

6. $A \cup T H 0 R, S)$

Professor S. Eidelman
$6775 / \mathrm{DAREA}$
F476.20-89.C.0087

UUGM CODE DEVELOPMENT

Science Applications International Corporation
An Employee-Owned Company

UUGM CODE DEVELOPMENT

Science Applications International Corporation
An Employee-Owned Company

Accesion For	
NTIS CRA\&I	
DTIC TAB	
Unannounced	
Justification....	
By	
Distibution I	
Availability Codes	
Dist	
Avail andlor	
Special	

UUGM CODE DEVELOPMENT

SAIC Final Report \#SAIC-93/1152

Final Report for work accomplished under AFOSR Contract \#F49620-89-C-0087 during period 15 October 1990 through 30 November 1992

Contributors:
Shmuel Eidelman
William Grossmann
Isaac Lottati
Xiaolong Yang
Marty Fritts
Adam Drobot
Michael Kress
Aaron Friedman

Prepared by:
Science Applications International Corporation
Applied Physics Operation
1710 Goodridge Drive, MS 2-3-1
McLean, VA 22102

Sponsored by
Defense Advanced Research Projects Agency DARPA Order No. 6775
Monitored by AFOSR Under Contract No. F49620-89-C-0087

July 26, 1993

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied. of the Defense Advanced Research Projects Agency or the U.S. Government.

DISCLAIMER NOIICR

THIS DOCUMENT IS BEST QUALITY AVALLABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.

EXECUTIVE SUMMARY

This progress report documents the effort conducted at SAIC from 15 October 1990 through 31 May 1993, under DARPA and AFOSR contract \#F49620-89-C-0087 entitled "UUGM Code Development".

Scope of Research

The primary objective of SAIC was to develop an unstructured grid algorithm and code that dynamically adapts to the computed solution of the time dependent Euler equations of gasdynamics in two and three spatial dimensions. Important requirements that were imposed on the algorithm were: robustness, accuracy, efficiency, flexibility, and adaptability. The main research and code development effort was focused on achieving these objectives; extensive testing and code validation effort was undertaken to demonstrate the code's performance for realistic CFD problems. The method is accurate in all flow regimes from subsonic to hypersonic.

Achievements

The main achievement was the development of the AUGUST code (Adaptive Unstructured Grid Upwind Second Order for Triangles). AUGUST is impiemented for solution of Euler's equations on dynamically adaptive triangular or tetrahedral grids. The code fully implements the Second-Order Godunov method, allowing accurate and robust numerical solution of Euler equations of gas dynamics.

A new method was developed for Direct Dynamic Grid Refinement (DDR). This method allows grid refinement in arbitrary regions of the computational domain, using only one level of undirectness in the logical data structure. The DDR is an integral part of the AUGUST solver and allows manipulation of the grid as a part of the solution. The adapted grid is not only more refined in the adaptation regions of the flow but is also improved structurally due to a refinement algorithm.

The AUGUST code was also implemented for multiphase, multicomponent flows. We used a multiple-fluid description, where a separate set of conservation laws is used to describe every flow component. In our approach Lagrangian tracers are used to describe sparse or discrete flow components that do not form a continuum. Use of unstructured triangular grids allows adjustment of the grid resolution to the accuracy requirements in the flow subdomains.

A combined structured/unstructured version of the AUGUST code was also developed. Following this approach the unstructured adaptive grid is used only in the flow regions requiring adaptation or description of the complex geometry elements. The structured grid is used to simulate the larger part of the computational domain. This approach has allowed us to capitalize on the advantages of both structured and unstructured grid approaches. Using the structured/unstructured grid version of the

AUGUST code, we simulated the shock wave focusing problem for the reflector used for extracorporeal shock-wave lithotripsy. In this simulation, we showed that the solution smoothly transits through the interfaces between the grids, maintaining the same accuracy and resolution.

The AUGUST code was extensively validated for a wide range of probler:: and has proven to be a robust tool. The code was initiated at the start of the UUGM :roject and has now evolved into a production code that is used for many applied problems. The list of applications includes potential flow past an ellipse, hypersonic flow past a flat plate, shock diffraction over single and double wedges, mine explosions under vehicles, puised detonation engines, shock focusing in air, and nonideal airburst in multiphase media. The code has shown the required robustness and insensitivity to the initial user specified grid. The number of nodes required to obtain a high-quality solution is significantly smaller than for structured grid codes. This is particularly true for transient problems with complicated flows having discontinuities.

It is important to note that the AUGUST code obtains a high resolution solution with no "knobs." The various flow regimes, except those requiring a different definition of boundary and initial conditions, were simulated using the same code.

TABLE OF CONTENTS

1. INTRODUCTION 1
1.1 RECENT CFD DEVELOPMENT 1
1.2 UNSTRUCTURED MESHES IN COMPLEX GEOMETRIES 1
2. UUGM: UNIVERSAL CFD SIMULATION ENVIRONMENT 2
2.1 MATHEMATICAL MODEL AND INTEGRATION ALGORITHM 3
2.2 MULTIPHASE MULTICOMPONENT REACTIVE FLOW 9
2.3 DIRECT DYNAMIC REFINEMENT METHOD FOR UNSTRUC- TURED TRIANGULAR GRIDS 13
2.4 STRUCTURED/UNSTRUCTURED COMPOSITE GRIDS 16
2.5 THREE-DIMENSIONAL CAPABILITY 19
3. APPLICATIONS 22
3.1 POTENTIAL FLOW OVER AN ELLIPSE 23
3.2 HYPERSONIC FLOW PAST A FLAT PLATE 24
3.3 SHOCK ON WEDGE WITH ADAPTIVE GRIDDING 26
3.4 MINE EXPLOSION UNDER VEHICLE 30
3.5 PULSED DETONATION ENGINE 36
3.6 SHOCK FOCUSING IN AIR 36
3.7 NONIDEAL AIRBURST IN MULTIPHASE MEDIA 39
3.8 FLOW IN THE SARL WIND TUNNEL 39
3.9 SHOCK ON DOUBLE WEDGE 42
3.10 SUPERSONIC SPRAY COATING DEVICES 46
3.11 DUSTY FLOW OVER A CYLINDER 49
3.12 IMAGE PROCESSING 52
3.13 DETONATION IN A MULTIPHASE MEDIUM 55
4. CONCLUSIONS 60
REFERENCES 61
APPENDIX A: Code Description
APPENDIX B: Listings
APPENDIX C: Copies of Publications

LIST OF ILLUSTRATIONS

Figure 2.1.1 Representative triangular cell in the mesh showing fluxes and projected values.
Figure 2.1.2 Density profile comparison between analytical resuits and results obtained by applying the second-order Godunov algorithm using structured or unstructured grids.

8
Figure 2.3.1 Illustration of the grid refinement process. 14
Figure 2.3.2 Illustration of the grid coarsening process. 15
Figure 2.4.1 A possible candidate configuration for hybrid structured/unstructured domain decomposition.
Figure 2.4.2 Hybrid structured/unstructured grid used to simulate ellipsoidal reflector, showing adaptation to curved boundaries.
Figure 2.5.1 An elongated tetrahedron can be refined using smaller tetrahedra that are nearly regular.
Figure 2.5.2 Points used to define structure of vehicle.
Figure 2.5.3 Tetrahedral grid generated by Finite Octree method. 21
Figure 3.1.1 The grid used for simulating the flow over an ellipse. 24
Figure 3.2.1a Grid for simulation of hypersonic flow over a flat plate. 25
Figure 3.2.1b Second order solution for a flat plate, pressure contours. Mach $=32$: 5509 grid vertices: $P_{\max }=5.0 \times 10^{4} \mathrm{~Pa}, P_{\min }=98.7 \mathrm{~Pa}$. 26
Figure 3.3.1a Density contours at early time for shock in planar channel ($M=8.7$, wedge angle $=27^{\circ}$).
Figure 3.3.1b Grid at early time for shock in planar channel ($M=8.7$, wedge angle $=27^{\circ}$).
Figure 3.3.2a Density contours at intermediate time for shock in planar channel ($\mathrm{M}=8.7$, wedge angle $=27^{\circ}$).
Figure 3.3.2b Grid at intermediate time for shock in planar channel ($\mathrm{M}=8.7$, wedge angle $=27^{\circ}$).
Figure 3.3.3a Density contours at late time for shock in planar channel ($\mathrm{M}=8.7$, wedge angle $=27^{\circ}$).29

Figure 3.3.3b Grid at late time for shock in planar channel

$\left(M=8.7\right.$, wedge angle $\left.=27^{\circ}\right)$.
Figure 3.4.1 Two views of interaction between mine blast and M925 cargo truck: pressure contours at $t=0.574 \mathrm{msec}$.31

Figure 3.4.2 Blast - plow interaction: pressure contours in initial stage. 33
Figure 3.4.3 Blast - plow interaction: pressure contours in advanced stage. 33
Figure 3.4.4 Structural response of the plow to blast load:a) $t=0$; b) $t=200$ $\mathrm{msec} ; \mathrm{c}) t=400 \mathrm{msec}$; d) $t=600 \mathrm{msec}$.
Figure 3.5.1 Pulsed detonation engine simulation: flow tracers. 35
Figure 3.6.1a Hybrid structured/unstructured grid used for numerical simulation of $\quad 37$
Figure 3.6.1b A schematic drawing of the center cross section of the ellipsoidal reflector.

Figure 3.6.2 Pressure contours at time $t=1.21 \times 10^{-6} \mathrm{sec}$ showing the incident wave as reflected from the reflector wall.
Figure 3.6.3 Pressure contours at time $t=8.41 \times 10^{-4} \mathrm{sec}$ showing the stage at which the maximum focused pressure is obtained.
Figure 3.7.1 Formation of a radiative cloud. Multiphase simulation.
Figure 3.8.1 The unstructured grid used to simulate the SARL wind tunnel.
Figure 3.8.2 The pressure contours from the simulation of the SARL wind tunne 41
Figure 3.9.1 Experimental interferogram of a shock hitting a 45° corner at $\mathrm{N}^{\top}=$ 2.85.

Figure 3.9.2 Interaction of a Mach 8.7 planar shock wave with a 27° double ramp: Mach reflection stage.
Figure 3.9.3 Interaction of Mach 8.7 planar shock wave with a 27° double ramp: start of the diffraction stage.
Figure 3.9.4 Interaction of Mach 8.7 planar shock wave with a 27° double ramp: shock diffraction stage.
Figure 3.10.1 The figure shows the initial computational grid for the jet spray simulation demonstration. Shown are the nozzle, injection region and target surface depicted as a flat plate with perforations, oriented perpendicular to the mean spray flow. The boundary conditions used for the sample simulation were: $\mathrm{V}_{\mathrm{g}}=1000 \mathrm{~m} / \mathrm{sec}, \rho_{\mathrm{g}}=0.1 \mathrm{~kg} / \mathrm{m}^{3}$, $\mathrm{T}_{\mathrm{g}}=3500 \mathrm{~K}$ at the inlet of the reactor nozzle; $\mathrm{V}_{\mathrm{g}}=1500 \mathrm{~m} / \mathrm{sec}, \rho_{\mathrm{g}}$ $=0.3 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~T}_{g}=1500 \mathrm{~K}, \mathrm{~V}_{\mathrm{p}}=1500 \mathrm{~m} / \mathrm{sec}, \mathrm{T}_{\mathrm{p}}=1500 \mathrm{~K}, \mathrm{~N}_{\mathrm{p}}=$ 2000 at the inlet of the reactor nozzle.
Figure 3.10.2 Lagrangian marker particles are shown in color representing the evolution of injected particle temperature as a function of particle position and time in the jet spray stream.
Figure 3.10.3 Gas temperature contours in the jet spray stream. The maximum temperature is $3500^{\circ} \mathrm{K}$ and the minimum is $600^{\circ} \mathrm{K}$.
Figure 3.10.4 Gas density contours in the jet spray stream. The injected stream and the main flow mix poorly. The diamond patterns describe the shock wave pattern resulting from the flow's overexpansion.
Figure 3.10.5 Pressure contours in the jet spray stream. The diamond patterns show that supersonic flow is maintained near the vicinity of the target surface.
Figure 3.11.1 Comparison for $\mathbf{M}_{\mathbf{S}}=2.8$ pure-gas flow: (a) interferogram from experiment; (b) density contours from present calcuiation.
Figure 3.11.2 Dersity contours for the case $M_{s}=2.8, \rho_{p}=0.25 \mathrm{~kg} / \mathrm{m}^{3}, r_{p}=10 \mu \mathrm{~m}$ at two different times: (a) particle density at t_{1}, (b) gas density at t_{1}; c) particle density at t_{2}, (d) gas density at t_{2}

Figure 3.11.3 Density contours for the case $M_{s}=2.8, \rho_{p}=0.76 \mathrm{~kg} / \mathrm{m}^{3}$, for two different particle sizes: (a) particle density and (b) gas density for $r_{p}=$ $10 \mu \mathrm{~m} ; \mathrm{c}$) particle density and (d) gas density for $\mathrm{r}_{\mathrm{p}}=50 \mu \mathrm{~m}$.
Figure 3.12.1 Edge enhancement for a sinusoidal distribution without noise. 56
Figure 3.12.2 Edge enhancement for a sinusoidal distribution with 10% intensity random noise.

Figure 3.12.3 Edge enhancement for a sinusoidal distribution with 50% intensity random noise.
Figure 3.12.4 Edge entanc-ment for a sinusoidal distribution with 100% intensity randori noise.

55
Figure 3.13.1 Computational domain and boundary conditions. 57
Figure 3.13.2 Explosive initially localized in $2.5-\mathrm{cm}$ layer at constant density of 100 $\mathrm{kg} / \mathrm{m}^{3}$. Density in the cloud is $0.75 \mathrm{~kg} / \mathrm{m}^{3}$. (a), (b), and (c) are gas pressure, gas density, and particle density at $66 \mu \mathrm{sec}$, respectively.58

Figure 3.13.3 Particle density distributed in layer in accordance with the fourth power of height. Gas pressure, temperature, and particle density at $55 \mu \mathrm{sec}$, respectively.

1. INTRODUCTION

1.1 RECENT CFD DEVELOPMENT

Computational fluid dynamics (CFD) develupment over the past twenty years has truly been outstanding. The recent CFD developments that are particularly important are: 1) advances in flow solvers in all the regimes of fluid flow (very low speed and subsonic flows, transonic flow, supersonic and hypersonic flows), 2) advances in unstructured adaptive gridding techniques and, 3) advances in chemical and particle kinetic modeling for fluid flows. Developments in graphics and visualization, construction of graphical user interfaces (GUIs) and advances in large database management have also played an important role in the scale and complexity of problems that can now be realistically simulated by CFD techniques. SAIC has been involved in all aspects of these developments and is on the forefront of CFD technology development.

DARPA, NASA, DNA and DOE have for the most part been the largest benefactors of CFD development, and each agency today is actively pursuing CFD applications to real problems. Full 3-D unsteady flows about military and commercial aircraft are routinely simulated to assess aerodynamic performance characteristics, and where it used to require several hundred hours of CRAY CPU time it now takes minutes to an hour on a supercomputer or a like time on workstations, depending on the specifics of the problem being solved. The U.S. Marine Corps' latest initiative in the development of blast (due to land mines) resistant vehicles is being pursued successfully with the aid of full 3-D CFD simulations of land mine blast effects on truck configurations. The CFD technology developed in SAIC's UUGM contract is playing a leading role in this Marine Corps effort (see Section 3.4). Many other such examples of improvements in CFD performance exist. In view of this, it is quite appropriate to begin to transition CFD technology into other disciplines that can take advantage of realistic CFD based simulation.

1.2 UNSTRUCTURED MESHES IN COMPLEX GEOMETRIES

Current emphasis in CFD calls for solutions of applied physical problems for complex realistic geometries. ${ }^{1}$ In addition to the inherent difficulties in describing the details of the complex three-dimensional geometry, the flow fields usually have an inhomogeneous structure. Regions of rapid change of the flow functions and chemical reactions will be embedded in regions where the flow gradients are relatively small. Accurate simulations of flows in regions with strong gradients is key to the overall accuracy of physical, chemical and biological simulations. For this reason most of the software and hardware computational resources are defined by the accuracy requirements of these flow regions and geometry of the computational domain.

Early CFD research was almost entirely concemed with the formulation the mathematical models of the flow and methods of solution. Mesh generation was regarded as secondary and meshes were developed for specific cases. During this early period very
significant improvements were made in the methods of integration of the partial differential equations of gasdynamics. Presently, as a result of steady improvement in the various integration techniques, the advantages which could be gained by using bette low solvers have become limited. On the other hand substantial progress is anticipatec : the areas of grid generation and algorithm deveiopment. ${ }^{2}$

Currentiy, most numerical simulations employ structured meshes comp-sed of quadrilaterals in two dimensions or hexahedra in three dimensions. However, it has become evident that the quadrilateral structured grids cannot satisfy the requirements of large scale numerical simulations over complex geometries in three dimensions. The physics of the flow abc'tt a complete aircraft is extremely complex. Yet the flow in many distinct regions and regimes may be represented by fairly well-known physical theories. Vortices shed by lifting surfaces are confined to faitly thin wake regions. Exhaust plumes can be initially approximated by regular bounding surfaces. Flow disturbances due to shocks are confined to thin discontinuities. Boundary layers are restricted to near-wall regions. Each of these flow regions requires different theories, different resolution and different numerical algorithms. This diversity of computational requirements cannot je satisfied by the quadrilateral structured grids.

Recently proposed altematives to quadrilateral grids use triangles in two dimensions and tetrahedra in three dimensions. For these grids the mesh will generally lose its structure, allowing a new degree of flexibility in treating complex geometries. 3,4 Unstructured grids can relatively easily 'be adapted to follow flow features, thereby increasing the solution accuracy. The result has been the development of adaptive refinement techniques which have been used with great success for two dimensional simulations on unstructured triangular grids. These methods have resulted in the resolution of previously difficult details in the evolving flows over complex configurations.

However, it is not a trivial task to adapt this approach to three-dimensional simulations. One of the problems is the generation of the adaptive grid. Since the grid is constructed from the volume elements (tetrahedra) the moving front is made up of a surface of triangular faces. It should be noted that this moving front can and will change its shape during the computation as time evolves. It is necessary to take care when determining the intersections of planar faces, and to ensure that no overlapping of tetrahedra occurs.

2. UUGM: UNIVERSAL CFD SIMULATION ENVIRONMENT

The Ultimate Unstructured Grid Method (UUGM) represents a new approach to the computational domain discretization. The principal advantage of the method is most apparent for simulations of complicated flow regimes with physical and chemical processes over bodies with complex geometries in three dimensions.

The usual technique employed in regridding is called hierarchical dynamic refinement (H refinement). The idea here is to retain a history of the original grid and the
subdivisions needed to change it into the current grid, so that it is always possible to retrace these steps and get back to previous grids. While this feature is useful in modeling reversible processes, it is generally unnecessary, and it increases overhead costs. Our implementation (Direct Dynamic Refinement) is Markovian, in the sense that the way regridding is done depends only on the current grid and flow conditions.

The other distinguishing feature is the use of the Second-order Godunov method to solve the Euler equations of gasdynamics. The philosophy behind it is to treat the local values of the dependent variables at every point on the grid as initial conditions for a Riemann problem, and to use the resultant solution of that problem to calculate the fluxes of material, momentum, and energy from one cell to the rest. Previous implementations of this method were confined to structured meshes.

2.1 MATHEMATICAL MODEL AND INTEGRATION ALGORITHM

We consider a system of two-dimensional Euler equations written in conservation law form as

$$
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}=0 \tag{2.1}
\end{equation*}
$$

where

$$
U=\left|\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
e
\end{array}\right|, F=\left|\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
u(e+p)
\end{array}\right|, G=\left|\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p \\
v(e+p)
\end{array}\right| .
$$

Here u, v are the x, y velocity vector components, p is the pressure, ρ is the density and e is total energy of the fluid. We assume that the fluid is an ideal gas and the pressure is given by the equation of state,

$$
\begin{equation*}
p=(\gamma-1)\left[e-\left(\frac{\rho}{2}\right)\left(u^{2}+v^{2}\right)\right] \tag{2.2}
\end{equation*}
$$

where γ is the ratio of specific heats and is typically taken as 1.4 for air. It is assumed that an initial distribution of the fluid parameters is given at $t=0$, and the boundary conditions defining a unique solution are specified for the computational domain.

The system of governing equations in Eq. (2.1) can be written as

$$
\begin{equation*}
\frac{\partial U}{\partial t}+\nabla \cdot Q=0 \tag{2.3}
\end{equation*}
$$

where Q represents the convective flux vector. Integrating Eq. (2.3) over space and using Gauss' theorem produces the expression

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{\Omega} U d A+\oint_{\partial \Omega} Q \cdot d l=0 \tag{2.4}
\end{equation*}
$$

where $a l=n d l, n$ is the unit normal vector in the outward direction, and $d l$ is the element of length on the boundary of the domain. Here Ω is the domain of computation and $\partial \Omega$ is the boundary of this domain.

We seek a solution to the system of Eq. (2.1) in the computational domain, which is decomposed in part into triangles with arbitrary connectivity and in part into rectangles using a logically structured grid. We use the advantage of the unstructured grid (Refs. 5-8) to describe the curved boundary of the computational domain and areas that need increased local resolution; this covers a small part of the total computational domain. The largest area of the computational domain is decomposed by the structured grid. The numerical technique for solving Euler's equation on an unstructured grid is described in Refs. 9-11, and the technique for the structured grid is described in Ref. 9. These numerical techniques apply some of the ideas that were introduced in Refs. 13-14. The structured and unstructured codes apply the center-based formulation, i.e., the primitive variables are defined in the center of the cell, which makes the cell the integration volume, while the fluxes are computed across the edges of the cell. The basic algorithmic steps of the Second-Order Godunov method can be defined as follows:

1. Find the value of the gradient at the baricenter of the cell for each gasdynamic parameter U_{i};
2. Find the interpolated values of U at the edges of the cell using the gradient values;
3. Limit these interpolated values based on the monotonicity condition; 13
4. Subject the projected values to the characteristics constraints; 14
5. Solve the Riemann problem applying the projected values at the two sides of the edges;
6. Update the gas dynamic parameter U according to the conservation equations (1) applying to the fluxes computed and the current timestep.

As was recommended in Ref. 11, we prefer the version based on triangle centers over the vertex-based version of the code. For the same unstructured grid, a center-based algorithm will result in smaller control volumes than a vertex-based. In addition, for the Second-Order Godunov solver, implementation of the boundary conditions is more straightforward and accurate for the center-based algorithm than in the vertex-based version. These two factors, along with the effects of grid connectivity, strongly affect the algorithm accuracy and performance and are the main reasons for the superiority of the center-based version over the vertex version.

Equation (2.4) can be discretized for each element (cell) in the domain

$$
\begin{equation*}
\frac{\left(U_{i}^{n+1}-U_{i}^{n}\right)}{\Delta t} A_{i}=\sum_{j=1}^{M} Q_{j}^{n} \cdot n_{j} \Delta L_{j} . \tag{2.5}
\end{equation*}
$$

where A_{i} is the area of the cell; Δt is the marching timestep; U_{1}^{n} and U_{1}^{n+1} are the primitive variables at the center of the cell at time n and at the updated $(n+1)$ st timestep; Q_{j} is the value of the fluxes across the boundaries on the circumference of the cell where n_{j} is the unit normal vector to the boundary edge j, and ΔL_{j} is the length of the boundary edge j. The fluxes $Q_{j}{ }_{j}$ are computed applying the Second-Order Godunov algorithm, and Eq. (2.5) is used to update the physical primitive variables u_{i} according to computed fluxes for each marching timestep Δt. The marching timestep is subjected to the Courant-Friedrichs-Lewy (CFL) constraint.

Figure 2.1.1 Representative triangular cell in the mesh showing fluxes and projected values

To obtain second-order spatial accuracy, the gradient of each primitive variable is computed in the baricenter of the cell. This gradient is used to define the projected values of primitive variables at the two sides of the cell edge, as shown in Fig. 2.1.1. The gradient is approximated by a path integral

$$
\begin{equation*}
\int_{\Omega} \nabla U_{i}^{\text {cell }} d A=\oint_{\partial \Omega} U_{j}^{\text {odse }} d l . \tag{2.6}
\end{equation*}
$$

The notation is similar to the one used for Eq. (2.5), except that the domain Ω is a single cell and U_{i} and U_{i} are values at the baricenter and on the edge respectively. The gradient is estimated as

$$
\begin{equation*}
\nabla U_{i}^{\text {cell }}=\frac{1}{A} \sum_{j=1}^{3} U_{i}^{\text {edge }} n_{j} \Delta L \tag{2.7}
\end{equation*}
$$

The gradients that are computed at each baricenter are used to project values for the two sides of each edge by piecewise linear interpolation. The interpolated vaices are subjected to monotonicity constraints. ${ }^{3}$ The monotonicity constraint ensures : it the interpolated values do not create new extrema.

The monotonicity limiter algorithm can be written in the following form

$$
\begin{equation*}
U_{p r o i}^{\text {odec }}=U_{i}^{\text {cell }}+\phi \nabla U_{i} \cdot \Delta r \tag{2.8}
\end{equation*}
$$

where Δr is the vector from the baricenter to the point of intersection of the edge with the line connecting the baricenters of the cells over the two sides of this edge. Here ϕ is the coefficient that limits the gradient ∇U_{i}.

First we compute the maximum and minimum values of the primitive variable in the i th cell and its three neighboring cells that share common edges (see Fig. 2.1.1):

$$
\left.\begin{array}{l}
U_{\text {cell }}^{\operatorname{mex}}=\max \left(U_{k}^{\text {cell }}\right) \tag{2.9}\\
U_{\text {cell }}^{\min }=\min \left(U_{k}^{\text {cell }}\right)
\end{array}\right\} k=i, 1,2,3 .
$$

The limiter can be defined as

$$
\begin{equation*}
\phi=\min \left\{1, \phi_{k}^{i r}\right\}, k=1,2,3 \tag{2.10}
\end{equation*}
$$

where the superscript $l r$ stands for left and right of the three edges (6 combinations altogether); $\phi_{k}^{l r}$ is defined by

$$
\begin{equation*}
\phi_{k}^{l r}=\frac{\left[1+\operatorname{sgn}\left(\Delta U_{k}^{l r}\right)\right] \Delta U_{\mathrm{cell}}^{\mathrm{max}}+\left[1-\operatorname{sgn}\left(\Delta U_{k}^{l r}\right)\right] \Delta U_{\mathrm{cell}}^{\mathrm{mmn}}}{2 \Delta U_{k}^{l r}}, k=1,2,3 \tag{2.11}
\end{equation*}
$$

where $\Delta U_{k}^{l r}=\nabla U_{i}^{l r} \cdot \Delta r_{k}$ and

$$
\left.\begin{array}{l}
\Delta U_{\text {cell }}^{\max }=U_{\text {cell }}^{\max }-U_{i}^{\text {cell }} \tag{2.12}\\
\Delta U_{\text {cell }}^{\min }=U_{\text {cell }}^{\min }-U_{i}^{\text {cell }}
\end{array}\right\} .
$$

To obtain second-order accuracy in time and space, we subject the projected values of the left and right side of the cell edge to characteristic constraints following Ref. 4. The one-dimensional characteristic predictor is applied to the projected values at the half timestep $t^{n}+\Delta t / 2$. The characteristic predictor is formulated in the local system of coordinates for the one-dimensional Euler equation. We illustrate the implementation of
the characteristic predictor in the direction of the unit vector \mathbf{n}_{c}. The Euler equations for this direction can be written in the form

$$
\begin{gather*}
W_{1}+A(W) W_{n c}=0 ; \tag{2.13}\\
W=\left\{\begin{array}{l}
\tau \\
u \\
p
\end{array}\right\} ; A(W)=\left(\begin{array}{ccc}
u & -\tau & 0 \\
0 & u & \tau \\
0 & \rho c^{2} & u
\end{array}\right), \tag{2.14}
\end{gather*}
$$

where $\tau=\rho^{-1}, \rho$ denotes density, u, p are the velocity and pressure. The matrix $A(W)$ has three eigenvectors ($l \#, r \#$) (l for left and r for right, where $\#$ stands for $+, 0,-$) associated with the eigenvalues $\lambda^{+}=u+c, \lambda^{+}=u, \lambda^{-}=u-c$.

An approximation of the value projected to an edge, accurate to second order in space and time, can be written as

$$
\begin{align*}
W_{i+\Delta r}^{n+1 / 2} & \approx W_{i}^{n}+\frac{\Delta t}{2} \frac{\partial W}{\partial t}+\Delta r \frac{\partial W}{\partial r_{n c}} \\
& \approx W_{i}^{n}+\left[\Delta r-\frac{\Delta t}{2} A\left(W_{i}\right)\right] \frac{\partial W}{\partial r_{n c}} \tag{2.15}
\end{align*}
$$

An approximation to $W_{i+\Delta r}^{n+1 / 2}$ can be written as

$$
\begin{equation*}
W_{i+\Delta r}^{n+1 / 2}=W_{i}+\left(\Delta \boldsymbol{r}_{i}-\frac{\Delta t}{2}\left(M_{x} M_{n}\right) n_{c}\right) \cdot \nabla W_{i}, \tag{2.16}
\end{equation*}
$$

where

$$
\left(M_{x} M_{n}\right)= \begin{cases}\max \left(\lambda_{i}^{+}, 0\right) & \text { for the cell on the left of the edge } \tag{2.17}\\ \min \left(\lambda_{i}^{-}, 0\right) & \text { for the cell on the right of the edge. }\end{cases}
$$

The gradients applied in the process of computing the projected values at $t^{n}+\Delta t / 2$ are subjected to the monotonicity limiter.

Following the characteristic predictor described above, the full Riemann problem is solved at the edge. The solution of the Riemann problem defines the flux $Q^{n+1 / 2}$ through the edge. The fluxes through the edges of triangles are then integrated (Eq. 2.5), thus giving an updated value of the variables at t^{n+1}. One of the advantages of this algorithm is that calculation of the fluxes is done over the largest loop in the system (the loop over edges) and can be vectorized or parallelized. This leads to an efficient algorithm.

We have carried out an extensive and painstaking series of tests in the course of developing and implementing the algorithm. Most of these used a standard benchmark, the exploding diaphragm or "Sod problem" (Fig. 2.1.2). In this problem two regions containing an ideal gas at different densities and pressure are separated by an infinitely thin interface (the diaphragm). A shock wave, a rarefaction wave, and a contact discontinuity propagate away from that point at different speeds when this diaphragm is instantaneously removed. The Riemann solution yields an analytical solution in terms of simple waves which can be compared with the numerical approximation.

We used this problem as a testbed to compare structured vs. unstructured grids, first-order vs. second-order Godunov schemes, schemes with and without limiters, etc. For example, Fig. 2.1 .2 shows that the solution obtained with an unstructured grid is noticeably better than that obtained with a structured grid.

Figure 2.1.2 Density profile comparison between analytical results and results obtained by applying the second-order Godunov algorithm using structured or unstructured grids.

2.2 MULTIPHASE MULTICOMPONENT REACTIVE FLOW

Multiphase multicomponent reacting flows (MPMCRF) consist of material media (continua and particles) dispersed in a flow varying in space and time. Two basic approaches can be used to describe MPMCRFs, heterogeneous and homogenenus phase descriptions. For homogeneous mixtures one assumes that each mixture component occupies the same volume with other mixture components on an equal basis ($\mathrm{V}_{1}=\mathrm{V}_{2}=\ldots$ $=\mathrm{V}_{\mathrm{n}}=\mathrm{V}$). This approach is justified for an interpenetrating mixture of gases or a dilute suspension of particles in a gas. In a heterogeneous description of a suspension, each component occupies only part of the global volume ($\mathrm{V}_{1}+\mathrm{V}_{2}+\ldots+\mathrm{V}_{\mathrm{n}}=\mathrm{V}$). Therefore in the mathematical description of the heterogeneous suspensions, in addition to the density of the i-th component ρ_{i} one needs to introduce the fractional volume of the components:

$$
\begin{equation*}
\phi_{1}+\phi_{2}+. . \phi_{N}=1 \quad\left(\phi_{t}>0\right) \tag{2.18}
\end{equation*}
$$

which allows us to define the real density of each of the components as $\sigma_{i}=\frac{\rho_{i}}{\phi_{i}}$.
Consider a chemically reacting system containing an N-component gaseous phase and one solid particle phase. The conservation equations can be written as follows: ${ }^{3}$

Conservation of Mass

Global continuity for gaseous phase:

$$
\begin{equation*}
\frac{\partial \rho_{g}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\rho_{g} u_{(g) j}\right)=I_{g} . \tag{2.19}
\end{equation*}
$$

Continuity of $\mathrm{N}-1$ species or components of gaseous phase:

$$
\begin{equation*}
\frac{\partial Y^{i}}{\partial t}+\frac{\partial}{\partial x_{j}}\left[\rho_{8} Y^{\prime}\left(u_{(g) j}+V_{j}^{\prime}\right)\right]=\omega^{1}+I_{8}^{1} \tag{2.20}
\end{equation*}
$$

Continuity for solid particle phase:

$$
\begin{equation*}
-\frac{\partial \rho_{p}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\rho_{p} u_{(p) j}\right)=-I_{p} \tag{2.21}
\end{equation*}
$$

In the above equation of mass conservation, ρ_{g} is the partial gas density. The gas volume fraction is ϕ_{g}. The relation between partial gas density and material density σ_{g} is $\rho_{g}=\phi_{g} \sigma_{g}$. Similarly, we define the partial phase density ρ_{p} and material density σ_{p}. The reiation between the two is then $\rho_{p}=\phi_{p} \sigma_{p}$. We assume volume conservation, which is

$$
\begin{equation*}
\phi_{g}+\phi_{p}=1 . \tag{2.22}
\end{equation*}
$$

The species diffusion velocity V_{i}^{1} is calculated through Fick's law:

$$
\begin{equation*}
V_{i}^{l}=-\frac{D}{Y^{\prime}} \frac{\partial Y^{i}}{\partial x_{i}} \tag{2.23}
\end{equation*}
$$

where D is the diffusion coefficient. Finally, we assume mass conservation in all chemical reactions:

$$
\begin{equation*}
\sum_{i}^{N} w_{i}^{l}=0 \quad \text { and } \quad I_{p}=-\sum_{i}^{N} I_{g}^{l}=-I_{g} \tag{2.24}
\end{equation*}
$$

Conservation of Momentum

Conservation of momentum for the gaseous phase:

$$
\begin{align*}
& \frac{\partial\left(\rho_{g} u_{(g)}\right)}{\partial t}+\frac{\partial}{\partial x_{j}}\left[\rho_{g} u_{(g)^{h}} u_{(g) j}+\delta_{i j} \phi_{g} p_{g}\right] \\
& =\frac{\partial}{\partial x_{j}}\left[\left(\mu^{\prime}-\frac{2}{3} \mu\right) \frac{\partial u_{(g) k}}{\partial x_{k}} \delta_{y}+\mu\left(\frac{\partial u_{(g)}}{\partial x_{j}}+\frac{\partial u_{(g)}}{\partial x_{j}}\right)\right] \tag{2.25}\\
& -F_{i}^{(p)}+I_{p} u_{(p) i} .
\end{align*}
$$

Conservation of momentum for the particle phase:
$\frac{\partial\left(\rho_{p} u_{(p h i}\right)}{\partial t}+\frac{\partial}{\partial x_{i}}\left[\rho_{p} u_{(p) i} u_{(p) j}+\delta_{i j} \phi_{p} p_{p}\right]=\frac{\partial}{\partial x_{j}}\left(\tau_{\left.(p)_{j}\right)}\right)+F_{i}^{(p)}-I_{p} u_{(p) h}$.
In the above momentum conservation equations, p_{p} and p_{g} are the pressure of the solid particle and gaseous phases respectively, $F_{i}^{(p)}$ represents the interaction force between the two phases, and $\tau_{(p) i j}$ is the stress tensor for the particle phase, to be determined by experimental or empirical correlations.

For the gaseous phase, the stress tensor can be written as

$$
\begin{equation*}
\tau_{\left.(g)_{j}\right)}=-p \delta_{i j}+\left(\mu^{\prime}-\frac{2}{3} \mu\right) \frac{\partial u_{k}}{\partial x_{k}} \delta_{i j}+\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \tag{2.27}
\end{equation*}
$$

where μ is the dynamic viscosity and μ^{\prime} is the second viscosity coefficient.

Conservation of Energy

The governing equation for conservation of energy for the gaseous phase is usually written

$$
\begin{align*}
& \frac{\partial\left[\rho_{g}\left(e_{g}+0.5 u_{(g) i} u_{(g .)}\right]\right.}{\partial t}+\frac{\partial}{\partial x_{j}}\left[\rho_{g} u_{(g) j}\left(e_{g}+0.5 u_{(g) i} u_{(g) i}\right)+\phi_{g} p_{g} u_{(g) j}\right] \\
& \left.=-\frac{\partial q_{(g) j}}{\partial x_{j}}+Q_{g}+\frac{\partial}{\partial x_{j}}\left(u_{(g) i}\left[\left(\mu^{\prime}-\frac{2}{3} \mu\right) \frac{\partial u_{(g) k}}{\partial x_{k}} \delta_{i j}+\mu\left(\frac{\partial u_{(g) i}}{\partial x_{i}}\right)\right]\right)\right] \tag{2.28}\\
& -F_{(p) i} u_{(p) i}+Q_{p} .
\end{align*}
$$

The equation for conservation of energy for the particle phase has the form

$$
\begin{align*}
& \frac{\partial}{\partial t}\left[\rho_{p}\left(C_{s} T_{p}+0.5 u_{\left.(p)^{\prime}\right)}\right]+\frac{\partial}{\partial x_{i}}\left[\rho_{p} u_{(p) j}\left(C_{s} T_{p}+0.5 u_{(p)^{n}} u_{(p) i}\right)+\phi_{p} u_{(p),} p_{p}\right]\right. \\
& =-\frac{\partial q_{(p) j}}{\partial x_{j}}+\frac{\partial}{\partial x_{j}}\left(u_{(p))} \tau \tau_{(p h)}\right)+F_{i}^{(p)} u_{(p)^{i}}-Q_{p} . \tag{2.29}
\end{align*}
$$

In the conservation of energy, $\frac{\dot{\sigma} q_{(g) j}}{\partial x_{j}}$ and $\frac{\partial q_{(p) j}}{\partial x_{j}}$ are the heat flux gradients in the j th direction in the gaseous and particle phases, respectively. Q_{p} is the energy source due to heterogeneous chemical reactions (between the gaseous and particle phases), plus heat transfer between the two phases. Here $Q_{g}=\sum_{i=1}^{N}\left(-\omega_{1} \Delta h_{f i}^{o}\right)$ is the energy source due to homogeneous (gaseous) chemical reactions, which is defined in the chemical reaction model.

Conservation of Number of Particles

An equation for total conservation of particles is given by

$$
\begin{equation*}
\frac{\partial n_{p}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(n_{p} u_{(p) j}\right)=0 \tag{2.30}
\end{equation*}
$$

Equation of State

The equation of state for all gases can be put into the generic form

$$
\begin{equation*}
e_{g}=f_{g}\left(p_{g}, \sigma_{g}, Y^{1}, \cdots, Y^{N}\right) \tag{2.31}
\end{equation*}
$$

where for an ideal gas the form is

$$
\begin{gather*}
e_{g}=\frac{p_{g}}{\sigma_{g}\left(\gamma_{g}-1\right)} \tag{-32}\\
p_{g}=\sigma_{g} R_{u} T_{g} \sum_{i=1}^{N} \frac{Y^{i}}{W^{\prime}}
\end{gather*}
$$

An equation of state for the particle phase can be written in symbolic form as

$$
\begin{equation*}
p_{p}=f\left(\sigma_{p}, T_{p}\right) \tag{2.34}
\end{equation*}
$$

where the exact form of Eq. (2.34) that is to be used in a numerical simulation depends on experimental data or results from physical approximations.

In the above equations, γ_{g} is the ratio of specific heats of the gaseous nixture and R_{u} is the universal gas constant.

Chemical Reaction Model

A phenomenological chemical reaction model for the gaseous phase (including M chemical reactions) has been formulated as

$$
\begin{equation*}
\omega^{1}=W^{i} \sum_{k=i}^{M}\left(v_{k}^{\prime}(1)-v_{k}^{(1)}\right) B_{k} T^{a k} \exp \left(\frac{E_{a k}}{R_{y} T_{g}}\right) \prod_{j=1}^{N}\left(\frac{X^{\prime} p_{g}}{R_{u} T_{g}}\right) \tag{2.35}
\end{equation*}
$$

Similarly, a phenomenological heterogeneous (for gas and particle phases) chemicals reaction model can be written symbolically as

$$
\begin{equation*}
I_{(p)}=f\left(T_{p}, P_{p}, \ldots\right) \tag{2.36}
\end{equation*}
$$

and again the exact form of Eq. (2.36) will depend on experimental data or approximations from physical models.

The following nomenclature defines the symbols used in the above system of equations (2.19) - (2.36): B - chemical reaction collision frequency factor; C_{S} - specific heat for solid particle; e-internal energy; D-mass diffusion coefficient; $E_{a k}$ - activation energy for the k th reaction; F_{i} - interphase force in i th direction; I - source function generated by chemical reaction; p_{g} - gas pressure; q_{i} - heat flux in the i th direction; R_{u} universal gas constant; t - time; T - temperature; u_{i} - velocity in i th direction; V_{i} species diffusion velocity in i th direction; W^{i} - molecular weight of i th component of gas; x_{i} - coordinate in ith direction; X^{i} - mode fraction of i th component of gas; Y^{i} - mass fraction of i th component of gas; α - temperature exponent of the k th reaction; γ - ratio of specific heat; λ-thermal conductivity of gas; μ-dynamic viscosity of gas; μ^{\prime} - second
viscosity coefficient of gas; $\tau_{i j}$ - stress tensor; ω^{\prime} - mass rate of production of species i; ρ - density; $v_{i, k}$-stoichiometric coefficient for species i appearing as a reactant in the k th reaction; $v_{i, k}^{\prime}$-stoichiometric coefficient for species i appearing as a product in the k th reaction; ϕ - vciume fraction; σ - material density. Subscripts are defined as follows: g gas phase; p - particle phase; i, j, k, direction indexes; l - species index. Superscripts refer to species type.

The comprehensive mathematical model and system of equations given above for an MPMCRF simulation of advanced material synthesis processes is based on volume averaging, assuming that each phase or component can be described by continuous flow. Such averaging leads to a loss of information that can be recovered by appropriate closure relations. The closure relations such as interphase forces, chemical reaction models and the equations of state are usually developed from correlations involving experimental data or from simple physical or chemical models describing interphase or intraphase interactions. Such correlations are generally only valid within the range of known experimental data; the choice of appropriate closure models reflects the understanding of the underlying physical and chemical nature of the system to be simulated.

2.3 DIRECT DYNAMIC REFINEMENT METHOD FOR UNSTRUCTURED TRIANGULAR GRIDS

As stated, an unstructured grid is very well suited to implement boundary conditions on complex geometrical shapes and to refine the grid if necessary. This feature of the unstructured triangular grid is compatible with efficient use of memory resources. The adaptive grid enables the code to capture moving shocks and large-gradient flow features with high resolution. The memory resources available can be very efficiently distributed in the computational domain to accommodate the resolution needed to capture the main features of the solution's physical property. Dynamic refinement controls the resolution priorities. These priorities can be set according to the physical features that the user wishes to emphasize in the simulation. The user has control over the resolution of the physical features, without being restricted to the initial grid. The alternative to Direct Dynamic Refinement is the hierarchical dynamic refinement ${ }^{6}$ (H refinement) that keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). In the H refinement method, it is necessary to keep overhead information on the level of each triangle subdivision, and double indirect indexing is required to keep track of the H refinement process. As mentioned, H refinement relies heavily on the initial grid as it subdivides the mother grid, and returns to that grid after the passage of the shock.

The Direct Dynamic Refinement (DDR) method for capturing the shock requires the refinement to be in the region ahead of the shock. This requirement minimizes the dissipation in the interpolation process when assigning values to the new triangles created in the refined region. Additionally, it requires that the coarsening of the grid be done after the passage of the shock. The interpolation and extrapolation in the refinement and coarsening of the grid is done in the region where the flow features are smooth.

a. Original grid.

c. Gria after one refinement

b. Grid after one refinement.

d. Second refinement. and one reconnection.

e. Second reconnection.

Figure 2.3.1 Illustration of the grid refinement process.

Figure 2.3.2 Illustration of the grid coarsening process.

The physics of the problem is involved in the process that identifies the region of refinement and coarsening. Error criteria can be derived that will allow grid adaptation to stationary or moving pressure or density discontinuities, region of high vortical activ:v, etc. There should be an error indicator specially suited to capture and identify the res:on of importance for each of the physics features to be resolved.

The original FUGGS algorithm reported in Ref. 9 was modified to able adaptivity of the grid in the course of the computation. In AUGUST, ye have implemented an algorithm with multiple criteria for capturing a variety of feat.. as that might exist in the physics of the problem to be solved. To identify the location of a moving shock, we use the flux of total energy into triangles. The fiuxes entering and leaving triangles are the most accurate physical variables computed by the Godunov algorithm for solving the Euler equations, and are used to update the physical variables for each timestep in each triangle. A shock wave means that there is a "step-function" change in the cell that is caused by an influx of energy, momentum or density. Stationary shocks can be identified by density gradients that are computed in the course of implementing the Second-Order Godunov algorithm.

In Fig. 2.3.1, we illustrate the basic process of refinement accomplished in the DDR. The original grid is shown in Fig. 2.3.1a. Figure 2.3.1b illustrates a one-step scheme refinement in which a new vertex is introduced into a triangular cell, forming three new cells. This is followed by reconnection, which modifies the grid as demonstrated in Fig. 2.3.1c. The process of refinement and reconnection can be continued until the necessary grid resolution is achieved, as illustrated in Figs. 2.3.1d and 2.3.1e. This direct approach to the grid refinement provides extreme flexibility in resolving local flow features. A similar simple method is applied to grid coarsening. In the first step of coarsening the marked vertices, all associated elements of the grid are simply removed, as shown in Fig. 2.3.2a. During the second step, this void in the grid is filled with new larger triangles (Fig. 2.3.2b) and then reconnected as shown in Fig. 2.3.2c. When a very large increase of the local grid density is required, these simple algorithms of grid addition and deletion can create triangles with an unacceptably large aspect ratio. To avoid this condition for very large grid densities (when the area of the triangles in the dense region is reduced to less than 2% of the initial area), we introduced local grid relaxation immediately after the grid deletion procedure.

AUGUST has proven to be a very robust and efficient algorithm capable of computing transient phenomena, and with the ability to sense the region of physical interest and resolve it by refining and coarsening the grid as needed.

2.4 STRUCTURED/UNSTRUCTURED COMPOSITE GRIDS

Structured rectangular grids allow the construction of numerical algorithms that perform an efficient and accurate integration of fluid conservation equations. The efficiency of these schemes results from the extremely low storage overhead needed for domain decomposition and the efficient and compact indexing that also defines domain
connectivity. These two factors allow code construction based on a structured domain decomposition that can be highly vectorized and parallelized. Integration in physical space on orthogonal and uniform grids produces the highest possible accuracy of the numerical algorithms. The disadvantage of structured rectangular grids is that they cannot be used for decomposition of computational domains with complex geometries.

The early developers of computational methods realized that, for many important applications of Computational Fluid Dynamics (CFD), it is unacceptable to describe curved boundaries of the computational domain using the stair-step approximation available with the rectangular domain decomposition technique. To overcome this difficulty, the techniques of boundary-fitted coordinates were developed. With these techniques, the computational domain is decomposed into quadrilaterals that can be fitted to the curved domain boundaries. The solution is then obtained in the physical space using the geometrical information defining the quadrilaterals, or in the computational coordinate system that is $\mathbf{c} b+$ zined by transformation of the original domain into a rectangular domain. The advantage of this technique is that it employs the same indexing method as the rectangular structured domain decomposition methods that also serve to define domain connectivity. The boundary-fitted coordinate approach leads to efficient codes, with approximately a $4: 1$ penalty in terms of memory requirement per cell as compared with rectangular domain decomposition. However, this approach is somewhat restricted in its domain decomposition capability, since distortion or large size variations of the quadriaterals in one region of the domain leads to unwanted distortions or increased resolution in other parts of the domain. An example of this is the case of structured body fitted coordinates used for simulations of flows over a profile with sharp trailing edges. In this case, increased resolution in the vicinity of the trailing edge leads to increased resolution in the whole row of elements connected to the trailing edge elements.

The most effective methods of domain decomposition developed to overcome this disadvantage are those using unstructured triangular grids. These methods were developed to cope with very complex computational domains. The unstructured grid method, while efficient and powerful in domain decomposition, resuits in codes that must store large quantities of information defining the grid geometry and connectivity, and have large computational and storage overheads. As a rule, an unstructured grid code requires greater storage by a factor of i 0 , and will run about 20 times slower per cell per iteration than a structured rectangular code.

Unstructured grid methods are used to their best advantage when combined with grid adaptivity. This feature usually allows dynamic decomposition of the computational domain subregions, thus leading to an order-of-magnitude reduction in the number of cells for some problems, as compared to the unstructured grid lacking this adaptive capability. However, this advantage is highly dependent on the problem solved. Adaptive unstructured grids have an advantage over the unadaptive unstructured domain decomposition if the area of high-resolution domain decomposition is less than one tenth of the global area of the computational domain. This explains why the adaptive unstructured method may be extremely effective for solutions with multiple shock waves
in complex geometries, but becomes extremely inefficient when high resolution is needed in a substantial area of the computational domain.

Our approach to domain decomposition combines the structured and unstrucrured methods for achieving better efficiency and accuracy. Under this method, stru:- ed rectangular grids are used to cover most of the computational domain, and unstr. .ed triangular grids are used only to patch between the rectangular grids (Fig. 2.4.1 ir to conform to the curved boundaries of the computational domain (Fig. 2.4.2). . . these figures, an unstructured triangular grid is used to decompose the regions of the computational domain that have a simple geometry.

Figure 2.4.1 A possible candidate configuration for hybrid structured/unstructured domain decomposition.

Figure 2.4.2 Hybrid structured/unstructured grid used to simulate ellipsoidal reflector, showing adaptation to curved boundaries.

2.5 THREE-DIMENSIONAL CAPABLLITY

Once the 2D capability was fully developed, we initiated the development of a fully 3D CFD adaptive unstructured simulation capability. This part of our effort is not yet documented in published material.

The first step in solving a 3D CFD problem is to discretize the computational domain into tetrahedra. The grid generation is a recognized bottleneck in the time it takes to evaluate an aerodynamic configuration. ${ }^{15}$ One could even argue that it represents the most time-consuming portion of the evaluation process. There are a handful of codes that are capable of gridding any given domain into tetrahedra. In order to shorten the part to our objective of achieving a 3D adaptive solver capability, we decided to make use of an existing grid generator to provide the initial grid.

OCTREE, ${ }^{16}$ which was developed at Rensselaer Polytechnic Institute (RPI), is a Finite Octree 3D grid generator that provides the initial grid for our adaptive solver. The productivity of a 3D grid generator is a function of the complexity of the surfaces that define the domain of computation. Usually, this task is the most time-consuming and painful for the user. OCTREE does not have a CAD/CAM package to assist the user in defining the surfaces of the geometry to be gridded. Nevertheless, OCTREE is a very robust and reliable grid generator.

The OCTREE algorithm is based on the concept of dividing the computational domain into octants. In each step, the code defines three planes that halve the domain in each of the three dimensions, thus dividing the volume into eight octants. Those three planes intersect the surfaces of the geometry, defining vertices. All the vertices are collected and sorted into topological loops. If the vertices are not sufficient to define correct topological loops, the code will subdivide the corresponding octant into eight smaller octants until the topology is fully resoived. The user is allowed to specify the level of the local octree subdivision he wishes to resolve. Once the code subdivides the volume into the level of octree specified by the user or needed to resolve the local geometrical details, the code defines tetrahedra to fill the volume of the computation domain. The code provides the user with an option that improves the quality of the tetrahedra by smoothing and eliminating the very small ones.

As stated, OCTREE provides the initial grid for the 3D solver. The adaptivity of the mesh is controlled by specific physical features that the user defines based on the physics of the problem to be solved. The adaptivity of the mesh automatically traces the physical features in the simulation and refines and coarsens the mesh accordingly to the criteria and the resolution specified by the user.

Figure 2.5.1 An elongated tetrahedron can be refined using smaller tetrahedra that are nearly regular.

The target tetrahedra are refined by first subdividing each of the four surfaces into smaller triangles that satisfy the resolution set by the user. There are no constraints on the way each face is subdivided. Each edge of the face is subdivided according to the local resolution needed, and the points along the edges are connected to construct the best triangles possible. The code adds points inside the face along with points on the edges to achieve an adequate triangulation of the faces. The triangles of the four faces of the target tetraheda are used to define smaller tetrahedra that will fill the volume. If needed, the code will add points inside the volume of the target tetrahedron to achieve the best tetrahedra possible. The code has the ability to reconnect tetrahedra to improve quality. The reconnection is done by puling out an edge, sorting all the tetrahedra connected to this edge, deleting these tetrahedra and filling the void with better shaped tetrahedra.

Figure 2.5.1 shows how the subdivision process can fill an irregular (elongated) tetrahedron with smaller tetrahedra that are nearly equilateral. (This is not the case with H refinement.) Figure 2.5 .2 shows points used to create octree refinement to grid a problem involving surface-mine blast effects on the underside of a truck. Figure 2.5.3 is the corresponding tetrahedral grid. The calculated overpressures on the surface of the truck underbody for an eight-pound expiosive are shown in Sec. 3.4.

The algorithm used to solve the 3D gasdynamic equations is an immediate extension of the 2D case described in Sec. 2.1. Thus, Eq. (2.6) is replaced by

$$
\int_{\Omega} \nabla U_{i}^{\text {cell }} \mathrm{d} V=\int_{\partial \Omega} U_{i}^{\text {face }} \mathrm{d} \mathbf{S},
$$

Figure 2.5.2 Points used to define structure of vehicle.

Figure 2.5.3 Tetrahedral grid generated by Finite Octree method.
where now Ω and $\partial \Omega$ are the volume and surface of a tetrahedron, and $d V$ and $d S$ are the corresponding differential elements. Its finite-difference approximation is

$$
\begin{equation*}
\nabla U_{i}^{\text {ceil }}=\frac{1}{V} \sum_{j=1}^{4} \widetilde{U}_{j}^{\mathrm{fwes}} \mathrm{n}_{j} \Delta S_{j} \tag{2.7'}
\end{equation*}
$$

where the summation is over the four faces and n_{j} is the normal to the j th face with surface area $\mathrm{d} S_{j}$. In the equations corresponding to Eqs. (2.9) - (2.11), the range 1, 2,3 is replaced by $1,2,3,4$. Equations (2.12) - (2.16) are formally unchanged, and Eq. (2.17) becomes

$$
\left(M_{x} M_{n}\right)= \begin{cases}\max \left(\lambda_{i}^{+}, 0\right) & \text { for the cell on the left of the edge } \\ \min \left(\lambda_{i}^{-}, 0\right) & \text { for the cell on the right of the edge. }\end{cases}
$$

3. APPLICATIONS

The AUGUST code was extensively validated for a wide range of known CFD problems and has been shown to be a robust simulation tool. It has been utilized on a variety of problems which span flow regimes ranging from low subsonic Mach numbers to hypersonic Mach numbers (Table 3.1).

Appendix C contains a complete collection and description of the CFD problems addressed during the UUGM research. Additional details of the AUGUST code are contained in SAIC's progress report for the UUGM DARPA program, submitted in November 1991. Here we briefly describe the most noteworthy applications.

It is worth underscoring again that in the past it was necessary to use a sequence of codes as well as numerical parameter adjustment to bridge the gap in flow phenomena occurring in different flow regimes. An important point to be made here is that the AUGUST code allows robust, accurate and efficient solutions across these different regimes without the necessity of adjusting coefficients to enhance convergence accuracy or efficiency.

Table 3.1 AUGUST Applications

Problem

1. Calculation of potential flow about an ellipse.
2. Hypersonic flow past a flat plate.

Activity

Reported at the 4th International Symposium on Computational Fluid Dynamics, Davis, CA, Sept 1991.

Reported at AIAA Reno Meeting (AIAA-90-0699), 1990.

Problem

3. Shock on wedge with adaptive Reported at the Free Lagrange gridding.
4. Simulation of mine explosion under a Performed for U.S. Army Corps of vehicle.

Engineers, Ft. Belvoir, VA.
5. Simulation of pulsed detonation engine. Published in J. of Propulsion and Power Nov/Dec 1991 Vol. 7 (6) pp. 857-865 and AIAA Meeting, Reno, NV 1992.
6. Shock focusing in air using Presented at the ICAM Conference, structured/unstructured grids. Rutgers, NJ, June 1992.
7. Nonideal airburst calculations for multiphase media.
8. Flow in the SARL wind tunnel.
9. Simulation of a shock on a double wedge.
10. Supersonic spray coating devices.
11. Nanomaterial synthesis.
12. Dusty flow over a cylinder.
13. Image processing.
14. Multiphase detonation.

Performed for the Defense Nuclear Agency, Alexandria, VA.

Performed for Wright-Patterson AFB.
Presented at the Army workshop on Adaptive Methods for PDEs, RPI, March 1992.

To be published.
Published in Surf. Coating Tech. 49, 387. 393 (1991).

To be published in AIAA Journal.
Presented at SPIE conference on Applications of Digital Image Processing, San Diego, July 1991.

Published in Combust. Sci. Tech. 89, 201218 (1993).

3.1 POTENTIAL FLOW OVER AN ELLIPSE

One of the outstanding early CFD computational challenges (from the point of view that no satisfactory solution had been obtained) was associated with simulating subsonic (Mach 0.2 and less) flow over a symmetric elliptical airfoil using the Euler equations (Fig. 3.1.1). All previous attempts to compute the flow over such an ellipse resulted in spurious lift and drag values that were significantly larger than the classical

Figure 3.1.1 The grid used for simulating the flow over an ellipse.
potential flow solution. The potential flow result should have been closely approximated if there were no numerical viscosity present. This test case is important because, in transitioning from an Euler solver to a full Navier-Stokes solver, one needs confidence that the artificial (numerical) viscosity will not dominate the physical viscosity included in the Reynolds' stress terms. As shown in Appendix C-1, use of an earlier version of the AUGUST code, the Fast Unstructured Grid Godunov Solver (FUGGS) code provided solutions to this test case that were very close to the potential flow solution. Other attempts resulted in lift and drag values that were off by several orders of magnitude compared with the SAIC FUGGS results. The results described here were prepared for a poster presented to Dr. Arje Nachman, SAIC's UUGM AFOSR program monitor and Dr. James Crowley, SAIC's UUGM DARPA program manager.

3.2 HYPERSONIC FLOW PAST A FLAT PLATE

To demonstrate the versatility of the method for the entire range of flow regimes we have simulated a hypersonic flow test problem. One of the advantages of the Godunov methods is that over the whole range of calculations performed (low subsonic flow, supersonic flow, unsteady flow with strong shock, or hypersonic flow at Mach number $\mathrm{M}=32$) it is unnecessary to change or adjust the numerical algorithm. In Ref. 17 the performance of first- and second-order Godunov methods was analyzed for hypersonic flow regimes. There, as a test problem, an analytical solution was used for a hypersonic flow around a flat plate of finite thickness. This solution was obtained based on the analogy between hypersonic flow over a flat plate of finite thickness and a strong planar explosion. Here we use an expression from Ref. 17 which defines the shape of the shock wave as a function of plate thickness $d ; y$ is the adiabatic coefficient, and α is a nondimensional scale factor related to the energy released at the stagnation point.

$$
Y_{\text {sheck }}=\left(\frac{1}{2} D_{r} \frac{d x^{2}}{2}\right)^{u}
$$

where D_{f} is a coefficient of order unity,

$$
a=k_{1}(\gamma-1)^{k_{2}+k_{3} \min (r-1)}
$$

with $k_{1}=0.36011, k_{2}=1.2537$, and $k_{3}=-0.1847$.
As a direct comparison we solved the hypersonic flow problem for the same set of conditions as in Ref. 17:

$$
U_{\infty}=10011 \mathrm{~m} / \mathrm{sec}, p=98.72 \mathrm{~Pa}, \rho=1.24 \times 10^{-3} \mathrm{~kg} / \mathrm{m}^{3} \text {, and } \gamma=1.2 .
$$

The grid used for this simulation is shown in Fig. 3.2.1a. This grid has ≈ 5500 vertices and its spatial resolution at the leading edge of the plate is of the same order as that of a 300×60 rectangular grid used in Ref. 5 .

Figure 3.2.1a Grid for simulation of hypersonic flow over a flat plate.
Figure 3.2.1b shows results for this simulation in the form of pressure contours. Figure 3.2.1b also represents the location of the analytically calculated shock front by a discrete line (squares). The shock resolution and accuracy or its location are comparable to that obtained in Ref. 17 even though our triangular grid has less than one third as many nodes as the rectangular grid used in Ref. 17. This is because in constructing the triangular grid we had the flexibility to place the highest concentration of nodes in the area of the leading edge where the main properties of the flow are established.

Figure 3.2.1b Second order solution for a flat plate, pressure contours. Mach $=32$: 5509 grid vertices: $\mathrm{P}_{\max }=5.0 \times 10^{4} \mathrm{~Pa}, \mathrm{P}_{\min }=98.7 \mathrm{~Pa}$.

3.3 SHOCK ON WEDGE WITH ADAPTIVE GRIDDING

An unstructured grid is very suitable for implementing boundary conditions on complex geometrical shapes and refining the grid if necessary. This feature of the unstructured triangular grid is compatible with efficient usage of memory resources. The adaptive grid enables the code to capture moving shocks and large-gradient flow features with high resolution. The memory resources available can be very efficiently distributed in the computational domain to accommodate the resolution needed to capture the main features of the physical property of the solution.

One strategy for doing this is called hierarchical dynamic refinement (H refinement). It keeps a history of the initial grid (other grid) and the subdivision of each level (daughter grid). H refinement subdivides the initial grid into two or four triangles in each level, and keeps track of the number of subdivision levels each triangle has undertaken. In the H refinement method, one has to keep overhead information on the level of each triangle subdivision, and needs double indirect indexing to keep track of the H refinement process. This slows down the computation by partially disabling the vectorization of the code. As mentioned, H refinement relies heavily on the initial grid as it subdivides the mother grid and returns back to it after the passage of the shock.

AUGUST and its predecessor FUGGS use a second-order Godunov solver on an unstructured grid. The refinement strategy incorporated in these codes is called Direct Dynamic Refinement. For shock capturing, Direct Dynamic Refinement basically requires
the refinement to be in the region ahead of the shock. This requirement minimizes the dissipation in the interpolation process when assigning values to the new triangles created in the refined region. Additionally, it requires that the coarsening of the grid should be done after the passage of the shock. In principle, the interpolation and extrapolation in the refinement and coarsening of the grid are done in the region where the flow features are smooth.

FUGGS was used with direct dynamic refinement to solve the transient behavior of the flow entering a channel with a wedge (prism) having an inclination of 27°. The flow enters the channel from the left with Mach number 8.7. A sequence of snapshots illustrates the density contours, and the grid for each timestep is given in Figs. 3.3.1a 3.3.3a (contour plots) and 3.3.1b-3.3.3b (grid). These figures clearly demonstrate the automatic adaptation of the grid to the moving shocks and the ability to capture the detailed physics of the simulation with very high resolution and minimal memory requirements. The initial grid can clearly be seen to the right of the shock ("ahead") in the early stage of the shock propagation from left to right. The coarsening algorithm is able to produce a reasonable mesh in the region trailing the shock as shown in the figures.

Figure 3.3.1a Density contours at early time for shock in planar channel $\left(M=8.7\right.$, wedge angle $\left.=27^{\circ}\right)$.

Figure 3.3.1b Grid at early time for shock in planar channel ($M=8.7$, wedge angle $=27^{\circ}$).

Figure 3.3.2a Density contours at intermediate time for shock in planar channel ($M=8.7$, wedge angle $=27^{\circ}$).

Figure 3.3.2b Grid at intermediate time for shock in planar channel ($\mathrm{M}=8.7$, wedge angle $=27^{\circ}$).

Figure 3.3.3a Density contours at late time for shock in planar channel ($\mathrm{M}=8.7$, wedge angle $=27^{\circ}$).

Figure 3.3.3b Grid at late time for shock in planar channel ($M=8.7$, wedge angle $=27^{\circ}$).

3.4 MINE EXPLOSION UNDER VEHICLE

The main objective of this joint Marine-Army program was the development of vehicles hardened against antitank (AT) land mines. The basic vehicle is the M925 5-ton cargo truck. Numerical simulations were used to determine the dynamic loads produced by the AT mine detonation on the cargo bed and other structural elements of the truck.

The algorithms, techniques and codes developed under the UUGM program provided two key elements necessary for the numerical simulations for this project: a) flexibility in describing the very complex geometry of the truck; b) high resolutioncalculation of the shocks and other discontinuities using an adaptive unstructured grid. A version of the AUGUST-2D code developed under the UUGM program is being used for the analysis of blast resistance of different truck geometries.

We have carried out four such calculations, using four, eight, eight, and 20 pounds of C-4 explosive. These employed fixed (nonadaptive) meshes with 30,000 (4-1b case), 21,000 (8-lb cases).

A one- or two-dimensional calculation was performed to produce the initial blast profiles laid down on the three-dimensional grid. Aside from the amount of explosive, the calculations differed in the following ways: all but the $4-\mathrm{lb}$ blast were centered beneath

Figure 3.4.1 Two views of interaction between mine blast and M925 cargo truck: pressure contours at $t=0.574 \mathrm{msec}$.
the left front wheel of the truck (the 4-lb blast was situated 70 cm further back); for the first $8-\mathrm{lb}$ case a crater with diameter 60 cm and depth 30 cm was situated underneath the blast.

All but the second $8-\mathrm{lb}$ case used an ideal-gas equation of state with $\lambda=7 / 5$ for air and detonation products. Twenty pressure "sensors" positioned on the mesh at po is corresponding to the pressure gauges used in actual field tests were used to recorc the pressure and impulse histories there for comparison with the experimental data.

The calculations were run out to about 4.5 msec . The pressure stations closest to ground level and to the blast center exhibited peaks up to $\sim 10^{3} \mathrm{psi}$. In some cases multiple peaks were present, corresponding to reflected shocks.

An example of the domain decomposition of the computational grid for a typical mine-truck interaction problem is shown in Fig. 2.5.2. In Fig. 2.5.3 the unstructured triangular grid is used to describe a cross section of an M925 cargo truck. Use of unstructured grids allows detailed description of the truck geometry. Figure 3.4 .2 shows results of the simulation in the form of pressure contours overlaid on the unstructured grid, viewed from two different directions halve a millisecond after the detonation.

At Ft. Belvoir's request, SAIC also assessed the damage to a mine-clearing plow due to a single detonation of an AT mine at close range during the Desert Storm operation. At that time, Ft. Belvoir RDEC had responsibility for support of countermine activity in the Desert Storm operation.

To simulate the plow-mine blast interaction, SAIC used computational capabilities partially developed under the UUGM program. Use of unstructured triangular grids again enables detailed description of the plow geometry and use of Direct Dynamic grid Adaptation method allows detailed simulation of the complex pattern of the shock wave reflections.

In Fig. 3.4.2 the initial stage of the blast-plow cross section interaction is shown in the form of pressure contours overlaid on the dynamically adapting grids. In Fig. 3.4.3 a more advanced stage of the blast-structure interaction is shown in the same format as in Fig. 3.4.2. The adaptive grid allows high resolution of a complex blast interaction phenomena.

SAIC has also simulated the structural response of the plow to the dynamic load that is defined by the gas dynamic simulations described above. In Figs. 3.4.4a-d resuits are shown for the plow deformation in response to dynamic load. Recent experimental assessment of the plow damage showed that SAIC predictions correctly described blast damage to the plow.

Figure 3.4.2 Blast - plow interaction: pressure contours in initial stage

Figure 3.4.3 Blast - plow interaction: pressure contours in advanced stage

[^0]

Figure 3.4.4 Structural response of the plow to blast load:
a) $t=0 ;$ b) $t=200 \mathrm{msec}$; c) $t=400 \mathrm{msec}$; d) $t=600 \mathrm{msec}$.

a. Predetonation stage

b. Detonation

c. Detonation product expansion

Figure 3.5.1 Pulsed detonation engine simulation: flow tracers

3.5 PULSED DETONATION ENGINE

The main objective was the development of a revolutionary propuision concept based on intermittent detonative combustion. Development of this concept will result in a new class of engines with performance surpassing those of small turbines at signific :iy reduced cost. SAIC's PDE research was noted in a recent article (Aviation : $-\dot{=} \mathrm{x}$, October 28, 1991, pages 68-89]. The PDE is currently considered as a candidate c :acept for numerous propulsion systems including the air-to-air missile, cruise missilc. RPV engine, high altitude UAVs and others.

The codes developed under the UUGM program have enabled SAIC to conduct a detailed study of the PDE concept. The unstructured grids used in the simulations allowed us to describe the complex geometries of the detonation chamber and air inlets for a full missile configuration. Adaptive gridding allowed efficient and accurate simulation of the detonation and resulting shock waves interacting with the thrust-producing surfaces of the engine.

In Fig. 3.5.1 results are shown for the simulation of the PDE detonation cycle for a Mach 2 missile. Lagrangian flow tracers are used to track air and fuel trajectories in the engine. The figures demonstrate the sequence of stages in one PDE cycle. Shown in Figs. 3.5.la-c are the fuel mixing stage, the detonation stage and the detonation products discharge stage, respectively. Detailed CFD analysis of various geometries and flow regimes allowed us to develop an understanding of the parametric dependence of the fundamental variables that determine the PDE performance.

3.6 SHOCK FOCUSING IN AIR

Research reiating to focusing of shock and acoustic waves is of considerable practical interest for application to extracorporeal shock-wave lithotripsy (ESWL). A schematic of the cross section of such a reflector is shown in Fig. 3.6.1. Strong acoustic waves are generated in the left focal point of the ellipsoid by an instantaneous release of energy and are refocused at the right focal point. Ideally, focusing should be based on waves of acoustic intensity, since the nonlinear reflections of strong shock waves lead to significant distortions in wave propagation and impair simple geometrical focusing.

Figure 3.6.1 shows the computational domain and grid for the ellipsoidal reflector. Figure 3.6 .2 shows the simulation results at time $t=1.21 \times 10^{-6}$ sec. At this stage, the wave front that propagated to the left has undergone full reflection and the reflected wave propagates in the direction of the incident wave to the right. Figure 3.6 .3 shows the pressure contours ($t=8.41 \times 10^{-4} \mathrm{sec}$) when the maximum focused pressure is obtained in the system. The incident front has left the computational domain, and the maximum pressure occurs in a small volume in the vicinity of the right focal point. The maximum focused pressure has reached $1.37 \times 10^{5} \mathrm{~Pa}$ and is located 11 mm to the right of the focal point of the ellipsoid. In all the figures presented, the method of composite domain decomposition works extremely well, producing seamiess solutions at the interfaces.

Figure 3.6.1a Hybrid structured/unstructured grid used for numerical simulation of ellipsoidal reflector.

Figure 3.6.1b A schematic drawing of the center cross section of the ellipsoidal reflector.

Figure 3.6.2 Pressure contours at time $t=1.21 \times 10^{-6} \mathrm{sec}$ showing the incident wave as reflected from the reflector wall.

Figure 3.6.3 Pressure contours at time $t=8.41 \times 10^{-4} \mathrm{sec}$ showing the stage at which the maximum focused pressure is obtained

3.7 NONIDEAL AIRBURST IN MULTIPHASE MEDIA

The main objective was to advance the understanding of the formation dynamics and microphysics of the multiphase flow of clouds developing as a result of a nuclear explosion. A main difficulty in analysis of nuclear cloud formation is the necessity to take into account physical phenomena that are interdependent and occur on vastly different scales. At about 30 seconds after a nuclear detonation. the cloud can be 4 km high and the shock wave will be at the distance of 10 km . The multiphase interactions that occur on a scale of 10-100 meters are very important and have to be accounted for.

SAIC has developed a multiphase, multicomponent version of the AUGUST-2D code developed under the UUGM program. We use an explicit method for the solution of the multiphase flow described by equivalent Euler equations, and an implicit integration for simulation of the particle-fluid interactions. The grid adaptivity allows efficient and accurate simulation of this multiphase phenomenon. The grid adaptivity is used for adjusting the spatial scale of the domain decomposition to the scale required for accurate simulation of various physical interactions. Other code improvements such as introduction of the real-gas equation of state and Lagrangian particle tracing were employed to enable simulations and anaiysis of this complicated phenomena.

In Fig. 3.7.Ia the computational domain and grid are shown for the nuclear cloud simulation. In this figure the temperature contours are overlaid on the unstructured grid. In Fig. 3.7.1b the particle density contours are shown for the same stage of the cloud evolution as in Fig. 3.7.1a. In Fig. 3.7.1c particle radius is shown for the same stage of the cloud evolution, and Fig. 3.7.1d shows locations of the Lagrangian tracers that mark evolution of the detonation products.

3.8 FLOW IN THE SARL WIND TUNNEL

One of the problems to which AUGUST 3D has been applied is that of modeling the SARL wind tunnel at Wright Laboratory. This example is a good test of the use of the Second-Order Godunov method to do nearly incompressible flow calculations. To illustrate the results, Fig. 3.8.1 shows the grid used for simulating the flow. The calculation was performed by specifying the inflow and outflow parameters and running the simulation to convergence. The run was performed at SAIC on the Stardent workstation and repeated on an Iris at FIMM. Figures 3.8.2 and 3.8.3 show the pressure levels in the tunnel. The results were visualized using AVS.

Figures 3.8.1 and 3.8 .2 show two views of the pressure contours generated in a calculation of subsonic flow (Mach number 0.05). The results were confirmed by comparison with those obtained using a code with a structured grid, and by checking them against measurements.

Figure 3.7.1 Formation of a radiative cloud. Multiphase simulation.

Figure 3.8.1 The unstructured grid used to simulate the SARL wind tunnel.

Figure 3.8.2 The pressure contours from the simulation of the SARL wind tunnel.

3.9 SHOCK ON DOUBLE WEDGE

A much more complicated problem, which has been extensively studied to benchmark and validate Euler solvers, is flow over a double wedge. This problem contains multiple fluid phenomena and is a stringent test for any solver. It includes strck formation, a Mach stem, rarefaction, a slip line, vortex generation and rollup, ans is transient in nature. To validate our direct dynamic refinement method in AUGUST. we simulated a Mach 2.85 shock wave propagating in a channel and impinging on a symmetric 45° wedge, and also a Mach 8.7 shock impinging on a symmetric 27° weage.

Both of these compared well with experimental results. Figure 3.9 .1 shows an interferogram taken from Glaz et al, 17 showing the $\mathrm{M}=8.7$ shock interacting with the front surface of the 27° wedge. Our results are shown in Figs. 3.9.2-3.9.4. The first of these illustrates the grid and density when the shock is on top of the wedge. The shock is well resolved and the grid is well adapted in the vicinity of important features and coarsened in the region that the shock has passed through. The next two figures show the evolution of the flow and the grid after the wedge where comparison can be made with the experimental results. AUGUST produces no artificial features and recovers the phenomenology seen in the experiment.

Figure 3.9.1 Experimental interferogram of a shock hitting a 45° corner at $\mathrm{M}_{S}=\mathbf{2 . 8 5}$.

In the figures showing the triangular grids, the area of a triangle in the dense region of the grid is roughly 100 times smaller than the area of a triangle in the initial grid. The figures show that the grid adaptivity is capable of capturing the flow gradients including shocks, contact discontinuities and slip lines. Formation of a triple point of the Mach reflection, slip line and strong vortex formation are seen in Fig. 3.9.2a. In fairness, most of the flow phenomena that is captured by AUGUST have also been captured by other CFD schemes. 18 However, the accuracy estimated for the AUGUST numerical calculations in this example is on the order of 4%, equal to the accuracy of the experimental observations.

Figure 3.9.2 Interaction of a Mach 8.7 planar shock wave with a 27° double ramp: Mach reflection stage.

Figure 3.9.3 Interaction of Mach 8.7 planar shock wave with a 27° double ramp start of the diffraction stage

Figure 3.9.4 Interaction of Mach 8.7 planar shock wave with a 27° double ramp shock diffraction stage.

3.10 SUPERSONIC SPRAY COATING DEVICES

In this section we present the results of an application of the UUGM sim- in technology to a sample problem involving spray-coating devices. Here we only tre se aerodynamic flow of particles in a high temperature gas which is moving superse ly: we consider a reasonably complex geometry including a simulated surface tha: the substrate to be coated. The details of the surface interaction resulting in depos: . 1 are not treated in this example.

In Fig. 3.10.1 the computational domain and grid are shown for a model supersonic jet sprayer device that includes reactor nozzle, solid particle injector, and expansion nozzle. Also shown in Figure 3.10 .1 is a perforated flat surface substrate placed in the flow field. The high-velocity high-temperature flow stream exiting the reactor nozzle accelerates the injected particles. The particles are heated during acceleration, melt, then expand with the flow in the nozzle, gain more speed, and finally impinge onto the surface. Details of the flow-surface interaction (here without boundary layers taken into account) will strongly affect the uniformity with which the surface will be "coated" by the particles carried by the flow.

Figure 3.10.1 The figure shows the initial computational grid for the jet spray simulation demonstration. Shown are the nozzle, injection region and target surface depicted as a flat plate with perforations, oriented perpendicular to the mean spray flow. The boundary conditions used for the sample simulation were: $\mathrm{V}_{\mathrm{g}}=1000 \mathrm{~m} / \mathrm{sec}, \rho_{\mathrm{g}}=0.1 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~T}_{\mathrm{g}}=$ 3500 K at the inlet of the reactor nozzle; $\mathrm{V}_{\mathrm{g}}=1500 \mathrm{~m} / \mathrm{sec}, \mathrm{p}_{\mathrm{g}}=0.3 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~T}_{\mathrm{g}}=1500 \mathrm{~K}$, $\mathrm{V}_{\mathrm{p}}=1500 \mathrm{~m} / \mathrm{sec}, \mathrm{T}_{\mathrm{p}}=1500 \mathrm{~K}, \mathrm{~N}_{\mathrm{p}}=2000$ at the inlet of the reactor nozzle.

To trace the motion of the particles in the plasma spray device and the interaction pattern with the target surface we have injected Lagrangian "marker" particles (massless but moving with the local flow speed) in the particle injector flow stream. In Fig. 3.10.2 results are shown in the form of marker particle locations. To monitor the particle temperatures we have introduced particle coloring, where the color defines the local particle temperature. Thus one can evaluate the evolution of the particle temperature by observing the particle color transition. This coloring scieme can be used to show other parameters such as particle residence time or density. This represents a simple method of visualization that we have used successfully in past UUGM simulations.

Figure 3.10.2 Lagrangian marker particles are shown in color representing the evolution of injected particle temperature as a function of particle position and time in the jet spray stream.

In Fig. 3.10.3 simulation results for the steady state are presented in the form of gas temperature contours for the jet spray system. Here it is possible to observe a very large temperature variation in the nozzle. The cold gas that is injected with the particles remains at the edge of the jet stream. At the same time the main jet cools through the expansion in the nozzle from $3500^{\circ} \mathrm{K}$ to $2000^{\circ} \mathrm{K}$, and then undergoes a series of expansions and compressions in the system of shock waves created by overexpansion of the supersonic jet. Figure 3.10 .3 also shows a nonuniform temperature distribution on the surface that is partially created by the gas flow through the perforated holes.

In Figs. 3.10.4 and 3.10.5 simulation results are shown for the density and pressure contours. Here we can observe the formation of several diamond-shaped shock structures as a result of supersonic flow over expansion. However, for the flow regimes in our simulation these shocks do not lead to a higher rate of mixing by injected cold gas with particles and the main hot gas stream. This can be noticed in the density contours, where one clearly observes that the high-density cold gas does not penetrate the main hot jet flow. By changing the condition (injection pressure, angle of entry, etc.) of the injected flow one can improve mixing, thus achieving higher particle temperatures and velocity.

Figure 3.10.3 Gas temperature contours in the jet spray stream. The maximum temperature is $3500^{\circ} \mathrm{K}$ and the minimum is $600^{\circ} \mathrm{K}$.

Figure 3.10.4 Gas density contours in the jet spray stream. The injected stream and the main flow mix poorly. The diamond patterns describe the shock wave pattern resulting from the flow's overexpansion.

Figure 3.10.5 Pressure contours in the jet spray stream. The diamond patterns show that supersonic flow is maintained near the vicinity of the target surface

3.11 DUSTY FLOW OVER A CYLINDER

A numerical study of two-phase compressible flow has been performed for the reflection and diffraction of a shock wave propagating over a semicircular cylinder in a dusty gas. The following model was used to derive the governing equations:
(1) The gas is air and is assumed to be ideal;
(2) The particles do not undergo a phase change because for the particies considered here (sand) the phase transition temperature is much higher than the temperatures typical for the simulated cases;
(3) The particles are solid spheres of uniform diameter and have a constant material density;
(4) The volume occupied by the particles is negligible;
(5) The interaction between particles can be ignored;
(6) The only force acting on the particles is drag and the only mechanism for heat transfer between the two phases is convection. The weight of the solid particles and their buoyant force are negligibly small compared to the drag force;
(7) The particles have a constant specific heat and are assumed to have a uniform temperature distribution inside each particle.

Under the above assumptions, separate equations of continuity, momentum, and energy are written for each phase. The interaction effects between the two phases appear as source terms on the right-hand sides of the governing equations. The two phases are coupled by interactive drag force and heat transfer.

The objectives of the study were (a) to solve the two-phase compressible flow field and compare the simulation with available experimental results; (b) to observe and investigate the reflection and diffraction wave patterns when a shock wave propagates over a semicircular cylinder in a dusty gas, with particie radius and loading as parameters.

To test the accuracy of the two-dimensional computation, we first computed the pure gas flow case of shock wave reflection and diffraction over a semicircular cylinder. We then compared the simulation with experimental results. Shock wave reflection on a wedge has been extensively studied by many researchers (see e.g., review papers of BenDor and Dewey ${ }^{18}$ and Hornung. ${ }^{19}$ As one can see from Fig. 3.11.1, the results show excellent quantitative and qualitative agreement between the numerical simulation and experimental results.

Figure 3.11.1 Comparison for $\mathrm{M}_{\mathrm{S}}=2.8$ pure-gas flow: (a) interferogram from experiment; (b) density contours from present calculation.

In the two-phase simulation a planar shock with $\mathrm{M}_{\mathbf{S}}=2.8$ propagates into an area of dusty gas and impinges on a semicircular cylinder. The interface between pure air and dusty air is located at $x=0.0$ of the computational domain. The area of the dusty air contains a semicylinder with a radius of 1 m . The size of the computational domain, initial parameters of the gas, parameters of the incoming shock, size of the semicylinder and its location in the computational domain, are the same as in the reflection and diffraction simulation in the pure gas case. The main objective of this set of simulations was to study the effects of particle size and particle loading on the parameters of the reflected and diffracted shock waves.

The first set of simulation results is shown for the case with dust parameters $r_{p}=$ $10 \mu \mathrm{~m}$ and $\rho_{\mathrm{p}}=0.25 \mathrm{~kg} / \mathrm{m}^{3}$. The gas parameters and the parameters of the incoming shock wave were the same as in the pure gas case presented above. In Figs. 3.11.2a and 3.11 .2 b , the particle density and gas density contours are shown at the stage where significant diffraction has taken place and the shock front is approaching the trailing edge of the cylinder. To study the influence of particle loading on the dynamics of reflection and diffraction, we have simulated the case with a dust density of $\rho_{p}=0.76 \mathrm{~kg} / \mathrm{m}^{3}$ and with $r_{p}=10 \mu \mathrm{~m}$. To examine the effect of particle size on the reflection-diffraction process, we simulated a case where the particle loading and gas flow conditions were the same as in the previous case with particle density $\rho_{p}=0.76 \mathrm{~kg} / \mathrm{m}^{3}$, but the particle size was $r_{p}=50 \mu \mathrm{~m}$ (Fig. 3.11.3).

On the basis of these calculatrions we reached the following conclusions:
(1) For a two-dimensional pure-gas flow, numerical results agree well with existing experimental data qualitatively and quantitatively, indicating that the gas phase is accurately simulated by the adaptive grid technique;

Figure 3.11.2 Density contours for the case $M_{s}=2.8, \rho_{p}=0.25 \mathrm{~kg} / \mathrm{m}^{3}, r_{p}=10 \mu \mathrm{~m}$ at two different times: (a) particle density at t_{1}, (b) gas density at t_{1}; c) particle density at t_{2}, (d) gas density at t_{2}.

Figure 3.11.3 Density contours for the case $M_{s}=2.8, \rho_{p}=0.76 \mathrm{~kg} / \mathrm{m}^{3}$, for two different particle sizes: (a) particle density and (b) gas density for $r_{p}=10 \mu \mathrm{~m} ; \mathrm{c}$) particle density and (d) gas density for $r_{p}=50 \mu \mathrm{~m}$.
(2) Particles in the gas can have a profound effect on the shock wave reflection and diffraction pattern, which is a function of particle size and loading. The -ss the particle loading, the less the influence of particle on the flow field;
(3) In the three simulation cases, particles accumulate behind the "back ulder" of the semicircular cylinder due to the effect of particle inertia and the rarefaction ave;
(4) For different particle sizes at fixed particle loading, the larger particie will have a longer relaxation zone and less accumulation at the "back shoulder" and behind the incident shock. The gas density contours show a less distinguishable slip line in the small particle case than in the large particle case.

3.12 IMAGE PROCESSING

Very recently, there have been exploratory efforts in image processing based on nonlinear methods. If the purpose of an enhancement process is to highlight the edges of an image, then the technique used in the frequency domain is usually highpass filtering. An image can be blurred, however, by attenuating the high-frequency component of its Fourier transform. Since edges and other abrupt changes in the gray levels are associated with high-frequency components, image sharpening can be achieved in the frequency domain by a highpass filtering process, which attenuates the low-frequency without disturbing high-frequency information in the Fourier transform. The primary problem with this technique is that an ideal discontinuity has an infinite spectrum of frequencies associated with it. When filtering is applied, some frequencies are cut off, leading to a loss of edges in the image.

In computational fluid dynamics (CFD) similar problems exist in simulating flows with discontinuities. The problem of simulating flows with discontinuities is less forgiving, since an incorrect calculation usually leads to a complete distortion of the flow field. This has led CFD scientists to develop sophisticated algorithms that identify and preserve discontinuities while integrating the flow field in the computational domain. In the image domain, sharpening is usually done by differentiation. The most commonly used methods involve the use of either gradients or second derivatives of the pixel information. Central differencing is usually used to calculate the derivatives. CFD research has shown that this strategy will lead in many cases to smearing of the flow discontinuities (analog of the image edges in image enhancement).

A new and unique image sharpening method based on computational techniques developed for AUGUST has been developed. Preliminary experience shows that it can enhance image edges and deconvolve images with random noise. This indicates a potential application for image deconvolution from sparse and noisy data resulting from measurements of backscattered laser-speckle intensity.

The Second-Order Godunov Method used in AUGUST was developed from an understanding of the phenomenology of signal propagation in gasdynamical systems. The numerical algorithm implementing this method is not analytical and contains a set of steps that can be regarded as wave filters. These filters are designed to not smear the discontinuity (edge), suppress the spurious oscillations, and propagate the relevant signals through the system. The following algorithmic steps are performed to advance the solution for a single iteration in the Second-Order Godunov Method:

1. Local Extrapolation
2. Monotonicity Constraint
3. Characteristics Constraint
4. Riemann Problem Solution
5. Integration

Most of these steps have an analog in conventional image processing methods. Here we will give an explanation of the function of each algorithmic step of the SecondOrder Godunov Method and where applicable, will point to its possible analog in conventional signal processing techniques.

Step 1 consists of extrapolation of the values in the computational grid (pixel) cell to the edges of the cell. Linear or nonlinear extrapolation can be used. This step is analogous to the standard edge-sharpening techniques used in image processing, with one important difference: the extrapolation is done not for the value itself but for its flux (change of value across cell boundary).

Step 2 includes a monotonicity constraint for the values at the cell edges. This is analogous to the nonlinear technique of locally monotonic regression only recently introduced for signai processing.

Step 3 subjects the values at the edges to the constraints derived from a solution of the one-dimensional characteristics. This step assures that the values at the edges have not been extrapolated from directions inconsistent with the characteristic solutions. This prevents extrapolation as well as smearing or overshoot of the discontinuities. For the image-processing application, this can be regarded as a form of automatic edge detection step where the shock waves are associated with the edges of an image.

Step 4 uses an exact solution of the system of the gasdynamic equations for calculation of the flux values based on the extrapolated values of the parameters at the left and right side of the edges. This step has no analogy in image processing. However, since the analytical solution includes discontinuities, an exact calculation of the flux at the edge location is allowed, even if this flux is calculated through a discontinuity.

Step 5 consists of finite-volume integration of the system of conservation laws. Here, the image is effectively treated as a flow field: the flux integration serves as a smoothing filter from the image perspective.

The effect of these steps is equivalent to the application of a unique filte stack with proven properties of discontinuity preservation and robustness.

The field of gray scale intensity of an image can be translated into a flow iseld. To every image pixel we assign to the corresponding cell of the computational domain values of the gasdynamical parameters proportional to the values of the gray scale. Our understanding of the basic gasdynamical processes plays a major role in completing the analogy. Appropriate mapping of the image gray scale intensity into a flow field creates conditions favorable for the formation or enhancement of field discontinuities. For example, a shock wave reflecting from a wall or a contact surface can increase in strength, or two colliding flow streams will produce a contact surface that will become stronger in time. If we have a numerical technique to resolve these discontinuities accurately, then with successive numerical integration of the flow field, the discontinuities will sharpen as the solution evolves in time. Then by inverse mapping of the flow field to the image gray scale field, we can reconstruct an enhanced image.

Figure 3.12.1 Edge enhancement for a sinusoidal distribution without noise.

Figure 3.12.2 Edge enhancement for a sinusoidal distribution with 10% intensity random noise.

Fig. 3.12.3 Edge enhancement for a sinusoidal distribution with 50% intensity random noise.

Fig. 3.12.4 Edge enhancement for a sinusoidal distribution with 100% intensity random noise.

Applications have been made to two-dimensional images derived from satellite reconnaissance and gamma-ray medical diagnostics (see Appendix C). Note that the images shown there are distorted by the xerographic process used to reproduce these illustrations, which also act as a nonlinear filter but is not tuned to these images.

Analogous extensions of nonlinear CFD techniques can be used for image compression.

3.13 DETONATION IN A MULTIPHASE MEDIUM

In this study the main subjects were the initiation, propagation, and structure of detonations occurring when combustible particles are intentionally or unintentionally dispersed into the air. Formation of this potentially explosive dust environment and the properties of its detonation are of significant practical interest in view of its destructive or creative effects. Previous experimental and theoretical studies of these phenomena addressed only homogeneous particle/oxidizer mixtures. However, intentional or accidental processes of the explosive dust dispersion always lead to inhomogeneous particle density distribution.

On the other hand, some industrial methods of explosive forming rely on detonation of explosive powder. This powder can be deposited as a thin layer over "e surface area of the forming metal, with a residual concentration in the vicinity of the la. r.

When the detonation wave is generated in a homogeneous mixture by " ct initiation," it starts with a strong blast wave from the initiating charge. As the blast .ve decays, combustion of the reactive mixture behind its shock front starts to have a rger role in support of the shock wave motion. When the initial explosion energy ρ seeds some critical value, transition to steady state detonation occurs. In explosiv. dust mixtures with a nonuniform particle density, the initiation dynamics is significantly more complicated. The critical initiation energy sufficient for one of the explosive particle density regions is not necessarily adequate for other regions. We have demonstrated that the phenomenology of these interactions is distinctly different from the classical studies of multilayer detonations in gases. This is primarily because the energy content of adjacent layers in a typical multigas layer experiment varies by a factor of two or four, whereas the energy content in explosive dust/air mixtures can vary by several orders of magnitude.

At present the physics of the energy release mechanisms in solid particles/air mixtures is not clearly understood. This can be attributed to the obvious difficulties of making a direct non-obtrusive measurement in the optically thick environment typical for this system. The chemical processes of single-particle combustion, which mainly occur in the gaseous phase, are significantly faster than the physical processes of particle gasification or disintegration. Thus, in the multiphase mixtures, the rate of energy release is mostly determined by physics of particle disintegration. It is very difficult to describe the details of particle disintegration in the complex environment prevalent behind the shock or detonation wave. Fortunately, in most cases of multiphase detonation, only the main features of the particle disintegration dynamics need to be captured to describe the phenomena.

In this work we considered solid particles consisting of explosive material. Twodimensional simulations were done for the system of low particle density concentration clouds and ground layers formed by high concentrations of the RDX powder. We examined three cases of ground layer density distribution: a fourth power distribution with 12 mm above ground with a maximum density on the ground of $800 \mathrm{~kg} / \mathrm{m}^{3}$; a uniform $25-\mathrm{mm}$ layer with a density of $100 \mathrm{~kg} / \mathrm{m}^{3}$; and a $12-\mathrm{mm}$ uniform layer with a density of $250 \mathrm{~kg} / \mathrm{m}^{3}$. In all these cases, the weight of the condensed phase per unit area was the same, which allowed examination of the effects of the particle density distribution on detonation wave parameters.

Figure 3.13 .1 shows a setup for a typical two-dimensional simulation. Here the computational domain is $25 \mathrm{~cm} \times 25 \mathrm{~cm}$. The explosive powder density is distributed according to the 4 th power law of the vertical distance, starting from the ground where the density is $800 \mathrm{~kg} / \mathrm{m}^{3}$, and rising to 1.2 cm , where the density is $0.75 \mathrm{~kg} / \mathrm{m}^{3}$. From this point to 25 cm height, the density is constant and equal to $0.75 \mathrm{~kg} / \mathrm{m}^{3}$. The density distribution is uniform in the x direction.

Figure 3.13.1 Computational domain and boundary conditions.
In all three cases, the detonation wave in the cloud in the computational domain was significantly overdriven and did not play an important role. We estimated that the self-sustained regime of the detonation wave in the cloud for the examined cloud concentrations can occur only at the distances of $2-3 \mathrm{~m}$ above ground. At the same time, the particle density distribution in the layer determines the dynamics of the detonation wave as well as the pressure on the ground.

In all three two-dimensional simulations, we observed a very distinctive shape of the detonation wave front in the vicinity of the layer. In this area, the overdriven detonation in the cloud is preceding the detonation wave in the ground layer. This feature of the detonation fru't can be explained by the fact that the energy released in the ground layer detonation wave produces a faster propagating shock wave in the dilute cloud than in the ground layer which is heavily loaded with solid particles. However, these structures were not observed experimentally, and more studies are needed to examine their parameters.

Figure 3.13.2 Explosive initially localized in $2.5-\mathrm{cm}$ layer at constant density of 100 $\mathrm{kg} / \mathrm{m}^{3}$. Density in the cloud is $0.75 \mathrm{~kg} / \mathrm{m}^{3}$. (a), (b), and (c) are gas pressure. gas density, and particle density at $66 \mu \mathrm{sec}$, respectively.

Figure 3.13.3 Particle density distributed in layer in accordance with the fourth power of height. Gas pressure, temperature, and particle density at $55 \mu \mathrm{sec}$, respectively.

4. CONCLUSIONS

The AUGUST-2D and AUGUST-3D adaptive unstructured CFD sim: ation codes, developed under SAIC's UUGM (through a contract form ARPA's Appli. i a:a Computational Mathematics Program) program have been tested through the s i standard CFD benchmark test cases and have been applied to a wide range of ia. ic problems for a variety of end-users. In most cases where these codes have bee: app:ed, significant improvements in accuracy, resolution, and ease of use have been norsi. "se of the Second Order Godunov flow solver algorithm has provided a robust capabiiity :o treat low Mach number subsonic-to high Mach number hypersonic flow problems within one simulation code without the necessity of tuning the flow solver via adjustable parameters. In addition, the extension of the AUGUST family of codes to treat multiphase, multicomponent reactive flow phenomena provides the capability, for the first time, of simulating a wide variety of physically interesting and challenging problems that are rich in physics-chemical phenomena. The range of these problems includes: 1) full 3D flows about complex aircraft in all flight regimes (except rarefied flows), 2) shock-body interactions, 3) chemically reacting flows typical in combustion problems, and 4) detonation phenomena found in explosives, shock tubes, and specific applications to such devices as the pulsed detonation engine.

SAIC's UUGM program has resulted in over 20 publications in various stages of preparation, and numerous presentations at U.S. and international technical meetings, conferences, and workshops. The AUGUST family of simulation codes is presently being applied to several current materials development and synthesis areas of research. In particular, the ability of the AUGUST codes to capture the complex geometry of material synthesis reactor configurations, resolve the complex flow patterns, and treat the complex physics and chemistry of the synthesis process provides a simulation and modeling tool that is useful for design of such process reactors, analyse and evaluate experimental resuits, and (depending on successful benchmarking) provide a process control tool based on validated models. SAIC intends to exploit this capability in future programs.

SAIC's Applied Physics Operation, Hydrodynamic Modeling Division staff members performed the work under the DARPA UUGM program. Dr. Shmuel Eideiman and Dr. William Grossmann were co-program managers. Important contributions were made by Drs. Itzhak Lottati, Xiaolong Yang, Marty Fritts, Adam Drobot, Ahron Friedman, and Michael Kress. SAIC's UUGM team would like to acknowledge the support and interest of Dr. James Crowley (ARPA ACMP program manager), Drs. Lois Auslander and Helena Wisniewski (previously DARPA ACMP program managers), and Dr. Arje Nachman (AFOSR) who served as the ARPA agent for the UUGM program.

REFERENCES

1. T.J. Baker and A. Jameson, "A Novel Finite Element Method for the Calculation of Inviscid Flow Over a Complete Aircraft," Sixth International Symposium on Finite Element Methods in Flow Problems, Antibes, France (1986).
2. T.J. Baker, "Developments and Trends in Three-Dimensional Mesh Generations," Transonic Symposium held at NASA Langley Research Center, Virginia (1988).
3. R. Lohner, "Generation of Three-Dimensional Unstructured Grids by the AdvancedFront Method," AIAA 26th Aerospace Sciences Meeting, Reno, AIAA Paper 880515, January 1988.
4. R. Lohner and K. Morgan, "Improved Adaptive Refinement Strategies for Finite Element Aerodynamic Computations," AIAA 29th Aerospace Sciences Meeting, Reno, AIAA Paper 86-0499, January 1986.
5. A. Jameson, T.J. Baker, and N.P. Weatherill, "Calculation of Inviscid Transonic Flow Over a Complete Aircraft," AIAA 24th Aerospace Sciences Meeting, Reno, NV, AIAA Paper 86-0103, January 1986.
6. R. Lohner, "Adaptive Remeshing for Transient Problems, Comp. Meth. Appl. Mech. Eng. 75 195-214 (1989).
7. J. Peraire, M. Vahdati, K. Morgan, and O.C. Zienkiewicz, "Adaptive Remeshing for Compressible Flow Computations," J. Comp. Phys. 72, 449-466 (1987).
8. D. Mavriplis, "Accurate Multigrid Solution of the Euler Equations on Unstructured and Adaptive Meshes," AIAA 88-3707 (1988).
9. I. Lottati, S. Eidelman, and A., Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," 28th Aerospace Sciences Meeting, AIAA-90-0699, Reno, NV (1990).
10. I. Lottati, S. Eidelman, and A. Drobot, "Solutioia of Euler's Equations on Adaptive Grids Using a Fast Unstructured Grid Second Order Godunov Solver," Proceeding of the Free Lagrange Conference, Jackson Lake, WY, June 1990.
11. I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Grids," Proceeding of the 4th International Symposium on Computational Fluid Dynamics, Davis, CA, September 1991.
12. S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," AIAA Journal 22, 10 (1984).
13. B. van Leer, "Towards the Ultimate Conservative Difference Scheme, V.A. Second Order Sequel to Godunov's Method," J. Comp. Phys. 32, 101-136 (1979).
14. P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gasdynamic Simulations," J. Comp. Phys. 54, 174-201 (1984).
15. J.F. Thompson, "Grid Generation Techniques in Computational Fluid Dynamics," AIAA Tour., Vol. 22, No. 11, pp. 1505-1523, November, 1984.
16. M.S. Shepherd and M.K. Georger, "Automatic Three-Dimensional Mesh Generation by the Finite Octree Method," Intern. J. Num. Meth. Eng., Vol. 32, pp. 709-749, (1991).
17. H.M. Glaz, P. Colella, L.I. Glass, and R.L. Deschambault, "A Detailed Numerical, Graphical and Experimental Study of Oblique Shock Wave Reflections," DNA-TK-86-365, 1986.
18. I.I. Glass and D.L. Zhang, "Interferometric Investigation of the Diffraction of Plaraar Shock Waves Over a Half-Diamond Cylinder in Air," UTIAS Report No. 322, March 1988.
19. H. Hornung, "Regular and Mach Reflection of Shock Waves," Annual Review of Fluid Mechanics, Vol. 18, pp. 33-58, 1986.

PUBLICATIONS UNDER THE UUGM PROJECT

1. S. Eidelman, W. Grossmann, and I. Lottati, "A Review of Propuision Applications of the Pulsed Detonation Engine Concept," AIAA 89-2446, AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conf., Monterey, CA, July 1989.
2. S. Eidelman, W. Grossmann, and I. Lottati, "Computational Analysis of Pulsed Detonation Engines and Applications," AIAA 90-0460, 28th Aerospace Sciences Meeting, Reno, NV, January 1990.
3. I. Lottati, S. Eidelman, and A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)", AIAA 90-0699, 28th Aerospace Sciences Meeting, Reno, NV, January 1990.
4. S. Eidelman and I. Lottati, "Reĩection of the Triple Point of the Mach Reflection in a Planar and Axisymmetric Converging Channels," 9th Mach Reflection Symposium, Freiburg, Germany, June 1990.
5. I. Lottati, S. Eidelman, and A. Drobot, "Solution of Euler's Equations on Adaptive Grids Using A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," in H.E. Trease, M.J. Fritts, and W.P. Crowley (Eds.), Proceedings of the Next FreeLagrange Conference, Jackson Lake, WY, June 1990 [Advances in the Free-Lagrange Method, Springer-Verlag, New York (1992)].
6. S. Eidelman, W. Grossmann, and I. Lottati, "Air-Breathing Pulsed Detonation Engine Concept; A Numerical Study," AIAA 90-2420, AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conf., Orlando, FL, July 1990.
7. E. Hyman, K. Tsang, I. Lottati, A. Drobot, B. Lane, R. Post, and H. Sawin, "Plasma Enhanced Chemical Vapor Deposition Modeling," Surface and Coatings Tech. 49, 387 (1991).
8. S. Eidelman, W. Grossmann, and A. Friedman, "Nonlinear Signal Processing Using Integration of Fluid Dynamics Equations," Applications of Digital Image Processing XI' ${ }^{\prime}$, SPIE Vol. 1567, 1991.
9. S. Eidelman, W. Grossmann, and I. Lottati, "Review of Propulsion Applications and Numerical Simulations of the Pulsed Detonation Engine Concept," J. Propulsion 7, 857 (1991).
10. D.L. Book, S. Eidelman, I. Lottati, and X. Yang, "Numerical and Analytical Study of Transverse Supersonic Flow Over a Flat Cone," Shock Waves 1, 197, 1991.
11. S. Eidelman and X. Yang, "Detonation Wave Propagation in Variable Density Multiphase Layers," AIAA 92-0346, 30th Aerospace Sciences Meeting, Reno, NV, January 1992.
12. S. Eidelman, I. Lottati, and W. Grossmann, "A Parametric Study of the Air-B: ning Pulsed Detonation Engine," AIAA 92-0392, 30th Aerospace Sciences Me: :g \& Exhibit, Reno, NV, January 1992.
13. I. Lottati and S. Eidelman, "A Second Order Godunov Scheme on a Spatiai Adapted Triangular Grid," in U.S. Army Workshop on Adaptive Methods ior Partial Differential Equations, Rensselaer, NJ, 1992.
14. I. Lottati and S. Eidelman, "Decomposition by Structured/unstructured Composite Grids for Efficient Integration in Domains with Complex Geometries," in Adv. in Computer Methods for Partial Differential Equations VII, R. Vichnevetsky, D. Knight, and G. Richter (Eds.), 1992.
15. X. Yang, S. Eidelman, and I. Lottati, "Two-Phase Compressible Flow Computation on Adaptive Unstructured Grid Using Upwind Schemes," in Adv. in Computer Methods for Partial Differential Equations VII, R. Vichnevetsky, D. Knight, and G. Richter (Eds.), 1992.
16. S. Eidelman and W. Grossmann, "Pulsed Detonation Engine Experimental and Theoretical Review," AIAA 92-3168, AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conf. and Exhibit, Nashville, TN, July 1992.
17. S. Eidelman and A. Altshuler, "Synthesis of Nanoscale Materials Using Detonation of Solid Explosives," Ist Intern. Conf. on Nanostructured Materials, Cancun, Mexico, September 1992.
18. S. Eiderman and X. Yang, "Detonation Wave Propagation in Combustible Mixtures with Variable Particle Density Distributions," AIAA J. 31, 228, 1993.
19. S. Eidelman and X. Yang, "Detonation Wave Propagation in Combustible Particle/Air Mixture with Variable Particle Density Distributions," Combust. Sci. and Tech. 89, 201, 1993.
20. X. Yang, S. Eidelman, and I. Lottati, "Computation of Shock Wave Reflection and Diffraction Over a Semicircular Cylinder in a Dusty Gas," AIAA 93-2940, 24th Fluid Dynamics Conf., Orlando, FL, July 1993.

21 I. Lottati and S. Eidelman, "Acoustic Wave Focusing in an Ellipsoidal Reflector for Extracorporeal Shock-wave Lithotripsy," AIAA 93-3089, 24th Fluid Dynamics Conf., Orlando, FL, July 1993.

APPENDIX A
CODE DESCRIPTION

APPENDIX A CODE DESCRIPTION

A. 1 AUGUST (2D)

The subroutines in the AUGUST code are organized here as they appear in the listing in Appendix B. A brief description indicates the function performed by each subroutine.

TABLE A. 1

1. MAIN	Governing program for AUGUST. Reads input files and sets the mode for the computation.
2. HYDRFL	lomputes the fluxes at interfaces by applying the Godunov algorithm to solve the Riemann problem acruss the interface.
3. HYDRMN	Controls the computation. The integration of the fluxes and update of the physical variables. adaptation of the grld and writing to output files are performed in this subroutine.
4. GEOMTR	Calculates the geometrical quantities not provided by the input data file but needed for the computational algorithm. GEOMTR is only used once for starting a new simulation.
5. UPDATE	Reads the input file for a new simulation and calls GEOMTR to update the geo- metrical variables needed to perform the computation.

6. UPGRAD	Called if a restart run is performed. Will read the appropriate file written at the end of the previous run.			
7. GRADNT	Computes the gradient of the physical variables to improve the prediction of those variables for the two sides of the interface. The gradients are subjected to the monotonicity condition that limits the projected values, thus preventing new maxima-minima from being caused artificially by interpolation (IOPORD = 2). Calls FCHART in order to compute projected values at the half timestep associated with the local characteristics of the flow.			
8. GRDFLX	Computes the gradient of the pressure and Mach number in each cell. This information			
is used as an error indicator for the				
adaptation needed in a steady state				
solution.		$	$	The equivalent of GRADNT if run in a first
:---				
order mode (IOPORD = l). Using FIRST				
assumes that the physical variables are				
constant in each cell. Takes care of the				
boundary conditions if the interface is a				
boundary.				

11. PRICTN	Determines particle cell location in the indtial phase of tracing a group of particles.
12. PRPTHC	Advances the position of each particle. assuming that the particle has the flow velocity of the cell. PRPTHC will find the cell location of the particle after it advances by the timestep of the computation.
13. VERCEN	Places an additional vertex at the center of a specified cell to refine the size of the cell by a factor of three.
14. DISECT	Places an additional vertex at the middle of a specified edge to refine the size of the two cells adjacent to the edge by a factor of two. This method of refinement is used only on the edges lying on the boundaries of the computational domain.
15. DYNPTN	Tests and flags the cells for specified refinement criteria. DYNPTN is called only if the parameter IOPADD = 1. Will start the
refinement procedure by calling VERCEN	
and DISECT and will call DYYPTN for	
further refinement. This insures that the	
buffer zone ahead of the shock is resolved	
according to the specified area criteria	
(AREADD).	

calling VERCEN and DISECT until the area

of each flagged cell meets the area criteria

specified by the parameter AREADD.\end{array}\right|\)

17. INTPTN	Refines the cells in the inlet region. Prepares the inlet region for the introduction of a shock wave. This initial refinement is essential to prevent additional refinement of the grid in the presence of a shock wave. It is called only if the parameters ICOND=0 and IOPTN phenomena). (solution for transient
18. DELPTN	Tests and flags the cells for the specified criteria for coarsening. DELPTN is called only if parameter IOPDEL = 1.
19. RELAXY	Relaxes the vertices of the cells that were created in the process of deleting a vertex.
20. VERDEL	Deletes a specified vertex. 21. RECNC Tests two cells adjacent to the specified edge. Compares them to the two cells that can be created if this edge is flipped to pass between the other two vertices of the
quadrilateral containing the original two	
cells. If the tests result in a better quality	
triangle, then RECNC will swap the edge.	

compute \gamma=cp/cv. giving the internal energy

and density of the fluid in a cell. This

option is controlled by the parameter

lopEOS = 1.\end{array}\right.\right.\)

All of the data input and initiation of a run (or a restart run) is performed in MAIN. The actual simulation is controlled by HYDRMN, which is called from MAIN. At the completion of a run, control is returned to MANN and a successful termination prints the message STOP 777.

MAIN contains one name list (file no. 2) and requires an input file that contains the grid data description (file no. 16). The data organization for the grid file is described in Appendix A. There are flive files that should be included: CINTOO.H, CMSHOO.H, CPHS10.H, CPHS20.H, CHYDOO.H.

VARIABLE	PURPOSE
ICOND	$=0$ READ INPUT GRID FOR A NEW SIMULATION
	$=1$ READ THE GRID FROM PREVIOUS RUN

MAIN will read the initial grid definition stored in file number 16. The current setting is to read the inpur te as provided by Smart, a two dimensional trianguli. grid generator that runs interactively on the Macintosh f. sonal computer.

MAIN will call UPDATE, which will call C EOMTR . GEOMTR will compute essential geometrical pararsters that are not provided by file 16. All geometrical information is dumped into output files (8 and 88) so that ICOND $=0$ is used only once at the beginning of a new simulation.

MAIN will call UPGRAD, which will call one of the output files (8 or 88) written by the previous run. This will load the geometrical definition of the grid (either 8 or $88--$ they are identical). Writing identical flles provides a backup in the event that the job terminates for lack of time while in the proress of writing to one of those output files.

VARIABLE	PURPOSE
ICONP	= 0 PRIMITIVE VARIABLES INITIALIZED =

ICONP $=0$:

ICONP $=1$:

Initialize the primitive variables in computational domain with an initial value specified by the user. The two options set by the code are controlled by IOPTN.

The flow field condition reads in files 8 or 88 and provides a followup run set from the previcus run.

VARIABLE	PURPOSE
ITRIGR	$=0$ USING THE INPUT GRID AS THE INITIAL
GRID	
	$=$THE INPUT GRID TRIPLED BY ADDING AN EXTRA VERTEX IN EACH TRIANGLE

The original grid cells will be tripled by adding an extra vertex in the baricenter of each triangle. This option can be triggered at the beginning of a simulation only (ICOND $=0$).

VARIABLE	PURPOSE
IOPTN	$=1$ SOLUTION FOR STEADY STATE
	$=2$ SOLUTION FOR TRANSIENT PHENOMENA

Thert are two choices available to set the initial condition of the problem.

Assign the conditions at the inlet to the computational domain. This is the fastest way to get a steady state solution for the conditions specified at the inlet. In this option. PIN (pressure), RIN (density) and XMCHIN (Mach number: are assigned to the pressure density and velocity (the spe d of sound is computed in the code) and imposed at tr: inlet boundaries.

Used if a shock wave is to be simulated moving from the inlet (edge boundary 8) to the outlet (edge boundary 7). For this setting, specify PIN (ambient pressure in the chamber). RIN (ambient density in the chamber) and XMCHIN (upstream Mach number). The code will use the normal shock wave relations for an adiabatic flow of a completely perfect fluid to compute the static-pressure ratio across the shock P_{2} / P_{1} and the density ratio ρ_{2} / ρ_{1}, and the ratio of the Mach number across the shock $\mathrm{M}_{2} / \mathrm{M}_{1}$. These computed quantities are applied to set correctly the condition on the pressure density and velocity at the inlet boundary.

VARIABLE	PURPOSE
ALPHA	THE DIRECTION OF INFLOW IN DEGREES RELATIVE TO A RIGHT HAND COORDINATE SYSTEM. ALPHA $=0$

The velocity computed by the code according to the input data provided by the user is split (projected) in the X and Y directions by using α.

VARIABLE	PURPOSE
HRGG	INITIAL γ IN THE EQUATION OF STATE. THE CODE RUNS USING THE IDEAL EQUATION OF STATE AS A BASELINE AND SHOULD BE MODIFIED IF SOMETHING ELSE IS DESIRED. IOPEOS $=1$ WILL TRIGGER THE USE OF GILMORE EQUATION OF STATE.

VARIABLE	PURPOSE
IHRN	NUMBER OF TTERATIONS IN THE RIEMANN SOLVER TO FIND THE DIAPHRAGM SOLUTION. (THREE TO FOUR SHOUUD BE USED AND INCREASED ONLY FOR A VERY HIGH MACH NUMBER CASES.)

VARIAELE	PURPOSE
NTIME	NUMBER OF REPEATS FOR THE INTEGRATION/ REFINEMENT/COARSENING SEQUENCE. AN OUTPUT DUMP IS DONE FOR EVERY SEQUENCE REPEAT.

VARIABLE	PURPOSE
MDUMP	NUMBER OF OUTERMOST LOOP TRERATIONS IN THE CALCULATION WHERE COARSENING OF THE GRID IS PERFORMED EVERY SEGUENCE REPEAT.

VARIABLE	PURPOSE
NDUMP	NUMBER OF OUTER LOOP ITERATIONS IN THE CALCULATION WHERE REFINING IS DONE FOR EVERY SEGUENCE REPEAT WITHOUT COARSENING.

VARIABLE	PURPOSE
KDUMP	NUMBER OF ITERATIONS PERFORMED WITH NO REFINEMENT OR COARSENING. THE INNER LOOP OF THE CALCULATION. IF KDUMP = O, KDUMP WILL BE SET BY THE CODE AUTOMATI-CALLY ACCORDING TO THE SETTING OF THE VARIABLE AREADD.

VARIABLE	PURPOSE
IOSPCL	$=0$ NOT USING REDEFINITION OF POINTS ON
	THE BOUNDARY
	$=1$ USING REDEFINITION OF POINTS ON THE
BOUNDARY	

Modifies the definition of points along the boundary according to a presetting in the code. The setting currently will redefine the points along the edge boundary 5 to exactly match NACA0012 airfoil shape. This is done to redefine points on a boundary that has an analytical definition of points, but where these points have been dislocated by a refining procedure.

VARIABLE	PURPOSE
IOPLFT	$=0$ THE COMPUTATION OF LIFT DRAG AND
	MOMENT TURNED OFF
$=1$ THE COMPUTATION OF LIFT DRAG AND	
MOMENT TURNED ON	

Set IOPLFT = 1 if integral quantities need to be computed. The current setting will calculate the lift, drag and moment on edge boundary 5.

VARIABLE	PURPOSE
IOPRCN	$=0$ A GLOBAL SWAPPING (RECONNECTION)
	PROCEDURE IS OFF
	1 A GLOBAL SWAPPING (RECONNECTION)
	PROCEDURE IS ON

This swapping is done by calling subroutine RECNC. It is used only in a new simulation (ICOND $=0$).

VARIABLE	PURPOSE
IOPORD	$=1$ THE CODE WILL RUN FIRST ORDER
	GODUNOV METHOD
	2THE CODE WILL RUN SECOND ORDER GODUNOV METHOD

UPeno = J Subroutine FIRST is called.

16RORU=2

Subroutine GRADNT is called.

VARIABLE	PURPOSE
IOP KN	$=0$ NO BUOYANCY EFFECTS ARE COMPUTED
	$=1$ BUOYANCY EFFECTS IN THE X DIRECTION
	ARE COMPUTED
	2 BUOYANCY EFFECTS IN THE Y DIRECTION
	ARE COMPUTED

The buoyancy effect applies the gravity acceleration as $\mathrm{g}=9.81$.

VARIABLE	PURPOSE
LAXSYM	$=0$ THE CODE WILL RUN IN A PURE TWO
	DIMENSIONAL MODEL
	$=1$ THE CODE WILL RUN IN AN AXISYMMET-
	$=2$ RICAL MODE (X AS THE AXIS OF SYMMETRY)
	RICAL MODE WIL RUN IN AN AXISYMMET-

VARIABLE	PURPOSE
IOPEOS	$=0$ THE CODE WILL RUN WITH CONSTANT γ
	$=1$ THE CODE WILL RUN WITH VARIABLE γ
	USING THE EQUATION OF STATE FOR AIR

The initial γ is not changed and is kept constant across the computational domain at all times (with value set by HRGG).

Tarens =
The γ of each cell will be modified according to local internal energy and density. Thus, if IOPEOS $=1$, the actual pressure and density should be input (in the appropriate dimension). Otherwise (IOPEOS=0), a normalized pressure and density of unity can be used for simulation.

VARIABLE	PURPOSE
MPRTCL	$=0$ NO PARTICLE TRACING $=$ IHE CODE WILL TRACE PARTICLES

The ability to trace particles will be turned on. Initially PRLCTN is called to identify the cell location of each particle. For each time step. PRPTHC will be called to update the cell location of each particle if it is relocated, assuming the particle moves at the same velocity as the fluid.

The initial location of the particles is defined in MAIN.

VARIABLE	PURPOSE
IOPINT	= 0 DOES NOT PREPARE A BUFFER ZONE. $=$ INTIALY PREPARE A BUFFER ZONE AHEAD OF EDGE BOUNDARY 8

For simulating transient phenomena, the refining of the grid is done in the region ahead of the shock. In this way, we avoid interpolating in a region where large gradients reside. IOPINT $=1$ will refine the region of the inlet flow to prepare a buffer zone (edge boundary 8). If refining is needed in another region, subroutine INTPTN should be modified accordingly.

VARIABLE	PURPOSE
IOPADD	 $=1$ THE REFINEMENT PROCEDURE IS TURNED OFF $=1$ THE REFINEMENT PROCEDURE IS TURNED ON

VARIABLE	PURPOSE
IOPDEL	$=0$ THE COARSENING PROCEDURE IS TURNED OFF $=1$ THE COARSENING PROCEDURE IS TURNED ON

VARIABLE	PURPOSE
AREADD	SPECIFIES THE MINIMUM AREA VALUE THAT A SRIANGLE SHOULD HAVE AFTER REFINEMENT. TRIANGLE AREA FRACTION OF THE AVERAGE THE INITIAL GRID. THIS REFERENCE AREA IS KEPT CONSTANT THROUGH THE WHOLE SIMULATION.

VARIABLE	PURPOSE
AREDEL	SPECIFIES THE MAXIMUM VALUE THAT A TRIANGLE SHOULU HAVE AFTER COARSENING DEFINED AS A FRACTION OF THE REFERENCE AREA.

VARIABLE	PURPOSE
IWINDW	$=0$ NO RESTRICTION ON THE REGION FOR
	REFINING THE GRID
	1 SETIING A WINDOW FOR REFINING THE GRID

WUNTHK=T WYMDW = IW:

The user can specify a region in which the refinement process will take place. Otherwise, the refinement takes place everywhere in the computational domain.

VARIABLE	PURPOSE
ISTATC	$=0$ THE ADAPTATION WILL BE DONE ON A
	MOVING WAVE
	$=1$ THE ADAPTATION WILL BE DONE ON A
	STEADY STATE CONDITION

Because the criteria for refinement in the presence of a static shock are not suited to treating a moving shock, the code sets different error indicators for adapting the grid for the two cases.

The energy and density net fluxes across each cell are tested for sensing the levei of activity. This method is a very good error indicator for sensing transient phenomena as traveling shocks.

The pressure and Mach gradients in each cell are tested for sensing steady state shocks.

The gradient of density is always tested as a third criteria for making sure that static shocks are not ignored in computing a transient flow.

Computes the fluxes across interfaces when the conditions for both sides are given. The fluxes are computed assuming a shock solution at a broken diaphragm simulated by the presence of the interface. The conditions existing on the two sides of the diaphragm will define the condition of the flow at the diaphragm location. These conditions are computed by solving the Riemann problem using the Godunov algorithm. The condition at the diaphragm defines the flux of energy, mass, and momentum passing across the interface. The Euler conservation law is applied to conserve energy, mass, and momentum crossing interfaces from one cell to the other.

Quantity	Side 1	Diaphragm (Interface)	Side 2
Density	ρ_{1}	ρ	ρ_{2}
Pressure	P_{1}	P	P_{2}
Velocity Perpend: Interfac	u_{1}	u	u_{2}
Velocit to Inte arallel	v_{1}	v	v_{2}

Controls the code and the iteration loops. It calls HYDRFL to find the interface fluxes. These fluxes are integrated to update the physical variables in each cell. If adaptation of the grid is required. HYDRMN will set the criteria for controlling the adaptation of the grid. The refining (DYNPTN, DYYPTN) and coarsening (DELPTN) of the grid is invoked by HYDRMN. HYDRMN also controls the output by writing the necessary information on files for post processing data and for restarting the AUGUST code at a later time. It also manages print file diagnostics.

\%MNM WMOMTE KMN

Calculates geometrical variables that are not supplied by the input data and are needed to run the code. For example, it will compute:

1) Area of the cells;
2) Length of the edges;
3) Unit vector perpendicular to the edge. (For boundary edges, this unit vector is direct from the computational domain outward);
4) Unit vector directed from the baricenter of the left cell to the baricenter of the right cell. For boundary edges, the unit vector is perpendicular to the edge (from left cell outward).

The code will change the direction of the boundary edges so that all are arranged counterclockwise and the associated computational cell is always on the left side. GEOMTR is called once in the beginning of a new simulation.

UPDATE

Called in the beginning of a new simulation for setting geometrical variables not provided by the input data. (It calls GEOMTR.)

Called if the run is a restart. UPGRAD will read the appropriate file (either 8 or 88) dumped by the previous run.

Compute the gradients of the physical variables in each cell. These computed gradients, along with the physical values at the baricenters, are applied using linear interpolation to predict the values on the interface.

The computed gradients are subjected to the monotonicity condition. ensuring that the projected values are bounded by the value of each quatity in the three adjacent cells, and to make sure that no new maxima or minima occurs. The projection of quantities to the interface improves the results from the code and provides second order accuracy in space.

GRADNT calls FCHART, which computes the projected values at the interfaces at the half timestep level according to the local characteristics of the flow in each cell bordering the interface cell. The assignment of values at the two sides of each interface is done at the end of FCHART. This same loop will also impose the boundary conditions for the interfaces at the boundaries of the computational domain.

CROMEX

Computes the gradient of the Mach value and pressure gradient in each cell. These gradients are applied if the adaptation is done on a steady state converged solution. These variables, in addition to the computed density gradient. provide the criteria for adaptation if it is necessary to refine the grid for steady state problems.

KNMMN

Assigns flow quantities to each side of an edge. These are based on the values at the baricenter of the triangles on either side of the edge. FIRST uses a first order approximation to find the values at the edge.

The user can specify FIRST or GRADNT by choosing 1 or 2 for the parameter IOPORD.

Called by GRADNT to compute the values projected at the interfaces at the half timestep. These calculations are done by applying the local velocity characteristics in each cell. This projection in time improves the results and makes the code second order accurate in time.

2.

Identifies the initial cell location of each particle. Called once after specifyir.g the starting location of each particle to be traced.

Advances the particle position by the marching timestep. It finds the new cell location if a particle crosses an interface. The assumption is that the particles move at the fluid velocity.

Introduces a \square new vertex at the baricenter of the designated cell during the refinement process.

```
\MMMM
```

Introduces a new vertex at the middle of a designated edge.

DYMPTy

Tests the cells according to the refining criteria and flags each cell which requires refinement. The flagged cells are refined in DYYPTN. The refinement is subjected to geometrical constraints on the cell shape to retain a high better quality refined grid.

The user can specify a window in the computational domain for refinement. The parameter to trigger this option is IWINDW $=1$. For specifying the actual window, it may be necessary for the user to alter this subroutine and provide a definition of the geometrical area to be refined.

Traces the cells that are flagged for refinement by DYNPTN. It subdivides them until each one of the refined cells meets the area refinement criteria of AREADD. Because each loop of refinement is restricted to a one-third reduction in cell area (calling VERCEN), DYYPTN will perform the necessary number of loops to meet the area reduction specified for refinement. AREADD is a fraction of the average area of the initial grid. This reference area is kept constant and fixes the minimum resolution in the simulation domain.

Performs the initial refinement of the grid before the initialization. The assumption is that a shock wave is introduced through the inlet boundary. Consequently, has PTN will test for the inflow boundary interface and will refine the appropriate cells. (Note: It is not recommended that the code automatically refine the grid in the inlet region in the presence of a shock wave. If a shock wave is not introduced through the inlet. INTPTN should be modified to accommodate the change of the initial condition.)

Tests the cells according to coarsening criteria and flags them. Each triangle is tested to determine which vertex of the triangle is most appropriate for removal. This vertex is removed by calling VERDEL. DELPTN cannot delete nodes that have the status $J V(1, I V)=3$. It is therefore recommended that nodes at sharp cormers or nodes on important boundaries that are curved. be flagged as $J V(1, I V)=3$.

Relaxes the cells that are created in the process of deleting a vertex. The relaxation proccdure relocates the designated vertex to the mass center of the surrounding vertices.

Computes the Laplacian of the pressure and density.
\square

Deletes a designated vertex.

Tests the possibility of swapping the designated interface to create two triangles of better quality than the original two.

Computes γ using to the equation of state for air (Gilmore equation of state), given the density and internal energy of the air. The user may choose to apply the equation of state by setting IOPEOS $=1$.

Computes integral quantity diagnostics on any configuration. The integral quantities are lift. drag, and momentum and are found on boundary interfaces designated as 5 .

Computes the gradient of a scalar variable at the center of a cell. It uses a least squares technique to interpolate the values at the center of four triangles (the cell and its three adjacent triangles) to fit (four equations with three unknowns).

$$
f=a_{0}+a_{1} x+a_{2} y
$$

Those gradients are subjected to a monotonicity limiter that ensures no new minima or maxima are produced artificially in the projected values at the interfaces.

The monotonicity algorithm involves the following steps

1)	$\begin{array}{\|l} \hline \text { find maximum and minimum of } \quad f_{1}, f_{2}, f_{3}, f_{4} \\ f_{\max }=\operatorname{Max}\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \\ f_{\min }=\operatorname{Min}\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \\ \hline \end{array}$
2)	$\begin{aligned} & \text { compute } \\ & \Delta f_{\max }=\mathrm{f}_{\mathrm{max}}-\mathrm{f}_{1} \\ & \Delta \mathrm{f}_{\min }=\mathrm{f}_{\min }-\mathrm{f}_{\mathrm{l}} \\ & \hline \end{aligned}$
3)	compute incremental projected values at the interfaces $\begin{aligned} & f_{m j R}-f_{R}=\nabla f_{R} \cdot \bar{r}_{j R} \\ & f_{m j L}-f_{L}=\nabla f_{L} \cdot \bar{y}_{\mathrm{g}} \end{aligned}$

$$
\begin{aligned}
\Delta f_{\mathrm{mjR}} & =\mathrm{f}_{\mathrm{mjR}}-\mathrm{f}_{\mathrm{R}}=\nabla \mathrm{f}_{\mathrm{R}} \cdot \overline{\bar{j}}_{\mathrm{JR}} \\
\Delta f_{\mathrm{mjL}} & =f_{\mathrm{mjL}}-\mathrm{f}_{\mathrm{L}}=\nabla \mathrm{f}_{\mathrm{L}} \cdot \overline{\mathrm{r}}_{\mathrm{jL}}
\end{aligned}
$$

where j stands for every interface of the cell and fmj is the interpolated value at the middle of the interface.

4)
compute the limiter by calculating the minimum of indicator for each edge of the three edges of the cell.
right to the interface $R U V P R=\frac{\left(1+\operatorname{sign} \Delta f_{m i R}\right) \Delta f_{\max }+\left(1-\operatorname{sign} \Delta f_{m i R}\right) \Delta f_{\min }}{2 \Delta f_{m j R}}$ left to the interface RUVPL $=\frac{\left(1+\operatorname{sign} \Delta f_{m j L}\right) \Delta f_{\max }+\left(1-\operatorname{sign} \Delta f_{m j L}\right) \Delta f_{\min }}{2 \Delta f_{m j L}}$.

This formulation ensures that

$$
\text { if }\left\{\begin{array}{l}
\Delta f_{m j}>0 \text { RUVP }=\frac{\Delta f_{m a x}}{\Delta f_{m j}} \\
\Delta f_{m j}<0 R U V P=\frac{\Delta f_{m i n}}{\Delta f_{m j}}
\end{array}\right. \text {. }
$$

the outcome of RUVP is always positive. If RUVP >1 then the projected value at the interfaces will introduce a new minimum or maximum relati ${ }^{\prime}$, to the values at the baricenters of the appropriate cells.

Select the minimum between the six values for RUVP (two for e:ary one of the three interfaces of the cell) not exceeding unity. The selected n:nimum
of RUVP is the required limiter. The gradient is multiplied by this limiter that is always less or equal to unity.

Computes the projected values at the half time step level based on the local characteristics of the flow. This process extends the accuracy of the code to be second-order in time as well as in space.

The characteristic projection consists of several steps.

1) Calculate the velocity of sound in the two cells bordering the designated interface

CNLEFT $=\sqrt{\gamma_{L} \cdot P_{L} / \rho_{L}}$ sound speed in left cell CNRIGT $=\sqrt{\gamma_{R} \cdot P_{R} / \rho_{R}}$ sound speed in right cell LVLEFT $=\bar{U}_{L} \cdot \bar{t}$ velocity of fluid at the left cell projected in \bar{t} direction UVRIGT $=\vec{U}_{R} \cdot \bar{t}$ velocity of fluid at the right cell projected in \bar{t} direction
where

$$
\begin{gathered}
\bar{t}=X X N \cdot \bar{i}+Y Y N \cdot \bar{j} \\
\bar{U}=U \cdot \bar{i}+V \cdot \bar{j}
\end{gathered}
$$

2) To compute the interpolated left and right projected values at time $t^{N}+\Delta t / 2$, we calculate the distances that the disturbances generated from the baricenter of the cells. traveling toward the interface:

$$
\begin{aligned}
& \text { ZZLEFT }=(\text { UVLEFT }+ \text { CNLEFT }) \cdot \Delta t / 2 \\
& \text { ZZRIGT }=-(\text { UVRIGT }- \text { CNRIGT }) \cdot \Delta t / 2
\end{aligned}
$$

If ZZLEFT or ZZRIGT is negative they are reset to zero.
3) Calculate the distances that the flow will travel if it were to flow at the velocity of each of the local characteristics:

$$
\begin{aligned}
& \text { ZOLEFT }=\text { UVLEFT } \cdot \Delta t / 2 \\
& \text { ZORIGT }=- \text { UVRIGT } \cdot \Delta t / 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { ZPLEFT }=(\mathrm{UVLEFT}+\mathrm{CNLEFT}) \cdot \Delta t / 2 \\
& \mathrm{ZPRIGT}=-(\mathrm{UVRIGT}+\mathrm{CNRIGT}) \cdot \Delta t / 2 \\
& \text { ZMLEFT }=(\mathrm{UVLEFT}-\mathrm{CNLEFT}) \cdot \Delta t / 2 \\
& \text { ZMRIGT }=-(\mathrm{UVRIGT}-\mathrm{CNRIGT}) \cdot \Delta t / 2 .
\end{aligned}
$$

4) Calcilate the projected values of the nonconservative variables (density, velocity component (perpendicular and tangential to the interface), and pressure).

For the left cell:

Density
$\mathrm{HRRL}=\quad=\rho_{L}+\bar{\nabla} \rho_{L} \cdot\left(\bar{r}_{\mathrm{L}}-\operatorname{ZZLEFT} \cdot \overline{\mathrm{t}}\right)$

Perpendicular Velocity HUUL $=U_{L}+\bar{\nabla} U_{L} \cdot\left(\bar{r}_{L}-Z Z L E F T \cdot \bar{t}\right)$

Tangential Velocity \quad HVVL $=V_{L}+\bar{\nabla} V_{L} \cdot\left(\bar{r}_{L}-\right.$ ZZLEFT $\left.\cdot \bar{t}\right)$

Pressure \quad HPPL $=P_{L}+\bar{\nabla} P_{L} \cdot\left(\bar{r}_{L}-\operatorname{ZZLEFT} \cdot \bar{t}\right)$
GMTLFT $=P_{L} \cdot \mathrm{HRRL} \cdot \mathrm{HPPL}$

For the right cell:
$\left.\left.\begin{array}{lll}\text { Density } & \text { HRRR } & =\rho_{R}+\bar{\nabla} \rho_{R} \cdot\left(\bar{r}_{R}-Z Z R I G T\right.\end{array}\right) \bar{t}\right)$

For the left cell, taking into account the following characteristics:

- For UVLEFT + CNLEFT:
$\mathrm{UUU}=\bar{\nabla} \mathrm{U}_{\mathrm{L}} \cdot($ ZPLEFT - ZZLLEFT $) \overrightarrow{\mathrm{t}}$
PPP $=\bar{\nabla} P_{L} \cdot($ ZPLEFT - ZZLEFT $) \bar{t}$
UPLFT $=-0.5 \cdot(U U U+$ PPP $/ \sqrt{G M T L F T}) / \sqrt{G M T L F T}$
If UVLEFT + CNLEFT is negative, UPLFT is reset to zero.
- For UVLEFT - CNLEFT:
$\mathrm{UUU}=\overline{\mathrm{\nabla}} \mathrm{U}_{\mathrm{L}} \cdot($ ZMLEFT - ZZLEFT $) \cdot \overline{\mathrm{t}}$
PPP $=\bar{\nabla} P_{L} \cdot($ ZMLEFT - ZZLEFT $) \cdot \bar{t}$
UM... $T=0.5 \cdot(\mathrm{UUU}-\mathrm{PPP} / \sqrt{\text { GMTLFT }}) / \sqrt{\text { GMTLFT }}$
if l LEFT - CNLEFT is negative, UPLFT is reset to zero.
- For UVLEFT:
$\mathrm{PPP}=\bar{\nabla} \mathrm{P}_{\mathrm{L}} \cdot($ ZOLEFT - ZZLEFT $) \cdot \overline{\mathrm{t}}$
$R R R R=\rho_{L}+\bar{\nabla} \rho_{L} \cdot\left(\bar{r}_{L}-\right.$ ZOLEFT $) \cdot \bar{t}$
URLFT $=$ PPP/GMTLFT $+1 / H R R L-1 / R R R R$ If UVLEFT is negative, URLEFT is reset to zero.

For the right cell, taking into account the following characteristics:

- For UVRIGT + CNRIGT:
$\mathrm{UUU}=\bar{\nabla} \mathrm{U}_{\mathrm{R}} \cdot($ ZZRIGT - ZPRIGT $\overline{\mathrm{t}}$
$\mathrm{PPP}=\bar{\nabla} \mathrm{P}_{\mathrm{R}} \cdot(Z Z R I G T-$ ZPRIGT $) \overline{\mathrm{t}}$
UPRGT $=-0.5 \cdot(U U U+$ PPP $/ \sqrt{G M T R G T}) / \sqrt{G M T R G T}$
If UVRIGT + CNRIGT is positive. UMRGT is reset to zero.
- For UVRIGT - CNRIGT:
$\mathrm{UUU}=\bar{\nabla} \mathrm{U}_{\mathrm{R}} \cdot($ ZZRIGT - ZMRIGT $) \cdot \overline{\mathrm{t}}$
$\mathrm{PPP}=\bar{\nabla} \mathrm{P}_{\mathrm{R}} \cdot(\mathrm{ZZRIGT}-\mathrm{ZMRIGT}) \cdot \overline{\mathrm{t}}$
UMRGT $=0.5 \cdot(U U U-P P P / \sqrt{G M T R G T}) / \sqrt{G M T R G T}$
If UVRIGT - CNRIGT is positive, UMRGT is reset to zero.
- For UVRIGT:
$\mathrm{PPP} \quad=\overline{\bar{\nabla}} \mathrm{P}_{\mathrm{R}} \cdot($ ZZRIGT - ZORIGT $) \cdot \overline{\mathrm{t}}$
$R R R R=\rho_{R}+\bar{\nabla} \rho_{R} \cdot\left(\bar{r}_{R}+Z O R I G T\right) \cdot \bar{t}$
URRGT $=\mathrm{PPP} / \mathrm{GMTRGT}+1 / \mathrm{HRRR}-1 / \mathrm{RRRR}$
If UVRIGT - CNRIGT is positive. URRGT is reset to zero.

The projected values will be:

$$
\begin{aligned}
& \mathrm{RRL}=1 /(1 / \mathrm{HRRL}-(\mathrm{UPLFT}+\mathrm{UMLFT}+\mathrm{URLFT})) \\
& \mathrm{UUL}=\mathrm{HUUL}+(\mathrm{UPLFT}-\mathrm{UMLFT}) \sqrt{\text { GMTLFT }} \\
& \mathrm{VVL}=\mathrm{HVVL}+(\mathrm{UPLFT}-\mathrm{UMLFT}) \sqrt{\text { GMTLFT }} \\
& \mathrm{PPL}=\mathrm{HPPL}+(\mathrm{UPLFT}+\mathrm{UMLFT}) \mathrm{GMTLFT} \\
& \mathrm{RRR}=1 /(1 / \mathrm{HRRR}-(\mathrm{UPRGT}+\mathrm{UMRGT}+\mathrm{URRGT}) \\
& \mathrm{UUR}=\mathrm{HUUR}+(\mathrm{UPRGT}-\mathrm{UMRGT}) \sqrt{\text { GMTRGT }} \\
& \mathrm{VVR}=\mathrm{HVVR}+(\mathrm{UPRGT}-\mathrm{UMRGT}) \sqrt{\text { GMTRGT }} \\
& \mathrm{PPR}=\mathrm{HPPR}+(\mathrm{UPRGT}+\mathrm{UMRGT}) \cdot \mathrm{GMTRGT} .
\end{aligned}
$$

Those values are the assigned condition for the two sides of the interface. If the interface is a boundary, the right condition is determined according to the type of boundary.

N2x

DYNPTN applies three distinct criteria to test cells to determine their need for refinement. They are as follows:

For unsteady dynamic simulation

1) total energy flux entering or leaving a cell
2) total density flux entering or leaving a cell
3) density gradient in each cell.

For steady state simulation

1) Pressure gradient in each cell
2) Mach number gradient in each cell
3) density gradient in each cell.

Cells that meet one of those three criteria are flagged. and are actually subdivided in DYYPTN until they meet the area criteria set for refinement (AREADD). The code will compute the maximum of each of the three criteria and set a 5% of the maximum or higher to the refinement criteria for the fluxes and 3% for the gradient. These criteria work extremely well for moving waves.

It should be noted that those error indicators and their levels are set according to the actual simulated condition. For different cases, other error indicators and level settings might be more appropriate than the above.

M. WM.WMETMN

Tests the cells for coarsening criteria. The same criteria that refines the grid are applied to coarsen the grid but in a different setting. Each cell that has less than 5% of the fluxes and less than 3% of the gradient criteria is eligible for coarsening. The code will test the cell flagged for coarsening and will choose one of the three vertices of the cell for deletion by determining which of the three has the smallest aspect ratio. (The aspect ratio is defined as the ratio between the height emerging from the node and its corresponding base.) There are vertices that cannot be removed. such as corners or vertices that preserve the onginal shape of th , boundaries $(J V(1, I V)=3)$.

After the vertex is deleted, a relaxing procedure is performed on the vertices surrounding the deleted vertex, as well as a swapping procedure to improve the quality of the triangles constructed in the deletion procedure.

Adds an additional vertex at the baricenter of the designated cell.

VERCEN assigns one of the three new triangles the number of the original triangle and will add two more at the end of cells table. A new vertex plus three new interfaces are added at the end of the associated tables.
W)

Adds a new vertex at the middle of the designated edge.

DISECT will add one new vertex, three new edges and two new triangles. all of which are added at the end of the corresponding tables (vertices, edges and cells).

1 D CO

Forces deletion of a designated vertex. There are two types of vertices: deletion of a vertex in the interior of the computational domain and deletion of a vertex on the boundary. The steps of deleting a vertex are:

1) Identify the edges and cells surrounding the designated vertex in the computational domain

Interior Vertex to be Deleted

and on the boundary.

Deletion is more difficult and needs more computational resources than addition. The new vertices edges and cells being added are stacked at the bottom of the corresponding tables while undergoing deletion is always a member in the table. In order not to leave gaps in the table, a more complicated procedure was developed to replace the deleted member by the member at the bottom of the table.
2) Once the vertex, edges and cells joining the designated vertex are deleted we rezone the void (polygon) without adding new vertices. The adding of the new edges and cells are stacking at the end of the corresponding tables.

Interior Vertex

3) A relaxation procedure is performed on the vertices of the polygon (void). This procedure improve the quality of the cells that fill the void.
4) A swap procedure is performed on the new edges that were added in the process of filling the void.

A.1.1 Pre-Processor for the Unstructured Grid

The input geometrical data for AUGUST should provide the .llowing data:

1) Number of:
vertices (NV)
flagged vertices (NVM)
edges (NE)
cells (NS)
2) A table of vertices specifying:
number of vertex (IV)
x coordinate (XV(1,IV)
y coordinate (XV(2,IV)).
3) A table of flagged vertices that cannot be removed by the coarsening process:
number of vertex (IV)
status of vertex ($\mathrm{J}(1, \mathrm{IV})$)
The only status of vertex that is currently implemented is the flagging node that does not allow removal:
$\mathrm{JV}(1, \mathrm{IV})=3$
4) A table of edges specifying:
number of edges (IE)
vertex number indicating the beginning of the
edge (JE(1.IE))
vertex number indicating the end of the sige
(JE(2,IE))
cell number indicating the cell at the ler:
the edge (JE(3.IE))
cell number indicating the cell at the rigł. $\quad \because$
the edge (JE(4.IE))
number associated with the status of the : .ge
(JE(5.IE))

If $\mathrm{JE}(5, \mathrm{IE})=0$, the edge is an ordinary edge inside the computational domain.
If $\mathrm{JE}(5, \mathrm{IE}) \neq 0$, the edge lies on the boundary of the domain. The labeling number will indicate what type of boundary to be applied through this edge.

IV1 $=\mathrm{JE}(1, \mathrm{IE}) \quad$ vertex indicating the beginning of the edge IV2 $=\mathrm{JE}(2 . \mathrm{IE})$ vertex indicating the end of the edge

The direction of the edge is defined from IV1 to IV2.

$$
\text { ISL }=J E(3 . I E) \quad \text { left triangle }
$$

$\mathrm{ISR}=\mathrm{JE}(4, \mathrm{IE}) \quad$ right triangle
$\mathrm{IJE} 5=\mathrm{JE}(5 . \mathrm{IE}) \quad$ status of the edge

IVE5 $=5$	simulating wall conditions
IJE5 $=6$	simulating wall conditions
IVE5 $=7$	simulating supersonic outlet conditions
IJE5 $=8$	simulating supersonic inlet conditions

5) A table of cells specifying: number of cells (IS) number of first edge (JS(4,IS)) number of second edge (JS(5,IS)) number of third edge (JS(6,IS))

The sign of JS(4,IS). JS(5,IS). JS(6,IS) indicates whether the direction of the edge is counterclockwise (positive) or clockwise (negative).
The three associated vertices for the triangle JS(1.IS). JS($2, I \mathrm{IS}$), JS(3, IS) are defined by the code in GEOMTR.

The three vertices of the cell are ordered in a counterclockwise arrangement.

IV1 $=J S(1$, IS $)$	first vertex
IV2 $=J S(2$, IS $)$	second vertex third vertex
IV3 $=J S(3$, IS)	
IE1 $=J S(4$, IS)	First edge of the triange directed from IV1 to IV2 (IE1 is positive).
IE2 $=J S(5$, IS)	Second edge directed originally from IV3 to IV2. (IE2 will be negative because its direction is clockwise)
IE3 $=J S(6$, IS)	Third edge directed originally from IV3 to IV1 (IE3 is positive)

A.1.2 Post-Processor for the Unstructured Grid

Postprocessing for visualization of the results on an unstructured grid is done in two different codes. The first code, DRAWBF. reads the data as dumped by AUGUST and performs the whole load of computation necessary to produce the information needed for the graphic.

The second code DRAWAF reads the data file written by DRAWBF and uses the DISSPLA software to produce the image on the screen. Breaking the postprocessing job into two separate codes enables the user to run the two codes on different machines.

Reads an input data file produced by AUGUST and will read another input data file (drawbf.d) specifying the option that the user chooses to have processed.

The input data file drawbf.d specifies the window of the computational domain chosen by the user to be processed. This window is specified by XMIN, XMAX, DX and YMIN, YMAX, DY, where XMIN, XMAX, YMIN. YMAX, will specify the lower and upper limit of the region to be drawn. DX and DY will be parameters for DISSPLA to subdivide the axis into tick marks.

DISSPLA is constrained to seven colors. To extend the number of contour levels, the code can be set to draw a couple of levels in each color (7 x NLEV where NLEV is the number of levels for each color).

The user should specify the variable he wants to draw:
IHYD $=1$ is density.
$=2$ is velocity in the x direction
$=3$ is velocity in the y direction
$=4$ is pressure
$=5$ is gamma (γ)
$=6$ is Mach number
$=7$ is entropy
$=8$ is a vector plot of the velocity field
$=9$ is a plot of the location of particies
The last parameter that the user should specify is IREC. IREC specifies how many dumps are in the input file produced by AUGUST. If IREC=0, the user will get as many figures as the number of dumps produced by AUGUST. Otherwise, the user will get the figure corresponding to IREC specifled in the input flle.

Subroutine NEXTREC reads a whole dump from the input file (written by AUGUST). It will make sure that the allocation of memory is adequate according to the number of vertices. edges and triangles to be processed. If the memory allocation is not adequate, the code will stop with an explanatory message.

Subroutine LOADF loads the portion of data needed according to the specification of the window and according to the specified IHYD into the appropriate matrices in the code.

Subroutine PHYDR produces the data for the contour plots.
Subroutine VECTOR produces the data for the vector plot of the velocity field.

Subroutine TRACER produces the data for the location of particles.

DRAWAF

DRAWAF reads an input data file (drawbf.k) produced by DRAWBF and another input file (drawaf.d) that specifies the format chosen for display.

The parameters'specified in drawaf.d are:

IITHIEAE

USMESHETM
recronesor

Iquyysur

IOTONE2

TCOMFE=0

No grid is drawn.

Grid is drawn.

A single frame is drawn.

Two frames are drawn. one for the grid and one for displaying results. The frame for the grid is drawn even if IFMESH $=0$, but in this case the frame will stay empty. chart is written in engineering format (XE+Y). As in the former. it is written keeping a four decimal digit.

The basic dimension for the frames is specified as 6.0 x 3.0 inches (in the x and y axis, respectively). The code makes sure that the proportionality of the frame matches the physical window to be drawn, so that the figure will not be distorted. This is done by redefining the x or y dimension of the frame accordingly, but not to exceed the 6.0×3.0 on the screen (ICONFG=0 should be picked if IOPTON >0 and a two-frame drawing is desired).

The same as $I C O N F G=0$ except that the basic dimensions are defined now as 6.0×6.0 inches. This option should be specified if a one frame drawing is desired.

The user can specify a header for the drawing composed of two lines to be specified as Caption 1 and Caption 2 in the input flle.

The standard drawing includes the number of vertices, edges and cells as well as the Mach number, lift. drag, moment, angle of attack (for drawing diagnostics for a wing profile). An indication of the nature of the results that appear on the drawing is also included. i.e., the physical variables drawn are identified by the parameter passing from DRAWBF.

It should be noted that the format of the output drawing is very easily redesigned to meet the needs of an individual user.

1. Read geometrical data defining the initial grid. The current format is set to read data file from Smart (two dimension grid generator).
2. Read geometrical data defining the grid read from a flle dumped by a previous run of the code.
3. Initialize the physical variables according to IOPTN (either steady state or moving shock wave). If a different initial setting is needed, it should replace the current setting.
4. Read the physical variables from a flle dumped by a previous run.

A. 2 AUGUSTT (3D)

The subroutines in the AUGUSTT code are organized here as they appear in the listing in Appendix B. A brief description indicates the function performed by each subroutine.

TABLE A.2.1

MEIST OFSUBROUTHES

The subroutines in the AUGUST code are organized here as they appear in the listing in Appendix B. A brief description indicates the function performed by each subroutine.

1. MAIN	Governing program for AUGUST. Reads input files and sets the mode for the computation.
2. HYDRFL	Computes the fluxes at interfaces by applying the Godunov algorithm to solve the Riemann problem across the interface.
3. HYDRMN	Controls the computation. The integration of the fluxes and update of the physical variables and writing to output files are performed in this subroutine.
4. GEOMTR	Calculates the geometrical quantities not provided by the input data file but needed for the computational algorithm. GEOMTR is only used once for starting a new stmulation.
5. UPDATE	Reads the input file for a new simulation and calls GEOMTR to update the geo- metrical variables needed to perform the computation.
6. UPGRAD	Called if a restart run is performed. Will read the appropriate file written at the end of the previous run.

7. GRADNT	Computes the gradient of the physical variables to improve the prediction of those variables for the two sides of the interface. The gradients are subjected to the monotonicity condition that limits the projected values, thus preventing new maxima-minima to be caused artifictally by interpolation (IOPORD = 2). Calls FCHART in order to compute projected values at the half timestep associated with the local characteristics of the flow.
8. FIRST	The equivalent of GRADNT if run in a first order mode (IOPORD = 1). Using FIRST assumes that the physical variables are constant in each cell. Takes care of the boundary conditions if the interface is a boundary.
F. FCHART	Computes the projected values at a half timestep for the two sides of the interface based on the local characteristics of the flow. Called by GRADNT, it modifies the projected values for the two sides of the interface and assigns them to the correct location in memory. Takes care of the boundary conditions if the interface is a boundary.

The MAIN Program

All of : .e data input and initiation of a run (or a restart run) is performed in MAIN. - ie actual simulation is controlled by HYDRMN. which is called from MAI: A^{+}ne completion of a run, control is returned to MAIN and a successful terr-.nat 1 prints the message STOP 777.
M^{-}. N contains one name list (file no. 2) and requires an input file that contains ne grid data description (file no. 16). The data organization for the
grid file is described in Appendix A. The following files should be included: DMSHOO.H. DPHS ϕ O.H. DHYDOO.H.

COND $=3$

MAIN will read the initial grid definition stored in file number 16. The current setting is to read the input flle as provided by Smart, a two-dimensional triangular grid generator that runs interactively on a Macintosh personal computer.

MAIN will call UPDATE, which will call GEOMTR. GEOMTR will compute essential geometrical parameters that are not provided by file 16. All geometrical information is dumped into output files (8 and 88) so that ICOND $=0$ is used only once at the beginning of a new simulation.

MAIN will call UPGRAD, which will call one of the output files (8 or 88) written by the previous run. This will load the geometrical definition of the grid (either 8 or $88-\ldots$ they are identical). Writing identical files provides a backup in the event that the job terminates for lack of time while in the process of writing to one of those output files.

VARIABLE	PURPOSE
ICONP	$=0$ PRIMITIVE VARIABLES INITIALIZED = 1 VARIABLES READ FROM PREVIOUS RUN

Initialize the primitive variables in computational domain with an initial value specified by the user. The two options set by the code are controlled by IOPTN.

LCONP=I
The flow field condition reads in files 8 or 88 and provides a follow-up run set from the previous run.

VARIABLE	PURPOSE
IOPTN	$=1$ SOLUTION FOR STEADY STATE
	$=2$ SOLUTION FOR TRANSIENT PHENOMENA

There are two choices available to set the initial condition of the problem.

Assign the conditions at the inlet to the computational domain. This is the fastest way to get a steady-state solution for the conditions specified at the inlet. In this option, PIN (pressure), RIN (density) and XMCHIN (Mach number) are assigned to the pressure density and velocity (the speed of sound is computed in the code) and imposed at the inlet boundaries.

Used if a shock wave is to be simulated moving from the inlet (edge boundary 8) to the outlet (edge boundary 7). For this setting. specify PIN (ambient pressure in the chamber). RIN (ambient density in the chamber) and XMCHIN (upstream Mach number). The code will use the normal shockwave relations for an adiabatic flow of a completely perfect fluid to compute the static-pressure ratio across the shock P2/P1 and the density ratio $r 2 / \mathrm{r}$, and the ratio of the Mach number across the shock M2/M1. These computed quantities are applied to set correctly the condition on the pressure density and velocity at the inlet boundary.

VARIABLE	PURPOSE
ALFA	THE DIRECTION OF INFLOW IN DEGREES RELATIVE TO A RIGHT-HAND COORDINATE SYSTEM. ALFA $=0$ MEANS FLOW FROM LEFT TO RIGHT.

The velocity computed by the code according to the input data provided by the user is split (projected) in the X and Y directions by using α.

VARIABLE	PURPOSE
HRGG	INITIAL γ IN THE EQUATION OF STATE. THE CODE RUNS USING THE IDEAL EGUATION OF STATE AS A BASELINE AND SHOULD BE MODIFIED IF SOMETHING ELSE IS DESIRED. IOPEOS=1 WILL TRIGGER THE USE OF GILMORE EQUATION OF STATE.

VARIABLE	PURPOSE
IHRN	NUMBER OF TTERATIONS IN THE RIEMANN SOLVER TO FIND THE DIAPHRAGM SOLUTION. (THREE TO FOUR SHOULD BE USED AND THE NUMBER INCREASED ONLY FOR VERY HIGH MACH NUMBER CASES.)

VARIABLE	PURPOSE
NTIME	NUMBER OF REPEATS FOR THE INTEGRATION SEQUERENCE. AN OUTPUT DUMP IS DONE FOR EVEQUENCE REPEAT.

VARIABIE	PURPOSE
NDUMP	NUMBER OF OUTER LOOP ITERATIONS IN THE CALCULLATON WHERE REFINNGG IS DONE FOR EVERY SEQUENCE REPEAT WITHOUT COARSENING.

VARIABLE	PURPOSE
IOPORD	$=1$THE CODE WILL RUN FIRST ORDEK $=2$GODUNOV METHOD CODE WILL RUN SECOND ORDER GODUNOV METHOD

$1+5+50=3$

Subroutine FIRST is called.

Subroutine GRADNT is called.

Computes the fluxes across interfaces when the conditions for both sides are given. The fluxes are computed assuming a shock solution at a ruptured diaphragm simulated by the presence of the interface. The conditions existing on the two sides of the diaphragm will define the condition of the flow at the diaphragm location. These conditions are computed by solving the Riemann problem using the Godunov algorithm. The condition at the diaphragm defines the flux of energy, mass. and momentum passing across the interface. The Euler conservation law is applied to conserve energy, mass, and momentum crossing interfaces from one cell to the other.

Quantity	Side 1	Diaphragm (Interface)	Side 2
Density	ρ_{1}	$\mathrm{\rho}$	r_{2}
Pressure	P_{1}	P	P_{2}
Velocity Perpendicular to Interface	u_{1}	u	u_{2}
Velocity Parallel to Interface	v_{1}	v	v_{2}
Velocity Parallel to Interface to Construct a Right-Hand Coordinate System (u. v. w.)	w_{1}	w	w_{2}

HTDRMINE $8 \times$

Controls the code and the iteration loops. It calls HYDRFL to find the interface fluxes. These fluxes are integrated to update the physical variables in each cell. If adaptation of the grid is required. HYDRMN also controls the output by writing the necessary information on files for postprocessing data and for restarting the AUGUST code at a later time. It also manages print file diagnostics.

CEOMMR

Calculates geometrical variables that are not supplied by the input data and are needed to run the code. For example, it computes:

1) distances between baricenters of adjoining cells;
2) the location of the intersection between the line joining adjacent baricenter cells and the interface.

The code changes the direction of the boundary edges so that all are arranged counter clockwise and the associated computational cell is always on the left side. GEOMTR is called once in the beginning of a new simulation.

Called in the beginning of a new simulation for setting geometrical variables not provided by the input data. (It calls GEOMTR.)

人

Called if the run is a restart. UPGRAD will read the appropriate file (elther 8 or 88 l dumped by the previous run.

Compute the gradients of the physical variables in each cell. These computed gradients, along with the physical values at the baricenters, are applied using linear interpolation to predict the values on the interface.

The computed gradients are subjected to the monotonicity condition. ensuring that the projected values are bounded by the value of each quantity in the three adjacent cells, and to make sure that no new maxima or minima occur. The projection of quantities to the interface improves the results from the code and provides second order accuracy in space.

GRADNT calls FCHART, which computes the projected values at the interfaces at the half timestep level according to the local characteristics of the flow in each cell bordering the interface cell. The assignment of values at the two sides of each interface is done at the end of FCHART. This same loop also imposes the boundary conditions for the interfaces at the boundaries of the computational domain.

Emum

Assigns flow quantities to each side of an edge. These are based on the values at the baricenter of the triangles on either side of the edge. FIRST uses a first order approximation to find the values at the edge.

The user can specify FIRST or GRADNT by choosing 1 or 2 for the parameter IOPORD.

KWNWNKCHART

Called by GRADNT to compute the values projected at the interfaces at the half timestep. These calculations are done by applying the local velocity characteristics in each cell. This projection in time improves the results and makes the code second order accurate in time.

Computes the gradient of a scalar variable at the center of a cell. The gradient theorem is applied for each cell.

Those gradients are subjected to a monotonicity limiter that ensures no new minima or maxima are produced artificially in the projected values at the interfaces.

The monotonicity algotithm involves the following steps.

1)	$\begin{aligned} & \text { find maximum and minimum of } \quad f_{1}, f_{2}, f_{3}, f_{4}, f_{5} \\ & f_{\max }=\operatorname{Max}\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right) \\ & f_{\min }=\operatorname{Min}\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right) \end{aligned}$
2)	$\begin{aligned} & \text { compute } \\ & \Delta f_{\max }=f_{\max }-f_{1} \\ & \Delta f_{\min }=f_{\min }-f_{1} \end{aligned}$
3)	compute incremental projected values at the interfaces $\begin{aligned} & \mathrm{f}_{\mathrm{mjR}}-\mathrm{f}_{\mathrm{R}}=\bar{\nabla}_{f_{\mathrm{R}}} \cdot \overline{\mathrm{r}}_{\mathrm{J} R} \\ & \mathrm{f}_{\mathrm{mjL}}-\mathrm{f}_{\mathrm{L}}=\bar{\nabla} \mathrm{f}_{\mathrm{L}} \cdot \overline{\mathrm{r}}_{\mathrm{JL}} \end{aligned}$

$$
\begin{aligned}
D f_{m j R} & =f_{m j R}-f_{R}=\bar{\nabla} f_{R} \cdot \bar{r} j_{R} \\
D f_{m j L} & =f_{m j L}-f_{L}=\bar{\nabla} f_{L} \cdot \overline{\mathrm{r}}{ }_{\mathrm{L}}
\end{aligned}
$$

where j stands for every interface of the cell and fmj is the interpolated value at the middle of the interface.

4) compute the limiter by calculating the minimum of indicator for each edge of the four surfaces of the cell.

left to the interface RUVPL $=\frac{\left(1+\operatorname{sign} \Delta f_{\operatorname{miL}}\right) \Delta f_{\max }+\left(1-\operatorname{sign} \Delta f_{\operatorname{miL}}\right) \Delta f_{\min }}{2 \Delta f_{\operatorname{mjL}}}$.
This formulation ensures that:

$$
\text { If }\left\{\begin{array}{l}
\Delta f_{\mathrm{mj}}>0 \mathrm{RUVP}=\frac{\Delta f_{\max }}{\Delta f_{\mathrm{mj}}} \\
\Delta f_{\mathrm{mj}}<0 \mathrm{RUVP}=\frac{\Delta f_{\min }}{\Delta f_{\mathrm{mj}}}
\end{array} .\right.
$$

the outcome of RUVP is always positive. If RUVP > 1 then the projected value at the interfaces will introduce a new minima or maxima as compared to the values at the baricenters of the appropriate cells.

Select the minimum between the six values for RUVP (two for every one of the three interfaces of the cell) not exceeding unity. The selected minimum of RUVP is the required limiter. The gradient is multiplied by this limiter that is always less or equal to unity.

Computes the projected values at the half timestep level based on the local characteristics of the flow. This process extends the accuracy of the code to be second-order in time as well as in space.

The characteristics projection consists of several steps.

1) Calculate the velocity of sound in the two cells bordering the designated interface:

CNLEFT $=\sqrt{\gamma_{L} \cdot P_{L} / \rho_{L}} \quad$ sound speed in left cell CNRIGT $=\sqrt{\gamma_{R} \cdot P_{R} / \rho_{R}} \quad$ sound speed in right cell

UVLEFT $=\overline{\mathrm{U}} \cdot \overline{\mathrm{t}}$ velocity of fluid at the left cell projected in $\overline{\mathrm{t}}$ direction UVRIGT $=\overline{\mathrm{U} R} \cdot \overline{\mathrm{t}}$ velocity of fluid at the right cell projected in $\overline{\mathrm{t}}$ direction where:

$$
\begin{gathered}
\overline{\mathrm{t}}=\mathrm{XXN} \cdot \overline{\mathrm{i}}+\mathrm{YYn} \cdot \overline{\mathrm{j}}+\operatorname{zzn} \overline{\mathrm{k}} \\
\overline{\mathrm{U}}=\mathrm{U} \cdot \overline{\mathrm{I}}+\mathrm{v} \cdot \overline{\mathrm{j}}+\mathrm{w} \cdot \overline{\mathrm{k}}
\end{gathered}
$$

2) To compute the interpolated left and right projected values at time $t N+$ $\mathrm{Dt} / 2$, we calculate the distances that the disturbances generated from the baricenter of the cells. traveling toward the interface:

$$
\begin{aligned}
& \text { ZZLEFT }=(\text { UVLEFT }+ \text { CNLEFT }) \cdot \Delta t / 2 \\
& \text { ZZRIGT }=-(\text { UVRIGT }- \text { CNRIGT }) \cdot \Delta t / 2
\end{aligned}
$$

If ZZLEFT or ZZRIGT are negative they are reset to zero.
3) Calculate the distances that the flow will travel if it were to flow at the velocity of each of the local characteristics:

$$
\begin{aligned}
\text { ZOLEFT } & =\text { UVLEFT } \cdot \Delta t / 2 \\
\text { ZORIGT } & =- \text { UVRIGT } \cdot \Delta t / 2 \\
\text { ZPLEFT } & =(\text { UVLEFT }+ \text { CNLEFT }) \cdot \Delta t / 2 \\
\text { ZPRIGT } & =-(\text { UVRIGT }+ \text { CNRIGT) } \cdot \Delta t / 2
\end{aligned}
$$

$$
\begin{aligned}
\text { ZMIEFT } & =(\text { UVLEFT }- \text { CNLEFT }) \cdot \Delta t / 2 \\
\text { ZMRIGT } & =-(\text { UVRIGT }- \text { CNRIGT }) \cdot \Delta t / 2
\end{aligned}
$$

4) Calculate the projected values of the nonconservative variables (d:nsity, velocity component (perpendicular and tangential to the interface. and pressure).

For the left cell:

Density
HRRL $=\quad \rho_{L}+\bar{\nabla}_{\rho_{L}} \cdot\left(\bar{r}_{L}-\operatorname{ZZLEFT} \cdot \bar{t}\right)$

3

For the right cell:

Density
HRRR $=\rho_{R}+\bar{\nabla} \rho_{R} \cdot\left(\bar{r}_{R}-\right.$ ZZRIGT $\left.\cdot \bar{t}\right)$

Perpendicular velocity \quad HUUR $=\quad U_{R}+\bar{\nabla} U_{R} \cdot\left(r_{R}-\right.$ ZZRIGT $\left.\cdot \bar{t}\right)$

Tangential velocity $\quad H V V R=V_{R}+\bar{\nabla} V_{R} \cdot\left(\bar{r}_{R}-\right.$ ZZRIGT $\left.\cdot \bar{t}\right)$
Pressure
GMTRGT $=\rho_{R} \cdot H R R R \cdot H P P R$

For the left cell. taking into account the following characteristics:

- For (UVLEFT + CNLEFT):
$U U U=\bar{\nabla} U_{L} \cdot($ ZPLEFT - ZZLEFT \bar{t}
PPP $=\bar{\nabla} \mathrm{P}_{\mathrm{L}} \cdot($ ZPLEFT - ZZLEFT $) \overline{\mathrm{t}}$
UPLFT $=-0.5 \cdot(U U U+$ PPP $/ \sqrt{\text { GMTLFT }}) / \sqrt{G M T L F T}$
If UVLEFT + CNLEFT is negative, UPLFT is reset to zero.
- For UVLEFT - CNLEFT:
$\mathrm{UUU}=\overline{\mathrm{\nabla}} \mathrm{U}_{\mathrm{L}} \cdot($ ZMLEFT - ZZLEFT $) \cdot \overline{\mathrm{t}}$
PPP $=\bar{\nabla} \mathrm{P}_{\mathrm{L}} \cdot($ ZMLEFT - ZZLEFT $) \cdot \overline{\mathrm{t}}$
UMLFT $=0.5 \cdot(\mathrm{UUU}-\mathrm{PPP} / \sqrt{\text { GMTLFT }}) / \sqrt{\text { GMTLFT }}$
If UVLEFT - CNLEFT is negative, UPLFT is reset to zero.
- For UVLEFT:
$\mathrm{PPP}=\overline{\mathrm{\nabla}} \mathrm{P}_{\mathrm{L}} \cdot($ ZOLEFT - ZZLEFT $) \cdot \overline{\mathrm{t}}$

RRRR $=\rho_{\mathrm{L}}+\bar{\nabla}_{\rho_{\mathrm{L}}} \cdot\left(\bar{r}_{\mathrm{L}}-\right.$ ZOLEFT $) \cdot \overline{\mathrm{t}}$
URLFT $=$ PPP/GMTLFT $+1 /$ HRRL $-1 / R R R R$
If UVLEFT is negattve, URLEFT is reset to zero.
For the right cell, taking into account the following characteristics:

- For UVRIGT + CNRIGT:
$\mathrm{UUU}=\bar{\nabla} \mathrm{U}_{\mathrm{R}} \cdot($ ZZRIGT - ZPRIGT) $\overline{\mathrm{t}}$
PPP $=\bar{\nabla} P_{R} \cdot($ ZZRIGT - ZPRIGT) \bar{t}
UPRGT $=-0.5 \cdot(\mathrm{UUU}+\mathrm{PPP} / \sqrt{\text { GMTRGT }}) / \sqrt{\text { GMTRGT }}$
If UVRIGT + CNRIGT is positive. UMRGT is reset to zero.
- For UVRIGT - CNRIGT:
$\mathrm{UUU}=\overline{\mathrm{V}} \mathrm{U}_{\mathrm{R}} \cdot($ ZZRIGT - ZMRIGT $) \cdot \overline{\mathbf{t}}$
PPP $=\bar{\nabla} P_{R} \cdot($ ZZRIGT - ZMRIGT $) \cdot \bar{t}$
UMRGT $=0.5 \cdot(U U U-P P P / \sqrt{G M T R G T}) / \sqrt{G M T R G T}$ If UVRIGT - CNRIGT is positive, UMRGT is reset to zero.
- For UVRIGT:

PPP $=\bar{\nabla} P_{R} \cdot($ ZZRIGT - ZORIGT $) \cdot \bar{t}$
RRRR $=\rho_{R}+\bar{\nabla}_{\rho_{R}} \cdot\left(\bar{r}_{R}+\right.$ ZORIGT $) \cdot \bar{t}$
URRGT $=$ PPP/GMTRGT $+1 /$ HRRR $-1 /$ RRRR
If UVRIGT - CNRIGT is positive, URRGT is reset to zero.

The projected values will be:
$R R L=1 /(1 / H R R L-(U P L F T+U M L F T+U R L F T))$ $U U L=$ HUUL $+(U P L F T-U M L F T) \sqrt{\text { GMTLFT }}$

$$
\begin{aligned}
& \mathrm{VVL}=\mathrm{HVVL}+(\mathrm{UPLFT}-\mathrm{UMLFT}) \sqrt{\text { GMTLFT }} \\
& \mathrm{PPL}=\mathrm{HPPL}+(\mathrm{UPLFT}+\mathrm{UMLFT}) \mathrm{GMTLFT} \\
& \mathrm{RRR}=1 /(1 / \mathrm{HRRR}-(\mathrm{UPRGT}+\mathrm{UMRGT}+\mathrm{URRGT})) \\
& \mathrm{UUR}=\mathrm{HUUR}+(\mathrm{UPRGT}-\mathrm{UMRGT}) \sqrt{\text { GMTRGT}} \\
& \mathrm{VVR}=H V V R+(U P R G T-\text { UMRGT) } \sqrt{\text { GMTRGT }} \\
& \mathrm{PPR}=\mathrm{HPPR}+(\mathrm{UPRGT}+\text { UMRGT) } \cdot \text { GMTRGT. }
\end{aligned}
$$

Those values are the assigned condition for the two sides of the interface. If the interface is a boundary, the right condition is determined according to the type of boundary.

A.2.1 Preprocessor for the Three-Dimensional Unstructured Grid

The input geometrical data for AUGUST should provide the following data:

1) Number of vertices (NV)
2) A table of vertices specifying: number of vertex (IV) x coordinate (XV(1.IV)) y coordinate (XV(2,IV)) z coordinate (XV(3,IV).
3) Number of edges (NE)
4) A table of edges specifying number of edges (IE) vertex number indicating the beginning of the edge (JE(1,IE))
vertex number indicating the end of the edge (JE(2.IE))

$$
\begin{array}{ll}
\mathrm{IV} 1=\mathrm{JE}(1, \mathrm{IE}) & \begin{array}{l}
\text { vertex indicating the beginning of the } \\
\text { edge }
\end{array} \\
\mathrm{IV} 2=\mathrm{JE}(2, \mathrm{IE}) & \text { vertex indicating the end of the edge }
\end{array}
$$

The direction of the edge is defined from IV1 to IV2.
5) Number of sides (NS)
5) A table of sides (triangles) specifying:
number of sides (IS)
number of first vertice (JS(1,IS))
number of second vertices (JS(2,IS))
number of third vertices (JS(3,IS))
number of first edge (JS(4,IS))
number of second edge (JS(5,IS))
number of third edge (JS(6,IS))
The sign of JS(4,IS). JS(5.IS). JS(6.IS) indicates whether the direction of the edge is counter clockwise (positive) or clockwise (negative).
tetrahedra on left to the side (JS(7,IS))
tetrahedra on right to the side (JS(8,IS))
Number associated with the status of the side (US(9.IS)).
if $\mathrm{JS}(9, \mathrm{IS})=0$ the side is an ordinary side inside the computational domain.
If $\mathrm{JS}(9, \mathrm{IS}) \neq 0$ the side lies on the boundary of the domain. The labeling number will indicate what type of boundary to applied through this side.

The three vertices of the side are ordered in a counter clockwise arrangement.

IV1 $=\mathrm{JS}(1, \mathrm{IS}) \quad$ first vertex
IV2 $=\mathrm{JS}(2$, IS $) \quad$ second vertex
IV3 $=\mathrm{JS}(3, \mathrm{IS}) \quad$ third vertex
IE1 $=\mathrm{JS}(4, \mathrm{IS}) \quad$ First edge of the triangle directed from IV1 to IV2 (IE1 is positive).
IE2 $=\mathrm{JS}(5, \mathrm{IS}) \quad$ Second edge directed originally from IV3 to IV2. (IE2 will be negative because its direction is clockwise.)
IE3 $=\mathrm{JS}(6$, IS $) \quad$ Third edge directed originally from IV3 to IV1 (IE3 is positive).
IC1 $=\mathrm{JS}(7, \mathrm{IS}) \quad$ tetrahedra on the left
IC2 $=\mathrm{JS}(8 . \mathrm{IS}) \quad$ tetrahedra on the right
The normal to the side is directed from IC1 toward IC2. If the side is a boundary, the normal is always from the computational domain pointing outside (out of the fluid domain). The three vertices are ordered in a counter clockwise direction opposite to the direction of the normal to the side. For a boundary side, IC2 will be always zero.
$\mathrm{IJS}=\mathrm{JS}(9, \mathrm{IS}) \quad$ Status of the side
IJS9 $=6 \quad$ Simulating wall conditions
IJS9 = $7 \quad$ Simulating supersonic outlet conditions
IJS9 $=8 \quad$ Simulating supersonic inlet conditions.
7) A table of sides specifying: x coordinate of baricenter of side (XS(1,IS)) y coordinate of baricenter of side (XS(2.IS)) z coordinate of baricenter of side (XS(3.1S)) area of side (XS(4,IS))
8) A table of sides specifying:
the three component of the vector normal to the side:

$$
\overline{\mathrm{N}}=\mathrm{XN}(\mathrm{IS}) \overrightarrow{\mathrm{i}}+\mathrm{yN}(\mathrm{IS}) \overrightarrow{\mathrm{J}}+\mathrm{ZN}(\mathrm{IS}) \overline{\mathrm{k}}
$$

the three component of the parallel vector tangential to the side:

$$
\overrightarrow{\mathrm{P}}=\mathrm{XP}(\mathrm{IS}) \overrightarrow{\mathrm{r}}+\mathrm{YP}(\mathrm{IS})+\mathrm{ZP}(\mathrm{IS}) \overrightarrow{\mathrm{k}}
$$

the three component of the parallel vector tangential to the side:

$$
\mathrm{T}=\mathrm{XT}(\mathrm{IS}) \vec{r}+\mathrm{YT}(\mathrm{IS}) \overrightarrow{\mathrm{j}}+Z \mathrm{~T}(\mathrm{IS}) \overrightarrow{\mathrm{k}}
$$

where $\overline{\mathrm{P}} \times \overline{\mathrm{T}}=\overline{\mathrm{N}}$ the normal. perpendicular and parallel vectors form a local right-handed coordinate system).
9) number of cells (tetrahedrais) (NC)
10) A table of cells specifying:

Number of cells (IC)
Number of first vertex (JC(1,IC))
Number of second vertex (JC(2,IC))
$\mathrm{Nu}:$.iber of third vertex (JC(3,IC))
N : aber of fourth vertex (JC(4.IC))
I nber of the first side (JC(5,IC))
1 .mber of the second side (JC(6.IC))

Number of the third side (JC(7.IC))
Number of the fourth side (JC(8,IC))
$\mathrm{N} 1=\mathrm{JC}(1 . \mathrm{IC})$ first vertex
IV2 $=\mathrm{JC}(2, \mathrm{IC})$ second vertex
IV3 $=\mathrm{JC}(3, \mathrm{IC})$ third vertex
IV4 $=\mathrm{JC}(4, \mathrm{IC})$ fourth vertex
Seen from inside the tetrahedron. the first three vertices are counter clockwise around the large with the fourth vertex at the apex.

ISI $=\mathrm{JC}(5, \mathrm{IC})$ first side
IS2 $=\mathrm{JS}(6, \mathrm{IC})$ second side
IS3 $=\mathrm{JS}(7, \mathrm{IC})$ third side
IS4 $=\mathrm{JS}(8$, IC $)$ fourth side
Face ISJ is opposite the IVJ vertex
11) A table of cells specifying:
x coordinate of the baricenter of cell
(XC(1,IC))
y coordinate of the baricenter of cell (XC(2,IC))
z coordinate of the baricenter of cell \quad (XC($3, \mathrm{IC})$)
Volume of the cell
(XC(4,IC))

A.2.2 Face(Triangle) information

xf(1.k) - area of the kth face $x f(2 . k) \cdot x$ position of face centroid $x f(3, k)$ - y position of face cenuroid $x f(4, k) \cdot z$ position of face centroid
yfl kJ - x component of normal to face yf(2.k) - y component of normal to face $y f(3 . k)$ - z component of normal to face
if(1.k) - the index of the first vertex if(2. k$)$ - the index of the second vertex iff $3 . \mathrm{k}$) the index of the thitrd vertex iff4. kl - the signed index of the frst edge iff5.k) the signed index of the second edge iff6.kl - the signed index of the third edge $i f(7 . \mathrm{k})$ - the index of the tetrahedron to the left of face
jf(8.k) - the index of the tetrahedron to the rigth of face ffl9.kl - status of the kth face $s=0$ face unrestricted $s=1$ not used $s=2$ face restricted to a surface $s=3$ face is fuxed
If(10,k) - pointer to surface that restricts the face.
Ifll $11, k)$ - the boundary condiltion for thls face

Restricting line/surface element if(10,k) wher ifi9.kb 0
tetrahedron on the left if(7,k)

Cell(Tetrahedral) information

xc(1.k) - x position of cell centroid xci2.k) - y position of cell centroid xc(3.k) - z position of cell centroid $x c(4 . \mathrm{k})$ - volume of cell
$j c(1 . k)$ - the index of the first base vertex
$j c(2 . k)$ - the index of the second base vertex $j c(3, k)$ - the index of the third base vertex $j c(4, k)$ - the index of fourch vertex opposite base $j c(5 . \mathrm{k})$ - the index offace opposite first vertex jc(6.k) - the index offace opposite first vertex $j c(7, k)$ - the index of face opposite secondivertex $j c(8 . \mathrm{k})$ - the index of face opposite thdrd vertex $j c(9 . k)$ - the index of face opposite fourth vertex $j c(10 . k)$ - the index of cell opposite first vertex $j c(11 . k)$ - the index of cell opposite second vertex $j c(12 . k)$ - the indiex of cell opposite third vertex jc(13.k) - the index of cell opposite fourth vertex

APPENDIX B
 LISTINGS

$*$	routine	page
1	main	1
2	HYORFL	13
3	RYORFL	19
4	KYORFL	22
5	HYRRMN	26
6	GERMTR	33
7	UPGRAD	38
8	GRADNT	39
9	FIRST	51
10	FCHART	53
11	EOS1	59
12	MATRLA	62
13	PSM	64
14	BILD	64
15	MATRLX	64
16	VOLMTETC	66

Thu Jul 1 14:17:00 1993
 threed. f

page

1	BILD
2	ELSI
3	FCHART
4	FIRST
5	GERMTR
6	GRADNT
7	HYDRFL
8	HYORMN
9	KYORFL
10	MATRLA
11	MATRLX
12	PSM
13	RYORFL
14	UPGRAD
15	VOLMTETC
16	main

64
59
53
51
33
39
13
26
22
62
64
64
19
38
66
1

296	296	C		296
297	297		END If	297
298	298		CALL MATRLA	298
299	299		CALL MATRLX	299
300	300	C		300
301	301	${ }^{C}$	InItialization of the problem	301
302	302	C		302
303	303		HRSM $=1 . E-8$	303
304	304		HRGP $=$ HRGG +1.	304
305	305		HRGM $=$ HRGG -1.	305
306	306		CF = HRGP / (2. * HRGG)	306
307	307		$T \mathrm{~T}=0 . \quad 1$	307
308	308	\bigcirc		308
309	309		PIRAO $=$ ATAN (1.$) / 45$.	309
310	310		ALPHA $=$ ALFA * PIRAD	310
311	311		PRIMT *,ALFA, PIRAD, ALPHA	311
312	312	C		312
313	313		COSS $=\operatorname{COS}($ ALPHA $)$	313
314	314		SINH = SIN(ALPHA)	314
315	315		TAMN = TAN (ALPHA)	315
316	316	C	-	316
317	317	C-		317
318	318	C		318
319	319	C -		319
320	320	C		320
321	321	c(2)		321
322	322		TLIMIT $=.9$	322
323	323		ITER $=6$	323
324	324		IF (ICOND. EQ . 0) THEN	324
325	325		UVIM = XMCHIN * SQRT (HRGG * PIM / RIM)	325
326	326		UIN - UVIN * COSS	326
327	327		VIN = UVIN * SIM	327
328	328		WIM $=0$.	328
329	329	c		329
330	330		DO 150 IC = 1 , NC	330
331	331		HYOV (IC, 1) = RIM	331
332 333	3332		MYDV(IC, 2) $=0$.	332
333	333		HYOV (IC.3) $=0$.	333
334	334 335			334
335 336	335 335		HYDV(IC , 5) $=$ PIM	335
336 337	336		HYOV(IC, 6) $=1 . \mathrm{E}-6$	335
337 338	337		HYOV (IC, 7) = 1.4	337
338 339	338 339		HYOV(IC , 8) = PIN / (HYDV(IC . 7) - 1.)	338
339 340	339	c		339
340	340	150	continue	340
341	341		RADIUS $=.0001$	341
342	342		EXPLSV - 8.	342
343	343		DO IC = 1 , HC	343
344	344		XXI $=$ XC(1 , IC)	344
345	345		YYI $=$ XC($2, I C$,	385
346	346		2ZI - XC(3 , IC)	346
347	347		RSS - SORT (XXI * XXI + YYI * YYI + ZZI * ZZI)	347
348	348		IF (RSS . LT - RADIUS) THEN	348
349	349		print**xxi.yyi, 22i, radius	349
350	350		HYDV (IC . 1) = EXPLSV * . 4536 * . $75 / 3.141569$ /	350
351	351		(RADIUS* RADIUS * RADIUS)	351
352	352		HYOV(IC , 6) $=1$.	352
353	353		HYOV (IC . 8) = HYOV(IC . 1) * 1080. * 4.185 *	353
354	354		(1000.*1.01/.7	354
355	355		MITER $=0$	355
356	356		DST = $\operatorname{HYDV}(1 \mathrm{IC} .1)$ * GPERCC	356
357	357		VOL - WMX * ($1 .-$ - OST / FSX $) /$ DST / XGX	357
358	358		EMEO = HYDV(IC . 8) / HYDV(IC , 1) * WMX / RGAS	358
359	359	c		359
360	360		IYY - (EMEO - EMEOX (3)) / RANGEX + 1	360
361	361		IYY $=$ MaXO(1, MINO(IYY , 47))	361
362	362	C		362
363	363		$K=I Y Y+2$	363
364	364		IYY $=$ IYY	364
365	365		+ InT(AMAXI (EMEO - Emeox (K) , 0.) / DYX (K))	365
366	366		- IMT: AMAXI (EMEOX (K + 1) - EMEO . 0.) / DYX (K))	366
357	367		IYY $=$ MAXO(1, MINO(IYY , 47))	367
368	368	C		368
369	369		$K 1=1 Y Y+2$	369

370	370		K2 = $k 1+1$	370
371	371			371
372	372			372
373	373		CVM - CVMX (K1) + RT * (CVMX (K2) - CVmx (K1))	373
374	374		ERS - 0.	374
375	375	${ }_{6}$		375
376	376	10	continue	376
377	377		P - RGAS * T / VOL / GPERCC	377
378 379	378		RGAMMI $=$ CVM	378
379 380	379 380	c		379
380 381	380		$x=$ COVX / VOL $/\left(\begin{array}{l}(T+T H E T A X) ~ * * ~ A L F A X ~\end{array}\right)$	380
381	381		$z=x$ EXP(BETAX * X)	381
382	382		$X=1 .+$ BETAX * X (${ }^{\text {d }}$	382
383	383		RT $=$ ALFAX * T ! ($T+$ THETAX $)$	383
384	384		ERS $=$ ERS + RT * $2 * T$	384
385 386	385	c		385
386	386		IF (ITER . EQ. NITER) 60 TO 20	386
3387	387	C		387
388	388		CVM $=$ CVM * XGX + SCVX	388
389	389		* + RT * Z^{*} * (2.-RT / ALFAX - RT * X)	389
390	390		T - T - AMIMI (ERS / CVM . TLIMIT * T)	390
391	391	C		391
392 393	392		MITER = MITER + 1	392
393 394	393 394	C	RT $=0.01$ * T	393
395	395		K1 - RT	394
396	396		KI - MINO (Kı, 49)	396
397	397		K1 $=$ MaxO (K1, 3)	397
398	398		$\mathrm{K} 2=\mathrm{Kl}+1$	398
399	399		RT $=$ RT $-K 1$	399
400	400		CVM = CVMX (K1) + RT * (CVMX (K2) - CVMX (K1))	400
401	401			401
402	402		ERS $=$ ERS - EMEO 0 (402
403	403	C		403
404	404		GO TO 10	404
405	405	C		405
406	406	20	CONTINUE	406
407	407			407
408	408		RGAMM1 $=$ (RGAMM1 ${ }^{\text {a }}$	408
409	409			409
410	410		$x=x * Z /(1 .+2)$	410
411	411		RGAMNI - RGAMM1 / (($1 .-\mathrm{RT} * x$) ** $2+x$ * RGAMM1)	411
412	412		ERS $=$ ERS / EMEO	412
413	413		HYDV(IC . 7) = 1. / RGAmmi + 1.	413
414	414		$\operatorname{MYOV}($ IC . 5) $=\mathrm{P}$	414
415	415		EMD IF	415
416	416		END DO	416
417	417	C		417
418	418		XCOUHY $=0$	418
419	419		DO IC $=1$. NC	419
420	420		RCOUNT $=$ HYDV(IC . 8) + .5 * HYDV(IC . 1)*	420
421	421		- (HYOV(IC . 2) * HYOV(IC . 2) +	421
422	422		- $\quad \operatorname{HYDV}($ IC. 3) * $\operatorname{HYDV}($ IC , 3 3) +	422
423	423			423
424	424		XCOUNT $=$ XCOUNT + XC(4, IC) * RCOUNT	424
425	425		END DO	425
426	426		PRINT * , XCOUNT	426
427	427		IIJJ-1	427
428	428		IF(IIJJ.EQ.0) GO TO 1122	428
429	429	${ }^{C}$	remove the followed IF statement for reguiar run	429
430	430	c	IF (IOPTN . EQ . 2) THEN	A 30
431	431	c	IF (IOPTN . EQ . 1) THEN	
432	432	C		43.
433	433		NX $=360$	433
434	434		00190 IX $=1, N X$	434
435	435		XX(IX) $=$ (1X-.5)*.002	435
436	436	190	CONTINUE	436
437	437		READ (11.1001) (PP(IX), IX I (, MX)	437
438	438		READ (11,1001) (UU(IX), IX $\mathrm{I}, 1, N X$)	438
439	439		READ (11,1001) (HR (IX), IX $=1, N \mathrm{~N})$	439
440	440		READ (11,1001) ($A A(1 X), 1 \mathrm{X}=1, \mathrm{NX})$	440
441	441		READ (11,1001) (GG(IX), IX $=1, N X$)	441
442	442		READ (11.1001) (EE(IX), $\mathrm{IX}=1, \mathrm{NX}$)	442
443	143	1001	FORMAT(6E12.5)	443

444	444	C		444
445	445		ICOUNT $=0$	445
446	445		00260 IC $=1$, NC	446
447	447	C	XXI $=$ XC($1,1 C$) + . 2667	447
448	448		XXI $=$ XC(1 , IC) + .1:43	448
449	449		YYI $=X C(2,1 C)-1.96596$	449
450	450	C	LII $=$ XC($3, I C)-1.25$	450
451	451		ZZI $=$ XC(3 , IC $)-1.905$	451
452	452		RSS $=$ SORT (XXI * XXI + YYI * YYI + ZZI * IZI)	452
453	453		XYS $=$ SQRT(XXI * XXI + YYI * YYI)	453
454	454	C		454
455	455		00270 IX $=1.10 \times 1$	455
456	456		x001 = $x \times(1 x)$	456
457	457		XDD2 $=$ XX ($\mathrm{IX} \times 1)$	457
458	458		IF (RSS . GT . XODI . AND. RSS - IT. XDOD2) THEM	458
459	459		XKSI $*($ RSS - XDD1 $) /($ (XDD2 - X001)	459
460	460		ICOUNT $=$ ICOUNT +1	460
461	461	C		461
462	462		$\operatorname{HYDV}(1 C, 1)=\operatorname{HR}(1 X) *(1 .-X K S I)+$	462
463	463		HR(IX+1) * XKSI	463
464	464 465	C		464
466	466			465 466
467	467		HYOV(IC, 4) = 2ZI $/$ RSS * HYOUVW	467
468	468		HYOVUV = XYS / RSS * HYDUVH	468
469	469	c		469
470	470		THETHA $=$ ATAN2 (YYI : XXI)	470
471	471		HYOV(IC.2) = HYOVUV * COS (THETHA)	471
472	472		HYOV(IC,3) = HYOVUV * SIN(THETHA)	477
473	473	c		474
474	474		$\operatorname{HYDV}(1 C, 5)=P P(1 X) *(1 .-X K S I)+$	474
475 476	475		PMOU(IC 5) ${ }^{\text {P }}$ (IX +1$) *$ XKSI	475
476	476 477	c	HYDV(IC,5) $=1.08 * H Y D V(I C, 5)$	476
478	478			477
479	479		$\operatorname{HYOV}(I C, 6)=A A(I X) *(1 .-X K S I)+$	478
480	480		A $A([X+1) *$ XKSI	480
481	481		$\operatorname{HYOV}(I C, 8)=E E(I X) *$ (1.-XKSI) *	481
482	482		EE(IX+1) * XKSI	482
483	483	C		483
484	484		G070 301	484
485	485		ENDIF	485
486	486	270	CONTINUE	486
487	487	301	CONTINUE	487
488	488		NITER $=6$	488
489	489		If(MITER.EO.0) THEN	489
490	490		IF (HYDV(IC : 6) ; LT . 2) THEN	490
491	491		OST $=$ HYOV(IC , 1) * GPERCC	491
492	492		VOL - WMA * (1. - DST / FSA) / DSS / XGA	492
493	493		TT = HYDV(IC , 5) * VOL * GPERCC / RGAS	493
494	494	c		494
495	495		T= ${ }^{\text {PT }}=0.01 * T$	495
496	496		RT $=0.01$ * T	496
497	497		K1 - RT	497
498	498		K1 - MIM ${ }^{\text {K1 }}$ (K1, 49)	498
499	499		$K 1=\operatorname{MAXO}(\mathrm{Kl}, 3)$	499
500	500		$K 2=K 1+1$	500
501	501		RT - RT - K1	501
502	502		EMERGY = EMEOA (K1) + RT * (EMEOA (K2) - EMEDA (K1))	502
503	503		ENERGY = ENERGY * RGAS / WMA	503
504	504	C		504
505	505		OO ITER - 1 . NITER	505
506	506		$X=$ COVA / VOL / (T + Thetas) ** ALFAA	506
507	507	6		507
508	508		BETALX = BETAA * X	508
509	509		RT $=X$ * EXP(BETALX)	509
510	510		RTINV = 1. (($1 .+$ RT)	510
511	511	C-	ERS IS THE FUNCTION, RT IS THE DERIVATIVE	511
512	512		ERS $=T$ - TT * RTINV	512
513	513		RT - 1. - IT * prinv * RTINV * Alfat * RT * (1. + betaix) /	513
514	514		- ERS ERS / at ($\mathrm{r}+$ Thetai)	514
515	515		$E R S=E R S / R T$	515
516	516		T- 1 - ERS	516
517	517		END DO	517

518	518	C		518
519	519		RT $=0.01$ * T	519
520	520		K1 = RT	520
521	521		K1 $=$ MINO (K1, 49)	521
522	522		$K 1=\operatorname{MAXO}(\mathrm{Kl}, 3)$	522
523	523		$K 2=K J+1$	523
524	524		RT - RT - Kl	524
525	525		ENERGY - EMEOA (K1) + RT * (EMEOA (K2) - EMEOA (K1))	525
526	526	c		526
527	527		$x=$ COVA / VOL $/\left(\begin{array}{l}(1+~ T H E T A A ~) ~ * * ~ A L F A A ~\end{array}\right)$	527
528	528		EX = EXP (BETAA * x)	528
529	529		Z - X * EX	529
530	530		RT = ALFAA * Y / ($T+$ THETAA $)$	530
531	531		ENERGY = EMERGY + RT * 2 * T	531
532	532		HYDV(IC , 8) - ENERGY R RGAS 1 IMA	532
533	533		EMEO $=\mathrm{HYOV}(\mathrm{IC} .8) / \mathrm{HYOV}(\mathrm{IC} .1)=$ MMA / RGAS	533
534	534	c		534
535	535		IYY $=$ (EMEO - EMEOA(3) $)$ / RANGEA +1	535
536	536		IYY $=$ MAXO(1 . MINO(IYY . 47) $)$	536
537	537	\bigcirc		537
538	538		$K=1 Y Y+2$	538
539	539		IYY = IYY	539
540	540			540
541	541			541
542	542		IYY $=$ MAXO(1, MIMO(IYY . 47))	542
543	543	c		543
544	544		$\mathrm{KI}=\mathrm{IYY}+$?	544
545	545		K2 - $\mathrm{K}^{1}+1$	545
546	546		RT = (EMEO - EMEOA (K1)) / (EMEOA (K2) - EMEDA (K1))	546
547	547			547
548	548		CVM = CVMA K1 $^{\text {) }}$ + RT * (CVMA (K2) - CVMA (K1))	548
549	549		ERS $=0.0$	549
550	550	C		550
551	551		P = RGAS * T / VOL / GPERCC	551
552	552		RGAYE1 $=$ CVM	552
553	553		HYOV (IC . 7) - 1. / RGAYM1 + 1.	553
554	554		$\operatorname{HYDV}(1 \mathrm{C}, 5)=p$	554
555 556	555 556	C	ELSE	555 556
557	557	c		557
558	558		OST = HYOV(IC . 1) * GPERCC	558
559	559		VOL $=$ HMAX * ($1 .-$ DST / FSX $) /$ OST / XGX	559
560	560		TT - HYDV(IC , 5) * VOL * GPERCC / RGAS	560
561	561	c		561
562	562		$T=T T$	562
563	563		RT $=0.01$ * T	563
564	564		K1 $=$ RT	564
565	565		K1 - MINO ($\mathrm{Kl}, 49$)	565
566	566		K1 $=$ MAXO (KL. 3)	566
567	567		$K 2=K 1+1$	567
568	568		RT = RT - K1	568
569	569		EMERGY = EMEOX (K1) + RT * (EMEOX (K2) - EMEOX (K1))	569
570	570		EMERGY = ENERGY * RGAS / Wha	570
571	571	c		571
572	572		DO ITER = 1 , NITER	572
573	573		X - COVX / VOL / (T + ThETAX) ** ALFAX	573
574	574 75	c		574
575	575		BETALX $=$ BETAX * ${ }^{\text {P }}$	575
576	576		RT $=x$ * EXP (BETAZX)	576
577	577		RTINV $=1.1(1 .+$ RT)	577
578	578	C-	ERS IS The function, rt 15 the derivative	578
579	579		ERS * T - TT * RTINV	579
580	580		RT = 1. - TT * RTINV * RIINV * Alfax * RT * (1. + betaz) /	580
581	581		- ERS eRs / (${ }^{\text {(+ Thetax }}$)	581
582	582		ERS = ERS / RT	582
583	593		$T=T-E R S$	583
584	584		END DO	584
585	585	C		585
586	586		RT $=0.01$ * T	586
581	587		Kl * RT	587
588	588		K1 = MINO (K1. 49)	588
589	589		$\mathrm{K} 1 . \operatorname{maxO}(\mathrm{KL} .3)$	589
590	590		$\mathrm{K} 2=\mathrm{Kl}+1$	590
591	591		RT - RT - KI	591

```
C
        X = COvX i vOL / ( (T + THETAX ) ** ALFAX )
```

 EMERGY = EMEOX(K1) + RT * (EMEOX (K2) - EMEOX (X1))
 592
 EX = EXP (BETAX * X)
 \(Z\) - \(X\) * EX
 RT = ALFAX * \(1 /\) (\(T+\) THETAX)
 EHERGY * ENERGY + RT * I * T
 HYOV (IC 8) = ENERGY * RGAS / HMX
 VOL - WMX : (1 - DST / FSX) / OST / XGX 599
 VOL - WMX * (1. - DST / FSX) / DST / XGX 600
 C
EMEO = HYDV(IC . 8) / HYDV(IC . 1) * WMX / RGAS
IYY - (EMEO - EMEOX(3)) / RANGEX +
IYY = MAXO (1 . MINO(IYY , 47))
C
$K=I Y Y+2$
IYY - IYY
. + INT(AMAXI (EMED - EMEDX(K) (0.) / DYX(K))
- INT($\operatorname{AMAXI}(\operatorname{EMEOX}(K+1)$ - EMEO , 0.) / OYX (K))
IYY $=\operatorname{MAXO}(1, \operatorname{MIMO}(\operatorname{IYY}, 47$))
$K 1=[Y Y+2$
$\mathrm{K} 2=\mathrm{k} 1+1$
RT = (EMEO - EMEOX (K1)) / (EMEOX (K2) - EMEOX (K1))
$T=T X(K 1)+100 . * R T$
CVM = CVMX (K1) + RT * (CVMX (K2) - CVMX (K1))
ERS $=0$.
C
401
continue
$P=$ RGAS * $T /$ VOL / GPERCC
RGAMI - CVM
$x=\operatorname{COVX} / \operatorname{VOL} /((T+$ THETAX $)$ ** ALFAX $)$
$z=x * \operatorname{Exp}($ betax * $x)$
$X=1 .+$ BETAX * X
$R T=A L F A X * T$$(T+$ THETAX $)$
$E R S=E R S+R T * Z * T$
C
IF (ITER .EQ. NITER) GO TO 201
C
CVM = CVM * XGX + SCVX
T + RT * 2 * (2. - RT / ALFAX - RT * X)
T = T - AMINI (ERS / CVM . TLIMIT * T)
C
C
NITER = NITER + 1
$R T=0.01$ * T
K1 - RT
$K_{1}=$ MIMO (K1, 49)
$K 1=\operatorname{MaxO}(K 1,3)$
$K 2=K 1+1$
$R 1=R T-K 1$
RT $=$ RT $-K 1$
CVM $=\operatorname{CMX}(K 1)+R T *(\operatorname{CMMX}(K 2)-\operatorname{CUMX}(K 1))$
ERS = EMEDX (K1) + RT* (EMEOX KR2) -EMED: (K1))
ERS = ERS - EMEO
C
GO 10401
c
201 continue
$p=p *(1 .+Z)$
RGAM1 - (RGAMMI + 651

$x=x * 2 /(1 .+z)$
RGAMI $=$ RGAMMI $/((1 .-\operatorname{RT} * x) * * 2+x *$ RGAMMI $)$
ERS = ERS / EMEO

HYDV (IC , 5) $=\mathrm{P}$
END IF
END IF
NO IF
260 COMTI:'
${ }^{C}$
C(2)
ELSE

666	666		PINL - PIN	666
667	667		RINL = RIN	667
668	668		RINRTO = (Hacc * 1.) * XMSOR /	668
669	669		((HRGG - 1.) * XMSQR + 2.)	669
670	670		PINRTO - (2. * HRGG * XMSOR - (HRGG - 1.)) 1	670
671	671		(hRGG + 1.)	671
672	672		PIN = PINRTO * PIML	672
673	673		RIM = RINRTO * RINL	673
674	674		YMCHIN - SQRT (((ARGG - 1.) * XMSQR + 2.) /	674
675	675		(2.* HRGG * XMSQR - (HRGG - 1.)))	675
676	676		PRINT* , HRGG, RIN, PIN, YMCHIN	676
677	677		PRINT*. HRGG, RINL, PINL, XMCHIN	677
678	578		UVIN = XMCHIN * SORT (HRGG * PINL / RINL) -	678
679	679		(MIM MCHIN * SQRT(HRGG * PIM / RIN)	679
680	680		UIM = UVIM COSS	680
681	681		VIM - UVIM * SIM	681
682	682		WIM $=0$.	682
683	683	C		683
688	684		DO 155 IC $=1, \mathrm{NC}$	684
685	685		HYOU (IC, 1) = RINL	685
686	686		HYOV(IC. 2) = UIN	686
687	687		HYDV(IC, 3) = VIM	687
688	688		HYOV(IC, 4) = WIN	688
689	689		HYDV(IC, 5) - PINL	689
690	690	${ }^{\text {c }}$		690
691	691	155	continue	691
692 693	692		ENOIF	692
693 694	693	${ }^{6}$	remove the followed END If for regular run	693
694 695	694	${ }_{6}$	EMDIF	694
695 696	695		EMDIF	695
696 697	696 697	$[(2)<$	<<<<<	696
698	698	1122		697
699	699		IF (ICOND EO . O) THEM	698
700	700		IFPRTCL	699
701	701		$\operatorname{XPRTCL}(1,1)=.443$	
702	702		$\operatorname{XPRICL}(2,1)=1.0414$	702
703	703		$\operatorname{XPRTCL}(3,1)=1.4224$	703
704	704		$X \mathrm{XPRTCL}(1.2)=-.002$	704
705	705		$\operatorname{XPRTCL}(2,2)=.3556$	705
706	706		$\operatorname{XPRTCL}(3,2)=0.5842$	706
707	707		$X \operatorname{XPRTCL}(1.3)=-.275$	707
708	708		XPRTCL $(2,3)=-.3058$	708
709	709		$\operatorname{XPRITCL}(3,3)=-1.4224$	709
710	710		XPRTCL $(1,4)=2.032$	710
711	711		XPRTCL (2.4) $=-.3048$	711
712	712		XPRRTCL $(3.4)=-4.572$	712
713	713		$\operatorname{XPRTCL}(1,5)=.3048$	713
714	714		$\operatorname{XPRTCL}(2,5)=.1016$	714
715	715		XPRTCL $(3,5)=.3048$	715
716	716		XPRTCL $(1.6)=.4572$	716
717	717		$X \operatorname{XPRTCL}(2,6)=.1016$	717
718	718		$X \mathrm{XPRTCL}(3.6)=.4572$	718
719	719		$X \operatorname{XPRTCL}(1.7)=.6096$	719
720	720		XPRTCL $(2,7)=.1016$	720
721	121		$X \operatorname{XPRTCL}(3,7)=.3048$	721
722	722		$X \operatorname{XPRTCL}(1,8)=.4572$	722
723	123		$X \operatorname{XPRTCL}(2,8)=.1016$	723
724	724		$X \mathrm{XPRTCL}(3,8)=.1524$	724
725	725		XPRTCL $(1.9)=1.3462$	725
726	726		$X \operatorname{XPRTCL}(2,9)=.1016$	726
727	727		$X \operatorname{XPRTCL}(3,9)=.3048$	727
728	728		XPRPTCL $(1,10)=1.4986$	728
729	729		$\operatorname{XPRTCL}(2,10)=.1016$	729
730	730		$\operatorname{XPRPCLL}(3,10)=.4572$	730
331	131		$\operatorname{XPRTCL}(1,11)=1.651$	731
732	732		$\operatorname{XPRTCL}(2.11)=.1016$	732
733	733		$\operatorname{XPRTCL}(3,11)=.3048$	733
734	734		$\operatorname{XPP}^{\top} \mathrm{CL}(1,12)=1.4986$	734
735	735		XPKiCL $(2,12) * .1016$	735
736	736		$\operatorname{XPRTCL}(3,12)=.1524$	736
737	137		$\operatorname{XPRTCL}(1,13)=.6096$	737
738	738		XPRTCL 2.13) = . 7740	738
739	739		$\operatorname{XPRTCL}(3,13)=1.0658$	739

740	740	$\operatorname{XPRTCL}(1,14)=.6096$	740
741	741	$\operatorname{XPRTCL}(2,14)=.8138$	741
742	742	$\operatorname{XPRTCL}(3.14)-.5334$	742
743	743	XPRTCL (1,15) $=1.4224$	743
744	744	XPRTCL $(2,15)=.7740$	744
745	745	XPRTCL $(3.15)=1.0668$	745
746	746	$\mathrm{XPRTCL}(1.16)=1.4224$	746
747	747	XPRRTCL $(2,16)=.8128$	747
748	748	XPRRTCL (3.16) - . 5334	748
749	749	XPRTCL (1.17) $=-.3058$	749
750	750	XPRTCL $(2,17)=1.3208$	750
751	751	$X \mathrm{XPRTCL}(3,17)=-.4318$	751
752	752	XPRTCL $(1.18)=.2032$	752
753	753	XPRTCL (2.18) =.7590	753
754	754	XPRTCL $(3.18)=1.1898$	754
755	755	XPPRTCL (1.19) = . 254	755
756	756	XPRRTCL (2.19) - . 1772	756
757	757	X XPRTCL $(3.19)=1.1948$	757
758	758	$X P R T C L(1,20)=.9144$	758
759	759	XPRRTCL $(2.20)=.4064$	759
760	760	XPrRTCL $(3.20)=.9652$	760
761	761	XPRTCL $(1.21)=.2032$	761
762	762	XPRTCL $(2.21)=.7680$	762
763	763	$X \operatorname{XPRTCL}(3,21)=1.1888$	763
764	764	$X \operatorname{XPRTCL}(1,22)=.1532$	764
765	765	XPRPTCL $(2,22)=.7670$	765
766	765	$X \operatorname{XPRTCL}(3.22)=1.1888$	766
767	767	XPRRTCL $(1,23) * .1532$	767
768	768	$\operatorname{XPRTCL}(2,23)=.7665$	768
769	769	XPRTCL $(3,23)=1.1878$	769
770	770	$\operatorname{XPRTCL}(1,24)=.1532$	770
771	771	$\operatorname{XPRRTCL}(2,24)=.7765$	771
772	772	$X \operatorname{XPRTCL}(3,24)=1.1898$	772
773	773	XPRRTCL $(1,25)=.1532$	773
774	774	$\operatorname{XPRTCL}(2,25)=.7655$	774
775	775	$X P R T C L(3,25)=1.1898$	775
776	776	DO IK = 1 , NPRTCL	776
777	777	RMINH $=100000000$.	777
778	778	DO IC = 1 , NC	778
779	779	[1-JC(1, IC)	779
780	780	12-JC (2, IC)	780
781	781	[3-JC(3.IC)	781
782	782	$14=3 \times(4, I C)$	782
783	783	XXI $=$ XPRTCL $(1.1 K)$	783
784	784	YYI = XPRTCL (2.IK)	784
785	785	ZZI $=$ XPRTCL $(3.1 K)$	785
786	786	CALL VOLMTETC (11, 12, 13, XXI, YYI, 22I . VOLI)	786
787	787	CALL VOLMTETC (11. 12. [4, XXI, YY1, 221, VOL2)	787
788	788	CALL VOLMTETC (11, 13, 14, XXI, YY1, Z2I , VOL3)	788
789	789	CALL VOLMTETC (12, 13, I4, XXI, YYI. 22I . VOL4)	789
790	790	XXI $=$ XV(1,14)	790
791	791	YYI $=X V(2.14)$	791
792	792	221-XV(3.14)	792
793	193	CALL VOLMTETC (I1, 12, 13, XX1, YYY, 2ZI , VOLL)	793
794	794	OEFVOL-DABS (VOL 1) +DABS (VOL2) +DABS(VOL3) +DABS(VOL4)	794
795	795	- -DABS(VOLL)	795
796	796	IF (DABS(DEFVOL/VOLL) . LT . . 001) THEM	796
797	797	IJKPRT (IK) $=$ IC	797
798	798	PRINT*, ik, voll, vol2, vol3, vol4	798
799	799	PRINT*, ic, voll, defvol, defvol/voll	799
800	800	PRINT*, (XV(kk,jc $1, \mathrm{ic})$), kk-1,3)	800
801	801		801
802	802	PRINT*, (XV(kk,jc $3, i c)$, k k $=1,3$)	802
803	803	PRINT*, (XV(kk.jc(4, ic) , $\mathrm{kk}=1,3$)	803
804	804	PRINT*, (JS(9,jc(kk, ic)) , kk=5,8)	804
805	805	END If	805
806	806	END DO	806
807	807	END DO	807
808	808	DO IK = 1, NPRTCL	808
809	809	IC $=1$ JKPRT(IK)	809
810	810	ISS - JC(5.1 IC$)$	810
811	811	DO IKK $=5.8$	811
812	812	IS = JC(IKK, IC)	812
813	813	IBC - JS(9.IS)	813

814	814		IF (IRC. EQ . 6) THEN	814
815	815		ISS - 15	815
815	816		END If	816
817	817		END 00	817
818	818		IJKPRT(IK) $=155$	818
819	819		ERD DO	819
820	820		END IF	820
821	821	C		821
822	822		PRINT * .ICOMD, ICONP	822
823	823	c		823
824	824		IF (ICONP - EQ . 1) THEN	824
825	825		READ (8) RIN, PIN, RINL, PINL, UVIN, UIN, VIN, WIN, TT	825
826	826		PRINT * RIN, PIN.RINL, PINL, UVIN, UIN, VIN, WIN, TT	826
827	827	${ }^{\text {c }}$	READ (8) NPRTCL	827
828	828	C	IF(NPRTCL.GT.0)	828
829	829	c	- READ (8) (IJKPRT(IK), IK=1,NPRTCL)	829
830	830		DO II - 1 , 5	830
831	831		READ (8) ($(\mathrm{HYOV}(1 C, 1 K), \mathrm{IK}-1,8), \mathrm{IC}=1, \mathrm{MC})$	831
832	832		EMD DO	832
833	833	C		833
834	834		END IF	834
835	835	c		835
836	836		ZCOUNT $=0$	836
837	837		D0 380 IC = 1, NC	837
838	838		RCOUNT * HYOV(IC , 8) + .5 * HYOV (IC , 1) *	838
839	839		- (HYOV(IC . 2)* HYDV(IC . 2) +	839
840	840		HYOV (IC.3) * HYDV(IC. 3) +	840
841	841			841
842	842		ZCOUNT $=$ ZCOUNT + XC(4 , IC) * RCOUNT	842
843	843	380	CONTINUE	843
844	844		YCOUNT - ZCOUNT - XCOUNT	844
845	845		PRIMT * , ZCOUHT, YCOUNT	845
846	846		CALL HYDRMM	846
847	847	C		847
848	848	C		848
849	849	C		849
850	850	C	-------7	850
851	851		STOP 777	851
852	852	c	--------	852
853	853	c		853
854	854	C	FORHATS	854
855	855	${ }^{\text {c }}$		855 855
856	855	101		
857	857			857
858	858			858
859	859		'MTIME=', 12,5X, 'MDUMP=',15,5X,'10PORD=',12)	8850
860	860			860
861	861		END	861
862	862	C		802

```
SUBROUTINE HYDRFL
    Clol
C
R REAL OELP(128),WSOP(128),WSOM(128),HSOO(128).
    REAL OELP(128),HSOP(128),HSOM(128),HSOO(128),
    REAL RRIGHT(128),URIGHT (128),VRIGHT (128),PRIGHT (128)
    REAL RLEFTT(128), ULEFTT(128),VLEFTT(128), PLEFTT(128)
    REAL ENRGYI(128),ANRGYI(128)
```

${ }_{c}^{C}$
C
C
C
BEGIN LOOP OVER ALL EDGES IN The dOMAIN
00280 IH $=1, ~$
00280 IC $=1, ~ N C$
00280 IC $=1$. NC
HYOFLX (IC, IH $)=0$.
280 comitnue
c
NS1 - 1
NS2 = NOFVES (1)
DO 110 INS $=1$, NVEES
C
C
C
FETCH HYDRO QUANTITIES
DO 120 IS = MS1 . NS2
$K S=I S-N S I+1$
C
RRR(KS) = RR(IS)
UUR (KS $)=$ UR(IS
WR (KS $)=$ VR(IS
WR (KS $)=$ WR(IS
$\begin{array}{ll}\text { PPR }(\text { KS })= & \text { PR(IS }) \\ \text { AAR }(K S) & =A R(I S)\end{array}$
c
$\operatorname{AAR}(K S)=\operatorname{AR}(I S)$
$\operatorname{EER}(K S)=E R(I S)$
GGR(KS) = GR(IS)
RRL(KS) = RL(IS)
WUL (KS) - UL(IS)
VVL(KS $)=$ VL(IS $)$
WHL $(K S)=$ WL 15$)$
WHL $\left.(K S)=\begin{array}{l}\text { WL }(1 S) \\ \text { PPL } \\ K S\end{array}\right)=$ PL(IS $)$
ALL $(K S)=A L(I S)$
$E E L(K S)=F L(I S)$
$K S)$
GGL(KS) = GL (IS)
C
120 continue
c
00130 KS = 1 , NOFVES (INS)
${ }^{\mathrm{C}} \mathrm{C}$--
THIS SECTION OF CODE SOLVES FOR "PSTAR" AND "USTAR" IN
the riemann problem using nehton's method.

WLESO(KS) = WLEFT (KS) * WLEFT(KS)
WRISO (KS $)=$ WRIGT(KS) * WRIGT(KS)
C \quad PMIN(KS $)=$ AMIN1 (PPL (KS) . PPR (KS))
928
930
PSMLL KS) = HRSM * PMIN(KS)
${ }_{\mathrm{C}}^{\mathrm{C}}$--- form the starting guess for the solution
931
PSTAR (KS) = (WLEFT(KS) * PPR(KS) +
WRIGT(KS) * PPL(KS) -
864
865
865
866
867
868
869
870
871
871
871
872
872
873
874
875
876
877
878
879
880
881
882
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Thu Jul	1 14:17:00 1993	93 threed.f SUBROUTINE HYDRFL	page
937	75	HLEFT(KS) * HRIGT(KS)	937
938	76	(UUR(KS) - UUL(KS))) /	938
939	17	(HLEFT K KS) + HRIGT(KS))	939
940	78		940
941	$79 \quad 130 \mathrm{CO}$	COMTINUE	941
942	80 C		942
943	81	$001401=1$, IHRH	943
944	82 C		944
945	83 C --- 8E	BEGIN THE MEWTON ITERATION -----------------------------------	945
946	84 C		946
947	85 DO	$00150 \mathrm{KS}=1 . \mathrm{NOFVES}($ IMS)	947
948	86	CFFL = (GGL(KS) + 1.) / (2, * GGL (KS))	948
949	87	WLEFS (KS) = (1. + CFFL * (PSTAR(KS))	949
950	88		950
951	89	WLEFT (KS) = SQRT(WLEFS (KS))	951
952	90	ZLEFT (KS) = 2. * WLETT! KS) * WLEFS (KS) /	952
953	91	(WLESO(KS) + HLEFS (KS))	953
954	92	USTL(KS) = UUL(KS) -	954
955	93.	(PSTAR (KS) - PPL (KS)) / HLEFT (KS)	955
956	$94{ }^{95}{ }^{150}$ CO	continue	956
957	95 96	$00152 \mathrm{KS}=1 . \mathrm{NOFVES}($ INS)	957 958
959	97 -	CFFR $=(\operatorname{GGR}(\mathrm{KS})+1) /.(2 . * \operatorname{GGR}(\mathrm{KS})$)	959
960	98	WRIFS (KS) = ($1 .+$ CFFR * ($\operatorname{PSTAR}(\mathrm{KS})$)	960
961	99	PPRR(KS) - 1.)) * WRISO(KS)	961
962	100	WRIGT(KS) $=$ SQRT(WRIFS(KS))	962
963	101	2RIGT (KS) = 2. * WRIGT(KS) * HRIFS (KS) /	963
964 965	102 103		964
965 966	103	USTR(KS) = UUR (KS) ${ }^{+}$K ${ }^{\text {(}}$	965
967	$105152{ }^{\circ} \mathrm{CO}$	CONTINUE (PSTAR(KS) - PPR (KS)) / Wrigt kS)	966
968	106 C		968
969	107 DO	$00160 \mathrm{KS}=1$. NOFVES(INS)	969
970	108	DPST(KS) * ZLEFT (KS) * ZRIGT(KS)	970
971	109	(USTR(KS)-USTL (KS) $) 1$	971
972	110	PSTAP(KS) (ELEFT(KS) + ZRIGT(KS))	972
973	111	PSTAR (KS) = PSTAR (KS) - DPST(KS)	973
974	112	PSTAR (KS) = AMAXI (PSTAR(KS) . PSML (KS))	974
975	113160	COntinue	975
976	114 C		976
977	$115{ }^{1160}$	continue	977
978	116 C		978
979	117 C --- FO		979
980 981	118 C		980
981	119 DO	DO $170 \mathrm{KS}=1$, NOFVES (INS)	981
982 983	120	CFFL = (GGL (KS) + 1.) / (2. * GGL (KS))	982
983 984	121	WLEFT (KS) = SORT (HLESO(KS) * (1. +	983
984 985	122 170 ${ }^{\circ} \mathrm{CO}$	Continue CFFL* (PSTAR(KS) / PPL (KS) - 1.))	984
988	123 c 170	continue	985
987	125 DO	DO 172 KS = 1 , NOFVES(INS)	987
988	126	CFFR $=(\operatorname{GGR}(\mathrm{KS})+1) /.(2 . * \operatorname{GGR}(\mathrm{KS}) \mathrm{l}$	988
989	127	HRIGT(KS) = SQRT(HRISQ(KS) * ($1 .+$ +	989
990	128	CFFR * (PSTAR(KS) / PPR(KS) - 1.))	990
991	$129 \quad 172$ CO	CONTINEE	991
992	1306		992
993	131 00	00180 KS - 1 ; NOFVES (INS)	993
994	132	USTAR (KS) = (PPL(KS) - PPR (KS) *	994
995	133	WLEFT(KS) * UUL(KS) +	995
996	134	WRIGT(KS) * UUR(KS)) /	996
997	135	(WLEFT (KS) + WRIGT(KS))	997
998	${ }^{136}{ }^{137}{ }^{180}$ CO	CONTINUE	998
999 1000	137 C		999
1000 1001	${ }_{139}^{138}$ c DO	O $190 \mathrm{KS}=1$. NOFVES (INS)	1000
1001 1002	139 C		1001
1002 1003	140 C --- BEG	begin procedure to obtain fluxes from reimann formalism --	1002
1003	141 C		1003
1004	142	IF (USTAR (KS) . LE . 0.0) THEN	1004
1005	143 C		1005
1006 1007	144 145	$\left.\begin{array}{l}\text { RO(} \\ \text { POS } \\ \text { KS }\end{array}\right)=\operatorname{RRR}\left(\begin{array}{l}\text { KS }\end{array}\right)$	1005
1007	145	PO(KS) = PPR (KS $)$	1007
1008	146	UO(KS) = VUR (KS)	1008
1009	147	CO(KS) = SORT (HRGG* PPR(KS) / RRR(KS))	1009
1010	148	HO(KS) = WRIGT(KS)	1010

1011	149		GO(KS) = GGR(KS)	1011
1012	150		ISN(KS) - 1	1012
1013	151	C		1013
1014	152		ENRGYI(KS) - EER (KS)	1014
1015	153		AMRGYI (KS) = AAR (XS)	1015
1016	154		VGDFV (KS) = VVR(KS)	1016
1017	155		WGONV (KS) = WhR (KS)	1017
1018	156	C		1018
1019	157		ELSE	1019
1020	158	C		1020
1021	159		RO(KS) = RRL (KS)	1021
102:	160		PO(KS) = PPL (KS)	1022
102.:	161		VO(KS) = UUL (KS)	1023
1024	162		CO(KS) = SORT (HRGG * PPL (KS) / RRL (KS))	1024
1025	163		HO(KS) = WLEFT(KS)	1025
1026	164		GO(KS) = GGL (KS)	1026
1027	165		ISN(KS) $=-1$	1027
1028	166	C		1028
1029	167		EMRGYI(KS) = EEL (KS)	1029
1030	168		AARGYI (KS $)=$ AAL (KS $)$	1030
1031	169		VGOAV (KS) = VLL(KS)	1031
1032	170		WGONV (KS) = WHL (XS)	1032
1033	171		END IF	1033
1034	172	190	continue	1034
1035	173	C		1035
1036	174		DO 200 XS - 1 , NOFVES (INS)	1036
1037	175		DELP (KS) = PSTAR (KS) - POC KS)	1037
1038	176		WSOP(KS) = iSN(KS) * UO(KS) + HO(KS) / RO(KS)	1038
1039	177		HSOM (KS) = ISN(KS) * UO(KS) + CO(KS)	1039
1040	178	200	CONTINUE	1040
1041	179	c		1041
1042	180		DO $210 \mathrm{KS}=1$, NOFVES (INS)	1042
1043	181		IF (DELP (KS) GT . O.) THEN	1043
1044	182		HSCO(KS) = WSOP (KS)	1044
1045	183		ELSE	1045
1046	184		WSOO(KS) - WSOM (KS)	1045
1047	185		ELD IF	1047
1048	186	210	continue	1048
1049	187	6		1049
1050	188		DO $220 \mathrm{KS}=1$. NOFVES (LNS)	1050
1051	189	$\stackrel{C}{ }$		1051
1052	190	C		1052
1053	191	C		1053
1054	192		PGONV (KS) = PO(KS)	1054
1055	193		UGDNV (KS) $=$ UO(KS)	1055
1056	194		CGDNV (KS) $=$ CO(KS $)$	1056
1057	195		RGDNV (KS) $=$ RO(KS)	1057
1058	196	220	continue	1058
1059	197	C		1059
1060	198	[1060
1061	199	C		1061
1062	200			1062
1063	201		RSTAR (KS) = 1. / (1.1 RO(KS ; - DELP (KS) /	1063
1064	202			1064
1065	203		CSTAR (KS) = SQRT(GO(KS) * PSTAR (KS) / RSTAR (KS))	1065
1066	204		HSOM (KS) $=$ ISN(KS) * USTAR(KS) + CSTAR (KS)	1066
1067	205	c^{230}	COntinue	1067
1068	206	C		1068
1069	207		$00240 \mathrm{KS}=1$. HOFVES (INS)	1069
1070	208 209		IF (DELP (KS) GT, O.) THEN	1070
1071	209		SPIM (KS) = WSOP(KS)	1071
1072	210		ELSE	1072
1073	211		SPIN(KS) = HSOM (KS)	1073
1074	212		END IF	1074
10:5	213	240	continue	1075
10.	214	C		1076
$10:$ $10: 8$	215 216	c	DO $250 \mathrm{XS}=1$. NOFVES (INS)	1077 1078
1079	217		IF (WSOO(KS) . GE . O.) THEN	1079
1080	218		IF (SPIN(KS) . GE. 0,) THEN	1080
1081	219	C		1081
1082	220	C . ${ }^{\text {c- }}$		1082
1083	221	C		1083
1084	222		RGONV(KS) = RSTAR(KS)	1084

1085	223		UGDNV (KS) = USTAR (KS)
1086	224		$\operatorname{CGDNV}(\mathrm{KS})=\operatorname{CSTAR}(\mathrm{KS})$
1087	225		$\operatorname{PGDNV}(\mathrm{KS})=\operatorname{PSTAR}(\mathrm{KS}$)
1088	226		ELSE
1089	227	c	
1090	228		evaluate the inside rarefaction have -
1091	229	C	
1092	230		CGONV (KS) $=(\operatorname{CSTAR}(\mathrm{KS}) \times 2 .-$
1093	231		- ISN(KS) * USTAR(KS) * (GOC KS) - 1.
1094	232		- \quad (GO(KS) + 1.)
1095	233		UGDNV (KS) $=-\operatorname{ISN}($ KS) * CGONV (KS)
1096	234		RGDNV (KS) $=($ CGONV $(\mathrm{KS}) / \mathrm{CO}(\mathrm{KS})$) **
1097	235		
1098	236		PGDNV (KS) = CGONV (KS) * CGDNV (KS) * RGDNV KS) /
1099	237		(GO(KS)
1100 1101	238	C	
1101	239		END If
1102	240	C	
1103	241		END IF
1104	242	250	CONTINUE
1105	243	c	
1106	244		D0 $260 \mathrm{KS}=1$, NOFVES(INS)
1107	245		IS = KS + NS1 - 1
1108	246	C	
1109	247		ICL $=$ JS(7, IS)
1110	248		ICR = JS(8 , IS)
1111	249	C	
1112	250		CTT $=\operatorname{SORT}(\operatorname{CO}(\mathrm{KS}) \times \operatorname{PGDNV}(\mathrm{KS} \mathrm{)} \mathrm{/} \mathrm{RGDNV} \mathrm{(} \mathrm{KS} \mathrm{)} \mathrm{)}$
1113	251		XSS $=$ XS(5 . IS)
1114	252		XYZ $=1.1$ XSS
1115	253	C	
1116	254		IATRB $=$ JS (9, ${ }^{\text {I }}$)
1117	255		IF (IATRB . EQ . O) THEH
1118	256	C	
1119	257		XXM $=$ (XXC(1, ICR) - XC(1, ICL)) XYZ
1120	258		
1121	259		IZR - (XC(3 . ICR) - XC (3 , ICL)) XYZ
1122 1123	260	C	
1123	261		VEL =
1124	262		(UGDAVI KS) * XH(IS) +
1125	263		VGonv (KS) * XP(IS) +
1126 1127	264		HEDNV(KS) * XT(IS)) * XXN +
1127 1128	265		(UCONV (KS) * YN(IS) +
1128 1129	265		VGORV(KS) * YP (15) +
1129 1130	267		WGDNV (KS) * YT (IS)) * YYN +
1131	268 269		
1132	270		WGDNV (KS) * ZT(IS j) * ZZN
1133	271	c	
1134	272		DTU $=$ XSS / (CTT + ABS(VEL))
1135	273		DTT = AMINI(DTU , DTT)
1136	274	c	
1137	275		ELSE
1138	276	C	
1139	277		
1140	278		YYM = (XYZMDL 2 . IS) - XC(2 . ICL)) * XYZ
1141	279		ZZF = (XYZMOL 3 , IS) - XC 3 , ICL $)$) * XYZ
1142	280	c	
1143	281		VEL =
1144	282		(UGDNV (KS) * XN(IS) +
1145	283		VGDNV (KS) * XP(IS) +
1146 1147	284		WGDNV (KS) * XT(IS $^{\text {S }}$)) * XXN +
1147 1148	285		(UGDNV (KS) * YN(IS) +
1148 1149	286		VGDNV (KS) * YP(IS) +
1150	288		(UGDNV (KS) * ZN(IS) + * YMN
1151	289		VGdNV(KS) * LP(IS) +
1152	290		HGONV (KS) * 2T(IS)) * 2ZN
1153	291	C	
1154	292		OTU = XSS / (CTT + ABS (VEL))
1155	293		DTT = AMIN1 (DTU . OTT)
1156	294	C	
1157	295		END IF
1158	296		continue

Thu

Thu

1159	297	6		1159
1160	298		DO 270 KS = 1 NOFVES(INS)	1160
1161	299		IS $=$ KS + NSI - 1	1161
1162	300	¢		1162
1163	301	C...	FLUX FOR DENSITY	1163
1164	302	C		1164
1165	303		RO(KS) = RGDKV (KS) * UGDNV (KS)	1165
1166	304	c		1166
1167	305	C	FLUX FOR MOMENTUM DENSITY	1167
1168	306	C		1168
1169	307		U0¢ KS) $=\operatorname{PGDNV}(\mathrm{KS}) \times$ XN(IS) +	1169
1170	308		- RO(KS) * (UGDNV (KS) * XN(IS) +	1170
1171	309		VGDNV (KS) * XP(15) +	1171
1172	310			1172
1173	311		CO(KS) = PGDNV(KS) * YM (IS) *	1173
1174	312		- RO(KS) * (UGONV (KS) * Yn(IS) +	1174
1175	313		- VGONV (KS) * YP(IS) +	1175
1176	314		- WS KS $)$ HCONV (KS) * YT(IS))	1176
1177	315		HO(KS) $=$ PGDNV (KS) * ZN(IS) *	1177
1178	316		- RO(KS) * (UGCOHV KS) * ZN(IS) +	1178
1179	317		VGONV (KS) * 2P(IS) +	1179
1180	318		HGDNV (KS) * 2T(IS)	1180
1181	319	C		1181
1182	320	C	FLUX FOR ENERGY DENSITY	1182
1183	321	c		1183
1184	322		PO(KS) = UGDNV (KS) * (ENRCYI (KS) +	1184
1185	323		. 5 * RGDNV (KS) * (UGDNV (KS) * UGDNV (KS)	1185
1186	324		VGDNV (KS) * VGDNV (KS) +	1186
1187	325		WGDAV(KS) * WGDNV (KS)))	1187
1188	326	c		1188
1189	327	C	flux for combustion interface trackimg	1189
1190	328	c		1190
1191	329		AO(KS) = UGDNV (KS) * RGDNV (KS) * ANRGYI (XS)	1191
1192	330	c		1192
1193	331	270	cortinue	1193
1194	332	c		1194
1195	333		D0 290 IS = NSI , NS2	1195
1196	334		KS = IS - NSi + 1	1196
1197	335	C		1197
1198	336		$I C L=J S(7, I S)$	1198
1199	337		$I C R=J S(8, ~ I S ~) ~$	1199
1200	338	C		1200
1201	339		IATRB $=$ JS $(9,15)$	1201
1202	340		IF (IATRE . EQ . O) THEN	1202
1203	341	c		1203
1204	342	C...	FLUX FOR DENSITY	1204
1205	343	C		1205
1206	344		OLENG $=$ XS (4,15) * RO(KS)	1206
1207	345		HYDFLX (ICL , 1) $=$ HYDFLX (ICL , 1) + OLENG	1207
1208	346		HYDFLX (ICR , 1) = HYDFLX (ICR , 1) - OLENG	1208
1209	347	C		1209
1210	348	C ...	flux for momentum density (u direction)	1210
1211	349	c		1211
1212	350		OLENG * XS 4.15$)$ * UO(KS)	1212
1213	351		HYDFLX (ICL , 2) = HYDFLX (ICL . 2) + DLENG	1213
1214	352		HYOFLX (ICR , 2) = HYDFLX (ICR , 2)- DLEMG	1214
1215	353	${ }^{c}$		1215
1216	354	C...	FLUX FOR MOMENTUM DENSITY (V DIRECTION)	1216
1217	355	$¢$		1217
1218	356			1218 1219
1219 1220	357 358		HYOFLX HYDFLX ICL ICR	1219 1220
1220	358 359		HYDFLX (ICR , 3) - HYDFLX (ICR . 3) - DLENG	1220
1221	359 360	C ${ }_{\text {C }}$	FLUX FOR MOMENTUM DENSITY (W DIRECTION)	1221
1223	361	C		1223
1224	362		OLENG $=$ XS (4 , IS) * HO(KS)	1224
1225	363		HYDFLX (ICL , 4) = HYDFLX(ICL , 4) + DLENG	1225
1226	364		HYDFLX (ICR , 4) = $\operatorname{HYOFLX}($ ICR , 4) - OLEAG	1226
1227	365	c		1227
1228	366	c ...	FLUX FOR ENERGY DENSITY ..	1228
1229	367	c	俍	1229
1230	368			1230
1231	369		HYOFLX (ICL , 5) = HYDFLX (ICL , 5) + OLENG	1231
1232	370		HYDFLX (ICR . 5) = HYDFLX(ICR . 5) - DLENG	1232

1233	371	C		1233
1234	372	C...	Flux for combustion interface tracking.	1234
1235	373	C		1235
1236	374		DLEMG = XS (4 , IS) * AOS KS)	1236
1237	375		HYDFLX (ICL , 6) = HYDFLX (ICL , 6) + OLEHG	1237
1238	376		HYDFLX (ICR , 6) - HYDFLX (ICR . 6) - DLEMG	1238
1239	377	C		1239
1240	378		ELSE	1240
1241	379	C		1241
1242	380	C	FLUX FOR DENSITY	1242
1243	381	C		1243
1244	382		OLENG = XS 4 , IS) * RO(KS)	1244
1245	383		HYDFLX (ICL , 1) = HYDFLX (ICL , 1) + DLEMG	1245
1246	384	C		1246
1247	385		FLUX FOR MOMENTUM DENSITY (U DIRECTION)	1247
1248	386	C		1248
1249	387		DLENG $=$ XS ($4, \mathrm{IS}$) * UO(KS $)$	1249
1250	388		HYDFLX (ICL , 2) $=$ HYDFLX (ICL , 2) + OLEHG	1250
1251	389	C		1251
1252	390	c	FLUX FOR MOWEMTUM DERSITY (V direction)	1252
1253	391	C		1253
1254	392		OLENG $=$ XS(4 , IS) * CO(KS $)$	1254
1255	393		HYDFLX (ICL , 3) = HYDFLX (ICL , 3) + OLENG	1255
1256	394	C		1256
1257	395	C	FLUX FOR MOMEMTUM DEMSITY (4 direction)	1257
1258	396	C		1258
1259	397		DLEHG = XS(4 ; IS) * HO(KS)	1259
1260	398		HYDFLX (ICL , 4) = HYDFLX (ICL . 4) + OLEMG	1260
1261	399	C		1251
1262	400	c	flux for energy demsity	1262
1263	401	c		1263
1264	402		DLENG $=$ XS 4,15) * PO(KS)	1264
1265	403		HYDFLX (ICL , 5) $=$ HYDFLX (ICL , 5) + OLENG	1265
1266	404	C		1266
1267	405	c	FLUX FOR COMBUSTION INTERFACE TRACKING.	1267
1268	406	c		1268
1269	407		OLENG $=$ XS(4,15) * AO(KS)	1269
1270	408		HYOFLX (ICL . 6) = HYOFLX (ICL , 6) + OLEMG	1270
1271	409	C		1271
1272	410		End IF	1272
1273	411	290	continue	1273
1274	412	C		1274
1275	413		NS1 = HS2 + 1	1275
1276	414		HS2 - NS2 + HOFVES $($ INS + 1)	1276
1277	415	110	CONTINUE	1277
1278	416	c		1278
1279	417		RETURM	1279
1280	418		END	1280
1281	419	C		1281

1282	1		SUBROUTINE RYDRFL	1282
1283	2	C		1283
1284	3	C	- -	1284
1285	4	C	R I	1285
1286	5	C	RYORFL IS A 2 DIMEHSIONAL RIEMANN SOLVER THAT INTEGRATES I	1286
1287	6	C	FLUXES ACROSS MORMAL INTERFACES TO UPDATE VERTICES I	1287
1288	7	C	VARIABLES .	1288
1289	8	C	- 1	1289
1290	9			1290
1291	10	C		1291
1292	11		include ' ${ }^{\text {dansh00.h' }}$	1292
1293	12		include ' dhydano. h '	1293
1294	13		include 'dphsmo.h'	1294
1295	14		include 'dmatrio.h'	1295
1296	15	C		1296
1297	16		REAL DELP (128), $\mathrm{HSOP}(128), \mathrm{HSOM}(128), \mathrm{HSOO}(128)$,	1297
1298	17		- $\operatorname{RSTAR}(128), \operatorname{CSTAR}(128), \operatorname{Pmax}(128), \operatorname{PMIN}(128)$	1298
1299	18		REAL RRIGHT (128), URIGHT(128), VRIGHT (128), PRIGHT (128)	1299
1300	19		REAL RLEFTT (128), ULEFTT (128), VLEFTT(128), PLEFTT (128)	1300
1301	20		REAL ENRGYI (128), ANRGYI (128)	1301
1302	21	C		1302
1303	22	C		1303
1304	23	C		1304
1305	24		NS1 = 1	1305
1306	25		NS2 = NOFVES (1)	1306
1307	26		DO 110 INS - 1 , NVEES	1307
1308	27	C		1308
1309	28	C ...	FETCH HYDRO QUANTITIES .-.-	1309
1310	29	c		1310
1311	30		DO 120 IS = NSI, NS2	1311
1312	31		KS - IS - NSI + 1	1312
1313	32	c		1313
1314	33		ICL $=$ JS(7 . IS)	1314
1315	34		18C= $=35(9,15)$	1315
1316	35	C		1316
1317	36		RRL(KS) $=$ HYDV(ICL , 1)	1317
1318	37		UVLI $(\mathrm{KS})=\operatorname{HYDV}($ ICL 2) 2 * XN(IS) +	1318
1319	38		HYDV(ICL, 3) * YN(IS) +	1319
1320	39		HYDV(ICL. 4) * ZN(1S)	1320
1321	40		WVL(KS) $=$ HYOV (ICL , 2) * XP(IS) +	1321
1322	41		HYOV(ICL . 3) * YP(IS) +	1322
1323	42		HYDV(ICL, 4) * 2P(IS)	1323
1324	43		WHL (KS) = HYOV(ICL , 2) * XT(IS) +	1324
1325	44		HYDV(ICL, 3) * YT(IS) +	1325
1326	45		HYOV(ICL . 4)* ZT(IS)	1326
1327	46		PPL (KS) = HYDV(ICL . 5)	1327
1328	47		AAL $(\mathrm{KS})=\operatorname{HYDV}(1 \mathrm{CL} \cdot 6)$	1328
1329	48		EEL (KS) $=$ HYDV(ICL, 8)	1329
1330	49		GGL(KS) = HYOV(ICL.7)	1330
1331	50	C		1331
1332	51		RRR(KS) = RRL (KS)	1332
1333	52		IF (IBC - EQ . 0) THEL	1333
1334	53		UUR(KS) = UULL (KS)	1334
1335	54		ELSE KS) - UUL (KS	1335
1336	55		UUR(KS) = - UUL (KS)	1336
1337	56		ENO IF	1337
1338	57		VVR(KS) = VVL (KS)	1338
1339	58		WHR (KS) = WHL (KS)	1339
1340	59		$\operatorname{PPR}(\mathrm{KS})=\operatorname{PPL}(\mathrm{KS})$	1340
1341	60		$\operatorname{AAR}(\mathrm{KS})=$ AAL (KS $)$	1341
1342	61		EER (KS) = EEL (KS)	1342
1343 1344	62		GGR(KS) $=$ GGL (KS)	1343
1344 1345 1346	63	C		1344
1345	64	120	continue	1345
1346	65	c		1346
1347	66		DO $130 \mathrm{KS}=1$. NOFVES (INS)	1347
1348	67	${ }^{c}$		1348
1349	68	C ---	THIS SECTION OF CODE SOLVES FOR "PSTAR" AND "USTAR" IN	1349
1350	69	C	THE RIEMANN PROBLEM USING NEWTON'S METHOD.	1350
1351	70	C		1351
1352	71		WLEFT(KS) = SORT(GGL (KS) * PPL (KS) * RRL (KS))	1352
1353	72		WRIGT(KS) = SORT (GGR(KS) * PPR (KS) * RRR(KS))	1353
1354	73		WLESQ (KS) = WLEFT (KS) * WLEFT(KS)	1354 1355
1355	74		WRISQ(KS) = WRIGT(KS) * HRIGT(KS)	1355

1356	75	C		356
1357	76		PMIN(KS) = AMIN1 (PPL (KS) . PPR (KS))	1357
1358	77		PSML (KS) = HRSM * PMIM (KS)	1358
1359	78	c		1359
1360	79			1360
1361	80	C		1361
1362	81		PSTAR (KS) = (WLEFT (KS) * PPPR(KS) +	1362
1363	82		WRIGT(KS) * PPL (KS) -	1363
1364	83		WLEFT(KS) * WRIGT(KS)	1364
1365	84		(UUR (KS) - UUL(KS)))	1365
1366	85		(HLEFT (KS) + HRIGT (KS))	1366
1367	86			1367
1368	87	130	CONTINUE	1368
1369	88	c		1369
1370	89		DO $140 \mathrm{I}=1$, IHRN	1370
1371	90	${ }^{\text {c }}$		1371
1372	91	${ }^{\text {c }}$		1372
1373	92	C		1373
1374	93		$00150 \mathrm{KS}=1$, NOFVES ${ }^{\text {c }}$ (INS $)$	1374
1375	94		CFFL $=(\mathrm{GGL}(\mathrm{KS})+1)$.1 (2. * GGL (KS))	1375
1376	95		WLEFS $(\mathrm{KS})=(1 .+\mathrm{CFFL} *(\operatorname{PSTAR}(\mathrm{KS}))$	1376
1377	96		WLET (KS) PPPL(KS) - 1.)) * WLESQ(KS)	1377
1378	97		WLEFT (KS) $=$ SQRT(WLEFS $($ KS))	1378
1379	98		ZLEFT (KS) = 2. * WLEFT (KS) * HLEFS (KS) /	1379
1380	99		(WLESQ (KS) + WLEFS (KS))	1380
1381	100		USTL (KS) = UUL (KS) -	1381
1382	101			1382
1383 1384 1	102	150	continue	1383
1384 1385	103	C		1384
1386	105		(0) $152 \mathrm{KFSR}=1$ ($\operatorname{GGR}(\mathrm{KS})+1.) /(2 * \operatorname{GGR}(\mathrm{KS})$	1385
1387	106		WRIFS (KS) $=(1 .+\operatorname{CFFR} *(\operatorname{PSTAR}(\mathrm{KS})$)	1386 1387
1388	107		PPR(KS) - 1.)) * HRISQ(KS)	1388
1389	108		WRIGT(KS) $=$ SQRT(WRIFS(KS))	1389
1390	109		ZRIGT(KS) = 2. * HRIGT(KS) * HRIFS (KS) /	1390
1391	110		(HRISQ (KS) + HRIFS(KS))	1391
1392	111		USTR(KS) $=\operatorname{UUR}(\mathrm{KS}$) + +	1392
1393	112		- contimue (PSTAR(KS) - PPR (KS)) / HRIGT(KS)	1393
1394	113	152	COMTINUE	1394
1395	114	C		1395
1396	115		DO $160 \mathrm{KS}=1$, NOFVES (INS)	1396
1397	116		OPST(KS) - ZLEFT (KS) * 2RIGT(KS) *	1397
1398	117		(USTR (KS) - USTL (KS)) 1	1398
1399	118		- PSTAP KS) ZLEFT(KS) + 2RIGT(KS))	1399
1400	119		PSTAR (KS) = PSTAR (KS) - DPST(KS)	1400
1401	120		PSTAR (KS) = AMAXI (PSTAR(KS) , PSML (KS))	1401
1402	121	160	CONTINJE	1402
1403 1404	122	C		1403
1404	123	${ }^{140}$	continue	1404
1406	125	${ }^{C}$		1405
1407	126	C		11406
1408	127		DO $170 \mathrm{KS}=1$, NOFVES (INS)	1408
1409	128		CFFL $=$ (GGL (KS) + 1.) / (2.* GGL(KS))	1409
1410	129		HLEFT (KS) $=$ SQRT(HLESQ(KS) * ($1 .+$ +	1410
1411	130		- Cowtimue CFFL * (PSTAR(KS) / PPL (KS) - 1.)))	1411
1412	131	170	CONTINUE	1412
1413	132	C		1413
1414	133		DO $172 \mathrm{KSS}=1$ NOFVES(INS)	1414
1415	134		CFFR = (GGR(KS) + 1.) / (2. * GGR(KS))	1415
1416	135		HRIGT(KS) = SQRT (HRISQ(KS) * ($1 . \ldots+$	1416
1417	136		- Contluue CFFR* (PSTAR(KS) / PPR(KS) - 1.))	1417
1418	137	${ }^{172}$	CONTINUE	1418
1419	138	C		1419
1420	139		$00180 \mathrm{KS}=1$, NOFVES (INS)	1420
1421	140		USTAR (KS) = (PPL (KS) - PPR(KS) +	1421
1422	141		HLEFT (KS) * UUL (KS) +	1422
1423	142		WRIGT(KS) * UUR(KS)) /	1423
1424	143		(WLEFT(KS) + WRIGT(KS))	1424
1425	144	180	COntinue mel	1425
1426	145	C		1426
1427	146		DO $190 \mathrm{KS}=1$. NOFVES (INS)	1427
1428	147	${ }_{6}$		1428
1429	148	C ---	begin proceduk to obtain fluxes from reimann formalism --	1429

1430	149	C		1430
1431	150		IF (USTAR (KS) . LE . 0.0) Then	1431
1432	151	C		1432
1433	152		RO(KS) $=$ RRR(KS)	1433
1434	153		$\operatorname{PO}(\mathrm{KS})=\operatorname{PPR}(\mathrm{KS})$	1434
1435	154		UO(KS) $=$ UUR(KS)	1435
1436	155		CO(KS) = SQRT (HRGG * PPR (KS) / RRR (KS))	1436
1437	156		WO(KS $)=$ WRIGT (KS $)$	1437
1438	157		GO(KS $)=$ GGR(KS $)$	1438
1439	158		$\operatorname{ISN}(\mathrm{KS})=1$	1439
1440	159	C		1440
1441	160		ERRGYI(KS) = EER(KS)	1441
1442	161		ANRGYI (KS) $=$ AAR (KS $)$	1442
1443	162		$\operatorname{VGONV}($ KS $)=\operatorname{VVR}($ KS $)$	1443
1444	163		HGDNV(KS) = WWR (KS)	1444
1445	164	C		1445
1446	165		ELSE	1446
1447	166	C		1447
1448	167		RO(KS) = RRL (KS)	1448
1449	168		PO(KS) = PPL (KS)	1449
1450	169		UO(KS) = UUL (KS)	1450
1451	170		CO(KS) = SQRT (HRGG * PPL (KS) / RRLL KS))	1451
1452	171		HO(KS) $=$ WLEFT (KS $)$	1452
1453	172		GO(KS) $=$ GGL (KS)	1453
1454	173		$\operatorname{ISN}(\mathrm{KS})=-1$	1454
1455	174	C		1455
1456	175		ENRGYI (KS) = EEL (KS)	1456
1457 1458	176		ANRGYI (KS $)=$ AAL $(\mathrm{KS}$)	1457
1458	177		VGDNV (KS) = VVL (KS)	1458
1459	178		WGDNV (KS) $=$ WWL (KS)	1459
1460	179		END If	1460
1461	180	190	COntinue	1451
1462	181	c		1462
1463	182		DO $200 \mathrm{KS}=1$, NOFVES (INS)	1463
1464	183		DELP (KS) = PSTAR (KS) - PO(KS)	1464
1465	184		WSOP(KS) = ISN(KS) * VO(KS) + HO(KS) / RO(KS)	1465
1466	185		WSOM (KS) = ISN(KS) * UO(KS) + CO(KS)	1466
1467	186	200	CONTINUE	1467
1468	187	C		1468
1469	188 189		DO $210 \mathrm{KS}=1$, NOFVES (INS)	1469
1470	189		IF (DELP (KS) GT - O.) THEK	1470
1471	190		HSOOP KS) - WSOP(KS)	1471
1472	191		ELSE	1472
1473	192		HSOOL KS) $=$ WSOM (KS)	1473
1474	193		END IF	1474
1475	194	210	COntinue	1475
1476	195	C		1476
1477	196		DO $220 \mathrm{KS}=1$. NOFVES (INS)	1477
1478	197	c		1478
1479	198	${ }^{\text {c }}$ - ${ }^{-}$		1479
1480	199	c		1480
1481	200		PGDNV (KS) $=$ PO(KS)	1481
1482	201		UGONV (KS $)=$ U0(KS)	1482
1483	202		CGDNV (KS $)=$ CO(KS $)$	1483
1484	203		RGONV (KS) $=$ RO(KS)	1484
1485	204	220	COntinue kil	1485
1486	205	${ }^{\text {c }}$		1486
1487	206	C ---		1487
1488	207	c		1488
1489	208		$00230 \mathrm{KS}=1$ (NOFVES (INS)	1489
1490	209		$\operatorname{RSTAR}(\mathrm{KS})=1.1(1.1$ RO(KS) - DELP(KS) /	1490
1491	210			1491
1492	211			1492
1493	212		WSOM (KS) = ISN (KS) * USTAR (KS) + CSTAR (KS)	1493
1494	213	230	CONTINUE	1494
1495	214	C		1495
1496	215		$00240 \mathrm{KS}=1$, NOFVES(INS)	1496
1497 1498	216		IF (DELP (KS) GT - O.) THEN	1497
1498 1499	217		SPIN(KS) = WSOP(KS)	1498
1499 1500	218		ELSE	1499
1500	219		SPIN(KS) = WSOM (KS)	1500
1501	220		END IF	1501
1502	221	240	continue	1502
1503	222	C		1503

1504	223		DO $250 \mathrm{KS}=1$. NOFVES (INS)	1504
1505	224	C		1505
1506	225		IF (WSOO(KS) . GE . O.) THEN	1506
1507	226		IF (SPIN(KS) . GE . O.) THEN	1507
1508	227	C		1508
1509	228	C ...-		1509
1510	229	C		1510
1511	230		RGONV (KS) = RSTAR (KS)	1511
1512	231		UGDNV(KS) = USTAR (KS)	1512
1513	232		CGDNV (KS) = CSTAR (KS)	1513
1514	233		PGDNV (KS) - PSTAR (KS)	1514
1515	234		ELSE	1515
1516	235	C		1516
1517	236	C - -		1517
1518	237	C		1518
1519	238		CGDNV (KS) - (CSTAR (KS) 2. 2 -	1519
1520	239		ISN(KS) * USTAR (KS) * (GO(KS) - 1.))	1520
1521	240			1521
1522	241		UGDNV (KS) $=-\operatorname{ISN}(\mathrm{KS})$ * CGONV (KS)	1522
1523	242		RGDNV (KS) = (CGDNV (KS) / CO(KS)) **	1523
1524	243		(2./(GOCKS)-1.)) *RO(KS)	1524
1525	$\dot{¢} 44$		$\operatorname{PGDNV}(\mathrm{KS})=\operatorname{CGONV}(\mathrm{KS}) * \operatorname{CGONV}(\mathrm{KS}) * \operatorname{RGDNV}(\mathrm{KS}) /$	1525
1526	245		GO(KS)	1526
1527	246	C		1527
1528	247		END IF	1528
1529	248	C		1529
1530	249		END IF	1530
1531	250	250	continue	1531
1532	251	C		1532
1533	252		DO $260 \mathrm{KS}=1$, NOFVES (INS)	1533
1534	253		IS $=\mathrm{KS}+\mathrm{NSI}-1$	1534
1535	254		RR(IS) = RGDHV (KS)	1535
1536	255		PR(IS) = PGDNV (KS)	1536
1537	256	260	CONTINUE	1537
1538	257	C		1538
1539	258		NS1 = NS2 + 1	1539
1540	259		NS2 - NS2 + NOFVES (INS + 1)	1540
1541	260	110	CONTINUE	1541
1542	261	C		1542
1543	262		RETURK	1543
1544	263		EMD	1544
1545	264	C		1545

Thu Jul 1 14:17:00 1993 threed.f SUBROUTINE KYORFL

1546	1		SUBROUTINE KYDRFL	1546
1547	2	C		1547
1548	3	C-	--------1	1548
1549	4	C	dill	1549
1550	5	C	KYoRFL IS A 2 dimensional riemank Solver that integrates i	1550
1551	6	C	FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I	1551
1552	7	C	VARIABLES .	1552
1553	8	C	1	1553
1554	9	c.	1	1554
1555	10	c		1555
1556	11		include 'dmsh00.h'	1556
1557	12		include 'dhydmo.h'	1557
1558	13		include 'dphsm0.h'	1558
1559	14		include 'dintrl0.h'	1559
1560	15	C		1560
1561	16		REAL DELP (128), $\mathrm{HSOP}(128)$, WSOM (128) , WSOO(128),	1561
1562	17		RSTAR (128), CSTAR(128). PMAX (128), PMIN(128)	1562
1563	18		REAL RRIGHT (128), URIGHT (128), VRIGHT (128). PRIGHT(128)	1563
1564	19		REAL RLEFTT(128).ULEFTT(128), VLEFTT(128), PLEFTT(128)	1564
1565	20		INTEGER NOFVEP (128)	1565
1566	21	c		1566
-567	22	C		1567
1568	23	C		1568
1569	24		DO 120 KS = 1, NPRTCL	1563
1570	25		IS $=1$ JKPRT (KS)	1570
1571	25		$\mathrm{ICL}=\mathrm{JS}(7, \mathrm{IS})$	1571
1572	27		IBC = JS (9 , IS)	1572
1573	28	6		1573
1574	29		RRL (KS) = HYOV(ICL , 1)	1574

1575	30		UUL (KS) = HYDV(ICL . 2) * XN(IS)	1575
1576	31		HYDV(ICL . 3) * YN(IS) +	1576
1571	32		HYOV (ICL , 4) * IN(IS)	1577
1578	33		VVL(KS) = HYOV(ICL . 2) * XP(IS) +	1578
1579	34		HYOV (ICL, 3) * YP(IS) +	1579
1580	35		HYDV(ICL . 4) * 2P(IS)	1580
1581	36		WHL(KS) = HYDV(ICL , 2) * XT(IS) +	1581
1582	37		HYDV(ICL . 3) * YT(IS) +	1582
1583	38		HYOV (ICL. 4) * 2T(IS)	1583
1584	39		PPL (KS) $=$ HYDV(ICL , 5)	1584
1585	40		$\mathrm{AAL}(\mathrm{KS})=\mathrm{HYDV}(1 \mathrm{CL} .6$)	1585
1586	41		EEL (KS $)=\operatorname{HYDV}\left(\right.$ ICL . 8 ${ }^{\text {a }}$)	1586
1587	42		GGL(KS) = HYOV(ICL . 7)	1587
1588	43	c		1588
1589	44		RRR(KS) - RRL (KS)	1589
1590	45		IF (IBC. EQ . O) THEN	1590
1591	46		UUR(KS) = UUL(KS)	1591
1592	47		ELSE	1592
1593	48		UUR(KS) = - UUL(KS)	1593
1594	49		END IF	1594
1595	50		VVR(KS) = VVL($K S$)	1595
1596	51		WWR(KS) = WHL (KS)	1596
1597	52		PPR(KS) = PPL (KS)	1597
1598	53		AAR (KS) = AAL (KS)	1598
1599	54		EER(KS) = EEL (KS)	1599
1600	55		GGR(KS) = GGL(KS)	1600
1601	56	[1601
1602	57	120	continue	1602
1603	58	C		1603
1604	59		$00130 \mathrm{KS}=1$. . NPRTCL	1604
1605	60	c		1605
1606	61	C ---	THIS SECTION OF CODE SOLVES FOR "PSTAR" AND "USTAR" IM	1606
1607	62	c	The riemann problem using nehton's methoo.	1607
1608	63	c		1608
1609	64		WLEFT (KS) = SQRT(GGL (KS) * PPL (KS) * RRL (KS))	1609
1610	65		WRIGT(KS) - SORT (GGR(KS) * PPRR(KS) * RRR(KS))	1610
1611	66			1611
1612	67		WRISQ(KS) = WRIGT(KS) * MRIGT(KS)	1612
1613 1614	68	C		1613
1614 1615	69		PMIN(KS) = AMIM1 (PPL (KS), PPRR(KS))	1614 1615
1615 1616	70	c	PSML (KS) = HRSM * PMIM (KS)	1615 1616
1617	72	C ---		1617
1618	73	c		1618
1619	74		PSTAR(KS) = (HLEFT (KS) * PPR(KS) +	1619
1620	75		WRIGT KS) * PPL (KS) -	1620
1621	76		WLEFT (KS) * WRIGT(KS) *	1621
1622	77		(UUR (KS) - WUL(KS))) /	1622
1623	78		(HLEFT (KS) + WRIGT(KS))	1623
1624	79		PSTAR (KS) = Amaxi (PSTAR(KS) , PSML (KS))	1624
1625	80	130	Continue ks)	1625
1626	81	c		1626
1627	82		DO $140 \mathrm{I}=1$, IHRM	1627
1628	83	c		1628
1629	84	C -		1629
1630	85	c		1630
1631	86		$00150 \mathrm{KS}=1$. NPRTCL	1631
1632	87		CFFL = (GGL (KS) + 1.) ! ($2 \cdot *$ GGL (KS))	1632
1633	88		HLEFS (KS) $=(1 .+$ CFFL $*$ (PSTAR (KS) $)$	1633
1634	89		CRET (KS) PPL(KS) - 1.)) * WLESQ (KS)	1634
1635	90		WLEFT (KS) $=$ SQRT (WLEFS (KS))	1635
1636	91		2LEFT (KS) = 2. * WLEFT(KS) * WLEFS (KS) !	1636
1637	92		(WLESQ(KS) + WLEFS (KS))	1637
1638	93			1638
1639	94		(PSTAR (KS) - PPL (KS)) / HLEFT(KS)	1639
1640	95	150	continue	1640
1641 1642	96	c		1641
1642 1643	97		DO $152 \mathrm{KS}=1$. NPRTCL	1642
1643	98		CFFR = (GGR(KS) + 1.) / (2. * GGR(KS))	1643
1644 1645	99		WRIFS (KS) = ($1 .+$ CFFR * (PSTAR (KS))	1644
1645 1646	100		WRIGT(KS) = SORT($\begin{gathered}\text { PPRR(}\end{gathered}$	1645 1646
1647	102		ZRIGT(KS) = 2. *WRIGT(KS)* WRIFS(KS) /	1647
1648	103		(WRISO(KS) + WRIFS(KS))	1648

Thu Jul	1 14:17:00 1993	93 threed.f SUBROUTINE KYORFL	page 24
1649	104	USTR (KS) = UUR (KS) +	1649
1650	105	(PSTAR (KS) - PPR (KS)) / WRIGT(KS)	1650
1651	106152 CO	CONTINUE	1651
1652	107 C		1652
1653	108 DO	$00160 \mathrm{KS}=1$. . NPRTCL	1653
1654	109	OPST(KS) = ZLEFT(KS) * ZRIGT(KS)	1654
1655	110	(USTR(KS)-USTL(KS))	1655
1656	111 .		1656
1657	112	PSTAR (KS) - PSTAR (KS) - OPST (KS)	1657
1658	113	PSTAR (KS) = AMAXI (PSTAR (KS). PSML (KS))	1658
1659	114160	COMiINUE	1659
1650 1651	115 ¢ 140		1650
1661 1662	116140	continue	1661
1662 1663	117 C C ... 118	EOPM FIMAL SOLUTIOMS	1662
1664	119 C	form final solutions	1663
1665	120 DO	DO $170 \mathrm{KS}=1$. NPRTCL	1665
1666	121	CFFL $=(\mathrm{GCL}(\mathrm{KS})+1) /.(2 . * \mathrm{GGL}(\mathrm{KS})$)	1656
1667	122	WLEFT (KS) $=$ SQRT(WLESO(KS $) *$ ($1 .++$	1667
1668	123	CFFL * (PSTAR(KS) / PPL (KS) - 1.)))	1668
1669	$124 \quad 170$ CO	COmtinue	1669
1670	125 C		1670
1671	126 DO	DO 172 KS $=1$, NPRTCL	1671
1672	127	CFFR $=(\operatorname{GGR}(\mathrm{KS})+1) /.(2 . * \operatorname{GGR}(\mathrm{KS}))$	1672
1673	128	WRIGT(KS) = SQRT (HRISO(KS) * ($1 .+$	1673
1674	129	CFFR * (PSTAR (KS) / PPR (KS) - 1.)))	1674
1675	130172 CO	CONTINUE	1675
1676	131 C		1676
1677	13200	$00180 \mathrm{KS}=1$, NPRTCL	1677
1678	133	USTAR (KS) $=(\operatorname{PPL}(\mathrm{KS})-\operatorname{PPR}(\mathrm{KS})+$	1678
1679	134	HLEFT (KS) * UUL (KS) +	1679
1680	135	HRIGT(KS) * UUR(KS)) /	1680
1681	$136{ }^{136}$	(WLEFT(KS) + WRIGT(KS))	1681
1682	137180 CO	COntinue	1682
1683	138 C		1683
1684	139 00	$00190 \mathrm{KS}=1$. NPRTCL	1684
1685	140 C		1685
1686	141 C --. BE	begin procedure to obtain fluxes from reimann formalism --	1685
1687	142 C		1687
1688 1689	143 C	IF (USTAR (KS) . LE . 0.0) THEM	1688
1689 1690	144 C		1689
1690 1691	145 146	RO(KS) = RRR(KS)	1690
1692	147	PO(KS $)=\operatorname{UUR}(\mathrm{KSS})$	1691 1692
1693	148	CO(KS) = SORT (HRGG * PPR (KS) / RRR(KS))	1693
1694	149	WO(KS $)=$ WRIGT(KS $)$	1694
1695	150	GO(KS) $=$ GGR(KS)	1695
1696	151	$\operatorname{ISN}(\mathrm{KS})=1$	1696
1697	152 C		1697
1698	153	VGONV (KS) = VVR(KS)	1698
1699	154	WGONV (KS) = WWR(KS)	1699
1700	155 C		1700
1701 1702	156	ELSE	1701
1702 1703	157 C		1702
1703 1704	158	RO(KS) = RRL (KS)	1703
1704 1705	159	PO(KS) = PPL (KS)	1704
1705 1706	160	UO(KS) = UUL(KS)	1705
1706	161	CO(KS) = SORT (HRGG * PPL (KS) / RRL(KS))	1706
1707 1708	162	HO(KS) = HLEFT(KS)	1707
1708 1709	163	GO(KS) * GGL (KS)	1708
1709 1710	164	ISM(KS) = - 1	1709
1710 1711	165 C		1710
1711 1712	166	VGDNV(KS) = VVL (KS)	1711
1712 1713	167	WGONV (KS) = Whe (KS)	1712
1713 1714	168	END IF	1713
1714	169 190 COM	ONTINUE	1714
1715 1716	170 C		1715
1716	171 DO	$0200 \mathrm{KS}=1$, NPRTCL	1716
1717	172	DELP (KS) = PSTar (KS) - PO(KS)	1717
1718 1719	173	WSOP (KS) = ISN(KS) * UO (KS) + HO(KS) / RO(KS)	1718
1719 1720	174	WSOM (KS) $=$ ISN(KS $) *$ UO(KS $)+$ CO(KS $)$	1719
1720 1721	${ }_{176}^{175} c^{200}$	continue	1720
1722	177 DO	$0210 \mathrm{KS}=1$. NPRTCL	1722

1723	178		IF (DELP (KS) . GT . O.) THEN	1723
1724	179		WSOOC KS) = WSOP(KS)	1724
1725	180		ELSE	1725
1726	181		HSOO(KS) = WSOM (KS)	1726
1727	182		ENO IF	1727
1728	183	210	continue	1728
1729	184	c		1729
1730	185		DO $220 \mathrm{KS}=1 . \mathrm{NPRTCL}$	1730
1731	186	c		1731
1732	187	C	USE DUTER STATE SOLUTION	1732
1733	188	C		1733
1734	189		$\operatorname{PGDNV}(\mathrm{KS})=\operatorname{PO}(\mathrm{KS})$	1734
1735	190		UGDNV (KS $)=00(\mathrm{KS}$)	1735
1736	191		CGDNV (KS $)=$ CO(KS $)$	1736
1737	192		RGONV (KS) - RO(KS)	1737
1738	193	220	comtinue	1738
1739	194	c		1739
1740	195	C ${ }^{\text {- }}$		1740
1741	196	C		1741
1742	197		DO $230 \mathrm{KS}=1$, HPRTCL	1742
1743	198		RSTAR (KS) $=1.1$ (1.1 RO (KS) - DELP (KS) /	1743
1744	199		cSTAR (KS) SORT (HOO(KS) * KO(KS)))	1744
1745	200		CSTAR (KS) $=$ SORT(GO(KS) * PSTAR (KS) / RSTAR (KS))	1745
1746	201		HSOM (KS) - ISM (KS) * USTAR(KS) + CSTAR (KS)	1746
1747	202	230	continue	1747
1748	203	C		1748
1749	204		DO $240 \mathrm{KS}=1$. NPRTCL	1749
1750	205		IF (DELP (KS) . GT . O.) THEH	1750
1751	205		SPIN(KS) - HSOP(KS)	1751
1752	207		ELSE	1752
1753	208		SPIN(KS) = WSOM (KS)	1753
1754	209		ERD IF	1754
1755	210	240	continue	1755
1756	211	C		1756
1757	212		DO $250 \mathrm{KS}=1$, MPRTCL	1757
1758	213	C		1758
1759	214		IF (WSOOC KS) . GE . O.) THEN	1759
1760	215		IF (SPIN(KS) . GE . O.) THEN	1760
1761	216	C		1761
1762	217	C ---	USE THE STARRED STATE RESULTS ------------------------------	1762
1763	218	C		1763
1764	219		RGONV (KS) = RSTAR (KS)	1764
1765	220		UGONV (KS) = USTAR (KS)	1765
1766	221		CGONV (KS) $=\operatorname{CSTAR}(\mathrm{KS}$)	1766
1767	222		$\operatorname{PGDNV}(\mathrm{KS})=\operatorname{PSTAR}(\mathrm{KS})$	1767
1768	223		ELSE	1768
1769	224	C		1769
1770	225	C ---	EVALUATE THE INSIDE RAREFACTION WAVE ----------------------	1770
1771	226	C		1771
1772	227		CGDNV (KS) = (CSTAR (KS) * 2 . -	1772
1773	228		ISN(KS) * USTAR (KS) * (GOO KS) - 1.))	1773
1774	229			1774 1775
1775	230		UGDNV (KS) $=-\operatorname{ISN}(\mathrm{KS}$) * $\operatorname{CGDNV}(\mathrm{KSS}$)	1775 1776
1776	231		RGDNV (KS) $=(\operatorname{CCONV}(\mathrm{KS}) / \mathrm{CO}$ (KS $)$) **	1776
1777	232			1777
1778	233		PGdNV (KS) = CGDNV (KS) * CGDhV (KS) * RGONV (KS) /	1778
1779	234		(GO(KS)	1779
1780	235	C		1780
1781	236		END If	1781
1782	237	C		1782
1783	238		END IF	1783
1784	239	250	CONTINUE	1784
1785	240	C		1785
1786	241		DO 260 KS $=1$. NPRTCL	1786
1787	242		RR(KS) $=$ RGONV (KS)	1787
1788	243		PR (KS) $=\operatorname{PGDNV}(\mathrm{KS}$)	1788
1789	244	260	CONTINuE	1789
1790	245	C		1790
1791	246		RETURN	1791
1792	247		END	1792
1793	248	C		1793

Thu Jul	144:17:00	1993 threed.f SUBROUTINE HYORMN	page
1868	75	IDUAHY(4) $=0$	1868
1869	76	$\operatorname{VOATA}(1)=1$	1869
1870	77	VDATA 2 - $=1$	1870
1871	78	$\operatorname{FDATA}(1)=1$	1871
1872	79	FDATA(2) $=4$	1872
1873	80	VLABEL=' pressure, new / m**2'	1873
1874	81	FLABEL=' tets faces.'	1874
1875	82	CTRI=' trí'	1875
1876	83	CTET=' tet '	1876
1877	84 C	TLIMIT-TT	1877
1878	85	TLIMIT-30.	1878
1879	86 C		1879
1830	87	IJKNUM $=0$	1880
1881	88	IF (ICONP . EQ . 1) THEN	1881
1882	89	REWIND 10	1882
1883	90	REVIND 26	1883
1884	91	READ ($26,{ }^{*}$) [JKNUM	1884
1885	92	DO KKL $=1$, IJKNUM	1885
1886	93	READ (26,*) RO, (RRN(IK), IK=1, NPRTCL)	1886
1887	94	WRITE (10,*) RO, (RRN(IK), IK=1, MPRTCL)	1887
1888	95	END 00	1888
1889	96	END IF	1889
1890	97	DO $120 \mathrm{JT}=1$, NTIME	1890
1891	98	IF(JT.GT.5) IEOS=0	1891
1892	99 C		1892
1893	100	DO KK $=1.5$	1893
1894	101	DO IV = 1. NV	1894
1895	102	HMUM (IV , KK) $=0$.	1895
1896	103	END DO	1896
1897	104	END DO	1897
1898	105	DO 140 ITT $=1$, NDUMP	1898
1899	106 C		1899
1900	107 C ---	SELECT ORDER OF INTEGRATION	1900
1901	108 C		1901
1902	109	IF (IOPORD.EQ.1)THEN	1902
1903	110	CALL FIRST	1903
1904	111	ELSEIF (IOPORD.EQ.2)THEN	1904
1905 1906	112	CALL GRADNT	1905
1906	113 C	Emolf	1906
1907 1908	114 C		1907
1908 1909	115 C	DTI = 1.E24	1908
1909 1910	$1117{ }_{11}$	CALL HYDRFL	1909
1911	118 C	Call hrorfl	1910
1912	119	OTT = OTT * ${ }^{\text {- }}$	1912
1913	120	$T \mathrm{~T}=\mathrm{TT}+\mathrm{OTT}$	1913
1914	121	PRINT *,JT, ITT, DTT, TT, NS	1914
1915 1916	122 C		1915
1916	123	$\mathrm{NC1}=1$	1916
1917	124	NC2 - NOFVEC(1)	1917
1918	125	DO 110 INC - 1 . NVEEC	1918
1919 1920	126 C		1919
1920	127	DO 150 IC = NC1 ${ }^{\text {NC2 }}$	1920
1921	128	KC = IC - NCI + 1	1921
1922 1923	129	RRR(KC) = HYDV(IC , 1)	1922
1923 1924	130	UUR (KC) = HYDV(IC . 2)	1923
1924 1925	131 132	WVR(KC) = HYOV(IC.3)	1924
1926	133		1925
1927	$13:$	AAR(KC) = HYOV (IC. 6)	1927
1928	1: C		1928
1929	1	RRL (KC) = HYDFLX (IC , 1)	1929
1930	:	UUL (KC) $=$ HYDFLX (IC , 2)	1930
1931		VVL $($ KC $)=\operatorname{HYDFLX}(1 C .3)$	1931
1932	,	WHL (KC) = HYDFLX (IC , 4)	1932
1933	3	PPLL KC $)=$ HYDFLX (IC, 5 $)$	1933
1939	11	AAL (KC) $=$ HYDFLX (IC. 6)	1934
1035	12 C		1935
1936	. 43	XSSSS (XC) = XC(2, IC)	1936
1937	!44	XSAR(kí) = SVOLM (IC)	1937
1938	145150	CONTINUE	1938
1939	146 C		1939
1940	147	$00170 \mathrm{KC}=1$, NOFVEC(INC)	1940
1941	148	IC = KC + NCl - 1	1941

1942	149		$\operatorname{RRN}(\mathrm{KC})=\operatorname{RRR}(\mathrm{KC})$	1942
1943	150		$\operatorname{URN}(\mathbb{K C})=\operatorname{RRR}(\mathrm{KC})$) * UUR(KC)	1943
1944	151		$\operatorname{VRN}(\mathbb{K C})=\operatorname{RRR}(\mathbb{K C})$ * VVR(KC)	1944
1945	152			1945
1946	153		$\operatorname{EPM}(\mathrm{KC})=\operatorname{HYOV}(\mathrm{IC}, 8)+.5 * \operatorname{RRR}(\mathrm{KC})$	1946
1947	154		- (UURR KC) * UUR (KC) +	1947
1948	155		VVR(KC) * VVR(KC) +	1948
1949	156		(WHR (KC) KC) * WHR(KC))	1949
1950	157		ARM (KC) = RRR(KC) * AAR(KC)	1950
1951	158	170	CORTINUE	1951
1952	159	C	COMPUTE THE SOURCE TERM FOR AXI SYMMETRY FLOW PROBLEM	1952
1953	160	C	If the floh is not axi symmetry, COMment loop 160	1953
1954	161	c		1954
1955	162		DO $190 \mathrm{KC}=1$ N NOFVEC(INC)	1955
1956	163		IC $=$ KC + NCI -1	1956
1957	164		DTA - DTT * XSAR(KC)	1957
1958 1959	165	C		1958
1960	166 167		$\left.\begin{array}{l}\text { RRLL } \\ \text { UULL } \\ \text { O OTA } \\ \text { OTA * } \\ \text { URLL } \\ \text { UUL (KC } \\ \text { KC }\end{array}\right)$	1959
1961	168		VVLL = DTA * VVL (KC)	1961
1962	169		WWLL = OTA * WRLL (KC)	1962
1963	170		RRN(KC) = RRN(KC) - RRLL	1963
1964 1965	171	\checkmark		1964
1965 1966	172	c	URM (KC) = URN(KC) - UULL	1965
1967	174	c	VRN(KC) = VRN(KC) - VVLL	1966 1967
1968	175	C		1968
1969	176		WRM (KC) = MRM (KC) - WHLL	1969
1970	177	c		1970
1971	178		PPLL = DTA * PPLL (KC)	1971
1972	179		EPA (KC) = EPN (KC) - PPLL	1972
1973	180	c		1973
1974	181		AALL = DTA * AAL (KC)	1974
1975	182		ARH(KC) $=$ ARN(KC) - AALL	1975
1976	183	C		1976
1977	184	190	CONTINUE	1977
1978	185	c		1978
1979	186		DO 195 IC = NC1, NC2	1979
1980	187		$\mathrm{KC}=\mathrm{IC}-\mathrm{NCI}+1$	1980
-988	188			1981
1983	190			1988
1984	191		HYOV(IC, 3) - VRN(KC) * HDUM	1994
1985	192		HYOV(IC. 4) = WRN (KC) * HDUM	1985
1986	193		HYOV(IC, 6) $=$ ARN(KC) * HDUM	1986
1987	194	195	CONTINUE	1987
1988	195	C		1988
1989	196		DO 200 IC = NC1, NC2	1989
1990	197		KC - IC - NC1 + 1	1990
1991	198		HYOV(IC , 8) = (EPH(KC) - .5 * HYDV(IC , 1) *	1991
1992	199		($\operatorname{HYOV}^{(1 C .2)}$ * HYOV(IC , 2) +	1992
1993	200		HYDV(IC. 3)* $\mathrm{HYDV}($ IC , 3) +	1993
1994	201		HYOV(IC , 4) * $\operatorname{HYOV}($ IC , 4)))	1994
1995	202	200	COntinue	1995
1996	203	c		1996
1998	205		If IIMIT - E 9 • 1) THEN	1997
1999	206		ITER $=6^{-9}$	1998
2000	207		DO IC = NC1 , NC2	1999
2001	208		$\mathrm{KC}=\mathrm{IC}-\mathrm{NCI}+1$	2000
2002	209	C		2001
2003	210		NITER - 0	
2004	211		IF (HYDV(1C . 6) . LE . .2) THEN	2004
2005	212	C		2005
2006	213		OST = HYDV(IC . 1) * GPERCC	2006
2007	214		VOL = WMA * (1. - DST / FSA) / DST / XGA	2007
2008	215		EMEO $=\operatorname{HYDV}(\mathrm{IC} \mathrm{} ,\mathrm{8} \mathrm{)} \mathrm{/} \mathrm{HYDV(} \mathrm{IC} \mathrm{}. \mathrm{1)} \mathrm{*} \mathrm{HMA} \mathrm{/} \mathrm{RGAS}$	2008
2009	216	C		2009
2010	217		IYY - (EMEO - EMEOA (3)) / RANGEA + 1	2010
2011	218		IYY = MAXO(1 , MINO(IYY , 47))	2011
2012	219	C		2012
2013	220		$K=I Y Y+2$	2013
2014	221		IYY = IYY	2014
2015	222		+ INT(AMAXI(EMEO - EMEOA(K) , O.) / OYA(K))	2015

2016	223			2016
2017	224		IYY = MAXO(1, MINO(IYY , 47))	2017
2018	225	C		2018
2019	226		$\mathrm{K} 1=\mathrm{I} Y \mathrm{Y}+2$	2019
2020	227		$k 2=k 1+1$	2020
2021	228		RT = (EMEO - EMEOA(K1)) / (EMEOA(K2) - EMEOA(K1))	2021
2022	229		$T=T A(K 1)+100 . * R T$	2022
2023	230			2023
2024	231		ERS $=0$. ,	2024
2025	232	c		2025
2026	233		$\mathrm{P}=$ RGAS * T / VOL / GPERCC	2026
2027	234		RGAMMI = CVM	2027
2028	235		$\operatorname{HYOV}(\mathrm{IC} \mathrm{} ,\mathrm{7} \mathrm{)} \mathrm{=} \mathrm{1}. \mathrm{/} \mathrm{RGAMM1} \mathrm{+} 1$.	2028
2029	236		$\operatorname{HYOV}(\mathrm{IC} \mathrm{} ,\mathrm{5} \mathrm{)}=\mathrm{P}$	2029
2030	237	c		2030
2031	238		ELSE	2031
2032	239	c		2032
2033	240		OST = HYOV(IC , 1) * GPERCC	2033
2034	241		VOL $=$ HMX * ($1 .-$ DST ! FSX $) /$ DST / XGX	2034
2035	242		EMEO = HYDV(IC , 8) / HYDV(IC . 1) * MMX / RGAS	2035
2036	243	C		2036
2037	244		IYY = (EMEO - EMEOX(3)) / RANGEX + 1	2037
2038	245		IYY = MaxO (1. MINO(IYY . 47) $)$	2038
2039	246	c		2039
2040	247		$K=1 Y Y+2$	2040
2041	248		IYY = IYY	2041
2042	249		. + INT(AMAXI(EMEO - EMEOX (K) , O.) / DYX (K))	2042
2043	250		. - Imf (amaxi (Emeox (K + 1) - Emeo , 0.) / oyx (K))	2043
2044	251		IYY = MAXO(1, MINO(IYY , 47))	2044
2045	252	C		2045
2046	253		$K 1=1 Y Y+2$	2046
2047	254		$K 2=K 1+1$	2047
2048	255		RT - (EMED - EMEOX (K1)) / (EMEOX (K2) - EMEOX (K1))	2048
2049	256		$T=T X(\mathrm{KI})$ + 100. * RT	2049
2050	257		CVI = CVMX (K1) + RT * (CVMX (K2) - CVMXX K1))	2050
2051	258		ERS $=0 . \quad 1$	2051
2052	259	C		2052
2053	260	10	continue	2053
2054	261		$p=$ RGAS * T / VOL / GPERCC	2054
2055	262		RGAMNI - CMm	2055
2056	263	C		2056
2057	264		$x=$ COVX / VOL $/\left(\begin{array}{l}\text { (}\end{array}\right.$	2057
2058	265		$Z=X * \operatorname{EXP}(\operatorname{BETAX} * X)$	2058
2059	266		$X=1 .+\operatorname{BETAX} * x$	2059
2060	267		RT $=$ ALFAX * $T /(\mathrm{T}+$ THETAX $)$	2060
2061	268		ERS = ERS + RT * 2 * T	2061
2062	269	C		2062
2063	270		IF (ITER .EQ. NITER) GO TO 20	2063
2064	271	C		2064
2065	272		CVM $=$ CVM * XGX + SCVX	2065
2066	273		* + RT * 2 * (2. - RT / ALFAX - RT* X)	2066
2067	274		T = T - AMIN1 (ERS / CVM . TLIMIT * T)	2057
2068	275	C		2068
2069	276		NITER = WITER + 1	2069
2070	277	C		2070
2071	278		$\mathrm{RT}=0.01$ * T	2071
2072	279		K1 - RT	2072
2073	280		K1 - MINO (K1, 49)	2073
2074	281		$K 1=\operatorname{MaxO}(\mathrm{K}:, 3)$	2074
2075	282		$K 2=K 1+1$	2075
2076	283		RT - RT - K1	2076
2077	284			2077
2078	285			2078
2079	286		ERS - ERS - EMEO	2079
2080	287	C		2080
2081	288		GO TO 10	2081
2082	289	C		2082
2083	290	20	continue	2083
2084	291		P = P * ($1 .+\mathrm{Z}$)	2084
2085	292		RGAMM1 = (RGAMMI +	2085
2086	293			2086
2087	294		$x=x * 2 /(1 .+z)$	
2088	295		RGAMM1 = RGAMMI / (($1 .-\mathrm{RT} * \mathrm{X})$ ** $2+\mathrm{X}$ * RGAMN1 $)$	2088
2089	296		ERS = ERS / EMEO	2089

2090	297		HYDV(IC . 7) = 1. $/$ RGAMM +1.	2090
2091	298		$\operatorname{HYDV}($ IC , 5 $)=p$	2091
2092	299		END If	2092
2093	300		END 00	2093
2094	301	C		2094
2095	302		ELSE	2095
2096	303	C		2096
2097	304		$00 \mathrm{IC}=$ NC1 , NC2	2097
2098	305		$\operatorname{HYDV}($ IC . 5) $=\operatorname{HYDV}($ IC . 8) * ($\operatorname{HYOV}($ IC . 7) - 1. $)$	2098
2099	306		EMD DO	2099
2100	307		END If	2100
2101	308	c		2101
2102	309		NC1 - NC2 + 1	2102
2103	310		HC2 - NC2 + HOFVEC(INC + 1)	2103
2104	311	110	CONTINUE	2104
2105	312	c		2105
2106	313		IF (NPRTCL . NE . O) CALL KYORFL	2106
2107	314		IJKNUM $=1$ IJKNUM +1	2107
2108	315		WRITE (10,*) TT, (PR(KKJJ), KKJJ=1, NPRTCL)	2108
2109	316	140	COntinue	2109
2110	317	C		2110
2111	318		PMAX $=-10000000$.	2111
2112	319		00415 IC $=1$, NC	2112
2113	320		IV1 $=\mathrm{JC}(1, \mathrm{IC})$	2113
2114	321		IV2 $=$ JC($2, ~ I C)$	2114
2115	322		IV3 $=$ JC(3 , IC $)$	2115
2116	323		IV4 $=$ JC(4 , IC $)$	2116
2117	324		HNLMM $=$ HYDV (IC 5)	2117
2118	325		HNUMN = XC(4 ; IC	2118
2119	325			2119
2120	327			2120
2121	328			2121
2122	329			2122
2123	330			2123
2125	332			2124
2126	333			2125
2127	334	415	comtinue	2127
2128	335		DO IV = 1, NV	2128
2129	336			2129
2130	337		EMD DO	2130
2131	338		DO IV - 1 , NV	2131
2132	339		IF (HMUM (IV . 5) .GT. Pmax) PMax - hmum IV , 5)	2132
2133	340		ERD DO	2133
2134	341		PRINT * . PMAX	2134
2135	342	c		2135
2136	343		ISNS $=0$	2136
2137	344		00300 IS $=1$. NS	2137
2138	345		IF(JS(9,IS).EQ.6.AND.XS(2,IS).LT.1.9649) THEN	2138
2139	346		ISNS=1SNS+1	2139
2140	347		ISURF (ISNS) =IS	2140
2141	348		END IF	2141
2142	349	300	CONTINUE	2142
2143	350		print*. 1 SNS	2143
2144	351	c		2144
2145	352	${ }_{c}$	StEVE fORMAT	2145
2146	353	C		2146
2147	354		D0 312 IV = 1, NV	2147
2148	355		HRITE (17, 1001) IV. (XV(KK,IV), KK=1,3)	2148
2149	356	1001	FORMAT('n, ', 15, ', ', ${ }^{\text {(F10.5, ', '), F10.5) }}$	2149
2150	357	312	COMTINUE	2150
2151	358	C		2151
2152	359		00322 IS = 1 ISNS	2152
2153	360		IK=1SURF(IS)	2153
2154	361			2154
2155	362	1002	FORMAT 'en, '.4(110.''), 110)	2155
2156	363	322	CONTINUE	2156
2157	364	C		2157
2158	365		WRITE (19, 1005) TT	2158
2159	365	1005	FORMAT ('time.',E13.5)	2159
2160	367		ITHO $=10$	2160
2161	368		I2ERO - 0	2161
2162	369		DO 342 IS - 1, ISNS	2162
2163	370		IK-1SURF(IS)	2163

2164	371			2164
2165	372			2165
2166	373	1003		2166
2167	374	342	continue	2167
2168	375	C		2168
2169	376		HRITE (14.10101) 3*ISNS, ISNS, NDUMMY1, NDUMYY3, NDUMMY3	2169
2170	377	10101	FORMAT(5I8)	2170
2171	378	10102	FORMAT (I8,3E20.7)	2171
2172	379	10103	FORMAT (218,A6.318)	2172
2173	380	10104	FORMAT(I8, E20.7)	2173
2174	381		CALL RYDRFL	2174
2175	382		KKVV $=0$	2175
2176	383		00310 IV = 1, ISNS	2176
2177	384		IK=ISURF(IV)	2177
2178	385		IV1 $=$ JS (1, IK)	2178
2179	386		IV2 $=$ JS ($2,1 \mathrm{IK}$)	2179
2180	387		IV3 $=$ JS $(3$, IK $)$	2180
2181	388		XXV $=$ XV(1.IVI)	2181
2182	389		YYV $=X V(2, I V I)$	2182
2183	390		ZZV = XV(3,IVI)	2183
2184	391		XNH $=$-XN(IK)	2184
2185	392		YHN - -YH(IX)	2185
2186	393		ZMM $=-2 \mathrm{LH}$ (IK)	2186
2187	394		XXX = XXV + XNN * . 001	2187
2188	395		YYY = YYV + YNM * . 001	2188
2189	396		$222=22 \mathrm{~V}+2 \mathrm{NH}$ * . 001	2189
2190	397		KKVW $=$ KKVV + 1	2190
2191	398		HRITE (14, 10102) KKVV, XXX, YYY. $22 Z$	2191
2192	399		XXV $=$ XV(1,1V2)	2192
2193	400		YYV $=X V(2,1 V 2)$	2193
2194 2195	401		ZZV $=X V(3,1 V 2)$	2194
2196	403			2195
2197	404		ZZZ $=$ ZZV + ZNN * . 001	2197
2198	405		KKVV = KKVV + 1	2198
2199	406		URITE (14,10102) KKVV, XXX,YYY,2Z2	2199
2200	407		XXV $=$ XV(1,1V3)	2200
2201	408		YYV $=X V(2,1 V 3)$	2201
2202	409		ZZV $=X V\left(3,1 V^{\prime}\right)$	2202
2203	410		XXX = XXV + XHM * . 001	2203
2204	411		YYY = YYY + YMN * . 001	2204
2205	412		ZZZ $=2 Z \mathrm{~V}+$ ZAN * . 001	2205
2206	413		KKVV $=$ KKWV + 1	2205
2207	414		WRITE $(14.10102) \mathrm{KKVW,XXX}, \mathrm{YYY}, 222$	2207
2208	415	310	COMTINUE	2208
2209	416		KKVV $=0$	2209
2210	417		DO $32015=1$ I ISNS	2210
2211	418		IK=ISURF(IS)	2211
2212	419		WRITE (14,10103) IS, IS,CTRI, KKVV+1, KKVV+2,KKVV+3	2212
2213	420		KKVV = KKVV + 3 ,	2213
2214	421	320	continue	2214
2215	422		VRITE (14.10101) VDATA	2215
2216	423		HRITE ($14 . *$) VLABEL	2216
2217	424		KKVW - 0	2217
2218	425		00430 IV = 1, ISNS	2218
2219	426		IK-ISURF(IV)	2219
2220	427		PRR - PR(IK)	2220
2221	428		WRITE 14,10104) KKVV+1, PRR	2221
2222	429		WRITE (14, 10104) KKVV+2, PRR	2222
2223 2224	430		WRITE (14,10104) KKVV+3, PRR	2223
2224 2225	431		KKVV $=$ KKVV +3	2224
2225 2226	432	430	continue	2225
2226	433		ISHS $=0$	2226
2227	434		DO IS - 1, NS	2227
2228	435		IF(JS(9,15).EQ.6) THEN	2228
2229	436		XXS $=\times$ XS(1.1S	2229
2230	437		YYS $=X S(2.15)$	2230
2231	438		ZZS $=\times$ XS (3, IS $)$	2231
2232	439		ISNS $=15 \mathrm{SNS}+1$	2232
2233	440		ISURF (ISNS)-IS	2233
2234	441		EMD IF	2234
2235	442		END DO	2235
2236	443		print*. $15 \times \mathrm{S}$	2236
2237	444		HRITE (15,10101) 3*ISNS, ISNS, NDUMMY1, NDUMYY3, NDUMMY3	2237

2312	519		WRITE (9) NPRTCL
2313	520		IF (NPRTCL.GT.0)
2314	521		WRITE (9) (IJKPRT(IK). IK=1,NPRTCL)
2315	522		END IF
2316	523		
2317	524	C	
2318	525		REWIND 88
2319	526		WRITE (88) NV,NE,NS, NC, NTIME
2320	527		HRITE (88) (XV (IK, IV), IK=1,3), IV=1,NV)
2321	528		WRITE (88) ($(\mathrm{JE}(\mathrm{KK}, \mathrm{IE}), \mathrm{KK}=1,2), \mathrm{IE}=1 . \mathrm{NE})$
2322	529		WRITE(88) ($(\mathrm{JS}(\mathrm{KK}, \mathrm{IS}), \mathrm{KK}=1,9),(\mathrm{XS}(\mathrm{KI}, 1 \mathrm{I}), \mathrm{KI}=1,5)$,
2323	530		XH(IS), YN(IS), ZN(IS), XP(IS), YP(IS), ZP(IS),
2324	531		XT(IS), YT(IS), ZT(IS), IS=1,NS)
2325	532		WRITE(88) ((XYZMDL $^{(K I, I S}$), KI $=1,4$), IS $=1, \mathrm{NS}$)
2326	533		WRITE(88) ($(\mathrm{JC}(\mathrm{KK}, \mathrm{IC}), \mathrm{KK}=1,8),(\mathrm{XC}(\mathrm{KI}, \mathrm{IC}), \mathrm{KI}=1,4), \mathrm{IC}=1, \mathrm{NC})$
'2327	534		
2328	535		WGRAD (IC,KI), PGRAD (IC,KI), KI=1,3), IC=1,NC)
2329	536		WRITE(88) SAREVG,
2330	537		NVECE, NREME, NVECV, NREMV, NVECS, NREMS, NVECC, NREMC
2331	538		WRITE (88) RIN, PIN, RINL, PINL, UVIN, UIN, VIN, HIN, TT
2332	539		WRITE(88) MPRTCL
2333	540		IF(NPRTCL.GT.0)
2334	541		WRITE(88) (IJKPRT(IK), IK=1,NPRTCL)
2335	542		WRIIE (88) ((HYDV(IC.IK), IK=1,8), IC=1,NC)
2336	543	C	
2337	544	120	COntinue
2338	545		REMIND 10
2339	546		REWIMD 26
2340	547		WRITE(26.*) IJKNUM
2341	548		D0 KKJ = 1, [JKNUM
2342	549		READ (10.*) RO, (RRN(IK), IK=1,NPRTCL)
2343	550		WRITE (26,*) RO, (RRN(IK), IK=1,NPRTCL)
2344	551		EKD 00
2345	552	c	
2346	553		RETURN
2347	554		EMD
2348	555		

2349 2350	$\frac{1}{2}$
2351	3
2352	4
2353	5
2354	6
2355	7
2356	8
2357	9
2358	10
2359	11
2360	12
2361	13
2362	14
2363	15
2364	16
2365	17
2366	18
2367	19
2368	20
2369	21
2370	22
2371	23
237%	24
2%	25
2:	26
2:	27
20:0	28
2317	29
2378	30
2379	31
2380	32
2381	33
2382	34

c Subroutine geohtr		2349
		2350
c	-.-.--------1	2351
C	1	2352
C	geortr compute the dual mesh after initialization the grio i	2353
C	1	2354
C		2355
c		2356
	include 'dmsh00.h'	2357
	include 'dhydmo.h'	2358
	include 'dphsmo.h'	2359
	include 'dmtrio.h'	2360
C		2361
C	DEFINING BOUNDARY EDGES AND COMPUTING BAR CENTER OF TRIANGLES	2362
c		2363
	PRINT * NE,NS	2364
	00110 IC $=1$, NC	2365
	SVOLM (IC) = 1. / XC(4. IC)	2366
c^{110}	continue	2367
		2368
	00120 IS = 1, NS	2369
C		2370
	ICL $=$ JS (7 . IS)	2371
	$I C R=J S(8, I S)$	2372
c		2373
	IVI $=$ JS (1, IS)	2374
	IV2 = JS 2.15)	2375
	IV3 $=$ JS (3.15)	2376
c		2377
	$X_{1}=\mathrm{XV}(1, \mathrm{IV1})$	2378
	$Y 1-X V(2, ~ I V 1)$	2379
	$21=X V(3.1 V 1)$	2380
c		2381
	$A=X N(15)$	2382

2383	35		$B=Y N(1 S)$	2383
2384	36		$C=2 N(I S)$	2384
2385	37	C		2385
2386	38		$D=-(A * X 1+8 * Y 1+C * 21)$	2386
2387	39	C		2387
2388	40		$X C L=X C(1, I C L)$	2360
2389	41		YCL $=X C(2, I C L)$	2389
2390	42		$2 C L=X C(3 . I C L)$	7390
2391	43	C		2391
2392	44		DD = A * XCL + B Y YCL + C * ZCL * D	2392
2393	45	C		2393
2394	46		IATRB $=$ JS (9, IS)	2394
2395	47		lF (IATRB . EQ . 0) THEN	2395
2396	48	C		2396
2397	49		$X C R=X C(1,1 C R)$	2397
2398	50		$Y C R=X C(2, I C R)$	2398
2399	51		ZCR $=$ XC($3.1 C R)$	2399
2400	52	C		2400
2401	53		$X X=X C R-X C L$	2401
2402	54		$Y Y=Y C R-Y C L$	2402
2403	55		Z2 = 2CR - ZCL	2403
2404	56	C		2404
2405	57		$D D D=A * X X+8 * Y Y+C * I Z$	2405
2406	58	c		2406
2407	59		$X Y Z=-00 / 000$	2407
2408	60		XYZMDL $4, ~$ IS $)=X Y Z$	2408
2409	61		$X Y Z M D L(1,15)=X C L+X Y Z ~ * ~ X X ~$	2409
2410	62		XYZMDL $(2,15)=Y C L+X Y Z ~ * ~ Y Y ~$	2410
2411	63		$X Y Z Y O L(3,15)=Z C L+X Y Z * Z Z ~$	2411
2412	64		$X S(5, I S)=$ SQRT (XX * XX + YY * YY + ZZ * ZZ)	2412
2413	65	C		2413
2414	65		ELSE	2414
2415	67	C		2415
2416	68		$X Y Z=-00$	2416
2417	69		$X Y Z Y O L(1,15)=X C L+X Y Z * A$	2417
2418	70		$X Y Z M D L(2, I S)=Y C L+X Y Z * B$	2418
2419	71		XYZMDL (3 , IS) = $2 C L+X Y Z * C$	2419
2420	72		XS (5,15$)=$ ABS $(X Y Z)$	2420
2421	73		XYZMOL (4,15) $=1$.	2421
2422	74	C		2422
2423	75		ENiD IF	2423
2424	76	C		2424
2425	71	120	continue	2425
2426	78	c		2426
2427 2428	79		RETURK	2427
2428	80		END	2428
2429	81	C		2429
2430	82		SUBROUTINE UPDATE	2430
2431	83	c		2431
2432	84		-------------	2432
2433	85	c	PPDATE COMPUTE THE DUAL MESH AFTER Imitialization the grid id	2433
2434	86	C	UPDATE COMPute the dual mesh after initialization the grid i	2434
2435	87	c	(I	2435
2436	88	C.	---------1	2436
2437	89	C		2437
2438	90		include 'dmsh00.h'	2438
2439	91		include 'dhydmo.h'	2439
2440	92		include 'dphsm0.h'	2440
2441	93		include 'dmtrl0.h'	2441
2442	94	${ }^{\text {c }}$		2442
2443	95	C		2443
2444	96	C	READ IN VERTEX INFORMATION	2444
2445	97	c		2445
2446	98		READ ($16 . *$) NV,NE,NC,NS	2446
2447	99		001110 IK = 1, NV	2447
2448	100		READ (16,*) IJ, XV (1,IK), XV(2,IK), XV(3,IK)	2448
2449	101		XXX $=$ XV (1. IK) +34.5	2449
2450	102		YYY $=X V(2.1 K)-65.75$	2450
2451	103		$2 Z 2=X V(3,1 K)+11.5$	2451
2452	104		XV (1, IK) $\times X \times X * .0254$	2452
2453	105		$X V(2 . I K)=Y Y Y * .0254$	2453
2454	106		XV(3.IK)=2LI*. 0254	2454
2455	107	1110	cominue	2455
2456	108		PRIMT * . NV	2456

2457	109	-		2457
2458	110	c	read in edge information (eoges of triangles).	2458
2459	111	C		2459
2460	112		DO $1120 \mathrm{IK}=1$, NE	2460
2461	113		READ (16,*) 1J, JE (1, IK), JE (2, IK)	2461
2462	114	1120	continue	2462
2463	115		PRINT * . NE	2463
2464	116	C		2464
2465	117	C	READ IN CELL (IETRAHIDRAL) INFORMATION.	2465
2466	118	C		2466
2467	119	c	CELL INFORMATION, FOR EACH CELL four vertices	2467
2468	120	C		2468 2469
2469	121		DO 1130 IK $=1 . N C$	2469
2470	122		READ (16, *) IJ, JC(1,IK),JC, , IK), JC(3,IK), JC(4,1K)	2470
2471	123	1130	continue	2471
2472	124	c		2472
2473	125		DO $1200 \mathrm{IK}=1 . \mathrm{NC}$	2473
2474	126		$\mathrm{IV1}=\mathrm{JC}(1, \mathrm{IK})$	2474
2475	127		$\mathrm{IV} 2=\mathrm{JC}(2, \mathrm{IK})$	2475
2476	128		IV3 $=$ JC(3.1 IK$)$	2476
2477	129		IV4 = JC(4.1 IK)	2477
2478	130	C		2478
2479	131	c	SIDE INFORMATION, FOR EACH CELL CENTROID OF CELL	2479
2480	132	C		2480
2481	133		XC(1 . IK) = (XV(1 . IV1) + XV(1 . IV2) + ${ }^{\text {a }}$	2481
2482	134		XV(2 IK $\operatorname{XV}(1, \mathrm{IV3})+\mathrm{XV}(1$, IV4 $)$) *. 55	2482
2483	135			2483
2484	136			2484
2485	137		XC(3, IK $)=\left(\operatorname{XV}(3, \mathrm{IV} 1)+\operatorname{XV}(3, \mathrm{IV} 2)+{ }^{+}\right.$	2485
2486	138		XV(3 . IV3) + XV(3 . IV4) * * 25	2486
2487	139	C		2487
2488	140	c	SIDE Information, for each cell volume of cell	2488 2489
2489	141	C		2489 2490
2490	142		XPIJ $=X V(12, I V 2)-X V(1), I V 1)$	2490
2491	143		YPIJ $=X V(2, I V 2)-X V(2, I V 1)$	2491 2492
2492	144		2PIJ = XV (3 , IV2) - XV(3 . IVI)	2492
2493	145	c		
2494	146			2494 2495
2495	147		YPIK $=$ XV($2, ~ I V 3)-X V(2, ~ I V 1) ~$	2495 2496
2496	148		ZPIK = XV(3 , IV3) - XV(3 , IV1)	2496 2497
2497	149	C		2497 2498
2498	150		XNIK $=$ YPIJ * ZPIK - ZPIJ * YPIK	2498 2499
2499	151		YMIK = ZPIJ * XPIK - XPIJ * ZPIK	2499 2500
2500	152		ZWIK = XPIJ * YPIK - YPIJ * XPIK	2500
2501	153	C		2501
2502	154		XPIJ = XV($1, ~ I V 4)-X V(1, I V 1)$	2502 2503
2503	155		YPIJ $=X V(2, I V 4)-X V(2, I V 1)$	2503
2504	156		ZPIJ = XV(3 , IV4) - XV(3 , IV1)	2504
2505	157	c		2505 2506
2506	158		VOL = (XNIK * XPIJ + YNIK * YPIJ +	
2507	159		(2NIK* ZPIJ)/6.	
2508	160		XC($4, i K)=$ VOL PRINT ik VOL	2508 2509
2509	161		IF (VOL. LT . O.) PRINT *,IK,VOL	2509 2510
2510	162	1200	CONTINUE	
2511	163		PRINT * , NC	2512
2512	164	C		2513
2513 2514	165	${ }^{\text {c }}$	READ IN SIDE (triangie) information.	2514
2514 2515	166	${ }_{C}^{C}$	SIDE information, for each face three vertices	2515
2516	168	C	SIOE INORMATIO, FR EACH FACE THRE VERTIES	2516
2517	169		$001150 \mathrm{IK}=1$. NS	2517
2518	170		READ (16.*) 1J, JS(1,IK),JS(2,IK).JS(3,1K)	2518
2519	171	1150	CONTINUE NS MC	2519 2520
2520	172		PRIHT * . NS.NC	2521
2521 2522	173 174	${ }_{C}^{C}$	SIDE information, for each face three enges	2522
2523	175	C		2523
2524	176		00 ' ${ }^{\text {150 IK }}=1$, NS	2524
2525	177		P^{\prime} ar in,*) [J.JS(4.IK).JS(5.IK), JS (6,IK)	
2526	178	1160	COMindue	
2527	179		PRINT * , NS.NC.NV	2528
2528	180	${ }^{C}$		2529
2529	181	${ }^{\text {c }}$	CELL Information, for each cell four edges	2530
2530	182	C		2530

2531	183		$001140 \mathrm{IK}=1$, NC	2531
2532	184		READ (16,*) IJ, JC5, IDIR1, JC6, IOIR2.	2532
2533	185		JC7. IDIR3, JC8. 101 1R4	2533
2534	186		$J C(5.1 K)=\operatorname{IABS}(J C 5)$	2534
2535	187		$J C(6, I K)=\operatorname{IABS}(\mathrm{JC6})$	2535
2536	188		$\mathrm{JC}(7, \mathrm{IK})=\operatorname{IABS}(\mathrm{JC7})$	2536
2537	189		$J C(8, I K)=\operatorname{IABS}(J C 8)$	$253)$
2538	190	1140	continue	2538
2539	191		PRIMT * , NS,NC,NV,NE	2539
2540	192	C		2540
2541	193	C	SIDE information, for each face left and right tetrehedra	2541
2542	194	C		2542
2543	195		DO 1170 IK = 1 , NS	2543
2544	196		READ ($16, *$) $1 \mathrm{JJ,JS}(7, \mathrm{IK}), \mathrm{JS}(8, \mathrm{IK})$	2544
2545	197		JS (9, IK) $=0$	2545
2546	198	1170	continue.	2546
2547	199		PRILT * , NC.NV.NE	2547
2548	200	${ }^{\text {c }}$		2548
2549	201	${ }^{\text {c }}$	SIDE INFORMATION, FOR EACH FACE BOUNDARY CONDITION	2549
2550	202	C		2550
2551	203	1180	continue	255:
2552	204		READ ($16 . *$ * END=1210) IJ, IDUMY, JS(9.1J)	2552
2553	205		G0 101180	2553
2554	206	1210	continue	2554
2555	207		PRINT * . NV,NE.NS,NC	2555
2556 2557	208	c		2556
2557 2558	209		DO 1190 IK $=1$, NS	2557
2558	210		IVI $=$ JS (1.1 IK)	2558
2559	211		IV2 $=$ JS (2.1 IK)	2559
2560	212		IV3 = JS (3 , IK)	2560
2561	213	${ }^{\text {c }}$		2561
2562	214	C	SIDE INFORMATION, FOR EACH FACE TANGENTIAL VECTOR	2562
2563	215	c		2563
2564	216		XP(IK) = XV(1, IV2) - XV(1 , IVI)	2564
2565	217		YP(IK $)=\mathrm{XV}(2, \mathrm{IV} 2)-X V(2, I V 1)$	2565
2566	218		2P(IK) $=$ XV($3,1 \mathrm{IV} 2)-X V(3, I V 1)$	2566
2567	219		XPPOMYY $=$ XV(1, IV3) - XV(1 , IV1)	2567
2568	220		YPDOMY $=$ XV(2, IV3 $)=X V(2,1 V 1)$	2568
2569	221		ZPDOMY $=$ XV(3, IV3) - XV\{ 3, IVI)	2569
2570	222	c		2570
2571	223	c	SIDE INFORMAIION, FOR EACH FACE NORMAL UNIT VECTOR	2571
2572	224	C		2572
2573	225		XH(IK) - YP(IK) * ZPDUMY - 2P (IK) * YPDUMY	2573
2574	226		YM (IK) = ZP (IK) * XPDUMY - XP(IK) * ZPOUMY	2574
2575	227		ZLS (IK) = XP(IK) * YPDUMY - YP(IK) * XPDUMY	2575
2576 2577	228	${ }^{c}$		2576
2578	230	c	SIDE information, for each face tangential vector	2577
2579	231		XT(IK) = - YP(IK) * 2N(IK) + ZP(IK) * YN(IK	2578 2579
2580	232		YT(IK) $=-2 \mathrm{P}(\mathrm{IK}$) * XN(IK $)+$ XP(IK $) *$ IN(IK $)$	2580
2581	233		ZT(IK) = - XP(IK) * YN(IK) + YP(IK) * XN(IK)	2581
2582	234	c		2582
2583	235		XYZDUM - XN(IK)*XN(IK) + YN(IK)*YN(IK) + ZN(IK)*ZN(IK)	2583
2584	236		IF (XYZDUM.EG, O.) PRINT *, IK	2584
2585	237		XYZDUM = 1. / SQRT(XYZDUM)	2585
2586	238	c		2586
2587	239	c	SIDE information. for each face area of face	2587
2588	240	c		2588
2589	241		XS (4 , IK) = . 5 / XYZDUM	2589
2590	242	c		2590
2591	243	\bigcirc	SIDE information. for each face centroio of face	2591
2592	244	C		2592
2593	245		XS (1 , IK - - X X (1 , IV1) + XV(1, IV2) +	2593
2594	246			2594
2595	247			2595
2596	248			2596
2597	249		XS(3, IK) = (XVI 3, IVI) + XV(3, IV2) .	2597
2598	250			2598
2599	251		Xn($1 K)=$ XN(IK) * XYZDUM	2599
2600	252		YN(1 K$)=\mathrm{YN}(\mathrm{IK} ; *$ xYZDUM	2600
2601	253		ZM (IK) * $2 N(1 K) *$ XYIDUM	2601
2602	254			2602
2503	255		XYZDUM = 1. [SORT (XYZDUM)	2603
2604	256		XP(IK) $=$ XP(IK) * XYZDUM	2604

Thu Jui	1 14:1	17:00	1993 threed.f SUBROUTINE GEDHTR	page 37
2605	257		YP(IK) - YP(IK) * XYZDUM	2605
2606	258		ZP $(1 K)=2 P(I K) * X Y Z D U H$	2606
2607	259		XYZDUM $=X T(I K) * X T(I K)+Y T(I K) * Y T(I K)+2 T(I K) * Z T(I K) ~$	2607
2608	¢60		XYZCUM = 1. / SORT(XYZDUM)	2608
2609	261		XT(IK) = XT(IK) * XYZDUM	2609
2610	262		YT(IK) - YT(IK) * XYZDUM	2610
2611	263		2T(IK) - ZT(IK) * XYZDUM	2611
2612	264	1190	continue.	2612
2613	265		PRINT * . NS	2513
2614	266	C		2614
2615	267		NVECV = NV / 128	2615
2616	268		NREAV = NV - NVECV - 128	2616
2617	269		NVECE $=$ NE / 128	2617
2618	270		NREME - NE - NVECE * 128	2618
2619	271		NVECS $=$ NS / 128	2619
2620	272		NREMS $=$ NS - NVECS * 128	2620
2621	273		NVECC $=$ NC / 128	2621
2622 2623	274		NREMC - NC - NVECC * 128	2622
2623 2624	275 276	C	DO 125 INV = 1. NVECV	2623 2624
2625	277		NOFVEV (INV) $=128$	2624 2625
2626	278	125	continue	2626
2627	279		NYEEV = NVECV	2627
2628	280		IF (NREMV GT . 0) THEN	2628
2629	281		NVEEV - HVECV + 1	2629
2630	282		NOFVEV (NVEEV) = NREMY	2630
2631	283		END If	2631
2632	284	C		2632
2633	285		D0 105 INE - 1, NVECE	2633
2634	286		NOFVEE (INE) $=128$	2634
2635	287	105	CORTIMUE	2635
2636	288		NVEEE - NVECE	2636
2637 2638	289		IF (NREME GT . O) THEN	2637
2638 2639	290		NVEEE - NVECE + 1	2638
2639 2640	291		NOFVEE (NVEEE) = NREME	2639
2641	293	C	End if	2640
2642	294		DO 115 INS - 1 . NVECS	2642
2643	295		HOFVES (INS) $=128$	2643
2644	296	115	COntinue	2644
2645	297		NVEES = NVECS	2645
2646	298		IF (NREHS GT . O) THEM	2646
2647	299		HVEES = NVECS + 1	2647
2648	300		NOFVES (NVEES) = WREMS	2648
2649	301		END IF	2649
2650	302	C		2650
2651	303		DO 135 INC = 1. NVECC	2651
2652 2653	304		NOFVEC(INC) = 128	2652
2653 2654	305	135	CONTINUE	2653
2655	306		NVEEC = NVECC	2654
2656	308		IF (NREMC \cdot GT + 0) THEN	2655
2657	309		NOFVEC (NVEEC) = NREMC	2656
2658	310		END IF	2657
2659	311	c		2658
2660	312		PRIMT * NV. NE.NS.NC	2659
2651	313		Print *, NVEEV, NVEEE, NVEES, NVEEC	2660 2661
2682	314		PRINT * NREMV, NREME, NREMS. NREHC	2662
2663	315	1001	FORMAT (417)	2663
2664	316	1002	FORMAT(17.3E20.12)	2664
2665 2666	317	c		2665
2666	318		CALL GEOMTR	2666
2667 2688	319 320	c	RETURN	2667 2668
2669	321		END	2669
2670	322	C		2670

2671
2672
2673
2674
2675
2675
2676
2677
2678
2679
2681
2682
2682
2683
2684
2685
2686
2687
2688
2689
2689
2690
2691
2692
2693
2694
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2708
2709
2710
2711
2712
2713
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744

Th

threed. f
SUBROUTINE UPGPAD

2745	75		RETURN

Thu Jul 1 14:17:00 1993
threed. f
SUBROUTINE GRADNT

2748	1		SUBROUTINE GRADNT	2748
2749		C		2749
2750	3		---1	2750
2751		C	GRavir I	2751
2752	5	C	GRADNT COMPUTE THE GRADIENT FOR SECOND ORDER CALCULATION I	2752
2753	6	C	I	2753
2754	7	c-	-I	2754
2755	8	C		2755
2756	9		include ' ${ }^{\text {dmsh00. }}$ '	2756
2757	10		include 'dhydmo.h'	2757
2758	11		include 'dphsm0.h'	2758
2759	12		include 'dmtrio.h'	2759
2760	13	C		2760
2761	14		REAL RRMIDL(128), PPMIDL (128), UUMIOL(128).VVHIDL(128).	2761
2762	15		- WMHIDL (128), AAMIDL (128)	2762
2763	16		REAL RIGRAD (128), PIGRAD (128), UIGRAD (128), VIGRAD(128).	2763
2764	17		- WIGRAD (128), AIGRAD (128)	2764
2765	18		REAL RJGRAD (128), PJGRAD (128), UJGRAD (128), VJGRAD (128).	2765
2766	19		- HJGRAD (128), A JRAD (128)	2766
2767	20		REAL RKGRAD (128), PKGRAD (128), UKGRAD (128),VKGRAD(128).	2767
2768	21		- $\operatorname{HKGRAD}(128), \operatorname{AKGRAD}(128)$	2768
2769	22		REAL RMAX (128), PMAX (128) , UMAX (128), VMAX (128), $\operatorname{mmax}(128)$,	2769
2770	23		- Amax (128)	2770
2771	24		REAL RMIN(128), PMIN(128), UMIM(128), VMIN(128), MMIN(128),	2771
2772	25		- AMIN(128)	2772
2773	26		REAL ROR (4), UOR (4), VOR (4), $\mathrm{HOR}(4), \operatorname{POR}(4), \operatorname{AOR}(4)$	2173
2774	27		REAL ROL (4), VOL (4), VOL (4), WOL (4), POL (4), AOL (4)	2774
2775	28	C		2775
2776	29		DO 120 IH = 1. 3	2776
2777	30	6		2717
2778 2779	31		00120 IC $=1 . \mathrm{NC}$	2778
2779 2780	32	c		2779
2780	33		RGRAD (IC, IH) - 0 .	2780
2781	34 35		UGRAD (IC , IH) $=0$.	2781
2782	35		VGRAD (IC. IH) $=0$.	2782
2783	36		MGRAD (IC , IH $)=0$.	2783
2784	37		PGRAD (IC , IH) = 0 .	2784
2785	38			2785
2786	39	120	continue	2786
2787	40	${ }^{\text {c }}$		2787
	41	C--		2788 2789
2790	43		NSI - 1	2790
2791	44		NS2 - NOFVES(1)	2791
2792	45		DO 90 INS = 1 , NVEES	2792
2193	46	c		2793
2794	47	C .-.		2794
2795	48	C		2795
2796	49		00105 IS = NS1 , NS2	2796
2797	50		KS $=15-N S I+1$	2797
2798	51	C		2798
2799	52		ICL $=$ JS(7,15)	2799
2800	53		ICR = JS ${ }^{\text {8 , IS }}$)	2800
2801	54	c		2801
2802	55		IATRB $=$ JS (9, IS)	2802
2803	56		IF (IATRB. EQ . 0) THEN	2803
2804	57	c		2804
2805	58		XYZ $=$ XYZMDL (4, IS)	2805
2806	59		RRMIOL KS) $=$ HYOV (ICL , 1) + XYZ * (HYOV (ICR . 1) -	2806
2807	60		UMMIDL (KS) HYDV(ICL 2) + XYZ (HYDV(ICL . 1))	2807
2808	61		UUMIDL (KS) = HYDV(ICL . 2) + XYZ * (HYOV (ICR . 2)	2808
2809	62			2809
2810	63		VVMIDL (KS) = $\mathrm{HYDV}($ ICL , 3) + XYZ * ($\operatorname{HYDV}($ ICR , 3$)$)	2810
2811	64			2811
2812	65		WWMIDL (KS) = HYDV(ICL , 4) + XYZ * (HYDV (ICR , 4) :	2812
2813	66		PPMIDL (KS) = HYDV(ICL 5) + XYZ * HYDV(ICL . 4 ${ }^{\text {a }}$) ;	2813
2814	67		PPMIDL (KS) = HYOV(ICL . 5) + XYZ * (HYDV(ICR . 5)	2814
2815	68		HYDV(ICL . 5)	2815

2816	69	C		2816
2817	70		ELSE	2817
2818	71	C		2818
2819	72		RRMIDL (KS) = HYOV (ICL , 1)	2819
2820	13		UUMIDL (KS) = HYDV (ICL, 2)	2820
2821	74		VWMIDL (KS) $=$ HYOV(ICL , 3)	2821
2822	75		WWMIDL (KS) $=$ HYDV (ICL, 4)	2822
2823	76		PPMIDL (KS) = HYDV (ICL , 5)	2823
2824	77	C		2824
2825	78		END If	2825
2826	79	c		2826
2827	80	105	continue	2827
2828	81	C		2828
2829	82		DO 110 IS = NSI ${ }^{\text {NS }}$	2829
2830	83		KS = IS - NSi + 1	2830
2831	84	C		2831
2832	85		XEXN = XS (4, IS) * XN(IS)	2832
2833	86		XEYN $=$ XS (4: IS) * YN(IS)	2833
2834	87		XEZN = XS (4.15) * ZN(IS)	2834
2835	88	C		2835
2836	89		RIGRAD(KS) = RRHIDL (KS) * XEXN	2836
2837 2838	90		UIGRAD(KS $)=$ VUMIDL (KS) * XEXN	2837
2839	92			2838
2840	93		PIGRAD (KS) = PPMIDL (KS) * XEXM	2839
2841	94	\bigcirc		2840
2842	95		RJGRAD (KS) $=$ RRMIDL (KS) * XEYM	2842
2843	96		UJGGRAD (KS) = UUMIDL (KS) * XEYN	2843
2844	97		VJGRAD (KS) = VVMIDL (KS) * XEYN	2844
2845	98		WJGRAD (KS) = WHMIDL (KS) * XEYN	2845
2846	99		PJGRAD (KS) = PPMIDL (KS) * XEYN	2846
2847	100	\bigcirc		2847
2848	101		RKGRAD (XS) = RRMIOL (KS) * XEZM	2848
2849	102		UKGRAD (KS) - UUMIDL (KS) * XEZK	2849
2850	103		VKGRAD (KS) = VVHIDL (KS) * XEZM	2850
2851	104		WKGRAD (KS) = WMHIDL (KS) * XEZF	2851
2852	105		PKGRAD (KS) = PPMIDL (KS) * XEZK	2852
2853	106	C		2853
2854	107	${ }^{110}$	continue	2854
2855 2856	108	c		2855
2856 2857	109		DO 130 IS = NS1, NS2	2856
2857 2858	110		KS = IS - NS1 + 1	2857
2858 2859	111	c		2858
2859 2850	112		$I C L=J S(7,15)$	2859
2850	113		$I C R=J S(8, I S)$	2860
28682	114 115	C		2861
2863	116		RGRAD (ICL : 2) $=$ RGRAD ($1 \mathrm{ICL}, 23)+\mathrm{RIJRRAD}(\mathrm{KS})$	2862 2863
2864	117		RGRAD (ICL . 3) = RGRAD (ICL, 3) + RKGRAD (KS)	2864
2865 2866	118		UGRAD (ICL , 1) = UGRAD (ICL , 1) + UIGRAD (KS)	2865
2867	120			2866 2867
2868	121		$\operatorname{VGRAD}(\mathrm{ICL}, 1)=\operatorname{VGRAD}(\mathrm{ICL}, 1)+\operatorname{VIGRAD}(\mathrm{KS})$	2868
2869	122		VGRAD (ICL, 2) = VGRAD (ICL. 2) + VJGRAD (KS)	2869
2870	123		VGRAD (ICL, 3) = VGRAD (ICL, 3) + VKGRAD (KS)	2870
2871	124		HGRAD (ICL. 1) - WGRAD (ICL, 1) + WIGRAD (KS)	2871
2872	125		HGRAD (ICL. 2) $=$ WGRAD (ICL , 2) + WJGRAD (KS)	2872
2873	126		WGRAD (ICL , 3) = WGRAD (ICL. 3) + HKGRAD (KS)	2873
2874	127		$\operatorname{PGRAD}($ ICL, 1$)=\operatorname{PGRAD}($ ICL $\cdot 1)+\operatorname{PIGRAD}(\mathrm{KS})$	2874
2875	128		PGRRAD (ICL $\cdot 2)=$ PGRAD (ICL 2) + PJGGRAD (KS $)$	2875
2876	129		$\operatorname{PGRAD}($ ICL . 3) $=\operatorname{PGRAO}($ ICL . 3) $+\operatorname{PKGRAD}(\mathrm{KS})$	2876
2877	130	C		2877
2878	131		IATRE $=$ JS (9, IS)	2878
2879 2880	132		IF (IATRB. EQ . 0) THEN	2879
2880	133	${ }^{\text {c }}$		2880
2881 2882	134 135	${ }^{\text {C }}$	Gradient of oensity (u V h direction)	2881
2882	135 136	C		2882
2883	136 137			2883
2884 2885	137 138		RGRRAD (ICR RGRAD ICR	2884
2886			RGRAD (ICR , 3) $=\operatorname{RGRAD}($ ICR , 3) - RKGRAD (KS)	2885
2887	140			2886
2888	141	c		2888
2889	142		UGRAD(ICR , 1) = UGRAD (ICR . 1)-UIGRAD(KS)	2889

2890	143		UGRAD (ICR , 2) = UGRAD (ICR, 2)- UJGRAD (KS)	2890
2891	144		UGRAD (ICR , 3) = UGRAD (ICR , 3) - UKGRAD (KS)	2891
2892	145	C		2892
2893	146	c	gradient of v velocity (U V doirection)	2893
2894	147	C		2894
2895	148		VGRAD (ICR , 1) = VGRAD (ICR , 1)-VIGRAD (KS)	2895
2896	149		VGRAD (ICR , 2) = VGRAD (ICR , 2) - VJGRAD (KS)	2896
2897	150		VGRAD (ICR , 3) = VGRAD (ICR , 3) - VKGRAD (KS)	2897
2898	151	C		2898
2899	152	C	GRADIENT OF W VELOCITY (U V W DIRECTION)	2899
2900	153	C		2900
2901	154		HGRAD (ICR , 1) = WGRAD (ICR , 1) - HIGRAD (KS)	2901
2902	155		WGRAD (ICR , 2) = WGRAD (ICR , 2) - HJGRAD (KS)	2902
2903	155		WGRAD (ICR , 3) = WGRAD (ICR , 3) - WKGRAD (KS)	2903
2904	157	C		2904
2905	158	C . ${ }^{\text {c }}$	GRADIENT OF PRESSURE (U V W DIRECTION)	2905
2906	159	C		2906
2907	160		PGRAD (ICR , 1) = PGRAD (ICR . 1) - PIGRAD (KS)	2907
2908	161		PGRAD (ICR , 2) $=$ PGRAD (ICR , 2)-P PJGRAD (KS)	2908
2909	162		PGRAD (ICR . 3) - PGRAD(ICR . 3) - PKGRAD (KS)	2909
2910	163	C		2910
2911	164		END IF	2911
2912	165	C		2912
2913	166	130	continue	2913
2914	167	C		2914
2915	168		NS1 $=$ NS2 +1	2915
2916	169		NS2 - NS2 + NOFVES (INS + 1)	2916
2917	170	90	continue	2917
2918	171	c		2918
2919	172		DO 140 IH $=1.3$	2919
2920	173	\bigcirc		2920
2921	174		DO 140 IC = 1. NC	2921
2922	175	C		2922
2923	176		RGRAD (IC , IH) = RGRAD(IC . IH) * SVOLH(IC)	2923
2924	177		UGRAD (IC. IH) = UGRAD (IC. IH) * SVOLM (IC)	2924
2925	178		VGRAD (IC. IH) = VGRAD (IC. IH) * SVOLM IC	2925
2926	179		HGRAD (IC. IH) = MGRAD (IC. IH) * SVOLM (IC	2926
2927	180		PGRAO (IC , IH) = PGRAD (IC , IH) * SVOLM (IC)	2927
2928	181	C		2928
2929	182	140	continue	7929
2930	183	C		2930
2931	184		NC1-1	2931
2932	185		HC2 - NOFVEC(1)	2932
2933	186		DO 80 INC $=1$, NVEEC	2933
2934	187	C		2934
2935	188		DO 150 IC = NC1 , NC2	2935
2936	189		$\mathrm{KC}=\mathrm{IC}-\mathrm{NCI}+1$	2936
2937	190	C		2937
2938	191		IS = JC(5 , IC)	2938
2939	192	C		2939
2940	193		ICL $=$ JS $(7,15)$	2940
2941	194		ICR $=\mathrm{JS}(8, \mathrm{IS}$)	2941
2942	195	C		2942
2943	196		RROL = HYDV(ICL , 1)	2943
2944	197		UUOL = HYOV (ICL . 2)	2944
2945	198		VVOL $=$ HYDV (ICL $\cdot 3$)	2945
2946	199		WWOL $=$ HYDV (ICL, 4)	2946
2947	200		PPOL = $\mathrm{HYOV}($ ICL . 5)	2947
2948	201	c		2948
2949	202		IATRB $=$ JS (9.15)	2949
2950	203		IF (IATRB. EQ . O) THEN	2950
2951	204	C		2951
2952	205		RROR - HYOV(ICR . 1)	2952
2953	206		UUOR = HYDV (ICR . 2)	2953
2954	207		VYOR = HYOV (ICR , 3)	2954
2955	208		WWOR = HYDV(ICR . 4)	2955
2956	209		PPOR = HYOV (ICR . 5)	2956
2957	210	C		2957
2958	211		ELSE	2958
2959	212	C		2959
2960	213		RROR - RROL	2960
2961	214		UUOR = JUOL	2961
2962	215		VVOR = WVOL	2962
2963	216		WWOR - WHOL	2963

3186	439	C		3186
3187	440		ELSE	3187
3188	441	6		3188
3189	442		RROR $=$ RROL	3189
3190	443		UUOR = UUOL	3190
3191	444		VVOR = VVOL	3191
3192	445		HHOR $=$ WHOL	3192
3193	446		PPOR = PPOL	3193
3194	447	C		3194
3195	448		END IF	3195
3196	449	C		3196
3197	450		ROL (1) = 1. / RROL	3191
3198	451		UOL (1) = 1. / WUOL	3198
3199	452		VOL (1) $=1.1$ VVOL	3199
3200	453		WOL (1) $=1.1$ WHOL	3200
3201	454		POL (1) $=1.1$ PPOL	3201
3202	455	C		3202
3203	456		$\operatorname{ROR}(1)=1.1 \mathrm{RROR}$	3203
3204	457		UOR(1) = 1. / UUOR	3204
3205	458		VOR(1) $=1.1$ VVOR	3205
3206	459		WOR(1) $=1.1$ WHOR	3206
3207	460		$\operatorname{POR}(1)=1 . / \mathrm{PPOR}$	3207
3208	461	c		3208
3209	462		IS = JC($6, ~ I C)$	3209
3210	463	c		3210
3211	464		$I C L=J S(7,15)$	3211
3212	465		$I C R=J S(8.15)$	3212
3213	466	C		3213
3214	467		XML $=$ XYYMDL ($1, ~ I S)-X C(1, I C L)$	3214
3215	468		YML $=$ XYZMDL $(2 \cdot 15)-X C(2 . I C L)$	3215
3216	469		ZML $=$ XYZMDL (3,15$)-\mathrm{XC}(3, \mathrm{ICL})$	3216
3217	470	c		3217
3218	471		RROL $=1 . \mathrm{E}-16+\mathrm{RGRAD}(\mathrm{ICL}, 1)$ * XML +	3218
3219	472		RGRAD (ICL . 2) * YML + RGRAD (ICL , 3) * ZML	3219
3220	473		UYOL $=1 . E-16+\operatorname{UGRAD}(\mathrm{ICL}, 1) *$ XML +	3220
3221	474		UGRAD (ICL , 2) * YML + UGRAD (ICL , 3) * ZML	3221
3222	475		WVOL $=1 . E-16+$ VGRAD (ICL , 1) * XML +	3222
3223	476		VGrad (ICL , 2) * YML + VGraid ICL , 3) * ZML	3223
3224	477		WHOL = 1.E-16 + WGRAD (ICL . 1) * XML +	3224
3225	478			3225
3226	479		PPOL $=1 . E-16+$ PGrad (ICL , 1) * XML +	3226
3227	480		PGRAD (ICL , 2) * YML + PGRAD (ICL , 3) * ZML	3227
3228	481	C		3228
3229	482		IATR $=$ JS $(9$, IS)	3229
3230	483		IF (IATRB . EQ . O) Then	3230
3231	484	c		3231
3232	485		XMR $=$ XYZMOL ($1, \mathrm{IS})-\mathrm{XC}(1$, ICR $)$	3232
3233	486		YMR $=$ XYYMDL 2.15$)-X C(2 . I C R)$	3233
3234	487		ZMR $=$ XYZMDL (3 , IS) - XC(3 , ICR $)$	3234
3235	488	C		3235
3236	489		RROR $=1 . E-16+$ RGRAO(ICR , 1) * XMR +	3236
3237	490		(PGRAD (ICR , 2) * YMR + RGRAD (ICR , 3) * IMR	3237
3238	491			3238
3239	492		(UGRAD (ICR , 2) * YMR + UGRAD (ICR , 3) * IMR	3239
3240	493			3240
3241	494		VGRAD (ICR , 2) * YMR + VGRAD (ICR , 3) * IMR	3241
3242	495			3242
3243	496		PPOR = WGRAD (ICR . 2) * YMR + HGRAD (ICR , 3) * IMR	3243
3244 3245	$49 / 1$			3244 3245
3245 3246	498 499		PGRAD (ICR , 2) * YMR + PGRAD (ICR , 3) * IMR	3245 3246
3247	500	c	ELSE	3247
3248	501	C		3248
3249	502		RROR = RROL	3249
3250	503		UUOR $=$ UUOL	3250
3251	504		VVOR = VVOL	3251
3252	505		WHOR - WHOL	3252
3253	506		PPOR = PPOL	3253
3254	507	c		3254
3255	508		END If	3255
3256	509	C		3256
3257	510		ROL (2) $=1 . / \mathrm{RROL}$	3257
3258	511		UOL (2) $=1.1$ UUOL	3258
3259	512		VOL(2) = 1. / VVOL	3259

3260	513			
3261	514		$\mathrm{POL}(2)=1 . / \mathrm{PPOL}$	3260 3261
3262	515	C		3262
3263	516		$\operatorname{ROR}(2)=1.1 \mathrm{RROR}$	3263
3264	517		$\operatorname{UOR}(2)=1.1$ UUOR	3264
3265	518		$\operatorname{VOR}(2)=1.1 \mathrm{VVOR}$	3265
3266	519		HOR(2) $=1.1$ HWOR	3266
3267	520		$\operatorname{POR}(2)=1.1 \mathrm{PPOR}$	3267
3268 3269	521	C		3268
3269 3270	522		IS $=\mathrm{JC}(7, \mathrm{IC})$	3269
3270 3271	523 524	C	ICL $=$ JS (7, IS)	3270
3272	525		ICR $=$ JS(8 : IS $)$	3271
3273	526	C		3273
3274	527		XML $=$ XYZMDL (1 , IS) - XC(1. ICL)	3274
3275	528		YML $=$ XYZMDL $(2, I S)-X C(2, I C L)$	3275
3276	529		ZML $=$ XYZMDL $(3: I S)-X C(3: I C L)$	3276
3277	530	C		3277
3278	531		RROL $=1 . \mathrm{E}-16+\mathrm{RGRAD}(\mathrm{ICL}, 1) *$ XML +	3278
3279	532		(RGRAD (ICL , 2) * YML + RGRAD (ICL . 3) * ZML	3279
3280	533		UUOL $=1 . E-16+\operatorname{UGRAD}($ ICL . 1) * XML +	3280
3281	534		UGRAD (ICL , 2) * YML + UGRAD (ICL , 3) * ZML	3281
3282	535			3282
3283	536		VGRAD (ICL , 2) * YML + VGRAD (ICL , 3) * 2 ML	3283
3284	537		WHOL $=1 . E-16+$ WGRAD (ICL $\cdot 1) *$ XML +	3284
3285	538		PPOL WGRAD (ICL , 2) * YML + WGRAD (ICL . 3) * ZML	3285
3286	539		PPOL $=1 . E-16+\operatorname{PGRAD}(\mathrm{ICL}, 1) * X \mathrm{HL}+$ +	3286
3287	540		PGRAD (ICL , 2) * YML + PGRAD (ICL , 3) * 2ML	3287
3288	541	c		3288
3289	542		IATRB $=$ JS (9, IS)	3289
3290 3291	543	c	IF (IATRB . EQ . O) THEN	3290
3292	545	c	XMR $=$ XYZMDL (1,15) - XC (1, ICR $)$	3291
3293	546		YMR $=$ XYZMOL $(2$, IS $)-X C(1)$, ICR $)$	3292 3293
3294	547		ZMR $=$ XYZMDL $(3 ;$ IS $)-X C(3 ; I C R)$	3294
3295	548	c		3295
3296	549		RROR $=1 . \mathrm{E}-16+\mathrm{RGRAD}($ ICR , 1) * XMR +	3296
3297	550		- ${ }^{\text {RGRAD (}}$ ICR , 2) * YMR + RGRAD (ICR , 3) * $2 M R$	3297
3298	551		UUOR $=1 . E-16+$ UGRAD (ICR , 1) * XMR +	3298
3299 3300	552		- UVOR = UGRAD (ICR , 2) * YMR + UGRAD(ICR , 3) * ZMR	3299
3301	553 554			3300
3302	555		WHOR = 1.E-16 + WGRAD (ICR , 1) * XMR + VGRAD ICR , 3) * ZMR	3301 3302
3303	556		WGRAD (ICR , 2) * YMR + HGRAD (ICR , 3) * ZMR	3303
3304	557		PPOR = 1.E-16 + PGRAD (ICR . 1) * XMR +	3304
3305	558		PGRAD (ICR . 2) * YMR + PGRAD (ICR . 3) * IMR	3305
3306	559	c		3306
3307 3308	560		ELSE	3307
3308	561	\bigcirc		3308
3309	562		RROR = RROL	3309
3310	563		IUUOR = UUOL	3310
3311	564		VVOR = VVOL	3311
3312	565		WHOR $=$ WWOL	3312
3313	566		PPOR $=$ PPOL	3313
3314	567	c		3314
3315	568		END IF	3315
3316	569	C		3316
3317	570		ROL (3) = 1. / RROL	3317
3318	571		UOL (3) $=1.1$ UUOL	3318
3319	572		VOL (3) $=1 . /$ VVOL	3319
3320	573		WOL (3) $=1.1$ WWOL	3320
3321	574		POL (3) $=1.1$ PPOL	3321
3322	575	C		3322
3323	576		$\operatorname{ROR}(3)=1 . / \operatorname{RROR}$	3323
3324	577		VOR $(3)=1.1$ UUOR	3324
3325	578		$\operatorname{VOR}(3)=1.1$ VVOR	3325
3326	579		HOR(3) $=1.1$ WHOR	3326
3327	580		POR(3) $=1 . /$ PPOR	3327
3328	581	6		3328
3329	582		IS = JC(8 , IC)	3329
3330	583	C		3330
3331	584		ICL $=$ JS(7 , IS)	3331
3332	585		ICR = JS 8 . IS	3332
3333	586	C		3333

3334	587		$X M L=X Y Z M D L(1, I S)-X C(1, I C L)$	3334
3335	588		YML $=\mathrm{XYZMDL}(2,15)-X C(2,1 C L)$	3335
3336	589		ZML $=$ XYZMOL $(3,15)-X C(3, I C L)$	3336
3337	590	C		3337
3338	591		RROL $=1 . E-16+\operatorname{RGRAD}(1 C L ~ . ~ 1) ~ * ~ X M L ~+~$	3338
3339	592		(RGRAD (ICL , 2) * YML + RGRAD (ICL , 3) * $2 M L$	3339
3340	593		UUOL $=1 . E-16+\operatorname{UGRAD}(1 C L, 1) *$ XML +	3340
3341	594		- UGRAD (ICL . 2) * YML + UGRAD (ICL . 3) * IML	3341
3342	595		WVOL = 1.E-16 + VGRAD (ICL . 1) * XML +	3342
3343	596		- VGRAD (ICL . 2) * YML + VGrad (ICL . 3) * 2ML	3343
3344	597		WHOL $=1 . \mathrm{E}-16+$ WGRAD (ICL , 1) * XML +	3344
3345	598		WGRAD (ICL , 2) * YML + WGRAD (ICL , 3) * IML	3345
3346	599		PPOL $=1 . E-16+\operatorname{PGRAD}(\mathrm{ICL}, 1)$ * XML +	3346
3347	600		PGRAD (ICL , 2) * YML + PGRAD (ICL . 3) * 2ML	3347
3348	601	C		3348
3349	602		IATRB $=$ JS(9.15)	3349
3350	603		IF (IATR日. EQ . 0) THEN	3350
3351	604	c		3351
3352	605		XMR $=$ XYZMDL ($1, ~ I S)-X C(1$, ICR $)$	3352
3353	606		YMR $=$ XYYMDL $(2,15)-X C(2, I C R)$	3353
3354	607		ZMR = XYZMDL (3,15) - XC (3 , ICR)	3354
3355	608	c		3355
3356	609		RROR $=1 . E-16+\operatorname{RGRAD}($ ICR , 1) * XMR +	3356
3357	610		(RGRAD (ICR , 2) * YMR + RGRAD (ICR , 3) * IMR	3357
3358	611		UUOR $=1 . E-16+$ UGRAD (ICR , 1) * XMR +	3358
3359	612		UGRAD (ICR , 2) * YMR + UGRAD (ICR , 3) * IMR	3359
3360	613		VVOR $=1 . E-16+$ VGRAD (ICR , 1) * XMR +	3360
3361	614		VGIVAD (ICR , 2) * YMR + VGRAD (ICR , 3) * ZMR	3361
3362	615		WWOR = 1.E-16 + HGRAD (ICR , 1) * XMR +	3362
3363	616		HPOR HGRAD (ICR , 2) * YMR + HGRAD (ICR , 3) * CMR	3363
3364	617		PPOR = 1.E-16 + PGRAD (ICR , 1) * XMR +	3364
3365	618		PGRAD (ICR . 2) * YMR + PGRAD (ICR , 3) * IMR	3365
3366	619	c		3366
3367	620		ELSE	3367
3368	621	C		3368
3369 3370	622		RROR = RROL	3369
3370	623		ULIOR = UUOL	3370
3371	624		WOR = WVOL	3371
3372	625		WHOR $=$ WHOL	3372
3373	626		PPOR $=$ PPOL	3373
3374	627	c		3374
3375	628		EHD If	3375
3376	629	c		3376
3377	630		ROL (4) = 1. / RROL	3377
3378	631		UOL (4) $=1.1$ UUOL	3378
3379	632		$\mathrm{VOL}(4)=1.1 \mathrm{VVOL}$	3379
3380	633		HOL (4) $=1.1$ WHOL	3380
3381	634		POL (4) $=1 . /$ PPOL	3381
3382	635	C		3382
3383	636		ROR(4) = 1. / RROR	3383
3384	637		YOR (4) $=1.1$ UVOR	3384
3385 3386	638		$\operatorname{VOR}(4)=1.1 \mathrm{VVOR}$	3385
3386 3387	639		HOR(4) $=1.1$ WHOR	3386 3387
3387 3388	640		POR(4) = 1. $/$ PPOR	3387 3388
3388 3389	641	C		3388 3389
3389 3390	642		ISHR $=\operatorname{SIGN}(1 ., \operatorname{ROR}(1))$	3389 3390
3390 3391	643 644	c	ISNL = SIGN(1. , ROL (1)	3390 3391
3392	645		TEMPR $=(1+$ ISNR $) *$ RRR($\% C)+$	3392
3393	646		- (1 - ISNR) * RRL (KC)	3393
3394	647		RUVPRI $=0.5$ * TEMPR * ROR(1)	3394
3395	648	c		3395
3396	649		TEMPL $=(1+$ ISNL $) *$ RRR(KC) +	3396
3397	650		(1 - ISNL) * RRL (KC)	3397
3398	651		RUVPLI $=0.5$ * TEMPL * ROL (1)	3398
3399	652	c		3399
3400	653		ISNR $=$ SIGN(1. . ROR (2))	3400
3401	654		ISNL $=$ SIGN($1 .$. ROL (2))	3401
3402	655	\bigcirc		3402
3403	656		TEMPR = ($1+$ ISNR $)$ * RRR(KC) +	3403
3404	657		(1 - ISNR) * RRL(KC)	3404
3405 3406	658		RUVPR2 = 0.5 * TEMPR * ROR(2)	3405
3406 3407	659 660	C	TEMPL $=(1+15 N L) *$ RRR (KC) +	3406 3407

3408	661			3408
3409	662		RUVPL2 $=0.5$ * TEMPL * ROL (2)	3409
3410	663	C		3410
3411	664		ISNR $=\operatorname{SIGN}(1 ., \operatorname{ROR}(3)$)	3411
3412	665		ISNL - SIGN(1. . ROL (3) $)$	3412
3413	666	c		3413
3414	667		TEMPR * ($1+1$ SNR) * RRR (KC) +	3414
3415	668		- (1 - ISNR) * RRL (KC)	3415
3416	669		RUUPR3 $=0.5 *$ TEMPR * ROR(3)	3416
3417	670	C		3417
3418	671		TEMPL $=(1+$ ISNL $) *$ RRR (KC) $)+$	3418
3419	672		- (1-ISNL) * RRL (KC)	3419
3420	673		RUVPL3 $=0.5$ * TEMPL * ROL (3)	3420
3421	674	c		3421
3422	675		ISNR $=$ SIGN(1. , ROR (4))	3422
3423	676		ISNL $=\operatorname{SIGN(1..~ROL(~} 4$))	3423
3424	677	C		3424
3425	678		TEMPR $=(1+$ ISNR $) *$ RRR(KC) +	3425
3426	679		- ($1-$ ISNR) * RRL (KC)	3426
3427	680		RUVPR4 $=0.5$ * TEMPR * ROR(4)	3427
3428	681	C		3428
3429	682		TEMPL $=(1+$ ISNL $) *$ RRR(KC) +	3429
3430	683		- (1-ISNL) * RRL (KC)	3430
3431	684		RUVPL4 $=0.5 *$ TEMPL * ROL (4)	3431
3432	685	C		3432
3433	686		RMIM (KC) = AMINI (1 , RUVPR1 , RUVPL1 , RUVPR2 , RUVPL2	3433
3434	687		RUVPR3 , RUVPL3 , RUJPR4 , RUVPL4)	3434
3435	688	c		3435
3436	689		ISNR - SIGN(1. . UOR(l)	3436
3437	690		ISNL = SIGN($1 . . \operatorname{UOL}(1)$)	3437
3438	691	C		3438
3439	692		TEMPR $=(1+$ ISNR) * UUR $($ KC $)+$	3439
3440	693		- (1-ISNR) * UULL (KC)	3440
3441	694		RUVPR1 $=0.5$ * TEMPR * UOR(1)	3441
3442	695	C		3442
3443	696		TEMPL $=(1+$ ISNL $) * \operatorname{UUR}(\mathrm{KC})+$	3443
3444	697		($1-$ ISNL $) *$ UUL (KC)	3444
3445	698		RUYPLI $=0.5$ * TEMPL * VOL (1)	3445
3446 3447	699 700	C		3446 3447
3448	701		ISNR $=\operatorname{SIGN}=\operatorname{SIGN}(1 ., 0 \operatorname{UOR}(2)$ (2) $)$	3447 3448
3449	702	c		3449
3450	703		TEMPR $=(1+$ ISNR $) *$ UUR $(K C) ~+~$	3450
3451 3452	704		PUUPR2 $=(1-15 N R) * \operatorname{UUL}(\mathrm{KC})$	3451
3452 3453	705 706	C	RUUPR2 $=0.5 *$ TEMPR * UOR (2$)$	3452 3453 345
3454	707		TEMPL $=(1+$ ISNL $) *$ UUR $(K C)+$	3454
3455 3456	708		RUVPL $=(1-$ ISNL $) *$ UUL (KC)	3455
3456	709		RUVPL2 $=0.5$ * TEMPL * UOL (2)	3456
3457 3458	710	C		3457
3459	711		ISNR $=\operatorname{SIGN}(1 . \operatorname{UOR}(3)$	3458 3459
3460	713	C	ISNL - Sick (1. . GoL(3)	3460
3461	714		TEMPR $=(1+$ ISNR $) * \operatorname{UUR}(\mathrm{KC})+$	3461
3462	715		($1-$ ISNR $) *$ UUL $($ KC $)$	3462
3463	716		RUVPR $3=0.5 *$ TEMPR * UOR (3)	3463
3464	717	C		3464
3465	718		TEMPL $=(1+$ ISNL $) *$ UUR $(K C)+$	3465
3466	719		($1-$ ISNL $) *$ UUL (XC)	3466
3467	720		RUVPL3 $=0.5$ * TEMPL * UOL (3)	3467
3468 3469	121	c		3468
3469	122		ISNR $=\operatorname{SIGN(} 1 ., \operatorname{UOR}(4)$)	3469
3470 3471	723		ISNL $=\operatorname{SIGN}(1 . . \operatorname{UOL}(4))$	3470
3471 3472	124 725	C	TEMPR $=(1+$ ISNR $) *$ UUR (KC) +	3471 3472
3473	126		- (1-ISNR) * UULL (KC)	3473
3474	127		RUVPR4 $=0.5$ * TEMPR * UOR(4)	3474
3475	728	C		3475
3476	729		TEMPL $=(1+$ ISML $) *$ MUR (KC) $)+$	3476
3477	730		PUVPL4 (1 - ISNL) * UUL (KC)	3477
3478	731		RUVPL4 $=0.5$ * TEMPL* UOL (4)	3478
3479	732	c		3479
3480	733			3480
3481	134		RUVPR3 , RUVPL3 , RUVPR4 , RUVPL4)	3481

3556	809		($1-$ ISMR) * WHL (KC)	3556
3557	810		RUVPR3 = 0.5 * TEMPR * WOR (3)	3557
3558	811	C		3558
3559	812		TEMPL $=(1+15 N L) *$ WWR $($ KC $)$ *	3559
3560	813			3560
3561	814		RUVPL3 $=0.5$ * TEMPL * WOL (3)	3561
3562	815	C		3562
3563	816		ISNR $=\operatorname{SIGN}(1 . . \operatorname{HOR}(4)$)	3563
3564	817		ISNL $=\operatorname{SIGN}(1 . . \operatorname{HOL}(4)$)	3564
3565	818	C		3565
3566	819		TEMPR $=(1+1$ SMR $) *$ WHR (KC) +	3566
3567	820		($1-$ ISNR) * WHL (KC)	3567
3568	821		RUVPR4 $=0.5$ * TEMPR * HOR(4)	3568
3569	822	c		3569
3570	823		TEMPL $=(1+$ ISNL $) *$ WHR (KC) +	3570
3571	824		($1-$ ISNL $) *$ WWL (KC)	3571
3572	825		RUVPL4 = 0.5 * TEMPL * WOL (4)	3572
3573 3574	826	C		3573
3574 3575	827		WHIN(KC) = AMIM1 (1. . RUVPR1 . RUUPL1 , RUVPR2 , RUUPL2	3574
3575 3576	828		RUVPR3 . RUUPL 3 , RUVPR4 , RUVPL4)	3575
3577	830	c	ISAR $=\operatorname{SIGN}(1 ., \operatorname{POR(1)}$)	3576 3577
3578	831		ISNL $=\operatorname{SIGN}(1 . . \operatorname{POL}(1)$)	3578
3579	832	C		3579
3580	833		TEMPR $=(1+$ ISNR) * PPR (KCC) +	3580
3581 3582	834		RUUPPI (1 - ISNR) * PPL (KC)	3581
3582	835		RUUPR1 $=0.5$ * TEMPR * POR(1)	3582
3583 3584	835	C		3583
3584 3585	837		TEMPL $=(1+$ ISNL $) *$ PPR $(K C)+$	3584
3585 3586	838		(1 - ISNL) * PPL (KC)	3585
3587	840	C	RUVPLI $=0.5$ * TEMPL * POL (1)	3586
3588	841		ISNR $=\operatorname{SIGN}(1 . . \operatorname{POR}(2)$)	3588
3589	842		ISNL $=$ SIGN(1., POL (2))	3589
3590	843	C		3590
3591	844		TEMPR * ($1+$ ISNR) * PPRR(KC) +	3591
3592 3593	845 846		- RUVPPR ($1-$ ISNR $) *$ PPL $($ KC $)$	3592
3593	846		RUVPR2 $=0.5$ * TEMPR * POR(2)	3593
3594	847	C		3594
3595 3596	848		TEMPL $=(1+$ ISNL $) *$ PPR (KCC $)+$	3595
3596 3597	849		- (1-ISNL) * PPL (KC)	3596
3597 3598	850		RUVPL2 $=0.5$ * TEMPL * POL(2)	3597
3599	852	c	ISNR $=\operatorname{SIGN}(1 ., \operatorname{POR}(3)$)	3598 3599
3600	853		ISNL = SIGN(1. . POL(3) $)$	3600
3601	854	c		3601
3602	855		TEMPR $=(1+$ ISNR) * PPR (KC) +	3602
3603	856		- ${ }^{\text {a }}$ (1 - ISNR) * PPL (KC)	3603
3604	857		RUVPR3 $=0.5$ * TEMPR * POR(3)	3604
3605 3606	858	c		3605
3606 3607	859		TEMPL $=(1+$ ISNL $) *$ PPRR KC $) ~+$	3606
3607 3608	860 851		- RUYPL 3 ($1-$ ISNL $)$ * PPL (KC)	3607
3609	862	C	RUVL $3=0.5$ * TEMPL * POL (3)	3608 3609
3610	863		ISNR $=$ SIGN(1. , POR(4))	3610
3611	864		ISML $=$ SIGN(1. . POL (4))	3611
3612	865	C		3612
3613	866		TEMPR $=(1+$ ISHR $) * \operatorname{PPR}(\mathrm{KC})+$	3613
3614 3515	867		RUVPP ${ }^{(1-15 H R}$) * PPL (KC $)$	3614
3615 3616	868		RUVPR4 $=0.5$ * TEMPR * POR(4)	3615
3616 3617	869	C		3616
3617 3618	870		IEMPL $=(1+1$ SNL $) *$ PPR(XC) $)+$	3617
3618 3619	871		- ($1-1$ ISNL) * PPL (KC)	3618
3619	872		RUVPL4 $=0.5$ * TEMPL * POL(4)	3619
3620	873	C.		3620
3621	874		PMIN (KC) = AMIN1 (1. . RUVPR1 , RUVPL1 , RUVPR2 , RUVPL2	3621
3622	875		RUVPR3 . RUVPL3 - RUVPR4 , RUVPL.4)	3622
3623	876	C		36.3
3624	871	170	CONTINUE	3624
3625	878	C		3625
3626	879		$00330 \mathrm{IH}=1.3$	3626
3627	880	\bigcirc		3627
3628 3629	881 882		00330 IC $=$ NC1 ${ }_{\text {K }}$	

3630	883	C		3630
3631	884		$\operatorname{RGRAD}(1 \mathrm{C}, ~ I H)=\operatorname{RGRAD}(1 \mathrm{C}, ~ I H) * \operatorname{RMIN}(\mathrm{KC})$	3631
3632	385		UGRAD (IC, IH) = UGRAO(IC , IH) * UMIN(KC)	3632
3633	886		$\operatorname{VGRAD}($ IC , IH $)=\operatorname{VGRAD}($ IC , IH $) *$ VMIN(KC)	3633
3634	887		WGRAD (IC , IH) = WGRAD (IC, IH) * WMIN(KC)	3634
3635	888		$\operatorname{PGRAD}(\mathrm{IC}, \mathrm{IH}) \times \operatorname{PGRADi}$ IC . IH) * PMIM (KC)	3635
3636	889	C		$: 636$
3637	890	330	continue	3637
3638	891	C		3638
3639	892		NC1 $=$ NC2 + 1	3639
3640	893		NC2 = NC2 + NOFVEC(INC + 1)	3640
3641	894	80	CONTINUE	3641
3642	895	C		3642
3643	896		CALL FCHART	3643
3644	897	C		3644
3645	898		RETURN	3645
3646	899		END	3646
3647	900	C		3647

The Jul : 14:17:00 1993 threed.f SUBROUTINE FIRST

3648	1		SUBROUTINE FIRST	3648
3649	2	C		3649
3650	3	C	---1	3650
3651	4	C	I	3651
3652	5	C	FIRST IS TO BY PASS GRADIENT AND Characterstic computation i	3652
3653	6	c	I	3653
3654	7	C.		3654
3655	8	c		3655
3656	9		include 'dmsh00.h'	3655
3657	10		include 'dhydm0.h'	3657
3658	11		include 'dphsmo.h'	3658
3659	12		include 'dmtrio.h'	3659
3650	13	C		3660
3661	14		DO $110 \mathrm{IS}=1 . \mathrm{NS}$	3661
3662	15	C		3662
3663	16		ICL $=\mathrm{JS}(7 . \mathrm{IS}$)	3663
3664	17		ICR $=3$ S 8 , IS)	3664
3665	18	C		3665
3666	19		RL(IS) = HYDV(ICL . 1)	3666
3667	20		UL(IS) = HYDV(ICL . 2) * XN(IS) +	3667
3668	21		HYDV(ICL , 3) * YN(IS) +	3668
3669	22		HYOV($1 \mathrm{CL}, 4$) * $2 \mathrm{~N}(15)$	3669
3670	23		VL(IS) $=\operatorname{HYDV}($ ICL , 2) * XP(IS) +	3670
3671	24		$\operatorname{BYOV}(1 C L, 3) *$ YP(IS $)+$	3671
3672	25		HYOV(ICL, 4) * LP(IS)	3672
3673	26		HL(IS) = HYOV(ICL . 2) * XT(IS) +	3673
3674	27		HYDV(ICL . 3) * YT(IS) +	3674 3675
3675	28			3675
3676	29 30		PL (IS $)=\operatorname{HYOV}($ ICL, 5 AL (15$)=\mathrm{HYDV}($ ICL 6	3676 3677
3677 3678	30 31		AL (IS $)=\mathrm{HYOV}(\mathrm{ICL}, 6$ $\mathrm{GL}($ IS $)$	3677 3678
3679	32		EL(15) $=\operatorname{HYDV}(\mathrm{ICL}$. 8)	3679
3680	33	C		3680
3681	34		IATRB = JS ${ }^{\text {a }}$. IS)	3681
3682	35		IF (IATRB . EQ . 0) THEN	3682
3683	36	C		3683
3684	37		RR(IS) $=\operatorname{HYDV}($ ICR , 1)	3684
3685	38		UR(IS) = HYOV(ICR , 2) * XN(IS) +	3685
3686	39		HYOV (ICR , 3) * YM(IS) +	3686
3687	40		HYOV(ICR , 4) * ZN(IS)	3687
3688	41		VR(IS) $=\operatorname{HYDV}($ ICR , 2 $) * \operatorname{XP}(15)+$	3688
3689	42		- HYDV(ICR , 3) * YP(IS) +	3689
3690	43		- HYDV(ICR . 4) * 2P(IS)	3690
3691	44		HR(IS) $=\operatorname{HYDV}($ ICR . 2) * XT(IS) +	3691
3692	45		- HYOV(ICR . 3) * YT(IS) +	3692
3693	46		- HYDV(ICR , 4) * ZT(IS)	3693
3694	47		PR(IS) = $\operatorname{HYDV}($ ICR 5)	3694
3695	48		AR (IS) $=\operatorname{HYDV}($ ICR , 6)	3695
3696	49		GR(IS) = $\operatorname{HYDV}($ ICR $\cdot 7)$	3696
3697	50		ER(IS) $=\operatorname{HYDV}($ ICR . 8)	3697
3698	51	C		3698
3699	52		ELSE	3699
3700	53	c.		3700

3701	54		IF (IATRB . EQ . 8) THEN		3701
3702	55	C			3702
3703	56		RR(IS) = RIN		3703
3704	57		UR (IS) = UIN * XN(IS)	+ VIN * YN(IS) + WIN * 2N(15)	3704
3705	58		VR(IS) = UIN * XP(IS	+ VIN * YP(IS) + HIN * 2P(IS)	3705
3706	59		WR(IS) $=$ UIN * XT(IS	+ VIN * YT(IS) + HIN * ZT(IS)	3706
3707	60		$\operatorname{PR}(15)=P I N$		3707
3708	61		$A R(I S)=A L(I S)$		3708
3709	62		GR(IS) = GL(IS $)$		3709
3710	63		$E R(I S)=E L(I S)$		3710
3711	64	C			3711
3712	65		END IF		3712
3713	66	C			3713
3714	67		IF (IATRB . EQ . 7) THEN		3714
3715	68	C			3715
3716	69		RR(IS) = RL(IS)		3716
3717	70		UR (IS) $=$ ULI (IS		3717
3718	71		$V R(15)=V L(I S)$		3718
3719	72		WR(IS $)=$ WL. (IS)		3719
3720	73		PR(IS) $=$ PL(IS)		3720
3721	74		$A R(15)=A L(I S)$		3721
3722	75		GR(IS) = GL (IS)		3722
3723	76		$E R(1 S)=E L(15)$		3723
3724	77	C			3724
3725	78		END IF		3725
3726	79	C			3726
3727	80		IF (IATRB . EQ . 6) THEN		3727
3728	81	C			3728
3729	82		$R R(I S)=R L(I S)$		3729
3730	83		UR(IS $)=-U L(I S)$		3730
3731	84		$V R($ IS $)=$ VL(IS $)$		3731
3732	85		WR(IS) = WL (IS)		3732
3733	86		$P R(I S)=P L(I S)$		3733
3734	87		$A R(15)=A L(15)$		3734
3735	88		GR(IS) = GL(IS)		3735
3736	89		ER(15$)=E L(15)$		3736
3737	90	C			3737
3738	91		END IF		3738
3739	92	C			3739
3740	93		END IF		3740
3741	94	C			3741
3742	95	110	COMTINUE		3742
3743	96	C			3743
3744	97		RETURN		3744
3745	98		END		3745
3746	99	C			3746

3747 3748 3749 3750 3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3763
3764
3765
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820

```
    SUBROUTINE FCHART
C 3748
```



```
c CHARCT INTRODUCE CORRECTION FOR SECOND ORDER CALCULATION 1
3752
3753
3754
    Minclude }\begin{array}{ll}{\mathrm{ 'dmsh00.h' }}&{3755}\\{\mathrm{ include }}&{\mathrm{ 'dhydm0.h' }}
    include 'dphsm0.h' 3/57
C include 'mmtrlo.h' 375
    REAL IZLEFT(128),ZOLEFT(128),ZPLEFT(128),ZMLEFT(128)
    REAL ZZRIGT(128),ZORIGT(128),ZPRIGT(128),ZMRIGT(128)}
    REAL UPLEFT(128),UMLEFT(128),URLEFT(128) 3762
    REAL UPRIGT(128),UMRIGT(128).URRIGT(128) 3763
    REAL UVLEFT(128),UVRIGT(128),CNLEFT(128),CNRIGT(128) 3764
    REAL RLEFTT(128),ULEFTT(128),VLEFTT(128),PLEFTT(128). 3765
    ALEFTT(128) 3766
    REAL RRIGHT(128),URIGHT(128),VRIGHT(128),PRIGHT(128). }376
C ARIGHT(128) 3768
C MS1 = 1 3769
    MS1 = 1 NOFVES( 1) 37T0
    NS2 = NOFVES( 1 ) 3771
00 90 INS = 1 . NVEES 3772
00 110 IS = NS1 , NS2 
            KS = IS - NSI + 1 3775
    ICL = JS(7, IS ) 3776
    ICR = JS(8,.IS ) 3778
    GL( IS ) = HYDV(ICL 7) 3779
    CNLFTS = GL( IS ) * HYOV( ICL . 5 ) / HYOV(ICL . 1) 
    CNLFT = SORT( CNLFTS) 3 % 3/82
C 3783
    IATRB = JS(9., IS ) 3784
    IF( IATRB. EQ . 0) THEN 3785
    XYZ = 1. / XS( 5 . IS ) 
    XXN = XC(1,ICR ) - XC(1, ICL ) )*XYZ 3788
```



```
            ZZN = (XC( 3,ICR)-XC( 3,ICL))* XYZ 3790
            UVLFT = HYDV(ICL , 2)* XXN + 
            HYOV(ICL, 3)*YYN + 
            3793
            GR( IS ) = HYDV( ICR . 7) 3796
            CNRGTS = GR( IS ) * HYDV( ICR , 5 ) / HYOV( ICR . 1) 3797
            CNRGT = SQRT(CNRGTS ) 3798
C 3799
            UURGT = HYOV(ICR, 2) * XXN + 
            HYDV( ICR , 4 ) * IZN 3802
            ELSE 3804
            CNRGT = CNLFT 
            c
            XYZ =1. (XS( 5. IS ) 
                                3806
            XXN = ( XYZMDL(1 , IS ) - XC( 1, ICL ) )* XYZ 3809
            YYN = (XYZMDL( 2 , IS ) - XC( 2, ICL ) ) * XYZ 3810
            ZZN = (XYZMDL( 3,IS) -XC(3,ICL ) * XYZ 3811
            UVLFT = HYOV(ICL , 2)*XXN + NYON ICL 3 ) YYN ( 
                MYOV(ICL:3)* YYN+
C UVRGT = UVLET 3
    GR( IS ) = Gl( IS ) 3818
                    END IF 
```

3821	75	c		3821
3822	76		CNLEFT (KS) = CNLFT	3822
3823	71		CMRIGT (KS) = CNRGT	3823
3824	78	C		3824
3825	19		UVLEFT (KS) = UVLFT	3825
3826	80		UVRIGT(KS) = UVRGT	3826
3827	81	C		3827
3828	82	110	cominue	3828
3829	83	C		3829
3830	84		DO $130 \mathrm{KS}=1$. NOFVES (INS)	3830
3831	85	C		3831
3832	86		ZZLEFT(KS) $=.5$ * (UVLEFT(KS) + CNLEFT(KS)) * OTT	3832
3833	87			3833
3834	88	C		3834
3835	89	130	comtinue	3835
3836	90	C		3835
3837	91	C C	Characteristics locations	3837
3838	92	C		3838
3839	93		DO $140 \mathrm{KS}=1$. NOFVES (INS)	3839
3840	94	C		3840
3841	95		IF (ZZLEFT(KS) . LT . n.) ZZLEFT(KS) = 0 .	3841
3842	96		IF (Z2RIGT(KS) . LT . O.) ZZRIGT(KS) = 0.	3842
3843	97	C		3843
3844	98	140	comtinue	3844
3845	99	c		3845
3846	100		DO $150 \mathrm{KS}=1$, NOFVES(INS)	3846
3847	101	c		3847
3848	102		20LEFT (KS) = .5 * UVLEFT KS) * OTT	3848
3849	103		ZORIGT (KS) $=-.5$ * UVRIGT(KS) * DTT	3849
3850	104			3850
3851	105		ZPRIGT(KS) $=-.5$ * (UVRIGT(KS) + CNRIGT(KS)) * OTT	3851
3852	106			3852
3853	107		ZMRIGT(KS) = - .5* (UVRIGT(KS) - CNRIGT(KS)) * OTT	3853
3854	108	c		3854
3855	109	150	continue	3855
3856	110	${ }^{\text {c }}$		3856
3857	111	C F	First guess left and right variables, linear interpolaton	3857
3858	112	C		3858
3859	113		DO 160 IS $=$ NSI , NS2	3859
3860	114		KS $=15-\mathrm{NSI}+1$	3860
3861	115	C		3861
3862	116		ICL $=\mathrm{JS}(7,15)$	3862
3863	117		ICR $=3 S(8,15)$	3863
3864	118	C		3864
3865	119		IATRE = JS(9 , IS)	3865
3866	120		IF (IATRB . EQ . 0) THEN	3866
3867	121	c		3867
3868	122		$X Y Z=1.1 \times X(5, I S)$	3868
3869	123		XXK = (XCC (1 , ICR) - XCC 1 , ICL)) XYZ	3869
3870	124		YYM = (XCC $2, I C R)-X C(2, I C L) ~ * ~ X Y Z ~$	3870
3871	125		ZZK = (XC(3.ICR) - XC (3 , ICL) ${ }^{*}$ * XYZ	3871
3872 3873	125	C		3872
3873 3874	127			3873 3874
3874 3875	128			3874 3875
3875 3876	129			3875
3876 3877	130	C		3876 3877
3877	131		XX = XXL - ZZLEFT (KS) * XXN	3877
3878 3879	132		YY = YYL - ZZLEFT (KS) * YYM	3878
3879 3880	133		ZZ - ZZL - ZZLEFT (KS) * ZZN	3879
3880 3881	134	c		3880 3881
3881 3882	135 136 137			3881 3882
3882 3883	136 137			38882 3883
3884	138		UGRAD (ICL, 2) * YY + UGRAD (ICL, 3) * 22	3884
3885	139		HVVL $=$ HYDV (ICL, 3) + VGRAD (ICL , 1) * XX +	3885
3886	140			3886
3887	141		HWHL = HYDV(ICL, 4) + HGRAD (ICL , 1) * XX +	3887
3888	142		- $\mathrm{HGGRAD}(\mathrm{ICL}, 2)$ * YY + HGRAD (ICL , 3) * 22	38888
3889	143		HPPL $=$ HYDV(ICL ${ }^{5}$) + PGRAD (ICL . 1) * XX +	3889
3890	144		- PGRad (ICL , 2) * YY + PGRAD(ICL . 3) * 22	3890
3891	145	C		3891
3892	146		GMTLFT = GL (IS) * HRRL * HPPL	3892
3893	147		SQGMTL $=$ SQRT (GMTLFT)	3893
3894	148	c		3894

3895	149		XX = (ZPLEFT (KS) - ZZLEFT(KS)) * XXN	3895
3896	150			3896
3897	151		Z2- (ZPLEFT (KS) - ZZLEFT (KS)) * ZZN	3897
3898	152		UUU = UGRAD (ICL , 1) * XX + UGRAD (ICL , 2) * YY +	3898
3899	153		UGRAD (ICL . 3) * ZZ	3899
3900	154		PPP = PGRAD (ICL , 1) * XX + PGRAD(ICL , 2) * YY	3900
3901	155		PGRAD (ICL , 3) * ZZ	3901
3902	156		UPLFT $=-.5$ * (UUU + PPP / SQGMTL) / SQGMTL	3902
3903	157	C		3903
3904	158			3904
3905	159		YY = (ZMLEFT (KS) - ZZLEFT (KS)) * YYM	3905
3906	160			3906
3907	161		UUUU = UGRAD (ICL , 1) * XX + UGRAOS (ICL , 2) * YY +	3907
3908	162		UGRAD (ICL . 3) * ZZ	3908
3909	163		PPP = PGRAD (ICL , 1) * $X X+\operatorname{PGRAD}($ ICL , 2) * YY +	3909
3910	164		PGRRAD (ICL , 3) * Z2	3910
3911	165		UMLFT $=.5$ * (UUU - PPP / SQGMTL) / SQGMTL	3911
3912	166	\bigcirc		3912
3913	167		XX = (ZOLEFT (KS) - ZZLEFT (KS)) * XXN	3913
3914	168		YY = (ZOLEFT (KS) - ZZLEFT (KS)) * YYM	3914
3915	169		ZZ - (ZOLEFT (KS) - ZZLEFT (KS)) - ZZN	3915
3916	170		PPP = PGRAD (ICL . 1) * XX + PGRAD (ICL , 2) * YY +	3916
3917	171		PGRAO(ICL , 3) * ZZ	3917
3918	172	C		3918
3919	173		$X X=X X L$ - ZOLEFT (KS) * XXN	3919
3920	174		YY = YYL - ZOLEFT (KS) * YYN	3920
3921	175		ZZ = ZZL - ZOLEFT(KS) * ZZN	3921
3922	176	C		3922
3923	177		RRRR = HYOV(ICL , 1) + RGRAD(ICL , 1) * XX +	3923
3924	178			3924
3925	179		URLFT $=$ PPPP / GMTLFT + 1. / HRRL - 1. / RRRR	3925
3926	180	C		3926
3927	181			3927
3928	182		YYR - (XYZMDL 2 , IS) - XCC 2 , ICR $)$)	3928
3929	183			3929
3930	184	C		3930
3931	185		$X X=X X R+$ ZZRIGT (KS) * XXN	3931
3932	186		YY = YYR + ZZRIGT (KS) * YYN	3932
3933	187		ZL - ZZR + ZZRIGT (KS) * ZZN	3933
3934	188	c		3934
3935	189		HRRR = HYDV (ICR , 1) + RGRAD (ICR , 1) * XX +	3935
3936	190		- RGRad (ICR , 2) * YY + RGRAD (ICR , 3) * ZZ	3936
3937	191		HUUR $=\operatorname{HYDV}(\operatorname{ICR}, 2)+\operatorname{UCRAD}(\operatorname{ICR}, 1) * X X+$	3937
3938	192		- UGRAD (ICR , 2)*YY + UGRAD (ICR , 3)* 22	3938
3939	193		HVVR $=$ HYOV (ICR , 3) + VGRAD (ICR , 1) * XX +	3939
3940	194		- VGrad (ICR , 2) * YY + VGRAD (ICR , 3) * 2Z	3940
3941	195			3941
3942	196		- MGRAD (ICR, 2) * YY + HGRAD (ICR , 3) * ZZ	3942
3943	197		HPPR = HYDV(ICR , 5) + PGRAD (ICR , 1) * XX +	3943
3944	198		- PGRAD (ICR . 2) * YY + PGRAD (ICR . 3) * IZ	3944
3945	199	C		3945
3946	200		GMTRGT = GR(IS) * HRRR * HPPR	3946
3947	201		SQGMTR = SQRT (GMTRGT)	3947
3948	202	c		3948
3949	203		$X X=($ ZZRIGT $(K S)-$ PPRIGT (KS) $)$ * XXN	3949
3950	204		YY = (2ZRIGT (KS) - ZPRIGT (KS)) * YY\%	3950
3951	205		Z2 = (ZZRIGT (KS) - ZPRIGT(KS)) * ZZN	3951
3952	206		UUU $=$ UGRAD (ICR , 1) * XX + UGRAD (ICR , 2) * YY +	3952
3953	207		UGRAD (ICR, 3) * $2 Z$	3953
3954	208		PPPP = PGRAD (ICR , 1) * XX + PGRAD (ICR , 2) * YY +	3954
3955	209		- PGRRAD (ICR ${ }^{3}$) * 22	3955
3956	210		UPRGT $=-.5$ * (UUUU + PPP / SQGMTR) / SQGMTR	3956
3957 3958	211	C		3957
3958	212			3958
3959 3950	213		YY = (ZZRIGT(KS) - ZMRIGT(KS $)$) * YYN	3959
3960 3961	214			3960
3961	215			3962
3963	217		PPP = PGRAD (ICR , 1) * XX + PGRAD(ICR . 2) * YY +	3963
3964	218		PGRAD (ICR , 3) * 22	3964
3965	219		UMRGT $=.5$ * (UUU - PPP / SQGMTR) / SQGMTR	3965
3966	220	C		3966
3967	221		XX = (LZRIGT (KS) - ZORIGT(KS)) * XXN	3967
3968	222		YY = (ZZRIGT(KS) - ZORIGT (XS)) * YYM	3968

$X Y Z=1 . / X S(5, I S)$
YYN $=(X Y Z M D L(2,15)-X C(2, I C L)) * X Y Z$
ZZN = (XYZMDL (3, IS) - XC($3, I C L)) * X Y Z$
3984
3985
3986
3986
3987
3987
$X X L=(X Y Z M O L(1, I S)-X C(1, I C L))$
$Y Y L=(X Y Z M D L(2: I S)-X C(2, I C L)$
3989
3989
3990.
3991
3992
3992
3993
3994
3995
HRRL * HYDV (ICL, 1) + RGRAD (ICL , 1) * XX +
3996
RGRAD (ICL. 2) * YY + RGRAD (ICL. 3) * ZZ 3997
HUUL $=$ HYDV (ICL, 2) + UGRAD (ICL , 1) * XX + 3998
UGRAD (ICL , 2) * YY + UGRAD (ICL . 3) * ZI 3999
YVL = HYDV(ICL . 3) + VGRAD (ICL, 1) * XX + $\quad \mathbf{4 0 0 0}$
VGRAD (ICL, 2) * YY + VGRAD (ICL , 3) * ZZ 4001
HWL = HYDV(ICL , 4) + HGRAD (ICL, 1) * XX +
WGRAD (ICL , 2) * YY + WGRAD (ICL , 3) * $2 Z$
PGRAD (ICL $\hat{2}$) ${ }^{\prime}$ YY + PGRAD (ICL, 3) * ZZ
GMTLFT $=$ GL(IS) * HRRL * HPPL
SQGMTL = SQRT(GMTLFT)
$X X=($ ZPLEFT (KS) - ZZLEFT (KS)) * XXN
$Y Y=(Z \operatorname{ZPLEFT}(K S)-\operatorname{ZZLEFT}(K S)) *$ YYN
$Z Z=(\operatorname{ZPLEFT}(K S)-\operatorname{ZLLEFT}(K S)) * Z Z N$
UUU $=\operatorname{UGRAD}(I C L .1) * X X+\operatorname{UGRAD}(I C L, 2) * Y Y+$
UGRAD (ICL , 3) * 22
PPP $=\operatorname{PGRAD}(\operatorname{ICL}, 1) * X X+\operatorname{PGRAD}(1 C L, 2) * Y Y+$
PGRAD (ICL , 3) * 22
UPLFT $=-.5$ * (UUU + PPP / SQGMTL) / SQGMTL

ZZ - (ZMLEFT (KS) - ZZLEFT (KS)) * ZZN
UGRAD (ICl 3) * 22
PGRAD (ICL , 1) * XX + PGRAD(ICL . 2) *YY +
PGRAD (ICL , 3) * IZ
UMLFT = .5* (UUU - PPP / SQGMTL) / SQGMTL
$X X=($ ZOLEFT $(K S)-$ ZZLEFT $(K S)) * X X H$
ZZ = (ZOLEFT KS) - ZZLEFT KS)) * *: :
PPP $=\operatorname{PGRAD}(I C L, 1) * X X+\operatorname{PGRAD}(I C L, ~)) * Y Y+$
PGRAD (ICL, 3) * ZZ
$X X=X X L-$ ZOLEFT (KS) * XXN
YY = YYL - ZOLEFT (KS) * YYN
RRRR $=\operatorname{HYOV}(I C L, 1)+\operatorname{RGRAD}(I C L, 1) * X X+$
$\operatorname{RGRAD}(\operatorname{ICL}, 2): Y Y+\operatorname{RGRAO}(I C L .3) * Z Z$
URLFT $=$ PPP $/$ GMTLFT $+1 . /$ HRRL $-1 . /$ RRRR
HRRR $=$ HRRL

4117	371		UUR (KS) = UUR(KS) + SQGMTR * (UPRIGT (KS) -	4117
4118	372		UHR KS) UVR(KS) UMRIGT(KS))	4118
4119	373		VVR(KS) = VVR(KS) + SQGMTR * (UPRIGT (KS) -	4119
4120	374		(US) UMRIGT(KS))	4120
4121	375		WHR (KS) = WWR (KS) + SQGMTR * (UPRIGT (KS) -	4121
4122	376		(US) UMRIGT(KS))	4122
4123	377		PPR $(\mathrm{KS})=\mathrm{PPR}(\mathrm{KS})+\mathrm{GMTRGT} \mathrm{*} \mathrm{(UPRIGT(} \mathrm{KS} \mathrm{)} \mathrm{+}$	4123
4124	378		UMRIGT(KS))	4124
4125	379	C		4125
4126	380	180	continue	4126
4127	381	C		4127
4128	382		D0 200 IS = NSI , NS2	4128
4129	383		$K S=1 S-N S I+1$	4129
4130	384	C		4130
4131	385		$I C L=J S(7, I S)$	4131
4132	386		ICR = JS 8.15$)$	4132
4133	387	C		4133
4134	388		$\mathrm{RL}(\mathrm{IS})=\mathrm{RRL}(\mathrm{KS})$	4134
4135	389		UL(IS $)=$ UUL (KS) * XN(IS) +	4135
4136	390		- VVL(KS) * YN(IS) +	4136
4137	391		- WHL(KS) * ZN(IS)	4137
4138	392		$V L(I S)=U U L(K S) * X P(I S)+$	4138
4139	393		VVL(KS) * YP(IS) +	4139
4140	394		* WHL (KS) * ZP(IS)	4140
4141	395		WL(IS) = UUL(KS) * XT(IS) +	4141
4142	396		- VVL (KS) * YI (IS) +	4142
4143	397		- WHL (KS) * ZT(IS)	4143
4144	398		PL (IS) = PPL (KS)	4144
4145	399		AL (IS) $=\mathrm{HYDV}(\mathrm{ICL}, 6$)	4145
4146	400		GL(IS) = HYDV(ICL, 7)	4146
4147	401		$E L(15)=\operatorname{HYDV}(1 C L, 8)$	4147
4148	402	C		4148
4149	403		IATRB $=$ JS (9, 1S)	4149
4150	404		IF (IATRB . EQ . 0) THEN	4150
4151	405	C		4151
4152	406		RR(IS) $=$ RRRR(KS)	4152
4153	407		UR(IS) $=$ UUR (KS $) *$ XN(IS) +	4153
4154	408		- WVR(KS) * YN(IS) +	4154
4155	409		- WhR(KS) * ZN(IS)	4155
4156	410		VR(IS) - UUR(KS) * XP(IS) +	4156
4157	411		- VVR(KS) * YP(IS) +	4157
4158	412		- UHR (KS) * $2 P($ IS $)$	4158
4159	413		HR(IS) = UUR (KS) * XT(IS) +	4159
4160	414		- VVR(KS) * YT(IS) +	4160
4161	415		- WR IS WWR(KS) * IT(15)	4161
4162	416		PR (IS) = PPR(KS)	4162
4163	417		$A R(I S)=\operatorname{HYDV}($ ICR , 6)	4163
4164	418		GR(IS $)=\operatorname{HYDV}($ ICF, 7)	4164
4165	419		$E R(I S)=\operatorname{HYOV}($ ICR , 8)	4165
4166	420	C		4166
4167	421		ELSE	4167
4168	422	C		4168
4169	423		IF (IATRE. EQ . 8) THEN	4169
4170	424	C		4170
4171	425		RR(IS) = RIN	4171
4172	426		UR (IS) = UIN * XN(IS) + VIN * YN(IS) + WIN * IN(IS)	4172
4173	427		VR $(1 S)=$ UIN * XP(IS $)+$ VIN * YP (IS $)$ + WIN * 7P(IS $)$	4173
4174	428		WR (IS) = UIN * XT(IS) + VIN * YT(IS) + WIN * IT(IS)	4174
4175	429		PR(IS) = PIN	4175
4176	430		AR(IS) $=$ AL (IS $)$	4176
4177	431		GR(IS) = GL(IS)	4177
4178	432		ER(IS) = EL(IS)	4178
4179	433	C		4179
4180	434		END IF	4180
4181	435	C		4181
4182	436		IF (LATRB . EQ . 7) THEN	4182
4183	437	C		4183
4184	438		$R R(I S)=R L(I S)$	4184
4185	439		UR (IS) = UL(IS $)$	4185
4186	440		VR(IS) = VL(IS)	4186
4187	441		WR(IS) $=$ WL (IS $)$	4187
4188	442		PR (IS) = PL (IS)	4188
4189	443		$A R(I S)=A L(I S)$	4189
4190	444		GR(IS) = GL(IS $)$	4190

4191	445		ER(IS) $=$ EL(IS)	4191
4192	446	c		4192
4193	447		END If	4193
4194	448	C		4194
4195	449		IF (IATRB . EQ . 6) THEN	4195
4196	450	C		4196
4197	451		RR(15$)=R L(1 S)$	4197
4198	452		UR (IS) = - UL(IS)	4198
4199	453		VR (IS) $=$ VL(15)	4199
4200	454		HR(IS) $=$ WL (15)	4200
4201	455		PR(IS) = PL (1S)	4201
4202	456		AR(IS) = AL (IS)	4202
4203	457		$\mathrm{GR}(\mathrm{IS})=\mathrm{GL}$ (IS $)$	4203
4204	458		$E R(1 S)=E L$ (15)	4204
4205	459	c		4205
4206	460		END IF	4206
4207	461	C		4207
4208	462		END IF	4208
4209	463	c		4209
4210	464	200	continue	4210
4211	465	c		4211
4212	466		NS1 $=$ NS2 +1	4212
4213	467		NS2 = NS2 + NOFVES (INS + 1)	4213
4214	468	90	CONTINUE	4214
4215	469	c		4215
4216	470		RETURN	4216
4217	471		END	4217

Thu Jul 1 14:17:00 1993 threed.f SUBROUTINE EOSI

4218	1		SUBROUTINE EOSI (RRR,EEE,N,GAMMA)	4218
4219	2	C		4219
4220	3	c	AIR IS ASSUMED TO BE Calorically imperfect. thermally perfect.	4220
4221	4	C	THEREFORE, IICLLUDE IMPERFECTIONS VIA A VARIABLE GAMHA DEPEMOENT	4221
4222	5	C	On DENSITY AND INTERNAL ENERGY. THIS ROUTINE PERFORMS A TABLE	4222
4223	6	C	LOOK UP FOR GAMA.	4223
4224	7	C		4224
4225	8	C	INPUT VARIBLE OEFINITIONS.	4225
4226	9	C	RRR = MASS DENSITY	4226
4227	10	C	EEE = INTERNAL ENERGY PER UNIT VOLUME	4227
4228	11	C	(COnverteo for internal *Call to energy per unit mass)	4228
4229	12	c	N - Number of entries in arrays RRR \& EEE	4229
4230	13	C		4230
4231	14		PARAMETER ($M=64$)	4231
4232	15	C		4232
4233	16		DIMENSION RRP(N), EEE(N), GAMMA(N)	4233
4234	17		DIMENSION T11(M), 12 (M), $121(\mathrm{M})$, $122(\mathrm{M})$, RHO(M), E(M)	4234
4235	18		DIMENSION OMP (M), Q (M), I $(\mathrm{M}), \mathrm{J}(\mathrm{M})$	4235
4236	19		OIMENSION G1(168),G2(112),G3(112),G4(112),G5(112),	4236
4237	20		1 G6(112),G7(112),GF(840)	4237
4238	21	c		4238
4239	22	c	NOTE: THE TABLE LOOK UP tREATS ARRAY GF AS THOUGH IT	4239
4240	23	C	HERE DIMENSIONED (8,105).	4240
4241	24	C		4241
4242	25		EQuIVALENCE (G1(1),GF(1)), (G2(1),GF(169)), (G3(1),GF(281)),	4242
4243	26		1 (G4(1),GF(393)), (G5(1),GF(505)), (G6(1),GF(617)).	4243
4244	27		1 (G7(1),GF(729))	4244
4245	28	\bigcirc		4245
4246	29		DATA XLI6E /2.7725887222397744835689081810414791107177734375/	4246
4247	30	C	------------------------.-..-----------------------	4247
4248	31	C	$\mathrm{G}=\mathrm{GAMHA}-1.0$ IS STORED FOR 32 BIT HORD MACHINES IN POWERS OF	4248
4249	32	C	16 ACROSS FOR MASS DENSITY VARIATION AND INTERMEDIATE VALUES	4249
4250	33	C	1-16 FOR POHERS OF 16 VERTICALLY WHICH REPRESENT THE INTERNAL.	4250
4251	34	${ }^{\text {c }}$	Energy variation.	4251
4252	35			4252
4253	36	${ }^{\text {c }}$	16** (?) .GE. RHO .GE. 16** (-6)	4253
4254	37	c	16**(15) .GE. E .GE. 16**(8)	4254
4255	38			4255
4256	39		DATA G1 /8*.4222, 8*.4152, 8* $4110,8^{*}, 4081,8^{*} \cdot 4058,8^{*} .4040$.	4256
4257	40		$18^{* *} .4024,8^{*} \cdot 4011,8^{*} \cdot 3998,8^{*} \cdot 3988,8^{*} \cdot 3978,8^{*} .3969$,	4257
4258	41		$18^{*} \cdot 3961,8^{*} \cdot 3953.8^{*} \cdot 3935,8^{*} \cdot 3918$.	4258
4259	42		1 . $3723 . .3715 . .3707 . .3699, .3690, .3680 . .3663 . .3637$.	4259
4260	43		1 . $1555, .3538, .3522, .3502, .3476, .3430, .3344, .3238$,	4260
4261	44		1 .3370,.3370,.3370,.3364,.3347,.3277,.3099,.2885,	4261

4336	119
4337	120
4338	121
4339	122
4340	123
4341	124
4342	125
4343	126
4344	127
4345	128
4346	129
4347	130
4348	131
4349	132
4350	133
4351	134
4352	135
4353	136
4354	137
4355	138
4356	139
4357	140
4358	141
4359	142
4360	143
4361	144
4362	145
4363	146
4364	147
4365	148
4366	149
4367	150
4368	151
4369	152
4370	153
4371	154
4372	155
4373	156
4374	157
4375	158
4376	159
4377	160
4378	161
4379	162
4380	163
4381	164
4382	165
4383	166
4384	167
4385	168
4386	169
4387	170
4388	171
4389	172
4390	173
4391	174
4392	175
4393	176
4394	177
4395	178
4396	179
4397	180
4398	181
4399	182
4400	183
4401	184
4402	185
4403	186
4404	187
4405	188
4406	189
4407	190
4408	191
4409	192
4	

```
.8727..8774..8822..8825..8832..8842..8843..8843. 4336
.8938,.8990,.9042,.9046,.9054,.9064..9065..9065, 4337
.911,.9166,.922,..9226,.923,..9246,.9247,.924%, 438, 4338
.9111,.9166,.9222,.9226,.9235,.9246,.9247,.9247, 隹, 4338
.9384,.9445,.9506,.9511,.9520,.9532,.9533,.9533, 4340
.3496..9559..9622..9627..9637..9649..9650..9650, 4341
.9596..9651..9727..9731..9741..9754,.9755..9755.
.9686,.9753,.9821.. 9826.. 9836,. 9849,.9850,.9850.
.9769..9837.:9906,.9912,.9922,.9936,.9937..9937.
.9845,.9915,.9986,.9991,.9999..9999,.9999,.9999. \345
.9915..9987..9999,.9999,.9999,.9999..9999,.9999. 4346
    | .9981..9999..9999..9999,.9999..9999..9999..9999/
```



```
TO AVOID COSTLY LOGARITHMIC FUNCIIONS THE TABLE "G" IS STORED IN A
        FORM SO THAT THE HEXADECIMAL WORD STRUCTURE OF A 32 BIT MACHINE
        MAY BE EXPLOITED.
        THIS lOgiC may be transfered to other machines by recalculatimg
        tHE table "G" approprIATE tO THE HORD ARCITECTURE OF THAT MACHINE.
        machine dependent functions ano key numbers must also be changed.
!
4340
4341
4342
4 3 4 3
4344
.9981..999..9999..9999,.9999..9999..9999..9999/ 4347
C REAL AIR EOS, TABLE LOOKUP ON GILMORE DATA. (NO TEMP. MODEL) 4348
4350
435!
4 3 5 2
4 3 5 3
4 3 5 4
4 3 5 5
4355
4 3 5 6
RLI6E = 1./XLI6E
4357
IST = N
C
10 CONTINUE
        NST = MINO(NR,M)
C
    00 20 IRE=1.NST
RHO(IRE) = .774413*RRR(IST+IRE)
E(IRE) = AMAXI(3.e8,10000.*EEE(IST+IRE)/RRR(IST+IRE))
CALCULATE MASS DENSITY VARIATION INDEX "!".
    TEM = ALOG(RHO(IRE))*RLI6E + 500.0 4,0
I(IRE) = AINT(TEM)
OMP(IRE) = TEM - FLOAT(I(IRE))
I(IRE) = 502-[(IRE)
    C
c
    4 3 5 9
c
C
    CALCULATE mASS DENSITY VARIATION INDEX "[". - 4368
    4371
            I(IRE) = MAXO(I(IRE).1)
calculate intermal energy variation index "J".
    NR * N - 4359
        4360
    MST = MINO(NR,M) 4362
    4363
4 3 7 4
4376
TEM = ALOG(E(IRE))*RLI6E 4 4378
JCY = AINT(TEM)
TEM = TEM - FLOAT(JCY)
TEM = EXP(XL16E*TEM) 4381
JCY = JCY - 7
4381
IS = AINT(TEM)
MS = AINT(TEM)
\(IRE)}=\mathrm{ TEM - FLOAT(JS) 
```



```
ll
# = (IIRE)+8*J(IRE) 
    20
    C
            continue
                4389
4389
    00 30 IRE=1,NST 4391
    T11(IRE) = GF(I(IRE)) 4392
    T2L(IRE) = GF(I(IRE)+1) 4393
            T21(IRE) = GF(I(IRE)+1) 
            M12(IRE) = GF(J(IRE))
        l22(IRE) =GF(J(IRE)+1)
    30
4395
    C Calculate camma by lumeab inteppolation 4397
    c CalCULATE GAMMA BY LIMEAR INTERPOLATION.
                                    4398
                                    4398
            DO (0 IRE =1,NST 
            M0 40 IRE =1,NST 
            T12(IRE) = 112(IRE) - T11(IRE)
                                    4 4 0 1
            T22(IRE)= T22(IRE)-T21(IRE) 4402
            GAMAA(IST+IRE) = OMP(IRE)*(T11(IRE) + O(IRE)*T12(IRE))
            GAMMA(IST+IRE) = (1.- OMP(IRE)*(TI1(IRE) + O(IRE)*T12(IRE) )
    40
                        +(1.
                                    4403
                                    4404
    i}+1
    C
    continue
                                    4405
        NR = NR - NST 
                                    4406
                                    4407
```



```
    IST = IST + NST
4408
```


4410	193		IF(NR.GT.0) GO TO 10	4410
4411	194	C		4411
4412	195		RETURN	4412
4413	196		EMD	4413
4414	197	C		4414

Thu Jul 1 14:17:00 1993 threed.f SUBROUTINE HATRLA

4415	1		sugroutine Matrla	44:5
4416	2	C		4416
4417	3	C	READS MATERIAL PROPERTIES	4417
4418	4	C	EVALUATES MATERIAL RELAIED CONTANTS	4418
4419	5	C		4419
4420	6		include 'mmerlo.h'	4420
4421	7		CHARACTER*8 PRODCT (15) , PHASE (15), GG. 5S. VV, NASAP	4421
4422	8		REAL \quad (15), KVOL(15), M (15), RHOS(15), CVS(15)	4422
4423	9		REAL $\quad \operatorname{CF}(7,2), \mathrm{CV}(0: 5,2)$	4423
4424	10	C		4424
4425	11		DATA KVOL/15*0.1	4425
4426	12		DATA GG/'G'/. SS/'S'/, VV/'VVV'/	4426
4427	13		DATA CV/12*0.1	4427
4428	14		DATA PRODCT/'02', '122'.13*'VVVV '/	4428
4429	15		OATA PHASE/2*'G'.13*'	4429
4430	16	C		4430
4431	17	C		4431
4432	18	C	1 .7*'VVVV '/	4432
4433	19	C	DATA PHASE/7*'G', 'S',7*' $/$	4433
4434	20	C		4434
4435	21		ALFAA $=.5$	4435
4436	22		BETAA $=09585$	4436
4437	23		THETAA $=400$.	443 ${ }^{\text {² }}$
4438	24		CAPPAA $=12.685$	4438
4439	25		NMASA $=100$	4439
4440	26		$X(1)=21$.	4440
4441	27		$X(2)=79$.	4441
4442	28		KVOL (1) $=350$.	4442
4443	29		KVOL (2) $=380$.	4443
4444	30		$M(1)=32$.	4444
4445	31		$N(2)=28.016$	4445
4446	32		$\operatorname{CVS}(1)=0$.	4446
4447	33		$\operatorname{CVS}(2)=0$.	4447
4448	34		RHOS (1) $=0$.	4448
4449	35		RHOS (2) $=0$.	4449
4450	36		MS $=0$	4450
4451	37		NG = 0	4451
4452	38	C		4452
4453	39		TMS = 0	4453
4454	40		COVA $=0$.	4454
4455	41		GML $=0$.	4455
4456	42		$S M L=0$.	4456
4457	43		$S V=0$.	4457
4458	44		$S C V A=0$.	4458
4459	45	C		4459
4460	46		REWIND 4	4460
4461	47		$001101=1.15$	4461
4462	48		IF (PRODCT(I) .EQ. VV) GO TO 10	4462
4463	49		NS $=1$	4463
4464	50	C		4464
4465	51		IF (PHASE (1) .EQ. GG) THEN	4465
4466	52		$N G=N G+1$	4466
4467	53		GML $=$ GML $+X(1)$	4467
4468	54			4468
4469	55		COVA $=$ COVA $+X(I) * K V O L(1)$	4469
4470	56	C		4470
4471	57		ELSE IF (PHASE (I) .EQ. CS) THEN	4471
4412	58		PMASE (1) $=$ VV	4472
4473	59		SML $=$ SML $+X(1)$	4473
4474	60		TMS $=$ TMS $+X(1) * M(1)$	4474
4475	61		SCVA $=$ SCVA + X (I)*CVS (1)	4475
4476	62		$S V=S V+X(I) * M(1) / R H O S(1)$	4476 4477
4477	63	C		4477
4478	64		ELSE , PRODUCTS EITHER SOLTO S OR GAS G'	4478
4479	65		STOP ' PRODUCTS EITHER SOLIO, S, OR GAS, G'	4479
4480	66	6		4480

4481	67		END If	4481
4482	68	110	comtinue	4482
4483	69	C		4483
4484	70	10	If (NS .LT. 1) STOP • NO PRODUCTS ?'	4484
4485	11	-		4485
4486	72		COVA = COVA * CAPPAA / GML	4486
4487	73		FSA $=$ TMS/AMAX1(SV,1.E-15)	4487
4488	74		$T M L=G M L+S M L$	4488
4489	75		XGA $=$ GML/ ${ }^{\text {PML }}$	4489
4490	76		SCVA - SCVA/TML	4490
4491	17		WMA = TMS/TML	4491
4492	78	c		4492
4493	79		DO 130 INASA $=1$. NNASA	4493
4494	80		IF (NG .EQ. O) GO TO 20	4494
4495	81	1	READ (4,1001) NASAP, ID	4495
4496	82	1001	FORMAT(A8,71X, IL)	4496
4497	83		IF (10 . NE. 1) GO 101	4497
4498	84	C		4498
4499	85		DO $120 \mathrm{I}=1$, NS	4499
4500	86		If (NASAP .EQ. PROOCT(I) .AND. Phase (I) .EQ. GG) THEN	4500
4501	87		PHASE $(I)=$ WV	4501
4502	88		NG - NG - 1	4502
4503	89		READ (4, 1002) ($(C F(K, K K), K=1,7), \mathrm{KK}=1.2)$	4503
4504	90	1002	FORMAT(5E15.8)	4504
4505	91	,		4505
4506	92		$C F(1,1)=C F(1,1)-1$.	4506
4507	93		$C F(1.2)=C F(1,2)-1$.	4507
4508	94		D0 $115 \mathrm{~K}=0.5$	4508
4509	95		$\operatorname{CV}(\mathrm{K}, 1)=\mathrm{CV}(\mathrm{K}, 1)+(X(1) / G M L) * C F(K+1,1)$	4509
4510	96	115	$\operatorname{CV}(\mathrm{K}, 2)=\operatorname{CV}(\mathrm{K}, 2)+(X(1) / G M L) * C F(K+1,2)$	4510
4511	97	C		4511
4512	98		END If	4512
4513	99	120	continue	4513
4514	100	C		4514
4515	101	130	continue	4515
4516	102	c		4516
4517	103	20	$00140 \mathrm{I}=1$ NS	4517
4518	104		If (PHASE (1).RE. W) STOP ' SPECIES NOT FOUND IN HASA'	4518
4519	105	140	continue	4519
4520	106	c		4520
4521	107		DO $150 \mathrm{I}=3.50$	4521
4522	108	150	TA(1) $=\mathrm{FLOAT}\left(100{ }^{\text {\% }} \mathrm{I}\right)$	4522
4523	109	c		4523
4524	110		CALL PSM ($\operatorname{CV}(0,2), 4, \mathrm{TA}(3), 8, \mathrm{CVMA}(3))^{\text {(}}$	4524
4525	111		CALL PJM ($\operatorname{CV}(0,1), 4, \operatorname{TA}(11), 40, \operatorname{CVMA}(11))$	4525
4526	112	C		4526
4527	113		D0 $155 \mathrm{k}=1 .{ }^{4}$	4527
4528	114		$\operatorname{CV}(\mathrm{K}, 1)=\operatorname{CV}(\mathrm{K}, 1) / \mathrm{FLOAT}(\mathrm{K}+1)$	4528
4529	115	155	$\operatorname{CV}(\mathrm{K}, 2)=\operatorname{CV}(\mathrm{K}, 2) / \mathrm{FLOAT}(\mathrm{K}+1)$	4529
4530	116	C		4530
4531	117		CALL PSM (CV(0,2),4, TA(3), B, EMEDA(3))	4531
4532	118		CALL PSM ($\mathrm{CV}(0,1), 4, \mathrm{TA}(11), 40, \operatorname{EMEOA}(11))$	4532
4533	119	C		4533
4534	120		D0 $160 \mathrm{I}=3.10$	4534
4535	121	160	EMEOA(I) $=$ TA(I)*EMEOA(I)	4535
4536	122		D0 161 $1=11,50$	4536
4537	123	161	EMEOA(1$)=$ TA(1)*EMEOA(1)	4537
4538	124	c		4538
4539	125		$00180 \mathrm{I}=3.50$	4539
4540	126	180	EMEOA(1$)=\operatorname{EMEOA}(1) * X G A+T A(1) * S C V A$	4540
4541	127	c		4541
4542	128		CALL BILD (EMEOA, 48, RAMGEA, DYA)	4542
4543	129	C		4543
4544	130		RETURM	4544
4545	131		END	4545

4546	1		SUBROUTINE PSM (A,NPOL, T,N, SMM)	4546
4547	2	C		4546 4547
4548	3		REAL $\quad A(0: N P O L), T(N), \operatorname{SMH}(N)$	4548
4549	4	C		4549
4550	5		$0010 \mathrm{~J}=1 . \mathrm{N}$	4559
4551	6	10	SMAM(J) $=A(N P O L)$	4551
4552	7	C		4552
4553	8		DO $20 \mathrm{~K}=$ NPOL-1, $0,-1$	4553
4554	9	C		4554
4555	10		$0015 \mathrm{~J}=1, \mathrm{~N}$	4554
4556	11	15	$\operatorname{SMM}(\mathrm{J})=\operatorname{Sin}(\mathrm{J}) * T(J)+A(K)$	4556
4557	12	c		4557
4558	13	20	CONTINUE	4558
4559	14	C		4559
4560	15		RETURN	4560
4561	16		END	4561
4562	17	C		4562

Thu Jul 1 14:17:00 1993 threed.f
SUBROUTINE BILD

4563	1		SUBROUTINE BILD(Y,N,RANGE,DY)	4563
4564	2	C		4564
\% 565	3		REAL Y(N), RANGE, DY (200)	4565
4566	4		IF (N .GT. 201) STOP * ONLY 201 POINTS ALLOHED *	4566
4567	5	C		4567
4568	6		RANGE $=(Y(N+2)-Y(3)) /(N-1)$	4568
4569	7		D0 101 = 1, N-1	4569
4570	8		$D Y(1+2)=Y(1+3)-Y(1+2)$	4570
4571	9	10	CONTINUE	4571
4572	10	C		4572
4573	11		RETURN	4573
4574	12		END	4574

Thu Jul 1 14:17:00 1993 threed.f SUBROUTINE MATRLX

4575	1		SUBROUTINE MATRLX	
4576	2	C		$\begin{aligned} & 4575 \\ & 4576 \end{aligned}$
4577	3	C	READS MATERIAL PROPERTIES	4577
4578	4	C	EVALUATES MATERIAL RELATED CONTANTS	4578
4579	5	C		4579
4580	6		include 'emer 10.h'	4580
4581	7		CHARACTER*8 PRODCT (15), PHASE (15), GG, SS, VV, NASAP	4581
4582	8		REAL $\quad X(15), \mathrm{KVOL}(15), \mathrm{M}(15), \mathrm{RHOS}(15), \mathrm{CVS}(15)$	4582
4583	9		REAL $\quad \operatorname{CF}(7,2), \operatorname{CV}(0: 5,2)$	4583
4584	10	C	REAL CF(7,2). CV(0.5,2)	4584
4585	11		DATA KVOL/15*0.1	4585
4586	12		DATA GG/'G'\%, SS/'S'\% WV/'VVVV'/	4586
4587	13		DATA CV/12*0.1	4587
4588	14	C		4588
4589	15			4589
4590	16		DATA PHASE/4*'G', '5'.10*'	4590
4591	17	C		4591
4592	18		ALFAX $=.5$	4592
4593	19		BETAX $=09585$	4593
4594	20		IHETAX 400.	4594
4595	21		CAPPAX $=12.685$	4595
4596	22		NNASA-100	4596
4597	23		$X(1)=2.5$	4597
4598	24		$x(2)=1.66$	4598
4599	25		$X(3)=.188$	4599
4600	26		$X(4)=1,5$	4600
4601	27		$x(5)=5.15$	4601
4602	28		KVOL (1) $=250$.	4602
4603	29		KVOL (2) $=600$.	4603
4604	30		KVOL (3) 390.	4604
4605	31		KVOL (4) $=380$.	4605
4606	32		$\mathrm{KVOL}(5)=0$.	4606
4607	33		$N(1)=18$.	4607
4608	34		$M(2)=44$.	4608
4609	35		$M(3)=28$.	4609
4610	36		$M(4)=28$.	4610
4611	37		$M(5)=12$.	4611
4612	38		$\operatorname{CVS}(5)=1.1$	4612
4613	39		RHOS (5) -2.6	4613

4614	40		NS - 0	4614
4615	41		NG $=0$	4615
4616	42	C		4616
4617	43		TMS $=0$.	4617
4618	44		COVX $=0$.	4618
4619	45		$G M L=0$.	4619
4620	46		SHL $=0$.	4620
4621	47		$S V=0$.	4621
4622	48		SCVX $=0$.	4622
4623	49	C		4623
4624	50		REWIND 4	4624
4625	51		$00110 \mathrm{I}=1,15$	4625
4626	52		If (PRODCT(I) .EQ. WV) G0 T0 10	4626
4627	53		NS = I	4627
4628	54	C		4628
4629	55		If (PHASE(I) .EQ. GG) THEN	4629
4630	56		NG $=$ NG + 1	4630
4631	57		GML $=$ GML $+X(1)$	4631
4632	58		TMS $=$ TMS $+X(1) * M(1)$	4632
4633	59		COVX $=\operatorname{COVX}+\mathrm{X}(\mathrm{I}) * \mathrm{KVOL}(\mathrm{I})$	4633
4634	60	c		4634
4635	61		ELSE If (PHASE (I) .EQ, SS) THEN	4635
4636	62		PHASE (I) = VV	4636
4637	63		SML $=$ SML $+X(1)$	4637
4638	64		TMS $=$ TMS $+X(1) \times M(1)$	4638
4639	65		SCVX $=$ SCVX $+\mathrm{X}(\mathrm{I}) \times$ CVS (1)	4639
4640	66		SV $=$ SV $+X(1) * M(1) /$ RHOS (I)	4540
4541	67	c		4641
4642	68		ELSE	4642
4643	69		STOP ' PRODUCTS EITHER SOLID, S, OR GAS, G'	4643
4644	70	C		4644
4645	71		END If	4545
4646	72	110	CONTINUE	4546
4647	73	c		4647
4648	74	10	If (NS .LT. 1) STOP ' NO PRODuCTS ?'	4648
4649	75	c		4649
4650	76		COVX $=$ COUX * CAPPAX / GML	4650
4651	77		FSX $=$ TMS/AMAX1 (SV,1.E-15)	4651
4652	78		$T M L=G M L+S M L$	4652
4653	79		XGX $=$ GML/TML	4653
4654	80		SCVX = SCVX / TML	4654
4655	81		WHX = TMS/TML	4655
4656	82	C		4656
4657	83		DO 130 INASA $=1$, NMASA	4657
4658	84		IF (NG .EQ. 0) 60 to 20	4658
4659	85	1	READ (4,1001) NASAP, ID	4659
4660	86	1001	FORMAT(A8,71X, 11)	4660
4661	87		IF (IO .NE. 1) GO TO 1	4661
4662	88	¢		4662
4663	89		DO $1201=1$ NS	4663
4664	90		If (NASAP . EQ. Prooct (I) .AND. Phase (I) .EQ. GG) THEN	4664
4665	91		PHASE (I) $=\mathrm{WV}$	4665
4666	92		NG - NG - 1	4666
4667	93		READ (4,1002) ($(C F(K, K K), K=1,7), K K=1,2)$	4667
4668	94	1002	FORMAT(5E15.8)	4668
4669	95	C		4669
4670	96		CF $(1.1)=C F(1.1)-1$.	4670
4671	97		$C F(1,2)=C F(1,2)-1$.	4671
4672	98		D0 $115 \mathrm{~K}=0,5$	4572
4673	99		$\operatorname{CV}(\mathrm{K}, 1)=\operatorname{CV}(\mathrm{K}, 1)+(X(1) / G M L) * \operatorname{CF}(\mathrm{~K}+1.1)$	4573
4674	100	115	$\operatorname{CV}(\mathrm{K}, 2)=\operatorname{CV}(\mathrm{K}, 2)+(\mathrm{X}(\mathrm{L}) / \mathrm{GML}) * \operatorname{CF}(\mathrm{~K}+1,2)$	4574
4675	101	6		4675
4676	102		END If	4676
4677	103	120	continue	4577
4678	104	¢		4678
4679	105	130	continue	4679
4680	106	${ }^{\text {c }}$		4680
4681	107	20	$00140 \mathrm{l}=1$ NS	4681
4682	108		If (PHASE(I) .NE. VV) STOP ' SPECIES NOT FOUND IN NASA'	4682
4683	109	140	continue	4683
4684	110	c		4684
4585	111		D0 $150 \mathrm{I}=3,50$	4685
4686	112	150	TX(I) $=\mathrm{FLOAT}(100 * 1)$	4686
4687	113	c		4687

4688	114		CALL PSM (CV(0,2),4, TX(3),8, CVMX (3))	4688
4689	115		CALL PSM (CVV(0,1),4, $\mathrm{TX}^{(11), 40, ~ C V M X(11)) ~}$	4689
4690	116	c		4690
4691	117		$00155 \mathrm{~K}=1.4$	4691
4692	118		$\operatorname{CV}(\mathrm{K}, 1)=\operatorname{CV}(\mathrm{K}, 1) / \mathrm{FLOAT}(\mathrm{K}+1)$	4692
4693	119	155	$\operatorname{CV}(\mathrm{K}, 2)=\operatorname{CV}(\mathrm{K}, 2) / \mathrm{FLOAT}(\mathrm{K}+1)$	4693
4594	120	c		4694
4695	121		CALL PSM (CV(0,2),4, IX 3) 8, EMEOX(3))	4695
4696	122		CALL PSM (CV(0,1),4, TX(11),40, EMEOX(11))	4696
4697	123	c		4697
4698	124		D0 $160 \mathrm{I}=3.10$	4698
4699	125	160	EMEOX (1) = TX (1)*EMEOX(I)	4699
4700	126		D0 $161 \mathrm{I}=11.50$	4700
4701	121	161	EMEOX (I) - TX $(1) * E M E 0 \times(1)$	4701
4702	128	C		4702
4703	129		00180 I $=3.50$	4703
4704	130	180	$\operatorname{EMEOX}(1)=\operatorname{EMEOX}(\mathrm{J}) * \times \mathrm{XGX}+\mathrm{TX}(1) * S C V X$	4704
4705	131	C		4705
4706	132		CALL BILD (EMEOX,48, RANGEX, OYX)	4706
4707	133	C		4707
4708	134		RETUR	4708
4709	135		END	4709

Thu Jui 1 14:17:00 1993 threed.f SUBROUTINE VOLMTETC

4710	1		SUbroutine volmietc (11, I2, [3, $\mathrm{X}, \mathrm{Y}, 2$, VOLUMT)	4710
4711	2	C		4711
4712	3		--1	4712
4713	4	C	(I	4713
4714	5	C	volmtetc finds the volume of the tetrahedron defined by the	4714
4715	6	C	GRID VERTICES 11, 12, 13, AND THE POINT ($\mathrm{X}, \mathrm{Y}, \mathrm{z}$).	4715
4716	7	C	the code assumes that the areal vector of the base triamgle	4716
4717	8	C	FORMED BY 11. 12 AND 13 POINTS IN THE DIRECTION OF (X, Y, Z):	4717
4718	9	C	bY the right hand rule, if il, i2 AnD 13 are arranged	4718
4719	10	C	COUNTER-CLOCKHISE AS VIEWED FROH ABOVE THE PLAME OF THE	4719
4720	11	C	triangle, ($\mathrm{X}, \mathrm{Y}, \mathrm{l}$) ALSO Lies above the plane). but note -- I	4720
4721	12	c	TRIAMGE, (X, Y, 2) ALSO LIES ABOVE THE PLAE). BUT WOIE	4721
4722	13	c	the volume returned is a signed quantity - ie.	4722
4723	14	C	If the vertices are not ordered by the right	4723
4724	15	C	hand rule the volume hill be negative,	4724
4725	16	C	I	4725
4726	17	C	(${ }^{\text {a }}$ I	4726
4727	18	C	OECEMBER, 1991: M. FRITTS, FRITTS:MCL. SAINETECCC.NERSC.GOV,	4727
4728	19	C	(301) 266-0992	4728
4729	20	C	I	4729
4730	21	C	--1	4730
4731	22	C		4731
4732	23	C=.n-		4732
4733	24	C		4733
4734	25		DOUBLE PRECISION R21X,R21Y,R212,R31X,R3IY,R31Z,R41X,R41Y,R41Z	4734
4735	26		DOUBLE PRECISION VOLUMT, X,Y, Z	4735
4736	27	c		4736
4737	28	c		4737
4738	29		include 'mmsh00.h'	4738
4739	30	¢		4739
4740	31	$\mathrm{C}=$		4740
4741	32	C		4741
4742	33	C ---		4742
4743	34	C		4743
4744	35		R21X $=$ XV(1,12) - XV(1,11)	4744
4745	36		R21Y $=X V(2,12)-X V(2,11)$	4745
4746	37		R212 $=$ XV(3.12$)-X V(3.11)$	4746
4747	38		R31X $=$ XV(1.13) - XV(1.11)	4747
4748	39		R31Y = XV(2,13) - XV(2,11)	4748
4749	40		R312 $=\mathrm{XV}(3,13)-\mathrm{XV}(3,11)$	4749
4750	41		R41X $=\mathrm{X} \quad$ - XV(1,11)	4750
4751	42		R41Y $=Y \quad-X V(2,11)$	4751
4752	43		R412-2 - XV(3.11)	4752
4753 4754	44	c		4753 4754
4754 4755	45		VOLUMT $=\left(\begin{array}{l}\text { R41X* } \\ \text { R41** }\end{array}\right.$	4754 4755
4755 4756	46	$\frac{1}{2}$		4755 4756
4757	48	c	R412 (R2IX R ${ }^{\text {dil }}$ - R2IY R3IX $)$)/6.00	4757
4758	49	C		4758

Thu Jul	114:	7:00	1993	threed. f	Subroutine volmietc	page	67
4759	50	C					4759
4760	51						4760
4761	52	C					4761
4762	53	C					4762
4763	54	C	-				4763
4764	55		END				4764
4765	56	C					4765

mainhd. f
page
1 AUGUST HYDRFL HYORMN GEOMIR UPOATE UPGRAD

Thu Jul 1 14:15:40 1993 \# routine mainhd.f page

1 AUGUST 2 GEOMTR 3 HYDRFL 4 HYDRMN 5 UPDATE 6 UPGRAD

ICOND $=0$ READ INPUT GRID FOR A NEH RUM
ICOMP＝O PRIMITIVE YARIABLES SET TD

ITRIGR $=0$ USING THE INPUT GRID AS THE IMITIAL GRID
$=1$ THE INPUT GRID TRIPLED BY ADDING AN EXTRA VERTEX IN EACH TRIANGLE
IOPTN $=1$ SOLUTION FOR STEADY STATE，
＝ 2 SOLUTION FOR TRANSIENT PHENOMENA
XMCHIN $=$ FOR TRANSIENT SHOCK CALCULATIONS（IOPTN－2）THIS VARIABLE IS USED TO SPECIFY THE UPSTREAM MACH NUMBER

RIN＝THE AMBIENT DENSITY IN THE CHAMBER
PIN＝THE AMBIENT PRESSURE IN THE CHAMBER
applying normal shock haves relations for an adiabatic FLOH RELATION STATIC－PRESSURE RATIO ACROSS THE SHOCK AS HELL AS THE OENSITY RATIO ANO MACH nUMBER RATIO INLET EDGES（ EDGE BOUNDARY 8）OF THE COMPUTATIONAL DOMAIH

FOR STEADY STATE SHOCK CALCULATIONS（IOPTN－1）THIS IS THE inflow mach number，all domain velocities are then INITIALIZED WITH THIS VALUE．

RIN＝THE AMBIENT DENSITY AT INFINITY
PIN＝the ambient pressure at infinity
ALL COMPUTATIONAL DOMAIN ARE THEN INITIALIZED HITII those values．

HAND COORDINATE SYSTEM．ALFA＝0 MEANS FLOW FROM LEFT TO RIGHT．ALFA $=90$ MEANS FROM BOTTOM TO TOP．ALFA $=-90$ OR 270
MEANS FLOH FROM TOP TO BOTTOM ETC．

IHRN＝NUMBER OF ITERATIONS IN THE RIEMANN SOLVER TD FIND THE

MDUMP＝NUMBER OF OUTERMOST LOOP ITERATIONS IN THE CALCULATION hhere coarsening of the grid is performed every sequence

222	222
223	223
224	224
225	225
266	226
227	227
228	228
229	229
230	230
231	231
232	232
233	233
234	234
235	235
236	236
237	237
238	238
239	239
240	240
241	241
242	242
243	243
244	244
245	245
246	246
247	247
248	248
249	249
250	250
251	251
252	252
253	253
254	254
255	255
256	256
257	257
258	758
259	259
260	260
261	261
262	262
263	263
264	264
265	265
266	266
267	267
268	268
269	269
270	270
271	271
272	272
273	273
274	274
275	275
276	276
277	277
278	278
279	279
280	280
281	281
282	282
283	283
284	284
285	285
286	286
287	287
288	288
289	289
290	290
291	291
292	292
293	293
294	294
295	295

- 1 USING REDEFENITION OF POINTS ON THE BOUNDARY
IOPLFT $=0$ THE COMPUTATION OF LIFT DRAG AND MOMENT TURNED OFF
IOPDCM $=1$ HE COMAUATION OF LIF ORAG AND MONENT TURED ON
$=1$ A GLOBAL SHAPING (RECONNECTION) PROCEDURE IS ON
IOPORD $=1$ THE CODE HILL RUN FIRST ORDER GODUNOV METHOD
IOPBYN $=0$ NO BUOYANCY EFFECT ARE COMPUTED
$=1$ BUOYANCY EFFECT IN THE Y DIRECTION ARE COMPUTED
IAXSYM $=0$ THE COOE HILL RUN IN A PURE TWO OIMENSIONAL MODE
$=1$ THE CODE WILL RUN IN AN AXI SYMMETRICAL MOOE (X AXIS)
IOPEOS $=0$ THE CODE WILL RUH WITH CONSTANT GAMA
$=1$ THE CODE HILL RUN WITH VARIABLE GAMA USING EQUATION OF STATE FOR AIR
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
$=1$ THE COARSENING PROCEDURE IS TURNED ON
265
AREAOD = SPECIF THE HINHUM VALJE That A TrIANGLE SHOULU HAVE
266
267
268
269
270
270
271
271
272
IWINOW = 0 SETTING A WIDOH FOR REFIWING THE CRID THE GRID
273
$=0$ THE ADAPTATION WILL BE DONE ON A MOVING HAVE
I the adaptafion will be done on a steadr state
274
275
276
277
278
CHARACTER*15 ZHEADER, MNAME, MVNAME 279
CHTACRER FILCK
280
${ }^{C}$ C-- OPEN ALL FILES FOR THIS RUN .-... 282
OPEN (4, FILE='naca4' ,FORM='UNFORMATTED') $\quad 288$
OPEN(88,FILE='naca82', FORM=' UNFORMATTED') 286
OPEN(9.FILE='naca3' 'FORM $=$ ' ${ }^{\prime}$ MFORMATTED') 288
OPEN (2, FILE='data.d', FORM='FORMATTED') 289
OPEN(16,FILE='wedge45.zon'. STATUS='0LD') 290

291
292
293
- defanlt values for input data

296	296	C		296
297	297		FHIRD $=1.13$.	297
298	298	C		298
299	299		ICOMD $=0$	299
300	300		ICOHP $=0$	300
301	301		ITRIGR - 0	301
302	302		IOPTN $=1$	302
303	303	C		303
304	304		XMCHIN $=25$.	304
305	305		RIN $=1$.	305
306	306		PIN = 1 .	306
307	307	C		307
308	308		$A L F A=0$.	308
309	309		IRGG - 1.4	309
310	310		IHRN $=4$	310
311	311		STIME $=1$	311
312	312		MDUMP $=80$	312
313	313		NOUMP - 1	313
314	314		KDIMP $=0$	314
315	315		IOSPCL $=0$	315
316	316		IOPLFT $=0$	316
317	317		IOPRCN - 0	317
318	318		IOPORD $=2$	318
319	319		IOPBYM - 0	319
320	320		IAXSYM $=0$	320
321	321		1OPEOS $=0$	321
322	322	C		322
323	323		MPRTCL $=0$	323
324	324		IOPINT $=0$	324
325	325		IOPADO $=0$	325
326	326		1 PPDEL $=0$	326
327	327		AREADD $=0.005$	327
328	328		AREDEL $=1$.	328
329	329		IWIMDH $=0$	329
330	330		ISTATC $=0$	330
331	331	C		331
332	332	C --		332
333	333	C		333
334	334		READ (2, DATA)	334
335	335	${ }^{\text {c }}$		335
336	336	C --		336
337	337	C		337
338	338		PRINT 101, ICOND, ICONP, ITRIGR,IOPTN,	338
339	339		XMCHIN, RIN, PIN, ALFA, HRGG, IHRN, NTIME, MDUMP, NDUMP,	339
340	340		KDUMP, IOSPCL, IOPLFT, IOPRCN, IOPORD, IOPBYN, IAXSYM.	340
341	341		IOPEOS. MPRTCL , IOPINT, IOPADD, IOPDEL, AREADD, AREDEL.	341
342	342		IWINOW, ISTATC	342
343	343	${ }^{\text {c }}$		343
344	344	C		344
345	345	C		345
346	346		XREADD $=1.1$ AREADD	346
347	347		NAREAD $=$ ALOG(XREADD) / ALOG(3.) + 1	347
348	348		If (NaREAD \cdot LT $\cdot 3$) Naread $=3$	348
349 350	349 350		IF (NAREAD - GT - 5) NAREAD = 5	349
350	350		IF (ISTATC . EQ . 1) NAREAD $=3$	350
351	351		PRINT*, AREADD, AREDEL, NAREAD	351
352	352		PRINT * .ICOND, ICONP	352
353	353	c		353
354	354		NPT $=0$	354
355	355		IJKINT $=3$	355
356	356		IF (ICOND . EQ . O) THEN	356
357	357		00122 IS $=1$. MSM	357
358	358		$\mathrm{KSDELI}(\mathrm{IS})=0$	358
359	359	122	continue	359
360	360		ENO If	360
361	361		HYOMOM (1) $=0$.	361
362	362		HYOMOM (2) $=0$.	362
363	363		HYOMOM (4) $=0$.	363
364	364	\bigcirc		364
365	365		D0 124 IK $=1$, MBP	365
366	366		GAMAG(IK) $=$ HRGG	366
367	367	124	continue	367
368	368	${ }^{\text {c }}$		368
369	369	C= $=$		369

370	370	C		370
371	371	C	READ IN THE MESH DATA	371
372	372	C		372
373	373		>>>2	373
374	374		IF (ICOND . EQ . O) THEN	374
375	375		IF (ICONP . EQ . 1) CALL UPGRAD	375
376	376	C		376
377	377	C		377
378	378	C A	SMART* FORMAT MESH FILE IS READ. THE FILE IS SELECTED BY The	378
379	379	C NO	MAL MACINTOSH FILE DIALOG BECAUSE OF THE '*' IM Place of the	379
380	380	C F	E NAME. VERTICES OF EACH TRIANGLE ARE FORMED FROM THE INPUT.	380
381	381	C		381
382	382		READ (16,900) ZHEADER	382
383	383	900	FORMAT (A15)	383
384	384		IF (ZHEADER .NE. 'SMart-Z-T-(003)') THEN	384
385	385		---------------- THIS ROUTINE CANHOT READ ANY OTHER INPUT	385
386	386		PRINT * 'MESH FILE IS NOT THE CORRECT KIND OR VERSION'	386
387	387		CALL EXIT	387
388	388		ENDIF	388
389	389		READ (16,910) FILLCH,NV,NVHK	389
390	390		PRINT * ,NV. NVMK	390
391	391		READ (16,910) FILLCH,NE, NEMK	391
392	392		PRINT * NE, NEMK	392
393	393		READ (16,910) FILLCH,NS	393
394	394		PRINT *.NS	394
395	395		READ (16.910) FILLCH, NUHQUADS	395
396	396		PRINT *, NUMMUADS	396
397	397	910	FORMAT (A1, 217)	397
398	398		READ (16,920) SILLCH, NZMK, MSMK, NNMK	398
399	399		PRINT *,NZMK, NSMK, NNMK	399
400	400	920	FORMAT(AI.1X,3I3)	400
401	401		IF (NV .GT. MVM) THEN	401
402	402		-------------CHECK NOOE (I.E.. VERTEX) STORAGE SIZE	402
403	403		PRINT 1020.NV, MVM, NVMK	403
404	404	1010	FORMAT($1 \times,{ }^{\text {'TOO MANY NODES. }}$ ', 19, ', MAX $=$ ', [5)	404
405	405		CALL EXIT	405
406	406		EMDIF	406
407	407		IF (NE .GT. MEM) THEN	407
408	408		---------------*---- CHECK SIDE (1,E., EDGE) STORAGE SIZE	408
409	409		PRINT 1020, NE, MEM, NEMK	409
410	410	1020	FORMAT (1X, 'TOO MANY SIDES. ' 19.1 , MAX = ', 15)	410
411	411		CALL EXIT	411
412	412		ENDIF	412
413	413		IF (NS .GT. MSM) THEN	413
414	414		--------- CHECK ZONE (I.E.. SIOE OR TRIANGLE) STORAGE SIZE	414
415	415		PRINT 1030,NS, MSM	415
416	416	1030	FORMAT (1X, 'TOO MANY ZONES. ' 19.1 , MAX $=$ ', I5)	416
417	417		CALL EXIT	417
418	418		ENDIF	418
419	419		IF (NUMQUADS .GT. 0) THEN	419
420	420		------------------- CHECK FOR QUADRILATERALS IN THE INPUT	420
421	421		PRINT 1040	421
422	422	1040	FORMAT ($1 \times$. 'NO QUADRILATERALS ARE ALLOWED. ${ }^{\prime}$)	422
423	423		CALL EXIT	423
424	424		ENDIF	424
425	425		------------- READ MARKER DEFINITIONS	425
426	426	${ }^{C}$	THE FOLLOWING JUST READS THE VARIABLES WITHOUT STORING	426
427	427	${ }^{C}$	THEM INTO PERMANENT ARRAYS. EFFECTIVELY JUST READING	427
428	428	C	PAST THE MARKER DEFINTION INFORMATION.	428
429	429		DO 21 NZM - 1, NZMK	429
430	430		READ (16,1050) NMN, MNAME , NVAL	430
431	431		DO 20 NZMV = 1. NVAL	431
432	432		READ (16.1050) NMV. MVMAME	432
433	433	20	CONTINUE	433
434	434	21	CORTINUE	434
435	435	1050	FORMAT ($3 \mathrm{X}, 12,1 \mathrm{X}, \mathrm{Al5,1X}, 12$)	435
436	436		DO 31 NZM - 1, NSMK	436
437	437		READ (16,1050) NMN, MNAME, NVAL	437
438	438		DO 30 NSMV = 1. NVAL	438
439	439		READ (16,1050) NMV.MVNAME	439
440	440	30	CONTINUE	440
441	441	31	CONTINUE	441
442	442		DO 41 NZM : 1, HNMK	442
443	443		READ (16,1050) NMN, MNAME, NVAL	443

444	444		DO 40 NNMV $=1$, NVAL	444
445	445		READ (16.1050) NMV.MVNAME	445
446	446	40	CONTINUE	446
447	447	41	continue	447
448	448	C-	-------.-.--- READ IN VERTEX INFORMATION	448
449	449		DO 51 IV $=1$, NV	449
450	450		IS - IV	450
451	451		READ (16.1210) IK, XV (1,IS).XV(2.15)	451
452	452		$J V(1$, IV $)=0$	452
453	453	C	initialize any vertex marker storage, l.e. jv(*.IV)	453
454	454	51	CONTINUE	454
455	455		PRINT 1060, NV	455
455	456	1060	FORMAT(15,' NODES (VERTICES) READ IN.')	456
457	457	1210	FORMAT(I7,E15.9,1X, E15.9)	457
458	458		IF (NVMK .GT. O) THEN	458
459	459	C---	------------ READ IN VERTEX MARKER INFORMATION	459
460	460		DO 55 IV $=1$, NVMK	460
461	461		READ (16,*) IXV.MV1,MV2,MV3, MV4	461
462	462		$\mathrm{JV}(1$, IXV $)=$ MVI	452
463	463	C	Store these markers in JV(*, JXV) AS desired	463
464	464	55	continue	454
465	465		PRINT 1070,NVMK	465
466	466	1070	FORMAT($15 . '$ NODE (VERTEX) MARKERS READ iN.')	466
467	467		ENDIF	467
468	468	C-.	------------- READ IN EDGE INFORMATION (EDGES OF IRIANGLES).	468
469	469		D0 60 IE $=1$, NE	469
470	470		IS = IE	470
471	471		READ (16, ${ }^{*}$) $\mathrm{IJ}, \mathrm{JE}(1,1 \mathrm{~S}), \mathrm{JE}(2, \mathrm{IS}), \mathrm{JE}(3,15), \mathrm{JE}(4,15)$	471
472	472	c	INITIALIZE ANY MARKER STORAGE.	472
473	473		JE($5, \mathrm{IE})=0$	473
474	474	60	COntimue	474
475	475		PRINT 1080, NE	475
476	476	1080	FORMAT(15, ' SIDES (EDGES) READ IN.')	476
477	477		IF (MEMK .GT. 0) THEM	477
478	478	C-.-	-----.-.-.-- READ IN EDGE MARKER INFORMATION	478
479	479		DO 65 IV = 1, NEMK	479
480	480		READ (16, ${ }^{\text {² }}$) IXE,MV1,MV2,MV3,MV4	480
481	$48 i$		JE(5.IXE) = MVI	481
482	482	65	continue	482
483	483		PRINT 1090,NEMK	483
484	484	1090	FORMAT(15, ${ }^{\text {(SIDE (EDGE) MARKERS READ IN.') }}$	434
485	485		ENDIF	485
486	486	C---	(-.-.-.-.-.--- READ IN SIDE (TRIANGLE) INFORMATION.	486
487	487		D0 81 IS $=1$, NS	487
488	488		$I E=15$	488
489	489		READ (16, 1100) IJ, MV1,MV2,MV3, MV4,	489
490	490		- IV1,IU1,IV2,ID2,IV3,103	490
491	491	1100	FORMAT (17,413,3(17,12))	491
492	492		$\mathrm{JS}(4, \mathrm{IE})=$ IVI * 101	492
493	493		JS $(5.1 E)=1 V 2 * 1 D 2$	493
494	494		$J S(6,1 E)=$ IV3 * 103	494
495	495	c	JS(7,IE) = MVI	495
496	496	C		496
497	497	C	STORE ThESE MARKERS IN JS(*, IS) AS DESIRED	497
498	498	C		498
499	499	81	continue	499
500	500		PRINT 1110, NS	500
501	501	1110	FORMAT (15.' ZONES (SIOES) READ IN.')	501
502	502		CLOSE (16)	502
503	503	C--	------------ FORM VERTEX INDICES FOR EACH SIDE (TRIANGLE).	503
504	504		D0 85 IS = 1 , NS	504
505	505		$0085 \mathrm{~J}=1 ; 3$	505
506	506		IE = JS $(\mathrm{J}+3$, IS $)$	506
507	507		IEABS - IABS (IE)	507
508	508		IF (IE GT . O) THEN	508
50°	509		JS $(\mathrm{J}, ~ 1 S)=\mathrm{JE}(1$, IEABS $)$	509
514	510		ELSE	510
51.	511		JS ${ }^{\text {J , IS }}$) $=$ JE ($2, ~$ IEABS $)$	511
512	512		END JF	512
513	513	85	CONTINUE	513
514	514	C		514
515	515	C=	m"n=	515
516	516	C		516
517	517		IF (1OSPCL.EQ.1) THEN	517

518	518	C		518
519	519	C	SPECIAL CASE FOR HALF CIRCLE BOUMDARY DATA	519
520	520	C		520
521	521		00382 IE = 1 , NE	521
522	522		IJE5 = JE (5, IE)	522
523	523		IF (IJE5. EQ . 6) THEN	523
524	524	C		524
525	525		IVI = JE (1 , IE)	525
526	526		IV2 = JE (2 , IE)	525
527	527	6		527
528	528		XXS1 = XV(1, IVI)	528
529	529		YYSI $=X V(2, I V 1)$	529
530	530		XXS2 = XV (1 , IV2)	530
531	531		YYS2 $=$ XV $(2,1 V 2)$	531
532	532		DXX = XXS 1 - 1.50	532
533	533		ANGL $=1.570796327$	533
534	534		IF (DXX . NE . 0) ANGL = ATAN2 (YYSI . DXX)	534
535	535		$X V(1, I V I)=\operatorname{COS}($ ANGL $)+1.5$	535
536	536		XV(2, IVI $)=$ SIN(ANGL $)$	536
537	537		OXX $=$ XXS2 - 1.50	537
538	538		ANGL $=1.570796327$	538
539	539		IF (DXX . ME . 0) ANGL = ATAN2 (YYS2 . DXX)	539
540	540		XV($1, \mathrm{IV2})=\operatorname{COS}($ ANGL $)+1.5$	540
541	541		XV($2, I V 2)=\operatorname{SIN}($ ANGL $)$	541
542	542	C	XXS = XV(1 . IVI) * 1.008930411364	542
543	543	C	YYS $=.6$ (.2969* SQRT (XXS) - .126* XXS -	543
544	544	C	. 3516 * XXS * \times XS + . 2843 * XXS * XXS * XXS -	544
545	545	C	. ${ }^{\text {a }}$. 1015 * XXS * XXS * XXS * XXS)	545
546	546	${ }^{\text {c }}$		546
547	547	${ }^{\text {c }}$		547
548	548	C		548
549	549	C	XXS $=$ XV(1 . IV2) * 1.008930411364	549
550	550	C	YYS $=.6 *(.2969 * S Q R T(X X S)-.126 * X X S ~-~$	550
551	551	C	* . 3516 * XXS * XXS + . 2843 * XXS * XXS * XXS -	551
552	552	6	- . 1015 * XXS * XXS * XXS * XXS)	552
553	553	C		553
554	554	${ }_{6}$	IF (XXS : GT . 3 . AND XXS . LT . 7 7) JV(1.1 IV 2$)=0$	554
555	555	C	IF (XE (1 , IE) .GT. . 2) CALL DISECT (IE , IDONE , IJKINT)	555
556	556		END IF	556
557	557	382	CONTINUE	557
558	558		ENO IF	558
559	559	C		559
560	560			560
561	561	C		561
562	562	C		562
563	563	C.	CALCULATE GRID QUANTITIES THROUGH GEOMTR	563
564	564	6		564
565	565		CALL UPDATE	565
566	566	C		566
567	567			567
568	568	\bigcirc		568
569	569	C	REFINE THE INITIAL GRID BY A FACTOR OF THREE IF CALLED FOR $\ldots-\cdots$	569
570	570	C		570
571	571	C>>>		571
572	572		IF (ITRIGR . EO . 1) THEN	572
573	573		NSS - NS	573
574	574		00110 IS - 1 , NSS	574
575	575		CALL VERCEN(IS)	575
576	576	110	CONTINUE	576
577	577		NEE - NE	577
578	578		DO 120 IE = 1. NEE	578
575	579		IF (JE (5 , IE) . NE . 0) THEN	579
580	580		CALL DISECT (IE , IDONE , IJKINT)	580
581	581		ENDIF	581
582	582	120	CONTINUE	582
583	583		DO 130 IK $=1.3$	583
584	584		PRINT*,NV,NE,NS.IK	584
585	585		00130 IE $=1$, NE	585
585	586		CALL RECNC(IE , IOONE , ITL , ITR, JA , JB, JC , 30)	586
587	587		CALL RECNC(JA . JADONE , ITL , ITR , JAA , JAB , JAC, JAD)	587
588	588		CALL RECNC (JB , JBDONE . ITL , ITR , JBA , JB8 , JBC , J8D)	588
589	589		CALL RECNC (JC . JCDONE , ITL , ITR , JCA , JCB , JCC , JCD)	589
590	590		CALL RECNC (JD , JDDONE , ITL , ITR , JDA , JDB , JOC , JOD)	590
591	591	130	CONTINUE	591

592	592	END IF	592
593	593	C<<<<<<	593
594	594	c	594
595	595		595
596	596	C	596
597	597	C --. FINO AVERAGE TRIANGLE AREA	597
598	598	C	598
599	599	SAREMN $=1000000$.	599
600	600	SAREMX $=0$.	600
601	601	SAREVG - 0.	601
602	502	D0 105 IS $=1$, NS	602
603	603	AREASS = XS (3 , IS)	603
604	604	SAREMX = AMAXI (SAREMX , AREASS)	604
605	605	SAREMN - AMINI (SAREMN , AREASS)	605
606	606	SAREVG $=$ SAREVG + AREASS	606
607	607	105 CONTINUE	607
608	608	AVGARE = SAREVG	608
609	609	SAREVG = SAREVG / NS	609
610	610	FMINVG = SAREVG * AREADD	610
611	611	SAREMH = SAREMN / SAREVG	611
612	612	SAREMX = SAREHX / SAREVG	612
613	613	PRINT*, SAREVG, SAREMX, SAREMH	613
614	614	c	614
615	615	C --- 00 INITIAL REFINEMENT FOR ALL IMFLOH BOUHDARIES DEFINED .-.........	615
616	616	${ }^{\text {C }}$ bY EDGES THAT CONTAIN BOUHDARY CONDITION 8(IAFLOH)	616
617	617	\bigcirc	617
618	618	IF(IOPINT.EQ.1)THEN	618
619	619	NJFDIV $=2$	619
620	620	CALL INTPTN(AREADD , NOFDIV , 1, LTRIG)	620
621	621	NOFDIV $=$?	621
622	622	CALL DYYPTN(AREADD , NOFDIV , 1. LTRIG)	622
623	623	MOFDIV $=2$	623
624	624	CALL INTPTN(AREADO , NOFOIV , 2 , LTRIG)	624
625	625	NOFDIV $=2$	625
626	626	CALL DYYPTN(AREADD , NOFDIV , 2 . LTRIG)	626
627	627	NOFOIV $=2$	627
628	628	CALL INTPTN(AREADO , NOFDIV , 3 , LTRIG)	628
629	629	MOFDIV $=2$	629
630	630	CALL DYYPTM (AREADD , NOFOIV , 3, LTRIG)	630
631	631	c	631
632	632	PRINT*,NV,NE,NS	632
633	633	ENDIF	633
634	634	C	634
635	635		635
636	636	c	636
637	637		637
638	633	c	638
639	639	C(1)----	639
640	640	ELSE	64 C
641	641	CALL UPGRAD	641
642	642	C CALL GEOMTR	642
643	643	IF (ICONP - EQ . O) THEM	643
644	644	READ (88) RIN, PIN,RIML, PINL,UVIN,UIN,VIN,TT.	644
645	645	HYDMOM (1), HYDHOM (2). HYDMOM (4)	645
646	646	PRINT * RIN, PIN, UVIN, UIN, VIN, TT	646
647	647		647
648	648	READ (88) ($(\mathrm{HYOVOV}$ (IV,IK), IK=1,5), IV $=1, \mathrm{NV}$)	648
649	649	READ (88) IJKINT, (KSDELT(IS), IS=1,NS)	649
650	650	IF (MPRTCL EQ - 1)	650
651	651	READ (88) NPT. (${ }^{\text {(XPRTCL }}$ (IK, IPT), IK=1,2), IPT=1,NPT)	651
652	652	(IJKPRT(IPT),IPT=1,NPT)	652
653 654	653	ENDIF	653
654	654	ENDIF	654
655 656	655	$C(1)$ eees	655
656 657	656	C	656
657	657	C --- initialization of the problem ------------	657
658	658	C	658
659	659	SARERV = 1. / SAREVG	659
660	660	SARESQ $=$ SORT (SAREVG)	660
661	661	FMINVG = SAREVG * AREADD	661
662	662	HRSM $=1 . \mathrm{E}-8$	662
663	663	HRGP $=$ HRGG +1.	663
664	664	HRGM $=$ HRGG -1.	654
665	665	CF - HRGP / (2. * HRGG)	665

666	656	\bigcirc		656
667	667		JDUMP $=9$	667
668	668		IF (KDUMP.EQ.0)THEN	668
669	669		KDUMP = JDUMP	669
670	670		ENDIF	670
671	671	c		671
672	672		$T \mathrm{~T}=0$.	672
673	673	C		673
674	574		PIRAD = ATAN (1,) / 45.	674
675	675		ALPHA = ALFA * PIRAD	675
676	676		PRINT *,ALFA, PIRAD, ALPHA	676
677	677		PRINT *, XMCHIN,PIN,RIN	677
678	678	c		678
679	679		COSS $=$ COS (ALPHA $)$	679
680	680		SINN $=$ SIN (ALPHA $)$	680
681	681		TANK = TAN(ALPHA)	681
682	682	C		682
683	683	C=		683
684	684	C		684
685	685	C		685
686	686	C		686
687	687	C(2)		687
688	688		IF (IOPTN . EQ . 1) THEN	688
689	689		UVIN = XMCHIN * SQRT(HRGG * PIN / RIN)	689
690	690		UIN $=$ UYIN * COSS	690
691	691		VIN = UVIN * SIM	691
692	692		RIN $=1$.	692
693	693		$P \mathrm{C}=1$.	693
694	694	\bigcirc		694
695	695		DO iso IS $=1$, NS	695
696	696		HYDV(IS , 1) = RIN	696
697	697		HYDV (IS , 2) $=0$.	697
698	698		HYDV (IS . 3) - 0 .	698
699	699		HYOV (IS. 4) = PIN	699
700	700		HYOV (IS . 5) = HRGG	700
701	701		XSS $=$ XS (1, 1S) THEN	701
702	702		IF (XSS . LT ; 0) THEN	702
703	703		HYDV (IS , 1) = .125*RIN	703
704	704		HYDV(IS , 4) = .100 * PIN	704
705	705		END IF	705
706	706	150	COntinue	706
707	707	c		707
708	108		DO $176 \mathrm{IV}=1$. NV	708
709	709		HYDUVV (IV, 1) = RIN	709
710	710		HYOVVV (IV, 2) $=0$.	710
711	111		HYDVVV (IV, 3) $=0$.	711
712	112		HYDVVV(IV. 4) $=$ PIN / HRGM	712
713	113		HYOVVV (IV, 5) $=$ HRGG	713
714	714		XSS $=$ XV (1, IV)	714
715	715		IF (XSS . LT ; -.0) THEN	715
716	716		HYOVVV(IV, 1) = RIN	716
717	717		HYOVVV(IV , 4) = PIN / HRGM	717
718	118		END IF	718
719	119	176	CONTINUE	719
720	120	C(2)		120
721	721		ELSE	721
722	722	¢		722
723	723		XMSOR = XMCHIN * XMCHIN	723
724	724		IF (ICOND . EQ . 1. AND . ICONP . EQ . 0) THEN	724
725	725		ELSE	725
726	726		PINL * PIN	726
727	727		RINL * RIN	727
728	728		RINRTO = (HRGG + 1.) * XMSQR /	728
729	129		* ((HRGG - 1.) * XMSQR + 2.)	129
730	730		PINRTO = (2. * HRGG * XMSQR - (HRGG - 1.)) $/$	730
731	131		- (HRGG + 1.)	731
732	732		PIN = PINRTO * PINL	732
733	733		RIN = RINRTO * RINL	733
734	734		YMCHIN = SQRT ((HRGG - 1.) * XMSQR + 2.) /	734
735	135		- (2. * HRGG * XMSQR - (HRGG - 1.)))	735
736	136		PRINT*,HRGG,RIN, PIN,YMCHIN	736
737	137		PRINT*. HRGG, RINL, PINL, XMCHIN	737
138	138		UVIN - XMCHIN * SQRT(HRGG * PINL / RINL) -	738
739	739		YMCHIN * SQRT(HRGG * PIN / RIN)	739

740	740		END If	740
741	741		$00175 \mathrm{IV}=1$, NV	741
742	742		HYOVVV (IV.2) = RIML	742
743	743		HYDVWV(IV. 2) $=0$.	743
744	744		HYDVWV (IV. 3 - $=0$	744
745	745		HYOVVV(IV, 4) = PINL / HRGM	745
746	746		HYDVVV(IV , 5) = HRGG	746
747	747		XSS $=$ XV $(1,1 V)$	747
748	748			748
749	749		HYDVVV(IV, 1) = RIN	749
750	750		HYOVWV(IV. 2) - UVIN * RIN	750
751	751		HYOVVV (IV. 4) = PIN / HRGM + .5 * RIN * UVIN * UVIM	751
752	752		END IF	752
753	753	175	continue	753
754	754		DO 170 IS = 1 , NS	754
755	755		HYDV(IS , 1) $=$ RINL	755
756	756		$\operatorname{HYDV}(15,2)=0$.	756
757	757		HYOV(IS . 3) $=0$.	757
758	758		$\operatorname{HYOV}($ IS . 4) $=$ PINL	758
759	759		HYOV (IS , 5) = HRGG	759
760	760		XSS $=$ XS (1,15)	760
761	761		IF (XSS . LT ; - 0) THEN	761
762	762		HYOV 15,1$)=$ RIN	762
763	763		$\operatorname{HYDV}($ IS, 2$)=$ UVIN	763
764	764		$\operatorname{HYDV}(15,4)=$ PIN	764
765 766	765	170	EMD If	765
767	767	${ }_{c}$	continue	766
768	768		If (IOPEOS . EQ . 1) Then	768
769	769		HRGGN = HRGG	769
770	770		HRGGL - HRGG	770
771	771		RINRTO $=($ HRGGN + 1. $) *$ XMSOR $/$	771
772	772			772
773	773		PIMRTO = (2. * HRGGN * XMSQR - ($\mathrm{HRGGN}^{\text {- }}$ 1.))) $/$	773
774	774		- PIM = PIMRTO PIM (HRGGN + 1.)	774
775 776	775 776		PIN = PINRTO * PIML	775
777	771		RINN = RINR / (HRGGN - 1.)	776
778	778		RRNA = RIN	778
779	779		TTML = PINL / (HRGGL - 1.)	779
780	780		RRNL = RINL	780
781	781		$001122 \mathrm{KI}=1,9$	781
782	782		Call eds (RRAN . TTNN . 1. hrgan)	782
783	783		CALL EOS (RRNL, TTNL 1 , hRGGL)	783
784	784		RINRTO $=($ HRGGE +1.$) *$ XMSQR $/$	784
785	785			785
786 787	786 787		PINRTO $=(2 . *$ HRGGN * XMSQR - (HRGGN - 1.)) $/$	786
787 788	787 788		- ${ }^{\text {PIN }}$ - PINPTO * PIML (HRGGN + 1.)	787
789	789		PIN = PINRTO * PINL	788 789
790	790		TTNN = PIN / (HRGGN - 1.)	790
791	791		RRNN $=$ RIN	791
792	792		TTNL $=$ PINL $/($ HRGGL -1.$)$	792
793	793		RRNL $=$ RINL	793
794	794		YMCHIN = SQRT (($($ HRGGN - 1.) $) *$ XMSOR + 2.) /	794
795	795		- PAIMT* ($2 . *$ HRGGS * XMSQR - (HRGGN - 1.)))	795
796	796		PRINT*, HRGGN, RIN, PIN, YMCHIN	796
797	797		PRINT*, HRGGL, RINL, PINL, XMCHIN	797
798	798	1122	CONTINUE	798
799	799		UVIN $=$ XMCHIN * SQRT (HRGGL * PINL / RINL) -	799
800	800		- YMCHIN * SQRT(hrgan * PIN / RIN)	800
801	801		00172 IS = 1, NS	801
802	802		HYDV(IS , 5) = HRGGL	802
803	803	172	CONTINUE	803
804	804		END IF	804
805	805		UIN $=$ UVIN * Coss	805
806	806		VIN = UVIN * SINN	806
807 808	807	C		807
808 809	808 809		ENDIF	808
810	810	$C_{C}^{C(2)}$		809
811	811		IF (MPRTCL . EQ . 1) THEN	810
812	812			811
813	813		$00190 \mathrm{IKX}=1.30$	812 813

814	814		DO 190 IKY $=1,15$	814
815	815		IKXY $=1 K X Y+1$	815
816	816		XPRTCL (1 , IKXY) = (IKX - 1) * . $1+.05$	816
817	817		XPRTCL $(2, \mathrm{IKXY})=(\mathrm{IKY}-1) * .1+.05$	817
818	818	190	CONTINUE	818
819	819		NPT $=1 \mathrm{IKXY}$	819
820	820		PRINT *, NPT	820
821	821		CALL PRLCTM	821
822	822		PRINT *, NPT	822
823	823		ENDIF	823
824	824	C		824
825	825	$\mathrm{C}=$		825
826	826	C		826
827	827	C	read input oata from the previous run --.--..--	827
828	828	C		828
829	829		PRINT * , ICOND, ICONP	829
830	830		IF (ICOMP EQ . 1) THEN	830
831	831		READ (88) RIN, PIN, RINL, PINL, UVIN,UIN, VIN, TT,	831
832	832		- HYDHOM (1), HYDHOM (2), HYDMOH (4)	832
833	833		PRINT * RIN, PIN, UVIN, UIN, VIN, TT	833
834	834		READ (88) (HYOV($^{\text {S }}$, IK), IK=1,5), IS $=1, N S$)	834
835	835		READ (88) ($(\mathrm{HYDVVV}(\mathrm{IV}, \mathrm{IK}), \mathrm{IK}=1,5), \mathrm{IV}=1$, NV)	835
836	836		READ (88) IJKINT, (KSDELT(IS), 1S=1,NS)	836
837 838	837		IF (MPRTCL EQ E 1)	837
838	838		READ (88) NPT. (XPRTCL $^{(I K, I P T), I K=1.2) . I P T-1, ~ M P T), ~}$	838
839	839		(IJKPRT(IPT),IPT=1,NPT)	839
840	840		ENDIF	840
841	841	c		841
842	842	C=a		842
843	843	C		843
844	844	C		844
845	845	C		845
846	846		CALL HYORMN	846
847	847	c		847
848	848			848
849	849	c		849
850	850	${ }^{\text {c }}$	EXIT POINT FROM PROGRAM	850
851	851	c		851
852	852	c	--------	852
853	853		STOP 777	853
854	854	c	------..	854
855	855	c		855
856	856	C	FORMATS .----	856
857	857	c		857
858 859	858	101		858
859 860	859		'IOPTN=' $12.1 .1 x^{\text {a }}$	859
860 861	860		' $\mathrm{XMCHIN}=$ ', F13.6,5X, 'RIN=', F13.6,5X, 'PIN=', F13.6, /, 1X,	860
862	862			861
863	863			862
854	864			863
865	865			864
866	865			865
867	867			866
868	868			867
869	869	c		869
870	870	C	--.	870
871	871		END	871

mainhd.f
SUBROUTINE HYORFL

946	75		WLESQ (KE) = WLEFT(KE) * WLEFT (KE)	946
947	76		WRISQ (KE) = WRIGT(KE) * WRIGT(KE)	947
948	77	C		948
949	78		PMIN(KE) = AMINI (PPL (KE) , PPR (KE))	949
950	79		PSML (KE) = HRSM * PMIN(KE) ${ }^{\text {(}}$	950
951	80	c		951
952	81	C ---	FORM Ihe starting guess for the solution ----.--	952
953	82	C		953
954	83		PSTAR (KE) $=($ HLEFT $(K E) *$ PPR $(K E)+$	954
955	84		HRIGT(KE) * PPPL (KE) -	955
956	85		WLEFT(KE) * WRIGT(KE)	956
957	86		(UURR(KE) - UUL(KE))) /	957
958	87		- (WLEFT (KE) + WRIGT (KE))	958
959	88		PSTAR (KE) = AMAX1 (PSTAR(KE) . PSML (KE))	959
960	89	130	continue	960
961	90	c		961
962	91		DO $140 \mathrm{I}=1$, IHRN	962
963	92	5		963
964	93	C ...	begin the newton Iteration	964
965	94	C		965
966	95		DO $150 \mathrm{KE}=1$, NOFVEE (INE)	966
967	96	C		967
968	97		CF = (GAMAL (KE) + 1.0) GAMAL (KE) * . 5	968
969	98		WLEFS (KE) = ($1 .+$ CFF * (PSTAR (KE))	969
970	99			970
971	100		WLEFT (KE) = SQRT (HLEFS (KE))	971
972	101		ZLEFT (KE) = 2. * HLEFT (KE) * WLEFS (KE) ;	972
973	102		(WLESQ(KE) + WLEFS (KE))	973
974	103			974
975 976	104 105	150	continue (PStar (Ke) - PPL(Ke)) / hleft (Ke)	975 976
977	106	C		977
978	107		DO $152 \mathrm{KE}=1 . \mathrm{NOFVEE}(\mathrm{INE})$	978
979	108	C		979
980	109		CF = (Gamar (KE) + 1 . $)$ / Gamar (KE) * 5	980
981	110		WRIFS (KE) = ($1 .+$ CF * (PSTAR (KE) $)$	981
982	111		(PPR (KE) - 1.)) * WRISQ(KE)	982
983 984	112		HRIGT(KE) $=$ SORT(WRIFS(KE) ${ }^{\text {P }}$)	983
984 985	113			984
986	115			985
987	116		(PSTAR(KE) - PPR(KE)) / HRIGT (KE)	987
988	117	152	COntinue	988
989	118	c		989
990	119		DO $160 \mathrm{KE}=1$, NOFVEE (INE)	990
991	120		OPST (KE) = ZLEFT(KE) * ZRIGT(KE) *	991
992	121		(USTR (KE)-USTL (KE))	992
993	122		(ZLEFT (KE) + $2 \mathrm{RIGT}(\mathrm{KE})$)	993
994	123		$\operatorname{PSTAR}(\mathrm{KE})=\operatorname{PSTAR}(\mathrm{KE})-\mathrm{DPST}(\mathrm{KE})$	994
995	124		PSTAR (KE) = AMAXI (PSTAR (KE) , PSML (KE))	995
996	125	160	CONTINUE)	996
997	126	140	COntinue	997
998	127	C		998
999	128	C ---	FORM FINAL SOLUTIONS	999
1000	129	C		1000
1001	130		DO 170 KE = 1 , NOFVEE (INE)	1001
1002	131	\bigcirc		1002
1003	132		CF $=$ (GAMAL (KE) + 1.) / GAMAL (KE) * . 5	1003
1004	133		HLEFT (KE) = SQRT(WLESQ (KE) * ($1 .{ }^{+}$	1004
1005	134		CF * (PSTAR (KE) / PPL (KE) - 1.)))	1005
1006	135	170	COntinue	1005
1007	136	c		1007
1008	137		DO $172 \mathrm{KE}=1$. NOFVEE (INE)	1008
1009	138	C		1009
1010	139		CF \% (Gamar (KE) + 1.) / Gamar (KE) * . 5	1010
1011	140			1011
1012 1013	141		CF * (PSTAR (KE) / PPRP(KE) - 1.))	1012
1013 1014	142	172	CONTINUE	1013
1014	143	c		1014
1015 1016	144		DO $180 \mathrm{KE}=1$, NOFVEE (INE)	1015
1016	145		USTAR(KE) - (PPL (KE) - PPR (KE) +	1016
1017	146		WLEFT (KE) * UUL (KE) +	1017
1018	147		HRIGT(KE) * UUR (KE)) !	1018
1019	148		(HLEFT(KE) + WRIGT(KE))	19

1020	149	180	continue	1020
1021	150	c		1021
1022	151	C	BEGIN PROCEDURE TO OBTAIN FLUXES FROM REIMANH FORMALISM --....-.-.	1022
1023	152	c		1023
1024	153		DO $190 \mathrm{KE}=1$, NOFVEE (INE)	1024
1025	154		IF (USTAR ${ }^{\text {(}}$ K) . LE . 0.0) THEN	1025
1026	155	¢		1026
1027	156		RO(KE) = RRR(KE)	1027
1028	157		PO(KE) = PPR (KE)	1028
1029	158		UO(KE) = UUR(KE)	1029
1030	159		$\operatorname{CO}(\mathrm{KE})=\operatorname{SORT}(\operatorname{GAMAR}(\mathrm{KE}) * \operatorname{PPR}(\mathrm{KE}) / \mathrm{RRR}(\mathrm{KE})$)	1030
1031	160		WO(KE) = WRIGT(KE)	1031
1032	161		ISN(KE) = 1	1032
1033	162	C		1033
1034	163		VGDNV (KE) = VVR(KE)	1034
1035	164	C		1035
1036	165		ELSE	1036
1037	166	c		1037
1038	167		RO(KE) = RRL (KE)	1038
1039	168		PO(KE) = PPL (KE)	1039
1040	169		UO(KE) = UUL (KE	1040
1041	170		CO(KE) = SQRT(GAMAL (KE) * PPL (KE) / RRL (KE))	1041
1042	171		WO(KE) = WLEFT(KE)	1042
1043	172		$\operatorname{SSN}(\mathrm{KE})=-1$	1043
1044	173	c		1044
1045	174		VGDNV (KE) = VVL(KE)	1045
1046	175		END IF	1046
1047	176	190	continue	1047
1048	177	6		1048
1049	178		DO $200 \mathrm{KE}=1$, NOFVEE (INE)	1049
1050	179		DELP (KE) = PSTAR (KE) - PO(KE)	1050
1051	180		WSOP (KE) = ISN(KE) * UOC KE) + WO(KE) / RO(KE)	1051
1052	181		WSOM (KE) = ISN(KE) * UO(KE) + CO(KE)	1052
1053	182	200	COMTINUE	1053
1054	183	c		1054
1055	184		DO $210 \mathrm{KE}=1$. NOFVEE (INE)	1055
1056	185		IF (DELP (KE) . GT . O.) THEN	1056
1057	186		WSOO(KE) = WSOP(KE)	1057
1058	187		ELSE	1058
1059	188		WSOO(KE) = WSOM (KE)	1059
1060	189		END IF	1050
1061	190	210	continue	1061
1062	191	c		1062
1063	192	C		1063
1064	193	C		1064
1065	194		DO $220 \mathrm{KE}=1$, NOFVEE (INE)	1065
1066	195		PGONV (KE) = PO(KE)	1066
1067	196		UGONV (KE) $=$ UOC KE	1067
1068	197		CGDNV (KE) $=$ CO(KE $)$	1068
1069	198		RGONV (KE) = RO(KE)	1069
1070	199	220	CONTINUE	1070
1071	200	c		1071
1072	201	C		1072
1073	202	c		1073
1074	203		DO $230 \mathrm{KE}=1$, NOFVEE (INE)	1074
1075	204		IE = KE + NE1-1	1075
1076	205		ISL $=\mathrm{JE}$ ($3 . \mathrm{IE}$)	1076
1077	206		ISR $=$ JE $(4,1 E)$	1077
1078	207		IF (ISR. NE. O) THEN	1078
1079	208		GAMAG(KE) = .5* (HYDV(ISL . 5) + HYDV(ISR . 5))	1079
1080	209		ELSE	1080
1081	2:0		GAMAG(KE) = HYOV(ISL , 5)	1081
1082	: 11		END IF	1082
1083	12	C		1083
1084	213		RSTAR (KE) $=1.1(1 . / \mathrm{RO}(\mathrm{KE})-\mathrm{DELP}(\mathrm{KE}) /$	1084
1085	214		(WO(KE) * WG(KE)))	1085
1086	215	\bigcirc		1086
1087	216		CSTAR (KE) = SQRT(GAMAG(KE) * PSTAR(KE) / RSTAR (KE))	1087
1088	217		HSOM (KE) = ISN(KE) * USTAR (KE) + CSTAR (KE)	1088
1089	218	230	continue	1089
1090	219	c		1090
1091	220		DO $240 \mathrm{KE}=1$, NOFVEE (INE)	1091
1092	221		IFi OELP (KE) . GT . O.) THEN	1092
1093	222		SPIN(KE) = WSOP(KE)	1093

1094	223		ELSE	1094
1095	224		SPIN(KE) = WSOM(KE)	1095
1096	225		END IF	1096
1097	226	240	continue	1097
1098	227	c		1098
1099	228		DO $250 \mathrm{KE}=1$. NOFVEE (INE)	1099
1100	229	C		1100
1101	230		IF (WSOO (KE) . GE . O.) THEN	1101
1102	231		IF (SPIN(KE) . GE . O.) THEN	1102
1103	232	C		1103
1104	233	c	USE THE STARRED STATE RESULTS	1104
1105	234	c		1105
1106	235		RGONV (KE) = RSTAR (KE)	1105
1107	236		UGONV (KE) = USTAR (KE)	1107
1108	237		CGDNV (KE) = CSTAR (KE)	1108
1109	238		ELSE PGDNV(KE) = PSTAR (KE)	1109
1110	239		ELSE	1110
1111	240	c		1111
1112	241	C ${ }^{\text {c }}$		1112
1113 1114	242			1113
1115	244		HRGM $=$ GAMAG $(\mathbb{K E})-1$.	1114
1116	245		HRGP = GAMAG(KE ${ }^{\text {HRG }}$ - 1 .	1115
1117	246		$\operatorname{CGDNV}(\mathrm{KE})=(\operatorname{CStaR}(\mathrm{KE}) * 2$.	1116
1118	247		(ISN(KE) * USTAR(KE) * HRGM)/HRGP	1117
1119	248		UGONV (KE) = - ISN(KE) * CGDNV (KE) ,	1118
1120	249		$\operatorname{RGONV}(\mathrm{KE})=(\operatorname{CGDNV}(\mathrm{KE}) / \mathrm{CO}(\mathrm{KE}) \mathrm{l}$) **	1120
1121	250		PCDNV KE) (2.1 HRGM) * RO(KE)	1121
1122	251		$\operatorname{PGDNV}(\mathrm{KE})=\operatorname{CGDNV}(\mathrm{KE}) * \operatorname{CGDNV}(\mathrm{KE}) * \operatorname{RGONV}(\mathrm{KE}) / \mathrm{HRGG}$	1122
1123	252	C		1123
1124	253		END If	1124
1125	254	C		1125
1126	255		END IF	1126
1127	256	250	continue	1127
1128	257	c		1128
1129	258		DO $142 \mathrm{IE}=\mathrm{NE}$ (, NE2	1129
1130	259		KE - IE - NEI + 1	1130
1131	260	c		1131
1132	261		RRR(KE) = XN(IE)	1132
1133	262		UUR(KE) = YN(IE)	1133
1134	263			1134
1135	264		$\operatorname{PPR}(\mathrm{KE})=\mathrm{YYM(} \mathrm{IE} \mathrm{)}$	1135
1136	265		PPL ${ }^{\text {P }}$ KE $)=\mathrm{XE}$ (2, IE $)$	1136
1137 1138	266		RRL (KE) $=$ XE(1 , IE $)$	1137
1139	268	C	UUL (KE) $=$ XYMIOL (IE)	1138
1140	259	142	CONTINUE	1139
1141	270	C		1140
1142	271	C ---	SEARCH FOR MINIMUM VALUE OF TIMESTEP ...dtt...-.	1141
1143	272	C		1143
1144	273		DO $260 \mathrm{KE}=1$, NOFVEE (INE)	1144
1145	274		CTT = SQRT (GAMAG(KE) * PGONV(KE) / RGONV(KE))	1145
1146	275		VEL = UGDNV (KE)	1146
1147	276	C		1147
1148	277		PROJCT = RRR(KE) * VVR(KE) + UURR(KE) * PPPR(KE)	1148
1149	278		OTU = PPL (KE) * ABS(PROJCT) / (CTT + ABS(VEL))	1149
1150	279		OT1 = DTU * UUL (KE)	1150
1151	280		DT2 - DTU - DT1	1151
1152	281		DTT = AMIN1 (DTT , OT1 , DT2)	1152
1153	282	260	CONTINUE	1153
1154	283	c		1154
1155	284	C ...	NOM FIND THE FLUXES AT EACH INTERFACE .-....	1155
1156	285	C		1156
1157	286		DO $270 \mathrm{KE}=1$, NOFVEE (INE)	1157
1158	287		HRGG = GAMAG(KE)	1158
1159	288		HRGM = GAMAG (KE) - 1.	1159
1160	289		HRGP = GAMAG(KE) +1.	1160
1161	290	C		1161
1162	291	C...	FLUX FOR DENSITY	1162
1163	292	C		1163
1164	293		RO(KE) - RGDNV (KE) * UGDNV (KE)	1164
1165	294	c		1165
1166	295	C...	FLuX FOR MOMENTUM density	1166
1167	296	C		1167

1168	297	UO(KE) = PGONV (KE) * RRR(KE) +	1168
1169	298	- RO(KE) * (UGDNV (KE) * RRR(KE)	1169
1170	299		1170
1171	300	\# (KE) = PGDNV (KE) * UUR (KE) +	1171
1172	301	RO(KE) * (UGDNV (KE) * UUR(KE) +	1172
1173	302	VGDNV (KE) * RRR(KE))	1173
1174	303	c	1174
1175	304	C ... FLUX FOR ENERGY DENSITY ..	1175
1176	305	C	1176
1177	306	PO(KE) = UGDNV (KE) * (PGONV (KE) * HRGG / HRGM *	1177
1178	307	. .5 * RGDNV(KE) * (UGDNV (KE) * UGONV (KE) *	1178
1179	308	(VGDNV (KE) * VGDNV (KE))	1179
1180	309	\bigcirc c	1180
1181	310	270 contimue	1181
1182	311	C	1182
1183	312		1183
1184	313	C	1184
1185	314	D0 290 IE $=$ NE1, NE2	1185
1186	315	KE = IE - NEL + 1	1186
1187	316	C ISL JE(3 ,	1187
1188	317	ISL = JE (3 . IE)	1188
1189	318	ISR $=$ JE (4, IE)	1189
1190	319	C	1190
1191	320	DFLUX = RRL (KE)	1191
1192	321	C	1192
1193	322	IF (JE(5 , IE) . EQ . 0) THEN	1193
1194	323	C	1194
1195	324	C ... FLUX FOR DENSITY	1195
1196	325	C	1196
1197	326	HYDFLX (ISL , 1) $=$ HYDFLX (ISL , 1) + DFLUX * RO(KE)	1197
1198	327	HYDFLX (ISR , 1) = HYDFLX (ISR . 1) - DFLUX * RO(KE)	1198
1199	328	C	1199
1200	329	C ... flux for momentum density (U direction)	1200
1201	330	C	1201
1202	331	HYDFLX (ISL , 2) $=$ HYDFLX (ISL , 2) + DFLUX * UO(KE)	1202
1203	332	HYDFLX (ISR , 2) = HYDFLX (ISR , 2) - DFLUX * UO(KE)	1203
1204	333	C Till	1204
1205	334	C ... FLUX FOR MOMENTUM DENSITY (V direction)	1205
1206	335	C	1206
1207	3336	HYDFLX (ISL , 3) $=$ HYOFLX (ISL , 3) + DFLUX * HO(KE)	1207
1208	337	HYDFLX (ISR , 3) = HYDFLX(ISR , 3) - OFLUX * WO(KE)	1208
1209	338	c	1209
1210	339	c ... FLUX FOR ENERGY DENSITY	1210
1211	340	C	1211
1212	341	HYDFLX (ISL , 4) $=$ HYDFLX (ISL , 4 $)+$ DFLUX * PO(KE $)$	1212
1213	342	c HYDFLX (ISR , 4) = $\operatorname{HYDFLX}($ ISR , 4) - DFLUX * PO(KE)	1213
1214	343	C ELSE	1214
1215	344	ELSE	1215
1216	345	${ }^{\text {C }}$	1216
1217	346	c ... FLUX FOR DENSITY	1217
1218	347	C	1218
1219	348	HYDFLX (ISL . 1) = HYOFLX (ISL . 1) + DFLUX * RO(KE)	1219
1220	349	C	1220
1221	350	¢ ... FLUX FOR MOMENTUM DENSITY (U DIRECTION)	1221
1222	351		1222
1223	352	HYDFLX (ISL , 2) = HYOFLX (ISL , 2) + DFLUX * UO(KE)	1223
1224	353	C	1224
1225	354	¢ ... FLUX FOR MOMENTUM DENSITY (V direction)	1225
1226	355	C	1226
1227	356	HYDFLX (ISL . 3) = HYDFLX (ISL . 3) + OFLUX * HO(KE)	1227
1228	357	\bigcirc	1228
1229	358	C ... flux for energy density ..	1229
1230	359	C	1230
1231	360	HYDFLX (ISL , 4) = HYDFLX (ISL , 4) + DFLUX * PO(KE)	1231
1232	361	C ${ }^{\text {c }}$ (${ }^{\text {a }}$	1232
1233	362	END IF	1233
1234	363	290 CONTINuE	1234
1235	364	c	1235
1236	365	NE1 * NE2 + 1	1236
1237	366	NE2 - NE2 + NOFVEE (INE + 1)	1237
1238	367	110 CONTINUE	1238
1239	368	C	1239
1240	369		1240
1241	370	\bigcirc	1241

1242	371	C	EXIT POINT FROM SUBROUTINE	1242
1243	372	C		1243
1244	373	C	------	1244
1245	374		RETURN	1245
1246	375	C	-------	1246
1247	376	C		1247
1248	377	C	\cdots	1248
1249	378		END	1249

Thu Jul 1 14:15:40 1993 mainhd.f SUBROUTINE HYDRNF

1250	1		SUBROUTINE HYDRMN	1250
1251	$?$	c		1251
1252	3		----------1	1252
1253	4	c	Homil	1253
1254	5	C	hYDRMN IS THE MAIN SUBROUTINE FOR THE UNSTRUCTURED GRID	1254
1255	6	c	HYORODYNAMIC SOLVER. THIS SUBROUTINE OBTAINS THE	1255
1256	7	C	EDGE BASED FLUXES FOR EACH TRIAHGLE/SIDE FROM	1256
1257	8	C	SUBROUTINE --. HYORFL --. . IT ALSO CONTROLS	1257
1258	9	C	THE REFINEMENT AND COARSENING OF THE GRID.	1258
1259	10	C	the subroutine generates the output that is used	1259
1260	11	C	FOR POST-PROCESSING.	1260
1261	12	C	I	1261
1262	13	c	I	1262
1263	14			1263
1264	15	c		1264
1265	16		include 'cmsh00. ${ }^{\text {' }}$	1265
1265	17		include 'chyd00.h'	1266
1267	18		include 'cint00.n'	1267
1268	19		include 'cphs10.h'	1268
1269	20		include 'cphs $20 . \mathrm{h}{ }^{\text {' }}$	1269
1270	21	\bigcirc		1270
1271	22			1271
1272	23	C		1272
1273	24		REAL RRN(MBP), URN(MBP), VRN(MBP), EPN(MBP), XSAR(MBP),	1273
1274	25		- TTM (MBP), XYRAD(MBP)	1274
1275	26		Integer ledist(2)	1275
1276	27	C		1276
1277	28	C=		1277
1278	29	C		1278
1279	30		$C F L=0.90$	1279
1280	31	C		1280
1281	32	C	SET SPECIFIC TIME FOR A DUMP	1281
1282	33	c		1282
1283	34		TLIMIT $=30$.	1283
1284	35		FLATOR $=.9$	1284
1285	36		LDUMP = KDUMP	1285
1286	37		IF (IJKINT . EQ . 3) THEN	1286
1287	38		LOUMP $=6$	1287
1288	39		IF (LDUMP . LT . KDUMP) LDUMP = KDUMP	1288
1289	40		END IF	1289
1290	41	c		1290
1291	42		DO 120 JT $=1$, NTIME	1291
1292	43		DO $130 \mathrm{IT}=1$. MDUMP	1292
1293	44	c		1293
1294	45		DO 140 ITT $=1$. NDUMP	1294
1295	46		IJKKJI $=(\mathrm{JT}-\mathrm{i})$ * NDUMP * MDUMP + (IT - 1) * NDUMP + ITT	1295
1296	47		IJKIJK = IJKINT + IJKKJI	1296
1297	48	C		1297
1298	49		DO 142 IKT = 1. LDUMP	1298
1299	50	${ }^{\text {c }}$		1299
1300	51	C.		1300
1301	52	c		1301
1302	53		IF (IOPORD.EQ.1)THEN	1302
1303	54		CALL FIRST	1303
1304	55		ELSEIF (IOPORD.EQ.2)THEN	1304
1305	56		CALL GRADNG	1305
1306	57		ENDIF	1306
1307	58	C		1307
1308	59	C	SET TIMESTEP TO HIGH VALUE IT WILL BE CALCULATED PROPERLY	1308
1309	60	c	In the flux subroutine	1309
1310	61	c		1310
1311	62		DTT $=1 . E 24$	1311
1312	63	C		1312

1313	64	C --	FIND THE FLUXES --.-.-
1314	65	C	
1315	66		CALL HYDRFL
1316	67	c	
1317	68		DTT = DTT * CFL
1318	69		TT = TT + DTT
1319	70		PRINT *,JT, IT, ITT, IKT, DTT, TT, HS
1320	71	C	
1321	72	C .-	InItialize the vertex based quantities needed for coarsening and -
1322	73	C	FOR REFINEMENT, AND FOR POST-PROCESSING
1323	74	C	
1324	75		D0 $210 \mathrm{IV}=1$, NV
1325	76		PR(IV) $=0$.
1326	77		DO 210 IR = 1. MHU
1327	78		HYDVVV(IV, IR) $=0$.
1328	79	210	continue
1329	80	C	
1330	81		NS1 $=1$
1331	82		NS2 = NOFVES (1)
1332	83		DO 110 INS $=1$, NVEES
1333	84	c	
1334	85		DO 150 IS = NS1 ${ }^{\text {c }}$ NS2
1335	86		KS $=15-\mathrm{NSI} 1+1$
1336	87		
1337	88		
1338	89		VVR(KS) $=$ HYDV (IS 3 , ${ }^{\text {P }}$)
1339	90		PPR (KS) = HYOV (IS . 4)
1340	91	c	
1341	92		RRL (KS) $=$ HYDFLX (IS $\cdot 1$)
1342	93		
1343 1344	94		VVL(KS $)=\operatorname{HYDFLX}(15.3)$
1345	96	c	
1346	97		XSAR (KS) = SAREA (IS)
1347	98	150	CONTINUE
1348	99	C	
1349	100		DO $170 \mathrm{KS}=1$, NOFVES (INS)
1350	101		IS = KS + NSI - 1
1351	102		GAMAG(KS) = HYOV(IS . 5)
1352	103		HRGM $=$ GAMAG(KS) - 1.
1353	104	c	
1354	105		RRN(KS) $=$ RRR(KS $)$
1355	106		URH(KS) = RRR (KS) * UUR (KS)
1356	107		
1357 1358	108		EPN (KS) = PPR (KS) / HRGM + . 5 * RRR (KS) *
1358 1359	109		(UUR (KS) * UUR (KS) +
1359 1360	110	170	COntinue VVR(KS) * VVR(KS)
1361	112	C	(
1362	113	c	
1363	114	C	
1364	115	C	COMPUTING THE SOURCE TERM ASSOCIATED HITH AXI-SYMMETRIC CASE -----
1365	116	C	
1366	117		XYOUMY $=1 . / 6.283185307$
1367	118		$00188 \mathrm{KS}=1$. NOFVES (INS)
1368	119		XYRAD (KS) = XYDUMY
1369	120	188	cohtinue
1370	121	$\stackrel{C}{C}$	
1371	122	C	
1372	123	C	
1373	124		If (IAXSYM . EQ . 2) Them
1374	:25		D0 $180 \mathrm{KS}=1$, NOFVES(INS)
1375	$\underline{1}$		IS = KS + NSI - 1
1375	27		XS2S $=$ XS (1, 15)
1377	128		$X Y R A D(K S)=X S 2 S$
1378	129		IF (XS2S . GT . . 0005) THEN
1379	130		OTA - OTT * UUR (KS) / XS2S
1380	131		RRN (KS) $=\operatorname{RRN}\left(\mathrm{KS}\right.$) ${ }^{*}$ ($1 .-$ DTA $)$
1381	132		URR (KS $)=$ URN (KS) * (1.- DTA $)$
1382	133		VRN(KS) = VRN(KS) * (1.-DTA)
1383	134		EPN(KS) = EPN (KS) * (1. - DTA) - PPRR(KS) * DTA
1384	135		END IF
1385	136	180	continue
1386	137	C	

DO 210 IR = 1. MHQ

MYDVVV (IV, IR $)=0$. 1327
210 CONTINUE
1328
NS1 = 1
NS2 = NOFVES(1)
1329
1330
1331
1332
150 IS = NSI - NS2
1333
1334
1335
1336
1337
1338
1339
1340
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
$X S 2 S=X S(1,1 S) \quad 1376$
XYRAO (KS) $=$ XSZS
1377
1378
OTA - OTT * UUR(KS) / XS2S 1379
$\operatorname{RRN}(K S)=\operatorname{RRN}(K S) *(1 .-$ DTA) 1380
URN $(K S)=$ URN $(K S) *(1 .-$ DTA $) 1381$
-1382
ENO IF
CONTINUE

1387	138	C		1387
1388	139	C		1388
1389	140		ELSEIF (IAXSYM . EQ . 1) THEN	1389
1390	141		DO $182 \mathrm{KS}=1$. NOFVES(INS)	1390
1391	142		IS $=$ KS + NSI - 1	1391
1392	143		XS2S $=$ XS (2, 1S)	1392
1393	144		XYRAD (KS) = XS2S	1393
1394	145		IF (XS2S . GT . . 0005) THEN	1394
1395	146		DTA = DTT * VVR(KS) / XS2S	1395
1396	147		$\operatorname{RRN}(\mathrm{KS})=\operatorname{RRN}(\mathrm{KS}) \times$ (1. - OTA $)$	1396
1397	148		URN (KS) = URN (KS) * (1. - DTA)	1397
1398	149		$\operatorname{VRN}(\mathrm{KS})=\operatorname{VRN}(\mathrm{KS}) \times(1 .-\operatorname{TTA})$	1398
1399	150		EPN(KS) = EPN (KS) * (1. - DTA) - PPRR(KS) * DTA	1399
1400	151		END IF	1400
1401	152	182	CONTINUE	1401
1402	153		ENDIF	1402
1403	154	C		1403
1404	155	C --	COMPUTE THE EFFECT OF THE BOUYANCY(GRAVITY) TERM ------------------	1404
1405	156	C		1405
1406	157		GRAVTY $=9.81$	1406
1407	158	C		1407
1408	159		IF (IOPBYM . EQ . 2)THEN	1408
1409	160		$00184 \mathrm{KS}=1$. NOFVES (INS)	1409
1410	161		DTA = OTT * RRR(KS) * GRAVTY	1410
1411	162		$\operatorname{VRH}(\mathrm{KS})=\operatorname{VRM}(\mathrm{KS})-$ DTA	1411
1412	163		EPN(KS) = EPN(KS) - OTA * VVR(KS)	1412
1413	164	184	CONTINUE	1413
1414	165	C		1414
1415	166		ELSEIF (IOPBYN . EQ . 1)THEN	1415
1416	167		DO $186 \mathrm{KS}=1$, NOFVES(INS)	1416
1417	168		DTA = OTT * RRR(KS) * GRAVTY	1417
1418	169		URN(KS) = URN (KS) - DTA	1418
1419	170		EPM (KS) = EPN (KS) - DTA * UUR (KS)	1419
1420	171	186	continue	1420
1423	172		END IF	1421
1422	173	${ }^{C}$		1422
1423	174	C=		1423
1424	175	c		1424
1425	176	C	UPDATE THE HYORODYNAMIC QUANTITIES	1425
1426	177	C	STORING THE FLUXES FOR THE REFINEMENT/COARSENING STEPS	1426
1427	178	C		1427
1428	179		DO 190 KS = 1, NOFVES(INS)	1428
1429	180		IS $=$ KS + NSI - 1	1429
1430	181		DTA = DTT * XSAR(KS)	1430
1431	182	c		1431
1432	183		RRLL $=$ RRL(KS)	1432
1433	184		UULL $=$ UUL (KS)	1433
1434	185		VVLL = VVL (KS)	1434
1435	186		RRN(KS) = RRN (KS) - RRLL * DTA	1435
1436	187		URN(KS) $=$ URN (KS) - UULL * DTA	1436
1437	188		VRN(KS) = VRM (KS) - VVLL * DTA	1437
1438	189	C		1438
1439	190		PPLL $=$ PPLL KS)	1439
1440	191		HYOFLX(IS , 4) = ABS(PPLL) / EPM (KS) * OTA	1440
1441	192		EPN (KS) = EPN (KS) - PPIL * DTA	1441
1442	193	${ }^{C}$		1442
1443	194	190	continue	1443
1444	195	C		1444
1445	196		D0 202 IS = NS1, NS2	1445
1446	197		KS = IS - NSI + 1	1446
1447	198		ENERGY = 1. / RRN (KS) * (URN (KS) * URN(KS) +	1447
1448	199		(VRN(KS) * VRN(KS))	1448
1449	200		TTN(KS) = EPN(KS) - . 5 * ENERGY	1449
1450	201		HYDFLX (IS,$\frac{1}{2}$) $=$ ENERGY / TTM (KS)	1450
1451	202		$\operatorname{HYDFLX}(15,2)=\operatorname{RRN}(\mathrm{KS})$	1451
1452	203	${ }^{\text {c }}$		1452
1453	204	202	continue	1453
1454	205	C		1454
1455	206	c		1455
1456	207		IF (IOPEOS . EO - 1)THEN	1456
1457	208		CALL EOS(RRN , TTN . NOFVES(INS) , GAMAG)	1457
1458	209		ELSE	1458
1459	210		ENDIF	1459
1460	211	C		1460

1461	212	C	accumulate values at the vertices for adaptation and also	1461
1462	213	c	FOR POST-PROCESSING	1462
1463	214	c		1463
1464	215		DO 220 KS = 1, NOFVES(INS)	1464
1465	216		IS - KS + NS1-1	1465
1466	217	C		1466
1467	218		IV1 $=$ JS (1, IS)	1467
1468	219		IV2 $=$ JS $(2$, IS $)$	1468
1469	220		IV3 = JS (3 : IS)	1469
1470	221	C		1470
1471	222		VOLUME $=6.283185307$ * XYRAD(KS)	1471
1472	223	C		1472
1473	224		XYAREA $=$ XS (3 \% IS) * VOLUME	1473
1474 1475	225		XYFDR $=$ XYAREA * RRN (KS)	1474
1475 1476	226 227		XYFDU $=$ XYAREA * URN(KS $)$ XYFDV $=$ XYAREA * VRN(KS	1475
1477	228		XYFDP $=$ XYAREA * EPN(KS)	1476
1478	229		XYFDG = XYAREA * GAMAG(KS)	1478
1479	230	c		1479
1480	231		HYDVVV(IVI , 1) = HYDVVV (IV1 , 1) + XYFOR	1480
1481	232		HYOVVV(IVI, 2) $=$ HYOVVV(IV1, 2) + XYFDU	1481
1482	233			1482
1483	234		HYDVVV (IV1, 4) $=$ HYOVVV(IVI , 4) + XYFDP	1483
1484	235		HYDVVV(IV1, 5) = HYDVWV (IV1 , 5) + XYFDG	1484
1485	236		PR(IV1) = PR(IVI) + XYAREA	1485
1487	238	c	HYDVVV(IV2 , 1) = HYOUVV(IV2 , 1) + XYFDR	1486 1487
1488	239		HYDVVV(IV2, 2) = HYDVVV (IV2, 2 (+ XYFDU	1488
1489	240		HYOVVV (IV2, 3) = HYDVWV (IV2, 3) + XYFDV	1489
1490	241		HYDVVV(IV2, 4) = HYDVVV(IV2, 4) + XYFDP	1490
1491	242		HYOVVV(IV2 ${ }^{5}$) $=$ HYOVVV(IV2 , 5) + XYFDG	1491
1492	243		PR(IV2) = PR(IV2) + XYAREA	1492
1493	244	C		1493
1494	245			1494
1495	246		HYDVVV (IV3 , 2) $=$ HYDVVV(IV3 , 2) + XYFDU	1495
14996	247		HYDVVV (IV3, 3) $=$ HYDVVV(IV3 , 3) + XYFOV	1496
1497 1498	248		HYDVVV (IV3, 4) = HYOVVV (IV3 , 4) + XYFDP	1497
1499	250			1498
1500	251	C		1500
1501	252		IENUMR $=0$	1501
1502	253		$I E 1=\operatorname{ABS}(\mathrm{JS}(4,15)$)	1502
1503	254		[JE5 $=$ JE $(5$. IEI $)$	1503
1504	255		IF (IJE5 ME. 0) THEN	1504
1505	256		IENUMR $=$ IENUMR +1	1505
1506	257		IEDIST (IENUMR) = IEI	1506
1507	258		END IF	1507
1508 1509	259		$1 E 2=\operatorname{IABS}(\mathrm{JS}(5.15))$	1508
1509 1510	260 261		$1 \mathrm{JE5}=\mathrm{JE}(5, \mathrm{SE2}$)	1509
1511	262			1510
1512	263		IEDIST(IENUMR) = IE2	1511 1512
1513	254		END If	1513
1514	265		IE3 = IABS (JS (6, 1S))	1514
1515	266		IJE5 $=\mathrm{JE}(5$, IE3 $)$	1515
1516	267		IF (IJE5 NE O) THEN	1516
1517	268		IENUMR = IENUHR +1	1517
1518	269		IEDIST(IENUMR) = IE3	1518
1519	270		END IF	1519
1520	271	c		1520
1521	272		IF (IENUMR . NE . 0) Then	1521
1522	273		00322 IK = 1 , IENUMR	1522
1523	274		IEK $=$ IEDIST(IENUMR $)$	1523
1524	275		IJE55 $=$ JE (5 , IEK)	1524
1525	276		RRNN $=$ RRN (KS)	1525
1526	277		URNN $=$ URN(KS $)$	1526
1527 1528	278		VRNN = VRN(KS)	1527
1529	280	c		1528 159
1530	281	c		1530
1531	282	c	VRUN(KS) * YM (IEK))	1531
1532	283	${ }_{C}^{C}$	VVUU = - URN(KS) * YN(IEK $)$ +	1532
1533	284	C	URNM $=$ VRN(KS $)$ * XN(IEK $)$	1533
1534	285	C	URNH = UUUV * XN(IEK) - WVUU * YN(IEK)	1534

1535	286	C	VRNN - UUVV * YN(IEK) + VVUU * XN(IEK)	1535
1536	287	C	ELSE IF (IJE55 . EQ . 8) THEN	1536
1537	288	C	RRNN = RIN	1537
1538	289	C	URNN - RIN * UIN	1538
1539	290	6	VRNN = RIN * VIN	1539
1540	291	C	EPNN - PIN / HRGM + .5 * RIN * UVIN * UVIM	1540
1541	292	C	END IF	1541
1542	293	C		1542
1543	294		XYFDR - XYAREA * RRNN	1543
1544	295		XYFDU = XYAREA * URNN	1544
1545	296		XYFDV = XYAREA VRNN	1545
1546	297		XYFDP - XYAREA * EPHN	1546
1547	298		XYFDG = XYAREA * GAMAG(KS)	1547
1548	299	C		1548
1549	300		IV1 - JE (1 . IEK)	1549
1550	301		IV2 = JE (2. IEK)	1550
1551	302		HYDVVV ${ }^{\text {a }}$ IV1 , 1) = HYDVVV (IV1 , 1) + XYFOR	1551
1552	303		HYDVVV(IV1, 2) = HYDVVV(IVI , 2) + XYFDU	1552
1553	304		HYOVVV(IV1, 3) = HYOVVV (IV1, 3) + XYFDV	1553
1554	305		HYOVVV (IV1 , 4) = HYOVVW(IV1, 4) + XYFOP	1554
1555	306		HYOVWV (IV1 , 5) = HYDWV (IV1 , 5) + XYFDG	1555
1556	307		PR(IVI) = PR(IVI) + XYAREA	1556
1557	308	C		1557
1558	309		HYOVVV(IV2 , 1) = HYOVVV (IV2 , 1) + XYFOR	1558
1559	310		HYOVVV (IV2 , 2) = HYDVVV(IV2 , 2) + XYFDU	1559
1560	311		HYOVVV(IV2, 3) = HYDVVV(IV2, 3) + XYFDV	1560
1561	312		HYOWWV (IV2, 4) = HYDVWV (IV2, 4) + XYFDP	1561
1562	313		HYDVVV (IV2 , 5) = HYDVVV(IV2 , 5) + XYFDG	1562
1563	314		PR(IV2) = PR (IV2) + XYAREA	1563
1564	315	322	CONTINUE	1564
1565	316		END IF	1565
1586	317	C		1566
1567	318	220	CORTINUE	1567
1568	319	C		1568
1569	320	C	CONSTRUCT NONCONSERVED HYDRODYNAMIC QUATITIES	1569
1570	321	C		1570
1571	322		00195 IS = NSI , HS2	1571
1572	323		KS = IS - HSI + 1	1572
1573	324		HOUH $=1 . /$ RRN(KS)	157
1574	325		HYDV(IS , 1) = RRN(KS)	1574
1575	326		HYDV (IS . 2) = URN(KS) * HDUM	1575
1576	327		HYDV (IS , 3) = VRN(KS \% HDUM	1576
1577	328		HYDV(IS , 5) = GAMAG(KS)	1577
1578	329		$\operatorname{HYDV}($ IS . 4) $=\operatorname{TTN}(\mathrm{KS}) *(\operatorname{HYOV}(\mathbb{S}, 5)-1)$.	1578
1579	330	195	continue	1579
1580	331	C		1580
1581	332		NS1 = NS2 + 1	1581
1582	333		NS2 = NS2 + NOFVES (INS + 1)	1582
1583	334	110	CONTINUE	1583
1584	335	C		1584 1585
1585	336	${ }^{\text {c }}$	EHD OF LOOP OVER TRIANGLES	1585
1586	337	C		1586
1587	338	C= $=$		1587
1588	339	C		1588
1589	340	C	CALL FOR PARTICLE TRACERS	1589
1590	341	C		1590
1591	342		IF (MPRTCL . EQ . 1) THEN	1591
1592	343	C		1592
1593	344		CALL PRPTHC	1593
1594	345	C		1594
1595	346		EMOIF	1595
1596	347	${ }^{C}$		1596
1597	348	C		1597
1598	349	C		1598
1599	350	C=		1599
1600	351	C		1600
1601	352	C	normalize conservative vertex based quantities	1601
1602	353	C		1602
1603	354		D0 230 IV $=1$, NV	1603
1604	355		VAREA $=1.1$ PR(IV)	1604
1605	356		00230 IR = 1 M M	1605
1606	357		HYDVVV (IV . IR) = HYDUVVY (IV. IR) * VAREA	1606 1607
1607	358	230	CONTINUE	1607
1608	359	C		1608

1609	350	142	continue	1609
1610	361	C ...		1610
1611	362	C		1611
1612	363		If (IT , EQ . MOLMP . AND . ITT . EQ . NDUMP) THEM	1612
1613	364		HRITE (9) NV, HE, NS. NPT, NTIME	1613
1614	365		WRITE 19) ($(X V($ IK, IV $), \mathrm{IK}=1,2), 1 \mathrm{~V}=1, \mathrm{NV}$)	1614
1615	366		URITE (9) (JV(2,IV), IV =1,NV)	1615
1616	367		WRITE (9) (JE (KK, IE), KK=1,5), IE=1, ME)	1616
1617	368		WRITE (9) ($35\left(\mathrm{KK}, \mathrm{IS}\right.$).KK=1,6).IS ${ }^{\text {(1,MS }}$)	1617
1618	369		WRITE (9) ($(X S$ ($K K, 1 S), K K=1,2), I S=1, N S$)	1618
1619	370		WRITE (9) RIN, PIN,UVIN,UIN,VIN, TT, IOPLFT	1619
1620	371		WRITE (9) ($\mathrm{HYDV}(\mathrm{IS}, \mathrm{IK}$), IK=1,5), IS $=1, \mathrm{NS}$)	1620
1621	372	c		1621
1622	373	C ---	WRIIE OUT PARTICLE TRACER DATA	1622
1623	374	c		1623
1624	375		IF (MPRTCL . EQ . 1) THEN	1624
1625	376		WRIIE (9) ((XPRTCL (IK.IPT), IK=1,2), IPT-1, HPT),	1625
1626	377		(HPRTCL (IK, IPT), IK=1,2),1PT=1, NPI)	1626
1627	378		EMDIF	1627
1628	379	c		1628
1629	380	C. ---	PRINT CONSOLE MESSAGE AT End of loop	1629
1630	381	C		1630
1631	382		PRINT * , JT,AV,NE,NS	1631
1632	383	c		1632
1633	384		END If	1633
1634	385	c		1634
1635	386	C= $=$ =		1635
1636	387	C		1636
1637	388	C	1------------------------------1	1637
1638	389	C	I REFIHEMENT/ADDITION OF POINTS I	1638
1639	390	C		1639
1640	391	c		1640
1641	392	C		1641
1642	393	C ---	CALCULATE THE GRADIENT OF THE MACH number for steady State	1642
1643	394	C	adaptive step and generate the quaktities on which he adapt.	1643
1644	395	C		1644
1645	396	C ---	ADAPTATION TO STATIC QUANTITIES BASED ON GRADIENTS OF .-.----.......	1645
1646	397	${ }^{\text {c }}$	MACH NUMBER, PRESSURE, AND DEMSITY. OVERRIDES	1646
1647	398	C	adaptation on oynamic fluxes of energy and oensity	1647
1648	399	c		1648
1649	400		IF (ISTATC . EQ . 1) THEN	1649
1650	401		CALL GRDFLX	1650
1651	402		00240 IS $=1, \mathrm{NS}$	1651
1652	403		HYDFLX (15.1) $=\operatorname{ABS}(\operatorname{PL}(15)$) + ABS(PR (IS))	1652
1653	404		HYDFLX (15.2) $=\operatorname{ABS}(\mathrm{RL}($ IS $)$) $+\operatorname{ABS}(\operatorname{RR}(15))$	1653
1654	405		HYDFLX (15.4$)=\operatorname{ABS}(\operatorname{VLI}($ IS $)$) $+\operatorname{ABS}(\operatorname{VR}(15))$	1654
1655	406	240	CONTINUE	1655
1656	407	c		1656
1657	408		ELSE	1657
1658	409	C		1658
1659	410		CALL GRDENG	1659
1660	411		00242 IS = 1. NS	1660
1661	412		HYDFLX (IS , 1) = (UL(IS) * UL(IS) + UR(IS) * UR(IS)) /	1661
1662	413		HYDFLX IS 2) (HYDFLX (IS , 1) + 1.E-12) *	1662
1663	414		HYDFLX (IS , 2) = (RL(IS) * RL(IS) + RR(IS) * RR(IS)) /	1663
1664	415			1664
1665	416		$\operatorname{HYDFLX}($ IS , 4) $=$ (VL(IS) * VL(IS) + VR(IS) * VR(IS)) /	1665
1666	417		Contimue (HYDFLX (IS . 4) + 1.E-12)	1666
1667	418	242	continue	1667
1668	419		EMD IF	1668
1669	420	C		1669
1670	421		DYDMOM = HYDFLX (1, 4)	1670
1671	422		DO 250 IS $=1$, NS	1671
1672	423		DYDMOM = AMAXI (DYDMOM , HYDFLX (15 , 4))	1672
1673	424	250	CONTINUE	1673
1674	425		HYDMOM (4) $=.5$ * (DYDMOM $^{\text {a }}$ HYDMOM $\left.(4)\right)$	1674
1675	426		PRINT*, HYOMOM (4)	1675
1676	427	C		1676
1677	428		DYOMOM $=$ HYDFLX (1, 2)	1677
1678	429		00260 IS $=1$, NS	1678
1679	430		DYDMUM = AMAXI (DYDMOM . HYOFLX	1679
1680	431	260	CONTINUE	1680
1681	432		HYDMOM (2) $=.5 *($ DYDMOM + HYDMOM (2) $)$	1681
1682	433		PRINT*, HYDMOM (2)	1682

Thu Jul

1683	434	C		1683
1684	435		DYOHOM = HYDFLX (1.1)	1684
1685	436		DO 270 IS = 1. NS	1685
1686	437		DYOMOM = AMAXI (DYDHOM , HYDFLX (15 , 1))	1686
1687	438	270	continue	1687
1688	439		HYOMOM (1) $=.5$ * (DYDMOM + HYOMOM (1))	1688
1689	440		PRIKT*, HYDHOM(1)	1689
1690	441	c		1690
1691	442	C	REFINEMENT STEP DONE HERE	1691
1692	443	C		1692
1693	444		IF(IOPADD.EQ.1) THEN	1693
1694	445		NOFOIV - 4	1694
1695	446		CALL DYNPTN(AREADD . NOFDIV . IJKIJK , LTRIG)	1695
1696	447		NOFDIV $=2$	1696
1697	448		CALL DYYPTN(AREADD , NOFDIV , IJKIJK , LTRIG)	1697
1698	449		NOFDIV = 1	1698
1699	450		CALL DYYPTN(AREADD , NOFDIV . IJKIJK . LTRIG)	1699
1700	451		CALL DYYPTN(AREADD . NOFDIV . IJKIJK . LTRIG)	1700
1701	452	C		1701
1702	453		PRINT*,NV,ME,NS	1702
1703	454		EMDIF	1703
1704	455	140	continue	1704
1705	456	C		1705
1706	457	C		1706
1707	458	C		1707
1708	459		-ame-me-	1708
1709	460	C		1709
1710	461	C		1710
1711	462	C	I COARSENING/DELETION OF POINTS I	1711
1712	463	C	1-------------------------------1	1712
1713	464	c		1713
1714	465	c		1714
1715	466		IF (IOPDEL.EQ.1)THEN	1715
1716	467		IF (IJKIJK - GT . 19) CALL DELPTNT(AREDEL , IJKIJK)	1716
1717	468		PRINT*,NV,NE,NS	1717
1718	469		ENDIF	1718
1719	470	130	COMTINUE	1719
1720	471	C		1720
1721	472	C	END OF OUTERMOST LOOP DEFINED BY ...MDUMP... -----------------------	1721
1722	473	C		1722
1723	474		-	1723
1724	475	C		1724
1725	476	C		1725
1726	477	C	I OIAGNOSTIC FOR LIFT/DPAG I	1726
1727	478	c	I--------------------*-----------1	1727
1728	479	C		1728
1729	480		IF(IOPLFT.EQ, 1) THEN	1729
1730	481		CALL LIFTDR	1730
1731	482		EMDIF	1731
1732	483	c		1732
1733	484	C		1733
1734	485	C		1734
1735	486	C	1---------------------------------1	1735
1736	487	C	1 OUTPUT FILE FOR RESTARTS I	1736
1737	488	C	I----------------..--------------1	1737
1738	489	C		1738
1739	490	C		1739
1740	491		REWIND 88	1740
1741	492		ITERAT - ITERAT + 1	1741
1742	493		WRITE (88) NU,NUMK, NE, NEMK, NS, NSMK, ITERAT	1742
1743	494		WRITE (88) ((JV(KK, IV), KK=1,2), (XV(IK, IV), IK=1,2), IV-1, NV)	1743
1744	495		WRIIE (88) ((JE (KK, IE), KK=1,5), (XE (KI, IE), KI=1,2), IE=1, NE)	1744
1745	496		WRITE (88) (XN(IE),YN(IE), XXN(IE), YYN(IE), IE=1, NE)	1745
1746	497			1746
1747	498		WRITE (88) (XMIDL (IE), YMIDL (IE), XYMIDL(IE), IE =1, NE)	1747
1748	499		WRITE (88) SAREVG, NVECE, NREME, NVECV, HREMV, NVECS, NREMS	1748
1749	500		WRITE (88) RIN,PIN,RINL, PINL, UVIN,UIN,VIN, TT,	1749
1750	501		- \quad HYDMOM (1). $\mathrm{HYDMOM}(2)$. $\mathrm{HYDMOM}(4)$	1750
1751	502			1751
1752	503		HRITE (88) (HYOVVV $^{\text {(IV, IK }}$) I $K=1,5$). IV=1, NV)	1752
1753	504		WRITE (88) IJKIJK, (KSDELT(IS), IS $=1, N S$)	1753
1754	505		IF (MPRTCL . EO . 1)	1754
1755	506		. WRITE (88) MPT, ($(X P R T C L(I K, I P T), I K=1,2), 1 \mathrm{PT}=1, \mathrm{NPT})$,	1755
1756	507		(IJKPRT(IPT). IPT-1, MPT)	1756

Thu

mainhd. f
SUBRDUTINE HYDRMN
page
25

1757	508	C		1757
1758	509		REWIND 8	1758
1759	510		HRITE (8) NV, NVMK, NE, NEMK, NS, NSHK, ITERAT	1759
1760	511			1760
1761	512		WRITE (8) (JE (KK, IE), KK=1,5), (XE (KI, IE), KI-1,2), IE-1, NE)	1761
1762	513		WRITE (8) (XN(IE). YN(IE), XXN(IE), YYN(IE), IE=1,NE)	1762
1763	514		WRITE (8) ($3 S(K K, 1 S$), KK=1,6), (XS $(K 1,15), K 1=1,3), I S=1, N S)$	1763
1764	515		HRITE (8) (XMIDL(IE), YMIOL (IE), XYMIDL (IE), IE=1, NE)	1764
1765	516		WRITE (8) SAREVG, NVECE, NREME, NVECV, HREMV, HVECS, NREMS	1765
1766	517		WRITE (8) RIM, PIN,RINL, PINL, UVIN,UIN, VIM, TT,	1766
1767	518		HYDMOM (1), FYDMON(2), HYDHOM (4)	1767
1768	519		WRITE (8) ($(\mathrm{HYOV}(\mathrm{IS}, \mathrm{IK}), \mathrm{IK}=1,5), 15=1, \mathrm{NS}$)	1768
1769	520		WRITE (8) ($\mathrm{HYOVVV}(\mathrm{IV}, \mathrm{IK}$, IK=1,5), IV-1,NV)	1769
1770	521		WRITE (8) IJKIJK, (KSDELT(IS). IS=1, HS)	1770
1771	522		IF (MPRTCL . EQ . 1)	1771
1772	523		HRITE (8) NPT, ((XPRTCL (IK, IPT), IK=1,2), IPT=1,NPT),	1772
1773	524		(IJKPRT(IPT), IPT=1,NPT)	1773
1774	525	\bigcirc		1774
1775	526	120	CONTINUE	1715
1776	527	c		1776
1777	528	C --		1777
1778	529	C		1778
1779	530	C		1779
1780	531	C		1780
1781	532	C	EXIT POINT FROM SUBROUTINE -------...--	1781
1782	533	C		1782
1783	534	c	-----	1783
1784	535		RETURN	1784
1785	536	c	---.--	1785
1786	537	c		1786
1787	538	C --		1787
1788	539	C		1788
1789	540	C	---	1789
1790	541		EMD	1790

Thu Jul 1 14:15:40 1993 mainhd.f SUBROUTINE GEOMTR

Thu
Thu Jul 1 14:15:40 1993

1902	112	C	- COORDINATES OF BARI-CENTERS FOR EACH TRIANGLE	1902
1903	113	C	STORED IN XS $(1,15)$, XS $(2,15)$	1903
1904	114	C		1904
1905	115		XS (1 , ISL) = XELEFT (KE)	1905
1906	116		XS (2. ISL $)=$ YELEFT (KE)	1906
1907	117	C		1907
1908	118	C	--- INTERSECTION POINT ON INTERFACE FOR LINE CONNECTING BARI-CENTERS -	1908
1909	119	c	STORED IN XMIDL (IE), YMIDL (IE) AND FRACIION OF LENGHT BETWEEN	1909
1910	120	C	LEFT BARI-CENTER TO INTERSECTION POINT IN XYMIDL(IE).	1910
1911	121	C		1911
1912	122		XYMIDL (IE) = . 5	1912
1913	123		XMIDL (IE) = XERIGT(KE)	1913
1914	124		YMIDL (IE) * YERIGT(KE)	1914
1915	125	C		1915
1916	126	C		1916
1917	127	C		1917
1918	128	C		1918
1919	129	C	--- REGULAR TRIANGLES	1919
1920	130	C		1920
1921	131		ELSE	1921
1922	132		IV3 $=$ JS (1, ISL)	1922
1923	133		IF (IV3 . EQ . IV1 . OR . IV3 . EQ . IV2) IV3 = JS 2 . ISL)	1923
1924	134		IF (IV3 . EQ . IV1 . OR . IV3 . EQ . IV2) IV3 - JS 3 , ISL)	1924
1925	135		XELEFT $(\mathrm{KE})=(\mathrm{XV}(1, \mathrm{IV} 3)+\mathrm{XV}(1, \mathrm{IV} 2)+$	1925
1926	136		- ${ }^{\text {a }}$ (XVLEFT K (, IV1)) * THIRD	1926
1927	137		YELEFT(KE) $=(X V(2,1 V 3)+X V(2, I V 2)+$	1927
1928	138		. XV($2, I V 1$) * THIRD	1928
1929	139	C		1929
1930	140		IV3 $=$ JS (1 . ISR)	1930
1931	141		IF (IV3 . EO . IV1 . OR . IV3 . EQ . IV2) IV3 = JS 2 , ISR)	1931
1932	142		IF (IV3.EQ . IV1. OR . IV3. EQ . IV2) IV3 = JS (3 , ISR)	1932
1933	143		XERIGT $(K E)=(X V(1, I V 3)+X V(1, I V 2)+$	1933
1934	144		- YERIGT KE) XV($1, ~ I V 1)$ * THIRD	1934
1935	145		YERIGT $(\mathrm{KE})=(X V(2, I V 3)+X V(2, I V 2)+$	1935
1936	146		XV(2 , IVI)) * THIRD	1936
1937	147	C		1937
1938	148		DXD $=$ XERIGT(KE) - XELEFT (KE)	1938
1939	149		OYD = YERIGT (KE) - YELEFT (KE)	1939
1940	150	C		1940
1941	151	C		1941
1942	152	C	STORED IN XE (2,IE)	1942
1943	153	C		1943
1944	154		XE (2 . IE) = SQRT (DXD * DXD + DYD * DYD)	1944
1945	155	C		1945
1946	156	C		1946
1947	157	C	STORED IN XXN(IE), YYN(IE)	1947
1948	158	C		1948
1949	159		$X Y=1 . / X E(2, I E)$	1949
1950	160		XXN(IE) = DXD * XY	1950
1951	161		YYN (IE) $=$ DYD * XY	1951
1952	162	C		1952
1953	163	C	--- COORDINATES OF BARI-CENTERS FOR EACH TRIANGLE	1953
1954	164	C	STORED IN XS $(1, I S), \times S(2,15)$	1954
1955	165	C		1955
1956	166		XS $(1$, ISL $)=$ XELEFT (KE)	1956
1957	167		XS $(2, I S L)=$ YELEFT (KE)	1957
1958	168		XS $(1$, ISR $)=$ XERIGT(KE $)$	1958
1959	169		XS $(2$, ISR $)=$ YERIGT (KE)	1959
1960	170	C		1960
1961	171		$A A=X V(1, I V 2)-X V(1, I V 1)$	1961
1962	172		$B B=X V(2, I V 2)-X V(2 . I V 1)$	1962
1963	173		$C C=X E L E F T(K E)-X E R I G T(K E)$	1963
1964	174		DD = YELEFT (KE) - YERIGT(KE)	1964
1965	175		ACA $=$ XERIGT(KE) - XV(1 , IVI)	1965
1965	176		OBD $=$ YERIGT(KE)-XV(2 ; IVI)	1966
1967	177		$E E=(A C A * D D-D B D * C C) /(A A * D D-B B * C C)$	1967
1968	178	C		1968
1969	179	C	--- INTERSECTION POINT ON INTERFACE FOR LINE CONNECTING BARI-CENTERS -	1969
1970	180	C	STORED IN XMIDL (IE). YMIDL (IE) AND FRACTION OF LENGHT BETHEEN	1970
1971	181	${ }^{\text {c }}$	LEFT BARI-CENTER TO INTERSECTION POINT IN XYMIOL(IE).	1971
1972	182	C		1972
1973	183		XMIOL (IE) = XV($1.1 V 1)+A A * E E$	1973
1974	184		YMIDL (IE) = XV($2 \cdot I V 1)+B E * E E$	1974
1975	185	C		1975

1976	186		XEMID $=$ XMIDL (IE) - XELEFT (KE)	1976
1977	187		YEMID - YMIDL (IE) - Yeleft (KE)	1977
1978	188	C		1978
1979	189		XYMIDL (IE) = SQRT (XEMID * XEMID + YEMID * YEMID) * XY	1979
1980	190	C		1980
1981	191		ENDIF	1981
1982	192	140	continue	1982
1983	193	c		1983
1984	194		NE1 $=$ NE2 +1	1984
1985	195		NE2 = NE2 + NOFVEE (INE + 1)	1985
1986	196	110	continue	1986
1987	197	C		1987
1988	198	C ---	Calculate area of triangies .-.--	1988
1989	199	6		1989
1990	200		DO 150 IS $=1$ (NS	1990
1991	201		IVI = JS (1, IS)	1991
1992	202		IV2 $=$ JS $(2$, IS $)$	1992
1993	203		IV3 $=$ JS (3.1S $)$	1993
1994	204		$\mathrm{DX}=\mathrm{XV}(1, \mathrm{IV} 2)-\mathrm{XV}(1, \mathrm{IV1})$	1994
1995	205		DXX $=$ XV(1, IV3) - XV(1, IV1)	1995
1996	206		DY $=\mathrm{XV}(2 . \mathrm{IV} 2)-\mathrm{XV}(2 . \mathrm{IV1})$	1996
1997	207		DYY = XV($2, \mathrm{IV} 3)-X V(2, I V 1)$	1997
1998	208		XS(3 , IS) = .5 * (DX * DYY - DXX * DY)	1998
1999	209	c^{150}	continue	1999
2001	211		PRIMT * . NE, HS	2000
2002	212	C		2002
2003	213	C	FIND AN EDGE ASSOCIATED WITH A VERTEX	2003
2004	214	c	THE VALUE WILL BE NEGATIVE If ON THE BOUNDARY	2004
2005	215	C		2005
2006	216		D0 $180 \mathrm{IV}=1$, NV	2006
2007	217		JV($2, \mathrm{IV}$) $=0$	2007
2008	218	180	continue	2008
2009	219	c		2009
2011	221		OO $160 \mathrm{IE}=1$, NE	2010
2012	222		IJE5 - JE (5°, IE)	2012
2013	223		IF (IJE5 NE . 0) THEN	2013
2014	224		JV(2. IVI) = - IE	2014
2015	225		ENO If	2015
2016	226	150	continue	2016
2017	227	C		2017
2018	228		00170 IE - 1. NE	2018
2019	229	c		2019
2021	231			2020
2022	232	C		2022
2023	233		IF (JV(2 , IVI) . EQ . O) THEN	2023
2024	234		JV (2, IVI) $=$ IE	2024
2025	235		END IF	2025
2026	236	C		2026
2027	237		IF (JV(2 , IV2) . EQ . 0) THEN	2027
2028	238		JV(2, IV2) $=$ IE	2028
2029	239		EMD IF	2029
2031	241	170	continue	2030
2032	242	c		2032
2033	243		DO 190 IS = 1. MS	2033
2034	244		SAREA (IS) = 1. $/ \times 5(3.15$)	2034
2035	245	190	continue	2035
2036	246	${ }^{C}$		2036
2037	247	C=men		2037
2038 2039	248	C		2038
2039	249	C	OPTION FOR GLOBAL RECONNECTION	2039
2040	250	C		2040
2041	251		IF(IOPRCN.EQ.1)THEN	2041
2042	252		D0 200 IE -1. ${ }^{\text {c }}$. NE	2042
2043	253		CALL RECNC(IE, IDONE, ITL, ITR, JA, JB, JC, JO)	2043
2044	254		CALL RECNC JA, JADONE, ITL , ITR , JAA , JAB , JAC , JAD)	2044
2045	255		CALL RECNC (JB, JBDONE, ITL, ITR, JBA , JBB , JBC, JBD)	2045
2046	256		CALL RECHC JC, JCOONE , ITL, ITR, JCA, JCB, JCC, JCD)	2046
2047	257		CALL RECNC(JD, JODONE . ITL . ITR , JDA , JD日 , JDC , JDD)	2047
2048	258	200	continue	2048
2049	259		EMDIF	2049

2050	260	C		2050
2051	261	C		2051
2052	262	C		2052
2053	263	C	EXIT POINT FROM SUBROUTINE	2053
2054	264	C		2054
2055	265	C	\cdots	2055
2056	266		RETURH	2056
2057	267	c	------	2057
2058	268	c		2058
2059	269	C	---	2059
2060	270		END	2060

Thu Jul
1 14:15:40 1993 mainhd.f
SUBROUTINE UPDATE

2061	1	SUBRCUTLİL SPDATE		2061
2062	2	C		2062
2063	3		-----1	2063
2064	4	C	I	2064
2065	5	c	UPDATE BUFFERS IN A BLOCK OF NODES. EDGES, AND CELLS TO	2065
2066	6	C	CONSTRUCT THE NEW GEOMETRY FOR THE MESH.	2066
2067	7	C	THE BLOCKING SIZE IS DETERMINED BY PARAMETER ...MBL...	2067
2068	8	C	发 1	2068
2069	9	C	---------- I	2069
2070	10	C		2070
2071	11	C=		2071
2072	12	C		2072
2073	13		include 'cmsh00.h'	2073
2074	14		include 'chyd00.h'	2074
2075	15		include 'cint00.h'	2075
2076	16		include 'cphs10.h'	2076
2077	17		include 'cphs20.h'	2077
2078	18	C		2078
2079	19	C=		2079
2080	20	C		2080
2081	21	C .-	BREAK UP THE VERTEX, EDGE, AND TRIANGLE DATA INTO BLOCKS	2081
2082	22	c		2082
2083	23		NVECE = NE / MBL	2083
2084	24		NREME - NE - NLECE * MBL	2084
2085	25		NVECS $=$ NS / MBL	2085
2086	26		MREMS = NS - NVECS * MBL	2086
2087	27		NVECV = NV / MBL	2087
2088	28		HREEN - NV - NVECV * MBL	2088
2089	29		PRINT *,NV, NE, NS, NVECE, NREME, NVECV, NREMV, NVECS, NREMS	2089
2090	30	C		2090
2091	31		DO 105 INE = 1, NVECE	2091
2092	32		HOFVEE (INE) = MBL	2092
2093	33	105	CONTINUE	2093
2094	34		NUEEE = NVECE	2094
2095	35		IF (NREME. GT . 0) THEN	2095
2096	36		NVEEE $=$ NVECE +1	2096
2097	37		MOFVEE (NVEEE) = NREME	2097
2098	38		END IF	2098
2099	39	C		2099
2100	40		00115 INS = 1, NVECS	2100
2101	41		NOFVES (INS) = MBL	2101
2102	42	115	continue	2102
2103	43		NVEES $=$ NVECS	2103
2104	44		IF (MREMS. GT . 0) THEN	2104
2105	45		NVEES - NVECS + 1	2105
2106	46		MOFVES (NVEES) = NREMS	2106
2107	47		END IF	2107
2108	48	c		2108
2109	49		00125 INV = 1, NVECV	2109
2110	50		NOFVEV (INV) = MBL	2110
2111	51	125	CONTINUE	2111
2112	52		NVEEV = NVECV	2112
2113	53		IF (NREMV . GT . 0) THEN	2115
2114	54		NVEEV = NVECV + 1	2114
2115	${ }_{5} 5$		NOFVEV(NVEEV) = NREMV	2115
2116	56		END IF	2116
2117	57	c		2117
2118	58	C		2118
2119	59	C		2119
2120	60		CALL GEOMTR	2120

2121	61
2122	62
2123	63
2124	64
2125	65
2126	66
2127	67
2128	68
2129	69
2130	70
2131	71

$$
\mathrm{C}
$$

$$
\begin{aligned}
& C \\
& C= \\
& C \end{aligned}
$$

Thu Jul 1 14:15:40 1993 mainhd.f SUBROUTINE UPGRAD

2132	1		SUBROUTINE UPGRAD
2133	2	C	
2134	3	C.	---I
2135	4	C	I
2136	5	C	UPGRAD READS THE RESTART FILE FROM A PREVIOUS RUN I
2137	6	C	AND BREAKS THE DATA INTO 8LOCKS AS DEFINED BY THE
2138	7	C	PARAMETER ...MBL... I
2139	8	C	PARM I
2140	9	C	
2141	10	C	
2142	11		include 'cmshoo.h'
2143	12		include 'chyd00.h'
2144	13		include 'cint00.h'
2145	14		include 'cphsi0.h'
2146	15		include 'cphs20.h'
2147	16	C	
2148	17	C.	
2149	18	C	
2150	19	C	MVM MAX NUMBER OF VERTICES (POINTS)
2151	20	${ }^{\text {c }}$	MEM MAX NUMBER OF EDGES (INTERFACES)
2152	21	C	MSM MAX NUMBER OF SIDES (TRIANGLES)
2153	22	C	
2154	23	C	
2155	24	C	
2156	25	C	
2157	26		READ (88) NV, HVMK, NE, MEMK, NS, NSMK, ITERAT
2158	27	C	
2159	28	C	READ IN VERTEX INFORMATIOH
2160	29	C	
2161	30		READ (88) ($(\mathrm{JV}(\mathrm{IK}, \mathrm{IV}), I K=1,2),(X V(I K, I V), I K=1,2), I V=1, N V)$
2162	31	C	
2163	32	C-	READ IN EDGE INFORMATION (EDGES OF TRIANGLES).--
2164	33	C	
2165	34		READ (88) ($3 E(K K, I E), X K=1,5),(X E(K I, I E), K I=1,2), I E=1, N E)$
2166	35		READ (88) (XN(IE), YN(IE), XXN(IE), YYN(IE), IE=1,NE)
2167	36	C	
2168	37	C	REAO IN SIDE (TRIANGLE) INFORMATION. ----------
2169	38	C	
2170	39		
2171	40		READ (88) (XMIDL (IE), YMIDL (IE), XYMIDL (IE), IE=1, NE)
2172	41		READ (88) SAREVG, NVECE, NREME, NVECV, NREMV, NVECS, NREMS
2173	42	C	
2174	43	C ---	PRINT PROMT TO CONSOLE
2175	44	C	
2176	45		PRINT * . NE,NS
2177	46	C	
2178	47	C ---	DEFINE INVERSE AREA OF TRIANGLES
2179	48	C	
2180	49		DO 100 IS $=1, N S$
2181	50		SAREA (IS) = 1. $/ \mathrm{XS}(3,15)$
2182	51	100	CONTINUE
2183	52	C	
2184	53	C	breakup the data structure into blocks
2185	54	C	
2186	55		DO 105 INE = 1 , NVECE
2187	56		NOFVEE (INE) = MBL
2188	57	105	CONTINUE
2189	58		NVEEE = NVECE
2190	59		IF (NREME GT . 0) THEN
2191	60		NVEEE - NVECE + 1

2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191

* routine

1 GRDFLX
2 GRDENG
3 GRAONL 4 GRADNT 5 MONOTN
6 GRADNG
7 GRADNO
8 GRADNS
9 LUDCMP
10 LUBKSB fIRST FCHART PRLCTM PRPTHC
page

Thu Jul 1 14:15:55 1993
\# routine
1 FCHAR
2 FIRST 3 GRADNG
4 GRADNL
5 GRADNO 6 GRADNS
7 GRADNT
8 GRDENG
9 GRDFLX
10 LUBKSB
11 LUDCMP
12 MOMOTN
13 PRLCTM
14 PRPTHC
gradhd.f
page

Module List - alphabetical order

1	1		SUBROUTINE GRDFLX
2	2	C	
3	3	C-	---I
4	4	c	
5	5	c	GRAFLX COMPUTE THE GRADIENT FOR ERROR INDICATOR I
6	6	C	CALCULATION FOR STEADY STATE I
7	7	C	.
8	8	C-	
9	9	c	
10	10		include 'cmshoo.h'
11	11		include 'chyd00.h'
12	12		include 'cint00.h'
13	13		include 'cphsio.h'
14	14		include 'cphs20.h'
15	15	\bigcirc	
16	16	$C=$	
17	17	C	
18	18		REAL $\operatorname{AA}(3,3), B B(3,4), B(3), I N D X(3), \operatorname{ATEMP}(3,3,3), \operatorname{BTEMP}(3,4,3)$
19	19		REAL AAO $(3,3), B B O(3,4)$
20	20	C	
21	21	C	
22	22	C	
23	23	C	
24	24	C	
25	25	c	
26	26		$\text { NSI }=1$
27	27		NS2 = NOFVES(1)
28	28		DO 90 INS = 1 , NVEES
29	29	C	FETCH HYDRO QUANTITIES
30	30		
31	31	C	
32	32		D0 105 IS = NS1 . NS2
33	33		KS $=15-\mathrm{NSI}+1$
34	34	C	
35	35		XSM $=$ XS $(1,15$)
36	36		YSM $=X S(2,15)$
37	37		XSM2 $=$ XSM * XSM
38	38		YSM2 $=$ YSM * YSM
39	39		XYSM $=$ XSM * YSM
40	40	C	
41	41		$\operatorname{AAO}(1.1)=1.0$
42	42		AAO $(1,2)=X$ SM
43	43		AAOO 1,3$)=$ YSM
44	44	C	
45	45		
46 47	46		
47	47		
48 49	48	C	
49	49		$\begin{aligned} & \text { AAO(} 3,1)=\text { YSM } \\ & \text { AAO } 3,2)=\text { XYSM } \\ & \text { AAO }(3,3)=\text { YSM2 } \end{aligned}$
50	50		
51	51		
52	52	C	
53	53		$881=\operatorname{HYDV}(15,4)$
54	54		BB2 $=\operatorname{SORT}($ ($\operatorname{HYOV}(15,2) * \operatorname{HYOV}(15.2)+$ Hydv(15,3) * $\operatorname{Hrov}(15,3)$) *
55	55		
56	56		
57	57	C	
58	58		$B B 1 X=B 81 *$ XSM
59	9		$B B 2 X=B B 2$ * XSM
60	0	C	
61	1		$B B 1 Y=B B 1 * Y S M$
62	j2		$B B 2 Y=B B 2 * Y S M$
63	63	c	
64	64		$B 80(1.1)=881$
65	65		BBO $(1,2)=8 B 2$
65	66	C	
6	67		$880(2,1)=881 x$
6	68		BBOC 2.2$)=882 X$
6	69	C	
7	70		$\begin{aligned} & 8 B 0(3,1)=8 B 1 Y \\ & 8 B 0(3,2)=B B 2 Y \end{aligned}$
7	71		
7.	12	C	
7	73		D0 $115 \mathrm{IK}=1.3$

74	74		IE = JS (IK + 3, IS)
75	75		If (IE GT . 0) THEN
76	76		ISS = JE ($4, ~ I E)$
77	77		ELSE
78	78		ISS = JE (3 , -IE)
79	79		END IF
80	80	C	
81	81		IF (ISS . iL . 0) THEN
82	82		XSS $=$ XS $(1,15 S)$
83	83		YSS $=$ XŜ($2, ~ I S S)$
84	84	C	
85	85		HYDVP $=$ HYDV (ISS , 4)
86	86		HYOVR $=$ SQRT ((HYDV(ISS , 2) * HYOV(ISS , 2)
87	87		HYOV($\operatorname{HYDV}($ ISS 3) * $\operatorname{HYDV}(\operatorname{ISS}$, 3)) *
88	88		HYOV(ISS , 1) / HYDV(ISS . 4) / HYOV(ISS . 5)
89 90	89	\bigcirc	ELSE
91	91	C	
92	92		IE = IABS (IE)
93	93		XSS = 2. * XMIDL (IE) - XSM
94	94		YSS = 2. * YMIDL (IE - YSM
95	95	C	
96	96		HYDVP $=881$
97	97		HYDVR = 882
98	98		IJE5 $=\mathrm{JE}(5.12)$
99	99		IF (IJE5 . EQ . 8) THEN
100	100		HYDUP $=$ PIN
101 102	101 102		HYOVR $=$ SQRT (UVIN * UVIN * RIN / PIN / HRGG)
102 103	102	C	EMD IF
104	104		END If
105	105	C	
106	106		XSS2 = XSS * XSS
107	107		YSS2 $=$ YSS * YSS
108	108		XYSS - XSS * YSS
109	109	C	
110	110		$\operatorname{ATEMP}(1,1, \mathrm{IK})=1.0$
111	111		$\operatorname{ATEMP}(1,2, \mathrm{IK})=$ XSS
112	112		ATEMP ($1,3, \mathrm{IK})=$ YSS
113	113	C	
114	114		$\operatorname{ATEMP}(2,1,1 \mathrm{LK})=$ XSS
115	115		$\operatorname{ATEMP}(2,2, \mathrm{IK})=\mathrm{XSS} 2$
116	116		$\operatorname{ATEMP}(2,3, \mathrm{IK})=$ XYSS
117	117	C	
118 119	118		$\operatorname{ATEMP}(3,1, I K)=$ YSS
119	119		$\operatorname{ATEMP}(3,2,1 K)=X Y S S$
120	120		$\operatorname{ATEMP}(3,3, I K)=$ YSS2
121	121	C	
122	122		$\operatorname{BTEMP}(1,1, \mathrm{IK})=$ HYOVP
123	123		$\operatorname{BTEMP}(1.2 .1 \mathrm{IK})=$ HYDVR
124	124	C	
126	125		$\left.\begin{array}{l}\operatorname{BTEMP} \\ \operatorname{BTEMP}(2,1 \\ 2,2,1 \mathrm{LK}\end{array}\right)=\operatorname{HYOVP}$ * XSS
127	127	\bigcirc	
128	128		BTEMP (3 , 1, IK) = HYDVP * YSS
129	129		$\operatorname{BTEMP}(3.2 .1 K)=$ HYDVR * YSS
130	130	C	
131	131	115	CONTINUE
32	132	c	
133	133		$\operatorname{AA}(1,1)=\operatorname{AAO}(1,1)+\operatorname{ATEMP}(1,1.1)+$
134	134		- $\operatorname{ATEMP}(1,1,2)+\operatorname{ATEMP}(1 ; 1 ; 3)$
35 36	135		$\operatorname{AA}(1,2)=\operatorname{AAO}(1.2)+\operatorname{ATEMP}(1.2,1)+$
136 137	136		- $\operatorname{ATEMP}(1,2 ; 2)+\operatorname{ATEMP}(1,2: 3)$
137 38	137		$\operatorname{AA}(1,3)=\operatorname{AAO}(1,3)+\operatorname{ATEMP}(1,3,1)+$
338	138 139	c	ATEMP $(1,3,2)+\operatorname{ATEMP}(1,3,3)$
40	140		$\operatorname{AA}(2,1)=\operatorname{AAO}(2,1)+\operatorname{ATEMP}(2,1,1)$
41	141		($\operatorname{ATEMP}(2,1,2)+\operatorname{ATEMP}(2 ; 1 ; 3)$
42	142		$\operatorname{AA}(2,2)=\operatorname{AAO}(2,2)+\operatorname{ATEMP}(2,2,1)+$
143	143		$\operatorname{AAL} 2,3)=\operatorname{ATEMP}(2,2,2)+\operatorname{ATEMP}(2,2,3)$
45	144		
46	146	c	ATEMP ($2,3,2)+$ AIEMP $(2$
47	147		$\operatorname{AA}(3,1)=\operatorname{AAO}(3,1)+\operatorname{ATEMP}($

148	148		$\operatorname{ATEMP}(3,1,2)+\operatorname{ATEmP}(3,1,3)$
149	149		$\operatorname{AA}(3,2)=\operatorname{AAO}(3,2)+\operatorname{ATEMP}(3,2,1)+$
150	150		AIEMP $(3,2,2)+\operatorname{ATEMP}(3,2,3)$
151	151		$\operatorname{AA}(3,3)=\operatorname{AAO}(3,3)+\operatorname{ATEMP}(3,3,1)+$
152	152		$\operatorname{ATEMP}(3,3,2)+\operatorname{ATEMP}(3,3,3)$
153	153	C	
154	154		$88(1.1)=880(1,1)+\operatorname{BTEMP}(1,1,1)$
155	155		($\operatorname{BTEMP}(1,1,2)+\operatorname{BTEMP}(1,1,3)$
156	156		BB(1.2$)=880(1,2)+8 \operatorname{TEMP}(1,2,1)+$
157	157		$\operatorname{BTEMP}(1,2,2)+\operatorname{BTEMP}(1,2,3)$
158	158	C	
159	159		$\operatorname{B8}(2,1)=880(2,1)+\operatorname{BTEMP}(2,1,1)+$
160	160		BTEMP $(2,1,2)+\operatorname{BIEMP}(2,1,3)$
161	161		BB(2, 2) $=8880(2,2)+\operatorname{BTEMP}(2,2,1)+$
162	162		BTEMP ($2,2,2$) $+\operatorname{BTEMP}(2,2,3)$
163	163	C	
164	164		$\operatorname{BB}(3,1)=880(3,1)+\operatorname{BTEMP}(3,1,1)+$
165	165		- $\left.\operatorname{BTEMP}^{\text {a }} 3 \cdot 1,2\right)+\operatorname{BTEMP}(3,1,3)$
165	166		$\operatorname{BB}(3,2)=\operatorname{BBO}(3.2)+\operatorname{BTEMP}(3.2,1)+$
167	167		$\operatorname{BTEMP}(3,2,2)+\operatorname{BTEMP}(3,2,3)$
168	168	c	
169	169		DETERM = AA $(1,1) *(A A(2,2) * A A(3,3)$
170	170		
171	171		- $\quad A A(2,1) *(A A(3,2) * A A(1,3)-$
172	172		AA(3) * $A A(1,2) * A A(3,3))$
173	173		$\operatorname{AA}(3,1) *(\operatorname{AA}(1,2) * \operatorname{AA}(2,3)$)
174	174		$A A(2,2) * A A(1,3))$
175	175	c	
176	176		DTRMIN = 1. $/$ DETERM
177	177	C	
178	178		AAA1 $=\mathrm{AA}(2,3) * A A(3,1)-\operatorname{AA}(2,1) * A A(3,3)$
179	179		AAA2 $=A A(3,3) * A A(1,1)-A A(3,1) * A A(1,3)$
180	180		$A A A 3=A A(1,3) * A A(2,1)-A A(1 ; 1) * A A(2,3)$
181 182	181	c	
182	182		AAA4 $=\mathrm{AA}(2,1) * \mathrm{AA}(3,2)-\operatorname{AA}(3,1) * A A(2,2)$
183	183		AAA5 $=$ AA $(3,1) * A A(1,2)-\operatorname{AA}(1,1) *$ AA $(3,2)$
184	184		$A A A C=A A(1,1) * A A(2,2)-A A(2,1) * A A(1.2)$
185	185	C	
186	186		PL(IS) = OTRMIN * (BB (1,1) * AAAI +
187	187		- BB(2,1$) *$ AAA $~+~$
188	188		BB(3,1$)$ * AAA $)$
189	189	C	
190	190		PR(IS) = DTRMIN * (BB(1,1$)$ * AAA4 +
191	191		- B8(2, 1)* AAA5 +
192	192		- BB(3.1) * AAA6)
193	193	C	
194	194		RL(IS) = DTRMIN * (88 (1,2) * AAAL +
195	195		. ${ }^{\text {a }}$ (2,2$)$ * AAA2 +
196	196		- BB(3,2)*AAA3)
197	197	C	
198	198		RR(IS) = DTRMIN * (BB(1,2) * AAA4 +
199	199		- 88(2,2$)$ * AAA5 +
200	200		BB(3, 2) * AAA6)
201	201		
202	202	105	continue
203	203	C	
204	204		NS1 - NS2 + 1
205	205		NS2 = NS2 + NOFVES (IMS + 1)
206	206	90	CONTINUE
207	207	c	
208	208	C= $=$	
209	209	C	
210	210	C ---	EXIT POINT FROM SUBROUTINE
211	211	c	
212	212	C	------
213	213		RETURN
214	214	C	-
215	215	c	
216	216	C	---
217	217		END

gradhd.f

subroutine grdeng

c
c
c
c
c
c
c

220
220
221
222
c
C
C
221
222
223
222
223
224
225
c
203
$\begin{array}{lll}\text { C } & \text { include } & \text { 'cmsh00.h' } \\ \text { include } & \text { 'chyd00.h' } \\ \text { include } & \text { 'cint00.h' } \\ \text { include } & \text { 'chs } \\ \text { include } & \text { 'cphs20.h' }\end{array}$

221
222
222
223
$\begin{array}{r}7 \\ \hline\end{array}$
226
227
226
227
228
1

C
$C=$
C
223
224
225
225
226
226
227
227
228
228
229
$\begin{array}{ll}\begin{array}{l}\text { include } \\ \text { include } \\ \text { include } \\ \text { include }\end{array} & \text { 'cmsh00.h' } \\ \text { 'chyd00.h' } \\ \text { include } & \text { cpht00.h' } \\ \text { 'cphs } 20 . h ' ~\end{array}$,
230
REAL RRMIDL (MBP) , PPMIDL (MBP), UUMIDL (MBP), VVMIDL (MBP)
231
232
REAL RIGRAD (MBP), PIGRAD (MBP), UIGRAD (MBP) , VIGRAD (MBP)
REAL RJGRAD (MBP) , PJGRAD (MBP), UJGRAD (MBP) , VJGRAD (MBP)
234
235

REAL AAO $(3,3), B B O(3,4)$
237

C $\quad 241$

NSI $=1 \quad 1 \quad$
$\begin{array}{lll}\text { NSI }=1 & 244\end{array}$
NS2 = NOFVES (1)
0090 INS $=1$, NVEES 246
${ }_{c}^{C}$
.- FETCH HYDRO QUANTITIES

D0 105 IS $=$ NS1 , NS2
248
C
me
48
c
50
$\begin{array}{ll}\text { XSM } & =X S(1,15) \\ \text { YSM } & \text { 25 } \\ \text { 2 }\end{array}$
251

$\begin{array}{ll}\text { XSM2 }=\text { XSM * XSM } & 254 \\ \text { YSM2 }=\text { YSM * YSM } & 255\end{array}$
$\begin{array}{ll}X S M 2=X S M * X S M & 254 \\ Y S M 2=Y S M * Y S M & 255\end{array}$
$X Y S M=X S M$ * YSM 256
C
C
$\begin{array}{lll}\text { AAO }(1,1)=1.0 & 257 \\ 258\end{array}$
256
257
$\begin{array}{ll}\text { AAO }(1: 2)=X .0 \\ \text { AAO }(1: 3) & =Y S M\end{array}$
6
$\operatorname{AAO}(1,2$
$\operatorname{AAD}(1,3)=\mathrm{XSM}$
Y

- 260
,
38
243
244
244
245
c
246
247
NS2
c
AAO (2, 1) $=$ XSM $\quad 262$
261
AAO $(2 \cdot 2)=X S M 2 \quad 26$
261
262
C
$\operatorname{AAO}(2,3)=$ XYSM $\quad 264$
263
264
$\begin{array}{ll}C & \\ A A O(3,1)=Y S M & 265 \\ & 266\end{array}$
$\begin{array}{ll}\text { AAO }(3,1)=Y S M & 266 \\ \text { AAO }(3,2 & =\text { YYSM }\end{array}$
AAO $(3,2)=Y Y S M$
AAO 3,3$)=Y S M 2$
267
268
c
254
255
256

7
17
18
191

8
9
10
2
3
4
C
c
c
c
c
c
c
c
c

292	75		BBO (3, 3) $=$ B83y	292
293	76	C		293
294	77		DO $115 \mathrm{IK}=1.3$	294
295	78		IE - JS 15×3 - IS $)$	295
296	79		IF (IE GT . 0) THEN	296
297	80		ISS = JE (4 , IE)	297
298	81		ELSE	298
299	82		ISS $=$ JE ($3,-\mathrm{IE}$)	299
300	83		ENO If	300
301	84	C		301
302	85		IF (ISS - NE . 0) THEN	302
303	86		XSS $=$ XS ($1,15 S$)	303
304	87		YSS $=$ XS (2 , ISS)	304
305	88	c		305
306	89		HYOVR $=$ HYDFLX (ISS . 1)	306
307	90		HYDVU $=$ HYOFLX (ISS , 2)	307
308	91		HYDVV $=$ HYOFLX (ISS , 4)	308
309	92	c		309
310	93		ELSE	310
311 312	94	C		311
312 313	95 96		IE = LABS(IE)	312
314	97		HYOVR $=881$ HYOUU $=882$	313
315	98		HYOWV $=$ B83	314 315
316	99	C		316
317	100		XSS = 2. * XMIDL (IE) - XSM	317
318	101		YSS = 2. * YMIOL (IE) - YSM	318
319	102	C		319
320	103		END If	320
321	104	C		321
322	105		XSS2 $=$ XSS * XSS	322
323	106		YSS2 - YSS * YSS	323
324 325	107		XYSS = XSS * YSS	324
325 326	108 109	c	$\operatorname{ATEMP}(1.1 .1 \mathrm{IK})=1.0$	325 326
327	110		ATEMP $(1 ; 2 ; I K)=X$ XSS	326 327
328	111		$\operatorname{ATEMP}(1,3, I K)=$ YSS	328
329	112	C		329
330	113		$\operatorname{ATEMP}(2,1,1 \mathrm{~L})=\mathrm{XSS}$	330
331	114		$\operatorname{ATEMP}(2,2,1 \mathrm{LK})=$ XSS2	331
332	115		ATEMP ($2,3, I K)=$ XYSS	332
333 334	116	c		333
334 335	117		ATEMP $(3,1, I K)=$ YSS	334
335 336	118 119		$\operatorname{ATEMP}(3,2, I K)=$ XYSS	335
337	120	c	$\operatorname{ATEMP}(3,3,1 K)=$ YSS2	336 337
338	121		BTEMP (1, 1, IK) = HYCVR	338
339	122		$\operatorname{BTEMP}(1,2,1 \mathrm{~K})=$ HYDVU	339
340	123		$\operatorname{BTEMP}(1,3,1 K)=$ HYDUV	340
341	124	C		341
342	125			342
343	126		BTEMP ($2,2,1 \mathrm{~K})=$ HYDVU * XSS	343
344	127		$\operatorname{BTEMP}(2,3, I K)=$ HYDVV * XSS	344
345	128	C		345
346	129		BTEMP 3,1, IK $)=$ HYDVR * YSS	346
347 348	130 131			347
349	132	C	BTEMP $(3,3,1 K)=$ HYOVV * YSS	348 349
350	133	115	continue	350
351	134	c		351
352	135		$\operatorname{AA}(1,1)=\operatorname{AAO}(1,1)+\operatorname{ATEMP}(1,1,1)+$	352
353	136		- $\operatorname{ATEMP}\left(1,1^{\text {a }}\right.$ (2$)+\operatorname{ATEMP}(1,1,3)$	353
354	137		$\operatorname{AA}(1,2)=\operatorname{AAO}(1,2)+\operatorname{AIEMP}(1,2,1)+$	354
355	138		- ana 1) $\operatorname{ATEMP}(1,2,2)+\operatorname{ATEMP}(1,2,3)$	355
356 357	139 140			356
358	141	c	(ATEMP($1,3,2)+\operatorname{ATEMP}(1,3,3)$	357 358
359	142		$\operatorname{AA}(2,1)=\operatorname{AAO}(2,1)+\operatorname{ATEMP}(2,1,1)+$	359
360	143		- $\left.\operatorname{ATEMP}^{\text {a }} 2,1,2\right)+\operatorname{ATEMP}(2,1,3)$	360
361	144		$\operatorname{AA}(2,2)=\operatorname{AAO}(2,2)+\operatorname{ATEMP}(2,2,1)+$	361
362	145		AA $2, \operatorname{ATEMP}(2,2,2)+\operatorname{ATEMP}(2,2,3)$	362
363 364	146 147		$\operatorname{AA}(2,3)=\operatorname{AaO}(2,3)+\operatorname{ATEMP}(2,3)+\operatorname{ATEMP}\left(2,3, \frac{1}{3}\right)+$	363 364
365	148	C	$\operatorname{ATEMP}(2,3,2)+\operatorname{ATEMP}(2,3,3)$	364 365

Thu Jul 1 14:15:55 1993 gradhd.f SUBROUTINE GRADNL

451	1		SUBROUTINE GRADNL	451
452	2	C		452
453	3	C--		453
454		C	I	454
455	5	C	graidl Compute the gradient for second order calculation	455
456	6	C	SEARCH FOR ALL TRIANGLES SUROUNDING THE TARGEI	456
457	7	C	CELL FOR COMPUTING THE GRADIENT APPLYING LEAST	457
458	8	C	Square technique	458
459	9	C	Squre Tecmiqu	459
460	10	C.	-	460
461	11	c		461
462	12		include 'cmsh00.h'	462
463	13		include 'chyd00.h'	463
464	14		include 'cint00. ${ }^{\text {n' }}$	464
465	15		include 'cphs10.h'	465
466	16		include 'cphs20.n'	456
467	17	C		467
468	18	$\mathrm{C}=$ = $=$		468
469	19	C		469
470	20		REAL RRMIDL (MBP), PPMIDL (MBP), UUMIDL (MBP) , VVMIDL (MBP)	470
471	21		REAL RIGRAD (MBP), PIGRAD (MBP), VIGRAD (MBP), VIGRAD (MBP)	471
472	22		REAL RJGRAD (MBP), PJGRAD (MBP) , UJGRAD (MBP) , VJGRAD (MBP)	472
473	23		REAL RMAX (MBP) , PMAX (MBP), UMAX (MBP), VMAX (MBP)	473
474	24		REAL RMIN(MBP), PMIN(MBP), UMIN(MBP) , VMIN(MBP)	474
475	25		REAL RLEFTT (MBP), ULEFTT (MBP), VLEFTT(MBP) , PLEFTT (MGP)	475
476	26		REAL RRIGHT (MBP), URIGHT (MBP), VRIGHT (MBP), PRIGHT (MBP)	476
477	27		REAL ROR (3), UOP (3), VOR (3), POR (3)	477
478	28		REAL ROL (3), UOL (3), VOL (3), POL (3)	478
479	29		REAL AA $(3,3), \mathrm{BB}(3,4), \mathrm{B}(3), \operatorname{INDX}(3), \operatorname{ATEMP}(3,3), \mathrm{BTEMP}(3,4)$	479
480	30	C		480
481	31	$\mathrm{C}=$ =		481
482	32	c		482
483	33	C		483
484	34	c		484
485	35		MS1 $=1$	485
486	36		NS2 = NOFVES (1)	486
487	37		DO 90 INS = 1. NVEES	487
488	38	${ }^{\text {c }}$		488
489	39	${ }^{C}$ - ${ }^{\text {a }}$	FETCH HYDRO QUANTITIES	489
490	40	c		490
491	41		00105 IS = NSI . NS2	491
492 493	42	c		492
493	43		JJCOLR $=0$	493
494	44	c		494
495	45		D0 115 IK $=1.3$	495
496	46		IVV = JS (IK, IS)	496
497	47		IEE = JV($2, ~ I V V)$	497
498	48	c		498
499	49		If (Ife . Gt . 0) then	499
500	50	C		500
501	51		IV1 - JE (1 , IEE)	501
502	52		IF (IVI, EQ . IVV) THEN	502
503	53		ISI = JE (3 , IEE)	503
504 505	54		ELSE (4)	504
505	55 56		ISI $=$ JE(4 , IEE)	505
506	56		ENO If	506
507	57		ISS = ISI	507
508	58		IE - IEE	508
509	59	C		509
510	60	150	COntinue	510

585	135	C		585
586	136		$\operatorname{ATEMP}(2,1)=0$	586
587	137		$\operatorname{ATEMP}(2,2)=0$.	587
588	138		$\operatorname{ATEMP}(2,3)=0$.	588
589	139	C		589
590	140		$\operatorname{ATEMP}(3,1)=0$.	590
591	141		$\operatorname{ATEMP}(3,2)=0$.	591
592	142		$\operatorname{ATEMP}(3,3)=0$.	592
593	143	C		593
594	144		BTEMP 1.1 .1$)=0$.	594
595	145		$\operatorname{BTEMP}(1,2)=0$	595
596	146		$\operatorname{BTEMP}(1,3)=0$.	596
597	147		$8 T E M P(1,4)=0$.	597
598	148	C		598
599	149		$\operatorname{BTEMP}(2,1)=0$.	599
600	150		$\operatorname{BTEMP}(2.2)=0$.	600
601	151		$\operatorname{BTEMP}(2,3)=0$	601
602	152		BTEMP $(2,4)=0$.	602
603	153	C		603
604	154		$\operatorname{BTEMP}(3,1)=0$.	604
605	155		$\operatorname{BTEMP}(3,2)=0$.	605
606	156		$\operatorname{BTERP}(3,3)=0$	606
607	157		$\operatorname{BTEMP}(3,4)=0$.	607
608	158	C		608
609	159		DO 225 KK - 2 , JJJCOLR	609
610	160		ISS = IICOLR (KK)	610
611	161		IF (ISS . NE . 0) THEN	611
612	162		XSS $=$ XS(1 , ISS $)$	612
613	163		$Y S S=X S(2, I S S)$	613
614	164	C		614
615	165		HYDVR = HYDV (ISS , 1)	615
616	166		HYDVU $=$ HYDV (ISS . 2)	616
617	167		HYOVV = HYDV (ISS . 3)	617
618	168		HYDVP $=$ HYDV (ISS , 4)	618
619	169	C		619
620	170		XSS2 = XSS * XSS	620
621	171		YSS2 = YSS * YSS	621
622	172		XYSS = XSS * YSS	622
623	173	C		623
624	174		$\operatorname{ATEMP}(1.1)=\operatorname{ATEMP}(1.1)+1.0$	624
625	175		$\operatorname{ATEMP}(1,2)=\operatorname{ATEMP}(1,2)+\mathrm{XSS}$	625
626 627	176 177		$\operatorname{ATEMP}(1,3)=\operatorname{ArEMP}(1,3)+\mathrm{YSS}$	626
627	177	C		627
628	178 179		$\left.\begin{array}{l}\operatorname{ATEMP} \\ \operatorname{ATEMP}(2, ~ \\ 2\end{array}\right)=\operatorname{ATEMP}(2,1)+\mathrm{XSS}$	628
630	180		ATEMP $\operatorname{ATEMP}(2,3)$ (629 630
631	181	C	ATEMP(2 . 3) * ATEMP 2 . 3) + XYSS	630 631
632	182		$\operatorname{ATEMP}(3,1)=\operatorname{ATEMP}(3.1)+Y S S$	632
633	183		$\operatorname{ATEMP}(3,2)=\operatorname{ATEMP}(3,2)+X Y S S$	633
634	184		$\operatorname{ATEMP}(3,3)=\operatorname{ATEMP}(3,3)+Y S S 2$	634
635	185	C		635
636	186		$\operatorname{BTEMP}(1.1)=\operatorname{BTEMP}(1.1)+$ HYOVR	636
637	187		$\operatorname{BTEMP}(1,2)=\operatorname{BTEMP}(1,2)+$ HYOVU	637
638	188		$\operatorname{BTEMP}(1,3)=\operatorname{BTEMP}(1,3)+$ HYDVV	638
639	189		8TEMP $(1,4)=\operatorname{BTEMP}(1,4)+$ HYDVP	639
640	190	C		640
641	191		$\operatorname{BTEMP}(2,1)=\operatorname{BTEMP}(2.1)+$ HYDVR * XSS	641
642	192		$\operatorname{BTEMP}(2,2)=\operatorname{BIEMP}(2,2)+\mathrm{HYDVU} *$ XSS	642
643	193		$\operatorname{BTEMP}(2,3)=\operatorname{BTEMP}(2,3)+\mathrm{HYDVV}$ * XSS	643
644	194		$\operatorname{BTEMP}(2,4)=\operatorname{BTEMP}(2,4)+\operatorname{HYOVP} * X S S$	644
645	195	C		645
646	196		$\operatorname{BTEMP}(3.1)-\operatorname{BTEMP}(3.1)+$ HYOVR * YSS	646
647	197		$\operatorname{BTEMP}(3.2)=\operatorname{BTEMP}(3.2)$ + HYDVU * YSS	647
648	198		$\operatorname{BTEMP}(3,3)=\operatorname{BTEMP}(3,3)+$ HYOVV * YSS	648
649	199		$\operatorname{BTEMP}(3,4)=\operatorname{BTEMP}(3,4)+\operatorname{HYDVP}$ * YSS	649
650	200	C		650
651	201		END IF	651
652	202	C		652
653	203	225	CONTINUE	653
654	204	C		654
655	205		$\operatorname{AA}(1,1)=\operatorname{ATEMP}(1,1)$	655
656	206		$\operatorname{AA}(1,2)=\operatorname{ATEMP}(1,2)$	656
657	207		$\operatorname{AA}(1,3)=\operatorname{ATEMP}(1,3)$	657
658	208	C		658

659	209		$\operatorname{AA}(2,1)=\operatorname{ATEMP}(2,1$
660	210		$\operatorname{AA}(2,2)=\operatorname{ATEMP}(2,2)$
661	211		$\operatorname{AA}(2 ; 3)=\operatorname{ATEMP}(2 ; 3)$
662	212	C	
663	213		$\operatorname{AA}(3,1)=\operatorname{ATEMP}(3,1)$
664	214		$\operatorname{AA}(3,2)=\operatorname{ATEMP}(3,2)$
665	215		$\operatorname{AA}(3,3)=\operatorname{ATEMP}(3,3)$
666	216	C	
667	217		$\operatorname{BB}(1,1)=\operatorname{BTEMP}(1,1)$
668	218		$88(1,2)=\operatorname{BTEMP}(1,2)$
669	219		$88(1,3)=\operatorname{BTEMP}(1,3)$
670	220		$\operatorname{BB}(1,4)=\operatorname{BTEMP}(1,4)$
671	221	c	
672	222		BB $(2,1)=\operatorname{BTEMP}(2.1)$
673	223		$\operatorname{BB}(2,2)=\operatorname{BTEMP}(2,2)$
674 675	224		$\operatorname{BB}(2,3)=\operatorname{BTEMP}(2,3)$
676	226	C	BB $(2,4)=$ ВТЕМР $(2,4)$
677	227		$\operatorname{BB}(3,1)=\operatorname{BTEMP}(3,1)$
678 679	228		$\operatorname{BB}(3,2)=\operatorname{BTEMP}(3,2)$
679	229		$\operatorname{BB}(3,3)=\operatorname{BTEMP}(3,3)$
680	230		$\operatorname{BB}(3,4)=\operatorname{BTEMP}(3,4)$
681	231	C	
682	232		DETERM $=$ AA $(1,1) *(A A(2,2) * A A(3,3)$
683	233		(${ }^{\text {a }}$ ($\left.A(3,2) * A A(2,3)\right)+$
684 685	234		$\operatorname{AA}(2,1) *(\operatorname{AA}(1,3) * \operatorname{AA}(3,2)-$
686	236		AA $(3,1) *(A A(3,3) * A A(1,2))$
687	237		
688	238	C	
689	239		DTRMIN = 1. / DETERM
690	240	C	
691	241		AAAI $=A A(2,3) * A A(3,1)-A A(2,1) * A A(3,3)$
692	242		AAA2 $=A A(3,3) * A A(1,1)-A A(3,1) * A A(1,3)$
693	243	c	AAA3 $=$ AA (1.3$) * A A(2,1)-A A(1,1) * \operatorname{AA}(2,3)$
695	245		AAAC $=\mathrm{AA}(2,1) * A A(3,2)-A A(3,1) * A A(2,2)$
696	246		AAA5 = AA $(3,1) * A A(1,2)-A A(1 ; 1) * A A(3,2)$
697	247		AAA6 $=A A(1,1) * A A(2,2)-A A(2 ; 1) * A A(1 ; 2)$
698	248	C	
699	249		$\operatorname{RGRAD}(15.1)=$ DTRMIN * $\operatorname{BB}(1.1)$ * AAA1 +
700	250		㫙 2.1$)$ * AAA2 +
701	251		BB $(3,1) *$ AAA3)
702	252	C	
703	253 254		RGRAD (IS , 2) = DTRMIN * (88(1,1$)$ * AAA4 +
705	254 255		88(2,1$)$ * AAAS +
706	256	C	日8(3 , 1) * AAA6
707	257		UGRAD (IS , 1) = DTRMIN * (BB(1.2$)$ * AAAI +
708	258		BB(2,2$) *$ AAA2 +
709	259		BB (3,2) * AAA3)
710	260	c	
711	261		UGRAD (15,2) = DTRMIN * (BB (1, 2) * AAA4 +
712	262		(BB 2,2$) *$ AAA5 +
713	263		BB(3,2$)$ * AAA6)
714	264	c	
715	265		
716	266		(88(2.3$) *$ AAA2 +
717	267		B8(3,3$)$ * AAA3)
719	269	c	$\operatorname{VGRAD}(15,2)=$ DTRMIN * (BB $(1,3) * A A A$
720	270		
721	271		B8(3,3) * AAA6)
722	272	C	
723	273		$\operatorname{PGRAD}(15,1)=$ DTRMIN * (BB(1,4) * AAAI +
724	274		(BB 2,4$)$ - AAA2 +
725	275		BB(3,4) * AAA3)
726	276	C	
727	277		$\operatorname{PGRAD}(15,2)=$ OTRMIN * (BB(1,4$)$ * AAA4 +
728 729	278		B8(2, 4)*AAAS +
729 730	279		B8(3.4) * AAA6)
731	281	105	continue
732	282		

733	283		NS1 $=$ NS2 +1	733
734	284		HS2 = NS2 + NOFVES(INS + 1)	734
735	285	9	CONTINUE	735
736	286	C		736
737	287	C		737
738	288	C		738
739	289	C	CALL THE MONOTONICITY LIMITER ------	739
740	290	C		740
741	291		CALL MONOTN	741
742	292	C		742
743	293	C=		743
744	294	C		744
745	295	C		745
746	296	c		746
747	297	c		747
748	298	C	------	748
749	299		RETURN	749
750	300	c		750
751	301	c		751
752	302	C	---	752
753	303		END	753

Thu Jui 1 14:15:55 1993 gradhd.f SUBROUTINE GRADNT

754	1		subroutine gradnt	754
755	2	C		755
756	3	C-	---1	756
757	4	C	I	757
758	5	C	GRADNT COMPUTE THE GRADIENT FOR SECOND ORDER CALCULATION	758
759	6	C	USE THE INFORMATION IN THE THREE NEIGHBOURING	759
760	7	C	triangles that have common edges to conpute	760
761	8	C	gradient Applying least square technipue	761
762	9	C	- !	762
763	10	C-		763
764	11	C		764
765	12		include 'cmst00.h'	765
766	13		include 'chyd00.h'	766
767	14		include 'cint00.h'	767
768	15		include 'cphsio.h'	768
769	16		include 'cphs20.h'	769
770	17	C		770
771	18	C		771
772	19	C		772
773	20		REAL RRMIDL (MBP) , PPMIDL (MBP) , UUMIDL (MBP), VVMIDL (MBP)	773
774	21		REAL RIGRAD(MBP). PIGRAD(MBP) , UIGRAD (MBP), VIGRAD(MBP)	774
775	22		REAL RJGRAD (MBP) , PJGRAD (MBP), UJGRAD (MBP), VJGRAD (MBP)	775
776	23		REAL RMAX (MBP), PMAX (MBP) , UMAX (MBP) , VMAX (MBP)	776
777	24		REAL RMIN(MBP), PMIN(MBP), UMIN(MBP), VMIN(MBP)	777
778	25		REAL RLEFTT (MBP), ULEFTT (MBP), VLEFTY (MBP), PLEFTT (MBP)	778
779	26		REAL RRIGHT (MBP), URIGHT (MBP), VRIGHT(MBP), PRIGHT (MBP)	779
780	27		REAL ROR (3). UOR (3), VOR (3), POR(3)	780
781	28		REAL ROL (3), UOL (3), VOL (3), POL (3)	781
782	29		REAL $A A(3,3), B B(3,4), 8(3), \operatorname{INDX}(3), \operatorname{ATEMP}(3,3,3), \operatorname{BTEMP}(3,4,3)$	782
783	30		REAL AAO $(3,3)$, $\mathrm{BBO}(3,4)$	783
784	31	C		784
785	32	C=		785
786	33	C		786
787	34			787
788	35	C		788
789	36		MS1 $=1$	789
790	37		NS2 - NOFVES (1)	790
791	38		0090 INS = 1, NVEES	791
792	39	${ }^{\text {c }}$		792
793	40		FETCH HYDRO QUANTITIES --.-	793
794	41	c		794
795	42		D0 105 IS = NS1 . NS2	795
796	43	C		796
797	44		XSM $=$ XS (1, IS)	797
798	45		YSM = XS (2, IS)	798
799	46		XSM2 $=$ XSM * XSM	199
800	47		YSM2 $=$ YSM * YSM	800
801	48		XYSM $=$ XSM * YSM	801
802 803	49 50	C	AAO (1, 1) $=1.0$	802 803

804	51		$\operatorname{AAO}(1,2)=X S M$	804
805	52		AAOC 1,3$)=Y$ SM	805
806	53	C		806
807	54		$\operatorname{AAO}(2,1)=X S M$	807
808	55		$\operatorname{AAO}(2,2)=X \operatorname{SM2}$	808
809	56		$\operatorname{AAO}(2,3)=$ XYSM	809
810	57	C		810
811	58		AAO (3, 1) $=$ YSM	811
812	59		AAO 3,2$)=$ XYSM	812
813	60		AAOC 3,3) $=$ YSM2	813
814	61	C		814
815	62		B81 $=\operatorname{HYDV}(15.1)$	815
816	63		$882=\operatorname{HYDV}(15,2)$	816
817	64		$883=\operatorname{HYDV}(15,3)$	817
818	65		$884=$ HYDV $(15,4$)	818
819	66	C		819
820	67		$881 \times$ = 881 * XSM	820
821	68		BB2X $=882$ * XSM	821
822	69		$B 83 X=B B 3 * X S M$	822
823	70		BB4X $=$ BB4 * XSM	823
824	71	c		824
825	72		BB1Y = BB1 * YSM	825
826	73		8B2Y $=882$ * YSM	826
827	74		B83Y $=883 * Y$ \% ${ }^{\text {P }}$	827
828	75		BB4Y = BB4 * YSM	828
829	76	C		829
830	71		$\operatorname{BBO}(1,1)=\mathrm{BB1}$	830
831	78		$\operatorname{BBO}(1.2)=\mathrm{BB2}$	831
832	79		$\operatorname{BBO}(1,3)=\mathrm{BB3}$	832
833	80		BBO(1,4$)=$ BB4	833
834	81	C		834
835	82		$\operatorname{BBO}(2,1)=\mathrm{BB1X}$	835
836	83		$880(2,2)=\operatorname{BB2X}$	836
837	84		BBO $(2,3)=8 B 3 X$	837
838	85		BBO $(2,4)=$ BB4X	838
839	86	C		839
840	87		BBO(3,1$)=$ BBIY	840
841	88		$880(3,2)=882 Y$	841
842	89		B80 (3,3) = 883Y	842
843	90		880 (3.4) $=884 \mathrm{Y}$	843
844	91	c		844
845	92		DO $115 \mathrm{IK}=1 ; 3$	845
846	93		IE = JS $(1 K+3, I S)$	846
847 848	94 95		IF (IE G GT - 0 ' THEN	847
848 849	95		ISS $=$ JE (4, IE)	848
849	96		ELSE	849
850 851	97		ISS $=$ JE ($3 .-\mathrm{IE}$)	850
852	98 98	c	END IF	851
853	100		IF (ISS . ME. 0) THEN	853
854	101		XSS $=$ XS (1, ISS $)$	854
855	102		YSS $=$ XS ($2, ~ I S S)$	855
856	103	C		856
857	104		HYDVR - HYOV (ISS . 1)	857
858	105		HYDVU = HYOV (ISS , 2)	858
859	106		HYDVV = HYOV(ISS 3)	$859-$
860	107		HYDVP $=$ HYOV (ISS . 4)	860
861	108	C		861
862	109		ELSE	862
863 864	110	c		863
864 865	111		$I E=I A B S(I E)$	864
865 866	112		HYDVR = BB1	865
866	113		HYOVU $=882$	866
867	114		HYOV - 883	867
868	115		HYOVP $=884$	868
869	116	C		869
870	117		$X S S=2 . * X M I D L(I E)-X S M$	870
871	118		YSS = 2. * YMIDL (IE) - YSM	871
872	119	C		872
873	120	${ }^{\text {c }}$	IJE5 = JE(5 . IE)	873
874	121	c	IF (IJE5 - EQ . 6 - OR - IJE5 - EQ - 5) THEN	874
875	122	C	UUWV $=$ - (B82 * XN(IE) + B83 * YN(IE))	875
876	123	${ }^{C}$	VWUU * - 8B2 * YN(IE) + 883 * XN(IE)	876
877	124	C	HYDVU = UUVV * XN(IE) - VVIJU * YN(IE)	877

878	125	c	HYDVV = UUVV * YN(IE) + VUUU * XN(IE
879	126		
880	127	C	ELSEIf(IJE5 . EQ . 8) then
881	128	C	HYOVR = RIN
882	129	C	HYOVU $=$ UIN
883	130	C	HYOVV = VIN
884	131	c	HYOVP $=$ PIN
885	132	C	
386	135	C	END IF
887	134		END IF
888	135	C	
889	136		XSS2 = XSS * XSS
890	137		YSS2 $=$ YSS * YSS
891	138		XYSS = XSS * YSS
892	139	c	
893	140		$\operatorname{ATEMP}(1,1, I K)=1.0$
894	141		ATEMP (1, 2, IK) = X AS $^{\text {a }}$
895	142		$\operatorname{ATEMP}(1,3, I K)=$ YSS
896	143	C	
897	144		$\operatorname{ATEMP}(2,1, I K)=X S S$
898	145		$\operatorname{ATEMP}(2,2, \mathrm{IK})=\mathrm{XSS} 2$
899	146		$\operatorname{ATEMP}(2,3, \mathrm{IK})=\mathrm{XYSS}$
900 901	147	\bigcirc	
901	148		$\operatorname{ATEMP}(3,1,[K)=$ YSS
902 903	149		$\operatorname{ATEMP}(3,2, I K)=$ XYSS
904	150		$\operatorname{ATEMP}(3,3,1 K)=$ YSS2
905	152		$\operatorname{BTEMP}(1,1, I K)=$ HYOVR
906	153		BTEMP ($1,2, \mathrm{IK}$) $=$ HYOVU
907	154		$\operatorname{BTEMP}(1,3.1 \mathrm{~K})=$ HYOVV
908	155		$\operatorname{BTEMP}(1,4, \mathrm{IK})=\mathrm{HYDVP}$
909.	156	C	
910	157		
911	158		$\operatorname{BTEMP}(2,2.15)=$ HYDVU * XSS
912	159		$\operatorname{BTEMP}(2,3,1 \mathrm{~K})=\mathrm{HYONV} *$ XSS
913	160		$\operatorname{BTEMP}(2,4, \mathrm{IK})=$ HYDVP * XSS
914	161	c	
915	162		$\operatorname{BIEMP}(3,1, I K)=$ HYDVR * YSS
916	163		$\operatorname{BTEMP}(3,2,1 \mathrm{C}$) $=$ HYDVU * YSS
917	164		$\operatorname{BTEMP}(3,3,1 K)=$ HYDVV * YSS
918	165		$\operatorname{BTEMP}(3,4, I K)=$ HYDVP * YSS
919	166	c	
920	167	115	continue
921	168	c	
922	169		$\operatorname{AA}(1,1)=\operatorname{AAO}(1,1) * 3 .+\operatorname{ATEMP}(1,1,1)+$
923	170		(1,2 ATEMP $(1,1,2)+\operatorname{ATEMP}(1,1,3)$
924	171		$\operatorname{AA}(1,2)=\operatorname{AAO}(1,2) * 3 .+\operatorname{ATEMP}(1,2,1)+$
925	172		AAC $1,3 \operatorname{ATEMP}(1,2 ; 2)+\operatorname{ATEMP}(1,2,3)$
926	173		$\operatorname{AA}(1,3)=\operatorname{AAO}(1,3) * 3 .+\operatorname{ATEMP}(1,3,1)+$
927	174		$\operatorname{ATEMP}(1,3,2)+\operatorname{ATEMP}(1,3,3)$
928	175	c	
929 930	176 177		$\operatorname{AA}(2,1)=\operatorname{AAO}(2,1) * 3 .+\operatorname{ATEMP}(2,1,1)+$
931	178		$\operatorname{AA}(2,2)=\operatorname{AAO}(2,2)=3 .+\operatorname{ATEMP}(2,2,1)+$
932	179		ATEMP $(2,2,2)+\operatorname{ATEMP}(2,2,3)$
933	180		$\operatorname{AA}(2,3)=\operatorname{AAO}(2,3) * 3 .+\operatorname{ATEMP}(2,3,1)+$
934	181		$\operatorname{ATEMP}(2,3,2)+\operatorname{ATEMP}(2,3,3)$
935	182	C	
936	183		$\operatorname{AA}(3,1)=\operatorname{AAO}(3,1) * 3 .+\operatorname{ATEMP}(3,1,1)+$
937	184		(ATEMP $(3,1,2)+\operatorname{ATEMP}(3,1,3)$
938	185		$\operatorname{AA}(3,2)=\operatorname{AAO}(3,2) * 3 .+\operatorname{ATEMP}(3,2,1)+$
939	186		($\left.{ }^{\text {atemp }} 3,2,2\right)+\operatorname{ATEMP}(3,2,3)$
940	187		$\operatorname{AA}(3,3)=\operatorname{AAO}(3,3) * 3 .+\operatorname{ATEMP}(3,3,1)+$
$94!$	188		$\operatorname{ATEMP}(3,3,2)+\operatorname{ATEMP}(3,3,3)$
94.	189	\bigcirc	
9	190		88(1,1$)=880(1,1) * 3 .+\operatorname{BTEMP}(1,1,1)+$
\bigcirc	191		(1, $\operatorname{BTEMP}(1,1,2)+\operatorname{BTEMP}(1,1,3)$
	192		B8(1,2$)=880(1,2) * 3 .+\operatorname{BTEMP}(1,2,1)$
30	193		BTEMP($1,2,2)+\operatorname{BTEMP}(1,2,3)$
947	194		$8 B(1,3)=\operatorname{BBO}(1,3) * 3 .+\operatorname{BTEMP}(1,3,1)$
948	195		
949	196		B8(1,4$)=880(1,4) * 3 .+8 \operatorname{TEMP}(1,4,1)+$
950	197		$\operatorname{BTEMP}(1,4,2)+\operatorname{BTEMP}(1,4,3)$
951	198		

952	199		$\operatorname{BE}(2,1)=\operatorname{BBO}(2,1) * 3 .+\operatorname{ATEMP}(2,1.1)+$	
953 954	200		- ®TEMP $\left.^{\text {d }} 2,1,2\right)+\operatorname{BTEMP}(2,1,3)$	953
954	201		B8(2, 2) $=\operatorname{BBO}(2,2) * 3 .+\operatorname{BTEMP}(2,2,1)+$	954
955	202		- $\left.{ }^{\text {STEMP }} 2,2,2\right)+\operatorname{BTEMP}(2,2,3)$	955
956	203			956
957 958	204 205		- $88(2,4)=\operatorname{BREMP}\left(2,3,{ }^{2}\right)+\operatorname{BTEMP}(2,3,3)$	957
958 959	205 206		B8(2,4$)=\operatorname{BBO}(2,4) * 3+\operatorname{BTEMP}\left(2,4, \frac{1}{4}\right)+$	958
960	207	c	$\operatorname{BIEMP}(2,4,2)+\operatorname{BIEMP}(2,4,3)$	959
961	208		$88(3,1)=\operatorname{BBO}(3,1) * 3 .+\operatorname{BTEMP}(3,1,1)+$	960
962	209		- $\operatorname{BTEMP}(3,1.2 j+\operatorname{BTEMP}(3,1,3)$	962
963	210		$\operatorname{BB}(3,2)=\operatorname{BBO}(3,2) * 3 .+\operatorname{BEMP}(3,2,1)+$	963
964	211		- $\operatorname{BTEMP}(3,2,2 j+\operatorname{BTEMP}(3,2,3)+$	963
965	212		$\operatorname{BB}(3,3)=8 B 0(3,3) * 3 .+\operatorname{BEEMP}(3,3,1)+$	965
966	213		($\operatorname{SEMP}(3,3,2)+\operatorname{BTEMP}(3,3,3)$	966
967	214		B8(3,4$)=880(3,4) * 3 .+\operatorname{IEEMP}(3,4,1)+$	967
968	215		$\operatorname{BTEMP}(3,4,2 j+\operatorname{BTEMP}(3,4,3)$	968
969	216	C		969
970	217		DETERM $=$ AA $(1,1) *(A A(2,2) * A A(3,3)$	970
971	218			971
972	219		AA $(2,1)$ * ($A A(1,3) * A A(3,2)-$	972
973 974	220		AA(1$) *(A A(3,3) * A A(1,2))+$	973
975	222		$A A(3,1) *(A A(1,2) * A A(2,3)$	974
976	223	C	AA(2,2$) * A A(1,3)$	975
977	224		DTRMIN = 1. / DETERM	976
978	225	C		978
979	226		AAA1 $=A A(2,3) * A A(3,1)-A A(2,1) * A A(3,3)$	979
980	227		AAA2 $=A A(3 ; 3) * A A(1 ; 1)-A A(3 ; 1) * A A(1 ; 3)$	979 980
981	228		$A A A 3=A A(1,3) * A A(2,1)-A A(1,1) * A A(2,3)$	981
982 983	229 230	C		982
984	231		AAA4 $=$ AA $(2,1) * \operatorname{AA}(3,2)-\operatorname{AA}(3,1) * \operatorname{AA}(2,2)$	983
985	232		AAA6 = AA $(1,1) * A A(2,2)=A A(1,1) * A A(3,2)$	984
986	233	6		985 985
987	234		RGRAD (IS , 1) = dTrmin * (BB (1, 1) * AAAI +	987
988	235		(BB $2: 1) *$ AAA2 +	988
989	236		88($3: 1)$ * AAA3)	989
990	237	C		990
991	238		$\operatorname{RGRAD}(15.2)=\operatorname{DTRMIN}$ * (BB(1, 1) * AAA4 +	991
992	239		(BB 2 2 1) * AAA5 +	992
993	240		BB(3.1) * AAA6)	993
994	241	c		994
995	242		UGRAD (IS , 1) = OTRMIN * (BB (1, 2) * AAA1 +	995
996 997	243			996
998	244 245	c	BB(3, 2) * AAA3)	997
999	246			998
1000	247			999 1000
1001	248		BB(3.2) * AAA6)	1001
1002	249	C		1002
1003	250		$\operatorname{VGRAD}(\mathrm{IS} \mathrm{}, \mathrm{1)}=$ DTRMIN * (B8(1,3$)$ * AAAI +	1003
1004	251		B8(2,3$)$ * AAA2 +	1004
1006	253	C	BB(3,3) * AAA3)	1005
1007	254		$\operatorname{VGRAD}(15,2)=$ DTRMIN * (BB $(1,3) *$ AAAA	1006
1008	255			1007
1009	256		BB (3 ; 3) * AAA6)	1008
1010	257	c		1009
1011	258		$\operatorname{PGRAD}(15,1)=$ DTRMIN * (BB(1,4$)$ * AAAI +	1011
1012	259		(BB(2:4) * AAA2 +	1012
1013	260		BB $(3,4)$ * ${ }^{\text {AAA3 }}$)	1013
1014	261	\checkmark		1014
015	262		$\operatorname{PGRAD}(15.2)=$ OTRMIN * (BB(1.4$)$ * AAA4 +	1015
1016	263		BB (2, 4) * AAA5 +	1016
018	264	c	88(3,4$)$ * AAA6)	1017
019	266	105	continue	1018
020	267	c		1020
021	268		NS1 $=$ NS2 +1	1021
022	269		NS2 - NS2 + NOFVES(INS + 1)	1022
1023	270	90	CONTINUE	1023
024	271	c		1024
1025	272	C=.		1025

1026	273	c		1026
1027	274	C	CALL THE MONOTONICITY LIMITER	1027
1028	275	C		1028
1029	276		CALL MONOTM	1029
1030	277	C		1030
1031	278	C		1031
1032	279	C		1032
1033	280	C		1033
1034	281	C	EXIT POINT FROM SUBROUTINE	1034
1035	282	c		1035
1036	283	C	----...	1036
1037	284		RETURN	1037
1038	285	C	-----	1038
1039	286	C		1039
1040	287	C	---	1040
1041	288		EMD	1041

Thu Jul 114:15:55 1993 gradhd.f SUBROUTINE MONOTM

1042	1		SUBROUTIAE MOHOTN	1042
1043	2	C		1043
1044	3	C	.-.------I	1044
1045		C		1045
1045	5	C	MONOTN LIMIT THE GRADIENTS SO THAT NO NEW EXTREMUM ARE I	1046
1047	6	c	CREATED ARTIFICIALY during the projection process I	1047
1048	7	C	I	1048
1049	8	C.	--1	1049
1050	9	C		1050
1051	10		include 'amsh00.h'	1051
1052	11		include 'chyd00.h'	1052
1053	12		include 'cint00. n^{\prime}	1053
1054	13		include 'cphsio.h'	1054
1055	14		include 'cphs20.h'	1055
1056	15	C		1056
1057	16			1057
1058	17	C		1058
1059	18		REAL RRMIDL (MBP), PPMIDL (MBP) , VUMIDL (MBP) , VVMIDL (MBP)	1059
1060	19		REAL RIGRAD (MBP), PIGRAD (MBP), UIGRAD (MBP), VIGRAD (MBP)	1060
1061	20		REAL RJGRAD (MBP), PJGRAD (MBP), UJGRAD (MBP), VJGRAD (MBP)	1061
1062	21		REAL RMAX (MBP), PMAX (MBP), UMAX (MBP), VMAX (MBP)	1062
1063	22		REAL RMIN(MBP), PMIN (MBP), UMIN (MBP), VMIN(MBP)	1063
1064	23		REAL RLEFTT (MBP), ULEFTT (MBP), VLEFTT (MBP) , PLEFTT (MBP)	1064
1065	24		REAL RRIGHT (MBP) , URIGHT(MBP), VRIGHT(MBP), PRIGHT (MBP)	1065
1066	25		REAL ROR(3), $\operatorname{VOR}(3), \operatorname{VOR}(3), \operatorname{POR}(3)$	1066
1067	26		REAL ROL (3), VOL (3), VOL (3), POL (3)	1067
1068	27		REAL $\operatorname{AA}(3,3), \mathrm{BE}(3,4), \mathrm{B}(3), \operatorname{INDX}(3), \operatorname{ATEMP}(3,3,3), \operatorname{BTEMP}(3,4,3)$	1068
1069	28		REAL AAO $(3,3)$, BBO $(3,4)$	1069
1070	29	C		1070
1071	30	C=		1071
1072	31	c		1072
1073	32	c	LIMITER FOR GRADIENTS BEGINS	1073
1074	33	C	USED TO PREVENT NEH MINIMA AND MAXIMA	1074
1075	34	C	AT PROJECTED interface values.	1075
1076	35	c		1076
1077	36		NS1 = 1	1077
1078	37		NS2 - NOFVES (1)	1078
1079	38		DO 80 INS $=1$. NVEES	1079
1080	39	6		1080
1081	40		D0 150 IS = NS1. NS2	1081
1082	41		KS $=15-N S 1+1$	1082
1083	42	C		1083
1084	43	c	FIRSt TRIangle edge	1084
1085	44	C		1085
1086	45		$I E=I A B S(J S(4,1 S)$)	1086
1087	46	C		1087
1088	47		$I S L=J E(3, I E)$	1088
1089	48		$I S R=J E(4, I E)$	1089
1090	49	c		1090
1091	50		RROL $=$ HYOV (ISL , 1)	1091
1092	51		UUOL $=$ HYDV (ISL , 2)	1092
1093	52		VVOL $=$ HYDV (ISL . 3)	1093
1094	53		PPOL $=\operatorname{HYOV}($ ISL , 4)	1094
1095	54 5	\bigcirc		1095
1096	55		IJE5 $=$ JE (5.15)	1096

1097	56		IF (IJE5 . EQ . 0) THEN	1097
1098	57	C		1008
1099	58		RROR = $\mathrm{HYOV}(15 R .1)$	1099
1100	59		UUOR = HYDV (ISR , 2)	1100
1101	60		VVOR $=\operatorname{HYDV}(I S R, 3)$	1101
1102	61		$\operatorname{PPOR}=\operatorname{HYDV}(15 R, 4)$	1102
1103	62	C		1103
1104	63		ELSE	1104
1105	64	C		1105
1106	65		RROR $=$ RROL	1106
1107	66		UUOR = UUOL	1107
1108	67		VVOR = VVOL	1108
1109	68		PPOR $=$ PPOL	1109
1110	69	C		1110
1111	70	C	IF (IJE5 . EQ . 6. OR . IJE5 . EQ . 5) THEM	1111
1112	71	C	UUVV = - (UUOL * XN(IE) + VVOL * YN (IE))	1112
1113	72	C	VVUU $=-$ UUOL * YN(IE $)+$ VVOL * XN(IE)	1113
1114	73	C	UUOR = UUVV * XN(IE) - VVUU * YN (IE)	1114
1115	74	C	VVOR = UUVV * YN(IE) + VVUU * XN(IE)	1115
1116	75	C		1116
1117	76	C	ELSE IF (IJE5 . EQ . 8) THEM	1117
1118	77	C	RROR $=$ RIN	1118
1119	78	C	UUOR = UIN	1119
1120	79	C	WVOR $=$ VIH	1120
1121	80	C	PPOR = PIN	1121
1122	81	$\stackrel{C}{C}$	END IF	1122
1123	82	C		1123
1124	83		END IF	1124
1125	84	C		1125
1126	85		ROL (1) = RROL	1126
1127	86		UOL (1) = UUOL	1127
1128	87		VOL (1) = VVOL	1128
1129	88		POL (1) = PPOL	1129
1130	89	C		1130
1131	90		$\operatorname{ROR}(1)=\operatorname{RROR}$	1131
1132	91		UOR (1) = UUOR	1132
1133	92		$\operatorname{VOR}(1)=\operatorname{VVOR}$	1133
1134	93		$\operatorname{POR}(1)=P P O R$	1134
1135	94	C		1135
1136	95	C	SECOND TRIANGLE EDGE	1136
1137	96	C		1137
1138	97		$I E=I A B S(J S(5, I S))$	1138
1139	98	C		1139
1140	99		ISL $=\mathrm{JE}(3, I E)$	1140
1141	100		ISR = JE (4 , IE)	1141
1142	101	C		1142
1143	102		RROL $=$ HYDV (ISL , 1)	1143
1144	103		UUOL $=$ HYDV (ISL , 2)	1144
1145	104		VVOL $=\operatorname{HYDV}($ ISL 3)	1145
1146	105		PPOL $=$ HYDV(ISL , 4)	1146
1147	106	C		1147
1148	107		IJE5 = JE (5.12)	1148
1149	108		IF (IJE5 . EQ . 0) THEN	1149
1150	109	C		1150
1151	110		RROR $=$ HYOV(ISR . 1)	1151
1152	111		UUOR = HYOV (ISR , 2)	1152
1153	112		VVOR $=\operatorname{HYDV}(I S R, 3)$	1153
1154	113		PPOR = HYDV (ISR , 4)	1154
1155	114	C		1155
1156	115		ELSE	1156
1157	116	C		1157
1158	117		RROR = RROL	1158
1159	118		UUOR = UUOL	1159
1160	119		VVOR - VVOL	1160
1161	120		PPOR = PPOL	1161
1162	121	${ }^{\text {c }}$		1162
1163	122	C	IF (IJE5 . EQ . 6. OR . IJE5 . EQ . 5) THEN	1163
1164	123	C	UUVV $=-$ (UUOL * XN (IE) + VVOL * YN(IE))	1164
1165	124	C	WVUU $=-$ UUOL * YN(IE $)+$ VVOL * XN(IE)	1165
1166	125	${ }^{C}$	UUOR - UUVV * XN(IE) - VVUU * YN(IE)	1166
1167	126	C	VVOR = UUVV * YN (IE) + VVUU * XN(IE)	1167
1168	127	${ }^{\text {c }}$		1168
1169	128	r	ELSE IF (IJES . EQ . 8) THEN	1169
1170	129	C	RROR $=$ RIN	1170

gradhd.f
SUBROUTINE MONOTN
page
18

1245	204		VMAX KS) $=\operatorname{AMAXI}(\operatorname{VOL}(1)$, VOL (2) , VOL (3)
1246	205		(VOR(1) , VOR(2). VOR(3)
1247	206		$\operatorname{PMAX}(\mathrm{KS})=\operatorname{AMAXI}(\operatorname{POL}(1) \cdot \operatorname{POL}(2): \operatorname{POL}(3)$
1248	207		POR(1) P POR(2) $: \operatorname{POR(~} 3$)
1249	208	C	
1250	209	C---	FINO MINIMA IN THE NEIGHBORHOOO OF A IRIANGLE
1251	210	C	
1252	211		RMIN (KS) = AMIN1 (ROL (1) , ROL (2) . ROL (3
1253	212		
1254	213		UMIN(KS) = AMIMI (UOL (1) , UOL (2) , UOL (3).
1255 1256	214		
1256	215		VMIN(KS) = AMINL (VOL (1) , VOL $\operatorname{VOR} 2$) , VOL (3)
1258	216 217		PMIM KS) VOR(1) , VOR (2) , VOR(3))
1259	218		
1260	219	C	POR(1) . $\operatorname{POR(2)~.~POR(~} 3$)
1261	220	150	CONTINUE
1262	221	C	
1263	222	C ---	FIMD DIFFERENCES BETHEEN EXTREMA AND THE TRIANGLE CENTERED
1264	223	C	QUANTITIES
1265	224	C	
1266	225		00180 IS - NSI . NS2
1267	226		$K S=1 S-N S I+1$
1268	221	C	
1269	228		$\operatorname{RRR}(\mathrm{KS})=\operatorname{RMAX}(\mathrm{KS})-\operatorname{HYDV}(15,1)$
1270	229		RRL $(\mathrm{KS})=\operatorname{RMIN}(\mathrm{KS})-\mathrm{HYOV}(\mathrm{IS}, 1)$
1271	230		UUR (KS) = UMAX (KS) - HYDV(IS, 2)
1272	231		UUL $(K S)=$ UMIN(KS $)-\operatorname{HYDV}(15.2)$
1273	232		VVR(KS $)=\operatorname{VMAX}(\mathrm{KS})=$ HYDV $(15,3)$
1274	233		VVL (KS) = VMIN(KS) - HYOV (15.3)
1275 1276	234		$\operatorname{PPR}(\mathrm{KS})=\operatorname{PMAX}(\mathrm{KS})-\mathrm{DV}(15,4)$
1276	235		$\operatorname{PPL}(\mathrm{KS})=\operatorname{PMIN}(\mathrm{KS}) \quad \operatorname{AYDV}(\mathrm{IS}, 4)$
1278	236 237	${ }^{\text {C }} 180$	CONTINUE
1279	238	C	
1280	239	C ---	FIND THE PROJECIED INCRAMENTS FOR INTERFACE BASED OUANTITIES
1281	240	C	
1282	241		DO 170 IS = NSI . NS2
1283	242		KS = IS - NSI + 1
1284	243	C	
1285	244	C ---	FIRST TRIANGLE EDGE
1286	245	C	
1287	246		$I E=\operatorname{IABS}(J S(4,1 S))$
1288	247	C	
1289	248		ISL $=$ JE ($3.1 E$)
1290	249		$I S R=J E(4 . I E)$
1291	250	C	
1292	251		
1293	252		YML $=$ YMIDL (IE $)-X S(2.15 L)$
1294	253	\bigcirc	
1295	254		RROL = 1.E-12
1296	255		(RGRAD (ISL , 1)*XML + RGRAD (ISL . 2) * YML
1297	256		UUOL $=1 . E-12+$
1298	257		UGPAD (ISL , 1)*XML + UGRAD (ISL , 2)*YML
1299	258		VVOL = 1.E-12 +
1300	259		VGRAD (1SL , 1) * XML + VGRAD (ISL , 2) * YML
1301	260		PPOL $=1 . \mathrm{E}-12+$
1302	261		PGRAD (ISL . i) XML + PGRAD (ISL , 2) * YML
1303	262	C	
1304	263		IJE5 = JE (5. IE)
1305	264		IF (IJE5 . EQ . 0) THEN
1306	265	6	
1307	266		XMR $=$ XMIDL (IE) - XS (1, ISR)
1308	267		YMR $=$ YMIDL (IE) - XS (2 , ISR)
1309	268	c	
1310	269		RROR $=1 . E-12+$
1311	270		(RGRAD ([SR , 1) * XMR + RGRAD (ISR , 2) * YMR
1312	271		UUOR $=1 . E-12+$
1313	272		UGGRAD(ISR ,) * XMR + UGRAD (ISR , 2) * ymR
1314	273		VVOR - 1.E-12 +
1315	274		VGRAO (ISR . 1) * XMR + VGRAO ($15 R .2$) * YMR
1316	275		
1317	276		PGRAD (ISR , 1) * XMR + PGRADI 1SR . 2) * YMR
1318	277	C	

```
        OO 180 IS . NSI NS2
\(C\)
    \(\left.\begin{array}{l}\operatorname{RRL}(K S)=\operatorname{RMIN}(K S)-\operatorname{HYDV}(I S, 1) \\ \operatorname{UUR}(K S)=\operatorname{UMAX}(K S)-\operatorname{HODV}(I S, 2\end{array}\right)\)

YML \(=\) YMIDL ( IE \()-X S(2: I S L)\)
RROL \(=1 . E-12\) -

\begin{tabular}{|c|c|c|c|c|}
\hline 1393 & 352 & & IE = IABS ( JS ( \(6, ~\) IS ) ) & 1393 \\
\hline 1394 & 353 & c & & 1394 \\
\hline 1395 & 354 & & \(\underline{I S L}=\mathrm{JE}(3, \mathrm{IE})\) & 1395 \\
\hline 1396 & 355 & & ISR \(=\mathrm{JE}(4, \mathrm{IE})\) & 1396 \\
\hline 1397 & 356 & c & & 1397 \\
\hline 1398 & 357 & & \(X M \mathrm{CL}=\mathrm{XMIDL}(\mathrm{IE})-X S(1\), ISL \()\) & 1398 \\
\hline 1399 & 358 & & YML = YMIDL ( IE ) - XS( 2 , ISL) & 1399 \\
\hline 1400 & 359 & \(c\) & & 1400 \\
\hline 1401
1402 & 360
361 & & RROL \(=1 . \mathrm{E}-12+\) & 1401 \\
\hline 1403 & 361
362 & &  & 1402 \\
\hline 1404 & 363 & & - UGRAD ( ISL , 1) * XML + UGRAD ( ISL . 2) * YML & 1404 \\
\hline 1405 & 364 & & WVOL = 1.E-12 + & 1405 \\
\hline 1406 & 365 & & - VGRPAD ( ISL , 1) * XML + VGRAD ( ISL , 2) * YML & 1406 \\
\hline 1407 & 366 & &  & 1407 \\
\hline 1408 & 367 & & - PGRAD ( ISL , 1) * XML + PGRAD ( ISL . 2) * YML & 1408 \\
\hline 1409 & 368 & C & & 1409 \\
\hline 1410 & 369 & & [JE5 = JE ( 5, IE ) & 1410 \\
\hline 1411 & 370 & c & IF ( IJE5 - EQ . 0 ) THEN & 1411 \\
\hline 1413 & 372 & 6 & XMR \(=\) XMIDL ( IE ) - X \({ }^{\text {S }}\) ( 1, ISR ) & 1412 \\
\hline 1414 & 373 & &  & 1413
1414 \\
\hline 1415 & 374 & c & & 1415 \\
\hline 1416 & 375 & & RROR \(=1 . \mathrm{E}-12+\) & 1416 \\
\hline 1417 & 376 & & - \({ }^{\text {RGRAD ( ISR , 1) * XMR + RGRad ( ISR , 2) * YMR }}\) & 1417 \\
\hline 1418 & 377 & &  & 1418 \\
\hline 1419 & 378 & & - Ungrad ( ISR . 1) * XMR + UGRAD ( ISR , 2) * Ymr & 1419 \\
\hline 1420 & 379 & & VVOR \(=1 . \mathrm{E}-12+\) & 1420 \\
\hline 1421 & 380 & & - VPORRAD ( ISR , 1) * XMR + VGRAD ( ISR , 2) * YMR & 1421 \\
\hline 1422 & 381 & &  & 1422 \\
\hline 1423
1424 & 382
383 & c & - PGRAD ( ISR , 1) * XMR + PGRAD ( ISR , 2) * YMR & 1423 \\
\hline 1425 & 384 & & ELSE & 1424
1425 \\
\hline 1426 & 385 & c & & 1426 \\
\hline 1427 & 386 & & RROR = RROL & 1427 \\
\hline 1428 & 387 & & UUOR \(=\) UUOL & 1428 \\
\hline 1429 & 388 & & WVOR \(=\) VVOL & 1429 \\
\hline 1430 & 389 & & PPOR \(=\) PPOL & 1430 \\
\hline 1431 & 390 & c & & 1431 \\
\hline 1432 & 391 & & END IF & 1432 \\
\hline 1433 & 392 & \(\bigcirc\) & & 1433 \\
\hline 1434
1435 & 393
394 & & \(\mathrm{ROL}\left(\begin{array}{l}3 \\ \mathrm{HOL} \\ 3\end{array}\right)=1.1 \mathrm{RROL}\) & 1434 \\
\hline 1435 & 395 & & \(\operatorname{VOL}\binom{3}{3}=1.1 / \mathrm{VVOL}\) & 1435 \\
\hline 1437 & 396 & & \(\operatorname{POL}(3)=1 . / \mathrm{PPOL}\) & 1437 \\
\hline 1438 & 397 & C & & 1438 \\
\hline 1439 & 398 & & \(\operatorname{ROR}(3)=1 . / \operatorname{RROR}\) & 1439 \\
\hline 1440 & 399 & & \(\operatorname{UOR}(3)=1.1\) UUOR & 1440 \\
\hline 1441 & 400 & & \(\operatorname{VOR}(3)=1.1 \operatorname{VOR}\) & 1441 \\
\hline 1442 & 401 & & \(\operatorname{POR}(3)=1.1 \mathrm{PPOR}\) & 1442 \\
\hline 1443 & 402 & c & & 1443 \\
\hline 1444 & 403 & & ISNR \(=\) SICN( \(1 . \cdot \operatorname{ROR}(1)\) ) & 1444 \\
\hline 14446 & 404 & c & ISNL \(=\operatorname{SIGN}(1 . \cdot \operatorname{ROL}(1)\) ) & 1445 \\
\hline 1447 & 406 & \(\square\) & PERFORM THE LImIting on the incraments - & 1446 \\
\hline 1448 & 407 & C & & 1447
1448 \\
\hline 1449 & 408 & & TEMPR \(=(1+1\) SNR \() *\) RRR ( KS ) + & 1449 \\
\hline 1450 & 409 & & RUUPRI ( \(1-\) ISNR \() *\) RRL ( KS \()\) & 1450 \\
\hline 1451 & 410 & & RUVPRI \(=0.5 *\) TEMPR * ROR ( 1 ) & 1451 \\
\hline 1452 & 411 & C & & 1452 \\
\hline 1453 & 412 & & TEMPL \(=(1+\) ISNL \() *\) RRR( KS \() ~+\) & 1453 \\
\hline 1454 & 413 & &  & 1454 \\
\hline 1456 & 415 & \(¢\) & RUVPLI \(=0.5\) * TEMPL * ROL ( 1) & 1455
1456 \\
\hline 1457 & 416 & & ISAR = SIGN( 1., ROR( 2) ) & 1457 \\
\hline 1458 & 417 & & ISNL \(=\operatorname{SIGN}(1 . . \operatorname{ROL}(2)\) ) & 1458 \\
\hline 1459 & 418 & \(c\) & & 1459 \\
\hline 1460 & 419 & & TEMPR - ( 1 + ISNR ) * RRR ( KS ) + & 1460 \\
\hline 1461 & 420 & & RUWPR ( \(1-15 N R\) ) * RRL (KS) & 1461 \\
\hline 1462 & 421 & & RUVPR2 \(=0.5\) * TEMPR * ROR ( 2 ) & 1462 \\
\hline 1464 & 422 & c & TEMPL \(=(1+\operatorname{SNL}) * \operatorname{RRR}(\mathrm{KS})+\) & 1463
1464 \\
\hline 465 & 424 & & (1-ISNL)*RRL( KS ) & 1464
1465 \\
\hline 1466 & 425 & & RUVPL2 * 0.5 * TEMPL * ROL ( 2 ) & 1466 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1467 & 426 & c & & 1467 \\
\hline 1468 & 427 & & ISNR \(=\operatorname{SIGN(1.,~} \operatorname{ROR}(3)\) ) & 1468 \\
\hline 1469 & 428 & & ISNL = SIGN( 1., ROL( 3 ) ) & 1469 \\
\hline 1470 & 429 & C & & 1470 \\
\hline 1471 & 430 & & TEMPR \(=(1+\) ISNR \() *\) RRR( KS \()+\) & 1471 \\
\hline 1472 & 431 & & ( 1 - ISNR ) * RRL ( KS ) & 1472 \\
\hline 1473 & 432 & & RUUPR3 \(=0.5\) * TEMPR * ROR( 3 ) & 1473 \\
\hline 1474 & 433 & C & & 1474 \\
\hline 1475 & 434 & & TEMPL \(=(1+\) ISNL \() *\) RRR \((\) KS \()+\) & 1475 \\
\hline 1476 & 435 & & ( \(1-\) ISNL \() *\) RRL \((\mathrm{KS})\) & 1476 \\
\hline 1477 & 436 & & RIUVPL3 \(=0.5\) * TEMPL * ROL ( 3 ) & 1477 \\
\hline 1478 & 437 & C & & 1478 \\
\hline 1479 & 438 & & RMIN( KS ) = AMIM1 ( 1. . RUVPRR1 . RUVPL1 . RUUPR2 , RUVPL2 & 1479 \\
\hline 1480 & 439 & & RUVPR3, RUVPL3 ) & 1480 \\
\hline 1481 & 440 & C & & 1481 \\
\hline 1482 & 441 & & ISNR = SIGN( 1. . UOR ( 1) ) & 1482 \\
\hline 1483 & 442 & & ISNL \(=\operatorname{SIGN}(1 ., \operatorname{UOL}(1)\) ) & 1483 \\
\hline 1484 & 443 & C & & 1484 \\
\hline 1485 & 444 & & TEMPR = ( \(1+\) ISNR ) * UUR ( KS ) + & 1485 \\
\hline 1486 & 445 & & RUVPR ( 1 - ISNR) * UUL( KS \()\) & 1486 \\
\hline 1487 & 446 & & RUVPR1 \(=0.5\) * TEMPR * UOR( 1 ) & 1487 \\
\hline 1488 & 447 & C & & 1488 \\
\hline 1489 & 448 & & TEMPL \(=(1+\) ISNL \() * \operatorname{UUR}(\) KS \()+\) & 1489 \\
\hline 1490 & 449
450 & & RIVPLI \(=0.5\) - ISNL \()\) * VUL ( KS \()\) & 1490 \\
\hline 1492 & 451 & C & RUVPLI \(=0.5\) * TEMPL * UOL ( 1 ) & 1491 \\
\hline 1493 & 452 & & \(\operatorname{ISMR}=\operatorname{SIGM}(1 ., \operatorname{UOR}(2)\) ) & 1493 \\
\hline 1494 & 453 & & ISNL \(=\) SIGM ( 1. . UOL ( 2 ) ) & 1494 \\
\hline 1495 & 454 & c & & 1495 \\
\hline 1496 & 455 & & TEMPR \(=(1+\) ISNR \() *\) UUR \((\) KS \()+\) & 1496 \\
\hline 1497 & 456 & & ( \(1-\) ISMR \() *\) UUL ( KS \()\) & 1497 \\
\hline 1498 & 457 & & RUVPR2 \(=0.5\) * TEMPR * UOR( 2 ) & 1498 \\
\hline 1499 & 458 & C & & 1499 \\
\hline 1500 & 459 & & TEMPL \(=(1+\) ISNL \() *\) UUR \((\) KS \()+\) & 1500 \\
\hline 1501 & 460 & &  & 1501 \\
\hline 1503 & 462 & c & RUVPL2 \(=0.5\) * TEMPL * UOL ( 2 ) & 1502
1503 \\
\hline 1504 & 463 & & ISAR \(=\operatorname{SIGN}(1 ., \operatorname{UOR}(3)\) ) & 1504 \\
\hline 1505 & 464 & & ISNL = SIGN ( 1. . VOL ( 3 ) ) & 1505 \\
\hline 1506 & 465 & C & & 1506 \\
\hline 1507 & 466 & & TEMPR \(=(1+\) ISNR \() *\) UUR ( KS \()+\) & 1507 \\
\hline 1508 & 467 & & HUVPR ( \(1-\) ISNR) * UUL( KS ) & 1578 \\
\hline 1509 & 468 & & RUUVPR3 \(=0.5\) * TEMPR * UOR ( 3 ) & 151 \\
\hline 1510 & 469 & C & & 1510 \\
\hline 1511 & 470 & & TEMPL \(=(1+\) ISNL \() *\) UUR \((\) KS \()+\) & 1511 \\
\hline 1512 & 471 & & RUVPI \(3=0\) ( 1 - ISNL \() *\) UUL ( KS \()\) & 1512 \\
\hline 1513
1514 & 472 & & RUVPL3 \(=0.5\) * TEMPL * UOL ( 3 ) & 1513 \\
\hline 1515 & 474 & \(c\) & UMIN( KS ) = AMIM1 ( 1 RUUPR1 RUUPL1 RUVPR2 RUVPL2 & 1514 \\
\hline 1516 & 475 & &  & 1515 \\
\hline 1517 & 476 & c & Rukr - Ruvf & 1517 \\
\hline 1518 & 477 & & ISNR \(=\operatorname{SIGN}(1 . . \operatorname{VOR}(1)\) ) & 1518 \\
\hline 1519 & 478 & & ISNL \(=\operatorname{SIGN}(1 ., \operatorname{VOL}(1))\) & 1519 \\
\hline 1520 & 479 & \({ }^{6}\) & & 1520 \\
\hline 1521 & 480 & & TEMPR \(=(1+\operatorname{ISNR}) *\) VVR( KS \()+\) & 1521 \\
\hline 1522 & 481 & & RUVPRI ( \(1-\) ISNR \() *\) VVL \((\mathrm{KS})\) & 1522 \\
\hline 1523 & 482 & & RUVPR1 \(=0.5\) * TEMPR * VOR( 1 ) & 1523 \\
\hline 1524 & 483 & C & & 1524 \\
\hline 1525 & 484 & & TEMPL \(=(1+\) ISNL \() *\) VVR( KS \()+\) & 1525 \\
\hline 1526 & 485 & & ( 1 - ISNL \() *\) VVL ( KS \()\) & 1526 \\
\hline 1527 & 486 & & RUVPL1 * 0.5 * TEMPL * VOL ( 1) & 1527 \\
\hline 1528 & 487 & C & & 1528 \\
\hline 1529 & 488 & & ISNR \(=\operatorname{SIGN(1.,~VOR(2)~)~}\) & 1529 \\
\hline 1530 & 489 & & ISNL \(=\) SIGM (1. . VOL ( 2 ) ) & 1530 \\
\hline 1531 & 490 & c & & 1531 \\
\hline 1532 & 491 & & TEMPR \(=(1+\operatorname{ISNR}) * \operatorname{VVR}(\mathrm{KS})+\) & 1532 \\
\hline 1533 & 492 & & (1) (1SNR) * VVL ( KS ) & 1533 \\
\hline 1534 & 493 & & RUVPR2 = 0.5 * TEMPR * VOR( 2 ) & 1534 \\
\hline 1535 & 494 & C & & 1535 \\
\hline 1536 & 495 & & TEMPL \(=(1+\operatorname{ISNL}) * \operatorname{VVR}(\) KS \()+\) & 1536 \\
\hline 1537 & 496 & & ( 1 - ISNL ) * VVL( KS ) & 1537 \\
\hline 1538 & 497 & & RUVPL2 * 0.5 * TEMPL * VOL( 2 ) & 1538 \\
\hline 1539 & 498 & C & & 1539 \\
\hline 1540 & 499 & & ISNR \(=\operatorname{SIGN}(1 . . \operatorname{VOR}(3)\) ) & 1540 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1541 & 500 & & ISNL = SIGM ( 1. . VOL ( 3 ) ) & 1541 \\
\hline 1542 & 501 & c & & 1542 \\
\hline 1543 & 502 & & TEMPR \(=(1+\) ISNR \() * V V R(K S) ~+~\) & 1543 \\
\hline 1544 & 503 & & ( 1 - ISNR ) *VVL ( KS ) & 1544 \\
\hline 1545 & 504 & & RUVPR3 \(=0.5\) * TEMPR * VOR( 3) & 1545 \\
\hline 1546 & 505 & C & & 1546 \\
\hline 1547 & 506 & & TEMPL \(=(1+\) ISNL \() * \operatorname{VVR}(\mathrm{KS})+\) & 1547 \\
\hline 1548 & 507 & & (1-ISNL) * VVL (KS) & 1548 \\
\hline 1549 & 508 & & RUVPL3 \(=0.5\) * TEMPL * VOL ( 3 ) & 1549 \\
\hline 1550 & 509 & C & & 1550 \\
\hline 1551 & 510 & & VMIN ( KS ) \(=\) AMIMI ( 1. , RUVPR1 . RUVPLI , KUVPR2 , RUVPL2 & 1551 \\
\hline 1552 & 511 & & RUVPR3 , RUVPL3) & 1552 \\
\hline 1553 & 512 & C & & 1553 \\
\hline 1554 & 513 & & ISNR \(=\operatorname{SIGN}(1 ., \operatorname{POR}(1)\) ) & 1554 \\
\hline 1555 & 514 & & ISNL \(=\) SICN( \(1 .\). POL ( 1) ) & 1555 \\
\hline 1556 & 515 & C & & 1556 \\
\hline 1557 & 516 & & TEMPR \(=(1+\) ISNR \() *\) PPR ( KS \() ~+\) & 1557 \\
\hline 1558 & 517 & & ( \(1-\) ISNR ) *PPL( KS ) & 1558 \\
\hline 1559 & 518 & & RUVPR1 \(=0.5\) * TEMPR * POR( 1 ) & 1559 \\
\hline 1560 & 519 & C & & 1560 \\
\hline 1561 & 520 & & TEMPL \(=(1+\) ISNL \() *\) PPR \((\) KS \() ~+~\) & 1561 \\
\hline 1562 & 521 & & ( 1 - ISNL \({ }^{\text {a }}\) * PPL (KS \()\) & 1562 \\
\hline 1563 & 522 & & RUVPLL \(=0.5\) * TEMPL * POL ( 1 ) & 1563 \\
\hline 1564 & 523 & C & & 1564 \\
\hline 1565 & 524 & & ISNR \(=\operatorname{SIGN}(1 . . \operatorname{POR}(2)\) ) & 1565 \\
\hline 1566 & 525 & & ISNL \(=\operatorname{SIGM}(1 ., \operatorname{POL}(2)\) ) & 1566 \\
\hline 1567 & 526 & C & & 1567 \\
\hline 1568 & 527 & & TEMPR \(=(1+\) ISNR \() * \operatorname{PPR}(\mathrm{KS})+\) & 1568 \\
\hline 1569 & 528 & & ( 1 - ISNR ) * PPL( KS ) & 1569 \\
\hline 1570 & 529 & & RUVPR2 \(=0.5\) * TEMPR * POR( 2 ) & 1570 \\
\hline 1571 & 530 & C & & 1571 \\
\hline 1572 & 531 & & TEMPL \(=(1+\) [SNL \() *\) PPR \((\) KS \()+\) & 1572 \\
\hline 1573 & 532 & & ( 1 - ISNL) * PPL ( KS \()\) & 1573 \\
\hline 1574 & 533 & & RUVPL2 \(=0.5\) * TEMPL * POL( 2 ) & 1574 \\
\hline 1575 & 534 & \(c\) & & 1575 \\
\hline 1576 & 535 & & ISNR \(=\operatorname{SIGN(1.,~POR(3)}\) ) & 1576 \\
\hline 1577 & 536 & & ISNL = SIGN( 1. . POL ( 3 ) ) & 1577 \\
\hline 1578
1579 & 537 & C & TEMPR = ( 1 + ISNR ) * PPR ( KS ) & 1578 \\
\hline 1580 & 539 & & ( 1 -ISNR ) *PPL (KS \()\) & 1580 \\
\hline 1581 & 540 & & RUVPR3 \(=0.5\) * TEMPR * POR( 3 ) & 1581 \\
\hline 1582 & 541 & c & & 1582 \\
\hline 1583 & 542 & & TEMPL * ( \(1+\) ISNL \()\) * PPR ( KS ) + & 1583 \\
\hline 1584
1585 & 543 & & RUVPL \(3=\left(\begin{array}{l}1-\text { ISNL }\end{array}\right) * \operatorname{PPL}(\mathrm{KS})\) & 1584
1585 \\
\hline 1585 & 544 & & RUVPL \(3=0.5 *\) TEMPL * POL 3 ) & 1585 \\
\hline 1586
1587 & 545
546 & C & PMIN( KS ) = AMIN1 ( 1. , RUVPR1 , RUVPL1 , RUUPR2 , RUUPL2 & 1586
1587 \\
\hline 1588 & 547 & & ( RUVPR3 . RUVPL3) & 1588 \\
\hline 1589 & 548 & C & & 1589 \\
\hline 1590 & 549 & 170 & continue & 1590 \\
\hline 1591 & 550 & \({ }^{\text {c }}\) & & 1591 \\
\hline 1592 & 551 & \({ }^{C}\)--- & LIMIT THE ACTUAL GRADIENTS ----------- & 1592 \\
\hline 1593 & 552 & C & & 1593 \\
\hline 1594 & 553 & & DO \(330 \mathrm{IH}=1.2\) & 1594 \\
\hline 1595 & 554 & C & & 1595 \\
\hline 1596 & 555 & & D0 330 IS = NS1 \({ }^{\text {dS }}\) NS & 1596 \\
\hline 1597
1598 & 556 & & KS - IS - NSI + 1 & 1597 \\
\hline 1598
1599 & 557
558 & \(c\) & \(\operatorname{RGRAD}(\mathrm{IS}\). IH ) \(=\) RGRAD( IS . IH ) * RMIN( KS ) * FLATDR & 1598
1599 \\
\hline 1600 & 559 & & UGRAD ( IS . IH) = UGRAD ( IS . IH) * UMIN( KS ) * FLATDR & 1600 \\
\hline 1601 & 560 & & \(\operatorname{VGRAD}(\) IS . IH ) \(=\operatorname{VGRAD}(\) IS . IH ) * VMIN( KS ) * FLATDR & 1601 \\
\hline 1602 & 561 & & \(\operatorname{PGRAD}(\mathrm{IS}, \mathrm{IH})=\operatorname{PGRAD}(\mathrm{IS}, \mathrm{IH}) * \operatorname{PMIN}(\mathrm{KS}) * \operatorname{FLATDR}\) & 1602 \\
\hline 1603 & 562 & & & 1603 \\
\hline 1604 & 563 & 330 & continue & 1604 \\
\hline 1605 & 564 & C & & 1605 \\
\hline 1606 & 565 & & NS1 \(=\) NS2 +1 & 1606 \\
\hline 1607 & 566 & & NS2 = NS2 + NOFVES( INS + 1) & 1607 \\
\hline 1608 & 567 & 80 & continue & 1608 \\
\hline 1609 & 568 & C & & 1609 \\
\hline 1610 & 569 & C= &  & 1610 \\
\hline 1611 & 570 & C & & 1611 \\
\hline 1612 & 571 & C & Call the charecteristic limiter & 1612 \\
\hline 1613 & 572 & C & & 1613 \\
\hline 1614 & 573 & & CALL FCHART & 1614 \\
\hline
\end{tabular}


Thu Jul 1 14:15:55 1993 gradhd.f SUBROUTINE GRADNG
\begin{tabular}{|c|c|c|c|c|}
\hline 1627 & 1 & & SUBROUTINE GRADNG & 1627 \\
\hline 1628 & 2 & c & & 1628 \\
\hline 1629 & 3 & C & --------1 & 1629 \\
\hline 1630 & 4 & C & I & 1630 \\
\hline 1631 & 5 & C & GRADNG COMPUTE THE GRADIENT FOR SECOND ORDER CALCULATION & 1631 \\
\hline 1632 & 6 & C & USING THE INFORMAIION STORED ASSOCIATED WITH THE & 1632 \\
\hline 1633 & 7 & c & VERTICIES DF THE TRIANGLE TO COMPUTE THE GRADIENT & 1633 \\
\hline 1634 & 8 & C & I & 1634 \\
\hline 1635 & 9 & C- & --------1 & 1635 \\
\hline 1636 & 10 & C & & 1636 \\
\hline 1637 & 11 & & include 'ansh00.h' & 1637 \\
\hline 1638 & 12 & & include 'chyd00.h' & 1638 \\
\hline 1639 & 13 & & include 'cint00.h' & 1639 \\
\hline 1640 & 14 & & include 'cphsio.t' & 1640 \\
\hline 1641 & 15 & & include 'cphs20.h' & 1641 \\
\hline 1642 & 16 & C & & 1642 \\
\hline 1643 & 17 & C= &  & 1643 \\
\hline 1644 & 18 & c & & 1644 \\
\hline 1645 & 19 & C &  & 1645 \\
\hline 1646 & 20 & C & & 1646 \\
\hline 1647 & 21 & & NS1 = 1 & 1647 \\
\hline 1648 & 22 & & NS2 = NOFVES ( 1 ) & 1648 \\
\hline 1649 & 23 & & 0090 INS = 1 , NVEES & 1649 \\
\hline 1650 & 24 & C & & 1650 \\
\hline 1651 & 25 & C -.- & FETCH HYDRO QUANTITIES & 1651 \\
\hline 1652 & 26 & C & & 1652 \\
\hline 1653 & 27 & & DO 105 IS = NS1 , NS2 & 1653 \\
\hline 1654 & 28 & & KS = 1S - NS \(1+1\) & 1654 \\
\hline 1655 & 29 & c & & 1655 \\
\hline 1656 & 30 & & IVI \(=\) JS( 1, IS ) & 1656 \\
\hline 1657 & 31 & & IV2 \(=\) JS 2.15 ) & 1657 \\
\hline 1658 & 32 & & IV3 \(=\) JS ( 3 , IS ) & 1658 \\
\hline 1659 & 33 & & XV1 \(=\) XV( 1, IVI ) & 1659 \\
\hline 1660 & 34 & & XV2 \(=X V(1, ~ I V 2)\) & 1660 \\
\hline 1661 & 35 & & \(\mathrm{XV3}=\mathrm{XV}(1, \mathrm{IV3})\) & 1661 \\
\hline 1662 & 36 & & YV1 \(=\) XV( \(2, ~ I V 1)\) & 1662 \\
\hline 1663 & 37 & & YV2 \(=\) XV( \(2, ~ I V 2)\) & 1663 \\
\hline 1664 & 38 & & YV3 \(=\) XV \((2\), IV3 \()\) & 1664 \\
\hline 1665 & 39 & & \(C\) = (XV2-XV1) * (YV3-YV2) - (XV3-XV2)* (YV2-YV1) & 1665 \\
\hline 1666 & 40 & & CINV \(=1 . / \mathrm{C}\) & 1666 \\
\hline 1667 & 41 & C & & 1667 \\
\hline 1668 & 42 & & RRMDLI \(=\) HYDVVV ( IVI , 1) & 1668 \\
\hline 1669 & 43 & & UUMDLI = HYDVVV( IV1 , 2) / RRMDLI & 1669 \\
\hline 1670 & 44 & & VVMDLI \(=\) HYDVVV( \(1 V 1,3\) ) / RRMDL & 1670 \\
\hline 1671 & 45 & & PPMDL \(=\left(\right.\) HYDVVV \(\left(\right.\) IVI \({ }^{4}\) ) - . 5 * RRMDL 1 * ( UUMDL1 * UUMDLI + & 1671 \\
\hline 1672 & 46 & \(\cdots\) & VVMDLI * VVMOLI) ) * ( \(\operatorname{HYOVVV}(\) IVI . 5 ) - 1. ) & 1672 \\
\hline 1673 & 47 & c & & 1673 \\
\hline 1674 & 48 & & RRMDL2 - HYDVVV( IV2 \({ }^{\text {a }}\) ( 1 ) & 1674 \\
\hline 1675 & 49 & & UUMDL2 \(=\) HYOVVV( IV2 , 2) / RRMDL2 & 1675 \\
\hline 1676 & 50 & & VYMDL2 \(=\) HYDVVV( IV2 , 3) / RRMDL2 & 1676 \\
\hline 1677 & 51 & &  & 1677 \\
\hline 1678 & 52 & & VVMDL2 * VVMDL2 ) * ( \(\operatorname{HYOVVV}(\operatorname{IV2} .5)-1\). & 1678 \\
\hline 1679 & 53 & C & & 1679 \\
\hline 1680 & 54 & & RRMDL 3 = HYDVVV ( IV3 . 1) & 1680 \\
\hline 1681 & 55 & & UUMDL3 \(=\) HYDVVV( IV3 , 2) \(/\) RRMDL 3 & 1681 \\
\hline 1682 & 56 & &  & 1682 \\
\hline 1683 & 57 & & PPMDL3 = ( HYDVVV ( IV3 \% 4) -.5*RRMDL3 * (UUMDL3 * UUMDL3 + & 1683 \\
\hline 1684 & 58 & & VVMDL 3 * VVMDL3) ) * ( \(\operatorname{HYDVVV}(1 \mathrm{l} 3.5)-1.1\) & 1684 \\
\hline 1685 & 59 & C & & 1685 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1686 & 60 & & 2V1 \(=\) RRMDL1 & 1686 \\
\hline 1687 & 61 & & 2V2 \(=\) RRMDL2 & 1687 \\
\hline 1688 & 62 & & 2V3 \(=\) RRMDL3 & 1688 \\
\hline 1689 & 63 & & \(A=(Y V 2-Y V 1) *(Z V 3-2 V 2)-(Y V 3-Y V 2) *(Z V 2-2 V 1)\) & 1689 \\
\hline 1690 & 64 & &  & 1690 \\
\hline 1691 & 65 & C & & 1691 \\
\hline 1692 & 66 & & \(\operatorname{RGRAD}(15,1)=-\mathrm{A}\) * CINV & 1692 \\
\hline 1693 & 67 & & \(\operatorname{RGRAD}(15.2)=-8 * \operatorname{CINV}\) & 1693 \\
\hline 1694 & 68 & C & & 1694 \\
\hline 1695 & 69 & & \(2 \mathrm{VI}=\) UUMDLI & 1695 \\
\hline 1696 & 70 & & ZV2 \(=\) UUMDL2 & 1696 \\
\hline 1697 & 71 & & LV3 \(=\) UUMOL3 & 1697 \\
\hline 1698 & 72 & & A \(=(Y V 2-Y V 1) *(Z V 3-Z V 2)-(Y V 3-Y V 2) *(Z V 2-Z V 1) ~\) & 1698 \\
\hline 1699 & 73 & & B = ( ZV2 - ZV1)* (XV3-XV2) - ( ZV3- ZV2 ** (XV2-XV1) & 1699 \\
\hline 1700 & 74 & C & & 1700 \\
\hline 1701 & 75 & & UGRAD ( IS , 1) =-A* CINV & 1701 \\
\hline 1702 & 76 & & UGRAD ( IS . 2 ) \(=-\mathrm{B} *\) CINV & 1702 \\
\hline 1703 & 71 & C & & 1703 \\
\hline 1704 & 78 & & 2V1 = VVMDLI & 1704 \\
\hline 1705 & 79 & & 2V2 \(=\) VVMDL2 & 1705 \\
\hline 1706 & 80 & & 2V3 \(=\) VVMDL 3 & 1706 \\
\hline 1707 & 81 & & A \(=(\mathrm{YV2}-\mathrm{YV1}) *\) ( \(2 \mathrm{~V} 3-2 V 2)-(Y V 3-Y V 2) *(2 V 2-Z V 1)\) & 1707 \\
\hline 1708 & 82 & & B \(=(\mathrm{ZV2}-\mathrm{ZV1}) *(X V 3-X V 2)-(\) VV3 - ZV2 \() *(X V 2-X V 1)\) & 1708 \\
\hline 1709 & 83 & C & & 1709 \\
\hline 1710 & 84 & & \(\operatorname{VGRAD}(15,1)=-A * \operatorname{CINV}\) & 1710 \\
\hline 1711 & 85 & & \(\operatorname{VGRAD}(15.2)=-\mathrm{B}\) * CINV & 1711 \\
\hline 1712 & 86 & C & & 1712 \\
\hline 1713 & 87 & & ZV1 = PPMOLI & 1713 \\
\hline 1714 & 88 & & 2V2 \(=\) PPMOL 2 & 1714 \\
\hline 1715 & 89 & & 2V3 \(=\) PPMDL3 & 1715 \\
\hline 1716 & 90 & & \(A=(Y V 2-Y V 1) *(Z V 3-Z V 2)-(Y V 3-Y V 2) *(Z V 2-Z V 1) ~\) & 1716 \\
\hline 1717 & 91 & & B \(=(\text { ZV2 - ZV1 })^{*}(X V 3-X V 2)-(Z V 3-2 V 2) *(X V 2-X V 1) ~\) & 1717 \\
\hline 1718 & 92 & C & & 1718 \\
\hline 1719 & 93 & & \(\operatorname{PGRAD}(\) IS, 1\()=-A * \operatorname{CINV}\) & 1719 \\
\hline 1720 & 94 & & \(\operatorname{PGRAD}(15.2)=-\mathrm{*}\) * CINV & 1720 \\
\hline 1721 & 95 & \(\bigcirc\) & & 1721 \\
\hline 1722 & 96 & 105 & continue & 1722 \\
\hline 1723 & 97 & C & & 1723 \\
\hline 1724 & 98 & & NS1 \(=\) NS2 +1 & 1724 \\
\hline 1725 & 99 & & NS2 * NS2 + NOFVES ( INS + 1) & 1725 \\
\hline 1726 & 100 & 90 & CONTINUE & 1726 \\
\hline 1727 & 101 & C & & 1727 \\
\hline 1728 & 102 & \(\mathrm{C}=\) &  & 1728 \\
\hline 1729 & 103 & C & & 1729 \\
\hline 1730 & 104 & C... &  & 1730 \\
\hline 1731 & 105 & C & & 1731 \\
\hline 1732 & 106 & & CALL MONOTN & 1732 \\
\hline 1733 & 107 & C & & 1733 \\
\hline 1734 & 108 & \(C=\) &  & 1734 \\
\hline 1735 & 109 & C & & 1735 \\
\hline 1736 & 110 & C & & 1736 \\
\hline 1737 & 111 & C --- &  & 1737 \\
\hline 1738 & 112 & C & & 1738 \\
\hline 1739 & 113 & C & -- & 1739 \\
\hline 1740 & 114 & & RETURN & 1740 \\
\hline 1741 & 115 & C & ------ & 1741 \\
\hline 1742 & 116 & C & & 1742 \\
\hline 1743 & 117 & C & --- & 1743 \\
\hline 1744 & 118 & & END & 1744 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1745 & 1 & & SUBROUTINE GRADNO & 1745 \\
\hline 1746 & 2 & C & & 1746 \\
\hline 1747 & & & --I & 1747 \\
\hline 1748 & 4 & c & 1 & 1748 \\
\hline 1749 & 5 & C & GRADNO COMPUTE THE GRADIENT FOR SECOND ORDER CALCULATION & 1749 \\
\hline 1750 & 6 & C & USING THE INFORMATION SIORED ASSOCIATED WITH THE & 1750 \\
\hline 1751 & 7 & C & VERTICIES OF THE TRIANGLE TO COMPUTE THE GRADIENT & 1751 \\
\hline 1752 & 8 & ¢ & APPLYIMG THE GRADIENT THEOREM & 1752 \\
\hline 1753 & 9 & C & I & 1753 \\
\hline 1754 & 10 & C- & -.........--1 & 1754 \\
\hline 1755 & 11 & C & & 1755 \\
\hline 1756 & 12 & & include 'cmst00.h' & 1756 \\
\hline 1757 & 13 & & include 'chyd00. \(\mathrm{h}^{\text {' }}\) & 1757 \\
\hline 1758 & 14 & & include 'cint00.n' & 1758 \\
\hline 1759 & 15 & & include 'cphsio.n' & 1759 \\
\hline 1760 & 16 & & include 'cphs20.h' & 1750 \\
\hline 1761 & 17 & c & & 1761 \\
\hline 1762 & 18 & C &  & 1762 \\
\hline 1763 & 19 & c & & 1763 \\
\hline 1764 & 20 & & REAL RRMIDL (MBP), PPMIDL (MBP), UUMIOL (MBP),VVHIDL (MBP) & 1764 \\
\hline 1765 & 21 & & REAL RIGRAD(MBP), PIGRAD(MBP), UIGRAD (MBP), VIGRAD(MBP) & 1765 \\
\hline 1766 & 22 & & REAL RJGRAD (MBP), PJGRAD(MBP), UJGRAD (MBP) , VJGRAD(MBP) & 1766 \\
\hline 1767 & 23 & & REAL PMAX (MBP), PMAX (MBP), UMAX (MBP) , VMAX (MBP) & 1767 \\
\hline 1768 & 24 & & REAL RMIN(MBP), PMIM(MBP). UMIN(MBP), VMIN(MBP) & 1768 \\
\hline 1769 & 25 & & MEAL RLEFTT(MBP), ULEFTT(MBP), VLEFTT(MBP), PLEFTT(MBP) & 1769 \\
\hline 1770 & 26 & & REAL RRIGHT (MBP), URIGHT(MBP), VRIGHT (MBP) , PRIGH (MBP) & 1770 \\
\hline 1771 & 27 & & REAL ROR(3), UOR (3), VOR(3), POR (3) & 1771 \\
\hline 1772 & 28 & & REAL ROL (3), VOL (3), VOL (3), POL (3) & 1772 \\
\hline 1773 & 29 & & REAL AA \((3,3), \mathrm{BP}(3,4), \mathrm{B}(3), \operatorname{INOX}(3), \operatorname{ATEMP}(3,3,3), \mathrm{BTEMP}(3,4,3)\) & 1773 \\
\hline 1774 & 30 & & REAL AAO \((3,3), \mathrm{BBO}(3,4)\) & 1774 \\
\hline 1775 & 31 & & & 1775 \\
\hline 1776 & 32 & \(\mathrm{C}=\) &  & 1776 \\
\hline 1777 & 33 & C & & 1777 \\
\hline 1778 & 34 & C. &  & 1778 \\
\hline 1779 & 35 & C & & 1779 \\
\hline 1780 & 36 & & \(00120 \mathrm{IH}=1.2\) & 1780 \\
\hline 1781 & 37 & & D0 120 IS \(=1 . \mathrm{NS}\) & 1781 \\
\hline 1782 & 38 & & RGRAD ( IS . IH) \(=0\). & 1782 \\
\hline 1783 & 39 & & UGRAD ( IS. IH \()=0\). & 1783 \\
\hline 1784 & 40 & & \(\operatorname{VGRAD}(\) IS , IH \()=0\). & 1784 \\
\hline 1785 & 41 & & PGRAD ( IS , IH ) \(=0\). & 1785 \\
\hline 1786 & 42 & 120 & continue & 1786 \\
\hline 1787 & 43 & C & & 1787 \\
\hline 1788 & 44 & & ME1 = 1 & 1788 \\
\hline 1789 & 45 & & NE2 = NOFVEE (1) & 1789 \\
\hline 1790 & 46 & & DO 90 INE = 1 , NVEEE & 1790 \\
\hline 1791 & 47 & C & & 1791 \\
\hline 1792 & 48 & c &  & 1792 \\
\hline 1793 & 49 & C & & 1793 \\
\hline 1794 & 50 & & 00105 IE \(=\) NE1 . NE2 & 1794 \\
\hline 1795 & 51 & & \(K E=1 E-N E 1+1\) & 1795 \\
\hline 1796 & 52 & C & & 1796 \\
\hline 1797 & 53 & & \(\mathrm{IVI}=\mathrm{JE}(1, \mathrm{IE})\) & 1797 \\
\hline 1798 & 54 & & IV2 \(=\mathrm{JE}(2, \mathrm{IE})\) & 1798 \\
\hline 1799 & 55 & & RRMOL \(=(\) HYOVVV \((1 V 1,1)+\operatorname{HYDVVV}(\) IV2 , 1 ) ) * 5 & 1799 \\
\hline 1800 & 56 & &  & 1800 \\
\hline 1801 & 57 & & VYMDL = ( HYDVVV( IV1 , 3) + HYOVVV( IV2, 3) ) * .5 / RRMOL & 1801 \\
\hline 1802 & 58
59 & & PPMOL \(=(\) HYDVVV \((\) IV1 , 4 \()+\) HYOVVV( IV2, 4 \()\) ) * 5 & 1802 \\
\hline 1803 & 59 & &  & 1803 \\
\hline 1804 & 60 & &  & 1804 \\
\hline 1806 & 62 & C &  & 1806 \\
\hline 1807 & 63 & & RFMIDL ( KE ) = RRMOL & 1807 \\
\hline 1808 & 64 & & UUMIDL ( KE ) = UUMML & 1808 \\
\hline 1809 & 65 & & VVMIDL ( KE ) = VUMDL & 1809 \\
\hline 18:0 & 66 & & PPMIDL ( KE ) = PPMDL & 1810 \\
\hline 1811 & 67 & C & & 1811 \\
\hline 1812 & 68 & 105 & continue & 1812 \\
\hline 1813 & 69 & C & & 1813 \\
\hline 1814 & 70 & & DO 110 IE = NE1. NE2 & 1814 \\
\hline 1815 & 71 & & KE - IE - NEI + 1 & 1815 \\
\hline 1816 & 72 & C & & 1816 \\
\hline 1817 & 73 & & XEXN = XE ( 1 , IE ) * XN( IE ) & 1817 \\
\hline 1818 & 74 & & XEYN \(=\) XE ( 1 , IE ) * YN( IE ) & 1818 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1819 & 75 & C & & 1819 \\
\hline 1820 & 76 & & RIGRAD ( KE ) = RRMIDL ( KE ) * XEXN & 1820 \\
\hline 1821 & 71 & & \(\operatorname{UIGRAD}(\mathrm{KE})=\operatorname{UUMIDL}(\mathrm{KE}) *\) XEXN & 1821 \\
\hline 1822 & 78 & & VIGRAD ( KE ) = VVMIDL (KE ) * XEXX & 1822 \\
\hline 1823 & 79 & & PIGRAD ( KE ) = PPMIDL ( KE ) * XEXH & 1823 \\
\hline 1824 & 80 & C & & 1824 \\
\hline 1825 & 81 & & RJGRAD ( KE ) = RRMIDL ( KE ) * XEYM & 1825 \\
\hline 1826 & 82 & & UJGRAD ( KE ) = VUMIDL ( KE ) * XEYN & 1826 \\
\hline 1827 & 83 & & VJGRAD ( KE ) = VVMIDL (KE ) * XEYM & 1827 \\
\hline 1828 & 84 & & PJGRAD ( KE ) = PPMIDL (KE ) * XEYM & 1828 \\
\hline 1829 & 85 & C & & 1829 \\
\hline 1830 & 85 & 110 & continue & 1830 \\
\hline 1831 & 87 & c & & 1831 \\
\hline 1832
1833 & 88 & & DO 130 IE = NE1, NE2 & 1832 \\
\hline 1833
1834 & 89
90 & c & KE = IE - NE1 + 1 & 1833 \\
\hline 1835 & 91 & & ISL \(=\mathrm{JE}\) ( 3 , IE ) & 1834 \\
\hline 1836 & 92 & & ISR \(=\mathrm{JE}(4, \mathrm{IE})\) & 1836 \\
\hline 1837 & 93 & & \(\mathrm{IJE5}=\mathrm{JE}(5 . \mathrm{IE}\) ) & 1837 \\
\hline 1838 & 94 & C & & 1838 \\
\hline 1839 & 95 & & IF ( IJE5 . EQ . O) THEN & 1839 \\
\hline 1840 & 96 & C & & 1840 \\
\hline 1841 & 97 & & \(\operatorname{RGRAD}(\) ISL, 1\()=\operatorname{RGRAD}(\operatorname{ISL}, 1)+\operatorname{RIGRAD}(\mathrm{KE})\) & 1841 \\
\hline 1842 & 98
99 & & \(\operatorname{RGRADAD}(\) ISR,\(~ 1)=\operatorname{RGRAD}(\) ISR, 1\()-\operatorname{RIGRAD}(\mathrm{KE})\) & 1842 \\
\hline 1844 & 100 & &  & 1843
1844 \\
\hline 1845 & 101 & & \(\operatorname{UGRAD}(\) ISL, 1\()=\operatorname{UGRAD}(\) ISL, 1\()+\operatorname{UIGRAD}(\mathrm{KE})\) & 1845 \\
\hline 1846 & 102 & & \(\operatorname{UGRAD}(\operatorname{ISR}, 1)=\operatorname{UGRAD}(15 R, 1)-\operatorname{UIGRAD}(\mathrm{KE})\) & 1846 \\
\hline 1847 & 103 & & UGRAD ( ISL, 2) \(=\) UGRAD ( ISL , 2 ) + UJGRAD ( KE ) & 1847 \\
\hline 1848 & 104 & & UGRAD ( ISR , 2) = UGRAD ( ISR , 2) - UJGRAO ( KE ) & 1848 \\
\hline 1849 & 105 & & \(\operatorname{VGRAD}(\) ISL, 1\()=\operatorname{VGRAD}(\) ISL, 1\()+\operatorname{VIGRAD}(\mathrm{KE})\) & 1849 \\
\hline 1850 & 106 & & VGRAD ( ISR , 1) = VGRAD ( ISR , 1 ) - VIIGRAD ( KE ) & 1850 \\
\hline 1851 & 107 & & \(\operatorname{VGRAD}(\) ISL , 2 \()=\operatorname{VGRAD}(\) ISL, 2\()+\operatorname{VJGRAD}(\mathrm{KE})\) & 1851 \\
\hline 1852 & 108 & & VGRAD ( ISR , 2) = VGRAD ( ISR , 2) - VVGRAD ( KE ) & 1852 \\
\hline 1853 & 109 & & PGRAD ( ISL , 1) = PGRAD ( ISL , 1) + PIGRAO ( KE ) & 1853 \\
\hline 1854 & 110 & & PGRAD ( ISR , 1) \(=\) PGRAD ( ISR \(\cdot 12\) ) - PIGRAD ( KE ) & 1854 \\
\hline 1856 & 111 & & PGRAD ( ISL 2 2) \(=\) PGRAD ( ISL \(\cdot 2)+\) PJGRAD ( KE \()\) & 1855 \\
\hline 1857 & 113 & c &  & 1857 \\
\hline 1858 & 114 & & ELSE & 1858 \\
\hline 1859 & 115 & \(\bigcirc\) & & 1859 \\
\hline 1860 & 116 & & \(\operatorname{RGRAD}(\) ISL, 1\()=\operatorname{RGRAD}(\operatorname{ISL}, 1)+\operatorname{RIGRAD}(\mathrm{KE})\) & 1860 \\
\hline 1861 & 117 & & RGRAD ( ISL . 2 ) \(=\operatorname{RGRAD}(\operatorname{ISL}, 2\) ) + RJGRAD ( KE ) & 1861 \\
\hline 1862 & 118 & & UGRAD (ISL,\(\left.\frac{1}{2}\right)=\operatorname{UGRAD}(15 L, 1)+\operatorname{IIGRAD}(\mathrm{KE})\) & 1862 \\
\hline 1863 & 119 & & UGRAD ( ISL, 2) \(=\) UGRAD ( ISL, 2) + UJGRAD ( KE ) & 1863 \\
\hline 1864 & 120 & & VGRAD ( ISL \(\cdot 1\) ) = VGRAD ( ISL * 1 ) + VIGRAD ( KE ) & 1864 \\
\hline 1865
1866 & 121 & & \(\operatorname{VGRAD}(\) ISL, 2\()=\operatorname{VGRAD}(15 L, 2)+\operatorname{VJGRAD}(\mathrm{KE})\) & 1865 \\
\hline 1866 & 122 & & \(\operatorname{PGRAD}(1 S L, 1)=\operatorname{PGRAD}(15 L, 1)+\operatorname{PIGRAD}(\mathrm{KE})\) & 1866 \\
\hline 1868 & 124 & C & PGRD ( ISL , 2) \(=\) PGRAD ( ISL , 2) \(+\operatorname{PJGRAD}(\) KE \()\) & 1868 \\
\hline 1869 & 125 & & END If & 1869 \\
\hline 1870 & 126 & c & & 1870 \\
\hline 1871 & 127 & 130 & CONTINUE & 1871 \\
\hline 1872 & 128 & & NE1 \(=\) NE2 + 1 & 1872 \\
\hline 1873 & 129 & & NE2 = NE2 + NOFVEE ( 1 NE + 1) & 1873 \\
\hline 1874 & 130 & 90 & CONTINUE & 1874 \\
\hline 1875 & 131 & C & & 1875 \\
\hline 1876 & 132 & & D0 \(140 \mathrm{IH}=1.2\) & 1876 \\
\hline 1877 & 133 & & DO 140 IS \(=1\), NS & 1877 \\
\hline 1878 & 134 & & \(\operatorname{RGRAD}(\) IS , IH ) \(=\operatorname{RGRAD}(\) IS , IH ) * SAREA ( IS ) & 1878 \\
\hline 1879 & 135 & & UGRAD ( IS, IH ) = UGRAD ( IS. IH ) * SAREA ( IS ) & 1879 \\
\hline 1880 & 136 & & \(\operatorname{VGRAD}(\) IS. IH \()=\operatorname{VGRAD}(\) IS,\(~ I H) *\) SAREA ( IS \()\) & 1880 \\
\hline 1881 & 137 & & PGRAD ( IS . IH ) = PGRAD ( IS , IH) * SAREA ( IS ) & 1881 \\
\hline 1882 & 138 & 140 & continue & 1882 \\
\hline 1883 & 139 & c & & 1883 \\
\hline 1884 & 140 & &  & 1884 \\
\hline 1885 & 141 & C & & 1885 \\
\hline 1886 & 142 & C-- & CALL THE MONOTONICITY LIMITER & 1886 \\
\hline 1887 & 143 & C & & 1887 \\
\hline 1888 & 144 & & CALL MONOTN & 1888 \\
\hline 1889 & 145 & C & & 1889 \\
\hline 1890 & 146 & &  & 1890 \\
\hline 1891 & 147 & C & & 1891 \\
\hline 1892 & 148 & C & & 1892 \\
\hline
\end{tabular}

\section*{Th}
gradhd.f
SUBROUTINE GRADNO
page
\begin{tabular}{|c|c|c|c|c|}
\hline 1893 & 149 & C & EXIT POINT FROM SUBROUTINE & 1893 \\
\hline 1894 & 150 & C & & 1894 \\
\hline 1895 & 151 & C & ---*-- & 1895 \\
\hline 1896 & 152 & & RETURN & 1896 \\
\hline 1897 & 153 & C & ---w--- & 1897 \\
\hline 1898 & 154 & C & & 1898 \\
\hline 1899 & 155 & C & --- & 1899 \\
\hline 1900 & 156 & & END & 1900 \\
\hline
\end{tabular}

Thu Jul 1 14:15:55 1993 gradhd.f SUBROUTINE GRADNS
\begin{tabular}{|c|c|c|c|c|}
\hline 1901 & 1 & & SUBROUTINE GRADNS & 1901 \\
\hline 1902 & 2 & C & & 1902 \\
\hline 1903 & 3 & C & ---------------1 & - 903 \\
\hline 1904 & 4 & C & I & 04 \\
\hline 1905 & 5 & C & GRADNS COMPUTE THE GRADIENT FOR SECOND ORDER CALCULATION I & 1905 \\
\hline 1906 & 6 & C & USING THE INFORMATION ASSOCIATE WITH THE BARICENTER I & 1906 \\
\hline 1907 & 7 & C & OF THE TWO TRIANGLES FROM THE TWO SIDE OF EACH & 1907 \\
\hline 1908 & 8 & C & EDGE COMPUTING THE VALUE FOR THE EDGE AND APPLYING I & 1908 \\
\hline 1909 & 9 & \(C\) & THE GRADIENT THEOREM TO COMPUTE THE GRADIENT I & 1909 \\
\hline 1910 & 10 & C & 1 & 1910 \\
\hline 1911 & 11 & C & -------1 & 1911 \\
\hline 1912 & 12 & C & & 1912 \\
\hline 1913 & 13 & & include \({ }^{\text {c }}\) cmsh00.h' & 1913 \\
\hline 1914 & 14 & & include 'chyd00.n' & 1914 \\
\hline 1915 & 15 & & include 'cint00.h' & 1915 \\
\hline 1916 & 16 & & include 'cphsi0.h' & 1916 \\
\hline 1917 & 17 & & include 'cphs20.h' & 1917 \\
\hline 1918 & 18 & \(C\) & & 1918 \\
\hline 1919 & 19 & C= &  & 1919 \\
\hline 1920 & 20 & C & & 1920 \\
\hline 1921 & 21 & & REAL RRMIDL (MBP), PPMIDL (MBP), UUMIDL (MBP) , VVMIDL (MBP) & 1921 \\
\hline 1922 & 22 & & REAL RIGRAD (MBP) , PIGRAD (MBP), UIGRAD (MBP), VIGRAD (MBP) & 1922 \\
\hline 1923 & 23 & & REAL RJJGRAD (MBP) , PJGRAD (MBP) , UJGRAD (MBP) , VJGRAD (MBP) & 1923 \\
\hline 1924 & 24 & & REAL RMAX (MBP), PMAX (MBP), UMAX (MBP), VMAX (MBP) & 1924 \\
\hline 1925 & 25 & & REAL RMIN(MBP), PMIN(MBP), UMIN(HBP), VMIN(MBP) & 1925 \\
\hline 1926 & 26 & & REAL RLEFTT(MBP), ULEFTT(MBP), VLEFTT(MBP) , PLEFTT(MBP) & 1926 \\
\hline 1927 & 27 & & REAL RRIGHT (MBP), URIGHT (MBP), VRIGHT (MBP), PRIGHT (MBP) & 1927 \\
\hline 1928 & 28 & & REAL ROR (3), UOR (3), VOR (3), POR(3) & 1928 \\
\hline 1929 & 29 & & REAL ROL (3), VOL (3), VOL (3), POL (3) & 1929 \\
\hline 1930 & 30 & & REAL \(\operatorname{AA}(3,3), \operatorname{BB}(3,4), \mathrm{B}(3), \operatorname{INDX}(3), \operatorname{ATEMP}(3,3,3), 8 \operatorname{TEMP}(3,4,3)\) & 1930 \\
\hline 1931 & 31 & & REAL AAO 3,3\(), 880(3,4)\) & 1931 \\
\hline 1932 & 32 & C & & 1932 \\
\hline 1933 & 33 & C= \(=\) &  & 1933 \\
\hline 1934 & 34 & C & & 1934 \\
\hline 1935 & 35 & C &  & 1935 \\
\hline 1936 & 36 & C & & 1936 \\
\hline 1937 & 37 & & DO \(120 \mathrm{IH}=1.2\) & 1937 \\
\hline 1938 & 38 & & DO \(120 \mathrm{IS}=1 . N S\) & 1938 \\
\hline 1939 & 39 & & RGRAD ( IS . IH ) \(=0\). & 1939 \\
\hline 1940 & 40 & & UGRAD ( IS . IH) \(=0\). & 1940 \\
\hline 1941 & 41 & & \(\operatorname{VGRAD}(1 S, I H)=0\). & 1941 \\
\hline 1942 & 42 & & \(\operatorname{PGRAD}(15, I H)=0\). & 1942 \\
\hline 1943 & 43 & 120 & CONTINUE & 1943 \\
\hline 1944 & 44 & C & & 1944 \\
\hline 1945 & 45 & & NE1 = 1 & 1945 \\
\hline 1946 & 46 & & NE2 = NOFVEE ( 1) & 1946 \\
\hline 1947 & 47 & & 0090 INE = 1 , NVEEE & 1947 \\
\hline 1948 & 48 & C & & 1948 \\
\hline 1949 & 49 & C &  & 1949 \\
\hline 1950 & 50 & C & & 1950 \\
\hline 1951 & 51 & & O0 105 IE = NEI , NE2 & 1951 \\
\hline 1952 & 52 & & KE - IE - NE1 + 1 & 1952 \\
\hline 1953 & 53 & 6 & & 1953 \\
\hline 1954 & 54 & & \(15 L=J E(3 . I E)\) & 1954 \\
\hline 1955 & 55 & & \(I S R=J E(4, I E)\) & 1955 \\
\hline 1956 & 56 & & IJE5 - JE ( 5 , IE ) & 1956 \\
\hline 1957 & 57 & C & & 1957 \\
\hline 1958 & 58 & & IF ( IJE5 . EQ . O) THEN & 1958 \\
\hline 1959 & 59 & & & 1959 \\
\hline 1960 & 60 & & RRMDL = XYMIOL ( IE ) * HYDV ( ISR , 1) - & 1960 \\
\hline 1961 & 61 & &  & 1961 \\
\hline 1962 & 62 & & UUMDL \(=\) XYMIDL ( IE ) * ( HYOV( ISR , 2 ) - & 1962 \\
\hline 1963 & 63 & & . HYDV (ISL . 2 ) ) + HYDV( ISL . 2 ) & 1963 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1964 & 64 & & VVMDL \(=\) XYMIDL ( IE ) * ( HYOV ( ISR , 3) & 1964 \\
\hline 1965 & 65 & &  & 1965 \\
\hline 1966 & 66 & & PPMDL = XYMIDL ( IE ) * ( HYOV( ISR , 4 ) - & 1966 \\
\hline 1967 & 67 & & HYDV( ISL . 4) ) + HYOV( ISL . 4) & 1967 \\
\hline 1968 & 68 & C & & 1968 \\
\hline 1969 & 69 & & ELSE & 1969 \\
\hline 1970 & 70 & C & & 1970 \\
\hline 1971 & 71 & & RRMDL \(=\) HYOV( ISL , 1 ) & 1971 \\
\hline 1972 & 72 & & UUMDL \(=\) HYOV( ISL, 2) & 1972 \\
\hline 1973 & 73 & & VVMDL \(=\) HYOV ( ISL , 3 ) & 1973 \\
\hline 1974 & 74 & & PPMDL \(=\) HYDV( ISL , 4) & 1974 \\
\hline 1975 & 75 & \(i\) & & 1975 \\
\hline 1976 & 76 & & END IF & 1976 \\
\hline 1977 & 77 & c & & 1977 \\
\hline 1978 & 78. & & RRMIDL ( KE ) \(=\) RRMDL & 1978 \\
\hline 1979 & 79 & & UUMIDL ( KE ) = UUMDL & 1979 \\
\hline 1980 & 80 & & VYMIDL ( KE ) = WMOL & 1980 \\
\hline 1981 & 81 & & PPMIDL ( KE ) = PPMOL & 1981 \\
\hline 1982 & 82 & C & & 1982 \\
\hline 1983 & 83 & 105 & CONTINUE & 1983 \\
\hline 1984
1985 & 84 & C & & 1984 \\
\hline 1985 & 85 & & DO 110 IE \(=\) NE1, NE2 & 1985 \\
\hline 1986 & 86 & & \[
K E=I E-N E I+1
\] & 1986 \\
\hline 1987 & 87 & c & & 1987 \\
\hline 1988 & 88 & & XEXN \(=\) XE (1, IE ) * XN( IE ) & 1988 \\
\hline 1989 & 89 & & XEYN \(=\) XE ( 1, IE ) * YN( IE ) & 1989 \\
\hline 1990 & 90 & C & & 1990 \\
\hline 1991 & 91 & & RIGRAD ( KE ) = RRMIDL ( KE ) * XEXN & 1991 \\
\hline 1992 & 92 & & UIGRAD ( KE ) = UUMIDL ( KE ) * XEXN & 1992 \\
\hline 1993 & 93 & & VIGRAD ( KE ) = VVMIDL (KE) * XEXN & 1993 \\
\hline 1994 & 94 & & PIGRAD ( KE ) = PPMIDL ( KE ) * XEXN & 1994 \\
\hline 1995
1996 & 95 & C & & 1995 \\
\hline 1996 & 96
97 & & RJGRAD( KE ) \(=\) RRMIDL ( KE ) * XEYN & 1996 \\
\hline 1997 & 97
98 & & UJGRAD
\(\operatorname{VJGRAD}(\mathrm{KE})\) & 1997 \\
\hline 1999 & 99 & & PJGRAD ( KE) \(=\) PPMIDL \((\mathrm{KE}) *\) XEYM & 1998 \\
\hline 2000 & 100 & C & & 2000 \\
\hline 2001 & 101 & 110 & continue & 2001 \\
\hline 2002 & 102 & c & & 2002 \\
\hline 2003 & 103 & & DO \(130 \mathrm{IE}=\) NE1, NE2 & 2003 \\
\hline 2004 & 104 & & KE - IE - NE1 + 1 & 2004 \\
\hline 2005 & 105 & \(c\) & & 2005 \\
\hline 2006
2007 & 106 & & ISL \(=\mathrm{JE}(3, \mathrm{IE})\) & 2006 \\
\hline 2007 & 107 & & ISR \(=\) JE ( \(4, I E)\) & 2007 \\
\hline 2008
2009 & 108 & & \(1 \mathrm{JE5}=\mathrm{JE}(5, \mathrm{IE})\) & 2008 \\
\hline 2010 & 110 & c & IF ( IJE5 . EQ . 0 ) THEN & 2009
2010 \\
\hline 2011 & 111 & C & & 2011 \\
\hline 2012 & 112 & & \(\operatorname{RGRAD}(\operatorname{ISL}, 1)=\operatorname{RGRAD}(\operatorname{ISL}, 1)+\operatorname{RIGRAD}(\mathrm{KE})\) & 2012 \\
\hline 2013 & 113 & &  & 2013 \\
\hline 2014 & 114
115 & & \(\operatorname{RGRAD}(\operatorname{ISL}, 2)=\operatorname{RGRAD}(\operatorname{ISL}, 2)+\operatorname{RJGRAD}(\mathrm{KE})\)
\(\operatorname{RGRAD}(\operatorname{ISR}, 2)\)
( & 2014
2015 \\
\hline 2016 & 116 & & \(\operatorname{UGRAD}(\operatorname{ISL}, 1)=\operatorname{UGRAD}(\operatorname{ISL}, 1)+\operatorname{UIGRAD}(\mathrm{KE})\) & 2016 \\
\hline 2017 & 117 & & UGRAD ( ISR , 1) = UGRAD ( ISR , 1 ) - UIGRAD ( KE ) & 2017 \\
\hline 2018 & 118 & & \(\operatorname{UGRAD}(15 L, 2)=\operatorname{UGRAD}(\) ISL, 2\()+\) UJGRAD ( KE ) & 2018 \\
\hline 2019
2020 & 119 & & UGRAD ( ISR , 2) = UGRAD ( ISR , 2) - UJGGRAD ( KE ) & 2019 \\
\hline 2021 & 121 & &  & 2020 \\
\hline 2022 & 122 & & \(\operatorname{VGRAD}(\) ISL, 2\()=\operatorname{VGRAD}(\mathrm{ISL} \cdot 2)+\operatorname{VJGRAD}(\mathrm{KE})\) & 2022 \\
\hline 2023 & 123 & & \(\operatorname{VGRAD}(15 R, 2)=\operatorname{VGRAD}(15 R, 2)-V J G R A D(K E)\) & 2023 \\
\hline 2024 & 124 & & \(\operatorname{PGRAD}(15 L, 1)=\operatorname{PGRAD}(\mathrm{ISL}, 1)+\operatorname{PIGRAD}(\mathrm{KE})\) & 2024 \\
\hline 2025 & 125 & & PGRAD ( ISR , 1) - PGRAD ( ISR . 1) - PIGRAD ( KE ) & 2025 \\
\hline 2026 & 126 & & \(\operatorname{PGRAD}(15 L, 2)=\operatorname{PGRAD}(\mathrm{ISL}, 2)+\operatorname{PJGRAD}(\mathrm{KE})\) & 2026 \\
\hline 2027 & 127 & & PGRAD ( ISR , 2) = PGRAD ( ISR . 2 ) - PJGRAD ( KE) & 2027 \\
\hline 2028 & 128 & \(\bigcirc\) & & 2028 \\
\hline 2029 & 129 & & ELSE & 2029 \\
\hline 2030 & 130 & c & & 2030 \\
\hline 2031 & 131 & & RGRAD ( ISL , 1) = RGRAO ( ISL , 1) + RIGRAD ( KE ) & 2031 \\
\hline 2032 & 132 & & RGRAD ( 1SL , 2) \(=\) RGRAD ( ISL. 2 ) + RJGRAD ( KE ) & 2032 \\
\hline 2033
2034 & 133 & & UGRAD ( ISL , 1) = UGRAD ( ISL , 1 ) + UIGRAD ( KE ) & 2033 \\
\hline 2034
2035 & 134 & & UGRAD ( ISL , 2) = UGRAD ( ISL , 2) + USGRAD ( KE ) & 2034 \\
\hline 2035 & 135 & & \(\operatorname{VGRAD}(\) ISL, 1\()=\operatorname{VGRAD}(15 L .1)+\operatorname{VIGRAD}(\mathrm{KE})\) & 2035 \\
\hline 2036 & 136 & & VGRAD ( ISL , 2) = VGRAD ( ISL, 2) + VJJGRAD ( KE ) & 2036 \\
\hline 2037 & 137 & & \(\operatorname{PGRAD}(1 S L .1)=\operatorname{PGRAD}(15 L, 1)+\operatorname{PIGRAD}(\mathrm{KE})\) & 2037 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2038 & 138 & & PGRAD ( ISL , 2) = PGRAD ( ISL , 2) + PJGRAD ( KE ) & 2038 \\
\hline 2039 & 139 & \(c\) & & 2039 \\
\hline 2040 & 140 & & END If & 2040 \\
\hline 2041 & 141 & \(\stackrel{ }{C}\) & & 2041 \\
\hline 2042 & 142 & 130 & CONTINUE & 2042 \\
\hline 2043 & 143 & & NE1 \(=\) NE2 + 1 & 2043 \\
\hline 2044 & 144 & & NE2 = NE2 + NOFVEE ( INE + 1 ) & 2044 \\
\hline 2045 & 145 & 90 & CONTINUE & 2045 \\
\hline 2046 & 146 & C & & 2046 \\
\hline 2047 & 147 & & DO 140 IH \(=1.2\) & 2047 \\
\hline 2048 & 148 & & 00140 IS \(=1\). NS & 2048 \\
\hline 2049 & 149 & & RGRAO( IS , IH ) = RGRAD( IS . IH ) * SAREA ( IS ) & 2049 \\
\hline 2050 & 150 & & UGRAD ( IS, IH ) = UGRad ( IS, IH) * SAREA ( IS ) & 2050 \\
\hline 2051 & 151 & & \(\operatorname{VGRAD}(\) IS , IH \()=\operatorname{VGRAD}(\mathrm{IS}, \mathrm{IH}) *\) SAREA \((\) IS \()\) & 2051 \\
\hline 2052 & 152 & & \(\operatorname{PGRAD}(\) IS . IH ) \(=\operatorname{PGRAD}(\) IS , IH ) * SAREA ( IS ) & 2052 \\
\hline 2053 & 153 & 140 & continue & 2053 \\
\hline 2054 & 154 & C & & 2054 \\
\hline 2055 & 155 & C= &  & 2055 \\
\hline 2056 & 156 & c & & 2056 \\
\hline 2057 & 157 & C & CALL THE MONOTONICITY LIMITER - & 2057 \\
\hline 2058 & 158 & C & & 2058 \\
\hline 2059 & 159 & & CALL MONOTN & 2059 \\
\hline 2060 & 160 & c & & 2060 \\
\hline 2061 & 161 & \(\mathrm{C}=\) &  & 2061 \\
\hline 2062 & 162 & C & & 2062 \\
\hline 2063 & 163 & C & & 2063 \\
\hline 2064 & 164 & C &  & 2064 \\
\hline 2065 & 165 & C & & 2065 \\
\hline 2066 & 166 & C & ---- & 2066 \\
\hline 2067 & 167 & & RETURN & 2067 \\
\hline 2068 & 168 & c & -...-- & 2068 \\
\hline 2069 & 169 & c & & 2069 \\
\hline 2070 & 170 & C & --- & 2070 \\
\hline 2071 & 171 & & END & 2071 \\
\hline
\end{tabular}

Thu Jul 1 14:15:55 1993 gradhd.f SUBROUTINE LUDCMP
\begin{tabular}{|c|c|c|c|c|}
\hline 2072 & 1 & & SUBROUTINE LUDCMP(A,N,NP,INDX,D) & 2072 \\
\hline 2073 & 2 & C & & 2073 \\
\hline 2074 & & C. & & 2074 \\
\hline 2075 & 4 & c & & 2075 \\
\hline 2076 & 5 & C & Perform an l u decomposition of the a matrix & 2076 \\
\hline 2077 & 6 & C & & 2077 \\
\hline 2078 & 7 & C & & 2078 \\
\hline 2079 & 8 & [ & & 2079 \\
\hline 2080 & 9 & & PARAMETER ( MMAX \(^{\text {a }} 100\), TINY \(=1.0 \mathrm{E}-20\) ) & 2080 \\
\hline 2081 & 10 & & DIMENSION A(NP, NP), iNDX( N ) , VV( NMAX ) & 2081 \\
\hline 2082 & 11 & & \(\mathrm{D}=1\). & 2082 \\
\hline 2083 & 12 & & D0 12 [ \(=1, \mathrm{~N}\) & 2083 \\
\hline 2084 & 13 & & AAMAX \(=0\). & 2084 \\
\hline 2085 & 14 & & D0 \(11 \mathrm{~J}=1\), N & 2085 \\
\hline 2086 & 15 & & If (ABS(A(1,J)).GT.AAMAX) \(\operatorname{AAMAX}=\operatorname{ABS}(\mathrm{A}(\mathrm{I}, \mathrm{J})\) ) & 2086 \\
\hline 2087 & 16 & 11 & CONTINUE & 2087 \\
\hline 2088 & 17 & & If (AAMAX.EQ.O.) PAUSE 'Singular matrix.' & 2088 \\
\hline 2089 & 18 & & VV(I) \(=1 . /\) AAMAX & 2089 \\
\hline 2090 & 19 & 12 & CONTINUE & 2090 \\
\hline 2091 & 20 & & D0 \(19 \mathrm{~J}=1, \mathrm{~N}\) & 2091 \\
\hline 2092 & 21 & & IF (J.GT.1) THEN & 2092 \\
\hline 2093 & 22 & & DO 14 I=1, J-1 & 2093 \\
\hline 2094 & 23 & & SUM \(=\) A (I, J \()\) & 2094 \\
\hline \(2095{ }^{\text {* }}\) & 24 & & IF (1.gT.1)THEN & 2095 \\
\hline 2096 & 25 & & DO \(13 \mathrm{~K}=1,1-1\) & 2096 \\
\hline 2097 & 26 & & SUM=SUM-A( \(\mathrm{I}, \mathrm{K}) * A(\mathrm{~K}, \mathrm{~J})\) & 2097 \\
\hline 2098 & 27 & 13 & CONTINUE & 2098 \\
\hline 2099 & 28 & & A \((1 . J)=\) SUM & 2099 \\
\hline 2100 & 29 & & endif & 2100 \\
\hline 2101 & 30 & 14 & Continue & 2101 \\
\hline 2102 & 31 & & ENDIF & 2102 \\
\hline 2103 & 32 & & AAMAX \(=0\). & 2103 \\
\hline 2104 & 33 & & \(0016 \mathrm{I}=\mathrm{J}, \mathrm{N}\) & 2104 \\
\hline 2105 & 34 & & SUMm \({ }^{\text {( }}\) (, J ) & 2105 \\
\hline 2106 & 35 & & If (J.GT.1)THEN & 2106 \\
\hline 2107 & 36 & & D0 \(15 \mathrm{~K}=1, \mathrm{~J}-1\) & 2107 \\
\hline 2108 & 37 & & SUM-SUM-A(I,K)*A(K,J) & 2108 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2109 & 38 & 15 & comtinue & 2109 \\
\hline 2110 & 39 & & \(A(1, J)=S U M\) & 2110 \\
\hline 2111 & 40 & & ENDIF & 2111 \\
\hline 2112 & 41 & & DUM \(=\mathrm{VV}(1) * A B S\) (SUM) & 2112 \\
\hline 2113 & 42 & & IF (DUM.GE.AAMAX) THEN & 2113 \\
\hline 2114 & 43 & & IMAX \(=1\) & 2114 \\
\hline 2115 & 44 & & AAMAX=DUM & 2115 \\
\hline 2116 & 45 & & ENDIF & 2116 \\
\hline 2117 & 46 & 16 & continue & 2117 \\
\hline 2118 & 47 & & IF (J. NE. IMAX) THEN & 2118 \\
\hline 2119 & 48 & & D0 \(17 \mathrm{k}=1, \mathrm{~N}\) & 2119 \\
\hline 2120 & 49 & & DUM \(=A(\) IMAX,\(K\) ) & 2120 \\
\hline 2121 & 50 & & \(A(I M A X, K)=A(J, K)\) & 2121 \\
\hline 2122 & 51 & & A(J,K) =OUM & 2122 \\
\hline 2123 & 52 & 17 & continue & 2123 \\
\hline 2124 & 53 & & D=-D & 2124 \\
\hline 2125 & 54 & & VV(IMAX) \(=\) VV(J) & 2125 \\
\hline 2126 & 55 & & ENDIF & 2126 \\
\hline 2127 & 56 & & INDX ( ) = Imax & 2127 \\
\hline 2128 & 57 & & IF (J.ME.N)THEN & 2128 \\
\hline 2129 & 58 & & IF (A(J, J) EQ . O. )A \(\mathrm{J}, \mathrm{J})=\) TINY & 2129 \\
\hline 2130 & 59 & &  & 2130 \\
\hline 2131 & 60 & & D0 \(18 \mathrm{I}=\mathrm{J}+1 . \mathrm{N}\) & 2131 \\
\hline 2132 & 61 & & \(A(1, J)=A(1, J) * D U M\) & 2132 \\
\hline 2133 & 62 & 18 & COMTINUE & 2133 \\
\hline 2134 & 6 & & ENOIF & 2134 \\
\hline 2135 & 64 & 19 & cominnoe & 2135 \\
\hline 2137 & 65
66 & & \(\left.\operatorname{IF}_{\text {RETURN }}(\mathrm{A}, \mathrm{N}) . \mathrm{EQ}, 0.\right) A(N, N)=\) TINY & 2136 \\
\hline 2138 & 67 & & END & 2137 \\
\hline 2139 & 68 & c & & 2138 \\
\hline
\end{tabular}

Thu Jul 1 14:15:55 1993
\begin{tabular}{ll}
2140 & 1 \\
2141 & 2 \\
2142 & 3 \\
2143 & 4 \\
2144 & 5 \\
2145 & 6 \\
2146 & 7 \\
2147 & 8 \\
2148 & 9 \\
2149 & 10 \\
2150 & 11 \\
2151 & 12 \\
2152 & 13 \\
2153 & 14 \\
2154 & 15 \\
2155 & 16 \\
2156 & 17 \\
2157 & 18 \\
2158 & 19 \\
2159 & 20 \\
2150 & 21 \\
2161 & 22 \\
2162 & 23 \\
2163 & 24 \\
2164 & 25 \\
2165 & 26 \\
2166 & 27
\end{tabular}

\footnotetext{
SUBROUTINE LUBKSB(A,N,NP,INDX,B)
DIMENSION A(NP,NP).INDX(N),B(N)
II \(=0\)
DO \(12 \mathrm{I}=1\), N
LL=INDX(I)
SUM=B(LL)
B(LL) \(=8\) (I)
DO \(11 \mathrm{~J}=11,1-1\)
SUM=SUM-A(1,J)*B(J)
}

2140
2141
2142
2143
2144 2146

2148
2148
CONTINUE \(\quad 2149\)
ELSE IF (SUM.NE.O.) THEN 2151
EMDIF 2153
\(B(I)=\) SUM 2154
12 CONTINUE 2155
D0 \(14 \mathrm{I}=\mathrm{N}, 1,-1 \quad 2156\)
SUM=B(1) 2157
IF(I.LT.N)THEN 2158
\(0013 \mathrm{~J}=1+1, \mathrm{~N} \quad 2159\)
SUM \(=\) SUM \(-A(1, \mathrm{~J}) * B(J) \quad 2160\)
CONTINUE 2161
ENDIF 2162
B(I) \(=\) SUM \(/ A(1.1) \quad 2163\)
14 CONTINUE 2164
RETURN 2165
END 2166
\begin{tabular}{|c|c|c|c|c|}
\hline 2167 & 1 & & SUBROUTIME FIRST & 2167 \\
\hline 2168 & 2 & C & & 2168 \\
\hline 2169 & 1 & & ----1 & 2169 \\
\hline 2170 & 4 & C & FIRST 15 USED TO FIMD THE IEFT And RIGHT IMTERFACE I & 2170 \\
\hline 2171 & 5 & c & FIRST IS USED TO FIND THE LEFT AND RIGHT INTERFACE & 2171 \\
\hline 2172 & 6 & c & QUANTITIES TO FIRST ORDER WITHOUT USING EITHER THE & 2172 \\
\hline 2173 & 7 & \({ }_{5}\) & GRADIENT OR THE CHARACTERISTICS. & 2173 \\
\hline 2174 & 8 & C & I & 2174 \\
\hline 2175 & 9 & & -.-.-.-.----1 & 2175 \\
\hline 2176 & 10 & C & & 2176 \\
\hline 2177 & 11 & & include 'cmsh00.h' & 2177 \\
\hline 2178 & 12 & & include 'chyd00.h' & 2178 \\
\hline 2179 & 13 & & include 'cint00.h' & 2179 \\
\hline 2180 & 14 & & include 'cphsi0.h' & 2180 \\
\hline 2181 & 15 & & include 'cphs20.h' & 2181 \\
\hline 2182 & 16 & C & & 2182 \\
\hline 2183 & 17 & C= &  & 2183 \\
\hline 2184 & 18 & C & & 2184 \\
\hline 2185 & 19 & & D0 110 IE = 1. NE & 2185 \\
\hline 2186 & 20 & & ISL = JE ( 3 . IE ) & 2186 \\
\hline 2187 & 21 & & ISR = JE ( 4 . IE ) & 2187 \\
\hline 2188 & 22 & & IJE5 = JE ( 5 , IE ) & 2188 \\
\hline 2189 & 23 & & RL( IE \()=\operatorname{HYOV}(\) ISL . 1) & 2189 \\
\hline 2190 & 24 & & UL( IE ) \(=\operatorname{HYDV}(\) ISL , 2 \() *\) XN( IE ) & 2190 \\
\hline 2191 & 25 & & ( \(+\operatorname{HYDV}(\) ISL , 3 ) * YN( IE ) & 2191 \\
\hline 2192 & 26 & & VL( IE ) = - HYOV( ISL , 2) * YN( IE ) & 2192 \\
\hline 2193 & 27 & & (1E) \(+\operatorname{HYOV}(\) ISL, 3 \() *\) XN( IE \()\) & 2193 \\
\hline 2194 & 28 & & PL( IE ) \(=\) HYDV( ISL. 4) & 2194 \\
\hline 2195 & 29 & C & & 2195 \\
\hline 2196 & 30 & C &  & 2196 \\
\hline 2197 & 31 & C & & 2197 \\
\hline 2198 & 32 & & IF ( IJE5 . EQ . O) THEN & 2198 \\
\hline 2199 & 33 & & \(\operatorname{RR}(1 E)=\operatorname{HYDV}(15 R \cdot 1)\) & 2199 \\
\hline 2200 & 34 & & UR( IE ) \(=\operatorname{HYDV}(\operatorname{ISR}, 2) * X N(\) IE \()\) & 2200 \\
\hline 2201 & 35 & & ( \(+\operatorname{HYOV}(\) ISR, 3\() *\) YN( IE \()\) & 2201 \\
\hline 2202 & 36 & & \(\operatorname{VR}(\mathrm{IE})=-\operatorname{HYDV}(\) ISR,\(~ 2) *\) YN( IE \()\) & 2202 \\
\hline 2203 & 37 & & (PR(IE) + \(\operatorname{HYOV}(\) ISR , 3) * XN( IE ) & 2203 \\
\hline 2204 & 38 & & PR \((\) IE \()=\operatorname{HYDV}(\) ISR.4 4 ) & 2204 \\
\hline 2205 & 39 & C & & 2205 \\
\hline 2206 & 40 & C & EDGES ON THE BOUNDARY WITH ENFORCED CONDITIONS -------------------- & 2206 \\
\hline 2207 & 41 & C & & 2207 \\
\hline 2208 & 42 & C & IJE5 = 6 A HALL HITH REFLECTING NORMAL COMPOHENTS & 2208 \\
\hline 2209 & 43 & c & \(=7\) SUPERSONIC OUTFLOW ZERO NORMAL DERIVATIVE & 2209 \\
\hline 2210 & 44 & C & - 8 INFLOW WITH PRESPECIFIED VALUES (RIN,UIN,VIN,PIN) & 2210 \\
\hline 2211 & 45 & C & & 2211 \\
\hline 2212 & 46 & & ELSEIF ( IJE5. EQ . 8) THEN & 2212 \\
\hline 2213 & 47 & & RR( IE ) = RIN & 2213 \\
\hline 2214 & 48 & & UR (IE) = UIN * XN( IE ) + VIN * YN( IE ) & 2214 \\
\hline 2215 & 49 & & VR( IE ) = - UIN * YN( IE ) + VIN * XN( IE ) & 2215 \\
\hline 2216 & 50 & & PR( IE ) = PIN & 2216 \\
\hline 2217 & 51 & C & & 2217 \\
\hline 2218 & 52 & & ELSEIF ( IJE5. EQ . 7 ) THEN & 2218 \\
\hline 2719 & 53 & & \(\mathrm{RR}(\mathrm{IE})=\mathrm{RL}\) ( IE ) & 2219 \\
\hline 2220 & 54 & & \(\operatorname{UR}(1 E)=\mathrm{UL}(\mathrm{IE})\) & 2220 \\
\hline 2221 & 55 & & \(V R(1 E)=V L(I E)\) & 2221 \\
\hline 2222 & 56 & & PR( IE ) = PL( IE ) & 2222 \\
\hline 2223 & 57 & C & & 2223 \\
\hline 2224 & 58 & & ELSEIF ( IJE5. EQ . \({ }^{6}\) - OR - LiE5 . EQ . 5) THEN & 2224 \\
\hline 2225 & 59 & & RR( IE ) \(=\) RL( IE ) & 2225 \\
\hline 2226 & 60 & & UR ( IE ) = - UL( IE ) & 2226 \\
\hline 2227 & 61 & & \(V R(I E)=V L(I E)\) & 2227 \\
\hline 2228 & 62 & & PR( IE\()=\mathrm{PL}(\mathrm{IE})\) & 2228 \\
\hline 2229 & 63 & C & & 2229 \\
\hline 2230 & 64 & & END IF & 2230 \\
\hline 2231 & 65 & 110 & continue & 2231 \\
\hline 2232 & 66 & c & & 2232 \\
\hline 2233 & 67 & C= \(=\) = &  & 2233 \\
\hline 2234 & 68 & C & & 2234 \\
\hline 2235 & 69 & C. & EXIT POINT FROM SUBROUTINE & 2235 \\
\hline 2236 & 70 & C & & 2236 \\
\hline 2237 & 71 & \(\bigcirc\) & ------ & 2237 \\
\hline 2238 & 72 & & RETURN & 2238 \\
\hline 2239 & 73 & C & --.--- & 2239 \\
\hline 2240 & 74 & C & & 2240 \\
\hline
\end{tabular}
\begin{tabular}{lllll}
2241 & 75 & \(C\) & \(\cdots\) & 2241 \\
2242 & 76 & & END & 2242
\end{tabular}

Thu Jui
14:15:55 1993
gradhd. f
SUBROUTINE FCHART
\begin{tabular}{|c|c|c|c|c|}
\hline 2243 & 1 & & SUBROUTINE FCHART & 2243 \\
\hline 2244 & 2 & c & & 2244 \\
\hline 2245 & 3 & c & ------1 & 2245 \\
\hline 2246 & 4 & C & 1 & 2246 \\
\hline 2247 & 5 & C & FCHART limits the projected interface values according to & 2247 \\
\hline 2248 & 6 & C & CHARACIERISTICS. & 2248 \\
\hline 2249 & 7 & C & I & 2249 \\
\hline 2250 & 8 & C- & ---1 & 2250 \\
\hline 2251 & 9 & C & & 2251 \\
\hline 2252 & 10 & & include ' cmsh00.h' & 2252 \\
\hline 2253 & \(\cdot 11\) & & include 'chyd00.h' & 2253 \\
\hline 2254 & 12 & & include 'cint00.h' & 2254 \\
\hline 2255 & 13 & & include 'cphs 10.h' & 2255 \\
\hline 2256 & 14 & & include 'cphs20.h' & 2256 \\
\hline 2257 & 15 & C & & 2257 \\
\hline 2258 & 16 & &  & 2258 \\
\hline 2259 & 17 & C & & 2259 \\
\hline 2260 & 18 & & REAL ZZLEFT(MBP), ZOLEFT(MBP), ZMLEFT(MBP) & 2260 \\
\hline 2261 & 19 & & REAL ZZRIGT(MBP), ZORIGT(MBP), \(2 P R 1 G T\) (MBP) & 2261 \\
\hline 2262 & 20 & & REAL UPLEFT (MBP) , UYLEFT (MBP), URLEFT (MBP), SQGMTL (MBP) & 2262 \\
\hline 2263 & 21 & & REAL UPRIGT(MBP), UMRIGT(MBP) , URRIGT (MBP), SQGMTR(MBP) & 2263 \\
\hline 2264 & 22 & & REAL UVLEFT (MBP), UVRIGT (MBP).CNLEFT (MBP), CNRIGT (MBP) & 2264 \\
\hline 2265 & 23 & & REAL RLEFTT(MBP). ULEFTT(MBP).VLEFTT (MBP), PLEFTT(MBP) & 2265 \\
\hline 2266 & 24 & & REAL RRIGHT(MBP) , URIGHT (MBP) , VRIGHT (MBP), PRIGHT (MBP) & 2266 \\
\hline 2267 & 25 & \(\bigcirc\) & & 2257 \\
\hline 2268 & 26 & &  & 2268 \\
\hline 2269 & 27 & ¢ & & 2269 \\
\hline 2270 & 28 & & NE1-1 & 2270 \\
\hline 2271 & 29 & & NE2 = NOFVEE ( 1) & 2271 \\
\hline 2272 & 30 & & OO 90 INE = 1 , NVEEE & \(227{ }^{\circ}\) \\
\hline 2273 & 31 & c & & 227. \\
\hline 2274 & 32 & & DO 110 IE = NE1 , NE2 & 2274 \\
\hline 2275 & 33 & & KE - IE - NEI + 1 & 2275 \\
\hline 2276 & 34 & c & & 2276 \\
\hline 2277 & 35 & & ISL = JE ( 3 . IE ) & 2277 \\
\hline 2278 & 36 & & ISA \(=\mathrm{JE}(4 . \mathrm{IE})\) & 2278 \\
\hline 2279 & 37 & & GAMAL ( KE ) = HYOV( ISL , 5) & 2279 \\
\hline 2280 & 38 & C & & 2280 \\
\hline 2281 & 39 & & CNLFTS = GAMAL ( KE ) * HYOV ( 15L , 4) / HYDV( 1SL , 1) & 2281 \\
\hline 2282 & 40 & & CNLFT \(=\) SQRT( CNLFTS \()\) & 2282 \\
\hline 2283 & 41 & & UVLFT \(=\) HYOV( ISL , 2 ) * XXN( IE ) & 2283 \\
\hline 2284 & 42 & & HYDV( ISL , 3) * YYN( IE ) & 2284 \\
\hline 2285 & 43 & \(\bigcirc\) & & 2285 \\
\hline 2286 & 44 & & IJE5 = JE ( 5 . IE ) & 2286 \\
\hline 2287 & 45 & & If ( IJE5 . EQ . 0 ) Then & 2287 \\
\hline 2288 & 46 & C & & 2288 \\
\hline 2289 & 47 & & GAMAR( KE ) = HYDV( ISR , 5) & 2289 \\
\hline 2290 & 48 & & CNRGTS = GAMAR ( KF ) * HYOV ( ISR, 4 ) ; \(\operatorname{HYDV}(15 R, 1\) ) & 2290 \\
\hline 2291 & 49 & & CNRGT = SORT( CNRGTS ) & 2291 \\
\hline 2292 & 50 & c & & 2292 \\
\hline 2293 & 51 & & UVRGT * HYDV( 1SR , 2) * XXN( If ) + & 2293 \\
\hline 2294 & 52 & & HYDV( ISR , 3) * YYN( IE ) & 2294 \\
\hline 2295 & 53 & C & & 2295 \\
\hline 2296 & 54 & & ELSE & 2296 \\
\hline 2297 & 55 & c & & 2297 \\
\hline 2298 & 50 & & GAMAR( KE ) \(=\) GAMAL ( KE ) & 2298 \\
\hline 2299 & 57 & & CNRGT - CHET & 2299 \\
\hline 2300 & 58 & & UVRG; = UVLFT & 230 C \\
\hline 23 n 1 & 59 & C & & 2301 \\
\hline 2302 & 50 & & END If & 2302 \\
\hline 2303 & 61 & c & & 2303 \\
\hline 2304 & 62 & & CNLEFT( KE ) = CMIFT & 2304 \\
\hline 2305 & 63 & & CNRIGI( KE ) = CNRGI & 2305 \\
\hline 2306 & 64 & c & & 2306 \\
\hline 2307 & 55 & & UVLEFT( KE ) - IULIFT & 2307 \\
\hline 2308 & 66 & & UVRIGT( KF ) = JVRGI & 2308 \\
\hline 2309 & 61 & C & & 2309 \\
\hline 2310 & 68 & 110 & continue & 2310 \\
\hline 2311 & 69 & c & & 2311 \\
\hline
\end{tabular}

Thu
\begin{tabular}{|c|c|c|c|c|}
\hline 2312 & 70 & & DO \(130 \mathrm{KE}=1\), MOFVEE ( INE ) & 2312 \\
\hline 2313 & 71 & c & & 2313 \\
\hline 2314 & 72 & & Z2LEFT (KE) = .5 * ( UVLEFT ( KE ) * CNLEFT( KE ) ) * DTT & 2314 \\
\hline 2315 & 73 & & 2ZRIGT ( KE ) = - .5* ( UVRIGT ( KE ) - CNRIGT( KE ) ) * OTT & 2315 \\
\hline 2316 & 74 & C & & 2316 \\
\hline 2317 & 75 & 130 & 0 Continue & 2317 \\
\hline 2318 & 76 & C & & 2318 \\
\hline 2319 & 77 & & CHARACTERISTICS LOCATIONS & 2319 \\
\hline 2320 & 78 & C & & 2320 \\
\hline 2321 & 79 & & DO 140 KE = 1, NOFVEE ( INE ) & 23 c \\
\hline 2322 & 80 & C & & 2322 \\
\hline 2323 & 81 & & IF ( IZLEFT( KE ) . LT . 0. ) Z2LEFT( KE ) = 0. & 2323 \\
\hline 2324 & 82 & & IF ( ZZRIGT \((\mathrm{KE}) \cdot \mathrm{LT}\). 0.) ZZRIGT( KE \()=0\). & 2324 \\
\hline 2325 & 83 & C & & 2325 \\
\hline 2326 & 84 & 140 & 0 CONIIMUE & 2326 \\
\hline 2327 & 85 & C & & 2327 \\
\hline 2328 & 86 & \(C\) & DO \(150 \mathrm{KE}=1\), NOFVEE ( INE ) & 2328 \\
\hline 2329 & 87 & C & & 2329 \\
\hline 2330 & 88 & C & ZOLEFT( KE ) = .5 * UVLEFT KE ) * DTT & 2330 \\
\hline 2331 & 89 & C & ZORIGT( KE ) = - .5 * UVRIGT (KE ) * DTT & 2331 \\
\hline 2332 & 90 & C & ZPRIGT (KE ) - - . * ( UVRIGT( KE ) + CNRIGT ( KE ) ) * DTT & 2332 \\
\hline 2333 & 91 & C & ZMLEFT ( KE ) \(=.5 *(\) UVLEFT \((\) KE \()-\) CNLEFT \((K E)) *\) DTT & 2333 \\
\hline 2334 & 92 & C & & 2334 \\
\hline 2335 & 93 & C 15 & 50 CONTIAUE & 2335 \\
\hline 2336 & 94 & C & & 2336 \\
\hline 2337 & 95 & & FIRST GUESS LEFT AND RIGHT VARIABLES, LINEAR INTERPOLATON & 2337 \\
\hline 2338 & 96 & c & & 2338 \\
\hline 2339 & 97 & & DO 160 JE = NE1 , NE2 & 2339 \\
\hline 2340 & 98 & & \(K E=I E-N E I+1\) & 2340 \\
\hline 2341 & 99 & C & & 2341 \\
\hline 2342 & 100 & & ISL \(=\) JE ( 3 , IE \()\) & 2342 \\
\hline 2343 & 101 & & ISR = JE ( 4 , IE ) & 2343 \\
\hline 2344 & 102 & \(C\) & & 2344 \\
\hline 2345 & 103 & & \(X X=X M I O L(I E)-2 Z L E F T(X E) * X X N(I E)-X S(1.15 L)\) & 2345 \\
\hline 2346 & 104 & & YY = YMIDL (IE ) - ZZLEFT ( KE ) * YYN (IE ) - XS ( \(2.15 L\) & 2346 \\
\hline 2347 & 105 & C & & 2347 \\
\hline 2348 & 106 & &  & 2348 \\
\hline 2349 & 107 & & - \({ }^{\text {RGRAD ( ISL }}\), 1) * XX + RGRAD ( ISL , 2) * YY & 2349 \\
\hline 2350 & 108 & & HUUL \(=\) HYDV ( ISL, 2 \()+\) + & 2350 \\
\hline 2351 & 109 & & - UMI UGRAD ( ISL , 1) * \(X X\) + UGRAD ( ISL , 2) * YY & 2351 \\
\hline 2352 & 110 & &  & 2352 \\
\hline 2353 & 111 & & - VGRAD ( ISL . 1) * XX + VGRAD ( ISL . 2 ) *YY & 2353 \\
\hline 2354 & 112 & &  & 2354 \\
\hline 2355 & 113 & & \(\operatorname{PGRAD}(15 L\), 1) * XX + PGRAD ( ISL . 2 ) * YY & 2355 \\
\hline 2356 & 114 & C & & 2356 \\
\hline 2357 & 115 & & GMILFI = GAMAL ( KE ) * HRRL * HPPL & 2357 \\
\hline 2358 & 116 & & SQGMTL ( KE ) = SQRT ( GMTLFT) & 2358 \\
\hline 2359 & 117 & \(C\) & & 2359 \\
\hline 2360 & 118 & C & UMLFT \(=0\). & 2360 \\
\hline 2361 & 119 & c & IF ( UVLEFT( KE ) - CNLEFT( KE ) . GT : O. ) THEN & 2361 \\
\hline 2362 & 120 & \({ }^{\text {c }}\) & \(X X=(\) ZMLEFT \((K E)-2 Z L E F T(K E)\) ) XXN ( IE ) & 2362 \\
\hline 2363 & 121 & C & YY = ( ZMLEFT ( KE ) - ZZLEFT ( KE ) ) YYM ( IE ) & 2363 \\
\hline 2364 & 122 & c & UUU = UGRAD ( ISL , 1) * XX + UGRAD I ISL , 2) * YY & 2364 \\
\hline 2365 & 123 & \({ }^{C}\) & VVV = VGRRAD ( ISL ; 1) * \(X X+\operatorname{VGRAD}(15 L\), 2) * YY & 2365 \\
\hline 2366 & 124 & C & UVU - UUU * XXN( IE ) + WVV * YYN( IE ) & 2366 \\
\hline 2367 & 125 & \({ }^{C}\) & PPP = PGRAD ( ISL , 1) * XX + PGRAD ( ISL + 2 ) * YY & 2367 \\
\hline 2368 & 126 & C & UMLFT \(=.5 *\) ( UVU - PPP / SOGMTL ( KE ) ) / SOGMTL ( KE ) & 2368 \\
\hline 2369 & 127 & 6 & EMD IF & 2369 \\
\hline 2370 & 128 & C & & 2370 \\
\hline 2371 & 129 & C & URLFT \(=0\). & 2371 \\
\hline 2372 & 130 & C & IF ( UVLEFT( KE ) . GT . O. ) THEN & 2372 \\
\hline 2373 & 131 & C & \(X X=\) ( ZOLEET ( KE ) - ZZLEFT( KE ) ) * XXN ( IE ) & 2373 \\
\hline 2374 & 132 & C & YY = ( ZOLEFT (KE ) - 2LLEFT( KE ) ) * YYN( IE ) & 2374 \\
\hline 2375 & 133 & C & PPP = PGRAO ( 1SL . 1 ) XX + PGRAD ( ISL , 2) * YY & 2375 \\
\hline 2376 & 134 & \({ }^{\text {c }}\) &  & 2376 \\
\hline 2377 & 135 & C & YY = YMIDL ( IE ) - 2OLEFT ( KE) * YYN ( IE ) - XS ( 2 , 15L ) & 2377 \\
\hline 2378 & 136 & \(\stackrel{1}{6}\) &  & 2378 \\
\hline 2379 & 137 & C &  & 2379 \\
\hline 2380 & 138 & 6 & URLFT \(=\) PPP / GMILFI + 1./ HRRL - 1./ RRRR & 2380 \\
\hline 2381 & 139 & C & EMD IF & 2381 \\
\hline 2382 & 140 & 6 & & 2382 \\
\hline 2383 & 141 & & [JE5 - JE ( 5 , IE ) & 2383 \\
\hline 2384 & 142 & & IF ( IJES . EO. 0) THEN & 2384 \\
\hline 2385 & 143 & C & & 2385 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2386 & 144 & & XX \(=\) XMIDL ( IE ) + ZZRIGT( KE ) * XXN ( IE ) - XS ( 1 , ISR ) & 2386 \\
\hline 2387 & 145 & & YY = YMIDL ( IE ) + ZZRIGT( KE ) * YYM ( IE ) - XS ( 2 . ISR ) & 2387 \\
\hline 2388 & 146 & C & & 2388 \\
\hline 2389 & 147 & & HRRR = \(\operatorname{HYOV}(15 R, 1)+\) & 2389 \\
\hline 2390 & 148 & & RGRad ( ISR , 1) * XX + RGRad ( ISR , 2) * Yy & 2390 \\
\hline 2391 & 149 & &  & 2391 \\
\hline 2392 & 150 & & UGRACO ( ISR, 1) * XX + UGRAD ( ISR . 2) * YY & 2392 \\
\hline 2393 & 151 & &  & 2393 \\
\hline 2394 & 152 & & VGRad ( ISR , 1) * XX + VGRAD( ISR , 2) * Yy & 2394 \\
\hline 2395 & 153 & &  & 2395 \\
\hline 2396 & 154 & & PGRAD ( ISR , 1) * XX + PGRAD ( ISR . 2 ) * Yy & 2396 \\
\hline 2397 & 155 & C & & 2397 \\
\hline 2398 & 156 & & GMTRGT = GAMAR ( KE ) * HRRR * HPPR & 2398 \\
\hline 2399 & 157 & & SQGMTR ( KE ) = SQRT( GMTRGT) & 2399 \\
\hline 2400 & 158 & c & & 2400 \\
\hline 2401 & 159 & C & UPRGT \(=0\). & 2401 \\
\hline 2402 & 160 & ¢ & IF ( UVRIGT( KE ) + CHRIGT( KE ) . LT . O. ) THEN & 2402 \\
\hline 2403 & 161 & \({ }_{5}\) &  & 2403 \\
\hline 2404 & 162 & \({ }^{\text {c }}\) & YY = (ZZRIGI \({ }^{\text {KE }}\) ) - ZPRIGT ( KE ) ) * YYM ( IE ) & 2404 \\
\hline 2405 & 163 & \({ }^{\text {c }}\) &  & 2405 \\
\hline 2406 & 164 & C & VWV - VGRAD ( ISR , 1) * XX + VGRAD ( ISR , 2) * YY & 2406 \\
\hline 2407 & 165 & - & UVU = UUU * XXN( IE ) + WVV * YYN( IE ) & 2407 \\
\hline 2408 & 166 & C & PPP \(=\operatorname{PGRAD}(\) ISR, 1\() * X X+\operatorname{PGRAD}(\) ISR, 2\() * Y Y\) & 2408 \\
\hline 2409 & 167 & \({ }^{\text {c }}\) & UPRGT * - .5* ( UVU + PPP / SQGMTR( KE ) ) / SQGMTR( KE ) & 2409 \\
\hline 2410 & 168 & C & END IF & 2410 \\
\hline 2411 & 169 & C & & 2411 \\
\hline 2412 & 170 & c & URRGT \(=0\). & 2412 \\
\hline 2413 & 171 & C & IF ( UVRIGT( XE ) . LT . O. ) THEN & 2413 \\
\hline 2414 & 172 & \({ }^{\text {c }}\) & XX * ( ZZRIGT( KE ) - ZORIGT( KE ) ) * XXN( IE ) & 2414 \\
\hline 2415 & 173 & C & YY = (ZZRIGT ( KE ) - ZORIGT ( KE ) ) * YYM ( IE ) & 2415 \\
\hline 2416 & 174 & \({ }^{\text {c }}\) & PPP \(=\) PGRAD ( ISR , 1) * XX + PGRAD ( ISR , 2) * YY & 2416 \\
\hline 2417 & 175 & c & XX = XMIDL (IE ) + 2ORIGT( KE) * XXM ( IE ) - XS ( \(1.15 R)\) & 2417 \\
\hline 2418 & 176 & C & YY = YMIOL (IE ) + ZORIGT( KE ) * YYN( IE ) - XS ( 2 , ISR ) & 2418 \\
\hline 2419 & 177 & C & RRRR \(=\operatorname{HYOV}(15 R, 1)+\) & 2419 \\
\hline 2420 & 178 & c & - RGRad ( ISR , 1) * XX + RGRad ( ISR , 2) * YY & 2420 \\
\hline 2421 & 179 & C & URRGT \(=\) PPP / GMTRGT \(+1 . /\) YRRR \(-1 . /\) RRRR & 2421 \\
\hline 2422 & 180 & c & END IF & 2422 \\
\hline 2423 & 181 & C & & 2423 \\
\hline 2424 & 182 & & ELSE & 2424 \\
\hline 2425 & 183 & c & & 2425 \\
\hline 2426 & 184 & & HRRR \(=\) HRRE & 2426 \\
\hline 2427 & 185 & & HIUR \(=\) HUUL & 2427 \\
\hline 2428 & 186 & & HVVR = HVVL & 2428 \\
\hline 2429 & 187 & & HPPR \(=\) HPPL & 2429 \\
\hline 2430 & 188 & c & & 2430 \\
\hline 2431 & 189 & c & UPRGT = UMLFT & 2431 \\
\hline 2432 & 190 & c & URRGT \(=\) URLFT & 2432 \\
\hline 2433 & 191 & c & & 2433 \\
\hline 2434 & 192 & & END IF & 2434 \\
\hline 2435 & 193 & \(c\) & & 2435 \\
\hline 2436 & 194 & & RRLL ( KE ) = HRRL & 2436 \\
\hline 2437 & 195 & & UUL ( KE ) = HUUL * XN( IE ) + HVVL * YN( IE ) & 2437 \\
\hline 2438 & 196 & & VVL ( KE ) = - HUUL * YN( IE ) + HVVL * XN( IE ) & 2438 \\
\hline 2439 & 197 & & PPL ( KE ) \(=\) HPPL & 2439 \\
\hline 2440 & 198 & C & & 2440 \\
\hline 2441 & 199 & & RRR( KE ) = HRRR & 2441 \\
\hline 2442 & 200 & & UUR ( KE ) = HMUR * XN( IE ) + HVVR * YN( IE ) & 2442 \\
\hline 2443 & 201 & & VVR ( KE ) = - HUUR * YN( IE ) + RVVR * XN( IE ) & 2443 \\
\hline 2444 & 202 & & PPR ( KE ) = HPPR & 2.44 \\
\hline 2445 & 203 & \({ }_{6}\) & & 2445 \\
\hline 2446 & 204 & \({ }^{\text {c }}\) & UMLEFT ( KE ) = UMLFT & 2446 \\
\hline 2447 & 205 & C & URLEFT ( KE ) = URLFT & 2447 \\
\hline 2448 & 206 & C & & 2448 \\
\hline 2449 & 207 & C & UPRIGT( KE ) = UPRGT & 2449 \\
\hline 2450 & 208 & c & URRIGT( KE ) = URRGT & 2450 \\
\hline 2451 & 209 & c & & 2451 \\
\hline 2452 & 210 & 160 & O CONTINUE & 2452 \\
\hline 2453 & 211 & c & & 2453 \\
\hline 2454 & 212 & C & Final values for right and left states & 2454 \\
\hline 2455 & 213 & C & & 2455 \\
\hline 2456 & 214 & C & 00 i80 KE = 1 . NOFVEE ( INE ) & 2456 \\
\hline 2457 & 215 & c & & 2457 \\
\hline 2458 & 216 & C & GMILF - = SOGMIL ( KE ) * SOGMIL ( KE ) & 2458 \\
\hline 2459 & 211 & C & GMIRGT = SOGMTR( KE ) * SOGMTR( KE ) & 2459 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline 2605 & 71 & & \(I A J=I A 1+I A 2+I A 3\) & 2605 \\
\hline 2606 & 72 & \(c\) & & 2606 \\
\hline 2607 & 73 & & IF (IAJ . EQ . 3 ) THEN & 2607 \\
\hline 2608 & 74 & & IPT \(=\) IPT +1 & 2508 \\
\hline 2609 & 75 & & IJKPRT ( IPT ) = IS & 2609 \\
\hline 2610 & 76 & & XPRTCL ( 1.1 IPT ) \(=\) XPRTCL ( \(1, ~ I P R T C L)\) & 2610 \\
\hline 2611 & 77 & & XPRTCL ( 2, IFT \()=\) XPRTCL ( 2, IPRTCL \()\) & 2611 \\
\hline 2612 & 78 & C & PRINT *, XPRTCL(1,IPT), XPRTCL(2,1PT), IJKPRT(IPT) & 2612 \\
\hline 2613 & 79 & & IOUM \(=1\) & 2613 \\
\hline 2614 & 80 & & END IF & 2614 \\
\hline 2615 & 81 & & END IF & 2615 \\
\hline 2616 & 82 & C & & 2616 \\
\hline 2617 & 83 & 130 & CONTINUE & 2617 \\
\hline 2618 & 84 & 110 & CONTINUE & 2618 \\
\hline 2619 & 85 & & NPT = IPT & 2619 \\
\hline 2620 & 86 & C & PRINT * NPT, (XPRTCL (1,IPT), XPRTCL \(2, \mathrm{IPT}), \mathrm{IPT}=1, \mathrm{NPT})\) & 2620 \\
\hline 2621 & 87 & \({ }^{6}\) & WRITE (10.*) NPT. (XPRTCL (1,IPT), XPRTCL (2,IPT),IPT=1,NPT) & 2621 \\
\hline 2622 & 88 & C & & 2622 \\
\hline 2623 & 89 & C & & 2623 \\
\hline 2624 & 90 & C -- & EXIT POINT FROM SUBROUTINE & 2624 \\
\hline 2625 & 91 & c & & 2625 \\
\hline 2626 & 92 & c & ------ & 2626 \\
\hline 2627 & 93 & & RETURN & 2627 \\
\hline 2628 & 94 & \(\mathfrak{C}\) & ------ & 2628 \\
\hline 2529 & 95 & C & & 2629 \\
\hline 2630 & 96 & C & --- & 2630 \\
\hline 2631 & 97 & & END & 2631 \\
\hline
\end{tabular}

Thu Jul 1 14:15:55 1993 gradhd.f SUBROUTINE PRPTHC
\begin{tabular}{|c|c|c|c|c|}
\hline 2632 & 1 & & SUBROUTINE PRPTHC & 2632 \\
\hline 2633 & 2 & C & & 2633 \\
\hline 2634 & 3 & C & ----------- & 2634 \\
\hline 2635 & 4 & c & & 2635 \\
\hline 2636 & 5 & C & Prpthe trace particles path in the computation domain & 2636 \\
\hline 2637 & 6 & c & & 2637 \\
\hline 2638 & 7 & C. & & 2638 \\
\hline 2639 & 8 & c & & 2639 \\
\hline 2640 & 9 & & include 'cmsh00.h' & 2640 \\
\hline 2641 & 10 & & include 'chyd00.h' & 2641 \\
\hline 2642 & 11 & & include 'cint00. h ' & 2642 \\
\hline 2643 & 12 & & include 'cphs 10.h' & 2643 \\
\hline 2644 & 13 & & include 'cphs20.h' & 2644 \\
\hline 2645 & 14 & C & & 2645 \\
\hline 2646 & 15 & & DO 110 IPRTCL \(=1 . N P T\) & 2646 \\
\hline 2647 & 16 & & KFIND \(=0\) & 2647 \\
\hline 2648 & 17 & \(\bigcirc\) & & 2648 \\
\hline 2649 & 18 & & DO 110 IK \(=1.3\) & 2649 \\
\hline 7650 & 19 & & KFIND \(=0\) & 2650 \\
\hline 2651 & 20 & & IJES \(=0\) & 2651 \\
\hline 2652 & 21 & & IS = IJKPPTI IPRTCL ) & 2652 \\
\hline 2653 & 22 & & XP \(=\) XPRTCL ( 1, IPRTCL \()\) & 2653 \\
\hline 2654 & 23 & &  & 2654 \\
\hline 2655 & 24 & \(c\) & & 2655 \\
\hline 2656 & 25 & & \(00120 以=1.3\) & 2656 \\
\hline 2657 & 26 & & \(I E=J S(1 J+3.15)\) & 2657 \\
\hline 2658 & 27 & c & & 2658 \\
\hline 2659 & 28 & & IF ( IE. Gt . 0) then & 2659 \\
\hline 2660 & 29 & c & & 2660 \\
\hline 2661 & 30 & & IVI = JE ( \(1, ~ I E)\) & 2661 \\
\hline 2662 & 31 & & \(\mathrm{IV} 2=\mathrm{JE}(2, \mathrm{IE})\) & 2662 \\
\hline 2663 & 32 & C & & 2663 \\
\hline 2664 & 33 & & \(\mathrm{X}_{1}=\mathrm{XV}(1, \mathrm{IV1})\) & 2664 \\
\hline 2665 & 34
35 & & Y1 \(=\) XV( \(2, ~ I V 1)\) & 2665 \\
\hline 266 . & 35 & & \(X_{2}=X V(1, ~ I V 2)\) & 2666 \\
\hline 26. & 36 & & \(Y 2=X V(2 . I V 2)\) & 2667 \\
\hline 2600 & 37 & \(c\) & & 2668 \\
\hline 2669
2670 & 38 & & \(x^{x}=\left(x_{2}-x^{2}-x^{\prime}\right)\) & 2669
2670 \\
\hline 2670
2671 & 39 & & \(X X P=\left(X P-X_{1}\right)\) & 2670 \\
\hline 2671
2672 & 40 & c & & 2671 \\
\hline 2672
2673 & 41
42 & & \(Y Y=(Y 2-Y 1)\)
\(Y Y P=(Y P-Y 1)\) & 2673 \\
\hline 2674 & 43 & c & & 2674 \\
\hline 2675 & 44 & & \(A=X X * Y Y P-Y Y * X X P\) & 2675 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Thu Ju & 114: & :55 & 1993 gradhd.f SUBROUTINE PRPTHC & page 38 \\
\hline 2676 & 45 & & If ( A. LT . O.) then & 2676 \\
\hline 2677 & 46 & & IJKPRT( IPRTCL \()=\) JE ( 4 , IE ) & 2677 \\
\hline 2678 & 47 & & IJE5 = JE ( 5 , IE ) & 2678 \\
\hline 2679 & 48 & & XREV = 1. 1 XE ( 1 , IE ) & 2679 \\
\hline 2680 & 49 & & KFIND \(=\) KFIND + 1 & 2680 \\
\hline 2681 & 50 & & END IF & 2681 \\
\hline 2682 & 51 & C & & 2682 \\
\hline 2683
2684 & 52
53 & & ELSE & 2683 \\
\hline 2684
2685 & 53
54 & c & IVI = JE ( 2 , - IE ) & 2684 \\
\hline 2686 & 55 & & IV2 = JE (1: - IE & 2685
2686 \\
\hline 2687 & 56 & c & & 2687 \\
\hline 2688 & 57 & & X1 \(=\) XV( 1, IVI ) & 2688 \\
\hline 2689 & 58 & & \(Y_{1}=X V(2, I V 1)\) & 2689 \\
\hline 2690 & 59 & & \(\mathrm{X} 2=\mathrm{XV}(1, \mathrm{IV2})\) & 2690 \\
\hline 2691 & 60 & & \(Y 2=X V(2, I V 2)\) & 2691 \\
\hline 2692
2693 & 61
62 & c & \(x x^{\prime}=\left(x_{2}-x_{1}\right)\) & 2692 \\
\hline 2694 & 63 & & \(X X P=\left(x P-x_{1}\right)\) & 2693
2694 \\
\hline 2695 & 64 & C & & 2695 \\
\hline 2596 & 65 & & \(Y Y=(Y 2-Y 1)\) & 2696 \\
\hline 2697 & 66 & & \(Y Y P=(Y P-Y 1)\) & 2697 \\
\hline 2698 & 67 & C & & 2698 \\
\hline 2699 & 68 & & \(A=X X\) * YYP - YY * XXP & 2699 \\
\hline 2700 & 69 & & IF ( A LT . O.) THEN & 2700 \\
\hline 2701 & 70 & & IJKPRT ( IPRTCL \()=\) JE ( 3 . - IE ) & 2701 \\
\hline 2702 & 71 & & IJE5 \(=\) JE ( 5 , -IE ) & 2702 \\
\hline 2704 & 73 & & \(\begin{array}{l}\text { XREV } \\ \text { KFIND }\end{array}=1.1\) XFIND \(\left.+1,-\mathrm{IE}\right)\) & 2703 \\
\hline 2705 & 74 & & END IF & 2705 \\
\hline 2706 & 75 & & END If & 2706 \\
\hline 2707 & 76 & c & & 2707 \\
\hline 2708 & 77 & 120 & contimue & 2708 \\
\hline 2709 & 78 & C & & 2709 \\
\hline 2710 & 79 & & IF ( KFIND. GT \% 0 . AND. IJE5 . NE . 0) THEN & 2710 \\
\hline 2711 & 80 & & IJKPRT ( IPRTCL \()=\) IS & 2711 \\
\hline 2712
2713 & 81 & C & & 2712 \\
\hline 2713
2714 & 82 & & \(A A=X 2-X 1\) & 2713 \\
\hline 2715 & 84 & & \(8 B=Y 2-Y 1\)
\(C C=X P-X 1\) & 2714 \\
\hline 2716 & 85 & & OD \(=Y\) Y \(-Y 1\) & 2716 \\
\hline 2717 & 86 & & TREV \(=(C C\) * \(A A+D D * B B)\) * XREV * XREV & 2717 \\
\hline 2718 & 87 & & IF ( BB . NE . O.) THEN & 2718 \\
\hline 2719 & 88 & & XPRTCP \(=\mathrm{XI}+\) TREV * AA & 2719 \\
\hline 2720 & 89 & & XPRTCL ( 1.1 IPRTCL \()=\) XP + 1.1* ( XPRTCP - XP ) & 2720 \\
\hline 2721 & 90 & & END IF & 2721 \\
\hline 2722
2723 & 91 & & IF ( AA - NE - O.) THEN & 2722 \\
\hline 2724 & 9 & & YPRTCP \(=\) Y1 + TREV * B8 & 2723 \\
\hline 2725 & 94 & & XPRICL
END IF
2 & 2724 \\
\hline 2726 & 95 & C & & 2725
2726 \\
\hline 2727 & 95 & & END IF & 2727 \\
\hline 2728 & 97 & 110 & continue & 2728 \\
\hline 2729 & 98 & C & & 2729 \\
\hline 2730
2731 & 99 & & D0 180 IPRTCL \(=1\). NPT & 2730 \\
\hline 2731
2732 & 100 & C & & 2731 \\
\hline 2732 & 101 & & IS = IJKPRT ( IPRTCL ) & 2732 \\
\hline 2733
2734 & 102 & & UPRTCL \(=\) HYOV( IS, 2 ) & 2733 \\
\hline 2735 & 104 & C & VPRTCL \(=\) HYDV ( IS , 3 ) & 2734
2735 \\
\hline 2736 & 105 & & XPRTCL \((1\), IPRTCL \()=\) XPRTCL \((1\), IPRTCL \()+\) UPRTCL \(*\) OHT & 2736 \\
\hline 2737 & 106 & & XPRTCL \((2\), IPRTCL \()=\) XPRTCL \((2\), IPRTCL \()+\) VPRTCL * DTT & 2737 \\
\hline 2738 & 107 & & WPRTCL \((1, i P R T C L)=\) UPRTCL & 2738 \\
\hline 2739 & 108 & & WPRTCL ( 2 , IPRTCL) * VPRTCL & 2739 \\
\hline 2740 & 109 & \(c\) & & 2740 \\
\hline 2741
2742 & 110 & & D0 180 IK - 1, 3 & 2741 \\
\hline 2742
2743 & 111 & & IS = IJKPRT ( IPRTCL ) & 2742 \\
\hline 2743
2744 & 112 & & XP \(=\) XPRTCL ( 1. IPRTCL \()\) & 2743 \\
\hline 2744
2745 & 113 & & YP \(=\) XPRTCL ( 2 , IPRTCL ) & 2744 \\
\hline 2746 & 1115 & & KFIND \(=0\)
IJE5 \(=0\) & 2745
2746 \\
\hline 2747 & 116 & c & & 2747 \\
\hline 2748 & 117 & & D0 170 \(\mathrm{H}=1.3\) & 2748 \\
\hline 2749 & 118 & & \(I E=J S(I J+亏 . I S)\) & 2749 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Thu Jul & 114: & 5:55 & 993 & gradhd.f & SUBROUTINE PRPTHC & page & 40 \\
\hline 2824 & 193 & C & & & & & 2824 \\
\hline 2825 & 194 & C & --.-- & & & & 2825 \\
\hline 2826 & 195 & & RETURN & & & & 2826 \\
\hline 2827 & 196 & \({ }^{\text {c }}\) & ---- & & & & 2827 \\
\hline 2828 & 197 & \({ }^{\text {c }}\) & & & & & 2828 \\
\hline 2829
2830 & 198
199 & C & \(\cdots\) & & & & 2829 \\
\hline 2830 & 199 & & END & & & & 2830 \\
\hline
\end{tabular}
\begin{tabular}{llr} 
* & routine & page \\
1 & VERCEN & 1 \\
2 & OISECT & 4 \\
3 & OYFTN & 12 \\
4 & OYYPTN & 21 \\
5 & INTPTN & 30 \\
6 & DELPTNT & 40 \\
7 & REAXY & 42 \\
8 & LAPLAC & 47 \\
9 & RECNC & 49 \\
10 & EOS & 53 \\
11 & LIFTDR & 56
\end{tabular}

Thu Jui 1 14:16:08 1993 adaphd.f
Module List - alphabetical order
\begin{tabular}{llr}
\(\#\) & routine & page \\
1 & DELPTNT & 40 \\
2 & DISECT & 4 \\
3 & OYNPTN & 12 \\
4 & OYYPTN & 21 \\
5 & EOS & 53 \\
6 & INTPTN & 30 \\
7 & LAPLAC & 47 \\
8 & LIFTDR & 56 \\
9 & RECNC & 49 \\
10 & RELAXY & 42 \\
11 & VERCEN & 1
\end{tabular}
SUBROUTINE VERCEN（ IT ）

MPLICIT REAL（A－H，O－Z）
C
\[
\text { include } \quad \text { 'cmshoo.h' }
\]
\[
\begin{array}{ll}
\text { include } & \text { 'chyd00.h' } \\
\text { include } & \text { 'cint00.h' }
\end{array}
\]
\[
\text { include } \quad \text { 'cint00. } n \text { ' }
\]
\[
\text { include } \quad \text { 'cphs10.n' }
\]
\[
\text { include } \quad \text { 'cphs20. } \Pi^{\prime}
\]
\[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{C} \\
& \mathrm{C}
\end{aligned}
\]
\[
N V=N V+1
\]
SET UP THE NEW TRIANGLE BOOKKEEPING．


\section*{PUT IN NEH TRIANGLES}
\[
X V(1, N V)=\{X V(1, I V 1\}+X V(1, I V 2)+
\]
\[
\mathrm{C}
\]
\[
J V(1, N V)=0
\]

COMTINUE

triangle one．the original it．
JS \((3\), IT \()=\) NV
JS 5, IT \()=-\) NEM1
JS \((6\), IT \()=\) NEM2
TRIANGLE THO．
NS \(=N S+1\)
\(J S(1, N S)=\operatorname{IV2}\)
\(J S(2, N S)=I V 3\)
\(J S(3, N S)=N V\)
\(J S(4, N S)=I E 2\)
\begin{tabular}{|c|c|c|c|}
\hline 74 & 74 & & JS( 5, NS ) = - NE \\
\hline 75 & 75 & & JS( 6, MS \()=\) NEMI \\
\hline 76 & 76 & c & \\
\hline 77 & 17 & \(c\) & triangle three. \\
\hline 78 & 78 & C & \\
\hline 79 & 79 & & NS \(=\) NS + 1 \\
\hline 80 & 80 & & JS ( 1, NS ) = IV3 \\
\hline 81 & 81 & & JS \((2, N S\) ) \(=\) IV1 \\
\hline 82 & 82 & & JS ( 3 , NS \()=\) NV \\
\hline 83 & 83 & & JS ( 4 , NS ) = 1E3 \\
\hline 84 & 84 & & JS \((5\), NS ) \(=-\) NEM2 \\
\hline 85 & 85 & & JS ( \(6, N \mathrm{NS}\) ) \(=\) NE \\
\hline 86 & 86 & \({ }^{\text {c }}\) & \\
\hline 87 & 87 & \({ }^{\text {c }}\) & now fix the left and right for edges. \\
\hline 88 & 88 & C & \\
\hline 89 & 89 & & NSM1 = NS - 1 \\
\hline 90 & 90 & & \(\operatorname{IF}(\mathrm{JE}(4, \mathrm{IE2A}) \cdot \mathrm{EQ} \cdot \mathrm{IT}) \mathrm{JE}(4, \mathrm{IE2A})=\mathrm{NSM1}\) \\
\hline 91 & 91 & & IF ( JE ( 3 , IE2A ) . EQ - IT ) JE ( 3 , IE2A ) = ASM \\
\hline 92 & 92 & & \(\operatorname{IF}(\operatorname{JE}(4, \mathrm{IE3A}) \cdot \mathrm{EQ}, \mathrm{IT}) \mathrm{JE}(4, \mathrm{IE} 3 \mathrm{~A})=\mathrm{NS}\) \\
\hline 93 & 93 & &  \\
\hline 94 & 94 & & JE ( 4, NEM2 ) = NS \\
\hline 95 & 95 & & JE ( 3, NEM2 ) = IT \\
\hline 96 & 96 & & JE ( 4, NEMI ) = IT \\
\hline 97 & 97 & & JE ( 3, NEML ) = NSMI \\
\hline 98 & 98 & & JE ( 4 , NE ) = NSMI \\
\hline 99 & 99 & & JE ( 3 . NE ) = NS \\
\hline 100 & 100 & C & \\
\hline 101 & 101 & & JV( 2, NV ) = NE \\
\hline 102 & 102 & C & \\
\hline 103 & 103 & & XSAREA \(=\) XS ( 3.15 ) * THIRD \\
\hline 104 & 104 & & XS ( 3.15 ) \(=\) XSAREA \\
\hline 105 & 105 & & XS ( 3, NSM1 ) = XSAREA \\
\hline 106 & 106 & & XS( \(3, N S\) ) \(=\) XSAREA \\
\hline 107 & 107 & C & \\
\hline 108 & 108 & & XS( 1 , IT ) = ( XV( 1 . IVI ) + XV( 1 , IV2 ) + \\
\hline 109 & 109 & & ( \({ }^{\text {a }}\) ( \(\left.1, N \mathrm{NV}\right)\) ) * THIRD \\
\hline 110 & 110 & & XS( 1. NSM1 ) = XV( \(1, \mathrm{IV} 2)+\mathrm{XV}(1,1 \mathrm{I} 3)\) \\
\hline 111 & 111 & &  \\
\hline 112 & 112 & & XS \((1, N S)=(\operatorname{XV}(1, \mathrm{IV} 3)+\mathrm{XV}(1, \mathrm{IVI})+\) \\
\hline 113 & 113 & & xS( 2, IT ) XV( \(1, N \mathrm{NV})\) ) * THIRO \\
\hline 114 & 114 & & \(\mathrm{XS}(2, \mathrm{IT})=(\operatorname{XV}(2, \mathrm{IVI})+\mathrm{XV}(2, \mathrm{IV} 2)+\) \\
\hline 115 & 115 & &  \\
\hline 116 & 116 & & XS( \(2, N\) NSMI \()=(X V(2, I V 2)+X V(2, ~ I V 3) ~+~\) \\
\hline 117 & 117 & & XS( 2 NS \()=(\operatorname{xV}\) ( \(2, \mathrm{NV})) \times\) THIRD \\
\hline 118 & 118 & & \(\mathrm{XS}(2, N S)=(\operatorname{XV}(2, \mathrm{IV3})+\operatorname{XV}(2, \mathrm{IVI})+\) \\
\hline 119 & 119 & & XV( \(2, \mathrm{NV})\) ) * THIRD \\
\hline 121 & 120
121 & C & \\
\hline 122 & 122 & & SAREA ( IT \()=\) XSAREA \\
\hline 123 & 123 & & SAREA (NS ) = XSAREA \\
\hline 124 & 124 & & SAREA ( NSM1 ) = XSAREA \\
\hline 125 & 125 & C & \\
\hline 126 & 126 & & \(00630 \mathrm{IR}=1\), M \(\mathrm{MHO}^{\text {c }}\) \\
\hline 127 & 127 & & HYDV( II , IR ) \(=(\operatorname{HYDVVV}(\) IVI . IR ) \\
\hline 128 & 128 & & HYOVVV( IV2, IR \()+\) \\
\hline 129 & 129 & & HYDVVV( NV, IR ) ) * THIRD \\
\hline 130 & 130 & & HYDV( NS . IR ) \(=(\operatorname{HYOVWV}(\operatorname{IV3}, \mathrm{IR})+\) \\
\hline 131 & 131 & & HYDVVV ( IVI, IR ) + \\
\hline 132 & 132 & & Hyduvo ( NV, IR ) ) * Third \\
\hline 133 & 133 & & HYDV( NSM1, IR ) \(=(\operatorname{HYDVWV}(\) IV2 , IR \()+\) \\
\hline 34 & 134 & & HYDVVV ( IV3, IR ) \\
\hline 135 & 135 & & HYDVVV( NV , IR ) ) * THIRD \\
\hline 136 & 136 & 630 & continue \\
\hline 37 & 137 & C & \\
\hline 38 & 138 & & HDUM \(=1.1(\operatorname{HYOV}(1 T, 1)+1 . E-12)\) \\
\hline 39 & 139 & & HYOV ( IT , 2) \(=\operatorname{HYOV}(1 T, 2)\) * HDUM \\
\hline 40 & 140 & & HYOV ( IT , 3) = \(\mathrm{HYOV}(\) IT , 3) * HOUM \\
\hline 41 & 141 & & HYOV ( IT , 4) \(=(\operatorname{HYOV}(1 T, 4)-\) \\
\hline 142 & 142 & &  \\
\hline 143 & 143 & & ( \(\operatorname{HYOV}(1 T, 2) * \operatorname{HYOV}(1 T, 2)+\) \\
\hline 44 & 144 & & HYDV( [T, 3) * \(\operatorname{HYOV}(15,3)\) ) ) * \\
\hline 145 & 145 & & ( \(\operatorname{HYOV}(1 T .5\) ) - 1.) \\
\hline 46 & 146 & c & \\
\hline 14 & 147 & & Houm \(=1.1(\operatorname{HYOV}(\) NS . 1\()+1 . \mathrm{E}-12)\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& 148 \\
& 149
\end{aligned}
\]
\[
\begin{aligned}
& 148 \\
& 149
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{HY} \\
& \mathrm{H} \\
& \mathrm{H}) \\
& \mathbf{C}
\end{aligned}
\]
HYDV (NS . 3) \(=\operatorname{HYDV}(\) NS , 3) * HDUM
HYOV (NS , 4) \(=(\operatorname{HYOV}(N S, 4)\),
( \(\left.\operatorname{HYOV}(\text { NS }, 2)^{\circ}\right) * \operatorname{HYOV}(\) NS,\(~ 2) *+\)
HYDV( NS , 3) * \(\operatorname{HYDV}(\operatorname{HS}, 3))) *\)
( HYOV( NS , 5 ) - 1.)
\(\left.\begin{array}{l}\text { HDUM } \\ \text { HYDV } \\ \text { NSM1 }\end{array}, 2\right)=1(\operatorname{HYOV}(\) NSM1,, 1\()+1 . E-12)\)
HYDV( NSM1 , 2 ) \(=\) HYOU( NSM1 , 2 ) * HDUM
HYOV (NSM1 , 3) = HYDV( NSM1, 3) * HDUM 158
HYDV ( NSM1 , 4) = ( HYDV NSMI , 4) - 159
.5 * \(\operatorname{HYOV}(\) NSMI , 1)* 160

( HYDV( NSM1 , 5) -1.)
00114 [R = 1 , 2
RGRAD ( NS , IR') = RGRAD ( IT , IR ) 166
\(\operatorname{RGRAD}(\) NSMI,\(I R)=\operatorname{RGRAD}(I T, I R)-167\)
\(\begin{array}{ll}\text { UGRAD }(N S, I R)=\text { UGRAD ( } I T, I R) & 168 \\ 169\end{array}\)
UGRAD (NSMI , IR ) = UGRAD ( IT , IR )
VGRAD (NS , IR ) = VGRAO ( IT , IR )
\(\operatorname{VGRAD}(\operatorname{NSMI}, \operatorname{IR})=\operatorname{VGRAD}(I T, I R)\)
PGRAD( NS , IR ) = PGRAD(IT, IR )
PGRAD (N
COMTINUE
JEN ( 1 ) = IEIA
JEN ( 2 ) \(=\) IE2A
JEN ( 3 ) = IE3A
\(\left.\begin{array}{rl}\text { JEN } \\ \text { JEN } \\ \text { J } \\ 5\end{array}\right)=\) NEM2
\(\operatorname{JEM}(6)=\) NE
C
0030 IENN \(=1.6\)
JVI \(=\mathrm{JE}(1\), IEN \()\)
\(A X=X V(1, J V 2)-X V(1, J V 1)\)
\(A Y=X V(2, J V 2)-X V(2, J V 1)\)
XE ( 1, IEN \()=\operatorname{SQRT}(A X * A X+A Y * A Y)\)
XEREV = 1. \(/\) XE ( 1 , IEN )
XN( IEN ) = AY * XEREV
YN (IEN) \(=-\) AX * XEREV
ISSR \(=\) JE \((4\), IEN \()\)
ISSL \(=\mathrm{JE}(3: I E N)\)
\(c\)
\(\mathrm{IJE5}=\mathrm{JE}(5, \mathrm{IEN})\)
C
\(A A=X V(1, J V 2)-X V(1, J V 1)\)
\(B B=X V(2, J V 2)-X V(2, J V I)\)
XEL \(=X S(1,1 S S L)\)
YEL \(=X S(2.1 S S L)\)
CC = XEL - XV (1, JVI )
\(00=Y E L-X V(2, J V I)\)
\(E E=(A A * C C+B B * D D) * X E R E V * X E R E V\)
XER - XV (1, JVI ) + AA * EE
YER \(=X V(2 ; J V 1)+B E * E E\)
\(A X=X E R-X E L\)
\(A Y=Y E R-Y E L\)
XE ( \(2, \operatorname{IEN})=\operatorname{SQRT}(A X * A X+A Y * A Y)\)
XEREV \(=1.1\) XE ( 2, IEN :
XXN( IEN ) = AX * XEREV
YYN( IEN ) = AY * XEREV
XE (2, IEN ) = 2. * XE (2, IEN ) 217
XYMIDL ( IEN \()=5\)
XMIDL (IEN ) \(=\times\) XER
YMIDL( IEN ) = YER

\[
\text { YYN }(\text { IEN })=A Y * \text { XEREV }
\]
\(\operatorname{XXN}(2, \operatorname{IEN})=2 \cdot * \operatorname{XE}(2, \operatorname{IEN})\)
XMIDL (IEN )
YMID
(IEN \()\)
\(=\) XER
MDL (EN \()=\) YER 220



Thu Jul 1 14:16:08 1993 adaphd.f SUBROUTINE OISECT

293 294 295 296 297 298 299 300 301 302 303 304 305
306 307
308 308 309
310 310 312 313 314
315 315
316 316
317 318 319 320
321 322 323 325 326 327
328 328
329 330 331 332
333 334
335 335
336
\begin{tabular}{ll}
31 & \\
32 & \\
33 & \\
34 & \(C\) \\
35 & \\
36 & \(C\)
\end{tabular}
\begin{tabular}{ll} 
include & 'cint00.h' \\
include & 'cphsi0.h' \\
include & 'cphs20.h'
\end{tabular}
include 'cphs20.h'
    INIEGER IS(2), IVS(2)
    ITRING \(=0 \quad 299\)
    IDONE - 0 301
    \(I J E j=J E(5, N) \quad 301\)
    \(\begin{array}{ll}\text { IF (IJE5 :NE } \cdot 0) \text { ITRING }=1 & 302 \\ \text { I5 }=0 & 303\end{array}\)
    IEROR \(=0 \quad 304\)
    EROR \(=1.0 E-3 \quad 305\)
    FIND THE VERTICES OF THE LINE N. 307
    \(\begin{array}{ll}11 \text { - JE }(1, N) & 308 \\ 309\end{array}\)
    \(12=\mathrm{JE}(2, N) \quad 310\)
    \(\begin{array}{ll}I T 1 & =\mathrm{JE}(4, N) \\ I T 2=\mathrm{NE}(3 . N) & 311\end{array}\)
    FIND THE TWO VERTICES TO WHICH THE NEH LIMES WILL BE DRAWN.
    THESE ARE THE VERTICES OTHER THAN II ANO I2 IN THE
    IRIANGLES TO EITHER SIDE OF N. IVS STORES THE INDEX OF
    THESE VERTICES AND IS STORES WHETHER THEY ARE VERTEX 1.2
    OR 3 IN THE TRIANGLE IT.
    \(00101=1,2\)
        \(\operatorname{IVS}(I)=\dot{0}^{2}\)
        IT * JE (5-I , N ) 322
        IF (IT . NE. 0 ) THEN 323
            DO \(20 \mathrm{~J}=1.3\)
                IV \(=\) JS( \(\dot{j} \cdot I T\) ) 325
                    IF ( IV. NE . II .AND. IV . NE . I2 ) THEN 326
                    IVS( I ) = IV 327
                    IS(I \()=\) J 328
                    EMD IF 329
            COHTINUE 330
            END IF 331
            CONTINUE
                                332
            I3 3 IVS(1)
            \(\begin{array}{ll}I 4=I V S(2) & 334 \\ \text { ISI }=\text { IS }(1) & 335\end{array}\)
            \(\begin{array}{ll}I S 1=I S(1) & 335 \\ I S 2=I S(2) & 336\end{array}\)
                C COMPARE OPPOSIMG ANGIE PAIRS IH THE QUADRILATERAL 337
                    COMPARE OPPOSING ARGLE PAIRS IN THE QUADRILATERAL 338
            IF ( ITRING . EQ ; 0 ) THEN 340
            \(A X=X V(1,13)-X V(1,11)\)
\(A Y=X V(2,13)-X V(2,11)\)
            \(8 X=X V(1: 14)-X V(1: I 1)\)
            \(B Y=X V(2,14)-X V(2, I 1)\)
            \(\left.\begin{array}{ll}C X=X V(1: 14 \\ C Y=X V(2: 14)-X V(1: 12\end{array}\right) \quad 345\)
            \(O X=X V(1: 13)-X V(1: 12)\)
            OY \(=X V(2: 13)-X V(2: 12)\)
            AI2 \(=A X * B Y-A Y * B X\)
            \(\begin{array}{ll}A I I=C X * O Y-C Y * D X & 350 \\ X L N=X E(1 . N) & 351\end{array}\)
            ROUNDF - EROR * XLN * XLN
            IF ( A12 . LT . ROUNDF . OR . AII . LT . ROUNDF ) RETURN 353
            END IF 354
                    CREATE A NEW VERTEX MIDHAY ON LINE N. 356
                    IDONE \(=1\)
                    \(\begin{array}{lll}\mathrm{NV} & \mathrm{NV}+1 & 359 \\ 15 & \mathrm{NV} & 360\end{array}\)
                    CHANGE THE LINE N SO THAT IT STARTS AT THE SAME VERTEX. 362
                    BUT NOW ENOS AT 15 . 36
                    \(\mathrm{JE}(2, \mathrm{~N})=15 \quad 36\)
                        364
365
                                    366
\begin{tabular}{|c|c|c|c|c|}
\hline 367 & 105 & C & dran the three neh limes, all ending al 15. & 367 \\
\hline 368 & 106 & C & & 368 \\
\hline 369 & 107 & & \(00301=1.2\) & 369 \\
\hline 370 & 108 & & IF (JE ( \(5-1, N\) ) . NE. 0) Then & 370 \\
\hline 371 & 109 & & NE \(=\) NE + ! & 371 \\
\hline 372 & 110 & & JE ( \(1 . N E)=1 \mathrm{VS}(1)\) & 372 \\
\hline 373 & 111 & & JE( 2, NE ) = 15 & 373 \\
\hline 374 & 112 & \(c\) & & 374 \\
\hline 375 & 113 & & JE( 5, NE ) = 0 & 375 \\
\hline 376 & 114 & & IF (1.EQ . 1) MI = WE & 376 \\
\hline 377 & 115 & & IF ( 1.EO. 2) M2 = NE & 377 \\
\hline 378 & 116 & & END IF & 378 \\
\hline 379 & 117 & 30 & continue & 379 \\
\hline 380 & 118 & \(c\) & & 380 \\
\hline 381 & 119 & c & he need to handle the line from in to is separately. & 381 \\
\hline 382 & 120 & c & SINCE HE ARE NOT ADDING A LINE to 12, but replacing & 382 \\
\hline 383 & 121 & C & THE OLD ONE. & 383 \\
\hline 384 & 122 & c & & 384 \\
\hline 385 & 123 & & NE \(\quad\) NE + 1 & 385 \\
\hline 386 & 124 & C & & 386 \\
\hline 387 & 125 & & JE ( 5, NE ) = JE (5,N) & 387 \\
\hline 388 & 126 & & N3 \(=\) NE & 388 \\
\hline 389 & 127 & & \(\mathrm{JE}(3, N 3)=0\) & 389 \\
\hline 390 & 128 & & JE ( \(4, \mathrm{~N} 3\) ) \(=0\) & 390 \\
\hline 391 & 129 & C & & 391 \\
\hline 392 & 130 & C & reset the old triangles amd set up the new triangles. & 392 \\
\hline 393
394 & 131
132 & C & & 393 \\
\hline 395 & 133 & C & N1 IS THE NEH LINE FROM 13 TO 15.12 .- & \begin{tabular}{l}
394 \\
395 \\
\hline
\end{tabular} \\
\hline 396 & 134 & C & N2 IS THE NEH LINE FROM 14 TO 15. & 396 \\
\hline 397 & 135 & C & N3 IS THE NEW LINE FROH I2 1015. & 397 \\
\hline 398 & 136 & C & NAA IS THE OLD LINE FROM 14 TO 11. & 398 \\
\hline 399 & 137 & c & NBB IS THE OLD LINE FROM 111013. & 399 \\
\hline 400 & 138 & \({ }^{C}\) & NCC IS THE OLD LINE FROM 13 10 12. & 400 \\
\hline 401 & 139 & \({ }^{\text {c }}\) & NDD IS THE OLD LINE FROM 12 TO 14. & 401 \\
\hline 402 & 140 & \({ }^{\text {c }}\) & THE DIRECTIONS OF LINES NAA THROUGH NOO ARE NOT & 402 \\
\hline 403 & 141 & \({ }^{\text {c }}\) & EXPLICITLY USED. & 403 \\
\hline 404 & 142 & C & & 404 \\
\hline 405 & 143 & & IF ( ITl . NE . 0) THEN & 405 \\
\hline 406 & 144 & & NCC \(151+3,1 T 1)=\) JS ( ISI +3.151\()\) & 406 \\
\hline 407 & 145 & & JS( ISI + 3, [T1 ) = N1 & 407 \\
\hline 408 & 146 & &  & 408 \\
\hline 409 & 147
148 & &  & 409 \\
\hline 411 & 149
149 & & IEROR \(=2\) & 410 \\
\hline 412 & 150 & & END If & 412 \\
\hline 413 & 151 & & JS( J, IT1 ) \(=15\) & 413 \\
\hline 414 & 152 & C & & 414 \\
\hline 415 & 153 & & \(J 3=\operatorname{MOD}(151+1,3)+1\) & 415 \\
\hline 416 & 154 & & NBB \(=\) IABS ( \(\mathrm{JS}(\mathrm{JJ}+3,1 \mathrm{Tl})\) ) & 416 \\
\hline 417 & 155 & C & & 417 \\
\hline 418 & 156 & & NS \(\quad=\) NS +1 & 418 \\
\hline 419 & 157 & & JS ( 1, NS \()=12\) & 419 \\
\hline 420 & 158 & & JS( 2 , NS \()=15\) & 420 \\
\hline 421 & 159 & & JS ( 3 , NS ) = 13 & 421 \\
\hline 422 & 160 & & JS ( 4, NS \()=\) N3 & 422 \\
\hline 423
424 & 161 & & \(\mathrm{JS}(5, N S)=-N 1\)
\(\operatorname{JS}(6, N S)=N C C\) & 423 \\
\hline 424
425 & 163 & & JS \((6, N S)=\) NCC
JE \((3, N 3)=\) NS & 424
425 \\
\hline 426 & 164 & & JE ( \(4 . \mathrm{NL}\) ) \(=\mathrm{NS}\) & 426 \\
\hline 427 & 165 & & JE ( 3, N1) = IH1 & 427 \\
\hline 428 & 166 & & NCC \(=\) IABS( NCC ) & 428 \\
\hline 429 & 167 & & \(\operatorname{IF}(\mathrm{JE}(4, \mathrm{NCC}), \mathrm{EQ} . \mathrm{ITI}) \mathrm{JE}(4, \mathrm{NCC})=\mathrm{NS}\) & 429 \\
\hline 430 & 168 & & IF ( JE ( 3 . NCC ) , EQ . IT1) JE( 3 , NCC \()=\) NS & 430 \\
\hline 431 & 169 & C & & 431 \\
\hline 432 & 170 & & END If & 432 \\
\hline 433 & 171 & c & & 433 \\
\hline 434 & 172 & & IF ( IT2 . NE. 0) THEN & 434 \\
\hline 435 & 173 & & \(\mathrm{J}=\mathrm{MOO}(152+1,3)+1\) & 435 \\
\hline 436 & 174 & & NDD \(\quad=\mathrm{JS}(\mathrm{J}+3,172)\) & 436 \\
\hline 437 & 175 & & \(\mathrm{JS}(\mathrm{J}+3,152)=-\mathrm{N} 2\) & 437 \\
\hline 438 & 176 & & If (JS ( J , 172) . NE . 12) THEN & 438 \\
\hline 439 & 177 & & IEROR \(=3\) & 439 \\
\hline 440 & 178 & & \(\mathrm{J} 2=\mathrm{J}\) & 440 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 441 & 179 & & END If \\
\hline 442 & 180 & & J5( J . 112) : 15 \\
\hline 443 & 181 & C & \\
\hline 444 & 182 & & NAA \(=\) IABS \((\mathrm{JS}(\mathrm{IS2}+3, \mathrm{IT} 2)\) ) \\
\hline 445 & 183 & C & \\
\hline 446 & 184 & & NS \(=\) NS + 1 \\
\hline 447 & 185 & & JS( 1, NS ) = 12 \\
\hline 448 & 186 & & JS ( 2 , NS ) = 14 \\
\hline 449 & 187 & & JS ( 3 , NS ) \(=15\) \\
\hline 450 & 188 & & JS ( \(4, \mathrm{NS}\) ) \(=\) HOD \\
\hline 451 & 189 & & JS( 5, NS ) \(=\) N2 \\
\hline 452 & 190 & 6 & \\
\hline 453 & 191 & & IF ( ITRING . EO. O) IHEN \\
\hline 454 & 192 & C & \\
\hline 455 & 193 & & JE( 1, N3) = 12 \\
\hline 456 & 194 & & JE( \(2, N 3\) ) \(=15\) \\
\hline 457 & 195 & & JS( \(6, N S\) ) \(=-N 3\) \\
\hline 458 & 196 & & JE ( \(4 . N 3\) ) = NS \\
\hline 459 & 197 & C & \\
\hline 460 & 198 & & ELSE \\
\hline 461 & 199 & C & \\
\hline 462 & 200 & & \(\mathrm{JE}(1, \mathrm{~N} 3)=15\) \\
\hline 463 & 201 & & JE( 2, N3 ) = 12 \\
\hline 464 & 202 & & JS( \(6, N S\) ) \(=\) N3 \\
\hline 465 & 203 & & JE ( \(3, \mathrm{~N} 3\) ) \(=\) NS \\
\hline 466 & 204 & c & \\
\hline 467 & 205 & & END it \\
\hline 468 & 206 & C & \\
\hline 469 & 207 & & JE ( 3, N2 ) = NS \\
\hline 470 & 208 & & JE ( \(4 . N 2\) ) = IT2 \\
\hline 471 & 209 & & NDD = IABS( NDD ) \\
\hline 472 & 210 & & IF ( JE ( 4, NDD ) . EQ . IT2 ) JE ( 4, NDO ) - NS \\
\hline 473 & 211 & & IF ( JE ( 3 , NDO ) . EQ . IT2 ) JE( 3 , NDO ) = NS \\
\hline 474 & 212 & C & \\
\hline 475 & 213 & & END If \\
\hline 476 & 214 & C & \\
\hline 477 & 215 & & NSM1 = NS - 1 \\
\hline 478 & 216 & & NEM1 \(=\) NE - 1 \\
\hline 479 & 217 & & NEM2 \(=\) NE -2 \\
\hline 480 & 218 & 6 & \\
\hline 481 & 219 & & IF ( ! TRING. EQ . 0 ) THEN \\
\hline 482 & 220 & & XV(1, 15 ) \(=0.25\) * \(\operatorname{XV}(1,11)+\operatorname{XV}(1,12)+\) \\
\hline 483 & 221 & & XV( 2.15\()=\) XV( \(1 \cdot 13)+X V(1 \cdot 14))\) \\
\hline 484 & 222 & & \(\mathrm{XV}(2,15)=0.25 *(X V(2,11)+\mathrm{XV}(2 \cdot 12)+\) \\
\hline 485 & 223 & & ( XV( 2,13) \(+\mathrm{XV}(2,14))\) \\
\hline 486 & 224 & & \(\mathrm{JV}(1,15)=0\) \\
\hline 487 & 225 & C & \\
\hline 488 & 226 & & DO 85 IR = 1. MHO \\
\hline 489 & 227 & & \(\operatorname{HYDVVV}(15, I R)=0.25\) * ( HYDVVV( I1 . IR ) \({ }^{\text {a }}\) \\
\hline 490 & 228 & & HYDUVV( 12, IR ) + \\
\hline 491 & 229 & & HYDVVV( \(13,1 \mathrm{R})+\) \\
\hline 492 & 230 & & HYDVVV( \(14, I R\) ) \\
\hline 493 & 231 & 85 & CONTINUE \\
\hline 494 & 232 & C & \\
\hline 495 & 233 & & JV( \(2, N V)=N\) \\
\hline 496 & 234 & & IF ( JV( \(2 \cdot \mathrm{I} 2) \cdot \mathrm{GT} .0) \mathrm{JV}(2,12)=\mathrm{N} 3\) \\
\hline 497 & 235 & C & \\
\hline 498 & 236 & & \(D X=X V(1,13)-X V(1,11)\) \\
\hline 499 & 237 & & \(\mathrm{DXX}=\mathrm{XV}(1,15)-\mathrm{XV}(1,11)\) \\
\hline 500 & 238 & & DY = XV( 2, 13) - XV( 2, 11 ) \\
\hline 501 & 239 & & OYY \(=X V(2,15)-X V(2,11)\) \\
\hline 502 & 240 & & XS( 3 . \(1 T 1 ;=.5\) * ( DX * DYY - DXX * DY) \\
\hline 503 & 241 & & DX \(=\) XV(1, 12) - XV(1, 13) \\
\hline 504 & 242 & & \(D X X=X V(1,15)-X V(1,13)\) \\
\hline 505 & 243 & & DY \(=\mathrm{XV}(2,12)-\mathrm{XV}(2,13)\) \\
\hline 506 & 244 & & DYY \(=X V(2,15)-X V(2,13)\) \\
\hline 507 & 245 & & XS( 3 . NSM1 ) = .5* ( DX * DYY - DXX * OY ) \\
\hline 508 & 246 & & \(\mathrm{DX}=\mathrm{XV}(1,14)-\mathrm{XV}(1,12)\) \\
\hline 509 & 247 & & \(\mathrm{DXX}=\mathrm{XV}(1,15)-\mathrm{XV}(1,12)\) \\
\hline 510 & 248 & & \(D Y=X V(2,14)-X V(2,12)\) \\
\hline 511 & 249 & & OYY \(=X V(2,15)-X V(2,12)\) \\
\hline 512 & 250 & &  \\
\hline 513 & 251 & & \(D X=X V(1.11)-X V(1,11)\) \\
\hline 514 & 268 & & \(0 \times X=X V(1,15)-X V(1,14)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 515 & 253 & & OY \(=\mathrm{XV}(2,11)-\mathrm{XV}(2,14)\) & 515 \\
\hline 516 & 254 & & OYY \(=\) XV( 2,15\()-X V(2,14)\) & 516 \\
\hline 517 & 255 & & XS ( 3 , IT2 ) = .5 * ( DX * DYY - OXX * OY ) & 517 \\
\hline 518 & 256 & C & & 518 \\
\hline 519 & 257 & & XS ( 1, 171) = ( XV( 1, 11) + XV(1, 13) + & 519 \\
\hline 520 & 258 & & ( XV( \(1, \ldots \mathrm{~N})\) ) * THIRD & 520 \\
\hline 521 & 259 & & XS( 1, HSM1 \()=(\operatorname{XV}(1,13)+\operatorname{XV}(1,12)+\) & 521 \\
\hline 522 & 260 & & ( xV( 1. HV ) ) * Third & 522 \\
\hline 523 & 261 & & xS ( 2, IT1 ) = (xv( 2, 11) + XV( 2, 13) + & 523 \\
\hline 524 & 262 & &  & 524 \\
\hline 525 & 263 & & XS \((2, \operatorname{HSM} 1)=(\operatorname{XV}(2,13)+X V(2,12)+\) & 525 \\
\hline 526 & 264 & & ( XV(2.NV) ) * THIRD & 526 \\
\hline 527 & 265 & C & & 527 \\
\hline 528 & 266 & & XS(1, NS \()=(\operatorname{XV}(1,12)+\operatorname{XV}(1,14)+\) & 528 \\
\hline 529 & 267 & & ( XV( \(1, N \mathrm{~N})\) ) * Third & 529 \\
\hline 530 & 268 & & XS( 1, 1T2 ) = XVV(1, 14) + XV(1, 11) + & 530 \\
\hline 531 & 269 & & XS \(2, \mathrm{XV}(1, N V))\) * THIRD & 531 \\
\hline 532 & 270 & & XS \((2, \operatorname{NS})=(\operatorname{XV}(2,12)+X V(2,14)+\) & 532 \\
\hline 533 & 271 & & XS XV( \(2 . N \mathrm{NV}) \times\) * THIRD & 533 \\
\hline 534 & 272 & & XS( 2,112\()=(\operatorname{XV}(2,14)+\mathrm{XV}(2,11)+\) & 534 \\
\hline 535 & 273 & & ( \(\operatorname{xV}(2, \mathrm{NV}))\) * Ihimd & 535 \\
\hline 536 & 274 & C & & 536 \\
\hline 537 & 275 & & \(0094 \mathrm{IR}=1\), MHO & 537 \\
\hline 538 & 276 & & \(\operatorname{HYDV}(I T 1, I R)=(\operatorname{HYDVVV}(11, ~ I R ~) ~\) & 538 \\
\hline 539 & 277 & & HYDVVV( \(13, \mathrm{IR})\) * & 539 \\
\hline 540 & 278 & & HYDVVV( NV, IR ) ) * THIRD & 540 \\
\hline 541 & 279 & & HYOV ( NSM1 , ! 1 ) \(=(\operatorname{HYOVWV}(13,1 R)+\) & 541 \\
\hline 542 & 280 & & HYUVVV( 12, IR ) + & 542 \\
\hline 543 & 281 & & HYDVVV( \(N V\), IR ) ) * THIRD & 543 \\
\hline 544 & 282 & & \(\operatorname{HYDV}(1 T 2, I R)=(\operatorname{HYDVVV}(14, I R) *\) & 544 \\
\hline 545 & 283 & & HYOWV ( 11. IR \()\) + & 545 \\
\hline 546 & 284 & & \(\operatorname{HYDVVV}(N V, I R)) *\) THIRD & 546 \\
\hline 547 & 285 & & \(\operatorname{HYDV}(N S, I R)=(\operatorname{HYDVVV}(12, I R)+\) & 547 \\
\hline 548 & 286 & & HYDVVV ( 14, IR \()+\) & 548 \\
\hline 549 & 287 & & HYDVVV( \(N V\). IR ) ) * THIRD & 549 \\
\hline 550 & 288 & 94 & Continue & 550 \\
\hline 551 & 289 & C & & 551 \\
\hline 552 & 290 & & HDUM \(=1.1(\) HYDV \((1 T 1,1)+1 . E-12)\) & 552 \\
\hline 553 & 291 & & \(\operatorname{HYDV}(1 T 1,2)=\operatorname{HYOV}(1 T 1,2)\) ( HOLM & 553 \\
\hline 554 & 292 & & \(\operatorname{HYDV}(1 T 1,3)=\operatorname{HYDV}(1 T 1,3) * \operatorname{HDUM}\) & 554 \\
\hline 555 & 293 & & \(\operatorname{HYDV}(1 T 1,4)=(\operatorname{HYDV}(\) ITI , 4) - & 555 \\
\hline 556 & 294 & & ( \({ }^{\text {a }}\). \({ }^{\text {* }} \operatorname{HYDV}(1 T 1.1) *\) & 556 \\
\hline 557 & 295 & & ( HYOV( 171, 2) * \(\operatorname{HYDV}(171,2)+\) & 557 \\
\hline 558 & 296 & & \(\operatorname{HYOV}(1 T 1,3) * \operatorname{HYDV}(111,3))\) ) & 558 \\
\hline 559 & 297 & & ( \(\operatorname{HYDV}(111,5)-1\). & 559 \\
\hline 560 & 298 & C & & 560 \\
\hline 561 & 299 & & HDUM \(=1.1(\operatorname{HYOV}(\) NSMI, 1\()+1 . E-12)\) & 561 \\
\hline 562 & 300 & & HYDV ( NSM1 , 2) \(=\) HYDV( NSM1 , 2) * HOUM & 562 \\
\hline 563 & 301 & & HYDV ( NSM1 , 3) \(=\operatorname{HYDV}(\operatorname{NSM1}, 3) * \operatorname{HDUM}\) & 563 \\
\hline 564 & 302 & & HYDV( NSM1 , 4) \(=\) ( HYOV( NSM1 . 4) - & 564
565 \\
\hline 565 & 303 & & ( \({ }^{\text {c }}\). \({ }^{\text {* }}\) HYOV( NSM1 . 1) * & 565 \\
\hline 566 & 304 & & ( HYDV( NSM1 , 2) * HYOV( NSM1 , 2) + & 566 \\
\hline 567 & 305 & & HYDV( NSM1 , 3) * HYDV( NSM1 , 3) ) \({ }^{\text {a }}\) * & 567 \\
\hline 568 & 306 & & ( HYDV( NSM1 . 5) - 1.) & 568 \\
\hline 569
570 & 307 & 6 & & 569
570 \\
\hline 570
571 & 308
309 & &  & 570 \\
\hline 572 & 310 & & HYOV ( IT2, 3) \(=\operatorname{HYDV}(\) IT2, 3) * HDUM & 572 \\
\hline 573 & 311 & & HYOV ( IT2, 4) \(=(\operatorname{HYOV}(112,4)-\) & 573 \\
\hline 574 & 312 & & ( HYOU( 172.5 * \(\operatorname{HYOV}(172,1)\) & 574 \\
\hline 575 & 313 & & ( HYDV ( IT2 , 2) * HYDV ( 112,2 ) * & 575 \\
\hline 576 & 314 & & \(\operatorname{HYOV}(172.3) * \operatorname{HYDV}(112,3))\) )* & 576 \\
\hline 577 & 315 & & ( HYOV( 112.5 ) - 1.) & 577 \\
\hline 578 & 316 & C & & 578 \\
\hline 579 & 317 & & Houm \(=1 . i\left(\operatorname{HYOV}\left(\mathrm{iS},{ }^{\prime}\right) \times 1 . \mathrm{E}-12\right)\) & 579 \\
\hline 580 & 318 & & HYDV ( NS . 2) \(=\operatorname{HYDV}(\) NS . 2 ) * HDUM & 580 \\
\hline 581 & 319 & & HYOV \({ }^{\text {HS }}\), 3) * HYDV( NS, 3\() *\) HOUM & 581 \\
\hline 582 & 320 & & HYOV \({ }^{\text {NS }}, 4\) ) \(=\) ( HYOV( NS , 4) & 582 \\
\hline 583 & 321 & & ( mynur me .5 * HYOV( NS . 1) * & 583 \\
\hline 584 & 322 & &  & 584 \\
\hline 585 & 323 & & HYDV( NS , 3) * HYOV( NS , 3) ) ) * & 585 \\
\hline 586
587 & 324 & & ( HYOV( NS . 5 ) - 1.) & 586 \\
\hline 587
588 & 325 & c & & 587 \\
\hline 588 & 326 & & SAREA( IT1) = 1. / XS( 3 . IT1 ) & 588 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 589 & 327 & & SAREA ( NSM1 ) \(=1 . /\) XS ( 3, NSM1 ) & 589 \\
\hline 590 & 328 & & Sarea ( 112 ) \(=1.1 \mathrm{XS}(3,172)\) & 590 \\
\hline 591 & 329 & & SAREA ( NS ) = 1. / XS ( 3 , NS ) & 591 \\
\hline 592 & 330 & c & & 592 \\
\hline 593 & 331 & & 00112 IR = 1. \({ }^{2}\) & 593 \\
\hline 594 & 332 & & \(\operatorname{RGRAD}(N S, I R)=\operatorname{RGRAD}(1 T 2, I R)\) & 594 \\
\hline 595 & 333 & & RGRAD ( NSMI , IR ) \(=\) RGRAD ( ITI , IR ) & 595 \\
\hline 596 & 334 & & UGRAD ( NS . IR ) = UGRAC ( IT2 IR ) & 596 \\
\hline 597 & 335 & & UGRAD ( NSMI , IR ) \(=\) UGRAD ( ITI , IR ) & 597 \\
\hline 598 & 335 & & VGRAD ( NS , IR ) = VGRAD ( 1 T2, IR ) & 598 \\
\hline 599 & 337 & & VGRAO ( NSML , IR ) = VGRAD ( ITI, IR ) & 599 \\
\hline 600 & 338 & & PGRAD ( NS , IR ) \(=\) PGRAD ( II2, IR ) & 600 \\
\hline 601 & 339 & & PGRAD ( NSMI , IR ) = PGRAD( ITI . IR ) & 001 \\
\hline 602 & 340 & 112 & COntinue & 602 \\
\hline 603 & 341 & C & & 603 \\
\hline 604 & 342 & & KSDELT ( NS ) = IDUMP & 604 \\
\hline 605 & 343 & & KSDELT ( NSMI ) = IDUMP & 605 \\
\hline 606 & 344 & & KSDELI ( ITI ) = IDUMP & 606 \\
\hline 607 & 345 & & KSDELT ( IT2 ) = IDUMP & 607 \\
\hline 608 & 346 & \(c\) & & 608 \\
\hline 609 & 347 & & JEM ( 1 ) = NAA & 609 \\
\hline 610 & 348 & & JEN( 2 ) = NBB & 610 \\
\hline 611 & 349 & & JEN( 3 ) \(=\) NCC & 611 \\
\hline 612 & 350 & & JEN ( 4 ) \(=\) NOD & 612 \\
\hline 613 & 351 & & JEN ( 5 ) \(=\mathrm{N}\) & 613 \\
\hline 614 & 352 & & JEN( 6 ) \(=\) M & 614 \\
\hline 615 & 353 & & \(\operatorname{JEN}(7)=N 2\) & 615 \\
\hline 616 & 354 & & JEN( 8 ) = N3 & 616 \\
\hline 617 & 355 & & JENN - 8 & 617 \\
\hline 618 & 356 & c & & 618 \\
\hline 619 & 357 & & ELSE & 619 \\
\hline 620 & 358 & c & & 620 \\
\hline 621 & 359 & & XV( 1,15\()=0.5 *(\operatorname{XV}(1,11)+\operatorname{XV}(1,12))\) & 621 \\
\hline 622 & 360 & & XV( 2, 15 ) \(=0.5 *(X V(2,11)+X V(2,12))\) & 622 \\
\hline 623 & 361 & & \(\mathrm{JV}(1,15)=0\) & 623 \\
\hline 624 & 362 & c & & 624 \\
\hline 625 & 363 & & IF ( IOSPCL . EQ . 1 . AND . IJE5 . EQ . 6 ) THEN & 625 \\
\hline 626 & 364 & & ANGL \(=1.570796327\), & 626 \\
\hline 627 & 365 & & OXX \(=\) XV( 1, 15 ) - 1.5 & 627 \\
\hline 628 & 366 & & IF ( OXX . NE. 0.) ANGL = ATAN2 ( XV( 2, 15 ) , DXX ) & 628 \\
\hline 629 & 367 & & XV \((1,15)=\operatorname{COS}(\) ANGL \()+1.5\) & 629 \\
\hline 630 & 368
369 & & XV( 2,15\()=\operatorname{SIN}(\) ANGL \()\) & 630 \\
\hline 631 & 369 & & END IF & 631 \\
\hline 632 & 370 & C & & 632 \\
\hline 633 & 371 & & \(0080 \mathrm{IR} \mathrm{=} \mathrm{1} \mathrm{}\), & 633 \\
\hline 634 & 372 & & HYDVVV( \(15, \mathrm{IR})=0.5\) ( \(\operatorname{HYDVVV}(11, ~ I R ~) ~+~\) & 634 \\
\hline 635 & 373 & & continue \(\operatorname{HYDVVV}(\mathrm{I} 2, \mathrm{IR})\) ) & 635 \\
\hline 636 & 374 & 80 & continue & 636 \\
\hline 637 & 375 & C & & 637 \\
\hline 638 & 376 & & \(\mathrm{JV}(2,11)=-N\) & 638
639 \\
\hline 639
640 & 377 & & JV( \(2, N \mathrm{~N})=-\mathrm{N} 3\) & 639 \\
\hline 640
641 & 378 & c & & 640 \\
\hline 641 & 379 & & XSAREA \(=.5\) * XS \({ }^{3}\), IT2 ) & 641 \\
\hline 642 & 380 & & XS \((3, I T 2)=\) XSAREA & 642 \\
\hline 643 & 381 & & XS ( 3 , NS ) = XSAREA & 643 \\
\hline 644
645 & 382 & c & & 644 \\
\hline 645 & 383 & & XS( \(1, N S)=(\operatorname{XV}(1,12)+X V(1,14)+\) & 645 \\
\hline 646 & 384 & &  & 646 \\
\hline 647 & 385 & & XS \((1,1 T 2)=(\operatorname{XV}(1,14)+\operatorname{XV}(1,11)+\) & 647 \\
\hline 648
649 & 386 & & XS( 2 NS ) ( XVV( \(1, \mathrm{NV})\) ) * THIRD & 648
649 \\
\hline 649
650 & 387 & & XS( 2, NS \()=(\operatorname{XV}(2,12)+\operatorname{XV}(2,14)+\) & 649 \\
\hline 650 & 388 & & XS \(2,1 \mathrm{~T})=\mathrm{XV}(2, N \mathrm{NV}\) ) ) * THIRD & 650 \\
\hline 651
652 & 389 & & \(\mathrm{XS}(2.1 T 2)=(\operatorname{XV}(2,14)+\mathrm{XV}(2,11)+\) & 651 \\
\hline 652
653 & 390
391 & & XV( \(2 . N V)\) ) * THIRD & 652 \\
\hline 654 & 392 & c & \(0092 \mathrm{IR}=1, \mathrm{MHO}\) & 654 \\
\hline 655 & 393 & & HYDV( IT2 , IR ) = ( HYDVVV ( I4, IR ) + & 655 \\
\hline 656 & 394 & & HYDVVV( IL, IR ) + & 656 \\
\hline 657 & 395 & & HYOVVV( NV.IR ) ) * THIRD & 657 \\
\hline 658 & 395 & &  & 650 \\
\hline 639
660 & 397
398 & & HYOVVV(
HYOVVV
I4, & 659
660 \\
\hline 660
661 & 398
399 & 92 & CONTINUE HYOVVV( NV, IR ) ) * Third & 660 \\
\hline 662 & 400 & C & & 662 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 663 & 401 & & Houm \(=1.1(\operatorname{HYDV}(112,1)+1 . E-12)\) & 663 \\
\hline 664 & 402 & & hYOV( 112,2 ) = hYOV ( 172,2 ) * HDUM & 663 \\
\hline 665 & 403 & & HYDV ( 112,3 ) = HYOV ( 112,3 ) * HDUM & 665 \\
\hline 666 & 104 & & HYOV ( \(112 ; 4)=(\operatorname{HYOV}(112 ; 4)-\) & 665 \\
\hline 667 & 405 & & ( 5 ( hyove 112,1\() *\) & 666 \\
\hline 668 & 406 & & ( hYOV( 112, 2) * HYOV( 112, 2) + & 667 \\
\hline 569 & 407 & & ( \(\operatorname{HYOV}(112,3)\) * \(\operatorname{HYOV}(112,3)\) ) )* & 668 \\
\hline 670 & 108 & & \((\operatorname{Hrov}(1+2.5)-1\). & 669 \\
\hline 671 & 409 & c & & 670 \\
\hline 672 & 410 & & HDUM \(=1.1\left(\right.\) HYDV \({ }^{\text {NS }}\), 1) \(\left.+1 . E-12\right)\) & 672 \\
\hline 673 & \(\pm 11\) & & HYOV( NS , 2) = HYOV( \(\mathrm{HS}, 2\) ) * HDUM & 673 \\
\hline 674 & 412 & & HYDV( MS, 3 ) \(=\operatorname{HrOV}(\) NS , 3 ) * HOUM & 674 \\
\hline 675 & +13 & & HYOV ( NS , 4) = ( HYOV( NS , 4) - & 675 \\
\hline 676 & 414 & & ( . 5 * HYDV( NS . !) & 675 \\
\hline 677 & 415 & & ( HYOV( NS . 2) * HYOV( NS . 2 ) & 677 \\
\hline 678 & 416 & & HYDV( NS .3 ) * \(\operatorname{HYDV}(\) HS, 3\())\) ) * & 678 \\
\hline 679 & 417 & & \((\operatorname{HYDV}(\) NS , 5 ) - 1.) & 679 \\
\hline 680 & 418 & C & ( MNOU NS , 5 ) -l.) & 680 \\
\hline 681 & 419 & & XSYREA \(=1.1\) XSAREA & 681 \\
\hline 682 & 420 & & SAREA ( IY2 ) = XSYREA & 682 \\
\hline 683 & 421 & & SAREA ( NS ) = XSYREA & 683 \\
\hline 684 & 122 & c & & 684 \\
\hline 685 & 123 & & 00122 IR = 1. 2 & 685 \\
\hline 686 & 424 & & RGRAO ( NS, IR ) \(=\operatorname{RGRAD}(112, I R)\) & 686 \\
\hline 687 & 125 & & UGRAD ( NS, IR ) = UGRAD ( \(112,1 \mathrm{R})\) & 687 \\
\hline 688 & 426 & &  & 688 \\
\hline 689 & +27 & & \(\operatorname{PGRAD}(N S, I R)=\operatorname{PGRAD}(112, ~ I R ~) ~\) & 689 \\
\hline 690 & 128 & 122 &  & 690 \\
\hline 691 & +29 & c & & 691 \\
\hline 692 & 430 & & KSDELT ( NS ) = IDUMP & 692 \\
\hline 693
694 & 431 & & KSDELT ( IT2 ) = IDUMP & 693 \\
\hline 694
695 & 432 & C & & 694 \\
\hline 695 & +33 & & \(\operatorname{JEN}(1)=\) NAA & 695 \\
\hline 696
697 & 434 & & JEN ( 2 ) = NDO & 696 \\
\hline 698 & 436 & & JEN( 3 JeN( 4 = \(=\) N2 & 697 \\
\hline 699 & 437 & & \(\operatorname{JEN}(4)=N 3\)
\(\operatorname{JEN}(5)=N\) & 698 \\
\hline 700 & 438 & & JENA - 5 = & 699 \\
\hline 701 & 439 & c & & 700 \\
\hline 702 & 440 & & END If & 702 \\
\hline 703 & 441 & c & & 703 \\
\hline 704 & 442 & & 0090 IENN = 1, JENM & 704 \\
\hline 705 & 443 & & IEN - JEN ( IENN ) & 705 \\
\hline 706 & 444 & & JV1 = JE ( 1 , IEN ) & 706 \\
\hline 707 & 445 & & JV2 \(=\) JE ( 2 . IEN ) & 707 \\
\hline 708 & 446 & & \(A X=X V(1, J V 2)-X V(1, ~ J V 1) ~\) & 708 \\
\hline 709 & 447 & & AY - XV( \(2, J V 2)-X V(2, J V 1) ~\) & 709 \\
\hline 710 & 448 & & XE ( \(1 . \operatorname{IEN})=\operatorname{SORT}(A X * A X+A Y * A Y)\) & 710 \\
\hline 711 & 449 & & XEREV \(=1.1 \mathrm{XE}(1\), IEN ) & 711 \\
\hline 712 & 450 & & XN( IEN ) = AY * XEREV & 712 \\
\hline 713 & 451 & & YN(IEN ) \(=-A X *\) XEREV & 713 \\
\hline 714 & 452 & & ISSR \(=\) JE ( 4, IEN ) & 714 \\
\hline 715 & 453 & & ISSL \(=\) JE ( 3 , IEN \()\) & 715 \\
\hline 716 & 454 & C & & 716 \\
\hline 718 & 455 & & IJE5 = JE ( 5 . IEN ) & 717 \\
\hline 719 & 457 & C & If ( IJE5 . NE . 0) THEN & 718 \\
\hline 720 & 458 & & \(A A=X V(1, J V 2)-X V(1, J V 1)\) & 720 \\
\hline 721 & 459 & & \(B B=X V(2, J V 2)-X V(2 ; J V 1)\) & 721 \\
\hline 722 & 460 & & XEL \(=\times\) S \((1,1\) ISSL \()\) & 722 \\
\hline 123 & 461 & & YEL \(=\) XS ( 2 , ISSL ) & 723 \\
\hline 724 & 462 & & \(C C=X E L-X V(1, J V I)\) & 724 \\
\hline 725 & 463 & & DO = YEL - XV( \(2, \mathrm{JVI}\) ) & 725 \\
\hline 126 & 464 & & EE = ( \(A A * C C\) + BB * DD ) * Xerev * Xerev & 726 \\
\hline 727 & 465 & & XER = XV( 1, JVI ) + AA * EE & 127 \\
\hline 728 & 465 & & \(Y E R=X V(2, J V 1)+B B * E E\) & 128 \\
\hline 729 & 467 & & \(A X=X E R-X E L\) & 129 \\
\hline 730 & 468 & & AY = YER - YEL & 730 \\
\hline 731 & 469 & &  & 731 \\
\hline 732 & 470 & & XEREV \(=1 . / X E(2\), IEN ) & 732 \\
\hline 733 & 471 & & XXN( IEN ) = AX * XEREV & 733 \\
\hline 734 & 472 & & YYN( IEN ) = AY * XEREV & 734 \\
\hline 735 & 473 & & XE( 2, IEN ) = 2. * XE( 2, IEN ) & 735 \\
\hline 736 & 474 & & XYMIDL ( IEN ) \(=.5\) & 736 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 737 & 475 & & XMIDL ( IEN ) * XER & 737 \\
\hline 738 & 476 & & YMIDL ( IEN) = YER & 738 \\
\hline 739 & 477 & ¢ & & 139 \\
\hline 740 & 478 & & ELSE & 140 \\
\hline 741 & 479 & c & & 741 \\
\hline 742 & 480 & & XER \(=X S(1,15 S R\) ) & 742 \\
\hline 743 & 481 & & YER \(=\) KS ( 2,1 ISSR \()\) & 743 \\
\hline 744 & 482 & & XEL \(=\) XS( 1, ISSLL \()\) & 744 \\
\hline 745 & 483 & & YEL \(=\) XS ( \(2,15 S L\) ) & 145 \\
\hline 746 & 484 & C & & 746 \\
\hline 747 & 485 & & \(A A=X V(1, J V 2)-X V(1, J V 1)\) & 747 \\
\hline 748 & 486 & & \(B B=X V(2, J V 2)-X V(2, J V 1)\) & 748 \\
\hline 749 & 487 & & \(C C=X E L-X E R\) & 749 \\
\hline 750 & 488 & & DD \(=\mathrm{YEL}-\mathrm{YER}\) & 750 \\
\hline 751 & 489 & & ACA \(=\) XER - XV \({ }^{\text {d }}\), JV1 \()\) & 751 \\
\hline \% 5 & +90 & & OBD - YER - XV( 2 , JVI) & 752 \\
\hline 753 & 491 & & EE = ( \(A C A * D D-D B D * C C) /(A A * D D-A B * C C) ~\) & 753 \\
\hline 754 & 492 & & XMIDL ( IEN \()=X V(1, J V 1)+A A * E E\) & 754 \\
\hline 755 & 493 & & YMIDL (IEN ) = XV( \(2 . \mathrm{JVI})+\mathrm{BB} * E E\) & 755 \\
\hline 756 & 494 & C & & 756 \\
\hline 757 & 495 & & XEMID \(=\) XMIDL (IEN ) - XEL & 757 \\
\hline 758 & 496 & & YEMID \(=\) YMIDL (IEN ) - YEL & 758 \\
\hline 759 & 497 & C & & 759 \\
\hline 760 & 498 & & \(A X=X E R-X E L\) & 760 \\
\hline 761 & 499 & & AY = YER - YEL & 761 \\
\hline 762 & 500 & & XE ( 2 , IEN ) = SQRT ( \(A X\) * \(A X\) + AY * AY) & 762 \\
\hline 763 & 501 & & XEREV \(=1 . /\) XE ( 2.1 IEN ) & 763 \\
\hline 764 & 502 & & XXN( IEN ) = AX * XEREV & 764 \\
\hline 765 & 503 & & YYN( IEN ) = AY * XEREV & 765 \\
\hline 766 & 504 & C & & 766 \\
\hline 767 & 505 & & XYMIDL ( IEN ) = SQRT ( XEMID * XEMID + YEMID * YEMID ) * XEREV & 767 \\
\hline 768 & 506 & C & & 768 \\
\hline 769 & 507 & & END IF & 769 \\
\hline 770 & 508 & c & & 170 \\
\hline 771 & 509 & 90 & COnTINUE & 771 \\
\hline 772 & 510 & C & & 772 \\
\hline 773 & 511 & & IF ( IEROR.NE. 0 ) THEN & 173 \\
\hline 774 & 512 & & WRITE \((6,1000) N\) & 774 \\
\hline 775 & 513 & & IF ( IEROR.EQ.2 ) WRITE (6,1002) I2, J1. IT1. 15 & 775 \\
\hline 776 & 514 & & IF ( IEROR.EQ.3) WRIIE \((6,1003)\) I2, J2, IT2, [5 & 776 \\
\hline 777 & 515 & & STOP ( & 777 \\
\hline 778 & 516 & & END IF & 778 \\
\hline 779 & 517 & \({ }^{\text {c }}\) & & 779 \\
\hline 780 & 518 & c --- & EXIT POINT FROM SUBROUTINE ------. & 780 \\
\hline 781 & 519 & \({ }^{\text {c }}\) & & 781 \\
\hline 182 & 520 & c & ------ & 782 \\
\hline 783 & 521 & & RETURN & 783 \\
\hline 784 & 522 & \({ }_{6}\) & -----* & 784 \\
\hline 785 & 523 & \({ }^{\text {c }}\) & & 785 \\
\hline 786 & 524 & C & FORMATS -------- & 786 \\
\hline 787 & 525 & C & & 787 \\
\hline 788 & 526 & 1000 & FORMAT (/'O trouble hith bookkeeping data found in disect ', & 788 \\
\hline 789 & 527 & & gopmat ' 'FOR LINE ', 15/11) & 789 \\
\hline 190 & 528 & 1002 & FORMAT(' DISECT I2= '.15, J- '. 15.9 IT1- '.15,' 15- '.15) & 790 \\
\hline 791 & 529 & 1003 & FORMAT(' DISECT I2= '.15, J= ', 15,' IT2= '.15.' I5= '.15) & 791 \\
\hline 792 & 530 & C & & 792 \\
\hline 793 & 531 & C & --- & 793 \\
\hline 794 & 532 & & END & 794 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 795 & 1 & & SUBROUTINE DYNPTN( DAREA, NOFOIV, IDUMP , LIRIG ) & 795 \\
\hline 796 & 2 & \({ }^{c}\) & & 796 \\
\hline 797 & 3 & c & -------1 & 797 \\
\hline 798 & 4 & \({ }_{6}\) & DYMPTM AOAPT THE GRID OMmaicaliy, il & 798 \\
\hline 799 & 5 & \(c\) & DYNPTN ADAPT THE GRID OYMAMICALLY. AdD Verteces & 799 \\
\hline 800 & 6 & C & , & 800 \\
\hline 801 & 7 & & --- & 801 \\
\hline 802 & 8 & C & & 802 \\
\hline 803 & 9 & & IMPLICIT REAL (A-H,0-L) & 803 \\
\hline 804 & 10 & c & & 804 \\
\hline 805 & 11 & & include 'cmsh00. h ' & 805 \\
\hline 806 & 12 & & include 'chyd00.n' & 806 \\
\hline 807 & 13 & & include 'cint00.n' & 807 \\
\hline 808 & 14 & & include 'cphs 10.h' & 808 \\
\hline 809 & 15 & & include 'cphs20.h' & 809 \\
\hline 810 & 16 & C & & 810 \\
\hline 811 & 17 & & INTEGER JTRIG(MEM), KTRIG(MEM), IRECNC(MEM) & 811 \\
\hline 812 & 18 & & INTEGER JSE(MEM), JEE(MEM). 1 OFOVS(10).NOFDUS(10) & 812 \\
\hline 813 & 19 & c & & 813 \\
\hline 814 & 20 & & EQUIVALENCE (UL, JTRIG) & 814 \\
\hline 815 & 21 & & EQUIVALENCE (VR,KTRIG) & 815 \\
\hline 816 & 22 & & EQUIVALENTE (VL, IRECNC) & 816 \\
\hline 817 & 23 & & EQUIVALENCE (PR, JSE) & 817 \\
\hline 818 & 24 & & EQUIVALENCE (PL,JEE) & 818 \\
\hline 819 & 25 & C & & 819 \\
\hline 820 & 26 & & SMINVG \(=\) SAREVG * DAREA & 820 \\
\hline 821 & 27 & & RMINVG \(=.7\) * SMINVG & 821 \\
\hline 822
823 & 28 & & 00115 IS 1 . NS & 822 \\
\hline 823
824 & 29
30 & & JEE ( IS \()=0\) & 823 \\
\hline 824
825 & 30
31 & 115 & continue & 824 \\
\hline 825
826 & 31
32 & C & & 825 \\
\hline 826
827 & 32
33 & & NSS \(=0\)
FLUXPP \(=.00001 *\) HYDMOM ( 4) & 826 \\
\hline 828 & 34 & & FLUXPP \(=.00001 * ~ H Y O M O H ~(~ 4 ~\) ( & 827 \\
\hline 829 & 35 & & FLUXUR = \(=.00001\) * FLYMOM ( 2 ) & 828 \\
\hline 830 & 36 & & DO 120 IS \(=1\), NS & 829
830 \\
\hline 831 & 37 & & PCRTRY \(=\) HYDFLX ( IS , 4) - FLUXPP & 831 \\
\hline 832 & 38 & & IPCRTR \(=\) SIGN( \(1 .\). PCRTRY \()\) & 832 \\
\hline 833 & 39 & & UCRTRY \(=\) HYDFLX ( IS , 2) - FLUXUU & 833 \\
\hline 834 & 40 & & IUCRTR \(=\) SIGN( 1. UCRTRY ) & 834 \\
\hline 835 & 41 & & RCRTRY \(=\) HYDFLX ( IS , 1 ) - FLUXRR & 835 \\
\hline 836 & 42 & & IRCRTR = SIGN( 1. . RCRTRY) & 836 \\
\hline 837 & 43 & & IF ( 1 & 837 \\
\hline 838 & 44 & & IPCRTR - EQ . 1 - OR . & 838 \\
\hline 839 & 45 & & IUCRIR . EQ . 1 - OR . & 839 \\
\hline 840 & 46 & & IRCRTR EQ - 1). AND & - 40 \\
\hline 841 & 47 & & KSDELT( IS ) . LT . IDUMP ) THEN & 841 \\
\hline 842 & 48 & & KSDELT( IS ) = IDUMP & 842 \\
\hline 843 & 49 & & JEE ( IS ) \(=1\) & 843 \\
\hline 844 & 50 & & NSS \(=\) NSS +1 & 844 \\
\hline 845 & 51 & & JTRIG( NSS ) = IS & 845 \\
\hline 846 & 52 & & END IF & 846 \\
\hline 847 & 53 & 120 & CONTINUE & 847 \\
\hline 848 & 54 & c & & 848 \\
\hline 849 & 55 & & DO 130 IS \(=1\), NSS & 849 \\
\hline 850 & 56 & & JSE (IS ) \(=\) JTRIG( IS ) & 850 \\
\hline 851 & 57 & 130 & continue meat & 851 \\
\hline 852 & 58 & c & & 852 \\
\hline 853 & 59 & & MSS \(=\) NSS & 853 \\
\hline 854 & 60 & & \(00140 \mathrm{KDIV}=1\), NOFDIV & 854 \\
\hline 855 & 61 & & ITRIG \(=0\) & 855 \\
\hline 856 & 62 & & \(00150 \mathrm{KS}=1\). NSS & 856 \\
\hline 857 & 63 & c & & 857 \\
\hline 858 & 64 & & ISS = JSE ( KS ) & 858 \\
\hline 859 & 65 & c & & 859 \\
\hline 860 & 66 & & \(00160 \mathrm{KR}=1,3\) & 860 \\
\hline 861 & 67 & & IVV \(=\) JS ( KR , ISS ) & 861 \\
\hline 862 & 68 & C & & 862 \\
\hline 863 & 69 & & \(\underline{I E}=\mathrm{JV}(2 . \mathrm{IVV})\) & 863 \\
\hline 864 & 70 & & EF ( IE . GT . O) then & 864 \\
\hline 865 & 71 & C & & 865 \\
\hline 866 & 72 & & IVI \(=\) JE( \(1,1 \mathrm{IE}\) ) & 866 \\
\hline 867 & 73 & & IF ( IV1. EQ. IVV ) THEN & 867 \\
\hline 868 & 74 & & [SI \(\times\) JE( 3 , IE ) & 868 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 869 & 75 & & ELSE \\
\hline 870 & 76 & & ISI = JE ( 4 , IE) \\
\hline 871 & 17 & & END If \\
\hline 872 & 78 & & IS \(=\) ISI \\
\hline 873 & 79 & c & \\
\hline 874 & 80 & 750 & Continue \\
\hline 875 & 81 & C & \\
\hline 876 & 82 & & JES \(=\) JEE ( IS ) \\
\hline 877 & 83 & & XAS \(=\) XS ( 3.15 ) \\
\hline 878 & 84 & & IF (JES . EQ . O. AND . XAS . LT . SAREVG) THEN \\
\hline 879 & 85 & & ITRIG = ITRIG +1 \\
\hline 880 & 86 & & KTRIG ( ITRIG) \(=15\) \\
\hline 881 & 87 & & KSDELT( IS ) = 1DUMP \\
\hline 882 & 88 & & JEE ( IS ) \(=1\) \\
\hline 883 & 89 & & END IF \\
\hline 884 & 90 & C & \\
\hline 885 & 91 & & \(00760 \mathrm{IR}=1.3\) \\
\hline 886 & 92 & & \(J \mathrm{R}=\mathrm{MOD}(\mathrm{IR} \cdot 3)+1\) \\
\hline 887 & 93 & & \(I E A=1 A B S(J S(J R+3 . I S))\) \\
\hline 888 & 94 & & IF ( IEA. EQ . IE ) THEN \\
\hline 889 & 95 & & \(J J R=M O D(J R+1,3)+4\) \\
\hline 890 & 96 & & IER = IABS ( JS ( JJR , IS ) ) \\
\hline 891 & 97 & C & \\
\hline 892 & 98 & & \(\mathrm{IVI}=\mathrm{JE}(1 . \mathrm{IER})\) \\
\hline 893 & 99 & & IF ( IVI . EQ . IVV) THEN \\
\hline 894 & 100 & & ISR = JE ( \(3.1 E R\) ) \\
\hline 895 & :01 & & ELSE \\
\hline 896 & 102 & & \(I S R=J E(4 . I E R)\) \\
\hline 897 & 103 & & END If \\
\hline 898 & 104 & & END IF \\
\hline 899 & 105 & c & \\
\hline 900 & 106 & 760 & CONTINUE \\
\hline 901 & 107 & c & \\
\hline 902 & 108 & & IT: ISR . NE . ISI ) THEN \\
\hline 903 & 109 & & IS - ISR \\
\hline 904 & 110 & & IE = IER \\
\hline 905 & 111 & & GO T0 750 \\
\hline 906 & 112 & & EMD If \\
\hline 907 & 113 & C & \\
\hline 908 & 114 & & ELSE \\
\hline 909 & 115 & C & \\
\hline 910 & 116 & & IE = - IE \\
\hline 911 & 117 & & IV1 = JE ( 1. IE ) \\
\hline 912 & 118 & & IF ( IVI. EQ . IVV ) THEN \\
\hline 913 & 219 & & ISI = JE ( 3, IE) \\
\hline 914 & 120 & & ELSE \\
\hline 915 & 121 & & ISI = JE ( 4. IE ) \\
\hline 916 & 122 & & END IF \\
\hline 917 & 123 & & IS - ISI \\
\hline 918 & 124 & & ISI \(=0\) \\
\hline 919 & 125 & & IIE = IE \\
\hline 920 & 126 & c & \\
\hline 921 & 127 & 650 & CONTINUE \\
\hline 922 & 128 & C & \\
\hline 923 & 129 & & JES \(=\) JEE ( 15 ) \\
\hline 924 & 130 & & XAS \(=\) XS ( 3, IS ) \\
\hline 925 & 131 & & IF ( JES . EQ . O A A O X X . LT . SAREVG) THEN \\
\hline 926 & 132 & & ITRIG = ITRIG + 1 \\
\hline 927 & 133 & & KTRIG ( ITRIG ) = IS \\
\hline 928 & 134 & & KSDELT( IS ) = LDUMP \\
\hline 929 & 135 & & JEE ( IS ) \(=1\) \\
\hline 930 & 136 & & EMD If \\
\hline 931 & 137 & c & \\
\hline 932 & 138 & & D0 660 IR = 1. \({ }^{3}\) \\
\hline 933 & 139 & & \(J \mathrm{R}=\mathrm{MOD}(\mathrm{IR}, 3)+1\) \\
\hline 934 & 140 & & \(I E A=I A B S(J S(J R+3 . I S))\) \\
\hline 935 & 141 & & IF ( IEA. EO. IE ) THEN \\
\hline 936 & 142 & & JJR \(=\mathrm{MOO}(\mathrm{JR}+1,3)+4\) \\
\hline 937 & 143 & & IER = IABS ( JS ( JJR . IS ) ) \\
\hline 938 & 144 & C & \\
\hline 939 & 145 & & IVI = JE ( 1, IER ) \\
\hline 940 & 146 & & IF ( IVI . EQ . IVV) THEN \\
\hline 941 & 147 & & ISR = JE ( 3 . IER ) \\
\hline 942 & 148 & & ELSE \\
\hline
\end{tabular}
872 873 874 875 876
\(X A S=X S(3,15)\)
IF ( Jes. Eq. O . AND . XAS . LT . SAREVG ) then
877
878
TRIG = ITRG +1
KSDELT( IS ) = 1DUMP
JEE (IS ) \(=1\)
END IF
00760 IR \(=1,3\)
IEA \(=\operatorname{IABS}(J S(J R+3, I S))\)
IF ( IEA . EQ . IE ) THEN
\(J J R=\operatorname{MOD}(J R+1,3)+4\)
\(\operatorname{IVI}=\mathrm{JE}(1, \mathrm{IER})\)
IF ( IVI. EQ . IVV ) THEN
ELSE
\(I S R=\operatorname{JE}(4 . I E R)\)
END If
continue
if: ISR . NE . ISI ) THEN
IE = IER
GO 10750
ELSE
IE = - IE
IF = IVI. EQ. . IVN ) THEN
ISI = JE ( 3 , IE)
ISI \(=\mathrm{JE}(4\). IE)
END IF
SI ISI
IIE = IE
CONTINuE
JES \(=\) JEE ( IS )
IF ( JES . EQ. O . ANO . XAS . LT . SAREVG) THEN
ITRIG \(=\) ITRIG +1
KTRIG( ITRIG) \(=\) IS
JEE ( IS ) \(=1\)
END IF
00660 IR = 1 . 3
- 933
IF ( IEA. EO. IE) THEN

IVI = JE ( 1 , IER )
IF ( IVI . EQ . IVV ) THEN 940
ELSE
\begin{tabular}{|c|c|c|c|c|}
\hline 943 & 149 & & \(I S R=E(4, I E R)\) & 943 \\
\hline 944 & 150 & & END If & 944 \\
\hline 945 & 151 & & END If & 945 \\
\hline 946 & 152 & \(\bigcirc\) & & 946 \\
\hline 947 & 153 & 660 & continue & 947 \\
\hline 948 & 154 & C & & 948 \\
\hline 949 & 155 & & IF ( ISR . NE . ISI ) THEN & 949 \\
\hline 950 & 156 & & \(I S=15 R\) & 950 \\
\hline 951 & 157 & & IE = IER & 951 \\
\hline 952 & 158 & & G0 T0 650 & 952 \\
\hline 953 & 159 & & END IF & 953 \\
\hline 954 & 160 & C & & 954 \\
\hline 955 & 161 & & END IF & 955 \\
\hline 956 & 162 & 160 & continue & 956 \\
\hline 957 & 163 & c & & 957 \\
\hline 958 & 164 & 150 & continue & 958 \\
\hline 959 & 165 & c & & 959 \\
\hline 960 & 166 & & DO 170 IS \(=1.1\) IRIG & 960 \\
\hline 961 & 167 & & JTRIG( IS + MSS \()=\) KTRIG( 15 ) & 961 \\
\hline 962 & 168 & & JSE ( IS ) = KTRIG( IS ) & 962 \\
\hline 963 & 169 & 170 & CONTINUE & 963 \\
\hline 964 & 170 & & NSS = ITRIG & 964 \\
\hline 965 & 171 & & MSS \(=\) MSS + ITRIG & 965 \\
\hline 966 & 172 & C & & 966 \\
\hline 967 & 173 & 140 & CONTINUE & 967 \\
\hline 958 & 174 & & NSS \(=\) MSS & 968 \\
\hline 969 & :75 & C & & 969 \\
\hline 970 & 176 & & DO \(300 \mathrm{KDIV}=1.1\) & 970 \\
\hline 971 & 177 & & LTRIG = NSS & 971 \\
\hline 972 & 178 & \(\bigcirc\) & & 972 \\
\hline 973 & 179 & & D0 310 IS = 1 , NSS & 973 \\
\hline 974 & 180 & & ISS = JTRIG ( IS ) & 974 \\
\hline 975 & 181 & & XSAREA \(=\) XS \((3,15 S)\) & 975 \\
\hline 976 & 182 & & IF ( XSAREA. GE . RMINVG) THEN & 976 \\
\hline 977 & 183 & C & & 977 \\
\hline 978 & 184 & & \(00335 \mathrm{IR}=4.6\) & 978 \\
\hline 979 & 185 & & IE = IABS ( JS ( IR ; ISS) ) & 979 \\
\hline 980 & 186 & & IJE5 \(=\) JE ( 5 , IE ) & 980 \\
\hline 981 & 187 & & IF ( IJE5. NE . 0) THEN & 981 \\
\hline 982 & 188 & & JR2 \(=\) MOC 1 IR \(-3,3)+4\) & 982 \\
\hline 983 & 189 & & IE2 \(=\) IABS ( JS ( JR2 \(\cdot\) ISS ) ) & 983 \\
\hline 984 & 190 & & JR3 \(=\operatorname{MOD}(12-2,3)+4\) & 984 \\
\hline 985 & 191 & &  & 985 \\
\hline 986 & 192 & & \(X E 1=X E(1,1 E)\) & 986 \\
\hline 987 & 193 & & XE2 \(=\) XE ( 1, IE2 ) & 987 \\
\hline 988 & 194 & & XE3 \(=\) XE ( 1 , [E3) & 988 \\
\hline 989 & 195 & & XEDIST \(=1.1\) XE1 & 989 \\
\hline 990 & 196 & & YE2 \(=\) XE2 * XEDIST & 990 \\
\hline 991 & 197 & & YE3 \(=\) XE3 * XEDIST & 991 \\
\hline 992 & 198 & & 7E2 \(=(\) YE2 - 1.5 ) * (YE2-.1) & 992 \\
\hline 993 & 199 & & ZE3 \(=(\) YE3 - 1.5 ) * YE3 - . \()\) & 993 \\
\hline 994 & 200 & & YY2 \(=X E 1\) * XE1 + XE2 * XE2 + . 35 * XE1 * XE2 - XE3 * XE3 & 994 \\
\hline 995 & 201 & & YY3 * XE1 * XE1 + XE3 * XE3 + . 35 * XE1 * XE3 - XE2 * XE2 & 995 \\
\hline 996 & 202 & & IF ( ZE2. LT . 0 . AND . ZE3. LT . O. - AND. & 996 \\
\hline 997 & 203 & & CALL Y\% GT . O. . AND. YY3 GT, O. ) THEN & 997 \\
\hline 998 & 204 & & CALL DISECT ( IE , IDONE , IDUMP) & 998 \\
\hline 999 & 205 & c & & 999 \\
\hline 1000 & 206 & & LTRIG \(=\) LTRIG + 1 & 1000 \\
\hline 1001 & 207 & & JTRIG ( LTRIG) = NS & 1001 \\
\hline 1002 & 208 & & KSDELT( NS ) = IDUMP & 1002 \\
\hline 1003 & 209 & c & & 1003 \\
\hline 1004 & 210 & & END If & 1004 \\
\hline 1005 & 211 & & END IF & 1005 \\
\hline 006 & 212 & 335 & continue & 1006 \\
\hline 1007 & 213 & & END IF & 1007 \\
\hline 1008 & 214 & 310 & continue & 1008 \\
\hline 1009 & 215 & c & & 1009 \\
\hline 1010 & 216 & & NSS = LTRIG & 1010 \\
\hline 1011 & 217 & & IEDGE \(=0\) & 1011 \\
\hline 1012 & 218 & & NCOLOR \(=0\) & 1012 \\
\hline 1013 & 219 & c & & 1013 \\
\hline 1014 & 220 & & 00 295 IE = 1. NE & 1014 \\
\hline 1015 & 221 & & JSE ( \([E)=0\) & 1015 \\
\hline 1016 & 222 & 295 & continue & 1016 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1017 & 223 & \(C\) & & 1017 \\
\hline 1018 & 224 & & 00320 IS \(=1\), NSS & 1018 \\
\hline 1019 & 225 & & ISS = JTRIG( IS ) & 1019 \\
\hline 1020 & 226 & & XSAREA - XS ( 3 , ISS ) & 1020 \\
\hline 1021 & 227 & C & & 1021 \\
\hline 1022 & 228 & & \(X X S=X S(1\). ISS \()\) & 1022 \\
\hline 1023 & 229 & & YYS \(=X S(2,1 S S)\) & 1023 \\
\hline 1024 & 230 & & \(I Z Z=1\) & 1024 \\
\hline 1025 & 231 & & IF ( IWINOW . EO . 1 ) THEN & 1025 \\
\hline 1026 & 232 & & XXSS \(=-X X S\) * XXS + XXS + . 75 & 1026 \\
\hline 1027 & 233 & & YYSS \(=-Y Y S\) * YYS + 1. & 1027 \\
\hline 1028 & 234 & & IZ2 = INT( SIGN( 1. . XXSS * YYSS ) ) & 1028 \\
\hline 1029 & 235 & & END IF & 1029 \\
\hline 1030 & 236 & \(C\) & & 1030 \\
\hline 1031 & 237 & & IF ( XSAREA . GT . RMINVG . AMD . IZ2 . EQ . I ) THEN & 1031 \\
\hline 1032 & 238 & C & & 1032 \\
\hline 1033 & 239 & & D0 \(735 \mathrm{IR}=4.6\) & 1033 \\
\hline 1034 & 240 & & IE IABS ( JS ( IR, ISS ) ) & 1034 \\
\hline 1035 & 241 & & IF ( JSE ( IE ) EO. O) THEN & 1035 \\
\hline 1036 & 242 & & IEDGE = IEDGE + 1 & 1036 \\
\hline 1037 & 243 & & IRECNC ( IEDGE ) = IE & 1037 \\
\hline 1038 & 244 & & NCOLOR = NCOLOR + 1 & 1038 \\
\hline 1039 & 245 & & JEE ( NCOLOR ) = IE & 1039 \\
\hline 1040 & 246 & & JSE ( IE ) = 1 & 1040 \\
\hline 1041 & 247 & & END IF & 1041 \\
\hline 1042 & 248 & 735 & CONTINUE & 1042 \\
\hline 1043 & 249 & C & & 1043 \\
\hline 1044 & 250 & & AREAXS = SAREA ( S \(^{\text {S }}\) ) & 1044 \\
\hline 1045 & 251 & & IEI \(=\operatorname{IABS}(J S(4, I S S))\) & 1045 \\
\hline 1046 & 252 & & \(X E 1=X E(1.1 E 1)\) & 1046 \\
\hline 1047 & 253 & & HDI = AREAXS * XE1 * XE1 & 1047 \\
\hline 1048 & 254 & & IJE5 = JE ( \(5, \mathrm{IEL}\) ) & 1048 \\
\hline 1049 & 255 & & IE2 \(=\operatorname{IABS}(J 5(5,155))\) & 1049 \\
\hline 1050 & 256 & & XE2 = XE ( 1 , IE2 ) & 1050 \\
\hline 1051 & 257 & & HD2 = AREAXS * XE2 * XE2 & 1051 \\
\hline 1052 & 258 & & IJE5 = IJE5 + JE ( 5 . IE2 ) & 1052 \\
\hline 1053 & 259 & & IE3 \(=\operatorname{IABS}(J 5(6\), ISS ) \()\) & 1053 \\
\hline 1054 & 260 & & XE3 = XE ( 1 , [E3 ) & 1054 \\
\hline 1055 & 261 & & HD3 = AREAXS * XE3 * XE3 & 1055 \\
\hline 1056 & 262 & & IJE5 - [JE5 + JE ( 5 , IE3 ) & 1056 \\
\hline 1057 & 263 & & RATIO = AMAX1 ( HD1 . HD2 . HD3 ) & 1057 \\
\hline 1058 & 264 & & IRATIO \(=0\) & 1058 \\
\hline 1059 & 265 & & IF ( RAIIO . LE . 7. . AND . IJE5 . EQ . 0 . AND . & 1059 \\
\hline 1060 & 266 & & XSAREA . GT . SMINVG ) [RATIO = 1 & 1060 \\
\hline 1061 & 267 & & IF ( IJE5 . GT . 0 ) IRATIO \(=2\) & 1051 \\
\hline 1062 & 268 & C & & 1062 \\
\hline 1063 & 269 & & IF ( IRATIO. EQ . 2 ) THEN & 1063 \\
\hline 1064 & 270 & & IJE51 \(=\) JE ( \(5.1 E 1\) ) & 1064 \\
\hline 1065 & 271 & & IJE52 \(=\) JE ( 5 , IE2 ) & 1065 \\
\hline 1066 & 272 & & IJE53 = JE ( 5. IE3 ) & 1066 \\
\hline 1067 & 273 & & IF ( IJE51 . NE . 0) THEN & 1067 \\
\hline 1068 & 274 & & IEDIST - IE1 & 1068 \\
\hline 1069 & 275 & & XE1 = XE ( \(1, I E 1)\) & 1069 \\
\hline 1070 & 276 & & \(X E 2=X E(1, I E 2)\) & 1070 \\
\hline 1071 & 277 & & XE3 \(=\) XE ( 1 , IE3 ) & 1071 \\
\hline 1072 & 278 & & END IF & 1072 \\
\hline 1073 & 279 & & IF ( IJE52 . NE . O) THEN & 1073 \\
\hline 1074 & 280 & & IEDIST = IE2 & 1074 \\
\hline 1075 & 281 & & XE1 = XE ( 1 , IE2 ) & 1075 \\
\hline 1076 & 282 & & XE2 - XE ( 1, IE1) & 1076 \\
\hline 1077 & 283 & & XE3 = XE ( 1 , IE3) & 1077 \\
\hline 1078 & 284 & & END IF & 1078 \\
\hline 1079 & 285 & & IF ( IJE53 * NE . 0) THEN & 1079 \\
\hline 1080 & 286 & & IEDIST \(=1\) IE3 & 1080 \\
\hline 1081 & 287 & & \(X E 1=X E(1.1 E 3)\) & 1081 \\
\hline 1082 & 288 & & \(X E 2=X E(1, I E 2)\) & 1082 \\
\hline 1083 & 289 & & XE3 - XE ( 1 , IE1) & 1083 \\
\hline 1084 & 290 & & END IF & 1084 \\
\hline 1085 & 291 & & XEDIST \(=1.1\) XE ( 1. IEDIST ) & 1085 \\
\hline 1086 & 292 & & YE2 - XE2 * XEDIST & 1086 \\
\hline 1087 & 293 & & YE3 \(=\) XE3 * XEOIST & 1087 \\
\hline 1088 & 294 & & ZE2 \(=(\mathrm{YE2}-1.5) *(Y E 2-.1)\) & 1088 \\
\hline 1089 & 295 & & \(2 \mathrm{E} 3=(\mathrm{YE} 3-1.5) *(Y E 3-.1)\) & 1089 \\
\hline 1090 & 296 & & \(Y Y 2=X E 1\) * XE1 + XE2 * XE2 + . 35 * XE1 * XE2 - XE3 * XE3 & 1090 \\
\hline
\end{tabular}


1
Thu Jul 1 14:16:08 1993
adaphd. \(\dagger\)
\begin{tabular}{|c|c|c|c|c|}
\hline 1165 & 371 & & XE3 \(=\) XE ( 1, 1E3) & 1165 \\
\hline 1166 & 372 & & \(1 \mathrm{JE} 55 \times 1 \mathrm{JE55}\) + JE (5. IE3) & 1166 \\
\hline 1167 & 373 & & H03 - AREAXS * XE3 * XE3 & 1167 \\
\hline 1168 & 374 & & RATIO - AMAXI ( HOI H02 , HD3) & 1168 \\
\hline 1169 & 375 & & YSAREA \(=X S(3,151)\) & 1169 \\
\hline 1170 & 376 & & If ( RAIIO . LT . 7. . AND . YSAREA . GI . Shinvg and & 1170 \\
\hline 1171 & 377 & & lJE55. EQ . 0) THEN & 1171 \\
\hline 1172 & 378 & & 1015CT \(=1\) & 1172 \\
\hline 1173 & 379 & & \(00435 \mathrm{IR}=4.6\) & 1173 \\
\hline 1174 & 380 & & IE = IABS ( JS( IR , ISI ) & 1174 \\
\hline 1175 & 381 & & if ( JSE ( IE ) . EO. 0 ) then & 1175 \\
\hline 1176 & 382 & & IEDGE \(=\) IEDGE +1 & 1176 \\
\hline 1171 & 383 & & IRECNC ( IEDGE ) = IE & 1177 \\
\hline 1178 & 384 & & NCOLOR = NCOLOR + 1 & 1178 \\
\hline 1179 & 385 & & JEE ( NCOLOR ) = IE & 1179 \\
\hline 1180 & 386 & & JSE ( IE ) = 1 & 1180 \\
\hline 1181 & 387 & & END If & 1181 \\
\hline 1182 & 388 & 435 & CONTINUE & 1182 \\
\hline 1183 & 389 & & CALL VERCEN( 151 ) & 1183 \\
\hline 1184 & 390 & & KSOELT ( ISI) = IOUMP & 1184 \\
\hline 1185 & 391 & & LTRIG - LTRIG + 1 & 1185 \\
\hline 1186 & 392 & & JTRIG(LTRIG) \(=\) NS -1 & 1186 \\
\hline 1187 & 393 & & KSDELT( NS - 1) = IOUMP & 1187 \\
\hline 1188 & 394 & C & & 1188 \\
\hline 1189 & 395 & & LTRIG * LTRIG + 1 & 1189 \\
\hline 1190 & 396 & & JTRIG( LTRIG) = NS & 1190 \\
\hline 1191 & 397 & & KSDELT( NS ) = 10UMP & 1191 \\
\hline 1192 & 398 & C & & 1192 \\
\hline 1193 & 399 & & IEDGE \(=\) IEDGE - 1 & 1193 \\
\hline 1194 & 400 & & IRECNC ( IEDGE ) - NE & 1194 \\
\hline 1195 & 401 & & NCOLOR = NCOLOR + 1 & 1195 \\
\hline 1196 & 402 & & JEE ( NCOLOR ) = NE & 1196 \\
\hline 1197 & 403 & & JSE ( NE ) = 1 & 1197 \\
\hline 1198 & 404 & & IEDGE \(=\) IEDGE +1 & 1198 \\
\hline 1199 & 405 & & IRECNC( IEDGE \()=\) NE - 1 & 1199 \\
\hline 1200 & 406 & & NCOLOR \(=\) NCOLOR +1 & 1200 \\
\hline 1201 & 407 & & JEE ( NCOLOR ) = NE - 1 & 1201 \\
\hline 1202 & 408 & & \(\operatorname{JSE}(\operatorname{NE}-1)=1\) & 1202 \\
\hline 1203 & 409 & & IEDGE \(=\) IEDGE + 1 & 1203 \\
\hline 1204 & 410 & & IRECNC( IEDGE ) = NE - 2 & 1204 \\
\hline 1205 & 411 & & HCOLOR = NCOLOR + 1 & 1205 \\
\hline 1206 & 412 & & JEE ( NCOLOR ) = NE - 2 & 1206 \\
\hline 1207 & 413 & & JSE ( NE - 2) = 1 & 1207 \\
\hline 1208 & 414 & & EMO IF & 1208 \\
\hline 1209 & 415 & & EMD If & 1209 \\
\hline 1210 & 416 & 545 & continue & 1210 \\
\hline 1211 & 417 & C & & 1211 \\
\hline 1212 & 418 & & IF ( IDISCT . EO - 0 ) Then & 1212 \\
\hline 1213 & 419 & & IEI - IABS ( JS \({ }^{\text {a }} 4\), 15S ) & 1213 \\
\hline 1214 & 420 & & XEI \(=\) XE ( \(1,1 \mathrm{IEL}^{\text {( }}\) ) & 1214 \\
\hline 1215 & 421 & & IE2 \(=\) IABS ( JS 55 ; ISS ) ) & 1215 \\
\hline 1216 & 422 & & XE2 \(=\) XE ( 1 ( IE2 ) & 1216 \\
\hline 1217 & 423 & &  & 1217 \\
\hline 1218 & 424 & & XE3 \(=\) XE( 1.15153\()\) & 1218 \\
\hline 1219 & 425 & & IEDIST \(=\) IE1 & 1219 \\
\hline 1220 & 426 & & XEDIST \(=\) XE1 XEDIST ) THEN & 1221 \\
\hline 1221 & 427 & & IF ( XED - XT . XEDIST ) THEN & 1221 \\
\hline 1222
1223 & 428
429 & & \(\begin{gathered}\text { XEDIST } \\ \text { IEDIST }\end{gathered}=\) XE2 & 1223 \\
\hline 1223
1224 & 429
430 & & IEDIS IF \(=\) IE2 & 1224 \\
\hline 1224
1225 & 430
431 & & END IF XE3 . GT . XEDIST) THEN & 1225 \\
\hline 1225
1226 & 431
432 & &  & 1226 \\
\hline 1227 & 433 & & IEDIST \(=\) IE3 & 1227 \\
\hline 1228 & 434 & & END If & 1228 \\
\hline 1229 & 435 & & ISL \(=\) JE ( 3 , IEDIST ) & 1229 \\
\hline 1230 & 436 & & ISR = JE ( 4 , IEDIST ) & 1230 \\
\hline 1231 & 437 & & XSISL \(=\) XS( \(3.15 L)\) & 1231 \\
\hline 1232 & 438 & & XSISR \(=\) XS ( \(3,15 R)\) & 1232 \\
\hline 1233 & 439 & & IJE5 \(=\) JE ( 5 , IEDIST ) & 1233 \\
\hline 1234 & 440 & & IF ( XSISL . GT . RMINVG. AND XSISR . GT . RMINVG . AND & 1234 \\
\hline 1235 & 441 & & IJJES . EO . 0 . ANO IRATIO. NE . 2) THEN & 1235 \\
\hline 1236 & 442 & & IF ( ISS. NE . ISL ) THEN & 1236 \\
\hline 1237 & 443 & &  & 1238 \\
\hline 1238 & 444 & & IE - IABS( JS( IR , ISL ) & 123 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1239 & 445 & & IF (JSE ( IE ) . EO. 0 ) THEN & \\
\hline 1240 & 446 & & IEDGE - IEDGE + 1 & 1239 \\
\hline 1241 & 447 & & IRECNC( IEDGE ) = IE & 1241 \\
\hline 1242 & 448 & & NCOLOR - NCOLOR + 1 & 1241 \\
\hline 1243 & 449 & & JEE ( MCCLión ) = IE & 1242 \\
\hline 1244 & 450 & & JSE ( IE ) \(=1\) & 1244 \\
\hline 1245 & 451 & & END If & 1244 \\
\hline 1246 & 452 & 345 & continue & 1245 \\
\hline 1247 & 453 & & END If & 1246 \\
\hline 1248 & 454 & C & & 1248 \\
\hline 1249 & 455 & & IF ( ISS . ME . ISR ) THEN & 1249 \\
\hline 1250 & 456 & & 00355 IR \(=4,6\) & 1250 \\
\hline 1251 & 457 & & IE = IABS( JS ( 1 IR . ISR ) ) & 1250 \\
\hline 1252 & 458 & & If ( JSE ( IE ). EO. O) Then & 1252 \\
\hline 1253 & 459 & & IEDGE = IEDGE +1 & 1253 \\
\hline 1254 & 460 & & IRECHC ( IEDGE ) = IE & 1254 \\
\hline 1255 & 461 & & NCOLOR = NCOLOR + 1 & 1255 \\
\hline 1256 & 462 & & JEE ( NCOLOR ) = IE & 1256 \\
\hline 1257 & 463 & & JSE ( IE ) = 1 & 1257 \\
\hline 1258 & 464 & & END IF & 1258 \\
\hline 1259 & 465 & 355 & continue & 1259 \\
\hline 1260 & 456 & & END If & 1260 \\
\hline 1261 & 467 & c & & 1261 \\
\hline 1262 & 468 & & IDONE \(=0\) & 1262 \\
\hline 1263 & 469 & & CALL OISECT ( IEDIST, IDOME , IDUMP) & 1263 \\
\hline 1264 & 470 & & IF ( IDONE . EQ . 1) IHEN & 1264 \\
\hline 1265 & 471 & C & & 1265 \\
\hline 1266 & 472 & & LIRIG = LTRIG + 1 & 1266 \\
\hline 1267 & 473 & & JTRIG( LTRIG ) = NS & 1267 \\
\hline 1268 & 474 & & KSDELT( NS ) = IDUMP & 1268 \\
\hline 1269 & 475 & & LTRIG \(=\) LTRIG +1 & 1269 \\
\hline 1270 & 476 & & JJRIG (LTRIG) \(=\) NS -1 & 1270 \\
\hline 1271 & 477 & & KSDELT( NS - 1) = IDUMP & 1271 \\
\hline 1272 & 478 & C & & 1272 \\
\hline 1274 & 480 & & IEDGE = IEDGE + 1 & 1273 \\
\hline 1275 & 481 & & IRECNC( IEOGE \()=\) NE & 1274 \\
\hline 1276 & 482 & & NEE ( NCOLOR ) = NE & 1275 \\
\hline 1277 & 483 & & JSE ( NE ) \(=1\) & 1276 \\
\hline 1278 & 484 & & IEDGE = IEOGE + 1 & 1278 \\
\hline 1279 & 485 & & IRECNC ( IEDGE ) = NE - 1 & 1279 \\
\hline 1280 & 486 & & NCOLOR = HCOLOR + 1 & 1280 \\
\hline 1281 & 487 & & JEE ( NCOLOR ) = NE - 1 & 1281 \\
\hline 1282 & 488 & & \(J\) JE ( \(\mathrm{NE}-1)=1\) & 1282 \\
\hline 1283 & 489 & & IEDGE = IEDGE + I & 1283 \\
\hline 1284 & 490 & & IRECNC( IEDGE ) = NE - 2 & 1284 \\
\hline 1285 & 491 & & NCOLOR = NCOLOR + 1 & 1285 \\
\hline 1286 & 492 & & JEE ( NCOLOR ) \(=\) NE - 2 & 1286 \\
\hline 1287 & 493 & & JSE ( \(\mathrm{NE}-2\) ) \(=1\) & 1287 \\
\hline 1288 & 494 & & END If & 1288 \\
\hline 1289 & 495 & C & & 1289 \\
\hline 1290 & 496 & & EMD IF & 1290 \\
\hline 1291 & 497 & & END IF & 1291 \\
\hline 1292 & 498 & & END IF & 1292 \\
\hline 1293 & 499
500 & C & END IF & 1293 \\
\hline 1295 & 501 & 320 & CONTINUE & 1294 \\
\hline 1296 & 502 & C & & 1296 \\
\hline 1297 & 503 & & 00340 [EM = 1 , NCOLOT & 1297 \\
\hline 298 & 504 & & IE = JEE ( IEM ) & 1298 \\
\hline 1299 & 505 & C & & 1299 \\
\hline 1300 & 506 & & ISL = JE ( 3 , IE ) & 1300 \\
\hline 1301 & 507 & & YSAREA \(=\) XS ( \(3,15 L)\) & 1301 \\
\hline 1302 & 508 & & IJE5 \(=\) JE ( 5 , IE ) & 1302 \\
\hline 303 & 509 & & IF ( YSAREA. GE PMINVG. AND . IJE5 . ME . 0) THEN & 1303 \\
\hline 304 & 510 & & [E] \(=\operatorname{IABS}(\mathrm{JS}(4\), ISL ) ) & 1304 \\
\hline 1305 & 511 & & IE2 - IABS ( JS ( 5, ISL) ) & 1305 \\
\hline 1306 & 512 & & IE3 \(=\) IABS ( 3 S 6. ISL ) ) & 1306 \\
\hline 1307 & 513 & & IJE51 \(=\) JE ( \(5 \cdot\) IE1 \()\) & 1307 \\
\hline 1308 & 514
515 & & \(1 \mathrm{LE} 52=\mathrm{JE}(5,1 \mathrm{E} 2)\) & 1308 \\
\hline 309 & 515 & & IJE53 \(=\mathrm{JE}(5\), IE3 \()\) & 1309 \\
\hline 311 & 517 & & IEDIST \(=1\) IE1 \({ }^{\text {ME }}\) ( O) THEN & 1310 \\
\hline 1312 & 518 & & \(X E I=X E(1,1 E 1)\) & 1312 \\
\hline
\end{tabular}

```

 XE2 - XE(1, IE2)
 XE3 = XE(1, IE3)
 END IF
 IF(IJE52 . NE . 0) THEN 1316
 IEDIST = IE2 1317
 XE1 = XE(1 , IE2) 1318
 XE2 = XE (1, IE1) 13, 1319
 XE3 = XE(1 , IE3) 1320
 EMO IF 1321
 IF(IJE53 . NE . 0) THEN 1322
 IEDIST = IE3 1323
 XE1 = XE(1 , IE3) 1324
 XE2 = XE(1 . IE2) 1325
 XE3 = XE(1 1, IE1) 1326
 END IF 1327
 XEDIST = 1, /XE(1 , IEDIST) 1328
 YE2 = XE2 * XEDIST 1329
 YE3 = XE3 * XEOIST
 ZE2 = (YE2 - 1.5)* (YE2 - .1) 1331
 ZE3 = (YE3 -1.5)*(YE3 -.1) 1332
 YY2 = XE1 * XE1 + XE2 * XE2 + . 35 * XE1 * XE2 - XE3 * XE3 1333
 YY3 = XE1 * XE1 + XE3 * XE3 + .35 * XE1 * XE3 - XE2 * XE2 1334
 IF(ZE2 . LT . .O . ANO . ZE3 . LT . O. AND . ANC I335
 YY2.GT. O..AND YY3 .GT. O.) THEN 1336
 CALL DISECT (IEDIST , IDONE . IDUMP)
 C 1338
 LTRIG = LTRIG + 1
 JTRIG(LTRIG) = NS 1340
 KSOELT(NS) = IDUMP 1341
 M, 1342
 IEDGE = IEDGE + 1 1343
 IRECNC(IEDGE) = NE 1344
 NCOLOR = NCOLOR + I 1345
 JEE(NCOLOR) = NE 1346
 JSE(NE) = 1
 IEDGE = IEDGE + 1 1348
 IRECNC(IEDGE) = NE - 1 1349
 NCOLOR = NCOLOR + 1 1350
 JEE(NCOLOR) = NE - 1 1351
 JSE(NE - 1)=1 1352
 ELSE
 1353
 C LLSE 1355
 IEDIST = IE] 1356
 XEDIST = XEI
 IF(XE2 . GT . XEDIST) THEN 1358
 XEDIST = XE2 1359
 IEDIST = IE2
    ```

```

 IF(XE3 . GT . XEOIST) THEM 1362
 XEDIST = XE3
 XEDIST = XE3
 IN
 ISL = JE(3 . IEDIST) 1366
 ISR = JE(4 , IEDIST) 1367
 XSISL = XS(3, ISL)
 XSISR = XS(3.ISR)
 -1369
 IJE5 = JE(5 . IEDIST) 1370
 IF(XSISL . GT . RMINVG . AND . XSISR . GT . RMINVG . AND . I 1371
 IJE5 . EQ . O) THEN
 1372
    ```

```

 IE = IABS(JS(IR, ISL))
 IF(JSE(IE) . EQ . O) THEN 1375
 IEOGE = IEDGE + 1
 IRECNC(IEDGE) = IE
NCOLOR = NCOLOR + I
JEE(NCOLOR) = IE 1379
JEE(NCOLOR) = IE
END IF
645 CONTINUE
0065 IR = 4 6
IE =IABS(JS{'IR,ISR))
IF(JSE(IE) . EQ . O) THEN
IEOGE = IEDGE + I
1384
.0) Then
1313
1314
1315
C
1342
1347
C
C
< -
1376
1380
1382
1385
1386

```
\begin{tabular}{|c|c|c|c|c|}
\hline 1387 & 593 & & IRECNC ( IEDGE ) = IE & 1387 \\
\hline 1388 & 594 & & NCOLOR - NCOLOR + 1 & 1388 \\
\hline 1389 & 595 & & JEE ( HCOLOR ) = IE & 1389 \\
\hline 1390 & 596 & & JSE ( IE ) = 1 & 1390 \\
\hline 1391 & 597 & & END IF & 1391 \\
\hline 1392 & 598 & 655 & continue & 1392 \\
\hline 1393 & 599 & C & & 1393 \\
\hline 1394 & 600 & & IDOME - 0 & 1394 \\
\hline 1395 & 601 & & CALL OISECT ( IEDIST, IDONE , IDUMP ) & 1395 \\
\hline 1396 & 502 & & IF ( IDONE . EQ . 1) THEN & 1396 \\
\hline 1397 & 603 & C & & 1397 \\
\hline 1398 & 604 & & LTRIG = LTRIG + 1 & 1398 \\
\hline 1399 & 605 & & JTRIG( LTRIG ) = NS & 1399 \\
\hline 1400 & 606 & & KSDELT ( NS ) \(=\) IOUMP & 1400 \\
\hline 1401 & 601 & & LTRIG \(=\) LTRIG + 1 & 1401 \\
\hline 1402 & 608 & & JTRIG (LRIG) \(=\) NS -1 & 1402 \\
\hline 1403 & 609 & & KSDELT( NS - 1) = IDUMP & 1403 \\
\hline 1404 & 610 & c & & 1404 \\
\hline 1405 & 611 & & IEDGE \(=\) IEDGE +1 & 1405 \\
\hline 1406 & 612 & & IRECNC( IEDGE ) = NE & 1406 \\
\hline 1407 & 613 & & NCOLOR \(=\) NCOLOR +1 & 1407 \\
\hline 1408 & 614 & & JEE ( NCOLOR ) = NE & 1408 \\
\hline 1409 & 615 & & JSE ( NE ) \(=1\) & 1409 \\
\hline 1410 & 616 & & IEDGE \(=\) IEDGE +1 & 1410 \\
\hline 1411 & 617
518 & & IRECNC( IEDGE ) = NE - 1 & 1411 \\
\hline 1413 & 619 & & NCOLOR = NCOLOR + 1 & 1412 \\
\hline 1414 & 620 & & JEE ( NCOLOR ) = NE - 1 & 1413 \\
\hline 1415 & 621 & & JSEDE \(\mathrm{NE}-1)=1\) & 1414 \\
\hline 1416 & 622 & & & 1415 \\
\hline 1417 & 623 & & IRECNC( IEDGE \()=N E-2\) & 1416 \\
\hline 1418 & 624 & & JEE ( NCOLOR \()=\) NE -2 & 1417 \\
\hline 1419 & 625 & & \(\operatorname{JEE}(\mathrm{NCOLOR})=\mathrm{NE}-2\) & 1418 \\
\hline 1420 & 626 & & END If - \({ }^{\text {den }}\) & 1419 \\
\hline 1421 & 627 & C & & 1420 \\
\hline 1422 & 628 & & END IF & 1421 \\
\hline 1423 & 629 & & END If & 1423 \\
\hline 1424 & 630 & & EMD IF & 1424 \\
\hline 1425 & 631 & 340 & Continue & 1425 \\
\hline 1426 & 632 & \(\bigcirc\) & & 1425 \\
\hline 1427 & 633 & & NSS = LTRIG & 1427 \\
\hline 1428 & 634 & C & & 1428 \\
\hline 1429 & 635 & & D0 370 IEM = 1, NCOLOR & 1429 \\
\hline 1430 & 636 & & IE - JEE (IEM) & 1430 \\
\hline 1431 & 637 & & CALL RECNC( IE, IDONE, ITL, ITR, JA, JB, JC, JD ) & 1431 \\
\hline 1432 & 538 & & CALL RECNC ( JA, JADOME, ITL, ITR, JAA , JAB, JAC, JAD ) & 1432 \\
\hline 1433 & 639 & & CALL RECNC ( JB, JBDONE, ITL , ITR , JBA , JB8, JBC JB0 ) & 1433 \\
\hline 1434
1435 & 640 & & CALL RECNC JC, JCDONE , ITL . ITR , JCA , JCB , JCC , JCD) & 1434 \\
\hline 1436 & 642 & 370 & CONTINUE
Col & 1435 \\
\hline 1437 & 643 & C & & 1437 \\
\hline 1438 & 644 & 300 & CONTINUE & 1438 \\
\hline 1439 & 645 & C & & 1439 \\
\hline 1440 & 646 & & NVECE = NE / MBL & 1440 \\
\hline 1441 & 647 & & NREME - NE - NVECE * MBL & 1441 \\
\hline 1442 & 648 & & NVECS = NS / MBL & 1442 \\
\hline 1443 & 649 & & NREMS = NS - NVECS * MBL & 1443 \\
\hline 1444 & 650 & & NVECV \(=\) NV / MBL & 1444 \\
\hline 1445 & 651 & & NREMV = NV - NVECV * MBL & 1445 \\
\hline 1446 & 652 & c & & 1446 \\
\hline 1447 & 653 & & DO 400 INE = 1 , NVECE & 1447 \\
\hline 1448 & 654 & & NOFVEE ( INE ) = MBL & 1448 \\
\hline 1449 & 655 & 400 & continue & 1449 \\
\hline 1450 & 656 & & NVEEE = NVECE & 1450 \\
\hline 1451 & 657 & & If ( NREME . GT . 0) THEN & 1451 \\
\hline 1452 & 658 & & NVEEE = NVECE + 1 & 1452 \\
\hline 1453 & 659 & & NOFVEE ( NVEEE ) = NREME & 1453 \\
\hline 1454 & 660 & & END IF & 1454 \\
\hline 1455 & 661 & 6 & & 1455 \\
\hline 1456 & 662 & & D0 410 INS - 1. NVECS & 1456 \\
\hline 1457 & 663 & & NOFVES ( INS ) = MBL & 1457 \\
\hline 1458 & 664 & 410 & continue & 1458 \\
\hline 1459 & 665 & & NVEES = NVECS & 1459 \\
\hline 1460 & 866 & & IF ( NREMS . GT . 0 ) THEN & 1460 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1461 & 667 & & NVEES - NVECS + 1 & 1461 \\
\hline 1462 & 668 & & NOFVES ( NVEES ) = NREMS & 1462 \\
\hline 1463 & 669 & & END If & 1463 \\
\hline 1464 & 670 & c & & 1464 \\
\hline 1465 & 671 & & 00420 INV \(=1\). NVECV & 1465 \\
\hline 1466 & 672 & & NOFVEV ( INV ) = MBL & 1466 \\
\hline 1467 & 673 & 420 & COMTINUE & 1467 \\
\hline 1468 & 674 & & NVEEV = NVECV & 1468 \\
\hline 1469 & 675 & & IF (NREMV.GT . 0) THEN & 1469 \\
\hline 1470 & 676 & & NVEEV = NVECV + 1 & 1470 \\
\hline 1471 & 677 & & NOFVEV ( NVEEV ) = NREMV & 1471 \\
\hline 1472 & 678 & & END IF & 1472 \\
\hline 1473 & 679 & c & & 1473 \\
\hline 1474 & 680 & & PRINT*,NV,NE,NS & 1474 \\
\hline 1475 & 681 & C & & 1475 \\
\hline 1476 & 682 & C & Exit point from Subroutine & 1476 \\
\hline 1477 & 683 & \(c\) & & 1477 \\
\hline 1478 & 684 & \(c\) & ---7.- & 1478 \\
\hline 1479 & 685 & & RETURN & 1479 \\
\hline 1480 & 686 & c & Rerur & 1480 \\
\hline 1481 & 687 & c & & \\
\hline 1482 & 688 & \(\bigcirc\) & --- & 1482 \\
\hline 1483 & 689 & & END & 1483 \\
\hline
\end{tabular}

Thu Jul 1 14:16:08 1993 adaphd.f SUBROUTINE DYYPTN
\begin{tabular}{|c|c|c|c|c|}
\hline 1484 & 1 & & SUBROUTIME DYYPTN( DAREA, MOFDIV , IDUMP . LTRIG) & 1484 \\
\hline 1485 & 2 & C & & 1485 \\
\hline 1486 & 3 & C & & 1486 \\
\hline 1487 & 4 & c & & 1487 \\
\hline 1488 & 5 & c & DYYPTN ADAPT THE GRID DYNAMICALLY, ADD VERTECES & 1488 \\
\hline 1489 & 6 & C & SUB divioe the triangle that here flaged in ornptn & 1489 \\
\hline 1490 & 7 & C & & 1490 \\
\hline 1491 & 8 & C. & & 1491 \\
\hline 1492 & 9 & C & & 1492 \\
\hline 1493 & 10 & & IMPLICIT REAL ( \(\mathrm{A}-\mathrm{H}, 0-\mathrm{L}\) ) & 1493 \\
\hline 1494 & 11 & C & & 1494 \\
\hline 1495 & 12 & & include 'cmsh00.h' & 1495 \\
\hline 1496 & 13 & & include 'chyd00.h' & 1496 \\
\hline 1497 & 14 & & include 'cint00. h ' & 1497 \\
\hline 1498 & 15 & & include 'cphslo.h' & 1498 \\
\hline 1499 & 16 & & include 'cphs20.h' & 1499
1500 \\
\hline 1500 & 17 & C & & 1500 \\
\hline 1501 & 18 & & INTEGER JTRIG(MEM), KTRIG(MEM), IRECNC(MEM) & 1501 \\
\hline 1502 & 19 & & INTEGER JSE (MEM), JEE (MEM), IOFDVS(10).NOFOVS (10) & 1502 \\
\hline 1503 & 20 & c & & 1503 \\
\hline 1504 & 21 & & Equivalence (UL.JTRIG) & 1504 \\
\hline 1505 & 22 & & EQUIVALENCE (VR.KIRIG) & 1505 \\
\hline 1506 & 23 & & EquIVALENCE (VL.IRECNC) & 1506 \\
\hline 1507 & 24 & & EqUIVALENCE (PR.JSE) & 1507 \\
\hline 1508 & 25 & & EQUIVALENCE (PL,JEE) & 1508 \\
\hline 1509 & 26 & C & & \\
\hline 1510 & 27 & & SMINVG = SAREVG * DAREA & 1510 \\
\hline 1511 & 28 & & AMINVG \(=\) SAREVG * THIRD & 1511 \\
\hline 1512 & 29 & & RMINVG \(=.7\) * SMINVG & 1512 \\
\hline 1513 & 30 & & DO 115 IS \(=1\), NS & 1513 \\
\hline 1514 & 31 & & JEE ( IS \()=0\) & 1514 \\
\hline 1515 & 32 & 115 & continue & \\
\hline 1516 & 33 & & MSS \(=0\) & \\
\hline 1517 & 34 & & NSS = LTRIG & \\
\hline 1518 & 35 & C & & \\
\hline 1519 & 36 & & DO \(140 \mathrm{KDIV}=1\), NOFDIV & 1519 \\
\hline 1520 & 37 & & ITRIG \(=0\) & 1520 \\
\hline 1521 & 38 & & DO \(150 \mathrm{KS}=1\), NSS & \\
\hline 1522 & 39 & C & & 1522 \\
\hline 1523 & 40 & & ISS = JIRIG( KS ) & 1523 \\
\hline 1524 & 41 & & IF ( ISS . NE . O) THEN & 1524 \\
\hline 1525 & 42 & C & & \\
\hline 1526 & 43 & & D0 \(160 \mathrm{KR}=1,3\) & 1527 \\
\hline 1527 & 44 & & IVV = JS ( KR , ISS ) & 1528 \\
\hline 1528 & 45 & C & & 1529 \\
\hline 1529 & 46 & &  & 1530 \\
\hline 1530 & 47
48 & C & IF ( IE . GT . O) THEN & 153 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 1606 & 123 & & If ( IVI . EQ . IVW ) Then & 1606 \\
\hline 1607 & 124 & & ISR = JE ( 3 . IER ) & 1607 \\
\hline 1608 & 125 & & ELSE & 1608 \\
\hline 1609 & 126 & & ISR \(=\mathrm{JE}\) ( 4. IER ) & 1609 \\
\hline 1610 & 127 & & END If & 1610 \\
\hline 1611 & 128 & & END IF & 1611 \\
\hline 1612 & 129 & C & & 1612 \\
\hline 1613 & 130 & 660 & continue & 1613 \\
\hline 1614 & 131 & c & & 1614 \\
\hline 1615 & 132 & & IF ( ISR . ME . ISI ) THEN & 1615 \\
\hline 1616 & 133 & & \(I S=1 S R\) & 1616 \\
\hline 1617 & 134 & & \(I E=I E R\) & 1617 \\
\hline 1618 & 135 & & 60 T0 650 & 1618 \\
\hline 1619 & 136 & & END If & 1619 \\
\hline 1620 & 137 & C & & 1620 \\
\hline 1621 & 138 & & END IF & 1621 \\
\hline 1622 & 139 & 100 & CONTINUE & 1622 \\
\hline 1623 & 140 & C & & 1623 \\
\hline 1624 & 141 & & END IF & 1624 \\
\hline 1625 & 142 & 150 & continue & 1625 \\
\hline 1626 & 143 & c & & 1626 \\
\hline 1627 & 148 & & D0 170 IS \(=1\), ITRIG & 1627 \\
\hline 1628 & 145 & & JTRIG ( IS + HSS ) = KIRIG( IS ) & 1628 \\
\hline 1629 & 146 & 170 & CONTINUE & 1629 \\
\hline 1630 & 147 & & NSS = ITRIG & 1630 \\
\hline 1631 & 148 & & MSS \(=\) MSS + ITRIG & 1631 \\
\hline 1632 & 149 & C & & 1632 \\
\hline 1633 & 150 & 140 & CONTINUE & 1633 \\
\hline 1634 & 151 & & NSS = MSS & 1634 \\
\hline 1635 & 152 & c & & 1635 \\
\hline 1636 & 153 & & \(00300 \mathrm{KDIV}=1,1\) & 1636 \\
\hline 1637 & 154 & & LTRIG \(=\) NSS & 1637 \\
\hline 1638 & 155 & C & & 1638 \\
\hline 1639 & 156 & & 00310 IS = 1 , NSS & 1639 \\
\hline 1640 & 157 & & ISS = JTRIG ( IS ) & 1640 \\
\hline 1641 & 158 & & XSAREA \(=\) XS \((3\). ISS \()\) & 1641 \\
\hline 1642 & 159 & & IF ( XSAREA . GE . RMINVG ) THEN & 1642 \\
\hline 1643 & 160 & C & & 1643 \\
\hline 1644 & 161 & & D0 \(335 \mathrm{IR}=4,6\) & 1644 \\
\hline 1645 & 162 & & IE = IABS ( JS ( IR ; ISS ) ) & 1645 \\
\hline 1646 & 163 & & IJE5 \(=\) JE ( 5 , IE ) & 1646 \\
\hline 1647 & 164 & & IF ( JES NE . O) THEN & 1647 \\
\hline 1648 & 165 & & JR2 \(=\) MOD \((1 R-3,3)+4\) & 1648 \\
\hline 1649 & 166 & & IE2 \(=\) IABS ( JS \((\) JR2 ; ISS ) ) & 1649 \\
\hline 1650 & 167 & & \(J R 3=\operatorname{MOD}(\operatorname{IR~}-2,3)+4\) & 1650 \\
\hline 1651 & 168 & & IE3 \(=\) IABS ( JS ( JR3 , ISS ) ) & 1651 \\
\hline 1652 & 169 & & XE1 \(=\) XE \((1, \mathrm{IE})\) & 1652 \\
\hline 1653 & 170 & & XE2 \(=\) XE \((1\), IE2 \()\) & 1653 \\
\hline 1654 & 171 & & XE3 \(=\) XE \((1\), IE3 \()\) & 1654 \\
\hline 1655 & 172 & & XEDIST \(=1.1\) XE1 & 1655 \\
\hline 1656 & 173 & & YE2 = XE2 * XEDIST & 1656 \\
\hline 1657 & 174 & & YE3 \(=\) XE3 * XEDIST & 1657 \\
\hline 1658 & 175 & & ZE2 = ( YE2 - 1.5) * ( YE2 - .1) & 1658 \\
\hline 1659 & 176 & &  & 1659 \\
\hline 1660 & 177 & & YY2 = XE1 * XE1 + XE2 * XE2 + . 35 * XE1 * XE2 - XE3 * XE3 & 1660 \\
\hline 1661 & 178 & & YY3 - XE1 * XE1 + XE3 * XE3 + . 35 * XE1 * XE3 - XE2 * XE2 & 1661 \\
\hline 1662 & 179 & & IF ( ZE2 . LT . 0 . AND . ZE3 . LT . 0. - AND. & 1662 \\
\hline 1663
1664 & 180 & & YY2. GT . O. . AND. YY3. GT . 0. ) THEN & 1663 \\
\hline 1664
1665 & 181 & & CALL DISECT ( IE , IDONE , IDUMP ) & 1664 \\
\hline 1665 & 182 & C & & 1665 \\
\hline 1666 & 183 & & LTRIG = LTRIG + 1 & 1666 \\
\hline 1667 & 184 & & JTRIG( LTRIG) = NS & 1667 \\
\hline 1668 & 185 & & KSDELT( NS ) = IDUMP & 1668 \\
\hline 1669 & 186 & C & & 1669 \\
\hline 1670 & 187 & & END IF & 1670 \\
\hline 1671 & 188 & & END IF & 1671 \\
\hline 1672 & 189 & 335 & CONTINUE & 1672 \\
\hline 1673 & 190 & & END IF & 1673 \\
\hline 1674 & 191 & 310 & continue & 1674 \\
\hline 1675 & 192 & c & & 1675 \\
\hline 1676 & 193 & & NSS \(=\) LTRIG & 1676 \\
\hline 1677 & 194 & & IEDGE = 0 & 1677 \\
\hline 1678 & 195 & & NCOLOR \(=0\) & 1678 \\
\hline 1679 & 196 & C & & 1679 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1680 & 197 & & \(00295 \mathrm{IE}=1 . \mathrm{NE}\) & 1680 \\
\hline 1681 & 198 & & JSE ( IE \()=0\) & 1681 \\
\hline 1682 & 199 & 295 & COMTINUE & 1682 \\
\hline 1683 & 200 & c & & 1682 \\
\hline 1684 & 201 & & 00320 IS \(=1\), NSS & 1683 \\
\hline 1685 & 202 & & ISS \(=\) JTRIG( IS ) & 1684 \\
\hline 1686 & 203 & & XSAREA \(=\) XS ( \(3,15 S\) ) & 1685 \\
\hline 1687 & 204 & C & & 1686 \\
\hline 1688 & 205 & & If ( XSAREA . GT . RMINVG) Then & 1688 \\
\hline 1689 & 206 & C & & 1689 \\
\hline 1690 & 207 & & \(00735 \mathrm{IR}=4.6\) & 1689
1690 \\
\hline 1691 & 208
209 & & IE \(=\) IABS ( JS ( IR . ISS ) ) & 1691 \\
\hline 1692
1693 & 209 & & IF ( JSE ( IE ) - EQ . 0 ) THEN & 1692 \\
\hline 1693
1694 & 210 & & IEDGE \(=\) IEDGE + 1 & 1693 \\
\hline 1695 & 211 & & IRECNC( IEDGE \()=\) IE & 1694 \\
\hline 1696 & 213 & & JEE ( NCOLOR ) = IE & 1695
1696 \\
\hline 1697 & 214 & & JSE ( IE ) = 1 & \\
\hline 1698 & 215 & & END IF & 1697 \\
\hline 1699 & 216 & 735 & continue & 1699 \\
\hline 1700 & 217 & c & & 1700 \\
\hline 1701 & 218 & & AREAXS = SAREA ( ISS ) & 1701 \\
\hline 1702 & 219 & & IEI = IABS ( JS \({ }^{\text {a }}\), ISS ) ) & 1702 \\
\hline 1703 & 220 & & XE1 \(=\) XE ( \(1 \times 1 \mathrm{EI}\) ) & 1703 \\
\hline 1704 & 221 & & HO1 \(=\) AREAXS * XE1 * XE1 & 1704 \\
\hline 1705 & 222 & & IJE5 = JE ( 5 , IE1) & 1705 \\
\hline 1706 & 223 & & IE2 = IABS ( JS ( 5 ; ISS ) ) & 1706 \\
\hline 1707 & 224 & & XE2 \(=\) XE \((1,1 E 2\) ) & 1707 \\
\hline 1708 & 225 & & HD2 = AREAXS * XE2 * XE2 & 1708 \\
\hline 1709 & 226 & & IJE5 = IJE5 + JE( 5 - IE2 ) & 1709 \\
\hline 1710 & 227 & & IE3 \(=\) IABS ( JS ( 6 ; ISS ) ) & 1710 \\
\hline 1711 & 228
229 & &  & 1711 \\
\hline 1713 & 230 & &  & 1712
1713 \\
\hline 1714 & 231 & & RATIO = AMAXI ( HD1 . HD2 . HD3 ) & 1714 \\
\hline 1715 & 232 & &  & 1715 \\
\hline 1716 & 233 & & if ( Ratio . Le . 7. . and . ijes . Eq. 0 . and & 1716 \\
\hline 1717 & 234 & &  & 1717 \\
\hline 1718
1719 & 235
236 & c & If ( IJe5 . GT . 0) IRATIO \(=2\) & 1718 \\
\hline 1720 & 237 & & & 1719
1720 \\
\hline 1721 & 238 & & IJE51 = JE ( 5 , IE1) & 1720
1721 \\
\hline 1722 & 239 & & IJE52 = JE ( 5 , IE2 ) & 1722 \\
\hline 1723 & 240 & & IJE53 \(=\) JE ( 5. IE3 \()\) & 1723 \\
\hline 1724 & 241 & & IF ( IJE51. NE . O) THEN & 1724 \\
\hline 1725 & 242 & & IEDIST \(=\) IEI & 1725 \\
\hline 1726 & 243 & & XE1 \(=\) XE ( 1, 1E1) & 1726 \\
\hline 1727 & 244 & & XE2 \(=\) XE \((1, ~\) IE2 \()\) & 1727 \\
\hline 1728 & 245 & & XE3 \(=\) XE ( 1, [E3 ) & 1728 \\
\hline 1729 & 246 & & END IF & 1729 \\
\hline 1730 & 247 & & IF ( IJE52 ME . 0) THEN & 1730 \\
\hline 1731 & 248 & & IEDIST \(=\) IE2 & 1731 \\
\hline 1733 & 249
250 & &  & 1732 \\
\hline 1734 & 251 & & XE3 \(=\mathrm{XE}\) ( 1 : 1E3) & 1734 \\
\hline 1735 & 252 & & EMD If & 1735 \\
\hline 1736 & 253 & & IF (IJE53 - NE . 0) THEN & 1736 \\
\hline 1737 & 254 & &  & 1737 \\
\hline 1738 & 255 & & XE1 \(=\) XE ( 1, IE3 ) & 1738 \\
\hline 1739 & 256 & & XE2 \(=\) XE ( 1 , IE2 ) & 1739 \\
\hline 1740 & 257 & & \(X E 3=X E(1, ~ I E 1)\) & 1740 \\
\hline 1741 & 258 & & END IF & 1741 \\
\hline 1742 & 259 & & XEDIST \(=1.1 \times \mathrm{XE}(1\). IEDIST ) & 1742 \\
\hline 1743 & 260 & & YE2 \(=\) XE2 * XEDIST & 1743 \\
\hline 1744 & 261 & & YE3 - XE3 * XEDIST & 1744 \\
\hline 1745 & 262 & & ZE2 \(=(\) YE2 -1.5\() *(\) YE2 - .1 \()\) & 1745 \\
\hline 1746 & 263 & & ZE3 \(=\) (YE3-1.5)* (YE3 - .1) & 1746 \\
\hline 1747 & 264 & & YY2 = XE1 * XE1 + XE2 * XE2 + . 35 * XE1 * XE2 - XE3 * XE3 & 1747 \\
\hline 1748 & 265 & & YY3 - XE1 * XE1 + XE3 * XE3 + . 35 * XE1 * XE3 - XE2 * XE2 & 1748 \\
\hline 1749
1750 & 266 & &  & 1749
1750 \\
\hline 1751 & 268 & &  & 1750
1751 \\
\hline 1752 & 269 & & & 1752 \\
\hline 1753 & 270 & & LTRIG \(=\) LTRIG + 1 & 1753 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1754 & 271 & & JTRIG( LTRIG ) = NS & 1754 \\
\hline 1755 & 272 & & KSDELT( NS ) = IDUMP & 1755 \\
\hline 1756 & 273 & C & & 1756 \\
\hline 1757 & 274 & & IEDGE \(=\) IEDGE + 1 & 1757 \\
\hline 1758 & 275 & & IRECNC ( IEDGE ) = NE & 1758 \\
\hline 1759 & 276 & & NCOLOR \(=\) NCOLOR + 1 & 1759 \\
\hline 1760 & 277 & & JEE ( NCOLOR ) = NE & 1760 \\
\hline 1761 & 278 & & JSE ( NE ) \(=1\) & 1761 \\
\hline 1762 & 279 & & IEDGE = IEDGE + 1 & 1762 \\
\hline 1763 & 280 & & IRECAC ( iegae ) = NE - 1 & 1763 \\
\hline 1764 & 281 & & NCOLOR \(=\) NCOLOR + 1 & 1754 \\
\hline 1765 & 282 & & JEE ( NCOLOR ) = NE - 1 & 1765 \\
\hline 1766 & 283 & & JSE ( \(\mathrm{NE}-1\) ) \(=1\) & 1766 \\
\hline 1767 & 284 & c & & 1767 \\
\hline 1768 & 285 & & ENO IF & 1768 \\
\hline 1769 & 286 & & ENO IF & 1769 \\
\hline 1770 & 287 & c & & 1770 \\
\hline 1771 & 288 & & IF ( IRATIO . EQ . 1) THEN & 1771 \\
\hline 1772 & 289 & \(c\) & & 1772 \\
\hline 1773 & 290 & & CALL VERCEN ( ISS ) & 1773 \\
\hline 1774 & 291 & & KSDELT ( ISS ) = 10UMP & 1774 \\
\hline 1775 & 292 & & LTRIG = LTRIG + 1 & 1775 \\
\hline 1776 & 293 & & JTRIG ( LTRIG ) = NS - 1 & 1776 \\
\hline 1777 & 294 & & KSOELT ( NS - 1) = IDUMP & 1777 \\
\hline 1778 & 295 & C & & 1778 \\
\hline 1779 & 296 & & LTRIG \(=\) LTRIG + 1 & 1779 \\
\hline 1780 & 297 & & JTRIG( LTRIG) = NS & 1780 \\
\hline 1781 & 298 & & KSDELT ( NS ) = IDUMP & 1781 \\
\hline 1782 & 299 & \(\bigcirc\) & & 1782 \\
\hline 1783 & 300 & & IEDGE = IEDGE + 1 & 1783 \\
\hline 1784 & 301 & & IRECNC( IEDGE ) = NE & 1784 \\
\hline 1785 & 302 & & NCOLOR = NCOLOR + 1 & 1785 \\
\hline 1786 & 303 & & JEE ( NCOLOR ) = NE & 1786 \\
\hline 1787 & 304 & & JSE ( NE ) = 1 & 1787 \\
\hline 1788 & 305 & & IEDGE = IEDGE +1 & 1788 \\
\hline 1789 & 306 & & IRECNC ( IEDGE ) = NE - 1 & 1789 \\
\hline 1790 & 307 & & MCOLOR = NCOLOR + 1 & 1790 \\
\hline 1791 & 308 & & JEE ( NCOLOR ) = NE - 1 & 1791 \\
\hline 1792 & 309 & & JSE ( \(\mathrm{NE}-1\) ) \(=1\) & 1792 \\
\hline 1793 & 310 & & IEDGE \(=\) IEDGE +1 & 1793 \\
\hline 1794 & 311 & & IRECNC ( IEDGE ) \(=\) ME - 2 & 1794 \\
\hline 1795 & 312 & & NCOLOR \(=\) NCOLOR +1 & 1795 \\
\hline 1796 & 313 & & JEE ( NCOLOR ) \(=\) NE - 2 & 1796 \\
\hline 1797 & 314 & & JSE ( NE - 2 ) \(=1\) & 1797 \\
\hline 1798 & 315 & c & & 1798 \\
\hline 1799 & 316 & & ELSE & 1799 \\
\hline 1800 & 317 & C & & 1800 \\
\hline 1801 & 318 & & IDISCT \(=0\) & 1801 \\
\hline 1802 & 319 & & DO \(545 \mathrm{KK}=4.6\) & 1802 \\
\hline 1803 & 320 & & IEE = JS ( KK . ISS ) & 1803 \\
\hline 1804 & 321 & & IEF \(=\) IABS ( IEE ) & 1804 \\
\hline 1805 & 322 & & IJE55 = JE ( 5 , IEF ) & 1805 \\
\hline 1806 & 323 & & IF ( IJE55 - EQ . 0 ) THEN & 1806 \\
\hline 1807 & 324 & & IF ( IEE GT . O ) THEN & 1807 \\
\hline 1808 & 325 & & ISI = JE ( 4 , IEE) & 1808 \\
\hline 1809 & 326 & & ELSE & 1809 \\
\hline 1810 & 327 & & ISI = JE( 3 . IEF) & 1810 \\
\hline 1811 & 328 & & END IF & 1811 \\
\hline 1812 & 329 & & AREAXS \(=\) SAREA ( ISI) & 1812 \\
\hline 1813 & 330 & & IE1 \(=\operatorname{IABS}(\mathrm{JS}(4\), ISI ) ) & 1813 \\
\hline 1814 & 331 & & XE1 \(=\mathrm{XE}(1\), IEI \()\) & 1814 \\
\hline 1815 & 332 & & IJE55 = JE ( 5 , IEI) & 1815 \\
\hline 1816 & 333 & & HD1 \(=\) AREAXS * XE1 * XE1 & 1816 \\
\hline 1817 & 334 & & IE2 \(=\) IABS ( JS ( 5 ; ISI ) ) & 1817 \\
\hline 1818 & 335 & & XE2 \(=\) XE ( 1.152 ) & 1818 \\
\hline 1819 & 336 & & IJE55 = IJE55 + JE ( \(5 \times\) IE2 \()\) & 1819 \\
\hline 1820 & 337 & & HD2 = AREAXS * XE2 * XE2 & 1820 \\
\hline 1821 & 338 & & IE3 = [ABS ( JS ( 6 , ISI) ) & 1821 \\
\hline 1822 & 339 & & XE3 \(=\) XE ( 1 , IE3 ) & 1822 \\
\hline 1823 & 340 & & IJE55 = IJE55 + JE ( 5 , IE3 ) & 1823 \\
\hline 1824 & 341 & & HD3 - AREAXS * XE3 * XE3 & 1824 \\
\hline 1825 & 342 & & RATIO = AMAX1 ( HD1 HD2 . HD3) & 1825 \\
\hline 1826 & 343 & & YSAREA \(=X\) S \((3.15 I)\) & 1826 \\
\hline 1827 & 344 & & if ( Ratio . lt . 7. . AND . ysarea . GT . SMINVG . AND & 1827 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 1902 & 419 & & END IF & 1902 \\
\hline 1903 & 420 & 345 & continue & 1903 \\
\hline 1904 & 121 & & END IF & 1904 \\
\hline 1905 & 422 & c & & 1905 \\
\hline 1906 & 423 & & IF ( ISS . NE . ISR ) THEN & 1906 \\
\hline 1907 & 424 & & D0 \(355 \mathrm{IR}=4.6\) & 1907 \\
\hline 1908 & 425 & & IE = IABS ( JS( IR, ISR ) ) & 1908 \\
\hline 1909 & 426 & & IF (JSE ( IE ) . EQ . 0) THEN & 1909 \\
\hline 1910 & 427 & & IEDGE = [EDGE + 1 & 1910 \\
\hline 1911 & 428 & & IRECNC ( \(\operatorname{IEDGE}\) ) \(=1 E\) & 1911 \\
\hline 1912 & 429 & & NCOLOR \(=\) NCOLOR + 1 & 1912 \\
\hline 1913 & 430 & & JEE ( NCOLOR ) = IE & 1913 \\
\hline 1914 & 431 & & JSE ( IE ) = 1 & 1914 \\
\hline 1915 & 432 & & END IF & 1915 \\
\hline 1916 & 433 & 355 & CONTINUE & 1916 \\
\hline 1917 & 434 & & END IF & 1917 \\
\hline 1918 & 435 & C & & 1918 \\
\hline 1919 & 436 & & IDONE \(=0\) & 1919 \\
\hline 1920 & 437 & & CALL DISECT ( IEDIST , IDONE . IDUMP ) & 1920 \\
\hline 1921 & 438 & & IF ( IDONE . EQ . 1 ) THEN & 1921 \\
\hline 1922 & 439 & C & & 1922 \\
\hline 1923 & 440 & & LTRIG \(=\) LTRIG + 1 & 1923 \\
\hline 1924 & 441 & & JTRIG( LTRIG) = NS & 1924 \\
\hline 1925 & 442 & & KSOELT( NS ) = IDUMP & 1325 \\
\hline 1926 & 743 & & LTRIG \(=\) LTRIG + 1 & 1926 \\
\hline 1927 & 444 & & JTRIG ( LTRIG ) = NS - 1 & 1927 \\
\hline 1928 & 745 & & KSDELT \((\) NS - 1) = IDUMP & 1928 \\
\hline 1929 & 146 & C & & 1929 \\
\hline 1930 & 447 & & IEDGE - IEDGE + 1 & 1930 \\
\hline 1931 & 448 & & IRECNC( IEDGE ) = NE & 1931 \\
\hline 1932 & 449 & & NCOLOR = NCOLOR + 1 & 1932 \\
\hline 1433 & 450 & & JEE ( NCOLOR ) = NE & 1933 \\
\hline 1934 & 451 & & JSE ( NE ) = 1 & 1934 \\
\hline 1935 & 452 & & IEDGE = IEDGE + 1 & 1935 \\
\hline 1936 & 453 & & IRECNC( IEDGE ) = NE - 1 & 1936 \\
\hline 1937 & 454 & & NCOLOR - NCOLOR + 1 & 1937 \\
\hline 1938 & 455 & & JEE ( NCOLOR ) = NE - 1 & 1938 \\
\hline 1939 & 456 & & JSE ( NE - 1) = 1 & 1939 \\
\hline 1940 & 457 & & IEDGE = [EDGE + 1 & 1940 \\
\hline 1941 & 458 & & IRECNC( IEDGE ) = NE - 2 & 1941 \\
\hline 1942 & 459 & & NCOLOR = NCOLOR + 1 & 1942 \\
\hline 1943 & 460 & & JEE ( NCOLOR ) = NE - 2 & 1943 \\
\hline 1944 & 461 & & JSE ( NE - 2 ) \(=1\) & 1944 \\
\hline 1945 & 462 & & END IF & 1945 \\
\hline 1946 & 463 & c & & 1946 \\
\hline 1947 & 464 & & END IF & 1947 \\
\hline 1948 & 465 & & END IF & 1948 \\
\hline 1949 & 466 & & END IF & 1949 \\
\hline 1950 & 467 & & END IF & 1950 \\
\hline 1951 & 468 & C & & 1951 \\
\hline 1952 & 469 & 320 & CONTINUE & 1952 \\
\hline 1953 & 470 & C & & 1953 \\
\hline 1954 & 471 & & 00340 IEM = 1 , NCOLOR & 1954 \\
\hline 1955 & 472 & & IE = JEE ( IEM ) & 1955 \\
\hline 1956 & 473 & C & & 1956 \\
\hline 1957 & 474 & & ISL = JE ( 3 , IE ) & 1957 \\
\hline 1958 & 475 & & YSAREA - XS \({ }^{\text {( } 3, ~ I S L) ~}\) & 1958 \\
\hline 1959 & 476 & & IJE5 \(=\mathrm{JE}(5\), IE ) & 1959 \\
\hline 1960 & 477 & & If ( YSAREA . GE . RMINVG - AND . Ije5 . Me . O ) then & 1960 \\
\hline 1961 & 478 & & \(\mathrm{IEI}=\operatorname{IABS}(\mathrm{JS}(4, \mathrm{ISL})\) ) & 1961 \\
\hline 1962 & 479 & & IE2 \(=\operatorname{IABS}(J 5(5,15 L))\) & 1962 \\
\hline 1963 & 480 & & \(\mathrm{IE} 3=\operatorname{IABS}(\mathrm{JS}(6, \mathrm{ISL})\) ) & 1963 \\
\hline 1964 & 481 & & [JE51 = JE ( 5 , IE1) & 1964 \\
\hline 1965 & 482 & & \(1 \mathrm{JE52}=\mathrm{JE}(5 . \mathrm{IE2})\) & 1965 \\
\hline 1966 & 483 & & IJE53 = JE ( \(5 \cdot\) IE3 \()\) & 1966 \\
\hline 1967 & 484 & & IF ( IJE51 - NE . 0) THEN & 1967 \\
\hline 1968 & 485 & & IEDIST \(=\) IEI & 1968 \\
\hline 1969 & 486 & & XE1 = XE ( 1 . IE1 ) & 1969 \\
\hline 1970 & 487 & & XE2 \(=\) XE ( 1, IE2 ) & 1970 \\
\hline 1971 & 488 & & XE3 \(=\mathrm{XE}(1, \mathrm{IE} 3)\) & 1971 \\
\hline 1972 & 489 & & END IF & 1972 \\
\hline 1973 & 490 & & IF ( IJE52 ME. 0) THEN & 1973 \\
\hline 1974 & 491 & & IEDIST \(=\) IE2 & 1974 \\
\hline 1975 & 492 & & XE1 \(=\) XE ( 1 , IE2 ) & 1975 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 1976 & 493 \\
\hline 1977 & 494 \\
\hline 1978 & 495 \\
\hline 1979 & 496 \\
\hline 1980 & 497 \\
\hline 1981 & 498 \\
\hline 1982 & 499 \\
\hline 1983 & 500 \\
\hline 1984 & 501 \\
\hline 1985 & 502 \\
\hline 1986 & 503 \\
\hline 1987 & 504 \\
\hline 1988 & 505 \\
\hline 1989 & 506 \\
\hline 1990 & 507 \\
\hline 1991 & 508 \\
\hline 1992 & 509 \\
\hline 1993 & 510 \\
\hline 1994 & 511 \\
\hline 1995 & 512 \\
\hline 1996 & 513 \\
\hline 1997 & 514 \\
\hline 1998 & 515 \\
\hline 1999 & 516 \\
\hline 2000 & 517 \\
\hline 2001 & 518 \\
\hline 2002 & 519 \\
\hline 2003 & 520 \\
\hline 2004 & 521 \\
\hline 2005 & 522 \\
\hline 2006 & 523 \\
\hline 2007 & 524 \\
\hline 2008 & 525 \\
\hline 2009 & 526 \\
\hline 2010 & 527 \\
\hline 2011 & 528 \\
\hline 2012 & 529 \\
\hline 2013 & 530 \\
\hline 2014 & 531 \\
\hline 2015 & 532 \\
\hline 2016 & 533 \\
\hline 2017 & 534 \\
\hline 2018 & 535 \\
\hline 2019 & 536 \\
\hline 2020 & 537 \\
\hline 2021 & 538 \\
\hline 2022 & 539 \\
\hline 2023 & 540 \\
\hline 2024 & 541 \\
\hline 2025 & 542 \\
\hline 2026 & 543 \\
\hline 2027 & 544 \\
\hline 2028 & 545 \\
\hline 2029 & 546 \\
\hline 2030 & 547 \\
\hline 2031 & 548 \\
\hline 2032 & 549 \\
\hline 2033 & 550 \\
\hline 2034 & 551 \\
\hline 2035 & 552 \\
\hline 2036 & 553 \\
\hline 2037 & 554 \\
\hline 2038 & 555 \\
\hline 2039 & 556 \\
\hline 2040 & 557 \\
\hline 2041 & 558 \\
\hline 2042 & 559 \\
\hline 2043 & 560 \\
\hline 2044 & 561 \\
\hline 2045 & 562 \\
\hline 2046 & 563 \\
\hline 2047 & 564 \\
\hline 2048 & 565 \\
\hline 2049 & 566 \\
\hline
\end{tabular}

XE2 \(=\) XE \((1, I E 1)\)
\(X E 3=X F(1\). IE3
    IF (IJE53 . NE . O ) THEN 1979
    IEDIST = IE3
    1980
    XE1 \(=\) XE ( 1 , IE3 ) 1981
    1982
    \begin{tabular}{ll} 
END IF & 1983 \\
\hline
\end{tabular}
    XEDIST \(=1 . / X E(1\). IEDIST ) 1985
    YE2 \(=\) XE2 * XEDIST \(\quad 1986\)
    YE3 \(=\) XE3 * XEDIST 1987
    ZE2 \(=(\mathrm{YE2}-1.5) *(\mathrm{YE2}-.1) 1988\)
    2E3 \(=(\) YE3 -1.5\()(\) YE3 - .1 \() \quad 1989\)
    \(Y Y 2=X E 1\) * XE1 + XE2 * XE2 + . 35 * XE1 * XE2 - XE3 * XE3 1990
    \(Y Y 3=X E 1\) * XE1 + XE3 * XE3 + . 35 * XE1 * XE3 - XE2 * XE2 1991
    IF ( ZE2 . LT . . 0 . AND . ZE3 . L; . O. . AND . 1992
        YY2 . GT . O. AND . YY3. GT . O.) THEN 1993
CALL DISECT ( IEDIST , IDONE , IDUMP ) 1994
    LTRIG \(=\) LTRIG \(+1 \quad 1995\)
    JTRIG( LTRIG ) = NS 1997
    KSDELT (NS ) = IDUMP 1998
    \(\begin{array}{ll}\text { IEDGE }=\text { IEDGE + 1 } & 1999\end{array}\)
    IRECNC ( IEDGE ) = NE 2001
    NCOLOR = NCOLOR + 1 2002
    JEE (NCOLOR ) = NE 2003
    JSE (NE ) = 1 2004
    IEDGE \(=\) IEDGE \(+1 \quad 2005\)
    IRECMC ( IEDGE \()=\) NE - \(1 \quad 2006\)
    NCOLOR = NCOLOR + I 2007
    JEE ( NCOLOR ) \(=\) NE - 1
    \(\begin{array}{ll}\text { JSE }(N E-1)=1 & 2009\end{array}\)
    ELSE
    IEDIST = IE
    XEDIST \(=\) XE1 \(\quad 2014\)
    IF ( XE2 . GT . XEOIST ) THEN 2015
    XEDIST \(=\) XE2 2016
    IEDIST \(=\) IE2 2017
    END IF 2018
    IF ( XE3 . GT . XEDIST ) THEN 2019
    XEDIST \(=\) XE3 2020
    IEDIST \(=\) IE3 2021
    EMD IF
    2022
    \(I S L=J E(3, I E O I S T) \quad 2023\)
    ISR = JE ( 4 , IEDIST ) 2024
    XSISL \(=\) XS \((3\). ISL \() \quad 2025\)
    XSISR \(=\) XS ( \(3, I S R) 2026\)
    IJE5 = JE ( 5 , IEDIST ) 2027
    IF ( XSISL . GT . RMINVG . AND . XSISR . GT . RMINVG . AND . 2028
    IJE5.EQ. 0) THEN
    2029
    DO 645 IR \(=4, \begin{array}{r}6 \\ \text { IE } \quad I A B S(J S(1 R, I S L))\end{array}\)
    IE = IABS JS( IR ISL ) 2031
    IF ( JSE ( IE ).EQ, 0 ) THEN 2032
    2033
    IRECNC ( IEDGE ) = IE 2034
    NCOLOR = NCOLOR + 1 2035
    \(\begin{array}{ll}\text { JEE ( NCOLOR ) = IE } & 2036 \\ \text { JSE ( IE })=1 & 2037\end{array}\)
    END IF
    2037
    END IF
2038
645 CONTINUE 2039
\(00655 I R=4.6 \quad 2040\)
IE = IABS (JS(IR, ISR ) ) 2041
IF ( JSE (IE ). EQ. O ) THEN 2042
IEDGE = IEDGE + 1 2043
IRECNC( IEDGE ) = IE
2044
\(-204\)
JEE ( NCOLOR ) = IE 2046
2046
JSE ( IE ) = 1
END IF
2048
655 CONTINUE 2049
\begin{tabular}{|c|c|c|c|c|}
\hline 2050 & 567 & C & & 2050 \\
\hline 2051 & 568 & & IDONE \(\times 0\) & 2051 \\
\hline 2052 & 569 & & CALL DISECT ( IEDIST , IDONE . IDUMP) & 2052 \\
\hline 2053 & 570 & & IF ( IDONE . EQ . 1) THEN & 2053 \\
\hline 2054 & 571 & C & & 2054 \\
\hline 2055 & 572 & & LTRIG \(=\) LTRIG + 1 & 2055 \\
\hline 2056 & 573 & & JIRIG( LTRIG) = NS & 2056 \\
\hline 2057 & 574 & & KSOELT ( HS ) = IDUMP & 2057 \\
\hline 2058 & 575 & & LTRIG = LTRIG + 1 & 2058 \\
\hline 2059 & 576 & & JTRIG ( LTRIG ) = NS - I & 2059 \\
\hline 2060 & 577 & & KSDELT( NS - 1) = LDUMP & 2060 \\
\hline 2061 & 578 & c & & 2061 \\
\hline 2062 & 579 & & IEDGE \(=\) IEDGE + 1 & 2062 \\
\hline 2063 & 580 & & IRECNC ( IEDGE ) = NE & 2063 \\
\hline 2064 & 581 & & NCOLOR \(=\) NCOLOR + 1 & 2064 \\
\hline 2065 & 582 & & JEE ( NCOLOR ) = NE & 2065 \\
\hline 2066 & 583 & & JSE ( NE ) \(=1\) & 2066 \\
\hline 2067 & 584 & & IEDGE = IEDGE + 1 & 2067 \\
\hline 2068 & 585 & & IRECNC ( IEDGE ) = NE - 1 & 2068 \\
\hline 2069 & 586 & & NCOLOR \(=\) NCOLOR + 1 & 2069 \\
\hline 2070 & 587 & & JEE ( NCOLOR ) = NE - 1 & 2070 \\
\hline 2071 & 588 & & JSE ( \(\mathrm{NE}-1\) ) \(=1\) & 2071 \\
\hline 2072 & 589 & & IEDGE = [EDGE + ] & 2072 \\
\hline 2073 & 590 & & SACLNC ( IEDGE ) = NE - 2 & 2073 \\
\hline 2074 & 591 & & NCOLOR = NCOLOR + 1 & 2074 \\
\hline 2075 & 592 & & JEE ( NCOLOR ) = NE - 2 . & 2075 \\
\hline 2076 & 593 & & JSE ( NE - 2) = 1 & 2076 \\
\hline 2077 & 594 & & END IF & 2077 \\
\hline 2078 & 595 & c & & 2078 \\
\hline 2079 & 596 & & END If & 2079 \\
\hline 2080 & 597 & & END IF & 2080 \\
\hline 2081 & 598 & & EMD IF & 2081 \\
\hline 2082 & 599 & 340 & continue & 2082 \\
\hline 2083 & 600 & C & & 2083 \\
\hline 2084 & 501 & & NSS = LTRIG & 2084 \\
\hline 2085 & 602 & c & & 2085 \\
\hline 2086 & 603 & & D0 370 IEM = 1, NCOLOR & 2086 \\
\hline 2087 & 604 & & IE = JEE ( IEM ) & 2087 \\
\hline 2088 & 605 & & CALL RECNC( IE , IDONE, ITL . ITR, JA , JB, JC, Jd) & 2088 \\
\hline 2089 & 606 & & CALL RECMC ( JA, JADONE , ITL , ITR , JAA , JAB , JAC , JAD ) & 2089 \\
\hline 2090 & 607 & & CALL RECNC ( JB, JBDONE, ITL . ITR , JBA , JBB, JBC, JBC) & 2090 \\
\hline 2091 & 608
609 & & CALL RECNC \({ }^{\text {SC }}\), JCDONE, ITL, ITR , JCA, JCB, JCC , JCD & 2091 \\
\hline 2092 & 609
610 & & CCALL RECNC( JD. JDDONE , ITL , ITR , JDA , JDB , JDC , JDD ) & 2092 \\
\hline 2094 & 611 & \({ }^{3}\) & Cortinue & 2094 \\
\hline 2095 & 612 & 300 & continue & 2095 \\
\hline 2096 & 613 & c & & 2096 \\
\hline 2097 & 614 & & NVECE \(=\) NE / MBL & 2097 \\
\hline 2098 & 615 & & HREME \(=\) HE - NVECE * MBL & 2098 \\
\hline 2099 & 616 & & NVECS \(=\) NS / MBL & 2099 \\
\hline 2100 & 617 & & NREMS - NS - NVECS * MBL & 2100 \\
\hline 2101 & 618 & & NVECV \(=\) NV / MBL & 2101 \\
\hline 2102 & 619 & & HREMV = NV - NVECV * MBL & 2102 \\
\hline 2103 & 620 & c & & 2103 \\
\hline 2104 & 621 & & 00400 INE \(=1\), NVECE & 2104 \\
\hline 2105 & 622 & & NOFVEE ( INE ) = MBL & 2105 \\
\hline 2106 & 623 & 400 & CONTINUE & 2106 \\
\hline 2107 & 624 & & NVEEE = NVECE & 2107 \\
\hline 2108 & 625 & & IF ( NREME. GT . O) THEN & 2108 \\
\hline 2109 & 626 & & NVEEE \(=\) NVECE +1 & 2109 \\
\hline 2110 & 627 & & MOFVEE ( NVEEE ) = NREME & 2110 \\
\hline 2111 & 628 & & END If & 2111 \\
\hline 2112 & 629 & \(\bigcirc\) & & 2112 \\
\hline 2113 & 630 & & \(00410 \mathrm{INS}=1\), NVECS & 2113 \\
\hline 2114 & 631 & & NOFVES ( INS ) = MBL & 2114 \\
\hline 2115 & 632 & 410 & CONTINUE & 2115 \\
\hline 2116 & 633 & & NVEES = NVECS & 2116 \\
\hline 2117 & 634 & & IF ( NREMS . GT . O ) THEN & 2117 \\
\hline 2118 & 635 & & NVEES = NVECS + 1 & 2118 \\
\hline 2119 & 636 & & NOFVES ( NVEES ) = NREMS & 2119 \\
\hline 2120 & 637 & & END If & 2120 \\
\hline 2121 & 638 & \(c\) & & 2121 \\
\hline 2122 & 639 & & 00420 INV \(=1\), NVECV & 2122 \\
\hline 2123 & 640 & & NOFYEV ( INV ) = MBL & 2123 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2124 & 541 & 420 & continue & 2124 \\
\hline 2125 & 642 & & NVEEV = NVECV & 2125 \\
\hline 2126 & 643 & & IF ( nremv . GT . 0) then & 2126 \\
\hline 2127 & 644 & & NVEEV = NVECV + 1 & 2127 \\
\hline 2128 & 645 & & NOFVEV ( NVEEV ) = NREMV & 2128 \\
\hline 2129 & 646 & & ENO IF & 2129 \\
\hline 2130 & 647 & C & & 2130 \\
\hline 2131 & 648 & & PRINT*,NV,NE, NS & 2131 \\
\hline 2132 & 649 & C & & 2132 \\
\hline 2133 & 650 & C & Exit point from subroutine & 2133 \\
\hline 2134 & 651 & c & & 2134 \\
\hline 2135 & 652 & C & ------ & 2135 \\
\hline 2136 & 653 & & RETURN & 2136 \\
\hline 2137 & 654 & c & -----* & 2137 \\
\hline 2138 & 655 & c & & 2138 \\
\hline 2139 & 656 & C & --- & 2139 \\
\hline 2140 & 657 & & END & 2140 \\
\hline
\end{tabular}

Thu Jul 1 14:16:08 1993 adaphd.f SUBROUTIAE INTPTN
\begin{tabular}{|c|c|c|c|c|}
\hline 2141 & & & SUBROUTINE INTPTN( DAREA , NOFDIV , IDUMP, LTRIG) & 2141 \\
\hline 2142 & 2 & C & & 2142 \\
\hline 2143 & 3 & & ------- - & 2143 \\
\hline 2144 & 4 & C & I & 2144 \\
\hline 2145 & 5 & c & INTPTN ADAPT THE GRID DYNAMICALLY, ADD VERTECES I & 2145 \\
\hline 2146 & 6 & C & Sub divide to refine at the initial stage of the simulation i & 2146 \\
\hline 2147 & 7 & C & 1 & 2147 \\
\hline 2148 & 8 & C & 1 & 2148 \\
\hline 2149 & 9 & C & & 2149 \\
\hline 2150 & 10 & & IMPLICIT REAL (A-H,O-Z) & 2150 \\
\hline 2151 & 11 & C & & 2151 \\
\hline 2152 & 12 & & include 'cmshoo.h' & 2152 \\
\hline 2153 & 13 & & include 'chyd00.h' & 2153 \\
\hline 2154 & 14 & & include 'cint00.h' & 2154 \\
\hline 2155 & 15 & & include 'cphsi0.h' & 2155 \\
\hline 2156 & 16 & & include 'cphs 20.h' & 2156 \\
\hline 2157 & 17 & C & & 2157 \\
\hline 2158 & 18 & & INTEGER JJRIG(MEM), KTRIG(MEM), IRECNC(MEM) & 2158 \\
\hline 2159 & 19 & & INTECER JSE(MEM), JEE (MEM),10FDVS (10), MOFDUS(10) & 2159 \\
\hline 2160 & 20 & C & & 2160 \\
\hline 2161 & 21 & & EQUIVALENCE (UL, JTRIG) & 2161 \\
\hline 2162 & 22 & & EQUIVALENCE (VR,KIRIG) & 2162 \\
\hline 2163 & 23 & & EQUIVALENCE (VL, IRECNC) & 2163 \\
\hline 2164 & 24 & & EQUIVALENCE (PR, JSE) & 2164 \\
\hline 2165 & 25 & & EQUIVALENCE (PL.JEE) & 2165 \\
\hline 2166 & 26 & C & & 2166 \\
\hline 2167 & 27 & & SMINVG \(=\) SAREVG * DAREA & 2167 \\
\hline 2168 & 28 & & RMINVG \(=.7\) * SMINVG & 2168 \\
\hline 2169 & 29 & C & & 2169 \\
\hline 2170 & 30 & & U0 115 IS \(=1\), NS & 2170 \\
\hline 2171 & 31 & & JEE (IS \()=0\) & \(<171\) \\
\hline 2172 & 32 & 115 & COHTINUE & 2172 \\
\hline 2173 & 33 & C & & 2173 \\
\hline 2174 & 34 & & NSS \(=0\) & 2174 \\
\hline 2175 & 35 & & DO 120 IS \(=1\), NS & 2175 \\
\hline 2176 & 36 & C & D0 120 IR \(=4.6\) & 2176 \\
\hline 2177 & 37 & \(c\) & IE = IABS ( JS ( IR ; IS ) ) & 2177 \\
\hline 2178 & 38 & C & IJE5 \(=\) JE ( 5 , IE \()\) & 2178 \\
\hline 2179 & 39 & & XSS \(=\) XS \((1\), IS \()\) & 2179 \\
\hline 2180
2181 & 40 & & IF ( XSS . GT - -05 - AND . XSS . LT - . 05 . AND & 2180 \\
\hline 2181 & 41 & & - KSDELT( IS ) . LT , IDUMP ) THEN & 2181 \\
\hline 2182 & 42 & C & IF ( IJE5.EQ . 8 ) THEN & 2182 \\
\hline 2183
2184 & 43 & & KSDELT ( IS ) \(=\) IDUMP & 2183 \\
\hline 2184 & 44 & & JEE ( IS ) \(=1\) & 2184 \\
\hline 2185 & 45 & & NSS \(=\) NSS + 1 & 2185 \\
\hline 2186 & 46 & & JTRIG( NSS ) = IS & 2186 \\
\hline 2187 & 47 & & END IF & 2187 \\
\hline 2188 & 48 & 120 & COntinue & 2188 \\
\hline 2189 & 49 & c & & 2189 \\
\hline 2190 & 50 & & 00130 IS \(=1\), NSS & 2190 \\
\hline 2191 & 51 & & JSE ( IS ) = JTRIG( IS ) & 2191 \\
\hline 2192 & 52 & 130 & COntinue & 2192 \\
\hline 2193 & 53 & C & & 2193 \\
\hline 2194 & 54 & & MSS = NSS & 2194 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2195 & 55 & & DO 140 KOIV * 1. HOFDIV & 2195 \\
\hline 2196 & 56 & & ITRIG \(=0\) & 2196 \\
\hline 2197 & 57 & & \(00150 \mathrm{KS}=1 . \mathrm{NSS}\) & 2197 \\
\hline 2198 & 58 & C & & 2198 \\
\hline 2199 & 59 & & ISS = JSE ( KS ) & 2199 \\
\hline 2200 & 60 & C & & 2200 \\
\hline 2201 & 61 & & DO \(160 \mathrm{KR}=1.3\) & 2201 \\
\hline 2202 & 62 & & IVV = JS ( KR , ISS ) & 2202 \\
\hline 2203 & 63 & C & & 2203 \\
\hline 2204 & 64 & & IE = JV( 2. IVV) & 2204 \\
\hline 2205 & 65 & & If( IE . GT. O) then & 2205 \\
\hline 2206 & 66 & \(\bigcirc\) & & 2206 \\
\hline 2207 & 67 & & IVI - JE 1 , IE ) & 2207 \\
\hline 2208 & 68 & & IF ( IVI. EQ . IVV ) THEN & 2208 \\
\hline 2209 & 69 & & ISI \(=\) JE ( \(3, ~\) IE ) & 2209 \\
\hline 2210 & 70 & & ELSE & 2210 \\
\hline 2211 & 71 & & ISI = JE ( 4 , IE ) & 2211 \\
\hline 2212 & 12 & & END If & 2212 \\
\hline 2213 & 73 & & IS = ISI & 2213 \\
\hline 2214 & 74 & C & & 2214 \\
\hline 2215 & 75 & 750 & continue & 2215 \\
\hline 2216 & 76 & C & & 2216 \\
\hline 2217 & 77 & & JES \(=\) JEE ( 15 ) & 2217 \\
\hline 2218 & 78 & & XAS \(=\) XS ( 3, 5) & 2218 \\
\hline 2219 & 79 & & IF ( JES . EQ - O. AND . XAS . LT . SAREVG ) Then & 2219 \\
\hline 2220 & 80 & & ITRIG = ITRIG - 1 & 2220 \\
\hline 2221 & 81 & & KTRIG( ITRIG) = IS & 2221 \\
\hline 2222 & 82 & & \(\operatorname{KSOELT}(\) IS \()=\) IOUMP & 2222 \\
\hline 2223 & 83 & & JEE ( IS ) \(=1\) & 2223 \\
\hline 2224 & 84 & & END If & 2224 \\
\hline 2225 & 85 & \(\bigcirc\) & & 2225 \\
\hline 2226 & 86 & & D0 760 IR \(=1.3\) & 2226 \\
\hline 2227 & 87 & & \(J \mathrm{R}=\mathrm{MOO}(\mathrm{IR} ; 3)+1\) & 2227 \\
\hline 2228 & 88 & &  & 2228 \\
\hline 2229 & 89 & & IF (IEA.EQ. IE ) THEN & 2229 \\
\hline 2230 & 90 & & JJR \(=\) MOO( JR + 1, 3) + \({ }^{4}\) & 2230 \\
\hline 2231 & 91 & &  & 2231 \\
\hline 2232 & 92 & c & & 2232 \\
\hline 2233 & 93 & & IV1 = JE( 1 , IER ) & 2233 \\
\hline 2234 & 94 & & IF ( IVI. EQ . IVV) THEN & 2234 \\
\hline 2235 & 95 & & ISR = JE ( 3 , IER ) & 2235 \\
\hline 2236 & 96 & & ELSE ( \({ }^{\text {d }}\) ) & 2236 \\
\hline 2237
2238 & 97 & & ISR = JE ( 4 , IER ) & 2237 \\
\hline 2238
2239 & 98 & & END If & 2238 \\
\hline 2239 & 99 & & ENO If & 2239 \\
\hline 2240 & 100 & 760 & continue & 2240 \\
\hline 2241 & 101 & C & & 2241 \\
\hline 2242 & 102 & & IF ( ISR. ME . ISI ) THEN & 2242 \\
\hline 2243 & 103 & & IS = ISR & 2243 \\
\hline 2244 & 104 & & IE = IER & 2244 \\
\hline 2245 & 105 & c & & 2245 \\
\hline 2246 & 106 & & G0 10750 & 2246 \\
\hline 2247 & 107 & & END IF & 2247 \\
\hline 2248 & 108 & C & & 2248 \\
\hline 2249 & 109 & & ELSE & 2249 \\
\hline 2250 & 110 & \(c\) & & 2250 \\
\hline 2251 & 111 & & IE = - IE & 2251 \\
\hline 2252 & 112 & & IVI = JE( 1, IE ) & 2252 \\
\hline 2253 & 113 & & IF ( IVI . EQ . IVV ) THEN & 2253 \\
\hline 2254 & 114 & & ISI \(=\mathrm{JE}(3,1 \mathrm{E})\) & 2254 \\
\hline 2255 & 115 & & ELSE ( 4 , IE & 2255 \\
\hline 2256 & 116 & & ISI \(=\mathrm{JE}\) ( \(4 . \mathrm{IE}\) ) & 2256 \\
\hline 2257 & 117 & & END IF & 2257 \\
\hline 2258 & 118 & & IS \(=151\) & 2258 \\
\hline 2259 & 119 & & ISI \(=0\) & 2259 \\
\hline 2260 & 120 & c & & 2260 \\
\hline 2261 & 121 & 650 & continue & 2261 \\
\hline 2262 & 122 & C & & 2262 \\
\hline 2263 & 123 & & JES - JEE ( IS ) & 2263 \\
\hline 2264 & 124 & & XAS \(=\) XS ( 3.15 , & 2264 \\
\hline 2265 & 125 & & If ( JES . EQ . 0 . AND . XAS . LT . Sarevg ) Then & 2265 \\
\hline 2266 & 126 & & ITRIG = ITRIG + 1 & 2266 \\
\hline 2267 & 127 & & KTRIG( ITRIG ) = IS & 2267 \\
\hline 2268 & 128 & & KSDELT ( IS ) = IDUMP & 2268 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2269 & 129 & & JEE ( IS ) \(=1\) & \\
\hline 2270 & 130 & & END IF & 2270 \\
\hline 2271 & 131 & C & & 2271 \\
\hline 2272 & 132 & & D0 660 IR = 1. 3 & 2271 \\
\hline 2273 & 133 & & JR \(=\) MOO( IR ; 3 ) +1 & 2272 \\
\hline 2274 & 134 & &  & 2273 \\
\hline 2275 & 135 & & If ( IEA. EO. IE ) THEN' & 2274 \\
\hline 2276 & 136 & & \(J J R=M O D(J R+1,3)+4\) & 2276 \\
\hline 2277 & 137 & & IER = IABS ( JS ( JJR , is ) ) & 2277 \\
\hline 2278 & 138 & C & & 2278 \\
\hline 2279 & 139 & & IV1 = JE( 1, IER ) & 2279 \\
\hline 2280 & 140 & & IF ( IVI. EQ . IVV) THEN & 2280 \\
\hline 2281 & 141 & & ISR \(=\) JE ( 3 , IER ) & 2281 \\
\hline 2282 & 142 & & ELSE & 2281 \\
\hline 2283 & 143 & & ISR = JE ( 4 , IER ) & 2282 \\
\hline 2284 & 144 & & END IF & 2284 \\
\hline 2285 & 145 & & END IF & 2285 \\
\hline 2286 & 146 & C & & 2286 \\
\hline 2287 & 147 & 660 & continue & 2287 \\
\hline 2288 & 148 & C & & 2288 \\
\hline 2289 & 149 & & IF ( ISR . NE . ISI ) THEN & 2289 \\
\hline 2290 & 150 & & IS \(=15 \mathrm{~L}\) & 2290 \\
\hline 2291 & 151 & & \(1 E=I E R\) & 2291 \\
\hline 2292 & 152 & & 6010650 & 2292 \\
\hline 2293 & 153 & & END IF & 2293 \\
\hline 2294 & 154 & & END IF & 2294 \\
\hline 2295 & 155 & 160 & continue & 2295 \\
\hline 2296 & 156 & \(\checkmark\) & & 2296 \\
\hline 2297 & 157 & 150 & continue & 2297 \\
\hline 2298 & 158 & C & & 2298 \\
\hline 2299 & 159 & & D0 170 IS \(=1\). ITRIG & 2299 \\
\hline 2300 & 160 & & JTRIG ( IS + MSS ) = KTRIG( IS ) & 2300 \\
\hline 2301 & 161 & & JSE ( IS ) = KTRIG( 15 ) & 2301 \\
\hline 2302 & 162 & 170 & COntinue & 2302 \\
\hline 2303 & 163 & & NSS \(=\) ITRIG & 2303 \\
\hline 2304
2305 & 164 & & MSS \(=\) MSS + ITRIG & 2304 \\
\hline 2306 & 165 & \({ }_{140}\) & & 2305 \\
\hline 2307 & 167 & 140 & COSS \(=\) MSS & 2306 \\
\hline 2308 & 168 & C & & 2307 \\
\hline 2309 & 169 & & D0 300 KDIV - 1.1 & 2308
2309 \\
\hline 2310 & 170 & & LTRIG = NSS & 2310 \\
\hline 2311 & 171 & & IEDGE \(=0\) & 2311 \\
\hline 2312 & 172 & & HCOLOR \(=0\) & 2312 \\
\hline 2313 & 173 & C & & 2313 \\
\hline 2314 & 174 & & 00290 IE \(=1\). NE & 2314 \\
\hline 2315 & 175 & & JSE \((1 E)=0\) & 2315 \\
\hline 2316 & 176 & 290 & continue & 2316 \\
\hline 2317 & 177 & C & & 2317 \\
\hline 2318 & 178 & & D0 310 IS \(=1\), NSS & 2318 \\
\hline 2319 & 179 & & ISS \(=\) JTRIG ( IS ) & 2319 \\
\hline 2320 & 180 & & XSAREA \(=\) XS \((3\), ISS ) & 2320 \\
\hline 2321 & 181 & & IF ( XSAREA. GE. RMINVG) THEN & 2321 \\
\hline 2322 & 182 & 6 & & 2322 \\
\hline 2323 & 183 & & D0 335 IR \(=4.6\) & 2323 \\
\hline 2324 & 184 & & IE = IABS ( JS ( IR ; ISS ) ) & 2324 \\
\hline 2325
2326 & 185 & & IJE5 - JEE 5. IE \()\) & 2325 \\
\hline 2327 & 188 & & IF ( IJE5 . NE. O) THEN & 2326 \\
\hline 2328 & 188 & &  & 2327 \\
\hline 2329 & 189 & & \(J \mathrm{~S} 3=\mathrm{MOD}(1 \mathrm{R}-2,3)+4\) & 2328 \\
\hline 2330 & 190 & & IE3 \(=\) IABS ( JS ( JR3 . ISS) \()\) & 2329 \\
\hline 2331 & 191 & & XE1 \(=\) XE ( 1, IE ) & 2330 \\
\hline 2332 & 192 & & XE2 \(=\) XE \((1 ;\) IE2 \()\) & 2331 \\
\hline 2333 & 193 & & XE3 \(=\mathrm{XE}\) ( 1 , IE3 \()\) & 2333 \\
\hline 2334 & 194 & & XEDIST \(=1.1 \times\) E1 & 2334 \\
\hline 2335 & 195 & & YE2 \(=\) XE2 * XEDIST & 2335 \\
\hline 2336 & 196 & & YE3 = XE3 * XEDIST & 2336 \\
\hline 2337 & 197 & & EE2 = ( YE2-1.5) * ( YE2 - .1) & 2337 \\
\hline 2338 & 198 & &  & 2338 \\
\hline 2339 & 199 & & YY2 - XE1 * XE1 + XE2 * XE2 + . 35 * XE1 * XE2 - XE3 * XE3 & 2339 \\
\hline 3340 & 200 & & YY3 * XE1 * XE1 + XE3 * XE3 + .35* XE1 * XE3 - XE2 * XE2 & 2340 \\
\hline 2341 & 201 & &  & 2341 \\
\hline 332 & 202 & & YY2 - GT . O. . ANO . YY3 . GT . O.) THEN & 2342 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2343 & 203 & & CALL DISECT ( IE , IDONE , IDUMP ) & 2343 \\
\hline 2344 & 204 & C & & 2344 \\
\hline 2345 & 205 & & LTRIG \(=\) LTRIG +1 & 2345 \\
\hline 2346 & 206 & & JTRIG (ITRIG) \(=\) NS & 2346 \\
\hline 2347 & 207 & & KSOELT( NS ) = IDUMP & 2347 \\
\hline 2348 & 208 & C & & 2348 \\
\hline 2349 & 209 & & IEDGE = IEDGE + 1 & 2349 \\
\hline 2350 & 210 & & \(\operatorname{IRECNC}(\) IEDGE \()=\mathrm{NE}\) & 2350 \\
\hline 2351 & 211 & & NCOLOR - NCOLOR + 1 & 2351 \\
\hline 2352 & 212 & & JEE ( NCOLOR ) = NE & 2352 \\
\hline 2353 & 213 & & JSE ( NE ) \(=1\) & 2353 \\
\hline 2354 & 214 & & IEDGE \(=\) IEDGE +1 & 2354 \\
\hline 2355 & 215 & & IRECNC( IEDGE ) = NE - 1 & 2355 \\
\hline 2356 & 216 & & NCOLOR = NCOLOR + 1 & 2356 \\
\hline 2357 & 217 & & JEE ( NCOLOR ) = NE - 1 & 2357 \\
\hline 2358 & 218 & & JSE ( \(\mathrm{NE}-1\) ) \(=1\) & 2358 \\
\hline 2359 & 219 & C & & 2359 \\
\hline 2360 & 220 & & END JF & 2360 \\
\hline 2361 & 221 & & END IF & 2361 \\
\hline 2362 & 222 & 335 & CONTINUE & 2362 \\
\hline 2363 & 223 & & END IF & 2363 \\
\hline 2364 & 224 & 310 & CONTINUE & 2364 \\
\hline 2365 & 225 & c & & 2365 \\
\hline 2366 & 226 & & NSS \(=\) LTRIG & 2366 \\
\hline 2367 & 227 & & IEDGE \(=0\) & 2367 \\
\hline 2368 & 228 & & NCOLOR \(=0\) & 2368 \\
\hline 2369 & 229 & c & & 2369 \\
\hline 2370 & 230 & & 00295 IE = 1. NE & 2370 \\
\hline 2371 & 231 & & SSE (IE ) \(=0\) & 2371 \\
\hline 2372 & 232 & 295 & continue & 2372 \\
\hline 2373 & 233 & C & & 2373 \\
\hline 2374 & 234 & & 00320 IS \(=1\), NSS & 2374 \\
\hline 2375 & 235 & & ISS \(=\) JTRIG( IS ) & 2375 \\
\hline 2376 & 236 & & XSAREA \(=\) XS ( 3, ISS) & 2376 \\
\hline 2377 & 237 & \(\bigcirc\) & & 2377 \\
\hline 2378 & 238 & & 00735 IR \(=4.6\) & 2378 \\
\hline 2379 & 239 & & IE = IABS ( JS ( IR, ISS ) ) & 2379 \\
\hline 2380 & 240 & & IF (JSE ( IE ) . EO . O) THEN & 2380 \\
\hline 2381 & 241 & & IEDGE \(=\) IEDGE +1 & 2381 \\
\hline 2382 & 242 & & IRECNC( IEDGE ) = IE & 2382 \\
\hline 2383 & 243 & & HCOLOR = NCOLOR + 1 & 2383 \\
\hline 2384 & 244 & & JEE (NCOLOR ) = IE & 2384 \\
\hline 2385 & 245 & & JSE ( IE ) \(=1\) & 2385 \\
\hline 2386 & 246 & & EMD IF & 2386 \\
\hline 2387 & 247 & 735 & cohtinue & 2387 \\
\hline 2388 & 248 & C & & 2388 \\
\hline 2389 & 249 & & IF ( XSAREA . GT . RMINVG) THEN & 2389 \\
\hline 2390 & 250 & C & & 2390 \\
\hline 2391 & 251 & & AREAXS = SAREA ( ISS ) & 2391 \\
\hline 2392 & 252 & & IE1 = IABS ( JS ( 4 , ISS) ) & 2392 \\
\hline 2393 & 253 & & XE1 \(=\) XE ( \(1,1 \mathrm{EL}\), & 2393 \\
\hline 2394 & 254 & & HD1 = AREAXS * XE1 * XE1 & 2394 \\
\hline 2395 & 255 & & [JE5 = JE ( 5 , IE1) & 2395 \\
\hline 2396 & 256 & & IE2 - IABS ( JS ( 5 ; ISS ) ) & 2396 \\
\hline 2397 & 257 & & XE2 \(=\) XE ( 1.152 ) & 2397 \\
\hline 2398 & 258 & & HD2 = AREAXS * XE2 * XE2 & 2398 \\
\hline 2399 & 259 & & IJE5 = IJE5 + JE ( 5 , IE2 ) & 2399 \\
\hline 2400 & 260 & & IE3 \(=\) IABS ( JS ( 6 ; ISS ) ) & 2400 \\
\hline 2401 & 261 & & XE3 \(=\) XE ( 1 , IE3) & 2401 \\
\hline 2402 & 262 & & HD3 - AREAXS * XE3 * XE3 & 2402 \\
\hline 2403 & 263 & & IJE5 \(=\) IJE5 + JE ( 5 . IE3 ) & 2403 \\
\hline 2404
2405 & 264 & & RATIO \(=\) AMAX1 ( HD1 . HD2 , HD3 ) & 2404 \\
\hline 2405
2406 & 265 & & IRATIO \(=0\) & 2405 \\
\hline 2406 & 266 & & IF ( RATIO . LE . 7. . AND - IJE5 . EQ . O AND . & 2406 \\
\hline 2407
2408 & 267 & & XSAREA . GT . SMINVG) IRATIO \(=1\) & 2407 \\
\hline 2408
2409 & 268 & & IF ( IJE5 . GT . O) IRATIO = 2 & 2408
2409 \\
\hline 2409
2410 & 269 & c & & 2409
2410 \\
\hline 2410
2411 & 270
271 & &  & 2410
2411 \\
\hline 2412 & 272 & & IJE52 - JE ( 5 . IE2 \()\) & 2412 \\
\hline 2413 & 273 & & 1JE53 \(=\) JE ( 5 . 1E3) & 2413 \\
\hline 2414 & 274 & & IF (IJE51 - NE . O) THEN & 2414 \\
\hline 2415 & 275 & & IEDIST * IEI & 2415 \\
\hline 2416 & 276 & & XE1 - XE ( 1 , IE1) & 2416 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2417 & 277 & & XE2 \(=\) XE ( 1, 1E2 ) & 2417 \\
\hline 2418 & 278 & & XE3 \(=\) XE (1, 1E3) & 2418 \\
\hline 2419 & 279 & & END If & 2419 \\
\hline 2420 & 280 & & IF (IJE52, NE. 0) THEN & 2420 \\
\hline 2421 & 281 & & IEDIST - IE2 & 2420 \\
\hline 2422 & 282 & & XE1 \(=\) XE ( \(1,1 \mathrm{E} 2)\) & 2422 \\
\hline 2423 & 283 & & XE2 \(=\mathrm{XE}(1,1 E 1)\) & 2423 \\
\hline 2424 & 284 & & XE3 \(=\) XE ( 1 , IE3) & 2424 \\
\hline 2425 & 285 & & END If & 2425 \\
\hline 2426 & 286 & & IF ( IJE53 ME . 0 ) THEN & 2426 \\
\hline 2427 & 287 & & IEDIST \(=\) IE3 & 2427 \\
\hline 2428 & 288 & & XE1 \(=\) XE ( 1, 1E3) & 2428 \\
\hline 2429
2430 & 289 & & XE2 \(2=X E(1, ~ I E 2)\)
XE3 & 2429 \\
\hline 2431 & 291 & & END If & 2430 \\
\hline 2432 & 292 & & XEDIST \(=1.1\) XE ( 1. IEDIST \()\) & 2431 \\
\hline 2433 & 293 & & YE2 = XE2 * XEDIST & 2433 \\
\hline 2434 & 294 & & YE3 \(=\) XE3 * XEDIST & 2434 \\
\hline 2435 & 295 & & 2E2 = ( YE2 - 1.5) * (YE2-.1) & 2435 \\
\hline 2436 & 296 & & 2E3 \(=(\) YE3 - 1.5\() *(\) YE3 - . 1 ) & 2436 \\
\hline 2437 & 297 & & YY2 = XE1 * XE1 + XE2 * XE2 + . 35 * XE1 * XE2 - XF3 * XE3 & 2437 \\
\hline 2438 & 298 & & YY3 - XE1 * XE1 + XE3 * XE3 + . 55 * XE1 * XE3 - XE2 * XE2 & 2438 \\
\hline 2439 & 299 & & YY3 \(=\) XE1 * XE1 + XE3 * XE3 - XE2 * XE2 2 XE3 XE2 & 2439 \\
\hline 2440 & 300 & & IF ( ZE2 . LT . . 0 . ANO . LE3 - LT . O. . AND & 2440 \\
\hline 2441 & 301 & & YY2 GT . 0 . AND YY3 . GT . O.) THEN & 2441 \\
\hline 2442 & 302 & & CALL DISECT ( IEDIST . idone , loump ) & 2442 \\
\hline 2443 & 303 & \(c\) & & 2443 \\
\hline 2444 & 304 & & LTRIG \(=\) LTRIG +1 & 2444 \\
\hline 2445 & 305 & & JTRIG (LIRIG) = NS & 2445 \\
\hline 2446 & 306 & & KSDELT ( NS ) = IDUMP & 2446 \\
\hline 2447 & 307 & 6 & & 2447 \\
\hline 2449 & 309 & & IRECNC( \(\left.{ }_{\text {IEDGE }}\right)^{+}=\)NE & 2448
2449 \\
\hline 2450 & 310 & & NCOLOR = NCOLOR + 1 & 2450 \\
\hline 2451 & 311 & & JEE ( NCOLOR ) = NE & 2451 \\
\hline 2452 & 312 & & JSE ( \(N E\) ) \(=1\) & 2452 \\
\hline 2453 & 313 & & IEDGE IEDGE + 1 & 2453 \\
\hline 2455 & 314
315 & & IRECNC ( IEDGE \()=N E-1\)
MCOLOR \(=\) NCOLOR +1 & 2454 \\
\hline 2456 & 316 & & JEE ( NCOLOR ) \(=\) NE - 1 & 2455
2456 \\
\hline 2457 & 317 & & JSE \((\) NE -1\()=1\) & 2457 \\
\hline 2458 & 318 & c & & 2458 \\
\hline 2459 & 319 & & END IF & 2459 \\
\hline 2460 & 320 & & END IF & 2460 \\
\hline 2461 & 321 & C & & 2461 \\
\hline 2462 & 322 & & If ( IRATIO . EQ . 1 ) THEN & 2462 \\
\hline 2464 & 324 & \(c\) & CALL VERCEN( ISS ) & 2463 \\
\hline 2465 & 325 & & KSOELT ( ISS ) = IDUMP & 2464 \\
\hline 2466 & 326 & & LTRIG = LTRIG + 1 & 2465 \\
\hline 2467 & 327 & & JTRIG (TRIG ) = NS - 1 & 2467 \\
\hline 2468 & 328 & & \(\operatorname{KSDELT}(\mathrm{NS}-1)=10 \mathrm{MMP}\) & 2468 \\
\hline 2469 & 329 & c & & 2469 \\
\hline 2470 & 330 & & LTRIG \(=\) LTRIG +1 & 2470 \\
\hline 2471 & 331
332 & & JTRIG( LTRIG) - NS & 2471 \\
\hline 2472
2473 & 332 & \(\bigcirc\) & KSDELT( NS ) * IDUMP & 2472 \\
\hline 2474 & 334 & \(\checkmark\) & IEDGE \(=\) IEDGE + 1 & 2473 \\
\hline 2475 & 335 & & IRECNC ( IEDGE ) = NE & 2474
2475 \\
\hline 2476 & 336 & & NCOLOR \(=\) NCOLOR + 1 & 2476 \\
\hline 2477 & 337 & & JEE ( NCOLOR ) = NE & 2477 \\
\hline 2478 & 338 & & JSE ( NE ) = 1 & 2478 \\
\hline 2479 & 339 & & IEDGE = \(\mathrm{IEDCE}+1\) & 2479 \\
\hline 2480 & 340 & & IRECNC ( [EDGE ) = NE - 1 & 2480 \\
\hline 2481 & 341 & & NCOLOR = NCOLOR + 1 & 2481 \\
\hline 2482 & 342 & & JEE ( NCOLOR ) = NE - 1 & 2482 \\
\hline 2483 & 343 & & JSE ( \(\mathrm{NE}-1\) ) \(=1\) & 2483 \\
\hline 2484 & 344 & & IEDGE = [EDGE + 1 & 2484 \\
\hline 2485 & 345 & & IRECNC( IEDGE ) = NE - 2 & 2485 \\
\hline 2486 & 346 & & NCOLOR - NCOLOR + 1 & 2486 \\
\hline 2487
2488 & \begin{tabular}{l}
347 \\
348 \\
\hline
\end{tabular} & & JEE \((N C O L O R)=N E-2\)
\(\operatorname{JSE}(N E-2)=1\) & 2487
2488 \\
\hline 2489 & 349 & \(c\) & JSE( NE-2) 1 & \begin{tabular}{l}
2488 \\
\hline 888
\end{tabular} \\
\hline 2490 & 350 & & ELSE & 2490 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2491 & 351 & C & & 2491 \\
\hline 2492 & 352 & & IDISCT \(=0\) & 2492 \\
\hline 2493 & 353 & & D0 \(545 \mathrm{KK}=4,6\) & 2493 \\
\hline 2494 & 354 & & IEE - JS( KK . ISS ) & 2494 \\
\hline 2495 & 355 & & IEF - IABS ( IEE ) & 2495 \\
\hline 2496 & 356 & & IJE55 - JE ( 5 , IEF ) & 2496 \\
\hline 2497 & 357 & & IF ( IJE55 . EQ . 0 ) THEN & 2497 \\
\hline 2498 & 358 & & IF ( IEE . GT . O) THEN & 2498 \\
\hline 2499 & 359 & & ISI - JE ( \(4, ~ I E E\) ) & 2499 \\
\hline 2500 & 360 & & ELSE & 2500 \\
\hline 2501 & 361 & & ISI = JE ( 3 , IEF) & 2501 \\
\hline 2502 & 362 & & END IF & 2502 \\
\hline 2503 & 363 & & AREAXS = SAREA ( ISI) & 2503 \\
\hline 2504 & 364 & & IE1 = IMBS ( JS ( 4 . [SI) ) & 2504 \\
\hline 2505 & 365 & & XE1 \(=\) XE ( \(1, ~ I E 1)\) & 2505 \\
\hline 2506 & 366 & & IJE55 - JE ( 5 . IEI) & 2506 \\
\hline 2507 & 367 & & HD1 = AREAXS * XE1 * XE1 & 2507 \\
\hline 2508 & 368 & & IE2 = IABS ( JS ( 5 ; ISI ) ) & 2508 \\
\hline 2509 & 369 & &  & 2509 \\
\hline 2510 & 370 & & IJE55 = IJE55 + JE ( 5 , IE2 ) & 2510 \\
\hline 2511 & 371 & & H02 \(=\) AREAXS \(*\) XE2 * XE2 & 2511 \\
\hline 2512 & 372 & & IE3 \(=\operatorname{IABS}(\mathrm{JS}(6\), ISI ) ) & 2512 \\
\hline 2513 & 373 & & XE3 \(=\) XE ( 1 , [E3 \({ }^{\text {(SI }}\) ) & 2513 \\
\hline 2514 & 374 & & \(\mathrm{IJE55}=\) IJE55 + JE ( 5 , IE3 ) & 2514 \\
\hline 2515 & 375 & & HD3 \(=\) AREAXS * XE3 * XE3 & 2515 \\
\hline 2516 & 376 & & RATIO = AMAXI ( HD1 , HD2 , HD3 ) & 2516 \\
\hline 2517 & 377 & & YSAREA \(=X\) ( 3.151\()\) & 2517 \\
\hline 2518 & 378 & & IF ( RATIO . LT . 7. . AND . YSAREA . GT . Sminvg . And & 2518 \\
\hline 2519 & 379 & & IJE55 . EQ . O) THEN & 2519 \\
\hline 2520 & 380 & & IDISCT \(=1\) & 2520 \\
\hline 2521 & 381 & & D0 \(435 \mathrm{IR}=4,6\) & 2521 \\
\hline 2522 & 382 & & IE = IABS ( JS ( IR, ISI ) ) & 2522 \\
\hline 2523 & 383 & & IF ( JSE ( IE ) E EQ . 0) THEN & 2523 \\
\hline 2524 & 384 & & IEDCE \(=\) IEDGE + 1 & 2524 \\
\hline 2525 & 385 & & IRECNC( IEDGE ) \(=1 \mathrm{I}\) & 2525 \\
\hline 2526 & 386 & & NCOLOR = NCOLOR + 1 & 2526 \\
\hline 2527 & 387 & & JEE ( NCOLOR ) \(=1 E\) & 2527 \\
\hline 2528 & 388 & & JSE ( IE ) = 1 & 2528 \\
\hline 2529 & 389 & & END IF & 2529 \\
\hline 2530 & 390 & 435 & COMTINUE & 2530 \\
\hline 2531 & 391 & & CALL VERCEN ( ISI) & 2531 \\
\hline 2532 & 392 & & KSDELT( ISI ) = IDUMP & 2532 \\
\hline 2533 & 393 & & LTRIG \(=\) LTRIG + 1 & 2533 \\
\hline 2534 & 394 & & JTRIG( LTRIG) = NS - 1 & 2534 \\
\hline 2535 & 395 & & KSDELT ( NS - 1) - IDUMP & 2535 \\
\hline 2536 & 396 & C & & 2536 \\
\hline 2537 & 397 & & LTRIG = LTRIG + 1 & 2537 \\
\hline 2538 & 398 & & JTRIG (LRIG) \(=\) NS & 2538 \\
\hline 2539 & 399 & & KSDELT( NS ) = IDUMP & 2539 \\
\hline 2540 & 400 & C & & 2540 \\
\hline 2541 & 401 & & IEDGE = IEDGE + 1 & 2541 \\
\hline 2542 & 402 & & IRECNC ( IEDGE ) = NE & 2542 \\
\hline 2543 & 403 & & NCOLOR - NCOCOR + 1 & 2543 \\
\hline 2544 & 404 & & JEE (NCOLOR ) = NE & 2544 \\
\hline 2545 & 405 & & JSE ( NE ) = 1 & 2545 \\
\hline 2546 & 406 & & IEDGE = IEDGE + 1 & 2546 \\
\hline 2547 & 407 & & IRECNC( IEDGE ) = NE - 1 & 2547 \\
\hline 2548 & 408 & & NCOLOR - NCOLOR + 1 & 2548 \\
\hline 2549 & 409 & & JEE ( NCOLOR ) = NE - 1 & 2549 \\
\hline 2550 & 410 & & JSE ( \(\mathrm{NE}-1\) ) \(=1\) & 2550 \\
\hline 2551 & 411 & & IEDGE \(=\) IEDGE +1 & 2551 \\
\hline 2552 & 412 & & IRECNC( IEDGE ) = NE - 2 & 2552 \\
\hline 2553 & 413 & & NCOLOR = NCOLOR + 1 & 2553 \\
\hline 2554 & 414 & & JEE ( NCOLOR ) = NE - 2 & 2554 \\
\hline 2555 & 415 & & JSE ( NE - 2) \(=1\) & 2555 \\
\hline 2556 & 416 & & END IF & 2556 \\
\hline 2557 & 417 & & END IF & 2557
2558 \\
\hline 2558 & 418 & 545 & CONTINUE & 2558 \\
\hline 2559 & 419 & C & & 2559
2560 \\
\hline 2560 & 420 & & IF ( IDISCT . EO - 0 ) THEN & 2560
2561 \\
\hline 2561 & 421 & & IE1 \(=\operatorname{IABS}(\mathrm{JS}(4 ;\) ISS \()\) ) & 2561 \\
\hline 2562
2563 & 422 & &  & 2562 \\
\hline 2563
2564 & 423
424 & &  & 2563
2564 \\
\hline 2564 & 424 & & XE2 - Xe( . . & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 2639 & 499 & & END If & 2639 \\
\hline 2640 & 500 & & END If & 2640 \\
\hline 2641 & 501 & & END IF & 2641 \\
\hline 2642 & 502 & C & & 2542 \\
\hline 2643 & 503 & 320 & continue & 2643 \\
\hline 2644 & 504 & C & & 2644 \\
\hline 2645 & 505 & & DO 340 IEM = 1, NCOLOR & 2645 \\
\hline 2646 & 506 & & IE - JEE ( IEM ) & 2646 \\
\hline 2647 & 507 & C & & 2647 \\
\hline 2648 & 508 & & ISL \(=\mathrm{JE}\) ( 3 . IE ) & 2648 \\
\hline 2649 & 509 & & YSAREA \(=X S(3\), ISL \()\) & 2649 \\
\hline 2650 & 510 & & \(1 \mathrm{JE5}=\mathrm{JE}(5, \mathrm{IE})\) & 2650 \\
\hline 2651 & 511 & & If ( ysarea . Ge . rminvg . and . lues . Ne . O) Then & 2651 \\
\hline 2652 & 512 & & IEI \(=\) IABS ( JS ( 4.15 ISL ) ) & 2652 \\
\hline 2653 & 513 & & IE2 \(=\operatorname{IABS}(\mathrm{JS}(5, \mathrm{ISL})\) ) & 2653 \\
\hline 2654 & 514 & & [E3 \(=\) IABS ( JS 6 , ISL) & 2654 \\
\hline 2655 & 515 & & IJE51 = JE ( \(5.1 E 1\) ) & 2655 \\
\hline 2656 & 516 & & \(\underline{I J E 52}=\mathrm{JE}(5.1 \mathrm{E} 2)\) & 2656 \\
\hline 2657 & 517 & & IJE53 \(=\mathrm{JE}\) ( 5, IE3 \()\) & 2657 \\
\hline 2658 & 518 & & IF ( IJE51 . NE . 0 ) THEN & 2658 \\
\hline 2659 & 519 & & IEDIST = IE1 & 2659 \\
\hline 2660 & 520 & & XE1 \(=\) XE ( 1, IE1 ) & 2660 \\
\hline 2661 & 521 & & XE2 \(=\mathrm{XE}(1, \mathrm{IE2}\) ) & 2661 \\
\hline 2662 & 522 & & XE3 \(=\) XE ( 1, IE3 ) & 2662 \\
\hline 2663 & 523 & & END IF & 2663 \\
\hline 2664 & 524 & & IF ( IJE52 . NE . 0) THEN & 2664 \\
\hline 2665 & 525 & & [EDIST = IE2 & 2665 \\
\hline 2666 & 526 & & XE1 = XE ( 1, IE2 ) & 2666 \\
\hline 2667 & 527 & & XE2 - XE ( 1 , IE1) & 2667 \\
\hline 2668 & 528 & & XE3 \(=\) XE ( 1 , IE3 ) & 2668 \\
\hline 2669 & 529 & & END IF & 2669 \\
\hline 2670 & 530 & & IF ( IJE53 - NE . 0) THEN & 2670 \\
\hline 2671 & 531 & & IEDIST \(=\) IE3 & 2671 \\
\hline 2672 & 532 & & XE1 \(=\) XE ( 1, IE3) & 2672 \\
\hline 2673 & 533 & & XE2 \(=\mathrm{XE}(1, \mathrm{IE2})\) & 2673 \\
\hline 2674 & 534 & & XE3 = XE ( 1. IEI) & 2674 \\
\hline 2675 & 535 & & ENO IF & 2675 \\
\hline 2676 & 536 & & XEDIST = 1. \(/\) XE ( \(1 .\), IEDIST ) & 2676 \\
\hline 2677 & 537 & & YE2 = XE2 * XEDIST & 2677 \\
\hline 2678 & 538 & & YE3 - XE3 * XEDIST & 2678 \\
\hline 2679 & 539 & & ZE2 = (YE2-1.5) * (YE2-.1) & 2679 \\
\hline 2680 & 540 & & ZE3 = (YE3-1.5)* (YE3-.1) & 2680 \\
\hline 2681 & 541 & & YY2 \(=\) XE1 * XE1 + XE2 * XE2 + . 35 * XE1 * XE2 - XE3 * XE3 & 2681 \\
\hline 2682 & 542 & & YY3 = XE1 * XE1 + XE3 * XE3 + . 35 * XE1 * XE3 - XE2 * XE2 & 2682 \\
\hline 2683 & 543 & & IF ( 2 E . LT . . 0 . AND . ZE3 . LT . O. . AND & 2683 \\
\hline 2684 & 544 & & YY2. GT . O. AND YY3. GT . 0. ) THEN & 2684 \\
\hline 2685 & 545 & & CALL DISECT ( IEDIST , IDONE , IDUMP ) & 2685 \\
\hline 2686 & 546 & C & & 2686 \\
\hline 2687 & 547 & & LTRIG = LTRIG + 1 & 2687 \\
\hline 2688 & 548 & & JTRIG( LTRIG) = NS & 2688 \\
\hline 2689 & 549 & & KSOELT( NS ) = IDUMP & 2689 \\
\hline 2690 & 550 & c & & 2690 \\
\hline 2691 & 551 & & IEDGE - IEDGE + 1 & 2691 \\
\hline 2692 & 552 & & IRECNC( IEDGE ) = NE & 2692 \\
\hline 2693 & 553 & & HCOLOR - NCOLOR + 1 & 2693 \\
\hline 2694 & 554 & & JEE ( NCOLOR ) = NE & 2694 \\
\hline 2695 & 555 & & JSE ( NE ) = 1 & 2695 \\
\hline 2696 & 556 & & IEDGE - IEDGE + 1 & 2696 \\
\hline 2697 & 557 & & IRECNC( IEDGE ) = NE - 1 & 2697 \\
\hline 2698 & 558 & & NCOLOR \(=\) NCOLOR + 1 & 2698 \\
\hline 2699 & 559 & & JEE ( NCOLOR ) = NE - 1 & 2699 \\
\hline 2700 & 560 & & JSE ( NE - 1) = 1 & 2700 \\
\hline 2701 & 561 & C & & 2701 \\
\hline 2702 & 562 & & ELSE & 2702 \\
\hline 2703 & 563 & c & & 2703 \\
\hline 2704 & 564 & & IEDIST \(=\) IEI & 2704 \\
\hline 2705 & 565 & & XEDIST \(=\) XEI & 2705 \\
\hline 2706 & 566 & & IF ( XE2 - GT . XEDIST ) THEN & 2706 \\
\hline 2707 & 567 & & XEDIST \(=\) XE2 & 2707 \\
\hline 2708 & 568 & & IEDIST \(=\) IE2 & 2708 \\
\hline 2709 & 569 & & END If & 2709 \\
\hline 2710 & 570 & & IF ( XE3 . GT . XEDIST ) THEN & 2710 \\
\hline 2711 & 571 & & XEDIST \(=\) XE3 & 2711 \\
\hline 2712 & 572 & & IEDIST - IE3 & 2712 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 2787 & 647 & C & & 2787 \\
\hline 2788 & 648 & & NVECE = NE / MBL & 2788 \\
\hline 2789 & 649 & & NREME \(=\) NE - NVECE * MBL & 2789 \\
\hline 2790 & 650 & & NVECS \(=\) NS / MBL & 2790 \\
\hline 2791 & 651 & & NREMS = NS - NVECS * MBL & 2791 \\
\hline 2792 & 652 & & NVECV = NV / MBL & 2792 \\
\hline 2793 & 653 & & NREMV = NV - NVECV * MBL & 2793 \\
\hline 2794 & 654 & C & & 2794 \\
\hline 2795 & 655 & & DO 400 INE - 1, NVECE & 2795 \\
\hline 2795 & 656 & & NOFVEE ( INE ) = MBL & 2796 \\
\hline 279 & 657 & 400 & CONTINUE & 2797 \\
\hline 2798 & 658 & & NVEEE = NVECE & 2798 \\
\hline 2799 & 659 & & IF ( NREME. GT . 0) THEN & 2799 \\
\hline 2800 & 660 & & NVEEE \(=\) NVECE + 1 & 2800 \\
\hline 2801 & 661 & & NOFVEE ( NVEEE ) = NREME & 2801 \\
\hline 2802 & 662 & & END IF & 2802 \\
\hline 2803 & 663 & C & & 2803 \\
\hline 2804 & 664 & & DO 410 INS \(=1\), NVECS & 2804 \\
\hline 2805 & 565 & & NOFVES ( INS ) = MBL & 2805 \\
\hline 2806 & 666 & 410 & CONTINUE & 2805 \\
\hline 2807 & 667 & & NVEES = NVECS & 2807 \\
\hline 2808 & 668 & & IF ( NREMS . GT . 0 ) THEN & 2808 \\
\hline 2809 & 669 & & NVEES = NVECS + 1 & 2809 \\
\hline 2810 & 670 & & NOFVES ( NVEES ) = NREMS & 2810 \\
\hline 2811 & 671 & & END If & 2811 \\
\hline 2812 & 672 & C & & 2812 \\
\hline 2813 & 673 & & DO 420 INV \(=1\), NVECV & 2813 \\
\hline 2814 & 674 & & NOFVEV ( INV ) = MBL & 2814 \\
\hline 2815 & 675 & 420 & CONTINUE & 2815 \\
\hline 2816 & 676 & & NVEEV = NVECV & 2816 \\
\hline 2817 & 677 & & IF ( NREMV . GT . 0) THEN & 2817 \\
\hline 2818 & 678 & & NVEEV \(=\) NVECV + 1 & 2818 \\
\hline 2819 & 679 & & NOFVEV( NVEEV ) = NREMV & 2819 \\
\hline 2820 & 680 & & END IF & 2820 \\
\hline 2821 & 681 & \(C\) & & 2821 \\
\hline 2822 & 682 & & PRINT*,NV,NE,NS & 2822 \\
\hline 2823 & 683 & ¢ & & 2823 \\
\hline 2824 & 684 & C \(\cdots\) & EXIT POINT FROM SUBROUTINE & 2824 \\
\hline 2825 & 685 & \({ }^{\text {c }}\) & & 2825 \\
\hline 2826 & 686 & C & ------ & 2826 \\
\hline 2827 & 687 & & RETURN & 2827 \\
\hline 2828 & 688 & C & ------- & 2828 \\
\hline 2829 & 689 & C & & 2829 \\
\hline 2830
2831 & 690
691 & C & END & 2830
2831 \\
\hline
\end{tabular}

Thu
adaphd. f
Subroutine delptnt
page


\begin{tabular}{|c|c|c|c|c|}
\hline 2970 & 1 & & Subroutine relaxy ( IV ) & 2970 \\
\hline 2971 & 2 & & IMPLICIT REAL (A-H,O-Z) & 2971 \\
\hline 2972 & 3 & C & & 2972 \\
\hline 2973 & 4 & c & & 2973 \\
\hline 2974 & 5 & C & & 2974 \\
\hline 2975 & 6 & C & this routine relax the grio after deletion & 2975 \\
\hline 2976 & 7 & C & & 2976 \\
\hline 2977 & 8 & C & & 2977 \\
\hline 2978 & 9 & C & & 2978 \\
\hline 2979 & 10 & & include 'cmsh00.h' & 2979 \\
\hline 2980 & 11 & & include 'chyd00.h' & 2980 \\
\hline 2981 & 12 & & include 'cint00.h' & 2981 \\
\hline 2982 & 13 & & include 'cphsi0.h' & 2982 \\
\hline 2983 & 14 & & include 'cphs20.h' & 2983 \\
\hline 2984 & 15 & & ITRIG \(=0\) & 2984 \\
\hline 2985 & 16 & & IETRIG \(=0\) & 2985 \\
\hline 2986 & 17 & & IE \(=\) JV ( \(2.1 V)\) & 2986 \\
\hline 2987 & 18 & & IF ( IE . GT . O) THEN & 2987 \\
\hline 2988 & 19 & c & & 2988 \\
\hline 2989 & 20 & & IV1 = JE ( 1 , IE ) & 2989 \\
\hline 2990 & 21 & & IV2 = JE ( \(2, ~ I E)\) & 2990 \\
\hline 2991 & 22 & & IF ( IVI. EQ . IV) THEN & 2991 \\
\hline 2992 & 23 & & ISI \(=\mathrm{JE}(3, \mathrm{IE})\) & 2992 \\
\hline 2993 & 24 & & ELSE & 2993 \\
\hline 2994 & 25 & & ISI \(=\) JE ( \(4, ~ I E)\) & 2994 \\
\hline 2995 & 26 & & END IF & 2995 \\
\hline 2996 & 27 & & IS \(=\) ISI & 2996 \\
\hline 2997 & 28 & C & & 2997 \\
\hline 2998 & 29 & 75 & continue & 2998 \\
\hline 2999 & 30 & C & & 2999 \\
\hline 3000 & 31 & & \(0065 \mathrm{IR}=1.3\) & 3000 \\
\hline 3001 & 32 & & JR \(=\mathrm{MOO}\left(\mathrm{IR},{ }^{3}\right)+1\) & 3001 \\
\hline 3002 & 33 & & IEA = IAASS \({ }^{\text {d }}\) US \((J R+3\), IS ) ) & 3002 \\
\hline 3003 & 34 & & IF ( IEA. EQ. IE ) THEN & 3003 \\
\hline 3004 & 35 & & \(I I R=M O D(J R, 3)+4\) & 3004 \\
\hline 3005 & 36 & & IEI = JS ( IIR, IS ) & 3005 \\
\hline 3006 & 37 & & IEII = IABS ( IEI ) & 3006 \\
\hline 3007 & 38 & & IETRIG = IETRIG + 1 & 3007 \\
\hline 3008 & 39 & & JECRSS ( IETRIG) = IEII & 3008 \\
\hline 3009 & 40 & & \(J J R=M O D\left(J R+10^{\prime} 3\right)+4\) & 3009 \\
\hline 3010 & 41 & & IEM \(=\) JS( JJR,\(~ I S ~) ~\) & 3010 \\
\hline 3011 & 42 & & IER \(=\) IABS ( IEM ) & 3011 \\
\hline 3012 & 43 & & IETRIG = IETRIG + 1 & 3012 \\
\hline 3013
3014 & 44 & & JECRSS ( IETRIG ) = IER & 3013 \\
\hline 3014
3015 & 45 & C & & 3014 \\
\hline 3015
3016 & 46 & & IV1 \(=\mathrm{JE}(1\), IER \()\) & 3015 \\
\hline 3016
3017 & 47 & & IV2 \(=\) JE ( \(2, ~\) IER \()\) & 3016 \\
\hline 3017
3018 & 48 & & IF ( IVI. EQ . IV ) THEN & 3017
3018 \\
\hline 3018 & 49 & & ISR \(=\) JE ( 3 , IER ) & 3018
3019 \\
\hline 3019 & 50 & & ITRIG = ITRIG + 1 & 3019 \\
\hline 3020 & 51 & & IICOLR ( ITRIG ) = IV2 & 3020 \\
\hline 3021 & 52 & & JSCRSS ( ITRIG ) = ISR & 3021 \\
\hline 3022 & 53 & & ELSE & 3022 \\
\hline 3023 & 54 & & ISR = JE ( 4, IER ) & 3023 \\
\hline 3024
3025 & 55 & & ITRIG - ITRIG + 1 & 3024 \\
\hline 3025 & 56 & & IICOLR ( ITRIG ) = IVI & 3025 \\
\hline 3026 & 57 & & JSCRSS ( ITRIG ) = ISR & 3026 \\
\hline 3027 & 58 & & EMD IF & 3027 \\
\hline 3028 & 59 & & END IF & 3028 \\
\hline 3029 & 60 & 65 & continue & 3029 \\
\hline 3030 & 61 & C & & 3030 \\
\hline 3031 & 62 & & IF ( ISR - NE . ISI ) IHEN & 3031 \\
\hline 3032 & 63 & & IS \(=\) ISR & 3032 \\
\hline 3033 & 64 & & IE = IER & 3033 \\
\hline 3034 & 65 & & 601075 & 3034 \\
\hline 3035 & 66 & & END IF & 3035 \\
\hline 3036 & 67 & C & & 3036 \\
\hline 3037 & 68 & & 00510 IE = 1 , ITRIG & 3037 \\
\hline 3038 & 69 & C & & 3038 \\
\hline 3039 & 70 & & IEM \(=\) MOD ( IE - 1 , ITRIG ) +1 & 3039 \\
\hline 3040 & 71 & & IEP \(=\) MOD ( IE, ITRIG \()+1\) & 3040 \\
\hline 3041 & 72 & & IEI \(=\) MOO \((1 E+1\). ITRIG \()+1\) & 3041 \\
\hline 3042 & 73 & C & & 3042 \\
\hline 3043 & 74 & & IVI \(=\) IICOLR( IEM ) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 3044 & 75 & & IV2 - IICOLR ( IEP ) & 3044 \\
\hline 3045 & 76 & & \(\mathrm{IV} 3=\mathrm{IICOLR}(\operatorname{IEI})\) & 3045 \\
\hline 3046 & 71 & C & & 3046 \\
\hline 3047 & 78 & & \(\mathrm{XI}=\mathrm{XV}(1, \mathrm{IV} 1)-\mathrm{XV}(1, \mathrm{IV} 2)\) & 3047 \\
\hline 3048 & 79 & & \(\mathrm{Yl}_{1}=\mathrm{XV}(2, \mathrm{IV1})-\mathrm{XV}(2, \mathrm{IV2})\) & 3048 \\
\hline 3049 & 80 & & \(\mathrm{X} 2=\operatorname{AV}(1, \mathrm{IV} 3)-X V(1, \mathrm{IV} 2)\) & 3049 \\
\hline 3050 & 81 & & Y2 \(=X V(2, \mathrm{IV} 3)-X V(2, ~ I V 2)\) & 3050 \\
\hline 3051 & 82 & & XSIN \(=\left(X_{2} * Y_{1}-X_{1} * Y_{2}\right)\) & 3051 \\
\hline 3052 & 83 & & \(X \operatorname{Cos}=\left(X_{1} * X_{2}+Y_{1} * Y_{2}\right)\) & 3052 \\
\hline 3053 & 84 & & \(\operatorname{ANGLE}(\mathrm{IE})=X \operatorname{SIN} /(\operatorname{ABS}(X \operatorname{COS})+1 . E-7)\) & 3053 \\
\hline 3054 & 85 & & If ( angle ( IE ) . LT . 0. ) RETURN & 3054 \\
\hline 3055 & 86 & C & & 3055 \\
\hline 3055 & 81 & 510 & CONTINUE & 3056 \\
\hline 3057 & 88 & c & & 3057 \\
\hline 3058 & 89 & & \(X\) SUM \(=0\). & 3058 \\
\hline 3059 & 90 & & \(Y\) SUM \(=0\). & 3059 \\
\hline 3060. & 91 & & HSUMR \(=0\). & 3060 \\
\hline 3061 & 92 & & HSUMU \(=0\). & 3061 \\
\hline 3062 & 93 & & HSUMV \(=0\). & 3062 \\
\hline 3063 & 94 & & HSUMP \(=0\). & 3063 \\
\hline 3064 & 95 & & HSUMG \(=0\). & 3064 \\
\hline 3065 & 96 & c & & 3065 \\
\hline 3066 & 97 & & 00110 IT \(=1.1\) IRIG & 3066 \\
\hline 3067 & 98 & & IVV \(=\operatorname{IICOLR}(\) IT ) & 3067 \\
\hline 3068 & 99 & \(\bigcirc\) & & 3068 \\
\hline 3069 & 100 & & XSUM \(=\) XSUM + XV( 1 , IVW \()\) & 3069 \\
\hline 3070 & 101 & & YSUM \(=\) YSUM + XV( 2, IVV) & 3070 \\
\hline 3071 & 102 & c & & 3071 \\
\hline 3072 & 103 & & HSUMR \(=\) HSUMR + HYDVVV ( IVV , 1) & 3072 \\
\hline 3073 & 104 & & HSUMU \(=\) HSUMU + HYOVVV( IVV , 2) & 3073 \\
\hline 3074 & 105 & & HSUMV \(=\) HSUMV + HYDVVV ( IVV, 3) & 3074 \\
\hline 3075 & 106 & & HSUMP \(=\) HSUMP + HYOVVV( IVV , 4) & 3075 \\
\hline 3076 & 107 & & HSUMG \(=\) HSUMG + HYOVVV( IVV.5) & 3076 \\
\hline 3077 & 108 & 110 & CONTINUE & 3077 \\
\hline 3078 & 109 & c & & 3078 \\
\hline 3079 & 110 & & XINVRG \(=1 . /\) ITRIG & 3079 \\
\hline 3080 & 111 & & XV( \(1, ~ I V)=\) XSUM * XINVRG & 3080 \\
\hline 3081 & 112 & & XV( 2 , IV ) = YSUM * XINVRG & 3081 \\
\hline 3082 & 113 & & HYOVVV( IV , 1) = HSUMR * XINVRG & 3082 \\
\hline 3083 & 114 & & HYOVVV (IV, 2) \(=\) HSUMU * XINVRG & 3083 \\
\hline 3084 & 115 & & \(\operatorname{HYDVVV}(I V, 3)=\operatorname{HSUMV}\) * XINVRG & 3084 \\
\hline 3085 & 116 & &  & 3085
3086 \\
\hline 3086 & 117 & & HYOVVV( IV , 5) = HSEMG * XINVRG & 3086
3087 \\
\hline 3087
3088 & 118 & C & & 3087
3088 \\
\hline 3088
3089 & 119 & & ELSE & 3088
3089 \\
\hline 3089
3090 & 120 & c & & 3089
3090 \\
\hline 3090
3091 & 121 & & IE = - IE , & 3090
3091 \\
\hline 3091
3092 & 122 & & IV1 \(=\mathrm{JE}(1, \mathrm{IE})\) & 3091
3092 \\
\hline 3092
3093 & 123 & & IV2 \(=\) JE \((2.15)\) & 3092 \\
\hline 3093
3094 & 124 & & IF ( IVI. EQ . IV ) THEN & \begin{tabular}{l}
3093 \\
3094 \\
\hline
\end{tabular} \\
\hline 3094
3095 & 125
126 & &  & 3094
3095 \\
\hline 3096 & 127 & & JSCRSS ( ITRIG) = ISI & 3096 \\
\hline 3097 & 128 & & IICOLR ( ITRIG) \(=\) IV2 & 3097 \\
\hline 3098 & 129 & & ELSE & 3098 \\
\hline 3099 & 130 & & ISI = JE ( 4 , IE ) & 3099 \\
\hline 3100 & 131 & & ITRIG = ITRIG + 1 & 3100 \\
\hline 3101 & 132 & & JSCRSS ( ITRIG ) = ISI & 3101
3102 \\
\hline 3102 & 133 & & IICOLR ( ITRIG) \(=\) IVI & 3102
3103 \\
\hline 3103 & 134 & & END IF & \begin{tabular}{l}
3103 \\
3104 \\
\hline
\end{tabular} \\
\hline 3104
3105 & 135
136
137 & C & & 3104
3105 \\
\hline 3105
3106 & 136
137 & & \(I S=I S I\)
\(I S I=0\) & 3105
3106 \\
\hline 3107 & 138 & & IIE = IE & 3107 \\
\hline 3108 & 139 & & IETRIG = IETRIG + 1 & 3108 \\
\hline 3109 & 140 & & JECRSS ( IETRIG ) \(=\) IE & 3109 \\
\hline 3110 & 141 & C & & 3110 \\
\hline 3111 & 142 & 670 & COntinue & 3111 \\
\hline 3112 & 143 & C & & 3112 \\
\hline 3113 & 144 & & \(00680 \mathrm{IR}=1.3\) & 3113 \\
\hline 3114 & 145 & & \(J \mathrm{~N}=\mathrm{MOD}(\mathrm{IR} \cdot 3)+1\) & 3114
3115 \\
\hline 3115 & 146 & & IEA \(=1\) ABS ( JS ( JR +3 , IS) ) & 3115 \\
\hline 3116 & 147 & & IF ( IEA. EQ. IE ) THEN & 3116 \\
\hline 3117 & 148 & & \(I I R=M O D(J R, 3)+4\) & 3117 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 3118 & 149 & & IEI = JS ( IIR , IS ) & 3119 \\
\hline 3119 & 150 & & IEII \(=\) [ABS ( IEI) & 3119 \\
\hline 3120 & 151 & & IETRIG = IETRIG + 1 & 3120 \\
\hline 3121 & 152 & & JECRSS ( IETRIG) = IEII & 3121 \\
\hline 3122 & 153 & & \(J J R=\operatorname{MOD}(J \mathrm{R}+1,3)+4\) & 3122 \\
\hline 3123 & 154 & & IEM \(=\mathrm{JS}(\mathrm{JJR}\), IS \()\) & 3123 \\
\hline 3124 & 155 & & IER = IABS ( IEM) & 3124 \\
\hline 3125 & 156 & & IETRIG = IETRIG +1 & 3125 \\
\hline 3126 & 157 & & JECRSS ( IETRIG ) = IER & 3125 \\
\hline 3127 & 158 & c & & 3127 \\
\hline 3128 & 159 & & IVI \(=\mathrm{JE}(1\), IER \()\) & 3128 \\
\hline 3129 & 160 & & \(\mathrm{IV2}=\mathrm{JE}(2 . \mathrm{IER})\) & 3129 \\
\hline 3130 & 161 & & IF ( IVI. EQ . IV ) THEN & 3130 \\
\hline 3131 & 162 & & ISR \(=\mathrm{JE}(3, \mathrm{IER})\) & 3131 \\
\hline 3132 & 163 & & ITRIG \(=\) ITRIG +1 & 3132 \\
\hline 3133 & 164 & & IICOLR ( ITRIG) \(=\) IV2 & 3133 \\
\hline 3134 & 165 & & JSCRSS ( ITRIG) = ISR & 3134 \\
\hline 3135 & 166 & & ELSE & 3135 \\
\hline 3136 & 167 & & ISR = JE ( 4 . 'ER ) & 3136 \\
\hline 3137 & 168 & & ITRIG \(=\) ITRIG +1 & 3137 \\
\hline 3138 & 169 & & IICOLR ( ITRIG ) = IVI & 3138 \\
\hline 3139 & 170 & & JSCRSS ( ITRIG ) = ISR & 3139 \\
\hline 3140 & 171 & & END IF & 3140 \\
\hline 3141 & 172 & & END IF & 3141 \\
\hline 3142 & 173 & c & & 3142 \\
\hline 3143 & 174 & 680 & continue & 3143 \\
\hline 3144 & 175 & C & & 3144 \\
\hline 3145 & 176 & & IF ( ISR . NE . ISI ) THEN & 3145 \\
\hline 3146 & 177 & & \(I S=I S R\), & 3146 \\
\hline 3147 & 178 & & \(I E=I E R\) & 3147 \\
\hline 3148 & 179 & & GO T0 670 & 3148 \\
\hline 3149 & 180 & & END IF & 3149 \\
\hline 3150 & 181 & & ITRIG \(=\) ITRIG - 1 & 3150 \\
\hline 3151 & 182 & C & & 3151 \\
\hline 3152 & 183 & & IV1 \(=\) JE ( 1 . [1E) & 3152 \\
\hline 3153 & 184 & & IV2 - JE ( 2 , IIE ) & 3153 \\
\hline 3154 & 185 & c & & 3154 \\
\hline 3155 & 186 & & IV3 \(=\mathrm{JE}(1, \mathrm{IER})\) & 3155 \\
\hline 3156 & 187 & & IV4 \(=\) JE ( \(2.15 R)\) & 3156 \\
\hline 3157 & 188 & C & & 3157 \\
\hline 3158 & 189 & & X1 = XV( 1, IV1 ) - XV( 1, IV2 ) & 3158 \\
\hline 3159 & 190 & & \(Y_{1}=X V(2, I V 1)-X V(2, I V 2)\) & 3159 \\
\hline 3160 & 191 & & \(\mathrm{X2}=\mathrm{XV}(1, \mathrm{IV4})-\mathrm{XV}(1, \mathrm{IV} 3)\) & 3160 \\
\hline 3161 & 192 & & \(Y 2=X V(2, I V 4)-X V(2, I V 3)\) & 3161 \\
\hline 3162 & 193 & & \(X\) XIN \(=(X 2 * Y 1-X 1 * Y 2)\) & 3162 \\
\hline 3163 & 194 & & \(X \operatorname{Cos}=\left(X_{1} * X_{2}+Y_{1} * Y_{2}\right)\) & 3163 \\
\hline 3164 & 195 & & XANGLE \(=\) XSIN / ( \(\operatorname{ABS}(\operatorname{XCOS})+1 . E-7)\) & 3164 \\
\hline 3165 & 196 & C & & 3165 \\
\hline 3166 & 197 & & IF ( AbS ( XanGLe ) . GT . 1.E-3 ) RETURN & 3165 \\
\hline 3167 & 198 & C & & 3167 \\
\hline 3168 & 199 & & IVI = IVI & 3168 \\
\hline 3169 & 200 & & IF( IV.EQ . IV1 ) IVI = IV2 & 3169 \\
\hline 3170 & 201 & & IVL \(=\) IV3 & 3170 \\
\hline 3171 & 202 & & IF (IV.EQ . IV3) IVL = IV4 & 3171 \\
\hline 3172 & 203 & & IVTRIG \(=\) ITRIG +1 & 3172 \\
\hline 3173 & 204 & & IICOLR ( IVTRIG) \(=\) IVL & 3173 \\
\hline 3174 & 205 & \(c\) & & 3174 \\
\hline 3175 & 206 & & \(00512 \mathrm{IE}=1\). IVTRIG & 3175 \\
\hline 3176 & 207 & c & & 3176 \\
\hline 3177
3178 & 208 & & IEM \(=\) MOD ( IE - 1 IVIRIG ) + 1 & 3177 \\
\hline 3178
3179 & 209 & & IEP - MOD ( IE - IVTRIG) + 1 & 3178 \\
\hline 3180 & 211 & c & IEI \(=\) MOO( IE + 1 , IVTRIG \()+1\) & 3179
3180 \\
\hline 3181 & 212 & & IVI - IICOLR ( IEM ) & 3181 \\
\hline 3182 & 213 & & IV2 \(=\) IICOLR ( IEP ) & 3182 \\
\hline 3183 & 214 & & IV3 - IICOLP( IEI) & 3183 \\
\hline 3184 & 215 & c & & 3184 \\
\hline 3185 & 216 & & \(\mathrm{XI}_{1}=\mathrm{XV}(1, \mathrm{~V} 1)-\mathrm{XV}(1, \mathrm{IV} 2)\) & 3185 \\
\hline 3186 & 217 & & \(\mathrm{Y} 1=\mathrm{XV}(2, \mathrm{IV} 1)-\mathrm{XV}(2, \mathrm{IV} 2)\) & 3186 \\
\hline 3187 & 218 & & \(\mathrm{XL}^{2}=\mathrm{XV}(1, \mathrm{IV} 3)-\mathrm{XV}(1, \mathrm{IV} 2)\) & 3187 \\
\hline 3188 & 219 & & Y2 \(=X V(2,1 V 3)-X V(2, I V 2)\) & 3188 \\
\hline 3189 & 220 & & \(X \operatorname{CIN}=\left(X_{2}{ }^{*} Y_{1}-X_{1} * Y_{2}\right)\) & 3189 \\
\hline 3190 & 221 & & \(X \operatorname{COS}=\left(X_{1} * X_{2}+Y_{1} * Y_{2}\right)\) & 3190 \\
\hline 3191 & 222 & & AMGLE ( IE ) = XSIN / ( \(\operatorname{ABS}(X \operatorname{COS})+1 . E-7)\) & 3191 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 3192 & 223 & & If ( ANGLE ( IE ) . LT . O. ) Return & 3192 \\
\hline 3193 & 224 & c & & 3193 \\
\hline 3194 & 225 & 512 & COMtinue & 3194 \\
\hline 3195 & 226 & C & & 3195 \\
\hline 3196 & 227 & &  & 3196 \\
\hline 3197 & 228 & & \(\mathrm{XV}(2, \mathrm{IV})=.5 *(X V(2, \mathrm{IVI})+\mathrm{XV}(2, \mathrm{IVL}))\) & 3197 \\
\hline 3198 & 229 & & HYDVVV( IV , 1) = .5 * HYOUVV( IVI, 1) + & 3198 \\
\hline 3199 & 230 & & ( Hyduvov IVL, 1) & 3199 \\
\hline 3200 & 231 & & HYDVVVI IV , 2) = .5* \({ }^{\text {HYDVVV }}\) ( IVI , 2 ) & 3200 \\
\hline 3201 & 232 & & ( HYOVVV( IVL . 2) & 3201 \\
\hline 3202 & 233 & & HYOVVV( IV , 3) = 5 * ( Hyduvv ( IVI, 3) + & 3202 \\
\hline 3203 & 234 & & HYDVVV( IVL , 3)) & 3203 \\
\hline 3204 & 235 & & HYDVVV( IV, 4) = .5* ( HYOVVV( IVI, 4) + & 3204 \\
\hline 3205 & 236 & & HYDVVV( IVL . 4) ) & 3205 \\
\hline 3205 & 237 & & HYDVVV( IV . 5) = .5* ( HYOVVV( IVI . 5 ) & 3206 \\
\hline 3207 & 238 & & HYOVVV( IVL . 5 ) ) & 3207 \\
\hline 3208 & 239 & C & & 3208 \\
\hline 3209 & 240 & & END IF & 3209 \\
\hline 3210 & 241 & C & & 3210 \\
\hline 3211 & 242 & & O0 120 ISNN \(=1\), ITRIG & 3211 \\
\hline 3212 & 243 & & dis - JSCRSS ( ISNN) & 3212 \\
\hline 3213 & 244 & C & & 3213 \\
\hline 3214 & 245 & & IV] = JS ( 1 , INS ) & 3214 \\
\hline 3215 & 246 & & IV2 = JS \((2\), INS ) & 3215 \\
\hline 3216 & 247 & & IV3 = JS ( 3 , INS ) & 3216 \\
\hline 3217 & 248 & & \(A X=X V(1, I V 2)-X V(1, I V 1)\) & 3217 \\
\hline 3218 & 249 & & \(A Y=X V(2, I V 2)-X V(2, I V 1)\) & 3218 \\
\hline 3219 & 250 & & \(B X=X V(1, I V 3)-X V(1, ~ I V 1) ~\) & 3219 \\
\hline 3220 & 251 & & \(\mathrm{BY}=\mathrm{XV}(2,1 \mathrm{~V} 3)-\mathrm{XV}(2, \mathrm{IV1})\) & 3220 \\
\hline 3221 & 252 & & XS( 3, INS ) = 0.5 * ( AX * BY - AY * BX ) & 3221 \\
\hline 3222 & 253 & c & & 3222 \\
\hline 3223 & 254 & & SAREA ( INS ) = 1. / XS ( 3, INS ) & 3223 \\
\hline 3224 & 255 & & HYDFLX (INS , 4) \(=0\). & 3224 \\
\hline 3225 & 256 & & \(\operatorname{HYDFLX}(\) INS, 1\()=0\). & 3225 \\
\hline 3226 & 257 & & HYDFLX (INS \(; 2)=0\). & 3226 \\
\hline 3227 & 258 & & \(\operatorname{KSDELT}(\) INS \()=1\) & 3227 \\
\hline 3228 & 259 & C & & 3228 \\
\hline 3229 & 260 & &  & 3229 \\
\hline 3230 & 261 & &  & 3230 \\
\hline 3231 & 262 & &  & 3231 \\
\hline 3232 & 263 & & THIRD & 3232 \\
\hline 3233 & 264 & & XS ( 1, INS ) = XXC & 3233 \\
\hline 3234 & 265 & & XS( 2, INS \()=\) YYC & 3234 \\
\hline 3235 & 266 & C & & 3235 \\
\hline 3236 & 267 & & DO \(130 \mathrm{IR}=1\), MHO & 3236 \\
\hline 3237 & 268 & & HYDV( INS , IR ) = ( HYDVVV( IVI , IR ) + & 3237 \\
\hline 3238 & 269 & & HYOVVV( IV2. IR ) + & 3238 \\
\hline 3239 & 270 & & HYDVVV( IV3 . IR ) ) * IHIRD & 3239 \\
\hline 3240 & 271 & 130 & continue & 3240 \\
\hline 3241 & 272 & \(\mathfrak{C}\) & & 3241 \\
\hline 3242 & 273 & & HDUM \(=1 . /(\operatorname{HYDV}(\operatorname{INS}, 1)+1 . E-12)\) & 3242 \\
\hline 3243 & 274 & & HYDV ( INS , 2) = HYDV( INS , 2 ) * HDUM & 3243 \\
\hline 3244 & 275 & & HYDV ( INS , 3) = \(\mathrm{HYDV}(\) INS, 3\() *\) HDUM & 3244 \\
\hline 3245 & 276 & & HYDV ( INS , 4) \(=\) ( HYDV( INS . 4) - & 3245 \\
\hline 3246 & 277 & & ( mydus ins. \(2.5 *\) HYOV( INS . 1) * & 3246 \\
\hline 3247 & 278 & & ( \(\operatorname{HYDV}(\) INS, 2\() *\) HYDV( INS , 2) + & 3247 \\
\hline 3248 & 279 & & HYDV( INS , 3) * HYOV( INS , 3) ) ) * & 3248 \\
\hline 3249 & 280 & & ( HYOV (INS. 5) - 1.) & 3249 \\
\hline 3250 & 281 & C & & 3250 \\
\hline 3251 & 282 & 120 & continue & 3251 \\
\hline 3252 & 283 & C & & 3252 \\
\hline 3253 & 284 & & DO 140 IENN \(=1\), IETRIG & 3253 \\
\hline 3254 & 285 & & IEN - JECRSS ( IENM ) & 3254 \\
\hline 3255 & 286 & C & & 3255 \\
\hline 3256 & 287 & & JV1 = JE ( 1 , IEN ) & 3256 \\
\hline 3257 & 288 & & JV2 \(=\mathrm{JE}(2\), IEN \()\) & 3257 \\
\hline 3258 & 289 & & \(A X=X V(1, J V 2)-X V(1, J V 1)\) & 3258 \\
\hline 3259 & 290 & &  & 3259 \\
\hline 3260 & 291 & & XE ( 1 , IEN ) = SQRT ( AX * AX + AY * AY ) & 3260 \\
\hline 3261 & 292 & & XEREV = 1. \({ }^{\text {P }}\) XE ( 1 , IEN ) & 3261
3262 \\
\hline 3262 & 293 & & XN( IEN \()=A Y *\) XEREV
YN( IEN & 3262
3263 \\
\hline 3263
3264 & 294 & & YN( IEN ) \(=-\) AX * XEREV
ISSR \(=\) JF 4 ( IEN & 3263
3264 \\
\hline 3264
3265 & 295
296 & & ISSR \(=\) JE \((4\), IEN \()\)
ISSL \(=\) JE \(3, ~ I E N)\) & 3264
3265 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 3266 & 297 & C & & 3265 \\
\hline 3267 & 298 & & IF ( JE ( 5 . IEN ) , NE . O ) THEN & 3267 \\
\hline 3268 & 299 & C & & 3268 \\
\hline 3269 & 300 & & \(A A=X V(1, J V 2)-X V(1, J V 1)\) & 3269 \\
\hline 3270 & 301 & & \(B 8=X V(2 ; J V 2)-X V(2 ; J V 1)\) & 3270 \\
\hline 3271 & 302 & & XEL \(=\) XS \((1,1\) ISSL \()\) & 3271 \\
\hline 3272 & 303 & & YEL \(=\times\) XS \((2\), ISSL \()\) & 3272 \\
\hline 3273 & 304 & & CC = XEL - XV' 1 , JV1) & 3273 \\
\hline 3274 & 305 & & OD \(=\mathrm{YEL}-\mathrm{XV}(2 ; \mathrm{JVI})\) & 3274 \\
\hline 3275 & 306 & & EE = ( AA * CC + BB * DD ) * XEREV * XEREV & 3275 \\
\hline 3276 & 307 & & XER = XV( 1 , JV1 ) + AA * EE & 3276 \\
\hline 3277 & 308 & & YER = XV ( 2, JVI ) + BE*EE & 3277 \\
\hline 3278 & 309 & & \(A X=X E R-X E L\) & 3278 \\
\hline 3279 & 310 & & AY = YER - YEL & 3279 \\
\hline 3280 & 311 & & XEE 2 . IEN ) = SORT ( \(A X\) * AX + AY * AY ) & 3280 \\
\hline 3281 & 312 & & XEREV = 1, / XE ( 2 , IEN) & 3281 \\
\hline 3282 & 313 & & XXM ( IEN ) = AX * XEREV & 3282 \\
\hline 3283 & 314 & & YYN( IEN ) = AY * XEREV & 3283 \\
\hline 3284 & 315 & & XE( 2, IEN \()=2 . *\) XE ( 2 . IEN ) & 3284 \\
\hline 3285 & 316 & & XYMIDL ( IEN ) \(=.5\) & 3285 \\
\hline 3286 & 317 & & XHIDL ( IEN ) \(=\) XER & 3286 \\
\hline 3287 & 318 & & YMIDL ( IEN ) = YER & 3287 \\
\hline 3288 & 319 & c & & 3288 \\
\hline 3289 & 320 & & ELSE & 3289 \\
\hline 3290 & 321 & C & & 3290 \\
\hline 3291 & 322 & & XER \(=\) XS \((1,15 S R\) ) & 3291 \\
\hline 3292 & 323 & & YER \(=\) XS \((2,15 S R)\) & 3292 \\
\hline 3293 & 324 & & XEL \(=\) XS \((12,1 S S L\) ) & 3293 \\
\hline 3294 & 325 & & YEL \(=\) XS \((2\), ISSL \()\) & 3294 \\
\hline 3295 & 326 & C & & 3295 \\
\hline 3296 & 327 & & AA \(=X V(1, J V 2)-X V(1, J V 1)\) & 3296 \\
\hline 3297 & 328 & & 㫙 \(=\) XV( 2 , JV2 ) - XV( \(2 . J V 1\) ) & 3297 \\
\hline 3298 & 329 & & \(C C=X E L-X E R\) & 3298 \\
\hline 3299 & 330 & & DD = YEL - YER & 3299 \\
\hline 3300 & 331 & & ACA \(=\) XER - XV( \(1, ~ J V 1)\) & 3300 \\
\hline 3301 & 332 & & OBD = YER - XV' \(2, J V 1\) ) & 3301 \\
\hline 3302 & 333 & & \(E E=(A C A * D D-D B D * C C) /(A A * D D-B B * C C)\) & 3302 \\
\hline 3303 & 334 & & XMIDL \((1 E N)=X V(1, J V I)+A A * E E\) & 3303 \\
\hline 3304 & 335 & & YMIDL (IEN ) = XV( 7, JVI ) + BE * EE & 3304 \\
\hline 3305 & 336 & C & & 3305 \\
\hline 3306 & 337 & & XEMID \(=\) XMIDL ( IEN ) - XEL & 3306 \\
\hline 3307 & 338 & & YEMID = YMIDL ( IEN ) - YEL & 3307 \\
\hline 3308 & 339 & C & & 3308 \\
\hline 3309 & 340 & & \(A X=X E R-X E L\) & 3309 \\
\hline 3310 & 341 & & AY - YER - YEL & 3310 \\
\hline 3311 & 342 & & XE( 2, IEN ) = SQRT ( AX * AX + AY * AY ) & 3311 \\
\hline 3312 & 343 & & XEREV = 1. / XE ( 2 . IEN) & 3312 \\
\hline 3313 & 344 & & XXN( IEN ) = AX * XEREV & 3313 \\
\hline 3314 & 345 & & YYN( IEN ) = AY * XEREV & 3314 \\
\hline 3315 & 346 & C & & 3315 \\
\hline 3316 & 347 & & XYMIDL ( IEN ) = SQRT ( XEMID * XEMID + YEMID * YEMID ) * XEREV & 3316 \\
\hline 3317 & 348 & c & & 3317 \\
\hline 3318 & 349 & & END IF & 3318 \\
\hline 3319 & 350 & C & & 3319 \\
\hline 3320 & 351 & 140 & CONTINUE & 3320 \\
\hline 3321 & 352 & C & & 3321 \\
\hline 3322 & 353 & & 00142 IENN = 1 , IETRIG & 3322 \\
\hline 3323 & 354 & & IE - JECRSS ( IENN ) & 3323 \\
\hline 3324 & 355 & & CALL RECNC( IE , IDONE, ITL, ITR, JA, JB, JC, JD) & 3324 \\
\hline 3325 & 356 & & CALL RECNC JA , JADONE, ITL , ITR , JAA . JAB , JAC , JAD ) & 3325 \\
\hline 3326 & 357 & & CALL RECNC ( JB, JBDONE , ITL , ITR , JBA , JBB, JBC , JBD ) & 3326 \\
\hline 3327 & 358 & & CALL RECNC JC , JCDONE , ITL , ITR, JCA , JCB , JCC , JCD ) & 3327 \\
\hline 3328 & 359 & & CALL RECNC( JD , JODONE , IIL , ITR , JDA , JDE , JDC , JOD ) & 3328 \\
\hline 3329 & 360 & 142 & CONTINUE & 3329 \\
\hline 3330 & 361 & C & & 3330 \\
\hline 3331 & 362 & C &  & 3331 \\
\hline 3332 & 363 & c & & 3332 \\
\hline 3333 & 364 & c & ------ & 3333 \\
\hline 3334 & 365 & & RETURN & 3334 \\
\hline 3335 & 366 & & -....-- & 3335 \\
\hline 3336 & 367 & C & & 3336 \\
\hline 3337 & 368 & c & --- & 3337 \\
\hline 3338 & 369 & & END & 3338 \\
\hline
\end{tabular}
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{3}{*}{\({ }^{¢}\)} & \multirow[t]{2}{*}{SUBROUTINE LAPLAC} & 3339 \\
\hline & & 3340 \\
\hline & --------1 & 3341 \\
\hline c & I & 3342 \\
\hline c & Laplac compute the laplac!an for grid adaptation & 3343 \\
\hline c & Laplac cown & 3344 \\
\hline c & --1 & 3345 \\
\hline \multirow[t]{6}{*}{C} & & 3346 \\
\hline & include ' \(\mathrm{cmsh} 00 . \mathrm{h}\) ' & 3347 \\
\hline & include 'chyd00.h' & 3348 \\
\hline & include 'cint00.h' & 3349 \\
\hline & include 'cphs 10.h' & 3350 \\
\hline & include 'ephs20.n' & 3351 \\
\hline \multirow[t]{4}{*}{\(c\)} & & 3352 \\
\hline & REAL RRMIDL (MBP) . PPMIDL (MBP) & 3353 \\
\hline & REAL ROR(3), \(\operatorname{VOR}(3), \operatorname{VOR}(3), \operatorname{POR}(3)\) & 3354 \\
\hline & REAL ROL (3).VOL (3), VOL (3), POL (3) & 3355 \\
\hline c & & 3356 \\
\hline & EPSLON \(=.025\) & 3357 \\
\hline \multirow[t]{4}{*}{c} & & 3358 \\
\hline & O0 120 IS = 1, NS & 3359 \\
\hline & \(R R(I S)=0\). & 3360 \\
\hline & RL( IS ) \(=0\). & 3361 \\
\hline \multirow[t]{3}{*}{\[
c_{c}^{120}
\]} & \multirow[t]{2}{*}{continue} & 3362 \\
\hline & & 3363 \\
\hline &  & 3364 \\
\hline \multirow[t]{4}{*}{C} & & 3365 \\
\hline & \[
\text { NE } 1=1
\] & 3366 \\
\hline & \[
\text { NE2 }=\text { NOFVEE }(1)
\] & 3367 \\
\hline & DO 90 INE \(=1\). NVEEE & 3368 \\
\hline \multirow[b]{2}{*}{C} & & 3369 \\
\hline &  & 3370 \\
\hline \multirow[t]{3}{*}{c} & & 3371 \\
\hline & & 3372 \\
\hline & KE = IE - NEi + I & 3373 \\
\hline \multirow[t]{3}{*}{c} & & 3374 \\
\hline & ISL \(=\mathrm{JE}(3, \mathrm{IE})\) & 3375 \\
\hline & ISR \(=\mathrm{JE}(4, \mathrm{IE})\) & 3376 \\
\hline C & & 3377 \\
\hline & If ( Je ( 5 , IE ) , EQ . O) THEN & 3378
3379 \\
\hline \multirow{7}{*}{C} & & 3380 \\
\hline & \(\operatorname{RGRAD}(\operatorname{ISL}, 1)\) ) \(\operatorname{RGRAD}(\operatorname{ISL}, 1)\) & 3381 \\
\hline & RLMDL \(=\) XYMIDL (IE ) * ( RGRAD (ISR , 2) & 3382
3383 \\
\hline & \(\operatorname{RGRAD}(\operatorname{ISL}, 2))+\operatorname{RGRAD}(1 S L, 2)\) & 3383
3384 \\
\hline & PRMDL \(=\) XYMIDL \((\) IE \() *(\operatorname{PGRAD}(\mathrm{ISR}, 1)-\) & 3384
3385 \\
\hline &  & 3386 \\
\hline & - PGGRAD( ISL , 2) \()\) + PGRAD ( ISL . 2 ) & 33387 \\
\hline c & & 33888 \\
\hline & ELSE & 3389 \\
\hline \multirow[t]{5}{*}{C} & & 3390 \\
\hline & RRMDL \(=\operatorname{RGRAD}(15 L, 1)\) & 3391 \\
\hline & RLMOL \(=\) RGRAD ( ISL , 2) & 3392 \\
\hline & PRMDL \(=\) PGRAD ( ISL, 1) & 3393 \\
\hline & PLMDL = PGRAD ( ISL , 2) & 3394 \\
\hline \multirow[t]{2}{*}{C} & & 3395 \\
\hline & END If & 3396 \\
\hline \multirow[t]{5}{*}{c} & & 3397 \\
\hline & RRMIDL ( KE ) = ( RRMDL * XN( IE ) + RLMOL * YN ( IE ) ) * & 3398 \\
\hline &  & 3399 \\
\hline & - PPPMIDL ( KE ) = (PRMDL * XN( IE ) + PLMDL * YN( IE ) ) * & 3400 \\
\hline & XE(1, IE) & 3401
3402 \\
\hline \(C^{C}\) & continue & 3402
3403 \\
\hline \(c^{105}\) & Continue & 3404 \\
\hline & OO 130 IE = NE1 , NE2 & 3405 \\
\hline & KE = IE - NEI + 1 & 3406 \\
\hline c & & 3407 \\
\hline & \(\underline{I S L}=\mathrm{JE}(3, \mathrm{IE})\) & 3408
3409 \\
\hline c & ISR \(=\mathrm{JE}(4, \mathrm{IE})\) & 3409
3410 \\
\hline & If ( JE ( 5 , IE ) . EQ . 0 ) THEN & 3411 \\
\hline c & & 3412 \\
\hline
\end{tabular}

```

3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3495
3496
3497
3498
3499
3500
3502
3503
3504
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530

	subroutine recnc（ IE ．IDONE ，ITL ．ITR ．JA ，JB ，JC ，JD） IMPLICIT REAL（A－H，O－Z）
${ }_{C}^{C}$	
c	I
	this routine checks for reconnection of edge number ie
c	to get a better connectivity betheen adjacent triangles
	USED AFTER ADDITION AND DELETION
c	－I
C	
	include＇cmsh00．h＇
	include＇chyd00．h＇
	include＇cint00．h＇
	include＇cphsi0．h＇
	include＇cphs20．h＇
	$E R O R=1.0 E-3$
C	
	IDONE $=0$
	IF（ IE ．EQ ．O ）RETURN
	IF（ JE（ 5 ，IE ）－ME ．0）RETURN
	ITR $=$ JE（ 4 ，IE）
	ITL＝JE（ 3 ，IE ）
c$C$$C$	
	IDENTIFY VERTICES
	11－JE（1，IE ）
	$12=\mathrm{JE}(2.15)$
	001 IV $=1,3$
	ID－JS（ IV ，ITL ）
	IF（ ID．NE ．I1 ．AND ．ID ．NE ．I2 ）ThEN
	$14=10$
	IV4－IV
	END IF
	continue
${ }_{1}$	$003 \mathrm{IV}=1.3$
	ID＝JS（ IV，ITR ）
	If（ 10 ．NE ．I1 ．ANO ． 10 ．NE ．I2 ）THEN
	$13=10$
	IV3－IV
	END IF
3	COMTINUE
C	If may happen that 13 is 14.
	IF（ 13 ．EQ ．I4 ）G0 TO 999
C	
${ }^{\text {c }}$	COMPARE OPPOSING ANGLE PAIRS IN THE QUADRILATERAL AND RECONNECT TO
C	preserve diagonal dominance of the poisson solver．

```
\(\left.\begin{array}{l}A X=X V(1,13)-X V(1,11) \\ A Y=X V(2,13)-X V(2,11\end{array}\right)\)
            #X =XV(1, 14 )-XV(1, I1 )
IA IS BETHEEN 11 AND I3
IB IS BETHEEN II AND IA 352
IC IS BETHEEN 12 AND 14 ． 3522
\(\begin{array}{ll}\text { ID IS BETHEEN } 12 \text { AND I3 } & 3523\end{array}\)
```



```
IV4 \(=\operatorname{MOD}(\operatorname{IV4}+i, 3)+1 \quad 3527\)
```



```
\(\begin{array}{ll}\text { IC }=\text { JS }(\text { IV4 }+3 \cdot \text { ITL }) & 3529 \\ \text { IA }=\text { JS }(\text { IV }+3 . \text { ITR }) & 3530\end{array}\)

\begin{tabular}{|c|c|c|c|c|}
\hline 3531 & 75 & C & & 3531 \\
\hline 3532 & 76 & & \(J B=\) IABS ( 18 ) & 3532 \\
\hline 3533 & 77 & & Jo = IABS ( ID ) & 3533 \\
\hline 3534 & 78 & & JA \(=\) IABS ( IA ) & 3534 \\
\hline 3535 & 79 & & \(J C=I A B S(I C)\) & 3535 \\
\hline 3536 & 80 & &  & 3536 \\
\hline 3537 & 81 & C & & 3537 \\
\hline 3538 & 82 & & XLI \(=\) XE( 1 , JA ) & 3538 \\
\hline 3539 & 83 & & XL2 \(=\) XE ( 1 , JB ) & 3539 \\
\hline 3540 & 84 & & XL3 \(=\) XE ( 1 , JC ) & 3540 \\
\hline 3541 & 85 & & XL4 - XE ( 1 , JD ) & 3541 \\
\hline 3542 & 86 & C & & 3542 \\
\hline 3543 & 87 & & \(X X=X V(1,13)-X V(1,14)\) & 3543 \\
\hline 3544 & 88 & & \(Y Y=X V(2,13)-X V(2,14)\) & 3544 \\
\hline 3545 & 89 & & XLL - SQRT ( XX * XX + YY * YY ) & 3545 \\
\hline 3546 & 90 & C & & 3546 \\
\hline 3547 & 91 & & AREATL = SAREA (ITL) & 3547 \\
\hline 3548 & 92 & & AREATR = SAREA ( ITR ) & 3548 \\
\hline 3549 & 93 & & ASP2 = AREATL * XL2 * XL2 & 3549 \\
\hline 3550 & 94 & & ASP3 = AREATL * XL3 * XL3 & 3550 \\
\hline 3551 & 95 & & ASPTL \(=\) AREATL * XLN * XLN & 3551 \\
\hline 3552 & 96 & & ASP1 = AREATR * XLI * XLI & 3552 \\
\hline 3553 & 97 & & ASP4 = AREATR * XL4 * XL4 & 3553 \\
\hline 3554 & 98 & & ASPTR = AREATR * XLN * XLN & 3554 \\
\hline 3555 & 99 & & ASPN = AMAX1 \({ }^{\text {a }}\) ASPTL , ASPTR , ASP1 , ASP2 , ASP3 , ASP4 ) & 3555 \\
\hline 3555 & 100 & \(C\) & & 3556 \\
\hline 3557 & 101 & & XSISR \(=0.5\) * \(\mathrm{Al2}\) & 3557 \\
\hline 3558 & 102 & & XSINSR \(=1 . / X S I S R\) & 3558 \\
\hline 3559 & 103 & C & & 3559 \\
\hline 3560 & 104 & & XSISL \(=0.5\) * All & 3560 \\
\hline 3561 & 105 & & XSINSL \(=1 . /\) XSISL & 3561 \\
\hline 3562 & 106 & C & & 3562 \\
\hline 3563 & 107 & & ASP2 \(=\) XSINSR * XL2 * XL2 & 3563 \\
\hline 3564 & 108 & & ASP1 = XSINSR * XLI * XLI & 3564 \\
\hline 3565 & 109 & & ASPSR = XSINSR * XLL * XLL & 3565 \\
\hline 3566 & 110 & & ASP3 \(=\) XSIMSL * XL3 * XL3 & 3566 \\
\hline 3567 & 111 & & ASP4 = XSINSL * XL4 * XL4 & 3567 \\
\hline 3568 & 112 & & ASPSL = XSINSL * XLL * XLL & 3568 \\
\hline 3569 & 113 & & ASPL \(=\) AMAX1 ( ASPSL , ASPSR . ASP1 . ASP2 . ASP3 . ASP4 ) & 3569 \\
\hline 3570 & 114 & C & & 3570 \\
\hline 3571 & 115 & & IF ( ASPN . LT . ASPL ) RETURN & 3571 \\
\hline 3572 & 116 & C & YES, REDRAH LINE- THE OLD CONNECTION VIOLATES OIAGONAL DOMINANCE. & 3572 \\
\hline 3573 & 117 & ¢ & DRAH LINE DIRECTED FROM 14 TO 13 & 3573 \\
\hline 3574 & 118 & C & he have left Je( 3 , IE ) The Same Since ie IS Still internal. & 3574 \\
\hline 3575 & 119 & & IDONE = 1 & 3575 \\
\hline 3576 & 120 & & JE ( 1 , IE ) = 14 & 3576 \\
\hline 3577 & 121 & & JE ( 2 , IE ) = 13 & 3577 \\
\hline 3578 & 122 & & XE \((1, I E)=X L L\) & 3578 \\
\hline 3579 & 123 & c & & 3579 \\
\hline 3580 & 124 & c & ItR IS Still to the right, itl to the left of the new line ie . & 3580 \\
\hline 3581 & 125 & c & FIND THE OTHER DIRECTED LINE SEGMEHTS & 3581 \\
\hline 3582 & 126 & 6 & & 3582 \\
\hline 3583 & 127 & & \(0030 \mathrm{I}=1.2\) & 3583 \\
\hline 3584 & 128 & & [M5 = 5-1 & 3584 \\
\hline 3585 & 129 & & IF ( JE( IM5 , JB ) . NE . ITL ) G0 T0 26 & 3585 \\
\hline 3586 & 130 & & JE ( IMS , JB ) = ITR & 3586 \\
\hline 3587 & 131 & 26 & COMTINUE & 3587 \\
\hline 3588 & 132 & & IF ( JE ( IM5, JD ) , NE . ITR ) GO TO 28 & 3588 \\
\hline 3589 & 133 & & JE (IMS , JD ) = ITL & 3589 \\
\hline 3590 & 134 & 28 & CONTINUE & 3590 \\
\hline 3591 & 135 & 30 & CONTINUE & 3591 \\
\hline 3592 & 136 & C & & 3592 \\
\hline 3593 & 137 & C & RESET JS( 1 - 6 , ITL AND ITR ) & 3593 \\
\hline 3594 & 138 & c & Start both triangles at 14 With ( and put in counterclockhise & 3594 \\
\hline 3595 & 139 & C & MANMER) & 3595 \\
\hline 3596 & 140 & & JS ( \(4.1 T R)=1 B\) & 3596 \\
\hline 3597 & 141 & & JS ( \(5, \mathrm{ITR})=\mathrm{IA}\) & 3597 \\
\hline 3598 & 142 & & JS( \(6 . . I T R)=-\) IE & 3598 \\
\hline 3599 & 143 & & JS \((1,1 T R)=14\) & 3599 \\
\hline 3600 & 144 & & JS ( 2,1 ITR \()=11\) & 3600 \\
\hline 3601 & 145 & & JS ( \(3,1 \mathrm{TR}\) ) \(=13\) & 3601 \\
\hline 3602 & 145 & & JS ( 4. ITL \()=\) IE & 3602 \\
\hline 3603 & 147 & & JS \((5.1 T L)=10\) & 3603 \\
\hline 3604 & 148 & & JS \((6, I T L)=I C\) & 3604 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 3605 & 149 & & JS ( 1, ITL ) = I4 & 3605 \\
\hline 3606 & 150 & & JS( 2. ITL ) = 13 & 3606 \\
\hline 3607 & 151 & & JS( \(3,1 \mathrm{TL})=12\) & 3607 \\
\hline 3608 & 152 & \(c\) & & 3608 \\
\hline 3609 & 153 & & IF ( JV( 2,11\() \cdot G T \cdot 0) J V(2,11)=J A\) & 3609 \\
\hline 3610 & 154 & & \(\mathrm{IF}(\mathrm{JV}(2,12), \mathrm{GT}, 0) \mathrm{JV}(2,12)=\mathrm{JC}\) & 3610 \\
\hline 3611 & 155 & C & & 3611 \\
\hline 3612 & 156 & &  & 3612 \\
\hline 3613 & 157 & & YEL \(=(X V(2,13)+X V(2,12)+X V(2,14)) *\) THIRD & 3613 \\
\hline 3614 & 158 & & XER \(=(X V(1,13)+X V(1,11)+X V(1,14))\) * THIRO & 3614 \\
\hline 3615 & 159 & & YER \(=(\operatorname{XV}(2,13)+\mathrm{XV}(2,11)+\mathrm{XV}(2,14)) *\) THIRO & 3615 \\
\hline 3616 & 160 & c & & 3616 \\
\hline 3617 & 161 & & 0092 IR = 1, MHQ & 3617 \\
\hline 3618 & 162 & & HYDV ( ITL , IR ) \(=(\) HYDVVV \((13, ~ I R ~) ~+~\) & 3618 \\
\hline 3619 & 163 & & HYDVVV( \(12, \mathrm{IR})+\) & 3619 \\
\hline 3620 & 164 & & HYDVVV ( \(14, \mathrm{IR}\) ) ) * THIRD & 3620 \\
\hline 3621 & 165 & C & & 3621 \\
\hline 3622 & 166 & & HYOV( ITR , IR ) \(=(\operatorname{HYOVVV}(13, ~ I R ~) ~+~\) & 3622 \\
\hline 3623 & 167 & & HYOVVV( 11. IR \()+\) & 3623 \\
\hline 3624 & 168 & & HYOVVV ( I4, IR ) * THIRD & 3624 \\
\hline 3625 & 169 & 92 & CONTINUE & 3625 \\
\hline 3626 & 170 & C & & 3626 \\
\hline 3627 & 171 & & HDUM \(=1.1(\operatorname{HYDV}(\) ITL . 1) + 1.E-12) & 3627 \\
\hline 3628 & 172 & & HYOV ( ITL , 2) \(=\) HYOV( ITL , 2) * HDUM & 3628 \\
\hline 3629 & 173 & & HYOV( ITL , 3) \(=\operatorname{HYOV}(\) ITL, 3 \() *\) * HDUM & 3629 \\
\hline 3630 & 174 & &  & 3630 \\
\hline 3631 & 175 & & ( \({ }^{\text {. }}\) * \(\operatorname{HYOV}(\) ITL. . 1)* & 3631 \\
\hline 3632 & 176 & & ( HYOV( ITL , 2) * HYOV( ITL , 2) + & 3632 \\
\hline 3633 & 177 & & HYDV( ITL , 3) * MYDV( ITL, 3) ) ) * & 3633 \\
\hline 3634 & 178 & & ( HYOV( ITL , 5) - 1.) & 3634 \\
\hline 3635 & 179 & \(\bigcirc\) & & 3635 \\
\hline 3636 & 180 & & HDUM \(=1.1(\operatorname{HYDV}(\operatorname{ITR}, 1)+1 . E-12)\) & 3636 \\
\hline 3637 & 181 & & HYOV( ITR , 2) \(=\) HYOV (ITR , 2) * HDUM & 3637 \\
\hline 3638 & 182 & &  & 3638
3639 \\
\hline 3639
3640 & 183 & &  & 3639
3640 \\
\hline 3640 & 184 & &  & 3640 \\
\hline 3641
3642 & 185 & &  & 3641
3642 \\
\hline 3642
3643 & 186 & & HYOV( ITR , 3)* \(\operatorname{HYDV}(\operatorname{ITR}, 3\) ) ) )** & 3642
3643 \\
\hline 3643
3644 & 187 & & ( HYOV( ITR , 5) - 1.) & 3643
3644 \\
\hline 3644
3645 & 188
189 & C & RGRADI \(=\operatorname{RGRAD}(\operatorname{ITL}, 1)+\operatorname{RGRAD}(1 T R ~, ~ 1) ~\) & 3644
3645 \\
\hline 3646 & 190 & & RGRAO2 \(=\) RGRAD ( ITL : 2 ) \(+\operatorname{RGRAD}(1 T R, 2)\) & 3646 \\
\hline 3647 & 191 & & RGRAD ( ITL . 1 ) \(=.5\) * RGRAD1 & 3647 \\
\hline 3648 & 192 & & RGRAD ( ITR . 1) = .5*RGRAD1 & 3648 \\
\hline 3649 & 193 & & RGRAD ( ITL . 2 ) \(=.5 *\) RGRAD2 & 3649
3650 \\
\hline 3650
3651 & 194 & & RGRAD ( ITR . 2 ) \(=.5\) * RGRAD2 & 3650 \\
\hline 3651
3652 & 195 & C & & 3651
3652 \\
\hline 3652
3653 & 196 & & UGRADI \(=\) UGRAD ( ITL, 1\()+\) UGRAD ( ITR \(\cdot 1)\) & 3652
3653 \\
\hline 3653
3654 & 197 & & UGRAD2 \(=\) UGRAD ( ITL \(; 2)+\) UGRAD ( ITR , 2) & 3653
3654 \\
\hline 3654
3655 & 198 & & UGRAD (ITL . 1 ) = . 5 * UGRADI & 3654
3655 \\
\hline 3655
3656 & 199 & & UGRAD ( ITR , 1) = . 5 * UGRADI & 3655
3656 \\
\hline 3656
3657 & 200 & &  & 3656
3657 \\
\hline 3658 & 202 & c & UGRA ( ITR . 2 ) = .5 UGRAD2 & 3658 \\
\hline 3659 & 203 & & VGRADI \(=\operatorname{VGRAD}(\) ITL, 1\()+\operatorname{VGRAD}(\) ITR \(\cdot 1)\) & 3659 \\
\hline 3660 & 204 & & VGRAD2 \(=\operatorname{VGRAD}(\) ITL \(; 2)+\operatorname{VGRAD}(\) ITR . 2 ) & 3660 \\
\hline 3661 & 205 & & \(\operatorname{VGRAD}(\) ITL, 1\()=.5 * V G R A D L\) & 3661 \\
\hline 3662 & 206 & & VGRAD ( ITR , 1) = . 5 *VGRADI & 3662
3663 \\
\hline 3663
3664 & 207 & &  & 3663
3664 \\
\hline 3664
3665 & 208 & & VGRAD ( ITR , 2 ) = .5*VGRAD2 & 3664
3665 \\
\hline 3665
3666 & 209
210 & C & \(\operatorname{PGRAD1}=\operatorname{PGRAD}(\) ITL , 1) \(+\operatorname{PGPAD}(\) ITR , 1) & 3665
3666 \\
\hline 3667 & 211 & & PGRAD2 \(=\operatorname{PGRAD}(\mathrm{ILL} ; 2)+\operatorname{PGRAD}(\mathrm{ITR} ; 2)\) & 3667 \\
\hline 3668 & 212 & & PGRAD ( ITL , 1) = .5 * PGRADI & 3668 \\
\hline 3669 & 213 & & PGRAD ( ITR . 1 ) \(=.5\) * PGRADI & 3669
3670 \\
\hline 3670 & 214 & & PGRAD ( ITL \(\cdot 2\) ) \(=.5\) * PGRAD2 & 3670 \\
\hline 3671 & 215 & & PGRAD ( ITR , 2 ) \(=.5 *\) PGRAD2 & 3671
3672 \\
\hline 3672 & 216 & C & & 3672
3673 \\
\hline 3673
3674 & 217 & & XS( \({ }^{1}, 1\) ITL \()=\) XEL & 3673
3674 \\
\hline 3674
3675 & 218
219 & & XS \((2, I T L)=Y\) PEL
\(\times\) S \((1,1 T R)=X E R\) & 3674
3675
3656 \\
\hline 3676 & 220 & & XS \((2 ;\) ITR \()=\) YER & 3676 \\
\hline 3677 & 221 & C & & 3677 \\
\hline 3678 & 222 & & XS ( 3 . ITR ) = XSISR & 3678 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Thu Jui & 114:10 & 16:08 1993 & adaphd.f SUBROUTINE RECNC & page 52 \\
\hline 3679 & 223 & & XS ( 3, ITL ) = XSISL & \\
\hline 3680 & 224 & C & & 3679 \\
\hline 3681 & 225 & & SAREA ( ITL ) = XSINSL & 3688 \\
\hline 3682
3683 & 226 & & SAREA ( ITR \()=\) XSINSR & 3682 \\
\hline 3683
3684
3 & 227
228 & C & & 3683 \\
\hline 3685 & 229 & & \(\operatorname{JEN}\binom{1}{2}=\mathrm{JB}\) & 3684 \\
\hline 3686 & 230 & & JEN ( 3 ) = JC & 3685 \\
\hline 3687 & 231 & & JEM ( 4 ) \(=\) JD & 3686
3687 \\
\hline 3688 & 232 & & JEN( 5 ) \(=\) IE & 3688 \\
\hline 3689 & 233 & C & & 3689 \\
\hline 3690 & 234 & & 0080 IEMN \(=1.5\) & 3689
3690 \\
\hline 3691 & 235 & & IEh = JEN( IENN') & 3690
3691 \\
\hline 3692 & 236 & & \(J V_{1}=\mathrm{JE}(1, \mathrm{IEN})\) & 3692 \\
\hline 3693 & 237 & & JV2 \(=\) JE ( 2 , IEN \()\) & 3692
3693 \\
\hline 3694
3695 & 238 & & \(A^{\text {AX }}=\mathrm{XV}(1, \mathrm{JV2})-X V(1, \mathrm{JV1}\) ) & 3693
3694 \\
\hline 3695 & 239 & & \(A Y=X V(2 ; J V 2)-X V(2 ; J V 1)\) & 3695 \\
\hline 3696
3697 & 240 & & XEREV \(=1.1\) XE ( 1 , IES ) & 3696 \\
\hline 3697
3698 & 241 & & XN( IEN ) - AY * XEREV & 3697 \\
\hline 3698
3699 & 242 & & YN( IEN ) - - AX * XEREV & 3698 \\
\hline 3699
3700 & 243 & & ISSR = JE ( 4 , IEN ) & 3699 \\
\hline 3701 & 245 & & ISSL \(=\) JE \(=\) JE 3 , IEN 5 , IEN & 3700 \\
\hline 3702 & 246 & & IF ( IJE5 . NE . 0) THEN & 3701 \\
\hline 3703 & 247 & ¢ & & 3702
3703 \\
\hline 3704 & 248 & & \(A A=X V(1, J V 2)-X V(1, J V 1)\) & 3704 \\
\hline 3705 & 249 & & 88 \(=\mathrm{XV}(2, \mathrm{JV2})-\mathrm{XV}(2, \mathrm{JV1})\) & 3705 \\
\hline 3706
3707 & 250 & & XEL \(=\) XS \((1,1 S S L)\) & 3706 \\
\hline 3707
3708 & 251 & & YEL \(=\) XS( 2, ISSL \()\) & 3707 \\
\hline 3709 & 253 & & \(\begin{aligned} & \text { CC } \\ & \text { DO }\end{aligned}=\mathrm{XEL}-\mathrm{XVL}-\mathrm{XV}(1, \mathrm{JVI}\) 2, JV1 \()\) & 3708 \\
\hline 3710 & 254 & & EE = ( \(A A * C C\) + BB * DD ) * XEREV * XEREV & 3709
3710 \\
\hline 3711 & 255 & &  & 3710 \\
\hline 3712 & 256 & & YER = XV( \(2, J V 1)+B 8\) * EE & 3712 \\
\hline 3713 & 257 & & \(A X=X E R-X E L\) & 3713 \\
\hline 3714 & 258 & & AY - YER - YEL & 3714 \\
\hline 3715 & 259 & & XE ( 2 . IEN ) = SQRT ( \(A X * A X+A Y\) * AY) & 3715 \\
\hline 3716 & 260 & & XEREV \(=1,1\) XE ( 2 , IEN ) & 3716 \\
\hline 3717
3718 & 261 & & XXN ( IEN ) = AX * XEREV & 3717 \\
\hline 3718
3719 & 262 & & YYH ( IEN ) = AY * XEREV & 3718 \\
\hline 3719
3720 & 263 & & XE ( \(2, ~ I E N\) ) \(=2 . *\) XE( 2 , IEN ) & 3719 \\
\hline 3720
3721 & 264 & & XYMIDL ( IEN ) \(=.5\) & 3720 \\
\hline 3721
3722 & 265 & & XHIDL (IEN ) = XER & 3721 \\
\hline 3723 & 267 & C & YMIDL ( IEN \()=\) YER & 3722 \\
\hline 3724 & 268 & & ELSE & 3723
3724 \\
\hline 3725 & 269 & C & & 3725 \\
\hline 3726 & 270 & & XER \(=X\) S \((1\), ISSR \()\) & 3726 \\
\hline 3727 & 271 & & YER \(=\mathrm{XS}(2\), ISSR \()\) & 3727 \\
\hline 3728
3729 & 272 & & XEL \(=\) XS ( \(1.15 S L\) ) & 3728 \\
\hline 3729
3730 & 273 & & YEL \(=\mathrm{XS}\) ( 2 , ISSL \()\) & 3729 \\
\hline 3730
3731 & 274 & C & & 3730 \\
\hline 3731
3732 & 275 & & AA \(=X V(1, J V 2)-X V(1, J V 1) ~\) & 3731 \\
\hline 3732
3733 & 276 & & \(B B=X V(2 ; J V 2)-X V(2, J V 1)\) & 3732 \\
\hline 3733
3734 & 277 & & CC \(=\) XEL - XER & 3733 \\
\hline 3734
3735 & 278 & & DO - YEL - YER & 3734 \\
\hline 3735
3736 & 279 & & ACA - XER - XV 1 , JV1 ) & 3735 \\
\hline 3736
3737 & 280 & & OBD \(=\) YER \(-X V(2, J V I)\) & 3736 \\
\hline 3737
3738 & 281 & & \(E E=(A C A * D D-D B D * C C) /(A A * D D-B B * C C)\) & 3737 \\
\hline 3738
3739 & 282 & & XMIDL ( IEN ) = XV( 1 , JV1 ) + AA * EE & 3738 \\
\hline 3740 & 284 & C & YMIOL ( IEN ) \(=\) XV ( 2 , JVI \()+\) BB * EE & 3739 \\
\hline 3711 & 285 & & XEMID \(=\) XMIDL ( IEN ) - XEL & \begin{tabular}{l}
3740 \\
3741 \\
\hline
\end{tabular} \\
\hline 3742 & 286 & & YEMID \(=\) YMIDL ( IEN ) - YEL & 3742 \\
\hline 3743
3744 & 287 & C & & 3743 \\
\hline 3745 & 288 & & AX \(=\) XER - XEL
AY \(=\) YER - YEL & 3744 \\
\hline 3746 & 290 & & XE ( \(2 \cdot \mathrm{IEN})=\) SQRT ( \(A X * A X+A Y * A Y)\) & 3746 \\
\hline 3747 & 291 & & XEREV \(=1.1\) XE ( 2 , IEN ) & 3747 \\
\hline 3748 & 292 & & XXN( IEN ) = AX * XEREV & 3748 \\
\hline 3749 & 293 & & YYN( IEN ) - AY * XEREV & 3749 \\
\hline 3750
3751 & 294
295 & C & & 3750 \\
\hline 3752 & 295
296 & c & XYMIDL ( IEN ) = SQRT ( XEMID * XEMID + YEMID * YEMID ) * XEREV & 3751
3752 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 3753 & 297 & & END If & 3753 \\
\hline 3754 & 298 & \(c\) & & 3754 \\
\hline 3755 & 299 & 80 & continue & 3755 \\
\hline 3756 & 300 & c & & 3756 \\
\hline 3757 & 301 & & RETURM & 3757 \\
\hline 3758 & 302 & \(\checkmark\) & & 3758 \\
\hline 3759 & 303 & 999 & WRITE (6,1000) IE & 3759 \\
\hline 3760 & 304 & C & & 3760 \\
\hline 3761 & 305 & C & EXIT POINT FROM SUBROUTINE & 3761 \\
\hline 3762 & 306 & C & & 3762 \\
\hline 3763 & 307 & C & -- & 3763 \\
\hline 3764 & 308 & & RETURN & 3764 \\
\hline 3765 & 309 & C & ------* & 3765 \\
\hline 3766 & 310 & C & & 3766 \\
\hline 3767 & 311 & C ... & FORMATS & 3767 \\
\hline 3768 & 312 & C & & 3768 \\
\hline 3769 & 313 & 1000 & FORMAT('OITS ABOUT TO BOMB--RECNC ON EDGE ',I5) & 3769 \\
\hline 3770 & 314 & C & & 3770 \\
\hline 3771 & 315 & C & --- & 3771 \\
\hline 3772 & 316 & & END & 3772 \\
\hline
\end{tabular}

Thu Jul 1 14:16:08 1993 adaphd.f SUBROUTINE EOS
\begin{tabular}{|c|c|c|c|c|}
\hline 3773 & 1 & & SUBROUTINE EOS (RRR, EEE, N,GAMMA) & 3773 \\
\hline 3774 & 2 & C & & 3774 \\
\hline 3775 & 3 & C. & \(\cdots\) & 3775 \\
\hline 3776 & 4 & c & AIR IS ASSumto to be caloricaily in l & 3776 \\
\hline 3777 & 5 & c & AIR IS ASSUMED TO BE CALORICALLY IMPERFECT, THERMALLY & 3777 \\
\hline 3778 & 6 & c & PERFECT. THEREFORE, INCLUDE IMPERFECTIONS VIA A VARIABLE & 3778 \\
\hline 3779 & 7 & C & GAMMA DEPENDENTON DENSITY AND INTERNAL ENERGY. & 3779 \\
\hline 3780 & 8 & c & THIS RCUTINE PERFORMS A TABLE LOOK UP FOR GAMMA. & 3780 \\
\hline 3781 & 9 & C & I I & 3781 \\
\hline 3782 & 10 & C- & & 3782 \\
\hline 3783 & 11 & C & & 3783 \\
\hline 3784 & 12 & C & IMPUT VARIBLE OEFINITIONS. & 3784 \\
\hline 3785 & 13 & C & RRR = MASS DENSITY & 3785 \\
\hline 3786 & 14 & C & EEE = INTERNAL ENERGY PER UNIT VOLUME & 3786 \\
\hline 3787 & 15 & C & (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS) & 3787 \\
\hline 3788 & 16 & C & \(N=\) NUMBER OF ENTRIES IN ARRAYS RRR \& EEE & 3788 \\
\hline 3789 & 17 & C & & 3789 \\
\hline 3790 & 18 & & PARAMETER ( \(M=64\) ) & 3790 \\
\hline 3791 & 19 & C & & 3791 \\
\hline 3792 & 20 & & DIMENSION ARR(N), EEE (N), GAMMA(N) & 3792 \\
\hline 3793 & 21 & & DIMENSION T11(M). T12(M). T21(M). T22(M), RHO(M), E(M) & 3793 \\
\hline 3794 & 22 & & DIMENSION OMP (M), Q(M), I(M), J(M) & 3794 \\
\hline 3795 & 23 & & DIMENSION G1(168),G2(112),G3(112),G4(112),G5(112), & 3795 \\
\hline 3796 & 24 & & 1 G6(112),G7(112),GF(840) & 3796 \\
\hline 3797 & 25 & C & & 3797 \\
\hline 3798 & 26 & C & NOTE: THE TABLE LOOK UP TREATS ARRAY GF AS THOUGH IT & 3798 \\
\hline 3799 & 27 & C & WERE DIMENSIONED \((8,105)\). & 3799 \\
\hline 3800 & 28 & C & & 3800 \\
\hline 3801 & 29 & & EqUIVALENCE (G1(1),GF( 1)). (G2(1).GF(169)), (G3(1).GF(281)). & 3801 \\
\hline 3802 & 30 & & 1 (G4(1),GF(393)), (G5(1),GF(505)). (G6(1),GF(617)). & 3802 \\
\hline 3803 & 31 & & 1 (G7(1),GF(729)) & 3803 \\
\hline 3804 & 32 & C & & 3804 \\
\hline 3805 & 33 & & DATA XLI6E /2.7725887222397744835689081810414791107177734375/ & 3805
3806 \\
\hline 3806 & 34 & C- & ------- & 3806 \\
\hline 3807 & 35 & C & \(\mathrm{G}=\mathrm{GAMMA}-1.0\) IS STORED FOR 32 BIT WORD MACHINES IN POHERS OF & 3807 \\
\hline 3808 & 36 & c & 16 ACROSS FOR MASS OENSITY VARIATION AND INTERMEDIATE VALUES & 3808 \\
\hline 3809 & 37 & C & 1-16 FOR POHERS OF 16 VERIICALLY hhich represent the internal & 3809 \\
\hline 3810 & 38 & C & EMERGY VARIATION. & 3810 \\
\hline 3811 & 39 & C & & 3811 \\
\hline 3812 & 40 & c & 16**(2) .GE. RHO .GE. 16** (-6) & 3812 \\
\hline 3813 & 41 & C & 16**(15) .GE. E .GE. 16**(8) & 3813 \\
\hline 3814 & 42 & &  & 3814
3815 \\
\hline 3815 & 43 & & DATA G1 /8*.4222, 8* \(4152,8^{*} \cdot 4110,8^{*} \cdot 4081,8^{*} \cdot 4058,8^{*} \cdot 4040\). & 3815 \\
\hline 3816 & 44 & &  & 3816 \\
\hline 3817 & 45 & &  & 3817 \\
\hline 3818 & 46 & &  & 3818
3819 \\
\hline 3819 & 47 & & . \(3555, .3538, .3522, .3502, .3476, .3430, .3344, .3238\), & 3819
3820 \\
\hline 3820 & 48 & &  & 3820
3821 \\
\hline 3821
3822 & 49
50 & & 1 i \(\quad .3257, .3227, .3201, .3134, .3062, .3014, .2884, .2591\), & \begin{tabular}{l}
3821 \\
3822 \\
\hline
\end{tabular} \\
\hline 3823 & 51 & & DATA G2 /.3111..3006,.2940,.2787,.2635,.2588,.2502,.2236, & 3823 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 3898 & 126 & & \(!\). \(!\) 2588,.9316,.9374, .9379,.9387,.9399,.9400,.9400, & 3898 \\
\hline 3899 & 127 & &  & 3899 \\
\hline 3900 & 128 & & ! .9496,.9559,.9622,.9627,.9637,.9649,.9650,.9650, & 3900 \\
\hline 3901 & 129 & & \(1.9596, .9661 . .9727 . .9731 . .9741 . .9754, .9755 . .9755\). & 3901 \\
\hline 3902 & 130 & & 1 .9686,.9753..9821..9826,.9836,.9849,.9850,.9850, & 3902 \\
\hline 3903 & 131 & & \(1.9769, .9837 . .9906, .9912 . .9922 . .9936, .9937 . .9937\). & 3903 \\
\hline 3904 & 132 & & 1 .9845,.9915,.9986,.9991,.9999,.9999,.9999,..9999, & 3904 \\
\hline 3905 & 133 & & I .9915,.9987..9999,.9999,.9999,.9999,.9999,.9999, & 3905 \\
\hline 3906 & 134 & & 1 .9981,.9999,.9999,.9999,.9999,.9999,..9999,..9999/ & 3906 \\
\hline 3907 & 135 & c & --- & 3907 \\
\hline 3908 & 136 & C & real air eos, table lookup on gilhore oata. (no temp. mooel) & 3908 \\
\hline 3909 & 137 & c & TO AVOID COSTLY LOGARITHMIC FUNCTIONS THE TABLE "G" IS STORED IN A & 3909 \\
\hline 3910 & 138 & c & form so that the hexadecimal word structure of a 32 git machine & 3910 \\
\hline 3911 & 139 & C & may be exploiteo. & 3911 \\
\hline 3912 & 140 & C & this logic may be transfered to other machines by recalculating & 3912 \\
\hline 3913 & 141 & C & the table "G" appropriate to the hord arcitecture of that machine. & 3913 \\
\hline 3914 & 142 & C & MACHINE DEPENDENT FUNCTICAS AND KEY NUMBERS MUST ALSO BE Changed. & 3914 \\
\hline 3915 & 143 & c & & 3915 \\
\hline 3916 & 144 & & RL16E \(=1.1 \mathrm{XLL} 6 \mathrm{E}\) & 3916 \\
\hline 3917 & 145 & & IST \(=0\) & 3917 \\
\hline 3918 & 146 & & NR \(=\mathrm{N}\) & 3918 \\
\hline 3919 & 147 & C & & 3919 \\
\hline 3920 & 148 & 10 & CONTINUE & 3920 \\
\hline 3921 & 149 & & NST \(=\) MINO(NR.M) & 3921 \\
\hline 3922 & 150 & C & & 3922 \\
\hline 3923 & 151 & & 0020 IRE \(=1\), NST & 3923 \\
\hline 3924 & 152 & & RHO(IRE) \(=.774413 *\) RRR (IST+IRE) & 3924 \\
\hline 3925 & 153 & & \(E(\) IRE \()=\operatorname{AMAXL}(3 . e 8,10000 . * E E E(I S T+I R E) / R R R(I S T+I R E)) ~\) & 3925 \\
\hline 3926 & 154 & C & & 3926 \\
\hline 3927 & 155 & \(c\) & Calculate mass density variailon index "I". & 3927 \\
\hline 3928 & 156 & C & & 3928 \\
\hline 3929 & 157 & & TEM \(=\) ALOG(RHO(IRE) \({ }^{*}\) RL16E + 500.0 & 3929 \\
\hline 3930 & 158 & & I(IRE) \(=\operatorname{AINT}\) (TEM) & 3930 \\
\hline 3931 & 159 & & OMP (IRE) = TEM - FLOAT (I (IRE)) & 3931 \\
\hline 3932 & 160 & & I(IRE) \(=502-\) I(IRE) & 3932 \\
\hline 3933 & 161 & & I(IRE) \(=\operatorname{MAXO}(\) ( 1 IRE) , 1) & 3933 \\
\hline 3934 & 162 & C & & 3934 \\
\hline 3935 & 163 & C & CALCULATE INTERNAL ENERGY VARIATION INDEX "J". & 3935 \\
\hline 3936 & 164 & C & & 3936 \\
\hline 3937 & 165 & & TEM \(=\) ALOG(E(IRE) \({ }^{\text {* RLIL6E }}\) & 3937 \\
\hline 3938 & 166 & & JCY = AINT (TEM) & 3938 \\
\hline 3939 & 167 & & TEM \(=\) TEM - FLOAT(JCY) & 3939 \\
\hline 3940 & 168 & & TEM \(=\operatorname{EXP}\) ( \(\mathrm{XLI} 16 \mathrm{E}^{*} \mathrm{TEM}\) ) & 3940 \\
\hline 3941 & 169 & & \(\mathrm{JCY}=\mathrm{JCY}-7\) & 3941 \\
\hline 3942 & 170 & & JS \(=\) AINT (TEM) & 3942 \\
\hline 3943 & 171 & & Q(IRE) \(=\) TEM - FLOAT(JS) & 3943 \\
\hline 3944 & 172 & & J(IRE) \(=\) JS + 15*JCY & 3944 \\
\hline 3945 & 173 & & J(IRE) \(=\) MINO(J(IRE), 104) & 3945 \\
\hline 3946 & 174 & & J (IRE) \(=\) I(IRE) \(+8^{*}\) J (IRE) & 3946 \\
\hline 3947 & 175 & & I(IRE) \(=J(\) IRE \()-8\) & 3947 \\
\hline 3948 & 176 & 20 & continue & 3948 \\
\hline 3949 & 177 & C & & 3949 \\
\hline 3950 & 178 & & D0 30 IRE=1,NST & 3950 \\
\hline 3951 & 179 & & T11(IRE) \(=\) GF(I (IRE) \()\) & 3951 \\
\hline 3952 & 180 & & T21(IRE) \(=\mathrm{GF}(\mathrm{I}(\) IRE \()+1)\) & 3952 \\
\hline 3953 & 181 & & T12(IRE) \(=\) GF(J(IRE) \()\) & 3953 \\
\hline 3954 & 182 & & T22(IRE) \(=\mathrm{GF}(\mathrm{J}(\) IRE \()+1)\) & 3954 \\
\hline 3955 & 183 & 30 & continue & 3955 \\
\hline 3956 & 184 & C & & 3956 \\
\hline 3957 & 185 & C & CALCULATE GAMMA BY LINEAR INTERPOLATION. & 3957 \\
\hline 3958 & 186 & C & & 3958 \\
\hline 3959 & 187 & & D0 40 IRE=1,NST & 3959 \\
\hline 3960 & 188 & & T12(IRE) \(=\) T12(IRE) - T11(IRE) & 3960 \\
\hline 3961 & 189 & & T22(IRE) \(=\) T22(IRE) - T21(IRE) & 3961 \\
\hline 3962 & 190 & & GAMMA (IST+IRE) = OMP (IRE) *(T11(IRE) + Q (IRE)*T12(IRE)) & 3962 \\
\hline 3963 & 191 & & 1 + (1. - OMP (IRE) \({ }^{*}(\mathrm{~T} 21\) (IRE) + Q (IRE)*T22 (IRE) \()\) & 3963 \\
\hline 3964 & 192 & & 1 + 1. & 3964 \\
\hline 3965 & 193 & 40 & continue & 3965 \\
\hline 3966 & 194 & C & & 3966 \\
\hline 3967 & 195 & & NR = NR - NST & 3967 \\
\hline 3968 & 196 & & IST = IST + NST & 3968 \\
\hline 3969 & 197 & & IF(NR.GT.0) G0 T0 10 & 3969 \\
\hline 3970 & 198 & C & & 3970 \\
\hline 3971 & 199 & C ... &  & 3971 \\
\hline
\end{tabular}
\begin{tabular}{lllll}
3972 & 200 & \(C\) & & 3972 \\
3973 & 201 & \(C\) & \(-\ldots-\) & 3973 \\
3974 & 202 & & RETURN & 3974 \\
3975 & 203 & \(C\) & \(\cdots \cdots--\) & 3975 \\
3976 & 204 & \(C\) & & 3976 \\
3977 & 205 & \(C\) & END & 3977 \\
3978 & 206 & & EN & 3978
\end{tabular}

Thu Jul 1 14:16:08 1993 adaphd.f SUBROUTINE LIFTDR
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 3979 \\
& 3000
\end{aligned}
\] & 1 & c & SUBROUTINE LIFTDR & 3979 \\
\hline 3981 & 3 & & include 'cmsh00.h' & 3981 \\
\hline 3982 & 4 & & include 'chyd00.h' & 3982 \\
\hline 3983 & 5 & & include 'cint00. \(\mathrm{h}^{\text {' }}\) & 3983 \\
\hline 3984 & 6 & & include 'cphsio.h' & 3984 \\
\hline 3985 & 7 & & include ' 'cphs \(20 . \mathrm{h}\) ' & 3985 \\
\hline 3986 & 8 & & REAL PRESS(1000), DYNPRS(1000), XLOCAT (1000), YLOCAT (1000) & 3986 \\
\hline 3987 & 9 & C & & 3987 \\
\hline 3988 & 10 & & XLIFT \(=0\). & 3988 \\
\hline 3989 & 11 & & XDRAG \(=0\). & 3989 \\
\hline 3990 & 12 & & XMOMN \(=0\). & 3990 \\
\hline 3991 & 13 & & UINVR \(=2\) / UVIN / UVIN / RIN & 3991 \\
\hline 3992 & 14 & & XYU \(=\operatorname{COS}(\) ALPHA \()\) & 3992 \\
\hline 3993 & 15 & & XYV \(=\) SIN( ALPHA ) & 3993 \\
\hline 3994 & 16 & & NBB \(=0\) & 3994 \\
\hline 3995 & 17 & & D0 210 IE = 1 , NE & 3995 \\
\hline 3996 & 18 & & IJE5 = JE ( 5 , IE ) & 3996 \\
\hline 3997 & 19 & & IF ( IJE5. EO - 5) THEN & 3997 \\
\hline 3998 & 20 & & NBB \(=\) NBB +1 & 3998 \\
\hline 3999 & 21 & & IV1 \(=\mathrm{JE}(1, \mathrm{IE})\) & 3999 \\
\hline 4000 & 22 & & IV2 \(=\) JE ( \(2, ~\) IE \()\) & 4000 \\
\hline 4001 & 23 & & ISL - JE ( 3 . IE) & 4001 \\
\hline 4002 & 24 & & PRES = HYOV (ISL \({ }^{\text {P }}\) ) - PINL & 4002 \\
\hline 4003 & 25 & & PRESS ( NBB ) = PRES & 4003 \\
\hline 4004 & 26 & & XLIFT \(=\) XLIFT + PRES * XE ( 1. IE ) & 4004 \\
\hline 4005 & 27 & & ( - XN( IE ) * XYV + YN(IE) * XYU) & 4005 \\
\hline 4006 & 28 & & XDRAG \(=\) XDRAG + PRES * XE( 1, IE ) * & 4006 \\
\hline 4007 & \(\stackrel{29}{ }\) & & - \({ }^{\text {c }}\) ( XN( IE ) * XYU + YN( IE ) * XYV ) & 4007 \\
\hline 4008 & 30 & & XLOCAT ( NBB ) \(=.5\) * ( XV( 1. IV1 ) + XV( 1, IV2 ) ) & 4008 \\
\hline 4009 & 31 & & XXV = XLOCAT ( NBB ) & 4009 \\
\hline 4010 & 32 & & YLOCAT ( NBB ) \(=.5\) * ( XV( \(2, ~ I V 1)+X V(2, I V 2) ~) ~\) & 4010 \\
\hline 4011 & 33 & & YYV \(=\) YLOCAT ( NBB ) & 4011 \\
\hline 4012 & 34 & & XYONN - XMOMN + PRES * XE ( 1 , IE ) * & 4012 \\
\hline 4013 & 35 & & ( XN( IE) * XXV - YN( IE ) * YYV ) & 4013 \\
\hline 4014 & 36 & C & & 4014 \\
\hline 4015 & 37 & & END IF & 4015 \\
\hline 4016 & 38 & C & & 4016 \\
\hline 4017 & 39 & 210 & continue & 4017 \\
\hline 4018 & 40 & c & & 4018 \\
\hline 4019 & 41 & & XLIFT \(=\) XLIFT * UINVR & 4019 \\
\hline 4020 & 42 & & XDRAG \(=\) XDRAG * UINVR & 4020 \\
\hline 4021 & 43 & & XMOMN = XMOMN * UINVR & 4021 \\
\hline 4022 & 44 & & WRITE (4) NBB. (XLOCAT (KK), YLOCAT (KK), PRESS (KK), KK=1,NBB) & 4022 \\
\hline 4023 & 45 & & HRITE (9) XLIFT, XDRAG, XMOMH, XMCHIN, ALFA & 4023 \\
\hline 4024 & 46 & & PRINT *, XLIFT, XDRAG, XMOMN, XMCHIN, ALFA & 4024 \\
\hline 4025 & 47 & c & & 4025 \\
\hline 4026 & 48 & C --- & EXIT POINT FROM SUBROUTINE & 4026 \\
\hline 4027 & 49 & c & & 4027 \\
\hline 4028 & 50 & c & ------ & 4028 \\
\hline 4029 & 51 & & RETURN & 4029 \\
\hline 4030 & 52 & C & -..---- & 4030 \\
\hline 4031 & 53 & \({ }^{\text {c }}\) & & 4031 \\
\hline 4032 & 54 & c & --- & 4032 \\
\hline 4033 & 55 & & END & 4033 \\
\hline
\end{tabular}
delthd.f
main program
2
3
4
5
6
7
8
9
10
10
11
12
9
C
C
\(\begin{array}{ll}\text { C } \\ \text { C } & \text { I } \\ \text { C }\end{array}\)
VERDEL FORCE DELETION OF CELL NUMBER KSD I I I
    include 'cmsh00.h' 11
    include 'chyd00.h' 12
    include 'cint00.h' 13
    include 'cphs10.h'
    include 'cphs20.h'
C
SUBROUTINE VERDELT ( KSD . INDCTR , NIDUMP , JJTRIG , IITRIG)

C
IKKE \(=4\)
IEIN1 - JKV1
IEIN2 \(=-\) JKV2
IEIN2 \(=-\) JKV2
IKKE1 \(=\) IKF3
KKE1 = KE3
KKV1 \(=\) KV3
KKV1 \(=\) KV3
IKKE2 \(=\) IKE1
KKE2 = KE1
KKV2 \(=\mathrm{KVI}\)
IKKE3 = IKE2
KKE3 = KE2
KKV3 \(=\) KV2
ELSE IF (IJE52 . NE . O . AND . JKVI . LT . O) THEN
IKKE \(=4\)
IEIN1 \(=-\) JKV3
IEIN2 \(=-\) JKV1
IEIN1 \(=-\) JKV3
IEIN2 \(=-\) JKV1
TKKE1 = IKE2
KKE1 \(=\) KE2
KKV1 \(=\) KV2
KKE1 \(=\) KE2
KKV1 \(=\) KV2
IKKE2 \(=\) IKE3
KKE2 = KE3
KKV2 = KV3
IKKE3 \(=\) IKE1
KKE3
IKKE3 \(=\) IKE1
KKE3 \(=\) KE1
KKE3 \(=\) KE1
    74
75
4

(
KKV3 = KV1
ELSE IF (IJE51 . NE . O . ANO . JKV3 . LT . O) THEN
IKKE \(=4\)
IEIN1 = - JKV2
IEIN2 - - JKV3
IKKE1 \(=\) IKE1
KKE1 \(=\) KE1
KKVI = KVI
IKKE2 \(=\) IKE2
KKE2 = KE2
KKV2 \(=K V 2\)
\(\mathrm{KKKE}^{\mathrm{KK}} \mathrm{K}=\mathrm{KKE} 3\)
KKE3 \(=\) KE3
KKV3 \(=\) KV3
C

IKKE \(=3\)
IEIN1 = - JKV3
IEIN2 \(=-\) JKV1
\(\mid\) KKE1 \(=1\) KE3
KKE1 = KE3
\(K K V 1=K V 3\)
IKKE2 = IKE1
KKE2 \(=\) KE1
KKV2 \(=\) KV1
IKKE3 \(=\) IKE2
KKE3 \(=\) KE2
KKV3 \(=K V 2\)
\(C\)


\begin{tabular}{|c|c|c|c|c|}
\hline 148 & 148 & & IEIM \(=-\mathrm{JkVI}\) & 148 \\
\hline 149 & 149 & & IEIN2 - JKV2 & 149 \\
\hline 150 & 150 & & [KKE1 = IKE] & 159 \\
\hline 151 & 151 & & KKE1 - KE1 & 150 \\
\hline 152 & 152 & & KKV1 - KV1 & 151 \\
\hline 153 & 153 & & IKKE2 \(=\) IKE2 & 153 \\
\hline 154 & 154 & & KKE2 = KE2 & 153
154 \\
\hline 155 & 155 & & KKV2 \(=\) KV2 & 155 \\
\hline 156 & 156 & & IKKE3 \(=\) IKE3 & 155 \\
\hline 157 & 157 & & KKE3 \(=\) KE3 & 157 \\
\hline 158 & 158 & & KKV3 - KV3 & 158 \\
\hline 159 & 159 & c & & 159 \\
\hline 160 & 160 & & ELSE If ( IJE53 . NE . 0) Then & 160 \\
\hline 161 & 161 & & IKKE \(=1\) & 161 \\
\hline 162 & 162 & & IEIN - - JKV1 & 162 \\
\hline 163 & 163 & & IKKE1 - IKE3 & 163 \\
\hline 164 & 164 & & KKE1 \(=\) KE3 & 164 \\
\hline 165 & 165 & & KKV1 \(=\) KV3 & 165 \\
\hline 166 & 166 & & IKKE2 \(=1 \mathrm{KE1}\) & 166 \\
\hline 167 & 167 & & KKE2 - KE1 & 167 \\
\hline 168 & 168 & & KKV2 = KV1 & 168 \\
\hline 169 & 169 & & KKE3 \(=\) KE2 & 169 \\
\hline 170 & 170 & & IKKE3 \(=1 \mathrm{KE2}\) & 170 \\
\hline 171
172 & 171 & & KKV3 - KV2 & 171 \\
\hline 173 & 173 & \(c\) & ELSE IF ( JJ552 . NE . 0) THEN & 172 \\
\hline 174 & 174 & &  & 173
174
175 \\
\hline 175 & 175 & & IEIN - - JKV3 & 175 \\
\hline 176 & 176 & & IKKE1 \(=\) IKE2 & 175 \\
\hline 177 & 177 & & KKE1 \(=\) KE2 & 177 \\
\hline 178 & 178 & & KKV1 \(=\) KV2 & 178 \\
\hline 179 & 179 & & IKKE2 \(=\) IKE3 & 179 \\
\hline 180 & 180 & & KKE2 - KE3 & 180 \\
\hline 181 & 181 & & KKV2 \(=\) KV3 & 181 \\
\hline 182 & 182 & & IKKE3 \(=1 \mathrm{KE1}\) & 182 \\
\hline 183 & 183 & & KKE3 \(=\) KE1 & 183 \\
\hline 184 & 184 & & KKV3 - KV2 & 184 \\
\hline 185 & 185 & c & & 185 \\
\hline 186 & 186 & & ELSE IF ( IJE51 - NE . 0) THEN & 186 \\
\hline 187
188 & 187 & & IKKE \(=1\) & 187 \\
\hline 188 & 188 & & IEIN * - JKV2 & 188 \\
\hline 189
190 & 189 & & IKKE1 \(=\) IKE1 & 189 \\
\hline 190 & 190 & & KKE1 \(=\) KE1 & 190 \\
\hline 192 & 192 & & IKKE2 \(=\) IKE2 & 191 \\
\hline 193 & 193 & & KKE2 \(=\) KE2 & 192 \\
\hline 194 & 194 & & KKV2 \(=\) KV2 & 194 \\
\hline 195 & 195 & & IKKE3 \(=\) TKE3 & 195 \\
\hline 196 & 196 & & KKE3 \(=\) KE3 & 196 \\
\hline 197 & 197 & & KKV3 \(=\) KV3 & 197 \\
\hline 198 & 198 & C & & 198 \\
\hline 199 & 199 & & ELSE IF ( JKV3 . LT . 0) THEN & 199 \\
\hline 200 & 200 & & IKKE \(=2\) & 200 \\
\hline 201 & 201 & & IEIN \(=-\) JKV3 & 201 \\
\hline 202 & 202 & & IKKE1 \(~\) IKE3 & 202 \\
\hline 203 & 203 & & KKE1 \(=\) KE3 & 203 \\
\hline 204 & 204 & & KKV1 - KV3 & 204 \\
\hline 205 & 205 & & IKKE2 \(=\) KKE1 & 205 \\
\hline 206 & 206 & & KKE2 \(=\) KE1 & 206 \\
\hline 207 & 207
208 & & KKV2 \(=\) KV1
IKKE3 & 207 \\
\hline 209 & 209 & & KKE3 \(=\) KE2 & 208
209 \\
\hline 210 & 210 & & KKV3 \(=\) KV2 & 210 \\
\hline 211 & 211 & \(\bigcirc\) & & 211 \\
\hline 212 & 212 & & ELSE IF (JKV2 - LT . 0) Then & 212 \\
\hline 213 & 213 & & IKKE \(=\) ? & 213 \\
\hline 214 & 214 & & IEIN \(=-\) JKV2 & 214 \\
\hline 215 & 215 & & IKKE1 \(=\) IKE2 & 215 \\
\hline 216 & 216 & & KKE1 \(=\) KE2 & 216 \\
\hline 217 & 217 & & KKV1 \(=\) KV2 & 217 \\
\hline 218 & 218 & & \(1 \mathrm{KKE2}=1 \mathrm{KE3}\) & 218 \\
\hline 219 & 219 & & KKE2 \(=\) KE3 & 219 \\
\hline 220 & 220 & & KKV2 \(=\) KV3 & 220 \\
\hline 221 & 221 & & IKKE3 \(=\) IKE1 & 221 \\
\hline
\end{tabular}
delthd.f

\(C\)
\(C\)
\(C\)
    KKE3 \(=\mathrm{KE1}\)
KKV3 \(=\mathrm{KV1}\)
C KKV = KV \(\quad 223\)
ELSE IF ( JKVI . LT_ O) THEN
    IKKE = 2
    IEIN - - JKVI
    IKKE! = IKE1
    KKE1 = KE1
    KKV1 \(=\) KV1
    IKKE2 \(=1\) KE2 23
    KKE2 \(=\) KE2 232
    KKV2 \(=\) KV2 233
    IKKE3 \(=\) IKE3 234
    KKE3 \(=\) KE3 235
    KKV3 \(=\) KV3 236
    END IF
    IF ( IKKE . EQ . 4) THEN
    JV1 \(=\mathrm{JE}(1\), IEIN2 \()\)
\(\mathrm{JV2}=\mathrm{JE}(2\), IEIN2 \()\)
    JJV3 \(=\) JE \((1\), IKKE3 ) 242
    JJV4 \(=\mathrm{JE}(2 ;\) IKKE3 ) 243
    IF ( JJV3 . EQ . JVI ) THEN 244
    JV3 = JJV3 245
    JV4 - JJV4
    ELSE
    JV3 = JJV4
    JV4 \(=\) JJV3 249
    END IF 250
    \(X A=X V(1, J V 2)-X V(1, J V 1) 251\)
    \(Y A=X V(2, J V 2)-X V(2 ; J V 1)\)
    \(X B=X V(1, J V 4)-X V(1, J V 3)\)
    \(Y B=X V(2, J V 4)-X V(2, J V 3)\)
    \(A B=X A * X B+Y A * Y B\)
    \(\operatorname{IF}(A B \cdot G T .0\).\() IKKE =5\)
    END IF
    \(\begin{array}{lll}C & & 258 \\ C & & 259\end{array}\)
    C ITRIG NUMBER OF TRIANGLES TO BE DELETED 260
    \(\begin{array}{ll}\text { ITRIG NUMBER OF TRIANGLES TO BE DELETED } & 260 \\ \text { IETRIG NUMBER OF EDGES TO BE DELETED } & 261\end{array}\)
        JVDELT NUMBER OF VERTICES TO BE DELETED 262
        IVDELT(*) SEQUENCE OF VERTICES TO BE DELETED 263
        ISCRSS(*) SEQUENCE OF TRIANGLES TO BE DELETED 265
        IECRSS(*) SEQUENCE OF EDGES TO BE DELETED 266
            IF ( JV ( 1 , KV1 ) . EQ . 3) RETURN 268
            IF ( JV (1 : KV2) : EQ:3) RETURN 269
            IF ( JV ( \(1 . \mathrm{KV} 3) \cdot \mathrm{EQ} .3\) ) RETURN 270
            IJTRIG \(=0 \quad 271\)
            \(\begin{array}{ll}\text { ITRIG }=0 & 272\end{array}\)
            IETRIG = 0 273
            JVDELT \(=0 \quad 274\)
            \(\begin{array}{ll}\text { JNOELT }=0 & 274 \\ \text { JLOOP }=0 & 275\end{array}\)
    C
            IF ( IKKE . EQ . 0 ) THEN
    C
C
c
C
THE TRIANGLE TO
THE DELETED IS IS INTIRELY IN THE DOMAIN OF COMPUTATION.
        277
    c
    C THE TRIANGLE TO BE DELETED IS INTIRELY IN THE DOMAIN OF COMPUTATION.
C
        78
            \(\begin{array}{ll}\text { IVV } ~=~ K V 1 ~ & 281 \\ 282\end{array}\)
            IE \(=\) IKE3 283
            IVI \(=\mathrm{JE}(1, \mathrm{IE}) \quad 284\)
            IF ( IVI . EQ . IVV ) THEN 285
            ISI = JE ( \(3, \mathrm{IE}) \quad 286\)
            ELSE 281
            ISI \(=\mathrm{JE}(4, \mathrm{IE}) \quad 288\)
            END IF 289
            IS = ISI 290
    C \(\quad 291\)
    110 CONTINUE 292
    C 293
            ITRIG = ITRIG + 1
            ISCRSS ( ITRIG ) = IS 295

\begin{tabular}{|c|c|c|c|}
\hline 370 & 370 & & IETRIG - IETRIG + 1 \\
\hline 371 & 371 & & IECRSS ( IETRIG ) = IE \\
\hline 372 & 372 & ¢ & \\
\hline 373 & 373 & & IF( \\
\hline 374 & 374 & & HYOFLX ( IS , 4) . GT . FLUXPP . OR \\
\hline 375 & 375 & & HYOFLX ( IS , 2 ) . GT . FLUXUU . OR . \\
\hline 376 & 376 & & HYOFLX ( IS ; 1). GT . FLUXRR. OR . \\
\hline 377 & 377 & & KSDELT( IS ) . GT . NIDUMP \({ }^{\text {OR }}\) OR. \\
\hline 378 & 378 & & xS ( 3. IS ) . GT . AREVGG) THEN \\
\hline 379 & 379 & & INDCTR \(=3\) \\
\hline 380 & 380 & & RETURN \\
\hline 381 & 381 & & END IF \\
\hline 382 & 382 & C & \\
\hline 383 & 383 & & 00140 IR = 1 . \({ }^{3}\) \\
\hline 384 & 384 & & \(J \mathrm{R}=\mathrm{MOD}(1 \mathrm{R}, 3 \mathrm{3})+1\) \\
\hline 385 & 385 & & IEA \(=\) IABS ( JS ( JR + 3 , IS ) ) \\
\hline 386 & 386 & & IF ( IEA. EQ. IE ) THEN \\
\hline 387 & 387 & & \(I I R=M O D(J R, 3)+4\) \\
\hline 388 & 388 & & IEI - JS ( IIR , IS ) \\
\hline 389 & 389 & & IEIB \(=\) IABS ( IEI ) \\
\hline 390 & 390 & & XEIEB \(=\) XE ( 1 , IEIB ) \\
\hline 391 & 391 & & XYLAGT \(=\) XYLAGT + XEIEB \\
\hline 392 & 392 & & IF ( XYLONG - LT - XEIEB ) XYLONG = XEIFB \\
\hline 393 & 393 & & IF (XYSHRT G GT . XEIEB) XYSHRT = XEIEB \\
\hline 394 & 394 & & LLOOP \(=\) ILOOP + 1 \\
\hline 395 & 395 & & IF ( ILOOP . EQ . 1 . AND . JDOUBL . EQ . IEIB ) THEN \\
\hline 396 & 396 & & JLOOP \(=1\) \\
\hline 397 & 397 & & IETRIG = IETRIG + 1 \\
\hline 398 & 398 & & IECRSS ( IETRIG) \(=\) J00UBL \\
\hline 399 & 399 & & IJTRIG \(=\) IJTRIG - 1 \\
\hline 400 & 400 & & IF ( IEI . GT . 0) THEN \\
\hline 401 & 401 & & JKVV \(=\) JE( 1 , IEIB) \\
\hline 402 & 402 & & ELSE \\
\hline 403 & 403 & & JKVV \(=\) JE ( 2. IEIB ) \\
\hline 404 & 404 & & END IF \\
\hline 405 & 405 & & JVDELT = JVDELT + 1 \\
\hline 406 & 406 & & IVDELT ( JVOELT ) = JkVV \\
\hline 407 & 407 & & ILODP * 0 \\
\hline 408 & 408 & & ELSE \\
\hline 409 & 409 & & IJTRIG = IJTRIC + 1 \\
\hline 410 & 410 & & IICOLR ( IJTRIG ) = IEI \\
\hline 411 & 411 & & END IF \\
\hline 412 & 412 & & \(J J R=M O D(J R+1,3)+4\) \\
\hline 413 & 413 & &  \\
\hline 414 & 414 & C & \\
\hline 415 & 415 & & IV1 = JE( 1. [ER ) \\
\hline 416 & 416 & & IF ( IV1. EQ . IVV ) THEN \\
\hline 417 & 417 & & ISR \(=\) JE( 3 , IER ) \\
\hline 418 & 418 & & ELSE \\
\hline 419 & 419 & & ISR = JE( 4 , IER ) \\
\hline 420 & 420 & & END IF \\
\hline 421 & 421 & & END IF \\
\hline 422 & 422 & C & \\
\hline 423 & 423 & 140 & continue \\
\hline 424 & 424 & C & \\
\hline 425 & 425 & & IF ( IER . NE . IKE2 ) THEN \\
\hline 426 & 426 & & IS = ISR \\
\hline 427 & 427 & & IE = IER \\
\hline 428 & 428 & & G0 10130 \\
\hline 429 & 429 & & END If \\
\hline 430 & 430 & & IJTRIG = IJTRIG - 1 \\
\hline 431 & 431 & \(c\) & \\
\hline 432 & 432 & \({ }^{\text {c }}\) & SECOND LOOP SUROUNDING KV2 IS done, third loop over kvz start \\
\hline 433 & 433 & c & \\
\hline 434 & 434 & & KET = IECRSS ( 2 ) \\
\hline 435 & 435 & & IVV \(=\) KV3 \\
\hline 436 & 436 & & IE = IABS ( IICOLR ( IJTRIG + 1) ) \\
\hline 437 & 437 & & IF ( IE , EQ . KET) THEN \\
\hline 438 & 438 & & JLOOP - 2 \\
\hline 439 & 439 & \(\bigcirc\) & \\
\hline 440 & 440 & 150 & continue \\
\hline 441 & 441 & & IKET \(=\operatorname{IICOLR}(1)\) \\
\hline 442 & 442 & & KKET \(=\) IABS ( IKET ) \\
\hline 443 & 443 & & JKET = IABS ( IICOLR ( IJTRIG ) ) \\
\hline
\end{tabular}
\(J R=\operatorname{MOD}(1 R, 3)+1 \quad 384\)
IEA \(=\operatorname{IABS}(J S(J R+3, I S))\)
384
385
386
IF (IEA. EQ. IE ) THEH386
IEI - JS (IIR IS387IEIB = IABS( IEI )388
390XEIEB - XE (IGI
391IF (XYLONG . LT . XEIEB ) XYLONG \(=\) XEIFB
IF (XYSHRT GT \(\quad\) XEIEB ) XYSHRT \(=\) XEIEB ..... 393
IF ( LLOOP . EQ . 1 . AND . JDOUBL . EQ . IEIB) THEN ..... 394IETRIG = IETRIG + 1395
396IECRSS ( IETRIG) = JOOUBLIF (IEI . GT . O) THENJKVV \(=\) JE ( 1 . IEIB )
EISE
JKVV \(=\mathrm{JE}(2\). IEIB )
END IF
IVDELT ( JVDELT ) = JKVV
ILDDP * 0
IJTRIG = IJTRIC + 1
IICOLR ( IJTRIG ) \(=\) IEI
END IF
\(J J R=M O D(J R+1.3)+4\)
397
398
398
399
399
400
401
401
402
403403
404405406407408409
410411412413

THEN
GO TO 130 428
END IF
IJTRIG
\(=\) IJTRIG -1

KET \(=\) IECRSS (2)
IVV \(=\) KV3
IE = IABS( IICOLR( IJTRIG + 1))
. KET ) THEN
continue
IKET = IICOLR(1)
JKET = IABS ( IICOLR (IJTRIG) )
\begin{tabular}{|c|c|c|c|c|}
\hline 444 & 444 & & IF ( JKET . EQ . KKET ) YHEN & \\
\hline 445 & 445 & & JLOOP \(=3\) - KRET HLN & 444
445 \\
\hline 446 & 446 & & IF ( IKET . GT . 0) THEN & 445 \\
\hline 447 & 447 & & JKVV \(=\) JE( 1. KKET \()\) & 446 \\
\hline 448 & 448 & & ELSE & 447 \\
\hline 449 & 449 & & JKVV = JE ( 2 , KKET ) & 448 \\
\hline 450 & 450 & & END IF & 449
450 \\
\hline 451 & 451 & & JVDELT = JVDELT + 1 & 451 \\
\hline 452 & 452 & & IVDELT( JVDELT ) = JKVV & 451 \\
\hline 453 & 453 & & DO \(160 \mathrm{KK}=2\). IJTRIG & 452 \\
\hline 454 & 454 & & \(\operatorname{IICOLR}(\mathrm{KK}-1)=\operatorname{IICOLR}(\mathrm{KK})\) & 453 \\
\hline 455 & 455 & 160 & CONTINUE & 454 \\
\hline 456 & 456 & & IJTRIG - IJTRIG - 2 & 455 \\
\hline 457 & 457 & & IETRIG = IETRIG + 1 & 456 \\
\hline 458 & 458 & & IECRSS ( IETRIG) = KKET & 457 \\
\hline 459 & 459 & & GO TO 150 & 458 \\
\hline 460 & 460 & & END IF & 459 \\
\hline 461 & 461 & & G0 10170 & 460 \\
\hline 462 & 462 & & END If & 461 \\
\hline 463 & 463 & & IVI = JE ( 1, IE ) & 463 \\
\hline 464 & 464 & & IF ( IVI. EQ . IVW ) THEN & 463 \\
\hline 465 & 465 & & ISI = JE ( \(3, \mathrm{IE}\) ) & 465 \\
\hline 456 & 466 & & ELSE & 465 \\
\hline 467 & 467 & & ISI \(=\) JE ( \(4, ~ I E)\) & 467 \\
\hline 468 & 468 & & END IF & 468 \\
\hline 469 & 469 & & IS - ISI & 468 \\
\hline 470 & 470 & \(c\) & & 469 \\
\hline 471 & 471 & & ILOOP \(=0\) & 470 \\
\hline 472 & 472 & 180 & continue & 472 \\
\hline 473 & 473 & & KDOUBL = IABS ( IICOLR ( IJTRIG ) ) & 477 \\
\hline 474 & 474 & C & & 474 \\
\hline 475 & 475 & & ITRIG \(=\) ITRIG + 1 & 475 \\
\hline 476 & 476 & & ISCRSS ( ITRIG ) = IS & 475 \\
\hline 477 & 477 & & IETRIG = IETRIG + 1 & 477 \\
\hline 478 & 478 & & IECRSS ( IETRIG) = IE & 477 \\
\hline 479 & 479 & C & & 478 \\
\hline 480 & 480 & & IF \((\) & 478 \\
\hline 481 & 481 & & HYDFLX ( IS . 4) . GT . FLUXPP . OR & 481 \\
\hline 482 & 482 & &  & 488 \\
\hline 483 & 483 & & HYDFLX ( IS , 1). GT . FLUXRR. OR . & 483 \\
\hline 484 & 484 & & KSDELT( IS ; . GT . MIDUMP . OR . & 488 \\
\hline 485 & 485 & & xS( 3 , IS ) . Gi . AREVGG ) Then & 485 \\
\hline 486 & 486 & & IMOCTR \(=3\) ( \({ }^{\text {a }}\) & 485 \\
\hline 487 & 487 & & RETURN & 486 \\
\hline 488 & 488 & & END IF & 488 \\
\hline 489 & 489 & C & & 488 \\
\hline 490 & 490 & & D0 190 IR = 1. 3 & 489 \\
\hline 491 & 491 & & \(J \mathrm{R}=\mathrm{MOD}(\mathrm{IR}, 3)+1\) & 491 \\
\hline 492 & 492 & & \(I E A=I A B S(J S(J R+3, I S))\) & 491 \\
\hline 493 & 493 & & IF (IEA. EQ. IE ) THEN & 493 \\
\hline 494 & 494 & & \(I I R=M O D(J R, 3)+4\) & 494 \\
\hline 495 & 495 & & IEI \(=\) JS ( IIR \({ }^{\text {d }}\) IS \()\) & 495 \\
\hline 496 & 496 & & IEIB \(=\) IABS ( IEI ) & 496 \\
\hline 497 & 497 & & XEIEB \(=\) XE ( 1 , IEIB) & 497 \\
\hline 498 & 498 & & XYLNGT \(=\) XYLNGT + XEIEB & 498 \\
\hline 499 & 499 & & IF ( XYLONG - LT . XEIEB ) XYLONG = XEIEB & 499 \\
\hline 500 & 500 & & IF (XYSHRT . GT . XEIEB) XYSHRT = XEIEB & 500 \\
\hline 501 & 501
502 & & ILOOP \(=\) ILOOP +1 & 501 \\
\hline 503 & 503 & & IF ( ILOOP
JLOOP \(=4\) & 502 \\
\hline 504 & 504 & & IETRIG \(=\) IETRIG +1 & 503 \\
\hline 505 & 505 & & IECRSS ( IETRIG ) \(=\) KDOUBL & 504 \\
\hline 506 & 505 & & IJTRIG = IJTRIG - 1 & 505 \\
\hline 507 & 507 & & IF ( IEI . GT . 0) THEN & 506 \\
\hline 508 & 508 & & JKVV = JE( 1 , IEIB) & 508 \\
\hline 509 & 509 & & ELSE & 509 \\
\hline 510 & 510 & & JKVV \(=\mathrm{JE}\) ( 2 , IEIB ) & 510 \\
\hline 511 & 511 & & END IF & 511 \\
\hline 512 & 512 & & JVDELT = JVDELT + 1 & 512 \\
\hline 513 & 513 & & IVDELT ( JVDELT ) - JKVV & 513 \\
\hline 514 & 514 & & 1LOOP \(=0\) & 514 \\
\hline 515 & 515 & & ELSE & 515 \\
\hline 516 & 516 & & IJTRIG \(=\) [JTRIG +1 & 516 \\
\hline 517 & 517 & & IICOLR ( IJTRIG ) = IEI & 517 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 592 & 592 & & hYdFLX ( IS , 2) . GT . fluxuu . OR & 592 \\
\hline 593 & 593 & & HYDFLX ( is , 1) GT, FLUXRR . OR & 593 \\
\hline 594 & 594 & & KSDELT IS ) . GT. NIDUMP . OR. & 594 \\
\hline 595 & 595 & & XS( 3 , is ) . GT . AREVGG j then & 595 \\
\hline 596 & 596 & & INDCTR \(=3{ }^{\text {a }}\) ( \({ }^{\text {a }}\) & 595 \\
\hline 597 & 597 & & RETURM & 597 \\
\hline 598 & 598 & & END IF & 598 \\
\hline 599 & 599 & C & & 598
599 \\
\hline 600 & 600 & & DO 230 IR = 1, 3 & 699 \\
\hline 601 & 601 & & JR \(=\operatorname{MOD}(1 \mathrm{P}, 3)+1\) & 600 \\
\hline 602 & 602 & & IEA \(=\operatorname{IABS}(J S(J R+3, I S))\) & 601 \\
\hline 603 & 603 & & IF ( IEA . EQ . IE ) THEN & 602 \\
\hline 604 & 604 & & \(I I R=M O D(J R, 3)+4\) & 603 \\
\hline 605 & 605 & & IEI = JS (IIR , IS ) & 605 \\
\hline 606 & 606 & & \(\underline{I E I B}=\operatorname{IABS}(\mathrm{IEI})\) & 605 \\
\hline 607 & 607 & & XEIEB \(=\) XE ( 1 , IEIB ) & 607 \\
\hline 608 & 608 & & XYLMGT \(=\) XYLMGT + XEIEB & 608 \\
\hline 609 & 609 & & IF (XYLONG . LT . XEIEB) XYLONG = XEIEB & 609 \\
\hline 610 & 510 & & IF (XYSHRT . GT . XEIEB ) XYSHRT = XEIEE & 610 \\
\hline 611 & 611 & & IJTRIG = IJTRIG + 1 & 611 \\
\hline 612 & 612 & & IICOLR ( IJTRIG ) \(=\) IEI & 612 \\
\hline 613 & 613 & & \(J J R=M O D(J R+1,3)+4\) & 613 \\
\hline 614 & 614 & & IER = IABS ( JS( UJR , IS ) ) & 614 \\
\hline 615 & 615 & C & & 615 \\
\hline 616 & 616 & & IVI \(=\) JE( 1 \(\cdot\) IER ) & 616 \\
\hline 617 & 617 & & IF ( IVI E EQ . IVV) THEN & 617 \\
\hline 618 & 618 & & ISR \(=\) JE ( 3, IER ) & 618 \\
\hline 620 & 620 & & ISR \(=\mathrm{JE}(4, \mathrm{IER})\) & 619 \\
\hline 621 & 621 & & END IF & 620 \\
\hline 622 & 622 & & END IF & 621 \\
\hline 623 & 623 & C & & 622 \\
\hline 624 & 624 & 230 & CONTINUE & 623 \\
\hline 625 & 625 & C & & 624 \\
\hline 626 & 626 & & IF ( IER . NE . IKKE1) THEN & 625
626 \\
\hline 627 & 627 & & IS = ISR \({ }^{\text {a }}\) & 626 \\
\hline 628 & 628 & & IE = IER & 627 \\
\hline 629 & 629 & & GO TO 220 & 628 \\
\hline 630 & 630 & & END IF & 629 \\
\hline 631 & 631 & C & & 630 \\
\hline 632 & 632 & & IETRIG \(=\) IETRIG +1 & 631 \\
\hline 633 & 633 & & IECRSS( IETRIG) \(=\) IKKE1 & 633 \\
\hline 634 & 634 & & IJTRIG \(=\) IJTRIG -2 & 634 \\
\hline 635 & \({ }_{6}^{635}\) & \({ }^{\text {c }}\) & & 635 \\
\hline 636 & 636 & \({ }^{\text {c }}\) & FIRST LOOP SUROunding kkv2 IS done. SECOnd loop over kkv3 start & 636 \\
\hline 637 & 637 & & & 637 \\
\hline 638 & 638
639 & & IVV - KKV3 & 638 \\
\hline 640 & 640 & & IE = IABS( IICOLR ( IJTRIG + 1) ) & 639 \\
\hline 641 & 641 & & IV1 \(=\) IE ( 1. IE \()\) & 640 \\
\hline 642 & 642 & &  & 641 \\
\hline 643 & 643 & & ELSE \(=\) JE( 3 , IE \()\) & 642 \\
\hline 644 & 644 & & ISI = JE ( 4 , IE) & 643 \\
\hline 645 & 645 & & END IF & 644 \\
\hline 646 & 646 & & IS = ISI & 645
646 \\
\hline 647 & 647 & c & & 646
647 \\
\hline 648 & 648 & & ILOOP - 0 & 648 \\
\hline 649 & 649 & 240 & CONTINUE & 649 \\
\hline 650 & 650 & & JDOUBL = IABS ( IICOLR ( IJTRIG ) ) & 650 \\
\hline 651 & 651 & c & & 651 \\
\hline 652 & 652 & & ITRIG = ITRIG + 1 & 652 \\
\hline 653 & 653 & & ISCRSS ( ITRIG ) = IS & 653 \\
\hline 654 & 654 & & IETRIG = IETRIG + 1 & 654 \\
\hline 655 & 655
656 & c & IECRSS ( IETRIG) = IE & 655 \\
\hline 657 & 657 & \(\bigcirc\) & IF 1 & 656 \\
\hline 658 & 658 & & IF hydflx ( 15,4 ) . GT. FLUXPP . OR & 657 \\
\hline 659 & 659 & & HYDFLX ( IS , 2 ) . GT . FLUXUU . OR . & 658
659 \\
\hline 660 & 660 & & HYDFLX ( IS . 1 ). GT. FLUXRR. OR: & 660 \\
\hline 661 & 661 & & KSDELT( IS ) . GT . NIDUMP . OR . & 661 \\
\hline 662 & 662 & & XS ( 3, IS ) . GT . AREVGG ) THEN & 662 \\
\hline 663 & 663 & & INDCTR = 3 & 663 \\
\hline 664 & 664 & & RETURN & 664 \\
\hline 665 & 665 & & END IF & 665 \\
\hline
\end{tabular}


C 8 9
\(\square\)
C

IVV = KKVI
\(I E=\) IABS ( IICOLR ( IJTRIG + 1) ) \(\quad 721\)
IF ( JE (5 , IE ) . NE . 0 ) THEN 723
IER = IE 724
GO \(10260 \quad 725\)
END IF 726
IV1 = JE ( 1, IE ) 727
IF ( IVI • EQ . IVV ) THEN 728
ISI = JE \(3 \cdot \operatorname{IE}\) ) 729
ELSE
ISI = JE ( 4 , IE ) 731
END IF
IS = ISI
IS! \(\cdot 0\)
ILOOP \(=0 \quad 736\)
CONTINUE 737
KDOUBL = IABS ( IICOLR( IJTRIG ) ) 738
739
\begin{tabular}{|c|c|c|c|c|}
\hline 740 & 740 & & ITRIG \(=\) ITRIG + 1 & \\
\hline 741 & 741 & & ISCRSS ( ITRIG ) = is & 740 \\
\hline 742 & 742 & & IETRIG \(=\) IETRIG + 1 & 741 \\
\hline 743 & 743 & & IECRSS( IETRIG) - IE & 742 \\
\hline 744 & 744 & c & & 743 \\
\hline 745 & 745 & & IF 1 & 5 \\
\hline 746 & 746 & & HYOFLX ( IS . 4) . GT . FLUXPP. OR & 745
746 \\
\hline 747 & 747 & & HYDFLX ( IS . 2 ). GT. FLUXUU. OR . & 746 \\
\hline 748 & 748 & & HYDFLX ( IS , 1) . GT. FLUXRR. OR . & 747 \\
\hline 749 & 749 & & KSDELT ( IS ) . GT . NIDUMP . OR . & 748 \\
\hline 750 & 750 & & xS( 3. IS ) . GT . AREVGG \()\) then & 749 \\
\hline 751 & 751 & & INDCTR \(=3^{\circ}\) (S). AREVGG (HEN & 750 \\
\hline 752 & 752 & & RETURN & 751 \\
\hline 753 & 753 & & END If & 752 \\
\hline 754 & 754 & C & & 753 \\
\hline 755 & 755 & & DO \(280 \mathrm{IR}=1.3\) & 754
755 \\
\hline 756 & 756 & & \(J \mathrm{R}=\mathrm{MOO}(\mathrm{IR} \cdot 3)+1\) & 755
756 \\
\hline 757 & 757 & & \(I E A=\operatorname{IABS}(J S(J R+3, I S))\) & 756 \\
\hline 758 & 758 & & IF ( IEA. EQ . IE ) THEN & 757 \\
\hline 759 & 759 & & IIR \(=\) MOD \((J R, 3)+4\) & 758
759 \\
\hline 760 & 760 & & IEI = JS (IIR , IS ) & 759
760 \\
\hline 761 & 761 & & IEIB \(=\operatorname{IABS}(\) IE 1 ) & 760 \\
\hline 762 & 762 & & XEIEB \(=\) XE( 1 , IEIB ) & 761 \\
\hline 763 & 763 & & XYLAGT \(=\) XYLNGI + XEIEB & 762 \\
\hline 764 & 764 & & IF ( XYLONG . LT . XEIEB ) XYLONG = XEIEB & 763 \\
\hline 765 & 765 & & IF (XYSHRT . GT . XEIEB ) XYSHRT = XEIEB & 764 \\
\hline 766 & 766 & &  & 765 \\
\hline 767 & 767 & & IF ( ILOOP . EQ . 1 . ANO . KDOUBL . EQ . IEIB ) THEN & 767 \\
\hline 768 & 768 & & JLOOP \(=2\) ( 2 ( \({ }^{\text {a }}\) & 768 \\
\hline 769 & 769 & & IETRIG = IETRIG + 1 & 768 \\
\hline 770 & 770 & & IECRSS ( IETRIG) \(=\) KDOUBL & 770 \\
\hline 771 & 771 & & IJTRIG \(=\) IJTRIG - 1 & 771 \\
\hline 772 & 772 & & IF ( IEI . GT . 0) THEN & 772 \\
\hline 773 & 773 & & JKVV \(=\) JE( 1 , IEIB ) & 773 \\
\hline 774 & 774 & & ELSE & 774 \\
\hline 775
776 & 775
776 & & \(\underset{\text { END IF }}{\text { JKVV }}=\mathrm{JE}(2\), IEIB \()\) & 775 \\
\hline 777 & 777 & & JVDELT \(=\) JVOELT + 1 & 776 \\
\hline 778 & 778 & & IVDELT ( JVDELT ) - JKVV & 777
778 \\
\hline 779 & 779 & & ILOOP = 0 & 779 \\
\hline 780 & 780 & & ELSE & 789 \\
\hline 781 & 781 & & IJTRIG = IJTRIG + 1 & 781 \\
\hline 782 & 782 & & IICOLR ( IJTRIG ) = IEI & 781 \\
\hline 783 & 783 & & END If & 783 \\
\hline 784 & 784 & & \(J J R=M 0 D(J R+1,3)+4\) & 784 \\
\hline 785 & 785 & & \(I E R=\operatorname{IABS}(\mathrm{JS}(\mathrm{JJR}, \mathrm{IS})\) ) & 785 \\
\hline 786 & 786 & c & & 785 \\
\hline 787 & 787 & & IV1 = JE( 1, IER ) & 787 \\
\hline 788 & 788 & & IF ( IVI. EO. IVV) THEN & 788 \\
\hline 789 & 789 & & ISR = JE ( \(3, ~ I E R\) ) & 789 \\
\hline 790 & 790 & & ELSE & 790 \\
\hline 791 & 791 & & ISR \(=\) JE ( 4 , IER ) & 791 \\
\hline 792 & 792 & & END IF & 792 \\
\hline 793
794 & 793
794 & c & END If & 793 \\
\hline 795 & 795 & 280 & continue & 794 \\
\hline 796 & 796 & c & & 795 \\
\hline 797 & 797 & & IF ( ISR . NE . ISI ) THEN & 796 \\
\hline 798 & 798 & & IS = ISR & 798 \\
\hline 799 & 799 & & \(I E=I E R\) & 798 \\
\hline 800 & 800 & & G0 10270 & 8800 \\
\hline 801 & 801 & & END IF & \\
\hline 802 & 802 & C & & \\
\hline 803 & 803 & 200 & continue & 803 \\
\hline 804 & 804 & c & & 804 \\
\hline 805 & 805 & & IETRIG \(=\) IETRIG + 1 & 805 \\
\hline 806 & 806 & & IECRSS ( IETRIG ) = IER & 806 \\
\hline 807 & 807 & \(\bigcirc\) & & 807 \\
\hline 808 & 808
809 & c & ITYPE \(=\mathrm{JE}(5 . \operatorname{IER})\) & 808 \\
\hline 10 & 810 & c & XEIEB - XE ( 1, IER ) & 809 \\
\hline 811 & 811 & & XEIEB \(=\) XXYYIB \({ }^{\text {P }}\) - XEIEB & \\
\hline 812 & 812 & & XYLNGT = XYLNGT + XEIEB & 811 \\
\hline 813 & 813 & & IF ( XYLONG . LT . XEIEB ) XYLONG = XEIEB & 813 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline 962 & 962 & & IVDELT ( JVDELT ) = JKVV & 962 \\
\hline 963 & 963 & & ILOOP = 0 & 963 \\
\hline 964 & 964 & & ELSE & 964 \\
\hline 965 & 965 & & IJTRIG = IJTRIG + 1 & 965 \\
\hline 966 & 966 & & IICOLR ( IJTRIG ) = IEI & 966 \\
\hline 967 & 967 & & ERD IF & 967 \\
\hline 968 & 968 & & \(\mathrm{JJR}=\mathrm{MOD}(\mathrm{JR}+1.3)+4\) & 968 \\
\hline 969 & 969 & & IER = [ABS ( JS( JJR , IS ) ) & 969 \\
\hline 970 & 970 & c & & 970 \\
\hline 971 & 971 & & IV1 = JE( 1, IER ) & 971 \\
\hline 972 & 972 & & IF ( IVI. EQ . IVV) THEN & 972 \\
\hline 973 & 973 & & ISR = JE ( 3 , IER ) & 973 \\
\hline 974 & 974 & & ELSE & 974 \\
\hline 975 & 975 & & ISR = JE ( 4. IER ) & 975 \\
\hline 976 & 976 & & END IF & 976 \\
\hline 977 & 977 & & END IF & 977 \\
\hline 978 & 978 & C & & 978 \\
\hline 979 & 979 & 320 & continue & 979 \\
\hline 980 & 980 & C & & 980 \\
\hline 981 & 981 & & IF ( IER. NE . IKKE2 ) THEN & 981 \\
\hline 982 & 982 & & IS = ISR & 982 \\
\hline 983 & 983 & & IE = IER & 983 \\
\hline 984 & 984 & & G0 to 310 & 984 \\
\hline 985 & 985 & & END IF & 985 \\
\hline 986 & 986 & C & & 986 \\
\hline 987 & 987 & & IJTRIG \(=\) IJTRIG - 1 & 987 \\
\hline 988 & 988 & \({ }^{6}\) & & 988 \\
\hline 989 & 989 & C & SECOND LOOP SUROUNDING KKV2 IS DONE, ihird loop over kkv3 start & 989 \\
\hline 990 & 990 & C & & 990 \\
\hline 991 & 991 & & IVV = KKV3 & 991 \\
\hline 992 & 992 & & IE = IABS \((\operatorname{IICOLR}(\operatorname{IJTRIG}+1))\) & 992 \\
\hline 993 & 993 & & IV1 = JE ( 1 , IE ) & 993 \\
\hline 994 & 994 & & IF ( IVI. EQ . IVV ) THEN & 994 \\
\hline 995 & 995 & & ISI = JE ( 3 . IE ) & 995 \\
\hline 996 & 996 & & ELSE & 996 \\
\hline 997 & 997 & & ISI \(=\) JE ( 4 , IE ) & 997 \\
\hline 998 & 998 & & ERD IF & 998 \\
\hline 999 & 999 & & IS \(=151\) & 999 \\
\hline 1000 & 1000 & C & & 1000 \\
\hline 1001 & 1001 & & ILOOP - 0 & 1001 \\
\hline 1002 & 1002 & 330 & continue & 1002 \\
\hline 1003 & 1003 & & KDOUBL \(=\) IABS( IICOLR( IJTRIG ) ) & 1003 \\
\hline 1004 & 1004 & C & & 1004 \\
\hline 1005 & 1005 & & ITRIG \(=\) ITRIG + 1 & 1005 \\
\hline 1006 & 1006 & & ISCRSS ( ITRIG) \(=\) IS & 1006 \\
\hline 1007 & 1007 & & IETRIG \(=\) IETRIG +1 & 1007 \\
\hline 1008 & 1008 & & IECRSS ( IETRIG ) = IE & 1008 \\
\hline 1009 & 1009 & C & & 1009 \\
\hline 1010 & 1010 & & IF ( & 1010 \\
\hline 1011 & 1011 & & HYDFLX ( IS , 4) - GT • FLUXPP - OR . & 1011 \\
\hline 1012 & 1012 & & HYDFLX ( IS . 2) . GT • FLUXUUU • OR - & 1012 \\
\hline 1013 & 1013 & & HYDFLX ( IS ; 1). GT . FLUXRR. OR . & 1013 \\
\hline 1014 & 1014 & & KSDELT( IS ) - GT - NIDUMP - OR . & 1014 \\
\hline 1015 & 1015 & & XS( 3, IS ) . GT . AREVGG) THEN & 1015 \\
\hline 1016 & 1016 & & INDCTR \(=3\) & 1016 \\
\hline 1017 & 1017 & & RETURN & 1017
1018 \\
\hline 1018 & 1018 & & END IF & 1018 \\
\hline 1019 & 1019 & c & & 1019 \\
\hline 1020 & 1020 & & D0 340 IR = 1,3 & 1020 \\
\hline 1021 & 1021 & & \(\mathrm{JR}=\mathrm{MOD}(1 \mathrm{R}, 3)+1\) & 1021 \\
\hline 1022 & 1022 & & IEA - IABS ( JS ( JR + 3 . 15 ) ) & 1022 \\
\hline 1023 & 1023 & & IF ( IEA. EQ. IE ) THEN & 1023 \\
\hline 1024 & 1024 & & \(I I R=M O D(J R, 3)+4\) & 1024 \\
\hline 1025 & 1025 & & IEI = JS (IIR IS IS ) & 1025 \\
\hline 1026 & 1026 & & IEIB = IABS ( IEI ) & 1028 \\
\hline 1027 & 1027 & & XEIEB \(=\) XE ( 1.1 IEIB ) & 1027 \\
\hline 1028 & 1028 & & XYLNGT = XYLNGT + XEIEB & 1028 \\
\hline 1029 & 1029 & & IF ( XYLONG - LT . XEIEB ) XYLONG = XEIEB & 1029 \\
\hline 1030 & 1030 & & IF ( XYSHRT . GT , XEIEB) XYSHRT = XEIEB & 1030 \\
\hline 1031 & 1031 & &  & 1031 \\
\hline 1032 & 1032 & & IF ( ILOOP . EQ . 1 - AND . KDOUBL - EQ . IEIB ) THEN & 1032 \\
\hline 1033 & 1033 & & JLOOP = 2 & 1033
1034 \\
\hline 1034
1035 & 1034
1035 & & IETRIG \(=\) IETRIG + 1
IECRSS \((\) IETRIG \()=\) KDOUBL & 1034 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 1110 & 1110 & C & & 1110 \\
\hline 1111 & 1111 & & D0 370 IR = 1, 3 & 1111 \\
\hline 1112 & 1112 & & \(J \mathrm{M}=\mathrm{MOD}(\mathrm{IR} \mathrm{}, \mathrm{3)} \mathrm{+} 1\) & 1112 \\
\hline 1113 & 1113 & & IEA \(=\) IABS ( JS ( JR + 3, IS ) ) & 1113 \\
\hline 1114 & 1114 & & IF ( IEA . EQ . IE ) THEN & 1114 \\
\hline 1115 & 1115 & & \(I I R=M O D(J R, 3)+4\) & 1115 \\
\hline 1116 & 1116 & & \(I E I=J S(I I R, I S)\) & 1116 \\
\hline 1117 & 1117 & & IEIB \(=\) IABS ( IEI ) & 1117 \\
\hline 1118 & 1118 & & XEIEB \(=\) XE ( 1 , IEIB ) & 1118 \\
\hline 1119 & 1119 & & XYLNGT \(=\) XYLNTT + XEIEB & 1119 \\
\hline 1120 & 1120 & & IF ( XYLONG . LT . XEIEB ) XYLONG = XEIEB & 1120 \\
\hline 1121 & 1121 & & IF ( XYSHRT . GT . XEIEB ) XYSHRT = XEIEB & 1121 \\
\hline 1122 & 1122 & & ILOOP = ILOOP + I & 1122 \\
\hline 1123 & 1123 & & IF ( ILOOP . EQ . 1 . AND . JDOUBL . EQ . IEIB ) THEN & 1123 \\
\hline 1124 & 1124 & & JLOOP = 3 & 1124 \\
\hline 1125 & 1125 & & IETRIG = IETRIG + 1 & 1125 \\
\hline 1126 & 1126 & & IECRSS ( IETRIG ) = JDOU8L & 1126 \\
\hline 1127 & 1127 & & IJTRIG = IJIRIG - 1 & 1127 \\
\hline 1128 & 1128 & & IF ( IEI . GT . 0) THEN & 1128 \\
\hline 1129 & 1129 & & JKVV \(=\mathrm{JE}\) ( 1 , IEIB ) & 1129 \\
\hline 1130 & 1130 & & ELSE & 1130 \\
\hline 1131 & 1131 & & JKVV \(=\mathrm{JE}(2, \mathrm{IEIB})\) & 1131 \\
\hline 1132 & 1132 & & EMD IF & 1132 \\
\hline 1133 & 1133 & & JVDELT = JVDELT + 1 & 1133 \\
\hline 1134 & 1134 & & IVOELT ( JVOELT ) * JKWV & 1134 \\
\hline 1135 & 1135 & & ILOOP \(=0\) & 1135 \\
\hline 1136 & 1136 & & ELSE & 1136 \\
\hline 1137 & 1137 & & IJTRIG \(=\) IJTRIG +1 & :1137 \\
\hline 1138 & 1138 & & IICOLR ( IJTRIG ) = IEI & 1138 \\
\hline 1139 & 1139 & & END If & 1139 \\
\hline 1140 & 1140 & & \(J J R=\operatorname{HOD}(J R+1,3)+4\) & 1140 \\
\hline 1141 & 1141 & &  & 1141 \\
\hline 1142 & 1142 & C & & 1142 \\
\hline 1143 & 1143 & & IV1 \(=\mathrm{JE}(1\), IER \()\) & 1143 \\
\hline 1144 & 1144 & & IF ( IV1. EQ . IVV) THEN & 1144 \\
\hline 1145 & 1145 & & ISR = JE ( 3 , IER ) & 1145 \\
\hline 1146 & 1146 & & ELSE & 1146 \\
\hline 1147 & 1147 & & ISR = JE ( 4 , IER ) & 1147 \\
\hline 1148 & 1148 & & END IF & 1148 \\
\hline 1149 & 1149 & & END IF & 1149 \\
\hline 1150 & 1150 & C & & 1150 \\
\hline 1151 & 1151 & 370 & CONTINUE & 1151 \\
\hline 1152 & 1152 & C & & 1152 \\
\hline 1153 & 1153 & & IF (ISR . NE . ISI ) THEN & 1153 \\
\hline 1154 & 1154 & & \(I S=I S R\) & 1154 \\
\hline 1155 & 1155 & & IE = IER & 1155 \\
\hline 1156 & 1156 & & GO TO 360 & 1156 \\
\hline 1157 & 1157 & & END IF & 1157 \\
\hline 1158 & 1158 & C & & 1158 \\
\hline 1159 & 1159 & 350 & CONTINUE & 1159 \\
\hline 1160 & 1160 & C & & 1160 \\
\hline 1161 & 1161 & & IETRIG \(=\) IETRIG +1 & 1161 \\
\hline 1162 & 1162 & & IECRSS ( IETRIG) = IER & 1162 \\
\hline 1163 & 1163 & C & & 1163 \\
\hline 1164 & 1164 & & ITYPE \(=\) JE ( 5 , IER ) & 1164 \\
\hline 1165 & 1165 & 6 & & 1165 \\
\hline 1166 & 1166 & & XEIEB = XE ( 1 , IER ) & 1166 \\
\hline 1167 & 1167 & & XEIEB = XXYYIB + XEIEB & 1167 \\
\hline 1168 & 1168 & & XYLET \(¢\) T XYLNGT + XEIEB & 1168 \\
\hline 1169 & 1169 & & IF \(\left\{\right.\) X \({ }^{\text {r }}\) (ONG . LT . XEIEB ) XYLONG \(=\) XEIEB & 1169 \\
\hline 1170 & 1170 & & IF ( XYSHRT . GT . XEIEB ) XYSHRT = XEIEB & 1170 \\
\hline 1171 & 1171 & C & & 1171 \\
\hline 1172 & 1172 & & \(1 \mathrm{NDCTR}=2\) & 1172 \\
\hline 1173 & 1173 & \(C\) & IF ( XYLONG / XYSHRT . GT . 10. . AND . JLOOP . EO . O ) RETURN & 1173 \\
\hline 11.7 & 1174 & C & & 1174 \\
\hline 1175 & 1175 & & IVI = IVIN & 1175 \\
\hline 1176 & 1176 & & IE1 = IICOLR ( IJTRIG) & 1176 \\
\hline 1177 & 1177 & & IF ( IE1. GT . 0) THEN & 1177 \\
\hline 1178 & 1178 & & IV2 = JE ( 2 , IE1) & 1178 \\
\hline 1179 & 1179 & & ELSE & 1179 \\
\hline 1:00 & 1180 & & IV2 = JE ( \(1 .-\mid E 1)\) & 1180 \\
\hline 1181 & 1181 & & END IF & 1181 \\
\hline 1182 & 1182 & C & & 1182 \\
\hline 1183 & 1183 & & NEC = IECRSS ( IETRIG ) & 1183 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 1258 & 1258 & & \(1 E=I E R\) & 1258 \\
\hline 1259 & 1259 & & G0 TO 380 & 1259 \\
\hline 1260 & 1260 & & END IF & 1260 \\
\hline 1261 & 1261 & C & & 1261 \\
\hline 1262 & 1262 & C & FIRST LOOP SUROUNDING KKVI IS DONE, SECOND LOOP OVER KKV2 START & 1262 \\
\hline 1263 & 1263 & C & & 1263 \\
\hline 1264 & 1264 & & IJTRIG \(=\) IJTRIG - 1 & 1264 \\
\hline 1265 & 1265 & 400 & CONTINUE & 1265 \\
\hline 1266 & 1266 & C & & 1266 \\
\hline 1267 & 1267 & & IEJK = IICOLR( IJTRIG ) & 1267 \\
\hline 1268 & 1268 & & IF (IEJK . GT . 0) THEN & 1268 \\
\hline 1269 & 1269 & & IVIEJK \(=\) JE ( 1 , IEJK ) & 1269 \\
\hline 1270 & 1270 & & IJEJK5 = JE ( 5 , IEJK \()\) & 1270 \\
\hline 1271 & 1271 & & ELSE & 1271 \\
\hline 1272 & 1272 & & IVIE: \(=\) JE ( \(2 \cdot-\) IEJK \()\) & 1272 \\
\hline 1273 & 1273 & & IJEJF5 = JE( 5 , -IEJK ) & 1273 \\
\hline 1274 & 1274 & & END IF & 1274 \\
\hline 1275 & 1275 & C & & 1275 \\
\hline 1276 & 1276 & & IF ( IJEJK5 . EQ . O) THEN & 1276 \\
\hline 1277 & 1277 & & JLOOP \(=1\) & 1277 \\
\hline 1278 & 1278 & C & & 1278 \\
\hline 1279 & 1279 & C & INTERMEDIATE LOOP START . & 1279 \\
\hline 1280 & 1280 & C & & 1280 \\
\hline 1281 & 1281 & & IEJKI \(=\) IABS ( IICOLR ( IJTRIG - 1) ) & 1281 \\
\hline 1282 & 1282 & & IEJK2 = IABS ( IEJK ) & 1282 \\
\hline 1283 & 1283 & & IETRIG - IETRIG + 1 & 1283 \\
\hline 1284 & 1284 & & IECRSS ( IETRIG ) = IEJK2 & 1284 \\
\hline 1285 & 1285 & & IJTRIG = IJTRIG - 2 & 1285 \\
\hline 1286 & 1285 & & IVV = IVIEJK & 1286 \\
\hline 1287 & 1287 & & SVDELT = JVDELT + 1 & 1287 \\
\hline 1288 & 1288 & & IVDELT ( JVDELT ) = IVV & 1288 \\
\hline 1289 & 1289 & & IE = IEJKI & 1289 \\
\hline 1290 & 1290 & & IVI = JE( 1 , IE ) & 1290 \\
\hline 1291 & 1291 & & IF ( IVI. EQ . IVV ) THEN & 1291 \\
\hline 1292 & 1292 & & ISI = JE ( 3, IE ) & 1292 \\
\hline 1293 & 1293 & & ELSE & 1293 \\
\hline 1294 & 1294 & & ISI = JE ( 4 , IE) & 1294 \\
\hline 1295 & 1295 & & END IF & 1295 \\
\hline 1296 & 1296 & & IS = ISI & 1296 \\
\hline 1297 & 1297 & & IET \(=\) IEJK2 & 1297 \\
\hline 1298 & 1298 & C & & 1298 \\
\hline 1299 & 1299 & 410 & continue & 1299 \\
\hline 1300 & 1300 & C & & 1300 \\
\hline 1301 & 1301 & & ITRIG = ITRIG + 1 & 1301 \\
\hline 1302 & 1302 & & ISCRSS ( ITRIG ) = IS & 1302 \\
\hline 1303 & 1303 & C & & 1303 \\
\hline 1304 & 1304 & & IETRIG \(=\) IETRIG +1 & 1304 \\
\hline 1305 & 1305 & & IECRSS ( IETRIG ) = IE & 1305 \\
\hline 1305 & 1306 & C & & 1306 \\
\hline 1307 & 1307 & & IF( & 1307 \\
\hline 1308 & 1308 & & HYDFLX ( IS , 4) . GT . FLUXPP . OR . & 1308 \\
\hline 1309 & 1309 & & HYDFLX ( IS , 2) . GT . FLUXUUU . OR - & 1309 \\
\hline 1310 & 1310 & & HYDFLX ( IS ; 1 ). GT . FLUXRR - OR . & 1310 \\
\hline 1311 & 1311 & & KSDELT ( IS ) - GT - NIDUMP ; OR & 1311 \\
\hline 1312 & 1312 & & XS ( 3, IS ) . GT . AREVGG) THEN & 1312 \\
\hline 1313 & 1313 & & INDCTR = 3 & 1313 \\
\hline 1314 & 1314 & & RETURN & 1314 \\
\hline 1315 & 1315 & & END If & 1315 \\
\hline 1316 & 1316 & C & & 1316 \\
\hline 1317 & 1317 & & D0 420 IR = 1 , 3 & 1317 \\
\hline 1318 & 1318 & & \(J \mathrm{R}=\mathrm{MOD}(\mathrm{IR}, 3)+1\) & 1318 \\
\hline 1319 & 1319 & & \(I E A=I A B S(3 S(J R+3, I S)\) ) & 1319 \\
\hline 1320 & 1320 & & IF (IEA. EQ . IE ) THEN & 1320 \\
\hline 1321 & 1321 & & \(I I R=M O D(J R, 3)+4\) & 1321 \\
\hline 1322 & 1322 & & IEI = JS( IIR , IS ) & 1322 \\
\hline 1323 & 1323 & & \(I E I B=I A B S(I E I)\) & 1323 \\
\hline 1324 & 1324 & & XEIEB \(=\) XE ( 1, IEIB ) & 1324 \\
\hline 1325 & 1325 & & XYLNGT \(=\) XYLNGT + XEIEB & 1325 \\
\hline 1326 & 1326 & & IF (XYLONG . LT . XEIEB ) XYLONG = XEIEB & 1326 \\
\hline 1327 & 1327 & & IF ( XYSHRT . GT . XEIEB ) XYSHRT = XEIEB & 1327 \\
\hline 1328 & 1328 & & IIKK = IABS ( IICOLR ( IJTRIG ) ) & 1328 \\
\hline 1329 & 1329 & & If ( IIKK . EQ . IEIB ) THEN & 1329 \\
\hline 1330 & 1330 & & JLOOP = 2 & 1330 \\
\hline 1331 & 1331 & & IETRIG \(=\) IETRIG + 1 & 1331 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1332 & 1332 & & IECRSS ( IETRIG ) = IEIB & \\
\hline 1333 & 1333 & & IJTRIG \(=\) IJTRIG - 1 & 1332 \\
\hline 1334 & 1334 & & IF ( IEI . GT . O) Then & 1333 \\
\hline 1335 & 1335 & & JKVV = JE( 1, IEIB ) & 1334 \\
\hline 1336 & 1336 & & ELSE & 1335 \\
\hline 1337 & 1337 & & JKVV \(=\mathrm{JE}\) ( 2 , IEIB) & 1337 \\
\hline 1338 & 1338 & & END IF & 1338 \\
\hline 1339 & 1339 & & JVDELT = JVDELT + 1 & 1339 \\
\hline 1340 & 1340 & & IVDELT ( JVDELT ) - JKVV & 1340 \\
\hline 1341 & 1341 & & ELSE & 1341 \\
\hline 1342 & 1342 & & IJTRIG * IJTRIG + 1 & 1342 \\
\hline \begin{tabular}{l}
1343 \\
1344 \\
\hline
\end{tabular} & 1343
1344
1345 & & IICOLR ( IJTRIG ) = IEI & 1343 \\
\hline 1345 & 1345 & & \(\mathrm{JJR}=\mathrm{MOO}(\mathrm{JR}+1,3)+4\) & 1344 \\
\hline 1346 & 1346 & &  & \begin{tabular}{l}
1345 \\
1346 \\
\hline
\end{tabular} \\
\hline 1347 & 1347 & C & & 1346 \\
\hline 1348 & 1348 & & IV1 \(=\) JE ( 1. IER ) & 1347 \\
\hline 1349 & 1349 & & IF ( IVI. EQ . IVV ) THEM & 1348
1349 \\
\hline 1350 & 1350 & & ISR \(=\mathrm{JE}\) ( \(3, \mathrm{IER})\) & 1349
1350 \\
\hline 1351 & 1351 & & ELSE & 1351 \\
\hline 1352 & 1352 & & \(15 R=J E(4 . I E R)\) & 1352 \\
\hline 1353 & 1353 & & EMD IF & 1352 \\
\hline 1354 & 1354 & & END If & 1353
1354 \\
\hline 1355 & 1355 & c & & 1354
1355 \\
\hline 1356 & 1356 & 420 & continue & 1355
1356 \\
\hline 1357 & 1357 & c & & 1357 \\
\hline 1358 & 1358 & & IF ( IER . NE . IET ) THEN & 1358 \\
\hline 1359 & 1359 & & IS = ISR & 1359 \\
\hline 1360 & 1360 & & IE = IER & 1360 \\
\hline 1361 & 1361 & & G0 50410 & 1361 \\
\hline 1362
1363 & 1362
1363 & C & END IF & 1362 \\
\hline 1364 & 1364 & & 6010400 & 1363 \\
\hline 1365 & 1365 & & END IF & 1364 \\
\hline 1366 & 1366 & c & & 1365 \\
\hline 1367 & 1357 & c & INTERMEDIATE LOOP IS DONE, SECOND LOOP OVER KKV2 START & 1367 \\
\hline 1368 & 1368 & c & Intenedrat loop is oonc. SECOnd Loop over kkvz Start & 1367 \\
\hline 1369 & 1359 & & IWV = KKV2 & 1368
1369 \\
\hline 1370 & 1370 & & IE = IEIN2 & 1369
1370 \\
\hline 1371 & 1371 & & IVIN2 = JE ( 2, IE ) & 1371 \\
\hline 1372 & 1372 & & IEJKK = IICOLR( IJTRIG) & 1371 \\
\hline 1373 & 1373 & & IV1 - JE( 1 , IE ) & 1372 \\
\hline 1374 & 1374 & & IF ( IVI. EQ . IVV ) THEN & \begin{tabular}{l}
1373 \\
1374 \\
\hline
\end{tabular} \\
\hline 1375 & 1375 & & ISI \(=\) JE ( 3, IE ) & 1375 \\
\hline 1376 & 1376 & & ELSE & 1376 \\
\hline 1377 & 1377 & & \(I S I=J E(4, ~ I E) ~\) & 1377 \\
\hline 1378 & 1378 & & ERD IF & 1378 \\
\hline 1379
1380 & 1379
1380 & c & IS \(=\) ISI & 1379
1379 \\
\hline 1381 & 1381 & 430 & CONTINUE & 1380 \\
\hline 1382 & 1382 & c & continue & 1381 \\
\hline 1383 & 1383 & & ITRIG = ITRIG + 1 & 1382 \\
\hline 1384 & 1384 & & ISCRSS ( ITRIG ) = IS & 1388 \\
\hline 1385 & 1385 & \(c\) & & 1388 \\
\hline 1386 & 1386 & & IETRIG = IETRIG + 1 & 1386 \\
\hline 1387 & 1387 & & IECRSS ( IETRIG ) = IE & 1387 \\
\hline 1388 & 1388 & c & & 1388 \\
\hline 1389 & 1389
1390 & & IF 1 & 1389 \\
\hline 1390
1391 & 1390
1391 & & HYDFLX ( IS , 4) - GT . FLUXPP . OR . & 1390 \\
\hline 1392 & 1392 & &  & 1391 \\
\hline 1393 & 1393 & & KSDELT ( IS ) . GT . MIDUMP . OR . & 1392
1393 \\
\hline 1394 & 1394 & & XS( 3 , is ) . GT . AREVGG ) Then & 1393
1394 \\
\hline 1395 & 1395 & & INDCTR \(=3\), \({ }^{\text {a }}\) ( \({ }^{\text {a }}\) & 1395 \\
\hline 1396 & 1396 & & RETURN & 1396 \\
\hline 1397
398 & 1397
1398 & C & END IF & 1397 \\
\hline 399 & 1399 & & D0 440 IR \(=1,3\) & 1398
1399 \\
\hline 400 & 1400 & & \(J \mathrm{R}=\mathrm{MOD}(\mathrm{IR}, 3 \mathrm{l})+1\) & 1400 \\
\hline 401 & 1401 & & IEA \(=\operatorname{IABS}(\mathrm{JS}(\mathrm{JR}+3,15)\) ) & 1401 \\
\hline 402 & 1402 & & IF ( IEA. EO. IE ) THEN & 1402 \\
\hline 403 & 1403
1404 & &  & 1403 \\
\hline 405 & 1405 & & IEIB \(=\) IABS( \(1 \dot{E}!\) ) & 1404
1405 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1406 & 1406 & & XEIEB - XE ( 1 , IEIB) & 1406 \\
\hline 1407 & 1407 & & XYLNGT = XYLNGT + XEIEB & 1407 \\
\hline 1408 & 1408 & & IF ( XYLONG . LT . XEIEB ) XYLONG - XEIEB & 1408 \\
\hline 1409 & 1409 & & IF ( XYSHRT . GT . XEIES ) XYSHRT = XEIEB & 1409 \\
\hline 1410 & 1410 & & IJIRIG = IJTRIG + \(\overline{1}\) & 1410 \\
\hline 1411 & 1411 & & IICOLR ( IJTRIG ) = IEI & 1411 \\
\hline 1412 & 1412 & & \(33 \mathrm{R}=\mathrm{MOD}(\mathrm{JR}+1,3)+4\) & 1412 \\
\hline 1413 & 1413 & & IER = IABS ( JS ( JJR , IS ) ) & 1413 \\
\hline 1414 & 1414 & C & & 1414 \\
\hline 1415 & 1415 & & IVI = JE ( 1 , IER ) & 1415 \\
\hline 1416 & 1416 & & IF ( IVI. EQ . IVV) THEN & 1416 \\
\hline 1417 & 1417 & & ISR \(=\) JE ( 3 , IER ) & 1417 \\
\hline 1418 & 1418 & & ELSE & 1418 \\
\hline 1419 & 1419 & & ISR = JE( \(4.15 R\) ) & 1419 \\
\hline 1420 & 1420 & & END IF & 1420 \\
\hline 1421 & 1421 & & END IF & 1421 \\
\hline 1422 & 1422 & C & & 1422 \\
\hline 1423 & 1423 & 440 & COntinue & 1423 \\
\hline 1424 & 1424 & C & & 1424 \\
\hline 1425 & 1425 & & IF ( IER . NE . IKKE2 ) THEN & 1425 \\
\hline 1426 & 1426 & & IS = ISR & 1426 \\
\hline 1427 & 1427 & & IE \(=\) IER & 1427 \\
\hline 1428 & 1428 & & GO TO 430 & 1428 \\
\hline 1429 & 1429 & & END IF & 1429 \\
\hline 1430 & 1430 & \(c\) & & 1430 \\
\hline 1431 & 1431 & & [JTRIG = IJTRIG - 1 & 1431 \\
\hline 1432 & 1432 & C & & 1432 \\
\hline 1433 & 1433 & C & SECOND LOOP SUROUNDING KKV2 IS DONE, THIRD LOOP OVER KKV3 START & 1433 \\
\hline 1434 & 1434 & c & & 1434 \\
\hline 1435 & 1435 & & IVV = KKV3 & 1435 \\
\hline 1436 & 1436 & & \(I E=I A B S(\operatorname{ICOLR}(\operatorname{IJTRIG}+1))\) & 1436 \\
\hline 1437 & 1437 & & IVI \(=\) JE ( \(1.1 E\) ) & 1437 \\
\hline 1438 & 1438 & & IF ( IVI. EQ . IVV ) THEN & 1438 \\
\hline 1439 & 1439 & & ISI = JE ( 3 , IE ) & 1439 \\
\hline 1440 & 1440 & & ELSE & 1440 \\
\hline 1441 & 1441 & & ISI \(=\) JE ( 4.15 ) & 1441 \\
\hline 1442 & 1442 & & EMD IF & 1442 \\
\hline 1443 & 1443 & & IS = ISI & 1443 \\
\hline 1444 & 1444 & C & & 1444 \\
\hline 1445 & 1445 & & ILOOP \(=0\) & 1445 \\
\hline 1446 & 1446 & 450 & CONTINUE & 1446 \\
\hline 1447 & 1447 & & IDOUBL \(=\) IABS ( IICOLR( IJTRIG ) ) & 1447 \\
\hline 1448 & 1448 & C & & 1448 \\
\hline 1449 & 1449 & & ITRIG = ITRIG + 1 & 1449 \\
\hline 1450 & 1450 & & ISCRSS ( ITRIG ) = IS & 1450 \\
\hline 1451 & 1451 & & IETRIG \(=\) IETRIG +1 & 1451 \\
\hline 1452 & 1452 & & IECRSS ( IETRIG) = IE & 1452 \\
\hline 1453 & 1453 & c & & 1453 \\
\hline 1454 & 1454 & & If \((\) & 1454 \\
\hline 1455 & 1455 & & HYDFLX ( IS , 4) . GT . FLUXPP . OR . & 1455 \\
\hline 1456 & 1456 & & HYDFLX ( IS , 2) . GT . FLUXUU . OR . & 1456 \\
\hline 1457 & 1457 & & HYOFLX ( IS ; 1 ). GT. FLUXRR. OR . & 1457 \\
\hline 1458 & 1458 & &  & 1458 \\
\hline 1459
1460 & 1459 & & XS( \({ }^{\text {K }}\) ( 15 ) . GT . AREVGG) THEN & 1459
1460 \\
\hline 1460
1461 & 1460 & & \(\underset{\text { INETURN }}{\text { INOCTR }}\) - 3 & 1460 \\
\hline 1461 & 1461
1462 & & RETURN
END IF & 1461 \\
\hline 1462 & 1462
1463 & & END If & 1462 \\
\hline 1463
1464 & 1463
1464 & C & D0 460 IR = 1 , 3 & 1464 \\
\hline 1465 & 1465 & & \(J \mathrm{R}=\mathrm{MOD}(1 \mathrm{R}, 3)+1\) & 1465 \\
\hline 1466 & 1466 & & IEA \(=\operatorname{IABS}(\mathrm{JS}(\mathrm{JR}+3,15)\) ) & 1466 \\
\hline 1467 & 1467 & & IF ( IEA EQ - IE ) THEN & 1467 \\
\hline 1468 & 1468 & & IIR \(=\mathrm{MOD}(\mathrm{JR}, 3)+4\) & 1468 \\
\hline 1469 & 1469 & & IEI \(=\) JS(IIR iS IS ) & 1469 \\
\hline 1470 & 1470 & & IEIB \(=\) IABS ( IEI ) & 1470 \\
\hline 1471 & 1471 & & XEIE日 \(=\) XE ( 1 , IEIB ) & 1471 \\
\hline 1472 & 1472 & & XYLNGT = XYLNGT + XEIEB & 1472 \\
\hline 1473 & 1473 & & IF ( XYLONG - LT . XEIEB ) XYLONG = XEIEB & 1473 \\
\hline 1474
1475 & 1474
1475 & &  & 1474 \\
\hline 1475
1476 & 1475
1476 & & ILOOP = ILILOOP + 1 . ANO . IDOUBL . EQ . IEIB ) THEN & 1475
1476 \\
\hline 1477 & 1477 & & JLOOP \(=3\) & 1477 \\
\hline 1478 & 1478 & & IETRIG = IETRIG + 1 & 1478 \\
\hline 1479 & 1479 & & IECRSS ( IETRIG ) = IDOU8L & 1479 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 1554 & 1554 & C & & 1554 \\
\hline 1555 & 1555 & & D0 490 IR = 1, 3 & 1555 \\
\hline 1556 & 1556 & & \(J \mathrm{P}=\mathrm{MOD}(\mathrm{IR}, 3)+1\) & 1556 \\
\hline 1557 & 1557 & & IEA \(=\) IABS ( JS ( JR \(+3, \mathrm{IS})\) ) & 1557 \\
\hline 1558 & 1558 & & IF ( IEA. EQ . IE ) THEN & 1558 \\
\hline 1559 & 1559 & & IIR \(=\) MOD ( JR , 3) + 4 & 1559 \\
\hline 1560 & 1560 & & IEI \(=\) JS ( IIR , IS ) & 1560 \\
\hline 1561 & 1561 & & \(1 E I B=\) IABS ( IEI ) & 1561 \\
\hline 1562 & 1562 & & XEIEB \(=\) XE ( 1. IEIB ) & 1562 \\
\hline 1563 & 1563 & & XYLNGT \(=\) XYLNGT + XEIEB & 1563 \\
\hline 1564 & 1564 & & IF (XYLONG . LI . XEIEB ) XYLONG = XEIEB & 1564 \\
\hline 1565 & 1565 & & IF ( XYSHRT . GT . XEIEB) XYSHRT = XEIEB & 1565 \\
\hline 1566 & 1566 & & ILOOP \(=\) ILOOP + 1 & 1566 \\
\hline 1567 & 1567 & & IF ( ILOOP . EQ . 1 . AND . JDOUBL . EQ . IEIB ) THEN & 1567 \\
\hline 1568 & 1568 & & JLOOP \(=4\) & 1568 \\
\hline 1569 & 1569 & & IETRIG \(=\) IETRIG + 1 & 1569 \\
\hline 1570 & 1570 & & IECRSS ( IETRIG ) \(=\) JDOUBL & 1570 \\
\hline 1571 & 1571 & & IJTRIG \(=\) IJTRIG - 1 & 1571 \\
\hline 1572 & 1572 & & IF ( IEI . GT . 0) THEN & 1572 \\
\hline 1573 & 1573 & & JKVV = JE( 1 , IEIB ) & 1573 \\
\hline 1574 & 1574 & & ELSE & 1574 \\
\hline 1575 & 1575 & & JKWV = JE ( 2 , IEIB ) & 1575 \\
\hline 1576 & 1576 & & END IF & 1576 \\
\hline 1577 & 1577 & & JVDELT = JVDELT + 1 & 1577 \\
\hline 1578 & 1578 & & IVDELT ( JVDELT ) = JKVV & 1578 \\
\hline 1579 & 1579 & & ILOOP - 0 & 1579 \\
\hline 1580 & 1580 & & ELSE & 1580 \\
\hline 1581 & 1581 & & [JTRIG = IJTRIG + 1 & 1581 \\
\hline 1582 & 1582 & & IICOLR ( IJTRIG ) = IEI & 1582 \\
\hline 1583 & 1583 & & END IF & 1583 \\
\hline 1584 & 1584 & & \(J J R=M O D(J R+1,3)+4\) & 1584 \\
\hline 1585 & 1585 & &  & 1585 \\
\hline 1586 & 1586 & C & & 1586 \\
\hline 1587 & 1587 & & IV1 = JE( 1 , IER ) & 1587 \\
\hline 1588 & 1588 & & IF ( IVI. EQ . IVV) THEN & 1588 \\
\hline 1589 & 1589 & & ISR = JE ( 3 , IER ) & 1589 \\
\hline 1590 & 1590 & & ELSE & 1590 \\
\hline 1591 & 1591 & & ISR \(=\mathrm{JE}(4, \mathrm{IER})\) & 1591 \\
\hline 1592 & 1592 & & END IF & 1592 \\
\hline 1593 & 1593 & & END IF & 1593 \\
\hline 1594 & 1594 & C & & 1594 \\
\hline 1595 & 1595 & 490 & CONTINUE & 1595 \\
\hline 1596 & 1596 & C & & 1596 \\
\hline 1597 & 1597 & & IF ( ISR . NE . ISI ) THEN & 1597 \\
\hline 1598 & 1598 & & \(I S=I S R\) & 1598 \\
\hline 1599 & 1599 & & IE - IER & 1599 \\
\hline 1600 & 1600 & & 60 T0 480 & 1600 \\
\hline 1601 & 1601 & & END If & 1601 \\
\hline 1602 & 1602 & ¢ & & 1602 \\
\hline 1603 & 1603 & 470 & CONTINUE & 1603 \\
\hline 1604 & 1604 & C & & 1604 \\
\hline 1605 & 1605 & & IETRIG - IETRIG + 1 & 1605 \\
\hline 1606 & 1606 & & IECRSS ( IETRIG) = IER & 1606 \\
\hline 1607 & 1607 & C & & 1607 \\
\hline 1608 & 1608 & & ITYPE = JE ( 5 , IER ) & 1608 \\
\hline 1609 & 1609 & c & & 1609 \\
\hline 1610 & 1610 & & XEIEB \(=\) XE ( 1 , IER ) & 1610 \\
\hline 1611 & 1611 & & XEIEB \(=\) XXYYIB + XEIEB & 1611 \\
\hline 1612 & 1612 & & XYLNGT \(=\) XYLNGT + XEIEB & 1612 \\
\hline 1613 & 1613 & & IF ( XYLONG . LT . XEIEB ) XYLONG = XEIEB & 1613 \\
\hline 1614 & 1614 & & IF ( XYSHRT . GT . XEIEB ) XYSHRT = XEIEB & 1614 \\
\hline 1615 & 1615 & \(c\) & & 1615 \\
\hline 1616 & 1616 & & INDCTR \(=2\) & 1616 \\
\hline 1617 & 1617 & C & IF ( XYLONG / XYSHRT . GT . 10. . AND . JLOOP . EQ . 0 ) RETURN & 1617 \\
\hline 1618 & 1618 & c & & 1618 \\
\hline 1619 & 1619 & & JE( 2 , IEJKK ) = IVIN2 & 1619 \\
\hline 1620 & 1620 & C & & 1620 \\
\hline 1621 & 1621 & & IVI = IVINI & 1621 \\
\hline 1622 & 1622 & & IEI \(=1\) ICOLR( IJTRIG) & 1622 \\
\hline 1623 & 1623 & & IF ( IEI. GT . 0) THEN & 1623 \\
\hline 1624 & 1624 & & IV2 = JE ( 2 , IE1) & 1624 \\
\hline 1625 & 1625 & & ELSE & 1625 \\
\hline 1626 & 1626 & & IV2 - JE( 1 . - IE1) & 1626 \\
\hline 1627 & 1627 & & END If & 1627 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1628 & 1628 & C & & 1628 \\
\hline 1629 & 1629 & & NEC = IECRSS ( IETRIG) & 1629 \\
\hline 1630 & 1630 & & IETRIG = IETRIG - 1 & 1630 \\
\hline 1631 & 1631 & c & & 1631 \\
\hline 1632 & 1632 & & JV( 2, IV2 \()=-\mathrm{NEC}\) & 1632 \\
\hline 1633 & 1633 & & JE \((1, \mathrm{NEC})=\operatorname{IV2}\) & 1633 \\
\hline 1634 & 1634 & & JE \((2\), NEC \()=\operatorname{IVI}\) & 1634 \\
\hline 1635 & 1635 & & JE( \(4, N \mathrm{NEC})=0\) & 1635 \\
\hline 1636 & 1636 & & JE ( 5 , NEC ) = 1TYPE & 1636 \\
\hline 1637
1638 & 1637
1638 & C & IJTRIG = IJTRIG + 1 & 1637 \\
\hline 1639 & 1639 & & IICOLR ( IJTRIG \()=\) NEC & 1638 \\
\hline 1640 & 1640 & C & & 1649 \\
\hline 1641 & 1641 & & ELSE IF ( IKKE . EQ . 4 ) Then & 1641 \\
\hline 1642 & 1642 & & print*, 'ikke \(\mathbf{4}^{\text {', } k s d, ~ i k k e ~}\) & 1642 \\
\hline 1643 & 1643 & C & & 1643 \\
\hline 1644 & 1644 & c & begining the deletion process if kso has an edge on the boundary & 1644 \\
\hline 1645 & 1645 & \({ }^{\text {c }}\) & AND THE THIRD VERTEX IS OLSO ON THE BOUNDARY. & 1645 \\
\hline 1646 & 1646 & C & THE FIRST LOOP IS AROUND VERTEX KKV2. & 1646 \\
\hline 1647 & 1647 & C & & 1647 \\
\hline 1648 & 1648 & & IVV = KKV2 & 1648 \\
\hline 1649 & 1649 & & IE \(=\) IEIN1 & 1649 \\
\hline 1650 & 1650 & & XXYYIB = XE ( \(1, ~ I E)+\) XE ( 1, IKKE1) & 1650 \\
\hline 1651
1652 & 1651 & & IVI \(=\) JE ( 1 , IE) & 1651 \\
\hline 1653 & 1653 & &  & 1652 \\
\hline 1654 & 1654 & & ISI = JE( 3 , IE \()\) THEN & 1653 \\
\hline 1655 & 1655 & & ELSE & 1654
1655 \\
\hline 1656 & 1656 & & ISI = JE ( \(4, ~ I E)\) & 1656 \\
\hline 1657 & 1657 & & END If & 1657 \\
\hline 1658 & 1658 & & IS \(=15 \mathrm{I}\) & 1658 \\
\hline 1659 & 1659 & C & & 1659 \\
\hline 1660 & 1660 & 500 & COntinue & 1660 \\
\hline 1661 & 1661 & C & & 1661 \\
\hline 1662 & 1662 & & ITRIG \(=\) ITRIG +1 & 1662 \\
\hline 1663 & 1663 & & ISCRSS ( ITRIG ) = IS & 1663 \\
\hline 1664 & 1664 & & IETRIG \(=\) IETRIG +1 & 1664 \\
\hline 1665 & 1665 & & IECRSS ( IETRIG) = IE & 1665 \\
\hline 1666 & 1666 & C & & 1666 \\
\hline 1667
1668 & 1667
1668 & & IF ( HyDFLX ( 15,4), GT . FLuxpp or & 1667 \\
\hline 1669 & 1669 & &  & 1668
1669 \\
\hline 1670 & 1670 & & HYDFLX ( IS ; 1 ). GT. FLUXRR. OR. & 1670 \\
\hline 1671 & 1671 & & KSDELT ( IS ) . GT . MIDUMP - OR . & 1671 \\
\hline 1672 & 1672 & & XS ( 3 . IS ) . GT . AREvgG ) then & 1672 \\
\hline 1673 & 1673 & & INDCTR - 3 ( \({ }^{\text {a }}\) & 1673 \\
\hline 1674 & 1674 & & RETURN & 1674 \\
\hline 1675 & 1675 & & ENO IF & 1675 \\
\hline 1676 & 1676 & C & & 1576 \\
\hline 1677 & 1677 & & D0 510 IR = 1, 3 & 1677 \\
\hline 1678 & 1678 & & \(J \mathrm{R}=\mathrm{MOD}(\mathrm{IR} \cdot 3)+1\) & 1678 \\
\hline 1679 & 1679 & & IEA \(=\operatorname{IABS}(J S(J R+3, ~ I S))\) & 1679 \\
\hline 1680 & 1680 & & IFI IEA. EQ. IE ) THEN & 1680 \\
\hline 1681 & 1681 & & \(I I R=M O D(J R, 3)+4\) & 1681 \\
\hline 1682 & 1682 & & IEI \(=\) JS (IIR \(\cdot\) IS \()\) & 1682 \\
\hline 1683 & 1683 & & IEIB = IABS ( IEI ) & 1683 \\
\hline 1684
1685 & 1684 & & XEIEB \(=\) XE ( 1 , IEIB ) & 1684 \\
\hline 1685
1686 & 1685 & & XYLNGT \(=\) XYLNGT + XEIEB & 1685 \\
\hline 1686
1687 & 1686 & & IF ( XYLONG . LT . XEIEB ) XYLONG = XEIEB & 1686 \\
\hline 1688 & 1688 & & IF (XYSHRT
IJTRIG \(=\) IJTRIG +1 & 1687 \\
\hline 1689 & 1689 & & IICOLR ( IJTRIG ) = IEI & 1688
1689 \\
\hline 1690 & 1690 & & \(J J R=M O D(J R+1,3)+4\) & 1690 \\
\hline 1691 & 1691 & & \(I E R=\operatorname{IABS}(\mathrm{JS}(\mathrm{J} R\). IS ) \()\) & 1691 \\
\hline 1692 & 1692 & C & & 1692 \\
\hline 1693
1694 & 1693 & & IVI - JE ( 1 . IER ) & 1693 \\
\hline 1694
1695 & 1694
1695 & & IF ( IVI P EQ . IVV ) THEN & 1694 \\
\hline 1696 & 1696 & & \(\underset{\text { ELSE }}{\text { ISR }}=\) JE( 3 , IER \()\) & 1695 \\
\hline 1697 & 1697 & & ISR = JE ( 4 , IER ) & 1697 \\
\hline 1698
1699 & 1698 & & ENO If & 1698 \\
\hline 1699
1700 & 1699 & & END IF & 1699 \\
\hline 1700
1701 & 1700 & \({ }_{5}\) & & 1700 \\
\hline 1701 & 1701 & 510 & continue & 1701 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1702 & 1702 & C & & 1702 \\
\hline 1703 & 1703 & & IF ( IER . NE . IKKE1) THEN & 1703 \\
\hline 1704 & 1704 & & IS = ISR & 1704 \\
\hline 1705 & 1705 & & IE - IER & 1705 \\
\hline 1706 & 1706 & & GO 10500 & 1706 \\
\hline 1707 & 1707 & & END IF & 1707 \\
\hline 1708 & 1708 & C & & 1708 \\
\hline 1709 & 1709 & C & FIRST LOOP SUROUNDING KKV2 IS dohe, SECOND LOOP OVER KKV3 START & 1709 \\
\hline 1710 & 1710 & C & & 1710 \\
\hline 1711 & 1711 & & IJTRIG = IJTRIG - 1 & 1711 \\
\hline 1712 & 1712 & 520 & CONTINUE & 1712 \\
\hline 1713 & 1713 & C & & 1713 \\
\hline 1714 & 1714 & & IEJK \(=11 \mathrm{COLR}(\) IJTRIG ) & 1714 \\
\hline 1715 & 1715 & & IF (IEJK . GT . 0) THEN & 1715 \\
\hline 1716 & 1716 & & IVIEJK = JE ( 1 , IEJK ) & 1716 \\
\hline 1717 & 1717 & & IJEJK5 = JE ( 5 , [EJK ) & 1717 \\
\hline 1718 & 1718 & & ELSE & 1718 \\
\hline 1719 & 1719 & & IVIEJK = JE( 2 , -IEJK ) & 1719 \\
\hline 1720 & 1720 & & 1JEJK5 = JE ( 5 , -IEJK \()\) & 1720 \\
\hline 1721 & 1721 & & END IF & 1721 \\
\hline 1722 & 1722 & C & & 1722 \\
\hline 1723 & 1723 & & IF ( IJEJK5 . EQ . 0 ) THEN & 1723 \\
\hline 1724 & 1724 & C & & 1724 \\
\hline 1725 & 1725 & C & INTERMEDIATE LOOP START & 1725 \\
\hline 1725 & 1726 & C & & 1726 \\
\hline 1727 & 1727 & & JLOOP \(=1\) & 1727 \\
\hline 1728 & 1728 & & IEJKI = IABS ( IICOLR ( IJTRIG - 1) ) & 1728 \\
\hline 1729 & 1729 & & IEJK2 = IABS ( IEJK ) & 1729 \\
\hline 1730 & 1730 & & IETRIG = IETRIG + 1 & 1730 \\
\hline 1731 & 1731 & & IECRSS( IETRIG ) = IEJK2 & 1731 \\
\hline 1732 & 1732 & & [JTRIG = IJTRIG - 2 & 1732 \\
\hline 1733 & 1733 & & IVV = [VIEJK & 1733 \\
\hline 1734 & 1734 & & JVDELT = JVDELT + 1 & 1734 \\
\hline 1735 & 1735 & & IVDELT ( JVDELT ) = IVV & 1735 \\
\hline 1736 & 1736 & & IE = IEJKI & 1736 \\
\hline 1737 & 1737 & & IV1 = JE( 1, IE ) & 1737 \\
\hline 1738 & 1738 & & IF ( IV1. EQ . IVV ) THEN & 1738 \\
\hline 1739 & 1739 & & ISI \(=\mathrm{JE}(3, \mathrm{IE})\) & 1739 \\
\hline 1740 & 1740 & & ELSE & 1740 \\
\hline 1741 & 1741 & & ISI = JE( 4 , IE ) & 1741 \\
\hline 1742 & 1742 & & END IF & 1742 \\
\hline 1743 & 1743 & & IS = ISI & 1743 \\
\hline 1744 & 1744 & & IET = IEJK2 & 1744 \\
\hline 1745 & 1745 & C & & 1745 \\
\hline 1746 & 1746 & 530 & CONTINUE & 1746 \\
\hline 1747 & 1747 & c & & 1747 \\
\hline 1748 & 1748 & & ITRIG = ITRIG + 1 & 1748 \\
\hline 1749 & 1749 & & ISCRSS ( ITRIG ) = IS & 1749 \\
\hline 1750 & 1750 & C & & 1750 \\
\hline 1751 & 1751 & & IETRIG = IETRIG + 1 & 1751 \\
\hline 1752 & 1752 & & IFCRSS ( IETRIG ) = IE & 1752 \\
\hline 1753 & 1753 & C & & 1753 \\
\hline 1754 & 1754 & & IF \((\) & 1754 \\
\hline 1755 & 1755 & & HYDFLX ( IS . 4 ) . GT . FLUXPP . OR . & 1755 \\
\hline 1756 & 1756 & & HYDFLX ( IS , 2 ) . GT . FLUXUU . OR . & 1756 \\
\hline 1757 & 1757 & & HYDFLX ( IS , 1). GT . FLUXRR . OR . & 1757 \\
\hline 1758 & 1758 & & KSDE TT ( IS ) . GT . NIDUMP - OR . & 1758 \\
\hline 1759 & 1759 & & XS ( 3, IS ) . GT . AREVGG) THEN & 1759 \\
\hline 1760 & 1760 & & INDCTR = 3 & 1760 \\
\hline 1761 & 1761 & & RETURN & 1761 \\
\hline 1762 & 1762 & & END If & 1762 \\
\hline 1763 & 1763 & C & & 1763 \\
\hline 1764 & 1764 & & D0 540 IR = 1, 3 & 1764 \\
\hline 1765 & 1765 & & \(J \mathrm{R}=\mathrm{MOD}(\mathrm{IR}, 3)+1\) & 1765 \\
\hline 1766 & 1766 & & IEA = IABS ( JS ( JR + 3, IS ) ) & 1766 \\
\hline 1767 & 1767 & & IF ( IEA . EQ . IE ) THEN & 1767 \\
\hline 1768 & 1768 & & IIR = MOD ( JR , 3 ) + 4 & 1768 \\
\hline 1769 & 1769 & & IEI = JS( IIR , IS ) & 1769 \\
\hline 1770 & 1770 & & IEIB \(=\) IABS( IEI ) & 1770 \\
\hline 1771 & 1771 & & XEIEB \(=\) XE ( 1 , IEIB) & 1771 \\
\hline 1772 & 1772 & & XYLNGT \(=\) XYLNGT + XEIEB & 1772 \\
\hline 1773 & 1773 & & IF ( XYLONG . LT . XEIEB) XYLONG = XEIEB & 1773 \\
\hline 1774 & 1774 & & IF ( XYSHRT . GT . XEIEB) XYSHRT = XEIEB & 1774 \\
\hline 1775 & 1775 & & IIKK = IABS ( IICOLR( IJTRIG) ) & 1775 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1776 & 1776 & & IF ( IIKK . EQ . IEIB ) THEN & 1776 \\
\hline 1777 & 1777 & & JLOOP - 2 & 1777 \\
\hline 1778 & 1778 & & IETRIG \(=\) IETRIG + 1 & 1778 \\
\hline 1779 & 1779 & & IECRSS ( IETRIG) \(=\) IEIB & 1779 \\
\hline 1780 & 1780 & & IJTRIG \(=\) IJTRIG - 1 & 1780 \\
\hline 1781 & 1781 & & IF ( IEI GT . 0) THEN & 1781 \\
\hline 1782 & 1782 & & JKVV \(=\) JE ( 1, IEIB ) & 1782 \\
\hline 1783 & 1783 & & ELSE ( & 1783 \\
\hline 1784 & 1784 & & JKVV \(=\mathrm{JE}\) ( \(2, ~ I E I B)\) & 1783 \\
\hline 1785 & 1785 & & END If & 1785 \\
\hline 1786 & 1786 & & JVDELT - JVDELT + 1 & 1786 \\
\hline 1787 & 1787 & & IVDELT ( JVDELT ) = JKVV & 1787 \\
\hline 1788 & 1788 & & ELSE & 1788 \\
\hline 1789 & 1789 & & IJIRIG * IJTRIG + 1 & 1789 \\
\hline 1790 & 1790 & & IICOLR ( IJTRIG ) = IEI & 1790 \\
\hline 1791 & 1791 & & EHD IF & 1791 \\
\hline 1792 & 1792 & & \(J J R=M O D(J R+1,3)+4\) & 1792 \\
\hline 1793
1794 & 1793
1794 & C & \(I E R=\operatorname{IABS}(\mathrm{JS}(\mathrm{JJR}\), IS ) ) & 1793 \\
\hline 1795 & 1795 & & IVI \(=\) JE( 1 , IER ) & 1794 \\
\hline 1796 & 1796 & & IF ( IVI. EQ . IV ) THEN & \begin{tabular}{l}
1795 \\
1795 \\
\hline
\end{tabular} \\
\hline 1797 & 1797 & & ISR \(=\) JE( \(3, ~ I E R)\) & 1797 \\
\hline 1798 & 1798 & & ELSE & 1798 \\
\hline 1799 & 1799 & & ISR = JE( 4 , IER ) & 1799 \\
\hline 1800 & 1800 & & END If & 1800 \\
\hline 1801 & 1801 & & END If & 1801 \\
\hline 1802 & 1802 & C & & 1802 \\
\hline 1803 & 1803 & 540 & CONTINUE & 1803 \\
\hline 1804 & 1804 & C & & 1804 \\
\hline 1805 & 1805 & & IF ( IER . NE . IET ) THEN & 1805 \\
\hline 1806 & 1806 & & IS \(=\) ISR & 1806 \\
\hline 1807 & 1807 & & IE = IER & 1807 \\
\hline 1808
1809 & 1808
1809 & & GO TO 530 & 1808 \\
\hline 1810 & 1810 & C & END IF & 1809 \\
\hline 1811 & 1811 & & G0 TO 520 & 1810 \\
\hline 1812 & 1812 & & END If & 1812 \\
\hline 1813 & 1813 & C & & 1813 \\
\hline 1814 & 1814 & C & INTERMEDIATE LOOP IS DONE, SECOND LOOP OVER KKV3 START & 1814 \\
\hline 1815 & 1815 & C &  & 1815 \\
\hline 1817 & 1817 & & IVV = KKV3 & 1816 \\
\hline 1818 & 1818 & & IVIN2 \(=\) JE ( \(2, ~ I E)\) & 1817 \\
\hline 1819 & 1819 & & IEJKK = IICOLR( IJTRIG) & 1818
1819 \\
\hline 1820 & 1820 & & IV1 = JE( 1. IE \()\) & 1820 \\
\hline 1821 & 1821 & & IF ( IVI EQ . IVV) THEN & 1821 \\
\hline 1822 & 1822 & & ISI \(=\mathrm{JE}(3,1 E)\) & 1822 \\
\hline 1823 & 1823 & & ELSE ( 4 , IE) & 1823 \\
\hline 1824 & 1824 & & ISI \(=\) JE ( \(4, ~ I E)\) & 1824 \\
\hline 1825 & 1825 & & END If & 1825 \\
\hline 1826 & 1826
1827 & c & IS = ISI & 1826 \\
\hline 1828 & 1828 & 550 & continue & 1827 \\
\hline 1829 & 1829 & c & & 1829 \\
\hline 1830 & 1830 & & ITRIG \(=\) ITRIG + 1 & 1830 \\
\hline 1831 & 1831 & & ISCRSS ( ITRIG) \(=15\) & 1831 \\
\hline 1832 & 1832 & c & & 1832 \\
\hline 1833 & 1833 & & IETRIG = IETRIG + 1 & 1833 \\
\hline 1834 & 1834 & & IECRSS( IETRIG ) - IE & 1834 \\
\hline 1835 & 1835 & c & & 1835 \\
\hline 1836 & 1836 & & IF ( & 1836 \\
\hline 1837 & 1837 & & HYDFLX ( IS , 4) . GT . FLuXPP . OR & 1837 \\
\hline 1838 & 1838 & & HYDFLX ( IS , 2) . GT . FLUXUU . OR. & 1838 \\
\hline 1839 & 1839 & & HYOFLX ( IS , 1). GT . FLUXRR. OR. & 1839 \\
\hline 1840 & 1840 & & KSDELT( IS ) . GT . NIDUMP - OR . & 1840 \\
\hline 1841 & 1841 & & - XS ( 3. IS ) . GT . AREVGG) THEN & 1841 \\
\hline 1842 & 1842 & & INDCTR - 3 & 1842 \\
\hline 1843
1844 & 1843
1844 & & RETURN
END If & 1843 \\
\hline 1845 & 1845 & C & END IF & 1844 \\
\hline 1846 & 1846 & & 00550 IR = 1 , 3 & 1845
1846 \\
\hline 1847 & 1847 & & \(J \mathrm{R}=\mathrm{MOD}\left(\operatorname{IR}{ }^{3}\right.\) ) + 1 & 1847 \\
\hline 1848 & 1848 & & IEA - IAAS ( JS ( JR + 3. IS ) ) & 1848 \\
\hline 1849 & 1849 & & If ( IEA . EQ . IE ) THEN & 1849 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1850 & 1850 & & \(I I R=M O D(J R, 3)+4\) & 1850 \\
\hline 1851 & 1851 & & IEI \(=\) JS (IIR IS IS & 1851 \\
\hline 1852 & 1852 & & IEIB \(=\) IABS ( IEI ) & 1852 \\
\hline 1853 & 1853 & & XEIEB = XE ( 1 , IEIB) & 1853 \\
\hline 1854 & 1854 & & XYLNGT = XYLAGT + XEIEB & 1854 \\
\hline 1855 & 1855 & & IF ( XYLONG . LT . XEIEB ) XYLONG = XEIEB & 1855 \\
\hline 1856 & 1856 & & IF (XYSHRT - GT . XEIEB) XYSHRT = XEIEB & 1856 \\
\hline 1857 & 1857 & & IJTRIG = IJTRIG + 1 & 1857 \\
\hline 1858 & 1858 & & IICOLR (IJTRIG ) - IEI & 1858 \\
\hline 1859 & 1859 & & \(J J R=M O D(J R+1,3)+4\) & 1859 \\
\hline 1860 & 1860 & & IER = IABS ( JS ( JJR , IS ) ) & 1860 \\
\hline 1861 & 1861 & c & & 1861 \\
\hline 1862 & 1862 & & IVI = JE( 1. IER \()\) & 1862 \\
\hline 1863 & 1863 & & IF ( IVI. EQ . IVV) THEN & 1863 \\
\hline 1864 & 1864 & & ISR = JE ( 3 , IER ) & 1864 \\
\hline 1865 & 1865 & & ELSE & 1865 \\
\hline 1866 & 1866 & & ISR = JE ( 4. IER ) & 1866 \\
\hline 1867 & 1867 & & END IF & 1867 \\
\hline 1868 & 1868 & & END IF & 1868 \\
\hline 1869 & 1869 & C & & 1869 \\
\hline 1870 & 1870 & 560 & continue & 1870 \\
\hline 1871 & 1871 & C & & 1871 \\
\hline 1872 & 1872 & & IF ( IER . NE . IKKE3 ) THEN & 1872 \\
\hline 1873 & 1873 & & IS \(=15 R\) & 1873 \\
\hline 1874 & 1874 & & IE = IER & 1874 \\
\hline 1875 & 1875 & & GO TO 550 & 1875 \\
\hline 1876 & 1876 & & ERD IF & 1876 \\
\hline 1877 & 1877 & C & & 1877 \\
\hline 1878 & 1878 & & IJTRIG \(=\) IJTRIG -1 & 1878 \\
\hline 1879 & 1879 & & IETRIG - IETRIG + 1 & 1879 \\
\hline 1880 & 1880 & & IECRSS ( IETRIG ) \(=\) IKKE3 & 1880 \\
\hline 1881 & 1881 & & IETRIG \(=\) IETRIG + 1 & 1881 \\
\hline 1882 & 1882 & & IECRSS ( IETRIG ) = IKKE1 & 1882 \\
\hline 1883 & 1883 & C & & 1883 \\
\hline 1884 & 1884 & C & SECOND LOOP SUROUNDING KKV3 IS DONE, THIRD LOOP OVER KKVI START & 1884 \\
\hline 1885 & 1885 & C & & 1885 \\
\hline 1886 & 1886 & & IVV = KKV1 & 1886 \\
\hline 1887 & 1887 & & IE = IABS ( IICOLR ( IJTRIG + 1) ) & 1887 \\
\hline 1888 & 1888 & & IF ( JE ( 5 , IE ) . NE . 0) THEN & 1888 \\
\hline 1889 & 1889 & & IER = IE & 1889 \\
\hline 1890 & 1890 & & GO TO 570 & 1890 \\
\hline 1891 & 1891 & & ERD IF & 1891 \\
\hline 1892 & 1892 & & IVI = JE( 1, IE ) & 1892 \\
\hline 1893 & 1893 & & IF (INI. EQ . IVV ) THEN & 1893 \\
\hline 1894 & 1894 & & ISI = JE \((3,1 E)\) & 1894 \\
\hline 1895 & 1895 & & ELSE & 1895 \\
\hline 1896 & 1896 & & ISI = JE ( \(4,1 E\) ) & 1896 \\
\hline 1897 & 1897 & & END IF & 1897 \\
\hline 1898 & 1898 & & IS = ISI & 1898 \\
\hline 1899 & 1899 & & ISI \(=0\) & 1899 \\
\hline 1900 & 1900 & C & & 1900 \\
\hline 1901 & 1901 & 580 & continue & 1901 \\
\hline 1902 & 1902 & C & & 1902 \\
\hline 1903 & 1903 & & ITRIG \(=\) ITRIG + 1 & 1903 \\
\hline 1904 & 1904 & & ISCRSS ( ITRIG ) \(=15\) & 1904 \\
\hline 1905 & 1905 & & IETRIG \(=\) IETRIG + 1 & 1905 \\
\hline 1906 & 1906 & & IECRSS ( IETRIG) = IE & 1906 \\
\hline 1907 & 1907 & \(\bigcirc\) & & 1907 \\
\hline 1908 & 1908 & & IF ( & 1908 \\
\hline 1909 & 1909 & & HYDFLX ( IS . 4 ) . GT . FLUXPP . OR - & 1909 \\
\hline 1910 & 1910 & & HYDFLX ( IS . 2 ) - GT . FLUXUU . OR . & 1910 \\
\hline 1911 & 1911 & & HYDFLX ( IS ; 1). GT . FLUXRR. OR . & 1911 \\
\hline 1912 & 1912 & & KSDELT( IS ) . GT - NIDUMP - OR . & 1912 \\
\hline 1913 & 1913 & & XS ( 3 , IS ) . GT . AREVGG ) THEN & 1913 \\
\hline 1914 & 1914 & & INOCTR \(=3\) & 1914 \\
\hline 1915 & 1915 & & RETURN & 1915 \\
\hline 1916 & 1916 & & END IF & 1916 \\
\hline 1917 & 1917 & C & & 1917 \\
\hline 1918 & 1918 & & 00590 IR = 1 , \({ }^{3}\) & 1918 \\
\hline 1919 & 1919 & & \(\mathrm{JR}=\mathrm{MOD}(1 \mathrm{R} \cdot 3)+1\) & 1919 \\
\hline 1920 & 1920 & & IEA = IABS ( JS ( JR + 3 , IS ) ) & 1920 \\
\hline 1921 & 1921 & & IF ( IEA. EQ. IE ) THEN & 1921 \\
\hline 1922 & 1922 & & IIR \(=\) MOD ( JR \(\cdot 3\) ) +4 & 1922 \\
\hline 1923 & 1923 & & IEI = JS( IIR . IS ) & 1923 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 1998 & 1998 & & \(\mathrm{IVI}=\mathrm{JE}(1, \mathrm{IE})\) & 1998 \\
\hline 1999 & 1999 & & IVIN1 \(=\) JE ( 2 , IE ) & 1999 \\
\hline 2000 & 2000 & & IF ( IV1. EO. IVW ) THEN & 2000 \\
\hline 2001 & 2001 & & ISI \(=\) JE( 3 , IE ) & 2001 \\
\hline 2002 & 2002 & & ELSE & 2002 \\
\hline 2003 & 2003 & & ISI \(=\mathrm{JE}(4,1 E)\) & 2003 \\
\hline 2004 & 2004 & & END If & 2004 \\
\hline 2005 & 2005 & & IS = ISI & 2005 \\
\hline 2006 & 2006 & c & & 2006 \\
\hline 2007 & 2007 & 600 & continue & 2007 \\
\hline 2008 & 2008 & c & & 2008 \\
\hline 2009 & 2009 & & ITRIG = ITRIG + 1 & 2009 \\
\hline 2010 & 2010 & & ISCRSS ( ITRIG ) = IS & 2010 \\
\hline 2011 & 2011 & & IETRIG \(=\) IETRIG + 1 & 2011 \\
\hline 2012 & 2012 & & IECRSS ( IETRIG) = IE & 2012 \\
\hline 2013 & 2013 & c & & 2013 \\
\hline 2014 & 2014 & & If( & 2014 \\
\hline 2015 & 2015 & & HYDFLX ( IS . 4 ) . GT . FLUXPP . OR . & 2015 \\
\hline 2016 & 2016 & & HYDFLX ( IS , 2 ) . GT . FLUXUU . OR . & 2016 \\
\hline 2017 & 2017 & & HYDFLX ( IS , 1) . GT . FLUXRR. OR . & 2017 \\
\hline 2018 & 2018 & & KSDELT ( IS ) . GT . NIDUMP - OR . & 2018 \\
\hline 2019 & 2019 & & XS ( 3, IS ) . GT . AREVGG ) THEN & 2019 \\
\hline 2020 & 2020 & & INDCTR \(=3\) & 2020 \\
\hline 2021 & 2021 & & RETURN & 2021 \\
\hline 2022 & 2022 & & END IF & 2022 \\
\hline 2023 & 2023 & C & & 2023 \\
\hline 2024 & 2024 & & D0 610 IR = 1, 3 & 2024 \\
\hline 2025 & 2025 & & \(J \mathrm{R}=\mathrm{MOD}(\mathrm{IR}, 3)+1\) & 2025 \\
\hline 2026 & 2026 & & IEA = IABS JS ( JR + 3 , IS ) ) & 2026 \\
\hline 2027 & 2027 & & IF ( IEA. EQ . IE ) THEN & 2027 \\
\hline 2028 & 2028 & & \(I I R=\operatorname{MOD}(J \mathrm{P}, 3)+4\) & 2028 \\
\hline 2029 & 2029 & & IEI \(=\) JS(IIR IS IS \()\) & 2029 \\
\hline 2030 & 2030 & & IEIB \(=\) IABS ( IEI \()\) & 2030 \\
\hline 2031 & 2031 & & XEIEB \(=\) XE ( 1 , 1EIB) & 2031 \\
\hline 2032 & 2032 & &  & 2032 \\
\hline 2033 & 2033 & & IF ( XYLONG . LT . XEIEB ) XYLONG = XEIEB & 2033 \\
\hline 2034 & 2034 & & IF ( XYSHRT . GI . XEIEB) XYSHRT = XEIEB & 2034 \\
\hline 2035 & 2035 & & IJTRIG \(=\) IJTRIG +1 & 2035 \\
\hline 2036 & 2036 & & 1 COLR ( IJTRIG) \(=\) IEI & 2036 \\
\hline 2037 & 2037 & & \(J J R=\operatorname{MOD}(\mathrm{JR}+1,3)+4\) & 2037 \\
\hline 2038 & 2038 & & IER = IABS ( JS ( JJR , IS ) ) & 2038 \\
\hline 2039 & 2039 & C & & 2039 \\
\hline 2040 & 2040 & & IV1 = JE ( 1 , IER ) & 2040 \\
\hline 2041 & 2041 & & IF ( IVI E EQ. IVV) THEN & 2041 \\
\hline 2042 & 2042 & & ISR \(=\) JE ( 3 , IER ) & 2042 \\
\hline 2043 & 2043 & & ELSE & 2043 \\
\hline 2044 & 2044 & & ISR = JE ( \(4, ~\) IER ) & 2044 \\
\hline 2045 & 2045 & & ENO IF & 2045 \\
\hline 2046 & 2046 & & END JF & 2046 \\
\hline 2047 & 2047 & C & & 2047 \\
\hline 2048
2049 & 2048 & 610 & continue & 2048 \\
\hline 2049
2050 & 2049 & \(\bigcirc\) & & 2049 \\
\hline 2050 & 2050 & & IF ( IER. NE . IKKE2 ) THEN & 2050 \\
\hline 2051
2052 & 2051 & & IS \(=\) ISR & 2051 \\
\hline 2052
2053 & 2052 & & IE = IER & 2052 \\
\hline 2053
2054 & 2053 & & G0 TO 600 & 2053 \\
\hline 2054
2055 & 2054
2055 & & END IF & 2054 \\
\hline 2055
2056 & 2055 & \({ }_{c}^{c}\) & FIRST LOOP SUROUNDING KKV3 IS DONE, SECOMD LOOP OVER KKV2 START & 2055
2056 \\
\hline 2057 & \(2{ }^{\circ}\) & c & & 2057 \\
\hline 2058 & 2 & & IJTRIG \(=\) IJTRIG - 1 & 2058 \\
\hline 2059 & & 620 & continue & 2059 \\
\hline 2060 & -1 & C & & 2060 \\
\hline 2061 & . 062 & & IEJK = IICOLR (IJTRIG ) & 2061 \\
\hline 2062 & 062 & & IF ( IE.JK . GT . O ) THEN & 2062 \\
\hline 2063 & -063 & & IVIEJK \(=\) JE \((1\), IEJK \()\) & 2063 \\
\hline 2064 & 2064 & &  & 2065 \\
\hline 206: & 2066 & & IVIEJK \(=\) JE ( \(2,-\) IEJK \()\) & 2066 \\
\hline 206 & 2067 & & IJEJK5 = JE ( 5 , -IEJK ) & 2067 \\
\hline 206: & 2068 & & END IF & 2068 \\
\hline 2065 & 2069 & C & & 2069 \\
\hline 2070
2071 & 2070
2071 & C & IF ( IJEJK5 . EQ . 0) THEN & 2070
2071 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Thu Jul & 1 14:10 & 16:26 & 1993 delthd.f main program & page 29 \\
\hline 2072 & 2072 & c & intermediate loop start . & 2072 \\
\hline 2073 & 2073 & C & & 2072 \\
\hline 2074 & 2074 & & \(J \mathrm{LOOP}=1\) & 2074 \\
\hline 2075 & 2075 & & IEJKI = IABS ( IICOLR ( IJTRIG - 1) ) & 2075 \\
\hline 2076 & 2076 & & IEJK2 = IABS ( IEJK ) & 2075 \\
\hline 2077 & 2077 & & IETRIG = IETRIG + 1 & 2077 \\
\hline 2078 & 2078 & & IECRSS ( IETRIG ) = IEJK2 & 2078 \\
\hline 2079 & 2079 & & IJTRIG \(=\) IJTRIG - 2 & 2079 \\
\hline 2080 & 2080 & & IWV = IVIEJK & 2079 \\
\hline 2081 & 2081 & & JVDELT = JVDELT + 1 & 2081 \\
\hline 2082 & 2082 & & IVDELT ( JVDELT ) = IVV & 2082 \\
\hline 2083 & 2083 & & IE = IEJKI & 2083 \\
\hline 2084 & 2084 & & IVI \(=\mathrm{JE}(1, \mathrm{IE})\) & 2084 \\
\hline 2085 & 2085 & & IF ( IVI E EQ IVV ) THEN & 2085 \\
\hline 2086 & 2086 & & ISI = JE ( 3 , IE ) & 2086 \\
\hline 2087 & 2087 & & ELSE & 2087 \\
\hline 2088 & 2088 & & ISI \(=\) JE ( 4 , IE) & 2088 \\
\hline 2089 & 2089 & & END If & 2089 \\
\hline 2090 & 2090 & & IS = ISI & 2090 \\
\hline 2091 & 2091 & & IET \(=\) IEJK2 & 2091 \\
\hline 2092 & 2092 & C
630 & continue & 2092 \\
\hline 2094 & 2094 & c & Continue & 2093 \\
\hline 2095 & 2095 & & ITRIG \(=\) ITRIG +1 & 2094 \\
\hline 2096 & 2096 & & ISCRSS ( ITRIG ) \(=15\) & 2096 \\
\hline 2097 & 2097 & C & & 2097 \\
\hline 2098 & 2098 & & IETRIG \(=\) IETRIG +1 & 2098 \\
\hline 2099 & 2099 & & IECRSS ( IETRIG) = IE & 2099 \\
\hline 2100 & 2100
2101 & c & IF 1 & 2100 \\
\hline 2102 & 2102 & & . HYDFLX ( IS . 4) . GT . FLUXPP . OR & 2101 \\
\hline 2103 & 2103 & &  & 2103 \\
\hline 2104 & 2104 & & HYDFLX ( 15,1 ) . GT. FLUXRR . OR. & 2103
2104 \\
\hline 2105 & 2105 & & KSOELT ( IS ) . GT . NIDUMP - OR . & 2105 \\
\hline 2106 & 2106 & & XS( 3 , is ) . GT . Arevg j then & 2106 \\
\hline 2107 & 2107 & & INOCTR \(=3\) & 2107 \\
\hline 2108 & 2108 & & RETURN & 2108 \\
\hline 2109 & 2109 & & END If & 2109 \\
\hline 2110 & 2110 & C & & 2110 \\
\hline 2112 & 2112 & & \(J R=\operatorname{MOO}\left(1 \mathrm{R} \cdot 3^{3}\right)+1\) & <iii \\
\hline 2113 & 2113 & & IEA \(=\) IABS ( \(j\) S ( \(J\) ) \(+3, I S\) ) & 2112 \\
\hline 2114 & 2114 & & IF ( IEA. EQ . IE ) THEN & 2114 \\
\hline 2115 & 2115 & & IIR \(=\) MOD ( JR , 3) +4 & 2115 \\
\hline 2116 & 2116 & & IEI \(=\) JS ( IIR. \({ }^{\text {(S }}\) ) & 2116 \\
\hline 2117 & 2117 & & IEIB = IABS ( IEI \()\) & 2117 \\
\hline 2118 & 2118 & & XEIEB \(=\) XE ( \(1, ~ I E I B\) ) & 2118 \\
\hline 2119 & 2119 & & XYLNGT \(=\) XYLNGT + XEIEB & 2119 \\
\hline 2120 & 2120 & & IF (XYLONG . LT . XEIEB) XYLONG = XEIEB & 2120 \\
\hline 2121 & 2121 & & IF (XYSHRT GT . XEIEB) XYSHRT \(=\) XEIEB & 2121 \\
\hline 2122 & 2122 & & IIKK = IABS ( IICOLR ( IJTRIG ) & 2122 \\
\hline 2123 & 2123 & & IF (IIKK. EQ . IEIB) THEN & 2123 \\
\hline 2124 & 2124 & & JLOOP \(=2\) & 2124 \\
\hline 2125 & 2125 & & IETRIG \(=\) IETRIG +1 & 2125 \\
\hline 2126 & 2126 & & IECRSS ( IETRIG ) = IEIB & 2126 \\
\hline 2127 & 2127 & & IJTRIG \(=\) IJTRIG -1 & 2127 \\
\hline 2128 & 2128 & & IF ( IEI . GT . 0 ) THEN & 2128 \\
\hline 2129
2130 & 2129
2130 & & \(\underset{\text { ELSE }}{\text { JKVV }}=\mathrm{JE}(1, \mathrm{IEIB})\) & 2129 \\
\hline 2131 & 2131 & & JKVV \(=\) JE( 2 , IEIB ) & 2130 \\
\hline 2132 & 2132 & & END IF & 2131 \\
\hline 2133 & 2133 & & JVDELT \(\times\) JVDELT + 1 & 2133 \\
\hline 2134 & 2134 & & IVDELT ( JVDELT ) = JKVV & 2134 \\
\hline 2135 & 2135 & & ELSE & 2135 \\
\hline 2136 & 2136 & & IJTRIG = IJTRIG + 1 & 2136 \\
\hline 2137 & 2137 & & IICOLR ( IJTRIG ) = IEI & 2137 \\
\hline 2138 & 2138 & & END If & 2138 \\
\hline 2139
2140 & 2139
2140 & & \(J J R=\operatorname{MOD}(J R 2+1,3)+4\)
\(I E R=\operatorname{IABS}(\mathrm{JS}(\mathrm{JJR}\) & 2139 \\
\hline 2141 & 2140
2141 & C & \(I E R=\operatorname{IABS}(\mathrm{JS}(\mathrm{JJR}, \mathrm{IS}))\) & 2140 \\
\hline 2142 & 2142 & & \(\mathrm{IVI}=\mathrm{JE}(1, \mathrm{IER})\) & 2141
2142 \\
\hline 2143 & 2143 & & IF ( IVI. EQ . IVV) THEN & 2143 \\
\hline 2144 & 2144 & & ISR = JE ( 3, IER ) & 2144 \\
\hline 2145 & 2145 & & ELSE & 2145 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2146 & 2146 & & ISR = JE ( 4 , IER ) & 2146 \\
\hline 2147 & 2147 & & ERD If & 2147 \\
\hline 2148 & 2148 & & ERD IF & 2148 \\
\hline 2149 & 2149 & c & & 2149 \\
\hline 2150 & 2150 & 640 & continue & 2150 \\
\hline 2151 & 2151 & c & & 2151 \\
\hline 2152 & 2152 & & IF ( IER . NE . IET ) THEN & 2152 \\
\hline 2153 & 2153 & & \(I S=15 R\) & 2153 \\
\hline 2154 & 2154 & & \(\mathrm{IE}=\mathrm{IER}\) & 2154 \\
\hline 2155 & 2155 & & G0 10630 & 2155 \\
\hline 2156 & 2156 & & END If & 2156 \\
\hline 2157 & 2157 & c & & 2157 \\
\hline 2158 & 2158 & & G0 10620 & 2158 \\
\hline 2159 & 2159 & & END IF & 2159 \\
\hline 2160 & 2160 & \({ }^{\text {c }}\) & & 2160 \\
\hline 2161 & 2161 & \(\bigcirc\) & INTERMEDIATE LOOP IS DONE, SECOND LOOP OVER KKV2 Start . & 2161 \\
\hline 2162 & 2162 & c & & 2162 \\
\hline 2163 & 2163 & & IVV = KKV2 & 2163 \\
\hline 2164 & 2164 & & IE = IEIN1 & 2164 \\
\hline 2165 & 2165 & & XXYYIC = XE ( 1 , IE ) + XE ( 1 , IKKE1 ) + XE ( 1 , IEIB ) & 2165 \\
\hline 2166 & 2166 & & XYLNGT = XYLNGT + XXYYIC - XE( 1 . IEIB ) & 2166 \\
\hline 2167 & 2167 & & IF ( XYLONG . LT . XXYYIC ) XYLONG = XXYYIC & 2167 \\
\hline 2168 & 2168 & & IF (XYSHRT . GT . XXYYIC ) XYSHRT = XXYYIC & 2168 \\
\hline 2169 & 2169 & & IVIN2 \(=\mathrm{JE}\left(2{ }^{\text {2 }}\right.\), IE \()\) & 2169 \\
\hline 2170 & 2170 & & IEJKK \(=11\) COLR ( IJTRIG) & 2170 \\
\hline 2171 & 2171 & & IVI = JE ( 1, IE ) & 2171 \\
\hline 2172 & 2172 & & IF ( IV1. EQ . IVV) THEN & 2172 \\
\hline 2173 & 2173 & & ISI \(=\) JE ( \(3.1 E\) ) & 2173 \\
\hline 2174 & 2174 & & ELSE & 2174 \\
\hline 2175 & 2175 & & ISI \(=\) JE ( 4 , IE ) & 2175 \\
\hline 2176 & 2176 & & END If & 2176 \\
\hline 2177 & 2177 & & IS = ISI & 2177 \\
\hline 2178 & 2178 & C & & 2178 \\
\hline 2179 & 2179 & 650 & continue & 2179 \\
\hline 2180 & 2180 & c & & 2180 \\
\hline 2181 & 2181 & & ITRIG \(=\) ITRIG + 1 & 2181 \\
\hline 2182 & 2182 & & ISCRSS ( ITRIG ) = IS & 2182 \\
\hline 2183 & 2183 & C & & 2183 \\
\hline 2184 & 2184 & & IETRIG \(=\) IETRIG + 1 & 2184 \\
\hline 2185 & 2185 & & IECRSS ( IETRIG ) = IE & 2185 \\
\hline 2186 & 2186 & c & & 2186 \\
\hline 2187 & 2187 & & IF \((\) & 2187 \\
\hline 2188 & 2188 & & HYDFLX ( IS , 4) . GT . FLUXPP . OR . & 2188 \\
\hline 2189 & 2189 & & HYDFLX ( IS . 2) . GT . FLUXUU . OR . & 2189 \\
\hline 2190 & 2190 & & MYDFLX ( IS , 1) . GT . FLUXRR . OR . & 2190 \\
\hline 2191 & 2191 & & KSDELT ( IS ) . GT . NIDUMD - OR . & 2191 \\
\hline 2192 & 2192 & & XS( 3, IS ) . GT . AREVGG) THEN & 2192 \\
\hline 2193 & 2193 & & INDCTR = 3 & 2193 \\
\hline 2194 & 2194 & & RETURN & 2194 \\
\hline 2195 & 2195 & & END IF & 2195 \\
\hline 2196 & 2196 & C & & 2195 \\
\hline 2197 & 2197 & & 00660 IR = 1 , 3 & 219 : \\
\hline 2198 & 2198 & & \(J \mathrm{R}=\mathrm{MOD}\left(\mathrm{IR} \mathrm{S}^{3}\right)+1\) & 2198 \\
\hline 2199 & 2199 & & IEA \(=\operatorname{IABS}(\mathrm{JS}(\mathrm{JR}+3\), IS ) ) & 2199 \\
\hline 2200 & 2200 & & IF ( IEA. EQ. IE ) THEN & 2200 \\
\hline 2201 & 2201 & & IIR \(=\operatorname{MOD}(3 \mathrm{P}, 3)+4\) & 2201 \\
\hline 2202 & 2202 & & IEI \(=\) JS (IIR, IS ) & 2202 \\
\hline 2203 & 2203 & & IEIB - IABS ( IEI ) & 2203 \\
\hline 2204 & 2204 & & XEIEB - XE ( 1 , IEIB ) & 2204 \\
\hline 2205 & 2205 & & XYLNGT \(=\) XYLHGT + XEIEB & 2205 \\
\hline 2206 & 2206 & & IF ( XYLONG . LT . XEIEB ) XYLONG = XEIEB & 2206 \\
\hline 2207 & 2207 & & IF (XYSHRT G GT . XEIEB) XYSHRT = XEIEB & 2207 \\
\hline 2208 & 2208 & & IJTRIG \(=\) IJTKIG +1 & 2208 \\
\hline 2209 & 2209 & & IICOLR ( IJTRIG ) = IEI & 2209 \\
\hline 2210 & 2210 & & \(J J \mathrm{R}=\mathrm{MOD}(J R+1,3)+4\) & 2210 \\
\hline 2211 & 2211 & & IER = IABS ( JS ( JJR . IS ) ) & 2211 \\
\hline 2212 & 2212 & c & & 2212 \\
\hline 2213 & 2213 & & IV1 \(\boldsymbol{\sim}\) JE( 1. , IER ) & 2213 \\
\hline 2214 & 2214 & & IF ( IVI. EQ . IVV) THEN & 2214 \\
\hline 2215 & 2215 & & ISR = JE ( 3 , IER ) & 2215 \\
\hline 2216 & 2216 & &  & 2215 \\
\hline 2217 & 2217 & & ISR = JE ( 4. IER ) & 2217 \\
\hline 2218 & 2218 & & END IF & 2218 \\
\hline 2219 & 2219 & & END IF & 2219 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2220 & 2220 & C & & \\
\hline 2221 & 2221 & 660 & CONTINUE & 2220 \\
\hline 2222 & 2222 & C & CONTINUR & 2221 \\
\hline 2223 & 2223 & & IF ( IER . NE . IKKE2 ) THEN & 2222 \\
\hline 2224 & 2224 & & IS - ISR - MKRL ) THEN & 2223 \\
\hline 2225 & 2225 & & \(I E=I E R\) & 2224 \\
\hline 2226 & 2226 & & 6010650 & 2225 \\
\hline 2227 & 2227 & & ENO IF & 2226 \\
\hline 2こ28 & 2228 & C & ENO IF & 2227 \\
\hline 2229 & 2229 & & IJTRIG \(=\) IJTRIG -1 & 2228 \\
\hline 2230 & 2230 & & IETRIG = IETRIG + 1 & 2230 \\
\hline 2231 & 2231 & & IECRSS ( IETRIG ) = IKKE2 & 2231 \\
\hline 2232 & 2232 & & IETRIG = IETRIG + 1 & 2232 \\
\hline 2233 & 2233 & & IECRSS ( IETRIG ) = IKKEI & 2233 \\
\hline 2234 & 2234 & \(c\) & & 2234 \\
\hline 2235 & 2235 & \({ }^{\text {c }}\) & SECONO LOOP SUROUNDING KKV2 IS DONE, THIRD LOOP OVER KKV3 Start & 2235 \\
\hline 2236 & 2236 & C & & 2236 \\
\hline 2237 & 2237 & & IVV = KKV3 & 2237 \\
\hline 2238 & 2238 & & IE \(=\) IABS ( IICOLR ( IJTRIG + 1 ) ) & 2238 \\
\hline 2239 & 2239 & & IF ( \(3 E(5\). IE ) . NE . 0) THEN & 2239 \\
\hline 2240 & 2240 & & IER = IE & 2240 \\
\hline 2241 & 2241 & & GO 10670 & 2241 \\
\hline 2243 & 2243 & & END IF
IVI \(=\) JE \((1\). & 2242 \\
\hline 2244 & 2244 & & IF ( IVI. EQ. IVN ) THEN & 2243 \\
\hline 2245 & 2245 & & ISI \(=\) JE( 3, IE ) & 22445 \\
\hline 2246 & 2296 & & ELSE & 2246 \\
\hline 2247 & 2247 & & ISI \(=\mathrm{JE}(4, I E)\) & 2247 \\
\hline 2248 & 2248 & & END IF & 2248 \\
\hline 2249 & 2249 & & \(I S=I S I\) & 2249 \\
\hline 2250 & 2250 & & ISI \(=0\) & 2250 \\
\hline 2252 & 2252 & 680 & CONTINU & 2251 \\
\hline 2253 & 2253 & C & Continue & 2252 \\
\hline 2254 & 2254 & & 1TRIG = ITRIG + 1 & 2253 \\
\hline 2255 & 2255 & & ISCRSS ( ITRIG) \(=15\) & 2254 \\
\hline 2256 & 2256 & & IETRIG = IETRIG + 1 & 2256 \\
\hline 2257 & 2257 & & IECRSS ( IETRIG) = IE & 2257 \\
\hline 2258 & 2258 & C & & 2258 \\
\hline 2259 & 2259 & & IF \((\) & 2259 \\
\hline 2260 & 2260 & & HYOFLX ( IS . 4) . GT . FLUXPP - OR . & 2260 \\
\hline 2261 & 2261 & & GYDFLX ( is . 2 ) . GT . FLUX'JU • OR . & 2261 \\
\hline 2262 & 2262 & & HYOFLX ( IS ; 1) . GT . FLUXRRE. OR & 2262 \\
\hline 2263 & <263 & & KSDELT ( IS ) . GT . NIDUMP - OR . & 2263 \\
\hline 2264 & 2264
2265 & & XSS( 3. IS ) . GT . AREVGG) THEN & 2264 \\
\hline 2266 & 2265
2266 & & INDCTR \(=3\) & 2265 \\
\hline 2267 & 2267 & & END If & 2266 \\
\hline 2268 & 2268 & C & & 2267 \\
\hline 2269 & 2269 & & 00690 IR \(=1.3\) & 2268
2269 \\
\hline 2270 & 2270 & & \(J R=\operatorname{MCO}(1 R, 3)+1\) & 2270 \\
\hline 2271 & 2271 & & \(I E A=I A B S(J S(J R+3, I S)\) ) & 2271 \\
\hline 2272 & 2272 & & IF (IEA. EQ. IE ) THEN & 2272 \\
\hline 2273 & 2273 & & IIR \(=\) MOD ( JR , 3) +4 & 2273 \\
\hline 2275
2275 & 2274
2275 & & IEI \(=35\left(\right.\) IIR \({ }^{\text {IEIE }}\) IS \()\) & 2274 \\
\hline 2276 & 2276 & & IEIB \(=\) AEIEA \(=X E(1 E I)\) & 2275 \\
\hline 2277 & 2277 & & XYLNGT = XYLAGT + XEIEB & 2276 \\
\hline 2278 & 2278 & & IF (XYLONG . LT . XEIEB ) XYLONG \(=\) XEIEB & 2278 \\
\hline 2279 & 2279 & & IF (XYSHRT . GT , XEIEB) XYSHRT = XEIEB & 2279 \\
\hline 2280 & 2280 & & IJIRIG = IJTRIG + 1 & 2280 \\
\hline 2281 & 2281 & & IICOLR ( IJTRIG) = IEI & 2281 \\
\hline 2282 & 2282 & & JJR \(=\) MOO ( JR + 1 , 3 3 ) + 4 & 2282 \\
\hline 22883 & 2283 & C & \(I E R=\operatorname{IABS}(J S(.1 J R, I S))\) & 2283 \\
\hline 2285 & 2285 & \(C\) & IV1 - JF ( 1 . IER ) & 2284 \\
\hline 2286 & 2286 & & IF ( IVI. EQ. IVV) THEN & 2285
2286 \\
\hline 2287 & 2287 & & ISR = JE ( \(3.1 E R\) ) & 2287 \\
\hline 2288 & 2288 & & ELSE & 2288 \\
\hline 2289 & 2289 & & ISR = JE ( 4. IER ) & 2289 \\
\hline 2290 & 2290 & & END IF & 2290 \\
\hline 2291 & 2291 & & ENO IF & 2291 \\
\hline 2292 & 2292 & 6 & & 2292 \\
\hline 2293 & 2293 & 690 & CONTINJE & 2293 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2294 & 2294 & C & & 2294 \\
\hline 2295 & 2295 & & IF ( ISR . NE . ISI ) THEN & 2295 \\
\hline 2296 & 2296 & & \(15=15 R\) & 2296 \\
\hline 2297 & 2297 & & IE = IER & 2297 \\
\hline 2298 & 2298 & & 50 70680 & 2298 \\
\hline 2299 & 2299 & & END IF & 2299 \\
\hline 2300 & 2300 & \(\bigcirc\) & & 2300 \\
\hline 2301 & 2301 & 670 & COntinue & 2301 \\
\hline 2302 & 2302 & C & & 2302 \\
\hline 2303 & 2303 & & IETRIG = IETRIG + 1 & 2303 \\
\hline 2304 & 2304 & & IECRSS ( IETRIG ) = IER & 2304 \\
\hline 2305 & 2305 & C & & 2305 \\
\hline 2306 & 2306 & & ITYPE = JE ( 5 , IER ) & 2306 \\
\hline 2307 & 2307 & C & & 2307 \\
\hline 2308 & 2308 & & XEIEB \(=\) XE ( 1, IER ) & 2308 \\
\hline 2309 & 2309 & & XEIEB \(=\) XXYYIB + XEIEB & 2309 \\
\hline 2310 & 2310 & & XYLNGT \(=\) XYLMGT + XEIEB & 2310 \\
\hline 2311 & 2311 & & IF (XYLONG . LT . XEIEE ) XYLONG = XEIEB & 2311 \\
\hline 2312 & 2312 & & IF ( XYSHRT . GT . XEIEB ) XYSHRT = XEIEB & 2312 \\
\hline 2313 & 2313 & C & & 2313 \\
\hline 2314 & 2314 & & [MDCTR \(=2\) & 2314 \\
\hline 2315 & 2315 & \({ }^{C}\) & IF ( XYLONG / XYSHRT . GT . 10. . AND . JLOOP . EQ . 0 ) RETURN & 2315 \\
\hline 2316 & 2316 & C & & 2316 \\
\hline 2317 & 2317 & & JE( 2 , IEJKK ) = IVIN2 & 2317 \\
\hline 2318 & 2318 & c & & 2318 \\
\hline 2319 & 2319 & & IV1 = IVIN1 & 2319 \\
\hline 2320 & 2320 & & IE1 - IICOLR ( IJTRIG ) & 2320 \\
\hline 2321 & 2321 & & IF ( IEI. GT . O ) THEN & 2321 \\
\hline 2322 & 2322 & & IV2 \(=\mathrm{JE}(2, \mathrm{IE1})\) & 2322 \\
\hline 2323 & 2323 & & ELSE & 2323 \\
\hline 2324 & 2324 & & IV2 = JE ( 1 , - IEI ) & 2324 \\
\hline 2325 & 2325 & & END \(1 F\) & 2325 \\
\hline 2326 & 2326 & C & & 2326 \\
\hline 2327 & 2327 & & NEC = IECRSS ( IETRIG) & 2327 \\
\hline 2328 & 2328 & & IETRIG - IETRIG - 1 & 2328 \\
\hline 2329 & 2329 & C & & 2329 \\
\hline 2330 & 2330 & & JV( 2 , IV2 ) \(=-\) NEC & 2330 \\
\hline 2331 & 2331 & & JE( 1 , NEC ) = IV2 & 2331 \\
\hline 2332 & 2332 & & JE ( 2 , NEC ) = IVI & 2332 \\
\hline 2333 & 2333 & & JE ( 4 , NEC ) \(=0\) & 2333 \\
\hline 2334 & 2334 & & JE ( 5 , NEC ) = ITYPE & 2334 \\
\hline 2335 & 2335 & c & & 2335 \\
\hline 2336 & 2336 & & !JTRIG = IJTRIG + 1 & 2335 \\
\hline 2337 & 2337 & & IICOLR ( IJTRIG ) = NEC & 2337 \\
\hline 2338 & 2338 & c & & 2338 \\
\hline 2339 & 2339 & & END If & 2339 \\
\hline 2340 & 2340 & \({ }^{1}\) & & 2340 \\
\hline 2341 & 2341 & \({ }^{\text {c }}\) & LOOP OVER TRIANGLE KSD IS done & 2341 \\
\hline 2342 & 2342 & \({ }^{\text {c }}\) & & 2342 \\
\hline 2343 & 2343 & \({ }^{\text {c }}\) & eliminating the deleted triangles from jsdelt array & 2343 \\
\hline 2344 & 2344 & \(\bigcirc\) & & 2344 \\
\hline 2345 & 2345 & & LSDELT \(=0\) & 2345 \\
\hline 2345 & 2346 & & OO 1520 IS \(=1\) : SDELT & 2346 \\
\hline 2347 & 2347 & & JSP - JSDELT ( IS ) & 2347 \\
\hline 2348 & 2348 & & ILOOP \(=0\) & 2348 \\
\hline 2349 & 2349 & & IF ( JSP : EQ . 0 ) THEN & 2349 \\
\hline 2350 & 2350 & & ILOOP \(=1\) & 2350 \\
\hline 2351 & 2351 & & ELSE & 2351 \\
\hline 2352 & 2352 & & D0 1525 IKS \(=1\), 1TRIG & 2352 \\
\hline 2353 & 2353 & & ISP = ISCRSS ( IKS ) & 2353 \\
\hline 2354 & 2354 & & IF ( JSP . EQ . ISP ) ILOOP =1 & 2354 \\
\hline 2355 & 2355 & 1525 & comtinue & 2355 \\
\hline 2356 & 2356 & & END If & 2356 \\
\hline 2357 & 2357 & & IF ( ILOOP - EQ - 0) THEN & 2357 \\
\hline 2358 & 2358 & & LSDELT = LSOELT + 1 & 2358 \\
\hline 2359 & 2359 & & JSDELT( LSDELT) * JSP & 2359 \\
\hline 2360 & 2360 & & END If & 2360 \\
\hline 2361 & 2361 & 1520 & CONTINUE & 2361 \\
\hline 2362 & 2362 & & ISDELT = LSDELT & 2362 \\
\hline 2363 & 2363 & c & & 2363 \\
\hline 2364 & 2364 & & JVDELT \(=\) JVOELT + 1 & 2364 \\
\hline 2365 & 2365 & & IVDELT ( JVDELT ) = KVI & 2365 \\
\hline 2366 & 2366 & & JVDELT = JVOELT + 1 & 2366 \\
\hline 2367 & 2367 & & IVDELT( JVDELT ) = KV2 & 2367 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Thu Jui & \(114:\) & 261993 & delthd.f main program & page 34 \\
\hline 2442 & 2442 & & 00 760 IE - 1. JTRIG & 2442 \\
\hline 2443 & 2443 & & IICOLR( IE ) = JEN( IE ) & 2443 \\
\hline 2444 & 2444 & & ANGLE ( IE ) = ANGLER( IE ) & 2444 \\
\hline 2445 & 2445 & 760 & continue & 2445 \\
\hline 2446 & 2446 & c & & 2446 \\
\hline 2447 & 2447 & & IFINAL \(=0\) & 2447 \\
\hline 2448 & 2448 & & IEI \(=1\) & 2448 \\
\hline 2449 & 2449 & & D0 770 IE = 1. JTRIG & 2449 \\
\hline 2450 & 2450 & & SAMGLE = ANGLE ( IE ) & 2450 \\
\hline 2451 & 2451 & & IANGLE ( IE ) \(=-1\) & 2451 \\
\hline 2452 & 2452 & & IF ( SANGLE . GT . 1.E-2 ) IANGLE( IE ) - 1 & 2452 \\
\hline 2453 & 2453 & 770 & continue & 2453 \\
\hline 2454 & 2454 & c & & 2454 \\
\hline 2455 & 2455 & & DO 780 IE = 1. JTRIG & 2455 \\
\hline 2456 & 2456 & & IEM \(=\) MOO ( IE - 1 , JTR1G) + 1 & 2456 \\
\hline 2457 & 2457 & & IEP \(=\) MOO ( IE, JTRIG) +1 & 2457 \\
\hline 2458 & 2458 & & IKM \(=\) MOD ( IE + 1 ; JTRIG) +1 & 2458 \\
\hline 2459 & 2459 & & KEM \(=\) IANGLE ( IEM ) & 2459 \\
\hline 2460 & 2460 & & KEP \(=\) IANGLE ( IEP ) & 2460 \\
\hline 2461 & 2461 & & KKM = IANGLE ( IKM ) & 2461 \\
\hline 2462 & 2462 & & IF ( KEM . EQ . - 1 . AND - & 2462 \\
\hline 2463 & 2463 & - &  & 2463 \\
\hline 2464 & 2464 & - & KKM. EQ . - 1 . AND . IFINAL . EQ . 0) THEN & 2464 \\
\hline 2465 & 2465 & & IEI \(=1 K M\) & 2465 \\
\hline 2466 & 2466 & & IFINAL \(=1\) & 2466 \\
\hline 2467 & 2467 & & END IF & 2467 \\
\hline 2468 & 2468 & 780 & continue & 2468 \\
\hline 2469 & 2469 & c & & 2469 \\
\hline 2470 & 2470 & & IF ( IFINAL . EQ - 0 ) THEN & 2470 \\
\hline 2471 & 2471 & & D0 790 IE \(=1\), JTRIG & 2471 \\
\hline 2472 & 2472 & & IEM \(=\operatorname{MOD}(\) IE -1, JTRIG \()+1\) & 2472 \\
\hline 2473 & 2473 & & IEP \(=\) MOD (IE, JTRIG) +1 & 2473 \\
\hline 2474 & 2474 & & \(K E M=1\) ANGLE (IEM) & 2474 \\
\hline 2475 & 2475 & & KEP = IANGLE ( IEP) & 2475 \\
\hline 2476 & 2476 & & IF ( KEM . EQ . - 1 . AND . KEP - EQ - 1 ; AND . & 2476 \\
\hline 2477 & 2477 & - & IEI MFINAL. EQ . 0) THEN & 2477 \\
\hline 2478 & 2478 & & \(I E I=M O D(I E+1, ~ J T R I G)+1\) & 2478 \\
\hline 2479 & 2479 & & IFIMAL \(=1\) & 2479 \\
\hline 2480 & 2480 & & END IF & 2480 \\
\hline 2481 & 2481 & 790 & continue & 2481 \\
\hline 2482 & 2482 & & END IF & 2482 \\
\hline 2483 & 2483 & C & & 2483 \\
\hline 2484 & 2484 & & IF ( IFINAL EQ 0 0) THEN & 2484 \\
\hline 2485 & 2485 & & ANGMIN \(=10000000\). & 2485 \\
\hline 2486 & 2486 & & DO 800 IE \(=1\), JTRIG & 2486 \\
\hline 2487 & 2487 & & XANGLE = ANGLE ( IE ) & 2487 \\
\hline 2488 & 2488 & & SANGLE \(=\) ABS ( XANGLE - 1. \()\) & 2488 \\
\hline 2489 & 2489 & & IF ( XANGLE GT - O. AND. SANGLE. LT . ANGMIN) THEN & 2489 \\
\hline 2490 & 2490 & & IEI \(=\) MOD (IE, JTRIG) +1 & 2490 \\
\hline 2491 & 2491 & & ANGMIN = SANGLE & 2491 \\
\hline 2492 & 2492 & & END IF & 2492 \\
\hline 2493 & 2493 & 800 & continue & 2493 \\
\hline 2494 & 2494 & & END IF & 2494 \\
\hline 2495 & 2495 & C & & 2495 \\
\hline 2496 & 2496 & & DO 810 IE = 1 , JTRIG & 2496 \\
\hline 2497 & 2497 & & IEP = MOD ( IE - IEI + JIRIGP , JTRIG ) + I & 2497 \\
\hline 2498 & 2498 & & JEN( IEP ) = IICOLR ( IE ) & 2498 \\
\hline 2499
2500 & 2499 & & ANGLER (IEP ) = ANGLE ( IE ) & 2499 \\
\hline 2500 & 2500 & 810 & COntinue & 2500 \\
\hline 2501 & 2501 & c & & 2501 \\
\hline 2502 & 2502 & & OU 820 IE = 1. JTRIG & 2502 \\
\hline 2503 & 2503 & & ANGLE (IE) = ANGLER ( IE ) & 2503 \\
\hline 2504 & 2504 & & IICOLR ( IE ) = JEN( IE ) & 2504 \\
\hline 2505 & 2505 & 820 & continue & 2505 \\
\hline 2506 & 2505 & C & & 2506 \\
\hline 2507 & 2507 & & 00830 IE = 1 ; JTRIG & 2507 \\
\hline 2508 & 2508 & & IEM = JEN( IE ) & 2508 \\
\hline 2509 & 2509 & & IF (IEM ; GT \(0^{0}\) ) THEN & 2509 \\
\hline 2510 & 2510 & & Juv( IE) = IE ( 1. IEM ) & 2510 \\
\hline 2511 & 2511 & & ELSE & 2511 \\
\hline 2512 & 2512 & & JUV ( IE ) = JE ( \(2,-\) IEM ) & 2512 \\
\hline 2513 & 2513 & & ENO IF & 2513 \\
\hline 2514 & 2514 & 830 & continue & 2514 \\
\hline 2515 & 2515 & c & & 2515 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 2590 & 2590 & & NSC \(=\) ISCRSS ( ITRIG ) & 2590 \\
\hline 2591 & 2591 & & ITRIG \(=\) ITRIG -1 & 2591 \\
\hline 2592 & 2592 & & NSINTL \(=\) NSINTL + 1 & 2592 \\
\hline 2593 & 2593 & & INVTRG( NSINTL ) = NSC & 2593 \\
\hline 2594 & 2594 & C & & 2594 \\
\hline 2595 & 2595 & & JS ( 1 , NSC ) = JUV ( 1 ) & 2595 \\
\hline 2596 & 2596 & & JS \((2\), NSC \()=\operatorname{JUV}(3)\) & 2596 \\
\hline 2597 & 2597 & & JS ( 3, NSC ) \(=\) JUV ( 4 ) & 2597 \\
\hline 2598 & 2598 & & JS ( 4 , NSC ) = NEC & 2598 \\
\hline 2599 & 2599 & & JS ( 5 . NSC ) \(=\) JEN( 3) & 2599 \\
\hline 2600 & 2600 & & JS ( 6. NSC ) \(=\) JEN ( 4 ) & 2600 \\
\hline 2601 & 2601 & C & & 2601 \\
\hline 2602 & 2602 & & DO 850 IKR = 1 . 2 & 2602 \\
\hline 2603 & 2603 & & NSS = INVTRG( NSINTL + 1-IKR ) & 2603 \\
\hline 2604 & 2604 & & IVI \(=\) JS ( 1 , NSS ) & 2604 \\
\hline 2605 & 2605 & & IV2 \(=\) JS \((2\), NSS \()\) & 2605 \\
\hline 2606 & 2606 & & IV3 \(=\) JS ( 3. NSS \()\) & 2606 \\
\hline 2607 & 2607 & & AX \(=\mathrm{XV}\) (1, IV2) - XV( 1, IV1 ) & 2607 \\
\hline 2608 & 2608 & & AY \(=\mathrm{XV}(2, \mathrm{IV} 2)-\mathrm{XV}(2, \mathrm{IV1})\) & 2608 \\
\hline 2609 & 2609 & & \(\mathrm{BX}=\mathrm{XV}(1, \mathrm{IV} 3)-\mathrm{XV}(1, \mathrm{IV} 1)\) & 2609 \\
\hline 2610 & 2610 & & \(\mathrm{BY}=\mathrm{XV}(2, \mathrm{IV3})-\mathrm{XV}(2, \mathrm{IV1})\) & 2610 \\
\hline 2611 & 2611 & & XS \(3 . N S S)=0.5\) * ( \(A X * B Y-A Y * B X)\) & 2611 \\
\hline 2612 & 2612 & C & & 2612 \\
\hline 2613 & 2613 & & SAREA ( NSS ) = 1. \(1 \times\) XS ( 3 , NSS ) & 2613 \\
\hline 2614 & 2614 & & XXC \(=(\operatorname{XV}(1, \mathrm{IV1})+\mathrm{XV}(1, \mathrm{IV} 2)+\mathrm{XV}\) (1, IV3 ) ) * & 2614 \\
\hline 2615 & 2615 & &  & 2615 \\
\hline 2616 & 2616 & & YYC \(=(X V(2, I V 1)+X V(2, I V 2)+X V(2, I V 3) ~ * ~\) & 2616 \\
\hline 2617 & 2617 & &  & 2617 \\
\hline 2618 & 2618 & & XS ( 1 , NSS ) = XXC & 2618 \\
\hline 2619 & 2519 & & XS \((2\), NSS \()=\) YYC & 2619 \\
\hline 2620 & 2620 & & HYDFLX ( NSS . 4) \(=0\). & 2620 \\
\hline 2621 & 2621 & & HYDFLX NSS , 1) \(=0\). & 2621 \\
\hline 2622 & 2622 & & HYDFLX ( NSS ; 2 ) \(=0\). & 2622 \\
\hline 2623 & 2623 & & KSDELT( NSS ) \(=1\) & 2623 \\
\hline 2624 & 2624 & C & & 2624 \\
\hline 2625 & 2625 & & DO \(860 \mathrm{IR}=1\), MHQ & 2625 \\
\hline 2626 & 2626 & & HYOV ( NSS , IR ) = ( HYDVVV( IV1, IR ) + & 2626 \\
\hline 2627 & 2627 & & HYOVVV( IV2. IR ) + + & 2627 \\
\hline 2628 & 2628 & & COMTInue hyovvo (IV3: iR ) * third & 2628 \\
\hline 2629 & 2629 & 860 & CONTINUE & 2629 \\
\hline 2630 & 2630 & C & & 2630 \\
\hline 2631 & 2631 & &  & 2631 \\
\hline 2632 & 2632 & & HYDV ( NSS , 2) = HYDV( NSS , 2) * HDUM & 2632 \\
\hline 2633 & 2633 & & HYDV ( NSS . 3) \(=\operatorname{HYDV}(\) NSS, 3 ) * HDUM & 2633 \\
\hline 2634 & 2634 & & HYDV ( NSS . 4) \(=(\operatorname{HYDV}(\) NSS, 4\()-\) & 2634 \\
\hline 2635 & 2635 & &  & 2635 \\
\hline 2636 & 2636 & & ( HYDV( NSS , 2 ) * HYDV( NSS . 2 ) + \({ }^{\text {+ }}\) & 2636 \\
\hline 2637 & 2637 & & HYDV( NSS , 3) * \(\operatorname{HYOV}(\operatorname{NSS}\), 3 ) ) ) * & 2637
2638 \\
\hline 2638 & 2638 & & ( HYDV( NSS . 5 ) - 1.) & 2638
2639 \\
\hline 2639 & 2639 & C & & 2639
2640 \\
\hline 2640 & 2640 & 850 & CONTINUE & 2640 \\
\hline 2641 & 2641 & & ISTOP \(=1\) & 2641 \\
\hline 2642 & 2642 & C & & 2642 \\
\hline 2643 & 2643 & & ELSE & 2643 \\
\hline 2644 & 2644 & C & & 2644 \\
\hline 2645 & 2645 & & NSC = ISCRSS ( ITRIG ) & 2645 \\
\hline 2646 & 2646 & & ITRIG \(=\) ITRIG -1 & 2646 \\
\hline 2647 & 2647 & & NSINTL \(=\) NSINTL +1 & 2647 \\
\hline 2648 & 2648 & & INVTRG( NSINTL ) = NSC & 2648 \\
\hline 2649 & 2649 & & NEC \(=\) IECRSS ( IETRIG) & 2649 \\
\hline 2650 & 2650 & & IETRIG \(=\) IETRIG - 1 & 2650 \\
\hline 2651 & 2651 & C & & 2651 \\
\hline 2652 & 2652 & & IJTRIG = IJTRIG + 1 & 2652 \\
\hline 2653 & 2653 & & JUE ( IJTRIG ) = NEC & 2653 \\
\hline 2654 & 2654 & C & & 2654 \\
\hline 2655 & 2655 & & \(\operatorname{JE}(1, \operatorname{NEC})=\operatorname{JUV}(1)\) & 2655 \\
\hline 2656 & 2656 & & JE \((2, N E C)=\operatorname{JUV}(3)\) & 2656 \\
\hline 2657 & 2657
2658 & & JE( 5 , NEC \()=0\) & 2657
2658 \\
\hline 2658
2659 & 2658
2659 & c & JS( 1, NSC ) = JUV( 1 ) & 2658
2659 \\
\hline 2660 & 2650 & & JS \((2\), NSC \()=\operatorname{JUV}(2)\) & 2660 \\
\hline 2661 & 2661 & & JS ( 3 , NSC ) = JUV ( 3 ) & 2661 \\
\hline 2662 & 2662 & & JSS \((4\), NSC \()=\) JEN( 1 ) & 2662 \\
\hline 2663 & 2663 & & JS( 5 , NSC ) - JEN( 2 ) & 2663 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Thu Jul & 114: & 16:26 & & delthd.f main program & page 37 \\
\hline 2664 & 2664 & & & JS( 6, NSC ) \(=-\) NEC & 2664 \\
\hline 2665 & 2665 & \(c\) & & & 2665 \\
\hline 2666 & 2666 & & & IICOLR ( 1 ) = NEC & 2666 \\
\hline 2667 & 2667 & & & JTRIG = JTRIG - 1 & 2667 \\
\hline 2668 & 2668 & & & 00870 IEE \(=2\), JTRIG & 2668 \\
\hline 2669 & 2669 & & & IICOLR (IEE) \(=\) JEN ( IEE + 1) & 2669 \\
\hline 2670 & 2670 & 870 & & continue & 2670 \\
\hline 2671 & 2671 & C & & & 2671 \\
\hline 2672 & 2672 & & & IV1 \(=\) JSS \((1\), NSC \()\) & 2672 \\
\hline 2673 & 2673 & & & IV2 \(=\) JS \((2\), NSC \()\) & 2673 \\
\hline 2674 & 2674 & & & IV3 = JS ( 3 , NSC ) & 2674 \\
\hline 2675 & 2675 & & & \(A X=X V(1, ~ I V 2)-X V(1, ~ I V 1) ~\) & 2675 \\
\hline 2676 & 2676 & & & AY \(=X V(2\), IV2 \()-X V(2, ~ I V 1) ~\) & 2676 \\
\hline 2677
2678 & 2677 & & & \(B X=X V(1, I V 3)-X V(1)\) IV1 \()\) & 2677 \\
\hline 2678
2679 & 2678 & & & BY \(=X V(2, I V 3)-X V(2, I V 1)\) & 2678 \\
\hline 2680 & 2680 & C & & XS \((3, N S C)=0.5\) * ( AX * BY - AY * BX ) & 2679 \\
\hline 2681 & 2681 & & & SAREA ( NSC ) = 1. \(/ \mathrm{XS}(3\). NSC ) & 2680 \\
\hline 2682 & 2682 & & & XXC = ( XV( 1, IV1 ) + XV( 1 , IV2) + XV(1, IV3 ) ) * & 2682 \\
\hline 2683 & 2683 & & &  & 2683 \\
\hline 2684 & 2684 & & & YYC = (XV( 2. IVI ) + XV( 2, IV2 ) + XV( 2, IVI ) ) = & 2684 \\
\hline 2685 & 2585 & & - &  & 2685 \\
\hline 2686 & 2686 & & & XS \((1\), NSC \()=X \times C\) & 2686 \\
\hline 2687 & 2687 & & & XS \((2\), NSC \()=\) YYC & 2687 \\
\hline 2688 & 2688 & & & HYDFLX ( NSC , 4) \(=0\). & 2688 \\
\hline 2689 & 2689 & & & HYDFLX (NSC , 1) \(=0\). & 2689 \\
\hline 2690 & 2690 & & & HYOFLX NSC ; 2 ) \(=0\). & 2690 \\
\hline 2691 & 2691 & & & KSOELT( NSC ) \(=1\) & 2691 \\
\hline 2692
2693 & 2692 & c & & & 2692 \\
\hline 2694 & 2694 & & &  & 2693
2694 \\
\hline 2695 & 2695 & & - & HYOVVV( IV2, IR ) + & 2695 \\
\hline 2696 & 2696
2697 & & . & continue hyovvo ( IV3, ir ) ) * Thimd & 2696 \\
\hline 2697
2698 & 2697
2698 & \({ }_{6}^{880}\) & & CORTINUE & 2697 \\
\hline 2699 & 2699 & & & HDUM - \(1.1\left(\right.\) HYOV \({ }^{\text {NSC }}\) ( 1\()+1 . \mathrm{E}-12\) & 2698
2699 \\
\hline 2700 & 2700 & & & HYOV( NSC . 2) = \(\mathrm{HYOV}(\) NSC, 2\()\) \% HDUM & 2699
2700 \\
\hline 2701 & 2701 & & & HYDV (NSC , 3) = HYDV( NSC , 3) * HDUM & 2701 \\
\hline 2702 & 2702 & & & HYDV ( NSC , 4) = ( HYDVI NSC . 4) - & 2702 \\
\hline 2703 & 2703 & & & ( HYDV( MSC . 5 * HYDV( NSC , 1) * & 2703 \\
\hline 2704 & 2704 & & - & ( HYDV( NSC , 2) * HYDV( NSC , 2) + & 2704 \\
\hline 2705 & 2705 & & - & HYDV( \(\operatorname{SSC}, 3) * \operatorname{HYOV}(\) NSC , 3) ) ) * & 2705 \\
\hline 2706
2707 & 2706
2707 & & - & ( HYOV( NSC. 5)-1.) & 2706 \\
\hline 2708 & 2707
2708 & c & & & 2707 \\
\hline 2709 & 2709 & & & If (ISTOP. EO. O) GO TO 720 & 2708 \\
\hline 2710 & 2710 & C & & & 2709 \\
\hline 2711 & 2711 & & & D0 890 ISS \(=1\), NSINTL & 2711 \\
\hline 2712
2713 & 2712 & & & IS = INVIRG( ISS) & 2712 \\
\hline 2713
2714 & 2713 & & & DO 890 IR \(=4,6\) & 2713 \\
\hline 2715 & 2715 & & & If ( IE G GI . O ) THEN & 2714 \\
\hline 2716 & 2716 & & & JE 3 , IE \()=\) IS & 2715
2716 \\
\hline 2717 & 2717 & & & ELSE & 2717 \\
\hline 2718 & 2718 & & & JE( 4, - IE ) = IS & 2718 \\
\hline 2719 & 2719 & & & END If & 2719 \\
\hline 2720 & 2720 & 890 & & continue & 2720 \\
\hline 2721 & 2721 & C & & & 2721 \\
\hline 2722 & 2722 & & & 00900 IENN = 1, IJTRIG & 2722 \\
\hline 2723 & 2723 & & & IEN = JUE ( IENN ) & 2723 \\
\hline 2724 & 2724 & & & JV1 = JE ( 1 , IEN ) & 2724 \\
\hline 2725 & 2725 & & & JV2 \(=\) JE \((2\), IEN \()\) & 2725 \\
\hline 2726
2727 & 2726
2727 & & &  & 2726 \\
\hline 2727
2728 & 2727
2728 & & &  & 2727 \\
\hline 2729 & 2729 & & &  & 2728
2729 \\
\hline 2730 & 2730 & & & XN( IEN ) - AY * XEREV & 2730 \\
\hline 2731
2732 & 2731 & & & YN( IEN ) = - AX * XEREV & 2731 \\
\hline 2732
2733 & 2732 & & & ISSR = JE ( 4 , IEN ) & 2732 \\
\hline 2734 & 2733
2734 & c & & ISSL - JE ( 3 , IEN) & 2733 \\
\hline 2735 & 2735 & & & If ( JE ( 5 . IEN ) . NE . 0) Then & 2735 \\
\hline 2736 & 2736 & c & & & 2736 \\
\hline 2737 & 2737 & & & \(A A=X V(1 . J V 2)-X V(1 . J V 1)\) & 2737 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2738 & 2738 & & BB = XV( \(2,3 V 2)-X V(2, J V 1)\) & 2738 \\
\hline 2739 & 2739 & & XEL \(=\) XS ( 1, ISSL ) & 2739 \\
\hline 2740 & 2740 & & YEL \(=\) XS \((2,1 S S L)\) & 2740 \\
\hline 2741 & 2741 & & CC - XEL - XV( 1, JVI ) & 2741 \\
\hline 2742 & 2742 & & DD \(=\mathrm{YEL}-\mathrm{XV}(2, \mathrm{~N} 1)\) & 2742 \\
\hline 2743 & 2743 & & EE = ( \(A A * C C\) + BB * DD ) * XEREV * XEREV & 2743 \\
\hline 2744 & 2744 & & XER = XV( 1 , JV1 ) + AA * EE & 2744 \\
\hline 2745 & 2745 & & YER = XV ( \(2, \mathrm{JV1}\) ) + B8*EE & 2745 \\
\hline 2746 & 2746 & &  & 2746 \\
\hline 2747 & 2747 & & \(A Y=Y E R-Y E L\) & 2747 \\
\hline 2748 & 2748 & & XE ( 2 , IEN ) = SQRT ( AX * AX + AY * AY ) & 2748 \\
\hline 2749 & 2749 & & XEREV \(=1 . /\) XE ( 2 , IEN ) & 2749 \\
\hline 2750 & 2750 & & XXN ( IEN ) - AX * XEREV & 2750 \\
\hline 2751 & 2751 & & YYN \({ }^{\text {P }}\) IEN ) = AY * XEREV & 2751 \\
\hline 2752 & 2752 & & XE( \(2, ~ I E N)=2 . * X E(2.1 E N) ~\) & 2752 \\
\hline 2753 & 2753 & & XYMIDL ( IEN \()=.5\) & 2753 \\
\hline 2754 & 2754 & & XMIDL ( IEN ) = XER & 2754 \\
\hline 2755 & 2755 & & YMIDL ( IEN ) = YER & 2755 \\
\hline 2756 & 2756 & C & & 2756 \\
\hline 2757 & 2757 & & ELSE & 2757 \\
\hline 2758 & 2758 & C & & 2758 \\
\hline 2759 & 2759 & & XER \(=\) XS ( 1,1 ISSR \()\) & 2759 \\
\hline 2760 & 2760 & & YER \(=\) XS ( \(2,1 \mathrm{ISSR}\) ) & 2760 \\
\hline 2761 & 2761 & & XEL \(=\) XS \((1, ~ I S S L)\) & 2761 \\
\hline 2762 & 2762 & & YEL - XS( 2 , ISSL ) & 2762 \\
\hline 2763 & 2763 & C & & 2763 \\
\hline 2764 & 2764 & & \(A A=X V(1, J V 2)-X V(1, ~ J V 1) ~\) & 2764 \\
\hline 2765 & 2765 & & \(B B=X V(2, J V 2)-X V(2, J V 1) ~\) & 2765 \\
\hline 2766 & 2766 & & \(C C=X E L-X E R\) & 2766 \\
\hline 2767 & 2767 & & \(D D=Y E L-Y E R\) & 2767 \\
\hline 2768 & 2768 & & ACA \(=X E R-X V(1, J V 1) ~\) & 2768 \\
\hline 2769 & 2769 & & DBD \(=\) YER - XV( \(2, J V 1)\) & 2769 \\
\hline 2770 & 2770 & &  & 2770 \\
\hline 2771 & 2771 & & XMIDL (IEN) = XV( \(1, \mathrm{JVI}\) ) + AA * EE & 2771 \\
\hline 2772 & 2772 & & YMIDL ( IEN ) = XV( 2 , JVI ) + BB * EE & 2772 \\
\hline 2773 & 2773 & C & & 2773 \\
\hline 2714 & 2774 & & XEMID \(=\) XMIDL ( IEN ) - XEL & 2774 \\
\hline 2775 & 2775 & & YEMID \(=\) YMIDL ( IEN ) - YEL & 2775 \\
\hline 2776 & 2776 & c & & 2776 \\
\hline 2777 & 2777 & & \(A X=X E R-X E L\) & 2777 \\
\hline 2778 & 2778 & & \(A Y=Y E R-Y E L\) & 2778 \\
\hline 2779 & 2779 & & XE ( 2 , IEN ) = SQRT ( AX * AX + AY * AY) & 2779 \\
\hline 2780 & 2780 & & XEREV \(=1 . / \mathrm{XE}\) ( 2 . IEN ) & 2780 \\
\hline 2781 & 2781 & & XXN( IEN ) = AX * XEREV & 2781 \\
\hline 2782 & 2782 & & YYM ( IEN ) = AY * XEREV & 2782 \\
\hline 2783 & 2783 & C & & 2783 \\
\hline 2784 & 2784 & & XYMIDL ( IEN ) = SQRT ( XEMID * XEMID + YEMID * YEMID ) * XEREV & 2784 \\
\hline 2785 & 2785 & C & & 2785 \\
\hline 2786 & 2786 & & END IF & 2786 \\
\hline 2787 & 2787 & C & & 2787 \\
\hline 2788 & 2788 & 900 & continue & 2788 \\
\hline 2789 & 2789 & C & & 2789 \\
\hline 2790 & 2790 & c & ORder the deleted vertecis in a decemded order in an array & 2790 \\
\hline 2791 & 2791 & C & NVDELT & 2791 \\
\hline 2792 & 2792 & C & & 2792 \\
\hline 2793 & 2793 & & KFLIP = JVDELT & 2793 \\
\hline 2794 & 2794 & & D0 \(910 \mathrm{KK}=1\), JVDELT & 2794 \\
\hline 2795 & 2795 & & IFLIP \(=1\) & 2795 \\
\hline 2796 & 2796 & & NVDELT ( KK ) = IVDELT( 1) & 2796 \\
\hline 2797 & 2797 & & D0 \(920 \mathrm{KI}=1, \mathrm{KFLIP}\) & 2797 \\
\hline 2798 & 2798 & & IF ( IVDELT ( KI ) . GT . NVDELT( KK ) ) THEN & 2798 \\
\hline 2799 & 2799 & & NVOELT( KK ) = IVDELT( KI ) & 2799 \\
\hline 2800 & 2800 & & IFLIP \(=\) KI & 2800 \\
\hline 2801 & 2801 & & END IF & 2801 \\
\hline 2802 & 2802 & 920 & CONTINUE & 2802 \\
\hline 2853 & 2803 & & ISS - 0 & 2803 \\
\hline 2804 & 2804 & & \(00930 \mathrm{KI}=1\), KFLIP & 2804 \\
\hline 2805 & 2805 & & IF ( KI is Ne ; IFLIP ) THEN & 2805 \\
\hline 2806 & 2806 & & ISS \(=15 S+1\) & 2806 \\
\hline 2807 & 2807 & & IVDELT ( ISS ) = IVDELT( KI ) & 2807 \\
\hline 2808 & 2808 & & END IF & 2808 \\
\hline 2809 & 2809 & 930 & CONTINUE & 2809 \\
\hline 2810 & 2810 & & KFLIP = KFLIP - 1 & 2810 \\
\hline 2811 & 2811 & 910 & CONIINUE & 2811 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline The Jul & \(114:\) & 16:26 & 1993 delthd.f main program & page 39 \\
\hline 2812 & 2812 & C & & \\
\hline 2813 & 2813 & c & ORder the deleted edges in a decenoed order in an array & 2812 \\
\hline 2814 & 2814 & c & necrss & 2813 \\
\hline 2815 & 2815 & c & & 2814 \\
\hline 2816 & 2816 & & KFLIP \(=\) IETRIG & 2815 \\
\hline 2817 & 2817 & & DO \(940 \mathrm{KK}=1\). IETRIG & 2816 \\
\hline 2818 & 2818 & & IFLIP - 1 - - & 2817 \\
\hline 2819 & 2819 & & NECRSS( KK ) * JECRSS( 1 ) & 2818 \\
\hline 2820 & 2820 & & D0 \(950 \mathrm{KI}=1\), KFLIP & 2820 \\
\hline 2821 & 2821 & & & 2821 \\
\hline 2822 & 2822 & & MECRSS ( KK ) = IECRSS ( KI ) & 2822 \\
\hline 2823
2824 & 2823
2824 & & \(\mathrm{IFLIP}_{\text {END IF }}=\mathrm{KI}\) & 2823 \\
\hline 2825 & 2825 & 950 & CONTINUE & 2824 \\
\hline 2826 & 2826 & & ISS \(=0\) & 2825 \\
\hline 2827 & 2827 & & D0 960 KI = 1, KFLIP & 2826 \\
\hline 2828 & 2828 & & IF ( KI . NE . IFLIP ) THEN & 2827 \\
\hline 2829 & 2829 & & \(15 S=15 S+1\) & 2828 \\
\hline 2830 & 2830 & & IECRSS ( ISS ) = IECRSS( KI ) & 2829
2830 \\
\hline 2831 & 2831 & & END IF & 2831 \\
\hline 2832 & 2832 & 960 & Continue & 2832 \\
\hline 2833 & 2833 & & KFLIP \(=\) KFLIP - 1 & 2833 \\
\hline 2834 & 2834 & 940 & COntinue & 2833 \\
\hline 2835 & 2835 & c & & 2834 \\
\hline 2836 & 2836 & c & Order the deleted cells in a decended order in an array & 2835 \\
\hline 2837 & 2837 & c & NSCRSS & 2836 \\
\hline 2838 & 2838 & c & & 2837 \\
\hline 2839 & 2839 & & KFLIP \(=\) ITRIG & 2838 \\
\hline 2840 & 2840 & & \(00970 \mathrm{KK}=1\). ITRIG & 2839 \\
\hline 2841 & 2841 & & IFLIP = 1 , ItRo & 2840 \\
\hline 2842 & 2842 & & MSCRSS ( KK ) \(=\operatorname{ISCRSS}(1)\) & 2841 \\
\hline 2843 & 2843 & & D0 \(980 \mathrm{KI}=1, \mathrm{KFLIP}\) & 2842 \\
\hline 2844 & 2844 & & IF ( ISCRSS ( KI') . GT . NSCRSS ( KK ) ) THEN & 2844 \\
\hline 2845 & 2845 & & NSCRSS ( KK ) = ISCRSS ( KI ) & 2844
2845 \\
\hline 2846
2847 & 2846 & & IFLIP \(=\) KI & 2845
2846 \\
\hline 2848 & 2848 & 980 & Continue & 2847 \\
\hline 2849 & 2849 & & ISS \(=0\) & 2848 \\
\hline 2850 & 2850 & & \(00990 \mathrm{KI}=1, \mathrm{KFLIP}\) & 2849 \\
\hline 2851 & 2851 & & IF ( KI . NE - IFLIP) THEN & 2850 \\
\hline 2852 & 2852 & & ISS \(=\) ISS \(+i\) l \({ }^{\text {d }}\) & 2851 \\
\hline 2853 & 2853 & & ISCRSS ( ISS ) = ISCRSS ( KI ) & 2852 \\
\hline 2854 & 2854 & & END If & 2853 \\
\hline 2855 & 2855 & 990 & continue & 2854 \\
\hline 2856 & 2856 & & KFLIP = KFLIP - 1 & 2855 \\
\hline 2857 & 2857 & 970 & continue & 2856 \\
\hline 2858 & 2858 & C & & \\
\hline 2859 & 2859 & & DO \(1000 \mathrm{KI}=1\), JVDELT & 2858 \\
\hline 2860 & 2860 & & IVDELT ( KI ) = NV + 1-KI & 2859 \\
\hline 2861 & 2861 & 1000 & contimue & 2860 \\
\hline 2862 & 2862 & c & & 2861 \\
\hline 2863 & 2863 & & D0 \(1010 \mathrm{KI}=1\), IETRIG & 2862 \\
\hline 2864 & 2864 & & IECRSS \((\mathrm{KI})=\mathrm{NE}+1-\mathrm{KI}\) & 2863
2864 \\
\hline 2865
2866 & 2865 & 1010 & CONTINUE & 2865 \\
\hline 2866
2867 & 2866 & c & & 2866 \\
\hline 2868 & 2868 & & ISCRSS \({ }^{\text {KI }}\) ) \(=\) NS \(+1 . \mathrm{KI}\) & 2867 \\
\hline 2869 & 2869 & 1020 & CONIINUE & 2868 \\
\hline 2870 & 2870 & C & & 2869
2870 \\
\hline 2871 & 2871 & c & It make sure that vertices that are to be deleted are not & 2870 \\
\hline 2872 & 2872 & C \(\quad\) A & replaced by vertices thas are to be deleted also & 2871 \\
\hline 2873 & 2873 & c & & 2872 \\
\hline 2874 & 2874 & & DO \(1030 \mathrm{KI}=1\). JVDELT & 2873
2874 \\
\hline 2875
2876 & 2875 & & IVM \(=\) NVDELT ( KI ) & 2875 \\
\hline 2876
2877 & 2876 & & \(001030 \mathrm{KK}=1\). JVDELT & 2886 \\
\hline 2877 & 2877 & & JVM = IVOELT( KK ) & 2877 \\
\hline 2878
2879 & 2878 & & IF ( IVM . EQ . JVM. AND . KK . NE . KI ) THEN & 2878 \\
\hline 2879
2880 & 2879 & & IVOUM \(=\) IVDELT ( KI ) & 2879 \\
\hline 2881 & 2881 & & IVOELT \((\) KI \()=\) IVM & 2880 \\
\hline 2882 & 2882 & &  & 2881 \\
\hline 2883 & 2883 & 1030 & continue & 2882 \\
\hline 2884 & 2884 & C & & 2883 \\
\hline 2885 & 2885 & C I & It make sure that eoges that are to be deleted are not & 2885 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2886 & 2886 & c & REPLACED 8y edces thas are to be deleted also & 2886 \\
\hline 2887 & 2887 & C & & 2887 \\
\hline 2888 & 2888 & & D0 \(1040 \mathrm{KI}=1\), IETRIG & 2888 \\
\hline 2889 & 2889 & & IEM - NECRSS ( KI ) & 2889 \\
\hline 2890 & 2890 & & D0 \(1040 \mathrm{KK}=1\). IETRIG & 2890 \\
\hline 2891 & 2891 & & JEM = IECRSS( KK ) & 2891 \\
\hline 2892 & 2892 & & IF ( IEM . EQ . JEM . AND . KK . NE . KI ) THEN & 2892 \\
\hline 2893 & 2893 & & IEDUM \(=\) IECRSS ( Kl ) & 2893 \\
\hline 2894 & 2894 & & IECRSS ( KI ) = IEM & 2894 \\
\hline 2895 & 2895 & & IECRSS ( KK ) - IEDUM & 2895 \\
\hline 2896 & 2896 & & END IF & 2896 \\
\hline 2897 & 2897 & 1040 & - continue & 2897 \\
\hline 2898 & 2898 & C & & 2898 \\
\hline 2899 & 2899 & \(\stackrel{C}{C}\) & IT Make sure that cells that are to be deleted are not & 2899 \\
\hline 2900 & 2900 & \({ }^{\text {c }}\) & replaced by cells thas are to be deleted also & 2900 \\
\hline 2901 & 2901 & C & & 2901 \\
\hline 2902 & 2902 & & D0 \(1050 \mathrm{KI}=1\) ( ITRIG & 2902 \\
\hline 2903 & 2903 & & ISM \(=\) NSCRSS ( XI ) & 2903 \\
\hline 2904 & 2904 & & D0 \(1050 \mathrm{KK}=1\), ITRIG & 2904 \\
\hline 2905 & 2905 & & JSM = 'ISCRSS ( KK ) & 2905 \\
\hline 2906 & 2906 & & IF ( ISM . EO . JSM . AND . KK . NE . KI ) THEN & 2906 \\
\hline 2907 & 2907 & & ISOUM \(=\) ISCRSS ( KI ) & 2907 \\
\hline 2908 & 2908 & & ISCRSS ( KI ) = ISM & 2908 \\
\hline 2909 & 2909 & & ISCRSS ( KK ) \(=\) ISDUM & 2909 \\
\hline 2910 & 2910 & & END If & 2910 \\
\hline 2911 & 2911 & 1050 & continue & 2911 \\
\hline 2912 & 2912 & \({ }^{\text {c }}\) & & 2912 \\
\hline 2913 & 2913 & c & IVOELT(*) SEQUENCE OF VERTICES TO BE DELETED END OF LIST & 2913 \\
\hline 2914 & 2914 & & NVDELT (*) SEQUENCE OF VERTICES TO BE REPLACED CURRENT IN LIST & 2914 \\
\hline 2915 & 2915 & & ISCRSS (*) SEQUENCE OF TRIANGLES TO EE DELETED END OF LIST & 2915 \\
\hline 2916 & 2916 & & NSCRSS(*) SEQUENCE OF TRIANGLES TO BE REPLACED CURRENT IN LIST & 2916 \\
\hline 2917 & 2917 & & \(1 E C R S S\) (*) SEQUENCE OF EDGES TO BE DELETED END OF LIST & 2917 \\
\hline 2918 & 2918 & & NECRSS (*) SEQUENCE OF EDGES TO BE REPLACED CURRENT IN LIST & 2918 \\
\hline 2919 & 2919 & c & & 2919 \\
\hline 2920 & 2920 & & DO \(1060 \mathrm{KI}=1\), JVDELT & 2920 \\
\hline 2921 & 2921 & & IVM = NVDELT ( KI ) & 2921 \\
\hline 2922 & 2922 & & JVM = IVDELT( KI ) & 2922 \\
\hline 2923 & 2923 & C & & 2923 \\
\hline 2924 & 2924 & & XV( 1, IVM ) = XV( \(1, \mathrm{JVM}\) ) & 2924 \\
\hline 2925 & 2925 & & \(\mathrm{XV}(2, \mathrm{IVM})=\operatorname{XV}(2, \mathrm{JVH})\) & 2925 \\
\hline 2926 & 2926 & & JV( \(1, \mathrm{IVH})=\mathrm{JV}(1, \mathrm{JVM})\) & 2926 \\
\hline 2927 & 2927 & C & & 2927 \\
\hline 2928 & 2928 & & DO 1060 IR = 1 , MHO & 2928 \\
\hline 2929 & 2929 & & HYDVVV( IVM, IR ) = HYDVVV( JVM, IR ) & 2929 \\
\hline 2930 & 2930 & 1060 & continue & 2930 \\
\hline 2931 & 2931 & C & & 2931 \\
\hline 2932 & 2932 & & NVM = NV - JVDELT & 2932 \\
\hline 2933 & 2933 & & NEM \(=\) NE - IETRIG & 2933 \\
\hline 2934 & 2934 & & NSM \(=\) NS - ITRIG & 2934 \\
\hline 2935 & 2935 & \({ }^{C}\) & & 2935 \\
\hline 2936 & 2936 & \({ }^{\text {c }}\) & upoate the edges and cells that are connected to the deleted & 2936 \\
\hline 2937 & 2937 & c & VERTICES & 2937 \\
\hline 2938 & 2938 & C & & 2938 \\
\hline 2939 & 2939 & & JNVEDG \(=0\) & 2939 \\
\hline 2940 & 2940 & & JNVTRG \(=0\) & 2940 \\
\hline 2941 & 2041 & & DO 1070 JVOL = 1 , JVDELT & 2941 \\
\hline 2942 & 2942 & & IVDL * NVDELT ( JVDL ) & 2942 \\
\hline 2943 & 2943 & & NVOL = IVDELT ( JVDL ) & 2943 \\
\hline 2944 & 2944 & & IF ( IVDL . NE . NVOL ) THEN & 2944 \\
\hline 2945 & 2945 & & IE = JV ( 2 , NVDL ) & 2945 \\
\hline 2946 & 2946 & & IF ( IE. GT . 0 ) THEN & 2946 \\
\hline 2947
2948 & 2947 & C & & 2947 \\
\hline 2948 & 2948 & & IV1 = JE( 1, IE ) & 2948 \\
\hline 2949 & 2949 & & IF ( IVI . EQ . NVDL ) THEN & 2949 \\
\hline 2950 & 2950 & & ISI \(=\mathrm{JE}(3, \mathrm{IE})\) & 2950 \\
\hline 2951 & 2951 & & ELSE & 2951 \\
\hline 2952 & 2952 & & ISI \(=\) JE ( 4 , IF ) & 2952 \\
\hline 2953 & 2953 & & END IF & 2953 \\
\hline 2954 & 2954 & & IS \(=151\) & 2954 \\
\hline 2955 & 2955 & C & & 2955 \\
\hline 2956 & 2956 & & JNVEDG * JNVEDG + 1 & 2956 \\
\hline 2957 & 2957 & & INVEDG( JNVEDG ) = IE & 2957 \\
\hline 2958 & 2958 & & JNVTRG = JNVTRG + 1 & 2958 \\
\hline 2959 & 2959 & & INVIRG( JNVTRG ) = 15 & 2959 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2960 & 2960 & C & & \\
\hline 2961 & 2961 & 1090 & CONTINUE & 2960 \\
\hline 2962 & 2962 & C & & 2962 \\
\hline 2963 & 2963 & & 001080 IR \(=1.3\) & 2963 \\
\hline 2964 & 2964 & & \(J R=M O D(I R, 3)+1\) & 2964 \\
\hline 2965 & 2965 & & IEA \(=\operatorname{IABS}(\mathrm{JS}(\mathrm{JR}+3 \mathrm{l}\), IS ) ) & 2965 \\
\hline 2966 & 2966 & & IF ( IEA. EQ . IE ) THEN & 2966 \\
\hline 2967 & 2967 & & \(J J R=M O D(J R+1,3)+4\) & 2967 \\
\hline 2968 & 2968 & &  & 2968 \\
\hline 2969 & 2969 & C & & 2969 \\
\hline 2970 & 2970 & & IV1 = JE( 1. IER ) & 2970 \\
\hline 2971 & 2971 & & IF ( IVI EQ . NVOL ) THEN & 2971 \\
\hline 2972 & 2972 & & \(I S R=J E(3, I E R)\) & 2972 \\
\hline 2973 & 2973 & & ELSE & 2973 \\
\hline 2974 & 2974 & & ISR = JE ( 4 , IER) & 2974 \\
\hline 2975 & 2975 & & END IF & 2975 \\
\hline 2976 & 2976 & & END IF & 2976 \\
\hline 2977 & 2977 & C & & 2977 \\
\hline 2978 & 2978 & 1080 & CONTINUE & 2978 \\
\hline 2979 & 2979 & C & & 2979 \\
\hline 2980 & 2980 & & IF ( ISR. NE. ISI ) THEN & 2980 \\
\hline 2981 & 2981 & & \(I S=I S R\) & 2981 \\
\hline 2982 & 2982 & & \(I E=I E R\) & 2982 \\
\hline 2983 & 2983 & C & & 2983 \\
\hline 2984 & 2984 & & JNVEDG = JNVEDG + 1 & 2984 \\
\hline 2985 & 2985 & & INVEDG ( JNVEDG ) * IE & 2985 \\
\hline 2986 & 2986 & & JNVTRG \(=\) JNVTRG +1 & 2986 \\
\hline 2987 & 2987 & C & INVTRG( JNVTRG) = IS & 2987 \\
\hline 2989 & 2988 & C & G0 TO 1090 & 2988 \\
\hline 2990 & 2990 & & END IF & 2989 \\
\hline 2991 & 2991 & C & & 2990 \\
\hline 2992 & 2992 & & ELSE & 2992 \\
\hline 2993 & 2993 & C & & 2993 \\
\hline 2994 & 2994 & & IE - - IE & 2994 \\
\hline 2995 & 2995 & & IV1 - JE 1. IE ) & 2995 \\
\hline 2996 & 2996 & & IF ( IVI. EQ . NVDL ) THEN & 2996 \\
\hline 2997 & 2997 & & ISI \(=\mathrm{JE}(3, I E)\) & 2997 \\
\hline 2998 & 2998 & & ELSE & 2998 \\
\hline 2999 & 2999 & & ISI = JE ( 4 , IE) & 2999 \\
\hline 3000 & 3000 & & END IF & 3000 \\
\hline 3001 & 3001 & & IS = ISI & 3001 \\
\hline 3002 & 3002 & & ISI \(=0\) & 3002 \\
\hline 3003 & 3003 & C & & 3003 \\
\hline 3004 & 3004 & & JNVEDG = JNVEDG + 1 & 3004 \\
\hline 3005 & 3005 & & INVEDG ( JNVEDG ) = IE & 3005 \\
\hline 3006 & 3006 & & JNVTRG = JNVTRG + 1 & 3006 \\
\hline 3007 & 3007 & & INVTRG ( JNVTRG ) = IS & 3007 \\
\hline 3008 & 3008 & C & & 3008 \\
\hline 3009 & 3009 & 1100 & CONTINUE & 3009 \\
\hline 3010 & 3010 & C & & 3010 \\
\hline 3011 & 3011 & & 001110 IR - 1 , 3 & 3011 \\
\hline 3012 & 3012 & & \(J R=M O D(I R, 3)+1\) & 3012 \\
\hline 3013 & 3013 & & IEA \(=1 A B S(J S(J R+3,1 S))\) & 3013 \\
\hline 3014 & 3014 & & IF ( IEA . EQ . IE ) THEN & 3014 \\
\hline 3015 & 3015 & & \(J J R=M O D(J R+1,3)+4\) & 3015 \\
\hline 3016 & 3016 & & \(I E R=\operatorname{IABS}(\mathrm{JS}(\mathrm{JJR}\). IS ) ) & 3016 \\
\hline 3017 & 3017 & \(C\) & & 3017 \\
\hline 3018 & 3018 & & IVI = JE ( 1 , IER ) & 3018 \\
\hline 3019 & 3019 & & IF ( IVI. EQ . NVDL ) THEN & 3019 \\
\hline 3020 & 3020 & & ISR \(=\) JE ( 3 , IER ) & 3020 \\
\hline 3021 & 3021 & & ELSE & 3021 \\
\hline 3022 & 3022 & & ISR = JE ( 4 , IER ) & 3022 \\
\hline 3023 & 3023 & & END IF & 3023 \\
\hline 3024 & 3024 & & END IF & 3024 \\
\hline 3025 & 3025 & \(C\) & & 3025 \\
\hline 3026 & 3026 & 1110 & CONTINUE & 3026 \\
\hline 3027 & 3027 & C & & 3027 \\
\hline 3028 & 3028 & & IF ( ISR . NE . ISI ) THEN & 3028 \\
\hline 3029 & 3029 & & IS \(=\) ISR & 3029 \\
\hline 3030 & 3030 & & \(I E=I E R\) & 3030 \\
\hline 3031 & 3031 & C & & 3031 \\
\hline 3032 & 3032 & & JNVEDG = JNVEDG + 1 & 3032 \\
\hline 3033 & 3033 & & INVEDG ( JNVEDG ) = IE & 3033 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 3034 & 3034 & & JNVTRG = JNVTRG + 1 & 3034 \\
\hline 3035 & 3035 & & INVTRG( JNVTRG ) \(=15\) & 3035 \\
\hline 3036 & 3036 & C & & 3036 \\
\hline 3037 & 3037 & & G0 TO 1100 & 3037 \\
\hline 3038 & 3038 & & END If & 3038 \\
\hline 3039 & 3039 & C & & 3039 \\
\hline 3040 & 3040 & & JNVEDG - JNVEDG + 1 & 3040 \\
\hline 3041 & 3041 & & INVEDG( JNVEDG ) = IER & 3041 \\
\hline 3042 & 3042 & C & & 3042 \\
\hline 3043 & 3043 & & END IF & 3043 \\
\hline 3044 & 3044 & & END IF & 3044 \\
\hline 3045 & 3045 & 1070 & CONTINUE & 3045 \\
\hline 3046 & 3045 & C & & 3046 \\
\hline 3047 & 3047 & & NSMNPT - INVTRG( 1 ) & 3047 \\
\hline 3048 & 3048 & C & & 3048 \\
\hline 3049 & 3049 & & 001120 IE = 1 , JNVEDG & 3049 \\
\hline 3050 & 3050 & & IEE = INVEDG ( IE ) & 3050 \\
\hline 3051 & 3051 & & DO 1120 IIDG = IE + 1 - JNVEDG & 3051 \\
\hline 3052 & 3052 & & IF ( INVEDG( IIDG) . EQ . IEE) THEN & 3052 \\
\hline 3053 & 3053 & & IMVEDG( IIDG) \(=0\) & 3053 \\
\hline 3054 & 3054 & & END IF & 3054 \\
\hline 3055 & 3055 & 1120 & CONTINUE & 3055 \\
\hline 3056 & 3056 & C & & 3056 \\
\hline 3057 & 3057 & & IEDUM \(=0\) & 3057 \\
\hline 3058 & 3058 & & D0 1130 IIDG \(=1\); JNVEDG & 3058 \\
\hline 3059 & 3059 & & If ( INVEDG( IIDG) . NE . O) THEN & 3059 \\
\hline 3060 & 3060 & & IEDUM \(=\) IEDUM + 1 & 3060 \\
\hline 3061 & 3061 & & INVEDG( IEDUM ) = INVEDG( IIDG ) & 3061 \\
\hline 3062 & 3062 & & END IF & 3062 \\
\hline 3063 & 3063 & 1130 & CONTinue & 3063 \\
\hline 3064 & 3064 & & JNVEDG = IEDUM & 3064 \\
\hline 3065 & 3065 & C & & 3065 \\
\hline 3066 & 3066 & & 001140 IS \(=1\), JNVTRG & 3066 \\
\hline 3067 & 3067 & & ISS \(=\) INVTRG( IS \()\) & 3067 \\
\hline 3068 & 3068 & & DO 1140 IITG \(=15+1\). JNVIRG & 3068 \\
\hline 3069 & 3069 & & IF ( INVTRG( IITG) . EQ . ISS) THEN & 3069 \\
\hline 3070 & 3070 & & INVTRG( IITG ) \(=0\) & 3070 \\
\hline 3071 & 3071 & & END If & 3071 \\
\hline 3072 & 3072 & 1140 & CONTINUE & 3072 \\
\hline 3073 & 3073 & c & & 3073 \\
\hline 3074 & 3074 & & ISDUM \(=0\) & 3074 \\
\hline 3075 & 3075 & & DO 1150 IITG - 1 ; JNVTRG & 3075 \\
\hline 3076 & 3076 & & If ( INVTRG( IITG) . NE. 0) Then & 3076 \\
\hline 3077 & 3077 & & ISOUM \(=\) ISDUM +1 & 3077 \\
\hline 3078 & 3078 & & INVTRG( ISOUM ) = INVTRG( IITG ) & 3078 \\
\hline 3079 & 3079 & & END If & 3079 \\
\hline 3080 & 3080 & 1150 & continue & 3080 \\
\hline 3081 & 3081 & & JNVTRG = ISDUM & 3081 \\
\hline 3082 & 3082 & \({ }^{c}\) & & 3082 \\
\hline 3083 & 3083 & c & UPDATE THE VERTECIS AND CEll. \({ }^{\text {dhat are connected to the deleted }}\) & 3083 \\
\hline 3084 & 3084 & \({ }^{\text {c }}\) & EDGES & 3084 \\
\hline 3085 & 3085 & C & & 3085 \\
\hline 3086 & 3086 & & D0 1160 IE = 1 IETRIG & 3086 \\
\hline 3087 & 3087 & & IES \(=\) IECRSS ( IE ) & 3087 \\
\hline 3088 & 3088 & C & & 3088 \\
\hline 3089 & 3089 & & IV = JE ( 1. , IES ) & 3089 \\
\hline 3090 & 3090 & & IER \(=\mathrm{JV}(2, \mathrm{IV})\) & 3090 \\
\hline 3091 & 3091 & & IIN = ISIGN( 1. IER ) & 3091 \\
\hline 3092 & 3092 & & IEE - IABS ( IER ) & 3092 \\
\hline 3093 & 3093 & & IEM \(=1 \mathrm{EE}\) & 3093 \\
\hline 3094 & 3094 & & D0 \(1170 \mathrm{KK}=1\), IETRIG & 3094 \\
\hline 3095 & 3095 & & JEM \(=\) IECRSS ( KK ) & 3095 \\
\hline 3096 & 3096 & & IF ( IEE. EQ . JEM) IEM = NECRSS ( KK ) & 3096 \\
\hline 3097 & 3097 & 1170 & CONTINUE & 3097 \\
\hline 3098 & 3098 & & JV( 2 . IV ) = IIN * IEM & 3098 \\
\hline 3099 & 3099 & C & & 3099 \\
\hline 3100 & 3100 & & \(\mathrm{IV}=\mathrm{JE}(2 . \mathrm{IES})\) & 3100 \\
\hline 3101 & 3101 & & IER \(=\mathrm{JV}(2, \mathrm{IV})\) & 3101 \\
\hline 3102 & 3102 & & IIN \(=\) ISIGG ( 1. IER ) & 3102 \\
\hline 3103 & 3103 & & IEE \(=\) IABS ( IER ) & 3103 \\
\hline 3104 & 3104 & & \(I E M=I E E\) & 3104 \\
\hline 3105 & 3105 & & \(001180 \mathrm{KK}=1\), IETRIG & 3105 \\
\hline 3106 & 3106 & & JEM = IECRSS ( KK ) & 3106 \\
\hline 3107 & 3107 & & IF ( IEE . EQ . JEM ) IEM - NECRSS( KK ) & 3107 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 3108 & 3108 & 1180 & continue & 3108 \\
\hline 3109 & 3109 & & JV( \(2 . \operatorname{IV}\) ) \(=1 I N * I E M\) & 3109 \\
\hline 3110 & 3110 & C & & 3110 \\
\hline 3111 & 3111 & 1160 & continue & 3111 \\
\hline 3112 & 3112 & C & & 3112 \\
\hline 3113 & 3113 & & DO \(1190 \mathrm{KK}=1\). JJTRIG & 3113 \\
\hline 3114 & 3114 & & IVV = IITRIG( KK ) & 3114 \\
\hline 3115 & 3115 & & 001190 JVDL \(=1\), JUDELT & 3115 \\
\hline 3116 & 3116 & & IVDL = NVDELT ( JVDL ) & 3116 \\
\hline 3117 & 3117 & & NVDL = IVDELT ( JVDL ) & 3117 \\
\hline 3118 & 3118 & & IF ( IVV. EQ . NVDL ) IIIRIG( KK ) = IVDL & 3118 \\
\hline 3119 & 3119 & 1190 & continue & 3119 \\
\hline 3120 & 3120 & C & & 3120 \\
\hline 3121 & 3121 & & DO 1200 JVDL \(=1\), JVDELT & 3121 \\
\hline 3122 & 3122 & & IVDL \(=\) NVDELT ( JVDL ) & 3122 \\
\hline 3123 & 3123 & & NVOL = IVOELT \((\) JVDL \()\) & 3123 \\
\hline 3124 & 3124 & & JV( 2 , IVDL ) = JV( 2 , NVDL ) & 3124 \\
\hline 3125 & 3125 & 1200 & continue & 3125 \\
\hline 3126 & 3126 & C & & 3126 \\
\hline 3127 & 3127 & & DO 1210 IS = 1 , JNVTRG & 3127 \\
\hline 3128 & 3128 & & ISS = INVTRG( IS ) & 3128 \\
\hline 3129 & 3129 & c & & 3129 \\
\hline 3130 & 3130 & & IV = JS( 1 . ISS ) & 3130 \\
\hline 3131 & 3131 & & IVM = IV & 3131 \\
\hline 3132 & 3132 & & DO \(1220 \mathrm{KI}=1\), JVDELT & 3132 \\
\hline 3133 & 3133 & & JVM - IVOELT ( KI ) & 3133 \\
\hline 3134 & 3134 & & IF ( IV . EQ . JVM ) IVM = NVDELT( KI ) & 3134 \\
\hline 3135 & 3135 & 1220 & CONTINUE & 3135 \\
\hline 3136 & 3136 & & JS( 1 , ISS ) = IVM & 3136 \\
\hline 3137 & 3137 & C & & 3137 \\
\hline 3138 & 3138 & & IV = JS ( 2 , ISS ) & 3138 \\
\hline 3139 & 3139 & & IVM = IV & 3139 \\
\hline 3140 & 3140 & & DO \(1230 \mathrm{KI}=1\), JVDELT & 3140 \\
\hline 3141 & 3141 & & JVM = IVDELT ( KI ) & 3111 \\
\hline 3142 & 3142 & & IF ( IV . EQ . JVM ) IVM = NVDELT( KI ) & 3142 \\
\hline 3143 & 3143 & 1230 & CONTINUE & 3143 \\
\hline 3144 & 3144 & & JS( 2 , ISS ) = IVM & 3144 \\
\hline 3145 & 3145 & C & & 3145 \\
\hline 3146 & 3146 & & IV = JS 3 , ISS ) & 3146 \\
\hline 3147 & 3147 & & IVM \(=1 \mathrm{~V}\) & 3147 \\
\hline 3148 & 3148 & & D0 \(1240 \mathrm{KI}=1\), JVDELT & 3148 \\
\hline 3149 & 3149 & & JVM = IVDELT ( Kı ) & 3149 \\
\hline 3150 & 3150 & & IF ( IV.EQ . JVM) IVM = NVDELT( KI ) & 3150 \\
\hline 3151 & 3151 & 1240 & CONTINUE & 3151 \\
\hline 3152 & 3152 & & JS( 3 , ISS ) = IVM & 3152 \\
\hline 3153 & 3153 & C & & 3153 \\
\hline 3154 & 3154 & 1210 & CONTINUE & 3154 \\
\hline 3155 & 3155 & C & & 3155 \\
\hline 3156 & 3156 & & 001250 IE = 1, JNVEDG & 3156 \\
\hline 3157 & 3157 & & IEE = INVEDG( IE ) & 3157 \\
\hline 3158 & 3158 & \(\bigcirc\) & & 3158 \\
\hline 3159 & 3159 & & \(\mathrm{IV}=\mathrm{JE}\) (1 . IEE ) & 3159 \\
\hline 3160 & 3160 & & IVM \(=\) IV & 3160 \\
\hline 3161 & 3161 & & D0 \(1260 \mathrm{KI}=1\), JVDELT & 3161 \\
\hline 3162 & 3162 & & JVM - IVDELT( KI ) & 3162 \\
\hline 3163 & 3163 & & IF ( IV. EQ . JVM) IVM \(=\operatorname{NVDELT}(\mathrm{KI}\) ) & 3163 \\
\hline 3164 & 3164 & 1260 & continue & 3164 \\
\hline 3165 & 3165 & & JE ( 1 . IEE ) = IVM & 3165 \\
\hline 3166 & 3166 & C & & 3166 \\
\hline 3167 & 3167 & & \(\mathrm{IV}=\mathrm{JE}\) ( 2 , IEE) & 3167 \\
\hline 3168 & 3168 & & \(\mathrm{IVM}=\mathrm{IV}\) & 3168 \\
\hline 3169 & 3169 & & \(001270 \mathrm{KI}=1\), JVDELT & 3169 \\
\hline 3170 & 3170 & & JVM = IVDELT( KI ) & 3170 \\
\hline 3171 & 3171 & & IF ( IV.EQ . JVM ) IVM = NVDELT( KI ) & 3171 \\
\hline 3172 & 3172 & 1270 & CONTINUE & 3172 \\
\hline 3173 & 3173 & & JE( 2 , IEE ) = IVM & 3173 \\
\hline 3174 & 3174 & C & & 3174 \\
\hline 3175 & 3175 & 1250 & CONTINUE & 3175 \\
\hline 3176 & 3176 & C & & 3176 \\
\hline 3177 & 3177 & C & UPDATE the vertecis and edges that are connecied to the deleted & 3177 \\
\hline 3178 & 3178 & C & CELSS & 3178 \\
\hline 3179 & 3179 & C & & 3179 \\
\hline 3180 & 3180 & & DO 1280 IS \(=1\). ITRIG & 3180 \\
\hline 3181 & 3181 & C & & 3181 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 3182 & 3182 & & ISE = ISCRSS ( IS ) & 3182 \\
\hline 3183 & 3183 & C & & 3183 \\
\hline 3184 & 3184 & & IE = IABS ( JS ( 4 ; ISE) ) & 3184 \\
\hline 3185 & 3185 & & ISS = JE ( 3 . IE) & 3185 \\
\hline 3186 & 3186 & & ISM \(=155\) & 3186 \\
\hline 3187 & 3187 & & D0 \(1290 \mathrm{KI}=1\), ITRIG & 3187 \\
\hline 3188 & 3188 & & JSM = ISCRSS ( KI ) & 3188 \\
\hline 3189 & 3189 & & IF ( ISS . EQ . 'SM ) ISM = NSCRSS( KI ) & 3189 \\
\hline 3190 & 3190 & 1290 & CONTINUE & 3190 \\
\hline 3191 & 3191 & & JE ( 3 , IE ) = ISM & 3191 \\
\hline 3192 & 3192 & C & & 3192 \\
\hline 3193 & 3193 & & ISS \(=\mathrm{JE}(4, \mathrm{IE})\) & 3193 \\
\hline 3194 & 3194 & & \(I S M=15 S\) & 3194 \\
\hline 3195 & 3195 & & \(001300 \mathrm{KI}=1\). ITRIG & 3195 \\
\hline 3196 & 3196 & & JSM \(=\) ISCRSS( KI ) & 3196 \\
\hline 3197 & 3197 & & IF ( ISS . EQ . JSM ) ISM = NSCRSS ( KI ) & 3197 \\
\hline 3198 & 3198 & 1300 & continue & 3198 \\
\hline 3199 & 3199 & & JE( 4, IE ) = ISM & 3199 \\
\hline 3200 & 3200 & C & & 3200 \\
\hline 3201 & 3201 & & IE = IABS ( JS( 5 , [SE ) ) & 3201 \\
\hline 3202 & 3202 & & ISS \(=\mathrm{JE}(3, \mathrm{IF}\) ) & 3202 \\
\hline 3203 & 3203 & & \(15 M=15 S\) & 3203 \\
\hline 3204 & 3204 & & DO \(1310 \mathrm{KI}=1\), ITRIG & 3204 \\
\hline 3205 & 3205 & & \(1{ }^{11}=\) ISCRSS ( KI ) & 3205 \\
\hline 3206 & 3206 & & ... ISS . EQ . JSM ) ISM = NSCRSS ( KI ) & 3206 \\
\hline 3207 & 3207 & 1310 & CONTINUE & 3207 \\
\hline 3208 & 3208 & & JE ( 3,15 ) = ISM & 3208 \\
\hline 3209 & 3209 & C & & 3209 \\
\hline 3210 & 3210 & & ISS = JE ( 4 , IE ) & 3210 \\
\hline 3211 & 3211 & & ISM = ISS & 3211 \\
\hline 3212 & 3212 & & DO \(1320 \mathrm{KI}=1\), ITRIG & 3212 \\
\hline 3213 & 3213 & & JSM = ISCRSS( KI ) & 3213 \\
\hline 3214 & 3214 & & IF ( ISS . EQ . JSM ) ISM = NSCRSS ( KI ) & 3214 \\
\hline 3215 & 3215 & 1320 & continue & 3215 \\
\hline 3216 & 3216 & & JE ( \(4, \mathrm{IE}\) ) \(=\) ISM & 3216 \\
\hline 3217 & 3217 & C & & 3217 \\
\hline 3218 & 3218 & & \(I E=\) IABS ( JS ( \(6, ~\) ISE ) ) & 3218 \\
\hline 3219 & 3219 & & ISS \(=\mathrm{JE}(2, \mathrm{IE}\) ) & 3219 \\
\hline 3220 & 3220 & & ISM \(=15 S\) & 3720 \\
\hline 3221 & 3221 & & DO \(1330 \mathrm{KI}=1\), ITRIG & 3221 \\
\hline 3222 & 3222 & & JSM = ISCRSS( KI ) & 3222 \\
\hline 3223 & 3223 & & IF ( ISS . EQ . JSM ) ISM = NSCRSS ( KI ) & 3223 \\
\hline 3224 & 3224 & 1330 & CONTINUE & 3224 \\
\hline 3225 & 3225 & & JE( 3.15 ) = ISM & 3225 \\
\hline 3226 & 3226 & C & & 3226 \\
\hline 3227 & 3227 & & 1SS = JE( 4 , IE ) & 3227 \\
\hline 3228 & 3228 & & ISM \(=\) ISS & 3228 \\
\hline 3229 & 3229 & & D0 134n KI = 1 . ITRIG & 3229 \\
\hline 3230 & 3230 & & JSM = j 3 CRSS ( KI ) & 3230 \\
\hline 3231 & 3231 & & IF ( ISS . EQ . JSM ) ISM = NSCRSS ( KI ) & 3231 \\
\hline 3232 & 3232 & 1340 & continue & 3232 \\
\hline 3233 & 3233 & & JE ( \(4 . \mathrm{IE}\) ) \(=1\) ISM & 3233 \\
\hline 3234 & 3234 & - & & 3234 \\
\hline 3235 & 3235 & 280 & CONTINUE & 3235 \\
\hline 3236 & 3236 & C & & 3236 \\
\hline 3237 & 3237 & & \(001350 \mathrm{IE}=1\). IETRIG & 3237 \\
\hline 3238 & 3238 & & IES = IECRSS( IE ) & - 3 38 \\
\hline 3239 & 3239 & \(c\) & & 3239 \\
\hline 3240 & 3240 & & IS = JE ( 3 , IES) & 32.40 \\
\hline 3241 & 3241 & & 1SS = 15 & 3241 \\
\hline 3242 & 3242 & & D \(1360 \mathrm{KI}=1\), ITRIG & 324. \\
\hline 3243 & 3243 & & ISM = NSCRSS ( KI ) & 3243 \\
\hline 3244 & 3244 & & IF( IS . EQ . ISM ) ISS = ISCRSS ( K ( ) & 3244 \\
\hline 3245 & 3245 & 1360 & CONTINUE & 3245 \\
\hline 3246 & 3246 & C & & 3246 \\
\hline 3247 & 3247 & & IF( ISS . NE . O ) THEN & 3247 \\
\hline 3248 & 3248 & c & & 3248 \\
\hline 3249 & 3249 & & IER \(=\) JS ( 4, ISS ) & 3249 \\
\hline 3250 & 3250 & & IEE = IABS ( iER ) & 3250 \\
\hline 325: & 3251 & & \(I E M=1 E E\) & 3251 \\
\hline 3252 & 3252 & & D0 \(1370 \mathrm{KI}=1\), IETRIG & 3252 \\
\hline 3253 & 3253 & & JEM = ECOSS ( Ki ) & 3253 \\
\hline 3254 & 3254 & & IF ( IEE . EQ . JEM ) IEM * NECRSS ( KI ) & 3254 \\
\hline 3255 & 3255 & 1370 & CONTINUE & 3255 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 3256 & 3256 & \\
\hline 3257 & 3257 & C \\
\hline 3258 & 3258 & \\
\hline 3259 & 3259 & \\
\hline 3260 & 3260 & \\
\hline 3261 & 3261 & \\
\hline 3262 & 3262 & \\
\hline 3263 & 3263 & \\
\hline 3264 & 3264 & 1380 \\
\hline 3265 & 3265 & \\
\hline 3266 & 3266 & C \\
\hline 3267 & 3267 & \\
\hline 3268 & 3268 & \\
\hline 3269 & 3269 & \\
\hline 3270 & 3270 & \\
\hline 3271 & 3271 & \\
\hline 3272 & 3272 & \\
\hline 3273 & 3273 & 1390 \\
\hline 3274 & 3274 & \\
\hline 3275 & 3275 & C \\
\hline 3276 & 3276 & \\
\hline 3277 & 3271 & \(こ\) \\
\hline 3278 & 3278 & \\
\hline 3279 & 3279 & \\
\hline 3280 & 3280 & \\
\hline 3281 & 3281 & \\
\hline 3282 & 3282 & \\
\hline 3283 & 3283 & 1400 \\
\hline 3284 & 3284 & c \\
\hline 3285 & 3285 & \\
\hline 3286 & 3286 & \(\bigcirc\) \\
\hline 3287 & 3287 & \\
\hline 3288 & 3288 & \\
\hline 3289 & 3289 & \\
\hline 3290 & 3290 & \\
\hline 3291 & 3291 & \\
\hline 3292 & 3292 & \\
\hline 3293 & 3293 & 1410 \\
\hline 3294 & 3294 & \\
\hline 3295 & 3295 & c \\
\hline 3296 & 3296 & \\
\hline 3297 & 3297 & \\
\hline 3298 & 3298 & \\
\hline 3299 & 3299 & \\
\hline 3300 & 3300 & \\
\hline 3301 & 3301 & \\
\hline 3302 & 3302 & 1420 \\
\hline 3303 & 3303 & \\
\hline 3304 & 3304 & C \\
\hline 3305 & 3305 & \\
\hline 3306 & 3306 & \\
\hline 3307 & 3307 & \\
\hline 3308 & 3308 & \\
\hline 3309 & 3309 & \\
\hline 3310 & 3310 & \\
\hline 3311 & 3311 & 1430 \\
\hline 3312 & 3312 & \\
\hline 3313 & 3313 & C \\
\hline 3314 & 3314 & \\
\hline 3315 & 3315 & C \\
\hline 3316 & 3316 & 1350 \\
\hline 3317 & 3317 & C \\
\hline 3318 & 3318 & \\
\hline 3319 & 3319 & \\
\hline 3320 & 3320 & \\
\hline 3321 & 3321 & C \\
\hline 3322 & 3322 & \\
\hline 3323 & 3323 & \\
\hline 3324 & 3324 & 1450 \\
\hline 3325 & 3325 & C \\
\hline 3326 & 3326 & \\
\hline 3327 & 3327 & \\
\hline 3328 & 3328 & c \\
\hline 3329 & 3329 & \\
\hline
\end{tabular}
\(\operatorname{JS}(4, \operatorname{ISS})=\operatorname{ISIGN}(1 . \operatorname{IER}) * \operatorname{IEM}\)
\(I E R=J S(5, I S S) \quad 3258\)
\(I E E=I A B S(I E R)\)
3259
IEM = IEE
3260
\(001380 \mathrm{KI}=1\), IETRIG 3261
\(\mathrm{JEM}=\operatorname{IECRSS}(\mathrm{KI})\)
3262
IF (IEE . EQ . JEM) IEM = NECRSS ( KI) 3263
continue
\(\operatorname{JS}(5, \operatorname{ISS})=\operatorname{ISIGN}(1\), IER \() * \operatorname{IEM}\)
IER \(=\) JS ( 6 . ISS ) 3265

IEE = IABS ( IER )
IEM = IEE
33269
\(001390 \mathrm{KI}=1\). IETRIG 3270
JEM - IECRSS( KI)
IF (IEE . EQ . JEM ) IEM = NECRSS( XI )
CONTINUE 3273
JS ( 6, ISS ) \(=\operatorname{ISIGN}(1\), IER ) * IEM 3274
HMD IF 3275
END IF 3276
IS \(=\mathrm{JE}(4\), IES \() \quad 3278\)
ISS = IS . HES ) 3279
\(001400 \mathrm{KI}=1\). ITRIG 3280
ISM = NSCRSS( KI ) 3281
IF ( IS . EQ . ISM ) ISS = ISCRSS ( KI ) 3282
continue
IF (ISS . NE . 0 ) THEN \(\quad 3285\)
3286
\(\begin{array}{ll}\text { IER }=\text { JS ( } 4, \text { ISS ) } & 3287 \\ \text { IEE }=\text { IABS ( IER }) & 3288 \\ \text { IEM } & \text { IEE }\end{array}\)
IEM \(=\) IEE
DO \(1410 \mathrm{KI}=1\), IETRIG
3289
JEM = IECRSS ( KI )
3290
\(+\quad 3291\)
CONTLNE - LQ - JEM ) IEM = NECRSS ( KI ) 3292
CONTINUE ISS \()=\) ISIGN ( 1, IER \() *\) IEM 3293
JS ( 4, ISS ) = ISIGN ( 1, IER ) * IEM 3294
IER \(=\) JS ( 5, ISS ) 3296
IEE \(=\) IABS ( IER ) 3297
\(\mathrm{IEM}=\mathrm{IEE}\)
3297
3298
DO \(1420 \mathrm{KI}=1\). IETRIG 3299
JEM \(=\operatorname{IECRSS}(\mathrm{Ki}) \quad 3300\)
IF ( IEE . EQ . JEM ) IEM = NECRSS ( KI) 3301
CONTINUE
\(\mathrm{JS}(5\), ISS \()=\operatorname{ISIGN}(1\), IER \()\) * IEM 3303
\(\begin{array}{ll}\text { IER }=\mathrm{JS}(6, \text { ISS ) } & 3304 \\ 3305\end{array}\)
\(I E E=\) IABS ( IER ) 3306
\(I E M=1 E E\) 3307
DO 1430 KI \(=1\). IETRIG 3308
JEM = IECRSS( Ki ) 3309
IF ( IEE . EQ . JEM ) IEM = NECRSS (KI ) 3310
CONTINUE 3311
JS ( \(6 \cdot \operatorname{ISS}\) ) \(=\operatorname{ISIGN}(1\). IER \() *\) IEM 3312
END IF 3314
\(\begin{array}{ll}\text { CONTINUE } & 3315 \\ 3316\end{array}\)
DO 1440 IE \(=\) I IETAIG 3317
\(\begin{array}{ll}\text { IEM }=\text { NECRSS ( } \mathcal{E} \text { ) } & 3319\end{array}\)
JEM \(=\) IECRSS ( IE ) 3320
DO 1450 IK \(=1.5 \quad 3321\)
JE ( IK, IEM ) = JE ( IK , JEM ) 3323
continue
3324
\begin{tabular}{ll}
3325 \\
\hline
\end{tabular}
\(X E(1\), IEM \()=X E(1, J E M)\)
\(X E(2, \operatorname{XEM})=X E(2, J E M)\)
\(X N(\) IEM \()=X N(J E M)\)
3329
\begin{tabular}{|c|c|c|c|c|}
\hline 3330 & 3330 & & YN( IEM ) - YN( JEM ) & 3330 \\
\hline 3331 & 3331 & & XXN( IEM ) = XXN( JEM ) & 3331 \\
\hline 3332 & 3332 & & YYN( IEM ) = YYN( JEM ) & 3332 \\
\hline 3333 & 3333 & & XMIDL ( IEM ) = XMIDL ( JEM ) & 3333 \\
\hline 3334 & 3334 & & YMIDL (IEM ) = YMIDL (JEM) & 3334 \\
\hline 3335 & 3335 & & XYMIDL (IEM) = XYMIDL ( JEM) & 3335 \\
\hline 3336 & 3336 & 1440 & continue & 3336 \\
\hline 3337 & 3337 & C & & 3337 \\
\hline 3338 & 3338 & & 001460 IS = 1, ITRIG & 3338 \\
\hline 3339 & 3339 & & ISM \(=\) NSCRSS \((15)\) & 3339 \\
\hline 3340 & 3340 & & JSM = ISCRSS ( IS ) & 3340 \\
\hline 3341 & 3341 & \(c\) & & 3341 \\
\hline 3342 & 3342 & & DO 1470 IK = 1. 6 & 3342 \\
\hline 3343 & 3343 & & JS (IK, ISM) = JS ( IK. JSM ) & 3343 \\
\hline 3344 & 3344 & 1470 & continue & 3344 \\
\hline 3345 & 3345 & c & & 3345 \\
\hline 3346 & 3346 & & XS \((1,15 M)=X S(1\), JSM \()\) & 3346 \\
\hline 3347 & 3347 & & XS \((2,1 S M)=X S(2, J S M)\) & 3347 \\
\hline 3348 & 3348 & & XS( \(3,15 M)=\) XS \((3, J S M)\) & 3348 \\
\hline 3349 & 3349 & c & & 3349 \\
\hline 3350 & 3350 & & SAREA ( ISM ) = SAREA ( JSM ) & 3350 \\
\hline 3351 & 3351 & & KSDELT ( ISM ) = KSDELT( JSM ) & 3351 \\
\hline 3352 & 3352 & c & & 3352 \\
\hline 3353 & 3353 & &  & 3353 \\
\hline 3354 & 3354 & & \(\operatorname{HYOV}(\) ISM, IK \()=\operatorname{HYDV}(\) JSM, IK ) & 3354 \\
\hline 3355 & 3355 & 1480 & continue & 3355 \\
\hline 3356 & 3356 & C & & 3356 \\
\hline 3357 & 3357 & & HYOFLX ( ISM, 4) = HYDFLX JSM, 4) & 3357 \\
\hline 3358 & 3358 & & HYOFLX \((\) ISM, 1) \(=\) HYDFLX ( JSM, 1) & 3358 \\
\hline 3359 & 3359 & & HYDFLX (ISM, 2) \(=\operatorname{HYDFLX}(J S M, 2)\) & 3359 \\
\hline 3360 & 3360 & C & & 3360 \\
\hline 3361 & 3361 & 1460 & CONTINUE & 3361 \\
\hline 3362 & 3362 & c & & 3362 \\
\hline 3363 & 3363 & & NV = NVM & 3363 \\
\hline 3364 & 3364 & & NE - NEM & 3364 \\
\hline 3365 & 3365 & & NS = MSM & 3365 \\
\hline 3366 & 3366 & \(c\) & & 3366 \\
\hline 3367 & 3367 & & OO 1490 IENN \(=1\). IJTRIG & 3367 \\
\hline 3368 & 3368 & & IE = JUE (IENN) & 3368 \\
\hline 3369 & 3369 & & D0 \(1490 \mathrm{KI}=1\), IETRIG & 3369 \\
\hline 3370 & 3370 & & JEM = IECRSS ( KI ) & 3370 \\
\hline 3371 & 3371 & & IF ( IE . EQ . JEM ) JUE ( IENN ) = NECRSS ( KI ) & 3371 \\
\hline 3372 & 3372 & 1490 & continue & 3372 \\
\hline 3373 & 3373 & C & & 3373 \\
\hline 3374 & 3374 & & DO 1540 IENM \(=1\), JJTRIG & 3374 \\
\hline 3375 & 3375 & & IVV - IITRIG (IENN) & 3375 \\
\hline 3376 & 3376 & & IF (JV( 1 , IVV) . NE . 3) CALL Relaxy ( IVV) & 3376 \\
\hline 3377 & 3377 & 1540 & continue & 3377 \\
\hline 3378 & 3378 & C & & 3378 \\
\hline 3379 & 3379 & & 001500 IENN = 1 . IJTRIG & 3379 \\
\hline 3380 & 3380 & & IE = JUE (IENN ) & 3380 \\
\hline 3381 & 3381 & & CALL RECNC( IE , IDONE, ITL, ITR, JA, JB, JC , JD ) & 3381 \\
\hline 3382 & 3382 & & CALL RECNC ( JA . JADONE , ITL , ITR . JAA . JAB , JAC , JAD ) & 3382 \\
\hline 3383 & 3383 & & CALL RECNC ( JB , JBDONE . ITL , ITR. JBA , JBB , JBC , JBD ) & 3383 \\
\hline 3384 & 3384 & & CALL RECNC JC, JCDONE, ITL , ITR, JCA , JCB , JCC , JCD ) & 3384 \\
\hline 3385
3385 & 3385 & & CALL RECNC( JD , JDDONE . ITL , ITR . JDA , JDB , JDC . JOD ) & 3385 \\
\hline 3386 & 3386 & 1500 & continue & 3386 \\
\hline 3387 & 3387 & c & & 3387 \\
\hline 3388 & 3388 & & DO 1510 IPRTCL \(=1\), NPT & 3388 \\
\hline 3389 & 3389 & & ISM = IJKPRT ( IPRICL ) & 3389 \\
\hline 3390 & 3390 & & D0 \(1510 \mathrm{KI}=1\), ITRIG & 3390 \\
\hline 3391 & 3391 & & JSM = NSCRSSS KI ) & 3391 \\
\hline 3392 & 3392 & & IF (ISM. EQ . JSM ) IJKPRT ( IPRTCL ) = NSMNPT & 3392 \\
\hline 3393 & 3393 & 1510 & CONTINUE & 3393 \\
\hline 3394 & 3394 & c & & 3394 \\
\hline 3395 & 3395 & c & UPDATE THE JSDELT ARRAY & 3395 \\
\hline 3396 & 3396 & c & & 3396 \\
\hline 3397 & 3397 & & DO 1530 IS \(=1\), 1SDELT & 3397 \\
\hline 3398 & 3398 & & JSP = JSDELT ( IS ) & 3398 \\
\hline 3399 & 3399 & & \(001530 \mathrm{KI}=1\). ITRIG & 3399 \\
\hline 3400 & 3400 & & JSM - ISCRSS ( KI ) & 3400 \\
\hline 3401 & 3401 & & IF ( JSP - EO . JSM ) JSDELT( IS ) = NSCRSS( KI ) & 3401 \\
\hline 3402 & 3402 & 1530 & CONTINUE & 3402 \\
\hline 3403 & 3403 & C & & 3403 \\
\hline
\end{tabular}


\section*{APPENDIX C}

COPIES OF PUBLICATIONS


\author{
AIAA 89-2446 \\ A REVIEW OF PROPULSION APPLICATIONS OF THE PULSED DETONATION ENGINE CONCEPT \\ S. EIDELMAN, W. GROSSMANN AND I. LOTTATI SCIENCE APPLICATIONS INTERNATIONAL CORP. APPLIED PHYSICS OPERATION MCLEAN, VA
}

\section*{AIAA/ASME/SAEASEE 25th Joint Propulsion Conference Monterey, CA / July 10-12, 1989}

\title{
A REVIEW OF PROPULSION APPLICATIONS OF THE PULSED DETONATION ENGINE CONCEPT
}

\author{
S. Eidelman, W. Grossmann and I. Lottati
}

\author{
Applied Physics Operation \\ Science Applications International Corporation \\ 1710 Goodridge Dr., McLean, VA 22102
}

\section*{Introduction}

The early development leading to practical propulsion engines was almost compietely ascociated with steady state engine concepts. Unsteady concepts, which initially appeared promising, never evolved from the conceptual state and have remained for the most part unexplored. The early work in unsteady propulion suffered from a lack of appropriate analytical and deaign tools, a condition which seriounly impeded the advancement of the unsteady concepte to a practical stage.

In this paper we review the historital development of unsteady propulaion by concentrating on one particular concept, the intermittent detonation engise, and discusa current researeh activities in this area. A review of the literature \({ }^{1-24}\) roveris that a aignificant body of experimental and theoretical research exists in the area of unateady propulaion. However, this resaarch has not been extended to the point where a conclusive quankitative comparison can be made between impalsive engine concepts and steady atate concepta. For exampie, the analyzis given in Referencea 8-11 of the performance of a detonation engine concept doen not inclade frequency dependence, nor any analyuis of lossee due to multi-cycle operation. A new generation of analytical and computational tools exists today and allowe us to revisit and analyse such issues with a high degree of confidence. Numerical aimulation hae developed to the state where it can now provide time depondent two and three dimensional modeling of complex internal flow procesees \({ }^{20,24,25}\) and will eventually revalt in tools for systematically analywing and optimising engineering design. In addition to a review of applications of the Pulsed Detonation Engine Concept here we will report results of a numerical study of the gacdynamics of a model of an air-breathing detonation engine with detailed analysis of the nonsteady flow pattern. Thin atndy was performed using new unsteady CFD tools which we will also describe.

Our paper is structured as follows: 1) historical review of the pulied detonation development efforts; 2) description of the banic phenomenology of the air-breathing Pulsed Detonation Engine concept; 3) description of the
mathematical formulatico and new namerical scheme used to simalated the problem; 4) discuation of the simulation resulte; and 5) conclusions.

\section*{Eistorical Review}

\section*{Conotant Volume Combuation}

From the very early development of jet-propulsion engines it was known that an engine baed on a conatant volume combuation procem achioves higher effciancy than a constant presure engine. This follown from athermodynamic analysin of the engine cycle. \({ }^{1}\)

Constant volume combustion was aned in gas turbine engines at the beginning of this century, and the firm gan turbine engines in commercial nes wort based on the constant volume cyele. Jet-propuinion engines were one of the applications of the conatast volume cycle (or explotion cycle) which was explored in the late 1940. \({ }^{2}\) Although the explosion cycie operatee at a larger pressure variation in the combustion chamber than in a poise-jet \({ }^{5,4}\), the cycle actually realised in thees engines was not a fully coustant volume one since the combastion chamber was open ended \({ }^{2}\). In Reference 2 the maximum pressure ratio measured in an explosion cycle engine was 3:1, whereas the presance ratio for the ame mixture under the asenmption of a constant volume cycie would be 8:1. Alro, this engine was limited by the available frequency of cycles, which in turn is limited by the reaction rate. A simple calculation \({ }^{2}\) showed that if the combustion time conld be reduced in this engine from 0.006 sec to 0.003 sec , the thrust per pound of mixtare would increase \(100 \%\). Thus the explosion-cycle engine has two main disadvantages:
- Constrained volume combustion (as distinguished from constant volume combustion) does not take full advantage of the pressure rise characteristic of the constant volume combustion proceas.
- The frequency of the explosion cycle is limited by the reaction rate, which is only slightly higher than the deflagrative combustion rate.
The main advantage of the constant pressure cycle is that it leads to engine configurations with steady state
procespen of injection of the fuel and oxidirer, combustion of the mixture, and expansion of the combuation products. These atages can be easily identified and the engine denigner can optimise them on the basis of relatively simple steady state considerations.

At the same time an engine based on comatant volame combuation will have an intermittent mode of operation, which may complicate its design and optimination. We are interested in the question of whether this complication is worth the potential gains in engine efficioncy.

\section*{Pahed Detoration Engine as an UItimate Constant Vol ume Combastion Concept}

The detonation process, due to the very high rate of reaction, parmite constraction of a propnlaion engine in which the constant volume process can be fully realised. In detonative combustion, the strong shock wave, which is part of the detonation wave, acte like a vaive between the detonation products and the freah charge. The speed of the detonation wave is about two onders of magnitude higher than the apeed of a typical deflagrae tion. This allow the design of propulsion engines with a very high power density. Usually, each detonation is initiated separately by a fully controlled ignition device, and the cycle frequancy can be changed over a wide range of viluen. Thin aleo means that a device based on a detonative combustion cycie can be ecaled and its operating parameters cas be mudified for a range of required outpat conditions, There have been numerous attempte to take advantage of detonative combustion for engine applications. In the following we give a dencription of the most relevant past experimental and analytical studies of the detonation engine concept.

\section*{Hoffmann's Report.}

The fint reported work on intermittent detonation in attributed to Hoffmann \({ }^{8}\) in 1940. He operated an intermittent detonation teat atand with acetylene-axygen and bencino-oxygen mixtures. The addition of water vapor wan used to prevent the highly sensitive acetylenooxygen mixture from premature detonation. Hofmann \({ }^{3}\) indicated the importance of the spart plug location in reference to tube length and diffuser length. It was found that a continuous injection of the combustible mixture leads to only a narrow range of ignition frequencies which will produce an intermittent detonation cycle. These frequencies are governed by the time required for the mixture to reach the igniter, time of transition from defagration to detonation, and time of expanation of the detonation producks. Hoffmann attempted to find the optimmm cycie frequency experimentally. It wan discovered that detonation-tube firing occurred at lower frequencies than the apark-plug enargizing frequenciea indicating that the
injection flow rate and ignition were out of phawe. Eventa prevented further wort by Hoffmann and co-workers.

\section*{Nicholls Experiments.}

A substantial effort in intermittent detonation engine research was done by a group headed by J. A. Nicholls \({ }^{8-10}\) of The Univertity of Michigan beginaing in the eariy 50 's. The most relevant work concerne a set of experimente carried out in a six foot long detonation tabe \({ }^{6}\). The detonation tube was constructed from a one inch internal diameter stainleas steel tube. The fuel and oxidiser were injected under pressare from the left end of the tube and ignited at the some distance down stream. The tube was mounted on a pendulum platiorm, suspended by anpport wirea. Thruat for single detonations was measured by detecting tube (platform) movement relative to a atationary pointer. For multi-cycle detonations thrast meancement was achieved by monnting the thrust end of the tube to the free end of the cantilever beam. In addition to direct thrust measuremente the temperatine on the inner wall of the detonation tobe wes mearured.

Fhel mixturee of hydrogen/oxygen, hydrogen/air, acatyleno-oxygen and acetylene-air mixturts wese used. The gaceous axidiver and fuel ware continnouely injected at the cloued end wall of the detonation tube and three fixed flow rates were used. Under theoe conditions the oniy parametars which conld be varied were the fual/oridiser ratio and frequeacy of ignition. A maximm groes thruat of \(\approx 3.216\) was meanured in hydro. gem/air mixtmere at the frequency of \(\approx 30\) detonations per second. The most promising realte weat demonstrated for the \(H_{3} /\) Air mixture, where a fal apecific impule of \(I_{\text {op }}=2100\) sec was reached. The maximom frequency of detonations obtained in all exparimente was 35 Fis. The temperature measuremente on the inner wall showed that for the highest frequency of detomations the temperature did not exceed \(800^{\circ} \mathrm{F}\).

In their later work, \({ }^{8,9,10}\) the Univenrity of Michigan group concentrated on development of the Rotating Detonation Wave Rocket Motor. No further work on the puised detonation cycle was pursued.

\section*{Krzveki Expariments}

In a setup somewhat similar to Nicholl's, L. J. Kryckid \({ }^{12}\) performed an experimental investigation of intermittent detonations with frequencies up to 60 cps . An attempt was also made to analyne the banic phenomena uaing unateady gas dynamic theory. Kriycki's attempt to analyse the basic phenomena relied on wave diagrams to trace characteristica, assumptions of isentropic flow for detonation and expansion, and incompressible flow for mixare injection processes. The most convincing
data from the experimente is the measurement of thrust for a range of initiation frequencies and mixture fow ratem. Unfortanately no direct presenre measurement in the device are reported so that only indirect evidence exists of the nature of the process observed.

The basic seat atand used by Kraycki is very similar to that used by Nicholls et al. \({ }^{8}\) The length of the detomation tube and internal diameter were exactly the same as thoee in Nicholl's experiments. A Propane/Air micture was contincously injected through a reversedflow diffusar for better mixing, and ignited at she some dintance from the injection point by an antomobile apart plag. The spart frequency was varied from 1 to 60 cps . The apark plug power output was varied inversely with the initiation frequency and at the frequency of 60 cps was only 0.65 Joule. This fact alone eliminated the powsibility of direct initiation of the detonation wave by the spark and consequently all of the experimente must have been baed on transition from defiagration to detonation. According to experimental date and theory, \({ }^{12}\) for direct initiation of a misture of propane-air at the detonability limite, an energy release on the order of \(10^{6}\) Jonles is required. Thes, the required deflagration-detonation tranaition region length would have been prohibitively large for the propane-air mixture. It followe that in all of the experimenta a subetantial part of the procees was deflagrative. This remited in low efficiency, and negligible thrant. Krychi repeated the experiments of Nicholla uning exactly the same sice detonation tube and bacically the same rates of injection of the detonable mixture. Kriycki's experimental remulte are very well documented, allowing a clenr picture of the physical procesen ocensring in the tnibe so be deduced. A conclurion, arrived at by the anthor, was that thruat was possible from such a device bat practical applications did not appear promis ing. It is anfortunate that, poscibly based on Kroycki's extemive but mielading results, all experimental wort at this time.

\section*{Work Reported in Rusaian sources on Pulse Detoantion Devices}

A review of the Rusaian literature has not uncovered work concerning applications of pulsed detonation devices to propulaion. However there are numerous reports of applications of such devices for producing nitrogen oxide \({ }^{13}\) (an old Zeldovich idea to bind nitrogen directly from air to produce fertilirera) and as rock crashing devices \({ }^{14}\).

Korovin et al \({ }^{15}\) provide a most intereating acconnt of the operation of a commercial detonation reactor. The main objective of this atudy was to examine the efficiency of thermal axidation of nitrogen in an intermittent detonative proces as well as an asseasment of anch techno-
logical isuen at the fatigue of the reactor parte exposed to the intermittent detomation wave over a prolonged time. The reactor consiated of a tube with an inner diameter of 16 mm and length 1.3 m joined by a conical diffeer to a second tube with an inner diameter of 70 mm and length 3 m . The entire detonation reactor was submerged in rumning water. The detonation mixture wat introduced at the end wall of the emall tube. \(\mathrm{CH}_{4}\), \(\mathrm{O}_{3}\) and \(\mathrm{N}_{2}\) comprised the mixture composition and the mixane ratios were varied during the continnour operation of the reactor. The detonation wave velocity whe mesoured directly by piesoclectric sensore placed in the small and large tabea. The detonation initiation frequency in the reactor wan \(2-16 \mathrm{Hs}\). It is reported that the apparatus operated without significant changea for 2000 hours.

Smirnov and Boicheniko \({ }^{14}\) studied intermittent detonations of gasoline-air mixtyres in a 3 m long and 22 mm inner diameter tribe operating in the 6-8 Hs ignition frequency range. The main motivation of this work whe to improve the efficiency of a commercial rock crachine apparatas beead on intermittent detomations of the gevoline-air mixtures. \({ }^{15}\) The anthors inveatigated the dependence of the length of the tranitional region from deflagration to detonation on the initial temperature of the mitaure.

As a remalt of the information contained in the Sovied reporta, it can be concinded thet reliable commercial devices baced on intermittent detomations can be conatructed and operated.

\section*{Developement of the Blast Propuinion Sytem at JPL}

Wort at the Jet Propulaion Laboratory (JPL) by Back, Varii ald others \({ }^{10-10}\) concerned an experimental and theoretical stady of the feasibility of a rocket trusuer using intermittent detonations of solid explonive uneful for propulaion in dense or high-presure atmonpherea of certain solar syotem planets. The JPL work was directed at vary specific applicationt; however, the stadian \({ }^{17-19}\) addrened nome hey isenes of devices using unsteady procen auch as propulsion efficiency. The JPL atudiea have important implication to pulsed detonation propulsion ayntems.

Refarence 19 gives the basic deacription of the test atand used. In thin work a Deta sheet type C explosive was detonated inside a amall detonation chamber attached to nossles of varions length and geometry. The nosnlen, complete with firing plag, were mounted in a containment vempl which could be presurised with the mixture of varions inert gases from vacuum to 70 atm. The apparatus measured directly the thrust generated by aingle detonation of a amall amount of solid expiosive charge expanding into conical or straight nossles.

Thrust and apecific impuise wan measured by a pendulum balance syrtem.

Reaults obtained from an extensive experimental study of the exploaively driven rocket have lead to the following coaclanions. Fint, rockets with long nonsles show increasing specific impulse with increasing ambient preseure in \(\mathrm{CO}_{2}\) and \(\mathrm{N}_{2}\). Short nosnies, on the other hand, show that apecific impulse is independent of ambient presense. Moet importantiy, most of the experiments obtained a relatively high apecific impules of 250 seconds and larger. This result is all the more striting since the detonation of a solid explosive yielda a relatively low enargy releace of approximately \(1000 \mathrm{cal} / \mathrm{gm}\) compared with \(3000 \mathrm{cal} / \mathrm{gm}\) obtained in hydrogen oxygen combustion. Thus, it can be concluded that the total losses in a thruster baced on unsteady expanaion are not prohibitive and, in principle, very efficient propalsion systems operating on intermittent detonations are ponible.

\section*{Detonation Eagine Studies at Naval Postgraduate School}

A modeat exploratory study of a propukion dovice utilising detonation phenomena was conductod at the Naval Poatgraduate School. \({ }^{20-23}\) During this stady, averal fundamentally new elements were introduced to the concept distinguinhing the new device from previons osce.

First, it is important to note that the experimental appazatis coastructed by Helman et all \({ }^{22}\) was the first succesaful self aepirating air breathing detonation device. Intermittont detonation frequencies of 25 Is were obtained. This frequency was in phace with the fuel mixture injection through timed fral valve opening and apark discharge. The feacibility of intermittent injection wes eatablichod. Presoure meanurementa showod conclunively that a detonation process occurred at the frequency choean for fual injection. Further, self appirntion wes shown to be effective. Finally, the effectivenese of a primary detonation as a driver for the main detonation whe clearly demonstrated. Although the NPS atudien were abbreviated, many of the technical isures cosaidered to be eneantial for afficient intermittent detonation propulcion were addressed with positive reanls.

\section*{Simulations of Pulbed Detonation Engine Cycle at NASA-Amee Center}

Recently Cambier and Adelman \({ }^{24}\) carried out numerical simalations of a puled detonation engine cycle taking into account finite rate chemistry. Unfortanatoly, the simulations were restricted to a quasi-one dimensional model. The configaration considered had a 6 cm inner diameter 50 cm long main chamber which wan attached to 843 cm diverging nossle. It was asoumed that

2 stoichiometric mixture of hydrogen/air at 3.0 atmospheres is injected from an inlet on the cloced end wall of the detonation chamber. At such conditiona Cambier and Adelman eatimated a large range of posaible detonation frequenciea of engine operation up to 687 Hs . The origin of this eatimate is not clear from their work, since according to their simulationa, the detonation, expanaion and froeh charge fill requires 2.5 msec. This value leade to a maximum frequency of 400 Hs . The simulated engine performance yielded a large average thrut of 893 lb and an anueally high specific impule of 6507 sec. These simaintions were the first to demonstrate the use of modern CFD methode to address the technical isauea amociated with unsteady puleed detonation concepts.

In the remaining sectiona we diecoses a particular propuation concapt baned on the resulta of the experiments of Helman et \(\mathrm{aL}^{22}\) and describe a compatational study of ita performance characteristica. The unsteady namerical scheme used for the study made use of anique simalations techniques; the key ingrediente of thees techniquee are aiso dencribed.

\section*{A Generic Puleed Detonation Engine}

The geseric device we consider hers is a amall engine 15 cm long and 15 cm in diameter. The combuatible gam mixture is injected at the cloeed end of the detonation chamber and a detonation wave propagatee through the mixture. The aise of the engine suggests a amall payload, bat the concept can be extended to larger payloade simply by ucaling ap the aise of the datonation chamber and poneribly combining a number of engine into one large propuhion engine. A key issue in the pulced detonation engine concept is the denign of the main detonation chamber. The detonation chamber geometry determines the propuinion efficiency and the daration of the cycie (frequency of detonations). Since the frech charge for the generic engine is supplied from the external flow field, the efficiency of the engine depende on the interaction of the uarrounding fiow with the internal flow dynamica. The range of the physical processes requiniag aimnistion in order to model the complex flow phenomena aseociated with the detonation engine performance is very broad. A partial list is:
1. Initiation and propagation of the detonation wave inside the chamber,
2. Expanaion of the detonation products from the chamber into the air stream around the chamber at fight Mach numbers.
3. Reverse flow from the surrounding air into the chamber resuiting from over expanaion of the detonation producte,
4. Preseure buildup in the chamber due to reverse flow. The flow pattern inside the chamber during postexhaust pressure buildup determines the atrategy
for mixing the next detonation charge,
5. Strong mutual interaction between the flow procesme incide the chamber and flow around the engine.
All of these procemes are interdependent and their timing is cracial to the engine efficiency. Thus, unlike simulations of steady atate engines, the phenomens doseribed above can not be evaluated independentiy.

The need to resolve the flow regime inside the chamber accounting for nossles, air inlets etc., and at the same time resolve the flow around the engine, where the flow regime varies from high subsonic, locally tramonic and supernonic, makes it a challenging computational problem.

The main iscue is to determine the timing of the air intake for the freah gas charge. It is sufficient to aumme invicid flow for the perpose of simalating the expanaion of the detonation products and fresh gas incake. In the following we prement the first results of an invicid simulation of the detonation eycle in a cylindrical chambar. First, we decribe our computational method for solving the time dependent Ealer equations used in the study.

\section*{Tha Unateady Wuler Solver}

A new second order algorithm for solving the Euler equatione on as unatruetured grid was used in our stady of the dotonation concept. The approach is based on first and second order Godunov methods. The method leads to an extremely efficient and fast Flow Solver which is fully vectorised and eapily lends itself to paralleliration. The low memory requirements and apeed of the method ase due to the use of a nuique data structure.

Until recently most CFD simulations were carried out with logically structured grids. Vectorisation and/or parallalisetion did not preeent a problem. The increased need for simniation of flow phenomens in the vicinity of complax geometrical bodies and surfaces has led to the development of CFD codes for logically unatructured grids. The mont succesaful of these unetructured grid codes are based on finite elements or finite volume methods. For an untiructured grid in two-dimensions, the computational domain is uarally covered by triangle and the indices of the arraye containing the valuee of the hydrodynamic flow quantitiea are not related direetly to the actual geometric location of a node. The calculationa performed on unstructured grids evolve aronad the elemantal grid shape (e.g. the triangle for two-dimenaional probleme) and there is no obvious pattern to the order in which the local integrations should be performed. Explicit integration of hydrodynamic problems on an unstractured grid requires that a logical substructure should be created which identifies the locations in the global arrays of all the local quantitien necesaary for the integration of one element. This usually results in a large
price in compatational efficiency, in memory requirements, and in code complexity. As a conerquence, vectorisation for the conventional unstrectured grid meshode has concentrated on rearrangement of the data atructurs in a manner such that theer locally centered data structures appear as global arrays. This can be done to some extent naing mechine depandent Gather-Scatter operation. \({ }^{28,28}\) Additional optimisation can be achieved using localisation and search algorithme. Howver, these methoda are complex and rearult in margial improvemeat. Moet optimised nnstractured codee to date run comsiderably alowar and require an order of magnitude more memory per grid cell then their atructared counterparts. Parallelisation of the conventional natractured codee is even more difficult, there is very little experience with nnetractured codes on masaively parailel computer.

The method we have developed overcomet these difficulties and remalts in code with apeed and memory requiremente comparable to thom found in atractured grid coden. Marwover, the ability to conetruct grids with arbitrary remolation leads to a lecribility in dealing with complax geometrice not attuinable with struetured gride. The eavence of the method is baned on independent fux calculation scrom the odges of a dual bariemetric grid, followed by node integration. Thin approach is order independent. Below we give the emential dexails of our algorithry; a complete deecription follows later.

\section*{Bacic Integration Agrarithm.}

Wh begin by describing the first order Godanov method for the syatem of two-dimensional (wi-aymmetric) Eular equations written in conservation law form as
\[
\begin{equation*}
\frac{\partial \vec{Q}}{\partial t}+\frac{\partial \vec{F}}{\partial x}+\frac{\partial \vec{G}}{\partial r}=-\frac{1}{r} \vec{C} \tag{1}
\end{equation*}
\]
where,
\[
\begin{gathered}
\vec{Q}=\left(\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
e
\end{array}\right), \vec{F}=\left(\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
(e+p) u
\end{array}\right), \vec{G}=\left(\begin{array}{c}
\rho v \\
\rho v u \\
\rho v^{2}+p \\
(e+p) v
\end{array}\right), \\
\vec{C}=\left(\begin{array}{c}
\rho v \\
\rho v u \\
\rho v^{2} \\
(e+p) v
\end{array}\right) .
\end{gathered}
\]

Here \(u\) and \(v\) are the \(x\) and \(r\) velocity vector components, \(p\) is the pressure, \(p\) is the density and \(e\) is the total energy of the fluid per unit volume. It is aseumed that a mixed (initial conditions, boundary conditions) problem is properiy posed for the set of equations (1)
and that an initial distribation of the flaid parametars is given at \(t=0\) and some boundary cec.uitions defining anique molation are apecified on ths boundary of the computational domain.
W. look for a coution of the aystem of equatione represated by Eq. 1 in the competational domais covand by an anarretared grid. As an example, Fig. 1a ahowe the ruetructured triaggular grid uned in the pabed detonation eagine simalation. Hers moat of the comprtational effort is committed to the remolution of the flow invide the engine detonation chamber and in the immediate ricinity of the nossle. In Figure ib an enlargement of the nowsie resion in shown, illutrating the ability to reprement geometry of arbitrary complexity and with localised resolution.


Figare la Competational domala and grid neod ha simmintion of PDE operasion.


Figure it Enlargment of compatational grid ta the vicinity of the PDE nossit.

Fig. 2 displaye a fragmens of t'e computational domain with the correaponding dual gred. The necondary or daal grid is formed by connecting as baricentern of the primary meah, thas forming f: polygone around the primary wertice.


Flace 2 The primary (triagicie) and secondary (poligoan) unatructured gride.

Wo have found, as have others, \({ }^{\text {a7 }}\) that the beat prectical roprevatation of the integretion rolume in obtained when the dual grid in formed by consecting baricentars of the trinagien. Integration by the Godusor mothod \({ }^{23}\) can be divided into two banic steppas 1. Calculation of the flume at the odgee of the scondery grid uciags 200 lutione of a sot of oge dimencional Riemana problems; 2. Integration of the gyotem of partial differmatial equations which amounts to edditios of all the farme for every polygon at a particular time atop.

To define the flumon for the grid shown in Fig. 2 at overy edge of the main grid it in necmenery to solve the corrompoading Rimanai problem. For example, to define the flux at the edge ab, we eolve the Riamann problem between pointe A and B. The solution of thin problem is in coordinates local to the edge of the dual grid ab so that the tangeatial component of viocity will be dirseted along this edge (ab). Implementation of our approsch requirem maintaining strict consintesery wher defining the "left" and "right" atatee for the Riamana probleme th the edge ab, be, cd, de, ef, and fa. For thin reacon wo define not only the location of the verticea and lengths of the edgee but aleo the dirsection of the edgee with rmpect to the primary grid. For the clock wine integration patkern in the anme Polygon, point A will be the "right" state for all the Riemann problems reiated to this point and the neighbor will reproment the "left" side of the diaphragm.

It in eany to seo that the finx calculation is based on information at only two nodee and requiren single geometrical parametern defining the edge of the secondary
grid that dimects the line connecting the two pointe. Thun, we can calculate all the valnes needed for fiux calculation in one loop over all edgen of the primary grid without any details related to the geometrical structuren which thee edges form. This in turn amoures pardilelisztion or vectorination of the algorithm for the bull of the calculations involving the Riemann solver that provides the firt order far. The only procedure not readily parallalisable is the integrestion of the fluces for the flow variablen at the vertices of the grid. Here wo nee the sedge coloring technique which allows as to split the flux addition loop into 7 or 8 loope for edges of differant color. Each of thee loope in usually large enough not to impair vectorimation. At thin atage all the flucee arm added with their correct sign correaponding to the chosan direction of integration within the cell. The amount of calculation required here is minimal since the fluxen are knowa and need only to be multiplied at each time step by a simple factor and added to the vertex quantity.

\section*{Second Order Integration Algorithm}

The second order solver is constructed along linem similar to that from the fint-order method. At each cell edge the Riemana problem is solvad for some apecified pair of laft and right conditiona. The solntion to this Riemann probleus in than used in the calculation of furee which are added later to advance to the neat intogratiom step. The extenrion to second order is achieved by using axtrapolation in space and time to obtain timie-ceaterod let and right limiting values an inpote for the Riamana problem. The bacic implememeation of the method of calenation of seond order accurate fluxes in furdameme tally the anme as for one dimencional camea. The only difference is in the method of obtaining linear exkrapolstion of the fow variables as a first guess of their vilue as the edges of the dall grid. To obtain the first guem we nond to know the gradiont of some gaedynamical parameter \(U\) at the vartices of the primary meah. The value of \(\nabla \mathbb{U}\) cas be evaluated by using a linear path integral along the edges which delineates the finite volume amociated with the vartex. For vertex \(A\) in Figure 2 :
\[
\begin{equation*}
\int_{A} \nabla U d A=\oint_{l} U n d l \tag{2}
\end{equation*}
\]
where integrexion along the path \(l\) in this caee is equivalant to integration along the edges ab, be, cd, de, ef, fa. Knowing the gradient of the gasdynamic parameter in the volume releted to vertex \(A\) will allow us to extrap olate the values of thin parmmeter at any location within the volume. This permite us to evaluate the first grees for \(U\) at the adgee of the daal grid. The final four stepe of the implemoutation of the second order algorithm ham bean described provionaly. \({ }^{28}\)

A schematic flow chart of the basic atepe of the second order aigorithm implementation is shown in Figare 3.


Flume 8 Grid achematic and outline of atope for meond order Godinnor method.

\section*{Stmulations of the Ganarie Puleod Detonation Engine}

In thin enction we prement ample realte of simulations of the genaric PDE device using the aumerical code deacribed is the preceding section. In Figure 1a the computational domain containing the PDE main detonation chamber in ahown covared with the unstrectured grid. In our aample simulation we have choeen a amall m 15 cm long and \(\approx 15 \mathrm{~cm}\) internal diameter cylindrical chamber with a small converging nossio. This gcometry in one of a number of the geometriee wo have analyted in a parametric atady whoee goal is to evaluate and optimise a typical PDE device. The device showr in Figure la doee not represent the optimmm and in given here to illuntrate our methodology. We consider a siteation when the PDE cerves as a main thruster for a vehicle traveling in air with the velocity of \(M=0.9\) and located at the aft end of the vehicle. The main objective of the simulatione presanted here ars:
1. To find the madmam cycie frequency. Thin is determined by the time required from detonation, exhamat of combuation producta and intake of fresh charge for the next detonation.
2. To calculate the thruat produced during each cycle and the integrated thrust as a function of time.
The aimiation begins at \(t=0\) when a strong detonation wave in initiated inside the detonation chamber. Initially the detomation wave travela from the open aft end of the chamber towarde the interior with a macimum velocity of \(1800 \frac{m}{m}\) and maximum pressure of \(20 * 10^{5} \mathrm{~Pa}\). The distribution of prespure, velocity, and denaity of the detonation wave in defined through the selfimilar soletion for a planar detonation wave. The wave was directed towarda the interior of the chamber to capture the kinetic energy of the ware and to proluag exposare of the inner chamber will to the high preasure. In Figure 4 a simulation results are shown at time \(t=0.19\) maec is the form of prosure contours and particle pathe from different locations inside and outaide the detonation chamber. From the preseure contour plots we observe that the shock reflection from the inner wall has taken place and detonation products are expanding into the ambient aintream. The flow inaide the chamber is choked dne to the converging nossle and the maximum presure behind the shock in \(\% 8\) atm. The pressure inside the chamber is lese than 3 atm . The atrong expanaion of the detomation producte into the ambient airstream producen a shock wave with a apherical like front rapidly decaying in atrength. As a revalt of the interaction of the expan? ing detonation products with the external flow a large soroidal vortex il created. The vortex is carried away quickly from the chamber by the external flow and by it own flow momentuma.

In Figure 4a we also show particle paths for the particlea insroduced inside the chamber and outside just above the nossle. Eramination of theme trajectorien ab lowe us to follow the dynamics of the chamber evicustion and refill. In onder to treck the detonation products wo initially place marker particies inside the chamber at three crom anctions in clusters of four dintrib,uted equally normal to the detonation chamber axin. Each particlo hat a different color; however, particlea in the same clurter have the aame shade of color. At the three choeen crows tections we have designated shades of red, yellow, and blue for the particlea located correspondingly at the left end, center and beginning of the nossie cromesections of the chamber. The movement of these particles is shown by connecting them with a continuous line beginning with particle location at \(t=0\) to the present time. In Figure 1a we oberve that at time \(t=0.19 \cdot 10^{-3}\) sec all particies originally in the noszie croses section and three of the particlee originaliy in the mid section have left the detonation chamber. However, particiea originally introduced on the inner wall of the chamber have only advanced to the nossle region.

We use differmet technique for observing the motion of the ambient gas outaide the chamber. Here a
cluater of seven particlea is introduced every \(0.5 \cdot 10^{-4}\) mecond in the extermal flow above the nosale. All such particles are tracod as they move with the fow until they leave the compatational domain. At any myen time only the current location of the particle is diaptayed, and since the particles are introduced periodically with time there is a large number of particles to trace. We amiga a color to every clueter of exteraal particles to keap treck of the time when they were introduced in the ealenlation. The colors vary from magesta for thom particles introduced early in calculation, to blue for thoee introduced shortly at the time before the end of a detonation cycle. In Figure is corremponding to very early timea, ouly one cluster of external particlea is visible. This cluater was introduced at \(t=0\) and is tracking the expanding flow of the detonation producta.

In Figure \(4 b\) the simulation remulte are shown for \(t=1.7 * 10^{-3} \mathrm{sec}\). The presure contours show that a sbock wave develope at the external edge of the monsle as a rearalt of a atrong expansion of the Mech 0.9 external fiow. A romult of overexpansion of the detonation producta is that the premure invide the dotonation chamber in lower than the ambiant prearure, cauming the ahock to be located lower on the external surface of the nossle. The external flow about the chanber has a atagation poink on the axis of symmetry downstream at \(m 25 \mathrm{~cm}\) As thin time as it is ovident from the particie trajectories that mort of the detoration prodecte have left the chamber. Figure 4 b show one contineows trace of the particlen originating at the back will of the detonation chamber having advanced well ahead of the stagnation point in the external flow.

The marter particlea relemsed outside and just above the norsles exit show two distinct fow pathe. One path takee the flow past the atagnation point to the right of the dotonation chamber, thin flow path in marted by the four uppar particle traces. Another flow path, marked by three lower particle relased close to the notsie ourface is defected towand the detonation chamber exit. Figure 4b show this deflected stream approaching the detonation chamber nossle. The magenta color of these particles indicaten they were releaced at \(00.5 * 10^{-3}\) sec.

Figure ic corremponds to the simulation time \(t=\) \(0.47 \cdot 10^{-3}\) sec. The presare inside the chamber has risen \(\Leftrightarrow 1 \mathrm{~atm}\) Higher pressure at the chamber exit hiel caused the shock standing on the external surface of the nossle to move upwards. The particles marking the movement of fresh air into the chamber zhon these to be well inside with some reflecting from the end wall giving a second stagnation point for the reversed fresh airflow.

Figure 4d corresponds to the end of the first cycle when the detonation chamber should be filled with fresh charge and ready for the next detonation. In thie figure the particle path indicate that the chamber refill in a


Figore \& Preseure contours and particle pathe for varions times during the PDE aimulation;
a) \(t=0.19\) mesc, b) \(t=1.7\) msec,
c) \(t=4.7\) menc, d) \(t=7.4 \mathrm{msec}\), end of first detonation cycie.
pattarn suitable for fast mixing of the fuel-air mixture. We conjocture that finel injection along the chamber axi will promote fant fuel-air micing. We can see in Figure 4d that the farther injection of the external air fiow inside the chamber stopped, and from that point on the mixture componition in the chamber will be fuxed.


Figare 5 Thruat and force generated by PDE as function of thene.

In Figare 6 total force and time averaged thrust gencrated by the device in the simulations disersend proviously are ahown an a function of time. The time avaraged thrust is baved on the total time for one cycla. As sem in Figure 6 , initially a very large force of \(\approx 7=10^{4} 16\) in foll on the end wall of the detonation chamber. This is a result of the inwardly moving detonation wave nad in our simulation. Very aarly during the sequemee, this weve reflecte from the laft wall of the detomation chame ber generating briafly a large force. This foree rapidly decayn and at \(t m 1.0 * 10^{-4}\) sec changes sigh dae to interaction of the atrong shock wave with the converging nossio. This effect is noticaable in the thruat data; the avarage thrast decreaseo somewhat after reaching levela of \(m 200 \mathrm{lbs}\). The shock partially reflecta from the converging nossie wall and generatea a wave moving to the left wilh. The refiected wave thereafter generaten poaitive thrust from \(t \times 3.0\) e \(10^{-4} \mathrm{sec}\). Finally thrast lavela reech the maximum of 225 lbe. and then decaye slowly an a reselt of the crowe sectional drag force. The simulations prodict that to suatain this level of throme will require a detomation frequency of about 150 Ha .

\section*{Concluaion}

The main intent of the present stiay was to carry out a review of the relevant literature in: :he ares of detonation propulion, to asem the atato-or-tho-art, and to recommend future remearch baed on our findinge. We have roviawod the litartare and prosenced our summery in first section of this paper. Our initial comelusion from the reviow is that there is a subatantial body of evidence lending toward the powibility of produciag propulsion eagines with significant throut levil baced on an intarmittent detonation.

Mont of the historical attempte at producing thrust based on the intermittent detonation cycle were carried out with the same bacic experimeatal eatup; ramely, a long atraight detonation tube employing forem fuel injection at the eloeed tube end. Wo have diccussed the many remona why such a device cannot tabe proper advartage of the phyrical procemen amociated with detonation.

The experimante performed at tha Naval Poatgraduate School uciact a alf-apirating mode of oparation for pulned detomation thruster prodeced woy enemol rosults which, upos furthar eramination, provide us with s soute townarde practical propulaios angiven of variable thrat levils which are both comtrolinhib and ceaiable.

We have explored some of the implientions of the porible applications of the alf aspirating detomation eagine comeept and have developad a auitable mumerical cimmintion code to be used as a derign, annlyis and evaluation tool. In fact, the preliminary analyis of a candidate detomation chamber flow propention was nhow to be dominated completely by ansteady gandyamica. An attempt to uaderatand the fow propertion baed on any steedy state model or ono-dimansional anatesdy analytieal model will mise areh important aspects as fuel-air miving and, shock refelction from internal geometrical obetach auch as the converging nossite. The unsteady simiation code developed during the comme of our stady in a necemary tool that we plan to un in a etedy leadins to a femible prototype engine deage realizing the full potential of the intermittent datonation proces.

\section*{Acknowiedgementa}

The authors would exprese appreciation to Drs. Adam Drobot and Aharon Friedman for helpful auggeations and advice. The work reported on here was supported by DARPA under contract N65001-88-D-0088.

\section*{RTPGRGNCES}
1. Stodola, A., Steam and Gas Turbines, McGraw-Hill Inc., 1927.
2. Zipkin, M. A., and Lewis G. W., "Analytical and Experimental Performance of an Explotion-Cycle Combartion Chamber of a Jet Propalaion Engine,' NACA TN-1702, Sept. 1948.
3. Shalts-Granow, F., "Gec-Dynamic Investigation of the Pulco-Jet Tube, \({ }^{\text {P }}\) NACA TM-1131, Feb. 1947.
4. Zinn, B. T., Miller, N. Carvelho, J. A., and Daniel B. R., Pulating Combustion of Coal in Rijke Type Combustor,' 19th International Symposium on Combustion, 1197-1203, 1982.
5. Hofmann, N., "Reaction Propulsion by Intermittent Detonative Combuation, \({ }^{3}\) Ministry of Supply, Volkearode Tranulation, 1940.
6. Nicholle, J. A., Wilkinson, H. R. and Morrison, R. B. EIntermittent Detonation as a Thrast-Producing Mechanism,' Jet Propuinion, 27, 534-541, 1957.
7. Duniap, R., Brehm, R. L. and Nicholls, J. A., * A Preliminary Stady of the Application of Steady State Detonative Combustion of a Reaction Engine", ARS J., 28, 451-456, 1958.
8. Nicholln, J. A., Gullen, R. E. and Ragland K. W., *Feaibility Studien of a Rotating Detonation Wave Rocket Motor," Journal of Spacecrafts and Rockets, 3, 893-898, 1960.
9. Adamson, T. C. and Oleoon, G. R., "Performance Analyis of a Rotating Detonation Wave Rocket Engine," Astronautica Acta, 13, 405-415, 1967.
10. Shen, P. I., and Adamson, T. C., "Theoretical Anal. yrie of a Rotating Two-Phase Detonation in Liquid Rocket Motors," Astronautica Acta, 17, 715-728, 1972.
11. Kraycki, L. J., Performance Characteristics of an Intermittent Detonation Device, Navwepe Report 7655, U. S. Naval Ordnance Teat Station, Chine Lake, California 1962.
12. Materi, H., and Loe, J. H., = On the Mesure of the Relative Detonation Hasards of Gacoous Frel-Oxygen and Air Mixtures, \({ }^{\text {a }}\) Seventeenth Symposiam (Intornational) on Combustion, 1269-1280, 1978.
13. Korovin, L. N., Lonev A., S. G. Raban and Smekhov, G. D. "Combustion of Natural Gas in a Commercial Detonation Reactor," Fis. Gor. Viryva, Vol. 17, No.3, p.86, 1981.
14. Smirnov, N. N., Boichenko, A. P., "Tranation from Defiagration to Detonation in Gacoline-Air Mixtures," Fis. Gor. Vsryva, 22, No.2, 65-67, 1986.
15. Lobanov, D. P., Fonbershtein, E. G., Ekomacov, S. P., "Detonation of Gacoline-Air Mixtnrea in Small

Diameter Tubea, Fis. Gor. Viryva, 12, No.3, 446, 1976.
16. Back, L. H., "Application of Blant Wave Theory to Explosive Propuision,' Actz Astronautica, 2, No 5/6, 391-407, 1975.
17. Varri, G., Back, L. H., and Kim, K., "Blast Wave in a Nossio for Propalion Applications,' Acta Astronautica, 8, 141-156, 1976.
18. Kim, K., Varii, G., Back and L. H., "Blent Wave Analyris for Detonation Propulaion," ALAA Joornel, Vol. 10, Oct. 1977.
19. Back L. H., Dowier, W. L. and Vanci, G., "Detonation Propalioion Experiments and Theory, AIAA Journal Vol. 21 Oct. 1983.
20. Eidelman, S., Shreeve, R. P., "Numerical Modeling of the Nonsteady Thrust Produced by Intermittent Premure Rise in a Diverging Channel," ASME FEDVol. 18, Multi-Dimensional Fluid Transient, p.77, 1984.
21. Eidelman, S., "Rotary Detonation Eagine," U.S. Patent 4741 154, 1988.
22. Helman, D., Shroeve, R. P., and Eidelman, S., "Detonation Pule Engine,", ALAA-86-1683, 24nd Joint Propahion Conference, Hantaville, 1986.
23. Monks, S. A., "Preliminary Asmemment of a Rotary Dotonation Engine Concept," MSe Themia, Naval Poetgraduate Schooi, Monterey, California, Sept. 1983.
24. Camblier, T. L. and Adelman, N. G., "Prediminary Numarical Simulations of a Pubed Detonation Wave Engine," AlAA-88-2960, ALAA 29th Joint Propulsion Conference, Bonton 1988.
25. R. Lohner, K. Morgan, and D.C. Zienkiewics, "Finite Elament Methods for High Speed Flows," ALAA 7th Computational Fluid Dynamice Conference, Cincinnati, Obio, AIAA Paper 85-1531 (1985).
26. R. Lohner and K. Morgan, "Improved Adaptive Refinement Strategien for Finite Element Aerodyaamic Compatations,' ALAA 29th Aerospace Scienece Meeting, Reno, Nevade, ALAA Paper 800499 (1986).
27. T.J. Barth and D.C. Jeapersen, "The Deaign and Application of Upwind Schemen on Unstructured Meahes, \({ }^{2} 27^{\text {th }}\) Aerospace Sciences Meeting, AIAA-80-0366, Reno, Nevada.
28. S. Eidelman, P. Collela, and R.P. Shreeve, " Application of the Godunov Method and It'a Second Order Extension to Cascade Flow Modeling," AIAA Jowrnah, v. 22, 10, 1984.

AIAA-90-0460
COMPUTATIONAL ANALYSIS OF PULSED DETONATION ENGINES AND APPLICATIONS
S. EIDELMAN, W. GROSSMANN

AND I. LOTTATI
SCIENCE APPLICATIONS
INTERNATIONAL CORPORATION
McLEAN, VA

\section*{28th Aerospace Sciences Meeting} January 8-11, 1990/Reno, Nevada

\title{
COMPUTATIONAL ANALYSIS OF PULSED DETONATION ENGINES AND APPLICATIONS
}

\author{
S. Eideiman, W. Grossmann and I. Lottati \\ Applied Physics Operation \\ Science Applications International Corporation \\ 1710 Goodridge Drive \\ McLean, Virginia 22102
}

\section*{1. Introduction}

This paper presents the results of a computational fluid dynamic simulation/ parameter study of the SAIC Pulsed Detonation Engine (PDE) concept. Results from computer simulations of generic PDE geometries over a wide range of subsonic and supersonic flight Mach numbers indicate that potentially practical detonation engines can now be conceptualized and optimized for specific flight requirements and missions. Specifically, the study shows that primary propulsion for aerodynamic vehicles of the PENAID variety may be possible at Mach numbers \(0.5<\mathrm{M}<0.8\), thrust levels on the order of 100 pounds and a specific fuel consumption of the order of \(1 \mathrm{lb} . /(\mathrm{lb} . \mathrm{hr}\).). The pred:cted performance places the PDE propulsion concept in a strongly competitive position compared with present day small turbojets. The PDE concept has the added attractiveness of rapid variable thrust control, no moving parts and the potential for low cost manufacturing. Finally, the PDE concept is scalable over a wide range of engine sizes and thrust levels. For example, it is theoretically possible to produce PDE engines on the order of one to several inches in diameter and thrusts on the order of pounds, as well as devices which provide thousands of pounds thrust.

A literature search of past research on related concepts and devices uncovered important information which proved useful in pursuing our present study. A review of the literature \({ }^{1-24}\) reveals that a significant body of experimental and theoretical research exists in the area of unsteady propulsion. However, this research was not sufficiently extensive to provide a conclusive quantitative comparison between impulsive engine concepts and steady state concepts. In addition, the computational and analytical techniques were not sufficiently deveioped in the past to treat the inherently unsteady flows of pulsed engines. A new generation of analytical and computational tools exists today, allowing us to revisit and analyze these devices with a high degree of confdence.

Our paper is organized into the following sections: 2) description of the basic phenomenology of the airbreathing Pulsed Detonation Engine concept; 3) discus-
sion of the numerical simulation results; and 4) conclusions. Details of the mathematical formulation of the simulation and a discussion of the numerical code used in the present study are given elsewhere. \({ }^{35,26}\)

\section*{2. The Generic Pulsed Detonation Engine}

A detonation process, due to the very high rate of reaction, leads to a propulsion concept in which the constant volume process can be fully realized. In detonative combustion, the strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and fresh charge. The speed of the detonation wave is about two orders of magnitude higher than the speed of a typical deflagration. This allows the design of propulsion engines with a very high power density. Each detonation has to be initiated separately by a fully controlled ignition device, with a wide range of variable cycle frequencies. There is no theoretical restriction on the range of operating frequencies; they are uncoupled from acoustical chamber resonancies. This is very important feature of the constant volume detonation process that differentiates it from the process occurring in a pulse-jet; \({ }^{3-4}\) the pulse jet cycle is tuned to the acoustical resonances of the combustion chamber. This leads to a lack of scaiability for the pulse jet concept.

A physical restriction dictating the range of detonation frequency arises from the rate at which the fuel/air mixture can be introduced into the detonation chamber. This also means that a device based on a detonative combustion cycle can be scaled and its operating parameters can be modified for a range of required output conditions. There have been numerous attempts to take advantage of detonative combustion for engine applications. The most recent and successful of these attempts was carried out at the Naval Postgraduate School (NPS) by Helman et al. \({ }^{22}\) During this study, several fundamentally new elements were introduced to the concept distinguishing the NPS research device from previous studies. First, it is important to note that the NPS experimental apparatus was the first successful self aspirating air breathing detonation device. Intermittent detonation frequencies of 25 Hz were obtained. This frequency
was in phase with the fuel mixture injection through timed fuel valve opening and spark ignition. The feasibility of intermittent injection was established. Pressure measurements showed conclusively that a detonation process occurred at the frequency chosen for fuel injection. Further, self aspiration was shown to be effective. Finally, the effectiveness of a primary detonation as a driver for the main detonation was clearly demonstrated. Although the NPS studies were abbreviated, many of the technical issues considered to be essential for efficient intermittent detonation propulsion were addressed with positive results.

As a result of the survey of past research on intermittent detonation devices, we have focussed our attention on the NPS experiments of Helman et al. \({ }^{22}\) The remainder of this paper is concerned with a computer simulation of performance characteristics of such a device. We have chosen a generic geometry, applicable to certain present day vehicle and mission requirements. and have parametrically varied key features which affect performance and assessed the effects of these variations.

The generic device we consider here is a small engine 15 cm long and 15 cm in diameter. Figure 1 shows a schematic of the basic detonation chamber attached to the aft end of a generic aerodynamic vehicle. The combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave propagates through the mixture. The size of the engine suggests a small payload or aerodynamic vehicle, but the concept can be extended to larger payloads simply by scaling up the size of the detonation chamber and possibly combining a number of chambers into one larger engine. As an example, a PENAID vehicie has been coneeptualized requiring an engine with a diameter of roughly 15 cm and a useful continuous thrust at Mach 0.8 approximately \(60-90\) pounds. Such an engine should have a specific fuel consumption in the range of 1.7 to 1.9 lb . fuel/hr per pound and an endurance on the order of \(10-30\) minutes. These specifications are met by present day small turbo jets. Hence, in order to be competitive, a PDE must at least meet these requirements. Should this prove to be the case, a PDE with no moving parts would be a very attractive engine from the point of view of performance. ease of manufacturing and cost.

A key issue in the pulsed detonation engine concept is the design of the main detonation chamber. The detonation chamber geometry determines the propulsion efficiency and the duration of the cycle (frequency of detonations). Since the fresh charge for the generic engine is supplied from the external flow field, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. The range of the physical process requiring simulation in order to model the complex flow phenomena associated with the deto-
nation engine performance is very broad. A partial list is:
1. Initiation and propagation of the detonation wave inside the chamber,
2. Expansion of the detonation products from the chamber into the air stream around the chamber at flight Mach numbers.
3. Fresh air intake from the surrounding air into the chamber.
4. The flow pattern inside the chamber during postexhaust pressure buildup which determines the strategy for mixing the next detonation charge,
5. Strong mutual interaction between the flow inside the chamber and surrounding the engine.


Figure 1. Schematic of the generic PDE showing detonation chamber, inlet, detonation wave, fuel injectors and position relative to an aerodynamic vehicle.

All of these processes are interdependent, and interaction and timing are crucial to engine efficiency. Thus. unlike simulations of steady state engines, the phenomena described above can not be evaluated independently.

The need to resolve the flow regime inside the chamber accounting for nozzles, air inlets etc., and at the same time resolve the flow outside and surrounding the engine, where the flow regime varies from high subsonic. locally transonic and supersonic, makes it a challenging computational problem.

The single most important issue is to determine the timing of the air intake for the fresh charge leading to repetitive detonations. It is sufficient to assume inviscid flow for the purpose of simulating the expansion of the detonation products and fresh air intake. The assumption of inviscid fow makes the task of numerically simulating the PDE flow phenomena somewhat easier than if a fully viscous flow model were employed. For the size of the generic device studied in this work the effects of viscous boundary layers are negligible with the exception of possible boundary layer effects on the valve and inlet geometries discussed subsequently. Boundary layer effects on the present results are discussed later.

\section*{3. Results of Simulatipnal Parameter Study}

As mentioned, and as shown in Figure 1, we have chosen a small \(\approx 15 \mathrm{~cm}\) long and \(\approx 15 \mathrm{~cm}\) internal diameter cylindrical chamber as the basic device. In the figure, the detonation chamber including detonation wave and inlet valves are shown schematically. The PDE, as envisioned in the present study, would most naturally be applicable for a class of aerodynamic vehicles such as target drones and PENAID missiles among others. The exact details of this basic chamber geometry were modified during the course of the study in order to obtain the required aerodynamic or propulsion effects; however, these modifications did not significantly change the total internal volume of the chamber. Thus, the performance results for the different cases can be compared holding the chamber volume constant. The schematic shown in Figure 1 does not represent an optimum configuration and is given here mainly to illustrate our methodology. We consider a situation where the PDE serves as the main thruster for an aerodynamic vehicle traveling in air with Mach numbers between \(\mathrm{M}=0.2\) and \(\mathrm{M}=5.0\), and is located at the aft end of the vehicle. The main objectives of our study are:
1. To calculate the thrust produced during each cycle and the integrated thrust as a function of time,
2. To find the maximum eycle frequency. This is determined by the time required from detonation to the final exhaust of combustion products and intake of fresh charge for the next detonation,
3. To evaluate the parametric dependence of the thrust and detonation frequency on the fight Mach number and detonation chamber geometry details.
In addition to the technical objectives outlined above, we have set another goal for our study. We require that the best, but by no means optimum, configuration produce a minimum of 60 pounds thrust at an operating frequency of 140 cycles per second. The definition of best is that configuration which satisfies the technical objectives outlined above and meets the operational goal of 60 pounds thrust and 140 Hz frequency over the flight regimes from \(\mathrm{M}=.2\) to \(\mathrm{M}=0.9\). (The Mach number range corresponds to that of a PENAID missile mission profile.)

To achieve these objectives we have conducted a comprehensive parametric simulational study of the PDE performance. We have studied PDE engine performance for a range of Mach numbers with two separate initial detonation locations in the chamber and for various geometry modifications. In addition to the range of subsonic Mach numbers we have examined PDE performance in the supersonic regime, \(2<\mathrm{M}<5\). The geometry modifications included converging exhaust nozzles, inlets and dynamic valves. A computer simulation code was developed and optimized for a Stellar graphics work-
station to carry out the analysis. In addition. a particletracing package was developed and implemented in the code. This allowed us to analyze the flow pattern inside and outside the detonation chamber, the main sources creating this pattern as a function of time, and the composition of the resulting gas mixture (air/detonation products).


Figure 2. Distribution of gasdynamic parameters behind the detonation wave according to a \(1-\mathrm{D}\) self-simila: solution.

First we will describe in detail the results for a typical simulation, Case 1, and illustrate the main features of our analysis.
Case.1. The simulation begins at \(t=0\) when a strong detonation wave is initiated inside the detonation chamber. The detonation chamber for this case includes a simple annular inlet which remains open during operation. The external freestream Mach number is 0.8 . The specific fuel chosen for the present simulations is ethylene. The chemical reaction occurring in the ethylene/air detonation process is given by:
\[
\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2}+11.24 \mathrm{~N}_{2}-2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}+11.24 \mathrm{~N}_{2}
\]

The detonability limits of ethylene in air range from 4 to \(12 \%\) by volume and depend somewhat on temperature and pressure. We assume for the sake of simplicity that
the fuel/air ratio is \(6 \%\) by volume. Because the detonation initiation and propagation (detonative combustion) takes place several orders of magnitude faster than any of the other fow processes in or surrounding the device, finite rate chemistry is not included in the simulations. Instead the equation of state for the flow in the chamber immediately after detonative combustion was adjusted to represent the correct physical state of the combustion products. Initially the detonation wave traveis from the closed end of the chamber towards the open aft end with a maximum velocity of \(1800 \mathrm{~m} / \mathrm{sec}\) and maximum pressure of \(20 * 10^{5} \mathrm{~Pa}\). The initiation of the main detonation wave is assumed to take place via a device proposed and successfully implemented by Helman, et al. \(;^{22}\) namely, a primary detonation is established in a small tube containing an oxygen rich mixture. This mixture requires a low initiation energy but will sustain a detonation which, in turn, is used to trigger the main detonation wave. We do not model the detonation tube; but. we assume that such a device is present to trigger the main detonation at \(t=0\). The distribution of pressure, velocity, and density of the detonation wave is defined through the selisimilar solution for a planar detonation wave. A schematic of the detonation wave distribution in space in Figure 2 shows pressure, temperature and velocity as a function of the spatial extent of the detonation wave.

In Figure 3a simulation results are shown at time \(t=0.64 \mathrm{~m} / \mathrm{sec}\) in the form of pressure contours and particle paths from different locations inside and outside the detonation chamber. The free stream Mach Number is 0.8 . From the pressure contour plots we observe that the detonation shock wave has left the chamber and is freely expanding outwardly in the external flow. The strong expansion of the detonation products into the ambient airstream produces a shock wave with a spherical-like front that rapidly decays in strength away from the source. A large toroidal vortex is created as a result of the interaction of the expanding detonation products with the external flow. The vortex is carried away quickly from the chamber by the external flow and by its own momentum. At the time shown in Figure 3a, the detonation products are almost fully expanded into the ambient air and the maximum pressure at the front of the shock wave is 1.2 atm . As a result of this expansion the detonation products inside the detonation chamber are overexpanded and their pressure is 0.45 atm .

In the upper frame of Figure 3 a we show particle paths for the marker particles introduced inside the chamber and outside just above the nozzle exit. Examination of these trajectories allows us to follow the dynamics of the chamber evacuation and subsequent refill. In order to track the detonation products we initially place marker particles inside the chamber at three separate cross sections in clusters of four. Each particle
has a different color; however. particles in the same ciuster have the same shade of color. At the three chosen cross sections we have designated shades of red, yellow. and blue for the particles located correspondingly at the left chamber end, center and ait end of the nozzle cross section. The movernent of these particles is shown by connecting them with a continuous line beginning with particle location at \(t=0\) to the present time. In Figure 3a we observe that at time \(t=0.64 * 10^{-3} \mathrm{sec}\) ail particles originally in the nozzle cross section (the cross section at the aft end) and three of the particles originally in the mid section have left the detonation chamber. However. particles originally introduced at the inner end wall of the chamber (red traces) have only advanced to the nozzle region.

We use a different particle technique for observing the motion of the ambient gas outside the chamber. Fiere a cluster of seven particles is introduced every \(0.5 * 10^{-4}\) seconds in the external flow above the nozzle. All such particles are traced as they move with the flow until they leave the computational domain. At any given time only the current location of the particle is displayed, and since the particles are introduced periodically with time, there are many particles to trace. We assign a color to every cluster of external particles to keep track of the time when they were introduced in the calculation. The colors vary from magenta for those particles introduced early in the calculation, to blue for those introduced near the end of a detonation cycle. In Figure 3a, which corresponds to early times, only 12 clusters of external particles are visible. These clusters were introduced from \(t=0\) to \(0.6 * 10^{-3}\) second, vary from magenta to red in color. and are tracking the expanding flow of the detonation products.

In Figure \(3 b\) the simulation results for the same case are shown for \(t=1.4 * 10^{-3} \mathrm{sec}\). The pressure contours show that a strong stagnation point develops on the axis of symmetry downstream at \(\approx 25 \mathrm{~cm}\) as a result of a strong expansion of the Mach 0.8 external flow around the engine. At this time it is evident from the particle trajectories that most of the detonation products have left the chamber. Figure \(3 b\) also shows hat only traces of the particles originating at the back wall of the detonation chamber are left in the computational domain. These particles advanced to the aft end \(c\) the chamber and then following the contraction of the (ver expanded detonation products, reversed their flow direction. The pressure contour plots in Figure 3b show the formation of an additional stagnation point at the closed end wall of the detonation chamber resuiting from the inverse flow of the detonation products. The average pressure in the chamber is below ambient and is \(\approx 0.55 \mathrm{~atm}\).

The marker particles released outside and just above the nozzle exit show two distinct flow paths. One path
takes the flow past the stagnation point to the far right of the detonation chamber; this flow path is marked by the four upper particie traces. Another fow path, marked by three lower particles released close to the external wall of the chamber, are deflected from the stagnation region towards the detonation chamber exit. The magenta color of these particles indicates they were released at \(t \approx\) \(0.6 * 10^{-3} \mathrm{sec}\).

Figure 3c corresponds to the simulation time \(t=\) \(2.2 * 10^{-3} \mathrm{sec}\). The pressure inside the chamber has risen to \(\approx 0.8 \mathrm{~atm}\). The stagnation region at the closed end of the detonation chamber continues to develop and has produced a compression wave moving toward the open end of the chamber. The particles marking the movement of fresh air into the chamber show these to be well inside the chamber, with some reflecting from the end wall and contributing to the pressure at the second stagnation point. The circular motion of a few of the detonation products particles (red solid lines), indicates that the detonation products which did not expand with the first shock wave are now "trapped" inside the detonation chamber.

Figures 3 d and 3 e correspond to the end of the first cycle when the detonation chamber should be filled with fresh charge and ready for the next detonation. However, these figures indicate that the fresh air refill is not totally satisfactory for this chamber configuration. The marker particle paths indicate that the chamber refill is incomplete and at a time of \(t=4.7 * 10^{-3} \mathrm{sec}\) the refill process has essentially stopped. As a result, only about a third of the detonation chamber volume has enough fresh air for the next detonation cycle.

In Figure 4 the total force and time averaged thrust generated by the device in the simulations just discussed, are shown as a function of time. The time averaged thrust is based on the total time for one cycle defined as \(7.0 * 10^{-3} \mathrm{sec}\). This time is equivalent to a detonation frequency of 140 Hz . As seen in the figure, initially a very large force of \(\approx 3.2 * 10^{3} \mathrm{lb}\) is felt on the end wall of the detonation chamber. This force is a result of the high pressure behind the detonation wave. It rapidly decays and at \(t \approx 0.5 * 10^{-3} \sec\) changes sign due to over expansion and dynamic pressure of the external flow. This effect is noticeable in the thrust data; the average thrust increases rapidly but decreases after reaching levels of \(\approx 55 \mathrm{lbs}\). At the end of the simulation the thrust is actually negative \(\approx-20\) lbs. The average thrust for one cycle in this case will be \(\approx 10 \mathrm{lbs}\).

The simulation just described has served to illustrate the information generated with the numerical simulations. For the remaining simulations, emphasis was placed on determining the effects of propagation direction of the main detonation wave, effects of inlet and valve geometry, detonation chamber geometry and Mach
number. Many of the simulations produced unsatisfactory results from the point of view of ineffective fresh air refill and hence either not enough fresh charge for repetitive detonations or too slow a refill resulting in low detonation frequency. We give below examples of successful simulations at Mach 0.8, Case 2 and Mach 2, Case 3.


Figure 4. Time averaged thrust and force data from simulation of Case 1.

Case 2. The results from all simulations show that, irrespective of the inlet geometry, but with a straight nozzle and initial detonation position at the nozzle exit plane, sufficient thrust levels can be produced. A remaining problem in view of the objectives is to demonstrate that enough fresh air can be injected into the chamber to produce the required conditions for intermittent detonation at a frequency of 140 Hz . To accomplish this, we have considered a contoured inlet in the periphery of the end wall of the detonation chamber. The details of this inlet geometry and the computational grid are shown in Figure 5.

For the initial tests with this inlet no attempt was made to optimize the inlet geometry for a given flow regime. Figures \(6 a-\{\) present results for the simulation of the chamber geometry shown in Figure 5.

The flight Mach number in this case is 0.8 . The initial detonation wave is launched inwards and its energy parameters are the same as in all previous cases. In Figure 6a we see two distinct shock waves expanding into ambient air: one generated by expansion from the aft of the chamber and another produced by the expansion through the iniet. We also notice some particles tracing the motion of the detonation products flowing out through the inlet. In Figure 6b, at time \(t=0.7 * 10^{-3}\) sec., fresh air is noted entering the chamber through the inlet. At this time the dominant pressure in the chamber is 0.77 atm . Figure 6 c shows that at the time \(t=1.4 * 10^{-3} \mathrm{sec}, 3 / 4\) of the detonation chamber is filled with fresh air. The strong air jet entering the chamber impinges the axis of symmetry, creating two large vortices which rotate in opposite directions. Such vortical motion would promote effective fuel-air mixing in the chamber. In Figure 6d, \(t=2.4 * 10^{-3} \mathrm{sec}\)., the fresh air stream begins to exit the chamber. At this point the mixture inside the chamber has achieved the required conditions for the next detonation. This result translates to a sustained detonation frequency of \(\approx 400 \mathrm{~Hz}\). In Figures \(6 \mathrm{e}-\mathrm{f}\) we follow the later evolution of the flow pattern inside and outside the chamber. We observe strong air flow through the inlet with a strong recirculation pattern, which will assure fuel air mixing even if the fuel is injected into the chamber with a delay to sustain intermittent detonation at a lower frequency. In Figure 7 thrust and force simulated for the last case are shown as a function of time. First we notice that the maximum thrust for this case is \(\approx 70 \mathrm{lbs}\)., somewhat lower than for the cases with a very simple annular inlet and completely flat end walls.


Figure 5. Computational grid for the inlet geometry used in simulation of Case 2.

This results from a reduction of the area normal to the propagation direction of the detonation wave due to the inlet geometry. It is surprising that the case with the inlet results in a reduction of the average thrust as a function of time that is almost the same as for a case without inlet at the same Mach number ( \(\approx 90 \mathrm{lb}\) reduction without the inlet and 100 lb reduction with the inlet). This strongly indicates that the generic inlet we have just considered will not contribute significantly to the drag produced by the chamber dynamics and interaction with the ambient flow. The cycle average thrust generated by the PDE based on 150 Hz operation frequency in this case is \(\approx 100 \mathrm{lbs}\). This value is somewhat larger than the thrust targeted for this study.



Figure 7. Time averaged thrust and force data from simulation of Case 2.

Case 3. Results for a Mach 2.0 simulation of the same geometry as in the previous simulation; but with a more geometrically complex inlet are shown in Figures 8a-b. The inlet geometry for this case was determined from near choked flow conditions in the throat region of the inlet. In addition to the pressure contours and particle paths, in this case we also show velocity vectors.

We observe in these figures that the detonation chamber is quickly filled with fresh air at the time \(t=1.3 * 10^{-3}\) sec., which corresponds to a detonation frequency of 700 Hz . In practice this high frequency will be difficult to realize, because of the mixing and initiation problems. In Figure 9 we show unrupi and force results for this simulation. We observe that after \(3.0 * 10^{-3} \mathrm{sec}\). the net average thrusi is still 50 lbs.


Figure 9. Time averaged thrust and force data from simulation of Case \(3,140 \mathrm{~Hz}\) detonation frequency.


Figure 10. Time averaged thrust and force data from simulation of Case \(3,200 \mathrm{~Hz}\) detonation frequency.
The cycle averaged thrust based on 140 Hz detonation frequency, for this simulation is \(\approx 70 \mathrm{lbs}\). However, as
previously mentioned the fresh air refill time allows a much higher frequency of detonations. Figure 10 shows the same results as Figure 9, but calculated for a 200 Hz cycle frequency. In this case the maximum average thrust is \(\approx 280 \mathrm{lbs}\). and the net cycle averaged thrust is \(\approx 100 \mathrm{lbs}\). This result indicates the promising potential of the PDE concept for supersonic propulsion.

\section*{4. Conclusions}

In this section we present our conclusions reached after carrying out a review of past research on detonative propulsion and a detailed numerical simulation of a generic puised detonation engine (PDE) device. The primary conclusion is that the PDE shows promising potential in providing primary propulsion for a range of present day aerodynamic vehicles such as target drones. PENAID missiles and other smart missiles that require loitering and throttling capability. The operating fight regimes of such a propulsion engine may extend from the low subsonic to supersonic regimes.

Most of the past attempts at producing thrust based on an intermittent detonation cycle were carried out with the same basic experimental set-up; namely. a long straight detonation tube employing forced fuel injection at the closed tube end. We have pointed out the reasons \({ }^{25}\) why such a device cannot take proper advantage of the physical processes associated with detonative combustion. We have also indicated that, because of the conclusions reached during experiments with such devices, the development of intermittent detonative propulsion was adversely prejudiced and stalled at an early stage.

The experiments performed at the Naval Postgraduate School based on a self-aspirating mode of operation for a puised detonation thruster produced very useful results which, upon further examination, provide us with a route towards practical detonation engines of variable thrust levels that are both controllable and scalable. A generic PDE device based on the NPS experiments was conceptualized and served as the basic model for a comprehensive series of numerical simulations. The goal of the simulations was to understand the parametric dependence of the PDE device variables on propulsion performance such as thrust and detonation cycle frequency.

The principle conclusions drawn from the simulation results are as follows. First, the target thrust and cycle frequency of \(60-90\) pounds and 140 Hz , respectively, have been realized in the simulations. These target values were dictated by knowledge of present day requirements for planned aerodynamic vehicies such as PENAID devices. Before proceeding, it is appropriate to mention again that the performance of the PDE device is governed entirely by unsteady flow processes. Norie of the wave averaging effects which had been predicted
by previous studies were found and, it was shown dramatically that the internal (detonation, expansion. refill and mixing) flow processes are directly coupled to the external (shock formation, stagnation point formation, vortex shedding, etc.) flow processes. These two flows must be simultaneously analyzed if a reliable estimate of performance is to be determined. The present study is the first fully unsteady computational analysis of an intermittent detonation scheme with realistic geometry and external flow computed self-consistently.

The simulations further showed that the best thrust performance was realized when the full kinetic energy of the detonation wave was captured on the thrust surface (the closed end wall of the detonation chamber). This indicates that the detonation initiation must be controlled; the ignition must take place in the vicinity of the exit plane of the chamber resulting in initial propagation of the wave towards the chamber wall. The magnitude of the total and time averaged thrust is a strong function of the strength of the wave, the cross-sectional area of the end wall normal to the wave direction, and a weak function of the specific geometrical details of such variables as valve or inlet shape. The simulations also showed that for most situations involving simple inlets (flat cylindrically symmetric openings in the chamber external wall) the thrust data was independent of whether the valve intermittently opens or remains open during the full cycle. This leads to the possibility of a permanently open valve and a no moving parts manifestation of a PDE device. The thrust data indicates a dependence on the external fight conditions, e.g. Mach number. The Mach number plays a role in the wave drag that the geometry of the PDE will incur; the details of the valve and inlet configurations figure prominently in the total wave drag.

On the other hand the simulations showed that the timing of the fresh air refilling required to recharge the chamber for subsequent detonations is a strong function of the details of the valve and inlet geometry, the expansion of the combustion products, the resulting overexpansion of the chamber flow and, the external flow regime and interaction of the external flow with the internal flow. For subsonic flight, Mach 0.2-0.9, the fresh air entering the chamber comes from two separate principal flow processes; one comes from the flow through any valve or iniet and the other comes from the selfaspiration or reverse flow from the aft end of the chamber due to strong over-expansion. All these processes are interdependent, as reported in Section 3, and, in order to search for a given performance in a given device requires variation of many parameters. The simulation results obtained to date provide an understanding of the effects caused by variation of the above mentioned parameters, and with the information available we are able to conclude that a PDE propulsion unit can be optimized
(although no optimization studies were carried out) for a given flight regime. In order to find an optimum configuration satisfying given performance over a wide figfil regime a more extensive simulation study will be required. It was mentioned earlier that the simulations presented here were carried out under the assumption of inviscid flow; boundary layer effects were not included. The addition of boundary layers to the PDE engine inlets and valves, the only components where boundary layers will be significant, will lead to increased performance. Roughly the same amount of fresh air will flow into the over expanded detonation chamber but at a somewhat slower rate and in a pattern that will promote enhanced circulation and hence fuel/air mixing. We return to the issue of optimization below.

We give now results from sample performance calculations of the application of the PDE device to proposed aerodynamic vehicles such as a PENAID missile based on the results from our simulations. These predictions are based on point design data for an inlet geometry which has not been optimized. We believe that increased performance can be found through a systematic optimization of the PDE device characteristics. First we consider the Mach 0.8 case and the inlet described in Case 2.

The maximum operation frequency for the device is 400 Hz . The following performance is a consequence of the simulation data:

For a frequency of 100 Hz .:
Thrust.
Fuel flow rate . . . . . . . . . . . . . . \(0.025 \mathrm{lb} . / \mathrm{sec}\).
Fuel weight for 12 min . . . . . . . . . . . . 18 lb .
Oxygen weight. . . . . . . . . . . . . . . . . . 1.8 lb.
Fuel for detonation tube. . . . . . . . . . . 0.6 lb .
Total oxygen and fuel weight. . . . . . . . 20.4 lb .
Total engine weight . . . . . . . . . . . . . 30.2 Ib.
Specific fuel consumption. . . . \(1.14 \mathrm{lb} . /(\mathrm{lb} . * \mathrm{lir}\).
Assuming the PDE device geometry is kept fixed. a higher detonation frequency will result in a linear increase in thrust and fuel flow rate at the same specific fuel consumption. For example, if the detonation frequency is increased to 200 Hz ., the performance data are:

Thrust . . . . . . . . . . . . . . . . . . . . . . . 157 lb.
Fuel flow rate . . . . . . . . . . . . . . . \(0.05 \mathrm{lb} . / \mathrm{sec}\).

Oxygen weight . . . . . . . . . . . . . . . . . . 3.6 lb .
Fuel for detonation tube. 1.2 lb .

Total oxygen and fuel weight 40.8 lb

Total engine weight. . .
54.4 lb

Specific fuel consumption
\(1.14 \mathrm{lb} . /(\mathrm{lb} . * \mathrm{hr}\).
At lower wacis numbers. \(M=0.5\), the maximum operating frequencies will be lower since the external dynamic pressure responsible for supplying fresh air to the chamber is also lower. For the device under considera-
tion here the maximum frequency is 250 Hz .
For a frequency of 100 Hz .:


Again, if the frequency is increased the thrust will increase linearly; operation at 200 Hz . yields:

Thrust.
.200 lb.
Fuel flow rate . . . . . . . . . . . . . . . \(0.05 \mathrm{lb} . / \mathrm{sec}\).
Fuel weight for 12 min . . . . . . . . . . . . 36 lb .
Oxygen weight . . . . . . . . . . . . . . . . . . 3.6 lb.
Fuel for detonation tube . . . . . . . . . . . . 1.2 lb .
Total oxygen and fuel weight. . . . . . . . 40.8 lb .
Total engine weight. . . . . . . . . . . . . . . 54.2 lb .
Specific fuel consumption . . . . . . \(0.9 \mathrm{lb} . /(\mathrm{lb} . * h r\).)
The examples of performance of PDE devices given above are based on point design conditions arising from the simulations discussed in Section 3 of this report. They cannot be extrapolated with any degree of reliability to other conditions or configurations. We conclude however, that the performance computed for the indicated device is encouraging from the point of view of thrust, thrust control, simplicity of the device (no moving parts) and specific fuel consumption (SFC). The specific fuel consumption computed above is competitive with present day small turbojet engines. The SFC for a PDE could be signficantly lower than for small turbojets (SFC's for small turbojets are in the range of \(1.8-2.0 \mathrm{lb} . /(\mathrm{lb} . * h r)\).\() . Thus, for a given mission and ve-\) hicie, a PDE propulsion unit would be more fuel efficient resulting in increased range. Moreover, if the expected thrust control in PDE's is realizable, it may be possible to produce propulsion units that can slow down, loiter and maneuver and finally accelerate to full thrust again rapidly.

A final conclusion can be made concerning the application of PDE's to supersenic vehicles. As shown in the simulations the ability to refill the detonation chamber with fresh air charge is a very strong function of valve and inlet geometry. Refilling may also be somewhat enhanced by the self-aspiration effect, but; to a much less extent than in the subsonic case. The example of supersonic operation discussed in Section 3 shows that care must be taken in design of the inlet or valve configuration. The flow in the chamber must allow for refill and fuel/air mixing. More than likely choked flow conditions will be required at the inlet entrance to the chamber. This could lead to complications in the design
of a PDE with simple geometry; choked fow conditions are a function of the external Mach number and a fixed inlet will be optimal only for a small range of the oprating envelope. On the other hand, if a given vehicle is to fly at supersonic speeds and is launched at supersonic speeds, this problem may not appear. Further. it the given vehicle is launched at subsonic speeds and a booster is used to bring it up to the required supersonic operating speed, the problem may again not appear. We conclude that the PDE has potential for the supersome flight regime and it is not excluded that a configuration can be found which will operate over the flight regimes \(0.2<\) Mach number \(<3\) in a fuel efficient manner.

Finally it is appropriate to speculate that the PDE concept is a candidiate for a hybrid propulsion device. Consider the following scenario. At low altitudes, up to \(30-50 \mathrm{~km}\), and at speeds ranging from low supersonic to hypersonic ( \(2<\) Mach number < 10 ) an air breathing engine can operate. Above these conditions air breathing is not effective and rocket propulsion is required. A PDE can operate in an air breathing mode as long as the external conditions allow it, and when no longer possible, the detonation chamber may be considered a rocket chamber in which detonation occurs with the fuel and axygen supplied from on-board storage. Similar considerations have been made for NASP propulsion; serious penalties are made in that large quantities of fuel must be carried. However, for vehicles such as the current Pegasus, a PDE propulsion device may be attractive from the point of view of thrust control over a large portion of the flight enveiope.

\section*{Acknowledgements}

The authors would like to express 2ppreciation to Drs. Adam Drobot and Aharon Friedman of SAIC for helpful suggestions and advice during the course of this work. The work reported on here was supported by DARPA under contract N65001-88-D-0088. The authors would like to thank Col. Doc Daugherty for his encouragernent and interest in this project.

\section*{References}
1. Stodola, A., Steam and Gas Turbines. McGraw-Hill Inc., 1927.
2. Zipkin. M. A., and Lewis G. W., "Analytical and Experimental Performance of an Explosion-Cycle Combustion Chamber of a Jet Propulion Engine.? NACA TN-1702, Sept. 1948.
3. Shultz-Grunow, F., "Gas-Dynamic Investigation of the Pulse-Jet Tube," NACA TM-1131, Feb. 1947.
4. Zinn, B. T., Miller, N. Carvelho, J. A., and Daniel B. R.,"Pulsating Combustion of Coal in Rijke Type Combustor," 19th International Symposium on Combustion, 1197-1203. 1982.
5. Hoffmann. Y.. "Reaction Propulsion by Intermittent Detonative Combustion," Ministry of Supply, Volkenrode Translation, 1940.
6. Nicholls, J. A, Wilkinson, H. R. and Morrison, R. B. "Intermittent Detonation as a Thrust-Producing Mechanism." Jet Propulsion. 27, 534-541. 1957.
7. Duniap. R., Brehm, R. L. and Nicholls, J. A., " A Preliminary Study of the Application of Steady State Detonative Combustion of a Reaction Engine". ARS J., 28, 451-456, 1958.
8. Nicholls, J. A., Gullen, R. E. and Ragland K. W., "Feasibility Studies of a Rotating Detonation Wave Rocket Motor," Journal of Spacecrafts and Rockets, 3, 893-898, 1966.
9. Adamson, T. C. and Olsson, G. R., "Performance Analysis of a Rotating Detonation Wave Rocket Engine," Astronautica Acta, 13, 405-415, 1967.
10. Shen. P. I., and Adamson, T. C., "Theoretical Analysis of a Rotating Two-Phase Detonation in Liquid Rocket Motors." Astronautica Acta, 17, 715-728, 1972.
11. Krzycki, L. J., Performance Characteristics of an Intermittent Detonation Device, Navweps Report 7655, U. S. Naval Ordnance Test Station, China Lake, California 1962.
12. Matsui, H., and Lee, J. H., " On the Measure of the Relative Detonation Hazards of Gaseous Fuel-Oxygen and Air Mixtures," Seventeenth Symposium (International) on Combustion, 1269-1280, 1978.
13. Korovin, L. N., Losev A., S. G. Ruban and Smekhov, G. D. "Combustion of Natural Gas in a Commercial Detonation Reactor," Fiz. Gor. Vzryva 17, 86 (1981).
14. Smirnov, N. N., Boichenko, A. P., "Transition from Deflagration to Detonation in Gasoline-Air Mixtures," Fiz. Gor. Varyva 22, 65 (1986).
15. Lobanov, D. P., Fonbershtein, E. G., Ekomasov, S. P., "Detonation of Gasoline-Air Mixtures in Small Diameter Tubes," Fiz. Gor. Varyva 12, 446 (1976).
16. Back, L. H., "Application of Blast Wave Theory 10 Explosive Propulsion." Acta Astronautica 2. 391 (1975).
17. Varsi, G., Back. L. H., and Kim. K., "Blast Wave in a Nozzle for Propulsion Applications." Acta Astronautica. 3, 141 (1976).
18. Kim, K., Varsi, G.. Back and L. H., "Blast Wave Analysis for Detonation Propulsion," AlAA Journal 10, Oct. 1977.
19. Back L. H., Dowler, W. L. and Varsi. G., "Detonation Propulsion Experiments and Theory," AIAA Journal 21, Oct. 1983.
20. Eidelman. S.. Shreeve. R. P., "Numerical Modeling of the Nonsteady Thrust Produced by Intermittent Pressure Rise in a Diverging Channel," ASME FED Multi-Dimensional Fluid Transient 18. 7 (1984).
21. Eidelman. S., "Rotary Detonation Engine." U.S. Patent 4741 154, 1988.
22. Helman. D.. Shreeve. R. P., and Eidelman. S.. "Detonation Pulse Engine.", AIAA-86-1683, \(24^{\text {sh }}\) Joint Propuision Conference. Huntsville, 1986.
23. Monks, S. A., "Preliminary Assessment of a Rotary Detonation Engine Concept," MSc Thesis, Navai Poatgraduate School, Monterey, California. Sept. 1983.
24. Camblier, T. L. and Adelman. N. G., "Preliminary Numerical Simulations of a Pulsed Detonation Wave Engine," AIAA-88-2960, AIAA 28:h Joint Propulsion Conference, Boston 1988.
25. Eidelman, S., W. Grossmann. I. Lottati, "A Review of Propulsion Applications of the Pulsed Detonation Engine Concept," AIAA 89-2466. AIAA/ASME/ SAE/ASEE 25th Joint Propulsion Conference. Monterey, CA, July 10-12. 1989 (to be published in AIAA Journal of Propuision).
26. Lottati, I., S. Eidelman, A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," Paper AIAA 90-0699, 28th Aerospace Sciences Meeting, Reno. CA, Jan 8-11, 1990.


Figure 3 Prossure contours and marker particle paths for Case \(1, \mathrm{M}=0 . \mathrm{S}\), no inlet. inward initial detonation location.

a) \(t=0.33\) msec.

b) \(t=0.70\) msec.

c) \(t=1.4 \mathrm{msec}\),

d) \(t=2.4\) meoc,

e) \(t=2.7 \mathrm{msec}\)

f) \(\mathbf{t}=4.1\) mace

Figure 6 Pressure contours and marker particle paths for Case \(2, \mathrm{M}=0.8\), inlet geometry of Figure 5, outward initial detonation location.

a) \(t=1.3 \mathrm{msec}\),

b) \(t=2.1 \mathrm{msec}\),

Figure 8 Pressure contours and marker particle paths for Case \(3, \mathrm{M}=2.0\), sculptured inlet, outward initial detonation location.

三

AIAA-90-0699
A FAST UNSTRUCTURED GRID SECOND ORDER GODUNOV SOLVER (FUGGS)
Itzhak Lottati, Shmuel Eidelman, and Adam Drobot Science Applications International Corporation McLean,VA

\section*{28th Aerospace Sciences Meeting}

Januarv 8-11, 1990/Reno, Nevada

\title{
A FAST UNSTRUCTURED GRID SECOND ORDER GODUNOV SOLVER (FUGGS)
}

\author{
Itzhak Lotari, Shmuel Eideiman, and Adam Drobot
}

Applied Physics Operation
Science Applications International Corporation
McLean, Virginia 22102

\begin{abstract}
We deunibe a new technique for solving Euler's equations on an unsurucnred trimgular grid with arbitrary connectivity. The formulation is basod on Godunov methods and is second order nccurrace. The use of a unique deta strucaure leads to an essily vectorized and parailelized code with speed and memory requiremena comparable to those found with logically strucured grids. The new agorithm has been nesued for a wide range of flow condicions ranging from low speed subsonic fow to hypersonic flow with Mash number 32. The resules oburined are comperzble to or better than those obrained with leading flow solvers in all of the regimes tested. The code consains no free parmesers and cam be ured in complex flow problems where a variery of dow conditions may be encountered.
\end{abstract}

\section*{INTRODUCTION}

This paper introduces a new second order algorithm for solving the Euler equations on an unstructured grid, using an approacts based on furs and second order Godunov methods. The formulation presented here leads to an exeremely efficient and fass Flow Solver which is fully vectorived and easily lends itself to paralielization. The low memory requirements and speed of the method are due to the use of a unique date surucure.

Explicit hydrodyonmic numerical algorithms are easily adapted to Massively Parallet Computers (MPC) for logically strucared grids. This is a consequence of the fact that the calcuiation of the flow quandíies are locally determined. For logically structured quadrilateral grids, the integration algorition or Flow Solver computes the new flow values at the grid cell nodes (or cemers) using the values of the flow perameters from the previous timestep employing four or mare of the adjacent nodes. Higher order structured soivers are usually more computationally intensive, bot retain the ability of the solver algorition to be separated inso several distinct steps, each of which can casily be vectorized and parallelized.

Until recently, most CFD simulations were carried out with logically surucured grids and consequently vectorimarion and/or parallelization did not present a problem. The increased need for simulation of flow phenomena in the vicinity of complex geomerrical bodies and surfaces has led to the emergence of CFD codes based on logically unstructured grids. The moss successful of these unstrucurred grid codes are based on finite elements (1-6] or finite volume [7-12] methods.

Unstructured grid CFD computations in two-dimensions usually decompose the simulation domain into triangular clements. The physical location of the triangular elements and the accompanying list of vertices and edges is random with respect to the element index, making it necessary to maintain an indirect addressing system containing the connectivity information.

Calculations performed on unstructured grids evolve around the elemental grid shape (e.g. the triangie for twodimensional problems); there is no obvious pattern to the order in which the local integrations should be performed. Explicit integration of hydrodynamic problems on an unstructured grid requires that a logical substrucure be cretred identifing the locations in the global arrays of all the locil qumbinies necessary for the integration of one element. As a result, there is uswally a significant cost in computational efficiency, memary requirement, and code complexity. Approaches to vectorization for the corventional moructured grid methods have concentated on rearangement of the date structure in a manner such that these locally centered data structures appear as global arrays. This can be done to some extent using machine dependent Gather-Scatter operations. Additional optimization can be achieved using localization and search algorithms [13]. However, these methods are complex and resuit in marginal performance. To date, most optimized unstucumed codes have run considerably slower and require an order of magnimide more memory per grid cell than their structured counterparts. Parallelization of the conventional unstructured codes is even more difficult, and there is very litule experience with unstrucured codes on Massively Parallal Computers.

The method we describe in this paper overcomes these difficulties and results in code with speed and memory requirements comparable to those found in suructured grid codes. Moreover, the ability to construct grids with arbitrary resolution leads to a flexibility in cealing with complex geomeries which is not atainable with structured grids. The essence of the method is based on independent flus calculation across the edges of a dual baricencric grid, followed by node integration. This approach allows the flux and integration calculations to be performed on global arrays, coded as large vector loops, and is independent of element position on the unstructured grid.

In this paper we discuss our choice for data structure. the numerical algorithm (for first and second order solvers). and the resuits of test calculations. In realistic CFD
problems the physical domain may contain regions that span all flow regimes. It is very important that the numerical code be able to perform well over the full range of flow parameters with no a prioni code "refinement." This is especially true of complex problems where flow conditions cannor be easily assessed in all subdomains. A robust code has clear advantages if it is possible to apply it with confidence under such circumstances. We have chosen four test problerns to benctumark and validate the FUGGS code. These include: i) a subsoaic flow case for sready flow with \(\mathrm{M}=0.2 ; \mathrm{ii}\) ) supersonic steady flow with \(\mathrm{M}=2.0 ; \mathrm{iii}\) ) hypersonic steady flow with \(\mathrm{M}=320\); and iv) transit supersonic flow in a shock tube and over a wedge. For all of the test cases the method developed resuited in accurate solutions comparable to or better than reported in the literature by other leading CFD researchers. At the same time, the combination of using unstrucurred methods and our specific implementation yielded the lowest utilization of computer time and memory needed to achieve a given level of accuracy.

\section*{DATA STRUCTURE}

On an unsuructured grid, the data that describes the connectivity of a grid and the associated geomerrical confficients can represent a considerable overhead on memory usage. We have implemented a racher simple data strucure which permits efficient finite difference integration of fluid quantities with only one level of indirection. For two dimensions, the dart consists of lists of verrices, edges, and triangles. The physical quantities are stored at vertex locations. The vertex list consists of: the vertex positions ( \(\mathrm{x}, \mathrm{y}\) ), the fluid varisbles, the vertix volume, and wortospace. The edge date is composed of: the addresses of the two verices which form an edge, a vector which indicates the normal to the face that crosses an edge, the face area, and slorage for the fluxes. The face is formed by joining the baricencers of the adjoining triangles which lie along the edge. This is the only dara required in performing an iteration step. For convenience and ease of diagnostics, we bave also maintained a list of triangles, including the positions of the baricenters, and the addresses of both the verices and edges which form a trizngle.

The date stucture is compatible with algorithms which decompose the solution of the Euler equations into two steps. The first is determinacion of the fluxes. This can be realized by a loop over edges where the fluid quantities along the edge can be ferched through the indirect addreassing of vervex dath. The secoud step is to integrate the flures which contribute to the verter. There are two options heres one is to maincain a list of flux elements at each vertex and to perform a loop over vertices and then fluxes to each verter: the other is to again have a loop over edges where each contribution to the vertex is done as a randion fetch and store using the appropriare vervex addruses stored by each edge.

\section*{BASIC INTEGRATION ALGORITHM}

We begin by describing the first order Godunov merhod for a system of two-dimensional Euler equations written in conservation law form as
\[
\begin{equation*}
\frac{\partial \vec{Q}}{\partial t}+\frac{\partial \vec{F}}{\partial x}+\frac{\partial \vec{G}}{\partial y}=0 \tag{1}
\end{equation*}
\]
where.
\[
\vec{Q}=\left(\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
c
\end{array}\right), \vec{F}=\left(\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
(c+p) u
\end{array}\right), \vec{G}=\left(\begin{array}{c}
\rho \\
\rho v u \\
\rho v^{2}+p \\
(e+p) v
\end{array}\right) .
\]

Here \(u\) and \(v\) are the \(x\) and \(y\) velocity vector components, \(p\) is the pressure, \(\rho\) is the density and \(e\) is the total energy of the fluid per unit volume. It is assumed that a mixed (inivial conditions, boundary conditions) problem is properly posed for the ses of equations (1), and that an initial distribution of the fluid parameters is given at \(t=0\), and the boundary condirions defining a unique solution are specified for the cormpurational domain.

We seek a solution of the system of equations represented by Eq. (1) on a computational domain which is decomposed inmo riangles with arbitrary connecavity. An overwhelming advantage of using this method of domain decomposition is the ability to resolve extremely complicated geometries where the characteristic dimensions of subdomain fesorres can vary over many orders of magnimide

As an example. Figure 1 shows an unstractured triangular grid used in the simulation of flow for a new generacion of the wide body tenais rackets with 21 cross string rows represented as solid circles and a temis ball. In Figure la a blowup of the region near the racket surface is shown. This exampic illustrates the ability of the unstractured grids to represent geometry of arbirrary complexity and with localized resolution.

There are several options possibic for storing physical information on an nnsuructured triangular grid: i) vertex centeredt and ii) trisngie centered on either a baricenuric or Vorcani node. The selection of a specific grid structure offers two contrasting approaches. The first is 20 plece the effion on crenting an optimal grid, as is the case with Voconoi - Delaurey meshes, while the second is so redy on the robusuness of the integration algoritim. For complex configurations it is more difficuit to achieve an optimum Voronoi-Delaumey mesh and we have therefore opted for a simple baricentric grid.

This grid can always be constructed for a set of arbitrary triangles. The integration algorithm we have construcred can easily be implemented for both vertex and baricentered concrol volumes. Figure 2 displays a fragre:nt of such a computational domain with the corresponain. dan grid. The secondary or dual grid is formed by cu-raecting the baricenters of the primary mesh, thus form:ing finite polygons around the primary verices. Indeper:ent of the remarks made in Ref. 17 concerning usefulneas or Dirichle: tessellation, we have confirmed that the beast practical representation of the integration volume is obtained when the dual grid is formed by connecting baricenters of the triangles.


Figure 1 An illustration of the ability of a triangular grid to efficiently resolve the geomerric complexity and features of objects with disparte spatial scales.


Figure la Detail showing the feaures of a wide body temnis racket simulation including 22 strings and a tennis ball.

In keeping with the philosophy that the overail scheme should be able to perform in all flow regimes with no prior tuning of "free" parameters, we have chosen Godunov methods for performing the aumerical incegration of the Euler equasions in the concrol volume. These schemes are self consiswent and do not contain any adjustable mobs. The superior performsnce of Godunov type schemes for logically structured grids is well documented and the advantages can be readily realized on trimguiar grids. Integration by the Godunov method consists of two basic steps: i) determination of the fluxes on the faces of the dual grid. which defines the control volume. This is accomplished by solving a set of one-dimensional Riemann problems along triangle edges; and ii) integration of the system of partial differencial equations, which now amounts to a summation of all the fluxes for the vertex-centered control volume at each timestep.


Figure 2 A trianguiar grid and the baricentered dual grid which defines the control volume. The fluxes are found on the faces of the control volume on each edge joining adjacent vertex points.

To define the fluxer flowing into the control volume shown in Figure 2, it is necessary to solve the Riemann problem along every edge of the primary grid and transverse to the faces of the dual grid. For exampie, to define the filux through the face ab, we solve the Riemana problem between vertices A and B. The solution of this problem is in cocidinates local to the face of the dusi grid ab so that the tangential component of velocity will be directed along ab. Implenaencarion of our approach requires mainnaining srict consisuency when defining the "left" and "right" states for the Riemana problem at the faces ab, be, cd, de, ef, and fa. For this reasoa we define not only the location of the vertices and areas of the faces but atso the direction of the areas with respect to the primary grid edges. For the ciockwise integrasion pattern in a polygon, vertex \(A\) will be the "left" stare for ail the Riemann probiems related to this point and the acighbors will represent the "right" sides of the diaphragm.

It is easy to see that the flux calculation is based on information at only two nodes and requires simple geomerrical parameters defining the face of the secondary grid which dissects the line connecting the two points. Thus, we can find all the values needed for the flux calculation in one vector loop over all edges of the primary grid without requiring any desails related to the geometrical structures which these edges form. This in turn assures parallelization ar vectorization of the algorithm for the bulk of the calculations involving the Riemann solver, which provides the first arder fluxes.

The only procedure nor obviously parallelizable is the integration of the fluxes for the flow variables at the verices of the grid.

This operation requires a random fetch and store which can lead to conflicts that impair both parallelization and vectorization. Several common methods have been developed to deal with this difficulty. A practical approach is to split the integration of the fluxes into a small number of independeat loops through the use of "edge" coloring. The number of loops necessary is determined by the maximum connectivity of any vertex in the domain and is
usually 7 or 8. Each of these loops is usually large enough not to impair vectorization. At this stage all the fluxes are added with their correct sign corresponding to the chosen direction of integration within the cell. The amount of compuration required here is minimal since the fluxes are known and need only to be multiplied at each time step by a simple factor and added to the vertex quantity. This simple procedure resuits in a first order solver which is fully vecrarized.

\section*{SECOND ORDER INEGRATION ALGORITHM}

The second ordier solver is constructed along lines similar to that of the first-order method. At each cell face the Riemann problem is solved for the appropriate pair of left and right conditions. The solution to the Riemann problem is then used in calculation of fluxes, which are to be integrated later to advance to the next integration step. The extension to second order is achieved by using extrapoiation in space and ome to obtain time-centered left and right limiting values as inputs for the Riemann probiem. The basic implementation of the method for finding the second order accurrare fluxes is the same as for the one dimensional case and can be foumd in Refs. 14 and 16. The difference is the method of obtaining linear extrapolations for the flow variables as a first guess of their value on the faces of the dual grid. To obrain the initial guess we need to know the gradient of each gardynamical parameier \(U\) at the vervices of the primary mesti. The value \(\nabla \mathrm{U}\) can be evaiuated by using the linear path integral around the finite volme associated with the verne. For veriex \(A\) in Figure \(2:\)

where incegration along the path I in this case is equivalent to integration along the lines \(a b, b c, c d, d e, ~ e f, f a\), and where \(n\) is a unit vector pointing outward from the concrol volume centered at A and aormal to the integration path 1 . Knowing the gradiear of the gasdynamic parmeter in the volume reiated to vervex \(\mathbf{A}\) allows us to extrapolate the values of this prometer at any location within the volume. This permits os to evaluate the first guess for \(U\) at the edges of the dual grid. The rest of the implementation of the second order algorithm is the same as described in Refs. 8 and 9. This includes monotonicity constraines similar to chose introduced by Vanleer [15] and characteristic constrainss described in Refs. 14 and 16.

A schematic of the basic steps for the second order algorithm is shown in Figure 3. This consists of five steps. They are: i) the calculation of the linearly extrapolated values at each side of the connol volurne faces using the left and right adjacent vertices and the values for cach quantity and its gradient: ii) limicing the quantities obeained based on a monownicity conseraint; iii) a further limiter based on the solution of a one dimensional characteristic equation, which assures that the extrapolation does not violate the characteristics; iv) solution of the Riemann problem for the
final extrapoiated values with the limiters applied; and v) integration over the conurol volume.

The advancages of the method described will be demonstrated in the following section. The inclusion of the characteristic limiter has significanuly improved the treatment of contact discontinuities and is the tirst such implementation on a trianguiar mesh.


Figure 3 Schematic for stepwise implementation of the second arder Godunov meetod on an unstucured grid.

\section*{RESULTS FOR TEST PROBLEMS}

We have picked a set of test problems to demonstrate the performance of the FUGGS code for unsteady shock wive problems, and for subsonic, supersonic and hypersonic steady state flows. The cases in the chosen examples have amiytical solutions that can be used to quantify the accuracy of the code and to validate the performance. This set of problems is frequently used by other CFD researchers and forms a basis for comparing FUGGS with other bectniques.

\section*{a. Uasteady Shock Problem}

As a firse test we have chosen a case of planar shock wave propagation in a channei.

A section of the grid used for this test problem is shown in Figure 4. The total grid contained -2000 vertices with a resolution of 100 poincs in the direction of propagation. We simulated a simple shock aube problem on
this grid where the gasdynamic parameters to the left and night of the diaphragm have the following values:
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{l}}=1.0 ; \mathrm{pl}_{1}=1.0 ; \mathrm{U}_{\mathrm{l}}=0 ; \\
& \mathrm{V}_{\mathrm{l}}=0 ; \mathrm{n}=1.4 ; \\
& \mathrm{P}_{\mathrm{r}}=0.1 ; \mathrm{p}_{\mathrm{r}}=0.125 ; \mathrm{U}_{\mathrm{r}}=0 ; \\
& \mathrm{V}_{\mathrm{g}}=0 ; \mathrm{y}_{\mathrm{r}}=1.4 .
\end{aligned}
\]


Figure 4 Section of grid from the unsteady shock problem.

This one dimensional problem was simulated on a rather ill formed grid (from the viewpoint of connectivity). Consequenty the quality of the solution depended on the flow solver for accuracy. For the triangular shape of the elementery cell. plansr shoct and rarefaction wives gencrated by the solution always propagate ar conificting angies with reapect to four our of the six edges of the conroil volume. The trianguiar grid chocen for this simple test problem therefore indicanes the seccurracy of FUGGS for shock wives of arbitrary shape and orientation moving through the compurational domatio. The deasity distribution found from three differear versions of FUGGS is shown in Figure 5 as a function of \(x\) aloug the median cross section of the grid, The three cases are: i) first order Godurnov methodi i) second order Godunov: and iii) second order Godunov with the characteristic limiter. The data displayed in the figure represents a loss of resolution due to interpolation of the actual grid values to the projected midsectional line. It is clear from Figure \(S\) that the final implementation of FUGGS with characteristic constraints yields the best results for contact discontinuities. The code also maintains the one dimensional structure for the shock in all three cases described above. The sccurate representation of the density is also typical for all the other gasdynamic parameters.

(d)


Figure 5 Solution to the density distribution of shock problem with three different verions of FUGGS: a) First Order Godunov, b) Second Order Godunov withous characteristics and c) Second Order Godunov with characteristica.

\section*{b. Shock on Wedge}

Here we demonstrate the performance of the methods for sready supersonic flow simuiations. An analytical solution from oblique shock wave heory exists and can serve as an umumbiguous comparison with the numerical simulation.

The initial grid for the shock on wedge problem is shown in Figure 6. This gridding resuits in -500 vertices and - 800 triangles. The wedge angle in Figure 6 is \(10^{\circ}\). The incoming flow enters the compurational domain normai to the left boundary at Mach number M=2. Figures 7a and 70 show isomach liness for the sready flow solution from the firsa and second order Godumov solvers on the original grid. Comparing these two solutions we can see that the second order solution substancially improves the shock resolution. However, it is obvious that the grid densiry is \(t 00\) small to adequately resolve the oblique shock wave in both cases.


Figure 6 Coarse grid for shock on wedge problem.


Figure 7a First order Godunov solution for the coarse grid shown in Figure 6.


Figure 7 b Second order Godunov solution for the grid shown in Figure 6.

To improve the accuracy a higher grid deasiry is required in the region of discontinuity. This is achieved by subdividing the original elements of the grid in regions of large changes in flow paramevers.

A variery of criteria can be devised to identify regions which require mesh refinement. An example is given in Ref. 2 where a preset condition is imposed on the resolution from local derivatives of the flow parameters. The implemenuacion of this criteria in FUGGS would have led to a significant loss of computational efficiency becanse the sseacil for the Lapiscim is noniocal and would require more them one level of indirectress. Instead we used a simple parameter variacion criveria based on the local varistion in pressure or density to select the grid regions needing refinement. Figure 8 shows an enhanced grid derived from the mesh shown in Figure 6 by two levels of subdivision. The number of triangies in this case increase from 800 to 1200. Figure 9 shows isomach lines of the solution using the second order method for the same shock on wedge problem as in Figures 7a and 70. The improvement in shock resolution is dramatically noticeable. This problem aso illustrates the ability of unstrocurred grid methods to provide local resolution for important flow feanures, without requiring excessive overhead for other regions of the compurational domain.


Figure 8 Improved grid for the shocik on wedge problem with two levels of refinement based on 5\% variation in local value.


Figure 9 Second onder Godunov solution for the shock on wedge problem using a grid with two levels of refinement.

\section*{c. Subsonic Flow}

A challenging test problem to assess the performance of Euler codes for subsonic flow has been suggested by Pulliam [19]. He has computationally simulated a steady subsonic flow over an ellipse with major to minor axis ratio of \(6: 1\). The numerical solution of Eular equations reported for this case at \(M_{\infty}=0.2\) with angle of attack \(\alpha=5^{\circ}\) produced a lift coefficient of \(\mathrm{C}_{\mathrm{L}}=1.545\). As is well known from D'Alembert's Paradox. inviscid flow at low Mach numbers should yield \(\mathrm{C}_{\mathrm{L}}=0\) and have zero drag for a profile
of an arbitrary shape. For this reason the problem posed by Pulliam is a good indicator of the accuracy and amouns of artificial dissipation introduced by a numerical algorithm. Moreover, while a Euler soiver is not meant to treat potential flow, a general purpose solver should be capabie of simulating such flow conditions if they occur in a portion of a given probiem without resorting to a different algorithm. In making a transition to full Navier-Stokes treament, the use of a Euler soiver is an essential step; it is important to have confidence thas the artificial viscosity introduced does not dominare the solution.

For the case under consideration, it is very important in understand in detail the pocential how solution over an ellipse. Formancly, the analytical solution is availabie and is relarively simple. The complex potential for the flow over a cylindrical ellipse is given by the following [20]:
\[
\begin{aligned}
& F(z)=-\frac{1}{2} M_{\infty}(a+b) e^{-i \alpha} \\
& {\left[\frac{z+\sqrt{z^{2}-\left(a^{2}-b^{2}\right)}}{a+b}+\frac{z-\sqrt{z^{2}-\left(a^{2}-b^{2}\right)}}{a-b}\right]}
\end{aligned}
\]
where \(\mathrm{Z}=\mathrm{x}+\mathrm{iy}\) and \(\mathrm{M}_{0}\) is the Mach number. By taking the gradient of the porential we can find the velocity flow field explicitly:
\[
\begin{gather*}
\frac{U}{U_{\infty}}=\frac{(1+\lambda) \sin (\theta+\alpha) \sin \theta}{\lambda^{2} \cos ^{2} \theta+\sin 2} \\
\frac{V}{U_{\infty}}=\frac{(1+\lambda) \lambda \sin (\theta+\alpha) \cos \theta}{\lambda^{2} \cos ^{2} \theta+\sin ^{2} \theta} \tag{3}
\end{gather*}
\]
where \(\lambda=b / a\) is the racio of minor to major axis, \(\theta\) is the angie in polar coordinates from the center of the ellipse, and \(a\) is the angle of attack.

In examining this equation, we find that the maximum valoe of velocity is a surong function of \(\lambda\). For an ellipse with \(\lambda=1 / 6\), the maximum value \(V / U_{\infty}\) occurs at \(\theta=0\) or \(\pi\) and where \(\mathrm{VMAX}_{\mathrm{M}} / \mathrm{U}_{\infty}=7\) sing. For a flat plate where \(\lambda \rightarrow 0\) the maximum velocity is infinite. The angle \(\alpha\) defines the distance between the stagnauon point where the velocity is zero (at \(\theta=-\alpha\) and \(\pi-\alpha\) ) and the point where the velocity is maximum (at \(\theta=0\) and \(\pi\) ). For the case selected by Pulliam the distance between the point with minimum and maximum velocity is \(0.19 \%\) of the length of the major axis.

This means that the gradient of velocity along the major axis of the ellipse in the vicinity of stagnation points is extremely high. With - 1000 points uniformly distributed on the surface of the ellipse, only one grid spacing is available to resolve both the stagmation point and the point at which maximum velocity occurs. Even though one would normally construct a nonuniform grid in the vicinity of the stagnation point. we estimate that enormous compratational resources would be required to resolve the characteristic scale length for this problem. Traditional mechods encounter difficulties in this situation because spatial splitting leads to a poor estimate of the gradient and
the low connectivity of the mesh inuroduces spurious vorticity.

We performed two simulations for the conditions described by Pulliam. The number of nodes used on the surface of the ellipse is the same as in Ref. [19]. The grid is shown in Figure 10 for these simulations in the region immediately proximate to the eilipse. This grid is of poor quality and highly distorted; contains - 6000 veruces and 130 points on the surface of the ellipse. The results are shown in the form of pressure contours in Figures 11 and 12 for the first order and second order soivers respectively. In the case of the,first order algorithm, we obtained a lift coefficient of \(C_{L}=0.29\). The pressure contours for this simulation are not smooth, attributable to the low level, of accuracy of the solver. The same simation resuited in \(\mathrm{C}_{\mathrm{L}}=\) 0.252 when compraed with the second order soiver. and as can be seen in Figure 12 the pressure contours are considerably smoocher. The resul! presented by Pulliam was \(C_{L} \equiv 1.55\), almost an order of magninude higher than achieved with FUCGS. This highlights an important quality of our approach: the low generation of artificial viscosity. In comparison the lift obtained by Pulliam is as high as one would expect from thin profile theory and hence would mask real viscosity effects if they were added to the algorithm.


Figure 10 Section of the grid used in simulation of subsonic flow over an ellipse for conditions suggessed by Pulliam [19].


Figure 11 First Order Euler Solution for 6:1 Ellipse. Preasure contours. \(\alpha=5^{\circ} ; \mathrm{Mach}=0.2 ; 6065\) vertices; \(\mathrm{C}_{\mathrm{L}}=\) \(0.381: C_{D}=0.101\).


Figure 12 Second Order Euler Solution for 6:1 Ellipse. Pressure Contours. \(\alpha=5^{\circ} ; \mathrm{Mach}=0.2 ; 6065\) vertices; \(\mathrm{CL}=\) 0.252: \(C D=0.004\).

We also simulated flow over a cylinder at \(M=0.2\). The grid for this case is shown in Figure 13. We examiner the numerically produced lift with inflow conditions at various angles with respect to the \(x\) - axis \(\left(0^{\circ}, 5^{\circ}, 20^{\circ}, 45^{\circ}\right)\). The lift coefficient was angle independent and had a value \(C_{L}=\) 0.76 , almost 20 times smailer than reported by Pulliam, whose results are angie sensitive. With the first order scheme we achieved a lift coefficient of \(C_{L}=0.47\) with the drag coefficient \(C_{D} \equiv 1.49\). For the second order scheme, shown in Figure 14, the drag coefficient was reduced to \(C_{D}\) = 0.19 but the lift coefficient increased somewhat to the
value cited above. We also investigated the effects of grid refinement and found that a simple one level of refinement (adding \(\sim 400\) vertices) led to a modest reduction in lift coefficient of abour 20\%. To reinforce a point made earlier. all of the results were achieved with no "free" parameters to adjust. These parameers are present in many CFD codes in the form of coefifient for artificial viscosity terms present the practitioner with a practical problem of how they should be selecred for different how condinions.


Figure 13 Grid for simulation of flow over a cylinder at varying inflow angies with respect to the mesh.


Figure 14 Second Order Euler Solution for a circular cylinder. \(\alpha=45^{\circ} ; \mathrm{Mach}=0.2 ; 6311\) veruices; \(C_{L}=0.761\); \(C_{D}=0.196\).

\section*{d. Hypersonic Flow}

To demonsurate the versatility of the method for the entire range of flow regimes we have simulared a hypersonic flow test problem. One of the advantages of the Godunov type methods is that for the whole range of calculations performed (from low subsonic flow, supersonic flow, unsready flow with strong stock, or hypersonic flow at Mach number \(M=32\) ) it is unnecessary to change or adjust the numerical algorictm. In Ref. 21 performance of first and second order Godunov mechods has been analyzed for hypersonic flow regimes. There, as a test problem, an analytical solution was used for a hypersonic flow around a flat plate of finite thickness. This solution was obtained based on the anaiogy berween hypersonic flow over a flat plate of finite thicioness and a strong pianar explosion. Here we will use one expression from Ref. 21 which defines the shape of the shock wave as a function of plate thicinness \(d\). \(\gamma\) the adiabatic coefficient, and \(\alpha\) a nondimensional scale factor related to the energy released at the stagnation point.
\[
Y_{S H O C K}=\left(\frac{1}{2} D_{f} \frac{d x^{2}}{2}\right)^{1 / 3}
\]
where \(D_{f}\) is a coefficient of order unity,
\[
a=k_{1}(\gamma-1)^{2} 2+2+k 3 \ln (\gamma-1)
\]
while \(k_{1}=0.36011, k_{2}=-1.2537\), and \(k_{3}=\) - 0.1847 .

As a direct comparison we solved the hypersonic flow problem for the same set of conditions as in Ref. 21:
\[
\begin{aligned}
U_{\infty} & =10011 \text { meters/sec. } p=98.72 \mathrm{~Pa} \\
\rho & =1.24 \times 10^{-3} \mathrm{~kg} / \mathrm{m}^{3} \text { and } \gamma=1.2
\end{aligned}
\]

The grid used for this simulation is shown in Figure 15. This grid has \(\sim 5500\) verices and it's spatial resolution as the leading edge of the piate is of the same order as that of a \(300 \times 60\) recangular grid used in Ref. 12.


Figure 15 Grid for simulation of hypersonic flow over a flate plate.

In Figure 16 results for this simulation are shown in the form of pressure contours. Figure 16 also shows the location of the analytically calculated shock frone by a discrese line (squares). The shock resolution and accuracy of its location are comparable to that obtained in Ref. 21, even
though our triangular grid has less than \(1 / 3\) the nodes than the rectangular grid used in Ref. 21. This is due to the fact that in constructing the oriangular grid we had the flexibility to place the highest concencration of nodes in the area of the leading edge where the main properties of the flow are established


Figure 16 Second order solution for a flat plate. Pressure Contours. Mach \(=32 ; 5509\) grid vertices; \(P_{\max }=5.0 \times 10^{4}\); \(\mathrm{P}_{\text {min }}=98.7 \mathrm{P}_{\mathrm{a}}\).

\section*{CODES COMPUTATIONAL EFFICIENCY}

During the code development effort, grear areention was paid to the code dats structure, its efficiency and extendability to three dimensional calculations. In fact, the two dimens.onal version of the code has all the data structures required for the three dimensional simulations. That fact should be factored in comparing our storage overhead figures to those in other codes. Also while developing FUGGS we made a decision not to rely on machine-dependent functions, in order to assure portability. This feature is very important in the current supercomputing environment where a host of powerful parallel supercomputers and super workstations with diverse architecture are available and useful for different aspects of deaign

The following periormance characieristics have been achieved for the latest version of the FUGGS code:

\section*{1. First Order Godunov version:}
\begin{tabular}{|l|l|}
\hline Memory Requirement & \begin{tabular}{l}
36 places per triangie \\
Includes 5 physical \\
quantities integer \\
Indering arrays ail \\
geometric parameters
\end{tabular} \\
\hline \begin{tabular}{l} 
CPU Performance \\
CRAY XMP-24 \\
STEUAR 1000
\end{tabular} & \begin{tabular}{l}
15 usec/vertex/timestep \\
\(79 ~ \mu s e c / v e r t e x / t m e s t e p ~\)
\end{tabular} \\
\hline
\end{tabular}

\section*{2. Second Order Godunov version:}
\begin{tabular}{|c|c|}
\hline Memory Requrement & 39 places per trangle \\
\hline CPU Performance CRAY XMP-24 & \begin{tabular}{ll}
45 usec/vertex/dimeatep \\
Monotonvity step & \(50 \%\) \\
Cinarmateryitic limiter & \(15 \%\) \\
Rteman Solver & \(30 \%\) \\
Integrian & \(5 \%\)
\end{tabular} \\
\hline STEILAR 1000 & 214 usec/vertex/ trmestep \\
\hline
\end{tabular}

These numbers are provisional since the code is scill under development We feel that further improvements in code performance will be achieved with respect to both uming and storage requirements.

\section*{CONCLUSION AND DISCUSSION}

We have presented a method ior the numerical solution of Euler equations on an unstructured trianguiar grid. The meitrod was lested for a wide range of flow conditions,from low subsonic flow and unsteady flow with strong shock waves to hypersonic flow with Mach 32 . For all these regimes, the mehod performed extremely well both in terms of solution aceuracy and computational efficiency. The method is very robust and does not resort to adjustable computational parameters for the lested range of flow conditions. This is due to the fact that the numerical algorithm in FUGGS is based on Second Order Gatmov sebernes adapted to triangular grids. The method appears namual for unsmucurred tringular grids because the greater connectivity intuinively should lead to greater accuracy in eliminating errors introduced by spliting. In a typical heragonal (or greater) coutrol volume the contribution of fluxes is available from all six adjacent directions as opposed to just two in the case of a rectangular grid. Since the FUGGS method has been implemented on unstructured grids, it is possible to simulate flows over bodies of antimary geometry where the grid densify can be concentrated in a region of flow discontinuity.

Especially inferesting is the code's superior performance for the simulations of subsonic llow. For the test cases calculated here our method appears to perform better than the leading industry codes like ARC2D and SYMTVD. We think that the two main reasons for the better performance are multidirectional splitting (to distinguish from two directional splituing typical for logically structured quadrilateral grids) and finite volume integration. more should be done to investigate this important aspect of the code's periormance.

Historically, Euler solvers were developed to simulate nonisoentopic flows for which potencial flow assumptions are incorrect from the criginal development of numerical methods for the solution of Euler's equations, great effort has been devoted to resolving shocks and contact disconcinuities. producing in dramaucally improved results for shock wave hydrodynamics. At the same wne, attention to the accurate solution of the velocity gradients has been negiected. While these gradients are more difficult to discern than shock waves, they are more prevalent in practical how
problems and could lead to very significant enors in such important parameters as lift and drag coefficients. In addition, all vorticity and viscosity dominated phenomena depend on accurate solution of the veiocity gradients. In view of the periormed numerical simulations for subsonic flow over the eilipse and cylinder it is clear that uniess these features are resoived, the numerical solution of Euler equations can introduce spurious vorticity, making the resuits from a fuil Navier-Stokes implementation impossible.

\section*{Acknowledgment}

This work was partially supported by Wright-Patterson Research and Development Center under contract No. F33615-88-C. 3002 and by DARPA through AFOSR contract No. FY9620-89-C-0087 We would also like to thank Dale Nielsen, Jr, of Lawrence Livermore National Laboratory for the inikial gridding software and STELLAR Computer for providing assistance and facilities.

\section*{REFERENCES}
1. F. Angirand, V. Boulard, A. Dervienc, J. Periaux, and G. Vuayasundaram, in Compuring Methods in Applied Sciences and Enginearing. edited by R. Glowinsia et al. (Norh-Hollond, Amstercam, 1984).
2. F. Angbrand. V. Boulard. A. Dervieur. J.A. Desideri, I. Perinux, and B. Stonggiet in Proceedings Ninth International Conference on Numerical Methods in Fluid Dynamics, Saclay. France. 1984, edited by Soubbaramayer and Boujor, Lecture Notes in Physics, Vol 218 (Springer-Veriag, 1985).
3. L. Fezoui and B. Stouggiet, "A Class of Implicit Upwind Schemes for Euler Simulations with Uasurucured Meshes," J. of Comp. Phys. 84, 174-206 (1989).
4. R.A. Shapiro and E.M. Murman. "Adapuive Finite Elermens Merhods for the Euler Equations," AJAA-880034, 26th Acrospace Sciences Meeting, Reno, Nevaria, 1988.
5. R. Lohner, K. Morgan, and D.C. Zienkiewicz, "Finite Elemeat Methods for High Speed Flows," AlAA 7th Computational Fluid Dynamics Conference, Cincinnati, Ohio, AIAA Paper 85-1531 (1985).
6. R. Lohner and K. Morgan, "Improved Adsplive Refinement Strategies for Finite Element Aerodynamic Computations," AlAA 29th Aerospace Sciences Meecing, Reno, Nevada, AIAA Paper 86-0499 (1986).
7. D. Mavriplis and A. Jameson, "Multigrid Solution of the Two-Dimensional Euler Equations on Unstructured Trianguiar Meshes, ALAA-87-0353, 1987.
8. T.K. Dukowicz, M.C. Cline, and FI. Addessio, "A General Topology Godnuov Method." J. of Comp. Phys. 82. 29-63 (1989).
9. T.J. Baker and A. Jameson, "A Novel Finite Element Method for the Calculation of Inviscid Flow Over a Complete Aircraft." Sixth International Symposium
on Finite Elemenr Methods in Flow Problemns, Antibes. France (1986).
10. A. Jameson and T.J. Baker, "Improvements to the Aircraft Euler Method." AIAA 25 th Aerospace Sciences Meeting, Reno. Nevada. AlAA Paper \(87-\) 0452 (1987).
11. TJ. Baker, "Developments and Trends in ThreeDimensional Mesh Generations," Transonic Symposium, NASA Langley Research Center, Virginia (1988).
12. A. Jameson, T.J. Baker, and N.P. Weatherill. "Calculation of Inviscid Transonic Flow Over a Complete Aircraft." ALAA 241 h Aerospace Sciences Meeting, Reno, Nevada, ALAA Paper 86-0103 (1986).
13. L. Greengard and V. Rokhlin. "A Fast Algorithm for Paricic Simulations," J. Comp. Phys. 73, 325-348 (1987).
14. S. Eidelman. P. Collela, and R.P. Shreeve, -Application of the Godunov Mechod and It's Second Order Extension to Cascade Flow Modeling." A/AA Jownal, v. 22. 10 (1984).
15. B. van Leer, "Towards the Ulimate Conservative Difference Scheme, V.A. Second Order Sequel to Godunov's Method," J. Comp. Phys. v. 32. 101-136 (1979).
16. P. Collela and P. Woodward "The Piecewise Parabolic Method (PPM) for Gasdybanucak Simulations," J. Comp. Phys. v. 54, 174-201 (1984).
17. TJ. Barth and D.C. Jespersen. The Design and Application of Upwind Schemes on Unsurucured Meshes," 27th Aerospace Sciences Meering. AlAA-89. 0366. Remo, Nevada (1989)
18. H.M. Glaz, P. Collela, I.I. Glass, and R.L. Deschambanit, "A Detailed Numerical Graphical, and Experimeatal Study of Oblique Shock Wave Reflecrions," DNA-TR-86-365, Technical Report. 1986.
19. T.K. Pulliam, "Computational Challenge: Euler Solution for Ellipses." AIAA-89-0469, Reno, Nevada, 1989.
20. Schaum's Outline Series, Fluid Dynamics, by W.F. Hughes and J.A. Brighton, McCraw-Hill Book Co., New York, 1967.
21. S. Eidelman, "Application of the Hypersonic Analogy for Validation of Numerical Simulations," ALAA Journal 27, 11, 1566-1571 (1989).

\title{
Reflection of the Triple Point of the Mach Reflection in a Planar and Axisymmetric Converging Channels
}

Shmuel Eidelman and Itzhak Lottati

Science Applications International Corporation McLean, Virginia, USA

9th Mach Reflection Symposium
Freiburg
June 1990

\title{
Reflection of the Triple Point of the Mach Reflection in Planar and Axisymmetric Converging Channels
}

\author{
Shmuel Eidelman and Itzhak Lottati \\ Science Applications International Corporation, McLean. VA. USA
}

\section*{Introduction}

Depending on their parameters, the encounter between a planar shock wave and a wedge can produce a classic case of the Mach Reflection. The Mach Reflection has a characteristic triple point, where three shocks and the contact discontinuity coalesce. In a shock tube or in a channel, a developed Mach Reflection can reflect further from the walls opposite the wedge. In this case, the Mach shock of the Mach Reflection will start reflecting when its triple point reaches the wall opposite the wedge. Upon reflection of this shock wave, a secondary Mach Reflection can form. Although the primary Mach Refiection has received considerable attention in scientific literature (Refs. 1,2,3), the phenomenology of the subsequent reflections was gone virtually unnoticed. In our literature review, we found only a short qualitative description of the phenomena by Bazhenova and Gvozdeva (Ref. 4). This omission is unfortunate, since it is a very practical case for propagation of the shock waves in channels of variable cross sections.

The direct simulation of the various cases of Mach Reflection has only become possible in the last decade. This problem is a challenging test for the numerical methods used in Computational Fluid Dynamics (CFD). An impressive demonstration of the capabilities of the direct numerical simulations of Mach Reflection phenomena is given by Glaz et al. (Ref. 5). They demonstrate that all the important phenomenology of the Mach Reflection, including slip line vortex and Mach shock wave bulging, can be simulated directly. This was achieved by using the Second Order Godunov method, numerical technique, developed in 80 th, which is extremely robust and allows very accurate simulation of flow discontinuities.

The Second Order Godunov method was implemented on rectangular grids (Ref. 6) and in a few cases on general quadrilateral grids (Ref. 7). This approach has limited application, since the structured quadrilateral grids have great difficulty describing a complicated computational domain with multiple bodies of different geometries and scales. Recently, we have implemented the Second Order Godunov for unstructured triangular grids (Ref. 8). This enables us to combine the robust and accurate numerical algorithm with a griding technique, allowing us to describe very complex domains with ease and efficiency. In addition, we have developed a novel Dynamic Grid Adaptation methodology which allocates a dense computational grid only to regions where
enhanced resolution is needed to resolve strong gradients in flow parameters. As demonstrated in our paper, this enables an extremely economical allocation of computational resources and accurate simulation of a complicated phenomena like Mach Reflection.

In our study, we numerically simulate the formation of a Double Mach Reflection on a sloped wall of a converging channel, with subsequent reflection of the reflected wave at the straight wall of the channel. Presented here numerical results were obtaned with the new numerical technique and we will describe in detail all the important new elements which we have introduced.

\section*{The Problem}

Figure 1 shows a converging channel with a sloped wall at \(27^{\circ}\). The figure illustrates our assumption that a Mach 8.7 shock wave travelling normally to the parallel walls enters the channel at the left hand side. According to analysis presented in Reference 9, this shock will have a Complex Mach Reflection when it encounters the converging wall of the channel. At some stage of the reflection process, the triple point will reach the opposite wall of the channel. Here the Mach stem shock wave will become incident, moving at an angle to the channel wall, as illustrated in Figure 2. The shock and wedge parameters chosen in our problem will cause formation of a secondary Mach reflection. The uluestion is: What form will this secondary reflection take? Bazhenova and Gvozdeva offer a very general description of the anticipated effect, illustrated in Figure 3 (Ref. 4). In this reference, a system of secondary reflections shows the incident and Mach shocks are interchanging their positions with every new reflection, and the strength of the shock waves is increasing. It is not clear from Reference 4 what type of Mach Reflection will form, or how the secondary reflected wave, which expands in already perturbed gas, will be affected by the interactions with the strong slip surfaces located behind the original Mach shock.

We will directly simulate formation of the Mach Reflection at the channel oblique wail, as well as all secondary reflections which will occur according to the conditions outlined above for the channel geometry shown in Figure 1. In addition we will consider cases in which the channel shown in Figure 1 is axisymmetric and will study the same problem for this case. The motivation is further study of the phenomenology of shock wave focusing when a three-dimensional contraction occurs.

In our study we will consider an ideal, invisid gas which can lead to some distortion of our results compared with experimental data. However, we believe that this simplification will still capture the main phenomenology of wave formation and reflection. and will be of general value to the Mach Reflection Theory.

\section*{Numerical Method}

In Reference 8 we introduced a new numerical algorithm: FUGGS (Fast Unstructured Second Order Godunov Solver), for solving Euler's equations of gasdynamics on unstructured triangular grids. The algorithm formulated and tested in Reference 8 is vertex-based. Here we will describe a new volume based version of the FUGGS method. The new version of the algorithm as illustrated in our paper, produces considerably more accurate solutions and it is more efficient. This contradicts published results (Ref. 10,11) on implementation of the triangle-based TVD schemes for unstructured triangular grids. The new algorithm has been validated for the range of subsonic, supersonic and hypersonic steady state and transient problems. Here we show only results for Mach Reflection in planar and axisymmetric channels..

The new triangle-based version of the FUGGS algorithm was extended to allow dynamic adaptive grid refinement for transient problems. We will give a description of the dynamic grid adaptation methodology used in FUGGS code.

A three dimensional version of the FUGGS algorithm was developed in an extremely short period of time. This was made possible by the simple structure of the basic algorithm. We will not present simulation results for the three dimensional FUGGS, however, the main elements of the FUGGS algorithm implementation in the three dimensions will be illustrated.
Vertex-Based and Triangle-Based Integration Algorithms
We consider a system of Euler equations written in conservation law form in three dimensions as:
\[
\begin{equation*}
\frac{\partial \mathrm{U}}{\partial t}+\frac{\partial \mathbf{f}}{\partial x}+\frac{\partial \mathbf{g}}{\partial y}+\frac{\partial \mathbf{h}}{\partial z}=0 \tag{1}
\end{equation*}
\]
where
\[
\mathbf{U}=\left|\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
\rho w \\
\rho E
\end{array}\right|, \mathbf{f}=\left|\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
\rho u w \\
\rho u H
\end{array}\right|, \mathbf{g}=\left|\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p \\
\rho v w \\
\rho v H
\end{array}\right|, \mathbf{h}=\left|\begin{array}{c}
\rho w \\
\rho u w \\
\rho v w \\
\rho w^{2}+p \\
\rho w H
\end{array}\right|
\]

Here \(u, v\), and \(w\) are the \(x, y\), and \(z\) velocity vector components, \(p\) is the pressure, \(\rho\) is the density and \(H\) is the total enthalpy and \(E\) is total energy of the fluid. It is assumed that a mixed (initial conditions, boundary conditions) problem is properly posed for the set of equations (1), that an initial distribution of the fluid parameters is given at \(t=0\), and the boundary conditions defining a unique solution are specified for the computational domain.

We seek a solution of the system of equations (1) on the computational domain which is decomposed into tetrahedrons (triangles in two dimensions) with arbitrary connectivity. An overwhelming advantage of this method of domain decomposition is the ability to resolve extremely complicated geometries and flow regimes accurately and efficiently. This has been demonstrated in numerous publications on th: topic (Ref. 12, 13, 14).

There are several options possible for storing natural physical parameters of the problem on an unstructured tetrahedral or triangular grid. In particular, we have examined: i) vertex centered; and ii) tetrahedron (or triangle) centered. These two approaches, while equivalent from the point of view of the formal numerical representation of the governing equations, lead to different algorithms. As shown below, this will have important consequences not only on data structure and algorithm efficiency, but moreover the different connectivity will affect the overall accuracy of the numerical solution.

In Figure 4, a fragment of the two-dimensional computational domain is shown. Here, together with the original triangular grid (solid lines), the secondary grid (broken line) is shown. This secondary grid is formed by connecting the barycenters of the primary grid. If a vertex based grid is used, the physical parameters of the problem are stored at vertices \(A, B, C . .\). , and the integration is done for the volumes delineated by the polygons of the secondary grid. For instance, integration volume associated with vertex \(A\) is defined by the edges \(a b, b c, c d, d e\), ef, fa. For a triangle-based grid the physical parameters will be stored at the nodes of the secondary grid, and integration volume will be the triangle itself. We have shown (Ref. 15) that these two approaches lead to numerical algorithms with different connectivity, accuracy and efficiency. The fundamental algorithm of the second order Godunov method implemented in FUGGS can be illustrated in two dimensions for an edge of the grids control volume shown in Figure 5. The algorithmic steps of the second order Godunov method can be defined as follows:
1. Find the value of the gradient at the vertex point (or at the baricenter of the triangle for the triangle-based version) for the gasdynamic Parameter \(U\);
2. Using the gradient values, find the interpolated values of \(U\) at the edges defining the control volume (sides of the triangle for the triangle-based scheme)
3. Limit these interpolated values based on a monotonicity condition (Ref. :6)
4. Subject the resulting values to the characteristic's constraints (Ref. 6)
5. Solve the Riemann problem for the corrected values.

This last step completes the definition of the fluxes at the edges of the control
volume. The flux values can be stored at the edges and the flux calculation loop will be arranged for the list of edges, which is the largest vector in the system. If the algorithm is vertex-based to calculate \(U^{n+1}\) values, we will integrate the fluxes at the edges of the secondary grid which define the control volume for the vertex. For the triangle-based algorithm \(U^{n+1}\), value is obtained by integrating the fluxes at the sides of the triangles.

Implementation of the algorithm in three dimensions will have the same basic steps in flux calculation 1-5. To illustrate that point, Figure 6 shows a tetrahedral element of the grid. Here the fluxes are defined on the faces of the tetrahedral at the edge points. At step 1 the gradient is caluclated at the barycenter cell point for the tetrahedral. All the rest of the steps are identical to those described above. To find the value of \(U^{n+1}\) in the three dimensional case, we will add fluxes defined at the faces of the tethraletral. Most elements developed for the two dimensional code are applicable to this implementation of the three dimensional algorithm.

\section*{Direct Dynamic Refinement Method (DDRM)}

Practical numerical simulations of the fluid dynamic problems call for modeling flows over complicated shapes. In addition, important flow features such as shed vortices, shock waves, slip lines and boundary layers usually have widely varied lengths and time scales and need to be resolved. Accurate solution of these problems require computational grids dynamically adapted to the evolving flow feature, and with full control over solution accuracy in the key regions of the computational domain. It is commonly accepted that only unstructured grids can provide full flexibility in obtaining the local grid resolution sufficient to accurately resolve subscale flow features. The five years since the introduction of these grids and methods in CFD research have produced landmark simulations clearly demonstrating their advantages (Ref. 12, 14, 17).

Although a number of research groups have demonstrated application of unstructured grids to simulations of steady state problems (Ref. 14, 17, 18), simulations of time-dependent problems were accomplished by a significantly smaller group (Ref. 19, 20). An adaptive refinement method developed by Lohner (Ref. 20) is based on a hierarchical system of grid refinement/coarsening in which each level of refinement has six possible cases and coarsening three cases of triangular cells formation. Every layer of refinement has a father/son relation with the previous layer, and all these layers of refined mesh move on the basic predefined grid. This technique has the demonstrated capability of carrying out simulations of extremely complex flow regimes. However, its rigid hierarchic approach to generating grid results in some implicit limitations. For example, a dynamically evolving grid will not have an element larger than the cell of the initial grid. or it will be impossible to reduce the cell volume abruptly in some areas without passing through all the necessary level of refinement.

In our paper we will report a new method of dynamic grid adaptation. This method is based on direct refinement and reconnection in the areas of monotonic flow preceding the regions with strong flow gradients. In Figure 7 we have illustrated the iusic process of refinement accomplished in the DDRM method. The original grid is shown in Figure 7a. Figure \(\overline{7} b\) illustrates a one step grid refinement in which a new vertex is introduced into a triangular cell forming three new cells. This is followed by reconnection which modifies the grid in a manner demonstrated in Figure 7 c . The process of refirement and reconnection can be continued until the necessaary grid resolution is achieved, as illustrated in Figures 7d and 7e. This direct approach to the grid refinement grants extreme flexibility in resolving local flow features. A similar simple method is applied to grid coarsening. In the first step of coarsening the marked vertices, all associated elements of the grid are simply removed, as shown in Figure 8a. During the second step, this void in the grid is filled with new larger triangles (Figure 8 b ), and then reconnected as shown in Figure 8c.

The Direct Dynamic Refinement Method (DDRM) was implemented for the second order-Godunov method (FUGGS algorithm Ref. 7, 15). Here we demonstrate its performance for a classical Mach Reflection problem.

\section*{Results}

In Figures \(8 \mathrm{a}, \mathrm{Sb}\), and 8 c , simulation results are shown in the form of density contours for different stages of Mach Reflection in a planar channel. To illustrate the dynamics adaptation of the computational grid to the solution in the same figures, we show the grid as it evolves in time. The numerical solution develops as a classical case of Mach Reflection. Because we have assumed that the gas is ideal with \(\gamma=1.4\), according to Ben-Dor and Glass (Ref. 9) for the shock wave and wedge angle conditions chosen we should have a case of Complex Mach Reflection (CMR). We can observe in Figures \(8 \mathrm{a}, 8 \mathrm{~b}\) and 8 c that the density contours definitely display the pattern of discontinuities attributed to CMR. In these figures we observe a well defined slip line vortex, slip line, triple point and the kink. For real gas, in this case, the Double Mach Reflection should occur. The slip line and slip line vortex will be located close to the Mach shock and will cause the Mach shock bulging (Ref. 5). However the perfect gas assumption will lead to CMR and extensive bulging will not arise, as is accurately predicted in our simulations. It is striking to observe in Figures \(8 \mathrm{a}, 8 \mathrm{~b}\), and 8 c that the numerical grid closely follows the evolving system of waves, and the high density grid is only observed in the areas of shock waves, slip lines and other flow discontinuities. The result is tremendous savings in both CPU and storage. For example, the grid shown in Figure 8c has only 6000 points (an equivalent of a grid \(60 \times 100\) in the case of a structured rectangular grid).

Reflection of Mach shock from the wall opposite the wedge will start immediately after the stage shown in Figure 8c. This reflection results in formation of the secondary Mach Reflection which expands towards the channel's oblique wall. In Figure 9a, this secondary Mach Reflection can be clearly identified. In Figure 9b, the blow up of the region of the secondary Mach Reflection is shown. All the distinguishing characteristics of the Mach Reflection can be identified in this figure, including triple point, Mach shock. reflected shock and slip line. In addition to all these features, the secondary Macin Reflection has an additional kink, resulting from interaction of the reflected shock with the slip surface. It is clear that this interaction will affect significantly the dynamics of the secondary reflection.

In Figures 10a, 10b, and 10c, simulation results are shown for the Mach Reflection in an axisymmetric channel which has the same cross section as the planar channel. For direct comparison here the simulation results are presented in the same format as in Figures \(8 \mathrm{a}, 8 \mathrm{~b}\), and 8 c for the case of a Mach Reflection in a planar channei. The Mach Reflection in Figure 10a is analogous to its planar counterpart in Figures 8a and 8b. In Figure 10b it can be observed that the area of the shock between the triple point and the kink in the reflected shock tilts towards the axis of symmetry of the channel. This is even more pronounced in Figure 10c where the density contours are shown before the secondary reflection starts. It is apparent that the secondary reflection of the Mach shock will occur earlier in the axisymmetric channel than in its planar counterpart. Contraction in the radial direction results in a significant jump in density upon reflection. In Figure lla we see that at the initial stages of the axisymmetric reflection, maximum density increased three-fold compared with the values observed in the initial reflection. This increase in density affects the increment between the contour levels displayed in Figure 11 a and causes the slip line not to show. In Figure 11c a more advanced stage of the secondary reflection is shown. To examine in more detail the features of the secondary reflection in Figures 11b and 11d, we show an enlarged view of the secondary reflection region corresponding to Figures 11a and 11c. In these figures, we can observe the formation of a distinct reflected wave pattern with a characteristic double kink of the reflected wave similar to that seen in the secondary reflection in a planar channel. In the axisymmetric case, the secondary reflection is significantly stronger than in the case of a planar channel. Since this reflected wave propagates along the radius of the channel, it will expand rapidly. This can be observed in Figure \(11 c\) where the maximum value of density dropped \(30 \%\) compared with the maximum in Figure 11a. For the same reason the triple point of the secondary Mach Reflection has advanced much farther towards the oblique wall in Figure 11d than in Figure 9b.

\section*{Conclusions}

A computer code has been developed for Euler's equations of gas dynar.' s. This code uses unstructured grids for computational domain decomposition and it" inte:ration algorithm is based on the Second Order Godunov method. The cod ses the Dynamic Grid Adaptation methodology, allowing economical allocation of omputer resources to evolving flow features. In turn, it is then possible to carry \(r\) it accurate simulations of complicated gas dynamic phenomena with affordable comp: ar resources. Here the code has been demonstrated to produce an accurate simulation of Complex Mach Reflection in planar and axisymmetric channels. We also have simulated the initial stages of the secondary Mach Reflection from the channel wall opposite the oblique wall. In this case we observed new wave structures with a characteristic double kink. The formation of the second kink was a result of the interaction between the secondary reffected wave and the original slip line. It was noted that the dynamics of the secondary reflection is different in the planar and axisymmetric cases. In the axisymmetric case reflection in significantly stronger than in the planar case.

\section*{References}
1. Ben-Dor, G., and I.I. Glass, "Nonstationary Oblique-Shock Wave Reflections: Actual Isopycnics and Numerical Experiments," AIAA J. 16 (1978), pp. 1146-1153.
2. Gvozdeva, L.G., T.V. Bazhenova, O.A. Predvoditeleva, V.P. Fokeev, 1969. Mach Reflection of Shock Waves in Real Gases, Astron. Acta 14:503-8.
3. Hornung, H.G., H. Oertel, R.J. Sandeman, 1979. Transmission to Mach Reflexion of Shock Waves in Steady and Pseudosteady Flow with and without Relaxation. J. Fluid Mech. 90:541-60.
4. Bazlenova, T.V. and L.G. Gvozdeva, "Unsteady Interactions of Shock Waves," Nauka, Moskow, 1977.
5. Glaz. H.M., P. Colella, I.I. Glass, and R.L. Deschambault, A Detailed Numerical. Graphical, and Experimental Study of Oblique Shock Wave Reflections, DNA-TK-86-365, 1986.
6. Woodward, P.R., and P. Colella, "Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks," J. Comp. Phys. 54 (1984), pp. 115-173.
7. Eidelman, S., P. Collela, and R.P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," AIAA Journal, v. 22, 10 (1984).
8. Lottati, I., S. Eidelman and A. Drobot, "A Fast Unstructured Grid Second Order Gudunov Solver (FUGGS)", 28th Aerospace Sciences Meeting, AIAA-90-0699, Reno, NV, 1990.
9. Ben-Dor, G. and I.I. Glass, 1979 Domains and Boundaries of Nonstationary Oblique Shock-Wave Reflexions: 1. Diatomic gas. J. Fluid Mech. 92:459-96.
10. Barth, T.J. and D.C Jespersen, "The Design and Application of Upwind Schemes on Unstructured Meshes," 27th Aerospace Sciences Meeting, AIAA-89-0366, Reno, NV, (1989).
11. Mavriplis, D. and A. Jameson. "Multigrid Solution of the Two-Dimensional Euler Equations on Unstructured Triangular Meshes," AIAA-87-0353, 1987.
12. Baum. J.D. and R. Lõhner, "Numerical Simulation of Shock- Elevated Box Interaction Using an Adaptive Finite Element Shock Capturing Scheme," AIAA Preprint 89-0653, Presented at the AIAA 27th Aerospace Sciences Meeting, Jan. 8-12, 1989. Reno. NV.
13. Löhner. R., K. Morgan. J. Peraire and M. Vahdati, "Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes Equations" Chapter 6 in Finite Elements in Fluids Vol. VII (R.H. Gallagher, et al. eds.), J. Wiley and Sons (1988).
14. Mevriplis, D.T., "Accurate Multigrid Solutions of the Euler Equations on Unstructured and Adaptive Meshes," AIAA Journal, 2, V. 28, p. 231, 1990.
15. Eidelman, S. and I. Lottati, "Triangle Based FUGGS and its Validation for Two and Three Dimensional Flow Problems," to be presented at 29 th Aerospace Sciences Meeting, Reno, NV, 1091.
16. \(\tan\) Leer, B., "Towards the Ultimate Conservative Difference Scheme, V.A. Second Order Sequel to Goduriov's Method," J. Comp. Phys. v. 32, 101-136 (1979).
17. Jameson, A., T.J. Baker and N.P. Weatherill, "Calculations of Inviscid Transonic Flow Over a Complete Aircraft." AIAA 24th Aerospace Sciences Meeting, Reno, NV, AIAA Paper 86-0103, January 1986.
18. Peraire, J., M. Vahdati, K. Morgan and O.C. Zienkiewicz - Adaptive Remeshing for Compressible Flow Computations; J. Comp. Phys. 72, 449-466 (1987).
19. Palmerio, B. and A. Dervieux - Application of a FEM Moving Node Adaptive Method to Accurate Shock Capturing; Proc. First Int. Conf. on Numerical Grid Generation in CFD, Landshut, W. Germany, July 14-17, 1986, Pineridge Press.
20. Löhner, R. - Adaptive Remeshing for Transient Problems; Comp. Meth. Appl. Mech. Eng. 75, 195-214 (1989).



Figure 4.


\section*{Second Order Edge Based Flux Calculation}

Figure 5.

Figure 6.

a. Original gria.

b. Grid after one refinement.

c. Grid after one reinement and one reconnection.

d. Second refinement.

e. Second reconnection.

Figure 7. Illustration of the grid refinement process.

c. Final coarse grid after reconnecrion.

Figure 8. Illustration of the grid coarsening process.


Grid
Figure 8a. Mach Reflection in a planar channel. \(\mathrm{M},=8.7 ; \alpha=27^{\circ}\).


Density contours


Grid
Figure 8b. Mach Reflection in a planar channel. \(\mathrm{M},=8.7\) : \(\alpha=27^{\circ}\).


Density contours


Grid
Figure 8c. Mach Reflection in a planar channel. \(\mathrm{M},=8.7 ; \alpha=27^{\circ}\).


Figure 9a. Secondary Mach Reflection in a planar channel. Density contours.


Figure 9b. A blown up view of the secondary Mach Reflection shown in Figure 9a.


Density contours


Grid
Figure 10a. Mach Reflection in an axisymmetric channel. \(\mathrm{M}_{9}=8.7 ; \alpha=27^{\circ}\).


Density contours


Grid
Figure 10b. Mach Reflection in an axisymmetric channel. \(\mathrm{M}_{s}=8.7 ; \alpha=27^{\circ}\).



Grid
Figure 10c. Mach Reflection in an axisymmetric channel. \(\mathrm{M}_{9}=8.7: \alpha=27^{\circ}\).


Figure 11a. Start of the secondary Mach Reflection. Axisymmetric channel. Density contours.



Figure 11c. Secondary Mach Reflection axisymmetric channel. Density contours.


Figure 11d. Blow up of the secondary Mach Reflection area shown in Figure 11c.

\title{
Solution of Euler's Equations on Adaptive Grids Using A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)
}

\author{
Itzhak Lottati, Shmuel Eidelman and Adam Drobot Science Applications International Corporation 1710 Goodridge Drive \\ McLean, Virginia 22102
}

\begin{abstract}
We describe a new technique for solving Euler's gasdynamic equations on unstructured trianguiar grids with arbitrary connectivity. The formulation is based on the second order Godunov method. The use of data structure with only one level of indirectness leads to an easily vectorized and parallelized code with a low level of overbead in memory requirement and high computational efficiency. The performance and accuracy of the algorithm has been tested for a very wide range of Mach numbers starting from very low subsonic to high hypersonic flows, without the need to adjust any code parameters. The algorithm was implemented in a vertex based and triangle based scheme. The computational results produced by the triangle based version showed an extremely low level of artificial viscosity.

A new method of direct dynamic refinement of unstructured grids, as described in this paper, allows an automatic adaptation of the grid to regions of pressure or density discontinuity, steep pressure or density gradient, and high vortical activity. Results using the algorithon with dynamic grid refinement are presented.
\end{abstract}

\section*{Flow Solver on an Unstructured Grid}

The specific use of triangular meshes provides a very flexible means for simulating flows in extremely complex geometries. The data that identifies a triangular mesh (unstructured grid) provides the flexibility needed to properly discretize the complex geometry of the computational domain, especially on the boundary where the geometry and the implementation of boundary conditions, are extremely crucial for the accuracy of the simulation. The flexibility of unstructured grids enables adaptation to physical features in the flow. The price of resolution results in a local rather than a global penalty. Consequently, it is possible to simulate problems on computers with limited memory and still achieve highly resolved solutions. A typical example, which is illustrated in this paper, is a ravelling shock passing over an obstacle. The challenge is to simulate such problems with fine resolution across the shock while limiting the total number of mesh points in the calculation.


Figure 2: Sod problem, effect of the characteristics correction on the density.

\section*{Performance and Validation of FUGGS}

FUGGS has proven to be a very robust algorithm capable of high quality solutions while using triangles with large variations of aspect ratios. The code was tested on a variety of unstructured grids and consistently provided resuits, despite the apparent poor quality ot the underiying mesh. We were able to simulate efficiently and accurately a wide spectrum of flow regimes starting from low subsonic to high hypersonic. The code has no free parameters to choose and thus does not require any "tuning" to specific problems. The user has oniy :o specify the boundary conditions (around the grid) and initial flow conditions. The algorithm is fully vectorized and can be easily parallelized in the future. We describe the detailed algorithon below and then present typical resilts.

\section*{Direct Dynamic Refinement Method for Unstructured Triangular Grids}

As stated, an unstructured grid is very suitable to implement boundary conditions on complex geometrical shapes and refinement of the grid if necessary. This feature of the unstructured triangular grid is compatible with efficient usage of memory resources. The adaptive grid enables the code to capture moving shocks and high gradient \(\ddagger 10 \%\) features with high resolution. The memory resources available can be very efficiently distributed in the computationai domain to accommodate the resolution needed to capture the main features of the physical property of the solution. Dynamic refinement controis the resolution
of the grid according to available memory resources and subject to prescribed prionities. These pricities can be set according to the physical features which the user wishes to emphasize in the simulation. The user has control over the resolution of the physical features resolved in the simulation, without being restricted to the initial grid. The alternative to Direct Dynamic Refinement is the hierarchical dynamic refinement ( H refinement) that keeps a history of the initial grid (mother grid) and the subdivision of each level (daughters grid). The H refinement subdivides the initial grid into two or four triangles in each level. and keeps track of the number of subdivision levels each triangle has undertaken. In the H refinement method, one has to keep overhead information on the level of each triangle subdivision, and needs double indirect indexing to keep track of the H refinmenet process. This slows down the computation by partially disabling the vectorization of the code. As mentioned, the H refinement does rely heavily on the initial grid as it subdivides the mother grid and returns back to it after the passage of the shock.

Direct Dynamic Refinement for capturing the shocks basically requires the refinement to be in the region ahead of the shock. This requirement minimizes the dissipation in the interpolation process when assigning values to the new triangles created in the refined region. Additionally, it requires that the coarsening of the grid should be done after the passage of the shock. In principle, the interpolation and extrapolation in the refinement and coarsening of the grid is done in the region where the flow features are smooth.

The physics of the problem should be invoived in the process that identifies the region of refinement and coarsening. One can derive error criteria that will allow grid adaptation to stationary or moving pressure or density discontinuities, region of high voritical activity, etc. For each of the physics features to be resolved, there should be an error indicator that is suited best to capture and identify the region of importance corresponding to this feature.

\section*{Criteria for Refinement (Error Indicator)}

We have implemented an algorithm with muitiple criteria for capturing a variety of features in the physics of the problem to be soived. That means that we were able to derive a number of error indicators that enable identification of moving shock waves or stationary shocks in the computational domain.

To identify the location of a moving shock, we use the flux of energy or momentum into triangies. The fluxes entering and leaving triangles are the most accurate physical variables computed by the Godunov algorithm for solving the Euler's equations, and are used to update the physical variables for each time step in each triangle. A shock wave means that there is a "step function" change in the cell that is caused by an influx of energy, momentum or density.

Stationary shock can be identified by density gradients computed as required in the second order Godunov algorithm.

The refinement process is done in two ways: i) adding a vertex in the center of a triangle and ii) adding a vertex on an edge of a triangle. Figure 3 illustrates the two alternative ways used to refine the grid. Figure 4 shows an example of the refinement procedure. In the coarsening stage we identify a vertex to be removed. With the point removal, we delete the connecting edges and triangles surrounding the point. The next step is to triangulate the void polygon by creating new triangles using only the vertices of the polygon. Figure 5 shows an example of how the coarsening proceeds.

In the process of refinement and coarsening, we often create triangles with large aspect ratios (the base-to-height maximum ratio for the three edges). We use reconnection to flip the diagonal between two adjacent triangles to obtain triangles with a "better" aspect ratio. This procedure is referred to as the reconnection step in Figs. 4 and 5.
- Adding a vertex on the middle of an edge of a triangle.
- Adding a vertex in barycenter of triangle.

Advantage: does not effect other triangles.
Disadivantage: effects the aspect ratio of the triangles.


Added vertex

Figure 3: Two Ways of Refnement.


This method is used on the boundary to improve the triangles with acute anglea.

a) Original grid. b) One refinement. c) First reconnection.
d) Second refnement. e) Second reconnection.

Figure 4: Illustration of the grid refinement process.


Figure 5: Illustration of the grid coarsenning process.

\section*{Results}

Direct dynamic refinement was used to solve the transient behavior of the flow entering a channel with a double wedge having an inclination of \(20^{\circ}\). The flow Mach number entering the channel is 2.5 . The flow is from left to right. A sequence of snapshots illustrates the density contours, and the grid for each timestep is given in Figs. 6 (countour plots) and 7 (grid). These figures clearly demonstrate the automatic adaptation of the grid to the moving shocks and the abiiity to capture the detailed physics of the simulation with very high resolution and minimal memory requirements. The initial grid can clearly be seen to the right of the shock ("abead") in the eariy stage of the shock propagation from left to right. The coarsening algorithm is able to produce a reasonable mesh in the region trailing the shock as shown in Fig. 7.

The ability to capture stationary shocks is illustrated in Fig. 8 in which a supersonic free flow ( \(M=2.5\) ) has been run over a diamond shape bump ( \(20^{\circ}\) wedge) driven to a steady state. The shock emerges from the first comer (left), the fan of rarefaction waves appears from the apex of the diamond shape bump, and the secondary shock from the second corner (right) is clearly illustrated by the ability of the algorithm to adapt the grid to the physics of the flow. Figure 9 illustrates the sharpness of the refected shock obtained for an axisymmetric converged channel with an angle of \(27^{\circ}\) and \(M=8.7\).

The few examples shown here represent a small subset of results obtained with FUGGS. The examples are indicative of the excellent performance that can be achieved for physically complicated situations. We would like to emphasize that these calculations invoived no free parameters.

\section*{Acknowledgment}

We would like to thank Dr. Aharon Friedman and Dr. Marty Fritts for their valuable contributions. This work was partially supported by the Wright Research and Development Center under contract No. F33615-88-C-3002 and by DARPA through contract F49620-89-C-0087 administered by AFOSR.


Figure 6. A sequence of density snapshots of countour plots for a propagating shock ( \(M=2.5\), wedge angie \(=20^{\circ}\) ).


Figure 7. A sequence of grids corresponding to countour plots in figure 6.


Figure 8. Density contour plot and grid for flow driven to stesdy state over a double wedge obstacie.


Figure 9. Initial grid, countour plot and the adaptive grid for flow in axisymmetric channei \(\left(M=S .7\right.\), wedge angle \(\left.=27^{\circ}\right)\).

\section*{AIAA-90-2420}

Air-Breathing Pulsed Detonation Engine Concept; A Numerical Study S. Eidelman, W. Grossmann and I. Lottati Science Applications International Corporation, McLean, Va

\section*{AIAA/SAE/ASME/ASEE} 26th Joint Propulsion Conference

July 16-18, 1990 / Orlando, FL

\title{
AIR-BREATHING PULSED DETONATION ENGINE CONCEPT: a NUMERICAL STUDY
}

\author{
S. Eidelman, W. Grossmann and I. Lottati \\ Applied Physics Operation \\ Science Applications International Corporation \\ 1710 Goodridge Drive \\ McLean, Virginia 22102
}

\section*{1. Introduction}

The airbreathing Pulsed Detonation Engine (PDE) concept was introduced by us and reported on in the past \({ }^{1,2,3}\). As described in the previous reports, we have carried out a systematic series of parametric studies of the PDE via Computational Fluid Dynamics (CFD) and have analyzed engine performance over a wide range of flight regimes including subsonic and supersonic flows and physical geometries including various nozzie and air inlets. In addition, we have performed static table top experiments \({ }^{1}\) to demonstrate that the principle of pulsed or repetitive detonation can be achieved in a generic PDE configuration. To date, our results indicate that practical engines for certain vehicles and missions can be conceptualized and designed with the information that has already been generated from the studies. Specifically, our studies have shown that the PDE is an excellent candidate for the primary propuision source for small aerodynamic vehicles that operate over the fight envelope, \(0.2<\mathrm{M}<3\) and altitude between sea level and 30.000 ft . Further, our analysis of the simulation results indicate that the PDE is a high thrust to weight ratio device with a specific fuel consumption on the order of one pound per hour per pound fuel. The predicted performance places the PDE propulsion concept in a strongly competitive position compared with present day small turbojets. The PDE concept has the added attractiveness of rapid variable thrust control, no moving parts and the potential for low cost manufacturing. Finally, the PDE concept is scalable over a wide range of engine sizes and thrust levels. For example, it is theoretically possible to produce PDE engines on the order of one to several inches in diameter and thrusts on the order of pounds, as well as devices which provide thousands of pounds thrust.

The parametric studies that we have carried out to date were possible due to the development of a new generation of CFD tools that have allowed us to accurately simulate the details of the complex nonlinear time dependent processes. A brief description of the CFD methods employed in our studies is given in section 3.

The purpose of the present paper is: (1) to report
the most recent studies of a full simulation of the operation of the PDE with a generic missile configuration cruising at supersonic speeds. (2) to report the resuits of a parametric-scaling study of the thrust produced as a function of the variation of a given engine configuration with respect to engine size.

The present paper is organized as follows: Section 2 gives, for completeness, a brief description of the PDE concept, Section 3 describes briefly the CFD methods used in our most recent studies, Section 4 gives the results of the parametric-scaling study and, Section 5 describes the simulations of the complete flow around a generic missile configuration powered by a PDE. Section 6 gives our summary and conclusions.

\section*{2. The Pulsed Detonation Engine Concept}

A detonation process, due to the very high rate of reaction, leads to a propulsion concept in which the constant volume process can be fully realized. In detonative combustion, the strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and fresh charge. The speed of the detonation wave is about two orders of magnitude higher than the speed of a typical deflagration. This allows the design of propulsion engines with a very high power density. Each detonation has to be initiated separately by a fully controlled ignition device, with a wide range of variable cycle frequencies. There is no theoretical restriction on the range of operating frequencies; they are uncoupled from acoustical chamber resonance. This is very important feature of the constant volume detonation process that differentiates it from the process occurring in a pulse-jet; \({ }^{4,5}\) the puise jet cycle is tuned to the acoustical resonances of the combustion chamber. This leads to a lack of scalability for the pulse jet concept.

A physical restriction dictating the range of detonation frequency arises from the rate at which the fuel/air mixture can be introduced into the detonation chamber. This also means that a device based on a detonative combustion cycle can be scaled and its operating parameters can be modified for a range of required output conditions. There have been numerous attempts to take
advantage of detonative combustion for engine applications. The most recent and successful of these attempts was carried out at the Naval Postgraduate School (NPS) by Helman et al. \({ }^{1}\) During this study, several fundamentally new elements were introduced to the concept distinguishing the NPS research device from previous studies. First, it is important to note that the NPS experimental apparatus was the first successiul self aspirating air breathing detonation device. Intermittent detonation frequencies of 25 Hz were obtained. This frequency was in phase with the fuel mixture injection through timed fuel valve opening and spark ignition. The feasibility of intermittent injection was eatablished. Pressure measurements showed conclusively that a detonation process occurred at the frequency chosen for fuel injection. Further. self aspiration was shown to be effective. Finally, the effectiveness of a primary detonation as a driver for the main detonation was clearly demonstrated. Although the NPS studies were abbreviated, many of the technical issues considered to be essential for efficient intermittent detonation propulsion were addressed with positive results.

The generic device we consider here is a small engine shown in Figure 1. Figure 1 shows a schematic of the basic detonation chamber attached to the aft end of a generic aerodynamic vehicle. The combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave propagates through the mixture. The size of the engine suggests a small payioad or aerodynamic vehicle, but the concept can be extended to larger payloads simply by scaling up the size of the detonation chamber and possibly combining a number of chambers into one larger engine.

A key issue in the puised detonation engine concept is the design of the main detonation chamber. The detonation chamber geometry determines the propulsion efficiency and the duration of the cyeie (frequency of detonations). Since the fresh charge for the generic engine is supplied from the external flow fieid, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. The range of the physical process requiring simuiation in order to model the complex flow phenomena associated with the detonation engine performance is very broad. A partial list is:
1. Initiation and propagation of the detonation wave inside the chamber,
2. Expansion of the detonation products from the chamber into the air stream around the chamber at flight Mach numbers,
3. Fresh air intake from the surrounding air into the chamber.
4 . The flow pattern inside the chamber during postexhaust pressure buildup which determines the
strategy for mixing the next detonation charge,
5. Strong mutual interaction between the flow inside the chamber and surrounding the engine.


Figure 1. Schematic of the generic PDE showing detonation chamber, inlet. detonation wave. fuei injectors and position relative to an aerodynamic vehicie.

All of these processes are interdependent, and interaction and timing are crucial to engine efficiency. Thus, unlike simulations of steady state engines. the phenomena described above can not be evaluated independently. The need to resolve the flow regime inside the chamber accounting for nozzles, air inlets etc., and at the same time resolve the flow outside and surrounding the engine, where the fiow regime varies from high subsonic. locally transonic and supersonic, makes it a challenging computational probiem.

The single most important issue is to determine the timing of the air intake for the fresh charge leading to repetitive detonations. It is sufficient to assume inviscid flow for the purpose of simulating the expansion of the detonation products and fresh air intake. The assumption of inviscid flow makes the task of numerically simulating the PDE flow phenomena somewhat easier than if a fully viscous flow model were employed. For the size of the generic device studied in this work the effects of viscous boundary layers are negligible with the exception of possible boundary layer effects on the vaive and iniet geometries discussed subsequently..

\section*{3. Computational Methods used in the Studies}

The basic computational tool that was used for our studies is the FUGGS (Fast Unstructured Grid Second Order Godunov Solver) code, described in detail in Refs. 6,7. This code provides a method for soiving the Euler equations of gasdynamics on unstructured grids with arbitrary connectivity. The formulation is based on a second order Godunov method \({ }^{d}\). The use of a data structure with only one level of indirectness leads to an easily
vectorized and parailelized code with a low level of overhead in memory requirement and high computational efficiency. The performance and accuracy of the algorichm has been tested for a very wide range of Mach numbers and geometrical situations, and has demonstrated robustness wirhout the need for any adjustable parameters. The algorithm can either be triangle or vertex based; experience with the method has shown that extremely low leveis of artificial viscosity can be achieved using the triangle based version of the method.

A new method of direct dynamic refinement of unstructured grids has been developed, (Ref. 6), and allows an automatic adaptation of the grid to the region of the moving detonation wave inside the PDE geometry. This refinement guarantees that the associated highly inhomogeneous pressure and density contours of the detonation wave are accurately tracked in the simulation. This is an important ingredient in our simulations. since the main component of the detonation process contributing to the thrust generated by the PDE is the total kinetic energy of the wave. Use of the new refinement scheme has more accurately describe the moving detonation wave behavior. These new resuits concern nonplanar wave evolution and, as pointed out in Section 4, may be a factor in controlling the magnitude of the generated thrust.

\section*{4. Scaling Study of the PDE}

We have shown in our previous study that in the Pulsed Detonation Engines, thrust is primarily produced by the unsteady interaction of shock wave generated by the propagating detonation wave and the thrust wall of the detonation chamber. This interaction will be nonlinear and scalability of the engine will greatly depend on the extent of nonlinearity. For example, for the engine geometry shown in Figure 1, the engine volume can be increased just by elongating the wall of the detonation chamber. If the area of the thrust wall in Figure \(l\) remains the same and the composition of the detonation mixture does not change, the increase in the detonation chamber length will result in longer duration of the interaction between the shock wave and the thrust wail. This simple situation poses a question concerning the relationship between the increase in PDE thrust and increase in its volume. This is very practical issue in scaling up the size of the engine, since increase in the detonation chamber diameter will eventually result in difficulty generating a planar detonation front, leading to loss of engine efficiency.

To study this aspect of the detonation engine scalability we have conducted a set of numerical simulations for the engine geometry very similar to these shown in Figure 1. The detonation chamber diameter was kept constant at 8 cm and its length varied from 8 cm to 16 cm .

The main objective of our study is to determine how the thrust produced by the detonation engine increases when the engine length doubles and the rest of the engine parameters will remain the same. This section describes the results of two simulations for the detonation chamber geometry described above, using a detonation chamber length of 8 cm and 16 cm . The simulation begins at \(t=0\) when the detonation chamber is placed in an external freestream with the Mach number of 0.8 . The detonation wave is initiated at the aft end of the detonation chamber. The detonation chamber for these cases includes a simple annular inlet which remains open during operation. The specific fuel chosen for the present simulations is ethylene. The chemical reaction occurring in the ethylene/air detonation process is given by:
\[
\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2}+11.24 \mathrm{~N}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}+11.24 \mathrm{~N}_{2} .
\]

The detonability limits of ethylene in air range from \(4 \%\) to \(12 \%\) by volume and depend somewhat on temperature and pressure. We assume for the sake of simplicity that the fuel/air ratio is \(6 \%\) by volume. In contrast with our previous presentations here, as well as in case of supersonic PDE simulation presented in this paper, we have simulated a propagating detonation wave by releasing the energy of detonative combustion in our mixture immediately behind the detonation front. In our simulations we have used the Dynamically Adaptive FUGGS code which we have developed recently. Figures 2a, 2b, and \(2 c\), present three frames of the results for simulation in a 16 cm long detonation chamber. In these figures, resuits are presented in the form of pressure contour plots. For illustration of the dynamic grid adaptation to the evolving flow pattern, we have plotted the unstructured triangular grid corresponding to the stage at which contour plots are shown. In Figure 2a. pressure contour plots are shown shortly after the detonation wave has been initiated at the aft end of the detonation chamber. We can observe that the shock wave front is planar. The detonation wave velocity is \(1800 \mathrm{~m} / \mathrm{sec}\) and the pressure at the front of the detonation wave is \(\approx 20\) atm., corresponding to the CJ condition for the ethylene/air mixture. Figure \(2 b\) shows the results of the detonation wave reflecting from the thrust wail and the detonation products starting to expand into the flow stream surrounding the detonation chamber. The detonation products expand through the inlet and into the detonation chamber. This simultaneous expansion results in a complicated wave structure which can be observed in Figure 2b. Here we also note that the dynamically adjustable grid closely follows developing wave structures. In Figure 2c, results are shown at the stage when the two main shock waves generated by the PDE cycle have interacted and are about to leave the computational domain. The maximum pressure here dropped to 1.7 atm .

The computational grid follows the shocks and vortices propagating through the computational domain and we can observe the substantially reduced grid density in the regions of relatively monotonic fiow. Figure 2 illustrates the level of detail of this complicated flow regime which can be studied with modern CFD methods and algorithms.


Figure 3. Time averaged thrust and force data from simulation of 8 cm (solid lines) and 16 cm (dashed lines) detonation chambers, 200 Hz detonation frequency.

In Figure 3 the total force and time averaged thrust generated by the device in the simulations just discussed for 8 cm and 16 cm long detonation chambers, are shown as a function of time. The time averaged thrust is based on the total time for one cycle defined as \(5.0 \times 10^{-3}\) sec. This time is equivalent to a detonation frequency of 200 Hz . As seen in the figure, initially the force acting on the thrust wall is close to zero. The simulation was run for \(2.0 \times 10^{4}\) sec physical time to establish a flow pattern characteristic of the steady nonreactive flow of ambient air around the detonation chamber. At the time \(2.0 \times 10^{4} \mathrm{sec}\) the detonation wave started to propagate from the aft of the chamber. We can see in Figure 3 that the detonation wave reaches the thrust wall at the time \(2.45 \times 10^{4} \mathrm{sec}\) (for 8 cm case) and \(2.9 \times 10^{4} \mathrm{sec}\) (for 16 cm case), when a very large force of \(\approx 5.0 \times 10^{3} \mathrm{lb}\) is felt on the end wall of the detonation chamber. This force is a
result of the high pressure behind the detonation wave. It rapidly decays to virtually zero level it: \(\approx 0.5 \times 10^{-4}\) sec in the 8 cm case and \(\approx 1.0 \times 10^{-4} \mathrm{se}\) : in the 16 cm case. The maximum force produced on th : thrust wall is the same in both cases. The increase of edetonation chamber volume is most noticeable in thrust data. As we can see in Figure 3 the average \(\mathrm{r}^{\text {: }}\) ast increases from 12 Lbs in the 8 cm chamber ase to 24 Lbs in 16 cm chamber case. This res shows that the thrust of the detonation chamber wa ale linearly with an increase in detonation chamber length when the other parameters are kept constant.

\section*{5. Supersonic Missile Simulation}

In this section we present the results of a full simulation of a generic supersonic missile powered by a PDE. The purpose of this simulation was to study the requirements placed on the PDE air inlets and internal structures that may be needed to produce a well mixed. uniform flow inside the detonation chamber. In addition. the simulations were carried out on the full vehicle in order to account for all wave drag that a real missile produces; the resulting thrust predictions for the simulations are therefore true net thrust vaiues. We show here the results of a successful geometry that satisfies the requirements of choking flow in the inlet throat and uniform predetonation flow in the chamber produced by means of a grill. The missile geometry and computational grid are shown in figures \(4 \mathrm{a}, 4 \mathrm{~b}\), and 4 c .


Figure 4a. Unstructured Grid for Missile and Engine Simulation.


Figure 4b. Grid Detail for Inlet and Manifold.


Figure 4c. Grid Detail for Manifold.

Figure 4 a shows the main missile body with the PDE covered by the high density of grid points necessary to resolve the details of the PDE chamber, inlets and, grill as shown in the enlarged views of the chamber, figures \(4 b\) and \(4 c\).

The simulations were performed by allowing steady subsonic flow conditions to be established in the detonation chamber holding a steady supersonic flow, Mach 2. about the missile. The degree to which this steady and uniform flow can be established in the chamber using the inlet and grill of figure 4 is shown in figure 5. Here the complete flow including the bow shock is shown, figure 5a, as well as an enlarged view of the flow in the vicinity of the iniets showing smaller shocks, figure 5 b , and a particle trace showing the streamlines of the uniform chamber flow, figure 5 c . When steady flow conditions are reached in the detonation chamber, plane detonation is started at the rear end of the chamber. The detonation then travels towards the inner thrust wail at approximately Mach 4. Figure 6 shows the same sequence of views as figure 5 , but with the detonation approximately having travelled halfway to the thrust wall. Notice that the detonation remains more-or-less planar indicating that the flow properties are uniform in the chamber. Figure 7 shows the phenomena associated with the detonation impacting the thrust wail, the high pressure of the detonation wave exhausting from the inlet and particles leaving the chamber through the inlets. The principle results from the simulations of the supersonic missile case are that the use of such a grill structure and inlet shape allow uniform flow to be established before and after detonation in sufficient time that detonation frequencies of 200 cycles per second are obtainable. It is not clear at this time whether such internal grill structures are desirable from the standpoint of structural integritry. This question will be addressed later in planned experimental studies of the PDE.

\section*{6. Conclusions}

The simulation of the PDE presented in this paper are partial results from an ongoing SAIC research program aimed at development of a practical PDE engine for a wide spectrum of applications including small UAV's and PENAID missiles among others. The primary focus of the results presented here is the scaling of PDE performance with respect to size variation and the establishment of uniform subsonic flow conditions in the detonation chamber before and after detonation.

The results of the scaling studies described in the text lead to scaling laws that can be used to predict the performance of PDE's over some range of parameters assuming that other parameters are held fixed. For example, holding the external Mach number and basic chamber and inlet geometry fixed suggests that the thrust at constant specific fuel consumption produced by the PDE scales as:
\[
\text { Thrust }=T_{1} *\left(\frac{\nu}{\nu_{1}}\right) *\left(\frac{f}{f_{1}}\right)
\]
where \(T_{1},\left(v / v_{1}\right)\) and \(\left(f / f_{1}\right)\) are the thrust computed for a chamber of volume \(v_{1}\) operating at frequency \(f_{1}\), the ratio of a new volume to \(v_{1}\) and the ratio of the new frequency to \(f_{l}\) respectively. Thus, thrust should scale linearly with the parameter \(\left(v / v_{1}\right) *\left(f / f_{1}\right)\) over some range of this parameter. Departure from this linear variation may occur due to the following reasons: First, since volume is proportional to the product of cross-sectional ares and length, \(v \sim r^{2} l,(r \sim\) detonation chamber radius, \(l \sim\) chamber length) physical limits will be placed on \(r\) and \(l\); if \(r\) is too small (less than 1 cm ) a detonation will not be sustainable and if \(l\) is too small (less than 10 cm ) it may be difficult to mix fuel and air effectively. Using the thrust relation established above, we make the following observations. For a PDE device producing 100 pounds thrust at 100 Hz , doubling the frequency and increasing the volume by a factor of 5 yields a thrust level of 1000 pounds. Assuming that the aspect ratio of the chamber (chamber length to radius) is fixed, this would required an engine only 25.5 cm in diameter and 25.5 cm in length. Similarly, scaling the engine down in size to a 5 cm diameter, 5 cm length detonation chamber operatin at 100 Hz yields thrust levels of the order of 3.7 pounds. Of course, the derive relation between thrust and \(\left(v / v_{1}\right)^{*}\left(f / f_{1}\right)\) cannot be believed over too wide a range of parameters; but. it does serve to point out the

Hexibility in scaleup or scaledown permitted by the PDE concept.

We further conclude that the performance computed for PDEs is encouraging from the point of view of thrust. thrust control, simplicity of the device (no moving parts) and specific fuel consumption (SFC). The specific fuel consumption computed from our simulations \((\sim 1 \mathrm{Lb} / \mathrm{hr} . / 1 \mathrm{~b})\) is competitive with present day smail turbojets (SFCs for small turbojets are in the range of \(1.8-2.0 \mathrm{lb} . /(\mathrm{lb} . * \mathrm{hr}\).\() ). Thus, for a given mission and ve-\) hicle. a PDE propulsion unit could be more fuel efficient resulting in increased range. Moreover, if the expected thrust control in PDEs is realizable, it may be possible to produce propulsion units that can slow down, biter and maneuver and finally regain full thrust within the time it takes to increase the detonation frequency.


Figure 8. Thrust versus Mach number variation obtained from simulation data.

Another result from the scaling situdies is that the thrust data show a dependence on the external flight conditions, e.g. Mach number. The Mach number plays a role in the wave drag that the geometry of the PDE will incur: the details of the valve and iniet configurations figure prominentiy in the total wave drag.

On the other hand, the simulations showed that the timing of the fresh air refilling required to recharge the chamber for subsequent detonations is a strong function of the details of the valve and inlet geometry, the expansion of the combustion products, the resulting overexpansion of the chamber flow and the external flow regime and interaction of the external fow with the internal flow. For subsonic flight. Mach 0.2-0.9, the fresh air entering the chamber comes from two separate principle flow processes: one comes from the flow through any valve or iniet and the other comes from the self- aspiration or reverse flow from the aft end of the chamber due to strong over-expansion. All these processes are interde-
pendent and. in order to search for a given performance in a given device, requires variation of many parameters. The simulation resuits obtained to date provide an understanding of the effects caused by variation of the above-mentioned parameters and. with the information available. we are able to conclude that a PDE propulion unit can be optimized (although no optimization studies were carried out) for a given flight regime. For example, if we consider the simulations obtained for constant (number and iniet) geometry but at Mach numbers 0.8. \(0.5,0.2\), and 0.0 respectively, the variation of maximum time averaged thrust and mean thrust as a function of Mach number can be characterized as shown in Figure 8.

The decrease in thrust with Mach number has been described eariier \({ }^{3}\) to be a result of the increased wave drag produced by the inlet geometry. Optimization of the iniet geornetry could help in eliminating a large part of the wave drag. The data contained in Figure 8 could be used to determine the detonation frequency at a given Mach number yielding constant thrust. For a constant thrust level of 90 pounds. the required detonation frequency varies from 84 Hz at \(\mathrm{M}=0.0\) to 140 Hz to \(\mathrm{M}=\) 0.8 . In a similar fashion. parametric variations of other important aspects of PDE performance, such as minimum time for refill at given Mach number as a function of air inlet opening, can be obtained. In order to find an optimum configuration satisfying given performance over a wide flight regime, a more extensive simuiation study will be required. It was mentioned earlier that the simulations presented here were carried out under the assumption of inviscid flow; boundary layer effects were not included. The addition of boundary layers to the PDE engine inlets and valves. the only components where boundary layers will be significant, will lead to increased performance. Roughly the same amount of fresh air will flow into the over-expanded detonation chamber but at a somewhat slower rate and in a pattern that will promote enhanced circulation and hence fuel/air mixing.

A final conclusion can be made concerning the application of PDE's to supersonic vehicles. As shown in the simulations the ability to refill the detonation chamber with fresh air charge is a very strong function of valve and inlet geometry. Refilling may also be somewhat enhanced by the self-aspiration effect, but; to a much less extent than in the subsonic case. The example of supersonic operation discussed in Section 5 shows that care must be taken in design of the inlet or valve configuration. The flow in the chamber must allow for refill and fuel/air mixing. More than likely choked flow conditions will be required at the inlet entrance to the chamber. This could lead to complications in the design of a PDE with simple geometry; choked flow conditions are a function of the external Mach number and a fixed
inlet will be optimal only for a small range of the operating enveiope. On the other hand, if a given vehicle is to fly at supersonic speeds and is launched at supersonic speeds. this problem may not appear. Further, if the given vehicle is launched at subsonic speeds and a booster is used to bring it up to the required supersonic operating speed, the problem may again not appear. We conclude that the PDE has potential for the supersonic flight regime and it is not excluded that a configuration can be found which will operate over the flight regimes \(0.2<\) Mach number < 3 in a fuel efficient manner.

\section*{Acknowledgements}

The authors would like to express appreciation to Dr. Adam Drobot of SAIC for helpful suggestions and advice during the course of this work. The work reported on here was partially supported by DARPA under AFOSR contract FY9620-89-(-0087). The authors would like to thanx Dr. L. Auslander for his encouragement and interest in this project.

\section*{References}
1. Heiman. D.. Shreeve. R. P., and Eidelman. S., "Detonation Pulse Engine,", AIAA-86-1683, \(24^{\text {th }}\) Joint Propulsion Conference, Huntsville, 1986.
2. Eidelman. S., W. Grossmann. I. Lottati, "A Revi-"y of Propulsion Applications of the Pulsed Detonation Engine Concept," ALAA 89-2466, AIAA/ASME/ SAE/ASEE 25th Joint Propulsion Coaference, Monterey, CA. July 10-12, 1989 (to be published in AIAA Journal of Propulsion).
3. Eidelman, S.. W. Grossmann, and 1. Lottati. "Computational Analysis of the Pulsed Detonation Engines and Applications," AIAA 90-0460, 28th Aerospace Sciences Meeting, Reno, NV, Jan 8-11. 1990.
4. Shultz-Grunow, F., "Gas-Dynamic Investigation of the Pulse-Jet Tube," NACA TM-1131, Feb. 1947.
5. Zinn, B. T., Miller, N. Carvelho, J. A.. and Daniel B. R., "Pulsating Combustion of Coal in Rijke Type Combustor," 19th International Symposium on Combustion, 1197-1203, 1982.
6. Loltati. I., S. Eidelman, A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)." Paper AlAA 90-9699, 28th Aerospere Sciences Meeting, Reno. NV, Jan 8-11. 1990.
7. Lottati. 1. 2. Eidelman. A. Drobot. "Solution of Euler s Equations on Adaptive Grids Ving a FUGGS," to be published in Proceedings of Second International Conferenre on Free-Lagrange Methods. Ield at Jackson Hole, June 1990.
8. Eidelman. S. Collela. P.. and Shreeve R. P., "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modaling. . AIAA Journal v 22.1011984).


a)

\section*{b)}

c)

Figure 2. Pressure contours and computational arid for 16 cm long PDE. External flow \(M=0.8\).

a. Pressure Contours. Missile and Engine.

b. Pressure Contours. Detonation Engine.

c. Traced Particles. Detonation Engine.

Figure 5. Supersonic missile simulation. Missile speed \(M=2.0\). Time \(t=0.0\).

a. Pressure Contours. Missile and Engine.

b. Pressure Contours. Detonation Engine.

Figure 6. Supersonic missile simulation. Missile speed \(M=2.0\). Time \(t=2.0 \cdot 10^{-5} \mathrm{sec}\).

a. Pressure Contours. Missile and Engine.

b. Pressure Contours. Detonation Engine.

c. Traced Particles. Detonation Engine.

Figure 7. Supersonic missile simulation. Missile speed \(M=2.0\). Time \(t=2.0 \cdot 10^{-4} \mathrm{sec}\).

\title{
Plasma enhanced chemical vapor deposition modeling
}

\author{
E. Hyman. K. Tsang, I. Lottati and A. Drobot \\ Science Applications International Corporation. 1710 Gootritge Drive, McLean. VA 22102 (U.S.A.) \\ B. Lane*, R. Post and H. Sawin \({ }^{+}\) \\ Applied Science and Technology. 35 Cabol Road. Woburn. MA 01801 (U.S.A.)
}

\begin{abstract}
We are developing a model to simulate the plasma enhanced chernical vapor deposition (PECVD) of thin diamond films. The emphasis to date has been on the development of stand-alone modules to simulate the microwave-induced time-dependent electric and magnetic fields. the generation and energization of plasma electrons in the discharge. the non-equilibrium hydrocarbon chemisiry. and the development of a two-dimensional unstructured mesh hydrodynamics solver capable of simulating flow through geomerrically realistic reactors. The coupling oi the vanous modules. and the incorporation of a surface chemistry module for the substrate deposition. into a self consistent reactor model is underway. We presert some preliminary results from components of a model 2.45 GHz microwave reactor employing \(\mathrm{H}_{2}\) with \(1 \% \mathrm{CH}_{4}\) ard operating at a gas pressure of \(5.3 \times 10^{3} \mathrm{~Pa}\) ( 40 Torr). We have completed an electromagnetic model of the microwave energy deposition in the plasma and calculated the field patterns in the reactor. We have also periormed point calcutations of the time-dependent electron distribution and of the build-up oi atomic hydrogen. the gas temperature, and the resulting generation of \(\mathrm{CH}_{1}, \mathrm{C}_{2} \mathrm{H}_{2}\), and other hydrocarbon radicals. We have also completed a fluid simulation of the flow through the reactor using unstructured mesh techniques. The results we discuss in this paper indicate that careful treatment of non-equilibrium processes in PECVD reactors as well as accurate representation of reactor geometry are essential to a useful simulation capability.
\end{abstract}

\section*{1. Introduction}

The ability to deposit thin diamond films rapidly onto substrates with a high degree of uniformity using the plasma enhanced chemical vapor deposition (PECVD) technique is a high priority technology goal. It is generally recognized that an improved understanding of the mierescopic mechanisms in PECVD reactors and of the sensitivity of the various reacier parameters is needed. The important design issues for PECVD reactors are as follows: efficient coupling of microwave energy to the plasma and to the process gas; efficient transport of activated process gas to the wafer or substrate deposition area; efficient use of the injected gas; uniformity of chemically active species flux across the deposition area. It is desirable to avoid reactor designs that have the following: high microwave electric fields in regions away from the desired plasma formation location. leading to plasma discharge near chamber walls or breakdown of dielectric materials: flow patterns which carry activated species to the reactor walls

\footnotetext{
- Permanent address; MIT, Plasma Fusion Center. Cambridge. MA 02139. U.SA
*Permanent address: MIT. Chemical and Electrical Engineering Depariment. Cambrigge. MA 02139. U.S.A.
}
or out through pumping ports rather than to the wafer: stagnant or circulating flow patterns above the wafer. buffering the wafer from the desired chemically active species.

To understand these issues and to provide input to improved reactor designs we are developing a self-consistent numerical model which simulates each of the essential mechanisms in the PECVD reactor. A physically realistic model requires careful simulation of the electromagnetics, the plasma physics. the neutral gas flow, and the homogeneous and heterogeneous chemistry. Furthermore, the different elementary processes in the reactor are highly interactive: for this reason it is difficult to foresee intuitively the impact of varying one or another reactor parameter. For example, the microwave source induces a complex. geometrically dependent and time varying electric field which ionizes the gas; the resultant build-up of electrons alters the developing electric field distribution. The microwave energy input heats the electrons, and the energetic part of the non-Maxwellian electron energy distribution dissociates the gas, inducing a rise in the gas temperature. The amount of dissociation and heating depends sensitively on the high energy tail of the electron distribution which consequently must be accurately determined. The interaction of the neutral gas with the piasma alters the molecular input stream of \(\mathrm{H}_{2}\) to include a substantial
component of atomic hydrogen, and this. in turn. affects the ionization rate and the electron distribution. The hydrocarbon chemistry is non-equilibrium and both the flux and the spatial distribution of appropriate radicals reaching the water are very sensitive to the geometrical configuration of the reactor and to the details of the flow configuration through the reactor.

We have focused to date on the development of modules to simulate the microwave-induced time-dependent electric and magnetic fields, the generation and energization of plasma electrons in the discharge, the evolution of the molecular and atomic hydrogen gas, the non-equilibrium hydrocarbon chemistry, and the development of a two-dimensional unstructured mesh hydrodynamics solver capable of simulating flow through geometrically realistic reactors. The coupling of these modules. and the incorporation of a surface chemistry module for the substrate deposition, into a self consistent reactor model is underway. In the next section we describe in some detail the generation of the microwave field and the transfer of the fieid energy to the electrons. This is followed by preliminary model results and our conclusions.

\section*{2. Microwave field and plasma generation}

The absorption of microwaves and the creation of the plasma which transfers energy to the neutral species in the reactor involves the solution of two closely coupled problems. They are (1) the determination of the electromagnetic field patterns in the complex geometry of the reactor and (2) the formation of the electron distribution function. At a pressure of \(5.3 \times 10^{3} \mathrm{~Pa}\) ( 40 Torr) and a gas temperature in the plasma region greater than 2000 K . the mean free path of an electron with neutrals is approximately \(5 \times 10^{-5} \mathrm{~m}\). During the time an electron gains the average electron energy (approximately 2 eV ) typical of the reactors we are modeling, it undergoes around 150 collisions and has a mean displacement of approximately \(7 \times 10^{-4} \mathrm{~m}\). Thus, to an excellent approximation. the heating of the electrons results from the microwave electric fields which are local to the electron's spatial location.

The electron distribution function satisfies the Boltzmann equation. Because an electron undergoes many collisions as it is heated. the distribution function is nearly isotropic and can be well approximated by the zero and first o der terms of a spherical expansion, the latter representing a distortion of the distribution function in the direction of the applied field, oscillating at the microwave frequency \(\omega\). The equation for the electron distribution function is
\[
\begin{aligned}
& \frac{1}{3}\left[\left(\frac{e E_{0}}{m_{\mathrm{c}}}\right)^{2} \frac{1}{v^{2}} \frac{i}{\hat{c} v}\left(v^{2} \frac{v_{m}}{r_{n-}^{2}+w^{2}} \frac{F_{0}}{\hat{c t}}\right)\right. \\
& \left.+v^{2} \nabla \cdot\left(\frac{1}{v_{\mathrm{m}}} \nabla F_{0}\right)+u \nabla \cdot\left(v \frac{\bar{i} F_{0}}{\hat{c} v}\right)\right] \\
& =L_{1}+L_{\mathrm{x}}-\frac{2 m_{\mathrm{e}}}{M} \frac{1}{v^{2}} \frac{\dot{\partial}}{\hat{i} v}\left(v^{3} v_{\mathrm{n}} F_{0}\right)
\end{aligned}
\]
where \(E_{0}\) is the amplitude of the electric field. \(e, m_{e}\). and \(v\) are the electron charge, mass. and velocity respectively, \(v_{n}\) is the electron momentum transfer frequency. \(F_{0}\) is the zero order approximation to the distribution function. \(V\) is the bulk fluid velocity, \(M\) is the neutral mass, and \(L_{\text {, }}\) and \(L_{\mathrm{x}}\) are the inelastic loss terms that affect the distribution function respectively via ionization and excitation of rotational. vibrational. and electronic levets. The first term on the left represents the electron velocity diffusion due to the cumulative affect of many small angle scatterings of the electron induced by the oscillating electric field. The next two terms give the affect of the divergence of the diffusive and convective fluxes respectively. The last term on the right gives the energy loss due to elastic collisions.

Below a critical electric field the ionization rate is exceedingly small and hence the electron density and power deposited per unit volume are also small. Above the critical field the ionization rate and power deposition increase rapidly. If the power deposition is kept approximately constant and equal to the power injected into the reactor the electric field will rapidly adjust to a level close to the breakdown value. The power deposited per unit volume scales as \(E_{0}{ }^{2} n_{e}\). where \(n_{e}\) is the electron density: as the electron density rises the eiectric field drops. The above considerations provide the necessary prescription for determining the time-dependent evolution of the electric field, the electron density, and the electron energy distribution. Using a set of clastic and inelastic cross-sections. the last two parameters define the time-dependent evolution of the fluid. including the build-up of atomic hydrogen and this sise in the gas temperature as the gas dissociates. In addition to \(\mathrm{H}_{2}\) and H , the Boltzmann calculation monitors the evolution of \(\mathrm{H}_{2}^{+}, \mathrm{H}_{3}+, \mathrm{H}^{+}\). and \(\mathrm{H}^{-}\)and separately tracks each of the three lowest vibrational levels of \(\mathrm{H}_{2}\). The hydrocarbon chemistry is initiated by energetic electrons, but being trace constituents the hydrocarbons do not significantly affect the electron development. It is useful to take advantage of the separation of time scales inherent in this problem. The electron distribution function is established on a time scale of around \(10^{-x} \mathrm{~s}\). the electron density growth occurs over approximately I \(\mu \mathrm{s}\), and the hydrogen dissociation and hydrocarbon chemistry as well as fluid convection and diffusion occur on a millisecond time scale.

\section*{3. Results}

We present calculations from the modules of the PECVD model that have been constructed and tested. The results obtained are designed to identify important physical mechanisms and to determine the regimes where they are critical. The calculation of the electric and magnetic fields was accomplished using SAIC's MASK code. a general two-dimensional electromagnetic code designed for the study of microwave devices of arbitrary geometrical configuration. The code introduces the electric fields at the input port and allows them to propagate into the reactor, which can inciude arbitrarily shaped regions of dielectric or conducting bodies. It employs a finite difference representation of the full set of time-dependent Maxwell equations and solves the initial value problem. Figure 1 shows the results of a simulation for a generic reactor in which the plasma is modeled as a spherical shell with a finite conductivity and a finite dielectric constant. Ultimately the plasma model will be replaced by results of Boltzmann calculations over the plasma region. The MASK calculation retains both the field strength and the phase dependence and determines the energy deposition in the target plasma. The results shown are contours of constant field amplitude for the axial (a) and radial (b) electric components in an azimuthally symmetric configuration. The bottom horizonta! line is the axis of symmetry. The input


Fig. 1. MASK calculation of (a) the axial and (b) the radial components of the electric field in a model reactor. Shown in the figure are contours of constant amplitude. The reactor axis is the bottom horizontal line. The substrate shelf is at the right and the outlet for the reacting gases is above it. The plasma shell is centered on the axis to the left of the substrate.


Fig. 2. Time development of the electron density at a point in the reactor of high electric field corresponding to the one-point simulation described in the text.
wave is introduced on the left and propagates into the reactor region through a radially expanding transition region. The substrate is on the right in the figure and immediately above it is the outiet for the reacting gases. The figure indicates regions of high and low field concentration which will provide an important tool for reactor design. This calculation determines the energy deposition in the plasma and, hence, the reactor efficiency. When performed self consistently it also predicts the shape of the plasma region and the subsequent coupling to the hydrodynamic calculation.
The Boltzmann module calculation simulates the electron and heavy particle evolution at a location within the reactor where the electric field is sufficiently high to create and sustain a plasma. We maintain a constant deposited microwave power and assume the gas pressure is kept constant at \(5.3 \times 10^{3} \mathrm{~Pa}\) ( 40 Torr). The simulation runs for several milliseconds. beyond which time advection and diffusion effects, not included in this calculation, wouid become important. The initial conditions are \(\left[\mathrm{H}_{2}\right]=1.28 \times 10^{24} \mathrm{~m}^{-3}\). \(\left[\mathrm{CH}_{4}\right]=1.28 \times\) \(10^{22} \mathrm{~m}^{-3}\), gas temperature \(T=300 \mathrm{~K}\). Figure 2 shows the electron density rising rapidly to approximately \(10^{15} \mathrm{~m}^{-3}\) in around 1 ns , a result of the very energetic electron distribution at early times. Thereafter, it increases nearly two more decades over about \(10^{-5} \mathrm{~s}\), the slower increase being reflective of the less energetic electron spectrum as the electrons give up energy to the various inelastic processes. The increase on a millisecond time scale is associated with the conversion of the gas from the molecular to the atomic state which leads to an increasing fraction of atomic ions (which recombine much more slowly than molecular ions) and also causes

Electron distribution at 1.5 ns

(b)

Electron distribution at 4.8 ms

(c)
an adjustment in the electron distribution function. The evolution of the electron distribution function as determined by the Boltzmann equation is illustrated for these three time regimes in Fig. 3 in which the ordinate scale is arbitrary. In Fig. 3(a) at 1.5 ns we see the very energetic electron spectrum: the average electron energy is around 8 eV . In Fig. 3(b) at \(55.2 \mu \mathrm{~s}\) the average energy has dropped to 2 eV and in Fig. \(3(\mathrm{c})\) at 4.8 ms when atomic hydrogen predominates. the spectrum has changed again. the average electron energy increasing moderately to about 2.7 eV .
The evolution of the hydrocarbon species is simulated with a chemistry code that uses the output of the Boltzmann code. The reactions used in the hydrocarbon model are listed in Table I along with the constants \(A\), \(b\). and \(E\) which determine the rate coefficient \(k\) according to \(k=A T^{h} \exp (-E / T)\). The code calculates the rate for each reverse reaction that is not known. using detailed balance. The hydrocarbon chemistry is initiated by the electrons which dissociate \(\mathrm{H}_{3}\) (and also the \(\mathrm{CH}_{4}\) ), causing the release of chemical energy and heating the gas. Figure 4 shows the gas temperature as a function of time for the simulation described above. In Fig. 5 we show the evolution of 12 hydrocarbon species plus \(\mathrm{H}_{2}\) and H out to 3 ms . at which time the \(\mathrm{H}_{2}\) and H densities are approximately equal. Although the formation of H is initiated by the electron dissociation of \(\mathrm{H}_{2}\), after about 2.5 ms with rise in temperature, thermal dissociation of \(\mathrm{H}_{2}\) becomes predominant. The build-up of \(\mathrm{CH}_{3}\) due to the dissociation of \(\mathrm{CH}_{4}\) occurs very eariy (approximately \(30 \mu \mathrm{~s}\) ) but it reacts with itself to form \(\mathrm{C}_{2} \mathrm{H}_{6}\) and drops to a local minimum before 1 ms . As the temperature increases, however. the \(\mathrm{CH}_{3}\) recombination reaction rate decreases and \(\mathrm{CH}_{3}\) increases to a new maximum near 2 ms: thereafter it decreases once more as the \(\mathrm{CH}_{4}\) becomes exhausted. Acetylene ( \(\mathrm{C}_{2} \mathrm{H}_{2}\) ) results from the chain of reactions initiated by the formation of \(\mathrm{C}_{2} \mathrm{H}_{6}\), thence to \(\mathrm{C}_{2} \mathrm{H}_{5}\) and. in turn. to \(\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{3}\) and finally to \(\mathrm{C}_{2} \mathrm{H}_{2}\) which persists to the end of the simulation. In general. the hydrocarbon species do not have time to reach the equilibrium values that the gas temperature would dictate. Thus. the time between their formation in the piasma and their reaching the substrate determines the densities of the critical radical species reaching the substrate.

\footnotetext{
Fig. 3. Electron energy distribution for the simulation as in Fig. 2. (a) at a time before inelastic processes reduce the average electron energy: (b) at an intermediate ume when the average electron energy is about 2 cV : (c) at a time when dissoctation of the \(H\); is nearly complete. The ordinate scale is arbutrary.
}

TABLE 1. Hydrocarbon reactions and rate coefficients
\begin{tabular}{|c|c|c|c|c|}
\hline Reaction &  & \(b\) & \(E(\mathrm{~K})\) & Range ( K ) \\
\hline \(\mathrm{H}+\mathrm{H}+\mathrm{H}_{3} \rightarrow \mathrm{H}_{2}+\mathrm{H}_{2}\) & \(2.7 \times 10^{-31}\) & -0.6 & 0 & 100-5000 \\
\hline \(\mathrm{H}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{H}+\mathrm{H}+\mathrm{H}_{2}\) & \(1.5 \times 10^{-4}\) & 0 & \(4.84 \times 10^{4}\) & 2500-8000 \\
\hline \(\mathrm{CH}_{4}+\mathrm{H} \rightarrow \mathrm{CH}_{3}+\mathrm{H}_{2}\) & \(3.6 \times 10^{-20}\) & 3.0 & \(4.40 \times 10^{3}\) & 300-2500 \\
\hline \(\mathrm{CH}_{3}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}+\mathrm{H}\) & \(1.1 \times 10^{-21}\) & 3.0 & \(3.90 \times 10^{3}\) & 300-2500 \\
\hline  &  & 0 & \(4.45 \times 10^{4}\) & 1500-3000 \\
\hline  & \(1{ }^{1}\) & -3.0 & 0 & 300-2500 \\
\hline \(\mathrm{CH}_{3}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}\) & \(1.3 \times 10^{-4}\) & 0 & \(1.34 \times 10^{4}\) & 1500-3000 \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{H} \rightarrow \mathrm{CH}_{3}+\mathrm{CH}_{3}\) & \(5.0 \times 10^{-11}\) & 0 & 0 & 300-1500 \\
\hline \(\mathrm{CH}_{3}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}\) & \(1.7 \times 10^{-8}\) & 0 & \(1.61 \times 10^{4}\) & 1500-2500 \\
\hline \(\mathrm{CH}_{3}+\mathrm{CH}_{\mathrm{H}_{4}} \rightarrow \mathrm{CH}_{2}+\mathrm{H}+{ }_{\text {CH2 }}^{\text {H }}\) & (12.9, \(1.7 \times 10^{-6}\) & 0 & \(4.56 \times 10^{4}\) & 1500-3000 \\
\hline \(\mathrm{CH}_{2}+\mathrm{H} \rightarrow \mathrm{CH}+\mathrm{H}_{2}\) & \(6.6 \times 10^{-11}\) & 0 & 0 & 300-2500 \\
\hline \(\mathrm{CH}_{2}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{3} \mathrm{H}_{4}+\mathrm{H}\) & \(6.6 \times 10^{-11}\) & 0 & 0 & 300-2500 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{8}+\mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}_{2}\) & \(9.0 \times 10^{-3}\) & 3.5 & \(2.62 \times 10^{3}\) & 300-2000 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{CH}_{4}\) & \(9.1 \times 10^{-25}\) & 4.0 & \(4.17 \times 10^{3}\) & 300-2000 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}+{ }_{\text {CH2 }}^{\mathrm{H}_{4}} \rightarrow \mathrm{CH}_{3}+\mathrm{CH}_{3}+\mathrm{CH}_{\mathrm{H}_{4}}\) & (12.9) \(1.7 \times 10^{-5}\) & 0 & \(3.43 \times 10^{4}\) & 800-2500 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}\) & \(2.3 \times 10^{-12}\) & 0 & 0 & 300-1200 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{CH}_{\mathrm{CH}_{4}} \rightarrow \mathrm{C}_{3} \mathrm{H}_{4}+\mathrm{H}+\mathrm{CH}_{\mathrm{H}_{4}}^{\mathrm{H}_{4}}\) & \(1.7 \times 10^{-7}\) & 0 & \(1.56 \times 10^{4}\) & 700-1500 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2}\) & \(2.5 \times 10^{-19}\) & 0 & \(5.14 \times 10^{3}\) & 700-2000 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{4}+{ }_{\mathrm{CH}}^{\mathrm{CH}} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}+\mathrm{CH}_{\mathrm{CH}_{4}}\) &  & 0 & \(3.99 \times 10^{4}\) & 1500-2500 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Cl}_{\mathrm{CH}_{4}} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}+{ }_{\text {che }} \mathrm{CH}_{4}\) & (18.0) \(4.3 \times 10^{-7}\) & 0 & \(4.86 \times 10^{4}\) & 1500-2500 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{CH}_{4}\) & \(7.0 \times 10^{-1,}\) & 0 & \(5.59 \times 10^{2}\) & 300-1000 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}\) & \(3.3 \times 10^{-11}\) & 0 & 0 & 300-2500 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{CH}_{\mathrm{H}_{4}} \rightarrow \mathrm{C}_{3} \mathrm{H}_{2}+\mathrm{H}+\mathrm{CH}_{\mathrm{CH}_{4}}\) &  & 0 & \(1.61 \times 10^{4}\) & 500-2500 \\
\hline  & (12.9) \(1.11 \times 10^{-.48}\) & 0 & \(3.5 \times 10^{2}\) & 300-500 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}+\mathrm{H}_{2}\) & \(1.0 \times 10^{-40}\) & 0 & \(1.19 \times 10^{4}\) & 300-3000 \\
\hline \(\mathrm{C}_{2} \mathrm{H}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}\) & \(2.5 \times 10^{-41}\) & 0 & \(1.56 \times 10^{3}\) & 300-3000 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{CH}_{2} \rightarrow \mathrm{C}_{1} \mathrm{H}_{3}+\mathrm{H}\) & \(3.0 \times 10^{-62}\) & 0 & 0 & \(>298\) \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{C}_{3} \mathrm{H}_{2}+\mathrm{H}\) & \(5.8 \times 10^{-41}\) & 0 & 8 & 300-2500 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{2}+{ }_{\mathrm{CH}}^{\mathrm{H}_{4}} \rightarrow \mathrm{C}_{2} \mathrm{H}+\mathrm{H}+{ }_{\mathrm{CH}}^{\mathrm{H}} \mathrm{H}_{4}\) &  & 0 & \(5.38 \times 10^{4}\) & 1500-3500 \\
\hline
\end{tabular}
\({ }^{1} n\) denotes the number of reactants.

Temperature ( K )


Fig. 4. Evolution of the gas temperature for the simulation as in Fig. 2.

Finally, we present preliminary results of a fluid simulation of a generic PECVD reactor, using SAIC's FUGG code which is capable of performing fluid calculations over arbitrarily complex geometries. The code
employs an unstructured grid allowing extremely fine resolution in critical areas while employing coarser gridding in regions where quantities vary slowly. The code was designed for the study of flow probiems dominated by convection and is presently being modified to incorporate thermal conduction and viscosity effects. In Fig. 6 we show two examples of the code's triangular gridding capability. In both cases a crosssection of the azimuthally symmetric model reactor is shown. where the left vertical boundary represents the reactor axis. Three gas inlet ports are modeled allowing the gas to enter at the top (in Fig. 6(a) the plenum region above the inlet ports is also modeled). The gas exits through the horizontal boundary at the bottom right. The substrate wafer is represented in Fig. 6(a) by the left half of the lower horizontal boundary and in Fig. 6(b) by the shelf at the lower left. In Fig. 6(a) the variable gridding capability is clearly illustrated and. in particular, the fine gridding needed in the inlet ports is shown. Figure 7 shows results of a fluid calculation for the reactor of Fig. 6(b) in which hydrogen gas enters at \(50 \mathrm{~m} \mathrm{~s}^{-1}\) at a pressure of \(5.3 \times 10^{3} \mathrm{~Pa}\) ( 40 Torr). A heating source of 1.5 kW over a spherical volume of radius 0.035 m . centered on the reactor axis and mid-


Fig. \({ }^{\text {? }}\). Evolution of the hydrocarbon densities for the simulation as in Fig. 2.


Fig. 7. Velocity field for reactor of Fig. \(61 b\) ) in which \(H_{2}\) enters at a velocity of \(50 \mathrm{~m} \mathrm{~s}^{-1}\) at a pressure of \(5.3 \times 10^{3} \mathrm{~Pa}\) ( 40 Torr). A heating source of 1.5 kW to simulate the effect of the plasma is centered on the axis between the inlet port and the water in a spherical volume of radius 0.035 m . The ordinate and abscissa dimensions are in meters.


Fig. 6. Examples of the FUGG code's unstructured gridding capability for two model reactors (fa) and (b)).
way between the inlet port and the wafer. is included to simulate approximately the effect of the plasma source. Shown are velocity vectors for the flow 2.6 ms after the plasma is turned on. Also calculated but not shown are the pressure. density, and temperature fields. While conclusions should be tempered because of the current lack of inclusion of thermal effects in the code and because the results represent a transient pre-steady-state stage. the effects of buoyancy are apparent. The complex vortex flows seen suggest this reactor configuration would be very poor for efficient diamond deposition.

\section*{4. Discussion and conclusions}

We have presented results of a model under development that will permit the simulation of PECVD reactors of arbirrary geometry. The model will be an important tool providing better understanding of the microscopic processes occurring within the reactor. permit parameter studies to identify those parameters which critically affect both the rate of deposition and the uniformity of the deposition over the wafer surface, and ultimately enable the design of improved reactors. We have identified several critical elements in the modeling effort that need to be treated carefully if simulation results are to be meaningful. First. the electromagnetic fields which initiate the plasma formation need to be determined in the realistic reactor geometry. including
effects of all metallic. dielectric, and insulator elements actually present, to ensure that the fields are high in the desired plasma formation region but not elsewhere. Second. the coupling of the fields to the plasma electrons. to determine accurately both the time development of the electron density and their energy distribution. is most important for determining the evolution of the rate of hydrogen dissociation and the rise in the gas temperature. This, in turn, critically determines the non-equilibrium hydrocarbon chemistry development. a third area that needs to be carefully modeled. Finally, the flow of hydrocarbon radicals to the wafer is very sensitive to the reactor's geometrical configuration, its thermal properties, and the location of the plasma relative to the wafer. In conclusion, our results emphasize the highly non-equilibrium and coupled nature of PECVD reactor processes and the strong influence of reactor geometry. A numerical simulation that is useful must address all such issues.

\section*{Acknowledgment}

This research was supported by the U.S. Army Missile Command and sponsored by the Defense Advanced Research Projects Agency (DARPA) under contract DAAH01-90-C-0279 and by the Independent Research and Development Program of Science Applications International Corporation (SAIC).

Nonlinear signal processing using integration of fluid dynamics equations
by

\author{
S. Eidelman, W. Grossmann and A. Friedman* \\ Science Applications International Corporation 1710 Goodridge Drive \\ McLean, Virginia 22102
}

\section*{1. INTRODUCTION}

Very recently, there have been exploratory efforts in image processing based on nonlinear methods. \({ }^{[1]}\) These efforts involve systems of nonlinear hyperbolic partial differential equations in combination with local wave representation, such as wavelets, for signal enhancement. \({ }^{[2,3,4]}\) Techniques based on Kalman filtering for feature extraction from complex time-evoiving scenes, as well as neural network approaches to image analysis and feature identification, can also be shown to involve nonlinear PDE analogies. The use of nonlinear methods, however, is largely unexplored and may provide another level of improvement for image processing.

If the purpose of an image enhancement process is to highlight the edges of an image, then the technique used in the frequency domain is usually highpass filtering. An image can be blurred, however, by attenuating the high-frequency component of its Fourier transform. Since edges and other abrupt changes in the gray levels are associated with high-frequency components, image sharpening can be achieved in the frequency domain by a highpass filtering process, which attenuates the low-frequency without disturbing high-frequency information in the Fourier transform. The primary problem with this technique is that an ideal discontinuity will have an infnite spectrum of frequencies associated with it. When filtering is applied, some frequencies are cut off, leading to a loss of some edges in an image.

It is interesting to observe that in the field of Computational Fluid Dynamics (CFD) similar problems exist in simulating flows with discontinuities. The problem of simulating flows with discontinuities is less forgiving, since an incorrect calculation usually leads to a complete distortion of the flow field. This has led CFD scientists to develop sophisticated algorithms that identify and preserve discontinuities while integrating the qow field in the computational domain. In the image domain, sharpening is usually done by differentiation. The most commonly used methods involve the use of either gradients or second derivatives of the pixel information. Central differencing is usually used to calculate the derivatives. CFD research has shown that this strategy will lead in many cases to a smearing of the flow discontinuities (analog of the image edges in image enhancement).

Here, we describe a new and unique image sharpening method based on computational techniques developed for CFD. Our preliminary experience with this method shows its capability for nonlinear enhancement of image edges as well as deconvolution of an image with random noise. This indicates a potential application for image deconvolution from sparse and noisy data resulting from measurements of backscattered laser-speckle intensity.

\footnotetext{
*Present address: Brookhaven National Lab., Apton, NY 11973
}

\section*{2. THE CFD IMAGE ENHANCEMENT TECHNIQUE}

Considerable attention has been devoted to the development of numerical methods and algorithms for Computational Fluid Dynamics during the last thirty years. In recent years, however, our understanding of numerical algorithms for a particular class of problems in gas dynamics described by the Euler equations has become more complete. The main numerical difficulty :a solving invisid compressible flows described by Euler equations is the occurrence of features that, in the invisid approximation, are discontinuous and even in the presence of viscosity are too small to be resolved on an affordable computational mesh. These flow discontinuities in which the fluid state jumps across shock waves or contact surfaces are extremely important in fluid simulations. Most of the efforts in developing numerical techniques in fluid dynamics over the last twenty years were devoted to accurate simulations of these discontinuities. Initially, naive numerical methods that used a formal finite difference representation of the conservation equations on a computational grid were employed. That led to disastrous results, smearing of the discontinuities, and spurious oscillations. Subsequently, sophisticated nonlinear techniques, which allowed accurate simulations of complex discontinuities without smearing and ringing, were developed. These new methods also satisfy a very demanding criteria for robustness and allow simulation of the wide range of flow problems without adjustment or tuning of the numerical technique.

The numerical methods that allow high accuracy resolution of flow discontinuities are so-called TVD (Total Variation Diminishing) methods. The Second Oicer Godunov Method is one of the most successful nume \({ }^{-}\)'al techniques developed for this purpose. In Figure 1, an example is given of a solution using the Second Order Godunov Method for a complicated case of multiple shock waves, \({ }^{[5]}\) illustrating the ability of this method to capture and simulate sharp discontinuities.

The Second Order Godunov Method was developed based on an understanding of the phenomenology of signal propagation in the gasdynamical system. The numerical algorithm implementing this method is not analytic and is based on a set of steps that can be considered as wave filters. These filters are designed to not smear the discontinuity (edge), suppress the spurious oscillations, and propagate the relevant signals through the system. The following algorithmic steps are performed to advance the solution for a single iteration in the Second Order Godunov Method:

> 1. Local Extrapolation
> 2. Monotonicity Constraint
> 3. Characteristics Constraint
> 4. Riemann Problem Solution
> 5. Integration

It is interesting to note that most of these steps have an analog in conventional image processing methods. Here, we will give an explanation of the function of each algorithmic step of the Second Order Godunov Method and where applicable, will point to its possible analog in conventional signal processing techniques.

Step 1 consists of extrapolation of the values in the computational grid (pixel) cell to the edges of the cell. Linear or nonlinear extrapolation can be used. This step is analogous to the standard edge sharpening techniques used in image processing, with one important difference: the extrapolation is done not for the value itself but for its flux (change of value across cell boundary).

Step 2 includes a monotonicity constraint for the values at the cells' edges. This is analogous to the nonlinear technique of the locally monotonic regression \(\left[{ }^{6}\right]\) only recently introduced for signal processing.

Step 3 subjects the values at the edges to the constraints derived from a solution of one dimensional characteristics. This step assures that the values at the edges have not been extrapolated from directions inconsistent with the characteristic solutions. This prevents extrapolation as well as smearing or overshoot of the discontinuities. For the image processing application, this can be regarded as a form of automatic edge detection step where the shock waves are associated with the edges of an image.

Step 4 uses an exact solution of the system of the gas dynamic equations for calculation of the flux values based on the extrapolated values of the parameters at the left and right side of the edges. This step has no analogy in image processing. However, since the analytical solution includes discontinuities, an exact calculation of the flux at the edge location is allowed, even if this flux is calculated through a discontinuity.

Step 5 consists of finite volume integration of the system of conservation laws. Here, the image is effectively treated as a flow field; the flux integration serves as a smoothing filter from the image perspective.

Application of these steps can be considered as the application of a unique filter stack with proven properties of discontinuity preservation and robustness. Below we illustrate uses of this technique for practical problems of image processing that exemplify the feasibility and advantages of this approach.

The use of image analogies for image processing is not new. One widely applied technique treats an image as a potential field where the image potential acts as a force on the edges that are represented as elastic curves with some elastic properties. \({ }^{[3]}\) Our approach, as stated, involves an application of a technique developed for gas dynamic problems for image deconvolution. Although this technique is very new, an analysis of the basic steps presented above and our experience with its application for image deconvolution show that this nonlinear algorithm has considerable potential for edge enhancement and filtering of extremely noisy signals.

\section*{3. IMAGE ENHANCEMENT \\ BY THE SECOND ORDER GODUNOV METHOD}

The field of gray scale intensity of an image can be translated into a flow field. To every image pixel we add a corresponding cell of the computational domain with values of the gas dynamical parameters proportional to the values oi the gray scale. Since there are at least five gasdynamical parameters that can be defined in every cell of the computational domain (pressure, density, two velocity components and \(\gamma\) ) and only one parameter in the image domain, cell mapping is not unique. Our understanding of the basic gasdynamical processes plays a major role in completing the analogy. Appropriate mapping of the image gray scale intensity into a flow field creates conditions favorable for the formation or enhancement of field discontinuities. For example, a shock wave reflecting from a wall or a contact surface can increase in strength, or two colliding flow streams will produce a contact surface that will become stronger in time. If we have a numerical technique to resolve these discontinuities accurately, then with successive numerical integration of the flow field, the discontinuities will sharpen as the solution evolves in time. Then by inverse mapping of the flow field to the image gray scale field, we can reconstruct an enhanced image. Below we give some examples of practical application of this technique.

\subsection*{3.1. Edge sharpening for a sinusoidal distribution}

In Figure 2 results are given for edge definition of a one dimensional signal. The original sinusoidal signal is shown in Figure 2a. This example was chosen to test the ability of our technique to identify the edges of an image where the signal strength has deteriorated in the vicinity of the
edges. producing a gradual (instead of sharp) increase in the gray scale intensity. We observe that application of our technique results in significant sharpening of the edges. even after \(: 5\) or more iterations.

In Figure 3 random noise has been added to the sinusoidal signal shown in Figy: 2a. The level of random noise addition corresponds to \(10 \%\) of the maximum intensity of the ori al signal. The original signal with the random noise is shown in Figure 3a. In Figures 3b. 3c. 3i e observe successive noise filtering and edge enhancement with application of our algorithm fo: \(-5,30\). and 45 interations correspondingly. We see that the edges of the final processed signal: alocated at exactly the same position as shown in Figure 2d for the uncontaminated signal.

Figure 4 illustrates the application of our algorithm to the signal that has been contaminated with \(50 \%\) addition of random noise. Significant noise filtering occurs after 15 iterations and edge definition at the exact original locations after 45 iterations.

In Figure 5 the results are shown for a signal with \(100 \%\) random noise added. Here again the signal is quickly filtered and the edges are picked up exactly at the correct locations.

\subsection*{3.2. Edge sharpening for a two dimensional image}

Figure 3 contains a picture of Washington. DC taken from a Russian satellite. Digital representation of this picture had 150 dots per inch resolution. A fragment of the picture shown in Figure 6 is represented on an evenly spaced \(400 \times 360\) grid. We take the gray scale pixel information of this picture and convert the data into initial conditions for a gasdynamic problem by assigning the values of pressure and density in the computational domain directly proportional to the values of the pixels on the gray scale. Now the gasdynamic problem is defined and we can solve it using our high resolution Second Order Godunov Method. In Figures 7a, 7b, and 7c results in the pixel plane are shown after three, six, and nine iterations respectively in the gasdynamic domain. By "iteration," we mean that the flow solver integration algorithm was applied to the given flow field, or in this case, the pressure and density data derived from the initial picture. Even after three iterations, the picture is significantly sharper and continues to improve with more iterations.

A more detailed examination of the sharpening effect can be obtained by looking at the onedimensional cross section of the picture plane. In Figure 8, an arbitrary cross section of the original picture shown in Figure 6 is given. For clarity we show only the first fourth of the actual pixels in the cross section. We can see here that this particular cross section contains a multitude of sharp edges expressed only by three or four points. Further sharpening of these edges by a standard differentiation technique will lead to significant smearing of a number of the discontinuities. In Figure 9, the same cross section is shown after three iterations with the Second Order Godunov solver. Significant enhancement of all the sharp edges is evident. The process of enhancement can be followed in Figures 6b, 6c and 6d corresponding to six, nine, and twelve iterations. Continuous improvement in the definition of edges can be observed.

In Figures \(10,11 \mathrm{a}, 11 \mathrm{~b}, 11 \mathrm{c}\), and 11d, we demonstrate the ability of the current nonlinear PDE methodology to enhance simultaneously the high and low frequency features of an image. The amplitudes of both short and long wavelengths are simultaneously enhanced. However, as seen in the circled area. long wavelength features that retain one grid-cell discontinuities exhibit interesting behavior in that the cell-specific discontinuity, which appears in Figure 10, disappears in Figures 11b and 11c, but reappears in Figure 11d. The long wavelength definition continues to be enhanced in Figures 11a-11d. The origin of this behavior is presently unknown.

\subsection*{3.3. Application to Medical Imaging}

Images of internal organs obtained with a Gamma Camera are usually of marginal quality and need significant post-processing to be useful for medical diagnostics. This is especially true if multiple pictures are taken of moving parts of the body, such as the heart, with low pixel resolution. In this section, we will demonstrate the application of our CFD technique for deconvolution of Gamma Camera images obtained during medical examinations.

Shown in Figure 12 is an image of the human heart produced by the staff of the Georgetown University Hospital, Department of Nuclear Medicine, using a Siemens Gamma Camera. This image contains a sequence of \(64 \times 64\) pixel frames showing the heart at a sequence of time intervals. This plane image, originally recorded in 256 shades of gray scale, is presented here in 64 shades of gray. In Figures 12b, 12c and 12d the deconvoluted image is shown after 6, 12 and 18 processing iterations by our nonlinear technique. We observe in these figures a significant improvement in the image quality over the images in Figure 12a. Some of the diffuse edges in Figure 12a are clearly pronounced in Figures 12c and 12d. We have also applied our CFD technique to the Gamma Camera images of the brain and liver and have found a significant image deconvolution and edge enhancement.

\section*{4. CONCLUSIONS}

The CFD tectnique described here for nonlinear signal and image processing is based on numerical techniques developed for Computational Fluid Dynamics, namely, the Second Order Godunov Method. We have demonstrated the application of this numerical method to signal processing, resulting in significant signal deconvolution and edge enhancement effects. Our preliminary analysis has shown that the Second Orde: Godunov Method, when applied to the gray scale intensity field of an image, is equivalent to an application of an unique filter stack. This filter stack has automatic edge detection, noise reduction and edge enhancement properties. We have demonstrated this nonconventional technique for the system of gas dynamic equations, where the Second Order Godunov Method assures high accuracy resolution of the flow discontinuities that are analogous to the edges in the image field. However, the same methodology can be applied to a reduced set of nonlinear hyperbolic partial differential equations, which will result in a significant optimization of the proposed technique.

\section*{5. REFERENCES}
1. Nonlinear Image Processing, Proceedings of SPIE, Feb. 1990, Santa Clara, CA.
2. Osher, S. and L. Rudin, "Feature-Oriented Image Enhancement Using Shock Fielders," Siam J. Numer. Anal., Vol. 27, pp. 919-940, NY, 1990.
3. Samadani, R. et al., "A Computer Vision System for Automatically Finding the Auroral Oval from Satellite Images," Image Processing Algorithms and Techniques. Proceedings of SPIE, 1244, 68-75, Feb. 1990.
4. Greene. R. R. et al., "Process and Apparatus for the Automatic Detection and Extraction of Features in Images and Displays," U.S. Patent 4,906,340, Mar. 1990.
5. Collela. P. and P. Woodward, "Piecewise Parabolic Method (PPM) for Gasdynamic Simulations." J. Comp. Phys., Vol. 54, 174-201, 1984.
6. Restrepo, A. and A.C. Bovik, "Statistical Optimality of Locally Monotonic Regression." Nonlinear Image Processing, Proceedings of SPIE. 1247, 89-99, Feb. 1990.


Fig. 1. High resolution of frw discontinuities obtained with the Second Order Godunov Method.





Fig. 2. Edge enhancement for a sinusoidal distribution without noise.


Fig. 4 Edge enhancement for a sinusoidal distribution with \(50 \%\) intensity random noise.


Fig. 3. Edge enhancement for a sinusoidal distribution with \(10 \%\) intensity random noise.





Fig. 5. Edge enhancement for a sinusoidal distribution with \(100 \%\) intensity random noise.


Fig. 6. The original satelite photograph of Washington. DC with resolution reduced to 150 dots/inch.


Fig. 7a. The sharpened picture after the Godunov solver has been used. After three itcrations Note the details that appeared on the Potomac. These details are barely visible even on the original high resolution photograph.


Fig. 7b. After six iterations.


Fig. 7c. After nine iterations.


Fig. 8. Gray scale density of a cross section of the original image.


Fig. 9. Gray scale density of the CFD processed image: (a) after 3 iterations: (b) after 6 iterations: (c) after 9 iterations; (d) after 12 iterations.


Fig. 10. Gray scale density of a cross section of the original image.


Fig. 11. Gray scale density of the CFD processed image: (a) after 3 iterations; (b) after 6 iterations; (c) after 9 iterations; (d) after 12 iterations.


Fig.12. Image of human heart taken by a Siemens Gamma Camera. (a) Original image \(64 \times 64\) pixels per frame; (b) Image after six processing iterations; (c) Image after 12 processing iterations; (d) Image after 18 processing iterations.

\title{
Review of Prcpulsion Applications and Numerical Simulations of the Pulsed Detonation Engine Concept
}

\author{
S. Eidelman.* W. Grossmann. \(\dagger\) and I. Lottati* \\ Science Applications International Corporation, McLean, Virginia 22102
}

\begin{abstract}
Here we review experimental and computational studies of the pulsed detonation engine concept (PDEC) and present resuils of our recent numerical study of this concept. The PDEC was propowed in the eariy 1940s for small engine applications; however, its potential was never realized due to a complicated, unsleady operation regime. In this study, we demonstrate the use of current advances in numerical simulation for the analysis of the PDEC. The bigh-thrust/engine volume ratio obtuined in our simulations demonstrates promising potential of the puised detonation engine concept.
\end{abstract}

\section*{Introduction}

EARLY developments of engine technology leading to practical propuision engines were almost completely associated with steady-state engine concepts. Unsteady concepts, which initially appeared promising, never evolved from the conceptual state and have remained for the most part unexplored. The early work in unsteady propuision suffered from a lack of appropriate analytical and design tools. a condition which seriously impeded the advancement of the unsteady concepts to a practical stage.

In this paper, we review the historical development of unsteady propulsion by concentrating on the particular concept of the intermittent detonation engine, and discuss current research activities in this area. A review of the literature \({ }^{1-24}\) reveals that a significant body of experimental and theoretical research exists in the area of unsteady propuision. However. this research has not been extended to the point where a conclusive quantitative comparison can be made between impulsive engine concepts and steady-state concepts. For example, the analysis given in Refs. 8-11 of the performance of a detonation engine concept includes neither frequency dependence nor analysis of losses due to multicycle operation. A new generation of analytical and computational tools exists today and allows us to revisit and analyze such issues with a high degree of confidence. Numerical simulation has developed to the state where it can now provide time-dependent two- and three-dimensional modeling of complex internal flow processes \({ }^{30,24.25}\) and will eventually result in tools for systematically analyzing and optimizing engineering design. In addition to a review of applications of the pulsed detonation engine concept (PDEC), we will report results of a numerical study of an air-breathing detonation engine. This study was performed using new unsteady computational fluid dynamics (CFD) tools that we will also describe.
Our paper is structured as follows: :) historical review of the pulsed detonation development efforts: 2) description of the basic phenomenology of the air-breathing pulsed detonation engine concept; 3) description of the mathematical formulation and new numerical scheme used to simulate the problem; 4) discussion of the simulation results: and 5) conclusions.

\footnotetext{
Presented as Paper 89.2446 at the AIAA/ASME/ASEE/SAE 25 th Joint Propulsion Conference. Monterey. CA. July 10-12. 1989: re ceired Sept. 8. 1989; revision received April 12, 1990. This paper is declared a work of the U.S. Government and is not subject to copv. right protection in the United States.
- Senior Scienust, Applied Physics Operation. Nember AlAA.
+Chief Scientist. Applied Physics Uperation. Nember AIAA.
}

\section*{Historical Review}

\section*{Conatant-Volume Combustion}

From the very early development of jet-propulsion engiaes. is was known that an engine based on a constant-volume combustion process achieves higher thermodynamics efficiency than a constant pressure engine. This follows from a thermodynamic analysis of the engine cycle.
Constant-volume combustion was used in gas turbine engines at the beginning of this century, and the first gas turbine engines in commercial use were based on the constant-volume cycle. Jet-propulsion engines were one of the applications of the constant volume cycle (or explosion cycle) which was explored in the late 1940s. \({ }^{2}\) Although the explosion cycle operates at a larger pressure variation in the combustion chamber than in a pulse jet, \({ }^{3.4}\) the cycle actually realized in these engines was not a fully constant-volume one since the combustion chamber was open-ended. \({ }^{2}\) In Ref. 2, the maximum pressure ratio measured in an explosion cycle engine was 3:1, whereas the pressure ratio for the same mixture under the assumption of a constant-volume cycle would be \(8: 1\). Also, this engine was limited by the available frequency of cycles, which in turn was limited by the rear con rate. A simple calculation'showed that if the combustion time could be reduced in this engine from \(0.006-0.003 \mathrm{~s}\), the thrust per pound of mixture would increase \(100 \%\). Thus, the explosion-cycle engine has two main disadvantages:
1) Constrained volume combustion (as distinguished from constant-volume combustion) does not take full advantage of the pressure rise characteristic of the constant-volume combustion process.
2) The frequency of the explosion cycle is limited by the reaction rate, which is only slightly higher than the deflagrative combustion rate.
The main advantage of the constant-pressure cycle is that it leads to engine configurations with the steady-state processes of injection of the fuel and oxidizer. combustion of the mixture, and expansion of the combustion products. These stages can be easily identified and the engine designer can optimize them on the basis of relatively simple steady-state considerations.

At the same time, an engine based on constant-volume combustion will have an intermittent mode of operation. which may complicate its design and optimization. We are interested in the question of whether this complication is worth the potential gains in engine efficiency.

\section*{Puised Detonation Engine as an Ulimmie Constant-Volume} Combustion Concept

The detonation process. due to the very high rate of reaction. permits construction of a propulsion engine in which the
constant-volume process can be fully realized. In detonative combustion, the strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and the fresh charge. The speed of the detonation wave is about two orders of magnitude higher than the speed of a typical deflagration. This allows the design of propulsion engines with a very high power density. Usually, each detonation is initiated separately by a fully controlled ignition device. and the cycle frequency can be changed over a wide range of values. There is only an upper limit for the detonation cycle frequency. This limit is determined by the time it takes to reffll the detonation chamber with the fresh combustible muxture. This in turn will depend on chamber geometry and the external flow parameters. In our study, we have established that detonation frequencies of \(200-250 \mathrm{~Hz}\) appear to be feasible. At the same time, the same PDEC engine can operate at very low detonation frequency with thrust almost linearly proportional to the frequency. This also means that a device based on a detonative combustion cycle can be scaled, and its operating paremeters can be modified for a range of required output conditions. There have been numerous attempts to take advantage of detonative combustion for engine applications. In the following, we give a description of the most relevant past experimental and analytical studies of the detonation engine concept.

\section*{Hoffmans's Report}

The first reported work on intermittent detonation is attributed to Hoffmann \({ }^{5}\) in 1940 . He operated an intermittent detonation test stand with acetylene-oxygen and benzine-oxygen mixtures. The addition of water vapor was used to prevent the highiy sensitive acetylene-oxygen mixture from premature detonation. Hoffmann \({ }^{5}\) indicated the importance of the spark plug location in reference to tube length and diffuser length. It was found that a continuous injection of the combustible mixture leads to only a narrow range of ignition frequencies that will produce an intermittent detonation cycle. These frequencies are governed by the time required for the mixture to reach the igniter, the time of transition from deflagration to detonation, and the time of expansion of the detonation produets. Hoffmann attempted to find the optimum cycle frequency experimentally. It was discovered that detonation-tube firing occurred at lower frequencies than the spark-plug energizing frequencies, indicating that the injection flow rate and ignition were out of phase. World War II prevented further work by Hoffmana and co-workers.

\section*{Nkeholls' Experimeats}

A substantial effort in intermittent detonation engive research was done by a group headed by Nicholls \({ }^{6-10}\) of the University of Michigan beginning in the early 1950s. The most relevant work concerns a set of experiments carried out in a


6-ft-long detonation tube. The schematics of the detonationtube experments test rig used by Nicholls and co-workers are shown in Fig. 1. The detonation tube was contructed from a 1-in.-i.d. stainiess-steel tube. The fuel and oxidizer were injected under pressure from the left end of the lube and ignited at the 10 -in. distance downstream. The tube was mounted on a pendulum platform that was suspended by support wires. Thrust for single detonations was measured by detecting tube (platform) movement relative to a stationary pointer. For multicycle detonations, thrust measurement was achieved by mounting the thrust end of the tube to the free end of the cantilever beam. In addition to direer thrust measurements, the temperature on the inner wall ol the detonation tube was measured.

Fuel mixtures of hydrogen/oxygen, hydrogen/air, acetyleneoxygen, and acetylene-air were used. The gaseous oxidizer and fuel were continuously injected at the closed end wall of the detoration tube and three fixed flow rates were used. Under these conditions, the only parameters that could be varied were the fuel/oxidizer ratio and frequency of ignition. A maximum gross thrust of \(=3.2 \mathrm{li}\) was measured in hydrogenf air mixture at the frequency of \(=30\) detonations \(/ \mathrm{s}\). The most promising resuits were demonstrated for the hydrogen/air mixture, where a fuel specific impulse of \(I_{\mathrm{sp}}=2100 \mathrm{~s}\) was reached. The maximum irequency of detonations obrained in all experiments was 35 Hz . The temperature measurements on the inner wall showed that for the highest frequency of detonations the temperature did not exceed \(800^{\circ} \mathrm{F}\).

In their later work, \({ }^{8-10}\) the University of Michigan group concentrated on development of the rotating detonation wave rocket motor. No further work on the pulsed detonation cycle was pursued.

\section*{Krrycki's Experimeats}

In a setup somewhat similar to Nicholls', Krayckill performed an experimental investigation of intermittent detonations with frequencies up to 60 cps . An attempt was also made to analyze the basic phenomena using unsteady gas dynamic theory. Krzycki's attempt to analyze the basic phenomena relied on wave diagrams to trace characteristics, assumptions of isentropic nlow for deronation and expansion, and incompressible flow for mixture injecion processes. The most convincing data from the experiments are the measurement of thrust for a range of initiation frequencies and mixture flow rates. Unfortunately, no direct pressure measurement in the device are reported so that only indirect evidence exists of the nature of the process observed.

The basic test stand used by Krzycki is very similar to that used by Nicholls et al. \({ }^{6}\) The length of the detonation tube and internal diameter were exactiy the same as those in Nicholls' experiments. A propane/air mixture was continuously injected through reversed-flow diffuser for better mixing and

Fig. 1 Detonation tube used in experiments by Nicholls et al.
ignited at the \(25-\mathrm{cm}\) distance from the injection point by an automobile spark plug. The spark frequency was varied from \(1-60 \mathrm{~Hz}\). The spark plug power output was varied inversely with the initiation trequency and at the frequency of 60 Hz was only 0.65 J . This fact alone eliminated che possibility of direct initiation of the detonation wave by the spark and consequently all of the experiments were performed in the region dominated by transition from deflagrauon to detonation. According to experimental data and theory, \({ }^{12}\) for direct initiation of a mixture of propane/air at the detonability limits, an energy release on the order of \(10^{\circ} \mathrm{J}\) is required. Thus, the required deflagration-detonation transition region length would have been prohibitively large for the propane/air mixture. It follows that in all of the experiments a substantial part of the process was deflagrative. This resulted in low efficiency and negligible thrust. Krzycki repeated the experiments of Nicholls using exacdy the same size detonation tube and basi cally the same rates of injection of the detonatable mixture. Krzycki's experimental results are very well-documented, giving enough informanon to deduce a clear picture of the physical processes occurring in the tube. A conclusion, arrived at by the author, was that thrust was possible from such a device out practical applications did not appear promising. It is unfortunate that, possibly based on Krzycki's extensive but misieading results, all experimental work related to the pulsed detonation engine concept stopped at this time.

\section*{Werk Reported in Russian Sources on Pulse Detonation Devices}

A review of the Russian literature has not uncovered work concerning applications of pulsed detonation devices to propuision. However, there are numerous reports of applications of such devices for producing nitrogen oxide \({ }^{13}\) (an idea proposed in the 1940 s by Zeldovich to use detonation for binding nitrogen directly from air to produce fertilizers) and as rock crushing devices. \({ }^{14}\)

Korovin et al. \({ }^{13}\) provide a most interesting account of the operation of a commercial detonation reactor. The main objective of this study was to examine the efficiency of thermal oxidation of nitrogen in an intermittent detonative process as well as an assessment of such technological issues as the fatigue of the reactor parts exposed to the intermittent detonation waves over a prolonged time. The teactor consisted of a tube with an inner diameter of 16 mm and length 1.3 m joined by a conical diffuser to a second tube with an inner diameter of 70 mm and length 3 m . The entire detonation reactor was submerged in running water. The detonation mixture was introduced at the end wall of the small tube. Methane, oxygen, and nitrogen comprised the mixture composition and the mixture ratios were varied during the continuous operation of the reactor. The detonation wave velocity was measured directly by piezoelectric sensors placed in the small and large tubes. The detonation iritiation frequency in the reactor was 2-16 Hz. It is reported that the apparatus operated without significant changes for 2000 h .

Smirnov and Boichenko \({ }^{14}\) studied intermittent detonations of a gasoline/air mixtures in a 3 -m-long and 22 -mm-i.d. tube operating in the \(6-8 \mathrm{~Hz}\) ignition frequency range. The main motivation of this work was to improve the efficiency of a commercial rock-crushing apparatus based on intermittent detonations of the gasoline/air mixtures. \({ }^{\text {Is }}\) The authors investigated the dependence of the length of the transitional region from deflagration to detonation on the initial temperature of the mixture.

As a result of the information contained in the Soviet reports, it can be concluded that reliable commercial devices based on intermittent detonations can be constructed and operated.

\section*{Development of the Blast Propuiaion System mi JPL}

Back. \({ }^{16}\) Varsi et al..:' Kim et al., \({ }^{18}\) and Back et al. \({ }^{19}\) at the Jet Propulsion Laboratory (JPL) studied the feasibility of a rocket thruster powered by intermitent detonations of solid
explosive. The main application foreseen by the authors is propulsion in dense or high-pressure atmospheres of certain solar system planets. The JPL work was directed at very specific applications: however, the studies \({ }^{17-19}\) addressed some key issues of devices using unstendy processes such as propulsion efficiency. The JPL studies have important implications to puised detonation propulsion systems.

Reference 19 gives the basic description of the test stand used. In this work, a data sbeet type \(C\) explosive was detonated inside a small detonation chamber attached to nozzles of various length and geometry. The nozzles. complete with firing plug, were mounted in a containment vessel that could be pressurized with the mixture of vanous inert gases from vacuum to 70 atm . The apparatus measured directly the thrust generated by single detonations of a small amount of solid explosive charge expanding into conical or straight nozyles. Thrust and specific impulse were measured by a pendulum balance system.

Results obtained from an extensive experimental study of the explosively driven rocket have led to the following conelusions. First, rockets with long nozzles show increasing specific impulse with increasing ambient pressure in carbon dioxide and nitrogen. Short nozzles, on the other hand. show that specific impulse is independent of ambient pressure. Most importantly, most of the experiments obtained a relatively high specific impulse of 250 s and larger. This result is all the more striking since the detonation of a solid explosive yields a relatively low energy release of approximately \(1000 \mathrm{cal} / \mathrm{g}\) compared with \(3000 \mathrm{cal} / \mathrm{g}\) obtained in hydrogen/oxygen combustion. Thus, it can be concluded that the total losses in a thruster based on unsteady expansion are not prohibitive and, in principle, very efficient propulsion systems operating on intermittent detonations are possible.

\section*{Detonation Engine Stedias at Neval Postornduate Schoel}

A modest exploratory study of a propulsion device utilizing detonation phenomena was conducted at the Naval Postgraduate School (NPS). \({ }^{20-23}\) During this study, several fundumentally new elements were introduced to the concept distinguishing the new device from previous ones.

First, it is important to note that the experimental apparatus constructed by Heiman et al. \({ }^{2}\) showed the first suocessful self-aspirating, air-breathing detonation device. Intermirtent detonation frequencies of 25 Hz were obtained. This frequency was in phase with the fuel-mixture injection through timed fuel-valve opening and spark discharge. The feasibility of intermittent injection .oas established. Pressure measuremeats showed conclusively that a detonation process occurred at the frequency chosen for fuel injection. Furthermore, selfaspiration was shown to be effective. Finally, the effectiveness of a primary detonation as a driver for the main detonation was clearly demonstrated. Although the NPS studies were abbreviated, many of the technical issues considered to be essential for efficient intermittent detonation propulsion were addressed with positive results.

\section*{Stmulations of Puised Detomation Engiae Cycle at NASA Amea Remearch Center}

Recenty Camblier and Adelman \({ }^{24}\) carried out numerical simulations of a pulsed detonation engine cycle taking into account finite-rate chemistry. Unfortunately, the simulations were restricted to a quasi-one-dimensional model. The configuration considered had a \(6-\mathrm{cm}-\mathrm{i} . \mathrm{d}\). . \(50-\mathrm{cm}\)-long main chamber that was attached to a \(43-\mathrm{cm}\)-long diverging nozzle. It was assumed that a stoichiometric mixture of hydrogen/air at 3.0 atm is injected from an inlet on the closed end wall of the detonation chamber. Under these conditions. Camblier and Adelman estimated a large range of possible detonation frequencies of engine operation up to 667 Hz . The origin of this estimate is not clear from their work since. according to their simulations, the detonation. expansion. and fresh charge fill requires 2.5 ms . This value leads to a maximum frequency of

400 Hz . The simulated engine performance yieided a large average thrust of \(=4000 \mathrm{~N}\) and an unusually high spectic impuise of 6507 s . These simulations were the first to demonstrate the use of modern CFD methods to address the technical issues associated with unsteady pulsed detonation concepts.

In the remaining sections, we discuss a particular propulsion concept based on the results of the expenments of Helman et al. \({ }^{22}\) and describe a computational study of its performance characteristics. The unsteady numerical scheme used for the study made use of unique simulation techniques; the key ingredients of these rechniques are also described.

\section*{Generic Pulsed Detonation Engine}

The generic device we consider here is a small cylindrical engine, 15 cm long and 15 cm in diameter. The combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave propagates through the mixture. The size of the engine suggests a small payioad, but the concept can be extended to larger payloads simply by scaling up the size of the detonation chamber and possibly combining a number of engines into one large propulsion engine. A key issue in the pulsed detonation engine concept is the design of the main detonation chamber. The detonation chamber geometry determines the proputsion efficiency and the duration of the cycle (frequency of detonations). Since the fresh charge for the generic engine is supplied from the externai flowfield, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. The range of the physical processes requiring simulation in order to model the complex flow phenomena associated with the detonation engine performance is very broad. A partial list is as follows:
1) Initiation and propagation of the detonation wave inside the chamber.
2) Expansion of the detonation products from the chamber into the airsuream around the chamber at flight Mach numbers.
3) Reverse flow from the surrounding air into chamber resulting from overexpansion of the detonation products.
4) Pressure buildup in the chamber due to reverse flow. The flow pattern inside the chamber during postexhaust pressure buildup determines the strategy for mixing the next detonation charge.
5) Strong mutual interaction between the flow processes inside the chamber and flow around the engine.

All of these processes are interdependent and their timing is crucial to the engine efficiency. Thus, unlike simulations of steady-state engines, the phenomena described above cannot be evaluated independently.

The need to resolve the flow inside the chamber accounting for nozzies, air inlets, etc., and at the same time resolve the flow around the engine, where the flow regime varies from high subsonic, locally transonic, and supersonic, makes it a challenging computational problem.

The main issue is to determine the timing of the air intake for the fresh gas charge. It is sufficient to assume inviscid flow for the purpose of simulating the expansion of the detonation products and fresh gas intake. In the following, we present the first results of an inviscid simulation of the detonation cycle in a cylindrical chamber. First, we describe our computational method for solving the time-dependent Euler equations used in the study.

\section*{Uasteady Euler Solver}

A new second-order algorithm for solving the Euler equations on an unstructured grid was used in our study of the detonation concept. The approach is based on first- and secondorder Godunov methods. The method leads to an extremely efficient and fast flow solver that is fully vectorized and easily lends itself to parallelization. The low memory requirements and speed of the method are due to the use of a unique data structure.

Until recently most CFD simulations were carned out with logically structured grids. Vectorization and/or parallelization did not present a problem. The increased need for simulation of flow phenomena in the vicinity of complex geometrical bodies and surfaces has led to the development of CFD codes for logically unstructured grids. The most successful of these unstructured grid codes are based on finite elements or finite volume methods. For an unstructured grid in two dimensions. the computational domain is usually covered by triangles, and the indices of the arrays containing the values of the hydrodynamic flow quantities are not related directly to the actual stomentic location of a node. The calculations periormed on unstructured grids evolve around the eiemental grid shape (e.g., the triangle for two-dimensional problems), and there is no obvious pattern to the order in which the local integrations should be performid. Explicit integration of hydrodynamic problems on an unstructured grid requires that a logical substructure should be created which identifies the locations in the global arrays of all of the local quantities necessary for the integration of one element. This usually results in a large price in computational efficiency, in memory requirements, and in code complexity. As a consequence, vectorization for the conventional unstructured grid methods has concentrated on rearrangement of the data structure in a manner such that these locally centered data structures appear as giobal arrays. This can be done to some extent using machine dependent gatherscatier operations. 328 Additional opumizacion can be achieved using localization and search algorithms. However, these methods are complex and result in marginal improvement. Most optimized unstructured codes to date run considerably slower and require an order of magnitude more memory per grid cell than their structured counterparts. Parallelization of the conventional unstructured codes is even more difficult, and there is very little experience with unstructured codes on massively parallel computers.

The method we have developed overcomes these difficulties and results in codes with speed and memory requirements comparable to those found in structured grid codes. Moreover, the ability to construct grids with arbitrary resolution leads to a flexibility in dealing with complex geometries not attainable with structured grids. The essence of the method is based on an independent flux calculation across the edges of a dual baricentric grid, followed by node integration. This approach is order independent. Below we give the essential details of our algorithm; a complete description follows later.

\section*{Batic Integration Algorithm}

We begin by describing the first-order Godunov method for the system of two-dimensional (axisymmetric) Euler equations written in conservation law form as
\[
\begin{equation*}
\frac{\partial Q}{\partial t}+\frac{\partial F}{\partial x}+\frac{\partial G}{\partial r}=-\frac{1}{r} C \tag{1}
\end{equation*}
\]
where
\[
\begin{gathered}
Q=\left(\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
e
\end{array}\right], \quad F=\left[\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
(e+p) u
\end{array}\right] \\
\boldsymbol{G}=\left(\begin{array}{c}
v \\
\rho v u \\
\rho v^{2}+p \\
(e+p) v
\end{array}\right], \quad C=\left(\begin{array}{c}
\rho v \\
\rho v u \\
\rho v^{2} \\
(e+p) v
\end{array}\right]
\end{gathered}
\]

Here \(u\) and \(v\) are the \(x\) and \(r\) velocity vector components, \(p\) the pressure. o the density, and \(e\) the total energy of the fluid per unit volume. It is assumed that a mixed finitial conditions. boundary conditions) problem is properiy posed for the set,
-


Fig. 2a Companational domais and grid used in simulation of PDEC operation.


Fig. 2b Enlargement of computational grid in the vicinity of the PDSC nozale.

Eq. (1), and that an initial distribution of the fluid parameters is given at \(t=0\) and some boundary conditions defining a unique solution are specified on the boundary of the computational domain.

We look for a solution of the system of equations represented by Eq. (2) in the computational domain covered by an unstructured grid. As an example, Fig. 2a shows the unstructured triangular grid used in the pulsed detonation engine simulation. Here most of the computational effort is committed to the resolution of the flow inside the engine detonation chamber and in the immediate vicinity of the nozzle. In Fig. \(\mathbf{2 b}\), an eniargement of the nozzie region is shown, illustrating the ability to represent geometry of arbitrary complexity and with localized resolution.

Figure 3 displays a fragment of the computational domain with the corresponaing dual grid. The secondary or dual grid is formed by connecting the baricenters of the primary mesh, thus forming finite potygons around the primary vertices.

We have found, as have others. \({ }^{27}\) that the best practical representation of the integration volume is obtained when the dual grid is formed by connecting baricenters of the triangles. Integration by the Godunov method \({ }^{28}\) can be divided into two basic steps: 11 calculation of the fluxes at the edges of the secondary grid using solutions of a set of one-dimensional Riemann problems: and 2 ) integration of the system of partial differential equations. which amounts to addition of all of the fluxes for every poivgon at a particular time step.

To define the fluxes for the grid shown in Fig. 3 at every edge of the main grid, it is necessary to solve the corresponding Riemann probiem. For example, to define the flux at the edge \(a b\). we solve the Riemann problem between points \(A\) and \(B\). The solution of this problem is in coordinates local to the


Fig. 3 The primary (iriangles) and secondary (polygona) anatractured grids.
edge of the dual grid ab so that the tangential component of velocity will be directed along this edge (ab). Implementation of our approach requires maintaining strict consistency when defining the "left" and "right" states for the Riemann problems at the edges \(a b\). \(b c\). cd, de, ef, and fa. For this reason. we define not only the location of the vertices and lengths of the edges but also the direction of the edges with respect to the primary grid. For the clockwise integration pattern in the same polygon, point \(A\) will be the "right" state for all of the Riemann problems related to this point, and the neighbor will represent the "left" side of the diaphragm.

It is easy to see that the flux calculation is based on information at only two nodes and requires single geometrical parameters defining the edge of the secondary grid that dissects the line connecting the two points. Thus, we can calculate all of the values needed for flux calculation in one loop over all edges of the primary grid without any details related to the geometrical structures that these edges form. This in turn assures parallelization or vectorization of the algoritha for the bulk of the calculations involving the Riemann solver that provides the first-order flux. The only procedure not readily parallelizable is the integration of the fluxes for the flow variables at the vertices of the grid. Here we use the "edge coloring' technique that allows us to split the fiux addition loop into seven or eight loops for edges of differeat color. Each of these loops is usually large enough not to impair vectorization. At this stage, all of the fluxes are added with their correct sign corresponding to the chosen direction of integration within the cell. The amount of calculation required here is minimal since the fluxes are known and need only to be multiplied at each time step by a simple factor and added to the vertex quantity.

\section*{Second-Order integration Algorichm}

The second-order solver is constructed along lines similar to that of the first-order method. At each cell edge, the Riemann problem is solved for some specified pair of left and right conditions. The solution to this Riemann problem is then used in the calculation of fluxes that are added later to advance to the next integration step. The extension to second-order is achieved by using extrapolation in space and time to obtain time-centered left and right-limiting values as inputs for the Riemann problem. The basic implementation of the method of calculation of second-order accurate fluxes is fundamentally the same as for one-dimensional cases. The only difference is in the method of obtaining linear extrapolation of the flow variables as a first guess of their value at the edges of the dual grid. To obtain the first guess, we need to know the gradient of some gasdvnamical parameter \(U\) at the vertices of the primary mesh. The value of \(\nabla U\) can be evaluated by using
a linear path integral along the edges, which delineates the finite volume associated with the vertex. For vertex \(A\) in Fig. 3 ,
\[
\begin{equation*}
\int_{A} \nabla U d A=\oint_{1} U n d l \tag{2}
\end{equation*}
\]
where integration along the path \(/\) in this case is equivalent to integration along the edges \(a b, b c, c d, d e\), ef, and fa. Knowing the gradient of the gasdynamic parameter in the volume related to vertex \(A\) will allow us to extrapolate the values of this parameter at any location within the volume. This permits us to evaluate the first guess for \(U\) at the edges of the dual grid. The final implementation of the second-order algorithm has been described previously.

A schematic flowchart of the basic steps of the second-order algorithm implementation is shown in Fig. 4.

\section*{Simalations of the Gearric Pulsed Detonation Engive}

In this section, we present sample results of simulations of the generic PDE device using the numerical code described in the preceding section. In Fig. 2a, the compurational domain containing the PDE main detonation chamber is shown covered with the unstructured grid. In our sample simulation, we have chosen a small \(=15-\mathrm{cm}\)-long and \(=15-\mathrm{cm}\)-i.d. cylindrical chamber with a small converging nozzie. This geomerry is one of a number of the geometries we have analyzed in a parametric study whose goal was to evaluate and optimize a typical PDEC device. The device shown in Fig. la does not represent the optimum and is given here to illustrate our methodology. We consider a situation when the PDEC serves as a main thruster for a vehicle traveling in air with the velocity of \(M=0.9\) and located at the aft end of the vehicle. The main objectives of the simulations presented here are as follows:
1) To find the maximum cycie frequency. This is determined by the time required from detonation, exhaust of combustion products, and intake of fresh charge for the next detonation.
2) To calcuiate the thrust produced during each cycle and the integrated thrust as a function of time.

\(\$ 7601\)


Step 2 Supper the Thrst quase te monnenwavy constrame

Steen 3


Stee 4 Solve the hioment erotem ser the corrected velued
steo 5
intrerexten
Fig. 4 Grid schematic and outline of steps for second-arder Godunov method.

The simulation begins at \(t=0\) when we assume an ideal detonation process has taken place in a stochiometric propane/air mixture. Initially the detonation wave has traveled from the open aft end of the chamber toward the interior with a maximum velocity of \(1800 \mathrm{~m} / \mathrm{s}\) and maximum pressure of \(20 \times 10^{5} \mathrm{~Pa}\). The distribution of pressure, velocity, and density of the detonation wave is defined through the self-similar solution for a pianar detonation wave. These distributions are shown schematically in Fig. 5. The wave was directed toward the interior of the chamber to capture the kinetic energy of the wave and to prolong exposure of the inner chamber walls to the high pressure. In Fig. 6, simulation results are shown at time \(t=0.19 \mathrm{~ms}\) in the form of pressure contours and particle paths from different locations inside and outside the detonation chamber. From the pressure contour plots, we observe that the shock reflection from the inner wall has taken place and detonation products are expanding into the ambient airstream. The flow inside the chamber is choked due to the converging nozzle and the maximum pressure behind the shock is \(=8 \mathrm{~atm}\). The pressure inside the chamber is less than 3 atm . The strong expansion of the detonation products into the ambient airstream produces a shock wave with a spherical-like front rapidly decaying in strength. As a result of the interaction of the expanding detonation products with the external flow, a large toroidal vortex is created. The vortex is carried away quickly from the chamber by the external flow and by its own thow momentum.
In Fig. 6a, we also show trajectories of the particles introduced inside the chamber and just above the nozale. Examination of these trajectories allows us to follow the dynamics of the chamber evacuation and refill. In order to track the detonation products, we initially place marker particler inside the chamber at three cross sections in clusters of four distributed normally to the detonation chamber axis. Each particie has a different color; however, particles in the same cluster have the same shade of color. At the three chosen cross sections, we have designated shades of red, yellow, and green for the particles located correspondingly at the left end, center, and beginning of the nozzle cross sections of the chamber. The movement of these particles is shown by connectiog them with a continuous line beginning with particle location at \(t=0\) to the present time. In Fig. 6a, we observe that at time \(t=0.19\) ms all particles originally in the nozzle cross section and three of the particles originally in the midsection have left the detonation chamber. However. particles originally introduced on the inner wall of the chamber have only advanced to the nozzle region.

We use a different technique for observing the mocion of the ambient gas outside the chamber. Here a cluster of seven



Fig. 5 Distribution of gasdynamic parameters behind the detonation wave according to a one-dimensional self-similar solution.

*) \(t=0.19\) nsec

b) \(t=1.7\) msec

c) \(t=4.7\) mese

d) \(\boldsymbol{C}=7.4\) mane end of first detonation cycte

Fig. 6 Presure contourt and particle paths for vierions times duriag the PDEC simplation.
particles is introduced every \(0.05 \mu\) s in the exrernal flow above the nozzle. All such particles are traced as they move with the flow until they leave the computational domain. At any given time only the current location of the particle is displayed, and since the particles are introduced periodically with time there are a large number of particles to trace. We assign a color to every cluster of external particles to keep track of the time when they were introduced in the calculation. The colors vary from magenta. for those particles introduced early in calculation, to blue, for those incroduced shortly before the end of a detonation cycte. In Fig. 6a, corresponding to very early times, only one cluster of external particles is visible. This cluster was introduced at \(t=0\) and is tracking the expanding flow of the detonation products.

In Fig. 6b, the simulation results are shown for \(t=1.7 \mathrm{~ms}\). The pressure contours show that a shock wave develops at the external edge of the nozzie as a result of a strong expansion of the Mach 0.9 external now. As a result of overexpansion of the detonation products, the pressure inside the detonation chamber is lower than the ambient pressure, causing the shock
to be located lower on the external surface of the nozzle. The external flow about the chamber has a stagnation point on the axis of symmetry downstream at \(=25 \mathrm{~cm}\). At this time, it is evident from the particles' trajectories that most of the detonation products have left the chamber. Figure 6b shows one continuous trace of the particles originating at the back wall of the detonation chamber having advanced well ahead of the stagnation point in the external flow.

The marker particles released outside and just above the nozzle's exit show two distinct tlow paths. One path takes the flow past the stagnation point to the sight of the detonation chamber: this flow path is marked by the four upper particle traces. Another flow path is marked by three lower particle paths released close to the nozzle surface and is deflected toward the detonation chamber exit. Figure \(5 b\) shows particles marking this deflected stream approaching the detonation chamber nozzle. The magenta color of these particles indicates they were released at \(=0.5 \mathrm{~ms}\).

Figure \(6 c\) corresponds to the simulation time \(I=4.7 \mathrm{~ms}\). The pressure inside the chamber has risen \(=1\) atm. Higher

PULSE DETONATION ENGINE Foree and Thruat Fliytay Mach - 0.9


Fig. 7 Thrust and force genernted by PDEC as a function of time.
pressure at the chamber exit has resulted in the shock standing on the external surface of the nozzle to move upward. The particles marking the movement of fresh air into the chamber show these to be well inside with some reflecting from the end wall giving a second stagnation point for the reversed fresh airflow.
Figure 6d corresponds to the end of the first cycle when the detonation chamber is filled with fresh charge and ready for the next detonation. In this figure, the particle' paths indicate that the chamber refills in a pattern suitable for fast mixing of the fuel-air mixture. We conjecture then that fuel injection along the chamber axis will promote fast fuei-air mixing. We can see in Fig, 6d that further injection of external air inside the chamber stopped, and from that point on the mixture composition in the chamber will be fixed.

In Fig. 7, the total force and time-averaged thrust generated by the device in the simulations discussed previously are shown as a function of time. The time-averaged thrust is based on the total time for one cycle. As seen in Fig. 7, initially a very large force of \(=1.5 \times 10^{5} \mathrm{~kg}\) is feit on the end wall of the detonation chamber. This is a result of the inwardly moving detonation wave used in our simulation. Very eariy during the sequence, this wave refiects from the left wall of the detonation chamber briefly generating a large force. This force rapidly decays and at \(t=0.1 \mathrm{~ms}\) changes sign due to interaction of the strong shock wave with the converging nozzle. This effect is noticeable in the thrust data; the average thrust decreases somewhat after reaching levels of \(\approx 1980 \mathrm{~N}\). The shock partially reflects from the converging nozzle walls and generates a wave moving to the left wall. The reflected wave thereafter generates positive thrust from \(t=0.3 \mathrm{~ms}\). Finally, thrust leveis reach the maximum of \(\approx 2200 \mathrm{~N}\) and then decay slowly as a result of the cross-sectional drag force. The simulations predict that to sustain this level of thrust will require a detonation frequency of about 150 Hz . All simulations were performed on a Stellar workstation.

\section*{Conclusions}

The main intent of the present study was to carry out a review of the relevant literature in the area of detonation propulsion, to assess the state of the art, and to recommend future research based on our findings. We have reviewed the literature and presented our summary in the first section of this paper. Our initial conclusion from the review is that there
is a substantial body of evidence leading toward the possibility of producing propulsion engines with significant thrust levels based on an intermittent detonation.

Most of the historical attempts at producing thrust based on the intermittent detonation cycle were carried out with the same basic experimental setup; namely, a long straight detonation tube employing forced fuel injection at : : : closed rube end. We have discussed the many reasons why uch a device cannot take proper advantage of the physical \(r\). eesses associated with detonation.
The experiments performed at the Nav.. Postgraduate School using a self-aspirating mode of opera: in for a pulsed detonation thruster produced very useful re uits which, upon further examination, provide us with a rouls toward practical propulsion engines of variable thrust leveis that are both controllable and scalable.
We have explored some of the implications of the possible applications of the self-aspirating detonation engine concept and have developed a suitable numerical simulation code to be used as a design, analysis, and evaluation tool. In fact, the preliminary analysis of a candidate detonation chamber flow was shown to be dominated completely by unsteady gasdynamics. An attempt to understand the flow properties based on any steady-state model or one-dimensional unsteady analytical model will miss such important aspects as fuel-air mixing and shock reflection from internal geomerrical obstacie such as the converging nozzle. The unsteady simulation code developed during the course of our study is a necessary tool that we plan to use in a study leading to a feasible prototype engine design realizing the full potential of the intermittent detonation process.

\section*{Acknowledgments}

The work reported here was supported by the Deferse Advanced Research Projects Agency under Concract N66001-88-D-0088. The authors express appreciation to Adam Drobot and Aharon Friedman for helpful suggestions and advice.

\section*{References}
\({ }^{1}\) Stodola, A., Stearn and Gas Turbines. McGraw-Hill, New York. 1927.
\({ }^{2}\) Zipkin, M. A., and Lewis, G. W., "Analytical and Experimental Performance of an Explosion-Cycle Combustion Chamber of a Jes Propulsion Engine." NACA TN-1702, Sept. 1948.
\({ }^{3}\) Shultz-Grunow, F.. "Gas-Dynamic Investigation of the Pulse-Jet Tube." NACA TM-1131. Feb. 1947.
\({ }^{4}\) Zinn. B. T., Miller, N., Carvelho. J. A., and Daniel, B. R., "Pussating Combustion of Coal in Rijke Type Combustor." 19th Internotional Sympasium on Combustion, Combustion Inst., Pittsburgh. PA, 1982. pp. 1197-1203.
\({ }^{\text {S }}\) Hoffmann, \(N\)., "Renction Propulsion by Intermisteat Detonative Combustion." Ministry of Supply, Volkenrode Transiation. 1940.
\({ }^{6}\) Nichouls, J. A., Wilkinson, H. R., and Morrison, R. B.. "Intermittent Detonation as a Thrust-Producing Mechanism." Jet Proputsion. Vol. 27, 1957, pp. 534-541.
'Dunlap, R., Brehm, R. L.. and Nicholls. J. A., "A Preliminary Study of the Application of Steady State Detonative Combustion of a Reaction Engine." Jet Propulsion, Vol. 28, 1958, pp. 451-456.
\({ }^{8}\) Nicholls, J. A., Gullen. R. E., and Ragland. K. W., "Feasibility Studies of a Rotating Detonation Wave Rocket Motor." Journal of Spacecraft and Rockets, Vol. 3. 1966. pp. 893-898.
\({ }^{9}\) Adamson. T. C., and Olsson, G. R.. ' Performance Analysis of a Rotating Detonation Wave Rocket Engine." Astronautica Acta, Vol. 13. 1967. pp. 405-415.
\({ }^{\text {io Shen. P. I., and Adamson. T. C. "Theoretucal Analysis of a }}\) Rotating Two-Phase Detonation in Liquid Rocket Motors." Astronautica Acta, Vol. 17, 1972. pp. 715-728.
"Krzycki. L. J.. "Performance Characteristics of an Intermittent Detonation Device." U. S. Naval Ordnance Test Station. China Lake. CA. Navweps Rept. 765S, 1962.
\({ }^{12}\) Matsui. H., and Lee. J. H.. "On the Measure of the Relative Detonation Hazards of Gaseous Fuet-Oxygen and Air Mixtures.' Seventeenth Symposium (Internononal) on Combusuon, Combustion Inst., Pittsburgh, PA, 1978. pp. 1269-1280
\({ }^{13}\) Korovin. L. N., Losev, A.. Ruban. S. G.. and Smekhov. G. D..
"Combustion of Natural Gas in a Commercial Detonation Reactor," Fizika Gor. Vzryva, Vol. 17. No. 3, 1981, p. 86.
\({ }^{14}\) Smirnov, N. N., and Boichenko. A. P., "Transition from Deflagration to Detonation in Gasoline-Air Mixtures," Fizika Gor. Vzryva, Vol. 22, No. 2, 1986. pp. 65-67.
\({ }^{15}\) Lobanov, D. P., Fonbershtein, E. G., and Ekomasov, S. P.. "Detonation of Gasoline-Air Mixtures in Small Diameter Tubes," Fizika Gor. Vzryva, Vol. 12. No. 3, 1976, p. 446.
\({ }^{16}\) Back. L. H., "Application of Blast Wave Theory to Explosive Propulsion,' Acta Astronawica, Vol. 2, No. S/6, 1975, pp. 391-407.
\({ }^{17}\) Varsi. G.. Back. L. H., and Kim, K., "Blast Wave in a Nozzle for Propulsion Applications." Acta Astronautica, Vol. 3. 1976, pp. 141-156.
\({ }^{18}\) Kim, K., Varsi, G., and Back, L. H., "Blast Wave Analysis for Detonation Propulsion." AlAA Journal, Vol. 10, No. 10. 1977, pp. 1500-1502.
\({ }^{19}\) Back, L. H.. Dowler, W. L., and Varsi, G.. "Detonation Propulsion Experiments and Theory," AlAA Journal, Vol. 21, No. 10. 1983, pp. 1418-1427.
\({ }^{20}\) Eidelman. S., and Shreeve, R. P.. "Numerical Modeling of the Nonsteady Thrust Produced by Intermittent Pressure Rise in a Diverging Channel." American Society of Mechanical Engineers. Multidimensional Fluid Transient, FED-Vol. 18, 1984, p. 77.
\({ }^{21}\) Eidelman. S., "Rotary Detonation Engine," U.S. Patent 4741 154, 1988.
\({ }^{22}\) Heiman. D.. Shreeve. R.P., and Eidelman, S., "Detonation Pulse Engine." AlAA Paper 86-1683, June 1986.
\({ }^{23}\) Monks. S. A., "Preliminary Assessment of a Rotary Detonation Engine Concept." M.Sc. Thesis. Naval Postgraduate School. Monterey, CA. Sept. 1983.
\({ }^{24}\) Camblier, T. L., and Adeiman, N. G., "Preliminary Numerical Simulations of a Pulsed Detonation Wave Engine." AIAA Paper 88-2960. Aug. 1988.
\({ }^{25}\) Lohner, R., Morgan, K.. and Zienkiewicz, D. C., "Finite-Element Methods for High Speed Flows,' AIAA Paper 85-1531, July
\(i 985\).
\({ }^{26}\) Lohner, R., and Morgan. K.. "Improved Adaptive Refinement Strategues for Finite-Element Aerodynamic Computations,' AlAA Paper 86-0499, Jan. 1986.
\({ }^{7}\) Barth. T. J., and Jespersen, D. C.. "The Design and Application - .Jpwind Schemes on Unstructured Meshes." AIAA Paper 89-0366. Jan 1989.
\({ }^{28}\) Eidelman. S., Collela, P., and Shreeve. R. P.. "Application of the Godunov Method and lis Second-Order Exiension to Cascade Flow Modelling," AJAA Journat, Vol. 22. No. 1, 1984. p. 10.
\({ }^{29}\) Baker, T. J.. "Developments and Trends in Three-Dimensional Mesh Generations." Transonic Symposium, NASA Langley Research Center. Hampton. VA. 1988.
\({ }^{30}\) Jameson, A., Baker. T. J., and Weatherill, N. P., "Calculation of Inviscid Transonic Flow Over a Complete Aircraft." AJAA Paper 86-0103. Jan. 1986.
\({ }^{31}\) Greengard, L., and Rokhlin. V.. "A Fast Algorithm for Particie Simulations," Journal of Computational Physics, Vol. 73. 1987. pp. 325-348.
\({ }^{32}\) Eidelman. S.. Collela. P., and Shreeve, R. P., "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," AJAA Journal, Vol. 22, No. 1. 1984, p. 10.
\({ }^{33}\) van Leer, B., "Towards the Ultimate Conservative Difference Scheme. V. A Second Order Sequel to Godunov's Method," Journal of Computational Physics, Vol. 32, 1979. pp. 101-136.
\({ }^{14}\) Collela, P., and Woodward. P., "The Piecewise Parabolic Method (PPM) for Gasdynamical Simulations." Journat of Computational Phusics, Vol. 54, 1984, pp. 174-201.
\({ }^{15}\) Barth. T. J.. and Jespersen. D. C.. "The Design and Application of Upwind Schemes on Unstructured Meshes. ' AlAA Paper 89-0366, Jan. 1989.
\({ }^{36}\) Glaz. H. M., Collela, P., Glass, I. I.. and Deschambault. R. L.. "A Detailed Numerical, Graphical, and Experimental Study of Oblique Shock Wave Reflections," Defense Nuclear Agency, DNA-TR-86-365. 1986.

\title{
Numerical and analytical study of transverse supersonic flow over a flat cone
}

\author{
D.L. Book \({ }^{1}\), S. Eidelman \({ }^{2}\), I. Lottati \({ }^{2}\) and X. Yang \({ }^{2}\) \\ \({ }^{1}\) Code 4405, Naval Research Laboratory, Waahington, DC 20375 \\ \({ }^{2}\) Science Applications international. McLean, VA 22102
}

Received February 8, 1991; accepted March 21, 1991

\begin{abstract}
Quasisteady supersonic flow over a flat cone on a plane surface is studied. A formula is derived for the angle through which the flow lines turn at the cone. The results are used to justify the use of two-dimensional simulations of the flow. Peak pressures and total impulses are obtained numerically for various cone angles.
\end{abstract}

Key words: Cone, Euler equation, Mach reflection, CFD, Supersonic flow

\section*{1. Introduction}

The parpose of this study is to determine the maximum pressure on the surface of a flat cone (one for which the height is much less than the diameter) in the quasiuniform flow behind a strong blast wave propagating at right angles to the axis of the cone. If the cone is small compared with the radius of the blast wave, the undisturbed flow is approximately rectilinear. First, the blast wave passes over the cone and an unsteady load builds up on the surface. In general the shock will undergo Mach reflection over at least part of the surface of the cone, the extent depending on the cone angle \(\alpha\), the adiabatic index 9 , and the Mach number M. After a short transitional stage the cone will then be subject to the quasisteady supersonic flow field behind the blast front. (For a strong blast wave in air, the pressure drops to one-half the peak value about one-tenth of the way back from the front toward the origin of the blast (Sedov 1959). Thus, if the blast center is located \(\sim 100\) radii from the cone, the pressure arriving at the cone is reduced to half its initial value \(\sim 10\) radii behind the front.) The post-shock flow velocity varies on the same scale. We would like to find whether the pressure on the cone reaches its maximum during

\footnotetext{
Offprint requeste to: D.L. Book
}
the quasisteady or the unsteady regime of the flow and determine its magnitude.

The cone, shown schematically in Fig. 1, is located on a plane surface. We take its axis to be normal to the surface, and we model the front of the spherical blast wave as a planar shock wave propagating normally to this axis. This is a reasonable approximation when the distance to the blast center is much larger than the radius, i.e., in the same limit for which we can asoume that the state behind the front is uniform. The flow over the cone is substantially three-dimensional. The only symmetry is with respect to inversion about the midplane (the plane through the cone axis and paralle! to the flow). In the general case in which the cone axis is not normal to the plane, the problem is totally asymmetrical.

Previous studies of the effect of supersonic flows on conical bodies have focused primarily on situations in which the flow is parallel or nearly parallel to the axis of the cone. Those results are applicable to, e.g., the aerodynamical effects associated with the noee cones of re-entry vehicles. In contrast, the problem we are considering may be regarded as an idealized model of the interaction between a blast wave and a ground or shipboard structure. It can also model the flow over a bump or a housing on the skin of a supersonic aircraft or missile. The results may thus be relevant to both damage studies and flight characteristics.

A number of experimental studies related to the problem of oblique supersonic flow over a cone have been carried out, beginning at least three decades ago (Tracy 1963: Damkevala and Zumwalt 1968). Most of this work has dealt with small deviations from axisymmetry, although angles of attack as large as \(30^{\circ}\) have been studied (Yahalom 1971). Less experimental effort seems to have been devoted to transverse flows (angle of attack equal to \(90^{\circ}\) ). Likewise, theoretical studies by \(\mathrm{Go}-\) man and Davydov (1975) and Gusarov et al. (1979) have concentrated on smail deviations from conical shapes in axisymmetric flow. Numerical simuiations have been car-
ried out at large angles of ateack ( \(30^{\circ}-50^{\circ}\) ) by Fletcher and Holt (1976). These resuits are useful, and the same techniques can be applied to transverse fiows, but they have definite limitations. At the Mach numbers investigated ( \(\mathrm{M} \leqslant 6-8\) ) the flow is strongly conditioned by the presence of a viscous boundary layer. This necessitates solution of the Navier-Stokes equations instead of the Euler equations. and it may be necessary to incorporate a turbulence model as well. In three dimensions it is difficult to obtain good resolution even for inviscid flow; the presence of a thin boundary layer makes the problem even more formidable.

In the next section we determine the streamines associated with transverse flow over a cone in the Newtonian approximation, i.e., assuming that the streamines follow the contours of the body surface. We show that for a flat cone the streamines deviate very little from the vertical plane in which they were propagating before reaching the cone. We use this result to argue that the flow over the cone can be accurately modeled by treating each cross section made by a vertical plane separately, i.e., by solving a series of two-dimensional problems. In the section following that, we describe the results of such calculations. For this purpose we use an Euler code, which is only valid at low flow Mach numbers (M\$5). In our calculations the shock Mach number equals 25 , but the Mach number of the flow in the heated region behind the shock is \(\sim 3\), so we are justified in ignoring viscous effects. At higher values of \(M\) our results are at least indicative and can be expected to yield accurate values of the peak pressures on the cone. (Of course the reduction of the problem to two dimensions is a consequence of the cone geometry and would be equally useful for Navier-Stokes applications.) We show that these results can be combined to draw a picture of most of the flow feld. In the final section we summarize our conclusions.

\section*{2. Streamline trajectories}

If the flow deflected by a solid object remains supersonic after deflection, the angle between the flow direction and the surface determines the flow parameters behind the shock for given inlet flow parameters. For shock Mach numbers \(M Z 10\), the shock angle is small and ihe deflected flow on the upwind side closely follows the form of the deflecting object. The streamlines are determined by the condition that the angle through which they are deflected be as small as possible. We would like to analyze how this defiection angle varies on the surface of the cone shown in Fig. 1. Based on this analysis we can estimate most of the characteristics of steady supersonic flow directed transversely toward the cone.

The equation for the frustrum of a cone with the geometrical center of its base located at the center of coordinates (see Fig. 1) is
\(\left(x^{2}+y^{2}\right) \tan ^{2} \alpha=(z-h)^{2}\),
where \(h\) is the height of the cone and \(\alpha\) is the angle between the side of the cone and the base. The angle


Fig. 1. Schematic of the model. The \(z\) axis coincidet with the axim of the cone and the flow in taten in the direction of the positive \(x\) axis. The angles \(\alpha, \beta, \gamma\), and \(\omega\) are defined in the text
\(\delta\) between the propagation direction \(n\) (taken to be the positive \(x\)-direction) and the deflected streamline at the leading edge of the cone, which determines the shock strength, is bounded above by the angies between \(\mathbf{n}\) and the conic sections in the \(x-y\) and \(x-z\) planes.

The cross sections of the cone parallel to the \(x-y\) plane are circles given by
\(x^{2}+y^{2}=\left(z_{0}-h\right)^{2} / \tan ^{2} \alpha \equiv r^{2}\),
where \(z_{0}\) is constant for each particular croses section and \(r\) is the radius of the circle. The angle \(\beta\) between \(n\) and the tangent to this circle at the point with ordinate \(y\) is given by
\(\tan \beta=\frac{\partial y}{\partial x}=-\frac{x}{\left(r^{2}-x^{2}\right)^{1 / 2}}=-\frac{\left(r^{2}-y^{2}\right)^{1 / 2}}{y}\).
The sign is chosen so that positive sues of \(\beta\) correspond to negative values of \(x\) (i.e., the upwind side).

The cross sections parallel to the \(x-z\) plane form hyperbolas on the surface of the cone. The equation for this family of curves is
\(\frac{(z-h)^{2}}{\tan ^{2} \alpha}-x^{2}=y_{0}{ }^{2}\),
where \(y_{0}\) is constant for each particular cross section. The angle \(\gamma\) between \(n\) and the tangent to this hyperbola is given by
\[
\begin{align*}
\tan \gamma & =\frac{\partial z}{\partial x}=\tan \alpha /\left(1+y_{0}^{2} / x^{2}\right)^{1 / 2}  \tag{5}\\
& =\left(1-y_{0}^{2} / r^{2}\right)^{1 / 2} \tan \alpha
\end{align*}
\]

Let us examine now how \(\tan \beta\) and \(\tan \gamma\) vary on the intersection of the cone with the \(x-y\) plane when \(y\) changes from 0 to \(\pm R\), where \(r=R=h / \tan \alpha\). From (3), \(\tan \beta\) approaches \(\infty\) and 0 , i.e., \(\beta=90^{\circ}\) and \(\beta=0^{\circ}\). in the limits \(y \rightarrow 0\) and \(y \rightarrow \pm R\), respectively. From (5), \(\tan \gamma\) approaches \(\tan \alpha\) and 0 in the same limits. corresponding to \(\gamma=\alpha\) and \(\gamma=0^{\circ}\).

Comparing (3) and (5), we eeadily conciude that for \(\tan \alpha<1\)
\(\tan \gamma<\tan \beta, \quad 0<y<R ;\)
\(\tan \gamma=\tan \beta=0, \quad y=R\),
and for \(\tan \alpha>1\)
\(\tan \gamma<\tan \beta, \quad 0<y<R / \tan \alpha ;\)
\(\tan \gamma=\tan \beta, \quad y=R / \tan \alpha ;\)
\(\tan \gamma>\tan \beta, \quad R / \tan \alpha<y<R ;\)
\(\tan \gamma=\tan \beta=0, \quad y=R\).
Thus, at any point with \(x \leq 0\) on the cone specified by (I) for \(\tan \alpha<1\), the propagation vector \(n\) makes a smaller angle with the cone in the cross section parallel to the \(x-z\) plane than in the one parallel to the \(x-y\) plane. For supersonic flow over the cone shown in Fig. I, condition (6) implies that the velocity vectors behind the shock front in the region of compression of the fiow will always be directed over the cone and not around it.

Now we consider intermediate cross sections of the cone, obtainable by rotating through an angle \(\omega\) about the line \(A B\) defined by the intersection of the \(x-y\) plane and a plane parallel to the \(x-z\) plane. We would like to find the minimum angle between \(n\) and the tangent in these cross sections when \(\omega\) varies from \(0^{\circ}\) (cross section parallel to the \(x-y\) plane) to \(90^{\circ}\) (cross section parallel to the \(x-z\) plane).

This family of cross sections is defined by (l) together with the equation of the crose-section plane,
\(z-Z=(y-Y) \tan \omega\).
where \(\omega\) is the angle between the cross-section plane. We restrict ourselves to points lying in the \(x-y\) plane as shown in Fig. 1, since the bow shock produced by the interaction between the flow and the cone will either be attached at this point or will stand off slightly ahead of the cone. The coordinates of the point where the flow encounters the cone are \(X=\left(R^{2}-Y^{2}\right)^{1 / 2}, Y\), and \(Z=0\). The tangent line is the intersection of this plane and the plane tangent to the cone at ( \(X, Y, Z\) ). The equation of the latter is obtained from (1):
\((x X+y Y) \tan ^{2} \alpha+h(z-h)=0\).
Solving (8) and (9) simultaneously yields the equations describing the tangent line:
\(z=(y-Y) \tan \omega=\frac{-(x-X) X \tan ^{2} \alpha \tan \omega}{h \tan \omega+Y \tan ^{2} \alpha}\).
The angle \(\delta\) between this line and \(n\) is given by
\[
\begin{align*}
\tan \delta & =\frac{\left[(y-Y)^{2}+z^{2}\right]^{1 / 2}}{x-X} \\
& =\frac{\left(h^{2}-Y^{2} \tan ^{2} \alpha\right)^{1 / 2} \tan \alpha}{h \sin \omega+Y \tan ^{2} \alpha \cos \omega} \equiv f(\omega) . \tag{11}
\end{align*}
\]


Fig. 2. Value of angle \(w\) which minimizes deflection angle aa a function of \(Y / R\)

Now we look for the extrema of \(f(\omega)\) when \(\omega\) varics from \(0^{\circ}\) to \(90^{\circ}\) :
\(\frac{d f}{d \omega}=\frac{\tan \delta\left(Y \tan ^{2} \alpha \sin \omega-h \cos \omega\right)}{h \sin \omega+Y \tan ^{2} \alpha \cos \omega}\),
which vanishes only for
\(\tan \omega=\frac{h}{Y \tan ^{2} \alpha} \equiv \tan \omega_{\text {min }}\).
It is easy to show that (13) defines the minimum of \(f\). Substituting (13) into (11), we find
\(\tan \delta_{\min }=\frac{\left(h^{2}-Y^{2} \tan ^{2} \alpha\right)^{1 / 2} \tan \alpha}{\left(h^{2}+Y^{2} \tan ^{4} \alpha\right)^{1 / 2}}\),
which determines the angle \(\delta_{\min }\) through which the streamline of the supersonic flow behind the shock wave turns as a function of \(Y\).

From (13) we see that \(\tan \omega>1\) holds for \(\tan \alpha<1\), since \(Y \leq h / \tan \alpha\). Figure 2 shows how \(\omega_{\text {min }}\) changes when \(Y\) varies from 0 to \(R\) for various values of \(\tan \alpha\). This figure implies that for flat cones the supersonic flow will be almost parallel to the \(x-z\) plane.

Another way to reach the same conclusion is by finding the maximum \(y\)-displacement of a streamine from its original trajectory. This occurs for \(x=0\), when the trajectory reaches its highest point on the surface of the cone. The tangent to the cone at \(x=0\), i.e., the section of the cone in the \(y-z\) plane, is described by
\(y \tan \alpha+z=h\).
Solving this equation together with
\(z=(y-Y) \tan \omega_{\text {min }}=\frac{h(y-Y)}{Y \tan ^{2} \alpha}\),
we obtain
\(y=\frac{h Y \sec ^{2} \alpha}{h+Y \tan ^{3} \alpha} \equiv y_{0}\).
Maximizing \(\Delta y=y_{0}-Y\) with respect to \(Y\), we find that the largest value of \(\Delta y\) occurs for
\(Y=\frac{h \cos ^{2} \alpha}{\sin \alpha(1+\cos \alpha)}=\frac{R \cos \alpha}{1+\cos \alpha}\)
and equals
\((\Delta y)_{\max }=\frac{h \sin \alpha \cos \alpha}{(1+\cos \alpha)^{2}}=\frac{h \tan ^{2} \alpha / 2}{\tan \alpha}\).
For \(\alpha \ll 1\) we have \(Y_{\max } \approx R / 2\) and \((\Delta y)_{\max } \approx h \alpha / 4\).
In summary, the vertical deflection of the streamlines over a cone of small edge angle \(\alpha\) is of order \(\alpha\), while the horizontal deflection is of order \(\alpha^{2}\). For \(\alpha \leqq 0.1\) we see that the flow over the cone deviates from the vertical plane in which it starts out by an amount 0.01 . Thus the compression region of supersonic flow over flat cones can be calculated accurately by modeling the flow over separate cross sections of the cone made by planes parallel to the \(x-z\) plane. A wedge, being two-dimensional, is easier to model than a cone. For this reason we carried out several calculations of the interaction between blast waves and wedges, described in the next section.

We can also conclude that the maximum change in the direction of a streamline for such cones will be \(\alpha\). If the shock undergoes regular reflection, uniform supersonic flow over a wedge with base angle \(\alpha\) gives an upper bound for the pressure on the cone. Where Mach reflection occurs it is necessary to model the transient regime, as the pressure peaks associated with the Mach stem and the contact surface could conceivably be larger.

\section*{3. Numerical modeling}

Let us consider a cone with \(\alpha=10^{\circ}(\tan \alpha=0.176)\) at the base. According to the analysis in the preceding section of a transversely directed supersonic flow over a cone, an upper limit can be obtained by modeling the same supersonic flow over a wedge with opening angle \(\alpha\).

Here we present the result obtained by numerically solving the equations for the flow over the wedge when it is loaded by a passing blast wave. For the simulation we used the Fast Unstructured-Grid Second-Order Godunov Solver, described by Eidelman and Lottati (1990). This code, which is based on a second-order Godunov method (Eidelman et al. 1984), provides a method for solving the Euler equations of gasdynamics on unstructured grids with arbitrary connectivity. The use of a data structure with only one level of indirectness leads to an easily vectorized and parallelized code with low memory requirements and high computational efficiency. The algorithm has been tested for performance and accuracy over a wide range of Mach numbers and geometrical situations, and has demonstrated robustness without the need for any adjustable parameters. It can be implemented in either a triangle- or vertex-based form; experience with the method has shown that extremely low levels of artificial viscosity can be achieved using the triangle-based version of the method. Direct dynamic refinement of the grid (Eidelman and Lottati 1990) allows automatic adaptation to the front of the moving blast wave. This refinement guarantees that the associated highly inhomogeneous pressure and density features are accurately tracked.


Fig. 3. Unstructured grid for \(\alpha=10^{\circ}\) at times (a) \(35 \mu \mathrm{~s}\), (b) 55 as. and (c) 130 us, associated with the density and presure contour plots of Figs. 4 and 5.Distancen are in meters. These reproductions are unable to resolve the amaileat triangles, which show up an dark regions roughly coincident with the locations of gaedynamic discontinuities

For the initial conditions in the computational domain we assume air at standard temperature and pressure. At \(t=0\), a strong ( \(M=25\) ) blast wave, propagating to the right, is located at the left boundary. We assume that the blast wave is "square" and that conditions at the left boundary of the computational domain remain constant for the whole time of the simulation. A constant value of \(\gamma=1.2\) was used (appropriate to flow behind shocks with this value of \(M\) on account of real-gas effects). For these values of \(\alpha, \gamma\), sad \(M\), shock tube measurements described by Glass (1987) of diffraction over a wedge indicate that double Mach reflection should occur.

Figure 3 shows the computational grid at various times \(t\) : (a) at \(t=35 \mu \mathrm{~s}\), shortly before the blast front reaches the apex of the wedge, located at a horizontal distance \(l=1 \mathrm{~m}\) from the corner; (b) at \(t=55 \mu \mathrm{~s}\), just after it passes the apex; and (c) at \(t=130 \mu \mathrm{~s}\), after the leading shock has exited from the computational domain and a quasisteady state has developed. The highly refined portions of the grid follow shock fronts, contact discontinuities, etc. The numbers of vertices shown are 4166,11785 , and 10959 , respectively, reflecting the complexity of the corresponding states, i.e., the amount of structure in the gasdynamic processes present.

Figure 4 shows contours of density scaled by the ambient density \(\rho_{0}=1.29 \mathrm{~kg} \mathrm{~m}^{-3}\) at the same times as in Fig. 3. In the first frame the flow is still identical with that for a shock reflecting from a single wedge with opening angle \(\alpha\), and therefore is evolving self-similarly (Glass 1987). The first Mach stem and incident shock are clearly defined. The associated contact surface is barely discernible, both because the contour levels are bunched near the much larger jumps at the shocks and because at very high Mach numbers the slip line is found quite close


Fig. 4. Scaled density contours for \(\alpha=10^{*}\) at times (a) \(35 \mu \mathrm{~m}\), (b) \(55 \mu \mathrm{~s}\), and (c) \(130 \mu \mathrm{~s}\). Thirty-five contour levels are plotted. with \(\rho / \rho_{0}\) varying from 1.0 to 13.5 . They are concentrated at the large density jumps in the strong shocks. This causes the shocks to be emphasized more than the contact discontinuity, where the density change is relatively small. The atructure of the Mach reflection is discernible only in the earlicat frame. In the final frame the flow has become essentially steady
to the Mach stem (Glaz et al. 1985). In Fig. 4b the front has passed the apex and the evolution is no longer selfsimilar. The flow behind the front expands through an expansion fan attached to the corner. Also clearly visible is the recompression shock two-thirds of the way from the corner to the front. This shock, which serves to reconcile the high pressures in the region following the Mach stem with the lower values appropriate to the expanded flow downstream from the corner, is propagating backward but is being swept to the right by the strong flow behind the leading shock. The triple points have moved far above the cone and no longer appear on the grid. Note that the supersonic outflow boundary condition imposed at the top of the mesh allows material and waves to pass out of the system without reflecting and without causing other signals to propagate back inside. Figure 4 c depicts the flow at late times, when transients have essentially disappeared. The only gasdynamic features visible are shocks at the leading and trailing edges and the expansion fan.

Figure 5 shows traces of the static and dynamic pressure scaled by the ambient pressure \(p_{0}=101.3 \mathrm{kPa}\) along the top surface of the wedge as functions of the horizontal distance \(x\) in meters at the three specified times. Ahead of the blast these quantities are at ambient levels, they rise sharply when the shock sweeps past, fluctuate, and finally reach their asymptotic values. Note that, as is seen experimentally in shock-tube studies (Glass 1987), the pressure on the surface of the wedge is highest at the leading edge. It is also important to notice that, although these traces exhibit considerable structure (especially the static pressure), the maximum values of the pressure and density for the transient stages are


Fig. 3. Scaled dynamic and static prems wre on the wedge murface in the case \(\alpha=10^{\circ}\) as functions of the distance for timee \(35 \mu s(0)\), \(55 \mu \mathrm{~m}(0)\), and \(130 \mu(\Delta)\). Ahead of the shock these quastities have their ambient values; far behind the shock they become ementially steady
always smaller than those in the quasisteady flow regime. At the same time, values of the Mach number in the transitional stage can be higher than in the quasiateady state. For our case, however, the maximum Mach number is at most \(10 \%\) higher than the steady-state value. This shows that the maximum force is applied to any point on the surface of the wedge in the quasisteady state.

Figure 6 shows as functions of time the drag and lift coefficients, defined by
\(C_{D}=\frac{\int p_{\|} d x}{\rho_{\infty} u_{\infty}^{2} l}\)
and
\(C_{L}=\frac{\int p_{\perp} d x}{\rho_{\infty} u_{\infty}^{2}!}\).
Here \(p_{\|}=p \cos \theta\) and \(p_{\perp}=p \sin \theta\) are the horizontal and vertical components of the pressure in terms of the angle \(\theta\) between the normal to the surface and the \(x\) axis, the integrals are carried out over the surface of the wedge, and \(\rho_{\infty}\) and \(u_{\infty}\) are the density behind the undisturbed shock front. The lift grows monotonically, but the drag first rises, then drops to its quasisteady value. The decrease results from the increase in pressure on the trailing side of the wedge when the shocked air reaches that side.


Fig. 6. Lift and drag coefficients for \(\alpha=10^{\circ}\) as functions of time


Fig. 7. Scaled dynamic and static pressure on the wedge surface in the case \(\alpha=20^{\circ}\) as functions of the distance for times \(34 \mu \mathrm{u}\) (ㅁ), \(94 \mu \mathrm{~s}\) ( 0 ), and \(168 \mu \mathrm{z}\) ( \(\Delta\) )

To learn how sensitive the flow is to the wedge angle, we carsied out a second calculation with \(\alpha=20^{\circ}\) \((\tan \alpha=0.364)\) and the other parameters unchanged. This calculation was done with a coarser grid than the previous one, with triangles about a factor of three larger. Most of the features resembled those of the first case. For example, the traces of the static and dynamic


Fig. 8. Lift and drag coefficients for \(\alpha=20^{\circ}\) as functions of time (in milliseconds)
pressure along the top surface, shown in Fig. 7, are qualitatively similar to those for \(\alpha=10^{\circ}\). One difference is that the drag rises monotonically as a function of time (Fig. 8), rather than decreasing after the shock has passed. This is because the expansion fan attached to the top of the cone is stronger and a low-pressure "bubble" forms on the lee side.

We carried out additional calculations with other values of the parameters. As long as \(\alpha\) was amall and \(M\) was large the results resembled those discussed above. They are not described here, since in no case did the transient pressures exceed those in the quasisteady state, nor were the features in the flow qualitatively different.

\section*{4. Conclusions}

From the foregoing treatment it is clear that the same modeling technique can be used to determine the pressure distribution in cross sections other than the midplane. So long as \(|y|\) does not approach \(R\), the deflection is mostly vertical. The corresponding profile is now a hyperbola, but it differs noticeably from a weige only near the top. The principal difference is in the expansion wave at the top, which becomes broader than the centered rarefaction wave seen above. For larger values of \(y\) the cross section of minimum deflection, found by solving (1) and (8) together, is more rounded at the top but the leading edge of this hyperbolic "wedge" has a smaller angle. By combining pressure distributions at several representative values of \(y\) we can find the pressure loading over the entire cone. The picture breaks down only at the lateral extremities of the cone \((|y| \sim R)\).

On the basis of qualitative asgumen's and numerical simuiation. our study of the flow resulting from a blast wave propagating transversely over a cone leads to the following conclusions:
1. Flow over a cone with small base angle can be accurately simulated by individually modeling the twodimensional flows over cross sections of the co. \(:\) made by vertical planes perpendicular to the shock front.
2. The maximum load on the cone can be calculated from the solution of the flow over the cross section determined by the plane through the cone axis (Fig. 1). 3. In this solution the pressure attains its maximum as a function of time in the quasisteady supersonic regime established after the front has passed.

Acknowiedgements. This work was aponsored in part by the Defense Nuclear Agency. The work of the first author was supported by the Naval Researci Laboratory.

\section*{References}

Damkevala RJ. Zumwalt GW (1968) Technique for studying interactions between a body moving at supersonic speeds and blast waves approaching obliqueiy. Rev Sci Instr 39:1254-1256
Eidelman S, Colella P. Shreeve RP (1984) Application of the Go dunov method and its second-order extension to cascade flow modeling. AIAA J 22:1604-1615

Eidelman S. Lottati I (1990) Reuection of the triple point of Mach reflection in planar and axisymmetric converging channein. La: Reichenbach H, (Ed) Proc 9th Mach Reflection Symp Freiburk FGR
Fletcher CJ. Holt M, (1976) Supersonic viscous flow over conea at large angles of attack. J Fluid Mech 74:561-591
Glase II (1987) Some aspects of shock-wave research. ALAA ; 25:214-228
Glaz HM, Colella P. Glam II, Deschambauit RL (1985) A numerical atudy of oblique shock-wave reflections with experimental comparisons. Proc R Soc London A398:117-140
Goman OG, Davydov V1 (1975) Determination of aerodynamic charateristics of cone with arbitrary small surface deviations. Lzv VUZ Aviats Tekh 18:58-62. [Tranal Soviet Aeronautica 18(4):44-48]
Guearov AA, Dvoretskir, VM, Ivanov, MYa. Levin VA, Chernyr, GG (1979) Theoresical and experimental investigation of the aerodynamic characteristics of three-dimensional bodies. lav Alad Nauk SSSA Mekh Zhidkosti i Gaza No 3, 97-102. [Tranal Fluid Dynamics 14:402-406]
Sedov LI (1959) Similarity and dimensional methods in mechanics. Acadernic Press. New York
Tracy RR (1963) Hypersonic flow over a yawed cone. Memo 69 Calif Inst Tech Graduate Aeronautical Labs
Yahalom R (1971) An experimental investipation of supersonic fow patt yawed cones. Rept AS-71-2 Uniy Calif Berkeley

This articie was processed using Springer-Verlag IEX Shock Waves mecro package 1990.

AIAA 92-0346
Detonation Wave Propagation in Variable Density Multi-Phase Layers
S. Eidelman and X. Yang

Science Applications International Corporation McLean, VA 22102

\section*{30th Aerospace Sciences Meeting \& Exhibit January 6-9, 1992 / Reno, NV}

\author{
Detonation Wave Propagation in Variable Density Multi-Phase Layers \\ Shmuel Eidelman and Xiaolong Yang \\ Science Applications International Corporation \\ McLean, VA 22102 \\ ABSTRACT
}

A mathematical model is presented describing a physical syatem of detonation waves propagating in a solid particle/air mixture with a wide range of solid phase concentrations. The mathematical model was solved numerically using the Second Order Godunov method, and numerical solutions were validated for detonation waven propagating in mixtures with concentrations of solid phase from \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\) to 1000 \(\mathrm{kg} / \mathrm{m}^{3}\). Numerical solution was obtained for detonation waves propagating in a syatem consisting of layers of explosive powder with substantial variation in particle density between the layers. The study revealed a specific detonation front structure that is dependent on the thickness of the layers and their energetic content. The dynamics of lateral initiation of the adjacent layers and the structure of detonation waves is this system were investigated. Results are given for detonation of clouds having a small concentration of particles and a ground layer in which solid particle densities are three orders of magnitude larger than in the cloud.

\section*{1. INTRODUCTION}

It is of considerable practical interest to study diffraction and transmission of the detonation waves into bounding layers of explosives. When combustible particles are intentionally or unintentionally dispersed into the air, the resulting mixture can be detonable. Formation of this potentially explosive durt environment and the properties of its detonation are of significant practical interest in view of its destructive or creative effects. The experimental and theoretical study of these phenomena until now has addressed only homogeneous particle/oxidizer mixtures. However, intentional or accidental procesen of the explocive duat dispersion will always lead to inhomogeneous particle density distribution. Some industrial methods of explosive forming rely on detonation of explosive powder. This powder can be deposited as a thin layer over the surface area of the forming metal, with some remaining concentration in the vicinity of the layer. Also a multi-layer syatem can be formed from several layers of condensed explosives of different density. The structure of the detonation weves, phenomenology of its initiation, and propagation in these environmenta, are the main subjects of this paper.

When the detonation wave is generated in a homogeneous mixture by a "direct initiation," it starts with a strong blast wave from the initiating charge. As the blast wave decays, combustion of the reactive mixture behind ita shock front starts to have a larger roie in support of the shock wave motion. When the initial explosion energy exceeds some critical value, transition to steady state detonation occurs. \({ }^{(1-4)}\) In explosive dust mixtures with a nonuniform distribution of particle density, the initiation dynamics is significantly more complicated. The critical initiation energy sufficient for one of the explosive particle density regions is not necessarily adequate for other regions. Also, when there is a aig-
nificant variation in density between the different layers (regions) of the mixture, steady detonation in one layer can resuit in an overdriven detonation in an adjacent layer. Liu et al. \({ }^{5}\) has studied experimentally a syotem of gseeous layers and lateral interactions for gascous detonations. Our paper demonstratea that the phenomenoiogy of these interactions is somewhat different from these experimental studies of multi-layer detonations in gaser. This is primarily because the energy content of adjacent layers in a typical multi-gas layer experiment \({ }^{5}\) varies by a factor of less then two, whereas the energy content in exploaive dust/air mixtures can vary by several orders of magnitude.

In this paper we use detailed numerical simulation to study the initiation dynamics and propagation phenomenology for a general case of explosive dust dispersion. We will consider particle density variation from \(1000 \mathrm{~kg} / \mathrm{m}^{3}\) in the ground layer to \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\) for the upper edges of the cloud. The effects of variation of the cioud density on detonation wave parameters will be examined for different cases of cloud pasticie density distribution. When possible, the results of computer simulations are validated in comparison with experimental and theoretical studies.

Section 2 of this paper describes a mathematical model that inciudes governing conservation equations for two phases and the constitutive laws, as weil as the model for a particle gas interaction, combustion and equation-of-state for gas phase. The numerical integration technique for solving the mathematical model will is also outlined. In Section 3, we present our numerical simulation resuits. We first validate our model by conparing one-dimensional detonation wave simulation with available experimental resuits. We then give the two dimensional simulation for detonation wave propagation in combustible particle/air mixtures with variable parti-
cle density distribution. Conciuding remaris are given in Section 4.

\section*{2. THE Mathematical model and the nuMERICAL SOLUTION}

The mathematical model consists of conservation governing equations and constitutive laws that provide clocure for the model. The basic formulation adopted here follows the two-phase fluid dynamics model preseated in the text by Kuo \({ }^{\text { }}\). The approsch assumes that there are two distinct continua, one for gas and one for solid particles, each moving at its own velocity through its own control volume. The sum of these two volumes represents an average mixture volume. With these assumptions, distinct equations for continuity, momentum and energy are written for each phase. The interaction effects between the two phases are accounted as the source terms on the right hand side of the governing equation. The following is a short description of the two phase flow model used in our study, with conservation equations written in Eulerian form for two-dimensional flow in Cartesian coordinates.

\section*{Conservation Equations}

Continuity of gascous phase
\[
\begin{equation*}
\frac{\partial \rho_{1}}{\partial t}+\frac{\partial\left(\rho_{1} u_{g}\right)}{\partial x}+\frac{\partial\left(\rho_{1} v_{g}\right)}{\partial y}=\Gamma ; \tag{2.1}
\end{equation*}
\]

Continuity of solid particle phase
\[
\begin{equation*}
\frac{\partial \rho_{2}}{\partial t}+\frac{\partial\left(\rho_{2} u_{p}\right)}{\partial x}+\frac{\partial\left(\rho_{2} v_{p}\right)}{\partial y}=-\Gamma ; \tag{2.2}
\end{equation*}
\]

Conservation of momentum of gaseous phase in \(x\) direction
\[
\begin{equation*}
\frac{\partial\left(\rho_{\rho} u_{g}\right)}{\partial t}+\frac{\partial\left(\rho_{1} u_{g}^{2}+\phi p_{g}\right)}{\partial x}+\frac{\partial\left(\rho_{1} u_{g} v_{g}\right)}{\partial y}=-F_{z}+\Gamma u_{p} ; \tag{2.3}
\end{equation*}
\]

Conservation of momentum of solid particle phase in \(y\) direction
\[
\begin{equation*}
\frac{\partial\left(\rho_{1} v_{g}\right)}{\partial t}+\frac{\partial\left(\rho_{1} v_{g} v_{g}\right)}{\partial x}+\frac{\partial\left(\rho_{1} v_{g}^{2}+\phi p_{g}\right)}{\partial y}=-F_{y}+\Gamma v_{p} ; \tag{2.4}
\end{equation*}
\]

Conservation of momentum of solid particle phase in \(x\) direction
\[
\begin{equation*}
\frac{\partial\left(\rho_{2} u_{p}\right)}{\partial t}+\frac{\partial\left(\rho_{2} u_{p}^{2}\right)}{\partial x}+\frac{\partial\left(\rho_{2} v_{p} u_{p}\right)}{\partial y}=F_{z}-\Gamma u_{p} ; \tag{2.5}
\end{equation*}
\]

Conservation of momentum of solid particle phase in \(y\) direction
\[
\begin{equation*}
\frac{\partial\left(\rho_{2} v_{p}\right)}{\partial t}+\frac{\partial\left(\rho_{2} u_{p} v_{p}\right)}{\partial x}+\frac{\partial\left(\rho_{2} v_{p}^{2}\right)}{\partial y}=F_{y}-\Gamma v_{p} ; \tag{2.6}
\end{equation*}
\]

Conservation of energy of gas phase
\[
\begin{align*}
& \frac{\partial\left(\rho_{1} E_{g} T\right)}{\partial t}+\frac{\partial\left(\rho_{1} u_{q} E_{g} r+u_{q} \phi p_{q}\right)}{\partial x}+\frac{\partial\left(\rho_{1} v_{g} E_{g} r+v_{q} \phi p_{g}\right)}{\partial y} \\
& \Gamma\left(\frac{u_{\rho}^{2}+v_{p}^{2}}{2}+E c h e m+C_{r} \bar{T}_{p}\right)-\left(F_{z} u_{p}+F_{y} v_{p}\right)-\dot{Q} ;(2.7) \tag{2.7}
\end{align*}
\]

Conservation of energy of solid particle phace
\[
\begin{align*}
\frac{\partial\left(\rho_{2} E_{p} T\right)}{\partial t}+ & \frac{\partial\left(\rho_{2} E_{p t} u_{p}\right)}{\partial x}+\frac{\partial}{\partial y}\left\{\rho_{2} E_{p t} v_{p}\right)=\dot{Q}+\left(F_{z} u_{p}+F_{y} t\right. \\
& -\Gamma\left(\frac{u_{p}^{2}+v_{p}^{2}}{2}+E c h e m+C_{s} \dot{T}_{p}\right) ; \tag{2.8}
\end{align*}
\]

Conservation of number density of solid particle
\[
\begin{equation*}
\frac{\partial N_{p}}{\partial t}+\frac{\partial\left(N_{p} u_{p}\right)}{\partial x}+\frac{\partial\left(N_{p} v_{p}\right)}{\partial y}=0 . \tag{2.9}
\end{equation*}
\]

In the above equations, \(\phi=1-\frac{N_{1} M_{2}}{\rho_{1}}, \rho_{1}=\) \(\phi \rho_{g}, \rho_{2}=(1-\phi) \rho_{p}\), where \(N_{p}\) and \(M\), are the number density and mass of each particle, respectively, and \(\rho\). and \(\rho_{p}\) are the material density of gas and particie densities, respectively. \(u_{y}, v_{g}, p_{g}\) are gas phase \(x\)-velocity, \(y\)-velocity and pressure, respectively; \(u_{p}, v_{p}, \tilde{T}_{p}\), are \(x\) velocity, \(y\)-velocity and average temperature of particle. respectively. \(C\), is apecific heat of solid pasticie and Echem is chemical energy of solid phase, \(\Gamma\) is the rate co phase change from solid to gas and \(Q\) in heat transfer between the two phases; \(F_{z}, F_{y}\) are the drag force between the two phases in \(x\) and \(y\) directions, respectively.

Equations (2.2) and (2.7) are linked through the relation \(\rho_{2}=n M_{p}\). In the case of a reactive solid phase, \(M_{p}\) decreases due to combustion. The mass o a single particle at any point can be obtained from \(M_{p}=\rho_{2}(x, y) / n(x, y)\), and the diameter of a particle at any spatial location is \(D(x, y)=\left[6 M_{p}(x, y) / \pi p_{p}\right]^{1 / 3}\). The total internal energy of gaseous phase
\[
\begin{equation*}
E_{g} r=E_{g}+\frac{1}{2}\left(u_{g}^{2}+v_{g}^{2}\right) \text { and } E_{g}=E_{g}\left(p_{g}, p_{g}\right) \tag{2.10}
\end{equation*}
\]
where \(E_{s}\left(P_{s}, \rho_{g}\right)\) is the equation-of-state for the gas phase, which will be discuased later.

The total internal energy of solid particle phase is
\[
\begin{equation*}
E_{p t}=E_{p}+\frac{1}{2}\left(v_{p}^{2}+v_{p}^{2}\right) \quad \text { and } \quad E_{p}=E \text { chem }+C_{t} \bar{T}_{p} \tag{2.11}
\end{equation*}
\]

In order to close the above system of conservation equations, it is necessary to define certain criteria and interaction laws between the two phases, which inciude mass generation rate, \(\Gamma\), drag force between particles and gas, \(F_{i}, F_{y}\) and the interphase heat transfer rate \(\dot{Q}\). The model for particle and gas interaction and particle combustion that results in the constitutive relation for the conservation equations, is explained in detail in the next subsection.

\section*{Model for a Particle Gas Interaction and Combustion}

Presently, the physics of the energy release mechanisms in solid particles/air mixtures is not clearly understood. This can be attributed to the obvious difficulties of making a direct non-obtrusive measurement in the optically thick environment typical for this system. In the experimental and theoretical work done for the grain dust detonation conditions, \({ }^{7}\) it was demonstrated that the volatile components released by the particle heated behind the shock front play a major role in determining the detonability limits of the mixture. Eidelman and Burcat \({ }^{3}\) successfully applied a combination of fast evaporation and aerodynamic shattering mechanisms to simulate a two-phase detonation process.

The chemical processes of a single particle combustion, which mainly occur in the gaseous phase, are significantly faster than the physical processes of particle gasification or disintegration. Thus, in the multi-phase mixtures, the rate of energy release will be mostly determined by physics of particle disintegration. It is very difficult to describe the details of particle disintegration in the complex environment prevalent behind the shock or detonation wave. For example, Reinecke and Waldman \({ }^{9}\) defined five different disintegration regimes for a relatively simple environment of water droplets passing through a weak shock. Fortunately, in most cases of multi-phase detonation, only the main features of the particle disintegration dynamics need to be captured to describe the phenomena. For example. Eidelman and Burcat, \({ }^{10}\) using simple models for particle evaporation and shattering, obtained simulation results that compared very favorably with experimental data. Because of our inability to resolve the particle disintegration problem in all its complexity, the validation of the model against known experimental data is essential.

In this paper we consider solid particles consisting of explosive material. Explosive material contains fuel and oxidizer in a passive state at low temperature; however, when the temperature rises the fuel and oxidizer
react, leading to detonation or combustion. The initiation of reaction for explosives will occur at relatively low temperature. For example, TNT will detonate when heated to the temperature \({ }^{11}\) of \(570^{\circ} \mathrm{C}\). Only particles larger than a critical detonation size can detonate directly when initiated by a shock wave. We consider here particles smailer than 4 mm in diameter that will not detonate when heated, but will burn when the temperature on the particle surface reaches a critical value. Since the heat conduction inside the explosive material is relatively slow, the process of particie heating needs to be resolved in detail. Our simulations numerically soive the temperature field in the particles at every step of numerical integration of the global conservation equations. The explosive particle combustion model examined in this paper assumes that the fraction of the particie that reaches the critical temperature will burn instantaneously.

Energy transfer by convection and conduction is simulated by solving the unsteady heat conduction equation in each computational cell at each time step. Assuming a particle's temperature \(T_{p}\) to be a function of time and radial position only, the unsteady heat conduction equation may be transformed to:
\[
\begin{equation*}
\frac{d^{2} w}{d r^{2}}=\frac{1}{\alpha} \frac{d w}{d t} \tag{2.12}
\end{equation*}
\]
subject to the boundary conditions:
\[
w=0 \quad \text { at } \quad r=0, \quad t>0
\]
\[
\begin{equation*}
k, \frac{d w}{d r}=\left(h-\frac{1}{R}\right) w=h R T_{g} \quad \text { at } \quad r=R, \quad t>0 \tag{2.13}
\end{equation*}
\]
where:
\(w(r, t)=r T_{p}(r, t)\)
\(r=\) radial position
\(T(r, t)=\) temperature
R = particle radius
\(T_{s}=\) temperature of surrounding gas
\(k_{s}=\) thermal conductivity of particle
\(h=\) convective heat transfer coefficient.
The Nusselt number, used to find \(h\), is given by an empirical relation provided by Drake. \({ }^{12}\) The gas viscosity is found from Sutherland's Law. The gas thermal conductivity is calculated by assuming a constant Prandtl number. Lastly, the boiling temperature at a given pressure is found from the Clapeyron-Clausius equation, assuming: 1) constant latent enthalpy of phase change, 2) the vapor obeys the ideal equation of state, and 3) the specific volume of the solid/liquid is negligible compared to that of the vapor. A critical temperature is also employed to serve as an upper limit to the boiling point. regardless of pressure.

Equation (2.13) with boundary condition (2.14) can be numerically integrated using either implicit or explicit schemes.

Since the particle radius, R , will become very small due to evaporation, the implicit Crank-Nicoison algorithm is used because of its stability properties and its second order temporal and spatial accuracy. Using the Crank-Nicolson scheme co predict the particle temperature profiles at times \(t_{1}\) and \(t_{2}\) permits easy calculation of the total energy exchange, \(Q\) between \(t_{1}\) and \(t_{2}\) due to convection and conduction.

Knowledge of the particle temperature profile also allows us to determine \(\Gamma\), the rate of phase change from solid particle to gas. Once any point at a radial location \(0 \leq r \leq R\) has a temperatine exceeding the boiling temperature, the entire mass between \(r\) and \(R\) is transferred to the gas phase in one time step. In so doing, an energy equal to the product of the mass lost and the particle intrinsic energy is transferred by the particle to the gas.

The interphase drag force ( \(F x, F y\) ) is determined from the experimental drag for a sphere, as presented by Schlichting \({ }^{13}\).
\[
\begin{equation*}
F_{x}=\left(\frac{\pi}{8}\right) N_{p g} C_{D}\left|V_{g}-V_{p}\right|\left(u_{g}-u_{p}\right) R^{2} \tag{2.14}
\end{equation*}
\]
where
\[
C_{D}= \begin{cases}\frac{34}{R_{e}}\left(1+\frac{R_{e}^{2 / 3}}{6}\right) & \text { for } R e<1000 ;  \tag{2.15}\\ 0.44 & \text { for } R e>1000,\end{cases}
\]
and \(R e=\frac{2 R\left|Y-V_{2}\right|}{\mu_{0}}, \mathrm{R}\) is radius of partricle and \(\mu g\) is gas viscosity at temperature of \(T_{f i l m}=\frac{1}{2}\left(T_{g}+\bar{T}_{p}\right)\). Similarly, the formulae for \(F y\) is
\[
\begin{equation*}
F y=\frac{\pi}{8} N_{p} \rho_{g} C_{D}\left|v_{g}-v_{p}\right|\left(v_{g}-v_{p}\right) R^{2} . \tag{2.16}
\end{equation*}
\]

\section*{Equation of State for Detonation_Products}

To close the system of governing equations, one needs a constitutive relation between density, pressure, temperature and energy for gas phase, which is an equation-of-state. This study uses the Becker-Kistiakowsky-Wilson (BKW) equation-of-state \({ }^{24,15}\) that is,
\[
\begin{equation*}
p_{g} V_{g} / \bar{R} T_{g}=1+x e^{b z}, \tag{2.17}
\end{equation*}
\]
where \(V_{s}=\) volume of gas phase
\(p_{p}=\) pressure of gas phase
\(T_{s}=\) temperature of gas phase
\(\bar{R}=-\) universal gas constant
\(x=k / F_{g}(T+\theta)^{d} k=K \Sigma_{i} X_{i} k_{i}\)
with empirical constants \(a, b, K, \Theta\) and \(k_{i}\). The constants \(k_{i}\), one for each molecular species, are co-volumes. The co-volumes are multiplied by their mole fraction of species, \(X_{i}\), and are added to find an effective volume for a mixture. For a particular explosive, if we know the composition of detonation products and \(a, b, \Theta, K\), and all \(k_{i}\) 's can be found in Ref. 15.
The internal energy is determined by thermodynamics relation
\[
\begin{equation*}
\left(\frac{\partial E_{q}}{\partial V_{g}}\right)_{T}=T_{s}\left(\frac{\partial_{p q}}{\partial T_{s}}\right)_{V}-p \tag{2.18}
\end{equation*}
\]

Integration of this equation for a fixed composition of the detonation products will allow us to calculate the energy of the detonation products as a function of temperature and volume. For each component, its thermodynamic properties as functions of temperature were calculated from the NASA tables compiled by Gordon and McBride \({ }^{16}\).

The BKW equation-of-state is the moat common and well calibrated of those equations-of-atate used to calculate the properties of detonation products. The detaijed discussion and review of the BKW equation-ofstate can be found in Ref. 15.

\section*{Numerical Method of Solutions}

The system of partial differential equations described in the previous paragraph is integrated numerically. The Second Order Godunov method is used for the integration of the subsystem of equations describing flow of gaseous phase material. This method is described in Ref. 17. In the following, we will elaborate only on some specifics of its application to simulations of detonation products. The subsystem of equations describing the flow of particies is integrated using a simple upwind integration. This is done because our mathematical model neglects pressure of interparticie interaction and that prevents formulation of a Second Order Godunov scheme for particles.

The physical system under study will have concentrations of solid explosive powder ranging from 1000 \(\mathrm{kg} / \mathrm{m}^{3}\) near the ground to \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\) or less in the cloud. Detonation of this mixture will creste detonation products with effective \(\gamma\) ranging from 3 to 1.1. To describe the flow of detonation products, we use the BKW equation-of-state described above. Since the Second Order Godunov method uses primitive variables to calculate Riemann problems at the edges of the cells, its implementation for non-ideal EOS is difficult. In our simulations, we have resolved this problem by using direct and inverse equations-of-state. After integrating a system of gas conservation laws, we use the direct BKW
equation-of-state to calculate pressure, gamma and temperature as functions of thermal energy, density, and mixture composition. After this step, we have a complete set of parameters allowing calculation of the fluxes in the Second Order Godunov method as well as interaction of the multi-phase processes. The "inverse" EOS calculates internal energy as a function of density, pressure and mixture composition. In our code we use the "inverse" EOS to calculate the fluxes of conserved variables after calculation of the flux of primitive variables.

For the multi-phase system under study, \(d x=d y=1 \mathrm{~mm}\) was used to allow explicit integration of the gasdynamic and physical processes of evaporation and heat release. When a mismatch occurred between the physical and gasdynamical characteristic times, the time step was adjusted by some fraction to assure stability. However, this did not result in a significantiy smaller time step as compared with that calculated by CFL criteria. For larger cell sizes, this approach is impractical. Recently we implemented a scheme in which multi-phase processes are calculated implicitly; however, this will be reported elsewhere.

The numerical method is implemented in a code named MPEASE, which is fully vectorized and supported by number of graphics and diagnostics codes.

\section*{3. RESULTS}

\section*{Model Validation for One-Dimensional Detonation} Wave Problem

The main advantage of our particle combustion model is its description of the phenomenology of detonation for a wide range of explosive particle sizes and densities. We will demonstrate this capability on a set of one-dimensional test problems. For these test problems, we simulated the initiation and propagation of the detonation waves in a shock tube-like setting, where the explosive particles are distributed uniformly through the shock tube volume.

Results of these simulations are summarized in Table 1, which shows detonation wave velocity, peak pressure, and peak density given as a function of the average density of the solid explosive. Here the explosive two-phase mixture is composed from RDX particles and air, where RDX particle concentration varies from 0.75 \(\mathrm{kg} / \mathrm{m}^{3}\) to \(1000 \mathrm{~kg} / \mathrm{m}^{3}\). This concentration variation covers the whole range of solid explosive concentrations of interest to our problem. The simpulations performed with the MPHASE code were compared with the experimental results, \({ }^{18,18}\) and the calculations presented in Ref. 19 were done with the TIGER code.

From Table I, it is clear that our simulation results compare favorably with other simulation results and experimental data. The maximum deviation between our results and referenced results is no greater than \(15 \%\) for the entire range of explosives denaities. Considering that
our results were obtained with a single model for particle combustion applied to the extreme range of densities. our model gives an excellent prediction of the detonation wave parameters.

\section*{Two-Dimensional Simulation_Results}

In our two-dimensional simulations, we first study the dynamic of the lateral initiation in a simple system formed by two layers of explosive with different concentrations of the explosive powder in the layers. These layers of explosive will be considered confined in a rectangular shock tube with rigid walls. The schernatics of the set up for a typical simulation of this type are shown in Figure 1. The detonation wave is initiated in the lower layer, and its propagation though the shock tube causes lateral initiation of the adjacent layer. In one of the test cases, both layers are initiated simultaneously with a planar front.

First we simulated initiation and propagation of the detonation in a system of two layers of detonable RDX powder/air mixture contained in a rectangular channei 4 cm wide and 35 cm long. The lower layer has an RDX powder concentration of \(800 \frac{\mathrm{kf}}{\mathrm{M}^{3}}\) and occupies half of the channel width, and the upper layer of the channel has a mixture concentration of \(200 \frac{\mathrm{~kg}}{\mathrm{M}}\). Detonation is initiated in the lower layer by a planar front that is propagating from left to right. In Figures 2a:2f, results of this simulation are shown in the form of pressure contours on a logarithmic scale in MPa for a sequence of time frames. In these figures, we can follow the evolution of the lateral initiation and formation of the detonation wave structure in this system.

In Figure 2a, contour plots are shown at time \(t=0\), which corresponds to the beginning of the simulation and depicts initial conditions of the planar wave in the lower layer. This initial wave causes Isteral initiation of the upper layer through an oblique detonation front shown in Figure 2 b at \(t=9 \times 10^{-6} \mathrm{sec}\). The oblique front refiects from the upper wall of the channel, and in Figure \(2 c\) we observe that the wave pattern indicates it is a single Mach reflection. The Mach stem is very short at this point. In Figure 2d, the pressure contours are shown at the time \(t=31 \times 10^{-6}\) sec. Here the Mach stem is clearly visible and the reflected shock has reached the lower wall of the channel. The Mach stem will continue to grow and the triple point will propagate towards the high density layer. In Figure 2e, the simulation results are shown at \(t=52 \times 10^{-6}\) see when detonation wave complex has reached steady state propagation regime. The triple point has reached the interface between the two layer and is unable to continue propagation downwards due to the high level of pressure and density in the lower layer. Also at this stage of the detonation wave propagation, the reffected shock has reached the upper wall
of the channel. In Figure 2f, the simulation results are shown at \(t=64 \times 10^{-6} \mathrm{sec}\). Here the structure of the detonation front is basically unchanged from the previous picture, except for an additional reflection from the upper wall of the channel. The detonation wave parameters are also unchanged from the previous time frame, indicating that the detonation wave in this two layer syatem has reached steady state.

To validate that the detonation wavea complex observed in above reported simulation is not a function of the initial conditions, we simulated a test case in which all problem parameters, except the initiation wave, are the same as in the previous case. The initiation is done by a single planar wave that starts propagating aimultaneously in both layers of the explosive. In Figures 3a:3e, results for this simulation are shown in the form of pressure contours for a sequence of time frames. The initial conditions are shown in Figure 3a. Here we can observe a planar front impinging simultaneously on both layers of explosive in the channel. At first, this front propegates some distance planarly, as observed in Figure 3b. However, a significant difference in the explosive powder density quickly leads to formation of the oblique front in the upper layer, as shown in Figure 3c. As in the previous case, the oblique front reflects from the upper wall in the single Mach refiection shown in Figure 3d. And as in the previous case, the triple point of the Mach stem propagates downward to the interfaces between the layers to form the atable wave pattern shown in Figure 3e. The parameters of the detonation waves and the structure of the detonation wave complex are identical to those observed in the previous case, which proves that it is not a function of the initial conditions, but phyaical conditions of the layers.

We studied the effects of the channel wails using a system that included a 2 cm thick lower layer of high density ( \(800 \frac{k f}{1 / 3}\) ) RDX powder and a 10 cm thick upper layer of low density ( \(200 \frac{k e}{M^{3}}\) ) RDX powder. The results of this simulation are shown as pressure contours on a logarithmic scale in Figures 4a:4d. Figure 4 a shows the initial conditions. In Figure 4b, we can see at the time \(t=25 \times 10^{-6}\) a planar detonation wave is propagating through the lower layer and an oblique wave is propagating through the upper layer. In Figure 4 c , the detonation wave is shown at the time \(t=41 \times 10^{-6}\) from the initiation. Here the oblique wave is reflecting from the upper wall; however, it is distinct from the previous cases because only a regular reflection pattern is formed. This is due to the shallow angle of incidence of the detonation wave, that correaponds to the large wedge angles in classical reflection problems. Figure \(4 d\) shows the results of the simulation at \(t=52 \times 10^{-6}\). Here we can observe the same regular refiection pattern as in the previous stage; however, the incidence angle of the oblique
wave in the upper layer is increasing. Thus, if this trenc continues, later in the detonation wave evolution we wir see the formation of the Mach reflecticn pattern, as wt have in previous cases.

We have also examined propaga: jn of the detona tion wave in the system shown in. gure 5 that cor reaponds to the situation where this ipper layer is no confined by the channel wall. Here the computationa domain is \(25 \mathrm{~cm} \times 25 \mathrm{~cm}\) in size. The explosive powde: density is distributed according to the 4th power lan of vertical distance, starting from the ground where the density is \(860 \mathrm{~kg} / \mathrm{m}^{3}\), to 1.2 cm , where the density i \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\). From this point to 25 cm height, the dep sity is constant and equal to \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\). The densit: distribution in the direction of the " \(x\) " axis is uniform. The boundary conditions for the computational domai shown in Figure 5 are specified as follows: solid wa. along the " \(x\) " axis; symmetry conditions along the " \(y\) axis; supersonic outflow for upper boundary and at 4 right of the computational domain. The mixture con sists of RDX powder and air at ambient conditions ans it is assumed to be quiescent at the time of initiation.

The simulation starts at \(t=0\) when the mixture \(i\) initiated at the lower left corner of the computationa domain, as shown in Figure 5. The energy relessed the initiating explosion leads to formation of the detona tion wave propagating through the multi-phase media Figure 6 s shows pressure contours for the propagatin detonation wave at the time of \(t=12 \times 10^{-6}\) msec afte initiation. Here the pressure contour levels are show on logarithmic scale in MPa. The maximum prease value of 7940 MPa is observed in the layer of condense exploaive located near the ground. The pressure in th layer is two to three orders of magnitude higher tha presoure behind the detonation wave in the \(0.75 \mathrm{~kg} / \mathrm{m}\) RDX cloud and air, which is located above the distanc of 1.2 cm from the ground. Figure 6 s demonstrates the the detonation wave in the cloud is overdriven, since tt pressure behind the shock continuously rises and reach its maximum in the layer. From this figure, we also of serve that the overdriven wave propagates faster in th cloud than in the layer. This is explained by the fact thi it is easier to compress air that is very lightly loaded wht particles and located above the ground layer, than it to compress air heavily loaded with a particle mixtu: near the ground. It is interesting to note a disconti uous presaure change between the yellow contours ar. the light blue and green contours behind the deton. tion front. This discontinuity is over-emphasized by or presentation of contour lines on the logarithmic scal however, further examination of our simulation resul indicates this feature is real and is similar in nature . barrel shocks observed for strong jets. It is different nature from the triple shock structures deseribed aboy

In Figure 6b, gas phase density contours are shown for the time \(\mathrm{t}=12 \times 10^{-6} \mathrm{sec}\). Here the contour lines are distributed on logarithmic scale. The main features of the shock wave structure are very similar to those observed in the pressure contours figure. Here we see that a jet of high density gases reflects from the center of symmetry axis, creating a contact discontinuity that we will observe at a later time. The barrel shock is clearly visible in this figure. In Figure 6c, the particle density contour plote are shown for \(t=12 \times 10^{-6} \mathrm{sec}\). The contour levels in this figure are given on the logarithmic scale and the initial deposition of the explosive material in the ground layer of the computational domain can be cleariy observed. The black contour lines delineate the beginning and the end of the reaction zone in the cloud. To the left of these contours lies an ares with combustion products and to the right unburned particles in the cloud. Here we can see that the reaction zone length is of the order of 1 cm .

Figure 6d shows pressure contours for the same simulation for the time \(t=55 \times 10^{-6}\) sec, just before the detonation wave leaves the computational domain. In this figure, we see that the global structure of the wave did change slightly from Figure 6a. We observe that the barrel shock wave is fully developed and has a half ellipse shape. The detonation wave in the cloud is still overdriven; however, part of the shock wave front that propagates vertically weakened as it got further away from the detonation front in the layer. In Figure 6e, gas temperature contours are shown at \(t=55 \times 10^{-6} \mathrm{sec}\). In this case, it is interesting to note that the highest temperatures are observed behind the front of the overdriven detonation wave in the cloud, in the immediate vicinity of the upper strata of the layer. Very high temperatures in this region can be explained by the high pressure generated by the detonation of the explosive material in the layer and by relatively low density of strata of the cloud in the immediate vicinity to the layer. Here, as in the pressure contours graph, the area of barrel shock can be clearly identified.

We also observe in Figure 6 a clear development of two detonation fronts, one moving vertically in the cloud and another moving horizontally in the layer. Because the energy density of the explosive powder in the layer is about three orders of magnitude larger than that in the cloud, the vertical parts of the front represent overdriven detonation waves in the cloud. Even though the vertical front has slowed down compared with the horizontal front, its speed and parameters far exceed those typical for detonation waves in a cloud. In fact, the selfsustained detonation regime in the cloud will develop at the distance of about three meters from the layer. The area of the front close to the detonation wave in the layer will remain hot and overdriven, since it is located very
close to detonation front in the layer. In Figure 6f, particle density contours are shown on a logarithmic scale. We can clearly observe the reaction zone delineated by black contour lines. In this case, the reaction zone length in the cloud is about 1 cm . Consistent with the gradual transition from overdriven to self-sustained detonation, the reaction zone length is larger for the vertical part of the detonation front. The detonation wave velocity observed in our simulation is approximately \(4048 \mathrm{~m} / \mathrm{sec}\), which is significantly lower than the detonation wave velocity observed in RDX with a density of \(860 \mathrm{~kg} / \mathrm{m}^{3}\) (see Table 1), which is the highest density in the ground layer. This can be explained by the high gradient of particle density distribution in the layer, where the density drops rapidly from \(860 \mathrm{~kg} / \mathrm{m}^{3}\) at the bottom of the layer to \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\) at the top strata of the layer at 12 mm above the ground.

\section*{4. CONCLUSIONS}

We have presented a mathematical model and numerical solution for the simulation of initiation and propagation of the detonation waves in multi-phace mixtures consisting of solid combustible particles and gas. Using this model, we studied detonations in mixtures of solid RDX particles and air for the purpose of examining the effects of wide variation in particle density distribution on the dynamics and structure of detonation waves. We considered a physical system of layers of explocive RDX powder confined in a channel and studied initiation and propagation of the detonation waves in this system. This study revealed a specific structure of the detonation front that is dependent on the thickness of the layers and their energetic content. We showed that for the system consisting of two layers of the same thicknesa but of vastly different powder density, a Mach stem reflection occurs that propagates to the interface between the layers and helps create a stable detonation front. However, formation of the Mach stem reflection will be a strong function of the relative thickness of the layer; in one of the simulated examples, only a regular reflection would form in the simulation time frame.

For the system consisting of a solid particle cloud in air and a layer of high particle density near the ground, our simulations have revealed a specific detonation front shape with a characteristic precursor of the blast front in the strata immediately above the layer. This feature of the detonation front can be explained by the fact that the energy released in the detonation wave in the ground layer produces a faster shock wave in the dilute cloud than in these heavily loaded with solid particles stratums of the ground layer. However, these structures were not observed experimentally, and more studies are needed to examine their parameters.

The maximum pressure affecting the ground was di-
rectly related to the maximum particle density in the lower strata of the layer. However, the detonation front velocity for the fourth power distribution case was considerably lower than calculated for a one-dimensional case with \(860 \mathrm{~kg} / \mathrm{m}^{3}\) particle density, reflecting the significant effect of two-dimensional expansion. Existence of the high density strats at the bottom of the ground layer in the fourth power case significantly increased the maximum pressure at the ground, and produced higher detonation wave velocity.

Using a variable density layer, one can reach a combination of pressure and velocity conditions outside of Chapmen-Jougett limitations. The zange of conditions that can be obtained in the variable density system and its parametrics of that system needs a more systematic study. In this article, we introduced only the mathematical formulation and numerical simulation method validated for the range of conditions of intereat. In addition, we have given some examples of its application for two-dimensional simulations. However, this methodology should be linked to an experimental study for a more in-depth analysis of the phenomenology discussed here.

\section*{REEERENCES}
1. Eidelman, S., Timnat, Y.M., and Burcat, A., (1976). "The Problem of a Strong Point Exploaion in a Combustible Medium," 6th Symp. on Detonation, Coronado, CA, Office of Naval Research, 590.
2. Burcat, A., Eidelman, S., and Manheimer-Timnat, Y., (1978). "The Evolution of a Shock Wave Generated by a Point Explosion in a Combustible Medium," Symp. of High Dynamic Pressures (H.D.P.), Paris, 347.
3. Oved, Y., Eidelman, S., and Burcat, A., (1978). "The Propagation of Blasts from Solid Explosives to Two-Phase Medium," Propellants and Explosives, 3, 105.
4. Eidelman, S., and Burcat, A., (1980). "The Evolution of a Detonation Wave in a Cloud of Fuel Droplets; Part I, Influence of the Igniting Explosion," AIAA Journal, 18, 1103.
5. Liu, J.C., Kaufiman, C.W., and Sichel, M., (1990). "The Lateral Interaction of Detonating and Detonable Mixtures," (Private communication).
6. Kuo, K., (1990). "Principles of Combustion," John

Wiley and Sons, Inc.
7. Kauffiman, C.W., et al., (1979). "Shock Wave Initiated Combustion of Grain Dust," Symposium on Grain Dust, Manhattan, KS.
8. Eidelman, S., and Burcat, A., (:381). "Numerical Solution of a Non-Steady R'sst Wave Propagation in Two-Phase ('Separatea Flow') Reactive Medium," J. Comput. Physics. 39, 456.
9. Reinecke, W.G., and Waldman, G.D., (1975). "Shock Layer Shattering of Cloud Drops in Reentry Flight," ALAA Paper 75-152.
10. Eidelman, S., and Burcat, A., (1980). The Mechanism of Detonation Wave Enhancement in a TwoPhase Combustible Medium," 18th Symposium on Combustion, The Combustion Institute, Waterloo, Ontario, Canada.
11. "Engineering Design Handbook, Explosives Series. Properties of Explosives of Military Interest, \({ }^{n}\) AMC Pamphlet, AMCP 706-7177, 1971.
12. Drake, R.M., Jr., (1961). "Discussions on G.C. Viet and G. Leppert: Forced Convection Heat Transfer from an Isothermal Sphere to Water," Journal of Eeat Transfer, 83, 170.
13. Schlichting, H., (1983). "Bounday Layer Theory," 7th ed. McGraw-Hill.
14. Cowan, R.D., and Fickett, W., (1956). "Calculation of the Detonation Products of Solid Explosives with the Kistiakowsky-Wilson Equation of State," Journal of Chemical Physics, 24, 932.
15. Mader, C.L., (1979). "Numerical Modeling of Detonation," University of California Press, Ltd. London, England.
16. Gordon, S., and McBride, B.J., "Computer Program for Calculations of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and C-J Detonations," NASA SP-273, 1976 Revision.
17. Eidelman, S., Collela, P., and Shreeve, R.P., (1984). "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modelling," AIAA Journal, 22, 10.
18. Stanukovitch, K.P., (1975). "Physics of Explosion" (in Russian), Nauka.
19. Wiedermann, A., (1990). "An Evaluation of Bimodal Layer Loading Effects," IITRI Report, February.
\(\mathrm{D}[\mathrm{m} / \mathrm{sec}]\) - Detonation wave velocity,
Pcs \(\{\mathrm{Pa} \mid\) - Presure at Chapman-Jouguet Point
\(\mathrm{P}_{\mathrm{p}}[\mathrm{Pa}]\) - Peak preasure; \(p_{p}\left[\mathrm{~kg} / \mathrm{m}^{3}\right]\) - Peak density
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
RDX \\
Density \(/ \mathrm{kg} / \mathrm{m}^{3}\)
\end{tabular} & Parameters & Present Calculation & \[
\begin{aligned}
& \text { Expt'I } \\
& \text { Ref. } 1
\end{aligned}
\] & Tiger Calculation Res. 2 & \begin{tabular}{l}
BKW \\
Calculation Ref. 1
\end{tabular} & \begin{tabular}{l}
Soviet \\
Experiments \\
Red. 3
\end{tabular} \\
\hline \multirow[t]{3}{*}{\(1000 \mathrm{~kg} / \mathrm{ml}^{2}\)} & D & 6155 & 5981 & & 6128 & \\
\hline & \[
\begin{aligned}
& \mathrm{P}_{C J} \\
& \mathrm{P}_{\mathrm{F}}
\end{aligned}
\] & \[
\begin{aligned}
& 1.220 \times 10^{10} \\
& 2.57 \times 10^{10}
\end{aligned}
\] & & & \(1.08 \times 10^{16}\) & \(1.00 \times 10^{10}\) \\
\hline & \(p_{1}\) & 1936 & & & & \\
\hline \multirow[t]{4}{*}{\(860 \mathrm{~kg} / \mathrm{m}^{\mathrm{J}}\)} & D & 6031 & & 5800 & & \\
\hline & Pc] & \(0.886 \times 10^{10}\) & & \(0.88 \times 10^{14}\) & & \(0.82 \times 10^{14}\) \\
\hline & P, & \(1.95 \times 10^{16}\) & & & & \\
\hline & \(p_{1}\) & 1722 & & & & \\
\hline \multirow[t]{4}{*}{\(\overline{466 \mathrm{~kg} / \mathrm{m}^{3}}\)} & D & 4800 & & 4500 & & \\
\hline & Pes & \(0.379 \times 10^{10}\) & & \(0.30 \times 10^{14}\) & \(0.3 \times 10^{16}\) & \\
\hline & \(\mathrm{P}_{\boldsymbol{p}}\) & \(0.625 \times 10^{10}\) & & & & \\
\hline & \(p_{1}\) & 924 & & & & \\
\hline \multirow[t]{4}{*}{\(\overline{250 \mathrm{~kg} / \mathrm{m}^{3}}\)} & D & 4049 & & 3600 & & \\
\hline & Pas & \(0.2478 \times 10^{10}\) & & \(0.13 \times 10^{10}\) & & \\
\hline & P, & \(0.4538 \times 10^{10}\) & & & & \\
\hline & \(P_{8}\) & 552 & & & & \\
\hline \multirow[t]{4}{*}{\(100 \mathrm{~kg} / \mathrm{m}^{\mathrm{j}}\)} & D & 3495 & & & & \\
\hline & \(\mathrm{PcJ}^{\text {c }}\) & \(0.5013 \times 10^{8}\) & & & & \\
\hline & \(P_{P}\) & \(0.7858 \times 10^{\circ}\) & & & & \\
\hline & \(p_{0}\) & 220 & & & & \\
\hline \multirow[t]{4}{*}{\(0.73 \mathrm{~kg} / \mathrm{m}^{5}\)} & D & 1622 & \(1410{ }^{\circ}\) & \(1870^{\circ}\) & & \\
\hline & \(P_{\text {c }}\) & \(0.25 \times 10^{7}\) & \(0.284 \times 10^{70}\) & \(0.26 \times 10^{7 *}\) & & \\
\hline & P) & \(0.484 \times 10^{7}\) & & & & \\
\hline & \(p_{2}\) & 8 & & & & \\
\hline
\end{tabular}

Ref. 1 - Mader, C., "Numerical Modeling of Detoantion," (University of Califocmin Preme, Ltd., 1979), p. 47.
Ref. 2 - Wiedermann, A., "An Evaluation of Bimoda' Layer Loeding Effecte" IITRI Report, Feb., 1900.
Ref. 3 - Stamkoritch, K.P., "Physice of Explomioa" (in Rucian), Neula, 1975.

Table 1. One Dimensional Validation Result.


Figure 1. Setup for the two-layer detonation simulation problem.


Figure 2. Initiation and propagation of the detonation wave in a two layers system. Only lower layer is initiated. Pressure contours.


Figure 3. Initiation and propagation of the detonation wave in a two layers system. Both layers are initiated. Pressure contours.


Figure 4. Propagation of the detonation wave in a system with different thickness of explosive layers. Pressure contours.


Figure 5. Computational domain and boundary conditions.


Fig. 6a. Pressure.


Fig. 6b. Gas Density.


Fig. 6c. Particle Density.


Fig. 6d. Pressure.


Fig. 6e. Tempersture.

Figure 6. Fourth power layer distribution. Maximum density in the layer \(800 \mathrm{~kg} / \mathrm{m}^{3}\). Density in the cloud \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\). Time 0.012 msec and 0.055 msec after initiation.

\section*{( )}

\section*{AIAA 92-0392}

A Parametric Study of the Air-Breathing Pulsed Detonation Engine S. Eidelman, I. Lottati and W. Grossmann Science Applications International Corporation McLean, VA 22102


\title{
30th Aerospace Sciences Meeting \& Exhibit January 6-9, 1992 / Reno, NV
}

\title{
A PARAMETRIC STUDY \\ OF \\ AIRBREATHING PULSED DETONATION ENGINE
}

\author{
S. Eidelman, I. Lottati, and W. Grossmann \\ Applied Physics Operation \\ Science Applications International Corporation \\ 1710 Goodridge Drive, McLean, Virginia 22102
}

\begin{abstract}
The airbreathing Pulsed Detonation Engine (PDE) is analyzed by direct simulations of its cycle using Computational Fluid Dy:amics. We deacribe a new CFD methodology of composite structured/unstructured grids, which is used for detailed analysis of the PDE performance. This performance is analyzed for a unique engine geometry in which the PDE is located in a wing section. Examination of the key processes in the PDE device shows that the largest portion of its thrust is produced during the very short time interval when the detonation wave refects from the thrust wall, and that detonation cycle frequency up to 200 Hz is fessible. We conclude that the PDE type devices can compete with small diameter turbojet engines in performance characteristics while surpassing them in simplicity of design, flexibility of geometrical configuration, and price.
\end{abstract}

\section*{1. Introduction}

Our first reports on the airbreathing Pulsed Detonation Engine (PDE) concept \({ }^{1-5}\) described a systematic series of parametric studies of the PDE via computational fluid dynamics (CFD). They also detailed an analysis of engine performance over a wide range of flight regimes, including subsonic and supersonic flows and physical geometries with various nozzle and air inlets. Additionally, static table top experiments \({ }^{1}\) demonstrated that the principle of pulsed or repetitive detonation can be successfully applied. To date, our results indicate that practical engines for certain vehicles can be conceptualized and designed with the information that has already been generated from the studies. Specifically, our studies have shown that the PDE is an excellent candidate for the primary propulsion source for small aerodynamic vehicles that operate over the flight envelope, \(0.2<\mathrm{M}<2.0\). Further, our analysis of the simulation results indicates that the PDE is a high thrust-to-weight ratio device. The predicted performance places the PDE propulsion concept in a strongly competitive position compared with present day small turbojets. The PDE concept has the added attractiveness of rapid variable thrust control, no moving parts and the potential for low cost manufacturing. The PDE concept is scalable over a wide range of engine sizes and thrust levels. \({ }^{4}\) For example, it is theoretically possible to produce PDE engines on the order of one to several inches in diameter and thrusts on the order of pounds, as well as devices that provide thousands of pounds thrust. One of the unique features of the PDE that will be explored in this paper is its geometric flexibility. All the configurations of the engine that we have examined in previous papers had an axisymmetric geometry. However, the PDE concept allows a
tremendous fexibility in engine geometry. In this paper we will investigate the possibility of fitting a PDE det onation chamber into a section of a conventional wing One of the obvious advantages of this design is reductior of the drag and weight penalty; other advantages can b. associated with stealth quality of the Wing-PDE design

The parametric studies to date were made possible by the development of a new generation of CFI tools. These tools have allowed us to accurately sim ulate the details of the complex noalinear time dependent processes. In this article, we used a new algorithrr implemented on a composite structured/unstructurec grid. This algorithm combines the flexibility of describ ing complicated geometries characteristic of the unstructured triangular grids with the computational efficiency of the structured grids. A brief description of the CFL methods employed in our studies is given in Section 3.

\section*{2. The Pulsed Detonation Engine Concept}

A detonation process, due to the very bigh rate or reaction, jeads to a propulsion concept in which the constant volume process can be fully realized. In detonative combustion, the strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and fresh charge. The speed of the detonation wave is about two orders of magnitude higher than the speed of a typical deflagration. This allows the design of propulsion engines with a very high power density. Each detonation has to be initiated separately by a fully controlled ignition device with a wide range of variable cycle frequencies. A physical restriction dictating the range of detonation frequency arises from the rate at which the fuel/air mixture can be introduced into the detonation chamber. This also means that a device based on a detonative combustion cycle can be scaled and its operating
parameters can be modified for a range of required output conditions.

There have been numerous attempts to take advantage of detonative combustion for engine applications, \({ }^{6,7,8}\) the most recent and successful which was carried out at the Naval Postgraduate School \({ }^{1}\) (NPS) by Helman et al. During this study, several fundamentally new elements were introduced to the concept that distinguished the NPS research device from previous studies. First, it is important to note that the NPS experimental apparatus was the first successful self- aspirating air breathing detonation device. Intermittent detonation frequencies of 25 Hz were obtained, which was in phase with the fuel mixture injection through the timed fuel valve opening and spark ignition. The feasibility of intermittent injection was established. Pressure measurements showed conclusively that a detonation process occurred at the frequency chosen for fuel injection. Further, self- aspiration was shown to be effective. Finally, the effectiveness of a primary detonation as a driver for the main detonation was clearly demonstrated. Although the NPS studies were abbreviated, many of the technical issues considered to be essential for efficient intermittent detonation propulsion were addressed with positive results.

The generic device we considered in our previous studies \({ }^{2-5}\) is a small engine shown in Figure 1, which is a schematic of the basic detonation chamber attached to the aft end of a generic aerodynamic vehicle. In the current study, we considered a Wing-PDE configuration that will be described below; however, for the sake of simplicity we will describe the basics of the PDE concept using the illustration in Figure 1. For the engine configuration shown in this figure, the combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave, initiated at the aft end of the detonation chamber, propagates through the mixture. The main portion of the thrust is produced by the detonation wave in a very short period of time as it impinges on the thrust wall. After the detonation wave has reflected from the thrust wall, the detonation products will vent from the volume of the detonation chamber through the open aft end of the chamber and air inlets shown in Figure 1. Then the chamber volume will be filled with the fresh combustible gas mixture and the process will be repeated with the frequency of 100 to 200 Hz . A key issue in the pulsed detonation engine concept is the design of the main detonation chamber. The detonation chamber geometry determines the propulsion efficiency and the duration of the cycle (frequency of detonations). Since the fresh charge for the generic engine is supplied from the external flow field, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. The range of the physical pro-
cesses requiring simulation in orier to model the complo flow phenomena associated win : the detonation enginc periormance is very broad. \(T\) '. se pr-cesses include 1 initiation and propagation of \(t\) det ition wave inside the chamber; 2) expansion \(c\) ae \(c\) snation product: from the chamber into the ai- tream around the cham ber at flight Mach numbers: fresh air intake from the surrounding air into the ch 3. iber; 4) the flow pattern in side the chamber during \(F\).r-exhaust pressure buildup which determines the strategy for mixing the next detonotica charge; and 5) strong mutual interaction betweer the flow inside the chamber and surrounding the engine

All of these processes are interdependent, and inter action and timing are crucial to engine efficiency. Thus unlike simulations of steady state engines, the phenom ena described above cannot be evaluated independently The need to resolve the flow regime inside the cham ber and account for nozzies, air inlets, etc., and at the same time resolve the flow outside and surrounding th engine where the flow regime varies from high subsonic locally transonic and supersonic, makes it a chalenging computational problem.

The single most important issue is to determine the timing of the air intake and mixing of the fresh charge leading to repetitive detonations. It is sufficient to al sume inviscid flow for the purpose of simulating the expansion of the detonation products and fresh air intake This assumption makes the numerical simulation of the PDE flow phenomena somewhat easier than using a fully viscous flow model. For the size of the generic device studied in this work, the effects of viscous boundary lay ers are negligible, with the exception of possible boundary layer effects on the valve and inlet geometries discussed subsequently.

\section*{3. Computational Method Used in the Study}

The basic computational tool used for our stud. ies is the AUGUST (Adaptive Unatructured Goduno Upwind Second Order on Triangular Grids) code, described in detail by Lottati et al. 9,10 This code provides a method for solving the Euler equations of gasdynamics on unstructured grids with arbitrary connectivity. The formulation is based on a second order Godunov method. \({ }^{11}\) For the current study, the AUGUST code has been implemented on a composite structured/unstructured grid. The combined structured/unstructured method is a much more efficient approach to domain decomposition than the separate application of each method. In the following discussion. we show that the results of applying this technique the complex problem of the external/internal reactive flow typical for the PDE engine show complex wave patterns propagating seamlessly through interfaces between structured/unstructured grids without reflections or distortions. This new approach provides ultimate flexibility
in domain decomposition with maximum code efficiency. Introduction

Structured rectangular grids allow the construction of numerical algorithms that perform an efficient and accurate integration of fluid conservation equations. The efficiency of these schemes results from the extremely low storage overhead needed for domain decomposition and the efficient and compact indexing that also defines domain connectivity. These two factors allow code construction based on a structured domain decomposition that can be highly vectorized and parallelized. Integration in physical space on orthogonal and uniform grids produces the highest possible accuracy of the numerical algorithms. The disadvantage of structured rectangular grids is that they cannot be used for decomposition of computational domains with complex geometries.

The early developers of computational methods realized that, for many important applications of Computational Fluid Dynamics (CFD), it is unacceptable to describe curved boundaries of the computational domain using the stair-step approximation available with the rectangular domain decomposition technique. The techniques of boundary-fitted coordinates were developed to overcome this difficulty. With these techniques, the computational domain is decomposed on quadrilaterals that can be fitted to the curved domain. The solution is then obtained in the physical space using the geometrical information defining the quadrilaterals, or in the computational coordinate system that is obtained by transformation of the original domain into a rectangular domain. The advantage of this technique is that it employs the same indexing method as the rectangular structured domain decomposition methods that also serve to define domain connectivity. The boundary fitted coordinated approach leads to efficient codes, with approximately a \(4: 1\) penalty in terms of memory requirement per cell as compared with rectangular domain decomposition. However, this approach is somewhat restricted in its domain decomposition capability, since distortion or large size variations of the quadrilaterals in one region of the domain lead to unwanted distortions or increased resolution in other parts of the domain. An example of this is the case of structured body fitted coordinates that are used for simulations of flows over a profile with sharp trailing edges. In this case, increased resolution in the vicinity of the trailing edge leads to increased resolution in the whole row of elements connected to the trailing edge elements.

The most effective methods of domain decomposition developed to overcome this disadvantage are those using unstructured triangular grids. These methods were developed to cope with very complex computational domains. The unstructured grid method, while efficient and powerful in domain decomposition, results in codes
that must store large quantities of informaxion defining the grid geometry and connectivity, and have large computational and storage overheads. As a rule, an unstructured grid code requires greater storage by a factor of 10 . and will run about 20 times slower when compared on a per cell per iteration basis with a structured rectangular code.

Unstructured grid methods are used to their best advantage when combined with grid adaptivity. This feature usually allows dynamic decomposition of the computational domain subregions, thus leading to an order of magnitude reduction in the number of cells for some problems, as compared to the unstructured grid without this adaptive capability. However, this advantage is highly dependent on the problem solved. Adaptive unstructured grids have an advantage over the unadaptive unstructured domain decomposition if the area of high resolution domain decomposition is less than one tenth of the global area of the computational domain. This explains the fact that while the adaptive unstructured method may be extremely effective for solutions with multiple shock waves in complex geometries, it becomes extremely inefficient when high resolution is needed in a substantial area of the computational domain.

Our approach to domain decomposition combines the structured and unstructured methods for achieving better efficiency and accuracy. Using this method, structured rectangular grids are used to cover most of the computational domain, and unstructured triangular grids are used only to patch between the rectangular grids (Figure 2), or to conform to the curved boundaries of the computational domain (Figure 3). In these figures. an unstructured triangular grid is used to decompose the regions of the computational domain that have a simple geometry.

Our paper will illustrate the performance gains achieved from the use of this composite grid decomposition approach. We apply the Second Order Godunov method \({ }^{11}\) to solve the Euler equations on both structured and unstructured sections of the grid.
Mathematical Model and Integration Algorithm
We consider a system of two-dimensional Euler equations written in conservation law form as:
\[
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}=0 \tag{1}
\end{equation*}
\]
where
\[
U=\left|\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
\rho e
\end{array}\right|, F=\left|\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
u(e+p)
\end{array}\right|, G=\left|\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p \\
v(e+p)
\end{array}\right| .
\]

Here \(u, v\) are the \(x, y\) velocity vector components, \(p\) is the pressure, \(\rho\) is the density and \(e\) is total energy of the fluid. We assume that the fluid is an ideal gas and the pressure is given by the equation-of-state.
\[
\begin{equation*}
p=(\gamma-1)\left(e-\frac{\rho}{2}\left(u^{2}+v^{2}\right)\right) \tag{2}
\end{equation*}
\]
where \(\gamma\) is the ratio of specific heats and typically taken as 1.4 for air. It is assumed that an initial distribution of the fluid parameters is given at \(t=0\), and the boundary conditions defining a unique solution are specified for the computational domain.

The system of governing equations in Eq. (1) can be written as
\[
\begin{equation*}
\frac{\partial U}{\partial t}+\nabla \cdot Q=0 \tag{3}
\end{equation*}
\]
where \(Q\) represents the convective flux vector. By integrating Eq. (3) over space and using Gauss' theorem, the following expression is obtained
\[
\begin{equation*}
\frac{\partial}{\partial t} \int_{\Omega} U d A+\oint_{\theta \Omega} Q d=0 \tag{4}
\end{equation*}
\]
where \(d l=n d \mathcal{C}, n\) is the unit normal vector in the outward direction, and \(d \mathcal{L}\) is a unit length on the boundary of the domain. The variable \(\Omega\) is the domain of computation and \(\sigma \Omega\) is the circumference boundary of this domain.

Equation (4) can be discretized for each element (cell) in the domain
\[
\begin{equation*}
\frac{\left(U_{i}^{n+1}-U_{i}^{n}\right)}{\Delta t} A_{i}=\sum_{j=1}^{M} Q_{j}^{n} n_{j} \Delta L_{j} \tag{5}
\end{equation*}
\]
where \(A_{;}\)is the area of the cell; \(\Delta t\) is the marching time step; \(U_{i}^{n+1}\) and \(U_{i}^{n}\) are the primitive variables at the center of the cell at time \(n\) and at the update \(n=1\) time step; \(Q_{j}\) is the value of the fluxes across the \(M\) boundaries on the circumference of the cell where \(n_{j}\) is the unit normal vector to the boundary edge \(j\), and \(\Delta L_{j}\) is the length of the boundary edge \(j\). The fluxes \(Q_{j}^{n}\) are computed by applying the Second Order Godunov algorithm, and Eq. (5) is used to update the phymical primitive variables \(U_{i}\) according to computed fluxes for each marching time step \(\Delta t\). The marching time step is subjected to the CFL (Courant-Fredrichs-Lewy) constraint.

We seek a solution to the system of Eq. (I) in the computational domain, which is decomposed in part into triangles with arbitrary connectivity and in part into rectangles using a logically structured grid. We use the advantage of the unstructured grid \({ }^{12-15}\) to describe the curved boundary of the computational domain and areas that need increased local resolution; this covers \(10 \%\) of
the total computational domain. The structured grid occupies the remaining \(90 \%\) of the computational domain in our example. The numerical technique for solving Euler's equation on an unstructured grid is described in Refs. \(9-10\), and the technique for the structured grid is described in Ref. 11. These numerical techniques apply some of the ideas that were introduced in Refs. 17-18. The structured and unstructured codes apply the center-based formulation, i.e., the primitive variables are defined in the center of the cell, which makes the cell the integration volume, while the fluxes are computed across the edges of the cell. The basic algorithmic steps of the Second Order Godunov method can be defined as follows:
1. Find the value of the gradient at the baricenter of the cell for each gas dynamic parameter \(U_{i}\);
2. Find the interpolated values of \(U\) at the edges of the cell using the gradient values:
3. Limit these interpolated values based on the monotonicity condition;
4. Subject the projected values to the characteristic's constraints;
5. Solve the Riemann problem by applying the pro jected values at the two sides of the edges;
6. Update the gas dynamic parameter \(U\) according to the conservation equations (1) applying to the fluxes computed and the current time step.
As was advocated in Ref. 9, we prefer the triangle center-based over the vertex-based version of the code. For the same unstructured grid, a triangle-based algorithm will result in smaller control volumes than a vertex-based. In addition, for the Second Order Godunov solver, implementation of the boundary conditions is more straightforward and accurate for the centerbased algorithm than in the vertex-based. These two factors, along with the effects of grid connectivity, strongly affect the algorithm accuracy and performance, and are the main reasons for the superiority of the center-based version over the vertex version.

\section*{4. Results for Wing-PDE configuration}

All of our prefious studies considered axisymmetric configurations of the PDE devices. However, because PDE does not have rotating parts, it allows another degree of flexibility that enables us to configure the PDE devices in other than axisymmetric geometries. To illustrate this, we used the inner volume of a section of the wing as a detonation chamber for a PDE device. The schematic of the Wing-PDE geometry considered in this study is shown in Figure 4. We assume that the wing is located in a subsonic air flow stream with \(\mathrm{M}=0.8\). The particular wing shape used is the Gastelow cusped supercritical airfoil. \({ }^{12}\) Two significant modifications of the original Gastelow airfoil geometry, provision for an inlet
at the leading edge and an outlet nozzle at the trailing edge, allow its use as a PDE device.

In Figure 5, the cross section of the Wing-PDE geometry is shown in the computational domain that is decomposed into structured rectangular and unstructured triangular grids. For clarity, we show only every sixth point of the grid used in simulation. In our simulations we have used a structured grid with \(255 \times 131\) nodes and an unstructured grid with 7229 nodes. The ares covered by the unstructured grid is about \(10 \%\) of the total area of the computational domain. It is obvious from Figure 5 that the unstructured grid is used in the regions of the computational domain having complex geometry, i.e., wing external and internal surfaces, inlet, and nozzle. The structured rectangular grid is used to cover the rest of the computational domain. As mentioned previously, this method of domain decomposition leads to the most efficient use of computer resources. Our results demonstrate that flow propagates through the interfaces between the triangular unstructured and rectangular structured sections seamlessly.

First, we have to examine the flow pattern for the steady state flow regime of the Wing-PDE device shown in Figure 5. This will also establish the reference values of the airdynamic drag and lift for this configuration. In Figure 6a, the results are shown in form of the pressure contours for the converged steady state solution for the Wing-PDE configuration in \(\mathrm{M}=0.8\) external flow stream at zero angle of attack. We can observe in Figure 6a a very complex internal/external flow pattern around Wing-PDE geometry. In addition to the shock wave near the trailing edge on the upper surface of the wing, we can observe two additional shock waves. One is created by the flow exiting from the inner volume of the wing through the nozzle at the trailing edge, and another is created at the flow inlet located under the leading edge. The air flow enters the inner volume of the wing through the inlet and creates a complex flow field with an average pressure of \(\approx 1.0 \mathrm{~atm}\). It is easy to improve the flow uniformity in the inner volume of the inlet geometry and geometry of the inner surfaces. However, these aspects of the Wing-PDE design will be considered in future studies; for the purposes of this paper, we examine only the main features of the Wing-PDE configuration. The air flow in the inner volume of the wing create considerable drag. By integrating the pressure over the inner and outer surface of the Wing-PDE configuration, we have calculated the basic air dynamic characteristics of this profile at \(M=0.8\) flow. The following values for the steady state flow:

Lift: \(C_{l}=0.18 ;\) Drag: \(C_{d}=-0.138\); Pitching Moment: \(C_{m}=0.034\).

We have assumed that at \(t=0\), the inner volume of the wing is filled with a detonable gas mixture. The
detonation wave is initiated at the aft end of the inner volume of the wing by a planar front. The fuel chosen for these simulations was ethylene. The detonability limits of ethylene in air range from \(4 \%\) to \(12 \%\) concentrations by volume, and depend somewhat on temperature and pressure. We assume for the sake of simplicity that the fuel/air ratio is \(6 \%\) by volume.

In Figure 6b, the pressure contours are shown at \(t=1.18 \times 10^{-4} \mathrm{sec}\). The propagation of the detonation front is planar. However, because of the curved inner walls of the wing, the detonation front reflects from the wall surfaces and the maximum pressure in the reflected waves reach 36.6 atm . However, this level of pressure is observed in a very small area of the detonation front where reflected or colliding transverse waves can cause a local maximum. The detonation wave velocity for this mixture is about \(1800 \mathrm{~m} / \mathrm{sec}\).

In Figure 6c, the pressure contours are shown at the time \(t=5.24 \times 10^{-4} \mathrm{sec}\), shortly after the detonation front has reflected from the inner surface of the leading edge. Here the maximum pressure was dropped to 12.1 atm , the reflected shock is moving in the direction of the trailing edge, and the expansion of the detonation products through the inlet was created a semicircular shock wave that propagates in the opposite direction to the external flow stream. In Figure \(6 d\) at the time \(t=9.5 \times 10^{-4} \mathrm{sec}\), the reflected wave reaches the nozzle at the trailing edge, and expansion of the detonation products through this nozzle creates an additional shock wave that expands in the direction of the flow stream. When the original reflected shock has reached the converging area at the trailing edge, it will partially reflect and send a shock wave towards the inner surface of the leading edge. In Figure 6e, the pressure contours are shown at \(t=1.39 \times 10^{-3} \mathrm{sec}\). Here the shock waves created by the detonation products emitting from the inlet and nozzle of the Wing-PDE device collide, creating a complex flow pattern with two triple point shocks, a vortex at the trailing edge and a complex system of waves propagating through the inner volume of the wing. The maximum pressure observed in Figure be at the wave shock wave interaction is 3.2 atm . It is important to note that the numerical method simulates the flow evo lution seamlessly through the structured/unstructured grid interfaces.

In Figure 6f, the simulation results are shown at \(t=5.7 \times 10^{-3} \mathrm{sec}\); this corresponds to the end of one cycle for the Wing-PDE configuration. Here we can observe that the flow pattern is very similar to the one in Figure 6a, except for some vortices propagating in the lower right part of the computational domain. The maximum pressure is reached at the leading edges and has the same values as shown in Figure 6a. The inner volume of the wing has a relatively uniform flow pattern
with an average pressure of 0.83 atm . At this time the gaseous mixture in the inner chamber of the wing will be initiated at the trailing edge and the second cycle will get started.

Examination of the details of the flow pattern resulting from a single detonation not only allows evaluation of the timing between the subsequent detonations but also provides important information for optimization of mixing, detonation products expansion, and other gasdynamic processes related to operation of the PDE cycle. Performance characteristics of the PDE device can be analyzed by integrating in time the forces exerted by pressure on the inner and outer surfaces of the WingPDE device. In Figure 7, results for such an integration of the force parallel to the ground as a function of time are shown. Calculation of this force, taking into account the drag and the thrust resulting from the detonation cycle, yields the net thrust force. Figure 7 gives this force for a linear meter of the wing in pounds. In this figure, we observe that the net thrust force is negative before the detonation is initiated, reaches the value of \(4.6 \times 10^{5} \mathrm{Lb} / \mathrm{M}\) during the reflection of the main detonation front from the inner walls of the wing, and quickly decays to its negative initial values that correspond to the drag of the Wing-PDE configuration in \(\mathrm{M}=0.8\) ambient flow stream. The positive thrust force is produced by the detonation engine in a very short time interval; \(\approx 3.0 \times 10^{-4} \mathrm{sec}\).

The time integral of the force shown in Figure 7 is thrust produced by the PDE device. Because of its intermittent operation, we need to assume the cycle frequency to be able to calculate the net thrust. In Figure 8, the results of thrust force integration are shown in the assumption of 200 Hz detonation frequency of the WingPDE device. Our analysis above of a single cycle shows that this frequency of operation is feasible. In Figure 8, we observe that the maximum thrust of 5000 lb per linear meter of the wing is achieved in the first \(\approx 4.0 \times 10^{-4} \mathrm{sec}\) after the detonation wave impinges on the thrust wall. This period of time corresponds to the duration of the positive thrust force shown in Figure 7. After this, the thrust will erode because of drag force to the value of 4000 lb at the end of the cycle. The average thrust for the duration of the cycle is 4250 lb per linear meter of the wing.

One of the advantages of the Wing-PDE configuration is that it will generate lift. Our simulations show that the chosen configuration will produce significant lift even at zero angle of attack because of the flow of detonation products. In Figure 9, the net integrated lift is presented as a function of time in the same format as the net thrust shown in Figure 8. The integrated lift shown in Figure 9 is not a linear function of time, as will be the case for the steady state flow regime. Substantial lift is
generated shortly after the detonation products start to expand into the surrounding flow stream. The average lift generated is about 2250 lb per meter of wing lengch: this is comparable to the net thrust of 4250 lb . Our estimates indicate that about half of this lift is generated by the detonation products and the other half by the free stream flow through the chamber.

\section*{5. Conclusions}

We have presented a powerful numerical technique for analysis of nonsteady flow over a complex geometrical configuration in the computational domain decomposed on unstructured triangular and structured rectangular grids. Simulations of the Wing-PDE cycie have demonstrated flexibility and efficiency of this technique of domain decomposition. Numerical results show seamless propagations through structured/unstructured grid interfaces of the multiple shocks, contact discontinuities. vortices, rarefaction waves and other complex flow features.

Use of this powerful numerical technique allowed us to examine the operation cycle and propuision characteristics of the Wing-PDE device. We demonstrated in this study that in principle, the Wing-PDE device can operate with the 200 Hz cycle frequency producing 4250 lb per linear meter of the wing of the net thrust. We examined the Wing-PDE configuration to illustrate the geometric flexibility of this engine. This is an additional advantage to efficiency, \({ }^{3}\) scalability, \({ }^{4}\) thrust control, \({ }^{3}\) simplicity, and low cost of this device discussed in our pre vious publications.

\section*{References}

1 Helman, D., Shreeve, R.P., and Eidelman, S., (1986), "Detonation Pulse Engine," AIAA-86-1683, \(24^{\text {th }}\) Joint Propulsion Conference, Huntsville.
2 Eidelman, S., W. Grossmann, I. Lottati, (1989) "A Review of Propulsion Applications of the Pulsed Detonation Engine Concept," ALAA 89-2466, AIAA, July \(10-12\) (to be published in AIAA Journal of Propulsion), Nov - Dec issue.
3 Eidelman, S., W. Grossmann, and I. Lottati, (1990), "Computational Analysis of the Pulsed Detonation Engines and Applications," AIAA 90-0460, 28th Aerospace Sciences Meeting, Reno, NV, Jan 8-11.
4. Eidelman, S., W. Grossmann, and I. Lottati, "AirBreathing Pulsed Detonation Engine Concept; A Numerical Study," AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conference, Oriando, FL, July L618, 1990.
5. Eidelman, W., W. Grossmann, and I. Lottati, "A Propulsiohn Device Driven by Reflected Shock Waves," 18th iternational Symposium on Shock Waves, Sendai, Japan, 1991.
6 Hoffman, N., (1940), "Reaction Propulsion by Intermittent Detonative Combustion." Ministry of Sup-
ply, Volkenrode Translation.
7 Nicholls, J.A., Wikinson, H.R., and Morrison, R.B., (1957), "Intermittent Detonation as a ThrustProducing Mechanism," Jet Propulsion, 27, 534541.

8 Nicholls, J.A., Gullen, R.E. and Ragland K.W., (1966), "Feasibility Studies of a Rotating Detonation Wave Rocket Motor," J. of Spacecrafts and Rockets, 3, 893-896.
9 Lottati, L., S. Eidelman, A. Drobot (1990a), "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," Paper AIAA 90-0699, 28th Aerospace Sciences Meeting, Reno, NV, Jan 8-11.
10 Lottati, I., S. Eidelman, A. Drobot (1990b), "Solution of Euler's Equations on Adaptive Grids Using a FUGGS," to be published in Proceedings of Second International Conference on Free-Lagrange Methods, Jackson Hole, WY.
11 Eidelamn, S., Collela, P., and Shreeve R.P., (1984) "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," AIAA Journal, v. 22, 10.
12. A. Jameson, T.J. Baker and N.P. Weatherill, "Calculation of Inviscid Transonic Flow Over a Complete Aircraft," ALAA 24th Aerospace Sciences

Meeting, Reno, NV, AIAA Paper 86-0103, January 1986.
13. R. Löhner, "Adaptive Remeshing for Transient Problems," Comp. Meth. Appi. Mech. Eng. 75 195-214 (1989).
14. J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz, "Adaptive Remeshing for Compressible Flow Computations," J. Comp. Phys. 72, 449 466, (1987).
15. D. Mavriplis, "Accurate Multigrid Solution of the Euler Equations on Unstructured and Adaptive Meshes," AIAA 88-3707 (1988).
16. I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Grids," Proceeding of the 4th International Symposium on Computational Fluid Dynamics, Davis, CA, September 1991.
17. B. van Leer, "Towards the Ultimate Conservative Difference Scheme, V.A. Second Order Sequel to Godunov's Method," J. Comp. Phys. 32, 101-136 (1979).
18. P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gasdynamic Simulations," J. Comp. Phys. 54, 174-201 (1984).

19 Dulikravich, D.S., (1982), Private communication.


Figure 1. Schematic of the generic PDE showing detonation chamber, inlet, detonation wave, fuel injectors and position relative to an aerodynamic vehicle.


Figure 2. An example of hybrid structured/unstructured domain decomposition.


Figure 3. An example of hybrid structured/unstructured domain decomposition.


Figure 4. Schematics drawing of the wing-PDE configuration.


Figure 5. Co
comfiguration.
computational domain for the wiag-PDE

a. Steady state

b. \(t=1.18 \times 10^{-4} \mathrm{sec}\)


c. \(\mathrm{t}=5.24 \times 10^{-4} \mathrm{sec}\)

Figure 6. Pressure contours for the various time intervals of the wing-PDE cycle.

d. \(\mathrm{t}=9.50 \times 10^{-4} \mathrm{sec}\)

e. \(t=1.39 \times 10^{-3} \mathrm{sec}\)


Figure 6. Pressure contours for the various time intervals of the wing-PDE cycle (continued).


Figure 7. Thrust force as function of time for the wing-PDE device simulation.


Figure 8. Net integrated thrust for the wing-PDE simulation.


Figure 9. Integrated net lift for the wing PDE simulation.

\title{
A Second Order Godunov Scheme on Spatial \\ Adapted Triangular Grid
}

Itzhak Lottati and Shmuel Eidelman
Science Applications International Corporation

\begin{abstract}
Spatial adaptation procedure for the accurate and efficient solution of unsteady inviscid flow simulation is described. The adaptation procedures were developed and implemented applying a second order Godunov scheme. These procedures involve mesh enrichment/coarsening to either add/remove vertices in high/low gradient regions of the flow, respectively. The goal is to achieve solutions of high spatial accuracy at minimal computational cost. The paper describes a very effective error estimator to detect high/low activity regions of the flow to be enriched or coarsened, respectively. The error estimator is based on total energy and density fluxes into the cell combined with gradient of density. Included in the paper is a detailed description of the direct dynamic refinement method that is used for adaptation. A detailed simulation of a reflection and diffraction of multiple shock waves flowing over a diamond shape wedge is presented and compared with experimental results. The simulated results are shown to be in excellent agreement with the experiment primarily in that all the complicated features of the physics are accurately accounted for and the shock waves, slip lines. vortices are sharply captured.
\end{abstract}

\section*{INTRODUCTION}

Considerable progress has been made over the past decade in developing methods for spatial adaptation of the computational meshes based on the numerical solution of the simulated physics. These methods are being developed to produce higher spatial accuracy in such simulation more effciently. The goal of mesh adaptation is to enrich meshes locally, based on the numerical solution, in order to capture physical features of importance: in contrast to globally fine meshes, this process will minimize computer run times and memory costs. The methods of mesh adaptation can be categorized into three general classes: 1) mesh regeneration, 2) mesh movement, and 3) mesh enrichment.

The idea of mesh regeneration is systematically to identify high/low activity region in the flow and accordingly remesh those regions applying mesh generation code. This is done by assigning criteria for spatial accuracy and number of vertices. This procedure requires a mapping of the "old" flow solution into the "new" generated meshes by using one of the interpolated schemes. For the second method, mesh movement, the number of points in the computational domain remains fixed. The adaptation procedure moves vertices from low activity regions to high gradient regions to achieve a high concentration of vertices to resolve high activity regions. The movement of the points is dictated by forcing functions in the Poisson - equation in the grid generator code. The final method of spatial adaptation is mesh
enrichment. In this method. vertices are added or removed according to the spatial resolution of the physical features in the flow. The advantages of mesh enrichment over regeneration and movement are its higher degree of flexibility in being able to add points where they are needed and to remove points where they are not needed. In our mesh enrichment method, we add points ahead of the shock wave, thus preventing the need of interpolation in the high gradient region for achieving higher accuracy of the results. Adding and removing points are done in monotone/very low activity regions to prevent numerical dissipation.

Lohner \({ }^{(1)}\) has developed procedures to enrich the mesh for transient flow problems locally by subdividing elements in the grid according to specific spatial resolution criteria. The method, referred to as H-refinement, keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). The H-refinement relies heavily on the initial grid as it is subdivided for enrichment and recovered in the coarsening stage. A similar adaptive strategy to Lohner is adopted by Rausch \({ }^{(2)}\) et al., but applies a different error estimator and upwind type algorithm for a solver.

In our paper, we describe a Godunov scheme to solve Euler equations on an unstructured adaptive triangle mesh. We discuss the methodology of a cell centered Second Order Godunov scheme applied to a triangular mesh, and the method of Direct Dynamic Refinement that is used for adaptation of the unstructured triangular grid. Simulation and experimental results
are compared for a test case applying the adaptive unstructured grid to a complicated pattern of planar shock wave flow diffraction over a half diamond shape wedge.

\section*{SECOND ORDER GODUNOV}

\section*{ALGORITHM ON UNSTRUCTURED GRID}

This section describes the implementation of the Second Order Godunov algorithm on a triangular unstructured grid. The algorithm is explicit and is cell-center based.

We consider a system of two-dimensional Euler equations written in conservation law form as:
\[
\begin{equation*}
\frac{\partial \bar{U}}{\partial t}+\frac{\partial \bar{F}}{\partial x}+\frac{\partial \bar{G}}{\partial y}=0 \tag{i}
\end{equation*}
\]
where
\[
U=\left\{\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
e
\end{array}\right\}, F=\left\{\begin{array}{c}
p u \\
\rho u^{2}+p \\
\rho u v \\
u(e+p)
\end{array}\right\}, G=\left\{\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p \\
v(e+p)
\end{array}\right\} .
\]

Here \(u, v\) are the \(x, y\) velocity vector components, \(p\) is the pressure, \(\rho\) is the density and \(e\) is total energy of the fluid. We assume that the fluid is an ideal gas. The total energy of gas is given by the following equation:
\[
\begin{equation*}
e=\frac{p}{\gamma-1}+\frac{\rho}{2}\left(u^{2}+v^{2}\right) \tag{2}
\end{equation*}
\]
where \(\gamma\) is the ratio of specific heats. It is assumed that an initial distribution of the fluid parameters is given at \(t=0\), and the boundary conditions defining a unique solution are specified for the computational domain.

The system of governing equation (1) can be written in the following form:
\[
\begin{equation*}
\frac{\partial U}{\partial t}+\bar{\nabla} \cdot \bar{Q}=0 \tag{3}
\end{equation*}
\]
where \(\bar{Q}\) represents the convective flux vector. By integrating Eq. (3) over space and using Gauss' theorem, the following expression is obtained
\[
\begin{equation*}
\frac{\partial}{\partial t} \int_{\Omega} U d A+\oint_{\partial \Omega} \bar{Q} \cdot d \bar{l}=0 \tag{4}
\end{equation*}
\]
where \(d \bar{l}=\bar{n} d \mathcal{L}, \bar{n}\) is the unit normal vector in the outward direction, and \(d \mathcal{L}\) is a unit length on the boundary of the domain. The variable \(\Omega\) is the domain of computation and \(\partial \Omega\) is the circumference boundary of this domain.

Equation (4) can be discretized for each element (cell) of the domain
\[
\begin{equation*}
\frac{\left(U_{i}^{n+1}-U_{i}^{n}\right)}{\Delta t} A_{i}=\sum_{j=1}^{3} \bar{Q}_{j}^{n+\frac{1}{2}} \bar{n}_{j} \Delta L \tag{5}
\end{equation*}
\]
where \(A_{i}\) is the area of the cell; \(\Delta t\) is the marching time step; \(U_{i}^{n+1}\) and \(U_{i}^{n}\) are the primitive variables at the center of the cell at time \(n\) and at the update \(n+1\) time step; \(\bar{Q}_{j}\) is the value of the fluxes across the three boundaries edges on the circumference of the cell where \(\bar{n}\), is the unit normal
vector to the boundary edge \(j\), and \(\Delta L_{j}\) is the length of the boundary edge \(j\). Equation (5) is used to update the physical primitive variables \(U_{i}\) according to computed fluxes for each time step \(\Delta t\). The time step is subjected to the CFL (Courant-Fredrichs-Lewy) constraint.

To obtain a second order spacial accuracy, the gradient of each primitive variable is computed in the baricenter of the cell. This gradient is used to define the projected values of primitive variables at the two sides of the cell's edge, as is shown in Figure 1. The gradient is approximate by a path integral
\[
\begin{equation*}
\int_{\Omega} \vec{\nabla} U_{i}^{c e l l} d A=\oint_{\partial \Omega} U_{j}^{\text {edge }} d \bar{l} \tag{6}
\end{equation*}
\]

The notation is similar to the one used for Eq. (5) except the domain \(\Omega\) is a single cell and \(U_{i}^{\text {cell }}\) and \(U_{j}^{\text {edge }}\) are values at the baricenter and on the edge respectively. The gradient is estimated as
\[
\begin{equation*}
\bar{\nabla} U_{i}^{\text {cell }}=\frac{1}{A} \sum_{j=1}^{3} \tilde{U}_{j}^{\text {edge }} \bar{n}_{j} \Delta L_{j} \tag{7}
\end{equation*}
\]
where \(\tilde{U}_{j}^{\text {edge }}\) is an average value representing the primitive variable value for edge \(j\).

The gradients that are computed at each baricenter are used to roject values for the two sides of each edge by piecewise linear interpolation. The interpolated values are subjected to monotonicity constraints. \({ }^{(3)}\) The monotonicity constraint assures that the interpolated values are not creating new

The monotonicity limiter algorithm can be written in the following form:
\[
\begin{equation*}
U_{p r o j e c t e d}^{\text {edge }}=U_{i}^{\text {cell }}+\phi \bar{\nabla} U_{i} \cdot \Delta \bar{r} \tag{8}
\end{equation*}
\]
where \(\Delta \bar{r}\) is the vector from the baricenter to the point of intersection of the edge with the line connecting the baricenters of the ceils over the two sides of this edge. \(\phi\) is the limiter coefficient that limits the gradient \(\bar{\nabla} U_{i}\).

First, we compute the maximum and minimum values of the primitive variable in the i's cell and its three neighboring cells that share common edges (see Fig. 1):
\[
\left.\begin{array}{l}
U_{\text {cell }}^{\max }=\operatorname{Max}\left(U_{k}^{\text {cell }}\right)  \tag{9}\\
U_{\text {cell }}^{\min }=\operatorname{Min}\left(U_{k}^{\text {cell }}\right)
\end{array}\right\} k=i, 1,2,3
\]

The limiter can be defined as:
\[
\begin{equation*}
\phi=\operatorname{Min}\left\{1, \phi_{k}^{l r}\right\} \quad k=1,2,3 \tag{10}
\end{equation*}
\]
where superscript \(l r\) stands for left and right of the three edges ( 6 combinations in total). \(\phi_{k}^{i r}\) is defined by:
\[
\begin{equation*}
\phi_{k}^{l r}=\frac{\left[1+S g n\left(\Delta U_{k}^{l r}\right)\right] \Delta U_{c e l}^{\max }+\left[1-S g n\left(\Delta U_{k}^{i r}\right)\right] \Delta U_{\text {mell }}^{\min }}{2\left(\Delta U_{k}^{l r}\right)} \quad k=1,2,3 \tag{11}
\end{equation*}
\]
where \(\Delta U_{k}^{l r}=\bar{\nabla} U_{i}^{l r} \cdot \Delta \bar{r}_{k}\). and
\[
\left.\begin{array}{l}
\Delta U_{c e l l}^{\max }=U_{c e l l}^{\max }-U_{i}^{\text {cell }}  \tag{12}\\
\Delta U_{c e l l}^{\min }=U_{c e l l}^{\min }-U_{i}^{\text {cell }}
\end{array}\right\}
\]

To obtain a second order of accuracy in time and space, we subject the projected values of the left and right side of the cell edge to characteristic constraints following Ref. 4. The one dimensional characteristic predictor is applied to the projected values at half time step \(t^{n}+\frac{\Delta t}{2}\). The characteristic predictor is formulated in the local system of coordinates for the one dimensional Euler equation. We illustrate the implementation of the characteristic predictor in the direction of the unit vector \(\bar{n}_{c}\). The Euler equations for this direction can be written in the following form:
\[
\begin{equation*}
W_{t}+A(W) W_{n c}=0 \tag{13}
\end{equation*}
\]
where
\[
W=\left\{\begin{array}{l}
r  \tag{14}\\
u \\
p
\end{array}\right\} ; A(W)=\left(\begin{array}{ccc}
u & -\tau & 0 \\
0 & u & \tau \\
0 & \rho c^{2} & u
\end{array}\right)
\]
where \(\tau=\rho^{-1}, \rho\) denotes density while \(u, p\) are the velocity and pressure. The matrix \(A(W)\) has three eigenvectors ( \(\left.l^{\#}, r^{\#}\right)(l\) for left and \(r\) for right where \# denote \(+, 0,-)\) associated with the eigenvalues \(\lambda^{+}=u+c, \lambda^{\circ}=\) \(u, \lambda^{-}=u-c\).

An approximation of projected value to an edge accurate to second order in space and time can be written as:
\[
\begin{align*}
W_{i+\Delta r}^{n+1 / 2} & \approx W_{i}^{n}+\frac{\Delta t}{2} \frac{\partial W}{\partial t}+\Delta r \frac{\partial W}{\partial r_{n c}} \\
& \approx W_{i}^{n}+\left[\Delta r-\frac{\Delta t}{2} A\left(W_{i}\right)\right] \frac{\partial W}{\partial r_{n c}} \tag{15}
\end{align*}
\]

An approximation to \(W_{i+\Delta r}^{n+1 / 2}\) can be written as:
\[
\begin{equation*}
W_{i+\Delta r}^{n+1 / 2}=W_{i}+\left(\Delta \bar{r}_{i}-\frac{\Delta t}{2}\left(M_{r} M_{n}\right) \cdot \bar{n}_{c}\right) \bar{\nabla} W_{i} \tag{16}
\end{equation*}
\]
where
\[
\left(M_{x} M_{n}\right)= \begin{cases}M a x\left(\lambda_{i}^{+}, 0\right) & \text { for cell left to the edge }  \tag{17}\\ \operatorname{Min}\left(\lambda_{i}^{-}, o\right) & \text { for cell right to the edge } .\end{cases}
\]

The gradients applied in the process of computing the projected values at \(t^{n}+(\Delta t / 2)\) are subjected to the monotonicity limiter.

Following the characteristic predictor described above, the full Riemann problem is solved at the edge. The solution of the Riemann problem defines the flux \(\bar{Q}^{n+\frac{1}{2}}\) through the edge. The fluxes through the edges of triangles are then integrated (Eq. 5), thus giving an updated value of the variables at \(t^{n+1}\). One of the advantages of the described algorithm is that calculation of the fluxes is done over the largest loop in the system (loop over edges) and can be carried out in the vectorized or parallelized loop. This fact leads to an efficient algorithm.

The algorithm presented is a modification of the algorithm of Ref. 5 which was derived for structured mesh. This algorithm has been applied to simulate a wide range of flow problems and has been found very accurate in predicting the features of the physics. The performance of the algorithm is well documented in Refs. 6-8. The next section, the spatial adaptive procedure, is described in detail. These descriptions include explanations of the error estimator for flow feature detection and the Direct Dynamic Refinement Method used to enrich and coarsen the mesh.

\section*{DIRECT DYNAMIC REFINEMENT METHOD FOR ADAPTATION ON AN UNSTRUCTURED TRIANGULAR GRID}

The Direct Dynamic Refinement method (DDR) is a new method for adapting unstructured triangular grids during the computational process. As stated, an unstructured grid is very suitable for implementing boundary conditions on complex geometrical shapes as well as the adaptation of the grid, if necessary. The adaptation of the unstructured triangular grid leads to efficient usage of memory resources. The adaptive grid enables the user to capture moving shocks and high gradient flow features with high resolution. The available memory resources can be very efficiently distributed in the computational domain to accommodate the resolution needed to capture features of the physical property of the solution as they are evolved. Dynamic refinement controls the resolution priorities. These priorities can be set according to the physical features that the user wishes to emphasize
in the simulation. The user has control over the accuracy of the physical features resolved in the simulation, without being restricted to the initial grid. The alternative to Direct Dynamic Refinement (DDR) is the hierarchical dynamic refinement ( H -refinement) that keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). In the \(H\)-refinement method, it is necessary to keep overhead information on the level of each triangle subdivision, and double indirect indexing is needed to keep track of the H -refinement process. As mentioned, the H -refinement relies heavily on the initial grid as it subdivides this grid and returns to it after the passage of the shock.

To minimize the dissipation caused by the interpolation and extrapolation in the refinement and coarsening of the grid, the addition and deletion of point is done in the region where the flow features are smooth. Thus for capturing the shock, the refinement should be applied in the region ahead of the shock. The coarsening of the grid is done in the flow regions where the gradients of the flow parameters are small.

In the present version of AUGUST (Adaptive Unstructured Godunov Upwind Second order Triangular), we implemented an algorithm with multiple criteria for capturing a variety of features that might exist in the physics of the problem to be solved. To identify the location of a moving shock, we use the flux of total energy into triangles. The fluxes entering and leaving triangles are the most accurate physical variables computed by the Godunov
algorithm for solving Euler's equations, and are used to update the physical variables for each time step in each triangle. Supplementary to the : ax of energy as an error indicator, we use the flux of total density into \(t\). Ingles and the density gradient. The error indicator is the only sensor tha ss solely responsible for identifying the area to be refined or coarsened in tne computational domain. As such, the error indicator should be sensitive enough to detect physical features that are of interest to the user, such as shock waves, rarefaction waves, slip lines and vortices. The error indicators that are implemented in the code are able to sense very weak slip lines in the presence of strong shock waves. The ability of the error indicators to identify weak physical features in the presence of strong ones, without picking up numerical noises, is essential to the simulation of adaptive grids. As stated, the quality of the results is as good as the error indicators appijed. If the error indicators fail to identify the physical feature, this feature probably will be overlooked in the simulated results. It should be noted that the process of applying error indicators for identifying the areas to be adaptively refined or coarsened is an expensive loop that has to check the whole triangles table in the simulation. Thus, the error indicators are applied each 9 to 15 time steps. This process is preceded by application of an algorithm that refines a buffer zone ahead of the features and coarsens the grid after it was moved away. The buffer zone ahead of the feature is identified by using a search pattern of finding the neighbors of the flagged triangles sorted by the error indicators.

We are not applying any physical parameters to identify the ones "ahead."

The refinement algorithm follows several basic steps. The process of adding points to refine the grid locally is done by either adding a new vertex in the baricenter of the triangle or adding a new vertex in the middle of the edge. Adding a new vertex in the baricenter of a triangle is very efficient in the sense that the refinement affects this individual triangle only. We apply this process exclusively for refinement. As a supplement, especially on the boundary, we apply the method of adding a new vertex on an edge. As a complement to adding new vertices, we apply the reconnection/swapping algorithm that flips the diagonal (common edge) of two adjacent triangles to improve the quality of the triangles constructed. Figure 2 displays a chain of those basic steps to illustrate the refinement process. Figure 2 a shows the original grid. Figure 2b illustrates a one step scheme refinement in which a new vertex is introduced into a triangular cell forming three cells (two new ones). On the boundary edges, a new vertex is introduced in the middle of those edges to form two cells (one new one). This refinement is followed by reconnection that modifies the grid as demonstrated in Fig. 2c. The process of refinement and reconnection can be continued until the necessary grid resolution is achieved. As an example, another loop of refinement is illustrated in Figs. 2d and 2e. This direct approach to grid refinement provides extreme flexibility in resolving local flow features.

A similar direct approach is applied to grid coarsening. The basic step
in this process is deleting the cells and edges associated with a vertex to be removed, as shown in Fig. 3b. During the second step, this void in he grid is filled with new larger triangles (Fig. 3c) without introducing ne. ertices. The last step is local reconnection and relaxation as shown in F : 3d. The relaxation procedure is a simple relocation of the vertex movec , the center of the polygon surrounding this vertex (only if the polygon is a convex).

The algorithm of direct dynamic refinement proved to be very efficient in refining and coarsening the grid adaptively. The refinement and coarsening followed a short inquiry on the quality and shape of the triangle flagged and its close neighbors. Since we do not keep any history or tree for each triangle, the DDRM algorithm has much less checking to do as compared to the H refinement algorithm. The vectorization and parallelization of the solver is straightforward.

NUMERICAL RESULIS FOR THE
TWO DIMENSIONAL TEST PROBLEM

We have tested the Second Order Godunov algorithm in a variety of flow simulations ranging from the low subsonic to the high hypersonic Mach \({ }^{(6-8)}\) regime. The AUGUST code proved to be very robust and accurate. The results obtained are comparable to or better than those obtained applying leading flow solvers in all of the regimes tested.

To validate our DDRM implemented in the AUGUST code, we simulated the problem of interaction of a Mach 2.85 planar shock wave, propagating
in a channel with a \(45^{\circ}\) symmetrical double ramp. Figure 4 shows the experimental interferogram of the problem to be simulated (reproduced). The example that we chose to simulate is most appropriate to test the periormance of an adaptive algorithm. The experimental results show a complex flow pattern containing a mix of strong discontinuities, as shock aves, and very weak features such as slip lines, vortices, and rarefaction waves. The error estimator must recognize and flag all these features for refinement. The error estimator should be sensitive enough to identify very weak slip lines without picking up numerical noises present in the simulation. We have simulated the shock wave reflection and diffraction over a \(45^{\circ}\) corner at the conditions that correspond to the experimental result shown in Fig. 4. Here we present results for several shapes of the flow evolution. The flow in the channel is from left to right. Figure 5 displays density contour plots after the shock passed the apex of the double wedge obstacle. In Fig. 5a, the density contours are overlayed on the grid used at this stage of the evolving flow. For clarity, only the density contours are displayed in Fig. 5b. The grid displayed in Fig. 5a shows how well the adaptation technique follows the high activity region in the flow. The grid is adapting to regions with high pressure gradients and high density gradient. In Fig. 5a, one can observe high quality grid produced by the DDR method. The shock has a relatively thin buffer zone ahead of its front, allowing us to avoid the interpolations related to grid adaptation of the flow variables in the area of high gradient.

The flow features are resolved accurately, and the contact discontinuity and triple point are clearly defined.

Figure 6 shows the density contours at a later time in the same format as in Fig. 5. This figure demonstrates the ability of the DDRM to identify and follow flow features in the computational domain. In this figure we can observe a complicated flow nattern developing as a result of interaction of the rarefraction wave with the comples pattern of shock waves. A recompression shock and a strong vortex that are developed in this time frame are well resolved. We can also observe a slip line originating at the triple point. The adaptation algorithm, as in the previous time frame, follows both shock waves and contact discontinuities.

Figure 7 displays the density contours at the stage comparable to that shown in Fig. 4 for the experimental results. The computed results as displayed in Fig. 7b show a flow pattern similar to the experiment. The slip line and the formation of vertices along it are clearly depicted. The shock and reflected shock as well as the recompression shock are very sharply defined with very low numerical noise. The vortex developed after the compression shock is distinctly displayed. A new reflected shock can be seen developing at the channel wall behind the double wedge.

The results shown in Figs. 5-7 display the ability of the algorithm to simulate a complex transient flow problem on dynamically adapting grid. The error estimates used in our algorithm allow detection of strong and
weak shock waves, conducted discontinuities, vortices or other fronts that need enhanced resolution.

\section*{CONCLUSION}

The Direct Dynamic Refinement (DDR) method was developed and tested for a challenging problem of reflection and diffraction of a strong shock over a double ramp. For this test problem we have demonstrated that a set of error indicators developed for the DDR allow capturing strong and weak features of the complex wave structure developing in this test case.

The above described algorithms were implemented in the AUGUST code. The AUGUST code was used for a range of subsonic, transonic, and supersonic transient and steady problems. For all these conditions the AUGUST code produced robust results with the error indicators proving to be applicable for all these diverse flow regimes.

\section*{ACKNOWLEDGMENT}

The work reported here was partially supported by DARPA and AFOSR under Contract \#F49620-89-C-0087. The authors would like to thank Col. James Crowley and Dr. A. Nachman for their interest in this project.

\section*{REFERENCES}
1) R. Lohner, "An Adaptive Finite Element Scheme for Transient Problems in CFD," Comp. Meth. Appl. Mech. Eng., Vol. 61, 323-338. 1987.
2. R.D. Rausch. J.T. Batina, H.T.Y. Yang "Spatial Adaptation of Jnstructured Meshes for Unsteady Aerodynamic Flow Computation." AIAA Journal, Vol 30, No. 5, May 1992, pp. 1243-1251.
3) B. Van Leer, "Toward the Ultimate Conservative Difference Scherne, V. A Second Order Sequel to Godunov Method," J. Comp. Phys., 32, 101-136, 1979.
4) P. Collela and H.M. Glaz, "Efficient Solution Algorithm for the Riemann Problem for Real Gases," J. Comp. Phys. 59, 264-289. 1985.
5) S. Eidelman, P. Collela, and R.P. Shreeve. "Application of the Godunov Method and its Second Order Extension to Cascade Flow Modeling," AIAA Journal 22, 10, 1984.
6) I. Lottati, S. Eidelman, and A.T. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," AIAA 90-0699, 27th Aerospace Sciences Meeting, Reno, Nevada, 1989.
7) I. Lottati, S. Eidelman, and A.T. Drobot. "Solution of Euler's Equations on Adaptive Grids Using a Fast Unstructured Grid Second Order Godunov Solver," Proceedings of the Free Lagrange Conference, Jackson Lake. WY, June 1990.
8) I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Triangular Grid," Proceedings of 4th Internationad Symposium on Computational Fluid Dynamics, Davis, CA, September 1991.
9. D.L. Zhang, I.I. Glass, "An Interferometric Investigation of the Diffraction of Planar Shock Waves Over a Half-Diamond Cylinder in Air," NTIAS Report No. 322, March 1988.


Figure 1. Representative triangular cell in the mesh showing fluxes and projected values.

a. Original grid.

c. Grid after one refinement and one reconnection.

b. Grid after one refinement.

d. Second refinement.

e. Second reconnection.

Figure 2. Illustration of the grid refinement process.

a. Original grid.


b. Point removal.

d. Grid after reconnection and relaxation.

Figure 3. Illustration of the grid coarsenning process.


Figure 5. Computed density contours simulating flow identical to the setup of the experiment of Fig. 4. The grid is composed of 21121 vertices.


Figure 6. Computed density contours simulating flow identical to the setup of the experiment of Fig. 4. The grid is composed of 65624 vertices.


Figure 7. Computed density contours comparable to time of the experimental results shown in Fig. 4. The grid is composed of 79352 vertices.

\title{
A Second Order Godunov Scheme on Spatial \\ Adapted Triangular Grid \\ Itzhak Lottati and Shmuel Eidelman \\ Science Applications International Corporation
}

\begin{abstract}
Spatial adaptation procedure for the accurate and efficient solution of unsteady inviscid flow simulation is described. The adaptation procedures were developed and implemented applying a second order Godunov scheme. These procedures involve mesh enrichment/coarsening to either add/remove vertices in high/low gradient regions of the flow, respectively. The goal is to achieve solutions of high spatial accuracy at minimal computational cost. The paper describes a very effective error estimator to detect high/low activity regions of the flow to be enriched or coarsened, respectively. The error estimator is based on total energy and density fluxes into the cell combined with gradient of density. Included in the paper is a detailed description of the direct dynamic refinement method that is used for adaptation. A detailed simulation of a reflection and diffraction of multiple shock waves flowing over a diamond shape wedge is presented and compared with experimental resuits. The simulated results are shown to be in excellent agreement with the experiment primarily in that all the complicated features of the physics are accurately accounted for and the shock waves, slip lines, vortices are sharply captured.
\end{abstract}

\section*{INTRODUCTION}

Considerable progress has been made over the past decade in developing methods for spatial adaptation of the computational meshes based on the numerical solution of the simulated physics. These methods are being developed to produce higher spatial accuracy in such simulation more efficiently. The goal of mesh adaptation is to enrich meshes locally, based on the numerical solution, in order to capture physical features of importance; in contrast to globally fine meshes, this process will minimize computer run times and memory costs. The methods of mesh adaptation can be categorized into three general classes: 1) mesh regeneration, 2) mesh movement, and 3) mesh enrichment.

The idea of mesh regeneration is systematically to identify high/low activity region in the flow and accordingly remesh those regions applying mesh generation code. This is done by assigning criteria for spatial accuracy and number of vertices. This procedure requires a mapping of the "old" flow solution into the "new" generated meshes by using one of the interpolated schemes. For the second method, mesh movement, the number of points in the computational domain remains fixed. The adaptation procedure moves vertices from low activity regions to high gradient regions to achieve a high concentration of vertices to resolve high activity regions. The movement \(\sigma_{2}\) the points is dictated by forcing functions in the Poisson - equation in the grid generator code. The final method of spatial adaptation is mesh
enrichment. In this method. vertices are added or removed according to the spatial resolution of the physical features in the flow. The advantages of mesh enrichment over regeneration and movement are its higher degree of flexibility in being able to add points where they are needed and to remove points where they are not needed. In our mesh enrichment method, we add points ahead of the shock wave, thus preventing the need of interpolation in the high gradient region for achieving higher accuracy of the results, Adding and removing points are done in monotone/very low activity regions to prevent numerical dissipation.

Lohner \({ }^{(1)}\) has developed procedures to enrich the mesh for transient flow problems locally by subdividing elements in the grid according to specific spatial resolution criteria. The method, referred to as H -refinement, keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). The H-refinement relies heavily on the initial grid as it is subdi ided for enrichment and recovered in the coarsening stage. A similar adaptive strategy to Lohner is adopted by Rausch \({ }^{(2)}\) et al.. but applies a different error estimator and upwind type algorithm for a solver.

In our paper, we describe a Godunov scheme to solve Euler equations on an unstructured adaptive triangle mesh. We discuss the methodology of a cell centered Second Order Godunov scheme applied to a triangular mesh. and the method of Direct Dynamic Refinement that is used for adaptation of the unstructured triangular grid. Simulation and experimental results
are compared for a test case applying the adaptive unstructured grid to a complicated pattern of planar shock wave flow diffraction over a half diamond shape wedge.

\section*{SECOND ORDER GODUNOV \\ ALGORITHM ON UNSTRUCTURED GRID}

This section describes the implementation of the Second Order Godunov algorithm on a triangular unstructured grid. The algorithm is explicit and is cell-center based.

We consider a system of two-dimensional Euler equations written in conservation law form as:
\[
\begin{equation*}
\frac{\partial \bar{U}}{\partial t}+\frac{\partial \bar{F}}{\partial x}+\frac{\partial \bar{G}}{\partial y}=0 \tag{1}
\end{equation*}
\]
where
\[
U=\left\{\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
e
\end{array}\right\}, F=\left\{\begin{array}{c}
p u \\
\rho u^{2}+p \\
\rho u v \\
u(e+p)
\end{array}\right\}, G=\left\{\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p \\
v(e+p)
\end{array}\right\} .
\]

Here \(u, v\) are the \(x, y\) velocity vector components, \(p\) is the pressure, \(\rho\) is the density and \(e\) is total energy of the fluid. We assume that the fluid is an ideal gas. The total energy of gas is given by the following equation:
\[
\begin{equation*}
e=\frac{p}{\gamma-1}+\frac{\rho}{2}\left(u^{2}+v^{2}\right) \tag{2}
\end{equation*}
\]
where \(\gamma\) is the ratio of specific heats. It is assumed that an initial distribution of the fluid parameters is given at \(t=0\), and the boundary conditions defining a unique solution are specified for the computational domain.

The system of governing equation (1) can be written in the following form:
\[
\begin{equation*}
\frac{\partial U}{\partial t}+\bar{\nabla} \cdot \bar{Q}=0 \tag{3}
\end{equation*}
\]
where \(\bar{Q}\) represents the convective flux vector. By integrating Eq. (3) over space and using Gauss' theorem, the following expression is obtained
\[
\begin{equation*}
\frac{\partial}{\partial t} \int_{\Omega} U d A+\oint_{\partial \Omega} \bar{Q} \cdot d \bar{l}=0 \tag{4}
\end{equation*}
\]
where \(d \bar{l}=\bar{n} d \mathcal{L}, \bar{n}\) is the unit normal vector in the outward direction, and \(d \mathcal{L}\) is a unit length on the boundary of the domain. The variable \(\Omega\) is the domain of computation and \(\partial \Omega\) is the circumference boundary of this domain.

Equation (4) can be discretized for each element (cell) of the domain
\[
\begin{equation*}
\frac{\left(U_{i}^{n+1}-U_{i}^{n}\right)}{\Delta t} A_{i}=\sum_{j=1}^{3} \bar{Q}_{j}^{n+\frac{1}{2}} \bar{n}_{j} \Delta L_{j} \tag{5}
\end{equation*}
\]
where \(A_{i}\) is the area of the cell; \(\Delta t\) is the marching time step; \(U_{i}^{n+1}\) and \(U_{i}^{n}\) are the primitive variables at the center of the cell at time \(n\) and at the update \(n+1\) time step; \(\tilde{Q}\); is the value of the fluxes across the three boundaries edges on the circumference of the cell where \(\bar{n}\), is the unit normal
vector to the boundary edge \(j\), and \(\Delta L_{j}\) is the length of the boundary edge \(j\). Equation (5) is used to update the physical primitive variables \(U_{i}\) according to computed fluxes for each time step \(\Delta t\). The time step is subjectes: to the CFL (Courant-Fredrichs-Lewy) constraint.

To obtain a second order spacial accuracy, the gradient of each primitive variable is computed in the baricenter of the cell. This gradient is used to define the projected values of primitive variables at the two sides of the cell's edge, as is shown in Figure 1. The gradient is approximate by a path integral
\[
\begin{equation*}
\int_{\Omega} \bar{\nabla} U_{i}^{c e l l} d A=\oint_{\partial \Omega} U_{j}^{e d g e} d \bar{l} \tag{6}
\end{equation*}
\]

The notation is similar to the one used for Eq. (5) except the domain \(\Omega\) is a single cell and \(U_{i}^{\text {cell }}\) and \(U_{j}^{\text {edge }}\) are values at the baricenter and on the edge respectively. The gradient is estimated as
\[
\begin{equation*}
\bar{\nabla} U_{i}^{\text {cell }}=\frac{1}{A} \sum_{j=1}^{3} \tilde{U}_{j}^{\text {edge }} \bar{n}_{j} \Delta L_{j} \tag{7}
\end{equation*}
\]
where \(\tilde{U}_{j}^{\text {edge }}\) is an average value representing the primitive variable value for edge \(j\).

The gradients that are computed at each baricenter are used to roject values for the two sides of each edge by piecewise linear interpolation. The interpolated values are subjected to monotonicity constraints. \({ }^{(3)}\) The monotonicity constraint assures that the interpolated values are not creating new
extrema.

The monotonicity limiter algorithm can be written in the following form:
\[
\begin{equation*}
U_{\text {projected }}^{\text {edge }}=U_{i}^{\text {cell }}+\phi \bar{\nabla} U_{i} \cdot \Delta \bar{r} \tag{8}
\end{equation*}
\]
where \(\Delta \bar{r}\) is the vector from the baricenter to the point of intersection of the edge with the line connecting the baricenters of the cells over the two sides of this edge. \(\sigma\) is the limiter coefficient that limits the gradient \(\bar{\nabla} U_{i}\).

First, we compute the maximum and minimum values of the primitive variable in the i's cell and its three neighboring cells that share common edges (see Fig. 1):
\[
\left.\begin{array}{l}
U_{c e l l}^{\max }=\operatorname{Max}\left(U_{k}^{\text {cell }}\right)  \tag{9}\\
U_{c e l l}^{\min }=\operatorname{Min}\left(U_{k}^{\text {cell }}\right)
\end{array}\right\} k=i, 1,2,3
\]

The limiter can be defined as:
\[
\begin{equation*}
\phi=\operatorname{Min}\left\{1, \phi_{k}^{l r}\right\} k=1,2,3 \tag{10}
\end{equation*}
\]
where superscript \(l r\) stands for left and right of the three edges ( 6 combinations in total). \(\phi_{k}^{\prime r}\) is defined by:
\[
\begin{equation*}
\phi_{k}^{l r}=\frac{\left[1+\operatorname{Sgn}\left(\Delta U_{k}^{l r}\right)\right] \Delta U_{c e l l}^{\max }+\left[1-\operatorname{Sgn}\left(\Delta U_{k}^{l r}\right)\right] \Delta U_{r e l l}^{\min }}{2\left(\Delta U_{k}^{(r}\right)} \quad k=1,2,3 \tag{11}
\end{equation*}
\]
where \(\Delta U_{k}^{l r}=\bar{\nabla} U_{i}^{l r} \cdot \Delta \bar{r}_{k}\). and
\[
\left.\begin{array}{l}
\Delta U_{\text {cell }}^{\max }=U_{\text {cell }}^{\max }-U_{i}^{\text {cell }}  \tag{12}\\
\Delta U_{\text {cell }}^{\min }=U_{c e l l}^{\min }-U_{i}^{\text {cell }}
\end{array}\right\}
\]

To obtain a second order of accuracy in time and space, we subject the projected values of the left and right side of the cell edge to characteristic constraints following Ref. 4. The one dimensional characteristic predictor is applied to the projected values at half time step \(t^{n}+\frac{\Delta t}{2}\). The characteristic predictor is formulated in the local system of coordinates for the one dimensional Euler equation. We illustrate the implementation of the characteristic predictor in the direction of the unit vector \(\bar{n}_{c}\). The Euler equations for this direction can be written in the following form:
\[
\begin{equation*}
W_{t}+A(W) W_{n c}=0 \tag{13}
\end{equation*}
\]
where
\[
W=\left\{\begin{array}{l}
\tau  \tag{14}\\
u \\
p
\end{array}\right\} ; A(W)=\left(\begin{array}{ccc}
u & -\tau & 0 \\
0 & u & \tau \\
0 & \rho c^{2} & u
\end{array}\right)
\]
where \(\tau=\rho^{-1}, \rho\) denotes density while \(u, p\) are the velocity and pressure. The matrix \(A(W)\) has three eigenvectors ( \(\left.l^{\#}, r^{\#}\right)(l\) for left and \(r\) for right where \# denote \(+, 0,-)\) associated with the eigenvalues \(\lambda^{+}=u+c, \lambda^{\circ}=\) \(u, \lambda^{-}=u-c\).

An approximation of projected value to an edge accurate to second order in space and time can be written as:
\[
\begin{align*}
W_{i+\Delta r}^{n+1 / 2} & \approx W_{i}^{n}+\frac{\Delta t}{2} \frac{\partial W}{\partial t}+\Delta r \frac{\partial W}{\partial r_{n c}} \\
& \approx W_{i}^{n}+\left[\Delta r-\frac{\Delta t}{2} A\left(W_{i}\right)\right] \frac{\partial W}{\partial r_{n c}} \tag{15}
\end{align*}
\]

An approximation to \(W_{i+\Delta r}^{n+1 / 2}\) can be written as:
\[
\begin{equation*}
W_{i+\Delta r}^{n+1 / 2}=W_{i}+\left(\Delta \bar{r}_{i}-\frac{\Delta t}{2}\left(M_{x} M_{n}\right) \cdot \bar{n}_{e}\right) \bar{\nabla} W_{i} \tag{16}
\end{equation*}
\]
where
\[
\left(M_{x} M_{n}\right)= \begin{cases}\operatorname{Max}\left(\lambda_{i}^{+}, o\right) & \text { for cell left to the edge }  \tag{17}\\ \operatorname{Min}\left(\lambda_{i}^{-}, o\right) & \text { for cell right to the edge }\end{cases}
\]

The gradients applied in the process of computing the projected values at \(t^{n}+(\Delta t / 2)\) are subjected to the monotonicity limiter.

Following the characteristic predictor described above, the full Riemann problem is solved at the edge. The solution of the Riemann problem defines the flux \(\bar{Q}^{n+\frac{1}{2}}\) through the edge. The fluxes through the edges of triangles are then integrated (Eq. 5), thus giving an updated value of the variables at \(t^{n+1}\). One of the advantages of the described algorithm is that calculation of the fluxes is done over the largest loop in the system (loop over edges) and can be carried out in the vectorized or parallelized loop. This fact leads to an efficient algorithm.

The algorithm presented is a modification of the algorithm of Ref. 5 which was derived for structured mesh. This algorithm has been applied to simulate a wide range of flow problems and has been found very accirate in predicting the features of the physics. The performance of the algorithm is well documented in Refs. 6-8. The next section, the spatial adaptive procedure, is described in detail. These descriptions include explanations of the error estimator for flow feature detection and the Direct Dynamic Refinement Method used to enrich and coarsen the mesh.

\section*{DIRECT DYNAMIC REFINEMENT METHOD FOR ADAPTATION ON AN UNSTRUCTURED TRIANGULAR GRID}

The Direct Dynamic Refinement method (DDR) is a new method for adapting unstructured triangular grids during the computational process. As stated, an unstructured grid is very suitable for implementing boundary conditions on complex geometrical shapes as well as the adaptation of the grid, if necessary. The adaptation of the unstructured triangular grid leads to efficient usage of memory resources. The adaptive grid enables the user to capture moving shocks and high gradient flow features with high resolution. The available memory resources can be very efficiently distributed in the computational domain to accommodate the resolution needed to capture features of the physical property of the solution as they are evolved. Dynamic refinement controls the resolution prionities. These priorities can be set according to the physical features that the user wishes to emphasize
in the simulation. The user has control over the accuracy of the physical features resolved in the simulation, without being restricted to the initial grid. The alternative to Direct Dynamic Refinement (DDK) is the hierarchical dynamic refinement ( H -refinement) that keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). In the \(H\)-refinement method, it is necessary to keep overhead information on the level of each triangle subdivision, and double indirect indexing is needed to keep track of the H -refinement process. As mentioned, the H -refinement relies heavily on the initial grid as it subdivides this grid and returns to it after the passage of the shock.

To minimize the dissipation caused by the interpolation and extrapolation in the refinement and coarsening of the grid, the addition and deletion of point is done in the region where the flow features are smooth. Thus for capturing the shock, the refinement should be applied in the region ahead of the shock. The coarsening of the grid is done in the flow regions where the gradients of the flow parameters are small.

In the present version of AUGUST (Adaptive Unstructured Godunov Upwind Second order Triangular), we implemented an algorithm with multiple criteria for capturing a variety of features that might exist in the physics of the problem to be solved. To identify the location of a moving shock, we use the flux of total energy into triangles. The fluxes entering and leaving triangles are the most accurate physical variables computed by the Godunov
algorithm for solving Euler`s equations, and are used to update the physical variables for each time step in each triangle. Supplementary to the : \(u x\) of energy as an error indicator, we use the flux of total density into \(t\). ngles and the density gradient. The error indicator is the only sensor tha: is solely responsible for identifying the area to be refined or coarsened in tne computational domain. As such, the error indicator should be sensitive enough to detect physical features that are of interest to the user, such as shock waves, rarefaction waves, slip lines and vortices. The error indicators that are implemented in the code are able to sense very weak slip lines in the presence of strong shock waves. The ability of the error indicators to identify weak physical features in the presence of strong ones, without picking up numerical noises, is essential to the simulation of adaptive grids. As stated, the quality of the results is as good as the error indicators applied. If the error indicators fail to identify the physical feature, this feature probably will be overlooked in the simulated results. It should be noted that the process of applying error indicators for identifying the areas to be adaptively refined or coarsened is an expensive loop that has to check the whole triangles table in the simulation. Thus, the error indicators are applied each 9 to 15 time steps. This process is preceded by application of an algorithm that refines a buffer zone ahead of the features and coarsens the grid after it was moved away. The buffer zone ahead of the feature is identified by using a search pattern of finding the neighbors of the flagged triangles sorted by the error indicators.

We are not applying any physical parameters to identify the zones "ahead."

The refinement algorithm follows several basic steps. The process of adding points to refine the grid locally is done by either adding a new vertex in the baricenter of the triangle or adding a new vertex in the middle of the edge. Adding a new vertex in the baricenter of a triangle is very efficient in the sense that the refinement affects this individual triangle only. We apply this process exclusively for refinement. As a supplement, especially on the boundary, we apply the method of adding a new vertex on an edge. As a complement to adding new vertices, we apply the reconnection/swapping algorithm that flips the diagonal (common edge) of two adjacent triangles to improve the quality of the triangles constructed. Figure 2 displays a chain of those basic steps to illustrate the refinement process. Figure 2 a shows the original grid. Figure 2b illustrates a one step scheme refinement in which a new vertex is introduced into a triangular cell forming three cells (two new ones). On the boundary edges, a new vertex is introduced in the middle of those edges to form two cells (one new one). This refinement is followed by reconnection that modifies the grid as demonstrated in Fig. 2c. The process of refinement and reconnection can be continued until the necessary grid resolution is achieved. As an example, another loop of refinement is illustrated in Figs. 2d and 2e. This direct approach to grid refinement provides extreme flexibility in resolving local flow features.

A similar direct approach is applied to grid coarsening. The basic step
in this process is deleting the cells and edges associated with a vertex to be removed, as shown in Fig. 3b. During the second step, this void in the grid is filled with new larger triangles (Fig. 3c) without introducing new vertices. The last step is local reconnection and relaxation as shown in Fig. 3d. The relaxation procedure is a simple relocation of the vertex moved to the center of the polygon surrounding this vertex (only if the polygon is a convex).

The algorithm of direct dynamic refinement proved to be very efficient in refining and coarsening the grid adaptively. The refinement and coarsening followed a short inquiry on the quality and shape of the triangle flagged and its close neighbors. Since we do not keep any history or tree for each triangle, the DDRM algorithm has much less checking to do as compared to the H refinement algorithm. The vectorization and parallelization of the solver is straightforward.

NUMERICAL RESULTS FOR THE TWO DIMENSIONAL TEST PROBLEM

We have tested the Second Order Godunov algorithm in a variety of flow simulations ranging from the low subsonic to the high hypersonic Mach \({ }^{(6-8)}\) regime. The AUGUST code proved to be very robust and accurate. The results obtained are comparable to or better than those obtained applying leading flow solvers in all of the regimes tested.

To validate our DDRM implemented in the AUGUST code, we simulated the problem of interaction of a Mach 2.85 planar shock wave, propagating
in a channel with a \(45^{\circ}\) symmetrical double ramp. Figure 4 shows the experimental interferogram of the problem to be simulated (reproduced). The example that we chose to simulate is most appropriate to test the performance of an adaptive algorithm. The experimental results show a complex flow pattern containing a mix of strong discontinuities, as shock waves, and very weak features such as slip lines, vortices, and rarefaction waves. The error estimator must recognize and flag all these features for refinement. The error estimator should be sensitive enough to identify very weak slip lines without picking up numerical noises present in the simulation. We have simulated the shock wave reflection and diffraction over a \(45^{\circ}\) corner at the conditions that correspond to the experimental result shown in Fig. 4. Here we present results for several shapes of the flow evolution. The flow in the channel is from left to right. Figure 5 displays density contour plots after the shock passed the apex of the double wedge obstacle. In Fig. 5a, the density contours are overlayed on the grid used at this stage of the evolving flow. For clarity, only the density contours are displayed in Fiy. 5b. The grid displayed in Fig. 5a shows how well the adaptation technique follows the high activity region in the flow. The grid is adapting to regions with high pressure gradients and high density gradient. In \(\mathrm{Fi}_{6}\). 5a, one can observe high quality grid produced by the \(\operatorname{DDR}\) method. The shock has a relatively thin buffer zone ahead of its front, allowing us to avoid the interpolations related to grid adaptation of the flow variables in the area of high gradient.

The flow features are resolved accurately, and the contact discontinuity and triple point are clearly defined.

Figure 6 shows the density contours at a later time in the same format as in Fig. 5. This figure demonstrates the ability of the DDRM to identify and follow flow features in the computational domain. In this figure we can ohserve a complicated flow pattern developing as a result of interaction of the rarefraction wave with the complex pattern of shock waves. A recompression shock and a strong vortex that are developed in this time frame are well resolved. We can also observe a slip line originating at the triple point. The adaptation algorithm, as in the previous time frame, follows both shock waves and contact discontinuities.

Figure 7 displays the density contours at the stage comparable to that shown in Fig. 4 for th experimental results. The computed results as displayed in Fig. 7b show a flow pattern similar to the experiment. The slip line and the formation of vertices along it are clearly depicted. The shock and reflected shock as well as the recompression shock are very sharply defined with very low numerical noise. The vortex developed after the compression shock is distinctly displayed. A new refiected shock can be seen developing at the channel wall behind the double wedge.

The results shown in Figs. 5-7 display the ability of the algorithm to simulate a complex transient flow F ablem on dynamically adapting grid. The error estimates used in our algorithm allow detection of strong and
weak shock waves. conducted discontinuities, vortices or other fronts that need enhanced resolution.

\section*{CONCLUSION}

The Direct Dynamic Refinement (DDR) method was developed and tested for a challenging problem of reflection and diffraction of a strong shock over a double ramp. For this test problem we have demonstrated that a set of error indicators developed for the DDR allow capturing strong and weak features of the complex wave structure developing in this test case.

The above described algorithms were implemented in the AUGUST code. The AUGUST code was used for a range of subsonic. transonic, and supersonic transient and steady problems. For all these conditions the \(A U\) GUST code produced robust results with the error indicators proving to be applicable for all these diverse flow regimes.

\section*{ACKNOWLEDGMENT}

The work reported here was partially supported by DARPA and AFOSR under Contract \#F49620-89-C-0087. The authors would like to thank Col. James Crowley and Dr. A. Nachman for their interest in this project.

\section*{REFERENCES}
1) R. Lohner, "An Adaptive Finite Element Scheme for Transient Problems in CFD." Comp. Meth. Appl. Mech. Eng., Vol. 61, 323-338. 1987.
2. R.D. Rausch. J.T. Batina. H.T.Y. Yang "Spatial Adaptation of Unstructured Meshes for Unsteady Aerodynamic Flow Computation." AIAA Journal, Vol 30, No. 5, May 1992. pp. 1243-1251.
3) B. Van Leer. "Toward the Ultimate Conservative Difference Scheme. V. A Second Order Sequel to Godunov Method." J. Comp. Phys., 32. 101-136, 1979.
4) P. Collela and H.M. Glaz, "Efficient Solution Algorithm for the Riemann Problem for Real Gases," J. Comp. Phys. 59. 264-289, 1985.
5) S. Eidelman. P. Collela, and R.P. Shreeve. "Application of the Godunov Method and its Second Order Extension to Cascade Flow Modeling," AIAA Journal 22, 10, 1984.
6) I. Lottati, S. Eidelman, and A.T. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," AIAA 90-0699, 27th Aerospace Sciences Meeting, Reno, Nevada, 1989.
7) I. Lottati, S. Eidelman, and A.T. Drobot, "Solution of Euler's Equations on Adaptive Grids Using a Fast Unstructured Grid Second Order Godunov Solver," Proceedings of the Free Lagrange Conference, Jackson Lake. WY, June 1990.
8) I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Triangular Grid," Proceedings of 4th International Symposium on Computational Fluid Dynamics, Davis. CA, September 1991.
9. D.L. Zhang, I.I. Glass. "An Interferometric Investigation of the Diffraction of Planar Shock Waves Over a Half-Diamond Cylinder in Air," NTIAS Report No. 322, March 1988.

Figure 1. Representative triangular cell in the mesh showing fluxes and projected values.


Figure 2. Illustration of the grid refinement process.

a. Original grid.

b. Point removal.

c. Constructing of new cells.

d. Grid after reconnection and relaxation.

Figure 3. Illustration of the grid coarsenning process.

Figure 4. An experimental interferogram taken at \(96 \mu s\) after shock wave hits a diamond shaped obstacle, Mach \(M_{s}=2.85\).


Figure 5. Computed density contours simulating flow identical to the setup of the experiment of Fig. 4. The grid is composed of 21121 vertices.


Figure 6. Computed density contours simulating flow identical to the setup of the experiment of Fig. 4. The grid is composed of 65624 vertices.


Figure 7. Computed density contours comparable to time of the experimental results shown in Fig. 4. The grid is composed of 79352 vertices.

\title{
DECOMPOSITION BY STRUCTURED/UNSTRUCTURED COMPOSITE GRIDS FOR EFFICIENT INTEGRATION IN DOMAINS WITH COMPLEX GEOMETRIES
}

\author{
Itzhak Lottati and Shmuel Eidelman \\ Applied Physics Operation, MS 2-3-1 \\ Science Applications International Corporation \\ McLean. VA 22102
}

The Second Order Godunov method has been simultaneousiy implemented on both unstructured trianguiar and structured rectanguiar grids. This combined structured/unstructured method is a much more efficient approach to doman decomposition as compared to the separate application of eacion method. Appucation of this new technique to the compiex problem of acoustic wave iocusing in an eilipsodd reflector ias demonstrated its advantages over both structured and unstructured methods of domain decoraposition. It has been shown that the complex pattern of acoustic waves propagatea seamiessiy through structured/unstructured grid interiaces without reflection or distortion. The new e-proach provides uitimate fexibijity in doman decomposition with minimum penalty in terms of mernory and CPU requirements, and at the same time capitalizes on the advantages of both structured and unstructured grid methods.

\section*{Introduction}

Structured rectanguiar grids allow the construction of numerical algorithms that perform an efficiens and accurate integration of fluid conservation equations. The efficiency of these schemes results from the extremely low storage overhead needed for domain decomposition and the efficient and compact indexing that aiso defines domain connectivity. These swo factors allow code construction based on a structured domain decomposition that can be highly vectorized and parallelized. Integration in physical space on orthogonal and uniform grids produces the highest possible accuracy of the numerical algarithms. The disadvantage of structured rectangular grids is that they cannot be used for decomposition of computational domains with complex geometries.

The early developers of computational methods realized that, for many important applications of Computationai Fluid Dynamies (CFD), it is unacceptable to describe curved boundaries of the computationai domain using the stair-step approximation available with the rectangular domsin decomposition technique. To overcome this difficulty, the techniques of boundary-fitted coordinates were deveioped. With these techniques, the computational domain is decomposed on quadrilaterais that can be fitted to the curved domain. The solution is then obtained in the physical space using the geometrical information defining the quadrilaterais, or in the computationai coordinate system that is obtained by transformation of the original domain into a rectanguiar domain. The advantage of this technique is that it employs the same indexing method as the rectangular structured domain decomposition methods that aleo nerre to define domain connectivity. The boundary fitted coordinates approach leads to efficient codes, with approximately a \(4: 1\) penalty in terms of memory requirement per cell as compared with rectangular domain decomposition. However, this approach is somewhat restricted in its domain decompocition capability, since distortion or large size variations of the quadrilaterals in one region of the domain lead to unwanted distortions or increased resolution in other parts of the domain. An exampie of this is the case oi structured body fitted coordinates that are used for simulations of fows over a profile with sharp trailing edges. In this case. increased resolution in the vicinity of the trailing edge leads to increased resolution in the whole row of elements connected to the trailing edge elements.

The most effective methods of domain decomposition developed to overcome this disadvantage are those using unstructured triangular grids. These methods were developed to cope with very complex computational domains. The unstructured grid method. while efficient and poweriul in domain decomposition. results in codes that must store large quantities of information defining the grid geometry and connectivity, and have large computational and storage overheads. As a rule, an unstructured grid code requires greater storage by a factor of 10 . and will run about 5 times slower when compared on a per cell per treration basis with a structured rectanguiar code.

Unstructured triangular meshes are designed to provide a grid that is ritted to the boundary oi compiex geometry. The flexibility oi the unstructured mesh that ailows griding compiex geomerry shouid be wergned against the huge memory requirement needed to define the infer connectivity between the triangies. To cut down on the memory overhead. unstructured grid methods are used to their best advantage when combined with grid adaptivity. This feature usuaily ailows the dynams reailocauon of triangies according to the physics and geometry of the problem soived, which leads to a substantiai reduction in the number of cells needed for the domain decomposition. However, this advantage is highly depencent on the problem soived. Adaptive unstructured grids have an advantage over the unadaptive unstructured doman decompostion if the area of high resolution needed is around one-tenth of the global area oi the computational domain. As a resuth. while the adaptive unstructured method may be extremeiy effective for simulating flow with mutipie shock waves in complex geomerries. it becomes extremeiy inefficient when high resolution is needed in a substantial area of the compurational domain.

Our approach to domain decomposition combines the structured and unstructured methods for achieving Detter efficiency and accuracy. Under this method, structured rectanguiar grids are used to cover most of the computational domain, and unstructured triangular grids are used oniy to patch between the rectangular grois FiF . 1), or to conform to the curved boundaries of the computationai domain (Fis. 2). In these ngures. an unstructured triangular grid is used to accurately define the curved internai or externai boundaries and a structured rectanguiar grid is used to decompose the segions of the computational domann that have a simple geometry.


Figure 1. A possible candidate configuration for hybrid structured/unstructured domain decomposition.


Figure 2. A possible candidate configuration for hybrid structured/unstructured domain decomposition, representing the ellipsoid reflector grid used for the numerical simulation.

Our paper will illustrate the performance gains achieved from the use of this composite grid decomposition approach. We apply the Second Order Godunov method to solve the Euler equations on both structured and unstructured sections of the grid. The challenging problem of acoustic wave focusing in an ellipsoid is used as a test case to confirm the soundness of the approach and to check its periormance characteristics and accuracy.

\section*{Mathematical Model and Integration Algorithm}

We consider a system of two-dimensional Euler equations written in conservation law form as:
\[
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}=0 \tag{1}
\end{equation*}
\]
where
\[
U=\left|\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
e
\end{array}\right|, F=\left|\begin{array}{c}
\rho u \\
\rho u^{2}+\rho \\
\rho u v \\
u(e+p)
\end{array}\right|, G=\left|\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p \\
v(e+p)
\end{array}\right| .
\]

Here \(u, v\) are the \(x . y\) velocity vector components. \(p\) is the pressure. \(\rho\) is the density and \(e\) is total energy of the tuid. We assume that the fluid is an ideal gas and the pressure is given by the equation-of-state
\[
\begin{equation*}
p=(\gamma-1)\left(e-0.5 \rho\left(u^{2}+v^{2}\right)\right) \tag{2}
\end{equation*}
\]
where \(\sim\) :s the ratio of specinc heats and typicaily taken as 1.4 for air. It is assumed that an initial distrioution oi the fuid parameters is given at \(t=0\). and the boundary conditions cefining a unsque solution are spectned for the computationai doman.

The system of governing equations in Eq. (1) can be written as
\[
\begin{equation*}
\frac{\partial U}{\partial t}+\nabla \cdot Q=0 \tag{3}
\end{equation*}
\]
where \(Q\) represents the convective flux vector. By integrating Eq. (3) over space and using Gauss theorem. the following expression i: fbtained
\[
\begin{equation*}
\frac{\partial}{\partial t} \int_{\Omega} U d A+\oint_{\partial \Omega} Q d l=0 \tag{4}
\end{equation*}
\]
where \(a i=n d \mathcal{L}\).n is the unit normai vector in the outward direction. and \(d \mathcal{L}\) is a unit lengit on the bouncary oi the domain The varable \(\Omega\) is the domain of computation and \(\partial \Omega\) is the circumierence boundary of this domain.

Eq. (4) can be discretized for each element (cell) in the domain
\[
\begin{equation*}
\frac{\left(U_{i}^{n+1}-U_{i}^{n}\right)}{\Delta t} A_{i}=\sum_{j=i}^{M} Q_{j}^{n} n_{j} \Delta L \tag{5}
\end{equation*}
\]
where \(A_{\text {, }}\) is the area of the cell; \(\Delta t\) is the marching time step; \(U_{i}^{n+1}\) and \(U_{i}^{n}\) are the primitive variablea at the center of the celi at time \(n\) and at the update \(n+1\) tir \({ }^{-}\)step; \(Q\), is the value of the fluxes across the \(M\) boundaries on the circumference of the ceil where \(n_{j}\) is the unit normal vector to the boundary edge \(j\), and \(\Delta L\), is the length of the boundary edge \(j\). The fluxes \(Q\) n are computed appiying the Seond Order Godunov algorithm, and Eq. (5) is used to update the physical primitive variables \(U_{1}\) according to computed fluxes for each marching time step \(\Delta t\). The marching time step is subjected to the CFL (Courant-Frerichs-Lewy) coastraint.

We seek a solution to the system of Eq. (1) in the computational domain. which is decomposed in part into triangles with arbitrary connectivity and in part into rectangles using a logically structured grid. We use the advantage of the unstructured grid (Refs. 1-4) to describe the curved boundary of the computational domain and areas that need increased locai resolution. In our example, the unstructrued grid covers \(10 \%\) of the total computational domain while the structured grid occupies the remaining \(90 \%\). The numerical technique for solving Euler's equation on an unstructured grid is described in Refs. 5-7, and the tecbnique for the structured grid is deseribed in Ref. 8. These numericai techniques apply some of the ideas that were introduced in Refs. \(2-10\). The structured and unstructured codes apply the center-based formulation, i.e., the primitive variabies are defined in the center of the cell. which makes the ceil the integration volume, while the fluxes are computed across the edges of the cell. The basic algorithmic steps of the Second Order Godunov method can be defined as follows:
1. Find the value of the gradient at the baricenter of the cell for each gas dynamic parameter \(U\);
2. Find the interpolated values of \(U\) at the edges of the cell using the gradient values:
3. Limit these interpolated values based on the monotonicity condition (Ref. 9);
4. Subject the projected values to the characteristic's constraints (Ref. 10);
5. Soive the Riemann problem applying the projected values at the two sides of the eiges;
6. Update the gas dynamic parameter \(U\) accordir, to the conservation equations (1) appiying to the fuxes computed and the current time step.
As was advocated in Ref. 7 . we prefer the triangle center-based over the vertex-based version of t.e codie. For the same unstructured grid. a rriangie-based algorithm will resuit in smaller controi volumes than a vertex-based. In addition. for the Secona Order Godunov soiver, implementation of the boundary conditions is more straightforward and accurate for the center-based algorithm than in the vertex-based. These :wo factors. along with the effects of grid connectivity, strongly affect the aigorithm accuracy and
periormance. and are the main reasons ior the superiority of the center-based version over the vertex version.

\section*{Sound Wave Focusing in an Ellipsoid Reflector}

Research relating to focusing of shock and acoustic waves is of considerabie practical interest ior application to Extracorporeal Shock Wave Lithotripsy (ESWL). Most of the interest in this ares is related to acoustic waves in liquids: however. the basic retiection and focusing mechanismas for a given reflector geometry can be studied in wir as well. For our test simulation. we chose a deep renector snaped like an eilipsoid, which was used for ESWL by Dornier (Ref. 11) and other companies. A schematic of the cross section of this reflector is shown in Fig. 3. Strong acoustic waves are generated in the left focal point oi the eilipsoid by an instantaneous release of energy and are refocused at the right focai point. Ideally, focusing should be based on waves of acoustic intensity, since the nonimear reflections oi strong shock waves lead to significant distortions in wave propagation and impair simpie geomerrical focusing.


Figure 3. A schematic drawing of the center cross section of the ellipsoid reflector.
Figure 2 shows the computational domain and grid for the ellipsoid refiector example. In order to illustrase the concept of the composite structured/unstructured grid, we have shown only every \(1 / 16\) ceil of the grid that was actually used for the simulation. In this example, we observe that the structured rectangular grid covers about \(90 \%\) of the computational domain and the unstructured trianguiar grid is restricted to the curved surface of the ellipsoid and covers about \(10 \%\) of the domain. The major axis of the eilipsoid is 150 mm and the minor axis is 90 mm .

The integration in the structured part of the domain is performed using a version of the split Secona Order Godunov method described in Ref. 8. For the unstructured triangular grid, we used our implementation of the Second Order Godunov method that includes a compact integration stencil suitable for unstructured grids (Refs. 5-7). In the current implementation, the two sections of the grid communciate through the boundary conditions at their interfaces. According to this, the values in the mirror points at the grid interfaces for the triangular grid are taken from the computational domain of the structured grid and vice versa. These mirror values are used for calculations of the llux at the interface boundaries. For focusing problem simulations, we used 55188 triangles in the unstructured part of the grid and 141312 ( \(736 \times 192\) ) rectangles in the structured part. It should be mentioned that in order to obtain a uniform grid (i.e., the atructured and unstructured grids have the same ievel of refinement), the unstructured portion of the code was run with adaptivity (adding and deleting vertices). This ability enabled us to match the grid resolution based on cell areas in the structured/unstructured grids while computing the results. The initial grid had a very refined grid at the left focal point to initiate accurately the detonation. This area was coarsened later in the simulation by turning on the adaptive capability of the unstructured code.

We used the following initial condition at the time \(t=0\) for the simulation of the acoustic wave focusing:
a. Quiescent air in the cavity of the reflector, i.e., Pressure \(P_{0}=101350\). Pa and Density \(\rho_{0}=1.2 \mathrm{Kg} / \mathrm{m}^{3}\).
b. Blast in the left focal point of the ellipsoid confined in a spherical volume of a radius of \(R=2 \mathrm{~mm}\). Condition at initial blast area: Pressure \(P_{b}=45\). * \(P_{0}\), and Density \(\rho_{b}=4.5 * \rho_{0}\).
This definition of the initial conditions guarantees that a weak blast wave will be generated, ensuring that waves of acoustic intensity will be reflected from the wall of the ellipsoid. We examined this particuiar reflection regime because the blast wave focusing in water occurs in acoustic mode. As it was pointed out in Ref. 11. reffection of even very weak waves in water will lead to considerable deviations from the refiection mode of a pure acoustic wave. However. the purpose of this simulation
is to demonstrate the numericai method and not to study in detail the focusing modes of the ellipsoid reffector. Thereiore, we present results for one simulation iollowing conditions outined above.

In Fig. ta. the simulation results are shown in the form of pressure conrours at the time \(t=1.31 \times 10^{-4} \mathrm{sec}\) when the incident shock started its reflection from the retiector wail. Here we can observe that the maximum reflected pressure is no higher than \(14 \%\) over the ambient pressure. which is consistent with our objective to create weaic waves. Figure 4 b is an eniargement of the region in the computational domain that contains structure and unstructured grids. We can aiso observe that the incident wave propagates seamiessiy througn the interface of the structured and unstructured regions. In Fig. 5 . we show pressure contour plots at time \(t=2.09 \times 10^{-44} \mathrm{sec}\). We observe that the interfaces between the two grids carry the information seamlessiy.


Figure 4a. Pressure contours at time \(t=1.31 \times 10^{-4} \mathrm{sec}\) showing the incident wave as reflected from the reflector's wall.


Figure 4b. Blowup of the pressure contours at time \(t=1.31 \times 10^{-4} \mathrm{sec}\) showing the matching pressure contours between the structured and the unstructured grid.


Figure 5. Pressure contours at time \(t=2.09 \times 10^{-4} \mathrm{sec}\) showing the incident wave and the reflected wave pattern.

Figure 6 shows the simulation results at time \(t=4.35 \times 10^{-4}\) sec. At this stage, the blast wave front that propagated to the left has undergone full refection and the refected wave propagates in the direction of the incident wave to the right. However, the incident and the reflected wave are both of acoustic intensity and they are propagating at the speed of sound. Thereiore, the reniected wave will not be able to catch up with the incident wave at this stage of expansion. We can observe in Fig. T, where the two waves are shown past the ellipsoid centers \(\left(t=5.41 \times 10^{-4} \mathrm{sec}\right)\), that the distance between these acoustic waves does not change as compared with Fig. 6. The refected wave has maximum pressure in the vicinity of the axis and its value remains relatively constant (about \(1.10 \times 10^{5} \mathrm{~Pa}\) ) through the propagation process. The wave complex at the axis of symmerry consists of the incident acoustic wave front. a reflected wave that has positive followed by negative phases.


Figure 6. Pressure contours at time \(t=4.35 \times 10^{-4} \sec\) showing the incident wave and the reflected wave pattern.


Figure i. Pressure contours at time \(t=5.41 \times 10^{-4} \mathrm{sec}\) showing the wave pattern past the center of the ellipsoid.

The enhancement of the refiected wave's amplitude starts gradually when the reffected wave is approaching the second focal point caused by the convergeace of the ellipsoid. In Fig. 8, the pressure contours ( \(t=8.41 \times 10^{-4} \mathrm{sec}\) ) are shown at the stage that the maximum focused pressure is obtained in the system. As we can observe in Fig. 8, the incident front has left the computational domain, and the maximum pressure is obtained in small volume in the viciaity of the right focal point. In our simulation, the maximum focused pressure has reached \(1.32 \times 10^{5} \mathrm{~Pa}\) and is located 11 mm to the right of the focal point of the ellipsoid.


Figure 8 . Pressure contours at time \(t=8.41 \times 10^{-4} \mathrm{sec}\) showing the stage at which the maximum focused pressure is obtained.

In all the figures presented, the method of composite domain decomposition works extremely well. producing seamiess solutions at the interfaces. We should mention here that our test problem is particularly sensitive because the main acoustic waves are weak, and any inaccuracy inrroduced at the grid interfaces would produce a distortion in the phase or in the intensity of the traveiing waves that would be a visible disturbance evident in the results neediess to mention that an adaptive scheme would have difficulty in simulating this problem due to the weakness of the wave pattern.

Conclusions
A composite method of structured/unstructured domain decomposition is introduced as an efficient technique ior dealing with the computational domans of complex geometry. We have smulated a demancing acoustic wave focusing problem and have shown that ous approach leads to accurate wave propagation without any reflection or distortion at the structured/unstructured grid interiaces. It showid be noted that for the acoustic focusing proolem as simulated and presented in this paper. both structured and unstructured methods of domain decomposition can be shown to be inadequate if used separately. The structured method has difficulty describing the curved boundaries of the computationai domain. while the unstructured method is totally inefficient in describing phenomens with wide froms that occupy a large portion of the computational domain. Our hybrid method combines the advantages of structured and unstructured methods of domain decomposition. This hybrid techoique combines the efficiency of the unstructured grid to accurately represent curved wails, with the computational and memory efficiency of the structured grid in the majority of the computational domain. We also attribute the quainty of the numerical resuit to the Second Order Godunor method. which allows a consistent. accurate and robust iormuiation for hanciling both grids and boundary conditions.

\section*{Acknowiedgments}

The wori reported here was partially supported by DARPA and AFOSR under Contract \#F49620-59-C-0087. The authors would like to thank Col. James Crowiey and Dr. A. Nachman for their interest in this project.

\section*{References}
1. A. Jameson. T.J. Baker, and N.P. Weatherill. "Calculation of Inviscid Transonic Flow Over a Complete Aircraft." AIAA 24th Aerospace Sciences Meeting, Reno, NV, AIAA Paper 86-0103. Jamary 1986.
2. R. Löhner, "Adaptive Remeshing for Transient Problems," Comp. Meth Appl. Mech. Eng. 75, 195-214, 1989.
3. J. Peraire. M. Vahdati. K. Morgan, and O.C. Zienikiewicz. "Adaptive Remeshing for Compressible Flow Computations," I Comp. Phys. 72, 449-466, 1987.
4. D. Mavriplis, Accurate Multigrid Solution of the Euler Equations on Unstructured and Adaptive Meahes," ALAA 88-3707, 1988.
5. I. Lottati. S. Eidelman, and A. Drobot, "A Fast Unstructured Grid Second Order Godunov Soiver (FUGGS)," 28th Aerospace Sciences Meeting, ALAA-90-0699, Reno, NV, 1990.
6. 1. Lottati, S. Eidelman, and A. Drobot, "Solution of Euler's Equations on Adaptive Grids Using a Fast Unstructured Grid Second Order Godunov Solver," Proceeding of the Free Lagrange Confer: ence, Jackson Lake, WY, June 1990.
7. I. Lottati and S. Eidelman. "Second Order Godunov Solver on Adaptive Unstructured Grids." Procerding of the 4th International Symposium on Computational Eluid Dynamics, Davis, CA, Septemiber 1991.
8. S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," AlAA Journal 22, 10, 1984.
9. B. van Leer, "Towards the UItimate Conservative Difference Scheme, V: A Second Order Sequei to Godunov's Method," J. Comp. Phys. 32, 101-136, 1979.
10. P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gasdynamic Simulations." J. Comp Phys. 54, 174-201, 1984.
11. H. Gronig, "Past, Present and Future of the Shock Focusing Research." Proceedings of the International Worksion on Shoci Wave Focusing, Sendai, Japan. March 1989.

\title{
TWO-PHASE COMPRESSIBLE FLOW COMPUTATION ON ADAPTIVE UNSTRUCTURED GRID USING UPWIND SCEEMES
}

\author{
Xiaolong Yang, Shmuel Eidelman and Itzhak Lottati \\ Applied Physics Operation, MS 2-3-1 \\ Science Applications International Corporation \\ McLean, VA 22102
}

\begin{abstract}
A computer program called MPHASE for numerical study of shock wave propagation in a multiphase. multi-component gas environment is described and applied. The mathematical model of the multiphase, multi-component system is based on the multi-fluid Eulerian approach. Basically, we consider the two phases(i.e. gas and particle) to be interpenetrating continua: the dynamics of the fow is governed by conservation equations for each phase. and the two phases are coupled by interactive drag force and heat transfer. The code is formulated on unstructured triangular grids.

The numerical solution method is based on the Second Order Godunov Method for the gaseous medium, an upwind integration for the particles, and an implicit integration technique for the gasparticie interaction simulation. In order to produce a solution with high spatial accuracy at minimal computational cost, an adaptive procedure on the unstructured grid is used. The adaptive procedure will automatically enrich the grid by adding points in the high-gradient (or high flow activity) region and by removing points (coarsening the mesh) where they are not needed. This technique allows a detailed study of the complex two-phase shock reflection phenomena, where the effects of momentum and heat exchange between phases will significantly modify the shock structure and shock parameters.

Results will be given from the code validation study for the shock propagation in the dusty gases. The code performance will be illustrated by solving the problem of reflection and diffraction of a plan shock wave over a semicircular cylinder in a dusty gas.

\section*{1. THE MATHEMATICAL MODEL AND THE NUMERICAL SOLUTION}

\section*{Conservation Equations}
\end{abstract}

The mathematical model consists of conservation governing equations and constitutive laws that provide closure for the model. The basic formulation adopted here follows the gas and dilute particle flow dynamies model presented by \(5 \infty^{1}\). The following assumptions are used during the derivation of governing equations:
(1) The gas is air and is assumed to be ideal gas;
(2) The particles do not undergo a phase change because particles are considered as sand whose phase transition temperature is much higher than the gas temperature considered here;
(3) The particles are solid spheres of uniform diameter and have a constant material density;
(4) The volume occupied by the particles is negiigible;
(5) The interaction between particles can be ignored;
(6) The only force acting on the particles is drag force and the only heat transfer between the two phases is convection. The weight of the solid particles and their buoyancy force are negligibly small compared to the drag force;
(7) The particles have a constant specific heat and are assumed to have a uniform temperature distribution inside each particle.

Uader the above assumptions, distinct equations of continuity, momentum, and energy are written for each phase. The interaction effects between the two phases are listed as the source terms on the righthand side of the governing equation. The two dimensional unsteady conservation equations for the two phases can be written in the vector form in Cartesian coordinates:
\[
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}=S \tag{1}
\end{equation*}
\]

Here \(U\) is the vector of conservative variables, \(F\) and \(G\) are fluxes in \(x\) and \(y\) direction, respectiveiv, and \(S\) is the source term for momentum and heat exchange. The definition of these vectors are:
\[
U=\left|\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
e \\
\rho_{p} \\
\rho_{p} u_{p} \\
\rho_{p} v_{p} \\
e_{p}
\end{array}\right|, F=\left|\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
u(e+p) \\
\rho_{p} u_{p} \\
\rho_{p} u_{p}^{2} \\
\rho_{p} u_{p} v_{p} \\
u e_{p}
\end{array}\right|, G=\left|\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p \\
v(e+p) \\
\rho_{p} v_{p} \\
\rho_{p} u_{p} v_{p} \\
\rho_{p} v_{p}^{2} \\
v_{p} e_{p}
\end{array}\right|, S=\left|\begin{array}{c}
0 \\
-f_{x} \\
-f_{y} \\
-q-u_{p} f_{z}-v_{p} f_{y} \\
0 \\
f_{z} \\
f_{y} \\
q+u_{p} f_{z}+v_{p} f_{y}
\end{array}\right|
\]
where \(\rho, u, v\), and \(e\) are gas density, velocities, and energy, respectively; \(\rho_{p}, u_{p}, v_{p}\) and \(e_{p}\) are particle density, velocities, and energy, respectively; \(\left(f_{x}, f_{y}\right)\) and \(q\) denotes drag force components acting on the particles and heat transfer to the particles, respectively. The gas pressure \(p\) is related to \(\rho, u, v\) and \(e\) for by
\[
\begin{equation*}
p=(\gamma-1)\left[e-0.5 \rho\left(u^{2}+v^{2}\right)\right] \tag{2}
\end{equation*}
\]
where \(\gamma\) is the specific heat ratio. The gas temperature can be found through the equation-of-state for ideal gas
\[
\begin{equation*}
p=\rho R T \tag{3}
\end{equation*}
\]
where \(R\) is the gas constant.
The particle temperature \(T_{p}\) is caiculated through relation
\[
\begin{equation*}
e_{p}=\rho_{p} c_{r} T_{p}+0.5 \rho_{p}\left(u_{p}^{2}+v_{p}^{2}\right) \tag{4}
\end{equation*}
\]

The source terms on the righthand side of equation (1) are momentum and heat exchange between gas and particle phases. If we iet \(r_{\mu}\) and \(\rho_{;}\)be the particle radius and material density, respectively, then the drag forces are
\[
\binom{f_{x}}{f_{y}}=\frac{3}{S} \frac{\rho_{p} \rho}{\rho_{s} r_{p}} C_{d}\left[\left(u-u_{p}\right)^{2}+\left(v-v_{p}\right)^{2}\right]^{1 / 2}\left[\begin{array}{c}
\left.u-u_{p}\right)  \tag{5}\\
\left(v-v_{p}\right)
\end{array}\right] .
\]

The particle drag coefficient \(C_{d}\) is a function of Reynolds number, Re, which is based on the relative velocity between the gas and particle phases. After testing the drag coefficients given by Sommerfeld \({ }^{2}\) and by Clift et al. \({ }^{3}\), the following were two adopted:
\[
C_{d}=\frac{24}{R e}\left(1+0.15 R e^{0.687}\right) \text { for } R e<800
\]
and
\[
\begin{equation*}
C_{d}=\frac{24}{R e}\left(1+0.15 R e^{0.887}\right)+\frac{0.42}{1+42500 R e^{-1.16}} \text { for } R e>800 . \tag{5}
\end{equation*}
\]

Here the Reynolds number, Re is defined as
\[
\begin{equation*}
\operatorname{Re}=\frac{2 \rho r_{p}\left|\left(u-u_{p}\right)^{2}+\left(v-v_{p}\right)^{2}\right|^{1 / 2}}{\mu} \tag{6}
\end{equation*}
\]

Viscosity, \(\mu\) is calculated at film temperature namely, \(T_{f}=0.5\left(T_{p}+T\right)\), and the temperarure dependency of the viscosity is evaluated according to Sutheriand's law
\[
\begin{equation*}
\mu=\mu_{r}\left(\frac{T}{T_{r}}\right)^{3 / 2} \frac{T_{r}+\Phi}{T+\Phi} \tag{7}
\end{equation*}
\]
where \(\mu_{r}\) is the dynamic viscosity of the gaseous phase at the reference temperature and \(\Phi\) is an effective temperature, called the Sutheriand constant.

The rate of heat transfer from gaseous phase to the particle phase is given by
\[
\begin{equation*}
Q=\frac{3}{2} \frac{\rho_{p}}{\rho_{g}} \frac{\mu C_{p}}{P_{r}} N_{u}\left(T_{\theta}-T_{p}\right) \tag{8}
\end{equation*}
\]
where \(\operatorname{Pr}=\mu c_{p} / k_{g}\) is the Prandtl number, and \(c_{p}\) and \(k_{g}\) are the specific hest and thermal conductivity of gas, respectively. The Nusselt number \(N u\) is a function of this Reynoids number and the Prandil number as given by Drake*
\[
\begin{equation*}
N u=\frac{2 r_{p} h}{R}=2+0.459 R e^{0.35} P_{r^{0}}^{0.33} \tag{9}
\end{equation*}
\]

\section*{Initial and Bounciary Conditions}

The geometry of the computational domain is shown in Fig. 1. The initial conditions for gas are \(\rho_{0}=1.2 \mathrm{~kg} / \mathrm{m}^{3}\) and \(p_{0}=101.3 \mathrm{kpa}\), with a coming shock at \(x=-0.5\). There are no particies from - 1.0 \(\leq x \leq 0.0\). From \(x \geq 0.0\), particles are initially in thermal and kinematic equilibrium with surrounding gas. The particles that are uniformly distributed in the dusty region have the following parameters for differens test problems:

Mass loading, \(\rho_{p}: 0.25 \mathrm{~kg} / \mathrm{m}^{3}, 0.76 \mathrm{~kg} / \mathrm{m}^{3}\);
Mass material density, \(\rho_{3}: 2500 \mathrm{~kg} / \mathrm{m}^{3}\);
Particle radii, \(r_{p}: 10 \mu \mathrm{~m}, 25 \mu \mathrm{~m}, 50 \mu \mathrm{~m}\);
Specific heat, \(c_{3}: 766 \mathrm{~J} / \mathrm{kg} / \mathrm{K}\).


Figure 1. An illustration of the considered flow field.
The lower boundary and cylinder surface are solid wails and assumed adiabatic and impermissible. A reflecting boundary condition is assumed for both the gas and particle phase. Particles are assumed to experience a perfect elastic collision with the wall and reffect from the wall. The right and upper boundaries are open boundaries where a nonreflection boundary condition is used for the gas phase and a zero normal gradient condition is used for particle phase.

\section*{Numerical Method of Solutions}

The system of partial differential equations described in the previous paragraph is integrated numericaily. Equation (1) is repeated here:
\[
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}=S . \tag{1}
\end{equation*}
\]

In order to solve this equation numerically, an operator time-splitting technique is used. Assuming that all flow variables are known at a given time, we can calculate its advancernent in time by splitting the integration into two stages.

In the first stage, the conservative part of equation (1) is solved:
\[
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial z}+\frac{\partial G}{\partial y}=0 \tag{10}
\end{equation*}
\]

The Second Order Godunov method is used for the integration of the subsystem of equations describing the flow of the gaseous phase (first four components of equation (1)). The method is weil documented in literature. \({ }^{3,5.7}\) The subsystem of equations describing the particle phase flow is integrated using a simple finite difference upwind scheme. This is done because there is no shock in the particle phase and the upwind scheme leads to a robust and accurate integration scheme.

In the second stage, the source term is added and the following equation is solved:
\[
\begin{equation*}
\frac{\partial U}{\partial t}=S \tag{11}
\end{equation*}
\]

To integrate this equation in time, we need to obtain \(S\) as a function of \(U\). We calculate \(S\) through equations (5) to (8).

In order to produce a solution of the high spatial accuracy at minimal computational cost, an unstructured triangular grid with adaptive procedure is used. The adaptive procedure will automatically enrich the mesh by adding points in the high gradient (or high flow activity) region of the flow fold and by removing points (coarsening mesh) where they are not needed. The dynamic nature of mesh enrichment is shown in Fig. 3 for two different time frames. One can see that a very fine mesh is generated around shock fronts and other steep density gradient regions.

\section*{2. RESULTS}

\section*{Model Validation for One-Dimensional Shock Wave Propagation in A Dusty Gas}

To test the momentum and heat exchange mechanism for the current two-phase nodel, we first simulate a one-dimensionai problem of a normal shock wave propagating into a dusty gas. We numerically simulate the experiments conducted by Sommerfeld \({ }^{2}\). In the experiments, small glass sphere particles of material density \(\rho_{s}=2500 \mathrm{~kg} / \mathrm{m}^{3}\), specific heat capacity \(c_{s}=766 \mathrm{~J} / \mathrm{kg} / \mathrm{K}\), and average diameter of 27 \(\mu m\) were used as suspension particle phase. The incoming shock, and particle loading ratio \(\eta=\rho / \rho_{p}\), are two varying parameters. The experimental results and our numerical simulation results of shock Mach number as a function of distance for two test cases are shown in Fig. 2a ( \(\eta=0.63\) and Fig. 2b ( \(\eta=1.4\) ) for comparison purpose. As one can see, the agreement between the prediction of our present model and the experimental resuits is very good.

\section*{Two-Dimensional Sirmlation Results of Pure Gas Flow}

To test the accuracy of the two-dimensional computation, we compute the pure gas flow case of a shock wave reflection and diffraction over a semicircular cylinder. We then compare the simulation with experimental results. Shock wave reflection on a wedge has been extensively studied by many researchers (see e.g., review paper of Hornung \({ }^{8}\) ). Shock wave retlection by circular cylinders was numericaily simulated by Yang et al. \({ }^{9}\) and experiments were performed by Kaca \({ }^{10}\). Fig. 3a and 3 b show density contcurs with adapted grids at two moments in time. In. Figs. 4 a nd 4 b . the interferogram irom the experiment \({ }^{3}\) and density contours from the present simulation are compared for the same flow condition and same time. Note that the density levels are normalized by the ambient gas density in Fig. 4. As one can see from Fig. 4 a and Fig. 4b, the results show an excellent quantitative as well as qualitative agreement between the numerical simulation aud experimental results.


Figure 2. Comparison between computational prediction and experimental measurement of shock wave attentuation for (a) \(M_{0}=1.40, \eta=\frac{p_{9}}{p_{0}}=0.63\) and (b) \(M_{0}=1.7, \eta=\frac{p_{2}}{p_{0}}=1.4\) (o experiment, calculztion).


Figure 3. Computed density contours with adapted grid at two different times.


Figure 4. Comparison for \(M_{s}=\mathbf{2 , 8 0} \mathrm{gas}\) - only flow, (a) interferogram from experiment conducted by Kaca (1988), (b) density contours from present calculation.

\section*{Two-Dimennional Simulation Results of Two-Phase Flow}

The basic setup for the two-phase simulation is shown in Fig. 1. Here the planar shock with \(M s=2.3\) impinges on an area of a dusty gas. The interiace between ciear air and dusty air is located at \(x=0.0\) of the computational domain. The area of the dusty air contains a semicylinder with a radius of \(1 m\). The size of the computational domain, initial parameters of the gas, parameters of the incoming shock, size of the semicylinder and its location in the computational domain, are the same as in the redection and diffraction simulation presented in the previous section.

The main objective of this set of simulations is to study the effects of particle size and particie loading on the parameters of the reflected and diffracted shock waves. It is also of interest to study the dynamics of reflection and diffaction in particle media. This is especially valuable since it is extremeiy difficuit to observe these interactions experimentally in an optically thick dusty gas.

The first set of simulation results is shown for the case with dust parameters \(r_{p}=10 \mu \mathrm{~m}\) and \(\rho_{p}=\) \(0.25 \mathrm{~kg} / \mathrm{m}^{3}\). The gas parameters and the parameters of the incoming shock wave are the same as in the pure gas case presented above. In Figs. 5 a and 5 b , particle density contours and gas density contours are shown at the stage when the incident shock wave has reached the top of the semicylinder. At this stage, particles have very little effect on the dynamies and parameters of the shock in the gas phase. The presence of the particles causes a small widening of the shock that is more noticeable for the incident shock. Also, one can observe an additionai contour ine at the dusty gas/pure gas interface. The particie density contours depict significant piling up of the dust particles at the leading edge stagnation puint of the cyiinder.


Figure 5. Density contours for the case; \(M,=2.8, \rho_{p}=0.25 \mathrm{~kg} / \mathrm{m}^{3}, r_{p}=10 \mu \mathrm{~m}\) at two different times. (a) particie density at \(t_{1}\), (b) gas density at \(t_{1}\), (c) particle density at \(t_{2}\), and (d) gas density at \(t_{2}\).

In Figs. 5c and 5d, the particle density and gas density contours are shown at the stage where significant diffraction ias taken place and the shock front is approaching the trailing edge of the cylinder. The small particle loading and small particle size leads to very smail modification of the gas shoch structure and parameters. One can observe further widening of the shock and some smearing of the sip
line that originates at the trinle point. The particle density contours reveal that the particles piled up at the stagnation point were s:vept by the zas flow to the area of triple point and slip line for the gas flow, leaving a small amount of particles at the leading edge. We should note that this behavior is specific for our problem, where at \(t=0\), the dusty gas area was located at \(x=0\) and there is no influx of the dust from the left boundary. Also in Fig. 5 c , we note that the particles reach a distinct locai maxima at the distance about 25 cm behind the main shoci front. At this maxima the particle density is \(0.86 \mathrm{~kg} / \mathrm{m}^{3}\), which is more than three times the initial particle density. The particle density reaches a maximum value at the location of the gas slip line. We observe a significant accumulation of the particles that have been moved along the slip line by the shear flow. The larger concentration of particles in the vicinity of triple point is, in fact, the remainder of the particles that have concentrated first at the leading edge and then were swept up with the flow. It is also interesting to observe that an essentiaily particle-free zone is formed due to the effects of particles slipping over the top of the cylinder and the rarefaction wave behind the cylinder.

\section*{3. CONCLUSIONS}

In this paper, a computer program for two-phase compressible flow computation on adaptive grids using upwind schemes is described. The following validation study and conciusion can be made.
(1) The validation study for a one-dimensional shock wave propagating in a dusty gas shows a good agreement between the prediction of our model and the results of the expenment.
(2) For a two-dimensional gas-only flow, numerical results agree weil with existing experimentai data qualitatively and quantitatively, indicating that the gas phase is accurateiy simulated by adaptive grid technique.
(3) Particles in the gas can have a profound effect on the shock wave reflection and diffraction pattern, which is a function of particle size and loading. The smaller the particle and the lesser the particle loading, the less the inference of particie on the flow field.
(4) There is a particle accumulation behind the "back shoulder" of the semicircular cylinder due to the effect of particles inertia and gas rarefaction wave.

\section*{4. ACKNOWLEDGMENTS}

The work reported here was partially supported by DARPA and AFOSR under contract no. F49620-89-C-0087. The authors would like to thank Col. J. Crowley and Dr. A. Nachman for their interest in this project. The authors also acknowledge support from DNA under contract no. DNA001-91-C-0047, and A. Fredericison for his encouragement.

\section*{5. REFERENCES}
1. S. L. Soo, Particulates and Continuum, Hemisphere Publishing Corporation. 1989.
2. M. Sommerfeld, "The Unsteadiness of Shock Waves Propagating through Gas-Particle Mixtures." Experiments in Eluids, Vol. 3, p. 197, 1985.
3. R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops and Particles, Academic Press, New York, 1978.
4. R. M. Drake. Jr., "Discussions on G.C. Viet and G. Leppert: Forced Convection Heat Transfer from an Isothermal Sphere to Water," Journal of Heat Transter, Vol. 83, p. 170, 1961.
5. S. Eidelman, P. Collela, and R. P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modelling," AlAA Journad, Vol. 22, p. 10. 1984.
6. P. Collela, "A Direct Eulerian MUSCL Scheme for Gas Dynamies," SLAM J_Stat. Comput., Vol. 6, p. 104, 1985.
7. P. Collela, and E. M. Glaz, "Efficient Solution Algorithms for the Ricmann Problem for Real Gases," J. Comput, Physics, Vol. 59, p. 2641985.
8. H. Hornung, "Regular and Mach Reflection of Shock Waves," Ann. Rev, Fluid Mech., Vol. 18, p. 33, 1986.
9. J. Y. Yang, Y. Liu, and H. Lomax. "Computation of Shock Wave Reflection by Circular Cylinder." AlAA Journal, Vol. 25, p. 683, 1987.
10. J. Kaca. "An Interferometric Investigation of Diffraction of a Planar Shock Wave over a Semicircular Cylinder." UTIAS Technical Note_269, 1988.

AIAA 92-3168 PULSED DETONATION ENGINE EXPERIMENTAL AND THEORETICAL REVIEW
S. Eidelman and W. Grossmann

Science Applications International Corporation McLean, VA


\section*{AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conference and Exhibit} July 6-8, 1992 / Nashville, TN

\title{
PULSED DETONATION ENGINE EXPERIMENTAL AND THEORETICAL REVIEW
}

\author{
Shmuel Eidclman and William Grossmann
}

\author{
Applicd Physics Operation \\ Science Applications Intcrnational Corporation \\ 1710 Goodridge Drive, McLean. VA 22102
}

\begin{abstract}
Absrrect
A Review of past and current research on pulsed detonation engine devices connects early experimenal work originating with the V1 pulsejet to recent interest in such propulsion devices. The recent interest has been. in part, stimulated by Aviation Week where sightings of aircraft contrails lead to question if some sor of PDE device has already been developed. This review summarizes what is known about PDEs. makes predictions for applications to realistic flight vehicles including missiles and full scale aircraft, and outlines what is yet required for successful PDE development.
\end{abstract}

\section*{1. Introducrion}

This paper reviews past and recent theoretical and experimental work related to the Pulsed Detonation Engine (PDE) concept. Such a review is timely since much interest in the PDE concept has been generated from severai recent Aviation Week (AW) articies. 1,2 The AW articles, in addition to describing SAIC PDE studies, describe observations of aircraft flight and engine sound generation that are similar to what would be expected from PDE operation. These observations are intriguing since, to our knowiedge, there has been no previously reported use of PDE devices in any past or recent flight vehicies. The reported observations include loud pulsing sounds at Beale AFB and photographs of high altitude conurails with "cowon ball" like beads strung on the conurails in a repectitive pattern. It is tempting to try to connect the AW reports with what we understand about PDE operation. It has come to our attention that a ground observer has identified the frequency of the pulsing sounds emanating 1 the vehicle that made the conuruils appearing in. . AW article to be of the order of \(50-60\) Hertz. Tu obtain the source (aircraft engine) frequency we must correct the observed frequency for the Doppler effect. anking into account the temperauure variation between ground and flight altitude. Assuming an altitude of \(45-50,000 \mathrm{ft}\). (cirrus clouds are observed behind the trails in the published photographs), a flight Mach number
between one and two gives a source frequency, f. between 100 and 200 Hertz. As we show later in this paper, a PDE generating \(25.000-50,000 \mathrm{lbs}\). thrust should. theoretically, operate in this frequency range. Of course we have no information concerning the subject aircraft characteristics and consequenty we cannot conclude that PDEs are powering present day aircraft. On the other hand the observations appear to be consistent with expected PDE operation.

\section*{2. Early Pulsed Combusion Propuision Devices}

It is instructive to point out the differences between the PDE concept and the more commonly understood pulsejet devices. The first full scale application of puised propuision devices was for the V1 flying "buzz bomb." The engine used for this vehicle was the Schmidt-Argus \({ }^{3}\) engine and has since been generally referred to as a "pulsejec." The pulsejet for the V1 engine was based on reperitive combustion ignitions accomplished through the use of mechanical reed valves that allowed fresh air charge to be drawn into the combustion chamber. The timing of the reed valve opening was pegged to the acoustical frequency (organ pipe modes) of the combustion chamber, which consisted of a central ignition region joined to an exhaust duct. Thus, the operating parameters of the engine were fixed with engine size: only narrow ranges of thrust level variation are possible in such an engine. An increase or decrease of thrust can only be made through changes in engine internal geometry. Ever since the first occurrence of puisejets, these engines have been considered for other applications including full scale aircraft propuision. One of the major obstacles in the early development of the pulsejet for wider applications was the complete absence of a theoretical approach to understanding the thermodynamic process in the combustion chamber. It was assumed that the pulsejet combustion process was similar to the steady-state Lenoir constant-volume cycle and that the frequency of the combustion pulsations could be predicted by means of steady-state acousucal wave motion. However, the efficiency of the pulsejet, as determined experimentally, was much lower than a
constant-volume process would predict. We know now that the eariy pulsejet devices operated on an approximately constant-pressure cycle, which is known to have a lower thermodynamic efficiency than the constant-volume cycle. We have previously argued that the lack of a firm theoretical understanding of the physics and thermodynamics was primarily responsible for the failure to develop the putsejet further for a wider range of pracuical applications. This argument will be discussed again later in this review.

In the meantime, the term pulsejet has become generally undersrood to refer to a pseudo-generic series of engines. The term "propulsive duct" is a more comprehensive descriptor encompassing a wider range of pulsed combustion engine concepis. An eariy series of papers by Tharjatr \({ }^{4-6}\) described the status of work on such devices up : 0 1965, and provides a guide to the early atuempts to understand the physics and aerodynamics of the internal gas flows in them. Even though these early invesugations were seriously handicapped by a lack of knowledge of unsteady aerodynamics and the physics of repetitive combustion, it is remaricable that the conclusions offered in Tharjatt's papers are close to what we have concluded over the past several years for the PDE concept. Specifically, it was concluded that the propulsive duct engine concept should theoretically be capable of any desired level of thrust per unit area, with a corresponding reduction in specific fuel consumption. Valveless operation was also investigated and shown to offer a route to eliminating the dependency on fixed acoustical frequencies tied to a given chamber geomery. Figure 1 is representative of the valvetess propuisive duct conceptualized by Tharjatt. Further, it was shown that the use of feedback techniques via multiple tube arrangements, which may not be practical from an engineering standpoint, leads to the possibility of very high frequency operation beyond the audible range. This would result in near silent operation. Finally, it was concluded that the propulsive duct should be capable of supersonic operation. and a Mach 3 engine was conceprualized; a schematic of this supersonic concept is shown in Figure 2.

Somewhat later, in a 1982 report by Kenufield, \({ }^{7}\) the pulsejet was analyzed for predicted flight performances based on well established experimental lest-stand data and available theoretical studies. \({ }^{8}\) The results were compared against other engine alternatives suitable for small, high subsonic speed flight vehicles. The predicted performance for
valveless engine configurations was shown to be highly competuive with turbojets at high subsomic Mach numbe.s. Actual flight tests with a drone type aircraft at Mach 0.85 showed increased periormance over predicted periormance values due possibiv to a combination of increased air-breathing, increased inuake density, and a ram effect superimposed on the pulsejet cycle. Conclusions from these studies include suggestions that valveless pulsejet performance could be comparable and, in zome cases. exceed that of turbojet engines. A strong point was made concerning the low cost, simplicity and relatively high thrust-to-weight ratio of pulsejets when compared with turbojets.

The main reason for including the preceding revicw of puisejets and propulsive ducts is to draw attention to the similarity between the eariy conclusions concerning the future performance expectations of pulsejets and the conclusions drawn to date concerning expected PDE periormance. As mentioned above, we believe a primary reason that such devices have not been pursued in the past is that adequate analysis and evaluation tools did not exist at the time to help understand the complexicies of pulsed operation. Modern CFD techniques now allow a comprehensive analysis of the intermal and external flows associated with puised propulsion devices. I: may well be more than just an interesting exercise to re-examine the puisejet engines using present day CFD tools, and to compare the results with those from similar PDE studies.

\section*{3. Consiant Volume Combustion and Early Pulsed Detonation Sudies}

\section*{Constant Yolume Combustion}

A constant volume combustion process is known to have a higher thermodynamic efficiency than a constant pressure combustion process. Constant volume combustion was adopted very early for use in gas turbine engine development, and the first gas turbine engines in commercial use were based on the constant volume cycle. Jet propuision engines were one of the applications of the constant volume cycie (or explosion cycle), which was explored in the late \(1940 \mathrm{~s} .{ }^{8}\) Although the explosion cycle operates at a larger pressure variation in the combustion chamber than in a pulsejet, the cycle acoually realized in these engines was not a fully constant volume one since the combustion chamber was open ended. 9 In Reference 8 the maximum pressure ratio measured in an cxplosion cycle engine was \(3: 1\), whereas the pressure ratio for the same mixture under the
assumption of a constant volume cycle would be \(8: 1\). Also, this early engine was limited by the available cycle frequency, which in turn is limited by the reaction rate. A simple calculation \({ }^{3}\) showed that if the combustion time could be reduced in this engine from 0.006 sec to 0.003 sec , the thrust per pound of fuel-air mixture would increase \(100 \%\). Thus, a propulsion device based on an explosion-cycle has two main disadvantages:
- Constrained volume combustion (as distinguished from constant volume combusuon) does not take full advantage of the pressure rise characteristic of the constant volume combustion process.
- The frequency of the explosion cycle is limited by the reaction rate, which is only slightly higher than the deflagrauve combustior, rate.

The main advantage of the constant pressure cycle is that it leads to engine configurations with steady state processes of fuel and oxidizer injection. combustion, and expansion of the combustion products. These stages can be easily identified and the engine designer can optimize them on the basis of relatively simple steady state considerations.

\section*{Pulsed Detonation Studies}

There have been numerous attempts in the past to take advantage of detonarive combustion for engine applications. The following is a brief description of some of the most relevant past experimental and analytical studies of pulsed detonation.

The Work of N. Hoffmann. The first reported work on intermituent detonation is attributed to Hoffmann \({ }^{10}\) in 1940. Hoffmann's experiments on intermittent detonation were carried out in a long, narrow tube mounted on a test stand using acetyleneoxygen and benzine-oxygen fuel mixtures. Water vapor was added to prevent the highly sensitive acerylene-oxygen mixture from premature detonation. Hoffmann pointed out the importance of the detonation initiation (spark plug) location in reference to tube length and diffuser length. It was found that a continuous injection of the combustible mixture leads to only a narrow range of ignition frequencies that will produce an intermituent detonation cycle. These frequencies are governed by the time required for the mixture to reach the igniter, time of transition from deflagration to detonation, and time of expansion of the detonation products. Hoffmann attempted to find the optimum cycle frequency experimentally. It was
discovered that detonauon-tube firing occurred at lower irequencies than the spark-plug energizing frequencies, indicating that the injection flow rate and ignition were out of phase. Wartime events prevented further work by Hoffmann and his co-workers.

The Work of Nicholls and Co-Workers A substanual effort in intermituent detonation research was made by a group headed by J. A. Nicholls \({ }^{11-12}\) of the University of Michigan beginning in the early 50's. The most relevant work concerns a set of experiments carried out in a six foot long detonation tube. \({ }^{11}\) The detonation tube was constructed from a one inch internal diameter stainless steel tube. The fuel and oxidizer were injected under pressure from the (closed) left end of the tube and ignited at some distance down stream. The tube was mounted on a pendulum platform, suspended by support wires. Thrust for single detonations was measured by detecting tube (platform) movement relative to a stationary pointer. For multi-cycle detonations, thrust measurement was achieved by mounting the thrust end of the tube to the free end of a cantilever beam. In addition to direct thrust measurements, the temperature on the inner wall of the detonation tube was measured. Fuel mixtures of hydrogenfoxygen, hydrogen/air, acetylene/oxygen and acecylene/air mixtures were used. The gaseous oxidizer and fuel were continuously injected at the closed end of the detonation tube and three fixed flow rates were investigated. Under these conditions, the only parameters that could be varied were the fuel/oxidizer ratio and frequency of ignition. A maximum gross thrust of \(\sim 3.2 \mathrm{lb}\) was measured in the hydrogentair mixture at the frequency of \(\sim 30\) detonations per second. The most promising results were demonstrated for the \(\mathrm{H}_{2} /\) air mixture, where a fuel specific impulse of \(I_{s p}=2100 \mathrm{sec}\) was reached. The maximum frequency of detonations obtained in all experiments was 35 Hz . The temperature measurements on the inner wall showed that for the highest frequency of detonations the temperaure did not exceed \(800^{\circ} \mathrm{F}\). This temperature is approximately the mean between the temperature of the injected gasses and the detonation wave temperanure averaged over the cycle frequency.

In their later work. \({ }^{13-15}\) the Universi's of Michigan group concentrated on development of tis Rotating Detonation Wave Rocket Motor. No further work on the pulsed detonation cycle was pursued.

The Work of L. I. Kraycki. In a setup very similar to Nicholl's. L. J. Krzyckil 16 performed an
experimental investigation of intermittent detonations with frequencies up to 60 cps . An attempt was also made to anniyze the basic phenomena using unsteady gas dynamic theory. Krzycki's atuempt to analyze the basic phenomena relied on wave diagrams to trace characteristics, assumptions of isentropic flow for detonation and expansion, and incompressible flow for mixture injection processes. The most convincing data from the experiments are the measurement of thrust for a range of initiation frequencies and fuel mixture flow rates. Unfortunately no direct pressure measurement in the device is reporred. so there is only indirect evidence of the nature of the process observed.

The basic test stand used by Krzycki is very similar to that used by Nicholls and his co-workers. The length of the detonation tube and the internal diameter were exaculy the same as those in Nicholl's experiments. Figure 3 presents a schematic of the experimental apparatus containing common, generic elements of the Hoffmann-Nicholls-Krzycki experiments. A propane/air mixture was continuousiy injected through a reversed-llow diffuser for better mixing, and was ignited at the same distance as in the Nicholls' experiments from the injection point by an automobile spark plug. The spark frequency was varied from 1 to 60 cps . The spark plug power output was varied inversely with the initiation frequency, and at the frequency of 60 cps was only 0.65 Joule. This value is too low for direct initiation of a detonation wave by the spark, and consequentiy all of the experiments must have been based on transition from deflagration to detonation. According to experimental data and theory, \({ }^{17}\) direct initiation of a mixture of propane/air at the detonability limits requires an energy release on the order of \(10^{6}\) Joules. Thus, we conclude that the required deflagration-deronation transition region length in Kryzcki's experiments would have been prohibitively large for the propane/air mixture. It follows that in all of the experiments a substantial part of the process was deflagrative. This resuited in low efficiency and negligible thrust. Krzycki repeated Nicholls' experiments using basically the same rates of injection of the detonable mixtures. Krzycki's experimental results are very well documented, allowing us to deduce a clear picture the physical processes occurring in the tube. The author arrived at the conclusion that thrust was possible from such a device but practical applications did not appear promising. It is unfortunate that, possibly based on Krzycki's extensive but misleading results, all
expermental work related to the puised detonauon engine concept stopped at this time.

Bussian Work on Pulse Detonation Devices. A review of the Russian litcrature has not uncovered work conceming applications of pulsed detonation devices to propulsion. However, there are numerous reports of applications of such devices for other purposes such as for producing niurogen oxide \({ }^{18}\) (an old Zeldovich idea to bind nitrogen directly from air to produce fertilizers) and as rock crushing devices. 19

Korovin et al. \({ }^{18}\) provide a most interesting account of the operation of a commercial detonation reactor. The main objective of this study was to examine the efficiency of thermal oxidation of nitrogen in an intermituent detonative process as well as an assessment of such tectnological issues as the fatigue of the reactor parts exposed to the intermittent detonation waves over a prolonged time. The reacior consisted of a whe with an inner diameter of 16 mm and length 1.3 m joined by a conical diffuser to a second tube with an inner diameter of 70 mm and length 3 m . The entire detonation reactor was submerged in running water. The detonation mixture was inuroduced at the end wall of the small tube. \(\mathrm{CH}_{4}, \mathrm{O}_{2}\) and \(\mathrm{N}_{2}\) comprised the mixture composition and the mixture ratios were varied during the continuous operation of the reactor. The detonation wave velocity was measured directly by piezoelectric sensors placed in the small and large tubes. The detonation initiation frequency in the reactor was 2-16 Hz . It is reporred that the apparatus operated without significant maintenance for 2000 hours.

Smimov and Boichenko \({ }^{19}\) studied intermittent detonations of gasoline-air mixtures in a 3 m long and 22 mm inner diameter tube operating in the 6-8 Hz ignition frequency range. The main motivation for this work was to improve the efficiency of a commercial rock crushing apparatus based on intermittent detonations of the gasoline/air mixtures. 20 The authors investigated the dependence of the transitional region length from deflagration to detonation on the initial temperaure of the mixture.

As a result of the information contained in the Russian repons, we conclude that reliable commercial devices based on intermittent detonations have been constructed and opcrated.

Pulsed Solid Explosion Studies at JPL. Work at the Jet Propuision Laboratory (JPL) by Back. Varsi and others \({ }^{21-24}\) concemed an experimental and
theoretical study of the feasibility of a rocket thruster based on intermitent detonations of solid explosive for propulsion in dense or high-pressure atmospheres of cerain solar system planets. The JPL work was directed at very specific applications: however, these studies also addressed more general key issues concerning intermittent propulsion devices such as propuision eificiency. In this work, a Deta sheet type C explosive was detonated inside a small detonation chamber attached to nozzies of various lengh and geometry. The nozzles, complete with firing plug, were mounted in a containment vessel that could be pressurized with mixtures of various inert gases from vacuum to 70 atm . The apparatus directly measured the thrust generated by single dctonations of a small amount of solid explosive charge expanding into conical or straight nozzles. Thrust and specific impuise were measured by a pendulum balance system.

The results obtained from the JPL experimental study of an explosively driven rocket led to the following conclusions. First, rockets with long nozzles show increasing specific impulse with increasing ambient pressure in \(\mathrm{CO}_{2}\) and \(\mathrm{N}_{2}\). Short nozzies, on the other hand, show that specific impulse is independent of ambient pressure. Most importanuly, most of the experiments obtained a relatively high specific impulse of 250 seconds and larger. This result is all the more striking since the detonation of a solid explosive yields a relatively low energy release of approximately \(1000 \mathrm{cal} / \mathrm{gm}\) compared with \(3000 \mathrm{cal} / \mathrm{gm}\) obtained in hydrogen oxygen combustion. Thus, it can be concluded that the total losses in a thruster based on unsteady expansion are not prohibitive and hence, in principle, very efficient intermittent detonation propuision systems are possible.

\section*{4. Descriotion of the PDE Concent}

\section*{Basic. Principles}

A detonation process, due to the very high chemical reaction rate in the detonation wave, leads to a propulsion concept in which the constant volume process can be fully realized. In detonative combustion, a strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and fresh charge; the detonation wave functions at the same time as a valveless compressor between the fresh fuel/air mixture and the detonation products. The speed of the detonation
wave is about two orders of magnutude higher than the speed of a typical deflagrauon wave. Because of this, very high power densities can be created in the detonation chamb.: Each detonauon can be initiated independently and. depending on the chamber geometry and external flow characteristics perraining to a paracular device. a wide range of frequencies is possible. There is no theoreucal resunction on the range of operating frequencies: they are uncoupled from any acoustical chamber resonance. The independence of detonation cycle frequency is the feature that most differenuates the PDE concept from the pulsejet. It is also the feature that leads theoretically to scalability of PDE contigurations for a wide range of flight applications. A key physical resuriction on the range of allowable detonation frequencies arises from the rate at which the fresh fuel/air mixture can be introduced into the detonation chamber. Obviously the detonation products must be discharged from the chamber before iresh charge is injected.

\section*{Eirst PDE Experiments}

To our knowledge, the first experiments that successfully demonstrated repetitive or pulsed detonation was auminable in a propuision-like device were carried out by Helman, Shreeve and Eidelman 25 at the Naval Postgraduate Schoot in 1985-86. During these studies, several fundamentally new ideas were developed for pulsed detonation applications to propulsion. First, to overcome the energy requirements for detonation initiation, a predetonation was initiated in a small detonation tube where an oxygen rich fuel mixture could be detonated at substantially lower energies than those required for full fuel/air mixtures. Next. the experimental PDE was operated in a self-aspirating mode; the detonation exhaust gases were discharged through gasdynamic expansion and fresh air was drawn into the detonation chamber due to chamber overexpansion following detonation product exhaust. Figure 4 is a schematic of one of the variations of the PDE experimental configurations. The pre-detonation initiation tube is shown attached to a spark plug. The most important results were obtained when the fuel injection (injection was accomplished with a toroidal ring containing holes near the exhaust plane of the device) rate was umed appropriauly (the lag time between the fuel/air mavel to the pre-detonation port and the arrival of the pre-dctonation pulse) with detonation initiation. The principle of repetitive detonation initiation and control was definitively established in these experiments. Pressure transducer traces unambigiously showed that a detonation wave was
formed in the chamber and propagated with the Mach number approprate for the fuei-air mixture. The fuci used in the NPS experiments was ethylene and the maximum detonation frequency obtained was 25 Hz . limited only by the mechanical nature of the solenoid valve used for fuel injection control. Figures 5 and 6 are two frames from a videotape of the early NPS experiments. Figure 5 shows the experimental apparatus and Figure 6 shows the apparatus during repecitive detonation. The figures also show the fuel injector ring between the two concentric detonation chamber cylinders. It was determined that the duration of a single cycle was less than 7 msec . This means that the NPS device could have potentially operated at frequencies up to 150 Hz in the stauic or no flow ( \(\mathrm{M}=0\) ) case. At the time of the NPS experiments, performance extrapolations included thrust leveis up to 40 lbs at 100 Hz . As described later, SAIC simulations of static operation show higher thrust leveis at these frequencies due to new ideas and improvements in the PDE concept. These new ideas are incorporated in the generic PDE concepl.

\section*{The Generic PDE Device}

In this section, we refer to the generic PDE device, which is represented as a small engine in Figure 7. The figure shows a schematic of the basic detonation chamber anached to the aft end of a generic aerooynamic vehicle. A combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave is shown propagating through the mixarre. Also shown are air injection inlets and an important part of the device that we have termed the thrust wall. The schematic suggests a smallpayloac aerodynamic vehicle; however, as we describe later, the concept can be extended to larger payloads simply by scaling up the size of the detonation chamber and possibly combining a number of chambers into one larger engine.

The geomery of the main detonation chamber, which determines the propulsion efficiency and the duration of the cycle (frequency of detonations), is a key issue for the PDE concept. Since the fresh charge for the generic engine is supplied from the external fow field, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. Following is a partial list of the broad range of physical processes requiring simulation in order to model the complex flow phenomena associated with the detonation engine performance:
1. Initiation and propagation of the detonation wave inside the chamber.
2. Expansion of the detonation products from the chamber into the air stream around the chamber at flight Mach numbers:
3. Fresh air intake from the surrounding air into the chamber:
4. The flow pattern inside the chamber during post-exhaust pressure buildup, which determines the strategy for mixing the next detonation charge;
5. Surong mutual interaction between the flow inside the chamber and the extemal flow surrounding the engine.

All of these processes are interdependent, and interacuon and timing are crucial to engine efficiency. Thus, uniike simulations of steady state engines, the phenomena described above cannor be evaluated independently. It is a challenging computational problem to resolve the flow regime inside the chamber to account for nozzies, air inlets, etc, and at the same time resolv: the flow outside and surrounding the engine, where the flow regime varies from high subsonic, locally transonic and supersonic.

The single most important issue is to determine the timing of the air intake for the fresh charge that leads to repetitive detonations. It is sufficient to assume inviscid flow for the purpose of simulating the expansion of the detonation products and frest air intake. The assumption of inviscid flow makes the task of numerically simulating the PDE fow phenomena somewhat easier than if a fully viscous flow model were employed. The effects of viscous boundary layers are negligibie for the size of the generic device studied in this work, with the exception of possible boundary layer effects on the valve and inlet geomeries discussed subsequenty.

SAIC has performed an extensive study of the generic PDE over a wide range of operating conditions for a wide range of device configurations. \(26-30\) Numerical simulations of the unsteady flow and detonation processes, in addition to theoretical analysis, have resulted in an understanding and an approach to analyzing and evaluating PDE propulsion performance. Although the basic concept remains the same, there are subule differences in the PDE manifestation for paricular applications. These will be described subsequently. Details of the
numerical simulations (including assumptions used for detonation wave physics and chemistry, use of adaptive unstructured grids and Godunov methods for the Euler gasdynamic equations) are given elsewhere. \(26-31\) The following section is a summary of the results from numerical and theoretical studies of various applications and operaung regimes for the generic PDE.

\section*{5. Operaing Recimes}

In this section we summarize the results of several applications and operating regimes idenuified in the course of our studies of the PDE concept.

\section*{\(M=0\) Static Oderation}

Under static conditions. \(M=0\), the PDE is completely self-aspirating. Such was the case for the early NPS PDE studies. Without an external airstream, the PDE must obtain fresh air charge as a result of the detonation chamber overexpan,ion immediately following exhaust of air-fuel detonation products. To the lowest approximation, the available tume for chamber refill due to this overexpansion process is, for a given chamber geomery and fuel-air combination, directly proportional to its length. For \(\mathrm{M}=0\) operation, we assume that the PDE configuration does not contain any air inlets other than the aft end of the device or, if inlets are present. they are closed. Simuiations \({ }^{26}\) of \(\mathrm{M}=0\) PDE operation show that the time required for fresh air refill for a device with dimensions equivalent to the NPS experimental apparatus is on the order of 6-7 msec. This agrees with the NPS results and means that a maximum frequency of 150 Hz should be possible. Simulated thrust levels were higher than those estimated from scaling the NPS results. This is due to a new operating scenario that was uncovered by the simulations: detonation initiation from the aft end results in the kinetic energy of the shock wave being ransferred to the thrust wall. The amount of extra thrust obtained from this mode of operation is considerably larger than that expected from gasdynamic expansion following detonation initiation at the thrust wall. The physical reason for this is found in the shock wave energetics.

The imporance of \(\mathrm{M}=0\) PDE performance is associated with applications of the concept for full scale aircraft propulsion, including rollout and takeoff. Simple scaling laws derived from the numerical simulation results and described later, show that \(\mathrm{M}=0\) thrust levels can be large (tens of
thousands of lbs.) depending on the engine cross sectional area, length and detonauon frequency.

\section*{Subsonic-Transonic Operation}

PDE operaion in the subsonic-ransonic regime differs from the stauc case in that the self aspiration effect decreases with increasing Mach number. This is due to the formation of a rear stagnation point bchind the exhaust plane above cerain Mach numbers for given geomerries. The stagnation region prevents complete detonation product exhaust and subsequent fresh charge injection. For example, over the Mach number range, \(0^{+}<\mathrm{M}<0.5\), full to partial self aspiration occurs: the effect decreases rapidly for Mach numbers above 0.5 , resuling in the need for some type of air inlet or air intake valve configuration. Simulations of various detonation chamber and air inlet geomerries \({ }^{26,28}\) have shown that, depending on the free-stream Mach number, appropriate shaping of the air inlet geometry and total inlet area leads to propulsion engines that are auractive for certain applications. We present here a summary of studies \({ }^{28}\) carricd out in an atuempt to find a satisfactory PDE configuration for a small missile engine (the final configuration was not optimum, by any means. since all variables were not paramerrically varicd).

A PENAID-type missile with associaled mission requirements such as range, speed, system weight, total thrust, and specific fuel consumption was used for the study. The detonation chamber dimensions were 6 cm diameter and 9 cm lengh with a cylindrical cross-section. A schematic of PDE integration into such a missile configuration is shown in Figure 8. The simulations showed that, for practically all cases involving simpie injets (circumferential slits around the cylindrical cross-section), the thrust data were independent of whether the inlets open intermitently (valved) or remain open during operation. This is due partially to the very short time that detonation products have to escape from the inlets thereby adding to negative thrust; this negative thrust, determined in the simulations, is negligible compared to the total integrated thrust. The thrust data do indicate a strong dependence on extemal flow conditions, e.g., Mach number. The Mach number plays a role in the wave drag; the details of valve and inlet configuration geometry figure prominendy in the total wave drag. These studies answered an important question: can an air inlet be configured such that the inlet remains open over the full light regime and operating conditions? The answer is "yes." Thus, at least for this regime. the PDE offers the possibility of a no-
moving-parts propulsion device. For the PENAID missile under discussion here, a configuration was found that operates between \(0.2<M<0.9\) with open air inlets.

The following performance data were obtained for the PENAID missile configuration. For \(M=0.8\) at sea level altitude and a detonation frequency, \(f=100\) Hz, the PDE characteristics are:
\begin{tabular}{|c|c|}
\hline Thrust & b. \\
\hline Fuel flow rate & \(0.025 \mathrm{lb} . / \mathrm{sec}\). \\
\hline Fuel weight for 12 min & 18 lb. \\
\hline Oxygen weight & 1.8 lb \\
\hline Fuel for detonation mbe. & 0.6 lb . \\
\hline Total oxygen and fuel weight & 20.4 lb. \\
\hline Total engine weight. & 30.2 lb . \\
\hline Specific fuel consumption. & \(4 \mathrm{lb} . /(\mathrm{lb} . * \mathrm{hr}\). \\
\hline
\end{tabular}

Assuming the PDE device geometry is kept fixed. a higher detonation frequency will result in a linear increase in thrust and fuel flow rate at the same specific fuel consumption. For example, if the detonation frequency is increased to 200 Hz , the performance data are:

Thrust 157 lb. Fuel flow rate.................................. \(0.05 \mathrm{lb} / \mathrm{sec}\).
Fuel weight for 12 min............................. 36 lb .
Oxygen weight....................................... 3.6 lb.
Fuel for detonation tube ........................................... 1.2 lb .
Total oxygen and fuel weight.................. 40.8 lb .
Total engine weight............................... 54.4 lb .
Specific fuel consumprion. \(\qquad\) \(1.14 \mathrm{lb} .(\mathrm{lb} . * \mathrm{hr}\).

At lower Mach numbers. \(M=0.5\), the maximum operating frequencies for constapt thrust will be lower since the external dynamic pressure responsibie for supplying fresh air to the chamber is also lower. For the device under consideration here, the maximum frequency is 250 Hz . For a frequency of 100 Hz :Thrust 100 lb.
Fuel flow rate.

\(\qquad\)
 \(0.025 \mathrm{Ib} / \mathrm{sec}\).
Fuel weight for 12 min ..... 18 lb.
Oxygen weight ..... 1.8 lb .
Fuel for detonation tube. ..... 0.6 lb .
Total oxygen and fuel weight ..... 20.4 lb.
Total engine weight ..... 30.2 lb
Specific fuel consumption.
 \(0.9 \mathrm{lb} . /(\mathrm{lb} . * \mathrm{hr}\).

Again, if the frequency is increased the thrust will increase linearly; operation at 200 Hz yields:
Thrust200 lb.
Fuel flow rate ..... \(0.05 \mathrm{lb} / \mathrm{sec}\).
Fuel weight for 12 min ..... 36 lb .
Oxygen theight ..... 3.6 lb.
Fuel for detonation tube. ..... 1.2 lb.
Total oxygen and fuel weight ..... -0.8 lb .
Total engine weight ..... 34.2 lb.
Specific fuel consumpuion ..... 10.9 :..(lb.*hr.)

The examples of the PDE device performance given above are based on point design conditions arising from the simulations reported earlier. \({ }^{26}\) They cannot be extrapolated with any degree of reliability to other conditions or configurations. We conclude. however, that the performance computed for the indicated device is encouraging from the point of view of thrust, thrust control, simplicity of the device (no moving parts), and specific fuel consumption (SFC). The specific fuel consumpuion computed above is compecitive with present day smail turbojet engines. The SFC for a PDE could be significantly lower than for small turbojets (SFC's for small turbojets are in the range of \(1.8-2.0 \mathrm{lb} .(\mathrm{lb} . * \mathrm{hr})\) ). Thus, for a given mission and vehicle, a PDE propulsion unit may be more fuel efficient, resulting in increased range. Moreover, if the expected thrust control in PDE's is realizable, it may be possible 10 produce propulsion units that can slow down, loiter and maneuver, and finally accelerate to full thrust again rapidly. Depending on the detonation frequency, which determines the thrust for all other conditions fixed. the thrust-to-weight ratio for the PDE can be as high as \(20: 1\). This value is certainly compelitive with other propulsion concepts.

The results of the scaling studies at subsonictransonic speeds lead to scaling laws that can be used to predict the performance of PDE's over some range of paramecers, assuming that other parameters are held fixed. For example, holding the external Mach number and basic chamber and inlet geometry fixed suggests that the thrust at constant specific fuel consumption produced by the PDE scales as:
\[
\text { Thrust }=T_{1} *\left(\frac{v}{v_{1}}\right) *\left(\frac{f}{f_{1}}\right)
\]
where \(\mathrm{T}_{1},\left(\mathrm{v} / \mathrm{v}_{1}\right)\) and \(\left(\mathrm{f} / \mathrm{f}_{1}\right)\) are the thrust computed for a chamber of volume \(v_{1}\) operauing at frequency \(f_{1}\), the ratio of a new volume to \(v_{1}\) and the ratio of the new frequency to \(f_{1}\), respectively. Thus, thrust should scale linearly with the parameter \(\left(v / v_{1}\right) *\left(f / f_{1}\right)\) over some range of this parameter. Departure from this linear variation may occur due to the following argument: First, since volume is proponional to the
product of cross-sectional area and lengh, \(v \sim r^{2} 1\), ( \(r-\) detonation chamber radius, 1 ~ chamber lengch) physical limits will be placed on \(r\) and \(l\) : if \(r\) is 200 small (less than 1 cm ), a detonation will not be sustainable and if 1 is too small (less than 10 cm ), it may be difficult to mix fuel and air effectively. Using the thrust relation established above. we make the following observations. For a PDE device producing 100 pounds thrust at 100 Hz , doubling the frequency and increasing the volume by a factor of 5 yields a thrust level of 1000 pounds. Assuming that the aspect ratio of the chamber (chamber length to radius) is fixed, this would require an engine only 25.5 cm in diameter and 25.5 cm in lengit. Of course, the relation between thrust and \(\left(\mathrm{v} / \mathrm{v}_{1}\right)^{*}(\mathrm{f} / \mathrm{f})\) cannot be believed over too wide a range of parameters; but, it does serve to point out the flexibility permitted by the PDE concept.

The subsonic-transonic simulations showed that the cuming of the fresh air refilling required to recharge the chamber for subsequent detonations is a strong function of the details of the valve and inlet geometry, the expansion of the combustion products. the resulting over-expansion of the chamber flow, and the external flow regime and interaction of the external flow with the internal flow. For subsonic flight, Mach \(0.2-0.9\), the fresh air entering the chamber comes from two separate principal flow processes: one comes from the flow through any valve or inlet and the other comes from the selfaspiration or reverse flow from the aft end of the chamber due to strong over-expansion. All these processes are interdependent and, in order to search for a given performance in a given device, require variation of many parameters. The simulation results obtained to date provide an understanding of the effects caused by variation of the above-mentioned parameters. With the information available, we conclude that a PDE propulsion unit can be optimized (although no optimization studies were carried out) for a given flight regime. The decrease in thrust with increasing Mach number has been described eartier to result from increased wave drag produced by the inlet geometry. Optimization of the inlet geometry could help to eliminate a large part of the wave drag. The simutation data can be used to determine the detonation frequency at a given Mach number yielding constant thrust. For example, for a constant thrust level of 90 pounds, the required detonation frequency varies from 84 Hz at \(\mathrm{M}-0.0\) to 140 Hz to \(\mathrm{M}=0.8\). In a similar fashion, we can obtain parameuric variations of other important aspects of PDE performance, such as minimum time for refill at given Mach number as
a function of air inlet opening. To find an optimum configuration that satisfics given performance over a wide flight regime requires a more extensive simuiation study. It was menuoned earlier that the simulations presented here were carned out under the assumption of inviscid flow: boundary layer effects were not included. Boundary layers are only significant for the air inlets and valves.

There is an important feature of PDE operation for missiles such as the one considered here: if the expected thrust control is attainable, then the detonation frequency can be varied to produce constant thrust over a given flight envelope, or the frequency can be varied to make the missile slow down, loiter and maneuver, and finally ramp back to full thrust more or less instantaneousiy. Since each detonation is controlled separately, this capability should depend only on on-board electronics and power.

\section*{Supersonic-Hypersonic Operation}

Numerical simulauions have been carried out for PDE operation in the supersonic and hypersonic flight regimes. 29 The results of these simulations show that there are differences when compared with the lower spred regimes. The main difference, with respect to operating characteristics, is the air intake inlet must be more carefully considered. For supersonic and hypersonic flow air scoops may be required, adding ic wave drag. For PDEs enclosed in a duct connected to upstream air inlets, pressure recovery from free-stream to duct iniet and finaly to PDE inlet must be accounted for. To date, several detailed sudies have been carried ous for the higher speed regimes: a supersonic, \(\mathrm{M}=2\) PENAID missile engine simulation and a sizing analysis for a large engine operating in the supersonic to hypersonic flight regime.

Supersonic \(M=2\) PDE The \(M=2\) PENAID missile study has been reported earlier \({ }^{29}\) and. representative simulation results are shown on the cover of this review paper. It was found that a fixed air inlet geometry could be conceptualized to operate over the Mach number range, \(0.5<\mathrm{M}<2\). By this is meant the timing for fresh air charge allowed a detonation frequency of 200 Hz at \(\mathrm{M}=2\) and this, in turn, means that any lower frequency is allowable at any other Mach number below \(\mathrm{M}=2\). Detonation frequency control may result in enhanced control over missile flight uajectory since a constant thrust. a cruise-dash-loiter-cruise or any other tailored thrust profile can be realized. We conciude that supersonic PDE operation appears possible for missile
applications. and there may also be advantages for longer range air-to-air missiles due to enhanced propulsion energy management capability.

Sizing Analysis for Large PDES A zeroth order sizing analysis has been carried out to define and size a PDE configuration satisfying high thrust level requirements from sea level to \(30,000 \mathrm{ft}\) altitude and for a flight trajectory including the Mach number range, \(0<\mathrm{M}<4\). The nominai target thrust level was 50,000 pounds and we assume that the aircrafvengine integration requires an air inlet duct to deliver fresh air to the PDE. We sketch here an outline of the analysis and give the main results.

We use the simple scaling argument given and use the thrust data obtained from simulations of the smailer missile configurations. We also assume a nominal detonation frequency, \(\mathfrak{f}=100 \mathrm{~Hz}\). We then establish the following baseline PDE performance operating point. At \(3 \times 10^{4} \mathrm{ft}\). altitude for \(\mathrm{M}=2\) the thrust in pounds per cubic meter detonation chamber volume is \(2.5 \times 10^{4} \mathrm{lbs} / \mathrm{m}^{3}\). Therefore, an engine producing \(5 \times 10^{4}\) pounds thrust requires a \(2 \mathrm{~m}^{3}\) chamber volume. The sizing study answers the following questions : what is the size and shape of the detonation chamber, required detonation chamber air inlet areas, frequency variation range, and effect of air inlet duct losses on a PDE developing the nominal target thrust?

We denote free-stream conditions by () O, PDE air inlet conditions by ()2, and PDE detonation chamber conditions by ( )3. To account for air inlet duct losses we define the ratio of PDE inlet total pressure to free-strean total pressure by C or.
\[
\begin{equation*}
\frac{P_{t_{2}}}{P_{t_{0}}}=C . \tag{1}
\end{equation*}
\]

The simplest condition to assume for the PDE air inlet is choked flow. Although this is not valid over much of the required regime, certainly not for subsonic external flow, it will resuit in a pessimistic bound on the sizing parameters. Using well known gasdynamic analysis \({ }^{32}\) the static and total pressures and density at the PDE inlet can be found as:
\[
\begin{align*}
& P_{t_{2}}=C P_{0}\left(1+\frac{M_{0}^{2}}{5}\right)^{\frac{7}{2}}  \tag{2}\\
& P_{2}=P_{0} C\left(\frac{5+M_{0}^{2}}{6}\right)^{\frac{7}{2}} \tag{3}
\end{align*}
\]
\[
\begin{equation*}
\rho_{2}=1.2 C \rho_{0}\left(\frac{5+M_{0}^{2}}{6}\right)^{\frac{7}{2}}\left(\frac{5+M_{0}^{2}}{5}\right)^{-1} \tag{4}
\end{equation*}
\]

The mass flow rate through the engine iniet is:
\[
\begin{equation*}
\dot{\mathrm{m}}=\rho_{2} U_{2} A_{2} \tag{5}
\end{equation*}
\]
\[
\begin{aligned}
& \text { and, using equations 2-4, gives: } \\
& \dot{m}_{2}=A_{2}\left(1.2 \gamma C^{2}\left(\frac{P_{0}^{2}}{R T_{0}}\right)\left(\frac{5+M_{0}^{2}}{6}\right)^{7}\left(\frac{5+M_{0}^{2}}{5}\right)^{-1}\right)^{\frac{1}{2}} \text { (0) }
\end{aligned}
\]

An equation for the area ratio \(\mathrm{A}_{2} / \mathrm{A}_{3}\) can be found as:
\[
\begin{equation*}
\frac{A_{2}}{A_{3}}=\frac{216}{125} M_{3}\left(1+\frac{M_{3}^{2}}{5}\right)^{3} \tag{7}
\end{equation*}
\]
where \(\mathrm{M}_{2}\) has been set equal to unity. Our analysis does not include the thermodynamics of the PDE cycle; the sizing analysis is based totally on a determination of the allowable detonation frequencies in the PDE chamber. We obtain a bound on allowable flow speeds in the detonation chamber by requiring the detonation chamber to refill in the time between detonations. We further require the fuel to mix and flow with the mean speed \(U_{3}\) from inlet to chamber exit, a distance equal to \(L\), the chamber length. Thus, we obtain the relation \(U_{3}=f L\). where \(f\) is the detonation frequency. A calculation of M3 gives:
\[
\begin{equation*}
M_{3}=\frac{U_{3}}{U_{3}^{*}}=f L \sqrt{\frac{P_{3}}{\gamma P_{3}}} \tag{8}
\end{equation*}
\]

Since the total pressure in the chamber equals the total pressure at the PDE iniet, the scatic pressure in the chamber as a function of chamber Mach number. given in Eq. (8), can be related to the free-stream static pressure as follows:
\[
\begin{equation*}
P_{3}=C P_{0}\left(1+\frac{M_{0}^{2}}{5}\right)^{\frac{7}{2}}\left(1+\left(\frac{A_{2}}{A_{3}}\right) C_{1} \frac{L 5}{\gamma} \frac{1}{5 P_{3}}\right)^{\frac{7}{2}} \tag{9}
\end{equation*}
\]
where \(\mathrm{C}_{1}\) is:
\[
C_{i}=\left(1.2 \text { y } C^{2}\left(\frac{P_{0}^{2}}{R T_{0}}\right)\left(\frac{5+M_{0}^{2}}{6}\right)^{7}\left(\frac{5+M_{0}^{2}}{5}\right)^{-1}\right)^{\frac{1}{2}}
\]

Another relation between \(\mathrm{P}_{3}\) and \(\mathrm{P}_{0}\) as a function of M3 can be given as:
\[
\begin{equation*}
P_{3}=C P_{0}\left(1+\frac{M_{0}^{2}}{5}\right)^{\frac{7}{2}}\left(1+\frac{M_{3}^{2}}{5}\right)^{\frac{7}{2}} \tag{10}
\end{equation*}
\]

Equations (7), (9) and (10) form a closed set for the variables \(P_{3}, A_{2} / A_{3}\) and \(M_{3}\) with parameters \(C_{3} P_{0}\), M0, L, f, To, g, and R, the universal gas constant. The volume, V , of the detonation chamber is given by the product. \(\mathrm{V}=\mathrm{L}\) A3. Thus, for a given volume, Equations (7), (9), and (10) can be solved for \(\mathrm{A}_{2} / \mathrm{A}_{3}\) versus L or A3. Figure 9 gives a schematic of the PDE showing the air inlet gap width "l" resuling in an inlet area of \(A_{2}\), the detonation chamber lengun \(L\). and the chamber cross-sectional area A3. We choose first a square chamber cross-section: the total inlet area is therefore given by the expression \(A_{2}=41\) ( A3 \()^{1 / 2}\). Results obtained from solving Eqs. (7). (9) and (10) are presented in Figure 10 for the baseline conditions. There, the area ratio, \(\mathrm{A}_{2} / \mathrm{A}_{3}\), is given versus A3. If \(A_{3}\) is chosen to be \(1.2 \mathrm{~m}^{2}\) then the length of the PDE is 1.67 m and the engine inlet opening is 15 cm . Also shown in Figure 10 is the effect of C , the pressure recovery factor. The range of values chosen for C was: \(0.7<\mathrm{C}<1\). The effect of \(C\) is negligible for the range studied here. More realistic estimates for duct losses resuling in much lower values of C at high Mach numbers may well have a more pronounced effect. If the cross-sectional area is held fixed, Eqs. (7), (9) and (10) yield the results shown in Figure 11. The curve cannot be extended below \(\mathrm{M}=1\) since the assumption of chaked flow at \(A_{2}\) is not valid; indeed, the assumption is not valid somewhere before \(\mathrm{M}=1\) due to duct loss effects. The resuls from Figure 11 can be translated into inlet gap widths as shown in Figure 12. Figure 12 shows a range of iniet openings that, when compared with the total engine length, is equivalent to \(8-12 \%\) of the total engine length. Below \(M=1\), a combination of self- aspiration and recharge from air inlets must be considered depending on Mach number. For self-aspiration at \(\mathrm{M}=0\), the ratio of \(\mathrm{A}_{2} / \mathrm{A}_{3}\) is unity; the inlets are not needed. For Mach numbers between zero and say, 0.5 , partial air inlet opening is required and for Mach numbers greater than 0.5 , the inlets will be fully open. For a fixed PDE configuration, varying the detonation frequency changes the thrust according to the scaling law given
earlier. Figure 13 shows the effect of frequency variation on \(\mathrm{A}_{2} / \mathrm{A} 3\). Recall the design point was at \(f\) \(=100 \mathrm{~Hz}\). Figures 10.13 contain the answers to the questions asked during this sizing analysis: reasonable physical sizes for PDEs developing high thrust levels are predicted. A more rigorous analysis is required to validate these predictions.

To conclude this section. we show the variation of thrust as a function of chamber volume derived from the baseline conditions used above. Figure 14 gives this variation and, if a circular cross-section engine is considered, varying the baseline thrust yields engine sizes shown in Figure 15. For example, a 45,000 pound chrust engine 1.67 meters long has an engine diameter of 1.2 mecers. This number is not unreasonable and compares well with sizes of current turbojet engines. As mentioned, a more detailed analysis of PDE periormance is needed. including an effective "steady state" thermodynamic cycle model. to validate the PDE as a credible altemative for high thrust propulsion engines.

\section*{6. Summary and Conclusions}

Past and recent sundies have shown that pulsed propulsion devices theoretically offer significant advantages over steady state engines. The advantages range from the possibility of a no-moving-parts configuration to high thermodynamic efficiency constant volume cycies. Numerical simulations, theoretical analysis and scaling studies of PDE performance have shown applicability to many different flight vehicles including small missiles and full scale aircraft. Configurational flexibility offered by the PDE include non-circular cross-sectional detonation chambers allowing consideration of unique aircraftengine integration possibilities. Thas, the numerical simulation and theoretical studies of PDE performance to date have shown interesting and important propulsion applications.

In order to realize the PDE potential, experimental data is required to validate the theorecical predictions and, most importandy, provide a proof of principle demonstration of the PDE mode of operation described in this paper, namely, detonation initiation from the exhaust end of the engine. The principle of sustained repecitive detonation has already been demonstrated in the NPS experiments. but, this took place at the inner thrust wall. The next step in the development of practical PDE devices requires a comprehensive experimental program where such key
issues as detonacion initiation, air inlet design including boundary layers, fuel/air injection and mixing can be studied and understood. In addition, thrust measurements, both static and in an external flow are required to validate the numerical and theoretical predictions. Plans for such an experimental program are presently under consideration.

\section*{Acknowledgments}

The work reviewed in this paper received partial support from the Defense Advanced Research Projects Agency under the following contracts: N66001-88-D-0088 (NOSC) and F49620-89-C-0087 (AFOSR). The authors would like to acknowledge Robert Pegg and Larry Hunt of NASA LaRC, John Leingang of the Wright Aeronautical Laboratory, and Major David Neyland of DARPA for their interest and for stimulating discussions concerning PDE applications. Over the course of these studies, SAIC colleagues Ed Rogan, Adam Drobot. Isaac Lottati and Ahron Freidman provided support and advice on many of the technical areas required to carry out this work.

Note Added in Proof.The authors would like to thank Mr Robert Pegg of NASA's Langley Research Center for bringing their attention to early documents and reports describing pulsed detonation engine research.

\section*{Beferences}
1. Scott. William B., "Renewed Interest in Pulsed Engines May be Linked to Black Aircraft," Aviation Week, 28 October 1991 (68-69).
2. Scoth. William B., "New Evidence Bolsters Reports of Secret, High-speed Aircraft." Aviation Week, May 11, 1992 (62-63).
3. Wolfe, M.O.W., Luck, G.A., "Pressure Measurements on the F.Z.G. 76 Flying Bomb Motor," Technical Note No. EA237/1, Royal Aircraft Establishment, Farmborough, 1944.
4. Tharratt. C.E., "The Propuisive Duct." Aircraft Engineering, November 1965, (327-337).
5. Tharratt, C.E., ibid, December 1965, (359. 371).
6. Tharrath. C.E., ibid. February 1966, (23-25).
7. Kenurield, J.A.C., "Valveless Pulsejets and Allied Devices for Low Thrust, Subsonic, Propulsion Applications," AGARD Conf Proc. No. 307. Ramjets and Rockets for Military Applications, March (1982).
8. Zipkin, M.A. and Lewis G.W., "Analytical and Experimental Performance of an

Explosion-Cycle Combustion Chamber of a Jet Propulsion Engine," NACA TN-1702. Septernber 1948.
9. Shultz-Grunow, E., "Gas-Dynamic Invesugation of the Pu!se-Jet Tuhe," " 1 CA TM-1131, February 1947.
10. Hoffmann, N., "Reaction Propul: is by Intermittent Detonative Comt:-stion," Minisury of Supply, Volkenrode T. ..siation. 1940.
11. Nicholls, J.A., Wilkinson, H.R. and Morrison, R.B., "Intermittent Detonation as a Thrust-Producing Mechanism." Jet Propulsion, 27, 534-541, 1957.
12. Dunlap, R., Brehm, R.L. and Nicholls, J.A., "A Preliminary Study of the Application of Steady State Detonative Combustion of a Reaction Engine." ARS J., 28, 451-456, 1958.
13. Nicholls, J.A., Gullen, R.E. and Ragiand K.W., "Feasibility Studies of a Rotating Detonation Wave Rocket Motor," Journal of Spacecrafts and Rockets, 3, 893-898, 1966.
14. Adamson, T.C. and Olsson, G.R., "Performance Analysis of a Rotating Detonation Wave Rocket Engine," Astronautica Acta, 13, 405-415, 1967.
15. Shen, P.I. and Adamson, T.C., "Theoretical Analysis of a Rotating Two-Phase Detonation in Liquid Rocket Motors," Astronautica Acta, 17, 715-728, 1972.
16. Krzycki. LJ., Performance Characteristics of an Intermittent Detonation Device. Navweps Report 7655, U.S. Naval Ordnance Test Station, China Lake, Califomia 1962.
17. Matsui, H. and Lee, J.H., "On the Measure of the Reiative Detonation Hazards of Gaseous Fuel-Oxygen and Air Mixtures," Seventeenth Symposium (International) on Combustion, 1269-1280, 1978.
18. Korovin, L.N., Losev, A., S.G. Ruban and Smekhov, G.D. "Combustion of Natural Gas in a Commercial Detonation Reactor," Fiz. Gor. Vzryva, Vol. 17, No. 3, p.86, 1981.
19. Smirnov, N.N. and Boichenko. A.P., "Transition from Deflagration to Detonation in Gasoline-Air Mixtures." Fiz. Gor. Vzryva, 22, No. 2, 65-67, 1986.
20. Lobanov, D.P., Fonbershtein, E.G. and Ekomasov, S.P., "Detonation of Gasoline-Air Mixtures in Small Diameter Tubes." Fiz. Gor. Vzryva, 12, No. 3, 446, 1976.
21. Back. L.H., "Application of Blast Wave Theory to Explosive Propuision." Acta Astronauica. 2, No. 5/6, 391-407, 1975.
22. Varsi, G., Back, L.H. and Kim, K.. "Blast Wave in a Nozzle for Propulsion Applications." Acta Astronautica. 3, 141-156, 1976.
23. Kim. K.. Varsi, G. and Back, L.H., "Blast Wave Analysis for Detonation Propulision." aIAA Joumal, Vol. 10. October 1977.
24. Back, L.H., Dowier, W.L. and Varsi, G., "Detonation Propulsion Experiments and Theory," ALAA Journal Vol. 21, October 1983.
25. Helman, D., Shreeve, R.P. and Eidelman, S., "Detonation Pulse Engine," AIAA-86-1683, 24th Joint Propulsion Conference. Huntsville, 1986.
26. Eidelman, S., Grossmann. W. and Lotati. I., "Propulsion Applications of the Pulsed Detonation Engine Concept," SAIC Report Number 89/1684, December 31, 1989.
27. Eidelman, S., Grossmann, W. and Lottati, I., "A Review of Propuision Applications of the Pulsed Detonation Engine Concept," J. Propulsion and Power, Vol. 7. No. 6, November-December 1991 (857-865).
28. Eidelman, S. and Grossmann, W., "Computational Analysis of Pulsed Detonation Engines and Applications." AIAA-90-0460, January 8-11. 1990/Reno, Nevada.
29. Eidelman, S., Grossmann, W. and Lotati, I., "Air-Breathing Pulsed Detonation Engine Concept: A Numerical Study," AIAA-90-2420. July 16-18, 1990/Orlando, Florida.
30. Eidelman, S., Lotati, I. and Grossmann. W.. "A Parametric Study of the Air-Breathing Pulsed Detonation Engine," AIAA-92-0392, January 6-9, 1992/Reno, Nevada.
31. Lotati, L., Eidelman, S. and Drobot, A., "A Fast Unstrucured Grid Second Order Godunov Solver (FUGGS)," AIAA-90-0649, January 8 11, 1990/Reno, Nevada.
32. Anderson, J. D., Modem Compressible Elow. McGraw-Hill, \(2^{\text {nd }}\) Edition, New York, 1982.


Figure 1. Valveless propuisive duct concept due to Tharjail.


Figure 2. Supersonic, \(M=3\) conceptualization of the propulsive duct.


Figure 3. Schemaric of the Hoffmann - Nicholls Krzycic deronation whe experimental apparams.


Figure 4. Schematic of the Helman. Shreeve. Eidelman PDE experimenal configuration from the NPS studies.


Figure 5. The PDE experimental apparatus used in the NPS studies.


Figure 6. The PDE experiment during repculive detonation.


Figure 7. Schematic of the generic PDE.


Figure 8. Schematic of PDE/PENAID missile integration.


Figure 9. Schematic of PDE describing key sizing variables.
\[
h=10.000 \mathrm{~m} . M=20 . \text { Prec }=.9-.94 .
\] l= 100. Vot \(=2 \mathrm{~m}^{\mathrm{m}}\)
22/33

Figure 10. Results for \(A_{2} / A_{3}\) as a function of \(A_{3}\). The results are, for the chosen conditions. independent of pressure recovery.


Figure 11. Results for \(A_{2} / A_{3}\) as a function of Mach number.


Mech number

Figure 12. Results for inlet gap width. 1, as a function of Mach number.


Figure 13. Results for \(A_{2} / A_{3}\) as a function of deconation frequency.


Figure 14. PDE chrust versus detonation chamber
Figure 14. vohme at a given frequency, \(f=100 \mathrm{~Hz}\).


Figure 15. PDE engine radims (cylindrical crosssection) versus engine length.

\title{
Synthesis of Nanoscale Materials Using Detonation of Solid Explosives
}

\author{
Shmuel Eidelman and Anatoly Altshuler Science Applications International Corporation 1710 Goodridge Drive Mail Stop 2-3-1 McLean, Virginia 22102
}

First International Conference on Nanostructured Materials

Cancun, Mexico
September 21-26, 1992

\title{
Synthesis of Nanoscale Materiais Using Detonation of Solid Explosives
}

\author{
Skmuel Eidelman and Anatoly Altshuler Science Applications International Corporation \\ McLean, Virginia 22102
}

\begin{abstract}
Direct synthesis of nanophase materials in detonations is considered. Article discusses a mumber of methods that can lead to formarion of super saturated states of media that in turn will presipitate as nanoscale parricles when the detonation products are quenched in the expansion process. Several examples are given of reactions that will lead to production of nanophase particles of metals, oxides. diamond and other unique materials. It is shown that conditions of nucleation and growth of nanoscale material can be analysed using advanced methods of computer simulation of detonation and blast wave phenomena. A sample of this kind of simulations is given. It is conciuded that detonanve symthesis of nanophase material can lead to low cost technology that will produce a range of unique materials.
\end{abstract}

\section*{1. Introduction}

Recent enhanced interest in nanoscale materials is merited by the discovery of a set of unconventional material properties in the form of particles that are less than 10 nm in size. Anomalous chemical activity, lower critical temperatures of oxidation and sintering, sintering of composite materials with manifold increase in tensile strength, and simtering unique semiconducting and ferromagnetic materiais, have all been demonstrated for nanoscale materials. This wide range of applications makes nanosize materials an extremely interesting and important material state that is the subject of intense study by many researchers.

The synthesis of nanoscale materials is accomplished through methods such as ion-sputtering and ion-deposition, laser ablation, evaporation and condensation in a vacuum, solgel, electroprecipitation, and plasma-jet techniques. Each of these techniques has produced \(2-10 \mathrm{~nm}\) particles of various materials; however, the yield of such processes is extremely low and the cost of materials obtained is very high.

In this article we will consider detonative synthesis, a method of nanosize materials synthesis that offers an alternative to other more costly methods of production. Detonative synmesis is extremely advantageous because it allows very high pressure and temperature conditions to be created using low cost explosive materiais and simple processing equipmert. The symthesis occurs directly in the plasma created by the detonation wave. Conditions for detonative symthesis can be modified by changing the physical and chemical conditions of the detonation wave and expanding detonative products. For example, for nanoscale diamond powder synthesis, rapid expansion and cooling of the detonation products are required to prevemt diamond graphitization. Thus, the explosive charge and atmosphere surrounding it should be designed to create these conditions.

In the following, we will review a range of conditions necessary for nanosize material synthesis that is provided by detonative synthesis methods, and examine their applicability for specific materials.

\section*{2. Detonation Waves as Generators of High Energy Density Plasmas}

Detonations are reactive wave phenomena in which a reaction is initiated by the shock waves propagating at supersonic speeds through an explosive mixture. This wave consists of a shock wave discontinuity followed by a narrow zone of homogeneous chemical reaction. The shock wave compresses the explosive from its initial state with pressure \(P_{0}\) and density \(\rho_{0}\) to the shocked state \(P_{s} \rho_{\mathrm{s}}\), with subsequent reaction of explosive in the reaction zone that extends up to the Chapman-Jouguet (CJ) state.

\section*{Condensed Explosive Detonarions}

Table I gives some typical parameters for detonation waves in solid explosives. We can see from this data that temperanures of about \(3000^{\circ} \mathrm{C}\) at pressures of 30 GPa are typical for solid explosive detonations. These parameters create extremely oversaturated conditions for some detonation products. Subsequent ultra-fast quenching can lead to synthesis of nanophase material. Behind the detonation wave reaction zone. temperatures and pressures are high and detonation products will usuaily contain various active chemical components. It is challenging in this environment to preserve nanosize material from further reaction.

TABLE I
Some Typical Conditions for Detonation of Solid Explosives (1)
\begin{tabular}{lccc} 
& \begin{tabular}{c} 
Pressure \\
GPa
\end{tabular} & \begin{tabular}{c} 
Temperature
\end{tabular} & \begin{tabular}{c} 
D velocity \\
m/sec
\end{tabular} \\
TNT, \(\rho=1.6 \mathrm{~g} / \mathrm{cm}^{3}\) & 20.6 & 2940 & 6950 \\
RDX, \(\rho=1.8 \mathrm{~g} / \mathrm{cm}^{3}\) & 34.7 & 2590 & 8750 \\
HMX, \(\rho=1.9 \mathrm{~g} / \mathrm{cm}^{3}\) & 39.5 & 2364 & 9160 \\
PbN3, \(\rho=4.0 \mathrm{~g}^{3} \mathrm{~cm}^{3}\) & 23.1 & 2660 & 5000
\end{tabular}

\section*{Multi-Phase Detonations}

Multi-phase detonations can cover a range of conditions between gaseous and condensed material detonations. Multi-phase detonable mixtures can be composed of solid or liquid fuel particles dispersed in gaseous oxidizer, solid particles of explosive material dispersed in gas, gaseous explosive mixture mixed with the inert or reactive liquid phase (2), or explosive slurries. All these possible methods of generating detonation waves greatly extend the range of conditions availabie for material synthesis. It should be noted that there is a difference in the character of condensed explosive detonation and gaseous detonations. With condensed explosives, high rate decomposition reactions usually take place. For gaseous detonations, reactions can be characterized as detonative combustion. Multi-phase detonations can be based on detonative combustion, high rate decomposition, and combinations of these processes.

\section*{Nonstandard Regimes for Detonanve Reaction}

A classical self-sustained detonation wave has a fixed wave structure that moves through the explosive with constant velocity. In a self-sustained detonation. a balance is achieved between the compression work of the shock wave and energy released in the reaction zone. If a self-sustained detonation is possible in a given explosive mixture at given initial conditions, it will propagate with a constant speed.

However. for many important reactive mixtures it is either very difficult or impossible to obtain a seifsustained detonation wave.

Over the last forty years, many nonstandard detonation regimes have been discovered that significantly reduce the restrictive limitations of the classical self-sustained detonation. The following is an incomplete list of the detonation regimes that significantly deviate from the classical self-sustained detonation wave:
a. Transient detonation (forms when a deflagration wave undergoes transition to detonation);
b. Overdriven detonation (compression work of the leading shock is partially sustained by an external source of energy);
c. Spinning detonation (formed by smail number of detonative combustion fronts that propagate through the mixture by spinning);
d. Multi-layer detonation (propagates in layers of explosives where the detonation wave in one laver can lead to lateral initiation of an overdriven detonation wave in the adjacent layer);
e. SWACER (Shock Wave Amplification by Coherent Energy Release) detonation:
f. Light supported detonation (detonation front is supported by a laser beam heating the area behind the shock front).

All these possible regimes for initiating and sustaining detonation waves allow substantial flexibility in adapting a detonative process for the purpose of material synthesis.

\section*{3. Detonative Synthesis Chemistry for Nanophase Materials}

The elementary composition of known explosives is quite limited. The most common class, CHNO explosives, produces only one condensed phase under normal thermodynamic conditions - ultra fine carbon (1):
\[
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{6} \mathrm{O}_{6}(R D X) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+1.49 \mathrm{CO}_{2}+0.022 \cdot \mathrm{CO}+3 \mathrm{~N}_{2}+1.49 \mathrm{C}_{(s)} \\
& \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{6}(T N T) \rightarrow 2.5 \mathrm{H}_{2} \mathrm{O}+1.66 \mathrm{CO}_{2}+0.188 \cdot \mathrm{CO}+0.001 \cdot \mathrm{NH}_{3}+1.5 \mathrm{~N}_{2}+5.15 \mathrm{C}_{(s)} \\
& \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{8} \mathrm{O}_{8}(\mathrm{HMX}) \rightarrow 4 \cdot \mathrm{H}_{2} \mathrm{O}+2 \cdot \mathrm{CO}_{2}+0.008 \cdot \mathrm{CO}+4 \mathrm{~N}_{2}+2 \cdot \mathrm{C}_{(s)}
\end{aligned}
\]

These reactions have the following yield limits for solid phase carbon: \(9 \%\) for RDX or HMX, and \(29 \%\) for TNT.

More "exotic" BCHNO explosives can decompose, which produces solid BN or \(\mathrm{B}_{2} \mathrm{O}_{3}\). For example, the powerful explosive \(\mathrm{B}_{10} \mathrm{H}_{100} \mathrm{C}_{5.75} \mathrm{~N}_{15} \mathrm{O}_{30}\), decomposes with the \(26 \%\) yield of BN by weight, while less hydrogenized \(\mathrm{B}_{10} \mathrm{H}_{18} \mathrm{C}_{5.75} \mathrm{~N}_{15} \mathrm{O}_{30}\) produces primarily \(\mathrm{B}_{2} \mathrm{O}_{3}\) with \(34 \%\) yield.

From the point of view of chemical productivity, the most promising class of explosives is presented by acetylides and azides. For example, explosive decomposition of silver acetylide ( \(\mathrm{Ag}_{2} \mathrm{C}_{2} \xrightarrow{\longrightarrow} \% \mathrm{Ag}+2 \mathrm{C}+87 \mathrm{kcal} / \mathrm{mol}\) ) generates a \(90 \%\) silver yield. A more powerful explosive decomposition of \(\mathrm{Ag}_{2} \mathrm{C}_{2} \cdot \mathrm{AgNO}_{3} \rightarrow 3 \mathrm{Ag}\) (vapor) \(+\mathrm{CO}_{2}+\mathrm{CO}+0.5 \mathrm{~N}_{2}+185 \mathrm{kcal} / \mathrm{mol}\), gives \(80 \%\) silver vield but much finer dispersity is expected. The decomposition of silver acetylides is interesting to compare with a silver azide explosion, \(2 \mathrm{Ag}\left(\mathrm{N}_{3}\right) \longrightarrow 2 \mathrm{Ag}(v)+3 N_{2}\), with a respective yieid of silver on
the order of \(72 \%\) by weight. Over two dozen metals form explosive azides. while explosive acetylides are less common. Among the most interesting azides for nanosize powder production are explosive azides of cobalt. goid. strontium. and platinum. The main challenge in producing nanophase metals by explosive decomposition of azides or acetylides will be to assure rapid quenching of nanoscale phase components of the explosive products.

\section*{Loaded Expiosive Synthesis}

Explosive compositions are unknown for some chemical eiements, as in the case of aluminum. The most obvious solution is to mix the explosive carrier with the powder or liquid form of the desired chemicai. There is already a substantial history of adding aluminum powder to explosives in order to increase their performance. It has been established that at a grain size of several microns, aluminum does not have time to sublimate in the detonation wave reaction zone; thus, it will not affect the reaction rates. On the other hand, detonation energies and temperatures are high enough to evaporate a substantial amount of additive. In order to overcome the diffusion barrier, we are considering mixing a melted explosive carrier with a liquid aluminum compound like \(\mathrm{AlBr}_{3}\), which has a meiting point of \(97^{\circ} \mathrm{C}\) and comparatively low evaporation energy and temperature. Aluminum azide is also a possibility.

The same approach can be implemented in the loaded explosive synthesis of the nanoscale Hf. In this case. we can use detonation mixture of \(\mathrm{Hf}_{\left(\mathrm{BH}_{4}\right)_{4} \text { and an explosive carrier. Similarly, Ir can be }}\) produced using an \(\mathrm{IrF}_{6}\) load: Pu using a PuF6 load: Re using a ReF 6 load: U using an \(\mathrm{UF}_{6}\) load; W using a \(\mathrm{WCl}_{6}\) load: V using a \(\mathrm{VF}_{5}\) load; Ti by means of a \(\mathrm{TiCl}_{4}\) load, etc. The reduction of metals in all these cases is taking piace both physically, as the result of shock-temperature dissociation of molecules, and chemically, by ionized hydrogen and, in some cases, lithium vapors.

For carbon synthesis, loading the explosives cited above with benzol ( \(\mathrm{C}_{6} \mathrm{H}_{6}\) ), 1-hexadecen ( \(\mathrm{C}_{16} \mathrm{H}_{32}\) ), hexacozan ( \(\mathrm{C}_{26} \mathrm{H}_{54}\) ), dibenzyl ( \(\mathrm{C}_{14} \mathrm{H}_{14}\) ) etc., can greatly increase the yieid of carbon without substantially diminishing the energetic characteristics of detonation. For example, a mixture of benzol with HMX on mol to mol basis will decompose in the detonative reaction as follows:
\[
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{8} \mathrm{O}_{8} \geq 7 \mathrm{H}_{2} \mathrm{O}+0.5 \mathrm{CO}_{2}+4 \mathrm{~N}_{2}+9.5 \mathrm{C}_{(S)}
\]

This reaction yields \(30 \%\) by weight of solid carbon that has a potential to be preserved in nanoscale form.
All these exampies illustrate that the loading of explosives for nanophase material symthesis expands the range of opportunities beyond the symhesis that results from the detonative decomposition of explosives.

\section*{Phase Composition of Synthesis Products}

The crystalline structure of nanoscale powders obtained from detonation generally ec sponds to high-pressure modifications of the solids. This is the resuit of high temperature and hi. pressure conditions in the detonation wave reaction zone and subsequent ultra-fast quenching and oling of detonation products. In the case of carbon, diamond is formed. The phase diagram for carbon shc:m below easily illustrates this point. Area marked with number 1 on the phase diagram reflects parametcrs typical for detonation of HMX , while the area marked with 2 corresponds to detonation of TNT. it is quite obvious from Figure 1 that the detonation of TNT cannot produce diamond, while the dctonation of HMX brings all condensed carbon into diamond form.

The same situation occurs with the synthesis of BN , when explosive decomposition of boron aride \(\mathrm{B}\left(\mathrm{N}_{3}\right)_{3}\) produces hexagonal modification of BN , while powerful BCHNO explosives can produce BN with cubic sfalerite structure. Other compounds that can be obtained include interesting compositions such as \(\mathrm{ZrO}_{2}\), HfC , and WC, sometimes in their metastable modificarions. Much more diverse are crystalline modifications of nanoscale metals. In cases like Gadolinium (Gd) and Samarium (Sm), five differem structure modifications could be obtained as a result of different experimental conditions.


Figure 1. Carbon phase diagram schematics.

\section*{Nucleation and Growth of Nanophase Material Behind the Detonation Waves}

We have discussed above the detonation wave structure in solids. We made important assumptions in our previous analysis regarding chemical equilibrium and physical stationarity of the procestes on detonation fromt. The characteristic time of typical explosive decomposition reactions under detconation conditions in solid explosives lies in the range of \(10^{-11}+10^{-12}\) sec. As we noted above, the characteristic time length of the reaction zone for detonations in solids is \(10^{-7} \div 10^{-8} \mathrm{sec}\). This difference in time scales allows us to consider reactions behind the detonation fromt as equilibrium decompositions. Phenomenologic criteria of nucieation stationarity according to V. Shreidman (2) can be presented as follows:
\[
\begin{equation*}
v \leq\left(\frac{W}{T}\right)^{-1} \rho \sigma^{2} / \eta^{3} \tag{1}
\end{equation*}
\]
where \(v\) - characteristic frequency of external forces; W-activation energy of nucleation; T-temperature in energetic units; \(\rho\) and \(\eta\) - density and viscosity of gases; \(\sigma\) - surface tension coefficient for nuclei.

Following are Fol'mer theory (3) we present activation energy through thermodynamic parameters:
\[
\begin{equation*}
W=\frac{16 \pi}{3} \frac{\sigma^{3} V^{2}}{\left(T \ln P / P_{c}\right)^{2}} \tag{2}
\end{equation*}
\]

Here, P - partial pressure in gaseous precipitous phase; \(\mathrm{P}_{e}\) - equilibrium pressure of saturation for condensate at given \(\mathrm{T} ; \mathrm{V}\) - atomic volume in condensed phase.

For the conditions typical for diamond condensation in the process of detnnative synthesis, the barrier of nucleation at 100 kbar pressure and \(3000^{\circ} \mathrm{k}\) temperature behind the detonation ficat is \(\mathrm{W}=\) \(13 \cdot 10^{-12}\) erg. Criteria (1) in this case gives: \(v \leq 10^{13} \div 10^{14} \mathrm{~Hz}\). Considering the time span of the detonation wave reaction zone \(\left(10^{-7} \div 10^{-8} \mathrm{sec}\right)\), we can assume stationarity of diamond nucieation. Calculations made for metals and some inorganic compounds lead to the same conclusion.

In accordance with the stationary approximation, the nucleation rate can be presented as follows (3):
\[
\begin{equation*}
I=\frac{2 \alpha P^{2} V \sigma^{1 / 2}}{(2 \pi n T)^{1 / 2} T^{3 / 2}} \exp \left(-\frac{W}{T}\right) \tag{3}
\end{equation*}
\]
\(\alpha\) - condensation coefficient, \(m\) - atomic mass of condensate. For our reference case of diamond nucleation,
calculation using equation (3) gives: \(I \approx 10^{21} \frac{\text { nuclei }}{\mathrm{sec} \cdot \mathrm{cm}^{3}}\)
The diameter of critical nuciei can be estimated from activation barrier: \(D=\sqrt{\frac{3 W}{\pi \sigma}}\). For diamond it gives D ~ 5 A.

\section*{4. Solid Explosive Charge Detonation in a Confined Volume}

Experimentally developed conditions for diamond powder synthesis rely on the multi-layered detonation of several explosives and inert material. This system undergoes a complex detonation under conditions that are overdriven for the explosive producing diamond powder, and are standard for the driver detonation with some complex multi-dimensional expansion into the surrounding media. The details of the detonation process in this system have never been studied computationally, but experimental methods indicate that very specific conditions are required. It is known that the end result of this process is extremely sensitive to conditions of the multi-layered detonation. Currently, it is not clear what variables control particie sizes, or the maximum amount of free carbon released during the detonative combustion process that can be synthesized into diamond. Experimental work in this field is sketchy, numerical analysis of this complex process will enable us to understand the sensitivity to the basic parameter variations comrolling diamond symthesis. Below are the results of numerical simulation of detonation and detonation products expansion for a composite TNT/RDX charge detonated in a \(1 \mathrm{M}^{3}\) chamber. This simulation will give the conditions of the detonative products at various stages of expansion that determines the environment prevalent in the detonative synthesis.

In Figure 2 schematics of the blast sphere cross section are shown with the solid explosive charge located at the sphere's center. The inner volume of the sphere is \(1 \mathrm{M}^{3}\). Solid explosive is a composite charge formed from a TNT main charge with the layer of RDX around it. Detonation of a high energy RDX layer leads to the formation of an overdriven detonation wave in the main charge. Because the problem is symmetric, it is sufficient to simulate one quarter of the sphere volume to describe the full range of blast interaction that will occur for this condition. To increase the simulation's accuracy, we have divided the numerical modeling in the near field and global blast simulations. For the near fieid, a square grid with \(\mathrm{DR}=\mathrm{DX}=1 \mathrm{~mm}\) was used to describe a region \(10 \mathrm{~cm} \times 10 \mathrm{~cm}\) containing the solid explosive charge. The simulation results from the near fieid region are mapped on the larger computational domain. which includes the inner wall of the blast sphere. For higher resolution and computational efficiency, we
have used structured/unstructured grids to describe the sphere's inner volume. The mathematical formulation and numerical method for the solution used in the near field are described in detail in Reference 2. These computational techniques are implemented in the MPHASE code. The model and numerical methods used for simulations in the computational domain shown in Figure 2 are described in Reference 5. These computational techniques are implemented in AUGUST code. Both MPHASE and AUGUST have been validated for the range of detonation and strong shock wave reflection and diffraction problems.(6)


Figure 2. Schematics of the blast sphere cross section with the solid explosive charge. The computational domain is covering the upper right quadrant.

In Figure 3, simulation results for the near field region are shown as pressure density and temperature contour plots for an instant of time when the detonation wave is at 2 mm distance from the right edge of the charge. \(t=0\) is the time of detonation wave initiation in a solid explosive. Pressure and temperature contour plots are shown using a linear scale. In Figure 3 we observe propagation of the complex detonation front through the composite charge and the initial stages of detonation product expansion. The outer layer of the RDX leads to the formation of an overdriven detonation wave in the TNT charge that has shorter reaction zone, higher wave speed, higher temperatures, and higher pressures as compared with a homogeneous TNT charge detonation. The maximum temperature is reached in the air strata located in the immediate vicinity of the charge. This temperature maximum is created by a strong shock wave produced by expanding detonation products in air. The following conditions are reached at the detonation wave fromt in the TNT charge: \(P=62.6 \mathrm{GPa} ; \mathrm{T}=6000^{\circ} \mathrm{C} ; \rho=2900 \mathrm{~kg} / \mathrm{m}^{3}\). It should be noted that because of high resolution of the numerical scheme we are simulating the Von Neumann spike of the detonation wave front, where the pressure is considerably higher than at the Chapman-Jouguet point.

When the shock wave reaches the edges of the computational domain for the near field simulation, the simulation results are mapped to the grid of the global domain shown in Figure 2 and are comtimed on larger grid. In Figure 4 pressure and temperature contour plots are shown for three consecutive instances of time for the global domain simulation. In Figure 4 a results are shown at \(\mathrm{t}=0.05 \mu \mathrm{sec}\), shortly before the detonation products reached the walls of the sphere. Here we can observe significantly lower pressures as compared with Figure 3 values due to strong expansion; however, the propagating shock is leading to considerable heating of the surrounding air. In Figure 4 b pressure and temperature contour plots are shown at some stage of the wave front reflection from the inner wall of the blast sphere. The average pressures and temperatures are significantly lower; however, several focus points are created during the reflection that have significantly higher pressure and temperature values. In Figure 4 c , the shock wave complex is converging towards the blast sphere center, with significant amplification of the shock strength and temperature at the front. It is obvious that this system of shock waves will undergo a number of reflections. focusing, and expansions until quiescent conditions are reached in the blast sphere.

The simulations illustrated above will provide the global conditions in the blast chamber as a function of time. This information can be used for the nucleation simulations of the materal behind the shock front, and estimates of possible phase transformation or reaction of the newly formed material. As a resuit of this muiti-step approach. we can consider all the stages of the detonative synthesis process that are important for nanoscale material formation. This approach will allow us to minimize the number of experiments, understand the physics of detonative synthesis, and control the quality and vield of nanoscale materials produced experimentally.

\section*{5. Conclusions}

Detonative synthesis of nanoscale material is a new technology and the namure of this process is widely unexplored. More studies shouid be done in addressing chemical and phase transformations under extreme and fast changing conditions in waves of detonation, shock and rarefraction. An unlimited array of elements and compounds, as well as their structural modifications (some highly metastable), is attainable through such processing.

Detonation sunthesis combines the best features of traditional nanophase material technology - the most effective generation of hot plasma and vapors, and fast quenching of a condensing product. The most unique feature of the process is the extreme density of the generated plasmas, which makes them highly supersaturated in regard to pressure and temperature.

Detonative technology has promising industrial prospects, due to very low production cost and the unique materials it yields. As a reference we can use ultra-fine carbon. In this case common nanotechnology produces carbon black; detonative synthesis diamond. These factors are completely changing the traditional view of nanomaterials applications. (7)

\section*{6. Acknowledrment}

The work reported here was partially supported by ONR under Contract \(\#\) N00014-92-C-0168. The authors would like to thank Dr. L.T. Kabacoff for his interest in this project.

\section*{7. References}
1. C.L. Mader, "Numerical Modeling of Detonations," University of Califomia Press Ltd., London, England. (1979).
2. V. Shreidman, Zhurn Eksperim, Teor. Fiz., v 91, 8, p 520, (1986).
3. D. Fedoseev, Uspekhi Khimii, V 53, p 7 53, (1983).
4. S. Eideiman and X. Yang, "Detonation Wave Propagation in Variable Density Multi-Phase Layers," AIAA 92-0346, 30th Aerospace Sciences Meeting, Reno, NV, Jan. 6-10, 1992.
5. I. Lotatti, S. Eidelman, A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," AIAA 90-0699, 28th Aerospace Sciences Meeting, Reno, NV, Jan. 8-11, 1990a.
6. I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Grids." Proceedings of the 4th Intemational Symposium on Computational Fluid Dynamics, Davis, CA, September 1991.
7. A. Altshuler and J.L. Sprague, "The Synthesis, Properties. and Applications of Diamond Ceramic Materials." \(41^{\text {st }}\) Electronic Components Technology Conference, Atlanta, Georgia, May 1991.


Figure 3. Pressuure, density and temperature contour plots for a composite charge detonation \(\mathrm{t}=0.01 \mathrm{msec}\).

a. \(\mathrm{t}=0.05 \mathrm{msec}\)

b. \(t=0.2 \mathrm{msec}\)

c. \(t=0.3 \mathrm{msec}\)

Figure 4. Simulation of blast wave reflection from the inner wave of a blast sphere.

\title{
Detonation Wave Propagation in Combustible Mixtures with Variable Particle Density Distributions
}

\author{
Shmuel Eidelman* and Xiaolong Yang* \\ Science Applications International Corporation. McLean. Virginia 22102
}

\begin{abstract}
A mathematical model is presented describing a physical system of detonation waves propagating in a solid particle/air mixture with a wide range of solid-phase concentrations. The mathematical model was solved numerically using the Second Order Godunov method, and numerical solutions were validated for detonation waves propagating in mixtures with concentrations of solid phase from \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\) to 1000 \(\mathrm{kg} / \mathrm{m}^{3}\). Numerical solution was obtained for detonation waves propagating in a system consisting of clouds with a small concentration of particles and a ground layer in which solid particle densities are three orders of magnitude larger than in the cloud. Three different particle concentration distributions in the ground layer were simulated and compared in terms of detonation wave structure and parameters.

\section*{Introduction}

When combustible particles are intentionally or unintentionally dispersed into the air, the resuiting mixture can be detonable. Formation of this potentially explosive dust environment and the properties of its detonation are of significant practical interest in view of its destructive or creative effects.
\end{abstract}

\footnotetext{
Copyright © 1993 by the American Institute of Aeronautics and Astronautics, Inc.
All rights reserved.
*Research Scientist, Applied Physics Operation.
}

The experimental and theoretical study of these phenomena until now has addressed only homogenous particle/oxidizer mixtures. However, intentional or accidental processes of the explosive dust dispersion will always lead to inhomogeneous particle density distribution. Some industrial methods of explosive-forming rely on detonation of explosive powder. This powder can be deposited as a thin layer over the surface area of the forming metal, with some remaining concentration in the vicinity of the layer. The phenomenology of detonation wave initiation and propagation in this environment is the main subject of this paper.

When the detonation wave is generated in a homogeneous mixture by a "direct initiation," it starts with a strong blast wave from the initiating charge. As the blast wave decays, combustion of the reactive mixture behind its shock front starts to have a larger role in support of the shock wave motion. When the initial explosion energy exceeds some critical value. transition to steady-state detonation occurs. \({ }^{1-4}\) In explosive dust mixtures wich a nonuniform distribution of particle density, the initiation dynamics are significantly more complicated. The critical initiation energy sufficient for one of the explosive particle density strata regions is not necessarily adequate for other regions. Also, when there is a significant variation in density between the different layers (regions) of the mixture, steady detonation in one layer can result in an overdriven detonation in an adjacent layer. Our paper demonstrates that the phenomenology of these interactions is distinctly different from the classical studies of multilayer detonations in gases. This is primarily because the energy content of adjacent layers in a typical multigas layer experiment \({ }^{5}\) varies by a factor of two or four, whereas the energy content in explosive dust/air mixtures can vary by several orders of magnitude.

In this paper we use detailed numerical simulation to study the initiation dynamics and propagation phenomenology for a general case of explosive dust dispersion. We will consider particle density variation from \(1000 \mathrm{~kg} / \mathrm{m}^{3}\) in the ground layer to \(0.5 \mathrm{~kg} / \mathrm{m}^{3}\) or 0 for the upper edges of the cloud. The effects of variation of the cloud density on detonation wave parameters
will be examined for different cases of cloud particle density distribution. When possible, the results of computer simulations are validated in comparison with experimental and theoretical studies.

The outline of this paper is as follows. Section 2 gives a description of a mathematical model that includes governing conservation equations for two phases and the constitutive laws. We describe the model for a particle-gas interaction. combustion. and equation-of-state for gas phase. The numerical integration technique for solving the mathematical mel will also be outined. In Section 3, we present our numerical simulation results. We first validate our model by comparing one-dimensional detonation wave simulation with available experimental results. We then give the two-dimensional simulation for detonation wave propagation in combustible particles/air mixtures with variable particles density distribution. Concluding remarks are given in Section 4.

\section*{Mathematical Model and the Numerical Solution}

The mathematical model consists of conservation governing equations and constitutive laws that provide closure relations for the model. The basic formulation adopted here follows the two-phase fluid dynamics model presented in the text by Kuo. \({ }^{6}\) The approach assumes that there are two distinct continua, one for gas and one for solid particles, each moving at its own velocity through its own control volume. The sum of these two volumes represents an average mixture volume. With these assumptions, distinct equations for continuity, momentum, and energy are written for each phase. The interaction effects between the two phases are accounted for by the source terms on the right-hand side of the governing equation. The following is a short description of the two-phase flow model used in our study, with conservation equations written in Eulerian form for two-dimensional flow in Cartesian coordinates:

Continuity of gaseous phase
\[
\begin{equation*}
\frac{\partial \rho_{1}}{\partial t}+\frac{\partial\left(\rho_{1} u_{g}\right)}{\partial x}+\frac{\partial\left(\rho_{1} v_{g}\right)}{\partial y}=\Gamma \tag{1}
\end{equation*}
\]

Continuity of solid-particle phase
\[
\begin{equation*}
\frac{\partial \rho_{2}}{\partial t}+\frac{\partial\left(\rho_{2} u_{p}\right)}{\partial x}+\frac{\partial\left(\rho_{2} v_{p}\right)}{\partial y}=-\Gamma \tag{2}
\end{equation*}
\]

Conservation of momentum of gaseous phase in \(x\) direction
\[
\begin{equation*}
\frac{\partial\left(\rho_{1} u_{q}\right)}{\partial t}+\frac{\partial\left(\rho_{1} u_{g}^{2}+\phi p_{g}\right)}{\partial x}+\frac{\partial\left(\rho_{1} u_{q} v_{q}\right)}{\partial y}=-F_{x}+\Gamma u_{p} \tag{3}
\end{equation*}
\]

Conservation of momentum of gaseous phase in y direction
\[
\begin{equation*}
\frac{\partial\left(\rho_{1} v_{g}\right)}{\partial t}+\frac{\partial\left(\rho_{1} u_{q} v_{g}\right)}{\partial x}+\frac{\partial\left(\rho_{1} v_{g}^{2}+\phi p_{g}\right)}{\partial y}=-F_{y}+\Gamma v_{p} \tag{4}
\end{equation*}
\]

Conservation of momentum of solid-particle phase in \(x\) direction
\[
\begin{equation*}
\frac{\partial\left(\rho_{2} u_{p}\right)}{\partial t}+\frac{\partial\left(\rho_{2} u_{p}^{2}\right)}{\partial x}+\frac{\partial\left(\rho_{2} v_{p} u_{p}\right)}{\partial y}=F_{x}-\Gamma u_{p} \tag{5}
\end{equation*}
\]

Conservation of momentum of solid-particle phase in y direction
\[
\begin{equation*}
\frac{\partial\left(\rho_{2} v_{p}\right)}{\partial t}+\frac{\partial\left(\rho_{2} u_{p} v_{p}\right)}{\partial x}+\frac{\partial\left(\rho_{2} v_{p}^{2}\right)}{\partial y}=F_{y}-\Gamma v_{p} \tag{6}
\end{equation*}
\]

Conservation of energy of gas phase
\[
\begin{align*}
& \frac{\partial\left(\rho_{1} E_{g T}\right)}{\partial t}+\frac{\partial\left(\rho_{1} u_{g} E_{g T}+u_{g} \phi p_{q}\right)}{\partial x}+\frac{\partial\left(\rho_{1} v_{g} E_{g} T+v_{q} \phi p_{q}\right)}{\partial y}= \\
& \Gamma\left(\frac{u_{p}^{2}+v_{p}^{2}}{2}+E c h e m+C_{s} T_{p}\right)-\left(F_{x} u_{p}+F_{y} v_{p}\right)-\dot{Q} \tag{7}
\end{align*}
\]

Conservation of energy of solid-particle phass
\[
\begin{gather*}
\frac{\partial\left(\rho_{2} E_{p} T\right)}{\partial t}+\frac{\partial\left(\rho_{2} E_{p} T u_{p}\right)}{\partial x}+\frac{\partial}{\partial y}\left(\rho_{2} E_{p} v_{p}\right)=\dot{Q}+\left(F_{x} v_{p}+F_{y} v_{p}\right) \\
-\Gamma\left(\frac{u_{p}^{2}+v_{p}^{2}}{2}+E c h e m+C_{s} T_{p}\right) \tag{8}
\end{gather*}
\]

Conservation of number density of solid-particle
\[
\begin{equation*}
\frac{\partial N_{p}}{\partial t}+\frac{\partial\left(N_{p} u_{p}\right)}{\partial x}+\frac{\partial\left(N_{p} v_{p}\right)}{\partial y}=0 \tag{0}
\end{equation*}
\]

In the above equations, we have the following definitions and constitutive laws:
Phase densities
\[
\begin{equation*}
\rho_{1}=\phi \rho_{g}, \quad \rho_{2}=(1-\phi) \rho_{p} \tag{10a}
\end{equation*}
\]
and fractional porosity
\[
\begin{equation*}
\phi=1-\frac{N_{p} M_{p}}{\rho_{p}}=\frac{\text { Volume of void }}{\text { total volume }} \tag{10b}
\end{equation*}
\]
where \(M_{p}\) is the mass of each particle and \(\rho_{p}\) is the solidparticle density.
Total internal energy of gaseous phase
\[
\begin{equation*}
E_{g} T=E_{g}+\frac{1}{2}\left(u_{g}^{2}+v_{g}^{2}\right) \quad \text { and } \quad E_{g}=E_{g}\left(p_{g}, \rho_{g}\right) \tag{11}
\end{equation*}
\]
where \(E_{g}\left(p_{g}, \rho_{g}\right)\) is the equation-of-state for gas phase, which will be discussed later.
Total internal energy of solid-particle phase
\[
\begin{equation*}
E_{p T}=E_{p}+\frac{1}{2}\left(v_{p}^{2}+v_{p}^{2}\right) \quad \text { and } \quad E_{p}=E \text { chem }+C, T_{p} \tag{12}
\end{equation*}
\]

In order to close the above system of conservation equations, it is necessary to define certain criteria and interaction laws between the two phases, which include mass generation rate, \(\Gamma\), drag force between particles and gas, \(F_{x}, F_{y}\), and the interphase heat transfer rate \(\dot{Q}\). The model for particle and gas interaction and particle combustion that results in the constitutive relation for the conservation equations is explained in detail in the next subsection.
Model for a Particle Gas Interaction and Combustion
Presently, the physics of the energy release mechanisms in solid-particles/air mixtures is not clearly understood. This can be attributed to the obvious difficulties of making a direct nonobtrusive measurement in the optically thick environment typical for this system. In the experimental and theoretical work done for the grain dust detonation conditions, \({ }^{7}\) it was demonstrated that the volatile components released by the particle heated behind the shock front play a major role in determining the detonability limits of the mixture. Eidelman and Burcat \({ }^{8}\) successfully applied a combination of fast evaporation and aerodynamic shattering mechanisms to simulate a two-phase detonation process.

The chemical processes of a single particle combustion, which mainly occur in the gaseous phase, are significantly faster than the physical processes of particle gasification or disintegration. Thus, in the multiphase mixtures, the rate of energy release will be mostly determined by physics of particle disintegration. It is very difficuit to describe the details of particle disintegration in the complex environment prevalent behind the shock or detonation wave. For example, Reinecke and Waldman \({ }^{9}\) defined five different disintegration regimes for a relativeiy simple environment of water droplets passing through a weak shock. Fortunately, in most cases of multiphase detonation, only the main features of the particle disintegration dynamics need to be captured to describe the phenomena. For example, Eidelman and Burcat \({ }^{10}\) used simple models for particle evaporation and shattering to obtain simulation results that compared very favorably with experimental data. Because of
our inability to resolve the particle disintegration problem in all its complexity, the validation of the model against known experimental data is essential.

In this paper, we consider solid particles consisting of explosive material. Explosive material contains fuel and oxidizer in a passive state at low temperature; however, when the temperature rises the fuel and oxidizer react, leading to detonation or combustion. The intiation of reaction for explosives occurs at relatively low temperature. For example, TNT will detonate when heated to the temperature \({ }^{11}\) of \(570^{\circ} \mathrm{C}\). Only particles larger than a critical detonation size can detonate directly when initiated by a shock wave. Here, consider particles smaller than 4 mm in diameter that will not detonate when heated, but will burn when the temperature on the particle surface reaches a critical value. Since the heat conduction inside the explosive material is relatively slow, the process of particle heating needs to be resolved in detail. Our simulations numerically solve the temperature field in the particles at every step of numerical integration of the global conservation equations. The explosive particle combustion model examined in this paper assumes that the fraction of the particle that reaches the critical temperature will burn instantaneously.

Energy transfer by convection and conduction is simulated by solving the unsteady heat conduction equation in each computational cell at each time step. Assuming a particle's temperature to be a function of time and radial position only, the unsteady heat conduction equation may be transformed to:
\[
\begin{equation*}
\frac{d^{2} w}{d r^{2}}=\frac{1}{\alpha} \frac{d w}{d t} \tag{13}
\end{equation*}
\]
subject to the boundary conditions:
\[
\begin{gather*}
w=0 \quad \text { at } \quad r=0, \quad t>0 \\
k \frac{d w}{d r}+\left(h-\frac{1}{R}\right) w=h R T_{g} \quad \text { at } \quad r=R, t>0 \tag{14}
\end{gather*}
\]
where
\(w(r, t)=r T(r, t)\)
\(r=\) radial position
\(T(r, t)=\) temperature
\(R=\) particle radius
\(T_{g}=\) temperature of surrounding gas
\(k=\) thermal conductivity of particle
\(h=\) convective heat transfer coefficient

The Nusselt number, used to find \(h\), is given by an empirical relation given by Drake. \({ }^{12}\) The gas viscosity is derived from Sutheriand's Law. The gas thermal conductivity is calculated by assuming a constant Prandtl number. Finally, the boiling temperature at a given pressure is derived from the Clapeyron-Clausius equation under the following assumptions: 1) phrasing-constant latent enthalpy of phase-change; 2) the vapor obeys the ideal equation-of-state; and 3) the specific volume of the solid/liquid is negligible compared to that of the vapor. A critical temperature is also employed to serve as an upper limit to the boiling point, regardless of pressure.

Equation 13 with boundary condition 14 can be numerically integrated using either implicit or explicit schemes.

Since the particle radius \(R\) becomes very small due to evaporation, the implicit Cranix-Nicolson algorithm is used because of its stability properties and its second order temporal and spatial accuracy. Using the Crank-Nicolson scheme to predict the particle temperature profiles at times \(t_{1}\) and \(t_{2}\) permits easy calculation of the total energy exchange \(\dot{Q}\) between \(t_{1}\) and \(t_{2}\), due to convection and conduction.

Knowledge of the particle temperature profile also allows the precise determination of the quantity of the mass to transfer from the particle to the gas \(\Gamma\). Once any point at a radial location \(0 \leq r \leq R\) has a temperature exceeding the boiling temperature, the entire mass between \(r\) and \(R\) is transierred to the gas phase in one time step. In so doing, an energy equal to the product of the mass lost and the particle intrinsic energy is transferred by the particle to the gas.

The interphase drag force \(F x, F y\) is determined from the experimental drag for a sphere, as presented by Schlichting. \({ }^{13}\)
\[
\begin{equation*}
F_{x}=\left(\frac{\pi}{8}\right) N_{p} \rho_{g} C_{D}\left|V_{g}-V_{p}\right|\left(u_{g}-u_{p}\right) R^{2} \tag{15}
\end{equation*}
\]
where
\[
C_{D}= \begin{cases}\frac{24}{\operatorname{Re}\left(1+\frac{R e^{2 / 3}}{6}\right)} & \text { for } \operatorname{Re}<1000  \tag{16}\\ 0.44 & \text { for } \operatorname{Re}>1000\end{cases}
\]
and \(R e=\frac{2 R\left|V-V_{2}\right|}{\mu_{g}}, R\) is radius of particle, and \(\mu_{g}\) is gas viscosity at temperature of \(T_{f i l m}=\frac{1}{2}\left(T_{g}+T_{P}\right)\). Similarly, the formulae for \(F y\) is
\[
\begin{equation*}
F y=\frac{\pi}{8} N_{p} \rho_{g} C_{D}\left|V_{g}-V_{p}\right|\left(v_{g}-v_{p}\right) R^{2} \tag{17}
\end{equation*}
\]

\section*{Equation-of-State for Detonation Products}

To close the system of governing equations, one needs a constitutive relation between pressure, temperature, and energy for gas phase, which is an equation-of-state. This study uses the Becker-Kistiakowsky-Wilson (BKW) equation-ofstate, \({ }^{14,15}\) that is,
\[
\begin{equation*}
p_{g} V_{g} / \bar{R} T_{g}=1+x e^{b_{x}} \tag{18}
\end{equation*}
\]
where
\(V_{g}=\) volume of gas phase
\(p_{g}=\) pressure of gas phase
\(T_{g}=\) temperature of gas phase
\(\tilde{R}=\) universal gas constant
\(x=k / V_{g}(T+\Theta)^{a}\)
\(k=K^{-} \Sigma_{j} X_{i} k_{i}\)
with empirical constants \(a, b, K, \Theta\), and \(k_{i}\). The constants \(k_{i}\), one for each molecular species, are covolumes. The covolumes are multiplied by their moie fraction of species \(X_{i}\) and are added to find an effective volume for a mixture. For a particular explosive, if we know the composition of detonation products, \(a, b, \Theta, K\), and all \(k_{i} s\) can be found in Ref. 15.

The internal energy is determined by thermodynamics relation
\[
\begin{equation*}
\left(\frac{\partial E_{g}}{\partial V_{g}}\right)_{T}=T_{g}\left(\frac{\partial p_{g}}{\partial T_{g}}\right)_{V}-p_{g} \tag{19}
\end{equation*}
\]

Integration of this equation for a fixed composition of the detonation produnts will allow us to calculate the energy of the detonation products as a function of temperature and volume. For each component, its thermodynamic properties as functions of temperature were calculated from the NASA tables compiled by Gordon and McBride. \({ }^{16}\)

The BKW equation-of-state is the most commonly used and well-calibrated of those equations-of-state used to calculate the properties of detonation products. The detailed discussion and review of the BKW equation-of-state can be found in Ref. 15.

\section*{Numerical Method of Solutions}

The system of partial differential equations described in the previous paragraph is integrated numerically. The Second Order Godunov method is used for the integration of the subsystem of equations describing flow of gaseous phase materiai and is described in Ref. 17. In the following, we will elaborate only on some specifics of its application to simulations of detonation products. The subsystem of equations describing the flow of particles is integrated using a simple upwind integration. This is done because our mathematical model neglects the pressure of interparticle interaction, and that prevents formulation of a Second Order Godunov scheme for particles.

The physical system under study will have concentrations of solid explosive powder ranging from \(1000 \mathrm{~kg} / \mathrm{m}^{3}\) near the
ground to \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\) or less in the cloud. Detonation of this mixture will create detonation products with effective \(\gamma\) ranging from 3 to 1.1. To describe the flow of detonation products, we use the BKW equation-of-state described above. Since the Second Order Godunov method uses primitive variables to calculate Riemann problems at the edges of the cells, its implementation for non-ideal EOS is difficuit. In our simulations, we have resolved this problem by using direct and inverse equations-of-state. After integrating a system of gas conservation laws. we use the direct BKW equation-of-state to calculate pressure, gamma. and temperature as functions of thermal energy, density, and mixture composition. After this step, we have a complete set of parameters allowing calculation of the fluxes in the Second Order Godunov method as well as interaction of the multiphase processes. The "inverse" EOS calculates internal energy as a function of density, pressure, and mixture composition. In our code, we use the "inverse" EOS to calculate the fluxes of conserved variables after calculation of the flux of primitive variables.

For the multiphase system under study, \(\mathrm{dx}=\mathrm{dy}=1 \mathrm{~mm}\) was used to allow explicit integration of the gasdynamic and physical processes of evaporation and heat release. When a mismatch occurred between the physical and gasdynamical characteristic times, the time step was adjusted by some fraction to assure stability. However, this did not result in a significantly smaller time step than the one calculated using CFL criteria. For larger cell sizes, this approach will be impractical. Recently, we implemented a sckeme in which multiphase processes are calculated implicitly; however, this will be reported elsewhere.

The numerical method is implemented in a code named MPHASE, which is fully vectorized and supported by number of graphics and diagnostics codes.

\section*{Results}

\section*{Model Validation for One-Dimensional Detonation Wave Problem}

The main advantage of our particle combustion model is its description of the phenomenology of detonation for a wide

Table 1 One-dimensional validation result







range of explosive particle sizes and densities. We will demonstrate this capability on a set of one-dimensional test problems. For these test problems, we simulated the initiation and propagation of the detonation waves in a shock tube-like setting, where the explosive particles are distributed uniformiy through the shock tube volume.

Results of these simulations are summarized in Table 1, which shows detonation wave velocity, peak pressure, and peak density given as a function of the average density of the solid explosive. Here, the explosive two-phase mixture is composed from RDX particle and air, where RDX particle concentration varies from \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\) to \(1000 \mathrm{~kg} / \mathrm{m}^{3}\). This concentration variation covers a whole range of solid explosive concentrations of interest to our problem. The simulations performed with the MPHASE code were compared with the experimental results \({ }^{15,18}\) and calculations done with the TIGER code that are presented in Ref. 19.

From Table 1, it is clear that our simulation results compare favorably with other simulation results and experimental data. The maximum deviation between our results and referenced results is no greater than \(15 \%\) for the entire range of explosives densities. Considering that our results were obtained with a single model for particle combustion applied to the extreme range of densities, our model gives an excellent prediction of the detonation wave parameters.

\section*{Two-Dimensional Simulation Results}

Figure 1 shows a setup for a typical simulation with a computational domain of \(25 \mathrm{~cm} \times 25 \mathrm{~cm}\). The explosive powder density is distributed according to the 4th power law of vertical distance, starting from the ground where the density is \(1000 \mathrm{~kg} / \mathrm{m}^{3}\), to 1.2 cm , where the density is \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\). From this point to 25 cm height, the density is constant and equal to \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\). The density distribution in the direction of the " \(x\) " axis is uniform. The boundary conditions for the computational domain shown in Fig. 1 are specified as follows: solid wall along the " \(x\) " axis, symmetry conditions along the "y" axis, supersonic outflow for upper boundary, and at the


Fig. 1 Computational domain and boundary conditions.
right of the computational domain. The mixture consists of RDX powder and air at ambient conditions, and it is assumed to be quiescent at the time of initiation.

The simulation starts at \(t=0\) when the mixture is initiated at the lower left corner of the computational domain, as shown in Fig. 1. The energy released by the initiating explosion leads to formation of the detonation wave propagating through the multiphase media. Figure 2a shows pressure contours for the propagating detonation wave at the time of \(t=0.012 \mathrm{msec}\) after initiation. The pressure contour levels are shown on the logarithmic scale in MPa . The maximum pressure value of 7940 MPa is observed in the layer of condensed explosive located near the ground. The pressure in the layer is two to three orders of magnitude higher than pressure behind the detonation wave in the \(0.75 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{RDX}\) cloud and air located above the distance of 1.2 cm from the ground. Figure 2a demonstrates that the detonation wave in the cloud is overdriven, since the pressure behind the shock continuousiy rises and reaches its maximum in the layer. From this figure, we also observe that the overdriven wave propagates faster in the cloud than in the layer. This is explained by the fact that it is easier to compress air that is very lightly loaded with particles and located above the ground layer than it is to compress air heavily loaded with a particle mixture near the ground. It is interesting to note a discontinuous pressure change between the yellow contours and the light blue and green contours behind the detonation front. This discontinuity is overemphasized by our presentation of contour lines on the logarithmic scale; however, further examination of our simulation results indicates this feature is real and is similar in nature to barrel shocks observed for strong jets.

In Fig. 2b, gas-phase density contours are shown for the time \(t=0.012 \mathrm{msec}\). Here the contour lines are distributed on the logarithmic scale. The main features of the shock wave structure are very similar to those observed in the pressure contours figure. We see that a jet of high-density gases reflects from the center of symmetry axis. which will create a contact discortinuity that we will observe at later times. The barrel
shock is clearly visible in this figure. In Fig. 2c, the particle density contour plots are shown for \(t=0.012 \mathrm{msec}\). The contour levels in Fig. 2c are given on the logarithmic scale and the initial deposition of the explosive material in the ground layer of the computational domain can be clearly observed. The white contour line delineates the beginning and the end of the reaction zone in the cloud. To the left of these contours lies an area with combustion products and to the I ight are unburned particles in the cloud. The reaction zone length is of the order of 1 cm .

Figure 2d shows pressure contours for the same simulation for the time \(t=0.055 \mathrm{msec}\), just before the detonation wave leaves the computational domain. In this figure, we see that the global structure of the wave did change slightly from Fig. 2a. We observe that the barrel shock wave is fully developed and has a half-ellipse shape. The detonation wave in the cloud is still overdriven; however, part of the shock wave front that propagates vertically weakened because it gets further away from the detonation front in the layer. Another noticeable feature is the increase in distance between the detonation front in the layer and in the cloud area close to the layer. This is a result of the fact that the lightly loaded two-phase media above the layer can be compressed much more easily than the particle-heavy ground layer. In Fig. 2e, temperature contours are shown for \(t=0.055 \mathrm{msec}\). Comparing this figure with an early stage of the wave propagation, we observe a significant cooling of the front area propagating upwards, which indicates transition from the overdriven detonation regime to a self-sustained detonation. We also observe in Fig. 2a clear development of two detonation fronts, one moving vertically in the cloud and another moving horizontally in the layer. Because the energy density of the explosive powder in the layer is about three orders of magnitude larger than in the cloud, the vertical parts of the front represent an overdriven detonation wave in the cloud. Even though the vertical front has slowed down compared with the horizontal front, its speed and parameters far exceed those typical for detonation waves in a cloud. In fact, the self-sustained detonation regime in the cloud will


Fig. 2 Fourth power fayer distribution; maximum density in the layer 800 \(\mathrm{kg} / \mathrm{m}^{3}\); density in the cloud \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\); time \(0.012 \mathrm{ma} / \mathrm{s}\) and \(0.055 \mathrm{~m} / \mathrm{s}\) after Initiation.


Fig. 2 (continued) Fourth power layer distribution: maximum density in the layer \(800 \mathrm{~kg} / \mathrm{m}^{3}\); density In the cloud \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\); time \(0.012 \mathrm{~m} / \mathrm{s}\) and \(0.055 \mathrm{~m} / \mathrm{s}\) after initiation.
develop at the distance of about 3 m from the layer. The area of the front close to the detonation wave in the layer will remain hot and overdriven, since it is located very close to the detonation front in the layer. In Fig. 2f, particle density contours are shown on a logarithmic scale. We can clearly observe the reaction zone delineated by black contour lines. In this case, the reaction zone length in the cloud is about 1 cm . Consistent with the gradual transition from overdriven to self-sustained detonation, the reaction zone length is larger for the vertical part of the detonation front. The detonation wave velocity observed in our simulation is approximately 4048 msec. which is significantly lower than the detonation wave velocity observed in RDX with a density of \(860 \mathrm{~kg} / \mathrm{m}^{3}\) (see Table 1), the highest density in the ground layer. This can be explained by high gradient of particle density distribution in the layer, where the density drops rapidly from \(860 \mathrm{~kg} / \mathrm{m}^{3}\) at the bottom of the layer to \(1 \mathrm{~kg} / \mathrm{m}^{3}\) at the top strata of the layer at 12 mm above the ground.

To further explore properties and phenomenology of the detonation waves propagating in the layer/cloud systems, we simulated additional cases in which explosive powder density distribution was different from the case reported above, although total weight of fuel per unit area remained the same.

In Fig. 3, results are shown for the case of a uniform 2.5 cm-thick layer of RDX with a density of \(100 \mathrm{~kg} / \mathrm{m}^{3}\) and a 0.75 \(\mathrm{kg} / \mathrm{m}^{3}\) cloud initiated under the same conditions as in the previous example. Figures \(3 \mathrm{a}, 3 \mathrm{~b}\), and 3 c show pressure, gas density, and particle density contour plots at \(t=0.066 \mathrm{msec}\). We observe that because the layer has considerably smaller density compared to the case reported above, the precursor effect of the detonation wave in the cloud preceding the wave in the layer is less pronounced. Also, one can observe a significant difference in the shape of the strong contact discontinuity in the region of the shock front close to the layer. In Fig. 3b. we can clearly distinguish two contact surfaces. One is between condensed explosive detonation products in the layer and in the cloud. and another is between the detonation products from

b) Gis Densit:


Fig. 3 Constant density \(\mathbf{2 . 5 - c m - t h i c k}\) layer: maximum density in the layer 100 \(\mathrm{kg} / \mathrm{m}^{3}\); density in the cloud \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\); time \(0.055 \mathrm{~m} / \mathrm{s}\) after initiation.


Fig. 4 Constant density 1.2 -cm-thick layer; maximum density in the layer 250 \(\mathrm{kg} / \mathrm{m}^{3}\); density in the cloud \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\).
layer explosive detonation and from cloud particle detonation. We should note that these contact surfaces are overemphasized by the logarithmic display of the contour plot levels. The maximum pressure observed in this simulation is 955 MPa , which is about one order of magnitude smaller than in previous simulation. This is consistent with the one order of magnitude difference in the maximum density of the ground layer in the two cases. The detonation wave speed in the case presented in Fig. 3 is 3407 msec . That is only slightly lower than the speed predicted by one-dimensional simulations presented in Table 1, which reflects the influence of the two-dimensional expansion on the detonation wave propagation.

Figure 4 presents results for the case of a uniform density of \(250 \mathrm{~kg} / \mathrm{m}^{3}\) in 1.2 cm ground layer. All other parameters are the same as in the previous two cases. In Figs. 4a, 4b, and 4 c , pressure, gas density, and particle density contour plots are shown at the time \(t=0.066\) msec after initiation of the detonation wave. Here, the detonation wave propagates faster than in the previous cases \(U=3660 \mathrm{msec}\). This is about 400 msec slower than in the case of parabolic density distribution. Maximum pressure on the ground is 2150 MPa , which is consistent with the increase of powder density in the layer. The basic structure of the detonation front and the contact surfaces is similar to the case of parabolic density distribution.

\section*{Conclusions}

We have presented a mathematical model and numerical solution for the simulation of initiation and propagation of the detonation waves in multiphase mixtures consisting of solid combustible particles and gas. Using this model, we studied detonations in mixtures of solid RDX particles and air, with the objective of examining the effects of wide variation in particle density distribution on the dynamics and structure of detonation waves. We considered a physical system of solid particle clouds in air, in which a significant amount of particles settle on the ground and the condensed-phase concentrations in the particle/air mixture range from 0 to \(1000 \mathrm{~kg} / \mathrm{m}^{3}\). This range of solid-phase densities necessitated development of the
model and its numerical implementation for a wide range of particle concentrations. Our validation study has shown good agreement between the simulations and referenced results for the whole range of particle concentrations.

Two-dimensional simulations were done for the system of low particle density concentration clouds and ground layers formed by high concentrations of the RDX powder. We examined three cases of ground layer density distribution: a fourth power distribution within 12 mm above ground with a maximum density on the ground of \(860 \mathrm{~kg} / \mathrm{m}^{3}\); a uniform 25 mm thick layer with a density of \(100 \mathrm{~kg} / \mathrm{m}^{3}\); and a 12 mm -thick uniform layer with a density of \(250 \mathrm{~kg} / \mathrm{m}^{3}\). In all these cases, the weight of condensed phase per unit area was the same, which allowed examination of the effects of the particle density distribution on detonation wave parameters.

In all examined two-dimensional cases, the detonation wave in the cloud in the computational domain was significantly overdriven and did not play an important role. We estimated that the self-sustained regime of the detonation wave in the cloud for the examined cloud concentrations can occur only at the distances of \(2-3 \mathrm{~m}\) above ground. At the same time, the particle density distribution in the layer determines the dynamics of the detonation wave as well as pressure on the ground.

In all three two-dimensional simulations, we observed a very distinct shape of the detonation wave front in the vicinity of the layer. In this area, the overdriven detonation in the cloud is preceding the detonation wave in the ground layer. This feature of the detonation iront can be explained by the fact that the energy released in the detonation wave in the ground layer produces a faster shock wave in the dilute cloud than in those heavily loaded with solid particle stratas from the ground layer. However, these structures were not observed experimentally, and more studies are needed to examine their parameters.

The maximum pressure affecting the ground was directly related to the maximum particle density in the lower strata of the layer. However, the detonation front velocity for the fourth
power distribution case was considerably lower than calculated for a one-dimensional case with \(860 \mathrm{~kg} / \mathrm{m}^{3}\) particle density, reflecting the significant effect of two-dimensional expansion. Two other cases with \(250 \mathrm{~kg} / \mathrm{m}^{3}\) and \(100 \mathrm{~kg} / \mathrm{m}^{3}\) maximum densities had the detonation wave velocity only slightly lower than the one-dimensional simulations of the same RDX/air concentrations. It is interesting to compare the simulation of the fourth power density distribution case and \(250 \mathrm{~kg} / \mathrm{m}^{3}\) case. In both cases, the same amount of explosive was distributed in the same physical space; however, the parameters of developed detonations were vastly different. Existence of the highdensity strata at the bottom of the ground layer in the fourth power case significantly increased the maximum pressure at the ground and produced higher detonation wave velocity.

Using a variable density layer, one can reach a combination of pressure and velocity conditions outside of ChapmenJougett limitations. The range of conditions that can be obtained in the variable density system and the parametrics for this range need a more systematic study. In this article, we introduced only the mathematical formulation and numerical simulation method validated for the range of conditions of interest. In addition, we have given some examples of its application for two-dimensional simulations. However, this methodology should be linked to an experimental study for a more in-depth analysis of the phenomenology discussed here.

References
\({ }^{1}\) Eideiman, S., Timnat, Y. M., and Burcat, A., "The Problem of a Strong Point Explosion in a Combustible Medium," 6th Symposium on Detonation, Office of Na;al Research, Coronado, CA, 1976, p. 590.
\({ }^{2}\) Burcat, A., Eldelman, S., and Manheimer-Timnat, Y., "The Evolution of a Shock Wave Generated by a Point Explosion in a Combustible Medium," Symposium of High Dynamic Pressures (H.D.P.), Paris, 1978, p. 347.
\({ }^{3}\) Oved, Y., Eidelman. S., and Burcat, A., "The Propagation of Blasts from Solid Explosives to Two-Phase Medium," Propellants and Explosives, Vol. 3, No. 105, 1978.
\({ }^{4}\) Eidelman, S., and Burcat, A., "The Evolution of a Detonation Nove in a Chun of Fiel Droplets; Part I, Influence of the Igniting Explosion," AIAA Journal, Vol. 18, 1980, p. 1103.
\({ }^{5}\) Liu. J. C., Kauffman. C. W., and Sichel, M., "The Lateral Interaction of Detonating and Detonable Mixtures," Private communication. 1990.
\({ }^{6}\) Kuo. K., Principles of Combustion, John Wiley and Sons. Inc.. New York, NY, 1990, pp. 513-626.
\({ }^{7}\) Kauffman, C. W., et al.. "Shock Wave Initiated Combustion of Grain Dust." Symposium on Grain Dust, Manhattan. KS, 1979.
\({ }^{8}\) Eidelman. S., and Bur: at, A., "Numerical Solution of a Non-Steady Blast Wave Propagation in Two-Phase ('Separated Flow') Reactive Medium," Journal of Computational Physics. Vol. 39, 1981, p. 456.
\({ }^{9}\) Reinecke. W. G., and Waldman. G. D., "Shock Layer Shattering of Cloud Drops in Reentry Flight," AIAA Paper 75-152, 1975.
\({ }^{10}\) Eidelman. S., and Burcat. A.. "The Mechanism of Detonation Wave Enhancement in a Two-Phase Combustible Medium." 18th Symposium on Combustion, The Combustion Institute, Waterioo. Ontario. Canada, 1980, pp. 1661-1670.
\({ }^{13}\) Engineering Design Handbook, Explosives Series, Properties of Explosives of Military Interest, AMC Pamphiet. AMCP 706-7177, 1971.
\({ }^{12}\) Drake, R. M., Jr., "Discussions on G. C. Vliet and G. Leppert: Forced Convection Heat Transfer from an Isothermal Sphere to Water." Journal of Heat Transfer, Vol. 83, 1961, p. 170.
\({ }^{13}\) Schlichting, H., Boundary Layer Theory 7th ed., McGraw-Hill, New York, 1983.
\({ }^{14}\) Cowan, R. D., and Fickett, W., "Calculation of the Detonation Products of Solid Explosives with the Kistiakowsky-Wilson Equation of State," Journal of Chemical Physics, Vol. 24, 1956. p. 932.
\({ }^{15}\) Mader, C. L., Numerical Modeling of Detonation, University of California Press, Ltd. London, England, 1979.
\({ }^{16}\) Gordon, S., and McBride, B. J., "Computer Program for Calculations of Compiex Chemical Equilibrium Compositions, Rocket Performance, Incident and Refiected Shocks and C-J Detonations," NASA SP-273, 1976 (revision).
\({ }^{17}\) Eidetman, S., Collela, P., and Shreeve, R. P., "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modelling," AIAA Journal, Vol. 22, 1984, p. 10.
\({ }^{18}\) Stanukovitch, K. P.; Physics of Explosion (in Russian), Nauka. 1975.
\({ }^{19}\) Wiedermann. A., "An Evaluation of Bimodal Layer Loading Effects," IITRI Report. February 1990.

\title{
Detonation Wave Propagation in Combustible Particle/Air Mixture with Variable Particle Density Distributions
}

\author{
SHMUEL EIDELMAN and XIAOLONG YANG \\ Corporation McLean, VA 22102
}

Science Applications international
(Received June 11. 1991; in final form June 18 1992)

\begin{abstract}
A mathematical model is presented describing a physical system of detonation waves propagating in a solid particie/air mixture with a wide range of solid phase concentrations. The mathematical model was solved numerically using the Second Order Godunov method, and numerical solutions were validated for detonation waves propagating in mixtures with concentrations of solid phase from \(0.75 \mathrm{~kg} / \mathrm{m}^{3} 101000\) \(\mathrm{kg} / \mathrm{m}^{3}\). Numerical solution was obtained for detonation waves propagating in a system consisting of clouds with a smatl concentration of particles and a ground layer in which solid particle densities are three orders of magnitude larger than in the cloud. Three different particle concentration distributions in the ground laver were simutated and compared in terms of detonation wave structure and parameters.
\end{abstract}

Ky words detonation wave, two-phase flow, numerical simulation

\section*{1. INTRODUCTION}

When combustible particles are intentionally or unintentionally dispersed into the air, the resulting mixture can be detonable. Formation of this potentially explosive dust environment and the properties of its detonation are of significant practical interest in view of its destructive or creative effects. The experimental and theoretical study of these phenomena until now has addressed only homogenous particle/oxidizer mixtures. However, intentional or accidental processes of the explosive dust dispersion will always lead to inhomogeneous particie density distribution. Some industrial methods of explosive forming rely on detonation of explosive powder. This powder can be deposited as a thin layer over the surface area of the forming metal, with some remaining concentration in the vicinity of the layer. The structure of the detonation waves and the phenomenology of their initiation and propagation in these environments are the main subjects of this paper.
When the detonation wave is generated in a homogeneous mixture by a "direct initiation," it starts with a strong blast wave from the initiating charge. As the blast wave decays, combustion of the reactive mixture behind its shock front starts to have a larger role in support of the shock wave motion. When the initial explosion energy exceeds some critical value, transition to steady state detonation occurs (cf. Eidelman et al., 1976; Burcat et al., 1978; Oved et al., 1978; Eidelman and Burcat, 1980). In explosive dust mixtures with a nonuniform distribution of particle density, the initiation dynamics is significantly more complicated. The critical initiation energy sufficient for one of the explosive particle density strata regions is not necessarily adequate for other regions. Also, when there is a significant variation in density between the different layers (regions) of the mixture, steady detonation in one layer can result in an overdriven detonation in an adjacent layer. Our paper demonstrates that the phenomenology of these interactions is distinctly different from the classical studies of multi-layer detonations in gases. This is primarily because the energy content of adjacent layers in a typical multi-gas layer experiment varies by a factor of two or four (Liu et al., 1990), whereas the energy content in explosive dust/air mixtures can vary by several orders of magnitude.

In this paper we use detailed numerical simulation to study the initiation dynamics and propagation phenomenology for a general case of explosive dust dispersion. We will consider particle density variation from \(1000 \mathrm{~kg} / \mathrm{m}^{3}\) in the ground layer to \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\) for the upper edges of the cioud. The effects of the cloud density variation on detonation wave parameters will be examined for different cases of cloud particle density distribution. When possible, the results of computer simulations are validated in comparison with experimental and theoretical studies.

The outline of this paper is as follows. Section 2 gives a description of mathematical model that includes governing conservation equations for two phases and the constitutive laws. We describe the model for a particle gas interaction, combustion and equation-ofstate for gas phase. The numerical integration technique for solving the mathematical model will also be outlined. In Section 3, we present our numerical simulation results. We first validate our model by comparing one dimensional detonation wave simulation with available experimental results. We then give the two dimensional simulation for detonation wave propagation in combustible particles/air mixtures with variable particle density distribution. Concluding remarks are given in Section 4.

\section*{2. THE MATHEMATICAL MODEL AND THE NUMERICAL SOLUTION}

The mathematical model consists of conservation governing equations and constitutive laws that provide closure relations for the model. The basic formulation adopted here follows the two-phase fluid dynamics model presented in the text by Kuo (1990). The approach assumes that there are two distinct continua. one for gas and one for solid particles, each moving at its own velocity through its own control volume. The sum of these two volumes represents an average mixture volume. Furthermore. particles in their own control volume are assumed monodisperse and they are moving with the same velocity. With these assumptions. distinct equations for continuity, momentum and energy are written for each phase. The interaction effects between the two phases are accounted as the source terms on the right hand side of the governing equation. The following is a short description of the two phase flow model used in our study, with conservation equations written in Eulerian form for two dimensional flow in Cartesian coordinates.

\section*{Conservation Equations}

Continuity of gaseous phase:
\[
\begin{equation*}
\frac{\partial \rho_{1}}{\partial t}+\frac{\partial\left(\rho_{1} u_{g}\right)}{\partial x}+\frac{\partial\left(\rho_{1} \nu_{g}\right)}{\partial y}=\Gamma \tag{2.1}
\end{equation*}
\]

Continuity of solid particle phase:
\[
\begin{equation*}
\frac{\partial \rho_{2}}{\partial t}+\frac{\partial\left(\rho_{2} u_{p}\right)}{\partial x}+\frac{\partial\left(\rho_{2} v_{p}\right)}{\partial y}=-\Gamma ; \tag{2.2}
\end{equation*}
\]

Conservation of momentum of gaseous phase in \(\boldsymbol{x}\)-direction:
\[
\begin{equation*}
\frac{\partial\left(\rho_{1} u_{g}\right)}{\partial t}+\frac{\partial\left(\rho_{1} u_{g}^{2}+\phi p_{g}\right)}{\partial x}+\frac{\partial\left(\rho_{1} u_{g} v_{g}\right)}{\partial y}=-F_{r}+\Gamma u_{p}: \tag{2.3}
\end{equation*}
\]

Conservation of momentum of solid particle phase in \(\boldsymbol{y}\)-direction:
\[
\begin{equation*}
\frac{\partial\left(\rho_{1} v_{g}\right)}{\partial t}+\frac{\partial\left(\rho_{1} u_{\mathrm{g}} v_{g}\right)}{\partial x}+\frac{\partial\left(\rho_{1} v_{g}^{2}+\phi p_{g}\right)}{\partial y}=-F_{y}+\Gamma v_{p} \tag{2.4}
\end{equation*}
\]

Conservation or momentum of solid particle phase in \(x\)-direction:
\[
\begin{equation*}
\frac{\partial\left(\rho_{2} u_{p}\right)}{\partial t}+\frac{\partial\left(\rho_{2} u_{p}^{2}\right)}{\partial x}+\frac{\partial\left(\rho_{2} v_{p} u_{p}\right)}{\partial y}=F_{x}-\Gamma u_{p} \tag{2.5}
\end{equation*}
\]

Conservation of momentum of solid particle phase in \(y\)-direction:
\[
\begin{equation*}
\frac{\partial\left(\rho_{2} v_{p}\right)}{\partial t}+\frac{\partial\left(\rho_{2} u_{p} v_{p}\right)}{\partial x}+\frac{\partial\left(\rho_{2} v_{p}^{2}\right)}{\partial y}=F_{y}-\Gamma v_{p} \tag{2.6}
\end{equation*}
\]

Conservation of energy of gas phase:
\[
\begin{gather*}
\frac{\partial\left(\rho_{1} E_{g} T\right.}{\partial t}+\frac{\partial\left(\rho_{1} u_{g} E_{g} T+u_{g} \phi p_{g}\right)}{\partial x}+\frac{\partial\left(\rho_{1} v_{g} E_{g} T+v_{g} \phi p_{g}\right)}{\partial y}= \\
\Gamma\left(\frac{u_{p}^{2}+v_{p}^{2}}{2}+E_{c h e m}+C_{g} \bar{T}_{p}\right)-\left(F_{x} u_{p}+F_{y} v_{p}\right)=\dot{Q} \tag{2.7}
\end{gather*}
\]

Conservation of energy of solid particle phase:
\[
\begin{gather*}
\frac{\partial\left(\rho_{2} E_{\rho T} T\right)}{\partial t}+\frac{\partial\left(\rho_{2} E_{p} \tau u_{p}\right)}{\partial x}+\frac{\partial}{\partial y}\left(\rho_{2} E_{p t} v p=\dot{Q}+\left(F_{x} v_{p}+F_{y} v_{p}\right)\right. \\
-\Gamma\left(\frac{u_{p}^{2}+v_{p}^{2}}{2}+E_{c h e m}+C_{s} \dot{T}_{p}\right) \tag{2.8}
\end{gather*}
\]

Conservation of number density of solid particle:
\[
\begin{equation*}
\frac{\partial N_{p}}{\partial T}+\frac{\partial\left(N_{p} u_{p}\right)}{\partial x}+\frac{\partial\left(N_{p} v_{p}\right)}{\partial y}=0 . \tag{2.9}
\end{equation*}
\]

In the above equations. \(\phi=1-\frac{N_{p} M_{f}}{\rho_{p}}, \rho_{1}=\phi \rho_{g}, \rho_{2}=(1-\phi) \rho_{p}\), where \(N_{p}\) and \(M_{\rho}\) are the number density of particles and mass of each particle, respectively, and \(\rho_{g}\) and \(\rho_{p}\) are the material density of gas and particle densities, respectively. \(u_{g}, v_{g}, p_{g}\) are gas phase \(x\)-velocity, \(y\)-velocity and pressure, respectively; \(u_{p}, v_{p}, T_{p}\), are \(x\)-velocity, \(y\)-velocity and average particle temperature. respectively. \(C_{s}\) is the solid particle specific heat, and \(E_{\text {chem }}=E_{\text {comb }}-E_{\text {evap }}\), where \(E_{\text {comb }}\) is heat of combustion and \(E_{\text {erap }}\) is heat of evaporation. \(\Gamma\) is the rate of phase change from solid to gas and \(Q\) is heat transfer between the two phases: \(F_{x}, F_{y}\) are drag force between the two phases in \(x\) and \(y\) directions, respectively.

Equations (2.2) and (2.9) are linked through the relation \(\rho_{2}=N_{p} M_{p}\). In the case of a reactive solid phase, \(M_{p}\) decreases due to combustion. The mass of a single particle at any point can be obtained from \(M_{p}=\rho_{2}(x, y) / N_{p}(x, y)\), and the diameter of a particle at any spatial location is \(D(x, y)=\left[6 M_{p}(x, y) / \pi \rho_{p}\right] 1 / 3\). The total internal energy of gaseous phase
\[
\begin{equation*}
E_{\rho} T=E_{g}+\frac{l}{2}\left(u_{g}^{2}+v_{g}^{2}\right) \text { and } E_{g}=E_{\rho}\left(p_{g}, \rho_{g}\right) \tag{2.10}
\end{equation*}
\]
where \(E_{g}\left(p_{g}, p_{g}\right)\) is the equition-ot-state for gas phase, which will be discussed later. The total internal energy of solid particle phase is
\[
E_{p T}=E_{p}+\frac{1}{2}\left(u_{p}^{2}+v_{p}^{\prime}\right) \text { and } E_{p}=E_{c o m b}+C_{s} \bar{T}_{p}
\]

In order to close the above system of conservation equations, it is necessary to define certain criteria and interaction laws between the two phases, which include mass generation rate, \(\Gamma\). drag force between particles and gas, \(F_{x}, F_{y}\) and the interphase heat transfer rate \(\mathbf{Q}\). The model for particle and gas interaction and particle combustion that results in the constitutive relation for the conservation equations, is explained in detail in the next subsection.

\section*{Model for a Particle Gas Interaction and Combustion}

Presently the physics of the energy release mechanisms in solid particles/air mixtures is not cleariy understood. This can be attributed to the obvious difficulties of making a direct non-obtrusive measurement in the optically thick environment typical for this system. In the experimental and theoretical work done for the grain dust detonation conditions (Kauffman et al., (1979), it was demonstrated that the volatile components released by the particle heated behind the shock fiont play a major roie in determining the detonability limits of the mixture. Eidelman and Burcat (1981) successfully applied a combination of fast evaporation and aerodynamic shattering mechanisms to simulate a two-phase detonation process.

The chemical processes of a single particle combustion, which mainly occur in the gaseous phase, are significantly faster than the physical processes of particle gasification or disintegration. Thus, in the multi-phase mixtures, the rate of energy release will be mostly determined by physics of particle disintegration. It is very difficult to describe the details of particle disintegration in the complex environment prevalent behind the shock or detonation wave. For example, Reinecke and Waldman (1975) defined five different disintegration regimes for a relatively simple environment of water droplets passing through a weak shock. Fortunately, in most cases of multi-phase detonation, only the main features of the particle disintegration dynamics need to be captured to describe the phenomena. For example, Eidelman and Burcat (1980) used simple models for particle evaporation and shattering to obtain simulation results that compared very favorably with experimental data. Because of our inability to resolve the particle disintegration problem in all its complexity, the validation of the model against known experimental data is essential.

In this paper we consider solid particles consisting of explosive material. Explosive mate rial contains fuel and oxidizer in a passive state at low temperature: however, when the temperature rises the fuel and oxidizer react, leading to detonation or combustion. The initiation for explosives will occur at a relatively low temperature. For example, TNT will detonate when heated to the temperature of \(570^{\circ} \mathrm{C}\). Only particles larger than a critical detonation size can detonate directly when initiated by a shock wave. We consider here particles smaller than 4 mm in diameter that will not detonate when heated, but will burn when the temperature on the particle surface reaches a critical value. Since the heat conduction inside the explosive material is relatively slow, the process of particle heating needs to be resolved in detail. Our simulations numerically solve the temperature field in the particles at every time step of numerical integration of the global conservation equations. The explosive particle combustion model examined in this paper assumes that the fraction of the particle that reaches the critical temperature will burn instantaneously. Energy transfer by convection and conduction is simulated by solving the unsteady heat
conduction equation in each computational cell at each time step. Assuming a particle's temperature \(T_{p}\) to be a function of time and radial position only, the unsteady heat conduction equation may be transformed to:
\[
\begin{equation*}
\frac{d^{2} w}{d r^{2}}=\frac{1}{\alpha} \frac{d w}{d t} \tag{2.12}
\end{equation*}
\]
subject to the boundary conditions:
\[
\begin{gather*}
w=0 \text { at } r=0, t>0 \\
k \frac{d w}{d r}=\left(h-\frac{1}{R}\right) w=h R T_{g} \text { at } r=R, t>0 \tag{2.13}
\end{gather*}
\]
where:
\[
\begin{array}{ll}
\mathrm{w}(r, t) & =r T_{p}(r, t) \\
\mathrm{r} & =\text { radial position } \\
\mathrm{T}(\mathrm{r}, \mathrm{t}) & =\text { temperature } \\
\mathrm{R} & =\text { partial radius } \\
\mathrm{T}_{\mathrm{g}} & =\text { temperature of surrounding gas } \\
\mathbf{k} & =\text { thermal conductivity of particle } \\
\mathbf{h} & =\text { convective heat transfer coefficient. }
\end{array}
\]

The Nusseit number, used to find \(h\), is given by an empirical relation given by Drake (1961). The gas viscosity is found from Sutherland's Law. The gas thermal conductivity is calculated by assuming a constant Prandtl number. Lastly, the boiling temperature at a given pressure is found from the Clapeyron-Clausius equation under the assumptions of: 1) constant latent enthalpy of phase change, 2) the vapor obeys the ideal equation-of-state, and 3) the specific volume of the solid/liquid is negligible compared to that of the vapor. A critical temperature is also employed to serve as an upper limit to the boiling point, regardless of pressure.

Equation (2.12) with boundary condition (2.13) can be numerically integrated using either implicit or explicit schemes, which will be explained later.

Knowledge of the particle temperature profile also allows us to determine, \(\Gamma\), the rate of phase change from solid particle to gas. Once any point at a radial location \(0 \leq r \leq R\) has a temperature exceeding the boiling temperature, the entire mass between \(r\) and \(R\) is transferred to the gas phase in one time step. In so doing, an energy equal to the product of the mass lost and the particle combustion of heat minus heat of evaporation energy is transferred from the particle to the gas.

The interphase drag forces \((F x, F y)\) are determined from the experimental drag for a sphere. as presented by Schlichting (1983).
\[
\begin{equation*}
F_{x}=\left(\frac{\pi}{8}\right) N_{p} p_{g} C_{D}\left|\mathbf{V}_{g}-\mathbf{V}_{p}\right|\left(u_{g}-u_{p}\right) \mathbf{R}^{2} \tag{2.14}
\end{equation*}
\]
where
\[
C_{D}= \begin{cases}\frac{24}{R e}\left(1+\frac{R e^{2 / 3}}{6}\right) & \text { for } R e<1000  \tag{2.15}\\ 0.44 & \text { for } R e>1000\end{cases}
\]
and \(R e=\frac{2 R\left|V-V_{g}\right|}{\mu_{g}}, \mathrm{R}\) is the radius of the particle and \(\mu_{g}\) is gas viscosity at a temperature of \(T_{f / / m}=\frac{1}{2}\left(T_{g}+\bar{T}_{p}\right)\). Similarly, the formula for \(F_{y}\) is
\[
\begin{equation*}
F_{y}=\frac{\pi}{8} N_{p}{p_{g}} C_{D}\left|\mathbf{v}_{g}-v_{p}\right|\left(v_{g}-v_{p}\right) R^{2} \tag{2.16}
\end{equation*}
\]

\section*{Equation of State for Detonation Products}

To close the system of governing equations, one needs a constitutive relation berween density, pressure. temperature. and energy for gas phase, which is an equation-of-state. This studv uses the Becker-Kistiakowsky-Wilson (BKW) equation-of-state (cf. Cowan and Fickett, 1956; Mader. 1979), which is.
\[
\begin{equation*}
p_{g} V_{g} / \bar{R} T_{\mathrm{p}}=1+x e^{b x} \tag{2.17}
\end{equation*}
\]
where \(V_{g}=\) volume of gas phase
\(p_{g}=\) pressure of gas phase
\(T_{g}=\) temperature of gas phase
\(\bar{R}=\) universal gas constant
\(x=k / F_{g}(T+\theta)^{a}\)
\(k=K \sum_{1} X_{i} k_{i}\)
with empirical constants \(a, b, K, \Theta\) and \(k_{i}\). The \(\mathrm{cr}_{\mathrm{r}}\), stants \(k_{1}\), one for each molecular species. are co-volumes. The co-volumes are multiplied by their mole fraction of species. \(X_{1}\), and are added to find an effective volume for a mixture. For a particular explosive. if we know the composition of deconation products \(a, b, \Theta, K\), and all \(k\) 's can be found in the book by Mader (1979).

The internal energy is determined by thermodynamics relation
\[
\begin{equation*}
\left(\frac{\partial E_{q}}{\partial V_{g}}\right)_{T}=T_{g}\left(\frac{\partial p_{\mathrm{g}}}{\partial T_{g}}\right)_{V}-\rho_{g} \tag{2.18}
\end{equation*}
\]

Integration of this equation for a fixed composition of the detonation products will allow us to calculate the energy of the detonation products as a function of temperature and volume. The thermodynamic properties as functions of temperature were calculated for each component from the NASA tables compiled by Gordon and McBrice (1976).
The BKW equation-of-state is the most used and well calibrated of those equations-of-state used to calculate the properties of detonation products. The detatled discussion and review of the BKW equation-of-state can be found in the literature (cf. Cowan and Fickett. 1956: Mader. 1979).

\section*{Numerical Method of Solutions}

The system of partial differential equations described in the prevous paragraph is integrater nurnerically. Equations (2.1)-(2.9) can be written in the following vector form
\[
\begin{equation*}
\frac{\partial \Phi}{\partial t}-\frac{\partial F}{\partial x}+\frac{\partial G}{\partial \nu}=\Omega . \tag{2.19}
\end{equation*}
\]

In order to numerically solve this equation, an operator time-splitting technique is used. Assuming that all fow variables are known at a given time. we can calculate its advancement in time by splitting the integration into two stages.

In the first stage. the conservative part of Fq. 12.19 is soived:
\[
\begin{equation*}
\frac{\partial \Phi}{\partial t}+\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}=0 \tag{2.20}
\end{equation*}
\]

The Second Order Godunov method is used for the integration of the subsystem of equations describing the gaseous phase flow. The method is well documented in the literature (cf. Eidelman et al., 1984; Colella, 1985; Colella and Glaz. 1985). In the following we will elaborate only some specifics of application of the method with BKW equation-of-state to simulate detonation product.

The physical system under study will have concentrations of solid explosive particle ranging from \(1000 \mathrm{~kg} / \mathrm{m}^{3}\) near the ground to \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\) in the cloud. Detonation of this mixture will create detonation products with effective \(\gamma\) ranging from 3 to 1.1 . To describe the flow of detonation products, we use the BKW equation-of-state described previousiy. Since the Second Order Godunov method uses primitive variables to calculate Riemann problems at the edges of the cells, its implementation for non-ideal EOS is difficult. In our simulations, we have resolved this problem by involving a local parameterization of EOS and by using direct and inverse equations-of-state. After integrating a system of gas conservation laws, we use the direct BKW equation-of-state to calculate pressure, gamma, and temperature as functions of thermal energy, density, and mixture composition. After this step, we have a complete set of parameters allowing calculation of the fluxes obtained from solving the Riemann problem (Colella and Glaz 1985). The "inverse." EOS calculates internal energy as a function of density and pressure. In our code we use the "inverse" EOS to calculate the fluxes of conserved variables after calculation of the flux from Riemann problem of primitive variables.

The subsystem of equations describing the particle phase flow is integrated using a simple finite difference upwind scheme. This is done because there is no shock in the particle phase and the upwind scheme leads to a robust and accurate integration scheme.

In the second stage, the source term is added and the following equation is solved:
\[
\begin{equation*}
\frac{\partial \Phi}{\partial t}=\Omega \tag{2.21}
\end{equation*}
\]

To integrate this equation in time, we need to obtain \(\Omega\) as a function of \(\Phi\). To do this, we first solve the particie heat conduction and heat transfer equation (2.12) with a boundary condition (2.13) that gives the temperature distribution as a function of particle radius and time using a tocal particte grid. Since the particle radius. R. will become very smail due to evaporation, the implicit Crank-Nicolson algorithm is used because of its stability properties and its second order temporal and spatial accuracy. Using the Crank-Nicolson scheme to predict the particle temperature profiles at times \(t_{1}\) and \(t_{2}\) permits easy calculation of the total energy exchange, \(Q\) between \(t_{1}\) and \(t_{2}\), due to convection and conduction. Knowing the temperature distribution inside the particle. we can calcuiate gas generation rate \(\Gamma\). drag force \(F_{z}, F_{y}\), and heat exchange \(Q\), between two phases and hence. \(\Omega 2\) of Eq. (2.21). After obtaining the source term, we can integrate Eq. (2.21) by an explicit scheme.

For the multiphase system under study, \(\Delta_{r}=\Delta_{v}=1 \mathrm{~mm}\) was used to allow explicit integration of the gasdynamic and physical processes of evaporation and heat release. When a mismatch occurred between the physical and gasdynamical characteristic times. the time step was adjusted by some fraction to assure stability. However. the resultug time step was not significantly smaller than that calculated by CFL criteria. For larger cell sizes. this approach svil be impractical.

The numerical method is implemented in a code named MPHASE, which is tully vectorized and supported by number of graphics and diagnostics codes.

Table I.
One Dimensional Validation Result
\(\mathrm{D}(\mathrm{m} / \mathrm{sec})\)-Detonation wave velocity.
\(\mathrm{P}_{\mathrm{Cl}}(\mathrm{Pa})\)-Pressure at Chapman-Jouguet Point
\(\mathrm{P}_{\mathrm{p}}\{\mathrm{Pa}]\)-Peak pressure: \(\rho_{\rho}\left[\mathrm{kg} / \mathrm{m}^{3}\right]\)-Peak density


Ref. 1-Mader. C.. "Numencal Modeling of Detonation." (Universaty of California Press, Lid.. 1979). p. 47.

Ref. 2-Wiedermann. A.. "An Evaluation of Bimodal Layer Loading Effects." IITRI Report. Feb. 1990.
Ref. 3-Stanukovitch. K.P., "Physics of Explosion" (in Russian). Nauka. 1975.

\section*{3. RESULTS}

\section*{Model Validation for a One Dimensional Detonation Wave Problem}

The main advantage of our particle combustion model is its description of the detonation phenomenology for a wide range of explosive particle sizes and densities. We will demonstrate this capability on a set of one dimensional test problems. For these test problems we have simulated the initiation and propagation of the detonation waves in a shock tube-like setting, where the explosive particles are distributed uniformly through the shock tube volume.

Results of these simulations are summarized in Table 1. which shows detonation wave velocity, peak pressure. and peak density given as a function of the average density of the


FIGURE 1 Computational domain and boundary conditions.
solid expiosive. Here the explosive two-phase mixture is composed from RDX particle and air, where RDX particle concentration varies from \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\) to \(1000 \mathrm{~kg} / \mathrm{m}^{3}\). This concentration variation covers the whole range of solid explosive concentrations of interest to our problem. The simulations performed with the MPHASE code were compared with the experimental results (Mader, 1979; Stanukovitch, 1975), and calcuiatiuns were done with the TIGER code presented by Wiedremann (1990).
From Table I. it is clear that our simulation results compare favorably with other simulation results and experimental data. The maximum deviation between our results and referenced results is no greater than \(15 \%\) for the entire range of explosives densities. Considering that our results were obtained with a single model for particle combustion applied to the extreme range of densities, our model gives an excellent prediction of the detonation wave parameters.

\section*{Two Dimensional Simulation Results}

Figure 1 shows a setup for a typical two dimensional simulation. Here the computational domain is \(25 \mathrm{~cm} \times 25 \mathrm{~cm}\). The explosive powder density is distributed according to the 4 th power law of vertical distance, starting from the ground where the density is 300 \(\mathrm{kg} / \mathrm{m}^{3}\), and rising to 1.2 cm , where the density is \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\). From this point to 25 cm height, the density is constant and equal to \(0.75 \mathrm{~kg} / \mathrm{m} 3\). The density distribution in the


FIGURE 2 Founth power distribubion of particle density in the layer. The maxomum dessity in the laver is \(800 \mathrm{~kg} / \mathrm{m}^{3}\). (2a), (2b), and (2c) are gas pressure. gas density, and parucle density at \(12 \mu \mathrm{sec}\), respectivelv. See COLOR PLATE IV.


FIGURE 2 (Continued) (2d). (2e). and (2f) are gas pressure. temperature. and particle density at 55 usec. respectively. See also COLOR PLATE IV.
direction of the " \(x\) " axis is uniform. The boundary conditions for the computational domain shown in Fig. 1 are specified as follows: solid wall along the " \(x\) " axis; symmetry conditions along the " y " axis; supersonic outflow for upper boundary and at the right of the computational domain. The mixture consists of RDX powder and air at ambient conditions and it is assumed to be quiescent at the time of initiation.
The simulation starts at \(t=0\) when the mixture is initiated at the lower left comer of the computational domain by an initiating charge, as shown in Fig. 1. The initiating charge is \(6 \mathrm{~mm} \times 10 \mathrm{~mm}\). with pressure of 4 GPa and density of \(450 \mathrm{~kg} / \mathrm{m}^{3}\). The energy released by the initiating explosion leads to formation of the detonation wave propagating through the multiphase media. Figure 2 a shows pressure contours for the propagating detonation wave at the time of \(t=12 \mu \mathrm{sec}\) after initiation. Here the pressure contour levels are shown on logarithmic scale in MPa. The maximum pressure value of 7940 MPa is observed in the layer of condensed explosive located near the ground. The pressure in the layer is two to three orders of magnitude higher than pressure behind the detonation wave in the \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\) RDX cloud and air located above the distance of 1.2 cm from the ground. Figure 2a demonstrates that the detonation wave in the cloud is overdriven, since the pressure behind the shock continuously rises and reaches its maximum in the layer. From this figure, we also observe that the overdriven wave propagates faster in the cloud than in the layer. This is explained by the fact that it is easier to compress air that is very lightly loaded with particles and located above the ground layer, than it is to compress air heavily loaded with a particle mixture near the ground. It is interesting to note a discontinuous pressure change between the yellow contours and the light blue and green contours behind the detonation front. This discontinuity is over-emphasized by our presentation of contour lines on the logarithmic scale; however, further examination of our simulation results indicates this feature is real and is similar in nature to barrel shocks observed for strong jets.
In Fig. 2b, gas phase density contours are shown for the time \(t=12 \mu \mathrm{sec}\). Here the contour lines are distributed on logarithmic scale. The main features of the shock wave structure are very similar to those observed in the pressure contours figure. Here we see that a jet of high density gases reflects from the center of symmetry axis, creating a contact discontinuity that we will observe at later times. The barrel shock is clearly visible in this figure. In Fig. 2c, the particle density contour plots are shown for \(t=12 \mu \mathrm{sec}\). The contour levels in Fig. 2 c are given on the logarithmic scale and the initial deposition of the explosive material in the ground layer of the computational domain can be clearly observed. The black contour lines delineate the beginning and the end of the reaction zone in the cloud. To the left of these contours lies an area with combustion products and to the right unburned particles in the cloud. Here we can see that the reaction zone length is of the order of 1 cm .

Figure 2 d shows pressure contours for the same simutation for the time \(t=55 \mu \mathrm{sec}\) just before the detonation wave leaves the computational domain. In this figure we see that the global structure of the wave did change slightly from Fig. 2a. We observe that the barrel shock wave is fully developed and has a half ellipse shape. The detonation wave in the cloud is still overdriven; however, part of the shock wave front that propagates verticaliy becomes weaker as it gets further away from the detonation front in the layer. In Fig. 2e, gas temprature contours are shown at \(t=55 \mu \mathrm{sec}\). In this case. it is interestine to note that the highest temperatures are observed behind the front of the overdriven cloud detonation wave in immediate vicinity of the layer's upper strata. Very high temperatures in this region can be explained by the high pressure generated from the detonation of the explosive material in the layer and by relatively low density of cloud strata in the layer's immediate vicinity. Here, as in the pressure contours graph. the area of barrel shock can be clearly identified.


FIGURE 3 History of pressure distribution on the ground from unitiation to steady detonation: \(\mu \mathrm{sec}, \mathrm{o}-12 \mu \mathrm{sec}, \Delta \cdot 24 \mu \mathrm{sec} .+34 \mu \mathrm{sec} \times-44 \mu \mathrm{sec}\) and \(\delta-55 \mu \mathrm{sec}\).

We also observe in Fig. 2 a clear development of two detoatation fronts, one moving vertically in the cloud and another moving horizontally in the layer. Because the energy density of the explosive particle in the layer is about three orders of magnitude larger than it is in the cloud, the vertical parts of the front represent an overdriven detonation wave in the cloud. Even though the vertical front has slowed down compared with the horizontal front, its speed and parameters far exceed those typical for detonation waves in a cloud. In fact, the seif-sustained detonation regime in the cloud will develop at the distance of about three meters from the layer. The area of the front close to the detonation wave in the layer will remain hot and overdriven, since it is located very close to the detonation front in the layer. In Fig. 2f, particle density contours are shown on a logarithmic scale. We can clearly observe the reaction zone delineated by black contour lines. In this case, the reaction zone length in the cloud is about Icm. Consistent with the gradual transition from overdriven to self-sustained detonation. the reaction zone length is larger for the vertical part of the detonation front. The detonation wave velocity observed in our simulation is approximately \(4048 \mathrm{~m} / \mathrm{sec}\). which is significantly lower than the detonation wave velocity observed in RDX with a density of \(860 \mathrm{~kg} / \mathrm{m}^{3}\) (see Table 1), which is the highest density in the ground layer. This can be explained by a high gradient of particle density distribution in the layer. where the density drops rapidly from \(800 \mathrm{~kg} / \mathrm{m}^{3}\) at the bottom of the layer to \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\) at the top strata of the layer at 12 mm above the ground.


FIGURE \(4 \quad 2.5 \mathrm{~cm}\) thick layer at constant density of \(100 \mathrm{~kg} / \mathrm{m}^{3}\). Density in the cloud is \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\). (ta). ( H ). and (4c) are gas pressure, gas density, and particle density at \(66 \mu \mathrm{sec}\), respectively. See COLOR PLATE V


FIGURE 51.2 cm thick particle laver at constant density of \(250 \mathrm{~kg} / \mathrm{m}^{3}\). Particle density in the cloud is \(0.75 \mathrm{kgm}^{3}\). (5a), (5b). (5c) are gas pressure, gas densiry. and particle density at \(05 \mu \mathrm{sec}\). respectuvely. Sce COLOR PLATE VI.

To show the transient process from initiation to steady-state detonation, we plot the pressure-distance profiles at six separate times after ignition (Fig. 3). Here the pressure is taken on the ground. Examining the profiles. we observe that the steady detonation is reached after 10 cm . For each profile, we see that the pressure distribution is characterized by a strong detonation front followed by a fast expansion wave because of lateral expansion.

To further explore properties and phenomenology of the detonation waves propagating in the layer/cloud systems, we simulated additional cases in which explosive powder density distribution was different from the case reported above, although total weight of particle per unit area remained the same.

In Fig. 4, results are shown for the case of a uniform 2.5 cm thick layer of RDX with density of \(100 \mathrm{~kg} / \mathrm{m}^{3}\), and a \(0.75 \mathrm{~kg} / \mathrm{m}^{3}\) cloud initiated under the same conditions as in the previous example. Figures \(4 \mathrm{a}, 4 \mathrm{~b}\), and 4 c show pressure, gas density, and particle density contour plots at \(t=66 \mu \mathrm{sec}\). Here we observe that because the layer has much less density than the case reported above, the precursor effect of the detonation wave in the cloud preceding the wave in the layer is less pronounced. We also observe a significant difference in the shape of the strong contact discontinuity in the region of the shock front close to the layer. In Fig. 4b, we can cleariy distinguish two contact surfaces, one between condensed explosive detonation products in the layer and in the cloud, and another between the detonation products from layer explosive detonation and from cloud particle detonation. We should note that these contact surfaces are over-emphasized by the logarithmic display of the contour plot leveis. The maximum pressure observed in this simulation is 955 MPa , which is about one order of magnitude smaller than in the previous simulation. This is consistent with one order of magnitude difference in the maximum density of the ground layer in the two cases. The detonation wave speed ( \(3407 \mathrm{~m} / \mathrm{sec}\) ) for the case presented in Fig. 4, which is only slightly lower than the speed predicted by the one dimensional simulations presented in Table \(I\), reflects the influence of the two dimensional expansion on the detonation wave propagation.

Figure 5 presents results for the case of a uniform density of \(250 \mathrm{~kg} / \mathrm{m}^{3}\) in a 1.2 cm ground layer. All other parameters are the same as in the previous two cases. In Figs. \(5 \mathrm{a}, 5 \mathrm{~b}\), and 5 c , pressure, gas density, and particle density contour plots are shown at the time \(t=65 \mu \mathrm{sec}\) after detonation wave initiation. Here, the detonation wave propagates faster than in the previous cases \(\mathrm{U}=3660 \mathrm{~m} / \mathrm{sec}\). This is about \(400 \mathrm{~m} / \mathrm{sec}\) slower than in the case of fourth power density distribution. Maximum pressure on the ground is 2150 MPa , which is consistent with the increase of powder density in the layer. The basic structure of the detonation front and the contact surfaces is similar to the case of fourth power density distribution.

\section*{4. CONCLUSIONS}

We presented a mathematical model and numerical solution for the simulation of detonation wave initiation and propagation in multiphase mixtures consisting of solid combustible particles and gas. Using this model. we studied detonations in mixtures of solid RDX particles and air, with the objective of examining the effects of wide variation in particle density distribution on the dynamics and structure of detonation waves. We considered a physical system of solid particle clouds in air where a significant amount of particle can settle on the ground and the particle phase concentrations in the particle/air mixture can range from 0 to \(1000 \mathrm{~kg} / \mathrm{m}^{3}\). This range of solid phase densities necessitated development of the model and its numerical implementation for a wide range of particle concentrations. Our validation study has shown good agreement between the simulations and referenced results for the whole range of particle concentrations.

Two dimensional simulations were done for the system of low particle density concentration clouds and ground layers formed by high concentrations of the RDX powder. We examined three cases of ground layer density distribution: a fourth power distribution within 12 mm above ground with a maximum density on the ground of \(800 \mathrm{~kg} / \mathrm{m}^{3}\); a uniform 25 mm thick layer with a density of \(100 \mathrm{~kg} / \mathrm{m}^{3}\); a 12 mm thick uniform layer with a density of \(250 \mathrm{~kg} / \mathrm{m}^{3}\). In all these cases, the weight of condensed phase per unit area was the same, which allowed examination of the effects of the particle density distribution on detonation wave parameters.
In all examined two dimensional cases, the detonation wave in the cloud in the computational domain was significantly overdriven and did not play an important role. We estimated that the self-sustained regime of the detonation wave in the cloud for the examined cloud concentrations can occur only at the distances of 2-3 M above ground. At the same time, the particle density distribution in the layer determines the dynamics of the detonation wave as well as the pressure on the ground.
We observed in all three two dimensional simulations a very distinct shape of the detonation wave front in the vicinity of the layer. In this area, the overdriven detonation in the cloud is preceding the detonation wave in the ground layer. This feature of the detonation front can be explained by the fact that the energy released in the ground layer detonation wave produces a faster propagating shock wave in the dilute cloud than in the ground layer which is heavily loaded with solid particles. However, these structures were not observed experimentally, and more studies are needed to examine their parameters.
The maximum pressure affecting the ground was directly related to the maximum particie density in the lower strata of the layer. However, the detonation front velocity for the fourth power distribution case was considerably lower than calculated for a one dimensional case with \(860 \mathrm{~kg} / \mathrm{m}^{3}\) particle density, reflecting the significant effect of two dimensional expansion. Two other cases with \(250 \mathrm{~kg} / \mathrm{m}^{3}\) and \(100 \mathrm{~kg} / \mathrm{m}^{3}\) maximum densities had detonation wave velocity only slightly lower than the one dimensional simulations of the same RDX/air concentrations. It is interesting to compare the simulation of the fourth power density distribution case and the \(250 \mathrm{~kg} / \mathrm{m}^{3}\) case. In both, the same amount of explosive was distributed in the same physical space: however, the parameters of developed detonations were vastly different. Existence of the high density strata at the bottom of the ground layer in the fourth power case significantly increased the maximum pressure at the ground, and produced higher detonation wave velocity.
Using a variable density layer, we can reach a combination of pressure and velocity conditions outside of the Chapmen-Jougett limitations. The range of conditions that can be obtained in the variable density system and its parametrics needs a more systematic study. In this article, we introduced only the mathematical formulation and numerical simulation method validated for the range of conditions of interest. In addition, we have given some examples of the method's application for two dimensional simulations. However, this methodology should be linked to an experimental study for a more in-depth analysis of the phenomenology discussed here.

ACKNOWLEDGMENTS
The work reponted here was partially supported by DARPA and AFOSR under contract no. F49620.89.C.0087. The authors would like to thank Cul. J. Crowley and Dr. A. Nachman for their interest in this project.

\section*{REFERENCES}

Burcat. A.. Eidelman. S. and Manheimer-Timnat. Y. (1978). "The Evolution of a Shock Wave Generared by a Point Explosion in a Combustible Medium." Symp, of High Dynamec Pressures (H.D.P). Paris. 347. Colella. P. (1985). "A Direct Eulerian MUSCL Scheme tor Gas Dynamics." StaM J. Stat. Compus. 6. 104. Colella. P. and Glaz. H.M. (1985). "Efficient Solution Algorithms for the Riemann Problem tor Real Gases." J. Comput Physics. 59, 264.

Cowan. R.D. and Fickett. W. (1956). "Calculation of the Detonation Prodacts of Solid Explosives with the Kistiakowsky-Wilson Equation of State." Journal of Cherncal Physics. 24, 932.
Drake. R.M., Ir. (1961). "Discussions on G.C. Vliet and G. Leppert: Forced Convecton Heat Transfer fror. an Isothermal Sphere to Water." Journal of Heat Transfer, 83, 170.
Eidelman. S.. Timnat. Y.M.. and Burcat. A. (1976). "The Problern of a Strong Point Expiosion in a Combustible Medium." Gih Svmp. on Detonation. Coronado. CA, Office of Naval Research. 590.
Eidelman. S., and Burcat. A. (1980). "The Evolution of a Detonation Wave in a Cloud of Fuel Droplets: Part I, Influence of the igniting Explosion." ALAA Journal. \(18,1103\).
Eidelman. S., Collela. P., and Shreeve. R.P. (1984). "Application of the Godunov Method and Its Second Order Exiension to Cascade Flow Modeling." ALAA Joumal 22. 10.
Eidelman. S.. and Burcat. A. (1980). "The Mechanism of Detonation Wave Enhancement in a Two-Phase Combustible Medium." I8th Symposium on Combustion. The Combustion Institule, Waterioo. Oniano. Canada.
Eidelman. S., and Burcat. A. (1981). "Numerical Solution of a Non-Steady Blast Wave Propagation in Two-Phase (Separated Flow') Reactive Medium." J. Comput. Phvsics, 39, 456.
Gurdon. S., and McBride. B.J. (1976). "Computer Program for Calculations of Complex Chemical Equilibrium Compositions. Rocket Performance. Incident and Reflected Shocks and C-J Detonations." NASA SP-273. 1976 Revision.
Kauffman, C.W., Wolanski. P., Vral, E., Nicholls, J.A. and Van Dyke, R. (1979). "Shock Wave Initiated Combustion of Grain Dust," Proc. of the Intl. Symp. on Grain Dust. p. 164. Manhattan, KS.
Kuo. K. (1990). "Principles of Combustion." John Wiley and Sons. Inc.
Liu. S.C., Kauffman. C.W. and Sichel, M. (1990). "The Lateral Interaction of Detonating and Detonable Mixtures," (Private communication).
Mader C.L. (1979). "Numerical Modeling of Detonation." University of California Press. Lid. London, England.
Oved. Y.. Eidelman. S., and Burcat. A. (1978). "The Propagation of Blasts from Solid Explosives to Two Phase Medium." Propellants and Explosives. 3. 105.
Reinecke, W.G.. and Waldman. G.D. (1975). "Shock Layer Shattering of Cloud Drops in Reentry Flight." ALAA Paper, 75-152.
Schlichting. H. (1983). "Bounday Layer Theory," 7th ed. McGraw-Hill.
Stanukovitch, K.P. (1975). "Physics of Explosion" (in Russian), Nauka.
Wiedermann, A. (1990). "An Evaluation of Bimodal Layer Loading Effects," IITRI Report, February.

AIAA 93-2940
Computation of Shock Wave Reflection and Diffraction Over a Semicircular Cylinder in a Dusty Gas
X. Yang, S. Eidelman, and I. Lottati

Science Applications International
Corporation
McLean, VA 22102

AIAA 24th Fluid Dynamics Conference July 6-9, 1993 / Oriando, FL

\title{
COMPUTATION OF SHOCK WAVE REFLECTION AND DIFFRACTION OVER A SEMICIRCULAR CYLINDER IN A DUSTY GAS
}

\author{
Xiaolong Yang, \({ }^{\text {S }}\) Shmuel Eidelman, \(\dagger\) and Itzhak Lotati* \\ Science Applications International Corporation
}

\begin{abstract}
The unsteady shock wave reflection and diffraction generated by a shock wave propagating over a semicircular cylinder in a dusty gas are studied numerically. The mathemaxical model is a multi-phase system based on a multi-fluid Eulerian approach. A Second Order Godunov scheme is used to solve the gas phase Euler equations and an upwind scheme is used to solve the particle phase conservation equations on an unstructured adaptive mesh. For the validation of the model, the numerically predicted one dimensional shock wave attenuation is compared with experimental resuits. Shock wave reflection and diffraction over a semicircular cylinder in a pure gas flow is simulated first to show the excellent agreement between the present computation and the experimental resuits. For a shock wave reflection and diffraction in a dusty gas, the effects of particle size and particle loading on the flow field are investigated. Gas and particle denaity contour plots are presented. It has been shown that the shock wave configuration differs remarkably from pure gan flow depending on the particle parameters. The difference is explained as the result of momentum and heat exchange between the two phases.
\end{abstract}

\section*{Introduction}

Shock wave propagation into a gas particle suspension medium has attracted great attention in recent years due to its many engineering applications. Some of these applications include blast wave propagating over a dusty surface, exhaust from a solid propellant rocket, and coal or grain dust detonation. Many studies dealing with two phase environment can be found in literature. A general deacription and theoretical analysis of such flow can be found in review papers by Marble \({ }^{1}\) and by Rudinger, \({ }^{2}\) and in a book by Soo. \({ }^{3}\) Numerical models for dilute gasparticie flows were reviewed by Crown. \({ }^{4}\) Numerical studiea of gas-particie flow in a solid rocket nozzle can be

\footnotetext{
- Drs. Yang and Lottati are Research Scientists with Science Applications International Corp. (SAIC), 1710 Goodridge Dr., MS 2-3-1, McLean. VA 22102. \({ }^{\dagger}\) Shmuel Eidelman, Research Scientist, SAIC, Associate Fellow AIAA
}

Copyright @ American Institute of Aeronautics and Astronautics, Inc., 1993, All rights reserved.
found in Refs. 5 and 6. Miura and Glass ' theoretically and numerically studied the oblique shock waves in a dusty-gas flow over a wedge. The one-dimensional unsteady strveture of shock waves propagating through a gas-particie mixture was investigated both experimentally and numerically by Sommerfeld. Recently, Kim and Chang \({ }^{3}\) illustrated a numerical simulation of shock wave propagation into a dusty gas and the reflection of the wave from a wedge. Shock wave ignition of different reactive dust is experimentally investigated by Sichel et al. \({ }^{10}\) and comprehensive model for the structure of dust detonations is also described by Fan and Sichel. \({ }^{12}\)

In this paper, we study shock wave refiection and diffraction over a semicircular cylinder in a dusty gas. We numerically simulate the problem of a ahock wave initiated in a pure gas section moving into a dusty region and impinging on a semicircular cylinder. We first formulate the compressible two-phase flow on the basis of a Eulerian multi-fluid formuiation. We comider the two phases (i.e., gas and particle) to be interpenetrating continua. The dynamics of the flow are governed by conservation equations of each phase and the two phaser are coupled by interactive drag force and heat tranafer. We solve the system of conservation equations numerically on an unstructured adaptive grid. The objectives of the study are: (a) to solve the two-phase compressible flow field and compare the simulation with available experimental results; (b) to observe and inveatigate the refection and diffraction wave patterns when a shock wave propagates over a semicircular cylinder in a dusty gas, with particie radius and loading as parameters.

The outline of this paper is as follows. Section 2 gives a description of the mathematical model and method of numerical solution. including governing conservation equations for two phases, the conatitutive lawe, the initial and boundary conditions, and particle parameter. A brief outline of numerical schemes and the adaptive unstructured grid is also given. In Section 3, we present our numerical simulation results. We validate our model by comparing a one-dimensional simulation of a shock wave propagating into a dusty gas with available experimental resuits. We also show the exceilent agree ment between our two-dimensional gas-on'y simulation with existing experimental results. Results for reflection and diffraction of shock wave over a semicircular cylinder are given for different particle parameters. Concluding remarks are given in Section 4.

\section*{Mathemaxical Model and the Numerical Solution}

\section*{Conservation Eouations}

The mathematical model consists of conservation governing equations and constitutive laws that provide closure for the model. The basic formulation adopted here follows the gas and dilute particle flow dynamics model presented by Soo. \({ }^{3}\) The following assumptions are used during the derivation of governing equations:
(1) The gas is air and is assumed to be ideal gas;
(2) The particies do not undergo a phase change because for particies considered here (sand) phase transition temperature is much higher than the temperatures typical for the simulated cases;
(3) The particies are solid spheres of uniform diameter and have a constant material density;
(4) The voiume occupicd by the particies is negugible:
(5) The interaction between particles can be ignored:
(6) The oniy force acting on the particles is drag force and the oniy heat transfer between the two phases is convection. The weight of the solid particles and their buoyancy force are negligibly small compared to the drag force;
(7) The particies have a constant specific heat and are assumed to have a uniform temperature distribution inside each particle.

Under the above assumptions, distinct equations of continuity, momentum, and energy are written for each phase. The interaction effects between the two phases are listed as the source terms on the righthand side of the governing equation. The two-dimensional unsteady conservation equations for the two phases can be written in the vector form in Cartesian coordinates:
\[
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}=S . \tag{1}
\end{equation*}
\]

Here \(U\) is the vector of conser vative variables, \(F\) and \(G\) are fluxes in \(x\) and \(y\) direction, respectively, and \(S\) is the source term for momentum and heat exchange. The definition of these vectors are:
\[
U=\left|\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
e \\
\rho_{p} \\
\rho_{p} u_{p} \\
\rho_{p} v_{p} \\
e_{p}
\end{array}\right|, F=\left|\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
u(e+p) \\
\rho_{p} u_{p} \\
\rho_{p} u_{p}^{2} \\
\rho_{p} u_{p} v_{p} \\
u e_{p}
\end{array}\right|, G=\left|\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p \\
v(e+p) \\
\rho_{\rho} v_{p} \\
\rho_{p} u_{p} v_{p} \\
\rho_{p} v_{p}^{2} \\
v_{p} e_{p}
\end{array}\right|,
\]
\[
S=\left|\begin{array}{c}
0 \\
-f_{x} \\
-f_{y} \\
-q-u_{p} f_{z}-v \\
0 \\
f_{x} \\
f_{y} \\
q+u_{p} f_{z}+, f_{y}
\end{array}\right|
\]
where \(p, u, v\), and \(e\) are gas der :cy, velocities. and energy, respectively; \(\rho_{p}, u_{p}, v_{p}\) anc \(e_{p}\) are particle density, velocities, and energy, respectively; ( \(f_{x}, f_{y}\) ) and \(q\) denotes drag force components acting on the particles and heat transfer to the particles, respectively. The gas pressure \(p\) is related to \(\rho, u, v\) and \(e\) for by
\[
\begin{equation*}
p=(\gamma-1)\left[e-0.5 \rho\left(u^{2}+v^{2}\right)\right] \tag{2}
\end{equation*}
\]
where \(\gamma\) is the specific heat ratio. The gas temperature san be found through che equation-of-state for ideal gas
\[
\begin{equation*}
p=\rho R T \tag{3}
\end{equation*}
\]
where \(R\) is the gas constant.
The particle temperature \(T_{p}\) is calculated through relation
\[
\begin{equation*}
e_{p}=\rho_{p} c_{p} T_{p}+0.5 \rho_{p}\left(u_{p}^{2}+v_{p}^{2}\right) . \tag{4}
\end{equation*}
\]

The source terms on the righthand aide of Eq. (1) are momentum and heat exchange between gan and partiele phases. If we let \(r_{p}\) and \(\rho_{0}\) be the particle radius and material density, respectively, then the drag forces are
\[
\begin{gather*}
\binom{f_{s}}{f_{v}}=\frac{3}{8} \frac{\rho_{p} \rho}{\rho_{1} r_{p}} C_{d}\left[\left(u-u_{p}\right)^{2}+\left(v-v_{p}\right)^{2}\right]^{1 / 2} \\
{\left[\begin{array}{l}
\left(u-u_{p}\right) \\
\left(v-v_{p}\right)
\end{array}\right] .} \tag{5}
\end{gather*}
\]

The particle drag coefficient \(C_{d}\) depends on relative Reynolds number, Re and relative Mach number, Mr. In the present study, since the relative Mach number is small ( \(M_{r}<0.5\) ), the effect of \(M_{r}\) on \(C_{d}\) is neglected. The Reynolds number. Re, is based on the relative velocity between the gas and particle phases. After teating the drag coefficients given by Sommerfeld \({ }^{\text {s }}\) and by Clift et al., \({ }^{12}\) the following two were adopted:
\[
C_{d}=\frac{24}{R e}\left(1+0.15 R e^{0.687}\right) \text { for } R e<800 .
\]
and
\[
\begin{align*}
& C_{d}=\frac{24}{R e}\left(1+0.15 R e^{0.687}\right)+\frac{0.42}{1+42500 R e^{-1.16}} \\
& \quad \text { for } R e>800 . \tag{6}
\end{align*}
\]

Here the Revnolds sumber \(R e\) is defined as
\[
\begin{equation*}
R e=\frac{2 p r_{0}\left[\left(u-u_{p}\right)^{2}+\left(v-u_{p}\right)^{2}\right]^{1 / 2}}{\mu} \tag{7}
\end{equation*}
\]

Viscosity, \(\mu\), is calculated at film temperature. namely, \(T_{l}=0.5\left(T_{p}+T\right)\), and the temperature dependency of the viscosity is evaluated according to Sutherland's law
\[
\begin{equation*}
\mu=\mu_{r}\left(\frac{T}{T_{r}}\right)^{3 / 2} \frac{T_{r}+\Phi}{T+\Phi} \tag{8}
\end{equation*}
\]
where \(\mu_{r}\) is the dynamic viscosity of the gaseous phase at the reference temperature and \(\Phi\) is an effective temperature, called the Sutheriand constant.

The rate of heat transfer from gaseous phase to the particle phase is given by
\[
\begin{equation*}
Q=\frac{3}{2} \frac{\rho_{\mathrm{p}}}{\rho_{g}} \frac{\mu C_{\mathrm{p}}}{P_{r}}: V_{u}\left(T-T_{p}\right) \tag{9}
\end{equation*}
\]
where \(P_{r}=\mu c_{p} / k_{g}\) is the Prandtl number, and \(c_{p}\) and \(k_{g}\) are the specific heat and thermal conductivity of gas, respectively. The Nusseit number \(N u\) is a function of Reynolds number and the Prandtl number as given by Drake \({ }^{13}\)
\[
\begin{equation*}
N u=\frac{2 r_{p} h}{R}=2+0.459 R e^{0.55} P r^{0.33} \tag{10}
\end{equation*}
\]

\section*{Initial and Boundary Conditions}

The geometry of the computational domain is shown in Fig. 1. The initial conditions for gas are \(\rho_{0}=\) \(1.2 \mathrm{~kg} / \mathrm{m}^{3}\) and \(p_{0}=101.3 \mathrm{kpa}\), with a coming shock at \(x=-0.5\). There are no particies from \(-1.0 \leq x \leq 0.0\). From \(x \geq 0.0\), particles are initially in thermal and kinematic equiiibrium with surrounding gas. The particles that are uniformily distributed in the dusty region have the following parameters for different test problems:

Mase loading, \(\rho_{p}: 0.25 \mathrm{~kg} / \mathrm{m}^{3}, 0.76 \mathrm{~kg} / \mathrm{m}^{3}\);
Mass material density, \(\rho_{g}: 2500 \mathrm{~kg} / \mathrm{m}^{3}\);
Particle radii, \(r_{p}: 10 \mu \mathrm{~m}, 25 \mu \mathrm{~m}, 50 \mu \mathrm{~m}\);
Specific heat, \(c_{0}: 766 \mathrm{~J} / \mathrm{kg} / \mathrm{K}\).
The lower boundary and cylinder surface are solid walls and assumed adiabatic and impermeable. A reflecting boundary condition is assumed for both the gas and particle phase. Particles are assumed to experience a perfect elastic coilision with the wail and reflect from the wall. The right and upper boundaries are open boundaries where a nonreflection boundary condition is used for the gas phase and a zero normal gradient condition is used for particle phase.

\section*{Numerical Method of Solutions}

The system of partial differential equations described in the previous paragraph is integrated numerically Equatio. (1) is repeated here:
\[
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}=S . \tag{1}
\end{equation*}
\]

In order to solve this equation numerically, an operator time-splitting technique is used. Assuming that all How variables are known at a given time, we can calculate its advancement in time by splitting the integration into two stages.

In the first stage, the conservative part of Eq. (1) is solved:
\[
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}=0 . \tag{11}
\end{equation*}
\]

The Second Order Godunov method is used for the integration of the subsystem of equations deacribing the flow of the gaseous phase (first four components of Eq. (1)). The method is well documented in literature. \({ }^{\text {14.15,16 }}\) The subsystem of equations describing the particle phase flow is integrated using a simple first order finite difference upwind scheme \({ }^{17}\). This is done because there is no shock in the particle phase and the upwind scheme leads to a robust and accurate integration scheme.

In the second stage, the source term is added and the following equation is solved:
\[
\begin{equation*}
\frac{\partial U}{\partial t}=S . \tag{12}
\end{equation*}
\]

To integrate this equation in time, we need to obtain \(S\) as a function of \(U\). We calculate \(S\) through Eqs. (5) to (10).

In order to produce a solution of the high spatial accuracy at minimal computational cost, an unstructured triangular grid with adaptive procedure is used. The adaptive procedure will automatically entich the mesh by adding points in the high gradient (or high flow activity) region of the flow field and by removing points (coarsening mesh) where they are not needed. The dynamic nature of mesh enrichment is thown in Fig. 4 for three different time frames. One can see that a very fine mesh is generated around shock fronts and other steep density gradient regions.

\section*{Reaults}

\section*{Model Validation for One-Dimensional Shock Waye Proparation in Dusty Gas}

To test the momentum and heat exchange meehanism for the current two-phase model, we first simulate a one-dimensionai problem of a normal ahock wave propagating into a dusty gas. We numerically simulate the experiments conducted by Sommerfeld. \({ }^{8}\) In the experiments, small glass spherical particles of material density \(\rho_{1}=2500 \mathrm{~kg} / \mathrm{m}^{3}\). specific heat capacity \(c_{s}=766 \mathrm{~J} / \mathrm{kg} / \mathrm{K}\). and average diameter of \(27 \mu \mathrm{~m}\)
were used as the suapension particle phase. The incoming shock Mach number \(M\), and particle loading ratio \(\eta=\rho_{p} / \rho\), are two varying parameters. The experimental results and our numerical simulation results of shock Mach number as a function of distance for two teat cases are shown in Fig. 2a ( \(\eta=0.63, M,=1.49\) ) and Fig. 2b ( \(\eta=1.4, M_{i}=1.7\) ) for comparison purposes. It is clear that the agreement between the prediction of shock wave attenuations from our present model and the experimental results is very good.

\section*{Tro-Dimensional Simulation Results for Pure_Gas EloI}

To test the accuracy of the two-dimensional computation, we first compute the pure gas flow case of a shock wave reflection and diffraction over a semicircular cylinder. We then compare the simulation with experimental resuits. Shock wave reflection on a wedge has been extensiveiy studied by many researchers (see e.g., review papers of Ben-Dor and Dewey \({ }^{13}\) and Hornung \({ }^{19}\) ). Shock wave reflection over circuiar cylinders was numerically simulated by Yang et al. \({ }^{20}\). Recently, Glase et al. \({ }^{21}\) using high order Godunove scheme numerically simulated the shock wave refiection over a half diamind and semicircular cyiinder and compared the simulation with experimental results obtained by Kaca. \({ }^{22}\). Figure 3 is a schematic sketch to show four stages of a shock wave reffection over a semicircular cylinder and terminologies which will be used to describe the flow fields. Figures \(4 \mathrm{a}, 4 \mathrm{~b}\) and 4 c show the calculated density contours at three moments in time. When the planar shock wave propagates and encounters the cylinder, it first experiences a head-on coilision with the front stagnation point of the semicylinder and then immediately reflects from the first quarter of the cylinder, forming a regular reflection (RR), which is shown in Fig. 4a. The regular reflection conciate of two shocks, i.e., the incident shock and reflected shock, both originating from a common point on the cylinder wall. As the shock wave propagates up the cylinder, the angle between the incident shock and the tangent of the cylinder becomes larger and the regular refiection changes into a Mach Reflection (MR) as shown in Fig. 4b. The MR is characterized by three waves, incident shock (I), reflected shock (R), and Mach stem (M). All three shocks intersect at one common point called triple point (T). For Mach reflection, one can further observe both Simple Mach Reflection (SMR) and Complex Mrech Reflection (CMR). Later, as the incident shock wave passes over the top of the semicircular cylinder, it experiences a rarefaction on the back side of the cylinder. The shock wave system grows upward and rightward with a curved Mach stem and forms a slipline(S) or a contact discontinuity (CD) as shown in Fig. 4c. In Figs. 5a and 5b, the interferogram from
the experiment \({ }^{22}\) and densit simulation are compared for same time. Note that the a by the ambient gas density from Fig. 5 , the results as as well as qualitative agree simulation and experiment
contours from the present asame flow condition and sity levels are normalized
Fig. E. As one can see an e e tient quantitative at between the numerical tesults.

\section*{Two-Dimensional Simul :ion Results of Two-Phase Elow}

The basic setup for the two-phase simulation is shown in Fig. 1. Here the planar shock with \(M s=2.8\) propagates into an area of a dusty gas and impinges on a semicircular cylinder. The interface between pure air and dusty air is located at \(x=0.0\) of the computational domain. The area of the dusty air containa a semicylinder with a radius of 1 m . The size of the computational domain. initial parameters of the gas, parameters of the incoming shock. size of the semicylinder and its location in the computational domain, are the asme as in the reflection and diffraction simulation presented in the previous section.

The main objective of this set of simalations is to study the effects of particle size and particle loading on the parameters of the reflected and diffracted shock waves. It is also valuable to study the dynamica of particle media, since it is extremely difficult to obearve these interactions experimentally in an optically thick dusty gas.

The first set of simulation results is shown for the case with dust parameters \(r_{p}=10 \mu \mathrm{~m}\) and \(\rho_{p}=0.25\) \(\mathrm{kg} / \mathrm{m}^{3}\). The gas parameters and the parameters of the incoming shock wave are the same as in the pure gas case presented above. In Figs. 6a and 6b, particle density contours and gas density contours are shown at the stage when the incident shock wave has reached the top of the semicylinder. At this stage, the largest difference of velocity and temperature between the two phasea exists and the nonequilibrium between the two phasea cauces extensive heat and momentum exchange between particles and the gas. The presence of the particlea causea a widening of the shock that is more noticesble for the incident shock. Also, an additional contour line is observed at the dusty gas/pure gas interface. Comparing gas density for pure gas flow field shown in Fig. 4 b and the dusty gas density of Fig. 6b, we see that Mach stem and contact discon+inuity resuiting from Mach reflection are smeared in the dusty gas flow due to the presence of the particle. The particle density contours depict significant piling up of the dust partirles at the leading orge stagnation point of the cylinder.

In Figs. 6c and 6d, the particle density and gas density contours are shown at the stage where significant diffraction has taken place and the shock front is
approaching the trailing edge of the cylinder. Further widening of the shock and some smearing of the slip line that originates at the triple point is evident. The particle density contours reveal that the particles were swept by the gas fow to the area of tripie point and slip line for the gas fiow. leaving a small amount of particles at the leading edge. We should note that this behavior is specific for our problem, where at \(t=0\), the dusty gas area was located at \(x=0\) and there is no intux of the dust from the left boundary. Also in Fig. 6c, we note that the partieles reach a distinct local maxima at the distance sbout 25 cm behind the incident shock front. At this maxima the particie density is \(0.86 \mathrm{~kg} / \mathrm{m}^{3}\), which is more than three times the initial particle density. The particle density reaches a maximum value at the location of the gas slip line. We observe a significant accumulation of the particles that have been moved along the slip line by the shear flow. The larger concentration of particles in the vicinity of triple point is, in fact, the remainder of the particles that were swept up with the flow. It is also interesting to observe that an essentially particle-free zone is formed due to the effects of particles stipping over the top of the cylinder and the rarefaction wave behind the cylinder.

To study the influence of particle loading on the dynamics of reflection and diffraction, we have simulated the case with a dust density of \(\rho_{p}=0.76\), and with \(r_{p}=10 \mu \mathrm{~m}\). The results for this simulation are shown in Figs. 7 a and 7 b in the form of particle and gas density contour plots. In Fig. 7a, the particle density contours are shown at the diffraction phase. Here we can observe two local maxima for particles accumulated in the regions along the slip line characteristic for the shock diffraction process. It should be noted here that in our problem the conditions behind the incident shock wave and its structure are in constant flux. At higher loading, dust will have a profound effect on the gasdynamics of refiection and diffraction. Figure 7 b shows gas density contours for the reflection stage corresponding to the particle density contours shown in Fig. 7a. We obeerve from Fig. 7b that the incident shock wave is significantly smeared and the triple point cannot be clearly identified. Because of the widening of the incident shock, the area where the reflected and incident shock join is spread over 50 cm distance. From Fig. 7a, we see that the high density particle region is spread wider than in the previous case, and the particle density reaches its maximum at about 25 cm behind the front. There is a visible mannum in gas density in the area where the reflected shock is interacting with the area of maximum particie density betind the incident shock. A part of the reflected shock front that is moving to the left side of the computacional domain is not affected by the dust since it is propagating into an area with little dust concentra-
tion. The parameters and structure of this part of the front remain basically the same as in the case of pure gas flow.

To examine the effect of particle size on the reflection-diffraction process, we simulated a case where the particle loading and gas flow conditions are she same as in the previous case with particle density \(\rho_{p}=0.76\). However, the particle size is \(r_{p}=50 \mu \mathrm{~m}\). In Figs. 8 a and 8 b , results for this simulation are illuatrated by particle density and gas density contoura correspondingly. The particle contour plots depict a significantly wider particle reiaxation zone than in the previous case. The longer relaxation zone is caused by the larger inertia of larger particles. The maximum particle density of 2.64 \(\mathrm{kg} / \mathrm{m}^{3}\) is reached 50 cm behind the incident shock from. This value is significantly lower than \(4.01 \mathrm{~kg} / \mathrm{m}^{3}\) reached behind the shock in calculation with \(10 \mu \mathrm{~m}\) particies. Larger particles skip above the apex of the cylinder creating a void where particle density is very small. Also. because of larger particle size. the maxima of partucle concentration that has been created by a slip surface of the reffected Mach stem is indistinct. The main reason for this is that the particles do not follow the gas flow as closely as they did in the previous case due to the inertia of large particies. The maximum particie density is reached here at the slip line behind the Mach stem.

Comparing gas density of Fig. 8 b to the previous case shown in Fig. 7b, we observe that the alip line behind the curved Mach stem becomes less dirtinguishable in Fig. 7b. This resuit is expected, since at fixed particle loading, smaller particles have a larger surface/volume ratio and the larger surface/volume ratio increases momentum and heat exchange between the two phases.

One general comment regarding all three cases presented above: Due to the heat and momentum exchange between the two phases. the shock is decaying as it traverses the cylinder. Ultimately, it will reach a new equilibrium state as suggested by Fig. 2. It should be noted that the shock considered in the previous three cases is still in the process of transition in the gas-particle mixture.

\section*{Conclusion}

In this paper, numerical study for a two-phase compressible flow is performed for the reflection and diffraction of a shock wave propagating over a semicircular cylinder in a dusty gas. The following conclusions can be made:
(1) The validation study for a one-dimensional shoct wree propagating in a dusty gan bicms a zood agreement between the prediction of our model and the resuits of the experiment:
(2) For a two-dimensional gas-only flow, numerical resuits agree well with existing experimental data quaii-
tatively and quantitatively, indicating that the gas phase is accurately simulated by the adaptive grid technique;
(3) Particles in the gas can have a profound effect on the shock wave reflection and difiraction pattern. which is a function of particle size and loading. The lesser the particle loading, the less the influence of particle on the flow field:
(4) In the three simulation cases, there is a particle accumulation behind the "back shoulder" of the semicircular cylinder due to the effect of particle inertia and gas rarefaction wave;
(5) For different particle size at fixed particle loading, the larger particie will have a longer relaxation zone and less accumulation at "back shoulder" and behind incident shock. The gas density contours show a less distinguishable slip line in small particle case than in the large particle case.

\section*{Acknowiedgments}

The work reported here was partially supported by DARPA and AFOSR under contract no. F49620-89-C0087. The suthors would like to thank LtCol. J. Crowley and Dr. A. Nachman for their interest in this project.

\section*{References}
\({ }^{1}\) Marble, F., "Dynamics of Dusty Gases," Annwal Review of Fluid Mechanica, Vol. 2, 1970, pp. 369-377.
\({ }^{2}\) Rudinger, G., "Some Properties of Shock Relaxation in Gas Flows Carrying Small Particies," Phyaics of Fluids, Vol. 7, 1964, pp. 658-663.
\({ }^{3}\) Soo, S. L., Particulates and Continyum, Hemisphere Publishing Corporation, New York, 1989, pp.266324.
\({ }^{4}\) Crowe, C. T., "Review-Numerical Models for Dilute Gas Particle Flow," Journal of Fluida Engineering, Vol. 104, Sept. 1982, pp. 297-303.
\({ }^{5}\) Hwang, C. J. and Chang, G. C., "Numerical Study of Gas-Particle Flow in a Solid Rocket Nozzle," AIAA Jowrnal, Vol. 26, No. 6, 1988, pp. 682-689.
\({ }^{6}\) Chang, I-Sbih, "Three-Dimensional. Two-Phase, Transonic, Canted Nozule Flows," AIAA Journal, Vol. 28, No. 5, 1989, pp. 790-797.
\({ }^{7}\) Miura, H. and Glass I. I., "Oblique Shock Wave in a Dusty-Gas Flow Over a Wedge," Proceedings of Royal Society of London A, Vol 408, 1986, pp. 61-68.
\({ }^{8}\) Sommerfeld, M., "The Unsteadiness of Shock Waves Propagating through Gas-Particle Mixtures," Experiments in Fluids, Vol. 3, No. 2, 1985, pp. 197-206.
\({ }^{9}\) Kim, S-W. and Chang, K-S. 'Reflection of Shock Wave from a Compression Corner : Particie-laden Gas Region," Shock Waves, Vol. 1, No 1991, pp. 65-73.
\({ }^{10}\) Sichel. M., Baek. S. W., Kau ana, C. W., Maker. B. and Nicholls. "The Shock w- ignition of Dusts." AIAA Journal. Vol. 23. No. 9. : . pp. 1374-1380.
\({ }^{11}\) Fan. B. and Sichel. M.." omprehensive Model for the Structure and Dust Detc cions," Twenty-Second Symposiem (International) or Combestion, The Combustion Institute, PA, 1988, P... 1741-1750.
\({ }^{12}\) Clift, R., Grace, J. R. and Weber, M. E., Bubbles. Drops and Particles, Academic. New York, 1978.
\({ }^{13}\) Drake, R.M., Jr., "Discussions on G.C. Vliet and G. Leppert: Forced Convection Heat Tranafer from an Isothermal sphere to Water," Journal of Beat Transfer, Vol. 83, No. 2, 1961, pp. 170-179.
\({ }^{14}\) Eidelman. S., Colella, P.. and Shreeve, R.P., "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modelling," AIAA Journai. Vol. 22. No. 11, 1984, pp. 1609-1615.
\({ }^{15}\) Colella, P., "A Direct Eulerian MUSCL Scheme for Gas Dynamics," SIAM Journal Scientifical and Statistical Computation, Vol. 6, 1985. pp. 104-117.
\({ }^{16}\) Colella, P. and Glaz, H.M., "Efficient Solution Algorithms for the Riemann Problem for Real Gases," Journal of Compstrtational Physics, Vol. 59, No. 3, 1985, p. 264-289.
\({ }^{17}\) Peyret, R. and Taylor, T. D., Competational Methods for Fluid Flow Springer-Veringr New-Yorts 1983, pp. 18-31.
\({ }^{16}\) Ben-Dor, G. and Dewey J. M., "The Mach Reflection Phenomenon: A Suggeation for and International Nomenclature," AlAA Journal, Vol. 23, N. 10, 1985. pp. 1650-1652.
\({ }^{19}\) Hornung, H., "Regular and Mach Peflection of Shock Waves," Annwal Review of Fluid Mechanics, Vol. 18, 1986, pp. 33-58.
\({ }^{20}\) Yang, J. Y., Liu, Y. and Lomax H., "Computation of Shock Wave Reflection by Circular Cylinder," AIAA Jowrnal, Vol. 25, 1987, No. 5, pp. 683-689.
\({ }^{21}\) Glass, I. I., Kacs, J. Zhang, D. L. Glas, H. M., Bell, J. B. and Tangenstein. J., Current Topica in Shock Waves, 17th Int'l Symp. on Shock Tubea and Waves, edited by Y. W. Kim, AIP Conference Proceedings 208. American Institute of Physics, New York, 1990, pp. 246251.
\({ }^{22}\) Kaca, J., "An Interferometric Investigation of Diffraction of a Planar Shock Wave over a Semicircular Cylinder," UTIAS Technical Note 259, Institute for Aerospace Studies, University of Toronto, 1988.


Figure 1. An illustration of the considered flow field.


> I - Incident Shock
> M - Mach Stem
> T - Tripie Point

Figure 3. Stages of shock wave reflection over a semicircular cylinder, (a) before collision, (b) regular refection. (c) Mach reflection, (d) well developed Mach reflection.

(b)

Figure 2. Comparison between computational prediction and experimental measurement of shock wave attenuation for (a) \(M_{t}=1.49 . \eta=\frac{p_{2}}{p_{0}}=0.63\) and (b) \(M_{s}=1.7\), \(\eta=\frac{e_{0}}{\rho_{0}}=1.4\) (o experiment. - calculation).


Figure 4. Computed density contours with adapted grid at three different times: (a) regular reflection (RR), (b) Mach reflection (MR) and (c) diffraction with slipline (S).

(a)

(b)

Figure 5. Comparison for \(M\), \(=2.80\) gas - only flow. (a) interferogram from experiment conducted by Kaca (1988), (b) density contours from present calculation.



Figure 6. Density contours for the case: \(M,=2.8, \rho_{p}=0.25 \mathrm{~kg} / \mathrm{m}^{3}, r_{p}=10 \mu \mathrm{~m}\) at two different times, (a) particle density at \(t_{1}\), (b) gas density at \(t_{1}\), (c) particle density at \(t_{2}\), and (d) gas density at \(t_{2}\).

\title{
AIAA 93-3089 \\ Acoustic Wave Focusing in an Ellipsoidal Reflector for Extracorporeal Shock-wave Lithotripsy \\ Itzhak Lottati and Shmuel Eidelman Science Applications International Corporation \\ McLean, VA 22102
}

AIAA 24th
Fluid Dynamics Conference July 6-9, 1993 / Oriando, FL

\section*{aCOUSTIC Wave focusing in an ellipsoidal} REFLECTOR FOR EXTRACORPOREAL SHOCK-WAVE LITHOTRIPSY

\author{
by \\ Itzhak Lottati* and Shmuel Eidelmani \\ Science Applications International Corporation
}

\begin{abstract}
Simulations of acoustic wave focusing in an ellipsoidal reflector for extracorporeal shock-wave lithotripsy (ESWL) are presented. The simulations are done on a structured/unstructured grid with a modified Tail equation of state for water. The Euler equations are solved by applying a second-order Godunov method. The computed resuits compare very well with the experimental results.
\end{abstract}

\section*{Introduction}

Research relating to focusing of shock and acoustic waves is of practical interest for extracorporeal shockwave lithotripsy (ESWL). A considerable body of work is dedicated to this subject (see e.g., review in Ref. 1), and numerical simulations play a prominent role in research on these devices. It is conceivable that real-time numerical simulation can be used for better assessment of shock-wave impact on the targeted areas and more effective focusing. Requirements for these real-time simulations in terms of robustness, accuracy and efficiency are very stringent, and can be satisfied only with the most advanced numerical methods.

Structured recta..gular grids allow the construction of numerical algorithrus that integrate the fluid conservation equations efficiently and accurately. The efficiency of these schemes resuits from the extremely low storage overhead needed for domain decomposition and the efficient and compact indexing, which also defines do main connectivity. These two factors allow code construction based on a structured domain decomposition that can be bighly vectorized and paralleized. Integration in physical space on orthogonal and uniform grids produces numerical algorithms with the highest possible accuracy. The disadvantage of structured rectangular grids is that they cannot be used to decompose computational domains with complex geometries. Thus it
- Dr. Lottati is a Research Scientist with Science Applications International Corp. (SAIC), 1710 Goodridge Dr., MS 2-3-1, McLean, VA 22102, \({ }^{\dagger}\) Dr. Eidelman, Research Scientist, SAIC, Associa - Fellow AIAA
Copyright @ American Institute of Aeronautics and Astronautics, Inc., 1993, All rights reserved.
is difficult to represent computationally a complex computational domain with the curved boundaries characteristic of typical reflectors used in ESWL devices.

The early developers of computational methods realized that, for many important applications of Computational Fluid Dynamics (CFD), it is unacceptable to describe curved computational domain boundaries using the stair-step approximation available with the rectangular domain decomposition technique. To overcome this difficulty, the techniques of boundary-fitted coordinates were developed. With these techniques, the computational domain is decomposed on quadrilaterals that can be fitted to the curved domain. The solution is then obtained in physical space using the geometrical information defining the quadrilaterals, or in the computational coordinate system that is obtained by transformation of the original domain into a rectangular domain. The advantage of this technique is that it employs the same indexing method as the rectangular structured domain decomposition methods that also serve to define domain connectivity. The bcundary fitted coordinate approach leads to efficient codes, with approximately a \(4: 1\) penalty in terms of memory requirement per cell as compared with rectangular domain decomposition. However, this approach is somewhat restricted in its domain decomposition capability, since distortion or large size variations of the quadrilaterals in one region of the domain lead to unwanted distortions or increased resolution in other parts of the domain. An example of this is the case of structured body-fitted coordinates used to simulate flows over a profile with sharp trailing edges. In this case, increasing the resolution in the vicinity of the trailing edge increases resolution in the whole row of elements connected to the trailing edge elements.

The most effective methods of domain decomposition developed to overcome this disadvantage are those using unstructured triangular grids. These methods were developed to cope with very complex computational domains. The unstructured grid method, while efficient and powerful in domain decomposition, results in codes that must store large quantuies of information defining the grid geometry and connectivity, and have large computational and storage overheads. As a rule, a code with an unstructured grid requires greater storage by a factor of 10 , and will run about 5 times slower on a per cell per iteration basis than a structured rectangula: code.

Unstructured triangular meshes are designed to pro-
vide a grid that is fitted to the boundary of complex geometry. The flexibility of the unstructured mesh that allows complex geometry to be gridded should be weighed against the huge memory requirement needed to define the interconnectivity of the triangles. To cut down on the memory overhead, unstructured grid methods are used to their best advantage when combined with grid adaptivity. This feature usually allows the dynamic reallocation of triangles according to the physics and geometry of the problem solved, which leads to a substantial reduction in the number of cells needed for the domain decomposition. However, this advantage is highly dependent on the problem solved. Adaptive unstructured grids have an advantage over nonadaptive unstructured domain decomposition if the area of high resolution needed is around onetenth of the global area of the computational domain. As a result, while the adaptive unstructured method may be extremely effective for simulating flow with multiple shock waves in complex geometries. it becomes extremely inefficient when high resolution is needed in a substantial area of the computational do main.

Our approach to domain decomposition for ESWL applications combines the structured and unstructured methods to achieve better efficiency and accuracy. Under this method, structured rectangular grids are used to cover most of the computational domain, and unstructured triangular grids are used only to patch between the rectangular grids (Fig. 1) or to conform to the curved boundaries of the computational domain (Fig. 2). In these figures. an unstructured triangular grid is used to accurately define the curved internal or external boundaries and a structured rectangular grid is used to decompose the regions of the computational domain that have a simple geometry.

\section*{Mathematical Model}

We consider a system of two-dimensional Euler equations written in conservation law form:
\[
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}=0 \tag{1}
\end{equation*}
\]
where
\[
U=\left|\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
e
\end{array}\right|, \quad F=\left|\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
u(e+p)
\end{array}\right|, \quad G=\left|\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p \\
v(e+p)
\end{array}\right|
\]

Here \(u . v\) are the \(x, y\) velocity vector components, \(p\) is the pressure. \(\rho\) is the density, and \(e\) is total energy of the fluid.

The equation of stave tor water was adopted from Ref. 2. The actual pressure and density \(\tilde{p}, \tilde{\rho}\) in water are modified and then applied in the Euler solver. The modified pressure and density are given as
\[
\begin{gather*}
p=\tilde{p}+B  \tag{2}\\
\rho=\tilde{\rho} /(1+\tilde{p} / B)^{n} . \tag{2a}
\end{gather*}
\]
where \(B=2955\) bar and \(n=7.44\) to adjust the velocity of sound to that for water ( \(a_{0}=1483 \mathrm{~m} / \mathrm{sec}\) ).

The initial pressure distribution \(\tilde{p}(r)\) in the left focal point is chosen as
\[
\begin{equation*}
\tilde{p}(r)=1.0 \mathrm{bar}+\Delta p \exp \left[-\left(r-r_{0}\right) /\left(a_{0} r\right)\right] \tag{2b}
\end{equation*}
\]
where \(\Delta p\) is the intensity of the blast. \(r\) is a time scale and \(a_{0}\) is sound speed in water \((T=3 \mu \mathrm{sec})\).

It is assumed that an initial distribution of the fluid parameters is given at \(t=0\), and the boundary conditions defining a unique solution are specified for the computational domain.

\section*{Interration Algorithm}

The system of governing equations (1) can be written in the following form:
\[
\begin{equation*}
\frac{\partial U}{\partial t}+\nabla \cdot \mathrm{Q}=0 \tag{3}
\end{equation*}
\]
where \(Q\) represents the convective flux vector. By integrating Eq. (3) over space and using Gauss' theorem. we obtain the following expression:
\[
\begin{equation*}
\frac{\partial}{\partial t} \int_{\Omega} U d A+\oint_{\partial \Omega} Q \cdot d=0 \tag{4}
\end{equation*}
\]
where \(d=\mathbf{n d l}, \mathbf{n}\) is the unit normal vector in the outward direction, and \(d_{d}\) is the element of length on the boundary of the domain. The variable \(\Omega\) is the domain of computation and \(\partial \Omega\) is the domain boundary.

Equation (4) can be discretized for each element (cell-triangle) of the domain:
\[
\begin{equation*}
\frac{\left(U_{i}^{n+1}-U_{i}^{n}\right)}{\Delta t} A_{i}=\sum_{j=1}^{3} Q_{j}^{n+\frac{1}{2}} \mathbf{n}_{j} \Delta t_{j} \tag{5}
\end{equation*}
\]
where \(A_{i}\) is the area of the cell: \(\Delta t\) is the marching time step; \(U_{i}^{n+1}\) and \(U_{i}^{n}\) are the primitive variables at the center of the cell at time \(n\) and at the updated \((n+1) s t\) timestep; \(\mathbf{Q}_{j}^{n+\frac{1}{2}}\) are the value of the fluxes across the three boundaries edges on the circumference of the cell. where \(n_{j}\) is the unit normal vertor to edge \(j\) of the boundary, and \(\Delta l\), is the length of the boundary edge
j. Equation ( 5 ) is used to update the physical primitive variables \(U_{i}\) according to computed fluxes for each timestep \(\Delta t\). The time step is subjected to the Courant-Fredrichs-Levy (CFL) constraint.

To ensure a second order spatial accuracy, the gradient of each primitive variable is computed in the baricenter of the cell. This gradient is used to define the projected values of primitive variables at the two sides of the cell edge, as shown in Fig. 3. The gradient is approximated by a path integral
\[
\begin{equation*}
\int_{\Omega} \nabla U_{i}^{\text {cell }} d A=\oint_{\partial \Omega} U_{j}^{\text {edge }} d \mathrm{ll} . \tag{6}
\end{equation*}
\]

The notation is similar to the one used for Eq. (5), except that the domain \(\Omega\) is a single cell and \(U_{i}^{\text {cell }}\) and \(U_{j}^{\text {edge }}\) are values at the baricenter and on the edge respectively. The gradient is estimated as
\[
\begin{equation*}
\nabla U_{i}^{\text {cell }}=\frac{1}{A} \sum_{j=1}^{3} \tilde{U}_{j}^{\text {edge }}{ }_{n_{j} \Delta l_{j}}, \tag{7}
\end{equation*}
\]
where \(\tilde{U}_{j}^{\text {edge }}\) is an average value representing the primitive variable value for edge \(j\).

The gradients that are computed at each baricenter are used to project values for the two sides of each edge by piecewise linear interpolation. The interpolated values are subjected to monotonicity constraints. \({ }^{3}\) The monotonicity constraint assures that the interpolated values are not creating new extrema.

The monotonicity limiter algorithm can be written in the following form:
\[
\begin{equation*}
U_{\mathrm{pro}}^{\text {edge }}=U_{i}^{\text {cell }}+\phi \nabla U_{i} \cdot \Delta r \tag{8}
\end{equation*}
\]
where \(\Delta r\) is the vector from the baricenter to the point of intersection of the edge with the line connecting the baricenters of the cells over the two sides of this edge. \(\phi\) is the limiter coefficient that limits the gradient \(\nabla U_{i}\).

First. we compute the maximum and minimum values of the primitive variable in the i's cell and its three neighboring cells that share common edges (see Fig. 3):
\[
\left.\begin{array}{l}
U_{\text {cell }}^{\max }=\max \left(U_{k}^{\text {cell }}\right) \\
U_{\text {cell }}^{\min }=\min \left(U_{k}^{\text {cell }}\right)
\end{array}\right\} k=i, 1,2,3
\]

The limiter can be defined as:
\[
\begin{equation*}
\phi=\min \left\{1, \phi_{k}^{i r}\right\}, k=1,2,3, \tag{10}
\end{equation*}
\]
where the superscript ir stands for left and right of the three edges ( 6 combinations altogether). \(\phi_{k}^{i r}\) is defined by:
\(\phi_{k}^{i r}=\frac{\left[1+\operatorname{Sgn}\left(\Delta U_{k}^{i r}\right)\right] \Delta U_{\text {mal }}^{\max }+\left[1-\operatorname{Sgn}\left(\Delta U_{t}^{i r}\right)\right] \Delta U_{\mathrm{ai}}^{\mathrm{mm}}}{2 \Delta U_{k}^{i r}}\)
\(k=1,2,3\),
where \(\Delta U_{k}^{l r}=\nabla U_{i}^{l r} \cdot \Delta r_{k}\) and
\[
\left.\begin{array}{rl}
\Delta U_{\text {cell }}^{\max } & =U_{\text {cell }}^{\max }-U_{i}^{\text {cell }}  \tag{12}\\
\Delta U_{\text {cell }}^{\min } & =U_{\text {cell }}^{\min }-U_{i}^{\text {cell }}
\end{array}\right\}
\]

To obtain second-order accuracy in space and time. we subject the projected values of the left and right side of the cell edge to characteristic constrainus following Ref. 4. The one-dimensional characteristic predictor is applied to the projected values at the half timestep \(t^{n}+\Delta t / 2\). The characteristic predictor is formulated in the local system of coordinates for the one dimensional Euler equation. We illustrate the implementation of the characteristic predictor in the direction of the unit vector \(\mathbf{n}_{\mathrm{e}}\). The Euler equations for this direction can be written
\[
\begin{equation*}
W_{1}+A(W) W_{n c}=0, \tag{13}
\end{equation*}
\]
where
\[
W=\left\{\begin{array}{l}
\tau  \tag{14}\\
u \\
p
\end{array}\right\} ; A(W)=\left(\begin{array}{ccc}
u & -\tau & 0 \\
0 & u & \tau \\
0 & \rho c^{2} & u
\end{array}\right),
\]
where \(\tau=\rho^{-1}, \rho\) denotes density, and \(u, p\) are the velocity and pressure. The matrix \(A(W)\) has three eigenvectors ( \(l^{*}, r^{\#}\) ) ( \(l\) for left and \(r\) for right, where \# denote \(+, 0,-)\) associated with the eigenvalues \(\lambda^{+}=u+c, \lambda^{0}=\) \(u, \lambda^{-}=u-c\).

An approximation of the value projected to an edge, accurate to second order in space and time, can be written
\[
\begin{align*}
W_{i+\Delta r}^{n+1 / 2} & \approx W_{i}^{n}+\frac{\Delta t}{2} \frac{\partial W}{\partial t}+\Delta r \frac{\partial W}{\partial r_{n e}} \\
& \approx W_{i}^{n}+\left[\Delta r-\frac{\Delta t}{2} A\left(W_{i}\right)\right] \frac{\partial W}{\partial r_{n e}} \tag{15}
\end{align*}
\]

An approximation for \(W_{i+\Delta r}^{n+1 / 2}\) can be written as
\[
\begin{equation*}
W_{i+\Delta r}^{n+1 / 2}=W_{i}+\left(\Delta \mathbf{r}_{i}-\frac{\Delta t}{2}\left(M_{x} M_{n}\right) \mathbf{n}_{c}\right) \cdot \nabla W_{i} \tag{16}
\end{equation*}
\]
where
\[
\left(M_{x} M_{n}\right)= \begin{cases}\operatorname{Max}\left(\lambda_{i}^{+}, 0\right) & \text { for cell left to the edge }  \tag{17}\\ \operatorname{Min}\left(\lambda_{i}^{-}, 0\right) & \text { for cell right to the edge } .\end{cases}
\]

The gradients: Sed in the process of computing the projected values at \(t^{n}+\Delta t / 2\) are subjected to the monotonicity limiter.

Following the characteristic predictor described above, the full Riemann problem is solved at the edge. The solution of the Riemann problem defines the flux \(\mathbf{Q}_{j}^{n+\frac{1}{2}}\) through the edge. The fluxes through the edges of triangles are then integrated (Eq. 5), thus updates the variables at \(t^{n+1}\). One of the advantages of this algorithm is that calculation of the fluxes is done over the largest loop in the system (the loop over edges) and can be carried out in the vectorized or parallelized loop. This makes the aigorithm efficient.

The algorithm presented is a modification of the algorithm of Ref. 5, which was derived for a structured mesh. The present algorithm has been applied to simulate a wide range of flow problems and has been found to be very accurate in predicting the features of the physics. The performance of the algorithm is well documented in Pefs. 6-9. The algorithm for the rectangular cells are identical except the cell has four edges (Eq. 5).

\section*{Sound Wave Focusing in an Ellipsoidal Reflector}

For our simulations, we chose a deep reflector shaped like an ellipsoid, which was used for ESWL by Dornier and other companies. A schematic of the cross section of this reflector is shown in Fig. 4. Strong acoustic waves are generated in the left focal point of the ellipsoid by an instantaneous release of energy and are refocused at the right focal point. Ideally, a reflector should employ waves of acoustic intensity, since the nonlinear reflections of strong shock waves lead to significant distortions in wave propagation and impair simple geometrical focusing.

Figure 2 shows the computational domain and grid for the ellipsoidal reflector that we used in our study. In order to illustrate the concept of the composite structured/unstructured grid, we have shown only every sixteenth cell of the grid that was actually used for the simulation. In this example, we observe that the structured rectangular grid covers about \(90 \%\) of the computational domain, and the unstructured triangular grid is restricted to the curved surface of the ellipsoid and covers about \(10 \%\) of the domain. The major axis of the ellipsoid is 150 mm and the minor axis is 90 mm .

Two simulations were conducted with two different \(\Delta p\) values to study how the intensity of the blast affects focusing of waves in the reflector. The first simulation was done with \(\Delta p=725\) bar and \(\tau=3 \mu\) s where \(\left|r-r_{0}\right|<\) 10 mm . The other simulation was done by using pressure three times larger than in first simulation.

In Figs. 5a-5d simulation results for the \(\Delta p=725\) bar conditions are shown in the form of pressure con-
tour plots. Figure 5a shows pressure distribution for the initial stage of wave propagation before the wave front has reached the surface of the - tector. The contour plots are shown at \(t=1 .: 0 \times 10^{\circ} \mathrm{sec}\). At this time the maximum pressure in \(t\). wave \(s\) dropped to 173 bar. In Fig. 5b pressure \(\mathrm{cr}^{\text {i }}\) ours shown at \(\mathrm{t}=3.32\) \(\times 10^{-5}\) sec. Here we observe nat th. wave reflected from the surface of the reflector sas ma: num pressure about five times than that of thr incider. wave. However, both wave fronts propagate through tt: water with a constant speed equal to the speed of so:ind, and the phase shift observed in Fig. 5b holds through the calculation. In Fig. 5 c the simulation results are shown at the stage when the incident wave is crossing the center of symmetry of the reflector. Here \(t=8.88 \times 10^{-6} \mathrm{sec}\). It is interesting to note that the value of the overpressure at this location was used in Ref. 1 as a normalizing value for presentation of the experimental and computational results. In our case for the initialization with \(\Delta p=725\) bar the incident pressure at the center of the ellipsoid is \(p=11.1\) bar. In Fig. 5d simulation resuits are shown at \(t=19.2 \times 10^{-5} \mathrm{sec}\), when maximum focusing of the reflected wave take place. The pressure values in the focal point reaches 188 bar. This maximum is immediately followed by a negative phase with a minimal pressure of 163 bar. This strong pressure variations can cause disintegration of the stones by the ESWL apparatus.

In Figs. 6a-6b simulation results are shown for the second case of \(\Delta p=2175\) bar. As we can see in Fig. 6a, this value of the initial overpressure produces an incident wave with about 33 bar, which is a bit higher than the 29 bar value observed in Ref. 1. The wave structure at the time of focusing is shown in Fig. 6b. Here we can observe that for this case the maximum pressure reaches 494 bar, followed by a 371 bar minimum. Comparing this case with that reported above, we conclude that the amplification at the focal point is smaller in the second case.

The waves observed in the system are of acoustic intensity and are propagating at the speed of sound. The reflected wave will therefore not be able to catch up with the incident wave. Except for some compressibility effects in the initiation and focusing stages when pressures are high, the fluid will behave as incompressible. Figure 7 shows the density contour for the first case ( \(\Delta p=i 25\) bar). As expected, the compressibility effect is negligible.

In Fig. 8 the simulation results are compared with the experimental results in a plot of normalized pressures as function of distance from the focal point. In this figure the simulation results for the case of initiation with \(\Delta p=725\) bar and \(\Delta p=2175\) bar are shown by the curves marked with triangles and rectangles respectively. The experimental results for the 29 -bar incident pressure
(which most closely fits our second simulation) are shown by the curve marked by circles. In Fig. \& we see that the maximum reflection factor is achieved for weaker waves, which is consistent with the results reported in Ref. I. The simulation results are very close to the experimental ones in the case of \(\Delta p=2175\) bar initiation for focal point location and pressure amplification factor. which validates the simuiation methodology.

In all the figures presented, the method of composite domain decomposition works extremely well, producing solutions with no seams at the interfaces. We should mention here that our test problem is particularly sensitive because the main acoustic waves are weak, and any inaccuracy introduced at the grid interfaces would produce a distortion in the phase or in the intensity of the traveling waves that would be a visible disturbance evident in the results.

\author{
Conclusions
}

A composite method of structured/unstructured do main decomposition is introduced as an efficient technique for dealing with the computational domains of complex geometry. We have simulated a demanding acoustic wave focusing problem and have shown that our approach leads to accurate wave propagation without any reflection or distortion at the structured/unstructured grid interfaces. Note that for the acoustic focusing problem as simulated and presented in this paper, both structured and unstructured methods of domain decomposition can be shown to be inadequate if used separately. The structured method has difficulty describing the curved boundaries of the computational domain, while the unstructured method is totally inefficient in describing phenomena with wide fronts that occupy a large portion of the computational domain. Our hybrid method combines the advantages of structured and unstructured methods of domain decomposition. This hybrid technique combines the efficiency of the unstructured grid, which accurately represents curved walls, with the computational and memory efficiency of the structured grid in the majority of the computational domain. We also attribute the quality of the numerical result to the Second Order Godunov method, which allows a consistent, accurate and robust formulation for handling both grids and boundary conditions.

\section*{Acknowledgment}

The work reported bere was partially supported k : ARPA and ONR. The authors would like to thank Col James Crowley and Dr. Lawrence Kabecoff for their interest in this project.

\section*{References}
1. H. Gronig, "Past, Present and Future of the Shock Focusing Research," Proceedings of the International Workshop on Shock Wave Focusing, Sendai, Japan, March 1989.
2. K. Isuzugawa and M. Horiuchi, "Experimental and Numerical Studies of Blast Wave Focusing in Water," Proceedings of the International Workshop on Shock Wave Focusing, Sendai, Japan. March 1989.
3. B. van Leer. "Towards the Ultimate Conservative Difference Scheme, V.A. Second Order Sequel to Godunov's Method," 1. Comp. Phys. 32, 101-136 (1979).
4. P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gasdynamic Simulations," I.Como. Phys. 54, 174-201 (1984).
5. S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," AIAA Journal 22, 10, 1984.
6. I. Lottati, S. Eidelman and A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," 28th Aerospace Sciences Meeting, AIAA-90-0699, Reno, NV (1990).
7. I. Lottati, S. Eidelman, and A. Drobot, "Solution of Euler's Equations on Adaptive Grids Usiag a Fast Unstructured Grid Second Order Godunov Solver," Proceeding of the Free Lagrance Conference, Jackson Lake, WY, June 1990.
8. I. Lottati and S. Eidelman, "Second Order Go dunov Soiver on Adaptive Unstructured Grids," Proceeding of the 4th International Symposium on Computational Eluid Dynamics, Davis, CA. September 1991.
9. 1. Lottati and S. Eidelman, "A Second Order Godunov Scherne on Spatial Adapted Triangular Grid," To appear in a special issue of Applied Numerical Mathematics (Proceedings of U.S. Army Workshop on Adaptive Methods for Partial Differential Equations, R.P.I., March 1992).


Figure 1. A possible candidate configuration for hybrid structured/unstructured domain decomposition.


Figure 2. A possible candidate configuration for hybrid structured/unstructured domain decomposition. representing the ellipsoid reflector grid used for the numerical simulation.


Figure 3. Second order triangular based flux calculation.


Figure 4. A schematic drawing of the center cross section of the ellipsoid reflector.


Figure 5. Pressure contours showing the incident wave and the reflected
wave pattern for \(\Delta p=725\) bar.


Figure 6. Pressure contours showing the incident wave and the reffected wave pattern for \(\Delta p=2175\) bar.


Figure 7. Density contours emphasizing the fact that the compressibility effect is negligible ( \(\Delta p=725\) bar at \(t=1.92 \times 10^{-4} \mathrm{sec}\) ).


Figure 8. Normalized maximum pressure distribution on the axis of symmetry. A comparison between computed and experimental results.```


[^0]:    Plow Explostsn
    
    ilne- 0.200~0.
    

