG = IETRIG	+ 1		804 805
806	806	~		IECRSS( IETRIG )	= IER		806
808	807 808	L		TTYDE - 15/ 6			807
809	809	C		111FE = JE( 3 ,	ICR J		808
810	810			XEIEB - XE( 1.	IER )		810 810
811	811			XEIEB = XXYYIB +	XEIEB		811
813	813			ATENGI * XYENGT - TEC XVIONG - IT	YETER ) YVIONC - YETER		812
	~			IT ATLUNG . LI	· VEIED / VILUND * VEIED		813

1	hu Jul	1 14:	16:26	1993	delthd.f	main program	page	12	
	814	814			IF( XYSHRT . (	AT . XEIEB ) XYSHRT = XEIEB		814	
	815	815	C		•			815	
	816	816			INDCTR = 2			816	
	817	817	С		IF( XYLONG /	XYSHRT . GT . 10 AND . JLOOP . EQ . 0 ) RETURN		817	
	818	818	С		•			818	
	819	819			IV1 = IVIN			819	
	820	820			IE1 = IICOLR(	IJTRIG )		820	
	821	821			IF( IE1 . GT .	O) THEN		821	
	822	822			IV2 = JE(2)	IE1 )		822	
	823	823			ELSE			823	
	824	824			1V2 = JE(1),	- IEI )		824	
	825	825	~		END IF			825	
	820	820	L					828	
	027	027			NEC * 1ECK33(			027	
	020	020	c		IEIKIG # IEIKI	<b>0</b> - 1		020	
	029	029	L		W( 2 TV2 )	- NEC		029	
	0JU 931	931				NCC - 1/2		831	
	832	832			JE( 2 NEC )			832	
	833	833			JE( 4 . NEC )	= 1v1 = 0		833	
	834	834			JE( 5 . NEC )	= ITYPE		834	
	835	835	С			-,,,-		835	
	836	836	•		IJTRIG = IJTRI	G + 1		836	
	837	837			IICOLR( IJTRIC	i) = NEC		837	
	838	838	С			,		838	
	839	839			ELSE IF( IKKE	. EQ . 2 ) THEN		839	
	840	840	С					840	
	841	841	С	BEGI	NING THE DELETI	ION PROCESS IF KSD HAS A VERTEX ON THE BOUNDARY		841	
	842	842	С	THE	FIRST LOOP IS A	ROUND VERTEX KKV1 .		842	
	843	843	C					843	
	844	844			IVV = KKV1			844	
	845	845			IE = IEIN			845	
	846	846			IVIN = JE(2)	IE )		846	
	847	847			XXYYIB = XE(1)	, IE )		847	
	848	848			IVI = JE(1)			040	
	049	049				TAA JIHEN .		049	
	000	000			121 = OE(2),	it )		020	
	071	100			151 - 157	10.)		952	
	002 953	853			131 = 32(4)	10)		853	
	854	854						854	
	855	855	C		19 - 191			855	
	856	856	290		CONTINUE			856	
	857	857	Ċ					857	
	858	858			ITRIG = ITRIG	+ 1		858	
	859	8 <b>59</b>			ISCRSS( ITRIG	) = IS		859	
	860	860	С					860	
	861	861			IETRIG = IETRI	G + 1		861	
	862	862	_		IECRSS( IETRIC	i) = IE		862	
	863	863	C					863	
	864	864			IF(			864	
	805	805		•	HIDFLX( 1	b, 4). GI. FLUXPP. UK.		005	
	800	000		•		(x, z), $(x, z)$ , $(x,$		000	
	007	80/		•		CT HIOMMO OD		00/	
	000	000		•		) . UI . NILUTP . UK .		000	
	009 970	009 970		•	10000 - 10 - 100000	) . GI . AKEVGG J INEN		870	
	871	871			DETIION			871	
	872	872			END IF			872	
	873	873	C					873	
	874	874	•		DO 300 IR = 1	. 3		874	
	875	875			JR = MOD( IR .	(3) + 1		875	
	876	876			IEA - IABS( JS	S(JR + 3, IS)		876	
	877	877			IF( IEA . ÈQ .	IE) THEN		877	
	878	878			IIR = MOD( JR	, 3) + 4		878	
	879	879			IEI = JS( IIR	, IS )		879	
	880	880			IEIB = IABS( 1	EI)		880	
	881	881			XEIEB = XE(1)	, IEIB)		881	
	882	882			XYLNGT - XYLNO	it + xeieb		882	
	883	883			IF( XYLONG . L	. XEIEB ) XYLONG = XEIEB		883	
	884	884			IF( XYSHRT . (	A . XEIEB ) XYSHRI = XEIEB		064	
	005	885			IJIKIG = IJIKI	10 + 1 1 ) _ 151		000	
	000 007	000			110 _ MOD/ 10	i j = iCi ↓ 1 - 3 } ↓ A		887	
	00/	00/			JJR = RUUI JR	7 4 4 4 5 7 9		· (J)	

Thu Jul	1 14:16	5:26	1993	delthd.f	main program	page	13
888 880	888 880	r		IER - IABS( JS( .	JJR , IS ) )		888 889
890	890	C		IV1 = JE( 1 , IE	R )		890
891	891			IF( 1V1 . EQ . 1)	VV ) THEN		891
892 893	892 893			15R = JE(5, 1E) ELSE	K )		892
894	894			ISR = JE( 4 , IE	R )		894
895	895			END IF			895
897	897	С					897
898	898	300		CONTINUE			898
899 000	899	C			KKE3 \ THEN		899
901	901			IS = ISR	INCO / MEN		901
902	902			IE = IER			902
903	903			END IF			903
905	905			IJTRIG = IJTRIG	- 2		905
906	906	C	C 1 D C		KKV1 IS DONE SECOND LOOD OVER KKV2 START		906
908	908	č	ring	I LUVE SURVINITING	KAT IS DONE, SECOND LOUP OVER KAVE SIAKI .		908
909	909			IVV = KKV2			909
910 011	910 011			IE = IABS(IICOLI) IVI = .IF(I) TF	K(IJIRIG + I ) )		910
912	912			IF( IVI . EQ . I	VV ) THEN		912 [.]
913	913			ISI = JE(3, IE)	)		913
914 015	914 015			ELSE IST = JF(4) IF	)		914
916	916			END IF	/		916
917	917	c		IS = ISI			917
918 919	918 919	L		ILOOP = 0			910
920	920	310		CONTINUE			920
921	921	r		IDOUBL = IABS( I	ICOLR( IJTRIG ) )		921
923	923	L		ITRIG = ITRIG + 1	1		923
924	924	•		ISCRSS( ITRIG )	= IS		924
925 926	925 926	ι		IFTRIG = IFTRIG	+ 1		925
927	927			IECRSS( IETRIG )	= IE		927
928	928	С		15/			928
929	930			HYDFLX( IS ,	4).GT.FLUXPP.OR.		930
931	931		•	HYDFLX( IS ,	2). GT. FLUXUU. OR.		931
932 933	932		:	KSDELT( IS )	IJ.GI.FLUXRR.UR.		932
934	934		•	XS(3, IS)	. GT . AREVGG ) THEN		934
935 036	935			INDCTR = 3			935
937	937			END IF			937
938	938	С		00 000 10 1	n		938
939 940	939 940			JR = MOD(IR = 1)	3 ) + 1		939
941	941			IEA = IABS( JS(	JŔ + 3 , IS ) )		941
942	942			IF( IEA . EQ . I	E) THEN		942
945	943			IEI = JS(IIR)	IS)		944
945	945			IEIB = IABS( IEI			945
940 947	946 947			XEIEB = XE( 1 , XYINGT = XYINGT -	ILIB) + XETER		940 947
948	948			IF( XYLONG . LT	. XEIEB ) XYLONG - XEIEB		948
949	949			IF( XYSHRT . GT	. XEIEB ) XYSHRT = XEIEB		949 050
950 951	950 951			IF( ILOOP . EQ .	1 . AND . IDOUBL . EQ . IEIB ) THEN		951
952	952			JLOOP = 1			952
953 954	953 954			IETRIG = IETRIG - IECRSS( IFTRIG )	+ L ≖ TDOUBL		954 954
955	955			IJTRIG = IJTRIG	1		955
956	956			IF( IE1 . GT . 0	) THEN		956
958 958	957 958			ELSE	C10 )		958 958
959	959			JKVV = JE( 2 , I	EIB)		959
960 1 A D	960 061			END IF	+ 1		960
201	J			- WELL OF ULLI	-		

Thu Jul	1 14:1	6:26	1993	delthd.f	main program	page	14
962	962			IVDELT( JVDELT ) =	JKVV		962
963	963			ILOOP = 0			963
964	964			LITRIC = LITRIC +	1		965
966	966			11COLR( IJTRIG ) -	TEI		966
967	967			END IF			967
968	968			JJR = MOD(JR + 1)	. 3)+4		968
969	969	•		IER = IABS( JS( JJ	R, IS))		969
970	970	ι		1V1 - 15/ 1 IFR	<b>)</b>		970
972	972			IF( IV1 . EQ . IVV	) THEN		972
973	973			ISR = JE(3, IER)	)		973
974	974			ELSE	、		974
9/5	9/5			ISK = JE(4, IEK)	)		975
977	977			END IF			977
978	978	С					978
979	979	320		CONTINUE			979
980	980	C			762 \ THEN		981
982	982			IS = ISR			982
983	983			IE = IER			983
984	984			GO TO 310			984
985	985	c		END IF			905
900 QR7	900	L		LITRIG = LITRIG -	1		987
988	988	C			-		988
989	98 <b>9</b>	C	SECO	ND LOOP SUROUNDING	KKV2 IS DONE, THIRD LOOP OVER KKV3 START .		989
990	990	C		1101 1/1/13			990 001
991	991			IVV = KKVD IF = TARS( TTCOLR)	(L)TRIG + 1 ) )		992
993	993			IV1 = JE(1, IE)			993
994	994			IF( IV1 . EQ . IV	/ ) THEN		994
995	9 <b>9</b> 5			ISI = JE(3, IE)			995
990 007	990 007			ELSE	н		997
998	998			END IF			998
999	999			IS = ISI			999
1000	1000	C		71 000 A			1000
1001	1001	330					1002
1003	1003	554		KDOUBL - IABS( II)	COLR( IJTRIG ) )		1003
1004	1004	C		· · · ·			1004
1005	1005			ITRIG = ITRIG + 1 ICCDSS( ITRIC ) =	16		1005
1000	1000			IFTRIG = IFTRIG +	1		1007
1008	1008			IECRSS( IETRIG )	- IE		1008
1009	1009	С		/			1009
1010	1010						1010
1012	1012		•	HYDFLX( IS , 2	2). GT. FLUXUU. OR.		1012
1013	1013			HYDFLX( IS , 1	). GT. FLUXRR. OR.		1013
1014	1014		•	KSDELT( IS )	GT . NIDUMP . OR .		1014
1015	1015		•	XS(3,15)	GI . AKEVGG ) THEN		1015
1010	1010			RFTURN			1017
1018	1018			END IF			1018
1019	1019	С					1019
1020	1020			10 340 [R = 1, 3]	1 + 1		1020
1021	1021			IFA = IABS(JS(J))	(+3, 15)		1022
1023	1023			IF( IEA . EQ . IE	) THEN		1023
1024	1024			IIR = MOD( JR , 3	) + 4		1024
1025	1025			IEI = JS( IIK , I)			1025
1020	1027			XEIEB = XE(1 . I)	EIB )		1027
1028	1028			XYLNGT = XYLNGT +	XEIÉB		1028
1029	1029			IF( XYLONG . LT .	XEIEB ) XYLONG * XEIEB		1029
1030	1030			LF( XYSHRT . GI .	YFIER ) YADHKI - YFIER		1030
1031	1031			IEOOP = IEOOP + I IF( ILOOP , EO .	1 . AND . KDOUBL . EO . IEIB ) THEN		1032
1033	1033			JL00P = 2			1033
1034	1034			IETRIG - IETRIG +			1034
1035	1035			IECRSS( IETRIG )	■ KDOORF		1022

Thu Ju)	1 14:	16:26	1993 delthd.f	main program	page	15
1036	1036		IJTRIG = IJTRIG - 1			1036
1038	1038		JKVV = JE(1, 1EIB)	)		1037 1038
1039	1039		ELSE JKVV * JE( 2 , IEIB	)		1039
1041	1041			,		1040
1043	1043		IVDELT( JVDELT ) = J	KVV		1042 1043
1044	1044		ILCOP = 0 ELSE			1044
1046 1047	1046		IJTRIG = IJTRIG + 1 $IICO(P( I)TPIC ) = 1$	<b>F</b> 1		1045
1048	1048		END IF			1047 1048
1049	1049		JJR = MOD(JR + 1, IER = IABS(JS(JJR	3) + 4 . IS) }		1049
1051 1052	1051 1052	С	IVI = IE(1 IED)			1051
1053	1053		IF( IV1 . EQ . IVV )	THEN		1052 1053
1054	1054		ISR = JE(3, IER) ELSE			1054
1056 1057	1056 1057		ISR = JE(4, IER)			1055
1058	1058	c	END IF			1057 1058
1059	1059	с 340	CONTINUE			1059
1061 1062	1061 1062	C	TET TED NE TAKES	\ TUEN		1061
1063	1063		IS = ISR	<i>j</i> (nch		1062 1063
1064	1064		$\frac{11}{60} = \frac{11}{330}$			1064
1066 1067	1066 1067	с	END IF			1065
1068	1068	-	IETRIG = IETRIG + 1			1067 1068
1009	1009		IECRSS( IETRIG ) = [K IETRIG = IETRIG + 1	(KE3		1069
1071 1072	1071 1072	С	IECRSS( IETRIG ) = 1#	(KE2		1071
1073	1073	- -	IJTRIG = IJTRIG - 1			1072
1074	1074	C	THIRD LOOP SUROUNDING KKV3	S IS DONE, FOURTH LOOP OVER KKV1 START		1074
1076 1077	1076 1077	C	TVV = KKV1			1076
1078	1078		IE = IABS( IICOLR( IJ	TRIG + 1 ) )		1077
1080	1080		IF( JE( 5 , IE ) . NE IER = IE	. U ) THEN		1079 1080
1081 1082	1081 1082		GO TO 350 END IF			1081
1083	1083		IV1 = JE(1, IE)	There		1082
1085	1085		ISI = JE(3, IE)	ITEN		1084 1085
1086	1086		ELSE ISI = JE(4, 1E)		:	1086
1088 1089	1088 1089					1088
1090	1090	<b>^</b>	ISI = 0			1089
1091	1091	L	ILOOP = 0		]	1091
1093 1094	1093 1094	360	CONTINUE .1001BL = LABS( LICOLD	( 111010 ) )		1093
1095	1095	С				1094 1095
1097	1097		$\frac{11}{10} = \frac{11}{10} + 1$ $\frac{10}{10} = \frac{10}{10} = 15$		1	1096 1097
1098 1099	1098 1099		IETRIG = IETRIG + 1 IECRSS( IETRIG ) = IF		1	098
1100	1100	С	15/		1	100
1102	1102		. HYDFLX(IS, 4).	. GT . FLUXPP . OR .	1	101
1103 1104	1103 1104		• HYDFLX(IS,2). • HYDFLX(IS,1).	GT · FLUXUU · OR ·	j	103
1105	1105		. KSDELT( IS ) . GT	NIDUMP OR	1	105
1107	1107		INDCTR = 3	. AKEVUU J INEN	1	106 107
1108	1108		RETURN END IF		1	108 109

Thu Jul	1 14:16:2	26 1993	delthd.f	main	program		page	16
1110	1110 C							1110
1111	1111		DO 370 IR = 1 , 3					1111
1112	1112		JR = MOD(IR, 3)	+ 1				1112
1113	1113		IEA = IABS( JS( JR	+ 3 , IS ) )				1113
1114	1114		IF( IEA . EQ . IE	T THEN				1114
1115	1115		IIR = MOD(JR, 3)	) + 4				1115
1116	1116		IEI = JS( IIR , IS	)				1116
1117	1117		IEIB = IABS( IEI )					1117
1118	1118		XEIEB = XE(1, IE)	IB)				1118
1119	1119		XYLNGT = XYLNCT +	XEIEB				1119
1120	1120		IF( XYLONG . LT .	XEIEB ) XYLONG =	XEIEB			1120
1121	1121		IF( XYSHRT . GT .	XEIEB ) XYSHRT =	XEIEB			1121
1122	1122		ILOOP = ILOOP + I					1122
1123	1123		IF( ILOOP . EQ . 1	. AND . JDOUBL .	EQ. IEIB ) THEN			1123
1124	1124		JLOOP = 3					1124
1125	1125		IETRIG = IETRIG +	1				1125
1126	1126		IECRSS( IETRIG ) =	JDOUBL				1126
1127	1127		IJTRIG = IJTRIG =	1				1127
1128	1128		IF( IEI . GI . 0 )	THEN				1128
1129	1129		JKVV = JE(1, 1EI)	8)				1129
1130	1130			n )				1130
1131	1131		JKVV = JE(2, 1E)	5)				1131
1132	1122			1				1122
1133	1133		JVDELI = JVDELI +	1//10/				1133
1134	1134		100ELI( JUELI ) *	JNYY				1135
1136	1135							1136
1137	1137			1				1137
1138	1138			ำรา				1138
1139	1130		FND IF					1139
1140	1140		JJR = MOD(JR + 1)	. 3 ) + 4				1140
1141	1141		IER = IABS(JS(JJ))	Ŕ.ÍS)				1141
1142	1142 C							1142
1143	1143		IV1 = JE(1, IER)	)				1143
1144	1144		IF( IV1 . EQ . IVV	) THEN				1144
1145	1145		ISR = JE(3), IER	)				1145
1146	1146		ELSE	•				1146
1147	1147		ISR = JE(4, IER)	)				1147
1148	1148		END IF					1148
1149	1149		END IF					1149
1150	1150 C							1150
1151	1151 3	70	CONTINUE					1151
1152	1152 L		16/ 100 HC 101	1 111/101				1102
1153	1100		17( 15K . NE . 151	) IMEN				1155
1154	1109		15 = 158					1154
1155	1100		1E * 1EK CO TO 360					1155
1150	1150							1157
1158	1157 1158 C							1158
1150	1150 3	50	CONTINUE					1159
1160	1160 C		VONT LINE					1160
1161	1161		IFTRIG = IFTRIG +	1				1161
1162	1162		IECRSS( IETRIG ) =	IER				1162
1163	1163 C							1163
1164	1164		ITYPE = JE(5, IE)	R )				1164
1165	1165 C		, - · · ·					1165
1166	1166		XEIEB = XE(1, IE)	R )				1166
1167	1167		XEIEB = XXYYIB + X	EIÉB				1167
1168	1168		XYLIGT = XYLNGT +	XEIEB				1168
1169	1169		IF( XYLONG . LT .	XEIEB ) XYLONG =	XEIEB			1169
1170	1170		IF( XYSHRT . GT .	XEIEB ) XYSHRT =	XEIEB			1170
1171	1171 C							1171
1172	1172		INDCTR = 2	<b>D</b> # <b>A-</b> · -		A ) DETURN		11/2
1173	1173 C		IF( XYLONG / XYSH	KI.GT.10A	NU . JLOOP . EQ .	V ) KETURN		11/5
11/4	1174 C		****					11/4
11/5	11/5		IVI = IVIN					11/3
11/0	11/0		IEI = IICOLK( IJIR	10 J				1177
11//	1170		IF( 111 . 61 . 0)	THEN				1179
11/0	11/0		IV2 * JE( 2 , 11	1				1170
4379 1540	1180			1)				1180
1121	1181		IVE - UE( 1 , - 10					1181
1182	1182 0							1182
1183	1183		NEC = IECRSS( IFTR	(IG )				1183
				,				

Thu Jul	1 14	:1 <b>6:</b> 26	1993	delthd.f	r	nain	program	page	17
1184 1185 1186 1187 1188 1189 1189	1184 1185 1186 1187 1188 1188 1189 1190	С		1ETRIG = 1ET JV(2, IV2 JE(1, NEC JE(2, NEC JE(4, NEC JE(5, NEC	RIG - 1 ) = - NEC ) = IV2 ) = IV1 ) = 0 } = ITYPE				1184 1185 1186 1187 1188 1189
1191 1192 1193 1194	1191 1192 1193 1194	с с		IJTRIG = IJTR IICOLR( IJTR)	RIG + 1 IG ) = NEC				1190 1191 1192 1193
1195 1196 1197 1198	1195 1196 1197 1198	C C C	BEGI	ELSE IF( IKKE	E . EQ . 3 ) THEN	HAS	TWO VERTECTS ON THE BOUNDARY		1194 1195 1196 1197
1199 1200 1201	1199 1200 1201	C C	THE	FIRST LOOP IS	AROUND VERTEX KKV1	I HE	COMPUTATIONAL DOMAIN,		1198 1199 1200 1201
1202 1203 1204 1205	1202 1203 1204 1205			IE = IEINI $XXYYIB = XE($ $IV1 = JE(1),$ $IVIN1 = JE(2)$	1 , IE ) IE ) , IE )				1202 1203 1204 1205
1200 1207 1208 1209	1203 1207 1208 1209			IF(IVI . EQ) $ISI = JE(3),$ $ELSE$ $ISI = JE(4),$	IE)				1206 1207 1208 1209
1211 1212 1213	1211 1212 1213	C 380		IS = ISI CONTINUE					1210 1211 1212 1213
1215 1215 1216 1217	1215 1215 1216 1217	C		ITRIG = ITRIG ISCRSS( ITRIG IETRIG = IETR	+ 1 ) = IS IG + 1				1214 1215 1216 1217
1219 1220 1221 1222	1219 1220 1221	С		IF( HYDFLX( I)	G ) = 1E S , 4 ) . GT . FLU)	(PP .	OR .		1218 1219 1220 1221
1223 1224 1225 1226	1223 1224 1225 1226		• • •	HYDFLX(1) HYDFLX(1) KSDELT(1) XS(3,1) INDCTP - 3	S , 2 ) . GT . FLU S , 1 ) . GT . FLU S ) . GT . NIDUMP . S ) . GT . AREVGG )	KUU . KRR . OR ) THE	OR. OR.		1222 1223 1224 1225
1227 1228 1229 1230	1227 1228 1229 1230	с		RETURN END IF	3				1226 1227 1228 1229
1231 1232 1233 1234	1231 1232 1233 1234			JR = MOD(IR) $IEA = IABS(JS)$ $IF(IEA = EQ)$ $IIR = MOD(IR)$	(3) + 1 S(JR + 3 , IS ) ) (IE ) THEN				1230 1231 1232 1233
1235 1236 1237 1238	1235 1236 1237 1238			IEI = JS( IIR IEIB = IABS( I XEIEB = XE( 1 XYINGI = XYING	, IS ) IEI ) , IEIB )				1234 1235 1236 1237
1239 1240 1241 1242	1239 1240 1241 1242			IF( XYLONG . L IF( XYSHRT . C IJTRIG = IJTRI ITCOLP( LITRIG	T . XEIEB ) XYLONG T . XEIEB ) XYLONG T . XEIEB ) XYSHRT G + 1	= X = X	E I E B E I E B		1238 1239 1240 1241
1243 1244 1245 1246	1243 1244 1245 1246	С		JJR = MOD( JR IER = IABS( JS	+ 1 , 3 ) + 4 ( JJR , IS ) )				1242 1243 1244 1245
1247 1248 1249 1250	1247 1248 1249 1250		:	IF(IVI - 3E(I), IF(IVI - 5E(I), IF(IVI - 5E(I), IF(I), I	IVV) THEN IER)				1246 1247 1248 1249
1251 1252 1253 1254	1251 1252 1253 1254	C 390	1	END IF END IF	<i>icn j</i>			1 1 1 1	1250 1251 1252 1253
1255 1256 1257	1255 1256 1257	C		IF( IER . NE . IS = ISR	IKKE3 ) THEN			1 1 1 1	254 255 256 257

Thu Jul	1 14:1	6:26	1993	delthd.f	main program	page	18
1258	1258			IE = IER			1258
1259	1259			GO TO 380			1259
1260	1260			END IF			1260
1261	1261	Ç			• • • •		1261
1262	1262	С	FIRS	F LOOP SUROUNDING KKV1 I	S DONE, SECOND LOOP OVER KKV2 START .		1262
1263	1263	C					1263
1264	1264			IJTRIG = IJTRIG - 1			1264
1265	1265	400		CONTINUE			1265
1266	12 <b>66</b>	C					1266
1267	1267			IEJK = IICOLR( IJTRIG )			1267
1268	1268			IF( IEJK . GT . 0 ) THE	N		1268
1269	1269			IVIEJK = JE(1, IEJK)			1269
1270	1270			IJEJK5 = JE(5, 1EJK)			1270
12/1	12/1				N N		12/1
1272	1272			$\frac{1}{1} \frac{1}{1} \frac{1}$	<i>)</i>		12/2
12/3	12/3			IJLJFD = JL(D, -iLJK)	)		12/3
12/4	1274	c					1274
1275	1275	L.			UEN		1275
1277	1277			11000 = 1			1270
1278	1278	r		02001 - 1			1278
1270	1270	ř	INTE	MEDIATE LOOP START			1270
1280	1280	č	11016				1280
1281	1281	•		$IE_IKI = IABS( IICOLR( I)$	JTRIG = 1 ) )		1281
1282	1282			IEJK2 = IABS(IEJK)			1282
1283	1283			IETRIG = IETRIG + 1			1283
1284	1284			IECRSS( IETRIG ) = IEJK	2		1284
1285	1285			IJTRIG = IJTRIG - 2			1285
1286	1286			IVV - IVIEJK			1286
1287	1287			JVDELT = JVDELT + 1			1287
1288	1288			IVDELT( JVDELT ) = IVV			1288
1289	1289			IE = IEJKI			1289
1290	1290			IVI = JE(1, 1E)	ru		1290
1291	1202			1F(1VI + EV + IVV) FR			1291
1292	1292						1272
1294	1294			ISI = JF(4) IF			1294
1295	1295			END IF			1295
1296	1296			IS = ISI			1296
1 <b>29</b> 7	1297			IET = IEJK2			1297
1298	1 <b>298</b>	С					1298
12 <b>9</b> 9	1299	410		CONTINUE			1299
1300	1300	С					1300
1301	1301			ITRIG = ITRIG + 1			1301
1302	1302	~		12CK22(11K1G) = 12			1302
1203	1303	ι					1303
1304	1305			IE(RIG = IE(RIG + I))			1304
1305	1305	r					1306
1307	1307	ç		IF(			1307
1308	1308		-	HYDFLX(IS.4).	GT , FLUXPP , OR ,		1308
1309	1309			HYDFLX( IS . 2 ) .	GT . FLUXUU . OR .		1309
1310	1310			HYDFLX(IS, 1).	GT . FLUXRR . OR .		1310
1311	1311			KSDELT( IS ) . GT .	NIDUMP . OR .		1311
1312	1312		•	XS(3, IS).GT.	AREVGG ) THEN		1312
1313	1313			INDCTR = 3			1313
1314	1314			RETURN			1314
1315	1315	r		END IF			1313
1217	1317	ι		00 420 10 - 1 3			1310
1318	1318			JR = MOD(IR - 3) + 1			1318
1319	1319			IEA = IABS(JS(JR + 3))	. (5))		1319
1320	1320			IF( IEA , FO , IE ) THE	N		1320
1321	1321			IIR = MOD(JR, 3) + 4			1321
1322	1322			IEI = JS(`IIR, IS`)			1322
1323	1323			IEIB = IABS( IEI )			1323
1324	1324			XEIEB = XE(1, IEIB)			1324
1325	1325			XYLNGT = XYLNGT + XEIEB	<b>N</b>		1325
1326	1326			IF( XYLONG . LT . XEIEB	) XYLONG = XEIEB		1326
1327	1327			IF ( XYSHRI . GI . XEIEB	J ATSHKI = XEIEB		132/
1320	1320			TEL TINK = TABS( TICULK( IJ	(K1G ) ) Then		1320
1330	1330			.1100P = 2	1 \$ 4 <u>6.</u> 3¥		1330
1331	1331			IETRIG = IETRIG + 1			1331

Thu Ju	1 1 14:	:16:26	1993	delthd.f main program	page	e 19
1332	1332			IECRSS( IETRIG ) = IEIB		1772
1333	1333			IJTRIG = IJTRIG - 1		1333
1334	1335			17(1E1.61.0)   HEN .1KVV = 3E(1.15TE)		1334
1336	1336			ELSE		1335
1337	1337			JKVV = JE(2, IEIB)		1330
1338	1338					1338
1340	1340			JVDELI = JVDELI + 1 IVDELT( JVDELT ) = JKVV		1339
1341	1341			ELSE		1340
1342	1342			IJTRIG = IJTRIG + 1		1342
1345	1345			FND IF		1343
1345	1345			JJR = MOD(JR + 1, 3) + 4		1344
1346 1347	1346	r		IER = IABS( JS( JJR , IS ) )		1346
1348	1348	L		IVI = JF(1) IFR		1347
1349	1349			IF( IVI . EQ . IVV ) THEN		1348
1350	1350			ISR = JE(3, IER)		1350
1352	1352			ISR = JE(4, IER)		1351
1353	1353			END IF		1352
1354	1354	C		ENU IF		1354
1356	1356	420		CONTINUE		1355
1357	1357	C				1357
1359	1359			IS = ISR		1358
1360	1360			IE = IER		1359
1361	1361			GO TO 410 END TE		1361
1363	1363	С				1362
1364	1364			GO TO 400		1364
1366	1366	С				1365
1367	1367	Ç	INTE	RMEDIATE LOOP IS DONE, SECOND LOOP OVER KKV2 START .		1300
1308	1368	ι		TVV - KKV2		1368
1370	1370			IE = IEIN2		1369
1371	1371			IVIN2 = JE(2, IE)		1371
1373	1373			IVI = JE(1, IE)		1372
1374	1374			IF( IV1 . EQ . IVV ) THEN		1373
1375	1375			151 = JE(3, IE) FISE		1375
1377	1377			ISI = JE(4, IE)		1376
1378	1378			END IF		1378
1380	1380	C		12 = 121		1379
1381	1381	430		CONTINUE		1380
1382	1382	C		TTPIC - ITPIC + 1		1382
1384	1384			ISCRSS( ITRIG ) = IS		1383
1385	1385	C		ICTOR CONTRACTOR		1385
1387	1387			$\frac{1}{1} \frac{1}{1} \frac{1}$		1386
1388	1388	C				1387
1389	1389					1389
1391	1391		•	HYDFLX(IS, 2), GT, FLIXIN, OR		1390
1392	1392		•	HYDFLX( IS , 1 ) . GT . FLUXRR . OR .		1392
1393	1393		•	KSUELI(15), GI, NIDUMP, OR, XS(3, IS), GT, APEVICE, THEN		1393
1395	1395			INDER = 3		1394
1390	1397			KLIUKN FND IF		1396
1398	1398	C				1397 1398
1399	1399			$\frac{100}{10} = \frac{1}{3}$		1399
1401	1401			IEA = IABS(JS(JR + 3 . 15))		1400
1402	1402			IF( IEA . EQ . IE ) THEN		1402
1405	1403			LLK = MUU(JR, 3) + 4 IEI = JS(TIR, TS)		1403
1405	1405			IEIB = IABS( IEI )		1404

Thu Jul	1 14:1	6:26	1 <b>9</b> 93	delthd.f	main	program		page	20
1406	1406			XEIEB - XE( 1	IEIB)				1406
1407	1407			XYLNGI = XYLNG	I + XEIEB T YETEB ) YVIONC -	YC 100			1407
1400	1400			IF( XYSHRT . G	T . XEIEB ) XYSHRT =	XFIFR			1400
1410	1410			IJTRIG = IJTRI	G + 1				1410
1411	1411			IICOLR( IJTRIG	) = IEI				1411
1412	1412			JJR - MOD( JR	+ 1 , 3 ) + 4				1412
1413	1413	r		IER = IABS( JS)	(JJR, 15))				1413
1414	1414	L		IVI = JE(1, 1)	IER )				1415
1416	1416			IF( IVI . EQ .	IVV) THEN				1416
1417	1417			ISR = JE(3, 2)	IER)				1417
1418	1418								1418
1419	1419			FND IF	ich j				1420
1421	1421			END IF					1421
1422	1422	C							1422
1423	1423	440		CONTINUE					1423
1424	1424	L		IF( IFR . NF .	TKKE2 ) THEN				1424
1426	1426			IS = ISR	THE J HER				1426
1427	1427			IE = IER					1427
1428	1428			GO TO 430					1428
1429	1429	r		ENU IF					1429
1431	1431	v		IJTRIG - IJTRIG	G - 1				1431
1432	1432	C							1432
1433	1433	ç	SECO	ND LOOP SUROUND	ING KKV2 IS DONE, TH	IRD LOOP OVER KKV3 STA	ART.		1433
1434	1434	ι		IVV = KKV3					1434
1435	1435			IE = IABS(IIC)	DLR( IJTRIG + 1 ) )				1436
1437	1437			IV1 = JE(1, 1)	IE)				1437
1438	1438			IF( IV1 . EQ .	IVV ) THEN				1438
1439	1439			151 = JE(5, 5)	IE J				1439
1441	1441			ISI = JE(4, 1)	IE)				1441
1442	1442			END IF	,				1442
1443	1443	•		IS = ISI					1443
1444 1445	1444	C		11000 - 0					1444
1445	1445	450		CONTINUE					1446
1447	1447			IDOUBL = IABS(	<pre>IICOLR( IJTRIG ) )</pre>				1447
1448	1448	С							1448
1449	1449			ITRIG = ITRIG +	+ 1				1449
1451	1451			IETRIG = IETRI	5 + 1				1451
1452	1452			IECRSS( IETRIG	) = IE				1452
1453	1453	С							1453
1454	1454					ΩD			1404
1456	1456		:	HYDFLX( IS	2). GT . FLUXUU	. OR .			1456
1457	1457		•	HYDFLX( IS	, 1 ) . GT . FLUXRR	. OR .			1457
1458	1458		•	KSDELT( IS	) GT . NIDUMP . O	R.			1458
1459	1459		•	XS( 3 , 13	) . ul . AKEVUG ) 1	HEN			1459
1461	1461			RETURN					1461
1462	1462			END IF					1462
1463	1463	C		DO 460 TR - 1	2				1403
1465	1465			JR = MOD(1R)	3)+1				1465
1466	1466			IEA = IABS( JS)	(JŔ+3, IS))				1466
1467	1467			IF( IEA . EQ .	IE ) THEN				1467
1468	1468			IIR = MOD( JR ,	, 5 ) + 4 15 )				1408
1470	1470			IEIB = IABS(IIR)	. 13 / E[ ]				1470
1471	1471			XEIE8 = XE( 1	, IÉIB )				1471
1472	1472			XYLNGT = XYLNG	T + XEIEB				1472
1473	1473			IF ( XYLONG . L'	I . XEIEB ) XYLONG =	XEIEB			14/3
1474	1474			$\frac{1100P}{1100P} = 1100P + 1100P$	+ 1 × NEIED J ATOMKI *	AE1E0			1475
1476	1476			IF( ILOOP . EQ	. 1 . AND . IDOUBL	. EQ . IEIB ) THEN			1476
1477	1477			JL00P = 3	<b>•</b> • •				1477
14/8 1470	14/8			IEIKIG = IEIKIG	a + 1 ) ≖ 100‼Ri				1479
**13	* * * J				,				
Thu Ju	1 14:	:16:26	1993	delthd.f	main program	page	21		
--------------	--------------	------------------	--------	-------------------------------------------	-------------------------------	------	--------------		
1480	1480			IJTRIG = IJTRIG = 1			1480		
1481	1481			JKVV = JF( 1 JFTR )			1481		
1483	1483			ELSE			1482		
1484	1484			JKVV = JE(2, IEIB)			1484		
1465	1405			JVDF1T = JVDF1T + 1			1485		
1487	1487			IVDELT( JVDELT ) = JKVV			1400		
1488	1488			ILOOP = 0			1488		
1490	1490			IJTRIG = IJTRIG + 1			1489		
1491	1491			IICOLR( IJTRIG ) = IEI			1490		
1492 1493	1492						1492		
1494	1494			IER = IABS(JS(JJR, IS))			1493		
1495	1495	С					1494		
1490	1490			IVI = JE(1, IER) IF( IV) FO IVV ) THEN			1496		
1498	1498			ISR = JE(3, IER)			1497		
1499	1499			ELSE			1499		
1501	1500			ISK = JE(4, IER) FND IF			1500		
1502	1502			END IF			1501		
1503	1503	C 460		CANTINUE			1503		
1504	1504	40 <b>0</b> C	4	CONTINUE			1504		
1506	1506	-		IF( IER . NE . IKKE3 ) THEN			1505		
1507	1507			IS = ISR			1507		
1509	1509		i	GO TO 450			1508		
1510	1510		1	END IF			1509		
1511	1511	C	1	IETDIC - IETDIC + 1			1511		
1513	1513			IECRSS( IETRIG ) = IKKE3			1512		
1514	1514		1	IETRIG = IETRIG + 1			1514		
1515	1515	r	]	IECRSS( IETRIG ) = IKKE2			1515		
1517	1517	v	J	IJTRIG = IJTRIG - 1			1516		
1518	1518	C	711700				1518		
1519	1519	Ċ	THIRD	LOOP SUROUNDING KKV3 IS DONE,	FOURTH LOOP OVER KKV1 START .		1519		
1521	1521	•	J	IVV - KKV1			1520		
1522	1522		]	E = IABS( IICOLR( IJTRIG + 1	<u>)</u> )		1522		
1525	1525		1	FR = IF	LN .		1523		
1525	1525		G	O TO 470			1525		
1526	1526		E				1526		
1528	1528		I	F(IV1 + EO + IVV) THEN			1527		
1529	1529		I	SI = JE(3, IE)			1529		
1530	1530 1531		E	LDE SI = .)F(4 IF)			1530		
1532	1532		É	ND IF			1531 1532		
1533 1534	1533		I	S = ISI			1533		
1535	1534	С	1	31 = V			1534		
1536	1536		I	100P = 0		1	1536		
153/	1537	480	C	UNTINUE DOURL - LARS( LICOLD( LITRIC	<b>\ \</b>	1	1537		
1539	1539	C	Ū	DOODE - TADS( TICOEK( TOTKIG	, ,	1	1538		
1540	1540		I	TRIG = ITRIG + 1		i	1540		
1541	1541		1	SURSS( TIRIG ) = 15 ETRIG = IFTRIG + 1		1	1541		
1543	1543	~	ļ	ECRSS( IETRIG ) = IE		1	1542		
1544 1545	1544 1545	C	t	F(		j	544		
1546	1546		. 1	HYDFLX(IS.4).GT.FH	JXPP . OR .	]	545		
1547	1547		•	HYDFLX( IS , 2 ) . GT . FL	JXUU . OR .	1	547		
1540	1548 1549		•	HYDELX(IS, 1), GT, FL	JXRR . OR .	1	548		
1550	1550		•	XS(3, IS). GT. AREVGG	) THEN	1	549 550		
1551	1551		I	NDCTR = 3	-	i	551		
1553	1552		El	VO IF		1	552		

Thu Jul	1 14:1	16:26	1993	delthd.f	main	program	1	page	22	
1554	1554	C		00 400 10 - 1 3					1554	
1555	1555			JR = MOD(IR, 3)	+ 1				1555	
1557	1557			IEA = IABS( JS( JR	+ 3 , IS ) )				1557	
1558	1558			IF (IEA. EQ. IE) IF $= MOD(.)R = 3$	) THEN + 4				1558	
1560	1560			IEI = JS( IIR , IS	)				1560	
1551	1561			IEIB - IABS( IEI )	(D.)				1561	
1562	1563			XEIEB = XE( I , IE XYINGT = XYINGT + 2	(ETEB				1562	
1564	1564			IF( XYLONG . LT .	(EIEB ) XYLONG -	XEIEB			1564	
1565	1565			IF( XYSHRT . GT . )	(EIEB ) XYSHRT =	XEIEB			1565	
1500	1500			ILCOP = ILCOP + I IF( ILCOP - FO - 1	. AND IDOURI	FO . IFIR ) THEN			1500	
1568	1568			JLOOP = 4					1568	
1569	1569			IETRIG = IETRIG +					1569	
1570	1570			$I_{JTRIG} = I_{JTRIG} =$					1570	
1572	1572			IF( IEI . GT . 0 )	THEN				1572	
1573	1573			JKVV = JE(1, IEI)	3)				1573	
1574	1574			JKVV = JE(2). IEI	3)				1575	
1576	1576			END IF	- ,				1576	
1577	1577			JVDELT = JVDELT + 1					1577	
1579	1579			ILOOP = 0	<b>UNAA</b>				1570	
1580	1580			ELSE					1580	
1581	1581			IJTRIG = IJTRIG +	101				1581	
1583	1583			END IF	101				1583	
1584	1584			JJR = MOD(JR + 1)	3)+4				1584	
1585	1585	r		IER = IABS(JS(JJ))	(, 15))				1585	
1587	1587	v		IV1 = JE(1, IER)	)				1587	
1588	1588			IF( IV1 . EQ . IVV	) THEN				1588	
1589	1589			1SR = JE(3, 1ER)	)				1569	
1591	1591			ISR = JE( 4 , IER	)				1591	
1592	1592			END IF					1592	
1593	1593	С		ENU IF					1593	
1595	1595	490		CONTINUE					1595	
1596	1596	С		10/ 100 Nr 101	\ TUPN				1596	
1597	1598			IF(ISK . NE . ISI IS = ISR	) INEN				1598	
1599	1599			IE = IER					1599	
1600	1600			GO TO 480					1600	
1601	1601	С		ENU IF					1602	
1603	1603	470		CONTINUE					1603	
1604	1604	C		TETOIC - TETOIC -	I				1604	
1605	1605			IECRSS( IETRIG ) =	IER				1606	
1607	1607	C							1607	
1608	1608	r		IIYPE = JE(5, 1E)	()				1608	
1610	1610	C C		XEIEB = XE(1, IEI)	۲)				1610	
1611	1611			XEIEB = XXYYIB + X	EIÉB	*			1611	
1612	1612			TEC XYLONG . IT	(EIEB (FIFR ) XYLONG =	XFIFR			1612	
1614	1614			IF( XYSHRT . GT .	(EIEB ) XYSHRT -	XEIEB			1614	
1615	1615	C							1615	
1617	1617	С		INDUTK # 2 IF( XYLONG / XYSHI	RT . GT . 10.	AND JLOOP . FO . O	) RETURN		1617	
1618	1618	č				and the second second second second second second second second second second second second second second second			1618	
1619	1619	r		JE(2, IEJKK) =	IVIN2				1619 1620	
1621	1621	L		IV1 = IVIN1					1621	
1622	1622			IE1 = IICOLR( IJTR	(G_)				1622	
1623	1623			IF(IE1.GT.0)	THEN				1623	
1625	1625			ELSE	,				1625	
1626	1626			IV2 - JE( 1 , - IE)	L )				1626	
1627	1627			END IF					1627	

Thu Jul	1 14	:16:26	1993	delthd.f	main program	page	23
1628 1629	1628 1629	С		NEC = IECRSS(			1628
1630	1630	c		IETRIG = IETR	RIG - 1		1629 1630
1632	1632	C		JV( 2 , IV2 )	) = - NEC		1631 1632
1633	1633 1634			JE(1, NEC) JE(2, NEC)	) = IV2   = IV1		1633
1635	1635			JE( 4 , NEC )			1634
1637	1637	С		JE( 5 , HEC )			1636 1637
1638	1638			IJTRIG = IJTR IICOLR( IJTRI	IIG + 1 G ) = NEC		1638
1640 1641	1640	С		FISE IF( TKKE			1640
1642	1642	~		print*,'ikk	e~4', ksd, ikke		1641 1642
1644	1643	C	BEGIN	ING THE DELET	ION PROCESS IF KSD HAS AN EDGE ON THE BOUNDARY		1643
1645 1646	1645 1646	C C	AND T	HE THIRD VERT	EX IS OLSO ON THE BOUNDARY.		1645
1647	1647	č			ANOUND VENIER ARVZ .		1646 1647
1649	1649			IVV = KKVZ IE = IEIN1			1648 1649
1650 1651	1650 1651			XXYYIB = XE(	1, IE) + XE(1, IKKE1)		1650
1652	1652			IVINI = JE(2)	, IE )		1651
1654	1655			IF(IVI . EQ) ISI = JE(3,	IVV) IHEN IE)		1653 1654
1655 1656	1655 1656		l	ELSE IST = JE(4.	IF )		1655
1657	1657		Į	END IF	,		1657
1659	1659	C	1	12 = 121			1658 1659
1660 1661	1660 1661	500 C	(	CONTINUE			1660
1662	1662		1	TRIG = ITRIG	+1		1662
1664	1664		j	ETRIG = IETRI	J = 13 IG + 1		1663 1664
1666	1665	С	]	ECRSS( IETRIC	G ) = IE		1665
1667 1668	1667 1668		]		5 4 ) CT FLUXDD OD		1667
1669	1669		•	HYDFLX( IS	5, 2). GT. FLUXUU. OR.		1669
1671	1671		•	KSDELT( 19	S, 1). GI. FLUXRR. DR. S). GT. NIDUMP. OR.		1670 1671
1672 1673	1672 1673		· .	XS( 3 , IS	S).GT.AREVGG)THEN		1672
1674	1674		Ŗ	ETURN			1673
1676	1676	С	E	MU 11			1675 1676
1677 1678	1677 1678		D J	0 510 IR = 1 R = MOD( IR .	, 3 3 ) + 1		1677
1679 1680	1679 1680		I	EA = IABS( JS	S(JR + 3, IS))		1679
1681	1681		I	IR = MOD( JR	• 3 ) + 4	:	1680 1681
1683	1682		I I	EI = JS( IIR EIB = IABS( I	, IS) EI)		1682
1684 1685	1684 1685		X	EIEB = XE(1 YINGT = XYING	, IÉIB ) I + XEIER		1684
1686	1686		Î	F( XYLONG . L	T . XEIEB ) XYLONG = XEIEB	1	1685 1686
1688	1688		I	JTRIG = IJTRI	G + 1	1	1687 1688
1689 1690	1689 1690		I J	ICOLR( IJTRIG JR = MOD( JR	) = IEI + 1 . 3 ) + 4	1	1689
1691 1692	1691 1692	r	Ī	ER = 1ABS(JS)	( JJR , İS ) )	1	1691
1693	1693	-	I	V1 - JE( 1.	IER )	1	1692 1693
1695	1694			F(IVI + EQ + SR = JE(3),	IVV J HEN IER )	1	1694 1695
1696 1697	1696 1697		Ei T	LSE SR = JE( 4	IFR )	į	1696
1698	1698		Ē	ND IF	,	1	1698
1700	1700	C	E	11 11		1	1699 1700
1701	1701	510	C	ONTINUE		i	701

Thu Jul	1 14:1	6:26	1993	deithd.f	main program	page	24
1702	1702	c					1702
1703	1703			IF( IER . NE . I	KKE1 ) THEN		1703
1704	1704			IS = ISR	,		1704
1705	1705			IE = IER			1705
1706	1706			GO TO 500			1706
1707	1707	~		END IF			1707
1700	1708	Ľ	5105	T LOOD SUDOHNDING	KKNA IS DUNE SECOND LOOD DIED KKNA STADT		1708
1709	1709	r	L1K2	I LOOP SORDONDING	REAST DOIL, SECOND LOUP OVER REAST START .		1710
1711	1711	Ċ.		IJTRIG = IJTRIG	- 1		1711
1712	1712	520		CONTINUE	-		1712
1713	1713	C					1713
1714	1714			IEJK = IICOLR( I.	JTRIG )		1714
1715	1715			IF( IEJK . GT . (	D) THEN		1715
1716	1716			IVIEJK = JE(1)	ILJK ) TEJK )		1/16
1/1/	1/1/			$\frac{1}{1} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$	ILUK )		1/1/
1719	1710			IVIEJK = JE(2)	-TEJK )		1719
1720	1720			IJEJK5 = JE(5)	-IEJK )		1720
1721	1721			END IF			1721
1722	1722	C					1722
1723	1723			IF( IJEJK5 . EQ	. O ) THEN		1723
1/24	1/24	C C	THEF		DT .		1/24
1725	1725	c c	1012	KMEDIATE LOOP STA			1725
1727	1727	L		.1100P = 1			1727
1728	1728			IEJKI = IABS( II)	COLR( IJTRIG - 1 ) )		1728
1729	1729			IEJK2 = IABS( IE	JK )		1729
1730	1 <b>730</b>			IETRIG = IETRIG	+ 1		1730
1731	1731			IECRSS( IETRIG )	- IEJK2		1731
1/32	1/32			IJIRIG = IJIRIG	- 2		1/32
1733	1734			IVNELT = IVDELT	+ 1		1734
1735	1735			IVDELT - OVDELT	= TVV		1735
1736	1736			IE = IEJKI			1736
1737	1737			IV1 = JE(1, IE)	)		1737
1738	1738			IF( IV1 . EQ . IV	VV ) THEN		1738
1739	1739			ISI = JE(3, IE)	)		1739
1740	1740				1		1740
1741	1741			131 = JE( 4 , IE FND IF	)		1742
1743	1743			IS = ISI			1743
1744	1744			IET = IEJK2			1744
1745	1745	C					1745
1746	1746	530		CONTINUE			1746
1/4/	1747	C		TTRIC - ITRIC	1		1/4/
1740	1740			11K16 * 11K16 + .	1 = 15		1740
1750	1750	С		ISCUSS TININ /	- 15		1750
1751	1751	•		IETRIG = IETRIG	+ 1		1751
1752	1752			IECRSS( IETRIG )	= IE		1752
1753	1753	С					1753
1754	1754						1/54
1756	1756		•	HIDELX( 15 .	2) CT FLUXPP. UK.		1756
1750	1750		•				1757
1758	1758			KSDFLT( IS )	. GT . NIDUMP . OR .		1758
1759	1759		•	XS(3, IS)	. GT . AREVGG ) THEN		1759
1760	1760			INDCTR = 3			1760
1761	1761			RETURN			1761
1762	1762	~		END IF			1/02
1764	1703	ι		DO 540 TR - 1	3		1764
1765	1765			JR = MOD(IR . 3)	) + 1		1765
1766	1766			IEA = IABS( JS(	JŔ + Ĵ, IS))		1766
1767	1767			IF( IEA . EQ . II	E ) THEN		1767
1768	1768			IIR = MOD( JR , 3	3) + 4		1768
1769	1769			IEI = JS(IIR)	()		1/69
1771	1//0			TFIR = TAR2(1FT)	) (FIR )		1771
1772	1772			XYINGT . XVINCT	× XFIFR		1772
1773	1773			IF( XYLONG . LT	. XEIEB ) XYLONG - XEIEB		1773
1774	1774			IF( XYSHRT . GT	. XEIEB ) XYSHRT = XEIEB		1774
1775	1775			IIKK = IABS( IIC	DLR( IJTRIG ) )		1775

Thu Jul	1 14	:16:26	1993	delthd.f	main program	page	25
1776	1776			IF( IIKK . EQ . IEIB )	THEN		1776
1777	1777			JLOOP = 2			1777
1779	1779			IECRSS( IETRIG ) = IETR	3		1778
1780	1780			IJTRIG = IJTRIG - 1			1780
1781	1781			IF( IEI . GT . 0 ) THEN	l		1781
1783	1783			ELSE			1782
1784	1784			JKVV = JE(2, 1EIB)			1784
1785	1785						1785
1787	1787			IVDELT ( JVDELT ) = JKVV	,		1786
1788	1788			ELSE			1788
1790	1790			IJIKIG = IJIKIG + 1 IICOIR( LITRIG ) = IFI			1789
1791	1791			END IF			1790
1792	1792			JJR = MOD(JR + 1, 3)	+ 4		1792
1794	1794	С		ICK # 1405( J2( JJK , ]	5))		1793
1795	1795			IV1 = JE(1, IER)			1794
1790	1/96			IF(IVI . EQ . IVV) TH	EN		1796
1798	1798			ELSE			1797
1799	1799			ISR = JE(4, IER)			1799
1800	1801			END IF			1800
1802	1802	C					1801
1803	1803	540 C		CONTINUE			1803
1805	1805	v		IF( IER . NE . IET ) TH	EN		1804
1806	1806			IS = ISR			1805
1808	1808			IL = ILK GO TO 530			1807
1809	1809	•		END IF			1808
1810	1810	ί		GO TO 520			1810
1812	1812			END IF			1811
1813	1813	C	INTE				1813
1815	1815	č	1016	MEDIATE LOUP IS DONE, SI	ELUND LOUP OVER KKV3 START .		1814
1816	1816			IVV = KKV3			1015
1817	1817			IE = IEIN2 IVIN2 $IE(2)$ IE )			1817
1819	1819			IEJKK = IICOLR( IJTRIG )			1818
1820	1820			IV1 = JE(1, IE)			1820
1822	1822			IF(IVI + EV + IVV) INE ISI = $JE(3 + IF)$	:N		1821
1823	1823			ELSE			1823
1825	1824			ISI = JE(4, IE) FND IF			1824
1826	1826	_		IS = ISI			1825
1827 1828	1827 1828	C 650		CONTINUE			1827
1829	1829	C D		CONTINUE			1828
1830	1830			ITRIG - ITRIG + 1		:	1830
1832	1832	С		12r#22( 11KIP ) = 12			1831
1833	1833			IETRIG = IETRIG + 1		:	1833
1835	1834	r		IECRSS( IETRIG ) = IE			1834
1836	1836	Ũ		IF(		i	1835 1836
1837 1838	1837		•	HYDFLX(IS, 4), G	T . FLUXPP . OR .	ĵ	1837
1839	1839		•	HYDFLX(IS, 2), G	T . FLUXRR . OR .	1	838
1840	1840		•	KSDELT ( IS ) . GT .	NIDUMP . OR .	j	1840
1842	1842		•	x5(3,15).GT. INDCIR = 3	AKEVGG ) THEN	1	841
1843	1843			RETURN		1	843
1844	1844 1845	с		END IF		1	844
1846	1846	-		DO 560 IR = 1 , 3		1	.845 846
1847 1848	1847 1848			JR = MOD(IR, 3) + 1		i	847
1849	1849			IF( IEA . EQ . IE ) THEN	13 ) )	1	.848 .849
				• • • • •			

Thu Jul	1 14:1	6:26	1993	delthd.f	main program	page	26
1850	1 <b>850</b>			IIR = MOD( JR . 3	3)+4		1850
1851	1851			IEI = JS( IIR , I	IS´)		1851
1852	1852			IEIB = IABS( IEI			1852
1853	1853			XEIEB = XE(1, I)	IEIB)		1853
1854	1854			XYLNGT = XYLNGT +	► XEIEB		1854
1855	1855			IF( XYLONG . LT .	. XEIEB ) XYLONG = XEIEB		1855
1856	1856			IF( XYSHRT . GT .	. XEIEB ) XYSHRT = XEIEB		1856
1857	1857			IJTRIG = IJTRIG +	F1		1857
1858	1858			IICOLR( IJTRIG )	- IEI		1858
1859	1859			JJR = MOD( JR + 1	(, 3) + 4		1859
1860	1860			IER = IABS( JS( J	JJR , ÍS ) )		1860
1861	1861	С					1861
1862	1862			IV1 = JE(1, IER	R )		1862
1863	1863			IF( IV1 . EQ . IV	/V´) THEN		1863
1864	1864			ISR = JE(3, IER	R ) [′]		1864
1865	1865			ELSE			1865
1866	1866			ISR = JE(4, IER)	R )		1866
1867	1867			END IF			1867
1868	1868			END IF			1868
1869	1869	C					1869
1870	1870	560		CONTINUE			1870
1871	1871	C					1871
1872	1 <b>872</b>			IF( IER . NE . IM	(KE3 ) THEN		1872
1873	1873			IS = ISR			1873
1874	1874			IE = IER			1874
1875	1875			GO TO 550			1875
1876	1876			END IF			1876
1877	1877	C					1877
1878	1 <b>878</b>			IJTRIG = IJTRIG -	- 1		1878
1879	1879			IETRIG = IETRIG +	+1		1879
1880	1880			IECRSS( IETRIG )	= IKKE3		1880
1881	1881			IETRIG = IETRIG +	+1		1881
1882	1882			IECRSS( IETRIG )	= IKKE1		1882
1883	1883	C					1883
1884	1884	С	SECO	ND LOOP SUROUNDING	G KKV3 IS DONE, THIRD LOOP OVER KKV1 START .		1884
1885	1885	C					1885
1886	1886			IVV = KKV1			1886
1887	1887			IE = IABS( IICOLF	R(IJTRIG + 1)		1887
1888	1888			IF(JE(5, IE))	. NE . O ) THEN		1888
1889	1889			IER = IE			1889
1890	1890			GO TO 570			1890
1891	1891			END IF			1971
1892	1892			IVI = JE(1, IE)			1992
1893	1893			IF( IVI . EQ . IV	IV ) THEN		1993
1894	1894			ISI = JE(3, IE)	)		1094
1895	1895			ELSE			1093
1896	1896			151 = JE(4, 1E)	)		1090
1897	189/			END IF			109/
1898	1898			12 = 121			1090
1997	1000	r		121 = 0			1000
1001	1001	L 500		CONTINUE			1001
12013	1003	000		CONTINUE			1002
1003	1003	L.		ITDIC _ 1TDIC + 1			1003
1004	1004			11KIG = 11KIG + 1	15		1904
1004	1006			IFTDIC - IFTDIC -	- 10		1905
1006	1006			IERIG - IERIG -	- IF		1906
1007	1907	r			- 16		1907
1908	1908	Č.		TE(			1908
1909	1909			HYDELX( IS	4) GT FLUXPP OR		1909
1910	1910		•	HYDELXCIS	2) GT FLUXUU OR		1910
1911	1911			HYDEIXIIS	1) GT FLUXRR OR		1911
1912	1912		-	KSDELT( IS )	GT . NIDUMP . OR .		1912
1913	1913			XS( 3 . IS )	. GT . AREVGG ) THEN		1913
1914	1914		-	INDCTR = 3	······································		1914
1915	1915			RETURN			1915
1916	1916			END IF			1916
1917	1917	С		-			1917
1918	1918			DO 590 IR = 1 . 3	3		1918
1919	1919			JR = MOD(IR, 3)	) + 1		1919
1920	1920			IEA - IABS( JS( J	JR + 3 , IS ) )		1920
1921	1921			IF( IEA . EQ . IE	E ) THEN		1921
1922	1922			IIR = MOD( JR , 3	3)+4		1922
1923	1923			IEI = JS(IIR.I	(S)		1923

4

Thu Jul	1 14:	16:26	1993 delth	d.f	main	program		page	27
1924 1925 1926 1927 1928 1929 1930 1931 1932	1924 1925 1926 1927 1928 1929 1930 1931 1932	c	IEIB = I. XEIEB = XYLNGT = IF( XYLOI IF( XYSHI IJTRIG = IICOLR( JJR = MOI IER = IA	ABS(IEI) XE(1, IEIB) XYLNGT + XEIEB YG.LT.XEIEB) RT.GT.XEIEB) IJTRIG + 1 IJTRIG ) = IEI O(JR + 1, 3) + SS(JS(JJR, IS)	XYLONG = XYSHRT = 4 ) )	XE IEB XE IEB			1924 1925 1926 1927 1928 1929 1930 1931 1932
1933 1934 1935 1936 1937	1933 1934 1935 1936 1937	Ç	IVI - JE IF( IVI ) ISR - JE ELSE	(1, IER) EQ.IVV)THEN (3,IER)					1933 1934 1935 1936
1938 1939 1940 1941	1938 1939 1940 1941	C	ISR - JE END IF END IF	(4, IER)					1938 1939 1940 1941
1942 1943 1944 1945 1946	1942 1943 1944 1945	590 C	CONTINUE IF( ISR . IS = ISR	NE . ISI ) THEN					1942 1943 1944 1945
1940 1947 1948 1949 1950	1940 1947 1948 1949 1950	C 570	GO TO 580 END IF CONTINUE	I					1946 1947 1948 1949
1951 1952 1953 1954	1951 1952 1953 1954	c c	IETRIG - IECRSS( I	IETRIG + 1 ETRIG ) = IER					1951 1952 1953 1954
1956 1957 1958 1959	1955 1956 1957 1958 1959	С	XEIEB = X XEIEB = X XYLNGT =	E( 1 , IER ) XYYIB + XEIEB XYLNGT + XEIEB					1955 1956 1957 1958 1959
1960 1961 1962 1963 1964	1960 1961 1962 1963 1964	с с	IF( XYLON IF( XYSHR INDCTR -	G . LT . XEIEB ) T . GT . XEIEB ) 2 NG / XYSHRT GT	XYLONG = XYSHRT =	XEIEB XEIEB			1960 1961 1962 1963
1965 1966 1967 1968	1965 1966 1967 1968	Č C	JE{ 2 , 1 IV1 = IVI	EJKK ) = IVIN2	. 10	NO . JEOUF .	- <b>4 . 0 )</b> KETUKN		1964 1965 1966 1967 1968
1969 1970 1971 1972 1973	1969 1970 1971 1972 1973		IE1 = IIC IF( IE1 . IV2 = JE( ELSE IV2 = JF(	OLR( IJTRIG ) GT . 0 ) THEN 2 , IE1 )					1969 1970 1971 1972
1974 1975 1976 1977	1974 1975 1976 1977	c	END IF NEC = IEC IETRIG =	RSS( IETRIG ) IETRIG - 1					1975 1975 1975 1976 1977
1978 1979 1980 1981 1982	1978 1979 1980 1981 1982	ĩ	JV(2,1 JE(1,N JE(2,N JE(4,N	V2 ) = - NEC EC ) = IV2 EC ) = IV1 EC ) = 0					1978 1979 1980 1981 1982
1983 1984 1985 1986	1983 1984 1985 1986	c	JE(5, N IJTRIG = IICOLR(I	EC ) = ITYPE IJTRIG + 1 JTRIG ) = NEC					1983 1984 1985 1986
1988 1989 1990 1991	1988 1989 1990 1991	C C	ELSE IF( ) print*, BEGINING THE DI	IKKE . EQ . 5 ) TI 'ikke=5',ksd,ikke ELETION PROCESS 11	hen F KSD has	AN EDGE ON TH	E BOUNDARY		1987 1988 1989 1990 1991
1992 1993 1994 1995	1992 1993 1994 1995	C C C	AND THE THIRD Y THE FIRST LOOP	ERTEX IS OLSO ON IS AROUND VERTEX	THE BOUNE KKV3 .	ARY.			1992 1993 1994 1995
1997	1997		IE = IEINZ XXYYIB = )	E(1, IE)				1	1996 1997

Thu Jul	1 14:1	6:26	1993	delthd.f	main program	page	28
1998 1999 2000 2001	1998 1999 2000 2001			IVI - JE( 1 , IE IVIN1 - JE( 2 , IF( IV1 , EQ , I ISI - JE( 3 , IE	) IE ) /V ) THEN )		1998 1999 2000 2001
2002 2003 2004	2002 2003 2004			ELSE ISI = JE(4, IE END IF	)		2002 2003 2004
2005 2006 2007	2005 2006 2007	C 600		IS = ISI CONTINUE			2005 2006 2007
2008	2008	C		ITRIG = ITRIG +	1		2008 2009
2010	2010			ISCRSS( ITRIG )	- 15		2010
2011 2012	2011 2012			IECRSS( IETRIG )	* I * IE		2012
2013	2013	C		TF(			2013 2014
2015	2015			HYDFLX( IS ,	4). GT. FLUXPP. OR.		2015
2016 2017	2016 2017		•	HYDFLX( IS . HYDFLX( IS .	1). GT. FLUXUU. UR. 1). GT. FLUXRR. OR.		2010
2018	2018		•	KSDELT( IS )	. GT . NIDUMP . OR .		2018
2019	2019		•	AS(5, 15) INDCTR = 3	. di . AREVGG ) INEN		2020
2021	2021			RETURN			2021 2022
2022	2023	C			_		2023
2024	20 <b>24</b> 20 <b>25</b>			$D0 \ 610 \ IR = 1$ , JR = MOQ(IR - 3)	3 ) + 1		2024 2025
2026	2026			IEA = IABS( JS(	JR + 3 , IS ) )		2026
2027 2028	2027 2028			IF ( IEA . EQ . I IIR = $MOD(JR$ .	L ) (HEN 3 ) + 4		2027
2029	2029			IEI = JS( IIR ,	15)		2029
2030	2030			XEIEB = XE(1),	IEIB)		2031
2032	2032			XYLNGT = XYLNGT	+ XEIEB XEIEB ) XYLONG = XEIEB		2032 2033
2035	2034			IF( XYSHRT . GT	. XEIEB ) XYSHRT = XEIEB		2034
2035 2036	2035 2036			IJTRIG = IJTRIG IICOLR( IJTRIG )	+ 1 = IEI		2035
2037	2037			JJR = MOD( JR +	1,3)+4		2037
2038 2039	2038 2039	С		IFK = IUR2( 12(	JJK , 15 ) )		2038
2040	2040			IV1 = JE(1, IE)			2040
2041	2041			ISR = JE(3, IE)	R)		2042
2043	2043			ELSE	P )		2043 2044
2045	2045			END IF	·		2045
2046 2047	2046 2047	r		END IF			2046 2047
2048	2048	610		CONTINUE			2048
2049 2050	2049 2050	ι		IF( IER . NE . 1	KKE2 ) THEN		2050
2051	2051			IS = ISR			2051 2052
2052	2052			GO TO 600			2053
2054	2054 2055	r		END IF			2054 2055
2056	2055	č	FIRS	T LOOP SUROUNDING	KKV3 IS DONE, SECOND LOOP OVER KKV2 START .		2056
2057 2058	201	C		IJTRIG = IJTRIG	- 1		2057
2059	7	620		CONTINUE			2059 2060
2060 2061	ر 51،	ι		IEJK = IICOLR( I	JTRIG )		2061
2062	.062			IF( IEJK , GT .	0) THEN		2062 2063
2063	2064			IJEJK5 = JE(5),	IEJK )		2064
206	2065			ELSE	-1F.1K )		2065 2066
206	2067			IJEJK5 = JE(5)	-IEJK )		2067
206	2068 2069	C		END IF			2068
2070	2070	-		IF( IJEJK5 . EQ	. O ) THEN		2070
2071	2071	C					20/1

28

Thu Ju	1 1 14:	16:26	1993	delthd.f	main program	page	29
2072	2072	C	INTE	RMEDIATE LOOP STAR	RT .		2072
2073	2073	L		11 000 - 1			2073
2075	2075			$IF_JKI = IARS(II)$	O(R(L)TRIG = 1))		2074
2076	2076			IEJK2 = IABS( IEJ			2075
2077	2077			IETRIG = IETRIG +			2070
2078	2078			IECRSS( IETRIG )	= IEJK2		2078
2079	2079			IJTRIG = IJTRIG -	2		2079
2080	2080			IVV = IVIEJK			2080
2082	2082			JVDELT = JVDELT + IVDELT + I			2081
2083	2083			IE = IEJKI	- 144		2082
2084	2084			IV1 = JE(1, IE)	)		2083
2085	2085			IF( IV1 . EQ IV	Ý ) THEN		2004
2086	2086			ISI = JE(3, IE)	)		2086
2087	2087			ELSE IF ( A TE	<b>,</b>		2087
2000	2000			ISI = JE(4, IE)	)		2088
2090	2090			IS = ISI			2089
2091	2091			IET = IEJK2			2090
2092	2092	С					2091
2093	2093	630		CONTINUE			2093
2094	2094	C					2094
2095	2095			I(RIG = I(RIG + I))	15		2095
2097	2097	С		1000000 11010 ) -	15		2096
2098	2098	-		IETRIG = IETRIG +	1		209/
2099	2099			IECRSS( IETRIG ) =	= IE		2090
2100	2100	С					2100
2101	2101						2101
2102	2102		•	HYDELX(15,4	(1), $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ , $(1)$ ,		2102
2104	2104		:	HYDELX( IS , 1	CT FLUXDO OF		2103
2105	2105		•	KSDELT( IS )	GT. NIDUMP. OR		2104
2106	2106		•	XS(3, 15).	GT . AREVGG ) THEN		2105
2107	2107			INDCTR = 3	·		2107
2108	2108						2108
2110	2109	C					2109
2111	2111	v		DO 640 IR = 1 . 3			2110
2112	2112			JR = MOD(IR, 3)	+ 1		2112
2113	2113			IEA = IABS( JS( JR	(+3, IS))		2112
2114	2114			IF( IEA . EQ . IE	) THEN		2114
2115	2115			IIR = MUD( JR , 3	) + 4		2115
2117	2117			$\frac{111}{100} = \frac{100}{100} \frac{110}{100} \frac{100}{100} $	• •		2116
2118	2118			XEIEB = XE(1.1E)	18)		2117
2119	2119			XYLNGT = XYLNGT +	XETÉB		2110
2120	2120			IF( XYLONG . LT .	XEIEB ) XYLONG = XEIEB		2120
2121	2121			IF( XYSHRI . GT .	XEIEB ) XYSHRT = XEIEB		2121
2123	2122			IEN = INDS( IILUL	K( JJIKIG ) ) TR ) TUCN		2122
2124	2124			JLOOP = 2	<i>iv j</i> min		2123
2125	2125			IETRIG = IETRIG +	1		2124
2126	2126			IECRSS( IETRIG ) =	IEIB		2126
2127	2127			IJIRIG = IJIRIG -			2127
2129	2120			1KWV = .1F(3) = .1F(3)			2128
2130	2130		l	ELSE	6 )		2129
2131	2131			JKVV = JE( 2 , IEI	β)		2130
2132	2132		1	END IF			2132
2133	2133		1	JVDELT = JVDELT + (			2133
2135	2134			ISF	ULAA I		2134
2136	2136		1	JTRIG = IJTRIG + 1	I		2135
2137	2137		J	ICOLR( IJTRIG ) =	IEI		2137
2138	2138		E	ND IF			2138
2139 2140	2139			JJR = MUD(JR + )	, 3) + 4		2139
2141	2141	C		rrv = 1403( 92( 99)	<, i) )	2	2140
2142	2142	•	J	V1 = JE(1 . IER)		4	(141 2142
2143	2143		1	F( IV1 . EQ . IVV	) THEN		2143
2144	2144		1	SR = JE(3, IER)			144
2145	2145		E	LSF		Ĩ	2145

Thu Jul	1 14:1	6:26	1993	delthd.f	main program	page	30	
2146	2146			ISR = JE(4, 1)	ER )		2146	
2147	2147			END IF			2147	
2148	2148	_		END IF			2148	
2149	2149	C					2149	
2150	2150	640		CONTINUE			2150	
2151	2151	L		10/ 100 NE	1CT \ TUEN		2151	
2102	2152			1C - 1CD	ici y inch		2132	
2155	2155			15 = 15R			2133	
2155	2155			GO TO 630			2154	
2156	2156			END IF			2156	
2157	2157	C					2157	
2158	2158			GO TO 620			2158	
2159	2159	~		END IF			2159	
2160	2160	C C	7.1175				2160	
2101	2101	C C	INTE	RMEDIATE LOUP IS	DUNE, SECUND LUUP UVER KKVZ START .		2101	
2162	2163	C		TVV = KKV2			2102	
2164	2164			IF = IEIN1			2165	
2165	2165			XXYYIC = XE( 1	. IE ) + XE( 1 . IKKE1 ) + XE( 1 . IEIB )		2165	
2166	2166			XYLNGT - XYLNGT	+ XXYYIC - XE( 1 , IEIB )		2166	
2167	2167			IF( XYLONG . LT	. XXYYIC ) XYLONG = XXYYIC		2167	
2168	2168			IF( XYSHRT . GT	. XXYYIC ) XYSHRT = XXYYIC		2168	
2169	2169			IVIN2 = JE(2)	IE)		2169	
2170	2170			IEJKK = IICOLR(	_IJIRIG )		2170	
21/1	2172			1VI = JE(1, 1)	τυν Ν τμεμ		21/1	
2172	2173			1F(1V1 + EV + IF(3 + IF(3 + IF)))			2173	
2174	2174			FLSE			2173	
2175	2175			ISI = JE(4, 1)	Ε)		2175	
2176	2176			END IF	·		2176	
2177	2177	-		IS = ISI			2177	
2178	2178	C		CONTINUE			2178	
21/9	2180	000		CUNTINUE			21/9	
2181	2181	L.		ITRIG = ITRIG +	1		2181	
2182	2182			ISCRSS( ITRIG )	= IS		2182	
2183	2183	С					2183	
2184	2184			IETRIG = IETRIG	+ 1		2184	
2185	2185	~		IECRSS( IETRIG	) ≖ IE		2185	
2100	2180	ι		16/			2100	
2188	2188			HYDELX( IS	4), GT, FLUXPP, OR		2188	
2189	2189			HYDFLX( IS	2), GT, FLUXUU, OR,		2189	
2190	2190			HYDFLX( IS	, 1 ) . GT . FLUXRR . OR .		2190	
2191	2191		•	KSDELT( IS	) . GT . NIDUMP . OR .		2191	
2192	2192		•	XS(3, 15	) . GI . AREVGG ) THEN		2192	
2193	2193			INDUIK # 3			2193	
2194	2195						2195	
2196	2196	С					2195	
2197	2197			$DO \ 660 \ IR = 1$ ,	3		219	
2198	2198			JR = MOD(IR)	3)+1		2198	
2199	2199			IEA = IABS(JS(	JR + 3, $IS$ )		2199	
2200	2200			$\frac{110}{10} = \frac{100}{10}$	3 + A		2200	
2201	2202			IFI = JS(IIR)	IS		2202	
2203	2203			IEIB = IABS( IE	I)		2203	
2204	2204			XEIEB = XE(1)	IEIB )		2204	
2205	2205			XYLNGT = XYLNGT	+ XEIEB		2205	
2206	2206			IF( XYLONG . LI	• XEIEB ) XYLONG = XEIEB		2206	
220/	2207			TITRIC - TITALC	• ACIED / ATOMKI = ALIED + 1		2207	
2200	2200			LICOLR( LITRIG	) = IFI		2209	
2210	2210			JJR = MOD( JR +	1, 3) + 4		2210	
2211	2211			IER = IABS( JS(	JJR , ÍS ) )		2211	
2212	2212	C					2212	
2213	2213			IV1 = JE(1, I)			2213	
2214	2214			1F( 1VI . EQ .	IVV J THEN ED Y		2214	
2215	2215			13K = JE( 3 , 1 FISE	in j		2215	
2217	2217			ISR = JE( 4 . I	ER)		2217	
2218	2218			END IF	·		2218	
2219	2219			END IF			2219	

Thu Jul	1 14	:16:26	1993 de	lthd.f	main program	page	31
2220 2221	2220	C 660	CONTI	NUE			2220
2222	2222	C	15/ 1	כם אב	TKKES V THEN		2222
2224	2224		IS =	ISR	. INNEZ ) INCH		2223
2225	2225		1E =	IER			2225
2220	2220		GU 10 END 1	650 F			2226
2228	2228	С					2227
2229	2229		IJTRI		RIG - 1		2229
2231	2231		IECRS	S( IETR)	IG = IKKE2		2230
2232	2232		IETRI	Gʻ≖ IETF	RIG + 1		2232
2235	2233	С	IECKS:	5( 15181	16 ) = 1KKE1		2233
2235	2235	Ċ	SECOND LOOP	P SUROUN	IDING KKV2 IS DONE, THIRD LOOP OVER KKV3 START .		2235
2230	2230	C	tvv =	KKV3			2236
2238	2238		IE =	IABS( II	COLR( IJTRIG + 1 ) )		2237
2239	2239		IF( JE	E(5, I	E). NE. O) THÊN		2239
2241	2241		GO TO	670			2240
2242	2242		END IF				2242
2245	2243		1VI = IF( I\	JE( 1 . /1 . FO	IE) , IVV ) THEN		2243
2245	2245		ISI =	JE( 3,	IE)		2244
2246	2246		ELSE	167 4	IE )		2246
2248	2248		END IF	JE( 4 ,			2247
2249	2249		IS = I	SI			2249
2251	2251	С	121 -	U			2250
2252	2252	680	CONTIN	IUE			2252
2253	2253	ι	ITRIG	= ITRIG	+ 1		2253
2255	2255		ISCRSS	( ITRIG	) = 15		2255
2250	2250			= IETRI ( IFTRI	IG + 1 G ) = 1F		2256
2258	2258	C		(			2258
2259	2259		IF(				2259
2261	2261		. HY	DFLX( 1	S, 2). GT. FLUXUU. OR.		2260
2263	2202		. KY	DFLX( D DFLT( T	S, 1), GT, FLUXRK, OR, S), GT, NIDIMP, OP		2262
2264	2264		. xs	(3,1	S). GT. AREVGG) THEN		2263
2265	2265		INDCTR	= 3			2265
2267	2267		END IF				2200
2268	2268	С	00 600	10 - 1	1		2268
2270	2270		JR = M	. RI ) O⊓	, 3) + 1		2269
2271	2271		IEA =	IABS( JS	S(JR + 3, IS)		2271
2273	2273		1F( 1E) 11R + 1	H . EU . HOD[.]R	, IE J IHEN . 3 } + 4		2272
2274	2274		IEI =	JS( IIR	, IS )		2274
2275	2275		IEIB = XFIFR	IABS() ≖XE()	IEI) IFIR)		2275
2277	2277		XYLNGT	= XYLNO	GT + XEIEB		2270 2277
2278	2278		IF( XY	LONG . L	T . XEIEB ) XYLONG = XEIEB		2278
2280	2280		IJTRIG		IG + 1		2279 2280
2281	2281				(a) = IEI		2281
2283	2283	_	IER = 1	IABS( JS	S( JJR , IS ) )		228Z 2283
2284	2284	C	[V] -	167 1	152 )		2284
2286	2286		IF( IVI	Ξ. ΕΟ.	IVV ) THEN	1	2285 2286
2287 2288	2287 2288		ISR = .	Ε(3,	IER )		2287
2289	2289		ISR = J	IE(4.	IER )		2288 2289
2290 2291	2290 2291		END IF				2290
2292	2292	C	CHU IT				2291 2292
2293	2293	690	CONTINU	E			2293

Juge

Thu Jul	1 14:1	6:26	1993	delthd.f	main program	page	32
2294	2294	C					2294
2295	2295	C		IF( ISR . NE . IS	I) THEN		2295
2296	2296			1S = 1SR	,		2296
2297	2297			IE = IER	_		2297
2298	2298			30 TO 680			2298
2299	2299	~		END IF			2299
2300	2300	670		CONTINUE			2300
2302	2302	010		CONTINUE			2301
2303	2303	u.		IETRIG = IETRIG +	1		2303
2304	2304			IECRSS( IETRIG )	- IER		2304
2305	2305	C			\		2305
2306	2306	<u> </u>		ITYPE = $JE(5, I)$	ER )		2306
2307	2307	C		VETER _ YE( 1 TH			2307
2300	2300			x = x = x = x = x = x = x = x = x = x =	-~ / (F1FB		2300
2310	2310			XYLNGT = XYLNGT +	XEIEB		2310
2311	2311			IF( XYLONG . LT .	XEIEB ) XYLONG = XEIEB		2311
2312	2312	-		IF( XYSHRT . GT .	XEIEB ) XYSHRT - XEIEB		2312
2313	2313	С		INOCTO D			2313
2314	2314	r		$\frac{1}{100} \frac{1}{10} $			2314
2316	2315	č		TEL VILONG / VIS	INT . UT . 10 AND . SLOOP . LQ . V ) KETOKN		2316
2317	2317	•		JE( 2 , IEJKK ) =	IVIN2		2317
2318	2318	С					2318
2319	2319			IV1 = IVIN1			2319
2320	2320			IEI - HICOLR( IJH			2320
2321	2321			1F(1E1 + G(1 + U))	) INEA		2321
2323	2322			FISE	1		2322
2324	2324			IV2 = JE(1 I)	1)		2324
2325	2325			END IF	,		2325
2326	2 <b>326</b>	C					2326
2327	2327			NEC = IECRSS( IET	RIG )		2327
2328	2328	c		IE(RIG = IE(RIG -	1		2328
2330	2329	L		.IV( 2 IV2 ) = -	NEC	-	2329
2331	2331			JE(1, NEC) = IV	12		2331
2332	2332			JE(2, NEC) = IV	/1		2332
2333	2333			JE(4, NEC) = 0			2333
2334	2334	-		JE(5, NEC) = 1	ΓΥΡΕ .		2334
2335	2335	C			1		2335
2330	2330			ITCOLR( LITRIG )	I NFC		2330
2338	2338	С		TIEVER( TOTATO /			2338
2339	2339			END IF			2339
2340	2340	C					2340
2341	2341	Ç	LOOP	OVER TRIANGLE KSD	IS DONE		2341
2342	2342	r r	CITM	INATING THE DELETER	TOTANCIES FORM ISDELT ADDAY		2342
2344	2344	č			TRIBINELS TROIT OSDELT ARRAT		2344
2345	2345	~		LSDELT = 0			2345
2346	2346			DO 1520 IS = 1 .	SDELT		2346
2347	2347			JSP = JSDELT( IS )			2347
2348	2340				THEN		2340
2349	2350			II(00P = 1)			2350
2351	2351			ELSE			2351
2352	2352			DO 1525 IKS = 1 ,	ITRIG		2352
2353	2353			ISP = ISCRSS( IKS			2353
2354	2354	1000		IF ( JSP . EQ . ISP	') tLUOP = 1		2354
2355 2355	2355 2356	1025		EUNTINUE END IF			2355
2357	2357			IF( ILOOP . FO . (	) THEN		2357
2358	2358			LSDELT = LSDELT +	1		2358
2359	2359			JSDELT( LSDELT ) -	· JSP		2359
2360	2360			END IF			2360
2361	2361	1520		CONTINUE			2361
2302	2362	r		ISUELI = LSUELI			2363
2364	2364	L		JVDELT = JVDELT +	1		2364
2365	2365			IVDELT( JVDELT ) -	KV1		2365
2366	2366			JVDELT = JVDELT +	1		2366
2367	2367			IVDELT( JVDELT ) =	• KVZ		2367

Thu Ju	1 1 14	:16:26	1993	delthd.f	main program	page	33
2368 2369	2368 2369			JVDELT = JVDE IVDELT( JVDEL	LT + 1 T ) = KV3		2368 2369
2370 2371	23/0	С		DO 700  JF = 1	LITRIC		2370
2372	2372			IEM = IABS( I	ICOLR(IE))		2372
2373	2373			JUE(IE) = I IV1 = JE(1)	LM IEM )		2373
2375 2376	2375			IV2 = JE(2)	IEM )		2375
2377	2377			$\frac{1111}{1111} = JV(2)$	, 1V2 )		2376
2378 2379	2378			IF( IEE1 . GT	(0) JV(2, IVI) = IEM		2378
2380	2380	700		CONTINUE	$\cdot$ $\circ$ $\circ$ $\circ$ $\circ$ $\circ$ $\circ$ $\circ$ $\circ$ $\circ$ $\circ$		2379 2380
2381	2381	C		JTRIG - IJTRI			2381
2383 2384	2383			ISTOP = 0			2383
2385	2385	С		HSIMIL = 0			2384
2386 2387	2386 2387			JJTRIG = IJTRI DO 710 IF = 1			2386
2388	2388			IEM - IICOLR(	IE )		238/
2390	2309			JUV(1E) = JE	0) (HEN (1, 1EM)		2389
2391 2392	2391 2392			ELSE			2391
2393	2393			END IF			2392 2393
2394 2395	2394 2395	710		IITRIG( IE ) = CONTINUE	JUV( IE )		2394
2396	2396	C 720		CONTINUE			2395 2396
2398	2398	C 20		CUNTINUE			2397
2399 2400	2399 2400			JTRIGP = JTRIG			2399
2401	2401			IEM = IICOLR(	JE)		2400 2401
2402 2403	2402 2403			IF( IEM . $GT$ . JUV( IE ) = JF	0) THEN (1. TEM.)		2402
2404	2404			ELSE			2403
2406	2405			END IF = JE	(2, - ILM)		2405 2406
2407 2408	2407 2408	730 C		CONTINUE			2407
2409	2409	-		AREMIN = 10000	00.		2408 2409
2410 2411	2410			1EMIN = 1 DO 740 IE = 1	. JTRIG		2410
2412 2413	2412 2413	C					2412
2414	2414			IEP - MOD( IE	, JTRIG ) + 1		2413 2414
2415 2416	2415 2416	С		IEI = MOD( IE ·	+ 1 . JTRIG ) + 1		2415
2417	2417			IV1 - JUV( IEM	2		2410
2419	2419			1V2 = JUV(IEP) 1V3 = JUV(IEI)	/ )		2418 2419
2420 2421	2420 2421	С		X1 = XV(1)	(1) - XV(1) = 1V(2)		2420
2422	2422			Y1 = XV(2, 1)	(1) - XV(2, 1V2)		2421
2423	2423			X2 = XV(1, 1) Y2 = XV(2, 1)	/3 ) - XV(1, IV2) /3 ) - XV(2, IV2)		2423 2424
2425 2426	2425 2426			XSIN = (X2 *)	(1 - X1 * Y2 )		2425
2427	2427			xcot = xcos / (	XSIN + 1.E-B )	2	2426 2427
2428 2429	2428 2429			IF( XSIN . LT . AREMIN = XCOT	O AND . XCOT . LT . AREMIN ) THEN	2	2428
2430 2431	2430			IEMIN = IE		2	430
2432	2432			ANGLE( IE ) = X	SIN / ( ABS( XCOS ) + 1.E-7 )	2	2431 2432
2433 2434	2433 2434	C 740		CONTINUE	· ·	2	433
2435	2435	C			17070	2	434
2430	2430 2437			DU /50 IE = 1 , IEP <del>=</del> MOD( IE -	JIRIG IEMIN + JTRIG , JTRIG ) + 1	2	436
2438 2439	2438 2430			JEN( IEP ) = II	COLR(IE)	2	438
2440	2440	750	1	CONTINUE	Anutol (C)	2	439
2441	2441	C				2	441

Thu Jul	1 14:1	6:26	1993	delthd.f	main program	page	34
2442	2442			DO 760 IE - 1	, JTRIG		2442
2443	2443			IICOLR( IE ) =	JEN(IE)		2443
2444	2444			ANGLE(IE) =	ANGLER(IE)		2444
2445	2445	760		CONTINUE			2445
2440	2440	L		IETNAL - D			2440
2447	2447			IFI = 1			2447
2449	2449			DO 770 IE = 1	. JTRIG		2449
2450	2450			SANGLE = ANGLE	(IE)		2450
2451	2451			IANGLE( IE ) =	- 1		2451
2452	2452			IF( SANGLE . G	T = 1.E-2 ) IANGLE( IE ) = 1		2452
2453	2453	770		CONTINUE			2453
2454	2454	L		DO 700 IE - 1	17010		2454
2433	2400			IFM _ MOD( IF	-1 JIRIG ) + 1		2400
2457	2457			IEP = MOD(IE)	JTRIG ) + 1		2457
2458	2458			IKM = MOD( IE	+ 1 , JTRIG ) + 1		2458
2459	2459			KEM = IANGLE(	IEM )		2459
2460	2460			KEP = IANGLE(	IEP )		2460
2401	2401			KKM = IANGLE(			2401
2402	2402			IF ( KEM . EV .	- 1 . ΑΝΟ . 1 ΔΝΟ		2407
2464	2464		•	KKM . EQ .	- 1 . AND . IFINAL . EQ . Q . THEN		2464
2465	2465		•	IEI = IKM			2465
2466	2466			IFINAL = 1			2466
2467	2467			END IF			2467
2468	2468	780		CONTINUE			2468
2469	2469	C					2409
2470	2470			10 700 1F = 1			24/0
2472	2472			IEM = MOD(IE)	-1 . JIRIG ) + 1		2472
2473	2473			IEP = MOD( IE	JTRIG ) + 1		2473
2474	2474			KEM = IANGLE(	IEM )		2474
2475	2475			KEP = IANGLE(	IEP )		2475
2476	2476			IF( KEM . EQ .	- 1 . AND . KEP . EQ . 1 . AND .		2475
24//	24//		•	TET - MOD/ 15	IFINAL . EQ . U ) INEN		24// 2478
24/0	2470				+ 1 , JIKIG ) + 1		2470
2480	2480			END IF			2480
2481	2481	790		CONTINUE			2481
2482	2482			END IF			2482
2483	2483	С					2483
2484	2484			IF( IFINAL . E	Q. O) THEN		2484
2485	2485			ANGMIN = 10000	UUU. ITDIC		2400 2486
2487	2487			XANGIF = ANGIF	( IF )		2487
2488	2488			SANGLE = ABS(	XANGLÉ - 1. )		2488
2489	2489			IF( XANGLE . G	T. O AND . SANGLE . LT . ANGMIN ) THEN		2489
2490	2490			IEI = MOD(IE)	, JTRIG ) + 1		2490
2491	2491			ANGMIN = SANGL	E		2491
2492 2803	2492	200		CONTINUE			2492
2493	2495	000		FND IF			2494
2495	2495	C					2495
2496	2496			DO 810 IE = $1$	, JTRIG		2496
2497	2497			IEP = MOD( IE	- IEI + JTRIGP , JTRIG ) + 1		2497
2498	2498			JEN(IEP) = I	ICOLR(IE)		2498
2499	2600	<b>B10</b>		ANGLER( IEP )	≠ ANGLE( IE )		2499
2500	2500	010		CONTINUE			2501
2502	2502	~		DU 820 IE = 1	, JTRIG		2502
2503	2503			ANGLE( IE ) =	ANGLER( IE )		2503
2504	2504			IICOLR( IE ) =	JEN( IE )		2504
2505	2505	820		CONTINUE			2505
2506	2505	C		D0 020 75 1	17010		2500
2502	2502			UU 83U IE = 1	, JIKIU }		2507
2500	2500			IFT IFM CT	() THEN		2509
2510	2510			JUV( IE ) = JE	(1, IEM)		2510
2511	2511			ELSÈ	、 · · /		2511
2512	2512			JUV( IE ) - JE	(2,~IEM)		2512
2513	2513	010		END IF			2513
2514	2514	010		CONTINUE			2514
6913	C J I J	Ċ.					

Thu Ju	1 1 14:	16:26	1993	del <b>thd.</b> f	main program	page	35
2516 2517 2518	2516 2517 2518	С		IF( JTRIG .	EQ. 3) THEN		2516 2517
2519	2519			ITRIG = ITRI	G - 1		2518 2519
2520 2521	2520 2521			NSINTL = NSI INVTRG( NSIN	NTL + 1 ITL ) = NSC		2520
2522	2522			JS( 1 , NSC	) = JUV(1)		2521
2523	2523			JS(2, NSC JS(3, NSC	) = JUV(2) ) = JUV(3)		2523
2525 2526	2525 2526			JS(4, NSC	) = JEN(1)		2525
2527	2527			JS( 6 , NSC	) = JEN(2)		2526
2528 2529	2528 2529	С		1V1 = 1S(1)			2528
2530	2530			IV2 - JS( 2	NSC)		2529 2530
2531 2532	2531 2532			IV3 = JS(3)	, NSC ) $(1 + 1)$		2531
2533	2533			AY = XV( 2 .	IV2 ) - XV(2 , IV1 )		2532 2533
2534 2535	2534			BX = XV(1), BY = XV(2).	IV3) - XV(1, IV1) IV3) - XV(2, IV1)		2534
2536	2536	~		XS( 3, NSC	) = 0.5 * ( AX * BY - AY * BX )		2535
2538	2538	ι		SAREA( NSC )	= 1, / XS( 3 , NSC )		2537
2539	2539			XXC = (XV()	1 , IV1 ) + XV( 1 , IV2 ) + XV( 1 , IV3 ) ) *		2538
2541	2540		•	YYC = (XV()	2 , IV1 ) + XV( 2 , IV2 ) + XV( 2 , IV3 ) ) *		2540
2542 2543	2542 2543		•	THIR			2542
2544	2544			XS(2,NSC)	) = XAC ) = YYC		2543 2544
2545 2546	2545 2546			HYDFLX( NSC ,	(4) = 0.		2545
2547	2547			HYDFLX( NSC	2) = 0.		2546 2547
2548 2549	2548 2549	С		KSDELT( NSC )	) = 1		2548
2550	2550	-		DO 840 IR = 1	с, мно		2550
2552	2551		•	HYDV( NSC , )	(R) = (HYDVVV(IV1, IR) + HYDVVV(IV2, IR) +		2551
2553 2554	2553 2554	840	•	CONTINUE	HYDVVV( IV3 , IR ) ) * THIRD		2552
2555	2555	C		CONTINUE			2554 2555
2556 2557	2556 2557			HOUM HYDV (NSC 2	= 1. / (HYDV(NSC, 1) + 1.E-12)		2556
2558	2558			HYDV ( NSC , 3	H = HYDV(NSC, 3) * HDUM		2557
2559 2560	2559			HYDV(NSC, 4	) = ( HYDV( NSC , 4 ) - .5 * HYDV( NSC , 1 ) *		2559
2561	2561		•	( HYDV( NSC ,	2) * HYDV(NSC, 2) +		2561
2563	2563		:	HIDA( NPC '	( HYDV( NSC , 5 ) - 1, )		2562
2564 2565	2564 2565	C					2564
2566	2566	С		15767 - 1			2565 2566
2567 2568	2567 2568	С		ELSE IF( JTRI	G.EQ.4) THEN		2567
2569	2569			NSC = ISCRSS(	ITRIG )		2569
2571	2571			NSINTL = NSIN	- 1 TL + 1		2570
2572 2573	2572 2573			INVIRG( NSINT	L) = NSC		2572
2574	2574			IETRIG = IETR	IG = 1		2573 2574
2575 2576	2575 2576	C		LITRIG . LITR	16 + 1		2575
2577	2577	c		JUE( IJTRIG )	= NEC		£3/0 2577
2578	2579	L		JE(1, NEC)	= JUV( 1 )	÷	2578
2580 2581	2580			JE( 2 , NEC )	= JUV $(3)$		2580
2582	2582	С		UE( D , NEL )	= v		2 <b>581</b> 2582
2583 2584	2583 2 <b>5</b> 84			JS(1, NSC) JS(2, NSC)	= JUV(1) = JUV(2)		2583
2585	2585			JS( 3 , NSC )	= JUV( 3 )		2585 2585
2580 2587	∠580 2587			JS(4, NSC) JS(5, NSC)	= JEN(1) = JEN(2)		2586
2588	2588	c	1	JS(6, NSC)	= NEC		2588
2303	2003	L				2	2589

Thu Jul	1 14:16:26	1993	delthd.f	main program	page	36
2590	2590		NSC = ISCRSS( ITR	IG )		2590
2591	2591		ITRIG = ITRIG - 1			2591
2592	2592		NSINTL = NSINTL +			2592
2593 2504	2593 2594 C		INVIKG( NSINIL )	= N2r		2593
2595	2595		JS(1, NSC) = J	UV(1)		2595
2596	2596		JS(2, NSC) = J	ŪV(3)		2596
2597	2597		JS(3, NSC) = J	UV(4)		2597
2598	2598		JS(4, NSC) = N			2598
2599	2599		JS(5, NSC) = J	EN( )		2599
2601	2601 C					2601
2602	2602		DO 850 $IKR = 1$ ,	2		2602
2603	2603		NSS = INVTRG(NSI)	NTL + 1 - IKR)		2603
2604	2604		IVI = JS(1, RSS)			2604
2606	2606		IV3 = JS(3, NSS)	)		2606
2607	2607		AX = XV(1, IV2)	) - XV( 1 , IV1 )		2607
2608	2608		AY = XV(2, IV2)	) - XV(2, IVI)		2608
2610	2610		BX = XV(1, 1V) BY = XV(2, 1V3	y = xy(2, 1y1)		2610
2611	2611		XS(3, NSS) = 0	.5 * ( AX * BY - AY * BX )		2611
2612	2 <b>612</b> C					2612
2613	2613		SAREA( NSS ) = 1.	/ XS(3, NSS)		2613
2014	2014			VI ] + XV( I , IV2 ] + XV( I , IV3 ] ] ~		2014
2616	2616	•	YYC = (XV(2), I)	V1) + XV(2, IV2) + XV(2, IV3)) *		2616
2617	2617	•	THIRD			2617
2618	2618		XS(1, NSS) = X	XC		2618
2619	2619		XS(2, NSS) = Y	rc - 0		2019
2621	2621		HYDFLX(NSS, 1)	= 0.		2621
2622	2622		HYDFLX( NSS , 2 )	= 0.		2622
2623	2623		KSDELT(NSS) = 1			2623
2624	2624 C		DO 850 TD - 1 M	un die die die die die die die die die die		2624
2625	2626		HYDV( NSS , IR )	= (HYDVVV(IV1, IR) +		2626
2627	2627			HYDVVV(IV2, IR) +		2627
2628	2628	•		HYDVVV(IV3,IR)) * THIRD		2628
2629	2629 860 2630 C		CONTINUE			2629
2630	2631		HDUM -	1. / ( HYDV( NSS , 1 ) + 1.E-12 )		2631
2632	2632		HYDV( NSS , 2 ) =	HYDV(NSS, 2) * HDÚM		2632
2633	2633		HYDV(NSS, 3) =	HYDV(NSS, 3) * HDUM		2633
2034 2635	2635		- HTUV( NSS , 4 ) =	( HTDV( NSS , 4 ) - * HYDV( NSS , 1 ) *		2635
2636	2636	:	(HYDV(NSS, 2)	* HYDV( NSS , 2 ) +		2636
2637	2637	•	HYDV(NSS, 3)	* HYDV( NSS , 3 ) ) *		2637
2638	2638	•		(HYDV(NSS, 5) - 1.)		2038
2640	2640 850		CONTINUE			2640
2641	2641		ISTOP = 1			2641
2642	2642 C		<b>5</b> , <b>6</b>			2642
2045 2644	2093 2644 (°		t LSt			2043
2645	2645		NSC = ISCRSS( ITR	IG)		2645
2646	2646		ITRIG = ITRIG - 1			2646
2647	2647		NSINTL = NSINTL +	1 - NSC		2647 2640
2048	2048 2649		NFC = IFCRSS( IFT	■ NGC RTG )		2649
2650	2650		IETRIG = IETRIG -	1		2650
2651	2651 C			_		2651
2652	2652		IJTRIG = IJTRIG +			2052
2055	2035 2654 C			Lu		2654
2655	2655		JE(1, NEC) = J	UV(1)		2655
2656	2656		JE(2, NEC) = J	UV(3)		2656
2657	2657		JE(5, NEC) = 0			2057
2030	2000 L 2659		JS( 1 . NSC ) = .)	UV(1)		2659
2660	2660		JS(2, NSC) = J	ŪV(2)		2660
2661	2661		JS( 3 , NSC ) = J	UV(3)		2661
2662	2002		JS(4, NSC) = J	LN( 1 ) EN( 2 )		2002
C003	2003		03(3,85c)*0	LII( C )		r000

......

Thu Ju	1 1 14:	:16:26	1993	delthd.f	main program	page	37
2664	2664	•		JS( 6 , NSC )	= - NEC		2664
2005	2005	C		LICOLR( 1 )	. NFĈ		2665
2667	2667			JTRIG - JTRIG	i – 1		2000
2668	2668			DO 870 IEE =	2, JTRIG		2668
2670	2670	870		CONTINUE	= JCn( IEE + 1 )		2669
2671	2671	С		<i></i>	1100 N		2671
2672	2673			IVI = JS(1), IV2 = JS(2)	NSC ) NSC )		2672
2674	2674			IV3 = JS(3)	NSC )		2674
2675 2676	2675			AX = XV(1),	IV2) - XV(1, IV1)		2675
2677	2677			BX = XV(1)	1V2 - XV(2, 1V1) 1V3 - XV(1, 1V1)		2676
2678	2678			BY = XV(2)	IV3) - XV(2, IV1)		2678
2679	2679	С		X2(3, NSL)	= U.5 * ( AX * BY - AY * BX )		2679
2681	2681			SAREA( NSC )	= 1. / XS( 3 , NSC )		2681
2682 2683	2682			XXC = ( XV( 1	, IV1 ) + XV( 1 , IV2 ) + XV( 1 , IV3 ) ) *		2682
2684	2684		•	YYC = ( XV( 2	, IV1 ) + XV( 2 , IV2 ) + XV( 2 , IV3 ) ) *		2683 2684
2685	2585		•		YYC		2685
2687	2687			XS(2, NSC)	= XXC		2686
2688	2688			HYDFLX( NSC .	4) = 0.		2688
2689	2690			HYDFLX( NSC , HYDFLX( NSC	1 = 0.		2689
2691	2691			KSDELT( NSC )	= 1		2690
2692	2692	C		00.000.10 - 1	NIIO		2692
2694	2694			HYDV( NSC , 1	, mmy R) = ( HYDVVV( IV1 , IR ) +		2693
2695	2695		•		HYDVVV( IV2 , IR ) +		2695
2690	2690	880	•	CONTINUE	HYDVVV(IV3,IR)) * THIRD		2696
2698	2698	Č					2698
2699 2700	2699			HOUM	= $1. / (HYDV(NSC, 1) + 1.E-12)$		2699
2701	2701			HYDV (NSC , 3	) = HYDV( NSC , 3 ) * HDUM		2700
2702	2702			HYDV ( NSC , 4	) = ( HYDV( NSC , 4 ) -		2702
2704	2703		•	( HYDV ( NSC .	2) * HYDV(NSC, 2) +		2703
2705	2705		•	HYDV ( NSC .	3) * HYDV( NSC , 3) ) ) *		2705
2700	2700	С	•		(HYDV(NSC, 5) - 1.)		2706
2708	2708			END IF			2708
2709	2709	С		IF( ISTOP . EC	). 0 ) GO TO 720		2709
2711	2711	•		DO 890 ISS - 1	, NSINTL		2710
2712	2712			IS = INVTRG(I)	SS ² )		2712
2714	2714			IE = JS(IR)	is)		2713
2715	2715			IF( IE . GT .	0) THEN		2715
2717	2717			ELSE	13		2716
2718	2718			JE(4, - IE)	≖ IS		2718
2719	2719	890					2719
2721	2721	Č					2721
2722	2722			DO 900 IENN =	I, IJTRIG		2722
2724	2724			JV1 = JE(1)	IEN )		2723 2724
2725	2725			JV2 = JE(2,	IEN )		2725
2727	2727			$\frac{m}{AY} = \frac{\sqrt{1}}{3}, J$	v2 ) - XV( 2 , JVI ) V2 ) - XV( 2 , JVI )		2726 2727
2728	2728			XE(1, IEN)	- SQRT( AX + AX + AY + AY )		2728
2730	2730			AEREV = 1. / X XN( IEN ) = AY	t(I,ILN) * XEREV		2729
2731	2731			YN( IEN ) = -	AX * XEREV		2731
2732	2732			155K = JE(4), 15SL = JF(3)	IEN ) TEN )		2732
2734	2734	С		and - unt of			1/33 2734
2735 2736	2735	с		IF( JE( 5 , IE	N).NE.O)THEN		2735
2737	2737	•		AA = XV( 1 . J	V2) - XV(1, JV1)		2737

F - J -

Thu Jul	1 14:16	5:26	.993 delthd.f	main	program	page	38	
2738	27 <b>38</b>		BB = XV(2, JV2) -	XV(2, JV1)			2738	
2739	2739		XEL = XS(1, ISSL)				2739	
2740	2740		YEL = XS(2, ISSL)	VI )			2740	•
2741 2742	2741		DD = YFI - XV(2)	VI )			2742	
2743	2743		EE = (AA + CC + BB)	* 00 ) * XEREV	* XEREV		2743	
2744	2744		XER = XV(1, JV1)	+ AA * EE			2744	
2745	2745		YER = XV(2, JV1)	+ 88 * EE			2745	
2740	2740		AX = XEK - XEL				2740	
2748	2748		XE(2, IEN) = SORT	( AX * AX + AY	* AY )		2748	
2749	2749		XEREV = 1. / XE(2)	IEN )			2749	
2750	2750		XXN( IEN ) = AX * XE	REV			2750	
2751	2752		$YE(2 \text{ IEN }) = AT^{-}AE$	XEV XF(2 IFN )			2752	
2753	2753		XYMIDL(IEN) = .5	xe( 2 , 100 )			2753	
2754	2754		XMIOL( IEN ) = XER				2754	
2755	2755	•	YMIDL( IEN ) = YER				2755	
2750	2756	C	EI SE				2750	
2758	2758	С	LLJC				2758	
2759	2759	•	XER = XS(1, ISSR)				2759	
2760	27 <b>60</b>		YER = XS(2, ISSR)				2760	
2761	2761		XEL = XS(1, 1SSL)				2761	
2763	2763	с	$fer = x_3(2, 133r)$				2763	
2764	2764	Ū.	AA = XV(1, JV2) -	XV(1, JV1)			2764	
2765	2765		BB = XV(2, JV2) -	XV(2, JV1)			2765	
2766	2766		CC = XEL - XER				2766	
2768	2768		$\Delta C \Delta = X F R = X V (1)$	.1V1 }			2768	
2769	2769		DBD = YER - XV(2)	JVI )			2769	
2770	2770		EE = (ACA * DD - DB)	D * CC ) / ( A/	A * DD - BB * CC )		2770	
2771	2771		XMIDL(IEN) = XV(1)	, JV1 ) + AA *			2771	
2773	2773	r	TMIDE(IEN) = XA(Z)	, JVI ) + BB ·	· tt		2773	
2774	2774	U I	XEMID = XMIDL( IEN )	- XEL			2774	
2775	2775		YEMID = YMIDL( IEN )	- YEL			2775	
2776	2776	C					2776	
2778	2778		AX = XER - XEL AY = YER - YEI				2778	
2779	2779		XE( 2, IEN ) = SQRT	( AX * AX + AY	* AY )		2779	
2780	2780		XEREV = 1. / XE(2)	IEN )	-		2780	
2781	2781		XXN(IEN) = AX * XE	REV			2781	
2783	2783	с	$H(\mathbf{IE}\mathbf{N}) = \mathbf{A}\mathbf{I} + \mathbf{A}\mathbf{E}$	NEV			2783	
2784	2784	v	XYMIDL( IEN ) = SQRT	( XEMID * XEMIC	) + YEMID * YEMID ) * XEREV		2784	
2785	2785	С					2785	
2786	2786	c	END IF				2785	
2788	2788	900	CONTINUE				2788	
2789	2789	Ċ					2789	
2790	27 <b>90</b>	C	ORDER THE DELETED VERTECI	S IN A DECENDED	O ORDER IN AN ARRAY		2790	
2791	2791	C C	NVDELT				2791	
2793	2793	C	KFLIP = JVDELT				2793	
2794	2794		DO 910 KK = 1 , JVD	ELT			2794	
2795	2795		IFLIP = 1	T( 1 )			2795	
2790	2790			r( ± ) p			2797	
2798	2798		IF( IVDELT( KI ) . G	T . NVDELT( KK	) ) THEN		2798	
2799	2799		NVDELT( KK ) = IVDEL	Т(КІ) і			2799	
2800	2800		IFLIP = KI				2800	
2601	2802	920	LNU IF CONTINIE				2802	
2803	2803	JEV	ISS = 0				2803	
2804	2804		DO 930 KI = 1 , KFLI	P			2804	
2805	2805		IF( KI . NE . IFLIP	) THEN			2805	
2800	2800		100611( 126 ) = 1006 122 = 122 + 1				2807	
2808	2808		END IF				2808	
2809	2809	93 <b>0</b>	CONTINUE				2809	
2810	2810	010	KFLIP = KFLIP - 1				2810	
2011	2011	A10	LUNIINUE				2011	

.

Thu Ju	1 1 14	:16:26	1993 delthd.f	main program	page	39
2812	2812	С				2012
2813	2813	C	ORDER THE DELETED	EDGES IN A DECENDED ORDER IN AN ARRAY		2012
2814	2814	C	NECRSS			2814
2815	2010	ί	VE1 10 - 15101	r		2815
2817	2817		$R_{\rm L} = 10$	IFTDIC		2816
2818	2818		IFLIP = 1	, ILIRIU		2817
2819	2819		NECRSS( KK )	* IECRSS( 1 )		2818
2820	2820		DO 950 KI = 1	, KFLIP		2820
2821	2821		IF( IECRSS( K	I).GT.NECRSS(KK))THEN		2821
2022	2822		NECRSS( KK )	= IECRSS( K1 )		2822
2023	2023		IFLIP = KI			2823
2825	2024	950	CONTINUE			2824
2826	2826	300	ISS = 0			2825
2827	2827		DO 960 KI - 1	. KELIP		2826
2828	2 <b>828</b>		IF( KI . NE .	IFLIP ) THEN		202/
2829	2829		ISS = ISS + 1	, -		2020
2830	2830		IECRSS( ISS )	= IECRSS( KI )		2830
2031	2831	060	END IF			2831
2833	2032	900	KEITO - KEITO	1		2832
2834	2834	940	CONTINUE	- 1		2833
2835	2835	č	CONTINUE			2834
2836	2836	С	ORDER THE DELETED	CELLS IN A DECENDED ORDER IN AN ARRAY		2835
2837	2837	С	NSCRSS			2030
2838	2838	C				2838
2039	2839		KFLIP = ITRIG			2839
2841	2841		UU 9/U KK = 1 TELTD = 1	, ITRIG		2840
2842	2842		NSCRSS( KK ) -	150055( 1 )		2841
2843	2843		D0.980  KI = 1	KEIIP		2842
2844	2844		IF( ISCRSS( K)	), GT, NSCRSS( KK ) ) THEN		2843
2845	2845		NSCRSS( KK ) =	ISCRSS( KI )		2044 2045
2846	2846		IFLIP = KI	, ,		2043
264/	2847		END IF			2847
2040	2040	980	CONTINUE			2848
2850	2049		122 = 0	VEL to	;	2849
2851	2851		1E( KI NE	, NELP TELTO A THEM		2850
2852	2852		ISS = ISS + 1	IFLIP ) INEN		2851
2853	2853		ISCRSS( ISS )	= ISCRSS( KT )		2852
2854	2854		END IF			2033 2958
2855	2855	990	CONTINUE			2855
2000	2050	070	KFLIP = KFLIP	- 1		2856
2858	2858	9/0	CONTINUE		1	2857
2859	2859	L	DO 1000 KT - 1		í	2858
2860	2860		IVDELT( KI ) =	NV + 1 - KI		2859
2861	2861	1000	CONTINUE	• • •	4	2000
2862	2862	C			2	2862
2003	2863		$D0 \ 1010 \ KI = 1$	, IETRIG	2	2863
2865	2004 2865	1010	IECKSS( KI ) =	NE + 1 - KI	2	2864
2866	2866	C 1010	CONTINUE		2	2865
2867	2867	v	DO 1020 KI = 1	ITRIG	2	2866
2868	2868		ISCRSS( KI ) =	NS + 1 - KI	2	:007 )960
2869	2869	1020	CONTINUE		2	000
2070	2870	ç			2	870
20/1 2872	20/1 2972	ι r	TI MAKE SURE THAT VI	KIICES THAT ARE TO BE DELETED ARE NOT	Ž	871
2873	2873	c c	REPLACED BY VERITCE	S THAS ARE TO BE DELETED ALSO	2	872
2874	2874	•	DO 1030 KT = 1	JVDFLT	2	873
2875	2875		IVM = NVDELT( )	(1)	2	.0/4 .975
2876	2876		DO 1030 KK = 1	, JVDELT	2	.075 9876
2877	2877		JVM = IVDELT( )	(K )	2	877
20/0	28/8		IF( IVM . EQ .	JVM AND KK . NE . KI ) THEN	ž	878
2880	20/9		IVDUM = IVDELT	KI) Tuna	2	879
2881	2881		IVUELI( KI ) *		2	880
2882	2882		END IF	14000	2	881
2883	2883	1030	CONTINUE		2	002
2884	2884	C			20	000 884
2885	2885	C	IT MAKE SURE THAT ED	GES THAT ARE TO BE DELETED ARE NOT	2	885

Thu Jul	1 14:16	5:26	1993	delthd.f	main program	page	40	
2886	2 <b>886</b>	C	REPLA	CED BY EDGES	THAS ARE TO BE DELETED ALSO		2886	
2887	2887	С		DO 1040 VI			2887	
2000	2000			UU 1040 KI = TEM = NECRSS(			2000	
2890	2890			DO 1040 KK =	1 , IETRIG		2890	
2891	2891			JEM - IECRSS	KK)		2891	
2892	2892			IF( IEM . EQ	. JEM . AND . KK . NE . KI ) THEN		2892	
2893	2893			IEDUM = IECRS	S(KI)		2893	
2094 2805	2094			IECROS( KK )			2094	
2896	2896			END IF			2896	
2897	2897	1040	)	CONTINUE			2897	
2898	2898	C					2898	
2899	2899	ι r	LI MA	KE SURE THAT	LELLS THAT ARE TO BE DELETED ARE NUT		2899	
2900	2901	C	NEFLA	LED DI LELLS	TRAS ARE TO DE DECETED RESO		2900	
2902	2902	U		DO 1050 KI =	1. ITRIG		2902	
2903	2903			ISM = NSCRSS(	(KI)		2903	
2904	2904			DO 1050 KK -	1, ITRIG		2904	
2905	2905			124 = 12CK22(	ISM AND KK NE KINTHEN		2905	
2907	2907			ISDUM = ISCRS			2907	
2908	2908			ISCRSS( KI )	= ISM		2908	
2909	2909			ISCRSS( KK )	= ISDUM		2909	
2910	2910	1050		END IF			2910	
2911	2911	1020		CONTINUE			2911 2012	
2913	2913	č	IVDELT	(*) SEQUENCE	OF VERTICES TO BE DELETED END OF LIST		2913	
2914	2914	Č	NVDELT	(*) SEQUENCE	OF VERTICES TO BE REPLACED CURRENT IN LIST		2914	
2915	2915	C	ISCRSS	(*) SEQUENCE	OF TRIANGLES TO BE DELETED END OF LIST		2915	
2916	2916	C	NSCRSS	(*) SEQUENCE	OF TRIANGLES TO BE REPLACED CURRENT IN LIST		2916	
2917	2917	c c	IECKSS	(*) SEQUENCE	OF EDGES TO BE DELETED END OF LIST		2917 2018	
2919	2919	č	NCONGO	( ) SEQUENCE			2919	
2920	2920	•		DO 1060 KI -	1 , JVDELT		2920	
2921	2 <b>92</b> 1			IVM = NVDELT(	KI)		2921	
2922	2922	c		JVM = IVDELI(	KI)		2922	
2923	2923	L		XVC 1 . TVM 1	= XV(1, JVN)		2923	
2925	2925			XV( 2 . IVM )	= XV(2, JVH)		2925	
2926	2926			ĴV(1, IVM)	= JV(1,JVM)		2926	
2927	2927	C					2927	
2928	2928			100 1000 1K =	ID) - HYDVVV(JVM ID)		2928	
2930	2930	1060	)	CONTINUE	IR f = IIIDada(Odif, IR)		2930	
2931	2931	Ċ		201111102			2931	
2932	2 <b>932</b>			NVM = NV - JV	DELT		2932	
2933	2933			NEM = NE - IE	TRIG		2933	
2934	2934	r		$n_{2}u = u_{2} - 11$	RIG		2934	
2936	2936	č	UPDAT	E THE EDGES A	ND CELLS THAT ARE CONNECTED TO THE DELETED		2936	
<b>293</b> 7	2937	С	VERTI	CES			2937	
2938	2938	С		100000			2938	
2010	2939 2940			JNVEDG = 0			2939 2940	
2941	2941			DO 1070 JVDL	= 1 . JVDELT		2941	
2942	2942			IVDL = NVDELT	(JVDL)		2942	
2943	2943			NVDL = IVDELT	(JVDL)		2943	
2944	2944			IF ( IVDL . NE	NVDL ) THEN		2944	
2945	2946			IE = 5V(2), IF(IE, GT).	0) THEN		2946	
2947	2947	С					2947	
2948	2948			IV1 = JE(1)			2948	
2949	2949			IF( IV1 . EQ	NVUL ) IHEN		2949 2060	
2950	2950		1	131 = UE( 3 ,	1C )		2951	
2952	2952			ISI = JE(4)	IE )		2952	
2953	2953		1	END IF			2953	
2954	2954	~		IS = ISI			2954	
2955 2056	2955 2956	Ĺ		INVERG - INVE	DG + 1		2956	
2957	2957			INVEDG( JNVEC	G) = IE		2957	
2958	2958			JNVTRG - JNVT	RG + 1		2958	
2959	2959			INVTRG( JNVTR	G ) = IS		2959	

1	Thu Jul	1 14:	16:26 1993	delthd.f	main program	page	41
	2960	2960	C				2960
	2961	2961	1090	CONTINUE			2961
	2962	2962	C				2962
	2963	2963		$DO \ 1080 \ IR = 1$ , 3			2963
	2904	2904		JK = MOU(1K, 3)	+ 1		2964
	2900	2905		IEA = IAR2( D2( DK))	+ 3 , 15 ) )		2965
	2967	2967		$\frac{111}{118} = MOD(.10 + 1)$			2966
	2968	2968		IFR = IARS(IS(II)	, , , , , , , , , , , , , , , , , , ,		2967
	2969	2969	С		(		2900
	2970	2970		IV1 = JE(1, IER)			2909
	2971	2971		IF( IV1 . EQ . NVDL	.) THEN		2971
	2972	2972		ISR = JE(3, IER)			2972
	2973	2973		ELSE			2973
	29/4	29/4		1SK = JE(4, 1EK)			2974
	2975	2975		CNU IT END TE			2975
	2977	2977	ſ				2976
	2978	2978	1080	CONTINUE			29//
	2979	2979	C				2970
	2980	2980		IF( ISR , NE . ISI	) THEN		2979
	2981	2981		IS = ISR			2981
	2982	2982		IE = IER			2982
	2983	2983	C	100500 100500 ·			2983
	2904	2904		JNVEDG = JNVEDG + 1			2984
	2986	2986		INVEDGE UNVEDG ) *	it		2985
	2987	2987		INVTRG( JNVTRG ) =	15		2985
	2988	2988	С		15		2987
	2989	29 <b>89</b>		GO TO 1090			2900
	2990	2990		END IF			2990
	2991	2991	С				2991
	2992	2992	~	ELSE			2992
	2993	2993	L	1E _ 1E			2993
	2995	2995					2994
	2996	2996		IF( IV1 . EQ . NVDL	) THEN		2995
	2997	2997		ISI = JE(3, IE)			2990
	2998	2998		ELSE			2998
	2999	2999		ISI = JE(4, IE)			2999
	3000	3000					3000
	3001	3002		12 = 121			3001
	3003	3003	С	151 - 0			3002
	3004	3004		JNVEDG = JNVEDG + 1			3003
	3005	3005		INVEDG( JNVEDG ) = 1	IE		3005
	3006	3006		JNVTRG = JNVTRG + 1			3006
	3007	3007	~	INVTRG( JNVTRG ) =	IS		3007
	3008	3008	L 1100	CONTINUE			3008
:	3010	3010	1100	CUNTINUE			3009
	3011	3011	0	D0 1110 IR = 1 . 3			3010
	3012	3012		JR = MOD(IR, 3) +	+ 1		3012
	3013	3013		IEA = IABS( JS( JR +	+ 3 . IS ) )		3013
	3014	3014		IF( IEA . EQ . IE )	THEN		3014
	3015	3015		JJR = MOD(JR + 1),	3)+4		3015
:	2010	3017	c	IEK = IAR2( D2( D1K))	. IS ) )		3016
	3018	3018	C C	IVI = JE(1) IER			3017
	3019	3019		IF( IVI . EQ . NVDL	) THEN		3010
:	3020	3020		ISR = JE(3, IER)			3020
	3021	3021		ELSE			3021
	5022	3022		ISR = JE(4, IER)			3022
	2023	3024		END IF			3023
	3025	3024	C				3024
	3026	3026	ĭ110	CONTINUE			3025
	3027	3027	C	-			3027
	3028	3028		IF( ISR . NE . ISI )	THEN		3028
-	5029 1020	3029		IS = ISR			3029
	1030	3031	с	1 <u>C</u> = 1CK			3030
101	3032	3032	•	JNVEDG = JNVEDG + 1			3031
	3033	3033		INVEDG( JNVEDG ) = 1	Ε		3033

Thu Jul	1 14:1	6:26	1993 delthd.f	main program	page	42	
3034	3034		JNVTRG = JNVTRG +	1		3034	
3035	3035		INVTRG( JNVTRG )	= 1S		3035	
3036	3036	С				3036	
3037	3037		GO TO 1100			3037	
3038	3038		END IF			3038	
3039	3039	С				3039	
3040	3040		JNVEDG = JNVEDG +	1		3040	
3041	3041	•	INVEDG( JNVEDG )	= IER		3041	
3042	3042	С				3042	
3043	3043		END IF			3043	
3044	3044	1070				3044	
3045	3045	10/0	CONTINUE			3045	
2040	2040	L	NEMNET - INVITOCI	1 \		3040	
3047	3047	r	NOMPT - INVIRG	1)		3047	
3040	3040	C	00 1120 IF = 1	INVEDG		3040	
3050	3050		IFF . INVEDG( IF	)		3050	
3051	3051		DO 1120 IIDG = IE	+ 1 JNVEDG		3051	
3052	3052		IF( INVEDG( IIDG	). EO. IEE ) THEN		3052	
3053	3053		INVEDG( IIDG ) =	Ó		3053	
3054	3054		END IF			3054	
3055	3055	1120	CONTINUE			3055	
3056	3056	C				3056	
3057	3057		IEDUM = 0			3057	
3058	3058		$DO \ 1130 \ IIDG = 1$	, JNVEDG		3058	
3059	3059		IF( INVEDG( IIDG	). NE. O) THEN		3059	
3060	3060		IEDUM = IEDUM + I			3060	
3061	3061		INVEDG( IEDUM ) =	INVEDG( 110G )		3061	
3002	3002	1120				3062	
3064	3064	1130	INVEDC - LEDUM			3003	
2065	3065	C	JAVEDG - TEDOM			2004	
3066	3066	U	DO 1140 IS = 1	INVTRG		3066	
3067	3067		ISS = INVTRG(IS)	)		3067	
3068	3068		DO 1140 $IITG = IS$	+ 1 . JNVTRG		3068	
3069	3069		IF( INVTRG( IITG	), EQ , ISS ) THEN		3069	
3070	3070		INVTRG( IITG ) =	0		3070	
3071	3071		END IF			3071	
3072	3072	1140	CONTINUE			3072	
3073	3 <b>073</b>	С				3073	
3074	3074		ISDUM = 0			3074	
3075	3075		DO 1150 IITG = $1$	, JNVTRG		3075	
3076	3076		IF( INVTRG( IITG	). NE. O) THEN		3076	
3077	3077		ISDUM = ISDUM + 1			3077	
2070	3070		INVIKG( ISDUM ) =	INVIRG( 1116 )		30/8	
3080	3079	1150	CONTINUE			3080	
3081	3081	1130	JNVTRG * ISDUM			3081	
3082	3082	С	GRAING - 13DOM			3082	
3083	3083	č	UPDATE THE VERTECIS AN	D CELLS THAT ARE CONNECTED TO THE DELETED		3083	
3084	3084	Ċ	EDGES			3084	
3085	3085	С				3085	
3086	3086		DO 1160 IE = 1 ,	IETRIG		3086	
3087	3087		IES = IECRSS(IE)	)		3087	
3088	3088	С				3088	
3089	3089		IV = JE(1, IES)			3089	
3090	3090		IER = JV(2, IV)			3090	
3091	3091		lin = 151GN( i ,	IER )		3091	
3003	2002		ILE = IADO( ILK )			2002	
3004	3004		1677 = 166 DO 1170 KK - 1	IETDIC		30033	
3095	3094		JEM = JECRSS(KK)			3095	
3096	3096		IF( IFF , FO , JF	/ M ) TEM = NECRSS( KK )		3096	
3097	3097	1170	CONTINUE			3097	
3098	3098		$JV(2 \cdot IV) = II$	N * IEM		3098	
3099	3099	С	, - , , , ,			3099	
3100	3100		IV = JE(2, IES)	)		3100	
3101	3101		IER = JV(2, IV)	)		3101	
3102	3102		IIN = ISIGN(1)	IER )		3102	
3103	3103		IEE - IABS( IER )			3103	
3104	3104		IEM = IEE			3104	
3105	3105		DU 1180 KK = 1 ,	IETRIG		3105	
001C	1100		JEM = IECRSS( KK	) N ) 15N NECOSE( V/ )		2100	
2101	2101		iry itt - ty - Jt	1 / ICA - NECKSS( KA )		2101	

•

Thu Jul	1 14:1	6:26	1993 delthd.f	main program	page	43
3108	3108	1180	CONTINUE	TCM		3108
3110	3109	с	JV(2, IV) = IIN	IEM		3109 3110
3111	3111 3112	1160 C	CONTINUE			3111
3113	3113	U U	DO 1190 KK = 1 , JJTR	IG		3113
3114	3114		100 = 1100 (KK) DO 1190 JVDL = 1 , JVL	DELT		3114 3115
3116 3117	3116 3117		IVDL = NVDELT( JVDL ) NVDL = IVDELT( JVDL )			3116
3118	3118		IF( IVV . EQ . NVDL )	IITRIG( KK ) = IVDL		3118
3119	3119 3120	1190 C	CUNTINUE			3119 3120
3121 3122	3121 3122		DO 1200 JVDL = 1 , JVL IVDL = NVOFII( JVDL )	DELT		3121
3123	3123		NVOL = IVDELT( JVDL )			3123
3124 3125	3124	1200	CONTINUE	Z , NVDL }		3124
3126 3127	3126 3127	С		ag.		3126
3128	3128		ISS = INVTRG( IS )			3128
3129 3130	3129 31 <b>3</b> 0	Ç	IV = JS(1, ISS)			3129 3130
3131	3131		IVM = IV			3131
3133	3133		JVM = IVDELT( KI )			3133
3134 3135	3134 3135	1220	IF( IV . EQ . JVM ) IN CONTINUE	/M = NVDELT( KI )		3134 3135
3136	3136		JS(1, ISS) = IVM			3136
3138	3138	L	IV = JS(2, ISS)			3137
3139 3140	31 <b>39</b> 31 <b>40</b>		IVM = IV DO 1230 KI ≈ 1 . JVDEI	T		3139 3140
3141	3141		JVM = IVDELT( KI )			31 11
3142	3142	12 <b>30</b>	CONTINUE	m = nvueli(RI)		3142
3144 3145	3144 3145	с	JS(2, IS5) = IVM			3144 3145
3146	3146	Ū	IV = JS(3, 1SS)			3146
3147 3148	3147		100 = 10 DO 1240 KI = 1 , JVDE1	LT		314/ 3148
3149 3150	3149 3150		JVM = IVDELT( KI ) IE( IV EQ)VM ) IV			3149 3150
3151	3151	1240	CONTINUE			3151
3152 3153	3152	С	JS(3,155) = IVM			3152
3154 3155	3154	1210	CONTINUE			3154
3156	3156	C	DO 1250 IE = 1 , JNVE	DG		3156
3157 3158	3157 3158	С	IEE = INVEDG(IE)			3157 3158
3159 3160	31 <b>59</b> 3160		IV = JE(1, IEE)			3159 3160
3161	3161		DO 1260 KI = 1 , JVDEL	1		3161
3162 3163	3162 3163		JVM = IVDELT( KI ) IF( IV , EQ , JVM ) IV	/M = NVDELT( KI )		3162 3163
3164	3164	1260				3164
3166	3166	С				3166
3167 3168	316/ 3168		IV = JE(2, IEE) IVM = IV			3167 3168
3169	3169		DO 1270 KI = 1 , JVDEL 1M = 1VDELT(KI)	.T		3169
3171	3171		IF( IV . EQ . JVM ) IV	/M = NVDELT( KI )		3171
3172 3173	3172 3173	1270	CONTINUE JE(2,IEE) = IVM			3172 3173
3174	3174	C 1250	CONTINUE			3174
3176	3176	0021				3176
3177 3178	3177 3178	C C	UPDATE THE VERTECIS AND EDC CELSS	JES THAT ARE CONNECTED TO THE DELETED		3177 3178
3179	3179	C	DO 1200 TC - 1 TTOT			3179
3180	3181	С	UU 1200 15 = 1 , 11KH	3		3181

÷

)

ł

Thu Jul	1 14:16:2	26 1993	delthd.f	main program	page	44
3182	3182		ISE = ISCRSS( IS	)		3182
3183	31 <b>83</b> C					3183
3184	3184		IE = IABS(JS(4))	, iSE ) )		3184
3186	3186		ISM = ISS	,		3186
3187	3187		DO 1290 KI = $1$ ,	ITRIG		3187
3188	3188		JSM = ISCRSS( KI			3188
3189	3109 12	290	IF( ISS . EV . 'S CONTINUE	m ) $12m = mSCRSS(RT)$		3199
3191	3191		JE(3, IE) = IS	SM		3191
3192	3192 C		100 10/ 4 10	、 、		3192
3193	3193		150 = 3E(4, 1E) 1SM = 1SS	)		3193
3195	3195		DO 1300 KI = 1 .	ITRIG		3195
3196	3196		JSM = ISCRSS( KI			3196
319/ 3198	3197 3198 13	300	IF( ISS . EV . JS CONTINUE	M ) ISM = NSCRSS( KI )		319/ 3198
3199	3199		JE(4, 1E) = 1S	im second second second second second second second second second second second second second second second se		3199
3200	3200 C					3200
3201	3201		IE = IABS(JS(5)) ISS = JE(3) IE	, 15E ) )		3201
3203	3203		ISM = ISS	,		3203
3204	3204		DO 1310 KI = 1 ,	ITRIG		3204
3205	3205		-1 ' = 15CR55( KI . 155 . F015	) (M) ISM = NSCRSS( KI )		3205
3207	3207 13	310	CONTINUE	$\frac{1}{2} \frac{1}{2} \frac{1}$		3207
3208	3208		JE(3, IE) = IS	M		3208
3209	3209 C		ISS = JF(4) IF	)		3209
3211	3211		ISM = ISS	,		3211
3212	3212		DO 1320 KI = 1 ,	ITRIG		3212
3213	3213		JSM = 15CR55(-K)	) (M) ISM = NSCRSS( KI )		3213 3214
3215	3215 13	320	CONTINUE			3215
3216	3216		JE(4, IE) = IS	in the second second second second second second second second second second second second second second second		3216
3217	3217 U 3218		IE = IARS(IS(6))	ISE ()		321/ 3218
3219	3219		1SS = JE(3, IE)	)		3219
3220	3220		ISM = ISS			3720
3221	3221		100 1330  KI = 1, 1SM = 1SCRSS( KI)	I IRIG		3221
3223	3223		IF( ISS . EQ . JS	ŚM ) ISM = NSCRSS( KI )		3223
3224	3224 13	330	CONTINUE			3224
3225	3225 3226 C		JE(3, IE) = 15	<b>m</b>		3225 3226
3227	3227		ISS = JE(4, 1E)	)		3227
3228	3228		ISM = ISS			3228
3229	3229		JSM = .SCRSS(K)	)		3230
3231	3231		IF( ISS . EQ . JS	ÚM) ISM = NSCRSS( KI )		3231
3232	3232 13	340	CONTINUE			3232
3233	3233		JE(4, IE) = 13	P1		3233
3235	3235 2	280	CONTINUE			3235
3236	3236 C		00 1350 15 - 1	ICTRIC		3236
3238	3238		IES = IECRSS(IE)	)		0238
3239	3239 C					3239
3240	3240		IS = JE(3, IES)	)		3240 3243
3242	3242		DO 1360 KI = 1 .	ITRIG		324
3243	3243		ISM = NSCRSS( KI			3243
3244 3245	3244	360	IFT IS . EQ . ISM CONTINUE	1 ) 122 = 12CK22( K1 )		3244 3245
3246	3246 C		GONTINUL			3246
3247	3247		IF( ISS . NE . O	) THEN		3247
3248 3249	3248 C 3249		1FR = .151 4 155	; )		3240 3249
3250	3250		IEE = IABS( IER )	,		3250
3251	3251		IEM = IEE	ICTDIC		3251
3253	3253		JEM = FCRSS( KE	) )		3253
3254	3254		IF( IEE . EQ . JE	́м) IEM = NECRSS( KI )		3254
3255	3255 13	370	CONTINUE			3255

6

Thu Jul	1 14:16:26 1993	delthd.f	main program	page	45
3256	3256	JS( 4 . ISS )	= ISIGN( 1 , IER ) * IEM		3256
3257	3257 C		155 )		3257
3250	3250	IER = JS(5), IFF = IABS(1)	155 ) FR )		3250
3260	3260	IEM = IEE			3260
3261	3261	00 1380 KI -	I IETRIG		3261
3262	3262	JEM = IECRSS(	KI ) 16M ) 16M - NECDSS/ KI )		3262
3264	3264 1380	CONTINUE			3264
3265	3265	JS( 5 , ISS )	= ISIGN( 1 , IER ) * IEM		3265
3260	3266 C	1ED - 15/ 6	( 22)		3260
3268	3268	IEE = IABS( I	ER )		3268
3269	3269	IEM - IEE	1		3269
3270	3270	00 1390 KI =	I, IETRIG		3270
3272	3272	IF( IEE . EQ	. JEM ) IEM = NECRSS( KI )		3272
3273	3273 1390	CONTINUE			3273
3274	3274 3275 C	JS( 6 , ISS )	= ISIGN(1, IER) * IEM		3274
3276	3276	END IF			3276
3277	3277 C				3277
3278	3278	1S = JE(4, 1)	IES )		3278
3280	3280	D0 1400 KI =	1. ITRIG		3280
3281	3281	ISM = NSCRSS(	KI)		3281
3282	3282	IF( IS . EQ .	ISM ) ISS = ISCRSS( KI )		3282
3284	3283 1400 3284 C	CONTINUE			3284
3285	3285	IF( ISS . NE	. O ) THEN		3285
3286	3285 C	160 - 15( A	155 )		3286
3288	3288	IER = 33(4)	ER )		3288
3289	3289	IEM = IEE			3289
3290 3201	3290 3201	DO 1410 KI =	1, IETRIG		3290
3292	3292	IF( IEE . EQ	. JEM ) IEM = NECRSS( KI )		3292
3293	3293 1410	CONTINUE			3293
3294	3294 3295 r	JS(4,155)	= ISIGN( 1 , IER ) * IEM		3294
3296	3296	IER = JS(5)	ISS )		3296
3297	3297	IEE = IABS( I	ER )		3297
3298 3299	3298 3299	16M = 166 00 1420 KT =	1 IFTRIG		3298
3300	3300	JEM = IECRSS(	KI)		3300
3301	3301	IF( IEE . EQ	. JEM ) IEM * NECRSS( KI )		3301
3302	3302 1420	CONTINUE	- ISICN( 1 1FD ) * IFM		3302
3304	3304 C	03( 5 , 155 )			3304
3305	3305	IER = JS(6)	ISS )		3305
3307	3307	1EE = 1ABS(1)	ER )		3300
3308	3308	DO 1430 KI -	1. IETRIG		3308
3309	3309	JEM = 1ECRSS(			3309
3311	3311 1430		. JEM ) IEM = NECKSS( KI )		3311
3312	3312	JS( 6 , ISS )	= ISIGN( 1 , IER ) * IEM		3312
3313	3313 C	CND 10			3313
3315	3315 C	CAD IF			3315
3316	3316 1350	CONTINUE			3316
3317	3317 C 3318	DO 1440 TE -	I IFTOIC		3317
3319	3319	IEM - NECRSS(	IE)		3319
3320	3320	JEM = IECRSS(	IE )		3320
3321 3322	3321 U 3322	DO 1450 TK -	1.5		3321 3322
3323	3323	JE( IK , IEM	) = JE( IK , JEM )		3323
3324	3324 1450	CONTINUE			3324
3325	3325 L	XE( 1 . IFM )	∞ XE( 1 . JEM )		3326
3327	3327	XE( 2 , IEM )	- XE( 2 , JEM )		3327
3328	3328 C		N( 15M )		3328
2252	7353	∧n( 10n ) = X	חל סבוו )		2262

Thu Jul	1 14:16	:26 1993	deithd.f	main program	page	46
3330	3330		YN( IEM ) - Y	N(JEM)		3330
3331	3331		XXN(IEM) =	XXN( JEM )		3331
3332	3332		YYN( 12M ) =	YIN( JEM )		3332
3333	3333		XMIDL( ILM )	≖ AMIDL( JEM ) _ VMTOL( IEM )		3333
2225	2226		YVMIDI ( 100 )	■ INIUL( JER ) _ YYMID:( JEM )		3334
3335	2222	1440	CONTINUE	= xmuul Jen )		3335
2222	22220	1440	CONTINUE			2227
3338	3338	L	00 1460 15 -	I ITRIG		2222
3339	3330		ISM = NSCRSS(	IS )		3330
3340	3340		JSM = ISCRSS(	15)		3340
3341	3341	С				3341
3342	3342		DO 1470 IK =	1,6		3342
3343	3343		JS( IK , ISM	) = JS( IK , JSM )		3343
3344	3344	1470	CONTINUE			3344
3345	3345	C	VC( 1 TCH )	YC ( 1 )CM )		3345
3340	3340		X5(1,150)	(17, 1) (17, 1) (17, 1)		3340
3347 3348	2247		X3(2,131)	= XS(2, JBH) = XS(3, ISM)		3347
3340	3740	r	NG( 5 , 156 )	- (5, 53)		3340
3350	3350	C	SARFA( ISM )	= SAREA( JSM )		3350
3351	3351		KSDELT( ISM )	= KSDELT( JSM )		3351
3352	3352	С				3352
3353	3353		DO 1480 IK -	1 , MHQ		3353
3354	3354		HYDV( ISM , I	K) = HYDV(JSM, IK)		3354
3355	3355	1480	CONTINUE			3355
3356	3355	С				3356
3357	3357		HYDFLX( ISM ,	4) = HYDFLX(JSM, 4)		3357
3358	3358		HYDELX( ISM ,	1 ) = HIUELX (JSM, 1)		3358
2320	2320	c	HIDERY ( 124 .	$2 j = \pi i \nu r L \lambda (J S m + 2 )$		3359
3361	3361	1460	CONTINUE			3361
3362	3362	0	CONTINUE			3362
3363	3363	•	NV = NVM			3363
3364	3364		NE = NEM			3364
3365	3 <b>365</b>		NS = NSM			3365
33 <b>6</b> 6	3 <b>366</b>	C				3366
3367	3367		DO 1490 IENN	= I , IJTRIG		3367
3368	3368		IE = JUE(IEN)			3368
3309	3309		10 1490 KI =	1, 121810 VT \		3359
3371	2271			JEM ) JUE ( TENN ) - NECOSS ( VT )		3370
3372	3372	1490	CONTINUE	oen j obel ienn j - neekos( ki j		3372
3373	3373	C	CONTINUE			3373
3374	3374	-	DO 1540 IENN	= 1 , JJTRIG		3374
3375	3375		IVV - IITRIG(	IENN )		3375
3376	3 <b>376</b>		IF( JV( 1 , I	VV ) . NE . 3 ) CALL RELAXY( IVV )		3376
3377	3377	1540	CONTINUE			3377
33/8	33/8	ι				33/8
3360	2220		UU 1500 IENN	** 1 , IJIKIG NE \		33/9
3381	3381		CALL BECNC( ICH	ר חו א וא גער אין ארא ארא ארא ארא אין ארא ארא אין ארא ארא אין ארא ארא אין ארא ארא אין ארא אין ארא אין ארא אין א		3381
3382	3382		CALL RECNCI J	A JADONE, ITE, ITE, JAA, JAB, JAC, JAD)		3382
3383	3383		CALL RECNC( J	B, JBDONE, ITL, ITR, JBA, JBB, JBC, JBD)		3383
3384	3384		CALL RECNC( J	C , JCDONE , ITL , ITR , JCA , JCB , JCC , JCD )		3384
3385	3385		CALL RECNC( J	D , JDDONE , ITL , ITR , JDA , JDB , JDC , JDD )		3385
3386	3386	1500	CONTINUE			3386
338/	338/	C				338/
2300	2200		UU 1510 19810	L = 1 , NPI TODICI )		3366
3309	3300		130 = 1300000			3300
3391	3391		JSM = NSCRSS(	K1 )		3391
3392	3392		IF( ISM . EQ	. JSM ) IJKPRT( IPRTCL ) - NSMNPT		3392
3393	3393	1510	CONTINUE			3393
3394	3394	С				3394
3395	3395	C UPDA	TE THE JSDELT	ARRAY		3395
3396	3396	C				3396
3397	3397		UU 1530 IS =	1, ISUELI		339/
3300	3300 2389		JOF = JOULLI (	13 J 1 ITPIC		3300 7220
3400	3400		1220121 - M2L	κι)		3400
3401	3401		1F( JSP . FO	JSM ) JSDELT( IS ) = NSCRSS( KT )		3401
3402	3402	1530	CONTINUE	· · · · · · · · · · · · · · · · · · ·		3402
3403	3403	С				3403

Thu Jul	1 14:	16:26 1	993 delt	thd.f	main program	page	47
3404	3404		INDCTR	= 1			3404
3405	3405	С					2405
3406	3406	С	EXIT POINT	FROM	SUBROUTINE		3403
3407	3407	Ċ					3406
3408	3408	ř					3407
3400	3400	C	DETUDN				3408
2410	2410	~	RETURN				3409
3410	3410	L					3410
3411	3411	C					3411
3412	3412	С					3410
3413	3413		FNO				3412
							3413

APPENDIX C

COPIES OF PUBLICATIONS



## AIAA 89-2446 A REVIEW OF PROPULSION APPLICATIONS OF THE PULSED DETONATION ENGINE CONCEPT S. EIDELMAN, W. GROSSMANN AND I. LOTTATI

S. EIDELMAN, W. GROSSMANN AND I. LOTTATI SCIENCE APPLICATIONS INTERNATIONAL CORP. APPLIED PHYSICS OPERATION MCLEAN, VA

# AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference

Monterey, CA / July 10-12, 1989

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 370 L'Enfant Promenade, S.W. Washington, D.C. 20024

### A REVIEW OF PROPULSION APPLICATIONS OF THE PULSED DETONATION ENGINE CONCEPT

S. Eidelman, W. Grossmann and I. Lottati

Applied Physics Operation Science Applications International Corporation 1710 Goodridge Dr., McLean, VA 22102

#### Introduction

The early development leading to practical propulsion engines was almost completely associated with steady state engine concepts. Unsteady concepts, which initially appeared promising, never evolved from the conceptual state and have remained for the most part unexplored. The early work in unsteady propulsion suffered from a lack of appropriate analytical and design tools, a condition which seriously impeded the advancement of the unsteady concepts to a practical stage.

In this paper we review the historical development of unsteady propulsion by concentrating on one particular concept, the intermittent detonation engine, and discuss current research activities in this area. A review of the literature¹⁻²⁴ reveals that a significant body of experimental and theoretical research exists in the area of unsteady propulsion. However, this research has not been extended to the point where a conclusive quantitative comparison can be made between impulsive engine concepts and steady state concepts. For example, the analysis given in References 8-11 of the performance of a detonation engine concept does not include frequency dependence, nor any analysis of losses due to multi-cycle operation. A new generation of analytical and computational tools exists today and allows us to revisit and analyse such issues with a high degree of confidence. Numerical simulation has developed to the state where it can now provide time dependent two and three dimensional modeling of complex internal flow processes 20,24,25 and will eventually result in tools for systematically analyzing and optimizing engineering design. In addition to a review of applications of the Pulsed Detonation Engine Concept here we will report results of a numerical study of the gasdynamics of a model of an air-breathing detonation engine with detailed analysis of the nonsteady flow pattern. This study was performed using new unsteady CFD tools which we will also describe.

Our paper is structured as follows: 1) historical review of the pulsed detonation development efforts; 2) description of the basic phenomenology of the air-breathing Pulsed Detonation Engine concept; 3) description of the mathematical formulation and new numerical scheme used to simulated the problem; 4) discussion of the simulation results; and 5) conclusions.

#### **Historical Review**

#### **Constant Volume Combustion**

From the very early development of jet-propulsion engines it was known that an engine based on a constant volume combustion process achieves higher efficiency than a constant pressure engine. This follows from a thermodynamic analysis of the engine cycle.¹

Constant volume combustion was used in gas turbine engines at the beginning of this century, and the first gas turbine engines in commercial use were based on the constant volume cycle. Jet-propulsion engines were one of the applications of the constant volume cycle (or explosion cycle) which was explored in the late 1940s.² Although the explosion cycle operates at a larger pressure variation in the combustion chamber than in a pulse-jet^{3,4}, the cycle actually realized in these engines was not a fully constant volume one since the combustion chamber was open ended². In Reference 2 the maximum pressure ratio measured in an explosion cycle engine was 3:1, whereas the pressure ratio for the same mixture under the assumption of a constant volume cycle would be 8:1. Also, this engine was limited by the available frequency of cycles, which in turn is limited by the reaction rate. A simple calculation ² showed that if the combustion time could be reduced in this engine from 0.006 sec to 0.003 sec, the thrust per pound of mixture would increase 100%. Thus the explosion-cycle engine has two main disadvantages:

- Constrained volume combustion (as distinguished from constant volume combustion) does not take full advantage of the pressure rise characteristic of the constant volume combustion process.
- The frequency of the explosion cycle is limited by the reaction rate, which is only slightly higher than the deflagrative combustion rate.

The main advantage of the constant pressure cycle is that it leads to engine configurations with steady state processes of injection of the fuel and oxidiser, combustion of the mixture, and expansion of the combustion products. These stages can be easily identified and the engine designer can optimize them on the basis of relatively simple steady state considerations:

At the same time an engine based on constant volume combustion will have an intermittent mode of operation, which may complicate its design and optimization. We are interested in the question of whether this complication is worth the potential gains in engine efficiency.

#### Pulsed Detonation Engine as an Ultimate Constant Volume Combustion Concept

The detonation process, due to the very high rate of reaction, permits construction of a propulsion engine in which the constant volume process can be fully realised. In detonative combustion, the strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and the fresh charge. The speed of the detonation wave is about two orders of magnitude higher than the speed of a typical deflagration. This allows the design of propulsion engines with a very high power density. Usually, each detonation is initiated separately by a fully controlled ignition device. and the cycle frequency can be changed over a wide range of values. This also means that a device based on a detonative combustion cycle can be scaled and its operating parameters can be modified for a range of required output conditions. There have been numerous attempts to take advantage of detonative combustion for engine applications. In the following we give a description of the most relevant past experimental and analytical studies of the detonation engine concept.

#### Hoffmann's Report.

The first reported work on intermittent detonation is attributed to Hoffmann⁵ in 1940. He operated an intermittent detonation test stand with acetylene-oxygen and bensine-oxygen mixtures. The addition of water vapor was used to prevent the highly sensitive acetyleneoxygen mixture from premature detonation. Hoffmann⁵ indicated the importance of the spark plug location in reference to tube length and diffuser length. It was found that a continuous injection of the combustible mixture leads to only a narrow range of ignition frequencies which will produce an intermittent detonation cycle. These frequencies are governed by the time required for the mixture to reach the igniter, time of transition from deflagration to detonation, and time of expansion of the detonation products. Hoffmann attempted to find the optimum cycle frequency experimentally. It was discovered that detonation-sube firing occurred at lower frequencies than the spark-plug energising frequencies indicating that the injection flow rate and ignition were out of phase. Events prevented further work by Hoffmann and co-workers.

#### Nicholls Experiments.

A substantial effort in intermittent detonation engine research was done by a group headed by J. A. Nicholls⁶⁻¹⁰ of The University of Michigan beginning in the early 50's. The most relevant work concerns a set of experiments carried out in a six foot long detonation tube⁶. The detonation tube was constructed from a one inch internal diameter stainless steel tube. The fuel and oxidizer were injected under pressure from the left end of the tube and ignited at the some distance down stream. The tube was mounted on a pendulum platform, suspended by support wires. Thrust for single detonations was measured by detecting tube (platform) movement relative to a stationary pointer. For multi-cycle detonations thrust measurement was achieved by mounting the thrust end of the tube to the free end of the cantilever beam. In addition to direct thrust measurements the temperature on the inner wall of the detonation tube was measured.

Fuel mixtures of hydrogen/oxygen, hydrogen/air, acetylene-oxygen and acetylene-air mixtures were used. The gaseous oxidizer and fuel were continuously injected at the closed end wall of the detonation tube and three fixed flow rates were used. Under these conditions the only parameters which could be varied were the fuel/oxidiser ratio and frequency of ignition. A maximum gross thrust of ~ 3.21b was measured in hydrogen/air mixture at the frequency of ≈ 30 detonations per second. The most promising results were demonstrated for the  $H_2$ /Air mixture, where a fuel specific impulse of  $I_{op} = 2100$  sec was reached. The maximum frequency of detonations obtained in all experiments was 35 Hs. The temperature measurements on the inner wall showed that for the highest frequency of detonations the temperature did not exceed 800° F.

In their later work,^{5,9,10} the University of Michigan group concentrated on development of the Rotating Detonation Wave Rocket Motor. No further work on the pulsed detonation cycle was pursued.

#### Krsvcki Experiments

In a setup somewhat similar to Nicholl's, L. J. Krsycki¹¹ performed an experimental investigation of intermittent detonations with frequencies up to 60 cps. An attempt was also made to analyze the basic phenomena using unsteady gas dynamic theory. Krsycki's attempt to analyze the basic phenomena relied on wave diagrams to trace characteristics, assumptions of isentropic flow for detonation and expansion, and incompressible flow for mixture injection processes. The most convincing data from the experiments is the measurement of thrust for a range of initiation frequencies and mixture flow rates. Unfortunately no direct pressure measurement in the device are reported so that only indirect evidence exists of the nature of the process observed.

The basic test stand used by Krsycki is very similar to that used by Nicholls et al.⁶ The length of the detonation tube and internal diameter were exactly the same as those in Nicholl's experiments. A Propane/Air mixture was continuously injected through a reversedflow diffuser for better mixing, and ignited at the some distance from the injection point by an automobile spark plug. The spark frequency was varied from 1 to 60 cps. The spark plug power output was varied inversely with the initiation frequency and at the frequency of 60 cps was only 0.65 Joule. This fact alone eliminated the possibility of direct initiation of the detonation wave by the spark and consequently all of the experiments must have been based on transition from deflagration to detonation. According to experimental data and theory,¹² for direct initiation of a mixture of propane-air at the detonability limits, an energy release on the order of 10⁶ Joules is required. Thus, the required defiagration-detonation transition region length would have been prohibitively large for the propane-air mixture. It follows that in all of the experiments a substantial part of the process was defiagrative. This resulted in low efficiency, and negligible thrust. Kraycki repeated the experiments of Nicholls using exactly the same size detonation tube and basically the same rates of injection of the detonable mixture. Krsycki's experimental results are very well documented, allowing a clear picture of the physical processes occurring in the tube to be deduced. A conclusion, arrived at by the author, was that thrust was possible from such a device but practical applications did not appear promising. It is unfortunate that, possibly based on Krsycki's extensive but misleading results, all experimental work related to the pulsed detonation engine concept stopped at this time.

#### Work Reported in Russian sources on Pulse Detonation Devices

A review of the Russian literature has not uncovered work concerning applications of pulsed detonation devices to propulsion. However there are numerous reports of applications of such devices for producing nitrogen oxide¹³ (an old Zeldovich idea to bind nitrogen directly from air to produce fertilisers) and as rock crushing devices¹⁴.

Korovin et al.¹³ provide a most interesting account of the operation of a commercial detonation reactor. The main objective of this study was to examine the efficiency of thermal oxidation of nitrogen in an intermittent detonative process as well as an assessment of such techno-

logical issues as the fatigue of the reactor parts exposed to the intermittent detonation waves over a prolonged time. The reactor consisted of a tube with an inner diameter of 16 mm and length 1.3 m joined by a conical diffuser to a second tube with an inner diameter of 70 mm and length 3 m. The entire detonation reactor was submerged in running water. The detonation minure was introduced at the end wall of the small tube.  $CH_4$ ,  $O_2$  and  $N_2$  comprised the mixture composition and the mixture ratios were varied during the continuous operation of the reactor. The detonation wave velocity was measured directly by piesoelectric sensors placed in the small and large tubes. The detonation initiation frequency in the reactor was 2-16 Hs. It is reported that the apparatus operated without significant changes for 2000 hours.

Smirnov and Boichenko¹⁴ studied intermittent detonations of gasoline-air mixtures in a 3 m long and 22 mm inner diameter tube operating in the 6-8 Hs ignition frequency range. The main motivation of this work was to improve the efficiency of a commercial rock crushing apparatus based on intermittent detonations of the gasoline-air mixtures.¹⁵ The authors investigated the dependence of the length of the transitional region from deflagration to detonation on the initial temperature of the mixture.

As a result of the information contained in the Soviet reports, it can be concluded that reliable commercial devices based on intermittent detonations can be constructed and operated.

#### Development of the Blast Propulsion System at JPL

Work at the Jet Propulsion Laboratory (JPL) by Back, Varsi and others¹⁶⁻¹⁹ concerned an experimental and theoretical study of the feasibility of a rocket trus.er using intermittent detonations of solid explosive useful for propulsion in dense or high-pressure atmospheres of certain solar system planets. The JPL work was directed at very specific applications; however, the studies¹⁷⁻¹⁹ addressed some key issues of devices using unsteady process such as propulsion efficiency. The JPL studies have important implications to pulsed detonation propulsion systems.

Reference 19 gives the basic description of the test stand used. In this work a Deta sheet type C explosive was detonated inside a small detonation chamber attached to nossles of various length and geometry. The nossles, complete with firing plug, were mounted in a containment vessel which could be pressurised with the mixture of various inert gases from vacuum to 70 atm. The apparatus measured directly the thrust generated by single detonations of a small amount of solid explosive charge expanding into conical or straight nossles. Thrust and specific impulse was measured by a pendulum balance system.

Results obtained from an extensive experimental study of the explosively driven rocket have lead to the following conclusions. First, rockets with long nossles show increasing specific impulse with increasing ambient pressure in  $CO_2$  and  $N_2$ . Short nozzles, on the other hand, show that specific impulse is independent of ambient pressure. Most importantly, most of the experiments obtained a relatively high specific impulse of 250 seconds and larger. This result is all the more striking since the detonation of a solid explosive yields a relatively low energy release of approximately 1000 cal/gm compared with 3000 cal/gm obtained in hydrogen oxygen combustion. Thus, it can be concluded that the total losses in a thruster based on unsteady expansion are not prohibitive and, in principle, very efficient propulsion systems operating on intermittent detonations are possible.

#### **Detonation Engine Studies at Naval Postgraduate School**

A modest exploratory study of a propulsion device utilising detonation phenomena was conducted at the Naval Postgraduate School.²⁰⁻²³ During this study, several fundamentally new elements were introduced to the concept distinguishing the new device from previous ones.

First, it is important to note that the experimental apparatus constructed by Helman et al.21 was the first successful self aspirating air breathing detonation device. Intermittent detonation frequencies of 25 Hs were obtained. This frequency was in phase with the fuel mixture injection through timed fuel valve opening and spark discharge. The feasibility of intermittent injection was established. Pressure measurements showed conclusively that a detonation process occurred at the frequency chosen for fuel injection. Further, self aspiration was shown to be effective. Finally, the effectiveness of a primary detonation as a driver for the main detonation was clearly demonstrated. Although the NPS studies were abbreviated, many of the technical issues considered to be essential for efficient intermittent detonation propulsion were addressed with positive results.

### Simulations of Pulsed Detonation Engine Cycle at NASA-Ames Center

Recently Cambier and Adelman ²⁴ carried out numerical simulations of a pulsed detonation engine cycle taking into account finite rate chemistry. Unfortunately, the simulations were restricted to a quasi-one dimensional model. The configuration considered had a 6 cm inner diameter 50 cm long main chamber which was attached to a 43 cm diverging nossle. It was assumed that a stoichiometric mixture of hydrogen/air at 3.0 atmospheres is injected from an inlet on the closed end wall of the detonation chamber. At such conditions Cambier and Adelman estimated a large range of possible detonation frequencies of engine operation up to 667 Hs. The origin of this estimate is not clear from their work, since according to their simulations, the detonation, expansion and fresh charge fill requires 2.5 msec. This value leads to a maximum frequency of 400 Hs. The simulated engine performance yielded a large average thrust of 893 lb and an unusually high specific impulse of 6507 sec. These simulations were the first to demonstrate the use of modern CFD methods to address the technical issues associated with unsteady pulsed detonation concepts.

In the remaining sections we discuss a particular propulsion concept based on the results of the experiments of Helman et al.²² and describe a computational study of its performance characteristics. The unsteady numerical scheme used for the study made use of unique simulation techniques; the key ingredients of these techniques are also described.

#### A Generic Pulsed Detonation Engine

The generic device we consider here is a small engine 15 cm long and 15 cm in diameter. The combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave propagates through the mixture. The size of the engine suggests a small payload, but the concept can be extended to larger payloads simply by scaling up the size of the detonation chamber and possibly combining a number of engines into one large propulsion engine. A key issue in the pulsed detonation engine concept is the design of the main detonation chamber. The detonation chamber geometry determines the propulsion efficiency and the duration of the cycle (frequency of detonations). Since the fresh charge for the generic engine is supplied from the external flow field, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. The range of the physical processes requiring simulation in order to model the complex flow phenomena associated with the detonation engine performance is very broad. A partial list is:

- 1. Initiation and propagation of the detonation wave inside the chamber,
- 2. Expansion of the detonation products from the chamber into the air stream around the chamber at flight Mach numbers.
- 3. Reverse flow from the surrounding air into the chamber resulting from over expansion of the detonation products,
- 4. Pressure buildup in the chamber due to reverse flow. The flow pattern inside the chamber during postexhaust pressure buildup determines the strategy

for mixing the next detonation charge,

5. Strong mutual interaction between the flow processes inside the chamber and flow around the engine.

All of these processes are interdependent and their timing is crucial to the engine efficiency. Thus, unlike simulations of steady state engines, the phenomena described above can not be evaluated independently.

The need to resolve the flow regime inside the chamber accounting for nossles, air inlets etc., and at the same time resolve the flow around the engine, where the flow regime varies from high subsonic, locally transonic and supersonic, makes it a challenging computational problem.

The main issue is to determine the timing of the air intake for the fresh gas charge. It is sufficient to assume invicid flow for the purpose of simulating the expansion of the detonation products and fresh gas intake. In the following we present the first results of an invicid simulation of the detonation cycle in a cylindrical chamber. First, we describe our computational method for solving the time dependent Euler equations used in the study.

#### The Unsteady Euler Solver

A new second order algorithm for solving the Euler equations on an unstructured grid was used in our study of the detonation concept. The approach is based on first and second order Godunow methods. The method leads to an extremely efficient and fast Flow Solver which is fully vectorised and easily lends itself to parallelisation. The low memory requirements and speed of the method are due to the use of a unique data structure.

Until recently most CFD simulations were carried out with logically structured grids. Vectorisation and/or parallelisation did not present a problem. The increased need for simulation of flow phenomena in the vicinity of complex geometrical bodies and surfaces has led to the development of CFD codes for logically unstructured grids. The most successful of these unstructured grid codes are based on finite elements or finite volume methods. For an unstructured grid in two-dimensions, the computational domain is usually covered by triangles and the indices of the arrays containing the values of the hydrodynamic flow quantities are not related directly to the actual geometric location of a node. The calculations performed on unstructured grids evolve around the elemental grid shape (e.g. the triangle for two-dimensional problems) and there is no obvious pattern to the order in which the local integrations should be performed. Explicit integration of hydrodynamic problems on an unstructured grid requires that a logical substructure should be created which identifies the locations in the global arrays of all the local quantities necessary for the integration of one element. This usually results in a large

price in computational efficiency, in memory requirements, and in code complexity. As a consequence, vectorisation for the conventional unstructured grid methods has concentrated on rearrangement of the data structure in a manner such that these locally centered data structures appear as global arrays. This can be done to some extent using machine dependent Gather-Scatter operations. 25,28 Additional optimisation can be achieved using localisation and search algorithms. However, these methods are complex and result in marginal improvement. Most optimized unstructured codes to date run considerably slower and require an order of magnitude more memory per grid cell then their structured counterparts. Parallelisation of the conventional unstructured codes is even more difficult, there is very little experience with unstructured codes on massively parallel computers.

The method we have developed overcomes these difficulties and results in code with speed and memory requirements comparable to those found in structured grid codes. Moreover, the ability to construct grids with arbitrary resolution leads to a flexibility in dealing with complex geometries not attainable with structured grids. The essence of the method is based on independent flux calculation across the edges of a dual baricentric grid, followed by node integration. This approach is order independent. Below we give the essential details of our algorithm; a complete description follows later.

#### **Basic Integration Algorithm.**

We begin by describing the first order Godunov method for the system of two-dimensional (axi-symmetric) Euler equations written in conservation law form as

$$\frac{\partial \vec{Q}}{\partial t} + \frac{\partial \vec{F}}{\partial z} + \frac{\partial \vec{G}}{\partial r} = -\frac{1}{r}\vec{C} , \qquad (1)$$

where,

$$\vec{Q} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ e \end{pmatrix}, \ \vec{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ (e+p)u \end{pmatrix}, \ \vec{G} = \begin{pmatrix} \rho v \\ \rho v u \\ \rho v^2 + p \\ (e+p)v \end{pmatrix},$$
$$\vec{C} = \begin{pmatrix} \rho v \\ \rho v u \\ \rho v^2 \\ (e+p)v \end{pmatrix}.$$

Here u and v are the x and r velocity vector components, p is the pressure,  $\rho$  is the density and e is the total energy of the fluid per unit volume. It is assumed that a mixed (initial conditions, boundary conditions) problem is properly posed for the set of equations (1) and that an initial distribution of the fluid parameters is given at t = 0 and some boundary coulditions defining a unique solution are specified on the boundary of the computational domain.

We look for a solution of the system of equations represented by Eq. 1 in the computational domain covered by as unstructured grid. As an example, Fig. 1a shows the unstructured triangular grid used in the pulsed detonation engine simulation. Here most of the computational effort is committed to the resolution of the flow inside the engine detonation chamber and in the immediate vicinity of the nossle. In Figure 1b an enlargement of the nossle region is shown, illustrating the ability to represent geometry of arbitrary complexity and with localized resolution.



Figure 1a Computational domain and grid used in simulation of PDE operation.



Figure 1b Enlargment of computational grid in the vicinity of the PDE nossis.

Fig. 2 displays a fragment of the computational domain with the corresponding dual grid. The secondary or dual grid is formed by connecting the baricenters of the primary mesh, thus forming fither polygons around the primary vertices.



Figure 2 The primary (triangles) and secondary (poligons) unstructured grids.

We have found, as have others,²⁷ that the best practical representation of the integration volume is obtained when the dual grid is formed by connecting baricenters of the triangles. Integration by the Godunov method²⁸ can be divided into two basic steps: 1. Calculation of the fluxes at the edges of the secondary grid using solutions of a set of one dimensional Riemann problems; 2. Integration of the system of partial differential equations which amounts to addition of all the fluxes for every polygon at a particular time step.

To define the fluxes for the grid shown in Fig. 2 at every edge of the main grid it is necessary to solve the corresponding Riemann problem. For example, to define the flux at the edge ab, we solve the Riemann problem between points A and B. The solution of this problem is in coordinates local to the edge of the dual grid ab so that the tangential component of velocity will be directed along this edge (ab). Implementation of our approach requires maintaining strict consistency when defining the "left" and "right" states for the Riemann problems at the edges ab. bc. cd. de. ef, and fa. For this reason we define not only the location of the vertices and lengths of the edges but also the direction of the edges with respect to the primary grid. For the clockwise integration pattern in the same Polygon, point A will be the "right" state for all the Riemann problems related to this point and the neighbor will represent the "left" side of the diaphragm.

It is easy to see that the flux calculation is based on information at only two nodes and requires single geometrical parameters defining the edge of the secondary grid that dissects the line connecting the two points. Thus, we can calculate all the values needed for flux calculation in one loop over all edges of the primary grid without any details related to the geometrical structures which these edges form. This in turn assures parallelisation or vectorisation of the algorithm for the bulk of the calculations involving the Riemann solver that provides the first order flux. The only procedure not readily parallelisable is the integration of the fluxes for the flow variables at the vertices of the grid. Here we use the "edge coloring" technique which allows us to split the flux addition loop into 7 or 8 loops for edges of different color. Each of these loops is usually large enough not to impair vectorisation. At this stage all the fluxes are added with their correct sign corresponding to the chosen direction of integration within the cell. The amount of calculation required here is minimal since the fluxes are known and need only to be multiplied at each time step by a simple factor and added to the vertex quantity.

#### Second Order Integration Algorithm

٤

The second order solver is constructed along lines similar to that from the first-order method. At each cell edge the Riemann problem is solved for some specified pair of left and right conditions. The solution to this Riemann problem is then used in the calculation of fluxes which are added later to advance to the next integration step. The extension to second order is achieved by using extrapolation in space and time to obtain time-centered left and right limiting values as inputs for the Riemann problem. The basic implementation of the method of calculation of second order accurate fluxes is fundamentally the same as for one dimensional cases. The only difference is in the method of obtaining linear extrapolation of the flow variables as a first guess of their value at the edges of the dual grid. To obtain the first guess we need to know the gradient of some gasdynamical parameter U at the vertices of the primary mesh. The value of  $\nabla$  U can be evaluated by using a linear path integral along the edges which delineates the finite volume associated with the vertex. For vertex A in Figure 2:

$$\int_{A} \nabla U dA = \oint_{l} U n \ dl \tag{2}$$

where integration along the path l in this case is equivalent to integration along the edges ab, bc, cd, de, ef, fa. Knowing the gradient of the gasdynamic parameter in the volume related to vertex A will allow us to extrapolate the values of this parameter at any location within the volume. This permits us to evaluate the first guess for U at the edges of the dual grid. The final four steps of the implementation of the second order algorithm has been described previously.²⁸

A schematic flow chart of the basic steps of the second order algorithm implementation is shown in Figure 3.





#### Simulations of the Generic Pulsed Detonation Engine

In this section we present sample results of simulations of the generic PDE device using the numerical code described in the preceding section. In Figure 1a the computational domain containing the PDE main detonation chamber is shown covered with the unstructured grid. In our sample simulation we have chosen a small ≈ 15 cm long and ≈ 15 cm internal diameter cylindrical chamber with a small converging nossle. This geometry is one of a number of the geometries we have analyzed in a parametric study whose goal is to evaluate and optimise a typical PDE device. The device shown in Figure 1a does not represent the optimum and is given here to illustrate our methodology. We consider a situation when the PDE serves as a main thruster for a vehicle traveling in air with the velocity of M = 0.9 and located at the aft end of the vehicle. The main objectives of the simulations presented here are:

1. To find the maximum cycle frequency. This is determined by the time required from detonation, exhaust of combustion products and intake of fresh charge for the next detonation.
2. To calculate the thrust produced during each cycle and the integrated thrust as a function of time.

The simulation begins at t = 0 when a strong detonation wave is initiated inside the detonation chamber. Initially the detonation wave travels from the open aft end of the chamber towards the interior with a maximum velocity of 1800  $\frac{m}{100}$  and maximum pressure of 20+10⁵ Pa. The distribution of pressure, velocity, and density of the detonation wave is defined through the selfsimilar solution for a planar detonation wave. The wave was directed towards the interior of the chamber to capture the kinetic energy of the wave and to prolong exposure of the inner chamber walls to the high pressure. In Figure 4a simulation results are shown at time t = 0.19 msec in the form of pressure contours and particle paths from different locations inside and outside the detonation chamber. From the pressure contour plots we observe that the shock reflection from the inner wall has taken place and detonation products are expanding into the ambient airstream. The flow inside the chamber is choked due to the converging nossle and the maximum pressure behind the shock is a Satm. The pressure inside the chamber is less than 3 atm. The strong expansion of the detonation products into the ambient airstream produces a shock wave with a spherical like front rapidly decaying in strength. As a result of the interaction of the expaning detonation products with the external flow a large toroidal vortex is created. The vortex is carried away quickly from the chamber by the external flow and by its own flow momentum.

In Figure 4a we also show particle paths for the particles introduced inside the chamber and outside just above the nossle. Examination of these trajectories allows us to follow the dynamics of the chamber evacuation and refill. In order to track the detonation products we initially place marker particles inside the chamber at three cross sections in clusters of four distributed equally normal to the detonation chamber axis. Each particle has a different color; however, particles in the same cluster have the same shade of color. At the three chosen cross sections we have designated shades of red, yellow, and blue for the particles located correspondingly at the left end, center and beginning of the nossle cross sections of the chamber. The movement of these particles is shown by connecting them with a continuous line beginning with particle location at t = 0 to the present time. In Figure 4a we observe that at time  $t = 0.19 \cdot 10^{-3}$ sec all particles originally in the nozzle cross section and three of the particles originally in the mid section have left the detonation chamber. However, particles originally introduced on the inner wall of the chamber have only advanced to the nossle region.

We use a different technique for observing the motion of the ambient gas outside the chamber. Here a

cluster of seven particles is introduced every 0.5 • 10⁻⁴ seconds in the external flow above the nossie. All such particles are traced as they move with the flow until they leave the computational domain. At any myen time only the current location of the particle is displayed, and since the particles are introduced periodically with time there is a large number of particles to trace. We assign a color to every cluster of external particles to keep track of the time when they were introduced in the calculation. The colors vary from magenta for those particles introduced early in calculation, to blue for those introduced shortly at the time before the end of a detonation cycle. In Figure 4a corresponding to very early times, only one cluster of external particles is visible. This cluster was introduced at t = 0 and is tracking the expanding flow of the detonation products.

In Figure 4b the simulation results are shown for  $t = 1.7 + 10^{-3}$  sec. The pressure contours show that a shock wave develops at the external edge of the nossle as a result of a strong expansion of the Mach 0.9 external flow. A result of overexpansion of the detonation products is that the pressure inside the detonation chamber is lower than the ambient pressure, causing the shock to be located lower on the external surface of the nossie. The external flow about the chamber has a stagnation point on the axis of symmetry downstream at ~ 25cm. At this time as it is evident from the particle trajectories that most of the detonation products have left the chamber. Figure 4b shows one continuous trace of the particles originating at the back wall of the detonation chamber having advanced well ahead of the stagnation point in the external flow.

The marker particles released outside and just above the nossles exit show two distinct flow paths. One path takes the flow past the stagnation point to the right of the detonation chamber; this flow path is marked by the four upper particle traces. Another flow path, marked by three lower particle released close to the nossle surface is deflected towards the detonation chamber exit. Figure 4b shows this deflected stream approaching the detonation chamber nossle. The magenta color of these particles indicates they were released at  $\approx 0.5 \times 10^{-3}$  sec.

Figure 4c corresponds to the simulation time  $t = 0.47 \cdot 10^{-3}$  sec. The pressure inside the chamber has risen  $\approx 1atm$ . Higher pressure at the chamber exit has caused the shock standing on the external surface of the nossle to move upwards. The particles marking the movement of fresh air into the chamber show these to be well inside with some reflecting from the end wall giving a second stagnation point for the reversed fresh airflow.

Figure 4d corresponds to the end of the first cycle when the detonation chamber should be filled with fresh charge and ready for the next detonation. In this figure the particle paths indicate that the chamber refills in a



b) t = 1.7 msec,

•

d) t = 7.4 msec, end of first detonation cycls.

Figure 4 Pressure contours and particle paths for various times during the PDE simulation; a) t = 0.19 msec, b) t = 1.7 msec,

c) t = 4.7 msec, d) t = 7.4 msec, end of first detonation cycle.

pattern suitable for fast mixing of the fuel-air mixture. We conjecture that fuel injection along the chamber axis will promote fast fuel-air mixing. We can see in Figure 4d that the farther injection of the external air flow inside the chamber stopped, and from that point on the mixture composition in the chamber will be fixed.



Figure 5 Thrust and force generated by PDE as function of time.

In Figure 5 total force and time averaged thrust generated by the device in the simulations discussed previously are shown as a function of time. The time averaged thrust is based on the total time for one cycle. As seen in Figure 5, initially a very large force of  $\approx 7 \pm 10^4$ lb is felt on the end wall of the detonation chamber. This is a result of the inwardly moving detonation wave used in our simulation. Very early during the sequence, this wave reflects from the left wall of the detonation chamber generating briefly a large force. This force rapidly decays and at  $t \approx 1.0 + 10^{-4}$  sec changes sign due to interaction of the strong shock wave with the converging nossle. This effect is noticeable in the thrust data; the average thrust decreases somewhat after reaching levels of a 200lbs. The shock partially reflects from the converging nossle walls and generates a wave moving to the left wall. The reflected wave thereafter generates positive thrust from  $t \approx 3.0 + 10^{-4}$  sec. Finally thrust levels reach the maximum of 225 lbs. and then decays slowly as a result of the cross sectional drag force. The simulations predict that to sustain this level of thrust will require a detonation frequency of about 150 Hz.

## Conclusions

The main intent of the present study was to carry out a review of the relevant literature us the area of detonation propulsion, to assess the state-or-the-art, and to recommend future research based on our findings. We have reviewed the literature and presented our summary in first section of this paper. Our initial conclusion from the review is that there is a substantial body of evidence leading toward the possibility of producing propulsion engines with significant thrust levels based on an intermittent detonation.

Most of the historical attempts at producing thrust based on the intermittent detonation cycle were carried out with the same basic experimental setup; namely, a long straight detonation tube employing forced fuel injection at the closed tube end. We have discussed the many reasons why such a device cannot take proper advantage of the physical processes associated with detonation.

The experiments performed at the Naval Postgraduate School using a self-aspirating mode of operation for pulsed detonation thruster produced very useful results which, upon further examination, provide us with a route towards practical propulsion engines of variable thrust levels which are both controllable and scalable.

We have explored some of the implications of the possible applications of the self aspirating detonation engine concept and have developed a suitable numerical simulation code to be used as a design, analysis and evalustion tool. In fact, the preliminary analysis of a candidate detonation chamber flow properties was shown to be dominated completely by unsteady gasdynamics. An attempt to understand the flow properties based on any steady state model or one-dimensional unsteady analytical model will miss such important aspects as fuel-air mixing and, shock refielction from internal geometrical obstacle such as the converging nossle. The unsteady similation code developed during the course of our study is a necessary tool that we plan to use in a study leading to a feasible prototype engine design realising the full potential of the intermittent detonation process.

## Acknowledgements

The authors would express appreciation to Drs. Adam Drobot and Aharon Friedman for helpful suggestions and advice. The work reported on here was supported by DARPA under contract N66001-58-D-0088.

#### REFERENCES

- 1. Stodola, A., Steam and Gas Turbines, McGraw-Hill Inc., 1927.
- Zipkin, M. A., and Lewis G. W., "Analytical and Experimental Performance of an Explosion-Cycle Combustion Chamber of a Jet Propulsion Engine," NACA TN-1702, Sept. 1948.
- Shults-Grunow, F., "Gas-Dynamic Investigation of the Pulse-Jet Tube," NACA TM-1131, Feb. 1947.
- Zinn, B. T., Miller, N. Carvelho, J. A., and Daniel B. R., "Pulsating Combustion of Coal in Rijke Type Combustor," 19th International Symposium on Combustion, 1197-1203, 1982.
- Hoffmann, N., "Reaction Propulsion by Intermittent Detonative Combustion," Ministry of Supply, Volkenrode Translation, 1940.
- Nicholls, J. A., Wilkinson, H. R. and Morrison, R. B. "Intermittent Detonation as a Thrust-Producing Mechanism," Jet Propulsion, 27, 534-541, 1957.
- Dunlap, R., Brehm, R. L. and Nicholls, J. A., " A Preliminary Study of the Application of Steady State Detonative Combustion of a Reaction Engine", ARS J., 28, 451-456, 1958.
- Nicholls, J. A., Gullen, R. E. and Ragland K. W., "Fessibility Studies of a Rotating Detonation Wave Rocket Motor," Journal of Spacecrafts and Rockets, 3, 893-898, 1966.
- Adamson, T. C. and Olsson, G. R., "Performance Analysis of a Rotating Detonation Wave Rocket Engine," Astronautica Acta, 13, 405-415, 1967.
- Shen, P. I., and Adamson, T. C., "Theoretical Analysis of a Rotating Two-Phase Detonation in Liquid Rocket Motors," Astronautica Acta, 17, 715-728, 1972.
- Krsycki, L. J., Performance Characteristics of an Intermittent Detonation Device, Navweps Report 7655, U. S. Naval Ordnance Test Station, China Lake, California 1962.
- Matsui, H., and Lee, J. H., " On the Measure of the Relative Detonation Hasards of Gaseous Fuel-Oxygen and Air Mixtures," Seventeenth Symposium (International) on Combustion, 1269-1280, 1978.
- Korovin, L. N., Losev A., S. G. Ruban and Smekhov, G. D. "Combustion of Natural Gas in a Commercial Detonation Reactor," Fis. Gor. Varyva, Vol. 17, No.3, p.86, 1981.
- Smirnov, N. N., Boichenko, A. P., "Transition from Deflagration to Detonation in Gasoline-Air Mixtures," Fis. Gor. Vsryva, 22, No.2, 65-67, 1986.
- 15. Lobanov, D. P., Fonbershtein, E. G., Ekomasov, S. P., "Detonation of Gasoline-Air Mixtures in Small

Diameter Tubes," Fis. Gor. Vsryva, 12, No.3, 446, 1976.

- Back, L. H., "Application of Blast Wave Theory to Explosive Propulsion," Acta Astronautica, 2, No 5/6, 391-407, 1975.
- 17. Varsi, G., Back, L. H., and Kim, K., "Blast Wave in a Nossle for Propulsion Applications," Acta Astronautica, 8, 141-156, 1976.
- Kim, K., Varsi, G., Back and L. H., "Blast Wave Analysis for Detonation Propulsion," AIAA Journal, Vol. 10, Oct. 1977.
- 19. Back L. H., Dowler, W. L. and Varsi, G., "Detonation Propulsion Experiments and Theory," AIAA Journal Vol. 21 Oct. 1983.
- Eidelman, S., Shreeve, R. P., "Numerical Modeling of the Nonsteady Thrust Produced by Intermittent Pressure Rise in a Diverging Channel," ASME FED-Vol. 18, Multi-Dimensional Fluid Transient, p.77, 1984.
- 21. Eidelman, S., "Rotary Detonation Engine," U.S. Patent 4 741 154, 1988.
- Helman, D., Shreeve, R. P., and Eidelman, S., "Detonation Pulse Engine,", AIAA-86-1683, 24nd Joint Propulsion Conference, Huntsville, 1986.
- Monks, S. A., "Preliminary Assessment of a Rotary Detonation Engine Concept," MSc Thesis, Naval Postgraduate School, Monterey, California, Sept. 1983.
- Camblier, T. L. and Adelman, N. G., "Preliminary Numerical Simulations of a Pulsed Detonation Wave Engine," AIAA-88-2960, AIAA 29th Joint Propulsion Conference, Boston 1988.
- R. Lohner, K. Morgan, and D.C. Zienkiswics, "Finite Element Methods for High Speed Flows," *AIAA 7th Computational Fluid Dynamics Confer*ence, Cincinnati, Ohio, AIAA Paper 85-1531 (1985).
- R. Lohner and K. Morgan, "Improved Adaptive Refinement Strategies for Finite Element Aerodynamic Computations," AIAA 29th Aerospace Sciences Meeting, Reno, Nevada, AIAA Paper 86-0499 (1986).
- T.J. Barth and D.C. Jespersen, "The Design and Application of Upwind Schemes on Unstructured Meshes," 27th Aerospace Sciences Meeting, AIAA-89-0366, Reno, Nevada.
- S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and It's Second Order Extension to Cascade Flow Modeling," AIAA Journal, v. 22, 10, 1984.



## AIAA-90-0460 COMPUTATIONAL ANALYSIS OF PULSED DETONATION ENGINES AND APPLICATIONS

S. EIDELMAN, W. GROSSMANN AND I. LOTTATI SCIENCE APPLICATIONS INTERNATIONAL CORPORATION McLEAN, VA

# **28th Aerospace Sciences Meeting**

January 8-11, 1990/Reno, Nevada

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 370 L'Enfant Promenade, S.W., Washington, D.C. 20024

## COMPUTATIONAL ANALYSIS OF PULSED DETONATION ENGINES AND APPLICATIONS

S. Eidelman, W. Grossmann and I. Lottati

Applied Physics Operation Science Applications International Corporation 1710 Goodridge Drive McLean, Virginia 22102

1

### 1. Introduction

This paper presents the results of a computational fluid dynamic simulation/ parameter study of the SAIC Pulsed Detonation Engine (PDE) concept. Results from computer simulations of generic PDE geometries over a wide range of subsonic and supersonic flight Mach numbers indicate that potentially practical detonation engines can now be conceptualized and optimized for specific flight requirements and missions. Specifically, the study shows that primary propulsion for aerodynamic vehicles of the PENAID variety may be possible at Mach numbers 0.5 < M < 0.8, thrust levels on the order of 100 pounds and a specific fuel consumption of the order of 1 lb./(lb.hr.). The predicted performance places the PDE propulsion concept in a strongly competitive position compared with present day small turbojets. The PDE concept has the added attractiveness of rapid variable thrust control, no moving parts and the potential for low cost manufacturing. Finally, the PDE concept is scalable over a wide range of engine sizes and thrust levels. For example, it is theoretically possible to produce PDE engines on the order of one to several inches in diameter and thrusts on the order of pounds, as well as devices which provide thousands of pounds thrust.

A literature search of past research on related concepts and devices uncovered important information which proved useful in pursuing our present study. A review of the literature¹⁻²⁴ reveals that a significant body of experimental and theoretical research exists in the area of unsteady propulsion. However, this research was not sufficiently extensive to provide a conclusive quantitative comparison between impulsive engine concepts and steady state concepts. In addition, the computational and analytical techniques were not sufficiently developed in the past to treat the inherently unsteady flows of pulsed engines. A new generation of analytical and computational tools exists today, allowing us to revisit and analyze these devices with a high degree of confidence.

Our paper is organized into the following sections: 2) description of the basic phenomenology of the airbreathing Pulsed Detonation Engine concept; 3) discussion of the numerical simulation results; and 4) conclusions. Details of the mathematical formulation of the simulation and a discussion of the numerical code used in the present study are given elsewhere.^{25,26}

## 2. The Generic Pulsed Detonation Engine

A detonation process, due to the very high rate of reaction, leads to a propulsion concept in which the constant volume process can be fully realized. In detonative combustion, the strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and fresh charge. The speed of the detonation wave is about two orders of magnitude higher than the speed of a typical deflagration. This allows the design of propulsion engines with a very high power density. Each detonation has to be initiated separately by a fully controlled ignition device, with a wide range of variable cycle frequencies. There is no theoretical restriction on the range of operating frequencies; they are uncoupled from acoustical chamber resonancies. This is very important feature of the constant volume detonation process that differentiates it from the process occurring in a pulse-jet;³⁻⁴ the pulse jet cycle is tuned to the acoustical resonances of the combustion chamber. This leads to a lack of scalability for the pulse jet concept.

A physical restriction dictating the range of detonation frequency arises from the rate at which the fuel/air mixture can be introduced into the detonation chamber. This also means that a device based on a detonative combustion cycle can be scaled and its operating parameters can be modified for a range of required output conditions. There have been numerous attempts to take advantage of detonative combustion for engine applications. The most recent and successful of these attempts was carried out at the Naval Postgraduate School (NPS) by Helman et al.²² During this study, several fundamentally new elements were introduced to the concept distinguishing the NPS research device from previous studies. First, it is important to note that the NPS experimental apparatus was the first successful self aspirating air breathing detonation device. Intermittent detonation frequencies of 25 Hz were obtained. This frequency

This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States. was in phase with the fuel mixture injection through timed fuel valve opening and spark ignition. The feasibility of intermittent injection was established. Pressure measurements showed conclusively that a detonation process occurred at the frequency chosen for fuel injection. Further, self aspiration was shown to be effective. Finally, the effectiveness of a primary detonation as a driver for the main detonation was clearly demonstrated. Although the NPS studies were abbreviated, many of the technical issues considered to be essential for efficient intermittent detonation propulsion were addressed with positive results.

As a result of the survey of past research on intermittent detonation devices, we have focussed our attention on the NPS experiments of Helman et al.²² The remainder of this paper is concerned with a computer simulation of performance characteristics of such a device. We have chosen a generic geometry, applicable to certain present day vehicle and mission requirements. and have parametrically varied key features which affect performance and assessed the effects of these variations.

The generic device we consider here is a small engine 15 cm long and 15 cm in diameter. Figure 1 shows a schematic of the basic detonation chamber attached to the aft end of a generic aerodynamic vehicle. The combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave propagates through the mixture. The size of the engine suggests a small payload or aerodynamic vehicle, but the concept can be extended to larger payloads simply by scaling up the size of the detonation chamber and possibly combining a number of chambers into one larger engine. As an example, a PENAID vehicle has been conceptualized requiring an engine with a diameter of roughly 15 cm and a useful continuous thrust at Mach 0.8 approximately 60-90 pounds. Such an engine should have a specific fuel consumption in the range of 1.7 to 1.9 lb. fuel/hr per pound and an endurance on the order of 10-30 minutes. These specifications are met by present day small turbojets. Hence, in order to be competitive, a PDE must at least meet these requirements. Should this prove to be the case, a PDE with no moving parts would be a very attractive engine from the point of view of performance, ease of manufacturing and cost.

A key issue in the pulsed detonation engine concept is the design of the main detonation chamber. The detonation chamber geometry determines the propulsion efficiency and the duration of the cycle (frequency of detonations). Since the fresh charge for the generic engine is supplied from the external flow field, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. The range of the physical process requiring simulation in order to model the complex flow phenomena associated with the detonation engine performance is very broad. A partial list is:

- 1. Initiation and propagation of the detonation wave inside the chamber,
- 2. Expansion of the detonation products from the chamber into the air stream around the chamber at flight Mach numbers,
- 3. Fresh air intake from the surrounding air into the chamber.
- 4. The flow pattern inside the chamber during postexhaust pressure buildup which determines the strategy for mixing the next detonation charge,
- 5. Strong mutual interaction between the flow inside the chamber and surrounding the engine.





All of these processes are interdependent, and interaction and timing are crucial to engine efficiency. Thus, unlike simulations of steady state engines, the phenomena described above can not be evaluated independently.

The need to resolve the flow regime inside the chamber accounting for nozzles, air inlets etc., and at the same time resolve the flow outside and surrounding the engine, where the flow regime varies from high subsonic, locally transonic and supersonic, makes it a challenging computational problem.

The single most important issue is to determine the timing of the air intake for the fresh charge leading to repetitive detonations. It is sufficient to assume inviscid flow for the purpose of simulating the expansion of the detonation products and fresh air intake. The assumption of inviscid flow makes the task of numerically simulating the PDE flow phenomena somewhat easier than if a fully viscous flow model were employed. For the size of the generic device studied in this work the effects of viscous boundary layers are negligible with the exception of possible boundary layer effects on the valve and inlet geometries discussed subsequently. Boundary layer effects on the present results are discussed later.

### 3. Results of Simulational Parameter Study

As mentioned, and as shown in Figure 1, we have chosen a small  $\approx 15$  cm long and  $\approx 15$  cm internal diameter cylindrical chamber as the basic device. In the figure, the detonation chamber including detonation wave and inlet valves are shown schematically. The PDE, as envisioned in the present study, would most naturally be applicable for a class of aerodynamic vehicles such as target drones and PENAID missiles among others. The exact details of this basic chamber geometry were modified during the course of the study in order to obtain the required aerodynamic or propulsion effects; however, these modifications did not significantly change the total internal volume of the chamber. Thus, the performance results for the different cases can be compared holding the chamber volume constant. The schematic shown in Figure 1 does not represent an optimum configuration and is given here mainly to illustrate our methodology. We consider a situation where the PDE serves as the main thruster for an aerodynamic vehicle traveling in air with Mach numbers between M = 0.2 and M = 5.0, and is located at the aft end of the vehicle. The main objectives of our study are:

- 1. To calculate the thrust produced during each cycle and the integrated thrust as a function of time,
- 2. To find the maximum cycle frequency. This is determined by the time required from detonation to the final exhaust of combustion products and intake of fresh charge for the next detonation,
- 3. To evaluate the parametric dependence of the thrust and detonation frequency on the flight Mach number and detonation chamber geometry details.

In addition to the technical objectives outlined above, we have set another goal for our study. We require that the best, but by no means optimum, configuration produce a minimum of 60 pounds thrust at an operating frequency of 140 cycles per second. The definition of best is that configuration which satisfies the technical objectives outlined above and meets the operational goal of 60 pounds thrust and 140 Hz frequency over the flight regimes from M=.2 to M=0.9. (The Mach number range corresponds to that of a PENAID missile mission profile.)

To achieve these objectives we have conducted a comprehensive parametric simulational study of the PDE performance. We have studied PDE engine performance for a range of Mach numbers with two separate initial detonation locations in the chamber and for various geometry modifications. In addition to the range of subsonic Mach numbers we have examined PDE performance in the supersonic regime, 2 < M < 5. The geometry modifications included converging exhaust nozzles, inlets and dynamic valves. A computer simulation code was developed and optimized for a Stellar graphics workstation to carry out the analysis. In addition, a particletracing package was developed and implemented in the code. This allowed us to analyze the flow pattern inside and outside the detonation chamber, the main sources creating this pattern as a function of time, and the composition of the resulting gas mixture (air/detonation products).





First we will describe in detail the results for a typical simulation, Case 1, and illustrate the main features of our analysis.

<u>Case 1</u>. The simulation begins at t = 0 when a strong detonation wave is initiated inside the detonation chamber. The detonation chamber for this case includes a simple annular inlet which remains open during operation. The external freestream Mach number is 0.8. The specific fuel chosen for the present simulations is ethylene. The chemical reaction occurring in the ethylene/air detonation process is given by:

$$C_2H_4 + 3O_2 + 11.24N_2 - 2H_2O + 2CO_2 + 11.24N_2$$

The detonability limits of ethylene in air range from 4 to 12% by volume and depend somewhat on temperature and pressure. We assume for the sake of simplicity that the fuel/air ratio is 6% by volume. Because the detonation initiation and propagation (detonative combustion) takes place several orders of magnitude faster than any of the other flow processes in or surrounding the device. finite rate chemistry is not included in the simulations. Instead the equation of state for the flow in the chamber immediately after detonative combustion was adjusted to represent the correct physical state of the combustion products. Initially the detonation wave travels from the closed end of the chamber towards the open aft end with a maximum velocity of 1800 m/sec and maximum pressure of  $20 * 10^5 Pa$ . The initiation of the main detonation wave is assumed to take place via a device proposed and successfully implemented by Helman, et al.;²² namely, a primary detonation is established in a small tube containing an oxygen rich mixture. This mixture requires a low initiation energy but will sustain a detonation which, in turn, is used to trigger the main detonation wave. We do not model the detonation tube; but, we assume that such a device is present to trigger the main detonation at t = 0. The distribution of pressure, velocity, and density of the detonation wave is defined through the selfsimilar solution for a planar detonation wave. A schematic of the detonation wave distribution in space in Figure 2 shows pressure, temperature and velocity as a function of the spatial extent of the detonation wave.

In Figure 3a simulation results are shown at time t = 0.64 m/sec in the form of pressure contours and particle paths from different locations inside and outside the detonation chamber. The free stream Mach Number is 0.8. From the pressure contour plots we observe that the detonation shock wave has left the chamber and is freely expanding outwardly in the external flow. The strong expansion of the detonation products into the ambient airstream produces a shock wave with a spherical-like front that rapidly decays in strength away from the source. A large toroidal vortex is created as a result of the interaction of the expanding detonation products with the external flow. The vortex is carried away quickly from the chamber by the external flow and by its own momentum. At the time shown in Figure 3a, the detonation products are almost fully expanded into the ambient air and the maximum pressure at the front of the shock wave is 1.2 atm. As a result of this expansion the detonation products inside the detonation chamber are overexpanded and their pressure is 0.45 atm.

In the upper frame of Figure 3a we show particle paths for the marker particles introduced inside the chamber and outside just above the nozzle exit. Examination of these trajectories allows us to follow the dynamics of the chamber evacuation and subsequent refill. In order to track the detonation products we initially place marker particles inside the chamber at three separate cross sections in clusters of four. Each particle has a different color; however, particles in the same cluster have the same shade of color. At the three chosen cross sections we have designated shades of red, yellow. and blue for the particles located correspondingly at the left chamber end, center and aft end of the nozzle cross section. The movement of these particles is shown by connecting them with a continuous line beginning with particle location at t = 0 to the present time. In Figure 3a we observe that at time  $t = 0.64 \times 10^{-3}$  sec all particles originally in the nozzle cross section (the cross section at the aft end) and three of the particles originally in the mid section have left the detonation chamber. However, particles originally introduced at the inner end wall of the chamber (red traces) have only advanced to the nozzle region.

We use a different particle technique for observing the motion of the ambient gas outside the chamber. Here a cluster of seven particles is introduced every  $0.5 * 10^{-4}$ seconds in the external flow above the nozzle. All such particles are traced as they move with the flow until they leave the computational domain. At any given time only the current location of the particle is displayed, and since the particles are introduced periodically with time, there are many particles to trace. We assign a color to every cluster of external particles to keep track of the time when they were introduced in the calculation. The colors vary from magenta for those particles introduced early in the calculation, to blue for those introduced near the end of a detonation cycle. In Figure 3a, which corresponds to early times, only 12 clusters of external particles are visible. These clusters were introduced from t = 0 to  $0.6 \pm 10^{-3}$  second, vary from magenta to red in color. and are tracking the expanding flow of the detonation products.

In Figure 3b the simulation results for the same case are shown for  $t = 1.4 * 10^{-3}$  sec. The pressure contours show that a strong stagnation point develops on the axis of symmetry downstream at  $\approx 25$  cm as a result of a strong expansion of the Mach 0.8 external flow around the engine. At this time it is evident from the particle trajectories that most of the detonation products have left the chamber. Figure 3b also shows that only traces of the particles originating at the back wall of the detonation chamber are left in the computational domain. These particles advanced to the aft end of the chamber and then following the contraction of the over expanded detonation products, reversed their flow direction. The pressure contour plots in Figure 3b show the formation of an additional stagnation point at the closed end wall of the detonation chamber resulting from the inverse flow of the detonation products. The average pressure in the chamber is below ambient and is  $\approx 0.55$  atm.

The marker particles released outside and just above the nozzle exit show two distinct flow paths. One path takes the flow past the stagnation point to the far right of the detonation chamber; this flow path is marked by the four upper particle traces. Another flow path, marked by three lower particles released close to the external wall of the chamber, are deflected from the stagnation region towards the detonation chamber exit. The magenta color of these particles indicates they were released at  $t \approx$  $0.6 \pm 10^{-3}$  sec.

Figure 3c corresponds to the simulation time  $t = 2.2 \pm 10^{-3}$  sec. The pressure inside the chamber has risen to  $\approx 0.8$  atm. The stagnation region at the closed end of the detonation chamber continues to develop and has produced a compression wave moving toward the open end of the chamber. The particles marking the movement of fresh air into the chamber show these to be well inside the chamber, with some reflecting from the end wall and contributing to the pressure at the second stagnation point. The circular motion of a few of the detonation products particles (red solid lines), indicates that the detonation products which did not expand with the first shock wave are now "trapped" inside the detonation chamber.

Figures 3d and 3e correspond to the end of the first cycle when the detonation chamber should be filled with fresh charge and ready for the next detonation. However, these figures indicate that the fresh air refill is not totally satisfactory for this chamber configuration. The marker particle paths indicate that the chamber refill is incomplete and at a time of  $t = 4.7 \times 10^{-3}$  sec the refill process has essentially stopped. As a result, only about a third of the detonation chamber volume has enough fresh air for the next detonation cycle.

In Figure 4 the total force and time averaged thrust generated by the device in the simulations just discussed, are shown as a function of time. The time averaged thrust is based on the total time for one cycle defined as  $7.0 \pm 10^{-3}$  sec. This time is equivalent to a detonation frequency of 140 Hz. As seen in the figure, initially a very large force of  $\approx 3.2 \pm 10^3$  lb is felt on the end wall of the detonation chamber. This force is a result of the high pressure behind the detonation wave. It rapidly decays and at  $t \approx 0.5 * 10^{-3}$  sec changes sign due to over expansion and dynamic pressure of the external flow. This effect is noticeable in the thrust data; the average thrust increases rapidly but decreases after reaching levels of  $\approx 55$  lbs. At the end of the simulation the thrust is actually negative  $\approx -20$  lbs. The average thrust for one cycle in this case will be  $\approx 10$  lbs.

The simulation just described has served to illustrate the information generated with the numerical simulations. For the remaining simulations, emphasis was placed on determining the effects of propagation direction of the main detonation wave, effects of inlet and valve geometry, detonation chamber geometry and Mach number. Many of the simulations produced unsatisfactory results from the point of view of ineffective fresh air refill and hence either not enough fresh charge for repetitive detonations or too slow a refill resulting in low detonation frequency. We give below examples of successful simulations at Mach 0.8, Case 2 and Mach 2, Case 3.



Figure 4. Time averaged thrust and force data from simulation of Case 1.

<u>Case 2</u>. The results from all simulations show that, irrespective of the inlet geometry, but with a straight nozzle and initial detonation position at the nozzle exit plane, sufficient thrust levels can be produced. A remaining problem in view of the objectives is to demonstrate that enough fresh air can be injected into the chamber to produce the required conditions for intermittent detonation at a frequency of 140 Hz. To accomplish this, we have considered a contoured inlet in the periphery of the end wall of the detonation chamber. The details of this inlet geometry and the computational grid are shown in Figure 5.

For the initial tests with this inlet no attempt was made to optimize the inlet geometry for a given flow regime. Figures 6a-f present results for the simulation of the chamber geometry shown in Figure 5.

The flight Mach number in this case is 0.8. The initial detonation wave is launched inwards and its energy parameters are the same as in all previous cases. In Figure 6a we see two distinct shock waves expanding into ambient air: one generated by expansion from the aft of the chamber and another produced by the expansion through the inlet. We also notice some particles tracing the motion of the detonation products flowing out through the inlet. In Figure 6b, at time  $t = 0.7 * 10^{-3}$ sec., fresh air is noted entering the chamber through the inlet. At this time the dominant pressure in the chamber is 0.77 atm. Figure 6c shows that at the time  $t = 1.4 * 10^{-3}$  sec. 3/4 of the detonation chamber is filled with fresh air. The strong air jet entering the chamber impinges the axis of symmetry, creating two large vortices which rotate in opposite directions. Such vortical motion would promote effective fuel-air mixing in the chamber. In Figure 6d,  $t = 2.4 * 10^{-3}$  sec., the fresh air stream begins to exit the chamber. At this point the mixture inside the chamber has achieved the required conditions for the next detonation. This result translates to a sustained detonation frequency of  $\approx 400$  Hz. In Figures 6e-f we follow the later evolution of the flow pattern inside and outside the chamber. We observe strong air flow through the inlet with a strong recirculation pattern, which will assure fuel air mixing even if the fuel is injected into the chamber with a delay to sustain intermittent detonation at a lower frequency. In Figure 7 thrust and force simulated for the last case are shown as a function of time. First we notice that the maximum thrust for this case is  $\approx$  70 lbs., somewhat lower than for the cases with a very simple annular inlet and completely flat end walls.



Figure 5. Computational grid for the inlet geometry used in simulation of Case 2.

This results from a reduction of the area normal to the propagation direction of the detonation wave due to the inlet geometry. It is surprising that the case with the inlet results in a reduction of the average thrust as a function of time that is almost the same as for a case without inlet at the same Mach number ( $\approx 90$  lb reduction without the inlet and 100 lb reduction with the inlet). This strongly indicates that the generic inlet we have just considered will not contribute significantly to the drag produced by the chamber dynamics and interaction with the ambient flow. The cycle average thrust generated by the PDE based on 150 Hz operation frequency in this case is  $\approx 100$  lbs. This value is somewhat larger than the thrust targeted for this study.



Figure 7. Time averaged thrust and force data from simulation of Case 2.

<u>Case 3</u>. Results for a Mach 2.0 simulation of the same geometry as in the previous simulation; but with a more geometrically complex inlet are shown in Figures 8a-b. The inlet geometry for this case was determined from near choked flow conditions in the throat region of the inlet. In addition to the pressure contours and particle paths, in this case we also show velocity vectors. We observe in these figures that the detonation chamber is quickly filled with fresh air at the time  $t = 1.3 * 10^{-3}$ sec., which corresponds to a detonation frequency of 700 Hz. In practice this high frequency will be difficult to realize, because of the mixing and initiation problems. In Figure 9 we show angle and force results for this simulation. We observe that after  $3.0 * 10^{-3}$  sec. the net average thrust is still 50 lbs.



Figure 9. Time averaged thrust and force data from simulation of Case 3, 140 Hz detonation frequency.



Figure 10. Time averaged thrust and force data from simulation of Case 3, 200 Hz detonation frequency.

The cycle averaged thrust based on 140 Hz detonation frequency, for this simulation is  $\approx$  70 lbs. However, as

previously mentioned the fresh air refill time allows a much higher frequency of detonations. Figure 10 shows the same results as Figure 9, but calculated for a 200 Hz cycle frequency. In this case the maximum average thrust is  $\approx 280$  lbs. and the net cycle averaged thrust is  $\approx 100$  lbs. This result indicates the promising potential of the PDE concept for supersonic propulsion.

## 4. Conclusions

In this section we present our conclusions reached after carrying out a review of past research on detonative propulsion and a detailed numerical simulation of a generic pulsed detonation engine (PDE) device. The primary conclusion is that the PDE shows promising potential in providing primary propulsion for a range of present day aerodynamic vehicles such as target drones. PEN.AID missiles and other smart missiles that require loitering and throttling capability. The operating flight regimes of such a propulsion engine may extend from the low subsonic to supersonic regimes.

Most of the past attempts at producing thrust based on an intermittent detonation cycle were carried out with the same basic experimental set-up; namely, a long straight detonation tube employing forced fuel injection at the closed tube end. We have pointed out the reasons²⁵ why such a device cannot take proper advantage of the physical processes associated with detonative combustion. We have also indicated that, because of the conclusions reached during experiments with such devices, the development of intermittent detonative propulsion was adversely prejudiced and stalled at an early stage.

The experiments performed at the Naval Postgraduate School based on a self-aspirating mode of operation for a pulsed detonation thruster produced very useful results which, upon further examination, provide us with a route towards practical detonation engines of variable thrust levels that are both controllable and scalable. A generic PDE device based on the NPS experiments was conceptualized and served as the basic model for a comprehensive series of numerical simulations. The goal of the simulations was to understand the parametric dependence of the PDE device variables on propulsion performance such as thrust and detonation cycle frequency.

The principle conclusions drawn from the simulation results are as follows. First, the target thrust and cycle frequency of 60-90 pounds and 140 Hz, respectively, have been realized in the simulations. These target values were dictated by knowledge of present day requirements for planned aerodynamic vehicles such as PENAID devices. Before proceeding, it is appropriate to mention again that the performance of the PDE device is governed entirely by unsteady flow processes. Note of the wave averaging effects which had been predicted by previous studies were found and, it was shown dramatically that the internal (detonation, expansion, refill and mixing) flow processes are directly coupled to the external (shock formation, stagnation point formation, vortex shedding, etc.) flow processes. These two flows must be simultaneously analyzed if a reliable estimate of performance is to be determined. The present study is the first fully unsteady computational analysis of an intermittent detonation scheme with realistic geometry and external flow computed self-consistently.

The simulations further showed that the best thrust performance was realized when the full kinetic energy of the detonation wave was captured on the thrust surface (the closed end wall of the detonation chamber). This indicates that the detonation initiation must be controlled; the ignition must take place in the vicinity of the exit plane of the chamber resulting in initial propagation of the wave towards the chamber wall. The magnitude of the total and time averaged thrust is a strong function of the strength of the wave, the cross-sectional area of the end wall normal to the wave direction, and a weak function of the specific geometrical details of such variables as valve or inlet shape. The simulations also showed that for most situations involving simple inlets (flat cylindrically symmetric openings in the chamber external wall) the thrust data was independent of whether the valve intermittently opens or remains open during the full cycle. This leads to the possibility of a permanently open valve and a no moving parts manifestation of a PDE device. The thrust data indicates a dependence on the external flight conditions, e.g. Mach number. The Mach number plays a role in the wave drag that the geometry of the PDE will incur; the details of the valve and inlet configurations figure prominently in the total wave drag.

On the other hand the simulations showed that the timing of the fresh air refilling required to recharge the chamber for subsequent detonations is a strong function of the details of the valve and inlet geometry, the expansion of the combustion products, the resulting overexpansion of the chamber flow and, the external flow regime and interaction of the external flow with the internal flow. For subsonic flight, Mach 0.2-0.9, the fresh air entering the chamber comes from two separate principal flow processes; one comes from the flow through any valve or inlet and the other comes from the selfaspiration or reverse flow from the aft end of the chamber due to strong over-expansion. All these processes are interdependent, as reported in Section 3, and, in order to search for a given performance in a given device requires variation of many parameters. The simulation results obtained to date provide an understanding of the effects caused by variation of the above mentioned parameters, and with the information available we are able to conclude that a PDE propulsion unit can be optimized (although no optimization studies were carried out) for a given flight regime. In order to find an optimum configuration satisfying given performance over a wide flight regime a more extensive simulation study will be required. It was mentioned earlier that the simulations presented here were carried out under the assumption of inviscid flow; boundary layer effects were not included. The addition of boundary layers to the PDE engine inlets and valves, the only components where boundary layers will be significant, will lead to increased performance. Roughly the same amount of fresh air will flow into the over expanded detonation chamber but at a somewhat slower rate and in a pattern that will promote enhanced circulation and hence fuel/air mixing. We return to the issue of optimization below.

We give now results from sample performance calculations of the application of the PDE device to proposed aerodynamic vehicles such as a PENAID missile based on the results from our simulations. These predictions are based on point design data for an inlet geometry which has not been optimized. We believe that increased performance can be found through a systematic optimization of the PDE device characteristics. First we consider the Mach 0.8 case and the inlet described in Case 2.

The maximum operation frequency for the device is 400 Hz. The following performance is a consequence of the simulation data:

For a frequency of 100 Hz.:

Thrust.	79 lb.
Fuel flow rate	.025 lb./sec.
Fuel weight for 12 min.	18 lb.
Oxygen weight.	1.8 lb.
Fuel for detonation tube.	0.6 lb.
Total oxygen and fuel weight.	20.4 lb.
Total engine weight	<b>30.2</b> lb.
Specific fuel consumption 1.14	lb./(lb.*hr.)

Assuming the PDE device geometry is kept fixed. a higher detonation frequency will result in a linear increase in thrust and fuel flow rate at the same specific fuel consumption. For example, if the detonation frequency is increased to 200 Hz., the performance data are:

Thrust	157 lb.
Fuel flow rate	0.05 lb./sec.
Fuel weight for 12 min	
Oxygen weight	
Fuel for detonation tube.	
Total oxygen and fuel weight	40.8 lb.
Total engine weight.	54.4 lb.
Specific fuel consumption	1.14 lb./(lb.*hr.)
•	

At lower Mach numbers, M=0.5, the maximum operating frequencies will be lower since the external dynamic pressure responsible for supplying fresh air to the chamber is also lower. For the device under consideration here the maximum frequency is 250 Hz.

For a frequency of 100 Hz.:
Thrust
Fuel flow rate 0.025 lb./sec.
Fuel weight for 12 min
Oxygen weight
Fuel for detonation tube
Total oxygen and fuel weight
Total engine weight
Specific fuel consumption 0.9 lb./(lb.*hr.)

Again, if the frequency is increased the thrust will increase linearly; operation at 200 Hz. yields:

Thrust	b.
Fuel flow rate 0.05 lb./see	c.
Fuel weight for 12 min	<b>)</b> .
Oxygen weight	Ь.
Fuel for detonation tube 1.2 lb	<b>)</b> .
Total oxygen and fuel weight 40.8 lb	
Total engine weight	).
Specific fuel consumption	)

The examples of performance of PDE devices given above are based on point design conditions arising from the simulations discussed in Section 3 of this report. They cannot be extrapolated with any degree of reliability to other conditions or configurations. We conclude however, that the performance computed for the indicated device is encouraging from the point of view of thrust, thrust control, simplicity of the device (no moving parts) and specific fuel consumption (SFC). The specific fuel consumption computed above is competitive with present day small turbojet engines. The SFC for a PDE could be significantly lower than for small turbojets (SFC's for small turbojets are in the range of 1.8-2.0 lb./(lb.*hr.)). Thus, for a given mission and vehicle, a PDE propulsion unit would be more fuel efficient resulting in increased range. Moreover, if the expected thrust control in PDE's is realizable, it may be possible to produce propulsion units that can slow down, loiter and maneuver and finally accelerate to full thrust again rapidly.

A final conclusion can be made concerning the application of PDE's to supersonic vehicles. As shown in the simulations the ability to refill the detonation chamber with fresh air charge is a very strong function of valve and inlet geometry. Refilling may also be somewhat enhanced by the self-aspiration effect, but; to a much less extent than in the subsonic case. The example of supersonic operation discussed in Section 3 shows that care must be taken in design of the inlet or valve configuration. The flow in the chamber must allow for refill and fuel/air mixing. More than likely choked flow conditions will be required at the inlet entrance to the chamber. This could lead to complications in the design of a PDE with simple geometry; choked flow conditions are a function of the external Mach number and a fixed inlet will be optimal only for a small range of the operating envelope. On the other hand, if a given vehicle is to fly at supersonic speeds and is launched at supersonic speeds, this problem may not appear. Further, if the given vehicle is launched at subsonic speeds and a booster is used to bring it up to the required supersonic operating speed, the problem may again not appear. We conclude that the PDE has potential for the supersonic flight regime and it is not excluded that a configuration can be found which will operate over the flight regimes 0.2 < Mach number < 3 in a fuel efficient manner.

Finally it is appropriate to speculate that the PDE concept is a candidiate for a hybrid propulsion device. Consider the following scenario. At low altitudes, up to 30-50 km, and at speeds ranging from low supersonic to hypersonic (2 < Mach number < 10) an air breathing engine can operate. Above these conditions air breathing is not effective and rocket propulsion is required. A PDE can operate in an air breathing mode as long as the external conditions allow it, and when no longer possible, the detonation chamber may be considered a rocket chamber in which detonation occurs with the fuel and oxygen supplied from on-board storage. Similar considerations have been made for NASP propulsion; serious penalties are made in that large quantities of fuel must be carried. However, for vehicles such as the current Pegasus, a PDE propulsion device may be attractive from the point of view of thrust control over a large portion of the flight envelope.

### Acknowledgements

The authors would like to express appreciation to Drs. Adam Drobot and Aharon Friedman of SAIC for helpful suggestions and advice during the course of this work. The work reported on here was supported by DARPA under contract N66001-88-D-0088. The authors would like to thank Col. Doc Daugherty for his encouragement and interest in this project.

## References

- Stodola, A., Steam and Gas Turbines. McGraw-Hill Inc., 1927.
- Zipkin, M. A., and Lewis G. W., "Analytical and Experimental Performance of an Explosion-Cycle Combustion Chamber of a Jet Propulsion Engine." NACA TN-1702, Sept. 1948.
- 3. Shultz-Grunow, F., "Gas-Dynamic Investigation of the Pulse-Jet Tube," NACA TM-1131, Feb. 1947.
- Zinn, B. T., Miller, N. Carvelho, J. A., and Daniel B. R., "Pulsating Combustion of Coal in Rijke Type Combustor," 19th International Symposium on Combustion, 1197-1203, 1982.
- Hoffmann, N., "Reaction Propulsion by Intermittent Detonative Combustion," Ministry of Supply, Volkenrode Translation, 1940.
- Nicholls, J. A., Wilkinson, H. R. and Morrison, R. B. "Intermittent Detonation as a Thrust-Producing Mechanism." Jet Propulsion, 27, 534-541, 1957.
- Dunlap, R., Brehm, R. L. and Nicholls, J. A., " A Preliminary Study of the Application of Steady State Detonative Combustion of a Reaction Engine", ARS J., 28, 451-456, 1958.
- Nicholls, J. A., Gullen, R. E. and Ragland K. W., "Feasibility Studies of a Rotating Detonation Wave Rocket Motor," Journal of Spacecrafts and Rockets, 3, 893-898, 1966.
- Adamson, T. C. and Olsson, G. R., "Performance Analysis of a Rotating Detonation Wave Rocket Engine," Astronautica Acta, 13, 405-415, 1967.
- Shen. P. I., and Adamson, T. C., "Theoretical Analysis of a Rotating Two-Phase Detonation in Liquid Rocket Motors," Astronautica Acta, 17, 715-728, 1972.
- Krzycki, L. J., Performance Characteristics of an Intermittent Detonation Device, Navweps Report 7655, U. S. Naval Ordnance Test Station, China Lake, California 1962.
- Matsui, H., and Lee, J. H., "On the Measure of the Relative Detonation Hazards of Gaseous Fuel-Oxygen and Air Mixtures," Seventeenth Symposium (International) on Combustion, 1269-1280, 1978.
- Korovin, L. N., Losev A., S. G. Ruban and Smekhov, G. D. "Combustion of Natural Gas in a Commercial Detonation Reactor," Fiz. Gor. Vzryva 17, 86 (1981).
- Smirnov, N. N., Boichenko, A. P., "Transition from Deflagration to Detonation in Gasoline-Air Mixtures," Fiz. Gor. Vzryva 22, 65 (1986).
- Lobanov, D. P., Fonbershtein, E. G., Ekomasov, S. P., "Detonation of Gasoline-Air Mixtures in Small Diameter Tubes," Fiz. Gor. Vzryva 12, 446 (1976).

- Back, L. H., "Application of Blast Wave Theory to Explosive Propulsion," Acta Astronautica 2, 391 (1975).
- 17. Varsi, G., Back, L. H., and Kim, K., "Blast Wave in a Nozzle for Propulsion Applications," Acta Astronautica, 3, 141 (1976).
- Kim, K., Varsi, G., Back and L. H., "Blast Wave Analysis for Detonation Propulsion," AIAA Journal 10, Oct. 1977.

1

- 19. Back L. H., Dowler, W. L. and Varsi, G., "Detonation Propulsion Experiments and Theory," AIAA Journal 21, Oct. 1983.
- Eidelman, S., Shreeve, R. P., "Numerical Modeling of the Nonsteady Thrust Produced by Intermittent Pressure Rise in a Diverging Channel," ASME FED Multi-Dimensional Fluid Transient 18, 77 (1984).
- 21. Eidelman, S., "Rotary Detonation Engine," U.S. Patent 4 741 154, 1988.
- Helman, D., Shreeve, R. P., and Eidelman, S., "Detonation Pulse Engine,", AIAA-86-1683, 24th Joint Propulsion Conference, Huntsville, 1986.
- Monks, S. A., "Preliminary Assessment of a Rotary Detonation Engine Concept," MSc Thesis, Navai Postgraduate School, Monterey, California, Sept. 1983.
- Camblier, T. L. and Adelman, N. G., "Preliminary Numerical Simulations of a Pulsed Detonation Wave Engine," AIAA-88-2960, AIAA 25th Joint Propulsion Conference, Boston 1988.
- Eidelman, S., W. Grossmann, I. Lottati, "A Review of Propulsion Applications of the Pulsed Detonation Engine Concept," AIAA 39-2466, AIAA/ASME/ SAE/ASEE 25th Joint Propulsion Conference. Monterey, CA, July 10-12, 1989 (to be published in AIAA Journal of Propulsion).
- Lottati, I., S. Eidelman, A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," Paper AIAA 90-0699, 28th Aerospace Sciences Meeting, Reno. CA, Jan 8-11, 1990.











a) t = 1.3 msec,



b) t = 2.1 msec,

Figure 8 Pressure contours and marker particle paths for Case 3, M = 2.0, sculptured inlet, outward initial detonation location.



AIAA-90-0699

## A FAST UNSTRUCTURED GRID SECOND ORDER GODUNOV SOLVER (FUGGS)

Itzhak Lottati, Shmuel Eidelman, and Adam Drobot Science Applications International Corporation McLean, VA

# **28th Aerospace Sciences Meeting**

January 8-11, 1990/Reno, Nevada

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 370 L'Enfant Promenade, S.W., Washington, D.C. 20024

## A FAST UNSTRUCTURED GRID SECOND ORDER **GODUNOV SOLVER** (FUGGS)

## Itzhak Lottari, Shmuel Eidelman, and Adam Drobot

Applied Physics Operation Science Applications International Corporation McLean, Virginia 22102

## ABSTRACT

We describe a new technique for solving Euler's equations on an unstructured triangular grid with arbitrary connectivity. The formulation is based on Godunov methods and is second order accurate. The use of a unique data structure leads to an easily vectorized and parallelized code with speed and memory requirements comparable to those found with logically structured grids. The new algorithm has been tested for a wide range of flow conditions ranging from low speed subsonic flow to hypersonic flow with Mach number 32. The results obtained are comparable to or better than those obtained with leading flow solvers in all of the regimes tested. The code contains no free parameters and can be used in complex flow problems where a variety of flow conditions may be encountered.

#### INTRODUCTION

This paper introduces a new second order algorithm for solving the Euler equations on an unstructured grid, using an approach based on first and second order Godunov methods. The formulation presented here leads to an extremely efficient and fast Flow Solver which is fully vectorized and easily lends itself to parallelization. The low memory requirements and speed of the method are due to the use of a unique data structure.

Explicit hydrodynamic numerical algorithms are easily adapted to Massively Parallel Computers (MPC) for logically structured grids. This is a consequence of the fact that the calculation of the flow quantities are locally determined. For logically structured quadrilateral grids, the integration algorithm or Flow Solver computes the new flow values at the grid cell nodes (or centers) using the values of the flow parameters from the previous timestep employing four or more of the adjacent nodes. Higher order structured solvers are usually more computationally intensive, but retain the ability of the solver algorithm to be separated into several distinct steps, each of which can easily be vectorized and parallelized.

Until recently, most CFD simulations were carried out with logically structured grids and consequently vectorization and/or parallelization did not present a problem. The increased need for simulation of flow phenomena in the vicinity of complex geometrical bodies and surfaces has led to the emergence of CFD codes based on logically unstructured grids. The most successful of these unstructured grid codes are based on finite elements [1-6] or finite volume [7-12] methods.

Unstructured grid CFD computations in two-dimensions usually decompose the simulation domain into triangular clements. The physical location of the triangular elements and the accompanying list of vertices and edges is random with respect to the element index, making it necessary to maintain an indirect addressing system containing the connectivity information.

Calculations performed on unstructured grids evolve around the elemental grid shape (e.g. the triangle for twodimensional problems); there is no obvious pattern to the order in which the local integrations should be performed. Explicit integration of hydrodynamic problems on an unstructured grid requires that a logical substructure be created identifing the locations in the global arrays of all the local quantities necessary for the integration of one element. As a result, there is usually a significant cost in computational efficiency, memory requirement, and code complexity: Approaches to vectorization for the conventional unstructured grid methods have concentrated on rearrangement of the data structure in a manner such that these locally centered data structures appear as global arrays. This can be done to some extent using machine dependent Gather-Scatter operations. Additional optimization can be achieved using localization and search algorithms [13]. However, these methods are complex and result in marginal performance. To date, most optimized unstructured codes have run considerably slower and require an order of magnitude more memory per grid cell than their structured Parallelization of the conventional counterparts. unstructured codes is even more difficult, and there is very little experience with unstructured codes on Massively Parallel Computers.

The method we describe in this paper overcomes these difficulties and results in code with speed and memory requirements comparable to those found in structured grid codes. Moreover, the ability to construct grids with arbitrary resolution leads to a flexibility in dealing with complex geometries which is not attainable with structured grids. The essence of the method is based on independent flux calculation across the edges of a dual baricentric grid, followed by node integration. This approach allows the flux and integration calculations to be performed on global arrays, coded as large vector loops, and is independent of element position on the unstructured grid.

In this paper we discuss our choice for data structure. the numerical algorithm (for first and second order solvers), and the results of test calculations. In realistic CFD

This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

1

problems the physical domain may contain regions that span all flow regimes. It is very important that the numerical code be able to perform well over the full range of flow parameters with no a priori code "refinement." This is especially true of complex problems where flow conditions cannot be easily assessed in all subdomains. A robust code has clear advantages if it is possible to apply it with confidence under such circumstances. We have chosen four test problems to benchmark and validate the FUGGS code. These include: i) a subsonic flow case for steady flow with M = 0.2; ii) supersonic steady flow with M = 2.0; iii) hypersonic steady flow with M = 32.0; and iv) transit supersonic flow in a shock tube and over a wedge. For all of the test cases the method developed resulted in accurate solutions comparable to or better than reported in the literature by other leading CFD researchers. At the same time, the combination of using unstructured methods and our specific implementation yielded the lowest utilization of computer time and memory needed to achieve a given level of accuracy.

#### DATA STRUCTURE

On an unstructured grid, the data that describes the connectivity of a grid and the associated geometrical coefficients can represent a considerable overhead on memory usage. We have implemented a rather simple data structure which permits efficient finite difference integration of fluid quantities with only one level of indirection. For two dimensions, the data consists of lists of vertices, edges, and triangles. The physical quantities are stored at vertex locations. The vertex list consists of: the vertex positions (x,y), the fluid variables, the vertex volume, and workspace. The edge data is composed of: the addresses of the two vertices which form an edge, a vector which indicates the normal to the face that crosses an edge, the face area, and storage for the fluxes. The face is formed by joining the baricenters of the adjoining triangles which lie along the edge. This is the only data required in performing an iteration step. For convenience and ease of diagnostics, we have also maintained a list of triangles, including the positions of the baricenters, and the addresses of both the vertices and edges which form a triangle.

The data structure is compatible with algorithms which decompose the solution of the Euler equations into two steps. The first is determination of the fluxes. This can be realized by a loop over edges where the fluid quantities along the edge can be fetched through the indirect addressing of vertex data. The second step is to integrate the fluxes which contribute to the vertex. There are two options here: one is to maintain a list of flux elements at each vertex and to perform a loop over vertices and then fluxes to each vertex; the other is to again have a loop over edges where each contribution to the vertex is done as a random fetch and store using the appropriate vertex addresses stored by each edge.

## **BASIC INTEGRATION ALGORITHM**

We begin by describing the first order Godunov method for a system of two-dimensional Euler equations written in conservation law form as

$$\frac{\overrightarrow{\partial Q}}{\partial t} + \frac{\overrightarrow{\partial F}}{\partial x} + \frac{\overrightarrow{\partial G}}{\partial y} = 0, \qquad (1)$$

where,

$$\overrightarrow{Q} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ e \end{pmatrix}, \quad \overrightarrow{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ (e + p)u \end{pmatrix}, \quad \overrightarrow{G} = \begin{pmatrix} \rho \\ \rho vu \\ \rho v^2 + p \\ (e + p)v \end{pmatrix}.$$

Here u and v are the x and y velocity vector components, p is the pressure,  $\rho$  is the density and e is the total energy of the fluid per unit volume. It is assumed that a mixed (initial conditions, boundary conditions) problem is properly posed for the set of equations (1), and that an initial distribution of the fluid parameters is given at t = 0, and the boundary conditions defining a unique solution are specified for the computational domain.

We seek a solution of the system of equations represented by Eq. (1) on a computational domain which is decomposed into triangles with arbitrary connectivity. An overwhelming advantage of using this method of domain decomposition is the ability to resolve extremely complicated geometries where the characteristic dimensions of subdomain features can vary over many orders of magninude.

As an example, Figure 1 shows an unstructured triangular grid used in the simulation of flow for a new generation of the wide body tennis rackets with 21 cross string rows represented as solid circles and a tennis ball. In Figure 1a a blowup of the region near the racket surface is shown. This example illustrates the ability of the unstructured grids to represent geometry of arbitrary complexity and with localized resolution.

There are several options possible for storing physical information on an unstructured triangular grid: i) vertex centered; and ii) triangle centered on either a baricentric or Voronoi node. The selection of a specific grid structure offers two contrasting approaches. The first is to place the effort on creating an optimal grid, as is the case with Voronoi - Delauney meshes, while the second is to rely on the robustness of the integration algorithm. For complex configurations it is more difficult to achieve an optimum Voronoi-Delauney mesh and we have therefore opted for a simple baricentric grid.

This grid can always be constructed for a set of arbitrary triangles. The integration algorithm we have constructed can easily be implemented for both vertex and baricentered control volumes. Figure 2 displays a fragment of such a computational domain with the corresponding dual grid. The secondary or dual grid is formed by connecting the baricenters of the primary mesh, thus forming finite polygons around the primary vertices. Independent of the remarks made in Ref. 17 concerning usefulness or Dirichlet tessellation, we have confirmed that the best practical representation of the integration volume is obtained when the dual grid is formed by connecting baricenters of the triangles.



Figure 1 An illustration of the ability of a triangular grid to efficiently resolve the geometric complexity and features of objects with disparte spatial scales.



Figure 1a Detail showing the features of a wide body tennis racket simulation including 22 strings and a tennis ball.

In keeping with the philosophy that the overall scheme should be able to perform in all flow regimes with no prior tuning of "free" parameters, we have chosen Godunov methods for performing the numerical integration of the Euler equations in the control volume. These schemes are self consistent and do not contain any adjustable knobs. The superior performance of Godunov type schemes for logically structured grids is well documented and the advantages can be readily realized on triangular grids. Integration by the Godunov method consists of two basic steps: i) determination of the fluxes on the faces of the dual grid, which defines the control volume. This is accomplished by solving a set of one-dimensional Riemann problems along triangle edges; and ii) integration of the system of partial differential equations, which now amounts to a summation of all the fluxes for the vertex-centered control volume at each timestep.



Figure 2 A triangular grid and the baricentered dual grid which defines the control volume. The fluxes are found on the faces of the control volume on each edge joining adjacent vertex points.

To define the fluxes flowing into the control volume shown in Figure 2, it is necessary to solve the Riemann problem along every edge of the primary grid and transverse to the faces of the dual grid. For example, to define the flux through the face ab, we solve the Riemann problem between vertices A and B. The solution of this problem is in coordinates local to the face of the dual grid ab so that the tangential component of velocity will be directed along ab. Implementation of our approach requires maintaining strict consistency when defining the "left" and "right" states for the Riemann problem at the faces ab, bc, cd, de, ef, and fa. For this reason we define not only the location of the vertices and areas of the faces but also the direction of the areas with respect to the primary grid edges. For the clockwise integration pattern in a polygon, vertex A will be the "left" state for all the Riemann problems related to this point and the neighbors will represent the "right" sides of the diaphragm.

It is easy to see that the flux calculation is based on information at only two nodes and requires simple geometrical parameters defining the face of the secondary grid which dissects the line connecting the two points. Thus, we can find all the values needed for the flux calculation in one vector loop over all edges of the primary grid without requiring any details related to the geometrical structures which these edges form. This in turn assures parallelization or vectorization of the algorithm for the bulk of the calculations involving the Riemann solver, which provides the first order fluxes.

The only procedure not obviously parallelizable is the integration of the fluxes for the flow variables at the vertices of the grid.

This operation requires a random fetch and store which can lead to conflicts that impair both parallelization and vectorization. Several common methods have been developed to deal with this difficulty. A practical approach is to split the integration of the fluxes into a small number of independent loops through the use of "edge" coloring. The number of loops necessary is determined by the maximum connectivity of any vertex in the domain and is usually 7 or 8. Each of these loops is usually large enough not to impair vectorization. At this stage all the fluxes are added with their correct sign corresponding to the chosen direction of integration within the cell. The amount of computation required here is minimal since the fluxes are known and need only to be multiplied at each time step by a simple factor and added to the vertex quantity. This simple procedure results in a first order solver which is fully vectorized.

## SECOND ORDER INEGRATION ALGORITHM

The second order solver is constructed along lines similar to that of the first-order method. At each cell face the Riemann problem is solved for the appropriate pair of left and right conditions. The solution to the Riemann problem is then used in calculation of fluxes, which are to be integrated later to advance to the next integration step. The extension to second order is achieved by using extrapolation in space and time to obtain time-centered left and right limiting values as inputs for the Riemann problem. The basic implementation of the method for finding the second order accurate fluxes is the same as for the one dimensional case and can be found in Refs. 14 and 16. The difference is the method of obtaining linear extrapolations for the flow variables as a first guess of their value on the faces of the dual grid. To obtain the initial guess we need to know the gradient of each gasdynamical parameter U at the vertices of the primary mesh. The value  $\forall$  U can be evaluated by using the linear path integral around the finite volume associated with the vertex. For venex A in Figure 2:

where integration along the path I in this case is equivalent to integration along the lines ab, bc, cd, de, ef, fa, and where n is a unit vector pointing outward from the control volume centered at A and normal to the integration path I. Knowing the gradient of the gasdynamic parameter in the volume related to vertex A allows us to extrapolate the values of this parameter at any location within the volume. This permits us to evaluate the first guess for U at the edges of the dual grid. The rest of the implementation of the second order algorithm is the same as described in Refs. 8 and 9. This includes monotonicity constraints similar to those introduced by VanLeer [15] and characteristic constraints described in Refs. 14 and 16.

A schematic of the basic steps for the second order algorithm is shown in Figure 3. This consists of five steps. They are: i) the calculation of the linearly extrapolated values at each side of the control volume faces using the left and right adjacent vertices and the values for each quantity and its gradient: ii) limiting the quantities obtained based on a monotonicity constraint; iii) a further limiter based on the solution of a one dimensional characteristic equation, which assures that the extrapolation does not violate the characteristics; iv) solution of the Riemann problem for the final extrapolated values with the limiters applied; and v) integration over the control volume.

The advantages of the method described will be demonstrated in the following section. The inclusion of the characteristic limiter has significantly improved the treatment of contact discontinuities and is the first such implementation on a triangular mesh.



Figure 3 Schematic for stepwise implementation of the second order Godunov method on an unstructured grid.

## **RESULTS FOR TEST PROBLEMS**

We have picked a set of test problems to demonstrate the performance of the FUGGS code for unsteady shock wave problems, and for subsonic, supersonic and hypersonic steady state flows. The cases in the chosen examples have analytical solutions that can be used to quantify the accuracy of the code and to validate the performance. This set of problems is frequently used by other CFD researchers and forms a basis for comparing FUGGS with other techniques.

#### . Unsteady Shock Problem

As a first test we have chosen a case of planar shock wave propagation in a channel.

A section of the grid used for this test problem is shown in Figure 4. The total grid contained - 2000 vertices with a resolution of 100 points in the direction of propagation. We simulated a simple shock tube problem on this grid where the gasdynamic parameters to the left and right of the diaphragm have the following values:

$$P_{I} = 1.0; \ \rho_{I} = 1.0; \ U_{I} = 0;$$
  

$$V_{I} = 0; \ \gamma_{I} = 1.4;$$
  

$$P_{r} = 0.1; \ \rho_{r} = 0.125; \ U_{r} = 0$$
  

$$V_{r} = 0; \ \gamma_{r} = 1.4.$$





This one dimensional problem was simulated on a rather ill formed grid (from the viewpoint of connectivity), Consequently the quality of the solution depended on the flow solver for accuracy. For the triangular shape of the elementary cell, planar shock and rarefaction waves generated by the solution always propagate at conflicting angles with respect to four out of the six edges of the control volume. The triangular grid chosen for this simple test problem therefore indicates the accuracy of FUGGS for shock waves of arbitrary shape and orientation moving through the computational domain. The density distribution found from three different versions of FUGGS is shown in Figure 5 as a function of x along the median cross section of the grid. The three cases are: i) first order Godunov method; ii) second order Godunov; and iii) second order Godunov with the characteristic limiter. The data displayed in the figure represents a loss of resolution due to interpolation of the actual grid values to the projected midsectional line. It is clear from Figure 5 that the final implementation of FUGGS with characteristic constraints yields the best results for contact discontinuities. The code also maintains the one dimensional structure for the shock in all three cases described above. The accurate representation of the density is also typical for all the other gasdynamic parameters.



Figure 5 Solution to the density distribution of shock problem with three different versions of FUGGS: a) First Order Godunov, b) Second Order Godunov without characteristics and c) Second Order Godunov with characteristics.

#### b. Shock on Wedge

Here we demonstrate the performance of the methods for steady supersonic flow simulations. An analytical solution from oblique shock wave theory exists and can serve as an unambiguous comparison with the numerical simulation.

The initial grid for the shock on wedge problem is shown in Figure 6. This gridding results in ~ 500 vertices and ~ 800 triangles. The wedge angle in Figure 6 is 10°. The incoming flow enters the computational domain normal to the left boundary at Mach number M=2. Figures 7a and 7b show isomach lines for the steady flow solution from the first and second order Godunov solvers on the original grid. Comparing these two solutions we can see that the second order solution substantially improves the shock resolution. However, it is obvious that the grid density is too small to adequately resolve the oblique shock wave in both cases.



Figure 6 Coarse grid for shock on wedge problem.



Figure 7a First order Godunov solution for the coarse grid shown in Figure 6.





To improve the accuracy a higher grid density is required in the region of discontinuity. This is achieved by subdividing the original elements of the grid in regions of large changes in flow parameters.

A variety of criteria can be devised to identify regions which require mesh refinement. An example is given in Ref. 2 where a preset condition is imposed on the resolution from local derivatives of the flow parameters. The implementation of this criteria in FUGGS would have led to a significant loss of computational efficiency because the stencil for the Laplacian is nonlocal and would require more than one level of indirectness. Instead we used a simple parameter variation criteria based on the local variation in pressure or density to select the grid regions needing refinement. Figure 8 shows an enhanced grid derived from the mesh shown in Figure 6 by two levels of subdivision. The number of triangles in this case increase from 800 to 1200. Figure 9 shows isomach lines of the solution using the second order method for the same shock on wedge problem as in Figures 7a and 7b. The improvement in shock resolution is dramatically noticeable. This problem also illustrates the ability of unstructured grid methods to provide local resolution for important flow features, without requiring excessive overhead for other regions of the computational domain.



Figure 8 Improved grid for the shock on wedge problem with two levels of refinement based on 5% variation in local value.



Figure 9 Second order Godunov solution for the shock on wedge problem using a grid with two levels of refinement.

#### c. Subsonic Flow

A challenging test problem to assess the performance of Euler codes for subsonic flow has been suggested by Pulliam (19]. He has computationally simulated a steady subsonic flow over an ellipse with major to minor axis ratio of 6:1. The numerical solution of Euler equations reported for this case at  $M_{\infty} = 0.2$  with angle of attack  $\alpha = 5^{\circ}$ produced a lift coefficient of  $C_L = 1.545$ . As is well known from D'Alembert's Paradox, inviscid flow at low Mach numbers should yield  $C_L = 0$  and have zero drag for a profile of an arbitrary shape. For this reason the problem posed by Pulliam is a good indicator of the accuracy and amount of artificial dissipation introduced by a numerical algorithm. Moreover, while a Euler solver is not meant to treat potential flow, a general purpose solver should be capable of simulating such flow conditions if they occur in a portion of a given problem without resorting to a different algorithm. In making a transition to full Navier-Stokes treatment, the use of a Euler solver is an essential step; it is important to have confidence that the artificial viscosity introduced does not dominate the solution.

For the case under consideration, it is very important to understand in detail the potential flow solution over an ellipse. Fortunately, the analytical solution is available and is relatively simple. The complex potential for the flow over a cylindrical ellipse is given by the following [20]:

$$F(z) = -\frac{1}{2} M_{oo}(a + b)e^{-i\alpha} \left[ \frac{z + \sqrt{z^2 - (a^2 - b^2)}}{a + b} + \frac{z - \sqrt{z^2 - (a^2 - b^2)}}{a - b} \right]$$

where Z = x+iy and  $M_{oo}$  is the Mach number. By taking the gradient of the potential we can find the velocity flow field explicitly:

$$\frac{U}{U_{ee}} = \frac{(1+\lambda)\sin(\theta+\alpha)\sin\theta}{\lambda^2\cos^2\theta+\sin^2\theta},$$

$$\frac{V}{U_{ee}} = \frac{(1+\lambda)\lambda\sin(\theta+\alpha)\cos\theta}{\lambda^2\cos^2\theta+\sin^2\theta},$$
(3)

where  $\lambda = b/a$  is the ratio of minor to major axis,  $\theta$  is the angle in polar coordinates from the center of the ellipse, and a is the angle of attack.

In examining this equation, we find that the maximum value of velocity is a strong function of  $\lambda$ . For an ellipse with  $\lambda = 1/6$ , the maximum value  $V/U_{\infty}$  occurs at  $\theta = 0$  or  $\pi$  and where  $V_{MAX}/U_{\infty} = 7 \sin \alpha$ . For a flat plate where  $\lambda \rightarrow 0$  the maximum velocity is infinite. The angle  $\alpha$ defines the distance between the stagnauon point where the velocity is zero (at  $\theta = -\alpha$  and  $\pi - \alpha$ ) and the point where the velocity is maximum (at  $\theta = 0$  and  $\pi$ ). For the case selected by Pulliam the distance between the point with minimum and maximum velocity is 0.19% of the length of the major axis.

This means that the gradient of velocity along the major axis of the ellipse in the vicinity of stagnation points is extremely high. With ~ 1000 points uniformly distributed on the surface of the ellipse, only one grid spacing is available to resolve both the stagnation point and the point at which maximum velocity occurs. Even though one would normally construct a nonuniform grid in the vicinity of the stagnation point, we estimate that enormous computational resources would be required to resolve the characteristic scale length for this problem. Traditional methods encounter difficulties in this situation because spatial splitting leads to a poor estimate of the gradient and the low connectivity of the mesh introduces spurious vorticity.

We performed two simulations for the conditions described by Pulliam. The number of nodes used on the surface of the ellipse is the same as in Ref. [19]. The grid is shown in Figure 10 for these simulations in the region immediately proximate to the ellipse. This grid is of poor quality and highly distorted; contains ~ 6000 vertices and ~ 130 points on the surface of the ellipse. The results are shown in the form of pressure contours in Figures 11 and 12 for the first order and second order solvers respectively. In the case of the first order algorithm, we obtained a lift coefficient of  $C_L = 0.29$ . The pressure contours for this simulation are not smooth, attributable to the low level of accuracy of the solver. The same situation resulted in  $C_L =$ 0.252 when computed with the second order solver, and as can be seen in Figure 12 the pressure contours are considerably smoother. The result presented by Pulliam was  $C_{\rm L} \approx 1.55$ , almost an order of magnitude higher than achieved with FUGGS. This highlights an important quality of our approach: the low generation of artificial viscosity. In comparison the lift obtained by Pulliam is as high as one would expect from thin profile theory and hence would mask real viscosity effects if they were added to the algorithm.



Figure 10 Section of the grid used in simulation of subsonic flow over an ellipse for conditions suggested by Pulliam [19].



Figure 11 First Order Euler Solution for 6:1 Ellipse. Pressure contours.  $\alpha = 5^{\circ}$ ; Mach = 0.2; 6065 vertices;  $C_{L} = 0.381$ ;  $C_{D} = 0.101$ .



Figure 12 Second Order Euler Solution for 6:1 Ellipse. Pressure Contours.  $\alpha = 5^{\circ}$ ; Mach = 0.2; 6065 vertices; C_L = 0.252; CD = 0.004.

We also simulated flow over a cylinder at M = 0.2. The grid for this case is shown in Figure 13. We examined the numerically produced lift with inflow conditions at various angles with respect to the x - axis (0°, 5°, 20°, 45°). The lift coefficient was angle independent and had a value  $C_L = 0.76$ , almost 20 times smaller than reported by Pulliam, whose results are angle sensitive. With the first order scheme we achieved a lift coefficient of  $C_L = 0.47$  with the drag coefficient  $C_D \equiv 1.49$ . For the second order scheme, shown in Figure 14, the drag coefficient was reduced to  $C_D = 0.19$  but the lift coefficient increased somewhat to the

value cited above. We also investigated the effects of grid refinement and found that a simple one level of refinement (adding ~ 400 vertices) led to a modest reduction in lift coefficient of about 20%. To reinforce a point made earlier, all of the results were achieved with no "free" parameters to adjust. These parameters are present in many CFD codes in the form of coefficient for artificial viscosity terms present the practitioner with a practical problem of how they should be selected for different flow conditions.



Figure 13 Grid for simulation of flow over a cylinder at varying inflow angles with respect to the mesh.



Figure 14 Second Order Euler Solution for a circular cylinder:  $\alpha = 45^{\circ}$ ; Mach = 0.2; 6311 vertices; C_L = 0.761; C_D = 0.196.

#### d. Hypersonic Flow

To demonstrate the versatility of the method for the entire range of flow regimes we have simulated a hypersonic flow test problem. One of the advantages of the Godunov type methods is that for the whole range of calculations performed (from low subsonic flow, supersonic flow, unsteady flow with strong shock, or hypersonic flow at Mach number M=32) it is unnecessary to change or adjust the numerical algorithm. In Ref. 21 performance of first and second order Godunov methods has been analyzed for hypersonic flow regimes. There, as a test problem, an analytical solution was used for a hypersonic flow around a flat plate of finite thickness. This solution was obtained based on the analogy between hypersonic flow over a flat plate of finite thickness and a strong planar explosion. Here we will use one expression from Ref. 21 which defines the shape of the shock wave as a function of plate thickness d,  $\gamma$ the adiabatic coefficient, and a a nondimensional scale factor related to the energy released at the stagnation point.

$$Y_{\text{SHOCK}} = \left(\frac{1}{2} D_{\text{f}} \frac{dx^2}{2}\right)^{1/3}$$

where Df is a coefficient of order unity,

$$a = k_1 (\gamma - 1)^{\frac{1}{2} + k_3 \ln(\gamma - 1)}$$

while  $k_1 = 0.36011$ ,  $k_2 = -1.2537$ , and  $k_3 = -0.1847$ .

As a direct comparison we solved the hypersonic flow problem for the same set of conditions as in Ref. 21:

$$U_{ee} = 10011$$
 meters/sec. p = 98.72 Pa,  
o = 1.24x10⁻³kg/m³ and  $\gamma = 1.2$ .

The grid used for this simulation is shown in Figure 15. This grid has  $\sim$  5500 vertices and it's spatial resolution at the leading edge of the plate is of the same order as that of a 300 x 60 rectangular grid used in Ref. 12.



Figure 15 Grid for simulation of hypersonic flow over a flate plate.

In Figure 16 results for this simulation are shown in the form of pressure contours. Figure 16 also shows the location of the analytically calculated shock front by a discrete line (squares). The shock resolution and accuracy of its location are comparable to that obtained in Ref. 21, even though our triangular grid has less than 1/3 the nodes than the rectangular grid used in Ref. 21. This is due to the fact that in constructing the triangular grid we had the flexibility to place the highest concentration of nodes in the area of the leading edge where the main properties of the flow are established.



Figure 16 Second order solution for a flat plate. Pressure Contours. Mach = 32; 5509 grid vertices;  $P_{max} = 5.0 \times 10^4$ ;  $P_{min} = 98.7 P_a$ .

## CODES COMPUTATIONAL EFFICIENCY

During the code development effort, great amention was paid to the code data structure, its efficiency and extendability to three dimensional calculations. In fact, the two dimensional version of the code has all the data structures required for the three dimensional simulations. That fact should be factored in comparing our storage overhead figures to those in other codes. Also while developing FUGGS we made a decision not to rely on machine-dependent functions, in order to assure portability. This feature is very important in the current supercomputing environment where a host of powerful parallel supercomputers and super workstations with diverse architecture are available and useful for different aspects of design.

The following performance characteristics have been achieved for the latest version of the FUGGS code:

1. First Order Godunov version:

Memory Requirement	36 places per triangle includes 5 physical quantities integer indexing arrays ail geometric parameters
CPU Performance CRAY XMP-24 STELLAR 1000	15 µsec/vertex/timestep 79 µsec/vertex/timestep

2. Second Order Godunov version:

Memory Requirement	39 places per triangle		
CPU Performance CRAY XMP-24	45 usec/vertex/timestep Monotonicity step 50% Characteristic limiter 15% Riemann Solver 30% Integration 5%		
STELLAR 1000	214 usec/vertex/timestep		

These numbers are provisional since the code is still under development. We feel that further improvements in code performance will be achieved with respect to both timing and storage requirements.

## CONCLUSION AND DISCUSSION

We have presented a method for the numerical solution of Euler equations on an unstructured triangular grid. The method was tested for a wide range of flow conditions from low subsonic flow and unsteady flow with strong shock waves to hypersonic flow with Mach 32. For all these regimes, the method performed extremely well both in terms of solution accuracy and computational efficiency. The method is very robust and does not resort to adjustable computational parameters for the tested range of flow conditions. This is due to the fact that the numerical algorithm in FUGGS is based on Second Order Godunov schemes adapted to triangular grids. The method appears natural for unstructured triangular grids because the greater connectivity intuitively should lead to greater accuracy in eliminating errors introduced by splitting. In a typical hexagonal (or greater) control volume the contribution of fluxes is available from all six adjacent directions as opposed to just two in the case of a rectangular grid. Since the FUGGS method has been implemented on unstructured grids, it is possible to simulate flows over bodies of arbitrary geometry where the grid density can be concentrated in a region of flow discontinuity.

Especially interesting is the code's superior performance for the simulations of subsonic flow. For the test cases calculated here, our method appears to perform better than the leading industry codes like ARC2D and SYMTVD. We think that the two main reasons for the better performance are multidirectional splitting (to distinguish from two directional splitting typical for logically structured quadrilateral grids) and finite volume integration, more should be done to investigate this important aspect of the code's performance.

Historically, Euler solvers were developed to simulate nonisoentropic flows for which potential flow assumptions are incorrect. From the criginal development of numerical methods for the solution of Euler's equations, great effort has been devoted to resolving shocks and contact discontinuities, producing in dramatically improved results for shock wave hydrodynamics. At the same tune, attention to the accurate solution of the velocity gradients has been neglected. While these gradients are more difficult to discern than shock waves, they are more prevalent in practical flow problems and could lead to very significant errors in such important parameters as lift and drag coefficients. In addition, all vorticity and viscosity dominated phenomena depend on accurate solution of the velocity gradients. In view of the performed numerical simulations for subsonic flow over the ellipse and cylinder it is clear that unless these features are resolved, the numerical solution of Euler equations can introduce spurious vorticity, making the results from a fuil Navier-Stokes implementation impossible.

## Acknowledgment

This work was partially supported by Wright-Patterson Research and Development Center under contract No. F33615-88-C-3002 and by DARPA through AFOSR contract No. FY9620-89-C-0087 We would also like to thank Dale Nielsen, Jr. of Lawrence Livermore National Laboratory for the initial gridding software and STELLAR Computer for providing assistance and facilities.

#### REFERENCES

- 1. F. Angbrand, V. Boulard, A. Dervieux, J. Periaux, and G. Vuayasundaram, in *Computing Methods in Applied Sciences and Engineering*, edited by R. Glowinski et al. (North-Holland, Amsterdam, 1984).
- F. Angbrand, V. Boulard, A. Dervieux, J.A. Desideri, J. Periaux, and B. Stougglet, in *Proceedings Ninth International Conference on Numerical Methods in Fluid Dynamics, Saclay, France*, 1984, edited by Soubbaramayer and Boujot, Lecture Notes in Physics, Vol. 218 (Springer-Verlag, 1985).
- 3. L. Fezoui and B. Stougglet, "A Class of Implicit Upwind Schemes for Euler Simulations with Unstructured Meshes," J. of Comp. Phys. <u>84</u>, 174-206 (1989).
- R.A. Shapiro and E.M. Murman, "Adaptive Finite Element Methods for the Euler Equations," AIAA-88-0034, 26th Aerospace Sciences Meeting, Reno, Nevada, 1988.
- R. Lohner, K. Morgan, and D.C. Zienkiewicz, "Finite Element Methods for High Speed Flows," ALAA 7th Computational Fluid Dynamics Conference, Cincinnati, Ohio, ALAA Paper 85-1531 (1985).
- R. Lohner and K. Morgan, "Improved Adaptive Refinement Strategies for Finite Element Aerodynamic Computations," AIAA 29th Aerospace Sciences Meeting, Reno, Nevada, AIAA Paper 86-0499 (1986).
- D. Mavriplis and A. Jameson, "Multigrid Solution of the Two-Dimensional Euler Equations on Unstructured Triangular Meshes, AIAA-87-0353, 1987.
- T.K. Dukowicz, M.C. Cline, and F.L. Addessio, "A General Topology Godnuov Method," J. of Comp. Phys. 82, 29-63 (1989).
- T.J. Baker and A. Jameson, "A Novel Finite Element Method for the Calculation of Inviscid Flow Over a Complete Aircraft," Sixth International Symposium

on Finite Element Methods in Flow Problemns. Antibes, France (1986).

- 10. A. Jameson and T.J. Baker, "Improvements to the Aircraft Euler Method," AIAA 25th Aerospace Sciences Meeting, Reno. Nevada, AIAA Paper 87-0452 (1987).
- 11. T.J. Baker, "Developments and Trends in Three-Dimensional Mesh Generations," Transonic Symposium, NASA Langley Research Center, Virginia (1988).
- 12. A. Jameson, T.J. Baker, and N.P. Weatherill, "Calculation of Inviscid Transonic Flow Over a Complete Aircraft," AIAA 24th Aerospace Sciences Meeting, Reno, Nevada, AIAA Paper 86-0103 (1986).
- L. Greengard and V. Rokhlin, "A Fast Algorithm for Particle Simulations," J. Comp. Phys. <u>73</u>, 325-348 (1987).
- 14. S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and It's Second Order Extension to Cascade Flow Modeling," AIAA Journal, v. 22, 10 (1984).
- B. van Leer, "Towards the Ultimate Conservative Difference Scheme, V.A. Second Order Sequel to Godunov's Method," J. Comp. Phys. v. <u>32</u>, 101-136 (1979).
- P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gasdybanucak Simulations," J. Comp. Phys. v. <u>54</u>, 174-201 (1984).
- T.J. Barth and D.C. Jespersen, "The Design and Application of Upwind Schemes on Unstructured Meshes," 27th Aerospace Sciences Meeting, AIAA-89-0366, Reno, Nevada (1989)
- H.M. Glaz, P. Collela, I.I. Glass, and R.L. Deschambault, "A Detailed Numerical. Graphical, and Experimental Study of Oblique Shock Wave Reflections," DNA-TR-86-365, Technical Report, 1986.
- T.K. Pulliam, "Computational Challenge: Euler Solution for Ellipses," AIAA-89-0469, Reno, Nevada, 1989.
- Schaum's Outline Series, Fluid Dynamics, by W.F. Hughes and J.A. Brighton, McCraw-Hill Book Co., New York, 1967.
- S. Eidelman, "Application of the Hypersonic Analogy for Validation of Numerical Simulations," AIAA Journal 27, 11, 1566-1571 (1989).

# Reflection of the Triple Point of the Mach Reflection in a Planar and Axisymmetric Converging Channels

## Shmuel Eidelman and Itzhak Lottati

Science Applications International Corporation McLean, Virginia, USA

9th Mach Reflection Symposium Freiburg June 1990

## Reflection of the Triple Point of the Mach Reflection in Planar and Axisymmetric Converging Channels

Shmuel Eidelman and Itzhak Lottati Science Applications International Corporation, McLean, VA. USA

## Introduction

Depending on their parameters, the encounter between a planar shock wave and a wedge can produce a classic case of the Mach Reflection. The Mach Reflection has a characteristic triple point, where three shocks and the contact discontinuity coalesce. In a shock tube or in a channel, a developed Mach Reflection can reflect further from the walls opposite the wedge. In this case, the Mach shock of the Mach Reflection will start reflecting when its triple point reaches the wall opposite the wedge. Upon reflection of this shock wave, a secondary Mach Reflection can form. Although the primary Mach Reflection has received considerable attention in scientific literature (Refs. 1,2,3), the phenomenology of the subsequent reflections was gone virtually unnoticed. In our literature review, we found only a short qualitative description of the phenomena by Bazhenova and Gvozdeva (Ref. 4). This omission is unfortunate, since it is a very practical case for propagation of the shock waves in channels of variable cross sections.

The direct simulation of the various cases of Mach Reflection has only become possible in the last decade. This problem is a challenging test for the numerical methods used in Computational Fluid Dynamics (CFD). An impressive demonstration of the capabilities of the direct numerical simulations of Mach Reflection phenomena is given by Glaz et al. (Ref. 5). They demonstrate that all the important phenomenology of the Mach Reflection, including slip line vortex and Mach shock wave bulging, can be simulated directly. This was achieved by using the Second Order Godunov method, numerical technique, developed in 80th, which is extremely robust and allows very accurate simulation of flow discontinuities.

The Second Order Godunov method was implemented on rectangular grids (Ref. 6) and in a few cases on general quadrilateral grids (Ref. 7). This approach has limited application, since the structured quadrilateral grids have great difficulty describing a complicated computational domain with multiple bodies of different geometries and scales. Recently, we have implemented the Second Order Godunov for unstructured triangular grids (Ref. 8). This enables us to combine the robust and accurate numerical algorithm with a griding technique, allowing us to describe very complex domains with ease and efficiency. In addition, we have developed a novel Dynamic Grid Adaptation methodology which allocates a dense computational grid only to regions where enhanced resolution is needed to resolve strong gradients in flow parameters. As demonstrated in our paper, this enables an extremely economical allocation of computational resources and accurate simulation of a complicated phenomena like Mach Reflection.

In our study, we numerically simulate the formation of a Double Mach Reflection on a sloped wall of a converging channel, with subsequent reflection of the reflected wave at the straight wall of the channel. Presented here numerical results were obtained with the new numerical technique and we will describe in detail all the important new elements which we have introduced.

## The Problem

Figure 1 shows a converging channel with a sloped wall at 27°. The figure illustrates our assumption that a Mach 8.7 shock wave travelling normally to the parallel walls enters the channel at the left hand side. According to analysis presented in Reference 9, this shock will have a Complex Mach Reflection when it encounters the converging wall of the channel. At some stage of the reflection process, the triple point will reach the opposite wall of the channel. Here the Mach stem shock wave will become incident, moving at an angle to the channel wall, as illustrated in Figure 2. The shock and wedge parameters chosen in our problem will cause formation of a secondary Mach reflection. The question is: What form will this secondary reflection take? Bazhenova and Gvozdeva offer a very general description of the anticipated effect, illustrated in Figure 3 (Ref. 4). In this reference, a system of secondary reflections shows the incident and Mach shocks are interchanging their positions with every new reflection, and the strength of the shock waves is increasing. It is not clear from Reference 4 what type of Mach Reflection will form, or how the secondary reflected wave, which expands in already perturbed gas, will be affected by the interactions with the strong slip surfaces located behind the original Mach shock.

We will directly simulate formation of the Mach Reflection at the channel oblique wall, as well as all secondary reflections which will occur according to the conditions outlined above for the channel geometry shown in Figure 1. In addition we will consider cases in which the channel shown in Figure 1 is axisymmetric and will study the same problem for this case. The motivation is further study of the phenomenology of shock wave focusing when a three-dimensional contraction occurs.

In our study we will consider an ideal, invisid gas which can lead to some distortion of our results compared with experimental data. However, we believe that this simplification will still capture the main phenomenology of wave formation and reflection. and will be of general value to the Mach Reflection Theory.

## Numerical Method

In Reference 8 we introduced a new numerical algorithm: FUGGS (Fast Unstructured Second Order Godunov Solver), for solving Euler's equations of gasdynamics on unstructured triangular grids. The algorithm formulated and tested in Reference 8 is vertex-based. Here we will describe a new volume based version of the FUGGS method. The new version of the algorithm as illustrated in our paper, produces considerably more accurate solutions and it is more efficient. This contradicts published results (Ref. 10,11) on implementation of the triangle-based TVD schemes for unstructured triangular grids. The new algorithm has been validated for the range of subsonic, supersonic and hypersonic steady state and transient problems. Here we show only results for Mach Reflection in planar and axisymmetric channels..

The new triangle-based version of the FUGGS algorithm was extended to allow dynamic adaptive grid refinement for transient problems. We will give a description of the dynamic grid adaptation methodology used in FUGGS code.

A three dimensional version of the FUGGS algorithm was developed in an extremely short period of time. This was made possible by the simple structure of the basic algorithm. We will not present simulation results for the three dimensional FUGGS, however, the main elements of the FUGGS algorithm implementation in the three dimensions will be illustrated.

## Vertex-Based and Triangle-Based Integration Algorithms

We consider a system of Euler equations written in conservation law form in three dimensions as:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{f}}{\partial x} + \frac{\partial \mathbf{g}}{\partial y} + \frac{\partial \mathbf{h}}{\partial z} = 0 \tag{1}$$

where

$$\mathbf{U} = \begin{vmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho E \end{vmatrix}, \mathbf{f} = \begin{vmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ \rho uw \\ \rho uw \\ \rho uH \end{vmatrix}, \mathbf{g} = \begin{vmatrix} \rho v \\ \rho uv \\ \rho uv \\ \rho v^2 + p \\ \rho vw \\ \rho vW \\ \rho vW \\ \rho vW \\ \rho vH \end{vmatrix}, \mathbf{h} = \begin{vmatrix} \rho w \\ \rho w \\ \rho uw \\ \rho w \\ \rho w \\ \rho wH \end{vmatrix}$$

Here u, v, and w are the x, y, and z velocity vector components, p is the pressure,  $\rho$  is the density and H is the total enthalpy and E is total energy of the fluid. It is assumed that a mixed (initial conditions, boundary conditions) problem is properly posed for the set of equations (1), that an initial distribution of the fluid parameters is given at t=0, and the boundary conditions defining a unique solution are specified for the computational domain. We seek a solution of the system of equations (1) on the computational domain which is decomposed into tetrahedrons (triangles in two dimensions) with arbitrary connectivity. An overwhelming advantage of this method of domain decomposition is the ability to resolve extremely complicated geometries and flow regimes accurately and efficiently. This has been demonstrated in numerous publications on this topic (Ref. 12, 13, 14).

There are several options possible for storing natural physical parameters of the problem on an unstructured tetrahedral or triangular grid. In particular, we have examined: i) vertex centered; and ii) tetrahedron (or triangle) centered. These two approaches, while equivalent from the point of view of the formal numerical representation of the governing equations, lead to different algorithms. As shown below, this will have important consequences not only on data structure and algorithm efficiency, but moreover the different connectivity will affect the overall accuracy of the numerical solution.

In Figure 4, a fragment of the two-dimensional computational domain is shown. Here, together with the original triangular grid (solid lines), the secondary grid (broken line) is shown. This secondary grid is formed by connecting the barycenters of the primary grid. If a vertex based grid is used, the physical parameters of the problem are stored at vertices A, B, C..., and the integration is done for the volumes delineated by the polygons of the secondary grid. For instance, integration volume associated with vertex A is defined by the edges ab, bc, cd, de, ef, fa. For a triangle-based grid the physical parameters will be stored at the nodes of the secondary grid, and integration volume will be the triangle itself. We have shown (Ref. 15) that these two approaches lead to numerical algorithms with different connectivity, accuracy and efficiency. The fundamental algorithm of the second order Godunov method implemented in FUGGS can be illustrated in two dimensions for an edge of the grids control volume shown in Figure 5. The algorithmic steps of the second order Godunov method can be defined as follows:

1. Find the value of the gradient at the vertex point (or at the baricenter of the triangle for the triangle-based version) for the gasdynamic Parameter U;

2. Using the gradient values, find the interpolated values of U at the edges defining the control volume (sides of the triangle for the triangle-based scheme)

3. Limit these interpolated values based on a monotonicity condition (Ref. 16)

4. Subject the resulting values to the characteristic's constraints (Ref. 6)

5. Solve the Riemann problem for the corrected values.

This last step completes the definition of the fluxes at the edges of the control

volume. The flux values can be stored at the edges and the flux calculation loop will be arranged for the list of edges, which is the largest vector in the system. If the algorithm is vertex-based to calculate  $U^{n+1}$  values, we will integrate the fluxes at the edges of the secondary grid which define the control volume for the vertex. For the triangle-based algorithm  $U^{n+1}$ , value is obtained by integrating the fluxes at the sides of the triangles.

Implementation of the algorithm in three dimensions will have the same basic steps in flux calculation 1-5. To illustrate that point, Figure 6 shows a tetrahedral element of the grid. Here the fluxes are defined on the faces of the tetrahedral at the edge points. At step 1 the gradient is caluclated at the barycenter cell point for the tetrahedral. All the rest of the steps are identical to those described above. To find the value of  $U^{n+1}$  in the three dimensional case, we will add fluxes defined at the faces of the tethraletral. Most elements developed for the two dimensional code are applicable to this implementation of the three dimensional algorithm.

## Direct Dynamic Refinement Method (DDRM)

Practical numerical simulations of the fluid dynamic problems call for modeling flows over complicated shapes. In addition, important flow features such as shed vortices, shock waves, slip lines and boundary layers usually have widely varied lengths and time scales and need to be resolved. Accurate solution of these problems require computational grids dynamically adapted to the evolving flow feature, and with full control over solution accuracy in the key regions of the computational domain. It is commonly accepted that only unstructured grids can provide full flexibility in obtaining the local grid resolution sufficient to accurately resolve subscale flow features. The five years since the introduction of these grids and methods in CFD research have produced landmark simulations clearly demonstrating their advantages (Ref. 12, 14, 17).

Although a number of research groups have demonstrated application of unstructured grids to simulations of steady state problems (Ref. 14, 17, 18), simulations of time-dependent problems were accomplished by a significantly smaller group (Ref. 19, 20). An adaptive refinement method developed by Lohner (Ref. 20) is based on a hierarchical system of grid refinement/coarsening in which each level of refinement has six possible cases and coarsening three cases of triangular cells formation. Every layer of refinement has a father/son relation with the previous layer, and all these layers of refined mesh move on the basic predefined grid. This technique has the demonstrated capability of carrying out simulations of extremely complex flow regimes. However, its rigid hierarchic approach to generating grid results in some implicit limitations. For example, a dynamically evolving grid will not have an element larger than the cell of the initial grid, or it will be impossible to reduce the cell volume abruptly in some areas without passing through all the necessary level of refinement.
In our paper we will report a new method of dynamic grid adaptation. This method is based on direct refinement and reconnection in the areas of monotonic flow preceding the regions with strong flow gradients. In Figure 7 we have illustrated the basic process of refinement accomplished in the DDRM method. The original grid is shown in Figure 7a. Figure 7b illustrates a one step grid refinement in which a new vertex is introduced into a triangular cell forming three new cells. This is followed by reconnection which modifies the grid in a manner demonstrated in Figure 7c. The process of refinement and reconnection can be continued until the necessaary grid resolution is achieved, as illustrated in Figures 7d and 7e. This direct approach to the grid refinement grants extreme flexibility in resolving local flow features. A similar simple method is applied to grid coarsening. In the first step of coarsening the marked vertices, all associated elements of the grid are simply removed, as shown in Figure 8a. During the second step, this void in the grid is filled with new larger triangles (Figure 8b), and then reconnected as shown in Figure 8c.

The Direct Dynamic Refinement Method (DDRM) was implemented for the second order-Godunov method (FUGGS algorithm Ref. 7, 15). Here we demonstrate its performance for a classical Mach Reflection problem.

# Results

In Figures 8a, 8b, and 8c, simulation results are shown in the form of density contours for different stages of Mach Reflection in a planar channel. To illustrate the dynamics adaptation of the computational grid to the solution in the same figures, we show the grid as it evolves in time. The numerical solution develops as a classical case of Mach Reflection. Because we have assumed that the gas is ideal with  $\gamma = 1.4$ , according to Ben-Dor and Glass (Ref. 9) for the shock wave and wedge angle conditions chosen we should have a case of Complex Mach Reflection (CMR). We can observe in Figures 8a, 8b and 8c that the density contours definitely display the pattern of discontinuities attributed to CMR. In these figures we observe a well defined slip line vortex, slip line, triple point and the kink. For real gas, in this case, the Double Mach Reflection should occur. The slip line and slip line vortex will be located close to the Mach shock and will cause the Mach shock bulging (Ref. 5). However the perfect gas assumption will lead to CMR and extensive bulging will not arise, as is accurately predicted in our simulations. It is striking to observe in Figures 8a, 8b, and 8c that the numerical grid closely follows the evolving system of waves, and the high density grid is only observed in the areas of shock waves, slip lines and other flow discontinuities. The result is tremendous savings in both CPU and storage. For example, the grid shown in Figure 8c has only 6000 points (an equivalent of a grid 60x100 in the case of a structured rectangular grid).

Reflection of Mach shock from the wall opposite the wedge will start immediately after the stage shown in Figure 8c. This reflection results in formation of the secondary Mach Reflection which expands towards the channel's oblique wall. In Figure 9a, this secondary Mach Reflection can be clearly identified. In Figure 9b, the blow up of the region of the secondary Mach Reflection is shown. All the distinguishing characteristics of the Mach Reflection can be identified in this figure, including triple point, Mach shock. reflected shock and slip line. In addition to all these features, the secondary Mach Reflection has an additional kink, resulting from interaction of the reflected shock with the slip surface. It is clear that this interaction will affect significantly the dynamics of the secondary reflection.

In Figures 10a, 10b, and 10c, simulation results are shown for the Mach Reflection in an axisymmetric channel which has the same cross section as the planar channel. For direct comparison here the simulation results are presented in the same format as in Figures 8a, 8b, and 8c for the case of a Mach Reflection in a planar channel. The Mach Reflection in Figure 10a is analogous to its planar counterpart in Figures 8a and 8b. In Figure 10b it can be observed that the area of the shock between the triple point and the kink in the reflected shock tilts towards the axis of symmetry of the channel. This is even more pronounced in Figure 10c where the density contours are shown before the secondary reflection starts. It is apparent that the secondary reflection of the Mach shock will occur earlier in the axisymmetric channel than in its planar counterpart. Contraction in the radial direction results in a significant jump in density upon reflection. In Figure 11a we see that at the initial stages of the axisymmetric reflection, maximum density increased three-fold compared with the values observed in the initial reflection. This increase in density affects the increment between the contour levels displayed in Figure 11a and causes the slip line not to show. In Figure 11c a more advanced stage of the secondary reflection is shown. To examine in more detail the features of the secondary reflection in Figures 11b and 11d, we show an enlarged view of the secondary reflection region corresponding to Figures 11a and 11c. In these figures, we can observe the formation of a distinct reflected wave pattern with a characteristic double kink of the reflected wave similar to that seen in the secondary reflection in a planar channel. In the axisymmetric case, the secondary reflection is significantly stronger than in the case of a planar channel. Since this reflected wave propagates along the radius of the channel, it will expand rapidly. This can be observed in Figure 11c where the maximum value of density dropped 30% compared with the maximum in Figure 11a. For the same reason the triple point of the secondary Mach Reflection has advanced much farther towards the oblique wall in Figure 11d than in Figure 9b.

# Conclusions

A computer code has been developed for Euler's equations of gas dynamics. This code uses unstructured grids for computational domain decomposition and ite integration algorithm is based on the Second Order Godunov method. The code uses the Dynamic Grid Adaptation methodology, allowing economical allocation of omputer resources to evolving flow features. In turn, it is then possible to carry out accurate simulations of complicated gas dynamic phenomena with affordable computer resources. Here the code has been demonstrated to produce an accurate simulation of Complex Mach Reflection in planar and axisymmetric channels. We also have simulated the initial stages of the secondary Mach Reflection from the channel wall opposite the oblique wall. In this case we observed new wave structures with a characteristic double kink. The formation of the second kink was a result of the interaction between the secondary reflected wave and the original slip line. It was noted that the dynamics of the secondary reflection in significantly stronger than in the planar case.

## References

- 1. Ben-Dor, G., and I.I. Glass, "Nonstationary Oblique-Shock Wave Reflections: Actual Isopycnics and Numerical Experiments," AIAA J. 16 (1978), pp. 1146-1153.
- 2. Gvozdeva, L.G., T.V. Bazhenova, O.A. Predvoditeleva, V.P. Fokeev, 1969. Mach Reflection of Shock Waves in Real Gases, Astron. Acta 14:503-8.
- Hornung, H.G., H. Oertel, R.J. Sandeman, 1979. Transmission to Mach Reflexion of Shock Waves in Steady and Pseudosteady Flow with and without Relaxation. J. Fluid Mech. 90:541-60.
- 4. Bazlenova, T.V. and L.G. Gvozdeva, "Unsteady Interactions of Shock Waves," Nauka, Moskow, 1977.
- Glaz, H.M., P. Colella, I.I. Glass, and R.L. Deschambault, A Detailed Numerical, Graphical, and Experimental Study of Oblique Shock Wave Reflections, DNA-TK-86-365, 1986.
- 6. Woodward, P.R., and P. Colella, "Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks," J. Comp. Phys. 54 (1984), pp. 115-173.
- Eidelman, S., P. Collela, and R.P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," AIAA Journal, v. 22, 10 (1984).
- Lottati, I., S. Eidelman and A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)", 28th Aerospace Sciences Meeting, AIAA-90-0699, Reno, NV, 1990.
- 9. Ben-Dor, G. and I.I. Glass, 1979 Domains and Boundaries of Nonstationary Oblique Shock-Wave Reflexions: 1. Diatomic gas. J. Fluid Mech. 92:459-96.
- Barth, T.J. and D.C Jespersen, "The Design and Application of Upwind Schemes on Unstructured Meshes," 27th Aerospace Sciences Meeting, AIAA-89-0366, Reno, NV, (1989).
- 11. Mavriplis, D. and A. Jameson, "Multigrid Solution of the Two-Dimensional Euler Equations on Unstructured Triangular Meshes," AIAA-87-0353, 1987.
- Baum, J.D. and R. Löhner, "Numerical Simulation of Shock- Elevated Box Interaction Using an Adaptive Finite Element Shock Capturing Scheme," AIAA Preprint 89-0653, Presented at the AIAA 27th Aerospace Sciences Meeting, Jan. 8-12, 1989, Reno. NV.

- Löhner, R., K. Morgan, J. Peraire and M. Vahdati, "Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes Equations" Chapter 6 in Finite Elements in Fluids Vol. VII (R.H. Gallagher, et al. eds.), J. Wiley and Sons (1988).
- 14. Mevriplis, D.T., "Accurate Multigrid Solutions of the Euler Equations on Unstructured and Adaptive Meshes," AIAA Journal, 2, V. 28, p. 231, 1990.
- 15. Eidelman, S. and I. Lottati, "Triangle Based FUGGS and its Validation for Two and Three Dimensional Flow Problems," to be presented at 29th Aerospace Sciences Meeting, Reno, NV, 1991.
- 16. van Leer, B., "Towards the Ultimate Conservative Difference Scheme, V.A. Second Order Sequel to Godunov's Method," J. Comp. Phys. v. 32, 101-136 (1979).
- Jameson, A., T.J. Baker and N.P. Weatherill, "Calculations of Inviscid Transonic Flow Over a Complete Aircraft." AIAA 24th Aerospace Sciences Meeting, Reno, NV, AIAA Paper 86-0103, January 1986.
- Peraire, J., M. Vahdati, K. Morgan and O.C. Zienkiewicz Adaptive Remeshing for Compressible Flow Computations; J. Comp. Phys. 72, 449-466 (1987).
- 19. Palmerio, B. and A. Dervieux Application of a FEM Moving Node Adaptive Method to Accurate Shock Capturing; Proc. First Int. Conf. on Numerical Grid Generation in CFD, Landshut, W. Germany, July 14-17, 1986, Pineridge Press.
- Löhner, R. Adaptive Remeshing for Transient Problems; Comp. Meth. Appl. Mech. Eng. 75, 195-214 (1989).







Figure 2. Reflected and Mach Stern Shock Waves at the Start of the Secondary Reflection.



Figure 3. Schematics of Wave Propagation in a converging channel accoding to Bazhenova and Gvozdeva.



Second Order Edge Based Flux Calculation



Tetrahedral Element Defined by four Vertices and Baricentric Cell Point Scheme for Baricentric Three Dimensional Integration

- Vertex Point
- Cell Point at Tetrahedral Baricenter

0

Edge Point equidistant from defining Vertices

Figure 6.



a. Original grid.



c. Grid after one refinement and one reconnection.



b. Grid after one refinement.



d. Second refinement.



e. Second reconnection.

Figure 7. Illustration of the grid refinement process.



a. Point removal.



b. Construction of new cells.



c. Final coarse grid after reconnection.





Density contours



Grid

Figure 8a. Mach Reflection in a planar channel.  $M_{\bullet} = 8.7$ ;  $\alpha = 27^{\circ}$ .



Density contours



Grid Figure 8b. Mach Reflection in a planar channel. M, = 8.7;  $\alpha = 27^{\circ}$ .



Figure 8c. Mach Reflection in a planar channel.  $M_s = 8.7$ ;  $\alpha = 27^{\circ}$ .

(















Density contours



Grid

Figure 10b. Mach Reflection in an axisymmetric channel.  $M_s = 8.7$ ;  $\alpha = 27^{\circ}$ .



Density contours



Figure 10c. Mach Reflection in an axisymmetric channel. M, = 8.7;  $\alpha = 27^{\circ}$ .



Figure 11a. Start of the secondary Mach Reflection. Axisymmetric channel. Density contours.



Figure 11b. Blow up of the secondary Mach Reflection area shown in Figure 11a.



Figure 11c. Secondary Mach Reflection axisymmetric channel. Density contours.



Figure 11d. Blow up of the secondary Mach Reflection area shown in Figure 11c.

# Solution of Euler's Equations on Adaptive Grids Using A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)

Itzhak Lottati, Shmuel Eidelman and Adam Drobot Science Applications International Corporation 1710 Goodridge Drive McLean, Virginia 22102

Abstract. We describe a new technique for solving Euler's gasdynamic equations on unstructured triangular grids with arbitrary connectivity. The formulation is based on the second order Godunov method. The use of data structure with only one level of indirectness leads to an easily vectorized and parallelized code with a low level of overhead in memory requirement and high computational efficiency. The performance and accuracy of the algorithm has been tested for a very wide range of Mach numbers starting from very low subsonic to high hypersonic flows, without the need to adjust any code parameters. The algorithm was implemented in a vertex based and triangle based scheme. The computational results produced by the triangle based version showed an extremely low level of artificial viscosity.

A new method of direct dynamic refinement of unstructured grids, as described in this paper, allows an automatic adaptation of the grid to regions of pressure or density discontinuity, steep pressure or density gradient, and high vortical activity. Results using the algorithm with dynamic grid refinement are presented.

# Flow Solver on an Unstructured Grid

The specific use of triangular meshes provides a very flexible means for simulating flows in extremely complex geometries. The data that identifies a triangular mesh (unstructured grid) provides the flexibility needed to properly discretize the complex geometry of the computational domain, especially on the boundary where the geometry and the implementation of boundary conditions, are extremely crucial for the accuracy of the simulation. The flexibility of unstructured grids enables adaptation to physical features in the flow. The price of resolution results in a local rather than a global penalty. Consequently, it is possible to simulate problems on computers with limited memory and still achieve highly resolved solutions. A typical example, which is illustrated in this paper, is a cravelling shock passing over an obstacle. The challenge is to simulate such problems with fine resolution across the shock while limiting the total number of mesh points in the calculation.



Figure 2: Sod problem, effect of the characteristics correction on the density.

# Performance and Validation of FUGGS

FUGGS has proven to be a very robust algorithm capable of high quality solutions while using triangles with large variations of aspect ratios. The code was tested on a variety of unstructured grids and consistently provided results, despite the apparent poor quality of the underlying mesh. We were able to simulate efficiently and accurately a wide spectrum of flow regimes starting from low subsonic to high hypersonic. The code has no free parameters to choose and thus does not require any "tuning" to specific problems. The user has only to specify the boundary conditions (around the grid) and initial flow conditions. The algorithm is fully vectorized and can be easily parallelized in the future. We describe the detailed algorithm below and then present typical results.

# Direct Dynamic Refinement Method for Unstructured Triangular Grids

As stated, an unstructured grid is very suitable to implement boundary conditions on complex geometrical shapes and refinement of the grid if necessary. This feature of the unstructured triangular grid is compatible with efficient usage of memory resources. The adaptive grid enables the code to capture moving shocks and high gradient flow features with high resolution. The memory resources available can be very efficiently distributed in the computational domain to accommodate the resolution needed to capture the main features of the physical property of the solution. Dynamic refinement controls the resolution

of the grid according to available memory resources and subject to prescribed priorities. These priorities can be set according to the physical features which the user wishes to emphasize in the simulation. The user has control over the resolution of the physical features resolved in the simulation, without being restricted to the initial grid. The alternative to Direct Dynamic Refinement is the hierarchical dynamic refinement (H refinement) that keeps a history of the initial grid (mother grid) and the subdivision of each level (daughters grid). The H refinement subdivides the initial grid into two or four triangles in each level, and keeps track of the number of subdivision levels each triangle has undertaken. In the H refinement method, one has to keep overhead information on the level of each triangle subdivision, and needs double indirect indexing to keep track of the H refinement process. This slows down the computation by partially disabling the vectorization of the code. As mentioned, the H refinement does rely heavily on the initial grid as it subdivides the mother grid and returns back to it after the passage of the shock.

Direct Dynamic Refinement for capturing the shocks basically requires the refinement to be in the region ahead of the shock. This requirement minimizes the dissipation in the interpolation process when assigning values to the new triangles created in the refined region. Additionally, it requires that the coarsening of the grid should be done after the passage of the shock. In principle, the interpolation and extrapolation in the refinement and coarsening of the grid is done in the region where the flow features are smooth.

The physics of the problem should be involved in the process that identifies the region of refinement and coarsening. One can derive error criteria that will allow grid adaptation to stationary or moving pressure or density discontinuities, region of high voritical activity, etc. For each of the physics features to be resolved, there should be an error indicator that is suited best to capture and identify the region of importance corresponding to this feature.

# Criteria for Refinement (Error Indicator)

We have implemented an algorithm with multiple criteria for capturing a variety of features in the physics of the problem to be solved. That means that we were able to derive a number of error indicators that enable identification of moving shock waves or stationary shocks in the computational domain.

To identify the location of a moving shock, we use the flux of energy or momentum into triangles. The fluxes entering and leaving triangles are the most accurate physical variables computed by the Godunov algorithm for solving the Euler's equations, and are used to update the physical variables for each time step in each triangle. A shock wave means that there is a "step function" change in the cell that is caused by an influx of energy, momentum or density.

Stationary shock can be identified by density gradients computed as required in the second order Godunov algorithm. The refinement process is done in two ways: i) adding a vertex in the center of a triangle and ii) adding a vertex on an edge of a triangle. Figure 3 illustrates the two alternative ways used to refine the grid. Figure 4 shows an example of the refinement procedure. In the coarsening stage we identify a vertex to be removed. With the point removal, we delete the connecting edges and triangles surrounding the point. The next step is to triangulate the void polygon by creating new triangles using only the vertices of the polygon. Figure 5 shows an example of how the coarsening proceeds.

In the process of refinement and coarsening, we often create triangles with large aspect ratios (the base-to-height maximum ratio for the three edges). We use reconnection to flip the diagonal between two adjacent triangles to obtain triangles with a "better" aspect ratio. This procedure is referred to as the reconnection step in Figs.4 and 5.

• Adding a vertex in

barycenter of triangle.



Advantage: does not effect other triangles.

Disadvantage: effects the aspect ratio of the triangles.





This method is used on the boundary to improve the triangles with acute angles.





a) Original grid. b) One refinement. c) First reconnection.
d) Second refinement. e) Second reconnection.

Figure 4: Illustration of the grid refinement process.



Figure 5: Illustration of the grid coarsenning process.

## Results

Direct dynamic refinement was used to solve the transient behavior of the flow entering a channel with a double wedge having an inclination of 20°. The flow Mach number entering the channel is 2.5. The flow is from left to right. A sequence of snapshots illustrates the density contours, and the grid for each timestep is given in Figs. 6 (countour plots) and 7 (grid). These figures clearly demonstrate the automatic adaptation of the grid to the moving shocks and the ability to capture the detailed physics of the simulation with very high resolution and minimal memory requirements. The initial grid can clearly be seen to the right of the shock ("ahead") in the early stage of the shock propagation from left to right. The coarsening algorithm is able to produce a reasonable mesh in the region trailing the shock as shown in Fig. 7.

The ability to capture stationary shocks is illustrated in Fig. 8 in which a supersonic free flow (M = 2.5) has been run over a diamond shape bump  $(20^{\circ} \text{ wedge})$  driven to a steady state. The shock emerges from the first corner (left), the fan of rarefaction waves appears from the apex of the diamond shape bump, and the secondary shock from the second corner (right) is clearly illustrated by the ability of the algorithm to adapt the grid to the physics of the flow. Figure 9 illustrates the sharpness of the reflected shock obtained for an axisymmetric converged channel with an angle of 27° and M = 8.7.

The few examples shown here represent a small subset of results obtained with FUGGS. The examples are indicative of the excellent performance that can be achieved for physically complicated situations. We would like to emphasize that these calculations involved no free parameters.

# Acknowledgment

We would like to thank Dr. Aharon Friedman and Dr. Marty Fritts for their valuable contributions. This work was partially supported by the Wright Research and Development Center under contract No. F33615-88-C-3002 and by DARPA through contract F49620-89-C-0087 administered by AFOSR.



Figure 6. A sequence of density snapshots of countour plots for a propagating shock (M = 2.5, wedge angle = 20°).



Figure 7. A sequence of grids corresponding to countour plots in figure 6.







Figure 9. Initial grid, countour plot and the adaptive grid for flow in axisymmetric channel (M = 5.7, wedge angle = 27°).



AIAA-90-2420

Air-Breathing Pulsed Detonation Engine Concept; A Numerical Study S. Eidelman, W. Grossmann and I. Lottati Science Applications International Corporation, McLean, Va

# AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conference

July 16-18, 1990 / Orlando, FL

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 370 L'Enfant Promenade, S.W., Washington, D.C. 20024

## AIR-BREATHING PULSED DETONATION ENGINE CONCEPT: A NUMERICAL STUDY

S. Eidelman, W. Grossmann and I. Lottati

Applied Physics Operation Science Applications International Corporation 1710 Goodridge Drive McLean, Virginia 22102

#### 1. Introduction

The airbreathing Pulsed Detonation Engine (PDE) concept was introduced by us and reported on in the past^{1,2,3}. As described in the previous reports, we have carried out a systematic series of parametric studies of the PDE via Computational Fluid Dynamics (CFD) and have analyzed engine performance over a wide range of flight regimes including subsonic and supersonic flows and physical geometries including various nozzle and air inlets. In addition, we have performed static table top experiments¹ to demonstrate that the principle of pulsed or repetitive detonation can be achieved in a generic PDE configuration. To date, our results indicate that practical engines for certain vehicles and missions can be conceptualized and designed with the information that has already been generated from the studies. Specifically, our studies have shown that the PDE is an excellent candidate for the primary propulsion source for small aerodynamic vehicles that operate over the flight envelope, 0.2<M<3 and altitude between sea level and 30,000 ft. Further, our analysis of the simulation results indicate that the PDE is a high thrust to weight ratio device with a specific fuel consumption on the order of one pound per hour per pound fuel. The predicted performance places the PDE propulsion concept in a strongly competitive position compared with present day small turbojets. The PDE concept has the added attractiveness of rapid variable thrust control, no moving parts and the potential for low cost manufacturing. Finally, the PDE concept is scalable over a wide range of engine sizes and thrust levels. For example, it is theoretically possible to produce PDE engines on the order of one to several inches in diameter and thrusts on the order of pounds, as well as devices which provide thousands of pounds thrust.

The parametric studies that we have carried out to date were possible due to the development of a new generation of CFD tools that have allowed us to accurately simulate the details of the complex nonlinear time dependent processes. A brief description of the CFD methods employed in our studies is given in section 3.

The purpose of the present paper is: (1) to report

the most recent studies of a full simulation of the operation of the PDE with a generic missile configuration cruising at supersonic speeds, (2) to report the results of a parametric-scaling study of the thrust produced as a function of the variation of a given engine configuration with respect to engine size.

The present paper is organized as follows: Section 2 gives, for completeness, a brief description of the PDE concept, Section 3 describes briefly the CFD methods used in our most recent studies, Section 4 gives the results of the parametric-scaling study and, Section 5 describes the simulations of the complete flow around a generic missile configuration powered by a PDE, Section 6 gives our summary and conclusions.

## 2. The Pulsed Detonation Engine Concept

A detonation process, due to the very high rate of reaction, leads to a propulsion concept in which the constant volume process can be fully realized. In detonative combustion, the strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and fresh charge. The speed of the detonation wave is about two orders of magnitude higher than the speed of a typical deflagration. This allows the design of propulsion engines with a very high power density. Each detonation has to be initiated separately by a fully controlled ignition device, with a wide range of variable cycle frequencies. There is no theoretical restriction on the range of operating frequencies; they are uncoupled from acoustical chamber resonance. This is very important feature of the constant volume detonation process that differentiates it from the process occurring in a pulse-jet;^{4,5} the pulse jet cycle is tuned to the acoustical resonances of the combustion chamber. This leads to a lack of scalability for the pulse jet concept.

A physical restriction dictating the range of detonation frequency arises from the rate at which the fuel/air mixture can be introduced into the detonation chamber. This also means that a device based on a detonative combustion cycle can be scaled and its operating parameters can be modified for a range of required output conditions. There have been numerous attempts to take advantage of detonative combustion for engine applications. The most recent and successful of these attempts was carried out at the Naval Postgraduate School (NPS) by Helman et al.¹ During this study, several fundamentally new elements were introduced to the concept distinguishing the NPS research device from previous studies. First, it is important to note that the NPS experimental apparatus was the first successful self aspirating air breathing detonation device. Intermittent detonation frequencies of 25 Hz were obtained. This frequency was in phase with the fuel mixture injection through timed fuel valve opening and spark ignition. The feasibility of intermittent injection was established. Pressure measurements showed conclusively that a detonation process occurred at the frequency chosen for fuel injection. Further, self aspiration was shown to be effective. Finally, the effectiveness of a primary detonation as a driver for the main detonation was clearly demonstrated. Although the NPS studies were abbreviated. many of the technical issues considered to be essential for efficient intermittent detonation propulsion were addressed with positive results.

The generic device we consider here is a small engine shown in Figure 1. Figure 1 shows a schematic of the basic detonation chamber attached to the aft end of a generic aerodynamic vehicle. The combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave propagates through the mixture. The size of the engine suggests a small payload or aerodynamic vehicle, but the concept can be extended to larger payloads simply by scaling up the size of the detonation chamber and possibly combining a number of chambers into one larger engine.

A key issue in the pulsed detonation engine concept is the design of the main detonation chamber. The detonation chamber geometry determines the propulsion efficiency and the duration of the cycle (frequency of detonations). Since the fresh charge for the generic engine is supplied from the external flow field, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. The range of the physical process requiring simulation in order to model the complex flow phenomena associated with the detonation engine performance is very broad. A partial list is:

- 1. Initiation and propagation of the detonation wave inside the chamber,
- 2. Expansion of the detonation products from the chamber into the air stream around the chamber at flight Mach numbers.
- 3. Fresh air intake from the surrounding air into the chamber.
- 4. The flow pattern inside the chamber during postexhaust pressure buildup which determines the

strategy for mixing the next detonation charge,

5. Strong mutual interaction between the flow inside the chamber and surrounding the engine.



Figure 1. Schematic of the generic PDE showing detonation chamber, inlet, detonation wave, fuel injectors and position relative to an aerodynamic vehicle.

All of these processes are interdependent, and interaction and timing are crucial to engine efficiency. Thus, unlike simulations of steady state engines. the phenomena described above can not be evaluated independently. The need to resolve the flow regime inside the chamber accounting for nozzles, air inlets etc., and at the same time resolve the flow outside and surrounding the engine, where the flow regime varies from high subsonic, locally transonic and supersonic, makes it a challenging computational problem.

The single most important issue is to determine the timing of the air intake for the fresh charge leading to repetitive detonations. It is sufficient to assume inviscid flow for the purpose of simulating the expansion of the detonation products and fresh air intake. The assumption of inviscid flow makes the task of numerically simulating the PDE flow phenomena somewhat easier than if a fully viscous flow model were employed. For the size of the generic device studied in this work the effects of viscous boundary layers are negligible with the exception of possible boundary layer effects on the valve and inlet geometries discussed subsequently..

### 3. Computational Methods used in the Studies

The basic computational tool that was used for our studies is the FUGGS (Fast Unstructured Grid Second Order Godunov Solver) code, described in detail in Refs. 6,7. This code provides a method for solving the Euler equations of gasdynamics on unstructured grids with arbitrary connectivity. The formulation is based on a second order Godunov method⁸. The use of a data structure with only one level of indirectness leads to an easily vectorized and parallelized code with a low level of overhead in memory requirement and high computational efficiency. The performance and accuracy of the algorithm has been tested for a very wide range of Mach numbers and geometrical situations, and has demonstrated robustness without the need for any adjustable parameters. The algorithm can either be triangle or vertex based; experience with the method has shown that extremely low levels of artificial viscosity can be achieved using the triangle based version of the method.

A new method of direct dynamic refinement of unstructured grids has been developed, (Ref. 6), and allows an automatic adaptation of the grid to the region of the moving detonation wave inside the PDE geometry. This refinement guarantees that the associated highly inhomogeneous pressure and density contours of the detonation wave are accurately tracked in the simulation. This is an important ingredient in our simulations, since the main component of the detonation process contributing to the thrust generated by the PDE is the total kinetic energy of the wave. Use of the new refinement scheme has more accurately describe the moving detonation wave behavior. These new results concern nonplanar wave evolution and, as pointed out in Section 4. may be a factor in controlling the magnitude of the generated thrust.

## 4. Scaling Study of the PDE

We have shown in our previous study that in the Pulsed Detonation Engines, thrust is primarily produced by the unsteady interaction of shock wave generated by the propagating detonation wave and the thrust wall of the detonation chamber. This interaction will be nonlinear and scalability of the engine will greatly depend on the extent of nonlinearity. For example, for the engine geometry shown in Figure 1, the engine volume can be increased just by elongating the wall of the detonation chamber. If the area of the thrust wall in Figure 1 remains the same and the composition of the detonation mixture does not change, the increase in the detonation chamber length will result in longer duration of the interaction between the shock wave and the thrust wall. This simple situation poses a question concerning the relationship between the increase in PDE thrust and increase in its volume. This is very practical issue in scaling up the size of the engine, since increase in the detonation chamber diameter will eventually result in difficulty generating a planar detonation front, leading to loss of engine efficiency.

To study this aspect of the detonation engine scalability we have conducted a set of numerical simulations for the engine geometry very similar to these shown in Figure 1. The detonation chamber diameter was kept constant at 8cm and its length varied from 8cm to 16cm. The main objective of our study is to determine how the thrust produced by the detonation engine increases when the engine length doubles and the rest of the engine parameters will remain the same. This section describes the results of two simulations for the detonation chamber geometry described above, using a detonation chamber length of 8 cm and 16 cm. The simulation begins at t = 0 when the detonation chamber is placed in an external freestream with the Mach number of 0.8. The detonation wave is initiated at the aft end of the detonation chamber. The detonation chamber for these cases includes a simple annular inlet which remains open during operation. The specific fuel chosen for the present simulations is ethylene. The chemical reaction occurring in the ethylene/air detonation process is given by:

# $C_2H_4 + 3O_2 + 11.24N_2 \longrightarrow 2H_2O + 2CO_2 + 11.24N_2.$

The detonability limits of ethylene in air range from 4% to 12% by volume and depend somewhat on temperature and pressure. We assume for the sake of simplicity that the fuel/air ratio is 6% by volume. In contrast with our previous presentations here, as well as in case of supersonic PDE simulation presented in this paper, we have simulated a propagating detonation wave by releasing the energy of detonative combustion in our mixture immediately behind the detonation front. In our simulations we have used the Dynamically Adaptive FUGGS code which we have developed recently. Figures 2a, 2b. and 2c, present three frames of the results for simulation in a 16 cm long detonation chamber. In these figures, results are presented in the form of pressure contour plots. For illustration of the dynamic grid adaptation to the evolving flow pattern, we have plotted the unstructured triangular grid corresponding to the stage at which contour plots are shown. In Figure 2a, pressure contour plots are shown shortly after the detonation wave has been initiated at the aft end of the detonation chamber. We can observe that the shock wave front is planar. The detonation wave velocity is 1800 m/sec and the pressure at the front of the detonation wave is  $\approx 20$  atm. corresponding to the CJ condition for the ethylene/air mixture. Figure 2b shows the results of the detonation wave reflecting from the thrust wall and the detonation products starting to expand into the flow stream surrounding the detonation chamber. The detonation products expand through the inlet and into the detonation chamber. This simultaneous expansion results in a complicated wave structure which can be observed in Figure 2b. Here we also note that the dynamically adjustable grid closely follows developing wave structures. In Figure 2c, results are shown at the stage when the two main shock waves generated by the PDE cycle have interacted and are about to leave the computational domain. The maximum pressure here dropped to 1.7 atm. The computational grid follows the shocks and vortices propagating through the computational domain and we can observe the substantially reduced grid density in the regions of relatively monotonic flow. Figure 2 illustrates the level of detail of this complicated flow regime which can be studied with modern CFD methods and algorithms.



Figure 3. Time averaged thrust and force data from simulation of 8cm (solid lines) and 16cm (dashed lines) detonation chambers, 200 Hz detonation frequency.

In Figure 3 the total force and time averaged thrust generated by the device in the simulations just discussed for 8cm and 16cm long detonation chambers, are shown as a function of time. The time averaged thrust is based on the total time for one cycle defined as  $5.0 \times 10^{-3}$ sec. This time is equivalent to a detonation frequency of 200 Hz. As seen in the figure, initially the force acting on the thrust wall is close to zero. The simulation was run for  $2.0 \times 10^4$  sec physical time to establish a flow pattern characteristic of the steady nonreactive flow of ambient air around the detonation chamber. At the time  $2.0 \times 10^4$  sec the detonation wave started to propagate from the aft of the chamber. We can see in Figure 3 that the detonation wave reaches the thrust wall at the time  $2.45 \times 10^4$  sec (for 8cm case) and  $2.9 \times 10^4$  sec (for 16cm case), when a very large force of  $\approx 5.0 \times 10^{3}$  lb is felt on the end wall of the detonation chamber. This force is a

result of the high pressure behind the detonation wave. It rapidly decays to virtually zero level in  $\approx 0.5 \times 10^{-4}$ sec in the 8cm case and  $\approx 1.0 \times 10^{-4}$  sec in the 16cm case. The maximum force produced on the thrust wall is the same in both cases. The increase of e detonation chamber volume is most noticeable in thrust data. As we can see in Figure 3 the average the st increases from 12 Lbs in the 8cm chamber use to 24 Lbs in 16cm chamber case. This resshows that the thrust of the detonation chamber with ale linearly with an increase in detonation chamber length when the other parameters are kept constant.

#### 5. Supersonic Missile Simulation

In this section we present the results of a full simulation of a generic supersonic missile powered by a PDE. The purpose of this simulation was to study the requirements placed on the PDE air inlets and internal structures that may be needed to produce a well mixed. uniform flow inside the detonation chamber. In addition, the simulations were carried out on the full vehicle in order to account for all wave drag that a real missile produces; the resulting thrust predictions for the simulations are therefore true net thrust values. We show here the results of a successful geometry that satisfies the requirements of choking flow in the inlet throat and uniform predetonation flow in the chamber produced by means of a grill. The missile geometry and computational grid are shown in figures 4a, 4b, and 4c.



Figure 4a. Unstructured Grid for Missile and Engine Simulation.



Figure 4b. Grid Detail for Inlet and Manifold.



Figure 4c. Grid Detail for Manifold.

Figure 4a shows the main missile body with the PDE covered by the high density of grid points necessary to resolve the details of the PDE chamber, inlets and, grill as shown in the enlarged views of the chamber, figures 4b and 4c.

The simulations were performed by allowing steady subsonic flow conditions to be established in the detonation chamber holding a steady supersonic flow, Mach 2. about the missile. The degree to which this steady and uniform flow can be established in the chamber using the inlet and grill of figure 4 is shown in figure 5. Here the complete flow including the bow shock is shown, figure 5a, as well as an enlarged view of the flow in the vicinity of the inlets showing smaller shocks, figure 5b, and a particle trace showing the streamlines of the uniform chamber flow, figure 5c. When steady flow conditions are reached in the detonation chamber, plane detonation is started at the rear end of the chamber. The detonation then travels towards the inner thrust wall at approximately Mach 4. Figure 6 shows the same sequence of views as figure 5, but with the detonation approximately having travelled halfway to the thrust wall. Notice that the detonation remains more-or-less planar indicating that the flow properties are uniform in the chamber. Figure 7 shows the phenomena associated with the detonation impacting the thrust wall, the high pressure of the detonation wave exhausting from the inlet and particles leaving the chamber through the inlets. The principle results from the simulations of the supersonic missile case are that the use of such a grill structure and inlet shape allow uniform flow to be established before and after detonation in sufficient time that detonation frequencies of 200 cycles per second are obtainable. It is not clear at this time whether such internal grill structures are desirable from the standpoint of structural integritry. This question will be addressed later in planned experimental studies of the PDE.

## 6. Conclusions

The simulation of the PDE presented in this paper are partial results from an ongoing SAIC research program aimed at development of a practical PDE engine for a wide spectrum of applications including small UAV's and PENAID missiles among others. The primary focus of the results presented here is the scaling of PDE performance with respect to size variation and the establishment of uniform subsonic flow conditions in the detonation chamber before and after detonation.

The results of the scaling studies described in the text lead to scaling laws that can be used to predict the performance of PDE's over some range of parameters assuming that other parameters are held fixed. For example, holding the external Mach number and basic chamber and inlet geometry fixed suggests that the thrust at constant specific fuel consumption produced by the PDE scales as:

Thrust = 
$$T_1 * \left(\frac{\nu}{\nu_1}\right) * \left(\frac{f}{f_1}\right)$$
,

where  $T_1$ ,  $(v/v_1)$  and  $(f/f_1)$  are the thrust computed for a chamber of volume  $v_1$  operating at frequency  $f_1$ , the ratio of a new volume to  $v_1$  and the ratio of the new frequency to  $f_1$  respectively. Thus, thrust should scale linearly with the parameter  $(v/v_1) * (f/f_1)$  over some range of this parameter. Departure from this linear variation may occur due to the following reasons: First, since volume is proportional to the product of cross- sectional area and length,  $v \sim r^2 l$ ,  $(r \sim detonation chamber ra$ dius,  $l \sim$  chamber length) physical limits will be placed on r and l; if r is too small (less than 1 cm) a detonation will not be sustainable and if l is too small (less than 10 cm) it may be difficult to mix fuel and air effectively. Using the thrust relation established above, we make the following observations. For a PDE device producing 100 pounds thrust at 100 Hz, doubling the frequency and increasing the volume by a factor of 5 yields a thrust level of 1000 pounds. Assuming that the aspect ratio of the chamber (chamber length to radius) is fixed, this would required an engine only 25.5 cm in diameter and 25.5 cm in length. Similarly, scaling the engine down in size to a 5 cm diameter, 5 cm length detonation chamber operatin at 100 Hz yields thrust levels of the order of 3.7 pounds. Of course, the derive relation between thrust and  $(v/v_1) * (f/f_1)$  cannot be believed over too wide a range of parameters; but, it does serve to point out the

flexibility in scaleup or scaledown permitted by the PDE concept.

We further conclude that the performance computed for PDEs is encouraging from the point of view of thrust. thrust control, simplicity of the device (no moving parts) and specific fuel consumption (SFC). The specific fuel consumption computed from our simulations (~ 1Lb/hr./lb) is competitive with present day small turbojets (SFCs for small turbojets are in the range of 1.8-2.0 lb./(lb.*hr.)). Thus, for a given mission and vehicle, a PDE propulsion unit could be more fuel efficient resulting in increased range. Moreover, if the expected thrust control in PDEs is realizable, it may be possible to produce propulsion units that can slow down, loiter and maneuver and finally regain full thrust within the time it takes to increase the detonation frequency.



Figure 8. Thrust versus Mach number variation obtained from simulation data.

Another result from the scaling situdies is that the thrust data show a dependence on the external flight conditions, e.g. Mach number. The Mach number plays a role in the wave drag that the geometry of the PDE will incur; the details of the valve and inlet configurations figure prominently in the total wave drag.

On the other hand, the simulations showed that the timing of the fresh air refilling required to recharge the chamber for subsequent detonations is a strong function of the details of the valve and inlet geometry, the expansion of the combustion products, the resulting overexpansion of the chamber flow and the external flow regime and interaction of the external flow with the internal flow. For subsonic flight, Mach 0.2-0.9, the fresh air entering the chamber comes from two separate principle flow processes: one comes from the flow through any valve or inlet and the other comes from the self- aspiration or reverse flow from the aft end of the chamber due to strong over-expansion. All these processes are interdependent and, in order to search for a given performance in a given device, requires variation of many parameters. The simulation results obtained to date provide an understanding of the effects caused by variation of the above-mentioned parameters and, with the information available, we are able to conclude that a PDE propulsion unit can be optimized (although no optimization studies were carried out) for a given flight regime. For example, if we consider the simulations obtained for constant (number and inlet) geometry but at Mach numbers 0.8, 0.5, 0.2, and 0.0 respectively, the variation of maximum time averaged thrust and mean thrust as a function of Mach number can be characterized as shown in Figure 8.

The decrease in thrust with Mach number has been described earlier³ to be a result of the increased wave drag produced by the inlet geometry. Optimization of the inlet geometry could help in eliminating a large part of the wave drag. The data contained in Figure 8 could be used to determine the detonation frequency at a given Mach number yielding constant thrust. For a constant thrust level of 90 pounds, the required detonation frequency varies from 84 Hz at M = 0.0 to 140 Hz to M =0.8. In a similar fashion, parametric variations of other important aspects of PDE performance, such as minimum time for refill at given Mach number as a function of air inlet opening, can be obtained. In order to find an optimum configuration satisfying given performance over a wide flight regime, a more extensive simulation study will be required. It was mentioned earlier that the simulations presented here were carried out under the assumption of inviscid flow; boundary layer effects were not included. The addition of boundary layers to the PDE engine inlets and valves, the only components where boundary layers will be significant, will lead to increased performance. Roughly the same amount of fresh air will flow into the over-expanded detonation chamber but at a somewhat slower rate and in a pattern that will promote enhanced circulation and hence fuel/air mixing.

A final conclusion can be made concerning the application of PDE's to supersonic vehicles. As shown in the simulations the ability to refill the detonation chamber with fresh air charge is a very strong function of valve and inlet geometry. Refilling may also be somewhat enhanced by the self-aspiration effect, but; to a much less extent than in the subsonic case. The example of supersonic operation discussed in Section 5 shows that care must be taken in design of the inlet or valve configuration. The flow in the chamber must allow for refill and fuel/air mixing. More than likely choked flow conditions will be required at the inlet entrance to the chamber. This could lead to complications in the design of a PDE with simple geometry; choked flow conditions are a function of the external Mach number and a fixed inlet will be optimal only for a small range of the operating envelope. On the other hand, if a given vehicle is to fly at supersonic speeds and is launched at supersonic speeds, this problem may not appear. Further, if the given vehicle is launched at subsonic speeds and a beoster is used to bring it up to the required supersonic operating speed, the problem may again not appear. We conclude that the PDE has potential for the supersonic flight regime and it is not excluded that a configuration can be found which will operate over the flight regimes 0.2 < Mach number < 3 in a fuel efficient manner.

### Acknowledgements

The authors would like to express appreciation to Dr. Adam Drobot of SAIC for helpful suggestions and advice during the course of this work. The work reported on here was partially supported by DARPA under AFOSR contract FY9620-89-(-0087). The authors would like to thank Dr. L. Auslander for his encouragement and interest in this project.

#### References

- Helman, D., Shreeve, R. P., and Eidelman, S., "Detonation Pulse Engine,", AIAA-86-1683, 24th Joint Propulsion Conference, Huntsville, 1986.
- Eidelman, S., W. Grossmann, I. Lottati, "A Review of Propulsion Applications of the Pulsed Detonation Engine Concept," AIAA 89-2466, AIAA/ASME/ SAE/ASEE 25th Joint Propulsion Conference, Monterey, CA, July 10-12, 1989 (to be published in AIAA Journal of Propulsion).
- Eidelman, S., W. Grossmann, and I. Lottati. "Computational Analysis of the Pulsed Detonation Engines and Applications," AIAA 90-0460, 28th Aerospace Sciences Meeting, Reno, NV, Jan 8-11, 1990.
- 4. Shultz-Grunow, F., "Gaz-Dynamic Investigation of the Pulse-Jet Tube," NACA TM-1131, Feb. 1947.
- 5. Zinn, B. T., Miller, N. Carvelho, J. A., and Daniel B. R., "Pulsating Combustion of Coal in Rijke Type Combustor," 19th International Symposum on Combustion, 1197-1203, 1982.
- Lottati, I., S. Eidelman, A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," Paper AIAA 90- 0699, 28th Aerospace Sciences Meeting, Reno. NV, Jan 8-11, 1990.
- Lottati, I., C. Eidelman, A. Drobot, "Solution of Euler's Equations on Adaptive Grids Using a FUGGS," to be published in Proceedings of Second International Conference on Free-Lagrange Methods, Held at Jackson Hole, June 1990.
- Eidelman, S. Collela, P., and Shreeve R. P., "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling,", AIAA Journal v. 22, 10 (1984).

ī









c)

Figure 2. Pressure contours and computational grid for 16 cm long PDE. External flow M = 0.8.


a. Pressure Contours. Missile and Engine.



- b. Pressure Contours. Detonation Engine.
- c. Traced Particles. Detonation Engine.





a. Pressure Contours. Missile and Engine.



b. Pressure Contours. Detonation Engine.

c. Traced Particles. Detonation Engine

Figure 6. Supersonic missile simulation. Missile speed M = 2.0. Time t =  $2.0 \cdot 10^{-5}$  sec.



a. Pressure Contours. Missile and Engine.



b. Pressure Contours. Detonation Engine.



c. Traced Particles. Detonation Engine.



## Plasma enhanced chemical vapor deposition modeling

E. Hyman, K. Tsang, I. Lottati and A. Drobot

Science Applications International Corporation, 1710 Goodridge Drive, McLean, VA 22102 (U.S.A.)

B. Lane*, R. Post and H. Sawin⁺

Applied Science and Technology, 35 Cabot Road, Woburn, MA 01801 (U.S.A.)

#### Abstract

We are developing a model to simulate the plasma enhanced chemical vapor deposition (PECVD) of thin diamond films. The emphasis to date has been on the development of stand-alone modules to simulate the microwave-induced time-dependent electric and magnetic fields, the generation and energization of plasma electrons in the discharge, the non-equilibrium hydrocarbon chemistry, and the development of a two-dimensional unstructured mesh hydrodynamics solver capable of simulating flow through geometrically realistic reactors. The coupling of the various modules, and the incorporation of a surface chemistry module for the substrate deposition, into a self consistent reactor model is underway. We present some preliminary results from components of a model 2.45 GHz microwave reactor employing  $H_2$  with 1% CH₄ and operating at a gas pressure of  $5.3 \times 10^3$  Pa (40 Torr). We have completed an electromagnetic model of the microwave energy deposition in the plasma and calculated the field patterns in the reactor. We have also performed point calculations of the time-dependent electron distribution and of the build-up of atomic hydrogen, the gas temperature, and the resulting generation of CH₁, C₂H₂, and other hydrocarbon radicals. We have also completed a fluid simulation of the flow through the reactor using unstructured mesh techniques. The results we discuss in this paper indicate that careful treatment of non-equilibrium processes in PECVD reactors as well as accurate representation of reactor geometry are essential to a useful simulation capability.

#### 1. Introduction

The ability to deposit thin diamond films rapidly onto substrates with a high degree of uniformity using the plasma enhanced chemical vapor deposition (PECVD) technique is a high priority technology goal. It is generally recognized that an improved understanding of the microscopic mechanisms in PECVD reactors and of the sensitivity of the various reactor parameters is needed. The important design issues for PECVD reactors are as follows: efficient coupling of microwave energy to the plasma and to the process gas; efficient transport of activated process gas to the wafer or substrate deposition area; efficient use of the injected gas; uniformity of chemically active species flux across the deposition area. It is desirable to avoid reactor designs that have the following: high microwave electric fields in regions away from the desired plasma formation location. leading to plasma discharge near chamber walls or breakdown of dielectric materials; flow patterns which carry activated species to the reactor walls or out through pumping ports rather than to the wafer; stagnant or circulating flow patterns above the wafer, buffering the wafer from the desired chemically active species.

To understand these issues and to provide input to improved reactor designs we are developing a self-consistent numerical model which simulates each of the essential mechanisms in the PECVD reactor. A physically realistic model requires careful simulation of the electromagnetics, the plasma physics, the neutral gas flow, and the homogeneous and heterogeneous chemistry. Furthermore, the different elementary processes in the reactor are highly interactive; for this reason it is difficult to foresee intuitively the impact of varying one or another reactor parameter. For example, the microwave source induces a complex, geometrically dependent and time varying electric field which ionizes the gas; the resultant build-up of electrons alters the developing electric field distribution. The microwave energy input heats the electrons, and the energetic part of the non-Maxwellian electron energy distribution dissociates the gas, inducing a rise in the gas temperature. The amount of dissociation and heating depends sensitively on the high energy tail of the electron distribution which consequently must be accurately determined. The interaction of the neutral gas with the plasma alters the molecular input stream of H₂ to include a substantial

[•]Permanent address: MIT, Plasma Fusion Center, Cambridge, MA 02139, U.S.A.

^{*}Permanent address: MIT, Chemical and Electrical Engineering Department, Cambridge, MA 02139, U.S.A.

component of atomic hydrogen, and this, in turn, affects the ionization rate and the electron distribution. The hydrocarbon chemistry is non-equilibrium and both the flux and the spatial distribution of appropriate radicals reaching the wafer are very sensitive to the geometrical configuration of the reactor and to the details of the flow configuration through the reactor.

We have focused to date on the development of modules to simulate the microwave-induced time-dependent electric and magnetic fields, the generation and energization of plasma electrons in the discharge. the evolution of the molecular and atomic hydrogen gas, the non-equilibrium hydrocarbon chemistry, and the development of a two-dimensional unstructured mesh hydrodynamics solver capable of simulating flow through geometrically realistic reactors. The coupling of these modules, and the incorporation of a surface chemistry module for the substrate deposition, into a self consistent reactor model is underway. In the next section we describe in some detail the generation of the microwave field and the transfer of the field energy to the electrons. This is followed by preliminary model results and our conclusions.

#### 2. Microwave field and plasma generation

The absorption of microwaves and the creation of the plasma which transfers energy to the neutral species in the reactor involves the solution of two closely coupled problems. They are (1) the determination of the electromagnetic field patterns in the complex geometry of the reactor and (2) the formation of the electron distribution function. At a pressure of  $5.3 \times 10^3$  Pa (40 Torr) and a gas temperature in the plasma region greater than 2000 K, the mean free path of an electron with neutrals is approximately  $5 \times 10^{-5}$  m. During the time an electron gains the average electron energy (approximately 2 eV) typical of the reactors we are modeling, it undergoes around 150 collisions and has a mean displacement of approximately  $7 \times 10^{-4}$  m. Thus, to an excellent approximation, the heating of the electrons results from the microwave electric fields which are local to the electron's spatial location.

The electron distribution function satisfies the Boltzmann equation. Because an electron undergoes many collisions as it is heated, the distribution function is nearly isotropic and can be well approximated by the zero and first o der terms of a spherical expansion, the latter representing a distortion of the distribution function in the direction of the applied field, oscillating at the microwave frequency  $\omega$ . The equation for the electron distribution function is

$$\frac{1}{3} \left[ \left( \frac{eE_0}{m_e} \right)^2 \frac{1}{v^2} \frac{\hat{c}}{\hat{c}v} \left( v^2 \frac{v_m}{v_m^2 + \omega^2} \frac{\hat{c}F_0}{\hat{c}v} \right) + v^2 \nabla \cdot \left( \frac{1}{v_m} \nabla F_0 \right) + v \nabla \cdot \left( V \frac{\hat{c}F_0}{\hat{c}v} \right) \right]$$
$$= L_1 + L_x - \frac{2m_e}{M} \frac{1}{v^2} \frac{\hat{c}}{\hat{c}v} \left( v^3 v_m F_0 \right)$$

where  $E_0$  is the amplitude of the electric field, e,  $m_e$ , and v are the electron charge, mass, and velocity respectively,  $v_m$  is the electron momentum transfer frequency.  $F_0$  is the zero order approximation to the distribution function, V is the bulk fluid velocity, M is the neutral mass, and  $L_i$  and  $L_x$  are the inelastic loss terms that affect the distribution function respectively via ionization and excitation of rotational, vibrational, and electronic levels. The first term on the left represents the electron velocity diffusion due to the cumulative affect of many small angle scatterings of the electron induced by the oscillating electric field. The next two terms give the affect of the divergence of the diffusive and convective fluxes respectively. The last term on the right gives the energy loss due to elastic collisions.

Below a critical electric field the ionization rate is exceedingly small and hence the electron density and power deposited per unit volume are also small. Above the critical field the ionization rate and power deposition increase rapidly. If the power deposition is kept approximately constant and equal to the power injected into the reactor the electric field will rapidly adjust to a level close to the breakdown value. The power deposited per unit volume scales as  $E_0^2 n_e$ , where  $n_e$  is the electron density; as the electron density rises the electric field drops. The above considerations provide the necessary prescription for determining the time-dependent evolution of the electric field, the electron density, and the electron energy distribution. Using a set of elastic and inelastic cross-sections, the last two parameters define the time-dependent evolution of the fluid, including the build-up of atomic hydrogen and the rise in the gas temperature as the gas dissociates. In addition to H, and H, the Boltzmann calculation monitors the evolution of  $H_2^+$ ,  $H_3^+$ ,  $H^+$ , and  $H^-$  and separately tracks each of the three lowest vibrational levels of  $H_2$ . The hydrocarbon chemistry is initiated by energetic electrons, but being trace constituents the hydrocarbons do not significantly affect the electron development. It is useful to take advantage of the separation of time scales inherent in this problem. The electron distribution function is established on a time scale of around 10⁻⁸ s, the electron density growth occurs over approximately 1 µs, and the hydrogen dissociation and hydrocarbon chemistry as well as fluid convection and diffusion occur on a millisecond time scale.

#### 3. Results

We present calculations from the modules of the PECVD model that have been constructed and tested. The results obtained are designed to identify important physical mechanisms and to determine the regimes where they are critical. The calculation of the electric and magnetic fields was accomplished using SAIC's MASK code, a general two-dimensional electromagnetic code designed for the study of microwave devices of arbitrary geometrical configuration. The code introduces the electric fields at the input port and allows them to propagate into the reactor, which can include arbitrarily shaped regions of dielectric or conducting bodies. It employs a finite difference representation of the full set of time-dependent Maxwell equations and solves the initial value problem. Figure 1 shows the results of a simulation for a generic reactor in which the plasma is modeled as a spherical shell with a finite conductivity and a finite dielectric constant. Ultimately the plasma model will be replaced by results of Boltzmann calculations over the plasma region. The MASK calculation retains both the field strength and the phase dependence and determines the energy deposition in the target plasma. The results shown are contours of constant field amplitude for the axial (a) and radial (b) electric components in an azimuthally symmetric configuration. The bottom horizonta! line is the axis of symmetry. The input



Fig. 1. MASK calculation of (a) the axial and (b) the radial components of the electric field in a model reactor. Shown in the figure are contours of constant amplitude. The reactor axis is the bottom horizontal line. The substrate shelf is at the right and the outlet for the reacting gases is above it. The plasma shell is centered on the axis to the left of the substrate.



Fig. 2. Time development of the electron density at a point in the reactor of high electric field corresponding to the one-point simulation described in the text.

wave is introduced on the left and propagates into the reactor region through a radially expanding transition region. The substrate is on the right in the figure and immediately above it is the outlet for the reacting gases. The figure indicates regions of high and low field concentration which will provide an important tool for reactor design. This calculation determines the energy deposition in the plasma and, hence, the reactor efficiency. When performed self consistently it also predicts the shape of the plasma region and the subsequent coupling to the hydrodynamic calculation.

The Boltzmann module calculation simulates the electron and heavy particle evolution at a location within the reactor where the electric field is sufficiently high to create and sustain a plasma. We maintain a constant deposited microwave power and assume the gas pressure is kept constant at  $5.3 \times 10^3$  Pa (40 Torr). The simulation runs for several milliseconds, beyond which time advection and diffusion effects, not included in this calculation, would become important. The initial conditions are  $[H_2] = 1.28 \times 10^{24} \text{ m}^{-3}$ ,  $[CH_4] = 1.28 \times 10^{24} \text{ m}^{-3}$  $10^{22}$  m⁻³, gas temperature T = 300 K. Figure 2 shows the electron density rising rapidly to approximately 10¹⁵ m⁻³ in around 1 ns, a result of the very energetic electron distribution at early times. Thereafter, it increases nearly two more decades over about 10⁻⁵ s, the slower increase being reflective of the less energetic electron spectrum as the electrons give up energy to the various inelastic processes. The increase on a millisecond time scale is associated with the conversion of the gas from the molecular to the atomic state which leads to an increasing fraction of atomic ions (which recombine much more slowly than molecular ions) and also causes



an adjustment in the electron distribution function. The evolution of the electron distribution function as determined by the Boltzmann equation is illustrated for these three time regimes in Fig. 3 in which the ordinate scale is arbitrary. In Fig. 3(a) at 1.5 ns we see the very energetic electron spectrum: the average electron energy is around 8 eV. In Fig. 3(b) at 55.2  $\mu$ s the average energy has dropped to 2 eV and in Fig. 3(c) at 4.8 ms when atomic hydrogen predominates, the spectrum has changed again, the average electron energy increasing moderately to about 2.7 eV.

The evolution of the hydrocarbon species is simulated with a chemistry code that uses the output of the Boltzmann code. The reactions used in the hydrocarbon model are listed in Table 1 along with the constants A. b, and E which determine the rate coefficient k according to  $k = AT^{b} \exp(-E/T)$ . The code calculates the rate for each reverse reaction that is not known. using detailed balance. The hydrocarbon chemistry is initiated by the electrons which dissociate H2 (and also the CH₄), causing the release of chemical energy and heating the gas. Figure 4 shows the gas temperature as a function of time for the simulation described above. In Fig. 5 we show the evolution of 12 hydrocarbon species plus  $H_2$  and H out to 3 ms, at which time the  $H_2$  and H densities are approximately equal. Although the formation of H is initiated by the electron dissociation of H₂, after about 2.5 ms with rise in temperature, thermal dissociation of H, becomes predominant. The build-up of CH₁ due to the dissociation of CH₄ occurs very early (approximately 30 µs) but it reacts with itself to form  $C_2H_6$  and drops to a local minimum before 1 ms. As the temperature increases, however, the CH, recombination reaction rate decreases and CH₃ increases to a new maximum near 2 ms; thereafter it decreases once more as the  $CH_4$  becomes exhausted. Acetylene ( $C_2H_2$ ) results from the chain of reactions initiated by the formation of  $C_2H_6$ , thence to  $C_2H_5$  and, in turn, to  $C_2H_4$ ,  $C_2H_3$  and finally to  $C_2H_2$  which persists to the end of the simulation. In general, the hydrocarbon species do not have time to reach the equilibrium values that the gas temperature would dictate. Thus, the time between their formation in the plasma and their reaching the substrate determines the densities of the critical radical species reaching the substrate.

Fig. 3. Electron energy distribution for the simulation as in Fig. 2. (a) at a time before inelastic processes reduce the average electron energy; (b) at an intermediate time when the average electron energy is about 2 eV; (c) at a time when dissociation of the  $H_2$  is nearly complete. The ordinate scale is arbitrary.

TABLE 1. Hydrocarbon reactions and rate coefficients

Reaction	$A(10^{6(n-1)}(m)^{3(n-1)}s^{-1})^{n}$	b	E(K)	Range(K)
$H + H + H_2 \rightarrow H_1 + H_2$	$2.7 \times 10^{-31}$	-0.6	0	100-5000
$H_1 + H_2 \rightarrow H + H + H_2$	$1.5 \times 10^{-9}$	0	$4.84 \times 10^{4}$	2500-8000
$CH_4 + H \rightarrow CH_3 + H_2$	$3.6 \times 10^{-20}$	3.0	$4.40 \times 10^{3}$	300-2500
$CH_1 + H_2 \rightarrow CH_4 + H$	$1.1 \times 10^{-21}$	3.0	3.90 × 10 ³	300-2500
$CH_4 + \frac{H_2}{CH_4} \rightarrow CH_4 + H + \frac{H_2}{CH_4}$	$(2.9)_{3.3} \times 10^{-7}$	0	$4.45 \times 10^4$	1500-3000
$CH_3 + H + \frac{H_3}{CH_4} \rightarrow CH_4 + \frac{H_3}{CH_4}$	$(\frac{12}{18}, \frac{9}{6})^2 \cdot 2 \times 10^{-21}$	- 3.0	0	300-2500
$CH_1 + CH_1 \rightarrow C_2H_5 + H$	$1.3 \times 10^{-9}$	0	$1.34 \times 10^{4}$	1500-3000
$C_2H_3 + H \rightarrow CH_1 + CH_3$	$5.0 \times 10^{-11}$	0	0	300-1500
$CH_3 + CH_3 \rightarrow C_2H_4 + H_2$	$1.7 \times 10^{-8}$	0	$1.61 \times 10^4$	1500-2500
$CH_3 + \frac{H_2}{CH_4} \rightarrow CH_2 + H + \frac{H_2}{CH_4}$	$(\frac{12.9}{18.6})$ 1.7 × 10 ⁻⁸	0	$4.56 \times 10^4$	1500-3000
$CH_2 + H \rightarrow CH + H_2$	6.6 × 10 ⁻¹¹	0	0	300-2500
$CH_2 + CH_3 \rightarrow C_2H_4 + H$	6.6 × 10 ⁻¹¹	0	0	300-2500
$C_2H_6 + H \rightarrow C_2H_5 + H_2$	$9.0 \times 10^{-22}$	3.5	$2.62 \times 10^{3}$	300-2000
$C_2H_6 + CH_3 \rightarrow C_2H_5 + CH_4$	$9.1 \times 10^{-25}$	4.0	$4.17 \times 10^{3}$	300-2000
$C_2H_6 + \frac{H_2}{CH_4} \rightarrow CH_3 + CH_3 + \frac{H_2}{CH_4}$	$(2.9)_{(18,0)}$ 1.7 × 10 ⁻⁵	0	$3.43 \times 10^4$	800-2500
$C_2H_5 + C_2H_5 \rightarrow C_2H_4 + C_2H_6$	$2.3 \times 10^{-12}$	0	0	300-1200
$C_2H_5 + \frac{H_2}{CH_4} \rightarrow C_2H_4 + H + \frac{H_2}{CH_4}$	$1.7 \times 10^{-7}$	0	1.56 × 10 ⁴	700-1500
$C_2H_4 + H \rightarrow C_2H_3 + H_2$	$2.5 \times 10^{-10}$	0	5.14 × 10 ³	700-2000
$C_2H_4 + \frac{H_2}{CH_4} \rightarrow C_2H_2 + H_2 + \frac{H_2}{CH_4}$	$(\frac{2.9}{18.6})4.3 \times 10^{-7}$	0	3.99 × 10 ⁴	1500-2500
$C_3H_4 + \frac{H_2}{CH_4} \rightarrow C_3H_3 + H + \frac{H_2}{CH_4}$	$(\frac{2.9}{18})4.3 \times 10^{-7}$	0	$4.86 \times 10^{4}$	1 <b>500-2</b> 500
$C_3H_4 + CH_3 \rightarrow C_3H_3 + CH_4$	$7.0 \times 10^{-13}$	0	5.59 × 10 ³	<b>300</b> -1000
$C_2H_1 + H \rightarrow C_2H_2 + H_2$	$3.3 \times 10^{-11}$	0	0	300-2500
$C_2H_3 + C_{H_4} \rightarrow C_2H_2 + H + C_{H_4}^{H_2}$	$\binom{2.9}{18.6}5.0 \times 10^{-9}$	0	$1.61 \times 10^4$	<b>500</b> -2500
$C_2H_2 + H + \frac{H_2}{CH_4} \rightarrow C_2H_3 + \frac{H_2}{CH_4}$	$(18.6)^{12.91}$ .11 × 10 ⁻³⁰	0	$3.5 \times 10^{2}$	3 <b>00 - 5</b> 00
$C_1H_1 + H \rightarrow C_1H + H_2$	$1.0 \times 10^{-10}$	0	$1.19 \times 10^{4}$	300-3000
$C_2H + H_2 \rightarrow C_2H_2 + H$	2.5 × 10-11	0	1.56 × 10 ³	300 3000
$C_2H_2 + CH_2 \rightarrow C_1H_3 + H$	$3.0 \times 10^{-12}$	0	0	> 298
$C_2H_2 + C_2H \rightarrow C_4H_2 + H$	$5.8 \times 10^{-11}$	0	0	300-2500
$C_2H_2 + \frac{H_2}{CH_4} \rightarrow C_2H + H + \frac{H_2}{CH_4}$	$(2.9)_{(18.6)}(2.6 \times 10^{-8})$	0	5.38 × 104	1 <b>500</b> 3500

"n denotes the number of reactants.



Fig. 4. Evolution of the gas temperature for the simulation as in Fig. 2.

Finally, we present preliminary results of a fluid simulation of a generic PECVD reactor, using SAIC's FUGG code which is capable of performing fluid calculations over arbitrarily complex geometries. The code employs an unstructured grid allowing extremely fine resolution in critical areas while employing coarser gridding in regions where quantities vary slowly. The code was designed for the study of flow problems dominated by convection and is presently being modified to incorporate thermal conduction and viscosity effects. In Fig. 6 we show two examples of the code's triangular gridding capability. In both cases a crosssection of the azimuthally symmetric model reactor is shown, where the left vertical boundary represents the reactor axis. Three gas inlet ports are modeled allowing the gas to enter at the top (in Fig. 6(a) the plenum region above the inlet ports is also modeled). The gas exits through the horizontal boundary at the bottom right. The substrate wafer is represented in Fig. 6(a) by the left half of the lower horizontal boundary and in Fig. 6(b) by the shelf at the lower left. In Fig. 6(a) the variable gridding capability is clearly illustrated and, in particular, the fine gridding needed in the inlet ports is shown. Figure 7 shows results of a fluid calculation for the reactor of Fig. 6(b) in which hydrogen gas enters at  $50 \text{ m s}^{-1}$  at a pressure of  $5.3 \times 10^3 \text{ Pa}$  (40 Torr). A heating source of 1.5 kW over a spherical volume of radius 0.035 m, centered on the reactor axis and mid-





(b) Fig. 5. Evolution of the hydrocarbon densities for the simulation as in Fig. 2.

Time

(ms)





Fig. 6. Examples of the FUGG code's unstructured gridding capability for two model reactors ((a) and (b)).

10¹

10

way between the inlet port and the wafer, is included to simulate approximately the effect of the plasma source. Shown are velocity vectors for the flow 2.6 ms after the plasma is turned on. Also calculated but not shown are the pressure, density, and temperature fields. While conclusions should be tempered because of the current lack of inclusion of thermal effects in the code and because the results represent a transient pre-steady-state stage, the effects of buoyancy are apparent. The complex vortex flows seen suggest this reactor configuration would be very poor for efficient diamond deposition.

#### 4. Discussion and conclusions

We have presented results of a model under development that will permit the simulation of PECVD reactors of arbitrary geometry. The model will be an important tool providing better understanding of the microscopic processes occurring within the reactor. permit parameter studies to identify those parameters which critically affect both the rate of deposition and the uniformity of the deposition over the wafer surface, and ultimately enable the design of improved reactors. We have identified several critical elements in the modeling effort that need to be treated carefully if simulation results are to be meaningful. First, the electromagnetic fields which initiate the plasma formation need to be determined in the realistic reactor geometry, including

effects of all metallic, dielectric, and insulator elements actually present, to ensure that the fields are high in the desired plasma formation region but not elsewhere. Second, the coupling of the fields to the plasma electrons, to determine accurately both the time development of the electron density and their energy distribution, is most important for determining the evolution of the rate of hydrogen dissociation and the rise in the gas temperature. This, in turn, critically determines the non-equilibrium hydrocarbon chemistry development, a third area that needs to be carefully modeled. Finally, the flow of hydrocarbon radicals to the wafer is very sensitive to the reactor's geometrical configuration, its thermal properties, and the location of the plasma relative to the wafer. In conclusion, our results emphasize the highly non-equilibrium and coupled nature of PECVD reactor processes and the strong influence of reactor geometry. A numerical simulation that is useful must address all such issues.

#### Acknowledgment

This research was supported by the U.S. Army Missile Command and sponsored by the Defense Advanced Research Projects Agency (DARPA) under contract DAAH01-90-C-0279 and by the Independent Research and Development Program of Science Applications International Corporation (SAIC). Nonlinear signal processing using integration of fluid dynamics equations

by

S. Eidelman, W. Grossmann and A. Friedman^{*} Science Applications International Corporation 1710 Goodridge Drive McLean, Virginia 22102

## 1. INTRODUCTION

Very recently, there have been exploratory efforts in image processing based on nonlinear methods.^[1] These efforts involve systems of nonlinear hyperbolic partial differential equations in combination with local wave representation, such as wavelets, for signal enhancement.^[2,3,4] Techniques based on Kalman filtering for feature extraction from complex time-evolving scenes, as well as neural network approaches to image analysis and feature identification, can also be shown to involve nonlinear PDE analogies. The use of nonlinear methods, however, is largely unexplored and may provide another level of improvement for image processing.

If the purpose of an image enhancement process is to highlight the edges of an image, then the technique used in the frequency domain is usually highpass filtering. An image can be blurred, however, by attenuating the high-frequency component of its Fourier transform. Since edges and other abrupt changes in the gray levels are associated with high-frequency components, image sharpening can be achieved in the frequency domain by a highpass filtering process, which attenuates the low-frequency without disturbing high-frequency information in the Fourier transform. The primary problem with this technique is that an ideal discontinuity will have an infinite spectrum of frequencies associated with it. When filtering is applied, some frequencies are cut off, leading to a loss of some edges in an image.

It is interesting to observe that in the field of Computational Fluid Dynamics (CFD) similar problems exist in simulating flows with discontinuities. The problem of simulating flows with discontinuities is less forgiving, since an incorrect calculation usually leads to a complete distortion of the flow field. This has led CFD scientists to develop sophisticated algorithms that identify and preserve discontinuities while integrating the 90w field in the computational domain. In the image domain, sharpening is usually done by differentiation. The most commonly used methods involve the use of either gradients or second derivatives of the pixel information. Central differencing is usually used to calculate the derivatives. CFD research has shown that this strategy will lead in many cases to a smearing of the flow discontinuities (analog of the image edges in image enhancement).

Here, we describe a new and unique image sharpening method based on computational techniques developed for CFD. Our preliminary experience with this method shows its capability for nonlinear enhancement of image edges as well as deconvolution of an image with random noise. This indicates a potential application for image deconvolution from sparse and noisy data resulting from measurements of backscattered laser-speckle intensity.

*Present address: Brookhaven National Lab., Apton, NY 11973

## 2. THE CFD IMAGE ENHANCEMENT TECHNIQUE

Considerable attention has been devoted to the development of numerical methods and algorithms for Computational Fluid Dynamics during the last thirty years. In recent years, however, our understanding of numerical algorithms for a particular class of problems in gas dynamics described by the Euler equations has become more complete. The main numerical difficulty in solving invisid compressible flows described by Euler equations is the occurrence of features that, in the invisid approximation, are discontinuous and even in the presence of viscosity are too small to be resolved on an affordable computational mesh. These flow discontinuities in which the fluid state jumps across shock waves or contact surfaces are extremely important in fluid simulations. Most of the efforts in developing numerical techniques in fluid dynamics over the last twenty years were devoted to accurate simulations of these discontinuities. Initially, naive numerical methods that used a formal finite difference representation of the conservation equations on a computational grid were employed. That led to disastrous results, smearing of the discontinuities, and spurious oscillations. Subsequently, sophisticated nonlinear techniques, which allowed accurate simulations of complex discontinuities without smearing and ringing, were developed. These new methods also satisfy a very demanding criteria for robustness and allow simulation of the wide range of flow problems without adjustment or tuning of the numerical technique.

The numerical methods that allow high accuracy resolution of flow discontinuities are so-called TVD (Total Variation Diminishing) methods. The Second Order Godunov Method is one of the most successful numerical techniques developed for this purpose. In Figure 1, an example is given of a solution using the Second Order Godunov Method for a complicated case of multiple shock waves,^[5] illustrating the ability of this method to capture and simulate sharp discontinuities.

The Second Order Godunov Method was developed based on an understanding of the phenomenology of signal propagation in the gasdynamical system. The numerical algorithm implementing this method is not analytic and is based on a set of steps that can be considered as wave filters. These filters are designed to not smear the discontinuity (edge), suppress the spurious oscillations, and propagate the relevant signals through the system. The following algorithmic steps are performed to advance the solution for a single iteration in the Second Order Godunov Method:

- 1. Local Extrapolation
- 2. Monotonicity Constraint
- 3. Characteristics Constraint
- 4. Riemann Problem Solution
- 5. Integration

It is interesting to note that most of these steps have an analog in conventional image processing methods. Here, we will give an explanation of the function of each algorithmic step of the Second Order Godunov Method and where applicable, will point to its possible analog in conventional signal processing techniques.

Step 1 consists of extrapolation of the values in the computational grid (pixel) cell to the edges of the cell. Linear or nonlinear extrapolation can be used. This step is analogous to the standard edge sharpening techniques used in image processing, with one important difference: the extrapolation is done not for the value itself but for its flux (change of value across cell boundary).

Step 2 includes a monotonicity constraint for the values at the cells' edges. This is analogous to the nonlinear technique of the locally monotonic regression^[6] only recently introduced for signal processing.

ł

Step 3 subjects the values at the edges to the constraints derived from a solution of one dimensional characteristics. This step assures that the values at the edges have not been extrapolated from directions inconsistent with the characteristic solutions. This prevents extrapolation as well as smearing or overshoot of the discontinuities. For the image processing application, this can be regarded as a form of automatic edge detection step where the shock waves are associated with the edges of an image.

Step 4 uses an exact solution of the system of the gas dynamic equations for calculation of the flux values based on the extrapolated values of the parameters at the left and right side of the edges. This step has no analogy in image processing. However, since the analytical solution includes discontinuities, an exact calculation of the flux at the edge location is allowed, even if this flux is calculated through a discontinuity.

Step 5 consists of finite volume integration of the system of conservation laws. Here, the image is effectively treated as a flow field; the flux integration serves as a smoothing filter from the image perspective.

Application of these steps can be considered as the application of a unique filter stack with proven properties of discontinuity preservation and robustness. Below we illustrate uses of this technique for practical problems of image processing that exemplify the feasibility and advantages of this approach.

The use of image analogies for image processing is not new. One widely applied technique treats an image as a potential field where the image potential acts as a force on the edges that are represented as elastic curves with some elastic properties.^[3] Our approach, as stated, involves an application of a technique developed for gas dynamic problems for image deconvolution. Although this technique is very new, an analysis of the basic steps presented above and our experience with its application for image deconvolution show that this nonlinear algorithm has considerable potential for edge enhancement and filtering of extremely noisy signals.

## 3. IMAGE ENHANCEMENT BY THE SECOND ORDER GODUNOV METHOD

The field of gray scale intensity of an image can be translated into a flow field. To every image pixel we add a corresponding cell of the computational domain with values of the gas dynamical parameters proportional to the values of the gray scale. Since there are at least five gasdynamical parameters that can be defined in every cell of the computational domain (pressure, density, two velocity components and  $\gamma$ ) and only one parameter in the image domain, cell mapping is not unique. Our understanding of the basic gasdynamical processes plays a major role in completing the analogy. Appropriate mapping of the image gray scale intensity into a flow field creates conditions favorable for the formation or enhancement of field discontinuities. For example, a shock wave reflecting from a wall or a contact surface can increase in strength, or two colliding flow streams will produce a contact surface that will become stronger in time. If we have a numerical technique to resolve these discontinuities accurately, then with successive numerical integration of the flow field, the discontinuities will sharpen as the solution evolves in time. Then by inverse mapping of the flow field to the image gray scale field, we can reconstruct an enhanced image. Below we give some examples of practical application of this technique.

## 3.1. Edge sharpening for a sinusoidal distribution

In Figure 2 results are given for edge definition of a one dimensional signal. The original sinusoidal signal is shown in Figure 2a. This example was chosen to test the ability of our technique to identify the edges of an image where the signal strength has deteriorated in the vicinity of the

edges, producing a gradual (instead of sharp) increase in the gray scale intensity. We observe that application of our technique results in significant sharpening of the edges, even after 15 or more iterations.

In Figure 3 random noise has been added to the sinusoidal signal shown in Figure 2a. The level of random noise addition corresponds to 10% of the maximum intensity of the original signal. The original signal with the random noise is shown in Figure 3a. In Figures 3b. 3c. 3d – e observe successive noise filtering and edge enhancement with application of our algorithm for .5, 30, and 45 interations correspondingly. We see that the edges of the final processed signal t = 1 located at exactly the same position as shown in Figure 2d for the uncontaminated signal.

Figure 4 illustrates the application of our algorithm to the signal that has been contaminated with 50% addition of random noise. Significant noise filtering occurs after 15 iterations and edge definition at the exact original locations after 45 iterations.

In Figure 5 the results are shown for a signal with 100% random noise added. Here again the signal is quickly filtered and the edges are picked up exactly at the correct locations.

## 3.2. Edge sharpening for a two dimensional image

Figure 3 contains a picture of Washington. DC taken from a Russian satellite. Digital representation of this picture had 150 dots per inch resolution. A fragment of the picture shown in Figure 6 is represented on an evenly spaced  $400 \times 360$  grid. We take the gray scale pixel information of this picture and convert the data into initial conditions for a gasdynamic problem by assigning the values of pressure and density in the computational domain directly proportional to the values of the pixels on the gray scale. Now the gasdynamic problem is defined and we can solve it using our high resolution Second Order Godunov Method. In Figures 7a, 7b, and 7c results in the pixel plane are shown after three, six, and nine iterations respectively in the gasdynamic domain. By "iteration," we mean that the flow solver integration algorithm was applied to the given flow field, or in this case, the pressure and density data derived from the initial picture. Even after three iterations, the picture is significantly sharper and continues to improve with more iterations.

A more detailed examination of the sharpening effect can be obtained by looking at the onedimensional cross section of the picture plane. In Figure 8, an arbitrary cross section of the original picture shown in Figure 6 is given. For clarity we show only the first fourth of the actual pixels in the cross section. We can see here that this particular cross section contains a multitude of sharp edges expressed only by three or four points. Further sharpening of these edges by a standard differentiation technique will lead to significant smearing of a number of the discontinuities. In Figure 9, the same cross section is shown after three iterations with the Second Order Godunov solver. Significant enhancement of all the sharp edges is evident. The process of enhancement can be followed in Figures 6b, 6c and 6d corresponding to six, nine, and twelve iterations. Continuous improvement in the definition of edges can be observed.

In Figures 10, 11a, 11b, 11c, and 11d, we demonstrate the ability of the current nonlinear PDE methodology to enhance simultaneously the high and low frequency features of an image. The amplitudes of both short and long wavelengths are simultaneously enhanced. However, as seen in the circled area, long wavelength features that retain one grid-cell discontinuities exhibit interesting behavior in that the cell-specific discontinuity, which appears in Figure 10, disappears in Figures 11b and 11c, but reappears in Figure 11d. The long wavelength definition continues to be enhanced in Figures 11a-11d. The origin of this behavior is presently unknown.

## 3.3. Application to Medical Imaging

Images of internal organs obtained with a Gamma Camera are usually of marginal quality and need significant post-processing to be useful for medical diagnostics. This is especially true if multiple pictures are taken of moving parts of the body, such as the heart, with low pixel resolution. In this section, we will demonstrate the application of our CFD technique for deconvolution of Gamma Camera images obtained during medical examinations.

Shown in Figure 12 is an image of the human heart produced by the staff of the Georgetown University Hospital, Department of Nuclear Medicine, using a Siemens Gamma Camera. This image contains a sequence of 64x64 pixel frames showing the heart at a sequence of time intervals. This plane image, originally recorded in 256 shades of gray scale, is presented here in 64 shades of gray. In Figures 12b, 12c and 12d the deconvoluted image is shown after 6, 12 and 18 processing iterations by our nonlinear technique. We observe in these figures a significant improvement in the image quality over the images in Figure 12a. Some of the diffuse edges in Figure 12a are clearly pronounced in Figures 12c and 12d. We have also applied our CFD technique to the Gamma Camera images of the brain and liver and have found a significant image deconvolution and edge enhancement.

## 4. CONCLUSIONS

The CFD technique described here for nonlinear signal and image processing is based on numerical techniques developed for Computational Fluid Dynamics, namely, the Second Order Godunov Method. We have demonstrated the application of this numerical method to signal processing, resulting in significant signal deconvolution and edge enhancement effects. Our preliminary analysis has shown that the Second Order Godunov Method, when applied to the gray scale intensity field of an image, is equivalent to an application of an unique filter stack. This filter stack has automatic edge detection, noise reduction and edge enhancement properties. We have demonstrated this nonconventional technique for the system of gas dynamic equations, where the Second Order Godunov Method assures high accuracy resolution of the flow discontinuities that are analogous to the edges in the image field. However, the same methodology can be applied to a reduced set of nonlinear hyperbolic partial differential equations, which will result in a significant optimization of the proposed technique.

### 5. REFERENCES

- 1. Nonlinear Image Processing, Proceedings of SPIE, Feb. 1990, Santa Clara, CA.
- 2. Osher, S. and L. Rudin, "Feature-Oriented Image Enhancement Using Shock Fielders," Siam J. Numer. Anal., Vol. 27, pp. 919-940, NY, 1990.
- 3. Samadani, R. et al., "A Computer Vision System for Automatically Finding the Auroral Oval from Satellite Images," Image Processing Algorithms and Techniques. Proceedings of SPIE, 1244, 68-75, Feb. 1990.
- 4. Greene, R. R. et al., "Process and Apparatus for the Automatic Detection and Extraction of Features in Images and Displays," U.S. Patent 4,906,340, Mar. 1990.
- 5. Collela, P. and P. Woodward, "Piecewise Parabolic Method (PPM) for Gasdynamic Simulations." J. Comp. Phys., Vol. 54, 174-201, 1984.
- 6. Restrepo, A. and A.C. Bovik, "Statistical Optimality of Locally Monotonic Regression," Nonlinear Image Processing, Proceedings of SPIE, 1247, 89-99, Feb. 1990.



Fig. 1. High resolution of flow discontinuities obtained with the Second Order Godunov Method.



Fig. 2. Edge enhancement for a sinusoidal distribution without noise.



Fig. 4 Edge enhancement for a sinusoidal distribution with 50% intensity random noise.



Fig. 3. Edge enhancement for a sinusoidal distribution with 10% intensity random noise.



Fig. 5. Edge enhancement for a sinusoidal distribution with 100% intensity random noise.



Fig. 6. The original satelite photograph of Washington. DC with resolution reduced to 150 dots/inch.



Fig. 7a. The sharpened picture after the Godunov solver has been used. After three iterations. Note the details that appeared on the Potomac. These details are barely visible even on the original high resolution photograph.



Fig. 7b. After six iterations.

J



Fig. 7c. After nine iterations.

SPIE Vol. 1567 Applications of Digital Image Processing XIV (1991) / 447



Fig. 8. Gray scale density of a cross section of the original image.



Fig. 9. Gray scale density of the CFD processed image: (a) after 3 iterations: (b) after 6 iterations: (c) after 9 iterations; (d) after 12 iterations.



ł

Fig. 10. Gray scale density of a cross section of the original image.



Fig. 11. Gray scale density of the CFD processed image: (a) after 3 iterations; (b) after 6 iterations; (c) after 9 iterations; (d) after 12 iterations.



(a) (b) (c) (d)

Fig.12. Image of human heart taken by a Siemens Gamma Camera. (a) Original image 64x64 pixels per frame; (b) Image after six processing iterations; (c) Image after 12 processing iterations; (d) Image after 18 processing iterations.

## Review of Propulsion Applications and Numerical Simulations of the Pulsed Detonation Engine Concept

S. Eidelman,* W. Grossmann,† and I. Lottati*

Science Applications International Corporation, McLean, Virginia 22102

Here we review experimental and computational studies of the pulsed detonation engine concept (PDEC) and present results of our recent numerical study of this concept. The PDEC was proposed in the early 1940s for small engine applications: however, its potential was never realized due to a complicated, unsteady operation regime. In this study, we demonstrate the use of current advances in numerical simulation for the analysis of the PDEC. The high-thrust/engine volume ratio obtained in our simulations demonstrates promising potential of the pulsed detonation engine concept.

#### Introduction

E ARLY developments of engine technology leading to practical propuision engines were almost completely associated with steady-state engine concepts. Unsteady concepts, which initially appeared promising, never evolved from the conceptual state and have remained for the most part unexplored. The early work in unsteady propulsion suffered from a lack of appropriate analytical and design tools, a condition which seriously impeded the advancement of the unsteady concepts to a practical stage.

In this paper, we review the historical development of unsteady propulsion by concentrating on the particular concept of the intermittent detonation engine, and discuss current research activities in this area. A review of the literature¹⁻²⁴ reveals that a significant body of experimental and theoretical research exists in the area of unsteady propulsion. However, this research has not been extended to the point where a conclusive quantitative comparison can be made between impulsive engine concepts and steady-state concepts. For example, the analysis given in Refs. 8-11 of the performance of a detonation engine concept includes neither frequency dependence nor analysis of losses due to multicycle operation. A new generation of analytical and computational tools exists today and allows us to revisit and analyze such issues with a high degree of confidence. Numerical simulation has developed to the state where it can now provide time-dependent two- and three-dimensional modeling of complex internal flow processes^{20,24,25} and will eventually result in tools for systematically analyzing and optimizing engineering design. In addition to a review of applications of the pulsed detonation engine concept (PDEC), we will report results of a numerical study of an air-breathing detonation engine. This study was performed using new unsteady computational fluid dynamics (CFD) tools that we will also describe.

Our paper is 'structured as follows: 1) historical review of the pulsed detonation development efforts; 2) description of the basic phenomenology of the air-breathing pulsed detonation engine concept; 3) description of the mathematical formulation and new numerical scheme used to simulate the problem; 4) discussion of the simulation results; and 5) conclusions.

Senior Scientist, Applied Physics Operation, Member AIAA.

*Chief Scientist, Applied Physics Operation, Member AIAA.

#### **Historical Review**

#### Constant-Volume Combustion

From the very early development of jet-propulsion engines, it was known that an engine based on a constant-volume combustion process achieves higher thermodynamics efficiency than a constant pressure engine. This follows from a thermodynamic analysis of the engine cycle.¹

Constant-volume combustion was used in gas turbine engines at the beginning of this century, and the first gas turbine engines in commercial use were based on the constant-volume cycle. Jet-propulsion engines were one of the applications of the constant volume cycle (or explosion cycle) which was explored in the late 1940s.² Although the explosion cycle operates at a larger pressure variation in the combustion chamber than in a pulse jet,^{3,4} the cycle actually realized in these engines was not a fully constant-volume one since the combustion chamber was open-ended.² In Ref. 2, the maximum pressure ratio measured in an explosion cycle engine was 3:1, whereas the pressure ratio for the same mixture under the assumption of a constant-volume cycle would be 8:1. Also, this engine was limited by the available frequency of cycles, which in turn was limited by the rear ion rate. A simple calculation² showed that if the combustion time could be reduced in this engine from 0.006-0.003 s, the thrust per pound of mixture would increase 100%. Thus, the explosion-cycle engine has two main disadvantages:

1) Constrained volume combustion (as distinguished from constant-volume combustion) does not take full advantage of the pressure rise characteristic of the constant-volume combustion process.

2) The frequency of the explosion cycle is limited by the reaction rate, which is only slightly higher than the deflagrative combustion rate.

The main advantage of the constant-pressure cycle is that it leads to engine configurations with the steady-state processes of injection of the fuel and oxidizer, combustion of the mixture, and expansion of the combustion products. These stages can be easily identified and the engine designer can optimize them on the basis of relatively simple steady-state considerations.

At the same time, an engine based on constant-volume combustion will have an intermittent mode of operation, which may complicate its design and optimization. We are interested in the question of whether this complication is worth the potential gains in engine efficiency.

#### Pulsed Detonation Engine as an Ultimate Constant-Volume Combustion Concept

The detonation process, due to the very high rate of reaction, permits construction of a propulsion engine in which the

Presented as Paper 89-2446 at the AIAA/ASME/ASEE/SAE 25th Joint Propulsion Conference, Monterey, CA, July 10-12, 1989; recelved Sept. 8, 1989; revision received April 12, 1990. This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

constant-volume process can be fully realized. In detonative combustion, the strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and the fresh charge. The speed of the detonation wave is about two orders of magnitude higher than the speed of a typical deflagration. This allows the design of propulsion engines with a very high power density. Usually, each detonation is initiated separately by a fully controlled ignition device. and the cycle frequency can be changed over a wide range of values. There is only an upper limit for the detonation cycle frequency. This limit is determined by the time it takes to refill the detonation chamber with the fresh combustible mixture. This in turn will depend on chamber geometry and the external flow parameters. In our study, we have established that detonation frequencies of 200-250 Hz appear to be feasible. At the same time, the same PDEC engine can operate at very low detonation frequency with thrust almost linearly proportional to the frequency. This also means that a device based on a detonative combustion cycle can be scaled, and its operating parameters can be modified for a range of required output conditions. There have been numerous attempts to take advantage of detonative combustion for engine applications. In the following, we give a description of the most relevant past experimental and analytical studies of the detonation engine concept.

#### Hoffmann's Report

The first reported work on intermittent detonation is attributed to Hoffmann⁵ in 1940. He operated an intermittent detonation test stand with acetylene-oxygen and benzine-oxygen mixtures. The addition of water vapor was used to prevent the highly sensitive acetylene-oxygen mixture from premature detonation. Hoffmann⁵ indicated the importance of the spark plug location in reference to tube length and diffuser length. It was found that a continuous injection of the combustible mixture leads to only a narrow range of ignition frequencies that will produce an intermittent detonation cycle. These frequencies are governed by the time required for the mixture to reach the igniter, the time of transition from deflagration to detonation, and the time of expansion of the detonation products. Hoffmann attempted to find the optimum cycle frequency experimentally. It was discovered that detonation-tube firing occurred at lower frequencies than the spark-plug energizing frequencies, indicating that the injection flow rate and ignition were out of phase. World War II prevented further work by Hoffmann and co-workers.

#### Nicholis' Experiments

A substantial effort in intermittent detonation engine research was done by a group headed by Nicholls⁶⁻¹⁰ of the University of Michigan beginning in the early 1950s. The most relevant work concerns a set of experiments carried out in a 6-ft-long detonation tube.^o The schematics of the detonationtube experiments test rig used by Nicholls and co-workers are shown in Fig. 1. The detonation tube was contructed from a 1-in.-i.d. stainless-steel tube. The fuel and oxidizer were injected under pressure from the left end of the tube and ignited at the 10-in. distance downstream. The tube was mounted on a pendulum platform that was suspended by support wires. Thrust for single detonations was measured by detecting tube (platform) movement relative to a stationary pointer. For multicycle detonations, thrust measurement was achieved by mounting the thrust end of the tube to the free end of the cantilever beam. In addition to direct thrust measurements, the temperature on the inner wall of the detonation tube was measured.

Fuel mixtures of hydrogen/oxygen, hydrogen/air, acetyleneoxygen, and acetylene-air were used. The gaseous oxidizer and fuel were continuously injected at the closed end wall of the detonation tube and three fixed flow rates were used. Under these conditions, the only parameters that could be varied were the fuel/oxidizer ratio and frequency of ignition. A maximum gross thrust of  $\approx 3.2$  lb was measured in hydrogen/ air mixture at the frequency of  $\approx 30$  detonations/s. The most promising results were demonstrated for the hydrogen/air mixture, where a fuel specific impulse of  $I_{sp} = 2100$  s was reached. The maximum frequency of detonations obtained in all experiments was 35 Hz. The temperature measurements on the inner wall showed that for the highest frequency of detonations the temperature did not exceed 800°F.

In their later work,⁸⁻¹⁰ the University of Michigan group concentrated on development of the rotating detonation wave rocket motor. No further work on the pulsed detonation cycle was pursued.

#### Krzycki's Experiments

In a setup somewhat similar to Nicholls', Krzycki¹¹ performed an experimental investigation of intermittent detonations with frequencies up to 60 cps. An attempt was also made to analyze the basic phenomena using unsteady gas dynamic theory. Krzycki's attempt to analyze the basic phenomena relied on wave diagrams to trace characteristics, assumptions of isentropic flow for detonation and expansion, and incompressible flow for mixture injection processes. The most convincing data from the experiments are the measurement of thrust for a range of initiation frequencies and mixture flow rates. Unfortunately, no direct pressure measurement in the device are reported so that only indirect evidence exists of the nature of the process observed.

The basic test stand used by Krzycki is very similar to that used by Nicholls et al.⁶ The length of the detonation tube and internal diameter were exactly the same as those in Nicholls' experiments. A propane/air mixture was continuously injected through reversed-flow diffuser for better mixing and



Fig. 1 Detonation tube used in experiments by Nicholls et al.

ignited at the 25-cm distance from the injection point by an automobile spark plug. The spark frequency was varied from 1-60 Hz. The spark plug power output was varied inversely with the initiation frequency and at the frequency of 60 Hz was only 0.65 J. This fact alone eliminated the possibility of direct initiation of the detonation wave by the spark and consequently all of the experiments were performed in the region dominated by transition from deflagration to detonation. According to experimental data and theory,¹² for direct initiation of a mixture of propane/air at the detonability limits, an energy release on the order of 10⁶ J is required. Thus, the required deflagration-detonation transition region length would have been prohibitively large for the propane/air mixture. It follows that in all of the experiments a substantial part of the process was deflagrative. This resulted in low efficiency and negligible thrust. Krzycki repeated the experiments of Nicholls using exactly the same size detonation tube and basi cally the same rates of injection of the detonatable mixture. Krzycki's experimental results are very well-documented, giving enough information to deduce a clear picture of the physical processes occurring in the tube. A conclusion, arrived at by the author, was that thrust was possible from such a device out practical applications did not appear promising. It is unfortunate that, possibly based on Krzycki's extensive but misleading results, all experimental work related to the pulsed detonation engine concept stopped at this time.

#### Work Reported in Russian Sources on Pulse Detonation Devices

A review of the Russian literature has not uncovered work concerning applications of pulsed detonation devices to propulsion. However, there are numerous reports of applications of such devices for producing nitrogen oxide¹³ (an idea proposed in the 1940s by Zeldovich to use detonation for binding nitrogen directly from air to produce fertilizers) and as rock crushing devices.¹⁴

Korovin et al.¹³ provide a most interesting account of the operation of a commercial detonation reactor. The main objective of this study was to examine the efficiency of thermal oxidation of nitrogen in an intermittent detonative process as well as an assessment of such technological issues as the fatigue of the reactor parts exposed to the intermittent detonation waves over a prolonged time. The reactor consisted of a tube with an inner diameter of 16 mm and length 1.3 m joined by a conical diffuser to a second tube with an inner diameter of 70 mm and length 3 m. The entire detonation reactor was submerged in running water. The detonation mixture was introduced at the end wall of the small tube. Methane, oxygen. and nitrogen comprised the mixture composition and the mixture ratios were varied during the continuous operation of the reactor. The detonation wave velocity was measured directly by piezoelectric sensors placed in the small and large tubes. The detonation initiation frequency in the reactor was 2-16 Hz. It is reported that the apparatus operated without significant changes for 2000 h.

Smirnov and Boichenko¹⁴ studied intermittent detonations of a gasoline/air mixtures in a 3-m-long and 22-mm-i.d. tube operating in the 6-8 Hz ignition frequency range. The main motivation of this work was to improve the efficiency of a commercial rock-crushing apparatus based on intermittent detonations of the gasoline/air mixtures.¹⁵ The authors investigated the dependence of the length of the transitional region from deflagration to detonation on the initial temperature of the mixture.

As a result of the information contained in the Soviet reports, it can be concluded that reliable commercial devices based on intermittent detonations can be constructed and operated.

## Development of the Blast Propulsion System at JPL

Back.¹⁶ Varsi et al.,¹⁷ Kim et al.,¹⁸ and Back et al.¹⁹ at the Jet Propulsion Laboratory (JPL) studied the feasibility of a rocket thruster powered by intermittent detonations of solid explosive. The main application foreseen by the authors is propulsion in dense or high-pressure atmospheres of certain solar system planets. The JPL work was directed at very specific applications; however, the studies¹⁷⁻¹⁹ addressed some key issues of devices using unsteady processes such as propulsion efficiency. The JPL studies have important implications to pulsed detonation propulsion systems.

Reference 19 gives the basic description of the test stand used. In this work, a data sheet type C explosive was detonated inside a small detonation chamber attached to nozzles of various length and geometry. The nozzles, complete with firing plug, were mounted in a containment vessel that could be pressurized with the mixture of various inert gases from vacuum to 70 atm. The apparatus measured directly the thrust generated by single detonations of a small amount of solid explosive charge expanding into conical or straight nozzles. Thrust and specific impulse were measured by a pendulum balance system.

Results obtained from an extensive experimental study of the explosively driven rocket have led to the following conclusions. First, rockets with long nozzles show increasing specific impulse with increasing ambient pressure in carbon dioxide and nitrogen. Short nozzles, on the other hand, show that specific impulse is independent of ambient pressure. Most importantly, most of the experiments obtained a relatively high specific impulse of 250 s and larger. This result is all the more striking since the detonation of a solid explosive yields a relatively low energy release of approximately 1000 cal/g compared with 3000 cal/g obtained in hydrogen/oxygen combustion. Thus, it can be concluded that the total losses in a thruster based on unsteady expansion are not prohibitive and, in principle, very efficient propulsion systems operating on intermittent detonations are possible.

## **Detonation Engine Studies at Naval Postgraduate School**

A modest exploratory study of a propulsion device utilizing detonation phenomena was conducted at the Naval Postgraduate School (NPS).²⁰⁻²³ During this study, several fundamentally new elements were introduced to the concept distinguishing the new device from previous ones.

First, it is important to note that the experimental apparatus constructed by Helman et al.²² showed the first successful self-aspirating, air-breathing detonation device. Intermittent detonation frequencies of 25 Hz were obtained. This frequency was in phase with the fuel-mixture injection through timed fuel-valve opening and spark discharge. The feasibility of intermittent injection was established. Pressure measurements showed conclusively that a detonation process occurred at the frequency chosen for fuel injection. Furthermore, selfaspiration was shown to be effective. Finally, the effectiveness of a primary detonation as a driver for the main detonation was clearly demonstrated. Although the NPS studies were abbreviated, many of the technical issues considered to be essential for efficient intermittent detonation propulsion were addressed with positive results.

#### Simulations of Pulsed Detonation Engine Cycle at NASA Ames Research Center

Recently. Camblier and Adelman²⁴ carried out numerical simulations of a pulsed detonation engine cycle taking into account finite-rate chemistry. Unfortunately, the simulations were restricted to a quasi-one-dimensional model. The configuration considered had a 6-cm-i.d., 50-cm-long main chamber that was attached to a 43-cm-long diverging nozzle. It was assumed that a stoichiometric mixture of hydrogen/air at 3.0 atm is injected from an inlet on the closed end wall of the detonation chamber. Under these conditions, Camblier and Adelman estimated a large range of possible detonation frequencies of engine operation up to 667 Hz. The origin of this estimate is not clear from their work since, according to their simulations, the detonation. expansion, and fresh charge fill requires 2.5 ms. This value leads to a maximum frequency of 400 Hz. The simulated engine performance yielded a large average thrust of  $\approx$  4000 N and an unusually high specific impulse of 6507 s. These simulations were the first to demonstrate the use of modern CFD methods to address the technical issues associated with unsteady pulsed detonation concepts.

In the remaining sections, we discuss a particular propulsion concept based on the results of the experiments of Helman et al.²² and describe a computational study of its performance characteristics. The unsteady numerical scheme used for the study made use of unique simulation techniques; the key ingredients of these techniques are also described.

#### **Generic Pulsed Detonation Engine**

The generic device we consider here is a small cylindrical engine, 15 cm long and 15 cm in diameter. The combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave propagates through the mixture. The size of the engine suggests a small payload, but the concept can be extended to larger payloads simply by scaling up the size of the detonation chamber and possibly combining a number of engines into one large propulsion engine. A key issue in the pulsed detonation engine concept is the design of the main detonation chamber. The detonation chamber geometry determines the propulsion efficiency and the duration of the cycle (frequency of detonations). Since the fresh charge for the generic engine is supplied from the external flowfield, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. The range of the physical processes requiring simulation in order to model the complex flow phenomena associated with the detonation engine performance is very broad. A partial list is as follows:

1) Initiation and propagation of the detonation wave inside the chamber.

2) Expansion of the detonation products from the chamber into the airstream around the chamber at flight Mach numbers.

3) Reverse flow from the surrounding air into chamber resulting from overexpansion of the detonation products.

4) Pressure buildup in the chamber due to reverse flow. The flow pattern inside the chamber during postexhaust pressure buildup determines the strategy for mixing the next detonation charge.

5) Strong mutual interaction between the flow processes inside the chamber and flow around the engine.

All of these processes are interdependent and their timing is crucial to the engine efficiency. Thus, unlike simulations of steady-state engines, the phenomena described above cannot be evaluated independently.

The need to resolve the flow inside the chamber accounting for nozzles, air inlets, etc., and at the same time resolve the flow around the engine, where the flow regime varies from high subsonic, locally transonic, and supersonic, makes it a challenging computational problem.

The main issue is to determine the timing of the air intake for the fresh gas charge. It is sufficient to assume inviscid flow for the purpose of simulating the expansion of the detonation products and fresh gas intake. In the following, we present the first results of an inviscid simulation of the detonation cycle in a cylindrical chamber. First, we describe our computational method for solving the time-dependent Euler equations used in the study.

#### **Unstendy Euler Solver**

A new second-order algorithm for solving the Euler equations on an unstructured grid was used in our study of the detonation concept. The approach is based on first- and secondorder Godunov methods. The method leads to an extremely efficient and fast flow solver that is fully vectorized and easily lends itself to parallelization. The low memory requirements and speed of the method are due to the use of a unique data structure.

Until recently most CFD simulations were carried out with logically structured grids. Vectorization and/or parallelization did not present a problem. The increased need for simulation of flow phenomena in the vicinity of complex geometrical bodies and surfaces has led to the development of CFD codes for logically unstructured grids. The most successful of these unstructured grid codes are based on finite elements or finite volume methods. For an unstructured grid in two dimensions, the computational domain is usually covered by triangles, and the indices of the arrays containing the values of the hydrodynamic flow quantities are not related directly to the actual geometric location of a node. The calculations performed on unstructured grids evolve around the elemental grid shape (e.g., the triangle for two-dimensional problems), and there is no obvious pattern to the order in which the local integrations should be performed. Explicit integration of hydrodynamic problems on an unstructured grid requires that a logical substructure should be created which identifies the locations in the global arrays of all of the local quantities necessary for the integration of one element. This usually results in a large price in computational efficiency, in memory requirements, and in code complexity. As a consequence, vectorization for the conventional unstructured grid methods has concentrated on rearrangement of the data structure in a manner such that these locally centered data structures appear as global arrays. This can be done to some extent using machine dependent gatherscatter operations.^{25,26} Additional optimization can be achieved using localization and search algorithms. However, these methods are complex and result in marginal improvement. Most optimized unstructured codes to date run considerably slower and require an order of magnitude more memory per grid cell than their structured counterparts. Parallelization of the conventional unstructured codes is even more difficult, and there is very little experience with unstructured codes on massively parallel computers.

The method we have developed overcomes these difficulties and results in codes with speed and memory requirements comparable to those found in structured grid codes. Moreover, the ability to construct grids with arbitrary resolution leads to a flexibility in dealing with complex geometries not attainable with structured grids. The essence of the method is based on an independent flux calculation across the edges of a dual baricentric grid, followed by node integration. This approach is order independent. Below we give the essential details of our algorithm; a complete description follows later.

#### Basic Integration Algorithm

We begin by describing the first-order Godunov method for the system of two-dimensional (axisymmetric) Euler equations written in conservation law form as

$$\frac{\partial Q}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial r} = -\frac{1}{r}C$$
(1)

where

$$Q = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ e \end{pmatrix}, \quad F = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ (e + p)u \end{pmatrix}$$
$$G = \begin{pmatrix} \nu \\ \rho v u \\ \rho v^2 + p \\ (e + p)v \end{pmatrix}, \quad C = \begin{pmatrix} \rho v \\ \rho v u \\ \rho v^2 \\ (e + p)v \end{pmatrix}$$

Here u and v are the x and r velocity vector components, p the pressure,  $\rho$  the density, and e the total energy of the fluid per unit volume. It is assumed that a mixed (initial conditions, boundary conditions) problem is properly posed for the set,



Fig. 2a Computational domain and grid used in simulation of PDEC operation.



Fig. 2b Enlargement of computational grid in the vicinity of the PDEC nozzle.

Eq. (1), and that an initial distribution of the fluid parameters is given at t = 0 and some boundary conditions defining a unique solution are specified on the boundary of the computational domain.

We look for a solution of the system of equations represented by Eq. (2) in the computational domain covered by an unstructured grid. As an example, Fig. 2a shows the unstructured triangular grid used in the pulsed detonation engine simulation. Here most of the computational effort is committed to the resolution of the flow inside the engine detonation chamber and in the immediate vicinity of the nozzle. In Fig. 2b, an enlargement of the nozzle region is shown, illustrating the ability to represent geometry of arbitrary complexity and with localized resolution.

Figure 3 displays a fragment of the computational domain with the corresponding dual grid. The secondary or dual grid is formed by connecting the baricenters of the primary mesh, thus forming finite polygons around the primary vertices.

We have found, as have others,²⁷ that the best practical representation of the integration volume is obtained when the dual grid is formed by connecting baricenters of the triangles. Integration by the Godunov method²⁸ can be divided into two basic steps: 1) calculation of the fluxes at the edges of the secondary grid using solutions of a set of one-dimensional Riemann problems: and 2) integration of the system of partial differential equations, which amounts to addition of all of the fluxes for every polygon at a particular time step.

To define the fluxes for the grid shown in Fig. 3 at every edge of the main grid, it is necessary to solve the corresponding Riemann problem. For example, to define the flux at the edge ab, we solve the Riemann problem between points A and B. The solution of this problem is in coordinates local to the



Fig. 3 The primary (triangles) and secondary (polygons) unstructured grids.

edge of the dual grid ab so that the tangential component of velocity will be directed along this edge (ab). Implementation of our approach requires maintaining strict consistency when defining the "left" and "right" states for the Riemann problems at the edges ab, bc, cd, de, ef, and fa. For this reason, we define not only the location of the vertices and lengths of the edges but also the direction of the edges with respect to the primary grid. For the clockwise integration pattern in the same polygon, point A will be the "right" state for all of the Riemann problems related to this point, and the neighbor will represent the "left" side of the diaphragm.

It is easy to see that the flux calculation is based on information at only two nodes and requires single geometrical parameters defining the edge of the secondary grid that dissects the line connecting the two points. Thus, we can calculate all of the values needed for flux calculation in one loop over all edges of the primary grid without any details related to the geometrical structures that these edges form. This in turn assures parallelization or vectorization of the algorithm for the bulk of the calculations involving the Riemann solver that provides the first-order flux. The only procedure not readily parallelizable is the integration of the fluxes for the flow variables at the vertices of the grid. Here we use the "edge coloring" technique that allows us to split the flux addition loop into seven or eight loops for edges of different color. Each of these loops is usually large enough not to impair vectorization. At this stage, all of the fluxes are added with their correct sign corresponding to the chosen direction of integration within the cell. The amount of calculation required here is minimal since the fluxes are known and need only to be multiplied at each time step by a simple factor and added to the vertex quantity.

#### Second-Order Integration Algorithm

The second-order solver is constructed along lines similar to that of the first-order method. At each cell edge, the Riemann problem is solved for some specified pair of left and right conditions. The solution to this Riemann problem is then used in the calculation of fluxes that are added later to advance to the next integration step. The extension to second-order is achieved by using extrapolation in space and time to obtain time-centered left and right-limiting values as inputs for the Riemann problem. The basic implementation of the method of calculation of second-order accurate fluxes is fundamentally the same as for one-dimensional cases. The only difference is in the method of obtaining linear extrapolation of the flow variables as a first guess of their value at the edges of the dual grid. To obtain the first guess, we need to know the gradient of some gasdynamical parameter U at the vertices of the primary mesh. The value of  $\nabla U$  can be evaluated by using a linear path integral along the edges, which delineates the finite volume associated with the vertex. For vertex A in Fig. 3,

$$\int_{A} \nabla U \mathrm{d}A = \oint_{i} U n \, \mathrm{d}i \tag{2}$$

where integration along the path l in this case is equivalent to integration along the edges *ab. bc, cd, de, ef,* and *fa.* Knowing the gradient of the gasdynamic parameter in the volume related to vertex A will allow us to extrapolate the values of this parameter at any location within the volume. This permits us to evaluate the first guess for U at the edges of the dual grid. The final implementation of the second-order algorithm has been described previously.

A schematic flowchart of the basic steps of the second-order algorithm implementation is shown in Fig. 4.

#### Simulations of the Generic Pulsed Detonation Engine

In this section, we present sample results of simulations of the generic PDE device using the numerical code described in the preceding section. In Fig. 2a, the computational domain containing the PDE main detonation chamber is shown covered with the unstructured grid. In our sample simulation, we have chosen a small = 15-cm-long and = 15-cm-i.d. cylindrical chamber with a small converging nozzle. This geometry is one of a number of the geometries we have analyzed in a parametric study whose goal was to evaluate and optimize a typical PDEC device. The device shown in Fig. 1a does not represent the optimum and is given here to illustrate our methodology. We consider a situation when the PDEC serves as a main thruster for a vehicle traveling in air with the velocity of M = 0.9 and located at the aft end of the vehicle. The main objectives of the simulations presented here are as follows:

1) To find the maximum cycle frequency. This is determined by the time required from detonation, exhaust of combustion products, and intake of fresh charge for the next detonation.

2) To calculate the thrust produced during each cycle and the integrated thrust as a function of time.



Fig. 4 Grid schematic and outline of steps for second-order Godunov method.

The simulation begins at t = 0 when we assume an ideal detonation process has taken place in a stochiometric propane/air mixture. Initially the detonation wave has traveled from the open aft end of the chamber toward the interior with a maximum velocity of 1800 m/s and maximum pressure of 20 x 10⁵ Pa. The distribution of pressure, velocity, and density of the detonation wave is defined through the self-similar solution for a planar detonation wave. These distributions are shown schematically in Fig. 5. The wave was directed toward the interior of the chamber to capture the kinetic energy of the wave and to prolong exposure of the inner chamber walls to the high pressure. In Fig. 6, simulation results are shown at time t = 0.19 ms in the form of pressure contours and particle paths from different locations inside and outside the detonation chamber. From the pressure contour plots, we observe that the shock reflection from the inner wall has taken place and detonation products are expanding into the ambient airstream. The flow inside the chamber is choked due to the converging nozzle and the maximum pressure behind the shock is = 8 atm. The pressure inside the chamber is less than 3 atm. The strong expansion of the detonation products into the ambient airstream produces a shock wave with a spherical-like front rapidly decaying in strength. As a result of the interaction of the expanding detonation products with the external flow, a large toroidal vortex is created. The vortex is carried away quickly from the chamber by the external flow and by its own flow momentum.

In Fig. 6a, we also show trajectories of the particles introduced inside the chamber and just above the nozzle. Examination of these trajectories allows us to follow the dynamics of the chamber evacuation and refill. In order to track the detonation products, we initially place marker particles inside the chamber at three cross sections in clusters of four distributed normally to the detonation chamber axis. Each particle has a different color; however, particles in the same cluster have the same shade of color. At the three chosen cross sections, we have designated shades of red, yellow, and green for the particles located correspondingly at the left end, center, and beginning of the nozzle cross sections of the chamber. The movement of these particles is shown by connecting them with a continuous line beginning with particle location at t = 0 to the present time. In Fig. 6a, we observe that at time t = 0.19ms all particles originally in the nozzle cross section and three of the particles originally in the midsection have left the detonation chamber. However, particles originally introduced on the inner wall of the chamber have only advanced to the nozzle region.

We use a different technique for observing the motion of the ambient gas outside the chamber. Here a cluster of seven



Fig. 5 Distribution of gasdynamic parameters behind the detonation wave according to a one-dimensional self-similar solution.



b) t = 1.7 msec



particles is introduced every 0.05  $\mu$ s in the external flow above the nozzle. All such particles are traced as they move with the flow until they leave the computational domain. At any given time only the current location of the particle is displayed, and since the particles are introduced periodically with time there are a large number of particles to trace. We assign a color to every cluster of external particles to keep track of the time when they were introduced in the calculation. The colors vary from magenta, for those particles introduced early in calculation, to blue, for those introduced shortly before the end of a detonation cycle. In Fig. 6a, corresponding to very early times, only one cluster of external particles is visible. This cluster was introduced at t = 0 and is tracking the expanding flow of the detonation products.

In Fig. 6b, the simulation results are shown for t = 1.7 ms. The pressure contours show that a shock wave develops at the external edge of the nozzle as a result of a strong expansion of the Mach 0.9 external flow. As a result of overexpansion of the detonation products, the pressure inside the detonation chamber is lower than the ambient pressure, causing the shock

to be located lower on the external surface of the nozzle. The external flow about the chamber has a stagnation point on the axis of symmetry downstream at = 25 cm. At this time, it is evident from the particles' trajectories that most of the detonation products have left the chamber. Figure 6b shows one continuous trace of the particles originating at the back wall of the detonation chamber having advanced well ahead of the stagnation point in the external flow.

The marker particles released outside and just above the nozzle's exit show two distinct flow paths. One path takes the flow past the stagnation point to the right of the detonation chamber; this flow path is marked by the four upper particle traces. Another flow path is marked by three lower particle paths released close to the nozzle surface and is deflected toward the detonation chamber exit. Figure 5b shows particles marking this deflected stream approaching the detonation chamber nozzle. The magenta color of these particles indicates they were released at  $\approx 0.5$  ms.

Figure 6c corresponds to the simulation time t = 4.7 ms. The pressure inside the chamber has risen = 1 atm. Higher





Fig. 7 Thrust and force generated by PDEC as a function of time.

pressure at the chamber exit has resulted in the shock standing on the external surface of the nozzle to move upward. The particles marking the movement of fresh air into the chamber show these to be well inside with some reflecting from the end wall giving a second stagnation point for the reversed fresh airflow.

Figure 6d corresponds to the end of the first cycle when the detonation chamber is filled with fresh charge and ready for the next detonation. In this figure, the particles' paths indicate that the chamber refills in a pattern suitable for fast mixing of the fuel-air mixture. We conjecture then that fuel injection along the chamber axis will promote fast fuel-air mixing. We can see in Fig. 6d that further injection of external air inside the chamber stopped, and from that point on the mixture composition in the chamber will be fixed.

In Fig. 7, the total force and time-averaged thrust generated by the device in the simulations discussed previously are shown as a function of time. The time-averaged thrust is based on the total time for one cycle. As seen in Fig. 7, initially a very large force of  $\approx 1.5 \times 10^5$  kg is felt on the end wall of the detonation chamber. This is a result of the inwardly moving detonation wave used in our simulation. Very early during the sequence, this wave reflects from the left wall of the detonation chamber briefly generating a large force. This force rapidly decays and at t = 0.1 ms changes sign due to interaction of the strong shock wave with the converging nozzle. This effect is noticeable in the thrust data: the average thrust decreases somewhat after reaching levels of ~ 1980 N. The shock partially reflects from the converging nozzle walls and generates a wave moving to the left wall. The reflected wave thereafter generates positive thrust from t = 0.3 ms. Finally, thrust levels reach the maximum of = 2200 N and then decay slowly as a result of the cross-sectional drag force. The simulations predict that to sustain this level of thrust will require a detonation frequency of about 150 Hz. All simulations were performed on a Stellar workstation.

#### Conclusions

The main intent of the present study was to carry out a review of the relevant literature in the area of detonation propulsion, to assess the state of the art, and to recommend future research based on our findings. We have reviewed the literature and presented our summary in the first section of this paper. Our initial conclusion from the review is that there is a substantial body of evidence leading toward the possibility of producing propulsion engines with significant thrust levels based on an intermittent detonation.

Most of the historical attempts at producing thrust based on the intermittent detonation cycle were carried out with the same basic experimental setup; namely, a long straight detonation tube employing forced fuel injection at the closed tube end. We have discussed the many reasons why such a device cannot take proper advantage of the physical nuclesses associated with detonation.

The experiments performed at the Nav.. Postgraduate School using a self-aspirating mode of operation for a pulsed detonation thruster produced very useful reality which, upon further examination, provide us with a route toward practical propulsion engines of variable thrust levels that are both controllable and scalable.

We have explored some of the implications of the possible applications of the self-aspirating detonation engine concept and have developed a suitable numerical simulation code to be used as a design, analysis, and evaluation tool. In fact, the preliminary analysis of a candidate detonation chamber flow was shown to be dominated completely by unsteady gasdynamics. An attempt to understand the flow properties based on any steady-state model or one-dimensional unsteady analytical model will miss such important aspects as fuel-air mixing and shock reflection from internal geometrical obstacle such as the converging nozzle. The unsteady simulation code developed during the course of our study is a necessary tool that we plan to use in a study leading to a feasible prototype engine design realizing the full potential of the intermittent detonation process.

#### Acknowledgments

The work reported here was supported by the Defense Advanced Research Projects Agency under Contract N66001-88-D-0088. The authors express appreciation to Adam Drobot and Aharon Friedman for helpful suggestions and advice.

#### References

. .

¹Stodola, A., Steam and Gas Turbines, McGraw-Hill, New York, 1927.

²Zipkin, M. A., and Lewis, G. W., "Analytical and Experimental Performance of an Explosion-Cycle Combustion Chamber of a Jea Propulsion Engine," NACA TN-1702, Sept. 1948.

¹Shultz-Grunow, F., "Gas-Dynamic Investigation of the Pulse-Jet Tube," NACA TM-1131, Feb. 1947.

⁴Zinn, B. T., Miller, N., Carvelho, J. A., and Daniel, B. R., "Pulsating Combustion of Coal in Rijke Type Combustor," *19th International Symposium on Combustion*, Combustion Inst., Pittsburgh, PA, 1982, np. 1197-1203.

PA, 1982, pp. 1197-1203. ⁵Hoffmann, N., "Reaction Propulsion by Intermittent Detonative Combustion," Ministry of Supply, Volkenrode Translation, 1940.

⁶Nicholls, J. A., Wilkinson, H. R., and Morrison, R. B., "Intermittent Detonation as a Thrust-Producing Mechanism." Jet Propulsion, Vol. 27, 1957, pp. 534-541.

⁷Dunlap, R., Brehm, R. L., and Nicholls, J. A., "A Preliminary Study of the Application of Steady State Detonative Combustion of a Reaction Engine," *Jet Propulsion*, Vol. 28, 1958, pp. 451-456.

⁸Nicholls, J. A., Gullen, R. E., and Ragland, K. W., "Feasibility Studies of a Rotating Detonation Wave Rocket Motor," *Journal of* Spacecraft and Rockets, Vol. 3, 1966, pp. 893-898.

⁹Adamson, T. C., and Olsson, G. R., "Performance Analysis of a Rotating Detonation Wave Rocket Engine," *Astronautica Acta*, Vol. 13, 1967, pp. 405-415.

¹⁰Shen, P. I., and Adamson, T. C., "Theoretical Analysis of a Rotating Two-Phase Detonation in Liquid Rocket Motors," Astronautica Acta, Vol. 17, 1972, pp. 715-728.

¹¹Krzycki, L. J., "Performance Characteristics of an Intermittent Detonation Device," U. S. Naval Ordnance Test Station. China Lake, CA, Navweps Rept. 7655, 1962. ¹²Matsui, H., and Lee, J. H., "On the Measure of the Relative

¹²Matsui, H., and Lee, J. H., "On the Measure of the Relative Detonation Hazards of Gaseous Fuel-Oxygen and Air Mixtures," Seventeenth Symposium (International) on Combustion, Combustion Inst., Pittsburgh, PA, 1978, pp. 1269-1280

¹³Korovin, L. N., Losev, A., Ruban, S. G., and Smekhov, G. D.,

"Combustion of Natural Gas in a Commercial Detonation Reactor," Fizika Gor. Vzryva, Vol. 17, No. 3, 1981, p. 86.

14Smirnov, N. N., and Boichenko, A. P., "Transition from Deflagration to Detonation in Gasoline-Air Mixtures," Fizika Gor. Vzryva, Vol. 22. No. 2. 1986. pp. 65-67.

¹⁵Lobanov, D. P., Fonbershtein, E. G., and Ekomasov, S. P., "Detonation of Gasoline-Air Mixtures in Small Diameter Tubes," Fizika Gor. Vzrvva, Vol. 12, No. 3, 1976, p. 446.

¹⁶Back, L. H., "Application of Blast Wave Theory to Explosive Propulsion," Acta Astronautica, Vol. 2, No. 5/6, 1975, pp. 391-407.

¹⁷Varsi, G., Back, L. H., and Kim, K., "Blast Wave in a Nozzle for Propulsion Applications," Acta Astronautica, Vol. 3, 1976, pp. 141-156.

¹⁸Kim, K., Varsi, G., and Back, L. H., "Blast Wave Analysis for Detonation Propulsion," AIAA Journal, Vol. 10, No. 10, 1977, pp. 1500-1502.

¹⁹Back, L. H., Dowler, W. L., and Varsi, G., "Detonation Propul-sion Experiments and Theory," AIAA Journal, Vol. 21, No. 10, 1983, pp. 1418-1427.

²⁰Eidelman, S., and Shreeve, R. P., "Numerical Modeling of the Nonsteady Thrust Produced by Intermittent Pressure Rise in a Diverging Channel." American Society of Mechanical Engineers, Multidimensional Fluid Transient, FED-Vol. 18, 1984, p. 77.

²¹Eidelman, S., "Rotary Detonation Engine," U.S. Patent 4 741

154, 1988. ²²Heiman, D., Shreeve, R. P., and Eidelman, S., "Detonation Pulse Engine," AIAA Paper 86-1683, June 1986.

²³Monks, S. A., "Preliminary Assessment of a Rotary Detonation Engine Concept," M.Sc. Thesis, Naval Postgraduate School. Monterey, CA, Sept. 1983.

²⁴Camblier, T. L., and Adelman, N. G., "Preliminary Numerical Simulations of a Pulsed Detonation Wave Engine." AIAA Paper 88-2960, Aug. 1988.

²⁵Lohner, R., Morgan, K., and Zienkiewicz, D. C., "Finite-Element Methods for High Speed Flows," AIAA Paper 85-1531, July :985

²⁶Lohner, R., and Morgan, K., "Improved Adaptive Refinement Strategies for Finite-Element Aerodynamic Computations," AIAA Paper 86-0499, Jan. 1986.

Barth, T. J., and Jespersen, D. C., "The Design and Application o Jpwind Schemes on Unstructured Meshes," AIAA Paper 89-0366. Jan 1989.

²⁸Eidelman, S., Collela, P., and Shreeve, R. P., "Application of the Godunov Method and Its Second-Order Extension to Cascade Flow Modelling," AIAA Journal, Vol. 22, No. 1, 1984, p. 10. ²⁹Baker, T. J., "Developments and Trends in Three-Dimensional

Mesh Generations," Transonic Symposium, NASA Langley Research Center, Hampton, VA, 1988.

³⁰Jameson, A., Baker, T. J., and Weatherill, N. P., "Calculation of Inviscid Transonic Flow Over a Complete Aircraft," AIAA Paper 86-0103, Jan. 1986.

³¹Greengard, L., and Rokhlin, V., "A Fast Algorithm for Particle Simulations," Journal of Computational Physics, Vol. 73, 1987, pp. 325-348.

³²Eidelman, S., Collela, P., and Shreeve, R. P., "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," AIAA Journal, Vol. 22, No. 1, 1984, p. 10.

³³van Leer, B., "Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method," Journal

of Computational Physics, Vol. 32, 1979, pp. 101-136. ³⁴Collela, P., and Woodward, P., "The Piecewise Parabolic Method (PPM) for Gasdynamical Simulations." Journal of Computational Physics, Vol. 54, 1984, pp. 174-201.

¹⁵Barth, T. J., and Jespersen, D. C., "The Design and Application of Upwind Schemes on Unstructured Meshes." AIAA Paper 89-0366. Jan. 1989.

³⁶Glaz, H. M., Collela, P., Glass, I. I., and Deschambault, R. L., "A Detailed Numerical, Graphical, and Experimental Study of Oblique Shock Wave Reflections," Defense Nuclear Agency, DNA-TR-86-365, 1986.

# Numerical and analytical study of transverse supersonic flow over a flat cone

D.L. Book¹, S. Eidelman², I. Lottati² and X. Yang²

¹ Code 4405, Naval Research Laboratory, Washington, DC 20375
 ² Science Applications International, McLean, VA 22102

Received February 8, 1991; accepted March 21, 1991

Abstract. Quasisteady supersonic flow over a flat cone on a plane surface is studied. A formula is derived for the angle through which the flow lines turn at the cone. The results are used to justify the use of two-dimensional simulations of the flow. Peak pressures and total impulses are obtained numerically for various cone angles.

Key words: Cone, Euler equation, Mach reflection, CFD, Supersonic flow

#### 1. Introduction

The purpose of this study is to determine the maximum pressure on the surface of a flat cone (one for which the height is much less than the diameter) in the quasiuniform flow behind a strong blast wave propagating at right angles to the axis of the cone. If the cone is small compared with the radius of the blast wave, the undisturbed flow is approximately rectilinear. First, the blast wave passes over the cone and an unsteady load builds up on the surface. In general the shock will undergo Mach reflection over at least part of the surface of the cone, the extent depending on the cone angle  $\alpha$ , the adiabatic index  $\gamma$ , and the Mach number M. After a short transitional stage the cone will then be subject to the quasisteady supersonic flow field behind the blast front. (For a strong blast wave in air, the pressure drops to one-half the peak value about one-tenth of the way back from the front toward the origin of the blast (Sedov 1959). Thus, if the blast center is located  $\sim 100$  radii from the cone, the pressure arriving at the cone is reduced to half its initial value  $\sim 10$ radii behind the front.) The post-shock flow velocity varies on the same scale. We would like to find whether the pressure on the cone reaches its maximum during

the quasisteady or the unsteady regime of the flow and determine its magnitude.

The cone, shown schematically in Fig. 1, is located on a plane surface. We take its axis to be normal to the surface, and we model the front of the spherical blast wave as a planar shock wave propagating normally to this axis. This is a reasonable approximation when the distance to the blast center is much larger than the radius, i.e., in the same limit for which we can assume that the state behind the front is uniform. The flow over the cone is substantially three-dimensional. The only symmetry is with respect to inversion about the midplane (the plane through the cone axis and parallel to the flow). In the general case in which the cone axis is not normal to the plane, the problem is totally asymmetrical.

Previous studies of the effect of supersonic flows on conical bodies have focused primarily on situations in which the flow is parallel or nearly parallel to the axis of the cone. Those results are applicable to, e.g., the aerodynamical effects associated with the nose cones of re-entry vehicles. In contrast, the problem we are considering may be regarded as an idealized model of the interaction between a blast wave and a ground or shipboard structure. It can also model the flow over a bump or a housing on the skin of a supersonic aircraft or missile. The results may thus be relevant to both damage studies and flight characteristics.

A number of experimental studies related to the problem of oblique supersonic flow over a cone have been carried out, beginning at least three decades ago (Tracy 1963; Damkevala and Zumwalt 1968). Most of this work has dealt with small deviations from axisymmetry, although angles of attack as large as 30° have been studied (Yahalom 1971). Less experimental effort seems to have been devoted to transverse flows (angle of attack equal to 90°). Likewise, theoretical studies by Goman and Davydov (1975) and Gusarov et al. (1979) have concentrated on small deviations from conical shapes in axisymmetric flow. Numerical simulations have been car-

Offprint requests to: D.L. Book

198

ried out at large angles of attack  $(30^{\circ}-50^{\circ})$  by Fletcher and Holt (1976). These results are useful, and the same techniques can be applied to transverse flows, but they have definite limitations. At the Mach numbers investigated ( $M \leq 6-8$ ) the flow is strongly conditioned by the presence of a viscous boundary layer. This necessitates solution of the Navier-Stokes equations instead of the Euler equations, and it may be necessary to incorporate a turbulence model as well. In three dimensions it is difficult to obtain good resolution even for inviscid flow; the presence of a thin boundary layer makes the problem even more formidable.

In the next section we determine the streamlines associated with transverse flow over a cone in the Newtonian approximation, i.e., assuming that the streamlines follow the contours of the body surface. We show that for a flat cone the streamlines deviate very little from the vertical plane in which they were propagating before reaching the cone. We use this result to argue that the flow over the cone can be accurately modeled by treating each cross section made by a vertical plane separately. i.e., by solving a series of two-dimensional problems. In the section following that, we describe the results of such calculations. For this purpose we use an Euler code, which is only valid at low flow Mach numbers (M $\leq$ 5). In our calculations the shock Mach number equals 25, but the Mach number of the flow in the heated region behind the shock is  $\sim 3$ , so we are justified in ignoring viscous effects. At higher values of M our results are at least indicative and can be expected to yield accurate values of the peak pressures on the cone. (Of course the reduction of the problem to two dimensions is a consequence of the cone geometry and would be equally useful for Navier-Stokes applications.) We show that these results can be combined to draw a picture of most of the flow field. In the final section we summarize our conclusions.

#### 2. Streamline trajectories

If the flow deflected by a solid object remains supersonic after deflection, the angle between the flow direction and the surface determines the flow parameters behind the shock for given inlet flow parameters. For shock Mach numbers  $M\gtrsim10$ , the shock angle is small and the deflected flow on the upwind side closely follows the form of the deflecting object. The streamlines are determined by the condition that the angle through which they are deflected be as small as possible. We would like to analyze how this deflection angle varies on the surface of the cone shown in Fig. 1. Based on this analysis we can estimate most of the characteristics of steady supersonic flow directed transversely toward the cone.

The equation for the frustrum of a cone with the geometrical center of its base located at the center of coordinates (see Fig. 1) is

$$(x^{2} + y^{2}) \tan^{2} \alpha = (z - h)^{2}, \qquad (1)$$

where h is the height of the cone and  $\alpha$  is the angle between the side of the cone and the base. The angle



Fig. 1. Schematic of the model. The z axis coincides with the axis of the cone and the flow is taken in the direction of the positive x axis. The angles  $\alpha$ ,  $\beta$ ,  $\gamma$ , and  $\omega$  are defined in the text

 $\delta$  between the propagation direction n (taken to be the positive *x*-direction) and the deflected streamline at the leading edge of the cone, which determines the shock strength, is bounded above by the angles between n and the conic sections in the *x*-*y* and *x*-*z* planes.

The cross sections of the cone parallel to the x-y plane are circles given by

$$x^{2} + y^{2} = (z_{0} - h)^{2} / \tan^{2} \alpha \equiv r^{2},$$
 (2)

where  $z_0$  is constant for each particular cross section and r is the radius of the circle. The angle  $\beta$  between n and the tangent to this circle at the point with ordinate y is given by

$$\tan \beta = \frac{\partial y}{\partial x} = -\frac{x}{(r^2 - x^2)^{1/2}} = -\frac{(r^2 - y^2)^{1/2}}{y}.$$
 (3)

The sign is chosen so that positive values of  $\beta$  correspond to negative values of x (i.e., the upwind side).

The cross sections parallel to the x-z plane form hyperbolas on the surface of the cone. The equation for this family of curves is

$$\frac{(z-h)^2}{\tan^2 \alpha} - x^2 = y_0^2,$$
 (4)

where  $y_0$  is constant for each particular cross section. The angle  $\gamma$  between n and the tangent to this hyperbola is given by

$$\tan \gamma = \frac{\partial z}{\partial x} = \tan \alpha / \left(1 + {y_0}^2 / x^2\right)^{1/2}$$
  
=  $\left(1 - {y_0}^2 / r^2\right)^{1/2} \tan \alpha$  (5)

Let us examine now how  $\tan \beta$  and  $\tan \gamma$  vary on the intersection of the cone with the x-y plane when y changes from 0 to  $\pm R$ , where  $r = R = h/\tan \alpha$ . From (3),  $\tan \beta$  approaches  $\infty$  and 0, i.e.,  $\beta = 90^{\circ}$  and  $\beta = 0^{\circ}$ , in the limits  $y \rightarrow 0$  and  $y \rightarrow \pm R$ , respectively. From (5),  $\tan \gamma$  approaches  $\tan \alpha$  and 0 in the same limits. corresponding to  $\gamma = \alpha$  and  $\gamma = 0^{\circ}$ .

Comparing (3) and (5), we seadily conclude that for  $\tan \alpha < 1$ 

 $\tan \gamma < \tan \beta, \quad 0 < y < R;$  $\tan \gamma = \tan \beta = 0, \quad y = R,$  (6)

and for  $\tan \alpha > 1$ 

 $\tan \gamma < \tan \beta, \quad 0 < y < R/\tan \alpha;$   $\tan \gamma = \tan \beta, \quad y = R/\tan \alpha;$   $\tan \gamma > \tan \beta, \quad R/\tan \alpha < y < R;$  $\tan \gamma = \tan \beta = 0, \quad y = R.$ (7)

Thus, at any point with  $x \leq 0$  on the cone specified by (1) for  $\tan \alpha < 1$ , the propagation vector **n** makes a smaller angle with the cone in the cross section parallel to the x-z plane than in the one parallel to the x-yplane. For supersonic flow over the cone shown in Fig. 1, condition (6) implies that the velocity vectors behind the shock front in the region of compression of the flow will always be directed over the cone and not around it.

Now we consider intermediate cross sections of the cone, obtainable by rotating through an angle  $\omega$  about the line AB defined by the intersection of the x-y plane and a plane parallel to the x-z plane. We would like to find the minimum angle between n and the tangent in these cross sections when  $\omega$  varies from 0° (cross section parallel to the x-y plane) to 90° (cross section parallel to the x-z plane).

This family of cross sections is defined by (1) together with the equation of the cross-section plane,

$$z - Z = (y - Y) \tan \omega. \tag{8}$$

where  $\omega$  is the angle between the cross-section plane. We restrict ourselves to points lying in the x-y plane as shown in Fig. 1, since the bow shock produced by the interaction between the flow and the cone will either be attached at this point or will stand off slightly ahead of the cone. The coordinates of the point where the flow encounters the cone are  $X = (R^2 - Y^2)^{1/2}$ , Y, and Z = 0. The tangent line is the intersection of this plane and the plane tangent to the cone at (X, Y, Z). The equation of the latter is obtained from (1):

$$(xX + yY)\tan^2 \alpha + h(z - h) = 0.$$
(9)

Solving (8) and (9) simultaneously yields the equations describing the tangent line:

$$z = (y - Y) \tan \omega = \frac{-(x - X)X \tan^2 \alpha \tan \omega}{h \tan \omega + Y \tan^2 \alpha}.$$
 (10)

The angle  $\delta$  between this line and n is given by

$$\tan \delta = \frac{\left[ (y-Y)^2 + z^2 \right]^{1/2}}{x-X}$$

$$= \frac{\left(h^2 - Y^2 \tan^2 \alpha\right)^{1/2} \tan \alpha}{h \sin \omega + Y \tan^2 \alpha \cos \omega} \equiv f(\omega).$$
(11)



Fig. 2. Value of angle  $\omega$  which minimizes deflection angle as a function of Y/R

Now we look for the extrema of  $f(\omega)$  when  $\omega$  varies from 0° to 90°:

$$\frac{df}{d\omega} = \frac{\tan \delta \left( Y \tan^2 \alpha \sin \omega - h \cos \omega \right)}{h \sin \omega + Y \tan^2 \alpha \cos \omega},$$
(12)

which vanishes only for

$$\tan \omega = \frac{h}{Y \tan^2 \alpha} \equiv \tan \omega_{\min}.$$
 (13)

It is easy to show that (13) defines the minimum of f. Substituting (13) into (11), we find

$$\tan \delta_{\min} = \frac{\left(h^2 - Y^2 \tan^2 \alpha\right)^{1/2} \tan \alpha}{\left(h^2 + Y^2 \tan^4 \alpha\right)^{1/2}},$$
 (14)

which determines the angle  $\delta_{\min}$  through which the streamline of the supersonic flow behind the shock wave turns as a function of Y.

From (13) we see that  $\tan \omega > 1$  holds for  $\tan \alpha < 1$ , since  $Y \le h/\tan \alpha$ . Figure 2 shows how  $\omega_{\min}$  changes when Y varies from 0 to R for various values of  $\tan \alpha$ . This figure implies that for flat cones the supersonic flow will be almost parallel to the x-z plane.

Another way to reach the same conclusion is by finding the maximum y-displacement of a streamline from its original trajectory. This occurs for x = 0, when the trajectory reaches its highest point on the surface of the cone. The tangent to the cone at x = 0, i.e., the section of the cone in the y-z plane, is described by

$$y\tan\alpha + z = h. \tag{15}$$

Solving this equation together with

$$z = (y - Y) \tan \omega_{\min} = \frac{h(y - Y)}{Y \tan^2 \alpha},$$
 (16)

we obtain

$$y = \frac{hY \sec^2 \alpha}{h + Y \tan^3 \alpha} \equiv y_0. \tag{17}$$

Maximizing  $\Delta y = y_0 - Y$  with respect to Y, we find that the largest value of  $\Delta y$  occurs for

$$Y = \frac{h\cos^2\alpha}{\sin\alpha(1+\cos\alpha)} = \frac{R\cos\alpha}{1+\cos\alpha}$$
(18)

200

and equals

$$(\Delta y)_{\max} = \frac{h \sin \alpha \cos \alpha}{(1 + \cos \alpha)^2} = \frac{h \tan^2 \alpha/2}{\tan \alpha}.$$
 (19)

547

For  $\alpha \ll 1$  we have  $Y_{\max} \approx R/2$  and  $(\Delta y)_{\max} \approx h\alpha/4$ .

In summary, the vertical deflection of the streamlines over a cone of small edge angle  $\alpha$  is of order  $\alpha$ , while the horizontal deflection is of order  $\alpha^2$ . For  $\alpha \leq 0.1$  we see that the flow over the cone deviates from the vertical plane in which it starts out by an amount 0.01. Thus the compression region of supersonic flow over flat cones can be calculated accurately by modeling the flow over separate cross sections of the cone made by planes parallel to the x-z plane. A wedge, being two-dimensional, is easier to model than a cone. For this reason we carried out several calculations of the interaction between blast waves and wedges, described in the next section.

We can also conclude that the maximum change in the direction of a streamline for such cones will be  $\alpha$ . If the shock undergoes regular reflection, uniform supersonic flow over a wedge with base angle  $\alpha$  gives an upper bound for the pressure on the cone. Where Mach reflection occurs it is necessary to model the transient regime, as the pressure peaks associated with the Mach stem and the contact surface could conceivably be larger.

#### 3. Numerical modeling

Let us consider a cone with  $\alpha = 10^{\circ}$  (tan  $\alpha = 0.176$ ) at the base. According to the analysis in the preceding section of a transversely directed supersonic flow over a cone, an upper limit can be obtained by modeling the same supersonic flow over a wedge with opening angle  $\alpha$ .

Here we present the result obtained by numerically solving the equations for the flow over the wedge when it is loaded by a passing blast wave. For the simulation we used the Fast Unstructured-Grid Second-Order Godunov Solver, described by Eidelman and Lottati (1990). This code, which is based on a second-order Godunov method (Eidelman et al. 1984), provides a method for solving the Euler equations of gasdynamics on unstructured grids with arbitrary connectivity. The use of a data structure with only one level of indirectness leads to an easily vectorized and parallelized code with low memory requirements and high computational efficiency. The algorithm has been tested for performance and accuracy over a wide range of Mach numbers and geometrical situations, and has demonstrated robustness without the need for any adjustable parameters. It can be implemented in either a triangle- or vertex-based form; experience with the method has shown that extremely low levels of artificial viscosity can be achieved using the triangle-based version of the method. Direct dynamic refinement of the grid (Eidelman and Lottati 1990) allows automatic adaptation to the front of the moving blast wave. This refinement guarantees that the associated highly inhomogeneous pressure and density features are accurately tracked.



Fig. 3. Unstructured grid for  $\alpha = 10^{\circ}$  at times (a) 35  $\mu$ s, (b) 55  $\mu$ s, and (c) 130  $\mu$ s, associated with the density and pressure contour plots of Figs. 4 and 5.Distances are in meters. These reproductions are unable to resolve the smallest triangles, which show up as dark regions roughly coincident with the locations of gasdynamic discontinuities

For the initial conditions in the computational domain we assume air at standard temperature and pressure. At t = 0, a strong (M = 25) blast wave, propagating to the right, is located at the left boundary. We assume that the blast wave is "square" and that conditions at the left boundary of the computational domain remain constant for the whole time of the simulation. A constant value of  $\gamma = 1.2$  was used (appropriate to flow behind shocks with this value of M on account of real-gas effects). For these values of  $\alpha$ ,  $\gamma$ , and M, shock tube measurements described by Glass (1987) of diffraction over a wedge indicate that double Mach reflection should occur.

Figure 3 shows the computational grid at various times t: (a) at  $t = 35 \,\mu$ s, shortly before the blast front reaches the apex of the wedge, located at a horizontal distance  $l = 1 \,\mathrm{m}$  from the corner; (b) at  $t = 55 \,\mu$ s, just after it passes the apex; and (c) at  $t = 130 \,\mu$ s, after the leading shock has exited from the computational domain and a quasisteady state has developed. The highly refined portions of the grid follow shock fronts, contact discontinuities, etc. The numbers of vertices shown are 4166, 11785, and 10959, respectively, reflecting the complexity of the corresponding states, i.e., the amount of structure in the gasdynamic processes present.

Figure 4 shows contours of density scaled by the ambient density  $\rho_0 = 1.29 \,\mathrm{kg} \,\mathrm{m}^{-3}$  at the same times as in Fig. 3. In the first frame the flow is still identical with that for a shock reflecting from a single wedge with opening angle  $\alpha$ , and therefore is evolving self-similarly (Glass 1987). The first Mach stem and incident shock are clearly defined. The associated contact surface is barely discernible, both because the contour levels are bunched near the much larger jumps at the shocks and because at very high Mach numbers the slip line is found quite close



Fig. 4. Scaled density contours for  $\alpha = 10^{\circ}$  at times (a) 35  $\mu$ s, (b) 55  $\mu$ s, and (c) 130  $\mu$ s. Thirty-five contour levels are plotted, with  $\rho/\rho_0$  varying from 1.0 to 13.5. They are concentrated at the large density jumps in the strong shocks. This causes the shocks to be emphasized more than the contact discontinuity, where the density change is relatively small. The structure of the Mach reflection is discernible only in the earliest frame. In the final frame the flow has become essentially steady

to the Mach stem (Glaz et al. 1985). In Fig. 4b the front has passed the apex and the evolution is no longer selfsimilar. The flow behind the front expands through an expansion fan attached to the corner. Also clearly visible is the recompression shock two-thirds of the way from the corner to the front. This shock, which serves to reconcile the high pressures in the region following the Mach stem with the lower values appropriate to the expanded flow downstream from the corner, is propagating backward but is being swept to the right by the strong flow behind the leading shock. The triple points have moved far above the cone and no longer appear on the grid. Note that the supersonic outflow boundary condition imposed at the top of the mesh allows material and waves to pass out of the system without reflecting and without causing other signals to propagate back inside. Figure 4c depicts the flow at late times, when transients have essentially disappeared. The only gasdynamic features visible are shocks at the leading and trailing edges and the expansion fan.

Figure 5 shows traces of the static and dynamic pressure scaled by the ambient pressure  $p_0 = 101.3$  kPa along the top surface of the wedge as functions of the horizontal distance x in meters at the three specified times. Ahead of the blast these quantities are at ambient levels, they rise sharply when the shock sweeps past, fluctuate, and finally reach their asymptotic values. Note that, as is seen experimentally in shock-tube studies (Glass 1987), the pressure on the surface of the wedge is highest at the leading edge. It is also important to notice that, although these traces exhibit considerable structure (especially the static pressure), the maximum values of the pressure and density for the transient stages are



Fig. 5. Scaled dynamic and static pressure on the wedge surface in the case  $\alpha = 10^{\circ}$  as functions of the distance for times 35  $\mu$ s ( $\Box$ ), 55  $\mu$ s ( $\sigma$ ), and 130  $\mu$ s ( $\Delta$ ). Ahead of the shock these quantities have their ambient values; far behind the shock they become essentially steady

always smaller than those in the quasisteady flow regime. At the same time, values of the Mach number in the transitional stage can be higher than in the quasisteady state. For our case, however, the maximum Mach number is at most 10% higher than the steady-state value. This shows that the maximum force is applied to any point on the surface of the wedge in the quasisteady state.

Figure 6 shows as functions of time the drag and lift coefficients, defined by

$$C_D = \frac{\int p_{\parallel} dx}{\rho_{\infty} u_{\infty}^2 l} \tag{20}$$

and

$$C_L = \frac{\int p_\perp dx}{\rho_\infty u_\infty^2 l}.$$
(21)

Here  $p_{\parallel} = p \cos \theta$  and  $p_{\perp} = p \sin \theta$  are the horizontal and vertical components of the pressure in terms of the angle  $\theta$  between the normal to the surface and the xaxis, the integrals are carried out over the surface of the wedge, and  $\rho_{\infty}$  and  $u_{\infty}$  are the density behind the undisturbed shock front. The lift grows monotonically, but the drag first rises, then drops to its quasisteady value. The decrease results from the increase in pressure on the trailing side of the wedge when the shocked air reaches that side.


Fig. 6. Lift and drag coefficients for  $\alpha = 10^{\circ}$  as functions of time



Fig. 7. Scaled dynamic and static pressure on the wedge surface in the case  $\alpha = 20^{\circ}$  as functions of the distance for times  $34 \mu s$ (C),  $94 \mu s$  (o), and  $168 \mu s$  ( $\Delta$ )

To learn how sensitive the flow is to the wedge angle, we carried out a second calculation with  $\alpha = 20^{\circ}$ ( $\tan \alpha = 0.364$ ) and the other parameters unchanged. This calculation was done with a coarser grid than the previous one, with triangles about a factor of three larger. Most of the features resembled those of the first case. For example, the traces of the static and dynamic



Fig. 8. Lift and drag coefficients for  $\alpha = 20^{\circ}$  as functions of time (in milliseconds)

pressure along the top surface, shown in Fig. 7, are qualitatively similar to those for  $\alpha = 10^{\circ}$ . One difference is that the drag rises monotonically as a function of time (Fig. 8), rather than decreasing after the shock has passed. This is because the expansion fan attached to the top of the cone is stronger and a low-pressure "bubble" forms on the lee side.

We carried out additional calculations with other values of the parameters. As long as  $\alpha$  was small and M was large the results resembled those discussed above. They are not described here, since in no case did the transient pressures exceed those in the quasisteady state, nor were the features in the flow qualitatively different.

## 4. Conclusions

From the foregoing treatment it is clear that the same modeling technique can be used to determine the pressure distribution in cross sections other than the midplane. So long as |y| does not approach R, the deflection is mostly vertical. The corresponding profile is now a hyperbola, but it differs noticeably from a wedge only near the top. The principal difference is in the expansion wave at the top, which becomes broader than the centered rarefaction wave seen above. For larger values of y the cross section of minimum deflection, found by solving (1) and (8) together, is more rounded at the top but the leading edge of this hyperbolic "wedge" has a smaller angle. By combining pressure distributions at several representative values of y we can find the pressure loading over the entire cone. The picture breaks down only at the lateral extremities of the cone  $(|y| \sim R)$ .

On the basis of qualitative arguments and numerical simulation, our study of the flow resulting from a blast wave propagating transversely over a cone leads to the following conclusions:

1. Flow over a cone with small base angle can be accurately simulated by individually modeling the twodimensional flows over cross sections of the code made by vertical planes perpendicular to the shock front.

2. The maximum load on the cone can be calculated from the solution of the flow over the cross section determined by the plane through the cone axis (Fig. 1).

 $\vartheta$ . In this solution the pressure attains its maximum as a function of time in the quasisteady supersonic regime established after the front has passed.

Acknowledgements. This work was sponsored in part by the Defense Nuclear Agency. The work of the first author was supported by the Naval Research Laboratory.

## References

- Damkevala RJ, Zumwalt GW (1968) Technique for studying interactions between a body moving at supersonic speeds and blast waves approaching obliquely. Rev Sci Instr 39:1254-1256
- Eidelman S, Colella P, Shreeve RP (1984) Application of the Godunov method and its second-order extension to cascade flow modeling. AIAA J 22:1604-1615

- Eidelman S, Lottati I (1990) Redection of the triple point of Mach reflection in planar and axisymmetric converging channels. In: Reichenbach H, (Ed) Proc 9th Mach Reflection Symp Freiburg FGR
- Fletcher CJ, Holt M. (1976) Supersonic viscous flow over cones at large angles of attack. J Fluid Mech 74:561-591
- Glass II (1987) Some aspects of shock-wave research. AIAA J 25:214-228
- Glaz HM, Colella P. Glass II, Deschambault RL (1985) A numerical study of oblique shock-wave reflections with experimental comparisons. Proc R Soc London A398:117-140
- Goman OG, Davydov VI (1975) Determination of aerodynamic characteristics of cone with arbitrary small surface deviations. Izv VUZ Aviats Tekh 18:58-62. [Transl Soviet Aeronautics 18(4):44-48]
- Gusarov AA, Dvoretskil, VM, Ivanov, MYa, Levin VA, Chernyl, GG (1979) Theoretical and experimental investigation of the aerodynamic characteristics of three-dimensional bodies. Izv Akad Nauk SSSR Mekh Zhidkosti i Gaza No 3, 97-102. [Transl Fluid Dynamics 14:402-406]
- Sedov LI (1959) Similarity and dimensional methods in mechanics. Academic Press, New York
- Tracy RR (1963) Hypersonic flow over a yawed cone. Memo 69 Calif Inst Tech Graduate Aeronautical Labs
- Yahalom R (1971) An experimental investigation of supersonic flow past yawed cones. Rept AS-71-2 Univ Calif Berkeley

This article was processed using Springer-Verlag T_EX Shock Waves macro package 1990.



AIAA 92-0346 Detonation Wave Propagation in Variable Density Multi-Phase Layers S. Eidelman and X. Yang Science Applications International Corporation McLean, VA 22102

# 30th Aerospace Sciences Meeting & Exhibit

January 6-9, 1992 / Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 370 L'Enfant Promenade, S.W., Washington, D.C., 20024

## Detonation Wave Propagation in Variable Density Multi-Phase Layers Shmuel Eidelman and Xiaolong Yang Science Applications International Corporation McLean, VA 22102 ABSTRACT

A mathematical model is presented describing a physical system of detonation waves propagating in a solid particle/air mixture with a wide range of solid phase concentrations. The mathematical model was solved numerically using the Second Order Godunov method, and numerical solutions were validated for detonation waves propagating in mixtures with concentrations of solid phase from  $0.75 \text{ kg/m}^3$  to 1000 kg/m³. Numerical solution was obtained for detonation waves propagating in a system consisting of layers of explosive powder with substantial variation in particle density between the layers. The study revealed a specific detonation front structure that is dependent on the thickness of the layers and their energetic content. The dynamics of lateral initiation of the adjacent layers and the structure of detonation waves in this system were investigated. Results are given for detonation of clouds having a small concentration of particles and a ground layer in which solid particle densities are three orders of magnitude larger than in the cloud.

### 1. INTRODUCTION

It is of considerable practical interest to study diffraction and transmission of the detonation waves into bounding layers of explosives. When combustible particles are intentionally or unintentionally dispersed into the air, the resulting mixture can be detonable. Formation of this potentially explosive dust environment and the properties of its detonation are of significant practical interest in view of its destructive or creative effects. The experimental and theoretical study of these phenomena until now has addressed only homogeneous particle/oxidizer mixtures. However, intentional or accidental processes of the explosive dust dispersion will always lead to inhomogeneous particle density distribution. Some industrial methods of explosive forming rely on detonation of explosive powder. This powder can be deposited as a thin layer over the surface area of the forming metal, with some remaining concentration in the vicinity of the layer. Also a multi-layer system can be formed from several layers of condensed explosives of different density. The structure of the detonation waves, phenomenology of its initiation, and propagation in these environments, are the main subjects of this paper.

When the detonation wave is generated in a homogeneous mixture by a "direct initiation," it starts with a strong blast wave from the initiating charge. As the blast wave decays, combustion of the reactive mixture behind its shock front starts to have a larger role in support of the shock wave motion. When the initial explosion energy exceeds some critical value, transition to steady state detonation occurs.⁽¹⁻⁴⁾ In explosive dust mixtures with a nonuniform distribution of particle density, the initiation dynamics is significantly more complicated. The critical initiation energy sufficient for one of the explosive particle density regions is not necessarily adequate for other regions. Also, when there is a significant variation in density between the different layers (regions) of the mixture, steady detonation in one layer can result in an overdriven detonation in an adjacent layer. Liu et al.⁵ has studied experimentally a system of gaseous layers and lateral interactions for gaseous detonations. Our paper demonstrates that the phenomenoiogy of these interactions is somewhat different from these experimental studies of multi-layer detonations in gases. This is primarily because the energy content of adjacent layers in a typical multi-gas layer experiment⁵ varies by a factor of less then two, whereas the energy content in explosive dust/air mixtures can vary by several orders of magnitude.

In this paper we use detailed numerical simulation to study the initiation dynamics and propagation phenomenology for a general case of explosive dust dispersion. We will consider particle density variation from  $1000 \text{ kg/m}^3$  in the ground layer to  $0.75 \text{ kg/m}^3$  for the upper edges of the cloud. The effects of variation of the cloud density on detonation wave parameters will be examined for different cases of cloud particle density distribution. When possible, the results of computer simulations are validated in comparison with experimental and theoretical studies.

Section 2 of this paper describes a mathematical model that includes governing conservation equations for two phases and the constitutive laws, as well as the model for a particle gas interaction, combustion and equation-of-state for gas phase. The numerical integration technique for solving the mathematical model will is also outlined. In Section 3, we present our numerical simulation results. We first validate our model by conparing one-dimensional detonation wave simulation with available experimental results. We then give the twodimensional simulation for detonation wave propagation in combustible particle/air mixtures with variable particle density distribution. Concluding remarks are given in Section 4.

# 2. THE MATHEMATICAL MODEL AND THE NU-MERICAL SOLUTION

The mathematical model consists of conservation governing equations and constitutive laws that provide closure for the model. The basic formulation adopted here follows the two-phase fluid dynamics model presented in the text by Kuo⁷. The approach assumes that there are two distinct continua, one for gas and one for solid particles, each moving at its own velocity through its own control volume. The sum of these two volumes represents an average mixture volume. With these assumptions, distinct equations for continuity, momentum and energy are written for each phase. The interaction effects between the two phases are accounted as the source terms on the right hand side of the governing equation. The following is a short description of the two phase flow model used in our study, with conservation equations written in Eulerian form for two-dimensional flow in Cartesian coordinates.

## Conservation Equations

Continuity of gaseous phase

$$\frac{\partial \rho_1}{\partial t} + \frac{\partial (\rho_1 u_g)}{\partial x} + \frac{\partial (\rho_1 v_g)}{\partial y} = \Gamma ; \qquad (2.1)$$

Continuity of solid particle phase

$$\frac{\partial \rho_2}{\partial t} + \frac{\partial (\rho_2 u_p)}{\partial x} + \frac{\partial (\rho_2 v_p)}{\partial y} = -\Gamma ; \qquad (2.2)$$

Conservation of momentum of gaseous phase in xdirection

$$\frac{\partial(\rho_1 u_g)}{\partial t} + \frac{\partial(\rho_1 u_g^2 + \phi p_g)}{\partial x} + \frac{\partial(\rho_1 u_g v_g)}{\partial y} = -F_x + \Gamma u_p;$$
(2.3)

Conservation of momentum of solid particle phase in ydirection

$$\frac{\partial(\rho_1 v_g)}{\partial t} + \frac{\partial(\rho_1 u_g v_g)}{\partial x} + \frac{\partial(\rho_1 v_g^2 + \phi p_g)}{\partial y} = -F_y + \Gamma v_p ;$$
(2.4)

Conservation of momentum of solid particle phase in xdirection

$$\frac{\partial(\rho_2 u_p)}{\partial t} + \frac{\partial(\rho_2 u_p^2)}{\partial x} + \frac{\partial(\rho_2 v_p u_p)}{\partial y} = F_s - \Gamma u_p ; \quad (2.5)$$

Conservation of momentum of solid particle phase in ydirection

$$\frac{\partial(\rho_2 v_p)}{\partial t} + \frac{\partial(\rho_2 u_p v_p)}{\partial x} + \frac{\partial(\rho_2 v_p^2)}{\partial y} = F_y - \Gamma v_p ; \quad (2.6)$$

Conservation of energy of gas phase

$$\frac{\partial(\rho_1 E_{fT})}{\partial t} + \frac{\partial(\rho_1 u_g E_{fT} + u_g \phi p_g)}{\partial x} + \frac{\partial(\rho_1 v_g E_{fT} + v_g \phi p_g)}{\partial y}$$
$$\Gamma\left(\frac{u_p^2 + v_p^2}{2} + Echem + C_s \bar{T}_p\right) - \left(F_s u_p + F_y v_p\right) - \dot{Q}; \quad (2.7)$$

Conservation of energy of solid particle phase

$$\frac{\partial(\rho_2 E_{pT})}{\partial t} + \frac{\partial(\rho_2 E_{pt} u_p)}{\partial x} + \frac{\partial}{\partial y}(\rho_2 E_{pt} v_p) = \dot{Q} + (F_x u_p + F_y v_p) - \Gamma\left(\frac{u_p^2 + v_p^2}{2} + Echem + C_s \bar{T}_p\right); \qquad (2.8)$$

Conservation of number density of solid particle

$$\frac{\partial N_p}{\partial t} + \frac{\partial (N_p u_p)}{\partial x} + \frac{\partial (N_p v_p)}{\partial y} = 0.$$
 (2.9)

In the above equations,  $\phi = 1 - \frac{N_r M_r}{\rho_0}$ ,  $\rho_1 = \phi \rho_g$ ,  $\rho_2 = (1 - \phi) \rho_p$ , where  $N_p$  and  $M_p$  are the number density and mass of each particle, respectively, and  $\rho_p$ and  $\rho_p$  are the material density of gas and particle densities, respectively.  $u_g, v_g, p_g$  are gas phase x-velocity, y-velocity and pressure, respectively;  $u_p, v_p, \tilde{T}_p$ , are xvelocity, y-velocity and average temperature of particle, respectively.  $C_s$  is specific heat of solid particle and *Echem* is chemical energy of solid phase,  $\Gamma$  is the rate of phase change from solid to gas and Q is heat transfer between the two phases;  $F_x, F_y$  are the drag force between the two phases in x and y directions, respectively.

Equations (2.2) and (2.7) are linked through the relation  $\rho_2 = nM_p$ . In the case of a reactive solid phase,  $M_p$  decreases due to combustion. The mass d a single particle at any point can be obtained from  $M_p = \rho_2(x,y)/n(x,y)$ , and the diameter of a particle at any spatial location is  $D(x,y) = \{\delta M_p(x,y)/\pi \rho_p\}^{1/3}$ . The total internal energy of gaseous phase

$$E_{gT} = E_g + \frac{1}{2}(u_g^2 + v_g^2)$$
 and  $E_g = E_g(p_g, \rho_g)$  (2.10)

where  $E_g(P_g, \rho_g)$  is the equation-of-state for the gas phase, which will be discussed later.

The total internal energy of solid particle phase is

$$E_{pt} = E_p + \frac{1}{2}(v_p^2 + v_p^2)$$
 and  $E_p = Echem + C_s \bar{T}_p$ .  
(2.11)

In order to close the above system of conservation equations, it is necessary to define certain criteria and interaction laws between the two phases, which include mass generation rate,  $\Gamma$ , drag force between particles and gas,  $F_x$ ,  $F_y$  and the interphase heat transfer rate  $\dot{Q}$ . The model for particle and gas interaction and particle combustion that results in the constitutive relation for the conservation equations, is explained in detail in the next subsection.

### Model for a Particle Gas Interaction and Combustion

Presently, the physics of the energy release mechanisms in solid particles/air mixtures is not clearly understood. This can be attributed to the obvious difficulties of making a direct non-obtrusive measurement in the optically thick environment typical for this system. In the experimental and theoretical work done for the grain dust detonation conditions,⁷ it was demonstrated that the volatile components released by the particle heated behind the shock front play a major role in determining the detonability limits of the mixture. Eidelman and Burcat⁸ successfully applied a combination of fast evaporation and aerodynamic shattering mechanisms to simulate a two-phase detonation process.

The chemical processes of a single particle combustion, which mainly occur in the gaseous phase, are significantly faster than the physical processes of particle gasification or disintegration. Thus, in the multi-phase mixtures, the rate of energy release will be mostly determined by physics of particle disintegration. It is very difficult to describe the details of particle disintegration in the complex environment prevalent behind the shock or detonation wave. For example, Reinecke and Waldman⁹ defined five different disintegration regimes for a relatively simple environment of water droplets passing through a weak shock. Fortunately, in most cases of multi-phase detonation, only the main features of the particle disintegration dynamics need to be captured to describe the phenomena. For example, Eidelman and Burcat,¹⁰ using simple models for particle evaporation and shattering, obtained simulation results that compared very favorably with experimental data. Because of our inability to resolve the particle disintegration problem in all its complexity, the validation of the model against known experimental data is essential.

In this paper we consider solid particles consisting of explosive material. Explosive material contains fuel and oxidizer in a passive state at low temperature; however, when the temperature rises the fuel and oxidizer react, leading to detonation or combustion. The initiation of reaction for explosives will occur at relatively low temperature. For example, TNT will detonate when heated to the temperature¹¹ of 570°C. Only particles larger than a critical detonation size can detonate directly when initiated by a shock wave. We consider here particles smaller than 4mm in diameter that will not detonate when heated, but will burn when the temperature on the particle surface reaches a critical value. Since the heat conduction inside the explosive material is relatively slow, the process of particle heating needs to be resolved in detail. Our simulations numerically solve the temperature field in the particles at every step of numerical integration of the global conservation equations. The explosive particle combustion model examined in this paper assumes that the fraction of the particle that reaches the critical temperature will burn instantaneously.

Energy transfer by convection and conduction is simulated by solving the unsteady heat conduction equation in each computational cell at each time step. Assuming a particle's temperature  $T_p$  to be a function of time and radial position only, the unsteady heat conduction equation may be transformed to:

$$\frac{d^2w}{dr^2} = \frac{1}{\alpha}\frac{dw}{dt} , \qquad (2.12)$$

subject to the boundary conditions:

$$w=0 \quad at \quad r=0, \quad t>0$$

$$k_s \frac{dw}{dr} = (h - \frac{1}{R})w = hRT_g \quad at \quad r = R, \quad t > 0 \quad (2.13)$$

where:

 $w(r,t) = rT_{p}(r,t)$ r = radial position T(r,t) = temperature R = particle radius T_g = temperature of surrounding gas k_s = thermal conductivity of particle h = convective heat transfer coefficient.

The Nusselt number, used to find h, is given by an empirical relation provided by Drake.¹² The gas viscosity is found from Sutherland's Law. The gas thermal conductivity is calculated by assuming a constant Prandtl number. Lastly, the boiling temperature at a given pressure is found from the Clapeyron-Clausius equation, assuming: 1) constant latent enthalpy of phase change, 2) the vapor obeys the ideal equation of state, and 3) the specific volume of the solid/liquid is negligible compared to that of the vapor. A critical temperature is also employed to serve as an upper limit to the boiling point. regardless of pressure. Equation (2.13) with boundary condition (2.14) can be numerically integrated using either implicit or explicit schemes.

Since the particle radius, R, will become very small due to evaporation, the implicit Crank-Nicolson algorithm is used because of its stability properties and its second order temporal and spatial accuracy. Using the Crank-Nicolson scheme to predict the particle temperature profiles at times  $t_1$  and  $t_2$  permits easy calculation of the total energy exchange, Q between  $t_1$  and  $t_2$  due to convection and conduction.

Knowledge of the particle temperature profile also allows us to determine  $\Gamma$ , the rate of phase change from solid particle to gas. Once any point at a radial location  $0 \le r \le R$  has a temperature exceeding the boiling temperature, the entire mass between r and R is transferred to the gas phase in one time step. In so doing, an energy equal to the product of the mass lost and the particle intrinsic energy is transferred by the particle to the gas.

The interphase drag force (Fx, Fy) is determined from the experimental drag for a sphere, as presented by Schlichting¹³.

$$F_{g} = \left(\frac{\pi}{8}\right) N_{pg} C_D |\mathbf{V}_g - \mathbf{V}_p| (u_g - u_p) R^2 \qquad (2.14)$$

where

$$C_D = \begin{cases} \frac{24}{Re} \left( 1 + \frac{Re^{2/3}}{6} \right) & \text{for } Re < 1000; \\ 0.44 & \text{for } Re > 1000, \end{cases}$$
(2.15)

and  $Re = \frac{2R|V-V_{g}|}{\mu_{g}}$ , R is radius of partricle and  $\mu g$  is gas viscosity at temperature of  $T_{film} = \frac{1}{2}(T_{g} + \bar{T}_{p})$ . Similarly, the formulae for Fy is

$$Fy = \frac{\pi}{8} N_p \rho_g C_D |\mathbf{v}_g - \mathbf{v}_p| (v_g - v_p) R^2. \qquad (2.16)$$

### Equation of State for Detonation Products

To close the system of governing equations, one needs a constitutive relation between density, pressure, temperature and energy for gas phase, which is an equation-of-state. This study uses the Becker-Kistiakowsky-Wilson (BKW) equation-of-state^{14,15} that is,

$$p_{e}V_{e}/\bar{R}T_{e} = 1 + xe^{bx},$$
 (2.17)

where  $V_g$  = volume of gas phase  $p_g$  = pressure of gas phase  $T_q$  = temperature of gas phase

## $\bar{R} =$ - universal gas constant $z = k/F_{e}(T + \Theta)^{a} k = K\Sigma_{i}X_{i}k_{i}$

with empirical constants a, b, K,  $\Theta$  and  $k_i$ . The constants  $k_i$ , one for each molecular species, are co-volumes. The co-volumes are multiplied by their mole fraction of species,  $X_i$ , and are added to find an effective volume for a mixture. For a particular explosive, if we know the composition of detonation products and a, b,  $\Theta$ , K, and all  $k_i$ 's can be found in Ref. 15.

The internal energy is determined by thermodynamics relation

$$\left(\frac{\partial E_g}{\partial V_g}\right)_T = T_g \left(\frac{\partial_{pg}}{\partial T_g}\right)_V - p_g . \tag{2.18}$$

Integration of this equation for a fixed composition of the detonation products will allow us to calculate the energy of the detonation products as a function of temperature and volume. For each component, its thermodynamic properties as functions of temperature were calculated from the NASA tables compiled by Gordon and McBride¹⁶.

The BKW equation-of-state is the most common and well calibrated of those equations-of-state used to calculate the properties of detonation products. The detailed discussion and review of the BKW equation-ofstate can be found in Ref. 15.

## Numerical Method of Solutions

The system of partial differential equations described in the previous paragraph is integrated numerically. The Second Order Godunov method is used for the integration of the subsystem of equations describing flow of gaseous phase material. This method is described in Ref. 17. In the following, we will elaborate only on some specifics of its application to simulations of detonation products. The subsystem of equations describing the flow of particles is integrated using a simple upwind integration. This is done because our mathematical model neglects pressure of interparticle interaction and that prevents formulation of a Second Order Godunov scheme for particles.

The physical system under study will have concentrations of solid explosive powder ranging from 1000 kg/m³ near the ground to 0.75 kg/m³ or less in the cloud. Detonation of this mixture will create detonation products with effective  $\gamma$  ranging from 3 to 1.1. To describe the flow of detonation products, we use the BKW equation-of-state described above. Since the Second Order Godunov method uses primitive variables to calculate Riemann problems at the edges of the cells, its implementation for non-ideal EOS is difficult. In our simulations, we have resolved this problem by using direct and inverse equations-of-state. After integrating a system of gas conservation laws, we use the direct BKW equation-of-state to calculate pressure, gamma and temperature as functions of thermal energy, density, and mixture composition. After this step, we have a complete set of parameters allowing calculation of the fluxes in the Second Order Godunov method as well as interaction of the multi-phase processes. The "inverse" EOS calculates internal energy as a function of density, pressure and mixture composition. In our code we use the "inverse" EOS to calculate the fluxes of conserved variables after calculation of the flux of primitive variables.

For the multi-phase system under study, dx=dy=1mm was used to allow explicit integration of the gasdynamic and physical processes of evaporation and heat release. When a mismatch occurred between the physical and gasdynamical characteristic times, the time step was adjusted by some fraction to assure stability. However, this did not result in a significantly smaller time step as compared with that calculated by CFL criteria. For larger cell sizes, this approach is impractical. Recently we implemented a scheme in which multi-phase processes are calculated implicitly; however, this will be reported elsewhere.

The numerical method is implemented in a code named MPHASE, which is fully vectorized and supported by number of graphics and diagnostics codes. 3. RESULTS

## Model Validation for One-Dimensional Detonation Wave Problem

The main advantage of our particle combustion model is its description of the phenomenology of detonation for a wide range of explosive particle sizes and densities. We will demonstrate this capability on a set of one-dimensional test problems. For these test problems, we simulated the initiation and propagation of the detonation waves in a shock tube-like setting, where the explosive particles are distributed uniformly through the shock tube volume.

Results of these simulations are summarized in Table 1, which shows detonation wave velocity, peak pressure, and peak density given as a function of the average density of the solid explosive. Here the explosive two-phase mixture is composed from RDX particles and air, where RDX particle concentration varies from 0.75 kg/m³ to 1000 kg/m³. This concentration variation covers the whole range of solid explosive concentrations of interest to our problem. The simulations performed with the MPHASE code were compared with the experimental results,^{15,16} and the calculations presented in Ref. 19 were done with the TIGER code.

From Table I, it is clear that our simulation results compare favorably with other simulation results and experimental data. The maximum deviation between our results and referenced results is no greater than 15% for the entire range of explosives densities. Considering that our results were obtained with a single model for particle combustion applied to the extreme range of densities, our model gives an excellent prediction of the detonation wave parameters.

# **Two-Dimensional Simulation Results**

In our two-dimensional simulations, we first study the dynamic of the lateral initiation in a simple system formed by two layers of explosive with different concentrations of the explosive powder in the layers. These layers of explosive will be considered confined in a rectangular shock tube with rigid walls. The schematics of the set up for a typical simulation of this type are shown in Figure 1. The detonation wave is initiated in the lower layer, and its propagation though the shock tube causes lateral initiation of the adjacent layer. In one of the test cases, both layers are initiated simultaneously with a planar front.

First we simulated initiation and propagation of the detonation in a system of two layers of detonable RDX powder/air mixture contained in a rectangular channel 4 cm wide and 35 cm long. The lower layer has an RDX powder concentration of 800  $\frac{kg}{M^3}$  and occupies half of the channel width, and the upper layer of the channel has a mixture concentration of 200  $\frac{kg}{M^3}$ . Detonation is initiated in the lower layer by a planar front that is propagating from left to right. In Figures 2a:2f, results of this simulation are shown in the form of pressure contours on a logarithmic scale in MPa for a sequence of time frames. In these figures, we can follow the evolution of the lateral initiation and formation of the detonation wave structure in this system.

In Figure 2a, contour plots are shown at time t=0, which corresponds to the beginning of the simulation and depicts initial conditions of the planar wave in the lower layer. This initial wave causes lateral initiation of the upper layer through an oblique detonation front shown in Figure 2b at  $t=9 \times 10^{-6}$  sec. The oblique front reflects from the upper wall of the channel, and in Figure 2c we observe that the wave pattern indicates it is a single Mach reflection. The Mach stem is very short at this point. In Figure 2d, the pressure contours are shown at the time  $t=31 \times 10^{-6}$  sec. Here the Mach stem is clearly visible and the reflected shock has reached the lower wall of the channel. The Mach stem will continue to grow and the triple point will propagate towards the high density layer. In Figure 2e, the simulation results are shown at  $t=52 \times 10^{-6}$  sec when detonation wave complex has reached steady state propagation regime. The triple point has reached the interface between the two layer and is unable to continue propagation downwards due to the high level of pressure and density in the lower layer. Also at this stage of the detonation wave propagation, the reflected shock has reached the upper wall

.

of the channel. In Figure 2f, the simulation results are shown at  $t=64 \times 10^{-6}$  sec. Here the structure of the detonation front is basically unchanged from the previous picture, except for an additional reflection from the upper wall of the channel. The detonation wave parameters are also unchanged from the previous time frame, indicating that the detonation wave in this two layer system has reached steady state.

To validate that the detonation waves complex observed in above reported simulation is not a function of the initial conditions, we simulated a test case in which all problem parameters, except the initiation wave, are the same as in the previous case. The initiation is done by a single planar wave that starts propagating simultaneously in both layers of the explosive. In Figures 3a:3e, results for this simulation are shown in the form of pressure contours for a sequence of time frames. The initial conditions are shown in Figure 3a. Here we can observe a planar front impinging simultaneously on both layers of explosive in the channel. At first, this front propagates some distance planarly, as observed in Figure 3b. However, a significant difference in the explosive powder density quickly leads to formation of the oblique front in the upper layer, as shown in Figure 3c. As in the previous case, the oblique front reflects from the upper wall in the single Mach reflection shown in Figure 3d. And as in the previous case, the triple point of the Mach stem propagates downward to the interfaces between the layers to form the stable wave pattern shown in Figure 3e. The parameters of the detonation waves and the structure of the detonation wave complex are identical to those observed in the previous case, which proves that it is not a function of the initial conditions, but physical conditions of the layers.

We studied the effects of the channel walls using a system that included a 2cm thick lower layer of high density (800  $\frac{kg}{M^3}$ ) RDX powder and a 10cm thick upper layer of low density (200  $\frac{k_{0}}{M^{3}}$ ) RDX powder. The results of this simulation are shown as pressure contours on a logarithmic scale in Figures 4a:4d. Figure 4a shows the initial conditions. In Figure 4b, we can see at the time  $t = 25 \times 10^{-6}$  a planar detonation wave is propagating through the lower layer and an oblique wave is propagating through the upper layer. In Figure 4c, the detonation wave is shown at the time  $t=41 \times 10^{-6}$  from the initiation. Here the oblique wave is reflecting from the upper wall; however, it is distinct from the previous cases because only a regular reflection pattern is formed. This is due to the shallow angle of incidence of the detonation wave, that corresponds to the large wedge angles in classical reflection problems. Figure 4d shows the results of the simulation at  $t = 52 \times 10^{-6}$ . Here we can observe the same regular reflection pattern as in the previous stage; however, the incidence angle of the oblique wave in the upper layer is increasing. Thus, if this trend continues, later in the detonation wave evolution we wir see the formation of the Mach reflection pattern, as we have in previous cases.

We have also examined propaga: on of the detona tion wave in the system shown in ... gure 5 that cor responds to the situation where the upper layer is no confined by the channel wall. Here the computationa domain is  $25 \text{cm} \times 25 \text{cm}$  in size. The explosive powde: density is distributed according to the 4th power law of vertical distance, starting from the ground where the density is 860 kg/m³, to 1.2cm, where the density i 0.75 kg/m³. From this point to 25cm height, the deg sity is constant and equal to 0.75 kg/m³. The densit distribution in the direction of the"x" axis is uniform The boundary conditions for the computational domain shown in Figure 5 are specified as follows: solid was along the "x" axis; symmetry conditions along the "y axis; supersonic outflow for upper boundary and at the right of the computational domain. The mixture con sists of RDX powder and air at ambient conditions and it is assumed to be quiescent at the time of initiation.

The simulation starts at t=0 when the mixture i initiated at the lower left corner of the computational domain, as shown in Figure 5. The energy released the initiating explosion leads to formation of the detone tion wave propagating through the multi-phase media Figure 6a shows pressure contours for the propagatin detonation wave at the time of  $t=12 \times 10^{-6}$  msec after initiation. Here the pressure contour levels are show on logarithmic scale in MPa. The maximum presse value of 7940 MPa is observed in the layer of condense explosive located near the ground. The pressure in th laver is two to three orders of magnitude higher tha pressure behind the detonation wave in the 0.75 kg/m RDX cloud and air, which is located above the distanc of 1.2cm from the ground. Figure 6a demonstrates the the detonation wave in the cloud is overdriven, since the pressure behind the shock continuously rises and reache its maximum in the layer. From this figure, we also of serve that the overdriven wave propagates faster in th cloud than in the layer. This is explained by the fact the it is easier to compress air that is very lightly loaded with particles and located above the ground layer, than it to compress air heavily loaded with a particle mixtu: near the ground. It is interesting to note a discontin uous pressure change between the yellow contours ar. the light blue and green contours behind the deton tion front. This discontinuity is over-emphasized by or presentation of contour lines on the logarithmic scal however, further examination of our simulation resul indicates this feature is real and is similar in nature . barrel shocks observed for strong jets. It is different nature from the triple shock structures described abox

In Figure 6b, gas phase density contours are shown for the time  $t = 12 \times 10^{-6}$  sec. Here the contour lines are distributed on logarithmic scale. The main features of the shock wave structure are very similar to those observed in the pressure contours figure. Here we see that a jet of high density gases reflects from the center of symmetry axis, creating a contact discontinuity that we will observe at a later time. The barrel shock is clearly visible in this figure. In Figure 6c, the particle density contour plots are shown for  $t=12 \times 10^{-6}$  sec. The contour levels in this figure are given on the logarithmic scale and the initial deposition of the explosive material in the ground layer of the computational domain can be clearly observed. The black contour lines delineate the beginning and the end of the reaction zone in the cloud. To the left of these contours lies an area with combustion products and to the right unburned particles in the cloud. Here we can see that the reaction zone length is of the order of 1cm.

Figure 6d shows pressure contours for the same simulation for the time  $t = 55 \times 10^{-6}$  sec, just before the detonation wave leaves the computational domain. In this figure, we see that the global structure of the wave did change slightly from Figure 6a. We observe that the barrel shock wave is fully developed and has a half ellipse shape. The detonation wave in the cloud is still overdriven; however, part of the shock wave front that propagates vertically weakened as it got further away from the detonation front in the layer. In Figure 6e, gas temperature contours are shown at  $t = 55 \times 10^{-6}$  sec. In this case, it is interesting to note that the highest temperatures are observed behind the front of the overdriven detonation wave in the cloud, in the immediate vicinity of the upper strata of the layer. Very high temperatures in this region can be explained by the high pressure generated by the detonation of the explosive material in the layer and by relatively low density of strata of the cloud in the immediate vicinity to the layer. Here, as in the pressure contours graph, the area of barrel shock can be clearly identified.

We also observe in Figure 6 a clear development of two detonation fronts, one moving vertically in the cloud and another moving horizontally in the layer. Because the energy density of the explosive powder in the layer is about three orders of magnitude larger than that in the cloud, the vertical parts of the front represent overdriven detonation waves in the cloud. Even though the vertical front has slowed down compared with the horizontal front, its speed and parameters far exceed those typical for detonation waves in a cloud. In fact, the selfsustained detonation regime in the cloud will develop at the distance of about three meters from the layer. The area of the front close to the detonation wave in the layer will remain hot and overdriven, since it is located very close to detonation front in the layer. In Figure 6f, particle density contours are shown on a logarithmic scale. We can clearly observe the reaction zone delineated by black contour lines. In this case, the reaction zone length in the cloud is about 1cm. Consistent with the gradual transition from overdriven to self-sustained detonation. the reaction zone length is larger for the vertical part of the detonation front. The detonation wave velocity observed in our simulation is approximately 4048 m/sec, which is significantly lower than the detonation wave velocity observed in RDX with a density of 860 kg/m³ (see Table 1), which is the highest density in the ground layer. This can be explained by the high gradient of particle density distribution in the layer, where the density drops rapidly from 860 kg/m³ at the bottom of the layer to  $0.75 \text{ kg/m}^3$  at the top strata of the layer at 12 mm above the ground.

### 4. CONCLUSIONS

We have presented a mathematical model and numerical solution for the simulation of initiation and propagation of the detonation waves in multi-phase mixtures consisting of solid combustible particles and gas. Using this model, we studied detonations in mixtures of solid RDX particles and air for the purpose of examining the effects of wide variation in particle density distribution on the dynamics and structure of detonation waves. We considered a physical system of layers of explosive RDX powder confined in a channel and studied initiation and propagation of the detonation waves in this system. This study revealed a specific structure of the detonation front that is dependent on the thickness of the layers and their energetic content. We showed that for the system consisting of two layers of the same thickness but of vastly different powder density, a Mach stem reflection occurs that propagates to the interface between the layers and helps create a stable detonation front. However, formation of the Mach stem reflection will be a strong function of the relative thickness of the layer; in one of the simulated examples, only a regular reflection would form in the simulation time frame.

For the system consisting of a solid particle cloud in air and a layer of high particle density near the ground, our simulations have revealed a specific detonation front shape with a characteristic precursor of the blast front in the strata immediately above the layer. This feature of the detonation front can be explained by the fact that the energy released in the detonation wave in the ground layer produces a faster shock wave in the dilute cloud than in these heavily loaded with solid particles stratums of the ground layer. However, these structures were not observed experimentally, and more studies are needed to examine their parameters.

The maximum pressure affecting the ground was di-

rectly related to the maximum particle density in the lower strata of the layer. However, the detonation front velocity for the fourth power distribution case was considerably lower than calculated for a one-dimensional case with 860 kg/m³ particle density, reflecting the significant effect of two-dimensional expansion. Existence of the high density strata at the bottom of the ground layer in the fourth power case significantly increased the maximum pressure at the ground, and produced higher detonation wave velocity.

Using a variable density layer, one can reach a combination of pressure and velocity conditions outside of Chapmen-Jougett limitations. The range of conditions that can be obtained in the variable density system and its parametrics of that system needs a more systematic study. In this article, we introduced only the mathematical formulation and numerical simulation method validated for the range of conditions of interest. In addition, we have given some examples of its application for two-dimensional simulations. However, this methodology should be linked to an experimental study for a more in-depth analysis of the phenomenology discussed here.

### REFERENCES

- Eidelman, S., Timnat, Y.M., and Burcat, A., (1976). "The Problem of a Strong Point Explosion in a Combustible Medium," 6th Symp. on Detonation, Coronado, CA, Office of Naval Research, 590.
- Burcat, A., Eidelman, S., and Manheimer-Timnat, Y., (1978). "The Evolution of a Shock Wave Generated by a Point Explosion in a Combustible Medium," Symp. of High Dynamic Pressures (H.D.P.), Paris, 347.
- Oved, Y., Eidelman, S., and Burcat, A., (1978). "The Propagation of Blasts from Solid Explosives to Two-Phase Medium," Propellants and Explosives, 3, 105.
- Eidelman, S., and Burcat, A., (1980). "The Evolution of a Detonation Wave in a Cloud of Fuel Droplets; Part I, Influence of the Igniting Explosion," AIAA Journal, 18, 1103.
- Liu, J.C., Kauffman, C.W., and Sichel, M., (1990). "The Lateral Interaction of Detonating and Detonable Mixtures," (Private communication).
- 6. Kuo, K., (1990). "Principles of Combustion," John

Wiley and Sons, Inc.

- 7. Kauffman, C.W., et al., (1979). "Shock Wave Initiated Combustion of Grain Dust," Symposium on Grain Dust, Manhattan, KS.
- Eidelman, S., and Burcat, A., ('981). "Numerical Solution of a Non-Steady Plast Wave Propagation in Two-Phase ('Separated Flow') Reactive Medium," J. Comput. Physics. 39, 456.
- 9. Reinecke, W.G., and Waldman, G.D., (1975). "Shock Layer Shattering of Cloud Drops in Reentry Flight," AIAA Paper 75-152.
- Eidelman, S., and Burcat, A., (1980). "The Mechanism of Detonation Wave Enhancement in a Two-Phase Combustible Medium," 18th Symposium on Combustion, The Combustion Institute, Waterloo, Ontario, Canada.
- 11. "Engineering Design Handbook, Explosives Series, Properties of Explosives of Military Interest," AMC Pamphlet, AMCP 706-7177, 1971.
- Drake, R.M., Jr., (1961). "Discussions on G.C. Vliet and G. Leppert: Forced Convection Heat Transfer from an Isothermal Sphere to Water," Journal of Heat Transfer, 83, 170.
- Schlichting, H., (1983). "Bounday Layer Theory," 7th ed. McGraw-Hill.
- Cowan, R.D., and Fickett, W., (1956). "Calculation of the Detonation Products of Solid Explosives with the Kistiakowsky-Wilson Equation of State," Journal of Chemical Physics, 24, 932.
- Mader, C.L., (1979). "Numerical Modeling of Detonation," University of California Press, Ltd. London, England.
- Gordon, S., and McBride, B.J., "Computer Program for Calculations of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and C-J Detonations," NASA SP-273, 1976 Revision.
- Eidelman, S., Collela, P., and Shreeve, R.P., (1984).
   "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modelling," AIAA Journal, 22, 10.
- 18. Stanukovitch, K.P., (1975). "Physics of Explosion" (in Russian), Nauka.
- 19. Wiedermann, A., (1990). "An Evaluation of Bimodal Layer Loading Effects," IITRI Report, February.

D[m/sec] - Detonation wave velocity, Pcs[Pa] - Pressure at Chapman-Jouguet Point P_p[Pa] - Peak pressure; p_p[kg/m³] - Peak density

			_	Tiger	BKW	Soviet
RDX		Present	Expt'l	Calculation	Calculation	Experiments
Density (kg/m ³	Parameters	Calculation	<u>Ref. 1</u>	Ref. 2		Ref. 3
1000 kg/m ¹	D	6155	5981		6128	
	Pes	$1.220 \times 10^{10}$			$1.08 \times 10^{10}$	$1.00 \times 10^{10}$
	P _P	$2.57 \times 10^{10}$				
		1936	· · · · · · · · · · · · · · · · · · ·			
860 kg/m ¹	D	6031		5900		
	Pcs	$0.986 \times 10^{10}$		$0.88 \times 10^{10}$		$0.82 \times 10^{10}$
	Ρ,	$1.95 \times 10^{19}$				
	ρ	1722				
466 kg/m ¹	D	4800		4500		
	Pcj	$0.379 \times 10^{10}$		$0.30 \times 10^{10}$	$0.3 \times 10^{10}$	
	Ρ,	$0.625 \times 10^{10}$				
	ρ	924				
250 kg/m ¹	D	4049		3600		
	Pcs	$0.2478 \times 10^{10}$		$0.13 \times 10^{10}$		
	Ρ,	$0.4538 \times 10^{10}$				
	Pr	552				
100 kg/m ⁴	D	3495				
	P _{CJ}	$0.5013 \times 10^{9}$				
	P,	$0.7658 \times 10^{9}$				
	ρ.	220				
0.75 kg/m ¹	D	1622	1410*	1870*		
	Pci	$0.25 \times 10^7$	$0.284 \times 10^{7*}$	$0.26 \times 10^{7*}$		
	Ρ,	$0.484 \times 10^7$				
		8				

Ref. 1 - Mader, C., "Numerical Modeling of Detonation," (University of California Press, Ltd., 1979), p. 47. Ref. 2 - Wiedermann, A., "An Evaluation of Bimodal Layer Loading Effects," IITRI Report, Feb., 1990. Ref. 3 - Stanukovitch, K.P., "Physics of Explosion" (in Russian), Nauka, 1975.









Figure 2. Initiation and propagation of the detonation wave in a two layers system. Only lower layer is initiated. Pressure contours.



Figure 3. Initiation and propagation of the detonation wave in a two layers system. Both layers are initiated. Pressure contours.



Pressure

4.16 0.57

3.98

2.39

1.81

0.63

Figure 4. Propagation of the detonation wave in a system with different thickness of explosive layers. Pressure contours.







4

Figure 6. Fourth power layer distribution. Maximum density in the layer 800 kg/m³. Density in the cloud 0.75 kg/m³. Time 0.012 msec and 0.055 msec after initiation.



AIAA 92-0392 A Parametric Study of the Air-Breathing Pulsed Detonation Engine

S. Eidelman, I. Lottati and W. Grossmann Science Applications International Corporation McLean, VA 22102



# 30th Aerospace Sciences Meeting & Exhibit January 6-9, 1992 / Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 370 L'Enfant Promenade, S.W., Washington, D.C. 20024

## A PARAMETRIC STUDY OF AIRBREATHING PULSED DETONATION ENGINE

S. Eidelman, I. Lottati, and W. Grossmann

Applied Physics Operation Science Applications International Corporation 1710 Goodridge Drive, McLean, Virginia 22102

#### Abstract

The airbreathing Pulsed Detonation Engine (PDE) is analyzed by direct simulations of its cycle using Computational Fluid Dynamics. We describe a new CFD methodology of composite structured/unstructured grids, which is used for detailed analysis of the PDE performance. This performance is analyzed for a unique engine geometry in which the PDE is located in a wing section. Examination of the key processes in the PDE device shows that the largest portion of its thrust is produced during the very short time interval when the detonation wave reflects from the thrust wall, and that detonation cycle frequency up to 200Hz is feasible. We conclude that the PDE type devices can compete with small diameter turbojet engines in performance characteristics while surpassing them in simplicity of design, flexibility of geometrical configuration, and price.

### 1. Introduction

Our first reports on the airbreathing Pulsed Detonation Engine (PDE) concept¹⁻⁵ described a systematic series of parametric studies of the PDE via computational fluid dynamics (CFD). They also detailed an analysis of engine performance over a wide range of flight regimes, including subsonic and supersonic flows and physical geometries with various nozzle and air inlets. Additionally, static table top experiments¹ demonstrated that the principle of pulsed or repetitive detonation can be successfully applied. To date, our results indicate that practical engines for certain vehicles can be conceptualized and designed with the information that has already been generated from the studies. Specifically, our studies have shown that the PDE is an excellent candidate for the primary propulsion source for small aerodynamic vehicles that operate over the flight envelope, 0.2<M<2.0. Further, our analysis of the simulation results indicates that the PDE is a high thrust-to-weight ratio device. The predicted performance places the PDE propulsion concept in a strongly competitive position compared with present day small turbojets. The PDE concept has the added attractiveness of rapid variable thrust control, no moving parts and the potential for low cost manufacturing. The PDE concept is scalable over a wide range of engine sizes and thrust levels.⁴ For example, it is theoretically possible to produce PDE engines on the order of one to several inches in diameter and thrusts on the order of pounds, as well as devices that provide thousands of pounds thrust. One of the unique features of the PDE that will be explored in this paper is its geometric flexibility. All the configurations of the engine that we have examined in previous papers had an axisymmetric geometry. However, the PDE concept allows a

tremendous flexibility in engine geometry. In this paper we will investigate the possibility of fitting a PDE det onation chamber into a section of a conventional wing One of the obvious advantages of this design is reductior of the drag and weight penalty; other advantages can be associated with stealth quality of the Wing-PDE design

The parametric studies to date were made possible by the development of a new generation of CFE tools. These tools have allowed us to accurately simulate the details of the complex nonlinear time dependent processes. In this article, we used a new algorithm implemented on a composite structured/unstructurec grid. This algorithm combines the flexibility of describing complicated geometries characteristic of the unstructured triangular grids with the computational efficiency of the structured grids. A brief description of the CFE methods employed in our studies is given in Section 3.

### 2. The Pulsed Detonation Engine Concept

A detonation process, due to the very high rate of reaction, leads to a propulsion concept in which the constant volume process can be fully realized. In detonative combustion, the strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and fresh charge. The speed of the detonation wave is about two orders of magnitude higher than the speed of a typical deflagration. This allows the design of propulsion engines with a very high power density. Each detonation has to be initiated separately by a fully controlled ignition device with a wide range of variable cycle frequencies. A physical restriction dictating the range of detonation frequency arises from the rate at which the fuel/air mixture can be introduced into the detonation chamber. This also means that a device based on a detonative combustion cycle can be scaled and its operating

parameters can be modified for a range of required output conditions.

There have been numerous attempts to take advantage of detonative combustion for engine applications,^{6,7,8} the most recent and successful which was carried out at the Naval Postgraduate School¹ (NPS) by Helman et al. During this study, several fundamentally new elements were introduced to the concept that distinguished the NPS research device from previous studies. First, it is important to note that the NPS experimental apparatus was the first successful self- aspirating air breathing detonation device. Intermittent detonation frequencies of 25 Hz were obtained, which was in phase with the fuel mixture injection through the timed fuel valve opening and spark ignition. The feasibility of intermittent injection was established. Pressure measurements showed conclusively that a detonation process occurred at the frequency chosen for fuel injection. Further, self- aspiration was shown to be effective. Finally, the effectiveness of a primary detonation as a driver for the main detonation was clearly demonstrated. Although the NPS studies were abbreviated, many of the technical issues considered to be essential for efficient intermittent detonation propulsion were addressed with positive results.

The generic device we considered in our previous studies²⁻⁵ is a small engine shown in Figure 1, which is a schematic of the basic detonation chamber attached to the aft end of a generic aerodynamic vehicle. In the current study, we considered a Wing-PDE configuration that will be described below; however, for the sake of simplicity we will describe the basics of the PDE concept using the illustration in Figure 1. For the engine configuration shown in this figure, the combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave, initiated at the aft end of the detonation chamber, propagates through the mixture. The main portion of the thrust is produced by the detonation wave in a very short period of time as it impinges on the thrust wall. After the detonation wave has reflected from the thrust wall, the detonation products will vent from the volume of the detonation chamber through the open aft end of the chamber and air inlets shown in Figure 1. Then the chamber volume will be filled with the fresh combustible gas mixture and the process will be repeated with the frequency of 100 to 200Hz. A key issue in the pulsed detonation engine concept is the design of the main detonation chamber. The detonation chamber geometry determines the propulsion efficiency and the duration of the cycle (frequency of detonations). Since the fresh charge for the generic engine is supplied from the external flow field, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. The range of the physical processes requiring simulation in order to model the complet flow phenomena associated with the detonation engine performance is very broad. These processes include 1 initiation and propagation of the detonation wave inside the chamber; 2) expansion of the detonation products from the chamber into the air tream around the chamber at flight Mach numbers:  $\beta$  fresh air intake from the surrounding air into the chamber; 4) the flow pattern in side the chamber during platexhaust pressure buildup which determines the strategy for mixing the next detonation charge; and 5) strong mutual interaction between the flow inside the chamber and surrounding the engine

All of these processes are interdependent, and interaction and timing are crucial to engine efficiency. Thus unlike simulations of steady state engines, the phenomena described above cannot be evaluated independently The need to resolve the flow regime inside the chamber and account for nozzles, air inlets, etc., and at the same time resolve the flow outside and surrounding the engine where the flow regime varies from high subsonic locally transonic and supersonic, makes it a challenging computational problem.

The single most important issue is to determine the timing of the air intake and mixing of the fresh charge leading to repetitive detonations. It is sufficient to as sume inviscid flow for the purpose of simulating the expansion of the detonation products and fresh air intake. This assumption makes the numerical simulation of the PDE flow phenomena somewhat easier than using a fully viscous flow model. For the size of the generic device studied in this work, the effects of viscous boundary lay ers are negligible, with the exception of possible boundary layer effects on the valve and inlet geometries discussed subsequently.

### 3. Computational Method Used in the Study

The basic computational tool used for our studies is the AUGUST (Adaptive Unstructured Goduno Upwind Second Order on Triangular Grids) code, described in detail by Lottati et al.9,10 This code provides a method for solving the Euler equations of gasdynamics on unstructured grids with arbitrary connectivity. The formulation is based on a second order Godunov method.¹¹ For the current study, the AUGUST code has been implemented on a composite structured/unstructured grid. The combined structured/unstructured method is a much more efficient approach to domain decomposition than the separate application of each method. In the following discussion. we show that the results of applying this technique to the complex problem of the external/internal reactive flow typical for the PDE engine show complex wave patterns propagating seamlessly through interfaces between structured/unstructured grids without reflections or distortions. This new approach provides ultimate flexibility

in domain decomposition with maximum code efficiency. Introduction

Structured rectangular grids allow the construction of numerical algorithms that perform an efficient and accurate integration of fluid conservation equations. The efficiency of these schemes results from the extremely low storage overhead needed for domain decomposition and the efficient and compact indexing that also defines domain connectivity. These two factors allow code construction based on a structured domain decomposition that can be highly vectorized and para'lelized. Integration in physical space on orthogonal and uniform grids produces the highest possible accuracy of the numerical algorithms. The disadvantage of structured rectangular grids is that they cannot be used for decomposition of computational domains with complex geometries.

The early developers of computational methods realized that, for many important applications of Computational Fluid Dynamics (CFD), it is unacceptable to describe curved boundaries of the computational domain using the stair-step approximation available with the rectangular domain decomposition technique. The techniques of boundary-fitted coordinates were developed to overcome this difficulty. With these techniques, the computational domain is decomposed on quadrilaterals that can be fitted to the curved domain. The solution is then obtained in the physical space using the geometrical information defining the quadrilaterals, or in the computational coordinate system that is obtained by transformation of the original domain into a rectangular domain. The advantage of this technique is that it employs the same indexing method as the rectangular structured domain decomposition methods that also serve to define domain connectivity. The boundary fitted coordinated approach leads to efficient codes, with approximately a 4:1 penalty in terms of memory requirement per cell as compared with rectangular domain decomposition. However, this approach is somewhat restricted in its domain decomposition capability, since distortion or large size variations of the quadrilaterals in one region of the domain lead to unwanted distortions or increased resolution in other parts of the domain. An example of this is the case of structured body fitted coordinates that are used for simulations of flows over a profile with sharp trailing edges. In this case, increased resolution in the vicinity of the trailing edge leads to increased resolution in the whole row of elements connected to the trailing edge elements.

The most effective methods of domain decomposition developed to overcome this disadvantage are those using unstructured triangular grids. These methods were developed to cope with very complex computational domains. The unstructured grid method, while efficient and powerful in domain decomposition, results in codes that must store large quantities of information defining the grid geometry and connectivity, and have large computational and storage overheads. As a rule, an unstructured grid code requires greater storage by a factor of 10, and will run about 20 times slower when compared on a per cell per iteration basis with a structured rectangular code.

Unstructured grid methods are used to their best advantage when combined with grid adaptivity. This feature usually allows dynamic decomposition of the computational domain subregions, thus leading to an order of magnitude reduction in the number of cells for some problems, as compared to the unstructured grid without this adaptive capability. However, this advantage is highly dependent on the problem solved. Adaptive unstructured grids have an advantage over the unadaptive unstructured domain decomposition if the area of high resolution domain decomposition is less than one tenth of the global area of the computational domain. This explains the fact that while the adaptive unstructured method may be extremely effective for solutions with multiple shock waves in complex geometries. it becomes extremely inefficient when high resolution is needed in a substantial area of the computational domain.

Our approach to domain decomposition combines the structured and unstructured methods for achieving better efficiency and accuracy. Using this method, structured rectangular grids are used to cover most of the computational domain, and unstructured triangular grids are used only to patch between the rectangular grids (Figure 2), or to conform to the curved boundaries of the computational domain (Figure 3). In these figures, an unstructured triangular grid is used to decompose the regions of the computational domain that have a simple geometry.

Our paper will illustrate the performance gains achieved from the use of this composite grid decomposition approach. We apply the Second Order Godunov method¹¹ to solve the Euler equations on both structured and unstructured sections of the grid.

Mathematical Model and Integration Algorithm We consider a system of two-dimensional Euler

equations written in conservation law form as:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0 \tag{1}$$

where

$$U = \begin{vmatrix} \rho \\ \rho u \\ \rho v \\ \rho e \end{vmatrix}, F = \begin{vmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u(e+p) \end{vmatrix}, G = \begin{vmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ v(e+p) \end{vmatrix}$$

Here u, v are the x, y velocity vector components, p is the pressure,  $\rho$  is the density and e is total energy of the fluid. We assume that the fluid is an ideal gas and the pressure is given by the equation-of-state.

$$p = (\gamma - 1)(e - \frac{\rho}{2}(u^2 + v^2))$$
 (2)

where  $\gamma$  is the ratio of specific heats and typically taken as 1.4 for air. It is assumed that an initial distribution of the fluid parameters is given at t = 0, and the boundary conditions defining a unique solution are specified for the computational domain.

The system of governing equations in Eq. (1) can be written as

$$\frac{\partial U}{\partial t} + \nabla \cdot Q = 0 \tag{3}$$

where Q represents the convective flux vector. By integrating Eq. (3) over space and using Gauss' theorem, the following expression is obtained

$$\frac{\partial}{\partial t} \int_{\Omega} U dA + \oint_{\partial \Omega} Q dl = 0 \qquad (4)$$

where  $dl = nd\mathcal{L}, n$  is the unit normal vector in the outward direction, and  $d\mathcal{L}$  is a unit length on the boundary of the domain. The variable  $\Omega$  is the domain of computation and  $\partial\Omega$  is the circumference boundary of this domain.

Equation (4) can be discretized for each element (cell) in the domain

$$\frac{(U_i^{n+1} - U_i^n)}{\Delta t} A_i = \sum_{j=1}^M Q_j^n n_j \Delta L_j$$
(5)

where  $A_i$  is the area of the cell;  $\Delta t$  is the marching time step;  $U_i^{n+1}$  and  $U_i^n$  are the primitive variables at the center of the cell at time n and at the update n = 1time step;  $Q_j$  is the value of the fluxes across the Mboundaries on the circumference of the cell where  $n_j$  is the unit normal vector to the boundary edge j, and  $\Delta L_j$ is the length of the boundary edge j. The fluxes  $Q_j^n$ are computed by applying the Second Order Godunov algorithm, and Eq. (5) is used to update the physical primitive variables  $U_i$  according to computed fluxes for each marching time step  $\Delta t$ . The marching time step is subjected to the CFL (Courant-Fredrichs-Lewy) constraint.

We seek a solution to the system of Eq. (1) in the computational domain, which is decomposed in part into triangles with arbitrary connectivity and in part into rectangles using a logically structured grid. We use the advantage of the unstructured  $grid^{12-15}$  to describe the curved boundary of the computational domain and areas that need increased local resolution; this covers 10% of

the total computational domain. The structured grid occupies the remaining 90% of the computational domain in our example. The numerical technique for solving Euler's equation on an unstructured grid is described in Refs. 9-10, and the technique for the structured grid is described in Ref. 11. These numerical techniques apply some of the ideas that were introduced in Refs. 17-18. The structured and unstructured codes apply the center-based formulation, i.e., the primitive variables are defined in the center of the cell, which makes the cell the integration volume, while the fluxes are computed across the edges of the cell. The basic algorithmic steps of the Second Order Godunov method can be defined as follows:

- 1. Find the value of the gradient at the baricenter of the cell for each gas dynamic parameter  $U_{ij}$
- 2. Find the interpolated values of U at the edges of the cell using the gradient values;
- 3. Limit these interpolated values based on the monotonicity condition;
- 4. Subject the projected values to the characteristic's constraints;
- 5. Solve the Riemann problem by applying the projected values at the two sides of the edges;
- 6. Update the gas dynamic parameter U according to the conservation equations (1) applying to the fluxes computed and the current time step.

As was advocated in Ref. 9, we prefer the triangle center-based over the vertex-based version of the code. For the same unstructured grid, a triangle-based algorithm will result in smaller control volumes than a vertex-based. In addition, for the Second Order Godunov solver, implementation of the boundary conditions is more straightforward and accurate for the centerbased algorithm than in the vertex-based. These two factors, along with the effects of grid connectivity, strongly affect the algorithm accuracy and performance, and are the main reasons for the superiority of the center-based version over the vertex version.

### 4. Results for Wing-PDE configuration

All of our previous studies considered axisymmetric configurations of the PDE devices. However, because PDE does not have rotating parts, it allows another degree of flexibility that enables us to configure the PDE devices in other than axisymmetric geometries. To illustrate this, we used the inner volume of a section of the wing as a detonation chamber for a PDE device. The schematic of the Wing-PDE geometry considered in this study is shown in Figure 4. We assume that the wing is located in a subsonic air flow stream with M = 0.8. The particular wing shape used is the Gastelow cusped supercritical airfoil.¹² Two significant modifications of the original Gastelow airfoil geometry, provision for an inlet at the leading edge and an outlet nozzle at the trailing edge, allow its use as a PDE device.

In Figure 5, the cross section of the Wing-PDE geometry is shown in the computational domain that is decomposed into structured rectangular and unstructured triangular grids. For clarity, we show only every sixth point of the grid used in simulation. In our simulations we have used a structured grid with  $255 \times 131$  nodes and an unstructured grid with 7229 nodes. The area covered by the unstructured grid is about 10% of the total area of the computational domain. It is obvious from Figure 5 that the unstructured grid is used in the regions of the computational domain having complex geometry, i.e., wing external and internal surfaces, inlet, and nozzle. The structured rectangular grid is used to cover the rest of the computational domain. As mentioned previously, this method of domain decomposition leads to the most efficient use of computer resources. Our results demonstrate that flow propagates through the interfaces between the triangular unstructured and rectangular structured sections seamlessly.

First, we have to examine the flow pattern for the steady state flow regime of the Wing-PDE device shown in Figure 5. This will also establish the reference values of the airdynamic drag and lift for this configuration. In Figure 6a, the results are shown in form of the pressure contours for the converged steady state solution for the Wing-PDE configuration in M=0.8 external flow stream at zero angle of attack. We can observe in Figure 6a a very complex internal/external flow pattern around Wing-PDE geometry. In addition to the shock wave near the trailing edge on the upper surface of the wing, we can observe two additional shock waves. One is created by the flow exiting from the inner volume of the wing through the nozzle at the trailing edge, and another is created at the flow inlet located under the leading edge. The air flow enters the inner volume of the wing through the inlet and creates a complex flow field with an average pressure of  $\approx 1.0$  atm. It is easy to improve the flow uniformity in the inner volume of the inlet geometry and geometry of the inner surfaces. However, these aspects of the Wing-PDE design will be considered in future studies; for the purposes of this paper, we examine only the main features of the Wing-PDE configuration. The air flow in the inner volume of the wing create considerable drag. By integrating the pressure over the inner and outer surface of the Wing-PDE configuration, we have calculated the basic air dynamic characteristics of this profile at M = 0.8 flow. The following values for the steady state flow:

Lift:  $C_l = 0.18$ ; Drag:  $C_d = -0.138$ ; Pitching Moment:  $C_m = 0.034$ .

We have assumed that at t = 0, the inner volume of the wing is filled with a detonable gas mixture. The detonation wave is initiated at the aft end of the inner volume of the wing by a planar front. The fuel chosen for these simulations was ethylene. The detonability limits of ethylene in air range from 4% to 12% concentrations by volume, and depend somewhat on temperature and pressure. We assume for the sake of simplicity that the fuel/air ratio is 6% by volume.

In Figure 6b, the pressure contours are shown at  $t = 1.18 \times 10^{-4}$  sec. The propagation of the detonation front is planar. However, because of the curved inner walls of the wing, the detonation front reflects from the wall surfaces and the maximum pressure in the reflected waves reach 36.6 atm. However, this level of pressure is observed in a very small area of the detonation front where reflected or colliding transverse waves can cause a local maximum. The detonation wave velocity for this mixture is about 1800 m/sec.

In Figure 6c, the pressure contours are shown at the time  $t = 5.24 \times 10^{-4}$  sec, shortly after the detonation front has reflected from the inner surface of the leading edge. Here the maximum pressure was dropped to 12.1 atm. the reflected shock is moving in the direction of the trailing edge, and the expansion of the detonation products through the inlet was created a semicircular shock wave that propagates in the opposite direction to the external flow stream. In Figure 6d at the time  $t = 9.5 \times 10^{-4}$  sec, the reflected wave reaches the nozzle at the trailing edge, and expansion of the detonation products through this nozzle creates an additional shock wave that expands in the direction of the flow stream. When the original reflected shock has reached the converging area at the trailing edge, it will partially reflect and send a shock wave towards the inner surface of the leading edge. In Figure 6e, the pressure contours are shown at  $t = 1.39 \times 10^{-3}$  sec. Here the shock waves created by the detonation products emitting from the inlet and nozzle of the Wing-PDE device collide, creating a complex flow pattern with two triple point shocks, a vortex at the trailing edge and a complex system of waves propagating through the inner volume of the wing. The maximum pressure observed in Figure 6e at the wave shock wave interaction is 3.2 atm. It is important to note that the numerical method simulates the flow evolution seamlessly through the structured/unstructured grid interfaces.

In Figure 6f, the simulation results are shown at  $t = 5.7 \times 10^{-3}$  sec; this corresponds to the end of one cycle for the Wing-PDE configuration. Here we can observe that the flow pattern is very similar to the one in Figure 6a, except for some vortices propagating in the lower right part of the computational domain. The maximum pressure is reached at the leading edges and has the same values as shown in Figure 6a. The inner volume of the wing has a relatively uniform flow pattern

with an average pressure of 0.83 atm. At this time the gaseous mixture in the inner chamber of the wing will be initiated at the trailing edge and the second cycle will get started.

Examination of the details of the flow pattern resulting from a single detonation not only allows evaluation of the timing between the subsequent detonations but also provides important information for optimization of mixing, detonation products expansion, and other gasdynamic processes related to operation of the PDE cycle. Performance characteristics of the PDE device can be analyzed by integrating in time the forces exerted by pressure on the inner and outer surfaces of the Wing-PDE device. In Figure 7, results for such an integration of the force parallel to the ground as a function of time are shown. Calculation of this force, taking into account the drag and the thrust resulting from the detonation cycle, yields the net thrust force. Figure 7 gives this force for a linear meter of the wing in pounds. In this figure, we observe that the net thrust force is negative before the detonation is initiated, reaches the value of  $4.6 \times 10^5$  Lb/M during the reflection of the main detonation front from the inner walls of the wing, and quickly decays to its negative initial values that correspond to the drag of the Wing-PDE configuration in M=0.8 ambient flow stream. The positive thrust force is produced by the detonation engine in a very short time interval;  $\approx 3.0 \times 10^{-4}$  sec.

The time integral of the force shown in Figure 7 is thrust produced by the PDE device. Because of its intermittent operation, we need to assume the cycle frequency to be able to calculate the net thrust. In Figure 8, the results of thrust force integration are shown in the assumption of 200Hz detonation frequency of the Wing-PDE device. Our analysis above of a single cycle shows that this frequency of operation is feasible. In Figure 8, we observe that the maximum thrust of 5000 lb per linear meter of the wing is achieved in the first  $\approx 4.0 \times 10^{-4}$  sec after the detonation wave impinges on the thrust wall. This period of time corresponds to the duration of the positive thrust force shown in Figure 7. After this, the thrust will erode because of drag force to the value of 4000 lb at the end of the cycle. The average thrust for the duration of the cycle is 4250 lb per linear meter of the wing.

One of the advantages of the Wing-PDE configuration is that it will generate lift. Our simulations show that the chosen configuration will produce significant lift even at zero angle of attack because of the flow of detonation products. In Figure 9, the net integrated lift is presented as a function of time in the same format as the net thrust shown in Figure 8. The integrated lift shown in Figure 9 is not a linear function of time, as will be the case for the steady state flow regime. Substantial lift is generated shortly after the detonation products start to expand into the surrounding flow stream. The average lift generated is about 2250 lb per meter of wing length: this is comparable to the net thrust of 4250 lb. Our estimates indicate that about half of this lift is generated by the detonation products and the other half by the free stream flow through the chamber.

## 5. Conclusions

We have presented a powerful numerical technique for analysis of nonsteady flow over a complex geometrical configuration in the computational domain decomposed on unstructured triangular and structured rectangular grids. Simulations of the Wing-PDE cycle have demonstrated flexibility and efficiency of this technique of domain decomposition. Numerical results show seamless propagations through structured/unstructured grid interfaces of the multiple shocks, contact discontinuities. vortices, rarefaction waves and other complex flow features.

Use of this powerful numerical technique allowed us to examine the operation cycle and propulsion characteristics of the Wing-PDE device. We demonstrated in this study that in principle, the Wing-PDE device can operate with the 200 Hz cycle frequency producing 4250 lb per linear meter of the wing of the net thrust. We examined the Wing-PDE configuration to illustrate the geometric flexibility of this engine. This is an additional advantage to efficiency,³ scalability,⁴ thrust control,³ simplicity, and low cost of this device discussed in our previous publications.

#### References

- 1 Helman, D., Shreeve, R.P., and Eidelman, S., (1986), "Detonation Pulse Engine," AIAA-86-1683, 24th Joint Propulsion Conference, Huntsville.
- 2 Eidelman, S., W. Grossmann, I. Lottati, (1989) "A Review of Propulsion Applications of the Pulsed Detonation Engine Concept," AIAA 89-2466, AIAA, July 10-12 (to be published in AIAA Journal of Propulsion), Nov - Dec issue.
- 3 Eidelman, S., W. Grossmann, and I. Lottati, (1990), "Computational Analysis of the Pulsed Detonation Engines and Applications," AIAA 90-0460, 28th Aerospace Sciences Meeting, Reno, NV, Jan 8-11.
- Eidelman, S., W. Grossmann, and I. Lottati, "Air-Breathing Pulsed Detonation Engine Concept; A Numerical Study," AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conference, Orlando, FL, July 16-18, 1990.
- Eidelman, W., W. Grossmann, and I. Lottati, "A Propulsiohn Device Driven by Reflected Shock Waves," 18th International Symposium on Shock Waves, Sendai, Japan, 1991.
- 6 Hoffman, N., (1940), "Reaction Propulsion by Intermittent Detonative Combustion," Ministry of Sup-

ply, Volkenrode Translation.

- 7 Nicholls, J.A., Wilkinson, H.R., and Morrison, R.B., (1957), "Intermittent Detonation as a Thrust-Producing Mechanism," Jet Propulsion, 27, 534-541.
- 8 Nicholls, J.A., Gullen, R.E. and Ragland K.W., (1966), "Feasibility Studies of a Rotating Detonation Wave Rocket Motor," J. of Spacecrafts and Rockets, 3, 893-896.
- 9 Lottati, I., S. Eidelman, A. Drobot (1990a), "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," Paper AIAA 90-0699, 28th Aerospace Sciences Meeting, Reno, NV, Jan 8-11.
- 10 Lottati, I., S. Eidelman, A. Drobot (1990b), "Solution of Euler's Equations on Adaptive Grids Using a FUGGS," to be published in Proceedings of Second International Conference on Free-Lagrange Methods, Jackson Hole, WY.
- 11 Eidelamn, S., Collela, P., and Shreeve R.P., (1984) "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," AIAA Journal, v. 22, 10.
- A. Jameson, T.J. Baker and N.P. Weatherill, "Calculation of Inviscid Transonic Flow Over a Complete Aircraft," AIAA 24th Aerospace Sciences

Meeting, Reno, NV, AIAA Paper 86-0103, January 1986.

- R. Löhner, "Adaptive Remeshing for Transient Problems," Comp. Meth. Appl. Mech. Eng. <u>75</u>, 195-214 (1989).
- J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz, "Adaptive Remeshing for Compressible Flow Computations," J. Comp. Phys. <u>72</u>, 449-466, (1987).
- 15. D. Mavriplis, "Accurate Multigrid Solution of the Euler Equations on Unstructured and Adaptive Meshes," AIAA 88-3707 (1988).
- I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Grids," Proceeding of the 4th International Symposium on Computational Fluid Dynamics, Davis, CA, September 1991.
- B. van Leer, "Towards the Ultimate Conservative Difference Scheme, V.A. Second Order Sequel to Godunov's Method," J. Comp. Phys. <u>32</u>, 101-136 (1979).
- P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gasdynamic Simulations," J. Comp. Phys. <u>54</u>, 174-201 (1984).
- 19 Dulikravich, D.S., (1982), Private communication.



Figure 1. Schematic of the generic PDE showing detonation chamber, inlet, detonation wave, fuel injectors and position relative to an aerodynamic vehicle.



Figure 2. An example of hybrid structured/unstructured domain decomposition.



Figure 3. An example of hybrid structured/unstructured domain decomposition.









f. t =  $5.77 \times 10^{-3}$  sec

Figure 6. Pressure contours for the various time intervals of the wing-PDE cycle (continued).



Figure 7. Thrust force as function of time for the wing-PDE device simulation.



Figure 8. Net integrated thrust for the wing-PDE simulation.



A Second Order Godunov Scheme on Spatial Adapted Triangular Grid

Itzhak Lottati and Shmuel Eidelman

Science Applications International Corporation

## ABSTRACT

Spatial adaptation procedure for the accurate and efficient solution of unsteady inviscid flow simulation is described. The adaptation procedures were developed and implemented applying a second order Godunov scheme. These procedures involve mesh enrichment/coarsening to either add/remove vertices in high/low gradient regions of the flow, respectively. The goal is to achieve solutions of high spatial accuracy at minimal computational cost. The paper describes a very effective error estimator to detect high/low activity regions of the flow to be enriched or coarsened, respectively. The error estimator is based on total energy and density fluxes into the cell combined with gradient of density. Included in the paper is a detailed description of the direct dynamic refinement method that is used for adaptation. A detailed simulation of a reflection and diffraction of multiple shock waves flowing over a diamond shape wedge is presented and compared with experimental results. The simulated results are shown to be in excellent agreement with the experiment primarily in that all the complicated features of the physics are accurately accounted for and the shock waves, slip lines. vortices are sharply captured.

# INTRODUCTION

Considerable progress has been made over the past decade in developing methods for spatial adaptation of the computational meshes based on the numerical solution of the simulated physics. These methods are being developed to produce higher spatial accuracy in such simulation more efficiently. The goal of mesh adaptation is to enrich meshes locally, based on the numerical solution, in order to capture physical features of importance; in contrast to globally fine meshes, this process will minimize computer run times and memory costs. The methods of mesh adaptation can be categorized into three general classes: 1) mesh regeneration, 2) mesh movement, and 3) mesh enrichment.

The idea of mesh regeneration is systematically to identify high/low activity region in the flow and accordingly remesh those regions applying mesh generation code. This is done by assigning criteria for spatial accuracy and number of vertices. This procedure requires a mapping of the "old" flow solution into the "new" generated meshes by using one of the interpolated schemes. For the second method, mesh movement, the number of points in the computational domain remains fixed. The adaptation procedure moves vertices from low activity regions to high gradient regions to achieve a high concentration of vertices to resolve high activity regions. The movement of the points is dictated by forcing functions in the Poisson - equation in the grid generator code. The final method of spatial adaptation is mesh enrichment. In this method, vertices are added or removed according to the spatial resolution of the physical features in the flow. The advantages of mesh enrichment over regeneration and movement are its higher degree of flexibility in being able to add points where they are needed and to remove points where they are not needed. In our mesh enrichment method, we add points ahead of the shock wave, thus preventing the need of interpolation in the high gradient region for achieving higher accuracy of the results. Adding and removing points are done in monotone/very low activity regions to prevent numerical dissipation.

Lohner⁽¹⁾ has developed procedures to enrich the mesh for transient flow problems locally by subdividing elements in the grid according to specific spatial resolution criteria. The method, referred to as H-refinement, keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). The H-refinement relies heavily on the initial grid as it is subdivided for enrichment and recovered in the coarsening stage. A similar adaptive strategy to Lohner is adopted by  $Rausch^{(2)}$  et al., but applies a different error estimator and upwind type algorithm for a solver.

In our paper, we describe a Godunov scheme to solve Euler equations on an unstructured adaptive triangle mesh. We discuss the methodology of a cell centered Second Order Godunov scheme applied to a triangular mesh, and the method of Direct Dynamic Refinement that is used for adaptation of the unstructured triangular grid. Simulation and experimental results are compared for a test case applying the adaptive unstructured grid to a complicated pattern of planar shock wave flow diffraction over a half diamond shape wedge.

# SECOND ORDER GODUNOV

# ALGORITHM ON UNSTRUCTURED GRID

This section describes the implementation of the Second Order Godunov algorithm on a triangular unstructured grid. The algorithm is explicit and is cell-center based.

We consider a system of two-dimensional Euler equations written in conservation law form as:

$$\frac{\partial \bar{U}}{\partial t} + \frac{\partial \bar{F}}{\partial x} + \frac{\partial \bar{G}}{\partial y} = 0$$
 (1)

where

$$U = \left\{ \begin{array}{c} \rho \\ \rho u \\ \rho v \\ e \end{array} \right\}, F = \left\{ \begin{array}{c} p u \\ \rho u^2 + p \\ \rho u v \\ u(e+p) \end{array} \right\}, G = \left\{ \begin{array}{c} \rho v \\ \rho u v \\ \rho v^2 + p \\ v(e+p) \end{array} \right\}$$

Here u, v are the x, y velocity vector components, p is the pressure,  $\rho$  is the density and e is total energy of the fluid. We assume that the fluid is an ideal gas. The total energy of gas is given by the following equation:

$$e = \frac{p}{\gamma - 1} + \frac{\rho}{2}(u^2 + v^2)$$
 (2)

where  $\gamma$  is the ratio of specific heats. It is assumed that an initial distribution of the fluid parameters is given at t = 0, and the boundary conditions defining a unique solution are specified for the computational domain.

The system of governing equation (1) can be written in the following form:

$$\frac{\partial U}{\partial t} + \bar{\nabla} \cdot \bar{Q} = 0 \tag{3}$$

where  $\bar{Q}$  represents the convective flux vector. By integrating Eq. (3) over space and using Gauss' theorem, the following expression is obtained

$$\frac{\partial}{\partial t} \int_{\Omega} U dA + \oint_{\partial \Omega} \bar{Q} \cdot d\bar{l} = 0$$
(4)

where  $d\bar{l} = \bar{n}d\mathcal{L}$ ,  $\bar{n}$  is the unit normal vector in the outward direction, and  $d\mathcal{L}$ is a unit length on the boundary of the domain. The variable  $\Omega$  is the domain of computation and  $\partial\Omega$  is the circumference boundary of this domain.

Equation (4) can be discretized for each element (cell) of the domain

$$\frac{(U_i^{n+1} - U_i^n)}{\Delta t} A_i = \sum_{j=1}^3 \bar{Q}_j^{n+\frac{1}{2}} \bar{n}_j \Delta L_j$$
(5)

where  $A_i$  is the area of the cell;  $\Delta t$  is the marching time step;  $U_i^{n+1}$  and  $U_i^n$  are the primitive variables at the center of the cell at time n and at the update n + 1 time step;  $\bar{Q}_j$  is the value of the fluxes across the three boundaries edges on the circumference of the cell where  $\bar{n}_j$  is the unit normal

vector to the boundary edge j, and  $\Delta L_j$  is the length of the boundary edge j. Equation (5) is used to update the physical primitive variables  $U_i$  according to computed fluxes for each time step  $\Delta t$ . The time step is subjected to the CFL (Courant-Fredrichs-Lewy) constraint.

To obtain a second order spacial accuracy, the gradient of each primitive variable is computed in the baricenter of the cell. This gradient is used to define the projected values of primitive variables at the two sides of the cell's edge, as is shown in Figure 1. The gradient is approximate by a path integral

$$\int_{\Omega} \bar{\nabla} U_i^{cell} dA = \oint_{\partial \Omega} U_j^{edge} d\bar{l} .$$
 (6)

The notation is similar to the one used for Eq. (5) except the domain  $\Omega$  is a single cell and  $U_i^{cell}$  and  $U_j^{edge}$  are values at the baricenter and on the edge respectively. The gradient is estimated as

$$\bar{\nabla}U_i^{cell} = \frac{1}{A} \sum_{j=1}^3 \tilde{U}_j^{edge} \bar{n}_j \Delta L_j \tag{7}$$

where  $\tilde{U}_{j}^{edg^{*}}$  is an average value representing the primitive variable value for edge j.

The gradients that are computed at each baricenter are used to project values for the two sides of each edge by piecewise linear interpolation. The interpolated values are subjected to monotonicity constraints.⁽³⁾ The monotonicity constraint assures that the interpolated values are not creating new
extrema.

The monotonicity limiter algorithm can be written in the following form:

$$U_{projected}^{edge} = U_i^{cell} + \phi \bar{\nabla} U_i \cdot \Delta \bar{r} \tag{8}$$

where  $\Delta \bar{r}$  is the vector from the baricenter to the point of intersection of the edge with the line connecting the baricenters of the cells over the two sides of this edge.  $\phi$  is the limiter coefficient that limits the gradient  $\bar{\nabla}U_i$ .

First, we compute the maximum and minimum values of the primitive variable in the i's cell and its three neighboring cells that share common edges (see Fig. 1):

$$U_{cell}^{\max} = Max \left( U_{k}^{cell} \right)$$

$$U_{cell}^{\min} = Min \left( U_{k}^{cell} \right)$$

$$k = i, 1, 2, 3.$$
(9)

The limiter can be defined as:

$$\phi = Min \{1, \phi_k^{lr}\} \quad k = 1, 2, 3 \tag{10}$$

where superscript lr stands for left and right of the three edges (6 combinations in total).  $\phi_k^{lr}$  is defined by:

$$\phi_{k}^{lr} = \frac{\left[1 + Sgn\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{cell}^{max} + \left[1 - Sgn\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{cell}^{min}}{2(\Delta U_{k}^{lr})} \qquad k = 1, 2, 3$$
(11)

where  $\Delta U_k^{lr} = \bar{\nabla} U_i^{lr} \cdot \Delta \bar{r}_k$ . and

$$\Delta U_{cell}^{\max} = U_{cell}^{\max} - U_{i}^{cell}$$

$$\Delta U_{cell}^{\min} = U_{cell}^{\min} - U_{i}^{cell}$$
(12)

To obtain a second order of accuracy in time and space, we subject the projected values of the left and right side of the cell edge to characteristic constraints following Ref. 4. The one dimensional characteristic predictor is applied to the projected values at half time step  $t^n + \frac{\Delta t}{2}$ . The characteristic predictor is formulated in the local system of coordinates for the one dimensional Euler equation. We illustrate the implementation of the characteristic predictor in the direction of the unit vector  $\bar{n}_c$ . The Euler equations for this direction can be written in the following form:

$$W_t + A(W)W_{nc} = 0 \tag{13}$$

where

$$W = \begin{cases} \tau \\ u \\ p \end{cases}; \ A(W) = \begin{pmatrix} u & -\tau & 0 \\ 0 & u & \tau \\ 0 & \rho c^2 & u \end{pmatrix}$$
(14)

where  $\tau = \rho^{-1}$ ,  $\rho$  denotes density while u, p are the velocity and pressure. The matrix A(W) has three eigenvectors  $(l^{\#}, r^{\#})$  (*l* for left and *r* for right where # denote +, o, -) associated with the eigenvalues  $\lambda^{+} = u + c$ ,  $\lambda^{\circ} = u$ ,  $\lambda^{-} = u - c$ . An approximation of projected value to an edge accurate to second order in space and time can be written as:

$$W_{i+\Delta r}^{n+1/2} \approx W_i^n + \frac{\Delta t}{2} \frac{\partial W}{\partial t} + \Delta r \frac{\partial W}{\partial r_{nc}}$$

$$\approx W_i^n + \left[ \Delta r - \frac{\Delta t}{2} A(W_i) \right] \frac{\partial W}{\partial r_{nc}}$$
(15)

An approximation to  $W_{i+\Delta r}^{n+1/2}$  can be written as:

$$W_{i+\Delta r}^{n+1/2} = W_i + (\Delta \bar{r}_i - \frac{\Delta t}{2} (M_x M_n) \cdot \bar{n}_c) \bar{\nabla} W_i$$
(16)

where

$$(M_x M_n) = \begin{cases} Max(\lambda_i^+, o) & \text{for cell left to the edge} \\ Min(\lambda_i^-, o) & \text{for cell right to the edge} \end{cases}$$
(17)

The gradients applied in the process of computing the projected values at  $t^n + (\Delta t/2)$  are subjected to the monotonicity limiter.

Following the characteristic predictor described above, the full Riemann problem is solved at the edge. The solution of the Riemann problem defines the flux  $\bar{Q}^{n+\frac{1}{2}}$  through the edge. The fluxes through the edges of triangles are then integrated (Eq. 5), thus giving an updated value of the variables at  $t^{n+1}$ . One of the advantages of the described algorithm is that calculation of the fluxes is done over the largest loop in the system (loop over edges) and can be carried out in the vectorized or parallelized loop. This fact leads to an efficient algorithm. The algorithm presented is a modification of the algorithm of Ref. 5 which was derived for structured mesh. This algorithm has been applied to simulate a wide range of flow problems and has been found very accurate in predicting the features of the physics. The performance of the algorithm is well documented in Refs. 6-8. The next section, the spatial adaptive procedure, is described in detail. These descriptions include explanations of the error estimator for flow feature detection and the Direct Dynamic Refinement Method used to enrich and coarsen the mesh.

## DIRECT DYNAMIC REFINEMENT METHOD FOR ADAPTATION ON AN UNSTRUCTURED TRIANGULAR GRID

The Direct Dynamic Refinement method (DDR) is a new method for adapting unstructured triangular grids during the computational process. As stated, an unstructured grid is very suitable for implementing boundary conditions on complex geometrical shapes as well as the adaptation of the grid, if necessary. The adaptation of the unstructured triangular grid leads to efficient usage of memory resources. The adaptive grid enables the user to capture moving shocks and high gradient flow features with high resolution. The available memory resources can be very efficiently distributed in the computational domain to accommodate the resolution needed to capture features of the physical property of the solution as they are evolved. Dynamic refinement controls the resolution priorities. These priorities can be set according to the physical features that the user wishes to emphasize in the simulation. The user has control over the accuracy of the physical features resolved in the simulation, without being restricted to the initial grid. The alternative to Direct Dynamic Refinement (DDR) is the hierarchical dynamic refinement (H-refinement) that keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). In the H-refinement method, it is necessary to keep overhead information on the level of each triangle subdivision, and double indirect indexing is needed to keep track of the H-refinement process. As mentioned, the H-refinement relies heavily on the initial grid as it subdivides this grid and returns to it after the passage of the shock.

To minimize the dissipation caused by the interpolation and extrapolation in the refinement and coarsening of the grid, the addition and deletion of point is done in the region where the flow features are smooth. Thus for capturing the shock, the refinement should be applied in the region ahead of the shock. The coarsening of the grid is done in the flow regions where the gradients of the flow parameters are small.

In the present version of AUGUST (<u>A</u>daptive <u>U</u>nstructured <u>G</u>odunov <u>Upwind Second order Triangular</u>), we implemented an algorithm with multiple criteria for capturing a variety of features that might exist in the physics of the problem to be solved. To identify the location of a moving shock, we use the flux of total energy into triangles. The fluxes entering and leaving triangles are the most accurate physical variables computed by the Godunov

algorithm for solving Euler's equations, and are used to update the physical variables for each time step in each triangle. Supplementary to the fux of energy as an error indicator, we use the flux of total density into t ______ngles and the density gradient. The error indicator is the only sensor that is solely responsible for identifying the area to be refined or coarsened in the computational domain. As such, the error indicator should be sensitive enough to detect physical features that are of interest to the user, such as shock waves, rarefaction waves, slip lines and vortices. The error indicators that are implemented in the code are able to sense very weak slip lines in the presence of strong shock waves. The ability of the error indicators to identify weak physical features in the presence of strong ones, without picking up numerical noises, is essential to the simulation of adaptive grids. As stated, the quality of the results is as good as the error indicators applied. If the error indicators fail to identify the physical feature, this feature probably will be overlooked in the simulated results. It should be noted that the process of applying error indicators for identifying the areas to be adaptively refined or coarsened is an expensive loop that has to check the whole triangles table in the simulation. Thus, the error indicators are applied each 9 to 15 time steps. This process is preceded by application of an algorithm that refines a buffer zone ahead of the features and coarsens the grid after it was moved away. The buffer zone ahead of the feature is identified by using a search pattern of finding the neighbors of the flagged triangles sorted by the error indicators.

12

We are not applying any physical parameters to identify the cones "ahead."

The refinement algorithm follows several basic steps. The process of adding points to refine the grid locally is done by either adding a new vertex in the baricenter of the triangle or adding a new vertex in the middle of the edge. Adding a new vertex in the baricenter of a triangle is very efficient in the sense that the refinement affects this individual triangle only. We apply this process exclusively for refinement. As a supplement, especially on the boundary, we apply the method of adding a new vertex on an edge. As a complement to adding new vertices, we apply the reconnection/swapping algorithm that flips the diagonal (common edge) of two adjacent triangles to improve the quality of the triangles constructed. Figure 2 displays a chain of those basic steps to illustrate the refinement process. Figure 2a shows the original grid. Figure 2b illustrates a one step scheme refinement in which a new vertex is introduced into a triangular cell forming three cells (two new ones). On the boundary edges, a new vertex is introduced in the middle of those edges to form two cells (one new one). This refinement is followed by reconnection that modifies the grid as demonstrated in Fig. 2c. The process of refinement and reconnection can be continued until the necessary grid resolution is achieved. As an example, another loop of refinement is illustrated in Figs. 2d and 2e. This direct approach to grid refinement provides extreme flexibility in resolving local flow features.

A similar direct approach is applied to grid coarsening. The basic step

in this process is deleting the cells and edges associated with a vertex to be removed, as shown in Fig. 3b. During the second step, this void in the grid is filled with new larger triangles (Fig. 3c) without introducing neteric ertices. The last step is local reconnection and relaxation as shown in  $F^*$ . 3d. The relaxation procedure is a simple relocation of the vertex moved  $\sim$  the center of the polygon surrounding this vertex (only if the polygon is a convex).

The algorithm of direct dynamic refinement proved to be very efficient in refining and coarsening the grid adaptively. The refinement and coarsening followed a short inquiry on the quality and shape of the triangle flagged and its close neighbors. Since we do not keep any history or tree for each triangle, the DDRM algorithm has much less checking to do as compared to the Hrefinement algorithm. The vectorization and parallelization of the solver is straightforward.

## NUMERICAL RESULTS FOR THE TWO DIMENSIONAL TEST PROBLEM

We have tested the Second Order Godunov algorithm in a variety of flow simulations ranging from the low subsonic to the high hypersonic Mach  $^{(6-8)}$  regime. The AUGUST code proved to be very robust and accurate. The results obtained are comparable to or better than those obtained applying leading flow solvers in all of the regimes tested.

To validate our DDRM implemented in the AUGUST code, we simulated the problem of interaction of a Mach 2.85 planar shock wave, propagating are accurately accounted for and the shock waves, slip lines, vortices are sharply captured.

1

in a channel with a 45° symmetrical double ramp. Figure 4 shows the experimental interferogram of the problem to be simulated (reproduced). The example that we chose to simulate is most appropriate to test the performance of an adaptive algorithm. The experimental results show a complex flow pattern containing a mix of strong discontinuities, as shock aves, and very weak features such as slip lines, vortices, and rarefaction waves. The error estimator must recognize and flag all these features for refinement. The error estimator should be sensitive enough to identify very weak slip lines without picking up numerical noises present in the simulation. We have simulated the shock wave reflection and diffraction over a 45° corner at the conditions that correspond to the experimental result shown in Fig. 4. Here we present results for several shapes of the flow evolution. The flow in the channel is from left to right. Figure 5 displays density contour plots after the shock passed the apex of the double wedge obstacle. In Fig. 5a, the density contours are overlayed on the grid used at this stage of the evolving flow. For clarity, only the density contours are displayed in Fig. 5b. The grid displayed in Fig. 5a shows how well the adaptation technique follows the high activity region in the flow. The grid is adapting to regions with high pressure gradients and high density gradient. In Fig. 5a, one can observe high quality grid produced by the DDR method. The shock has a relatively thin buffer zone ahead of its front, allowing us to avoid the interpolations related to grid adaptation of the flow variables in the area of high gradient.

The flow features are resolved accurately, and the contact discontinuity and triple point are clearly defined.

Figure 6 shows the density contours at a later time in the same format as in Fig. 5. This figure demonstrates the ability of the DDRM to identify and follow flow features in the computational domain. In this figure we can observe a complicated flow pattern developing as a result of interaction of the rarefraction wave with the complex pattern of shock waves. A recompression shock and a strong vortex that are developed in this time frame are well resolved. We can also observe a slip line originating at the triple point. The adaptation algorithm, as in the previous time frame, follows both shock waves and contact discontinuities.

Figure 7 displays the density contours at the stage comparable to that shown in Fig. 4 for the experimental results. The computed results as displayed in Fig. 7b show a flow pattern similar to the experiment. The slip line and the formation of vertices along it are clearly depicted. The shock and reflected shock as well as the recompression shock are very sharply defined with very low numerical noise. The vortex developed after the compression shock is distinctly displayed. A new reflected shock can be seen developing at the channel wall behind the double wedge.

The results shown in Figs. 5-7 display the ability of the algorithm to simulate a complex transient flow problem on dynamically adapting grid. The error estimates used in our algorithm allow detection of strong and weak shock waves, conducted discontinuities, vortices or other fronts that need enhanced resolution.

#### CONCLUSION

The Direct Dynamic Refinement (DDR) method was developed and tested for a challenging problem of reflection and diffraction of a strong shock over a double ramp. For this test problem we have demonstrated that a set of error indicators developed for the DDR allow capturing strong and weak features of the complex wave structure developing in this test case.

The above described algorithms were implemented in the AUGUST code. The AUGUST code was used for a range of subsonic, transonic, and supersonic transient and steady problems. For all these conditions the AU-GUST code produced robust results with the error indicators proving to be applicable for all these diverse flow regimes.

#### ACKNOWLEDGMENT

The work reported here was partially supported by DARPA and AFOSR under Contract #F49620-89-C-0087. The authors would like to thank Col. James Crowley and Dr. A. Nachman for their interest in this project.

#### REFERENCES

 R. Lohner, "An Adaptive Finite Element Scheme for Transient Problems in CFD," Comp. Meth. Appl. Mech. Eng., Vol. 61, 323-338, 1987.

- R.D. Rausch, J.T. Batina, H.T.Y. Yang "Spatial Adaptation of Unstructured Meshes for Unsteady Aerodynamic Flow Computation." AIAA Journal, Vol 30, No. 5, May 1992, pp. 1243-1251.
- B. Van Leer, "Toward the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov Method," J. Comp. Phys., 32, 101-136, 1979.
- P. Collela and H.M. Glaz, "Efficient Solution Algorithm for the Riemann Problem for Real Gases," J. Comp. Phys. 59, 264-289, 1985.
- S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and its Second Order Extension to Cascade Flow Modeling," AIAA Journal 22, 10, 1984.
- I. Lottati, S. Eidelman, and A.T. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," AIAA 90-0699, 27th Aerospace Sciences Meeting, Reno, Nevada, 1989.
- 7) I. Lottati, S. Eidelman, and A.T. Drobot. "Solution of Euler's Equations on Adaptive Grids Using a Fast Unstructured Grid Second Order Godunov Solver," Proceedings of the Free Lagrange Conference, Jackson Lake. WY, June 1990.
- I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Triangular Grid," Proceedings of 4th International Symposium on Computational Fluid Dynamics, Davis, CA, September 1991.

 D.L. Zhang, I.I. Glass, "An Interferometric Investigation of the Diffraction of Planar Shock Waves Over a Half-Diamond Cylinder in Air," NTIAS Report No. 322, March 1988.



Representative triangular cell in the mesh and its neighbors showing fluxes across the edges





Figure 1. Representative triangular cell in the mesh showing fluxes and projected values.

(

(

(

(



a. Original grid.



c. Grid after one refinement and one reconnection.



b. Grid after one refinement.



d. Second refinement.



e. Second reconnection.

Figure 2. Illustration of the grid refinement process.



a. Original grid.



b. Point removal.



c. Constructing of new cells.



d. Grid after reconnection and relaxation.

Figure 3. Illustration of the grid coarsenning process.



Figure 4. An experimental interferogram taken at 96  $\mu$ s after shock wave hits a diamond shaped obstacle, Mach  $M_s = 2.85$ .













A Second Order Godunov Scheme on Spatial Adapted Triangular Grid Itzhak Lottati and Shmuel Eidelman Science Applications International Corporation

#### ABSTRACT

Spatial adaptation procedure for the accurate and efficient solution of unsteady inviscid flow simulation is described. The adaptation procedures were developed and implemented applying a second order Godunov scheme. These procedures involve mesh enrichment/coarsening to either add/remove vertices in high/low gradient regions of the flow, respectively. The goal is to achieve solutions of high spatial accuracy at minimal computational cost. The paper describes a very effective error estimator to detect high/low activity regions of the flow to be enriched or coarsened, respectively. The error estimator is based on total energy and density fluxes into the cell combined with gradient of density. Included in the paper is a detailed description of the direct dynamic refinement method that is used for adaptation. A detailed simulation of a reflection and diffraction of multiple shock waves flowing over a diamond shape wedge is presented and compared with experimental results. The simulated results are shown to be in excellent agreement with the experiment primarily in that all the complicated features of the physics are accurately accounted for and the shock waves, slip lines, vortices are sharply captured.

#### INTRODUCTION

Considerable progress has been made over the past decade in developing methods for spatial adaptation of the computational meshes based on the numerical solution of the simulated physics. These methods are being developed to produce higher spatial accuracy in such simulation more efficiently. The goal of mesh adaptation is to enrich meshes locally, based on the numerical solution, in order to capture physical features of importance; in contrast to globally fine meshes, this process will minimize computer run times and memory costs. The methods of mesh adaptation can be categorized into three general classes: 1) mesh regeneration, 2) mesh movement, and 3) mesh enrichment.

The idea of mesh regeneration is systematically to identify high/low activity region in the flow and accordingly remesh those regions applying mesh generation code. This is done by assigning criteria for spatial accuracy and number of vertices. This procedure requires a mapping of the "old" flow solution into the "new" generated meshes by using one of the interpolated schemes. For the second method, mesh movement, the number of points in the computational domain remains fixed. The adaptation procedure moves vertices from low activity regions to high gradient regions to achieve a high concentration of vertices to resolve high activity regions. The movement of the points is dictated by forcing functions in the Poisson - equation in the grid generator code. The final method of spatial adaptation is mesh related to grid adaptation of the flow variables in the area of high gradient.

15

enrichment. In this method, vertices are added or removed according to the spatial resolution of the physical features in the flow. The advantages of mesh enrichment over regeneration and movement are its higher degree of flexibility in being able to add points where they are needed and to remove points where they are not needed. In our mesh enrichment method, we add points ahead of the shock wave, thus preventing the need of interpolation in the high gradient region for achieving higher accuracy of the results. Adding and removing points are done in monotone/very low activity regions to prevent numerical dissipation.

Lohner⁽¹⁾ has developed procedures to enrich the mesh for transient flow problems locally by subdividing elements in the grid according to specific spatial resolution criteria. The method, referred to as H-refinement, keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). The H-refinement relies heavily on the initial grid as it is subdivided for enrichment and recovered in the coarsening stage. A similar adaptive strategy to Lohner is adopted by Rausch⁽²⁾ et al., but applies a different error estimator and upwind type algorithm for a solver.

In our paper, we describe a Godunov scheme to solve Euler equations on an unstructured adaptive triangle mesh. We discuss the methodology of a cell centered Second Order Godunov scheme applied to a triangular mesh, and the method of Direct Dynamic Refinement that is used for adaptation of the unstructured triangular grid. Simulation and experimental results are compared for a test case applying the adaptive unstructured grid to a complicated pattern of planar shock wave flow diffraction over a half diamond shape wedge.

#### SECOND ORDER GODUNOV

#### ALGORITHM ON UNSTRUCTURED GRID

This section describes the implementation of the Second Order Godunov algorithm on a triangular unstructured grid. The algorithm is explicit and is cell-center based.

We consider a system of two-dimensional Euler equations written in conservation law form as:

$$\frac{\partial \bar{U}}{\partial t} + \frac{\partial \bar{F}}{\partial x} + \frac{\partial \bar{G}}{\partial y} = 0$$
 (1)

where

$$U = \left\{ \begin{array}{c} \rho \\ \rho u \\ \rho v \\ e \end{array} \right\}, F = \left\{ \begin{array}{c} p u \\ \rho u^2 + p \\ \rho u v \\ u(e+p) \end{array} \right\}, G = \left\{ \begin{array}{c} \rho v \\ \rho u v \\ \rho v^2 + p \\ v(e+p) \end{array} \right\}.$$

Here u, v are the x, y velocity vector components, p is the pressure,  $\rho$  is the density and e is total energy of the fluid. We assume that the fluid is an ideal gas. The total energy of gas is given by the following equation:

$$e = \frac{p}{\gamma - 1} + \frac{\rho}{2}(u^2 + v^2)$$
 (2)

where  $\gamma$  is the ratio of specific heats. It is assumed that an initial distribution of the fluid parameters is given at t = 0, and the boundary conditions defining a unique solution are specified for the computational domain.

The system of governing equation (1) can be written in the following form:

$$\frac{\partial U}{\partial t} + \bar{\nabla} \cdot \bar{Q} = 0 \tag{3}$$

where  $\bar{Q}$  represents the convective flux vector. By integrating Eq. (3) over space and using Gauss' theorem, the following expression is obtained

$$\frac{\partial}{\partial t} \int_{\Omega} U dA + \oint_{\partial \Omega} \bar{Q} \cdot d\bar{l} = 0$$
(4)

where  $d\bar{l} = \bar{n}d\mathcal{L}$ ,  $\bar{n}$  is the unit normal vector in the outward direction, and  $d\mathcal{L}$ is a unit length on the boundary of the domain. The variable  $\Omega$  is the domain of computation and  $\partial\Omega$  is the circumference boundary of this domain.

Equation (4) can be discretized for each element (cell) of the domain

$$\frac{(U_i^{n+1} - U_i^n)}{\Delta t} A_i = \sum_{j=1}^3 \bar{Q}_j^{n+\frac{1}{2}} \bar{n}_j \Delta L_j$$
(5)

where  $A_i$  is the area of the cell;  $\Delta t$  is the marching time step;  $U_i^{n+1}$  and  $U_i^n$  are the primitive variables at the center of the cell at time n and at the update n + 1 time step;  $\tilde{Q}_j$  is the value of the fluxes across the three boundaries edges on the circumference of the cell where  $\tilde{n}_j$  is the unit normal

vector to the boundary edge j, and  $\Delta L_j$  is the length of the boundary edge j. Equation (5) is used to update the physical primitive variables  $U_i$  according to computed fluxes for each time step  $\Delta t$ . The time step is subjected to the CFL (Courant-Fredrichs-Lewy) constraint.

To obtain a second order spacial accuracy, the gradient of each primitive variable is computed in the baricenter of the cell. This gradient is used to define the projected values of primitive variables at the two sides of the cell's edge, as is shown in Figure 1. The gradient is approximate by a path integral

$$\int_{\Omega} \bar{\nabla} U_i^{cell} dA = \oint_{\partial \Omega} U_j^{edge} d\bar{l} .$$
 (6)

The notation is similar to the one used for Eq. (5) except the domain  $\Omega$  is a single cell and  $U_i^{cell}$  and  $U_j^{edge}$  are values at the baricenter and on the edge respectively. The gradient is estimated as

$$\bar{\nabla}U_i^{cell} = \frac{1}{A} \sum_{j=1}^3 \tilde{U}_j^{edge} \bar{n}_j \Delta L_j \tag{7}$$

where  $\tilde{U}_{j}^{edge}$  is an average value representing the primitive variable value for edge j.

The gradients that are computed at each baricenter are used to project values for the two sides of each edge by piecewise linear interpolation. The interpolated values are subjected to monotonicity constraints.⁽³⁾ The monotonicity constraint assures that the interpolated values are not creating new extrema.

The monotonicity limiter algorithm can be written in the following form:

$$U_{projected}^{edge} = U_i^{cell} + \phi \bar{\nabla} U_i \cdot \Delta \bar{r} \tag{8}$$

where  $\Delta \bar{r}$  is the vector from the baricenter to the point of intersection of the edge with the line connecting the baricenters of the cells over the two sides of this edge.  $\phi$  is the limiter coefficient that limits the gradient  $\bar{\nabla}U_i$ .

First, we compute the maximum and minimum values of the primitive variable in the i's cell and its three neighboring cells that share common edges (see Fig. 1):

$$U_{cell}^{\max} = Max \left( U_{k}^{cell} \right)$$

$$U_{cell}^{\min} = Min \left( U_{k}^{cell} \right)$$

$$k = i, 1, 2, 3. \qquad (9)$$

The limiter can be defined as:

$$\phi = Min \{1, \phi_k^{lr}\} \ k = 1, 2, 3 \tag{10}$$

where superscript lr stands for left and right of the three edges (6 combinations in total).  $\phi_k^{lr}$  is defined by:

$$\phi_{k}^{lr} = \frac{\left[1 + Sgn\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{cell}^{max} + \left[1 - Sgn\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{cell}^{min}}{2(\Delta U_{k}^{lr})} \qquad k = 1, 2, 3$$
(11)

where  $\Delta U_k^{lr} = \bar{\nabla} U_i^{lr} \cdot \Delta \bar{r}_k$ . and

$$\Delta U_{cell}^{\max} = U_{cell}^{\max} - U_{i}^{cell}$$

$$\Delta U_{cell}^{\min} = U_{cell}^{\min} - U_{i}^{cell}$$
(12)

To obtain a second order of accuracy in time and space, we subject the projected values of the left and right side of the cell edge to characteristic constraints following Ref. 4. The one dimensional characteristic predictor is applied to the projected values at half time step  $t^n + \frac{\Delta t}{2}$ . The characteristic predictor is formulated in the local system of coordinates for the one dimensional Euler equation. We illustrate the implementation of the characteristic predictor in the direction of the unit vector  $\bar{n}_c$ . The Euler equations for this direction can be written in the following form:

$$W_t + A(W)W_{nc} = 0 \tag{13}$$

where

$$W = \begin{cases} \tau \\ u \\ p \end{cases}; \ A(W) = \begin{pmatrix} u & -\tau & 0 \\ 0 & u & \tau \\ 0 & \rho c^2 & u \end{pmatrix}$$
(14)

where  $\tau = \rho^{-1}$ ,  $\rho$  denotes density while u, p are the velocity and pressure. The matrix A(W) has three eigenvectors  $(l^{\#}, r^{\#})$  (*l* for left and *r* for right where # denote +, 0, -) associated with the eigenvalues  $\lambda^{+} = u + c$ ,  $\lambda^{\circ} = u$ ,  $\lambda^{-} = u - c$ . An approximation of projected value to an edge accurate to second order in space and time can be written as:

$$W_{i+\Delta r}^{n+1/2} \approx W_i^n + \frac{\Delta t}{2} \frac{\partial W}{\partial t} + \Delta r \frac{\partial W}{\partial r_{nc}}$$

$$\approx W_i^n + \left[\Delta r - \frac{\Delta t}{2} A(W_i)\right] \frac{\partial W}{\partial r_{nc}}$$
(15)

An approximation to  $W_{i+\Delta r}^{n+1/2}$  can be written as:

$$W_{i+\Delta r}^{n+1/2} = W_i + (\Delta \bar{r}_i - \frac{\Delta t}{2} (M_x M_n) \cdot \bar{n}_c) \bar{\nabla} W_i$$
(16)

where

$$(M_x M_n) = \begin{cases} Max(\lambda_i^+, o) & \text{for cell left to the edge} \\ Min(\lambda_i^-, o) & \text{for cell right to the edge} \end{cases}$$
(17)

The gradients applied in the process of computing the projected values at  $t^n + (\Delta t/2)$  are subjected to the monotonicity limiter.

Following the characteristic predictor described above, the full Riemann problem is solved at the edge. The solution of the Riemann problem defines the flux  $\bar{Q}^{n+\frac{1}{2}}$  through the edge. The fluxes through the edges of triangles are then integrated (Eq. 5), thus giving an updated value of the variables at  $t^{n+1}$ . One of the advantages of the described algorithm is that calculation of the fluxes is done over the largest loop in the system (loop over edges) and can be carried out in the vectorized or parallelized loop. This fact leads to an efficient algorithm. The algorithm presented is a modification of the algorithm of Ref. 5 which was derived for structured mesh. This algorithm has been applied to simulate a wide range of flow problems and has been found very accurate in predicting the features of the physics. The performance of the algorithm is well documented in Refs. 6-8. The next section, the spatial adaptive procedure, is described in detail. These descriptions include explanations of the error estimator for flow feature detection and the Direct Dynamic Refinement Method used to enrich and coarsen the mesh.

# DIRECT DYNAMIC REFINEMENT METHOD FOR ADAPTATION ON AN UNSTRUCTURED TRIANGULAR GRID

The Direct Dynamic Refinement method (DDR) is a new method for adapting unstructured triangular grids during the computational process. As stated, an unstructured grid is very suitable for implementing boundary conditions on complex geometrical shapes as well as the adaptation of the grid, if necessary. The adaptation of the unstructured triangular grid leads to efficient usage of memory resources. The adaptive grid enables the user to capture moving shocks and high gradient flow features with high resolution. The available memory resources can be very efficiently distributed in the computational domain to accommodate the resolution needed to capture features of the physical property of the solution as they are evolved. Dynamic refinement controls the resolution priorities. These priorities can be set according to the physical features that the user wishes to emphasize

10

in the simulation. The user has control over the accuracy of the physical features resolved in the simulation, without being restricted to the initial grid. The alternative to Direct Dynamic Refinement (DDR) is the hierarchical dynamic refinement (H-refinement) that keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). In the H-refinement method, it is necessary to keep overhead information on the level of each triangle subdivision, and double indirect indexing is needed to keep track of the H-refinement process. As mentioned, the H-refinement relies heavily on the initial grid as it subdivides this grid and returns to it after the passage of the shock.

To minimize the dissipation caused by the interpolation and extrapolation in the refinement and coarsening of the grid, the addition and deletion of point is done in the region where the flow features are smooth. Thus for capturing the shock, the refinement should be applied in the region ahead of the shock. The coarsening of the grid is done in the flow regions where the gradients of the flow parameters are small.

In the present version of AUGUST (<u>A</u>daptive <u>Unstructured G</u>odunov <u>Upwind Second order Triangular</u>), we implemented an algorithm with multiple criteria for capturing a variety of features that might exist in the physics of the problem to be solved. To identify the location of a moving shock, we use the flux of total energy into triangles. The fluxes entering and leaving triangles are the most accurate physical variables computed by the Godunov

algorithm for solving Euler's equations, and are used to update the physical variables for each time step in each triangle. Supplementary to the cux of energy as an error indicator, we use the flux of total density into t _____ngles and the density gradient. The error indicator is the only sensor that is solely responsible for identifying the area to be refined or coarsened in the computational domain. As such, the error indicator should be sensitive enough to detect physical features that are of interest to the user, such as shock waves, rarefaction waves, slip lines and vortices. The error indicators that are implemented in the code are able to sense very weak slip lines in the presence of strong shock waves. The ability of the error indicators to identify weak physical features in the presence of strong ones, without picking up numerical noises, is essential to the simulation of adaptive grids. As stated, the quality of the results is as good as the error indicators applied. If the error indicators fail to identify the physical feature, this feature probably will be overlooked in the simulated results. It should be noted that the process of applying error indicators for identifying the areas to be adaptively refined or coarsened is an expensive loop that has to check the whole triangles table in the simulation. Thus, the error indicators are applied each 9 to 15 time steps. This process is preceded by application of an algorithm that refines a buffer zone ahead of the features and coarsens the grid after it was moved away. The buffer zone ahead of the feature is identified by using a search pattern of finding the neighbors of the flagged triangles sorted by the error indicators.

12

We are not applying any physical parameters to identify the zones "ahead."

The refinement algorithm follows several basic steps. The process of adding points to refine the grid locally is done by either adding a new vertex in the baricenter of the triangle or adding a new vertex in the middle of the edge. Adding a new vertex in the baricenter of a triangle is very efficient in the sense that the refinement affects this individual triangle only. We apply this process exclusively for refinement. As a supplement, especially on the boundary, we apply the method of adding a new vertex on an edge. As a complement to adding new vertices, we apply the reconnection/swapping algorithm that flips the diagonal (common edge) of two adjacent triangles to improve the quality of the triangles constructed. Figure 2 displays a chain of those basic steps to illustrate the refinement process. Figure 2a shows the original grid. Figure 2b illustrates a one step scheme refinement in which a new vertex is introduced into a triangular cell forming three cells (two new ones). On the boundary edges, a new vertex is introduced in the middle of those edges to form two cells (one new one). This refinement is followed by reconnection that modifies the grid as demonstrated in Fig. 2c. The process of refinement and reconnection can be continued until the necessary grid resolution is achieved. As an example, another loop of refinement is illustrated in Figs. 2d and 2e. This direct approach to grid refinement provides extreme flexibility in resolving local flow features.

A similar direct approach is applied to grid coarsening. The basic step

in this process is deleting the cells and edges associated with a vertex to be removed, as shown in Fig. 3b. During the second step, this void in the grid is filled with new larger triangles (Fig. 3c) without introducing new vertices. The last step is local reconnection and relaxation as shown in Fig. 3d. The relaxation procedure is a simple relocation of the vertex moved to the center of the polygon surrounding this vertex (only if the polygon is a convex).

The algorithm of direct dynamic refinement proved to be very efficient in refining and coarsening the grid adaptively. The refinement and coarsening followed a short inquiry on the quality and shape of the triangle flagged and its close neighbors. Since we do not keep any history or tree for each triangle, the DDRM algorithm has much less checking to do as compared to the Hrefinement algorithm. The vectorization and parallelization of the solver is straightforward.

### NUMERICAL RESULTS FOR THE TWO DIMENSIONAL TEST PROBLEM

We have tested the Second Order Godunov algorithm in a variety of flow simulations ranging from the low subsonic to the high hypersonic Mach (6-8) regime. The AUGUST code proved to be very robust and accurate. The results obtained are comparable to or better than those obtained applying leading flow solvers in all of the regimes tested.

To validate our DDRM implemented in the AUGUST code, we simulated the problem of interaction of a Mach 2.85 planar shock wave, propagating in a channel with a 45° symmetrical double ramp. Figure 4 shows the experimental interferogram of the problem to be simulated (reproduced). The example that we chose to simulate is most appropriate to test the performance of an adaptive algorithm. The experimental results show a complex flow pattern containing a mix of strong discontinuities, as shock waves, and very weak features such as slip lines, vortices, and rarefaction waves. The error estimator must recognize and flag all these features for refinement. The error estimator should be sensitive enough to identify very weak slip lines without picking up numerical noises present in the simulation. We have simulated the shock wave reflection and diffraction over a 45° corner at the conditions that correspond to the experimental result shown in Fig. 4. Here we present results for several shapes of the flow evolution. The flow in the channel is from left to right. Figure 5 displays density contour plots after the shock passed the apex of the double wedge obstacle. In Fig. 5a, the density contours are overlayed on the grid used at this stage of the evolving flow. For clarity, only the density contours are displayed in Fig. 5b. The grid displayed in Fig. 5a shows how well the adaptation technique follows the high activity region in the flow. The grid is adapting to regions with high pressure gradients and high density gradient. In Fig. 5a, one can observe high quality grid produced by the DDR method. The shock has a relatively thin buffer zone ahead of its front, allowing us to avoid the interpolations related to grid adaptation of the flow variables in the area of high gradient.

The flow features are resolved accurately, and the contact discontinuity and triple point are clearly defined.

Figure 6 shows the density contours at a later time in the same format as in Fig. 5. This figure demonstrates the ability of the DDRM to identify and follow flow features in the computational domain. In this figure we can observe a complicated flow pattern developing as a result of interaction of the rarefraction wave with the complex pattern of shock waves. A recompression shock and a strong vortex that are developed in this time frame are well resolved. We can also observe a slip line originating at the triple point. The adaptation algorithm, as in the previous time frame, follows both shock waves and contact discontinuities.

Figure 7 displays the density contours at the stage comparable to that shown in Fig. 4 for the experimental results. The computed results as displayed in Fig. 7b show a flow pattern similar to the experiment. The slip line and the formation of vertices along it are clearly depicted. The shock and reflected shock as well as the recompression shock are very sharply defined with very low numerical noise. The vortex developed after the compression shock is distinctly displayed. A new reflected shock can be seen developing at the channel wall behind the double wedge.

The results shown in Figs. 5-7 display the ability of the algorithm to simulate a complex transient flow p oblem on dynamically adapting grid. The error estimates used in our algorithm allow detection of strong and
weak shock waves. conducted discontinuities, vortices or other fronts that need enhanced resolution.

# CONCLUSION

The Direct Dynamic Refinement (DDR) method was developed and tested for a challenging problem of reflection and diffraction of a strong shock over a double ramp. For this test problem we have demonstrated that a set of error indicators developed for the DDR allow capturing strong and weak features of the complex wave structure developing in this test case.

The above described algorithms were implemented in the AUGUST code. The AUGUST code was used for a range of subsonic. transonic. and supersonic transient and steady problems. For all these conditions the AU-GUST code produced robust results with the error indicators proving to be applicable for all these diverse flow regimes.

# ACKNOWLEDGMENT

The work reported here was partially supported by DARPA and AFOSR under Contract #F49620-89-C-0087. The authors would like to thank Col. James Crowley and Dr. A. Nachman for their interest in this project.

# REFERENCES

 R. Lohner, "An Adaptive Finite Element Scheme for Transient Problems in CFD," Comp. Meth. Appl. Mech. Eng., Vol. 61, 323-338, 1987.

- R.D. Rausch, J.T. Batina, H.T.Y. Yang "Spatial Adaptation of Unstructured Meshes for Unsteady Aerodynamic Flow Computation." AIAA Journal, Vol 30, No. 5, May 1992, pp. 1243-1251.
- B. Van Leer. "Toward the Ultimate Conservative Difference Scheme.
   V. A Second Order Sequel to Godunov Method." J. Comp. Phys., 32, 101-136, 1979.
- P. Collela and H.M. Glaz, "Efficient Solution Algorithm for the Riemann Problem for Real Gases," J. Comp. Phys. 59, 264-289, 1985.
- S. Eidelman, P. Collela, and R.P. Shreeve. "Application of the Godunov Method and its Second Order Extension to Cascade Flow Modeling," AIAA Journal 22, 10, 1984.
- I. Lottati, S. Eidelman, and A.T. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," AIAA 90-0699, 27th Aerospace Sciences Meeting, Reno, Nevada, 1989.
- 7) I. Lottati, S. Eidelman, and A.T. Drobot, "Solution of Euler's Equations on Adaptive Grids Using a Fast Unstructured Grid Second Order Godunov Solver," Proceedings of the Free Lagrange Conference, Jackson Lake. WY, June 1990.
- I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Triangular Grid," Proceedings of 4th International Symposium on Computational Fluid Dynamics, Davis, CA, September 1991.

 D.L. Zhang, I.I. Glass. "An Interferometric Investigation of the Diffraction of Planar Shock Waves Over a Half-Diamond Cylinder in Air," NTIAS Report No. 322, March 1988.



Figure 1. Representative triangular cell in the mesh showing fluxes and projected values.



a. Original grid.



c. Grid after one refinement and one reconnection.



b. Grid after one refinement.



d. Second refinement.



e. Second reconnection.

Figure 2. Illustration of the grid refinement process.



a. Original grid.

b. Point removal.



c. Constructing of new cells.



- d. Grid after reconnection and relaxation.
- Figure 3. Illustration of the grid coarsenning process.



Figure 4. An experimental interferogram taken at 96  $\mu$ s after shock wave hits a diamond shaped obstacle, Mach  $M_s = 2.85$ .







Figure 6. Computed density contours simulating flow identical to the setup of the experiment of Fig. 4. The grid is composed of 65624 vertices.



Figure 7. Computed density contours comparable to time of the experimental results shown in Fig. 4. The grid is composed of 79352 vertices.

Advances in Computer Methods for Partial Differential Equations VII R. Vichnevesky, D. Knight and G. Richter (Editors) ©1992 IMACS. All rights reserved.

# DECOMPOSITION BY STRUCTURED/UNSTRUCTURED COMPOSITE GRIDS FOR EFFICIENT INTEGRATION IN DOMAINS WITH COMPLEX GEOMETRIES

Itzhak Lottati and Shmuel Eidelman Applied Physics Operation, MS 2-3-1 Science Applications International Corporation McLean, VA 22102

#### Abstract

The Second Order Godunov method has been simultaneously implemented on both unstructured triangular and structured rectangular grids. This combined structured/unstructured method is a much more efficient approach to domain decomposition as compared to the separate application of each method. Application of this new technique to the complex problem of acoustic wave focusing in an ellipsoid reflector has demonstrated its advantages over both structured and unstructured methods of domain decomposition. It has been shown that the complex pattern of acoustic waves propagates seamlessly through structured/unstructured grid interfaces without reflection or distortion. The new approach provides ultimate flexibility in domain decomposition with minimum penalty in terms of memory and CPU requirements, and at the same time capitalizes on the advantages of both structured and unstructured grid methods.

#### Introduction

Structured rectangular grids allow the construction of numerical algorithms that perform an efficient and accurate integration of fluid conservation equations. The efficiency of these schemes results from the extremely low storage overhead needed for domain decomposition and the efficient and compact indexing that also defines domain connectivity. These two factors allow code construction based on a structured domain decomposition that can be highly vectorized and parallelized. Integration in physical space on orthogonal and uniform grids produces the highest possible accuracy of the numerical algorithms. The disadvantage of structured rectangular grids is that they cannot be used for decomposition of computational domains with complex geometries.

The early developers of computational methods realized that, for many important applications of Computational Fluid Dynamics (CFD), it is unacceptable to describe curved boundaries of the computational domain using the stair-step approximation available with the rectangular domain decomposition technique. To overcome this difficulty, the techniques of boundary-fitted coordinates were developed. With these techniques, the computational domain is decomposed on quadrilaterals that can be fitted to the curved domain. The solution is then obtained in the physical space using the geometrical information defining the quadrilaterals, or in the computational coordinate system that is obtained by transformation of the original domain into a rectangular domain. The advantage of this technique is that it employs the same indexing method as the rectangular structured domain decomposition methods that also serve to define domain connectivity. The boundary fitted coordinates approach leads to efficient codes, with approximately a 4:1 penalty in terms of memory requirement per cell as compared with rectangular domain decomposition. However, this approach is somewhat restricted in its domain decomposition capability, since distortion or large size variations of the quadrilaterals in one region of the domain lead to unwanted distortions or increased resolution in other parts of the domain. An example of this is the case of structured body fitted coordinates that are used for simulations of flows over a profile with sharp trailing edges. In this case, increased resolution in the vicinity of the trailing edge leads to increased resolution in the whole row of elements connected to the trailing edge elements.

The most effective methods of domain decomposition developed to overcome this disadvantage are those using unstructured triangular grids. These methods were developed to cope with very complex computational domains. The unstructured grid method, while efficient and powerful in domain decomposition, results in codes that must store large quantities of information defining the grid geometry and connectivity, and have large computational and storage overheads. As a rule, an unstructured grid code requires greater storage by a factor of 10, and will run about 5 times slower when compared on a per cell per iteration basis with a structured rectangular code. Unstructured triangular meshes are designed to provide a grid that is fitted to the boundary of complex geometry. The flexibility of the unstructured mesh that allows gridding complex geometry should be weighed against the huge memory requirement needed to define the inter connectivity between the triangles. To cut down on the memory overhead, unstructured grid methods are used to their best advantage when combined with grid adaptivity. This feature usually allows the dynamic reallocation of triangles according to the physics and geometry of the problem solved, which leads to a substantial reduction in the number of cells needed for the domain decomposition. However, this advantage is highly dependent on the problem solved. Adaptive unstructured grids have an advantage over the unadaptive unstructured domain decomposition if the area of high resolution needed is around one-tenth of the global area of the computational domain. As a result, while the adaptive unstructured method may be extremely effective for simulating flow with multiple shock waves in complex geometries, it becomes extremely inefficient when high resolution is needed in a substantial area of the computational domain.

Our approach to domain decomposition combines the structured and unstructured methods for achieving better efficiency and accuracy. Under this method, structured rectangular grids are used to cover most of the computational domain, and unstructured triangular grids are used only to patch between the rectangular grids (Fig. 1), or to conform to the curved boundaries of the computational domain (Fig. 2). In these figures, an unstructured triangular grid is used to accurately define the curved internal or external boundaries and a structured rectangular grid is used to decompose the regions of the computational domain that have a simple geometry.

	, i i i i i i i i i i i i i i i i i i i			TT	T T	E E E	T.I.I	11	11	
Ŧ		• • •					Ţ.			
┝┿╸	1 MARINE		<u>***</u>		177	747	izki	क्तां	<del>dzi</del> ~	╧╧┙
	1000	***	<u>NAN</u>		×X.	SR	22	$\langle \chi \chi \rangle$	\$RE	
1-								-	X-	
┝┿			177			3	88	6.90	±2⊁-	$\vdash$
		<b>M</b>		AV.	SN	KK/	N	$\Delta N$	AX.	
4			+++	++		+++	111	++	++	$\square$
H			+++			$\pm\pm$	H			

Figure 1. A possible candidate configuration for hybrid structured/unstructured domain decomposition.



Figure 2. A possible candidate configuration for hybrid structured/unstructured domain decomposition, representing the ellipsoid reflector grid used for the numerical simulation.

Our paper will illustrate the performance gains achieved from the use of this composite grid decomposition approach. We apply the Second Order Godunov method to solve the Euler equations on both structured and unstructured sections of the grid. The challenging problem of acoustic wave focusing in an ellipsoid is used as a test case to confirm the soundness of the approach and to check its performance characteristics and accuracy.

# Mathematical Model and Integration Algorithm

We consider a system of two-dimensional Euler equations written in conservation law form as:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0 \tag{1}$$

where

$$U = \begin{vmatrix} \rho \\ \rho u \\ \rho v \\ e \end{vmatrix}, \quad F = \begin{vmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u(e+p) \end{vmatrix}, \quad G = \begin{vmatrix} \rho v \\ \rho u v \\ \rho v v \\ \rho v^2 + p \\ v(e+p) \end{vmatrix}.$$

Here u, v are the x, y velocity vector components, p is the pressure,  $\rho$  is the density and e is total energy of the fluid. We assume that the fluid is an ideal gas and the pressure is given by the equation-of-state

$$p = (\gamma - 1)(e - 0.5\rho(u^2 + v^2))$$
⁽²⁾

where  $\sim$  is the ratio of specific heats and typically taken as 1.4 for air. It is assumed that an initial distribution of the fluid parameters is given at t = 0, and the boundary conditions defining a unique solution are specified for the computational domain.

The system of governing equations in Eq. (1) can be written as

$$\frac{\partial U}{\partial t} + \nabla \cdot Q = 0 \tag{3}$$

where Q represents the convective flux vector. By integrating Eq. (3) over space and using Gauss' theorem, the following expression is obtained

$$\frac{\partial}{\partial t} \int_{\Omega} U dA + \oint_{\partial \Omega} Q \, dl = 0 \qquad (4)$$

where  $dl = nd\mathcal{L}n$  is the unit normal vector in the outward direction, and  $d\mathcal{L}$  is a unit length on the boundary of the domain. The variable  $\Omega$  is the domain of computation and  $\partial\Omega$  is the circumference boundary of this domain.

Eq. (4) can be discretized for each element (cell) in the domain

$$\frac{(U_i^{n+1} - U_i^n)}{\Delta t} A_i = \sum_{j=1}^M Q_j^n n_j \ \Delta L_j$$
(5)

where A, is the area of the cell:  $\Delta t$  is the marching time step;  $U_i^{n+1}$  and  $U_i^n$  are the primitive variables at the center of the cell at time n and at the update n+1 tir⁻ step;  $Q_j$  is the value of the fluxes across the M boundaries on the circumference of the cell where  $n_j$  is the unit normal vector to the boundary edge j, and  $\Delta L_j$  is the length of the boundary edge j. The fluxes  $Q_j^n$  are computed applying the Second Order Godunov algorithm, and Eq. (5) is used to update the physical primitive variables  $U_i$  according to computed fluxes for each marching time step  $\Delta t$ . The marching time step is subjected to the CFL (Courant-Frerichs-Lewy) constraint.

We seek a solution to the system of Eq. (1) in the computational domain, which is decomposed in part into triangles with arbitrary connectivity and in part into rectangles using a logically structured grid. We use the advantage of the unstructured grid (Refs. 1-4) to describe the curved boundary of the computational domain and areas that need increased local resolution. In our example, the unstructured grid covers 10% of the total computational domain while the structured grid occupies the remaining 90%. The numerical technique for solving Euler's equation on an unstructured grid is described in Refs. 5-7, and the technique for the structured grid is described in Refs. 8. These numerical techniques apply some of the ideas that were introduced in Refs. 9-10. The structured and unstructured codes apply the center-based formulation, i.e., the primitive variables are defined in the center of the cell. which makes the cell the integration volume, while the fluxes are computed across the edges of the cell. The basic algorithmic steps of the Second Order Godunov method can be defined as follows:

1. Find the value of the gradient at the baricenter of the cell for each gas dynamic parameter U;

- 2. Find the interpolated values of U at the edges of the cell using the gradient values:
- 3. Limit these interpolated values based on the monotonicity condition (Ref. 9);
- 4. Subject the projected values to the characteristic's constraints (Ref. 10);
- 5. Solve the Riemann problem applying the projected values at the two sides of the edges:
- 6. Update the gas dynamic parameter U according to the conservation equations (1) applying to the fluxes computed and the current time step.

As was advocated in Ref. 7, we prefer the triangle center-based over the vertex-based version of the code. For the same unstructured grid, a triangle-based algorithm will result in smaller control volumes than a vertex-based. In addition, for the Second Order Godunov solver, implementation of the boundary conditions is more straightforward and accurate for the center-based algorithm than in the vertex-based. These two factors, along with the effects of grid connectivity, strongly affect the algorithm accuracy and

performance, and are the main reasons for the superiority of the center-based version over the vertex version.

#### Sound Wave Focusing in an Ellipsoid Reflector

Research relating to focusing of shock and acoustic waves is of considerable practical interest for application to Extracorporeal Shock Wave Lithotripsy (ESWL). Most of the interest in this area is related to acoustic waves in liquids: however, the basic reflection and focusing mechanisms for a given reflector geometry can be studied in air as well. For our test simulation, we chose a deep reflector shaped like an ellipsoid, which was used for ESWL by Dornier (Ref. 11) and other companies. A schematic of the cross section of this reflector is shown in Fig. 3. Strong acoustic waves are generated in the left focal point of the ellipsoid by an instantaneous release of energy and are refocused at the right focal point. Ideally, focusing should be based on waves of acoustic intensity, since the nonlinear reflections of strong shock waves lead to significant distortions in wave propagation and impair simple geometrical focusing.



Figure 3. A schematic drawing of the center cross section of the ellipsoid reflector.

Figure 2 shows the computational domain and grid for the ellipsoid reflector example. In order to illustrate the concept of the composite structured/unstructured grid, we have shown only every 1/16 ceil of the grid that was actually used for the simulation. In this example, we observe that the structured rectangular grid covers about 90% of the computational domain and the unstructured triangular grid is restricted to the curved surface of the ellipsoid and covers about 10% of the domain. The major axis of the ellipsoid is 150 mm and the minor axis is 90 mm.

The integration in the structured part of the domain is performed using a version of the split Second Order Godunov method described in Ref. 8. For the unstructured triangular grid, we used our implementation of the Second Order Godunov method that includes a compact integration stencil suitable for unstructured grids (Refs. 5-7). In the current implementation, the two sections of the grid communciate through the boundary conditions at their interfaces. According to this, the values in the mirror points at the grid interfaces for the triangular grid are taken from the computational domain of the structured grid and vice versa. These mirror values are used for calculations of the flux at the interface boundaries. For focusing problem simulations, we used 55188 triangles in the unstructured part of the grid and 141312 ( $736 \times 192$ ) rectangles in the structured grids have the same level of refinement), the unstructured portion of the code was run with adaptivity (adding and deleting vertices). This ability enabled us to match the grid resolution based on cell areas in the structured/unstructured grids while computing the results. The initial grid had a very refined grid at the left focal point to initiate accurately the detonation. This area was coarsened later in the simulation by turning on the adaptive capability of the unstructured code.

We used the following initial condition at the time t = 0 for the simulation of the acoustic wave focusing:

- a. Quiescent air in the cavity of the reflector, i.e., Pressure  $P_o = 101350$ . Pa and Density  $\rho_o = 1.2 \text{ Kg/m}^3$ .
- b. Blast in the left focal point of the ellipsoid confined in a spherical volume of a radius of R = 2mm. Condition at initial blast area: Pressure  $P_b = 45. * P_o$ , and Density  $\rho_b = 4.5 * \rho_o$ .

This definition of the initial conditions guarantees that a weak blast wave will be generated, ensuring that waves of acoustic intensity will be reflected from the wall of the ellipsoid. We examined this particular reflection regime because the blast wave focusing in water occurs in acoustic mode. As it was pointed out in Ref. 11. reflection of even very weak waves in water will lead to considerable deviations from the reflection mode of a pure acoustic wave. However, the purpose of this simulation is to demonstrate the numerical method and not to study in detail the focusing modes of the ellipsoid reflector. Therefore, we present results for one simulation following conditions outlined above.

In Fig. 4a, the simulation results are shown in the form of pressure contours at the time  $t = 1.31 \times 10^{-4}$  sec when the incident shock started its reflection from the reflector wall. Here we can observe that the maximum reflected pressure is no higher than 14% over the ambient pressure, which is consistent with our objective to create weak waves. Figure 4b is an enlargement of the region in the computational domain that contains structure and unstructured grids. We can also observe that the incident wave propagates seamlessly through the interface of the structured and unstructured regions. In Fig. 5, we show pressure contour plots at time  $t = 2.09 \times 10^{-4}$  sec. We observe that the interfaces between the two grids carry the information seamlessly.



Figure 4a. Pressure contours at time  $t = 1.31 \times 10^{-4}$  sec showing the incident wave as reflected from the reflector's wall.



Figure 4b. Blowup of the pressure contours at time  $t = 1.31 \times 10^{-4}$  sec showing the matching pressure contours between the structured and the unstructured grid.



Figure 5. Pressure contours at time  $t=2.09 \times 10^{-4}$  see showing the incident wave and the reflected wave pattern.

Figure 6 shows the simulation results at time  $t = 4.35 \times 10^{-4}$  sec. At this stage, the blast wave front that propagated to the left has undergone full reflection and the reflected wave propagates in the direction of the incident wave to the right. However, the incident and the reflected wave are both of acoustic intensity and they are propagating at the speed of sound. Therefore, the reflected wave will not be able to catch up with the incident wave at this stage of expansion. We can observe in Fig. 7, where the two waves are shown past the ellipsoid centers ( $t = 5.41 \times 10^{-4}$  sec), that the distance between these acoustic waves does not change as compared with Fig. 6. The reflected wave has maximum pressure in the vicinity of the axis and its value remains relatively constant (about 1.10  $\times 10^{5}$  Pa) through the propagation process. The wave complex at the axis of symmetry consists of the incident acoustic wave front, a reflected wave that has positive followed by negative phases.



Figure 6. Pressure contours at time  $t=4.35 \times 10^{-4}$  sec showing the incident wave and the reflected wave pattern.



Figure 7. Pressure contours at time  $t=5.41 \times 10^{-4}$  sec showing the wave pattern past the center of the ellipsoid.

The enhancement of the reflected wave's amplitude starts gradually when the reflected wave is approaching the second focal point caused by the convergence of the ellipsoid. In Fig. 8, the pressure contours ( $t = 8.41 \times 10^{-4}$ sec) are shown at the stage that the maximum focused pressure is obtained in the system. As we can observe in Fig. 8, the incident front has left the computational domain, and the maximum pressure is obtained in small volume in the vicinity of the right focal point. In our simulation, the maximum focused pressure has reached  $1.32 \times 10^{5}$ Pa and is located 11 mm to the right of the focal point of the ellipsoid.



Figure 3. Pressure contours at time  $t=8.41 \times 10^{-4}$  sec showing the stage at which the maximum focused pressure is obtained.

In all the figures presented, the method of composite domain decomposition works extremely well, producing seamless solutions at the interfaces. We should mention here that our test problem is particularly sensitive because the main acoustic waves are weak, and any inaccuracy introduced at the grid interfaces would produce a distortion in the phase or in the intensity of the traveling waves that would be a visible disturbance evident in the results needless to mention that an adaptive scheme would have difficulty in simulating this problem due to the weakness of the wave pattern.

## Conclusions

A composite method of structured/unstructured domain decomposition is introduced as an efficient technique for dealing with the computational domains of complex geometry. We have simulated a demanding acoustic wave focusing problem and have shown that our approach leads to accurate wave propagation without any reflection or distortion at the structured/unstructured grid interfaces. It should be noted that for the acoustic focusing problem as simulated and presented in this paper, both structured and unstructured methods of domain decomposition can be shown to be inadequate if used separately. The structured method has difficulty describing the curved boundaries of the computational domain, while the unstructured method is totally inefficient in describing phenomena with wide fronts that occupy a large portion of the computational domain. Our hybrid method combines the advantages of structured and unstructured grid to accurately represent curved walls, with the computational and memory efficiency of the structured grid in the majority of the computational domain. We also attribute the quality of the numerical result to the Second Order Godunov method, which allows a consistent. accurate and robust formulation for handling both grids and boundary conditions.

#### Acknowledgments

The work reported here was partially supported by DARPA and AFOSR under Contract #F49620-89-C-0087. The authors would like to thank Col. James Crowley and Dr. A. Nachman for their interest in this project.

#### References

- 1. A. Jameson, T.J. Baker, and N.P. Weatherill, "Calculation of Inviscid Transonic Flow Over a Complete Aircraft," AIAA 24th Aerospace Sciences Meeting, Reno, NV, AIAA Paper 86-0103, January 1986.
- 2. R. Löhner, "Adaptive Remeshing for Transient Problems," <u>Comp. Meth. Appl. Mech. Eng</u>. 75, 195-214, 1989.
- 3. J. Peraire, M. Vahdati, K. Morgan, and O.C. Zienkiewicz, "Adaptive Remeshing for Compressible Flow Computations," J. Comp. Phys. 72, 449-466, 1987.
- 4. D. Mavriplis, "Accurate Multigrid Solution of the Euler Equations on Unstructured and Adaptive Meshes," AIAA 88-3707, 1988.
- 5. I. Lottati, S. Eidelman, and A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," 28th Aerospace Sciences Meeting, AIAA-90-0699, Reno, NV, 1990.
- I. Lottati, S. Eidelman, and A. Drobot, "Solution of Euler's Equations on Adaptive Grids Using a Fast Unstructured Grid Second Order Godunov Solver," <u>Proceeding of the Free Lagrange Confer-</u> ence, Jackson Lake, WY, June 1990.
- 7. I. Lottati and S. Eidelman. "Second Order Godunov Solver on Adaptive Unstructured Grids." <u>Proceeding of the 4th International Symposium on Computational Fluid Dynamics</u>, Davis, CA, September 1991.
- 8. S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," <u>AIAA Journal</u> 22, 10, 1984.
- 9. B. van Leer, "Towards the Ultimate Conservative Difference Scheme, V: A Second Order Sequel to Godunov's Method," J. Comp. Phys. 32, 101-136, 1979.
- P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gasdynamic Simulations," J. Comp. Phys. 54, 174-201, 1984.
- 11. H. Gronig, "Past, Present and Future of the Shock Focusing Research." Proceedings of the International Workshop on Shock Wave Focusing, Sendai, Japan. March 1989.

Advances in Computer Methods for Partial Differential Equations VII R. Vichneversky, D. Knight and G. Richter (Editors) ©1992 IMACS. All rights reserved.

## TWO-PHASE COMPRESSIBLE FLOW COMPUTATION ON ADAPTIVE UNSTRUCTURED GRID USING UPWIND SCHEMES

Xiaolong Yang, Shmuel Eidelman and Itzhak Lottati Applied Physics Operation, MS 2-3-1 Science Applications International Corporation McLean, VA 22102

#### ABSTRACT

A computer program called MPHASE for numerical study of shock wave propagation in a multiphase, multi-component gas environment is described and applied. The mathematical model of the multiphase, multi-component system is based on the multi-fluid Eulerian approach. Basically, we consider the two phases(i.e. gas and particle) to be interpenetrating continua: the dynamics of the flow is governed by conservation equations for each phase, and the two phases are coupled by interactive drag force and heat transfer. The code is formulated on unstructured triangular grids.

The numerical solution method is based on the Second Order Godunov Method for the gaseous medium, an upwind integration for the particles, and an implicit integration technique for the gasparticle interaction simulation. In order to produce a solution with high spatial accuracy at minimal computational cost, an adaptive procedure on the unstructured grid is used. The adaptive procedure will automatically enrich the grid by adding points in the high-gradient (or high flow activity) region and by removing points (coarsening the mesh) where they are not needed. This technique allows a detailed study of the complex two-phase shock reflection phenomena, where the effects of momentum and heat exchange between phases will significantly modify the shock structure and shock parameters.

Results will be given from the code validation study for the shock propagation in the dusty gases. The code performance will be illustrated by solving the problem of reflection and diffraction of a plan shock wave over a semicircular cylinder in a dusty gas.

#### 1. THE MATHEMATICAL MODEL AND THE NUMERICAL SOLUTION

#### Conservation Equations

The mathematical model consists of conservation governing equations and constitutive laws that provide closure for the model. The basic formulation adopted here follows the gas and dilute particle flow dynamics model presented by Soo¹. The following assumptions are used during the derivation of governing equations:

(1) The gas is air and is assumed to be ideal gas;

(2) The particles do not undergo a phase change because particles are considered as sand whose phase transition temperature is much higher than the gas temperature considered here;

(3) The particles are solid spheres of uniform diameter and have a constant material density;

(4) The volume occupied by the particles is negligible;

(5) The interaction between particles can be ignored:

(6) The only force acting on the particles is drag force and the only heat transfer between the two phases is convection. The weight of the solid particles and their buoyancy force are negligibly small compared to the drag force;

(7) The particles have a constant specific heat and are assumed to have a uniform temperature distribution inside each particle.

Under the above assumptions, distinct equations of continuity, momentum, and energy are written for each phase. The interaction effects between the two phases are listed as the source terms on the righthand side of the governing equation. The two dimensional unsteady conservation equations for the two phases can be written in the vector form in Cartesian coordinates:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = S.$$
(1)

Here U is the vector of conservative variables, F and G are fluxes in x and y direction, respectively, and S is the source term for momentum and heat exchange. The definition of these vectors are:

where  $\rho, u, v$ , and e are gas density, velocities, and energy, respectively;  $\rho_p, u_p, v_p$  and  $e_p$  are particle density, velocities, and energy, respectively;  $(f_x, f_y)$  and q denotes drag force components acting on the particles and heat transfer to the particles, respectively. The gas pressure p is related to  $\rho, u, v$  and e for by

$$p = (\gamma - 1)[e - 0.5\rho(u^2 + v^2)]$$
(2)

where  $\gamma$  is the specific heat ratio. The gas temperature can be found through the equation-of-state for ideal gas

$$\rho = \rho R T \tag{3}$$

where R is the gas constant.

The particle temperature  $T_p$  is calculated through relation

$$e_p = \rho_p c_p T_p + 0.5 \rho_p (u_p^2 + v_p^2). \tag{4}$$

The source terms on the righthand side of equation (1) are momentum and heat exchange between gas and particle phases. If we let  $r_{\mu}$  and  $\rho_{s}$  be the particle radius and material density, respectively, then the drag forces are

$$\binom{f_{x}}{f_{y}} = \frac{3}{8} \frac{\rho_{p}\rho}{\rho_{s}r_{p}} C_{d} \left[ (u - u_{p})^{2} + (v - v_{p})^{2} \right]^{1/2} \binom{u - u_{p}}{(v - v_{p})}$$
(5)

The particle drag coefficient  $C_d$  is a function of Reynolds number, Re, which is based on the relative velocity between the gas and particle phases. After testing the drag coefficients given by Sommerfeld² and by Clift *et al.*³, the following were two adopted:

$$C_{d} = \frac{24}{Re} (1 + 0.15Re^{0.687}) \text{ for } Re < 800$$
  
d  
$$C_{d} = \frac{24}{Re} (1 + 0.15Re^{0.687}) + \frac{0.42}{1 + 42500Re^{-1.16}} \text{ for } Re > 800.$$
 (5)

Here the Reynolds number, Re is defined as

an

$$Re = \frac{2\rho r_p [(u - u_p)^2 + (v - v_p)^2]^{1/2}}{\mu}$$
(6)

Viscosity,  $\mu$  is calculated at film temperature, namely,  $T_f = 0.5(T_p + T)$ , and the temperature dependency of the viscosity is evaluated according to Sutherland's law

$$\mu = \mu_r \left(\frac{T}{T_r}\right)^{3/2} \frac{T_r + \Phi}{T + \Phi} \tag{7}$$

where  $\mu_{\tau}$  is the dynamic viscosity of the gaseous phase at the reference temperature and  $\Phi$  is an effective temperature, called the Sutherland constant.

The rate of heat transfer from gaseous phase to the particle phase is given by

$$Q = \frac{3}{2} \frac{\rho_p}{\rho_s} \frac{\mu C_p}{P_r} N u \left( T_o - T_p \right)$$
(8)

where  $Pr = \mu c_p/k_g$  is the Prandtl number, and  $c_p$  and  $k_g$  are the specific heat and thermal conductivity of gas, respectively. The Nusselt number Nu is a function of this Reynolds number and the Prandtl number as given by Drake⁴

$$Nu = \frac{2r_p h}{R} = 2 + 0.459 R e^{0.55} P r^{0.33}.$$
 (9)

#### Initial and Boundary Conditions

The geometry of the computational domain is shown in Fig. 1. The initial conditions for gas are  $\rho_0 = 1.2kg/m^3$  and  $p_0 = 101.3kpa$ , with a coming shock at x = -0.5. There are no particles from  $-1.0 \le x \le 0.0$ . From  $x \ge 0.0$ , particles are initially in thermal and kinematic equilibrium with surrounding gas. The particles that are uniformly distributed in the dusty region have the following parameters for different test problems:

Mass loading,  $\rho_p$ : 0.25 kg/m³, 0.76 kg/m³; Mass material density,  $\rho_s$ : 2500 kg/m³; Particle radii,  $r_p$ : 10  $\mu$ m, 25  $\mu$ m, 50  $\mu$ m; Specific heat,  $c_s$ : 766 J/kg/K.



Figure 1. An illustration of the considered flow field.

The lower boundary and cylinder surface are solid walls and assumed adiabatic and impermissible. A reflecting boundary condition is assumed for both the gas and particle phase. Particles are assumed to experience a perfect elastic collision with the wall and reflect from the wall. The right and upper boundaries are open boundaries where a nonreflection boundary condition is used for the gas phase and a zero normal gradient condition is used for particle phase.

# Numerical Method of Solutions

The system of partial differential equations described in the previous paragraph is integrated numerically. Equation (1) is repeated here:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = S.$$
(1)

In order to solve this equation numerically, an operator time-splitting technique is used. Assuming that all flow variables are known at a given time, we can calculate its advancement in time by splitting the integration into two stages.

In the first stage, the conservative part of equation (1) is solved:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0.$$
(10)

The Second Order Godunov method is used for the integration of the subsystem of equations describing the flow of the gaseous phase (first four components of equation (1)). The method is well documented in literature.^{5,5,7} The subsystem of equations describing the particle phase flow is integrated using a simple finite difference upwind scheme. This is done because there is no shock in the particle phase and the upwind scheme leads to a robust and accurate integration scheme.

In the second stage, the source term is added and the following equation is solved:

$$\frac{\partial U}{\partial t} = S. \tag{11}$$

To integrate this equation in time, we need to obtain S as a function of U. We calculate S through equations (5) to (8).

In order to produce a solution of the high spatial accuracy at minimal computational cost, an unstructured triangular grid with adaptive procedure is used. The adaptive procedure will automatically enrich the mesh by adding points in the high gradient (or high flow activity) region of the flow field and by removing points (coarsening mesh) where they are not needed. The dynamic nature of mesh enrichment is shown in Fig. 3 for two different time frames. One can see that a very fine mesh is generated around shock fronts and other steep density gradient regions.

#### 2. RESULTS

#### Model Validation for One-Dimensional Shock Wave Propagation in A Dusty Gas

To test the momentum and heat exchange mechanism for the current two-phase model, we first simulate a one-dimensional problem of a normal shock wave propagating into a dusty gas. We numerically simulate the experiments conducted by Sommerfeld². In the experiments, small glass sphere particles of material density  $\rho_s = 2500 kg/m^3$ , specific heat capacity  $c_s = 766 J/kg/K$ , and average diameter of 27  $\mu m$  were used as suspension particle phase. The incoming shock, and particle loading ratio  $\eta = \rho/\rho_p$ , are two varying parameters. The experimental results and our numerical simulation results of shock Mach number as a function of distance for two test cases are shown in Fig. 2a ( $\eta = 0.63$  and Fig. 2b ( $\eta = 1.4$ ) for comparison purpose. As one can see, the agreement between the prediction of our present model and the experimental results is very good.

#### Two-Dimensional Simulation Results of Pure Gas Flow

To test the accuracy of the two-dimensional computation, we compute the pure gas flow case of a shock wave reflection and diffraction over a semicircular cylinder. We then compare the simulation with experimental results. Shock wave reflection on a wedge has been extensively studied by many researchers (see e.g., review paper of Hornung⁸). Shock wave reflection by circular cylinders was numerically simulated by Yang et al.⁹ and experiments were performed by Kaca¹⁰. Fig. 3a and 3b show density contours with adapted grids at two moments in time. In Figs. 4a nd 4b, the interferogram from the experiment³ and density contours from the present simulation are compared for the same flow condition and same time. Note that the density levels are normalized by the ambient gas density in Fig. 4. As one can see from Fig. 4a and Fig. 4b, the results show an excellent quantitative as well as qualitative agreement between the numerical simulation and experimental results.



Figure 2. Comparison between computational prediction and experimental measurement of shock wave attentuation for (a)  $M_o = 1.40$ ,  $\eta = \frac{\rho_o}{\rho_o} = 0.63$  and (b)  $M_o = 1.7$ ,  $\eta = \frac{\rho_o}{\rho_o} = 1.4$  (o experiment, - calculation).



Figure 3. Computed density contours with adapted grid at two different times.



Figure 4. Comparison for  $M_s = 2.80$  gas – only flow, (a) interferogram from experiment conducted by Kaca (1988), (b) density contours from present calculation.

# Two-Dimensional Simulation Results of Two-Phase Flow

The basic setup for the two-phase simulation is shown in Fig. 1. Here the planar shock with Ms=2.3 impinges on an area of a dusty gas. The interface between clear air and dusty air is located at x=0.0 of the computational domain. The area of the dusty air contains a semicylinder with a radius of 1m. The size of the computational domain, initial parameters of the gas, parameters of the incoming shock, size of the semicylinder and its location in the computational domain, are the same as in the reflection and diffraction simulation presented in the previous section.

The main objective of this set of simulations is to study the effects of particle size and particle loading on the parameters of the reflected and diffracted shock waves. It is also of interest to study the dynamics of reflection and diffraction in particle media. This is especially valuable since it is extremely difficult to observe these interactions experimentally in an optically thick dusty gas.

The first set of simulation results is shown for the case with dust parameters  $r_p = 10\mu m$  and  $\rho_p = 0.25 kg/m^3$ . The gas parameters and the parameters of the incoming shock wave are the same as in the pure gas case presented above. In Figs. 5a and 5b, particle density contours and gas density contours are shown at the stage when the incident shock wave has reached the top of the semicylinder. At this stage, particles have very little effect on the dynamics and parameters of the shock in the gas phase. The presence of the particles causes a small widening of the shock that is more noticeable for the incident shock. Also, one can observe an additional contour line at the dusty gas/pure gas interface. The particle density contours depict significant piling up of the dust particles at the leading edge stagnation point of the cylinder.



Figure 5. Density contours for the case;  $M_s = 2.8$ ,  $\rho_p = 0.25kg/m^3$ ,  $r_p = 10\mu m$  at two different times. (a) particle density at  $t_1$ , (b) gas density at  $t_1$ , (c) particle density at  $t_2$ , and (d) gas density at  $t_2$ .

In Figs. 5c and 5d, the particle density and gas density contours are shown at the stage where significant diffraction has taken place and the shock front is approaching the trailing edge of the cylinder. The small particle loading and small particle size leads to very small modification of the gas shock structure and parameters. One can observe further widening of the shock and some smearing of the slip line that originates at the triple point. The particle density contours reveal that the particles piled up at the stagnation point were swept by the gas flow to the area of triple point and slip line for the gas flow, leaving a small amount of particles at the leading edge. We should note that this behavior is specific for our problem, where at t=0, the dusty gas area was located at x=0 and there is no influx of the dust from the left boundary. Also in Fig. 5c, we note that the particles reach a distinct local maxima at the distance about 25 cm behind the main shock front. At this maxima the particle density is  $0.86 kg/m^3$ , which is more than three times the initial particle density. The particle density reaches a maximum value at the location of the gas slip line. We observe a significant accumulation of the particles that have been moved along the slip line by the shear flow. The larger concentration of particles in the vicinity of triple point is, in fact, the remainder of the particles that have concentrated first at the leading edge and then were swept up with the flow. It is also interesting to observe that an essentially particle- free zone is formed due to the effects of particles slipping over the top of the cylinder and the rarefaction wave behind the cylinder.

#### 3. CONCLUSIONS

In this paper, a computer program for two-phase compressible flow computation on adaptive grids using upwind schemes is described. The following validation study and conclusion can be made.

(1) The validation study for a one-dimensional shock wave propagating in a dusty gas shows a good agreement between the prediction of our model and the results of the experiment.

(2) For a two-dimensional gas-only flow, numerical results agree well with existing experimental data qualitatively and quantitatively, indicating that the gas phase is accurately simulated by adaptive grid technique.

(3) Particles in the gas can have a profound effect on the shock wave reflection and diffraction pattern, which is a function of particle size and loading. The smaller the particle and the lesser the particle loading, the less the inference of particle on the flow field.

(4) There is a particle accumulation behind the "back shoulder" of the semicircular cylinder due to the effect of particles inertia and gas rarefaction wave.

#### 4. ACKNOWLEDGMENTS

The work reported here was partially supported by DARPA and AFOSR under contract no. F49620-89-C-0087. The authors would like to thank Col. J. Crowley and Dr. A. Nachman for their interest in this project. The authors also acknowledge support from DNA under contract no. DNA001-91-C-0047, and A. Frederickson for his encouragement.

#### 5. REFERENCES

1. S. L. Soo, Particulates and Continuum, Hemisphere Publishing Corporation. 1989.

- 2. M. Sommerfeld, "The Unsteadiness of Shock Waves Propagating through Gas-Particle Mixtures," Experiments in Fluids, Vol. 3, p. 197, 1985.
- 3. R. Clift, J. R. Grace, and M. E. Weber, <u>Bubbles. Drops and Particles</u>, Academic Press, New York, 1978.
- 4. R. M. Drake, Jr., "Discussions on G.C. Vliet and G. Leppert: Forced Convection Heat Transfer from an Isothermal Sphere to Water," Journal of Heat Transfer, Vol. 83, p. 170, 1961.
- 5. S. Eidelman, P. Collela, and R. P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modelling," <u>AIAA Journal</u>, Vol. 22, p. 10, 1984.
- P. Collela, "A Direct Eulerian MUSCL Scheme for Gas Dynamics," <u>SIAM J. Stat. Comput.</u>, Vol. 6, p. 104, 1985.
- 7. P. Collela, and H. M. Glaz, "Efficient Solution Algorithms for the Riemann Problem for Real Gases," J. Comput. Physics, Vol. 59, p. 264, 1985.
- 8. H. Hornung, "Regular and Mach Reflection of Shock Waves," <u>Ann. Rev. Fluid Mech.</u>, Vol. 18, p. 33, 1986.
- 9. J. Y. Yang, Y. Liu, and H. Lomax. "Computation of Shock Wave Reflection by Circular Cylinder." AIAA Journal, Vol. 25, p. 683, 1987.
- 10. J. Kaca, "An Interferometric Investigation of Diffraction of a Planar Shock Wave over a Semicircular Cylinder," <u>UTIAS Technical Note 269</u>, 1988.



AIAA 92-3168 PULSED DETONATION ENGINE EXPERIMENTAL AND THEORETICAL REVIEW S. Eidelman and W. Grossmann Science Applications International Corporation McLean, VA







# AIAA/SAE/ASME/ASEE **28th Joint Propulsion Conference and Exhibit** July 6-8, 1992 / Nashville, TN

For permission to copy or republish, contact the American institute of Aeronautics and Astronautics

# PULSED DETONATION ENGINE EXPERIMENTAL AND THEORETICAL REVIEW

Shmuel Eidelman and William Grossmann

Applied Physics Operation Science Applications International Corporation 1710 Goodridge Drive, McLean, VA 22102

# Abstract

A Review of past and current research on pulsed detonation engine devices connects early experimental work originating with the V1 pulsejet to recent interest in such propulsion devices. The recent interest has been, in part, stimulated by Aviation Week where sightings of aircraft contrails lead to question if some sort of PDE device has already been developed. This review summarizes what is known about PDEs, makes predictions for applications to realistic flight vehicles including missiles and full scale aircraft, and outlines what is yet required for successful PDE development.

# 1. Introduction

This paper reviews past and recent theoretical and experimental work related to the Pulsed Detonation Engine (PDE) concept. Such a review is timely since much interest in the PDE concept has been generated from several recent Aviation Week (AW) articles.^{1,2} The AW articles, in addition to describing SAIC PDE studies, describe observations of aircraft flight and engine sound generation that are similar to what would be expected from PDE operation. These observations are intriguing since, to our knowledge, there has been no previously reported use of PDE devices in any past or recent flight vehicles. The reported observations include loud pulsing sounds at Beale AFB and photographs of high altitude contrails with "cotton ball" like beads strung on the contrails in a repetitive pattern. It is tempting to try to connect the AW reports with what we understand about PDE operation. It has come to our attention that a ground observer has identified the frequency of the pulsing sounds emanating 1 the vehicle that made the contrails appearing in . . . AW article to be of the order of 50-60 Hertz. To obtain the source (aircraft engine) frequency we must correct the observed frequency for the Doppler effect, taking into account the temperature variation between ground and flight altitude. Assuming an altitude of 45-50,000 ft. (cirrus clouds are observed behind the trails in the published photographs), a flight Mach number

between one and two gives a source frequency, f, between 100 and 200 Hertz. As we show later in this paper, a PDE generating 25,000-50,000 lbs. thrust should, theoretically, operate in this frequency range. Of course we have no information concerning the subject aircraft characteristics and consequently we cannot conclude that PDEs are powering present day aircraft. On the other hand the observations appear to be consistent with expected PDE operation.

#### 2. Early Pulsed Combustion Propulsion Devices

It is instructive to point out the differences between the PDE concept and the more commonly understood pulsejet devices. The first full scale application of pulsed propulsion devices was for the V1 flying "buzz bomb." The engine used for this vehicle was the Schmidt-Argus³ engine and has since been generally referred to as a "pulsejet." The pulsejet for the VI engine was based on repetitive combustion ignitions accomplished through the use of mechanical reed valves that allowed fresh air charge to be drawn into the combustion chamber. The timing of the reed valve opening was pegged to the acoustical frequency (organ pipe modes) of the combustion chamber, which consisted of a central ignition region joined to an exhaust duct. Thus, the operating parameters of the engine were fixed with engine size; only narrow ranges of thrust level variation are possible in such an engine. An increase or decrease of thrust can only be made through changes in engine internal geometry. Ever since the first occurrence of pulsejets, these engines have been considered for other applications including full scale aircraft propulsion. One of the major obstacles in the early development of the pulsejet for wider applications was the complete absence of a theoretical approach to understanding the thermodynamic process in the combustion chamber. It was assumed that the pulsejet combustion process was similar to the steady-state Lenoir constant-volume cycle and that the frequency of the combustion pulsations could be predicted by means of steady-state acoustical wave motion. However, the efficiency of the pulsejet, as determined experimentally, was much lower than a constant-volume process would predict. We know now that the early pulsejet devices operated on an approximately constant-pressure cycle, which is known to have a lower thermodynamic efficiency than the constant-volume cycle. We have previously argued that the lack of a firm theoretical understanding of the physics and thermodynamics was primarily responsible for the failure to develop the pulsejet further for a wider range of practical applications. This argument will be discussed again later in this review.

In the meantime, the term pulsejet has become generally understood to refer to a pseudo-generic series of engines. The term "propulsive duct" is a more comprehensive descriptor encompassing a wider range of pulsed combustion engine concepts. An early series of papers by Tharjatt⁴⁻⁶ described the status of work on such devices up to 1965, and provides a guide to the early attempts to understand the physics and aerodynamics of the internal gas flows in them. Even though these early investigations were seriously handicapped by a lack of knowledge of unsteady aerodynamics and the physics of repetitive combustion, it is remarkable that the conclusions offered in Tharjatt's papers are close to what we have concluded over the past several years for the PDE concept. Specifically, it was concluded that the propulsive duct engine concept should theoretically be capable of any desired level of thrust per unit area, with a corresponding reduction in specific fuel Valveless operation was also consumption. investigated and shown to offer a route to eliminating the dependency on fixed acoustical frequencies tied to a given chamber geometry. Figure 1 is representative of the valveless propulsive duct conceptualized by Tharjatt. Further, it was shown that the use of feedback techniques via multiple tube arrangements. which may not be practical from an engineering standpoint, leads to the possibility of very high frequency operation beyond the audible range. This would result in near silent operation. Finally, it was concluded that the propulsive duct should be capable of supersonic operation, and a Mach 3 engine was conceptualized; a schematic of this supersonic concept is shown in Figure 2.

Somewhat later, in a 1982 report by Kentfield,⁷ the pulsejet was analyzed for predicted flight performances based on well established experimental test-stand data and available theoretical studies.⁸ The results were compared against other engine alternatives suitable for small, high subsonic speed flight vehicles. The predicted performance for valveless engine configurations was shown to be highly competitive with turbojets at high subsonic Mach numbers. Actual flight tests with a drone type aircraft at Mach 0.85 showed increased performance over predicted performance values due possibly to a combination of increased air-breathing, increased intake density, and a ram effect superimposed on the pulsejet cycle. Conclusions from these studies include suggestions that valveless pulsejet performance could be comparable and, in some cases, exceed that of turbojet engines. A strong point was made concerning the low cost, simplicity and relatively high thrust-to-weight ratio of pulsejets when compared with turbojets.

The main reason for including the preceding review of pulsejets and propulsive ducts is to draw attention to the similarity between the early conclusions concerning the future performance expectations of pulsejets and the conclusions drawn to date concerning expected PDE performance. As mentioned above, we believe a primary reason that such devices have not been pursued in the past is that adequate analysis and evaluation tools did not exist at the time to help understand the complexities of pulsed operation. Modern CFD techniques now allow a comprehensive analysis of the internal and external flows associated with pulsed propulsion devices. It may well be more than just an interesting exercise to re-examine the pulsejet engines using present day CFD tools, and to compare the results with those from similar PDE studies.

# 3. Constant Volume Combustion and Early Pulsed Detonation Studies

## Constant Volume Combustion

A constant volume combustion process is known to have a higher thermodynamic efficiency than a constant pressure combustion process. Constant volume combustion was adopted very early for use in gas turbine engine development, and the first gas turbine engines in commercial use were based on the constant volume cycle. Jet propulsion engines were one of the applications of the constant volume cycle (or explosion cycle), which was explored in the late 1940s.⁸ Although the explosion cycle operates at a larger pressure variation in the combustion chamber than in a pulsejet, the cycle actually realized in these engines was not a fully constant volume one since the combustion chamber was open ended.9 In Reference 8 the maximum pressure ratio measured in an explosion cycle engine was 3:1, whereas the pressure ratio for the same mixture under the

assumption of a constant volume cycle would be 8:1. Also, this early engine was limited by the available cycle frequency, which in turn is limited by the reaction rate. A simple calculation⁸ showed that if the combustion time could be reduced in this engine from 0.006 sec to 0.003 sec, the thrust per pound of fuel-air mixture would increase 100%. Thus, a propulsion device based on an explosion-cycle has two main disadvantages:

- Constrained volume combustion (as distinguished from constant volume combustion) does not take full advantage of the pressure rise characteristic of the constant volume combustion process.
- The frequency of the explosion cycle is limited by the reaction rate, which is only slightly higher than the deflagrative combustior. rate.

The main advantage of the constant pressure cycle is that it leads to engine configurations with steady state processes of fuel and oxidizer injection, combustion, and expansion of the combustion products. These stages can be easily identified and the engine designer can optimize them on the basis of relatively simple steady state considerations.

#### Pulsed Detonation Studies

There have been numerous attempts in the past to take advantage of detonative combustion for engine applications. The following is a brief description of some of the most relevant past experimental and analytical studies of pulsed detonation.

The Work of N. Hoffmann. The first reported work on intermittent detonation is attributed to Hoffmann¹⁰ in 1940. Hoffmann's experiments on intermittent detonation were carried out in a long, narrow tube mounted on a test stand using acetyleneoxygen and benzine-oxygen fuel mixtures. Water vapor was added to prevent the highly sensitive acerylene-oxygen mixture from premature detonation. Hoffmann pointed out the importance of the detonation initiation (spark plug) location in reference to tube length and diffuser length. It was found that a continuous injection of the combustible mixture leads to only a narrow range of ignition frequencies that will produce an intermittent detonation cycle. These frequencies are governed by the time required for the mixture to reach the igniter, time of transition from deflagration to detonation, and time of expansion of the detonation products. Hoffmann attempted to find the optimum cycle frequency experimentally. It was

discovered that detonation-tube firing occurred at lower frequencies than the spark-plug energizing frequencies, indicating that the injection flow rate and ignition were out of phase. Wartime events prevented further work by Hoffmann and his co-workers.

The Work of Nicholls and Co-Workers. A substantial effort in intermittent detonation research was made by a group headed by J. A. Nicholis¹¹⁻¹² of the University of Michigan beginning in the early 50's. The most relevant work concerns a set of experiments carried out in a six foot long detonation tube.¹¹ The detonation tube was constructed from a one inch internal diameter stainless steel tube. The fuel and oxidizer were injected under pressure from the (closed) left end of the tube and ignited at some distance down stream. The tube was mounted on a pendulum platform, suspended by support wires. Thrust for single detonations was measured by detecting tube (platform) movement relative to a stationary pointer. For multi-cycle detonations, thrust measurement was achieved by mounting the thrust end of the tube to the free end of a cantilever beam. In addition to direct thrust measurements, the temperature on the inner wall of the detonation tube was measured. Fuel mixtures of hydrogen/oxygen, hydrogen/air, acetylene/oxygen and acetylene/air mixtures were used. The gaseous oxidizer and fuel were continuously injected at the closed end of the detonation tube and three fixed flow rates were investigated. Under these conditions, the only parameters that could be varied were the fuel/oxidizer ratio and frequency of ignition. A maximum gross thrust of ~ 3.21b was measured in the hydrogen/air mixture at the frequency of ~ 30 detonations per The most promising results were second. demonstrated for the H2/air mixture, where a fuel specific impulse of  $I_{SP} = 2100$  sec was reached. The maximum frequency of detonations obtained in all experiments was 35 Hz. The temperature measurements on the inner wall showed that for the highest frequency of detonations the temperature did not exceed 800° F. This temperature is approximately the mean between the temperature of the injected gasses and the detonation wave temperature averaged over the cycle frequency.

In their later work, 13-15 the University of Michigan group concentrated on development of the Rotating Detonation Wave Rocket Motor. No further work on the pulsed detonation cycle was pursued.

The Work of L. J. Krzycki. In a setup very similar to Nicholl's, L. J. Krzycki¹⁶ performed an

experimental investigation of intermittent detonations with frequencies up to 60 cps. An attempt was also made to analyze the basic phenomena using unsteady gas dynamic theory. Krzycki's attempt to analyze the basic phenomena relied on wave diagrams to trace characteristics, assumptions of isentropic flow for detonation and expansion, and incompressible flow for mixture injection processes. The most convincing data from the experiments are the measurement of thrust for a range of initiation frequencies and fuel mixture flow rates. Unfortunately no direct pressure measurement in the device is reported, so there is only indirect evidence of the nature of the process observed.

The basic test stand used by Krzycki is very similar to that used by Nicholls and his co-workers. The length of the detonation tube and the internal diameter were exactly the same as those in Nicholl's experiments. Figure 3 presents a schematic of the experimental apparatus containing common, generic elements of the Hoffmann-Nicholls-Krzycki experiments. A propane/air mixture was continuously injected through a reversed-flow diffuser for better mixing, and was ignited at the same distance as in the Nicholls' experiments from the injection point by an automobile spark plug. The spark frequency was varied from 1 to 60 cps. The spark plug power output was varied inversely with the initiation frequency, and at the frequency of 60 cps was only 0.65 Joule. This value is too low for direct initiation of a detonation wave by the spark. and consequently all of the experiments must have been based on transition from deflagration to detonation. According to experimental data and theory,¹⁷ direct initiation of a mixture of propane/air at the detonability limits requires an energy release on the order of 10⁶ Joules. Thus, we conclude that the required deflagration-detonation transition region length in Kryzcki's experiments would have been prohibitively large for the propane/air mixture. It follows that in all of the experiments a substantial part of the process was deflagrative. This resulted in low efficiency and negligible thrust. Krzycki repeated Nicholls' experiments using basically the same rates of injection of the detonable mixtures. Krzycki's experimental results are very well documented. allowing us to deduce a clear picture the physical processes occurring in the tube. The author arrived at the conclusion that thrust was possible from such a device but practical applications did not appear promising. It is unfortunate that, possibly based on Krzycki's extensive but misleading results, all

experimental work related to the pulsed detonation engine concept stopped at this time.

Russian Work on Pulse Detonation Devices. A review of the Russian literature has not uncovered work concerning applications of pulsed detonation devices to propulsion. However, there are numerous reports of applications of such devices for other purposes such as for producing nitrogen oxide¹⁸ (an old Zeldovich idea to bind nitrogen directly from air to produce fertilizers) and as rock crushing devices.¹⁹

Korovin et al.¹⁸ provide a most interesting account of the operation of a commercial detonation reactor. The main objective of this study was to examine the efficiency of thermal oxidation of nitrogen in an intermittent detonative process as well as an assessment of such technological issues as the fatigue of the reactor parts exposed to the intermittent detonation waves over a prolonged time. The reactor consisted of a tube with an inner diameter of 16 mm and length 1.3 m joined by a conical diffuser to a second tube with an inner diameter of 70 mm and length 3 m. The entire detonation reactor was submerged in running water. The detonation mixture was introduced at the end wall of the small tube. CH₄, 0₂ and N₂ comprised the mixture composition and the mixture ratios were varied during the continuous operation of the reactor. The detonation wave velocity was measured directly by piezoelectric sensors placed in the small and large tubes. The detonation initiation frequency in the reactor was 2-16 Hz. It is reported that the apparatus operated without significant maintenance for 2000 hours.

Smirnov and Boichenko¹⁹ studied intermittent detonations of gasoline-air mixtures in a 3 m long and 22 mm inner diameter tube operating in the 6-8 Hz ignition frequency range. The main motivation for this work was to improve the efficiency of a commercial rock crushing apparatus based on intermittent detonations of the gasoline/air mixtures.²⁰ The authors investigated the dependence of the transitional region length from deflagration to detonation on the initial temperature of the mixture.

As a result of the information contained in the Russian reports, we conclude that reliable commercial devices based on intermittent detonations have been constructed and operated.

Pulsed Solid Explosion Studies at JPL. Work at the Jet Propulsion Laboratory (JPL) by Back. Varsi and others²¹⁻²⁴ concerned an experimental and

theoretical study of the feasibility of a rocket thruster based on intermittent detonations of solid explosive for propulsion in dense or high-pressure atmospheres of certain solar system planets. The JPL work was directed at very specific applications: however, these studies also addressed more general key issues concerning intermittent propulsion devices such as propulsion efficiency. In this work, a Deta sheet type C explosive was detonated inside a small detonation chamber attached to nozzles of various length and geometry. The nozzles, complete with firing plug, were mounted in a containment vessel that could be pressurized with mixtures of various inert gases from vacuum to 70 atm. The apparatus directly measured the thrust generated by single detonations of a small amount of solid explosive charge expanding into conical or straight nozzles. Thrust and specific impulse were measured by a pendulum balance system.

The results obtained from the JPL experimental study of an explosively driven rocket led to the following conclusions. First, rockets with long nozzles show increasing specific impulse with increasing ambient pressure in CO2 and N2. Short nozzles, on the other hand, show that specific impulse is independent of ambient pressure. Most importantly, most of the experiments obtained a relatively high specific impulse of 250 seconds and larger. This result is all the more striking since the detonation of a solid explosive yields a relatively low energy release of approximately 1000 cal/gm compared with 3000 cal/gm obtained in hydrogen oxygen combustion. Thus, it can be concluded that the total losses in a thruster based on unsteady expansion are not prohibitive and hence, in principle, very efficient intermittent detonation propulsion systems are possible.

# 4. Description of the PDE Concept

# **Basic Principles**

A detonation process, due to the very high chemical reaction rate in the detonation wave, leads to a propulsion concept in which the constant volume process can be fully realized. In detonative combustion, a strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and fresh charge; the detonation wave functions at the same time as a valveless compressor between the fresh fuel/air mixture and the detonation products. The speed of the detonation

wave is about two orders of magnitude higher than the speed of a typical deflagration wave. Because of this, very high power densities can be created in the detonation chamber. Each detonation can be initiated independently and, depending on the chamber geometry and external flow characteristics pertaining to a particular device, a wide range of frequencies is possible. There is no theoretical restriction on the range of operating frequencies: they are uncoupled from any acoustical chamber resonance. The independence of detonation cycle frequency is the feature that most differentiates the PDE concept from the pulseiet. It is also the feature that leads theoretically to scalability of PDE configurations for a wide range of flight applications. A key physical restriction on the range of allowable detonation frequencies arises from the rate at which the fresh fuel/air mixture can be introduced into the detonation chamber. Obviously the detonation products must be discharged from the chamber before fresh charge is injected.

## First PDE Experiments

To our knowledge, the first experiments that successfully demonstrated repetitive or pulsed detonation was attainable in a propulsion-like device were carried out by Helman, Shreeve and Eidelman²⁵ at the Naval Postgraduate School in 1985-86, During these studies, several fundamentally new ideas were developed for pulsed detonation applications to propulsion. First, to overcome the energy requirements for detonation initiation, a predetonation was initiated in a small detonation tube where an oxygen rich fuel mixture could be detonated at substantially lower energies than those required for full fuel/air mixtures. Next, the experimental PDE was operated in a self-aspirating mode; the detonation exhaust gases were discharged through gasdynamic expansion and fresh air was drawn into the detonation chamber due to chamber overexpansion following detonation product exhaust. Figure 4 is a schematic of one of the variations of the PDE experimental configurations. The pre-detonation initiation tube is shown attached to a spark plug. The most important results were obtained when the fuel injection (injection was accomplished with a toroidal ring containing holes near the exhaust plane of the device) rate was timed appropriately (the lag time between the fuel/air travel to the pre-detonation port and the arrival of the pre-detonation pulse) with detonation initiation. The principle of repetitive detonation initiation and control was definitively established in these experiments. Pressure transducer traces unambigiously showed that a detonation wave was

formed in the chamber and propagated with the Mach number appropriate for the fuel-air mixture. The fuel used in the NPS experiments was ethylene and the maximum detonation frequency obtained was 25 Hz, limited only by the mechanical nature of the solenoid valve used for fuel injection control. Figures 5 and 6 are two frames from a videotape of the early NPS experiments. Figure 5 shows the experimental apparatus and Figure 6 shows the apparatus during repetitive detonation. The figures also show the fuel injector ring between the two concentric detonation chamber cylinders. It was determined that the duration of a single cycle was less than 7 msec. This means that the NPS device could have potentially operated at frequencies up to 150 Hz in the static or no flow (M = 0) case. At the time of the NPS experiments, performance extrapolations included thrust levels up to 40 lbs at 100 Hz. As described later, SAIC simulations of static operation show higher thrust levels at these frequencies due to new ideas and improvements in the PDE concept. These new ideas are incorporated in the generic PDE concept.

# The Generic PDE Device

In this section, we refer to the generic PDE device, which is represented as a small engine in Figure 7. The figure shows a schematic of the basic detonation chamber attached to the aft end of a generic aerodynamic vehicle. A combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave is shown propagating through the mixture. Also shown are air injection inlets and an important part of the device that we have termed the thrust wall. The schematic suggests a smallpayload aerodynamic vehicle; however, as we describe later, the concept can be extended to larger payloads simply by scaling up the size of the detonation chamber and possibly combining a number of chambers into one larger engine.

The geometry of the main detonation chamber, which determines the propulsion efficiency and the duration of the cycle (frequency of detonations), is a key issue for the PDE concept. Since the fresh charge for the generic engine is supplied from the external flow field, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. Following is a partial list of the broad range of physical processes requiring simulation in order to model the complex flow phenomena associated with the detonation engine performance: 1. Initiation and propagation of the detonation wave inside the chamber:

2. Expansion of the detonation products from the chamber into the air stream around the chamber at flight Mach numbers:

3. Fresh air intake from the surrounding air into the chamber;

4. The flow pattern inside the chamber during post-exhaust pressure buildup, which determines the strategy for mixing the next detonation charge;

5. Strong mutual interaction between the flow inside the chamber and the external flow surrounding the engine.

All of these processes are interdependent, and interaction and timing are crucial to engine efficiency. Thus, unlike simulations of steady state engines, the phenomena described above cannot be evaluated independently. It is a challenging computational problem to resolve the flow regime inside the chamber to account for nozzles, air inlets, etc., and at the same time resolve the flow outside and surrounding the engine, where the flow regime varies from high subsonic, locally transonic and supersonic.

The single most important issue is to determine the timing of the air intake for the fresh charge that leads to repetitive detonations. It is sufficient to assume inviscid flow for the purpose of simulating the expansion of the detonation products and fresh air intake. The assumption of inviscid flow makes the task of numerically simulating the PDE flow phenomena somewhat easier than if a fully viscous flow model were employed. The effects of viscous boundary layers are negligible for the size of the generic device studied in this work, with the exception of possible boundary layer effects on the valve and inlet geometries discussed subsequently.

SAIC has performed an extensive study of the generic PDE over a wide range of operating conditions for a wide range of device configurations.²⁶⁻³⁰ Numerical simulations of the unsteady flow and detonation processes, in addition to theoretical analysis, have resulted in an understanding and an approach to analyzing and evaluating PDE propulsion performance. Although the basic concept remains the same, there are subtle differences in the PDE manifestation for particular applications. These will be described subsequently. Details of the

numerical simulations (including assumptions used for detonation wave physics and chemistry, use of adaptive unstructured grids and Godunov methods for the Euler gasdynamic equations) are given elsewhere.²⁶⁻³¹ The following section is a summary of the results from numerical and theoretical studies of various applications and operating regimes for the generic PDE.

# 5. Operating Regimes

In this section we summarize the results of several applications and operating regimes identified in the course of our studies of the PDE concept.

#### M = 0 Static Operation

Under static conditions, M = 0, the PDE is completely self-aspirating. Such was the case for the early NPS PDE studies. Without an external airstream, the PDE must obtain fresh air charge as a result of the detonation chamber overexpansion immediately following exhaust of air-fuel detonation products. To the lowest approximation, the available time for chamber refill due to this overexpansion process is, for a given chamber geometry and fuel-air combination, directly proportional to its length. For M = 0 operation, we assume that the PDE configuration does not contain any air inlets other than the aft end of the device or, if inlets are present, they are closed. Simulations²⁶ of M = 0 PDE operation show that the time required for fresh air refill for a device with dimensions equivalent to the NPS experimental apparatus is on the order of 6-7 msec. This agrees with the NPS results and means that a maximum frequency of 150 Hz should be possible. Simulated thrust levels were higher than those estimated from scaling the NPS results. This is due to a new operating scenario that was uncovered by the simulations: detonation initiation from the aft end results in the kinetic energy of the shock wave being transferred to the thrust wall. The amount of extra thrust obtained from this mode of operation is considerably larger than that expected from gasdynamic expansion following detonation initiation at the thrust wall. The physical reason for this is found in the shock wave energetics.

The importance of M = 0 PDE performance is associated with applications of the concept for full scale aircraft propulsion, including rollout and takeoff. Simple scaling laws derived from the numerical simulation results and described later, show that M = 0 thrust levels can be large (tens of thousands of lbs.) depending on the engine cross sectional area, length and detonation frequency.

#### Subsonic-Transonic Operation

PDE operation in the subsonic-transonic regime differs from the static case in that the self aspiration effect decreases with increasing Mach number. This is due to the formation of a rear stagnation point behind the exhaust plane above certain Mach numbers for given geometries. The stagnation region prevents complete detonation product exhaust and subsequent fresh charge injection. For example, over the Mach number range,  $0^+ < M < 0.5$ , full to partial self aspiration occurs; the effect decreases rapidly for Mach numbers above 0.5, resulting in the need for some type of air inlet or air intake valve configuration. Simulations of various detonation chamber and air inlet geometries^{26,28} have shown that, depending on the free-stream Mach number, appropriate shaping of the air inlet geometry and total inlet area leads to propulsion engines that are attractive for certain applications. We present here a summary of studies²⁸ carried out in an attempt to find a satisfactory PDE configuration for a small missile engine (the final configuration was not optimum, by any means, since all variables were not parametrically varied).

A PENAID-type missile with associated mission requirements such as range, speed, system weight, total thrust, and specific fuel consumption was used for the study. The detonation chamber dimensions were 6 cm diameter and 9 cm length with a cylindrical cross-section. A schematic of PDE integration into such a missile configuration is shown in Figure 8. The simulations showed that, for practically all cases involving simple inlets (circumferential slits around the cylindrical cross-section), the thrust data were independent of whether the inlets open intermittently (valved) or remain open during operation. This is due partially to the very short time that detonation products have to escape from the inlets thereby adding to negative thrust; this negative thrust, determined in the simulations, is negligible compared to the total integrated thrust. The thrust data do indicate a strong dependence on external flow conditions, e.g., Mach number. The Mach number plays a role in the wave drag; the details of valve and inlet configuration geometry figure prominently in the total wave drag. These studies answered an important question: can an air inlet be configured such that the inlet remains open over the full flight regime and operating conditions? The answer is "yes." Thus, at least for this regime, the PDE offers the possibility of a nomoving-parts propulsion device. For the PENAID missile under discussion here, a configuration was found that operates between 0.2 < M < 0.9 with open air inlets.

The following performance data were obtained for the PENAID missile configuration. For M=0.8 at sea level altitude and a detonation frequency, f=100Hz, the PDE characteristics are:

Thrust	
Fuel flow rate	0.025 lb./sec.
Fuel weight for 12 min	
Oxygen weight	1.8 lb
Fuel for detonation tube	
Total oxygen and fuel weight	
Total engine weight	
Specific fuel consumption	1.14 lb./(lb.*hr.)

Assuming the PDE device geometry is kept fixed, a higher detonation frequency will result in a linear increase in thrust and fuel flow rate at the same specific fuel consumption. For example, if the detonation frequency is increased to 200 Hz, the performance data are:

Thrust	
Fuel flow rate	0.05 lb/sec.
Fuel weight for 12 min	
Oxygen weight	
Fuel for detonation tube	1.2 lb.
Total oxygen and fuel weight	
Total engine weight	
Specific fuel consumption	1.14 lb./(lb.*hr.)

At lower Mach numbers, M=0.5, the maximum operating frequencies for constant thrust will be lower since the external dynamic pressure responsible for supplying fresh air to the chamber is also lower. For the device under consideration here, the maximum frequency is 250 Hz. For a frequency of 100 Hz:

Thrust	
Fuel flow rate	0.025 lb/sec.
Fuel weight for 12 min	
Oxygen weight	1.8 lb.
Fuel for detonation tube	0.6 lb.
Total oxygen and fuel weight	
Total engine weight	
Specific fuel consumption	0.9 lb./(lb.*hr.)

Again, if the frequency is increased the thrust will increase linearly; operation at 200 Hz yields:

Thrust	
Fuel flow rate	0.05 lb/sec.
Fuel weight for 12 min	
Oxygen weight	
Fuel for detonation tube	1.2 lb.
Total oxygen and fuel weight	-0.8 lb.
Total engine weight	54.2 lb.
Specific fuel consumption	_10.9 B./(lb.*hr.)

The examples of the PDE device performance given above are based on point design conditions arising from the simulations reported earlier.²⁶ They cannot be extrapolated with any degree of reliability to other conditions or configurations. We conclude. however, that the performance computed for the indicated device is encouraging from the point of view of thrust, thrust control, simplicity of the device (no moving parts), and specific fuel consumption (SFC). The specific fuel consumption computed above is competitive with present day small turbojet engines. The SFC for a PDE could be significantly lower than for small turbojets (SFC's for small turbojets are in the range of 1.8-2.0 lb./(lb.*hr)). Thus, for a given mission and vehicle, a PDE propulsion unit may be more fuel efficient, resulting in increased range. Moreover, if the expected thrust control in PDE's is realizable, it may be possible to produce propulsion units that can slow down, loiter and maneuver, and finally accelerate to full thrust again rapidly. Depending on the detonation frequency, which determines the thrust for all other conditions fixed, the thrust-to-weight ratio for the PDE can be as high as 20:1. This value is certainly competitive with other propulsion concepts.

The results of the scaling studies at subsonictransonic speeds lead to scaling laws that can be used to predict the performance of PDE's over some range of parameters, assuming that other parameters are held fixed. For example, holding the external Mach number and basic chamber and inlet geometry fixed suggests that the thrust at constant specific fuel consumption produced by the PDE scales as:

Thrust = 
$$T_1 * \left(\frac{v}{v_1}\right) * \left(\frac{f}{f_1}\right)$$
,

where  $T_1$ ,  $(v/v_1)$  and  $(f/f_1)$  are the thrust computed for a chamber of volume  $v_1$  operating at frequency  $f_1$ , the ratio of a new volume to  $v_1$  and the ratio of the new frequency to  $f_1$ , respectively. Thus, thrust should scale linearly with the parameter  $(v/v_1) * (f/f_1)$  over some range of this parameter. Departure from this linear variation may occur due to the following argument: First, since volume is proportional to the product of cross-sectional area and length,  $v \sim r^2 l$ , (r ~ detonation chamber radius, 1 ~ chamber length) physical limits will be placed on r and l; if r is too small (less than 1 cm), a detonation will not be sustainable and if I is too small (less than 10 cm), it may be difficult to mix fuel and air effectively. Using the thrust relation established above, we make the following observations. For a PDE device producing 100 pounds thrust at 100 Hz, doubling the frequency and increasing the volume by a factor of 5 yields a thrust level of 1000 pounds. Assuming that the aspect ratio of the chamber (chamber length to radius) is fixed, this would require an engine only 25.5 cm in diameter and 25.5 cm in length. Of course, the relation between thrust and  $(v/v_1) * (f/f_1)$ cannot be believed over too wide a range of parameters; but, it does serve to point out the flexibility permitted by the PDE concept.

The subsonic-transonic simulations showed that the timing of the fresh air refilling required to recharge the chamber for subsequent detonations is a strong function of the details of the valve and inlet geometry, the expansion of the combustion products, the resulting over-expansion of the chamber flow, and the external flow regime and interaction of the external flow with the internal flow. For subsonic flight, Mach 0.2-0.9, the fresh air entering the chamber comes from two separate principal flow processes; one comes from the flow through any valve or inlet and the other comes from the selfaspiration or reverse flow from the aft end of the chamber due to strong over-expansion. All these processes are interdependent and, in order to search for a given performance in a given device, require variation of many parameters. The simulation results obtained to date provide an understanding of the effects caused by variation of the above-mentioned parameters. With the information available, we conclude that a PDE propulsion unit can be optimized (although no optimization studies were carried out) for a given flight regime. The decrease in thrust with increasing Mach number has been described earlier to result from increased wave drag produced by the inlet geometry. Optimization of the inlet geometry could help to eliminate a large part of the wave drag. The simulation data can be used to determine the detonation frequency at a given Mach number yielding constant thrust. For example, for a constant thrust level of 90 pounds, the required detonation frequency varies from 84 Hz at M-0.0 to 140 Hz to M=0.8. In a similar fashion, we can obtain parametric variations of other important aspects of PDE performance, such as minimum time for refill at given Mach number as a function of air inlet opening. To find an optimum configuration that satisfies given performance over a wide flight regime requires a more extensive simulation study. It was mentioned earlier that the simulations presented here were carried out under the assumption of inviscid flow: boundary layer effects were not included. Boundary layers are only significant for the air inlets and valves.

There is an important feature of PDE operation for missiles such as the one considered here: if the expected thrust control is attainable, then the detonation frequency can be varied to produce constant thrust over a given flight envelope, or the frequency can be varied to make the missile slow down, loiter and maneuver, and finally ramp back to full thrust more or less instantaneously. Since each detonation is controlled separately, this capability should depend only on on-board electronics and power.

#### Supersonic-Hypersonic Operation

Numerical simulations have been carried out for PDE operation in the supersonic and hypersonic flight regimes.²⁹ The results of these simulations show that there are differences when compared with the lower speed regimes. The main difference, with respect to operating characteristics, is the air intake inlet must be more carefully considered. For supersonic and hypersonic flow air scoops may be required, adding to wave drag. For PDEs enclosed in a duct connected to upstream air inlets, pressure recovery from free-stream to duct inlet and finaly to PDE inlet must be accounted for. To date, several detailed studies have been carried out for the higher speed regimes; a supersonic, M = 2 PENAID missile engine simulation and a sizing analysis for a large engine operating in the supersonic to hypersonic flight regime.

Supersonic M = 2 PDE The M = 2 PENAID missile study has been reported earlier²⁹ and, representative simulation results are shown on the cover of this review paper. It was found that a fixed air inlet geometry could be conceptualized to operate over the Mach number range, 0.5 < M < 2. By this is meant the timing for fresh air charge allowed a detonation frequency of 200 Hz at M = 2 and this, in turn, means that any lower frequency is allowable at any other Mach number below M = 2. Detonation frequency control may result in enhanced control over missile flight trajectory since a constant thrust, a cruise-dash-loiter-cruise or any other tailored thrust profile can be realized. We conclude that supersonic PDE operation appears possible for missile applications, and there may also be advantages for longer range air-to-air missiles due to enhanced propulsion energy management capability.

Sizing Analysis for Large PDEs A zeroth order sizing analysis has been carried out to define and size a PDE configuration satisfying high thrust level requirements from sea level to 30,000 ft altitude and for a flight trajectory including the Mach number range, 0 < M < 4. The nominal target thrust level was 50,000 pounds and we assume that the aircraft/engine integration requires an air inlet duct to deliver fresh air to the PDE. We sketch here an outline of the analysis and give the main results.

We use the simple scaling argument given and use the thrust data obtained from simulations of the smaller missile configurations. We also assume a nominal detonation frequency, f = 100 Hz. We then establish the following baseline PDE performance operating point. At  $3x10^4$  ft. altitude for M = 2 the thrust in pounds per cubic meter detonation chamber volume is  $2.5x10^4$  lbs/m³. Therefore, an engine producing  $5x10^4$  pounds thrust requires a 2 m³ chamber volume. The sizing study answers the following questions : what is the size and shape of the detonation chamber, required detonation chamber air inlet areas, frequency variation range, and effect of air inlet duct losses on a PDE developing the nominal target thrust?

We denote free-stream conditions by ()0, PDE air inlet conditions by ()2, and PDE detonation chamber conditions by ()3. To account for air inlet duct losses we define the ratio of PDE inlet total pressure to free-stream total pressure by C or:

$$\frac{P_{t_2}}{P_{t_0}} = C.$$
 (1)

The simplest condition to assume for the PDE air inlet is choked flow. Although this is not valid over much of the required regime, certainly not for subsonic external flow, it will result in a pessimistic bound on the sizing parameters. Using well known gasdynamic analysis³² the static and total pressures and density at the PDE inlet can be found as:

$$P_{1_{1}} = CP_{0} \left( 1 + \frac{M_{0}^{2}}{5} \right)^{\frac{1}{2}}$$
(2)  
$$P_{2} = P_{0} C \left( \frac{5 + M_{0}^{2}}{6} \right)^{\frac{7}{2}}$$
(3)

$$\rho_2 = 1.2 \text{ C } \rho_0 \left(\frac{5+M_0^2}{6}\right)^{\frac{7}{2}} \left(\frac{5+M_0^2}{5}\right)^{\frac{1}{4}} (4)$$

The mass flow rate through the engine inlet is:

$$m = \rho_2 U_2 A_2$$
, (5)

and, using equations 2-4, gives:

$$\dot{m}_{2} = A_{2} \left( 1.2 \gamma C^{2} \left( \frac{P_{0}^{2}}{RT_{0}} \right) \left( \frac{5 + M_{0}^{2}}{6} \right)^{7} \left( \frac{5 + M_{0}^{2}}{5} \right)^{-1} \right)^{\frac{1}{2}} (6)$$

An equation for the area ratio A2/A3 can be found as:

$$\frac{A_2}{A_3} = \frac{216}{125} M_3 \left( 1 + \frac{M_3^2}{5} \right)^5.$$
(7)

where  $M_2$  has been set equal to unity. Our analysis does not include the thermodynamics of the PDE cycle; the sizing analysis is based totally on a determination of the allowable detonation frequencies in the PDE chamber. We obtain a bound on allowable flow speeds in the detonation chamber by requiring the detonation chamber to refill in the time between detonations. We further require the fuel to mix and flow with the mean speed U₃ from inlet to chamber exit, a distance equal to L, the chamber length. Thus, we obtain the relation  $U_3 = f L$ , where f is the detonation frequency. A calculation of M₃ gives:

$$M_{3} = \frac{U_{3}}{U_{3}} = f L \sqrt{\frac{\rho_{3}}{\gamma P_{3}}}.$$
 (8)

Since the total pressure in the chamber equals the total pressure at the PDE inlet, the static pressure in the chamber as a function of chamber Mach number, given in Eq. (8), can be related to the free-stream static pressure as follows:

$$P_{3} = CP_{0} \left( 1 + \frac{M_{0}^{2}}{5} \right)^{\frac{7}{2}} \left( 1 + \left( \frac{A_{2}}{A_{3}} \right) C_{1} \frac{Lf}{\gamma} \frac{1}{5P_{3}} \right)^{\frac{7}{2}} (9)$$

where C1 is:

$$C_{1} = \left(1.2 \gamma C^{2} \left(\frac{P_{0}^{2}}{RT_{0}}\right) \left(\frac{5+M_{0}^{2}}{6}\right)^{7} \left(\frac{5+M_{0}^{2}}{5}\right)^{-1}\right)^{\frac{1}{2}}$$

Another relation between  $P_3$  and  $P_0$  as a function of  $M_3$  can be given as:

$$P_{3} = CP_{0} \left( 1 + \frac{M_{0}^{2}}{5} \right)^{\frac{1}{2}} \left( 1 + \frac{M_{3}^{2}}{5} \right)^{\frac{1}{2}}$$
(10)

Equations (7), (9) and (10) form a closed set for the variables P3, A2/A3 and M3 with parameters C, P0, M₀, L, f, T₀, g, and R, the universal gas constant. The volume, V, of the detonation chamber is given by the product,  $V = L A_3$ . Thus, for a given volume, Equations (7), (9), and (10) can be solved for  $A_2/A_3$ versus L or A3. Figure 9 gives a schematic of the PDE showing the air inlet gap width "l" resulting in an inlet area of A₂, the detonation chamber length L. and the chamber cross-sectional area A3. We choose first a square chamber cross-section; the total inlet area is therefore given by the expression  $A_2 = 41$  ( A3) $^{1/2}$ . Results obtained from solving Eqs. (7), (9) and (10) are presented in Figure 10 for the baseline conditions. There, the area ratio, A2/A3, is given versus A3. If A3 is chosen to be  $1.2 \text{ m}^2$  then the length of the PDE is 1.67 m and the engine inlet opening is 15 cm. Also shown in Figure 10 is the effect of C, the pressure recovery factor. The range of values chosen for C was: 0.7 < C < 1. The effect of C is negligible for the range studied here. More realistic estimates for duct losses resulting in much lower values of C at high Mach numbers may well have a more pronounced effect. If the cross-sectional area is held fixed, Eqs. (7), (9) and (10) yield the results shown in Figure 11. The curve cannot be extended below M = 1 since the assumption of choked flow at A2 is not valid; indeed, the assumption is not valid somewhere before M = 1 due to duct loss effects. The results from Figure 11 can be translated into inlet gap widths as shown in Figure 12. Figure 12 shows a range of inlet openings that, when compared with the total engine length, is equivalent to 8-12% of the total engine length. Below M = 1, a combination of self- aspiration and recharge from air inlets must be considered depending on Mach number. For self-aspiration at M = 0, the ratio of A2/A3 is unity; the inlets are not needed. For Mach numbers between zero and say, 0.5, partial air inlet opening is required and for Mach numbers greater than 0.5, the inlets will be fully open. For a fixed PDE configuration, varying the detonation frequency changes the thrust according to the scaling law given

earlier. Figure 13 shows the effect of frequency variation on  $A_2/A_3$ . Recall the design point was at f = 100 Hz. Figures 10-13 contain the answers to the questions asked during this sizing analysis; reasonable physical sizes for PDEs developing high thrust levels are predicted. A more rigorous analysis is required to validate these predictions.

To conclude this section, we show the variation of thrust as a function of chamber volume derived from the baseline conditions used above. Figure 14 gives this variation and, if a circular cross-section engine is considered, varying the baseline thrust yields engine sizes shown in Figure 15. For example, a 45,000 pound thrust engine 1.67 meters long has an engine diameter of 1.2 meters. This number is not unreasonable and compares well with sizes of current turbojet engines. As mentioned, a more detailed analysis of PDE performance is needed, including an effective "steady state" thermodynamic cycle model, to validate the PDE as a credible alternative for high thrust propulsion engines.

# 6. Summary and Conclusions

Past and recent studies have shown that pulsed propulsion devices theoretically offer significant advantages over steady state engines. The advantages range from the possibility of a no-moving-parts configuration to high thermodynamic efficiency constant volume cycles. Numerical simulations, theoretical analysis and scaling studies of PDE performance have shown applicability to many different flight vehicles including small missiles and full scale aircraft. Configurational flexibility offered by the PDE include non-circular cross-sectional detonation chambers allowing consideration of unique aircraft/engine integration possibilities. Thus, the numerical simulation and theoretical studies of PDE performance to date have shown interesting and important propulsion applications.

In order to realize the PDE potential, experimental data is required to validate the theoretical predictions and, most importantly, provide a proof of principle demonstration of the PDE mode of operation described in this paper, namely, detonation initiation from the exhaust end of the engine. The principle of sustained repetitive detonation has already been demonstrated in the NPS experiments, but, this took place at the inner thrust wall. The next step in the development of practical PDE devices requires a comprehensive experimental program where such key
issues as detonation initiation, air inlet design including boundary layers, fuel/air injection and mixing can be studied and understood. In addition, thrust measurements, both static and in an external flow are required to validate the numerical and theoretical predictions. Plans for such an experimental program are presently under consideration.

#### Acknowledgments

The work reviewed in this paper received partial support from the Defense Advanced Research Projects Agency under the following contracts: N66001-88-D-0088 (NOSC) and F49620-89-C-0087 (AFOSR). The authors would like to acknowledge Robert Pegg and Larry Hunt of NASA LaRC, John Leingang of the Wright Aeronautical Laboratory, and Major David Neyland of DARPA for their interest and for stimulating discussions concerning PDE applications. Over the course of these studies, SAIC colleagues Ed Rogan, Adam Drobot, Isaac Lottati and Ahron Freidman provided support and advice on many of the technical areas required to carry out this work.

<u>Note Added in Proof</u> The authors would like to thank Mr Robert Pegg of NASA's Langley Research Center for bringing their attention to early documents and reports describing pulsed detonation engine research.

#### References

- Scott, William B., "Renewed Interest in Pulsed Engines May be Linked to Black Aircraft," Aviation Week, 28 October 1991 (68-69).
- 2. Scott, William B., "New Evidence Bolsters Reports of Secret, High-speed Aircraft," Aviation Week, May 11, 1992 (62-63).
- Wolfe, M.O.W., Luck, G.A., "Pressure Measurements on the F.Z.G. 76 Flying Bomb Motor," Technical Note No. EA237/1, Royal Aircraft Establishment, Farmborough, 1944.
- 4. Tharratt, C.E., "The Propulsive Duct," Aircraft Engineering, November 1965, (327-337).
- 5. Tharratt, C.E., ibid, December 1965, (359-371).
- 6. Tharratt, C.E., ibid, February 1966, (23-25).
- Kentfield, J.A.C., "Valveless Pulsejets and Allied Devices for Low Thrust, Subsonic, Propulsion Applications," AGARD Conf -Proc. No. 307, Ramjets and Rockets for Military Applications, March (1982).
- 8. Zipkin, M.A. and Lewis G.W., "Analytical and Experimental Performance of an

Explosion-Cycle Combustion Chamber of a Jet Propulsion Engine," NACA TN-1702. September 1948.

- Shultz-Grunow, F., "Gas-Dynamic Investigation of the Pulse-Jet Tube," NCA TM-1131, February 1947.
- Hoffmann, N., "Reaction Propuls a by Intermittent Detonative Compution," Ministry of Supply, Volkenrode Translation, 1940.
- Nicholls, J.A., Wilkinson, H.R. and Morrison, R.B., "Intermittent Detonation as a Thrust-Producing Mechanism," Jet Propulsion, 27, 534-541, 1957.
- Dunlap, R., Brehm, R.L. and Nicholls, J.A., "A Preliminary Study of the Application of Steady State Detonative Combustion of a Reaction Engine," ARS J., 28, 451-456, 1958.
- Nicholls, J.A., Gullen, R.E. and Ragland K.W., "Feasibility Studies of a Rotating Detonation Wave Rocket Motor," Journal of Spacecrafts and Rockets, 3, 893-898, 1966.
- Adamson, T.C. and Olsson, G.R., "Performance Analysis of a Rotating Detonation Wave Rocket Engine," Astronautica Acta, 13, 405-415, 1967.
- 15. Shen, P.I. and Adamson, T.C., "Theoretical Analysis of a Rotating Two-Phase Detonation in Liquid Rocket Motors," Astronautica Acta, 17, 715-728, 1972.
- Krzycki, L.J., Performance Characteristics of an Intermittent Detonation Device, Navweps Report 7655, U.S. Naval Ordnance Test Station, China Lake, California 1962.
- Matsui, H. and Lee, J.H., "On the Measure of the Relative Detonation Hazards of Gaseous Fuel-Oxygen and Air Mixtures," Seventeenth Symposium (International) on Combustion, 1269-1280, 1978.
- Korovin, L.N., Losev, A., S.G. Ruban and Smekhov, G.D. "Combustion of Natural Gas in a Commercial Detonation Reactor," Fiz. Gor. Vzryva, Vol. 17, No. 3, p. 86, 1981.
- Smirnov, N.N. and Boichenko, A.P., "Transition from Deflagration to Detonation in Gasoline-Air Mixtures," Fiz. Gor. Vzryva, 22, No. 2, 65-67, 1986.
- Lobanov, D.P., Fonbershtein, E.G. and Ekomasov, S.P., "Detonation of Gasoline-Air Mixtures in Small Diameter Tubes," Fiz. Gor. Vzryva, 12, No. 3, 446, 1976.

- 21. Back, L.H., "Application of Blast Wave Theory to Explosive Propulsion," Acta Astronautica, 2, No. 5/6, 391-407, 1975.
- 22. Varsi, G., Back, L.H. and Kim, K., "Blast Wave in a Nozzle for Propulsion Applications," Acta Astronautica, 3, 141-156, 1976.
- Kim, K., Varsi, G. and Back, L.H., "Blast Wave Analysis for Detonation Propulsion," AIAA Journal, Vol. 10, October 1977.
- 24. Back, L.H., Dowler, W.L. and Varsi, G., "Detonation Propulsion Experiments and Theory," AIAA Journal Vol. 21, October 1983.
- Helman, D., Shreeve, R.P. and Eidelman, S., "Detonation Pulse Engine," AIAA-86-1683, 24th Joint Propulsion Conference, Huntsville, 1986.
- Eidelman, S., Grossmann, W. and Lottati, I., "Propulsion Applications of the Pulsed Detonation Engine Concept," SAIC Report Number 89/1684, December 31, 1989.
- Eidelman, S., Grossmann, W. and Lottati, I., "A Review of Propulsion Applications of the Pulsed Detonation Engine Concept," J. Propulsion and Power, Vol. 7, No. 6, November-December 1991 (857-865).
- Eidelman, S. and Grossmann, W., "Computational Analysis of Pulsed Detonation Engines and Applications," AIAA-90-0460, January 8-11, 1990/Reno, Nevada.
- Eidelman, S., Grossmann, W. and Loutati, I., "Air-Breathing Pulsed Detonation Engine Concept: A Numerical Study," AIAA-90-2420, July 16-18, 1990/Orlando, Florida.
- Eidelman, S., Lottati, I. and Grossmann, W., "A Parametric Study of the Air-Breathing Pulsed Detonation Engine," AIAA-92-0392, January 6-9, 1992/Reno, Nevada.
- Lottati, I., Eidelman, S. and Drobot, A., "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," AIAA-90-0649, January 8-11, 1990/Reno, Nevada.
- 32. Anderson, J. D., <u>Modern Compressible Flow</u>, McGraw-Hill, 2nd Edition, New York, 1982.



Figure 1. Valveless propulsive duct concept due to Tharjatt.



Figure 3. Schematic of the Hoffmann - Nicholls -Krzycki detonation tube experimental apparatus.



Figure 2. Supersonic, M = 3 conceptualization of the propulsive duct.



Figure 4. Schematic of the Helman, Shreeve, Eidelman PDE experimental configuration from the NPS studies.



Figure 5. The PDE experimental apparatus used in the NPS studies.



Figure 6. The PDE experiment during repeative detonation.



Figure 7. Schematic of the generic PDE.



Figure 10. Results for  $A_2/A_3$  as a function of  $A_3$ . The results are, for the chosen conditions, independent of pressure recovery.



Figure 8. Schematic of PDE/PENAID missile integration.





Figure 9. Schematic of PDE describing key sizing variables.

Figure 11. Results for  $A_2/A_3$  as a function of Mach number.

h = 10,000 m, A3=1.2, Prec = 1.0, f=100, Vot = 2 m^3



Figure 12. Results for inlet gap width, I, as a function of Mach number.



Figure 13. Results for A₂/A₃ as a function of detonation frequency.



Figure 15 PDE engine radius (cylindrical crosssection) versus engine length.



Figure 14. PDE thrust versus detonation chamber volume at a given frequency, f = 100 Hz.

# Synthesis of Nanoscale Materials Using Detonation of Solid Explosives

Shmuel Eidelman and Anatoly Altshuler Science Applications International Corporation 1710 Goodridge Drive Mail Stop 2-3-1 McLean, Virginia 22102

<u>First International Conference on</u> <u>Nanostructured Materials</u> Cancun, Mexico September 21-26, 1992

## Synthesis of Nanoscale Materials Using Detonation of Solid Explosives

Shmuel Eidelman and Anatoly Altshuler Science Applications International Corporation McLean, Virginia 22102

## Abstract

Direct synthesis of nanophase materials in detonations is considered. Article discusses a number of methods that can lead to formation of super saturated states of media that in turn will presipitate as nanoscale particles when the detonation products are quenched in the expansion process. Several examples are given of reactions that will lead to production of nanophase particles of metals, oxides, diamond and other unique materials. It is shown that conditions of nucleation and growth of nanoscale material can be analysed using advanced methods of computer simulation of detonation and blast wave phenomena. A sample of this kind of simulations is given. It is concluded that detonative synthesis of nanophase material can lead to low cost technology that will produce a range of unique materials.

## 1. Introduction

Recent enhanced interest in nanoscale materials is merited by the discovery of a set of unconventional material properties in the form of particles that are less than 10 nm in size. Anomalous chemical activity, lower critical temperatures of oxidation and sintering, sintering of composite materials with manifold increase in tensile strength, and sintering unique semiconducting and ferromagnetic materials, have all been demonstrated for nanoscale materials. This wide range of applications makes nanosize materials an extremely interesting and important material state that is the subject of intense study by many researchers.

The synthesis of nanoscale materials is accomplished through methods such as ion-sputtering and ion-deposition, laser ablation, evaporation and condensation in a vacuum, solgel, electroprecipitation, and plasma-jet techniques. Each of these techniques has produced 2-10 nm particles of various materials; however, the yield of such processes is extremely low and the cost of materials obtained is very high.

In this article we will consider detonative synthesis, a method of nanosize materials synthesis that offers an alternative to other more costly methods of production. Detonative synthesis is extremely advantageous because it allows very high pressure and temperature conditions to be created using low cost explosive materials and simple processing equipment. The synthesis occurs directly in the plasma created by the detonation wave. Conditions for detonative synthesis can be modified by changing the physical and chemical conditions of the detonation wave and expanding detonative products. For example, for nanoscale diamond powder synthesis, rapid expansion and cooling of the detonation products are required to prevent diamond graphitization. Thus, the explosive charge and atmosphere surrounding it should be designed to create these conditions.

In the following, we will review a range of conditions necessary for nanosize material synthesis that is provided by detonative synthesis methods, and examine their applicability for specific materials.

## 2. Detonation Waves as Generators of High Energy Density Plasmas

Detonations are reactive wave phenomena in which a reaction is initiated by the shock waves propagating at supersonic speeds through an explosive mixture. This wave consists of a shock wave discontinuity followed by a narrow zone of homogeneous chemical reaction. The shock wave compresses the explosive from its initial state with pressure P₀ and density  $\rho_0$  to the shocked state P_s,  $\rho_s$ , with subsequent reaction of explosive in the reaction zone that extends up to the Chapman-Jouguet (CJ) state.

## Condensed Explosive Detonations

Table I gives some typical parameters for detonation waves in solid explosives. We can see from this data that temperatures of about 3000°C at pressures of 30 GPa are typical for solid explosive detonations. These parameters create extremely oversaturated conditions for some detonation products. Subsequent ultra-fast quenching can lead to synthesis of nanophase material. Behind the detonation wave reaction zone, temperatures and pressures are high and detonation products will usually contain various active chemical components. It is challenging in this environment to preserve nanosize material from further reaction.

TABLE I										
Some	Typical	Conditions	for	Detonation	of	Solid	Ex	plosives	(1	)

	Pressure	Temperature	D velocity	
	GPa	°K	m/sec	
TNT, $\rho = 1.6 \text{ g/cm}^3$	20.6	2940	6950	
RDX, $\rho = 1.8 \text{ g/cm}^3$	34.7	2590	8750	
HMX, $\rho = 1.9 \text{ g/cm}^3$	39.5	2364	9160	
PbN ₃ $\rho$ =4.0 g/cm ³	23.1	2660	5000	

#### Multi-Phase Detonations

Multi-phase detonations can cover a range of conditions between gaseous and condensed material detonations. Multi-phase detonable mixtures can be composed of solid or liquid fuel particles dispersed in gaseous oxidizer, solid particles of explosive material dispersed in gas, gaseous explosive mixture mixed with the inert or reactive liquid phase (2), or explosive slurries. All these possible methods of generating detonation waves greatly extend the range of conditions available for material synthesis. It should be noted that there is a difference in the character of condensed explosive detonation and gaseous detonations. With condensed explosives, high rate decomposition reactions usually take place. For gaseous detonations, reactions can be characterized as detonative combustion. Multi-phase detonations can be based on detonative combustion, high rate decomposition, and combinations of these processes.

## Nonstandard Regimes for Detonative Reaction

A classical self-sustained detonation wave has a fixed wave structure that moves through the explosive with constant velocity. In a self-sustained detonation, a balance is achieved between the compression work of the shock wave and energy released in the reaction zone. If a self-sustained detonation is possible in a given explosive mixture at given initial conditions, it will propagate with a constant speed.

However, for many important reactive mixtures it is either very difficult or impossible to obtain a selfsustained detonation wave.

Over the last forty years, many nonstandard detonation regimes have been discovered that significantly reduce the restrictive limitations of the classical self-sustained detonation. The following is an incomplete list of the detonation regimes that significantly deviate from the classical self-sustained detonation wave:

- a. Transient detonation (forms when a deflagration wave undergoes transition to detonation);
- b. Overdriven detonation (compression work of the leading shock is partially sustained by an external source of energy);
- c. Spinning detonation (formed by small number of detonative combustion fronts that propagate through the mixture by spinning);
- d. Multi-layer detonation (propagates in layers of explosives where the detonation wave in one layer can lead to lateral initiation of an overdriven detonation wave in the adjacent layer);
- e. SWACER (Shock Wave Amplification by Coherent Energy Release) detonation;
- f. Light supported detonation (detonation front is supported by a laser beam heating the area behind the shock front).

All these possible regimes for initiating and sustaining detonation waves allow substantial flexibility in adapting a detonative process for the purpose of material synthesis.

#### 3. Detonative Synthesis Chemistry for Nanophase Materials

The elementary composition of known explosives is quite limited. The most common class, CHNO explosives, produces only one condensed phase under normal thermodynamic conditions – ultra fine carbon (1):

$$C_{3}H_{6}N_{6}O_{6}(RDX) \xrightarrow{3}{} 3H_{2}O + 1.49CO_{2} + 0.022 \cdot CO + 3N_{2} + 1.49C_{(s)}$$

$$C_{7}H_{5}N_{3}O_{6}(TNT) \xrightarrow{2}{} 2.5H_{2}O + 1.66CO_{2} + 0.188 \cdot CO + 0.001 \cdot NH_{3} + 1.5N_{2} + 5.15C_{(s)}$$

$$C_{4}H_{8}N_{8}O_{8}(HMX) \xrightarrow{3}{} 4 \cdot H_{2}O + 2 \cdot CO_{2} + 0.008 \cdot CO + 4N_{2} + 2 \cdot C_{(s)}$$

These reactions have the following yield limits for solid phase carbon: 9% for RDX or HMX, and 29% for TNT.

More "exotic" BCHNO explosives can decompose, which produces solid BN or  $B_2O_3$ . For example, the powerful explosive  $B_{10}H_{100}C_{5.75}N_{15}O_{30}$ , decomposes with the 26% yield of BN by weight, while less hydrogenized  $B_{10}H_{18}C_{5.75}N_{15}O_{30}$  produces primarily  $B_2O_3$  with 34% yield.

From the point of view of chemical productivity, the most promising class of explosives is presented by acetylides and azides. For example, explosive decomposition of silver acetylide  $(Ag_2C_2 \rightarrow \%Ag + 2C + 87kcal/mol)$  generates a 90% silver yield. A more powerful explosive decomposition of  $Ag_2C_2 \cdot AgNO_3 \rightarrow 3Ag(vapor) + CO_2 + CO + 0.5N_2 + 185kcal/mol$ , gives 80% silver yield but much finer dispersity is expected. The decomposition of silver acetylides is interesting to compare with a silver azide explosion,  $2Ag(N_3) \rightarrow 2Ag(v) + 3N_2$ , with a respective yield of silver on

the order of 72% by weight. Over two dozen metals form explosive azides, while explosive acetylides are less common. Among the most interesting azides for nanosize powder production are explosive azides of cobalt, gold, strontium, and platinum. The main challenge in producing nanophase metals by explosive decomposition of azides or acetylides will be to assure rapid quenching of nanoscale phase components of the explosive products.

#### Loaded Explosive Synthesis

Explosive compositions are unknown for some chemical elements, as in the case of aluminum. The most obvious solution is to mix the explosive carrier with the powder or liquid form of the desired chemical. There is already a substantial history of adding aluminum powder to explosives in order to increase their performance. It has been established that at a grain size of several microns, aluminum does not have time to sublimate in the detonation wave reaction zone; thus, it will not affect the reaction rates. On the other hand, detonation energies and temperatures are high enough to evaporate a substantial amount of additive. In order to overcome the diffusion barrier, we are considering mixing a melted explosive carrier with a liquid aluminum compound like AlBr₃, which has a melting point of 97°C and comparatively low evaporation energy and temperature. Aluminum azide is also a possibility.

The same approach can be implemented in the loaded explosive synthesis of the nanoscale Hf. In this case, we can use detonation mixture of  $Hf(BH_4)_4$  and an explosive carrier. Similarly, Ir can be produced using an IrF₆ load: Pu using a PuF₆ load: Re using a ReF₆ load: U using an UF₆ load; W using a WCl₆ load: V using a VF₅ load; Ti by means of a TiCl₄ load, etc. The reduction of metals in all these cases is taking place both physically, as the result of shock-temperature dissociation of molecules, and chemically, by ionized hydrogen and, in some cases, lithium vapors.

For carbon synthesis, loading the explosives cited above with benzol ( $C_6H_6$ ), 1-hexadecen ( $C_{16}H_{32}$ ), hexacozan ( $C_{26}H_{54}$ ), dibenzyl ( $C_{14}H_{14}$ ) etc., can greatly increase the yield of carbon without substantially diminishing the energetic characteristics of detonation. For example, a mixture of benzol with HMX on mol to mol basis will decompose in the detonative reaction as follows:

$$C_6H_6 + C_4H_8N_8O_8 \rightarrow 7H_2O + 0.5CO_2 + 4N_2 + 9.5C_{(s)}$$

This reaction yields 30% by weight of solid carbon that has a potential to be preserved in nanoscale form.

All these examples illustrate that the loading of explosives for nanophase material synthesis expands the range of opportunities beyond the synthesis that results from the detonative decomposition of explosives.

#### Phase Composition of Synthesis Products

The crystalline structure of nanoscale powders obtained from detonation generally composited high-pressure modifications of the solids. This is the result of high temperature and his pressure conditions in the detonation wave reaction zone and subsequent ultra-fast quenching and coling of detonation products. In the case of carbon, diamond is formed. The phase diagram for carbon shown below easily illustrates this point. Area marked with number 1 on the phase diagram reflects parameters typical for detonation of HMX, while the area marked with 2 corresponds to detonation of TNT. It is quite obvious from Figure 1 that the detonation of TNT cannot produce diamond, while the detonation of HMX brings all condensed carbon into diamond form.

The same situation occurs with the synthesis of BN, when explosive decomposition of boron azide  $B(N_3)_3$  produces hexagonal modification of BN, while powerful BCHNO explosives can produce BN with cubic sfalerite structure. Other compounds that can be obtained include interesting compositions such as  $ZrO_2$ , HfC, and WC, sometimes in their metastable modifications. Much more diverse are crystalline modifications of nanoscale metals. In cases like Gadolinium (Gd) and Samarium (Sm), five different structure modifications could be obtained as a result of different experimental conditions.



Figure 1. Carbon phase diagram schematics.

## Nucleation and Growth of Nanophase Material Behind the Detonation Waves

We have discussed above the detonation wave structure in solids. We made important assumptions in our previous analysis regarding chemical equilibrium and physical stationarity of the processes on detonation front. The characteristic time of typical explosive decomposition reactions under detonation conditions in solid explosives lies in the range of  $10^{-11} + 10^{-12}$  sec. As we noted above, the characteristic time length of the reaction zone for detonations in solids is  $10^{-7} + 10^{-8}$  sec. This difference in time scales allows us to consider reactions behind the detonation front as equilibrium decompositions. Phenomenologic criteria of nucleation stationarity according to V. Shreidman (2) can be presented as follows:

$$\nu \leq \left(\frac{W}{T}\right)^{-1} \rho \sigma^2 / \eta^3 \qquad (1)$$

where v - characteristic frequency of external forces; W - activation energy of nucleation; T - temperature in energetic units;  $\rho$  and  $\eta$  - density and viscosity of gases;  $\sigma$  - surface tension coefficient for nuclei.

Following are Follmer theory (3) we present activation energy through thermodynamic parameters:

$$W = \frac{16\pi}{3} \frac{\sigma^3 V^2}{(T \ln P / P_e)^2}.$$
 (2)

Here, P - partial pressure in gaseous precipitous phase;  $P_e$  - equilibrium pressure of saturation for condensate at given T; V - atomic volume in condensed phase.

For the conditions typical for diamond condensation in the process of detonative synthesis, the barrier of nucleation at 100 kbar pressure and 3000°k temperature behind the detonation from, is  $W = 13 \cdot 10^{-12}$  erg. Criteria (1) in this case gives:  $v \le 10^{13} \div 10^{14} Hz$ . Considering the time span of the detonation wave reaction zone  $(10^{-7} \div 10^{-8} \text{ sec})$ , we can assume stationarity of diamond nucleation. Calculations made for metals and some inorganic compounds lead to the same conclusion.

In accordance with the stationary approximation, the nucleation rate can be presented as follows (3):

$$I = \frac{2\alpha P^2 V \sigma^{1/2}}{(2\pi m T)^{1/2} T^{3/2}} \exp\left(-\frac{W}{T}\right)$$
(3)

 $\alpha$  - condensation coefficient, m - atomic mass of condensate. For our reference case of diamond nucleation,

calculation using equation (3) gives:  $I \approx 10^{21} \frac{muclei}{\text{sec} \cdot cm^3}$ 

The diameter of critical nuclei can be estimated from activation barrier:  $D = \sqrt{\frac{3W}{\pi\sigma}}$ . For diamond it gives D ~ 5Å.

#### 4. Solid Explosive Charge Detonation in a Confined Volume

Experimentally developed conditions for diamond powder synthesis rely on the multi-layered detonation of several explosives and inert material. This system undergoes a complex detonation under conditions that are overdriven for the explosive producing diamond powder, and are standard for the driver detonation with some complex multi-dimensional expansion into the surrounding media. The details of the detonation process in this system have never been studied computationally, but experimental methods indicate that very specific conditions are required. It is known that the end result of this process is extremely sensitive to conditions of the multi-layered detonation. Currently, it is not clear what variables control particle sizes, or the maximum amount of free carbon released during the detonative combustion process that can be synthesized into diamond. Experimental work in this field is sketchy; numerical analysis of this complex process will enable us to understand the sensitivity to the basic parameter variations controlling diamond synthesis. Below are the results of numerical simulation of detonation and detonation products expansion for a composite TNT/RDX charge detonated in a 1 M³ chamber. This simulation will give the conditions of the detonative products at various stages of expansion that determines the environment prevalent in the detonative synthesis.

In Figure 2 schematics of the blast sphere cross section are shown with the solid explosive charge located at the sphere's center. The inner volume of the sphere is  $1 M^3$ . Solid explosive is a composite charge formed from a TNT main charge with the layer of RDX around it. Detonation of a high energy RDX layer leads to the formation of an overdriven detonation wave in the main charge. Because the problem is symmetric, it is sufficient to simulate one quarter of the sphere volume to describe the full range of blast interaction that will occur for this condition. To increase the simulation's accuracy, we have divided the numerical modeling in the near field and global blast simulations. For the near field, a square grid with DR = DX = 1 mm was used to describe a region 10 cm x 10 cm containing the solid explosive charge. The simulation results from the near field region are mapped on the larger computational domain, which includes the inner wall of the blast sphere. For higher resolution and computational efficiency, we have used structured/unstructured grids to describe the sphere's inner volume. The mathematical formulation and numerical method for the solution used in the near field are described in detail in Reference 2. These computational techniques are implemented in the MPHASE code. The model and numerical methods used for simulations in the computational domain shown in Figure 2 are described in Reference 5. These computational techniques are implemented in AUGUST code. Both MPHASE and AUGUST have been validated for the range of detonation and strong shock wave reflection and diffraction problems.(6)



Figure 2. Schematics of the blast sphere cross section with the solid explosive charge. The computational domain is covering the upper right quadrant.

In Figure 3, simulation results for the near field region are shown as pressure density and temperature contour plots for an instant of time when the detonation wave is at 2 mm distance from the right edge of the charge. t = 0 is the time of detonation wave initiation in a solid explosive. Pressure and temperature contour plots are shown using a linear scale. In Figure 3 we observe propagation of the complex detonation front through the composite charge and the initial stages of detonation product expansion. The outer layer of the RDX leads to the formation of an overdriven detonation wave in the TNT charge that has shorter reaction zone, higher wave speed, higher temperatures, and higher pressures as compared with a homogeneous TNT charge detonation. The maximum temperature is reached in the air strata located in the immediate vicinity of the charge. This temperature maximum is created by a strong shock wave produced by expanding detonation products in air. The following conditions are reached at the detonation wave front in the TNT charge: P = 62.6 GPa;  $T = 6000^{\circ}\text{C}$ ;  $\rho = 2900 \text{ kg/m}^3$ . It should be noted that because of high resolution of the numerical scheme we are simulating the Von Neumann spike of the detonation wave front, where the pressure is considerably higher than at the Chapman-Jouguet point.

When the shock wave reaches the edges of the computational domain for the near field simulation, the simulation results are mapped to the grid of the global domain shown in Figure 2 and are continued on larger grid. In Figure 4 pressure and temperature contour plots are shown for three consecutive instances of time for the global domain simulation. In Figure 4a results are shown at t = 0.05 µsec, shortly before the detonation products reached the walls of the sphere. Here we can observe significantly lower pressures as compared with Figure 3 values due to strong expansion; however, the propagating shock is leading to considerable heating of the surrounding air. In Figure 4b pressure and temperature contour plots are shown at some stage of the wave front reflection from the inner wall of the blast sphere. The average pressures and temperatures are significantly lower; however, several focus points are created during the reflection that have significantly higher pressure and temperature values. In Figure 4c, the shock wave complex is converging towards the blast sphere center, with significant amplification of the shock strength and temperature at the front. It is obvious that this system of shock waves will undergo a number of reflections. focusing, and expansions until quiescent conditions are reached in the blast sphere.

The simulations illustrated above will provide the global conditions in the blast chamber as a function of time. This information can be used for the nucleation simulations of the material behind the shock front, and estimates of possible phase transformation or reaction of the newly formed material. As a result of this multi-step approach, we can consider all the stages of the detonative synthesis process that are important for nanoscale material formation. This approach will allow us to minimize the number of experiments, understand the physics of detonative synthesis, and control the quality and yield of nanoscale materials produced experimentally.

## 5. Conclusions

Detonative synthesis of nanoscale material is a new technology and the nature of this process is widely unexplored. More studies should be done in addressing chemical and phase transformations under extreme and fast changing conditions in waves of detonation, shock and rarefraction. An unlimited array of elements and compounds, as well as their structural modifications (some highly metastable), is attainable through such processing.

Detonation synthesis combines the best features of traditional nanophase material technology - the most effective generation of hot plasma and vapors, and fast quenching of a condensing product. The most unique feature of the process is the extreme density of the generated plasmas, which makes them highly supersaturated in regard to pressure and temperature.

Detonative technology has promising industrial prospects, due to very low production cost and the unique materials it yields. As a reference we can use ultra-fine carbon. In this case common nanotechnology produces carbon black; detonative synthesis diamond. These factors are completely changing the traditional view of nanomaterials applications. (7)

## 6. Acknowledgment

The work reported here was partially supported by ONR under Contract #N00014-92-C-0168. The authors would like to thank Dr. L.T. Kabacoff for his interest in this project.

## 7. References

1. C.L. Mader, "Numerical Modeling of Detonations," University of California Press Ltd., London, England. (1979).

2. V. Shreidman, Zhurn Eksperim, Teor. Fiz., v 91, 8, p 520, (1986).

3. D. Fedoseev, Uspekhi Khimii, V 53, p 7 53, (1983).

4. S. Eidelman and X. Yang, "Detonation Wave Propagation in Variable Density Multi-Phase Layers," AIAA 92-0346, 30th Aerospace Sciences Meeting, Reno, NV, Jan. 6-10, 1992.

5. I. Lotatti, S. Eidelman, A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," AIAA 90-0699, 28th Aerospace Sciences Meeting, Reno, NV, Jan. 8-11, 1990a.

6. I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Grids." Proceedings of the 4th International Symposium on Computational Fluid Dynamics, Davis, CA, September 1991.

7. A. Altshuler and J.L. Sprague, "The Synthesis, Properties, and Applications of Diamond Ceramic Materials," 41st Electronic Components Technology Conference, Atlanta, Georgia, May 1991.









a. t = 0.05 msec







5.31

0.00



c. t = 0.3 msec



Temperature

10.00

a, Li a

Ξ

.....

1:33-18 콡

1.91-19 1.93-19

# Detonation Wave Propagation in Combustible Mixtures with Variable Particle Density Distributions

Science Applications International Corporation. McLean. Virginia 22102

## Abstract

A mathematical model is presented describing a physical system of detonation waves propagating in a solid particle/air mixture with a wide range of solid-phase concentrations. The mathematical model was solved numerically using the Second Order Godunov method, and numerical solutions were validated for detonation waves propagating in mixtures with concentrations of solid phase from 0.75 kg/m³ to 1000 kg/m³. Numerical solution was obtained for detonation waves propagating in a system consisting of clouds with a small concentration of particles and a ground layer in which solid particle densities are three orders of magnitude larger than in the cloud. Three different particle concentration distributions in the ground layer were simulated and compared in terms of detonation wave structure and parameters.

## Introduction

When combustible particles are intentionally or unintentionally dispersed into the air, the resulting mixture can be detonable. Formation of this potentially explosive dust environment and the properties of its detonation are of significant practical interest in view of its destructive or creative effects.

Copyright © 1993 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

^{*}Research Scientist, Applied Physics Operation.

#### VARIABLE PARTICLE DENSITY DISTRIBUTIONS

The experimental and theoretical study of these phenomena until now has addressed only homogenous particle/oxidizer mixtures. However, intentional or accidental processes of the explosive dust dispersion will always lead to inhomogeneous particle density distribution. Some industrial methods of explosive-forming rely on detonation of explosive powder. This powder can be deposited as a thin layer over the surface area of the forming metal, with some remaining concentration in the vicinity of the layer. The phenomenology of detonation wave initiation and propagation in this environment is the main subject of this paper.

When the detonation wave is generated in a homogeneous mixture by a "direct initiation," it starts with a strong blast wave from the initiating charge. As the blast wave decays, combustion of the reactive mixture behind its shock front starts to have a larger role in support of the shock wave motion. When the initial explosion energy exceeds some critical value. transition to steady-state detonation occurs.¹⁻⁴ In explosive dust mixtures with a nonuniform distribution of particle density, the initiation dynamics are significantly more complicated. The critical initiation energy sufficient for one of the explosive particle density strata regions is not necessarily adequate for other regions. Also, when there is a significant variation in density between the different layers (regions) of the mixture, steady detonation in one layer can result in an overdriven detonation in an adjacent layer. Our paper demonstrates that the phenomenology of these interactions is distinctly different from the classical studies of multilayer detonations in gases. This is primarily because the energy content of adjacent layers in a typical multigas layer experiment⁵ varies by a factor of two or four, whereas the energy content in explosive dust/air mixtures can vary by several orders of magnitude.

In this paper we use detailed numerical simulation to study the initiation dynamics and propagation phenomenology for a general case of explosive dust dispersion. We will consider particle density variation from 1000 kg/m³ in the ground layer to  $0.5 \text{ kg/m}^3$  or 0 for the upper edges of the cloud. The effects of variation of the cloud density on detonation wave parameters will be examined for different cases of cloud particle density distribution. When possible, the results of computer simulations are validated in comparison with experimental and theoretical studies.

The outline of this paper is as follows. Section 2 gives a description of a mathematical model that includes governing conservation equations for two phases and the constitutive laws. We describe the model for a particle-gas interaction, combustion, and equation-of-state for gas phase. The numerical integration technique for solving the mathematical model will also be outlined. In Section 3, we present our numerical simulation results. We first validate our model by comparing one-dimensional detonation wave simulation with available experimental results. We then give the two-dimensional simulation for detonation wave propagation in combustible particles/air mixtures with variable particles density distribution. Concluding remarks are given in Section 4.

# Mathematical Model and the Numerical Solution

The mathematical model consists of conservation governing equations and constitutive laws that provide closure relations for the model. The basic formulation adopted here follows the two-phase fluid dynamics model presented in the text by Kuo.⁶ The approach assumes that there are two distinct continua, one for gas and one for solid particles, each moving at its own velocity through its own control volume. The sum of these two volumes represents an average mixture volume. With these assumptions, distinct equations for continuity, momentum, and energy are written for each phase. The interaction effects between the two phases are accounted for by the source terms on the right-hand side of the governing equation. The following is a short description of the two-phase flow model used in our study, with conservation equations written in Eulerian form for two-dimensional flow in Cartesian coordinates:

Continuity of gaseous phase

$$\frac{\partial \rho_1}{\partial t} + \frac{\partial (\rho_1 u_g)}{\partial x} + \frac{\partial (\rho_1 v_g)}{\partial y} = \Gamma$$
(1)

# VARIABLE PARTICLE DENSITY DISTRIBUTIONS 231

Continuity of solid-particle phase

$$\frac{\partial \rho_2}{\partial t} + \frac{\partial (\rho_2 u_p)}{\partial x} + \frac{\partial (\rho_2 v_p)}{\partial y} = -\Gamma$$
(2)

Conservation of momentum of gaseous phase in x direction

$$\frac{\partial(\rho_1 u_g)}{\partial t} + \frac{\partial(\rho_1 u_g^2 + \phi p_g)}{\partial x} + \frac{\partial(\rho_1 u_g v_g)}{\partial y} = -F_x + \Gamma u_p \quad (3)$$

Conservation of momentum of gaseous phase in y direction

$$\frac{\partial(\rho_1 v_g)}{\partial t} + \frac{\partial(\rho_1 u_g v_g)}{\partial x} + \frac{\partial(\rho_1 v_g^2 + \phi p_g)}{\partial y} = -F_y + \Gamma v_p \qquad (4)$$

Conservation of momentum of solid-particle phase in x direction

$$\frac{\partial(\rho_2 u_p)}{\partial t} + \frac{\partial(\rho_2 u_p^2)}{\partial x} + \frac{\partial(\rho_2 v_p u_p)}{\partial y} = F_x - \Gamma u_p \qquad (5)$$

Conservation of momentum of solid-particle phase in y direction

$$\frac{\partial(\rho_2 v_p)}{\partial t} + \frac{\partial(\rho_2 u_p v_p)}{\partial x} + \frac{\partial(\rho_2 v_p^2)}{\partial y} = F_y - \Gamma v_p \qquad (6)$$

Conservation of energy of gas phase

$$\frac{\partial(\rho_1 E_{gT})}{\partial t} + \frac{\partial(\rho_1 u_g E_{gT} + u_g \phi p_g)}{\partial x} + \frac{\partial(\rho_1 v_g E_{gT} + v_g \phi p_g)}{\partial y} = \Gamma\left(\frac{u_p^2 + v_p^2}{2} + Echem + C_s T_p\right) - \left(F_x u_p + F_y v_p\right) - \dot{Q} \quad (7)$$

ł

Conservation of energy of solid-particle phase

$$\frac{\partial(\rho_2 E_{pT})}{\partial t} + \frac{\partial(\rho_2 E_{pT} u_p)}{\partial x} + \frac{\partial}{\partial y}(\rho_2 E_p v_p) = \dot{Q} + (F_x v_p + F_y v_p)$$
$$-\Gamma\left(\frac{u_p^2 + v_p^2}{2} + Echem + C_s T_p\right) \tag{8}$$

Conservation of number density of solid-particle

$$\frac{\partial N_p}{\partial t} + \frac{\partial (N_p u_p)}{\partial x} + \frac{\partial (N_p v_p)}{\partial y} = 0$$
(9)

In the above equations, we have the following definitions and constitutive laws:

Phase densities

$$\rho_1 = \phi \rho_g, \quad \rho_2 = (1 - \phi) \rho_p \tag{10a}$$

and fractional porosity

$$\phi = 1 - \frac{N_p M_p}{\rho_p} = \frac{\text{Volume of void}}{\text{total volume}}$$
(10b)

where  $M_p$  is the mass of each particle and  $\rho_p$  is the solidparticle density.

Total internal energy of gaseous phase

$$E_{gT} = E_g + \frac{1}{2}(u_g^2 + v_g^2)$$
 and  $E_g = E_g(p_g, \rho_g)$  (11)

where  $E_g(p_g, \rho_g)$  is the equation-of-state for gas phase, which will be discussed later.

Total internal energy of solid-particle phase

$$E_{pT} = E_p + \frac{1}{2}(v_p^2 + v_p^2)$$
 and  $E_p = Echem + C_s T_p$  (12)

In order to close the above system of conservation equations, it is necessary to define certain criteria and interaction laws between the two phases, which include mass generation rate,  $\Gamma$ , drag force between particles and gas,  $F_x$ ,  $F_y$ , and the interphase heat transfer rate  $\dot{Q}$ . The model for particle and gas interaction and particle combustion that results in the constitutive relation for the conservation equations is explained in detail in the next subsection.

## Model for a Particle Gas Interaction and Combustion

Presently, the physics of the energy release mechanisms in solid-particles/air mixtures is not clearly understood. This can be attributed to the obvious difficulties of making a direct nonobtrusive measurement in the optically thick environment typical for this system. In the experimental and theoretical work done for the grain dust detonation conditions,⁷ it was demonstrated that the volatile components released by the particle heated behind the shock front play a major role in determining the detonability limits of the mixture. Eidelman and Burcat⁸ successfully applied a combination of fast evaporation and aerodynamic shattering mechanisms to simulate a two-phase detonation process.

The chemical processes of a single particle combustion, which mainly occur in the gaseous phase, are significantly faster than the physical processes of particle gasification or disintegration. Thus, in the multiphase mixtures, the rate of energy release will be mostly determined by physics of particle disintegration. It is very difficult to describe the details of particle disintegration in the complex environment prevalent behind the shock or detonation wave. For example, Reinecke and Waldman⁹ defined five different disintegration regimes for a relatively simple environment of water droplets passing through a weak shock. Fortunately, in most cases of multiphase detonation, only the main features of the particle disintegration dynamics need to be captured to describe the phenomena. For example, Eidelman and Burcat¹⁰ used simple models for particle evaporation and shattering to obtain simulation results that compared very favorably with experimental data. Because of

our inability to resolve the particle disintegration problem in all its complexity, the validation of the model against known experimental data is essential.

In this paper, we consider solid particles consisting of explosive material. Explosive material contains fuel and oxidizer in a passive state at low temperature; however, when the temperature rises the fuel and oxidizer react, leading to detonation or combustion. The initiation of reaction for explosives occurs at relatively low temperature. For example, TNT will detonate when heated to the temperature¹¹ of 570°C. Only particles larger than a critical detonation size can detonate directly when initiated by a shock wave. Here, consider particles smaller than 4 mm in diameter that will not detonate when heated, but will burn when the temperature on the particle surface reaches a critical value. Since the heat conduction inside the explosive material is relatively slow, the process of particle heating needs to be resolved in detail. Our simulations numerically solve the temperature field in the particles at every step of numerical integration of the global conservation equations. The explosive particle combustion model examined in this paper assumes that the fraction of the particle that reaches the critical temperature will burn instantaneously.

Energy transfer by convection and conduction is simulated by solving the unsteady heat conduction equation in each computational cell at each time step. Assuming a particle's temperature to be a function of time and radial position only, the unsteady heat conduction equation may be transformed to:

$$\frac{d^2w}{dr^2} = \frac{1}{\alpha}\frac{dw}{dt} \tag{13}$$

subject to the boundary conditions:

$$w=0 \quad \text{at} \quad r=0, \quad t>0$$

$$k\frac{dw}{dr} + (h - \frac{1}{R}) w = hRT_g \quad \text{at} \quad r = R, t > 0 \qquad (14)$$

_234

where

w(r,t) = rT(r,t) r = radial position T(r,t) = temperature R = particle radius  $T_g = temperature of surrounding gas$  k = thermal conductivity of particleh = convective heat transfer coefficient

The Nusselt number, used to find h, is given by an empirical relation given by Drake.¹² The gas viscosity is derived from Sutherland's Law. The gas thermal conductivity is calculated by assuming a constant Prandtl number. Finally, the boiling temperature at a given pressure is derived from the Clapeyron-Clausius equation under the following assumptions: 1) phrasing-constant latent enthalpy of phase-change; 2) the vapor obeys the ideal equation-of-state; and 3) the specific volume of the solid/liquid is negligible compared to that of the vapor. A critical temperature is also employed to serve as an upper limit to the boiling point, regardless of pressure.

Equation 13 with boundary condition 14 can be numerically integrated using either implicit or explicit schemes.

Since the particle radius R becomes very small due to evaporation, the implicit Crank-Nicolson algorithm is used because of its stability properties and its second order temporal and spatial accuracy. Using the Crank-Nicolson scheme to predict the particle temperature profiles at times  $t_1$  and  $t_2$  permits easy calculation of the total energy exchange  $\dot{Q}$  between  $t_1$  and  $t_2$ , due to convection and conduction.

Knowledge of the particle temperature profile also allows the precise determination of the quantity of the mass to transfer from the particle to the gas  $\Gamma$ . Once any point at a radial location  $0 \le r \le R$  has a temperature exceeding the boiling temperature, the entire mass between r and R is transferred to the gas phase in one time step. In so doing, an energy equal to the product of the mass lost and the particle intrinsic energy is transferred by the particle to the gas.

The interphase drag force Fx, Fy is determined from the experimental drag for a sphere, as presented by Schlichting.¹³

$$F_{z} = \left(\frac{\pi}{8}\right) N_{p} \rho_{g} C_{D} |\mathbf{V}_{g} - \mathbf{V}_{p}| (u_{g} - u_{p}) R^{2}$$
(15)

where

$$C_D = \begin{cases} \frac{24}{Re} \left( 1 + \frac{Re^{2/3}}{6} \right) & \text{for Re} < 1000; \\ 0.44 & \text{for Re} > 1000 \end{cases}$$
(16)

and  $Re = \frac{2R|V-V_p|}{\mu_g}$ , R is radius of particle, and  $\mu_g$  is gas viscosity at temperature of  $T_{film} = \frac{1}{2}(T_g + T_p)$ . Similarly, the formulae for Fy is

$$Fy = \frac{\pi}{8} N_p \rho_g C_D |V_g - V_p| (v_g - v_p) R^2$$
(17)

## Equation-of-State for Detonation Products

To close the system of governing equations, one needs a constitutive relation between pressure, temperature, and energy for gas phase, which is an equation-of-state. This study uses the Becker-Kistiakowsky-Wilson (BKW) equation-of-state,^{14,15} that is,

$$p_g V_g / \bar{R} T_g = 1 + x e^{bx} \tag{18}$$

where

 $V_g$  = volume of gas phase  $p_g$  = pressure of gas phase  $T_g$  = temperature of gas phase  $\bar{R}$  = universal gas constant  $x = k/V_g(T + \Theta)^a$  $k = K\Sigma_j X_i k_i$ 

with empirical constants  $a, b, K, \Theta$ , and  $k_i$ . The constants  $k_i$ , one for each molecular species, are covolumes. The covolumes are multiplied by their mole fraction of species  $X_i$  and are added to find an effective volume for a mixture. For a particular explosive, if we know the composition of detonation products,  $a, b, \Theta, K$ , and all  $k_i$ s can be found in Ref. 15.

The internal energy is determined by thermodynamics relation

$$\left(\frac{\partial E_g}{\partial V_g}\right)_T = T_g \left(\frac{\partial p_g}{\partial T_g}\right)_V - p_g \tag{19}$$

Integration of this equation for a fixed composition of the detonation products will allow us to calculate the energy of the detonation products as a function of temperature and volume. For each component, its thermodynamic properties as functions of temperature were calculated from the NASA tables compiled by Gordon and McBride.¹⁶

The BKW equation-of-state is the most commonly used and well-calibrated of those equations-of-state used to calculate the properties of detonation products. The detailed discussion and review of the BKW equation-of-state can be found in Ref. 15.

# Numerical Method of Solutions

The system of partial differential equations described in the previous paragraph is integrated numerically. The Second Order Godunov method is used for the integration of the subsystem of equations describing flow of gaseous phase material and is described in Ref. 17. In the following, we will elaborate only on some specifics of its application to simulations of detonation products. The subsystem of equations describing the flow of particles is integrated using a simple upwind integration. This is done because our mathematical model neglects the pressure of interparticle interaction, and that prevents formulation of a Second Order Godunov scheme for particles.

The physical system under study will have concentrations of solid explosive powder ranging from  $1000 \text{ kg/m}^3$  near the

ground to  $0.75 \text{ kg/m}^3$  or less in the cloud. Detonation of this mixture will create detonation products with effective  $\gamma$  ranging from 3 to 1.1. To describe the flow of detonation products. we use the BKW equation-of-state described above. Since the Second Order Godunov method uses primitive variables to calculate Riemann problems at the edges of the cells, its implementation for non-ideal EOS is difficult. In our simulations, we have resolved this problem by using direct and inverse equations-of-state. After integrating a system of gas conservation laws. we use the direct BKW equation-of-state to calculate pressure, gamma, and temperature as functions of thermal energy, density, and mixture composition. After this step, we have a complete set of parameters allowing calculation of the fluxes in the Second Order Godunov method as well as interaction of the multiphase processes. The "inverse" EOS calculates internal energy as a function of density, pressure, and mixture composition. In our code, we use the "inverse" EOS to calculate the fluxes of conserved variables after calculation of the flux of primitive variables.

For the multiphase system under study, dx=dy=1mm was used to allow explicit integration of the gasdynamic and physical processes of evaporation and heat release. When a mismatch occurred between the physical and gasdynamical characteristic times, the time step was adjusted by some fraction to assure stability. However, this did not result in a significantly smaller time step than the one calculated using CFL criteria. For larger cell sizes, this approach will be impractical. Recently, we implemented a scheme in which multiphase processes are calculated implicitly; however, this will be reported elsewhere.

The numerical method is implemented in a code named MPHASE, which is fully vectorized and supported by number of graphics and diagnostics codes.

### Results

# Model Validation for One-Dimensional Detonation Wave Problem

The main advantage of our particle combustion model is its description of the phenomenology of detonation for a wide

#### VARIABLE PARTICLE DENSITY DISTRIBUTIONS

Table 1 One-dimensional validation result

Diminut - Delension wave volutity.

PortiPal - Promos at Champer-Joutiet P

P. [Pa] - Peak pressure: pp[kg/m3] - Peak deemty

RDX deputity (kg/m ¹ )	Parameters	Presses. calculateous	Expt's Ref. 8	Tigar colouistan - Raf. 3	BKW calculation Ref. 1	Soviat experimenta Rol. 3
1000 kg/m ³	D Pcj Pp Pr	6155 1.238 x 16 ¹⁸ 2.57 x 16 ¹⁸ 1935	5361		4328 1.86 x 18 ¹⁸	1.00 x 10 ¹⁸
866 kg/m ³	D Pcj P,	6652 0.965 x: 10 ¹⁰ 2.85 x: 10 ¹⁰ 1722		1000 9.80 × 10 ¹⁰		0.82 X 19 ¹⁸
466 kg/m ³	D Pcj P,	4866 6.376 x 19 ¹⁰ 8.625 x 19 ¹⁰ 924		4648 6.36 × 18 ¹⁸	03 x 10 ¹⁰	
25# kg/m²	D Pcj Pj	4040 0.2478 × 10 ¹⁸ 0.4620 × 19 ¹⁸ 552		3669 0.13 x 10 ¹⁸		
100 tg/m²	D Fcj F,	3496 0.5072 × 10 ⁸ 0.7650 × 10 ⁹ 720				
6.75 kg/m ³	0 Fes Fs fs	1622 0.25 xt 10 ⁷ 0.406 xt 10 ⁷ 0	1410" 0.200 x 10 ⁷ *	1670° 9 36 34 19 ⁷⁴		

Raf. 1. Muster, C., <u>Human et Mulching at Deisennen</u>, (Universary et California Press, Lot., 1970) p. et. Rol. 3. Wiesenware, A., "An Evaluation of Humatei Layer Looding Effects," <u>HTRE Report</u>, Feb. 1990, Rol. 3 - Stambarvich, K. P., "Physics of Kurlinsis," for Humanik, Nucle, 1975.

range of explosive particle sizes and densities. We will demonstrate this capability on a set of one-dimensional test problems. For these test problems, we simulated the initiation and propagation of the detonation waves in a shock tube-like setting, where the explosive particles are distributed uniformly through the shock tube volume.

Results of these simulations are summarized in Table 1, which shows detonation wave velocity, peak pressure, and peak density given as a function of the average density of the solid explosive. Here, the explosive two-phase mixture is composed from RDX particle and air, where RDX particle concentration varies from  $0.75 \text{ kg/m}^3$  to  $1000 \text{ kg/m}^3$ . This concentration variation covers a whole range of solid explosive concentrations of interest to our problem. The simulations performed with the MPHASE code were compared with the experimental results^{15,18} and calculations done with the TIGER code that are presented in Ref. 19.

From Table 1, it is clear that our simulation results compare favorably with other simulation results and experimental data. The maximum deviation between our results and referenced results is no greater than 15% for the entire range of explosives densities. Considering that our results were obtained with a single model for particle combustion applied to the extreme range of densities, our model gives an excellent prediction of the detonation wave parameters.

## **Two-Dimensional Simulation Results**

Figure 1 shows a setup for a typical simulation with a computational domain of 25 cm  $\times$  25 cm. The explosive powder density is distributed according to the 4th power law of vertical distance, starting from the ground where the density is 1000 kg/m³, to 1.2 cm, where the density is 0.75 kg/m³. From this point to 25 cm height, the density is constant and equal to 0.75 kg/m³. The density distribution in the direction of the "x" axis is uniform. The boundary conditions for the computational domain shown in Fig. 1 are specified as follows: solid wall along the "x" axis, symmetry conditions along the "y" axis, supersonic outflow for upper boundary, and at the



Fig. 1 Computational domain and boundary conditions.

#### VARIABLE PARTICLE DENSITY DISTRIBUTIONS

right of the computational domain. The mixture consists of RDX powder and air at ambient conditions, and it is assumed to be quiescent at the time of initiation.

The simulation starts at t=0 when the mixture is initiated at the lower left corner of the computational domain, as shown in Fig. 1. The energy released by the initiating explosion leads to formation of the detonation wave propagating through the multiphase media. Figure 2a shows pressure contours for the propagating detonation wave at the time of t=0.012 msec after initiation. The pressure contour levels are shown on the logarithmic scale in MPa. The maximum pressure value of 7940 MPa is observed in the layer of condensed explosive located near the ground. The pressure in the layer is two to three orders of magnitude higher than pressure behind the detonation wave in the 0.75 kg/m³ RDX cloud and air located above the distance of 1.2 cm from the ground. Figure 2a demonstrates that the detonation wave in the cloud is overdriven, since the pressure behind the shock continuously rises and reaches its maximum in the layer. From this figure, we also observe that the overdriven wave propagates faster in the cloud than in the layer. This is explained by the fact that it is easier to compress air that is very lightly loaded with particles and located above the ground layer than it is to compress air heavily loaded with a particle mixture near the ground. It is interesting to note a discontinuous pressure change between the yellow contours and the light blue and green contours behind the detonation front. This discontinuity is overemphasized by our presentation of contour lines on the logarithmic scale; however, further examination of our simulation results indicates this feature is real and is similar in nature to barrel shocks observed for strong jets.

In Fig. 2b, gas-phase density contours are shown for the time t=0.012 msec. Here the contour lines are distributed on the logarithmic scale. The main features of the shock wave structure are very similar to those observed in the pressure contours figure. We see that a jet of high-density gases reflects from the center of symmetry axis, which will create a contact discontinuity that we will observe at later times. The barrel

shock is clearly visible in this figure. In Fig. 2c, the particle density contour plots are shown for t=0.012 msec. The contour levels in Fig. 2c are given on the logarithmic scale and the initial deposition of the explosive material in the ground layer of the computational domain can be clearly observed. The white contour line delineates the beginning and the end of the reaction zone in the cloud. To the left of these contours lies an area with combustion products and to the right are unburned particles in the cloud. The reaction zone length is of the order of 1 cm.

Figure 2d shows pressure contours for the same simulation for the time t=0.055 msec, just before the detonation wave leaves the computational domain. In this figure, we see that the global structure of the wave did change slightly from Fig. 2a. We observe that the barrel shock wave is fully developed and has a half-ellipse shape. The detonation wave in the cloud is still overdriven; however, part of the shock wave front that propagates vertically weakened because it gets further away from the detonation front in the layer. Another noticeable feature is the increase in distance between the detonation front in the laver and in the cloud area close to the laver. This is a result of the fact that the lightly loaded two-phase media above the layer can be compressed much more easily than the particle-heavy ground layer. In Fig. 2e, temperature contours are shown for t=0.055 msec. Comparing this figure with an early stage of the wave propagation, we observe a significant cooling of the front area propagating upwards, which indicates transition from the overdriven detonation regime to a self-sustained detonation. We also observe in Fig. 2a clear development of two detonation fronts, one moving vertically in the cloud and another moving horizontally in the layer. Because the energy density of the explosive powder in the laver is about three orders of magnitude larger than in the cloud, the vertical parts of the front represent an overdriven detonation wave in the cloud. Even though the vertical front has slowed down compared with the horizontal front, its speed and parameters far exceed those typical for detonation waves in a cloud. In fact, the self-sustained detonation regime in the cloud will



Fig. 2. Fourth power layer distribution; maximum density in the layer 800 kg/m³; density in the cloud 0.75 kg/m³; time 0.012 m/s and 0.055 m/s after initiation.



Fig. 2 (continued) Fourth power layer distribution: maximum density in the layer 800 kg/m³; density in the cloud 0.75 kg/m³; time 0.012 m/s and 0.055 m/s after initiation.

#### VARIABLE PARTICLE DENSITY DISTRIBUTIONS

develop at the distance of about 3 m from the layer. The area of the front close to the detonation wave in the layer will remain hot and overdriven, since it is located very close to the detonation front in the laver. In Fig. 2f. particle density contours are shown on a logarithmic scale. We can clearly observe the reaction zone delineated by black contour lines. In this case, the reaction zone length in the cloud is about 1 cm. Consistent with the gradual transition from overdriven to self-sustained detonation, the reaction zone length is larger for the vertical part of the detonation front. The detonation wave velocity observed in our simulation is approximately 4048 msec. which is significantly lower than the detonation wave velocity observed in RDX with a density of 860 kg/m³ (see Table 1), the highest density in the ground layer. This can be explained by high gradient of particle density distribution in the layer, where the density drops rapidly from 860 kg/m³ at the bottom of the layer to  $1 \text{ kg/m}^3$  at the top strata of the layer at 12 mm above the ground.

To further explore properties and phenomenology of the detonation waves propagating in the layer/cloud systems, we simulated additional cases in which explosive powder density distribution was different from the case reported above, although total weight of fuel per unit area remained the same.

In Fig. 3, results are shown for the case of a uniform 2.5 cm-thick layer of RDX with a density of 100 kg/m³ and a 0.75 kg/m³ cloud initiated under the same conditions as in the previous example. Figures 3a, 3b, and 3c show pressure, gas density, and particle density contour plots at t=0.066 msec. We observe that because the layer has considerably smaller density compared to the case reported above, the precursor effect of the detonation wave in the cloud preceding the wave in the layer is less pronounced. Also, one can observe a significant difference in the shape of the strong contact discontinuity in the region of the shock front close to the layer. In Fig. 3b, we can clearly distinguish two contact surfaces. One is between condensed explosive detonation products in the layer and in the cloud, and another is between the detonation products from



Fig. 3 Constant density 2.5-cm-thick layer; maximum density in the layer 100 kg/m³; density in the cloud 0.75 kg/m³; time 0.055 m/s after initiation.
VARIABLE PARTICLE DENSITY DISTRIBUTIONS



Fig. 4 Constant density 1.2-cm-thick layer; maximum density in the layer 250 kg/m³; density in the cloud 0.75 kg/m³.

247

## S. EIDELMAN AND X. YANG

layer explosive detonation and from cloud particle detonation. We should note that these contact surfaces are overemphasized by the logarithmic display of the contour plot levels. The maximum pressure observed in this simulation is 955 MPa, which is about one order of magnitude smaller than in previous simulation. This is consistent with the one order of magnitude difference in the maximum density of the ground layer in the two cases. The detonation wave speed in the case presented in Fig. 3 is 3407 msec. That is only slightly lower than the speed predicted by one-dimensional simulations presented in Table 1, which reflects the influence of the two-dimensional expansion on the detonation wave propagation.

Figure 4 presents results for the case of a uniform density of 250 kg/m³ in 1.2 cm ground layer. All other parameters are the same as in the previous two cases. In Figs. 4a, 4b, and 4c, pressure, gas density, and particle density contour plots are shown at the time t=0.066 msec after initiation of the detonation wave. Here, the detonation wave propagates faster than in the previous cases U=3660 msec. This is about 400 msec slower than in the case of parabolic density distribution. Maximum pressure on the ground is 2150 MPa, which is consistent with the increase of powder density in the layer. The basic structure of the detonation front and the contact surfaces is similar to the case of parabolic density distribution.

# Conclusions

We have presented a mathematical model and numerical solution for the simulation of initiation and propagation of the detonation waves in multiphase mixtures consisting of solid combustible particles and gas. Using this model, we studied detonations in mixtures of solid RDX particles and air, with the objective of examining the effects of wide variation in particle density distribution on the dynamics and structure of detonation waves. We considered a physical system of solid particle clouds in air, in which a significant amount of particles settle on the ground and the condensed-phase concentrations in the particle/air mixture range from 0 to 1000 kg/m³. This range of solid-phase densities necessitated development of the

model and its numerical implementation for a wide range of particle concentrations. Our validation study has shown good agreement between the simulations and referenced results for the whole range of particle concentrations.

Two-dimensional simulations were done for the system of low particle density concentration clouds and ground layers formed by high concentrations of the RDX powder. We examined three cases of ground layer density distribution: a fourth power distribution within 12 mm above ground with a maximum density on the ground of 860 kg/m³; a uniform 25 mmthick layer with a density of 100 kg/m³; and a 12 mm-thick uniform layer with a density of 250 kg/m³. In all these cases, the weight of condensed phase per unit area was the same, which allowed examination of the effects of the particle density distribution on detonation wave parameters.

In all examined two-dimensional cases, the detonation wave in the cloud in the computational domain was significantly overdriven and did not play an important role. We estimated that the self-sustained regime of the detonation wave in the cloud for the examined cloud concentrations can occur only at the distances of 2-3 m above ground. At the same time, the particle density distribution in the layer determines the dynamics of the detonation wave as well as pressure on the ground.

In all three two-dimensional simulations, we observed a very distinct shape of the detonation wave front in the vicinity of the layer. In this area, the overdriven detonation in the cloud is preceding the detonation wave in the ground layer. This feature of the detonation front can be explained by the fact that the energy released in the detonation wave in the ground layer produces a faster shock wave in the dilute cloud than in those heavily loaded with solid particle stratas from the ground layer. However, these structures were not observed experimentally, and more studies are needed to examine their parameters.

The maximum pressure affecting the ground was directly related to the maximum particle density in the lower strata of the layer. However, the detonation front velocity for the fourth

249

# S. EIDELMAN AND X. YANG

power distribution case was considerably lower than calculated for a one-dimensional case with 860 kg/m³ particle density, reflecting the significant effect of two-dimensional expansion. Two other cases with 250 kg/m³ and 100 kg/m³ maximum densities had the detonation wave velocity only slightly lower than the one-dimensional simulations of the same RDX/air concentrations. It is interesting to compare the simulation of the fourth power density distribution case and 250 kg/m³ case. In both cases, the same amount of explosive was distributed in the same physical space; however, the parameters of developed detonations were vastly different. Existence of the highdensity strata at the bottom of the ground layer in the fourth power case significantly increased the maximum pressure at the ground and produced higher detonation wave velocity.

Using a variable density layer, one can reach a combination of pressure and velocity conditions outside of Chapmen-Jougett limitations. The range of conditions that can be obtained in the variable density system and the parametrics for this range need a more systematic study. In this article, we introduced only the mathematical formulation and numerical simulation method validated for the range of conditions of interest. In addition, we have given some examples of its application for two-dimensional simulations. However, this methodology should be linked to an experimental study for a more in-depth analysis of the phenomenology discussed here.

# References

¹Eidelman, S., Timnat, Y. M., and Burcat, A., "The Problem of a Strong Point Explosion in a Combustible Medium," 6th Symposium on Detonation, Office of Naval Research, Coronado, CA, 1976, p. 590.

²Burcat, A., Eidelman, S., and Manheimer-Timnat, Y., "The Evolution of a Shock Wave Generated by a Point Explosion in a Combustible Medium," Symposium of High Dynamic Pressures (H.D.P.), Paris, 1978, p. 347.

³Oved, Y., Eidelman, S., and Burcat, A., "The Propagation of Blasts from Solid Explosives to Two-Phase Medium," *Propellants and Explosives*, Vol. 3, No. 105, 1978.

⁴Eidelman, S., and Burcat, A., "The Evolution of a Detonation Wave in a Cloud of Fuel Droplets; Part I, Influence of the Igniting Explosion," AIAA Journal, Vol. 18, 1980, p. 1103.

⁵Liu, J. C., Kauffman. C. W., and Sichel. M., "The Lateral Interaction of Detonating and Detonable Mixtures," Private communication. 1990.

⁶Kuo. K., Principles of Combustion, John Wiley and Sons. Inc., New York, NY, 1990, pp. 513-626.

⁷Kauffman, C. W., et al., "Shock Wave Initiated Combustion of Grain Dust," Symposium on Grain Dust, Manhattan, KS, 1979.

⁸Eidelman. S., and Burcat, A., "Numerical Solution of a Non-Steady Blast Wave Propagation in Two-Phase ('Separated Flow') Reactive Medium," Journal of Computational Physics, Vol. 39, 1981, p. 456.

⁹Reinecke. W. G., and Waldman, G. D., "Shock Layer Shattering of Cloud Drops in Reentry Flight," AIAA Paper 75-152, 1975.

¹⁰Eidelman. S., and Burcat. A.. "The Mechanism of Detonation Wave Enhancement in a Two-Phase Combustible Medium." 18th Symposium on Combustion, The Combustion Institute, Waterloo, Ontario. Canada, 1980, pp. 1661-1670.

¹¹Engineering Design Handbook, Explosives Series, Properties of Explosives of Military Interest, AMC Pamphlet. AMCP 706-7177, 1971.

¹²Drake, R. M., Jr., "Discussions on G. C. Vliet and G. Leppert: Forced Convection Heat Transfer from an Isothermal Sphere to Water," Journal of Heat Transfer, Vol. 83, 1961, p. 170.

¹³Schlichting, H., Boundary Layer Theory 7th ed., McGraw-Hill, New York, 1983.

¹⁴Cowan, R. D., and Fickett, W., "Calculation of the Detonation Products of Solid Explosives with the Kistiakowsky-Wilson Equation of State," Journal of Chemical Physics, Vol. 24, 1956, p. 932.

¹⁵Mader, C. L., Numerical Modeling of Detonation, University of California Press, Ltd. London, England, 1979.

¹⁶Gordon, S., and McBride, B. J., "Computer Program for Calculations of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and C-J Detonations," NASA SP-273, 1976 (revision).

¹⁷Eidelman, S., Collela, P., and Shreeve, R. P., "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modelling," *AIAA Journal*, Vol. 22, 1984, p. 10.

¹⁸Stanukovitch, K. P., *Physics of Explosion* (in Russian), Nauka. 1975.

¹⁹Wiedermann, A., "An Evaluation of Bimodal Layer Loading Effects," *IITRI Report*, February 1990.

Combust. Sci. and Tech., 1993. Vol. 89, pp. 201-218 Photocopying permitted by license only ©Gordon and Breach Science Publishers S.A. Printed in United States of America

# Detonation Wave Propagation in Combustible Particle/Air Mixture with Variable Particle Density Distributions

#### SHMUEL EIDELMAN and XIAOLONG YANG Corporation McLean, VA 22102

Science Applications International

(Received June 11, 1991; in final form June 18 1992)

Abstract—A mathematical model is presented describing a physical system of detonation waves propagating in a solid particle/air mixture with a wide range of solid phase concentrations. The mathematical model was solved numerically using the Second Order Godunov method, and numerical solutions were validated for detonation waves propagating in mixtures with concentrations of solid phase from 0.75 kg/m³ to 1000 kg/m³. Numerical solution was obtained for detonation waves propagating in a system consisting of clouds with a small concentration of particles and a ground layer in which solid particle densities are three orders of magnitude larger than in the cloud. Three different particle concentration distributions in the ground layer were simulated and compared in terms of detonation wave structure and parameters.

Key words. detonation wave, two-phase flow, numerical simulation

### 1. INTRODUCTION

When combustible particles are intentionally or unintentionally dispersed into the air, the resulting mixture can be detonable. Formation of this potentially explosive dust environment and the properties of its detonation are of significant practical interest in view of its destructive or creative effects. The experimental and theoretical study of these phenomena until now has addressed only homogenous particle/oxidizer mixtures. However, intentional or accidental processes of the explosive dust dispersion will always lead to inhomogeneous particle density distribution. Some industrial methods of explosive forming rely on detonation of explosive powder. This powder can be deposited as a thin layer over the surface area of the forming metal, with some remaining concentration in the vicinity of the layer. The structure of the detonation waves and the phenomenology of their initiation and propagation in these environments are the main subjects of this paper.

When the detonation wave is generated in a homogeneous mixture by a "direct initiation," it starts with a strong blast wave from the initiating charge. As the blast wave decays, combustion of the reactive mixture behind its shock front starts to have a larger role in support of the shock wave motion. When the initial explosion energy exceeds some critical value, transition to steady state detonation occurs (cf. Eidelman et al., 1976; Burcat et al., 1978; Oved et al., 1978; Eidelman and Burcat, 1980). In explosive dust mixtures with a nonuniform distribution of particle density, the initiation dynamics is significantly more complicated. The critical initiation energy sufficient for one of the explosive particle density strata regions is not necessarily adequate for other regions. Also, when there is a significant variation in density between the different layers (regions) of the mixture, steady detonation in one layer can result in an overdriven detonation in an adjacent layer. Our paper demonstrates that the phenomenology of these interactions is distinctly different from the classical studies of multi-layer detonations in gases. This is primarily because the energy content of adjacent layers in a typical multi-gas layer experiment varies by a factor of two or four (Liu et al., 1990), whereas the energy content in explosive dust/air mixtures can vary by several orders of magnitude.

#### SHMUEL EIDELMAN AND XIAOLONG YANG

In this paper we use detailed numerical simulation to study the initiation dynamics and propagation phenomenology for a general case of explosive dust dispersion. We will consider particle density variation from 1000 kg/m³ in the ground layer to 0.75 kg/m³ for the upper edges of the cloud. The effects of the cloud density variation on detonation wave parameters will be examined for different cases of cloud particle density distribution. When possible, the results of computer simulations are validated in comparison with experimental and theoretical studies.

The outline of this paper is as follows. Section 2 gives a description of mathematical model that includes governing conservation equations for two phases and the constitutive laws. We describe the model for a particle gas interaction, combustion and equation-of-state for gas phase. The numerical integration technique for solving the mathematical model will also be outlined. In Section 3, we present our numerical simulation results. We first validate our model by comparing one dimensional detonation wave simulation with available experimental results. We then give the two dimensional simulation for detonation wave propagation in combustible particles/air mixtures with variable particle density distribution. Concluding remarks are given in Section 4.

# 2. THE MATHEMATICAL MODEL AND THE NUMERICAL SOLUTION

The mathematical model consists of conservation governing equations and constitutive laws that provide closure relations for the model. The basic formulation adopted here follows the two-phase fluid dynamics model presented in the text by Kuo (1990). The approach assumes that there are two distinct continua, one for gas and one for solid particles, each moving at its own velocity through its own control volume. The sum of these two volumes represents an average mixture volume. Furthermore, particles in their own control volume are assumed monodisperse and they are moving with the same velocity. With these assumptions, distinct equations for continuity, momentum and energy are written for each phase. The interaction effects between the two phases are accounted as the source terms on the right hand side of the governing equation. The following is a short description of the two phase flow model used in our study, with conservation equations written in Eulerian form for two dimensional flow in Cartesian coordinates.

## **Conservation** Equations

Continuity of gaseous phase:

$$\frac{\partial \rho_1}{\partial t} + \frac{\partial (\rho_1 u_g)}{\partial x} + \frac{\partial (\rho_1 v_g)}{\partial y} = \Gamma; \qquad (2.1)$$

Continuity of solid particle phase:

$$\frac{\partial \rho_2}{\partial t} + \frac{\partial (\rho_2 u_p)}{\partial x} + \frac{\partial (\rho_2 v_p)}{\partial y} = -\Gamma; \qquad (2.2)$$

Conservation of momentum of gaseous phase in x-direction:

$$\frac{\partial(\rho_1 u_g)}{\partial t} + \frac{\partial(\rho_1 u_g^2 + \phi p_g)}{\partial x} + \frac{\partial(\rho_1 u_g v_g)}{\partial y} = -F_c + \Gamma u_p; \qquad (2.3)$$

Conservation of momentum of solid particle phase in y-direction:

$$\frac{\partial(\rho_1 v_g)}{\partial t} + \frac{\partial(\rho_1 u_g v_g)}{\partial x} + \frac{\partial(\rho_1 v_g^2 + \phi p_g)}{\partial y} = -F_y + \Gamma v_p; \qquad (2.4)$$

Conservation of momentum of solid particle phase in x-direction:

$$\frac{\partial(\rho_2 u_p)}{\partial t} + \frac{\partial(\rho_2 u_p^2)}{\partial x} + \frac{\partial(\rho_2 v_p u_p)}{\partial y} = F_x - \Gamma u_p; \qquad (2.5)$$

Conservation of momentum of solid particle phase in y-direction:

$$\frac{\partial(\rho_2 v_p)}{\partial t} + \frac{\partial(\rho_2 u_p v_p)}{\partial x} + \frac{\partial(\rho_2 v_p^2)}{\partial y} = F_y - \Gamma v_p; \qquad (2.6)$$

Conservation of energy of gas phase:

$$\frac{\partial(\rho_{1}E_{gT})}{\partial t} + \frac{\partial(\rho_{1}u_{g}E_{gT} + u_{g}\phi p_{g})}{\partial x} + \frac{\partial(\rho_{1}v_{g}E_{gT} + v_{g}\phi p_{g})}{\partial y} = \Gamma\left(\frac{u_{p}^{2} + v_{p}^{2}}{2} + E_{chem} + C_{s}\bar{T}_{p}\right) - \left(F_{x}u_{p} + F_{y}v_{p}\right) = Q; \qquad (2.7)$$

Conservation of energy of solid particle phase:

$$\frac{\partial(\rho_2 E_{\rho T})}{\partial t} + \frac{\partial(\rho_2 E_{\rho T} u_p)}{\partial x} + \frac{\partial}{\partial y}(\rho_2 E_{\rho t} v p = \dot{Q} + (F_x v_p + F_y v_p)) - \Gamma\left(\frac{u_p^2 + v_p^2}{2} + E_{chem} + C_s \bar{T}_p\right); \qquad (2.8)$$

Conservation of number density of solid particle:

$$\frac{\partial N_p}{\partial T} + \frac{\partial (N_p u_p)}{\partial x} + \frac{\partial (N_p v_p)}{\partial y} = 0.$$
(2.9)

In the above equations,  $\phi = 1 - \frac{N_p M_p}{\rho_p}$ ,  $\rho_1 = \phi \rho_g$ ,  $\rho_2 = (1 - \phi)\rho_p$ , where  $N_p$  and  $M_p$ are the number density of particles and mass of each particle, respectively, and  $\rho_g$  and  $\rho_p$  are the material density of gas and particle densities, respectively.  $u_g$ ,  $v_g$ ,  $p_g$  are gas phase x-velocity, y-velocity and pressure, respectively;  $u_p$ ,  $v_p$ ,  $T_p$ , are x-velocity, y-velocity and average particle temperature, respectively.  $C_s$  is the solid particle specific heat, and  $E_{chem} = E_{comb} - E_{evap}$ , where  $E_{comb}$  is heat of combustion and  $E_{evap}$  is heat of evaporation.  $\Gamma$  is the rate of phase change from solid to gas and Q is heat transfer between the two phases;  $F_x$ ,  $F_y$  are drag force between the two phases in x and y directions, respectively.

Equations (2.2) and (2.9) are linked through the relation  $\rho_2 = N_p M_p$ . In the case of a reactive solid phase,  $M_p$  decreases due to combustion. The mass of a single particle at any point can be obtained from  $M_p = \rho_2(x,y)/N_p(x,y)$ , and the diameter of a particle at any spatial location is  $D(x,y) = [6M_p(x,y)/\pi\rho_p]1/3$ . The total internal energy of gaseous phase

$$E_{gT} = E_g + \frac{1}{2}(u_g^2 + v_g^2)$$
 and  $E_g = E_g(p_g, \rho_g)$  (2.10)

#### SHMUEL EIDELMAN AND XIAOLONG YANG

where  $E_g(p_g, \rho_g)$  is the equation-of-state for gas phase, which will be discussed later. The total internal energy of solid particle phase is

$$E_{pT} = E_p + \frac{1}{2}(u_p^2 + v_p^2)$$
 and  $E_p = E_{comb} + C_s \bar{T}_p$ . (2...)

In order to close the above system of conservation equations, it is necessary to define certain criteria and interaction laws between the two phases, which include mass generation rate,  $\Gamma$ , drag force between particles and gas,  $F_x$ ,  $F_y$  and the interphase heat transfer rate  $\dot{Q}$ . The model for particle and gas interaction and particle combustion that results in the constitutive relation for the conservation equations, is explained in detail in the next subsection.

## Model for a Particle Gas Interaction and Combustion

Presently the physics of the energy release mechanisms in solid particles/air mixtures is not clearly understood. This can be attributed to the obvious difficulties of making a direct non-obtrusive measurement in the optically thick environment typical for this system. In the experimental and theoretical work done for the grain dust detonation conditions (Kauffman *et al.*, (1979), it was demonstrated that the volatile components released by the particle heated behind the shock front play a major role in determining the detonability limits of the mixture. Eidelman and Burcat (1981) successfully applied a combination of fast evaporation and aerodynamic shattering mechanisms to simulate a two-phase detonation process.

The chemical processes of a single particle combustion, which mainly occur in the gaseous phase, are significantly faster than the physical processes of particle gasification or disintegration. Thus, in the multi-phase mixtures, the rate of energy release will be mostly determined by physics of particle disintegration. It is very difficult to describe the details of particle disintegration in the complex environment prevalent behind the shock or detonation wave. For example, Reinecke and Waldman (1975) defined five different disintegration regimes for a relatively simple environment of water droplets passing through a weak shock. Fortunately, in most cases of multi-phase detonation, only the main features of the particle disintegration dynamics need to be captured to describe the phenomena. For example, Eidelman and Burcat (1980) used simple models for particle evaporation and shattering to obtain simulation results that compared very favorably with experimental data. Because of our inability to resolve the particle disintegration problem in all its complexity, the validation of the model against known experimental data is essential.

In this paper we consider solid particles consisting of explosive material. Explosive material contains fuel and oxidizer in a passive state at low temperature; however, when the temperature rises the fuel and oxidizer react, leading to detonation or combustion. The initiation for explosives will occur at a relatively low temperature. For example, TNT will detonate when heated to the temperature of 570°C. Only particles larger than a critical detonation size can detonate directly when initiated by a shock wave. We consider here particles smaller than 4mm in diameter that will not detonate when heated, but will burn when the temperature on the particle surface reaches a critical value. Since the heat conduction inside the explosive material is relatively slow, the process of particle heating needs to be resolved in detail. Our simulations numerically solve the temperature field in the particles at every time step of numerical integration of the global conservation equations. The explosive particle that reaches the critical temperature will burn instantaneously. Energy transfer by convection and conduction is simulated by solving the unsteady heat

conduction equation in each computational cell at each time step. Assuming a particle's temperature  $T_p$  to be a function of time and radial position only, the unsteady heat conduction equation may be transformed to:

$$\frac{d^2w}{dr^2} = \frac{1}{\alpha} \frac{dw}{dt},$$
(2.12)

subject to the boundary conditions:

$$w = 0 \ at \ r = 0, \ t > 0$$
  
$$k \frac{dw}{dr} = (h - \frac{1}{R})w = hRT_g \ at \ r = R, t > 0$$
(2.13)

where:

$w(\mathbf{r},t)$	=	$rT_p(r,t)$
r	=	radial position
T(r,t)	=	temperature
R	~	partial radius
T _g	*	temperature of surrounding gas
k	~	thermal conductivity of particle
h	==	convective heat transfer coefficient.

The Nusselt number, used to find h, is given by an empirical relation given by Drake (1961). The gas viscosity is found from Sutherland's Law. The gas thermal conductivity is calculated by assuming a constant Prandtl number. Lastly, the boiling temperature at a given pressure is found from the Clapeyron-Clausius equation under the assumptions of: 1) constant latent enthalpy of phase change, 2) the vapor obeys the ideal equation-of-state, and 3) the specific volume of the solid/liquid is negligible compared to that of the vapor. A critical temperature is also employed to serve as an upper limit to the boiling point, regardless of pressure.

Equation (2.12) with boundary condition (2.13) can be numerically integrated using either implicit or explicit schemes, which will be explained later.

Knowledge of the particle temperature profile also allows us to determine.  $\Gamma$ , the rate of phase change from solid particle to gas. Once any point at a radial location  $0 \leq r \leq R$  has a temperature exceeding the boiling temperature, the entire mass between r and R is transferred to the gas phase in one time step. In so doing, an energy equal to the product of the mass lost and the particle combustion of heat minus heat of evaporation energy is transferred from the particle to the gas.

The interphase drag forces (Fx, Fy) are determined from the experimental drag for a sphere, as presented by Schlichting (1983).

$$F_{x} = \left(\frac{\pi}{8}\right) N_{p} \rho_{g} C_{D} |\mathbf{V}_{g} - \mathbf{V}_{p}| (\mathbf{u}_{g} - \mathbf{u}_{p}) \mathbf{R}^{2}$$
(2.14)

where

$$C_D = \begin{cases} \frac{24}{Re} \left( 1 + \frac{Re^{2/3}}{6} \right) & for \ Re < 1000; \\ 0.44 & for \ Re > 1000. \end{cases}$$
(2.15)

and  $Re = \frac{2R[V - V_p]}{\mu_q}$ , R is the radius of the particle and  $\mu_g$  is gas viscosity at a temperature of  $T_{fllm} = \frac{1}{2}(T_g + \bar{T}_p)$ . Similarly, the formula for  $F_y$  is

## SHMUEL EIDELMAN AND XIAOLONG YANG

$$F_{\mathbf{y}} = \frac{\pi}{8} N_{\rho} \rho_{g} C_{D} |\mathbf{v}_{g} - \mathbf{v}_{\rho}| (\mathbf{v}_{g} - \mathbf{v}_{\rho}) \mathbf{R}^{2}.$$
(2.16)

# Equation of State for Detonation Products

To close the system of governing equations, one needs a constitutive relation between density, pressure, temperature, and energy for gas phase, which is an equation-of-state. This study uses the Becker-Kistiakowsky-Wilson (BKW) equation-of-state (cf. Cowan and Fickett, 1956: Mader, 1979), which is.

$$p_g V_g / \hat{R} T_g = 1 + x e^{bx}. (2.17)$$

where  $V_g =$  volume of gas phase

 $p_{g} = \text{pressure of gas phase}$   $p_{g} = \text{pressure of gas phase}$   $T_{g} = \text{temperature of gas phase}$   $\bar{R} = \text{universal gas constant}$   $x = k/F_{g}(T + \Theta)^{a}$   $k = K \sum_{i}^{L} X_{i} k_{i}$ 

with empirical constants 
$$a, b, K, \Theta$$
 and  $k_i$ . The constants  $k_i$ , one for each molecular species, are co-volumes. The co-volumes are multiplied by their mole fraction of species.  $X_i$ , and are added to find an effective volume for a mixture. For a particular explosive, if we know the composition of defonation products  $a, b, \Theta, K$ , and all  $k_i$ 's can be found

in the book by Mader (1979).

The internal energy is determined by thermodynamics relation

$$\left(\frac{\partial E_{\mathfrak{g}}}{\partial V_{\mathfrak{g}}}\right)_{T} = T_{\mathfrak{g}} \left(\frac{\partial \rho_{\mathfrak{g}}}{\partial T_{\mathfrak{g}}}\right)_{V} - \rho_{\mathfrak{g}}.$$
(2.18)

Integration of this equation for a fixed composition of the detonation products will allow us to calculate the energy of the detonation products as a function of temperature and volume. The thermodynamic properties as functions of temperature were calculated for each component from the NASA tables compiled by Gordon and McBride (1976).

The BKW equation-of-state is the most used and well calibrated of those equationsof-state used to calculate the properties of detonation products. The detailed discussion and review of the BKW equation-of-state can be found in the literature (cf. Cowan and Fickett, 1956; Mader, 1979).

#### Numerical Method of Solutions

The system of partial differential equations described in the previous paragraph is integrated numerically. Equations (2.1)—(2.9) can be written in the following vector form.

$$\frac{\partial \Phi}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = \Omega.$$
(2.19)

In order to numerically solve this equation, an operator time-splitting technique is used. Assuming that all flow variables are known at a given time, we can calculate its advancement in time by splitting the integration into two stages.

In the first stage, the conservative part of Eq. (2.19) is solved:

$$\frac{\partial \Phi}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0.$$
 (2.20)

The Second Order Godunov method is used for the integration of the subsystem of equations describing the gaseous phase flow. The method is well documented in the literature (cf. Eidelman *et al.*, 1984; Colella, 1985; Colella and Glaz, 1985). In the following we will elaborate only some specifics of application of the method with BKW equation-of-state to simulate detonation product.

The physical system under study will have concentrations of solid explosive particle ranging from 1000 kg/m³ near the ground to 0.75 kg/m³ in the cloud. Detonation of this mixture will create detonation products with effective  $\gamma$  ranging from 3 to 1.1. To describe the flow of detonation products, we use the BKW equation-of-state described previously. Since the Second Order Godunov method uses primitive variables to calculate Riemann problems at the edges of the cells, its implementation for non-ideal EOS is difficult. In our simulations, we have resolved this problem by involving a local parameterization of EOS and by using direct and inverse equations-of-state to calculate pressure, gamma, and temperature as functions of thermal energy, density, and mixture composition. After this step, we have a complete set of parameters allowing calculation of the fluxes obtained from solving the Riemann problem (Colella and Glaz, 1985). The "inverse." EOS calculates internal energy as a function of density and pressure. In our code we use the "inverse" EOS to calculate the fluxes of conserved variables after calculation of the flux from Riemann problem of primitive variables.

The subsystem of equations describing the particle phase flow is integrated using a simple finite difference upwind scheme. This is done because there is no shock in the particle phase and the upwind scheme leads to a robust and accurate integration scheme.

In the second stage, the source term is added and the following equation is solved:

$$\frac{\partial \Phi}{\partial t} = \Omega. \tag{2.21}$$

To integrate this equation in time, we need to obtain  $\Omega$  as a function of  $\Phi$ . To do this, we first solve the particle heat conduction and heat transfer equation (2.12) with a boundary condition (2.13) that gives the temperature distribution as a function of particle radius and time using a local particle grid. Since the particle radius, R. will become very small due to evaporation, the implicit Crank-Nicolson algorithm is used because of its stability properties and its second order temporal and spatial accuracy. Using the Crank-Nicolson scheme to predict the particle temperature profiles at times  $t_1$ and  $t_2$  permits easy calculation of the total energy exchange, Q between  $t_1$  and  $t_2$ , due to convection and conduction. Knowing the temperature distribution inside the particle, we can calculate gas generation rate  $\Gamma$ , drag force  $F_x$ ,  $F_y$ , and heat exchange Q, between two phases and hence,  $\Omega$  of Eq. (2.21). After obtaining the source term, we can integrate Eq. (2.21) by an explicit scheme.

For the multiphase system under study,  $\Delta_x = \Delta_y = 1mm$  was used to allow explicit integration of the gasdynamic and physical processes of evaporation and heat release. When a mismatch occurred between the physical and gasdynamical characteristic times, the time step was adjusted by some fraction to assure stability. However, the resulting time step was not significantly smaller than that calculated by CFL criteria. For larger cell sizes, this approach will be impractical.

The numerical method is implemented in a code named MPHASE, which is fully vectorized and supported by number of graphics and diagnostics codes.

#### Table I.

One Dimensional Validation Result

D[m/sec]-Detonation wave velocity,

Pcl [Pa]-Pressure at Chapman-Jouguet Point

 $P_p[Pa]$ -Peak pressure:  $\rho_p[kg/m^3]$ -Peak density

				Tiger	BKW	Soviet
RDX		Present	Expt'l	Calculation	Calculation	Experiments
Density (kg/m ³	Parameters	Calculation	Ref. 1	Ref. 2	Ref. 1	Ref. 3
1000 kg/m ³	D	6155	5981		6128	
	₽ _{CJ}	$1.220 \times 10^{10}$			$1.08 \times 10^{10}$	$1.00 \times 10^{10}$
	P _p	$2.57 \times 10^{10}$				
	ρ	1936				
860 kg/m ³	D	6031		5900		
	PCI	$0.986 \times 10^{10}$		$0.88 \times 10^{10}$		$0.82 \times 10^{10}$
	P _ρ	$1.95 \times 10^{10}$				
	Pp	1722				
466 kg/m ³	Ď	4800		4500		
	PCI	$0.379 \times 10^{10}$		$0.30 \times 10^{10}$	$0.3 \times 10^{10}$	
	Pp	$0.625 \times 10^{10}$				
	ρp	924				
250 kg/m ³	D	4049		3600		
	PCI	$0.2478 \times 10^{10}$		$0.13 \times 10^{10}$		
	Pρ	$0.4538 \times 10^{10}$				
	Pp	552				
100 kg/m ³	D	3495				
	P _{CJ}	$0.5013 \times 10^9$				
	P _p	$0.7658 \times 10^{9}$				
	ρ _p	220				
0.75 kg/m ³	D	1622	1410"	1870*		
	PCI	$0.25 \times 10^7$	$0.284 \times 10^{7*}$	$0.26 \times 10^{7}$		
	Pρ	$0.484 \times 10^7$				
	ρρ	8				

Ref. 1-Mader, C., "Numerical Modeling of Detonation," (University of California Press, Ltd., 1979), p. 47.

Ref. 2-Wiedermann, A., "An Evaluation of Bimodal Layer Loading Effects," IITRI Report. Feb., 1990. Ref. 3-Stanukovitch, K.P., "Physics of Explosion" (in Russian), Nauka, 1975.

# 3. RESULTS

## Model Validation for a One Dimensional Detonation Wave Problem

The main advantage of our particle combustion model is its description of the detonation phenomenology for a wide range of explosive particle sizes and densities. We will demonstrate this capability on a set of one dimensional test problems. For these test problems we have simulated the initiation and propagation of the detonation waves in a shock tube-like setting, where the explosive particles are distributed uniformly through the shock tube volume.

Results of these simulations are summarized in Table I, which shows detonation wave velocity, peak pressure, and peak density given as a function of the average density of the



FIGURE 1 Computational domain and boundary conditions.

solid explosive. Here the explosive two-phase mixture is composed from RDX particle and air, where RDX particle concentration varies from  $0.75 \text{ kg/m}^3$  to  $1000 \text{ kg/m}^3$ . This concentration variation covers the whole range of solid explosive concentrations of interest to our problem. The simulations performed with the MPHASE code were compared with the experimental results (Mader, 1979; Stanukovitch, 1975), and calculations were done with the TIGER code presented by Wiedremann (1990).

From Table I, it is clear that our simulation results compare favorably with other simulation results and experimental data. The maximum deviation between our results and referenced results is no greater than 15% for the entire range of explosives densities. Considering that our results were obtained with a single model for particle combustion applied to the extreme range of densities, our model gives an excellent prediction of the detonation wave parameters.

## **Two Dimensional Simulation Results**

Figure 1 shows a setup for a typical two dimensional simulation. Here the computational domain is  $25 \text{cm} \times 25 \text{cm}$ . The explosive powder density is distributed according to the 4th power law of vertical distance, starting from the ground where the density is 800 kg/m³, and rising to 1.2cm, where the density is 0.75 kg/m³. From this point to 25cm height, the density is constant and equal to 0.75 kg/m³. The density distribution in the

,



FIGURE 2 Fourth power distribution of particle density in the layer. The maximum density in the layer is 800 kg/m³. (2a), (2b), and (2c) are gas pressure, gas density, and particle density at 12  $\mu$ sec, respectively. See COLOR PLATE IV.



FIGURE 2 (Continued) (2d), (2e), and (2f) are gas pressure, temperature, and particle density at 55  $\mu$ sec, respectively. See also COLOR PLATE IV.

### SHMUEL EIDELMAN AND XIAOLONG YANG

direction of the "x" axis is uniform. The boundary conditions for the computational domain shown in Fig. 1 are specified as follows: solid wall along the "x" axis; symmetry conditions along the "y" axis; supersonic outflow for upper boundary and at the right of the computational domain. The mixture consists of RDX powder and air at ambient conditions and it is assumed to be quiescent at the time of initiation.

The simulation starts at t = 0 when the mixture is initiated at the lower left corner of the computational domain by an initiating charge, as shown in Fig. 1. The initiating charge is 6 mm  $\times$  10 mm, with pressure of 4 GPa and density of 450 kg/m³. The energy released by the initiating explosion leads to formation of the detonation wave propagating through the multiphase media. Figure 2a shows pressure contours for the propagating detonation wave at the time of  $t = 12 \ \mu sec$  after initiation. Here the pressure contour levels are shown on logarithmic scale in MPa. The maximum pressure value of 7940 MPa is observed in the layer of condensed explosive located near the ground. The pressure in the layer is two to three orders of magnitude higher than pressure behind the detonation wave in the 0.75 kg/m³ RDX cloud and air located above the distance of 1.2cm from the ground. Figure 2a demonstrates that the detonation wave in the cloud is overdriven, since the pressure behind the shock continuously rises and reaches its maximum in the layer. From this figure, we also observe that the overdriven wave propagates faster in the cloud than in the layer. This is explained by the fact that it is easier to compress air that is very lightly loaded with particles and located above the ground layer, than it is to compress air heavily loaded with a particle mixture near the ground. It is interesting to note a discontinuous pressure change between the yellow contours and the light blue and green contours behind the detonation front. This discontinuity is over-emphasized by our presentation of contour lines on the logarithmic scale; however. further examination of our simulation results indicates this feature is real and is similar in nature to barrel shocks observed for strong jets.

In Fig. 2b, gas phase density contours are shown for the time  $t = 12 \ \mu$ sec. Here the contour lines are distributed on logarithmic scale. The main features of the shock wave structure are very similar to those observed in the pressure contours figure. Here we see that a jet of high density gases reflects from the center of symmetry axis, creating a contact discontinuity that we will observe at later times. The barrel shock is clearly visible in this figure. In Fig. 2c, the particle density contour plots are shown for  $t = 12 \ \mu$ sec. The contour levels in Fig. 2c are given on the logarithmic scale and the initial deposition of the explosive material in the ground layer of the computational domain can be clearly observed. The black contour lines delineate the beginning and the end of the reaction zone in the cloud. To the left of these contours lies an area with combustion products and to the right unburned particles in the cloud. Here we can see that the reaction zone length is of the order of 1cm.

Figure 2d shows pressure contours for the same simulation for the time  $t = 55 \ \mu \text{sec}$  just before the detonation wave leaves the computational domain. In this figure we see that the global structure of the wave did change slightly from Fig. 2a. We observe that the barrel shock wave is fully developed and has a half ellipse shape. The detonation wave in the cloud is still overdriven; however, part of the shock wave front that propagates vertically becomes weaker as it gets further away from the detonation front in the layer. In Fig. 2e, gas temp_rature contours are shown at  $t = 55 \ \mu \text{sec}$ . In this case, it is interesting to note that the highest temperatures are observed behind the front of the overdriven cloud detonation wave in immediate vicinity of the layer's upper strata. Very high temperatures in this region can be explained by the high pressure generated from the detonation of the explosive material in the layer and by relatively low density of cloud strata in the layer's immediate vicinity. Here, as in the pressure contours graph, the area of barrel shock can be clearly identified.



FIGURE 3 History of pressure distribution on the ground from initiation to steady detonation:  $\Box = 0$  µsec, o = 12 µsec,  $\Delta = 24$  µsec, x = 34 µsec, x = 44 µsec and  $\diamond = 55$  µsec.

We also observe in Fig. 2 a clear development of two detonation fronts, one moving vertically in the cloud and another moving horizontally in the layer. Because the energy density of the explosive particle in the layer is about three orders of magnitude larger than it is in the cloud, the vertical parts of the front represent an overdriven detonation wave in the cloud. Even though the vertical front has slowed down compared with the horizontal front, its speed and parameters far exceed those typical for detonation waves in a cloud. In fact, the self-sustained detonation regime in the cloud will develop at the distance of about three meters from the layer. The area of the front close to the detonation wave in the layer will remain hot and overdriven, since it is located very close to the detonation front in the layer. In Fig. 2f, particle density contours are shown on a logarithmic scale. We can clearly observe the reaction zone delineated by black contour lines. In this case, the reaction zone length in the cloud is about 1cm. Consistent with the gradual transition from overdriven to self-sustained detonation, the reaction zone length is larger for the vertical part of the detonation front. The detonation wave velocity observed in our simulation is approximately 4048 m/sec, which is significantly lower than the detonation wave velocity observed in RDX with a density of 860 kg/m³ (see Table I), which is the highest density in the ground layer. This can be explained by a high gradient of particle density distribution in the layer, where the density drops rapidly from 800 kg/m³ at the bottom of the layer to 0.75 kg/m³ at the top strata of the layer at 12 mm above the ground.



FIGURE 4 = 2.5 cm thick layer at constant density of 100 kg/m³. Density in the cloud is 0.75 kg/m³. (4a), (4b), and (4c) are gas pressure, gas density, and particle density at 66  $\mu$ sec, respectively. See COLOR PLATE V.



FIGURE 5 1.2 cm thick particle layer at constant density of 250 kg/m³. Particle density in the cloud is 0.75 kg/m³. (5a), (5b), (5c) are gas pressure, gas density, and particle density at 65  $\mu$ sec, respectively. See COLOR PLATE VI.

#### SHMUEL EIDELMAN AND XIAOLONG YANG

To show the transient process from initiation to steady-state detonation, we plot the pressure-distance profiles at six separate times after ignition (Fig. 3). Here the pressure is taken on the ground. Examining the profiles, we observe that the steady detonation is reached after 10cm. For each profile, we see that the pressure distribution is characterized by a strong detonation front followed by a fast expansion wave because of lateral expansion.

To further explore properties and phenomenology of the detonation waves propagating in the layer/cloud systems, we simulated additional cases in which explosive powder density distribution was different from the case reported above, although total weight of particle per unit area remained the same.

In Fig. 4, results are shown for the case of a uniform 2.5 cm thick layer of RDX with density of 100 kg/m³, and a 0.75 kg/m³ cloud initiated under the same conditions as in the previous example. Figures 4a, 4b, and 4c show pressure, gas density, and particle density contour plots at  $t = 66 \mu sec$ . Here we observe that because the layer has much less density than the case reported above, the precursor effect of the detonation wave in the cloud preceding the wave in the layer is less pronounced. We also observe a significant difference in the shape of the strong contact discontinuity in the region of the shock front close to the layer. In Fig. 4b, we can clearly distinguish two contact surfaces, one between condensed explosive detonation products in the layer and in the cloud, and another between the detonation products from layer explosive detonation and from cloud particle detonation. We should note that these contact surfaces are over-emphasized by the logarithmic display of the contour plot levels. The maximum pressure observed in this simulation is 955 MPa, which is about one order of magnitude smaller than in the previous simulation. This is consistent with one order of magnitude difference in the maximum density of the ground layer in the two cases. The detonation wave speed (3407 m/sec) for the case presented in Fig. 4, which is only slightly lower than the speed predicted by the one dimensional simulations presented in Table I, reflects the influence of the two dimensional expansion on the detonation wave propagation.

Figure 5 presents results for the case of a uniform density of 250 kg/m³ in a 1.2 cm ground layer. All other parameters are the same as in the previous two cases. In Figs. 5a, 5b, and 5c, pressure, gas density, and particle density contour plots are shown at the time  $t = 65 \ \mu$ sec after detonation wave initiation. Here, the detonation wave propagates faster than in the previous cases U = 3660 m/sec. This is about 400 m/sec slower than in the case of fourth power density distribution. Maximum pressure on the ground is 2150 MPa, which is consistent with the increase of powder density in the layer. The basic structure of the detonation front and the contact surfaces is similar to the case of fourth power density distribution.

## 4. CONCLUSIONS

We presented a mathematical model and numerical solution for the simulation of detonation wave initiation and propagation in multiphase mixtures consisting of solid combustible particles and gas. Using this model, we studied detonations in mixtures of solid RDX particles and air, with the objective of examining the effects of wide variation in particle density distribution on the dynamics and structure of detonation waves. We considered a physical system of solid particle clouds in air where a significant amount of particle can settle on the ground and the particle phase concentrations in the particle/air mixture can range from 0 to 1000 kg/m³. This range of solid phase densities necessitated development of the mode¹ and its numerical implementation for a wide range of particle concentrations. Our validation study has shown good agreement between the simulations and referenced results for the whole range of particle concentrations.

Two dimensional simulations were done for the system of low particle density concentration clouds and ground layers formed by high concentrations of the RDX powder. We examined three cases of ground layer density distribution: a fourth power distribution within 12 mm above ground with a maximum density on the ground of 800 kg/m³; a uniform 25 mm thick layer with a density of 100 kg/m³; a 12 mm thick uniform layer with a density of 250 kg/m³. In all these cases, the weight of condensed phase per unit area was the same, which allowed examination of the effects of the particle density distribution on detonation wave parameters.

In all examined two dimensional cases, the detonation wave in the cloud in the computational domain was significantly overdriven and did not play an important role. We estimated that the self-sustained regime of the detonation wave in the cloud for the examined cloud concentrations can occur only at the distances of 2-3 M above ground. At the same time, the particle density distribution in the layer determines the dynamics of the detonation wave as well as the pressure on the ground.

We observed in all three two dimensional simulations a very distinct shape of the detonation wave front in the vicinity of the layer. In this area, the overdriven detonation in the cloud is preceding the detonation wave in the ground layer. This feature of the detonation front can be explained by the fact that the energy released in the ground layer detonation wave produces a faster propagating shock wave in the dilute cloud than in the ground layer which is heavily loaded with solid particles. However, these structures were not observed experimentally, and more studies are needed to examine their parameters.

The maximum pressure affecting the ground was directly related to the maximum particle density in the lower strata of the layer. However, the detonation front velocity for the fourth power distribution case was considerably lower than calculated for a one dimensional case with 860 kg/m³ particle density, reflecting the significant effect of two dimensional expansion. Two other cases with 250 kg/m³ and 100 kg/m³ maximum densities had detonation wave velocity only slightly lower than the one dimensional simulations of the same RDX/air concentrations. It is interesting to compare the simulation of the fourth power density distributed in the same physical space: however, the parameters of developed detonations were vastly different. Existence of the high density strata at the bottom of the ground layer in the fourth power case significantly increased the maximum pressure at the ground, and produced higher detonation wave velocity.

Using a variable density layer, we can reach a combination of pressure and velocity conditions outside of the Chapmen-Jougett limitations. The range of conditions that can be obtained in the variable density system and its parametrics needs a more systematic study. In this article, we introduced only the mathematical formulation and numerical simulation method validated for the range of conditions of interest. In addition, we have given some examples of the method's application for two dimensional simulations. However, this methodology should be linked to an experimental study for a more in-depth analysis of the phenomenology discussed here.

#### ACKNOWLEDGMENTS

The work reported here was partially supported by DARPA and AFOSR under contract no. F49620-89-C-0087. The authors would like to thank Col. J. Crowley and Dr. A. Nachman for their interest in this project.

#### REFERENCES

 Burcat, A., Eidelman, S., and Manheimer-Timnat, Y. (1978). "The Evolution of a Shock Wave Generated by a Point Explosion in a Combustible Medium," Symp. of High Dynamic Pressures (H.D.P.). Paris, 347.
 Colella, P. (1985). "A Direct Eulerian MUSCL Scheme for Gas Dynamics," SIAM J. Stat. Comput. 6, 104.
 Colella, P. and Glaz, H.M. (1985). "Efficient Solution Algorithms for the Riemann Problem for Real Gases."

J. Comput. Physics. 59, 264.

#### SHMUEL EIDELMAN AND XIAOLONG YANG

Cowan. R.D., and Fickett, W. (1956). "Calculation of the Detonation Products of Solid Explosives with the Kistiakowsky-Wilson Equation of State." *Journal of Chemical Physics.* 24, 932.

Drake, R.M., Jr. (1961). "Discussions on G.C. Vliet and G. Leppert: Forced Convection Heat Transfer from an Isothermal Sphere to Water," Journal of Heat Transfer, 83, 170.

Eidelman, S., Timnat, Y.M., and Burcat, A. (1976). "The Problem of a Strong Point Explosion in a Combustible Medium." 6th Symp. on Detonauon. Coronado. CA, Office of Naval Research. 590.
Eidelman, S., and Burcat, A. (1980). "The Evolution of a Detonation Wave in a Cloud of Fuel Droplets:

Eidelman, S., and Burcat, A. (1980). "The Evolution of a Detonation Wave in a Cloud of Fuel Droplets: Part I, Influence of the Igniting Explosion." ALAA Journal, 18, 1103.

Eidelman, S., Collela, P., and Shreeve, R.P. (1984). "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modelling," ALAA Journal. 22, 10.

Eidelman, S., and Burcat, A. (1980). "The Mechanism of Detonation Wave Enhancement in a Two-Phase Combustible Medium," 18th Symposium on Combustion. The Combustion Institute, Waterloo, Ontario. Canada.

Eidelman, S., and Burcat, A. (1981). "Numerical Solution of a Non-Steady Blast Wave Propagation in Two-Phase (Separated Flow) Reactive Medium." J. Comput. Physics, 39, 456.

Gordon, S., and McBride, B.J. (1976). "Computer Program for Calculations of Complex Chemical Equilibrium Compositions. Rocket Performance. Incident and Reflected Shocks and C-J Detonations," NASA SP-273. 1976 Revision.

Kauffman, C.W., Wolanski, P., Vral, E., Nicholls, J.A. and Van Dyke, R. (1979). "Shock Wave Initiated Combustion of Grain Dust," Proc. of the Intl, Symp. on Grain Dust, p. 164. Manhattan, KS. Kuo, K. (1990). "Principles of Combustion." John Wiley and Sons. Inc.

Liu, J.C., Kauffman, C.W. and Sichel, M. (1990). "The Lateral Interaction of Detonating and Detonable Mixtures," (Private communication).

Mader C.L. (1979). "Numerical Modeling of Detonation." University of California Press, Ltd. London. England.

Oved, Y., Eidelman, S., and Burcat, A. (1978). "The Propagation of Blasts from Solid Explosives to Two Phase Medium," Propellants and Explosives, 3, 105.

Reinecke, W.G., and Waldman, G.D. (1975). "Shock Layer Shattering of Cloud Drops in Reentry Flight." AIAA Paper, 75-152.

1

Schlichting, H. (1983). "Bounday Layer Theory," 7th ed. McGraw-Hill.

Stanukovitch, K.P. (1975). "Physics of Explosion" (in Russian), Nauka.

Wiedermann, A. (1990). "An Evaluation of Bimodal Layer Loading Effects," IITRI Report. February.



AIAA 93-2940 Computation of Shock Wave Reflection and Diffraction Over a Semicircular Cylinder in a Dusty Gas X. Yang, S. Eidelman, and I. Lottati Science Applications International Corporation McLean, VA 22102



# COMPUTATION OF SHOCK WAVE REFLECTION AND DIFFRACTION OVER A SEMICIRCULAR CYLINDER IN A DUSTY GAS

Xiaolong Yang," Shmuel Eidelman,† and Itzhak Lottati" Science Applications International Corporation

## Abstract

The unsteady shock wave reflection and diffraction generated by a shock wave propagating over a semicircular cylinder in a dusty gas are studied numerically. The mathematical model is a multi-phase system based on a multi-fluid Eulerian approach. A Second Order Godunov scheme is used to solve the gas phase Euler equations and an upwind scheme is used to solve the particle phase conservation equations on an unstructured adaptive mesh. For the validation of the model, the numerically predicted one dimensional shock wave attenuation is compared with experimental results. Shock wave reflection and diffraction over a semicircular cylinder in a pure gas flow is simulated first to show the excellent agreement between the present computation and the experimental results. For a shock wave reflection and diffraction in a dusty gas, the effects of particle size and particle loading on the flow field are investigated. Gas and particle density contour plots are presented. It has been shown that the shock wave configuration differs remarkably from pure gas flow depending on the particle parameters. The difference is explained as the result of momentum and heat exchange between the two phases.

# Introduction

Shock wave propagation into a gas particle suspension medium has attracted great attention in recent years due to its many engineering applications. Some of these applications include blast wave propagating over a dusty surface, exhaust from a solid propellant rocket, and coal or grain dust detonation. Many studies dealing with two phase environment can be found in literature. A general description and theoretical analysis of such flow can be found in review papers by Marble¹ and by Rudinger,² and in a book by Soo.³ Numerical models for dilute gasparticle flows were reviewed by Crown.⁴ Numerical studies of gas-particle flow in a solid rocket nozzle can be found in Refs. 5 and 6. Miura and Glass ⁷ theoretically and numerically studied the oblique shock waves in a dusty-gas flow over a wedge. The one-dimensional unsteady structure of shock waves propagating through a gas-particle mixture was investigated both experimentally and numerically by Sommerfeld.⁸ Recently, Kim and Chang⁹ illustrated a numerical simulation of shock wave propagation into a dusty gas and the reflection of the wave from a wedge. Shock wave ignition of different reactive dust is experimentally investigated by Sichel *et al.*¹⁰ and comprehensive model for the structure of dust detonations is also described by Fan and Sichel.¹¹

In this paper, we study shock wave reflection and diffraction over a semicircular cylinder in a dusty gas. We numerically simulate the problem of a shock wave initiated in a pure gas section moving into a dusty region and impinging on a semicircular cylinder. We first formulate the compressible two-phase flow on the basis of a Eulerian multi-fluid formulation. We consider the two phases (i.e., gas and particle) to be interpenetrating continua. The dynamics of the flow are governed by conservation equations of each phase and the two phases are coupled by interactive drag force and heat transfer. We solve the system of conservation equations numerically on an unstructured adaptive grid. The objectives of the study are: (a) to solve the two-phase compressible flow field and compare the simulation with available experimental results; (b) to observe and investigate the reflection and diffraction wave patterns when a shock wave propagates over a semicircular cylinder in a dusty gas, with particle radius and loading as parameters.

The outline of this paper is as follows. Section 2 gives a description of the mathematical model and method of numerical solution, including governing conservation equations for two phases, the constitutive laws, the initial and boundary conditions, and particle parameter. A brief outline of numerical schemes and the adaptive unstructured grid is also given. In Section 3, we present our numerical simulation results. We validate our model by comparing a one-dimensional simulation of a shock wave propagating into a dusty gas with available experimental results. We also show the excellent agreement between our two-dimensional gas-on'y simulation with existing experimental results. Results for reflection and diffraction of shock wave over a semicircular cylinder are given for different particle parameters. Concluding remarks are given in Section 4.

^{*}Drs. Yang and Lottati are Research Scientists with Science Applications International Corp. (SAIC), 1710 Goodridge Dr., MS 2-3-1, McLean, VA 22102. [†] Shmuei Eidelman, Research Scientist, SAIC, Associate Fellow AIAA

Copyright @ American Institute of Aeronautics and Astronautics, Inc., 1993, All rights reserved.

# Mathematical Model and the Numerical Solution

# Conservation Equations

The mathematical model consists of conservation governing equations and constitutive laws that provide closure for the model. The basic formulation adopted here follows the gas and dilute particle flow dynamics model presented by Soo.³ The following assumptions are used during the derivation of governing equations:

(1) The gas is air and is assumed to be ideal gas;

(2) The particles do not undergo a phase change because for particles considered here (sand) phase transition temperature is much higher than the temperatures typical for the simulated cases;

(3) The particles are solid spheres of uniform diameter and have a constant material density;

(4) The volume occupied by the particles is negligible:

(5) The interaction between particles can be ignored:

(6) The only force acting on the particles is drag force and the only heat transfer between the two phases is convection. The weight of the solid particles and their buoyancy force are negligibly small compared to the drag force;

(7) The particles have a constant specific heat and are assumed to have a uniform temperature distribution inside each particle.

Under the above assumptions, distinct equations of continuity, momentum, and energy are written for each phase. The interaction effects between the two phases are listed as the source terms on the righthand side of the governing equation. The two-dimensional unsteady conservation equations for the two phases can be written in the vector form in Cartesian coordinates:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = S. \tag{1}$$

Here U is the vector of conservative variables, F and G are fluxes in x and y direction, respectively, and S is the source term for momentum and heat exchange. The definition of these vectors are:

$$U = \begin{vmatrix} \rho \\ \rho u \\ \rho v \\ e \\ \rho_p u_p \\ \rho_p u_p \\ \rho_p v_p \\ e_p \end{vmatrix}, F = \begin{vmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ u(e+p) \\ \rho_p u_p \\ \rho_p u_p \\ \rho_p u_p^2 \\ \rho_p u_p v_p \\ ue_n \end{vmatrix}, G = \begin{vmatrix} \rho v \\ \rho uv \\ \rho v \\ \rho v \\ \rho v \\ \rho v_p v_p \\ \rho_p v_p \\ \rho_p v_p \\ \rho_p v_p^2 \\ v_p e_2 \end{vmatrix},$$



where  $\rho$ , u, v, and e are gas density, velocities, and energy, respectively;  $\rho_p$ ,  $u_p$ ,  $v_p$  and  $e_p$  are particle density, velocities, and energy, respectively;  $(f_x, f_y)$  and q denotes drag force components acting on the particles and heat transfer to the particles, respectively. The gas pressure p is related to  $\rho$ , u, v and e for by

$$p = (\gamma - 1)[e - 0.5\rho(u^2 + v^2)]$$
(2)

where  $\gamma$  is the specific heat ratio. The gas temperature can be found through the equation-of-state for ideal gas

$$p = \rho RT \tag{3} \bullet$$

where R is the gas constant.

The particle temperature  $T_p$  is calculated through relation

$$e_p = \rho_p c_p T_p + 0.5 \rho_p (u_p^2 + v_p^2). \tag{4}$$

The source terms on the righthand side of Eq. (1) are momentum and heat exchange between gas and particle phases. If we let  $r_p$  and  $\rho_s$  be the particle radius and material density, respectively, then the drag forces are

$$\begin{pmatrix} f_{s} \\ f_{y} \end{pmatrix} = \frac{3}{8} \frac{\rho_{p}\rho}{\rho_{s}r_{p}} C_{d} \left[ (u-u_{p})^{2} + (v-v_{p})^{2} \right]^{1/2} \\ \begin{bmatrix} (u-u_{p}) \\ (v-v_{p}) \end{bmatrix}.$$
 (5)

The particle drag coefficient  $C_d$  depends on relative Reynolds number, Re and relative Mach number,  $M_r$ . In the present study, since the relative Mach number is small ( $M_r < 0.5$ ), the effect of  $M_r$  on  $C_d$  is neglected. The Reynolds number, Re, is based on the relative velocity between the gas and particle phases. After testing the drag coefficients given by Sommerfeld⁸ and by Clift *et al.*,¹² the following two were adopted:

$$C_{d} = \frac{24}{Re} (1 + 0.15Re^{0.687}) \text{ for } Re < 800.$$
  
and  
$$C_{d} = \frac{24}{Re} (1 + 0.15Re^{0.687}) + \frac{0.42}{1 + 42500Re^{-1.16}}$$
  
for  $Re > 800$ .

(6)

Here the Revnolds pumber Re is defined as

$$Re = \frac{2\rho r_p [(u - u_p)^2 + (v - v_p)^2]^{1/2}}{\mu}$$
(7)

Viscosity,  $\mu$ , is calculated at film temperature, namely,  $T_f = 0.5(T_p + T)$ , and the temperature dependency of the viscosity is evaluated according to Sutherland's law

$$\mu = \mu_r \left(\frac{T}{T_r}\right)^{3/2} \frac{T_r + \Phi}{T + \Phi} \tag{8}$$

where  $\mu_r$  is the dynamic viscosity of the gaseous phase at the reference temperature and  $\Phi$  is an effective temperature, called the Sutherland constant.

The rate of heat transfer from gaseous phase to the particle phase is given by

$$Q = \frac{3}{2} \frac{\rho_{p}}{\rho_{s}} \frac{\mu C_{p}}{P_{\tau}} N u (T - T_{p})$$
(9)

where  $Pr = \mu c_p / k_g$  is the Prandtl number, and  $c_p$  and  $k_g$  are the specific heat and thermal conductivity of gas, respectively. The Nusselt number Nu is a function of Reynolds number and the Prandtl number as given by Drake¹³

$$Nu = \frac{2r_ph}{R} = 2 + 0.459Re^{0.55}Pr^{0.33}.$$
 (10)

Initial and Boundary Conditions

The geometry of the computational domain is shown in Fig. 1. The initial conditions for gas are  $\rho_o =$  $1.2kg/m^3$  and  $p_o = 101.3kpa$ , with a coming shock at x = -0.5. There are no particles from  $-1.0 \le x \le 0.0$ . From  $x \ge 0.0$ , particles are initially in thermal and kinematic equilibrium with surrounding gas. The particles that are uniformly distributed in the dusty region have the following parameters for different test problems:

Mass loading,  $\rho_p$ : 0.25 kg/m³, 0.76 kg/m³; Mass material density,  $\rho_s$ : 2500 kg/m³; Particle radii,  $r_p$ : 10  $\mu$ m, 25  $\mu$ m, 50  $\mu$ m; Specific heat,  $c_s$ : 766 J/kg/K.

The lower boundary and cylinder surface are solid walls and assumed adiabatic and impermeable. A reflecting boundary condition is assumed for both the gas and particle phase. Particles are assumed to experience a perfect elastic collision with the wall and reflect from the wall. The right and upper boundaries are open boundaries where a nonreflection boundary condition is used for the gas phase and a zero normal gradient condition is used for particle phase.

## Numerical Method of Solutions

The system of partial differential equations described in the previous paragraph is integrated numerically. Equation (1) is repeated here:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = S.$$
(1)

In order to solve this equation numerically, an operator time-splitting technique is used. Assuming that all flow variables are known at a given time, we can calculate its advancement in time by splitting the integration into two stages.

In the first stage, the conservative part of Eq. (1) is solved:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0.$$
(11)

The Second Order Godunov method is used for the integration of the subsystem of equations describing the flow of the gaseous phase (first four components of Eq. (1)). The method is well documented in literature.^{14,15,16} The subsystem of equations describing the particle phase flow is integrated using a simple first order finite difference upwind scheme¹⁷. This is done because there is no shock in the particle phase and the upwind scheme leads to a robust and accurate integration scheme.

In the second stage, the source term is added and the following equation is solved:

$$\frac{\partial U}{\partial t} = S. \tag{12}$$

To integrate this equation in time, we need to obtain S as a function of U. We calculate S through Eqs. (5) to (10).

In order to produce a solution of the high spatial accuracy at minimal computational cost, an unstructured triangular grid with adaptive procedure is used. The adaptive procedure will automatically enrich the mesh by adding points in the high gradient (or high flow activity) region of the flow field and by removing points (coarsening mesh) where they are not needed. The dynamic nature of mesh enrichment is shown in Fig. 4 for three different time frames. One can see that a very fine mesh is generated around shock fronts and other steep density gradient regions.

# Results

# Model Validation for One-Dimensional Shock Wave Propagation in Dusty Gas

To test the momentum and heat exchange mechanism for the current two-phase model, we first simulate a one-dimensional problem of a normal shock wave propagating into a dusty gas. We numerically simulate the experiments conducted by Sommerfeld.³ In the experiments, small glass spherical particles of material density  $\rho_s = 2500 kg/m^3$ , specific heat capacity  $c_s = 766J/kg/K$ , and average diameter of 27  $\mu m$  were used as the suspension particle phase. The incoming shock Mach number M, and particle loading ratio  $\eta = \rho_p / \rho$ , are two varying parameters. The experimental results and our numerical simulation results of shock Mach number as a function of distance for two test cases are shown in Fig. 2a ( $\eta = 0.63, M_s = 1.49$ ) and Fig. 2b  $(\eta = 1.4, M_s = 1.7)$  for comparison purposes. It is clear that the agreement between the prediction of shock wave attenuations from our present model and the experimental results is very good.

# Two-Dimensional Simulation Results for Pure Gas Flow

To test the accuracy of the two-dimensional computation, we first compute the pure gas flow case of a shock wave reflection and diffraction over a semicircular cylinder. We then compare the simulation with experimental results. Shock wave reflection on a wedge has been extensively studied by many researchers (see e.g., review papers of Ben-Dor and Dewey¹⁸ and Hornung¹⁹). Shock wave reflection over circular cylinders was numerically simulated by Yang et al.²⁰. Recently, Glass et al.²¹ using high order Godunove scheme numerically simulated the shock wave reflection over a half diamind and semicircular cylinder and compared the simulation with experimental results obtained by Kaca.²². Figure 3 is a schematic sketch to show four stages of a shock wave reflection over a semicircular cylinder and terminologies which will be used to describe the flow fields. Figures 4a, 4b and 4c show the calculated density contours at three moments in time. When the planar shock wave propagates and encounters the cylinder, it first experiences a head-on collision with the front stagnation point of the semicylinder and then immediately reflects from the first quarter of the cylinder, forming a regular reflection (RR), which is shown in Fig. 4a. The regular reflection consists of two shocks, i.e., the incident shock and reflected shock, both originating from a common point on the cylinder wall. As the shock wave propagates up the cylinder, the angle between the incident shock and the tangent of the cylinder becomes larger and the regular reflection changes into a Mach Reflection (MR) as shown in Fig. 4b. The MR is characterized by three waves, incident shock (I), reflected shock (R), and Mach stem (M). All three shocks intersect at one common point called triple point (T). For Mach reflection, one can further observe both Simple Mach Reflection (SMR) and Complex Mach Reflection (CMR). Later, as the incident shock wave passes over the top of the semicircular cylinder, it experiences a rarefaction on the back side of the cylinder. The shock wave system grows upward and rightward with a curved Mach stem and forms a slipline(S) or a contact discontinuity (CD) as shown in Fig. 4c. In Figs. 5a and 5b, the interferogram from

the experiment²² and density contours from the present simulation are compared for same time. Note that the a by the ambient gas density from Fig. 5, the results sh as well as qualitative agree simulation and experiment

e same flow condition and sity levels are normalized Fig. 5. As one can see an esseilent quantitative nt between the numerical results.

# Two-Dimensional Simulation Results of Two-Phase Flow

The basic setup for the two-phase simulation is shown in Fig. 1. Here the planar shock with Ms = 2.8propagates into an area of a dusty gas and impinges on a semicircular cylinder. The interface between pure air and dusty air is located at z = 0.0 of the computational domain. The area of the dusty air contains a semicylinder with a radius of 1m. The size of the computational domain, initial parameters of the gas, parameters of the incoming shock, size of the semicylinder and its location in the computational domain, are the same as in 🜰 the reflection and diffraction simulation presented in the previous section.

The main objective of this set of simulations is to study the effects of particle size and particle loading on the parameters of the reflected and diffracted shock waves. It is also valuable to study the dynamics of particle media, since it is extremely difficult to observe these interactions experimentally in an optically thick dusty g**as**.

The first set of simulation results is shown for the case with dust parameters  $r_p = 10 \mu m$  and  $\rho_p = 0.25$  $kg/m^3$ . The gas parameters and the parameters of the  $\blacksquare$ incoming shock wave are the same as in the pure gas case presented above. In Figs. 6a and 6b, particle density contours and gas density contours are shown at the stage when the incident shock wave has reached the top of the semicylinder. At this stage, the largest difference of velocity and temperature between the two phases exists ( and the nonequilibrium between the two phases causes extensive heat and momentum exchange between particles and the gas. The presence of the particles causes a widening of the shock that is more noticeable for the incident shock. Also, an additional contour line is observed at the dusty gas/pure gas interface. Comparing gas density for pure gas flow field shown in Fig. 4b and the dusty gas density of Fig. 6b, we see that Mach stem and contact discontinuity resulting from Mach reflection are smeared in the dusty gas flow due to the presence of the particle. The particle density contours depict significant piling up of the dust particles at the leading edge stagnation point of the cylinder.

In Figs. 6c and 6d, the particle density and gas density contours are shown at the stage where significant diffraction has taken place and the shock front is

approaching the trailing edge of the cylinder. Further widening of the shock and some smearing of the slip line that originates at the triple point is evident. The particle density contours reveal that the particles were swept by the gas flow to the area of triple point and slip line for the gas flow, leaving a small amount of particles at the leading edge. We should note that this behavior is specific for our problem, where at t = 0, the dusty gas area was located at x = 0 and there is no influx of the dust from the left boundary. Also in Fig. 6c, we note that the particles reach a distinct local maxima at the distance about 25 cm behind the incident shock front. At this maxima the particle density is 0.86  $kg/m^3$ , which is more than three times the initial particle density. The particle density reaches a maximum value at the location of the gas slip line. We observe a significant accumulation of the particles that have been moved along the slip line by the shear flow. The larger concentration of particles in the vicinity of triple point is, in fact, the remainder of the particles that were swept up with the flow. It is also interesting to observe that an essentially particle-free zone is formed due to the effects of particles slipping over the top of the cylinder and the rarefaction wave behind the cylinder.

To study the influence of particle loading on the dynamics of reflection and diffraction, we have simulated the case with a dust density of  $\rho_p = 0.76$ , and with  $r_p = 10 \mu m$ . The results for this simulation are shown in Figs. 7a and 7b in the form of particle and gas density contour plots. In Fig. 7a, the particle density contours are shown at the diffraction phase. Here we can observe two local maxima for particles accumulated in the regions along the slip line characteristic for the shock diffraction process. It should be noted here that in our problem the conditions behind the incident shock wave and its structure are in constant flux. At higher loading, dust will have a profound effect on the gasdynamics of reflection and diffraction. Figure 7b shows gas density contours for the reflection stage corresponding to the particle density contours shown in Fig. 7a. We observe from Fig. 7b that the incident shock wave is significantly smeared and the triple point cannot be clearly identified. Because of the widening of the incident shock, the area where the reflected and incident shock join is spread over 50 cm distance. From Fig. 7a, we see that the high density particle region is spread wider than in the previous case, and the particle density reaches its maximum at about 25 cm behind the front. There is a visible maximum in gas density in the area where the reflected shock is interacting with the area of maximum particle density behind the incident shock. A part of the reflected shock front that is moving to the left side of the computational domain is not affected by the dust since it is propagating into an area with little dust concentration. The parameters and structure of this part of the front remain basically the same as in the case of pure gas flow.

To examine the effect of particle size on the reflection-diffraction process, we simulated a case where the particle loading and gas flow conditions are the same as in the previous case with particle density  $\rho_p = 0.76$ . However, the particle size is  $r_p = 50 \mu m$ . In Figs. 8a and 8b, results for this simulation are illustrated by particle density and gas density contours correspondingly. The particle contour plots depict a significantly wider particle relaxation zone than in the previous case. The longer relaxation zone is caused by the larger inertia of larger particles. The maximum particle density of 2.64  $kg/m^3$  is reached 50 cm behind the incident shock front. This value is significantly lower than 4.01  $kg/m^3$  reached behind the shock in calculation with 10  $\mu m$  particles. Larger particles skip above the apex of the cylinder creating a void where particle density is very small. Also. because of larger particle size, the maxima of particle concentration that has been created by a slip surface of the reflected Mach stem is indistinct. The main reason for this is that the particles do not follow the gas flow as closely as they did in the previous case due to the inertia of large particles. The maximum particle density is reached here at the slip line behind the Mach stem.

Comparing gas density of Fig. 8b to the previous case shown in Fig. 7b, we observe that the slip line behind the curved Mach stem becomes less distinguishable in Fig. 7b. This result is expected, since at fixed particle loading, smaller particles have a larger surface/volume ratio and the larger surface/volume ratio increases momentum and heat exchange between the two phases.

One general comment regarding all three cases presented above: Due to the heat and momentum exchange between the two phases, the shock is decaying as it traverses the cylinder. Ultimately, it will reach a new equilibrium state as suggested by Fig. 2. It should be noted that the shock considered in the previous three cases is still in the process of transition in the gas-particle mixture.

## Conclusion

In this paper, numerical study for a two-phase compressible flow is performed for the reflection and diffraction of a shock wave propagating over a semicircular cylinder in a dusty gas. The following conclusions can be made:

(1) The validation study for a one-dimensional shock wave propagating in a dusty gas blows a good agreement between the prediction of our model and the results of the experiment:

(2) For a two-dimensional gas-only flow, numerical results agree well with existing experimental data quali-

tatively and quantitatively, indicating that the gas phase is accurately simulated by the adaptive grid technique;

(3) Particles in the gas can have a profound effect on the shock wave reflection and diffraction pattern. which is a function of particle size and loading. The lesser the particle loading, the less the influence of particle on the flow field:

(4) In the three simulation cases, there is a particle accumulation behind the "back shoulder" of the semicircular cylinder due to the effect of particle inertia and gas rarefaction wave;

(5) For different particle size at fixed particle loading, the larger particle will have a longer relaxation zone and less accumulation at "back shoulder" and behind incident shock. The gas density contours show a less distinguishable slip line in small particle case than in the large particle case.

## Acknowledgments

The work reported here was partially supported by DARPA and AFOSR under contract no. F49620-89-C-0087. The authors would like to thank LtCol. J. Crowley and Dr. A. Nachman for their interest in this project.

## References

¹Marble, F., "Dynamics of Dusty Gases," Annual Review of Fluid Mechanics, Vol. 2, 1970, pp. 369-377.

²Rudinger, G., "Some Properties of Shock Relaxation in Gas Flows Carrying Small Particles," *Physics* of Fluids, Vol. 7, 1964, pp. 658-663.

³Soo, S. L., *Particulates and Continuum*, Hemisphere Publishing Corporation, New York, 1989, pp.266-324.

⁴Crowe, C. T., "Review-Numerical Models for Dilute Gas Particle Flow," Journal of Fluids Engineering, Vol. 104, Sept. 1982, pp. 297-303.

⁵Hwang, C. J. and Chang, G. C., "Numerical Study of Gas-Particle Flow in a Solid Rocket Nozzle," AIAA Journal, Vol. 26, No. 6, 1988, pp. 682-689.

⁶Chang, I-Shih, "Three-Dimensional. Two-Phase, Transonic, Canted Nozzle Flows," AIAA Journal, Vol. 28, No. 5, 1989, pp. 790-797.

⁷Miura, H. and Glass I. I., "Oblique Shock Wave in a Dusty-Gas Flow Over a Wedge," *Proceedings of Royal Society of London A.*, Vol 408, 1986, pp. 61-68.

⁸Sommerfeld, M., "The Unsteadiness of Shock Waves Propagating through Gas-Particle Mixtures," *Experiments in Fluids*, Vol. 3, No. 2, 1985, pp. 197-206. ⁹ Kim, S-W. and Chang, K-S. ^{(Reflection of Shock Wave from a Compression Corner 1) Particle-laden Gas Region," Shock Waves, Vol. 1, No. 1991, pp. 65-73.}

¹⁰Sichel, M., Baek, S. W., Kau B. and Nicholls. "The Shock w-AIAA Journal, Vol. 23, No. 9, 1

¹¹Fan, B. and Sichel, M., "' omprehensive Model for the Structure and Dust Detc tions," *Twenty-Second Symposium (International) on Combustion*, The Combustion Institute, PA, 1988, pp. 1741-1750.

¹²Clift, R., Grace, J. R. and Weber, M. E., Bubbles. Drops and Particles, Academic. New York, 1978.

¹³Drake, R.M., Jr., "Discussions on G.C. Vliet and G. Leppert: Forced Convection Heat Transfer from an Isothermal Sphere to Water," *Journal of Heat Transfer*, Vol. 83, No. 2, 1961, pp. 170-179.

¹⁴Eidelman. S., Colella, P., and Shreeve, R.P., "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modelling," *AIAA Journal*. Vol. 22, No. 11, 1984, pp. 1609-1615.

¹⁵Colella, P., "A Direct Eulerian MUSCL Scheme for Gas Dynamics," SIAM Journal Scientifical and Statistical Computation, Vol. 6, 1985, pp. 104-117.

¹⁶Colella, P. and Glaz, H.M., "Efficient Solution Algorithms for the Riemann Problem for Real Gases," Journal of Computational Physics, Vol. 59, No. 3, 1985, p. 264-289.

¹⁷Peyret, R. and Taylor, T. D., Computational Methods for Fluid Flow Springer-Verlag, New-York, 1983, pp. 18-31.

¹⁸Ben-Dor, G. and Dewey J. M., "The Mach Reflection Phenomenon: A Suggestion for and International Nomenciature," *AIAA Journal*, Vol. 23, N. 10, 1985, pp. 1650-1652.

¹⁹Hornung, H., "Regular and Mach Reflection of Shock Waves," Annual Review of Fluid Mechanics, Vol. 18, 1986, pp. 33-58.

²⁰Yang, J. Y., Liu, Y. and Lomax H., "Computation of Shock Wave Reflection by Circular Cylinder," AIAA Journal, Vol. 25, 1987, No. 5, pp. 683-689.

²¹Glass, I. I., Kaca, J. Zhang, D. L. Glas, H. M., Bell, J. B. and Tangenstein, J., Current Topics in Shock Waves, 17th Int'l Symp. on Shock Tubes and Waves, edited by Y. W. Kim, AIP Conference Proceedings 208, American Institute of Physics, New York, 1990, pp. 246-251.

²²Kaca, J., "An Interferometric Investigation of Diffraction of a Planar Shock Wave over a Semicircular Cylinder." UTIAS Technical Note 269, Institute for Aerospace Studies, University of Toronto, 1988.

Particle-laden Gas 1991, pp. 65-73. nan, C. W., Maker. ignition of Dusts." . pp. 1374-1380.





I – Incident Shock R – Reflected Shock M – Mach Stem S – Slipline T – Triple Point

Figure 1. An illustration of the considered flow field.

Figure 3. Stages of shock wave reflection over a semicircular cylinder, (a) before collision, (b) regular reflection, (c) Mach reflection, (d) well developed Mach reflection.



Figure 2. Comparison between computational prediction and experimental measurement of shock wave attenuation for (a)  $M_s = 1.49$ ,  $\eta = \frac{\rho_s}{\rho_o} = 0.63$  and (b)  $M_s = 1.7$ ,  $\eta = \frac{\rho_s}{\rho_o} = 1.4$  (o experiment. - calculation).







Figure 4. Computed density contours with adapted grid at three different times: (a) regular reflection (RR), (b) Mach reflection (MR) and (c) diffraction with slipline (S).



(a)



Figure 5. Comparison for  $M_r = 2.80$  gas - only flow. (a) interferogram from experiment conducted by Kaca (1988), (b) density contours from present calculation.

•



Figure 7. Density contours for the case:  $M_s = 2.8$ ,  $\rho_p = 0.76 \text{ kg/m}^3$  and  $r_p = 10 \mu \text{m}$ , (a) particle density and (b) gas density.

Figure 8. Density contours for the case:  $M_s = 2.8$ ,  $\rho_p = 0.76$  and  $r_p = 50 \mu m$ . (a) particle density and (b) gas density.



Figure 6. Density contours for the case:  $M_s = 2.8$ ,  $\rho_p = 0.25 \text{ kg/m}^3$ ,  $r_p = 10 \mu \text{m}$  at two different times, (a) particle density at  $t_1$ , (b) gas density at  $t_1$ , (c) particle density at  $t_2$ , and (d) gas density at  $t_2$ .



AIAA 93-3089 Acoustic Wave Focusing in an Ellipsoidal Reflector for Extracorporeal Shock-wave Lithotripsy Itzhak Lottati and Shmuel Eidelman Science Applications International Corporation

McLean, VA 22102

# AIAA 24th Fluid Dynamics Conference July 6-9, 1993 / Orlando, FL

# ACOUSTIC WAVE FOCUSING IN AN ELLIPSOIDAL REFLECTOR FOR EXTRACORPOREAL SHOCK-WAVE LITHOTRIPSY

by

Itzhak Lottati^{*} and Shmuel Eidelman[†] Science Applications International Corporation

#### Abstract

Simulations of acoustic wave focusing in an ellipsoidal reflector for extracorporeal shock-wave lithotripsy (ESWL) are presented. The simulations are done on a structured/unstructured grid with a modified Tail equation of state for water. The Euler equations are solved by applying a second-order Godunov method. The computed results compare very well with the experimental results.

# Introduction

Research relating to focusing of shock and acoustic waves is of practical interest for extracorporeal shockwave lithotripsy (ESWL). A considerable body of work is dedicated to this subject (see e.g., review in Ref. 1), and numerical simulations play a prominent role in research on these devices. It is conceivable that real-time numerical simulation can be used for better assessment of shock-wave impact on the targeted areas and more effective focusing. Requirements for these real-time simulations in terms of robustness, accuracy and efficiency are very stringent, and can be satisfied only with the most advanced numerical methods.

Structured rectangular grids allow the construction of numerical algorithms that integrate the fluid conservation equations efficiently and accurately. The efficiency of these schemes results from the extremely low storage overhead needed for domain decomposition and the efficient and compact indexing, which also defines domain connectivity. These two factors allow code construction based on a structured domain decomposition that can be highly vectorized and parallelized. Integration in physical space on orthogonal and uniform grids produces numerical algorithms with the highest possible accuracy. The disadvantage of structured rectangular grids is that they cannot be used to decompose computational domains with complex geometries. Thus it

[•]Dr. Lottati is a Research Scientist with Science Applications International Corp. (SAIC), 1710 Goodridge Dr., MS 2-3-1, McLean, VA 22102, [†]Dr. Eidelman, Research Scientist, SAIC, Associa - Fellow AIAA

Copyright @ American Institute of Aeronautics and Astronautics, Inc., 1993, All rights reserved. is difficult to represent computationally a complex computational domain with the curved boundaries characteristic of typical reflectors used in ESWL devices.

The early developers of computational methods realized that, for many important applications of Computational Fluid Dynamics (CFD), it is unacceptable to describe curved computational domain boundaries using the stair-step approximation available with the rectangular domain decomposition technique. To overcome this difficulty, the techniques of boundary-fitted coordinates were developed. With these techniques, the computational domain is decomposed on quadrilaterals that can be fitted to the curved domain. The solution is then obtained in physical space using the geometrical information defining the quadrilaterals, or in the computational coordinate system that is obtained by transformation of the original domain into a rectangular domain. The advantage of this technique is that it employs the same indexing method as the rectangular structured domain decomposition methods that also serve to define domain connectivity. The boundary fitted coordinate approach leads to efficient codes, with approximately a 4:1 penalty in terms of memory requirement per cell as compared with rectangular domain decomposition. However, this approach is somewhat restricted in its domain decomposition capability, since distortion or large size variations of the quadrilaterals in one region of the domain lead to unwanted distortions or increased resolution in other parts of the domain. An example of this is the case of structured body-fitted coordinates used to simulate flows over a profile with sharp trailing edges. In this case, increasing the resolution in the vicinity of the trailing edge increases resolution in the whole row of elements connected to the trailing edge elements.

The most effective methods of domain decomposition developed to overcome this disadvantage are those using unstructured triangular grids. These methods were developed to cope with very complex computational domains. The unstructured grid method, while efficient and powerful in domain decomposition, results in codes that must store large quantities of information defining the grid geometry and connectivity, and have large computational and storage overheads. As a rule, a code with an unstructured grid requires greater storage by a factor of 10, and will run about 5 times slower on a per cell per iteration basis than a structured rectangula: code.

Unstructured triangular meshes are designed to pro-
vide a grid that is fitted to the boundary of complex geometry. The flexibility of the unstructured mesh that allows complex geometry to be gridded should be weighed against the huge memory requirement needed to define the interconnectivity of the triangles. To cut down on the memory overhead, unstructured grid methods are used to their best advantage when combined with grid adaptivity. This feature usually allows the dynamic reallocation of triangles according to the physics and geometry of the problem solved, which leads to a substantial reduction in the number of cells needed for the domain decomposition. However, this advantage is highly dependent on the problem solved. Adaptive unstructured grids have an advantage over nonadaptive unstructured domain decomposition if the area of high resolution needed is around one-tenth of the global area of the computational domain. As a result, while the adaptive unstructured method may be extremely effective for simulating flow with multiple shock waves in complex geometries. it becomes extremely inefficient when high resolution is needed in a substantial area of the computational domain.

Our approach to domain decomposition for ESWL applications combines the structured and unstructured methods to achieve better efficiency and accuracy. Under this method, structured rectangular grids are used to cover most of the computational domain, and unstructured triangular grids are used only to patch between the rectangular grids (Fig. 1) or to conform to the curved boundaries of the computational domain (Fig. 2). In these figures. an unstructured triangular grid is used to accurately define the curved internal or external boundaries and a structured rectangular grid is used to decompose the regions of the computational domain that have a simple geometry.

#### Mathematical Model

We consider a system of two-dimensional Euler equations written in conservation law form:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0 \tag{1}$$

where

$$U = \begin{vmatrix} \rho \\ \rho u \\ \rho v \\ e \end{vmatrix}, \quad F = \begin{vmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u(e+p) \end{vmatrix}, \quad G = \begin{vmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ v(e+p) \end{vmatrix}.$$

Here u, v are the x, y velocity vector components, p is the pressure.  $\rho$  is the density, and e is total energy of the fluid.

The equation of state for water was adopted from Ref. 2. The actual pressure and density  $\tilde{p}, \tilde{\rho}$  in water are modified and then applied in the Euler solver. The modified pressure and density are given as

$$p = \tilde{p} + B. \tag{2}$$

$$\rho = \tilde{\rho}/(1 + \tilde{\rho}/B)^n, \qquad (2a)$$

where B = 2955 bar and n = 7.44 to adjust the velocity of sound to that for water ( $a_0 = 1483$  m/sec).

The initial pressure distribution  $\tilde{p}(r)$  in the left focal point is chosen as

$$\tilde{p}(r) = 1.0 \text{ bar } + \Delta p \exp \left[-(r - r_0)/(a_0 r)\right],$$
 (2b)

where  $\Delta p$  is the intensity of the blast,  $\tau$  is a time scale and  $a_{\sigma}$  is sound speed in water ( $\tau = 3\mu$ sec).

It is assumed that an initial distribution of the fluid parameters is given at t = 0, and the boundary conditions defining a unique solution are specified for the computational domain.

### Integration Algorithm

The system of governing equations (1) can be written in the following form:

$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{Q} = 0, \qquad (3)$$

where Q represents the convective flux vector. By integrating Eq. (3) over space and using Gauss' theorem, we obtain the following expression:

$$\frac{\partial}{\partial t} \int_{\Omega} U dA + \oint_{\partial \Omega} \mathbf{Q} \cdot d\mathbf{l} = 0, \qquad (4)$$

where dl = ndl, n is the unit normal vector in the outward direction, and  $d_i$  is the element of length on the boundary of the domain. The variable  $\Omega$  is the domain of computation and  $\partial\Omega$  is the domain boundary.

Equation (4) can be discretized for each element (cell-triangle) of the domain:

$$\frac{(U_i^{n+1}-U_i^n)}{\Delta t}A_i = \sum_{j=1}^3 \mathbf{Q}_j^{n+\frac{1}{2}} \mathbf{n}_j \Delta l_j, \qquad (5)$$

where  $A_i$  is the area of the cell;  $\Delta t$  is the marching time step;  $U_i^{n+1}$  and  $U_i^n$  are the primitive variables at the center of the cell at time *n* and at the updated (n+1)sttimestep;  $Q_j^{n+\frac{1}{2}}$  are the value of the fluxes across the three boundaries edges on the circumference of the cell, where  $n_j$  is the unit normal vector to edge *j* of the boundary, and  $\Delta l_j$  is the length of the boundary edge j. Equation (5) is used to update the physical primitive variables  $U_i$  according to computed fluxes for each timestep  $\Delta t$ . The time step is subjected to the Courant-Fredrichs-Levy (CFL) constraint.

To ensure a second order spatial accuracy, the gradient of each primitive variable is computed in the baricenter of the cell. This gradient is used to define the projected values of primitive variables at the two sides of the cell edge, as shown in Fig. 3. The gradient is approximated by a path integral

$$\int_{\Omega} \nabla U_i^{\text{cell}} dA = \oint_{\partial \Omega} U_j^{\text{edge}} d\mathbf{l} .$$
 (6)

The notation is similar to the one used for Eq. (5), except that the domain  $\Omega$  is a single cell and  $U_i^{cell}$  and  $U_j^{edge}$  are values at the baricenter and on the edge respectively. The gradient is estimated as

$$\nabla U_i^{\text{cell}} = \frac{1}{A} \sum_{j=1}^3 \tilde{U}_j^{\text{edge}} \mathbf{n}_j \Delta l_j, \qquad (7)$$

where  $\tilde{U}_{j}^{\text{edge}}$  is an average value representing the primitive variable value for edge j.

The gradients that are computed at each baricenter are used to project values for the two sides of each edge by piecewise linear interpolation. The interpolated values are subjected to monotonicity constraints.³ The monotonicity constraint assures that the interpolated values are not creating new extrema.

The monotonicity limiter algorithm can be written in the following form:

$$U_{\text{pro}}^{\text{edge}} = U_i^{\text{cell}} + \phi \nabla U_i \cdot \Delta \mathbf{r}, \qquad (8)$$

where  $\Delta r$  is the vector from the baricenter to the point of intersection of the edge with the line connecting the baricenters of the cells over the two sides of this edge.  $\phi$ is the limiter coefficient that limits the gradient  $\nabla U_i$ .

First, we compute the maximum and minimum values of the primitive variable in the i's cell and its three neighboring cells that share common edges (see Fig. 3):

$$U_{\text{cell}}^{\max} = \max\left(U_{k}^{\text{cell}}\right) \\ U_{\text{cell}}^{\min} = \min\left(U_{k}^{\text{cell}}\right) \} k = i, 1, 2, 3 . \tag{9}$$

The limiter can be defined as:

$$\phi = \min\{1, \phi_k^{tr}\}, \ k = 1, 2, 3, \tag{10}$$

where the superscript lr stands for left and right of the three edges (6 combinations altogether).  $\phi_k^{lr}$  is defined by:

$$\phi_{k}^{lr} = \frac{\left[1 + \operatorname{Sgn}\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{\text{cell}}^{\max} + \left[1 - \operatorname{Sgn}\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{\text{cell}}^{\min}}{2\Delta U_{k}^{lr}}$$

 $\mathbf{k} = 1, 2, 3, (11)$ 

where  $\Delta U_k^{lr} = \nabla U_i^{lr} \cdot \Delta r_k$  and

$$\Delta U_{\text{cell}}^{\max} = U_{\text{cell}}^{\max} - U_{i}^{\text{cell}}$$

$$\Delta U_{\text{cell}}^{\min} = U_{\text{cell}}^{\min} - U_{i}^{\text{cell}}$$
(12)

To obtain second-order accuracy in space and time, we subject the projected values of the left and right side of the cell edge to characteristic constraints following Ref. 4. The one-dimensional characteristic predictor is applied to the projected values at the half timestep  $t^n + \Delta t/2$ . The characteristic predictor is formulated in the local system of coordinates for the one dimensional Euler equation. We illustrate the implementation of the characteristic predictor in the direction of the unit vector  $n_e$ . The Euler equations for this direction can be written

$$W_t + A(W)W_{nc} = 0,$$
 (13)

where

$$W = \begin{cases} \tau \\ u \\ p \end{cases}; \ A(W) = \begin{pmatrix} u & -\tau & 0 \\ 0 & u & \tau \\ 0 & \rho c^2 & u \end{pmatrix}, \quad (14)$$

where  $\tau = \rho^{-1}$ ,  $\rho$  denotes density, and u, p are the velocity and pressure. The matrix A(W) has three eigenvectors  $(l^{\#}, r^{\#})$  (*l* for left and *r* for right, where # denote +, 0, -) associated with the eigenvalues  $\lambda^{+} = u + c$ ,  $\lambda^{0} = u$ ,  $\lambda^{-} = u - c$ .

An approximation of the value projected to an edge, accurate to second order in space and time, can be written

$$W_{i+\Delta r}^{n+1/2} \approx W_i^n + \frac{\Delta t}{2} \frac{\partial W}{\partial t} + \Delta r \frac{\partial W}{\partial r_{nc}} \\ \approx W_i^n + \left[ \Delta r - \frac{\Delta t}{2} A(W_i) \right] \frac{\partial W}{\partial r_{nc}}$$
(15)

An approximation for  $W_{i+\Delta r}^{n+1/2}$  can be written as

$$W_{i+\Delta r}^{n+1/2} = W_i + (\Delta \mathbf{r}_i - \frac{\Delta t}{2} (M_r M_n) \mathbf{n}_c) \cdot \nabla W_i, \quad (16)$$

where

$$(M_x M_n) = \begin{cases} \operatorname{Max}(\lambda_i^+, 0) & \text{for cell left to the edge} \\ \operatorname{Min}(\lambda_i^-, 0) & \text{for cell right to the edge} \end{cases}$$
(17)

The gradients t = 1 ied in the process of computing the projected values at  $t^n + \Delta t/2$  are subjected to the monotonicity limiter.

Following the characteristic predictor described above, the full Riemann problem is solved at the edge. The solution of the Riemann problem defines the flux  $\mathbf{Q}_{j}^{n+\frac{1}{2}}$  through the edge. The fluxes through the edges of triangles are then integrated (Eq. 5), thus updates the variables at  $t^{n+1}$ . One of the advantages of this algorithm is that calculation of the fluxes is done over the largest loop in the system (the loop over edges) and can be carried out in the vectorized or parallelized loop. This makes the algorithm efficient.

The algorithm presented is a modification of the algorithm of Ref. 5, which was derived for a structured mesh. The present algorithm has been applied to simulate a wide range of flow problems and has been found to be very accurate in predicting the features of the physics. The performance of the algorithm is well documented in Refs. 6-9. The algorithm for the rectangular cells are identical except the cell has four edges (Eq. 5).

### Sound Wave Focusing in an Ellipsoidal Reflector

For our simulations, we chose a deep reflector shaped like an ellipsoid, which was used for ESWL by Dornier and other companies. A schematic of the cross section of this reflector is shown in Fig. 4. Strong acoustic waves are generated in the left focal point of the ellipsoid by an instantaneous release of energy and are refocused at the right focal point. Ideally, a reflector should employ waves of acoustic intensity, since the nonlinear reflections of strong shock waves lead to significant distortions in wave propagation and impair simple geometrical focusing.

Figure 2 shows the computational domain and grid for the ellipsoidal reflector that we used in our study. In order to illustrate the concept of the composite structured/unstructured grid, we have shown only every sixteenth cell of the grid that was actually used for the simulation. In this example, we observe that the structured rectangular grid covers about 90% of the computational domain, and the unstructured triangular grid is restricted to the curved surface of the ellipsoid and covers about 10% of the domain. The major axis of the ellipsoid is 150 mm and the minor axis is 90 mm.

Two simulations were conducted with two different  $\Delta p$  values to study how the intensity of the blast affects focusing of waves in the reflector. The first simulation was done with  $\Delta p = 725$  bar and  $\tau = 3\mu$ s where  $|r-r_0| < 10$  mm. The other simulation was done by using pressure three times larger than in first simulation.

In Figs. 5a-5d simulation results for the  $\Delta p = 725$  bar conditions are shown in the form of pressure con-

tour plots. Figure 5a shows pressure distribution for the initial stage of wave propagation before the wave front has reached the surface of the reflector. The contour plots are shown at  $t=1.10 \times 10^{-1}$  sec. At this time the maximum pressure in the wave is dropped to 173 bar. In Fig. 5b pressure concours  $\Rightarrow$  shown at t=3.32 ×10⁻⁵sec. Here we observe that the wave reflected from the surface of the reflector has man mum pressure about five times than that of the incident wave. However, both wave fronts propagate through the water with a constant speed equal to the speed of sound, and the phase shift observed in Fig. 5b holds through the calculation. In Fig. 5c the simulation results are shown at the stage when the incident wave is crossing the center of symmetry of the reflector. Here  $t = 8.88 \times 10^{-6}$  sec. It is interesting to note that the value of the overpressure at this location was used in Ref. 1 as a normalizing value for presentation of the experimental and computational results. In our case for the initialization with  $\Delta p = 725$ bar the incident pressure at the center of the ellipsoid is p = 11.1 bar. In Fig. 5d simulation results are shown at  $t = 19.2 \times 10^{-5}$ sec, when maximum focusing of the reflected wave take place. The pressure values in the focal point reaches 188 bar. This maximum is immediately followed by a negative phase with a minimal pressure of 163 bar. This strong pressure variations can cause, disintegration of the stones by the ESWL apparatus.

In Figs. 6a-6b simulation results are shown for the second case of  $\Delta p = 2175$  bar. As we can see in Fig. 6a, this value of the initial overpressure produces an incident wave with about 33 bar, which is a bit higher than the 29 bar value observed in Ref. 1. The wave structure at the time of focusing is shown in Fig. 6b. Here we can observe that for this case the maximum pressure reaches 494 bar, followed by a 371 bar minimum. Comparing this case with that reported above, we conclude that the amplification at the focal point is smaller in the second case.

The waves observed in the system are of acoustic intensity and are propagating at the speed of sound. The reflected wave will therefore not be able to catch up with the incident wave. Except for some compressibility effects in the initiation and focusing stages when pressures are high, the fluid will behave as incompressible. Figure 7 shows the density contour for the first case ( $\Delta p = 725$ bar). As expected, the compressibility effect is negligible.

In Fig. 8 the simulation results are compared with the experimental results in a plot of normalized pressures as function of distance from the focal point. In this figure the simulation results for the case of initiation with  $\Delta p = 725$  bar and  $\Delta p = 2175$  bar are shown by the curves marked with triangles and rectangles respectively. The experimental results for the 29-bar incident pressure (which most closely fits our second simulation) are shown by the curve marked by circles. In Fig. 8 we see that the maximum reflection factor is achieved for weaker waves, which is consistent with the results reported in Ref. 1. The simulation results are very close to the experimental ones in the case of  $\Delta p = 2175$  bar initiation for focal point location and pressure amplification factor, which validates the simulation methodology.

In all the figures presented, the method of composite domain decomposition works extremely well, producing solutions with no seams at the interfaces. We should mention here that our test problem is particularly sensitive because the main acoustic waves are weak, and any inaccuracy introduced at the grid interfaces would produce a distortion in the phase or in the intensity of the traveling waves that would be a visible disturbance evident in the results.

## **Conclusions**

A composite method of structured/unstructured domain decomposition is introduced as an efficient technique for dealing with the computational domains of complex geometry. We have simulated a demanding acoustic wave focusing problem and have shown that our approach leads to accurate wave propagation without any reflection or distortion at the structured/unstructured grid interfaces. Note that for the acoustic focusing problem as simulated and presented in this paper, both structured and unstructured methods of domain decomposition can be shown to be inadequate if used separately. The structured method has difficulty describing the curved boundaries of the computational domain, while the unstructured method is totally inefficient in describing phenomena with wide fronts that occupy a large portion of the computational domain. Our hybrid method combines the advantages of structured and unstructured methods of domain decomposition. This hybrid technique combines the efficiency of the unstructured grid, which accurately represents curved walls, with the computational and memory efficiency of the structured grid in the majority of the computational domain. We also attribute the quality of the numerical result to the Second Order Godunov method. which allows a consistent, accurate and robust formulation for handling both grids and boundary conditions.

## Acknowledgment

The work reported here was partially supported by ARPA and ONR. The authors would like to thank Col James Crowley and Dr. Lawrence Kabecoff for their interest in this project.

# References

- 1. H. Gronig, "Past, Present and Future of the Shock Focusing Research," Proceedings of the International Workshop on Shock Wave Focusing, Sendai, Japan, March 1989.
- K. Isuzugawa and M. Horiuchi, "Experimental and Numerical Studies of Blast Wave Focusing in Water," Proceedings of the International Workshop on Shock Wave Focusing, Sendai, Japan. March 1989.
- 3. B. van Leer, "Towards the Ultimate Conservative Difference Scheme, V.A. Second Order Sequel to Godunov's Method," <u>J. Comp. Phys. 32</u>, 101-136 (1979).
- P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gasdynamic Simulations," J. Comp. Phys. 54, 174-201 (1984).
- S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," <u>AIAA Journal</u> 22, 10, 1984.
- I. Lottati, S. Eidelman and A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," 28th Aerospace Sciences Meeting, AIAA-90-0699, Reno, NV (1990).
- I. Lottati, S. Eidelman, and A. Drobot, "Solution of Euler's Equations on Adaptive Grids Using a Fast Unstructured Grid Second Order Godunov Solver," <u>Proceeding of the Free Lagrange Conference</u>, Jackson Lake, WY, June 1990.
- I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Grids," <u>Proceeding of the 4th International Symposium on</u> <u>Computational Fluid Dynamics</u>, Davis, CA, September 1991.
- I. Lottati and S. Eidelman, "A Second Order Godunov Scheme on Spatial Adapted Triangular Grid," To appear in a special issue of Applied Numerical Mathematics (Proceedings of U.S. Army Workshop on Adaptive Methods for Partial Differential Equations, R.P.I., March 1992).



Figure 1. A possible candidate configuration for hybrid structured/unstructured domain decomposition.



Figure 2. A possible candidate configuration for hybrid structured/unstructured domain decomposition, representing the ellipsoid reflector grid used for the numerical simulation.



Figure 3. Second order triangular based flux calculation.



Figure 4. A schematic drawing of the center cross section of the ellipsoid reflector.





a. Time =  $1.08 \times 10^{-4}$ sec

b. Time =  $1.96 \times 10^{-4}$ sec





Figure 7. Density contours emphasizing the fact that the compressibility effect is negligible ( $\Delta p = 725$  bar at  $t = 1.92 \times 10^{-4}$ sec).



Figure 8. Normalized maximum pressure distribution on the axis of symmetry. A comparison between computed and experimental results.